
Program Product

SC33-4044-2

DOS/VS Sort/Merge
Version 2
Programmer's Guide

Program Number 5746-SM2

--.- ------ ----- ----- -. ---- -----------~-.-

Third Edition (November 1979)

This is a major edition of, and obsoletes, SC33-4044-1. Changes and
additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition applies to Release 3, Modification 0, of the DOS/VS
SortjMerge Version 2 program Product (Program Number 5746-SM~ and to
all subsequent modifications until otherwise indicated in new editions
or Technical Newsletters. Changes are continually made to the
information herein; before using this publication in connection with the
operation of IBM systems, consult the IBM System/370 Bibliography,
GC20-0001, for the editions that are applicable and current. It is
possible that this material may contain references to, or information
about, IBM products (machines and program~ , programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IB~
products, prograreming, or services in your country.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be made to your IBM representative or
to the branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose,
California 95150', U.S.A. IBM may use or distribute any of the
information you supply in any way it believes a~propriate without
incurring any obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright International Business Machines Cor~oration, 1977, 1979

ii

Preface

Who This Manual is For

This manual is for programmers who wish to sort or merge records using
the DOSjVS Sort/Merge Version 2 Progzam Product, 5746-SM2. To sort
records is to arrange them in a given order. To merge records is to
create one sorted sequence from two or more previously sorted sequences.

To use this manual, you should already have a basic understanding of
DOS/VS and its jeb control language (JCL); in order to take advantage of
all the options and facilities of the sort/merge program, you may need
to refer to the manuals listed at the end of this preface.

Using this manual, you will be able to prepare all the input necessary
to perform a sort or merge. You will also be able to link your own
routines (written in assembler language) to the sort/merge program to
perform such services as reading input from and writing output to
non-supported file types, handling user labels, processing I/O errors,
and providing VSAM passwords.

The functions of including and/or omitting certain records, specifying
an alternative collating sequence, reformatting the records for output,
and summarizing records, can be performed by means of user-specified
control statements. It is not necessary to write a routine of your own
to perform these functions.

References You May Need

DOSIYS SortJMerge Version 2 Installation Reference Manual, Order No.
SC33-4045

If You ~ Running under DOSaS Release 33 or 34

DOSIYS Data Management Guide, Order No. GC33-5372
DOSIYS Supervisor and IIO Macros, Order No. GC33-5373
DOSIYS System Generation, Order No. GC33-5377
Introduction to DOS/yS, Order No. GC33-5370
DOS/VS System Management Guide, Order No. GC33-5371
DOSIYS System Contrel Statements, Order No. GC33-5376
DOSIYS System Utilities Reference, Order No. GC33-5381
DOSIYS Utilities: Access Method Services, Order NO. GC33-5382

If You are Running under VSE/Advanced Functions

Using VSE/ySAM Commands and Macros, Order No. SC24-5144
Using the VSE/VSAM Space Management, Order No. SC24-5192
Introduction to DOS/ySE, GC33-6108
VSEIYSAM Messages and Codes, SC24-5146
VSEJYSAM Documentation Subset, SC24-5191

iii

I VSEJYSAM General Information, GC24-5141
I VSE/Advanced Functions Data Management Concepts, GC24-5209
I VSE/Advanced Functions Tape Labels, SC24-5212
I VSE/Advanced Functions DASD Labels, SC24-5213
I VSE/Advanced Functions System Generation, SC24-6096
IVSE/Advanced Functions System Management Guide, SC33-6094

'I VSE/Advanced Functions System Control Statements, SC33-6095
I VSE/Advanced Functions Macro Refe.rence, SC24-5211
, VSE/Advanced Functions Macro User's Guide, SC24-5210

i ----- -----

iv

CHAPTER 1. INTRODUCTION •••••••••
What the Program Can Do. • • • • • • • •

Differences from Release 2 of 5746-SM2 •
Differences from Release 1 of 5746-SM2 •
Differences From 5746-SM1. • • •

Input/Output Characteristics .. • • ..
Input/Output Files • • • • • • •
VSAM Managed SAM Files • • • • •
Records and Data Format.
Minimum Record Length. •
Maximum Block Size and Record Length •

Input/Output Devices • • • •
Input/Output Pooling • • •
Input Device Sharing •
Work Storage Devices •
Label Processing •
Passwords for VSAM Files •
Control Fields and Collating Sequences ..

Control Fields • • • • • • • • • •
Collating Sequences. • • •

Alternative Collating Sequence •
Using The Program. •

Program Control Statements • • • .. • •
Job Control Statements (JCL) • • • • • •
Initiating the program •
Program Modification

Contents

• • 1
• 1 ·, . • 2
• 2
• 2

• • • • • • 2
• 2

• • 3
3

• • 3
• 5
• 6
• 6
• 6

• • • • • • • • 7
• • 7

• 8
• 8

• • 8
• 9

• • 910
.10

.. • .10 · . ,. . • • • • 11

Relationship to DOS;VS and VSE/Advanced Functions. •
• •• 11

.11

CHAPTER 2. PROGRAM CONTROL STATEMENTS. •
The Statements • • • • • • • • • •
Control Statement Format • • • • •
SORT Control Statement • • • • • • •
MERGE Control Statement. •

Sort/Merge Statement Programming Notes •
Sort/Merge Statement Exam~les. •

RECORD Control Statement • • •
Record Statement Programming Notes • •
RECORD Statement Examples. •

MODS Control Statement • • • •
MODS Statement Programming Notes
MODS Statement Examples. • •

INPFIL Control Statement • • •
INPFIL Statement Programming Notes • •
INPFIL Statement Examples. • • • • •

OUTFIL Control Statement • • • .. • • • •
OUTFIL Statement Programming Notes • • • • •
OUTFIL Statement Examples. • • •

INCLUDE/OMIT Control Statement .. • • I. ..
COND Parameter • • • • • • •
Relational Condition • • • •
Relational Condition Format. •
FORMAT Operand • • • •• • • •
INCLUD~OMIT Statement programming Notes
INCLUDE/OMIT Statement Examples. •

ALTSEQ Control Statement
ALTSEQ Statement Programming Notes ..
ALTSEQ Statement Examples. •

OUTREC Control Statement • • • • • • • •
OUTREC Statement programming Notes • • • • •
OUTREC Statement Examples. •

.. . . .

· ..

. . · . .

.13

.14

.17
• .18

.21

.21

.22
• .23
• .24

• 24
• .26
• .26
• .27

• 28
.30

• •• 31
• ••• 32

• •••••••• ~33
• • • • • • •• 34

. . • . . .35

.. .

. .

.35
• •• 35

• .36
• ••• 40

• .40
• .41

.42

.42
• .43
• .44
• .45

.45

v

SUM Control Statement..
SUM Statement Programming Notes ...
SUM Statement Examples • • • • ... •

ANALYZE Control Statement.
OPTION Control Statement • '. OPTION Statement Programming Notes •

OPTION Statement Examples. •

...

· . .
... .

CHAPTER 3. JOB CONTROL STATEMENTS AND COMMANDS
Defining Files • • • •

Input File Statements. • • • •
Output File Statements •
Work File Statements •

Under DOS/VS Release 33 and 34
Under DOS/VSE Advanced Functions

· .. · .

CHAPTER 4. EXECUTING THE PROGRAM • • •
IndeDendent Proaram~ ~ ~ _ ~

Initiating FromJan-Assembier Program.

.. .. ., .
Interface Requirements • • ... • • • •
Subta sking • • • • • • •
Passing Parameters • • • •• ••••

. .
... .

The Address List • • • • • • • • • • •
Control Statement Images ••••
User Routines at Program Exits

· .
.. .

•

•

Return Codes: Successful and Unsuccessful Termination.
Alternative Sequence •

Sample Coding. •
CHAPTER 5. MODIFYING THE PROGRAM •
How The Program Is Organized • ... • • • •

Phase 0: Initialization. • •••
Phase 1: Sort. •
Phase 2: Merge Strings... • ••••••
Phase 3: Final Merge •• · . ..

Uses of Program Exits. • • • •••
Comparison with Other SortjMerge Programs. •

Handling Input and Output File Labels.
INPFIL or OUTFIL EXIT Specified.

Checkpointing.
Modifying, Deleting, and Inserting Records

At Sort Input (E15). • • • • ...
At Merge Input (E32) • • •
At Output (E35). • • • ..

Processing VSAM Files.
Passwords. . . .
Exit Lists • • • • •

Relocatable Routines Are Best. •
Loading and Linking to User Routines

Loading Your Routines.
passing Control.

.. . '-

·
· . .. · . .

Use of Registers to Pass Information • • • •
E11 Coding Instructions. • ••,

Examples of Label Processing • • • '. •
E15 Coding Instructions
E17 Coding Instructions ••••••• ~ ••••
E18 Coding Instructions.
E3l Coding Instructions. •
E32 Coding Instructions. ... • • • • • •
E35 Coding Instructions.
E37 Coding Instructions. .. • • • • • • • • • ..
E38 Coding Instructions.
E39 Coding Instructions.

· •

· ·
· ·

· ·
· ·
· •
· ...

· · · ·

· ·

· ·
· ·

CHAPTER 6. FACTORS OF IMPORTANCE FOR PERFORMANCE.

vi

... • · · · · ...

· · • ·

... · • ·
· · ·

...

· ..

... · • ·
• ·

...

... ...

· .
· .
· •
• · • ·
• ·
... ..

• ·
· ...

· •
• ·

• •

.47

.47

.48

.49

.50

.55

.56

.58

.59

.59
• .60

.60
• .60

.61

... 63
_ .. _ .63

.64
... . .64

.64
• .65

• ••• 65
.66
.66

·

·

·

·

·

· ·
·

· ·

• .67
• •• 67

.68

• · .72
.72

... .. .72
•72

· .74

· • .75
.75
.75
.. 75

· .76
... .76

.77
• · .77
... .77

• .78
.78

· · .78

· .78
.79
.79
.79
.79

· .80
.. · .81

.82

· .85
.88
.88
.89
.93

• .95
... • .98

.98

..99

• • 101

Effect of the Environment. • • • •
SM2 Modules in the SVA • • • • • • • · .. ,. . . .,

.. 101
• •• 101

.. •••• 101

....... 102
103

• ... 103
• ••••• 104

Main Storage (Real and Virtual). • • • • • • • •
Work Storage • • • • • •
Input and Output Files • • • • • .. 4.

Specification of Record Length • • • •
Functions That May Affect Performance Positively.

INCLUDE/OMIT • • .. • • • •
StlM. • • • .. • • • .. • • • •
OUTREC • • • • • • • • • • •
NOCHAIN •••

Functions That May Affect Performance Negatively •
Checkpoint/Restart • • • • • • • • • • • • •

• •• 104
• .. • 104

• 104
• •• 104

• 104
• • 104

VERIFY, BYPASS, ERASE, DIAG~ EQUALS, DUMP~ and WORK=O •• • 105
• ... 105 Effect of User Routines. • • • • • •

Using the DIAG Option. • • • • • • • • '. • • 105
106 Tuning Table • • • • • • • • • •

APPENDIX A. SAMPLE JOB STREAMS, WITH STATEMENT FORMAT RULES •• 108
.... 108
• ... 109

110

Statement Format •
Continuation Cards •

. ,. ,. · ,. . ,. . . .
,.

Summary of Restrictions. • •
Control Statement Notation • •

Examples • • • • • • • • • • · . ~
APPENDIX B. STORAGE REQUIREMENTS ..
Minimum Main Storage • • • • • • • • .. • •

Use of the SVA • • • • • • • • • • • •
Input and Output Buffer Sizes. • ..
Size of User Routines at Program Exits ..
Use of Special Functions • • • • • •
Internal Record Length • • •

Sort Main Storage Without Work Files • • • • •
Work Files • • • • • •

APPENDIX C. CONVERSION AIDS •••
Related Programs • • •

Preferred Statements and Parameters. •
Conversion • • • •
Unrelated Programs • •

JCL Statements • • •
Program Control Statements
Routines at Program Exits.

· . ,. ..

.
· . . .

Converting From System/3 Disk Sort •

APPENDIX D. PERMITTED DATA FORMATS • ~

APPENDIX E. PROGRAM MESSAGES • • •
Different Types of Message • • • • • • •
When and Where Messages Are Produced
Messages • • • • • • •
Program Error Messages

INDEX. • • • • • • • •

,. . .

.. . .

. . ,.

· ,. ,. ., .

.. .
· .. · .. · ..

· ..

.. .

..

• •• 111
.... 111

• 122
.. • 122

• .. • 122
• • • • • .. • 123

.. 123
• ... 123

• • • • • • 124
• 124
• 124

......... 125

· .. .

125
126

• 127

· . ,.
• 127

• .. • 128
.... 128

·

. ,. . ., .
· .. . ,. .. .

.,

• 129
132

135

138
• •• 138

139
• 140
• 192

• 195

vii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6 (1
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Figures

Input and output Characteristics. • • 4
Block Size and Record Length. • • • • • • • 5
Devices That Can Be Used For Work Files • • • 7
Control Fields. • • • • • • • • • • • • • • • 9
Supervisor Generation Macros Relevant to SM2. • • .11
of 2). Program Control Statement Summary •••••••••• 15
Example of a Control Statement. • • • • • • • • .17
Permissible Field-to-Field Comparisons for INCLUDE/OMIT •• 37
Permissible Field-to-Constant Comparisons for INCLUDE/OMIT.37
Logic Table for INCLUDE/OMIT Statement. • • • • • • • .40
File Names and SYS Numbers Allocated by Default. • • .62
Job Stream for an Independent Sort Program. • • • • • .63
How to Code Parameters and Control Statement Images. .65
Sample Coding to Initiate the Program. • • • •• 69
Overview of Program Flow and Exits. • • • • .72
Uses for Program Exits. • • • • • • • • • • • .74
Which Exits to Use for File Label Handling. .76
Branch Tables for Program Exits. • • • .80
General Method for Passing Parameters. .81
Label Processing at E 11 and E 17 • • • • • • .84
Using E31 and E37 with a Merge. • • • • • • • •• 91
Default Storage Value Used by SM2 • • • • • 102
SM2 Storage Allocation Map. • • • • 102
Centr~l Statement Fermat Example. • 108
Input and output Buffer Element Sizes, in Bytes 123
Differences from 5746-SM1 and Similar Programs. • •• 126
Preferred Parameters. • • • • • • • • • • • 126
Incompatibility and Conversion. • • • • • • • 127
Correspondence of Old Exits to SM2 Exits. • • • • •• 130

ix

RELEASE 1 IMPROVEMENTS

• Support of VSAM managed SAM
files for input, cutput" and
work files.

• Support for sim~lified JCL for
VSAM files.

• Simplified SYSNO handling for
all disk files under
VSE/Advanced Functions.

SUMMARY OF AMENDMENTS
FOR SC 3 3-4044-2

DOS/VS SORT/MERGE 5746(SM2)
RELEASE 1 MODIFICATION Q

xi

SUMMARY OF AMENDMENTS
FOR SC3 34 044-1
_OOS/VS SORT/MERGE5746 (SM2)
RELEASE 1 MODIFICATI<?N Q

RELEASE 1 IMPROVEMENTS

• Release 2 of SM2 can now run
under DOS/VSE in either
Syste~370 mode or ECPS:VSE
mode.

• SM2 accepts input, work,

•

output, or checkpoint files on •
devices operating in Fixed

•

•

•

•

xii

Block Mode (FBA).

The program will, if sufficient
storage is available, use •
command chaining when it reads
SAM input or writes SAM output
in sort applications. Command
Chaining is cnly used for CRD •
and tape devices.

OUTREC fields can be anywhere
within the record (even beyond
4092) •

The program allows SAM input •
and output files to contain
spanned records.

The standard default values for •
the program options can be

changed to suit the
installation when the program
is installed.

The control fields specified in
the SOR~ or MERGE statement can
overlap each other.

The control statement images
(parameter list) are optionally
printed when the program is
invoked.

Messages may be routed to a
device other than 5Y5L5~, when
the program is invoked.

The ANALYZE function makes it
possible to find out how 5M2
will o~timize, and what
capacity a sort job will have,
without actually sorting or
merging.

The information messages, as
well as the diagnostics
handling, have been improved.

There is automatic sequence
checking in sort applications.

Chapter 1. Introduction

The DOS/VS Sort/Merge Version 2 Program Product, 5746-SM2, is a
generalized sort/merge program which executes as a processing program
under DOS/VS Release 33 and 34, and DOSjVSE.

The VSE/VSAM Release 2 program product is required for VSAM applications
under DOS/VSE and AFjVSE Release 2. For VSEjVSAM managed SAM files
support, the 'Space Management for SAM Feature' must also be installed.

This chapter describes SM2 briefly in terms of its functions; how it
differs from the 5746-SM1 Program Product; its input and output
requirements; the use of control fields, collating sequences and control
statements; and its relationship to the operating system.

What the Program Can Do

The program's basic functions are:

1. To sort records from up to nine input files into a user-defined
sequence onto an output file

2. To merge records from up to nine previously sorted files onto an
output file

The input and output files can be VSAM or SAM. Output need not be the
same as input--that is, you can have SAM input and VSAM output, or vice
versa; but unmanaged input files must be either all SAM or all'VSAM.

VSAM managed SAM files in Control Interval format may be accessed as
either SAM or VSAM. As input, however, if they are mixed with ordinary
SAM files they must be accessed as SAM files, and if mixed with VSAM
files they must be accessed as VSAM. Managed files not in Control
Interval format cannot be accessed by the program directly but they may
be read or written using user exitsE15 and E35.

The files can reside on tape, Count-Key-Data (CKD), or Fixed Block Mode
(FBA) disks as described below under 'Input/Output Devices'. Input
files can be on any mixture of permitted devices.

SM2 handles all standard labels, as well as unlabeled tape files.

In addition, user-written routines can be linked to the sort/.merge
program at points called program exits. At these exits, the
user-written routines may write or check nonstandard labels, open or
close files, take checkpoints, insert, modify, or delete records, read
the input file, write the output file, or process VSAM I/O errors.

Other fUnctions such as sorting only a part of the input, modifying the
standard EBCDIC collating sequence, reformatting the records for output,
and summarizing records, can be invoked by means of program control
statements.

Chapter 1. Introduction 1

DIFFERENCES FROM RELEASE 2 OF 5746-SM2

VSAM managed SAM files may be used as input, output and/or work files.

DIFFERENCES FROM RELEASE 1 OF 5746-SM2

A major difference in Release 2 of SM2 is that it can now run under
VSE/Advanced Functions. Under VSE/Advanced Functions it can run in
either ECPS:VSE mode or System/370 mode. To use SM2 you do not need to
know which of the systems is in use.

A second important difference is that 5M2 will now accept input, work,
output, or checkpoint files on FBA devices. Conventional cm devices
can be mixed with FBA devices for input and work.

DIFFERENCES FROM 5746-SM1

SM2 is functionally compatible with the DOS/VS Sort/Merge Program
Product 5746-SM1, with the exceptions noted in Appendix C under 'Related
Programs'. In addition it offers the following features:

• Reduced space requirements for work files (some sorts can be run
with no work files at all) •

• Code which is reenterable, and therefore eligible to reside in the
Shared Virtual Area (SVA).

• Input to either a sort or a merge can be on any mixture of the
device types accepted by the program.

• Subtasking is allowed, i.e., SM2 can be initiated by use of an
ATTACH macro from within an asSembler-language program.

• The user can specify that the input order of records with identical
control fields should be preserved in the output file.

• The parameter list passed at exits E15, E32 and E35 has been
extended and now includes information on record type and record
length.

Input/Output Characteristics

INPUT/OUTPUT FILES

All files must be defined according to DOS/VS standards, as described in
the DOS/VS System Management Guide, or the VSE/Advanced Functions System
Management Guide. The characteristics of the input and output files
that the sort/merge program can handle are given in Figure 1.

Input files must be either all accessed as SAM, or all as VSAM. ~o
access VSAM files, SM2 uses VSAM. To access unmanaged SAM files it uses
EXCP corr.mands.

2

VSAM MANAGED SAM FILES

These files always need the VSAM parameter on their DLBL card. If VSAM
or ESDS is specified on the INPFIL or OUTFIL card as appropriate they
are accessed as VSAM. Otherwise they are accessed as SAM using GET or
PUT.

RECORDS AND DATA FORMAT

Records can be either fixed or variable-length. Variable-length spanned
records are permitted; they exclude the use of the ADDROUT option.

The record data can be numeric or alphameric coded EBCDIC (or ASCII for
tape input/output), or can have any of the other formats shown in
Chapter 2 under 'SORT Control Statement'.

MINIMUM RECORD LENGTH

Minimum record lengths are shown in Figure 2.

Chapter 1. Introduction 3

Sort input Merge input Output

Files
Type of extent Type 1 and 8 Type 1 and 8 Type 1 and 8

Organization 1 SAM or VSAM (not mixed) SAM or VSAM (not mixed) SAM or VSAM (not mixed)

Number2 1 - 9 files 1 - 9 files 1 file (can be multi-volume)

Size No restriction No restriction No restriction

Blocking Blocked3 or unblocked Blockid3 or unblocked Blocked or unblocked

Blocksize Can differ if biggest Can differ if biggest
specified first specified first

Contents Unsorted or sorted Previously sorted Sorted records (possibly modi-
records (or can be empty) records (or can be empty) fied or summarized), or ad-

dresses of records (with or

without control fields)

Labels Any or none (can be Any or none (can be Any or none
mixed) Mixed)

Records
Format Fixed or variable Fixed or variable Fixed or variable

(cannot be mixed) (cannot be mixed)

Code EBCDIC or ASCII EBCDIC or ASCII Sam as input
(may not be mixed) (may not be mixed)

Control fields
Number 1 - 12 1 - 12

Format (see Figure 12 Formats can be mixed Format can be mixed
for list of accepted formats)

Sequencing Ascending and/or Ascending and/or Output to a VSAM KSDS file
descending4 descending4 must be in primary key sequence

Combined lengths, max. 256 bytes 256 bytes

Location Must be all within first Must be all within first
4092 bytes of record 4092 bytes of record

Pooling5 Can be pooled with output May not be pooled Can be pooled with sort input

1 VSAM managed SAM files may be mixed with SAM or VSAM but not both at once.

2 If on tape, each unit may have as many alternates as permitted by DOSNS.

3 With fixed-length records, short blocks are accepted if their length is a multiple of record length.

4 When records with equal control fields are sorted or merged, their output order is unpredictable
if EQUALS is not specified.

5 VSAM input and output can be the same data set only if the data set was defined with the REUSE
attribute and the OUTFIL REUSE parameter is given to SORT/MERGE.

Figure 1. Input and Output Characteristics

4

r--------------------T---------------------------------T-----------1 I I RECORD LENGTH: I BLOCK I
I 1 Minimum 1 Maximum I SI ZE: I
I 1-----------)---------------------1 I
I I TYPE= I TYPE= I Maximum I
I 1 F 1 V I F I V I I
r--------------------+----~----_r---------_r----------+-----------~ I Tape input I 12 I 12 I 32767 I 32767 G I 32767 I
I Tape output I 18 I 18 I 32767 1 32767' I 32767 I
I CKD input/output I 1 1 5 I Tzack I 32767' I ~rack I
I I I I capacity I I capacity I
I FBA input/output I 1 I 5 I 32761 I 32767 4 I 32761 I
I VSAM managed SAM I 1 I 5 1 32761 I 32767 4 I 32761 I
I VSAM input/output I 1 1 12 I 32767 t 1 32767~ I N/A I
r--------------------~----~-----L~--~------L----------~-----------~ I 4Implies spanned records I
I 2you must add four bytes when specifying the length, because SM2 I
I adds an RDW I L-_______________________________ ~ _________________________________ J

Figure 2. Block Size and Record Length

Note: If there are checkpoint records mixed with the tape input file
~inimum block size is 16 bytes.

MAXIMUM BLOCK SIZE AND RECORD LENGTH

Maximum block sizes and record lengths are shown in Figure 2.

The maximum block size for input and output files is 32,767 bytes for
EBCDIC data and 9,999 bytes for ASCII data.

There are two restrictions on the use of large blocks:

• The larger the blocks, the more main storage your sort or merge will
need. Main storage requirements in relation to block size are
described in Appendix B.

• For CKD devices you cannot define an output block size larger than
track capacity for the output device you have specified.

Input records can be as big as input block sizes, but here there are
additional restrictions:

• If you are using any CKD work devices the internal record must not
be longer than the track length of the work device. If work devices
are mixed, the shortest track length is the limiting factor.
Usually internal length is the same as input length, but the use of
some control field formats, and the EQUALS parameter of the SORT
statement, cause the record to be expanded internally.

• FBA work devices limit the internal record length to 32767 bytes.

• The record length must not exceed the maximum length specified by
the user on the RECORD control statement.

• With variable-length records the four-byte record descriptor word is
regarded as part of the record. Also, maximum record length is four
bytes less than block size because of the block descriptor word.

Chapter 1. Introduction 5

Input/Output Devices

VSAM or VSAM managed SAM input/output files can reside on any disk
device supported by your release of VSAM, whether CRD or FBA. SAM files
can reside on any of the following, if supported by your operating
system:

• IBM 2311, 2314, 2319, 3330 models 1, 2 or 11, 3333 models 1 or 11,
3340, 3344 or 3350 CKD direct-access storage devices

• IBM 2400 and 3400 series tape units or 8809 in start/stop mode

• IBM 3310 and 3370 FBA direct-access storage devices.

Input files can be on a mixture of any of the permitted device types.

Input/Output Pooling

You can design a sort application where two of the I/O files share the
same disk extents or tape units. This allows you to run your sort with
fewer devices, and is known as I/O pooling. The rules for I/O pooling
are:

• Sort input and output files can be pooled. This means that the
output file will be written over the input file, so it is important
to check that you have specified the files correctly.

• Any file name can be used.

• Files can be multi-volume and multi-extent.

• Merge-only files must not be pooled.

• Sort work files must not be pooled with any other sort file. If
they are, an error message is produced and the program terminates.

Input Device Sharing

In a sort application, several tape input files can use the same device.
The files are read serially, and each can be demounted after reading so
that another file can be mounted. This is not I/O pooling because only
the input function is involved. However, like pooling, it does increase
the capacity of a given number of devices.

6

Work Storage Devices

If work storage (sometimes called intermediate storage) is needed for
your sort application it must be on a disk device. Any of the devices
listed in Figure 3 can be used as long as they are supported by your
system.

r-----------T----------------------, I Type: I Devices: I
r-----------+------------------.--~ I 2314 I 2314, 2319 1
r-----------+---------------------~ I 333 0 I 333 0 mods 1, 2 , 11 I
I I 3333 mods 1, 11 1
r-----------+---------------------1 I 3340 I 3340, 3344 I
r-----------+---------------------~ I 3350 I 3350 I
r-----------+---------------------1 I FBA I 3310, 3370 I L-__________ ~ ____________________ ~

Figure 3. Devices That Can Be Used For Work Files

SM2 allows the work files to be allocated on two different device types,
where device type is considered to be the same if track capacity and the
number of tracks per cylinder is the same.

Tape units cannot be used for work storage.

Label Processing

If your files have standard labels or are unlabeled, then SM2 will take
care of all opening, closing, and label handling for you. If you have
nonstandard labels (or extra headers or trailers in addition to standard
labels) you must use a program exit to carry out label processing, as
described in Chapter 5.

Standard Labels

Standard direct-access and tape labels are processed by the system's
label processing facilities when the OPEN and CLOSE macro instructions
are issued by SM2.

Unlabeled Tapes

Unlabeled input and output files are processed by the sort/merge
program; no user programming is required. Unlabeled output files are
normally preceded and followed by a tape mark, but the leading tape mark
can be eliminated by specifying NOTPMK in the OUTFIL program control
statement.

Nonstandard Direct-Access Labels

The sort/merge program will not attempt to use the first track of the
first extent in any CKD input or output file specified by the user as
having nonstandard labels. This track may be handled in any way the

Chapter 1. Introduction 7

user chooses by routines at exits E11, and E31. With an FBA file the
amount of space left for label processing depends on the control
interval size, as described in Chapter 5.

Nonstandard Tape Labels

If labels are not standard, or if the standard tape labels include
additional header and trailer labels or user header and trailer labels,
then the user must assume the responsibility for issuing the OPEN and
CLOSE macro instructions and processing these extra labels.

All such nonstandard tape label processing must be done at the
appropriate label-processing exits (Ell, E31, E17, and E37), where the
files are also opened and closed.

For detailed information about label processing you should refer to the
following publications:

DOS/VS Data Management Gui~e, GC33-5372
DOS/VS Tape Labels Reference, GC33-5374
DOS/VS DASD Labels Reference, GC33-5375
VSE/Advanced Functions Data Management Concepts, GC24-5209
VSE/Advanced Functions ~ Labels, SC24-52l2
VSE/Advanced Function$ ~ Labels, GC24-5209

Passwords for VSAM Files

SM2 allows the use of password-protected VSAM files for input and
output. When a password is needed for a VSAM file, the appropriate user
routine is entered at exit E18 for sort input, E38 for merge input, and
E39 for sort/merge output. In this routine the user has the opportunity
to supply the required password(s). If a password is not supplied at an
exit, VSAM then asks the operator to supply the password. User exits
E18, E38 and E39 are only available for VSAM managed SAM files if they
are accessed as VSAM.

Control Fields and Collating Sequences

CONTROL FIELDS

The program determines the sequence of a file of data records by using a
group of up to twelve control fields which must appear in the same
relative position in each record. The sequence can be either ascending
or descending.

The control fields are specified in the SORT or MERGE program control
statement (see Chapter 2). The first control field specified is the
major control field and will be compared first. The second and
subsequent control fields (minor fields) will only be compared when the
previous comparison has resulted in an equal condition.

The individual centrol fields may be contiguous or separated, or may
overlap (see Figure 4). The control fields may be anywhere within the
first 4092 bytes of a data record but their total lengths must not
exceed 256 bytes.

8

~
Control
field 3

~igure 4. Control Fields

Record

'"-----"V' ~
Control '"~---""'v,...-_..J' Control

field 4 Control field 1 field 2

(major)

In Figure 4, fields 1 and 4 overlap, fields 1 and 2 are contiguous, and
fields 3 and 4 are noncontiguous.

The types of data format that may be specified for control fields are
described in Chapter 2, 'Program Control Statements', under the 'SORT
Control Statement'. A detailed description of the formats is given in
Appendix D. SM2 does not check that the control fields actually contain
data of the specified format. If they do not the output is unlikely to
be correctly sorted; under some circumstances SM2 might abend.

COLLATING SEQUENCES

When the contents of the control fields are compared, the resulting
sequence is determined by either the standard IEM collating sequence
(EBCDIC), or the ASCII-collating sequence. The collating sequence for
character data and binary data is absolute; that is, character and
binary fields are net interpreted as having signs. For packed decimal,
zoned decimal, fixed-point, normalized floating-point, and the signed
numeric data formats, collating is algebraic; that is, each quantity is
interpreted as having an algebraic sign.

Either an ascending or a descending sequence can be specified for each
control field.

If your input and output are in EBCDIC format, you can choose between
the EBCDIC and ASCII collating sequences. If, however, your input
format is specified as ASCII (AC, ASL, or AST), then only the
appropriate ASCII cellatingsequence is allowed.

Alternative Collating Seguence

The EBCDIC collating sequence can be modified by means of the ALTSEQ
program control statement. This allows the positions of one or more
characters in the sequence to be changed--for example, to allow correct
collation of special national characters.

Chapter 1. Introduction 9

Using the Program

PROGRAM CONTROL STATEMENTS

Before SM2 can operate on the input data, you must supply the program
with control statements that describe the actions and operations you
want it to perform. The control statements you provide describe:

• The type of operation to be performed

• Control fields

• Modifications to be made by user-written routines

• The functions to be invoked

• The input and output data sets

• The options selected for each application

A full description of all the program control statements is given in
Chapter 2.

Each control statement is checked for validity by SM2. If the program
finds an error, it issues an error message. Descriptions of these
messages can be found in Appendix E.

Control statement formats for all IBM DOS and IEM DOSjVS sort/merge
programs are similar, even though operating environments and data
descriptions are different. Compatibility of control statements among
these programs is discussed in Appendix C.

JOB CONTROL STATEMENTS (JCL)

Standard job control statements are required to define a sort or merge
application to the Job Control program. A discussion covering the
relevant statements can be found in Chapter 3. For a full description of
job control statements and their formats you should refer to DOS/VS
System Control Statements or VSE/Advanced Functions System Control
Statements.

10

INITIATING THE PROGRAM

As described in Chapter 4, 'Executing the Program', SM2 can be initiated
in two ways:

• As an independent program, using an EXEC SORT statement in the input
job stream.

• Invoked from another program written in one of the following
languages:

Assembler, by use of system macros, as described in Chapter 4.

COBOL

PL/I

RPG II with the Auto-Report Feature

How to do so from the high-level languages is described in the
Programmer's Guide for the relevant language.

In either case the initiation must follow DOSjVS conventions.

PROGRAM MODIFICATION

SM2 allows you to inccrporate your own routines into the main flow of a
sort or merge operation. These routines can, for example, be used to
process file labels; read input files; modify, insert, or delete
records; or write output files.

The routines receive control at predesignated points in the sort/merge
program called program exits. Chapter 5, 'Modifying the Program', gives
a full description of the exits and how they can be used.

I Relationship to DOS/VS and VSE Advanced Functions

SM2 is designed to run under DOSjVS Release 33 and 34, DOS/VSE with
VSE/Advanced Functions and all subsequent releases. Figure 5 shows
which supervisor/generation macros can affect SM2.

The VSE/VSAM Release 2 program product is required for VSAM
applications. For VSEjVSAM managed SAM files support, the 'Space
Management for SAM Feature' must also be installed.

For further details see DOSIYS System Generation, GC33-5377 or
VSE/Advanced Functions System Generation, GC33-6096 and DOSjVS
Sort/Merge Version 2 Installation Reference Manual.

SM2 can reside in either the system or any private core image library,
and most modules can be loaded into the SVA. It operates as a processing
program supervised by DOSjVS.

SM2 may be executed in any partition. A single copy in the core image
library will serve all partitions.

Any files used by SM2 must be defined according to DOS/VS standards.
The checkpoint and label-checking facilities of DOSjVS are used during a

Chapter 1. Introduction 11

r----------------------~-~--~----~-~-----~------~-----~-----~----------1

System/370 mode

FOPT RELLDR=YES ALWAYS REQUIRED (standard in DOS/VSE)

FOPT AB=YES to enable the DUMP option to be fully
exploited

FOPT ECPREAL=YES to enable page fixing to be done by
FOPT PFIX=YES sort/merge

FOPT RPS=YES aids efficiency if 3330, 3340 or 3350
device s a re used

FOPT VSAM=YES required if VSAM files are to be used for
input or output

FOPT SYSFIL=YES required if the distributed file is
deblocked to disk when SM2 is to be
installed

f
SUPVR AP=YES to enable subtasking to be used f

I
SUPVR ASCII=YES required if ASCII data is to be used I

r--~
ECPS:VSE mode

FOPT RPS=YES

FOP T VSAM=YES

FOPT SYSFIL=YES

SUPVR AP=YES

aids efficiency if 3330, 3340 or 3350
devices are used

required if VSAM files are to be used for
input or output

required if the distributed file is
deblocked to disk when SM2 is to be
installed

to enable subta sking to be used

SUPVR ASCII=YES required if ASCII data is to be used L-___ J

Figure 5. Supervisor Generation Macros Relevant to SM2

sort/merge program execution at the user's option. For a general
discussion of DOS/VS, refer to the publication Introduction to DOS/VS or
Introduction to DOS/VSE as appropriate. For a discussion of record
formats and data file organization, zefer to the publication
DOS/VS Data Management Guide or
VSE/Advanced Functions Data Management Concepts.

12

Chapter 2. Program Control Statements

Before 5M2 can operate on the input data it must receive program control
statements. Some control statements are always required whereas others
are optional and are only required for specific actions. The control
statements describe:

• The type of operation to be performed

• Control field parameters

• Modifications to be made by user-written routines

• The functions to be invoked (for example OMIT)

• The input and output files

• The options selected for particular applications

Each control statement is checked for validity by SM2. If the program
finds an error in a statement, it issues a diagnostic message and will
usually skip the rest of the statement (including any continuation
cards) and continue checking the next statement. If an error has been
found, 5M2 usually terminates when it has finished checking all the
statements.

Control statements are read from SYSIPT. Any SYSIPT records can be
read.

Chapter 2. Program Control Statements 13

The Statements

The control statements that SM2 acts on are listed below and a summary
of the statements with their operands is given in Figure 6.

{SORT }
MERGE

RECORD

INPFIL

OUTFIL

MODS

One of these statements is always required. It is used to
describe the control fields and the number of input files (and
work files for SORT) •

This statement is always required. It specifies record length
and format information to the program.

This statement describes the input files and specifies the
procedures that will be followed when an input file is opened
and closed. It is required if the default values are not
applicable (for example, if SAM input is blocked) •

This statement describes the output file and specifies the
procedures that will be followed when the output file is opened
and closed. It is required when the default values are not
applicable (for example, if SAM output is blocked) •

This statement is required when user-written routines are to be
executed. It associates the user routines with particular
program exits.

r INCLUDE] These statements are optional. One (but not both) can be used
LOMIT to specify that the output file should contain only certain of

the input records.

ALTSEQ This statement is optional. It is used to specify changes to
the standard EBCDIC collating sequence.

OUTREC This statement is optional. It can be used to specify that
each input record should be reformatted before being written to
the output file.

SUM This statement is optional. It can be used to designate
numeric fields in the input records as summary fields, and
specifies that whenever two records with equal control fields
are found, the contents of the summary fields are to be added
and placed in one of the recozds, and the other record deleted.

ANALYZE This statement is optional. It instructs SM2 to analyze the
control statements, make its optimization calculations, issue
appropriate messages, and then cancel without actually sorting
or merging.

OPTION This statement specifies the options to be selected for a
particular sort/merge operation. It is required if the default
values are not applicable.

The control statements may appear in any order, but you are recommended
to put the OPTION statement, if used, before all the others.

The 'default values' referred to above are those valid at your own
installation. Some defaults are fixed; others can be changed after the
program is installed, so the standard defaults supplied with the
program, and described in this chapter, may not be those actually in
effect.

14

r----------T---~ I Statement I Parameters I
.----------f---~ I SORT I FIELDS=(p."mll [,f,] ,Sill [· •• ,Pn,mn [,fn] ,sn]) [,FORMAT=f] I
I I I
1 I FILES=n I
I I I
I I EQUALSINOEQUALS I
I I I
I I WORK=±n I DA} I
I I I
I I CKPT I
.----------f---~ I MERGE I FIELDS= (PIS ,mel [,f ll] ,S. [••• ,Pn,mn [,fn] ,snl) [,FORfotAT=f] I
I I I
I I FILES=n I
.----------f---~ I RECORD I TYP~±FIVID} I
I I I
I I LENGTH= (I, ,12 ,13 ,1,. ,1 5) I
.----------f---~ I MODS I PHn=(name,loading information,exit, t···,exitn]) ••• I
.----------f---~ I INPFIL I BLKSIZE=n
I I
I I EXIT
I I
I I BYPASS
I I
I I VSAM
I I
I TOL
I
t SPAN
I
I VOLUME=(n[••• ,n])
I
t OPEN=±RWDINORWD}
I
I CLOSE=±RWD IUNLDI NORWD}
I
I DATA=EIA
I
I BUFOFF=n
I
I NOCHAIN I
.----------f---.. --~ I OUTFIL I BLKSIZE=n
I I
I I EXIT
I I
I I KSDSIESDSIRRDS
I I
I I TOL
I I
I I REUSE
I I
I I SPAN L-_________ i ______________________ • _________________________________ _

Figure 6(1 of 2). Program Control Statement Summary

Chapter.2. Program Control Statements 15

r----------T--------------------------~------------------------------~
I Statement I Parameters I
~----------+---~
I (OUTFIL) I OPEN={RWDINORWD} I
J J I
I I CLOSE={RWDIUNLDINORWD} I
I I I
I I NOTP~ I
I I I
I I BUFOFF=n I
r----------+---~
I fINCLUDE] I COND= (logical expression) [,FORMAT=f] I
I LOMIT I I
r----------+---~
I ALTSEQ I CODE= (fftt [, fftt ••• , fftt]) I
r----------+---~
I OUTREC I FIELDS= (p, ,ID, [,a,] ••• [, Pn ,mn [, an]]) I
~----------~--===~ i SUM i FIELDS= (p, ,ID, [,f,] ••• [Pn,mn [fn]]) [,FORMAT=f] I
r----------+---~
I ANALYZE I CALC I
r--------l-+---~

OPTION I PRINT={ALLINONEICRITICAL}
I
I ROUTE={LSTILOGlxxx}
I
I STORAGE={n[,VIRTINOVIRT] }
J nK (, VIRT I NOVIRT]
J
I LABEL=(output,input, ••• ,inputn)
J
I WORKNM=work
I
I FILNM=(Output,input1 ••• ,inputn)
I
I SORTOUT=output
I
I SORTIN=(input1 ••• ,input~
I
I SORTWK= (work 1 ••• , worknl
I
I VERIFYINOVERIFY
I
I ERASEINOERASE
I
I DIAGINODIAG
I
I DUMPINODUMP
I

I I ADDROUT I L __________ ~ ___ J

Figure 6(2 of 2). Program Control Statement Summary

16

Control Statement Format

Control statement formats for all IBM DOS and IE~ DOS/VS sort/merge
programs are similar, even though operating environments are different.
Compatibility of control statements among these programs is discussed in
Appendix C.

The general format is shown in Figure 7.

Column 1 must be blank
unless a label is present

!
(Label) Operation Operand (Comments)

Figure 7. Example of a Control Statement

72 73 80

(Sequence or
Identification)

(Continuation column)

The control statements are free-form--that is, the operation definer,
operand(s), and qomments may appear anywhere in a statement, as long as
they appear in the proper order, and are separated by one or more blank
characters. Column 1 of each control statement must be blank, unless
the first field is a label, in which case it must begin in column 1.

Examples are shown in the text which follows, and full details of all
rules are given in Appendix A, 'Sample Job Streams, With Statement
Format Rules'.

Chapter 2. Program Control Statements 17

SORT Control Statement

r--~ , I
I lFIELDs:cP"m1,f"s"P2,m21f2ls2 ••• ,P12,m121f12,S:2)l I
I SORT FIELDS- (P1 ,m1 IS, ,P2,m2,s2 ••• IP<l2,m12,s12) ,FORMAT-f \ I

I [,FILES=n] [,EQUALS 1 [, WORK=DA]r[, CKPT]l I
I , NOEQUALSJ ' WORK=n C !J I
I I L __ J

The SORT control statement is required when a sort is to be performed.
It supplies specifications for control fields, input files, and work
files.

Operand

FIELDS=

P

m

f

18

Description

Keyword for control field parameters, always required.
Field parameters must be described in descending order of
priority. You can specify up to twelve control fields.

First byte of control field relative to beginning of
logical record. The first data byte of a fixed-length
record has a relative position 1. The first data byte of
all variable-length recoIds has a relative position 5 as
the first four bytes axe occupied by the RDW. All fields
must start on a byte boundary and no field may extend
beyond byte 4092.

Length of control field in bytes, which must include the
sign for signed data. Acceptable lengths for different
formats are given below. The sum of the control field
lengths must net exceed 256 bytes.

Format of data in the control field, which may be any of
the fcllowing codes:

r------T-------~~--1 I Code I Length I Description I
.------t--------r---------------------------------------.-~ CH 1 1-256 EBCDIC character, unsigned

ZD I 1-256 Zoned decimal, signed
PD 11-32 Packed decimal, signed
FI I 1-256 Fixed point binary, signed
BI 1 1-256 Binary, unsigned
FL I 1-256 Nonnali zed floating point, signed
AC I 1-256 ASCII character, unsigned
CSL I 2-256 EBCDIC numeric, leading separate sign
CST I 2-256 EBCDIC numeric, trailing separate sign
CLO I 1-256 EBCDIC numeric, leading overpunch sign
CTO I 1-256 EBCDIC numeric, trailing overpunch sign
ASL I 2-256 ASCII numeric, leading separate sign
AST I 2-256 ASCII numeric, trailing separate sign
AQ 1 1-256 EBCDIC character, alternative collating

I sequence L ______ ~ ________ ~ __ _

s

FORMAT=f

FILES=n

EQUALS

NO EQUALS

WORK =
DA

n

CKPT

Order in which control field is to be sorted.
Must be either:
A - ascending sequence or
D - descending sequence.

Optional. Can be used when all control field data formats
are the same. The fG-f n can be omitted from the FIELDS
operand and be replaced by this operand. f can be any of
the formats specified in the FIELDS keyword.

n is the number of input files to be sorted and can be any
number from 1 through 9. The default value is 1.

Specifies that the order of records whose control fields
are identical is to be pxeserved from input to output.
Use of this option degxades SM2's performance.

Specifies that the input order of equal records need not
be preserved. This is the standard default, but can have
been changed at your installation.

Describes the work files.

The default; means tha t the work file DLBL statement
defines the file as multiextent (DA). (Not allowed for
FBA workfiles) •

Must be supplied for a sort if the default is not
applicable. Gives the number of SORTWK DLBL statements
supplied; can be 0-9. If 0 is specified the sort will use
no work files and will attempt to complete the sort in
main storage. Furthermore, if 0 is specified command
chaining will not be attempted.

Note: Under DOSjVSE WORK=DA means the same as WORK=1.
~will determine if the files are DA, SD, or VSAM
managed SAM.

Tells the sort/merge program to activate the checkpoint
facilities of the operating system.

The checkpoint file must:

1. Be assigned to SYSOOO (a tape or a direct-access
device, CKD or FBA)

2. Have standard labels
3. Have the file name SORTCKP

Only one checkpoint is taken by the program, at the
beginning of the last phase.

If SM2 was invoked from a user program, or if user-written
routines are in use, the entire virtual partition is
checkpointed. Otherwise, only the area being used by
sort/merge is checkpointed. Checkpointing a large
partition will adversely affect sort elapsed time.

You cannot specify the restart option via a sort/merge
control statement; you must use the DOS/VS restart
facilities to continue an interrupted job. The general
procedure is (1) to submit a RSTR'I job control statement
to request the system restart facilities, and (2) ASSGN
statements to reestablish the logical device assignments
that were in effect at the time the checkpoint was taken.
The DOS/VS checkpoint/restart facilities are described in

Chapter 2. Program Control Statements 19

20

the publication: DOSjVS System Management Guide and
VSE/Advanced FUnctions Macro User's Guide.

Check~oint is ignored if a) no work files are used, or b)
SM2 is subtasked, or c) exit E31 is specified in the MODS
statement. In case ~) 5M2 will pass a device list to
your routine at E31 so that you can take a checkpoint
there.

MERGE Control Statement

.---1
I I
I 1 FIELDS= (Pot ,mot ,f(l ,Sll ,P2,m2,f 2,s2,··· ,p,12,m1l2,f.12,S,12) I I
I MERGE ,FILES=n I
I FIELDS= (p, ,m1 ,S1 ,P2,m2,s2'· •• ,P12,mI'l2,s12) ,FORMAT=f I
I I L-___ ~

The MERGE control statement is required when a merge of presorted files
is to be performed.

Operand

FIELDS=

p
m
f
s

FORMAT=f

FILES=n

Description

Keyword for control field parameters, always required.

Control field definition parameters.
Same notation as for SORT statement.

Same use as for SORT sta tement.

Must be specified. It defines the number of input files to
be merged, where n is any number from 1 through 9.

SORTjMERGE STATEMENT PROGRAMMING NOTES

1. All control fields must be located within the first 4092 bytes of a
logical record.

2. All floating-point data must be normalized before SM2 can collate it
properly. You may provide a routine at exit E15 (sort) or E32
(merge) to normalize floating-point data at execution time.

3. In control fields, +0, 0, and -0 are treated as the same number and
compare equal.

4. The maximum length of packed decimal fields is 32 bytes.

5. The total number of bytes occupied by all control fields must not
exceed 256.

6. If all control field data formats If I are the same, they can be
omitted and the FORMAT keyword used instead.

7. Input files must be all SAM or all VSAM.

8. If any of the input files are multivolume and unlabeled, you must
specify the number of volumes using the VOLUME operand of the INPFIL
statement.

9. If WORK=DA is specified or defaulted, the first extent must contain
at least two tracks.

10. EQUALS is ignored when SUM is specified.

Chapter 2. Program Control Statements 21

SORT/MERGE STATEMENT EXAMPLES

Example 1

SORT FIELDS=(2,S,CH,A,12,10,BI,D) ,WORK=1

Instructs the program to sort one input file using two control fields.
One sequential disk extent is available for work storage.

The first control field contains unsigned EBCDIC character data starting
on the second byte and is S bytes long. It is to be sorted into
ascending order.

The second control field contains unsigned binary data starting on the
twelfth byte and is 10 bytes long. It is to be sorted into descending
order.

Example 2

SORT FIELDS=(25,4,A,48,8,A) ,FORMAT=ZD,WORK=DA

Since both contrel fields contain zoned decimal data, the FORMAT operand
can be used. The input file is to be sorted into ascending sequence
based on the contents of two control fields. The first control field is
4 bytes long starting on byte 2S and the second field is 8 bytes long
starting on byte 48. Work storage is on a multiextent direct-access
disk file. Under DOSjVSE WORK=DA could refer either to a DA file or a
VSAM managed file.

Example 3

MERGE FIELDS= (2 ,S"CH ,A),FILES=3

SM2 is instructed to merge the input records from three files into
ascending order based on a single, character control field. The field
begins in the second byte of each recoId and is five bytes long.

22

RECORD Control Statement

r--,
I I
I (1 1 , 12 , 13 , 1 '+ , Is) I
I IF! (1~ ,1 2 ,13,1«t) I
I RECORD TYPE= V ,LENGTH= (1 1 ,1 2 ,1 3) I
I D (1 1 ,1 2) I
I (1 1) I
I I l __ J

A RECORD control statement must al~ys be provided. It defines the
logical records to be sorted or merged.

Both the TYPE and the LENGTH operands must be included in the statement.

Operand

TYPE={~ }
D

Description

Record type:
F - Fixed-length records
V - Variable-length EBCDIC records
D - Variable-length ASCII records

For Fixed-Length Records

LENGTH= Keyword for record lengths, which must be expressed in
bytes.

l~ Length of logical record in the input file. It is always
required.

12 (note 2) Required when the length is changed at exit E15 ~ort).
The value is the length after E 15. Default is 1,.

13 (note 2) Required when the length is changed at exit E35. The value
is the length after E35. Default is 12 for a sort or la
for merge.

For Variable-Length Records

LENGTH= All lengths must be expressed in bytes and include the four
byte record descriptor word (RDW).

l~ Maximum record length in the input file. Always required.

12 (note 2) Required when the maximum record length is changed at exit
E15 (scrt). The value is the maximum record length after
the exit routine. Default is 1 1 •

13 (note 2) Required when maximum output record length is changed at
exit E35. The value is the maximum record length after the
exit routine. Default is 12 for a sort or I, for merge.

l«t Specifies the minimum record length after exit E15.
Default is the length from the beginning of the record to
the end of the last (rightmost) field referred to in any
SORT, MERGE, INCLUDE, OMIT, SUM, or OUTREC statement -
unless that length is less than 14 bytes, in which case 14
bytes is assumed.

Chapter 2. Program Control Statements 23

15 Specifies the modal (most frequent) record length and
sheuld be as accurate as possible to aid performance.
Defaul t is the average of 12 and 1,+.:

15 = -------
2

RECORD STATEMENT PROGRAMMING NOTES

1. A LENGTH parameter must be supplied, with the 14 value. Other
values can be emitted as indicated above.

2. Do not specify 12 or 13 with ADDROUT or OUTREC:

a. If ADDROUT is specified in the OPTION statement it is
unnecessary to specify 12 or 1 3 • If, however, you do specify
12 and 13 then the values must be as shown below or the program
will terminate.

12 = 10 + CF for SAM or 5 • CF for VSAM files

13 = 10 for SAM or 5 for VSAM files

where CF is the sum of the control field lengths in bytes.

1,+ and 15 will be calculated by 5M2.

b. If OUTREC is specified, you need specify only It: SM2 will
calculate and insert the correct values for 11 and 13 for you.

3. The lengths specified fer variable-length records (V or D typ~
must include the four-byte Recozd Descriptor Word (RO~ that OOS/VS
standards require. This applies even for VSAM variable-length
records, which normally have no ROW, since SM2 has to build an ROW
for these records when reading them in.

4. The minimum logical record length is given in Chapter 1,
'Introduction'~ Tape input with records less than 12 bytes is
accepted but may cause problems if the last block is not full and
error recovery is attempted.

5. Record size must not exceed the track. size of any eKD direct-access
device used for work files.

RECORD STATEMENT EXAMPLES

Example 1

RECORD TYPE=F,LENGTH=80

The statement defines the input records as fixed-length, 80 bytes long.
This format of the RECORD statement is sufficient for all fixed-length
record statements provided user routines are not used to modify the
record lengths.

24

Example 2

RECORD TYPE=F,LENGTH=(80,,50)

The statement defines fixed-length records 80 bytes long which are
changed by a user routine at exit E35. The omission of the 12 value is
indicated by the two commas.

Example 3

RECORD TYPE=D,LENGTH=(104",44,84)

The statement defines variable-length ASCII input records which are not
modified by user routines. The maximum record length is 104 bytes and
the minimum length 44 bytes. The modal length (most frequent record
lengt~ in the input file is 84 bytes.

Example 4

RECORD TYPE=F,LENGTH=(215,22,5)

Assuming that this statement is used in conjunction with the ADDROUT
parameter in the OPTION statement and the records are on a VSAM file,
then the statement tells the program:

• The input record length 1,'1 is 215 bytes.

• The 12 value shown (22) represents five bytes for disk address plus
a 17-byte control word for each IEcord.

• Each output record contains a five-byte address rather than data.
The 13 value (if given) must be 5 for a VSAM file with the ADDROUT
option specified (see programming note 2 above). However you do not
need to give this value, nor that for 1 2 , as they can be supplied by
default: the statement RECORD TYPE=F,LENGTH=215 is also correct for
the above example.

Chapter 2. Program Control Statements 25

MODS Control Statement

r----------------------------·---------------------------------------~
I I
I MODS PHn= (name, loading information,exit, ,exit2 ••• ,exitn) ,... I
I I L-___ • _________ J

The MODS control statement specifies how SM2 is to be modified by
user-written routines. It identifies the program exits which will be
active in each phase, and associates your routines with these exits.
Chapter 5, 'Modifying the Program' describes the phases, and the uses of
program exits.

Operand

PHn

name

loading
information

exit

Description

n specifies the program phase which is to be modified:
• PH1 specifies the internal sort phase (phase 1)
• PH3 specifies the final merge phase (phase 3)
Both may be specified in one MODS statement.

Specifies the cataloged name of routines to be executed
at the exits specified. The 'name' must be omitted if the
routines are already in main storage.

Describes either of two ways the user routines may be
loaded into main storage by SM2.

The value can be the absolute loading address (expressed
in decimal), or the length of the user routines to be
executed (expressed decimally in bytes and prefixed with
L) •

Loading information must be omitted if the routines are
already in main storage.

Specifies the program exits that are to be used in the
specified program phase. The values are expressed as
E31" E38, and so on. They can be in any order within the
phase.

MODS STATEMENT PROGRAMMING NOTES

1. The absolute loading address must be a virtual address if 5M2 is to
run in virtual mode, and a real address if run in real mode.

2. If the absolute address is used then the length of the module
containing your routines is unknown to SM2. This means that all
main storage beyond the address given is unavailable to 5M2 for
other use.

3. If the length of the user routines is given, the routines must be:

26

• Self-relocating (unmodified address constants cannot be used)

• Or, eligible for relocation by the system loader program

This enables 5M2 to load your routines in the most suitable position
to leave maximum storage available for other uses.

MODS STATEMENT EXAMPLES

Example 1

MODS PH1= (USERB,L500 ,E15) ,PH3= (USERC,L800,E31,E38,E39)

User routines are specified for the first and third phases of the
sort/merge program. USERB contains a routine 500 bytes long, which is
executed at exit E15. USERC is 800 bytes long and contains the routines
executed at exits E31, E38, and E39.

Example 2

MODS PH3= (, ,E31 ,E3S)

Two program exits are specified for the third phase. The user routine
code is already in main storage, so its name and loading specifications
are not included. The absence of these two values is indicated by
commas. Preloaded user routines are used only for sorts or merges that
are initiated by another program.

Chapter 2. Program Control Statements 27

INPFIL Control Statement

r---~
I I
I INPFIL [BLKSIZE=n] [,EXIT] (,BYPASS] [, VSAM] [, TOL] {, SPAN] I

I [I I , VOLUME=n 1 f,OPEN=RWD ~ I
I ,VOLUMN= (n, ••• ~ tOPEN-NORWD I
I J
I [CLOSE=RWD J f,DATA=E] [, NOCHAIN] I
I ,CLOSE=UNLD ~DATA=A[,EUFOFF=n] I
I , CLOSE=NORWD I
I I L ___ ~

The INPFIL control statement defines the input files to SM2 and
specifies the procedure to be followed when tape files are opened or
closed.

The statement is only required if the default values are not applicable.

Operand

BLKSIZE=n

EXIT

BYPASS

28

DescriEtion

n specifies the maximum input block size in bytes. It is
not needed if:

- Input is VSAM, accessed as VSAM, or
- All input is on FBA devices, or
- All input files are unblocked

Otherwise it must be supplied, because SM2 does not support
the DLBL BLKSIZE parameter.
When specified for variable-length records BLKSIZE must
include the block descriptor word (4 bytes). For ASCII
data it must include the BUFOFF value. Defaults are:

- Record type F: 11 value from RECORD statement
- Record type V: 11 value plus four bytes
- Record type D: l~ value plus BUFOFF value

If input files have different block sizes, n must be equal
to the largest block size. The maximum permissible block
size for an input file is shown in Figure 2 in Chapter 1.

Specifies that you wish to read all input data yourself and
pass each record to the program. You must:

• Activate program exit E15 (sort) or E32 ~erge) by
specifying the exit on the MODS statement.

• Provide a routine at exit E15 or E32 which will open the
file(s), read them and pass the records, one at a time,
to SM2.

When EXIT is specified all other INPFIL parameters except
DATA are ignored. See INPFIL Programming Notes 1-3 for
further details.

Specifies that the prog%am is to skip incorrectly read eKD
input data blocks and wrong-length physical records. 'Ihe
program will continue but prints an information message.
If the operand is not specified the program will print a
message and terminate on encountering the above conditions.

VSAM

TOL

SPAN

If BYPASS is specified for VSAM managed SAM files the rest
of the control interval in error is bypassed.

If BYPASS is specified for FBA input it is ignored.

If BYPASS is specified in conjunction with the SPAN
parameter, all records partly or wholly in a block with an
error will be skipped.

BYPASS prevents command chaining of the input CCWs.

Indicates to the program that the input files are VSAM. If
VSAM is not specified it is assumed that the input files
are SAM files. The VSAM parameter may also be used to
access VSAM managed SAM files with VSAM.

A mixture of SAM and VSAM input files is not allowed, but
VSAM managed SAM file s rna y be mi xed wi th either, provided
all input is to be accessed in the same way, that is,
either all SAM or all VSAM.

The VSAM operand overrides all other INPFIL operands except
TOL and EXIT. EXIT overrides VSAM.

Indicates that SM2 will tolerate a warning code from VSAM
when opening a VSAM input data set. It is only valid for
VSAM input. See Note 6 below.

Indicates that input consists of variable-length EBCDIC
records in non-VSAM files, and that the records may be
spanned. The RECORD statement must show TYPE=V. This
parameter is not required if input consists of spanned VSAM
records.

VOLUME= This operand should only be used for unlabeled files;
(n~,n2 •• ,n9) if specified for a labeled file, it is ignored. n is the

number of volumes in each input file and can have the value
1 through 255. The values must be specified in the order
SORTIN1, SORTIN2 ••• ,SORTIN9. Default value is 1.

OPEN'= This parameter only applies to tape input files.

RWD First volume of each input file is to be rewound before
being read (default).

NORWD First volume of each input file is not to be rewound before
being read.

CLOSE='

RWD

UNLD

NORWD

DATA=E

DATA=A

BUFOFF=n

This parameter only applies to tape input files. At
end-of-file the tape input volumes are:

To be rewound (defa ul t)

To be rewound and unloaded.

Not to be rewound.

Specifies that the data input is EECDIC ~efault).

Specifies that the data input is ASCII. It can only be
specified for nine-track tape.

Only used with ASCII data. "It specifies the block prefix
size at the front of each physical record on the input
file. n can be any value from 0 through 99. Default is O.

Chapter 2. Program Control Statements 29

NOCHAIN Indicates that SM2 should not use command chaining when
reading input. Should only be used (for performance
reasons) when input consists of blocked, fixed-length
records on tape files, and you know that a large number of
blocks are shorter than the specified block size, for
example:
- when input files have different block sizes, or
- one or more files contain a large number of short blocks

See Chapter 6 for a discussion of performance.

INPFIL STATEMENT PROGRAMMING NOTES

1. Any parameters which precede EXIT in the INPFIL statement are
checked for validity and flagged. Parameters which follow EXIT are
also checked and flagged for syntax errors but all values are
ignored.

2. The presence or absence of the EXIT parameter affects the default
symbolic unit names for the other files used by the program. See
Figure 11 in Chapter 3 for details.

3. If the EXIT parameter and the ADDROUT option are specified the
program will terminate and issue the message 7D09I ADDROUT OPTION
INVALID.

4. 5M2 adds a record descriptor word ~DW) of four bytes to every
variable-length record received from a VSAM file. The user-written
routines which handle variable-length records received from SM2
need not, therefore, be designed separately for handling VSAM and
non-VSAM files.

5. If TOL is not specified for a VSAM input data set, a warning return
code from VSAM will normally be recognized as an error by SM2; an
errOr message will be printed and the program will terminate.

By specifying TOL you can sort or merge from the data set without
repairing it, and no error message will be printed. Conditions
producing warning messages are, for example: 'NOT PROPERLY CLOSED'
or • SYSTEM TIME STAMPS OF DATA AND INDEX DO NOT MATCH'.

A critical return code from VSAM will always cause 5M2 to
terminate, regardless of whether TOL has been specified.

6. BYPASS should not be used to omit certain extra short or long input
records as it can affect performance. The OMIT function should be
used for this.

7. For VSAM managed SAM files the BLKSIZE parameter refers to the
logical block size. That is, it should match the RECORD5IZE

30

(maximum) parameter in the DEFINE statement for the file when it
was created with VSAM Access Method Services. Note also that too
long fixed length input blocks are truncated by data management and
cannot be checked by the program.

INPFIL STATEMENT EXAMPLES

Example 1

INPFIL VOLUME=(3,5,2,1) ,BLK5IZE=400,OPEN=NORWD,BYPASS,
DATA=A,BUFOFF=99

The four input files consist of three, five, two, and one unlabeled tape
volumes respectively; block size is 400 bytes; the first volume of each
input file is not to be rewound before being read; incorrectly read
input data blocks are to be ignored; input data is ASCII; and each block
has a buffer offset of 99 bytes.

Example 2

INPFIL EXIT

All input is received by 5M2 from a user-written routine at either E15
(for a sort) or E32 (for a merge) •

Chapter 2. Program Control Statements 31

OUTFIL Control Statement

r--::::::---~:::::::::~-~~::::~--~i!ilj~~:::~-~~::::::-~~:::~-----.
I
I r,OPEN=RWD l [,CLOSE=RWD J
I ~OPEN=NORWDJ ,CLOSE=UNLD [,NOTPMK] [,BUFOFF=n]
I ., CLOSE=NORWD
I L __ _

The OUTFIL control statement defines the output file to SM2, and
specifies the procedure to be followed when tape files are opened or
closed.

Operand

BLKSIZE=n

EXIT

{
K. SDS} ESDS
RRDS

32

Description

n specifies the maximum block size, in bytes, of the output
records. It is not needed if output is VSAM or accessed as
VSAM, nor if output is to be unblocked. Otherwise it is
needed, because SM2 does not support the DLBL BLKSlZE
parameter.
When specified for variable-length records it must include
the block descriptor word (4 bytes). For ASCII data it
must include the BUFOFF value. Defaults are:

Fixed-length records: 13 value from RECORD statement
Variable-length records: 13 value plus four bytes
ASCII records: 13 value plus BUFOFF value

If OUTREC is specified 5M2 will calculate the output block
size according to the OUTREC statement.

Specifies that your own routine will take responsibility
for the output file instead of 5M2. You must:

• Activate program exit E35 by specifying it on the MODS
statement •

• Provide a routine at E35 Which will receive each output
record from SM2. This routine must take complete
responsibility for output.

When EXIT is specified, all other OUTFIL parameters are
ignored.

Anyone of these parameters indicates that the output file
is to be stored in a VSAM data set. May also be used to
write a VSAM managed SAM file with VSAM access.

KSDS: Specifies tha t the VSAM data set is to be
key-sequenced. The records must have been sorted into
ascending key sequence on the primary VSAM key.

ESDS: Specifies that the VSAM data set is to be entry­
sequenced.

RRDS: Specifies that the VSAM data set is to be a relative
record data set.

TOL

REUSE

SPAN

OPEN=

RWD

NORWD

CLOSE=

RWD

NORWD

UNLD

NOTPMK

BUFOFF=n

If anyone of these parameters is specified, all other
non-VSAM parameters on the OUTFIL statement are ignored,
except for EXIT which overrides KSDS/ESDSjRRDS.

Specifies that SM2 is to tolerate a warning code from VSAM
when opening a VSAM output data set. It is only valid for
VSAM output. See Note 5 below.

Specifies that you want to write over an existing non-empty
VSAM data set defined with the REUSE attribute. For
non-VSAM data sets this operand is ignored.

Note: The DISP parameter on the output DLBL card will
override REUSE if it conflicts.

Indicates that output is to consist of spanned variable­
length EBCDIC records in a non-VSAM file. The RECORD
statement must specify TYPE=V.
If a BLKSIZE parameter is also provided, the records will
be spanned blocked. Otherwise they will be spanned
unblocked, with a default block size of the maximum allowed
for the output device.

This parameter only applies to tape output files.

Rewind tape before writing output records (default).

Do not rewind tape before writing output records.

This parameter only applies to tape output files. It
indicates how the tape is to be treated at end of file.

Rewind tape (default).

Do not rewind tape

Rewind and unload tape.

Specifies that no tape mark is to be written before the
first data record on each volume in the output file. This
parameter can only be specified for unlabeled tape output
files ..

Only used when variable-length ASCII data has been
specified in the RECORD statement. It specifies the block
prefix at the front of each output block. The value of n
may only be 0 or 4. Default is BUFOFF=O

OUTFIL STATEMENT PROGRAMMING NOTES

1. Parameters which precede EXIT in the OUTFIL statement are checked
for validity and flagged. Parameters which follow EXI'!' are also
checked and flagged for syntax errors but all values are ignored.

2. The presence or absence of the EXIT parameter affects the default
symbolic unit names for the other files used by the program. See
Figure 11 in Chapter 3 for details.

Chapter 2. Program Control Statements 33

3. VSAM output data sets must be previously created with the VSAM
access method services utility program. See the DOS/VS Data
Management Guide or VSE/VSAM General Information for a discussion
of VSAM organization, and the
DOS/V5 Utilities: Access Methods Services or Using V5E/VSAM
Commands and Macros or the VSE/VSkM Documentation Subset manuals for
how to define a VSAM data set.

4. Before writing variable-length records to a VSAM output file, 5M2
removes the four-byte record descriptor word (RDW). Thus, those
user-written routines at exit E35 which pass variable-length
records back to SM2, do not need to be designed separately for
handling VSAM and non-VSAM files.

5. If TOL is not specified for a VSAM output data set, a warning
return code from VSAM will normally be recognized as an error by
5M2; an error message will be printed and the program will
terminate.

By specifying TOL you can write output from 5M2 to the data set
without repairing it, and no error message will be printed.
Conditions producing warning messages are, for example: 'NO'I
PROPERLY CLOSED' or 'SYSTEM TIME STAMPS OF DATA AND INDEX DO NOT
MATCH' •

A critical return code from VSAM will always cause SM2 to
terminate, regardless of whether TOL has been specified.

6. For VSAM managed SAM files the BLKSIZE parameter refers to the
maximum logical block size. That is, it should match the
REOORDSIZE (maximum) parameter in the DEFINE statement for the file
when it was created with VSAM Access Method Services. If the file
is to be implicitly defined, VSAM will use this value to calculate
the control interval size for the file.

OUTFIL STATEMENT EXAMPLES

Example 1

OUTFIL BLKSIZE=300,CLOSE=UNLD,BUFOFF=4

The block size for the output records is 300 bytes. The output tape
will be rewound (by default) before writing begins and it will be
rewound and unloaded at end of file. Data records are ASCII, as shown
by the BUFOFF parameters, and each output block will have a block prefix
of length 4.

Example 2

OU'l'FIL EXIT

SM2 provides the output records, one at a time, to be handled by the
user's routine at exit E35.

34

INCLUDE/OMIT Control Statement

r---,
I I
I r INCLUDE] I
I LOMIT COND=(logical expression) [,FORMAT=f] I
I I L ___ J

An INCLUDE or OMIT statement is used if you do not want all of the input
records to appear in the output file. You can achieve this in two ways:
by defining the records which qualify for inclusion, by use of an
INCLUDE statement; or by defining those which do not qualify, by use of
an OMIT statement.

You make the definition by specifying a field in each record which is to
be compared with another control value; the result of the comparison
determines whether or not the record is included or omitted. The
control value can be specified either as another field in the same
record, or in the form of a constant. For example, you could compare the
first six bytes of each record with its last six bytes, and omit from
output all records where those fields are identical. Or you could
compare a field with a specified date, and include in output only those
records with a more recent date.

You must not supply both an INCLUDE and an OMIT statement to the same
sort/merge run. If neither is supplied, all input records are included
in the output file.

COND PARAMETER

The 'logical expression' of the COND parameter can be expanded into the
following format:

COND=(relational COndition1~;~D},relational condition2 __ jl

RELATIONAL CONDITION

The relational condition specifies a comparison to be performed. Its
format is described below. Relational conditions can be logically
combined, with AND or OR, to form a logical expression. If they are
combined, the following rules apply:

1. Only one extra level of parentheses is allowed inside the syntax
parentheses.

2. Expressions inside extra parentheses are always evaluated first.

3. 'AND' statements are evaluated before 'OR' statements.

4. The signs & (AND) and I (OR) may be used instead of the words.

Chapter 2. Program Control Statements 35

RELATIONAL CONDITION FORMAT

The format of the relational condition is:

r-----------------------------------~---------------------------------,
I I I
I I Comparison operators: I
I EQ I EQ - equal to I
I NE {P2,m2 [,f2] } I NE not equal to I
I P1,m1 [,f11, GT , self-defining I GT greater than I
I GE term I GE greater than or equal to I
I LT I LT less than I
I LE I LE less than or equal to I
I I I L ____________________________________ L _________________________________ J

These parameters define the first data field.

• The variables p, m, and f have the same meaning as those described
for the SORT and MERGE statements.

• Permissible field formats (f) are the same as for SORT and MERGE
statements except that you may not specify Ft (floating poin~; ZD
fields can only be up to 18 bytes long, and PD fields can only be up
to 16 bytes.

• If DATA=A is specified on the INPFIL statement you may only use
formats AC, AST, and ASL.

• If all the data fields contain the same type of data, this value may
be omitted, and you may use the optional FOR~AT=f operand with the
same abbreviations.

pa,ma,fa

These parameters specify another field in the logical record, with which
the first field (specified by Pn, m,1' f·1) is to be compared.
Permissible comparisons between fields with different formats are shown
in Figure 8.

36

Field 81 CH ZO PO FI AC ASL AST CSL CST CLO CTO AO
Format

81 X X

CH X X

ZO X X

PO X X

FI X

AC X

ASL X X

AST X X

CSL X X

CST X X

CLO X X

CTO X X

AO X

Figure 8. Permissible Field-to-Field Comparisons for INCLUDE/OMII

Self-Defining Term

A self-defining term is a constant with which a field is to be compared.
It can be decimal, character, or hexadecimal. The different formats are
shown in detail below. Permissible comparisons between types of field
and types of constant are shown in Figure 9.

Decimal Number Format

r---------------------------------.
r I
I [±] [nne •• n] [.nn ••• n] I
I t I
J decimal point I
I I
~--------------------------------~
where n represents any decimal digit.

• Any number of digits can be specified except when the constant is
to be compared with a field of FI format, when the constant may
not be larger than 2,147,483,647 nor smaller than -2,147,483,648.

• The decimal point is not allowed in comparisons with fields of
format FI, ZD, or PD.

Chapter 2. Program Control Statements 37

r--~----~T--------~~-~~--------~--~-~~~--~-~-' I I Self-defining term 1
I Field 1---------1-----------1-------------1
I format I Decimal I Character I Hexadecimal I
I I number I string I string I
r--------t---------T-----------r-------------~
I BI I I x I x I
~--------t---------f-----------t------------_1
I CH I I x I x I
r--------t---------f-----------t------------~
I ZD I x I 1 I
r--------t---------f-----------t-------------1
I PD I x I I I
r--------t---------f-----------t-------------1
I FI I x I I I
~--------f---------f-----------t------------_1
I AC 1 1 x 1 x '1
r--------f---------+-----------~----------·-~
I ASL I x I 1 I
r--------t---------f-----------t------------1
lAST 1 x I I I
r--------t---------f-----------t----~-------~
I CST I x I I I
r--------t---------f-----------t-------------1
I CSL I x I I I
r--------t---------f-----------t-------------1
I CLO I x I I I
r--------f---------f-----------t-------------1
I CTO I x I I I
r--------t---------+-----------t-------------1
I AQ I I x I xl L-_______ ~~ ________ ~ ___________ ~ ____ ~ ______ ~

Figure 9. permissible Field-to-Constant Comparisons for INCLUDE/OMIT

38

• The decimal point, if specified, is counted in the length of the
constant, and included in it as a character.

Examples of valid and invalid decimal self-defining terms are shown
below.

r----------~~-----------~--~--~-~---~---------~~~----~---~-------~
I Valid 1 Invalid I
r----------+---~ I 15 I ++15 too many sign characters I
I + 15 I 15. sign in wrong place I
I -15 I 15. invalid decimal point I
I 131.588 1 1.5.0 too many decimal points 1
I 18000000 I 1,500 contains invalid character 1 L-____ ~ ____ ~ __________ ~ ___ ~~ ____ ._~ _____ ~_~ _______ ~ ____ ~_~ ____ ~ __ J

Character String Format

,------------------------------~.~,
I I
1 C'xx ••• x· I
I I
~-------~---~~~---~-------~---~--~

where x represents any EBCDIC character.

If you wish to include a single apostrophe in the character string,
you must specify a double apostrophe in your self-defining term.
Thus:

Required: O'NEILL Specify: C'O"NEILL'

Examples of valid and invalid character string self-defining
constants are shown below.

r------------------r------------~--------------.-----------------, I Valid I Invalid I
.------------------+---~ I C'JOHN DOE INC' I C····· apostrophes not paired I
I C' $1' I 'ABCDEF' C identifier missing I
I C·+O.193' I 'ABCDEF'C C identifier in wrong place I
~-----------------~---~

Hexadecimal String Format

.-------------------------~------,
I I
I X'yy ••• yy' r
I I
~-------------------------------~
where yy represents any pair of hexadecimal digits.

Examples of valid and invalid hexadecimal self-defining terms are
shown below •

• -------------T---, I Valid I Invalid I
~--------------+-----------.-------------------------------------~ I X'FF' I X'ABGD' invalid hexadecimal digit I
I X'BF3C' I X'F1F' incomplete pair of digits I
I X'AFOSOSOS' r 'BF3C' missing X identifier I
r I 'BF3C'X X identifier in wrong place r

~-------------~---~

Padding and Truncation

In a field-to-field compare, the shorter field is padded. In a
field-to-constant compare, the constant is padded or truncated to the
length of the field.

Strings are truncated and padded on the right. The padding characters
are:

X'OO· for hexadecimal strings and BI fields
X'20' for ASCII character strings
X'40' for EBCDIC character strings

Numeric constants are padded and truncated on the left. Padding is done
with zeros in the pro~~r format.

Chapter 2. Program Control Statements 39

FORMAT OPERAND

FORMAT=f can only be used when all the fields in the whole COND
expression have the same format. The permissible field formats are the
same as for the SORT and MERGE statements except that you may not
specify FL (floating point). If you have specified DATA=A on the INPFIL
statement, you may only use formats AC, AST, and ASL.

INCLUDE/OMIT STATEMENT PROGRAMMING NOTES

1. The size of the routine generated by SM2 to handle the INCLUDE/OMIT
function is dependent on how many fields are referenced, and what
lengths and formats they have. The size of the routine must not
exceed 4096 bytes.

2. Floating point fields (format FL) may not be referenced in INCLUDE
or OMIT statements.

3. Any selection can be performed with either an INCLUDE ~ an OMIT
statement ..

4. In the fields and decimal self-defining terms, +0, 0, -0, are
treated as the same number and compare equal.

S. Remember that if several compare statements are joined with a
combination of AND and OR logical operators, the AND statement is
evaluated first. The order of evaluation may be changed by adding
one extra level of parentheses inside the COND expression.

Figure 10 shows how SM2 will react to the result of a relational
condition compare, depending on whether the statement is INCLUDE or
OMIT, and whether the relational condition is followed by an 'AND'
or 'OR' logical operator.

When writing com~lex statements be sure the result will be what you
want. The table in Figure 10 should help you.

r-----------~------------_r--1 I I Relational I Program Action if Next I
I Statement I Condition I Logical Operator is: I
1 1-------------1---------------------1---------------------·1
1 I Compare I 'AND' I 'OR' I
.-----------+-------------+---------------------~----------------------~ I OMIT I True I Check next compare, I OMIT record I
I I I or if last compare I I
I I I OMIT record I I
r-----------+-------------+---------------------+----------------------~ I OMIT I False I INCLUDE record I Check next compare, I
I I I I or if last compare I
I I I I INCLUDE record I
r-----------+-------------+---------------------+----------------------~ I INCLUDE I True I Check ne xt compare, I INCLUDE record I
I I I or if last compare I I
1 I 1 INCLUDE record 1 1
r-----------+-------------+---------------------+----------------------~ I INCLUDE I False I OMIT record I Check next compare, I
I I I I or if last compare I
I I I I OMIT record I L-__________ ~ _____________ L _____________________ L ____________________ ~_~

Figure 10. Logic Table for INCLUDE/OMIT Statement

40

INCLUDE/OMIT STATEMENT EXAMPLES

Example 1

OM IT COND= (1 ,10 ,CH ,EQ ,C' STOCKHOLM' , " (21,8, ZD, GT, + 5 0 0 00, I ,
31,4,CH,NE,C'HERR'»

This statement instructs SM2 to omit records in which:

• The first ten bytes contain • STOCKHOLM' (the constant was padded
with a blank) •

• The zoned-decimal number in bytes 21 to 28 is greater than 50,000 OR
bytes 31 to 34 do not contain 'HERR'.

Note that the AND and OR operators can be written with the AND and OR
signs; that parentheses are used to change the order of evaluation of
the AND and the OR; and that only one extra level of parentheses is used
inside the COND parameter.

Example 2

INCLUDE COND= (5,8 ,GT.13 ,8, I ,105, 4,LE, 1000) ,FORMAT=FI

This statement instructs sort/merge to only include records in which:

• The fixed-integer number in bytes 5 to 12 is greater than the
fixed-integer number in bytes 13 to 20.

• The fixed-integer number in bytes 105 to 108 is less than or equal
to 1000.

Note that all four fields have the same format.

Chapter 2. Program Control Statements 41

ALTSEO Control Statement

r---~-----~-----------~--------~------.------~
I

ALTSEQ CODE=(fftt[,fftt •••]} I
I I L _______________ ~.~~ __ ~ ___ ~ ______ ~ ___________ ~

This statement specifies an al terna tive collating sequence to be used by
SM2 when comparing control fields, including those specified in an
INCLUDE or OMIT statement.

The statement is only valid for EBCDIC data. If the statement is
omitted the standard collating sequences ~BCDIC or ASCII) will be used.
If it is supplied when input and output are in ASCII form, it is
ignored.

Operand

CODE=

ff

tt

Description

Parameter keyword

TWo hexadecimal digits specifying the character whose
position is to be changed in the collating sequence.

Two hexadecimal digits specifying the new position in the
collating sequence the character is to occupy.

ALTSEQ STATEMENT PROGRAMMING NOTES

1. The moved character (ff) is considered equal to any character
already occupying the position (tt).

2. A character can only be moved once.

3. The control field to which the alternative sequence is to apply
must be described as format AQ in the SORT, MERGE, INCLUDE or OMIT
statements that reference it.

4. Each group of hexadecimal digits must contain exactly four digits.

42

ALTSEQ STATEMENT EXAMPLES

Languages other than English often use characters not represented in
English (with accents, for instance). The first two examples below show
how such characters can be made to collate into their correct positions
in the alphabet, by means of the ALTSEQ statement.

Example 1

The Swedish alphabet contains three letters not represented in the
English alphabet. In data processing applications, the 'national'
EBCDIC characters ($,t,a) are used to represent them. However, $, I, a
do not collate correctly for this purpose; the ALTSEQ statement below is
necessary to specify that the characters appear after Z, in their
correct order.

ALTSEQ CODE=(5BEA,7BEB,7CEC)

Example 2

In the German alphabet the character A is collated with A, 0 is collated
with 0, and U is collated with U. The example statement shown below
specifies the collating sequence.

ALTSEQ CODE=(49C1,B3D6,CBE4)

Example 3

The following example specifies that uppercase A is to collate before
lowercase a, B before b and so on through to Zz.

ALTSEQ CODE=(C180,C282,8283,C384,8385,C486,8487,C588,8589,
C68A,868B,C78C,878D,C88E,888F,C990,8991,D192,9193,
D294,9295,D396,9397,D498,9499,D59A,959B,D69C,969D,
D79E,979F,D8AO,98A1,D9A2,99A3,E2A4,A2A5,E3A6,A3A7,
E4A8,A4A9,E5AA,A5AB,E6AC,A6AD,E7AE,A7AF,E8BO,A8B1,
E9B2,A9B3)

Chapter 2. Program Control Statements 43

OUTREC Control Statement

r-----------------~----~--~---~--~~~-~~--~-~~-~~---~

OUTREC FIELDS= (Pt ,m, [,all] ••• [,Pn,mn [,an]])
L-___ ~

The OUTREC contrel statement requests %eforrnatting of the input records;
that is, defines which parts of the input record are to be included in
the output record, in what order they are to appear, and how they are to
be aligned.

You do this by defining one or more fields from the input record. The
output record will consist of those fields only, in the order in which
you have specified them, and aligned on the boundaries you have
indicated,.

If the statement is not used, the output record is identical to the
input record.

C?perand

FIELDS=

p

m

a

44

Description

Parameter keyword.

First byte of a field in the input record which is to
become part of the output record. The field can start
anywhere within the record. Otherwise the rules for
defining p are the same as for the SORT and MERGE
statements. See the Progr.ammdng Notes below for special
rules for variable-length records.

Length of the field to be included in the output. It must
include the sign if the data is signed, and must be a whole
number of bytes.

Specifies the alignment ~isplacement) of the data in the
output record, relative to the start of the output record.

The permissible values are:

H Halfword aligned. This means that the displacement of
the field from the beginning of the record, in bytes, is
a multiple of two.

F Fullword aligned. The displacement is a multiple of
four.

D Doubleword aligned. The displacement is a multiple of
eight.

Alignment can be necessary if, for example, the data is to
be used in a COBOL application program where COMPUTATIONAL
items are aligned through the SYNCHRONIZED clause.

If the parameter is omitted, no alignment is performed.
Unused space preceding aligned fields will always be padded
with binary zeros.

OUTREC STATEMENT PROGRAMMING NOTES

1. For variable-length records the first entry in the FIELDS parameter
must specify or include the four byte ROW.

If the first field in the data portion of the record is to appear
in the output, the entry in the FIELDS parameter can specify both
ROWand data field in one. Otherwise, the ROW must be specifically
included in the output record.

2. 5M2 sets the correct length value in the RDW even if you change the
record length with your OUTREC statement.

3. The variable part of the input record (that part beyond the minimum
record lengt~ may be included in the output record as the last
part. In this case, a value should be specified for Pn that is
less than or equal to the minimum record length (1&1') plus 1 byte,
and mn and an should be omitted.

Note that the output record must zeceive at least one byte of the
fixed portion of the input recoId as well as the ROW, otherwise
'null' records containing only an RDW could appear in your output.
5M2 checks your OUTREC statement for this possibility.

4. You need not specify 12 and 13 in the LENG'I'H parameter of the
RECORD statement when using OUTREC, as SM2 fills in the correct
values by default.

S. You must consider the effective record length (including padding,
if any) of the reformatted record when specifying the BLKSIZE
parameter on the OUTFIL statement.

6. Fields referenced in OUTREC statements may overlap, and may be
control fields.

7 • The ADDROUT option on the OPTION sta tement is ignored when an
OUTREC statement has been specified.

8. If input is variable records the outp?t will also be variable.
This means that each record will be g~ven an ROW by 5M2, and
applies even if the records are all the same length.

OUTREC STATEMENT EXAMPLES

Example 1

OUTREC FIELDS=(11,32) ..
This statement specifies that the output record should contain only
bytes 11 to 42 of the input record. This statement can only be used
with fixed-length input records because it does not include the first
four bytes.

Chapter 2. Program Control Statements 45

Example 2

OUTREC FIELDS=(1,4,11,32,D,101)

This statement is for variable-length zecords of m~n~um length 100
bytes, and specifies that the output record should contain an RDw plus
bytes 11 to 42 of the input record ~ligned on a doubleword boundary,
relative to the start of the record) plus the entire variable portion of
the input record.

Note that no extra comma is coded to indicate the omission of the first
alignment parameter. If you do include an extra comma you will get a
syntax error message, and the program will terminate.

Example 3

OUTREC FIELDS=(1,42,D,101)

This statement is for variable-length records of minimum length 100
bytes, and specifies that the output record should contain an RDW plus
the first 38 data bytes of the input record plus the entire variable
portion of the input record.

The 'D' parameter has no effect, since the first field is always placed
at the beginning of the output record.

46

SUM Control Statement

r--1
I I
: SUM {FIELDS=(P1,m4 ,f, ••• ,Pn,mn ,fn)} :

I FIELDS=(p1 ,m,···Pn,IDn) ,FORMAT=f I
I I
~-------~~~---~--~---~-----~~--~~--------------~

The SUM control statement designates numeric fields in the input record
as summary fields. It specifies that whenever two records are found
with equal control fields, the contents of their summary fields are to
be added, the sum is to be placed in one of the records, and the other
record is to be deleted. '

Operand

FIELDS

p

m

f

FORMAT=f

Description

Parameter keyword.

First byte of a summary field ~ield to be added) relative
to the beginning of the logical record. The general rules
for defining ~ are the same as for the SORT and MERGE
statements.

Length of the summary fields to be added. The value must
include the sign, if signed data. See below for
permissible length values.

Format of the data in the summary field, which can only be
of the following types:

Code Length

BI 2, 4, or 8 bytes
FI 2, 4, or 8 bytes
PD 1-16 bytes
ZD 1-18 bytes

Optional. Can be used when all the summary fields contain
the same type of data. The values for f are listed above.

SUM STATEMENT PROGRAMMING NOTES

1. The size of the routine generated by SM2 to handle the SUM function
is dependent on how many fields are referenced, and what lengths
and formats they have. The size of the routine must not exceed
4096 bytes ..

2. Summary fields must not be control fields, must not overlap control
fields. and must not overlap each other.

3. Floating-point fields must not be summarized.

4. When records are summarized, the choice of which record is to
receive the sum (and be retained) , and which record is to be
deleted, is unpredictable.

Chapter 2. Program Control Statements 47

5. Fields other than summary fields remain unchanged, and are taken
from the record which receives the sum.

6. If overflow occurs during summation, the records are left
unsummarized (that is, the contents of the records are left
undisturbed, and no record is deleted) •

7. If both the SUM statement and the EQUALS parameter of the SORT
statement are specified, the EQUALS parameter will be ignored.

8. If both the SUM statement and the ADDROUT option are specified, the
ADDROUT option will be ignored.

SUM STATEMENT EXAMPLES

Example 1

SUM FIELDS=(41,8,ZD,49,4,FI}

This statement designates an eight-byte zoned decimal field at byte 41,
and a four-byte fixed integer field at byte 49, as summary fields.

Example 2

SUM FIELDS=(41,8,49,4) ,FORMAT=FI

This statement illustrates the use of the FORMAT operand. The statement
designates two fixed integer fields, one 8 bytes long starting at byte
41, and the other 4 bytes long starting at byte 49.

48

ANALYZE Control Statement

.------------------------------------~ I ANALYZE CALC I L-____________ ~ _______________________ ~

This statement enables you to test your input job stream before running
the sort or merge. It causes SM2 to terminate, without actually sorting
or merging, after analyzing the input control stream and making its
optimization calculations based on the information in the control
statements.

It causes the following options to be forced, regardless of what has
been specified in the OPTION statement:

DIAG,NODUMP,ROUTE=LSTlxxx,PRINT=ALL

It will thus produce all diagnostic messages, for example relating to
the program's storage requirements. It then issues message 7C19I
ANALYZE END, and terminates with a return code of 16.

If SM2 is invoked, and a value for ROUTE=xxx has been supplied
(explicitly or by default), that value will be used instead of

ROUTE=LST.

Chapter 2. Program Control Statements 49

OPTION Control Statement

r----------[-------~~~-----J---[--------~s;J----------------------,
OPTION PRINT= NONE ,ROUTE= LOG

CRITICAL YXX

[
STORAGE= (~~VIRT/NOVIRTI 1

(nK,VIRT/NOVIRT)

[,LABEL=(output,input1 ••• ,inputn)]

[, WORKNM=work]

r,FILNM=OutPut 1
~FILNM=(output,input1 ••• ,inputn) L . - -. -j

[,SORTOUT=output] ['SORTIN=i~put .]
,SORTIN=(1nput •••• ,1nputn)

[
,SORTwK=work]
,SORTWK=(work~ ••• ,workn)

[
,VERIFY] r,ERASE][,DIAG Jr,DUMP] [,ADDROUT]
,NOVERIFY ~NOERASE ,NODIAG GNODUMP

,
I
I ,
I
I ,
I
I
I ___ J

This statement specifies the options for the associated sort/merge
program application. The values underlined are the standard defaults
supplied with the program, but the defaults might have been changed for
your installation.

Operand

PRINT=

ALL

NONE

CRITICAL

ROUTE=

LST

LOG

50

DescriFtion

Option keyword. Its parameters specify which messages are
to be printed by SM2.
Default: PRINT=ALL, but can be changed after SM2 is
installed.

All standard SM2 messages are to be printed, including
error and end of job messages, various size calculations,
and other informative messages.

No SM2 messages are to be printed. If this is specified,
the DUMP option is automatically set to NODUMP.

Only critical error messages are to be printed. That is
error messages signaling conditions that can cause
program termination.

Option keyword. Its parameters specify where the program
messages are to be routed.
Default: ROUTE=LST, but can be changed after SM2 is
installed.

All SM2 messages are to be routed to the SYSLST file, and
critical messages to the system console.

All 5M2 messages are to be routed to the system console.

xxx

STORAGE=

n
nK

VIRT

NOVIRT

Only valid when SM2 is invoked from another program.
Program messages are to be routed to SYSxxx, where xxx can
be any valid SYS number between 000 and 221. Critical
messages will also be sent to SYSLOG, but the system dump
(if an~ will go to SYSLST. If specified for an
independent sort or merge this option will be ignored and
the default (LST or LOG) taken instead.

Option keyword.
Defaul t: STORAGE= (n , NOVIRT) , where In I is described in
Chapter 6 (but can have been changed after SM2 was
installed) •

The value n specifies the decimal number of bytes (or
K bytes, where K=1024) of main storage to be available to
SM2 and any associated user routines loaded by SM2.

A useful value for B can usually be found by subtracting
the real storage requirements of the supervisor from the
CPU main storage, and dividing the result by the number of
partitions.

Minimum: the value specified for n must not be less than
32K. If it is, the action taken is as follows:

- if SM2 has been invoked from another program, it
terminates immediately

- if SM2 is being run as an independent program, the value
specified is ignored and 32K used instead.

Maximum: the value specified for n must not be greater than
the smallest of the following:

1. The default storage value described in Chapter 6.

2. The difference between the 5M2 load point and any
calling program return address ~n register 14) above
the SM2 load point.

3. The difference between the 5M2 load point and any
preloaded user exit address Which is above the SM2 load
point.

If n is greater than the maximum penmitted value, it is
ignored and the maximum used instead.

If the final value for storage available to SM2 is less
than 32K SM2 will terminate. If it is greater than 64K see
programming note 2 in the section 'Option Statement
Programming Notes ' • For a given application, the minimum
can be more than 32K. See the notes on storage in Chapter
6, 'Factors of Importance for Perfonmance ' •

If VIRT is specified SM2 will not attempt to fix pages when
running in virtual mode. VIRT is ignored if SM2 is run in
real mode. See programming note 3 following this table.

Instructs SM2 to fix pages when running in virtual mode.

Chapter 2. Program Control Statements 51

LABEL=J~!

WORKNM=

FILNM=

SORTOUT=

52

Specifies the type of label associated with the output
and input files, and must be in the order ~utput,
input1 ••• ,inputn) •

The three label types are:

N - nonstandard labels ~ncluding user standard labels)
S - standard labels
U - unlabeled

Default: S (standard label). The positional subparameters
may be replaced by a comma if the default value S is
applicable.

If the LABEL option is omitted, standard labels are assumed
for all files.

If you specify N~ for nonstandard label files (including
standard labels with additional user headers or trailers) ,
you must provide routines at the label checking exits to
open and close the files, and process the labels, as
described in Chapter 5, 'Modifying the Program'.

Option keyword. The pazameter specifies the first four
letters of the name in the DLBL job control statement for
the work file(s). The letters replace 'SORT' in the names
SORTWK1, SORTWK2, and so on.
Defau t: WORKNM=SORT, but can be changed after 5M2 is
instal ed.

Option keyword. The par.ameter specifies the file name or
names that are used in the TLBL and DLBL job control
statements for the output and input files. The file names
must be in the order (Output,input 1 ••• ,input*).

Default: FILNM=(50RTOUT,SORTIN1-S0R~IN9)

If the FILNM option is omitted, the default file names are
assumed for all the files. See Figure 11 in Chapter 3.

A valid file name must begin with an alphabetic character.
For input and output files the name can be a maximum of
seven alphameric characters.

For compatibility reasons work files can also be specified
here, instead of in the WORKNM parameter. If a work file
name is supplied it must come last, and must come in the
eleventh position; unused input parameters must be
indicated by commas.
If a work file name is given in both places ~ILNM and
WORKNM), the one specified first is overridden, and the one
specified second used.

Specifies the logical unit number of the output file. The
value can be a maximum of three digits in the range 1-221.

Default: 50RTOUT=OOl; this can be changed after SM2 is
installed. Only needed for tape files under DOS/VSE.

SORTIN=

SORTWK=

NOVERIFY

ERASE

NO ERASE

DThG

NODIAG

D~P

NO DUMP

Specifies the logical unit numbers of the input files. The
values can be a maximum of three digits in the range 1-221,
or a comma (for the default number). Only needed for tape
files under DOSjVSE.

Default: SORTIN=(002 ••• (,n+1», where n is the number of
input files specified. The default can be changed after
SM2 is installed. (See Figure 11 in Chapter 3.)

Specifies the logical unit numbers of the work files. The
values can be a maximum of three digits in the range 1-221,
or a comma (for the default number). Not needed under
DOSjVSE.

Default: SORTWK=((n+2) ••• , (n+m+l», where n is the number
of input files specified, and ~ the number of work files;
this can be changed after SM2 is installed. (See Figure 11
in Chapter 3.)

Specifies that when a direct access device is being used to
store the output file, each block will be checked to ensure
that it was written correctly. VERIFY is ignored for VSAM
output files. Its use degrades SM2 performance. It
prevents command chaining of the output CCWs~

output blocks will not be verified. This is the default,
which can however be changed after 5M2 is installed~

Specifies that the sort work files will be erased if they
have been used. For CKD devices this is done by means of
an End of File record written on every used track of the
SORTWK area. Used parts of FBA areas are filled with
zeros. Use of ERASE degrades SM2 performance.

Work files will not be erased. This is the default, which
can however be changed after SM2 is installed.

Specifies that special diagnostic messages are to be
produced. This option is useful when tuning the performance
of sort applications. ~or further details see 'Using the
DIAG Option' in Chapter 6.)

Diagnostic messages will not be produced. This is the
default, which can however be changed after SM2 is
installed.

Specifies that a dump of main storage is to be made on
SYSLST whenever SM2 terminates abnormally. If the STXIT
function is available in the supervisor, SM2 will receive
control on all types of abnormal condition. A dump of S~2
main storage will be produced, and a formatted dump of the
communication area and trace table information will be
provided. If STXIT is not available only errors detected by
SM2 will result in progxam dumps.

Note; When running under VSE/Advanced Functions with EXEC
REAL you must specify a SIZE parameter leaving sufficient
real storage for system GETVIS functions.

No dump is to be made if SM2 terminates abnormally. This
is the default, which can however be changed after SM2 is
installed.

Chapter 2. Program Control Statements 53

ADDROUT

54

Specifies that the final sort output should be only the
direct-access addresses of the input records. These
addresses can be used to retrieve the input records in
sequence. The application must be a sort, not a merge.

Input can be either SAM files or VSAM files. SAM files
must be on CKD direct-access devices; they must not be on
more than one volume, and they must not be VSAM managed SAM
files. However, ADDROUT can be used with VSAM managed SAM
files if they are defined to sort/merge as VSAM files, that
is, if VSAM is specified on the INPFIL card.

Input records must not be spanned. That is, the SPAN
parameter must not be specified; nor must input consist of
a VSAM KSD5 defined with the SPANNED attribute. ADDROUT
addresses produced in these cases would be meaningless.

If either an OUTREC or a SUM statement is provided, ADD ROUT
is igncred.

If INPFIL EXIT is specified with the ADDROUT option, SM2
will terminate.

If the output file is on tape the output block size must be
20 bytes or more. 5M2 ensures that the last block contains
at least 18 bytes by padding with blanks as necessary.

Output records are fixed-length, regardless of the type of
input records.

The 12 and 13 values in the RECORD statement must, if
specified, be as shown in the RECORD statement programming
note 2. If they are not specified, the correct values are
assumed by default.

r-----~---~-------------~~-----~~-----~~-~~-----~---~---~--,

SAM Files: For these files the addresses are ten-byte
binary numbers in the form:

mbbcchhrdd
where

m = input file number (0-8)

bb =
cc =
hh =

lIFO for records that have come from SOR'I'IN1,
m=1 from SORTIN2, and so on.
bin number ~lways OO}
cylinder number
head number

r = number of the record (block) on the
input file track

dd = displacement within block: 00 for unblocked
fixed-length records, or the displacement, in bytes
(relative to zero) , of the record within the block.
04 for unblocked variable-length records, or the
displacement within the block.

I
I
I
I
I
I
I ,
I
I
I
I
I
I
I
I
I
I
I
I

For a SAM file the output block size must be a multiple of I
ten. I
~---~
VSAM Files: For these files, the addresses are five-byte
binary numbers in the form:

myyyy
where

m = SORTIN file number (1-9)
m=1 for records that have come from SORTIN1,
m=2 from SORTIN2, and so on.

yyyy = relative byte address ~BA) for key sequenced
(KSDS) or entry sequenced (ESDS) data sets, record
number for relative record data sets (RRDS).

For a VSAM file the output block size must be a multiple ofl
Ifive. I L __________ ~ _____ ~ _________________________ ~ ____ ~~ ___ ~ _____ ~

OPTION STATEMENT PROGRAMMING NOTES

1. If you want to use the PRINT and/or ROUTE parameters you are
advised to put the OPTION statement before all other SM2 control
statements; and to put those paxameters on the first card or line,
not a continuation. This is because the defaults are assumed for
those parameters until contrary information is read in.

2. When running in virtual mode, if neither the SIZE parameter or
command nor the STORAGE option is specified the whole partition is
reserved for SM2 by default. Since the page activity may be high
in such an environment the storage used by 5M2 will be kept to the
largest of 64K bytes virtual storage or real size + 12K. However,
if sort/merge cannot execute in that partition size it will be
increased so that sort/merge is able to continue. If wORK=O is
specified in the SORT control statement all the available storage
is used.

Chapter 2. Program Control Statements 55

'\

3. It may be necessary to specify VIRT to prevent interference with
other jobs running simultaneously, or to allow a user-written
routine to fix pages. Specifying VIRT may have an unfavourable
effect on SM2 performance.

4. Specifying the ERASE option provides data security when sorting
files which contain sensitive information, but it increases
execution time.

If the checkpoint (CKPT) parameter has been specified in the SORT
control statement the ERASE option will be ignored if sort
terminates abnormally.

The ERASE o~tion has no effect on the DSCB entries in the V~OC. If
the work files are given a nonzero retention cycle, the DSCBs will
remain in the VTOC after the sort has completed, even though the
work areas themselves have been cleared or erased.

OPTION STATEMENT EXAMPLES

Example 1

OPTION PRINT=CRITICAL,ROUTE=LOG,5TORAGE=48K,LABEL=(,N,m

This statement specifies that:

• Only critical 5M2 messages will be produced and routed to the system
control console.

• The virtual storage available to the program is 49,152 bytes.

• The output file is to have a standard label (by default) and the two
input files have nonstandard labels.

Example 2

OPTION STORAGE=64K,VERIFY,ERA5E,SORTOUT=002,SORTIN=(003,004),
SORTWK= (005,006)

This statement specifies that:

• All 5M2 messages will be routed to the SYSLST file and be printed
(by default) , unless this default has been changed since 5M2 was
installed. Critical messages will also go to SYSLOG.

• The virtual storage available to the program is 64K bytes.

• When producing the output file, each block will be checked to ensure
that it has been written correctly.

• The work files used by sort are to be erased on completion of sort.

• 5YS002 is the logical unit number of the output file. SYS003 and
SYS004 the logical unit numbers of the input files, and SYS005 and
SYS006 the logical unit numbers of the work files.

56

Example 3

OPTION FILNM=(SORT2,IN"IN3) ,WORKNM=JOB2,SORTWK=10

Assume FILE5=3 is specified in the SORT statement then in this example
the sort output file is given the name SORT2; the input files are named
IN, SORTIN2 (by default), and IN3; and the work files have the name
JOB2WK1-JOB2WKm.

Furthermore, if we assume that a multiextent direct access work file has
been specified in the DLBL statement ~ode DA), only the logical unit
number of the first extent is necessary (SYS010). The other logical
unit numbers will be picked up by SM2 internall ":1. In this case the WORK
operand of the SORT statement must be specified or defaulted as wORK=DA.

If the work file name is specified in the FILNM parameter instead of in
the WORKNM parameter, then the work file name must be the eleventh
value, and missing values must be indicated by commas:

OPTION FILNM=(SORT2,IN"IN3""",JOB2) ,SORTwK=10

Example 4

OPTION SORTOUT=5,SORTIN= (, ,3) ,SORTWK= (010, 11, 12,,14,15)

Assume FILES=2 and WORK=3 (specified on SORT statement); then, using N
and M from Figure 11 in Chapter 3 (N=2 and M=3), SM2 will allocate as
follows:

SYS005 is the logical unit number of the output file.

SYS002 and SYS004 are the logical unit numbers of the input file. Two
default specifications are made and the SYS numbers chosen by default
would be SYS002 and SYS003 (SYS(N+l)=SYS(2+1»); but the latter is
already defined and the next consecutive number is chosen - SYS004. The
third parameter in the SORTIN operand is not used, as FILES=2.

SYS010, SYS011 and SYS012 are the logical unit numbers of the work
files.

SYS006: default setting (would be the fourth workfile if it were used) •
~ SYS005 is already in use.

SYS006, SYS014 and SYS015 are not used in this application, since
WORK=3.

This example shows how the values interact. The example may be
understood as showing a sort which was set up to run with three input
files and six work files, but which for this particular run has only two
input files and three work files (note the assumption that FILES=2 and
that WORK=3) •

Chapter 2. Program Control Statements 57

Chapter 3. Job Control Statements and Commands

Job control language (JCL) statements and commands are required to
define a sort or merge job application and the input, output, and work
files needed for that job. JCL is necessary for both independent and
invoked sort/merge jobs.

The JCL that may be required for a sort or merge job is described
briefly below. For a complete discussion of job control statements and
commands and their format refer to DOSJYS System Control Statements or
VSE/Advanced Functions System Control Statements.

JOB

ASSGN

TLBL

DLBL

EXTENT

EXEC

LBLTYP

ALLOCR

ALLOe

SIZE

58

Job name, etc.

ASSGN statements are required only if the devices to be used
in an application have not previously been assigned to the
appropriate symbolic names (SYS numbers) used in the SM2
application. Not required for VSAM or VSAM managed SAM files
under DOS/VSE Release 2 with VSAM/VSE Release 2.

A TLBL statement is required for every tape file with
standard labels;.

A DLBL statement is required for every direct-access file.
- The BLKSIZE parameter must not be specified.
- If any file is on the same disk pack as another file used

by the program the two files must have different file IDs.
- For VSAM, the file ID must specify the cluster name.

One EXTENT statement is required for each direct-access area
to define the limits which will be used by the program.
Extents defined may be Type 1 or Type a for input/output
files and must be Type 1 for work files. The defined extents
must include the SYS number of the device containing the
extent. Not required for VSAM or VSAM managed SAM files
under DOS/VSE Release 2 with VSAM/VSE Release 2, unless they
are to be implicitly defined (managed files only) •

SORT is the required operand entry. '!he EXEC statement is
followed by the SM2 program control statements.
It should contain a SIZE parameter if storage size is not
specified elsewhere (SIZE command, S~ORAGE option) or
defaulted, and if a GETVIS area is required, that is:

- if SM2 is to use any VSAM files, and/or
- if EXEC REAL is specified, and SM2 will run under

VSE/Advanced Functions.

A LBLTYP statement is required if SM2 is invoked from another
program and uses 'DA' work files or any standard labeled tape
input/output files. It is not required for independent
sort/merge jobs.

Defines real storage for the partition when executing in real
mode, thus defining the amount of storage that can be fixed.

Defines virtual partition size.

Defines the GETVIS area of the parti tion when running under
OOS/VSE.

Defining Files

All files that are to be used in a sort or merge application must be
defined according to DOSjVS standards.

I. The file SYS number must be assigned to a device address ~SSGN JCL
I statement) exce~t with VSAM or VSAM managed SAM files under DOS/VSE
I Release 2.

• If the SYS number default values, as shown in Figure 11 ~r changed
for installation) are not to be used, the values must be specified
in the appro~riate SORTIN, SORTOUT, or SORTWK parameter of the
OPTION statement (except under DPSjVSE for disk files) •

• The file name must be included in the DLBL or TLBL JCL statement.

• If the default file names are not to be used the file names must be
specified in the FILNM parameter of the OPTION statement.

• At least one EXTENT JCL statement is required for each DLBL
statement, except with VSAM or pzeviously defined VSAM managed SAM
files under DOSjVSE Release 2.

• If output is to an FBA device, the DLBL statement should include the
CISIZE parameter. If it does not, SM2 will use the minimum valid CI
size that will hold the specified or defaulted OUTFIL block size.

I. If CI size is s~ecified for a work file it is ignored.

I. DISP=(NEW,DELETE) should be specified on the DLBL card for VSAM
I managed SAM work files.

• VSAM files and VSAM managed SAM files should be previously defined
using the VSAM Access Method Services program. Under DOS/VSE VSAM
with the 'Space Management for SAM Feature' VSAM managed SAM output
and work files only may be defined implicitly with the RECORDS and
RECSIZE parameters on the DLBL card. This will of course add to the
overall time taken by sort/merge. See
Using VSE/VSAM Commands and Macros or VSE/VSAM Documentation Subset
and Using the VSE/VSAM Space Management for SAM Feature, for more
information. Implicitly defined managed output files will be
defined with record format undefined (RECFM=UNDEF). These may be
read using SAM as either fixed or variable as appropriate, but if
they are read using VSAM the access method will present a whole
block to the reading program which must then do its own deblocking.
If this is net desired these files must be defined explicitly with
RECFM=FB or VB as required.

File default names are shown in Figure 11. If a default SYS number is
occupied by another file (as specified in the OPTION statement), SM2
will use the next free number.

INPUT FILE STATEMENTS

When the file name is of the form SORTINn, n can be any value from 1 to
9 for a sort or merge, depending on the number of input files. The file
ID of the input file to be read must be included on each TLBL or DLBL
statement. Where the input file is a direct-access multiextent file,

Chapter 3. Job Control Statements and Commands 59

only the first EXTENT statement need contain the specified or defaulted
SYS number for the input file. Other EXTENT statements may specify any
valid SYS number.

OUTPUT FILE STATEMENTS

Multivolume and/or multiextent output on disk is accomplished by use of
DOS/VS standards: one DLBL card is supplied for the entire file followed
by one EXTENT card for each separate extent that the file occupies on
the disk pack or packs. Where the output file is a direct-access
multiextent file, only the first extent statement need contain the
specified or defaulted SYS number. Other EXTENT statements may specify
any valid SYS number.

WORK FILE STATEMENTS

I Under DOS/yS Release 33 and 34

There are two methods of setting up multiple disk work files: they can
be specified as multiextent, or multifile. Examples of the two methods
as applied to the same sort are given in Appendix A. No appreciable
performance advantage or disadvantage results from either method.

Notes

1. with FBA work files at least 64 blocks must be allocated per
extent. If CISIZE is specified for the work extents, it is
ignored.

2. If the WORKNM (or FILNM) parameter of the OPTION statement has been
used to specify the first four characters for the work file name,
this name must be used instead of the defaul t name SOR'IWI<l in the
DLBL statement.

3. Specifying a retention period of, say, one day prevents DOS/VS Job
Control from regarding the work files as expired files, while at
the same time requesting no longer retention than absolutely
necessary. This is shown in the DLBL statements in the example
below.

Multifile

In this method, the SYS numbers for work files are decided either by
specifying them on the OPTION statement or by accepting the defaults
shown in Figure 11 or those specified in the sortjrnerge default macro at
installation time.

Supply one DLBL statement and one EXTENT statement for each work file
your sort is to use. The DLBL filename entries must be either the
default file names SORTWK1 through SORTWKn or the explicit work file
names xxxxWK1 through xxxxWKn as specified in the WORKNM ~r FILN~
parameter of the OPTION statement. ~ can be any number from 1 through
9. The 'code' parameter of the DLBL statements must be SD, explicitly
or by default. In addition you must specify WORI<=n ~umber of work
files) on the SORT control statement. If you do not specify wORI<=n, the
default value DA will cause an I/O error on OPEN.

60

The filename numbers must start at 1 and be consecutive. For example:

II ASSGN SYS003,X'191'
II DLBL SORTWK1,,1
II EXTENT SYS003, •••
II ASSGN SYS004,X'192'
II DLEL SORTWK2,,1
II EXTENT SYS004, •••
II ASSGN SYSOOS,X'191'
II DLEL SORTWK3,,1
II EXTENT SYSOOS,

Multiextent

If you use this method of specifying your disk work file, you must
specify (explicitly or by default) WORK=DA on the SORT statement.

You supply one DLBL statement, with default file name SORTWK1 or
specified work file name, and 'code' DA. Follow this statement with
from 1 to 9 EXTENT statements, which together specify the requisite
amount of space.

Only the first EXTENT statement need contain the specified or defaulted
SYS numcer for the work file.

The remaining EXTENT statements must be in consecutive ascending order
of SYS number, but you may specify more than one extent on the same
symbolic unit. Remember that for multivolume DAM files each different
symbolic unit must be assigned to a separate physical device. Also that
for multiextent DAM files all extents on one physical unit must have the
same SYS number. For example:

II ASSGN SYS003,X'191'
II ASSGN SYS004,X'193'
II ASSGN SYSOOS,X'194'
II DLEL SQR't~1\1" 1 ,DA
I I EXTENT SYSO OJ,
II EXTENT SySVUJ,
I I EXTENT SYSOQ4,
II EXTENT SYSOOS,

Under DOS/ySE Advanced Functions

Sort work files are defined by SORTWKn DLBL cards and EX~EN~ cards. The
files may be defined as SD (with one extent only), DA (with up to nine
extents each) or VSAM managed SAM files if supported by the system (only
the first extent is used). There may be up to nine of these files. The
number is to be specified in the WORK parameter on the SORT statement.

Note: DA may not be used for files on FBA devices.

Users of VSAM managed SAM files are recommended to use the special
file-ID prefix to cause a single extent to be allocated for the primary
allocation, and to specify DISP=(,DELETE). See
Using the VSE/VSAM Space Management for SAM Feature.

Any valid SYSNO which correctly defines the device used may be used for
sort work files under DOSjVSE.

Chapter 3. Job Control Statements and Commands 61

For example (WORR=3 on SORT card) •

II ASSGN SYS005,X'191'
II ASSGN SYS001,x'192'
II DLEL SORTWR1,,1,SD
I I EXTENT SYSOOS", ,50,100
II DLEL SORTWR2,,1,DA
/1 EXTENT SYS001",,100,100
/1 EXTENT SYS001",,300,100
II DLEL SORTWR3,'DOS.WORRFILE.SYS007',0,VSAM,

RECORDS=1000,RECSIZE=80,DISP=(,DELETE)

Note: The VSAM managed SAM file is defined implicitly. No EXTENT card
is needed if the default model for the volume is used.

- _ ...

Symbolic Unit Names When:

Use of Device Filename Sort/Merge User Routine User Routines User Routines

Reads I nput and at E15 Reads at E35 Writes Read Input and

Writes Output Input Output Write Output

Output SORTOUT SYSOOl SYSOOl

Input SORTINl SYSOO2 SYSOOl

· · · · ·
SORTIN9 SYS(n+l) SYS(n)

Work SORTWKl SYS(n-4-2) SYSOO2 SYS(n+l) SYSOOl

· . · · · . · · · ·
SORTWK9 SYS(n+m+1) SYS(m+l) SYS(n+m) SYS(m)

CHECKPOINT SORTCKP SYSOOO SYSOOO SYSOOO SYSOOO

n = the number of input files, as specified in the FILES parameter of the SORT or MERGE statement. Maximum
value is 9.

m= the number of work files, as specified in the WOR K parameter of the SORT statement. Maximum value is 9.
""

Figure 11. File Names and SYS Numbers Allocated by Default

62

Chapter 4. Executing the Program

This chapter describes how you can execute SM2 as an independent program
and how you can invoke SM2 from within your own assembler language
program. The SM2 program can also be invoked from programs written in
COBOL, PL/I, and RPG II with the Auto-Report Feature. How to do this is
described not in this manual but in the respective program user manuals
or guides that are valid for your compiler. The JCL statements required
to execute SM2 program are, however, the same regardless of how SM2 is
initiated.

Independent Program

Figure 12 shows the job stream fer an independent sort program whose
input, output, and work files are all on disks. The input is a VSAM
file containing fixed-length 80 byte records and the output is to a VSAM
ESDS file.

Lines 1-11, 17 and 18 are DOSjVS JCL statements, and lines 12-16 are
program control statements. If the same sort program were to be invoked
from another program the JCL statements (2-10) would be needed
unchanged, and the program control statements (12~16) would be needed in
a similar form in the invoking program.

Detailed explanations of job streams are given in Appendix A.

r--~

1 II JOB EXAMPLE STAND ALONE
2 II ASSGN SYSOO 1 ,X' 160' SORIJ: OUIJ:PUT
3 II ASSGN SYS003,X'163' SORIJ: WORK
4 II ASSGN SYS006,X'164' SOR'I INPUT
5 II DLBL INPUT,'ACCOUNTS'"VSAM
6 II EXTENT SYS006,DISK01
7 II DLBL SORTWK1"O
8 II EXTENT SYS003,.,,1S0,6
9 II DLBL SORTOUT,'uUTPUT',O,VSAM

10 II EXTENT SYS001,DISK02
11 II EXEC SORT,SIZE=32K
12 OPTION ROUTE=LST,SORTIN=6,FILNM=(,INPUT)
13 SORT FIELDS=(1,30,CH,A) ,WORK=1
14 RECORD TYPE=F,LENGTH=80
15 INPFIL VSAM
16 OUTFIL ESDS
17 1*
18 1&

L ____________ ~ _______________ ~ ________ ~-~----~ ___________ ~ __ _

Figure 12. Job Stream for an Independent Sort Program

Chapter 4. Executing the Program 63

Initiating from an Assembler Program

The SM2 program can be initiated from an assembler program by issuing a
LOAD followed by a CALL or ATTACH system macro instruction. The ATTACH
macro should only be used if you are working in a multiprogramming
environment and intend to subtask SM2.

In order to initiate execution of the program with a system macro
instruction, you must:

• write the required DOS/VS job control language statements.

• write the sort/merge program control statements as operands of
assembler DC instructions.

• write a parameter list containing the addresses of the program
control statement images and other information to be passed to SM2.

When SM2 is loaded by another program it will use all space from the
load point to the partition's up~er limit (or to the return address of
the caller) , unless its storage space is limited by the STORAGE option
or the // EXEC SIZE= parameter. If SM2 is subtasked S10RAGE must be
specified.

Note: The sort/merge ~rogram is not reusable, which means that it must
be loaded each time it is wanted.

INTERFACE REQUIREMENTS

The linkage conventions are standard. This means that when SM2 receives
control, it expects general registers 13, 14, 15, and 1 to contain the
following information:

Register 13: This must contain the address of a nine-doubleword area in
which SM2 can save the contents of the user's registers. The user's
registers will be restored when SM2 completes its processing; they will
not be restored, however, when SM2 branches to user-written routines at
an exit.

Register 14: This register must contain the address in the user's coding
to which SM2 will return control upon completion.

Register 15: This register must contain the address at which SORT has
its entry.

Register 1: This register must contain the address of a parameter list,
the format and contents of which are described below (unless SM2 is
subtasked, see 'Register 2' below).

Register 2: If SM2 is subtasked, as described below, then the address of
the parameter list must be in this register instead of Register 1.

SUBTASKING

SM2 can be subtasked by using the assembler macro A1TACH. For details
see DOS/yS Supervisor and ILO Macros, GC33-5373 or
VSE/Advanced Functions Macro Reference and
VSE/Advanced Functions Macro User's Guide.

64

There are two things that must be done if subtasking is to be used:

1. The input, output, and work files must be allocated unique file
names for each task that will or can be run concurrently. !his is
to prevent the different tasks from trying to use the same input,
output, and work files. The WORKNM and FILNM parameters of the
OPTION statement are used to allocate the file names.

2. The STORAGE parameter of the OPTION statement must be specified so
that the program knows how much storage it may use. If it is not
specified, sort will try to use the whole partition.

If the program is subtasked checkpoints cannot be taken by SM2.

When SM2 is subtasked overprinting of messages routed to SYSLST may
occur if the main task or other subtasks are using the same printer
file. 5M2 provides a number of options that can be used to control
this:

• Specify ROUTE=xxx in the OPTION statement image, thus routing SM2
messages to the device of your choice (SYSxxx). A system dump, if
any, will still appear on SYSLST, and critical messages will also
appear on SYSLOG. This parameter can also be set as a default after
installation of SM2.

• Route SM2 messages to the console by specifying ROUTE=LOG

• Write only critical messages from 5M2 by specifying PRINT=CRI'IICAL

• write no 5M2 message at all by specifying PRINT=NONE

• Suppress the special formatted dump of SM2 areas by requesting
NODUMP •

If the parameter list pointer is in register 2, SM2 will issue DETACH on
completion. If, however, SM2 is called from a subtask, register one (1)
must point to the parameter list, as described above. The calling
program must then issue DETACH for its own subtask.

PASS ING PARAMETERS

The parameter list consists of a series of address constants pointing to
control statement images and other parameters. Figure 13 shows how the
list can be coded. Figure 14 gives a comple~e coding example.

No compatibility problems will result from applications using the
fixed-length parameter list previously containing only ten address
constants.

The Address List

The first ten addresses (from SORT or MERGE to the return code halfword
for phase 3 routine~ must always be supplied. The first two must
contain valid addresses.

The remaining five addresses (from ALTSEQ to ANALYZE) are optional. If
supplied they can be in any order.

Chapter 4. Executing the Program 65

r-------~---------------~-~-~------~~~~------~----~-~~~~--~-~-~--~--~-1

PLIST DC A (SORT or MERGE statemen~ 01
DC A (RECORD statement) 02
DC A (INPFIL statement) 03
DC A (OUTFIL statement) 04
DC A(OPTION statement) 05
DC A{MODS statement) 06
DC A(Branch table for phase 1 preloaded user routines) 07
DC A(O) 4-byte address (not used by sort) 08
DC A (Branch table fer phase 3 preloaded user routines) 09
DC A (Return code halfword) 10
DC A(ALTSEQ statement or AQTT constant) 11
DC A(OUTREC statement) 12
DC A (SUM statement) 13
DC A(INCLUDE or OMIT statement) 14
DC A (ANALYZE statement) 15

SORT DC C'SORT FIELDS=(1,24,CH,A,46,4,CH,D) ,FILES=2,' 16
DC C'WORK=4 ' 17

RCD DC C'RECORD TYPE=F,LENGTH=80 ' 18

------------------~~~---~--------------------~--------~~-----~-~-----~
Figure 13. How to Code Parameters and Control Statement Images

Any addresses that are not needed can be filled with zeros, as shown in
line 8 of the coding in Figure 13.

Lines 1-6 and 11-15 in Figure 13 are the address constants of SM2's
program control statement images.

Control Statement Images

Lines 16-18 show examples of control statement images. The images must
be coded in the form shown. No extra blanks, continuation characters,
card sequence numbers, or comments are allowed in these images.

Lines 16 and 17 show how a continuation line is coded. Note that there
is no space between the comma and the apostrophe at the end of line 16.

User Routines at Program Exits

Lines 7 and 9 may contain the address constants of branch tables for the
preloaded user routines of each SM2 phase. These routines may be part
of the program that is initiating SM2. For more information on
preloaded user routines see Chapter 5, 'Modifying the Program'.

Line 8 is not used by this program, but must be included for
compatitility reasons.

66

Return Codes: Successful and Unsuccessful Termination
<

Line 10 is the address constant of a halfword that can be used by SM2 to
return a code to the initiating program. If SM2 completes successfully
it returns a code of O.

If it is unsuccessful it returns a code of 16, and the job is then
canceled, unless the supervisor has been generated with the AB=YES
option, in which case any STXIT routine will get control. If more than
one STXIT routine is present, the last encountered will be used; earlier
ones will be canceled.

SM2 has an STXIT routine of its own, for use if the program was
initiated with the DUMP option specified. You can also supply STXIT
routines in the calling program and/or at one or more program exits.
The STXIT routines are generally encountered in the following order:
first, the one in your calling program; then SM2's; last, those in
routines at program exits.

SM2's STXIT routine is used to produce a dump, with a formatted listing
of the program's communications area and trace table. If you want this
information you should take care not to include an STXIT routine at a
program exit, which could cause SM2's STXIT routine to be canceled.
Conversely, if you supply an STXIT routine in your calling program you
should run SM2 with the NODUMP option, thus ensuring that SM2's STXIT
will not get priority over yours.

Alternative Sequence

Line 11 may be used in one of two ways. It can contain either the
address constant of the ALTSEQ control statement image or supply a
pointer to your own alternative sequence translate table.

If the ALTSEQ control statement image is specified, SM2 will use this
information to build a 256 byte translate table known as the AQ-table.
The AQ-table is then used as the second operand in a TR (translate)
instruction that is applied to those control fields with AQ format.

You also have the option of building your own AQ-table and passing it
directly to 5M2. To do this, you place in the ALTSEQ entry of the
parameter list a pointer to a fullword containing the four characters
AQTT. In the fullword following these four characters you place the
address of your AQ-table (256 byte tzanslate table). An example of the
coding involved follows.

Chapter 4. Executing the Program 67

r---------------------------------~----------------------------------1 PLIST DC A (SORT or MERGE statement)
DC A (RECORD statement)

DC A (Return code halfword)
DC A (AQTT)

AQTT DC C'AQTT'
DC A (.AQTABLE)

AQTABLE DC x'000102030Q050607'
DC X'08090AOBOCODOEOF'

DC X'F8F9FAFBFCFDFEFF'

ALTSEQ entry

AQTT constant

256-byte
user-built
AQ-table

--~---------~-----~-~------~~-~~--------------------~~-~~--~-~--~~--

SAMPLE CODING

Figure 1Q is an example of code that could be used to initiate execution
of SM2. It is a sorting exam~le with two preloaded user routines
active.

68

LOAD SORT,LOADLOC 1
LR 15,1 2
LA 1,PARAM 3
LA 13,SAVAREA 4
BALR 14,15 5

* FOLLOWING STATEMENTS ARE EXECUTED UPON COMPLETION OF SORT
CLC RETURN (2) ,=H'O' 6
BNE SORTERR 7

I SORTERR

* PARAM

SORT
RCD

I

: INPFL
OUTFL
MOD

,SUM

I
ALTSEQ
OMIT

!
SAVAREA
RETURN

1*
1* PHASE

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DS
DC
LTORG

A (SORT)
A (RCD)
A (INPFL)
A (OUTFL)
A (0)
A (MOD)
A (E11)
A (0)
A (E31)
A (RETURN)
A (ALTSEQ)
A (SUM)
A (OMIT)
A (OJ
C'SORT FIELDS=(10,5,CH,A) ,WORK=5 '
C'RECORD TYPE=F,LENGTH=80 '
C'INPFIL EXIT'
C'OUTFIL BLKSIZE=320,OPEN=NORWD '
C'MODS PH1= (, ,E15) ,PH3= (, ,E35) •
C'SUM FIELDS=(20,4,ZD) ,
C'ALTSEQ CODE=(5BEA,7BEB,7CEC) ,
C 'OMIT COND= (1 , 1 ,CH ,EQ , C' * ') ,
9D
H'O'

1 BRANCH TABLE
USING Ell, 15

Ell DC A (0)
E15 B INPUT
E17 DC A to)
E18 DC A (0)
* PROGRAMMER'S PHASE 1 PROCESSING ROUTINES FOLLOW
INPUT SAVE (14,12)

RETURN (14,12)

* * PHASE 3 BRANCH TABLE

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38

39

40

USING E31, 15 41
E31 DC A (0) 42
E32 DC A (OJ 43
E35 B OUTPUT 44
E37 DC A (0) 45
E38 DC A (0) 46
E39 DC A (0) 47
* PROGRAMMER'S PHASE 3 PROCESSING ROUTINES FOLLOW
OUTPUT SAVE (14,12) 48

LOADLOC

RETURN (14,12)
LTORG
DC D'O'
END

49
50
51

Figure 14. Sample Coding to Initiate the Program

Chapter 4. Executing the Program 69

1.

2.

3.

4.

5.

6.

7.

8.

9-14.

15-17

18.

19-22.

23-30.

31.

32.

33.

34.

70

This instruction leads the first phase of SM2. It is loaded on
the deubleword boundary at LOADLOC ~OADLOC is defined by
instruction no. 51).

The address of SM2's entry point is placed in register 15.

Register 1 is loaded with the address of the parameter list.
This list is defined below by instructions 9-22.

This instruction leads register 13 with the user's save area
address.

This instruction loads register 14 with the user's return
address, and gives control to SM2. After execution of the
sort, centrol returns to the next instruction.

Before returning control to the user, SM2 places a code in the
halfword named RETURN. This instruction tests the code for
successful sort completion.

If the return code is net zero, control goes to the user's
error routine.

Instructions begin here to process a nonzero return code upon
completion of the sort.

The parameter list begins at instruction no. 9. The first six
address constants point to sort/merge control statement images
that are defined below. Note that the constant at instruction
no. 13, which usually contains the address of the OPTION
statement image, contains zeros. In this situation SM2 uses
default values for the OPTION statement parameters.

These constants point to the Iequired branch tables. No. 16
must always contain zeros, since SM2 has no Phase 2 exits;
space is provided for a Phase 2 branch table for reasons of
compatibility.

This is the address of a halfword in which 5M2 can place a
return code. The halfword is defined by instruction no. 32.

These four address constants point to sortjrnerge control
statement images. One (at instruction 22) contains zero, and
will be ignored; it could have been omitted. The SUM, AL'ISEQ,
and OMIT functiens are defined in instructions 28-30.

These instructions define the control statement images. Note
that on the MODS statement no entries are required for the
phase name and the address/length parameters, since the user
routines are preloaded.

This instruction defines an area in which SM2 can save the
contents of the user's registers.

This halfword is set aside for the return code from SM2.

All literals generated by previous coding are to be collected
here.

This instruction establishes addressability for the Phase 1
branch table and the processing routines that follow the table~

35.

36.

37-38.

39.

40.

41.

42-43.

44.

45-47.

48.

49.

50.

51.

This is the first instruction in the branch tables for Phase 1,
the internal sort phase. Since no user routine is provided for
Exit Ell, SM2 will never give control to this instruction.
Each unused branch table entry must be replaced by a four-byte
displacement.

This instruction is a branch to the user routine at exit E1S.
INPUT is the label of the entry point for this routine.

Exits E17 and E18 are not used.

The user routine at exit E15 follows the Phase 1 branch table,
and the first instruction will save registers that are used in
the routine.

This instruction will restore registers to their status upon
entry into the user routine and will return control to SM2.

This instruction establishes addressability for the Phase 3
branch table and the processing routines that follow the table.

These are the first instructions of the Phase 3 branch table;
no user routines are provided for exits E31 and E32.

This instruction is a branch to the user routine at exit E35.
OUTPUT is the label of the entry point for this routine.

Exits E37, E38 and E39 are not used.

The user routine for output follows the Phase 3 branch table,
and the first instruction should save registers that are used
in the routine.

This instruction will restore registers to their status upon
entry into the user routine and will return control to SM2.

All literals generated by previous coding are to be collected
here.

SM2 will be loaded here on a double-word boundary.

Note: If you use logical IOCS in your program, and you assemble the
logic modules with your program, SM2 can be loaded over these modules.
You must therefore use the linkage editor to ensure that the logic
module CSECT is loaded before your program instead of after it. For
example:

PHASE
INCLUDE
INCLUDE

USERPROG,S
LOGICMOD,(logmcd CSECT name)
USERPROG,(user CSECT)

For more information see under 'Linkage Editor' in DOSjVS System
Control Statements or VSE/Advanced Functions System Control Statements.

Chapter 4. Executing the Program 71

Chapter S. Modifying the Program

SM2 allows you to incorporate routines you have written into the main
flow of a sort or merge job. There are several fixed points in the
code, called program exits, at which control can be handed to your
routines.

Figure 15 shows where the exit points are located, and Figure 16
summarizes what can be done at each exit point.

How the Program is Organized

As shown in Figure 15, the program is in four phases. All phases are
usually executed for a sort, but only the first and last for a merge.

The exit names are in the form EXy, where x is the number of the phase,
and y is the number of the exit within that phase.

PHASE 0: INITIALIZATION

There are no exits in Phase 0, which essentially collects, checks, and
stores the information supplied by control statements.

PHASE 1: SORT

This phase, which is not used for a merge, reads the input files and
sorts them into sequences, or strings. If the whole of the input can be
contained in main storage there will be only one string, and the records
will all be in the correct order. The sort is therefore complete, and
all that remains to be done is to write the output file.

In most cases, however, there will be too many input records to fit into
main storage, and work files have to be used. Record strings are built
up in main storage, and written out to the disk areas specified as work
storage.

There are four program exits in Phase 1: Ell, E15, E17, and E1S.

72

PHASE 0

Define sort or merge
application

PH 0

----------------~---

Ph1 Exits PHASE 1 Sort only

E11 Create strings
E15-A ... ~
E17 ~

E18

PH 1

Ph3 Exit

E31
E35
~ E37 ~

E38 INCORE
SORT

----------------... ---

PHASE 2 Sort only

Reduce strings
PH 2

----------------~---

Ph3 Exits PHASE 3 sort/merge

E31 Eliminate strings PH 3
E32
E35
~

E37 "'-r- v'"
E38
E39

Figure 15. Overview of Program Flow and Exits

Chapter 5. Modifying the Program 73

r-----------------~-----~---~-_r-~-~-~~~-------T-------~------~~~-~----1
I I PHASE 1 1 PHASE 3 I
t USE FOR EXITS 1---1---1---1---1---1---1---1---1---1---1
I 1 E111 E151 E171 E181 E311 E321 E3 51E371E381E391
~------------------------------t---r--~---r---t---~---~---T---T---T---~
I Take checkpoints I I I I 1 xGI 1 I I I 1
~------------------------------t---t---t---t---t---t---t---+---+---+---~
I Process labels I x I I x I I x 1 I 1 x I I I
r------------------------------t---t---t---t---t---t---t---+---+---+---~
I Open files I x 1 I 1 1 xii I 1 I I
r------------------------------t---t---t---t---t---t---t---+---+---+---~
I Close files I x I I x 1 I x 1 I 1 x I I I
r------------------------------t---t---t---t---t---t---t---+---+---+---~
I Supply password list for I I t I I 1 I I I I I
I VSAM files I I I I x I I 1 I I x I x I
r------------------------------t--~t---t---t---t---t---t---+---+---+---~
I Supply VSAM exit list I I 1 I x I I 1 I I x 1 x I
r------------------------------t---t---~---r---t---t---t-~=+==~+---+---~
I Read input to a sort I I x I I 1 1 I I I I I
r------------------------------t---t---t---t---t---t---t---+---+---+---~
I Count input records I I x I 1 I I 1 1 I 1 1
r------------------------------t---t---t---t---t---t---t---+---+---+---~
I Insert/delete records I I x 1 I I 1 I x 1 I I I

r------------------------------t---t---t---t---t---t---t---+---+---+---~
I Lengthen/shorten records I 1 x3 1 I I 1 I x 1 I 1 I
r------------------------------t---t---t---t---t---t---t---+---+---+---~
I Modify record data 1 I x3 1 I I I x3 1 x I 1 I I
r------------------------------t---t-~-t---t---t---+---t---+---+---+---~
I Read input to a merge 1 I I I I I x21 I I I I
r------------------------------t---t---t---t---t---t---+---+---+---+---~
I Summarize record I I I I I I I x I I I I
r------------------------------t---t---t---t---t---t---t---+---+---+---~
I Substitute records in a I I 1 I I I I I I I I
I merge I I I I I I x I I I I I
~-----------------------------t--~t---t---t---+---t---t---+---+---+---~
I write output I I I t I I I x I I I I
~------------------------------~--_~---~---L---L---L--_~ ___ L ___ L_--L---~
I 'Only activated if CKPT is specified on SORT statement I
I 2Qnly when INPFIL EXIT is specified I
I 3If control field lengths are changed, they must match those given inl
I the SORT or MERGE statement I
L-___________________ ~-------~~_~--_---_---_--~_-~-_--__ ~-_______ ~ _____ ~

Figure 16. Uses for Program Exits

PHASE 2: MERGE STRINGS

If strings have been written to work storage in Phase 1, then Phase 2 is
used to merge strings together until their number is such that they can
all be merged in one pass by Phase 3, the final merge.

This phase has no program exits.

74

PHASE 3: FINAL MERGE

This is the phase which, after one merge pass, produces the output file.
For a merge, the program reads the input files and merges them; and for
a sort, it reads the work files and merges them.

There are six exits in Phase 3: E31, E32, E35, E37, E38, and E39.

Uses of Program Exits

The uses of the exits are summarized in Figure 16, and described in more
detail in the sections which follow. There are four main ways in which
they can be used: to handle nonstandard labels; to checkpoint; to
manipulate input or output records; and to modify VSAM processing.

Your routines for use at the exits must be coded in assembler language.
Some examples are given at the end of this chapter.

You must supply a MODS control statement to the program if you want your
exit routine to be invoked. Chapter 2 describes how to code the MODS
statement.

COMPARISON WITH OTHER SORT/MERGE PROGRAMS

If you have already written routines for use with other IBM DOS or
DOS/VS sort/merge programs, you may be able to use the same routines
with SM2. Details are given in Appendix C.

Handling Input and Output File Labels

If your tapes or disks have standard labels, or if you use unlabeled
tapes, you need do nothing about either label processing or opening and
closing files. The work will be done by SM2, using the standard
facilities of the operating system.

The program cannot, however, handle nonstandard labels, or
'user-standard' labels (standard labels with an extra header or
trailer). You must process these labels, and open and close the files,
at the appropriate program exits. Figure 17 summarizes what needs
doing, and at which exits it should be done.

You should be familiar with the label processing procedures described in
the DOS/yS Data Management Guide, and in the publication DOS/VS Tape
Label Reference or OOS/VS DASD Label Reference or VSE/Advanced Functions
~ Management Concepts and VSE/Advanced Functions Tape Labels or
VSE/Advanced Functions ~ Labels as appropriate.

Figure 17 is equally applicable to tape and disk files, with the
exception of remarks on the subject of trailer labels: only tape files
can have trailer labels.

VSAM managed SAM files must have standard labels.

Chapter 5. Modifying the progr.am 75

r---------------~---~------------------_r---------r---------T--------~ I I Input I Input I Output I
I I (sort) I (merge) I I
r------------~-----~--------------------t---------t---------+--------~ I open file, process header labels I Ell I E31 I E3l I
r---------------------------------------t---------t---------+--------~ I Process all trailers except the last I Ell I E31 I E31 I
~---------------------------------------t---------t---------+--------~ I Process last trailer, close file I E17 I E37 I E37 I L-__________ ---_________________________ L _________ L _________ ~ ________ ~

Figure 17. Which Exits to Use for File Label Handling

INPFIL OR OUTFIL EXIT SPECIFIED

The parameter EXIT on the INPFIL control statement is a promise to SM2
that you will take care of all input to the sort or merge - not just the
individual records, but the files as well. In the same way, OU'IFIL EXIT
means you will take complete charge of output.

with INPFIL EXIT specified you must therefore use E15 (for sort) or E32
(for merg~ to read the input file, and pass the records one at a time
to SM2. For any application with OUTFIL EXIT you must use E35 to take
output records one at a time from SM2 and write them to file. You can
if you wish open and close the files at the same exits. However your
routines will be simple to code, and more generalized, if you use the
label handling exits instead, as shown in Figure 17.

Individual input records can be fed to SM2 at E15 for a sort or E32 for
a merge regardless of whether you have specified EXIT on the INPFIL
control statement.

Checkpointing

Only one checkpoint can be taken during a sort operation and none during
a merge. If you want the sort to take a checkpoint you must specify the
CKPT parameter in the SORT control statement. This will cause SM2 to
take a standard checkpoint of main storage and ~ork files at the
beginning of phase 3.

If the SM2 program is subtasked the CKPT parameter will be ignored.

You can handle checkpointing yourself by specifying the CKP~ parameter
in the SORT statement and by supplying a checkpoint routine at exit E31.
SM2 will set up checkpoint parameter list but take no checkpoints
itself. You must take full responsibility for the checkpoints in your
own routine.

SM2 will ~ take a checkpoint if exit E31 is specified for any reason.

76

Modifying, Deleting, and Inserting Records

There are three exits at which you can manipulate individual records:
Els, for records to be sorted; E32, for records to be merged; and E3s,
for records to be written to the output file.

AT SORT INPUT (Els)

Routines at exit Els receive control before records are processed by
Phase 1. If you have specified the EXIT parameter in the INPFIL control
statement then routines at Els must take complete responsibility for all
the sort input. See the heading 'INPFIL or OUTFIL Exit Specified'
above. The INCLUDE/OMIT, SUM, and OUTREC function are performed after
Els.

Modifying a Record: You can alter the contents of any field in a record
and you can change the length of a logical record by adding or deleting
fields after the last control field, as long as you comply with the
record descripticn supplied in the SORT/MERGE and RECORD statements.

If you do change the contents or alter the length of any record field
you must ensure that the control fields in the changed record still
match these control fields specified on the SORT statement.

If the length of a fixed-length record is changed, the modified length
must be specified by the 12 value in the RECORD control statement.

If the length of a variable-length record is changed such that either
the maximum or the minimum record length is al,tered then the respective
12 or 13 value should be specified in the RECORD control statement.

Checking Record Length: A routine can be set up to check the maximum and
minimum lengths of v~riable-length records at this exit. The program
checks the record lengths at a later stage and an incorrect record
length may cause the program to terminate.

Deleting Records: Any record that you do not want in the output file can
be deleted. Doing this at input rather than output (E3s) saves program
time. However the INCLUDE/OMIT function may be used for this purpose,
instead of a user routine.

Inserting Records: Records can be inserted at any time with a routine at
the Els exit.

AT MERGE INPUT (E32)

Exit E32 functions in two different ways, depending on whether or not
you specify INPFIL EXIT.

When INPFIL EXIT is Not Specified: A routine at E32 can only modify the
contents of a record, including control fields, but it must not be used
to alter the length of a record,.

Input records cannot be inserted or deleted, but may be substituted that
is, the record the merge passes at E32 can be replaced by one of your
records.

Chapter 5. Modifying the Program 77

When INPFIL EXIT is Specified: Your routine has complete responsibility
for reading records into the merge, i.e., for all operations on the
input files: defining them, opening them, and processing their labels.

The contents of the input records can be modified and the record lengths
can be altered. Records may also be deleted or inserted.

When the records are ready for merging, your routine passes them, one at
a time, to merge; merge performs the necessary compare operations,
writes a record on the output file (or passes the record to your routine
at exit E35) , and then returns to your routine at E32 to obtain the next
record to be merged.

AT OUTPUT (E35)

Modifying a Record: You can add, modify or delete fields anywhere in the
[

record.

Checking Record Length: A routine can be set up to check, for example,
the maximum and minimum lengths of variable-length records.

Deleting Records: Any unwanted record can be deleted.

Inserting Records: Records can be inserted at will, but you have
responsibility fer inserting them in the correct sequence.

Processing VSAM Files

There are three exits which can be used in conjunction with VSAM files
to supply passwords, or an exit list.

The exits are E18 for sort input, E38 for merge input, and E39 for
output files.

PASSWORDS

Your password routine at E18 is entered only once, and must therefore
supply all necessary passwords for sort input files. The same applies
to E38, where you must supply all merge input passwords.

EXIT LISTS

You must construct your exit lists using the VSAM EXLST macro, and
observe all conventions governing VSAM exit lists. Details are given in
the DOS/yS Supervisor and I/O Macros manual.

VSAM exits are not entered for null files.

78

Relocatable Routines are Best

Main storage that follows your routines may not be available for use by
SM2. For this reason, self-relocating and loader-relocatable routines
are recommended. These subjects are discussed in the DOS/yS System
Management Guide.

When you use relocatable routines, remember to specify their length in
the MODS statement, as described in Chapter 2. SM2 can then use main
storage efficiently (usually by placing your routines at the highest
addresses in the partition) •

Loading and Linking to User Routines

LOADING YOUR ROUTINES

SM2 will load your routines for you.

All routines for each phase must be treated as an entity and cataloged
under a unique name in the core image library. This is the name you
specify on the MODS statement.

When you invoke SM2 from ancther program by use of the LOAD macro, you
have the option of loading your own routines. If you do so, you must
inform SM2 of their location in the parameter list as well as supplying
a MODS statement. The parameter list is explained in detail in
Chapter 4.

PASS ING CONTROL

Since all of your routines for each phase are loaded in a single module,
SM2 cannot know the entry point of each routine. You have to provide
this information in a branch table at the beginning of the module.

The format of the branch tables is shown in Figure 18. If there is any
exit which is not used, it must still have an entry in the table, as in
the example in Figure 18 of a branch table for Phase 1.

Chapter 5. Modifying the Program 79

r--~---------------~~----~----~--~.-------~--~----~~-~~~~--~
I

PH1 B E11 *BRANCB TO ROUTINE CALLED E11 I
DC A(O) *E15 IS NOT USED I
B E17 *BRANCH TO ROUTINE CALLED E17 I

I B E18 *BRANCH TO ROUTINE CALLED E18 I
I I
r--~

Phase 1 Branch Table:

USING ENTRY1,15
ENTRY 1 B E11

B E15
B E17
B E18

* programmer's Phase 1 processing
* Routines Follow

r----------~-~---------~-----~-----~-----~--------~~~-~--~~~

Phase 3 Branch Table:

USING ENTRY3,15
ENTRY 3 B E31

B E32
B E35
B E37
B E38
B E39

* Programmer's Phase 3 Processing
* Routines Follow

L-_____________________ ~ _____ ~ ______ ~~ ___ ~-------------__ _

Figure 18. Branch Tables for Program Exits

USE OF REGISTERS TO PASS INFORMATION

I

SM2 uses registers 1, 13, 14, and 15 in the standard way to pass
information to your routines.

Register 1] contains the address of a save area nine doublewords long,
in which you should save the contents of the registers; you must restore
the registers before returning control to SM2.

Register ~ contains the return address. Your routine returns control
by branching to this address.

Register ~ contains the address of your branch table. You can use this
as a base register at the start of your program.

Register 1 contains a pointer to a list of addresses (parameter list),
each pointing to an item of information. The contents of the parameter
lists are different for each program exit, and are described below in
the coding instructions given for each exit. When your routine needs to
pass a return code back to SM2, the same parameter list conventions must
be used. The valid return codes for each exit are also described in the
coding instructions.

80

If you pass an invalid return code, message '7M09 RETURN CODE ERROR,
Exx' will be issued and the program will terminate.

Figure 19 shows the general method used by SM2 to pass parameters at the
different exits.

Register 1

I
I Address Constants

I r---1
~-------! I
I I I

I
Parameters or Records

~f I '---___J

I , _____ -,
L ______ ~ I

L ______ J

Figure 19. General Method for Passing Parameters

Ell Coding Instructions

The following notes apply to both disk and tape files, with the
exception of references to trailer labels. Trailer labels are only
relevant to tape files, and all references to them should be ignored
when disk files are involved.

Parameter List

1. Reserved

2. Reserved

3. Addr of previous volume unit

4. Addr of next volume unit

5. Addr of block count

6. Addr of SYS number table

Logical unit no. of volume
just processed (2 bytes) *
Logical unit no. of next
volume to process (2 bytes) *
Block count for trailer device

SYS number table (see below)

* Only the SYS number is given, not the full CCB format.

Chapter 5. Modifying the Program 81

SYS number Table

The SYS number table contains 20 one-byte entries, one for each device.

r-----------------------~---------~~~~----~------------~----------~-~~-1

1 Output file ~
2-10 Input files D
11-19 Work files ~

20 Checkpoint file §

.--~-----------------~-~ I Each one-byte entry contains the symbolic unit number in binary used I
I by the sort for the file in question. If there are fewer than the I
I maximum number of files, unnecessary bytes contain zeros. I
L _____________ ~-------______ ~ _____ ~~-~-------~--------__ ~_~---~-------~J

On First Entry

When your Ell routine first receives control, parameters 3 and 4 contain
zeros. You must open the first volume of input and process its header
label. You will find its symbolic unit number, in binary, in the second
byte of the SYS number table pointed to by parameter 6. Parameter 5 is
not used.

On Subsequent Entries

On subsequent entries if there is an address in parameter 3, process the
trailer label for the volume on the unit pointed to, using the block
count indicated in ~arameter 5. If the contents of parameters 3 and 4
are different (and parameter 3 is not 0), this is the last volume of the
file, so you must also close the file. Note that you will not get
control to close the last input file - this must be done at exit E17.

If there is an address in parameter 4, open the volume on the unit
pointed to, and ~rocess its header labels.

EXAMPLES OF LABEL PROCESSING

The examples illustrated in Figure 20 show the label processing required
of a user routine at exit Ell for various input configurations. The
figure also shows the contents of parameters each time exit E11 receives
control, and indicates the processing carried out at E17. Any
references to trailer labels only apply to tape files and should be
ignored when using disk files.

82

Example 1. One Multivolume Input File

This example illustrates the nonstandard or user standard label
processing required for a single input file that is contained on three
volumes:

1. Exit Ell is first activated to open the file and process the header
label of the first volume. All label processing parameters contain
zeros; only parameter 6 is of interest.

2. Exit Ell is given control the second time to process the trailer
label of the first volume (for tape volumes onl~ and the header
label of the second volume (for both tape and direct access
volumes) •

3. The third and last time exit Ell receives control, the user routine
must again process a trailer label (tape only) and a header label
(tape and direct access) •

4. A routine at exit E17 must process the final tape trailer label and
close the file.

Example 2. Multifile, Multivolume Input

In this example, the input consists of two files. The first is assigned
to logical unit SYS002, and it extends over two volumes. The second
file is on SYS003, and also extends over two volumes.

Exit Ell receives control three times to process the labels of the first
file. On the third occasion it also opens the second file and processes
its first header labels.

The fourth time it handles the second file's labels. A routine at exit
E17 processes the final trailer label (tape only) and closes the second
file.

Example 3. Three Multivolume Input Files, One With Standard Labels

In this example, the first and third files have nonstandard or user
standard labels, while the second file has standard labels ~he second
file could also be an unlabeled tape file).

The processing required at Ell is exactly the same as described in
Example 2, since the system handles standard labels completely.

Chapter 5. Modifying the Program 83

Parameters
passed

61t SYSno tbl

3
J.:-------f

4
toi-----__t

5&.:...-____ -'

3
~----__t

4
..r-----~

5
~------'

It block count I-.li2iI ,

Exit
taken

Ell (1)

Ell (2)

El1(3)

E17

Action
taken

Example 1. One multivolume input file.

Parameters
passed

61t SYSno tbl

3
..r-----~

4
toi-----__t

5\.:-____ ~

3

3
..,;-----__t

Exit
taken

Ell (1)

Ell(2)

Ell (3)

Ell(4)

"bloCk count ~ E17

Action
taken

Example 2. Multifile, multivolume input.

Units
affected

Units
affected

Figure 20. Label Processing at E11 and E17

84

Parameters
passed

Exit
taken

Action
taken

6 tf SYSno tbl El1(l)

3
~------t

4
~------t

E 11(2)

5~ ___ ~

3 + trailer unit

4 0 Ell (3)

5 t block count

(standard iabeis)

3 0
Ell (4)

Ell(5)

If block count ~ E17

Example 3. Three multivolume input files
one with standard labels.

I
I

Units
affected

EIS Coding Instructions

Par amet er List

1. Addr of record
(or zeros) 11

2. Addr of action

3. Addr of record

4. Addr of record

word

length vector

type

Next record to process

Action word (1 word)

11 12 13 I,. Is (5 words)

Record ty~e switch (1 byte)

~Zeros when INPFIL EXIT specified, and at end of file.

Parameter 1 points to the record to be processed by your routine.

Parameter 2: The action word or return code tells 5M2 what action to
take when contrel is returned to it. You must insert the appropriate
code in the rightmost byte of the action word. Valid codes are:

X'OO'
X'04'
X'OS'
X'OC'
X'10'

Process next record normally*
Delete next record*
Do not return to this exit
Insert a record
Terminate sort

*Invalid when EXIT is specified on the INPFIL statement.

Parameter 3 gives the address of a 20-byte area containing the record's
length parameters 14 through Is.

Parameter 4 gives the address of a byte containing the record type code.
Bit 0 is on and bit 1 is off for fixed-lenqth records and bit 1 is on
and bit 0 is off for variable length records. Other bits may be used
by sort for flags.

Procedure

Normally the sort will read the first input record and then pass control
to you, with the record's address in parameter 1.

1. If the record is acceptable you return a code of X'OO'.

2. If you want to delete it, you return a code of X'04'.

3. If you want to pass a record to sort which you have read in from a
different file ('insert'), you put your record's address in
parameter 1 and return a code of X'OC'. Next time, parameter 1
will have been restored to its former value.

4. If you want to change the record you must move it to a work area,
change it, put its new address in parameter 1, and return a code of
X'OO'.

This process is repeated for every input record until you return a code
of X'OS' or X'10'.

Parameters 3 and 4 make it ~ossible for you to write a generalized E15
routine, by giving you all the information you need about record type
and length.

Chapter 5. Modifying the Program S5

If you have specified INPFIL EXIT only step (3) is applicable: parameter
1 will always contain zeros, which you must replace with the address of
the record you have read in. Note that return codes X'OO' and X'04' are
invalid with INPFIL EXIT specified.

Two examples of coding for routines at exit E15 are shown below.

Coding at E15: Example 1

This shows a routine that handles card input to sort.

EXIT15 CSECT
PRINT NOGEN
USING *,15

START DC A (0)
B E15
DC A (O)
DC A (0)

E15 SAVE (14,12)
DROP 15
USING START,11
LR 11,15
LA 4,0 (,1)
L 5,4(,1)
LA 6,CARDIN
CLI FIRSTSW,X'OO'
BNE GET
OPENR (6)
MVI FIRSTSW,X'FF'

GET GET (6)
LA 7,RCDIN
ST 7,0 (,4)
LA 7,12

RETURN ST 7,0 (,5)
RETURN (14,12)

EOF LA 7,8
CLOSER (6)
B RETURN

* RCDIN DC
FIRSTSW DC

CL80' ,
X'OO'

EXIT 11 UNUSED
ENTRY FOR EXIT 15
EXIT E17 NOT USED
EXIT E18 NOT USED
SAVE REGISTERS

SET UP NEW BASE REGISTER
REG 15 POINTS TO 1ST BYTE OF RTN
ADDR OF RECORD ADDR PARAMETER
ADDR OF ACTION WORD
GET ADDRESS OF DTF
TEST IF FIRST TIME
NO, BYPASS OPEN
OPEN THE FILE
SET FIRST TIME SWITCH
READ A RECOR~
GET ADDR OF RECORD JUST READ
STORE IN PARAMETER LIST
CODE FOR ACTION WORD = INSERT RCD
STORE IT IN PARAMETER LI ST
BACK TO SORT
SET ACTION CODE TO 8 = END OF FILE
CLOSE THE FILE
BACK TO SORT

INPUT AREA
FIRST TIME SWITCH

* CARDIN
IJCFZIZ

DTFCD DEVADDR=SYSIPT,IOAREA1=RCDIN,EOFADDR=EOF
CDMOD
END

86

Coding at E15: ExamBle 2

This shows a routine which compares two bytes of each input record with
a constant. If the compare is net high, the record is printed and
deleted from the input.

EXIT15 CSECT
PRINT NOGEN
USING *,15

START DC A (0)

*

E15

*

* OPEN

* PUT

DELETE

* NOACT

*

B E15
DC A (0)
DC A (0)

DROP
USING
SAVE
LR
LA
LM
LTR
BZ

15
START, 11
(14,12)
11,15
4,PRINTER
2,3,,0(11
2,2
EOF

CLC 10 (2,2) ,FIRST
BH NOACT

CLI SW1 ,X' FF'
BE PUT
OPENR (4)
CNTRL (4) ,SK,l
MVI SW1,X'FF'

MVC
PUT
LM
LA
ST
CR
BH
LA
B

SR
B

OUTAREA+l (120) ,,0 (2)
(4)
7,8,LINECNT
7,1(,7)
7,LINECNT
7,8
SKIP 1
4,4
RETURN

4,4
RETURN

SKIPl CNTRL (4) ,SK,l
XC LINECNT,LlNECNT
B DELETE

* EOF CLOSER (4)
LA 4,8

RETURN ST 4,0 (3)
RETURN (14,121

*

REG15 POINTS TO START OF EXIT
Ell NOT USED
BRANCH TO CODE FOR E15
E17 NOT USED
E18 NOT USED

REG15 TO BE USED BY PUT RTN
REG11 AS BASE REGISTER
SAVE REGISTERS
SET UP BASE REGISTER
GET ADDR OF PRINTER DTF
LOAD ADDR OF RECORD , ACTION
TEST IF END OF FILE
YES, BRANCH

CHECK FIRST CONTROL FIELD
HIGH: SET RETURN CODE

TEST IF FIRST TIME
IF NOT, BRANCH
OPEN PRINTER FILE
SKIP TO CHANNEL 1
BYPASS OPEN , CTL NEXT TIME

MOVE RECORD '10 OUTAREA, AND
PRINT IT

GET CURRENT AND MAX LINECOUNT
INCREMENT CURRENT LINE NUMBER
SAVE IT
TEST IF END OF PAGE
YES, GO SKIP TO CHANNEL 1
LOAD ACTION CODE 4 (DELETE)
RETURN TO SORT

WORD

LOAD ACTION CODE a (NO ACTION)
GO BACK TO SORT

SKIP TO CHANNEL 1
CLEAR CURRENT LINE NUMBER
GO BACK

CLOSE PRINTER FILE
LOAD ACTION CODE 8 (NO RETURN)
STORE ACTION WORD

LINECT DC F'0',F'50' CURRENT AND MAX LINECOUNT
OUTAREA DC CL121 f

• OUTPUT AREA
FIRST DC C'22' CONSTANT TO COMP. WITH CTL FLD
PRINTER DTFPR DEVADDR=SYSLST,IOAREA1=OUTAREA,CONTROL=YES
IJDFCZZZ PRMOD CONTROL=YES
SWl DC X'OO'

END

Chapter 5. Modifying the Program 87

E17 Coding Instructions

Parameter List

1. Addr of block count

Procedure

Block count for last volume of last
input file

Your routine at E17 receives control only once. It must then process the
trailer label of the last volume of input, using the block count passed
as a parameter, and close the last input file.

E18 Coding Instructions

Parameter List

1. Type indicator

2. Zeros

3. Addr of action word Action word (1 word)

You must put a return code in the rightmost byte of the action word.
Valid codes are:

X'OO'
X'04'
X'OS'

Procedure

No reply
Reply provided
Do not return

Your E1S routine is entered twice. The first time, parameter 1 contains
C'PWO' (plus a padding byte). This means that passwords are requested.
The second time it contains C'EXL', which is a request for an exit list.

If you have no reply, return with a code of X'OO' in the action word.

Otherwise put the address of the password list or exit list (whichever
has been requested) in parameter 2, and return with .a code of x'04'.

Password List

The list must begin with a two-byte entry count, and continue with a
sixteen-byte entry for each password-protected sort input file:

2 bytes S bytes -
No. of entries File name
(in binary)

"

SS

S bytes

Password

f~rst entry

--------------t

I
t -,- - - - - - - - - - - -r-

further Tentries

Exit List

The exit list must be built according to the rules laid down in
DOS/VS .SUpervisor and I/O Macros or Using VSE/ySAM Commands and Macros
(or VSE/ySAM Documentation Subset). All routines pointed to by the list

must use standard VSAM linkage to return to VSAM. They must not use
Register 13, which is in use by VSAM; instead they must provide their
own save area.

For end-of-file processing do NOT use the EODAD exit, as the sort will
not then be able to detect end-of-file. Instead supply a LERAD exit and
test the FDBK code for X'04', which indicates EOF. Do not change the
code, as SM2 also uses it.

E31 Coding Instructions

Parameter list

1. Reserved

2. Addr of device list

3. Addr of previous volume unit

4. Addr of next volume unit

5. Addr of block count

6. Addr of SYSnumber table

Procedure

Device List

Logical unit no. of volume
just processed· (2 bytes)
(CCB format)

Logical unit no. of next
volume to process (2 bytes)
(CCB format)

Block count for trailer device
(1 word)

SYSnumber table

Your E31 routine will receive control at the beginning of phase 3 for
both file handling and checkpointing. If only checkpointing is
requested then the E31 exit is only entered once. If nonstandard label
files are specified in the LABEL option then the E31 exit will be
entered each time a nonstandard label input or output volume is
required.

As with El1, you use parameters 3 and 4 to determine what action is
needed. Either they will both contain all zeros, in which case this is
the first entry; or they will both contain addresses. The addresses
will be the same because there are no new files to be opened, only new
volumes.

On First Entry

On first entry, parameters 3 and 4 both contain zero.

Chapter 5. Modifying the Program 89

If you want to take a checkpoint, parameter 2 points to a checkpoint
device list. The device list begins with a two-byte count field which
contains the number of work file extents that the checkpoint device list
will contain. The count field is followed by one four-byte entry for
each sort work extent. The four-byte entries have the form:

r----~-------T----~--~~~~
I unit code I X'OOOO' I
I (2 bytes) I I L-__ ~ ________ ~ _______ ~.~~~

Two four-byte fields at the end of the device list give the sort start
address and the sort storage size. The checkpoint device list has the
form:

r-----~-T~--~--~--------~-----~~~--~~-~~-----~~----~-~--~-~-~-~~~-1
I count I unit I X'OOOO' I unit I X'OOOO' I 5M2 start I SM2 storage I
i field i code ; ; cede I I address I size ! L-______ ~ _____ ~ _________ ~ ______ L _________ ~ ____________ L __________ --__ ~

For more details of checkpointing device lists see DOS&XS Supervisor and
IIO Macros or the VSE/Advanced Functions ~ User's uide. i

If you are handling files, open all files with nonstandard labels (input
and/or output), and process their header labels. You will find their
SYSnumbers in the SYSnumber table pointed to by parameter 6: the first
byte gives the number (in binary) of the output file, and the following
nine bytes give the numbers of the input files. If you have fewer than
nine input files the superfluous bytes contain- zeros. See E11 coding
instructions for more details of the SYSnumber table.

On Subsequent Entries

If parameter 3 contains an address, process the trailer of the volume
pointed to, using the block count indicated in parameter 5. You will
not be given control to close the files; this must be done at E37.

If parameter 4 contains an address, open the volume pointed to, and
process its header.

90

.. ---~------------~~-~-~-~-----------------~~----~--~-~~~---~~~1
The table below shows the actions that must be taken by the I
routines at exits E3l and E37 when the input to a merge I
consists of tape files: I

SYS002, one volume, nonstandard labels
SYS003, standard labels
SYS004, two volumes, nonstandard labels

Output consists of one disk file:

I
I
I
I
I
I
I

SYS001, three volumes, nonstandaId labels (user supplied I
labels) • I

~-----------------~--------------------r-------~---------------~ I Routine given I SYSOOl I 002 I 004 I
I control, para- I I I I I I I
I meters passed I 1 I 2 I 3 I 1 I 1 I 2 I
.-----------------+-----~-----_r------r--~----r-------~-------~
I E31 (1st time) IOPEN I I I OPEN I OPEN I I
I 3=0, 4=0 I header I I Iheader Iheader I I
~-----------------+------+------r------r-------r-------r-------~ I E31 (2nd time) I IOPEN I I I I I
I 3 ->001 J Iheaderl I I I I
I 4 ->001 I I I I I I 1
~----... ------------+------+------+------+-------t-------.+-------~
I E3l (3rd time) I I I I I I OPEN I
I 3 ->004 I I I I Itrailerlheader I
I 4 ->004 I I I I I I I
~---------------+------+------+·--... -~-r-------t-------+-------~
I E3l (4th time) I I IOPEN I I I I
J 3 ->001 I I Iheaderl I I I
I 4 ->001 I I I I I I 1
~-------------- ... -+------+------t--~---r-------t-------+-------~
I E37 I I I I trailer I I trailer I
I I I I CLOSE I CLOSE I I CLOSE I
L-______ ----------~------~_----_~ ______ L _______ L _______ ~ _______ ~

Figure 21. Using E31 and E37 with a Merge

Chapter 5. Modifying the Program 91

Example of Coding at E31 and E37

The following example shows a routine which opens the output file,
writes the file label, and finally closes the file.

92

LABEXITS CSECT
PRINT NOGEN
USING *,15

START B E31
DC A (0)
DC A (0)
B E37
DC A (0)
DC A (0)

* DROP 15
USING ST~..RT ~ 11

* ***START OF ROUTINE FOR EXIT E31***

* E31

*

SAVE (14 , 12)
LR 11,,15
LA 6,SORTOUT
OPENR (6)
RETURN (14,12)

START OF ROUTINE FOR EXIT E37

* E37

* LAB

* LAB1

*

SAVE
LR
MVI
LA
CLOSER
RETURN

LA
CLI
BE
MVI
LBRET

CLI
BE
LA
LBRET

(14,12)
11,15
E37SW,X'FF'
6,SORTOUT
(6)
(14,12)

0,UHL1
FIRSTSW,X'FF'
LAB 1
FIRSTSW,X'FF'
2

E37SW,X'FF'
LAB 2
0,UHL2
1

REG 15 POINTS TO START OF EXIT
ENTRY POINT FOR EXIT E31
EXIT E32 NOT USED
EXIT E35 NOT USED
ENTRY POINT FOR EXIT E37
EXIT E38 NOT USED
EXIT E39 NOT USED

USE REG 11 AS BASE REGISTER

SAVE REGISTERS
SET UP BASE REGISTER
GET ADDRESS OF DTF
OPEN OUTPUT FILE" WRITE LABELS
RESTORE REGISTERS, BACK TO SORT

SAVE REGISTERS
SET UP BASE REGIS'!ER
SET E37 SWITCH FOR LABEL R'!·NE
GET ADDRESS OF DTF
CLOSE THE FILE

GET ADDRESS OF FIRST USER HEADER LAB
TEST IF FIRST TIME
NO, BRANCH
SET FIRST TIME SWI'!CH
LBRET 2 = MORE LABELS TO PROCESS

TEXT IF E37
YES, TIME FOR TRAILER LABEL
ADDRESS OF 2ND USER HEADER LABEL
LBRET 1 = LAST LABEL PROCESSED

LAB2 LA 0,UTL1 LOAD ADDRESS OF TRAILER LABEL

Um.1
Um.2
UTL1
*
E37SW
FIRSTSW
*
SORTOUT
*

LBRET
DC
DC
DC

DC
DC

DTFPH

END

1 WRITE TRAILER LABEL - (LAS'!· LABELl
CL80'UHL1EXAMPLE OF A USER HEADER LABEL'
CL80'UHL2ANOTHER EXAMPLE OF A USER HEADER LABEL'
CL80'UTL1THIS IS AN EXAMPLE OF A USER TRAILER LABEL'

X'OO'
X'OO'

USED IN LABEL RTNE 'IQ IDENTIFY E37
1ST OR SEQUENCE ENTRY

TYPEFLE=OUTPUT;LABADDR=LAB,DEVADDR=SYS001

E32 Coding Instructions

Parameter List

1. Addr of next record (zeros
when INPFIL EXIT specified)

2. Addr of input file number

3. Addr of action word

4. Addr of record length vector

5. Addr of record type

Next record to process

File no. in hex code (1 word)

Action word

11 12 13 let 15 (5 words)

Record type switch (1 byte)

The action word is only required when the INPFIL EXIT parameter is
specified. You must put the return code in the rightmost byte of the
action word. The valid codes are:

X'OS'
X'OC'
X'10'

No more records to come from a specified file
New record inserted
Terminate merge

Parameter 4 gives the address of a 20-byte area containing the record's
length parameters I, through lse

Parameter 5 gives the address of a byte containing the record type code.
The codes are X'SO' for fixed-length recozds and x'40' for
variable-length records.

Procedure Without INPFIL EXIT

When INPFIL EXIT is not specified only parameters 1, 4, and 5 are
passed. The merge reads the first record from the first input file and
then passes control to you, with the recozd's address in parameter 1.
You can accept the record; or you can substitute a new one of the same
length by changing parameter 1 to point to the new record. You then
return control to the merge. NO return codes are passed back. This
process is repeated until the input is exhausted.

ProcedurewithINPFIL EXIT

However, if you have specified INPFIL EXIT the procedure is different.
Then, when you first receive control, parameter 1 contains zeros and
parameter 2 contains a pointer to a word containing a hexadecimal code
in the rightmost byte which specifies from which input file the next
record should be obtained. The codes are:

X'OO' File 1 X'14' File 6
x'04' File 2 X' 1S' File 7
X'OS' File 3 X'1C' File S
X'OC' File 4 X, 20" File 9
X'10 ' File 5

You should then:

1 • Open all input files and do any necessary label processing.

2. Read the first block of records from the first file.

3. Put the address of the first recozd in parameter 1.

Chapter 5. Modifying the Program 93

4. Put X'OC' ('new record inserted') in the action word pointed to by
parameter 3.

5. Return control to the merge.

On each subsequent entry you pass a record to the merge in the same way,
from the file requested in parameter 2.

When you have no more input on the requested file; you close the file
(processing labels as necessary) and return with zeros in parameter 1
and X'OS' in the action word. SM2 will then request input from a
different file, until you have returned a code of 'XOS' for each of the
input files. If you need to terminate the merge before end of input
(abnormal termination) you return a code of X'10'.

An example of a routine for use at exi t E32 when the INPFIL EXIT' is
specified is shown below.

PH3RTN CSECT
PRINT NOGEN
USING lie, 15

START DC A (0)
B E32
DC A (0)
DC A (0)
DC A (0)
DC A (0)
DROP 15
USING START, 12

E32 SAVE (14,12)
LR 12,15
ST 13,SAVE13
LM 2,3,4 (1)
LR 4,1

lie

E31 NOT USED
ENTRY POINT FOR EXIT E32
E35 NOT USED
E37 NOT USED
E3S NOT USED
E39 NOT USED

SAVE REGISTERS
LOAD BASE REGISTER

LOAD PARAMETERS
SAVE PARAMETER POINTER

lie REGISTER 2 NOW POINTS TO FILE NUMBER INDICATOR
'lie REGISTER 3 NOW POINTS TO ACTION WORD
lie REGISTER 4 NOW POINTS TO PARAMETER LIST
lie

lie

FILENO

lie

ERROR
lie

CLI
BE
OPEN
MVI

CLI
BE
CLI
BE
IF NO
DUMP

GFI'MAST CLI
BE
GET
B

lie

GETWEEK CLI
BE
GET

lie

94

FIRST,X'FF'
FILENO
MASTER,WEEK
FIRST,'X'FF'

3(2),X'OO'
GETMAST

IS THIS THE FIRST TIME?
NO, BRANCH
YES, OPEN FILES
SET 'FILES OPEN' INDICATOR

FILE
YES,
FILE
YES,

1?
READ FROM MASTER FILE
2? 3 (2) ,X'04'

GETWEEK
BRANCH WAS TAKEN, THIS

READ FROM WEEKLY UPDATE
IS AN ERROR, FORCE DUMP

MASTOUT,X'FF'
ERROR
MASTER
INSERT

WEEKOUT,X'FF'
ERROR
WEEK

FILE ALREADY CLOSED?
YES, ERROR
ELSE, READ A RECORD
GO TO SEND IT TO MERGE

FILE ALREADY CLOSED?
YES, ERROR
ELSE GET RECORD

FILE

INSERT ST
MVC
B

5,0 (,4)
3 (1 , 3) ,ACCEPT
RETURN

* ENDMAST MVC 3(1,3) ,END
CLOSE MASTER
MVI MASTOUT,X'FF'
B RETURN

ENDWEEK MVC 3(1,3) ,END
CLOSE WEEK
MVI WEEKOUT,X'FF'

* RETURN L 13,SAVE13

STORE ADDRESS OF RECORD
SET ACTION WORD
RETURN TO MERGE

SET ACTION WORD
CLOSE MASTER FILE
SET FILE CLOSED INDICA~OR
RETURN TO MERGE
SET ACTION WORD
CLOSE WEEKLY UPDATE FILE
SET FILE CLOSED INDICA~OR

RESTORE REG 13
RETURN (14, 12) RESTORE REGISTERS AND RETURN TO MERGE

*
* ACCEPT

RETURN CODES FOR MERGE
DC X' OC"

END DC X'OS'

* MASTOUT DC
WEEKOUT DC
FIRST DC
SAVE13 DC
INBUFM DS
INBUFW DS

*

X'OO'
X'OO'
X'OO'
F'O'
100F
100F

INSERT RECORD (ACCEPT)
END OF FILE

MASTER CLOSED INDICATOR
WEEK CLOSED INDICATOR
FIRST TIME INDICATOR

INPUT BUFFER FOR MASTER
INPUT BUFFER FOR WEEK

MASTER DTFSD BLKSIZE=400,DEVADDR=SYS020,RECFORM=FIXBLK,
RECSIZE=SO"IOREG= (5) ,ERROPT=SKIP ,DEVICE=3340,
IOAREA1=INBUFM,EOFADDR=ENDMAST

WEEK DTFSD BLKSIZE=400,DEVADDR=SYS021,RECFORM=FIXBLK,
RECSIZE=SO,IOREG=(5) ,ERROPT=SKIP,DEVICE=3340,
IOAREA1=INBUFW,EOFADDR=ENDWEEK

END

E35 Coding Instructions

Parameter List

1. Addr of current record Current record

2. Addr of previous record Previous record now in
buffer

3. Addr of action word Action word

4. Addr of sequence check word Sequence check word

the output

5. Addr of record length vector 1\'1 12 13 Ie. Is (5 words)

6. Addr of record type Record type switch (1 byte)

Parameter 1 points to the record currently selected for output. When
output is exhaused it contains all zeros.

Parameter 2 points to the record most Iecently moved to the output
buffer. Until the first record has been moved out it contains zeros.

Chapter 5. Modifying the Program 95

Parameter 3 is for your return information to 5M2. You must put a
return code in the rightmost byte of the action word. Valid codes are:

X'OO'
x'Oq'
X'OS'
X'OC'
X'10'

Process current record normally
Delete current record
Do not return to this exit
Insert a record
Terminate sort/merge

Parameter q contains zeros; it is for use if you want to insert records
which are out of sequence.

Parameter 5 gives the address of a 20-byte area containing the record's
length parameters l~ through]~.

Parameter 6 gives the address of a byte containing the record type code.
Bit 0 is on and bit 1 is off for fixed length records and bit 1 is on
and bit 0 is off for variable-length records. Other bits may be used by
sort for flags.

Procedure

When your E35 routine first receives control, parameter 1 will normally
point to the first output record. Parameters 2 and q will contain
zeros.

a. If the current record is acceptable you return a code of X'OO'.

b. If you want to delete it you return a code of X'Oq'.

c. If you want to insert a record which you have yourself read in, you
check it against the current record (parameter 1). If it collates
ahead of the current you put its address in parameter 1 and return a
code of X'OC'. Next time, parameter 1 will have been restored to its
former value. You can insert a record which is out of sequence; if
you do so, you must inform 5M2 by putting a nonzero value in the
sequence check work pointed tc by parameter 4.

d. If you want to change the current record you move it to a work area,
change it, put its new address in parameter 1, and return a code of
X'OO'.

This process is repeated for every output record until you return a code
of X'OS' or X'10'.

If you have specified OUTFIL EXIT you return a code of X'Oq' every time,
until parameter 1 contains zeros: then output is exhausted and, after
closing your output file, you return a code of X'OS'. A code of X'10'
is also valid with OUTFIL EXIT.

96

Example of Coding at E35

The routine shown in the following example is self-relocating and prints
all sorted records on SYSLST using physical IOCS.

PH3RTN

EXITS

EXIT35

*

PRINT

EOF

RETURN

CHECK

CHA12

CSECT
PRINT NOGEN
USING *,15
DC A (0)
DC A (0)
B EXIT35
DC A (0)
DC A (0)
DC A (O)
STM 14,12,12 (13)
LR 4,1

SR
C
BC
L
MVC
LA
CLI
BNE
MVI
BAL
EXCP
WAIT
LA
BAL
L
MVI
B
L
MVI
LM
BR
TM
BCR
BR
MVI
EXCP
WAIT
MVI
BR

5,5
5,0 (,4)
8,EOF
6,0 (,4)
OUTAREA,O (6)
1,PRINTCCB
SW1,X'00'
PRINT
SW1,X'FF'
3,CHA12
(1)
(1)
6,CHA12
3,CHECK
6,8 (,4)
3(6} ,X'04'
RETURN
6,8 (,4)
3 (6) ,X'OS'
14,12,12(13)
14
4(1),X'01'
1,6
3
PRINTCCW,X'SB'
(1)
(1)

PRINTCCW,X'09'
3

REG 15 POINTS TO S~~RT OF EXIT
EXIT E31 NOT USED
EXIT E32 NOT USED
EXIT E35 ENTRY POIN~
EXIT E37 NOT USED
EXIT E38 NOT USED
EXIT E39 NOT USED
SAVE REGISTERS
REG 4 POINTS TO LIST OF ADDRESS

CONSTANTS PASSED BY SOR~
CLEAR REG 5
1ST ADDR CONSTANT ZERO?
YES, NO MORE RECORDS FROM MERGE
LOAD ADDR OF REC LEAVING MERGE
MOVE RECORD TO PRINTAREA
GET ADDR OF PRINTCCB
CHECK IF FIRST TIME THROUGH
NO, PRINT RECORD
SET FIRS~' TIME SWITCH
GO SKIP TO CHANNEL 1
PRINT A RECORD
WAIT FOR COMPLETION
GET ADDR OF CHANNEL 12 ROUTINE
CHECK IF CHANNEL 12 REACHED
LOAD ADDR OF ACTION WORD
INSERT RETURN CODE (DELETE)
GO TO RETURN TO SORT
LOAD ADDRESS OF ACTION wORD
SET RETURN CODE (DO NOT RETURN)
RESTORE REGISTERS
RETURN ~O SORT/MERGE
TEST FOR UNIT EXCEPTION
YES, GO TO CHANNEL 12 ROUTINE
NO, LINK BACK
MODIFY PRINTCCW ~O SKIP ~O CHl
SKIP TO CHANNEL 1
WAIT FOR COMPLETION
RESTORE OP CODE IN PRINTCCW
BRANCH BACK TO SET RETURN CODE

PRINTCCW CCW
PRINTCCB CCB
SWl DC
OUT AREA DC

X' 09' ,OUTAREA"X' 20' ,L' OUTAREA
SYSLST,PRINTCCW CCB
X'OO' FIRST TIME SWITCH
CL100' •

END

Chapter 5. Modifying the Program 97

E37 Coding Instructions

Parameter list

1. Addr of block count list Block count list (4-byte entries)

Output file block count

Input file 1 block count
only for
a merge

Input file n block count

Your routine at E37 receives control only once. It must:

• Process the trailer label of the last volume of output, using the
first entry in the block count list passed as a parameter, and close
the output file.

• For a merge, carry out the same processing for the last volume of
each input file.

See the diagram and coding example supplied with the E31 coding
instructions.

E38 Coding Instructions

Parameter List

1. Type indicator

2. Zeros

3. Addr of action word Action 'Word

The only valid return codes are:

X'OO'
X'04'
X'OS'

Procedure

No re{:ly
Reply provided
Do not return

Your E3S routine is entered twice. The first time, parameter 1 contains
C'PWO' (plus a padding byte). This means that passwords are requested.
The second time it contains .C'EXL', which is a request for an exit list.

If you have no reply, return with a code of X'OO' in the action word.

Otherwise put the address of the password list or exit list (whichever
has been requested) in parameter 2, and return 'With a code of X'04'.

99

Password List

The list must begin with a 2-byte entry count, and continue with a
sixteen byte entry for each password-protected merge input file:

2 b ~tes S 'pytes S b t Y es

NO. of entries File Name Password
(in binary)

First entry

Exit List

The exit list must be built according to the rules laid down in DOS/yS
Supervisor andI/O Macros or Using VSEjVSAM Commands and Macros or
VSE/VSAM Documentation Subset. All(routines pointed to by the list must
use standard VSAM linkage to return to VSAM. They must not use Register
13, which is in use by VSAM: instead they must provide their own save
area.

For end-of~file processing do NOT use the EODAD exit, as the sort will
not then be able to detect end-of~file. Instead supply a LERAD exit and
test the FDBK code for X'04', which indicates EOF. Do not change the
code, as the sort program also uses it.

Note: The same exit list must be valid for all SORTIN files.

E39 Coding Instructions

Parameter List

1. Type indicator

2. Zeros

3. Addr of action word Action word

The valid return codes that can be entered in the rightmost byte of the
action word are:

X'OO'
X'04'
X'OS'

Procedure

No reply
Reply provided
Do net return

Your E39 routine is entered twice. The first time, parameter 1 contains
C'PWD' (plus a padding byte). This means that passwords are requested.
The second time it contains C'EXL', which is a request for an exit list.

If you have ne reply, return with a code of X'OO' in the action word.

Otherwise put the address of the password list or exit list (whichever
has been requeste~ in parameter 2, and return with a code of X'04'.

Chapter 5. Modifying the Program 99

Password List

The list is 18 bytes long: an entry count (2 bytes), followed by the
name of the output file and its passwozn.

b 2 ..-2Ytes 8 b ~tes 8 b ~tes

No. of entries Output file name Password
(in binary)

Exit List

The exit list must be built according to the rules laid down in DOS/VS
Supervisor and I/O Macros or Using VSE/ySAM Commands and Macros or
VSE/ySAM Documentation Subset. All routines pointed to by the list must
use standard VSAM linkage to return to VSAM. They must not use Register
13, which is in use by VSAM; instead they must provide their own save
area.

100

Chapter 6. Factors of Importance for Performance

This chapter discusses performance under four main headings:

• The effect of the environment

• Choices of program function than can affect performance positively

• Those which can affect performance negatively

• Use of the DIAG option.

EHect of the Environment

The major environmental considerations are those of storage, and the
characteristics of input and output.

SM2 MODULES IN THE SVA

If SM2 was installed in the system core image library most of its phases
can be loaded in the SVA, as described in the
DOS/yS SortjMerge Version 2 Installation Reference Manual.

SM2 should be executed from the SVA to get maximum storage utilization
and performance.

MAIN STORAGE (REAL AND VIRTUAL)

In general the more main storage available to the program the better its
performance, but overcommitment must be avoided. Overcommitment will
occur if virtual storage allocated to SM2 is much greater than the real
storage available, resulting in heavy paging and/or deactivation taking
place.

In common with other sort/merge progzams, SM2 generally uses all the
main storage (real or virtual) available to it.

Figure 23 shows how various parameters affect SM2's use of main storage.

In System/370 Mode

Performance is improved if the DOSjVS WOSjVSE) system is generated with
the PFIX=YES and ECPREAL=YES options, and SM2 is run in a virtual
partition with a sufficiently large associated real partition (defined
by the ALLOCR statemen~. SM2 can then utilize the page fixing and
private CCW translation features to perform its I/O in real mode. SM2
will not page-fix merge applications.

Chapter 6. Factors of Importance for Performance 101

An adequate size for the associated real partition allocated through the
ALLOCR Jet statement can be determined as follows:

• Fixed-length record sorts: about 50% of available main storage

• Variable-length record sorts: about 100% of available main storage

In ECPS :VSE Mode

Performance is improved if SM2 is allowed to fix the buffer pages. This
is controlled by the ALLOCR JCL statement, which is determined in the
same way as for System/370 mode (described above).

Storage Use

The amount of main storage actually used by 5M2 (whether virtual or
real) is the smaller of:

SIZE - from the EXEC statement or SIZE statement
and
STORAGE - from the SM2 OPTION statement, or the installed default

The use of the STORAGE parameter is a good way to avoid overcommitment.
If neither STORAGE nor SIZE is specified SM2 has access to the entire
partition, and will use the amounts shown in Figure 22.

r------~---y----------~--------------~---_r---~-~~--~~-----~~~~-~----~
I SYSTEM I VIRTUAL EXECUTION I REAL EXECUTION I
r----------f------------------------------~-----·--------------------~ I DOS/VS Rell I I
133 and 34 I Max (64K; ALLOCR + 12K)1,2 I ALLOCR I
r-~----~--t-------~---------·----~-~-----~~~-----~---~~---~-~----~~~
IDOS/VSE I Up to partition GETVIS area I ALLOCR, or up to parti- I
I I I tion GE'I'VIS area if any I
~---------.L------------------------------J.-------------____ -----___ ~
I 'If execution is not possible in this environment SM2 will use as I
I much as necessary (Up to the full partition) to enable it to I
I continue processing. I
I 2If no work files have been allocated for a sort (WORK = 0) SM2 will I
I use all space available to it. I L-__________________ --------__ ~

Figure 22. Default Storage Value Used by 5M2

If both DIAG and PRINT=ALL have been specified, SM2 will print
diagnostic messages which will tell you whether buffer pages have been
fixed, whether real I/O has been used, and how storage has been used.

WORK STORAGE

Best performance can be expected when one work file is allocated on a
device which is separate from the input and output devices. Allocation
of more than one device for work storage does not improve performance.

With a small input file it may be possible to sort the file in the
available virtual storage, without the need f.or any work files. Then
WORK=O can be specified. For more details see Appendix B.

102

r---~-------~-----~--~------~~-~-----~--~----~--~------~-~-~----1

I
I
I
I
I
I
I
I
I

I
I
I
I

STORAGE SM2 parameter
I (limits storage available to
I SM2)
V ________ --__________ ~-----------

SIZE JCL parameter, sta tement, or command
available to SM2) I (limits storage

V ________________ ----__ --__ ----------__ --

ALLOCR JCL statement or command
I (defines end of real partition, or page
I fixable storage)
V ______________ ~----~_--}~----------------------

I
I
I
I
I
I

ALLOC JCL statement or command I
I (defines end of virtual partition for virtual I
I execution) I
V I

I I L ____________________________ ~----~---~------~---.-~ _______ ~~ ___ ~

Figure 23. SM2 Storage Allocation Map

Data transfer rate can also be important. In general, the faster the
data transfer rate of the work device used, the faster SM2 will run.

INPUT AND OUTPUT FILES

With tape and CKD devices performance is generally better when the input
and output data is blocked. Large blocks give better performance than
small ones.

With FBA devices, a large CI value gives better performance than a small
one.

SPECIFICATION OF RECORD LENGTH

When sorting variable-length records you can aid performance by careful
specification of 15 in the RECORD statement.

The 15 parameter gives the record length that occurs most frequently in
the input file (modal length). If you do not specify a value for 15 it
is assumed to be equal to the average of the maximum and minimum (1 2 and
1~) record lengths in the input file. For optimum performance, both l~
and 15 should be specified. Specifying an inaccurate modal length may
cause reduced performance.

Chapter 6. Factors of Importance for Performance 103

Functions that May AHect Performance Positively

INCLUDE/OMIT

You can use the INCLUDE/OMIT statement to select for sorting or merging
only those records which are needed in the output file. If only a
subset of the file is selected, CPU time and data transfer time will be
reduced.

SUM

You can use the SUM statement to cause records to be summarized:
whenever two records with equal control fields are found, the contents
of fields defined in the SUM statement are added, the result is placed
in one record, and the other is deleted; any resulting reduction in the
number of records to be processed by SM2 will save CPU time and data
transfer time.

OUTREC

You can use the OUTREC statement to reduce the size of sorted or merged
records, removing fields not needed in the output records. This will
usually save data transfer time.

NOCHAIN

If the input file is on tape, and is declared as fixed format, and
contains many blocks which are shorter than the specified maximum block
size, you will be getting the overhead of chaining without its benefits.
This is because fixed format tape input command chains cannot read past
a short input block. In this case (and only in this case) specify
NOCHAIN to prevent performance deterioxation. However, if possible it
is better to alter the BLQCR5IZE parameter to be accurate and try to
avoid short blocks in the input file.

Functions that May Affect Performance Negatively

CHECRPOINT/RE5TART

If SM2 is invoked from a user program, or if user-written routines are
in use, the entire virtual partition in which SM2 is running is
checkpointed. Otherwise only the main storage being used by sort/merge
is checkpointed. Checkpointing the whole partition may take longer than
checkpointing the main storage used by sort/merge; 5M2 performance may
therefore suffer.

104

VERIFY, BYPASS, ERASE, DIAG, EQUALS, DUMP, AND WORK=O.

The VERIFY option will affect performance negatively, since it involves
an extra read operation of the written output. It also precludes the
use of command chaining when writing output files.

BYPASS precludes the use of command chaining when reading input files.
Command chaining usually provides a good performance improvement.

ERASE involves additional writes on the work files.

DIAG produces additional messages but is useful when tuning SM2.

The EQUALS option causes an additional field of four bytes to be added
to each record, which increases the time needed for comparison of
records and for data transfer.

When the DUMP option is in force SM2 maintains a trace table, which
costs a little CPU time.

SM2 does not use command chaining on input and output when no work files
are provided (WORK=O).

EFFECT OF USER ROUTINES

When user routines are included in a sort or merge application, the time
required to run the job is usually increased.

The execution time required by most user routines is generally small,
but the routines at exits E15, E32, and E35 are entered for each record
of the file(s). For large input files, the total execution of these
routines can be relatively large.

User routines also occupy main storage that could otherwise be used by
SM2 to improve its performance. Depriving the program of this main
storage is particularly detrimental to performance when the program is
running in a small partition, or when the input file size is very large.

Using the DIAG Option

The DIAG option can be used for tuning purposes, to investigate how well
SM2 is performing in its current environment and to discover whether and
how improvements could be made.

If you specify DIAG in the OPTION statement you receive extra messages
concerning SM2's storage use, optimization parameters, data handling,
and time required, as shown in the tuning table below.

The table also shows the interpretation which can be placed on the
various items of information, and how they can be used to improve
performance.

Chapter 6. Factors of Importance for Performance 105

TUNING TABLE

Message Concerning:

MAIN STORAGE USE

Whether SM2 is exe­
cuted from the SVA

Real storage avail­
able for page fixing

Virtual storage used
by SM2

Buffer allocation in
phases 1-3

Modal record length

WORK SPACE USE

Sort capacity

Work space used

106

Interpretation:

Execution from the SVA gives better storage
utilization and performance.

If too little real storage is available you
will receive one or more messages saying that
input, work, or output buffer pages have not
been fixed. To improve performance, increase
real storage.

Determined by the partition allocation, the
EXEC SIZE parameter, or SM2' s S'IORAGE para­
meter.

Performance improves when sort/,merge uses
double buffering on its files. For fixed­
length records the optimum number of data
buffers in the respective phases are Ph1; two
input and two output; Ph2; three buffers which
are rotated; Ph3, two input and two output.
For variable-length records sort optimum is two
input and two output in Ph1 while in the other
phases sort uses M+1 on input and two output
buffers (where M is merge order for the phase) •
If fewer have been allocated, increase virtual
and preferably also real storage size.

It is vi tally important for performance when
sorting variable-length records that modal
record length (Is on the RECORD statement
LENGTH parameter) is specified, and is
reasonably accurate.

You can use information on work space
utilization to make sure you are not being
over-generous or unduly mean with work file
space. If you have an application which will
be run regularly, and where the amount of data
is likely to grow, you will probably want to
allow a generous amount of space. If however
you have a shortage of direct-access space you
may want to trim the allocation to the minimum.

You can compare SM2's estimate of how many
records it could handle with the number of
records actually sorted.

You can compare the amount of space actually
used with the amount allocated.

Message Concerning:

OPTIMIZATION
PARAMETERS

Block size for index
and work buffers

Fixable storage
Real I/O
Buffer area fixed

Merge order (M) in
phases 2 and 3

Internal record
length

RSA bin size

DATA HANDLING

Number of data and
index blocks handled
by phases 1-3

Number of physical
and logical strings
handled by the par­
titioning part of
phase 2

TIME REQUIRED

CPU and elapsed time
for each of phases
1-3

Interpretation:

with CKD devices work block size can be up
to full track length. If it is less, perfor­
mance will probably be improved if you increase
real storage size. An increase in virtual
storage size wil~ also usually give an
improvement as long as the relationship between
real and virtual does not become excessive.

SM2 should be given enough real storage
to be able to page fix the buffer areas
at the beginning of each phase. This avoids
the need to page fix and translate channel
program add re sse s f or each EXCP. Even in
ECPS;VSE, where there is no channel program
translation (no EXCPREAL option), the CPU time
saving is considerable.

The higher the merge order, the greater SM2's
efficiency. If it is less than (sa~ 8, per­
formance should be improved if you increase it
by increasing virtual storage size.

If internal record length is very large (say,
close to track size) you are approaching the
limit that this application can handle.
Internal record length can sometimes be reduced
by respecifying control fields or other fields,
as described elsewhere in this manual.

with variable-length records the size of the
root bin is affected by modal record length
(RECORD statement LENG-r-H 1 5 parameter) •

Correct specification of 1 5 can be critical for
performance.

Increased storage allocation can lead to
reduced data handling.

The amount of data handling in phase 2 can
give an idea of how well SM2 is performing,
as can the number of physical strings
handled in partitioning.

If, in partitioning, the number of logical
strings is lower than the number of
physical strings, your input file is not
random. The amount of difference gives an
indication of the degree of non-randomness.

Enables you to study the effect of your
tuning measures, if you have job accounting
in your supervisor.

Chapter 6. Factors of Importance for Performance 107

Appendix A. Sample of Job Streams! with Statement
Format Rules

Statement Format

This appendix first gives the full format rules for program control
statements, and then supplies several examples of complete job streams
for executing a sort or a merge.

An example of contrel statement format is given in Figure 24.

Column 1 must be blank

unless a label is present

!
(Label) Operation Operand (Comments)

Figure 24. Control Statement Format Example

72 73 80

(Sequence or

Identification)

(Continuation column)

The control statements are free-form. The operation definer,
operand(s), and comments may appear anywhere in a statement, as long as
they appear in the proper order, and axe separated by one or more blank
characters. Column 1 of each control statement must be blank, unless
the first field is a label, in which case it must begin in column 1.

Label Field

If present, the label must a~pear first on the card. It must begin in
column 1, and conform to Assembler label format rules.

Operation Field

This field must not extend beyond column 70 of the first card. It
contains a word (SORT, MERGE, RECORD, MODS, etc.) that identifies the
statement type to the program. It must not begin in column 1 and it
must be separated by at least one blank from a label field.

Operand Field

The operand field is made up of one or more operands separated by
commas. This field must follow the operation field, and be separated
from it by at least one blank. If the statement occupies more than one
card, this field must begin en the first card.

108

Each operand has an operand definer, or keyword ~ group of characters
that identifies the operand type to the sort/merge program). A value or
values may be associated with a keyword. The three possible operand
formats are:

• keyword (operand 3)

• keyword=value (operand 2)

• keyword=(value"value2··.,valuen) (operand 1)

When an operand of the type keyword=(valuet,value2 ••• ,valuen) is used,
values may be omitted if they are equal to those assumed by the program.
The following rules apply to omitting values from such an operand:

• Values can be dropped from right to left. Thus, if all values after
value2 are equal to those assumed by the program, the operand may be
written: keyword=(valuet,value2).

• If values are dropped from the middle, commas must be used to
signify their omission. Thus, if value is equal to the value
assumed by the program, the operand may be written:
keyword=(valueft"value3) •

• If only the first value of a serie sis needed, the parentheses are
optional. An operand of this type may be written as either
keyword=value or keyword=(value).

Comments Field
(

This field may contain any information you desire. It is not required,
but if it is present, it must be separated from the operand field by at
least one blank.

A comments field may appear on the first statement or on any
continuation statement as long as there is a blank between the comma (,)
of the operand to be continued and the desired comment. This allows the
following layouts:

SORT FIELDS= (.,.,.) ,
WORK = 1 ,
FILES=2

Continuation Column (72)
(

SORT KEYS
NO. OF WORK AREAS
NO. OF INP FILES

Any character other than a blank in 'this column indicates that the
present statement is continued on the next card.

Columns 73-80

This field may be used for any purpose you desire.

CONTINUATION CARDS

A continuation card is treated as a logical extension of the preceding
card. Either an operand or a comments field may begin on one card and
continue on the next. You can indicate that a statement continues on
the next card in two ways:

Appendix A. Example of SortjMerge Job Streams 109

1. By placing any nonblank character in column 72. This method must
be used when comments fields are to be continued.

2. By a comma followed by at least one blank ~efore column 72). When
you do this, SM2 adds an asterisk (*) in column 72--unless the
statement is INCLUDE or OMIT. This method cannot be used to
indicate continuation of comments fields.

When preparing continuation cards the following rules apply:

• The continuation must begin in one of columns 2-16.

• The continuation column (72) and columns 73-80 of continuation card
fulfill the same purpose as they do on the first card of a control
statement.

• If an operand is broken at column 71, column 72 must contain a
nonblank character. The continuation ~ then begin in column 16.

SUMMARY OF RESTRICTIONS

The following rules apply to control statement preparation:

• Unless a label is present, column 1 of each control statement must
be blank.

• Labels must begin in column 1.

• The whole operation definer must be contained on the first card of a
control statement and it must be separated by at least one blank
from a label field.

• The first operand must begin on the first card of a control
statement. The last operand in a statement must be followed by at
least one blank.

• Each type of program control statement may appear only once for each
execution of the sort/merge progr.am.

The following restrictions do NOT apply to a self-defining term enclosed
in quotation marks:

• Embedded blanks are not allowed in an operand Anything following a
blank is considered part of the comments field.

• Values may contain no more than eight alphameric characters.

• Commas, equal signs, parentheses, and blanks can be used only as
delimiters. They must net be used in values.

110

CONTROL STATEMENT NOTATION

In this publication, the descriptions of sort/merge program control
statements use the following notation:

• Uppercase characters designate keywords or operators which should be
written exactly as shown.

• The comma ',', left and right parentheses I 0 " and the equal sign
'=' should be written exactly as shown.

• Braces, brackets, ellipses, lowercase characters, and subscripts are
used to define control statements; they should not be written in a
statement. They are used as follows:

Braces I {}' designate alternatives, only one of which should be
selected.

Brackets '(]' designate optional parameters which may be
omitted. Only one item from each bracket may be used if there
is a choice.

Ellipses ••• indicate that the preceding variable (or group of
variables) is the first in a series.

Subscripts define the sequence of an item in a series.

Lowercase names and letters represent variables for which
specific information must be substituted.

• An underlined parameter indicates the standard default setting
supplied with the program.. Note, however, that some defaults can be
changed.

Examples

This appendix supplies the following complete examples:

1. Merge two tape and two disk files to a tape output file.

2. Sort a tape file using four disk work files.

3. Sort a tape file using two disk work files on four extents.

4. Sort a disk file onto tape, using five single-extent disk work
files, and exits E31 and E37 for label handling.

5. Sort a VSAM file, with output in the form of disk addresses only,
using a disk work file on three extents.

6. Sort parts of a tape file (INCLUDE specified), and reformat the
output records (OUTREC) on a tape file, using two disk work files
of two extents each.

7. Sort a tape file, summar1z1ng equal records, and collating national
characters at the end of the alphabet. One disk work file of 4
extents.

Appendix A. Example of Sort/Merge Job Streams 111

This page intentionally left blank

112

r----------------------~--~----~-~---~------~----~-~~~~-~-------~-----~1 I 1. Merge four files (tape + disk); tape output I
~~---~------~-----~----.-~-~-----~--~--~~--~-~~~--~~---~-~---~--~-~-j

1 II JOB EXAMPLE1
2 /1 ASSGN SYSOO 1 ,X' 282"
3 II ASSGN SYS002,X'284'
4 II ASSGN SYS003,X'191'
5 II ASSGN SYS004,X'283'
6 /1 ASSGN SYS005,X'192'
7 II DLBL SORTIN2

MERGE OUTPUT
MERGE INPUT
MERGE INPUT
MERGE INPUT
MERGE INPUT

8 II EXTENT SYS003,191191,1,0,20,70
9 II DLBL SORTIN4

10 II EXTENT SYS005,192192,1,0,20,70
11 II EXEC SORT,SIZE=64K
12 OPTION LABEL=(U,U,S,U,S)
13 MERGE FIELDS=(21,4,ZD,D,9,8,PD,A,30,4,BI,A,40,4,CH,D,35,4,

f 14 CH,A,70,4,FL~A,90,14,CH,D,79,5,CH,A,86,2,BI,A,5,
I 15 4,PD,D,25,3,CH,D,130,4,BI,A) ,FILES=4
I 16 RECORD TYPE=V,LENGTH=(154,,154)
I 17 INPFIL BLKSIZE=1544
I 18 OUTFIL BLKSIZE=1544
I 19 1*
I 20 Ii L _____ ~ ____________ ~_~ ___ ~ ______ ~ _____ ~~ __ ~ ____ ~ ___ ~~ _____ ~-~~ _______ ~_

2 Assigns the output unit, SYS001, to the tape unit at address 282.

3-6 Assigns tape units SYS002 and SYS004 and disk units SYS003 and
SYS005 as input units.

7-10 Assigns two extents on the two disk input volumes. A total of 140
tracks allocated.

11 Initiates the program and specifies the SIZE parameter to
restrict the amount of virtual st9rage available to SM2.

12 Specifies that the output tape SYS001 and input tape units SYS002
and SYS004 are unlabeled. Input disk units SYS003 and SYS005 use
standard labels.

13-15 Specifies that a merge based on 12 control fields is to be
executed. There are four input files to be merged.

16 Specifies that variable-length records are to be merged; the
maximum length of both input and output records is 154 bytes.

17-18 Specify that input and output block size is 1544 bytes.

Appendix A. Example of Sort/Merge Job Streams 113

r------~------~~--~--~~~-~------~---~~~---~--~---~--~--~--~~~----~~--~-1
I 2. Sort: tape input and output I
r---~----~ 1 II JOB EXAMPLE2

2 II ASSGN SYS001,X'283'
3 /1 ASSGN SYS002,X' 282"
4 /1 ASSGN SYS003,X'162'
5 II ASSGN SYS004,X'162'
6 II ASSGN SYS005,X'163'
7 II ASSGN SYS006,X'163'
8 II TLBL SORTOUT
9 II DLBL SORTWK1,,0

SORT OUTPUT
SORT INPUT
SORT WORK 1
SORT WORK 2
SORT WORK 3
SORT WORK 4

10 II EXTENT SYS003,,1,0,760,38
11 II DLBL SORTWK2,,0
12 II EXTENT SYS004,,1,O,380,38
13 II DLBL SORTWK3,,0
14 II EXTENT SYS005,,1,0,380,38
15 II DLBL SORTWK4,,0
16 II EXTENT SYS006,,1,O,760,38
17 II EXEC SORT,SIZE=32K
18 OPTION PRINT=ALL,LABEL=(N,U) ,ROUTE=LST
19 SORT FIELDS=(5,4,CH,D,20,12,BI,A,50,3,CH,A),
20 WORK=4,FILES=1
21 RECORD TYPE=V,LENGTH=(158",54,100)
22 INPFIL BLKSIZE=1544,CLOSE=RWD
23 OUTFIL BLKSIZE=1544,CLOSE=RWD
24 MODS PH3=(SAEXIT,L2000,E31,E37)
25 1*
26 If,

2-7 Assign I/O devices to be used as output, input and work units.
The output and input units, SYS001 and SYS002 respectively, are
assigned to tape units at addresses 283 and 282. Four work
units, SYS003 through SYS006, ate assigned to disk.

8 Allocate a tape file for output.

9-16 Allocate four extents on the two disk work volumes; 152 tracks
are allocated in all.

17 Specifies that the program is to have 32K bytes of virtual
storage available for its use.

18 Indicates that the program is to print all messages. The input
is unlabeled and the output file has standard labels with
additional user labels that will be processed by the user.

19-20 Specifies that a sort based on three control fields will be
executed. There are four work areas available; and the input
file is contained on one file.

21 Specifies that variable-length records are to be sorted. The
maximum input record length is 158 bytes, as indicated by the 1G
value of the LENGTH operand. By default, the values for 12 and
13 are the same as 1~. The l~ value indicates that the minimum
record length is 54, and the most common ,~oda1) record length is
100 bytes, as indicated by the ls parameter.

22 Specifies that the input block size is 1544 bytes, and the
program is to rewind the input volume at end-of-fi1e.

23 Specifies that the output block size is 1544 bytes, and the
program is to rewind the output volumes at end-of-job.

114

24 Specifies that the sort program is to load the user routine
SAEXIT for execution during phase 3. These routines have a
length of 2000 bytes and are relocatable. The 2000 bytes are to
be included within the storage size that the sort is to operate
in. The user exits to be activated during phase 3 are E31 and
E37 which are used for label processing of the output file.

r------------~---------------~-----~--~~------~-----~------------~-~---~ I 3. Sort: tape input and output I
~-----------------~-----~--~-----------~---~----~--~---~--------~~--~~4
I 1 II JOB EXAMPLE 3
I 2 II ASSGN SYS001,X'284'
I 3 II ASSGN SYS002,X'282'
I 4 II ASSGN SYS003,X'191'
I 5 II ASSGN SYS004,X'192'
I 6 II DLBL SORTWK1,,1,DA

SORT OUTPUT
SORT INPUT
SORT WORK
SORT WORK

I 7 II EXTENT SYS003,191191,1,O,760,38
I 8 II EXTENT SYS003,191191,1,1,380,38
I 9 II EXTENT SYS004,192192,1,2,380,38
I 10 II EXTENT SYS004,192192,1,3,760,38
I 11 II EXEC SORT,SIZE=32K
I 12 OPTION PRINT=ALL,LABEL= (U ,U)
I 13 SORT FIELDS= (5,4 ,CH ,D,,20 , 12 ,BI ,A, 50, 3,CH ,A) ,
I 14 Fn.ES=l
I 15 RECORD TYPE=V,LENGTH=(158",54,100)
I 16 INPFILBLKSIZE=1544,CLOSE=RWD
I 17 OUTFIL BLKSIZE=1544,CLOSE=RWD
I 18 1*
I 19 IS
L-__________ .-___ ~ ______ - ___ ---.... --~ ... -~4IP'----- -.-----.... ~-... _~ __ ..,...--.... __ ~ __ ~ ..
This example is the same as Example 2, but illustrates the use of a
multiextent work file.

6 One DLBL statement is provided for the work file. Code DA is
specified, indicating that there is one multiextent work file,
and a retention period of one day is requested.

7~10 Four EXTENT statements describe the four work extents.

11 32K bytes of virtual storage are available to the program.

12 The SORTWK parameter on the OPTION statement is not specified.
The symbolic unit name SYS003 is chosen by default for the first
extent. The symbolic unit names for the other extents are chosen
according to the rules explained in the topic 'Work File
Statements' in Chapter 3.

13 The WORK parameter of the SORT statement need not be specified,
as the default (WORK=DA) applies.

Appendix A. Example of SortjMerge Job Streams 115

r-----------------~-~~-------~~~~~~~~----~---~~------~-~-----~-~~---~~-1
I 4. Sort: input on disk, tape output I
~---------------------------~--~ 1 II JOB EXAMPLE 4

2 II ASSGN SYS001,X'284'
3 II ASSGN SYS002,X'190'
4 II ASSGN SYS003,X'191'
5 II ASSGN SYS004 ,X' 192"
6 II ASSGN SYS005,X'192'
7 II ASSGN SYS006,X'191'
8 II ASSGN SYS007,X'191'
9 II TLBL SORTOUT

10 II DLBL SORTIN1

SORT OUTPUT
SORT INPUT
SORT WORK 1
SORT WORK 2
SORT WORK 3
SORT WORK 4
SORT WORK 5

11 II EXTENT SYS002,190190",1900,500
12 II DLBL SORTWK1
13 II EXTENT SYS003,191191",3800,10
14 II DLBL SORTWK2
15 II EXTENT SYS004,192192",3838,12
16 II DLBL SORTWK3
17 II EXTENT SYS005,192192",5700,700
18 II DLBL SORTWK4
19 II EXTENT SYS006,191191",380,99
20 II DLBL SORTWK5
21 II EXTENT SYS007,191191",760,99
22 II EXEC SORT
23 OPTION PRINT=ALL,LABEL=~' ,ADDROUT,S~ORAGE=64K
24 SORT FORMAT=FL,FIELDS= (86,19,A, 106, 8,0,415, 08,D, 391 ,33,A) ,
25 WORK=5
26 RECORD LENGTH=(1641",547,900) ,TYPE=V
27 OUTFIL OPEN=NORWD,CLOSE=RWD,BLKSIZE=80
28 MODS PH3= (PHASE3A,L19000,E31 ,E37)
29 1*
30 If,

l ________________________ ~ __ ~~_~ _____ ~-~--~---------~-__ ~-----~--_~ ___ _

2-8 Assign 1/0 devices to be used as sort output, input, and work
units. The output unit, SYS001, is assigned to a tape unit at
address 284. The input unit, SYS002, is assigned to a disk unit
at address 190. The work units, SYS003 through SYS007, are
assigned to disk units at addresses 191 and 192.

9 Specifies the tape label information for the output file.

10-21 Allocate six extents: one extent containing 500 tracks for sort
input, and five extents containing a total of 920 tracks on three
volumes for sort work storage.

23 Specifies that the sort program is to print all messages. The
output volume will have nonstandard labels, the input volumes
will use standard labels. The sort program is to operate within
65,536 bytes of virtual storage; the user routines at PHASE3A are
to be included within this operating space. The ADDROUT option
has been specified, so each output record is to consist of a
10-byte disk address.

24-25 Specify that a sort based on four control fields, all containing
floating point data, will be executed.

26 Specifies that variable-length records are to be sorted. The
maximum input record length is 1641 bytes. The minimum input
record length is 547 bytes, and the most frequent ~odal) input
record length is 900 bytes. Output record length is 10 bytes;
this parameter could be omitted as it is the default when ADDROUT
is specified with non-VSAM input (see line 28).

116

27 Specifies that the output blocksize is 80 bytes. SM2 is not to
rewind the output volume before opening the volume; it will
rewind the output volume at end-of-job.

As there is no INPFIL statement, the input blocksize is 1645
bytes by default.

28 Specifies that the sort program is to load the user routines at
PHASE3A for execution during phase 3. These routines have a
length of 19,000 bytes and are relocatable. The 19,000 bytes are
to be included within the sto~ge size that the sort is to
operate in. The user exits to be activated during phase 3 are
E31 and E37. They are needed because the output file will have
nonstandard labels (see statement 23).

Appendix A. Example of SortjMerge Job Streams 117

r----~~~--------~-~~---~---~---------~---~--~~----~---~~--~~·~-~~-~-·--1
I 5. Sort: VSAM input and output, ADDROUT specified. I
r--~ I 1 II JOB EXAMPLE 5
I 2 II ASSGN SYS001,X' 160' SORT OUTPUT
I 3 II ASSGN SYS003,X'163' SORT WORK
I 4 II ASSGN SYS006,X'160' SORT INPUT

5 II DLBL INPUT,'NAME.DEFINED.BY.AMS·"VSAM
6 II EXTENT SYS006,DISK01
7 II DLBL SORTWK1,,0
8 II EXTENT SYS003",,150,6
9 II DLBL SORTOUT,'ALSO.DEFINED.BY.AMS',O,VSAM

10 II EXTENT SYS001,DISK01
11 II EXEC SORT,SIZE=32K
12 OPTION ROUTE=LST,DUMP,ADDROUT,FILNM=(,INPUT)
13 SORT FIELDS=(1,56,BI,A) ,WORK=1
14 RECORD TYPE=F,LENGTB=(80,,5)
15 INPFIL VSAM
16 OUTFIL ESDS
17 1*
18 I'

2-4 Assigns IIO devices for input, output, and work files. All files
are on disk devices.

5-6 Specifies a VSAM file as input. Extent card not needed under
DOS/VSE Release 2.

7-8 Specifies a work file on a disk: only 6 tracks are required.

9-10 Specifies a VSAM file as output. The file must have been created
previously. Extent card not needed under DOSjVSE Release 2.

11 Specifies the SIZE parameter to restrict the amount of virtual
storage available to sort/merge. There must be sufficient
virtual storage left in the partition for VSAM use.

12 Specifies that messages are to be routed to SYSLST, that a dump
is always to be taken in case of a critical message, that the
name used for the input file is not 'SORTIN1', but 'INPUT', and
that the output records are to consist of VSAM disk addresses
only.

13 Specifies a sort based on one control field, 56 bytes long: there
is one work file available.

14 Specifies that fixed-length records are to be sorted. The input
record length is 80 bytes: in the output the records are only 5
bytes long (disk address) •

15 Specifies that the input file is a VSAM file.

16 Specifies that the output file is an entry-sequenced VSAM file.

118

r------------~--~~~--~-~~-~--~------~----~----~~---~~-~-----~~~-----~--1
I 6. Sort: Tape input and output, INCLUDE and OUTREC specified I
r----------------------------------~---------~-------------------------~ 1 II JOB EXAMPLE 6

2 II ASSGN SYS001,X'284'
3 // ASSGN SYS002,X'282'
4 1/ ASSGN SYS003,X'161'
5 II ASSGN SYS004,X'162'
6 II DLBL SORTWK1,,1,DA

SORT OUTPUT -- TAPE
SORT INPUT -- 'IAPE
SORT WORK DISK
SORT WORK -- DISK

7 II EXTENT SYS003,111111,1,0,760,38
8 II EXTENT SYS003,111111,1,1,380,38
9 II EXTENT SYS004,222222,1,2,380,38

10 II EXTENT SYS004,222222,1,3,760,38
11 II EXEC SORT,SIZE=36K
12 OPTION LABEL=(U,U)
13 SORT FIELDS=(1,4,A,6,12,A) ,FORMAT=CH
14 RECORD TYPE=F,LENGTH=80
15 INPFIL BLKSIZE=800 ,BYPASS I
16 OUTFIL BLKSIZE=800 I
17 INCLUDE COND=(6,1,GE,C'M') ,FORMAT=CH I
18 OUTREC FIELDS=(1,4,6,16) I
19 1* I
20 1& f L-____________ ~_~ ___________ ~ ____________ ~ ________ ~~ ___ ~-~-______ ~~ ____ ~

2-11 These statements are the same as in Example 3 except different
disk volumes are in use. Line 12 specifies the SIZE parameter to
restrict the amount of virtual storage available to SM2.

12 Specifies that the input and output tapes are unlabeled.

13 Specifies a sort based on two control fields.

14 Specifies that the records are fixed-length, 80 bytes long. All
other length specifications are defaulted.

15-16 Specifies that the input and output block sizes are 800 bytes,
and that input blocks causing IIO errors are to be bypassed.

17 Specifies that the sixth byte of every record is to be examined.

18

Records whose sixth byte contains a character collating greater
than er equal to M are to be included in the sort; all others are
to be discarded.

Specifies that the output records are to consist
taken from the input records; the first field is
begins at byte 1 of the input record; the second
byte 6 of the input record and is 16 bytes long.
output record length is thus 20 bytes.

of two fields
4 bytes long and
field begins at

The effective

Appendix A. Example of Sort/Merge Job Streams 119

r----------~--~-~-~--------------~~----------~~----------~----~~~---~~-1
I 7. Sort: Tape input and output, disk work areas, ALTSEQ and SUM I
I specified I
~--~ I 1 II JOB EXAMPLE 7 I
I 2 II ASSGN SYS001,X'284' SORT OUTPUT -- TAPE I
I 3 II ASSGN SYS002,X'282' SORT INPUT -- TAPE I

4 II ASSGN SYS003,X'161' SORT WORK DISK I
5 II ASSGN SYS004,X'162' SORT WORK -- DISK I
6 I I DLBL SORTWK1" ,DA I
7 II EXTENT SYS003,111111,1,0,760,38 1
8 II EXTENT SYS003,111111,1,1,380,38 I
9 II EXTENT SYS004,222222,1,2,380,38 I

10 II EXTENT SYS004,222222,1,3,760,38 I
11 II EXEC SORT,SIZE=36K I
12 OPTION LABEL=(U,U) I
13 SORT FIELDS=(6,12,AQ,A) I
i4 RECORD TYPE=F,LE~~TH~80 I
15 INPFIL BLKSIZE=800,BYPASS i
16 OUTFIL BLKSIZE=800 I
17 SUM FIELDS= (51 ,6 "ZD) I
18 ALTSEQ CODE= (5BEA" 7BEB ,7CEC) I
19 1* I
20 If, I

_____ ~--__ ~-_~---_--__ --------~~~ __ ~-------------~-~-~ __ ~-___ ~ __ ~ ___ ~~J

2-11 These statements are the same as in Example 3, except that
different disk volumes are in use, and the SIZE parameter has
been specified on the EXEC statement (line 11).

12 Specifies that the input and output tapes are unlabeled.

13 Specifies a single control field 12 bytes long, beginning in byte
6 of the record. An alternative collating sequence (specified in
the ALTSEQ statement, line 18) is to be used.

14-16 These statements are the same as in Example 6.

17 Specifies a 6-byte-long zoned decimal summary field, beginning in
byte 51 of each record.

18 Specifies that X'5B' is to collate as X'EA', X'7B' is to collate
as X'EE', X'7C' is to collate as X'EC'--in other words, that
national characters are to collate at the end of the alphabet.

i20

r-------~----~--~--~----~------~-----~~------~~----~-------------------~ I 8. Sort: VSAM managed SAM input, output, and work files. I
r--~ I 1 II JOB EXAMPLE 8 I
I 2 * VSAM MANAGED SAM EXAMPLE I
I 3 II DLBL SORTIN1,' INPUT .FILE' , ,VSAM I
I 4 II DLBL SORTOUT,'IMPLICIT.DEFINE',10,VSAM,RECORDS=1000, c
I 5 RECSIZE=500 ,DISP= (,KEEP) I
I 6 II EXTENT ,DISKOl I
I 7 II DLBL SORTWK1" ,VSAM ,DISP= (,DELETE) I
I 8 II EXEC SORT,SIZE=40K I
I 9 SORT FIELDS=(10,20,CH,A) I
I 10 RECORD TYPE=V,LENGTH={500",100,400) I
I 11 INPFIL BLKSIZE=4000 I
I 12 OUTFIL BLKSIZE=4000 I
I 13 1* I
I 14 If, I
i~-_____ -~~---_-__ ~~ __ ~-__ - __ - ______ -_-~-____ -~-------~_~ __ ~ _____ ~ __ ~ __ ~

3 Defines sort input as file 'INPUT.FILE' managed by VSAM. This
file was defined by IDCAMS and previously loaded by another
program.

4-5 Defines sort output as managed by VSAM. This file will be
implicitly defined to be able to contain, 1000 500·byte records.
It has a retention period of 10 days.

6 Indicates to VSAM that output file must be defined on disks with
serial number DISK01. Can be omitted if there is a default model
cataloged which indicates the required disk.

1 Defines sort work file as managed by VSAM. This file is assumed
to have been previously defined by IDCAMS with the
NOALLOCATE(NAL) and REUSE attributes. Its space will be
allocated when sort opens it and deallocated when sort closes it.

9 Specifies a sort based on one control field 20 bytes long. The
output will be in ascending order. By default one work file and
one input file are assumed.

10 Specifies that variable length format records will be sorted
whose maximum length is 500 bytes, minimum length 100 bytes and
modal length 400 bytes.

11 Specifies that the input file will have a maximum logical
blocksize of 4000 bytes. VSAM is not specified, so that sort
will use SAM access.

12 Specifies that the output file will have a maximum logical
tlocksize of 4000 bytes. ESDS is not specified, so that sort
will use SAM access.

Note: All VSAM definitions are assumed to be in the Master Catalogue.

Appendix A. Example of Sort/Merge Job Streams 121

Appendix B. Storage Requirements

A merge operation needs main storage only. A sort usually also needs
work storage space on a direct-access device.

If there is plenty of main storage and the input file is small, a sort
may be able to run without work storage. If there is less than, say,
64K of main storage, and work files are needed, then there is a relation
between the two requirements; the less main storage available, the more
work space you will need.

You can always find out in advance how much storage space a given
application would need by submitting the complete control statement set,
with the addition of an ANALYZE statement. As described in Chapter 2,
SM2 will then analyze all the control statements and make the usual
optimization calculations. It will issue all the usual messages
(including those specifying how many records can be sorted with the
given configuration; how much more main storage should be allocated, if
the allocation was insufficient; and the internal length of the records
to be sorted or merged), and then terminate without sorting or merging.

This appendix does not therefore describe in detail how to calculate
space requirements. However it does give rules of thumb for making
reasonable estimates of:

1. Minimum main storage requirements for a sort or merge.

2. Main storage requirements for a sort with no work files.

3. Work file size fer a sort using at least minimum main storage.

Minimum Main Storage

SM2 needs a minimum of 32K bytes of virtual storage.

The m1n1mum requirement for a given application can be more than 32K
bytes. The major factors affecting the requirement are:

• Use of the SVA

• Input and output buffer sizes

• Size of user routines at program exits

• Use of special functions

• Internal record length

These factors are considered in turn below.

USI OF THE 5VA

If eligible 5M2 modules were not ~ut in the SVA when your system was
IPLed, they will instead have to be loaded into your partition. They
need about 12K bytes of storage.

122

INPUT AND OUTPUT BUFFER SIZES

The sort needs at least one input buffer in Phase 1. The size of the
buffer is the (maximum) block size or CI size, plus CCW size, plus the
size of any IDALs required (Release 33 or 34), or the size of the page
fix list, if any (DOSjVSE). The record area is rounded up to the
nearest whole number of full words.

The elements and their sizes are shown in Figure 25. IDAL size is not
shown because it varies in proportion to the size of the record area
(plus 8 byte count field if DASD). It should seldom exceed 100 bytes.

It is given by

[

Record Area - 2
--------------~
Page Size

x 4 bytes

Page Size is usually 2K for DOSjVS

·r------------T--------------'T-----~~~---_".------... ,
I I I Input I Fix I Output I
I Device I Record area I CCW I list I CCW I
~-~---------f---------------T-------~------~-------_d I CKD disk I Block size +8 I 40 I 20 I 32* I
I - with RPS I Block size +8 I 56 I 20 I 48* I
r------------f------------~--+-------~---~--~-------_. I PBA disk I CI size I 24 I 20 I 24 I
r------------f------------~--+----~--~------~-- ... -----d I Tape I Block size I 8 I 12 I 8 I
r------------1-... ---------~---L----_-_L------~----___ _.
I *If VERIFY is used, add 24 (32 if RPS) I L-__ ... _______ ~

Figure 25. Input and output Buffer Element Sizes, in Bytes

Note: If command chaining is used for tape or CKD disk I/O, for each
block over 1 chained, add 8 bytes to the CCW length and block size
(+8 bytes if DASD) to the record area.

In Phase 3 (or Phase 1, if output is from that phase) SM2 needs one
output buffer made up in the same way.

SIZE OF USER ROUTINES AT PROGRAM EXITS

The size of any routines to be used at program exits must be included in
the storage allocated for SM2, unless the routines are preloaded and SM2
is called from another program.

USE OF SPECIAL FUNCTIONS

Some of the special functions provided by SM2 require that special
routines be generated at execution time. They are INCLUDE, OMIT, and
SUM, all of which need to handle the logical relations specified by you
in the appropriate program control statement.

Appendix B. Storage Requirements 123

The extra space required by these generated routines is usually so small
that it can for all practical pur~oses be ignored.

In any case it is never more than 4K bytes per generated routine, and
(since INCLUDE and OMIT are mutually exclusive) can thus never exceed 8K
for anyone application.

If you use the DELBLANK parameter of the RECORD statement, a routine is
generated of the same length as if you had coded an equivalent INCLUDE
statement.

INTERNAL RECORD LENGTH

If the records handled internally by a sort are longer than about 1K
bytes, you will probably need more main storage.

Internal record length is usually input record length (It on the RECORD
statement) rounded up to a whole number of fullwords, as-long as all
control fields have either EBCDIC character or binary format. Other
formats, and use of EQUALS or ADDROUT, will cause a change. Use of SUM
or OUTREC may also do so.

If you run SM2 with the DIAG option or ANALYZE statement, you will
receive a message telling you the length:

7C121 INTERNAL RECORD LENGTH = xxxx BYTES.

Sort .Main Storage Without Work Files

If your input file is not very big you may not need work files.

As a rule of thumb, you can sort an input file of about lOOK bytes with
20K bytes or more of virtual storage. This presupposes that SM2 is
executed from the SVA, and that input block size or CI size is moderate.

Input file size is simply input record length multiplied by the number
of records to be processed (after any INCLUDE or OMIT statement has been
used to select a subset of the input).

Work Files

As a rule of thumb, if work files are needed they should be the same
size as the input file, ~lus about 25.. In the worst possible case you
might need to add 80. instead of 25.; this would be if all the following
conditions were met:

• Control fields were neither binary nor character format

• The sum of centrol field lengths were close to the maximum

• Input records were variable-length

• Input records were not much longer than total control field length.

with CKD work files you must allocate a minimum of four tracks. With
FBA work files you must allocate a minimum of 64 blocks.

124

Appendix C. Conversion Aids

This appendix describes the changes that will need to be made to your
existing IBM sort/merge applications if they are to run under 5M2.

The first section concerns the compaIatively minor changes needed to
convert from programs which are closely related to 5M2:

D05 Tape and Disk Sort/Merge, 360N-5M-483
DOS Tape and Disk Sort/Merge program Product 5736-5Ml
DOS Sort/Merge Program Product 5743-SMl
DOS/VS Sort/Merge Program Product 5746-SM1

The second section covers conversion from less similar programs
'Unrelated Programs', discussing sepIa tely the three topics of JCI.,
statements, program control statements, and user routines at program
exits. The programs are:

DOSjTOS Tape Sort/Merge 360N-SM-400
DOS Disk Sort/Merge 360N-SM-450
Model 20 Disk Sort/Merge

The third section deals with conversion from a completely different
sort, the System/3 Disk Sort (5702-SMl and 5703-5M1).

Because of differences in techniques storage requirements may be
different. Also, there are differences in maximum record length that can
be sorted. For more details see Appendix B. User routines or programs
relying on internals of previous sort/merge will not work.

Related Programs

Figure 26 summarizes the differences between SM2 and those programs
which are closely related to it. As shown, in most cases if a
nonsupported function or parameter is specified it will simply be
ignored.

Figure 27 shows how the incompatibilities can be dealt with. Note
however that any user routine or program relying on the internals of
previous sort/merge programs will not execute correctly with 5M2.

Appendix C. Conversion Aids 125

r-------~------~---------~---~-------~-~---~---------------~----~~-~~~
I
I NONSUPPORTED FUNCTIONS
I
1
1
I
1

Tape work files*
pooling of input or output with work files*
Use of ALTSEQ when input is in ASCII form*

I Exit Use:
I
I
I
I
I
1

VSAM I/O error handling not using Exit List at E18, E38, or E39
Processing SAM read errors at E18 or E38
Processing SAM write errors at E39
Using Phase 2 program exits

r------------------------------~-------------------------------------~
I 1
I CONTROL STATEMENTS AND PARAMETERS WHICH ARE NOT USED
I
1
I
I
I
I
I
1
I
I
I
I

Statement

OPTION

INPFIL
SORT
END

Parameter

ADDROUT=D*
ALTWK
CALCAREA
KEYLEN
TP
PRESEQ
SIZE

~----~------~----~~---------~~-~-----~~~--~-~~-------~-~~--------~--~~
I *These cause the program to terminate if specified. All other I
I listed functicns and parameters are accepted but ignored by 5M2. I
L-_________________ ~~-~--------~---------~---~---~~---~_~~ ____ ~ _____ ~~

Figure 26. Differences from 5746-SM1 and Similar Programs

PREFERRED STATEMENTS AND PARAMETERS

Some of the parameters listed in the control statements of earlier
versions of DOS and DOS;VS sort/merge program products have become
out.-of-date with present-day systems, usage, and standards. ~ of
these parameters are still accepted for compatibility reasons but as
they only add unnecessary double choices they have been removed from the
list of parameters given with the control statements in Figure 26.

In addition to the invalid parameters previously listed, other
parameters which should be avoided in new applications are shown
together with the preferred alternative parameter in Figure 27.

r----------~T-~----------~~-~-~-~---~-~--~~~~~-~~~--~---~--1
I Statement I Old Form of Parameter I Preferred Form I
r----.... ------t---------------·-----------f-----~---------------~
I SORT I CHKPT I CKPT I
I MERGE I ORDER=n I FILES=n I
I RECORD I DELBLANK I OMIT Statement I
I I PRINT I PRINT=ALL I
1 OPTION I ADDROUT=A I ADDROUT I
I I F·ILNM= (, , , , , , , , , , work) I WORKNM=work I L-__________ ~ __ ~--~----~ _______________ ~ ______ ~ __ ~ __ ~-~~ __ ~~~

Figure 27. Preferred Parameters

126

Conversion

The table in Figure 28 recommends solutions for conversion problems.
Users converting from DOS to DOSjVS may want to relink-edit those of
their user routines that are not self-relocating, in order to make them
eligible for relocation by the relocating system loader.
(Relocatability is discussed in the DOStyS System Management Guide.)

MODS statements referring to re-link-edited routines may need to be
changed.

r---------------~-~~---~-----~------~--~------~-~------~-~------~
I INCOMPATIBILITY f CONVERSION SOLUTION I .
r----------------------~------~----------------------------------~ ITape work files IChange your JCL statements I
r-----------------------------t----------------------------------~ IPooling of input or output IChange your JCL statements I
Ifiles with work files f I
r----~-~~------~--~~-~~--~----~------~~--~~~---------~~--------~~
II/O error checking at user ISAM exits are ignored. I
lexits E18, E38 and E39 IVSAM I/O error can be handled I
, Iby programming the VSAM Exit I
I I List facility at these exits I
r-----------------------------t----------------------------------~ I ADDROUT=D output records I Wri te your own routine and insert ,
I I records containing direct access I
I I storage address and sort keys at I
I I use r exit E 1 5 I
r-----------------------------~----------------------------------~ 10utput records with separate IIf such output data is required I
Ikeys (KEYLEN) Iwhere the key area is separate I
I I from the data area, exit E35 I
I Ican be used to insert a routine ~
I I to separate the key from the data. J
I I Note that 5M2 can read keyed data J
I I provided it is fixed-length, un- I
I I blocked, and sequential. I
.-----------------------------r----------------------------------~ lRequirement for CALCAREA IUse ANALYZE statement I
I option I I L _____________________________ L __________________________________ ~

Figure 28. Incompatibility and Conversion

Unrelated Programs

Conversion from the programs listed above as 'unrelated' is dealt with
in this section, under three topics:

• JCL statements

• Program Control Statements

• Routines at Program Exits

Appendix C. Conversion Aids 127

JCL STATEMENTS

The following differences in I/O device assignment should be noted:

1. File names on DLBL/TLBL cards must be changed to agree with those
specified in Chapter 3, or must be specified in the FILNM operand
of the OPTION statement.

2. For checkpoint facilities, the unit assignment must be given for
SYSOOO. The file name must be SORTCKP, and the volume must have a
standard label.

PROGRAM CONTROL STATEMENTS

Described below are the changes which may need to be made to your
existing statements. This section does not cover how to add parameters
to take advantage of the additional features of 5M2.

DQS/TOS TAPE SORT/MERGE, 360N-SM-400

Statement Parameter

SORT/MERGE FIELDS

INPFIL BYPASS

MODS EXIT

OPTION FILES

END

i28

PRINT
LABEL

DENSITY

Action

Check that all control fields are within the
first 4092 bytes of the record.

Check that these values agree with the block
size specified in INPFIL and OUTFIL:
You cannot use these parameters to lengthen
or shorten records--use exit E15 or E35
instead, and add 12 if you use E15.

You will no longer get a count of the records
bypassed.

Check that only valid exits are specified:
in phase 1, El1, E15, E17, and E18;
in phase 3, E31, E32, E35, E37, E38 and E39.

Move to SORT statement.
Add a value (ALL, CRITICAL, or NONE) •
Change the order to: output,inputa, ••• inputn

Remove.

Optionally, remove.

DOS DISK SORTIMERGE, 360N-SM-450

Statement

SORT

RECORD

INPFIL

OUTFIL

MODS

OPTION

END

Parameter

(WORK)

INPUT
BYPASS

OUTPUT

EXIT

RESTART

MODEL 20 DISK SORT/MERGE

Statement

SORT

INPFIL

MODS

OPTION

END

Parameter

(WORK)

(FILES)

SKIPBYTE

EXIT

RESTART

LABEL
TIME

ROUTINES AT PROGRAM EXITS

Action

If you are using single-extent work files,
add the WORK parameters.

Check that these values agree with the block
size specified in INPFIL and OUTFIL:
You cannot use these parameters to lengthen
or shorten records -- use exit E15 or E35
instead, and add 12 if you use E15.

Remove.
You will no longer get a count of the records
bypassed.

Remove.

Check that only valid exits are specified:
in phase 1, Ell, E15, E17, and E18;
in phase 3, E3l, E32, E35, E37, E38 and E39.

Remove; can be replaced by a RSTRT JCL
statement.

Optionally, remove.

Action

If you are using single-extent work files,
add the WORK parameters.
If you have more than one input file, add
a FILES parameter.

Ignored; optionally, remove.

Check that only valid exits are specified:
in phase 1, Ell, E15, E17, and E18;
in phase 3, E31, E32, E35, E37, E38 and E39.

Remove; can be replaced by a RSTRT JCL
statement.
Change the order to: output,inputa, ••• inputn
Remove; the program will terminate if it is
retained.

Optionally, remove.

If you want to use your existing routines at SM2 exits you will need to
check, first, that its function is still supported; second, at which
exit; and third, that your interface meets SM2's requirements.

Figure 29 gives an overview of the relationship in function of old exits
to new.

The Model 20 Disk Sort/Merge's exits are entirely incompatible with

Appendix C. Conversion Aids 129

those of 5M2 because the Model 20 Assembler language is incompatible
with that of D05/VS.

For the other two programs, a conversion guide follows Figure 29.

SM400
DOS/TOS Tape
Sort/Merge Exits

5746-SM2

DOSNS
Sort/Merge Exits

SM450
DOS Disk
Sort/Merge Exits

Ell '1------------ ~ Ell
E12 --1 ~ E17

...... t-----------------Ell

E13 ~I--------------..... • E15 f__--------------- E12
E14

E15 -----------------... E18 f-----------------E13

E21

E25

E27

E2l ~ EE3l
E3l -----11---------------..... E3l f__--------------4--E4l

E33 E44

E~ ------------------... E~ ~ .. f__----------------E42

E22 ~ CE32
~. ------------------~.~ E35 f--------------------~.

E34 E43

E37

E35 ------------------~. E38 1--------------------E45

E39

Figure 29. Correspondence of Old Exits to 5M2 Exits

DOS/TOS Tape SortlMerge, 360N-SM-400

The 5746-SM2 program exits differ from the exits of the DOS/T05 program
in the ways listed below. Most of the changes affect parameters and
interfaces.

Ell and E12 open functions must be combined in to the 5M2 Ell. Ell and
E12 must be rewritten to the SM2 specifications for Ell and E17. The
5M2 E17 has been added for handling the close functions of nonstandard
labeled tapes and other phase termination activities.

E13 and E14 E13 and E14 functions are available in 5M2 E15. E15 has
also added the 'insert records' feature, and the exit is made available
for each record before sort processing. Exit E15 may be used to read
the entire input file, one record at a time. Pr~sent exit functions may
be used with slight modifications to the interfaces. The 5M2 sort
interfaces are standardized -- a parameter list address is passed in
register 1. User return is always BR 14 with register 1 pointing to the
modified parameter list.

~ is not sup~orted. Above it is shown as corresponding to E1S.

E21 must be changed to the SM2 E31. The 5M2 sort is divided into three
phases -- internal sort, external sort, and final merge. The 5M2 E31
handles the functions of the present E21 and E31. E31 will have to be

i30

rewritten to encompass E21 functions and the standard interfaces set up
by the 5M2 program. SM2 E31 has been expanded to include the present
E21 functions in a sort application and E33 functions in a merge
application. E31 will have to be rewritten to encompass these extra
functions and the standard interfaces set up by the SM2 program.

E22 has to be replaced by SM2 E35. The new exit is activated just
before records are moved to the output buffer. Exit E35 may be used to
write the entire output file one record at a time. The user controls
record modification through a standaIrl interface. Most of the changes
to the old exit will be in the interfaces and handling of the parameter
list. The option to suppress sequence checking is also provided at this
exit.

E32 may require changes to interfaces.

E33 functions are incorporated in SM2 E31. See also above under E21.

E34 has to be replaced by a SM2 E35. Record modification coding may be
used with slight changes to the interfaces and handling of a parameter
list. E34 also passed an input table. This fUnction has been deleted.
The SM2 E35 offers an option to suppress sequence checking.

E35 is not supported. Shown above as corresponding to E3S.

DOS Disk SortIMerge, 360N-SM-450

The present program exits differ from the exits of the 360N-SM-450 DOS
Disk Sort/Merge program in the ways listed below. Most of the changes
affect parameters and interfaces.

Ell must be rewritten to the new specifications and be split into E11
and E17. The user must handle the opening, label checking, and
positioning of nonstandard or user-standaIrl labels for initial input and
intermediate storage.

E12 has to be changed into SM2 E15 and several new functions have been
added. E15 allows the user to insert, delete, lengthen, shorten, or
alter his records. The user can also read the entire input file at this
exit. Renaming the exit and the branch table entry should be all that
is needed to convert.

E13 is not supported. Shown above as corresponding to E1S.

E31 must be rewritten to the new specifications. The functions of the
former E31, E41, and E44 have been combined into this one exit. The user
must handle opening, label checking, and positioning of nonstandard or
user-standard labels for final output from a sort or merge, and initial
input to a merge.

~ is replaced by SM2 E35. The user controls record modification
through a standard interface. Most of the changes to the old exit will
be in the interfaces and handling of the parameter list. It should be
noted that E35 must be used to lengthen or shorten records. SM2 does
not truncate records. Exit E35 may be used to write the entire output
file, one record at a time.

E41, see E31 above.

E42 has to be changed to SM2 E32. Changes to interfaces may be
required.

Appendix C. Conversion Aids 131

E43 has been combined with E32 and given the name E35. Most of the
changes to the old exits will be in the interfaces and handling of a
parameter list.

E44, see E31 above.

E45 is not supported. Shown as corresponding to E38.

Converting from System/3 Disk Sort

Sort applications written for the System/3 Disk Sort programs (5702-SM1
and 5703-SM1) must be completely rewritten ~nen converting to DOS/VS, as
neither System/3 OCL statements nor System/3 Sort Sequence
Specifications are compatible with DOSjVS Job Control Statements or
DOS/VS SortjMerge control statements.

The sections 'Converting Sequence Specifications' and 'Converting OCL
Statements' discuss some of the points you should consider when
converting a System/3 Disk Sort application into a DOSjVS Sort/Merge
application. The discussions are not intended to be exhaustive, since
those features of the DOSjVS SortjMerge for which there exists no
equivalent in System/3 Disk Sort are not discussed.

Most of the facilities available to the user of the System/3 Disk Sort
are also available in the DOSjVS Sort~rge Program Product 5746-SM2.
SM2 also provides additional features.

The major differences are:

Additional Features

• SM2 can merge sequenced input files as well as sort.

• SM2 can link to user-written routines at points in the sortjmerge
called program exits. At these exits, the user-written routines may
write or check labels, open or close files, take checkpoints,
insert, modify, or delete records, read the input file, write the
output file, or process I/O errors.

• SM2 allows use of more than one work file, and allows use of a
multi-extent work file; Job Control statements specifying a work
file must always be present.

Nonsupported Features

• SM2 does not support forced control fields. If this function is
required it must be performed by a user-written routine at a program
exit.

• SM2 allows only one INCLUDE/OMIT statement, but the statement can
contain many selection conditions (is equivalent to many Record Type
Specif ications) •

• SM2 does not support multiple record types directly

132

control fields must have the same relative position in each record.
However, any record type (or types, if the control fields are
equivalent) can be accessed by selecting that type ~r types) with
an INCLUDE/OMIT statement.

• SM2 does not support comparison of zone or digit parts only of a
field. All fields specified must be a whole number of bytes long and
must begin and end on a byte boundary.

Examples of complete SM2 job streams aze given in Appendix A.

Converting Sequence Specifications

This section discusses some of the points you should consider when
converting System/3 Disk Sort Sequence Specifications to SM2 control
statements.

1. The information on the Header Specification line and the Field
Description lines for control fields is used on the SORT or MERGE
control statement. Here you specify your control fields and their
formats. You will get a tag-along sort (with the output records
identical to the input records) unless

You specify the ADDROUT option on an OPTION stat~ment (to get an
addrout sort) •

You specify summary fields on a SUM statement (to get a summary
sort) •

You specify record reformatting by means of the OUTREC statement
(partial tag-along) •

2. The information on the Field Description lines about data fields
need not be specified if you want a tag-along sort where the output
records are identical to the input records.

3. To specify a tag-along sort with record reformatting, where the
output records are not identical with the input records, code an
OUTREC statement, specifying which fields from the input record are
to appear in the output record, and specifying how the fields are
to be aligned within the records.

4. To drop control fields from records, code an OUTREC statement,
specifying which fields from the input record are to appear in the
output record, and specifying how the fields are to be aligned
within the records.

5. To select records for inclusion in or omission from the sort, code
an INCLUDE/OMIT statement. Even where the System/3 Disk Sort
requires more than one Record Type specification, all the selection
conditions can be coded on one INCLUDE/OMIT statement. Note that
5M2 accepts only one INCLUDE or one OMIT statement.

6. To specify an addrout sort, code an OPTION statement with the
keyword ADDROUT. Note that disk addresses are 10 bytes long for
OOS/VS SAM files, and 5 bytes long for OOS/VS VSAM files.

7. To specify a summary sort, code a SUM statement to define the
fields to be summarized. Note that you do not define summary
overflow fields; if SM2 detects an overflow condition, the two
records involved remain unsummarized.

Appendix C. Conversion Aids 133

8. To handle signed control fields, you need only specify the correct
format parameter on the SORT statement When the field is defined as
a control field. No special coding is involved.

9. You must always code a RECORD sta tement to describe your records;
you will need to code an INPFIL and an OUTFIL statement to describe
your input and output files respectively, unless the default values
assumed will be satisfactory.

Converting OCLStatements

This section discusses some of the points you should consider when
converting the System/3 OCL statements necessary for a sort to the
DOS/VS Job Control statements necessary for sort~erge.

1. The II LOAD statement is replaced by the II EXEC statement, which
must appear last of the Job Control statements, immediately before
the program control statements.

2. Each II FILE statement must be expanded into a II ASSGN statement,
a II DLBL statement, and one or more II EXTENT statements. If tape
files are to be used, II TLBL statement may be necessary. You may
not need the II ASSGN statement if your installation has a suitable
standard assignment for the file in question.

3. The II RUN statement is not used.

4. A 1/ JOB statement must be coded and placed first, before all other
statements. This is then followed by all the necessary II ASSGN,

"-"'lit
I.) ..

II DLBL, and II EXTENT statements. The ,II EXEC statement must
appear next, fcllowed by the program control statements. A 1*
statement must follow the END statement, and a Ii statement must
appear last of all.

Appendix D. Permitted Data Formats

The format descriptions refer to the assembled data formats as used with
IBM System 360/370. If for example, a data variable is declared in PL/I
as FIXED DECIMAL it is the compiled format of the variable that must be
given in the If I field of the Sort Statement, not the PL/I declared
format. In this case the If I field would be PD ;~acked decimal) because
the PL/I compiler converts fixed decimal to packed decimal form.

DATA FORMAT EXAMPLES

Format Description

CH (character EBCDIC, unsigned). Each character is represented by
its a-bit EBCDIC code.

Example: AB7 becomes
C1

11000001
C 2 F 7 He xadecimal

11000010 11110111 Binary

ZD (zoned decimal, signed). Each digit of the decimal number is
converted into its a-bit EBCDIC representation. The sign
indicator replaces the first four bits of the low-order byte
of the number.

-247 becomes Example:
2 4 7 Decimal
F2

11110010
F4 D7 Hexadecimal
11~10100 11010111 Binary

The number +247 becomes
F2 F4 C7
11110010 11110100 11000111

PD (packed decimal, signed). Each digit of the decimal number is
converted into its 4-bit binary equivalent. The sign indicator
is put into the rightmost four bits of the number.

Example: -247 becomes
247

24 7D
00100100 01111101

Decimal
Hexadecimal
Binary

The number .247 becomes 247C in hexadecimal.

FI (fixed point, signed). The complete number is represented by
its binary equivalent in either halfword or fullword format.
The sign indicator is placed in the most significant bit
position. 0 for + or 1 for -. Negative numbers are in 2 ' s
complement form.

Example: .247 becomes in halfword form
00F7 Hexadecimal

0000000011110111 Binary

The number -247 becomes
FF09

1111111100001001
He xadecimal
Binary

Appendix D. Permitted Data Formats 135

Format Description

BI (binary unsigned) • Any bit pattern.

FL (floating ~oint, signed). The specified number is in the
two-part format of character and fraction with the sign
indicator in bit position o.
Example: .241 becomes
o 1000010 111101110000000 ••••••
+ chara. fraction

-247 is identical except that the sign bit is changed to 1.
5M2 assumes that the numbers are normalized, i.e. that the
high-order hexadecimal fraction is nonzero (unless the whole
fraction is O) ..

AC (character ASCII; unsigned). This is similar to format CH but
the characters are presented with ASCII code.

Example: AB7 becomes
41 42 37 Hexadecimal

01000001 01000010 00110111 Binary (ASCII code)

CSL (signed number, leading separate sign). This format refers to
decimal data as punched into cards, and then assembled into
EBCDIC code.
Example: +247 punched in a card becomes

+ 2 4 7 Punched numeric data
4E F2 F4 F7 Hexadecimal

01001110 11110010 11110100 11110111 Binary EBCDIC code

-247 becomes
247

60 F2 F4 F7
01100000 11110010 11110100 11110111

Punched numeric data
Hexadecimal
Binary EBCDIC code

CST (signed numeric, trailing separate sign). This has the
same representation as the CSL format except that the sign
indicator is punched after the number.

Example: 247+ punched on the card becomes
F2 F4 F7 4E Hexadecimal

CLO (signed numeric, leading overpunch Sign). This format again
refers to decimal data punched into cards and then assembled
into EBCDIC code. The sign indicator is, however, overpunched
with the first decimal digit of the number.

Example: .247 with. overpunched on 2 becomes
+2 4 7 Punched numeric data
C2 F4 F7 Hexadecimal

11000010 11110100 11110111 Binary EBCDIC code

Similarly -247 becomes 02 F4 F7.

Note: The overpunched sign bit is always hex 'c' for
positive and hex 'D' for negative.

CTO (signed numeric, trailing overpunch sign). This format has

136

the same representation as for the CLO format except that the
sign indicator is overpunched on the last digit of the number.

Example: +247 with. overpunched on 7 becomes
F2 F4 C7 hexadecimal.

Format Description

ASL (signed numeric, ASCII, leading separate sign). Similar to
the CSL format but with decimal data assembled into ASCII code.

Example: .247 punched into card becomes
+ 2 4 7 Punched numeric data
2B 32 34 37 Hexadecimal

00101011 00110010 00110100 00110111 Binary ASCII code

Similarly -247 becomes 2D 32 34 37 hexadecimal.

AST (signed numeric, ASCII, trailing separate sign). This gives
the same bit representation as the ASL format except that the
sign is punched after the number.

Example: 247+ becomes
32 34 37 2B hexadecimal

A detailed description of CH, ZD, PD, FI, BI and FL data formats can be
found in OS/VS-DOSIYSE-VM/370 Assembler Language, GC33-4010 .. Section G.

Appendix D. Permitted Data Formats 137

Appendix E. Program Messages

This section lists, explains, and suggests appropriate responses to
messages produced by the program.

A serious statement error does not immediately stop program execution.
Each statement is checked until one critical error is found then the
rest of the statement is skipped. Usually, any continuation statements
are also skipped, and are printed with the word 'FLUSHED' in columns
74-80. The next statement is then scanned.

DiHerent Types of Message

Four different types of message are produced by SM2:

• General messages containing information or a warning

• Critical messages giving information or a warning

• program error messages which are designed to help in tracing any
error in the SM2 code

• Diagnostic messages producing information which can be used for
tuning purposes

All messages have the same numbering and format, and are described
sequentially in this appendix. After the message descriptions follows a
section giving more details of the program error messages.

Chapter 6 describes briefly how diagnostic messages can be used, under
the heading 'Using the DIAG Option'.

The messages begin with a 5-digit code. For SM2 the first character of
this code is always 7. The second character indicates the module or
phase in which the message was produced:

A-D = phase 0
E = phase 1
F,G = phase 2
H,J = phase 3
L = merge-only
M = input/output modules
K = debug module
V = VSAM special error module, called

by VSAM input or output module

The third and fourth characters are the message number. The fifth
character is always I.

Messages displayed on the console log will have the job name inserted
between the message number and the message text. When SM2 is subtasked
then the subtask name appears in all messages (LOG or LS~ •

138

When and Where Messages are Produced

The standard default is that all messages except for diagnostic messages
are produced, and are directed to the SYSLST printer. In addition,
critical messages are routed to the SYSLOG printer, as is the
'SORTIMERGE COMPLETE' message.

These defaults can be changed at any time after the program has been
installed, as described in the DOS/yS SortJMerge Version 2 Installation
Reference. You can also change them at execution time by use of the
OPTION statement:

.-------------------------------------r---------------------1 I Required action I What to specify f
r-------------------------------------~---------------------~ I Route all messages to the console I ROUTE=LOG I
I I I
I Produce diagnostic messages I DIAG I
I I I
I Print only critical messages J PRINT=CRITICAL* I
I J I
I Suppress all messages J PRINT=NONE* I
I J I
J Route all messages to a device of I ROUTE=xxx I
J your choice (only when SM2 is in- J I
I voked from another program) I I
r-------------------------------------L---------------------~ I *Will also su~press diagnostic messages, even if DIAG is I
I specified I L-__ J

If you include an ANALYZE CALC statement the effect will be the same as
if you had specified:

OPTION DIAG,NODUMP,ROUTE=LSTlxxx,PRINT=ALL

Appendix E. Program Messages 139

Messages

*** SORT/MERGE 5746-SM2, REL n, MOD n, PTF nn DATE xx/xx/xx

7A01I

7A02I

7BOOI

7B01I

140

Explanation: This heading is printed before all other messages
if PRINT=ALL is in effect, and gives status information on which
release, modification level, and PTF update is in use. Date is
current date of execution. If PRINT=CRITICAL is specified the
heading is printed only if a critical message is produced.

System Action: None.

Programmer Action: None.

INSUFFICIENT STORAGE

Explanation: Less than 32K bytes of main storage were available
for the program. The minimum storage requirement for SM2 is 32K
bytes.

System Action: SM2 terminates.

Programmer Action: Increase the EXEC SIZE parameter or the SORT
or MERGE STORAGE parameter. If sortjrnerge is called ensure that
all exit points and return point are below SM2's entry point, or
that they are more than 32K bytes above this.

ILUSMANS HAS WRONG SVA STATUS

Explanation: ILUSMANS, which is used for restart if checkpoints
are requested and SM2 modules are in the SVA, must be in the SVA
if used. If SM2 modules are in the SVA when a checkpoint is
taken they'must also be in the SVA When the job is restarted.

System Action: SM2 terminates.

Programmer Action: Check the SVA status of all modules.

--- CONTROL STATEMENT

Explanation: This is a printout of the control statement or part
of control statement presently being scanned. If an error is
detected a $-sign is printed under or near the parameter in
error. (NO $- sign is produced f or the INCLUDE or OMIT
statement) •

System,Action: None.

Proqrammerhction: None.

SUM FIELD n, xxxxxxxx INVALID

Explanation: The length (In) or posi tioncp) of the n-th field
defined in the SUM statement is invalid.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check FIELDS parameter in the SUM statement
for invalid length or position value.

7B02I

7B03I

7B04I

7BOSI

FIELD OR VALUE GT 8 CHAR - xxxxxxx

Explanation: A field or value has been detected in the statement
represented by xxxxxx which is greater than 8 characters -- the
longest valid length.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check specified statement for field or value
greater than eight characters.

MULTIPLY DEFINED EXIT Enn

Explanation:
No exit number can be defined more than once in the MODS

statement. Exit Enn has been defined more than once.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check MODS statement.

NO xxxxxx CARD

Explanation: An essential control statement has been omitted:
either SORT or MERGE (not both), or RECORD. xxxxxx will be
replaced by the statement definer.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Actiop: Supply the missing statement.

STATEMENT DEFINER ERROR

Explanation: A valid statement definer has not been found
between columns 2 and 70. The first field (or second field if a
label is present) of a card that is not a continuation card must
be a valid statement definer, that is, SORT, MERGE, RECORD,
MODS, INPFIL, OUTFIL, INCLUDE, OMIT, ALTSEQ, SUM, OUTREC,
ANALYZE, OPTION, or END.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the statement for incorrect, misplaced,
or misspelled operation definers. This message can be triggered
by an INCLUDE or OMIT continuation card if analysis of the
previous card was left incomplete after an error was detected,
because SM2 may not then be aware that the card is a
continuation.

Appendix E. Program Messages 141

1B06I

1B01I

1B08I

1B09I

142

DUPLICATE xxxxxxx CONTROL CARD

Explanation: A statement definer, represented by xxxxxxx, has
been specified more than once.

System-Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer-Action: Check for duplicate statement types. Note
that SORT and MERGE count as the same type, as do INCLUDE and
OMIT.

COL. 1 OR 1 - 15 NOT BLANK

Explanation:

1. Column 1 of a continuation card or line must be blank.

2. A continuation card which follows a control card with
nonblank characters in columns 11 and 72 must be blank in
columns 1-15.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check for nonblank characters in column 1, or
1-15 of continuation lines.

COL 2 - 16 BLANK IN CONTINUATION CARD

Explanation: A continuation caxd or line did not appear where
expected.

System-Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check for keypunching error, or an overflow
of parameters into column 12.

INSUFFICIENT STORAGE

Explanation:

1. Main storage available to SM2 is less than 32K bytes.

2. STORAGE parameter in the OPTION statement is less than 32K
bytes.

_3. Insufficient storage was available to store the INCLUDE/OMIT
statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

7B101

7B111

7B121

Programmer Action:

1. Rearrange exit and return locations in calling program to
allow at least 32K bytes for SM2.

2. Check STORAGE parameter in OPTION statements for value less
than 32K.

3. Either increase the STORAGE parameter in the OPTION statement
and/or SIZE parameter in the EXEC statement, or decrease the
number of INCLUDE/OMIT conditions specified.

TOO MANY xxxxxx VALUES

Explanation: The number of values assigned to the parameter
represented by xxxxxx exceeds the maximum allowed, as shown
below.

r-------------r---------------------------l I Statement/ I Maximum number I
I Parameter I of values accepted I
r-------------+---------------------------~ SORT/MERGE 4 x 12 = 48 (unless the

FIELDS FORMAT keyword is used,
when it is 3 x 12 = 3~

INPFIL
VOLUME

OPTION
LABEL
SORTOUT
SORT IN
SORTWK
FILNM

Value assigned to FILES
keyword in SORT or MERGE
statement

10
1
9
9

11
L-____ ~_~_~ ___ ~ ___ ~ __ ~ ______ ~ _____ ~_~_~_~~

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check specified keyword operand.

INVALID xxxxxx KEYWORD

Explanation: A keyword not recognized by SM2 or a duplicate or
contradictory keyword has been detected in the control statement
represented by xxxxxx.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check appropriate control statement for
invalid, duplicate, or contradictory keyword operands.

INVALID FORMAT

Explanation: The value assigned to f in the FIELDS parameter, or
the value assigned to FORMAT, must be one of the following: CH,
ZD, PD, BI, FI, FL, AC, ASL, AST, CSL, CST, CLO, CTO, orAQ.

Appendix E. program Messages 143

7B13I

7B14I

7B15I

7B16I

144

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check format values given in FIELDS parameter
or FORMAT value of the SORT or MERGE control statement.

CONTROL FIELD xx DISPLACEMENT INVALID

Explanation: The value assigned to p in the FIELDS paramecer of
a SORT or MERGE statement must be a numeral greater than zero.
The control field number is represented by xx.

System Action:
Sort/merge is terminated after Phase 0 has completed its error

checking of control statements and unit assignments.

Programmer Action: Check displacement value specified in SORT or
MERGE control statement.

CONTROL FIELD xx LENGTH INVALID

Explanation: The value assigned to m in the FIELDS parameter of
a SORT or MERGE statement must be a number greater than zero.
The length of the CST, CSL, AST, and ASL control fields must be
at least two bytes. The control field number is represented by
xx.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check length values specified in SORT or
MERGE control statements.

UNIT ASSGN ERROR xxxxxxx SYS(y}

Explanation: Sort/merge file xxxxx with logical unit number y,
as calculated by SM2, is aSSigned to a device type not supported
in this rele by SM2.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Reassign SYS(y) to a device type supported by
the program. Check logical unit numbers on ASSGN EXTENT cards
and the SORTWK, SORTIN, and SORTOUT parameters of the OP'IION
card. If defaults have been used, check those valid for your
installation.

CONTROL FIELD xx SEQUENCE INVALID

Explanation: The value assigned to s in the FIELDS parameter of
a SORT or MERGE statement must be either A or D. The control
field number is represented by xx.

System ,Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

7B17I

7B18I

7B19I

7B201

7B21I

Programmer Action: Check sequence value specified in SORT or
MERGE control statements for a keypunching error.

BOTH SORT AND MERGE DEFINED

Explanation: You must not specify both SORT and MERGE for the
same execution of SM2.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check application and eliminate SORT or MERGE
control statement.

xxxxxx yyyyyy KEYWORD MISSING OR INVALID

Explanation: A parameter which must be specified, and for which
there is no default, has been omitted or is invalid. xxxxxx
represents the statement, and yyyyyy the keyword.

SysteIJIAction: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Proqra~mer-Action: Check appropriate control statement for
missing keyword.

BLANK CARD OR NO OPERAND ENCOUNTERED

Explanation: A completely blank card, a statement with no
operands (other than END), or a card with only a label was found
in the control statements. The card is ignored.

Syste~Action: Sort/merge continues normal processing.

proqrammerAction: Remove blank card from input stream for next
application.

GIVEN FILE SIZE INVALID

Explanation: The value assigned to the SIZE parameter of a SORT
statement must be a numeral.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check SORT control statement for invalid SIZE
operand.

FILES VALUE INVALID

Explanation: The value assigned to the FILES parameter of a SORT
or MERGE statement must be in the range 1-9.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Appendix E. Program Messages 145

7B22I

7B23I

7B24I

146

Programmer Action: Check SORT or MERGE statement for invalid
FILES operand.

xxxxxx OPTION HAS INVALID PARAMETER

Explanation: xxxxxx represents one of the following OPTION
parameters: LABEL, WORKNM, FILNM, SORTIN, SORTOUT, or SORTWK,

If LABEL, the message is generated When any character other than
U, N, or S is found between two successive commas in the LABEL
parameter.

If WORKNM, the file name specified is not four characters long,
or does not begin with an alphabetic character.

If FILNM, the file name specified has more than seven characters
(four characters for work files) or does not begin with an
alphabetic character.

If SORTIN, SORTOUT, or SORTWK, the message is generated when an
integer with a value outside the range 1 through 221 is used in
that specific parameter.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Ensure that the OPTION card contains
correctly specified LABEL, FILMN, SORTIN, SORtOUT and SORTWK
parameters ..

SORT WORK VALUE INVALID

Explanation: The WORK parameter in a SORT statement has been
assigned a value not recognized by SM2. Permissible values are
1-9 for disk work files when SO is specified or defaulted on the
DLBL statement, and DA for a disk work file when DA is specified
on the DLBL statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check SORT statement for invalid WORK
operand.

INVALID DATA TYPE

Explanation: The parameter for the DATA operand on the INPFIL
statement is neither E nor A.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Correct the DATA parameter to E(EBCDIC) or
A (ASCII) •

7B25I

7B26I

7B27I

7B2SI

xxxxxx KEYWORD IGNORED

Explanation:

1. To be compatible with other sort/merge programs the keyword
represented by xxxxxx is accepted as valid but ignored by
this program. The keywords in question are: SIZE for the
SORT statement; ALTWK, CALCAREA, FREEOUT, KEYLEN, PRESEQ,
RESTART, SKIPBYTE, and TP for the OP~ION statement; CRPT,
CHKPT, EQUALS, SIZE and WORK for ~~e MERGE statement; and
BYPASS for the OUTFIL statement.

2. If EXIT is specified in an INPFIL statement, any keyword
other than DATA which follows EXIT will be ignored and is
represented by xxxxxx in the error message.

3. If EXIT is specified in an OUTFIL statement, any keyword
which follows EXIT will be ignored and is represented by
xxxxxx in the error message.

System Action: Processing continues.

Programmer Action: None.

INVALID PBx NAME

Explanation: The exi t routine name specified in a MODS statement
must be a valid DOSjVS name (1-S alphameric characters: A-Z,
0-9, ., " @, $). The x represents the sort/Inerge phase number
as specified in the MODS statement.

System Action: Sort/merge is terminated after Phase 0 bas
completed its error checking of control statements and unit
assignments.

Programmer Action: Check MODS statement for invalid pbase name.

INVALID MODS ADDRESS/LENGTB FIELD

Explanation: The address or length specified in a MODS statement
must be a valid number. If the length is given the number must
be preceded by the character L.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check MODS statement for invalid address or
length.

INVALID PBx EXIT

Explanation: An exit not recognized by SM2 has been specified in
a MODS statement. The valid exits are listed in Chapter 5. The
x represents the phase number.

System Action: Sort/merge is terminated after Phase 0 bas
completed its error checking of control statements and unit
assignments.

Appendix E. Program Messages 147

7B291

7B301

7B311

7B321

148

Programmer Action: Check MODS statement for keypunching error or
other error resulting in specification of invalid program exit
number.

ERROR IN LENGTH VALUE

Explanation:

1. An error has been detected in either the BUFOFF or the
BLKSIZE parameter. BUFOFF can be 0-99 for ASCII input but
only 0 or 4 for output.

2. A length parameter has been specified as 0 in the RECORD
statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action:

1. Check INPFIL and/or OUTFIL statement for invalid BLKSIZE
parameter for device being supported, or invalid BUFOFF
parameter.

2. Specify valid length parameter value.

BOTH INCLUDE AND OMIT DEFINED

Explanation: Both an INCLUDE and an OMI'I statement have been
found in the same sort/merge application.

System Acticn: SM2 is terminated after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Remove one of the conflicting statements.

RECORD TYPE INVALID

Explanation: The TYPE parameter in the RECORD statement must be
F, V, or D.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check RECORD statement for invalid T1PE
operand value.

ALTSEQ STATEMENT HAS INVALID DATA

Explanation: Valid data consists of exactly 4 valid hexadecimal
digits per entry in the CODE parameter.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

programmer Action: Check ALTSEQ statement for invalid
hexadecimal digits, unpaired digits, and missing commas.

7B33I

7B34I

7B35I

7B36I

SUM FORMAT INVALID

Explanation: An invalid format was specified in the SUM
statement. Only the formats FI, BI, PD and ZD may be used.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the fIELDS and FORMAT parameters of the
SUM statement.

VIRT PARAMETER IGNORED

Explanation: The VIRT parameter of the OPTION statement was
specified but ignored, since sortjffierge was running in real mode
~EAL was specified on the EXEC job control statement).

System Action: Normal processing continues.

Programmer Action: None.

VOLUME VALUE(S) INVALID

Explanation: Invalid characters as VOLUME operand. A value
assigned to the VOLUME parameter of the INPFIL statement must be
a numeral.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check INPFIL statement for invalid VOLU~~
operand.

xxxxxx FIELDS BEYOND 4092

Explanation: A SUM, SORT, or MERGE field lies beyond byte field
4092 of the record.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer bction: Check length and displacement values
specified in the statement concerned.

Appendix E. Program Messages 149

7B37I

7B38I

7B39I

7B40I

150

SYNTAX ERROR - xxx xxx

Explanation: A syntax error has been detected in the control
statement represented by xxxxxx. Common syntax errors are:

• Unbalanced parentheses

• Missing commas

• Embedded blanks

• Redundant operands

• Missing parameters

After issuing this message, 5M2 skips the rest of the statement
in error, including any continuation cards or lines, and
continues to scan t.~e next sta tement for errors. The remainder
of the statement may therefore contain errors which will not be
detected until the program is rerun.

System Action: SM2 is terminated after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check specified control statement for an
error in syntax.

OUTREC FIELD xxx INVALID VALUE

Explanation: One of the following errors has been detected in
OUTREC field xxx:

1. The position or the length of the field is less than 1 or the
end of the field greater than 32,767.

2. The first field consists of only one parameter.

3. An invalid alignment was specified; only H, F or D is
allowed.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the OUTREC statement for valid
specifications.

PHASE 2 EXIT(S) IGNORED

Explanation: One or more phase 2 exits have been specified (E21,
E25 or E27). These exits are invalid and are ignored by SM2.

System Action: Processing continues.

Programmer Action: None.

LABEL ERROR

Explanation: A label starting in column 1 of a control card has
been detected which is more than 8 characters long, or does not
start with an alphabetic character.

7B41I

7B42I

7B44I

7B45I

System Action: SM2 is terminated after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check control cards for a label that does not
begin with an alphabetic character or for a label that is more
than eight characters long, or for an operator beginning in
column 1.

SUBTASKED CHECKPOINT IGNORED

Explanation: SM2 was requested to make a checkpoint while it was
subtasked.

System Action: The checkpoint request was ignored. Sort
continues normal processing.

Programmer Action: If the checkpoint is needed, reorganize the
job so that SM2 is not subtasked.

CHECKPOINT IGNORED - I TRKS/BLKS NEEDED ON SORTCKP

Explanation: The disk extent allocated for SORTCKP was too small
to take a requested checkpoint. % tracks is the minimum needed
for a CKD device, I blocks for an FBA device.

System Action: The checkpoint request is ignored. Sort/merge
continues normal processing.

Programmer Action: If the checkpoint is needed increase the disk
extent for the SORTCKP data set to at least ~ tracks or blocks.
The space needed can be calculated from the formula given in the
DOS/VS.~ User's Guide, GC24-5139, in the section
'Checkpointing a Program'.

INVALID SPLIT CYLINDER EXTENT ON xxxxxxx

Explanation: xxxxxxx is the name of a work file. Split cylinder
extent for work files cannot be used.

System Action: Sort terminates.

Programmer Action: Correct work file xxxx EXTENT card.

STORAGE PARAMETER IGNORED. xxxxx USED

Explanation: xxxxx gives the number of bytes used by SM2. The
STORAGE parameter requested more space than available in the
partition. The request may be explicit or it may be implied by
use of the default value. Note that the standard default
supplied with SM2 can have been changed for your installation.

System Action: Sort continues, standard default value is used.

Prograwmer Action: Increase si2e parameter value on // EXEC card
and/or increase partition size. If sort is called you may have
to move preloaded exits and the return part of the program to
allow SM2 more room, if these are loaded above SM2.

Appendix E. Program Messages 151

7Bq6I ADDRESS ERROR IN PARAM. LIST FOR INVOKED SORT

Explanation: An address in the parameter list for invoked sort
has a value outside the used partition. If the address of the
return code is invalid the program will program check.

System Action: Sort/merge terminates when all parameter values
have been checked.

Programmer Action: Check your parameter list for invalid given
address.

7Bq7I -~-PARMLIST PRINTOUT---

Explanation: This heading is followed by a printout of the
control statements which have been passed to SM2 from another
program in the form of statement images~ Only those with valid
statement definers are printed.
If an image is longer than 72 characters, it is printed 72
characters to a line. The maximum number of characters printed
per image is 1296; any characters beyond that limit are omitted.
If an AQTT table (alternative collating sequence) is defined in
image form, it is not printed.

System Action: None.

Programmer Action: None.

7BQSI ROUTE=NUMBER IGNORED

7B50I

152

Explanation: ROUTE=xxx is only allowed when SM2 is called from
another program.

System Action: SM2 continues, using the default value for the
ROUTE option.

Programmer Action: Correct the ROUTE parameter on the OPTION
statement before any subsequent run.

ERROR (x) GETTING LABEL FOR yyyyyyy

Explanation: The symbolic label access routine returned a
nonzero return code of x when accessed to read the label for
yyyyyyy.

System Action: SM2 terminates.

Programmer Action: Look up the documentation for the symbolic
label access routine, and if possible take the action
recommended for return code x.

ERROR (x) READING VTOC FOR yyyyyyy LABEL

Explanation: The common VTOC handler returned a nonzero return
code of x when accessed to read the label of file yyyyyyy.

System Action: SM2 terminates.

Proqrammer Action: Look up the documentation for the common VTOC
handler, and if possible take the action required for return
code x.

7B52I

7B54I

7B55I

7B58I

7C01I

WORK FILE NAME SPECIFIED TWICE

Explanation: The name of the work file is specified in both the
FILNM and the WORRNM parameters of the OPTION statement.

System ~ction: The name specified second is accepted.

Programmer Action: For any subsequent run, delete the FIINM work
file name parameter.

ERROR (%) RETURN FROM GETVCE FOR xxxxxxx

Explanation: The error % was received as return code from a
GETVCE issued for file xxxxxxx.

system Action: The program terminates.

Programmer Action: Look up the return code I in the
documentation for GETVCE and take the appropriate action.

GETVIS FOR xxxxxxx CVH WORK AREA FAILED. l NEEDED.

Explanation: SM2 needed more room for the Common VTOC Handler.
It has tried to GETVIS a larger area but failed, because the CI
size of the VTOC for the FBA disk on which file xxxxxxx lies is
too large for the work area available to SM2.

System Action: The progzam terminates.

Programmer Action: Use the SIZE parameter or command to allow
the program more GETVIS space ~etween the end of the space
defined by SIZE and the end of the partition). Alternatively,
run the application in a larger partition.

xxxxxxx SYSNO IGNORED

Explanation: The SYSNO specified on the OPTION statement (or in
the sort/merge default macro if used at installation tim~ is
ignored for disk files in jobs running under DOS/VSE. xxxxxxx
is the filename, for example, SORTIN1.

System Action: Sort continues.

Programmer Action: Remove pazameter from OPTION statement and/or
recompile and relink the default macro without the specification
if you intend to continue running under DOSjVSE.

INSUFFICIENT STORAGE, xxxK AVAILABLE, ACD xxx K,
MODULES ARE NOT IN SVA

Explanation: SM2 needs more main storage for execution. The
value given in the text is the amount of extra storage needed.

System Action: SM2 terminates.

Programmer Action: Increase SM2 storage size by increasing
either the EXEC SIZE pazameter, the SIZE JCL statement or
command, the STORAGE option, or the partition size; or by
arranging for eligible SM2 modules to be put in the SVA.

Appendix E. Program Messages 153

7C021

7C031

7C04I

7C05I

7C06I

7C08I

154

MODULE STATUS: PARTITION (POSSIBLY PERFORMANCE DEGRADATION

Explanation: ILUSOPT and (unless sort is terminated with message
'WRONG SVA STATUS') rest of SVA eligible modules are not in SVA.
To achieve best performance they Should be placed there.

System Action: None.

Programmer'Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

INTERNAL RECORD LENGTH (y BYTE S) TOO LARGE FOR xxxx

Explanation: The internal reco~ length calculated by SM2 is too
large for a full track on the device xxx.

SYstem Action: SM2 terminates after Phase O.

Programmer Action: Change work device to a device with a larger
track capacity.

OUTREC RECORD IS BUILT IN PHASE n

Explanation: DIAG message. Output records can be built during
either Phase 1 or Phase 3 when OUTREC is specified. This
message says which alternative has been selected.

System Action: Processing continues.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messa~es can be used.

ESTIMATED MERGE ORDER IN PH 2 = xx PH3 = xx

Explanation: DIAG message. These are the maximum merge orders
calculated by the optimization module. 'Merge order' means the
number of strings to be merged in one pass.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

INDEX BLOCKSIZE = xx WORK BLOCKSIZE = xx

Explanation: Diag message. These are the internal block sizes
chosen by the '.optimization module.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

BUFFERS {~:~} OUT=xx I N=xx
PH3

Explanation: DIAG message. xx is the number of buffers chosen
for the specified phase by the optimization module.

7C091

7C101

7C111

7C121

7C131

System Acti?n: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

REAL I/O DECIDED FOR xxxx

Explanation: DIAG message; xxxx indicates the phase~) where I/O
with EXCPREAL is suitable.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

STORAGE USED = xxxx BYTES

Explanation: Gives the number of bytes used by SM2.

System Action: None.

Programmer Action: None.

FIXABLE STORAGE = xxxx BYTES

Explanation: Gives the amount of fixable storage available to
5M2.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

INTERNAL RECORD LENGTH = xxxx BYTES

Explanation: DIAG message.
handled internally by SM2.
the maximum length.

System-Action: None.

This is the length of a record
For variable-length records it is

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PHO: TIME A: yy SEC, TIME B: zz SEC

Explanation: DIAG message. Time A (yy) is the difference in the
values returned by the GETIME macro at the start and end of
phase O. Time B (zz) is one of the following:

• If Job Accounting is supported in your system, zz is the
difference in the values obtained at the start and end of
phase 0 from the CPU time counter (ACCTCPUT field) in the Job
Accounting Interface Partition Table •

• If you do not have Job Accounting, zz is the difference in the
values returned at the start and end of phase 0 by the 'I-TIMER
macro.

System Acticn: None.

Appendix E. Program Messages 155

7C141

7C151

7C161

7C171

7C1S1

7C191

156

Programmer Action: None.

RSA BINSIZE = xxx BYTES

Explanation: DIAG message issued When input records are
variable-length. This is the bin size used in ILUSCRE or
ILUSVRE.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

GENERATED EXTRACTjRESTORE ROUTINE > 4K

Explanation: The generated extract/restore routine is larger
than 4K.

System Action: Sort/merge terminates.

Programmer Action: Decrease the number of OUTREC fields.

MODULE STATUS: SVA

Explanation: DIAG message. ILUSOPT and (unless sort is
terminated with message 'WRONG SVA STATUS'), the rest of SVA
eligible modules are in the SVA.

System Action: None.

Programmer Action: None.

CHAINING FACTOR OUT=n" IN=n2' INDEX=n3

Explanation: DIAG message. Nx physical blocks are read or
written in one I/O o~eration on input, output, and index
handling.

System Action: None.

Programmer Action: None.

ECPS:VSE MODE OF OPERATION

Explanation: DIAG message. 5M2 is running in ECPS:VSE mode.

System Action: None.

Programmer Action: None.

ANALYZE END

Explanation: An ANALYZE statement has been supplied and the
program has terminated after phase o.

System Action: The program terminates.

Programmer Action: None.

7C20I

7C21I

7C22I

7C23I

7C24I

INSUFFICIENT STORAGE, xxxK AVAILABLE, ALD xxx K,
MODULES ARE IN SVA

Explanation: SM2 needs more main storage for execution. Add the
value given in the text to your partition size--or, if SM2 is
subtasked, add the value to the STORAGE parameter value. The
5M2 modules are assumed to be in the SVA.

System Action: SM2 terminates.

Programmer Action: Increase the main storage available to 5M2 by
increasing either the EXEC SIZE parameter value, the STORAGE
option value, or the partition size.

OVERLAPPING WORK EXTENTS ON SYS (y) AND SYS (y)

Explanation: Two work extents have been specified which overlap
each other.

System Action: The program terminates.

Programmer Action: Redefine the named work extents. Check all
other work files fer overlapping extents: you will only get a
message for the first detected, if there are several.

FBA SORT WORK AREA IS LARGER THAN 2000 ME

Explanation: Work space has been defined on FBA devices and is
larger than 2000 megabytes, the maximum that SM2 can handle.

System Acticn: SM2 terminates.

Programmer Action: Reduce the work space assignment, if
possible. Alternatively, if so much space is really needed,
allocate some or all of it on CKD devices.

FBA SORT WORK EXTENT IGNORED, SMALLER THAN 32KB

Explanation: A work space extent has been defined on FBA which
is smaller than 32K bytes, the. minimum that can be used by SM2.

System Action: SM2 continues trying to sort in the space
available to it, ignoring the extent Which is too small.

Programmer Action: If the program subsequently terminates for
lack of work space, allocate more and rerun.

MODAL RECORD LENGTH ASSUMED = xxx BYTES

Explanation: xxx is the 15 val ue from the RECORD statement
LENGTH parameter, if supplied; or else the value for modal
length calculated by SM2 (the average of 12 and lit) •

System Action: None.

Programmer Action: None.

Appendix E. Program Messages 157

7D011

7D021

7D031

7D041

158

TOO MANY RECORD LENGTH PARAMETERS

Explanation: The number of length parameters specified in the
RECORD statement exceeds the maximum allowed. FOr fixed-length
records the number of par.ameters allowed is three (lG - ls) and
for variable-length records five (1, - ls).

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the LENGTH keyword in the RECORD
statement for too many parameters.

KEYWORD(S) IN INPFILIOUTFIL STATEMENT IS~E) IGNORED

EXDlanation:

1. When VSAMVKSDS, ESDS, or RRDS is specified, all other
parameters in the INPFIL/OUTFIL statement are ignored exept
for EXIT· and TOL. EXIT overrides VSAM.

2. When EXIT is specified all other parameters in the
INPFIL/OUTFIL statement are ignored exept DATA in the INPFIL
statement.

System Action: Processing continues.

Programmer Action: None

INVALID INCLUDE/OMIT DELIMITER

Explanation: A punctuation error has been detected in the
INCLUDE or OMIT control statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check for operands that are incorrectly split
between first and continuation cards.

NO VALID ALTSEQ STATEMENT FOUND

Explanation: An ALTSEQ statement must be specified when format
AQ is specified in the SORT, MERGE, INCLUDE, or OMIT
statement (s) •

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Supply the missing statement.

7D05I

7D06I

7D07I

7D08I

xxxxxx KEYWORD IGNORED

Explanation:

1. When MERGE is specified the keyword represented by xxxxxx is
ignored.

2. If both SUM and EQUALS are specified, EQUALS is ignored.
Note that EQUALS can be the default, if this has been reset
for your installation. To suppress this message, specify
NOEQUALS.

3. If ADDROUT is specified when SUM and/or OUTREC is specified
ADDROUT is ignored.

4. If SPAN is specified with fixed-length records, ASCII
records, or ADD ROUT specified, SPAN is ignored.

System Action: Processing continues.

Programmer Action: Remove un~nted parameter before next run.

BOTH INCLUDE AND DELBLANK DEFINED

Explanation: An INCLUDE statement and the DELBLANK parameter on
the RECORD statement have both been found.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: The DELBLANK parameter can be used on its own
or with an OMIT statement, but not with an INCLUDE statement.
Remove the conflicting specification.

RECORD DESCRIPTOR WORD NOT INCLUDED

Explanation: When the OUTREC statement is being used to reformat
variable-length records, the Record Descriptor Word umW; bytes
1-4 of a variable-length record) must be included in the
reformatted output record. In other words, for variable-length
records, the first entries in the FIELDS parameter of the OUTREC
statement must be 1,n where n is greater than or equal to 4.

System Action: Sort/merge is terminated after Phase 0 has
comple"ted its error checking of control statements and unit
assignments.

Programmer Action: Ensure that the first entries in the FIELDS
parameter of the OUTREC statement are correct.

xxx xxx FIELD BEYOND RECORD

Explanation: A field specified in an OU'IREC or SUM statement
extends beyond the end of the shortest record. The minimum
record length is defined by the LENGTH parameter of the RECORD
statement: 1,1 for fixed-length records or 1 ~ as specified for
variable-length records.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Appendix E. Program Messages 159

7D091

7D101

7D111

7D121

160

Programmer Action: Check OUTREC and SUM statements for
incorrectly specified field position or length. Check RECORD
statement for incorrect record length specification.

~DDROUT OPTION INVALID

Explanation: ADDROUT has been specified when the EXIT keyword is
present in the INPFIL statement. You cannot have the ADDROUT
option when you read all input to the program via an exit.

System Action: Sort/merge is terminated af~r Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: The combination is invalid so choose either
the ADDROUT option or the INPFIL EXIT specification.

INVALID LENGTH IN REL COND n - INCLUDE/OMIT

Explanation: The length of the n-th relational condition of the
INCLUDE or OMIT statement is invalid:
• The length (parameter m) is not a decimal number. or
• It is a negative number, or
• It is greater than 256.

System.Action: SM2 is terminated after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check INCLUDE/OMIT statement for invalid
specifications.

xxxxxx EXIT REQUIRES Eyy

Explanation: xxxxxx is replaced in the message by INPFIL or
OUTFILi yy is the number of the exit required.

1. When EXIT is specified in the INPFIL statement, E15 (SOrt) or
E32 (Merge) must be specified in the MODS statement.

2. When EXIT is specified in the OUTFIL statement, E35 must be
specified in the MODS statement.

System Action: SM2 terminates after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check appropriate control statement for
invalid keyword operand.

INVALID FORMAT FOR ASCII DATA

Explanation: The value assigned to f ~ontrol field format) must
be AC, ASL, or AST for ASCII data.

System Action: Sort/merge is terminated after Phase 0 has
completed its errOr checking of control statements and unit
assignments.

Programmer Action: Check value assigned to f in SORT/MERGE and
INCLUDE/OMIT statements.

7D13I

7D14I

7D15I

7D16I

DEL BLANK POSITION BEYOND 4092

Explanation: The DELBLANK parameter of the RECORD statement lies
beyond byte 4092 of the recozd.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check DELBLANK parameter value.

EFFECTIVE L3 VALUE = xxxxxx

Explanation: This message is issued when an OUTREC statement has
been supplied, and output recoId length U3 in the LENGTH
parameter of the RECORD statement) was not specified, or
specified incorrectly. xxxxxx is a decimal number specifying
the total length of the reformatted record, including all fields
and alignment padding.

If variable-length records are being reformatted with OUTREC,
and if the variable portion of the record is included in the
reformatted record, xxxxxx gives the maximum length of the
output records.

System Action: If 13 was incorxectly specified in the RECORD
statement (in which case message 7D38I will have been issue~ ,
sort/merge is terminated after Phase 0 has completed its error
checking of control statements and unit assignments. Otherwise,
normal processing continues.

Programmer Action: Check RECORD statement for 13 or l~ which are
invalid for an OUTREC statement, or remove unwanted eUTREC
statement. Note that unless you change the record length at E35
(after eUTREC) , it is not necessary to specify 12 or la, as SM2
will calculate the correct values for you.

SUM FIELD n OVERLAPS CONTROL FIELD m

Explanation: The n-th field defined in a SUM statement overlaps
the m-th control field defined in a SORI or MERGE statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Correct the SUM statement; also check that
the SORT or MERGE statement specifies the control fields
correctly.

SUM FIELD n OVERLAPS RECORD DESCRIPTOR WORD

Explanation: The n-th field defined in a SUM statement overlaps
the Record Descriptor Word (ROW) of the variable-length records
being processed.

System-Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Correct the SUM statement; also check that
the RECORD statement is correct.

Appendix E. Program Messages 161

70171

70181

70191

70201

70211

162

SUM FIELD n OVERLAPS SUM FIELD m

Explanation: The n-th field defined in a SUM statement overlaps
the m-th field.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the SUM statement for errors.

TOO MANY VOLUME POSITIONAL PARAMETERS

Explanation: The number of positional parameters in the VOLUME
keyword of the INPFIL statement exceeds the FILES parameter
value specified in the SORT/MERGE statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Correct the VOLUME parameter or the number of
files specified on the SORT/MERGE statement.

~ALID SELF DEF TERM IN REL COND n - INCLUDE/OMIT

Explanation: The self-defining term is invalid in the n-th
relational condition of the INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDEjOMIT statement for invalid
specifications.

OUTREC FIELD n INVALID VALUE

Explanation: A positional parameter was specified as the last
numerical entry in the OUTREC FIELDS keyword, i.e. with no
corresponding length indication; and the record type specified
in the RECORD statement is fixed. This usage is only allowed
with variable-length records.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the OUTREC statement for invalid
specifications; check for commas or entries missing from the
FIELDS parameter.

SPECIFIED Exx VALID ONLY FOR VSAM FILE

Explanation: The specified program exit is only allowed when a
VSAM file is used. The exit is ignored.

System Acticn: proceSSing continues. Sort/merge ignores the
exit.

Programmer Action: None

7D22I

7D23I

7D24I

7D25I

7D26I

INVALID FORMAT IN REL COND n - INCLUDE/OMIT

Explanation: The format is invalid in the n-th relational
condition of the INCLUDE or OMIT statement.

System-Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for invalid
specifications.

INSUFFICIENT STORAGE FOR INCLUDE/OMIT FUNCTION

Explanation: Insufficient main storage is available to contain
5M2 plus the code generated for the INCLUDE or OMIT function.

System-Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Increase main storage available to SM2.

PHASE 1 EXITS IGNORED BY MERGE

Explanation: Phase 1 of SM2 is not used for a merge-only
operation, therefore any Phase 1 exits specified in the MODS
statement of a merge-only operation are ignored.

Syst~m Action: Sort/merge continues, ignoring exits specified.

Programmer Action: Make sure the application was set up properly
before next run.

EXIT E32 OR E38 IGNORED BY SORT

Explanation: Exits E32 and E38 are available only for a
merge-only operation. They are ignored when specified in the
MODS statement of a sort operation.

System Action: SM2 continues, ignoring exits specified.

Programmer Action: Make sure the application was set up properly
before next run.

PRIORITY PARENTHESIS MISPLACED - INCLUDE/OMIT

Explanation: A parenthesis has been found in a syntactically
invalid ~osition in the COND parameter of an INCLUDE or OMIT
statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDEjOMIT statement for invalid
syntax, paying special attention to the parentheses.

Appendix E. Program Messages 163

7D27I

7D28I

7D29I

7D30I

164

INCLUDE/OMIT FORMAT INVALID

Explanation: An invalid format was specified in the FORMAT
keyword of an INCLUDE/OMIT sta tement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check INCLUDE/OMIT statement for invalid
FORMAT parameter. Except for FL r you can use any format valid
for a SORT statement.

INVALID CONDITION IN REL COND n - INCLUCE/OMIT

Explanation: The condition is invalid in the n-th relational
condition 6f the INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer AC~: Check the INCLUDEjOMIT statement for invalid
specifications.

ERROR IN LENGTH VALUE

Explanation: An error has been detected in either the BUFOFF,
the BLKSIZE, or one of the RECORD length parameters. The
message is issued when:

1. Is is greater than 11 (RECORD statement).

2. BLKSIZE is greater than 9999 with DATA=A (INPFIL and OUTFIL
statements) •

3. BUFOFF not equal to 0 when DATA=E (INPFIL statement) •

4. BUFOFF not equal to 0 when DATA=A and RECORD TYPE=F (OUTFIL
statement) •

5. BUFOFF not equal to 4 when RECORD TYPE=D (OUTFIL statement) •

Programmer Action: Check the RECORD statement for invalid length
values. Check INPFIL/OUTFIL statements for invalid block size
or invalid BUFOFF values.

L1 VALUE INVALID

Explanation: lG value must be greater than four for
variable-length records.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
aSSignments.

Prograremer Action: Check RECORD statement for missing or invalid
1(1 value.

7D311

7D321

7D331

DATA=A INVALID

Explanation:

1. ASCII data ~ATA=A or RECORD TYPE=D) is not allowed when
ADDROUT is specified.

2. DATA=A is not allowed when RECORD TYPE=V.

3. ASCII data is not allowed with disk input/output.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Change to correct combination of RECORD TYPE,
ADDROUT, DATA, and device.

ALTERED RECORDS REQUIRE OUTREC OR EXIT E15/E35

Explanation: If the RECORD statement indicates that record
length will be modified (the 1., 1 2 , and 13 values are not the
same), then either an OUTREC statement must be provided, or
program exits E15 and/or E35 must be specified in the MODS
statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check RECORD and MODS statements for
inconsistency. Check for missing OUTREC statement.

xxx xxx BLOCK SIZE = yyyy BYTES

Explanation: No block size has been specified for xxxxxx (either
INPFIL or OUTFIL), so it is assumed to be yyyy, calculated as
follows:

• For EBCDIC fixed-length records, block size equals record
length.

• For EBCDIC variable-length records, block size equals record
length. 4.

• For ASCII fixed or variable-length records, block size
equals record length + buffer offset.

Warning: If the assumed value is not reasonably valid,
performance reduction or job termination may result.

System Action: Sort/merge continues wi th the assumed value.

Programmer Action: Check block size parameter to see if
appropriate for next run of application. If not, make
appropriate change on INPFIL/OUTFIL statement.

Appendix E. Program Messages 165

70341

70351

70361

166

RECORO CONFLICTS WITH xxx xxx BLKSIZE

Explanation: xxxxxx is replaced by INPFIL or OUTFIL. The block
size specified in the INPFIL or OUTFIL statement must be
consistent with the record length specified in 11 or 1$.

• If the OUTREC statement is in use, the OUTFIL block size must
be consistent with the effective length of the reformatted
record (including padding, if any; the effective length is
given by message 7D14I).

• For EBCDIC fixed-length records, block size must be an exact
multiple of record length.

• For EBCDIC variable-length records, block size must be at
least record length • 4.

• If ASCII input data was specified, block size must be the sum
of the block prefix and an exact multiple of the record
length.

• If ADDROUT is specified with variable-length records, the
rules for fixed-length records apply for 1 3 •

System Action: If the conflict is between EBCDIC records and
block size~ or between ASCII output records and block size, SM2
is terminated after Phase 0 has completed its error checking of
control statements and unit assignments.

If the conflict is between ASCII input records and block size,
normal processing continues.

Programmer Action: Check RECORD statement and INPFIL or OUTFIL
statements for inconsistency in specifying lengths.

MISSING FORMAT IN REL COND n - INCLUDE/OMIT

Explanation: The format specification is missing from the n-th
relational condition of the INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check INCLUDE/OMIT statement for missing If I
subparameter of COND.

Note: If DATA=A or RECORD TYPE=D is specified only formats AC,
AST, or ASL are allowed.

DELBLANK POSITION BEYOND yy

Explanation: The DELBLANK pa~meter of the RECORD statement
extends beyond the end of the minimum record length yy. The
minimum record length is defined by the RECORD statement LENGTH
parameter 11 for fixed-length records when no E15 is specified,
or 12 if E15 is specified. For variable-length records 14
specifies the minimum record length.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

7D37I

7D38I

7D39I

programmer Action: Check RECORD statement for incorrect record
length specification or incorrect DELBLANK specification.

SYNTAX ERROR - INCLUDE/OMIT

Explanation: A syntax error has been detected in the
INCLUDE/OMIT control statement. Common syntax errors are:

• Unbalanced parentheses
• Missing commas
• Embedded blanks
• Redundant operands
• Missing parameters

After issuing this message, 5M2 continues to scan the statement
for errors. Since the statement is in error, any messages
issued later for this statement may be spurious.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check specified control statement for syntax
error.

Lx INVALID FOR yyyyyy

Explanation: x in the message text is replaced by the length
parameter number (3 or 4) ; yyyyyy is replaced by ADDROU'l or
OUTREC.

1. If ADDROUT is specified in the OPTION statement, the value
assigned to 13 in the RECORD statement must be equal to the
length of the disk address. Disk addresses are 10 bytes long
for SAM files and 5 bytes long for VSAM files.

2. If the OUTREC statement is in use, 13 and l~ have been
specified in the RECORD sta tement, and are not consistent
with the specification in the OUTREC statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action:

1. Check RECORD statement for invalid 13 value, or check OPTION
statement for unwanted ADDROUT option.

2. Check RECORD statement for invalid 13 or l~ values, or remove
unwanted OUTREC statement.

Note: Unless you change the xecord length after ADDROUT or
OUTREC (at E35), it is not necessary to specify 12 or 1 3 • SM2
will calculate the correct value for you.

SUM FIELD n LENGTH INVALID

Explanation: In the n-th field defined in a SUM statment, the
length is invalid for the format specified.

Appendix E. Program Messages 167

7D40I

7D41I

7D42I

168

System.Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the SUM statement for invalid
specification. The permitted lengths are:

r--------r---------------------~ I Format I Length I
~--------+---------------------~ I BI I 2, 4, or 8 bytes I
I FI I 2, 4, or 8 bytes I
I PD I 1-16 bytes I
I ZD I 1-18 bytes I
l ________ ~ ___ ~---------------__ ~

FIELD OR VALUE GT 8 CHAR - INCLUDE/OMIT

Explanation: A field or value has been detected in the INCLUDE
or OMIT statement which is greater than 8 characters. ('Ihis
restriction does not apply to character strings enclosed in
quotation marks.)

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check specified statement for field or value
greater than 8 characters.

L4GREATER THAN xx

Explanation: The minimum length specified or defaulted for input
records must not be greater than the specified or defaulted
maximum or modal lengths. xx is replaced by L1 or L5.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check RECORD statement for invalid l~, l~,
and/or ls values of the LENGTH parameter.

INVALID FORMAT COMBINATION IN REL COND n - INCLUDE/OMIT

Explanation: The n-th relational condition in the INCLUDE or
OMIT statement specifies a comparison which is invalid. Figure
6 (for field-to-field comparisons) and Figure 7 (for field-to­
constant comparisons) show the valid comparisons.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the COND parameter of the INCLUDE/OMIT
statement for invalid comparisons.

7D43I

7D44I

7D45I

7D46I

7D47I

INVALID LOGICAL OPER IN REL CONn n - INCLUDE/OMI'!

Explanation: The logical operator is invalid in the n-th
relational condition of the INCLUDE or OMIT statement. It can
be EQ, NE, GT, GE, LT, or LE.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for invalid
specifications.

TOO MANY xxxxxx KEYWORDS

Explanation: The maximum number of keywords that can be
specified in the INCLUDE or OMIT statement has been exceeded.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check INCLUDE/OMIT statement for too many
keyword operands.

INCLUDE/OMIT FIELD IN REL CONn n BEYOND xxxxxx

Explanation: The field in the n-th relational condition of the
statement is beyond byte 4092 of the record, or beyond the
length specified in the 12 value of the RECORD LENGTH parameter.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDEjOMIT statement for invalid
length or displacement value. Check the RECORD statement for
incorrect 12 value.

CONTROL FIELD n TOO LONG FOR TYPE

Explanation: A control field with packed decimal format (P~
exceeds 32 bytes. Control field number is represented by n.

System.Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check length and format of specified control
field on SORT or MERGE statement.

EXIT Enn NOT GIVEN FOR NONSTANDARD LABELS

Explanation: If nonstandard labels are specified in the OPTION
statement, exits Ell, E17, E31, and/or E37 must be specified in
the MODS statement. Enn is Ieplaced by the exit number.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Appendix E. Program Messages 169

70481

7D49!

70501

70511

170

Programmer Action: Check MODS statement for omitted exit and
OPTION statement for incorrect label specification.

INVALID FIELD POSITION IN RELCOND n - INCLUDE/OMIT

Explanation: The field position is invalid in the n-th
relational condition of the INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for valid
specificaticns.

CONTROL FIELD xx BEYOND RECORD LENGTH.

Explanation: A control field specified in the FIELDS parameter
of the SORT or MERGE sta tement extends beyond the end of the
record. The control field must not extend beyond 12 (or 1a when
ADDROUT'is specified). The control field number is represented
by xx.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check SORT or MERGE statements for
incorrectly specified control field displacement or length.
Check RECORD statements for incor~ctly specified or defaulted
record length.

ALTSEQ CANNOT BE USED WITH DATA=A

Explanation: An alternative sequence cannot be used with ASCII
data.

System Action: Sort/merge is terminated after phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Either change data type from DATA=A to
DATA=E, or remove ALTSEQ sta tement.

INVALID WORK DEVICE

Exp1anaticn: A sort work file has been allocated on an invalid
device, or more than two device types have been specified. The
rules for mixed devices and the valid device types described in
Chapter 1, IIntroduction l

, must be adhered to.

System Action: SM2 is terminated after phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check the device types allocated and correct
them.

7D521

7D531

7D541

xxxxxxx OPTION NOT VALID FOR yyyyyy DEVICE

Explanation: An option has been specified which is not
applicable to the I/O device being used. xxxxxxx in the message
text is replaced by one of the option names listed below; yyyy
is replaced by the word 'INPFIL' or 'OUTFIL'. ~he message will
be issued if any of the following parameters are specified:

1. OPEN/CLOSE for disk devices (INPFIL/OUTFIL statement) •

2. NOTPMK for disk output device ~UTFIL statemen~ •

3. VERIFY for tape output device (OPTION statement). Note that
the VERIFY option can have been made the default for your
installation. In that case you will need to specify NOVERIFY
in order to suppress this message.

4. ADOROUT for FBA or tape input device (OPTION statement) •

5. LABEL=U for disk devices (OPTION statement) •

6. NOTPMK if LABEL=U is not specified.

System Action: Sort/merge continues, ignoring the option
specified.

Programmer Action: Check application to see if it was set up
correctly before next run.

BLKSIZE TOO LARGE/S~ALL FOR xxxxxx DEVICE

Explanation: Permitted maximum/ffiinimum input and output block
sizes are:
r---------------r---------~_r-----------l
I Device I Max bytes I Min bytes I
r---------------T----~------r-----------~
I Tape (input) I 32767 I 1 I
1 Tape (output) I 32767 I 18 I
I 2311 I 3625 I 1 I
I 2314 or 2319 I 7294 I 1 I
I 3330 or 3333 I 13030 I 1 I
I 3340 or 3344 I 8368 I 1 I
I 3350 I 19069 I 1 I
I FBA I 32761 I 1 I L-______________ ~ ___________ L ___________ J

When mixed input is used the device with the largest capacity
determines the maximum allowable blocksize.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check INPFIL/OUTFIL for invalid block size
specification.

ALTSEQ STATEMENT IGNORED

Explanation: An ALTSEQ statement has been found, but no field
was specified as format AQ.

System Action: The ALTSEQ statement is ignored, and normal
processing continues.

Appendix E. Program Messages 171

7D55I

7D56I

7D57I

7D58I

7D59I

172

Programmer Action: Check SORT, MERGE, INCLUDE, and OMIT
statements for incorrect field format specification, or remove
unwanted ALTSEQ statement.

EXIT ADDRESS OUTSIDE PARTITION

Explanation: The loading information in the MODS statement is
invalid. The absolute loading address is outside the partition.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the loading information in the MODS
statement for invalid value and correct the absolute loading
address for the exit routine, or increase the SIZE parameter on
the EXEC card or STORAGE parameter in the OPTION statement.

TOTAL LENGTH OF CONTROL FIELDS > 256 BY'I·ES

Explanation: The total length of the SORT/MERGE control fields
fields must not exceed 256 bytes.

System.Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
aSSignments.

Programmer Action: Check the SORT or MERGE statement for invalid
length specification in the fields parameter.

INVALID INCLUDE/OMIT KEYWORD

Explanation: An invalid or duplicate keyword has been detected
in an INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check appropriate control statement for
invalid or du~licate keyword.

INCLUDE/OM'tT COND KEYWORD MISSING

Explanation: The COND keyword is missing from an INCLUDE or OMIT
statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments~

Programmer Action: Check appropriate control statement for
missing COND keyword.

GEN xxxxxxx ROUTINE GREATER THAN 4K BYTES

Explanation: The routines generated by SM2 to perform the record
selection function specified in an INCLUDE/OMIT statement or the
summary function specified in a SUM statement have a total
length greater than 4096 bytes.

7D601

7D611

7D621

7D631

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Reorganize the statement concerned to require
less generated code. Appendix B gives information on lengths of
generated code.

OUTREC FIELD CONTAINS ONLY RDW

Explanation: The OUTPUT recoId specified in the OUTREC statement
contains only the first four bytes. This is not allowed for
variable-length records, wheze the first four bytes are the ROW
(record descriptor word). At least one data byte must be
included from the fixed data part of the record.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Correct your OUTREC statement.

INPUT RECORD LENGTH OR BLKSIZE < 12 BYTES

Explanation: The input record length specified in the RECORD
statement, or BLKSIZE in the INPFIL statement, is smaller than
12 bytes for tape input. This may result in physical input
blocks which are less than 12 bytes, and if error recovery is
attempted such a block may be lost. This will not be discovered
by SM2.

System Action: Warning message; the program continues.

Programmer Action: None.

SPECIFIED Exx VALID ONLY FOR SAM FILE

Explanation: The specified exit is not allowed together with
VSAM file processing.

System Action: Informational message. SM2 ignores the exit.

Programmer Action: Check your input/output assignment for
correctness.

SPECIFIED E31 VALID ONLY WHEN CHKPT SPECIFIED

Explanation: If output is VSAM and E31 is specified, checkpoint
must also be specified.

System Action: Informational message. Sort/ffierge ignores exit
E31.

Programmer Action: Check whether E31 checkpointing is wanted.

Appendix E. Program Messages 173

7D64I

7D65I

7D66I

7D67I

17L1

OUTPUT RECORD LENGTH < 18 BYTES

Explanation: Output is on tape, and the output record length
specified in the RECORD statement LENGTH parameter is less than
18 bytes for fixed-length records (1 3) or 14 bytes for
variable-length record (14). Only When ADDROUT is specified can
13 be 5 or 10 bytes. When OUTREC is used for variable record
files the fixed portion of the output record must be at least 14
bytes.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check record length parameter or unit
assignment for correctness.

xx VALUE IS IGNORED FOR MERGE

Explanation: An invalid value has been specified in the RECORD
LENGTH parameter:

1. When EXIT and E32 are not specified: if 1. is not equal to
12 , the 12 value is overridden.

2. When EXIT and E32 ~ specified: if 1. is not equal to 1 2 ,

the 1~ value is overridden.

System Action: Merge continues ignoring the 1a/12 value.

Programmer Action: None.

Lx VALUE TOO LARGE FOR SORTINy

Explanation:

Lx is either L1 or L4, representing a RECORD LENGTH value. y is
the number of the SORTIN file (1-9).

1. When record TYPE=F, 1. must not be larger than the maximum
block size for the device specified by SORTINy.

2. When record TYPE=V, 14 + 4 must not be larger than the
maximum block size for the device specified by SORTINy.

3. When record TYPE=D, 14 + BUFOFF must not be larger than the
maximum block size for the device specified by SORTINy.

System Action: Terminate after Phase O.

Programmer Action: Correct the L1 or L4 value.

INVALID CI SIZE - xxxxxx

Explanation: xxxxxx in the message text is replaced by INPUT or
OUTPUT. The CI size for the file is not a multiple of 512; or,
if >8K bytes, is not a multiple of 2K bytes.

System Action: SM2 terminate s.

Programmer Action: Correct the CI size, probably incorrectly
specified in the output DLBL statement. If the file in error is
an input file you should check its labels for errors.

7D681 CI SIZE NOT SPECIFIED FOR FBA OUTPUT. (x) USED

7D691

7D701

7D711

Explanation: NO CISIZE parameter was specified on the DLBL
statement for an output FBA device. x is the size used.

System Action: SM2 continues, using the default value for the
parameter. This is the next largest multiple of 512 that will
hold the block size plus seven bytes. If the result is larger
than 8K bytes, it is rounded up to the next multiple of 2K
bytes.

Programmer Action: If the default is not satisfactory, add a
CISIZE parameter to the output DLBL statement.

BLOCK SIZE DOES NOT MATCH xxxxxxx CI SIZE

Explanation: The control interval size specified for file
xxxxxxx is incompatible with the block size you have specified
for the file. It should be at least the block size plus seven
bytes. However for mixed FBA and CKD input you can have a block
size on CKD files which is larger than the CI size for the FBA
files. The FBA and CKD block sizes must then be compatible in
the usual way, that is:

• Variable length records -- not greater than specified block
size (unless records are defined as spanned)

• Fixed-length records -- not greater than specified block
size, and a multiple of input record size

System Action: SM2 terminates.

Programmer Action: Change your file definitions so that they are
compatible.

ADDROUT INVALID WITH CIFORMAT INPUT

Explanation: ADD ROUT is not supported for FBA input files; nor
for VSAM managed SAM input files, unless accessed as VSAM.

System Action: The program terminates.

Programmer Action: Plan the job differently.

BYPASS IGNORED FOR FBA I/O ERRORS

Explanation: Self-explanatory.

System Action: The program continues. If there is an I/O error
on an FBA file the program will terminate.

Programmer Action: None.

Appendix E. Program Messages 175

70721

7E011

7E021

7E031

LABELS SET STANDARD FOR MANAGED xxxxxxx

Explanation: LABEL=U or LABEL=N was specified for files xxxxxxx
which is a VSAM managed SAM file. Since these files must be
standard labelled files the program ignores the LABEL parameter
and assumes that the labels are standard.

System Action: The program continues.

Programmer Action: Remove the LABEL specification from the
OPTION card for this file.

INVALID SIGN

Explanation: A control field format with separate sign (CS'!',
CSL, AST or ASL) has an invalid value in the sign byte. The
valid hexadecimal values for EBCDIC input are '4E' for + and
'60' for -. For ASCII input the valid-hexadecimal values are
'2B' for + and 'RD' for -

System Action: Sort/merge ter.minates after message 7J02Ihas
been printed.

Programmer Action: Check field format descriptions in the SORT
or MERGE statement.

xxxxxxxx HAS WRONG SVA STATUS

Explanation: The module xxxxxxxx must reside in the same place
as module ILUSOPT.

System Action: Sort/merge ter.minates.

Programmer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.

INPUT FILE TOO IARGE FOR IN-CORE SORT

Explanation: The input file is not exhausted but the record
storage area is full and no work file is specified.

System Action: SM2 terminates.

Programmer Action: Eithe~ allocate more main storage or specify
some work file space. See Appendix B.

7E041 IN-CORE SORT

7E051

176

Explanation: DIAG message. The complete input file was sorted
in main storage, without using work files.

System Action: None.

Programmer Action: None.

PH1: WORK BUFFERS PFIXED

Explanation: DIAG message. The work buffer area is fixed in
phase 1.

System Action: None.

7E061

7E211

7E221

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PH1: WORK BUFFERS NOT PFIXED

Explanation: DIAG message. The work buffer area is not fixed in
phase 1.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

I/O ERROR ON SORTWORK CCB=xx ••• x

Explanation: This message is generated when a permanent I/O
error occurs on a work file. xx ••• x is replaced by 16 bytes of
the Channel Control Block ~CB) or IORB.

System Action: SM2 terminates.

Programmer Action: None.

Operator Action: Rerun job with th~ DUMP option. If the error
persists call IBM.

INSUFFICIENT WORK SPACE

Explanation: All space on the work file is used and the input
file has not been exhausted.

System Action: Sort/merge te~inates after message 7J021 or
message 7J131 has been printed.

Programmer Action: Check the input file size against the record
count given in message 7J021 or message 7J13I. Rerun the sort
task with more work storage space allocated. See Appendix B for
details of work storage requirements.

7E801 - 7E841

7F021

Explanation: These are program error messages. Details of the
messages, special procedures, and recommended actions are listed
at the end of this appendix under the heading 'Program Error
Messages'.

xxxxxxxx HAS WRONG SVA STATUS

Explanation: The module xxxxxxxx (ILUSPARI or ILUSPAR) must
reside in the same place as module ILUSOPT.

System Action: SM2 terminates.

Programmer Action: Store ILUSPARI and ILUSPAR in the same place
as ILUSOPT, either all in or all out of the SVA.

Appendix E. Program Messages 177

{

PHl
7F03I PH2: TIME A: yy SEC, TIME B: zz SEC

1F04I

1F05I

1F07I

7F08I

178

PAR

Explanation: DIAG message. Time A (yy) is the difference in the
values returned by the GETIME macro at the start and end of the
Phase. Time B (zz) is one of the following:

• If Job Accounting is supported in your system, zz is the
difference in the values obtained at the start and end of the
Phase from the CPU time counter (ACCTCPUT field) in the Job
Accounting Interface Partition Table.

• If you do not have Job Accounting, zz is the difference in the
values returned at the start and end of the Phase by the
TTIMER macro.

SVstem Action: None.

Programmer Action: None.

PH1: xxx RECORD BLOCKS

Explanation: DIAG message. xxx record blocks were written in
Phase 1.

System Action: None.

Programmer Action. None.

PH2: xxx INPUT, yyy INDEX, zzz WRITE BACK BLOCKS

Explanation: DIAG message. Input to Phase 2 was xxx record
blocks read via an index of yyy index blocks. zzz write back
blocks were produced.

System Action: None.

Programmer Action. None.

PAR: WORK BUFFERS PFIXED

Explanation: DIAG message. The work buffer area is fixed in the
partitioning part of phase 2.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PAR: WORK BUFFERS NOT PFIXED

Explanation: DIAGmessage. The work buffer area is not fixed in
the partitioning part of phase 2.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

7F101

7F111

7F211

7F221

7F231

P H2: MERGE ORDER xx

Explanation: DIAG message. Actual Phase 2 merge order.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how to
use the DIAG messages.

PH3: MERGE ORDER xx

Explanation: DIAG message. Actual Phase 3 merge order.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how to
use the DIAG messages.

I/O ERROR ON SORTWORK CCB=xx ••• x

Explanation: This message is generated when a permanent I/O
error occurs on a work file. xx ••• x is replaced by 16 bytes of
the Channel Control Block (CCB) or IORB.

System Action: SM2 terminates.

Programmer Action: None.

Operator Action: Rerun the job with the DUMP option. If the
error persists call IBM.

INSUFFICIENT WORK SPACE

Explanation: All space on the work file is used. More space is
needed for index handling.

System Action: SM2 terminates.

Proqrammer Action: Rerun the sort task with more work storage
space allocated. See Appendix B for information on work storage
requirements.

PAR: xxx PHYSICAL, yyy LOGICAL STRINGS

Explanation: DIAG message. Input to the partitioning part of
Phase 2 was xxx physical strings and the output was yyy logical
strings. yyy=O means that logical strings were not built.

System Action: None.

Progfammer Action: None.

7F81 1-7F831

Explanation: These are program error messages. Details of the
messages, special procedures, and recommended actions are listed
at the end of this appendix under the heading 'Program Error
Messages'.

Appendix E. Program Messages 179

7G021

7G051

7G061

7G211

7G221

7G231

i80

xxxxxxxx HAS WRONG SVA STATUS

Explanation: Module xxxxxxxx must reside in the same place as
module ILUSOPT.

System Action: SM2 terminates.

Programmer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.

PH2: WORK BUFFERS PFIXED

Explanation: DIAG message. The work buffer area is fixed in
phase 2.

System Action: None.

Programmer"Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PH2: WORK BUFFERS NOT PFIXED

Explanation: DIAG message. The work buffer area is not fixed in
phase 2.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

I/O ERROR ON SORTWORK CCB=xx ••• x

Explanation: This message is genera ted when ~ permanent I/O
error occurs on a work file. xx ••• x is replaced by 16 bytes of
the Channel Control Block ~CB) or IORB.

System Action: Sort/merge terminates.

Programmer Action: None.

Operator Action: Rerun job with the DUMP option. If the error
persists call IBM.

INSUFFICIENT WORK SPACE

Explanation: All space on the work file is used and more space
is required.

System-Action: SM2 terminates after message 7J021 has been
printed.

Proqrammer Action: Rerun the sort task with more work storage
space allocated. See Appendix B for information on work storage
requirements.

PH2: ETTR SAVE LIST HAS xxx ENTRIES

Explanation: DIAG message. The rest of available storage forms
a list for DASD block addresses. xxx is the number of entries
in that list.

System Acticn: None

Programmer Action: None.

7G811-7G831

7H021

7H051

7H061

7H211

7H241

Explanation: These are program error messages. Details of the
messages, special procedures, and recommended actions are listed
at the end of this appendix under the heading 'Program Error
Messages'.

xxxxxxxx HAS WRONG SVA STATUS

Explanation: Module xxxxxxxx must reside in the same place as
module ILUSOPT.

System Action: SM2 terminates.

Programmer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.

PH3: WORK BUFFERS PFIXED

Explanation: DIAG message. The work buffer area is fixed in
phase 3.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PH3: WORK BUFFERS NOT PFIXED

Explanation: DIAG message. The work buffer area is not fixed in
phase 3.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

1/0 ERROR OR SORTWORK CCB=xxx ••• x

Explanation: This message is generated when a permanent I/O
error occurs on a work file. xx ••• x is replaced by 16 bytes of
the Channel Control Block ~CB) or IORB.

System Acticn: SM2 terminates.

Programmer Action: None.

Operator Action: Rerun the job with the DUMP option. If the
error persists call IBM.

PH3: xxx BYTES UNUSED

Explanation: DIAG message. xxx is the number of bytes of
available storage that remained unused in Phase 3.

Appendix E. Program Messages 181

System Action: None.

·Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

7H81 I-7H82I

7J01I

7J02I

7J03I

7J04I

182

Explanation: These are program error messages. Details of the
messages, special procedures, and recommended actions are listed
at end of this appendix under the heading 'Program Error
Messages'.

SORTIMERGE COMPLETE, INSERT v, DELETE x, IN y, OUT z

Explanation: SM2 completed successfully. v is the number of
records inserted at a program exit~ x is the number deleted at
an exit or by use of an INCLUDE, OMIT, or SUM statement, y the
number received for processing by SM2, and z the number sent to
output by SM2. This message will appear on SYSLOG, as well as
on the printer to which messages are routed.

Sy§tem Action: None.

Programmer Action: None.

SORTIMERGE ERROR, INSERT v, DELETE x, IN y, OUT z

Explanation: SM2 has terminated unsuccessfully. v is the number
of records· inserted at a program exit, x is the number deleted
at an exit or by use of an INCLUDE, OMI'!, or SUM statement, y
the number received for processing by SM2, and z the number sent
to output by SM2. This message will appear on SYSLOG, as well
as on the printer to which messages are routed.

System Action: None.

PrQgrammer Action: There will be another message g1v1ng the type
of condition which has caused failure. 'Ihe record counts in
this message can be used in conjunction with the other message
to pinpoint the cause of the problem.

SORTIMERGE COMPLETE, IN y, OUT z

Explanation: SM2 has completed successfully. y is the number of
records received for processing by 5M2, and z the number sent to
output by SM2. This message will appear on SYSLOG, as well as
on the printer to which messages are routed.

System Action: None.

Programmer Action: None.

VSAM CB ERROR (xx) AT aaaaaa

Explanation: A VSAM control block error has been detected. Error
code xx (decimal) was received from a SHOWCB, TESTCB, GENeB or
MODCB macro. The error was detected by 5M2 at address aaaaaa.

If aaaaaa is zero, sort/merge was unable to load the necessary
VSAM processor (possibly due to lack of virtual storage) •

7JOSI

7J061

7J071

7J081

System Action: SM2 terminates.

Programmer Action: If the program is called, check that it is
not overlaid by your code.

Look up the error code in the appropriate VSAM publication and
take the action implied by the nature of the error. Check that
the EXEC statement of the application specifies the SIZE
parameter, giving a value small enough to leave room in the
partition for VSAM. Check that REAL is not specified on the EXEC
statement. If necessary call IBM for help.

Note: This message is mainly diagnostic and should not normally
occur.

VSAM CLOSE ERROR yyyyyy (xx)

Explanation: A VSAM CLOSE module has returned an error code xx
(decimal) while trying to close file yyyyyy.

System Action: Sort/merge continues if possible.

Programmer Action: Look up the error code in the publication
DOS/yS Supervisor and I/O Macros or VSE/VSAM Messages and Codes,
and take the action implied by the nature of tbe error.

ERASE IN PROGRESS

Explanation: Work files are being erased as requested.

System Acticn: None.

Programmer Action: None.

I/O ERROR DURING ERASE

Explanation: An I/O error occurred during erase of a work file.

System Action: SM2 terminates without completely erasing the
work areas used.

Programmer Action: If work files must be erased take suitable
action.

PH3: xxx INPUT, yyy INDEX, zzz WRITE BACK BLOCKS

Explanation: DIAG message. Input to phase 3 was xxx record
blocks read via an index of yyy blocks. zzz write back blocks
were produced.

System Action: None.

Programme; Action: None.

Appendix E. Program Messages 183

7J091

7J101

7J111

7J121

18L1

{

PH1
PAR
PH3

TIME Ai yy SEC, TIME B: zz SEC

Explanation: DIAG message. Time A (yy) is the difference in the
values returned by the GETIME macro at the start and end of the
phase. Time B (zz) is one of the following:

• If Job Accounting is supported in your system, zz is the
difference in the values obtained at the start and end of the
phase from the CPU time counter (ACCTCPUT fiel~ in the Job
Accounting Interface Partition Table.

• If you do not have Job Accounting, zz is the difference in the
values returned at the start and end of the phase by the
TTIMER macro.

System Acticn: None.

Programmer Action: None.

RCD COUNT OFF. INSERT v, DELETE x, IN y, OUT z

Explanation: This message is generated if the number of recgrds
leaving SM2 does not equal the number of records which entered,
discounting any inserted or deleted. v is the number of records
inserted at a program exit, x is the number deleted at an exit
or by use of an INCLUDE, OMIT, or SUM statement, y the number
received for processing by SM2, and z the number sent to output
by SM2.

System Acticn: SM2 terminates.

Programmer Action: Check any routines at exits E15, E32, or E3S.
Rerun the job. If the error persists, call IBM.

SORTWK SPACE USED: xxx FBA BLOCKS

Explanation: Issued when work files are on FBA devices. xxx is
the number of blocks actually used.

System Action: None.

Programmer Action: None.

SORTWK SPACE USED: xxx TRACKS ON yyyy

Explanation: Issued when work files are on CKD devices. xxx is
the number of tracks actually used, and yyyy is the device type.

System Acticn: None.

Programmer Action: None.

7J13I

7J14I

7J15I

7K01I

7K02I

7K03I

SORTIMERGE ERROR, IN y, OUT z

Explanation: SM2 has terminated unsuccessfully because the
number of records sent to output is not the same as the number
of records which entered. This message will appear on SYSLOG,~
as well as on the printer to which messages are routed.)

System Action: SM2 termina te s. \I.. ;" l_
it} ~ \.,1

Proqraromer Action: Rerun the job. ~~
Operator Action: Rerun the job. If the error persistsfcall IBM.

SORT CAPACITY APPROX xxx RECORDS

Explanation: xxx is the approximate number of records that can
be sorted.

System Action: None.

ProqrarnrrerAction: None.

SORT CAPACITY APPROX xxx RECORDS OF MODAL LENGTH

Explanation: xxx is the a~proximate number of records that can
be sorted, on the assumption that SM2's figure for modal record
length is correct. Modal reco%d length is printed in message
7C24I.

System Aoticn: None.

Programmer Action: None.

NOT POSSIBLE TO REACH SRCLIB

Explanation: A source statement library cannot be found from
5M2, so no formatted dump can be produced.

System,ActiQn: None.

Programmer Action: Check your JCL for a missing ASSGN statement.

ILUCOMMA NOT FOUND IN SRCLIB

Explanation: The source statement library presently assigned
does not contain ILUCOMMA. No formatted dump can therefore be
produced.

System Action: None.

Proqrammer Action: See to it that ILUCOMMA is cataloged in this
source statement library before next running SM2 with the DU~P
option.

TRACE TABLE NOT USED

Explanation: No entries have been made in the trace table.

System Action: None.

Appendix E. Program Messages 185

7L011

7L021

7L031

7M01 I

7M021

186

Programmer Action: None.

INVALID SIGN

Explanation: A control field with a separate sign (format CS'I',
CSL, AST or ASL) has an invalid value in the s1gn byte. The
valid hexadecimal values for EBCDIC input are '4E' for. and
'60' for - For ASCII input the valid hexadecimal values are
'2B' for + and 'RD' for -.

System Action: SM2 terminates after message 7J021 has been
printed.

Programmer Action: Check field format descriptions in the SORT
or MERGE statement.

OUT OF SEQUENCE ON SORTIN n

Explanation: Records on the SORTINn input file to a merge are
out of sequence.

System Action: SM2 terminates after this message.

Programmer Action: Check the input file. Sort it if necessary.

xxxxxxxx HAS WRONG SVA STATUS

Explanation: Module xxxxxxxx must reside in the same place as
module ILUSOPT.

System Acticn: Sort/merge terminates.

Prograromer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.

I/O ERROR CCB/IORB = xx ••• x

Explanation: I/O error on a SAM file. In System/370 mode the
16-byte CCB is printed out; it includes the logical unit to
identify the file. In ECPS:VSE the first 16 bytes of the IORB
are printed. Details of the CCB and IORB can be found in the
Physical IOCS section of the DOSIYS Supervisor and I/O Macros
manual or the VSE/Advanced Functions Macro Reference.

System Action: Sort/merge terminates.

Programmer Action. None.

Operator Action: Rerun job with the DUMP option. If the error
persists call IBM.

I/O ERROR - BYPASS

Explanation: An I/O error was encountered on a SAM input data
set, but the BYPASS option was specified. This message is
printed only once.

System Action: The block in error is bypassed.

Programmer Action. None.

7M03I

7M04I

7M05I

WRONG LENGTH RECORD - xxxxxx, yyyyyy

Explanation: Either a recoxd or a block has been detected in the
input which is too long or too short for the current
application:

1. If xxxxxx is LOGICAL then this means that a wrong length
variable-length logical record was detected in the input. In
that case, yyyyyy is the size of the record in question.

2. If xxxxxx is the name of the file, then a wrong-length block
has been detected. Information concerning the length of the
incorrect block is displayed. in yyyyyy:

• For"a disk file, the length of the block in bytes, taken
from the count field of the block.

• For the tape with variable-length records, the length of
the block in bytes, taken from the RDW.

• For tape with fixed-length records:
- for a short block, the number of bytes read in

(calcula ted from the CCB count)
for a long block, the number of bytes read in (that is,
the defined block size), plus one.

• For VSAM managed SAM files
variable format, the length of the block in bytes taken
from the RDW

- fixed format, the length of the block in bytes returned
to sort by SAM, for example, block length for short
blocks. Too long blocks are truncated and not checked.

System Action: SM2 terminates.

Programmer Action.

1. Check the BLKSIZE parameter on the INPFIL statement.

2. Check the lengths specified on the RECORD statement. If
these parameters are correct check that the input file
corresponds to them.

3. In the case of a wrong-length record, also check any user
routines you have at program exit E15 for incorrect record
lengths.

WRONG LENGTH RECORD xxxxxx, yyyyyy

Explanation: As for 7M03I, but BYPASS was specified, and yyyyyy
is always the length of the block in error. This message is
printed only once for each file in which an error is detected.

System Action: The block is bypassed and SM2 continues.

Programmer Action. As for 7M03I.

OPEN ERROR - xxxxxx

Explanation: The file xxx xxx could not be opened.

System Actifn: Sort/merge terminates.

Appendix E. Program Messages 187

7M06I

7M07I

7M08I

7M09I

7M10I

188

Programmer Action: Check that the JCL is correct and that
necessary disks and tapes were mounted.

WRONG LENGTH RECORD EXIT Exx - ~

Explanation: A wrong-length variable-length record was inserted
at exit Exx. ~ is the length of the record in error.

System Action: 5M2 terminates.

Programmer Action: Recode the routine at exit Exx.

SOME LOGICAL RECORDS ARE LESS THAN MIN LENG~H

Explanation: A variable-length record shorter than the specified
or default minimum length has been found in the input.

System Action: SM2 continues.

Programmer Action: None.

xxxxxxxx HAS WRONG SVA STATUS

Explanation: The module xxxxxxxx must reside in the same place
as ILUSOPT.

System Action: SM2 terminates.

Programmer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.

RETURN CODE ERROR Exx

Explanation: The user routine at program exit Exx returned an
invalid code in the action word. The valid codes are 0, 4, 8,
12,16 decimal (0, 4, 8, C, 10 hexadecimal). Note that when
INPFIL or OUTFIL EXIT is specified or after input file EOF, the
acceptable return codes are xestricted. See the coding
instructions given in Chapter 5.

System Acticn: SM2 terminates.

Programmer Action: Recode the user routine correctly. See the
relevant exit coding instructions in Chapter 5 for details of
valid return codes.

TOO SHORT RECORD FOUND - %

Explanation: A variable-length input record was found which was
too short to contain all the sort control fields, all the SUM
fields specified, or all the major INCLUDE/OMIT fields. % is
the length of the record in error. ~ote, that a negative value
will be shown as the corresponding positive number) •

System Action: SM2 terminates.

Programmer Action: Either reorganize the input file to leave out
the short records, or remove the definition of the fields in
question, to allow these functions with the short records.
Remove any records with erroneous record descriptor words.

7M111

7M121

7M131

7M141

7M151

INVALID SIGN IN INCLUDE/OMIT INPUT

Explanation: This message is generated by the sortjIDerge when
the sign of a separately signed numeric field is not a valid
plus or minus.

System Action: SM2 terminates.

Programmer Action: Make sure format is correctly specified.
Make sure that all input records contain signed data in the
field specified in the SORT, MERGE, or INCLUDE/OMIT statement,
and that the data is correctly recorded in the input records.

Operator Response: Make certain that the correct input file is
mounted.

INPUT: REAL I/O NOT USED

Explanation: DIAG message. The optimization routine selected
real I/O but sufficient main storage could not be obtained at
the time buffers were to be allocated and page fixed. Virtual
I/O was used. This can happen if a user exit is fixing buffer
pages.

System Action: None.

Programmer Action: Increase real partition size or inspect user
routines that fix pages.

xxxxxx BUFFERS NOT PFIXED

Explanation: DIAG message in ECPS:VSE mode. SM2 was unable
permanently to fix the I/O areas for xxxxxx unput or output) ,
so fix lists had to be used

System Action: None.

Programmer Action: To improve performance allow more real or
page-fixable storage to the partition.

INPUT SEGMENTS IN WRONG ORDER xxxxxxx

Explanation: A first segment of a variable-length spanned record
was detected in the input where a continuation segment was
expected; or a continuation segment was detected where a first
segment was expected. xxxxxxx is replaced by the file name.

System Action: SM2 terminates.

Programmer Action: Check the input file, and the program
creating it.

SORTOUT FILE ON SYS(y) OVERLAPS WORK EX~ENT ON SYS(~

System Action: SM2 terminates.

Programmer Action: Respecify work or output extent.

Appendix E. Program Messages 189

7M161

7M171

7V011

7V021

190

xxxxxx BUFF~~S PFIXED

Explanation: DIAG message in ESPC:VSE mode. The xxxxxx buffers
(INPUT or OUTPUT) were page fixed.

System Action: SM2 continues normal processing.

Programmer Action: None.

SEGMENT LENGTH FIELD ERROR SEG=a, TOT=b, xxxxxxx

Explanation: An input segment was found with a length which
makes record length greater than the l~ value. a is the length
of the segment found; b is the total length of the deblocked
record including this segment; xxxxxxx is the file name.

System Action: 8M2 terminates.

Programmer Action: Check the program which produces the input
file.

VSAM OPEN ERROR yyyyyy (xx)

Explanation: File yyyyyy could not be opened. A VSAM OPEN
module has returned an error code xx ~ecimal) from the ACB.

System Action: SM2 terminates.

Programmer Action: Look up the error code in the publication
DOS/yS Supervisor and I/O Macros or VSEjVSAM Messages and Codes,
and take the action implied by the nature of the error. If the
error is a • warning' message the program can be made to ignore
it by using the TOL parameter on the INPFIL or OUTFIL statement
as appropriate.

VSAM CB ERROR (xx) AT aaaaaa

Explanation: AVSAM control block error has been detected.
Error code xx (decimal) was received from a SHOWCB, TES~CB,
GENCB, or MODCB macro. The error was detected by sort/merge at
address aaaaaa.

If aaaaaa is zero, sort/merge was unable to load the necessary
VSAM processor (possibly due to lack of virtual storage) •

System Action: SM2 terminates.

Programmer Action: If SM2 is called from another program, check
that it is not overlaid by your code. Look up the error code in
the publication DOSjVS Su~rvisor and I/O Macros or
VSE/VSAM Messages and CodesL and take the action implied by the
nature of the error. Check that the EXEC statement of the
application specifies the SIZE parameter, giving a value small
enough to leave room in the partition for VSAM. Check that REAL
is net specified on the EXEC statement. If necessary call IBM
for help.

Note: This message is mainly diagnostic and should not normally
occur.

7V031

7V041

7VOSI

7V071

VSAM INPUT ERROR yyyyyy t (xx)

Explanation: A VSAM CLOSE module has returned an error code xx
(decimal) fer input file yyyyyy, the error was of type t (P for
physical, L for logical). xx is the RPL FDBR code.

System Action: SM2 terminates.

Programmer Action: Look up the error code in the publication
OOS(VS SUJX!rvisor andI/O Macros or VSE/VSAM Messages and Co<ie,.
and take the action implied by the nature of the error.

VSAM OUTPUT E:RROR t (xx)

Explanation: A VSAM PUT module has returned an error code xx
(decimal) for sort output file; the error was of type t (P for
physical, L for logical) •

System Action: SM2 terminates.

Programmer Action: Look up the error code in the publication
DOS/ySSupervisor and IIO Macros or VSE/VSAM Messages and Codes,
and take the action implied by the nature of the error.

VSAM CLOSE ERROR yyyyyy (xx)

Explanation: A VSAM CLOSE module has returned an error code xx
(decimal) while trying to close file yyyyyy.

System Action: SM2 continues if possible.

Programmer Action: Leok up the error code in the publication
DOSJYS Supervisor and IIO Macros or VSEJYSAM Messages and Code§,
and take the action implied by the nature of the error.

VSAM LOAD ERROR

Explanation: VSAM could not load its modules.

System Action: SM2 terminates.

Programmer Action: Make sure you have a GETVIS area and enough
virtual storage for VSAM. Ensure that REAL is not specified on
the EXEC statement.

Appendix E. Program Messages 191

Program Error Messages

SM2 has some 'built-in' self diagnostic code which checks certain
parameters while the ~rogram is executing. If one of these checks fails,
a program error message is ~roduced. On the appearance of one of these
messages you should inform your system programmer and rerun your job
with the DUMP option s~cified. If the program error recurs call your
IBM representative and provide him or her with the dump obtained.
possible temporary fixes to bypass the problem are suggested with some
of the error messages listed below.

7E80I

7E81I

7E82I

7E83I

192

CODE OVERLAID BY BUFFERS

Explanation: A code overlay has occurred caused by an error in
the optimization calculation.

System Action: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

ABNORMAL RETURN FROM REALAD

Explanation: An unacceptable return code was received from the
REALAD macro when translating channel program address to
absolute form.

System Action: 5M2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

Possible Bypass: The problem can probably be overcome
temporarily by rerunning the job with the VIRT option specified.

PFREE ERROR

Explanation: An unacceptable return code was received from the
PFREE macro.

System Action: SM2 termina tes.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

Possible BYFass: The problem can probably be overcome
temporarily by rerunning the job with the VIRT option specified.

ABNORMAL CODE OVERLAY • RSA '

Explanation: There is not enough space in the R5A; ~ecord
storage area) ; fewer than three records can be stored.

System Action: 5M2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

7G831

7H811

7H821

System Action: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

possible Bypass: Try increasing the amount of storage allocated
to 5M2 by altering the SIZEpa~meter on the EXEC statement.

MODULE OVERIAID BY TABLES

Explanation: A code overlay has occurred caused by an error in
the optimization calculation.

System Action: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

ABNORMAL RETURN FROM REALAD

Explanation: An unacceptable return code was received from the
REALAD macro when translating channel program address to
absolute form.

System Action: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative,4.

WRITE BACK LIST FULL

Explanation: An abnormally large number of write back blocks has
been created in Phase 3. There are too many for the program to
handle.

System Acticn: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

Appendix E: Program Messages 193

absolute addresses 26
ADDROUT option

A parameter 126
alligned ~arameter, in OUTREC 44
D parameter 127
format of output records 54
in option statement 53
n parameter 126
specifications 53
used with INPFIL, EXIT 54

ALL parameter, OPTION statement 50,126
altering records 78,95-97
alternative collating sequence 9 (see ALTSEQ)
alternative work units (see ALTWK)
ALTSEQ

COCE operand 42
control staterr.ent 42
examples 43
prograrrming notes 42
using when in to ASCII 126

ALTWK option 126
ANALYZE control staterrent 49,124
ASCII

l::locksize 28
collating sequence 9
data input 29

ASSGN 58
alternative sequence 67

bil::liography iii,iv
blanks

as delimiters 108-110
as padding 39
eml::edded 110
in continuation cards 109

BLKSIZE operand
in INPFIL statement 28
in OUTFIL statement 32

braces 111
brackets 111
branch table for ~rcgram exits 80
BUFOFF option

in INPFIL statement 29
in OUTFIL statement 33

BYPASS option in INPFIL statement 28

CALCAREA parameter 126
checking

for record length at E15
for record length at E35

77
78

checkpoint
file 19-20
program exits 89

checkpointing 76

Index

check~oint/restart and performance 104-105
CHKPT statement 126
CKPT 19,126
CODE operand in ALTSEQ statement 42
collating sequences 9
comma in control statement format 108-111
comments fields, format of 109
comparison operators 36
comparison with other sort/merge

prograrrs 75
compatil::ility (see conversion aids)
COND keyword in INCLUDE/OMIT
statement 34-40

configuration, machine 6
contiguous control fields 8
continuation cards 109
continuation column, format of 107 ~
control fields 8,9

defined by MERGE 21
defined l::y SORT 18

control statement
ALTSEQ 40
format 98,18
images 57
INCLUDE/OMIT 35
INPFIL 28
MERGE 21
MODS 26
OPTION 50
OUTFIL 32
OUTREC 44
RECORD 23
restrictions 110
SORT 18
SUM 47

conversion 127
aids 125,126
from DOS disk sort/merge 129
from DOS/TOS tape sort/merge
from Model 20,disk sort/rrerge
from System/3 disk sort 132
from unrelated program 129

converting OCL statements 134
converting sequence specification

II

128
129

133

D parameter in ADDROUT
data file organization
data formats ~errritted
DATA operand in INPFIL
decimal numl::er format
default values

option 126
9

in INPFIL statement
in OPTION statement
in OUTFIL statement

9
statement 29
37

28
50
32

Index 195

default values (cant.)
in RECORD statement 23
in SORT staterrent 18

defining files 59
DELELANK parameter 126

generating routines 124
deleting records

at E15 77
at E32 77
at E35 78

DIAG option
in OPTION statement 53
performance 102
using 105

differences from Release 1 of 5746-SM2 2
differences from Release 2 cf 5746-SM2 2
differences retween SM/2 and similar

programs 126
differences from 5746-SM1 2
DLEL statement 58
DOS disk sort/merge program

control cards 129
conversion from 129
user exits 131

DOSITOS tape sort/merge frogram
control cards 128
conversion from 130
user exits 130

DUMP option in OPTION statement 53

EECtIC 18
ENt statement 126
ERASE command in OPTION staterrent 53
error messages (see messages)
ellipses 111
ERASE and performance 105
equal sign 111
EQUALS

in SORT 19
EStS 32
EXEC statement 58
executing the program 63
EXIT in MODS 26
exits in use for file lacel handling 76
exit lists 78
EXIT option

in INPFIL 28
in OUTFIL 32

EXTENT 56
E11 81-8'4
E15 85

coding example 86-74
E17 88
E18 88
E31 89

coding example 92
E32 93

coding example 94-95
E35 95

coding example 97
E37 98

coding exarople 92
E38 98-99
E39 99-100

196

II
F parameter in RECORD staterrent 23
FIELtS operand

in MERGE statement 21
in OUTREC statement 44
in SORT statement 18
in SUM statement 47

field
comment 109
control (see control fields)
delimiters 110
operand 108

file
checkpoint 19
names 50
organization 4
reading input 75
file names allocated ry default 62

FILES operand
in MERGE 21
in SORT 18

FILNM in OPTION statereent 52
floating point data 21
FORMAT operand

in INCLUDE/OMIT statement 41
in MERGE statement 21
in SORT statement 18
in SUM statement 47

functions not supported 125

general methcd cf passing parameters 81

m
handling input and cutput file labels 75
hexadecimal string format 39

D
INCLUDE/OMIT statement 35

character string format 38
corrpariscn operators 37
COND parameter 35
decimal numcer format 37
examples 41
FORMAT parameter 40
hexadecimal string format 39
logic tacle 40
padding in 39
prograrrming nctes 40
relational ccnditicn 35
self-defining terms in 37
truncation 39

incompatibilities 127
independent sort prcgrarr, example of 63

initialization ~hase 72
initiating

SM/2 from an assembler ~rogram 64
SM/2 sam~le coding 69

initiating program execution 63
by job control statement 63
exarn~lesof 63-71
from an executing ~rogram 64

INPFIL control statement 28
BLKSIZE o~erand 28
BUFOF-F operand 29
BYPASS operand 28
CLOSE operand 29
DATA operand 29
exam~les 31
EX IT operand 28
NORWD o~tion 29
OPEN operand 29
programming notes 30
RWD option 29
TOL operand 29
UNLD option 29
VOLUME operand 29
VSAM operand 29

input file
defined by MERGE 21
defined by SORT 19
deleting records from 35
device sharing 6
direct access devices 6
lengths (see RECORD control statement)
multifile 83
multivolume 83
reading the 83

input/output
error checking 127
files 2,5
pooling 6
file label handling 75
files and performance 61-62

inserting records
at E15 77
at E32 77
at E35 78

internal record length, size of 124,127

D
job control statements 58

examples of 58
JOB statement 58

KEYLEN ~arameter 126
KSDS option 32 ..
labels

direct access 7
exam~les of processing 82

labels (cant.)
header 83,84
nonstandard 7-8
standard 7
tape 8
trailer 7

label field, format of 108
LBLTYP statement 58
LENGTH operand in RECORD statement 23
linking user-written routines 1
loading and linking 79
loading information (MODS statement) 26
logical IOCS, using 71
logical record length 23
logical table for INCLUDE/OMIT 40
lower-case characters 111

machine configuration 6-7
main storage

and performance 101
default values 51
obtaining dump of 53

manuals relating to SM2 iii
major control field 9
merge

fin-al merge 75
input 72

MERGE centrol statement 21
examt:le 22
FIELCS operand 21
FILES operand 21
FORMAT operand 21
programming notes 21

merge-only input 93-95
messages

different types of 138
general messages 140
program error messages 192
when and where produced 139

minimum record size 23
minor control fields 8
model 20 disk sort/merge

control statements 129
conversion from 130

modifying the program 72
modifying records

. at E15 77
at E32 77
at E35 78

MOCS control statement 26
exam~les 27
format of 26
loading information 26
parameters and o~tions 26
phase name 26
PHn operand 26
specifications of exits 26

multifile
example 60
input 4
output 59
unlateled 7

multiple disk work file 60

Index 197

NODUMP option in OPTION 53
non contiguous control fields 9
non standard direct access labels 7
non standard tape labels 8
non supported functions 126
NORWD

in INPFIL statement 29
in OUTFIL statement 33

NOTPMK
in OUTFIL statemen~ 33

OCL statements, converting from 134
OMIT statement (see INCLUDE/OMIT)
OPEN operand

in INPFIL 29
in OUTFIL 33

operand field 108
operation field 108
OPTION control statement 50

ADrROUT operand 54
ALL option 50
CRITICAL option 50
rIAG operand 53
rUMP operand 53
ERASE oI;erand 53
examI;les 56-57
FILNM oI;erand 52
LAEEL operand 52
LOG option 50
LST option 50
NOCUMP oI;erand 53
NONE option 50
PRINT oI;erand 50,
progra~ming notes 55-56
ROUTE oI;erand 50
SORT IN operand 53
SORTOUT oI;erand 52
SORTWK operand 53
STORAGE oI;erand 51
VERIFY oI;erand 53
VIRT option 51

ORDER parameter 126
organization of I;rogram 72
OUTFIL control statement 32

198

BLKSIZE oI;erand 32
EUFOFF operand 33
CLOSE oI;erand 33
ESCS option 32
examI;les 34
EXIT operand 32
KSCS option 32
NORWC o{:tion 33
NOTPMK operand 33
OPEN operand 33
programming notes 33
REUSE o{:erand 33
RRDS option 32
RWD option 33
TOL'operand 33
UNLD option 33

output file
addresses as cutput (see ADDROUT option)
clocksize (see BLKSIZE option)
checking of labels 52
defined by JCL statements 59
defined by OUTFIL statement 32
deleting records from 78
devices assigned tc 6
inserting records in 78
multivolume 59
rewinding the 33
sequence checking 95

OUTREC statement 44
examI;les 45
FIELDS parameter 44
programming nctes 45

padding and truncation 39
parameter list 66
parameter and control statement format 66
parentheses 110,111
passing parameters, general method 81
passing control to SM2 79
passwords 78
passwords for VSAM files 8
permissible field-to field comparisons 37
permissible field-to constant

comparisons 38
permitted data formats 135
performance

checkpoint/restart 104
DIAG 105
effect of the environment 101
ERASE 105
INCLUDE/OMIT 104
input/outI;ut files 103
main storage 101
OUTREC 104
VERIFY 105
work storage 102

phase
0, initialization 72
1, sort 72
2, merge strings 74
3, final merge 75

PEn operand in MODS 26
pooling input and output with work
files 126,127

PRESEQ 126
PRINT option in OPTION statement 50,126
program

control staterrents 13,9
control staterrents, summary 15,16
flow and exits, overview 73
modification 11

reading the input file
merge 93
sort 85

records
altering 77
defined by RECORD 23
deleting 77
including 35
input 35
inserting in input 77,85
inserting in out~ut 78,96
lengths 23
omitting 35

RECORC control statement 23
examples of 22-23
format of 23
LENGTH operand 23

fixed-length records 23
variatle-length records 23

parameters 23
programming notes 24
TYPE operand 23

record length 23,24
registers, contents of 64
registers to pass information, use of 80
relational condition 35
relational condition format 36
relocatable routines 99
restrictions on input files 5
return codes

E15 85
E18 88
E31 92
E32 93
E35 96

RWC parameter
in INPFIL statement 29
in OUTFIL statement 33

SAM files
read errors 126
unmanaged 2,54
VSAM managed 1,3,5,6,29

example of 121
when specifying ADDROUT
when specifying BLKSIZE
when s~ecifying BYPASS
when specifying EXTENT

write errors 126
self~defining terms 37
sequence

checking 95-96
collating 9
control fields 9

54
30,32,34

30
61

defining for merge 21
defining for sort 18
specification converting 133

SIZE 123
sort

capacity 72
input (see in~ut files)
output (see cut put files)
specifications 4

SORT control statement 18
CKPT operand 19
exam~les 22
EQUALS 19
FIELCS operand 18
FILES operand 19
FORMAT operand 19
prograreming notes 21
WORK operand 19

SORTIN in OPTION statement 53
SORTOUT in OPTION statement 52
SORTWK in OPTION 53
spanned recdras . S
special functions, use of 123
specification of record length 103
specifying control fields 8
standard labels 7
statement format 108
STORAGE in OPTION statement 51
subscripts 111
subtasking 63
SUM control staterrent 47

exam~le 48
FIELDS operand 47
FORMAT operand 47
performance 104
programming notes 47

SVA 101
System/3 disk sort, converting from 132
SYSOOO-SYS015 84

a
tape

file positioning, INPFIL statement
file positioning, OUTFIL statement
input 6
intermediate storage 7
latels 7-8
mark 7
work files 126,127
unlateled 7

TLBL 58
TOL parameter

in INPFIL statement 29
in OUTFIL statement 33

TP 126
TYPE operand in RECORD statement 23
trailer tapes 83
trUncation 39

III
unlabeled tapes 7
UNLD parameter

in INPFIL statement 29
in OUTFIL statement 33

unmanaged SAM files 2,54
user-written routines

absolute addresses 26
tranch tables for 80
loading and linking to 79
performance 105

use of ~rogram exits 74,75

29
33

Index 199

VERIFY operand in OPTION statement 53
VIRT parameter in OPTION statement 51
VOLUME parameter in INPFIL statement 28
VSAM

200

in INPFIL statement 28
I/O error handling 126
JCL example 118
managed SAM files 1,29,3,5,28,34,54,58
roodify processing 75
processing files 78
TOL cption 29
using standard linkage 89

workfile statements 59
work stcrage 102

devices 7
for tape units 7
perfcrmance 102

SC33-4044-2

=---= =® - - ---- -- ..-.--- ----- - - ----------- --.-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown. N.Y .• U.S.A. 10591

IBM World Trade Europe/Middle East/ Africa Corporation
360 Hamilton Avenue. White Plains. N.Y .• U.S.A. 10601

o o
~
en
~

~
CD

cO
CD

<
CD ..,
en c)"
::::I
"->
"0 ..,

c8 ..,
I»

3
i
"'\.
en
Q
c
a:
CD

"T1

I
en
eN
o
W
eN

o
o
~ sa

.: E c: ...
Q) 0 E ...
Q.en
':; :c
cr'"
Q)iij
Q)Q)
c: en
';; 0
o Q)
enQ.
=co CO ...

E-o
~ E
~ E E ::l o Q)
::l Q)
co.s::.
.s::.O
'§ 0
en Q)

E ,~
.!? ';;;
~ c:
O·Q)
... en
Q.Q)
Q) ...
en ::l
::l en

B ~
c: Q.
co Q)
U en
en ::l
Q) Q)

0.:3
CO Q)

ciia:

CD o z

DOS/VS Sort/Merge Version 2
Programmer's Guide

SC33-4044-2

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed, Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality,

List TNLs here:

If you have applied any technical newsletters (TN Ls) to this book, please list them here:

UstTNL ________________ __

Previous TNL ________ _

Previous TN L -----------

Fold on two lines, tape, and mail. No postage necessary if mailed in 'the U.S.A, (Elsewhere,
any IBM ,representative will be happy to forward your comments.) Thank you for your
cooperation,

SC33-4044-2

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

I
n
S.
~
."
o
0:
»
0"
::J
\C

r
5'
/II

I
I
I
I
1
I
1

I
I
I
I
I
I
I
i

, ... 1

I "I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N.Y.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I

I
I
I
I
I
I
1
1
1
I
I .. · .. ················ .. ···· .. · .. ···· .. ···· .. · .. ······· .. ····1

Fold and tape

==-= =® - -------- ---- - ------------
-~-.-

International Business Machines Corporation
Data Processing Division

Please Do Not Staple

1133 Westchester Avenue. White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant. Route 9. North Tarrytown. N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains, N.Y .. U.S.A. 10601

Fold and tape
I
I
I
1
I
1

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'T1

(j)

z
?
en
to)
-...J
o
W
to)

o
o en -<
~

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203

