SC33-4044-2

DOS/VS Sort/Merge
Version 2
Program Product Programmer’s Guide

Program Number 5746-SM2

Third Edition (November 1979)

This is a major edition of, and obsoletes, SC33-4044-1. Changes and
additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition applies to Release 3, Modification 0, of the DOS/VS
Sort/Merge Versicn 2 Program Product (Program Number 5746-SM2) and to
all subsequent modifications until otherwise indicated in new editions
or Technical Newsletters. Changes are continually made to the
information herein; before using this publicaticn in connection with the
operation of IBM systems, ccnsult the IBM System/370 Bibliography,
GC20-0001, for the editions that are applicable and current. It is
possible that this material may contain references to, or information
about, IBM products (machines and programs) , programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for
copies of IBM publications should be made to your IBM representative or
to the branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, P.0. Box 50020, Programming Publishing, San Jose,
California 95150, U.S.A. 1IBM may use or distribute any of the
information you supply in any way it believes arpropriate without
incurring any obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright International Business Machines Corgoration, 1977, 1979

ii

Preface

Who This Manual is For

This manual is for programmers who wish to sort or merge records using
the DOS/VS Sort/Merge Version 2 Program Product, 5746-SM2. To sort
records is to arrange them in a given order. To merge records is to
create one sorted sequence from twc or more previously sorted sequences.

To use this manual, you should already have a basic understanding of
DOS/VS and its jcb control language (JCL); in order to take advantage of
all the options and facilities of the sort/merge program, you may need
to refer to the manuals listed at the end of this preface.

Using this manual, you will be able to prepare all the input necessary
to perform a sort or merge. You will also be able to link your own
routines (written in assembler language) to the sort/merge program to
| perform such services as reading input from and writing output to
| non-supported file types, handling user labels, processing I/0 errors,
and providing VSAM rasswords.

The functions of including and/or omitting certain records, specifying
an alternative collating sequence, reformatting the records for output,
and summarizing records, can be rerformed by means of user-specified
control statements. It is not necessary to write a routine of your own
to perform these functions.

References You May Need

DOS/VS Sort/Merge Version 2 Installation Reference Manual, Order No.
SC33-4045

| If You are Running under DOS/VS Release 33 or 34

DOS/VS Data Management Guide, Order No. GC33-5372
DOS/VS Supervisor and I/0 Macros, Order No. GC33-5373
DOS/VS System Generation, Order No. GC33-5377
Introduction to DOS/VS, Order No. GC33-5370
DOS/VS System Management Guide, Order No. GC33-5371
DOS/VS System Contrcl Statements, Order No. GC33-5376
DOS/VS System Utilities Reference, Order No. GC33-5381
| DOS/VS Utilities: Access Method Services, Order No. GC33-5382

| If You are Running under VSE/Advanced Functions

| Using VSE/VSAM Commands and Macros, Order No. SC24-5144

| Using the VSE/VSAM Space Management, Order No. SC24-5192
| Introduction to DOS/VSE, GC33-6108
|
|

VSE/VSAM Messages and Codes, SC24-5146
VSE/VSAM Documentation Subset, SC24-5191

iii

VSE/VSAM General Information, GC24-5141
VSE/Advanced

VSE/Advanced

Functi

Funct]

LCNS
LONS

Data Management Concepts, GC24-5209
Tape Labels, SC24-5212

VSE/AG
VSE/Ad

lvanced

Functions

DASD lLabels, SC24-5213

lvanced

Funct]

LCNnS

System Genexation, SC24-6096

VSE/Ad

VSE/Ad

vanced
'vanced

Funct]

LONnsS

System Management Guide, SC33-6094

Functi

LONS

System Control Statements, SC33-6095

VSE/Advanced

Funct]

Lons

Macro Reference, SC24-5211

VSE/Advanced

Functions

Macro User's Guide, SC24-5210

iv

CHAPTER 1. INTRODUCTION. « « « « +» =
Wwhat the Program Can Do. . .

Differences from Release 2 of 5746-SM2
Differences from Release 1 of 5746-SM2

Differences From 5746-SM1.
Input/Output Characteristics .
Input/Output Files
VSAM Managed SAM Files . . .
Records and Data Format. . . .
Minimum Record Length.
Maximum Block Size and Record Leng
Input/Output Devices . . .
Input/Output Pooling . .
Input Device Sharing . .
Work Storage Devices . .
Label Processing . . .
Passwords for VSAM F11es -
Control Fields and Collating
Control Fields . . « « . .
Collating Sequences. . . . « . .
Alternative Collating Sequence
Using The Program. . « « « « « « «
Program Control Statements . .
Job Control Statements (JCL) . .
Initiating the Prcgram
Program Modification . . .

¢ & ¢ 0
o o o ¢ ¢

s BN o s o o

LI L L]

Sequence

-
-
-
-
.

-
S

[I 2 A Y)

[. * . . . L[] [. [[[] . o o *

¢ o s o

¢ & 0 L] . L]

LI Y S T

L] L] L 3 . . . [] . L *

* » [. [[] [¢« o & [] ¢« o 0 [] . L L]

L] . L L]

L I Y Y Y D R S T S 2 T T TR SR S 5

. [[} * L . L]

L] . » L [. L * o * L] * L] [L

Relationship to DOS/VS and VSE/Advanced Functlons.

CHAPTER 2. PROGRAM CONTROL STATEMENTS.

The Statements . « o« « « o « o o =« =
Control Statement Format . . « - « «
SORT Control Statement . « « « « « &
MERGE Contrcl Statement. . « .« « « .

Sort/Merge Statement Programming Note

Sort/Merge Statement Examrles. . .
RECORD Control Statement
Record Statement Programming Notes
RECORD Statement Examples.
MODS Control Statement
MODS Statement Programming Notes
MODS Statement Examples.
INPFIL Control Statement
INPFIL Statement Programming Notes
INPFIL Statement Examples.
OUTFIL Control Statement
OUTFIL Statement Programming Notes
OUTFIL Statement Examples.
INCLUDE/OMIT Control Statement .
COND Parameter <« « « «
Relational Condition
Relational Condition Format. .
FORMAT Operand . « « « « o« .« o
INCLUDE/OMIT Statement Programmlng
INCLUDE/OMIT Statement Examples. .
ALTSEQ Contrecl Statement
ALTSEQ Statement Programming Notes
ALTSEQ Statement Examples.
OUTREC Contrel Statement
OUTREC Statement Programming Notes
OUTREC Statement Examples.

-

.

L R T Y S T R - A R A S A I

[e]

tltoocogoooolooc'taoontc.ao-mccooq

MNe o ¢ & o o ¢ o ¢ & ¢ ¢ 0 6 0 & ¢ 8 & & & o o o

LI I N

L S Y N 2)

[L .

& ¢ & ¢ o & s ¢ s

e 8 ¥ ¢ 0 s 0

s & 0 e o & & 0 . . [] L[] ¢ » L L . [L] .

[] . . ¢ & 0 . L

.

¢ 0 & & 5 ¥ & 6 ¢ & & s

. L * 0 . * @ .

L 4

[] L] L L L) . L]

. L . . L[] L) . « 0 L] [[}

(] L) L 4 . [L} *« o & L]

L . L] . [L] [] * & . * 0 .

e @ ¢ ¢ & ¢ ¢ o 0

.

¢« ¢ 5 & & & 0 0 8 5 0 ¢ 6 0 e 0

[* & & L * s . . L L} L] * « & . L[] .

s 9 . e 0

. L] [} . * ¢ ¢ . [] L] L . . .

¢ o & 0

L] [[. [L3 o o @ L . ¢ 0 . . . [. L]

L] [] . [] (]

¢ o 0 2 & ¢ & 0 0

. L) . . [. ¢« & & *« & s 8 . . . [[L . . L S . . .

L] . . [. L[4 ¢ 8 . 0 [[* » .

.

LI I I D D D DR TR R I Y D Y R Y SR SR SR SR Y R 3

L . . [] *« & 0 ¢ & & & 0 . L 3 [[L] .

[] [. . o @ ¢« o & s 0 & ” o 0

.

Contents

¢ & » L] . L] * o [L2) [[] o o L] . [] v 0 . L]

. * o . . *« o 0 . ¢ & @ [[] [] L] . L] [. *« & @ . . . L] ¢ s L[] .

[[. L ¢ & . [} .

LI * L[] ¢ o [} . .« & 0 . [} L]

® & . . . * @] *« o [[] L]

. [L[] [. . . * * @ [] ¢ &

. [. (3 ¢ & .

L L2] . . . « o 0 . L) « o 0 []

. ¢ & 0 L * & ¢ 0 . [

vy & e @ . * o L] . *« & 0

¢ o & 2 ¢ 0

. [] . . ¢ & 0 * 0 * ¢ 0 .

e & & L] [3 L) * ¢ ¢ . * & & & & . 0 . L] *« & 0 ¢« & & 0 [} . . .

. L[] [3 [* ¢ & ¢ L] L]

[
-t d b
CQOOVWWOWRNO~NNOAOANAVNWWWNNNNN =

. L] L2
- d d
-t b b

L] L] [3 [] []
N med od wd b
- E W

I
[SEVESESESENESY N
NOOEFWN -

.28

.
w
o

.31

DR TS
Wwww
NEWN

.35
.35
.36
40
.40
.41
.42
42
.43
Lub
.45
.u5

SUM Control Statement. . . . « « « .
SUM Statement Programming Notes. .
SUM Statement Examples . . « « + «

ANALYZE Control Statement.

OPTION Controcl Statement
OPTION Statement Programming Notes
OPTION Statement Examples.

CHAPTER 3. JOB CONTROL STATEMENTS AND COMMANDS

Defining Files . . . « & &« « & &

Input File Statements. . « « . . .
Qutput File Statements
Work File Statements « . .

Under DOS/VS Release 33 and 34 .
Under DOS/VSE Advanced Functions

CHAPTER 4. EXECUTING THE PROGRAM . .
Independent Program. . . e = =
In1t1at1ng From an Assembler Program
Interface Requirements . .
Subtasking . . <« . « . . .
Passing Parameters
The Address List
Control Statement Images . . .
User Routines at Program Exits
Return Codes: Successful and Unsuc
Alternative Sequence
Sample Coding. « « -« ¢« « < o & .

L3 -

tomoootro

CHAPTER 5. MODIFYING THE PROGRAM

How The Program Is Organized
Phase 0: Initialization. .
Phase 1: Sort.
Phase 2: Merge Strings . .
Phase 3: Final Merge . . .

Uses of Program Exits. . .

" s b & o @
R S Y
« ¢ & ¢ ¢ &

Comparison with Other Sort/Merge Progra
Handling Input and Qutput File Labels.

INPFIL or OUTFIL EXIT Specified. .
Checkpointing. . . &« ¢ o 4o « o o o &«

Modifying, Deleting, and Inserting Record

At Sort Input (B15. . « . . .
At Merge Input (E32)
At Output (E35). . .
Processing VSAM Files.
Passwords.
Exit Lists
Relocatable Routines Are Be
Loading and Linking to User R
Loading Your Routines. . .
Passing Control.
Use of Registers to Pass Informat
E11 Coding Instructions. . . .

. L] « o &

-
-
°
L]
.
.
-

ine

[] . rfl [¢« & & 9
()

4 0 & B & 0 8 ¢ ¢ 0 6 s o Inps e s 0 e

Examples of Label Processing . .
E15 Coding Instructions. . « « + .
E17 Coding Instructions.
E18 Coding Instructions. . « . . .
E31 Coding Instructions.
E32 Coding Instructions.
E35 Coding Instructions. . . .+ « .
E37 Coding Instructions. . . + . .
E38 Coding Instructions.
E39 Coding Instructions.

CHAPTER 6. FACTORS OF IMPORTANCE FOR

(o]
=

- - - - - -
» - . L] - .
- - L) - - -
- - - - L] -
- - L[] - .]
« o o o o =
- - - . - -
.
- - L] - - -
- - - - - -
- * - - L] -
e o a o o @
- L] - L] L] -
- . - L] - -
- - - - . -
- - - L] - -
. ° - - - L)
- - - - - -
L] - - - L] -
- L) - L) * -
- - - - - -
e o o o o
cessful Te
- - - - - -
- - - - - -
- L] »
- L] -
- - L]
- - -
- - -
- .
- - -
rams.
-
- .

e & o e e 0 & 0
C......'ll.".II.O'.f&&m..qg..t'l'.

4 4 0 6 0 s & & s & & 6 0 8 & 2 e e & s & s e s
. (] . » ¢ & & & ¥ & & & 0 & & & & = 8 0+ v & ¢ & @ e & & & v o ¢ &
& & & & 0 & 8 5 & 6 8 2 6 6 P s & S L e e

e 8 o & T &2 6 H 8 6 8 F & ¥ 6 8 ¥ & e o

a 0 & o & & & & v & ¥

PERFORMANCE

® s 8 o & & @

. (] [[. L

- o g s o e« o & @ L |} L3

L] . [*« & o & & & * o ¢ & & * ¢ & ¢ @ ¢ @ L) L[] «. & @ s« o L [3

R

o 0o He o 0o 0 v s 0 ¢ @

¢ s e & & o @

. L] e & & o @

¢ e L3 . [¢ & ¢ o & e & @ L] * *« o & & 0 L L [e & & ¢ & & @ L3

]

* 0 (e o 0 s v v s v

» . [L § * 0

s o & & ¢ s &

. * 0 * & & & & e & o L3 o e« o @ ¢ o . ¢ 0 « & 0 ¢ & & & 0

[
(o}
=]
-

.] e @ [} . L] [[LI L L[]

* & & & o & v o

& 6 6 & & & & & & & & F & O 2 8 & @ O B 8 & 0 & 4 6 0 b a0 e s s o

* s ¢ & 8 v &

.« 0 ¢« o ¢ o & 0 L] . . LI] [.

& 8 & & 6 8 8 & F 8 5 8 6 ¥ & F 8 6 2 F s et s s e

e o o 8 0 & 0

L] . . . L] [. (]

LI ¢ & o « & & 0 ¢

* . [[] . L *« & . . @ ¢ o e *® o & & v @« L g « e . o @ * o & & 9

e & & & o ¢ & & o o

€ 0 & & & 8 0 & & 8 & ¥ & 8 8 F ¥ 8 6 & 9 6 B 0 F E & s e

A e e & & & e

« s e & v & s =

LN) * & » . * & & 0 @

® 6 & & & 0 & 0 & 5 8 4 ¥ 6 8 & & s 8 2 VSN T s s s

¢ o & o v b &

« o s &« » L L3 e« & & & & 0 ¢ & [e o o & 5 ¢ 0 L[] @ & 0 * & & o @

L ¢ o & & & 0 [B

- . * . o L] ¢ & & 8 L3

¢ 8 & 8 ¥ & & s & 6 0 2 & s s s s s 2 e b oo

47
.47
-48
.49
-50
.55
.56

.58
.59
.59
- 60
.60
.60
.61

.63
.64
.64
.64
- 65
<65
.66

.67
.67
.68

.72
.72
.72
.72
.74
<75
.75
.75
«75
.76
.76
.77
<77
<77
.78
.78
.78
+78
.79
.79
.79
-79
.80
.81
.82
.85
.88
.88
.89
.93
.95
.98
.98
699

101

Effect of the Envirconment. . . .

SM2 Modules in the SVA . . . « ¢ & & & & & o =
Main Storage (Real and Virtual).
WOrk Storage . « o« ¢ ¢ ¢ o ¢ ¢ o o o o o & o
Input and Outgput Files . . . e e s o % s o s
Specification of Recorxd Length « e o o o o o
Functions That May Affect Performance Positively
INCLUDE/OMIT . « & & o & = o o o o & & a & & @
SUM. - L] - - > - LY - - . - - - L] - - . - - o -
OUTREC <« «¢ ©o o o o o o o o o o o s o o o o o =
NOCHAIN. - . - e o o
Functions That May Affect Performance Negatlvely
Checkpoint/Restarto . . o
VERIFY, BYPASS, ERASE, DIAG, EQUALS, DUMP, and
Effect of User Routines. . v &« ¢ « o « o & o« &
Using the DIAG Opticn. « ¢ « o« o o o o o o « o
Tuning Table . &« ¢ ¢ ¢ ¢ ¢ 4o o o o o o o = o =

ootgnono&ooroo«ctu

¢ & & @ ¢ ¢ 0

o & ¢ bJe s ¢ e 0 e

=

fle o ¢ ¢ ¢ o o ¢ o

o

L . L[] L] [® & & o e 0 » L3

[. LI) L4 L] L L) *« & o L ¢ ¢

. . L * ¥ 0 *« & o o . LI Y) .

APPENDIX A. SAMPLE JOB STREAMS, WITH STATEMENT FORMAT RULES.

Statement Format . « « « « . &

Continuation Cards . « « « o« o o & & o o « & «
Summary of Restrictions. + « &« . . .
Control Statement Notation . « « « ¢« « « &« « &
EXamPleS ¢« o o« ¢ ¢ o o o o o o o o o @ o o o o @

APPENDIX B. STORAGE REQUIREMENTS

Minimum Main Storage & 4 4
Use of the SVA . . ¢ ¢ & ¢ ¢ 4 ¢ ¢ a o & o & =
Input and Qutput Buffer Sizes.
Size of User Routines at Program Exits
Use of Special Functions . « ¢« ¢ ¢« ¢ « o « « &
Internal Record Length c o e o e s

Sort Main Storage Without Work Flles e o o o o

WOXK FileS « v o o o o o o « o 5 o o o & s o o @

APPENDIX C. CONVERSION AIDS. « ¢« o « @ » o o & =

Related Programs . « « « « « o © « o © o o « = =
Preferred Statements and Parameters.

CONVersion « « o « o o = & « o & o o o s & o o

Unrelated PXrograms « « « « « « o o o o 4 & o o o
JCL Statements e e s s 8 s e 8 s e
Program Control Statements « o o o 8 & & & o
Routines at Program Exits. . c o s o o o

Converting From System/3 Disk Sort e o o 5 e o

APPENDIX D. PERMITTED DATA FORMATS

APPENDIX E. PROGRAM MESSAGES

Different Types of Message s e s e o e
When and Where Messages Are Produced c o e« o =
MESSAGES o« o ¢ ¢ o o o o o e o o o o o o s o o o
Program Error MeSSagesS . « « o « « o o & = o & =

INDEX: o ¢« o o o ¢ o o o o o o = o« o = o« o « o =

» .] . L

s & 8 ¢ v o 0 » @ LI R T S S R U S Y

¢ . L) LI

« o o o

[T T SR S Y T T 4 v 8 6 8 6 & 0 e e

¢ . . . [3

* 0 L L] . L) L] * . . ¢ 0 LI) ¢ ¢ .

- [. L3

* 0 L) LI 4 [] . . [LR N

¢ o [. - L . - L] . L2 [] L)

* e & 0

. L] L [} * & & ¢ ¥ . . . L} €« o 0 . *

. [] L] L] . . . L [3 L] . ¢ & * . ¢ ¢ 0 ¢ . . 3 . ¢ 0 . [* o @ ¢ o @ ¢ @ . L L 3

L T Y S R D B Y LI R N D N T DR SR 8 ¢ o ¢ ¢ v @ ® & 6 0 & s 0 6 & 6 & ¢ & 6 0 e

L] . [] * L

¢ 0 & v ¢ 4 e o @

” 0 * 0 L L] L . o ¢ L) ¢ ¢ L[]

¢ 8 & o 0+

L] [} * LI ¢ o o

LI R | [3

L} L] . [} . [* . . [] L . ¢ 0 .

. [] v o . . L L3 * [] » L} L R R) *

L] L] “ & 9

101
101
101
102
103
103
104
104
104
104
104
104
104
105
105
105
106

108
108
109
110
1M1
11

122
122
122
123
123
123
124
124
124

125
125

127
127
128
128
129
132

135
138
138
139
140
192

195

vii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1.

18.

29.

Input and Qutput Characteristics.
Block Size and Record Length.
Devices That Can Be Used For Work Files . .
Control Fields. « « e o o o o o
Supervisor Generation Macros Relevant to SsM2.

[. . . . [
T 6 e 8 8 0
* 0 o & s

of 2) . Program Control Statement Summary.
Example of a Control Statement.
Permissible Field-to-Field Comparisons for INCLUDE/OMI
Permissible Field-to-Constant Comparisons for INCLUDE/OM
Logic Takle for INCLUDE/OMIT Statement.

File Names and SYS Numbers Allocated by Default . .
Jok Stream for an Independent Sort Program.
How to Code Parameters and Control Statement Images
Samrle Coding to Initiate the Program
Overview of Program Flow and Exits.
Uses for Program Exits. . . .
Which Exits to Use for File Label Handllng.
Branch Tables for Program Exits
General Method for Passing Parameters
Label Processing at E11 and E17 . . .
Using E31 and E37 with a Merge. . . .
Default Storage Value Used by SM2 . .
SM2 Storage Allocation Map.
Centrcl Statement Format Example. . .
Input and Qutput Buffer Element Sizes, in Bytes
Differences from 5746-SM1 and Similar Programs.
Preferred ParameterS. « « o« « ¢ o o o o o o o o
Incompatibility and Cenversion.
Corresrondence of 0l1d Exits to SM2 Exits. . . .

LI T) LI I]
LI R B I I Y T T)
e o &6 o & & & & s 0

e o

(] . .] é ¢ 0 [] [] [. . [] [] [. OHI . []

[. . . L] L[] [L] ¢ o
. . . . o . . . L] [] . . . L] . . L] [] L]

L] . . . L] (] L]

L] . L] [L] . . . [] . [] . [. . [] . . . L] H. L] L] .

130

ix

RELEASE 3 IMPROVEMENTS

Support of VSAM managed SAM
files for input, cutgut, and
work files.

Support for simplified JCL for
vVSaM files.

Simplified SYSNO handling for
all disk files under
VSE/Advanced Functions.

SUMMARY OF AMENDMENTS
FOR SC33-60044-2
DOS/VS SORT/MERGE 5746 (SM2)

RELEASE 3 MODIFICATICN 0

xi

SUMMARY OF AMENDMENTS
FOR SC33-408G4-1

DOS/VS SORT/MERGE 5746 (SM2)

'RELEASE 2 MODIFICATION 0

RELEASE 2 IMPROVEMENTS

Release 2 of SM2 can now run
under DOS/VSE in either
System/370 mode or ECPS:VSE
mode.

SM2 accerts input, wecrk,
outprut, or checkpoint files on
devices orerating in Fixed
Block Mocde (FBA) .

The program will, if sufficient
storage is available, use
command chaining when it reads
SAM input or writes SAM output
in sort arrlications. Command
Chaining is cnly used for CKD
and tape devices.

OUTREC fields can be anywhere
within the record (even beyond
4092) .

The program allows SAM input
and output files tc contain
spanned reccrds.

The standard default values for
the program options can be

changed to suit the
installation when the program
is installed.

The control fields specified in
the SORT or MERGE statement can
overlar each other.

The control statement images
(parameter list) are optionally
printed when the program is
invoked.

Messages may be routed to a
device other than SYSLST, when
the program is invoked.

The ANALYZE function makes it
possible to find out how SM2
will ortimize, and what
capacity a sort job will have,
without actually sorting or
merging.

The information messages, as
well as the diagnostics
handling, have been improved.

There is automatic sequence
checking in sort applications.

Chapter 1. Introduction

The DOS/VS Sorts/Merge Version 2 Program Product, 5746-SM2, is a
generalized sort/merge program which executes as a processing program
under DOS/VS Release 33 and 34, and DOS/VSE.

The VSE/VSAM Release 2 program product is required for VSAM applications
under DOS/VSE and AF/VSE Release 2. For VSE/VSAM managed SAM files
support, the 'Space Management for SAM Feature®' must also be installed.

This chapter describes SM2 briefly in terms of its functions; how it
differs from the 5746-SM1 Program Product; its input and output
requirements; the use of control fields, collating sequences and control
statements; and its relationship to the operating system.

What the Program Can Do

The program's basic functions are:

1. To sort reccrds from up to nine input files into a user-defined
sequence onto an output file

2. To merge records from up to nine previously sorted files onto an
output file

The input and output files can be VSAM or SAM. Output need not be the
same as input--that is, you can have SAM input and VSAM output, or vice
versa; but unmanaged input files must be either all SAM or all VSAM.

VSAM managed SAM files in Control Interval format may be accessed as
either SAM or VSAM. As input, however, if they are mixed with ordinary
SAM files they must be accessed as SAM files, and if mixed with VSAM
files they must be accessed as VSAM. Managed files not in Control
Interval format cannot be accessed by the program directly but they may
be read or written using user exits E15 and E35.

The files can reside on tape, Count-Key-Data {CKD), or Fixed Block Mode
(FBA) disks as described below under *Input/Output Devices'. Input
files can be on any mixture of permitted devices.

SM2 handles all standard labels, as well as unlabeled tape files.

In addition, user-written routines can be linked to the sort/merge
program at points called program exits. At these exits, the
user~-written routines may write or check nonstandard labels, open or
close files, take checkpoints, insert, modify, or delete records, read
the input file, write the output file, or process VSAM I/O errors.

Other functions such as sorting only a part of the input, modifying the
standard EBCDIC collating sequence, reformatting the records for output,
and summarizing records, can be invoked by means of program control
statements.

Chapter 1. Introduction 1

| DIFFERENCES FROM RELEASE 2 OF 5746-SM2

| VSAM managed SAM files may be used as input, output and/or work files.

DIFFERENCES FROM RELEASE 1 OF 5746-SM2

| A major difference in Release 2 of SM2 is that it can now run under

| VSE/Advanced Functicns. Under VSE/Advanced Functions it can run in
either ECPS:VSE mode or System/370 mode. To use SM2 you do not need to
know which of the systems is in use.

A second important difference is that SM2 will now accept input, work,
output, or checkpoint files on FBA devices. Conventional CKD devices
can be mixed with FBA devices for input and work.

DIFFERENCES FROM 5746-SM1

SM2 is functionally compatible with the DOS/VS Sort/Merge Program
Product 5746-SM1, with the exceptions noted in Appendix C under 'Related
Programs'. In addition it offers the following features:

. Reduced space requirements for work files (some sorts can be run
with no work files at all).

o Code which is reenterable, and therefore eligible to reside in the
Shared Virtual Area (SVA).

] Input to either a sort or a merge can be on any mixture of the
device types accerted by the program.

. Subtasking is allowed, i.e., SM2 can be initiated by use of an
ATTACH macro frém within an assembler-languagé program.

. The user can specify that the input order of records with identical
control fields shculd be preserved in the output file.

. The parameter list passed at exits E15, E32 and E35 has been
extended and now includes information on record type and record
length.

Input/Output Characteristics

INPUT/OUTPUT FILES

All files must be defined according to DOS/VS standards, as described in
| the DOS/VS Syster Management Guide, or the VSE/Advanced Functions System
| Management Guide. The characteristics of the input and output files

that the sort/merge program can handle are given in Figure 1.

| Input files must be either all accessed as SAM, or all as VSAM. To
| access VSAM files, SM2 uses VSAM. To access unmanaged SAM files it uses
| EXCP commands.

|

[
[
|
I

VSAM MANAGED SAM FILES

These files always need the VSAM parameter on their DIBL card. If VSAM
or ESDS is specified on the INPFIL or OUTFIL card as appropriate they
are accessed as VSAM. Otherwise they are accessed as SAM using GET or
PUT.

RECORDS AND DATA FORMAT
Records can be either fixed or variable-length. Variable-length spanned
records are permitted; they exclude the use of the ADDROUT option.

The record data can be numeric or alphameric coded EBCDIC (or ASCII for
tape input/output), or can have any of the other formats shown in
Chapter 2 under 'SORT Control Statement®.

MINIMUM RECORD LENGTH

Minimum record lengths are shown in Figure 2.

Chapter 1. Introduction 3

Sort input Merge input Output

Eiles
Type of extent Type 1 and 8 Type 1 and 8 Type 1 and 8
Organization1 SAM or VSAM (not mixed}| SAM or VSAM (not mixed) | SAM or VSAM (not mixed)
Number2 1-9files 1-9 files 1 file (can be multi-volume)
Size No restriction No restriction No restriction
Blocking R Blocked3 or unblocked Blocked or unb_locked Blocked or unblocked
Blocksize Can differ if biggest Can differ if biggest
specified first specified first
Contents Unsorted or sorted Previously sorted Sorted records {possibly modi-
records {(or can be empty) | records (or can be empty) | fied or summarized), or ad-
dresses of records (with or
without control fields)
Labels Any or none (can be Any or none (can be Any or none
mixed) Mixed)
Records
Format Fixed or variable Fixed or variable Fixed or variable
(cannot be mixed) (cannot be mixed)
Code EBCDIC or ASCII EBCDIC or ASCII Sam as input
(may not be mixed) (may not be mixed)
Control fields
Number 1-12 1-12
Format (see Figure 12 Formats can be mixed Format can be mixed
for list of accepted formats)
Sequencing Ascending and/or Ascending and/or Output to a VSAM KSDS file
desoending4 : descending must be in primary key sequence
Combined lengths, max. 256 bytes 256 bytes
Location Must be all within first Must be all within first
4092 bytes of record 4092 bytes of record
Pooling5 | Can be pooled with output | May not be pooled Can be pooled with sort input

1 VSAM managed SAM files may be mixed with SAM or VSAM but not both at once.
2 If on tape, each unit may have as many alternates as permitted by DOS/VS.
3 With fixed-length records, short blocks are accepted if their length is a multiple of record length.

4 When records with equal control fields are sorted or merged, their output order is unpredictable
if EQUALS is not specified.

5 VSAM input and output can be the same data set only if the data set was defined with the REUSE
attribute and the OUTFIL REUSE parameter is given to SORT/MERGE.

Figure 1. Input and Output Characteristics

L}

o T T 1
{ | RECORD LENGTH: | BLOCK |
	Minimum	Maximum	SIZE:
	====mm———-	=== m oo oo	
	TYPE=	TYPE=	Maximum
ll I F	Vv	F I v	
F $ommmopommoy - $ i			
Tape input { 12	12	32767	32767
Tape output] 18	18	32767	32767
CKD input/ocutput	l ¥	5	Track
			capacity
FBA input/output I v	S	32761	32767
VSAM managed SAM	1 1 5	3276t	327671
VSAM input/output	1	12	32767
ll' 1l L L L L %			
*Implies spanned records			
2You must add four bytes when specifying the length, because SM2			
[adds an RDW J

Figure 2. Block Size and Record Length

Note: If there are checkpoint records mixed with the tape input file
the minimum block size is 16 bytes.

MAXIMUM BLOCK SIZE AND RECORD LENGTH

Maximum block sizes and record lengths are shown in Figure 2.

The maximum block size for input and output files is 32,767 bytes for
EBCDIC data and 9,999 bytes for ASCII data.

There are two restrictions on the use of large blocks:

The larger the blocks, the more main storage your sort or merge will
need. Main storage requirements in relation to block size are
described in Apprendix B.

For CKD devices you cannot define an output block size larger than
track capacity for the output device you have specified.

Input records can be as big as input block sizes, but here there are
additional restrictions:

If you are using any CKD work devices the internal record must not
be longer than the track length of the work device. If work devices
are mixed, the shortest track length is the limiting factor.

Usually internal length is the same as input length, but the use of
some contrcl field formats, and the EQUALS parameter of the SORT
statement, cause the reccrd to be expanded internally.

FBA work devices limit the internal record length to 32767 bytes.

The record length must not exceed the maximum length specified by
the user on the RECORD controcl statement.

With variable-length records the four-byte record descriptor word is

regarded as part of the record. Also, maximum record length is four
bytes less than block size because of the block descriptor word.

Chapter 1. Introduction 5

Input/Output Devices

VSAM or VSAM managed SAM input/output files can reside on any disk
device supported by your release of VSAM, whether CKD or FBA. SAM files
can reside on any of the following, if supported by your operating
system:

o IBM 2311, 2314, 2319, 3330 models 1, 2 or 11, 3333 models 1 or 11,
3340, 3344 or 3350 CKD direct-access storage devices

° IBM 2400 and 3400 series tape units or 8809 in start/stop mode
. IBM 3310 and 3370 FBA direct-access storage devices.

Input files can be on a mixture of any of the permitted device types.

Input/Output Pooling

You can design a sort application where two of the I/O files share the

same disk extents or tape units. This allows you to run your sort with
fewer devices, and is known as I/0 pooling. The rules for I/O pooling

are:

. Sort input and output files can be pooled. This means that the
output file will be written over the input file, so it is important
to check that you have specified the files correctly.

. Any file name can be used.

o Files can be multi-volumwe and multi-extent.

e Merge-only files must not be pooled.

. Sort work files must not be pooled with any other sort file. If
they are, an error message is produced and the program terminates.

Input Device Sharing

In a sort aprlication, several tare input files can use the same device.
The files are read serially, and each can be demounted after reading so
that another file can be mounted. This is not I/O pooling because only
the input functicn is involved. However, like pooling, it does increase
the capacity of a given number of devices.

Work Storage Devices

If work storage (sometimes called intermediate storage) is needed for
your sort application it must be on a disk device. Any of the devices
listed in Figure 3 can be used as long as they are supported by your
systen.

r R | 1
| Type: | Devices: |
i L I
| 2314 | 2314, 2319 1
1 d i |
g R “A
| 3330 | 3330 mods 1, 2, 11 |
| | 3333 mods 1, 1 |
[4 |
-
| 3380 | 3340, 33u4 I
L 4 i |
L 8 T L |
| 3350 | 3350 |
b : -
| FEa | 3310, 3370 |
L 4 -

Figure 3. Devices That Can Be Used For Work Files

SM2 allows the work files to be allocated on two different device types,
where device type is considered to be the same if track capacity and the
number of tracks per cylinder is the same.

Tape units cannot be used for work storage.

Label Processing

If your files have standard labels or are unlabeled, then SM2 will take
care of all opening, closing, and label handling for you. If you have
nonstandard labels (or extra headers or trailers in addition to standard
labels) you must use a program exit to carry out label processing, as
described in Chapter 5.

Standard Lakels
Standard direct-access and tape labels are processed by the system's

label processing facilities when the OPEN and CLOSE macro instructions
are issued by SM2.

Unlabeled Tapes

Unlabeled input and output files are processed by the sort/merge
program; no user programming is required. Unlabeled output files are
normally preceded and followed by a tape mark, but the leading tape mark
can be eliminated by specifying NOTPMK in the OUTFIL program control
statement.

Nonstandard Direct-Access labels

The sort/merge program will nct attempt to use the first track of the
first extent in any CKD input or output file specified by the user as
having nonstandard labels. This track may be handled in any way the

Chapter 1. Introduction 7

——— —

user chooses by routines at exits E11, and E31. With an FBA file the
amount of space left for label processing depends on the control
interval size, as described in Chapter 5.

Nonstandard Tape Labels

If labels are not standard, or if the standard tape labels include
additional header and trailer labels or user header and trailer labels,
then the user must assume the responsibility for issuing the OPEN and
CLOSE macro instructions and processing these extra labels.

All such nonstandard tape label processing must be done at the
appropriate label-processing exits (E11, E31, E17, and E37), where the
files are also opened and closed.

For detailed information about label processing you should refer to the
following publications:

DOS/VS Data Management Guide, GC33-5372

DOS/VS Tape Labels Reference, GC33-5374

DOS/VS_DASD Labels Reference, GC33-5375

VSE/Advanced Functions Data Management Concepts, GC24-5209
VSE/Advanced Functicns Tape Labels, SC24-5212
VSE/Advanced Functions DASD Labels, GC24-5209

Passwords for VSAM Files

SM2 allows the use of password-protected VSAM files for input and
output. When a rassword is needed for a VSAM file, the appropriate user
routine is entered at exit E18 for sort input, E38 for merge input, and
£E39 for sort/merge output. In this routine the user has the opportunity
to supply the required password({s). If a password is not supplied at an
exit, VSAM then asks the operator to supply the password. User exits
E18, E38 and E39 are only available for VSAM managed SAM files if they
are accessed as VSAM.

Control Fields and Collating Sequences

CONTROL FIELDS

The program determines the sequence of a file of data records by using a
group of up to twelve control fields which must appear in the same
relative position in each record. The sequence can be either ascending
or descending.

The control fields are specified in the SORT or MERGE program control
statement (see Chapter 2). The first control field specified is the
major control field and will be compared first. The second and
subsequent contrcl fields {(minor fields) will only be compared when the
previous comparison has resulted in an equal condition.

The individual control fields may be contiguous or separated, or may
overlap (see Figure 4#). The control fields may be anywhere within the
first 4092 bytes of a data record but their total lengths must not
exceed 256 bytes.

Record

\——W_'—'_'/ |
Control Control - v “ Control
field 3 field 4 Control field 1 field 2

{major)

Eigure 4. Contrel Fields

In Figure 4, fields 1 and 4 overlap, fields 1 and 2 are contiguous, and
fields 3 and 4 are noncontiguous.

The types of data format that may be specified for control fields are
descriked in Chapter 2, 'Program Control Statements', under the 'SORT
Control Statement'. A detailed description of the formats is given in
Appendix D. SM2 does not check that the control fields actually contain
data of the specified format. If they do not the output is unlikely to
be correctly sorted; under scme circumstances SM2 might abend.

COLLATING SEQUENCES

When the contents of the control fields are compared, the resulting
sequence is determined by either the standard IEM collating sequence
(EBCDIC) , or the ASCII collating sequence. The collating sequence for
character data and binary data is absolute; that is, character and
binary fields are nct interpreted as having signs. For packed decimal,
zoned decimal, fixed-point, normalized floating-point, and the signed
numeric data formats, collating is algebraic; that is, each quantity is
interpreted as having an algebraic sign.

Either an ascending or a descending sequence can be specified for each
control field.

If your input and output are in EBCDIC format, you can choose between
the EBCDIC and ASCII collating sequences. If, however, your input
format is specified as ASCII (AC, ASL, or AST), then only the
appropriate ASCII ccllating sequence is allowed.

Alternative Ccllating Sequence

The EBCDIC collating sequence can be modified by means of the ALTSEQ
program control statement. This allows the positions of one or more
characters in the sequence to be changed--for example, to allow correct
collation of special national characters.

Chapter 1. Introduction 9

Using the Program

PROGRAM CONTROL STATEMENTS

Before SM2 can operate on the input data, you must supply the program
with control statements that describe the actions and operations you
want it to perform. The control statements you provide describe:

. The type of cperation to be performed

. Control fields

e Modifications to be made by user-written routines
. The functions t¢ be invoked

] The input and output data sets

. The options selected for each application

A full description cf all the program control statements is given in
Chapter 2.

Each control statement is checked for validity by SM2. If the program
finds an error, it issues an error message. Descriptions of these
messages can be found in Appendix E.

Control statement formats for all IBM DOS and IBM DOS/VS sort/merge
programs are similar, even though operating environments and data
descriptions are different. Compatibility of control statements among
these programs is discussed in Appendix C.

JOB CONTROL STATEMENTS (JCL)

Standard job control statements are required to define a sort or merge
application to the Job Control program. A discussion covering the

--relevant statements can be found in Chapter 3. For a full description of

job control statements and their formats you should refer to DOS/VS
System Control Statements or VSE/Advanced Functions System Control
Statements.

e e e

10

INITIATING THE PROGRAM

As described in Charter 4, 'Executing the Program®', SM2 can be initiated
in two ways:

. As an independent program, using an EXEC SORT statement in the input
job stream.

. Invcked from another prcgram written in one of the following
languages:

- Assembler, by use of system macros, as described in Chapter 4.
- COBOL

- PL/I

- RPG II with the Auto-Report Feature

How to do sc from the high-level languages is described in the
Programmer's Guide for the relevant language.

In either case the initiation must follow DOS/VS conventions.

PROGRAM MODIFICATION

SM2 allows you to inccrporate your own routines into the main flow of a
sort or merge operation. These routines can, for example, be used to
process file labels; read input files; modify, insert, or delete
records; or write outprut files.

The routines receive control at predesignated points in the sort/merge
program called program exits. Chapter 5, 'Modifying the Program®', gives
a full description of the exits and how they can be used.

Relationship to DOS/VS and VSE Advanced Functions

SM2 is designed to run under DOS/VS Release 33 and 34, DOS/VSE with
VSE/Advanced Functicns and all subsequent releases. Figure 5 shows
which supervisor/generation macros can affect SM2.

The VSE/VSAM Release 2 program product is required for VSAM
applications. Fcr VSE/VSAM managed SAM files support, the *Space
Management for SAM Feature' must also be installed.

For further details see DQOS/VS System Generation, GC33-5377 or
VSE/Advanced Functicns System Generation, GC33-6096 and DQOS/VS
Sort/Merge Version 2 Installation Reference Manual.

SM2 can reside in either the system or any private core image library,
and most mcdules can be loaded into the SVA. It operates as a processing
program supervised by DOS/VS.

SM2 may be executed in any partition. A single copy in the core image
library will serve all partitions.

Any files used by SM2 must be defined according to DOS/VS standards.
The checkpoint and label-checking facilities of DOS/VS are used during a

Chapter 1. Introduction 11

e i

ECPS:VSE mode

System/370 mode
FOPT RELLDR=YES ALWAYS REQUIRED (standard in DOS/VSE) |
FOPT AB=YES to enable the DUMP option to be fully
exrloited |
FOPT ECPREAL=YES to enable page fixing to be done by
FOPT PFIX=YES sort/merge |
|
FOPT RPS=YES aids efficiency if 3330, 3340 or 3350 |
devices are used |
|
FOPT VSAM=YES required if VSAM files are to be used for |
input or output |
[}
|
FOPT SYSFIL=YES required if the distributed file is |
deblocked to disk when SM2 is to be]
installed |
|
SUPVR AP=YES to enable subtasking to be used |
|
SUPVR ASCII=YES required if ASCII data is to be used |
d
1
|
|
|
|
|
|
|
|

,————-—_—-————_————_qr————_——-————_——_—.-——.———-—.-———q

FOPT RPS=YES aids efficiency if 3330, 3340 or 3350
devices are used
FOPT VSAM=YES required if VSAM files are to be used for
input or output
FOPT SYSFIL=YES required if the distributed file is
deblocked to disk when SM2 is to be
installed |
|
SUPVR AP=YES to enable subtasking to be used |
SUPVR ASCII=YES required if ASCII data is to be used

Figure 5. Supervisor Generation Macros Relevant to SM2

sort/merge program execution at the user's option. For a general
| discussion of DOS/VS, refer to the publication Introduction to DOS/VS or
| Introduction to DOS/VSE as approrriate. For a discussion of record
| formats and data file organization, refer to the publication
|
|

DOS/VS Data Management Guide or

VSE/Advanced Functicns Data Management Concepts.

12

Chapter 2. Program Control Statements

Before SM2 can operate on the input data it must receive program control
statements. Some control statements are always required whereas others
are optional and are only required for specific actions. The control
statements describe:

] The type of cperation to be performed

J Control field parameters

e Modifications tc be made by user-written routines

. The functions tc be invoked (for example OMIT)

e The input and output files

. The options selected for particular applications

Each control statement is checked for wvalidity by SM2. If the program
finds an error in a statement, it issues a diagnostic message and will
usually skip the rest of the statement (including any continuation
cards) and continue checking the next statement. If an error has been
found, SM2 usually terminates when it has finished checking all the
statements.

Control statements are read from SYSIPT. Any SYSIPT records can be
read.

Chapter 2. Program Control Statements 13

The Statements

The control statements that SM2 acts on are listed below and a summary
of the statements with their operands is given in Figure 6.

{SORT One of these statements is always required. It is used to
MERGE describe the control fields and the number of input files (and
work files for SORT).

RECORD This statement is always required. It specifies record length
and format information to the program.

INPFIL This statement describes the input files and specifies the
procedures that will be followed when an input file is opened
and clcsed. It is required if the default values are not
applicable (for example, if SAM input is blocked).

OUTFIL This statement describes the output file and specifies the
procedures that will be followed when the output file is opened
and closed. It is required when the default values are not
applicable (for example, if SAM output is blocked) .

MODS This statement is required when user-written routines are to be
executed. It associates the user routines with particular
program exits.

INCLUDE| These statements are optional. One (ut not both) can be used

OMIT to specify that the outrut file should contain only certain of
the input recoxds.

ALTSEQ This statement is ortional. It is used to specify changes to
the standard EBCDIC collating sequence.

OUTREC This statement is optional. It can be used to specify that
each input record should be reformatted before being written to
the output file.

SUM This statement is optional. It can beé used to designate
numeric fields in the input records as summary fields, and
specifies that whenever two records with equal control fields
are found, the contents of the summary fields are to be added
and placed in one of the records, and the other record deleted.

ANALYZE This statement is optional. It instructs SM2 to analyze the
control statements, make its optimization calculations, issue
approrriate messages, and then cancel without actually sorting
or merging.

OPTION This statement specifies the options to be selected for a
particular sort/merge operation. It is required if the default
values are not aprplicable.

The control statements may appear in any order, but you are recommended
to put the OPTION statement, if used, before all the others.

The 'default values' referred to abowve are those valid at your own
installation. Some defaults are fixed; others can be changed after the
program is installed, so the standard defaults supplied with the
program, and described in this chapter, may not be those actually in
effect.

14

Statement

i

—

Parameters

SORT

FIELDS={Ps ,®q [+£4] +Sq [- -+ ¢Pnsmn [,£n] ,Sn]) [,FORMAT=f]

FILES=n
EQUALS | NOEQUALS
WORK=#n|DA}

CKPT

MERGE

FIELDS=(ps ,Mq {+f4] +rSq [ce~sPneln [,£n],Sn]) [,FORMA'I=f]

FILES=n

RECORD

TYPE=+F|V|D}

LENGTHE= (14 ,12,13,14,1s)

MODS

PHn= (name,loading information,exit, [...,exitp]) ...

INPFIL

BLKSIZE=n
EXIT

BYPASS

VSaM

TOL

SPAN

VOLUME= (n{...,n])
OPEN=%RWD | NORWD}
CLOSE=#RWD | UNLD | NORWD}
DATA=E|A

BUFOFF=n

NOCHAIN

r_.__._._._..__.___....q_.._.._..._..._._.._...__..__..____...__.__._._,,_.,_.___._qp.—._._q,....____..__.._._.q_..q

OUTFIL

b e e e e e e e e e e e o e e e e e i e e e e e e e e e e s o e e e e e e e . e e e e e

BLKSIZE=n
EXIT

KSDS|ESDS |RRDS
TOL

REUSE

SPAN

L o s s e s s e s i e . G i, i, S i e s s e i, ot e, e St P e, T Il i it St st S, st s, e, G s . i, i, s . s, s s e, s o, e e, et e, e ik e, 8

Figqure 6 (1 of 2) . Program Control Statement Summary

Charter .2. Program Control Statements

15

Parameters

r
| Statement

(OUTFIL) | OPEN={RWD]NORWD}
CLOSE= {RWD | UNLD | NORWD}
NOTPMK

BUFOFF=n

[?NCLUDE] COND= (logical expression) [, FORMAT=f]}
OMIT

e e . e o e -

FIELDS= (pa,ms [s@4] - -- [,Pns0n [r20] 1)

FIELDS= (p1,M1 [,£1] --- [PnsMn [fn]]) [, FORMAT=f]

CALC

PRINT= {ALL| NONE|CRITICAL}
ROUTE= {LST| LOG | xxx}

STORAGE={n[,VIRT|NOVIRT]
nK {,VIRT|NOVIRT]

LABEL= (output,input,...,inputp)
WORKNM=work

FILNM= (output,input,...,inputp)
SORTOUT=output

SORTIN= (inputq...,inputp)
SORTWK= (wOork4...,wWorkn)
VERIFY | NOVERIFY

ERASE]| NOERASE

DIAG|NODIAG

DUMP | NODUMP

ADDROUT

[
[]
<] .
o e e e e e s e e e e e e St i B o P i e e i, St i s e e e s, o A e et s B B e s e A e o s e e e .]

A s s e B — A S . S S VA, et S G Sts SR SR Gh S Sh— S S S S— — — S — i i, Ghan s il e G s e Tate. s, St iy, S, oo, S s, St s G s D

Figure 6 (2 of 2). Program Control Statement Summary

16

Control Statement Format

Control statement formats for all IBM DOS and IEM DOS/VS sort/merge
programs are similar, even though operating environments are different.
Compatibility of control statements among these programs is discussed in
Appendix C.

The general format is shown in Figure 7.

Column 1 must be blank
unless a label is present 72 73, 80

(Label) Operation Operand (Comments) {Sequence or
Identification)

(Continuation column)

Figure 7. Example of a Control Statement

The control statements are free-form--that is, the operation definer,
operand (s} , and comments may appear anywhere in a statement, as long as
they appear in the proper order, and are separated by one or more blank
characters. Column 1 of each control statement must be blank, unless
the first field is a label, in which case it must begin in column 1.

Examples are shown in the text which follows, and full details of all

rules are given in Appendix A, ‘'Sample Job Streams, With Statement
Format Rules'.

Chapter 2. Program Control Statements 17

SORT Control Statement

SORT g

[e s e S e oy

FIELDS= (P4 ,Mq,f£1¢S1+/P2/M2¢£2,52.«-sP12/M12+£12+S12)
FIELDS= (P4 +sM4,S1+sP2sM2sS2+-+sPazsM12,542) ,FORMAT=f

[,FILES=n] [,EQUALS :,[,WORK=DA][[,CKPT]]
s

+NOEQUAL s WORK=n

e

The SORT control statement is required when a sort is to be performed.
It supplies specifications for control fields, input files, and work

files.

Operand
FIELDS=

18

Description

Reyword for control field parameters, always required.
Field parameters must be described in descending order of
priority. You can specify up to twelve control fields.

First byte of control field relative to beginning of
logical record. The first data byte of a fixed-length
record has a relative position 1. The first data byte of
all variable-length recoxds has a relative position 5 as
the first four bytes are occupied by the RDW. All fields
must start on a byte boundary and no field may extend
beyond byte 4092.

Length of control field in bytes, which must include the
sign for signed data. Acceptable lengths for different
formats are given below. The sum of the control field
lengths must nct exceed 256 bytes.

Format of data in the control field, which may be any of
the fcllowing codes:

r LS s

| Code | Length | Description

1 L L

¥ T LI

| ¢H | 1-256 | EBCDIC character, unsigned

| 2D | 1-256 | Zoned decimal, signed

| PD | 1-32 | Packed decimal, signed

| FI | 1-256 | FPixed point binary, signed

| BI | 1-256 | Binary, unsigned

| FL | 1-256 | Normalized floating point, signed

| AC | 1-256 | ASCII character, unsigned

| CSL | 2-256 | EBCDIC numeric, leading separate sign

] CST | 2-256 | EBCDIC numeric, trailing separate sign
| CLO | 1-256 | EBCDIC numeric, leading overpunch sign
] CTO | 1-256 | EBCDIC numeric, trailing overpunch sign
| ASL | 2-256 | ASCII numeric, leading separate sign

| AST | 2-256 | ASCII numeric, trailing separate sign

] AQ | 1-256 | EBCDIC character, alternative collating
| | | segquence

L L 0N

G v i s —— — —— — ———— — — g, S, S Sy s

FORMAT=£

FILES=n

EQUALS

NOEQUALS

WORK=

DA

CKPT

Order in which control field is to be sorted.
Must be either:

A - ascending sequence or

D - descending sequence.

Optional. Can be used when all control field data formats
are the same. The f,-f, can be omitted from the FIEIDS
operand and be replaced by this orerand. £ can be any of
the formats specified in the FIELLS keyword.

n is the number of input files to be sorted and can be any
number from 1 through 9. The default value is 1.

Specifies that the order of records whose control fields
are identical is to be preserved from input to output.
Use of this option degrades SM2's performance.

Specifies that the input order of equal records need not
be preserved. This is the standard default, but can have
been changed at your installation.

Describes the work files.

The default; means that the work file DLBL statement
defines the file as multiextent (LC3). (Not allowed for
FBA workfiles).

Must be suprplied for a sort if the default is not
arrplicable. Gives the number of SORTWK DLBL statements
supplied; can be 0-9. If 0 is specified the sort will use
noc work files and will attempt to complete the sort in
main storage. Furthermore, if 0 is specified command
chaining will not be attempted.

Note: Under DOS/VSE WORK=DA means the same as WORK=1.
Sort will determine if the files are DA, SD, or VSAM
managed SAM.

Tells the sort/merge program to activate the checkpoint
facilities of the operating system.

The checkpoint file must:

1. Be assigned to SYS000 (a tape or a direct-access
device, CKD or FBA)

2. Have standard labels

3. Have the file name SORTCKP

Only one checkpocint is taken by the program, at the
beginning of the last phase.

If SM2 was invcked from a user program, or if user-written
routines are in use, the entire virtual partition is
checkrointed. Otherwise, only the area being used by
sort/merge is checkpointed. Checkpointing a large
partition will adversely affect sort elapsed time.

You cannct specify the restart option via a sort/merge
control statement; you must use the DOS/VS restart
facilities to continue an interrupted job. The general
prccedure is (1) to submit a RSTRT job control statement
tc request the system restart facilities, and (2) ASSGN
statements to reestablish the logical device assignments
that were in effect at the time the checkpoint was taken.
The DOS/VS checkpoint/restart facilities are described in

Chapter 2. Program Control Statements 19

20

the publication: DOS/VS System Management Guide and
VSE/Advanced Functions Macro User's Guide.

Checkpoint is ignored if a) no work files are used, or b)
SM2 is subtasked, or c¢) exit E31 is specified in the MODS
statement. In case (c) SM2 will pass a device list to
your routine at E31 so that you can take a checkpoint
there.

MERGE Control Statement

[S RS-)

r
|

| FIELDS= (E1 +M1 +£a +Sa sP2¢M2sE2¢S2see-sP12/Ma2,£32,512)

| MERGE ,FILES=n
| FIELDS= (P1 ¢y +S1+P2sM2¢S2¢+-<¢P12¢MazsS12) , FORMAT=£

!

The MERGE control statement is required when a merge of presorted files

is to be performed.

Operand Description
FIELDS= Keyword for control field parameters, always required.
p - -
m Control field definition parameters.
f Same notation as fcr SORT statement.
s
FORMAT=f Same use as for SORT statement.
FILES=n Must be specified. It defines the number of input files to

be merged, where n is any number from 1 through 9.

SORT/MERGE STATEMENT PROGRAMMING NOTES

1.

10.

All contrcl fields must be located within the first 4092 bytes of a
logical record.

All flcating-point data must be normalized before SM2 can collate it
properly. You may provide a routine at exit E15 (sort) or E32
(merge) to normalize flocating-point data at execution time.

In control fields, +0, 0, and -0 are treated as the same number and
compare equal.

The maximum length of packed decimal fields is 32 bytes.

The total number of bytes occupied by all control fields must not
exceed 256.

If all contrcl field data formats ‘f' are the same, they can be
omitted and the FORMAT keyword used instead.

Input files must be all SAM or all VSAM.

If any of the input files are multivolume and unlabeled, you must
specify the number of volumes using the VOLUME operand of the INPFIL
statement.

If WORK=DA is specified or defaulted, the first extent must contain
at least twc tracks.

EQUALS is ignored when SUM is specified.

Charter 2. Program Control Statements 21

SORT/MERGE STATEMENT EXAMPLES

Example 1
SORT FIELDS=(2,5,CH,A,12,10,BI,D) ,WORK=1

Instructs the program to sort one input file using two control fields.
One sequential disk extent is available for work storage.

The first control field contains unsigned EBCDIC character data starting
on the second byte and is 5 bytes long. It is to be sorted into
ascending order.

The second contxrol field contains unsigned binary data starting on the
twelfth byte and is 10 bytes long. It is to be sorted into descending
order.

Example 2
SORT FIELDS=(25,4,A,48,8,2) ,FORMAT=ZD,WORK=DA

Since both contrcl fields contain zoned decimal data, the FORMAT operand
can be used. The input file is to be sorted into ascending sequence
based on the contents of two control fields. The first control field is
4 bytes long starting on byte 25 and the second field is 8 bytes long
starting on byte 48. Work storage is on a multiextent direct-access
disk file. Under DOS/VSE WORK=DA could refer either to a DA file or a
VSAM managed file.

Example 3
MERGE FIELDS=(2,5,CH,2) ,FILES=3

SM2 is instructed to merge the input records from three files into
ascending order based on a single, character control field. The field
begins in the second byte of each record and is five bytes long.

RECORD Control Statement

[m e e Gt A s e e)

RECORD TYPE=3V€,LENGTH= Li,l2,13)

laeda,lz,lu,ls)
F Larla,13,1s)
D a,12)
14)

L]y S—— |

A RECORD control statement must always be provided. It defines the
logical records tc be sorted or merged.

Both the TYPE and the LENGTH operands must be included in the statement.

F - Fixed-length records
V - Variable-length EBCDIC records
D - Variable-length ASCII records

For Fixed-Length Records

Keyword for record lengths, which must be expressed in
Length of logical record in the input file. It is always

Required when the length is changed at exit E15 (sort).
The value is the length after E15. Default is 1,.

Required when the length is changed at exit E35. The value
is the length after E35. Default is 1, for a sort or 1,

For Variable-Length Records

All lengths must be expressed in bytes and include the four
byte record descriptor word (RDW).

Maximum record length in the input file. Always required.

Required when the maximum record length is changed at exit
E15 (scrt) . The value is the maximum record length after
the exit routine. Default is 1,.

Required when maximum output record length is changed at
exit E35. The value is the maximum record length after the
exit routine. Default is 1, for a sort or 1, for merge.

Operand Description
Reccrd type:
F
TYPE={V}
D
LENGTH=
bytes.
1,
required.
1, (ncte 2)
1; (note 2)
for merge.
LENGTH=
14
12 (note 2)
153 (note 2)
1,

Specifies the minimum record length after exit E1S.
Default is the length from the beginning of the record to
the end of the last (rightmost) field referred to in any
SORT, MERGE, INCLUDE, OMIT, SUM, or OUTREC statement -
unless that length is less than 14 bytes, in which case 14
bytes is assumed.

Charter 2. Program Control Statements 23

1s Specifies the modal {most frequent) record length and
shculd be as accurate as possible to aid performance.
Default is the average of 1, and la:

RECORD STATEMENT PROGRAMMING NOTES

1. A LENGTH parameter must be supplied, with the 14 value. Other
values can be cmitted as indicated above.

2. Do not specify l, or 13 with ADDROUT or OUTREC:

a. If ADDROUT is specified in the OPTION statement it is
unnecessary to specify 1, or 13. If, however, you do specify
1, and 13 then the values must be as shown below or the program
will terminate.

- 1, 10 + CF for SAM or 5 & CF for VSAM files

- 13 = 10 for SAM or 5 for VSAM files
where CF is the sum of the control field lengths in bytes.
1, and 15 will be calculated by SM2.

b. If OUTREC is specified, you need specify only l,: SM2 will
calculate and insert the correct values for 1, and 13 for you.

3. The lengths specified fcr variable-length records (V or D type)
must include the four-byte Record Descriptor Word (RDW) that DOS/VS
standards require. This arrlies even for VSAM variable-length
records, which normally have no RDW, since SM2 has to build an RDW
for these records when reading them in.

4. The minimum logical record length is given in Chapter 1,
'Introduction'. Tape input with records less than 12 bytes is
accepted but may cause problems if the last block is not full and
error recovery is attempted.

5. Record size must not exceed the track size of any CKD direct-access
device used for work files.

RECORD STATEMENT EXAMPLES

Example 1
RECORD TYPE=F,LENGTH=80

The statement defines the input records as fixed-length, 80 bytes long.-
This format of the RECORD statement is sufficient for all fixed-length
record statements provided user routines are not used to modify the
record lengths.

Example 2

RECORD TYPE=F,LENGTH= (80,,50)

The statement defines fixed-length records 80 bytes long which are
changed by a user routine at exit E35. The omission of the 1, value is
indicated by the twc commas.

Example 3

RECORD TYPE=D,LENGTH=(104,,,44,84)

The statement defines variable-length ASCII input records which are not
modified by user routines. The maximum record length is 104 bytes and
the minimum length 44 bytes. The modal length (most frequent record
length) in the input file is 84 bytes.

Example U

RECORD TYPE=F,LENGTH= {215,22,5)

Assuming that this statement is used in conjunction with the ADDROUT
parameter in the OPTION statement and the records are on a VSAM file,
then the statement tells the program:

° The input record length 1, is 215 bytes.

e The 1, value shown {22) represents fiwe bytes for disk address plus
a 17-byte control word for each record.

. Each output record contains a five-byte address rather than data.
The 15 value (if given) must be 5 for a VSAM file with the ADDROUT
option specified (see programming note 2 above). However you do not
need to give this value, nor that for 1,, as they can be supplied by
default: the statement RECORD TYPE=F,LENGTH=215 is also correct for
the above example.

Charter 2. Program Control Statements 25

MODS Control Statement

MODS PHp= (name,loading information,exit,,exitz...,exitp),...

e
R e e

-

-

The MODS control statement specifies how SM2 is to be modified by
user-written routines. It identifies the program exits which will be
active in each phase, and associates your routines with these exits.
Chapter 5, 'Modifying the Program® describes the phases, and the uses of
program exits.

Operand Descrirtion
PHn n specifies the program phase which is to be modified:

e PH1 specifies the internal sort phase (phase 1)
e PH3 specifies the final merge phase (phase 3)
Both may be specified in one MODS statement.

name Specifies the cataloged name of routines to be executed
at the exits specified. The 'name' must be omitted if the
rcutines are already in main storage.

loading Describes either of two ways the user routines may be
information loaded into main storage by SMZ.

The value can be the absolute loading address (expressed
in decimal), or the length of the user routines to be
executed (expressed decimally in bytes and prefixed with
1).

Loading informatiocn must be omitted if the routines are
already in main storage.

exit Srecifies the program exits that are to be used in the
specified program phase. The values are expressed as

E31, E38, and so on. They can be in any order within the
rhase.

MODS STATEMENT PROGRAMMING NOTES

1. The absolute loading address must be a virtual address if SM2 is to
run in virtuval mode, and a real address if run in real mode.

2. 1If the absclute address is used then the length of the module
containing your routines is unknown to SM2. This means that all
main storage beyond the address given is unavailable to SM2 for
other use.

3. 1If the length of the user routines is given, the routines must be:
o Self-relocating (unmcdified address constants cannot be used)

e Or, eligible for relocation by the system loader program

This enakles SM2 to load your routines in the most suitable position
to leave maximum storage available for other uses.

26

MODS STATEMENT EXAMPLES

Example 1
MODS PH1= (USERB,L500,E15) ,PH3= (USERC,L800,E31,E38,E39)

User routines are specified for the first and third phases of the
sort/merge program. USERB contains a routine 500 bytes long, which is
executed at exit E15. USERC is 800 bytes long and contains the routines
executed at exits E31, E38, and E39.

Example 2

MODS PH3={(, ,E31,E35)

Two program exits are specified for the third phase. The user routine
code is already in main storage, so its name and loading specifications
are not included. The absence of these two values is indicated by
commas. Preloaded user routines are used only for sorts or merges that
are initiated by ancther program.

Chapter 2. Program Control Statements 27

INPFIL Control Statement

INPFIL [BLKSIZE=n] {,EXIT] [,BYPASS] [,VSAM] [,TO1] {,SPAN]

+VOLUME=n +»OPEN=RWD
+VOLUMN= {n, ...) +OPEN=NORWD

+CLOSE=UNLD +DATA=A [, BUFOFF=n]
¢+CLOSE=NORWD

[,cLOSE=RWD [,DATA=E] [, NOCHAIN]

T e |
o oo s s it Tt e St s e e 5}

~eaT -wLollsae <Ll O (2 4]

The INPFIL control statement defines the input files to SM2 and
specifies the procedure +0 be followed when tape files are n

closed.

The statement is only required if the default values are not applicable.

Operand Descrigtion

BLKSIZE=n n specifies the maximum input block size in bytés. It is

not needed if:

- Input is VSAM, accessed as VSAM, or

- All input is on FBA devices, or

- All input files are unblocked
Otherwise it must be supplied, because SM2 does not support
the DLBL BLKSIZE parameter.
When specified for variable-length records BLKSIZE must
include the block descriptor word (4 bytes). For ASCII
data it must include the BUFOFF value. Defaults are:

- Record type F: 1, value from RECORD statement
- Record type V: 1, value plus four bytes
- Record type D: 1; value plus BUFOFF value

If input files have different block sizes, n must be equal
to the largest block size. The maximum permissible block
size for an input file is shown in Figure 2 in Chapter 1.

EXIT Specifies that you wish to read all input data yourself and
pass each record to the program. You must:

e Activate program exit E15 (sort) or E32 (merge) by
specifying the exit on the MODS statement.

e Provide a routine at exit E15 or E32 which will open the
file(s), read them and pass the records, one at a time,
to SM2.

When EXIT is specified all other INPFIL parameters except
DATA are ignored. See INPFIL Programming Notes 1-3 for
further details.

BYPASS Specifies that the program is to skip incorrectly read CKD
input data blocks and wrong-length physical records. The
prcgram will continue but prints an information message.

If the operand is not specified the program will print a
message and terminate on encountering the above conditions.

VSAM

TOL

SPAN

VOLUME=
(nq,N2..,0y)

OPEN=

RWD
NORWD
CLOSE=

RWD
UNLD
NORWD

DATA=E

DATA=

BUFOFF=n

If BYPASS is specified for VSAM managed SAM files the rest
of the control interval in error is bypassed.

If BYPASS is specified for FBA input it is ignored.

If BYPASS is specified in conjunction with the SPAN
parameter, all records partly or wholly in a block with an
errcr will be skipped.

BYPASS prevents command chaining of the input CCWus.

Indicates to the program that the input files are VSAM. If
VSAM is not specified it is assumed that the input files
are SAM files. The VSAM parameter may also be used to
access VSAM managed SAM files with VSAM.

A mpixture of SAM and VSAM input files is not allowed, but
VSAM managed SAM files may be mixed with either, provided
all input is to be accessed in the same way, that is,
either all SAM or all VSAM.

The VSAM operand overrides all other INPFIL operands except
TOL and EXIT. EXIT overrides VSAM.

Indicates that SM2 will tolerate a ﬁarning code from VSAM
when orening a VSAM input data set. It is only valid for
VSAM input. See Note 6 below.

Indicates that input consists of variable-length EBCDIC
records in non-VSAM files, and that the records may be
spanned. The RECORD statement must show TYPE=V. This
parameter is not reguired if input consists of spanned VSAM
records. ‘

This orerand should only be used for unlabeled files;

if specified for a labeled file, it is ignored. n is the
number of volumes in each input file and can have the value
1 through 255. The values must be specified in the order
SORTIN1, SORTIN2...,SORTIN9. Default value is 1.

This parameter only applies to tape input files.

First volume of each input file is to be rewound before
being read (default).

First volume of each input file is not to be rewound before
being read.

This parameter only applies to tape input files. At
end-of-file the tape input volumes are:

To be rewound (default)

To be rewound and unloaded.

Not to be rewound.

Specifies that the data input is EECDIC (Gefault).

Specifies that the data input is ASCII. It can only be
specified for nine-track tape.

Only used with ASCII data. It specifies the block prefix

size at the front of each physical record on the input
file. n can be any value from 0 through 99. Default is 0.

Chapter 2. Program Control Statements 29

————— — —

NOCHAIN Indicates that SM2 should not use command chaining when

reading input. Should only be used (for performance
reasons) when input consists of blocked, fixed-length
records on tape files, and you know that a large number of
blocks are shorter than the specified block size, for
example:

- when input files have different block sizes, or

- one or more files contain a large number of short blocks

See Chapter 6 for a discussion of performance.

INPFIL STATEMENT PROGRAMMING NOTES

1.

30

Any parameters which precede EXIT in the INPFIL statement are
checked for validity and flagged. Parameters which follow EXIT are
also checked and flagged for syntax errors but all values are
ignored.

The presence or absence of the EXIT parameter affects the default
symbolic unit names for the other files used by the program. See
Figure 11 in Chapter 3 for details.

If the EXIT parameter and the ADDROUT option are specified the
program will terminate and issue the message 7D09I ADDROUT OPTION
INVALID.

SM2 adds a record descriptor word (RDW) of four bytes to every
variable-length record received from a VSAM file. The user-written
routines which handle variable-length records received from SM2
need not, therefore, be designed separately for handling VSAM and
non-VsaM files.

If TOL is not specified for a VSAM input data set, a warning return
code from VSAM will normally be recognized as an error by SM2; an
error message will be printed and the program will terminate.

By specifying TOL you can sort or merge from the data set without
repairing it, and no error message will be printed. Conditions
producing warning messages are, for example: 'NOT PROPERLY CLOSED'
or "SYSTEM TIME STAMPS OF DATA AND INDEX DO NOT MATCH®.

A critical return code from VSAM will always cause SM2 to
terminate, regardless of whether TOL has been specified.

BYPASS should not be used to omit certain extra short or long input
records as it can affect performance. The OMIT function should be
used for this.

For VSAM managed SAM files the BLKSIZE parameter refers to the
logical block size. That is, it should match the RECORDSIZE
(maximum) parameter in the DEFINE statement for the file when it
was created with VSAM Access Method Services. Note also that too
long fixed length input blocks are truncated by data management and
cannot be checked by the program.

INPFIL STATEMENT EXAMPLES

Example 1

INPFIL VOLUME=(3,5,2,1) ,BLKSIZE=400,0PEN=NORWD,BYPASS,
DATA=A ,BUFOFF=99

The four input files consist of three, five, two, and one unlabeled tape
volumes respectively; blcck size is U400 bytes; the first volume of each
input file is not tc be rewound before being read; incorrectly read

input data blocks are to be ignored; input data is ASCII; and each block
has a buffer offset of 99 bytes.

Example 2

INPFIL EXIT

All input is received by SM2 from a user-written routine at either E15
(for a sort) or E32 (for a merge).

Chapter 2. Program Control Statements 31

OUTTIL Control Statement

,KSDS
OUTFIL (BLKSIZE=n] [,EXIT] [,ESDS|([,TOL] [,REUSE] [,SPAN]
DS

’

+OPEN=RWD +CLOSE=RWD
+OPEN=NORWD | |,CLOSE=UNLD | [,NOTPMK] [,BUFQOFF=n]
+CLOSE=NORWD

o e St e S o s S o — Ty
b o e v vy s r iy o i)

The OUTFIL control statement defines the output file to SM2, and
specifies the procedure to be followed when tape files are opened or
closed.

Operand Description

BLKSIZE=n n specifies the maximum block size, in bytes, of the output
records. It is not needed if output is VSAM or accessed as
VSAM, nor if outprut is to be unblocked. Otherwise it is
needed, because SM2 does not support the DLBL BLKSIZE
parameter.
When srecified for variable-length records it must include
the block descriptor word (4 bytes). For ASCII data it
must include the BUFOFF value. Defaults are:

Fixed-length records: 15 value from RECORD statement
Variable-length records: 1, value plus four bytes
ASCII records: 1,5 value plus BUFOFF value

If OUTREC is specified SM2 will calculate the output block
size according to the OUTREC statement.

EXIT Specifies that your own routine will take responsibility
for the output file instead of SM2. You must:

¢ Activate program exit E35 by specifying it on the MODS
statement.

e Provide a routine at E35 which will receive each output
record from SM2. This routine must take complete
responsibility for output.

When EXIT is specified, all other OUTFIL parameters are

igncred.
KSDS Any one of these parameters indicates that the output file
ESDS is to be stored in a VSAM data set. May also be used to
RRDS write a VSAM managed SAM file with VSAM access.

KSDS: Specifies that the VSAM data set is to be
key-sequenced. The records must have been sorted into
ascending key sequence on the primary VSAM key.

ESDS: Specifies that the VSAM data set is to be entry-
sequenced.

RRDS: Specifies that the VSAM data set is to be a relative
record data set.

32

TOL

REUSE

SPAN

OPEN=
RWD
NORWD

CLOSE=

RWD
NORWD
UNLD

NOTPMK

BUFOFF=n

If any one of these parameters is specified, all other
non-VSAM parameters on the OUTFIL statement are ignored,
except for EXIT which overrides KSLCS/ESDS/RRDS.

Specifies that SM2 is to tolerate a warning code from VSAM
when orening a VSAM output data set. It is only valid for
VSAM outrut. See Note 5 below.

Specifies that you want to write over an existing non-empty
VSAM data set defined with the REUSE attribute. For
non-VSAM data sets this operand is ignored.

Note: The DISP parameter on the output DLBL card will
override REUSE if it conflicts.

Indicates that output is to consist of spanned variable-
length EBCDIC records in a non-VSAM file. The RECORD
statement must specify TYPE=V.

If a BLKSIZE parameter is also provided, the records will
be spanned blocked. Otherwise they will be spanned
unblocked, with a default block size of the maximum allowed
for the output device.

This parameter conly applies to tape output files.
Rewind tape before writing output records (default).
Do not rewind tape before writing output records.

This parameter only applies to tape output files. It
indicates how the tape is to be treated at end of file.

Rewind tape (default).
Do nct rewind tarpe
Rewind and unlcad tarpe.

Specifies that no tare mark is to be written before the
first data record on each volume in the output file. This
parameter can only be specified for unlabeled tape output
files.

Only used when variable-length ASCII data has been
specified in the RECORD statement. It specifies the block
prefix at the front of each output block. The value of n
may only be 0 or 4. Default is BUFOFF=0 ’

OUTFIL STATEMENT PROGRAMMING NOTES

1. Parameters which precede EXIT in the OUTFIL statement are checked
for validity and flagged. Parameters which follow EXIT are also
checked and flagged for syntax errors but all values are ignored.

2. The presence or absence of the EXIT parameter affects the default
symbolic unit names for the other files used by the program. See
Figure 11 in Charter 3 for details.

Chapter 2. Program Control Statements 33

. 3. VSAM output data sets must be previously created with the VSAM

access method services utility program. See the DOS/VS Data
Management Guide or VSE/VSAM General Information for a discussion

of VSAM organization, and the

DOS/VS Utilities: Access Methods Services or Using VSE/VSAM
Commands and Macros or the VSE/VSAM Documentation Subset manuals for
how to define a VSAM data set.

4. Before writing variable-length records to a VSAM output file, SM2
removes the four-byte record descriptor word (RDW). Thus, those
user-written routines at exit E35 which pass variable-length
records back to SM2, do not need to be designed separately for
handling VSAM and ncn-VSAM files.

5. If TOL is not specified for a VSAM output data set, a warning
return code from VSAM will normally be recognized as an error by
SM2; an error message will be printed and the program will
terminate.

By specifying TOL you can write output from SM2 to the data set
without repairing it, and no error message will be printed.
Conditions producing warning messages are, for example: 'NOT
PROPERLY CLOSED' or *‘SYSTEM TIME STAMPS OF DATA AND INDEX DO NOT
MATCH'.

A critical return code from VSAM will always cause SM2 to
terminate, regardless of whether TOL has been specified.

6. For VSAM managed SAM files the BLKSIZE parameter refers to the
maximum logical block size. That is, it should match the
RECORDSIZE (maximum) parameter in the DEFINE statement for the file
when it was created with VSAM Access Method Services. If the file
is to be implicitly defined, VSAM will use this value to calculate
the control interval size for the file.

OUTFIL STATEMENT EXAMPLES

Example 1

OUTFIL BLKSIZE=300,CLOSE=UNLD,BUFOFF=4

The block size for the output records is 300 bytes. The output tape
will be rewound (by default) before writing begins and it will be
rewound and unlcaded at end of file. Data records are ASCII, as shown
by the BUFOFF parameters, and each output block will have a block prefix
of length 4.

Example 2

OUTFIL EXIT

SM2 provides the output records, one at a time, to be handled by the
user's routine at exit E35.

34

INCLUDE/OMIT Control Statement

INCLUDE
OMIT COND= (logical expression) [,FORMAT=f]

b e s e e

An INCLUDE or OMIT statement is used if you do not want all of the input
records to appear in the output file. You can achieve this in two ways:
by defining the records which qualify for inclusion, by use of an
INCLUDE statement; or by defining those which do not qualify, by use of
an OMIT statement.

You make the definition by specifying a field in each record which is to
be compared with another control value; the result of the comparison
determines whether or not the record is included or omitted. The
control value can be specified either as another field in the same
record, or in the form of a constant. For example, you could compare the
first six bytes of each record with its last six bytes, and omit from
output all records where those fields are identical. Or you could
compare a field with a specified date, and include in output only those
records with a more recent date.

You must not supply both an INCLUDE and an OMIT statement to the same

sort/merge run. If neither is supplied, all input records are included
in the output file.

COND PARAMETER
The 'logical expression' of the COND parameter can be expanded into the
following format:

COND= (relational condition,B,AND},relatiOnal conditionz..i)
OR

RELATIONAL CONDITION

The relational condition specifies a comparison to be performed. Its
format is described below. Relational conditions can be logically
combined, with AND or QOR, to form a logical expression. If they are
combined, the following rules apply:

1. Only one extra level of parentheses is allowed inside the syntax
rarentheses.

2. Expressions inside extra parentheses are always evaluated first.
3. 'AND' statements are evaluated before 'OR' statements.

4. The signs & (AND) and | (OR) may be used instead of the words.

Chapter 2. Program Control Statements 35

RELATIONAL CONDITION FORMAT

The format of the relational condition is:

] 1 i
| | Comparison operators: !
| EQ ! EQ - equal to |
| NE] (pa2,m2[,£2] | NE - not equal to i
| p1sms[,£4].,)GT|,{self-defining | GT - greater than 1
] GE term | GE - greater than or equal to |
] LT | LT - less than |
| LE | LE - less than or equal to |
| | |
L - L J
PaeMq L4

These parameters define the first data field.

. The variables p, m, and £ have the same meaning as those described
for the SORT and MERGE statements.

. Permissible field formats (f) are the same as for SORT and MERGE
statements except that you may not specify FL (floating point) ; ZD
fields can only be up to 18 bytes long, and PD fields can only be up
to 16 bytes.

o If DATA=A is specified on the INPFIL statement you may only use
formats AC, AST, and ASL.

. If all the data fields contain the same type of data, this value may
be omitted, and you may use the optional FORMAT=f operand with the
same abbreviations.

Parla, f2

These parameters specify ancther field in the logical record, with which
the first field (specified by pa, mas, £4) is to be compared.

Permissible comparisons between fields with different formats are shown
in Figure 8.

36

Field Bl CH ZD PD Fi AC | ASL | AST CSL CST CLO CTO AQ
Format

Bl X X

CH X X

ZD X X

PD X X

Fi X

AC X

CsL X X

CST X X

cLo X X

CTO X X

AQ X

Figure 8. Permissible Field-to-Field Comparisons for INCLUDE/OMIT

Self-Defining Term

A self-defining term is a constant with which a field is to be compared.
It can ke decimal, character, or hexadecimal. The different formats are
shown in detail belcw. Permissible comparisons between types of field
and types of constant are shown in Figure 9.

Decimal Number Format

i

! [*] [nn...n [.nn...n]

| t

] decimal point
|

L

L_——-—-—.ﬁ

where n represents any decimal digit.
e Any number of digits can be specified except when the constant is
to be compared with a field of FI format, when the constant may
not be larger than 2,147,483,647 nor smaller than -2, 147,483,648,

e The decimal roint is not allowed in comparisons with fields of
format FI, ZD, or PD.

Chapter 2. Program Control Statements 37

r T . N
| | Self-defining term l
l Field l ' ___________ I ___________ - _I
| format | Decimal | Character | Hexadecimal |
| | number | string | string |
lr % v B "]I
| BI | I x | X |
L 4 iR L 4
LD) T T -
| CH | | X | X |
i 1 4 IS |
T Ll T LB |
| 2D | X | | |
F 1 ¢ b -~
| PD | X I | |
F 4 + b ———
| FI | X | | |
L 1 BN j & |
T 0 T T "‘I
| AC | | X | X |
b + t b -
| AsSL | X | | |
1 4 L i N I
L L) L] i |
| AST | x | | |
L 4 L L . - 1
LI T T L g |
| ¢sTt | X | | |
L 4 L L 1
¥) T 1 -1
| ¢s. | X I] |
- 1 b b -~
| co | X | | |
{ 1 L L |
Ll Rl T T L)
| CT0 | X | !]
i 4 L L ;|
L 1 T Ll L]
| AQ | | x | X |
L L. L L - i]

Figure 9. Permissible Field-to-Constant Comparisons for INCLUDE/OMIT

e The decimal point, if specified, is counted in the length of the
constant, and included in it as a character.

Examples of valid and invalid decimal self-defining terms are shown

below.

— T "
| valid | Invalid |
- + , 1
| 15 | +#+15 too many sign characters |
| +15 | 15« sign in wrong place |
] =15 | 15. invalid decimal point |
| 131.588 | 1.5.0 tco many decimal points |
| 18000000 | 1,500 contains invalid character |
L L 4

Character String Format

—

C'%X...Xx"'

4

where x represents any EBCDIC character.

38

If you wish to include a single apostrophe in the character string,
yvou must specify a double apostrophe in your self-defining term.
Thus:

Required: O'NEILL Specify: C'O''NEILL"

Examples of valid and invalid character string self-defining
constants are shown below.

[Ll k]
| valiad | Invalid 1
- t ' i
| C*JOHN DOE INC* | C***** apostrophes not paired |
| C* $#° | "ABCDEF* C identifier missing |
] C*+0.193" | *ABCDEF*'C C identifier in wrong place [
t—— J N 4
Hexadecimal String Format
[-
| |
| X'yy...yy' [
| |
L -
where yy represents any rair of hexadecimal digits.
Examples of valid and invalid hexadecimal self-defining terms are
shown below.
r T 1
| valid | Invalid |
3 + 1
| X*FF*] X*ABGD" invalid hexadecimal digit |
| X*BF3C' | X*F1F* incomplete pair of digits |
| X*AF050505* | °*BF3C' missing X identifier |
| | *BF3C'X X identifier in wrong place |
| 1 4

Padding and Truncation

In a field-to-field compare, the shorter field is padded. In a
field-to-constant compare, the constant is padded or truncated to the
length of the field.

Strings are truncated and padded on the right. The padding characters
are:

X'00* for hexadecimal strings and BI fields
X'20* for ASCII character strings
X*'40* for EBCDIC character strings

Numeric constants are padded and truncated on the left. Padding is done
with zeros in the proper format.

Chapter 2. Program Control Statements 39

FORMAT OPERAND

FORMAT=f can only be used when all the fields in the whole COND
expression have the same format. The permissible field formats are the
same as for the SORT and MERGE statements except that you may not
specify FL (floating point). If you have specified DATA=A on the INPFIL
statement, you may cnly use formats AC, AST, and ASL.

INCLUDE/OMIT STATEMENT PROGRAMMING NOTES

1. The size of the routine generated by SM2 to handle the INCLUDE/OMIT
function is dependent on how many fields are referenced, and what
lengths and formats they have. The size of the routine must not
awvnrnnald LNAE hudaa
CAvCOGw. TV IV UI o T e

2. Floating point fields (format FL) may not be referenced in INCLUDE
or OMIT statements.

3. Any selection can be performed with either an INCLUDE or an OMIT
statement.

4. 1In the fields and decimal self-defining terms, +0, 0, -0, are
treated as the same number and compare equal.

5. Remember that if several compare statements are joined with a
combination of AND and OR logical operators, the AND statement is
evaluated first. The order of evaluation may be changed by adding
one extra level of parentheses inside the COND expression.

Figure 10 shows how SM2 will react to the result of a relational
condition compare, depending on whether the statement is INCLUDE or
OMIT, and whether the relaticnal condition is followed by an 'AND'
or 'OR' logical operator.

When writing complex statements be sure the result will be what you
want. The table in Figure 10 should help you.

r LI T L]
| | Relational | Program Action if Next |
| Statement | Condition | Logical Operator is: |
| |~ Ittt -1
| | Compare | *AND* | "OR* |
L 4 L 1‘
L T T L]
OMIT	True	Check next compare,	OMIT record
		or if last compare	
		OMIT record	
:,_ 1 L iy \‘l			
T T 1			
OMIT	False	INCLUDE record	Check next compare,
			or if last compare
			INCLUDE record 1
t + t t 1			
INCLUDE	True	Check next compare,	INCLUDE record
		oxr if last compare	
		INCLUDE record]
[} iR L L i			
L T T T			
INCLUDE	False	OMIT record	Check next compare,
]	or if last compare	
			OMIT record
L L <L L d

Figure 10. Logic Table for INCLUDE/OMIT Statement

40

INCLUDE/OMIT STATEMENT EXAMPLES

Example 1

OMIT COND=(1,10,CH,EQ,C*STOCKHOLM',§, (21,8,2L,GT, +50000, |,
31,4,CH,NE,C'HERR"))

This statement instructs SM2 to omit records in which:

L The first ten bytes contain *'STOCKHOLM' (the constant was padded
with a blank).

AND

e The zoned-decimal number in bytes 21 to 28 is greater than 50,000 OR
bytes 31 to 34 do not contain 'HERR'.

Note that the AND and OR operators can be written with the AND and OR
signs; that parentheses are used to change the order of evaluation of

the AND and the OR; and that only one extra level of parentheses is used
inside the COND parameter.

Example 2
INCLUDE COND=(5,8,GT,13,8,],105,4,LE,1000) , FORMAT=FI

This statement instructs sort/merge to only include records in which:

] The fixed-integer number in bytes 5 to 12 is greater than the
fixed-integer number in bytes 13 to 20.

OR

o The fixed-integer number in bytes 105 to 108 is less than or equal
to 1000.

Note that all four fields have the same format.

Chapter 2. Program Control Statements 41

ALTSEQ Control Statement

ALTSEQ CODE=(fftt[,fftt...])

s G s S ey

—

- o

This statement specifies an alternative collating sequence to be used by
SM2 when comparing control fields, including those specified in an
INCLUDE or OMIT statement.

The statement is only valid for EBCDIC data. If the statement is
omitted the standard collating sequences (EBCDIC or ASCII) will be used.

If it is supplied when input and output are in ASCII form, it is
ignored.

Operand Description

CODE= Parameter keyword

££f Two hexadecimal digits specifying the character whose
position is to be changed in the collating sequence.

tt Two hexadecimal digits specifying the new position in the
collating sequence the character is to occupy.

ALTSEQ STATEMENT PROGRAMMING NOTES
1. The moved character (ff) is considered equal to any character
already occupying the position (tt).
2. A character can only be moved once.
3. The control field to which the alternative sequence is to apply
must be described as format AQ in the SORT, MERGE, INCLUDE or OMIT

statements that reference it.

4. Each group of hexadecimal digits must contain exactly four digits.

42

ALTSEQ STATEMENT EXAMPLES

Languages other than English often use characters not represented in
English (with accents, for instance). The first two examples below show
how such characters can be made to collate into their correct positions
in the alphabet, by means of the ALTSEQ statement.

Example 1

The Swedish alphabet contains three letters not represented in the
English alphabet. 1In data processing applications, the ‘'national!’
EBCDIC characters ($.#,3) are used to represent them. However, §$, #, 3
do not collate ccrrectly for this purpose; the ALTSEQ statement below is
necessary to specify that the characters appear after Z, in their
correct order.

ALTSEQ CODE= (5BEA,7BEB,7CEC)

Example 2

In the German alphabet the character A is collated with A, O is collated
with O, and U is collated with U. The example statement shown below
specifies the collating sequence.

ALTSEQ CODE= (49C1,B3D6,CBEY)

Example 3

The following example specifies that uppercase A is to collate before
lowercase a, B before b and so on through to Zz.

ALTSEQ CODE= (C180,C282,8283,C384,8385,Cu86,8487,C588, 8589,
cé68a,8688,C78C,878D,C88E, 888F,C990,8991,D192,9193,
D294,9295,D0396,9397,D498,9499,D593, 959B,D69C, 969D,
D79E,979F ,D8A0,9821,D9A2,99A3,E2A4,A2A5,E3A6,A3A7,
E4AS,AU4A9 ,ESAA ,AS5AB,E6AC,A6AD,E7AE,ATAF, ESB0,ASB1,
E9B2,A9B3)

Chapter 2. Program Controcl Statements 43

OUTREC Control Statement

.
|
: OUTREC FIELDS=(p4 (M1 [,34] ««- [s/Pnetn [,3n]])
L

B s e e

The OUTREC contrcl statement requests reformatting of the input records;
that is, defines which parts of the input record are to be included in
the output record, in what order they are to appear, and how they are to
be aligned.

You do this by defining one or more fields from the input record. The
output record will consist of those fields only, in the order in which
you have specified them, and aligned on the boundaries you have
indicated.

If the statement is not used, the output record is identical to the
input record.

Operand Description

FIELDS= Parameter keyword.

P First byte of a field in the input record which is to
become part of the output record. The field can start
anywhere within the record. Otherwise the rules for
defining p are the same as for the SORT and MERGE
statements. See the Programming Notes below for special
rules for variable-length records.

m Length of the field to be included in the output. It must
include the sign if the data is signed, and must be a whole
number of bytes.

a Specifies the alignment (displacement) of the data in the
output record, relative to the start of the output record.

The permissible values are:

H Halfword aligned. This means that the displacement of
the field from the beginning of the record, in bytes, is
a multiple of two.

F Fullword aligned. The displacement is a multiple of
four.

D Doubleword aligned. The displacement is a multiple of
eight.

Alignment can be necessary if, for example, the data is to
be used in a COBOL application program where COMPUTATIONAL
items are aligned through the SYNCHRONIZED clause.

If the parameter is omitted, no alignment is performed.

Unused space preceding aligned fields will always be padded
with binary zerocs.

44

OUTREC STATEMENT PROGRAMMING NOTES

1. For variable-length records the first entry in the FIELDS parameter
must specify or include the four byte RDW.

If the first field in the data portion of the record is to appear
in the output, the entry in the FIELDS parameter can specify both
RDW and data field in cne. Otherwise, the RDW must be specifically
included in the output record.

2. ©SM2 sets the correct length value in the RDW even if you change the
record length with your OUTREC statement.

3. The variable part of the input record (that part beyond the minimum
record length) may be included in the output record as the last
part. In this case, a value should be specified for pn that is
less than or equal to the minimum record length (,) plus 1 byte,
and mp and ap should be omitted.

Note that the cutput record must receive at least one byte of the
fixed portion of the input record as well as the RDW, otherwise
*null' records containing only an RDW could appear in your output.
SM2 checks your OUTREC statement for this possibility.

4. You need not specify 1, and 1li; in the LENGTH parameter of the
RECORD statement when using OUTREC, as SM2 fills in the correct
values by default.

5. You must consider the effective record length (including padding,
if any) of the reformatted record when specifying the BLKSIZE
parameter on the OUTFIL statement.

6. Fields referenced in OUTREC statements may overlap, and may be
control fields.

7. The ADDROUT option on the OPTION statement is ignored when an
QUTREC statement has been srecified.

8. If input is variable records the output will also be variable.

This means that each record will be given an RDW by SM2, and
aprplies even if the records are all the same length.

OUTREC STATEMENT EXAMPLES

Example 1
OUTREC FIELDS=(11,32)

This statement specifies that the output record should contain only
bytes 11 to 42 of the input record. This statement can only be used
with fixed-length input records because it does not include the first
four bytes.

Chapter 2. Program Control Statements 45

Example 2
OUTREC FIELDS=(1,4,11,32,D,101)

This statement is for variable-length records of minimum length 100
bytes, and specifies that the output record should contain an RDW plus
bytes 11 to 42 cf the input record (aligned on a doubleword boundary,
relative to the start of the record) plus the entire variable portion of
the input record.

Note that no extra comma is coded to indicate the omission of the first
alignment parameter. If you do include an extra comma you will get a
syntax error message, and the program will terminate.

Example 3
OUTREC FIELDS=(1,42.,D,101)

This statement is for variable-length records of minimum length 100
bytes, and specifies that the output record should contain an RDW plus
the first 38 data bytes of the input record plus the entire variable
portion of the input record.

The 'D' parameter has no effect, since the first field is always placed
at the Lbeginning of the output record.

46

SUM Control Statement

[et v ot o e oy

SUM

FIELDS=(pq Mg s£1 <« ¢Pnelin,fn) }

FIELDS= (P4 M4+« «Pn »Mn) ,FORMAT=f

S —

The SUM control statement designates numeric fields in the input record
as summary fields. It specifies that whenever two records are found
with equal control fields, the contents of their summary fields are to
be added, the sum is to be placed in one of the records, and the other
record is to be deleted.

Operand Descrigtion
FIELDS Parameter keyword.
P First byte cof a summary field (field to be added) relative

to the beginning of the logical record. The general rules
for defining p are the same as for the SORT and MERGE
statements.

Length of the summary fields to be added. The value must
include the sign, if signed data. See below for
permissible length values.

Format of the data in the summary field, which can only be
of the following tyres:

Code Length

BI 2, 4, or 8 bytes
FI 2, 4, or 8 bytes
PD 1-16 bytes
ZD 1-18 bytes

FORMAT=f Optional. Can be used when all the summary fields contain

the same type of data. The values for f are listed above.

SUM STATEMENT PROGRAMMING NOTES

1.

The size of the routine generated by SM2 to handle the SUM function
is dependent on how many fields are referenced, and what lengths
and formats they have. The size of the routine must not exceed
4096 bytes.

Summary fields must not be control fields, must not overlap control
fields, and must not overlar each other.

Floating-roint fields must not be summarized.
When records are summarized, the choice of which record is to

receive the sum (and be retained), and which record is to be
deleted, is unpredictable.

Chapter 2. Program Control Statements 47

5. Fields other than summary fields remain unchanged, and are taken
from the record which receives the sum.

6. If overflow occurs during summation, the records are left
unsummarized (that is, the contents of the records are left
undisturbed, and no record is deleted).

7. If both the SUM statement and the EQUALS parameter of the SORT
statement are specified, the EQUALS parameter will be ignored.

8. If both the SUM statement and the ADDROUT option are specified, the
ADDROUT option will be ignored.

SUM STATEMENT EXAMPLES

Example 1
SUM FIELDS= (41,8,2D,49,4,FI)

This statement designates an eight-byte zoned decimal field at byte 41,
and a four-byte fixed integer field at byte 49, as summary fields.

Example 2
SUM FIELDS=(41,8,49,4) ,FORMAT=FI
This statement illustrates the use of the FORMAT operand. The statement

designates two fixed integer fields, one 8 bytes long starting at byte
41, and the cther 4 bytes long starting at byte u49.

48

ANALYZE Control Statement

~ |
| ANALYZE CALC |
L . |

This statement enables you to test your input job stream before running
the sort or merge. It causes SM2 to terminate, without actually sorting
or merging, after analyzing the input control stream and making its
optimization calculations based on the information in the control
statements.

It causes the following options to be forced, regardless of what has
been specified in the OPTION statement:

DIAG,NODUMP,ROUTE=LST| xxx, PRINT=ALL
It will thus produce all diagnostic messages, for example relating to
the program's stcorage requirements. It then issues message 7C19I
ANALYZE END, and terminates with a return code of 16.
If SM2 is invoked, and a value for ROUTE=xxx has been supplied

{explicitly or by default), that value will be used instead of
ROUTE=LST.

Chapter 2. Program Control Statements U9

OPTION Control Statement

¢« SORTWK=work
+ SORTWK= (WOorkq...,workn)

[.VERIFY][,ERASE][,DIAG][,DUMP] [, ADDROUT]

+NOVERIFY ||,NOCERASE ||,NODIAG |{,NODUMP

r 1
| ALL LST |
| OPTION |PRINT= NONE ,ROUTE= LOG |
| CRITICAL ¥XX |
| |
| n |
| nk |
l + STORAGE= }(n,VIRT/NOVIRT) |
| nK,VIRT /NOVIRT) |
l |
| [,LABEL= (output,inputy...,inputy)] |
| |
| [, WORKNM=woIk] |
| |
| [,FILNM=output] |
) L_.FILNM=(_output.:'mpui:,...,inputm)_l }
| !
| [,SORTOUT=output] |,SORTIN=input]
| +SORTIN= (input,4...,inputp)]
| |
! |
| |
| |
| |
I]
| I
L 3

This statement specifies the options for the associated sort/merge
program application. The values underlined are the standard defaults
supplied with the program, but the defaults might have been changed for
your installation.

Operand Descrigption

PRINT= Option keyword. Its parameters specify which messages are
to be printed by SM2.
Default: PRINT=ALL, but can be changed after SM2 is
installed.

ALL All standard SM2 messages are to be printed, including
error and end of job messages, various size calculations,
and other informative messages.

NONE No SM2 messages are to be printed. If this is specified,
the DUMP option is automatically set to NODUMP.

CRITICAL Only critical error messages are to be printed. That is
error messages signaling conditions that can cause
program termination.

ROUTE= Option keyword. Its parameters specify where the program
messages are to be routed.
Default: ROUTE=LST, but can be changed after SM2 is
installed.

LST All SM2 messages are to be routed to the SYSLST file, and
critical messages to the system console.

LOG All SM2 messages are to be routed to the system console.

50

XXX

STORAGE=

g’b

VIRT

NOVIRT

Only valid when SM2 is invoked from another program.
Program messages are to be routed to SYSxxx, where xxx can
be any valid SYS number between 000 and 221. Critical
messages will also be sent to SYSLOG, but the system dump
(if any) will go to SYSLST. If specified for an
independent sort or merge this option will be ignored and
the default (LST or LOG) taken instead.

Option keyword.

Default: STORAGE= (n,NOVIRT), where 'n' is described in

Chapter 6 (but can have been changed after SM2 was
installed).

The value n specifies the decimal number of bytes (or
K bytes, where K=1024) of main storage to be available to
SM2 and any associated user routines loaded by SM2.

A useful value for n can usually be found by subtracting
the real storage requirements of the supervisor from the
CPU main storage, and dividing the result by the number of
partitions.

Minimum: the value specified for n must not be less than

32K. 1If it is, the action taken is as follows:

- if SM2 has been invoked from another program, it
terminates immediately

- if SM2 is being run as an independent program, the value
specified is ignored and 32K used instead.

Maximum: the value specified for n must not be greater than

the smallest of the following:
1. The default storage value described in Chapter 6.

2. The difference between the SM2 load point and any
calling program return address (in register 14) above
the SM2 load point.

3. The difference between the SM2 load point and any
rreloaded user exit address which is above the SM2 load
goint.

If n is greater than the maximum permitted value, it is
ignored and the maximum used instead.

If the final value for storage available to SM2 is less
than 32K SM2 will terminate. If it is greater than 64K see
programming note 2 in the section 'Option Statement
Programming Notes'. For a given application, the minimum
can be more than 32K. See the notes on storage in Chapter
6, 'Factors of Importance for Performance'.

If VIRT is specified SM2 will not attempt to fix pages when
running in virtual mode. VIRT is ignored if SM2 is run in
real mode. See programming note 3 following this table.

Instructs SM2 to fix pages when running in virtual mode.

Chapter 2. Program Control Statements 51

N
LABEL=%S
4]

WORKNM=

FILNM=

SORTOUT=

52

|

Specifies the type of label associated with the output
and input files, and must be in the order (output,
inputy...,inputy) .

The three label types are:

N - nonstandard labels {(including user standard labels)
S - standard labels
U - unlabeled

Default: S (standard label). The positional subparameters
may be replaced by a comma if the default value S is
aprlicable.

If the LABEL ortion is omitted, standard labels are assumed
for all files.

standard labels with additional user headers or trailers),
you must provide routines at the label checking exits to
oren and close the files, and process the labels, as
described in Chapter 5, "Modifying the Program®.

If you specify N. for nonstandard label files {including

Option keyword. The parameter specifies the first four
letters of the name in the DLBL job control statement for
the work file(s). The letters replace 'SORT' in the names
SORTWK1, SORTWK2, and so on.

Default: WORKNM=SORT, but can be changed after SM2 is
installed.

Option keyword. The parameter specifies the file name or
names that are used in the TLBL and DLBL job control
statements for the output and input files. The file names
must be in the order (output,input,...,input#).

Default: FILNM= (SORTOUT,SORTIN 1-SORTINSY)

If the FILNM ortion is omitted, the default file names are
assumed for all the files. See Figure 11 in Chapter 3.

A valid file name must begin with an alphabetic character.
For input and cutput files the name can be a maximum of
seven alrhameric characters.

For compatibility reasons work files can also be specified
here, instead of in the WORKNM parameter. If a work file
name is supplied it must come last, and must come in the
eleventh position; unused input parameters must be
indicated by conmnmas.

If a work file name is given in both places (FILNM and
WORKNM) , the one specified first is overridden, and the one
specified second used.

Specifies the logical unit number of the output file. The
value can be a maximum of three digits in the range 1-221.

Default: SORTOUT=001; this can be changed after SM2 is

installed. Only needed for tape files under DOS/VSE.

SORTIN=

SORTWK=

VERIFY

NOVERIFY

ERASE

NOERASE

DIAG

NODIAG

DUMP

NODUMP

Specifies the logical unit numbers of the input files. The
values can be a maximum of three digits in the range 1-221,
or a comma (for the default number). Only needed for tape

files undexr DOS/VSE.

Default: SORTIN=(002... (,n+1)), where n is the number of
input files specified. The default can be changed after
SM2 is installed. (See Figure 11 in Chapter 3.)

Specifies the lecgical unit numbers of the work files. The
values can be a maximum of three digits in the range 1-221,
or a comma (for the default number). Not needed under
DOS/VSE.

Default: SORTWK=((n+2) ..., (n+m+l)), where n is the number
of input files specified, and m the number of work files;
this can be changed after SM2 is installed. (See Figure 11
in Chagpter 3.)

Specifies that when a direct access device is being used to
store the output file, each block will be checked to ensure
that it was written correctly. VERIFY is ignored for VSAM
output files. Its use degrades SM2 performance. It
prevents command chaining of the output CCHs.

Ooutput blocks will not be verified. This is the default,
which can however be changed after SM2 is installed:

Specifies that the sort work files will be erased if they
have been used. For CKD devices this is done by means of
an End of File record written on every used track of the
SORTWK area. Used parts of FBAR areas are filled with
zeros. Use of ERASE degrades SM2 performance.

Work files will not be erased. This is the default, which
can however be changed after SM2 is installed.

Specifies that special diagnostic messages are to be
produced. This option is useful when tuning the performance
of sort applications. {For further details see 'Using the
DIAG Option' in Chapter 6.)

Diagnostic messages will not be produced. This is the
default, which can however be changed after SM2 is
installed.

Specifies that a dump of main storage is to be made on
SYSLST whenever SM2 terminates abnormally. If the STXIT
function is available in the supervisor, SM2 will receive
control on all types of abnormal condition. A dump of SM2
main storage will be produced, and a formatted dump of the
communication area and trace table information will be
provided. If STXIT is not available only errors detected by
SM2 will result in program dumps.

Note: When running under VSE/Advanced Functions with EXEC
REAL ycu must specify a SIZE parameter leaving sufficient
real storage for system GETVIS functions.

No dump is to be made if SM2 terminates abnormally. This

is the default, which can however be changed after SM2 is
installed.

Chapter 2. Program Control Statements 53

ADDROUT

54

Specifies that the final sort output should be only the
direct-access addresses of the input records. These
addresses can be used to retrieve the input records in
sequence. The application must be a sort, not a merge.

Input can be either SAM files or VSAM files. SAM files
nust be on CKD direct-access devices; they must not be on
more than one volume, and they must not be VSAM managed SAM
files. However, ADDROUT can be used with VSAM managed SAM
files if they are defined to sort/merge as VSAM files, that
is, if VSAM is specified on the INPFIL card.

Input records must not be spanned. That is, the SPAN
parameter must not be specified; nor must input consist of
a VSAM KSDS defined with the SPANNEL attribute. ADDROUT
addresses produced in these cases would be meaningless.

If either an OUTREC or a SUM statement is provided, ADDROUT
is igncred.

If INPFIL EXIT is specified with the ADDROUT option, SM2
will terminate.

If the output file is on tape the output block size must be
20 bytes or more. SM2 ensures that the last block contains
at least 18 bytes by padding with blanks as necessary.

Output records are fixed-length, regardless of the type of
input records.

The 1, and 13 values in the RECORD statement must, if
specified, be as shown in the RECORL statement programming
note 2. If they are not specified, the correct values are
assured by default.

SAM Files: For these files the addresses are ten-byte
binary numbers in the form:

mbbcchhrdd

where

m = input file number (0-8)
m=0 for records that have come from SORTIN1,
m=1 from SORTIN2, and so on.

bb = bin number (always 00)
cc = cylinder number
hh = head number
r = number of the record (lock) on the
input file track
dd = displacement within block: 00 for unblocked

fixed-length records, or the displacement, in bytes
(relative to zero), of the record within the block.
04 for unblocked variable-length records, or the
displacement within the block.

For a SAM file the output block size must be a multiple of
ten -

VSAM Files: For these files, the addresses are five-byte
binary numbers in the form:

myyyy
where
m = SORTIN file number (1-9)
m=1 for records that have come from SORTIN1,
=2 from SORTIN2, and sO on.
relative byte address (RBA) for key sequenced
(KSDS) or entry sequenced (ESDS) data sets, record
number for relative record data sets (RRDS).

]

yyYYY

s s e i o T G S — S— — — — Y — — ——— G — . e, F, G B, S s S, it S Gt e, St Bt e s, e By

|For a VSAM file the output block size must be a multiple of
|five.
L

kS e et et i i e e et s s e et et it e e S i . il s Y et s o S st M B S S el S e, bt st et st e

OPTION STATEMENT PROGRAMMING NOTES

1. If you want to use the PRINT and/or ROUTE parameters you are
advised tc put the OPTION statement before all other SM2 control
statements; and to put those parameters on the first card or line,
not a continuation. This is because the defaults are assumed for
those parameters until contrary information is read in.

2. When running in virtual mode, if neither the SIZE parameter or
command nor the STORAGE option is specified the whole partition is
reserved for SM2 by default. Since the page activity may be high
in such an environment the storage used by SM2 will be kept to the
largest of 64K bytes virtual storage or real size ¢ 12K. However,
if sort/merge cannot execute in that partition size it will be
increased so that sort/merge is able to continue. If WORK=0 is
specified in the SORT control statement all the available storage
is used.

Chapter 2. Program Control Statements 55

3. It may be necessary to specify VIRT to prevent interference with
other jobs running simultaneously, or to allow a user-written
routine to fix pages. Specifying VIRT may have an unfavourable
effect on SM2 performance.

4. Sgecifying the ERASE option provides data security when sorting
files which contain sensitive information, but it increases
execution time.

If the checkpoint (CKPT) parameter has been specified in the SORT
control statement the ERASE option will be ignored if sort
terminates abnormally.

The ERASE cpticn has no effect on the DSCB entries in the VIOC. If
the work files are given a nonzero retention cycle, the DSCBs will

remain in the VTOC after the sort has completed, even though the
work areas themselves have been cleared or erased.

OPTION STATEMENT EXAMPLES

Example 1
OPTION PRINT=CRITICAL,ROUTE=LOG,STORAGE=U8K,LABEL= (,N,N)
This statement specifies that:

L Only critical SM2 messages will be produced and routed to the system
control conscle.

. The virtual storage available to the program is 49,152 bytes.

. The output file is to have a standard label (by default) and the two
input files have nonstandard labels.

Example 2

OPTION STORAGE=64K,VERIFY,ERASE,SORTOUT=002,SORTIN=(003,004),
SORTWK= (005,006)

This statement specifies that:

o All SM2 messages will be routed to the SYSLST file and be printed
(by default), unless this default has been changed since SM2 was
installed. Critical messages will also go to SYSLOG.

o The virtual storage available to the program is 64K bytes.

. When producing the output file, each block will be checked to ensure
that it has been written correctly.

o The work files used by sort are to be erased on completion of sort.
. SYS002 is the logical unit number of the output file. SY¥S003 and

SYS004 the logical unit numbers of the input files, and S¥S005 and
SYS006 the logical unit numbers of the work files.

(9]
[+))

Example 3
OPTION FILNM= (SORT2,IN,,IN3) ,NORKNM=JOB2,SORTWK=10

Assume FILES=3 is specified in the SORT statement then in this example
the sort output file is given the name SORT2; the input files are named
IN, SORTIN2 (by default), and IN3; and the work files have the name
JOB2WK1-JOB2WKm.

Furthermore, if we assume that a multiextent direct access work file has
been specified in the DLBL statement (code DA), only the logical unit
number of the first extent is necessary (S¥S010). The other logical
unit numbers will be picked ur by SM2 internally. In this case the WORK
operand of the SORT statement must be specified or defaulted as WORK=DA.

If the work file name is specified in the FILNM parameter instead of in
the WORKNM parameter, then the work file name must be the eleventh
value, and missing values must be indicated by commas:

OPTION FILNM=(SORT2,IN,,IN3,,sssrsJOB2) ,SORTWK=10

Example 4
OPTION SORTOUT=5,SORTIN= (,,3) ,SORTWK=(010,11,12,,14,15)

Assume FILES=2 and WORK=3 (specified on SORT statement); then, using N
and M from Figure 11 in Chapter 3 (N=2 and M=3) , SM2 will allocate as
follows:

SYS005 is the logical unit number of the output file.

SYS002 and SYS004 are the logical unit numbers of the input file. Two
default specifications are made and the SYS numbers chosen by default
would be SYS002 and SYS003 (SYS (N+1)=SYS (2+1)); but the latter is
already defined and the next consecutive number is chosen - SYS004. The
third parameter in the SORTIN operand is not used, as FILES=2.

SYS010, SYS011 and SYS012 are the logical unit numbers of the work
files.

SYS006: default setting (would be the fourth workfile if it were used).
Note: SYS005 is already in use.

SYS006, SYS014 and SYS015 are not used in this application, since
WORK=3.

This example shows how the values interact. The example may be
understcod as showing a sort which was set up to run with three input
files and six work files, but which for this particular run has only two
input files and three work files {(note the assumption that FILES=2 and
that WORK=3) .

Chapter 2. Program Control Statements 57

Chapter 3. Job Control Statements and Commands

Job control language (JCL) statements and commands are required to
define a sort or merge job application and the input, output, and work
files needed for that job. JCL is necessary for both independent and
invoked sort/merge jobs.

The JCL that may be required for a sort or merge job is described
briefly below. For a complete discussion of job control statements and
commands and their format refer to DOS/VS System Control Statements or
VSE/Advanced Functions System Control Statements.

JOB Job name, etc.

ASSGN ASSGN statements are required only if the devices to be used
in an application have not previously been assigned to the
appropriate symbolic names (SYS numbers) used in the SM2
application. Not required for VSAM or VSAM managed SAM files
under DOS/VSE Release 2 with VSAM/VSE Release 2.

TLBL A TLBL statement is required for every tape file with
standard labels.

DLBL A DLBL statement is required for every direct-access file.
- The BLKSIZE parameter must not be specified.
- If any file is on the same disk pack as another file used
by the program the two files must have different file IDs.
- For VSAM, the file ID must specify the cluster name.

EXTENT One EXTENT statement is required for each direct-access area
to define the limits which will be used by the program.
Extents defined may be Type 1 or Type 8 for input/output
files and must be Type 1 for work files. The defined extents
must include the SYS number of the device containing the
extent. Not required for VSAM or VSAM managed SAM files
under DOS/VSE Release 2 with VSAM/VSE Release 2, unless they
are to be implicitly defined (managed files only) .

EXEC SORT is the required operand entry. The EXEC statement is
followed by the SM2 program control statements.
It should contain a SIZE parameter if storage size is not
specified elsewhere (SIZE command, STORAGE option) or
defaulted, and if a GETVIS area is required, that is:

- if SM2 is to use any VSAM files, and/or
- if EXEC REAL is specified, and SM2 will run under
VSE/Advanced Functions.

LBLTYP A LBLTYP statement is required if SM2 is invoked from another
program and uses 'DA' work files or any standard labeled tape
input/output files. It is not required for independent
sort/merxge jobs.

ALLOCR Defines real storage for the partition when executing in real
mode, thus defining the amount of storage that can be fixed.

ALLOC Defines virtual partition size.

SIZE Defines the GETVIS area of the partition when running under
DOS/VSE.

— s St G— . At SR S . S S s ot

Defining Files

All files that are to be used in a sort or merge application must be
defined according to DOS/VS standards.

° The file SYS number must be assigned to a device address (ASSGN JCL
statement) excert with VSAM or VSAM managed SAM files under DOS/VSE
Release 2.

. If the SYS number default values, as shown in Figure 11 (or changed
for installation) are not to be used, the values must be specified
in the approrriate SORTIN, SORTOUT, or SORTWK parameter of the
OPTION statement (except undexr DOS/VSE for disk files).

o The file name must be included in the DLBL or TLBL JCL statement.

o If the default file names are not to be used the file names must be
specified in the FILNM parameter of the OPTION statement.

o At least one EXTENT JCL statement is required for each DLBL
statement, except with VSAM or previously defined VSAM managed SAM
files under DOS/VSE Release 2.

. If output is to an FBA device, the DLBL statement should include the
CISIZE parameter. If it does not, SM2 will use the minimum valid CI
size that will hold the specified or defaulted OUTFIL block size.

. If CI size is specified for a work file it is ignored.

. DISP=(NEW,DELETE) should be specified on the DLBL card for VSaM
managed SAM work files.

e VSAM files and VSAM managed SAM files should be previously defined
using the VSAM Access Method Services program. Under DOS/VSE VSAM
with the 'Space Management for SAM Feature' VSAM managed SAM output
and work files only may be defined implicitly with the RECORDS and
RECSIZE parameters on the DLBL card. This will of course add to the
overall time taken by sort/merge. See
Using VSE/VSAM Commands and Macros or VSE/VSAM Documentation Subset
and Using the VSE/VSAM Space Management for SAM Feature, for more
information. Implicitly defined managed output files will be
defined with record format undefined {RECFM=UNDEF). These may be
read using SAM as either fixed or variable as appropriate, but if
they are read using VSAM the access method will present a whole
block to the reading program which must then do its own deblocking.
If this is not desired these files must be defined explicitly with
RECFM=FB or VB as required.

File default names are shown in Figure 11. If a default SYS number is
occupied by another file (as specified in the OPTION statement), SM2
will use the next free number.

INPUT FILE STATEMENTS

When the file name is of the form SORTINn, n can be any value from 1 to
9 for a sort or merge, depending on the number of input files. The file
ID of the input file to be read must be included on each TLBL or DIBL
statement. Where the input file is a direct-access multiextent file,

Chaptexr 3. Job Control Statements and Commands 59

only the first EXTENT statement need contain the specified or defaulted
SYS number for the input file. Other EXTENT statements may specify any
valid SYS number.

OUTPUT FILE STATEMENTS

Multivolume and/or multiextent outprut on disk is accomplished by use of
DOS/VS standards: one DLBL card is supplied for the entire file followed
by one EXTENT card for each separate extent that the file occupies on
the disk pack or packs. Where the output file is a direct-access
multiextent file, only the first extent statement need contain the
specified or defaulted SYS number. Other EXTENT statements may specify
any valid SYS number.

WORK FILE STATEMENTS

Undexr DOS/VS Release 33 and 34

There are two methods of setting ur multiple disk work files: they can
be specified as multiextent, or multifile. Examples of the two methods
as applied to the same sort are given in Appendix A. No appreciable
performance advantage or disadvantage results from either method.

Notes

1. With FBA work files at least 64 blocks must be allocated per
extent. If CISIZE is specified for the work extents, it is
ignored.

2. 1If the WORKNM (or FILNM) parameter of the OPTION statement has been
used to specify the first fcur characters for the work file name,
this name must be used instead of the default name SORTWK?1 in the
DLBL statement.

3. Specifying a retention period of, say, one day prevents DOS/VS Job
Control from regarding the work files as expired files, while at
the same time requesting no longer retenticn than absolutely
necessary. This is shown in the DLBL statements in the example
below.

Multifile

In this method, the SYS numbers for work files are decided either by
specifying them on the OPTION statement or by accepting the defaults
shown in Figure 11 or those specified in the sort/merge default macro at
installation time.

Supply one DLBL statement and one EXTENT statement for each work file
your sort is to use. The DLBL filename entries must be either the
default file names SORTWK? through SORTWKn or the explicit work file
names xxxxWK1 through xxxxWKn as specified in the WORKNM (or FILNM)
parameter of the OPTION statement. n can be any number from 1 through
9. The 'code' parameter of the DLBL statements must be SD, explicitly
or ky default. In addition you must specify WORK=n {number of work
files) on the SORT control statement. If you do not specify WORK=n, the
default value DA will cause an I/0 error on OPEN.

60

The filename numbers must start at 1 and be consecutive. For example:

// ASSGN SYS003,X*191'
// DLBL SORTWK1,,1
// EXTENT SYS003, ...
// ASSGN SYS004,X*192°
// DLEL SORTWK2,,1
// EXTENT SYS004, ...
// ASSGN SYS005,X*191*
// DLEL SORTWK3,,1
// EXTENT SYS005, ...

Multiextent

If you use this method of specifying your disk work file, you must
specify (explicitly or by default) WORK=DA on the SORT statement.

You supply one DLBL statement, with default file name SORTWK1 or
specified work file name, and *ccde' DA. Follow this statement with
from 1 to 9 EXTENT statements, which together specify the requisite
amount of space.

Only the first EXTENT statement need contain the specified or defaulted
SYS numker fcr the work file.

The remaining EXTENT statements must be in consecutive ascending order
of SYS number, but you may specify more than one extent on the same
symbolic unit. Remember that for multivolume DAM files each different
symbolic unit must be assigned to a separate physical device. 2lso that
for multiextent DAM files all extents on one physical unit must have the
same SYS number. For example:

// BSSGN SYS003,X*191*
// BASSGN SYS004,X*193*
// BSSGN SYS005,X"'194"
// DLBL SORTWK1,,1,DA
// EXTENT SYS003, ...
// EXTENT SYSO03, ...
// EXTENT SYS0064, ...
// EXTENT SYS005, ...

Under DOS/VSE Advanced Functicns

Sort work files are defined by SORTWRKn DLBL cards and EXTENT cards. The
files may be defined as SD (with one extent only), DA (with up to nine
extents each) or VSAM managed SAM files if supported by the system (only
the first extent is used). There may be up to nine of these files. The
number is to be specified in the WORK parameter on the SORT statement.

Note: DA may not be used for files on FBA devices.

Users of VSAM managed SAM files are recommended to use the special
file-ID prefix to cause a single extent to be allocated for the primary
allocation, and to specify DISP=(,DELETE). See

Using the VSE/VSAM Space Management for SAM Feature.

Any valid SYSNO which correctly defines the device used may be used for
sort work files under DOS/VSE.

Chapter 3. Job Control Statements and Commands 61

| For example (WORK=3 on SORT card).

// ASSGN SYS005,X'191°
/7 BSSGN SYS001,X'192°

/7 DLEL SORTWK1,,1,SD

DLEL SORTWK2,,1,DA

// EXTENT S¥so001,,,,100,100

/7 EXTENT SYS001,,,,300,100

// DLEL SORTWK3,'DOS.WORKFILE.SYS007',0,VSaM,
RECORDS=1000 ,RECSIZE=80,DISP= (,DELETE)

N

| Note: The VSAM managed SAM file is defined implicitly. No EXTENT card
| is needed if the default model fcr the volume is used.

Symbolic Unit Names When:
Use of Device Filename Sort/Merge User Routine User Routines User Routines
Reads Input and at E15 Reads at E35 Writes Read Input and
Writes Output input Output Write Output
Output SORTOUT | SYS001 SYS001
Input SORTIN1 SYS002 SYS001
SORTIN9 SYS(n+1) SYS(n)
Work SORTWK1 | SYS(n+2} S$YS002 SYS(n+1) SYS001
SORTWK9 | SYS(n+m+1) SYS(m+1) SYS(n+m) SYS(m)
CHECKPOINT SORTCKP | SYS000 SYS000 SYS000 SYS000
n = the number of input files, as specified in the FILES parameter of the SORT or MERGE statement. Maximum
m= ::'eu:t.::'n%er of work files, as specified in the WORK parameter of the SORT statement. Maximum value \is Y9.

Figure 11. File Names and SYS Numbers Allocated by Default

62

Chapter 4. Executing the Program

This chapter describes how you can execute SM2 as an independent program
and how you can invcke SM2 from within your own assembler language
program. The SM2 program can also be invoked from programs written in
COBOL, PL/I, and RPG II with the Auto-Report Feature. How to do this is
described not in this manual but in the respective program user manuals
or guides that are valid for your compiler. The JCL statements required
to execute SM2 program are, however, the same regardless of how SM2 is
initiated.

Independent Program

Figure 12 shows the job stream fcr an independent sort program whose
input, output, and work files are all on disks. The input is a VSAM
file containing fixed-length 80 byte records and the output is to a VSAM
ESDS file.

Lines 1-11, 17 and 18 are DOS/VS JCL statements, and lines 12-16 are
program control statements. If the same sort program were to be invoked
from another program the JCL statements (2-10) would be needed
unchanged, and the program contrcl statements (12-16) would be needed in
a similar form in the invoking program.

Detailed explanations of job streams are given in Appendix A.

r a
| |
| 1 // JOB EXAMPLE STAND ALONE {
| 2 // ASSGN SYS001,X'160" SORT OUTPUT !
| 3 // ASSGN SYS003,X*163* SORT WORK |
| 4 // ASSGN SYS006,X*164° SORT INPUT |
| 5 // DLBL INPUT,'ACCOUNTS',,VSAM 1
| 6 // EXTENT SYS006,DISKO01 I
| 7 s/ DLBL SORTWK1,,0 l
| 8 s/ EXTENT SYS003,.,,150,6 I
| 9 // DLBL SORTOUT,'UUTPUT',0,VSAM |
| 10 // EXTENT SYS001,DISK02 |
| 11 // EXEC SORT,SIZE=32K |
[12 OPTION ROUTE=LST,SORTIN=6,FILNM= (,INPUT) |
{ 13 SORT FIELDS=(1,30,CH,A) ,WORK=1 I
| 14 RECORD TYPE=F,LENGTH=80 I
| 15 INPFIL VSAM {
{ 16 OUTFIL ESDS I
| 17 s :
| 18 /& |
| |
L 4

Figqure 12. Job Stream for an Independent Sort Program

Chapter 4. Executing the Program 63

Initiating from an Assembler Program

The SM2 program can be initiated from an assembler program by issuing a
LOAD followed by a CALL or ATTACH system macro instruction. The ATTACH
macro should only be used if you are working in a mul tiprogramming
environment and intend to subtask SM2.

In order to initiate execution of the program with a system macro
instruction, you must:

e Write the required DOS/VS job control language statements.

U] Write the sort/merge program control statements as operands of
assembler DC instructicns.

] Write a parameter list containing the addresses of the program
control statement images and cther information to be passed to SM2.

When SM2 is loaded by another program it will use all space from the
load point to the partition's uprer limit (or to the return address of
the caller), unless its storage space is limited by the STORAGE option
or the // EXEC SIZE= parameter. If SM2 is subtasked STORAGE must be
specified.

Note: The sort/merge rrogram is not reusable, which means that it must
be loaded each time it is wanted.

INTERFACE REQUIREMENTS

The linkage conventions are standard. This means that when SM2 receives
control, it expects general registers 13, 14, 15, and 1 to contain the
following information:

Register 13: This must contain the address of a nine-doubleword area in
which SM2 can save the contents of the user's registers. The user's
registers will be restored when SM2 completes its processing; they will
not ke restored, however, when SM2 branches to user-written routines at
an exit.

Register 14: This register must contain the address in the user's coding
to which SM2 will return control upon completion.

Register 15: This register must contain the address at which SORT has
its entry.

Register 1: This register must contain the address of a parameter list,
the format and contents of which are described below (unless SM2 is
subtasked, see 'Register 2' below).

Register 2: If SM2 is subtasked, as described below, then the address of
the parameter list must be in this register instead of Register 1.

SUBTASK ING

SM2 can be subtasked by using the assembler macro ATTACH. For details
| see DOS/VS Superviscr and I/0 Macros, GC33-5373 or
| VSE/Advanced Functions Macro Reference and
| VSE/Advanced Functicns Macro User's Guide.

64

There are two things that must be done if subtasking is to be used:

1. The input, output, and work files must be allocated unique file
names for each task that will or can be run concurrently. This is
to prevent the different tasks from trying to use the same input,
output, and work files. The WORKNM and FILNM parameters of the
OPTION statement are used to allocate the file names.

2. The STORAGE parameter of the OPTION statement must be specified so
that the program knows how much storage it may use. If it is not
specified, sort will try to use the whole partition.

If the program is subtasked checkpoints cannot be taken by SM2.

When SM2 is subtasked coverprinting of messages routed to SYSLST may
occur if the main task or other subtasks are using the same printer
file. SM2 provides a number of ortions that can be used to control
this:

. Specify ROUTE=xxx in the OPTION statement image, thus routing SM2
messages to the device of your choice (SYSxxxX). A system dump, if
any, will still appear on SYSLST, and critical messages will also
appear on SYSLOG. This parameter can also be set as a default after
installation of SM2.

. Route SM2 messages to the console by specifying ROUTE=LOG
e Write only critical messages from SM2 by specifying PRINT=CRITICAL
e Write no SM2 message at all by specifying PRINT=NONE

o Suppress the special formatted dump of SM2 arxreas by requesting
NODUMP .

If the parameter list pointer is in register 2, SM2 will issue DETACH on
completion. If, however, SM2 is called from a subtask, register one (1)
must point to the parameter list, as described above. The calling
program must then issue DETACH for its own subtask.

PASSING PARAMETERS

The parameter list consists cf a series of address constants pointing to
control statement images and other parameters. Figure 13 shows how the
list can be coded. Figure 14 gives a complete coding example.

No compatibility problems will result from applications using the

fixed-length parameter list previously containing only ten address
constants.

The Address List

The first ten addresses (from SORT or MERGE to the return code halfword
for phase 3 routines) must always be supplied. The first two must
contain valid addresses.

The remaining five addresses (from ALTSEQ to ANALYZE) are optional. If
supplied they can be in any order.

Chapter 4. Executing the Program 65

- - -

r L]
| |
| PLIST DC A{SORT or MERGE statement) 01 l
l DC A (RECORD statement) 02]
| DC A (INPFIL statement) 03 |
| DC A (OUTFIL statement) o4 {
| DC A (OPTION statement) 05 |
| DC A {MODS statement) 06 |
| DC A (Branch table for phase 1 preloaded user routines) 07 |
| DC A(0) u-byte address (not used by sort) 08]
| DC A (Branch table fcr phase 3 preloaded user routines) 09]
| DC A (Return code halfword) 10 |
| DC A(ALTSEQ statement or AQTT constant) 11 |
| DC A {(OUTREC statement) 12 |
| DC A (SUM statement) 13 |
| DC A (INCLUDE or OMIT statement) 14 |
| DC A (ANALYZE statement) 15 1
| : |
| SORT DC C*SORT FIELDS=(1,24,CH,A,46,4,CH,D) ,FILES=2," 16 |
| DC C'WORK=4 * 17]
| RCD DC C'RECORD TYPE=F,LENGTH=80 * 18 |
.
L 4

->

Figure 13. How to Code Parameters and Contrcl Statement Images

Any addresses that are not needed can be filled with zeros, as shown in
line 8 of the coding in Figure 13.

Lines 1-6 and 11-15 in Figure 13 are the address constants of SM2's
program control statement images.

Control Statement Images

Lines 16-18 show examples of contrcl statement images. The images must
be coded in the form shown. No extra blanks, continuation characters,
card sequence numbers, or comments are allowed in these images.

Lines 16 and 17 show how a continuation line is coded. Note that there
is no space between the comra and the apostrophe at the end of line 16.

User Routines at Program Exits

Lines 7 and 9 may contain the address constants of branch tables for the
preloaded user routines of each SM2 phase. These routines may ke part
of the program that is initiating SM2. For more information on
preloaded user routines see Chapter 5, 'Modifying the Program'.

Line 8 is not used by this program, but must be included for
compatikility reasons.

66

Return Codes: Successful and Unsuccessful Termination

Line 10 is the address constant of a halfword that can be used by SM2 to
return a code to the initiating program. If SM2 completes successfully
it returns a code of 0.

If it is unsuccessful it returns a code of 16, and the job is then
canceled, unless the supervisor has been generated with the AB=YES
option, in which case any STXIT routine will get control. If more than
one STXIT routine is present, the last encountered will be used; earlier
ones will be canceled.

SM2 has an STXIT routine of its own, for use if the program was
initiated with the DUMP opticn srecified. You can also supply STXIT
routines in the calling program and/or at one or more program exits.
The STXIT routines are generally encountered in the following order:
first, the one in your calling program; then SM2*'s; last, those in
routines at program exits.

SM2's STXIT routine is used to produce a dump, with a formatted listing
of the program's communications area and trace table. If you want this
information you should take care not to include an STXIT routine at a
program exit, which could cause SM2's STXIT routine to be canceled.
Conversely, if ycu surply an STXIT routine in your calling program you
should run SM2 with the NODUMP option, thus ensuring that SM2°'s STXIT
will not get priocrity over yours.

Alternative Sequence

Line 11 may be used in one of two ways. It can contain either the
address constant of the ALTSEQ control statement image or supply a
pointer to your own alternative sequence translate table.

If the ALTSEQ control statement image is specified, SM2 will use this
information to kuild a 256 byte translate table known as the AQ-table.
The AQ-table is then used as the second operand in a TR (translate)
instruction that is applied to those control fields with AQ format.

You also have the option of building your own AQ-table and passing it
directly to SM2. To do this, you place in the ALTSEQ entry of the
parameter list a pointer to a fullword containing the four characters
AQTT. 1In the fullword fcllowing these four characters you place the
address of your AQ-table (256 byte translate table). An example of the
coding involved follows.

Chapter 4. Executing the Program 67

PLIST DC A (SORT or MERGE statement)
DC A (RECORD statement)

DC A (Return code halfword)
DC A (AQTT) ALTSEQ entry

AQTT DC C'AQTT® AQTIT constant
DC A (AQTABLE)

AQTAELE DC X'0001020304050607° 256-byte
DC X*08090A0BOCODOEOF' user-built
AQ-table

[S . Gt S S B Tl D ot = — — s — et St}
R L iy —————

DC X'F8FI9FAFBFCFDFEFF*

SAMPLE CODING

Figure 14 is an example of code that could be used to initiate execution
of SM2. It is a sorting example with two preloaded user routines
active.

68

LOAD SORT , LOADLOC 1
LR 15,1 2
LA 1,PARAM 3
LA 13,SAVAREA 4
BALR 14,15 5
* FOLLOWING STATEMENTS ARE EXECUTED UPON COMPLETION OF SORT
CLC RETURN (2) ,=H'0" 6
BNE SORTERR 7
SORTERR - 8
*
PARAM DC A (SORT) 9
DC A (RCD) 10
DC A {INPFL) 1
DC A (OUTFL) 12
DC A (0) 13
DC A (MOD) 14
DC A(E1Y) 15
DC A{0) 16
DC A(E31) 17
DC A (RETURN) 18
DC A (ALTSEQ) 19
DC A (SUM) 20
DC A (OMIT) 21
DC a(0) 22
SORT DC C'SORT FIELDS=(10,5,CH,A) ,AORK=5 * 23
RCD DC C'RECORD TYPE=F,LENGTH=80 * 24
" INPFL DC C'INPFIL EXIT ° 25
OUTFL DC C'OUTFIL BLKSIZE=320,0PEN=NORWD ' 26
MOD DC c*'MoDS PH1={,,E15) ,PH3={(,,E35) °* 27
SUM DC C*'SUM FIELDS=(20,4,ZD) * 28
ALTSEQ DC C'ALTSEQ CODE= (5BEA,7BEB, 71CEC) ° 29
OMIT DC C'OMIT COND=(1,1,CH,EQ,C'*') * 30
SAVAREA DS 9D 31
RETURN DC H'O" 32
LTORG 33
*
* PHASE 1 BRANCH TABLE
USING E11,15 34
E11 DC A (0) 35
E15 B INPUT 36
E17 DC A {0) 37
E18 DC A (0) 3e
* PROGRAMMER'S PHASE 1 PROCESSING ROUTINES FOLLOW
INPUT SAVE (14,12) 39
RETURN (14,12) 40
*
* PHASE 3 BRANCH TABLE
USING E31,15 41
E31 DC A (0) 42
E32 DC A0 43
E35 B OUTPUT un
E37 DC 2 (0) 45
E38 DC A {0 46
E39 DC A {0) 47
* PROGRAMMER'S PHASE 3 PROCESSING ROUTINES FOLLOW
OUTPUT SAVE (14,12) 48
RETURN (14,12) 49
LTORG 50
LOADLOC DC D'0"* 51
END

Figure 14. Sample Coding to Initiate the Program

Chapter 4. Executing the Program 69

1. This instruction lcads the first phase of SM2. It is loaded on
the dcubleword boundary at LOADLOC (LOADLOC is defined by
instruction no. 51).

2. The address of SM2's entry point is placed in register 15.

3. Register 1 is loaded with the address of the parameter list.
This list is defined below by instructions 9-22.

4. This instruction lcads register 13 with the user's save area
address.

5. This instruction locads register 14 with the user's return

address, and gives control to SM2. After execution of the
sort, ccntrol returns to the next instruction.

6. Before returning control to the user, SM2 places a code in the
halfword named RETURN. This instruction tests the code for
successful sort completion.

7. If the return code is not zero, control goes to the user's
error routine.

8. Instructions begin here to process a nonzero return code upon
completion of the sort.

9-14., The parameter list begins at instruction no. 9. The first six
address constants point to sort/merge control statement images
that are defined below. Note that the constant at instruction
no. 13, which usually ccntains the address of the OPTION
statement image, contains zeros. In this situation SM2 uses
default values for the OPTION statement parameters.

15-17 These constants point to the required branch tables. No. 16
must always contain zeros, since SM2 has no Phase 2 exits;
space 1is provided for a Phase 2 branch table for reasons of
compatibility.

18. This is the address of a halfword in which SM2 can place a
return code. The halfword is defined by instruction no. 32.

19-22. These four address constants point to sort/merge control
statement images. One (at instruction 22) contains zero, and
will be ignored; it could have been omitted. The SUM, ALTSEQ,
and OMIT functicns are defined in instructions 28-30.

23-30. These instructions define the control statement images. Note
that on the MODS statement no entries are required for the
phase name and the address/length parameters, since the user
routines are preloaded.

31. This instruction defines an area in which SM2 can save the
contents of the user's registers.

32. This halfword is set aside for the return code from SM2.

33. All literals generated by previous coding are to be collected
here.

34. This instruction establishes addressability for the Phase 1

branch table and the processing routines that follow the table.

35.

36.

37-38.

39.

40.

41.

42-43.

44,

45-47.

48.

49.

50.

51.

This is the first instruction in the branch tables for Phase 1,
the internal sort phase. Since no user routine is provided for
Exit E11, SM2 will never give control to this instruction.

Each unused branch table entry must be replaced by a four-byte
displacement.

This instruction is a branch to the user routine at exit E15.
INPUT is the label of the entry point for this routine.

Exits E17 and E18 are nct used.

The user routine at exit E15 follows the Phase 1 branch table,
and the first instruction will save registers that are used in
the routine.

This instruction will restore registers to their status upon
entry into the user routine and will return control to SM2.

This instruction establishes addressability for the Phase 3
branch table and the processing routines that follow the table.

These are the first instructions of the Phase 3 branch table;
no user routines are provided for exits E31 and E32.

This instruction is a branch to the user routine at exit E35.
OUTPUT is the label of the entry point for this routine.

Exits E37, E38 and E39 are not used.

The user routine for output follows the Phase 3 branch table,
and the first instructicn should save registers that are used
in the routine.

This instructicn will restore registers to their status upon
entry into the user routine and will return control to SM2.

All literals generated by previous coding are to be collected
here.

SM2 will be loaded here cn a double-word boundary.

Note: If you use logical IOCS in your program, and you assemble the
logic modules with your program, SM2 can be loaded over these modules.
You must therefore use the linkage editor to ensure that the logic
module CSECT is loaded befcre your program instead of after it. For

example:

PHASE USERPROG, S /
INCLUDE LOGICMOD, (logmcd CSECT name)
INCLUDE USERPROG, {user CSECT)

For more information see under *'Linkage Editor®' in DOS/VS System
| Control Statements cr VSE/Advanced Functions System Control Statements.

Chapter 4. Executing the Program 71

Chapter 5. Modifying the Program

SM2 allows you tc inccrporate routines you have written into the main
flow of a sort or merge job. There are several fixed points in the
code, called program exits, at which control can be handed to your
routines.

Figure 15 shows where the exit pcints are located, and Figure 16
summarizes what can be done at each exit point.

How the Program is Organized

As shown in Figure 15, the program is in four phases. All phases are
usually executed for a scort, but cnly the first and last for a merge.

The exit names are in the form Exy, where x is the number of the phase,
and y is the number of the exit within that phase.

PHASE 0: INITIALIZATION

There are no exits in Phase 0, which essentially collects, checks, and
stores the information surrlied by control statements.

PHASE 1: SORT

This phase, which is not used for a merge, reads the input files and
sorts them into sequences, or strings. If the whole of the input can be
contained in main storage there will be only one string, and the records
will all be in the correct order. The sort is therefore complete, and
all that remains to be dcne is to write the output file.

In most cases, however, there will be too many input records to fit into
main storage, and werk files have to be used. Record strings are built
up in main storage, and written out to the disk areas specified as work
storage.

There are four program exits in Phase 1: E11, E15, E17, and E18.

PHASE 0

Define sort or merge

application
PP PHO
_____ — — —— —————— — — ——— ————————— —— ——— — ——
Ph1 Exits PHASE 1 Sort only
E11 Create strings
E15
E17 e
E18
PH 1
Ph3 Exit
E31
E35
E27 <——>
E38 INCORE
SORT
___________________ 4 ——
PHASE 2 Sort only
Red tri
educe strings PH 2
——————————————————— -T——_—_._—___.__——__
Ph3 Exits PHASE 3 sort/merge
E31 Eliminate strings PH 3
E32
E35
E37 <:>
E38
E39

Figure 15. Overview of Program Flow and Exits

Chapter 5. Modifying the Program 73

USE FOR EXITS

1

PHASE 1 PHASE 3 l

|
|
|
|
|
]
|
1
i
\
|
|
|
|
]
|
|
|
|
|
1
1
|
|
|
1
|
|
|
\

— s i

E11|E15|E17|E18|E31]|E32|E35|E37|E38|E39]

T LS
| |
| |
| |
L L L -
v N 1 T k) L L w T T T T
| Take checkpoints [T R B S I D e e B
b T Gt B B e B
| Process lakels 1 x| | x| | x| | | x| | |
- - et . R et St S S|
| Open files | x| | | | x| | | | |
b _ O T B s
| Close files lx! 1=x! 1= | 1=x=1 1 |
L L L L -} L i 1 1 L {
Ll . T T T L LB T bl b} T
| Supply password list for | | l | | | | | | |]
| VSaM files | I I x 1 | | I 1 x| x|
1 L i L L _— —_l j1 1 1
r T T L) T 'l' "‘l“' -T 1 T T ‘l
| Supply VSAM exit list b1 1 =0 1 1 1 1=x1lx1
L & 3 [SO SO | L] £ __&t__ _ 1 iy d
r T T T T T T T T T T]
| Read input to a sort | | x| | |] |]] | |
b N B S B e e S
| Count input records | | x| | | |] | | | |
¢ e T B et et SUE S|
| Insert/delete records] | x| |] | | x | | | |
t t-—-t--t-——t-—t-——-t—t-—t-—4——1-—{
| Lengthen/shorten records | | x3] | | | | x| } | |
e e B o S RS S
| Modify record data I =21 1 0 I =x2lx] 1 1 |
1 L L L L -t L PG [N (S
e — S T B e s Gt
| Read input to a merge 1 | |] | | x2] | | { |
_____ L L L —— 4 4 L PR S
N T 1 1 + 13 T 1 T + + 'l
| Summarize record 1] | | | | | x | | | |
b - - e S B e s S s
| Substitute records in a I I B | R D I T
| merge [R A IR O D D S B
b e S e e S G et
| Write output | | | | | | | x| | | |
=_ b L L i § J L L L L {
| 'Only activated if CKPT is specified on SORT statement |
| 20nly when INPFIL EXIT is specified 1
| 3If control field lengths are changed, they must match those given in|
| the SORT or MERGE statement |
L I

Figure 16. Uses for Program Exits

PHASE 2: MERGE STRINGS

If strings have been written to work storage in Phase 1, then Phase 2 is
used to merge strings together until their number is such that they can
all be merged in cone pass by Phase 3, the final merge.

This phase has nc program exits.

74

PHASE 3: FINAL MERGE

This is the phase which, after one merge pass, produces the output file.
For a merge, the program reads the input files and merges them; and for
a sort, it reads the work files and merges them.

There are six exits in Phase 3: E31, E32, E35, E37, E38, and E39.

Uses of Program Exits

The uses of the exits are summarized in Figure 16, and described in more
detail in the sections which follow. There are four main ways in which
they can be used: to handle nonstandard labels; to checkpoint; to
manipulate input or output records; and to modify VSAM processing.

Your routines for use at the exits must be coded in assembler language.
Some examples are given at the end of this chapter.

You must supply a MODS contrcl statement to the program if you want your
exit routine to be invoked. Charpter 2 describes how to code the MODS
statement.

COMPARISON WITH OTHER SORT/MERGE PROGRAMS

If you have already written routines for use with other IBM DOS or
DOS/VS sort/merge programs, you may be able to use the same routines
with SM2. Details are given in Appendix C.

Handling Input and Output File Labels

If your tapes or disks have standard labels, or if you use unlabeled
tapes, you need do nothing about either label processing or opening and
closing files. The work will be done by SM2, using the standard
facilities of the operating system.

The program cannct, however, handle nonstandard labels, or
'user-standard®' labels (standard labels with an extra header or
trailer) . You must process these labels, and open and close the files,
at the approrriate program exits. Figure 17 summarizes what needs
doing, and at which exits it should be done.

You should be familiar with the label processing procedures described in
the DOS/VS Data Management Guide, and in the publication DQOS/VS Tape
] Label Reference or DOS/VS DASD Label Reference or VSE/Advanced Functions
| Data Management Concerts and VSE/Advanced Functions Tape Labels or
| VSE/Advanced Functions DASD Labels as appropriate.

Figure 17 is equally applicable to tape and disk files, with the
exception of remarks on the subject of trailer labels: only tape files
| can have trailer labels.

| VSAM managed SAM files must have standard labels.

Chapter 5. Modifying the Program 75

r il o L} L]
| | Input ! Input | Output |
| | (sort) | ftmerge) | !
b + -—-¢ $ i
| open file, process header labels | E11 | E31 | E31]
t L ___+___ L 3
[2 T T L]
| Process all trailers except the last | EMN | E31] E31 |
1 L L 'y 1
L} L 1 T L]
| Process last trailer, close file] E17 | E37 { E37 |
L L i 8 L 4

Figure 17. Which Exits to Use for File Label Handling

INPFIL OR OUTFIL EXIT SPECIFIED

The parameter EXIT on the INPFIL control statement is a promise to SM2
that you will take care of all input to the sort or merge - not just the
individual records, but the files as well. In the same way, OUTFIL EXIT
means you will take complete charge of output.

With INPFIL EXIT specified you must therefore use E15 (for sort) or E32
(for merge) to read the input file, and pass the records one at a time
to SM2. For any application with OUTFIL EXIT you must use E35 to take
output records one at a time from SM2 and write them to file. You can
if you wish open and close the files at the same exits. However your
routines will be simple to code, and more generalized, if you use the
label handling exits instead, as shown in Figure 17.

Individual input records can be fed to SM2 at E15 for a sort or E32 for
a merge regardless cf whether you have specified EXIT on the INPFIL
control statement.

Checkpointing

Only one checkroint can be taken during a sort operation and none during
a merge. If you want the sort tc take a checkpoint you must specify the
CKPT parameter in the SORT control statement. This will cause SM2 to
take a standard checkpoint of main storage and work files at the
beginning of phase 3.

If the SM2 program is subtasked the CKPT parameter will be ignored.

You can handle checkpointing yourself by specifying the CKPT parameter
in the SORT statement and by supplying a checkpoint routine at exit E31.
SM2 will set up checkpoint parameter list but take no checkpoints

itself. You must take full responsibility for the checkpoints in your
own routine.

SM2 will not take a checkpoint if exit E31 is specified for any reason.

76

Modifying, Deleting, and Inserting Records

There are three exits at which you can manipulate individual records:
E15, for records to be sorted; E32, for records to be merged; and E35,
for records to be written to the output file.

AT SORT INPUT (E15)

Routines at exit E15 receive control before records are processed by
Phase 1. If you have specified the EXIT parameter in the INPFIL control
statement then routines at E15 must take complete responsibility for all
the sort input. See the heading *INPFIL or OUTFIL Exit Specified®
above. The INCLUDE/OMIT, SUM, and OUTREC function are performed after
E15.

Modifying a Reccrd: You can alter the contents of any field in a record
and you can change the length of a logical record by adding or deleting
fields after the last contrcl field, as long as you comply with the
record descripticn surgplied in the SORT/MERGE and RECORD statements.

If you do change the contents or alter the length of any record field
you must ensure that the control fields in the changed record still
match these control fields specified on the SORT statement.

If the length of a fixed-length record is changed, the modified length
must be specified by the 1, value in the RECORD control statement.

If the length of a variable-length record is changed such that either
the maximum or the minimum record length is altered then the respective
12, or 13 value should be specified in the RECORD control statement.

Checking Record Length: A routine can be set up to check the maximum and
minimum lengths of variable-length records at this exit. The program
checks the record lengths at a later stage and an incorrect record
length may cause the program to terminate.

Deleting Records: Any record that you do not want in the output file can
be deleted. Doing this at input rather than outrut (E35) saves program
time. However the INCLUDE/OMIT function may be used for this purpose,
instead of a user routine.

Inserting Records: Records can be inserted at any time with a routine at
the E15 exit.

AT MERGE INPUT (E32)

Exit E32 functions in two different ways, depending on whether or not
you specify INPFIL EXIT.

When INPFIL EXIT is Not Specified: A routine at E32 can only modify the
contents of a record, including control fields, but it must not be used
to alter the length of a record.

Input records cannot be inserted or deleted, but may be substituted that
is, the record the merge passes at E32 can be replaced by one of your
records.

Chapter S. Modifying the Program 77

When INPFIL EXIT is Specified: Your routine has complete responsibility
for reading records into the merge, i.e., for all operations on the
input files: defining them, opening them, and processing their labels.

The contents of the input records can be modified and the record lengths
can be altered. Records may alsc be deleted or inserted.

When the records are ready for merging, your routine passes them, one at
a time, to merge; merge performs the necessary compare operations,
writes a record cn the output file (or passes the record to your routine
at exit E35), and then returns to your routine at E32 to obtain the next
record to be merged.

AT OUTPUT (E35)

Modifying a Record: You can add, modify or delete fields anywhere in the
record.

Checking Record Length: A routine can be set up to check, for example,
the maximum and minimum lengths of variable-length records.

Deleting Records: Any unwanted record can be deleted.

Inserting Records: Records can be inserted at will, but you have
responsibility fcr inserting them in the correct sequence.

Processing VSAM Files

There are three exits which can be used in conjunction with VSAM files
to supply passwords, or an exit list.

The exits are E18 for sort input, E38 for merge input, and E39 for
output files.

PASSWORDS

Your password routine at E18 is entered only once, and must therefore
supply all necessary passwords for sort input files. The same applies
to E38, where you must supply all merge input passwords.

EXIT LISTS

You must construct your exit lists using the VSAM EXLST macro, and
observe all conventions governing VSAM exit lists. Details are given in
the DOS/VS Supervisor and I/0 Macros manual.

VSAM exits are not entered for null files.

78

Relocatable Routines are Best

Main storage that fcllows your routines may not be available for use by
SM2. For this reason, self-relocating and loader-relocatable routines
are recommended. These subjects are discussed in the DOS/VS System

Management Guide.

When you use relocatable routines, remember to specify their length in
the MODS statement, as described in Chapter 2. SM2 can then use main
storage efficiently (usually by rlacing your routines at the highest
addresses in the partition).

Loading and Linking to User Routines

LOADING YOUR ROUTINES

SM2 will lcad your routines for you.

All routines for each rhase must be treated as an entity and cataloged
under a unique name in the core image library. This is the name you
specify on the MODS statement.

When you invoke SM2 from ancther program by use of the LOAD macro, you
have the option of loading your own routines. If you do so, you must
inform SM2 of their location in the parameter list as well as supplying
a MODS statement. The parameter list is explained in detail in

Chapter 4.

PASSING CONTROL

Since all of your routines for each rhase are lcaded in a single module,
SM2 cannot know the entry point of each routine. You have to provide
this information in a branch table at the beginning of the module.

The format of the branch tables is shown in Figure 18. If there is any

exit which is not used, it must still have an entry in the table, as in
the example in Figure 18 of a branch table for Phase 1.

Chapter 5. Modifying the Program 79

PH1 B E11 *BRANCH TO ROUTINE CALLED E11
DC A *E15 IS NOT USED
B E17 *BRANCH TO ROUTINE CALLED E17
B E18 *BRANCH TO ROUTINE CALLED E18
Phase 1 Branch Table:
USING ENTRY1,15
ENTRY1 B E11
B E15
B E17
B E18
* Programmer's Phase 1 Processing
* Routines Follow

Phase 3 Branch Table:

USING ENTRY3,15

ENTRY3 E31

E32

E35

E37

E38

E39

* Programmer's Phase 3 Processing
* Routines Fcllow

..._......___.__....___...._..,_..-__.—-__.__..._._.,_.._.___..T
oW w

S s ot s ot D il s Sl e, D S S . D s (s i . S o —— — a— ot Eil — — v w— ——)

FPigure 18. Branch Tables for Program Exits

USE OF REGISTERS TO PASS INFORMATION

SM2 uses registers 1, 13, 14, and 15 in the standard way to pass
information to your routines.

Register 13 contains the address of a save area nine doublewords long,
in which you shculd save the contents of the registers; you must restore
the registers before returning control to SM2.

Register 14 contains the return address. Your routine returns control
by branching to this address.

Register 15 contains the address of your branch table. You can use this
as a kase register at the start of your program.

Register 1 contains a pointer to a list of addresses (parameter list),
each pointing to an item of information. The contents of the parameter
lists are different for each program exit, and are described below in
the coding instructions given for each exit. When your routine needs to
pass a return code back to SM2, the same parameter list conventions must
be used. The valid return codes for each exit are also described in the
coding instructions.

If you pass an invalid return code, message '7M09 RETURN CODE ERROR,
Exx' will be issued and the program will terminate.

Figure 19 shows the general method used by SM2 to pass parameters at the
different exits.

Register 1

Address Constants

\ 4

Parameters or Records

v

|
, ———
SR ‘
| | I v
I -
f— /"
L ______ —> |
[4

Figure 19. General Method fcr Passing Parameters

Ell Coding Instructions

The following notes apply tc both disk and tape files, with the
exception of references to trailer labels. Trailer labels are only
relevant to tape files, and all references to them should be ignored
when disk files are involved.

Parameter List

1. Reserved

2. Reserved

3. Addr of previous volume unit Logical unit no. of volume
just processed (2 bytes) *

4. Addr of next volume unit Logical unit no. of next
volume to process (2 bytes) *

5. Addr of block count Block count for trailer device

6. Addr of SYS number table SYS number table (see below)

* Only the SYS number is given, not the full CCR format.

Charter 5. Modifying the Program 81

SYS numker Takle

The SYS number table contains 20 one-byte entries, one for each device.

r L}
| |
| |
| |
| }
1 \\k 3 4 1 Output file]
|

| 5| 6| 7| 8 2-10 Input files [| }
| 7 . |
| 9 |10 A// 11-19 Work files [1
| CPIL1 77 7] |

20 Checkpoint file

W7 77 77,552 i = |
i L/ L d

277 7% = |
| |
! |
; -~ {
| Each one-byte entry contains the symbolic unit number in binary used |
| by the sort for the file in question. If there are fewer than the |
| maximum number of files, unnecessary bytes contain zeros. |
1 J

On_First Entry

When your E11 routine first receives control, parameters 3 and 4 contain
zeros. You must open the first volume of input and process its header
label. You will find its symbolic unit number, in binary, in the second
byte of the SYS number table pointed to by parameter 6. Parameter 5 is
not used.

On Suksequent Entries

On suksequent entries if there is an address in parameter 3, process the
trailer lakel for the volume on the unit pointed to, using the block
count indicated in parameter 5. If the contents of parameters 3 and 4
are different (and parameter 3 is not 0), this is the last volume of the
file, so you must also close the file. Note that you will not get
control to close the last input file - this must be done at exit E17.

If there is an address in parameter 4, open the volume on the unit
pointed to, and process its header labels.

EXAMPLES OF LABEL PROCESSING

The examples illustrated in Figure 20 show the label processing required
of a user routine at exit E11 for various input configurations. The
figure also shows the contents of parameters each time exit E11 receives
control, and indicates the processing carried out at E17. Any
references to trailer labels only apply to tape files and should be
ignored when using disk files.

82

Example 1. One Multivolume Input File

This example illustrates the nonstandard or user standard label
processing required for a single input file that is contained on three
volumes:

1.

Exit E11 is first activated to open the file and process the header
lakel of the first volume. All label rrocessing parameters contain
zeros; only parameter 6 is of interest.

Exit E11 is given control the second time to process the trailer
lakel of the first volume (for tape volumes only) and the header
label of the second volume (for both tape and direct access

volunes) .

The third and last time exit E11 receives control, the user routine
must again process a trailer label (tape only) and a header label
(tape and direct access).

A routine at exit E17 must rrocess the final tape trailer label and
close the file.

Example 2. Multifile, Multivolume Input

In this example, the input ccnsists of two files. The first is assigned
to logical unit SYS002, and it extends over two volumes. The second
file is on SYS003, and also extends over two volumes.

Exit E11 receives control three times to process the labels of the first

file.

On the third occasion it also orens the second file and processes

its first header lakels.

The fourth time it handles the second file's labels. A routine at exit
E17 processes the final trailer label (tape only) and closes the second

file.

Example 3. Three Multivolume Input Files, One With Standard labels

In this example, the first and third files have nonstandard or user

standard labels, while the second file has standard labels (the second

file could also be an unlabeled tape file).

The processing required at E11 is exactly the same as described in
Example 2, since the system handles standard labels completely.

Chapter 5. Modifying the Program

83

Parameters Exit Action Units

passed taken taken affected
6 SYSno bl E11(1) <QPEy

heade r

trailer unit

header unit E11(2)

block count

trailer unit
header unit
block count

E11(3)

BRE SR

>
)
2

.y
m
BN
~i

lock count (2

Example 1. One multivolume input file.

Parameters Exit Action Units
passed taken taken affected

Parameters Exit Action Units
passed taken taken affected

6 [® SYSno tbi E11(1)

3T trailer unit
4 [T header unit
5% block count

3 F trailer unit

4 header unit
5] block count

E11(2)

E11(3)

3% trailer unit
4 header unit
5 4 block count

® block count [#fi3] €17

Example 2. Multifile, muitivolume input.

E11(4)

B BEE Hme

Q

6® SYSno tbl E11(1)

4 trailer unit
4 header unit
block count

w

E-N

1

w

trailer unit
0
? block count

E-N

BES BEE

[$))

{standard iabeis}

3 0
4# header unit 4] E11(4)
5 0

&

38 trailer unit)
4E header unit _1-8{4] E11(5)_Qpg,

5 * block count h SYS004
. vol 2
E17 —a0°°

block count ()
Example 3. Three multivolume input files

one with standard labels.

Figure 20. Label Processing at E11 and E17

84

El15 Coding Instructions

Parameter List

1. Addr of record Next record to process
(or zeros)
2. Addr of action word Action word (1 word)
3. Addr of record length vector 1y 12 1, 1“ 15 {5 words)
4. Addr of record type Record type switch (1 byte)

1Zeros when INPFIL EXIT specified, and at end of file.
Parameter 1 points to the record toc be processed by your routine.
Parameter 2: The acticn word or return code tells SM2 what action to

take when contrcl is returned to it. You must insert the appropriate
code in the rightmost byte cf the action word. Valid codes are:

X*00' Process next record normally#*
X*'04' Delete next record#*

X'08' Dc not return to this exit
X'0C* 1Insert a recocrd

X'10' Terminate sort

*Invalid when EXIT is specified on the INPFIL statement.

Parameter 3 gives the address of a 20-byte area containing the record's
length parameters 1, through 1ls.

Parameter 4 gives the address of a byte containing the record type code.
Bit 0 is on and bit 1 is off for fixed-lenath records and bit 1 is on
and bit 0 is off for variable length records. Other bits may be used
by sort for flags.

Procedure

Normally the scrt will read the first input record and then pass control
to you, with the record's address in parameter 1.

1. If the record is accertable you return a code of X'00°'.
2. If you want to delete it, you return a code of X'04°.

3. If you want to pass a record to sort which you have read in from a
different file ('insert'), you put your record's address in
parameter 1 and return a code of X'0C'. Next time, parameter 1
will have been restored to its former value.

4. If you want to change the record you must move it to a work area,
change it, put its new address in parameter 1, and return a code of
X*00°*.

This process is repeated for every input record until you return a code
of X*08*' or X*10°'.

Parameters 3 and 4 make it rossible for you to write a generalized E15
routine, by giving you all the information you need about record type
and length.

Chapter 5. Modifying the Program 85

If you have specified INPFIL EXIT only step

{3) is applicable: parameter

1 will always contain zeros, which you must replace with the address of
the record you have read in.

Note that return codes X°'00°*
invalid with INPFIL EXIT specified.

and X*'04' are

Two examples of coding for routines at exit E15 are shown below.

Coding at E15: Example 1

This shows a routine that handles card input tc sort.

EXIT15

START

E15

GET

RETURN

EOF

*

RCDIN
FIRSTSW
*
CARDIN
IJCFZ1%Z

CSECT
PRINT
USING
DC

B

Dc

DC
SAVE
DROP
USING

ST
RETURN
LA
CLOSER
B

DC
DC

NOGEN
*,15
A (0)
E15
A (0)
A (0)
(14,12)
15
START, 11
11,15
4,0(, M
S5,4(1
6 ;CARDIN
FIRSTSW,X' 00"
GET
(6)
FIRSTSW,X'FF'
(6)
7 ,RCDIN
7,0 (.4
7,12
7.0 (,5)
(14,12)
7,8
(6)
RETURN

cLgo* °
X'00"

EXIT 11 UNUSED
ENTRY FOR EXIT 15
EXIT E17 NOT USED
EXIT E18 NOT USED
SAVE REGISTERS

SET UP NEW BASE REGISTER

REG 15 POINTS TO 1ST BYTE OF RTN
ADDR OF RECORD ADDR PARAMETER
ADDR OF ACTION WORD

GET ADDRESS OF DTF

TEST IF FIRST TIME

NO, BYPASS OPEN

OPEN THE FILE

SET FIRST TIME SWITCH

READ A RECORLC

GET ADDR OF RECORD JUST READ
STORE IN PARAMETER LIST

CODE FOR ACTION WORD = INSERT RCD
STORE IT IN PARAMETER LIST

BACK TO SORT

SET ACTION CODE TO 8 = END OF FILE
CLOSE THE FILE

BACK TO SORT

INPUT AREA
FIRST TIME SWITCH

DTFCD DEVADDR=SYSIPT,IOAREA1=RCDIN,EOFADDR=EOF

CDMOD
END

Coding at E15: Fxample 2

This shows a routine which compares two bytes of each input record with

a constant.

deleted from the input.

EXIT15

START

E15

OPEN

PUT

CELETE

NOACT

SKIP1

*
EOF

RETURN

*
LINECT

CSECT
PRINT NOGEN
USING *,15
DC A{0)

B E15
DC A(®
DC A {0)

DROP 15
USING START,11
SAVE (14,12)
LR 11,15

LA 4,PRINTER
M 2,3,0(0)

LTR 2,2
BZ EOF

CLC 10(2,2) ,FIRST
BH NOACT

CLI SW1,X'FF'

BE PUT

OPENR (%)

CNTRL (#) ,SK,1
MVI SW1,X*FF"*

MVC OUTAREA+1(120) ,0 (2)
PUT (4

LM 7,8,LINECNT

12 7,17

ST 7 ,LINECNT

CR 7.8

BH SKIP1
LA 4,4

B RETURN
SR 4,4

B RETURN

CNTRL (#) ,SK,1
XC LINECNT,LINECNT

B DELETE
CLOSER (%)
La 4,8
ST 4,0(3)

RETURN (14,12)
DC F'0*,F'50"

OUTAREA DC crL121* ¢

FIRST

DC cr22*

If the compare is nct high, the record is printed and

REG15 POINTS TO START OF EXIT
E11 NOT USED

BRANCH TO CODE FOR E15

E17 NOT USED

E18 NOT USED

REG15 TO BE USED BY PUT RIN

REG11 AS BASE REGISTER

SAVE REGISTERS

SET UP BASE REGISTER

GET ADDR OF PRINTER DTF

LOAD ADDR OF RECORD & ACTION WORD
TEST IF END OF FILE

YES, BRANCH

CHECK FIRST CONTROL FIELD
HIGH: SET RETURN CODE

TEST IF FIRST TIME

IF NOT, BRANCH

OPEN PRINTER FILE

SKIP TO CHANNEL 1

BYPASS OPEN & CTL NEXT TIME

MOVE RECORD TO OUTAREA, AND
PRINT IT

GET CURRENT AND MAX LINECOUNT

INCREMENT CURRENT LINE NUMBER

SAVE IT

TEST IF END OF PAGE

YES, GO SKIP TO CHANNEL 1

LOAD ACTION CODE 4 (DELETE)

RETURN TO SORT

LOAD ACTION CODE 0 (NO ACTION)
GO BACK TO SORT

SKIP TO CHANNEL 1
CLEAR CURRENT LINE NUMBER
GO BACK

CLOSE PRINTER FILE
LOAD ACTION CODE 8 {(NO RETURN)
STORE ACTION WORD

CURRENT AND MAX LINECOUNT
OUTPUT AREA
CONSTANT TO COMP. WITH CTL FLD

PRINTER DTFPR DEVADDR=SYSLST,IOAREA 1=OUTAREA,CONTROL=YES
IJDFCZZZ PRMOD CONTROL=YES

Sw1

DC x'o0°*
END

Chapter 5. Modifying the Program

87

El7 Coding Instructions

Parameter List

1. Addr of block count Block count for last volume of last
input file

Procedure

Your routine at E17 receives control only once. It must then process the
trailer lakel of the last volume of input, using the block count passed
as a parameter, and close the last input file.

El18 Coding Instructions

Parameter List

1. Type indicator
2. Zeros
3. Addr of action word Action woxrd (1 word)

You must put a return code in the rightmost byte of the action word.
Valid codes are:

X'00' No rerly

X*'04* Reply provided

X'08' Do not return
Procedure
Your E18 routine is entered twice. The first time, parameter 1 contains
C*'PWD' (plus a padding byte). This means that rasswords are requested.
The second time it contains C'EXL', which is a request for an exit list.
If you have no reply, return with a code of X'00' in the action word.
Otherwise put the address of the password list or exit list (whichever
has been requested) in parameter 2, and return with a code of X'04°.

Password List

The list must begin with a two-byte entry count, and continue with a
sixteen-byte entry for each password-protected sort input file:

2 bytes 8 bytes 8 bytes
T ———— —s e T
No. of entries File name Password :
(in kinary) 1
A - 7 -\"""“"‘ """" "
first' entry further entries

88

Exit List

The exit list must be built according to the rules laid down in
DOS/VS_Supervisor and I/0 Macros or Using VSE/VSAM Commands and Macros
(or VSE/VSAM Documentation Subset) . All routines pointed to by the list
must use standard VSAM linkage tc return to VSAM. They must not use
Register 13, which is in use by VSAM; instead they must provide their
own save area.

For end-of-file processing do NOT use the EODAD exit, as the sort will
not then be able to detect end-of-file. Instead supply a LERAD exit and
test the FDBK code for X'04', which indicates EOF. Do not change the
code, as SM2 also uses it.

E31 Coding Instructions

Pafameter list

1. Reserved
2. Addr of device list Device List

3. Addr of previous volume unit Logical unit no. of volume
just processed (2 bytes)
(CCB format)

4. Addr of next volume unit Logical unit no. of next
volume tc process (2 bytes)
(CCB format)

5. Addr of block count Block count for trailer device
(1 word)
6. Addr of SYSnumber table SYSnumber table
Procedure

Your E31 routine will receive control at the beginning of phase 3 for
both file handling and checkpointing. If only checkpointing is
requested then the E31 exit is only entered once. If nonstandard label
files are specified in the LABEL option then the E31 exit will be
entered each time a nonstandard label input or ocutput volume is
required.

As with E11, you use parameters 3 and 4 to determine what action is
needed. Either they will both contain all zeros, in which case this is
the first entry; or they will both contain addresses. The addresses
will ke the same because there are no new files to be opened, only new
volumes.

On First Entry

On first entry, parameters 3 and 4 both contain zero.

Chapter 5. Modifying the Program 89

If you want to take a checkpoint, parameter 2 points to a checkpoint
device list. The device list begins with a two-byte count field which
contains the number of work file extents that the checkpoint device list
will contain. The count field is followed by one four-byte entry for
each sort work extent. The four-byte entries have the form:

(2 kytes)

= s aan oy

W

unit code | X'0000°
|
d

e o &3

Two four-byte fields at the end of the device list give the sort start
address and the sort storage size. The checkpoint device list has the
form:

SM2 storage

ze

0
o e e

i
X'0000* | SM2 start

1

]

L

CAA s w

SEP—
n
Jude

S o —

For more details of checkpointing device lists see DOS/VS Supervisor and
I/0 Macros or the VSE/Advanced Functions Macro User's Guide.

If you are handling files, open all files with nonstandard labels (input
and/or output) , and process their header labels. You will find their
SYSnumbers in the S¥YSnumber table pointed to by parameter 6: the first
byte gives the number (in binary) of the output file, and the following
nine bytes give the numbers of the input files. If you have fewer than
nine input files the supexrfluous bytes contain zeros. See E11 coding
instructions for more details of the SYSnumber table.

On Subsequent Entries

If parameter 3 ccntains an address, process the trailer of the volume
pointed to, using the block count indicated in parameter 5. You will
not be given control to close the files; this must be done at E37.

If parameter 4 contains an address, open the volume pointed to, and
process its header.

O
[«

The table below shows the actions that must be taken by the |
routines at exits E31 and E37 when the input to a merge
consists of tare files:

SYS002, one vclume, nonstandard labels
SYS003, standard labels
SYS004, two volumes, nonstandard labels |

Output consists of one disk file:

SYS001, three volumes, nonstandard labels (user supplied
labels).

002

o
&=

Routine given SYS001
control, para-

meters passed 1

-t

1 2

w
o e e e &
o

A ——

OPEN
header

OPEN
header

E31 (1st time)
3=0, 4=0

OPEN
header

s o oo
— o

E31 (2nd time)
3 ->001
4 ->001

g
5}

O
13
]
Q2
o
a]
e v s s e e e] o —)

4

E31 (3rd time)
3 ->004
4 ->004

| OPEN
trailer|header

el e at e e BT)

OPE
header

-4

E31 (4th time)
3 ->001
4 ->001

[e G oy s e — G n —— e " . — S S S YL e S G S Sy — — —— G — " f— — ——m e =)

s e e e e e s e e st i e e

trailer
CLOSE

E37 | trailer

CLOSE |CLOSE
L

R el L peEey - SO BT IIS OIS SOy SNy - SR

W
!
|
|
4
T
I
|
s
T
!
!
|
4
L)
|
|
|
4
+
|
|
I
4
T
I
!
&

o o e e i e e e i e i et At ot S St e S

o o e e e e s
= s s o e i s . s

Figure 21. Using E31 and E37 with a Merxge

Chapter 5. Modifying the Program 91

Example of Coding at E31 and E37

The following example shows a routine which opens the output file,

writes the file

LABEXITS CSECT
PRINT
USING
START B
DC
DC
B
DC
DC

DROP
USING
*

label, and finally closes the file.

NOGEN

*,15 REG 15 POINTS TO START OF EXIT
E31 ENTRY POINT FOR EXIT E31

a (0) EXIT E32 NOT USED

A (0) EXIT E35 NOT USED

E37 ENTRY POINT FOR EXIT E37

A (0) EXIT E38 NOT USED

A (0) EXIT E39 NOT USED

15

START .11 USE REG 11 AS BASE REGISTER

***START OF ROUTINE FOR EXIT E31%*#

*

E31 SAVE (14,12) SAVE REGISTERS
LR 11,15 SET UP BASE REGISTER
LA 6 , SORTOUT GET ADDRESS OF DTF
OPENR (6) OPEN OUTPUT FILE, WRITE LABELS
RETURN (14,12) RESTORE REGISTERS, BACK TO SORT

*

***START OF ROUTINE FOR EXIT E37%%#

*

E37 SAVE (14,12) SAVE REGISTERS
LR 11,15 SET UP BASE REGISTER
MVI E37SW,X'FF' SET E37 SWITCH FOR IABEL RINE
LA 6 , SORTOUT GET ADDRESS OF DTF
CLOSER (6) CLOSE THE FILE
RETURN (14,12)
*
LAB LA 0,UHL1 GET ADDRESS OF FIRST USER HEADER LAB
CLI FIRSTSW,X"FF' TEST IF FIRST TIME
BE LaB1 NO, BRANCH
MVI FIRSTSW,X'FF' SET FIRST TIME SWITCH
LBRET 2 LBRET 2 = MORE LABELS TO PROCESS
*
LAB1 CLI E37SW,X'FF" TEXT IF E37
BE LAB2 YES, TIME FOR TRAILER LABEL
1A 0,UHL2 ADDRESS OF 2ND USER HEADER IABEL
LBRET 1 LBRET 1 = LAST LABEL PROCESSED
*
LAB2 LA 0,UTI LOAD ADDRESS OF TRAILER LABEL
LBRET 1 WRITE TRAILER LABEL - (LAST LABEI)
UHL1 DC CL80'UHL1EXAMPLE OF A USER HEADER LABEL'
UHL2 DC CL80'UHL2ANOTHER EXAMPLE OF A USER HEADER LABEL®
UTL1 DC CL80'UTLITHIS IS AN EXAMPLE OF A USER TRAILER LABEL'
*
E37SW DC X'00° USED IN LABEL RTNE TO IDENTIFY E37
FIRSTSW DC X'00" 1ST OR SEQUENCE ENTRY

*

SORTOUT DTFPH
*

END

TYPEFLE=OUTPUT ; LABADDR=LAB,DEVADDR=SYS001

E32 Coding Instructions

Parameter List

1. A4dr of next record (zeros Next record to process

when INPFIL EXIT specified)
2. Addr of input file number File no. in hex code (1 word)
3. Addr of action word Action worxd
4. Addr of record length vector 1, 12, 153 1, 1ls (5 words)
5. Addr of record tyre Record type switch (1 byte)

The action word is only required when the INPFIL EXIT parameter is
specified. You must put the return code in the rightmost byte of the
action word. The valid codes are:

X'08' No more records to come from a specified file
X*0C' New record inserted
X'10*' Terminate merge

Parameter 4 gives the address of a 20-byte area containing the record's
length parameters 1, through 1ls.

Parameter 5 gives the address of a byte containing the record type code.

The codes are X'80' fcor fixed-length records and X'40' for
variable-length records.

Procedure Without INPFIL EXIT

When INPFIL EXIT is not specified only parameters 1, 4, and 5 are
passed. The merge reads the first record from the first input file and
then passes control to you, with the record's address in parameter 1.
You can accept the record; or you can substitute a new one of the same
length by changing rarameter 1 to point to the new record. You then
return control to the merge. No return codes are passed back. This
process is repeated until the input is exhausted.

Procedure With INPFIL EXIT

However, if you have specified INPFIL EXIT the procedure is different.
Then, when yvou first receive control, parameter 1 contains zeros and
parameter 2 contains a pointer to a word containing a hexadecimal code
in the rightmost byte which specifies from which input file the next
record should be obtained. The codes are:

X*'14¢ File
Xx*1s* File
X*1ct File
X*20" File

X*'o00° File
x'o4° File
X'08* File
x'ocC' File
X*10* File

NEWN
O 0o~

You should then:
1. Open all input files and do any necessary label processing.
2. Read the first block of records from the first file.

3. Put the address of the first record in parameter 1.

Chapter 5. Modifying the Program 93

4. Put X'0C' ('new record inserted') in the action word pointed to by
parameter 3.

5. Return control to the merge.

On_each subsequent entry you pass a record to the merge in the same way,
from the file requested in parameter 2.

When you have no more input on the requested file, you close the file
{processing labels as necessary) and return with zeros in parameter 1
and X*'08' in the action word. SM2 will then request input from a
different file, until you have returned a code of 'X08' for each of the
input files. If you need to terminate the merge before end of input
(abnormal termination) you return a code of X*'10°.

An example of a routine for use at exit E32 when the INPFIL EXIT is
specified is shown below.

PH3RTN CSECT

PRINT NOGEN
USING *,15
START DC A (0) E31 NOT USED
B E32 ENTRY POINT FOR EXIT E32
DC A (0) E35 NOT USED
DC A (0) E37 NOT USED
DC 2 (0) E38 NOT USED
DC A (0) E39 NOT USED
DROP 15
USING START, 12
E32 SAVE (14,12) SAVE REGISTERS
LR 12,15 LOAD BASE REGISTER
ST 13,SAVE13
LM 2,3,4(N) LOAD PARAMETERS
LR 4,1 SAVE PARAMETER POINTER
*
* REGISTER 2 NOW POINTS TO FILE NUMBER INDICATOR
* REGISTER 3 NOW POINTS TO ACTION WORD
* REGISTER 4 NOW POINTS TO PARAMETER LIST
*
CLI FIRST,X'FF' IS THIS THE FIRST TIME?
BE FILENO NO, BRANCH
OPEN MASTER,WEEK YES, OPEN FILES
MVI FIRST,'X'FF* SET 'FILES OPEN' INDICATOR
*
FILENO CLI 3 (2) ,X'00°* FILE 1?
BE GETMAST YES, READ FROM MASTER FILE
CLI 3(2) ,X'04° FILE 2?
BE GETWEEK YES, READ FROM WEEKLY UPDATE FILE
* IF NO BRANCH WAS TAKEN, THIS IS AN ERROR, FORCE DUMP
ERROR DUMP
*
GETMAST CLI MASTOUT,X'FF' FILE ALREADY CLOSED?
BE ERROR YES, ERROR
GET MASTER ELSE, READ A RECORD
B INSERT GO TO SEND IT TO MERGE
*
GETWEEK CLI WEEKOUT,X'FF" FILE ALREADY CLOSED?
BE ERROR YES, ERROR
GET WEEK ELSE GET RECORE

INSERT ST 5,0 (,4)
MvC 3(%,3) ,ACCEPT
B RETURN

*

ENDMAST MVC 3 (1,3) ,END
CLOSE MASTER
MVI MASTOUT,X'FF*
B RETURN

ENDWEER MVC 3 (1,3) ,END
CLOSE WEEK
MVI WEEKOUT,X'FF'

*

RETURN L 13,SAVE13
RETURN (14,12)

%*

* RETURN CODES FOR MERGE

ACCEPT DC X'oc"

END DC X'08°*

*

MASTOUT DC X'00"

WEEKOUT DC X*00°*

FIRST DC X'00°

SAVE13 DC F'0°*

INBUFM DS 100F

INBUFW DS 100F

*

MASTER DTF

WEEK DTF
END

STORE ADDRESS

OF RECORD

SET ACTION WORD
RETURN TO MERGE

SET ACTION WORD

CLOSE MASTER FILE

SET FILE CLOSEC INDICATOR
RETURN TO MERGE

SET ACTION WORD

CLOSE WEEKLY UPDATE FILE
SET FILE CLOSEC INDICATOR

RESTORE REG 13
RESTORE REGISTERS AND RETURN TO MERGE

INSERT RECORD
END OF FILE

MASTER CLOSED

(ACCEPT)

INDICATOR

WEEK CLOSED INLDICATOR
FIRST TIME INDICATOR

INPUT BUFFER FOR MASTER
INPUT BUFFER FOR WEEK

SD BLKSIZE=400,DEVADDR=SYS020,RECFORM=FIXBLK,
RECSIZE=80,I0REG= (5) ,ERROPT=SKIP,DEVICE=3340,
JOAREA 1=INBUFM,EOFADDR=ENDMAST

SD BLKSIZE=400,DEVADDR=SYS021,RECFORM=FIXBLK,
RECSIZE=80,I0REG= (5) ,ERROPT=SKIP ,DEVICE=3340,
IOAREA 1=INBUFW,EOFADDR=ENDWEEK

E35 Coding Instructions

Parameter List

1. A4ddr of

2. Addr of

3. Addr of
4. Addr of
5. Addr of
6. Addr of

Parameter 1
output is ex

Parameter 2
buffer. Unt

current record

previous record

action word

sequence check word

record length vector

record tyre

points to the record currently selected for output.
it contains all zeros.

haused

Current record

Previous record now in the output

buffer

Action word

Sequence check word

1l 12

Record type switch

1 1, 1ls {5 words)
{1 byte)

When

points to the record most recently moved to the output
il the first record has been moved out it contains zeros.

Chapter 5.

Modifying the Program 95

Parameter 3 is for your return information to SM2. You must put a
return code in the rightmost byte cf the action word. Valid codes are:

X'00' Process current record normally
X'04* Delete current record

X'08' Do not return to this exit
X'0C* 1Insert a record

X*'10' Terminate sort/merge

Parameter U4 contains zeros; it is for use if you want to insert records
which are out of sequence.

Parameter 5 gives the address of a 20-byte area containing the record's
length parameters 1, through Is.

Parameter 6 gives the address of a byte containing the record type code.
Bit 0 is on and bit 1 is off for fixed length records and bit 1 is on
and bit 0 is off for variable-length records. Other bits may be used by
sort for flags.

Procedure

When your E35 routine first receives control, parameter 1 will normally
point to the first cutput record. Parameters 2 and 4 will contain
Zeros.

a. If the current record is accertable you return a code of X'00°'.
b. If you want to delete it you return a code of X*'04°'.

c. If you want to insert a record which you have yourself read in, you
check it against the current record (parameter 1). If it collates
ahead of the current you put its address in parameter 1 and return a
code of X'0C*'. Next time, parameter 1 will have been restored to its
former value. You can insert a record which is out of sequence; if
you do so, you must inform SM2 by putting a nonzero value in the
sequence check work pointed tc by parameter 4.

d. If you want to change the current record you move it to a work area,
change it, put its new address in parameter 1, and return a code of
X*'00°'.

This process is repeated for every output record until you return a code
of X'08' or X'10°'.

If you have specified QUTFIL EXIT you return a code of X'04' every time,
until parameter 1 contains zeros: then output is exhausted and, after
closing your output file, you return a code of X'08'. A code of X'10°
is also valid with OUTFIL EXIT.

96

Example of Coding at E35

The routine shown in the following example is self-relocating and prints
all sorted records on SYSLST using physical IOCS.

PH3RTN

EXITS

EXIT35

PRINT

RETURN

CHECK

CHA12

PRINTCCW
PRINTCCB
Sw1
OUTAREA

CSECT
PRINT NOGEN
USING *,15

DC A (0)

DC A{0)

B EXIT35
DC A(0)

DC A(0)

DC A (0)

STM 14,12,12(13)
LR 4,1

SR 5,5

C 5,0 (, 4
BC 8 ,EOF

L 6,0 {,4)

MVC OUTAREA,O (6)
LA 1,PRINTCCB
CLI SW1,X'00°*
BNE PRINT

MVI SW1,X'FF'
BAL 3,CHA12
EXCP (1)

WAIT (1)

LA 6,CHA12

BAL 3,CHECK

L 6,8 (,4)
MVI 3(6) ,X'04"
B RETURN
L 6,8 (,4)

MVI 3 (6) ,X'08"
LM 14,12,12 (13)
BR 10

™ 4(1) ,X'01°

BCR 1,6

BR 3

MVI PRINTCCW,X'8B'
EXCP (1)

WAIT (1)

MVI PRINTCCW,X'09"
BR 3

REG 15 POINTS TO START OF EXIT

EXIT E31 NOT USED

EXIT E32 NOT USED

EXIT E35 ENTRY POINT

EXIT E37 NOT USED

EXIT E38 NOT USED

EXIT E39 NOT USED

SAVE REGISTERS

REG 4 POINTS TO LIST OF ADDRESS
CONSTANTS PASSED BY SORT

CLEAR REG 5

1ST ADDR CONSTANT ZERO?

YES, NO MORE RECORDS FROM MERGE

LOAD ADCR OF REC LEAVING MERGE

MOVE RECORD TO PRINTAREA

GET ADDR OF PRINTCCBE

CHECK IF FIRST TIME THROUGH

NO, PRINT RECORD

SET FIRST TIME SWITCH

GO SKIP TO CHANNEL 1

PRINT A RECORD

WAIT FOR COMPLETION

GET ADDR OF CHANNEL 12 ROUTINE

CHECK IF CHANNEL 12 REACHED

LOAD ADDR OF ACTION WORD

INSERT RETURN CODE (DELETE)

GO TO RETURN TO SORT

LOAD ADLCRESS OF ACTION WORD

SET RETURN CODE (DO NOT RETURN)

RESTORE REGISTERS

RETURN TO SORT/MERGE

TEST FOR UNIT EXCEPTION

YES, GO TO CHANNEL 12 ROUTINE

NO, LINK BACK

MODIFY PRINTCCW TO SKIP TO CH1

SKIP TO CHANNEL 1

WAIT FOR COMPLETION

RESTORE OP CODE IN PRINTCCW

BRANCH BACK TO SET RETURN CODE

cCw X*09* ,OUTAREA,X"20*,L'OUTAREA

CCB SYSLST,PRINTCCW
DC X'o0*

DC cL100* °*

END

CCB
FIRST TIME SWITCH

Chapter 5. Modifying the Program 97

E37 Coding Instructions

Parameter list

1. Addr of block count list Block count list (4-byte entries)
Qutput file block count
Input file 1 block count
. only for
. a merge
Input file n block count
Your routine at E37 receives control only once. It must:
] Process the trailer label of the last volume of output, using the
first entry in the block count list passed as a parameter, and close
the output file.

. For a merge, carry out the same processing for the last volume of
each input file.

See the diagram and coding example supplied with the E31 coding
instructions.

E38 Coding Instructions

Parameter List

1. Type indicator
2. Zeros
3. Addr of action word Action word
The only valid return codes are:
X'00*' No rerly
X'04*' Reply provided
X'08' Do not return
Procedure
Your E38 routine is entered twice. The first time, parameter 1 contains
C'PWD' (plus a padding byte) . This means that passwords are requested.
The second time it contains C'EXL', which is a request for an exit list.

If you have no rerly, return with a code of X'00' in the action word.

Otherwise put the address of the password list or exit list (whichever
has been requested) in parameter 2, and return with a code of X'04°.

Password List

The list must begin with a 2-byte entry count, and continue with a
sixteen byte entry for each password-protected merge input file:

2 bytes 8 bytes _E_Pytgg__
No. of entries File Name Password

(in binary)

First entry

Exit List

The exit list must be built according to the rules laid down in DOS/VS

| Supervisor and I/0 Macros or Using VSE/VSAM Commands and Macros or

| VSE/VSAM Documentation Subset. All routines pointed to by the list must
use standard VSAM linkage to return to VSAM. They must not use Register
13, which is in use by VSAM: instead they must rrovide their own save
area.

For end-of-file processing do NOT use the EODAD exit, as the sort will
not then be able to detect end-of-file. Instead supply a LERAD exit and
test the FDBK code for X'04', which indicates EOF. Do not change the
code, as the sort program also uses it.

Note: The same exit list must be valid for all SORTIN files.

E39 Coding Instructions

Parameter List

1. Type indicator
2. Zeros
3. Addr of acticn word Action word

The valid return codes that can be entered in the rightmost byte of the
action word are:

X'00' No rerly

X'04" Reply. provided

X'08' Do nct return
Procedure
Your E39 routine is entered twice. The first time, parameter 1 contains
C'PWD* (plus a padding byte) . This means that passwords are requested.
The second time it contains C'EXL', which is a request for an exit list.

If you have no reply, return with a code of X'00' in the action word.

Otherwise put the address of the password list or exit list (whichever
has been requested) in parameter 2, and return with a code of X'04°.

Chapter 5. Modifying the Program 99

Password List

The list is 18 bytes long: an entry count (2 bytes), followed by the
name of the output file and its password.

2_bytes 8 bytes 8 bytes
No. of entries Output file name Password

(in binary)

Exit List

The exit list must ke built according to the rules laid down in DOS/VS
| Supervisor and I/0 Macros or Using VSE/VSAM Commands and Macros or

| VSE/VSAM Documentat
use standard VSAM 13

Llon Subset. All routines pointed to by the list must

area.

100

inkage to return to VSAM.
13, which is in use by VSAM; instead they must provide their own save

They must not use Register

Chapter 6. Factors of Importance for Performance

This chapter discusses performance under four main headings:

o The effect of the environment

. Choices of program function than can affect performance positively
o Those which can affect performance negatively

. Use of the DIAG option.

Effect of the Environment

The major environmental considerations are those of storage, and the
characteristics of input and output.

SM2 MODULES IN THE SVA

If SM2 was installed in the system core image library most of its phases
can be loaded in the SVA, as described in the
DOS/VS Sort/Merge Version 2 Installation Reference Manual.

SM2 should be executed from the SVA to get maximum storage utilization
and performance.

MAIN STORAGE (REAL AND VIRTUAL)

In general the more main storage available to the program the better its
performance, but overcommitment must be avoided. Overcommitment will
occur if virtual storage allocated to SM2 is much greater than the real
storage available, resulting in heavy paging and/or deactivation taking
place.

In common with other sort/merge rrograms, SM2 generally uses all the
main storage (real or virtual) available to it.

Figure 23 shows how various parameters affect SM2's use of main storage.

In System/370 Mode

Performance is improved if the DOS/VS {DOS/VSE) system is generated with
the PFIX=YES and ECPREAL=YES options, and SM2 is run in a virtual
partition with a sufficiently large associated real partition (defined
by the ALLOCR statement) . SM2 can then utilize the page fixing and
private CCW translation features to perform its I/0O in real mode. SM2
will not page-fix merge applications.

Chapter 6. Factors of Importance for Performance 101

An adequate size for the associated real partition allocated through the
ALLOCR JCL statement can be determined as follows:

. Fixed-length record sorts: about 50% of available main storage

e Variable-length record scrts: about 100% of available main storage

In ECPS:VSE Mode

Performance is improved if SM2 is allowed to fix the buffer pages. This
is controlled by the ALLOCR JCL statement, which is determined in the
same way as for System/370 mode (described above).

Storage Use

The amount of main storage actually used by SM2 (whether virtual or
real) is the smaller of:

SIZE -~ from the EXEC statement or SIZE statement
and
STORAGE - from the SM2 OPTION statement, or the installed default

The use of the STORAGE parameter is a good way to avoid overcommitment.
If neither STORAGE nor SIZE is specified SM2 has access to the entire
partition, and will use the amounts shown in Figure 22.

— T T T b
| SYSTEM | VIRTUAL EXECUTION | REAL EXECUTION |
b 4 femmmen 1
| DOS/VS Rel] | |
|33 and 34 | Max (64K; ALLOCR + 12K)*,2 | ALLOCR |
L] L d
L L) v 1
| DOS/VSE | Up to partition GETVIS area | ALLOCR, or up to parti- |
| | | tion GETVIS area if any |
=_ X1 L '{
| "If execution is not possible in this environment SM2 will use as |
| much as necessary (up to the full partition) to enable it to }
| continue processing. |
| 2If no work files have been allocated for a sort (WORK=0) SM2 will |
| use all space available tc it.]
L d

Figure 22. Default Storage Value Used by SM2

If both DIAG and PRINT=ALL have been specified, SM2 will print
diagnostic messages which will tell you whether buffer pages have been
fixed, whether real I/0 has been used, and how storage has been used.

WORK STORAGE

Best performance can be expected when one work file is allocated on a
device which is separate from the input and output devices. Allocation
of more than one device for work storage does not improve performance.

With a small input file it may be possible to sort the file in the

available virtual storage, without the need for any work files. Then
WORK=0 can be specified. For more details see Appendix B.

102

—— b

© o e e e

STORAGE SM2 parameter
(limits storage available to

SM2)

e p—

|
I
|
|
|
|
I
I
I
J
\'

S,

SIZE JCL parameter, statement, or command
{linmits storage available to SM2)
ALLOCR JCL statement or command

(defines end cf real partition, or page
fixable storage)

D P

<——-—E;—--——-—-—-—--———--—--—----

ALLOC JCL statement or command
(defines end of wvirtual partition for virtual
execution)

[om o e e S . . St St A s St G G B i G D S, S, s G e S S
LS or e e e e G T e s o P Gt St P (e R Sl e e (. e AP s A S

Figure 23. SM2 Storage Allocation Map

Data transfer rate can also be important. In general, the faster the
data transfer rate of the work device used, the faster SM2 will run.

INPUT AND OUTPUT FILES

With tape and CKD devices performance is generally better when the input
and output data is blocked. Large blocks give better performance than

small ones.

With FBA devices, a large CI value gives better performance than a small
one.

SPECIFICATION OF RECORD LENGTH

When sorting variable-length records you can aid performance by careful
specification of 15 in the RECORD statement.

The 1y parameter gives the record length that occurs most frequently in
the input file (modal length). If you do not specify a value for 1, it
is assumed to be equal to the average of the maximum and minimum (1, and
1,) record lengths in the input file. For optimum performance, both 1,
and 15 should be specified. Specifying an inaccurate modal length may
cause reduced performance.

Chapter 6. Factors of Importance for Performance 103

Functions that May Affect Performance Positively

INCLUDE/OMIT

You can use the INCLUDE/OMIT statement to select for sorting or merging
only those records which are needed in the output file. If only a
subset of the file is selected, CPU time and data transfer time will be
reduced.

SUM

You can use the SUM statement to cause records to be summarized:
whenever two records with equal control fields are found, the contents
of fields defined in the SUM statement are added, the result is placed
in one record, and the other is deleted; any resulting reduction in the
number of records tc be processed by SM2 will save CPU time and data
transfer time.

OUTREC

You can use the OUTREC statement to reduce the size of sorted or merged
records, removing fields not needed in the output records. This will
usually save data transfer time.

NOCHAIN

If the input file is on tape, and is declared as fixed format, and
contains many blocks which are shorter than the specified maximum block
size, you will be getting the overhead of chaining without its benefits.
This is because fixed format tape input command chains cannot read past
a short input block. In this case (and only in this case) specify
NOCHAIN to prevent performance deterioration. However, if possible it
is better to alter the BLOCKSIZE parameter to be accurate and try to
avoid short blocks in the input file.

Functions that May AfHfect Performance Negatively

CHECKPO INT/RESTART

If SM2 is invoked from a user program, or if user-written routines are
in use, the entire virtual partition in which SM2 is running is
checkpointed. Otherwise only the main storage being used by sort/merge
is checkpointed. Checkpointing the whole partition may take longer than
checkpointing the main storage used by sort/merge; SM2 performance may
therefore suffer.

104

VERIFY, BYPASS, ERASE, DIAG, EQUALS, DUMP, AND WORK=0.

The VERIFY option will affect performance negatively, since it involves
an extra read operation of the written output. It also precludes the
use of command chaining when writing output files.

BYPASS precludes the use of command chaining when reading input files.
Command chaining usually provides a good performance improvement.

ERASE involves additicnal writes on the work files.
DIAG produces additional messages but is useful when tuning SM2.

The EQUALS ortion causes an additional field of four bytes to be added
to each record, which increases the time needed for comparison of
records and for data transfer.

When the DUMP option is in force SM2 maintains a trace table, which
costs a little CPU time.

SM2 does not use command chaining on input and cutput when no work files
are provided (WORK=0) .

EFFECT OF USER ROUTINES

When user routines are included in a sort or merge application, the time
required to run the job is usually increased.

The execution time required by most user routines is generally small,
but the routines at exits E15, E32, and E35 are entered for each record
of the file(s) . For large input files, the total execution of these
routines can be relatively large.

User routines also occupy main storage that could otherwise be used by
SM2 to improve its performance. Depriving the rrogram of this main
storage is particularly detrimental to performance when the program is
running in a small partition, oxr when the input file size is very large.

Using the DIAG Option

The DIAG option can be used for tuning purposes, to investigate how well
SM2 is performing in its current environment and to discover whether and
how improvements could be made.

If you specify DIAG in the OPTION statement you receive extra messages
concerning SM2's storage use, optimization parameters, data handling,
and time required, as shown in the tuning table below.

The table alsc shows the interpretation which can be placed on the

various items of information, and how they can be used to improve
performance.

Chapter 6. Factors of Importance for Performance 105

TUNING TABLE

Message Concerning:

Intexpretation:

MAIN STORAGE USE

Whether SM2 is exe-
cuted from the Sva

Real storage avail-
able for page fixing

Virtual storage used
by SM2

Buffer allocation in
phases 1-3

Modal record length

WORK SPACE USE

Sort capacity

Work space used

106

Execution from the SVA gives better storage
utilization and performance.

If too little real storage is available you
will receive one or more messages saying that
input, work, or output buffer pages have not
been fixed. To improve performance, increase
real storage.

Determined by the partition allocation, the
EXEC SIZE parameter, or SM2's STORAGE para-
meter.

Performance improves when sort/merge uses
double buffering on its files. For fixed-
length records the optimum number of data
buffers in the respective phases are Ph1; two
input and two output; Ph2; three buffers which
are rotated; Ph3, two input and two output.

For variable-length records sort optimum is two
input and two output in Ph1 while in the other
phases sort uses M+1 on input and two output
buffers (where M is merge order for the phase).
If fewer have been allocated, increase virtual
and preferably also real storage size.

It is vitally important for performance when
sorting variable-length records that modal
record length (1s on the RECORD statement
LENGTH parameter) is specified, and is
reasonably accurate.

You can use information on work space
utilization to make sure you are not being
over-generous or unduly mean with work file
space. If you have an application which will
be run regularly, and where the amount of data
is likely to grow, you will probably want to
allow a generous amount of space. If however
you have a shortage of direct-access space you
may want to trim the allocation to the minimum.

You can ccmpare SM2's estimate of how many
records it could handle with the number of
records actually sorted.

You can ccmpare the amount of space actually
used with the amount allocated.

Message Concerning:

Interpretation:

OPTIMIZATION
PARAMETERS

Block size for index
and work buffers

Fixable storage
Real I/0
Buffer area fixed

Merge order (M) in
phases 2 and 3

Internal record
length

RSA bin size

DATA HANDLING

Number of data and
index blocks handled
by phases 1-3

Number of physical
and logical strings
handled by the par-
titioning part of
phase 2

TIME REQUIRED

CPU and elapsed time
for each of phases
1-3

With CKD devices work block size can be up

to full track length. If it is less, perfor-
mance will prcobably be improved if you increase
real stcrage size. An increase in virtual
storage size will also usually give an
improvement as long as the relationship between
real and virtual does not become excessive.

SM2 should be given enough real storage

tc be able to page fix the buffer areas

at the beginning of each phase. This avoids
the need to page fix and translate channel
program addresses for each EXCP. Even in
ECPS;VSE, where there is no channel program
translation (no EXCPREAL option), the CPU time
saving is considerable.

The higher the merge order, the greater SM2's
efficiency. If it is less than (say) 8, per-
formance should be improved if you increase it
by increasing virtual storage size.

If internal record length is very large (say,
clcse to track size) you are approaching the
lirit that this application can handle.
Internal record length can sometimes be reduced
by respecifying control fields or other fields,
as described elsewhere in this manual.

With variable-length records the size of the
rcot bin is affected by modal record length
{(RECORD statement LENGTH 15 parameter) .

Correct specification of 1% can be critical for
performance.

Increased storage allocation can lead to
reduced data handling.

The amount of data handling in phase 2 can
give an idea of how well SM2 is performing,
as can the number of physical strings
handled in partitioning.

If, in partitioning, the number of logical
strings is lower than the number of
physical strings, your input file is not
random. The amount of difference gives an
indication of the degree of non-randomness.

Enables ycu to study the effect of your
tuning measures, if you have job accounting
in your supervisor.

Chapter 6. Factors of Importance for Performance 107

Appendix A. Sample of Job Streams, with Statement
Format Rules

Statement Format

This appendix first gives the full format rules for program control
statements, and then supplies several examples of complete job streams
for executing a sort or a merge.

An example of contrel statement format is given in Figure 24.

Column 1 must be blank
unless a label is present 72 73 80

(Label) Operation Operand (Comments) (Sequence or
Identification)

(Continuation column)

Figure 24. Control Statement Format Example

The control statements are free-form. The operation definer,
operand (s) , and comments may appear anywhere in a statement, as long as
they appear in the proper order, and are separated by one or more blank
characters. Column 1 of each control statement must be blank, unless
the first field is a label, in which case it must begin in column 1.

Label Field

If present, the label must appear first on the card. It must begin in
column 1, and conform to Assembler label format rules.

Operation Field

This field must not extend beyond column 70 of the first card. It
contains a word (SORT, MERGE, RECORD, MODS, etc.) that identifies the
statement type to the program. It must not begin in column 1 and it
must be separated by at least one blank from a label field.

Operand Field

The operand field is made ur of one or more operands separated by
commas. This field must follow the operation field, and be separated
from it by at least one blank. If the statement occupies more than one
card, this field must begin ¢cn the first card.

-2
(=]
w

Each operand has an operand definer, or keyword (a group of characters
that identifies the operand type tc the sort/merge program). A value or
values may be associated with a keyword. The three possible operand
formats are:

. keyword {orerand 3)
o keyword=value (operand 2)
) keyword= (value,y ,value,...,valuepn) (operand 1)

When an operand of the type keyword= (value,,value,...,valuepn) is used,
values may be omitted if they are equal to those assumed by the program.
The following rules apply to omitting values from such an operand:

° Values can be dropped from right to left. Thus, if all values after
value, are equal to those assumed by the program, the operand may be
written: keyword= (valueq ,values) .

. If values are dropped from the middle, commas must be used to
signify their omission. Thus, if value is equal to the value
assumed by the program, the operand may be written:
keyword= (valueq ,,values) .

o If only the first value of a series is needed, the parentheses are
optional. BAn operand of this type may be written as either
keyword=value or keyword= (value) .

Comments Field

This field may contain any information you desire. It is not required,
but if it is present, it must be separated from the operand field by at
least one blank.

A comments field may arpear on the first statement or on any
continuation statement as long as there is a blank between the comma (,)
of the operand to be continued and the desired comment. This allows the
following layouts:

SORT FIELDS=(-/-rs-) s SORT KEYS
WORK=1, NO. OF WORK AREAS
FILES= NO. OF INP FILES

Continuation Column (72)

Any character other than a blank in this column indicates that the
present statement is continued on the next card.

Columns 73-80

This field may ke used for any purpose you desire.

CONTINUATION CARDS

A continuation card is treated as a logical extension of the preceding
card. Either an operand or a comments field may begin on one card and
continue on the next. You can indicate that a statement continues on

the next card in two ways:

Arprendix A. Example of Sort/Merge Job Streams 109

By placing any nonblank character in column 72. This method must
be used when comments fields are to be continued.

By a comma followed by at least one blank (before column 72) . When
you do this, SM2 adds an asterisk (*) in column 72--unless the
statement is INCLUDE or OMIT. This method cannot be used to
indicate continuation cf comments fields.

When preparing continuation cards the following rules apply:

The continuation must begin in one of columns 2-16.

The continuation column (72) and columns 73-80 of continuation card
fulfill the same purrose as they do on the first card of a control
statement.

If an operand is broken at column 71, column 72 must contain a
nonklank character. The continuvation must then begin in column 16.

SUMMARY OF RESTRICTIONS

The following rules aprply to control statement preparation:

The

Unless a label is present, column 1 of each control statement must
be blank.

Labels must kegin in column 1.

The whole operation definer must be contained on the first card of a
control statement and it must be separated by at least one blank
from a lakel field.

The first operand must begin cn the first card of a control
statement. The last operand in a statement must be followed by at
least one blank.

Each type of program control statement may appear only once for each
execution of the sort/merge program.

following restrictions dc NOT apply to a self-defining term enclosed

in quotation marks:

110

Embedded blanks are not allowed in an operand Anything following a
blank is considered part of the comments field.

Values may contain no more than eight alphameric characters.

Commas, equal signs, parentheses, and blanks can be used only as
delimiters. They must nct be used in values.

CONTROL STATEMENT NOTATION

In this publication, the descriptions of sort/merge program control
statements use the following notation:

Uppercase characters designate keywords or operators which should be
written exactly as shown.

The comma ',*, left and right parentheses ' () ', and the equal sign
*=' should be written exactly as shown.

Braces, brackets, ellipses, lowercase characters, and subscripts are
used to define control statements; they should not be written in a
statement. They are used as follows:

- Braces '{}' designate alternatives, only one of which should be
selected.

- Brackets ' [] * designate optional parameters which may be
omitted. Only one item from each bracket may be used if there
is a choice.

- Ellipses ... indicate that the preceding variable {or group of
variables) is the first in a series.

- Subscripts define the sequence of an item in a series.

- Lowercase names and letters represent variables for which
specific information must be substituted.

An underlined parameter indicates the standard default setting
supplied with the program. Note, however, that some defaults can be
changed.

Examples

This appendix supplies the following complete examples:

1.

2.

Merge two tape and two disk files to a tape output file.
Sort a tape file using four disk work files.
Sort a tape file using two disk work files on four extents.

Sort a disk file onto tape, using five single-extent disk work
files, and exits E31 and E37 for label handling.

Sort a VSAM file, with output in the form of disk addresses only,
using a disk work file on three extents.

Sort parts of a tape file (INCLUDE specified), and reformat the
output records (OUTREC) on a tape file, using two disk work files
of two extents each.

Sort a tape file, summarizing equal records, and collating national

characters at the end of the alphabet. One disk work file of 4
extents.

Appendix A. Example of Sort/Merge Job Streams 111

112

This page intentionally left blank

1. Merge four files {(tape + disk); tape output

r L]
| |
k 1
| v // JOB EXAMPLE1 |
| 2 // ASSGN SYS001,x"282* MERGE OUTPUT |
| 3 // ASSGN SYS002,X* 284" MERGE INPUT |
| 4 // ASSGN SYsS003,X* 191" MERGE INPUT |
| 5 // ASSGN SYS004 ,Xx* 283" MERGE INPUT |
!l 6 // ASSGN S¥S005,x* 192 MERGE INPUT |
| 7 // DLBL SORTIN2 |
| 8 // EXTENT S¥S003,191191,1,0,20,70 |
| 9 // DLBL SORTIN4

| 10 // EXTENT SY¥YS005,192192,1,0,20,70

| 11 // EXEC SORT ,SIZE=6UK

| 12 OPTION LABEL=(U,U,S,U,S)

| 13 MERGE FIELDS= (21,4,2D,0,9,8,PD,A,30,4,BI,A, 40,4,CH,D, 35,4,

' 1“ CH,A,?O,“,FLi,A,go, 1“(CH'D'79'5'CH1A'86,2'BI'A'5, I
| 15 4,pp,D0,25,3,CH,D,130,4,BI,37) ,FILES=4

| 16 RECORD TYPE=V,LENGTH= (154,,154)

| 17 INPFIL BLKSIZE=1544 I
| 18 OUTFIL BLKSIZE=1544]
| 19 /* |
| 20 /& |
L 4
2 Assigns the ocutput unit, SYS001, to the tape unit at address 282.

3-6 Assigns tape units SYS002 and SYS004 and disk units SYS003 and
SYS005 as input units.

7-10 Assigns two extents on the two disk input volumes. A total of 140
tracks allocated.

11 Initiates the program and specifies the SIZE parameter to
restrict the amount cf virtual storage available to SM2.

12 Specifies that the output tape SYS001 and input tape units S¥S002
and SYS004 are unlabeled. Input disk units SYS003 and SYSCO05 use
standard labels.

13-15 Specifies that a merge based on 12 contrcl fields is to be
executed. There are four input files to be merged.

16 Specifies that variable-length records are to be merged; the
maximum length ¢f both input and output records is 154 bytes.

17-18 Specify that input and output block size is 1544 bytes.

Arrendix A. Example of Sort/Merge Job Streams 113

r 1
| 2. Sort: tape input and output: |
1 d
| < L}
| 1 // JOB EXAMPLE2 |
| 2 // ASSGN SYS001,X"283" SORT OUTPUT |
| 3 // ASSGN SYs002,X* 282" SORT INPUT |
| 4 // ASSGN SYS003,xX*162* SORT WORK 1 1
| S5 // ASSGN SYSQ04 ,X"162°* SORT WORK 2 |
| 6 // ASSGN SYS005,X* 163" SORT WORK 3 |
| 7 // ASSGN SYS006,X* 163" SORT WORK 4 1
| 8 // TLBL SORTOUT |
| 9 // DLBL SORTWK1, ,0]
| 10 // EXTENT S¥Ys003,,1,0,760,38 i
1 11 /s DLBL SORTWK2, ,0 |
| 12 // EXTENT SYsS004,,1,0,380,38 |
| 13 // DLBL SORTWK3, ,0 l
| 14 ,// EXTENT S¥s005,,1,0,380,38 |
| 15 // DLEL SORTWEK4, ,0 |
| 16 s/ EXTENT S¥S006,,1,0,760,38 i
} 17 // EXEC SORT,SIZE=32K |
| 18 OPTION PRINT=ALL,LABEL= (N,U) ,ROUTE=LST |
| 19 SORT FIELDS=(5,4,CH,D,20,12,BI,A,50,3,CH,A), I
| 20 WORK=4 ,FILES=1 |
| 21 RECORD TYPE=V,LENGTH= (158,,,54,100) |
| 22 INPFIL BLKSIZE=1544 ,CLOSE=RWD |
| 23 QUTFIL BLKSIZE=1544,CLOSE=RWD |
| 24 MODS PH3= (SAEXIT,L2000,E31,E37) |
| 25 /= |
| 26 /¢ |
L 4
2-7 Assign I/0 devices tc be used as output, input and work units.

The output and input units, SYS001 and SYS002 respectively, are
assigned to tape units at addresses 283 and 282. Four work
units, SYS003 through SYS006, are assigned to disk.

8 Allocate a tape file for ocutput.

9-16 Allocate four extents on the two disk work volumes; 152 tracks
are allocated in all.

17 Specifies that the prcgram is to have 32K bytes of virtual
storage available for its use.

18 Indicates that the program is to print all messages. The input
is unlabeled and the cutput file has standard labels with
additional user labels that will be processed by the user.

19-20 Specifies that a sort based on three control fields will be
executed. There are four work areas available; and the input
file is ccntained on cone file.

21 Specifies that variable-length records are to be sorted. The
maximum input record length is 158 bytes, as indicated by the 1,
value of the LENGTH operand. By default, the values for 1, and
15 are the same as 14. The 1, value indicates that the minimum
record length is 54, and the most common (umodal) record length is
100 bytes, as indicated by the ls parameter.

22 Specifies that the input block size is 1544 bytes, and the
program is to rewind the input volume at end-of-file.

23 Specifies that the outgut block size is 1544 bytes,and the
program is to rewind the output volumes at end-of-job.

114

24 Specifies that the sort program is to load the user routine
SAEXIT for execution during phase 3. These routines have a
length of 2000 bytes and are relocatable. The 2000 bytes are to
ke included within the storage size that the sort is to operate
in. The user exits to be activated during phase 3 are E31 and
E37 which are used for label processing of the output file.

w
.

Sort: tape input and output

/7 JOB EXAMPLE 3

// ASSGN SYS001,X'284' SORT OUTPUT
// ASSGN SYS002,X'282' SORT INPUT
// ASSGN S¥YS003,X'191" SORT WORK
// ASSGN SYS004,X'192' SORT WORK
// DLBL SORTWK1,,1,DA

// EXTENT SYS003,191191,1,0,760,38
// EXTENT SYS003,191191,1,1,380,38
// EXTENT SYS004,192192,1,2,380,38

10 // EXTENT SYS004,192192,1,3,760,38

11 // EXEC SORT ,SIZE=32K

12 OPTION PRINT=ALL,LABEL= (U,U)

13 SORT FIELDS=(5,4,CH,D,20,12,BI,A,50,3,CH,3),
14 FILES=1

15 RECORD TYPE=V,LENGTH= (158,,,54,100)
16 INPFIL BLKSIZE=1544,CLOSE=RWD

17 OUTFIL BLKSIZE=1544,CLOSE=RWD

18 /%

19 /¢

WONOANEWN -

——-—-—-—..-——q—.——.—-———————-—-‘p_-.1
e e e L T T U S U Sy S S - Dep——

This example is the same as Example 2, but illustrates the use of a
multiextent work file.

6 One DLBL statement is provided for the work file. Code DA is
specified, indicating that there is one multiextent work file,
and a retention period of one day is requested.

7-10 Four EXTENT statements describe the four work extents.

11 32K bytes of virtual storage are available to the program.

12 The SORTWK parameter cn the OPTION statement is not specified.
The symkclic unit name SYS003 is chosen by default for the first
extent. The symbolic unit names for the other extents are chosen
according to the rules explained in the topic 'Work File
Statements' in Chapter 3.

13 The WORK parameter of the SORT statement need not be specified,
as the default (WORK=DA) arprlies.

Arpendix A. Example of SortsMerge Job Streams 115

r - 1
| 4. Sort: input on disk, tare output |
L 4
r L
| 1 // JOB EXAMPLE 4 |
| 2 // ASSGN SYS001,X* 284" SORT OUTPUT |
| 3 // ASSGN SYs002,X* 190° SORT INPUT |
| 4 // ASSGN SYs003,x*191° SORT WORK 1 |
! 5 // ASSGN SYs004,x*192° SORT WORK 2 {
| 6 // ASSGN S¥S005,X*192' SORT WORK 3 l
{ 7 // ASSGN SYS006,X'191* SORT WORK 4 |
| 8 // ASSGN SYS007,x* 191" SORT WORK 5 1
| 9 // TLBL SORTOUT |
{ 10 // DLBL SORTIN1 |
| 11 // EXTENT SYS002,190190,,,1900,500 |
| 12 // DLBL SORTWK1 |
| 13 // EXTENT S¥S003,19119%,,,3800,10 |
| 14 // DLEL SORTWK2 |
| 15 // EXTENT SYS004,192192,,,3838,12 |
| 16 // DLBL SORTWK3 i
| 17 // EXTENT S¥S005,192192,,,5700,700 |
| 18 // DLBL SORTWKY |
| 19 // EXTENT S¥S006,191191%,,,380,99 |
| 20 // DLBL SORTWKS5 |
| 21 // EXTENT S¥S007,191191,,,760,99 l
| 22 // EXEC SORT |
| 23 OPTION PRINT=ALL,LABEL= (N) ,ADDROUT, STORAGE=6UK 1
| 24 SORT FORMAT=FL,FIELDS= (86,19,A,106,8,D,415,08,D,391,33,3), {
] 25 WORR=5]
| 26 RECORD LENGTH={1641,,,547,900) ,TYPE=V]
| 27 OUTFIL OPEN=NORWD ,CLOSE=RWD,BLKSIZE=80 |
| 28 MODS PH3= (PHASE3A,L19000,E31,E37) |
| 29 /% |
| 30 /& |
[- 4
2-8 Assign I/0 devices to be used as sort output, input, and work

units. The output unit, S¥S001, is assigned to a tape unit at
address 284. The input unit, S¥YS002, is assigned to a disk unit
at address 190. The work units, SYS003 through SYS007, are
assigned to disk units at addresses 191 and 192.

9 Specifies the tape label information for the output file.

10-21 Allocate six extents: one extent containing 500 tracks for sort
input, and five extents containing a total of 920 tracks on three
volumes for sort work storage.

23 Specifies that the scrt program is to print all messages. The
output volume will have nonstandard labels, the input volumes
will use standard labels. The sort program is to operate within
65,536 bytes of virtual storage; the usexr routines at PHASE3A are
to be included within this operating space. The ADDROUT option
has been specified, so each output record is to consist of a
10-byte disk address.

24-25 Specify that a sort based on four control fields, all containing
floating point data, will be executed.

26 Specifies that variable-length records are to be sorted. The
maximum input record length is 1641 bytes. The minimum input
record length is 547 bytes, and the most frequent modal) input
record length is 900 bytes. Output record length is 10 bytes;
this parameter could be omitted as it is the default when ADDROUT
is specified with non-VSAM input (see line 28).

116

27

28

Specifies that the output blocksize is 80 bytes. SM2 is not to
rewind the output volume before opening the volume; it will
rewind the output volume at end-of -job.

As there is no INPFIL statement, the input blocksize is 1645
bytes by default.

Specifies that the sort program is to load the user routines at
PHASE3A for execution during phase 3. These routines have a
length of 19,000 bytes and are relocatable. The 19,000 bytes are
to be included within the storage size that the sort is to
operate in. The user exits to be activated during phase 3 are
E31 and E37. They are needed because the output file will have
nonstandard labels (see statement 23).

Appendix A. Example of Sort/Merge Job Streams 117

r 1

| 5. Sort: VSAM input and output, ADDROUT specified. |

L 1

L 1

| v // JOB EXAMPLE S |

| 2 // BSSGN SYS001,X'160° SORT OUTPUT |

|1 3 // ASSGN SYsS003,X'163* SORT WORK |

| 4 /7 ASSGN SYS006,X"160' SORT INPUT |

| 5 // DLBL INPUT, * NAME .DEFINED .BY.AMS"', ,VSAM |

] 6 // EXTENT SYS006,DISKO1

| 7 // DLBL SORTWK1, ,0

| 8 /s EXTENT S¥sS003,,,,150,6 |

| 9 ,/ DLBL SORTOUT,'ALSO.DEFINED .BY.AMS', 0,VSAM

| 10 // EXTENT S¥S001,DISK01

| 11 // EXEC SORT,SIZE=32K |

1 12 OPTION ROUTE=LST,DUMP,ADDROUT,FILNM= (,INPUT)

| 13 SORT FIELDS=(1,56,BI,A) ,WORK=1

{ 14 RECORD TYPE=F,LENGTH= (80,,5) |

| 15 INPFIL VSAM |

| 16 OUTFIL ESDS [

| 17 s# |

| 18 /& |

L - d

2-4 Assigns I/0 devices for input, output, and work files. BAll files
are on disk devices.

5-6 Specifies a VSAM file as input. Extent card not needed under
DOS/VSE Release 2.

7-8 Specifies a work file on a disk; only 6 tracks are required.

9-10 Specifies a VSAM file as output. The file must have been created
previously. Extent card not needed under DOS/VSE Release 2.

11 Specifies the SIZE parameter to restrict the amount of virtual
storage available to sort/merge. There must be sufficient
virtual storage left in the partition for VSAM use.

12 Specifies that messages are to be routed to SYSLST, that a dump
is always to be taken in case of a critical message, that the
name used for the input file is not *SORTIN1', but *INPUTI', and
that the output records are to consist of VSAM disk addresses
only.

13 Specifies a sort based on one control field, 56 bytes long; there
is one work file available.

14 Specifies that fixed-length records are to be sorted. The input
record length is 80 bytes; in the output the records are only 5
bytes long (disk address).

15 Specifies that the input file is a VSAM file.

16 Specifies that the output file is an entry-sequenced VSAM file.

118

r - = 1
| 6. Sort: Tape input and output, INCLUDE and OUTREC specified |
- - - 1
! 1 // JOB EXAMPLE 6 |
| 2 // ASSGN SYS001,X*284" SORT OUTPUT -- TAPE |
| 3 J// ASSGN S5YsS002,x*282° SORT INPUT -- TAPE |
| 4 // ASSGN SYsS003,x"'161° SORT WORK -- DISK]
| 5 // ASSGN SYsS004,x* 162° SORT WORK -~ DISK |
| 6 // DLBL SORTWK1,,1,DA |
| 7 7/ EXTENT SY¥sS003,t11111,1,0,760,38 I
| 8 // EXTENT S¥Ys003,t111111,1,1,380,38 |
| 9 s/ EXTENT S¥YS004,222222,1,2,380,38 |
{ 10 // EXTENT SY¥YS004,222222,1,3,760,38 |
| 11 // EXEC SORT ,SIZE=36K I
| 12 OPTION LABEL=(U,U)]
| 13 SORT FIELDS=(1,4,2,6,12,7A) ,FORMAT=CH |
| 14 RECORD TYPE=F,LENGTH=80 |
| 15 INPFIL BLKSIZE=800,BYPASS |
| 16 OUTFIL BLKSIZE=800]
| 17 INCLUDE COND=(6,1,GE,C'M') ,FORMAT=CH |
| 18 OUTREC FIELDS=(1,4,6,16) |
| 19 s+ !
| 20 /& l
L d
2-1 These statements are the same as in Example 3 except different
disk volumes are in use. Line 12 specifies the SIZE parameter to
restrict the amount cof virtual storage available to SM2.
12 Specifies that the input and output tapes are unlabeled.
13 Specifies a sort based on two control fields.
14 Specifies that the reccrds are fixed-length, 80 bytes long. 2all

other length specifications are defaulted.

15-16 Specifies that the input and output block sizes are 800 bytes,
and that input blocks causing I/O errors are to be bypassed.

17 Specifies that the sixth byte of every record is to be examined.
Records whose sixth byte contains a character collating greater
than cr equal to M are to be included in the sort; all others are
to be discarded.

18 Specifies that the cutput records are to consist of two fields
taken from the input records; the first field is 4 bytes long and
begins at byte 1 of the input record; the second field begins at
kyte 6 of the input record and is 16 bytes long. The effective
cutput record length is thus 20 bytes.

Appendix A. Example of Sorts/Merge Job Streams 119

r " a i |
{ 7. Sort: Tape input and cutput, disk work areas, ALTSEQ and SUM i
| specified |
b - 1
i 1 // JOB EXAMPLE 7 !
| 2 // ASSGN SYS001,X*284" SORT OUTPUT -- TAPE |
| 3 // ASSGN SYS002,x*282* SORT INPUT -- TAPE |
| 4 /s ASSGN SYS003,X*'161* SORT WORK -- DISK |
| 5 // ASSGN SYS004,X'162' SORT WORK -- DISK |
| 6 // DLBL SORTWK1,,,DA |
| 7 /s EXTENT SY¥S003,111111,1,0,760,38 |
| 8 [/ EXTENT SY¥YS003,111111,1,1,380,38 |
| 9 // EXTENT SY¥YS004,222222,1,2,380,38 |
| 10 // EXTENT SYS004,222222,1,3,760,38 |
| 11 // EXEC SORT ,SIZE=36K |
] 12 OPTION LABEL={U,U) |
| 13 SORT FIELDS=(6,12,AQ,A) l
i 4 RECORD TYPE=F,LENGTH=80 |
| 15 INPFIL BLXSIZE=800,BYPASS |
| 16 OUTFIL BLKSIZE=800 |
1 17 SUM FIELDS={51,6,2D) |
| 18 ALTSEQ CODE= (SBEA,7BEB,7CEC) |
| 19 /* |
| 20 /¢ |
L 3
2-11 These statements are the same as in Example 3, except that
different disk volumes are in use, and the SIZE parameter has
keen specified on the EXEC statement (line 11).
12 Specifies that the input and output tapes are unlabeled.
13 Specifies a single control field 12 bytes long, beginning in byte

6 of the record. An alternative collating sequence (specified in
the ALTSEQ statement, line 18) is to be used.

14-16 These statements are the same as in Example 6.

17 Specifies a 6-byte-long zoned decimal summary field, beginning in
byte 51 of each recorxd.

18 Specifies that X'5B' is to collate as X'EA', X'7B' is to collate
as X'EB', X'7C*' is to collate as X'EC'--in other words, that
national characters are to collate at the end of the alphabet.

Py
N
(]

I T 1
| | 8. Sort: VSAM managed SAM input, output, and work files. |
|} - 1
| | 1 // JOB EXAMPLE 8 |
| | 2 * VSAM MANAGED SAM EXAMPLE |
|1 3 // DLBL SORTIN1,'INPUT.FILE®,,VSAM |
! 1 4% // DLBL SORTOUT,*'IMPLICIT.DEFINE‘, 10,VSAM,RECORDS=1000, c
11 5 RECSIZE=500,DISP= (,KEEP) |
| | 6 // EXTENT ,DISK01]
| { 7 ,/ DLBL SORTWK1,,,VSAM,DISP={,DELETE) |
| | 8 // EXEC SORT,SIZE=40K |
|1 9 SORT FIELDS=(10,20,CH,A) |
| 1 10 RECORD TYPE=V,LENGTH= {500,,,100,400) i
| 1 11 INPFIL BLKSIZE=4000 |
|1 12 OUTFIL BLKSIZE=4000 |
I 13 /* |
| | 14 /¢ I
l iL - a
| 3 Defines sort input as file "INPUT.FILE' managed by VSAM. This

| file was defined by IDCAMS and previously loaded by another

| rrogram.

| 4-5 Defines sort output as managed by VSAM. This file will bLe

| implicitly defined tc be able to contain, 1000 500-byte records.
i It has a retention period of 10 days.

| 6 Indicates to VSAM that output file must be defined on disks with
| serial number DISKO1. Can be omitted if there is a default model
| cataloged which indicates the required disk.

1 7 Defines sort work file as managed by VSAM. This file is assumed
| to have been previously defined by IDCAMS with the

| NOALLOCATE (NAL) and REUSE attributes. 1Its space will be

| allocated when sort crens it and deallocated when sort closes it.
| 9 Specifies a sort based on one control field 20 bytes long. The

! output will be in ascending order. By default one work file and
| one input file are assumed.

| 10 Specifies that variable length format records will be sorted

| whose maximum length is 500 bytes, minimum length 100 bytes and

i modal length 400 bytes.

| 11 Specifies that the input file will have a maximum logical

| klocksize of 4000 bytes. VSAM is not specified, so that sort

} will use SAM access.

| 12 Specifies that the output file will have a maximum logical

klocksize cf 4000 bytes. ESDS is not specified, so that sort
will use SAM access.

| Note: All VSAM definitions are assumed to be in the Master Catalogue.

Appendix A. Example of Sorts/Merge Job Streams

121

Appendix B. Storage Requirements

A merge operation needs main storage only. A sort usually also needs
work storage space on a direct-access device.

If there is rlenty of main storage and the input file is small, a sort
may be able to run without work storage. If there is less than, say,
64K of main storage, and work files are needed, then there is a relation
between the two requirements; the less main storage available, the more
work space you will need.

You can always find out in advance how much storage space a given
application would need by submitting the complete control statement set,

with the addition of an ANALYZE statement. As described in Chapter 2,
SM2 will then analyze all the control statements and make the usual
optimization calculations. It will issue all the usual messages
(including those specifying how many records can be sorted with the
given configuration; how much more main storage should be allocated, if
the allocation was insufficient; and the internal length of the records
to be sorted or merged), and then terminate without sorting or merging.
This appendix does not therefore describe in detail how to calculate
space requirements. However it does give rules of thumb for making
reasonable estimates of:

1. Minimum main storage requirements for a sort or merge.

2. Main storage requirements for a sort with no work files.

3. Work file size fcr a sort using at least minimum main storage.

Minimum Main Storage

SM2 needs a minimum of 32K bytes of virtual storage.

The minimum requirement for a given application can be more than 32K
bytes. The major factors affecting the requirement are:

. Use of the SvVa

. Input and output buffer sizes

. Size of user routines at program exits
] Use of special functions

. Internal record length

These factors are ccnsidered in turn below.

USE OF THE SVA

If eligible SM2 modules were not gut in the SVA when your system was
IPLed, they will instead have to be loaded into your partition. They
need about 12K kytes of storage.

122

INPUT AND OUTPUT BUFFER SIZES

The sort needs at least one input buffer in Phase 1. The size of the
buffer is the (maximum) block size or CI size, plus CCW size, plus the
size of any IDALs required (Release 33 or 34), or the size of the page
fix list, if any (DOS/VSE). The record area is rounded up to the
nearest whole number of fullwords.

The elements and their sizes are shown in Figure 25. IDAL size is not
shown because it varies in proportion to the size of the record area
(plus 8 byte count field if DASD). It should seldom exceed 100 bytes.

It is given by
Record Area - 2

-- + 2 X U4 bytes
Page Size

Page Size is usually 2K for DOS/VS

r T =T IR S LI -
| | | Input | F%x | Output |
| Device | Record area | CCw | list | CCW |
b= 1 ¢ + t i
| CKD disk | Block size #+8 | 40 | 20 | 32% |
] - with RPS | Block size 48 | 56 | 20 | 4% |
F $ b oot {
| FBA disk | CI size] 248 | 20 | 24 |
b 1 B a1 pmrmmmai
| Tape | Block size | 8 | 12 | 8 i
F i 4L L e 1
| *If VERIFY is used, add 24 (32 if RPS) |
L g |

Figure 25. Input and OQutput Buffer Element Sizes, in Bytes

Note: If command chaining is used for tape or CKD disk I/O, for each
' block over 1 chained, add 8 bytes to the CCW length and block size
(+8 bytes if DASD) to the record area.

In Phase 3 (or Phase 1, if cutput is from that rhase) SM2 needs one
output kuffer made up in the same way.

SIZE OF USER ROUTINES AT PROGRAM EXITS

The size of any routines tc be used at program exits must be included in
the storage allocated for SM2, unless the routines are preloaded and SM2
is called from another program.

USE OF SPECIAL FUNCTIONS

Some of the special functions provided by SM2 require that special
routines be generated at execution time. They are INCLUDE, OMIT, and
SUM, all of which need to handle the logical relations specified by you
in the appropriate program control statement.

Arpendix B. Storage Requirements 123

The extra space regquired by these generated routines is usually so small
that it can for all practical purposes be ignored.

In any case it is never more than 4K bytes per generated routine, and
{since INCLUDE and OMIT are mutually exclusive) can thus never exceed 8K
for any one application.

If you use the DELBLANK rparameter of the RECORD statement, a routine is

generated of the same length as if you had coded an equivalent INCLUDE
statement.

INTERNAL RECORD LENGTH

If the records handled internally by a sort are longer than about 1K
bytes, you will probably need more main storage.

Internal record length is usually input record length ({14 on the RECORD
statement) rounded up to a whole number of fullwords, as long as all
control fields have either EBCDIC character or binary format. Other
formats, and use of EQUALS or ADDROUT, will cause a change. Use of SUM
or OUTREC may also do so.

If you run SM2 with the DIAG option or ANALYZE statement, you will
receive a message telling you the length:

7C12I INTERNAL RECORD LENGTH = xxxx BYTES.

Sort Main Storage Without Work Files

If your input file is not very big ycu may not need work files.

As a rule of thumb, you can sort an input file of about 100K bytes with
20K bytes or more of virtual storage. This presupposes that SM2 is
executed from the SVA, and that input block size or CI size is moderate.
Input file size is simply input record length multiplied by the number

of records to be processed (after any INCLUDE or OMIT statement has been
used to select a subset cf the input).

Work Files

As a rule of thumb, if work files are needed they should be the same
size as the input file, plus about 25%. 1In the worst possible case you
might need to add 80% instead of 25%; this would be if all the following
conditions were met:

. Control fields were neither binary nor character format

o The sum of ccntrol field lengths were close to the maximum

L Input records were variable-length

o Input records were not much longer than total control field length.
With CKD work files you must allocate a minimum of four tracks. With
FBA work files you must allocate a minimum of 64 blocks.

124

Appendix C. Conversion Aids

This appendix describes the changes that will need to be made to your
existing IBM sort/merge applications if they are to run under SM2.

The first section concerns the comparatively minor changes needed to
convert from programs which are closely related to SM2:

DOS Tape and Disk Sort/Merge, 360N-SM-483

DOS Tape and Disk Sort/Merge Program Product 5736-SM1
DOS Sort/Merge Program Product 5743-SM1

DOS/VS Sort/Merge Program Product 5746-SM1

The second section covers conversion from less similar programs
*Unrelated Programs', discussing seprately the three topics of JCL
statements, program control statements, and user routines at program
exits. The programs are:

DOS/T0OS Tape Sort/Merge 360N-SM-400
DOS Disk Sort/Merge 360N-SM-450
Model 20 Disk Sort/Merge

The third section deals with conversion from a completely different
sort, the System/3 Disk Sort (5702-SM1 and 5703-SMT1).

Because of differences in techniques storage requirements may be
different. Also, there are differences in maximum record length that can
be sorted. For more details see Appendix B. User routines or programs
relying on internals cf previous sort/merge will not work.

Related Programs

Figure 26 summarizes the differences between SM2 and those programs
which are closely related to it. As shown, in most cases if a
nonsupported function or parameter is specified it will simply ke
ignored.

Figure 27 shows how the incompatibilities can be dealt with. Note

however that any user routine or program relying on the internals of
previous sort/merge programs will not execute correctly with SM2.

Appendix C. Conversion Aids 125

-

NONSUPPORTED FUNCTIONS

Tape work files*
Pooling of input or output with work files#*
Use of ALTSEQ when input is in ASCII form*

Exit Use:

VSAM I1/0 error handling not using Exit List at E18, E38, or E39
Processing SAM read errors at E18 or E38

Processing SAM write errors at E39

Using Phase 2 program exits

CONTROL STATEMENTS AND PARAMETERS WHICH ARE NOT USED
Statement Parameter

ADDROUT=D*
ALTWK
OPTION CALCAREA
KREYLEN
TP
INPFIL PRESEQ
SORT SIZE
END -

-

*These cause the program to terminate if specified. BAll other
listed functicns and parameters are accepted but ignored by SM2.

[o e e - D S—— G S — — — — —— ——— A — — —— ————— {—) et i et e
S v s s o e i v — s (i, i, . s e, e 1 e, et Gt st . S S — — — ——- Sy wrets eowttn, sarats et s

Figure 26. Differences from 5746-SM1 and Similar Programs

PREFERRED STATEMENTS AND PARAMETERS

Some of the parameters listed in the control statements of earlier
versions of DOS and DOS/VS sort/merge program products have become
out-of-date with present-day systems, usage, and standards. Most of
these parameters are still accepted for compatibility reasons but as
they only add unnecessary double choices they have been removed from the
list of parameters given with the control statements in Figure 26.

In addition to the invalid parameters previously listed, other
parameters which should be avoided in new applications are shown
together with the preferred alternative parameter in Figure 27.

r L} -T i k|
| Statement | 01d Form of Parameter | Preferred Form |
F 1 £ i
SORT	CHRPT	CKRPT
MERGE	ORDER=n	FILES=n
RECORD } DELBLANK	OMIT Statement	
1	PRINT	PRINT=ALL
OPTION	ADDROUT=	ADDROUT
	FILNM={(,,ssrrees.WOrk)	WORKNM=work
L 1 ; 8 d

4
]
E}
]
[}
1
1
i

Figure 27. Preferred Parameters

126

Conversion

The tabkle in Figure 28 reccmmends solutions for conversion problems.
Users converting from DOS toc DOS/VS may want to relink-edit those of

their user routines that are not self-relocating, in order to make them
eligitle for relocation by the relocating system loader.

(Relocatability is discussed in the DOS/VS System Management Guide.)
MODS statements referring to re-link-edited routines may need to be

changed.

L
| INCOMPATIBILITY
1

-

r
|CONVERSION SOLUTION
L

L g
|Tape work files
i

}
|Change your JCL statements
L

L
|Pooling of input or output

!

files with work files

-4

|Change your JCL statements

b -
|I/0 error checking at user

!

exits E18, E38 and E39

+—

| SAM exits are ignored.
|VSAM I/0 exrror can be handled
|by programming the VSAM Exit

|List facility at these exits
L

oy . . s e e

ADDROUT=D output records

Juser exit E15
IR .

t
|Write your own routine and insert
| records containing direct access
| storage address and sort keys at

Y S, G, G S S, Gy e Gt

Output records with separate
keys (KEYLEN)

t
JIf such output data is required

| where the key area is separate
|from the data area, exit E35

]can be used to insert a routine

| to separate the key from the data.
|Note that SM2 can read keyed data
| provided it is fixed-~length, un-
|blocked, and sequential.

1
!

Requirement for CALCAREA
option

Use ANALYZE statement

s o

Figure 28. Incompatibility and Conversion

Unrelated Programs

S e T R e L T oy By e oy Sy Wy Sp—--"

Conversion from the programs listed above as 'unrelated' is dealt with
in this section, under three topics:

JCL statements
Program Control Statements

Routines at Program Exits

Appendix C. Conversion Aids

127

JCL STATEMENTS

The following differences in I/0 device assignment should be noted:

1. File names on DLBL/TLBL cards must be changed to agree with those
specified in Chapter 3, or must be specified in the FILNM operand
of the OPTION statement.

2. For checkpoint facilities, the unit assignment must be given for

SYS000. The file name must be SORTCKP, and the volume must have a
standard label.

PROGRAM CONTROL STATEMENTS

Described below are the changes which may need to be made to your
existing statements. This section does not cover how to add parameters
to take advantage of the additional features of SM2.

DOS/TOS TAPE SORT/MERGE, 360N-SM-400

Statement Parameter Action
SORT/MERGE FIELDS Check that all control fields are within the

first 4092 bytes of the record.

RECORD ly, and 1, Check that these values agree with the block
size specified in INPFIL and OUTFIL:
You cannot use these rarameters to lengthen
or shorten records--use exit E15 or E35
instead, and add 1, if you use E1S.

INPFIL BYPASS You will no longer get a count of the records
bypassed.
MODS EXIT Check that only valid exits are specified:

in phase 1, E11, E15, E17, and E18;
in phase 3, E31, E32, E35, E37, E38 and E389.

OPTION FILES Move to SORT statement.
PRINT Add a value (ALL, CRITICAL, or NONE) .
LABEL Change the order to: output,inputs,...inputp
DENSITY Remove.

END Optionally, remove.

-t
N)
[« 4]

DOS DISK SORT/MERGE, 360N-SM-450

Action

Statement Parametex
SORT (WORK)
RECORD 1, and 1,
INPFIL INPUT

BYPASS
OUTFIL OUTPUT
MODS EXIT
OPTION RESTART
END

MODEL 20 DISK SORT/MERGE

If you are using single-extent work files,
add the WORK parameters.

Check that these values agree with the block
size specified in INPFIL and OUTFIL:

You cannot use these parameters to lengthen
or shorten records -- use exit E15 or E35
instead, and add 1, if you use E15.

Remove.

Ycu will no longer get a count of the records
bypassed.

Remove.

Check that only valid exits are specified:

in phase 1, E11, E15, E17, and E18;

in phase 3, E31, E32, E35, E37, E38 and E39.

Remove; can be replaced by a RSTRT JCL
statement.

Ortionally, remove.

Action

Statement Parameter

SORT (WORK)
(FILES)

INPFIL SKIPBYTE

MODS EXIT

OPTION RESTART
LABEL
TIME

END

ROUTINES AT PROGRAM EXITS

If you are using single-extent work files,
add the WORK parameters.

If you have more than one input file, add
a FILES parameter.

Ignored; optionally, remove.

Check that only valid exits are specified:
in phase 1, E11, E15, E17, and E18;
in phase 3, E31, E32, E35, E37, E38 and E39.

Remove; can be replaced by a RSTRT JCL
statement.

Change the order to: output,inputa,...inputp
Remove; the program will terminate if it is
retained.

Optionally, remove.

If you want to use your existing routines at SM2 exits you will need to
check, first, that its function is still supported; second, at which
exit; and third, that your interface meets SM2's requirements.

Fiqure 29 gives an overview of the relationship in function of old exits

to new.

The Model 20 Disk Sort/Merge's exits are entirely incompatible with

Appendix C. Conversion Aids 129

those of SM2 because the Model 20 Assembler language is incompatible
with that of DOS/VS.

For the other two programs, a conversion guide follows Figure 29.

SM400 5746-SM2 SM450
DOS/TOS Tape DOS/VS DOS Disk
Sort/Merge Exits Sort/Merge Exits Sort/Merge Exits
En —L J———> E1l < Ell
E12 — ‘—->~ E17
E13

l » E15 E12
El14 —

E15 » EI8

A

E13

£21
E25
E27

E31

A

A

A

—» E32

\{

E35

A

E37

E38
E39

A

E45

Y

E35

Figure 29. Correspondence of 014 Exits to SM2 Exits

DOS/TOS Tape Sort/Merge, 360N-SM-400

The 5746-SM2 program exits differ from the exits of the DOS/TOS program
in the ways listed below. Most of the changes affect parameters and
interfaces.

E11 and E12 open functions must be combined in to the SM2 E11. E11 and
E12 must be rewritten to the SM2 specifications for E11 and E17. The
SM2 E17 has been added for handling the close functions of nonstandard
labeled tapes and other phase termination activities.

E13 and E14 E13 and E14 functions are available in SM2 E15. E15 has
also added the 'insert records®' feature, and the exit is made available
for each record before sort processing. Exit E15 may be used to read
the entire input file, one record at a time. Present exit functions may
be used with slight modifications to the interfaces. The SM2 sort
interfaces are standardized -- a parameter list address is passed in
register 1. User return is always BR 14 with register 1 pointing to the
modified parameter list.

E15 is not supported. Above it is shown as corresponding to E18.
E21 must be changed to the SM2 E31. The SM2 sort is divided into three

phases -- internal sort, external sort, and final merge. The SM2 E31
handles the functions of the present E21 and E31. E31 will have to be

ey
(V%)
<

rewritten to encompass E21 functions and the standard interfaces set up
by the SM2 program. SM2 E31 has been expanded to include the present
E21 functions in a sort application and E33 functions in a merge
application. E31 will have to be rewritten to encompass these extra
functions and the standard interfaces set up by the SM2 program.

E22 has to be rerlaced by SM2 E35. The new exit is activated just
before records are moved to the output buffer. Exit E35 may be used to
write the entire output file one record at a time. The user controls
record modification through a standard interface. Most of the changes
to the 0l1d exit will be in the interfaces and handling of the parameter
list. The option tc suppress sequence checking is also provided at this
exit.

E32 may reguire changes to interfaces.

E33 functions are incorporated in SM2 E31. See also above under E21.
E34 has to be rerlaced by a SM2 E35. Record modification coding may be
used with slight changes to the interfaces and handling of a parameter
list. E34 also passed an input table. This function has been deleted.
The SM2 E35 offers an option to suppress sequence checking.

E35 is not suppcrted. Shown above as corresponding to E38.

DOS Disk Sort/Merge, 360N-SM-450

The present program exits differ from the exits of the 360N-SM-450 DOS
Disk Sort/Merge rrogram in the ways listed below. Most of the changes
affect parameters and interfaces.

E11 must be rewritten to the new specifications and be split into E11
and E17. The user must handle the opening, label checking, and
positioning of nonstandard or user-standard labels for initial input and
intermediate storage.

E12 has to be changed into SM2 E15 and several new functions have been
added. E15 allows the user to insert, delete, lengthen, shorten, or
alter his records. The user can also read the entire input file at this
exit. Renaming the exit and the branch table entry should be all that
is needed to convert.

E13 is not supported. Shown above as corresponding to E18.

E31 must be rewritten to the new specifications. The functions of the
former E31, E41, and E44 have been combined into this one exit. The user
must handle opening, label checking, and positioning of nonstandard or
user-standard labels for final output from a sort or merge, and initial
input to a merge.

E32 is replaced by SM2 E35. The user controls record modification
through a standard interface. Most of the changes to the 0ld exit will
be in the interfaces and handling of the parameter list. It should be
noted that E35 must be used to lengthen or shorten records. SM2 does
not truncate records. Exit E35 may be used to write the entire output
file, one record at a time.

E41, see E31 above.

E42 has to ke changed to SM2 E32. Changes to interfaces may be
required.

Appendix C. Conversion Aids 131

E43 has been combined with E32 and given the name E35. Most of the
changes to the o0ld exits will be in the interfaces and handling of a
parameter list.

E4Yy, see E31 above.

E45 is not supported. Shown as corresponding to E38.

Converting from System/3 Disk Sort

Sort applications written for the System/3 Disk Sort programs (5702-SM1
and 5703-SM1) must be completely rewritten when converting to DOS/VS, as
neither System/3 OCL statements nor System/3 Sort Sequence
Specifications are compatible with DOS/VS Job Control Statements or
DOS/VS Sort/Merge control statements.

The sections ‘Converting Sequence Specifications' and 'Converting OCL
Statements' discuss some of the points you should consider when
converting a System/3 Disk Sort application into a DOS/VS Sort/Merge
application. The discussions are not intended to be exhaustive, since
those features of the DOS/VS Sorts/Merge for which there exists no
equivalent in System/3 Disk Sort are not discussed.

Most of the facilities available to the user of the System/3 Disk Sort
are also available in the DOS/VS Sort/Merge Program Product S746-SM2.
SM2 also provides additicnal features.

The major differences are:

Additional Features

] SM2 can merge sequenced input files as well as sort.

. SM2 can 1link to user-written routines at points in the sort/merge
called program exits. At these exits, the user-written routines may
write or check labels, oren or close files, take checkpoints,
insert, modify, or delete records, read the input file, write the
output file, or process I/0 errors.

. SM2 allows use of more than one work file, and allows use of a

multi-extent work file; Job Control statements specifying a work
file must always be present.

Nonsupported Features

. SM2 does not support forced control fields. If this function is
required it must be performed by a user-written routine at a program
exit.

. SM2 allows only one INCLUDE/OMIT statement, but the statement can
contain many selection conditions (is equivalent to many Record Type
Specifications) .

o SM2 does not support multiple record types directly
control fields must have the same relative position in each record.
However, any record type (or types, if the control fields are
equivalent) can be accessed by selecting that type (or types) with
an INCLUDE/OMIT statement.

o SM2 does not support comparison of zone or digit parts only of a
field. All fields specified must be a whole number of bytes long and
must begin and end on a byte boundary.

Examples of complete SM2 job streams are given in Appendix A.

Converting Sequence Specifications

This section discusses some of the points you should consider when
converting System/3 Disk Sort Sequence Specifications to SM2 control
statements.

1. The information on the Header Specification line and the Field
Description lines for control fields is used on the SORT or MERGE
contrcl statement. Here you specify your control fields and their
formats. You will get a tag-along sort (with the output records
identical tc the input recoxrds) unless

- You specify the ADDROUT option on an OPTION statement (to get an
addrout sort) .

- You specify summary fields on a SUM statement (to get a summary
sort) .

- You specify record reformatting by means of the OUTREC statement
(partial tag-along) .

2. The information on the Field Description lines about data fields
need not be specified if you want a tag-along sort where the output
records are identical tc the input records.

3. To specify a tag-along sort with record reformatting, where the
output records are not identical with the input records, code an
OUTREC statement, specifying which fields from the input record are
to appear in the output record, and specifying how the fields are
to be aligned within the records.

4., To drop control fields from records, code an OUTREC statement,
specifying which fields from the input record are to appear in the
output record, and specifying how the fields are to be aligned
within the records.

5. To select records for inclusion in or omission from the sort, code
an INCLUDE/OMIT statement. Even where the System/3 Disk Sort
requires more than one Record Type specification, all the selection
conditions can be coded on one INCLUDE/OMIT statement. Note that
SM2 accepts only one INCLUDE or one OMIT statement.

6. To specify an addrout sort, code an OPTION statement with the
keyword ADDROUT. Note that disk addresses are 10 bytes long for
DOS/VS SAM files, and 5 bytes long for DOS/VS VSAM files.

7. To specify a summary sort, code a SUM statement to define the
fields to be summarized. Note that you do not define summary
overflow fields; if SM2 detects an overflow condition, the two
records involved remain unsummarized.

Appendix C. Conversion Aids 133

To handle signed control fields, you need only specify the correct
format parameter on the SORT statement when the field is defined as
a control field. No special coding is involved.

You must always code a RECORD statement to describe your records;
you will need to code an INPFIL and an OUTFIL statement to describe
your input and output files respectively, unless the default values
assumed will be satisfactory.

Converting OCL Statements

This section discusses some of the points you should consider when
converting the System/3 OCL statements necessary for a sort to the
DOS/VS Job Contrcl statements necessary for sort/merge.

w

1.

The // LOAD statement is replaced by the // EXEC statement, which
must appear last of the Job Control statements, immediately before
the program control statements.

Each // FILE statement must be expanded into a // ASSGN statement,
a // DLBL statement, and one or more // EXTENT statements. If tape
files are tc be used, // TLBL statement may be necessary. You may
not need the // ASSGN statement if your installation has a suitable
standard assignment for the file in question.

The // RUN statement is not used.

A // JOB statement must be coded and placed first, before all other
statements. This is then followed by all the necessary // ASSGN,

// DLBL, and // EXTENT statements. The // EXEC statement must
appear next, fcllowed by the program control statements. A /*
statement must follow the END statement, and a /€ statement must
appear last of all.

Appendix D. Permitted Data Formats

The format descriptions refer to the assembled data formats as used with
IBM System 360/370. If for example, a data variable is declared in PL/I
as FIXED DECIMAL it is the compiled format of the variable that must be

given in the *'f' field of the Sort Statement, not the PL/I declared

format.

In this case the "f' field would be PD f{packed decimal) because

the PL/I compiler ccnverts fixed decimal to packed decimal form.

DATA FORMAT EXAMPLES

Format

CH

ZD

PD

FI

Description

{(character EBCDIC, unsigned). Each character is represented by
its 8-bit EBCDIC code.

Example: AB7 becomes
C1 c2 F7 Hexadecimal
11000001 11000010 11110111 Binary

(zoned decimal, signed). Each digit of the decimal number is
converted into its 8-bit EBCDIC representation. The sign
indicater rerlaces the first four bits of the low-order byte
of the number.

Example: <247 becomes

2 4 - 7 Decimal

F2 F4 D7 He xadecimal
11110010 11110100 11010111 Binary

The number +247 becomes
F2 F4 Cc7 .
11110010 11110100 11000111

(packed decimal, signed). Each digit of the decimal number is
converted into its U4-bit binary equivalent. The sign indicator
is put intc the rightmost four bits of the number.

Example: -247 becomes

2 4 7 Decimal
24 js) Hexadecimal
00100100 01111101 Binary

The number ¢247 becomes 247C in hexadecimal.

(fixed roint, signed). The complete number is represented by
its binary equivalent in either halfword or fullword format.
The sign indicator is placed in the most significant bit
position. 0 for + or 1 for ~. Negative numbers are in 2°'s
complement form.

Example: ¢247 becomes in halfword form

00F7 Hexadecimal
0000000011110111 Binary
The number -247 becomes

FF09 Hexadecimal
111111110000 1001 Binary

Appendix D. Permitted Data Formats 135

Format

BI

AC

CSL

CST

CLo

136

Descrigption
(binary unsigned) . Any bit pattern.

(floating point, signed). The specified number is in the
two-part format of character and fraction with the sign
indicator in bit position 0.

Example: #247 becomes
0 1000010 111101110000000......
+ chara. fraction

-247 is identical except that the sign bit is changed to 1.
SM2 assumes that the numbers are normalized, i.e. that the
high-order hexadecimal fraction is nonzero (unless the whole
fraction is 0).

(character ASCII, unsigned) . This is similar to format CH but

the characters are presented with ASCII code.

Example: AB7 becomes
41 42 37 Hexadecimal
01000001 01000010 00110111 Binary {ASCII code)

(signed number, leading separate sign). This format refers to
decimal data as punched into cards, and then assembled into
EBCDIC code.
Example: +247 punched in a card becomes

+ 2 4 7 Punched numeric data

4E F2 Fu F17 Hexadecimal
01001110 11110010 11110100 11110111 Binary EBCDIC code

-247 becomes
- 2 4 7 Punched numeric data
60 F2 Fu F7 Hexadecimal

01100000 11110010 11110100 11110111 Binary EBCDIC code

(signed numeric, trailing separate sign). This has the
same representation as the CSL format except that the sign
indicator is punched after the number.

Example: 247+ punched on the card becomes
F2 F4 F7 U4E Hexadecimal

{signed numeric, leading overpunch sign). This format again
refers to decimal data punched into cards and then assembled
into EBCDIC code. The sign indicator is, however, overpunched
with the first decimal digit of the number.

Example: 4247 with « overpunched on 2 becomes
+2 4 7 Punched numeric data
Cc2 FU4 F7 Hexadecimal

11000010 11110100 11110111 Binary EBCDIC code

Similarly -247 beccmes D2 F4 F7.

Note: The overpunched sign bit is always hex °'C' for
positive and hex 'D' for negative.

(signed numeric, trailing overpunch sign). This format has
the same representation as for the CLO format except that the
sign indicator is coverpunched on the last digit of the number.

Example: +247 with ¢« overpunched on 7 becomes
F2 F4 C7 hexadecimal.

Format Descrirtion

ASL {signed numeric, ASCII, leading separate sign). Similar to
the CSL format but with decimal data assembled into ASCII code.

Example: &247 punched into card becomes
* 2 4 7 Punched numeric data
2B 32 34 37 Hexadecimal

00101011 00110010 00110100 00110111 Binary ASCII code

Similarly -247 becomes 2D 32 34 37 hexadecimal.

AST (signed numeric, ASCII, trailing separate sign). This gives
the same bit representation as the ASL format except that the
sign is punched after the number.

Example: 247+ becomes
32 34 37 2B hexadecimal

A detailed description of CH, 2D, PD, FI, BI and FL data formats can be
found in QS/VS-DOS/VSE-VM/370 Assembler Language, GC33-4010, Section G.

Arpendix D. Permitted Data Formats 137

Appendix E. Program Messages

This section lists, explains, and suggests appropriate responses to
messages produced by the program.

A serious statement error does not immediately stop program execution.
Each statement is checked until one critical error is found then the
rest of the statement is skipped. Usually, any continuation statements
are also skipped, and are printed with the word °'FLUSHED' in columns
74-80. The next statement is then scanned.

Different Types of Message

Four different types of message are produced by SM2:
. General messages containing information or a warning
. Critical messages giving information or a warning

. Program error messages which are designed to help in tracing any
error in the SM2 code

. Diagnostic messages producing information which can be used for
tuning purposes

All messages have the same numbering and format, and are described
sequentially in this appendix. After the message descriptions follows a
section giving more details of the program error messages.

Chapter 6 describes briefly how diagnostic messages can be used, under
the heading 'Using the DIAG Option'.

The messages begin with a 5-digit code. For SM2 the first character of
this code is always 7. The second character indicates the module or
phase in which the message was produced:

A-D = phase 0

E = phase 1

F,G = phase 2

H,J = phase 3

L = merge-only

M = input/output modules

K = debug module

v = VSAM special error module, called

by VSAM input or output module

The third and fourth characters are the message number. The fifth
character is always I.

Messages displayed on the console log will have the job name inserted

between the message number and the message text. When SM2 is subtasked
then the subtask name appears in all messages (LOG or LST) .

138

When and Where Messages are Produced

The standard default is that all messages except for diagnostic messages
are produced, and are directed to the SYSLST printer. In addition,
critical messages are routed to the SYSLOG printer, as is the

* SORT |MERGE COMPLETE' message.

These defaults can be changed at any time after the program has been
installed, as described in the DQOS/VS Sort/Merge Version 2 Installation
Reference. You can also change them at execution time by use of the
OPTION statement:

1 T L]
| Required acticn | What to specify |
i L d
r L ki |
Route all messages to the console	ROUTE=LOG
Produce diagnostic messages	DIAG
Print only critical messages	PRINT=CRITICAL#*
!	!
Suppress all messages	PRINT=NONE*
	l
Route all messages to a device of	ROUTE=xxx
your choice (only when SM2 is in-	
voked from another program)	
L L 4	
3 L)	
*#*Will also surpress diagnostic messages, even if DIAG is	
specified	
L J

If you include an ANALYZE CALC statement the effect will be the same as
if you had specified:

OPTION DIAG,NODUMP,ROUTE=LST| xxx,PRINT=ALL

Appendix E. Program Messages 139

Messages

**%* SORT/MERGE 5746-SM2, REL n, MOD n, PTF nn DATE XX/XX/XX

7A01I

TA021

7B00I

7B0O1IX

-h

&

[+

Explanation: This heading is printed before all other messages
if PRINT=ALL is in effect, and gives status information on which
release, modification level, and PTF update is in use. Date is
current date of execution. If PRINT=CRITICAL is specified the
heading is printed only if a critical message is produced.

System Action: None.

Programmer Action: None.

INSUFFICIENT STORAGE

Explanation: Less than 32K bytes of main storage were available
for the program. The minimum storage requirement for SM2 is 32K

bytes.

System Actiocn: SM2 terminates.

Programmer Action: Increase the EXEC SIZE parameter or the SORT
or MERGE STORAGE parameter. If sort/merge is called ensure that
all exit points and return point are below SM2's entry point, or
that they are more than 32K bytes above this.

ILUSMANS HAS WRONG SVA STATUS
Explanation: ILUSMANS, which is used for restart if checkpoints
are requested and SM2 modules are in the SVA, must be in the SVA

if used. If SM2 modules are in the SVA when a checkpoint is
taken they must also be in the SVA when the job is restarted.

System Acticn: SM2 terminates.

Programmer Action: Check the SVA status of all modules.

--- CONTROL STATEMENT ---

Explanation: This is a printout of the control statement or part
of control statement presently being scanned. 1If an error is
detected a $-sign is printed under or near the parameter in
error. (No $-sign is produced for the INCLUDE or OMIT
statement) .

System Action: None.
Programmer Action: None.
SUM FIELD n, xxxxxxxx INVALID

Explanation: The length (m) or position {p) of the n-th field
defined in the SUM statement is invalid.

System Acticn: Sort/merge is terminated after Phase 0 has
conpleted its error checking of control statements and unit
assignments.

Programmer Action: Check FIELDS parameter in the SUM statement
for invalid length or position value.

7B021

7B0O3I

7B0O4I

7B05I

FIELD OR VALUE GT 8 CHAR - XXXXXXX

Explanation: A field or value has been detected in the statement
represented by xxxxxx which is greater than 8 characters -- the
longest valid length.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check specified statement for field or value
greater than eight characters.

MULTIPLY DEFINED EXIT Enn

Explanation:
No exit number can be defined more than once in the MODS

statement. Exit Enn has been defined more than once.
System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check MODS statement.

NO xxxxxx CARD

Explanation: An essential control statement has been omitted:
either SORT or MERGE (not both), or RECORD. xxxxxx will be
replaced by the statement definer.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Supply the missing statement.

STATEMENT DEFINER ERROR

Explanation: A valid statement definer has not been found
between columns 2 and 70. The first field (or second field if a
lakel is present) of a card that is not a continuation card must
be a valid statement definer, that is, SORT, MERGE, RECORD,
MODS, INPFIL, OUTFIL, INCLUDE, OMIT, ALTSEQ, SUM, OUTREC,
ANALYZE, OPTION, or END.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the statement for incorrect, misplaced,
or misspelled operation definers. This message can be triggered
by an INCLUDE or OMIT continuation card if analysis of the
previous card was left incomplete after an error was detected,
because SM2 may not then be aware that the card is a
continuation.

Appendix E. Program Messages 141

7B061 DUPLICATE xxxxxxx CONTROL CARD

Explanation: A statement definer, represented by xxxxxxx, has
been specified more than once.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check for duplicate statement types. Note
that SORT and MERGE count as the same type, as do INCLUDE and
OMIT.

7B071 COL. 1 OR 1 - 15 NOT BLANK

Explanation:

1. Column 1 of a continuation card or line must be blank.

2. A continuation card which follows a control card with
nonblank characters in columns 71 and 72 must be blank in
columns 1-15.

System Actign: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Actiopn: Check for nonblank characters in column 1, or
1-15 of continuation lines.

7B08I COL 2 - 16 BLANK IN CONTINUATION CARD

Explanation: A continuation card or line d4id not appear where
expected.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check for keypunching error, or an overflow
of parameters into column 72.

7B0SI INSUFFICIENT STORAGE

Explanation:
1. Main storage available to SM2 is less than 32K bytes.

2. STORAGE parameter in the OPTION statement is less than 32K
bytes.

3. Insufficient storage was available to store the INCLUDE/OMIT
staterent.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

142

Programmer Action:

1. Rearrange exit and return locations in calling program to
allow at least 32K bytes for SM2.

2. Check STORAGE parameter in OPTION statements for value less
than 32K.

3. Either increase the STORAGE parameter in the OPTION statement

and/or SIZE parameter in the EXEC statement, or decrease the
number of INCLUDE/OMIT conditions specified.

7B101I TOO MANY xxxxxx VALUES

Explanation: The number of values assigned to the parameter
represented by xxxxxx exceeds the maximum allowed, as shown

below.

1 3 Ly a4
| Statement/ | Maximum number]
| Parameter | of values accepted |
b= ¢ i
| SORT/MERGE | 4 x 12 = 48 (unless the |
| FIELDS | FORMAT keyword is used,]
|] when it is 3 x 12 = 36) |
[| |
INPFIL	Value assigned to FILES
VOLUME	keyword in SORT or MERGE
	statement
! l	
OPTION	
LABEL	10]
] SORTOUT	1
SORTIN	9
SORTWK	9
FILNM] 11	
L. L 4

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check specified keyword operand.

7B111I INVALID xxxxxx KEYWORD

Explanation: A keyword not recognized by SM2 or a duplicate or
contradictory keyword has been detected in the control statement

represented by XXXXxXX.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check appropriate control statement for
invalid, duglicate, or contradictory keyword operands.

7B121 INVALID FORMAT
Explanaticn: The value assigned to £ in the FIELDS parameter, or

the value assigned to FORMAT, must be one of the following: CH,
2D, PD, BI, FI, FL, AC, ASL, AST, CSL, CST, CLO, CTO, or AQ.

Appendix E. Program Messages 143

7B131I

7B14I

7B151

7B161

fud

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Acticn: Check format values given in FIELDS parameter
or FORMAT value of the SORT or MERGE control statement.

CONTROL FIELD xx DISPLACEMENT INVALID

Explanation: The value assigned to p in the FIELDS parameter of
a SORT or MERGE statement must be a numeral greater than zero.
The control field number is represented by xx.

System Action:
Sort/merge is terminated after Phase 0 has completed its error
checking of control statements and unit assignments.

Programmer Action: Check displacement value specified in SORT or
MERGE control statement.

CONTROL FIELD xx LENGTH INVALID

Explanation: The value assigned to m in the FIELDS parameter of
a SORT or MERGE statement must be a number greater than zero.
The length of the CST, CSL, AST, and ASYL control fields must be
at least two bytes. The control field number is represented by
XX.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check length values specified in SORT or
MERGE control statements.

UNIT ASSGN ERROR xxxXXxXxx SYS (y)

Explanation: Sort/merge file xxxxx with logical unit number y,
as calculated by SM2, is assigned to a device type not supported
in this rcle by SM2.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Reassign SYS(y) to a device type supported by
the program. Check logical unit numbers on ASSGN EXTENT cards
and the SORTWK, SORTIN, and SORTOUT parameters of the OPTION
card. If defaults have been used, check those valid for your
installation.

CONTROL FIELD xx SEQUENCE INVALID

Explanation: The value assigned to s in the FIELDS parameter of
a SORT or MERGE statement must be either A or D. The control
field number is represented by xx.

System.Action: Sort/merge is terminated after Phase 0 has
conpleted its error checking of control statements and unit
assignments.

7B171

7B181I

7B191

7B20IX

7B211

Programmer Action: Check sequence value specified in SORT or
MERGE control statements for a keypunching error.

BOTH SORT AND MERGE DEFINED

Explanation: You must not specify both SORT and MERGE for the
same execution of SM2.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its erxrror checking of control statements and unit
assignments.

Programmer Action: Check application and eliminate SORT or MERGE
contrcl statement.

XXXXXX YYYYYyY KEYWORD MISSING OR INVALIE

Explanation: A parameter which must be specified, and for which
there is no default, has been omitted or is invalid. xxxxxx
represents the statement, and yyyyyy the keyword.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Prograrmer Action: Check appropriate control statement for
missing keyword.

BLANK CARD OR NO OPERAND ENCOUNTERED
Explanation: A completely blank card, a statement with no

operands (other than END), or a card with only a label was found
in the control statements. The card is ignored.

System Action: Sort/merge continues normal processing.

Programmexr Action: Remove blank card from input stream for next
applicaticn.

GIVEN FILE SIZE INVALID

Explanation: The value assigned to the SIZE parameter of a SORT
statement must be a numeral.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check SORT control statement for invalid SIZE
operand.

FILES VALUE INVALID

Explanation: The value assigned to the FILES parameter of a SORT
or MERGE statement must be in the range 1-9.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Appendix E. Program Messages 145

78221

7B231

7B241

1ue

Programmer Action: Check SORT or MERGE statement for invalid
FILES orerand.

xxxxxx OPTION HAS INVALID PARAMETER

Explanation: xxxxxx represents one of the following OPTION
parameters: LABEL, WORKNM, FILNM, SORTIN, SORTOUT, or SORTWK.

If LABEL, the message is generated when any character other than
U, N, or S is found between two successive commas in the LABEL
parameter.

If WORKNM, the file name specified is not four characters long,
or does not begin with an alphabetic character.

If FILNM, the file name specified has more than seven characters
{four characters for work files) or does not begin with an
alphabetic character.

If SORTIN, SORTOUT, or SORTWK, the message is generated when an
integer with a value outside the range 1 through 221 is used in
that specific parameter.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Ensure that the OPTION card contains
correctly specified LABEL, FILMN, SORTIN, SORTOUT and SORTWK
parameters.

SORT WORK VALUE INVALID

Explanation: The WORK parameter in a SORT statement has been
assigned a value not recognized by SM2. Permissible values are
1-9 for disk work files when SD is specified or defaulted on the
DLBL statement, and DA for a disk work file when DA is specified
on the DLBL statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmexr Action: Check SORT statement for invalid WORK
operand.

INVALID DATA TYPE

Explanation: The parameter for the DATA operand on the INPFIL
statement is neither E nor A.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Correct the DATA parameter to E (EBCDIC) orxr
A (ASCII) .

7B251

7B261

7B271

78281

xxxxxXx KEYWORD IGNORED

Explanation:

1. To be compatible with other sort/merge programs the keyword
represented by xxxxxx is accepted as valid but ignored by
this program. The keywords in question are: SIZE for the
SORT statement; ALTWK, CALCAREA, FREEOUT, KEYLEN, PRESEQ,
RESTART, SKIPBYTE, and TP for the OPTION statement; CKPT,
CHKPT, EQUALS, SIZE and WORK for the MERGE statement; and
BYPASS for the OUTFIL statement.

2. If EXIT is specified in an INPFIL statement, any keyword
other than DATA which follows EXIT will be ignored and is
represented by xxxxxx in the error message.

3. If EXIT is specified in an OUTFIL statement, any keyword
which follows EXIT will be ignored and is represented by
xxxxxX in the error message.

System Actign: Processing continues.

Progranmer Action: None.

INVALID PHx NAME

Explanation: The exit routine name specified in a MODS statement
must be a valid DOS/VS name (1-8 alphameric characters: A-3Z,
0-9, ., #, @, $). The x represents the sort/merge phase number
as specified in the MODS statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check MODS statement for invalid phase name.

INVALID MODS ADDRESS/LENGTH FIELD

Explanation: The address or length specified in a MODS statement
must be a valid number. If the length is given the number must
be preceded by the character L.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check MODS statement for invalid address or
length.

INVALID PHx EXIT

Explanation: An exit not recognized by SM2 has been specified in
a MODS statement. The valid exits are listed in Chapter 5. The
x represents the phase number.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Appendix E. Program Messages 147

7B291

7B30I

7B311

7B321

148

Programmer Action: Check MODS statement for keypunching error or
other error resulting in specification of invalid program exit
number.

ERROR IN LENGTH VALUE

Explanation:

1. An error has been detected in either the BUFOFF or the
BLKSIZE parameter. BUFOFF can be 0-99 for ASCII input but
only 0 or 4 for output.

2. A length parameter has been specified as 0 in the RECORD
statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit

assignments.

Programmer Action:

1. Check INPFIL and/cr OUTFIL statement for invalid BLKSIZE
parameter for device being supported, or invalid BUFOFF
parameter.

2. Specify valid length parameter value.

BOTH INCLUDE AND OMIT DEFINED

Explanation: Both an INCLUDE and an OMIT statement have been
found in the same scrt/merge application.

System Acticn: SM2 is terminated after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Remove one of the conflicting statements.

RECORD TYPE INVALID

Explanaticn: The TYPE parameter in the RFCORD statement must be
F, V, or D.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check RECORD statement for invalid TYPE
operand value.

ALTSEQ STATEMENT HAS INVALID DATA

Explanation: Valid data consists of exactly 4 valid hexadecimal
digits per entry in the CODE parameter.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check ALTSEQ statement for invalid
hexadecimal digits, unpaired digits, and missing commas.

7B331

TB341

7B35T

7B361

SUM FORMAT INVALID

Explanation: An invalid format was specified in the SUM
statement. Only the formats FI, BI, PD and 2D may be used.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the FIELDS and FORMAT parameters of the
SUM statement.

VIRT PARAMETER IGNORED

Explanation: The VIRT parameter of the OPTION statement was
specified but ignored, since sort/merge was running in real mode
(REAL was specified on the EXEC job control statement).

System Acticn: Normal processing continues.

Programmer Action: None.

VOLUME VALUE (S) INVALID

Explanation: Invalid characters as VOLUME operand. A value
assigned to the VOLUME parameter of the INPFIL statement must be
a numeral.

System Acticn: Sort/merge is terminated after Phase 0 has
conpleted its error checking of control statements and unit
assignments.

Programmer Action: Check INPFIL statement for invalid VOLUME
operand.

xxxxxx FIELDS BEYOND 4092

Explanation: A SUM, SORT, or MERGE field lies beyond byte field
4092 of the record.

Systen Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check length and displacement values
specified in the statement concerned.

Appendix E. Program Messages 149

7B371

7B38I

7B391

TBUOI

150

SYNTAX ERROR - XXXXXX

Explanation: A syntax error has been detected in the control
statement represented by xxxxxx. Common syntax errors are:

s Unbalanced parentheses

e Missing commas

e Embedded blanks

e Redundant cperands

e Missing rarameters

After issuing this message, SM2 skips the rest of the statement
in error, including any continuation cards or lines, and
continues to scan the next statement for errors. The remainder
of the statement may therefore contain errors which will not be
detected until the program is rerun.

System Acticn: SM2 is terminated after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check specified control statement for an
error in syntax.

OUTREC FIELD xxx INVALID VALUE

Explanation: One of the following errors has been detected in
OUTREC field x=xx:

1. The position or the length of the field is less than 1 or the
end of the field greater than 32,767.

2. The first field consists of only one parameter.

3. An invalid alignment was specified; only H, F or D is
allowed.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the OUTREC statement for valid
specifications.

PHASE 2 EXIT(S) IGNORED

Explanation: One or more phase 2 exits have been specified (E21,
E25 or E27) . These exits are invalid and are ignored by SM2.

System Acticn: Processing continues.

Progranmer Action: Ncne.

LABEL ERROR

Explanation: A label starting in column 1 of a control card has
been detected which is more than 8 characters long, or does not
start with an alghabetic character.

7B41I

7B421

7B44T

7B45T

System Acticon: SM2 is terminated after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check control cards for a label that does not
begin with an alphabetic character or for a label that is more
than eight characters long, or for an operator beginning in
column 1.

SUBTASKED CHECKPOINT IGNORED

Explanation: SM2 was requested to make a checkpoint while it was
subtasked.

System Acticn: The checkpoint request was ignored. Sort
continues normal processing.

Programmer Action: If the checkpoint is needed, reorganize the
job soc that SM2 is not subtasked.

CHECKPOINT IGNORED - % TRKS/BLKS NEEDED ON SORTCKP

Explanation: The disk extent allocated for SORTICKP was too small
to take a requested checkpoint. & tracks is the minimum needed
for a CKD device, % blocks for an FBA device.

System Acticn: The checkpoint request is ignored. Sort/merge
continues normal processing.

Programmer Action: If the checkpoint is needed increase the disk
extent for the SORTCKP data set to at least % tracks or blocks.
The space needed can be calculated from the formula given in the
DOS/VS Macro User's Guide, GC24-5139, in the section
*Checkpointing a Program'.

INVALID SPLIT CYLINDER EXTENT ON XXXXXXX

Explanation: xxxxxxx is the name of a work file. Split cylinder
extent for work files cannot be used.

System Acticn: Sort terminates.

Programmer Action: Correct work file xxxx EXTENT card.

STORAGE PARAMETER IGNORED. xxxxx USED

Explanation: xxxxx gives the number of bytes used by SM2. The
STORAGE parameter requested more space than available in the
partition. The request may be explicit or it may be implied by
use of the default value. Note that the standard default
supplied with SM2 can have been changed for your installation.

System Action: Sort continues, standard default value is used.

Prograpmer Action: Increase size parameter value on // EXEC card
and/or increase partition size. If sort is called you may have
to move preloaded exits and the return part of the program to
allow SM2 more room, if these are loaded above SM2.

Appendix E. Program Messages 151

7BU46I ADDRESS ERROR IN PARAM. LIST FOR INVOKED SORT

Explanation: An address in the parameter list for invoked sort
has a value outside the used partition. If the address of the
return code is invalid the program will program check.

System Action: Sort/merge terminates when all parameter values
have been checked.

Programmer Action: Check your parameter list for invalid given
address.

78471 ---PARMLIST PRINTQUT---

Explanaticn: This heading is followed by a printout of the
contrcl statements which have been passed to SM2 from another
program in the form of statement images. Only those with valid
statement definers are printed.

If an image is longer than 72 characters, it is printed 72
characters tc a line. The maximum number of characters printed
per image is 1296; any characters beyond that limit are omitted.
If an AQTT table (alternative collating sequence) is defined in
image form, it is not printed.

System Acticn: None.

Programmer Action: None.

7B48I ROUTE=NUMBER IGNORED

Explanation: ROUTE=xxx is only allowed when SM2 is called from
another program.

System Action: SM2 continues, using the default value for the
ROUTE option.

Programmer Action: Correct the ROUTE parameter on the OPTION
statement before any subsequent run.

TB491 ERROR (x) GETTING LABEL FOR yyyyyvy

Explanation: The symbolic label access routine returned a
nonzero return code of x when accessed to read the label for

YYYYYYY-

System Acticn: SM2 terminates.

Programmer Action: Lcok up the documentation for the symbolic
labkel access routine, and if possible take the action
reconmended for return code x.

7B50I ERROR (x) READING VTOC FOR yyyyyyy LABEL

Explanation: The commcn VTOC handler returned a nonzero return
code of x when accessed to read the label of file yyyyyyy.

System Acticn: SM2 terminates.

Programmer Action: Lock up the documentation for the common VTOC
handler, and if rossible take the action required for return
code x.

152

!

—m— —

7B521

7B541

7B55T

7B581

7C011

WORK FILE NAME SPECIFIED TWICE

Explanation: The name of the work file is specified in both the
FILNM and the WORKNM parameters of the OPTION statement.

System Acticn: The name specified second is accepted.

Programmer Action: For any subsequent run, delete the FIINM work
file name parameter.

ERROR (%) RETURN FROM GETVCE FOR XXXXXXX

Explanation: The error % was received as return code from a
GETVCE issued for file XXXXXXxX.

System Acticn: The program terminates.

Programmer Action: Look up the return code % in the
documentation for GETVCE and take the arpropriate action.

GETVIS FOR xxxxxxx CVH WORK AREA FAILED. % NEEDED.

Explanation: SM2 needed more room for the Common VTOC Handler.
It has tried to GETVIS a larger area but failed, because the CI
size of the VTOC for the FBA disk on which file xxxxxxx lies is
too large for the work area available to SM2.

System Actign: The rrogram terminates.

Programmer Action: Use the SIZE parameter or command to allow
the program more GETVIS space (between the end of the space
defined by SIZE and the end of the partition). Alternatively,
run the application in a larger partition.

XXXXXXX SYSNO IGNORED

Explanation: The SYSNO specified on the OPTION statement (or in
the sort/merge default macro if used at installation time) is
ignored for disk files in jobs running under DOS/VSE. XXXXXXX
is the file name, for example, SORTINT.

System Action: Sort continues.
Programmer Action: Remove parameter from OPTION statement and/or

recompile and relink the default macro without the specification
if you intend to continue running under DOS/VSE.

INSUFFICIENT STORAGE, xxxK AVAILABLE, ALC xxx K,
MODULES ARE NOT IN SVA

Explanatiocn: SM2 needs more main storage for execution. The
value given in the text is the amount of extra storage needed.

System Acticn: SM2 terminates.

Programmer Action: Increase SM2 storage size by increasing
either the EXEC SIZE parameter, the SIZE JCL statement or
command, the STORAGE option, or the partition size; or by
arranging for eligible SM2 modules to be put in the SVA.

Appendix E. Program Messages 153

7C021

7C031

7C04T

7C051T

7C061I

7C08I

154

MODULE STATUS: PARTITION (POSSIBLY PERFORMANCE DEGRADATION)
Explanation: ILUSOPT and (unless sort is terminated with message
*WRONG SVA STATUS') rest of SVA eligible modules are not in SVA.
To achieve best performance they should be placed there.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

INTERNAL RECORD LENGTH (y BYTES) TOO LARGE FOR XXXX

Explanation: The internal record length calculated by SM2 is too
large for a full track on the device xxx.

System Acticn: SM2 terminates after Phase 0.

Programmer Action: Change work device to a device with a larger
track capacity.

OUTREC RECORD IS BUILT IN PHASE n

Explanation: DIAG message. Output records can be built during
either Phase 1 or Phase 3 when OUTREC is specified. This
message says which alternative has been selected.

System Action: Processing continves.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

ESTIMATED MERGE ORDER IN PH2 = xx PH3 = xx

Explanation: DIAG message. These are the maximum merge orders
calculated by the optimization module. ‘'Merge order® means the
number of strings to be merged in one pass.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

INDEX BLOCKSIZE = xx WORK BLOCKSIZE = =xx

Explanation: Diag message. These are the internal block sizes
chosen by the optimization module.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PH1
BUFFERS < PH2 y OUT=xx IN=xx
PH3

Explanation: DIAG message. xx is the number of buffers chosen
for the specified phase by the optimization module.

7C091

7C101

7C111

7C121

7C131

System Actign: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

REAL I/0 DECIDED FOR XXXX

Explanation: DIAG message; xxxx indicates the phase (s) where I/0
with EXCPREAL is suitable.

System Action: None.

Programmer Action: See Charter 6 for suggestions as to how the
DIAG messages can be used.

STORAGE USED = xxxx BYTES
Explanaticn: Gives the number of bytes used by SM2.

System Action: None.

Programmer Action: None.

FIXABLE STORAGE = xxXx BYTES

Explanation: Gives the amount of fixable storage available to
sM2. '

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

INTERNAL RECORD 1ENGTH = xxxx BYTES

Explanation: DIAG message. This is the length of a record
handled internally by SM2. For variable-length records it is
the maximum length.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PHO: TIME A: yy SEC, TIME B: zz SEC

Explanation: DIAG message. Time A (yy) is the difference in the
values returned by the GETIME macro at the start and end of
phase 0. Time B (zz) is one of the following:

e If Job Accounting is supported in your system, zz is the
difference in the values obtained at the start and end of
phase 0 from the CPU time counter (ACCTCPUT field) in the Job
Accounting Interface Partition Table.

e If you do not have Job Accounting, zz is the difference in the
values returned at the start and end of phase 0 by the TTIMER
macro.

System Acticn: None.

Appendix E. Program Messages 155

Programmer Action: None.

7C14I RSA BINSIZE = xxx BYTES
Explanation: DIAG message issued when input records are
variable-length. This is the bin size used in ILUSCRE or
ILUSVRE.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

7C151 GENERATED EXTRACT/RESTORE ROUTINE > 4K

Explanation: The generated extract/restore routine is larger
than UK.

System Acticn: Sort/merge terminates.

Prograrmer Action: Decrease the number of OUTREC fields.

7C161I MODULE STATUS: SVA
Explanation: DIAG message. ILUSOPT and (unless sort is
terminated with message 'WRONG SVA STATUS'), the rest of SVA
eligible modules are in the SVA.

System Acticn: None.

Programmexr Action: None.

7C171 CHAINING FACTOR OUT=n4, IN=n,, INDEX=ngj
Explanation: DIAG message. Nx physical blocks are read or
written in one I/0 operation on input, output, and index
handling.

System Acticn: None.

Programmer Action: None.

7C18I ECPS:VSE MODE OF OPERATION

Explanation: DIAG message. SM2 is running in ECPS:VSE mode.

System Acticn: None.

Programmer Action: None.

7C191 ANALYZE END

Explanation: An ANALYZE statement has been supplied and the
program has terminated after phase 0.

System Action: The program terminates.

Programmer Action: None.

156

7C201

7C211

7C221

7C231

7C241

INSUFFICIENT STORAGE, xxxK AVAILABLE, ALD xxx K,
MODULES ARE IN SVA

Explanation: SM2 needs more main storage for execution. Add the
value given in the text to your partition size--or, if SM2 is
subtasked, add the value to the STORAGE parameter value. The
SM2 modules are assumed to be in the SVA.

System Acticn: SM2 terminates.

Programmer Action: Increase the main storage available to SM2 by
increasing either the EXEC SIZE parameter value, the STORAGE
option value, or the partition size.

OVERLAPPING WORK EXTENTS ON SYS(y) AND SYS (y)

Explanaticn: Two work extents have been specified which overlap
each other.

System Acticn: The program terminates.

Programmer Action: Redefine the named work extents. Check all
other work files fcr overlapping extents: you will only get a
message for the first detected, if there are several.

FBA SORT WORK AREA IS LARGER THAN 2000 MBE

Explanation: Work space has been defined on FBA devices and is
larger than 2000 megabytes, the maximum that SM2 can handle.

System Acticn: SM2 terminates.

Programmer Action: Reduce the work space assignment, if
possible. Alternatively, if so much space is really needed,
allocate some or all of it on CKD devices.

FBA SORT WORK EXTENT IGNORED, SMALLER THAN 32KB

Explanation: A work space extent has been defined on FBA which
is smaller than 32K bytes, the minimum that can be used by SM2.

System Acticn: SM2 continues trying to sort in the space
available to it, igncring the extent which is too small.

Programmer Actiocn: If the program subsequently terminates for
lack of work space, allocate more and rerun.

MODAL RECORD LENGTH ASSUMED = xxx BYTES

Explanatigon: xxx is the 1s valve from the RECORD statement
LENGTH parameter, if supplied; or else the value for modal
length calculated by SM2 (the average of 1, and 1,).
System Action: None.

Programmer Action: None.

Appendix E. Program Messages 157

70011 TOO MANY RECORD LENGTH PARAMETERS

Explanation: The number of length parameters specified in the
RECORD statement exceeds the maximum allowed. For fixed-length
records the number of parameters allowed is three (14 - lg) and
for variable-length records five (L4 - ls).

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the LENGTH keyword in the RECORD
statement for too many parameters.

70021 KEYWORD (S) IN INPFIL|OUTFIL STATEMENT IS (ARE) IGNORED

Explanation:

1. When VSAM/KSDS, ESDS, or RRDS is specified, all other
parameters in the INPFIL/OUTFIL statement are ignored exept
for EXIT and TOL. EXIT overrides VSAM.

2. When EXIT is specified all other parameters in the
INPFIL/OUTFIL statement are ignored exept DATA in the INPFIL
statement.

System Action: Processing continues.

Prograrmer Action: None

7D03I INVALID INCLUDE/OMIT DELIMITER

Explanation: A punctuation error has been detected in the
INCLUDE or OMIT control statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check for operands that are incorrectly split
between first and continuation cards.

70041 NO VALID ALTSEQ STATEMENT FOUND

Explanation: An ALTSEQ statement must be specified when format
AQ is specified in the SORT, MERGE, INCLUDE, or OMIT
statement (s) .

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Supply the missing statement.

7D051

7D061I

7D071

7D081

xxxxxx KEYWORD IGNORED

Explanpaticn:

1. When MERGE is specified the keyword represented by xxxxxx is
ignored.

2. If both SUM and EQUALS are specified, EQUALS is ignored.
Note that EQUALS can be the default, if this has been reset
for your installation. To suppress this message, specify
NOEQUALS.

3. If ADDROUT is specified when SUM and/or QUTREC is specified
ADDROUT is ignored.

4, If SPAN is specified with fixed-length records, ASCII
records, or ADDROUT specified, SPAN is ignored.

System Action: Processing continues.

Programmer Action: Remove unwanted parameter before next run.

BOTH INCLUDE AND DELBLANK DEFINED

Explanation: An INCLUDE statement and the DELBLANK parameter on
the RECORD statement have both been found.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: The DELBLANK parameter can be used on its own
or with an OMIT statement, but not with an INCLUDE statement.
Remove the conflicting specification.

RECORD DESCRIPTOR WORD NOT INCLUDED

Explanation: When the OUTREC statement is being used to reformat
variable-length records, the Record Descriptor Word (RDW; bytes
1-4 of a variable-length record) must be included in the
reformatted output record. In other words, for variable-length
records, the first entries in the FIELDS parameter of the OUTREC
statement must be 1,n where n is greater than or equal to 4.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Ensure that the first entries in the FIELDS
parameter of the OUTREC statement are correct.

xxxxxx FIELD BEYOND RECORD

Explanation: A field specified in an OUIREC or SUM statement
extends beyond the end of the shortest record. The minimum
record length is defined by the LENGTH parameter of the RECORD
statement: 1; for fixed-length records or l4 as specified for
variable-length records.

System Acticn: Sort/merge is terminated after Phase C has

completed its error checking of control statements and unit
assignments.

Appendix E. Program Messages 159

7D091I

7D10I

70111

D121

[«

Programmer Action: Check OUTREC and SUM statements for
incorrectly specified field position or length. Check RECCORD
statement for incorrect record length specification.

ADDROUT OPTION INVALID

Explanation: ADDROUT has been specified when the EXIT keyword is
present in the INPFIL statement. You cannot have the ADDROUT
option when you read all input to the program via an exit.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: The c¢ombination is invalid so choose either
the ADDROUT option or the INPFIL EXIT specification.

INVALID LENGTH IN REL COND n - INCLUDE/OMIT

Explanation: The length of the n-th relational condition of the
INCLUDE cr OMIT statement is invalid:

e The length (parameter m) is not a decimal number, or

e Tt is a negative number, or

e It is greater than 256.

System Action: SM2 is terminated after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check INCLUDE/OMIT statement for invalid
specifications.

xxxxxx EXIT REQUIRES Eyy

Explanation: xxxxxx is replaced in the message by INPFIL or
OUTFIL; yy is the number of the exit required.

1. When EXIT is specified in the INPFIL statement, E15 (Sort) or
E32 (Merge) must be specified in the MODS statement.

2. When EXIT is specified in the OUTFIL statement, E35 must be
specified in the MODS statement.

System Acticn: SM2 terminates after Phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check appropriate control statement for
invalid keyword operand.

INVALID FORMAT FOR ASCII DATA

Explanation: The value assigned to f (control field format) must
be AC, ASL, or AST for ASCII data.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check value assigned to f in SORT/MERGE and
INCLUDE/OMIT statements.

7D131

7D14T

7D151

7D16I

DELBLANK POSITION BEYOND 4092

Explanation: The DELBLANK parameter of the RECORD statement lies
beycnd byte 4092 of the record.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check DELBLANK parameter value.

EFFECTIVE L3 VALUE = XXXXXX

Explanaticn: This message is issued when an OUTREC statement has
been supplied, and output record length (3 in the LENGTH
parameter of the RECORD statement) was not specified, or
specified incorrectly. =xxxxxx is a decimal number specifying
the total length of the reformatted record, including all fields
and alignment padding.

If variable-length records are being reformatted with OUTREC,
and if the variable portion of the record is included in the
reformatted record, xxxxxx gives the maximum length of the
output records.

System Action: If 1; was incorrectly specified in the RECORD
statement (in which case message 7D38I will have been issued),
sort/merge is terminated after Phase 0 has completed its error
checking of control statements and unit assignments. Otherwise,
normal processing continues.

Programmer Action: Check RECORD statement for 1 or l, which are
invalid for an OUTREC statement, or remove unwanted OUTREC
statement. Note that unless you change the record length at E35
(after OUTREC), it is not necessary to specify 1l; or 1lg, as SM2
will calculate the correct valuves for you.

SUM FIELD n OVERIAPS CONTROL FIELD m

Explanation: The n-th field defined in a SUM statement overlaps
the m~th control field defined in a SORT or MERGE statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Correct the SUM statement; also check that
the SORT or MERGE statement specifies the control fields
correctly.

SUM FIELD n OVERIAPS RECORD DESCRIPTOR WORD

Explanation: The n-th field defined in a SUM statement overlaps
the Record Descriptor Word (RDW) of the variable-length records
being processed.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Acticn: Correct the SUM statement; also check that
the RECORD statement is correct.

Appendix E. Program Messages 161

D171

7D181

7D191

7D201

7D211

162

SUM FIELD n OVERLAPS SUM FIELD m

Explanation: The n-th field defined in a SUM statement overlaps
the m—th field.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the SUM statement for errors.

TOO MANY VOLUME POSITIONAL PARAMETERS

Explanation: The number of positional parameters in the VOLUME
keyword of the INPFIL statement exceeds the FILES parameter
value specified in the SORT/MERGE statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmex Action: Correct the VOLUME parameter or the number of
files specified on the SORT/MERGE statement.

INVALID SELF DEF TERM IN REL COND n - INCLUDE/OMIT

Explanation: The self-defining term is invalid in the n-th
relational condition of the INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for invalid
specifications.

OUTREC FIELD n INVALID VALUE

Explanation: A positional parameter was specified as the last
numerical entry in the OUTREC FIELDS keyword, i.e. with no
corresponding length indication; and the record type specified
in the RECORD statement is fixed. This usage is only allowed
with variable-length records.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the OUTREC statement for invalid
specifications; check for commas or entries missing from the
FIELDS parameter.

SPECIFIED Exx VALID ONLY FOR VSAM FILE

Explanation: The specified program exit is only allowed when a
VSAM file is used. The exit is ignored.

System Acticn: Processing continues. Sort/merge ignores the
exit.

Programmer Action: None

7D221

7D231

7D241

7D251

7D261

INVALID FORMAT IN REL COND n - INCLUDE/OMIT

Explanation: The format is invalid in the n-th relational
condition of the INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for invalid
specificaticns.

INSUFFICIENT STORAGE FOR INCLUDE/OMIT FUNCTION

Explanation: Insufficient main storage is available to contain
SM2 plus the code generated for the INCLUDE or OMIT function.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Increase main storage available to SM2.

PHASE 1 EXITS IGNORED BY MERGE

Explanation: Phase 1 of SM2 is not used for a merge-only
operation, therefore any Phase 1 exits specified in the MODS
statement of a merge-cnly operation are ignored.

System Acticn: Sort/merge continues, ignoring exits specified.

Programmer Action: Make sure the application was set up properly
before next run.

EXIT E32 OR E38 IGNORED BY SORT

Explanation: Exits E32 and E38 are available only for a
merge-only operation. They are ignored when specified in the
MODS statement of a sort operation.

System Acticn: SM2 continues, ignoring exits specified.

Programmer Action: Make sure the application was set up properly
before next run.

PRIORITY PARENTHESIS MISPLACED - INCLUDE/OMIT

Explanation: A parenthesis has been found in a syntactically
invalid pesition in the COND parameter of an INCLUDE or OMIT
statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for invalid
syntax, paying special attention to the parentheses.

Appendix E. Program Messages 163

7D271

7D28I

7D291

7D30I

164

INCLUDE/OMIT FORMAT INVALID

Explanation: An invalid format was specified in the FORMAT
keyword of an INCLUDE/OMIT statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check INCLUDE/OMIT statement for invalid
FORMAT parameter. Except for FL, you can use any format valid
for a SORT statement.

INVALID CONDITION IN REL COND n - INCLUCE/OMIT

Explanation: The condition is invalid in the n-th relational
condition of the INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for invalid
specifications.

ERROR IN LENGTH VALUE

Explanation: An error has been detected in either the BUFOFF,
the BLKSIZE, or one of the RECORD length parameters. The
message is issued when:

1. 15 is greater than 1, (RECORD statement).

2. BLKSIZE is greater than 9999 with DATA=A (INPFIL and OQUTFIL
statements) .

3. BUFOFF not equal to 0 when DATA=E (INPFIL statement) .

4. BUFOFF not equal to 0 when DATA=A and RECORD TYPE=F (OUTFIL
statement) .

5. BUFOFF not equal to 4 when RECORD TYPE=D (OUTFIL statement) .

Programmer Action: Check the RECORD statement for invalid length
values. Check INPFIL/OUTFIL statements for invalid block size
or invalid BUFOFF values.

L1 VALUE INVALID

Explanation: 1, value must be greater than four for
variable-length records.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programrmer Action: Check RECORD statement for missing or invalid
1, value.

7D311

7D321

7D331

DATA=A INVALID

Explanation:

1. ASCII data (DATA=A or RECORD TYPE=D) is not allowed when
ADDROUT is specified.

2. DATA=A is not allowed when RECORD TYPE=V.
3. ASCII data is not allowed with disk input/output.
System Acticn: Sort/merge is terminated after Phase 0 has

completed its error checking of control statements and unit
assignments.

Programmer Action: Change to correct combination of RECORD TYPE,
ADDROUT, DATA, and device.

ALTERED RECORDS REQUIRE OUTREC OR EXIT E15/E35

Explanation: If the RECORD statement indicates that record
length will be modified (the 1l,, 12, and 13 values are not the
same) , then either an OUTREC statement must be provided, or
program exits E15 and/or E35 must be specified in the MODS
statement.

System Acticon: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmexr Action: Check RECORD and MODS statements for
inconsistency. Check for missing OUTREC statement.

xxxxxx BLOCK SIZE = yyyy BYTES

Explanatiocn: No block size has been specified for xxxxxx (either
INPFIL cr OUTFIL), so it is assumed to be yyyy, calculated as
follows:

‘e For EBCDIC fixed-length records, block size equals record
length.

e For EBCDIC variable-length records, block size equals record
length « 4.

e For ASCII fixed or variable-length records, block size
equals record length ¢ buffer offset.

Warning: If the assumed value is not reasonably valid,
performance reduction or job termination may result.

System Action: Sort/merge continues with the assumed value.

Programmer Action: Check block size parameter to see if
arpropriate for next run of application. If not, make
appropriate change on INPFIL/OUTFIL statement.

Appendix E. Program Messages 165

7D341 RECORD CONFLICTS WITH xxxxxxX BLKSIZE

Explanation: xxxxxx is replaced by INPFIL or OUTFIL. The block
size specified in the INPFIL or OUTFIL statement must be
consistent with the record length specified in 14 or 1l,.

e If the OUTREC statement is in use, the OUTFIL block size must
be consistent with the effective length of the reformatted
record (including padding, if any; the effective length is
given by message 7D 141).

e For EBCDIC fixed-length records, block size must be an exact
multiple of record length.

e For EBCDIC variable-length records, block size must be at
least record length ¢ 4,

e If ASCII input data was specified, block size must be the sum
of the block prefix and an exact multiple of the record
length.

e If ADDROUT is specified with variable-length records, the
rules for fixed-length records apply for 1ls.

System Action: If the conflict is between EBCDIC records and
block size, or between ASCII output records and block size, SM2
is terminated after Phase 0 has completed its error checking of
control statements and unit assignments.

If the conflict is between ASCII input records and block size,
normal processing continues.

Programmer Action: Check RECORD statement and INPFIL or OUTFIL
statements for inconsistency in specifying lengths.

7D351 MISSING FORMAT IN REL COND n - INCLUDE/OMIT

Explanation: The format specification is missing from the n-th
relational condition of the INCLUDE or OMIT statement.

System Action: Scrt/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check INCLUDE/OMIT statement for missing *f'
subparameter of COND.

Note: If DATA=A or RECORD TYPE=D is specified only formats AC,
AST, or ASL are allowed.

7D36I DELBLANK POSITION BEYOND yy

Explanation: The DELBLANK parameter of the RECORD statement
extends beyond the end of the minimum record length yy. The
minimum record length is defined by the RECORD statement LENGTH
parameter 1; for fixed-length records when no E15 is specified,
or 1, if E15 is specified. For variable-length records 1,
specifies the minimum record length.

System Acticon: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

D371

7D381

7D391

Programmer Action: Check RECORD statement for incorrect record
length specification or incorrect DELBLANK specification.

SYNTAX ERROR - INCLUDE/OMIT

Explanation: A syntax error has been detected in the
INCLUDE/OMIT control statement. Common syntax errors are:

Unbalanced parentheses
Missing commas
Embedded blanks
Redundant operands
Missing parameters

After issuing this message, SM2 continues to scan the statement
for errors. Since the statement is in error, any messages
issued later for this statement may be spurious.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check specified control statement for syntax
error.

Lx INVALID FOR yyyyyy

Explanation: x in the message text is replaced by the length
parameter number {3 or 4); yyyyyy is replaced by ADDROUT or
OUTREC.

1. If ADDROUT is specified in the OPTION statement, the value
assigned to 1, in the RECORD statement must be equal to the
length of the disk address. Disk addresses are 10 bytes long
for SAM files and 5 bytes long for VSAM files.

2. If the QUTREC statement is in use, 13 and 1, have been
specified in the RECORD statement, and are not consistent
with the specification in the OUTREC statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action:

1. Check RECORD statement for invalid 1, value, or check OPTION
statement for unwanted ADDROUT option.

2. Check RECORD statement for invalid 1, or 1, values, or remove
unwanted OUTREC statement.

Note: Unless you change the record length after ADDROUT or
OUTREC (at E35), it is not necessary to specify 1l; or 1;. SM2
will calculate the correct value for you.

SUM FIELD n LENGTH INVALID

Explanation: In the n-th field defined in a SUM statment, the
length is invalid for the format specified.

Appendix E. Program Messages 167

D401

D411

7D421

168

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the SUM statement for invalid
specification. The rpermitted lengths are:

L} LD |
| Format | Length |
L i -]
Ll T |
| BI i 2, 4, or 8 bytes |
| FI | 2, 4, cr 8 bytes i
| PD | 1-16 bytes |
| ZD | 1-18 bytes |
i L -

FIELD OR VALUE GT 8 CHAR - INCLUDE/OMIT

Explanation: A field or value has been detected in the INCLUDE
or OMIT statement which is greater than 8 characters. (This
restriction does not apply to character strings enclosed in
quotation marks.)

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check specified statement for field or value
greater than 8 characters.

L4 GREATER THAN xx

Explanaticn: The minimum length specified or defaulted for input
records must not be greater than the specified or defaulted
maximum or modal lengths. xx is replaced by L1 or LS.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Acticn: Check RECORD statement for invalid 1., 1,
and/or ls values of the LENGTH parameter.

INVALID FORMAT COMBINATION IN REL COND n - INCLUDE/OMIT

Explanation: The n-th relational condition in the INCLUDE or
OMIT statement specifies a comparison which is invalid. Figure
6 (for field-to-field comparisons) and Figure 7 (for field-to-
constant comparisons) show the valid comparisons.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignrents.

Programmer Action: Check the COND parameter of the INCLUDE/OMIT
statement for invalid comparisons.

.

7D43T1

7D44T

7D451

7D461I

D471

INVALID LOGICAL OPER IN REL COND n - INCLUDE/OMIT

Explanation: The logical operator is invalid in the n-th
relational condition of the INCLUDE or OMIT statement. It can
be EQ' NE' GT' GE' LT, or LE~

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for invalid
specifications.

TOO MANY xxxxxx KEYWORDS

Explanation: The maximum number of keywords that can be
specified in the INCLUDE or OMIT statement has been exceeded.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check INCLUDE/OMIT statement for too many
keyword orerands.

INCLUDE/OMIT FIELD IN REL COND n BEYOND XXXXXX

Explanation: The field in the n-th relational condition of the
statement is beyond byte #4092 of the record, or beyond the
length specified in the 1, value of the RECORD LENGTH parameter.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for invalid
length or displacement value. Check the RECORD statement for
incorrect 1, value.

CONTROL FIEID n TOO LONG FOR TYPE

Explanation: A control field with packed decimal format (PD)
exceeds 32 bytes. Control field number is represented by n.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check length and format of specified control
field on SORT or MERGE statement.

EXIT Enn NOT GIVEN FOR NONSTANDARD LABELS

Explanation: If nonstandard labels are specified in the OPTICN
statement, exits E11, E17, E31, and/or E37 must be specified in
the MODS statement. Enn is replaced by the exit number.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Appendix E. Program Messages 169

7D481

7D501

7D51I

Programmer Action: Check MODS statement for omitted exit and
OPTION statement for incorrect label specification.

INVALID FIELD POSITION IN REL COND n - INCLUDE/OMIT

Explanation: The field position is invalid in the n-th
relational condition of the INCLUDE or OMIT statement.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the INCLUDE/OMIT statement for valid
specificaticns.

CONTROL FIELD xx BEYOND RECORD LENGTH

Explanation: A control field specified in the FIELDS parameter
of the SORT or MERGE statement extends beyond the end of the
record. The control field must not extend beyond 1, (or 14 when
ADDROUT™~is specified). The control field number is represented
by xx.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check SORT or MERGE statements for
incorrectly specified control field displacement or length.
Check RECORD statements for incorrectly specified or defaulted
record length.

ALTSEQ CANNQT BE USED WITH DATA=A

Explanation: An alternative sequence cannot be used with ASCII
data.

System Acticn: Sort/merge is terminated after phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Either change data type from DATA=A to
DATA=E, or remove ALTSEQ statement.

INVALID WORK DEVICE

Explanaticn: A sort work file has been allocated on an invalid
device, or more than two device types have been specified. The
rules for mixed devices and the valid device types described in
Chapter 1, *'Introduction', must be adhered to.

System Action: SM2 is terminated after phase 0 has completed its
error checking of control statements and unit assignments.

Programmer Action: Check the device types allocated and correct
them.

7D521

7D531

7D541

xxxxxxx OPTION NOT VALID FOR yyyyyy DEVICE

Explanation: An option has been specified which is not

applicable to the I/Q device being used. xxxxxxx in the message

text is replaced by one of the option names listed below; yyyy
is replaced by the word 'INPFIL' or 'OUTFIL'. The message will
be issued if any of the following parameters are specified:

1. OPEN/CLOSE for disk devices (INPFIL/OUTFIL statement) .

2. NOTPMK for disk ocutput device (OUTFIL statement) .

3. VERIFY for tape cutput device {OPTION statement) .. Note that
the VERIFY option can have been made the default for your
installation. In that case you will need to specify NOVERIFY
in order tc suppress this message.

4. ADDROUT for FBA or tape input device {OPTION statement) .

5. LABEL=U for disk devices (OPTION statement).

6. NOTPMK if IABEI=U is not specified.

System Action: Sort/merge continues, ignoring the option
specified.

Programmer Action: Check application to see if it was set up
correctly before next run.

BLKSIZE TOO LARGE/SMALL FOR xxxxxxX DEVICE

Explanation: Permitted maximum/minimum input and output block
sizes are:

r T T q
| Device | Max bytes | Min bytes |
L SR L g
v t T 1
| Tape (input) | 32767 I 1 |
| Tape (cutput) | 32767 { 18 {
| 2311 | 3625 | 1]
2314 or 2319	7294	1
3330 or 3333	13030	1
3340 or 3344	8368	1
3350	19069	1
FBA	32761] 1	
L L L ¢}

When mixed input is used the device with the largest capacity
determines the maximum allowable blocksize.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmexr Action: Check INPFIL/OUTFIL for invalid block size
specificatiocn.

ALTSEQ STATEMENT IGNORED

Explanation: An ALTSEQ statement has been found, but no field
was specified as format AQ.

System Action: The ALTSEQ statement is ignored, and normal
processing continues.

Appendix E. Program Messages 171

Programmer Action: Check SORT, MERGE, INCLUDE, and OMIT
statements for incorrect field format specification, or remove
unwanted ALTSEQ statement.

7D551 EXIT ADDRESS OUTSIDE PARTITION

Explanation: The loading information in the MODS statement is
invalid. The absclute loading address is outside the partition.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the loading information in the MODS
statement for invalid value and correct the absolute loading
address for the exit routine, or increase the SIZE parameter on
the EXEC card or STORAGE parameter in the OPTION statement.

7D561 TOTAL LENGTH OF CONTROL FIELDS > 256 BYTES

Explanation: The total length of the SORT/MERGE control fields
fields must not exceed 256 bytes.

System Acticon: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check the SORT or MERGE statement for invalid
length specification in the fields parameter.

7D571 INVALID INCLUDE/OMIT KEYWORD

Explanation: An invalid or duplicate keyword has been detected
in an INCLUDE or OMIT statement.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmexr Action: Check appropriate control statement for
invalid or duplicate keyword.

7D58I INCLUDE/OMIT COND KEYWORD MISSING

Explanation: The COND keyword is missing from an INCLUDE or OMIT
statement.

System Acticon: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check appropriate control statement for
missing COND keyword.

7D591 GEN xxxxXxxx ROUTINE GREATER THAN UK BYTES

Explanation: The routines generated by SM2 to perform the record
selection function specified in an INCLUDE/OMIT statement or the
summary function specified in a SUM statement have a total
length greater than 4096 bytes.

Py
~J
0o

7D60I

7D611

7D621

7D631

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Reorganize the statement concerned to require
less generated code. Appendix B gives information on lengths of
generated code.

OUTREC FIELD CONTAINS ONLY RDW

Explanation: The OUTPUT record specified in the OUTREC statement
contains only the first four bytes. This is not allowed for
variable-length records, where the first four bytes are the RDW
(record descriptor word). At least one data byte must be
included from the fixed data part of the record.

System Action: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Correct your OUTREC statement.

INPUT RECORD LENGTH OR BLKSIZE < 12 BYTES

Explanation: The input record length specified in the RECORD
statement, or BLKSIZE in the INPFIL statement, is smaller than
12 bytes for tape input. This may result in physical input
blocks which are less than 12 bytes, and if error recovery is
attempted such a block may be lost. This will not be discovered
by sM2.

System Action: Warning message; the program continues.

Programmer Action: None.

SPECIFIED Exx VALID ONLY FOR SAM FILE

Explanation: The specified exit is not allowed together with
VSAM file processing.

System Action: Informational message. SM2 ignores the exit.

Programmer Action: Check your input/output assignment for
correctness.

SPECIFIED E31 VALID ONLY WHEN CHKPT SPECIFIED

Explanation: If output is VSAM and E31 is specified, checkpoint
must also be specified.

System Action: Informational message. Sort/merge ignores exit
E31.

Programmer Action: Check whether E31 checkpointing is wanted.

Appendix E. Program Messages 173

7D641

7D651

70661

7D671

174

OUTPUT RECORD LENGTH < 18 BYTES

Explanation: Output is on tape, and the output record length
specified in the RECORD statement LENGTH parameter is less than
18 bytes for fixed-length records (lsg) or 14 bytes for
variable-length record (l,). Only when ADDROUT is specified can
1l be 5 cr 10 bytes. When OUTREC is used for variable record
files the fixed portion of the output record must be at least 14
bytes.

System Acticn: Sort/merge is terminated after Phase 0 has
completed its error checking of control statements and unit
assignments.

Programmer Action: Check record length parameter or unit
assignment for correctness.

xx VALUE IS IGNORED FOR MERGE

Explanation: An invalid value has been specified in the RECORD
LENGTH parameter:

1. When EXIT and E32 are not specified: if 14 is not equal to
1,, the 1, value is overridden.

2. When EXIT and E32 are specified: if 1, is not equal to 1,
the 1, value is overridden.

System Action: Merxrge continues ignoring the 1l,/1; value.

Programmexr Ac tion: None.

Lx VALUE TOO LARGE FOR SORTINy

Explanation:

Lx is either L1 or L4, representing a RECORD LENGTH value. vy is
the number of the SORTIN file (1-9).

1. When record TYPE=F, 1, must not be larger than the maximum
block size for the device specified by SORTINy.

2. When reccrd TYPE=V, l4 + 4 must not be larger than the
maximum block size for the device specified by SORTINy.

3. When record TYPE=D, 1, + BUFOFF must not be larger than the
maximum block size for the device specified by SORTINy.

System Acticn: Terminate after Phase 0.

Programmer Action: Correct the L1 or LU value.

INVALID CI SIZE - XXXXXX

Explanation: xxxxxx in the message text is replaced by INPUT or
OUTPUT. The CI size for the file is not a multiple of 512; or,
if >8K bytes, is not a multiple of 2K bytes.

System Acticn: SM2 terminates.

Programmer Action: Correct the CI size, probably incorrectly
specified in the output DLBL statement. If the file in error is
an input file you should check its labels for errors.

7D68I CI SIZE NOT SPECIFIED FOR FBA OUTPUT. (x) USED

7D69I

| 7D70I

7D711

Explanation: No CISIZE parameter was specified on the DIBL
statement for an output FBA device. x is the size used.

System Acticn: SM2 continues, using the default value for the
parameter. This is the next largest multiple of 512 that will
hold the block size rlus seven bytes. If the result is larger
than 8K bytes, it is rounded up to the next multiple of 2K
bytes.

Programmer Action: If the default is not satisfactory, add a
CISIZE parareter to the output DLBL statement.

BLOCK SIZE DOES NOT MATCH xxxxxxx CI SIZE

Explanation: The control interval size specified for file
xxXxxxxXX is incompatible with the block size you have specified
for the file. It should be at least the block size plus seven
bytes. However for mixed FBA and CKD input you can have a block
size on CRD files which is larger than the CI size for the FBa
files. The FBA and CKD block sizes must then be compatible in
the usual way, that is:

e Variable length records -- not greater than specified block
size (unless records are defined as spanned)

e Fixed-length records -- not greater than specified block
size, and a multiple of input record size

System Action: SM2 terminates.

Programmer Action: Change your file definitions so that they are
compatible.

ADDROUT INVALID WITH CI FORMAT INPUT

Explanation: ADDROUT is not supported for FBA input files; nor
for VSAM managed SAM input files, unless accessed as VSAM.

System Acticn: The program terminates.

Programmer Action: Plan the job differently.

BYPASS IGNORED FOR FBA I/0 ERRORS

Explanation: Self-explanatory.

System Acticn: The program continues. If there is an I/0 error
on an FBA file the program will terminate.

Programmer Action: None.

Appendix E. Program Messages 175

{ 7p721 LABELS SET STANDARD FOR MANAGED XXXXXXX

Explanation: ILABEI=U or LABEL=N was specified for files xxxxxxx
which is a VSAM managed SAM file. Since these files must be
standard labelled files the program ignores the IABEL parameter
and assumes that the labels are standard.

] System Action: The program continues.

| Programmer Action: Remove the LABEL specification from the
| OPTION card for this file.

7E01I INVALID SIGN

Explanation: A control field format with separate sign (CST,

CSL, AST or ASL) has an invalid value in the sign byte. The

valid hexadecimal values for EBCDIC input are °*4E' for + and

'60* for -. For ASCII input the valid hexadecimal values are
2B' for +# and 'RD' for -

System Action: Sort/merge terminates after message 7J02I has
been printed.

Programmer Action: Check field format descriptions in the SORT
or MERGE statement.

TE021 xXxXxxxxxx HAS WRONG SVA STATUS

Explanation: The module xxxxxxxx must reside in the same place
as module ILUSOPT.

System Action: Sort/merge terminates.

Programmer Action: Store the module in the same place as
IL.USOPT, either both in or both out of the SVA.

7TE031 INPUT FILE TOO LARGE FOR IN-CORE SORT

Explanation: The input file is not exhausted but the record
storage area is full and no work file is specified.

System Action: SM2 terminates.

Programmer Action: Either allocate more main storage or specify
some work file space. See Appendix B.

7EQ4I IN-CORE SORT

Explanation: DIAG message. The complete input file was sorted
in main storage, without using work files.

System Action: None.

Programmer Action: None.

7EO5T PH1: WORK BUFFERS PFIXED

Explanation: DIAG message. The work buffer area is fixed in
phase 1.

System Acticn: None.

-
~J
2

7TE061

7E21I

7E221

7E80I -

TF021I

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PH1: WORK BUFFERS NOT PFIXED

Explanation: DIAG message. The work buffer area is not fixed in
phase 1.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

I/0 ERROR ON SORTWORK CCB=XX...X

Explanation: This message is generated when a permanent I/0
exror occurs on a work file. xx...x is replaced by 16 bytes of
the Channel Control Block (CCB) or IORB.

System Action: SM2 terminates.

Prograpmer Ac tion: None.

Operator Action: Rerun job with the DUMP option. If the error
persists call IBM.

INSUFFICIENT WORK SPACE

Explanation: All space on the work file is used and the input
file has not been exhausted.

System Action: Sort/merge terminates after message 7J02I or
message 7J13I has been printed.

Programmer Action: Check the input file size against the record
count given in message 7J02I or message 7J13I. Rerun the sort
task with more work storage space allocated. See Appendix B for
details of work storage requirements.

7E84I

Explanation: These are program error messages. Details of the
messages, special procedures, and recommended actions are listed
at the end of this appendix under the heading 'Program Error
Messages'.

XxxxXxxxx HAS WRONG SVA STATUS

Explanation: The module xxxxxxxx (ILUSPARI or ILUSPAR) must
reside in the same place as module ILUSOPT.

System Action: SM2 terminates.

Programmer Action: Store ILUSPARI and ILUSPAR in the same place
as ILUSOPT, either all in or all out of the SVA.

Appendix E. Program Messages 177

PH1

PAR

7F03I {PH2: TIME A: yy SEC, TIME B: 2zz SEC

TFO4T

7F051

7F071

7F08I

178

Explanation: DIAG message. Time A (yy) is the difference in the
values returned by the GETIME macro at the start and end of the
Phase. Time B (z2z) is one of the following:

e If Job Accounting is supported in your system, zz is the
difference in the values obtained at the start and end of the
Phase from the CPU time counter (ACCTCPUT field) in the Job
Accounting Interface Partition Table.

e If you do not have Job Accounting, zz is the difference in the
values returned at the start and end of the Phase by the
TTIMER macro.

System Action: None.

Programmer Action: None.

PH1: xxx RECORD BLOCKS

Explanation: DIAG message. xxx record blocks were written in
Phase 1.

System Acticn: None.

Programmer Action. None.

PH2: xxx INPUT, yyy INDEX, zzz WRITE BACK BLOCKS
Explanation: DIAG message. Input to Phase 2 was xxx record
blocks read via an index of yyy index blocks. zzz write back
blocks were produced.

System Acticn: None.

Programmer Action. None.

PAR: WORK BUFFERS PFIXED

Explanation: DIAG message. The work buffer area is fixed in the
partitioning part of phase 2.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PAR: WORK BUFFERS NOT PFIXED

Explanation: DIAG message. The work buffer area is not fixed in
the partitioning part of phase 2.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

7F10I PH2: MERGE ORDER xx
Explanation: DIAG message. Actual Phase 2 merge order.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how to
use the DIAG messages.

7F111 PH3: MERGE ORDER xx
Explanation: DIAG message. Actual Phase 3 merge order.

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how to
use the DIAG messages.

TF21I I/0 ERROR ON SORTWORK CCB=XX...X
Explanation: This message is generated when a permanent I/0
error cccurs on a work file. xXxX...x is replaced by 16 bytes of
the Channel Control Block (CCB) or IORB.

System»Action: SM2 terminates.

Programmer Action: None.

Operator Action: Rerun the job with the DUMP option. If the
error persists call IBM.

7F221 INSUFFICIENT WORK SPACE

Explanation: All space on the work file is used. More space is
needed for index handling.

System Action: SM2 terminates.

Programmer Action: Rerun the sort task with more work storage
space allocated. See Appendix B for information on work storage
requirements.

7F231 PAR: xxx PHYSICAL, yyy LOGICAL STRINGS
Explanation: DIAG message. Input to the partitioning part of
Phase 2 was xxx physical strings and the output was yyy logical
strings. yyy=0 means that logical strings were not built.

System Action: None.

Programmer Action: None.

7F81I-7F83I

Explanation: These are program error messages. Details of the
messages, special procedures, and recommended actions are listed
at the end of this appendix under the heading 'Program Error
Messages"'.

Appendix E. Program Messages 179

7G021 xxxxxxxx HAS WRONG SVA STATUS

Explanation: Module xxxxxxxx must reside in the same place as
module ILUSOPT.

System Action: SM2 terminates.

Programmer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.
7G051 PH2: WORK BUFFERS PFIXED

Explanation: DIAG message. The work buffer area is fixed in
phase 2.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

7G061 PH2: WORK BUFFERS NOT PFIXED

Explanatiocn: DIAG message. The work buffer area is not fixed in
phase 2.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

7G211 I/0 ERROR ON SORTWORK CCB=xXX...X
Explanation: This message is generated when a permanent I/0
error occurs on a work file. xx...x is replaced by 16 bytes of
the Channel Control Block (CCB) or IORB.
System Actiocn: Sort/merge temminates.

Programmer Action: None.

Operator Action: Rerun job with the DUMP option. If the error
persists call IBM.

7G221 INSUFFICIENT WORK SPACE

Explanation: All space on the work file is used and more space
is required.

System .Action: SM2 terminates after message 7J02I has been
printed.

Programmer Action: Rerun the sort task with more work storage
space allocated. See Appendix B for information on work storage
requirements.

7G23T PH2: ETTR SAVE LIST HAS xxx ENTRIES

Explanation: DIAG message. The rest of available storage forms
a list for DASD block addresses. =xxx is the number of entries
in that 1list.

-t
o
[}

System Acticn: None

Programmer Action: Ncne.

7G81I-7G831

7H021

7HO5I

7H06I

7TH211

TH241

Explanaticn: These are program error messagesS. Details of the
messages, special procedures, and recommended actions are listed
at the end of this appendix under the heading *Program Error
Messages'.

xxxxxxxx HAS WRONG SVA STATUS

Explanation: Module xxxxxxxx must reside in the same place as
module ILUSOPT.

System Action: SM2 terminates.

Programmer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.

PH3: WORK BUFFERS PFIXED

Explanation: DIAG message. The work buffer area is fixed in
phase 3.

System Acticn: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

PH3: WORK BUFFERS NOT PFIXED

Explanaticn: DIAG message. The work buffer area is not fixed in
phase 3.

System Acticon: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

I/0 ERROR OR SORTWORK CCB=XXX...X

Explanation: This message is generated when a permanent I/0
error occurs on a work file. xx...x is replaced by 16 bytes of
the Channel Ccntrol Block {(CCB) or IORB.

System Acticn: SM2 terminates.

Programmer Action: None.

Operator Action: Rerun the job with the LCUMP option. If the
error persists call IBM.

PH3: xxx BYTES UNUSED

Explanation: DIAG message. xxxX is the number of bytes of
available storage that remained unused in Phase 3.

Appendix E. Program Messages 181

System Action: None.

Programmer Action: See Chapter 6 for suggestions as to how the
DIAG messages can be used.

7H81I-7H82I

73011

73021

73031

73041

182

Explanation: These are program error messages. Details of the
messages, sSpecial procedures, and recommended actions are listed
at end of this aprpendix under the heading ‘Program Error
Messages'.

SORT |MERGE COMPLETE, INSERT v, DELETE x, IN y, OUT z

Explanation: SM2 completed successfully. Vv is the number of
records inserted at a program exit, x is the number deleted at
an exit or by use of an INCLUDE, OMIT, or SUM statement, y the
number received for processing by SM2, and z the number sent to
output by SM2. This message will appear on SYSLOG, as well as
on the printer to which messages are routed.

System Acticn: None.

Programmer Action: None.
Programmer Action

SORT |MERGE ERROR, INSERT v, DELETE x, IN y, OUT z

Explanation: SM2 has terminated unsuccessfully. v is the number
of records inserted at a program exit, x is the number deleted
at an exit or by use of an INCLUDE, OMIT, or SUM statement, y
the number received for processing by SM2, and z the number sent
to output by SM2. This message will appear on SYSLOG, as well
as on the printer to which messages are routed.

System Acticn: None.

Programmer Action: There will be another message giving the type
of condition which has caused failure. The record counts in
this message can be used in conjunction with the other message
to pinpoint the cause of the problem.

SORT |MERGE COMPLETE, IN y, OUT 2z

Explanation: SM2 has completed successfully. y is the number of
records received for processing by SM2, and z the number sent to
output by SM2. This message will appear on SYSLOG, as well as
on the printer to which messages are routed.

System Action: None.

Programmer Action: None.

VSAM CB ERROR (xx) AT aaaaaa

Explanation: A VSAM control block error has been detected. Error
code xx (decimal) was received from a SHOWCB, TESTCB, GENCB or
MODCB macro. The error was detected by SM2 at address aaaaaa.

If aaaaaa is zero, sort/merge was unable to load the necessary
VSAM processor (possibly due to lack of virtual storage).

73051

73061

73071

73081

System Acticn: SM2 terminates.

Programmer Action: If the program is called, check that it is
not overlaid by your code.

Look up the error code in the appropriate VSAM publication and
take the action implied by the nature of the error. Check that
the EXEC statement of the application specifies the SIZE
parameter, giving a value small enough to leave room in the
partition for VSAM. Check that REAL is not specified on the EXEC
statement. If necessary call IBM for help.

Note: This message is mainly diagnostic and should not normally
occur.
VSAM CLOSE ERROR yyyyyy (Xx)

Explanation: A VSAM CLOSE module has returned an error code xx
(decimal) while trying to close file yyyyyy.

System Acticn: Sort/merge continues if possible.

Programmer Action: Lock up the error code in the publication
DOS/VS Supervisor and I/0 Macros or VSE/VSAM Messages and Codes,
and take the action implied by the nature of the error.

ERASE IN PROGRESS
Explanation: Work files are being erased as requested.

System Acticn: None.

Programmexr Action: None.

I/0 ERROR DURING ERASE
Explanation: An I/0 error occurred during erase of a work file.

System Acticn: SM2 terminates without completely erasing the
work areas used.

Programmer Action: If work files must be erased take suitable
action.

PH3: xxx INPUT, yyy INDEX, zzz WRITE BACK BLOCKS

Explanation: DIAG message. Input to phase 3 was xxx record
blocks read via an index of yyy blocks. 2zzz write back blocks
were produced.

System Action: None.

Programmer Action: None.

Appendix E. Program Messages 183

PH1

73091 {PAR TIME A: yy SEC, TIME B: zz SEC

73101

73111

73121

184

PH3

Explanation: DIAG message. Time A (yy) is the difference in the
values returned by the GETIME macro at the start and end of the
phase. Time B (zz) is one of the following:

e If Job Accounting is supported in your system, zz is the
difference in the values obtained at the start and end of the
phase from the CPU time counter (ACCTCPUT field) in the Job
Accounting Interface Partition Table.

e If you do not have Job Accounting, zz is the difference in the
values returned at the start and end of the phase by the
TTIMER macro.

System Acticn: None.

Progranmer Action: None.

RCD COUNT OFF. INSERT v, DELETE x, IN y, OUT z

Explanation: This message is generated if the number of records
leaving SM2 does not equal the number of records which entered,
discounting any inserted or deleted. v is the number of records
inserted at a program exit, x is the number deleted at an exit
or by use of an INCLUDE, OMIT, or SUM statement, y the number
received for processing by SM2, and z the number sent to output
by sMm2.

System Acticn: SM2 terminates.

Programmer Action: Check any routines at exits E15, E32, or E35.
Rerun the job. If the error persists, call IBM.

SORTWK SPACE USED: xxx FBA BLOCKS

Explanation: Issued when work files are on FBA devices. xxx is
the number of blocks actually used.

System Action: None.

Programmer Action: None.

SORTWK SPACE USED: xxx TRACKS ON yyyy

Explanation: Issued when work files are on CKD devices. xxx is
the number of tracks actually used, and yyyy is the device type.

System Acticn: None.

Programmer Action: None.

73131

TII

73151

7K011

7KR021

7K03I

SORT |[MERGE ERROR, IN y, OUT z

Explanation: SM2 has terminated unsuccessfully because the
number cf records sent to output is not the same as the number
of records which entered. This message will appear on SYSILOG,
as well as on the printer to which messages are routed. N}

System Acticn: SM2 terminates.

o
Programmer Action: Rerun the job. QL& ‘WX

Operator Acticn: Rerun the job. If the error persists’'call IBM.

SORT CAPACITY APPROX xxx RECORDS

Explanation: xxx is the approximate number of records that can
be sorted.

System Action: None.

Programrer Action: None.

SORT CAPACITY APPROX xxx RECORDS OF MODAL LENGTH

Explanation: xxx is the approximate number of records that can
be sorted, on the assumption that SM2's figure for modal record
length is correct. Modal record length is printed in message
7C241.

System Acticn: None.

Programmer Action: None.

NOT POSSIBLE TO REACH SRCLIB

Explanation: A source statement library cannot be found from
SM2, sc no formatted dump can be produced.

System .Acticn: None.

Programmer Action: Check your JCL for a missing ASSGN statement.

ILUCOMMA NOT FOUND IN SRCLIB

Explanation: The source statement library presently assigned
does not contain ILUCOMMA. No formatted dump can therefore be
produced.

System Acticn: None.

Programmer Acticn: See to it that ILUCOMMA is cataloged in this
source statement library before next running SM2 with the DUNMP
option.

TRACE TABLE NOT USED
Explanation: No entries have been made in the trace table.

System Acticn: Ncne.

Appendix E. Program Messages 185

7L01I

7L02T

7L03T

™01

m™o021

186

Programmer Action: None.

INVALID SIGN

Explanation: A control field with a separate sign (format CST,
CSL, AST or ASL) has an invalid value in the sign byte. The
valid hexadecimal values for EBCDIC input are ‘U4E' for ¢ and
'60* for -. For ASCII input the valid hexadecimal values are
*2B' for + and 'RD' for -.

System Actign: SM2 terminates after message 7J02I has been
printed.

Programmer Action: Check field format descriptions in the SORT
or MERGE statement.

OUT OF SEQUENCE ON SORTIN n

Explanation: Records on the SORTINn input file to a merge are
out of sequence.

System Actign: SM2 terminates after this message.

Programmer Action: Check the input file. Sort it if necessary.

XXXXXXXX HAS WRONG SVA STATUS

Explanation: Module xxxxxxxx must reside in the same place as
module ILUSOPT.

System Acticn: Sort/merge terminates.

Programmer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.

I/0 ERROR CCB/IORB = XX...X

Explanation: I/0 error on a SAM file. In System/370 mode the
16-byte CCB is printed out; it includes the logical unit to
identify the file. 1In ECPS:VSE the first 16 bytes of the IORB
are printed. Details of the CCB and IOREB can be found in the
Physical IOCS section of the DOS/VS Supervisor and I/0 Macros
manual or the VSE/Advanced Functions Macro Reference.

System Actign: Sort/merge terminates.

Programmer Action. None.

Operator Action: Rerun job with the DUMP option. If the error
persists call IBM.

I/0 ERROR - BYPASS

Explanation: An I/0O error was encountered on a SAM input data
set, but the BYPASS option was specified. This message is
printed cnly once.

System Action: The block in error is bypassed.

Programmexr Action. None.

— s

7MO031I

TMO4T

7MO051I

WRONG LENGTH RECORD - XXXXXX, YYYYYY

Explanation: Either a record or a block has been detected in the
input which is too long or too short for the current
application:

1.

If xxxxxx is LOGICAL then this means that a wrong length
variable-length logical record was detected in the input. 1In
that case, yyyyyy is the size of the record in question.

If xxxxxx is the name of the file, then a wrong-length block
has been detected. Information concerning the length of the
incorrect block is displayed in yyyyyy:

e For a disk file, the length of the block in bytes, taken
from the count field of the block.

e For the tape with variable-length records, the length of
the block in bytes, taken from the RDW.

e For tape with fixed-length records:
- for a short block, the number of bytes read in
(calculated from the CCB count)
- for a long block, the number of bytes read in (that is,
the defined block size), plus one.

e For VSAM managed SAM files
- variable format, the length of the block in bytes taken
from the RDW
- fixed format, the length of the block in bytes returned
to sort by SAM, for example, block length for short
blocks. Too long blocks are truncated and not checked.

System Action: SM2 terminates.

Programmer Action.

1.

2.

Check the BLKSIZE parameter on the INPFIL statement.

Check the lengths specified on the RECORD statement. If
these parameters are correct check that the input file
corresponds to them.

In the case of a wrong-length record, also check any user
routines you have at program exit E15 for incorrect record
lengths.

WRONG LENG?H RECORD xXXXXXX, YYVYYY

Explanation: As for 7M03I, but BYPASS was specified, and yyyyyy

is

always the length of the block in error. This message is

printed cnly once for each file in which an error is detected.

System Acticn: The block is bypassed and SM2 continues.

Programmer Action. As for 7MO3I.

OPEN ERROR - XXXXXX

Explanation: The file xxxxxx could not be opened.

System Acticn: Sort/merge terminates.

Appendix E. Program Messages 187

Programmexr Action: Check that the JCL is correct and that
necessary disks and tapes were mounted.

m™M061 WRONG LENGTH RECORD EXIT Exx - %

Explanation: A wrong-length variable-length record was inserted
at exit Exx. %X is the length of the record in error.

System Acticn: SM2 terminates.

Programmer Action: Recode the routine at exit Exx.

™071 SOME LOGICAL RECORDS ARE LESS THAN MIN LENGTH

Explanation
or default

: A variable-length record shorter than the specified
minimum length has been found in the input.

System Acticn: SM2 continues.

Programmexr Action: None.

m™081 XXXXXXXX HAS WRONG SVA STATUS

Explanation: The module xxxxxxxx must reside in the same place
as ILUSOPT.

System Action: SM2 terminates.

Programmer Action: Store the module in the same place as
ILUSOPT, either both in or both out of the SVA.

7™M091 RETURN CODE ERROR Exx

Explanation: The user routine at program exit Exx returned an
invalid code in the action word. The valid codes are 0, 4, 8,
12, 16 decimal (0, 4, 8, C, 10 hexadecimal). Note that when
INPFIL or OUTFIL EXIT is specified or after input file EOF, the
acceptable return codes are restricted. See the coding
instructions given in Chapter 5.

System Acticn: SM2 terminates.

Programmer Action: Recode the user routine correctly. See the
relevant exit coding instructions in Chapter 5 for details of
valid return codes.

M™10I TOO SHORT ‘RECORD FOUND - %

Explanation: A variable-length input record was found which was
too short to contain all the sort control fields, all the SUM
fields specified, or all the major INCLUDE/OMIT fields. ¥ is
the length c¢f the record in error. Note, that a negative value
will be shown as the corresponding positive number) .

System Acticn: SM2 terminates.

Programmer Action: Either reorganize the input file to leave out
the short records, or remove the definition of the fields in
question, to allow these functions with the short records.
Remove any recoxrds with erroneous record descriptor words.

™11 INVALID SIGN IN INCLUDE/OMIT INPUT
Explanaticn: This message is generated by the sort/merge when
the sign of a separately signed numeric field is not a valid
plus or minus.

System Action: SM2 terminates.

Programmer Action: Make sure format is correctly specified.
Make sure that all input records contain signed data in the
field specified in the SORT, MERGE, or INCLUDE/OMIT statement,
and that the data is correctly recorded in the input records.

Operator Response: Make certain that the correct input file is
mounted.

m™121 INPUT: REAL I/0 NOT USED

Explanation: DIAG message. The optimization routine selected
real I/0 but sufficient main storage could not be obtained at
the time buffers were to be allocated and page fixed. Virtual
I/0 was used. This can happen if a user exit is fixing buffer
pages.

System Acticn: None.

Programmexr Action: Increase real partition size or inspect user
routines that fix pages.

™13 Xxxxxx BUFFERS NOT PFIXED
Explanation: DIAG message in ECPS:VSE mode. SM2 was unable
permanently tc fix the I/0 areas for xxxxxx {input or output),
so fix lists had to be used

System Acticn: None.

Programmer Action: To improve performance allow more real or
page-fixable storage to the partition.

TMIGI INPUT SEGMENTS IN WRONG ORDER XXXXXXX

Explanation: A first segment of a variable-length spanned record
was detected in the input where a continuation segment was
expected; or a continuation segment was detected where a first
segment was expected. xxxxxxX is replaced by the file name.

System Action: SM2 terminates.

Programmer Action: Check the input file, and the program
creating it.

M151 SORTOUT FILE ON SYS (y) OVERLAPS WORK EXTENT ON SYS (y)

System Acticn: SM2 terminates.

Programmer Action: Respecify work or output extent.

Appendix E. Program Messages 189

M161I XxXxxxx BUFF™™S PFIXED

Explanation: DIAG message in ESPC:VSE mode. The xxxxxx buffers
(INPUT or OUTPUT) were page fixed.

System Acticn: SM2 continues normal processing.

Programmer Action: Ncne.

™171 SEGMENT LENGTH FIELD ERROR SEG=a, TOT=b, XXXXXXX

Explanation: An input segment was found with a length which
makes record length greater than the 14 value. a is the length
of the segment found; b is the total length of the deblocked
record including this segment; xxxxxxx is the file name.

ion: SM2 terminates.

Programmer Action: Check the program which produces the input
file.

TVoilI VSAM OPEN ERROR yyyyvy (%x)

Explanation: File yyyyyy could not be opened. A VSAM OPEN
module has returned an error code xx {(decimal) from the ACB.

System Action: SM2 terminates.

Programmer Action: Look up the error code in the publication
DOS/VS Supervisor and I/0 Macros or VSE/VSAM Messages and_Codes,
and take the action implied by the nature of the error. 1If the
error is a 'warning' message the program can be made to ignore
it by using the TOL rparameter on the INPFIL or OUTFIL statement
as approrriate.

V021 VSAM CB ERROR (xxX) AT aaaaaa

Explanation: A VSAM control block error has been detected.
Exrror code xx {decimal) was received from a SHOWCB, TESICB,
GENCB, or MODCB macro. The error was detected by sort/merge at
address aaaaaa.

If aaaaaa is zero, sort/merge was unable to load the necessary
VSAM rrocessor (possibly due to lack of virtual storage).

System Acticn: SM2 terminates.

Programmer Action: If SM2 is called from another program, check
that it is not overlaid by your code. Look up the error code in
the publication DOS/VS Supervisor and I,0 Macros or

VSE/VSAM Messages _and Codes, and take the action implied by the
nature cf the error. Check that the EXEC statement of the
application specifies the SIZE parameter, giving a value small
enough to leave room in the partition for VSAM. Check that REAL
is nct specified on the EXEC statement. If necessary call IBM
for helrg.

Note: This message is mainly diagnostic and should not normally
occur.

-t
(Ve)
<

V03I

TVOLI

7VO0SI

Vo071

VSAM INPUT ERROR yyyyyy t (xx)

Explanaticn: A VSAM CLOSE module has returned an error code xx
(decimal) for input file yyyyyy, the error was of type t (P for
physical, L for logical). =xx is the RPL FDBK code.

System Action: SM2 terminates.

Programmer Action: Look up the error code in the publication
DOS/VS_Supervisor and I/0 Macros or VSE/VSAM Messages and Codes,
and take the action implied by the nature of the error.

VSAM OUTPUT ERROR t (xx)

Explanation: A VSAM PUT module has returned an error code xx
(decimal) for sort output file; the error was of type t (P for
physical, L for logical).

System Action: SM2 terminates.

Programmer Action: Look up the error code in the publication
DOS/VS Supervisor and I/0 Macros or VSE/VSAM Messages and Codes,
and take the action implied by the nature of the error.

VSaM CLOSE ERROR yyyyyy (%x)

Explanation: A VSAM CLOSE module has returned an error code xx
(decimal) while trying to close file yyyyyy-

System Acticn: SM2 continues if possible.

Programmer Action: Lcok up the error code in the publication
DOS/VS Supervisor and I/0 Macros or VSE/VSAM Messages and Codes,
and take the action implied by the nature of the error.

VSAM LOAD ERROR
Explanation: VSAM cculd not load its modules.

System Acticn: SM2 terminates.

Programmer Action: Make sure you have a GETVIS area and enough
virtual storage for VSAM. Ensure that REAL is not specified on
the EXEC statement.

Appendix E. Program Messages 191

Program Error Messages

SM2 has some ‘'built-in' self diagnostic code which checks certain
parameters while the program is executing. If one of these checks fails,
a program error message is produced. On the appearance of one of these
messages you should inform your system programmer and rerun your job
with the DUMP option specified. If the program error recurs call your
IBM representative and provide him or her with the dqump obtained.
Possible temporary fixes to bypass the problem are suggested with some
of the error messages listed below.

TE80I CODE OVERLAID BY BUFFERS

Explanation: A ccde overlay has occurred caused by an error in
the optimization calculation.

System Action: SM2 terminates.

Programmer Acticn: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

7E81I ABNORMAL RETURN FROM REALAD
Explanation: An unacceptable return code was received from the
REALAD macro when tramnslating channel program address to
absolute form.

System Acticn: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

Possible Byrass: The problem can probably be overcome
temporarily by rerunning the job with the VIRT option specified.

7E821I PFREE ERROR

Explanation: An unacceptable return code was received from the
PFREE macro.

System Action: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
opticn, and call IBM representative.

Possible Bygass: The problem can probably be overcome
temporarily by rerunning the job with the VIRT option specified.

7E83I ABNORMAL CODE OVERLAY 'RSA‘

Explanation: There is not enough space in the RSA; (record
storage area) ; fewer than three records can be stored.

System Acticn: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

192

7G831

7H81I

7H82I

System Action: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

Possible Bypass: Try increasing the amount of storage allocated
to SM2 by altering the SIZE parameter on the EXEC statement.

MODULE OVERLAID BY TABLES

Explanation: A code overlay has occurred caused by an error in
the optimization calculation.

System Acticn: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

ABNORMAL RETURN FROM REALAD

Explanation: An unacceptable return code was received from the
REALAD macro when translating channel program address to
absolute form.

System Acticn: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representativeu

WRITE BACK LIST FULL

Explanation: An abnormally large number of write back blocks has
been created in Phase 3. There are too many for the program to
handle.

System Acticn: SM2 terminates.

Programmer Action: Inform system programmer, rerun job with DUMP
option, and call IBM representative.

Appendix E: Program Messages 193

absolute addresses 26
ADCROUT opticn
A parameter 126
alligned rarameter, in OUTREC 44
C parameter 127
format of cutput reccrds 54
in option statement 53
n parameter 126
specifications 53
used with INPFIL, EXIT 54
ALL parameter, OPTION statement
altering records 78,95-97

50,126

alternative collating sequence 9 (see ALTSEQ)

alternative work units (see ALTWK)
ALTSEQ

COCE operand 42

control statement 42

examples 43

prograrming nctes 42

using when in to ASCII 126
ALTWK ortion 126
ANALYZE control statement
ASCII

klocksize 28

collating sequence 9

data input 29
ASSGN 58

alternative sequence 67

biklicgraphy
blanks
as delimiters
as padding 39
emkedded 110
in ccntinuaticn cards 109
BLKSIZE operand
in INPFIL statement 28
in OUTFIL statement 32
braces 111
brackets 111
branch table fcr prcgram exits 80
BUFOFF cpticn
in INPFIL, statement 29
in QUTFIL statement 33
BYPASS cption in INPFIL statement 28

CALCAREA parameter 126
checking
for record length at E15 77
for record length at E35 78

49,124

iii,iv

108-110

Index

checkpoint

file 19-20

pregram exits 89
checkrointing 76
checkroint/restart and rerfcrmance
CHKPT statement 126
CKPT 19,126
CODE cperand in ALTSEQ statement 42
collating sequences 9
comma in control statement format
corments fields, format of 109
comparison operators 36
comparison with other sort/merge
programs 75
compatibility (see conversion aidsj
COND keyword in INCLUDE/OMIT

statement 34-40

configuration, machine 6
contiguous contrcl fields 8
continuation cards 109
continuation cclumn, fcrmat of 107 -
contrcl fields 8,9

defined by MERGE 21

defined ky SORT 18
control statement

ALTSEQ 40

format 98,18

images 57

INCLUDE/OMIT 35

INPFIL 28

MERGE 21

MODS 26

OPTION 50

OUTFIL 32

OUTREC 44

RECORD 23
restrictions 110
SORT 18

SUM 47

conversion 127

aids 125,126

frcm DOS disk sort/merge 129

frem DOS/TOS tape scrt/merge 128

frcm Model 20,disk sort/merge 129

from System/3 disk sort 132

frcm unrelated program 129
converting OCL statements 134
converting sequence srecification 133

D parameter in ADDROUT
data file organization
data formats permitted
DATA operand in INPFIL
decimal numker fcrmat
default values

in INPFIL statement

in OPTION statement

in QUTFIL statement

opticn 126

9

9

statement 29
37

28

50
32

Index

104-105

108-111

195

default values (cont.)
in RECORL statement 23
in SORT statement 18
defining files 59
DELELANK parameter 126
generating rcutines 124
deleting records

at E15 77
at 32 77
at E35 78

DIAG option
in OPTION statement 53
performance 102
using 105

differences from Release 1 cf 5746-SM2
differences from Release 2 cf 5746-SM2
differences ketween SM/2 and similar

programs 126

differences from 5746-SM1 2

CLEL statement 58

DOS disk sort/merge program
control cards 129
conversion from 129
user exits 131

LOS/TOS tape sort/merge program
control cards 128
conversion froem 130
user exits 130

DUMP option in OPTION statement

EBCLCIC 18
ENC statement 126

ERASE command in OPTION statement

error messages (see messages)
ellipses 111
ERASE and performance 105
equal sign 111
EQUALS

in SORT 19
ESCS 32
EXEC statement 58
executing the program 63
EXIT in MODS 26

exits in use for file lakel handling

exit lists 78
EXIT option
in INPFIL 28
in OUTFIL 32
EXTENT 56_

E11 81-84
E15 85

coding example 86-T4
E17 88
E18 88
F31 8S

coding examgple 92
E32 93

coding example 94-95
E35 95

coding example 97
E37 98

coding example 92
E38 98-99
E39 99-100

196

76

F parameter in RECORD statemrent 23
FIELLCS operand
in MERGE statement 21
in OUTREC statement U4
in SORT statement 18
in SUM statement 47
field
corrment 109
contxol (see control fields)
delimiters 110
operand 108

file
checkpoint 19
names 50

organization U4

reading input 75

file names allocated ky default 62
FILES orerand

in MERGE 21

in SORT 18
FILNM in OPTION statement 52
flcating point data 21
FORMAT cperand

in INCLULCE/OMIT statement 41

in MERGE statement 21

in SORT statement 18

in SUM statement 47
functions not sugported 125

general methcd cf passing parameters

handling input and cutput file labels
hexadecimal string format 39

INCLUCE/OMIT statement 35
character string format 38
corpariscn cperators 37
COND parameter 35
decimal numkter format 37
examples 41
FORMAT parameter 40
hexadecimal string format 39
logic takle 40
pradding in 39
programming nctes 40
relational ccnditicn 35
self-defining terms in 37
truncation 39

incomrpatibilities 127

independent sort prcgram, example of

81

75

63

initializaticn ghase 72
initiating

SM/2 from an assembler program 64

SM/2 sample ccding 69
initiating program execution 63

by jck contrcl statement 63

examples cf 63-71

from an executing program 64
INPFIL control statement 28

BLKSIZE orperand 28

BUFOFF operand 29

BYPASS operand 28

CLOSE orerand 29

DATA operand 29

exanmgles 31

EXIT operand 28

NORWD ortion 29

OPEN cperand 29

programming nctes 30

RWLC cption 29

TOL cperand 29

UNLD opticn 29

VOLUME orerand 29

VSAM operand 29
input file

defined by MERGE 21

defined by SORT 19

deleting records frcem 35

device sharing 6

direct access devices 6

lengths (see RECORD control statement)

multifile 83

multivolume 83

reading the 83
input/output

error checking 127

files 2,5

pocling 6

file lakel handling 75

files and rerformance 61-62
inserting records

at E15 77
at E32 77
at E35 78

internal record length, size cof 124,127

job control statements 58
examrles of 58
JOB statement 58

KEYLEN rarameter 126
KSDS coption 32

lakels
direct access 7
examples cf processing 82

labels (cont.)

header 83,84

nonstandard 7-8

standard 7

tare 8

trailer 7
lakel field, format of 108
LBLTYP statement 58
LENGTH operand in RECORD statement 23
linking user-written routines 1
loading and linking 79

loading information (MODS statement) 26

logical 1I0CS, using 71

logical record length 23

logical takle for INCLUDE/OMIT 40
lower-case characters 111

machine confiquraticn 6~7
main storage
and performance 101
default values 51
ottaining dump of 53
manuals relating to SM2 iii
major control field 9

merge
final mexrge 75
input 72

MERGE cecntrol statement 21
examrle 22
FIELLS operand 21
FILES orerand 21
FORMAT operand 21
Fprograrming nctes 21
merge-only input 93-95
messages
different types cf 138
general messages 140
program error messages 192
when and where produced 139
minimum recoxrd size 23
minor contrcl fields 8
model 20 disk socrt/merge
control statements 129
conversion from 130
modifying the prcgram 72
modifying records

.at E15 77
at E32 77
at E35 78

MOLS control statement 26
examples 27
format of 26
loading infcrmation 26
parameters and orptions 26
phase name 26
PHn operand 26
specifications of exits 26
multifile
examgle 60
input &
output 59
unlateled 7
multiple disk work file 60

Index

197

NOCUMP coption in OPTION 53
non contiguous ccntrol fields 9
non standard direct access labels 7
non standard tape labels 8
non supported functions 126
NORWD
in INPFIL statement 29
in OUTFIL statement 33
NOTPMK
in OUTFIL statement 33

OCL statements, converting from 134
OMIT statement (see INCLUDE/OMIT)
OPEN operand
in INPFIL 29
in OUTFIL 33
operand field 108
operation field 108
OPTION control statement 50
ACLCROUT operand 54
ALL option 50
CRITICAL cpticn 50
CIAG operand 53
CUMP operand 53
ERASE orerand 53
examrles 56-57
FILNM operand 52
LABFL ogerand 52.
LOG option 50
LST option 50
NOTCUMP operand 53
NONE opticn 50
PRINT operand 50
programming nctes 55-56
ROUTE operand 50
SORTIN operand 53
SORTOUT operand 52
SORTWK operand 53
STORAGE operand 51
VERIFY operand 53
VIRT opticn 51
ORLER parameter 126
organization of program 72
OUTFIL contrcl statement 32
BLKSIZE ogperand 32
BUFOFF operand 33
CLOSE orerand 33
ESCS option 32
examgples 34
EXIT operand 32
KSCS opticn 32
NORWL ortion 33
NOTPMK operand 33
OPEN operand 33
prograrming nctes 33
REUSE orerand 33
RRDS opticn 32
RWC cption 33
TOL operand 33
UNLD opticn 33

198

output file

addresses as cutput (see ADDROUT option)

klocksize (see BLKSIZE ogtion)
checking of labels 52
defined by JCL statements 59
defined bty OUTFIL statement 32
deleting reccrds from 78
devices assigned tc 6
inserting records in 78
multivolume 59
rewinding the 33
sequence checking 95

OUTREC statement 44
examgples U5
FIELDS parameter u4i4
programming nctes U5

padding and truncation 39
parameter list 66

parameter and contrcl statement format

parentheses 110,111

passing parameters, general methcd 81

passing control to SM2 79
passwocrds 78
passwords for VSAM files 8

permissible field-to field ccmparisons

permissible field-to constant
comparisons 38
pernitted data formats 135

performance
checkpoint/restart 104
DIAG 105
effect of the environment 101
ERASE 105

INCLUDE/OMIT 104
input/output files 103
main storage 101

OUTREC 104

VERIFY 105

work storage 102
phase

0, initialization 72
1, sort 72
2, merge strings 74
3, final merge 75
PHn operand in MODS 26
pooling input and output with work
files 126,127
PRESEQ 126

PRINT option in OPTION statement 50,126

program
control statements 13,9
control staterents, summary 15,16

flow and exits, cverview 73
modification 11

reading the input file
merge 93
sort 85

66

37

——— s s St s S S e

records
altering 77
defined by RECORD 23
deleting 77
including 35
input 35
inserting in input 77,85
inserting in output 78,96
lengths 23
omitting 35
RECORL contrcl statement 23
examples of 22-23
format of 23
LENGTH operand 23
fixed-length records 23
variakle-length records 23
parameters 23
programming nctes 24
TYPE operand 23
record length 23,24
registers, contents of 64
registers to pass information, use of 80
relational condition 35
relational condition format 36
relocatakle rcutines 99
restrictions on input files 5
return codes

E15 85
E18 88
E31 92
E32 93
E35 96

RWL parameter
in INPFIL statement 29
in OUTFIL statement 33

SAM files
read errors 126
unmanaged 2,54
VSAM managed 1,3,5,6,29
example of 121
when specifying ADDROUT 54
when specifying BLKSIZE 30,32,34
when specifying BYPASS 30
when specifying EXTENT 61
write errors 126
self~defining terms 37
sequence
checking 95-96
collating 9
control fields 9
defining for merge 21
defining for scrt 18
specification converting 133
SIZE 123
sort
capacity 72
input (see ingut files)
output (see cutput files)
specifications 4

SORT control statement 18
CKPT operand 19
examples 22
EQUALS 19
FIELLS operand 18
FILES operand 19
FORMAT operand 19
prograrming nctes 21
WORK operand 19
SORTIN in OPTION statement 53
SORTOUT in OPTION statement 52
SORTWK in OPTION 53
spanned recdrds 5
special functions, use of 123
specification cf record length 103
specifying ccntrcl fields 8
standard lakels 7
statement format 108
STORAGE in OPTION statement 51
subscripts 111
suktasking 63
SUM control statemrent 47
example 48
FIFLDS operand 47
FORMAT operand 47
rerformance 104
programming nctes 47
sva 101
System/3 disk scrt, converting from 132
SYS000-SYS015 84

tape
file positicning, INPFIL statement 29
file positioning, OUTFIL statement 33
input 6
intermediate storage 7
lakels 7-8
mark 7
work files
unlakeled 7
TLBL 58
TOL parameter
in INPFIL statement 29
in OUTFIL statement 33
TP 126
TYPE orerand in RECORD statement 23
trailer tapes 83
truncation 39

unlakeled tages 7
UNLD rarameter
in INPFIL statement 29
in OUTFIL statement 33
unmanaged SAM files 2,54
user-written routines
aksolute addresses 26
kranch takles for 80
loading and linking to 79
perfcrmance 105
use of program exits

126,127

74,75

Index 199

VERIFY operand in OPTION statement 53
VIRT parameter in OPTION statement 51
VOLUME parameter in INPFIL statement 28
VSAaM

in INPFIL statement 28

I/0 error handling 126

JCL example 118

managed SaM files 1,29,3,5,28,34,54,58

modify processing 75

processing files 78

TOL cption 29

using standard linkage 89

200

workfile statements 59
work stcrage 102
devices 7
for tape units 7
perfcrmance 102

$C33-4044-2

International Business Machines Corporation

Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y,, U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

CPYOV-£€0S V'S'N W palulld ((SA/SOQ) €E-0LES #MMRI14) 2pInD s Jewiweibouy g uoisia A abiay/1108 SA/SOQ

Staples can cause prgblems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form

Note:

R R R I T I T T T T

D

ceeseeveesaa

Reader’s

DOS/VS Sort/Merge Version 2 Comment
Programmer's Guide Form
SC33-4044-2

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage necessary it mailed in'the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SC33-4044-2

Reader’s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

1BM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

Fold and tape Please Do Not Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middie East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

T-PYOV-€EDS V'S'N Ul patulld ((SA/SOQ) £€-0LES "ON al1d) aping s sewwelbolg g uoisiaA abis/1108 SA/SOQ

- ——— ——— — — — — — — 3UI"] BUO|Y P|O4 40 }ND -

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203

