Customer
Information
Control
System
CICS/VS

Licensed Program
Version 1.7

Program Numbers
5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/DOS/VS)

Application
Programmer’s
Reference
Manual
Macro Level

SC33-0079-5

Sixth Edition (July 1987)

This edition applies to Version 1 Release 7 (Version 1.7) of the
IBM licensed program Customer Information Control System/Virtual
Storage (CICS/VS), program numbers 5740-XX1 (CICS/0S/VS) and
5746-XX3 (CICS/DOS/VS), and to all subsequent releases and
modifications until otherwise indicated in new editions or
technical newsletters.

This edition is based on SC33-0079-3, which applied to
CICS/70S/VS Version 1 Release 6 and to CICS/D0OS/VS Version 1
Release 6. Changes from that edition are indicated by vertical
lines to the left of the changes. The 1.6 edition remains
applicable and current for CICS/VS 1.6 users, and can now be
ordered by using the temporary order number ST00-1070.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM_ System/370, 30xx, and 4300
Processors Bibliography, GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the addresses given below.

Requests for IBM publications should be made to your IBM
;eprfgzntative or to the IBM branch office serving your
ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed either to:

International Business Machines Corporation, Department 6R1H,
180 Kost Road, Mechanicsburg, PA 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
gséi ssﬁnt 095, Hursley Park, Winchester, Hampshire, England,

IBM may use or distribuﬁe whatever information vou supply in any
way it believes appropriate without incurring any obligation to
you.

This publication contains sample programs. Permission is hereby
granted to copy and store the sample programs into a data
processing machine and to use the stored copies for study and
instruction only. No permission is granted to use the sample
programs for any other purpose.

No other part of this publication may be reproduced in any form
or by any means, including storing in a data processing machine,
without permission in writing from IBM.

THE PUBLICATION OF THE INFORMATION CONTAINED HEREIN IS NOT
INTENDED TO AND DOES NOT CONVEY ANY RIGHTS OR LICENSES, EXPRESS
OR IMPLIED, UNDER ANY IBM PATENTS, COPYRIGHTS, TRADEMARKS, MASK
WORKS OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS.

© Copyright International Business Machines Cdrporation 1977,
1978, 1980, 1982, 1983, 1985, 1987

PREFACE

This publication describes the IBM
Customer Information Control
System/Virtual Storage (CICS/VS) macro
level application programming interface;
it contains introductory and reference
information necessary to prepare
assembler language, COBOL, and PL/1
application programs, using CICS macros,
to execute under either of two IBM
licensed programs: CICS/0S5/VS (57640-XX1)
or CICS/DOS/VS (5766-XX3).

The publication is intended primarily
for use by application programmers, but
will be useful also for system
programmers and system analysts.

A knowledge of the concepts and
terminology introduced in the Customer
Information Control Svystem/Virtual

Storage (CICS/VS) General Information
manual is required.

From CICS/VS Version 1 Release 6
onwards, enhancements to the CICS
licensed program for application program
use will, in general, only be provided
at the command level interface. This
interface is simpler and more usable
than the macro level interface and can
help increase application programmer
productivity and reduce coding errors.

However, for 1.7, the manual is issued
with the minimum number of changes to
make it usable by both CICS/05/VS and
CICS/D0S/VS users who have migrated to
1.7. The opportunity has also been
taken to correct errors and incorporate
readers' comments.

This publication consists of eight
parts, the first seven comprising one or
more chapters and the eighth containing
appendixes. Each of the first seven
parts (except Part 1) contains
information on a particular topic, both
procedural and reference. In general,
each chapter consists of the following:

] A brief introduction to the
facilities available by specifying
the macros that are described in
detail in the remainder of the
chapter. '

. The syntax of each macro in the
ftg?dard form (described in Chapter

. The operands, in alphabetical order,
that can be specified with the
macros.

Where appropriate, examples in the three
programming languages (assembler
language, COBOL, and PL/I) that can be
used with CICS have been included.

Part 1 is an introduction to macro level
application programming. It compares
the CICS DB/DC system with the
conventional batch system of data
processing. It also describes the
general format of a CICS macro and
explains the syntax notation used
throughout the publication.

Part 2 describes symbolic storage
definition. This, together with
addressability, must be specified in the
application program to enable the
application program to be executed under
CICS. The preparation of an application
program for execution is described in
the appropriate CICS Installation and
Operations Guide.

Part 3 describes files and data bases:
file control (including browsing) and
DL/1 services.

Part 4 describes data communication
operations: terminal control, basic
mapping support (BMS), and batch data
interchange., You should refer to the
appropriate CICS Application
Programmer's Reference Manual
level) for descriptions of the
additional BMS attributes that are new
for this release.

Command

Part 5 describes control operations:
interval control, task control, program
control, storage control, transient data
control, and temporary storage control.

Part 6 describes built-in functions:
table search, phonetic conversion, data
field verification, data field edit, bit
manipulation, input formatting, and
weighted retrieval.

Part 7 describes error handling and
debugging, trace services, dump
services, journal services, and
recovery/restart services.

Part 8 consists of appendixes. These
include sample programs, BMS examples,
fields that make up the application
programming interface, and translate
tables.

Experience in writing programs in
assembler language, COBOL, or in PL/I is
assumed. (Note: in some places in the
publication, ASM is used as the
abbreviation for assembler language.)

In this publication, the term VTAM
refers to the record interface of
ACF/TCAM (CICS/05/VS only), and to
AC§/¥TAM and ACF/VTAME (CICS/D0OS/VS
only).

Preface iii

The term TCAM refers both to TCAM and to
the DCB Interface of ACF/TCAM.

The term BTAM refers to BTAM (CICS/0S/VS
only) and to BTAM-ES (CICS/D0S/VS onlyl.

The term DAM refers to BDAM (CICS/0S/VS
only) and to DAM (CICS/D0OS/VS only).

For more information about CICS and
related subjects discussed in this

publication, the reader is referred to
the publications listed in the
b1b11ographv, part:cularly to the
appropriate Facilities and Planning
Guide, which provides a good overall
description of CICS.

Details of system requirements and a
glossary of terms applicable to CICS are

provided in the CICS/VS General
Information

manual.

iv CICS/VS Application Programmer's Reference Manual (Macro Level)

Part 1. Introduction e o o o o

Chapter 1.1. Macro-Level Application
Programming e o o o o o o o o o

Chapter 1.2. Macro Format and Syntax
Notat i°n * L] * L] [3 * L] * L] L] L] L]
Syntax Notation e s e e e e e

Chapter 1.3. Programming Techniques
and Restrictions e e o o o o o
Application Program Packaging
Quasi-Reenterability . o
Storage Definition . .

Program Initialization
Restrictions . e

.

.
.
.
.
.
.
.

ASM
COBOL L
PL/T .

Link- Ed1t1ng
Object Program Size
Entry Point Address .
BMS Map Size
Assembly-Time Serv;ce (DFHCOV R

e o o o & o o o o
e o o o o o o o o o o
e o & o 8 o o o o e o o

E

Macro) . . .
Testing Responses to Macros . .
Part 2. Storage Definition o
Chapter 2.1. Introduction to

Storage Definition « o o o o o
CICS Storage Areas . . e e

Copying Symbolic Storage
Definitions e e e e e e e

Addressability .

Chaining of CICS Storage Areas

Required Storage Areas o e e
Common System Area (CSA) o e o e

Common Work Area (CWA) o e e
Task Control Area (TCA) . e e

Transaction Work Area (THWA)

Chapter 2.2. Storage Definition -

Assembler Language e o o o o o
Storage Defined During
Initialization . . o e e

Common System Area (CSA) . . e
Terminal Control Table Terminal
Entry (TCTTE) . . .
Storage Defined DBuring Execut:on
Task Control Area (TCA)
Terminal Input/Output Area (TIOA)
File Input/Output Area (FIDA)
File Work Area (FWA) e e+ e e .
VSAM Work Area (VSHA) .
Transient Data Input Area (TDIA)
Transient Data Output Area (TDOA)
Temporary Storage Input/Output
Area (TSIOA) . .
Storage Accounting Area (SAA)
Journal Control Area (JCA) . .
Example of CICS Assembler Language
Application Program e e e e e

Chapter 2.3. Storage Definition -
COBOL - . * . L] . L] * L] L] .
Storage Defined Dur1ng
Initialization e e e e e e e

30

31
31

31
32
32

32

35
35

Common System Area (CSA) o .
Terminal Control Table Terminal
Entry (TCTTE)
Storage Defined During Execut;on
Task Control Area (TCA)
Terminal Input/Output Area (TIOA)
File Input/Output Area (FIOA)
File Work Area (FWA) e e e e
VSAM Work Area (VSHA)
Transient Data Input Area (TDIA)
Transient Data‘Output Area (TDOA)
Temporary Storage Input/Output
Area (TSIOA) . .
Storage Accounting Area (SAA)
Journal Control Area (JCA) . .
Additional Guidelines
Example of CICS COBOL Appl:catlon

Program e e e e e e e e e e e
cggpger 2.4, Storage Definition -
/ [L > L] L] L] L] L] [2 L] * * .
Storage Defined During
Initialization e e e e
Common System Area (CSA) . e .
Terminal Control Table Terminal
Entry (TCTTE) e e e e e .

Storage Defined During Executlon
Task Control Area (TCA) .
Terminal Input/Output Area (TIDA)
File Input/Output Area (FIOA)
File Work Area (FKWA) e e e e e
VSAM Work Area (VSHA) .
Transient Data Input Area (TDIA)
Transient Data Output Area (TDOA)
Temporary Storage Input/Output

Area (TSIOA) .
Storage Accounting Area (SAA)

Journal Control Area (JCA) . .
Example of CICS PL/I Application
Program e st e e e e e e e e
Part 3. Files and Data Bases .
Chapter 3.1. Introduction to Files
and Data Bases o o o o o o & o
File Control Macro e e e e e e
DL/1 Services e e 4 e e e a4 e
Chapter 3.2. File Control (DFHFC
Macpo) *® L] L] *
Exclusive Control Deadlocks .
Browsing . o e e e e e e

Alternate Index:ng . o
Record Identification FJeld .
DAM Data Sets .
Pirect Retrieval (TYPE GET)
Direct Retrieval (Read-Only)
Direct Retrieval (VSAM Locate
Mode) N .
Direct Retrleval (for Update)
Direct Addition or Update

(TYPE=PUT) e e e e e e e e
Direct Delet1on, VSAM Only
(TYPE=DELETE) . . e e e e
Obtain a File Work Area
(TYPE=GETAREA) . . .
Release Storage/Exclus1ve Control
(TYPE=RELEASE) e e v e e e e e

Contents v

Initiate Browse (TYPE=SETL) . .
Forward Browse (TYPE=GETNEXT)
Backward Browse, VSAM and Assembler
Language Only (TYPE=GETPREV) .
Terminate Browse (TYPE=ESETL) .
Reset Browse (TYPE=RESETL) . . .
Test Response to a Request for File
Services (TYPE=CHECK) e v e e
File Control Response Codes . .
Operands of DFHFC Macro e e e .

Chapter 3.3. DL/I Services . . .
Obtaining Addresses of Program
Communication Blocks .
DFHFC Macro (CICS/OS/VS Only)
DL/I Call Statement (CICS/DOS/VS
or CICS/0S/VS) .
Building Segment Search Arguments
Acquiring an I70 Work Area o« e
Requesting DL/I Services
DFHFC Macro (CICS/0S/VS) .
DL/I Call Statement (CICS/OS/VS
or CICS/D0S/VS) .
Releasing a PSB in the CICS’
Application Program .
DFHFC Macro (CICS/OS/VS Only)
DL/I Call Statement (CICS/D0OS/VS
or CICS/0S/VS) C e e e e e
DL/I Services Response Codes . .
Test Response to a DL/I Request
(TYPE=CHECK)
DL/I Requests in an Assembler
Language Program (CICS/0S/VS) .
DL/I Requests in a COBOL Program
(CICS/7057VS) . .
DL/I Requests in a PL/I Program
(CIC5/057VS)
Operands of DFHFC Macro (DL/I)

Part 4. Data Communication

Operations e o e o o o s o o o
Chapter 4.1. Intreduction to Data
Communication Operations o o o

Chapter 4.2. Terminal Control
(DFHTC Macrol .« o . .
Facilities for All Termlnals and
Logical Units N
Read Data from a Term1nal or LU
Write Data to a Terminal or LU
Write Data and Read Reply
Synchronize Terminal I/0 (NAIT)
Converse with a Terminal or LU
Disconnect a Switched Line .
Examples . . e
Facilities for Loglcal Unlts .
Send/Receive Mnde
Overlapping Logical Unlt Output

Chaining of Input Data . . e
Chaining of Output Data . .
Chain Assembly .

Logical Record Presentatlon
Definite Response
Function Management Header (FMH

e ° o o s Ne o o s e

Inbound FMH e e e e e .
Outbound FMH . e e e
End of Data Set (EODS) . o e
Logical Device Code (LDC) .
Unsolicited Input e 0 .
Signal Commands from Logzcal
Units e e e e e e e
Bracket Protocol e e e e e e

Peb bt et et et o et ot ok ot i ot o ot ot [t
Pk o ot ot ot o ot ot et ot ek fd ot ot ot ©
D DN NANANNNNN==~OOOW

Terminal-Oriented Task
Identification o . e

Syntax of the DFHTC Macro .« e
TCAM Supported Terminals and

.

Logical Units (CICS/0S/VS Only)

BTAM Programmable Devices .

Teletypewriter Programm1ng
Message Format . .
Message Length .

Connection Through VTAM

System/3 e s e e e e e e
System/370 C s e e e e
System/7 . . e e

2260 Display Statlon . .
2265 Display Station . e
2760 Communication Terminal
2761 Communication Terminal
Read Attention
Write Break (CICS/OS/VS Only)
2770 Data Communication System
2780 Data Transmission Terminal
2980 General Banking Terminal
Passbook Control . « e
Segmented Writes Control . .
Data Handling
Example of Applxcat1on Program
for the 2980 . .
3270 Information Dlsplay System
(BTAM and TCAM) e e e e e e
3270 Logical Unit . PR
3270 LUTYPEZ2 Logical Un1t
3270 LUTYPE3 Logical Unit
3270 SCSPRT Logical Unit
3600 Finance Communication
(BTAM) e e e e e e e .
Input e e e e e e
Output . e e e e
Resend Message .
3600 (3601) Logical Un1t . .
3600 Pipeline Logical Unit . .
3600 (3614) Logical Unit .
3630 Plant Communication System
3650 Host Command Processor
Logical Unit
3650 Host Conversatlonal (3270)

e o 8 o o
e o 9 o o o e o
e ¢ & o o o o e ° e s @

. .
. . .
.
.

e s e e e e

Logical Unit . e e e e
Output Device Control . e e
The Erase Function e e e e e

3650 Pipeline Logical Unit

3650 Host Conversational (3653)
Logical Unit .
3650 Interpreter Log1cal Un:t

3660 Supermarket Scanning System

(BTAM) . . e
3735 Programmable Buffered
Terminal e e e e 4 e e o &

Autoanswer .

Autocall and T1me-In1t1ated
3740 Data Entry System e e e e

Batch Mode Applications .« .
3767 Interactive Logical Unit
3770 Interactive Logical Unit
3770 Batch and Batch Data

Interchange Logical Unit .
3770 Full Function Logical Un1t

3780 Data Communications Terminal

3790 Inquiry Logical Unit .
3790 Full Function lLogical Unlt
3790 (SCS Printer) Logical Unit
3790 (3270-Display) and 3790
(3270-Printer) Logical Units
3790 Batch Data Interchange
Logical Unit . . e e e
7770 Audio Response Un1t e e e

vi CICS/VS Application Programmer's Reference Manual (Macro Level)

vstem

e o o o o o o o o o o

* o o ¢ o o o

" e e o

.

115
115

117
117
117
113
118
118
119
119
119
120
120
120
120
121
121
122
122
122
122
123
123

124

125
126

127
127

128
128
128
129
129
129
129
129

129

129
130
130
130

130
130

130

130
131
131
131
131
132
132

132
132
133
133
133
133

133

133
134

LUTYPE4 Logical Unit . .
Other CICS-Supported Term1nals .
TCAM Supported Logical Un:ts

(CICS/0S/VS Only) e e « e .
Operands of DFHTC Macro v v e s
Chapter 4.3. Basic Mapping Suppnrt
Advantages of BMS e e e e e e

Device Independence . . .

Format Independence
Facilities of BMS . . .
Data Mapping and Formattxng .
Terminal Paging e e e e e e e
Message Routing . .
Mapping Concepts and Techn:ques
Map Definition e e e e e
Input Mapping . e e e
Output Mapping « e e e
Input/Output Mapping .

. .
. . . - .
. .

o o o o @
e o o o o

Map Retrieval . . .
Copying Symbolic Descr:pti
Maps . . e e e e e s
Map Definition Macro
Defining a Map Set (DFHMSD
Macro) .
Defining a Map (DFHMDI Macro)
Defining a Field (DFHMDF Macro)
170 Operations Using BMS Macros
Implied READ/WRITE e o .
Addressing Input/0Output Areas
Non-Terminal-Oriented Tasks
Technique for Setting TCTTEDA
to Binary Zeros in PL/I . .

":""

DFHBMS Macros e e s e e
OQutput OPeratlons e e e e
Input Mapping without I/0
(TYPE=MAP)
Input Operations w1th Mapp1ng
(TYPE=IN) e e e .
Building Output Pages U51ng Maps
(TYPE=PAGEBLD) e e e e e e e
Map Positioning e e e e e e
The Screen Contents o o

The Trailer A .
JUSTIFY=FIRST and JUSTIFY LAST
The LINE Operand . .
The COLUMN and JUSTIFY

Operands . e e e
Page Bu1ld1ng Examples e e s
Handling Returned Pages . .

PAGEBLD Overflow Processing
Building Output Pages without
Using Maps (TYPE=TEXTBLD) .

Direct Output (TYPE=0UT) e e e e

Terminating a Logical Message
(TYPE=PAGEQUT) .« e e e e e e

Deleting a Logical Message
(TYPE=PURGE) . o 0 e

Message Routing (TYPE ROUTE) . .
Disposition and Message

Routing e e e e e
Status Flag Byte 1n
User-Supplied Route List .
Checking the Response to a BMS
Request (TYPE=CHECK) . . .« .
BMS Response Codes e e e e e e e
BMS Message Recovery o« v e e v s
Terminal Code Table . . .

Standard Attribute List and
Printer

Standard Attent:on Ident;f;er Lxst
(DFHAID) .

. -

134
134

135
135

143
143
143
143
144
144
144
145
146
147
147
148
149
149

149
150

150
156
161
166
166
167
167

167
167
168

168
168

169
170
170
170
170
171

171
171
172
173

175
175

177

177
1738

178
179
180
131
181
181
181

184

Programming Considerations for
Paging Commands on Display
Devices . . e e

Operands of the DFHBMS Macro . .

Chapter 4.4. Batch Data
Interchange (DFHDI Macro) .

Addition of Records to a Data Set
(TYPE=ADD) e e e

Deletion of Records from a Data

Set (TYPE=ERASE) .. .
Replacement of Records in a Data
Set (TYPE=REPLACE) e e e e e e
Interrogation of Data Set
(TYPE=QUERY) . . e . . .
Termination of 0perat1ons on a
Data Set (TYPE=END) e e e e e e

Abnormal Termination of Operations
on a Data Set (TYPE=ABORT) . .

Transmission of Data from Host to
Output Devices (TYPE=SEND) . .

Transmission of Data from Data Set
to Host (TYPE=RECEIVE) .« e e e

Obtaining the Relative Record
Number of Next Record (TYPE=NOTE)
Suspension of Execution of Task
(TYPE=KWAIT) . e

Testing Response to a Request for
Data Interchange Services
(TYPE=CHECK) e e e e e .

Batch Data Interchange Response
Codes . e e e e e
Operands of DFHDI Macro e e e

pPart 5.

Chapter 5.1. Introduction teo
Control Operations e o o o o o

Chapter 5.2. Interval Control
(nFHIc Mac"o ’ * * L] * * > * * *
Expiration Times .
Time-of-Day Updating (TYPE GETIME)
Delay Processing of a Task
(TYPE=WAIT) . .
Signal Expiration of a Spec1f1ed

Control Operations .« o

Time (TYPE=POST) PN
Initiate a Task w1thout Data
(TYPE=INITIATE) . . . e
Task Initiation with Data
(TYPE=PUT) . . e e e
Retrieve T1me-0rdered Data
(TYPE=GET) . 0 e e e e e

Cancel a Request for T:me Services
(TYPE=CANCEL) . e . . e
Cancel an Interval Control

POST Request . . e
Cancel an Interval Control
WAIT Request . N

Cancel an Interval Control
INITIATE or PUT Request . .
I/0 Error Retry (TYPE=RETRY) ..
Test Response to a Request for
Time Services (TYPE=CHECK) . .
Interval Control Response Codes
Operands of DFHIC Macro e e e s

Chapter 5.3. Task Control (DFHKC
Macro) e o o
Initiate a Task (TYPE ATTACH)
Change Priority of a Task
(TYPE=CHAP) . . .
Synchronize a Task (TYPE NAIT) .

Contents

186
185
199
199
199
199
200
200
200
200
200
201
201

201

201
202

205
207

209
209
210
210
211
212
213
214
215
216
216

216
216

216

216
218

221
221

224
2246

vii

Synchronize a Task with a
Single Event
Synchronize a Task wlth One of
a List of Events .
Relinquish Control to a Task
of Higher Priority
Enqueue Upon a Resource (TYPE ENQ)
Dequeue Upon a Resource (TYPE=DEQ)
Declare a Task to be Purgeable
(TYPE=PURGE) e e e e e e e e
Declare a Task to be Nonpurgeable
(TYPE=NOPURGE) . e e s s
Operands of DFHKC Macro o e e e

Chapter 5.4. Program Control
(DFHPC Macro) . L] L] [] L]
Pass Program Control Antmc;pat:ng
Return (TYPE=LINK) e e e e e e
Transfer Program Control
(TYPE=XCTL) . .« e e .
Load a Program (TYPE LOAD) . e .
Return Program Control

(TYPE=RETURN) . . e « e e e e
Delete a Loaded Program
(TYPE=DELETE) . e . .

Abnormally Terminate a Transact1on
(TYPE=ABEND) . e . . .
Activate or Cancel an Ex:t for
Abnormal Termination Processing
(TYPE=SETXIT) . . .
Reactivate an Exit for ABEND
Processing (TYPE=RESETXIT) . .
Convert Symbolic Label to Address
(TYPE=COBADDR) e e
Test Response to a Request for
Program Services (TYPE=CHECK) .
Program Control Response Codes .
Operands of DFHPC Macro e e e .

Chapter 5.5. Storage Control
(DFHSC Macro) . .

Obtain and In1t1alzze Ma1n Storage
(TYPE=GETMAIN) e e e e e e e

Release Main Storage
(TYPE=FREEMAIN) . . e e e e

Operands of DFHSC Macro e e e s

Chapter 5.6. Transient Data
control (DFHTD Macro) e o o
Dispose of Data (TYPE=PUT) . .
Acquire Queued Data (TYPE= GET) .
Force End of Volume on an
Extrapartition Data Set
(TYPE=FEOV) . . « e e e
Purge Intrapart:tlon Data
(TYPE=PURGE) . v e e .
Test Response to a Request for TD
Services (TYPE=CHECK) e e e e e
Transient Data Response Codes .
Operands of DFHTD Macro e e e e

Chapter 5.7. Temporary Storage
Ccontrol (DFHTS Macro) e o o o o
Store Temporary Data as a Single
Unit of Information (TYPE=PUT)
Store Data to a Temporary Storage
Message Set (TYPE=PUTQ) e e e e
Retrieve a Single Unit of
Temporary Data (TYPE=GET) e e e
Retrieve Data from a Temporary
Storage Message Set (TYPE=GETQ)
Release a Single Unit of Temporary
Data (TYPE=RELEASE) e e e e e e

viii

225
225
225
225
226
227
228
228
231
231

232
233

233
234
234

235
236
237
237
237
238
2641
241
262
243

245
246
247
248
249
249
249
250
251
252
253
253
254

255

Purge a Temporary Storage Message
Set (TYPE=PURGE)
Test Response to a Request for
Temporary Storage Services
(TYPE=CHECK) e e . .
Temporary Storage Response Codes
Operands of DFHTS Macro o e e e

Part 6. CICS Built-In Functions

Chapter 6.1. Introduction to CICS
Built-In Functions e o o o o o

Chapter 6.2. Storage Definition
;or Bgilt =In Functions (DFHBFTCA
acro L] * * L] L] * L] L] [3 L] L] *

Chapter 6.3, CICS Built-In
Functions (DFHBIF Macro) “ o o
Table Search Built-in Function
(TYPE=TSEARCH) e e e e e e
Returned Values
Example ~ Separate Tables
Example - Complex Table .
Phonetic Conversion Built-in
Function (TYPE=PHONETIC) . . .
Returned Value . .
Phonetic Conversion Subrout1ne
Field Verify Built-in Function
(TYPE=FVERIFY) e e e e e e .

e o o o

Returned Values e e e e s e
Example . . .
Field Edit Bu11t 1n Functxon
(TYPE=DEEDIT) e e e e e e e e .
Example: . . o o e e
Bit Man;pulat:on Buxlt-ln
Functions .

TYPE= BITSETON . .
TYPE=BITSETOFF . e
TYPE=BITFLIP « e
TYPE=BITEST e e
Returned Values
Input Formatting Built-
Functions e e e e .
Fixed Format . .
Positional Format
Keyword Format . .
Combination Input
Storage Definition
TYPE=DEFLDNM e e e e e
Required Delimiters

e« o o o o o
e ¢ o & o o
e ¢ o e e o
e o o o o o

o o s o o Hie o s o o
b=

« e o o o o
* ® o o s o * s »

® * o & o o & o s o »
® o o & o * & & e o+ o

TYPE=INFORMAT e e e .
Returned Values . . .
Examples . . .

Weighted Retr1eva1 Bu11t In
Function . .

Initiate Ne1ghted Retrleval
(TYPE=WTRETST) e e e e e e
Returned Values . . .
Establish Selection Crlterla

(TYPE=WTRTPARM) . v . . e .

Retrieve Selected Records
(TYPE=WTRETGET) e e e e e

Returned Values . . e e
Release Heighted Retrleval
Storage Areas (TYPE=WTRETREL)
Test Response to a Request for
Weighted Retrieval

(TYPE=WTRETCHK) PN e
WHeighted Retrieval Response
Codes e e e e e e e e e e e

Example e e e e s
Operands of DFHBIF Macro e e

CICS/VS Application Programmer's Reference Manual (Macro Level)

255

255
255
256

259

261

263

265

265
265
265
266

266
266
266

267
267
267

267
267

268
268
268
268
269
269

269
269
269
270
270
271
271
271
271
272
273

273

274
2746

275

275
275

276

276

276
277
278

Part 7. Error Handling and
Debugging e ¢ & o o o 8 o o o

Chapter 7.1. Introduction to Error

Handling and Debugging o o e

Chapter 7.2. Sequential Terminal
support L] L] [] L] L] - L] L] L3 * *

Chapter 7.3. Trace Control (DFHTR

Macro) e o o o o o o o o o o
Trace Table . e e e
Trace Ident1f1cat10n .
Controlling the Trace e e e .

Initiate Trace (TYPE=0N)
Terminate Trace (TYPE=OFF) .
Selected Entry Trace (TYPE= ENTRY)
Operands of DFHTR Macro .

Chapter 7.4. Dump Control (DFHDC
Macro} e o o o s o o e o o o

Dump Transaction Storage
(TYPE=TRANSACTION)

Dump CICS Storage (TYPE= CICS)

Dump Transaction Storage and CICS
Storage (TYPE=COMPLETE)

Dump Partial Storage
(TYPE=PARTIAL)

Operands of DFHDC Macro) : :
Chapter 7.5. Journal COntrol
(DFHJC Macro) . e . .

Acquire a Journal Control Area
(TYPE=GETJCA) .

Create a Journal Record and Nalt
for OQutput (TYPE=PUT)

Create a Journal Record
(TYPE=WRITE) .

Wait for OQutput of a Journal
Record (TYPE=HAIT)

.

289

291

293

295
295
296
296
297
297
297
297
299

299
300

300
301
302
305
306
307
308
312

Test Response to a Request for
Journal Services (TYPE=CHECK)

Journal Control Response Codes

Operands of DFHJC Macro

Chapter 7.6. Recovery/Restart
{Sync Point) Control (DFHSP
Macro) e o .

Specify a Synchronlzat1on Po1nt
(TYPE=USER) . e

Backout Recoverable Resources
(TYPE=ROLLBACK) (ASM Only)

Part 8. Appendixes e o o o o o

Appendix A. Example of a CICS
Application Program e o o o o o

Appendix B. BMS Map Definition
Examp le * L] L] * L] [) * °® L] . L] L]

Appendix C. Inter-Release
Compatibility e o e . o o e
Definition of the App11cat1on
Programmer Interface . .

CICS Macros

CICS Control Block Flelds and Area
Prefix Fields .

Appendix D. Translation Tables
for the 2980 ¢ o o 6 o o o s e

Bibliogpaphy * L] L * . L] . . * *

CICS Publications e e e e e
CICS/VS 1.7 e e e e e e e e
CICS/0S/VS 1.7 e e e e e

CICS/DOS/VS 1.7 .
Associated Publlcataons .
Availability of Publications .

Index e e & o o ° o ¢ @ o o o o

Contents

315
315
316

319
319
320
321

323

335

339

339
339

339

347

351
351
351
351
351
352
352

353

ix

EIGURES

LI

17.

OOoONOy D W

Conventional Batch Processing
Transaction Processing of CICS
CICS Processing of Multiple
Concurrent Transactions . .
CICS Transaction Flow .
Comparison of Batch and 0n11ne
Environments . .
Register Usage under CICS .
Summary of CICS Storage Areas
CICS System Sections . .
Symbolic Names and Base
Addresses of CICS Storage
Areas .

Chaining of CICS Storage Areas
Examples of Record
Identification (DAM Data Set)
CICS-DL/I Interface Response

Codes . e e
Terminal- 0r1ented Task
Identification . .

Summary of Programmable
Terminal Actions

DFHMSD Macro (Def1ne a Map
Set)

DFHMDI Macro (Def1ne a Map)
DFHMDF Macro (Define a Field)

wvidH NN

15

23

25
26

92
116
118
152

158
162

18.
19.
20.
21.
22,
23.
26.
25.
26.

27.
28.

29.
30.
31.

Map Positioning for More than
One Map . . e e e e e
Page Address Llst e e e e e
Overflow Processing by
gaglication Programs under
BMS Response Codes . .
How to Examine BMS Response
Codes . e « e e
Batch Data Interchange
Response Codes .
Interval Control Response
Codes . . .
Task Synchronlzat1on under
CICS e
Logical Relationship of
Application Programs .« e
ABEND Exit Processing . e
Selection of Records by
Weighted Retrieval o .
2980-1 Character
Set/Translate Table e e e e
2980-2 Character
Set/Translate Table . .
2980-6 Character
Set/Translate Table « e e e

173
174

176
182
183
202
217
223

232
236

275
347
348
349

Figures xi

SUMMARY OF AMENDMENTS

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE 7

This sixth edition (SC33-0079-5)
provides limited information about the
enhanced features introduced by Version
1 Release 7 for both CICS/0S/VS and
CICS/D0OS/VS. This edition also contains
maintenance and editorial updates.

SUMMARY OF AMENDMENTS FO
RELEASE CICS/0S/VS ONLY

The fifth edition (SC33-0079-4) provided
information about the enhanced features
introduced by CICS/0S/VS Version 1
Release 7, in the area of file control.
This edition also contained maintenance
and editorial updates.

VERSION

SUMMARY OF AMENDMENTS FOR VERSION 1

" RELEASE 6

The fourth edition (SC33-0079-3)
contained maintenance and editorial
updates only. The opportunity was taken
to change the format to double column, a
change that involved some reformatting.

Summary of Amendments xiii

Please use pressure-sensitive or other gummed tape to seal this form.

Questionnaire Application Programmer’s Reference Manual (ML)

(CICS/VS Version 1 Release 7)

To help us produce books that meet your needs, please fill in this questionnaire. It would help us if
you provide your name and address in case we need to clarify any of the points you raise. Please
understand that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

1. Please rate the book on the points shown below

The book is:
accurate 1 2 3 4 5 inaccurate
readable 1 2 3 4 5 unreadable
well laid out 1 2 3 4 5 badly laid out
well organized 1 2 3 4 5 badly organized
easy to understand 1 2 3 4 5 incomprehensible
adequately illustrated 1 2 3 4 5 inadequately illustrated
has enough examples 1 .2 3 4 5 has too few examples
And the book as a whole?
excellent 1 2 3 4 5 poor

2. When using this book, did you find what you were looking for?

What were you looking for?

What led you to this book?

Did you come straight to this book?

3. Which topics does the book handle well? 4. And which does it handle badly?

5. How could the book be improved?

6. How often do you use this book?

Less than once a month? L] Monthly? [J weekly? [paity? O

7. What sort of work do you use CICS for?

8. How long have you been using CICS? years/months

9. Have you any other comments to make?

Thank you for your time and effort. No postage stamp necessary if mailed in the USA. (Elsewhere,
an IBM office or representative will be happy to forward your comments or you may mail directly to
either address in the Edition Notice on the back of the title page.)

SC33-0079-5

Questionnaire

Fold and tape

Please Do Not Staple

Fold and tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Department 6R1H,
180 Kost Road,

Mechanicsburg, PA 17055, USA

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Please Do Not Staple

..

Fold and tape

...........

PA 1 NTRODUCTIO

Part 1. Introduction 1

Application
Data Sets

Figure 1.

)

Data
Base

g

Figure 2.

One
Application

Operating System

Conventional Batch Processing

Several
Applications

Operating System

TEaﬁsaction Processing of CICS

Card Reader
Input

Printer
Output

2 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 1.1. MACRO-LEVE

The IBM Customer Information Control
System/Virtual Storage (CICS/VS) is a
transaction-oriented data bases/data
communication (DB/DC) system. It can be
applied to most online IBM System/370
systems, since it offers terminal
facilities for many applications:
message switching, inquiry, data
collection, order entry, and
conversational and batched data entry.

CICS works with either the Operating
System/Virtual Storage (MVS) or with
VSE/Advanced Functions. It can be
thought of as an extension of the
operating system or as an interface
between the operating system and the
user's application programs. The system
is modular: at system generation or
initialization, an installation can
select the components it needs to tailor
a CICS system for a given application.

In conventional batch processing (see
Figure 1 on page 2), similar
transactions are grouped for processing,
and the application programmer plans a
series of runs to edit input
transactions, update data sets, or write
output reports. Because the programmer
concentrates on manipulating data for
most efficient handling of each
transaction type, the data in batch
processing becomes closely tied to the
program logic and has little value for
other applications.

A realtime DB/DC system differs from
batch processing primarily in the number
and types of activities taking place in
the system at the same time. A
batch-processing system schedules each
application independently and provides
data base support unique to each
application. A DB/DC system controls
many random nonscheduled transactions
for many applications and provides one
integrated data base supporting all the
applications on the system (see Figure 2
on page 2).

The CICS licensed program (either
CICS/05/VS or CICS/DOS/VS) performs many
functions essential to success in
realtime DB/DC systems. Its major
functions can be summarized as follows:

. Provision of rapid response to
simultaneously active online
terminals

. Control of a telecommunication
network of mixed devices

. Management of a wide mixture of
transactions being serviced by a
variety of application programs at
the same time

PPLICATION PROGRAMMING

| o Control of access to data files or

to a data base

L Managgment of system resources, such
as main storage, to keep the system
in continuous operation

. Assignment of priorities to optimize
use of the processor.

With these functions assumed by CICS,
application programmers can concentrate
on their particular applications.
Programming takes less time, debugging
is easier, and implementation time and
costs are reduced accordingly.

A key consideration in selecting a DB/DC
system is its adaptability to present
and future needs. CICS is a family of
systems that provides a DB/DC interface
to IBM System/370 at most levels of the
product line, offering a clear path for
growth or migration of an installation.

Figure 3 on page 4 indicates how CICS
supports the information needs of
multiple applications, independently and
concurrently.

Although application programmers need
not be concerned with details of CICS
structure or performance, they should
have a general understanding of how CICS
components interact to perform essential
processing steps. CICS consists of six
major components, explained in greater
detail in the appropriate CICS Diagnosis
Reference manual, as follows:

U System management

. System services

. System monitoring

. System reliability

. System support

. Application services.

Each of these components is divided into
functions which provide services to CICS
users. The components that most
directly affect the application
programmer are system management, system
monitoring, and system reliability. To
help the application programmer
understand some of the ways in which
CICS assists him, the system management
functions are summarized below.

. Terminal management - provides for
communication between terminals and
user-written application programs
through the terminal control

Chapter 1.1. Macro-Level Application Programming 3

User File Inquiry File Change Report Request

Device
Operating System &GN
cics
Apblication Program A Program B Program C
Programs rog g
cics File Management
Operating System s48
Fmmmm e ———— T ———— - = hl
| | |
I I } | 1 |
: Data : | Data | | Data I
Data Base Set] Set i | Set !
| A l I g | I ¢ i
| | | 1 i |
| | | | 1 |

Figure 3. CICS Processing of Multiple Concurrent Transactions

4 CICS/VS Application Programmer's Reference Manual (Macro Level)

PROGRAM DATA MESSAGE

TERMINAL LIBRARY SETS LOG
TERMINAL TASK PROGRAM USER STORAGE FILE JOURNAL
CONTROL CONTROL CONTROL PROGRAM CONTROL . CONTROL CONTROL

TRANSLATE MSG
INITIATE TASK —# VALIDATE
TRANSACTION
REQUEST
WORK STORAGE GET STORAGE
SCHED NEW TASK {e¢—
DISPATCH TASK
SELECT PGM
LOAD PGM
WAIT €— I
A BUILD DATA
b SET SEARCH
KEY |
REQUEST
INPUT AREA
GET STORAGE 4———]
[L READFILE
RECORD
WAIT < |
REQUEST J
TERMINAL AREA
 GET
STORAGE
BUILD TERMINAL
OUTPUT <~——~——————J
BUILD ACTIVITY
RECORD PUT ACTIVITY
{ RECORD TO
LoG |
WAIT -
o R
—_ =t — — — 4 — — — —|REQUEST = J
M TERMINAL WRITE
|] . RETURN
TERMINAT |
| TRANSACTION
[FREE
| TRANSACTION
STORAGE
TERMINATE N
| TASK <
|
v
SCHEDULE
WRITE

Figure 4. CICS Transaction Flow

Chapter 1.1. Macro-Level Application Programming 5

program. This function supports
automatic task initiation (ATI) to
process new transactions. The
testing of application programs is
accommodated by the simulation of
terminals by sequential devices such
as card readers, line printers, tape
units, or disk storage units.

File management - provides for the
addition, update, direct retrieval,
and selective retrieval (browsing)
of data on VSAM and BDAM data sets.
Additional capabilities provided
only for VSAM data sets include
record deletion, skip-sequential
processing, key-ordered mass
insertion, relative byte addressing,
search key high or equal, generic
key, and locate mode processing for
read-only requests.

Optional access to the DL/I facility
of the IBM Information Management
System/Virtual Storage (IMS/VS) is
provided under CICS/0S/VS. Such use
of DL/I requires installation of the
IBM licensed program IMS/VS Data
Base Systen.

Note: Users of CICS/DOS/VS can
interface with the IBM licensed
program DOS/VS DL/I through DOS/VS
DL/I CAlLLs, but CICS file control
macros cannot be used.

Transient data management - provides
for optional queuing of data in
transit between user-defined
destinations. This function

. facilitates message switching and
data collection.

Temporary storage management -
provides an optional general-purpose
"scratch pad®™ function intended for
video display paging, broadcasting,
data collection suspension,
conservation of main storage,
retention of control information,
and similar. Where multiple records
are used and random access to those
records is required, this function
also provides a queuing facility.

Storage management - provides
control of main storage allocated to
CICS. Storage acquisition,
disposition, initialization, and
request queuing are among the
services performed by this function.

Program management - provides a
multiprogramming capability through
dynamic program management while
offering a realtime program fetch
capability.

Time management - provides control
of various task functions (for
example, runaway task control, task
synchronization, and system stall

- detection) based on specified

intervals of time or the time of
day.

U Task management - provides dynamic
multitasking necessary for
effective, concurrent transaction
processing, such as priority
scheduling, transaction
synchronization, and control of
serially reusable resources. This
function controls activities within
the CICS partition or region and is
in addition to the multitasking or
multiprocessing capabilities of the
host operating system.

L Journal management - provides for
the creation and management of
special-purpose sequential data
sets, called journals, during
realtime execution of CICS.
Journals are intended for recording
(in chronological order) data that
the user may need in subsequent
reconstruction of data or events.
Examples of such data sets are an
audit trail, a change-file of data
base updates and additions, and a
record of system transaction
activity (often called a log).

. Sync point management - works in
conjunction with other CICS
functions such as transient data
management and file management, to
provide for an emergency restart of
CICS after abnormal termination.

The CICS transaction backout program
(DFHTBP) or a user-written

application program can make changes
to data base data sets or transient
data intrapartition queues for tasks
"in-flight" at time of failure based
on information recorded on a systenm
log during online execution of CICS.

CICS also provides dump management and
trace management, which are used in
program debugging. CICS basic mapping
support (BMS) facilitates information
display on a wide variety of terminals
and provides device independence,
terminal paging, and message routing. A
number of built-in functions are
available for use by application
programs. CICS also provides system
service programming to identify terminal
operators, to give control of the entire
system to a master terminal, to display
realtime system statistics, to intercept
abnormal conditions not handled directly
by the operating system, and to end
operation by collecting statistics,
closing data sets, and returning control
to the operating systenm.

To provide rapid response to terminal
users, CICS executes in a multitasking
mode of operation within its own
partition or region. Such multitasking
within a partition or region is
analogous to multiprogramming within the
total operating-system environment.
Generally, tasks are initiated as a

CICS/VS Application Programmer's Reference Manual (Macro Level)

result of transactions entered at The processing of a typical transaction

terminals. MWhenever a task is forced to is shown in Figure % on page 5. Some
wait for completion of an I/0 operation, general characteristics of application
availability of a resource, or some programs to be run under CICS and the
other cause, processing of another task use of other functions that it provides
within the system is initiated or are explained in subsequent parts of
continued. this publication.

Chapter 1.1. Macro-Level Application Programming 7

PTER 1.2. MACRO FOR D_SYNT. OTA

Application programs to be executed 1.
under CICS can be written at the macro

level in assembler language, COBOL, or

PL/I. Regardless of the language used,

it is strongly recommended that CICS is
allowed to perform all supervisory and 2.
data management services for

applications. Such services can be

invoked by using CICS macros. CICS

macros can also be used to request dump

and trace facilities when testing or
debugging an application progran.

Although an application program is not
precluded from direct communication with

the operating system, the results of

such action are unpredictable and

performance may be affected. Such 3.
action also has a limiting effect on
migration from CICS/DOS/VS to

CICS/057VS, a growth path that may

become highly advisable for the

CICS/D0S/VS user.

CICS macros are written in a format
similar to assembler language macros, as
follows:

Name Operands Comments
Blank DFHxxxxx

or
Symbol

Operation

One or more Program
operands comments
separated
by commas

The name field must not contain a label
if the macro is used in a COBOL or PL/I
program; however, if a label is desired
for the macro, it may be placed on the
line preceding the macro. For COBOL
programs, the first six positions may
contain a sequence number.

The operation field must begin before 5.
column 16 and must contain the
three-character combination "DFH" in the
first three positions of the operation

field. Up to five additional characters

can be appended to DFH to complete this
symbolic name for the appropriate

program or table. Since DFH is reserved

for CICS macros, no other line may begin

with this three-character combination. 6.

The operands field is used to specify
the services and options to be
performed.

Note that, throughout the remainder of 7.
the manual, the displays of syntax are
reduced to the essentials. The name and
comments fields are not always shown,

neither is the continuation character,

which if needed, must appear in column 8.

.

The following general rules apply to the
macros described in this manual:

Operands that are written in
uppercase letters (for example,
TYPE=INITIAL) are to be coded
exactly as shown.

Operands that are written as a
combination of uppercase and
lowercase letters separated by an
equal sign are to be coded with the
keyword on the left as it appears
and an appropriate substitution for
the general class of elements on the
right. For example, if the format
description contains
NORESP=symb-addr, the user may code
NORESP=NORMROUT.

Commas and parentheses are coded as
shown. However, the parentheses are
required only when more than one
operand is specified. For example,
the following coding is correct:

TYPE=READ
TYPE=(READ,HAIT)

The commas are used as separators,
but no comma should precede the
first operand entry or follow the
last one inside parentheses.
Similarly, no comma should follow
the last operand coded for a
particular macro.

Since a blank character indicates
the end of the operand field, the
operand field must not contain
blanks except after a comma on a
line to be continued or after the
last operand of the macro. The
first operand on a continuation line
must begin in column 16.

When a CICS macro is coded on more
than one line, each line containing
part of the macro (except the last
one) must contain a nonblank
character (for example, an asterisk)
in column 72 indicating that the
T@cro has been continued on the next
ine.

If a macro that has positional
operands is coded with an invalid
operand, the operand will be
ignored. An error message will not
be issued.

If a keyword is spelled incorrectly,
the operand may be treated as an
invalid positional operand as in
point 6

The rules for writing CICS macro
operands are the same as those for
assembler language macros.

Chapter 1.2. Macro Format and Syntax Notation 9

SYNTAX NOTATION

Throughout this manual, wherever a CICS
macro is presented, the symbols { }, |,
£ 1, and ... are used in defining the
instruction format. These symbols are
not part of the macro and are not coded
by the programmer. Their purpose is to
indicate how the macro may be written,
and they should be interpreted as
follows: .

1. Braces { } are used to delimit
parameters from which choices are
made. For example,

ARGTYP={KEY|RBA}

which indicates that the coding
ARGTYP= must be followed either by
gg: keyword KEY or by the keyword

2. The "or"™ symbol | indicates that a
choice is to be made. For example,

[, INTRVAL={numeric value|YES}]

means that either ™numeric value™ or
"YES™, but not both, can be
specified in the macro.

Square brackets [1 denote options.
Anything enclosed in square brackets
may or may not be coded, depending
on whether or not the associated
option is desired. For example,

MODE=[{MOVEILOCATE}]

If a default value is assumed by
CICS in the case of an omitted
operand, that default value is
indicated by underlining.

An ellipsis ... (three dots) denotes
that the immediately preceding unit
may appear one or more times in
succession in the macro.

10 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 1.3.

Application programs to be run under
CICS may be coded at the macro level in
assembler language, COBOL, or PL/I.
Writing a program to be run under CICS
is not significantly different from
writing a program to be run on any of
numerous computing systems. However,
the CICS user should be aware that CICS
is an online system and that programs
running under CICS operate in an online
environment. Some of the basic
differences between online systems and
the traditional batch processing
environment are summarized in Figure 5
on page 12.

Single threading is the execution of a
program to process inputs to completion,
sequentially. Processing of one input
is completed before another input is
acted upon.

In contrast, multithreading is the
capability of using various sections of
a single program concurrently. Under
CICS, for example, the first section of
an application program may be executing
to process one transaction. MHWhen that
section is completed (in general,
signaled by the execution of a CICS
macro that causes a wait), processing of
another transaction using a different
section of code in the same program may
ensue.

Just as there is not usually one clearly
superior, correct way to solve a
problem, so there is not usually one
correct way to write a program to
implement that solution. Nevertheless,
there are good and bad techniques of
programming under CICS. How much time
and thought should be given to
programming style when writing a
program? The answer depends largely on
the expected usage of the program. Hill
it be used once a day or once a vear?
When used, will it run for two minutes
or five hours? The frequency and length
of use are important factors to consider
when deciding how much time to spend on
programming techniques (that is, to
devising the optimum solution to a
problem).

Some of the basic characteristics of
application programs to be run under
CICS are summarized below. These
characteristics should be viewed as
essential to successful operation under
CICS (although some are not mandatory,
they are highly advisable).

1. Programs must be quasi-reenterable.
See "Quasi-Reenterability" on
page 146.

PROGRAMMING TECHNIQUES AND REST

10.

IONS

CICS macros (rather than programming
language statements such as GET,
PUT, READ, or WRITE) are included to
control the functions required in
application programs. (See "Chapter
1.2. Macro Format and Syntax
Notation™ on page 9.)

Input/output areas, temporary
storage areas, and work areas are
not included in an application
program. All or portions of these
areas are defined outside of
application programs. The
application programmer must work
with CICS system programmers in
defining these areas by means of
tables within CICS. (See "Storage
Definition” on page 14, and in Part

Files are not defined within
application programs. As in item 3,
the application programmer works
with CICS system programmers in
establishing these definitions.

(See the appropriate CICS Resource
Definition manuals and the
applicable operating system
publications.)

The application programmer must
establish addressability in his
program to CICS storage areas
accessed by his program.

Working storage should not be tied
up, for example, awaiting a reply
from a terminal user.

Programs should be as efficient as
possible, to work with CICS in
providing rapid response to
terminals.

Any feature, option, or statement
that will transfer control to the
operating system should not be used
in a CICS progranm.

Assembler language programmers
should be aware that the program
mask is undefined by CICS on entry
to a program. It is the user's
responsibility to set the program
mask for any module that requires a
specific value for the mask. CICS
does not preserve the mask value
across the interface to other called
programs, for example, when the
DFHPC TYPE=LINK or DFHPC TYPE=XCTL
macro is used.

Care must be taken if a program
involves lengthy calculations; since
an application program retains
control from one CICS macro to the
next, processing of other

Chapter 1.3. Programming Techniques and Restrictions 11

Batch Processing

Oonline Application

updated master files and

Input Generally sequential from cards,| Random, multiple, concurrent
tape, or a direct access but unrelated entries from
storage device (DASD); submitted| terminals; immediate edit
as groups of related data, and verification of each
edited, and verified entry

Processing Sequential, generally Random, multithreading, as
single—thread, with updating of one aspect of multitasking
sequential master files within a partition or region;

for inquiry or updating
purposes or both

Output Generally in the form of Messages to terminals updated

files, and system log of

printed reports

activities

Sequence of Start program

System is initialized then

operations Read transaction transactions are processed
Read master as they occur, with data
Process rather than program as driver

End of job Signaled by last transaction Generally, end of shift or day

Amount of
activity

Predictable, known before run

Not predictable, can
fluctuate widely

Master files/

Applications "own™ master files

Files accessible to multiple,

data sets on tape or DASD; placed online -authorized applications;
when required for run must be online; are on DASD
Response Varies widely; usually involves Measured in seconds;
time manual procedures generally occurs as message
to terminal
Figure 5. Comparison of Batch and Online Environments

transactions is completely excluded.
However, the DFHKC TYPE=CHAP macro
can be used to allow other
transaction processing to proceed,
refer to "Chapter 5.3. Task Control
(DFHKC Macro)" on page 221 for
details.

The general structure of a CICS
application program can be summarized as
follows:

. Storage definition statements

® Program initialization statements
. Processing statements

. Termination statements.

No attempt is made in this text to teach
‘the use of typical programming language
statements or general programming
techniques within assembler language,
COBOL, or PL/I. Documentation for these
languages should be consulted for such
information (see the Bibliography).

CICS operates in a virtual storage
environment. The key objective of
programming in this type of environment
is the reduction of page faults (those
cases in which a program refers to an

instruction or data that does not reside
in real storage). MWhen this occurs, the
page in virtual storage that contains
the referenced instruction or data must
be transferred (paged) into real
storage. The more paging required, the
lower the overall system performance.

The application programmer who writes
programs to be run in a virtual storage
environment should understand the
following concepts:

° Locality of reference - the
consistent reference, during the
execution of the application
program, to instructions and data
within a relatively small number of
pages (compared to the total number
of pages in a program) for
relatively long periods

. validity of reference - the
consistent reference to valid data.
This ensures that few storage
references retrieve useless data

e Working set - the number and
combination of pages of a program
needed for satisfactory performance
(low paging rate) during a given
period.

12 CICS/VS Application Programmer's Reference Manual (Macro Level)

In general, the application program
should use techniques to improve the
locality and validity of reference and
to minimize the size of the working set
at any time during execution of the
program, as follows:

1. To achieve locality of reference,
processing should be sequential for
both code and data, as far as
possible.

a. Initialize data as close as
possible to its first use.

b. Define new data items as close
as possible to the items that
use then.

¢. Define arrays or other data
structures in the order in which
they will be referred to; refer
to elements within structures in
the order in which they are
stored, for example, by row
Fft?er than by column when using

/1.

d. Separate error-handling or
unusual-situation routines from
the main section of a program;
they should be subprograms.

e. Subprograms that are short and
used only once or twice (other
than those in ™d"™ above) should
be coded inline in the calling
program.

2. To achieve validity of reference.
a. Avoid long searches for data.

b. Use data structures that can be
addressed directly, such as
arrays, rather than structures
that must be searched, such as
chains.

c. Avoid indirect addressing and
any methods that simulate
indirect addressing.

3. To reduce the size of the working
set, the amount of storage that a
program refers to in a given period
should be as low as possible.

a. MWrite modular programs and then
structure the modules according
to frequency and anticipated
time of reference.

b. Use separate subprograms
whenever the flow of your
program suggests that execution
will not be sequential.

When all page frames in a real storage
environment are filled and another page
must be loaded into storage, a page
replacement operation is required. The
operating system replaces first those
pages that have not been referred to for

the longest period of time. If a page
to be replaced has been modified, that
page must be paged out onto virtual
storage before the required page can be
read in. The more page-out operations
required, the lower the overall
performance of the system.

To avoid the necessity for page-out
operations, the application program
should be coded so that page-out
operations are not required when a page
containing a portion of the program must
be replaced in real storage. The
program need only avoid modifying
instructions or data within itself. A
program in which neither instructions
nor data are modified is said to be
reenterable. As noted earlier, programs
to be run in a CICS environment must be
quasi-reenterable. For performance
reasons, it may be wise to make them
truly reenterable progranms.

The application program should not
attempt to use overlays, that is, to
incorporate paging techniques. System
paging is automatic and generally more
efficient,.

PPLICATION PROGRAM PACKAGING

The design of an application program for
a virtual environment is similar to the
design of an application program in a
real environment. The system should
have all modules resident so that code
on unreferenced pages need not be paged
in. If the program is dynamic, the
entire program must be loaded across
adjacent pages before execution begins.
Dynamic programs can be purged from
storage if not in use and an unsatisfied
storage request exists. Allowing
suff1c1ent dynamic area to prevent
purging is less efficient than making
the programs resident since a dynamic
program will not share unused space on a
page with another program.

The reference pattern of the application
should touch the fewest concurrent pages
during its execution.

1. The main line execution should be as
straight a line as possible. The
ideal program executes sedquentially
with no branch logic referencing
beyond a small range of address
space.

2. Literals and subroutines should be
coded as close to their use
possible. This would 1nc1ude LTORG
statements at appropriate locations
in the program. Place constants
that are used only once near to the
place where they are used. Executed
instructions should be near the EX
instruction. Perform and GOTO
routines should be placed near the
caller.

Chapter 1.3. Programming Techniques and Restrictions 13

3. Avoid use of COBOL EXAMINE or
VARIABLE MOVE operations since these
expand into subroutine executions.

6. Do not alter anything within the
program module. An unchanged module
is reenterable and is not paged out.

5. Use the TWA for changeable data
during execution, that is counters,
" switches, parameter passing, basic
g:sg%ng support output area (use BMS

6. Do few or no user GETMAINs to
minimize the task's reference
pattern.

7. Avoid LINKs since it will cause a
GETMAIN for an RSA and will search
the PPT.

8. Try to keep the execution path
straight line by using XCTL.

9. If specifying data for a CICS
service request by explicitly
assigning a value to a CICS field
(for example, in the task control
area), assign the value immediately
prior to issuing the service
request, with no other service
requests intervening. Also,
reassign the value immediately
before issuing any subsequent
request that needs it.

SI-REENTERABILITY

Application programs must be coded so
that they are "serially reusable®
between entry and exit points of the
program. A serially reusable portion of
an application program is executed by
only one transaction at a time, and must
initialize and/or~ restore any
instructions or data that it alters
within itself during execution. (It is
recommended, however, that all
applications be truly reenterable to
minimize paging.) Entry and exit points
coincide with the use of CICS macros,
since an application program loses
control only upon execution of a CICS
macro.

This required quality of application
programs written to run under CICS is
called "quasi-reenterability,™ since the
programs need not meet System/370
specifications for true reenterability.
Quasi-reenterability allows a single
copy of a user-written application
program to be used to process several
transactions concurrently, thereby
reducing the number of copies of a
program that must be in main storage.

Intermediate. exits may be taken during
execution of an application program.
Such exits constitute a transfer of
control from the program. All switches,
data, and intermediate results needed

upon subsequent return to the program
must be retained in a unique storage
area such as the transaction work area
(TWA). The application programmer must
provide that unique intermediate storage
area by symbolically defining it in his
program (as described in Part 2).

A serially reusable application program
that has no intermediate exits also has
the quality of quasi-reenterability.

STORAGE DEFINITION

The macro library supplied with CICS
contains symbolic storage definitions of
CICS control areas, work areas, and I/0
areas. It is strongly recommended that
the application programmer use these
definitions rather than develop actual
or direct displacements in his progranm.
This protects the application program in
the event of any relocation of CICS.

The assembler language programmer
includes symbolic storage definitions in
his program by means of assembler
language COPY statements. For the PL/I
programmer, the macro library contains
numerous BASED structures, in the form
of dummy control sections (DSECTS), that
describe CICS control areas. These
DSECTs are available to the user through
the use of %XINCLUDE statements. The
COBOL programmer uses similar
definitions through COPY statements in
the linkage section of the data division
of his application program. These
definitions are discussed in Part 2.

PROGRAM INITIALIZATION

In the initialization section of the
application program, the assembler
language programmer must establish a
symbolic base address for his program,
because this is not done by CICS prior
to entry. In doing so, he identifies a
base register. R1l2 is reserved by CICS
for the address of the task control area
(TCA) for this task. R1l3 is reserved
for the address of the common system
area (CSA). Both these registers are
initialized by CICS prior to entry and
their contents must be preserved
throughout execution of the program.

For COBOL and PL/I, this preservation of
registers is done automatically by CICS.

R15 through R1l1l are available to the
user and their contents are preserved
when a CICS macro is executed; the
contents of R14 are destroyved whenever a
CICS macro is executed. The contents of
Rl are destroved if parameters are
specified on a DL/I call.

The different types of the DFHPC macro
that can be issued to transfer control
from or to an application program are
listed in the left-hand column of
Figure 6 on page 15. The status of all

14 CICS/VS Application Programmer's Reference Manual (Macro Level)

At program entry Registers
because of:
15, and 0-11 12 13 14
Initial Unknown TCA CSA User—program
Program Entry address
LINK Registers of program TCA CSA User—program
issuing the LINK address
XCTL Registers of program TCA CSA User—program
issuing the XCTL address
Following
execution of:
LOAD Unchanged TCA CSA Next sequential
instruction

RETURN (issued Unchanged (from TCA CSA Next sequential
by a linked-to point—of—-view of program instruction
program) issuing the LINK)

Figure 6. Register Usage under CICS

registers upon program entry or upon ACCEPT

return to a program is as shown in the DISPLAY

remaining columns. EXHIBIT

REPORT WRITER

Although Rl4 contains the program entry SEGMENTATION

address, it is not advisable to use Rl4 SORT

as the base register since it is used by TRACE

CICS to service requests for CICS UNSTRING

supervisory and data management
services.

ESTRICTION

There are language and other
restrictions that the application
programmer should be aware of when
writing programs to be run under CICS.

ASM

The use of CICS macros in an assembler
language application program precludes
the use of the assembler instruction COM
(define blank common control section).

COBOL

Note that VS COBOL II is not supported
at macro level.

The use of CICS macros in a COBOL
application program precludes the use of
the following:

1. The environment and data division
entries normally associated with
data management services.

2. The file section of the data
division.

3. The special features:

Any feature that requires an
opfrat1ng system GETMAIN (CICS/0S/VS
only).

The COBOL compiler options
(CICS57057VS only):

COUNT
DYNAM
ENDJOB
FLOW
STATE
SYMDMP
SYST
TEST

The COBOL compiler options
(CICS/DOS/VS only):

COUNT
FLOW
STATE
STXIT
SYMDMP

Any option that requires operating
system services.

The COBOL statements:

CLOSE
OPEN
READ
WRITE

Chapter 1.3. Programming Techniques and Restrictions 15

6. The QUOTE option, which signifies
that literals are to be delineated
by quotation marks (for example,
n76"), Because CICS macros generate
COBOL code using apostrophes to
delineate literals (for example,
'74'), the APOST option must be in
effect.

7. The OPTIMIZE option of DOS Full
COBOL Version 3 (5736-CB2)

SERVICE RELOAD statements must be coded
in programs compiled under the following
cogpilers when the OPTIMIZE option is
active: .

e 0S Full COBOL Version % (5736-CB2)
e 0S/VS COBOL Release 1 (5760-CBl1)
e DOS/VS COBOL (5746-CB1)

If the NOOPTIMIZE option is used,
SERVICE RELOAD can, but need not, be
used. Further details of SERVICE RELOCAD
appear in "Additional Guidelines"™ in
"Chapter 2.3. Storage Definition -
COBOL™ on page 35.

CICS macros should not be coded within a
COBOL statement, since each COBOL
statement generated by a CICS macro is
terminated by a period.

CICS macros generate COBOL statements
which use an apostrophe (') to delineate
literals. Code written by the
application programmer cannot utilize
quotes (") to delineate literals.

Duplicate names may not be used. This
requirement is a result of preprocessing
by the translator before COBOL
statements are generated.

Any COBOL program that is to run under
CICS must contain at least one CICS
macro (for example, DFHPC TYPE=RETURN)
for proper operation.

Floating-point operations can be used,
but CICS does not dump the contents of
floating-point registers, and
programmers should be aware that a
floating-point interrupt will cause the
task to be abnormally terminated.

Users of the 0S/VS COBOL Release 2
compiler must specify LANGLVL(1l), and
must not use the INSPECT or USE FOR
DEBUGGING statements. Note that all the
COBOL examples throughout this manual
have been written to language level 638
(specify LANGLVL{(1)).

The macro level interface will not
support a COBOL program with a TGT
larger than 64K. If a program generates
a TGT greater than 4K the command level
interface must be used.

PL/I

The use of CICS macros in a PL/1
application program precludes the use of
the following:

1. The PL/I multitasking built-in
functions:

COMPLETION
PRIORITY
STATUS

2. The PL/I multitasking options:

EVENT
PRIORITY
TASK

3. The PL/I statements:

CLOSE
DELAY
DELETE
DISPLAY
EXIT
FETCH
GET
HALT
LOCATE
OPEN
PUT
READ
RELEASE
REWRITE
STOP
UNLOCK
WRITE

4. PL/I Sort/merge.
5. PL/I error handling.

6. A declaration for a nonstring
element variable with the attributes
STATIC EXTERNAL but without the
INITIAL attribute. (This
declaration will generate a common
g%gg; that cannot be handled by

7. The PL/I compiler options:

FLOW
GONUMBER
GOSTMT
REPORT

Refer to the appropriate /1 i
Compiler Programmer's Guide for more
information on the applicable
restrictions.

An application program written in PL/1I
must consist of an external (MAIN)
procedure. Procedure CALLs (both
internal and external) are allowed in a
PL/1 program to be run under CICS.

Floating-point operations can be used,
but CICS does not dump the contents of
floating-point registers, and
programmers should be aware that a

116 CICS/VS Application Programmer's Reference Manual (Macro Level)

floating-point interrupt will cause the
task to be abnormally terminated.

Any CICS macro operand which defines a
name or label of a storage area or
routine should comply with the assembler
language restrictions of 8 characters or
less. This requirement is a result of
preprocessing by the assembler before
PL/1 statements are generated.

LINK-EDITING

Separate COBOL routines cannot be
link—-edited together. Neither can
separate PL/I routines. Assembler
language routines may be link-edited,
but routines invoked by CALL statements
must conform to CICS application program
requirements. Facilities comparable to
link-editing are provided under CICS
through DFHPC TYPE=LINK and DFHPC
TYPE=XCTL (transfer control) macros,
which can be used to set up
communication between programs. For
details of the job control required to
compile and link-edit application
programs refer to the appropriate CICS

Installation and Operations Guide.

OBJECT PROGRAM SIZE

The object module resulting from any
application program must not occupy more
than 526152 bytes of main storage.

ENTRY POINT ADDRESS

For all programs, the entry point
address must be less than 32768 bytes
from the load point.

BMS MAP SIZE

The load module of a BMS map that is
loaded dynamically using the DFHPC
;YZE=LOAD macro must not exceed 65520
vtes.

ASSEMBLY-TIME SERVICE (DFHCOVER MACRO)

In addition to knowing the
execution-time considerations discussed
in this chapter, the application
programmer should be aware of an
assembly-time (or compile-time) service
available under CICS: the DFHCOVER
macro. This macro specifies that the
assembler or compiler in use print a
cover page onh two consecutive pages,
which ensures that the application
program listing can be torn off with one
of the cover pages face up. Useful
information (program name, date, time of

assembly, remarks, and so on) may then
be written on the cover page.

The DFHCOVER macro requires no operands
and nothing else should appear on the
same coding line.

If the DFHCOVER macro is coded as part
of an assembler language application
program, it should be coded as the first
instruction in the program. If desired,
however, this macro may be coded after
anything that is not vital to the
listing (such as the TITLE line).

The first line of a PL/I source program
is printed as a header on each page of
the source listing. This means that
when the DFHCOVER macro is part of a
PL/1 application program, the first line
should be a comment containing
information that the application
programmer wants printed as a header.
The second line should contain the
DFHCOVER macro. The actual PL/I code
should begin with the third line.

Since column 1 is used by the DFHCOVER
macro for line and page spacing under
PL/I, column 1 must be defined as
reserved for control characters and
columns 2~72 must be defined as
available for data. For information
concerning PL/I compile-time services,
see the appropriate PL/I Optimizing
Compiler Programmer's Guide.

The example in Appendix A shows how the
DFHCOVER macro is used.

JESTING RESPONSES TO MACROS

As a result of issuing CICS macros,
certain error conditions may be raised.
A programmer can test for these
conditions in any of the following ways:

. Code the appropriate operands in the
macro being issued. Each macro
syntax display lists the operands
available.

) Code a DFHXX TYPE=CHECK macro
immediately following the particular
macro by which the service is
requested.

[Code instructions, following the
macro by which the service was
requested, that test the contents of
certain CICS control areas. The
relevant control areas and the
meaning of the returning bit
patterns are discussed in each
chapter that describes the services.

If the programmer does not check the
response to a request, program flow
continues with the next sequential
instruction.

Chapter 1.3. Programming Techniques and Restrictions 17

PART 2. STORAGE DEFINITION

Part 2. Storage Definition 19

CHAPT 1. INTRODUCTION TO STORAGE D

CICS provides symbolic storage
definitions in the form of dummy
sections (DSECTs) that describe the
layouts of a number of storage areas.
These storage definitions are contained
in the CICS libraries and can be copied
into application programs where, in
combination with user-defined layouts of
the user's sections of the storage.
areas, they provide symbolic addressing
(addressability) to the storage areas.

CICS STORAGE AREAS

The storage areas for which symbolic
storage definitions are provided consist
of control areas, for example the Common
System Area (CSA), work areas, for
example the File Work Area (FWA), and
input/output areas, for example the
Terminal Input/Output Area (TIODA). CICS
storage areas are summarized in Figure 7
on page 22. CICS system sections are
shown in Figure 8 on page 23.

Some of these storage areas are acquired
by CICS during system initialization,
others are acquired and released during
execution of the system. Some areas are
acquired by CICS; some by the
application program; and some by either
CICS or the application progranm.

All CICS storage areas, with the
exception of the journal control area
(JCA) and VSAM work areas (VSWAs),
consist of two sections. The first is
the system section, used primarily by
CICS; the second is the user section,
defined and used exclusively by the
application program. This division
exists whether the storage areas are
acquired during system initialization
(for example, the CSA) or acquired
during execution (for example, a TIOA)

You should consult the appropriate CICS
Data Areas manual (which is the
authoritative source) for the sizes of
these storage areas. These sizes differ
according to the release level of your
CICS system.

All CICS pointers (areas containing
addresses) are % bytes in length.

A storage accounting field comprising 8
bytes preceding and 8 bytes following
each storage area is built by CICS for
every storage area acquired for the

user. If this field is altered or
destroyed, CICS may be abnormally
terminated.

Chapter 2.1. Introduction to Storage Definition

NI

I

The common system area (CSA) and the
task control area (TCA) must be defined
in every application program; other
areas are defined as needed. It is the
user's responsibility to define the CSA
and TCA as well as other storage areas
required by the application program.

Identifiers such as CSA and TCA, used in
this manual, are also used in symbolic
names, or labels, within CICS modules
and must be used by the application
programmer to refer to the data that
they represent. Names of fields within
a storage area generally begin with the
characters of the label for that area.
For example, TCA stands for Task Control
Area, TCAFCAAA is a field in the TCA
that points to a Facility Control Area,
TCASCSA is a field in the TCA that
points to a Storage Control Storage
Area, and so on.

The letters A through G in Figure 7 on
page 22 denote the following:

A Assembler language only.

B The TCAFCAAA may also point to the
address of a DCT entry or to the
address of an automatic initiate
descriptor.

c COBOL equivalent:

01 DFHTCTTE COPY DFHTCTTE.
MOVE TCAFCAAA TO TCTTEAR.

PL/1 equivalent:
%ZINCLUDE DFHTCTTE;
EOB = End of block.

E TCAFCAA, TCATSDA, and TCATDAA: The
same location within the TCA is
used for these 3 pointers, only
:pe of which is current at any given
ime.

F TCASCSA may also point to an area to
be released by a DFHSC TYPE=FREEMAIN
macro.

G After a DFHPC TYPE=LOAD macro,
TCAPCLA points to the beginning
address of the loaded program.

Throughout Figure 7, the characters

"l Lbb" represent a G-byte field in which
the first 2 bytes define the length of
the area ("bb"™ represent 2 blank
characters).

21

CSA COPY DFHCSADS

System Section CWA Common Work Ares - User's ion
Pointers to CICS/VS Moduies and Tables, Save Areas, Allocated at sysgen.
Statistics, Constants, Parameters, Time of Day Default = 512, Maximum = 3584.
Initiatly binary zeros.
CSACDTA =y Exists for duration of CICS/VS.
{current task} Usable by multipte tasks for statistics, to pass data, etc,

{ { I CICS/VS-acquired
CA CSACBAR (REG. 13) @ CSAWABA d

TCACBA!;{REG, 12)

TCTTE COPY DFHTCTTE
f COPY DFHTCA L TCTTEAR, TCAFCAAA
System Section @ System Section 's Section —
Program Control Information, [Control Information TCTTEDA Size defined in TCT.
Task Priority, RSA Operator Id. Use comparable to CWA.,
Pointers, etc. Security Keys
L rerrean b oo CICS/VS-scquired
T'OA COPY DFHTIOA .
L TIOABAR, TCTTEDA
fum TCAFCAAA System ser's Section g
Terminal INPUt or OUTPUt Messages.
12 bytes Size defined in TCT, and obtained as needed by CICS/VS. Also obtainable
through DFHSC TYPE = GETMAIN, CLASS = TERMINAL (data length only).
t TIOABAR t TI0ADBA CICS/VS or user-acquired
F'OA COPY DFHFIOA
L FIOABAR, TCAFCAA
System Section User's Section
> 0S: 64 bytes + 16 if ISAM For file records. Size defined in FCT. Automatically acquited by FCP, as
DOS: 80 bytes required. All records lexcept VSAM) read into FIOA initially. Only one type
{inquiry, unblocked) processed here. Ail others moved to FWA.
CICS/VS- i
TCAFCAA @ i L__.FIOABAR L_..Flown L_.’ﬂ'_d_
FWA COPY DFHFWADS
L FWACBAR, TCAFCAA
System User's Section .
F Section For file records. Size defined in FCT, and acquired by FCP, as required, or through
16 bytes DFHFC TYPE = GETAREA. Records moved here from FIOA or VSAM buffer for
Inquiry, 8 2 L i Browse: Also, new records assembled here.
TCAPCLA @
t FWACBAR t FCUWA |CICSIVS or user-acquired
vswA COPY DFHVSWA
L VSWABAR, TCAFCAA
System Section for VSAM I/0
Automatically acquired by FCP as required, and passed to user only for locate mode operations.
Ci g ired
b swasan $_vswanea A _owacen CSIVS acauire
SAA COPY DFHSAADS
L SAACBAR, TCASCSA
System User’s Section
TCASCSA 4 Section User’s work area.
J 8 bytes Area acquired through DFHSC TYPE = GETMAIN, CLASS = USER (data length only).
O P cancean b saasaca [Useracauicsd |
F
TsloA COPY DFHTSIOA
L TSIOABAR, TCATSDA
System User’s Section
Section " Temporary storage 1/0 area.
catsoa (€) — 12bytes Automatically acquired by TSP on DFHTS TYPE = GET, or by user through
DFHSC TYPE = GETMAIN, CLASS = TEMPSTRG {data + 4 bytes for LLbb).
—v
inct LLbb
Ci
E:TSIOABAR L R CS/VS or user acquired
TDOA COPY DFHTDOA
L TDOABAR, TCATDAA
TCATDAA @ System User's Section
Section Intrapartition output only. V/L records only. User-specified area. May be obtained
12 bytes through DFHSC TYPE = GETMAIN, CLASS = TRANSDATA {data + 4 bytes for
LLbb).
PUT v
ingl LLbb
User-acquired
Etrooum t_ TDOADBA [Userscauied |
—f TWA - Transaction Work Area
User’s Section
Size defined in PCT COPY DFHTDIA
Defauit = 0. TD|A L TDIABAR, TCATDAA
System User's Section
Work area; Section Tntrapartition input only. V/L records only. Size = size of largest record in queue.
task duration only. GET 0S: 40 bytes Automaticaily acquired by TDP, as cequired.
DOS: 12 bytes
incl LLbb
CICS/VS- ired CICS/VS-acquired
LJ;W__ TDIABAR SR [resivscauires |

" TWACOBA

Figure 7. Summary of CICS Storage Areas

22 CICS/VS Application Programmer's Reference Manual (Macro lLevel)

TIOABAR T'OA Terminal Input/Output Ares (DFHTIOA)

.
X85’ iavre HALFWORD WORD HALFWORD BYTE | BYTE ME§SAGE’DATA I BYTE
}_TioasaL 4 Tioasca 4 vioatoL 4 4 } vioaoea__ © 7 '—v-JEOB
TIOALAC . -
TIOACLCR
TIOAWCH
TIOABAR — TIOA Base Address Register TIOASAL ~ TIOA Storage Accounting — area Length
TIOACLCR — TIOA Control write — Line or Copy Request {same as TIOALAC) ! TIOASCA — TIOA Storage Chain Address
TIOADBA - TIOA Dgu Begin Address TIOATDL — TIOA Terminal — message Data Length
TIOALAC - TIOA Line Address Control (same as TIOACLCR)) TIOAWCI — TIOA Write Controt indicator
FIOABAR FloA File Input/Output Ares (DFHFI0A)
X‘8F" I TWO WORDS l s WORD . WORD l . DATA
l L — .) " " & kcrioLra ° 7 & rcrioreT 7 4 FIOADBA
SR Alhedmahio I, e
storage accounting control information FCDSO1D
FIOABAR ~ Fite Input/Output Area Base Address Register FCFIOLRA — FCFIO Logical Record Address
FCFIOxxx ~ File Control File Input/Output xxx FIOADBA - File Input/Output Ares Data Begin Address (DOS)
FCFIOFCT — FCFIO File Contro! Table — entry address FCDSOID - File Control Data — area (OS variable)
FWACBAR
FWA i work ares (DFHEWADS)
x’srl TWO WORDS WORD WORD DATA
t ~ o)) UW,
storage accounting ares _'292“_&_____ FCUFCTA FCUWA
FWACBAR — File Work Area Control Base Address Register .
FCUFCTA — File Control Update File Control Table Address :gm‘;“‘ - :::: g::::: 3:2::: x::':':‘:":;:: begin sdress
VSWABAR
VSWA VSAM Work Area (DFHVSWA)
X'gF" | TWO WORDS l PR WORD I L, WORD | pata
~— S S~ 4
4 VSWAREA 4 VSWALEN
VSWABAR ~ VSAM Work Area Base Address Register
VSWAREA — VSAM Work Ares REcord Address
VSWALEN — VSAM Work Area Record LENgth
SAACBAR SAA Storage Accounting Area (DFHSAADS)
BYTE
X'8C’_| BYTE ' HALFWORD WORD J DATA
et
4 saasap 4
SAASAFI SAASACA
SAASACI
SAACBAR — SAA Control Base Address Register SAASAFI| — SAA Storage Accounting Format Identification
SAASACA ~ SAA Storage Accounting Chain Address SAASAD — SAA Storage Accounting Displacement {length)
SAASAC! — SAA Storage A ing Class identificati
TSIOABAR
TSIOA Temporary Storage Input/Qutput Area (DFHTSIQA)
| S DATA
X'8E" BYTE HALFWORD WORD HALFWORD l HALFWORD X P
4 7
4 tsioasa 4 Tsioasca TSIOAVAL 4 1510084
TSIOABAR — TSIOA Base Address Register TSIOASCA — TSIOA Storage Chain Address
TSIOADBA — TSIOA Data Begin Address TSIOAVRL — TSIOA Variable Record Length (LLbb}** ¢
TSIOASAL — TSIOA Storage Accounting — area Length
TDOABAR
TDOA Transient Data Output Area (DFHTDOA}
et DATA
X80’] BYTE HALFWORD WORD HALFWORD | HALFWORD . .
Cd 7
4 TooasaL 4 ToOASCA 4 To0AVRL b TDOADBA
TDOABAR — TDOA Base Address Register TDOASCA — TDOA Storage Chain Address
TDOADBA — TDOA Date Begin Address TDOAVRL — TDOA Variable Record Length (LLbb)**
TDOASAL ~ TDOA Storage Accounting — area Length ,
TDIABAR
TD'A Transient Data tnput Area (DFHTDIA)
v DATA
X'8D" |} BYTE HALFWORD WORD HALFWORD HALFWORD P
td 7
A TDIAsAL 4 Tpiasca 1 TDIAIRL 8 TD1ADBA
TDIABAR — TDIA Base Address Register TDIASAL — TDIA Storage Accounting — area Length
TDIADBA — TDIA Data Begin Address TDIASCA — TDIA Storage Chain Address
TDIAIRL -~ TDIA Intrapartition Record Length {LLbb)**
* Length is ‘jMeuage Data’’ only asn u_nqh im:lqdcs LLbb and dats unlm_
(does not include TIOATDL itself, or the EOB byte). STORCLS=TERMINAL in which case
** Length includes LLbb and data. length is length of data only.

Figure 8. CICS System Sections

Chapter 2.1. Introduction to Storage Definition

23

Copying Symbolic Storage Definitions

Depending on the programming language
used, a statement of one of the forms
shown below is required to copy a
symbolic storage definition into an
application program.

1. Assembler language COPY statement of
the form:

COPY name
2. COBOL COPY statement of the form:
01 name COPY name.

specified in the linkage section of
the data division.

3. PL/I preprocessor statement of the
form:

%ZINCLUDE library(member);
or
%INCLUDE member;

For example, assume that one or more
TI0OAs are to be acquired during program
execution. One of the statements below
must be included:

ASM: COPY DFHTIDA
COBOL: 01 DFHTIOA COPY DFHTIOA.
PL/I: ZINCLUDE DFHTIOA;

This statement copies the storage
definition as a description or map of
the storage area into the application
program, but does not acquire storage
for it. As pointed out above, sometimes
CICS acquires the area; in other cases,
the user acquires it.

Addressability

The storage definition that has been
copied into the application program must
be mapped over the storage area
acquired. This is done by moving the
address of the area (stored in a
particular location by CICS) into a base
locator for that area. Addressability
through this base locator is limited to
4096 (0 through 6095) bytes. Depending
on the programming language, a statement
of one of the following forms will
normally be used to establish
addressability to the area:

1. Assembler language statement of the
form:

L base-locator,
location-containing—-address

2. COBOL statement of the form:

MOVE location-containing-address
T0 base-locator.

3. PL/I based pointer assignment of the
form:

base-locator=
location~containing-address;

For example, assume that a TIOA has been
acquired during program execution.
TCASCSA is a G-byte field in the TCA
that contains the address of the storage
area that has been acquired. TIOABAR is
the TIOA base address register. One of
the statements below must be executed:

ASM: L TIOABAR, TCASCSA
COBOL: MOVE TCASCSA TO TIOABAR.
PL/I: TIOABAR=TCASCSA;

Figure 9 on page 25 contains the names
used in copying CICS-provided symbolic
storage definitions into an application
program and the names that represent
base addresses used in establishing
addressability. These symbolic names
are used in Figure 7 on page 22 and
Figure 8 on page 23, which show how the
areas are related and give a summary of
the contents of each area.

Chaining of CICS Storage Areas

Storage acquired by the application
program through CICS storage management
is controlled by chaining together all
storage associated with a task. This
chaining allows CICS to release all
storage associated with the task, either
upon request from the user or when the
task is terminated, normally or
abnormally.

The CSA, whose address is provided by
CICS, points to the TCA which in turn
points to the other storage areas
required by the task. The TCA is the
head of the chain of storage associated
with each task, except for TIOAs, which
are chained from the TCTTE. Figure 10
on page 26 illustrates the chaining of
CICS storage areas and indicates the
symbolic base address used to locate
each storage area.

Required Storage Areas

At least two storage area definitions,
namely, those for the CSA and the TCA,
are required in every application
program to be run under CICS. The
following sections describe these areas.
Services performed by CICS components
are mentioned as necessary. Some tables
that are basic to CICS operation are
also mentioned. These tables are
explained in greater detail in the
appropriate CICS Resource Definition
manual.

26 CICS/VS Application Programmer's Reference Manual (Macro Level)

Symbolic |Base Locator|General
Storage Area Name for or Purpose

Defined Base Address|Register

Storage Register - {Assignment
Common System Area (CSA) DFHCSADS CSACBAR 13
Task Control Area (TCA) DFHTCADS TCACBAR 12
Terminal Control Table Terminal Entry (TCTTE) DFHTCTTE | TCTTEAR x
Terminal Input/Output Area (TIOA) DFHTIOA TIOABAR x*
File Input/Output Area (FIODA) DFHFIOA FIOABAR %
File Work Area (FHWA) DFHFWADS FWACBAR *
VSAM Hork Area (VSHA) DFHVSHKA VSWABAR *
Storage Accounting Area (SAA) DFHSAADS SAACBAR 3
Temporary Storage Input/Output Area (TSIOA) DFHTSIOA TSIOABAR %*
Transient Data Qutput Area (TDOA) DFHTDOA TDOABAR %
Transient Data Input Area (TDIA) DFHTDIA TDIABAR %
Journal Control Area (JCA) DFHJCADS JCABAR *
¥ Any register except 12, 13, or 14 (which are used by CICS) or 0 (which cannot

be used as a base or index register)

Figure 9.

COMMON SYSTEM AREA (CSA)

The Common System Area (CSA) contains
areas and data required for the
operation of CICS. It can be extended
to include a user-defined common work
area (CWA) that can be referred to by
application programs.

Data in the CSA that is required for the
operation of CICS includes:

o CICS save areas

o Addresses of CICS management
programs

. Control system and user statistics
accumulators

. Addresses of CICS system control
tables

. Common system constants

. System control parameters.

Common Work Area (CWA)

The Common Work Area (CWA) is an area
within the CSA that can be used by
application programs for user data that
needs to be accessed by any task in the
system. This area is acquired during
system initialization and its size is
determined by the system programmer at
system generation. It is initially set
to binary zeros. Its contents can be
accessed and altered by any task during
CICS operation.

Addressability for the CWA is provided
when copying the CICS storage definition
for the CSA. However, addressability is

Symbolic Names and Base Addresses of CICS Storage Areas

limited to a combined total of 4096 (0
through 4095) bytes for the CSA and CWA.
Addressability for any portion of the
CHA extending beyond the 4096-byte limit
is the responsibility of the user.

Since the CHA is available to any task
while it has control of the system, it
is not advisable for an application
program to use this area for retention
of data when requesting CICS services;
instead, it would be better to use the
transaction work area (TWA) which has
been designed to be used by individual
tasks for their own purposes. The THA
is described later in the chapter.

JASK CONTROL_AREA (TCA)

The Task Control Area (TCA) is an area
of main storage acquired by CICS when a
task is initiated by the task control
program. Once acquired, the TCA exists
until the task is terminated.

contains the current status of the task,
its relative dispatching priority, and
parameters and information being passed
between CICS and the application
program. During execution of the task,
the user can change the priority through
task management services; further
processing of the task is scheduled
accordingly.

The TCA provides the following items for
its associated task:

. Register save areas

. Unique fields (parameter areas) for
communicating requests to CICS

U Address of the related facility
control area (FCA)

Chapter 2.1. Introduction to Storage Definition 25

CICS/VS ——P» CSACBAR |

‘L ‘ \ [> (TCACBAR)
POINTERSTOCICSIVS | | roncono (Task cl
MANAGEMENT CTrCAGEAR) \
COMMON MODULES \ N \
SYSTEM |] ivaska 2
L L] N
! TCAFCAAA FACILITIES FOR TASK C
s TASK TCAFCAAA
> CONTROL AREA, N FACILITIES FOR TASK B
OFHTCADS \\\\\
%%n“ou | ow %\\ Y TCTTEAR
AREA ¢ As \\\
— N
FACILITIES CONTROL
TERMINAL CONTROL
AREA ASSOCIATED TCAFCAAA TABLE TERMINAL
ADDRESS ENTRY
DFHTCTTE TCTTEDA TIOABAR
. ‘ DFHTIOA
<
| 12 BYTES [. l €08 I
~
STORAGE CONTROL
STORAGE ADDRESS TCASCSA \
(SAACBAR)
DFHSAADS
———
I 8 BYTES l . I
‘V
FWACBAR
r__._.l_—-_ﬁ
FILE CONTROL
AREA ADDRESS TCAFCAA \ | 16 BYTES l . R J
\s
FIOABAR
FHFIOA
L oruro
0S/VS 64 BYTES .
DOS/VS-80 BYTES A
—— ~
(158YTE FILLER DEFINED
BY USER FOR OS/VS ISAM
VSWABAR
l DFHVSWA
A
.
I “r—'J
EXTRAPARTITION GET
TDOABAR\‘
v DFHTDIA
. ———
TRANSIENT DATA INTRAPARTITION GET : :
AREA ADDRESS TCATDAA ggéﬁs‘-?za;\: $Ess .
N
N
PUT TOOABAR
* DFHTDOA
I:s BYTESP{ LLbb | =
» i A
TEMPORARY STORAGE
DATA AREA TCATSDA
< < :
12 BYTES
L — __i 8 BYTESHLLbb] » N
4

TRANSACTION WORK AREA

—e A e —

o —

Figure 10. Chaining of CICS Storage Areas

* THIS AREA IS DEFINED AFTER THE DFHxxxxx. THE PL/I AND COBOL
PROGRAMMER MUST COMPLETE THE BASED STRUCTURE (SYMBOLIC
STORAGE DEFINITIONS) BY WRITING DECLARATIONS WITH A LEVEL
NUMBER GREATER THAN 1. THE ASSEMBLER LANGUAGE
PROGRAMMER MUST WRITE DS STATEMENTS'

** TCAFCAA, TCATDAA, AND TCATSDA ARE OVERLAYED IN SAME STORAGE.

26 CICS/VS Application Programmer's Reference Manual (Macro Level)

L Task storage chain addresses.

The TCA makes no provision for residual
data such as statistics. However, the
TCA can be extended to include a
transaction work area (THA), the size of
which is determined by the user to meet
the needs of the transaction. (See
"Transaction HWork Area", below.)

The TCA consists of 3 parts:
. CICS system section
L Communication section

J Optional transaction work area
(THA).

The CICS system section contains
addresses and data needed by CICS to
control the task. Access to this
section is limited to CICS management
and service programs.

The communication section is used by
CICS and by user-written application
programs for communication between the
application program and CICS management
and service programs. CICS functions
sometimes overwrite some of the fields
in the communication section of the TCA.
The assignment of required fields in the
TCA for a particular CICS request must
therefore be done immediately prior to
issuing the request, with no other
requests intervening.

The optional transaction work area is
reserved for the exclusive use of the
application program.

In those cases in which a task is
initiated from a terminal (nearly always
the case), CICS places into the TCA the
address of the terminal control table
terminal entry (TCTTE) associated with

the terminal. The TCTTE, in turn,
contains the address of the TIODA.

Transaction Work Area (TWA)

The Transaction Work Area (THA) is an
extension of the TCA and is created at
the option of the user to provide a work
area for a given task. The TWA can be
used for the accumulation of data and
intermediate results during the
execution of the task. It can also be
used when the amount of working storage
for a task is relatively static, when
data must be passed between user-written
application programs, or when data must
be accessed by different programs during
transaction processing. During multiple
entries of data for a transaction, the
application programs might retain the
data in the TWA. This approach cannot
be used for multiple transactions; the
THA is released automatically at task
termination.

The size of the THA for the task must be
determined by the application designer
and must be specified in the PCT by the
system programmer at system generation.
The THA must be defined immediately
following the definition of the TCA in
the application program. The sizes of
THAs within the system vary according to
the needs of the transaction. The THA
is initially set to binary zeros. For a
discussion about establishing the THA,
see the explanation of the program
control table in the appropriate CICS

Resource Definition manual.

Addressability of the TWA is provided
when copying the CICS storage definition
for the TCA. However, addressability is
limited to a combined total of 4096 (0
through 4095) bytes for the TCA and THA.
Addressability for any portion of the
THA extending bevond the 6095-byte limit
is the responsibility of the user.

Chapter 2.1. Introduction to Storage Definition 27

CHAPTER 2. ORAGE DEFINITION -~

The assembler language programmer must
define storage for the CICS control
areas and any other storage areas
required for the processing of the
application program. This is done by
using the assembler language COPY
statement to (1) copy the appropriate
symbolic storage definitions into the
application program and (2) specify the
names of the storage areas being
defined. All registers are available,
except R12, R13, and R14 (which are used
by CICS).

All application programs must contain
statements to copy the symbolic storage
definitions for the CSA and the TCA. 1If
a terminal is to be used, the storage
definition of a TCTTE must be copied
also. The expansions of the CICS macros
used in an application program refer to
fields within these areas, so their
locations must be identified. HWhether
additional definitions must be copied
depends on the processing requirements
(storage areas and macros used) of the
application program.

STORAGE DEFINED DURING INITIALIZATION

During CICS initialization, the CSA is
allocated as part of the CICS nucleus.
For each terminal that is to be used, a
terminal control table terminal entry
(TCTTE) must be included in the TCT.

COMMON SYSTEM AREA (CSA)
The statement
COPY DFHCSADS

copies the symbolic storage definition
for the CSA and assigns R13 as its base
register.

If CICS is generated to include a CHA, a
symbolic definition for that area must
be included immediately following the
COPY DFHCSADS statement. In the
following example, a total of 16 bytes
of storage are defined by the three DS
statements. It is assumed that a CWA of
at least 16 bytes has been defined.

COPY DFHCSADS
BUCKET1 DS F
BUCKET2 DS F
TEMPNAME DS CL8

TERMINAL CONTROL TABLE TERMINAL ENTRY
(TCTTE)

The statement

SSEMBL ANGUAG

COPY DFHTCTTE

copies the symbolic storage definition
for the TCTTE. This definition can be
used to obtain the address of the
current TIOA (the current terminal
control table terminal entry data
address, or TCTTEDA) or to request a
terminal control service via the DFHTC
macro. An EQU statement must be
included to set up a base register for
the TCTTE, equating the label TCTTEAR to
a general-purpose register.
Addressability must also be established
for the TCTTE by loading the address at
TCAFCAAA into TCTTEAR. The following is
an example of the coding required:

TCTTEAR EQU 5
COPY DFHTCTTE

L TCTTEAR, TCAFCAAA

STORAGE DEFINED DU CUTIO

During execution of a task, the TCA,
TIOA, and other storage areas required
by the task are allocated by CICS
storage management upon request from
either the application program or CICS.
The application program must include
symbolic storage definitions for these
storage areas by using COPY statements
as described below.

TASK CONTROL AREA (TCA)
The statement
COPY DFHTCADS

copies the symbolic storage definition
for the communication section only of
the TCA and assigns R12 as the base
register for the whole of the TCA. If
the application program requires the use
of a TWA, DS statements for the TWA must
immediately follow the COPY statement.
The following is an example of the
coding required to symbolically define
storage for both the TCA and THA. 1In
the example, a total of 53 bytes of
storage are defined by the four DS
statements. It is assumed that a THA of
at least 53 bytes has been defined in
the PCT for the transaction.
COPY DFHTCADS

NAME DS CL20
STREET DS CcL20
CITY DS CL1O
STATE DS CL3

Chapter 2.2. Storage Definition - Assembler Language 29

TERMINAL INPUT/0OUTPUT AREA (TIOA)
The statement
COPY DFHTIOA

copies the symbolic storage definition
for the CICS system section of the TIOA.
This storage definition should precede
the user's definition of a terminal
input or output message. The user must
code an EQU statement to set up a base
register for the TIO0A, equating the
label TIOABAR to a general-purpose
register. Any action that requires a
TIOA can then be specified. For
example, a DFHSC TYPE=GETMAIN macro
requesting CICS storage control to
obtain dynamic storage for a TIOA for
the program can be specified, as
follows:

TIOABAR EQU 9
COPY DFHTIOA

NAME DS CL20
STREET DS CL20
DS CL5

DFHSC TYPE=GETMAIN,NUMBYTE=45
»CLASS=TERMINAL
L TIOABAR,TCASCSA

For additional information about
obtaining storage, see "Obtain and
Initialize Main Storage (TYPE=GETMAIN)"
in "Chapter 5.5. Storage Control (DFHSC
Macrol"™ on page 24l.

FILE INPUT/0UTPUT AREA (FIOA)
The statement
COPY DFHFIOA

copies the symbolic storage definition
for the CICS system section of the FIOA.
This storage definition should precede
the user's defined layout of an FIOA
when reading an unblocked record without
updating, or when reading DAM blocked
records without deblocking. If desired,
the user can identify that the area
returned in response to a user file
request is an FINDA, rather than an FHA
or VSWA, by testing label FIOAIND for a
mixed condition using mask FIOAM.

The user must code an EQU statement to
set up a base register for the FIOA,
equating the label FIOABAR to a
general-purpose register. The FIOA is
automatically acquired by CICS file
management whenever a request is made by
the user to access a data base data set.
For CICS/0S/VS only, if data is
retrieved using an existing ISAM
application in ISAM compatibility mode,
the FIOA must include a 1l6-byte filler
prior to the user's data definition.

The user must establish addressability
for an FIOA acquired in response to a

DFHFC macro before referring to the
FIOA. The following is an example of
the coding required; it includes the
optional test (TM and BM instructions)
for FIOA identification.

FIOABAR EQU 7

COPY DFHFIOA
NAME DS CL20
STREET DS CL5

L FIOABAR, TCAFCAA
™ FIOAIND, FIOAM
BM GOTFIOA

FILE WORK AREA (FWA)
The statement
COPY DFHFWADS

copies the symbolic storage definition
for the CICS system section of the FWA.
This storage definition should precede
the user's defined layout of a file
record area when reading or updating an
existing blocked record, when adding a
new record to a file, or when retrieving
records using the browse feature. If
desired, the user can identify that the
area returned in response to a user file
request is an FWA, rather than an FIGA
or VSWA, by testing label FWAIND for a
ones condition using mask FWAM,

The user must code an EQU statement to
set up a base register for the FHA,
equating the label FWACBAR to a
general-purpose register. The user must
also establish addressability for an FWA
acquired in response to a DFHFC macro
prior to any reference to the FWA. The
following is an example of the coding
required; it includes the optional test
(TM and BO instructions) for FHA
identification:

FWACBAR EQU 7

COPY DFHFWADS
NAME DS CL20
STREET DS CL30

ZIPCODE DS CL5

L FWACBAR, TCAFCAA
TM FWAIND, FWAM
BO GOTFWA

VSAM WORK AREA (VSWA)
The statement
COPY DFHVSKHA

copies the symbolic storage definition
for the CICS system section of the VSAM
work area (VSWA) and must be present in
all programs using locate mode 1/0. See
"Direct Retrieval (VSAM Locate Mode)™ in

30 CICS/VS Application Programmer's Reference Manual (Macro Level)

"Chapter 3.2. File Control (DFHFC
Macro)" on page 51. If desired, the
user can identify that the area returned
in response to a user file request is a
VSWA, rather than an FIOA or FWA, by
testing label VSWAID for a zero
condition using mask VSHWAM.

The user must code an EQU statement to
set up a base register for the VSHA,
equating the label VSWABAR to a
general-purpose register. After a VSHA
is acquired by CICS in response to a
DFHFC macro using locate mode 170, the
user must establish addressability for
the VSHWA prior to any reference to that
area. The following is an example of
the coding required; it includes the
optional test (TM and BZ instructions)
for VSWA identification:

VSWABAR EQU 7

COPY DFHVSHA

L VSWABAR, TCAFCAA
TM VSWAID,VSHAM
BZ GOTVSWA

TRANSIENT DATA INPUT AREA (TDIA)
The statement
COPY DFHTDIA

copies the symbolic storage definition
for the CICS system section of the
intrapartition TDIA. This storage
definition should precede the user's
defined layout of the message area used
for data obtained from an intrapartition
destination by means of a DFHTD TYPE=GET
macro. (See "Acquire Queued Data
(TYPE=GET)™ in "Chapter 5.6. Transient
Data Control (DFHTD Macro)" on

page 265.) The user must code an EQU
statement to set up a base register for
the TDIA, equating the label TDIABAR to
a general-purpose register. The user
must also establish addressability for
the TDIA following a DFHTD macro. The
following is an example of the coding
required:

TDIABAR EQU 9
COPY DFHTDIA

NAME DS CcL20
STREET DS CL20

L TDIABAR, TCATDAA

TRANSIENT DATA OUTPUT AREA (TDOA)
The statement
COPY DFHTDOA

copies the symbolic storage definition
for the CICS system section of the
intrapartition TDOA. This storage
definition should precede the user's
defined layout of the message area for
transient data to be directed to an
intrapartition or extrapartition
destination by means of a DFHTD TYPE=PUT
macro. (See "Dispose of Data
(TYPE=PUT)" in "Chapter 5.6. Transient
Data Control (DFHTD Macro)™ on

page 245.)

The user must code an EQU statement to
set up a base register for the TDOA,
equating the label TDOABAR to a
general-purpose register. The address
of the data to be output (including the
four-byte length field in the case of
variable-length records) must be given
to transient data control either through
the TDADDR operand of the DFHTD macro or
by placing it in TCATDAA. The following
is an example of the coding required:

TDOABAR EQU 9

COPY DFHTDOA
TIME DS CL4
DATE DS PL3
INTERM DS CL4
OUTTERM DS CLa

.

.

DFHSC TYPE=GETMAIN
»CLASS=TRANSDATA
»NUMBYTE=19
TDOABAR, TCASCSA

L
DFHTD TYPE=PUT, DESTID=POST
» TDADDR=TDOAVRL

TDOAVRL is a name associated with the
first byte of the output message (LLbb
for variable length records).

TEMPORARY STORAGE INPUT/OUTPUT AREA
{TSIOA)

The statement
COPY DFHTSIOA

copies the symbolic storage definition
for the CICS system section of the
TSIOA. This storage definition should
precede the user's defined data fields.
The user must code an EQU statement to
set up a base register for the TSIOA,
equating the label TSIOABAR to a
general-purpose register. The address
of the data, which always includes a
length field (LLbb) for temporary
storage must be given to temporary
storage control either through the
TSDADDR operand of the DFHTS macro or by
placing it in TCATSDA. The following is
an example of the coding required:

Chapter 2.2. Storage Definition - Assembler Language 31

TSIOABAR EQU 6

COPY DFHTSIOA
PAGENO DS PL2
TITLE DS CL30
LINEl DS CL70

DFHTS TYPE=GET
L TSIOABAR, TCATSDA
SH TSIOABAR,=H'8"

Upon execution of the DFHTS TYPE=GET
macro, CICS returns the address of the
data portion (LLbb field) of the
temporary storage record which is read
in TCATSDA. To establish addressability
to the TSIOA (that is, to use the
DFHTSIOA DSECT), the application progranm
must subtract eight from this address to
point to the storage accounting field of
the storage area acquired by CICS. If
the TSDADDR operand is included in the
DFHTS TYPE=GET macro, this is not
required.

STORAGE ACCOUNTING AREA (SAA)
The statement
COPY DFHSAADS

copies the symbolic storage definition
for the SAA. This storage definition
should precede the user's defined layout
of a unique work area that is used
within the application program. The
user must code an EQU statement to set
up a base register for the SAA, equating
the label SAACBAR to a general-purpose

register. The following is an example
of the coding required:

SAACBAR EQU 9

COPY DFHSAADS

SYMBLA EQU %

NAME DS CL50

STREET DS CL15

SYMBLB EQU %¥-SYMBLA

-

DFHSC TYPE=GETMAIN, INITIMG=00
»NUMBYTE=SYMBLB, CLASS=USER

.

L SAACBAR, TCASCSA

Having copied the symbolic storage
definition for the SAA, the application
program can specify a DFHSC TYPE=GETMAIN
macro requesting CICS storage control to
obtain main storage for use by the
program. The address returned by CICS
in TCASCSA should be moved to SAACBAR,
the base address register for the SAA.

JOURNAL CONTROL AREA (JCA)
The statement
COPY DFHJCADS

copies the symbolic storage definition
for the CICS system section of the
journal control area (JCA) and must be
present in all programs requesting
journal services. (See "Journal
Control™, "Chapter 7.5. Journal Control
(DFHJC Macro)" on page 305.) The user
must code an EQU statement to set up a
base register for the JCA, equating the
label JCABAR to a general-purpose
register. The following is an example
of the coding required:

JCABAR EQU 9
CoPY DFHJCADS

A JCA is acquired by means of a DFHJC
TYPE=GETJCA macro. Addressability to
the JCA is automatically provided
through the macro expansion, which loads
the JCA address into JCABAR.

-EXAMPLE _OF CICS ASSEMBLER LANGUAGE

APPLICATION PROGRAM

The following example is an assembler
language program written to run under
CICS. The program asks a question of
the terminal operator, receives a reply,
dynamically acquires some storage, and
sends the operator's message back to the
terminal. In effect, an echo test is
performed. (The line numbers refer to
the following notes.)

32 CIC3S/VS Application Programmer's Reference Manual (Macro Level)

BASEREG EQU
TCTTEAR EQU
TIOABAR EQU
COPY
COPY
LENGTH DS
MESSAGE DS
COPY
CoPY
MESSG DS
CSECT
BALR
ESING

L
MVC

MvC
DFHTC

L

MVC
MVC
DFHSC

ST
MVC
MVC
DFHTC
DFHPC
END

2
11
10
DFHCSADS
gFHTCADS

CL32
DFHTCTTE
DFHTIOA
CL32

BASEREG, 0

¥, BASEREG
TCTTEAR, TCAFCAAA
TIOABAR, TCTTEDA
MESSG, =C*ENTER
MSG TO BE ECHOED'
TIOATDL,=H'26"
TYPE=(WRITE,READ,
WAIT, ERASE)
TIOABAR,TCTTEDA
LENGTH, TIOATDL
MESSAGE, MESSG
TYPE=GETMAIN,
CLASS=TERMINAL,
NUMBYTE=32
TIOABAR, TCASCSA
TIOABAR, TCTTEDA
MESSG, MESSAGE
TIOATDL,LENGTH
TYPE=WRITE
TYPE=RETURN

Line
01
02-03

04-05
06-07

08-09

10
11-13

14
15
16
17
18

19

20-21

22-24
25

26
27
28
29
30
31

Description

Assigns base register for
program,

Assigns base register for

TCTTE and TIOA symbolic storage
definitions.

Copies CSA and TCA symbolic
storage definitions.

Defines fields in TWA as save
areas to provide for
quasi-reenterability.

Copies TCTTE and TIOA symbolic
storage definitions.

Defines message area in TIOA.
Begins program; establishes
addressability for program.
Establishes addressability for
TCTTE

Establishes addressability for
TIOA.

Moves message to output area of
TIOA.

Moves length of message to data
length field of TIOA.

CICS macro that writes message
to terminal, waits for
operator's reply, and reads
operator's reply.

Establishes addressability for
new TIOA, using address in
TCTTE.

Saves the message and the
length of the message in

the THA save area.

CICS macro that requests 32
bytes of terminal type storage.
Establishes addressability for
new TIOA (address of newly
acquired storage area is in
TCASCSA field of the TCA).
Places address of new TIOA in
TCTTE.

Moves the message from

TWA save area to new TIOA.
Moves the message length to
data length field of new TIOA.
CICS macro that writes message
to terminal.

CICS macro that returns control
to CICS and terminates this task.
Required for assembler language.

Chapter 2.2, Storage Definition - Assembler Language 33

CHAPTER 2.3. STORAGE DEFINITION = COBOL

The COBOL programmer must define storage
for the CICS control areas and any other
storage areas required for the
processing of the application program.
This is done by using (1) the COPY
statement in the linkage section of the
data division to copy the symbolic
storage definitions into the program and
specify the names of the storage areas
being defined, and (2) the MOVE
statement in the procedure division to
establish addressability by moving
symbolic storage addresses from one
location to another.

The working storage section of a COBOL
program should contain only data
constants. Variable data should be
placed in a TWA or in an area of storage
acquired by a DFHSC TYPE=GETMAIN macro.
(See "Obtain and Initialize Main Storage
(TYPE=GETMAIN)" in "Chapter 5.5. Storage
Control (DFHSC Macro)™ on page 241.)
Note that all COBOL examples in this
manual are written to language level 68
C(LANGLVL(1)).

The statement
01 DFHBLLDS COPY DFHBLLDS.

must be the first statement in the
linkage section of the data division of
a COBOL program that is run under CICS.
This statement copies the symbolic
storage definition for the linkage
section base locator (BLL), which
provides the means by which a COBOL
program can address dynamically acquired
CICS storage areas. Included in this
definition are the symbolic base
addresses for the common system area
(CSA), common system area optional
features list (CSAQOPFL), and task
control area (TCA). Symbolic storage
definitions for these areas must be
copied into every COBOL program.

If other CICS storage areas are needed,
the COPY statement for the BLL must be
followed immediately by statements of
the form:

02 name PIC S9(8) COMP.

where "name"™ is the symbolic base
address used to locate a specific
storage area. There must be one of
these statements for each additional
type of storage needed by the
application program. Furthermore, these
02-level statements must be coded in the
same order as the corresponding 0l-level
COPY statements coded subsequently to
copy the symbolic storage definitions
for the areas into the application
program.

If the user is going to communicate with
the system by means of a terminal, a
terminal input/output area (TIOA) and a
terminal control table terminal entry
(TCTTE) are needed. Assuming that only
the required control areas (CSA and
TCA), a TIOA, and a TCTTE are needed for
an application, the following example
shows the coding required in the linkage
section of the data division:

01 DFHBLLDS COPY DFHBLLDS.
02 TCTTEAR PIC S9(8) COMP.
02 TICABAR PIC S9(8) COMP.
01 DFHCSADS COPY DFHCSADS.
01 DFHTCADS COPY DFHTCADS.
01 DFHTCTTE COPY DFHTCTTE.
01 DFHTICA COPY DFHTIOA.

STORAGE DEFINED DURING INI ZATIO

During CICS initialization, the CSA is
allocated as part of the CICS nucleus.
For each terminal that is to be used,
TCTTE must be included in the TCT. The
COBOL programmer must provide symbolic
storage definitions for the CSA and
TCTTE (if needed) as follows.

COMMON SYSTEM AREA (CSA)
The statement
01 DFHCSADS COPY DFHCSADS.

copies the symbolic storage definition
for the CSA. Addressability for the CSA
is included.

If CICS is generated to include a CHA, a
symbolic definition of that area must be
included immediately following the COPY
statement in the linkage section of the
application program. The following is
an example of the coding required:

01 DFHCSADS COPY DFHCSADS.
02 CHA.
03 FIELD1 PIC X(4).

TERMINAL CONTROL TABLE TERMINAL ENTRY
(TCTTE)

The statement
01 DFHTCTTE COPY DFHTCTTE.

copies the symbolic storage definition
for the TCTTE and must be present in all
programs requesting communication with a
terminal. The user must code the
statement

Chapter 2.3. Storage Definition - COBOL 35

MOVE TCAFCAAA TO TCTTEAR.

in the appropriate place in the
procedure division to establish
addressability for the TCTTE. TCAFCAAA
contains the address of the facility
that initiated the transaction. TCTTEAR
is the terminal control table terminal
entry address register.

STORA DEFINED DURING EXECUTIO

During the execution of a task, the TCA,
the TIOA , and other storage areas
required by the task are allocated by
CICS storage management upon request
from either the application program or
CICS. Symbolic storage definitions for
these storage areas must be provided as
follows.

TASK CONTROL AREA (TCA)
The statement
01 DFHTCADS COPY DFHTCADS.
copies the symbolic storage definitions
for the CSA optional features list and
the TCA. The user must code the
statement
MOVE CSACDTA TO TCACBAR.
and can optionally code the statement
MOVE CSAOPFLA TO CSAOPBAR.

place in the
to establish

at the appropriate
procedure division
addressability for the TCA and the CSA
optional features list. CSACDTA
contains the address of the storage area
obtained for the TCA (the common system
area currently dispatched task address).
This address is stored in TCACBAR, the
TCA control base address register.

If the application program requires the
use of a TWA, the record layout of the
THA must be defined immediately
following the COPY statement in the
linkage section of the application
program. The following is an example of
the coding required:

01 DFHTCADS COPY DFHTCADS.
02 TWA PIC X(40).

TERMINAL INPUT/QUTPUT AREA (TIOA)
The statement
01 DFHTIOA.COPY DFHTIOA.
copies the symbolic storage definition

for the CICS system section of the TIOA
and must be present in all programs that

use terminal input records or that
provide output records to a terminal.
The following is an example of the
coding required to define the record(s)
in the TIOA:

01 DFHTIOA COPY DFHTIOA.
02 TRANSID PIC XXXX.
02 TIOAMSG PIC X(20).

The user must establish addressability
for the TIOA in the procedure division
by coding in the appropriate place
either the statement

MOVE TCTTEDA TO TIOABAR.
or the statement
MOVE TCASCSA TO TIOABAR.

The former statement is used to
establish addressability to a TIOA
acquired by CICS during execution for
data entered from a terminal. The
latter statement is used to establish
addressability for a new TICA acquired
by a DFHSC TYPE=GETMAIN macro and should
be coded immediately following that
macro.

FILE INPUT/0OUTPUT AREA (FIOA)
The statement
01 DFHFIOA COPY DFHFIOA.

copies the symbolic storage definition
for the CICS system section of the FIOA
and must be present in all progranms
requesting a read of an unblocked record
without updating, or a read of blocked
records without deblocking. If desired,
the user can identify that the area
returned in response to a file request
is an FIOA, rather than an FWA or VSHA,
by testing FIOAM. For CICS/05/VS only,
if data is retrieved using an existing
ISAM application in ISAM compatibility
mode, the FIOA must include a l6-byte
filler prior to the user's data
definition. The following is an example
of the coding required to define records
in the FIOA:

01 DFHFIOA COPY DFHFIOA.
02 KEYF PIC X(6).

02 NAME PIC X(20).
02 FIODAREC PIC X(74).

The user must code the statement
MOVE TCAFCAA TO FIOABAR.

prior to any reference to the FIOA
following a DFHFC macro in the procedure

36 CICS/VS Application Programmer's Reference Manual (Macro Level)

division to establish addressability for
the FIOA.

To identify the area returned as an
FIOﬁ, the following instruction can be
used:

IF FIOAM
THEN GO TO GOTFIOA.

FILE WORK AREA (FWA)
The statement
01 DFHFWADS COPY DFHFWADS.

copies the symbolic storage definition
for the CICS system section of the FWA
and must be present in all programs
performing file operations with the
exception of a "read without update™
from an unblocked data set. If desired,
the user can identify the area returned
in response to a file request as an FKA,
rather than an FIOA or VSWA, by testing
FWAM. The following is an example of
the coding required to define records in
the FKWA:

01 DFHFWADS COPY DFHFWADS.
02 KEYF PIC X(6).
02 NAME PIC X(20).
02 FWAREC PIC X(24).

The user must code the statement
MOVE TCAFCAA TO FWACBAR.

prior to any reference to the FHA

following a DFHFC macro in the procedure

gavigaxn to establish addressability for
e .

To identify the area returned as an FHWA,
the following instruction can be used:

IF FWAM
THEN GO TO GOTFHA.

VSAM WORK AREA (VSWA)
The statement
01 DFHVSWA COPY DFHVSHA.

copies the symbolic storage definition
for the CICS system section of the VSAM
work area and must be present in all
programs using VSAM locate mode 1I/0.
See "Direct Retrieval (VSAM Locate
Mode)' in "Chapter 3.2. File Control
(DFHFC Macro)"™ on page 51. If desired,
the user can identify that the area
returned in response to a file request
is a VSWA, rather than an FIOA or FHA,
by testing VSWHAM. The user must code
the statement.

MOVE TCAFCAA TO VSWABAR.

prior to any reference to the VSWA
acquired by CICS in response to a DFHFC
macro using locate mode 1/0.

To identify the area returned-as a VSHA,
the following instruction can be used:

IF VSHAM
THEN GO TO GOTVSHA.

TRANSIENT DATA INPUT AREA (TDIA)
The statement
01 DFHTDIA COPY DFHTDIA.

copies the symbolic storage definition
for the CICS system section of the
intrapartition TDIA and must be present
in all programs requiring a message area
for transient data obtained by issuing a
DFHTD TYPE=GET macro that refers to an
intrapartition destination. (See
YAcquire Queued Data (TYPE=GET)" in in
"Chapter 5.6. Transient Data Control
(DFHTD Macro)™ on page 245.) The
following is an example of the coding
required to define records in the TDIA:

01 DFHTDIA COPY DFHTDIA.
02 MESSAGE PIC X(25).

The user must code the statement
MOVE TCATDAA TO TDIABAR.

prior to any reference to the TDIA

following a DFHTD macro in the Procedure

2ﬁvi$%gx to establish addressability for
e .

TRANSIENT DATA OUTPUT AREA (TDOA)
The statement
01 DFHTDOA COPY DFHTDOA.

copies the symbolic storage definition
for the CICS system section of the
intrapartition TDOA and should be
present in all programs issuing a DFHTD
TYPE=PUT macro to provide transient data
as output. (See "Dispose of Data
(TYPE=PUT)"™ in "Chapter 5.6. Transient
Data Control (DFHTD Macro)™ on

page 245.) The following is an example
of the coding required to define records
in the TDOA:

01 DFHTDOA COPY DFHTDOA.
02 MESSAGE PIC X(20).

The user must code the statement

MOVE TCASCSA TO TDOABAR.
prior to any reference to the TDOA
following a DFHSC macro in the procedure

division to establish addressability for
the TDOA.

Chapter 2.3. Storage Definition - COBOL 37

TEMPORARY STORAGE INPUT/OUTPUT AREA
(TSIOA)

The statement
01 DFHTSIOA COPY DFHTSIOA.

copies the symbolic storage definition
for the CICS system section of the TSIOA
and should be present in all programs
using temporary storage. The following
is an example of the coding required to
define records in the TSIOA:

01 DFHTSIOA COPY DFHTSIOA.
02 DATA PIC X(10).

To establish addressability for the
TSIOA, the user must code the statements

MOVE TCATSDA TO TSIOABAR.
SUBTRACT & FROM TSIOABAR.

if the request is a GET or GETQ from
temporary storage and the TSDADDR
operand is not specified. The
subtraction of 8 bytes ensures that
TSIOABAR points to the storage
accounting field (that is, to the
beginning) of the storage area acquired
by CICS. The user must code the
statement

MOVE TCASCSA TO TSIOABAR.

if an I/0 area has been acquired during
execution. In the case of a PUT or
PUTQ, the symbolic address of the data
is located at TSIOAVRL. Either
statement must appear in the appropriate
place in the Procedure Division of the
COBOL program.

STORAGE ACCOUNTING AREA (SAA)
The statement
01 DFHSAADS COPY DFHSAADS.

copies the symbolic storage definition
for the SAA. This storage definition
should precede the definition of user
storage acquired through the DFHSC
TYPE=GETMAIN,CLASS=USER macro. The
following is an example of the coding
required to define records in the SAA:

01 DFHSAADS COPY DFHSAADS.
02 NAME PIC X(20).
02 SAAREC PIC X(10).

The user must code the statement
MOVE TCASCSA TO SAACBAR.

prior to any reference to the SAA

following a DFHSC macro in the Procedure

gﬁvigixn to establish addressability for
e .

JOURNAL CONTROL AREA (JCA)
The statement
01 DFHJCADS COPY DFHJCADS.

copies the symbolic storage definition
for the CICS system section of the
journal control area (JCA) and must be
present in all programs requesting
journal services. (See "Journal
Control™, "Chapter 7.5. Journal Control
(DFHJC Macro)"™ on page 305.)

A JCA is acquired by means of a DFHJC
TYPE=GETJCA macro. Addressability to
the JCA is provided automatically
through the macro expansion, which loads
the address of the area into JCABAR.

DDITIONAL GUIDELINES

If the object of an OCCURS DEPENDING ON
clause is defined in the linkage
section, special consideration is
required to ensure that the correct
value is used at all times. In the
following example, FIELD-COUNTER is
defined in the linkage section. The
MOVE FIELD-COUNTER TO FIELD-COUNTER
statement is needed to ensure that
unpredictable results do not occur when
referencing DATA.

LINKAGE SECTION.
01 DFHFWADS COPY DFSFWADS.

.

.

02 FIELD-COUNTER PIC 9(4) COMP.
02 FIELDS PIC X(5) OCCURS

1 TO 5 TIMES

DEPENDING ON FIELD-COUNTER.
02 DATA PIC X(20).

PROCEDURE DIVISION.

DFHFC TYPE=GET, etc.
MOVE TCAFCAA TO FWACBAR.
MOVE FIELD-COUNTER

TG FIELD-COUNTER.

MOVE DATA TO TWA-FIELD.

The MOVE statement referring to
FIELD-COUNTER causes COBOL to
reestablish the value it uses to compute
the current number of occurrences of
FIELDS and ensures that it can correctly
determine the displacement of DATA.

If an area greater than 6096 bytes is
defined in the linkage section, special
considerations arise. An additional
02-level statement under DFHBLLDS and an
ADD statement following the MOVE
statement to establish addressability to
the area are required for each

38 CICS/VS Application Programmer's Reference Manual (Macro Level)

additional 4096 bytes. For example, if
a file work area (FWA) exceeds %096
bytes, the following code can be used.

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

.

02 FWACBAR PIC S9(8) COMP
02 FWABR1 PIC S9(8) COMP

01 DFHFWADS COPY DFHFWADS.
02 FIELD1 PIC X(4000).
02 FIELD2 PIC X(1000).
02 FIELD3 PIC X(400).

PROCEDURE DIVISION.

DFHFC TYPE=GET,

MOVE TCAFCAA TO FWACBAR.
ADD 4096 TO FWACBAR GIVING FWABRI.

If the size of the COBOL working storage
is close to, or greater than 64K,
execution errors may occur.

If an application program is to be
compiled for execution under CICS/0S/VS
using the full COBOL V4 Compiler
(57364-CB2), the 0S/VS COBOL Compiler
(57640-CBl) with the optimization
feature, or the D0OS/VS COBOL Compiler
(5766-CBl) with the optimization
feature, a special translator control
statement must be inserted at
appropriate places within the program to
ensure addressability to a particular
area defined in the linkage section.
This control statement has the form:

SERVICE RELOAD fieldname.

where fieldname is the symbolic name of
a specific storage area, and is also
defined in an 0l-level statement in the
linkage section. The first four
statements of the Procedure Division
must be:

SERVICE RELOAD DFHBLLDS.
SERVICE RELOGAD DFHCSADS.
MOVE CSAOPFLA TO CSACPBAR.
SERVICE RELOAD CSAOPFL. .

Statements such as:

MOVE TCAFCAAA TO TCTTEAR.
SERVICE RELOAD DFHTCTTE.

or

SUBTRACT 8 FROM TCASCSA
GIVING TSIOABAR.
SERVICE RELOAD DFHTSIOA.

can be used to establish addressability
for a particular storage area. (Note
that the SERVICE RELOAD statement must
be used following each statement which
modifies addressability to an area
defined in the linkage section, that is,
whenever an address is moved to a field
named in an 02-level statement under 01
DFHBLLDS or the address in the 02-level
statement is changed in any way.)

To establish addressability to the TCA,
the following statements must be coded:

MOVE CSACDTA TO TCACBAR.
SERVICE RELOAD DFHTCA.

Note that the SERVICE RELOAD statement
specifies DFHTCA, not DFHTCADS.

If areas larger than 4096 bytes are
addressed, a SERVICE RELOAD statement
must be issued by the user after the
primary BLL is updated, but before the
secondary BllLs are updated.

Certain COBOL features cannot be used in
an application program to be run under
CICS. Generally, these features are
replaced by CICS services. They are
identified under "Restrictions™ on

page 15.

EXAMPLE OF CICS COBOL APPLICATION
PROGRAM

The following example is a COBOL program
written to run under CICS. The program
asks a question of the terminal
operator, receives a reply, acquires
storage, and sends the operator's
message back to the terminal. 1In
effect, an echo test is performed. (The
line numbers refer to the following
notes.)

Chapter 2.3. Storage Definition - COBOL 39

Line Description
01 IDENTIFICATION DIVISION. 01-0 Required for COBOL.
02 PROGRAM-ID. 06 Start of linkage section.
03 *CBLSPRB?', 07 Copies symbolic storage
04 ENVIRONMENT DIVISION. definition for BLL; contains
05 DATA DIVISION. addresses of CICS storage
06 LINKAGE SECTION. areas.
07 01 DFHBLLDS COPY DFHBLLDS. 08-09 Adds addresses for TCTTE and
038 02 TCTTEAR PIC S9(8) COMP. TIOA (required for statements
09 02 TIOABAR PIC S9(8) COMP. 14 and 15).
10 01 DFHCSADS COPY DFHCSADS. 10 Copies symbolic storage
11 01 DFHTCADS COPY DFHTCADS. definition for CSA.
12 02 SAVE-LENGTH PIC S9(8) COMP. 11 Copies symbolic storage
13 02 SAVE-MESSAGE PIC X(36). definitions for TCA and CSA
16 01 DFHTCTTE COPY DFHTCTTE. optional features list.
15 01 DFHTIOA COPY DFHTIOA. 12-13 Defines save areas in THA to
16 02 TIOAMSG PIC X(36). ensure quasi-reenterability
17 PROCEDURE DIVISION. (SAVE-LENGTH and SAVE-MESSAGE
18 MOVE CSACDTA TO TCACBAR. are used to save operator's
19 MOVE CSAOPFLA TO CSAOPBAR. reply).
20 MOVE TCAFCAAA TO TCTTEAR. 14 Copies symbolic storage
21 MOVE TCTTEDA TO TIOABAR. definition for TCTTE.
22 MOVE T'ENTER MESSAGE TO0 BE 15 Copies symbolic storage
ECHOED' TO TIOAMSG. definition for TIOA.
23 MOVE 26 TO TIOATDL. 16 Defines message area in TIOA.
2% DFHTC TYPE=(WRITE,READ,HWAIT) 17 Required for COBOL (start of
25 MOVE TCTTEDA TO TIOABAR. Procedure Division).
26 MOVE TIOATDL TO SAVE-LENGTH. 18-21 Establishes addressability for
27 MOVE TIOAMSG TO SAVE-MESSAGE. TCA, CSA optional features
28 DFHSC TYPE=GETMAIN, list, TCTTE, and TIOA (CICS
29 NUMBYTE=36, establishes addressability for
30 CLASS=TERMINAL BLL and CSA).
31 MOVE TCASCSA TQ TIOABAR. 22 Moves message to output area of
32 MOVE TIOABAR TO TCTTEDA. TIODA.
33 MOVE SAVE-MESSAGE TO TIOAMSG. 23 Moves length of message to data
34 MOVE SAVE-LENGTH TO TIOATDL. length field of TIOA.
35 DFHTC TYPE=HWRITE 24 CICS macro that writes message
36 DFHPC TYPE=RETURN to terminal, waits for
37 GOBACK. operator's reply, and reads
operator's reply.
25 Establishes addressability for
new TIOA using address in
TCTTE.
26 Saves length of message in TWA.

27 Saves message in THA.

28-30 CICS macro that requests 36
bytes of terminal storage
(terminal storage is chained to
terminal control table).

31 Establishes addressability for
new TIOA (address of newly
acquired storage area is in
TCASCSA field of the TCA).

32 Places address of new TIOA in
terminal control table.

33 Moves message to output area
(TIOA).

34 Moves length of message to
output area (TIOA).

35 CICS macro that writes message
to terminal.

36 CICS macro that returns control
to CICS.

37 COBOL statement that marks the

end of the program.

40 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 2.4, STORAGE DEFINITION - PL/I

The PL/I programmer must define storage

for the CICS control areas and other

storage areas required for the

processing of the application program.

;his is done by using a statement of the
orm:

%INCLUDE library(member);
or
%INCLUDE member;

to (1) copy the appropriate symbolic

storage definition into the application
program at the place where the ZINCLUDE
statement appears, and (2) specify the
name of the storage area being defined.

The PL/I source code provided by CICS in
response to XINCLUDE statements is in
the form of based structures. These
structures describe the attributes of
the storage areas and include pointer
variables that provide the addresses of
the actual locations in storage that the
structures describe.

All application programs must contain
statements to copy the symbolic storage
definitions for the common system area
(CSA) and task control area (TCA). The
expansions of the CICS macros used in an
application program refer to fields
within these areas, so their locations
must be identified. MWhether additional
storage definitions must be copied
depends on the processing requirements
(storage areas and macros used) of the
application program. The statements to
copy the symbolic storage definitions
must be in the order CSA, TCA, TCTTE,
TIOA; this is because addressability for
the last three areas mentioned depends
on the previous area already having been
copied.

A PL/I program to be run under CICS must
contain the REENTRANT option in the
first PROCEDURE statement to satisfy the
CICS requirement that code be
quasi-reenterable. See "Programming
Techniques and Restrictions™ in Part 1
:or a éist of PL/I features that cannot
e used.

STORAGE DEFINED DURING INITIALIZATION

During CICS initialization, the CSA is
allocated as part of the CICS nucleus.
For each terminal that is to be used, a
terminal control table terminal entry
(TCTTE) must be included in the terminal
control table (TCT). The PL/I
programmer must provide symbolic storage
definitions for the CSA and TCTTE (if
needed) as follows.

COMMON SYSTEM AREA (CSA)
The statement
%ZINCLUDE DFHCSADS;

copies the based structures that
symbolically define the CSA and the CSA
optional features list. Addressability
for both areas is included.

If CICS is generated to support a common
work area (CHWA), coding such as the
following must be provided immediately
following the %ZINCLUDE DFHCSADS macro:

DCL 1 DFHCSAWK BASED(CSACBAR),
2 CSAFILL CHAR(512),
2 USERLBL1 attributes,
2

USERLBLn attributes;

TERMINAL CONTROL TABLE TERMINAL ENTRY
(TCTTE)

The statement
%INCLUDE DFHTCTTE;

copies the based structure that
symbolically defines the TCTTE and must
be present in all programs requesting
communication with a terminal.
Addressability for the TCTTE is
included.

STORAGE DEFINED DURING EXECUTION

During execution of a task, the task
control area (TCA), terminal
input/output area (TIOA), and other
storage areas required by the task are
allocated by CICS storage management
upon request from either the application
program or CICS. Symbolic definitions
for these areas must be provided, as
follows.

TASK CONTROL AREA (TCA)
The statement
%INCLUDE DFHTCADS;

copies the based structure that defines
the TCA and establishes addressability.

The latter part of the based structure
consists of a DECLARE statement that is
not terminated by a semicolon. The
declaration of the TCA structure must be
completed by supplying an ending (for

"~ example, a semicolon) or, if a

Chapter 2.4, Storage Definition - PL/I 41

transaction work area (TWA) is desired,
by supplying further declaration. The
following is an example of the coding
required:

%#INCLUDE DFHTCADS;
2 TWA CHAR(40);

0
.
.

TERMINAL INPUT/OUTPUT AREA (TIOA)
The statement
%INCLUDE DFHTIOA;

copies the based structure that defines
the CICS system section of the TIOA and
establishes addressability. This
statement must be present in all
programs that use terminal input records
or that write output records to a
terminal. The declaration of the TIOA
structure must be completed by supplying
further declaration of the input/output
area, which could be merely a dummy
element. An action that requires a TIOA
can be requested. For example, a DFHSC
TYPE=GETMAIN macro to obtain storage for
a TIOA for the application program. The
following is an example of the coding
required:

%INCLUDE DFHTIOA;
2 NAME CHAR(20),
2 STREET CHAR(20);

DFHSC TYPE=GETMAIN,

NUMBYTE=40,

CLASS=TERMINAL
TIOABAR=TCASCSA;
/% TCASCSA FIELD OF TCA CONTAINS
ADDRESS OF NEMWLY ACQUIRED STORAGE X/

For additional information about
GETMAIN,; see "Obtain and Initialize Main
Storage (TYPE=GETMAIN)"™ in "Chapter 5.5.
Storage Control (DFHSC Macro)™ on

page 24l.

FILE INPUT/0UTPUT AREA (FIOA)
The statement
%“INCLUDE DFHFIOA;

copies the based structure that defines
the CICS system section of the FIOA and
must be present in all programs
requesting a read of an unblocked record
without updating, or a read of blocked
records without deblocking. If desired,
the user can identify that the area
returned in response to a file request
is an FIOA, rather than an FWA or VSHA,

by testing FIOAIND for a bit value of
01. The declaration of the FIOA must be
completed, and addressability must be
established for the FIOA using the
statement

FIOABAR=TCAFCAA;

following the DFHFC macro. For
CICS/0S/VS only, if data is retrieved
using an existing ISAM application in
ISAM compatibility mode, the FIOA must
include a 1l6-byte filler prior to the
user's data definition. The following
is an example of the coding required; it
includes the optional coding for FICA
identification:

%INCLUDE DFHFIOA;
2 NAME CHAR(20),
-2 ADDR CHAR(20);

FIOABAR=TCAFCAA;
IF FIOAIND='01'B THEN GO TO GOTFIOA;

FILE WORK AREA (FWA)
The statement
%ZINCLUDE DFHFWADS;

copies the based structure that defines
the CICS system section of the FHA.

This statement should precede a
user—-declared file record area when
reading or updating an existing blocked
record, when adding.a new record to a
data set, or when retrieving records
using the browse technique. If desired,
the user can identify that the area
returned in response to a file request
is an FWA, rather than an FIOA or VSHA,
by testing FWAIND for a bit value of 1ll.
The declaration of the FWA must be
completed, and addressability must be
established for the FWA using the
statement

FWACBAR=TCAFCAA;

following a DFHFC macro. The following
is an example of the coding required; it
includes the optional test for FHA
identification:

%INCLUDE DFHFWADS;
2 NAME CHAR(20)
2 ADDR CHAR (20

.

’
)3
.

FWACBAR=TCAFCAA;
IF FWAIND='11'B THEN GO TO GOTFWA;

G2 CICS/VS Application Programmer's Reference Manual (Macro Level)

VSAM WORK AREA (VSWA)
The statement
%ZINCLUDE DFHVSHA;

copies the based structure that defines
the CICS system section of the VSAM work
area and must be present in all programs
using locate mode I/0. See "Direct
Retrieval (VSAM Locate Mode)" in
"Chapter 3.2. File Control (DFHFC
Macro)”™ on page 51. I1f desired, the
user can identify that the area returned
in response to a file request is a VSHA,
rather than an FIOA or FWA, by testing
VSWAID for a bit value of 00000000.
Addressability must be established for
the VSWA using the statement

VSWABAR=TCAFCAA;

following the DFHFC macro using locate
mode I/0 which causes CICS to acquire
the VSHA.

To identify the area returned as a VSHA,
the following instruction can be used:

IF VSWAID='0'B THEN GO TO GOTVSWA;

TRANSIENT DATA INPUT AREA (TDIA)
The statement
%ZINCLUDE DFHTDIA;

copies the based structure that defines
the CICS system section of the
intrapartition TDIA and must be present
in all programs requiring a message area
for transient data obtained by issuing a
DFHTD TYPE=GET macro that references an
intrapartition destination. (See
YAcquire Queued Data (TYPE=GET)™ in
"Chapter 5.6. Transient Data Control
(DFHTD Macrol"™ on page 245.) The
declaration of the TDIA must be
completed, and addressability must be
established for the TDIA using the
statement

TDIABAR=TCATDAA;

following a DFHTD macro. The following
is an example of the coding required:

%INCLUDE (DFHTDIA);
2 MSG CHAR(40);

.

TDIABAR=TCATDAA;

.
.

TRANSIENT DATA OUTPUT AREA (TDOA)

The statement

%INCLUDE DFHTDOA;

copies the based structure that defines
the CICS system section of the
intrapartition TDOA and should be
present in all programs issuing a DFHTC
TYPE=PUT macro to provide transient data
as output. (See "Dispose of Data
(TYPE=PUT)™ in "Chapter 5.6. Transient
Data Control (DFHTD Macrol)™ on

page 2645.) The declaration of the TDOA
must be completed, and addressability
must be established for the TDOA using
the statement

TDOABAR=TCASCSA;

following a DFHSC macro. The following
is an example of the coding required:

%ZINCLUDE DFHTDOA;
TIME CHAR(2),
DATA CHAR(3),
INTERM CHAR(4),
OUTTERM CHAR(4);

¢« « NNNN

DFHSC TYPE=GETMAIN,
NUMBYTE=XX,
CLASS=USER

TDOABAR=TCASCSA;

TEMPORARY STORAGE INPUT/QUTPUT AREA
(TSIOA)

The statement
%INCLUDE DFHTSIOA;

copies the based structure that defines
the CICS system section of the TSIOA and
must be present in all programs using
temporary storage. The declaration for
the TSIOA must be completed. If the
request is a GET or GETQ from temporary
storage and the TSDADDR operand is not
specified, addressability must be
estzblished for the TSIOA using coding
such as:

DCL TSIOABAA FIXED BIN(31)
BASED(TSIOABAB);
TSIOABAR=TCATSDA;
TSIOABAB=ADDR(TSIOABAR);
TSIOABAA=TSIOABAA-8;

The subtraction of eight ensures that
TSIOABAA points to the storage
accounting field (that is, to the
beginning) of the storage area acquired
by CICS. The statement

TSIOABAR=TCASCSA;

must be coded if the I/0 area has been

acquired during execution. In the case
of a PUT or PUTQ, the symbolic address

of the data is located at TSIOAVRL.

Chapter 2.4. Storage Definition - PL/I 43

STORAGE ACCOUNTING AREA (SAA)
The statement
%INCLUDE DFHSAADS;

copies the based structure that defines
the SAA and must be present in all
programs requesting storage through use
of the DFHSC TYPE=GETMAIN,CLASS=USER
macro. This statement must precede the
definition of user storage. The
declaration for the SAA must be
completed, and addressability must be
established for the SAA using the
statement

SAACBAR=TCASCSA;

The following is an example of the
coding required:

%INCLUDE DFHSAADS;
2 MSG CHAR(40);

DFHSC TYPE=GETMAIN,
NUMBYTE=60,
CLASS=USER

SAACBAR=TCASCSA;

JOURNAL CONTROL AREA (JCA)
The statement
%INCLUDE DFHJCADS;

copies the based structure that defines
the CICS system section of the journal
control area (JCA) and must be present
in all programs requesting journal
services. (See "Chapter 7.5. Journal
Control (DFHJC Macro)™ on page 305.)

A JCA is acquired dynamically by means
of a DFHJC TYPE=GETJCA macro.
Addressability to the JCA is provided
automatically through the macro
expansion, which loads the address of
the area into JCABAR.

EXAMPLE OF CICS PL/I APPLICATION PROGRAM

The following example is a PL/I program
written to run under CICS. The program
asks a question of the terminal
operator, receives a reply, acquires
storage, and sends the operator's
message back to the terminal. In
effect, an echo test is performed.
line numbers refer to the notes that
follow the coding.)

(The

01 PL1PROG: PROC OPTIONS(MAIN,
REENTRANT);

02 X%INCLUDE DFHCSADS;

03 ZINCLUDE DFHTCADS;

04 2 SAVE_LENGTH BIN FIXED(15),

05 2 SAVE_MSG CHAR(36);

06 Z%INCLUDE CDFHTCTTE);

07 Z%INCLUDE (DFHTIOA);

08 2 TIOAMSG CHAR(36);

09 TIOAMSG='ENTER MSG TO BE ECHOED';

10 TIOATDL=26;

11 DFHTC TYPE=(WRITE,READ,WAIT)

12 TIOABAR=TCTTEDA;

13 SAVE_LENGTH=TIOATDL;

14 SAVE_MSG=TIOAMSG;

15 DFHSC TYPE=GETMAIN,

16 NUMBYTE=36,

17 CLASS=TERMINAL

18 . TIOABAR=TCASCSA;

19 TCTTEDA=TIOABAR;

20 TIOAMSG=SAVE_MSG;

21 TIOATDL=SAVE_LENGTH;

22 DFHTC TYPE=WRITE

23 END;

Line Description

01 Required for PL/I. REENTRANT
option specified to meet
requirement of CICS that
code be quasi-reenterable.

02 Copies symbolic storage
definitions for CSA and CSA
optional features list and
establishes addressability.

03 Copies symbolic storage
definition for TCA and
establishes addressability.

064-05 Defines the TWA and terminates
the DECLARE statement.

SAVE_MSG and SAVE_LENGTH are used
to preserve the operator's reply

06 Copies symbolic storage
definition for TCTTE and TCTTE
and establishes addressability.

07 Copies symbolic storage
definition for TIOA and
establishes addressability.

08 Describes 170 area for terminal
message and terminates the
DECLARE statement.

09 Places message to be sent to
operator in the TIOA.

10 Places the message length in the
terminal data length field of
the TIOA.

11 CICS macro that writes message
to the terminal, waits for, and
reads, the operator's reply.

12 Reestablishes addressability for
the TIOA using address in TCTTE.

13-14 Saves the operator's message
and its length in the TCA.

15-17 CICS macro requesting 36 bytes of

terminal storage (terminal storage
is chained to the TCT).

G4 CICS/VS Application Programmer's Reference Manual (Macro Level)

18 Establishes addressability for the message to output area (TIODA).

new TIOA (address of the newly 22 CICS macro that sends operator’'s
acquired storage is in TCASCSA). message back to the terminal.
19 Places address of new TIOA in TCT. 23 PL/1I statement that marks the
20-21 Moves message and length of end of the procedure.

Chapter 2.6, Storage Definition - PL/I 45

Part 3. Files and Data Bases 647

CHAPTER 3.1. INTRODUCTION TO FILES AND DATA BASES

The other two chapters in this part
describe the methods of handling
records: directly by the file control
macro; and indirectly by the DL/I
interface.

CONTROL_MACRO

"Chapter 3.2. File Control (DFHFC
Macro)™ on page 51 describes how a CICS
application program handles records by
means of the file control progranm.
Records are operated on by the file
control macro (DFHFC), according to the
various TYPE operands; for example,
records can be retrieved by the DFHFC
TYPE=GET macro.

The file control program can be used
only with direct-access data sets.
Sequential data sets are handled by the
transient data program and the DFHTD
macro, as described in "Chapter 5.6.
Transient Data Control (DFHTD Macrol)™ on
page 245.

An application program can also browse a
data set by means of the file control
macro. Browsing is defined as the
retrieval of records in a direct-access
data set, starting and ending at

Chapter 3.1.

specified records, in ascending or
descending sedquence.

DL/1 SERVICES

"Chapter 3.3. DL/I Services™ on page 87
describes the macros and calls available
to a CICS application program that
gnable that program to use a DL/I data
ase.

The method of invoking DL/I differs for
the two operating systems used with
CICS. For CICS/0S5/VS, the DL/I
interface is invoked by either a DL/I
CALL statement or by a DFHFC macro. For
CICS/D0S/VS, the DL/I interface is
invoked only by a DL/I CALL statement.

DL/1 is a general-purpose data base
control system that executes in a
virtual storage environment. HWhen used
online, it simplifies the task of
creating and maintaining large data
bases that are to be accessed by various
application programs. For more
information about DL/I, refer to the
DL/1 publications listed in the
bibliography and to the appropriate CICS
Facilities and Planning Guide.

Introduction to Files and Data Bases 49

CHAPTER 3.2. FILE CONTROL (DFHFC MACRO)

The CICS file control program processes
fixed- or variable-length, blocked or
unblocked, or undefined records of a
data set that is stored in a
direct-access storage device.

File control uses the standard access
methods of the host operating systenm,
namely:

. VSAM (Virtual Storage Access Method)
L DAM (Direct Access Method).

Application programs can access DAM data
sets on a logical record level,
deblocking services being provided by
file control. Data sets on fixed block
architecture (FBA) devices can be
accessed by VSAM only.

Through the file control macro (DFHFC),
an application program can perform file
inquiry, that is, read a record from a
data set; browse through records in the
data set in sequence; update a record in
a data set; or add a record to a data
set. In the last case the application
program must obtain sufficient main
storage for the record by means of the
DFHFC TYPE=GETAREA macro. The
application program can also release the
main storage that has been acquired.

For VSAM key sequenced (KSDS) or
relative record (RRDS) data sets only,
the DFHFC macro can be used to delete
records, singly or in groups.

All buffers and work areas needed for
data set operations are acquired by file
control in accordance with the data set
definitions supplied in the file control
table (the FCT) by the systenm
programmer. All data sets referred to
in DFHFC macros must have been defined
in the FCT. The application programmer
should work with the system programmer
in setting up these data set
definitions. However, the application
program need deal only with logical
records; it is not directly involved
wi:h other characteristics of the data
set.

For a VSAM data set, all data is read
into or written from one of three areas
in main storage:

. A file work area (FWA)

L A VSAM work area (VSHWA)

L A file input/output area (FIOA).

In general, most data is read into or

written from an FWHA. There are two
exceptions, a locate-mode read-only

| request, and when operating in ISAM

compatibility mode. (ISAM compatibility
mode is indicated by the system
programmer specifying UNBLOCKED in the
RECFORM operand of the FCT entry for the
data set.)

For locate-mode read only, the address
of the retrieved record, as it is
positioned in the VSAM buffer, is made
available to the application program in
a VSWA (in field VSWAREA). The record
(that must not be modified) remains in
this buffer.

In ISAM compatibility mode, the
retrieved record is moved to an FIOA for
a read only request for an unblocked
record. A symbolic storage definition
must be provided for this area (for
example, an assembler language DSECT)
and addressability must be established
to it. For CICS/0S/VS only, a l6-byte
giiler must be defined before the user
ata.

If an error occurs while a VSAM data set
is being accessed, a DFHFC TYPE=RELEASE

macro must be issued after the error has
occu;;ed, otherwise a permanent wait may
result.

The user can determine which area (FWA,
VSHA, or FIOA) is returned in response
to a file request. Refer to "Chapter
2.2. Storage Definition - Assembler
Language”™ on page 29, "Chapter 2.3.
Storage Definition - COBOLY on page 35
or "Chapter 2.4. Storage Definition -
PL/I"™ on page 41 (depending on the
programming language being used) for
details.

For a DAM data set, all data is read
into or written from either of two areas
in main storage:

. A file input/output area (FIOA)
. A file work area (FWA).

An FIOA is required to handle records
th?t are unblocked, and that are read
only.

An FWA is required to handle records
that are blocked, that are to be added,
or that are to be updated. In addition,
an FHA is always used in a browse.

File control executes at the priority of
the requesting program, under control of
the task control area (the TCA) of the
requesting program, saving and restoring
registers from this TCA. The response
to a request for file services can be
checked as explained in "Test Response
to a Request for File Services

Chapter 3.2. File Control (DFHFC Macro) 51

(TYPE=CHECK)™ on page 80. Control can
be routed to any of various user written
exception handling routines based on the
outcome of the file operation.

Parameter values must be specified, when
using the file control macro, either:

U By including the parameters in
operands of the macro by which file
services are requested, or

. By coding instructions that place
the parameter values in fields of
the TCA before issuing the macro.

The second of these approaches is
provided to allow the application
program to specify parameters that can
only be determined during execution, for
example, input messages from a terminal.

EXCLUSIVE CONTROL DEADLOCKS

CICS exclusive control serializes
updates, additions, and deletions of
individual records, maintaining such
control until a sync point is taken or
the transaction ends.

VSAM exclusive control, that operates in
addition to CICS exclusive control,
serializes based on a control interval
that may contain more than one record.
It distinguishes between shared use and
exclusive use, and control lasts until
the request has ended. The rules
regarding exclusive control conflict,
and the determination that a request has
ended, vary according to the type of
request and whether or not the data set
is participating in VSAM Local Shared
Resources (LSR).

Hhile it is not necessary to understand
the details of exclusive control
conflicts in VSAM, the application
programmer must follow certain rules in
designing and programming, so as to
reduce the probability of a deadlock in
CICS or in VSAM. The rules are more
stringent for data sets using LSR.
However, LSR is widely used and provides
many benefits. Even if the system
programmer has not specified resource
sharing for a data set (DFHFCT
TYPE=DATASET,LSRPOOL=1), he may do so in
the future. Therefore, it is strongly
recommended that applications be written
to execute correctly, without deadlock,
in the LSR environment.

There are four distinct types of
deadlock, and corresponding rules, when
accessing VSAM data sets through DFHFC
macros:

1. Two tasks are updating multiple
resources. Each has CICS or VSAM
exclusive control over one resource,
but each needs the resource owned by
the other in order to complete.

This type of deadlock is more fully

explained in the appropriate CICS

Application Programmer's Reference
Manual (Command Level).

To prevent deadlock, all
applications updating multiple
resources should update them in the
same order.

2. A task holds position for exclusive
use over a control interval, and
attempts to do another operation
requiring exclusive use. If a task
has done a GET UPDATE and attempts a
GET UPDATE, DELETE, or PUT NEWREC;
or if it has done a PUT for
MASSINSERT and attempts a GET
UPDATE, DELETE, or PUT NEWREC not
for MASSINSERT, a deadlock may
occur. Also, a second PUT for
MASSINSERT with a nonascending key
can cause a deadlock.

To prevent deadlock, the programmer
should release position before
attempting another operation
requiring exclusive use. Follow a
GET UPDATE with a PUT UPDATE, PUT
DELETE, or RELEASE. Follow a PUT
for MASSINSERT by another PUT for
MASSINSERT with an ascending key, or
release position with a RELEASE.

3. A task holds position for exclusive
use over a control interval, and
attempts to do an operation
requiring shared use, in the LSR
environment. If a task has done a
GET UPDATE or PUT for MASSINSERT,
and attempts a browse (SETL) or
non-update get (GET MOVE or GET
LOCATE), a deadlock may occur.

To prevent deadlock, the programmer
should release position as described
above before attempting any other
operation on the data set, not just
an operation requiring exclusive
use.

4. A task holds position for shared use
over a control interval, and
attempts to do an operation
requiring exclusive use in the LSR
environment. If a task has done a
SETL, RESETL, GETNEXT, GETPREV, or
GET LOCATE, and attempts a GET
UPDATE, DELETE, or PUT NEWREC, a
deadlock may occur.

To prevent deadlock, the programmer
should release position by ending
all browses on the data set with
ESETL, or by ending a GET LOCATE
with a RELEASE, before attempting an
operation requiring exclusive use.

In summary, the application programmer
will prevent exclusive control deadlocks
by following these rules:

1. All applications should update
muﬁtiple VSAM data sets in the same
order.

52 CICS/VS Application Programmer's Reference Manual (Macro Level)

2. Follow a GET UPDATE by a PUT UPDATE,
PUT DELETE, or RELEASE before
performing any other operation on
the same data set.

3. Follow a PUT for MASSINSERT by
another PUT for MASSINSERT with an
ascending key, or release position
with a RELEASE before performing any
otzer operation on the same data
set.

4. Before issuing a GET UPDATE, DELETE,
or PUT NEWREC, end all browses of
that data set with an ESETL.

5. Before issuing a GET UPDATE, DELETE,
or PUT NEWREC, end a GET LOCATE to
that data set with a RELEASE.

BROWSING

The application program can browse a
data set. The file control macro is
used to specify a starting point for the
browse, request each succeeding, or
preceding record, reset the starting
point for the browse (if desired), and
end the browse.

Browse operations are requested by the
appropriate TYPE operands of the DFHFC
macro; SETL, GETNEXT, GETPREV, RESETL,
and ESETL. The capabilities associated
with each are summarized below.
Operands to request checking of a
response can be specified with these
macros as with other DFHFC macros (see
"Test Response to a Request for File
Services (TYPE=CHECK)"™ on page 80).
Specific operands for each macro are
discussed in detail at the end of the
chapter.

When accessing a VSAM data set, the
browse facility can be used to perform
random skip-sequential processing in a
forward direction only. The following
steps are required:

1. Group several random requests into
ascending key sequence.

2. Issue a DFHFC TYPE=SETL macro that
finds the first required record.
achieve this, the record
identification field pointed to by
the RDIDADR operand should be
initialized to the key of the
required record.

3. Prior to each DFHFC TYPE=GETNEXT
macro, place the key of the next
required record into the record
identification field.

To

This procedure allows quick direct
access to a VSAM data set by reducing
index search time. MWhen the record
having the highest key has been
retrieved, an ESETL or RESETL should be
issued to terminate or reset the
operation.

Chapter 3.2. File Control (DFHFC Macro)

A browse should always be terminated by
an ESETL macro, but will also be
terminated by the end of an LUK (that
is, at a sync point), or by a normal or
abnormal end of task.

LTERNATE DEXING

Alternate indexing is a feature of VSAM,
supported by CICS file control, that
allows key-sequenced and entry-sequenced
data sets to be accessed by one or more
alternate paths. Each alternate index
accesses the records in the base data
set through a different, alternate, key
within the record.

Also, a data set with an alternate index
can have two or more records with the
same alternate key. To retrieve the
first record with the same key the DFHFC
TYPE=GET macro with the DUPKEY operand
is sufficient. However, to continue
retrieving the remaining records with
the same key, a browse operation must be
initiated. The DUPKEY operand also must
be specified on the appropriate macro.
The records will be retrieved in the
order in which they were added to the
data set, the duplicate key condition
being raised for each record except the
last. MWhen changing to the browse
operation, the first record will be
retrieved twice, once by the TYPE=GET
and once by the browse.

Defining the alternate indexes as part
of the upgrade set will eliminate the
possibility of one or more indexes
becoming invalid whenever the data set
is updated.

RECORD IDENTIFICATION FIELD

The record identification field is used
by the application program to
communicate to the file control program
the identity, in the form of a key or
address, of a specific record, or the
starting point of a set of records,
required in input/output operations.
This field is identified by the RDIDADR
operand of the DFHFC macro. The
contents of this field should not be
altered when doing a GET for UPDATE
operation.

If multiple browse operations are
performed concurrently by a single
application program, a unique record
identification field must exist for each
operation. The application program must
provide the storage area for the record
identification field. Generally, this
storage can be allocated within the
transaction work area (TWA) of the TCA,
or some area acquired dynamically by the
application program. Because CICS
application programs must be
quasi-reenterable, it is not advisable

53

to set up the record identification
field within the application progranm.

For a VSAM data set, the record
identification field contains either the
key or the relative byte address of the
desired record. If the generic key
option is used, the first byte of the
field must contain the length of the
key, in binary, and the remainder of the
field must contain the generic key.

A partial key may be used as a search
argument in a browse operation referring
to a VSAM data set.

For a DAM data set, the record
identification field consists of three
subfields that contain block reference
information, a physical key (if keyed
data sets are being used), and a
deblocking argument (if blocked data
sets are being used). These fields are
as follows:

. A block reference for the data set
is specified by the RELTYPE operand
of the DFHFCT TYPE=DATASET system
macro and may be one of the
following:

- Relative block (CICS/0S/VS
only), 3-byte binary
(RELTYPE=BLK)

- Relative track and record,
2-byte TT, l-byte R
(RELTYPE=HEX)

- Relative track and record (zoned
decimal format), 6-byte TTTTTT,
2-byte RR (RELTYPE=DEC)

- Actual address, 8-byte MBBCCHHR
(RELTYPE omitted).

o A physical key is required only if
the data set being accessed is
written with recorded keys. This
key must be the same length as
specified in the BLKKEYL operand for
the FCT entry that defines the data
set. It must immediately follow the
block reference.

. A deblocking argument is required
only if the data set contains
blocked records and specific logical
records are to be retrieved from
within a block. Not every record
needs to be deblocked. If a
deblocking argument is not
specified, an entire block is read
into an FIOCA. The deblocking
argument may be either a key or a
relative record number, and is
specified in the RETMETH operand of
the DFHFC macro. If used, the
deblocking argument must immediately
follow the physical key (if present)
or the block reference (if the
physical key is not present).

If the deblocking argument is a key,
it must be the same length as
specified in the KEYLEN operand of
the FCT entry that defines the data
set. The key used for deblocking
need not be the same size as the
physical record key (BLKKEYL).

Figure 11 on page 55 shows examples of
record identification fields for a DAM
data set.

DAM DATA_SETS

Records in a nonkeyed DAM data set may
be updated using either of two methods.
One method is to issue a DFHFC
TYPE=GET, TYPOPER=UPDATE to read the
record, change the data in the FWA, and
issue a DFHFC TYPE=PUT to update the
record. This is the normal way that
records are updated and should be used
when portions of the record are to be
changed and the contents of the record
are unknown.

An alternative method may be used when
the contents of the record to be updated
are known, or when the entire record is
to be changed, regardless of its
contents. A DFHFC TYPE=GETAREA macro is
used to acquire an FWA, the record is
built in the FWA, and a DFHFC

TYPE=PUT, TYPOPER=UPDATE is issued to
write the data at the location specified
in the record identification field,
overwriting whatever was previously
recorded at that location. Automatic
logging must not be specified for files
to be updated by this method.

When adding new records to a DAM data
set, the following considerations and
restrictions apply:

1. HWhen adding undefined or variable
length records (keyed or nonkeved),
the application programmer must
indicate the track on which each new
record is to be added. If space is
available on the track, the new
record is written following the last
previously written record, and the
record number is placed in the "RT™
portion of the record identification
field of the record. The track
specification may be in any of the
acceptable formats except relative
block. If zoned decimal relative
format is used, the record number is
returned as a 2-byte zoned decimal
number in the seventh and eighth
positions of the record
identification field.

In the CICS/D0S/VS system, an
attempt to add a variable-length or
undefined record is limited to the
single track specified by the
application programmer. If
insufficient space is available on
that track, a "no space available™
error is returned, and the

54 CICS/VS Application Programmer's Reference Manual (Macro Level)

l 0 . 1 . 2 A 3 . 4 \ 5) 6 . 7 \ 8 \ 9 .10 .11 .12 I13 l14 .15 <——Bytes

| RELBLK#] N | (CICS/0S/VS only) Search by relative block;
deblock by relative record

l RELBLK# I KEY i (CICS/70S/VS only) Search by relative block;
deblock by key

I T T R | PH-KEY | KEY | Search by relative track
and record and key;
deblock by key

| T T T T T T R R | PH—KEY | KEY Search by zoned

decimal relative

track, record, and key.
Deblock by key.

| T T R | KEY J Search by relative track
and record; deblock by key

[M B B (o C H H R l N J Search by address;
deblock by relative record

Figure 11. Examples of Record Iden#ification (DAM Data Set)

application programmer may then try
to add the record on another track.
Under these circumstances, the
record is returned to the G.
application program in an FWA, the
address of which is at TCAFCAA. The
programmer need only modify the
track identification and issue
another DFHFC

TYPE=PUT, TYPOPER=NEWREC macro to add
the record on another track.

In CICS/0S/VS, the extended search
option allows the record to be added
to another track if no space is
available on the specified track.
Under these circumstances, the
location at which the record is
added is returned to the application
program.

The addition of keyed fixed-length
records to DAM data sets requires
that the data set first be formatted
with dummy records or "slots"™ into
which new records may be added.
(The first byte of a dummy record is
a key of X'FF's; in CICS/0S/VS, the
first byte of data contains the
record number.) A preformatted DAM
" data set cannot be added to by a
COBOL batch program.

For nonkeyed, fixed-length records,
the exact physical block reference
must be given in the record
identification field. The data in
the new records is written in the
exact location specified,

Chapter 3.2. File Control (DFHFC Macro)

overwriting the previous contents of
that location.

For keyed, fixed-length record
additions, only the track
information is used as a starting
location for the search of a dummy
key and record. HWhen a dummy key
and record are found, the new key
and record replace it. The location
at which the new record is inserted
is returned to the application
program in the block reference
subfield of the record
identification field.

For example, suppose a user wishes
to add a keyved, fixed-length record
to a DAM data set. First, some
algorithm determines that the search
is to start at relative track 3.

The record identification field of
the new record might appear as
follows:

0 3 0 ALPHA

T TR KEY
When control is returned to the
application program, the record
identification field might reflect
the fact that the record was added
on relative track 4, record 6.

0 ¢ 6 ALPHA

TTR KEY

55

5. When adding records of undefined
length, the length of the physical
record must be placed in 2-byte
binary format at TCAFCURL. MWhen an
undefined record is retrieved, the
application program must determine
its length.

6. When making additions to a DAM data
set containing variable-length
blocked or unblocked records, the
application program must include a
record descriptor field (RDF) that
contains the length (LLbb) of the
entire block to be written. Also,
for each logical record within that
block, an RDF must be included that
contains the length of the logical
record. Effectively, this allows
the application to add a block
containing multiple logical records,
as shown in the following diagram:

|prefix| 96| 54|<——50—>| 264|<— —
|

Log rec
RDF

|
Block Log rec
RDF RDF
If a single logical record only is
to be added, the block RDF is still
required, as shown in the following

diagram:
]prefix]lﬂSllOQl(100 >|
Bloci Log rec
RDF RDF

When updating records on a DAM data set,
the following restriction applies:

If the file is blocked, and if two or
more records are to be updated, a DFHFC
TYPE=GET macro to retrieve a record must
be followed by a DFHFC TYPE=PUT macro to
write the updated record (or a DFHFC
TYPE=RELEASE macro if the updated record
is not required) before any further
record in the same block is retrieved
for update. Failure to do so will
result either in one or more updates
being lost or in a lockout.

DIRECT RETRIEVAL (TYPE=GET)

This macro is used for direct read-only
(inquiry) or update (DFHFC TYPE=GET,
TYPOPER=UPDATE) operations. The
requested record is returned in:

. An FWA for update operations,
read-only operations with blocked
records, or for read-only operations
with a blocked VSAM data set

. A VSWA for read-only operations in
locate mode on the records of a VSAM
data set.

. An FIOA for read-only operations
with unblocked records from a VSAM

DFHFC TYPE=GET
[,DATASET=symb-name]

[,RDIDADR=symb-addr]

[, TYPOPER=UPDATE]

[,RETMETH={RELREC|KEY}]?

[,ARGTYP={KEYIRBA}12

[,SRCHTYP=
{FKEQ|FKGE|GKEQ|GKGE} 12

[,MODE={MOVE|LOCATE}12

[, DUPKEY=symb-addr]?

[,NORESP=symb-addr]

[, ERROR=symb-addr]

[,DSIDER=symb-addr]

[,NOTFND=symb-addr]

[, INVREQ=symb-addr]

[, IOERROR=symb-addr]}

[,NOTOPEN=symb~addr]

[,ILLOGIC=symb-addrl?

1 DAM only
2 VSAM only

data set in move mode or a DAM data
set.

Before this macro is used, instructions
must be provided that define
symbolically the required FWA, and/or
VSWA, or FIOA, by:

1. Copying the appropriate storage
definitions (DFHFWADS, and/or
ggggSNA, or DFHFIOA) provided by

2. Providing storage definitions for
the user's part of the FI0A, FHA,
and/or the user's record in the VSAM
buffer.

CICS performs the following services in
response to a DFHFC TYPE=GET macro:

1. Acquires the appropriate main
storage area (FWA, VSWA, or FIOA)
required to read a record

2. Reads the requested record into that
area

3. Makes the requested record available
to the application program

The record required in an input/output
operation is identified in a record
identification field. The format of
this field, as required for the various
access methods, is described in "Record
Identification Field™ on page 53.

When a DAM data set is referenced, the
record identification field should
contain a block reference.

When a VSAM data set is referenced, the
required record is accessed by either a
relative byte address or a key. A
search by key may be for a key equal to
the search key or for one equal to or

56 CICS/VS Application Programmer's Reference Manual (Macro Level)

greater than the search key. A search
may also be for a partial key (the first
2 bytes, or any number specified by the
programmer), which may serve as a
generic key. The generic or partial key
search may, again, be either for an
equal key or for an equal or greater
key, but only the number of bytes
specified will be compared.

In addition, CICS can acquire an FHWA
when the record is to be updated, or
when records are blocked, depending on
the operands included in the macro.

The length of the acquired FWA depends
on whether or not the record is to be
updated.

The FWA for a GET in move mode will also
be large enough to contain a record of
the maximum length defined in the FCT.

If the record is to be updated, the FWA
acquired will be sufficient to contain a
record of the maximum length specified
by the system programmer in the FCT;
otherwise, the FWA will be sufficient to
contain the requested record.

When a record of a VSAM data set is
retrieved in response to a read only
request, move-mode or locate-mode
processing can be specified. In move
mode, the record is handled in the same
way as a DAM record. In locate mode,
the record is made available to the
application program in the VSAM buffer.
The application programmer must have
copied the symbolic storage definition
for the VSWA (DFHVSKWA) and must also
provide a symbolic storage definition
for the record that is retrieved.

After requesting file services, the
programmer must establish addressability
for any required FIOA or FWHA. The
address of the area involved, provided
by CICS at TCAFCAA, must be placed in
FIOABAR or FWACBAR. In locate mode, the

address of the VSWA is in TCAFCAA and
must be placed in VSHABAR. The address
of the area that holds the requested
record is at VSWAREA within.the VSWA and
must be moved to the base locator that
has been established for the symbolic
storage definition of the area.

When retrieving variable length records
from a VSAM data set in move mode, the
file control program creates a length
field and places it preceding the record
in the FWA. The format of this length
field is LLbb, where LL is a 2-byte
binary length (including the 4 bytes for
the length field itself) and bb is 2
bytes of binary zeros. In locate mode,
the length is not included in the record
ﬁgﬁﬁlf but is placed at VSWALEN in the

When a VSAM record is retrieved for
update, VSAM maintains exclusive control
of the control interval containing that
record. A task should not attempt to
retrieve (for update) a second record
from the same control interval as a
record it is already holding for update,
otherwise a permanent wait will occur.
The update should first be completed, by
a DFHFC TYPE=PUT macro, or if it cannot
be completed, terminated by a DFHFC
TYPE=RELEASE macro.

A DFHFC TYPE=RELEASE macro frees an FIOA
or FHWA acquired in response to a request
for file services, or a VSWA and VSAM
string established for a VSAM read-only
request using locate-mode I/0. Any of
these areas that are not freed by the
application program are freed by CICS at
task termination.

DIRECT RETRIEVAL (READ-ONLY)

The following examples show how to
retrieve a single record directly from a
master data set, assuming blocked
records.

ASM:

COPY DFHTCADS
KEYF DS CL38
FWACBAR EQU 7

COPY DFHFWADS

RDIDADR=KEYF
L FWACBAR, TCAFCAA

COPY TCA SYMBOLIC STRG DEFN
RECORD IDENT FIELD IN THWA
ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FKWA

RECORD DS 0CL350 RECORD LAYOUT FOLLOWS CONTROL
. FIELD AND HAS SAME BASE REGISTER
MV KEYF, ACCTNO MOVE RECORD IDENT TO KEY FIELD
READREC DFHFC TYPE=GET, GET RECORD FROM MASTER DATA SET *
DATASET=MASTERA, *

ESTABLISH ADDRESSABILITY FOR FWA

Chapter 3.2. File Control (DFHFC Macro) 57

COBOL:

02 FWACBAR PIC S9(38) COMP.

01 DFHTCADS COPY DFHTCADS.
02 KEYF PIC X(38).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PIC X(350).

.

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE ACCTNO TGO KEYF.
READREC.
DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF
MOVE TCAFCAA TO FHWACBAR.

NOTE DEFINE BASE REGISTER FOR FHKA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA
NOTE DEFINE KEY FIELD IN THWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FKWA
NOTE DEFINE RECORD LAYOUT IN FKA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE RECORD IDENT TO KEY.
GET RECORD FROM MASTER DATA SET

NOTE ESTABLISH FWA ADDRESSABILITY.

%*
*

PL/I:

%INCLUDE DFHTCADS;

02 KEYF CHAR(8);
%INCLUDE DFHFHWADS;

02 RECORD CHAR(350);

KEYF=ACCTNO;
READREC:
DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF
FWACBAR=TCAFCAA;

/%COPY SYMBOLIC STRG DEFN FOR TCAx/
/%DEFINE KEY FIELD IN TWA%/

/%COPY SYMBOLIC STRG DEFN FOR FWAx/
/%DEFINE RECORD LAYOUT IN FHWA%/

/%ASSIGN RECORD IDENT TO KEY FIELDx/
GET RECORD FROM MASTER DATA SET

/%XESTABLISH ADDRESSABILITY FOR FWAX%/

*
%

58 CICS/VS Application Programmer's Reference Manual (Macro Level)

DIRECT RETRIEVAL (VSAM LOCATE MODE)

The following examples show how to

retrieve a single record directly from a

VSAM data set using locate-mode 1/0.

If the record is variable length, the

LLbb field will not be part of the

record. The length of the record can be

found in VSWALEN in the VSHA.

ASM:

COPY DFHTCADS
KEYF DS CL38
VSWABAR EQU 7
RECBAR EQU 8

COPY DFHVSKHA
RECDS DSECT

USING %,RECBAR
RECORD DS 0CL350

MVC KEYF,ACCTNO
READREC DFHFC TYPE=GET,
DATASET=MASTVSAM,
RDIDADR=KEYF,
MODE=LOCATE
VSWABAR, TCAFCAA
RECBAR, VSWAREA
3,VSHALEN

-

COPY TCA SYMBOLIC STORAGE DEFN
DEFINE KEY FIELD IN TWA

ASSIGN BASE REGISTER FOR VSHA
ASSIGN BASE REGISTER FOR RECORD
COPY VSWA SYMBOLIC DEFN

DUMMY SECTION FOR RECORD

MAKE RECORD ADDRESSABLE

DEFINE RECORD LAYOUT

MOVE RECORD ID TO KEY FIELD

GET A RECORD FROM MASTER
VSAM DATA SET USING
LOCATE MODE

ESTABLISH VSWA ADDRESSABILITY
ESTABLISH RECORD ADDRESSABILITY
LOAD RECORD LENGTH INTO WORK REG

X X XK

Chapter 3.2. File Control (DFHFC Macro)

59

COBOL:
02 VSWABAR PIC S9(38) COMP.
02 RECBAR PIC S9(8) COMP.

01 DFHTCADS COPY DFHTCADS.
02 KEYF PIC X(38).
02 RECLEN PIC S9(8) COMP.

01 DFHVSWA COPY DFHVSHA.
01 RECDS SYNCHRONIZED.
02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE ACCTNO TO KEYF.
READREC.
DFHFC TYPE=GET,

DATASET=MASTVSAM,
RDIDADR=KEYF,
MODE=LOCATE

MOVE TCAFCAA TO VSWABAR.

MOVE VSWAREA TO RECBAR.

MOVE VSWALEN TO RECLEN.

NOTE DEFINE BASE REGISTER FOR VSKA.
NOTE DEFINE BASE REGISTER FOR RECORD.
NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN THWA.

NOTE DEFINE RECORD LENGTH WORK AREA.
NOTE COPY SYMBOLIC STRG DEFN FOR VSHWA.

NOTE DEFINE SYMBOLIC STRG DEFN FOR RECORD.
NOTE DEFINE RECORD LAYOUT.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE RECORD ID TO KEY FIELD.

GET A RECORD FROM MASTER *
VSAM DATA SET USING *
LOCATE MODE *

NOTE ESTABLISH VSWA ADDRESSABILITY.
NOTE ESTABLISH RECORD ADDRESSABILITY.
NOTE MOVE RECORD LENGTH TO WORK AREA.

PL/I:

%ZINCLUDE DFHTCADS;

02 KEYF CHAR(3),

02 RECLEN FIXED BINARY(31l);
%INCLUDE DFHVSHA;
DCL 01 RECDS BASED (RECBAR),

02 RECORD CHAR(350);

KEYF=ACCTNO;
READREC:
DFHFC TYPE=GET,
DATASET=MASTVASHM,
RDIDADR=KEYF,
MODE=LOCATE
VSWABAR=TCAFCAA;
RECBAR=VSWAREA;
RECLEN=VSWALEN;

/%COPY SYMBOLIC STRG DEFN FOR TCAx/
/%DEFINE KEY FIELD IN TWAx/
/%XDEFINE RECORD LENGTH WORK AREAX/
/%COPY SYMBOLIC STRG DEFN FOR VSHWAx/
/%DEFINE SYMB STRG DEFN FOR RECORDx/
/%DEFINE RECORD LAYQUT/

/%MOVE RECORD ID TO KEY FIELD»/

GET A RECORD FROM MASTER
VSAM DATA SET USING
LOCATE MODE

/%ESTAB ADDRESSABILITY FOR VSWAX/
/%XESTAB ADDRESSABILITY FOR RECORD»/
/%MOVE RECORD LENGTH TO WORK AREAX/

X XK X

60 CICS/VS Application Programmer's Reference Manual (Macro Level)

DIRECT RETRIEVAL (FOR UPDATE)

The following examples show how to
retrieve a single record directly from a
master data set for update.

ASM:

COPY DFHTCADS
KEYF DS CL8
FWACBAR EQU 7

COPY DFHFKWADS
RECORD DS 0CL350

MVC KEYF,ACCTNO
READREC DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF,
TYPOPER=UPDATE
L FWACBAR, TCAFCAA

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN THA

ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FHWA

RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

MOVE RECORD IDENT TO KEY FIELD
GET RECORD FROM MASTER DATA SET
FOR UPDATE

XK XK

ESTABLISH ADDRESSABILITY FOR FKWA

COBOL:

62 FWACBAR PIC S9(8) COMP.

01 DFHTCADS COPY DFHTCADS.
02 KEYF PIC X(8).

01 DFHFWADS COPY DFHFHWADS.
02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE ACCTNO TO KEYF.
READREC.
DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF,
TYPOPER=UPDATE
MOVE TCAFCAA TO FWACBAR.

NOTE DEFINE BASE REGISTER FOR FHWA.
NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN THA.

NOTE COPY SYMBOLIC STRG DEFN FOR FHA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE RECORD IDENT TO KEY.
GET RECORD FROM MASTER DATA SET %

NOTE ESTABLISH FWA ADDRESSABILITY.

Chapter 3.2. File Control (DFHFC Macro)

61

PL/I:

%INCLUDE DFHTCADS;

02 KEYF CHAR(8);
%INCLUDE DFHFWADS;

02 RECORD CHAR(350);

KEYF=ACCTNQ;
READREC:

DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF,
TYPOPER=UPDATE

FWACBAR=TCAFCAA;

/%COPY SYMBOLIC STRG DEFN FOR TCAx/
s/XDEFINE KEY FIELD IN TWAx/

/%COPY SYMBOLIC STRG DEFN FOR FHWA%/
/%DEFINE RECORD LAYOQUT IN FHAX%/

/%ASSIGN RECORD IDENT TO KEY FIELDx%/

GET RECORD FROM MASTER DATA SET %
x

/%ESTABLISH ADDRESSABILITY FOR FWAx%/

DIRECT ADDITION OR UPDATE (TYRPE=PUT)

TYPE=PUT, TYPOPER=DELETE macro can be
used to delete a record previously
retrieved by a DFHFC

TYPE=GET, TYPOPER=UPDATE macro.

DFHFC TYPE=PUT
[,RDIDADR=symb-addr]
[, TYPOPER=
{NEWREC|UPDATE|DELETE}1?
[,ARGTYP={KEY|RBA}12
[, NORESP=symb-addrl}
[, ERROR=symb-addrl
[, DUPREC=symb~addr]
[, INVREQ=symb-addr]
[, IOERROR=symb—-addr]
[,NOSPACE=symb-addr]
[,NOTOPEN=symb-addr]
[,ILLOGIC=symb—~addrl?

1 DELETE can be used only with a
VSAM KSDS or RRDS

2 YSAM only (ARGTYP is only valid
with TYPOPER=NEWREC)

An FWA is used to contain the record to

| be written or updated. The first 16
bytes of the FWA form the CICS system
section, which is followed by the record
to be written to a data set.

CICS does the following in response to a
DFHFC TYPE=PUT macro:

J Writes updated or new records in
user defined data sets

U Acquires or locates the main storage
and control blocks required to write
the record

. Releases all data set storage
associated with the request to
| write.

Before file services can be requested by
means of the DFHFC TYPE=PUT macro, the

This macro is used to:

application program must include
instructions that do the following:

1. Symbolically define the FWA by (1)
copying the appropriate system

*° Add a new record to an existing data section storage definition

set

(DFHFWADS), and (2) providing a
storage definition for the user's

. Update an existing record that has section of the FHWA.

been retrieved through the DFHFC
TYPE=GET, TYPOPER=UPDATE macro

. Update an existing record in a

2. Establish addressability for the new
FWA by specifying a symbolic base
address for the FWA.

nonkeyed DAM data set without first

reading the record for update.

A DFHFC TYPE=PUT macro must never be
issued without first issuing a DFHFC
TYPE=GET, TYPOPER=UPDATE or DFHFC

3. Place the address of the FWA in
TCAFCAA. For a request to add a new
record, this address is returned %o
the application program by the
preceding DFHFC TYPE=GETAREA

TYPE=GETAREA macro, because the results request. For a request to update or

of such action are unpredictable.
When a VSAM key-sequenced or

relative-record data set is being
processed, a DFHFC

62 CICS/VS Application Programmer's

delete a record, this address is
made available to the application
program in response to the preceding
DFHFC TYPE=GET, TYPOPER=UPDATE
request. It must have been stored

Reference Manual (Macro Level)

by the application program at that
time, and should be moved to TCAFCAA
immediately preceding the DFHFC
TYPE=PUT request, with no
intervening requests that could
cause the contents of TCAFCAA to be
altered.

If the records being written to a data
set are undefined, the length of the
record being written must be placed in
TCAFCURL .

For records written to a variable length
VSAM data set, the length of the record
should be placed in an LLbb field in the
beginning of the record. The field is 4
bytes long, the first 2 bytes containing
the length in binary (including the 4
bytes for the length field) and the last
2 bytes set to binary zeros. This field
is used by CICS to determine the length

of the record and is not written to the
data set.

VSAM does not allow an update operation
on a control interval from which a
record has already been retrieved for
update. If a task attempts to perform
an update operation on such a control
interval before a previous record
already held by the same task is updated
by a DFHFC TYPE=PUT, or before the
update is terminated by a DFHFC
TYPE=RELEASE, the program will go into a
permanent wait.

The programmer who is adding records to
a DAM data set should also refer to "DAM
Data Sets"™ earlier in the chapter.

The following examples show how to
retrieve a record, update it, and return
it to the data set.

ASM:

COPY DFHTCADS
KEYF DS CL38
FWACBAR EQU 7

COPY DFHFWADS
RECORD DS 0CL350

READUPD DFHFC TYPE=GET,

RDIDADR=KEYF

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN THA

ASSIGN BASE REGISTER FOR FHWA
SYMBOLICALLY DEFINE FHWA

RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

READ RECORD FOR UPDATE %*
DATASET=MASTERB, *
RDIDADR=KEYF, *
TYPOPER=UPDATE
L FWACBAR, TCAFCAA ESTABLISH ADDRESSABILITY FOR FWA
. (update record)
ST FWACBAR, TCAFCAA PLACE FWA ADDRESS IN TCA
WRITEUP DFHFC TYPE=PUT, WRITE THE UPDATED RECORD *

Chapter 3.2. File Control (DFHFC Macro) 63

COBOL.:

02 FWACBAR PIC S9(8) COMP.
. ‘ NOTE DEFINE BASE REGISTER FOR FWA.

01 DFHTCADS COPY DFHTCADS. NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
02 KEYF PIC X(3). NOTE DEFINE KEY FIELD IN THA.
01 DFHFWADS COPY DFHFMWADS. NOTE COPY SYMBOLIC STRG DEFN FOR FWA.

02 RECORD PIC X(350). NOTE DEFINE RECORD LAYOUT IN FKA.

PROCEDURE DIVISION.

MOVE CSACDTA TO TCACBAR. NOTE ESTABLISH TCA ADDRESSABILITY.
READUPD.

DFHFC TYPE=GET, READ RECORD FOR UPDATE %
DATASET=MASTERB, %
RDIDADR=KEYF, *
TYPOPER=UPDATE

MOVE TCAFCAA TO FWACBAR. NOTE ESTABLISH FWA ADDRESSABILITY.
. (update record)
NRITEggE.FNACBAR TO TCAFCAA. NOTE MOVE ADDRESS OF FWA TO TCA.

.DFHFC TYPE=PUT, WRITE THE UPDATED RECORD %*

RDIDADR=KEYF
PL/I:
%INCLUDE DFHTCADS:; /%COPY SYMBOLIC STRG DEFN FOR TCA%/
02 KEYF CHAR(8); /¥DEFINE KEY FIELD IN TWAx/
%INCLUDE DFHFWADS:; /%COPY SYMBOLIC STRG DEFN FOR FWAX/
02 RECORD CHAR(350); /%DEFINE RECORD LAYOUT IN FWAx/
READUPD:
DFHFC TYPE=GET, READ RECORD FOR UPDATE b
DATASET=MASTERB, %
RDIDADR=KEYF, %
TYPOPER=UPDATE
FWACBAR=TCAFCAA; /%ESTABLISH ADDRESSABILITY FOR FHAx/
. (update record)
ag?ggﬁé=?NACBAR; /%XPLACE ADDR OF WORK AREA IN TCAx/

H .

DFHFC TYPE=PUT, WRITE THE UPDATED RECORD
RDIDADR=KEYF

64 CICS/VS Application Programmer's Reference Manual (Macro Level)

DIRECT DELETION, VSAM ONLY (TYPE=DELETE)

DFHFC TYPE=DELETE
[, DATASET=symb-namel
[,RDIDADR=symb-addrl]
[,ARGTYP=KEY]
[,SRCHTYP=FKEQ|GKEQ}]
[, NORESP=symb—-addr]
[, ERROR=symb-addr]l
[,DSIDER=symb-addr]
[,NOTFND=symb-addr]
[, INVREQ=symb-addr]
[, I0ERROR=symb~addr]
[,NOTOPEN=symb-addr]
[,ILLOGIC=symb-addr]l

This macro is used to perform the
following functions on KSDS and RRDS
data sets only:

. Delete a single record.

U] Delete a group of records that share
the same partial key; that is where
the first part of the keys is the
same. This is called generic
delete.

To delete a single record, the key must
be placed in an area pointed to by the
RDIDADR operand.

To delete a group of records with the
same partial key, that is where the
first part of the keys is the same, the
partial key must be placed in an area
pointed to by the RDIDADR operand. The
binary length of the key must be placed
in the first byte of the area pointed to
by the RDIDADR operand. SRCHTYP=GKEQ
must be specified.

Neither an FIDA nor an FWA is required
for a delete operation.

Note that a DELETE operation is an
update operation, and therefore the
control interval concerned is held under
exclusive control. Exclusive control is
released either by successful completion
of the DELETE operation, or failing
this, by issuing a DFHFC TYPE=RELEASE
macro.

OBTAIN A FILE WORK AREA (TYPE=GETAREA)

DFHFC TYPE=GETAREA
[, DATASET=symb~name]
[,INITIMG={value]YES2]
[,ARGTYP={KEY|RBA}]12
[, TYPOPER=MASSINSERTI]?
[, NORESP=symb—-addr]
[, ERROR=symb-addr]
[,DSIDER-symb—addrl
[, INVREQ=symb-addrl
[,NOTOPEN=symb-addr]

1 VSAM only

2 ARGTYP is only vali
with TYPOPER= MASSINSERT

This macro is used to obtain an FWA. (A
storage control DFHSC TYPE=GETMAIN
request cannot be used for file
operations.)

CICS performs the following services in
response to a DFHFC TYPE=GETAREA macro:

1. Acquires main storage (an FWA) for
the creation of a new record

2. Includes and initializes the FHA
control fields (a l6-byte prefix to
the FWA) required by file control.

If several new records whose keys are in
ascending sequence are to be added to a
VSAM data set, the TYPOPER=MASSINSERT
operand should be used, in which case,
the FHA is retained and made available
to the application program after each
DFHFC TYPE=PUT macro that adds a record
to the data set.

A mass insert operation is terminated by
a DFHFC TYPE=RELEASE macro. A lockout
condition will occur if more than one
transaction is simultaneously attempting
to perform a mass insert to the same
control interval of a protected data
set. A lockout will occur also if a
transaction uses keys that are not in
ascending sequence.

In a DFHFC TYPE=GETAREA macro, the
ARGTYP operand is only applicable when
TYPOPER=MASSINSERT has been specified.

When the DFHFC TYPE=GETAREA macro is
used, the application program must
include instructions that do the
following:

. Symbolically define the FWA by (1)
copying the appropriate CICS system
section storage definition
(DFHFWADS), and (2) providing a
storage definition for the user's
section of the FWA.

Chapter 3.2. File Control (DFHFC Macro) 65

Establish addressability for the new
FWA by specifying a symbolic base
(The address
of the area involved, returned by

address for the FHWA.

CICS at TCAFCAA, must be placed in
FWACBAR.)

The following examples show how tb get .
an FWA, build a new record in the FHA,
and write that record to a data set.

ASHM:
COPY DFHTCADS
CL3

KEYF DS
FWACBAR EQU 7 -
COPY DFHFWADS
0CL350

RECORD DS

NEWREC DFHFC TYPE=GETAREA,
DATASET=MASTERC
L FWACBAR, TCAFCAA

. (build new record)

ST FWACBAR, TCAFCAA
WRITNEW DFHFC TYPE=PUT,
TYPOPER=NEKREC,
RDIDADR=KEYF

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TKA

ASSIGN BASE REGISTER FOR FHA
SYMBOLICALLY DEFINE FKA

RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

GET ‘AN FWA TO CREATE A NEW *
RECORD FOR A DATA SET
ESTABLISH ADDRESSABILITY FOR FWA

PLACE ADDR OF NEW RECORD IN TCA
WRITE THE NEW RECORD

* X

COBOL:
02 FWACBAR PIC S9(8) COMP.

01 DFHTCADS COPY DFHTCADS.
02 KEYF PIC X(38).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

.

NEWREC.
DFHFC TYPE GETAREA,
DATASET=MASTERC
MOVE TCAFCAA TO FWACBAR.

(buiid new record)

MOVE FWACBAR TO TCAFCAA.
HWRITNENW.
DFHFC TYPE=PUT,
TYPOPER=NEWREC,
RDIDADR=KEYF

NOTE DEFINE BASE REGISTER FOR FHKA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN THA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FKA.

NOTE ESTABLISH TCA ADDRESSABILITY.

OBTAIN A FWA TO CREATE A NEW %
RECORD FOR A DATA SET
NOTE ESTABLISH FWA ADDRESSABILITY.

NOTE ADDRESS OF NEW RECORD TO TCA.
WRITE THE NEW RECORD

* K

66 CICS/VS Application Programmer's Reference Manual (Macro lLevel)

PL/I:

%INCLUDE DFHTCADS;

02 KEYF CHAR(8);
#INCLUDE DFHFHWADS;

02 RECORD CHAR(350);

NEWREC:
DFHFC TYPE=GETAREA,
DATASET=MASTERC
FHACBAR=TCAFCAA;

(build new record)
TCAFCAA=FWACBAR;
WRITNEMW:
DFHFC TYPE=PUT,

TYPOPER=NEWREC,
RDIDADR=KEYF

/%COPY SYMBOLIC STRG DEFN FOR TCA%/
/%DEFINE KEY FIELD IN THAX/

/%COPY SYMBOLIC STRG DEFN FOR FHAX/
/%DEFINE RECORD LAYOUT IN FHAX/

GET AN FWA TO CREATE A NEW *
RECORD FOR A DATA SET
/%ESTABLISH ADDRESSABILITY FOR FWA%/

/%PLACE ADDR OF NEW RECORD IN TCAx/
WRITE THE NEW RECORD

» X

Chapter 3.2. File Control (DFHFC Macro)

67

LEASE STORAGE/ ONTRO
=RELEAS

The syntax of the DFHFC TYPE=RELEASE
macro is as follows:

DFHFC TYPE=RELEASE
[,NORESP=symb—addr]}
[, ERROR=symb-addr]
[, INVREQ=symb~addr]
[, IOERROR=symb-addr]
[,ILLOGIC=symb-addrl?

1 VSAM only

If the storage area to be released
contains a record that has been read for
update (by means of a DFHFC

TYPE=GET, TYPOPER=UPDATE macro), and the
update is no loenger required, this macro
will release the record from exclusive
control as well as free the storage
areas associated with it.

Before the DFHFC TYPE=RELEASE macro is
executed, the address of the FWA, FIOA,
or VSWA to be released must be moved to
TCAFCAA. Any associated areas are also
released.

A mass insert operation on a VSAM data
set (initiated by the TYPOPER=MASSINSERT
operand, followed by DFHFC

TYPE=PUT, TYPOPER=NEWREC macros) is
terminated by a DFHFC TYPE=RELEASE
macro.

A DFHFC TYPE=RELEASE macro should also
be used to release the VSWA established
by CICS in response to a read-only
request for a VSAM data set record
retrieved in locate mode. Failure to
release the VSWA may cause significant
performance degradation or task
suspension if subsequent accesses are
made to the file.

The DFHFC TYPE=RELEASE macro should not
be specified if the DFHFC
TYPE=PUT, TYPOPER=UPDATE macro is used to

perform a successful write of an updated
record back to a data set. Cs
automatically releases all storage
associated with the write operation.
However, if an error condition occurs,
preventing successful completion of the
write, a DFHFC TYPE=RELEASE macro should
be issued to release the storage.

DFHFC TYPE=RELEASE must be issued
whenever a DUPREC, ILLOGIC, IOERROR, or
NOTFND condition occurs, even if UPDATE
is not specified in the GET.

For further details of these conditions,
see "Operands of DFHFC Macro™ on
page 81.

CICS performs the following services in
response to a DFHFC TYPE=RELEASE macro:

. Releases an FWA, FIOA, and/or VSHWA

J Releases a VSAM string, if a VSHA is
released

. Releases exclusive control of a
record retrieved for update (if
applicable).

Note, though, that for a file with
auto-logging specified (by the system
programmer), the resource remains under
the task control enqueue until either a
sync point is issued or end of task is
reached.

There is a limit to the number of VSAM
strings that may be in use at any one
time, determined by the STRNO operand of
the DFHFCT TYPE=DATASET system macro.

If strings are not released when no
longer required, tasks may have to wait
unnecessarily owing to the strings all
being in use.

Any FWAs, FIO0As, VSHWAs, and VSAM strings
acquired during execution of a task are
automatically released at termination of
the task, if not released earlier in
response to a DFHFC TYPE=RELEASE macro.

The following examples show how to
request the release of an FHA.

ASHM:
FWACBAR EQU 7

COPY DFHFWADS
RECORD DS 0CL350

FWACBAR, TCAFCAA
RLSEREC DFHFC TYPE=RELEASE

ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FKWA

RECORD LAYOUT FOLLOWS CONTROL

. FIELD AND HAS SAME BASE REGISTER

ADDRESS OF FWA TO BE RELEASED
IN TCA AND ISSUE RELEASE REQUEST

68 CICS/VS Application Programmer's Reference Manual (Macro Level)

COBOL:

02 FWACBAR PIC 59(8) COMP.

.

01 DFHFWADS COPY DFHFWADS.
02 RECORD PIC X(350).

.

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE FWACBAR TO TCAFCAA.
RLSEREC.
DFHFC TYPE=RELEASE

NOTE DEFINE BASE REGISTER FOR FHA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FHWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE ADDR OF FWA TO BE RELEASED.
ISSUE RELEASE REQUEST

PL/1:
%INCLUDE DFHTCADS;

%INCLUDE DFHFWADS;
02 RECORD CHAR(350);

TCAFCAA=FWACBAR;
RLSEREC:
DFHFC TYPE=RELEASE

/%COPY SYMBOLIC STRG DEFN FOR TCAX/

/%COPY SYMBOLIC STRG DEFN FOR FWAx/
/%DEFINE RECORD LAYOUT IN FWAX/

/%ADDRESS OF FWA TO BE RELEASEDx/
ISSUE RELEASE REQUEST

INITIATE BROWSE (TYPE=SETL)

This macro is used to establish the

[,

L,
L,
L,
L,
L,
[,
(,
[,
L,
L,
[,
L,
L,

DFHFC TYPE=SETL

DATASET=symb-name]
RDIDADR=symb-addr]
RETMETH={RELREC|KEY} 12
ARGTYP={KEY|RBA}]12
SRCHTYP=

{FKEQI FKGE|GKEQ|GKGE}12
MODE={MOVE | LOCATE}12
NORESP=symb-addr1l
ERROR=symb-addr]
DSIDER=symb-addr]
NOTFND=symb-addr]
INVREQ=symb-addr]l
I0ERROR=symb-addr]
NOTOPEN=symb-addr]
ILLOGIC=symb-addrl?

1 DAM only
2 VSAM only

position within the data set where the
browse operation is to begin. It must
be issued before any DFHFC TYPE=GETNEXT
macro; however, no data is available
until a DFHFC TYPE=GETNEXT is used.

The starting point within a data set for
a browse operation is identified by a
record identification field established
for the data set. See "Record
Identification Field"™ on page 53.

For a DAM data set, the record
identification field must contain a
block reference (for example, TTR or
MBBCCHHR) that conforms to the
addressing method defined for that data
set. Processing begins with the
specified block and continues with each
subsequent block until the browse
operation is terminated. If the data_
set contains blocked records, processing
begins at the first record of the first
blockdand continues with each subsequent
record.

Chapter 3.2. File Control (DFHFC Macro) 69

For a VSAM data set, the contents of the
record identification field may be a
key, a relative byte address, or a
relative record number. If the field
contains a relative byte address, the
browse begins at the specified address.
If the field contains a key, it may be
either specific or generic. If the key
is generic, the length of the partial
key is specified in the first byte of
the record identification field.

In either case, the application program
can specify that the browse operation is
to begin at the first record having a
key that is:

. Equal to the key in the record
identification field (for generic,
compared on only the number of bytes
specified), or

] Equal to or greater than the key in
the record identification field
(again, for generic, compared on
only the bytes specified).

When the DFHFC TYPE=SETL macro is used,
the application programmer must provide
instructions that do the following:

. Symbolically define the FWA by (1)
copying the appropriate CICS system
section storage definition
(DFHFWADS), and (2) providing his
own storage definition for the
user's section of the FHWA.

. Establish addressability for the FWA
by specifying a symbolic base
address for the FWA, typically
following the DFHFC macro. (The
address of the FWA, provided by CICS
at TCAFCAA, must be placed at
FWACBAR upon normal return from
execution of the SETL macro.)

In most cases, records retrieved during
a browse operation are returned to the
application program in a FWA. However,
in locate mode the addresses of the
record are passed in the VSWA. The FHWA
allocated by CICS following a SETL
request is unique for the duration of
that particular browse operation. If
the application program issues another
SETL request, for the same or another
data set, a different FWA is created by
CICS. Thus it is possible for a single
application program to concurrently
browse the same data set at several
different locations.

CICS performs the following services in
response to a DFHFC TYPE=SETL macro:

1. Acquires the main storage I/0 areas
and work areas to be associated with
this browse operation

2. Returns the address of the allocated
FWA in TCAFCAA for other than
locate-mode VSAM data set
processing; returns the address of
the allocated VSWA that will contain
the VSAM buffer-area address of each
retrieved record for locate-mode
VSAM data set processing.

The information supplied by the user in
the record identification field is
preserved by CICS for use when GETNEXT
requests are issued. Since CICS places
into this field the identification of
each record retrieved in response to a
subsequent GETNEXT request, the field
should not be released by the
application progran.

The information placed into the record
identification field by CICS is always
in a form that completely identifies the
record. For example, assume a browse
operation is to start with the first
record of a blocked, keyed DAM data set.
Before issuing the DFHFC TYPE=SETL
macro, the application programmer should
place the TTR (assuming that is the
addressing method) of the first block
into the record identification field.
After executing each DFHFC TYPE=GETNEXT
macro, CICS places the complete record
identification into the record
identification field. After the first
GETNEXT, the record identification field
might contain

X'0000010504"

where 000001 represents the TTR value,
05 represents the block key, and 04
represents the record key.

As another example, if the application
program is browsing a blocked, nonkeyved
DAM data set and the second record from
the second physical block on the third
relative track is read in response to a
GETNEXT request, the record
identification field contains

X'00020201°

upon return to the application program,
where 0002 represents the track, 02
represents the block, and 01 represents
the record within the block.

The following examples show how to
initiate a browse operation.

70 CICS/VS Application Programmer's Reference Manual (Macro Level)

ASM:
COPY DFHTCADS
CL8

KEYF DS
FWACBAR EQU 7
COPY DFHFWADS
RECORD DS 0CL350
CSECT
MVC KEYF(5),=C'JONES'

XC KEYF+5(3),KEYF+5

DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF,
NOTOPEN=ERROR

L FWACBAR, TCAFCAA

START

ERROR DS OH

COPY TCA SYMBOLIC STORAGE DEFN

ASSIGN BASE REGISTER FOR FHA
DEFINE SYSTEM SECTION OF FKWA
RECORD LAYOUT

INITIALIZE KEY FIELD
INITIATE BROWSE

M XK XK

GO TO ERROR LABEL IF ERROR
ESTABLISH ADDRESSABILITY FOR FHWA

ENTRY TO ERROR ROUTINE

COBOL:
02 FWACBAR PIC S9(8) COMP.

01 DFHTCADS COPY DFHTCADS.
02 KEYF PIC X(8).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE 'JONES' TO KEYF.

START.
DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF,
NGTOPEN=ERROR
MOVE TCAFCAA TO FKWACBAR.

ERROR.

NOTE DEFINE BASE REGISTER FOR FWA.
NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN THA.

NOTE COPY SYMBOLIC STRG DEFN FOR FHKA.
NOTE DEFINE RECORD LAYOUT IN FHWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

INITIATE BROWSE

X K K

GO TO ERROR LABEL IF ERROR

Chapter 3.2. File Control (DFHFC Macro)

71

PL/1:

%INCLUDE DFHTCADS;
02 KEYF CHAR(3);

%INCLUDE DFHFWADS;
02 RECORD CHAR(350);

KEYF='JONES';

START:
DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF,
NOTOPEN=ERROR
FWACBAR=TCAFCAA;

ERROR:

.

/%COPY SYMBOLIC STRG DEFN FOR TCAx/

/%COPY SYMBOLIC STRG DEFN FOR FHWAx/
/%DEFINE RECORD LAYOUT IN FWAX/

INITIATE BROWSE

GO TO ERROR LABEL IF ERROR

* K XK

. FORWARD BROWSE (TYPE=GETNEXT)

DFHFC TYPE=GETNEXT
[, DUPKEY=symb-addr]?
[, NORESP=symb-addr]
[, ERROR=symb-addr]
[,NOTFND=symb-addr]
[, INVREQ=symb-addr]
[, I0ERROR=symb-addr]
[,NOTOPEN=symb-addr]
[,ENDFILE=symb-addr]
[,ILLOGIC=symb-addr]

1 VSAM only

This macro can also be used to perform
skip-sequential processing upon a VSAM
data set. After a DFHFC TYPE=SETL macro
has been issued to initiate a browse,
the next (or first) record in ascending
sequence can be obtained by issuing the
DFHFC TYPE=GETNEXT macro. For a DAM
data set, CICS acquires the first record
specified by the user. Each subsequent
GETNEXT request causes CICS to acquire
the next record in ascending sequence.

When VSAM is used, a browse operation
can be specified to begin at a
particular relative byte location or
with a record identified by a key. In
the former case, the first GETNEXT
request retrieves that record. Each
succeeding GETNEXT retrieves the next
record in ascending sequence.

If a key is specified for a VSAM data
set, it may be either specific or
generic, and the application programmer
can specify that the search begin (1) at

a record having a key equal to the
specific or generic key, or (2) at a
record having a key equal to or greater
than the specific or generic key. The
effects of GETNEXT macros are as
described below.

Before issuing the DFHFC TYPE=GETNEXT
macro, the application programmer must
place the address of the FWA associated
with the particular operation in
TCAFCAA. If the application program has
initiated multiple browse operations, it
must keep track of the FWA associated
with each operation and refer to a
specific FWA when requiring services
related to that browse. Similar
requirements apply to the address of a
specific VSWA in locate-mode processing
of VSAM records.

CICS performs the following services in
response to a DFHFC TYPE=GETNEXT macro
referring to a VSAM or DAM data set:

1. Retrieves the next sequential record
and places it in the FWA specified
by the user at TCAFCAA

2. Places the identification (key,
block identification, or the like)
of the record just retrieved into
the record identification field
specified in the DFHFC TYPE=SETL
request initiating the browse.

If the user issues a DFHFC

TYPE=GET, TYPOPER=UPDATE request on the
record returned in response to a DFHFC
TYPE=GETNEXT request, the address of the
record identification field can be
specified in the DFHFC TYPE=GET request.
The update operation cannot be processed
immediately following the GETNEXT macro.
The browse must first be completed.

72 CICS/VS Application Programmer's Reference Manual (Macro Level)

The first DFHFC TYPE=GETNEXT macro
referring to a VSAM data set retrieves
the record located in response to the
DFHFC TYPE=SETL macro initiating the
browse. 0On a subsequent GETNEXT, CICS
checks the contents of the record
identification field set aside for
records of the data set. If this field
contains the identifier of the record
previously received, CICS retrieves the
next logical record in sequence and
places the identifier of that record in
the record identification field.
Sequential retrieval such as described

| above for DAM data sets then occurs.

It is possible, however, when using VSAM
data sets, for the application
programmer to utilize skip-sequential
processing. All that is needed is to
place the identification of the next
record desired into the record
identification field before issuing a
GETNEXT macro. If, upon checking this
field, CICS determines that its contents
have been changed by the application
program, CICS accesses the record having
the identification currently stored in
the record identification field. This
record need not be the next sequential
record in the data set. Skip-sequential

processing is available only for VSAM
data sets.

When VSAM skip-sequential processing is
used, the record identification placed
in the record identification field
before issuing the GETNEXT request must
be of the same form as that specified in
the SETL or last RESETL request for this
browse operation. That is, if the SETL
or last RESETL specified a generic key,
then the new record identification must
be a generic key. It need not be the
same length as that specified in the
SETL or last RESETL. If the SETL or
last RESETL specified an RBA, the new
identification must be an RBA. Note
that if the SETL or last RESETL
specified an equal search (FKEQ or
GKEQ), a GETNEXT request using
skip-sequential processing may result in
a NOTFND (record not found) condition.

If the NOTFND condition occurs during a
browse operation, the application
program must issue either a RESETL macro
to reset the browse or an ESETL macro to
terminate the browse. Both these macros
are discussed later in the chapter.

The following examples show how to
initiate a browse operation and retrieve

| successive records from the data set.

ASM:

COPY DFHTCADS
KEYF DS 8X
FWACBAR EQU 7

COPY DFHFWADS
RECORDA DS 0CL350

CSECT
MVC KEYF(8),=8X"'00"
INITIAL DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF
L FWACBAR, TCAFCAA

.

ST FWACBAR, TCAFCAA
DFHFC TYPE=GETNEXT
L FHACBAR, TCAFCAA

.

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN THA

ASSIGN FWA BASE REGISTER

COPY CICS CONTROL SECTION OF FWA
DEFINE RECORD LAYOUT IN FHWA.

START AT BEGINNING OF DATA SET

INITIATE BROHWSE %*

ESTABLISH FWA BASE REGISTER

RESTORE FWA ADDRESS
GET NEXT SEQUENTIAL RECORD
ASSURE ADDRESSABILITY

Chapter 3.2. File Control (DFHFC Macro) 73

COBOL.:
02 FWACBAR PIC S9(3) COMP.

01 DFHTCADS COPY DFHTCADS.
02 KEYF PIC S9(18) COMP.

.

01 DFHFWADS COPY DFHFWADS.
02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE 0 TO KEYF.

INITIAL.
DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF
MOVE TCAFCAA TO FWACBAR.

.

MOVE FWACBAR TO TCAFCAA.
DFHFC TYPE=GETNEXT
MOVE TCAFCAA TO FWACBAR.

NOTE DEFINE BASE REGISTER FOR FHWA.
NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN THA.

NOTE COPY SYMBOLIC STRG DEFN FOR FHWA.
NOTE DEFINE RECORD LAYOUT IN FKWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE START AT BEGINNING OF DATA SET.

INITIATE BROWSE

NOTE ESTABLISH FWA ADDRESSABILITY.

GET NEXT SEQUENTIAL RECORD.

* K

764 CICS/VS Application Programmer's Reference Manual (Macro Level)

PL/I:

%INCLUDE DFHTCADS;
02 KEYF CHAR(8);

.

%INCLUDE DFHFWADS;
02 RECORD CHAR(350);

.

KEYF=LOMW(8);

FHACBAR=TCAFCAA;

-

TCAFCAA=FWACBAR;
DFHFC TYPE=GETNEXT
FWACBAR=TCAFCAA;

/%COPY SYMBOLIC STRG DEFN FOR TCA*/
/%XDEFINE KEY FIELD IN THWAX/

/%COPY SYMBOLIC STRG DEFN FOR FMWAx/
/XDEFINE RECORD LAYOUT IN FWAX%/

/%START AT BEGINNING OF DATA SETx/

INITIAL:
DFHFC TYPE=SETL, INITIATE BROWSE %
DATASET=MASTER, 3
RDIDADR=KEYF

/%ESTABLISH FWA ADDRESSABILITYX%/

GET NEXT SEQUENTIAL RECORD

BACKWARD BROWSE, VSAM AND ASSEMBLER

LANGUAGE ONLY (TYPE=GETPREV)

DFHFC TYPE=GETPREV
[, DUPKEY=symb-addr]
[,NORESP=symb-addr]}
[, ERROR=symb-addr]
[,NOTFND=symb-addr]
[, INVREQ=symb-addr]l
[, IOERROR=symb-addr]
[,NOTOPEN=symb-addr]
[,ENDFILE=symb-addr]
[,ILLOGIC=symb~addr]

After a DFHFC TYPE=SETL macro has been
issued to initiate a browse operation,
the next (or first) record in descending
sequence can be obtained by issuing the
DFHFC TYPE=GETPREV macro.

A browse operation can be specified to
begin at a particular relative byte
location or with a record identified by
a key. In the former case, the first
GETPREV request retrieves that record.
Each succeeding GETPREV retrieves the
next record in descending sequence.

If a key is specified for a VSAM data
set, it must be specific, and the
application programmer can specify that
the search begin at a record having a
key equal to the specified key. The

effects of GETPREV macros are as
described below.

Before issuing the DFHFC TYPE=GETPREV
macro, the application programmer must
place the address of the FWA associated
with the particular operation in
TCAFCAA. If the application program has
initiated multiple browse operations, it
must keep track of the FWA associated
with each operation and refer to a
specific FHA when requiring services
related to that browse. Similar
requirements apply to the address of a
specific VSHA in locate-mode browsing of
VSAM records.

CICS performs the following services in
response to a DFHFC TYPE=GETPREV macro
referring to a VSAM data set:

1. Retrieves the next record in
descending sequence and places it in
the FWA specified by the user at
TCAFCAA

2. Places the identification (key, or
relative byte address) of the record
just retrieved into the record
identification field specified in
the DFHFC TYPE=SETL request
initiating the browse.

If the user issues a DFHFC

TYPE=GET, TYPOPER=UPDATE request on the
record returned in response to a DFHFC
TYPE=GETPREV request, the address of the
record identification field can be

specified in the DFHFC TYPE=GET redquest.

Chapter 3.2. File Control (DFHFC Macro) 75

The update operation cannot be processed
immediately following the GETPREV macro.
The browse must first be completed.

The first DFHFC TYPE=GETPREV macro
retrieves the record located in response
to the DFHFC TYPE=SETL macro initiating
the browse. On a subsequent GETPREV,
CICS checks the contents of the record
identification field set aside for
records of the data set. If this field
contains the identifier of the record
previously received, CICS retrieves the
next logical record in sequence and
places the identifier of that record in
the record identification field.

If the DFHFC TYPE=GETPREV macro is
issued following a DFHFC TYPE=SETL macro
using a generic key, an invalid request

ERMINAT ROWSE PE=ESETL)

DFHFC TYPE=ESETL
[,NORESP=symb-addr]
[, ERROR=symb-addr]
[, INVREQ=symb-addr]
[,ILLOGIC=symb-addrl?

1 ySAM only

Before this macro is issued, the
programmer must ensure that TCAFCAA
contains the address of the FWA
associated with the browse operation he
wishes to terminate.

] will be indicated.
When locate—mode processing of VSAM
records is used, TCAFCAA must contain
the address of the VSHWA associated with
the browse operation being terminated.
In response to an ESETL request, CICS
releases all 1/0 and work areas
associated with the browse operation.

The following examples show how to end
two concurrent browse operations.

ASM:

COPY DFHTCADS
FWACELL1 DS A
%

;NACELLZ DS A

FWACBAR EQU 7
COPY DFHFWADS
RECORD DS

COPY TCA SYMBOLIC STRG DEFN
CONTAINS ADDR OF FWA USED

FOR FIRST BROWSE OPERATION
CONTAINS ADDR OF FWA USED

FOR SECOND BROWSE OPERATION
ASSIGN FWA BASE REGISTER

DEFINE FWA SYMBOLIC STORAGE DEFN

0CL350 DEFINE RECORD

CSECT

MVC TCAFCAA,FWACELL1
DFHFC TYPE=ESETL
MVC TCAFCAA,FCACELL2
DFHFC TYPE=ESETL

MOVE BROWSE 1 FWA ADDR TO TCA
ISSUE ESETL MACRO INSTRUCTION
MOVE BROWSE 2 FWA ADDR TO TCA
ISSUE ESETL MACRO INSTRUCTIGN

76 CICS/VS Application Programmer's Reference Manual (Macro Level)

COBOL:
02 FWACBAR PIC S9(8) COMP.

01 DFHTCADS COPY DFHTCADS.
02 FWACELL1 PIC S9(8) COMP.
02 FWACELL2 PIC S9(8) COMP.
01 DFHFWADS COPY DFHFWADS.
62 RECORD PIC X(350).

MOVE FWACELL1 TO TCAFCAA.
DFHFC TYPE=ESETL

MOVE FWACELL2 TO TCAFCAA.
DFHFC TYPE=ESETL

NOTE DEFINE BASE REGISTER FOR FHWA.
NOTE COPY SYMBOLIC STRG DEFN FOR TCA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FHA.

NOTE PREPARE TO END FIRST BROWSE.
TERMINATE FIRST BROWSE.

NOTE PREPARE TO END 2ND BROMWSE.
TERMINATE SECOND BROWSE.

PL/I:

%INCLUDE DFHTCADS;
02 FWACELL1 POINTER;
02 FWACELLZ2 POINTER;

%INCLUDE DFHFWADS;
02 RECORD CHAR(350);

TCAFCAA=FWACELL1;

DFHFC TYPE=ESETL
TCAFCAA=FHWACELLZ;

DFHFC TYPE=ESETL

7%COPY SYMBOLIC STRG DEFN FOR TCAx/

/%COPY SYMBOLIC STRG DEFN FOR FHAX/
/%DEFINE RECORD LAYOUT IN FHAx/

/%MOVE BROWSE1 FWA ADDR TO TCAx/
/%¥MOVE BROWSE2 FWA ADDR TO TCAx/

RESET BROWSE (TYPE=RESETL]

| For a VSAM data set, the type of search
argument used in retrieving records can

DFHFC TYPE=RESETL
[,ARGTYP={KEY|RBA}]?

SRCHTYP=

{FKEQ| FKGE | GKEQ|GKGE} 1?

TYPE=RESETL macro.

should place the address of the

also be reset by issuing the DFHFC
Prior to issuing the
request, the application programmer

appropriate FWA into TCAFCAA and the new
record identification in the record

’
» NORESP=symb-addr1
» ERROR=symb-addr]

» NOTFND=symb-addr]
» INVREQ=symb-addr]
» I0ERROR=symb-addr]l
» NOTOPEN=symb-addr]
>

ILLOGIC=symb-addrl]?
1 VSAM only

[
L
L
L
[
[
[
[

identification field specified in the
original SETL request.

The use of the RESETL macro allows the
application programmer to avoid issuing
an ESETL request followed by another
SETL request, and causes CICS to use the
same I/0 and work area. Upon return
from the RESETL request, TCAFCAA

contains the address of a new FWA that
the user can use for the browse
operation.

The RESETL request allows the user to
"skip"™ through his data set in a browse
operation with ease. A similar
capability is available to VSAM users
through the GETNEXT macro.

Once a browse operation has been
initiated, the application programmer
may, at any time before issuing an ESETL
macro for the browse, reset the search
argument to some record other than the
next sequential record in the data set.

Chapter 3.2. File Control (DFHFC Macro) 77

A browse operation should be ended by

issuing a TYPE=ESETL macro, but a normal

gr abnormal end of task will also end a
rowse.

If browsing in backward mode (GETPREV)
and a request is made to reposition the
browse (RESETL), VSAM requires that a

If the
NOTFND w111 be

specific key is used.
supplied does not exist,
returned.

The following examples show how to reset
the search argument for a browse
operation.

ASM:
COPY DFHTCADS
KEYF DS D
FWACBAR EQU 7
COPY DFHFWADS
RECORD1 DS QCL350
ORG RECORD1
RECORD2 DS 0CL250
CSECT
MVC KEYF(8),=8X"00"
DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF
L FWACBAR, TCAFCAA
ST FWACBAR, TCAFCAA
MVC KEYF(8),=CL8"'SMITH®
DFHFC TYPE=RESETL
L FHACBAR, TCAFCAA

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN FWA BASE REGISTER
COPY FWA DSECT

DEFINE RECORD

DEFINE RECORD

INITIALIZE KEY FIELD

ISSUE INITIAL SETL MACRO
FOR DATA SET "MASTER" B
INIT SEARCH ARG=0

ESTABLISH ADDRESSABILITY TO FWA

STORE FWA ADDR IN TCA

ESTABLISH NEN SEARCH ARGUMENT
ISSUE RESETL M

ESTABLISH ADDRESSABILITY TO FWA

78 CICS/VS Application -Programmer's Reference Manual (Macro Level)

COBOL:

01

0l

01

02 FWACBAR PIC 59(8) COMP.

DFHTCADS COPY DFHTCADS.

02 KEYF PIC S9(18) COMP.

02 FILLER REDEFINES KEYF.
03 KEYC PIC X(8).

DFHFWADS COPY DFHFWADS.
02 RECORD1 PIC X(350).

DFHFWA REDEFINES DFHFWADS.
02 FILLER PIC X(16).
02 RECORD2 PIC X(250).

MOVE 0 TO KEYF.

DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF

MOVE TCAFCAA TO FWACBAR.

MOVE FWACBAR TO TCAFCAA.
MOVE YSMITH' TO KEYC.
DFHFC TYPE=RESETL

MOVE TCAFCAA TO FWACBAR.

NOTE DEFINE BASE REGISTER FOR FHWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FHWA.
NOTE DEFINE RECORD.

NOTE CREATE STRG DEFN FOR FHWA.
NOTE LENGTH OF FWA.
NOTE DEFINE RECORD.

ISSUE INITIAL SETL MACRO INSTR %
FOR _DATA SET "MASTER™ *
INITIAL SEARCH ARG=0

NOTE ESTABLISH ADDRESSABILITY TO FWA.

NOTE STORE FWA ADDRESS IN TCA.

NOTE ESTABLISH NEW SEARCH ARGUMENT.
ISSUE RESETL MACRO

NOTE ESTABLISH ADDRESSABILITY TO FWA.

PL/I:
%INCLUDE DFHTCADS;

02 KEYF CHAR(3);

%INCLUDE DFHFWADS;

DECLARE 01 DFHXFWA BASED(FWACBAR),

02 RECORD1 CHAR(350);

02 FILL CHAR(16),
02 RECORD2 CHAR(250);

KEYF=LOW(8);

DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF

FWACBAR=TCAFCAA;

TCAFCAA=FWACBAR;
KEYF='SMITH';

DFHFC TYPE=RESETL

FWACBAR=TCAFCAA;

/%COPY SYMBOLIC STRG DEFN FOR TCAx/
/%DEFINE KEY¥%/

/%COPY SYMBOLIC STRG DEFN FOR FHAx/
/%DEFINE RECORDx%/

/%LENGTH OF FWAx/
/%DEFINE RECORDx~/

/%SET KEY VALUE T0 ZEROX/

ISSUE INITIAL SETL MACRO INSTR *
FOR DATA SET "MASTER"™ *
INITIAL SEARCH ARG EQUALS ZERO
/%ESTABLISH ADDRESSABILITY FOR FNAX/

/%STORE FWA ADDR IN TCAx/
/%ESTABLISH NEW SEARCH ARGUMENTX/
ISSUE RESETL

/%XESTABLISH ADDRESSABILITY TO FWAx/

Chapter 3.2. File Control (DFHFC Macro)

79

TEST RESPONSE TO A REQUEST FOR FILE
SERVICES (TYPE=CHECK)

DFHFC TYPE=CHECK
[, NORESP=symb-addr]
[, ERROR=symb-addr]
[,DSIDER=symb-addrl
[,NOTFND=symb-addr]
[, DUPKEY=symb-addr]?
[, DUPREC=symb-addr]
[, INVREQ=symb-addrl
[, I0ERROR=symb-addrl
[,NOSPACE=symb-addr]
[,NOTOPEN=symb-addr]
[, ENDFILE=symb-addr]
[,ILLOGIC=symb~addrl?

1 VSAM only

EILE CONTROL RESPONSE CODES

To test a response code the application
programmer must know the CICS response
codes and their meanings, and the

symbolic labels by which he can refer to

§hf response codes. These are shown
elow.

In an assembler language or PL/I program
the response code is in TCAFCTR; in a
COBOL program it is in TCAFCRC.

Condition Response Code

Name ASM COBOL PL/1
NORESP XTo0" LOW-VALUES 00000000
ERROR -X'00' -LOW-VALUES -00000000
DSIDER X'o1r* 12-1-9 00000001
ILLOGIC Xro2°* 12-2-9 00000010
INVREQ X'08°* 12-8-9 00001000
NOTOPEN xtoc* 12-4-8-9 00001100
ENDFILE X*OF* 12-7-8-9 00001111
IOERROR Xr30"* 12-0-1-8 10000000
NOTFND? X'81" 12-0-1 10000001
DUPREC Xxrg2r 12-0-2 10000010
NOSPACE? X'83' 12-0-3 10000011
DUPKEYS3 X'84" N/7A N/A

1 NOTFND for GETNEXT, GETPREV, RESETL,
or SETL can occur only for VSAM
data sets.

2 NOSPACE can occur only when
TYPOPER=NEWREC or TYPOPER=UPDATE is
specified.

3 VSAM and assembler language only.

The multipunch codes in COBOL commonly
correspond to unprintable characters.

In these cases, the response code can be
evaluated by referring to the condition
names generated by CICS (for example,
FCNORESP), as shown in the examples at
the end of this discussion.

The operands that can be used to request
tests of the response to a request for
file services (that is, a DFHFC macro)
are identified in the discussions of the
macro formats. The condition expressed
by each keyword is explained in detail
and should be referred to by the
application programmer when using any of
the checking methods described above.

When certain conditions (for example,
NOTFND, IOERROR, or DUPREC) occur, the
FIOA, FWA, or VSWA that has been
acquired for the file control request,
is retained. Its address is available
to the application program. Before
other file control requests are issued,
the storage occupied by the FIOA or VSHA
should be freed by a DFHFC TYPE=RELEASE
macro. When the conditions DSIDER,
INVREQ, or NOTOPEN occur no storage
areas are acquired for the associated
file control request.

The following examples show how to
examine the response code provided by
CICS at TCAFCTR (for assembler language
or PL/I) or TCAFCRC (for COBOL) and
transfer control to an appropriate user
written error handling routine. The
alternative approach available to COBOL
programmers is also shown.

ASHM
DFHFC TYPE=GET,DATASET=MASTER,

RDIDADR=KEYF
CLI TCAFCTR,X'00"

BE GOOD
CLI TCAFCTR,X'80"
BE ERROR
CLI TCAFCTR,X'08"
BE ERROR

GOOD DS OH

ERROR DS OH
DFHPC TYPE=ABEND

COBOL

DFHFC TYPE=GET, DATASET=MASTER,
RDIDADR=KEYF

IF TCAFCRC=LOW-VALUES GO TO GOOD

IF TCAFCRC=" ' GO TO ERROR.

IF TCAFCRCY=' ' GO TO ERROR.

G00D.

ERROR.
DFHPC TYPE=ABEND

80 CICS/VS Application Programmer's Reference Manual (Macro Level)

where the value specified within single
quotation marks is an unprintable
multipunch code for the required

hexadecimal value.

For example, X'80'

has a multipunch code of 12-0-1-8.

The alternativé approach to response

code

checking, that is available to

COBOL programmers as described earlier,
is generally a coding convenience and
provides concise code documentation.

When

this approach is used, the IF

statements above are replaced by
statements of the form shown below,
using the CICS generated condition
names:

PL/1

GOOD:

IF FCNORESP THEN GO TO GOOD.
IF FCIOERROR THEN GO TO ERROR.
IF FCINVREQ THEN GO TO ERROR.

.

DFHFC TYPE=GET, DATASET=MASTER,
RDIDADR=KEYF

IF TCAFCTR='00000000°B

THEN GO TO GOOD;

IF TCAFCTR='10000000"'B

THEN GO TO ERROR;

IF TCAFCTR='00001000'B

THEN GO TO ERROR;

ERROR:

DFHPC TYPE=ABEND

OPERANDS OF DFHFC MACRO

ARGTYP=

(VSAM only)
describes the contents of the
record identification field.

KEY
indicates that the record
identification field contains
a search key or a relative
record number.

RBA
indicates that the record
identification field contains
a relative byte address.

In a DFHFC TYPE=GETAREA macro, this
operand can only be used when
TYPOPER=MASSINSERT is also
specified. It describes the record
identification fields of the
records to be mass inserted by
DFHFC TYPE=PUT macros. HWhen used
in a mass insert operation, this
operand cannot be overridden.

DATASET=symb-name

specifies the name of the file to
be accessed. The name must appear
in the file control table (FCT).

DUPKEY=symb-addr

If this operand is omitted, the
name is assumed to be in TCAFCDI.

This name corresponds to the file
name in the DLBL job control
statement, which identifies the
data set.

DSIDER=symb~-addr

specifies the entry label of the
user-written routine to which
control is to be passed if the file
name specified by the DATASET
operand (or at TCAFCDI) cannot be
located in the FCT. The contents
of TCAFCAA are not meaningful.

(VSAM only)
specifies the entry label of the
user-written routine to which
control is to be passed if the
duplicate key condition is raised.
This condition indicates that a
record has been retrieved but that
there are other records in the data
set that have the same key. These
records can be retrieved by a
browse.

This condition can occur when a
record is retrieved via an
alternate index with the
NONUNIQEKEY attribute, and another
alternate index record with the
same key follows. It does not
occur as a result of a TYPE=GETNEXT
macro that reads the last of the
records having the nonunique key.

DUPREC=symb-addr

specifies the entry label of the
user-written routine to which
control is to be passed if an
attempt is made to add a record
either to a data set, or to an
alternate index with the UNIQUEKEY
attribute, in which the same key
already exists.

TCAFCAA contains the address of a
VS?A if the PUT is for a VSAM data
set.

The FWA will be released by the
file control program. After
interrogation of the FIOA or VSKHA
returned is complete, the program
should issue a DFHFC TYPE=RELEASE
macro.

ENDFILE=symb-addr

specifies the entry label of the
user-written routine to which
control is to be passed if an
end-of-file condition is detected
during the sequential retrieval
(browse) of records in a data set.
This condition can occur in
response to a GETNEXT, GETPREV, or
CHECK request. TCAFCAA contains
the address of the FWHA for the
browse operation if move mode is
specified or implied in the SETL
request. TCAFCAA contains the

Chapter 3.2. File Control (DFHFC Macro) &1

ILLOGIC=symb-addr

address of the VSWA that represents
the browse if locate mode is
specified.

ERROR=symb-addr

specifies the entry label of the
user-written routine to which
control is to be passed if any
error occurs on a file operation.
The CICS response code should be
further interrogated in this
user-written routine.

(VSAM only)
specifies the entry label of the
user-written routine to which
control is to be transferred if an
error that does not fall within one
of the other CICS response
categories occurs. TCAFCAA
contains the address of a VSHA.

The user's routine may check the
logical error codes in the RPL that
is at VSWARPL. The error code is
at VSWAERRC, and the return code is
at VSWARTNC.

After interrogation of the area
returned, the program should issue
a DFHFC TYPE=RELEASE macro.

INITIMG=

specifies a l-byte (2-digit)
hexadecimal initialization value
for the FKWA.

value
is a 2-digit hexadecimal
numeral to be used as the
initialization value.

YES
indicates that the hexadecimal
initialization value has been
placed in TCASCIB.

If this operand is omitted, the FWA
%§'23%§ialized to EBCDIC blanks

INVREQ=symb-addnr

specifies the entry label of the
user-written routine to which
control is to be passed if the
attempted file operation is not
provided for or allowed according
to the file entry specificatian in
the FCT, or if the FHWA is
corrupted.

TCAFCAA contains X'08' in byte 0,
and the following in bytes 1-3:

. A nonzero value if the request
is not allowed according to the
FCT entry for the file.

. Zero if the request is invalid
or if the code to support the
request has not been generated
into the FCT.

IOERROR=symb=-addr

specifies the entry label of the
user-written routine to which
control is to be passed if an
input/output error occurs during a
file operation. MWhen an I/0 event
error code is not covered by one of
the CICS error classes (for
example, by NOSPACE or NOTFND), it
is considered to be an I/0 error.

TCAFCAA contains:

. The address of an FIOA if the
re:uest is against a DAM data
se

o The address of a VSWA if the
reguest is against a VSAM data
set.

The application programmer should
be aware of the following
considerations:

. For a DAM data set, a user
routine may check for error
codes in the FIOA: in field
FCFIOBEX for CICSs/0S/VS or in
field FCIOERR for CICS/DOS/VS.
Because of access method and
operating system dependencies,
checks for these codes may have
a limiting effect on the
usability of an application
program in varying
environments, particularly if
migration from CICS/DOS/VS to
CICS/0S/VS becomes desirable.

. For a VSAM data set, the error
codes may be checked in the
request parameter list (RPL)
located at VSWARPL. The error
code is at VSWAERRC, and the
return code is at VSWARTNC.
Because of access method and
operating system dependencies,
checks for these codes may have
a limiting effect on the
usability of an application
program in varying
environments, particularly if
migration from CICS/D0OS/VS to
CICS/0S/VS becomes desirable.

. For RESETL or GETNEXT the
browse operation is still
active, but the position in the
data set may have been lost. A
RESETL using the record
identification for the next
record required should be
issued to reestablish the
position in the data set. If
move mode is specified or
implied in the initiating SETL
request, the FWA representing
the browse operation must be
used for the RESETL; if locate
mode is specified in the SETL
request, the VSWA must be used.

82 CICS/VS Application Programmer's Reference Manual (Macro Level)

MODE=

NORES

. For PUT, the FWA will have been
released.

Except for RESETL or GETNEXT,
after any interrogation of the
area returned is complete, the
program should issue a DFHFC
TYPE=RELEASE macro.

{VSAM only)
is used to specify the processing
mode for a read-only or browse
request.

MOVE
specifies move-mode
processing. Upon return to
the application progranm,
TCAFCAA contains the address
of the FWA acquired for the
read-only or browse operation.
If the data set referred to
contains variable-length
records, the LLbb length field
is included as part of the

record.

LOCATE
specifies locate-mode
processing. Upon return to

the application program,
TCAFCAA contains the address
of a VSWHA. The address of the
retrieved record is at
VSWAREA. If the data set
referred to contains
variable-length records, the
LLbb length field is not
retrieved as part of the
record; instead, the length of
the record is placed in
VSWALEN. This parameter
cannot be specified if
TYPOPER=UPDATE is specified.

P=symb-addnr

specifies the entry label of the
user-written routine to which
control is to be passed if no error
occurs on a file operation, that
is, a normal response.

The field TCAFCAA in the TCA of the
task contains:

o The address of an FIOA after a
read only GET against an
unblocked non-VSAM data set or
a blocked DAM data set if
deblocking is not requested

[The address of an FWA after a
GET against a blocked data set,
a GET for update, a GETAREA,
SETL, GETNEXT, or RESETL. An
FWA is always acquired for VSAM
move-mode operations,
regardless of blocking

[The address of a VSWA after a
locate-mode GET or SETL against
a VSAM data set and after a
GETNEXT or RESETL for a browse

operation initiated by a
locate-mode SETL

. Meaningless information after a
PUT, DELETE, RELEASE, or ESETL.

NOSPACE=symb-addnr

specifies the entry label of the
user-written routine to which
control is to be transferred if no
direct access space is available
for adding records to a data set.
(This error condition is not
applicable when adding records to a
fixed length DAM data set that does
not contain keys.) TCAFCAA
contains the address of an FHA
containing the record to be added.
This FWA may be at a different
storage location from the FHWA
passed with the PUT request.

NOTFND=symbh-addr

specifies the entry label of the
user-written routine to which
control is to be passed if an
attempt to retrieve or delete a
record based on the search argument
provided is unsuccessful.

TCAFCAA contains:

[The address of an FIOA if the
request was a GET against a DAM
data set

. The address of a VSWA if the
request was a GET, DELETE,
SETL, RESETL, or GETNEXT
request using skip-sequential
against a VSAM data set.

The application programmer should
be aware of the following
considerations:

. Except for RESETL or GETNEXT,
the program should issue a
DFHFC TYPE=RELEASE macro when
any interrogation of the area
is complete.

. For SETL, the browse operation
was not initiated.

. For RESETL or GETNEXT, the
browse operation is still
active, but the position in the
data set has been lost. A
RESETL should be issued to
reestablish the position in the
data set. If move mode is
specified or implied in the
SETL request initiating the
browse operation, the FHA
representing the browse must be
used for the RESETL; if locate
mode is specified in the SETL
request, the VSWA must be used.

NOTOPEN=symb-addnr

specifies the entry label of the
user-written routine to which
control is to be transferred if the

Chapter 3.2. File Control (DFHFC Macro) 83

requested file is closed and
unenabled. This state is reached
after an open enabled file has been
closed.

This condition does not occur if
the request is made to a closed
enabled file: instead the file is
opened as part of executing the
request. A request made to a
closed disabled file causes the
application to terminate
abnormally.

This condition can occur in
response to a GET,PUT NEWREC that.
is not part of a MASSINSERT,DELETE
or the first of a GENERIC DELETE
sequence, GETAREA or SETL request.
When the condition is returned, the
contents of TCAFCAA are not
meaningful.

RDIDADR=

specifies the address of the record
identification field for a record,
or the relative record number of a
record. The contents of this field
should not be altered when a GET or
UPDATE macro is issued.

symb-addr
is the address of the record
identification field that
contains the block reference
(for DAM), or the key,
relative byte address, or the
relative record number (for
VSAM) of the record to be
processed. If this operand is
omitted, the address is
assumed to be in TCAFCRI.
This field is used when adding
a new record or when updating
an existing record in a
nonkeyed DAM data set without
previously reading it for
update.

Notes:

1. This operand must not
refer to a field in the
FWA, because the FWA might
be freed before the write
occurs.

2. The DFHFC
TYPE=PUT, TYPOPER=NEWREC
macros for a VSAM
mass—-insert operation may
specify the same record
identification field or
different record
identification fields.

3. When adding a record to a
VSAM ESDS, there is no
need to supply an RBA.
However, a field must be
provided to receive the
RBA after the record has
been added; the address of
the field must be supplied

either in TCAFCRI or by
using the RDIDADR operand.

relative record number
is the number of the required
record in a VSAM RRDS. The
format of this field must be
fullword binary. If this
operand is omitted, the
address of the field that
contains the record number is
assumed to be in TCAFCRI.

Notes:

1. The SRCHTYP operand is
assumed to be FKEQ on all
DFHFC macros except SETL
and RSETL when only FKEQ
and FKGE will be accepted.

2. In skip sequential
operation, if the relative
record number refers to a
nonexistent or deleted
record, the NOTFND
condition will be raised,
even if SETL or RESETL
included SRCHTYP=FKGE.

RETMETH= (DAM only)

applies only to blocked data sets
and is used to specify the argument
type (retrieval method) for
deblocking the data sets. It is
also used to specify the format of
the information placed in the
record identification field each
time a record is retrieved in a
browse operation.

RELREC
specifies that retrieval is to
occur by relative record, with
the first record in a block
considered to be record zero.
It also specifies that a
one-byte binary relative
record number is provided in a
browse operation.

KEY
spaecifies that retrieval is to
occur by key or that in a
browse operation, a key is to
be provided.

If TYPOPER=UPDATE is specified, the
RETMETH operand is required. If
RETMETH is omitted and a request to
read a blocked DAM data set is
issued, the entire physical record
(block) is returned in the FIOA to
the application program. The block
reference field, required by DAM,
contains the criteria for
deblocking the data set. If a
retrieved record is "undefined,™
the application program must
determine the length of the record.

SRCHTYP= {VSAM only)

specifies how the search key in the
record identification field is to

84 CICS/VS Application Programmer's Reference Manual (Macro Level)

be used. This operand is
meaningful only when ARGTYP=KEY is
specified or implied by default.

FKEQ

FKGE

GKEQ

GKGE

TYPOPER=

indicates that the search key
is a full key and that only a
record with an equal key
satisfies the search.

indicates that the search key
is a full key and that the
first record with a key equal
to or greater than the search
key satisfies the search.

indicates that the search key
is a generic (partial) key,
the binary length of which is
specified in the first byte of
the record identification
field. A record whose key is
equal to the search key
(compared on only the number
of bytes specified in the
first byte of the record
identification field)
satisfies the search. HKhen
used with TYPE=DELETE, all
records whose keys begin with
the search key are to be
deleted. A count of the
number of records deleted is
returned in TCAFCNRD.

indicates that the search key
is a generic key and that the
first record with a key equal
to or greater than the search
key (compared on only the
number of bytes specified in
the first byte of the record
identification field)
satisfies the search.

describes the file operation to be
performed.

NEWREC

indicates that a new record is
to be added to an existing
data set.

UPDATE

when used with a TYPE=PUT
macro, it indicates that a
record retrieved previously by

MASSINSERT

a DFHFC TYPE=GET, TYPOPER=
UPDATE macro is to be updated
(in effect, rewritten to the
data set).

When used with a TYPE=GET
macro, it indicates that a
record is to be obtained for
updating, or, if a VSAM KSDS
is referred to, for either
updating or deletion. If the
record is from a blocked DAM
data set, the RETMETH operand
must be specified. If
TYPOPER=UPDATE is omitted, a
read-only operation is
assumed.

The UPDATE parameter can also
be used with TYPE=PUT to write
a record to a DAM data set
after building the record in
an area obtained by a DFHFC
TYPE=GETAREA macro. This
technique is described in
detail in "DAM Data Sets™ on
page 56.

DELETE (VSAM only)

is valid when a KSDS data set
is being accessed and
indicates that a record
previously retrieved for
update by a DFHFC TYPE=GET,
TYPOPER=UPDATE request is to
be deleted from the data set.

{VSAM only)
specifies that the acquired
FWA is to be used for a
mass-insert operation. This
ensures that the same FHA is
used for subsequent DFHFC
TYPE=PUT macros adding new
logical records with keys or
relative byte addresses in
ascending sequence to the data
set. The FWA is made
available to the application
program after each DFHFC
TYPE=PUT macro. The FWA is
reinitialized, before each
return to the application
program, to the value
specified in the INITIMG
operand (if specified) or
otherwise to EBCDIC blanks
(X'40'). A mass-insert
operation is terminated by a
DFHFC TYPE=RELEASE macro.

Chapter 3.2. File Control (DFHFC Macro) 85

CHAPTER 3.3. DL/1 SERVICES

The CICS application programmer can
request DL/I services in two ways:

1. By issuing a DL/I CALL statement,
written according to DL/I
specifications. This method is
available to both CICS/0S/VS and
CICS/D0S/VS users. This DL/I CALL
is mandatory if the user wishes to
access remote DL/I data bases using
ISC (intersystem communication).

2. By issuing a DFHFC macro. This
method is available to CICS/0S/VS
users only.

In both cases, control is passed to a
routine that acts as an interface
between the CICS application program and
the DL/I request handler. This routine
performs validity checks on the CALL
list, prepares DL/I to handle the
request, and passes control and the CALL
list to DL/I. After DL/I has handled
the request, it returns control to the
calling program unless a DL/1
pseudoabend has occurred, in which case
the CICS task is abnormally terminated.

Under CICS, two or more transactions
(tasks) may require the same application
program at any given time during system
operation. Because CICS application
programs must be quasi-reenterable (see
NQuasi-Reenterability,™ in "Chapter 1.1.
Macro—-Level Application Programming”™ on
page 3), DL/I areas that may be modified
under CICS/0S/VS (such as PCB pointers,
I/0 work areas, and segment search
arguments) should not be placed in
static storage. They should also not be
placed in working storage (unless the
application program contains one or more
command level statements, in which case
working storage is dynamic). Storage
for such areas must be obtained from
CICS dynamic storage by each transaction
using the progranm.

Four steps must be performed by an

application program requesting DL/I data
base services. These steps are listed
2eigw and explained in the sections that
ollow.

1. Obtain addresses of program
communication blocks (PCBs) to be
used by the application program.

2. Build segment search arguments
égfﬁs) if they are to be used in the

3. Acquire I/0 work areas for DL/I
segments processed by the progranm.

4. Issue the DL/I CALL.

OBTAINING ADDRESSES OF PROGRAM
COMMUNICATION BLOCKS

An application program that uses the
CICS-DL/1 interface accesses data bases
by means of program communication blocks
(PCBs). One PCB for each data base is
included in the program specification
block (PSB) for the program. To process
DL/1I CALLs within a CICS transaction,
the PSB for the transaction must be
scheduled and the PCB addresses obtained
before any DL/I CAlLLs are made.
Scheduling involves, for example, that
all the required DL/I control blocks
exist and are in main storage, and that
the processing options associated with
this PSB permit it to be scheduled
concurrently with those PSBs already
scheduled. If they are not obtained, an
INVREQ (invalid request) indicator is
returned in response to any DL/I CALL
within the program.

A transaction may schedule only one PSB
at a time. An attempt to schedule a
second PSB while one is still scheduled
causes the INVREQ condition to be
returned.

A sync point request (see "Chapter 7.6.
Recovery/Restart (Sync Point) Control
(DFHSP Macro)"™ on page 319) by a task
that is scheduled to use DL/I resources
implies the release of those resources.
This means that if, after issuing a
DFHSP TYPE=USER macro, access to a DL/I
data base is required, the desired PSB
must be rescheduled. The previous
§osition of that data base has been
ost.

I/0 PCBs (a type of control block used
by IMS/VS) are not passed to CICS.
programs, even though they may be
included in a PSB for a transaction.

DFHFC MACRO (CICS/0S/VS ONLY)
To schedule the desired PSB and obtain
PCB addresses, the CICS/0S/VS

application programmer may use a special
form of the DFHFC macro, as follows:

Chapter 3.3. DL/I Services 87

DFHFC TY;E=(DL/I.PCB)
, =
{'psbname' | symb-addr|{YES}1]

[, NORESP=symb-addr]
[,DLINA=symb-addr]l
[,PSBSCH=symb-addr]l
[,PSBNF=symb-addr]
[,PSBFAIL=symb-addr]

[, INVREQ=symb-addr]

where:

TYPE=(DL/I,PCB)
indicates that PCB addresses are to
be acquired. (DL/I may also be
coded as DLI or DL1.)

If the PSB has been located, TCADLPCB
contains the address of a list of PCB
addresses in the sequence in which the
PCB addresses were specified during the
PSBGEN of this PSB. If the PSB cannot
be found, TCADLPCB contains zero. 1If
the PSB pool or DMB pool is too small to
hold the requested blocks even when no
other PSBs or DMBs are in their pools,
the transaction is terminated with the
ADLA abend code.

DL/I CALL STATEMENT (CICS/DOSs/VS OR
CICS/0S/VS)

Upon receiving control from CICS, a CICS
application program must issue a DL/I
call to perform scheduling before
attempting to access DL/I data bases.

If the scheduling call is successful,
the address of the PCB list is returned
in the field TCADLPCB and TCAFCTR is set
to zeros. If the call is unsuccessful,
TCAFCTR contains a one-byte return code.
Before continuing with subsequent DL/I
calls, it is the application
programmer's responsibility to test
these indicators to determine whether
scheduling is successful.

The format of the CALL statement to
request scheduling is as follows:

ASHM:

CALLDLI {ASMTDLI|CBLTDLI},(Iparmcount,l
function, [psbl)

COBOL:

CALL *CBLTDLI' USING [parmcount,]l
function, [psbl.

PL/1:

CALL PLITDLI (Iparmcount,]
function, [psbl);

where:

parmcount
is the name of a binary fullword
containing the parameter count
(value of one or two). This
parameter is optional.

function
is the name of the field containing
the four-character function 'PCBb°'.

psb
is the name of the eight-byte field
containing the PSB generation name
which the application program
accesses. (This name is one to
eight bytes long under CICS/0S/VS,
or one to seven bytes long under
CICS/D0S/VS, and is left justified
and padded on the right with blanks
as appropriate.) This parameter 1is
optional. Under CICS/DOS/VS if it
is omitted, the PSB name is assumed
to be the first PSB name associated
with the application program name
in the DL/I application control
table generation. Under CICS/0S/VS
if it is omitted, the PSB name is
assumed to be the name of the
application program associated with
the task in the PCT.

Note: MWith PL/I, the preprocessor and
assembler steps cause a single CALL
PLITDLI statement to be expanded into a
series of PL/1 statements. If a single
CALL PLITDLI statement appears in a
THEN, ELSE, or WHEN clause, it should be
coded within

DO

END
statements.

If a3 single CALL PLITDLI statement is to
be coded in an ON-unit or is to be the
scope of a conditional prefix, the CALL
PLITDLI should be coded within

BEGIN
END
statements.

BUILDING SEGMENT SEARCH ARGUMENTS

Both CICS/0S/VS and CICS/DOS/VS
application programmers can use segment
search arguments (SSAs) in a DL/I CALL
to identify a specific segment, or, if
qualified, to identify the range of
values within which a segment exists.

In addition, the CICS/05/VS programmer
can specify SSAs in a DFHFC TYPE=DL/1
macro. If used, SSAs must be built by
the application programmer before a DL/I
CALL is issued. (For information on how
to build an SSA, CICS/0S/VS application
programmers should refer to the IMS-/VS

88 CICS/VS Application Programmer's Reference Manual (Macro Level)

Application Programming for CICS/VS
Users; CICS/D0OS/VS users should refer to

the DL/I DOS/VS Application Programming
Reference Manual. Note that for
CICS/0S/VS users all IMS/VS DB command
codes are supported, including the "Q©
code (although corresponding dequeueing
must be performed by a CICS sync point,
or by a DL/I TERM call, since the DEQ
call is not supported).)

In a DL/I application program, SSAs are
built in fixed storage within the
program. In a CICS application program,
SSAs must be built in dynamic storage to
maintain the quasi-reenterability of the
program.

The storage acquired to build the SSAs
is addressed as follows:

U For assembler language programs, the
address should be placed in the
register that establishes
addressability for the SSA dynamic
storage.

L For COBOL programs, the address is
moved to the BLL pointer for this
storage. The BLL pointer is defined
under the COPY DFHBLLDS statement in
the linkage section and must be in
the same relative position in the
BLL list as the 01 statement for the
SSA dynamic storage is among the 01
statements in the linkage section.

. For PL/I, the address is stored in
the variable upon which the SSA
dynamic storage is based.

After the storage has been acquired and
the SSAs built, DL/I CALLs in which the
SSAs are used can be issued by the
application program. The names of the
SSAs to be used, if any, are specified
in the parameter list of the CALL.
Under CICS/0S/VS, a DFHFC TYPE=DL/I
macro can also be used. In a DFHFC
TYPE=DL/I macro, the application
programmer can specify the number and
names of the SSAs in different ways:

1. §SSAS=NO indicates that there are no
SSAs in this CALL.

2. SSAS=(ssacount,ssal,ssa2,...), where
ssacount is optional, represents
either the fixed-point number of
SSAs in the CALL or the symbolic
address of the fullword that
contains the number of SSAs.
Specifying a field to contain the
number of SSAs provides the
application programmer with
flexibility in writing one DFHFC
statement to be used in many
different CALlLs. ssal, ssa2,...,
are the symbolic names of the SSAs.

3. SSALIST=YES indicates that the
application programmer has built a
list of fullwords, optionally
containing the number of SSAs (which

may be zerol) in the first word, and
the addresses of the SSAs in the
following words, and that he has
stored the address of this list at
TCADLSSA. -

6. SSALIST=symbolic address indicates
that the address of an SSA list
built by the application programmer
as indicated in item 3 is at the
location specified.

In assembler language progranms,
ssacount,ssal,ssa2,..., can be contained
in registers if the specifications are
enclosed in parentheses.

ACQUIRING AN _I/0 WORK AREA

When issuing a request for DL/I
services, the address of a work area,
either that in which a current segment
is contained or that in which DL/I is to
place the segment in a retrieval CALL,
is required. This area must be
specified by the CICS/0S/VS or
CICS/D0S/VS programmer who issues a DL/I
CALL. It may be provided by the
interface, if the programmer desires,
for a retrieval-type DFHFC macro.

If the CICS/0S/VS application programmer
knows the address of the work area to be
used in the DFHFC macro, including the
case for which storage is acquired for a
retrieval-type (Gxxx) request, he
specifies the name of the pointer to
that storage in the WRKAREA=name
operand, or he places the address of the
storage in TCADLIO before issuing the
request and specifies WRKAREA=YES.

If the application programmer wishes to
allow the interface to obtain the work
area for a retrieval-type request, he
does not include the WRKAREA operand in
the DFHFC macro request. If the request
was serviced successfully, the address
of an acquired 1I/0 work area is in
TCADLIO. The address at TCADLIO is the
address of the storage accounting area
(SAA) preceding the retrieved data. The
area becomes the responsibility of the
programmer and is not freed until he
frees it or until the transaction
terminates. If the application

programmer elects to free the work area,

he must use a DFHSC TYPE=FREEMAIN macro.

Note: The address of the 1/0 area is
specified as the address of the storage
accounting area preceding the data when
a DFHFC macro is used; the address of
the first byte of the data area is
required when a DL/I CALL is used.

REQUESTING DL/I SERVICES

The application program request for DL/I
services may be either a CICS DFHFC
macro (CICS/0S/VS) or a DL/I call
(CICS/0S/VS or CICS/DOS/VS).

Chapter 3.3. DL/I Services &89

DFHFC MACRO (CICS/0S/VS)

DFHFC TYPE=(DL/I [, functionl)
[,PCB={symb-addr|(register)}]
[, WRKAREA= {symb~addr]

YES|(register)}]
[,SSAS={NQ|([ssacountll,ssall
[,ssa2,... 1) ([(registerl)]

[,(register2),...1)}1
[,SSALIST={YES|[NO
| symb-addr|(register)}]

[, NORESP=symb-addr]
[,PSBFAIL=symb-addr]l
[, DLINA=symb-addr]

[, FUNCNS=symb-addr]
[, INVREQ=symb~addr]

where:

TYPE=(DL/I [,functionl)
specifies the two- to four-byte
name of the function to be
performed. If the function is not
specified, it is assumed to be in
TCADLFUN. (DL/I may also be coded
as DLI or DL1.)

DL/I CALL STATEMENT (CICS/0S/VS OR
CICS/DOS/VS)

DL/1I data base services are available to
CICS application programs through CALL
statements. The CALL statement formats
for COBOL and PL/I are similar. For
assembler language application programs,
a CALLDLI macro is used. The formats of
the DL/I calls are as follows:

ASHM:

CALLDLI {ASMTDLI|CBLTDLI}
[,([parmcount, Jfunction, pcb
sworkareal,ssa,...1)]

COBOL:

CALL 'CBLTDLI' USING [parmcount,]
function, pcbh,workareal,ssa,...].

PL/I:

CALL PLITDLI (parmcount,function
spcb,workareal,ssa,...1);

where:

parmcount
is the name of a binary fullword
containing the parameter count or
argument count of the arguments
which follow; this is optional for
assembler language and COBOL.

function
is the name of the field containing
the four-character DL/I
input/output CALL function desired.

pch
is the program communication block
(PCB) name (or DSECT name if
assembler).

workarea

is the name of the I/0 work area.

ssal to ssan
are the names of the segment search
arguments (SSAs); these are
optional.

Notes:

1. If no parameters are specified in an
assembler language CALLDLI macro, Rl
is assumed to contain the address of
a parameter list.

2. In assembler language, an
alternative format may be used:

CALLDLI {ASMTDLI|CBLTDLI}
yMF=(E,(register) or address)

where:

address
is the address of the parameter
list, or register that contains
fbetaddress of the parameter
ist.

RELEASI PSB THE CICS APPLICATIO

PROGRAM

To reduce pool and intent contention,
the CICS/0S/VS application program can
release the PSB after a DL/I service has
been requested.

It is recommended that conversational
programs release the PSB before writing
to a terminal so that other transactions
can use the PSB while the conversational
program is waiting for an operator
response.

To ensure the integrity of the data
base, a request tc release a PSB implies
the end of a logical unit of work for
the entire task. This means that a
DFHSP TYPE=USER macro is issued on
?ggalf of a task that is releasing a

DFHFC MACRO (CICS/0S/VS ONLY)

To release a PSB for use by other
transactions, the CICS/0S/VS application
programmer may issue a macro of the
following format:

DFHFC TYPE=(DL/I, {TERM|T})
[,DLINA=symb-addrl]
[, TERMNS=symb-addr]
[, INVREQ=symb-addr]

90 CICS/VS Application Programmer's Reference Manual (Macro Level)

where:

TYPE=(DL/1,TERM)
specifies that the PSB is to be
released for use by other
transactions, or, if not required,
its pool space and associated DMB
pool space may be released for
other purposes. (DL/I may also be
coded as DLI or DL1.)

Before issuing any other DL/I CAlLLs or
DFHFC macros requesting DL/I access to a
data base, the application programmer
must again issue a schedule request.

All positioning in data bases referred
to by the transaction is lost when the
PSB is released. If the program is
processing a hierarchy through GNxx
requests before releasing the PSB, it is
necessary to explicitly reposition the
data bases after issuing another
schedule request, to continue the GNxx
requests.

DL/I CALL STATEMENT (CICS/DOS/VS OR
CICS/0S/VS)

If the CICS application program desires
to relinquish control of the PSB, it
must issue a terminal call to DL/I. The
format of the CALL statement to request
termination is as follows:

ASM:

CALLDLI {ASMTDLI|{CBLTDLI}
s ([parmcount, Jfunction)

COBOL:

CALL 'CBLTDLI' USING
[parmcount, Jfunction.

PL/I1:

CALL PLITDLI
([parmcount, 1function);

where:

parmcount
is the name of a binary fullword
containing the parameter count
value of one.

function
is the name of the field containing
the four-character function "TERM'
or 'Tbbb"'.

When a termination call is issued for a
previously scheduled PSB, the resources
acaquired for the task are released, and
tasks awaiting the resources are given

an opportunity to be scheduled.

DLs1 SERVICES RESPONSE CODES

To test a response code, the application
programmer must know the CICS response
codes and their meanings. If the
assembler language or PL/1 programmer
uses this approach, he can access the
response codes for NORESP, INVREQ, and
NOTOPEN at TCAFCTR; the response codes
for al)l other conditions can be accessed
at TCADLTR. The COBOL programmer can
access the response codes for NORESP,
INVREQ, and NOTOPEN at TCAFCRC; the
response codes for all other conditions
can be accessed at TCADLTR. Response
codes and their associated conditions
are shown in Figure 12 on page 92.

JEST RESPONSE TO A DL/I REQUEST
(TYPE=CHECK)

DFHFC TYPE=CHECK
[,NORESP=symb~addr]
» DLINA=symb-addr]
,PSBSCH=symb-addr]
s PSBNF=symb-addr]
»PSBFAIL=symb-addr]
» FUNCNS=symb-addr]
» TERMNS=symb-addr]
» LANGCON=symb-addr]?
» TASKNA=symb—-addr]?
»PSBNA=symb-addr]?
[, INVREQ=symb-addrl

1 CICS/DOS/VS only

lanfanl ol mlon lan Ranl o K o |

where:

TYPE=CHECK
indicates that the CICS-DL/1I
interface response is to be
checked.

The application programmer may use the
DFHFC TYPE=CHECK macro following a DL/I
CALL statement or a DFHFC
TYPE=(DL/IL[, functionl) macro. This
macro does not check the DL/I return
codes in the PCB. If DL/I issues a
pseudoabend during processing of the
request, control is not returned to the
application program. The transaction is
terminated with CICS abend code ADLA.
For CICS/DOS/VS, if DL/1 issues a
pseudoabend during a call, the
transaction is terminated with a Dnnn
abend code where nnn is the DL/I
pseudoabend code.

If the application programmer does not
provide for the checking of a particular
response, and if the exception condition
corresponding to that response occurs,
program flow proceeds to the instruction
following the DL/I request in the
application program.

Chapter 3.3. DL/I Services 91

1. The TASKNA and LANGCON conditions apply only to CICS/DOS/VS.

w N

generated by CICS.

returned.
been quiesced.

PSBNA occurs only when the data base is on a VSE systenm.

Response Code
DL/I Interface Request Condition
ASM COBOL PL/I
(DL/I,PCB),(DL/1 NORESP (Normal Response) X'00*'|LOW-VALUES {00000000
[, functionl), CHECK (FCNORESP)
All INVREQ (Invalid Request) X'08'{12-8-9 00001000
(FCINVRE®)
(DL/ILfunctionl), NOTOPEN (Not Open) X'0C*|12—-6—8—9 00001100
CHECK (FCNOTOPEN)

Codes returned in TCADLTR after NOTOPEN condition
(DL/I[functionl), Data base not open; request X'01'| 12-1-9 00000001
CHECK issued in VSE system

Intent scheduling conflict Xt02'| 12-2-9 00000010
Codes returned in TCADLTR after INVREQ condition
ALL Data base not in FCT, or not X'00' | LOW—-VALUES |00000000
open according to FCT, or in—
valid argument passed to DL/I
(DL/I,PCB),CHECK PSBNF (PSB Not Found) X'01'{12-1-9 00000001
(DLPSBNF)
CHECK TASKNA (Task Not Authorized) Xt02'|12—-2-9 00000010
(DLTASKNA)
(DL/1,PCB),CHECK PSBSCH (PSB Already X1'03'}12-3—-9 00000011
Scheduled) (DLPSBSCH)
CHECK LANGCON (Language Conflict) X'04']12—-6-9 00000100
(DLLANGCON)
(DL/I,PCB),CHECK PSBFAIL (PSB Initialization X'05%|12-5-9 00000101
Failed) (DLPSBFAIL)
CHECK PSBNA (PSB Not Authorized) X'06'|12—-6-9 00000110
(DLPSBNA)
(DL/1,T),CHECK TERMNS (Termination Not X*07'|12-7-9 00000111
Scheduled) (DLTERMNS)
(DL/I[, functionl), FUNCNS (Function Not X'08'|12—8-9 00001000
CHECK Scheduled) (DLFUNCNS)
All DLINA (DL/I Not Active) X'FF*HIGH-VALUES|11111111
(DLINA)
Notes:

. The names enclosed in parentheses in the COBOL column indicate the names

These names may be used in testing for the respective
conditions in a COBOL progranm.

%. For CICS/0S/VS only, NOTOPEN will never be returned to the application.
If a schedule request is made against a closed data base, PSBFAIL will be

A data base cannot be closed until all activity against it has
While this is happening, no further scheduling is allowed.

Figure 12. CICS-DL/I Interface Response Codes

92 CICS/VS Application Programmer's Reference Manual (Macro Level)

DL/I REQUESTS IN AN ASSEMBLE GUAG The examples that follow show the
OGRAM (CICS/0S/VS options available to the application

programmer in a few of the acceptable

The application programmer must first combinations. The application program
get the addresses of the PCB. Hhen must be quasi-reenterable. If a DFHFC
CICS/70S7VS returns from servicing the macro is issued, the PCB and WRKAREA
PCB request, if the programmer loads Rl operands are used to specify the

from TCADLPCB, his program is in the addresses of pointers to fields rather
same state as after an ENTRY DLITCBL than the addresses of fields desired.

statement has been executed in an IMS/VS
DL/1 application program.

COPY DFHTCADS COPY TCA DEFINITION - INCLUDES
% DL/I FIELDS
PSBNAME DC CL8'PSBNAME' NAME OF PSB TO BE USED
PCBFUN DC CLG'PCBb’* PCB FUNCTION
PCBPTRS DSECT PCB POINTERS RETURNED BY
%* INTERFACE
PCBIPTR DS F STORAGE FOR PCB POINTERS
PCB2PTR DS F
WORKAPTR DS F 2£E§AGE FOR POINTER IN I/0 WORK
%
PCBl DSECT PCB DSECT
PCB2 DSECT PCB DSECT
WRKAREA DSECT DL/I WORK AREA DSECT
DS 2F STORAGE PREFIX
WORKAL DS CL40O WORK AREA
SSAREA DSECT SSA DSECT
DS 2F STORAGE PREFIX
SSAl DS CL40 SSA1l LAYOUT
SSA2 DS CLZ20 SSA2 LAYOUT
DFHFC TYPE=(DL/I,PCB) USE PSB FOR THIS PROGRAM
DFHFC TYPE=(DL/I,PCB), GET PCB'S IN 'PSBl4’ %*
PSB='PSB14"
DFHFC TYPE=(DL/I,PCB), GET PCB'S IN SPECIFIED PSB 3
PSB=PSBNAME
MVC TCADLPSB,=CL8'PSBA! PUT PSB NAME IN TCA
DFHFC ;g;ﬁ;égL/I,PCB), GET PCB'S OF PSB NAMED IN TCA %
L R1,TCADLPCB GET ADDRESS OF PCB ADDR LIST
USING PCBPTRS,R1 REG 1 IS BASE OF PCB POINTERS --
* USER MUST PROVIDE ADDRESSABILITY
* TO PCB'S WHEN USING THEM
¥ ISSUE A PCB REQUEST VIA CALLDLI
CALLDLI CBLTDLI,(PCBFUN) USE PSB FOR THIS PROGRAM
CALLDLI CBLTDLI, (PCBFUN,PSBNAME)GET PCB'S IN SPECIFIED PSB
R1, TCADLPCB GET ADDRESS OF PCB ADDRESS LIST
%* ACQUIRE STORAGE FOR WORK AREA
DFHSC TYPE=GETMAIN,... GET STORAGE FOR WORK AREA
L R2, TCASCSA REG 2 IS BASE FOR WORK AREA
USING WRKAREA,R2 TELL ASSEMBLER
% ACQUIRE STORAGE FOR SSA'S
DFHSC TYPE=GETMAIN,... GET STORAGE FOR SSA'S
L R3,TCASCSA REG 3 IS BASE FOR SSA'S
USING SSAREA,R3 INDICATE TO ASSEMBLER
*
CALLDLI CBLTDLI, (function,PCB1,WORKAl,SSAl,SSA2)
*

Chapter 3.3. DL/1 Services 93

: CALL DL/I VIA DFHFC MACRO -- VARIOUS EXAMPLES
¥ EXAMPLE 1
%

DFHFC TYPE=(DL/I,function), %
PCB=PCB1PTR, PCB IS POINTED TO %
WRKAREA=WORKAPTR, WORK AREA IS POINTED TO x
SSAS=(2,SSA1,S5S5A2), SSA COUNT AND SSAS SPECIFIED %
NORESP=G00D1 NORMAL RESPONSE BRANCH

*
i EXAMPLE 2

MVC TCADLPCB,PCB1PTR PRELOAD PCB POINTER

LA RO, WRKAREA PICK UP WORK AREA ADDRESS

ST RO, TCADLIO STORE IN TCA

DFHFC TYPE=(DL/I,DLET), FUNCTION SPECIFIED x
WRKAREA=YES, WORK AREA ADDRESS PRELOADED x
SSAS=NO NO SSAS

%
% EXAMPLE 3
%

MVC TCADLFUN,=CL4'GU! PRELCAD FUNCTION

DFHSC TYPE=GETMAIN, ... GET STORAGE FOR SSA LIST

L R4, TCASCSA PICK UP STORAGE ADDRESS

LA R4, 8(R4) BYPASS PREFIX

LA RO,1 GET COUNT OF SSA'S

ST RO, 0(R%) STORE IN SSA LIST

LA RO, SSAlL GET ADDRESS OF 'SSAl?

ST RO, 4(R4) STORE IN SSA LIST

ST R4, TCADLSSA STORE LIST ADDRESS IN TCA

oI 4(RG),X'80°" SET ON THE END-QF-LIST BIT

DFHFC TYPE=DL/I, DL/I CALL, FUNCTION PRELOADED %
PCB=PCB1PTR, POINTER TO PCB TO BE USED *

INTERFACE WILL PROVIDE WORK AREAX
SSALIST=YES PROBLEM PGM PROVIDES SSA LIST
L R3,TCADLIG PICK UP ADDRESS OF SUPPLIED
* WORK AREA

96 CICS/VS Application Programmer's Reference Manual (Macro Level)

DL/I REQUESTS IN A COBOL PROGRAM
(CICS/0S/VS)

Upon program entry, the COBOL programmer
should obtain PCB addresses by issuing a
DFHFC TYPE=(DL/1,PCB) request or a DL/I1
'PCB' call. After CICS/0S5/VS returns
control, the programmer moves the
contents of TCADLPCB to the BLL pointer
which is the base for the layout of the
PCB pointers in the linkage section. He
then moves the addresses of the PCBs to
their BLL pointers to provide the base
addresses for the PCBs. MWhen this is
done, the program is in the same state
as after an

ENTRY *DLITCBL' USING PCB1,PCB2

statement has been executed in an IMS/VS
DL/I application program.

For an explanation of how BLL pointers
to 01l statements in the linkage section
are defined, see the discussion of COBOL
application programming in "Chapter 2.3.
Storage Definition - COBOL™ on page 35.

Examples showing how to write DL/I
requests are given below. Only some
combinations of operands are shown, but
other combinations are acceptable. Note
that, in a DFHFC request, BLL pointers
to the PCB and work area are used rather
than actual field names. This is the
grl¥ way the addresses can be passed to
/1.

WORKING-STORAGE SECTION.

77 PSBNAME PIC X(8) VALUE 'PSBNAME'.
77 PCB-FUNCTION PIC X(4) VALUE 'PCB/'.
77 FUNCTION-1 PIC X(4) VALUE 'DLET'.
77 SSA-COUNT PIC S9(8) COMP VALUE 2.
LINKAGE SECTION.

01 g;HBLLDS COPY DFHBLLDS

02 B-PCB-PTRS PIC S9(8) COMP.
02 B-PCBl1 PIC S9(8) COMP.
02 B-PCB2 PIC S9(8) COMP.
02 B-WORKAREA PIC S9(8) COMP.
02 B-SSAS PIC S9(8) COMP.
01 DFHCSADS COPY DFHCSADS.
01 DFHTCADS COPY DFHTCADS.

.

%

01 PCB-PTRS.
02 PCBl-PTR PIC 59(8) COMP.
02 PCB2-PTR PIC S9(8) COMP.
01 PCBl.

.

01 PCB2.

.

01 WORKAREA.
02 FILLER PIC X(8).
02 MWORKALl PIC X(40).

01 SSAREA.
02 FILLER PIC X(8).
02 SSAl PIC X(40).
02 SSA2 PIC X(60).

NOTE POINTERS TO OTHER CICS
AREAS NEEDED

NOTE TWO DEFINITIONS.
NOTE OTHER AREA DEFINITIONS.

NOTE STORAGE PREFIX.

Chapter 3.3. DL/1 Services 95

PROCEDURE DIVISION.
% GET PCB ADDRESSES
DFHFC TYPE=(DL/I,PCB)
¥ GET PCB ADDRESSES VIA CALL
CALL 'CBLTDLI' USING PCB-FUNCTIO

¥ SAVE PCB ADDRESSES IN BLL TABLE SO
MOVE TCADLPCB TO B-PCB-PTRS.
MOVE PCB1-PTR TO B-PCBl.
MOVE PCB2-PTR TO B-PCB2.
OPTIONALLY, ACQUIRE STORAGE FOR WO
DFHSC TYPE=GETMAIN, ...
MOVE TCASCSA TO B-WORKAREA.
OPTIONALLY, ACQUIRE STORAGE FOR SE
DFHSC TYPE=GETMAIN,...
MOVE TCASCSA TO B-SSAS.
CALL DL/I VIA CALL
CALL 'CBLTDLI' USING FUNCTION-1,

EXAMPLE 1 OF DFHFC MACRO INSTRUCTI
DFHFC TYPE=(DL/I,GHU),
PCB=B-PCB1,
WRKAREA=B-WORKAREA,
SSAS=(SSA-COUNT,SSAl,SSA2)

EXAMPLE 2 OF DFHFC MACRO INSTRUCTI
MOVE "GNP ' TO TCADLFUN.
MOVE B~-PCB1 TO TCADLPCB.
DFHFC TYPE=DL/I,
SSAS=NO

x * 3

K X

K XK

MOVE TCADLIO to B-WORKAREA.

GET PSB FOR THIS PROGRAM

N, PSBNAME.
NOTE GET PCB'S FOR SPECIFIED PSB.
PCB'S CAN BE ADDRESSED

RK AREA

GMENT SEARCH ARGUMENTS

PCB1,WNORKA1,SSAL1,SSA2.

ON

FUNCTION

PCB POINTER

WORK AREA POINTER
SSA COUNT AND NAMES

ON

NOTE PRELOAD FUNCTION.

NOTE PRELOAD PCB ADDRESS.

FUNCTION PRELOADED

PCB ADDRESS PRELOADED

WORK AREA TO BE ACQUIRED

NO SSA'S

NOTE SAVE ACQUIRED WORK AREA ADDR.

X K K

K XK XK

96 CICS/VS Application Programmer's Reference Manual (Macro Lavel)

DL/I REQUESTS IN A PL/I PROGRAM
(CICS/0S/VS)

Upon entry to his program, the PL/I
application programmer should get PCB
addresses through a DFHFC
TYPE=(DL/I,PCB) macro or a DL/I 'PCB'
call. MWhen CICS returns, the base
address of a structure of PCB pointers
is in TCADLPCB. The PL/I programmer
must move the value from TCADLPCB to the
based variable for his declared
structure of PCB pointers. He then
loads the pointers to all PCBs from this

program is in the same state as an

{nS/VS DL/1 application program in which
e
DLITPLI: PROCEDURE (pcbnamel,...
OPTIONSCREENTRANT, MAIN),

statement has been executed.

The PL/1 programmer may then make DL/1
requests, either through CALLs or DFHFC
macros. Note that the PCB and WRKAREA
operands in a DFHFC request specify the
addresses of pointers to fields rather

structure. When this has been done, the than of the fields desired.
%INCLUDE DFHCSADS; /7% CSA DEFINITION %/
%INCLUDE DFHTCADS; 7% TCA DEFINITION - INCLUDES %/

2 PCB1_PTR POINTER,
2 PCB2_PTR POINTER;

DECLARE 1 PCBl BASED (BPCB1),

L)

2 ... 3
SCBZ BASED (BPCB2),

oy

DECLARE 1

DLI IOAREA BASED (BDLIIO),
2 STORAGE_PREFIX CHAR(3),
IOKEY CHAR(6),

DLI SSADS BASED (BSSADS),
STORAGE_PREFIX CHAR(8),
SSAl,

3 SSAIKEY CHAR(6),

2 SSA2,
3

DECLARE 1

NN

DECLARE 1

NN

¢« o

DECLARE PCB_FUNCTION CHAR(8) INIT
OBTAIN PCB POINTERS %/

DFHFC TYPE=(DL/I,PCB)
OBTAIN PCB POINTERS VIA CALL x/

e

/%
/%
/% SAVE POINTERS IN PCB BASES x/
B_PCB_PTRS=TCADLPCB;

BPCB1=PCBl_PTR;

BPCB2=PCB2_PTR;

ACQUIRE STORAGE FOR DL/I 1/0 AREA %/
DFHSC TYPE=GETMAIN,CLASS=USER,...
BDLIIO=TCASCSA;

OPTIONALLY,
DFHSC TYPE=GETMAIN,CLASS=USER,...
BSSADS=TCASCSA;

OPTIONALLY,
SSA1KEY=TERMKEY;

7%

/7%

/7%

1 PCB_POINTERS BASED (B_PCB_PTRS),

/7% DL/I SSA LIST %/

3 ...
DECLARE PSBNAME CHAR(8) INIT ("PSBNAME');

GET PSB FOR THIS PROGRAM
CALL PLITDLI (PARM_CT,PCB_FUNCTION,

ACQUIRE STORAGE IN WHICH TO BUILD SSA'S x/

BUILD SEGMENT SEARCH ARGUMENTS %/

/% DL/1I FIELDS %/

/% PCB DEFINITIONS x/

/¥ DL/I 1/0 AREA x/

CB ");

PSBNAME): /% GET SPECIFIED PSB x/

Chapter 3.3. DL/I Services 97

7% CALL DL/I 3/
ggk%)PLITDLI(PARM_CT,DLI_FUNCTION;PCBI;IOKEY,SSAI'
/% EXAMPLE 1 OF DFHFC MACRO INSTRUCTION x/

DFHFC TYPE=(DL/I,ISRT), *
PCB=BPCB1, PCB POINTER *
WRKAREA=BDLIIO, WORK AREA POINTER %
SSAS=(2,SSAl,SSA2) SSA COUNT AND NAMES

/% EXAMPLE 2 OF DFHFC MACRO INSTRUCTION »/

TCADLPCB=BPCB1;

DFHFC TYPE=(DL/I,GU), PCB PRELOADED %
SSAS=(SSA_COUNT,SSAl,55A2) WORK AREA TO BE ACQUIRED *

SSA COUNT AND NAMES

BDLIIO=TCADLIO; /% SAVE WORK AREA ADDRESS x/

7% EXAMPLE 3 OF DFHFC MACRO INSTRUCTION x/

TCADLFUN="GN?' ; /% PRELOAD FUNCTION %/

TCADLIO=BDLIIO; /% PRELOAD WORK AREA ADDRESS »/

DFHFC TYPE=DL/I, FUNCTION PRELOADED %
PCB=BPCB1, PCB POINTER *
WRKAREA=YES, WORK AREA ADDRESS PRELOADED *
SSAS=NO NO SSA'S

When using the PL/I Optimizing Compiler,
all SSAs used in DFHFC macros and all
parameters used in CALLs must be defined
as elementary items. This can be done
by defining structures based on the same
pointers as the structures containing
the nonelementary definitions, as
follows:

DCL 1 DLI_CALL_SSADS BASED (BSSADS),
2 STORAGE_PREFIX CHAR(3),
2 CALL_SSA1l CHAR(...),
2 CALL_SSA2 CHARC...);
/% SET UP SSA1 AND USE IN CALL %/
SSA1KEY=SEARCH_KEY;
DFHFC TYPE=DL/I,
SSAS=(SSA_COUNT,CALL_SSA1)
CALL PLITDLI (PARM_CT,FUNCTION,PCBI1,
I0KEY,CALL_S3A1);

OPERANDS OF DFHFC MACRO_ (DL/I)

DLINA=symb=-addr
specifies the entry label of the
user-written routine to which
control is passed if the CICS-DL/I
interface is inactive.

FUNCNS=symb=-addr
specifies the entry label of the
user~written routine to which
control is passed if a DL/I
function request (a request other
than PCB or TERM) is made and the
task has no PSB scheduled.

INVREQ=symb-addr .
specifies the entry label of the
user-written routine to which
control is passed if:

1. One of the conditions DLINA,
FUNCNS, LANGCON, PSBFAIL,
PSBNA, PSBNF, PSBSCH, TASKNA,
or TERMNS occurs and the
associated operand is omitted

2. An error condition is detected,
as follows:

a. The required data base is
not in the FCT

b. The required data base is
28# open according to the

¢. An invalid argument has
been passed to DL/I.

If an INVREQ condition occurs and
the INVREQ and an associated
expansion operand(s) are both
omitted, processing continues with
the next sequential instruction in
the application program.

LANGCON=symb=-addr (CICS/D0S/VS only)
specifies the entry label of the
user-written routine to which
control is passed if the calling
program is in a different source
language than the called PSB.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is passed upon normal
execution of the request, that is,
if the PSB is located and the PCB
addresses are returned, or when the
application program regains
control. The CICS-DL/I interface
must have been able to pass control
to DL/I and a DL/1 pseudoabend of
the transaction cannot have
occurred. The return code in the
PCB must be checked to determine
whether DL/I was able to service
the request. NORESP signifies
"normal response."™ If this operand
is omitted, but a described
condition applies, processing

98 CICS/VS Application Programmer's Reference Manual (Macro Level)

PCB=

PSB=

continues with the next sequential
instruction in the application
program.

specifies the field that contains
the address of the PCB.

symb-addr
is the symbolic address of the
field containing the address
of the PCB.

(register)
is valid only when assembler
language is used. It is the
number of a register that
;ggtains the address of the

specifies the name of the PSB to be
scheduled for the transaction.

'psbname’
is the name of the PSB to be
used.

symb-addnr
is the symbolic address of an
eight-byte field containing
the name of the P5B, padded to
the right with blanks.

YES
indicates that the name of the
PSB has been placed in
TCADLPSB by the application
program.

If this operand is omitted,
the name of the program
associated with the
transaction in the CICS
program control table (PCT) is
used as the PSB name.

PSBFAIL=symb-addr

specifies the entry label of the
user-written routine to which
control is passed if the PSB fails
to initialize, also specifies the
entry label of the user-written
routine to which control is passed
if the data base specified in the
PCB used in this request is
logically (not necessarily
physically) closed. The PCB does
not contain a DL/1 Al status code.

PSBNA=symb=-addr (CICS/DOS/VS only)

specifies the entry label of the
user-written routine to which
control is passed if the task is
not authorized to access this PSB.

PSBNF=symb-addr

specifies the entry label of the
user—written routine to which
control is passed if the PSB cannot
be found in the PSB directory.

PSBSCH=symb-addr

specifies the entry label of the
user-written routine to which
control is passed if a PSB is
already scheduled for this task.

SSALIST=

specifies whether or not segment
search arguments are used in this
request and if so, identifies the
list containing these arguments.

YES ,
indicates that a list of
segment search arguments is
used and that the address of
the list has been placed in
TCADLSSA by the application

program.
NO
indicates that no SSA list is
used in this request.
symb-addr

is the symbolic address of a
field that contains the
address of the SSA list.

(register)
is valid only when assembler
language is used. It is the
number of a register that
contains the address of the
SSA list.

If this operand is specified,
SSAS cannot be specified.

specifies whether or not segment
search arguments are used in this
request and, if so, identifies
them.

NO
indicates that no SSAs are
used in this request.

{[ssacountl!,ssalll,ssa2,...1]}
specifies the names of segment
search arguments used in this
request (thereby creating an
SSA list). The ssacount
parameter specifies the number
of SSAs to be used; it is the
address of a fullword
containing the count, or, in
the case of assembler
language, may be expressed as
a numeric value. Each ssa
specification represents an
element of the SSA list. The
first element of an SSA list,
or it may point to a fullword
containing this count; the
remaining elements represent
addresses of SSAs. If the
first element of an SSA list
is not a count, all elements
of the SSA list are assumed to
be addresses of SSAs; the
high-order bit of the last
element of the list must be

Chapter 3.3. DL/1 Services 99

set on to indicate the end of
the list.

([{registerl)ll, (register2),...1)
is interpreted as described
above; that is, Rl contains a
count of the SSAs in the list
or is the first list entry, R2
is the first or second list
entry (depending on whether a
count has been specified), and
so on.

If this operand is specified,
SSALIST cannot be specified.

TASKNA=symbh-addr (CICS/DOS/VS only)
specifies the entry label of the
user-written routine to which
control is passed if the calling
task is not authorized to access
DL/1 data bases.

TERMNS=symb-addnr
specifies the entry label of the
user-written routine to which
control is passed if a termination
request is made and the task has no
PSB scheduled.

WRKAREA=
specifies the address of the work
area to be used.

symb-addr
is the symbolic address of a
field that contains a pointer
to the work area.

YES
indicates that the address of
the work area to be used has
been placed in TCADLIO by the
application program.

(register)
is valid only when assembler
language is used. It is the
number of a register that
contains the address of the
work aea.

If this operand is omitted and
a Gxxx function is to be
performed, the CICS-DL/I
interface acquires storage for
the work area and returns the
address of the work area at
TCADLIO. The application
program must save this address
upon return. If any other
type of function is requested,
the application program must
provide the work area. A work
area whose address is
specified in a DFHFC macro or
placed at TCADLIO prior to
execution of the DFHFC macro
includes the CICS storage
accounting area prefix. A
work area specified in a
CAtLDLI or CALL statement does
not.

100 CICS/VS Application Programmer's Reference Manual (Macro Level)

ART 4. T OMMUNICATIO PERATIONS

Part 6. Data Communication Operations 101

PTER 4.

This part describes the data
communication operations Terminal
Control, Basic Mapping Support, and
Batch Data Interchange.

The essential differences between these
data communication facilities is that
terminal control is the basic method of
communicating with devices, whereas both
basic mapping support (BMS) and batch
data interchange (BDI) extend the
facilities of terminal control to
simplify further the manipulation of
data streams. In fact, both BMS and BDI
use terminal control facilities.

Terminal Control (Chapter 6.2) provides
specific macros and options for
particular devices so that the
application programmer can tailor his
input and output requests according to
the requirements of the devices.
However, application programs written in
this way are dependent on data
formatting requirements of devices and
therefore the application programmer
must have detailed knowledge of the
devices.

INTRODUCTIO 3] COMMUNIC

ON OPER NS

Basic Mapping Support (Chapter 4.3)
provides macros and options that the
application programmer can use to format
data in a standard manner. BMS performs
the conversion of data streams provided
by the application program to conform to
the requirements of particular devices.
Conversely, data received from a device
is converted by BMS to a standard form.
However, not all devices supported by
CICS can be used with BMS and therefore
terminal control must be used. Also, in
some cases, the overhead incurred to
achieve data stream independence may
outweigh the advantages. The choice as
to whether BMS should be used is a
matter for application design and is
discussed more fully in the appropriate
C cilities and Plannin uide.

Batch Data Interchange (Chapter 6.4) is
a set of macros that may be used either
instead of terminal control macros, or
in conjunction with BMS macros to
communicate with the batch logical units
of the 3790 and 3770 subsystems.

Chapter 4.1. Introduction to Data Communication Operations 103

CHAPTER 4.2. TERMINAL CONTROL (DFHTC MACRO

The CICS terminal control program
provides for communication between
user-written application programs and
terminals and logical units, by means of
terminal control macro instructions.

Terminal control uses the standard
access methods available with the host
operating system. The Basic
Telecommunications Access Method (BTAM)
is used by CICS for most start-stop and
BSC terminals. As an option for 0S/VS,
the Telecommunications Access Method
(TCAM) can be specified. The Sequential
Access Method (SAM) is used where
keyboard terminals are simulated by
sequential devices such as card readers
and line printers. The Virtual
Telecommunications Access Method
(ACF/VTAM) or the Telecommunications
Access Method (TCAM) is used for systems
network architecture (SNA) terminal
systems.

Terminal control polls terminals to see
if they are ready to transmit or receive
data. Terminal control handles code
translation, transaction initiation,
synchronization of I/0 operations, and
the line control necessary to read from
or write to a terminal. The application
program is freed from having to
physically control terminals. During
processing, an application program is
connected to one terminal for one task
and terminal control program monitors
which task is associated with which
terminal. The task to be initiated is
determined as described in
"Terminal-Oriented Task Identification™
on page 115, Terminal control detects
and logs errors, and also, where
appropriate, inserts a default.

Terminal control is used for
communication with terminals. In SNA
systems, however, it is used to control
communication with logical units. A
logical unit (LU) represents either a
terminal directly, or a program stored
in a subsystem controller which in turn
controls one or more terminals. The
CICS application program communicates,
by means of the logical unit, either
with a terminal or with the stored
program. For example, a 3767 terminal
is represented by a single logical unit
without any associated user-written
application program. In contrast, a
3790 subsystem is represented by a 3791
controller, user-written 3790
application programs, and one or more
3790 terminals; when the subsystenm is
configured, one or more logical units
are designated by the user.

Facilities that apply specifically to
logical units are described in

MFacilities for Logical Units"™ on
page 110.

Terminal control macro instructions are
provided to request the following
services that are applicable to most, or
all, of the types of terminal supported
by CICS:

. Read data from a terminal.
. Write data to a terminal.

° Synchronize terminal I/0 for a
transaction.

L Converse with a terminal.

. Read or write records to a card
reader, disk data set, magnetic tape
unit, or a line printer defined by
the system programmer as a
card-reader-in/line-printer-out
(CRLP) terminal. This facility
allows transactions to be tested
when normal communications terminals
are not available.

For more information about the last of
these services, see "Chapter 7.2.
Sequential Terminal Support" on

page 293.

Other services available in response to
terminal control macros apply to
specific types of terminal. Because
many types of terminal are supported by
CICS, many special services are
provided. For a list of terminals
supported by CICS, see the appropriate

| €ICS Facilities and Planning Guide. The

following list is representative of the
terminal-oriented input/output services
available:

. Read the entire contents of a buffer
(3270 Information Display System).

. Read a message containing both
uppercase and lowercase data (3270
Information Display System).

[Print out the contents of an
information display buffer on a
printer (3270 Information Display
System).

) Transmit a message to a common
buffer (2980 General Banking
System).

. Read or write data in transparent
mode, that is, without translation
(System/7, System/370, System/3,
2770 Data Communication System, 2780
Data Transmission Terminal, 3600
Finance Communication System (BTAM),

Chapter 6.2. Terminal Control (DFHTC Macro) 105

3740 Data Entry System, and the 3780
Data Communications Terminal).

. Use the attention key to interrupt a
write operation or signal a read
attention request (for example, on
the 2741 Communication Terminal).

The general form of the terminal control
macro (DFHTC) resembles that of other
CICS macros. Keyword operands ar
separated by commas. Although most CICS
macros use only one entry following the
keyword TYPE, the DFHTC macro can
contain several, for example

DFHTC TYPE=(WRITE,READ)

causes a write to the terminal, a wait
for that write to be completed (an.
implied wait), and a read from the
terminal to which data has just been
written.

Another example is the macro
DFHTC TYPE=(ERASE,WRITE,READ,HAIT)

which causes an erase and then a write
to a terminal, followed by an implied
wait, followed by a read and a requested
wait. The latter wait ensures that the
read is complete before control is
returned to the application program.

Two separate DFHTC macros must be used
when two options that would be
incompatible for the same macro are
needed. Examples of incompatible
options are:

DFHTC TYPE=(WRITE,PRINT)
DFHTC TYPE=(WRITE,READB)
DFHTC TYPE=(PRINT,READ)

In such cases, the first macro should
include the WAIT option; for example:

DFHTC TYPE=(WRITE,WAIT)
DFHTC TYPE=READB

As in other CICS macro operands, if only
one entry is given in the TYPE operand,
no parentheses are necessary.

The application programmer must
determine the combination of keywords
that follow TYPE=, depending on the
terminal (and sometimes, access method)
used and the operations required.
Additional operands may be required or
desired, again depending . upon the
terminal and access method used. Some
common input/output requests are
discussed later in the chapter.

Before using the DFHTC macro to request
terminal services, the application
program must include instructions that:

1. Symbolically define the TCTTE and
TIOA by copving the appropriate
storage definitions (DFHTCTTE and
DFHTIOA) provided by CICS. (It is
assumed that the storage definitions
for the CSA and TCA have already
been copied, as described in Part

2. Establish addressability for the
TCTTE by specifying a symbolic base
address. If using assembler
language or COBOL, the application
programmer must obtain the base
address of the TCTTE from TCAFCAAA
and place it in TCTTEAR; with PL/I,
addressability for the TCTTE is
established automatically. Any
field in the TCTTE can then be
accessed by field name.
Addressability for the TIOA must be
established each time a DFHTC
TYPE=READ or TYPE=WRITE macro is
issued. The ways of doing this are
described in the following section.

FACILITIES FOR ALL TERMINALS AND LOGICAL
UNITS

The facilities described in this section
apply to all terminals and logical
units. There may, however, be
additional facilities that apply to
specific devices. If this is so,
details are given later in the chapter
:nder headings for the relevant device
ypes.

READ DATA FROM A TERMINAL OR LU

Data can be read from a terminal or
logical unit by issuing the

DFHTC TYPE=READ

macro. The incoming data is placed in a
TIOA acquired by terminal control, which
also places the address of the TIOA in
TCTTEDA. The operation will be complete
when another terminal control TYPE=WAIT
has been issued. On completion of the
read operation, the application program
must copy the address from TCTTEDA to
the TIOA base address register
(TIOABAR): any field in the TIOA can
then be accessed by field name.

The length of the data read into the
TIOA is stored in TIOATDL.

Terminal control attempts to reuse TIOAs
that have been used in previous
operations. For this purpose, it
maintains a chain of TIOAs whose
addresses are anchored in the TCTTE. 1If
no TIOA is attached to the chain, or if
the existing TI0OAs are too short or are
otherwise unsuitable, terminal control
acquires a new TIOA. The current TIOA
as addressed by TCTTEDA may be freed by
terminal control unless the SAVE operand
is specified.

106 CICS/VS Application Programmer's Reference Manual (Macro lLevel)

Note that when using BTAM, data is read
into a line input/output area (an LIOA).
BTAM determines which terminal has been
read, changes the LIOA into a TIOA and
places the address of that TIOA in
TCTTEDA after freeing the area
previously pointed to by TCTTEDA.

A new TIOA is also acquired by terminal
control for the read when the

DFHTC TYPE=(READ,SAVE)

macro is issued. All TIOAs currently
chained off the TCTTE are retained and
may subsequently be reused; a new TIOA
is dynamically acquired for this read
and is added to the chain.

A write, followed by a read operation,
can be specified in a single request.
See "Write Data and Read Reply™, below.

When a TIOA which was previously
obtained as an LIOA by terminal control
is passed to a user task, the contents
of the data part cannot be guaranteed
bevond the data length supplied in
TIOATDL. Therefore users should not
attempt to interrogate the contents of a
TIOA beyond this supplied length.

When the contents of a 3270 buffer are
read (by using DFHTC TYPE=READB), the
programmer should be aware that the
attention identifier (AID) byte and the
cursor address are made available at
TCTTEAID and TCTTECAD respectively. A
set of standard symbolic names for
testing the 3270 AID is provided in a
copy book called DFHAID. For further
details refer to "Standard Attention
Identifier List (DFHAID)"™ on page 184.

WRITE DATA TO A TERMINAL OR LU

Data is written to a terminal or logical
unit using the

DFHTC TYPE=WRITE

macro. (For a transaction that has been
started by automatic transaction
initiation (ATI}, a DFHTC TYPE=WRITE
macro should always precede the first
DFHTC TYPE=READ macro in a transaction.)

Before using this macro, the application
program must acquire a TIOA in which to
build the data to be transmitted, and
must place the address of the TIOA in
TCTTEDA and the length of the data to be
written in TIOATDL. The maximum data
length is 32,767 bytes which includes
the length of the function management
hegger (FMH) when writing to a logical
unit.

The required TIOA is acquired by a DFHSC
TYPE=GETMAIN,CLASS=TERMINAL macro. CICS
places the address of the TIOA in
TCASCSA, from where it must be copied

into the TIOA base address register
(TIOABAR).

The application program must not change
the contents of TCTTEDA until after the
I/0 operation has completed. The
operation will only be complete when
another terminal control request has
been issued (that is, TYPE=WAIT or
TYPE=READ).

If WAIT is not specified on a terminal
control TYPE=WRITE operation, the
operation may be deferred until the next
terminal control request. When the next
terminal control request is issued, the
SNA flows are optimized before the
actual 1/0 is issued. For example, a
terminal control write followed by a
terminal control read could cause two
flows to be sent, whereas only one flow
is sent if it can be determined that the
next operation is a read request.

When writing data to a 3600
(nonpipeline) or 3790 inquiry logical
unit, the application program must not
put data into the first three bytes of
the TIOA, unless it is building its own
FMH. See "Function Management Header
(FMH)"™ on page 112. The FMH is built
either by CICS or by the application
program.

When the write operation is completed by
terminal control, the TIOA is released
to a dynamic storage pool (unless SAVE
is specified). Subsequent reference to
this TIOA by the application program
will produce unpredictable results.

However, a TIOA can be reused by the

application program after a write if the

Z:quest to write data to a terminal uses
e

DFHTC TYPE=(WRITE,SAVE,HAIT)

macro. In this case, the TIOA is not
released by terminal control. The WAIT
parameter ensures that the write of the
TIOA is complete before the area is
reused.

If a dump of the TIOA is required
following a terminal control write, the
SAVE and WAIT operands should be
included with the DFHTC TYPE=WRITE macro
that precedes the DFHDC macro.

WRITE DATA AND READ REPLY

As stated earlier, a write followed by a
read operation can be specified in a
single request by issuing the

DFHTC TYPE=(WRITE,READ)

macro. A typical use for this macro
occurs in a conversational environment
in which the application program writes
a question to the terminal, waits for a
reply, and subsequently reads the reply.

Chapter 4.2. Terminal Control (DFHTC Macro) 107

Because the SAVE parameter is not
specified, terminal control can reuse
the TIOA (from which data is written) as
a TIOA for the input data. Under
certain conditions, however, a new TIOA
is obtained for the read operation, for
example:

U Local 3270 terminals.
) PSEUDOBIN specified with READ,WRITE.

U The TIOA length for the WRITE
instruction less than that specified
by the system programmer in the
DFHTCT TYPE=TERMINAL,TIOCAL=length
specification (binary synchronous
terminals) or in the DFHTCT
TYPE=LINE, INAREAL=length
specification (all other terminals).

. Certain error conditions.

The user should always reload TIOABAR
from TCTTEDA following the (WRITE,READ)
macro.

For a terminal connected to the 7770
Audio Response Unit, a read request that
does not include the WRITE parameter
causes the "ready™ message (defined in
the terminal control table by the system
programmer) to be written to the
terminal before the read operation
occurs.

If both a write and a read operation are
specified in a single request by issuing

DFHTC TYPE=(WRITE,READ,SAVE)

the TIOA used for writing is saved; a
new TIOA is then acquired by terminal
control for the read. The size of the
TIOA is determined by the systenm
programmer when specifying the TCTTE for
the terminal (rather than by the size of
the TIOA used for the write). If the
saved TIOA is reused later for either
writing or reading, the application
program must place the address of the
TIOA into TCTTEDA prior to issuing the
request to use the area.

The manner in which the address of a
TIOA is "remembered" is the application
programmer's responsibility .

Upon completion of a (WRITE,READ,SAVE),
place the value at TCTTEDA into TIOABAR
to establish addressability for the
newly-acquired TIOA.

SYNCHRONIZE TERMINAL I/0 (WAIT)

In a task under which more than one
terminal or logical unit operation is
performed, the application programmer
must ensure that a current terminal
operation is complete before another
begins. Furthermore, for all
(WRITE,READ) and (WRITE,READ,SAVE)
requests, control is returned to the

application program after the write
operation is executed, but the read
operation has not necessarily been
completed at this time. Therefore, in
order that the data resulting from the
READ operation can be processed, the
application programmer must ensure that
the operations are completed. To do
this the

DFHTC TYPE=KWAIT

macro is issued, where the WAIT
parameter is coded separately, as shown,
or in combination with READ or WRITE. A
PUT can be coded in place of a
(WRITE,WAIT); a GET can be coded in
place of a (READ,WAIT). To ensure that
the data has been transferred to the
TIOA, a wait must be issued for each
read -request.

A wait may cause execution of a task to
be suspended. If suspension is
necessary, control is returned to CICS.
Execution of the task is resumed when
the write or read is posted complete.

A wait need not be coded for a write if
the write is the last terminal operation
of the transaction. The TIOA is
retained until the data is written, even
if the transaction and its associated
storage are deleted from the system
before the write occurs.

CONVERSE WITH A TERMINAL OR LU

A conversational mode of communication
with a terminal or logical unit is
requested by the

DFHTC TYPE=CONVERSE

macro, where CONVERSE (or CONV) is the
same as (WRITE,READ,HWAIT). This
instruction is always executed in the

sequence: WRITE, implied wait, READ,
WAIT.

It is possible, for most devices, to use
this macro rather than TYPE=READ, but it

must not be used for the 3600 or 3650
pipeline logical units. However, its
usgtis recommended for all other logical
units.

DISCONNECT A SWITCHED LINE

To break a line connection between a
terminal or logical unit and a host
processor, the

DFHTC TYPE=DISCONNECT

macro is used. This applies only to
devices operating on switched lines or
to logical units.

] When used with a VTAM terminal,
| DISCONNECT, which does not become
| effective until the task completes,

108 CICS/VS Application Programmer's Reference Manual (Macro lLevel)

signs off the terminal, frees the
COMMAREA, clears the next TRANID, stops
any BMS paging, and, if autoinstall is
in effect, deletes the terminal
definition.

When used with logical units,
DISCONNECT, which does not become
effective until the task has been
terminated, terminates the session,
without causing a physical
disconnection.

Note: CICS/0S5/VS implements DISCONNECT
for HWorld Trade Teletype Terminals by
writing a message to the terminal
indicating that the terminal operator
should manually disconnect.

EXAMPLES

The following examples, in assembler
language (ASM), COBOL, and PL/I, show
the use of a terminal control macro
(DFHTC) that erases the screen, returns
the cursor to the upper left corner of
the screen, writes to the terminal, and
reads from the terminal. The lines of
code in the examples are keyed to the
notes that follow.

ASM
1 L TCTTEAR, TCAFCAAA
2 DFHSC TYPE=GETMAIN,
NUMBYTE=80,
CLASS=TERMINAL
3 L TIOABAR,TCASCSA
4 ST TIOABAR,TCTTEDA

Chapter 4.2. Terminal Control (DFHTC Macro)

-~

MVC TIOADBA(C80),DATA

MVC TIOATDL,=H'80"

DFHTC TYPE=(WRITE,ERASE,
READ, WAIT)

L TIOABAR, TCTTEDA

MOVE TCAFCAAA TO TCTTEAR.

DFHSC TYPE=GETMAIN,
NUMBYTE=80,
CLASS=TERMINAL

MOVE TCASCSA TO TIOABAR.

MOVE TIOABAR TO TCTTEDA.

MOVE DATA 'TO TIOADATA.

MOVE 80 TO TIOATDL.

DFHTC TYPE=(WRITE, ERASE,
READ, WAIT)

MOVE TCTTEDA TO TIOABAR.

TCTEAR=TCAFCAAA;

DFHSC TYPE=GETMAIN,
NUMBYTE=80,
CLASS=TERMINAL

TIOABAR=TCASCSA;

TCTTEDA=TIOABAR;

TIODATA=DATA;

TIOATDL=30;

DFHTC TYPE=(MWRITE, ERASE,
READ,WAIT)
TIOBAR=TCTTEDA;

109

The statements in the above examples:

1. Establish addressability for the
TCTTE.

2. Acquire storage for use as a
terminal input/output area by use of
the DFHSC macro.

3,4 Place the address of the acquired
area into TCTTEDA.

5. Place data in the TIOA.

6. Place the length of the data to be
written into TIOATDL.

7. Issue a terminal control macro to a
3270 terminal, thus erasing the
screen, returning the cursor to the
upper left corner of the screen,
writing to the terminal, and reading
from the terminal (allowing terminal
%gSX;ol to manage storage for the

8. Establish addressability to the TIOA
into which the data has been read.

FACILITIES FOR LOGICAL UNITS

A CICS application program communicates
with a TCAM or VTAM logical unit in much
the same way that it does with BTAM or
TCAM terminals (that is, by using the
various forms of the DFHTC macro
described above). However,
communication with logical units is
governed by the conventions (protocols)
that apply to each type of logical unit.
This section describes the additional
facilities provided by CICS to enable
the application programmer to comply
with these protocols.

The types of logical units and the
related protocols for each of the SNA
subsystems supported by CICS are
described in the IBM 3270 Data Stream
Device Guide, and in the CICS subsystem
guides for the IBM 4700/3600/3630, IBM
3650-3680, IBM 3767/3770/6670 and the
IBM 3790,3730/8100. See "Bibliography"™
on page 351.

SEND/RECEIVE MODE

For SNA logical units, a transaction
conversing with such a logical unit must
conform to the send/receive protocols of
SNA, unless the read-ahead queueing
feature has been specified.

However, a transaction is normally in
send mode and can issue any terminal
control request. For displays (for
example, the 3270), the send/receive

mode is transparent to the application
program, but for logical units that
perform chaining, or make use of the
full SNA protocols (for example, the
3767), the send/receive mode should be
taken into account.

If the application program is in receive
mode, flag TCTEURCV in field TCTERCVI is
set on, and the application program must
continue to issue terminal control READ
requests.

For compatibility, the read-ahead
queueing feature (RAQ=YES specified in
the DFHSG PROGRAM=TCP system macro) is
provided so that the application program
is independent of the send/receive mode.
However, it is recommended that
application programs be changed to use
SNA send/receive protocols and that,
wherever possible, they specify RAQ=NO.

OVERLAPPING LOGICAL UNIT OUTPUT

Write operations are not initiated until
a subsequent terminal control operation
to the logical unit is issued, a
syncpoint is taken, or the task
terminates.

If a terminal control write operation is
awaiting completion, a terminal control
wait should be issued unless the next
operation is a read request, in which
case a terminal control read can be
issued directly.

A terminal control write and wait
request causes the operation to be
initiated immediately. If only a
terminal control write is issued, the .
operation is delayed until the next
operation so that SNA flow handling can
be improved.

The point at which a wait is satisfied
depends upon whether task protection,
message integrity, or DEFRESP=YES is
requested for the task. Task protection
and message integrity are specified, by
the system programmer, in the DFHPCT
macro; if data is sent with task
protection or message integrity, a wait
is completed when a logical unit
responds to the write request;
otherwise, the wait is completed after
VTAM has accepted the output request.

If a task is operating under task
protection or message integrity and an
exception response is returned for an
output request, the output message is
still available in the TIOA. The node
error program (NEP) can therefore
request that the operation be retried as
many times as specified by the
installation.

110 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAINING OF INPUT DATA

For transmission purposes, data handled
by a logical unit is divided into
request/response units (RUs). The data
may be transmitted as one or more RUs,
called a chain, depending on the length
of the data, and on the maximum size of
the RU defined for the logical unit or
that has been defined for the terminal
network in general.

Each RU contains a set of indicators
that specify whether the RU is the
first, middle, or end, of the chain
(FOC, MOC, or EOC, respectively). If
the chain consists of only one RU, this
RU contains both the FOC and the EOC
indicators.

Data is transmitted as a chain of one or
more RUs from a logical unit to the
application program. If the chain
contains more than one RU, further read
requests are required, one for each RU,
unless chain assembly has been
specified. (Chain assembly is described
later in the chapter.) The length of
each RU must be less than or equal to
the maximum RU size.

The EOC operand of the DFHTC
TYPE=(READ,HWAIT) macro is used to test
for the presence of the EOC indicator.
If it is present, that is, the complete
chain has been received, control is
passed to a user-written routine that
provides additional processing.

For some logical units, the data
transmitted may contain a function
management header (FMH), in which case,
inbound-FMH processing will take
precedence over EOC processing.
(Inbound FMH is described later in the
chapter.)

Further, if the FMH indicates the end of
the data set, control will be passed to
the EODS routine instead of to the
INBFMH or EOC routines. The DFHTC
TYPE=WAIT macro with the EOC operand
specifies that control is to be passed
to an EOC routine from within either the
inbound FMH or the EODS routine.

An FMH may also occur in the first RU of
a chain that contains more than one RU.
In this case, control is passed to the
INBFMH routine when a DFHTC TYPE=READ is
satisfied by that RU.

The application program must read all
the data from the logical unit, that is,
it should not terminate (except
abnormally) before EOC has been
received. Application programs should
also ensure that the complete data
stream has been received from the
logical unit; this will be ensured if
the application program is not in
receive mode when it terminates.

CHAINING OF OUTPUT DATA

As in the case of input data, output
data is transmitted as request/response
units (RUs). If the length of the data
supplied in the TIOA exceeds the RU
size, CICS automatically breaks up the
data into RUs and transmits these RUs as
a chain. During transmission from CICS
to the logical unit, RUs are marked FOC,
MOC, or EQOC to denote their position in
the chain. An RU that is the only one
in a chain is marked 0C (only-in-chain).

If the system programmer specified that
the application program can control the
chaining of outbound data, the
application program can inhibit the
end-of~-chain marker on the last (or
only) RU resulting from the write
request by including the CCOMPL=NO
operand (specifying that the chain is
not yet complete). The data supplied in
the TIOA for the next write request is
treated as a continuation of the chain.

CHAIN ASSEMBLY

Chain assembly, which is specified by
the system programmer in the TCTTE, is
the process of assembling RUs together
to form a chain which is transmitted as
an entity to the application program in
a single TIOA in response to a single
read request. This ensures the
integrity of the whole chain before
presentation to the application program.
If the EOC operand is specified in the
read request, the EOC routine receives
control for every read request (except
when an FMH is received and the
appropriate EODS or INBFMH routine is
specified, as described earlier in the
chapter under "Chaining of Input Data™).

The length of the TIOA required to hold
a chain is unknown because a chain can
consist of any number of RUs. To allow
for this, two TIOA lengths can be
specified in the TCTTE by the system
programmer. The first length specifies
a TIOA that will normally be provided.
The second specifies a larger TIOA for
use when the normal TIOA is not large
enough. If the larger TIOA cannot hold
the complete chain, the node abnormal
condition program (DFHZNAC) is invoked
and the task is terminated abnormally.
Additional processing of the chain can,
however, be initiated by the node error
program (DFHZNEP) when a further read
request will be needed to cause
transmission of the rest of the chain.
The use of two TIDA sizes minimizes
storage requirements.

Chain assembly is recommended for most
interactive applications, because the
input data is usually made up of a chain
of more than one RU. In many cases the
application program logic is simplified
by use of this option.

Chapter 4.2. Terminal Control (DFHTC Macro) 1ll1

LOGICAL RECORD PRESENTATION

Normally a chain contains the data to be
processed and this chain is presented to
the application program in a TIOA as
specified in the TCTTE.

In some cases, however, the chain
contains many logical entities for
processing. These may be each RU
itself, or the RUs may be further
subdivided into logical records
delimited by interrecord separator
control characters, or new line
characters.

The entire RU will be presented to the
application program if chain assembly is
not specified in the TCTTE. However, if
the data stream is delimited by
separators into logical records, the
system programmer can specify in the PCT
that logical records will be presented
to the application program instead of
RUs or chains, so overriding on an
application basis the TCTTE options for
the logical unit.

If the RU contains more than one logical
record, the records will be separated by
NL (new line), IRS (interrecord
separator), or TRN (transparent)
characters. Except in the case of
LUTYPES4, one logical record cannot be
transmitted in more than one RU; the end
of the RU is always the end of the
logical record. Data from an LUTYPE4
unit may contain logical records that
span RUs, in which case chain assembly
should be specified.

Because a card reader inserts an IRS
character after the last nonblank
character on the card, the user may
receive card images that are less than
80 characters in length. Conversely, a
series of full cards will begin at
8l-character intervals.

For those appllcat1on programs for which
this option is spec1f1ed, each read
request results in one logical record
being presented to the application
program in a TI0A, regardless of whether
chain assembly is specified or not. 1If
the logical records are separated by IRS
or TRN characters, these are removed,
and do not appear in the TIODA.
Therefore, a blank card will appear as a
TIOA with a length of zero. If NL
characters are used to separate the
logical records, they are not removed,
and the NL character from the end of
each logical record appears at the end
of the TIOA. All the previously
described communication features are
still in operation. That is,
notification of end-of-chain, and (for
batch logical units only) notification
of end-of-data-set conditions and
presentation of the inbound FMH at the
beginning of a chain, still occurs.

If chain assembly has been specified, a
logical record ends with a delimiter
(either NL, IRS, or TRN), or the end of
the assembled chain. The end of chain
notification is given with the last
logical record of the chain.

DEFINITE RESPONSE

The type of response requested by CICS
for outbound data is generally
determined by the system programmer when
generating the PCT. The system
programmer can specify that all outbound
data for an application program will
require a definite response, or allow
the exception—~response protocol to be
used, which means that a response will
be made only if an error situation
occurs.

If exception response protocol is used,
a negative response may be received and
handled on a subsequent command.

The use of definite-response protocol
has some performance disadvantages, but
may be necessary for some application
programs. To provide a more flexible
method of specifying the protocol to be
used, the DEFRESP operand is provided
for use on the DFHTC TYPE=WRITE macro.
One example of the use of this operand
is to request a definite response for
every tenth write request, exception
response being the general rule.

Because a response cannot be received
until the whole chain has been sent, the
DEFRESP operand and the CCOMPL=NO
operand are mutually exclusive. The
DEFRESP operand and the ERASE operand
are also mutually exclusive.

FUNCTION MANAGEMENT HEADER (FMH)

A function management header (FMH) is a
field that can be included at the
beginning of an input or output message.
It is used to convey information about
the message and how it should be
handled.

For some logical units, the use of an
FMH is mandatory, for others it is
optional, and in some cases FMHs cannot
be used at all.

For output, the FMH can be built by the
application program or by CICS. For
input, the FMH can be passed to the
application program or it can be
suppressed by CICS.

The rules governing the use of FMHs for
each type of logical unit, and the
formats of the FMHs, are given in the
CICS subsystem guides (for example, the

CICS IBM 3790,/3730/8100 Guide), which
are listed in the Bibliography.

112 CICS/VS Application Programmer's Reference Manual (Macro Level)

Inbound FMH

The CICS application program can request
notification when an FMH is included in
the data received during a read from a
logical unit; when present, the FMH is
at the start of the TIOA.

Whether or not inbound FMHs will be
passed to the application program is
specified by the system programmer in
the PCT. It can be specified that no
inbound FMHs will be passed, or that
only the FMH indicating end of data set
(EODS) will be passed, or that all
inbound FMHs will be passed, or that the
data interchange program (DFHDIP) will
process the FMH.

The INBFMH operand of the DFHTC
TYPE=READ or WAIT macro specifies that
control is to be passed to a
user-written routine whenever an inbound
FMH is received. Use of the INBFMH
operand implies that the WAIT option of
the TYPE operand is in effect.

The user-written routine can examine the
FMH and take some action depending on,
for example, from which device the data
has come. The routine then scans the
TIOA for input data, starting after the
FMH. If the data is initial data from a
logical unit, the transaction
identification will start after the FMH.

When input data is received as a chain
of RUs, only the first (or only) RU of
the chain contains an FMH.

Outbound FMH

Some logical units require or allow
control information to be specified by
means of an FMH. For 3600 (nonpipeline)
and 3790 inquiry logical units, CICS
will build the FMH, but the application
program must reserve space in the TIOA
for it. CICS will not build on FMH for
any other type of logical unit.

If the FMH is to be built by the
application program, the write request
must specify FMH=YES. The FMH must
start at the beginning of the TIODA.

END OF DATA SET (EODS)

The DFHTC TYPE=EODS macro specifies that
an FMH containing an EODS indicator is
sent to a 3650 interpreter logical unit.
This FMH delimits the output. The end
of the input is detected similarly by
the EODS operand of a DFHTC TYPE=READ
macro.

LOGICAL DEVICE CODE (LDC)

A logical device code (LDC) is a code
that can be included in an outbound FMH
to specify the disposition of the data
(for example, to which subsystem
terminal it should be sent).

An LDC is a CICS-supported and
installation-defined logical device
code. Each code can be represented by a
unique LDC mnemonic. The installation
can specify up to 256 two-character
mnemonics for each TCTTE, and two or
more TCTTEs can share a list of these
mnemonics. Corresponding to each LDC
mnemonic for each TCTTE is a numeric
value (the LDC itself whose code value
can range from 0 to 255). A device type
and a logical page size are also
associated with each LDC. "LDC"™ or "LDC
value™ is used in this publication to
refer to the code specified by the user.
YLDC mnemonic"™ refers to the
two-character symbol that represents the
LDC numeric value.

Within the 3601 subsystem, a
user-written application program
provides the function of the logical
unit. For batch and batch data
interchange logical units the functions
of the logical unit are built in and in
general cannot be modified further by
the user. The following paragraphs
discuss some of the functions that may
be provided in a user-written
application progran.

When a CICS application program issues a
write request with the LDC operand
specified, the numeric value associated
with the mnemonic for the particular
TCTTE is inserted in the FMH. The
numeric value associated with the LDC
mnemonic is chosen by the installation;
the interpretation of that numeric value
is the responsibility of the subsystem
application program.

As a minimum, the installation can
choose a different LDC to correspond to
each device attached to the logical
unit. The values (codes) chosen for the
LDC can correspond exactly to the
logical device address (LDA) for each
device. The subsystem application
program can then take the CICS output
data and write it directly to the
indicated LDA.

LDCs can be used to provide support for
multiple-form printers. MWhen used for
these printers, each LDC within a
specified range corresponds to a
particular type of form. MWhenever the
subsystem application program receives
data with an LDC that indicates a
particular printer and a particular
form, the application program can check
the device to determine whether the
correct form is currently on the
printer. If the correct form is on the
printer, the application program

Chapter 6.2. Terminal Control (DFHTC Macro) 113

proceeds with the output operation. If
the correct form is not on the printer,
the application program can request the
operator to load the appropriate form
and to signal when the load is
completed.

Some LDCs can be used to indicate
certain standard actions to be
undertaken by the application program.
Using the LDC in this way can reduce the
ocverhead of writing messages to the
subsystem application program. An
example of this use of LDCs is an
instruction to the application program
to turn on specific indicator lights on
a device. A range of LDCs can be
specified for each device, each LDC
within this range corresponding to a
specific light. Upon receipt of such an
LDC, the application program determines
the appropriate device and indicator and
issues the commands necessary to turn on
the light. Other standard actions that
can be invoked by LDCs are dumping
operator totals, checking diskettes for
transaction backlogs, or indicating a
change in operational mode.

The LDC operand of the DFHTC TYPE=WRITE
macro is only for use with 3600 (3601)
nonpipeline logical units and provides a
symbolic way of conveying to CICS the
type of FMH it is to build on behalf of
the application program. Alternatively,
the application program may build its
own FMH (which may be greater than three
bytes) and indicate this by means of the
FMH operand.

Component or destination selection for
batch and batch data interchange logical
units is accomplished by means of an
FMH, the length of which depends on the
type of logical unit. The application
program must build its own FMH, or use
the LDC operands of the basic mapping
support (BMS) macros DFHMSD or DFHBMS
TYPE=0UT or TYPE=STORE to instruct BMS
to build the correct FMH. If the FMH is
to be built by the application program
the DFHTC CTYPE=LOCATE, LDC=YES macro
may be used to symbolically obtain the
component selection value to be inserted
in the appropriate FMH field. Refer to
the IBM 3770 and IBM 3790 guides for a
further discussion of component
selection.

UNSOLICITED INPUT

If a task is in progress and unexpected
data (that is, data from a terminal for
which a read request has not been
issued) arrives from a start-stop aor BSC
#erTinil, CICS ignores the data and it
is lost.

If, however, unexpected data arrives
from a 3600, 3650, 3767 or 3770
interactive (contention only), or 3790
inquiry logical unit, it is queued and

is used to satisfy any future input
requests for that logical unit. For the
3270 logical unit (but not for the 3270
LUTYPE2 logical unit , data is queued
only if PUNSOL=NO is specified in the
DFHSG PROGRAM=TCP macro; otherwise it is
lost. Unsolicited input does not occur
for the other logical units.

SIGNAL COMMANDS FROM LOGICAL UNITS

Signal data-flow-control commands from
the logical unit must be handled by the
application program. The DFHTC
TYPE=SIGNAL macro allows an address to
be specified to which control will pass
when a signal command is received. The
associated signal code will be stored in
the four-byte field TCTESIDI in the
terminal control table terminal entry
(TCTTE). ,

If a hard request-change-direction (RCD)
signal is received from an LUTYPE4 unit
(signal code = X'00010000'), the
transaction should either end or read
data from the logical unit. Any attempt
to write to the unit immediately
following a hard RCD would be an error,
indicated by the flag TCTERCD in the
TCTTE. If a further attempt to write to
the logical unit is made, CICS will
abnormally terminate the transaction
with an abend code of ATCL.

Most logical units that can send a
signal command with a code of
X*'00010000' do so when an attention key
is pressed.

BRACKET PROTOCOL

The use of bracket protocol is a means
of preventing interruption of the
exchange of data between CICS and a
logical unit. CICS or the logical unit
may send begin-bracket, but only CICS
may send the end-bracket. Brackets can
delimit a conversation between CICS and
the logical unit or merely the
transmission of a series of data chains
in one direction.

Bracket protocol is used when CICS
communicates with a logical unit. The
use of brackets is usually transparent
to the CICS application program.

Only on the last write operation of a
task to a logical unit does the bracket
protocol become apparent to the CICS
application program. 0On the last output
request to a logical unit, the CICS
application program may specify LAST in
the DFHTC TYPE=WRITE macro. The last
output request is defined as either the
last DFHTC TYPE=WRITE macro specified
for a task without chain control; or as
the write operation that transmits the
FOC or OC marker of the last chain of a
transaction with chain control.

114 CICS/VS Application Programmer's Reference Manual (Macro Level)

The LAST specification causes CICS to
transmit an end-bracket indicator with
the final output message to the logical
unit. This indicator notifies the
logical unit that the current
transaction is ending. If the LAST
operand is not specified, CICS waits
until the task detaches before sending
the end-bracket indicator. Since an
end-bracket indicator is transmitted
only with the first RU of a chain, the
LAST operand is ignored for a
transaction with chain control unless
FOC or 0OC is also specified. Refer to
the publication VTAM Concepts and
Planning for more details on bracket
protocol.

JERMINAL-ORIENTED TASK IDENTIFICATION

When CICS receives input from a terminal
to which no task is attached, it has to
determine which transaction should be
initiated. The methods by which the
user can specify the transaction to be
initiated and the sequence in which CICS
checks these specifications are as
follows (see also Figure 13 on

page 116).

Test 1:

Is the input from a PA key (of a 3270
terminal) that has been defined at
system initialization as the print
request key? If ves, printing of the
data displayed on the screen is
initiated.

Test 2:

a) Is this terminal of a type supported
by the basic mapping support terminal
paging facility?

b) Is the input a paging command? (The
terminal operator can enter paging

commands defined by the system
programmer in the DFHSIT macro. See the

appropriate CICS Resource Definition
manual.)

If ves to both (a) and (b)), the
transaction CSPG, which processes paging
commands, is initiated.

Test 3:

If an attach FMH is present in the data
stream and tests 6 and 5 are not
fulfilled, the transaction specified in
the attach FMH is initiated. The
architectured attach names are converted
to "CSMI™.

Test 4:

Does the terminal control table entry
for the terminal include a transaction
identification (specified by the TRANSID
operand of the DFHTCT macro)?

If ves, the specified transaction is
initiated.

Test 5:

Is a transaction specified by the
TRANSID operand of a DFHPC TYPE=RETURN
macro (or by the application program
moving the transaction name into
TCANXTID)?

If yes, the specified transaction is
initiated. :

Test 6:

a) Is the terminal a 3270 (including
3270 logical unit and 3650
host-conversational (3270) logical unit,
connected via VTAM?)

b) Is the input from a PA key, PF key,
light pen attention (LPA), or magnetic
stripe card reader (OPID)? .

¢) Is this input (PA, PF, LPA, or OPID)
specified by the TASKREQ operand of a
DFHPCT TYPE=ENTRY macro? (See the
appropriate CICS Resource Definition

manual.)

If yves to (a), (b), and (c), the program
specified by the PROGRAM operand of same
DFHPCT TYPE=ENTRY macro is given
control.

Test 7:

Is a valid transaction identification
specified by the first one to four
characters of the terminal input?

If ves, the specified transaction is
initiated.

For all PA keys and some LPAs there
cannot be terminal input. If there is
no terminal input an Minvalid
transaction identification™ message is
sent to the terminal.

If none of the above tests is met, an
invalid transaction identification

exists. Message DFH2001 is sent to the
terminal.
Note: The 3735 Programmable Buffered

Terminal makes an exception to this
sequence when operating in inquiry mode.
The test of input from the terminal
(Test 7 above) is given highest
priority.

SYNTAX OF THE DFHTC MACRO

This section shows the syntax of the
DFHTC macro available for use with each
type of device or logical unit, arranged
in numerical order.

The syntax displays for each device and
for the 3270 logical unit are followed
by information specific to that device

Chapter 6.2. Terminal Control (DFHTC Macro) 115

3270
Print Request
Key?

Terminal

suppor ted by
paging?

Initiate
Printing

Paging
command
entered?

Yes
Initiate CSPG

Attach
FMH present
?

spec. by DFHTCT

Trans.
spec. by TRANSID

of DFHPC
?

Trans.

TRANSID?

TRANSID?

Initiate specified

transaction

Initiate specified

transaction

TASKREQ =
specified?

PA, PF, LPA, or
OPID?

Term
input begins with
trans. id.?

Send “invalid
transaction ident.”
message to terminal

Initiate transaction
specified by
terminal input

Figure 13.

Terminal-Oriented Task Identification

No

initiate transaction
specified in
Attach FMH

116 CICS/VS Application Programmer's Reference Manual (Macro Level)

1

Initiate transaction
specified by

terminal input AID

or logical unit. However, information
about 3600, 3650, 3767, 3770, and 3790
logical units is given in the CICS
subsystem guides.

TCAM SUPPORTED TERMINALS AND LOGICAL
UNITS (CICS/0S/VS ONLY)

Under CICS/0S/VS only, because TCAM
permits many applications to share a
single network, the CICS-TCAM interface
supports data streams rather than
specific terminals or logical units.

Operations for terminals and logical
units connected through TCAM use the
same operands as the terminals and
logical units connected through the
other access methods used with CICS.

For input, TCAM supports only the READ
and READL operations. For output, TCAM
supports only the WRITE operation with
the optional use of ERASE. The DEST
operand can be specified for all TCAM
output operations. (The syntax of the
DFHTC macro for TCAM operations is given
later in the chapter.)

3650 logical units cannot be connected
through TCAM.

BTAM PROGRAMMABLE DEVICES

When BTAM is used by CICS for
programmable BSC (binary synchronous
communication) line management, CICS
initializes the communication line with
a BTAM "read initial"™ (TI); the terminal
response must be a "write initial"™ (TD)
or the equivalent. If a user-written
application program then issues a read,
CICS issues a "read continue™ (TT) to
that line; if the application program
issues a write, CICS issues a "read
interrupt™ (RVI) to that line. If "end
of transmission™ (EOT) is not received
on the RVI, CICS issues a "read
continue™ (TT) until the EOT is
received.

When TCAM is used, all of this line
control is handled by the MCP rather
than by CICS.

The programmable terminal response to an
RVI must be EOT. The EOT response may,
however, be preceded by writes, in order
to exhaust the contents of output
buffers; this is provided the input
buffer size is not exceeded by this
data. The input buffer size is
specified by the system programmer
during preparation of the TCT. CICS
issues a TT until it receives an EOT, or
until the input message exceeds the size
of the input buffer (an error
condition).

After receiving an EOT, CICS issues a TI
or the equivalent (depending on the type
of line). The programmable terminal
response must be a read 1n1t181 (TI) or
the equivalent.

If another write is issued by the
application program, CICS issues a write
continue (TT) to that line. If the
application program issues a read after
it has issued a write, CICS turns the
line around with a "write reset™ (TR).
(CICS does not recognize a read
interrupt.)

When CICS initiates a transaction using
automatic transaction initiation, it
first of all issues a write initial (TI)
or the equivalent. The terminal must
respond with a read initial (TI) or the
equivalent. Reading from or writing to
the terminal can then continue as if the
write initial had been caused by a write
instruction in the application program.

ATI transactions attached to the device
will cause message DFH2503 to be sent to
that device. The device must be
prepared to action it.

To ensure that binary synchronous
terminals (for example, System/370,
1130, 2780) remain coordinated, CICS
processes the data collection or data
transmission transaction on any line to
completion, before polling other
terminals on that line.

The programmable terminal actions
required for the above activity, with
the corresponding user application
program macros and CICS actions, are
summarized in Figure 19 on page 118.

Input data is deblocked to ETX, ETB, RS,
and US characters. These characters are
moved with the data to the TIOA but are
not included in the data length
(TIOATDL). The CICS application
programmer should be aware that
characters such as NL, CR, LF, and EM
are passed in the TIOA as data.

TELETYPEWRITER PROGRAMMING
The teletypewriter (World Trade only)
uses two different control characters

for print formatting:

< carriage return, (X'22' in ITA2
code or X'15' in EBCDIC)

line feed, (X'28' in ITA2 code
or X'25' in EBCDIC)

The application programmer should always
use < first; that is <= or <===, but
never =<, otherwise following characters
(data) may be printed while the typebar
is moving to the left.

Chapter 6.2. Terminal Control (DFHTC Macro) 117

Application Program CICS (note 1)

Programmable
Terminal Program

DFHTC TYPE=WRITE
DFHTC TYPE=READ (note 4)

Read initial (TI)
DFHTC TYPE=READ Read continue (TT)

DFHTC TYPE=WRITE (note 2) Read interrupt (RVI)
(note 3) Read continue (TT)

Write initial (TD)
Write continue (TT)

Write reset (TR)
Read initial (TI)

Write initial (TD)
Write continue (TT)
Write reset (TR), or
Write continue

Write reset

Read initial (TI)
Read continue (TT)

Read continue (TT)
Write initial (TI)

Notes:

of the BTAM operation shown.

the read interrupt.

1. CICS issues the macro shown, or, if the line is switched, the equivalent.
The user—written programmable terminal program must issue the equivalent

‘2. An RVI sequence is indicated by the DECFLAGS field of the data extent
control block (DECB) being set to X'02' and a completion code of X'7F!
being returned to the event control block (ECB).

3. The read continue is issued only if the EOT character is not received on

. Write reset is issued only for point—to—point terminals.

Figure 14.

Message Format

Message Begin: to start a message on a
new line at the left margin, the message
text must begin with X'1517' (EBCDIC).
CICS recognizes the X'17' and changes it
to X'25' (X'17' is an idle character).

Message Body: to write several lines
with a single transmission, the lines
must be separated by X'1525', or if
multiple blank lines are required, by
X*'152525...25".

Message End before Next Input: to allow
input of the next message on a line at
the left margin, the preceding message
must end with X'1517'. CICS recognizes
X*15' and changes the character
following it to X'25°'.

Message End before Next Output: in the
case of two or more successive output
messages, the message begin and the
message end look the same; that is
X'1517*', except for the last message
(see above). To make the message end of
the preceding message distinguishable
from the message begin of the next

Summary of Programmable Terminal Actions

message, the next to last character of
the message end must not be X'15',

Message Length

It is recommended that messages for
teletypewriter terminals, do not exceed
a length of about 3000 bytes or
approximately 300 words.

CONNECTION THROUGH VTAM

Both the TWX Model 33735 Common Carrier
Teletypewriter Exchange and the WTTY
Teletypewriter (World Trade only) can be
connected to CICS through BTAM, or
through VTAM using NTO.

If a device is connected through VTAM
using NTO, the protocols used are the
same as for the 3767 logical unit, and
the application program can make use of
these protocols. However, the data
stream is not translated to a 3767 data
ﬁ$¥$am but remains as that for a THX

118 CICS/VS Application Programmer's Reference Manual (Macro Level)

S /3

SYSTEM/7

DFHTC TYPE=(READ[,SAVE])

DFHTC TYPE=(WRITEL,WAITI1L[,SAVE]
[, TRANSPARENT)
[,DEST={symb-addr]YES}]
[, ENDMSG=NO]

DEST is TCAM only

DFHTC TYPE=(READL,WAITI[,SAVE]
[, {TRANSPARENT | PSEUDOBIN} 1)

DFHTC TYPE=(WRITE[,WAITIL,SAVE]
[, {TRANSPARENT|PSEUDOBIN}1)
[,DEST={symb-addr|YES}]

DEST is TCAM only

DFHTC TYPE={DISCONNECT|RESET}

TYPE=DISCONNECT applies to switched line
System/3s only.

SYSTEM/370

Support and macro syntax as for
System/3.

CICS treats the System/7 as any other
programmable terminal. Transactions are
normally initiated from the System/7 by
issuing a four-character transaction
code which is sent in BCD mode.
Pseudobinary mode can be used only while
communicating with an active CICS
transaction; it cannot be used to
initiate the transaction. The message
length is given as the number of words
to be transmitted (not as the number of
characters).

When a transaction is initiated on a
System/7, CICS services that System/7
only for the duration of the
transaction; that is, to ensure
efficient use of the line, any other
System/7s on the same line are locked
out for the duration of the transaction.
Therefore, CICS application programs for
the multipoint System/7 should be
designed with the shortest possible
execution time.

It is an MSP/7 standard that the first
word (two characters) of every message
received by the System/7 be an
identification word. However, all
identification words beginning with ™"
(X'20') are reserved by CICS for future
use.

When the PSEUDOBIN parameter is
specified as part of an input request
(for example, DFHTC
TYPE=(READ,PSEUDOBIN)), the length of
the TIOA provided by the application
program must be at least twice that of
the data to be read. If for example,
twenty System/7 words (40 bytes) are to
be read, the data area of the TIOA must
be at least 80 bytes in length.

When the PSEUDOBIN parameter is
specified as part of an output request,
terminal control always obtains a new
TIOA and frees the old TIOA unless SAVE
is specified. Therefore, on a DFHTC
TYPE=(WRITE,READ,PSEUDOBIN) request, the
application program must reload the TIOA
address (from TCTTEDA) to access the
input data from the System/7.

Chapter 6.2. Terminal Control (DFHTC Macro) 119

In the case of a System/7 on a dial-up
(switched) line, the System/7
application program must, initially,
transmit a four-character terminal
identification. (This terminal
identification is generated during
preparation of the TCT through use of
the DFHTCT TYPE=TERMINAL,
TRMIDNT=parameter specification.) CICS
responds with either a "ready" message,
indicating that the terminal
identification is valid and that the
System/7 may proceed as if it were on a
leased line, or an INVALID TERMINAL
IDENTIFICATION message, indicating that
the terminal identification sent by the’
System/7 did not match the
TRMIDNT=parameter specified.

Whenever CICS initiates the connection
to a dial-up System/7, CICS writes a
null message, consisting of three idle
characters, prior to starting the
transaction. If there is no program
resident in the System/7 capable of
supporting the Asynchronous
Communication Control Adapter (ACCA),
BTAM error routines cause a data check
message to be recorded on the CICS
(host) system console. This is normal
if the task initiated by CICS is to IPL
the System/7. Although the data check
message is printed, CICS ignores the
error and continues normal processing.
If a program capable of supporting the
ACCA is resident in the System/7 at the
time this message is transmitted, no
data check occurs.

When a disconnect is issued to a dial-up
System/7, the "busy" bit is sometimes
left on in the interrupt status word of
the ACCA. If the line connection is
reestablished by dialing from the
System/7 end, the "busy" condition of
the ACCA prevents message transmission
from the System/7. To overcome this
problem, the System/7 program must reset
the ACCA after each disconnect and
before message transmission is
attempted. This can be done by issuing
the following instruction:

PWRI 0,8,3,0 RESET ACCA
This procedure is not necessary when the

line is reconnected by CICS (that is, by
an automatically initiated transaction).

2260 DISPLAY STATION

DFHTC TYPE=({READ|READL}[,WAIT]
[,SAVED)

DFHTC TYPE=(WRITEL,WAIT]
[,SAVE]L, ERASED)
[,DEST={symb-addr|YES}]

DEST is TCAM only

265 DISPL, STATION

Support and macro syntax as for 2260
Display Station except that the
hexadecimal equivalent of a line number
can be in the range 1 through 15 (FO0
through FE).

2740 COMMUNICATION TERMINAL

DFHTC TYPE=(READI,WAITI)

DFHTC TYPE=(WRITEL,WAITI[,SAVE])
[,DEST=symb-addr{YES}]

DEST is TCAM only

2761 COMMUNICATION TERMINAL

DFHTC TYPE=(READL,WAITI)
» RDATT=symb-addr

DFHTC TYPE=(WRITEL,HWAITI[,SAVED)
»WRBRK=symb-addr
[,DEST=symb-addr|YES}]

DEST is TCAM only

If 2741 read attention support is
included by the system programmer at
system generation, a 2741 terminal
operator can signal Read Attention by
pressing the ATTN key after typing a
message. To provide for this, the
application programmer must issue a

DFHTC TYPE=READ,RDATT=symb-addr
macro, where symb-addr is the label of a

routine to which control is passed if
the terminal operator terminates the

120 CICS/VS Application Programmer's Reference Manual (Macro Level)

input by pressing the ATTN key. (See
"Read Attention™ below.)

If 2761 write break support is included
by the system programmer at system
generation, a 2741 terminal operator can
terminate the receipt of a message by
pressing the ATTN key. To provide for
this, the application programmer must
issue a

DFHTC TYPE=WRITE,WRBRK=symb-addr

macro, where symb—addr is the label of a
routine to which control is passed if
the terminal operator presses the ATTN
key while a message is being received.
(Write Break support, described below,
is not available under CICS/D0S/VS.)

Read Attention support may be generated
in any CICS/0S/VS or CICS/D0OS/VS systenm
to permit a response to the terminal
operator pressing the ATTN key (rather
than the return key) after typing a
message, or without typing a message if
no data is to be entered. HWrite Break
support may be generated in any
CICS/0S7VS system to permit a response
to the terminal operator pressing the
ATTN key while receiving a message. The
following features must be installed on
the 2741:

. For Read Attention: Transmit
Interrupt (7900).

L For Write Break: Receive Interrupt
(4708).

READ ATTENTION

If the terminal operator presses the
attention key after typing a message, it
is recognized as a Read Attention if:

. Read Attention support is generated
into the system (CICS/0S/VS or
CICS/DOS/VS).

) The message is read by a DFHTC
TYPE=READ, RDATT=symb-addr macro
(which has an implied WAIT).

When this occurs, control is transferred
to a CICS read attention exit routine,
if it has been generated into the
system. This routine is a skeleton
program that can be tailored by the
system programmer to carry out actions
such as the following:

. Perform some data analysis or
modification on a Read Attention.

. Return a common response to the
terminal operator following a Read
Attention.

. Return a response and request
additional input that can be read

into the initial input area or into
a new area.

U Request new I/0 without requiring a
return to the task to request
additional input.

When the Read Attéention exit routine is
completed, control is returned to the
application program at the address
specified in the DFHTC TYPE=READ macro.
The return is made whenever one of the
following occurs:

. The exit routine issues no more
requests for input.

. The exit routine issues a DFHTC
TYPE=READ macro and the operator
terminates the input with a carriage
return. (If the operator terminates
the input with an Attention, the
exit routine is reentered and is
free to issue another READ.)

If the terminal operator presses the
attention key during a read, it is
recognized as a read attention only if
read attention support is generated and
if the RDATT operand is included in the
DFHTC macro requesting the input. If
either or both of these conditions do
not exist, the "attention” is treated as
a normal read completion, that is, as if
the return key had been pressed.

WRITE BREAK (CICS/0S/VS ONLY)

If the terminal operator presses the
attention key while a message is being
received, it is recognized as a Write
Break if:

. Write Break support is generated
into the system (available only in
CICS/0S/VS) by the systen
programmer.

. The write was initiated by a DFHTC
TYPE=WRITE, WRBRK=symb-addr macro
(which has an implied WAIT).

When this occurs, the remaining portion
of the message is not sent to the
terminal. The write is terminated as
though it were successful, and a
new-line character (X'15') is sent to
cause a carrier return. Control is
returned to the application program at
the address specified in the DFHTC
TYPE=WRITE macro.

If the attention key is pressed and the
Write Break feature is generated in
CICS/0S/VS, but the DFHTC TYPE=WRITE
macro does not have the WRBRK=symb-addr
operand, the write break is treated as
an 170 error. The same is true if the
attention key is pressed, but the Hrite
Break feature is not generated in
CICS/05/VS. A write can be interrupted
only if both conditions identified above
are satisfied.

Chapter 6.2. Terminal Control (DFHTC Macro) 121

Note: TYPE=WAIT and/or SAVE can be
coded with READ and/or WRITE, but only
RDATT or WRBRK (not both) can be
specified in one DFHTC macro.

2770 DATA COMMUNICATION SYSTEM

Support and macro syntax as for
System/3. The 2770 Data Communication
System recognizes a read interrupt and
responds by transmitting the contents of
the 170 buffer. After the contents of
the buffer have been transmitted, the
2770 responds to the next read continue
with an EOT. If the 1/0 buffer is
empty, the 2770 transmits an EOT. CICS
issues a read interrupt and read
continue to relinquish use of the line
and to enable the application program to
write to the 2770.

Input from a 2770 consists of one or
more logical records. CICS provides one
logical record for each read request to
the application program. The size of a
logical record cannot exceed the size of
the I/0 buffer. If the input spans
multiple buffers, multiple reads must be
issued by the application program.

The 2265 component of the 2770 Data
Communication System is controlled by
data stream characters, not BTAM macros.
Therefore, the user should provide the
appropriate screen control characters in
the TIOA.

For 2770 input, data is deblocked to
ETX, ETB, RS, and US characters. These
characters are moved with the data to
the TIOA but are not included in the
data length (TIOATDL). The application
programmer should be aware that such
characters as NL, CR, and LF are passed
in the TIOA as data.

2780 DATA TRANSMISSION TERMINAL

Support and macro syntax as for
System/”3. The 2780 Data Transmission
Terminal recognizes a read interrupt and
responds by transmitting the contents of
the I/0 buffer. After the contents of
the buffer have been transmitted, the
2780 responds to the next read continue
with an EOT. If the I/0 buffer is
empty, the 2780 transmits an EOT. CICS
issues a read interrupt and read
continue to relinquish use of the line
and to enable the application program to
write to the 2780,

Input from a 2780 consists of one or
more logical records. CICS provides one
logical record for each read request to
the application program. The size of a
logical record cannot exceed the size of
the I70 buffer. If the input spans
multiple buffers, multiple reads must be
issued by the application program.

Output to a 2780 requires that the
application programmer insert the
appropriate "escape sequence"™ for
component selection associated with the
output message. (For programming
details, see the publication Component
Description: IB 780 Data Transmissio

Terminal.)

For 2780 input, data is deblocked to
ETX, ETB, RS, and US characters. These
characters are moved with the data to
the TIOA but are not included in the
data length (TIOATDL). The application
programmer should be aware that such
characters as NL, CR, and LF are passed
in the TIOA as data.

2980 GENERAL BANKING TERMINAL

DFHTC TYPE=(READL,WAITIL,SAVE])

DFHTC TYPE={CBUFF|PASSBK}
[DEST={symb-addr|YES}]

DEST is TCAM only

PASSBOOK CONTROL

Two one-byte fields of the terminal
control table terminal entry (TCTTE) may
be interrogated by an application
program servicing passbook requests from
the 2980. These fields are:

. TCTTETAB, which contains the binary
representation of the number of tabs
necessary to position the print
element to the correct passbook
area.

. TCTTEPCF, which contains the
indicators (flags) necessary for
passbook control operations. The
indicators TCTTEPCR and TCTTEPCW
indicate whether or not the passbook
is present on a read or a write
operation, respectively. The same
indicators are used to show the
presence of the Auditor key on the
2980 Model 2.

By testing indicators TCTTEPCR and
TCTTEPCH, the application program can
maintain positive control with regard to
the absence or presence of a passbook
during an update operation. Care nmust,
however, be taken not to alter these
indicators, otherwise unpredictable
results may occur.

If the passbook is present on a read
(entry) operation, the TCTTEPCR

122 CICS/VS Application Programmer's Reference Manual (Macro Level)

indicator is turned on (set to a binary
one) by CICS. In this case, the
application program generally issues a
write operation back to the passbook
area to update the passbook. After the
write operation, the application program
must check the TCTTEPCW indicator to
ensure that the passbook was present at
the time the write occurred. If the
TCTTEPCHW indicator is off (set to a
binary zero), the passbook was not
present and the write operation did not
occur. The data sent to the terminal
(and not printed because of the "no
passbook™ condition) is, however,
returned to the application program in
its original form for subsequent
retransmission.

When the "no passbook" condition occurs
on a write, CICS allows an immediate
write to the terminal. The application
program should write an error message to
the journal area of the terminal to
inform the 2980 operator of this error
condition. To allow the operator to
insert the required passbook, CICS
automatically causes the transaction to
wait 23.5 seconds before continuing.

After regaining control from CICS
following the writing of the error
message, the application program can
attempt another write to the passbook
area when it has ensured that the print
element is positioned correctly in the
passbook area. This is generally
accomplished by issuing two carrier
returns followed by the number of tabs
required to move the print element to
the correct position. (The correct
number of tabs can be acquired from
TCTTETAB.)

If the TCTTEPCW indicator is off
following the second attempt to write to
the passbook area, the application
program can send another error message
or take some alternative action (for
example, place the terminal "out of
service™).

In summary, all writes to the passbook
area are conditional on a passbook being
present before a write can be executed
successfully. Therefore, a read
operation cannot be combined with a
passbook write. h a passbook write.

For example, a DFHTC

TYPE=(WRITE, READ,WHAIT) macro is an
invalid request for 2980 terminal
services involving the passbook area. A
DFHFC TYPE=PASSBK macro is permissible
because it implies only WRITE,HWAIT.

Note: The application programmer should
not insert shift characters in output
data, because this is done automatically
by CICS. CICS removes shift characters
from input data.

SEGMENTED WRITES CONTROL

Segmented writes are supported for both
the journal area and the passbook area.
Journal area segmented writes are
limited in length by the hexadecimal
halfword value that the user stores in
TIOATDL. Passbook segmented writes are
limited to a one-line logical write to
ensure positive control when spacing
(indexing) past the bottom of the
passbook.

For example, consider a 2972 buffer
length of 68 and a 2980 Model 4 logical
write (print) area of 100 characters per
line. The application program can write
a logical record (DFHTC TYPE=PASSBK) of
100 characters to this area; CICS
automatically segments the record to
adjust to the buffer size. The
application program must insert the
passbook indexing character (X'25') as
the last character written in one
logical write to the passbook area.

This is done to control passbook
indexing and thereby achieve positive
control of passbook presence.

If the message contains embedded
passbook index characters and
segmentation is necessary because of the
logical length of the message, the write
terminates if the passbook spaces beyond
the bottom of the passbook; the
remaining segments are not printed.

DATA HANDLING

SHIFT CHARACTERS: Shift characters are
bandled by the terminal control program
and are of no concern to the application
programmer. They are stripped from
input messages and added to output
messages as required. Data can be
written in any mix of uppercase,
lowercase, or special characters. (See
;h? 2980 Translate Tables in Appendix

JOURNAL INDEXING: Journal indexing is
the responsibility of the application
programmer. Carriage returns (X'15%)
may be inserted anywhere in the logical
message. For further information, see
the appropriate SNA Guide.

PASSBOOK INDEXING: Passbook indexing
necessitates special consideration by
the application programmer to control
bottom-line printing on the passbook.
(See "Passbook Control"™ and "Segmented
Writes Control"; the two preceding
sections.)

TAB CHARACTERS: The tab character
(X'05') is controlled by the application
programmer. As stated above, the number
of tabs required to position the print
element to the first position of the
passbook is available at TCTTETAB. This
value is specified by the system .
programmer when generating the terminal

Chapter 6.2. Terminal Control (DFHTC Macro) 123

control table and may be unique to each
terminal. Other tab characters are
inserted as needed to control output
format.

MISCELLANEQUS CHARACTERS: Turn page,
message light, open chute, and special
banking characters can be used by the
application programmer as needed. (See
the 2980 Translate Tables in Appendix
D.)

AUDITOR KEY MODEL 2: Presence of the
Auditor key is controlled through use of
the DFHTC TYPE=PASSBK macro and may be
used in a manner similar to that for
passbook control. (See "Passbook
Control™, earlier in the Chapter.)

2980 MODEL NUMBER: TCTTETM contains the
2980 model number expressed as a
hexadecimal value (X'01", X'02', X'04').
Since CICS uses the model number to
select the correct translate table for
each of the 2980 models, the application
program should not alter this field.

COMMON BUFFER:
(DFHTC TYPE=CBUFF) are translated to the
receiving TCTTE model character set. If
more than one 2980 model type is
connected to the 2972 Control Unit, the
lengths are automatically truncated if
they exceed the buffer size.

Common buffer writes

géggPLE OF APPLICATION PROGRAM FOR THE

The following examples show how the
various facilities described above for
the 2980 are used.

In the following COBOL example, the
structure DFH2980 is copied into the
working storage section.

The application program is also expected
to test the TCTTEPCF field to determine
whether a passbook is present on a read
or write. TCTTEPCR and TCTTEPCW are
located in DFH2980 to aid in testing.

To test the TCTTEPCF field, statements
such as the following might be used:

MOVE TCTTEPCF TO HOLDPCF.
IF HOLDPCFB=(HOLDPCFB/TCTTEPCW)XTCTTEPCH
THEN GO TO BOOK~-FOR-PRESENT-WRITE.

Substituting TCTTEPCR for TCTTEPCH tests
for the presence of a passbook on a
read. (HOLDPCF and HOLDPCFB are also
part of DFH2980.)

DATA DIVISION
WORKING STORAGE SECTION.
01 DFH2980 COPY DFH2980.

LINKAGE SECTION.

01 DFHBLLDS COPY DFHBLLDS.
02 TCTTEAR PIC 59(8) COMP.
02 TIOABAR PIC S9(8) COMP.

01 DFHTCTTE COPY DFHTCTTE.
01 DFHTIODA COPY DFHTIOA.
02 DATA PIC X(20).
02 FILLER REDEFINES DATA.
03 TABl1-1 PIC X.
03 DATAl PIC X(19).
02 FILLER REDEFINES DATA.
03 TAB1-2 PIC X,
03 TAB2-2 PIC X.
03 DATA2 PIC X(18).

PROCEDURE DIVISION.

IF TCTTETAB
IF TCTTETAB

TAB~ONE GO TO ONETBCH.
TAB-TWO GO TO TWOTBCH.

ONETBCH.
MOVE TABCHAR TO TAB1-1.
MOVE TOTAL TO DATAI.

TWOTBCH.
MOVE TABCHAR TO TAB1-2,
MOVE TOTAL TO DATA2.

TAB2-2.

In the following PL/1 example, DFH2980
is included following the %XINCLUDE
statement for the based structures.
DFH2980 contains constants that may be
used when writing application programs
for the 2980. To test the TCTTEPCF
field, statements such as the following
might be used:

IF (TCTTEPCF|TCTTEPCH)
THEN GO TO BOOK_PRESENT_WRITE;

Substituting TCTTEPCR for TCTTEPCH tests
fordthe presence of a passbook on a
read.

124 CICS/VS Application Programmer's Reference Manual (Macro Level)

/INCLUDE DFHTIOA;
DATA CHAR(ZO),

DCL USERTIOA_1 BASED(TIOABAR),
TIOAFILL CHAR(IZ)p
TABl1_1 CHAR(1),
DATAT CHAR(19);

DCL USERTIOA_2 BASED(TIOABAR),

TIOAFILL CHAR(12),
TAB1_2 CHAR(1),
TAB2_2 CHAR(1),
DATAZ CHAR(138);

NNNNHNNN =N

%INCLUDE DFH2980;

IF (TCTTETAB=TAB_ONE)
THEN GO TO ONETCBH;
IF CTCTTETAB=TAB_THO)
THEN GO TO TWOTBCH;

ONETBCH: TAB1_1=TABCHAR;
DATAT=AMOUNT;

TWOTBCH: %AB1_2=TABCHAR:
TAB2_2=TABCHAR;
DATA2=AMOUNT;

To test the station identification and

to determine whether the normal station

or alternate station is being used,
values of the forms shown below are
predefined in DFH2980:

STATION-#-A or STATION-%-N (COBOL)

STATION_®#_A or STATION_# N (PL/I)

where # is an integer (0 through 9) and

A and N signify alternate and normal
stations. The values are one-byte

character values and can be compared to

TCTTESID in an IF statement.

To test the teller identification on a
2980 Model 4, the TCTTETID field is
defined as a one-byte character value.
It can be tested in an IF statement.

Thirty special characters are defined in

DFH2980. Twenty-three of these can be
referred to by the name SPECCHAR-X or
SPECCHAR_X (for COBOL or PL/I) where X
is an integer (1 through 23).

that imply their usage, for example,
TABCHAR. For further information on

these thirty characters, see Appendix D.

The names defined in DFH2980 for COBOL
are:

STATION-0-N TCTTEPCR
STATION-0-A TCTTEPCH
STATION-1-N TABCHAR
STATION-1-A OPENCH
STATION-2-N JRNLCR
STATION-2-A PSBKCR
STATION-3-N MSGLITE

The seven
other characters are defined with names

STATION-3-A BCKSPACE
STATION-6-N TRNPGE
STATION-4-A SPECCHAR~-1
STATION-5-N SPECCHAR=-2
STATION-5-A SPECCHAR~-3
STATION-6-N SPECCHAR-4
STATION-6-A SPECCHAR~5
STATION~-7-N SPECCHAR-6
STATION-7-A SPECCHAR-7
STATION-8-N SPECCHAR-38
STATION-8-A SPECCHAR-9
STATION-9-N SPECCHAR-10
STATION-9-A SPECCHAR-11
TAB-ZERO SPECCHAR-12
TAB-ONE SPECCHAR-13
TAB-THWO SPECCHAT-14
TAB-THREE SPECCHAR-15
TAB-FOUR SPECCHAR-16
TAB-FIVE SPECCHAR-17
TAB-SIX SPECCHAR-18
TAB-SEVEN SPECCHAR-19
TAB-EIGHT SPECCHAR-20
TAB-NINE SPECCHAR-21
HOLDPCFB SPECCHAR-22
DFHFILL SPECCHAR-23
HOLDPCF

The names defined in DFH2980 for PL/I
are the same, except the underline
character is used in place of the
hyphen, and the names HOLDPCFB, DFHFILL,
and HOLDPCF are not defined for PL/I.

3270 INFORMATION DISPLAY SYSTEM (BTAM
AND TCAM)

DFHTC
TYPE=({READ|READB}[,HAIT]
[,SAVEIL,TEXTD)

READB not available under TCAM

DFHTC
TYPE=({WRITE|COPY|PRINT|ERASEAUP}
[,WAITIL,SAVE]L,ERASE]), [STRFIELDI)
[,CTLCHAR={hex~number|YES}]
[,DEST={symb-addr|YES}]

COPY and PRINT not TCAM
| DEST is TCAM only

When input is to be received from a
terminal of the 3270 Information Display
System, the application programmer can
use

DFHTC TYPE=(READ, TEXT)
or
DFHTC TYPE=TEXT

DFHTC TYPE=READ
DFHTC TYPE=WAIT

Chapter 4.2. Terminal Control (DFHTC Macro) 125

to request a temporary override of the
uppercase translation features of CICS,
thus allowing a message containing both
uppercase and lowercase data to be
received from a terminal.

If the 3270 print request facility is
included in the terminal control program
at CICS system initialization, the
application program can issue a DFHTC
TYPE=PRINT to cause the data currently
displayed on a 3270 display to be
printed on the first available eligible
3270 printer.

For a printer to be available for
printing from a display, it must be in
service and not currently attached to a
task. For it to be eligible, it must be
attached to the same control unit as the
display, must have a buffer capacity
equal to or greater than that of the
display, and must have had FEATURE=PRINT
specified for it in the TCT by the
system programmer.

If the 3270 display is a 3275 with an
attached printer, and FEATURE=PRTADAPT
has been specified in the TCTTE; the
data will be printed on the attached
printer.

Some 3270 displays have the facility to
copy a screen image to a printer that is
attached to the same control unit,
without host intervention. This is a
hardware facility, and is not under the
control of CICS. For further details
see "printer authorization matrix™, in
An_Introduction to the IBM 3270

Information Display System.

For those devices with switchable screen
sizes, the size of the screen that can
be used and the size to be used for a
particular transaction are defined at
CICS system generation. These values
are available to the application
programmer in fields in the TCTTE.

These fields are listed in Appendix C.

3270 LOGICAL UNIT

DFHTC TYPE=({READ|READB}
[,WAITIL[,SAVEIL,TEXT]1)
[,E0C=symb-addr]

DFHTC

TYPE=({WRITE|PRINT|CQPY|ERASEAUP}
[,WAITI[,SAVEIL,ERASE],(STRFIELDD)
[,CTLCHAR={hex~number|YES}1]
[,CCOMPL=NO]

[, DEFRESP=YES]
[,DEST={symb-addr|YES}]

DEST is TCAM only

In general, programming for a 3270
logical unit is the same as programming
for a 3270 via BTAM, that is, the COPY,
PRINT, READB, ERASE, and ERASEAUP are
supported as before. The additional
operand (DEFRESP) has been added to the
DFHTC terminal control macro, and there
are some restrictions:

L ASCII code is not supported (but,
for BSC 3270, code translation can
be carried out by NCP translation
tables in the 3704,/3705
communications controller).

. DFHTC TYPE=COPY must specify a
symbolic terminal identification; a
physical device address cannot be
specified.

If the 3270 print request facility is
included at system initialization, the
DFHTC TYPE=PRINT macro will enable the
data displayed on the screen to be
printed on the first available printer
that is eligible.

An available printer is one that is in
:erxice and that is not attached to a
ask.

An eligible printer is one for which the
PRINTTO or ALTPRT option has been
specified in the TCT.

If COPY has also been specified with
these options, the printer must be
attached to the same 3270 control unit
as that used for the display.

If an eligible printer is unavailable,
the data in the display buffer is
captured, a message is sent to the
master terminal operator by the terminal
abnormal or node abnormal condition
program (DFHZNAC) and control is passed
to a user-written terminal or node error
program which provides an appropriate
action, for example, if the printer is
already attached to a task, the
user-written error program can direct
the data to another printer or hold the
data until the busy printer becomes
available.

If the 3270 display is a 3275 with an
attached printer, and FEATURE=PRTADAPT
has been specified in the TCTTE; the

126 CICS/VS Applicatidn Programmer's Reference Manual (Macro Level)

data will be printed on the attached
printer.

Some 3270 displays have the facility to
copy a screen image to a printer that is
attached to the same control unit,
without host intervention. This is a
hardware facility, and is not under the
control of CICS. For further details
see "printer authorization matrix™, in

An Introduction to the IBM 3270

Information Display System.

For those devices with switchable screen
sizes, the size of the screen that can
be used and the size to be used for a
particular transaction are defined at
CICS system generation. These values
are available to the application
programmer in fields in the TCTTE.

These fields are listed in Appendix C.

3270 LUTYPE2 LOGICAL UNIT

DFHTC TYPE=({READ|READB}
[,WAITI[,SAVEIL,TEXTI)
[,E0C=symb-addr]l

DFHTC
TYPE=({WRITE|PRINT|COPY|ERASEAUP}
[,WAITIL,SAVEIL,ERASE], [STRFIELDI)
[,CTLCHAR= {hex~number|YES}]
[,CCOMPL=NO]
[, DEFRESP=YES]
[,DEST={symb-addr|YES}]

DEST is TCAM only

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addr|,WAIT=YES}

Logical unit type 2 (LUTYPE2) is a
logical unit defined by SNA, and which
accepts a 3270 display data stream.

Support and macro syntax are the same as
for the 3270 logical unit except that
TYPE=COPY is not supported.

Some 3270 displays have the facility to
copy a screen image to a printer that is
attached to the same control unit,
without host intervention. This is a
hardware facility, and is not under the
control of CICS. For further details

see "printer authorization matrix", in
An _Introduction _to the IBM 3270

Information Display Systenm.

For those devices with switchable screen
sizes, the size of the screen that can
be used and the size to be used for a
particular transaction are defined at
CICS system generation. These values
are available to the application
programmer in fields in the TCTTE.

These fields are listed in Appendix C.

3270 LUTYPE3 LOGICAL UNIT

DFHTC TYPE=({WRITE]|PRINT|ERASEAUP}
[,WAITIL[,SAVEI[,ERASE]L,STRFIELD])
[,CTLCHAR={hex~number|YES}1]
[,CCOMPL=NO]

[, DEFRESP=YES])
[,DEST={symb-addr|YES}]
DEST is TCAM only

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addr|, HAIT=YES}

Logical unit type 3 (LUTYPE3) is a
logical unit defined by SNA, and which
accepts a 3270 display data stream.

Support and macro syntax are the same as
for the 3270 logical unit except that
TYPE=READ, READB and COPY are not
supported, but TYPE=WRITE,WAIT,READ is
supported for STRFIELD to issue QUERY.

3270 SCSPRT LOGICAL UNIT

DFHTC TYPE=(WRITEL,WAIT]
[,SAVEIL,LASTD)
[,CCOMPL=NO]

[, DEFRESP=YES]
[,DEST={symb-addr|YES}]

DEST is TCAM only

DFHTC TYPE=(READL,WAITI[,SAVE])
[, E0C=symb—-addr]

Chapter 4.2. Terminal Control (DFHTC Macro) 127

DFHTC TYPE=SIGNAL
{, SIGADDR=symb-addr],WAIT=YES}

The SCS printer logical unit (SCSPRT)
accepts an SCS data stream. SCS is
defined by SNA. Certain devices
connected as SCSPRT have input
capability (for example, PA keys on
3287), in which case TYPE=SIGNAL should
be used to detect operator input,
followed by TYPE=READ to obtain the
input. Alternatively, TYPE=(READ,WAIT)
can be issued alone, in which case the
program will wait for operator input.

3600 FINANCE COMMUNICATION SYSTEM (BTAM)

DFHTC TYPE=(READL,WAITIL,SAVED)

DFHTC TYPE=(WRITEL,WAIT]IL,SAVE]
[, TRANSPARENTD)

INPUT

The unit of transmission from a 3601 to
CICS is a segment consisting of the
start-of-text data link control
character (S5TX), the one byte
identification of the 3600 work station
that issued the processor write, the
data, and either an end-of-block (ETB)
or an end-of-text (ETX) control
character.

A logical work station sends a message
either in one segment, in which case the
segment ends with ETX, or in more than
one segment, in which case only the last
segment ends with ETX, all others ending
with ‘ETB.

The input TIOA passed to the
user-written application program
consists of the data only. The one-byvte
field TCTTEDLM contains flags describing
the data-link control character (ETB,
ETX, or IRS) that ended the segment.

The application program can issue
terminal control macros to read the data
until it receives a segment ending with
ETX. If blocked data is transmitted, it
is received by CICS as blocks of
segments. Only the first segment in a
block starts with the STX control

character, and all segments are
separated by IRS characters. None of
the segments contain ETB or ETX
characters except the last, which has
the ETX character. :

For blocked input, the flags in TCTTEDLM
only indicate end of segment, not end of
message. The CICS application program
still receives only the data, but
user-defined conventions may be required
to determine the end of the message.

The field TCTTEDLM also indicates the
mode of the input, either transparent or
nontransparent. Blocked input is
nontransparent.

The terminal control program does not
pass input containing a "start of
header™ (SOH) data link control
character to a user-written application
program. If it receives an SOH it sets
an indicator in TCTTEDLM, passes the
input to the user exit in the terminal
control program, and then discards it.

OUTPUT

When an application program issues a
terminal control write, the terminal
control program determines, from the
value specified in the BUFFER parameter
of the DFHTCT TYPE=TERMINAL system
macro, the number of segments to be
built for the message. It sends the
message to the 3600 logical unit either
in one segment consisting of a
start-of-text character (STX), the data,
and an end-of-text character (ETX); or
in more than one segment, in which case
only the last ends with ETB.

The host input buffer of the 3600
controller and the input segment of the
receiving logical unit must be large
enough to accommodate the data sent by
CICS. However, space for the data link
control characters need not be included.
The 3600 application program reads the
data from the host, by means of an
LREAD, until it has received the entire
message.

The terminal control program sends data
in transparent mode when the
user-written application program issues
a DFHTC TYPE=TRANSPARENT macro.
Otherwise, data is sent in
nontransparent mode.

CICS system output messages begin with
"DFH" followed by a four-byte message
number and the message text. These
messages are sent in nontransparent
mode. It is suggested that CICS
user-written application programs do not
send messages starting with "DFH™ to the

.

128 CICS/VS Application Programmer's Reference Manual (Macro Level)

RESEND MESSAGE

When a logical unit sends a message to
the host and a short-on-storage
condition exists or the input is
unsolicited (the active task associated
with the terminal has not issued a
read), the terminal control program
sends a "resend" message to the logical
unit. The format of this message is
DFH1033 RE-ENTER followed by X'15'" (a
3600 new line character) followed by the
first eight bytes of the text of the
message being rejected. No message is
sent to the destinations CSMT or CSTL.

The first eight bytes of data sent to
CICS can be used by the 3600 application
program to define a convention to
associate responses received from CICS
with transactions sent to the host, for
example, sequence numbers could be used.

If a CICS user-written application
program has already issued a terminal
control write when a resend situation
occurs, the resend message is not sent
to the 3601 until the user-written
application program message has been
sent. A 3600 logical unit cannot
receive a resend message while receiving
a segmented message.

Only one resend message at a time can be
queued for a logical unit. If a second
resend situation occurs before CICS has
written the first, a resend message,
containing the eight bytes of data that
accompanied the second input transaction
from the 3600 logical unit, is sent.

The resend message is sent in
transparent mode if the input data from
the 3601 to be re-transmitted is
received by CICS in transparent mode.
Otzerwise it is sent in nontransparent
mode.

360 3601) LOGICAL UNIT

DFHTC TYPE=(READL,WAITIL[,SAVED)
[, E0C=symb-addr]
[, INBFMH=symb-addr]

DFHTC TYPE=(WRITEL,WAITI[SAVEILLASTI)
[,LDC={mnemonic|YES}1]
[,FMH={NO|YES}1
[,CCOMPL=NO]

[, DEFRESP=YES]
[,DEST={symb-addr|YES}]

DEST is TCAM only

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addr|, NAIT=YES}

3600 PIPELINE LOGICAL UNIT

DFHTC TYPE=(WRITEL,WAITII[,SAVE]
[,LASTD

(-] (3614) LOGICAL I

DFHTC TYPE=(READL,WAITII,SAVED)

DFHTC TYPE=(WRITEL,WAITI[,SAVED)

3630 PLANT COMMUNICATION SYSTEM

The 3630 Plant Communication System is
supported as a 3600. Two types of
logical unit can be defined for a 3630:
the 3600 (3601) logical unit and the
3600 pipeline logical unit. The macro
syntax is as shown above for these
logical units.

3650 HOST COMMAND PROCESSOR LOGICAL UNIT

DFHTC TYPE=(READL,WAITIL,SAVE])
[,EOC=symb-addr]

DFHTC TYPE=(KWRITEL,WAITIL,SAVED)
[,FMH=YES]
[,CCOMPL=NO]

Ol

650 HOST CONVERSATION 3270) LOGICA

NIT

c

DFHTC TYPE=(READ[,WAITI[,SAVEID)
[,E0C=symb-addrl

Chapter 6.2. Terminal Control (DFHTC Macro) 129

DFHTC TYPE=({WRITE|PRINT|ERASEAUP)}
[,WAITIL,SAVEXL,ERASE]IL,LAST])
[,CTLCHAR={hex~number|YES}]
[,CCOMPL=NO]

[,DEFRESP=YES1
[, FMH=YES]

OUTPUT DEVICE CONTROL

Device control characters for 3650
devices can be inserted by CICS
application programs into output data
streams. To avoid designing such
device-dependent CICS application
programs, device responsibility can be
moved to the 3650 application progranms.
Thus, the CICS application programs
would be concerned with data content,
while data format would be the
responsibility of the 3650 application
program.

Another alternative is available for
handling device-dependent matters.
Basic mapping support (BMS) can be used
to write data to logical units (except
for pipeline). BMS can be used to
format data and insert the necessary
3650 device control characters.

THE ERASE FUNCTION

The erase option is supported by the
DFHTC macro when this macro is issued
for a host conversational (3270) logical
unit. The erase function for this
logical unit is controlled as a
device-dependent character. The erase
function can be obtained using BMS.

3650 PIPELINE LOGICAL UNIT

DFHTC TYPE=(WRITEL,WAITI[,SAVE]
[,LASTI)

3650 HOST CONVERSATIONAL (3653) LOGICAL
UNIT

DFHTC TYPE=(READ{,WAITI1(,SAVEl)
[, EOC=symb-addrl]

DFHTC TYPE=(WRITEL,HWAITIL(,SAVEl]
»LASTD)
[,CCOMPL=NO]
[, DEFRESP=YES]

3650 INTERPRETER LOGICAL UNIT

DFHTC TYPE=PROGRAM
» PRGNAME=name
[,VALID=address]l
[,NONVAL=address]
[,CONNECT={ACTIVATE|CONVERSE}]
[, NORESP=address]

DFHTC TYPE=(READL[,WAITIL,SAVE])
[, EODS=symb-addr]l
[,EQC=symb-addr]

[, INBFMH=symb-addrl

DFHTC TYPE=(WRITEL,WAIT]
[,SAVEIL[,LASTI)
[,FMH={YES|NO}

[, DEFRESP=YES]

DFHTC TYPE=EODS VTAM only

3660 SUPERMARKET SCANNING SYSTEM (BTAM)

Support and macro syntax as for
System/3, except that the 3660 cannot
initiate communications; the host system
initiates all transactions.

35 PROGRAMMABLE BUFFERED TERMIN

DFHTC TYPE=(READIL,WAITIL,SAVE])
[,EOF=symb-addr]

130 CICSs/VS Application Programmer's Reference Manual (Macro Level)

DFHTC TYPE=(WRITEL,HWAIT]
[,SAVEI[,NOTRANSLATE])
[,DEST={symb-addr]YES}]

DEST is TCAM only

The 3735 Programmable Buffered Terminal
may be serviced by CICS in response to
terminal-initiated input, or as a result
of an automatic or time-initiated
transaction. Both are explained below.

AUTOANSWER

The 3735 transaction is attached by CICS
upon receipt of input from a 3735. Data
is passed to the application program in
676-byte blocks; each block (one buffer)
may contain multiple logical records.
The final block may be shorter than 476
bvtes; zero-length final blocks are not,
however, passed to the application
program. If the block contains multiple
logical records, the application progranm
must perform any necessary deblocking
functions and the gathering of partial
logical records from consecutive reads.

It is recommended that the user spool
input data from a 3735 to an
intermediate data set (for example, an
intrapartition destination) to ensure
that all data has been captured before
deblocking and processing that data.

The application program must follow 3735
conventions and read to end-of-file
before attempting to write FDPs (form
description programs) or data to the
3735. For this reason, the
EOF=symb-addr operand must be used with
each DFHTC TYPE=READ request. When the
EOF branch is taken, the user may begin
to write FDPs or data to the 3735, or,
optionally, request CICS to disconnect
the line. .

It is possible that the 3735 will
transmit the end-of-file condition
immediately upon connection of the line.
For this reason the user must code the
initialization request (DFHTC
EOF=symb-addr) before issuing any other
terminal control requests.

The user is responsible for formatting
all special message headers for output
to the 3735 (for example, SELECTRIC,
POWERDOWN). 1If FDPs are to be
transmitted to a 3735 with ASCII
transmission code, the NOTRANSLATE
operand must be included in the DFHTC
TYPE=WRITE request for each block of FDP
records.

The user must issue a DFHTC
TYPE=DISCONNECT macro when all output
has been transmitted to the 3735. If

the application program ends during
batch write mode prior to issuing the
DISCONNECT request, CICS forces a 3735
"receive abort"™ condition and all data
just transmitted is ignored by the 3735.

AUTOCALL AND TIME-INITIATED

In automatic and time-initiated
transactions, all considerations stated
above except use of the DFHTC
EOF=symb-addr macro apply when CICS
dials a 3735. The DFHTC EOF=symb-addr
macro is not used.

CICS connects the line and allows the
user to indicate the direction of data
transfer by means of the first terminal
control request. If this first request
is a WRITE and the 3735 has data to
send, the 3735 causes the line to be
disconnected.

3740 DATA ENTRY SYSTEM

DFHTC TYPE=(READL,WAITIL,SAVE]1}
[,ENDFILE=symb-addrl not TCAM
[,ENDINPT=symb-addr] not TCAM

DFHTC TYPE=(WRITEL,WAITI[,SAVE]
[,ENDFILEIL, ENDOUTPUT]
[, TRANSPARENT1)
[,DEST={symb-addr]|YES}1]

DEST is TCAM only

The 3740 Data Entry System may be
serviced by CICS as a batch or inquiry
mode application. Considerations for
both modes are described in the
following paragraphs.

BATCH MODE APPLICATIONS

In batch mode, the 3740 sends multiple
files of data to CICS during a single
transmission. All input data files must
be sent to CICS before the 3740 is able
to receive data from CICS. When able to
receive, the 37640 accepts multiple files
of data in a single transmission. To
communicate in this manner, a means is
provided in the DFHTC macro for
identifying end-of-file, end-of-input,
and end-of-output conditions.

When sending data to the 3740, the DFHTC
TYPE=ENDFILE macro must be issued after
each file to signal the end-of-file
(EXT) condition to the 3740. The DFHTC
TYPE=ENDOUTPUT macro should be issued

Chapter 4.2. Terminal Control (DFHTC Macro) 131

after all data has been sent to the 3740
(EOT) and must be immediately preceded
by a DFHTC TYPE=ENDFILE macro. Once
end-of-output is signaled in this
manner, no additional WRITEs should be
issued. The WRITE, ENDFILE, and
ENDOUTPUT operands may be combined in
the DFHTC macro. For example, a DFHTC
TYPE=(WRITE,ENDFILE) causes a write
operation followed by an end-of-file
signal.

A DFHTC TYPE=(WRITE,ENDFILE, ENDOQUTPUT)
causes a write operation, an end-of-file
signal, and then an end-of-output
signal. A DFHTC TYPE=(ENDFILE,
ENDOUTPUT) causes an end-of-file sxgnal
followed by an end-of-output signal.

The placement of the operand within the
macro has no effect on the sequence.

Note: 1If ENDFILE is combined with any
other operand and SAVE is also present,
the TIOA used to write the end-of-file
record will be the current TIOA after
return from terminal control.

3767 INTERACTIVE LOGICAL UNIT

DFHTC TYPE=(READI[,WAITI1L[,SAVEI)
[,E0C=symb-addr]

DFHTC TYPE=(WRITEL,WAIT]
[,SAVEIL,LASTI)
[, FORCE=YES]
[,CCOMPL=NO]
{, DEFRESP=YES]
[,DEST={symb-addr|YES}]

DEST is TCAM only

DFHTC TYPE=SIGNAL
{, SIGADDR=symb-addr| ,HAIT=YES}

3770 _BATCH AND BATCH DATA_ INTERCHANGE
GIC NIT

DFHTC TYPE=(READ[,WAITIL,SAVEI])
[, EODS=symb-addrl
[, E0C=symb-addr]
[, INBFMH=symb-addr]

DFHTC TYPE=(WRITEL[,WAIT]
[,SAVEIL,LASTI)
[, FORCE=YES1
[,CCOMPL=NO]
[,DEFRESP=YES]
[,DEST={symb-addr|YES}]

DEST is TCAM only

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addr|,WAIT=YES}

DFHTC TYPE=(WRITEL,WAIT]
[,SAVEIL,LASTI)
[,FMH={NO|YES}]
[,CCOMPL=NO]

[, DEFRESP=YES]
[,DEST={symb-addr|YES}1]

DEST is TCAM only

7 U UNCTION LOGIC NIT

DFHTC TYPE=(READL[,WAIT1[,SAVE1}
[,E0C=symb-addrl]
[, INBFMH=symb-addr]l

NTERACTI LOGICAL UNI

DFHTC TYPE=(READL,WAITI1L[,SAVED)
[, EOC=symb~addr]

DFHTC TYPE=(WRITE[,WAIT]
{,SAVEIL,LAST))
[,FMH= {NOIYES}]
[,CCOMPL=NO]
[, DEFRESP=YES]
[,DEST={symb—addrlYES}]

DEST is TCAM only

132 CICS/VS Application Programmer's Reference Manual (Macro Level)

780 DATA COMMUNI IONS TERMINA 3790 (SCS PRINTER) LOGICAL UNIT

Support and macro syntax as for
System/3.

DFHTC TYPE=(WRITEL,WAIT]
[£,SAVEIL,LASTI)
[,CCOMPL=NO]

[, DEFRESP=YES]
[,DEST={symb-addr|YES}]

DFHTC TYPE=(READIL,WAITI[,SAVE]) DEST is TCAM only
[,E0C=symb-addr]

3790 INQUI LOGICAL UNI

3790 (3270-DISPLAY) AND 3790
270-PRINTER) LOGICAL UNITS

DFHTC TYPE=(WRITEL,WAIT] These logical units are sometimes
{,SAVEIL,LAST]) referred to collectively as the 3270
[,FMH={NO|YES}] compatibility logical unit. Support and
[,CCOMPL=NO] macro syntax are the same as for the
[,DEFRESP=YES] 3270 logical unit, apart from the
[,DEST={symb-addr|YES}] following exceptions:

DEST is TCAM only . DFHTC TYPE=READB is not supported

for the 3270-printer logical unit.

. DFHTC TYPE=COPY is not supported for
the 3270-display logical unit.

¢ When using the DFHTC TYPE=PRINT
macro, if FEATURE=PTRADAPT has been
specified in the TCT, allocation of

3790 FULL FUNCTION LOGICAL UNIT

DFHTC TYPE=(READIL,WAITIL,SAVE]) the printer is controlled by the
[,E0C=symb-addr] 3790. If FEATURE=PTRADAPT has not
[, INBFMH=symb-addrl been specified, allocation of

printers is governed by the PRINTTO
2 ALTPRT options specified in the

3790 BATCH DATA INTERCHANGE LOGICAL UNIT
DFHTC TYPE=(KWRITEL,WAIT]

[,SAVEIL,LAST]) Support and macro syntax as for 3770
[,FMH={NO|YES}] Batch Logical Unit.

[,CCOMPL=NO1

[, DEFRESP=YES]
[,DEST={symb-addr|YES}]

DEST is TCAM only

Chapter 4.2. Terminal Control (DFHTC Macro) 133

770 AUDIO RESPONSE UN

DFHTC TYPE=(READL,WAITI[,SAVE])

DFHTC TYPE=(WRITEL,WAITI[,SAVE])

Although CICS does not distinguish
between special codes (characters)
entered at an audio terminal (for
example, the 2721 Portable Audio
Terminal), an apeplication program is not
precluded from performing special
functions upon encountering these codes.
For example, the following special
2$§?decima1 codes may be entered from a
H

Key Code

CALL END 37 (see note)

CNCL 18

3B (see note) or 7B

VERIFY 2D

RPT 3D

EXEC 26 (see note)

Fl Bl

F2 B2

F3 B3

F4 B4

F5 B5

00 Al

000 3B (see note) or BO

IDENT 11, 12) 13; or 14

plus two other characters

Note: These codes cause a hardware

interrupt and are in the terminal
input/output area (TIOA) immediately
following the data; the codes are not
included in the data length.

For further information concerning the
2721, see the publication 2721 Portab
Audio Terminal Component Description.

The following special hexadecimal codes
may be entered from a Touch-Tone
telephone. (Touch-Tone is the trademark
of the American Telephone and Telegraph
Company.)

Key Code
% AO
E 3B or BO

The ¥ and # characters of a Touch-Tone
telephone correspond to the 00 and 009
characters, respectively, on a 2721
Portable Audio Terminal. The # and 000
characters cause an end-of-inquiry (EOI)
hardware interrupt (X'3B') unless the
EOI Disable feature (%#3540) is installed

on the 7770 Audio Response Unit Model 3.
If this feature is installed, the user
can elect that neither, or only one, of
the # and 000 characters will cause a
hardware interrupt. At the option of
the user, either or both of the # and
000 characters do not cause a hardware
interrupt, are presented in the TIOA
with the rest of the data, and are
included in the data length.

If, after receiving at least one
character from a terminal, no other
characters have been received by the
7770 for a period of five seconds, the
7770 automatically generates an EOI
hardware interrupt that ends the read
operation.

LUTYPE4 LOGICAL UNIT

DFHTC TYPE=(READL[,WAITI1L,SAVE]l)
[,E0ODS=symb-addr]
[, EQ0C=symb—-addrl
[, INBFMH=symb-addrl}

DFHTC TYPE=(WRITEL,WAIT]
[,SAVEIL,LAST])
[,FMH={NOIYES}]
[,CCOMPL=NO]

[,DEFRESP=YES]

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addr|,HAIT=YES}

The TYPE=SIGNAL macro is required to
detect a hard request change direction
{RCD) signal from the terminal. The
application program should not issue a
TYPE=WRITE macro following such a
signal.

LUTYPEG terminals can operate in
unattended mode. The application
programmer can detect unattended mode by
testing the TCTTE field TCTEMOP under
the mask TCTEMOPU.

OTHER CICS~-SUPPORTED TERMINALS

DFHTC TYPE=(READL,WAITIL,SAVE])

134 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHTC TYPE=(WRITEL,WAIT]L,SAVE])

DEST is TCAM only

[,DEST={symb-addr|YES}]

TCAM _SUPPORTED LOGICAL UNITS (CICS/0S/VS
ONLY)

DFHTC TYPE=({READ|READLY[,WAIT]
[,SAVED
[,INBFMH=symb-addr]l

DFHTC TYPE=(WRITEL,WAIT]

[,SAVE]L,ERASE]IL,LAST]
[,ERASEAUP])
[,FMH={NO|YES}]

[,CTLCHAR= {hex number]YES}]
[,LINEADR={number|YES}]
[,DEST={symb-addr|YES}]

OPERANDS OF DFHTC MACRO
CCOMPL=NO

. Used with VTAM logical units
only.

Indicates that the last
request/response unit (RU) sent as
a result of this write request will
not complete the chain. If this
operand is omitted, the last RU
will terminate the chain.

Before this operand may be used,
the system programmer must have
specified that the application
program may control outbound
chaining indicators by coding a
DFHPCT TYPE=0PTGRP macro with the
MSGPOPT=CCONTRL operand. 1If
CCOMPL=NO is used without this
support, the task will be
abnormally terminated.

There are a number of restrictions
on the use of the CCOMPL=NO
operand; these restrictions are as
follows:

. If CCOMPL=NO is used without
the authority (CCONTR) of the
system programmer, the task
will be abnormally terminated.

. CCOMPL=NO cannot be used if the
DEFRESP=YES operand is
specified.

. If CCOMPL=NO is specified, the
application program must not
issue a read request until a
write request that does not
specify CCOMPL=NO has been
issued; failure to observe this
restriction will lead to
abnormal termination of the
task.

. CCOMPL=NO is not valid for a
combined write and read
request, including
conversational write
operations. TYPE=LAST is
ignored if it is not FOC or OC.

CONNECT=

. Used with 3650 interpreter
logical units only.

This operand specifies the type of
connection to be established.

ACTIVATE
specifies that the 3650
application program will not
communicate with the host
processor.

CONVERSE
specifies that the 3650
application program will
communicate with the host
processor.

CTLCHAR=

. Used for 3270 logical units,
3650 host-conversational (3270)
logical units,
3790(3270-display), and
3790(3270~-printer) logical
units only.

This operand is used (1) in a DFHTC
TYPE=WRITE macro to provide the
hexadecimal representation of the
write control character (WCC) that
controls the requested write
operation, or (2) except for the
3650 host conversational (3270) LU,
in a DFHTC TYPE=COPY macro to
provide the hexadecimal
representation of the copy control
character (CCC) that controls and
defines the copy function to be
performed.

hex=-number
is the hexadecimal
representation of the WCC or
CCC required for the operation
specified in the TYPE= operand
of this DFHTC macro.

YES
indicates that the appropriate
bit configuration has been
placed in TIOACLCR.

For DFHTC TYPE=WRITE, if the
functions defined by the WCC only

Chapter 6.2. Terminal Control (DFHTC Macro) 135

DEFRE

DEST=

ENDF1

ENDIN

are to be performed (that is, no
data stream is to be supplied),
TIOATDL must contain zero. If the
CTLCHAR operand is omitted, all
modified data tags are reset to
zero, and the keyboard is restored.
For DFHTC TYPE=COPY, if the CTLCHAR
operand is omitted, the contents of
the entire buffer (including nulls)
are copied and the start printer
flag is not on.

SP=YES

] Used with VTAM logical units
only.

Indicates that a definite response
is required when the write
operation has been completed.
DEFRESP=YES cannot be specified if
the CCOMPL=NO operand is used.

This operand specifies, for this
write operation only, that a
definite response is required, even
if neither the MSGINTEG operand nor
the PROTECT operand has bee
specified in the DFHPCT TYPE OPTGRP
macro by the system programmer.

indicates that the output message
is to be sent to a TCAM destination
other than the source TCAM
terminal.

This operand is meaningful only for
TCAM-supported terminals.

symbolic name
is the symbolic address of the
storage area containing the
TCAM destination to which the
message must be sent.

YES
indicates that the application
program has placed the
four-byte message destination
in TCTTEDES before issuing the
WRITE. This can be used to
allow dynamic selection of the
message destination.

LE=symb-addr

L Used for 3740 Data Entry System
only.

Indicates the label of the routine
that is to receive control when
end-of-file is encountered on batch
input. It is set when a null block
is received, indicating the end of
a physical file. The task must
continue reading.

PT=symb-addr

] Used for 3740 Data Entry System
only.

Indicates the label of the routine
that is to receive control when
end-of-input is reached on batch
processing. It is set by CICS when
an end of transmission signal is
received and the ENDFILE indicator
was set. After this condition the
task must not issue any further
reads to the device but must return
to CICS so that the 3740 can be set
t0o receive a new batch of input.

ENDMSG=NO

U Used for BTAM terminals only.

Indicates that the block sent as a
result of the write request does
not complete the message. If this
operand is omitted, the message
will be regarded as complete when
the write request has been
fulfilled. This operand is valid
only for assembler language
application programs.

Before this operand may be used,
the system programmer must have
specified that the application
program may control outbound
chaining by coding a DFHPCT
TYPE=0PTGRP macro with the
MSGPREQ=CCONTRL operand. If
ENDMSG=NO is used without this
support, the task will be
abnormally terminated.

There are a number of restrictions
on the use of the ENDMSG=NO
operand; these restrictions are as
follows:

. If ENDMSG=NO is used without
the authority (MSGPREQ=CCONTRL)
of the system programmer, the
task will be abnormally
terminated.

° If ENDMSG=NO is specified, the
application program must not
issue a read request until a
write request that does not
specify ENDMSG=NO has been
issued; failure to observe this
restriction will lead to
:bngrmal termination of the

ask.

J ENDMSG=NO is not valid for a
combined write and read
request, including
conversational write
operations.

EOC=symb-addnr

. Used for logical units only.

Specifies the label of the routine
that is to receive control if the
request/response unit (RU) is
received with the end-of-chain
(EOC) indicator set. If this
operand is specified, the HWAIT

136 CICS/VS Application Programmer's Reference Manual (Macro Level)

parameter of the TYPE operand is
assumed. If an inbound FMH is
received, the INBFMH operand will
override this operand. If an
end-of-data-set FMH is also
received, the EODS operand will
override both this operand and the
INBFMH operand. (Overridden
operands can be specified in a
DFHTC TYPE=WAIT macro.)

EODS=symb-addnr

] Used for 3650 interpreter
logical units, batch logical
units, and LUTYPE4 logical
units only.

° Cannot be used for 3650 Host
Command Processor logical
units.

Indicates the label of a
user-written routine that is to
receive control if an
end-of-data-set FMH is received.
The TIOA contains the EODS
indicators. If EODS is specified,
the WAIT parameter of the TYPE
operand is assumed. If EODS is
specified, and end-of-data-set is
received, the EOC and INBFMH
operands are overridden; they can
be specified in a DFHTC TYPE=WAIT
macro within the end-of-data-set
routine.

Symbolic address is the address to
which control is to be given if the
CICS EODS indicator is set on. The
indicator is set when a READ is
issued and there is no data
remaining for this data set.

EOF=symb-addr

FMH=

indicates the label of the routine
that is to receive control when
end-of-file is encountered on batch
input. This operand can be used in
a special initialization macro,
DFHTC EQOF=symb-addr, to test for
the end-of-file condition upon
initial connection to a 3735. It
must be included in the
initialization section of the
application program that handles
3735 input, preceding other DFHTC
macros.

Note: MWhen the EOF condition
occurs, TIOATDL is set to binary
zeros to indicate that the TIOA for
the input operation contains no
valid data.

. Used for 3600 (3601), 3650
host-conversational (3270),
3650 host-command processor,
LUTYPEG, 3770 batch, 3790 full
function, 3790 inquiry, and
3790 batch data interchange
logical units only.

Chapter §.2.

This operand indicates whether the
function management header (FMH)
has been placed in the TIOA by the
application program. If FMH is
omitted, NO is assumed.

For the 3600 (3601) and 3790
inquiry logical units, an FMH is
required and is provided as
described below. For the 3650
host-conversational (3270) logical
unit, the FMH is required if
outboard maps are to be used; the
FMH in such cases can be provided
by BMS, if BMS is being used, or
otherwise, by the application
program. For LUTYPE4 and batch
logical units, the FMH is required
for device selection and is
provided as described below.

NO
indicates that the application
program has not placed the FMH
in the TIOA. For the 3600
(3601) and 3790 inquiry
logical units, CICS is
responsible for placing the
FMH in the TIOA; if NO is
specified, space must be
reserved in the TIOA for the
FMH. For the 3650
host-conversational (3270)
logical unit, CICS does not
build an FMH, and the data is
transmitted unmodified. For
all other logical units, no
FMH is sent; refer to the
appropriate CICS subsystenm
guides for details of when an
FMH is necessary.

YES
indicates that the application
program has placed the FMH
into the TIOA. Refer to the
appropriate CICS subsystem
guides for size and format of
the FMH for a specific
terminal. The FMH=YES and
LDC=YES options are mutually
exclusive.

FORCE=YES

. Used for interactive logical
units only.

This operand indicates that the
write operation is to be preceded
by an outbound SIGNAL
data-flow-control command to force
the terminal into receive mode.
This operand is used only for
interactive logical units operating
in contention mode, and is ignored
otherwise.

INBFMH=symb~-addnr

specifies the label of the routine
that is to receive control if the
request/response unit (RU) contains
an FMH, and CICS has passed this

Terminal Control (DFHTC Macro) 137

FMH to the application program.
The presence of an inbound FMH
means that, if this operand is
specified, the EOC operand is
overridden. If an end-of-data-set
FMH is received, the EODS operand
will override the INBFMH operand.
(Overridden operands can be
specified in a DFHTC TYPE=WAIT
macro.)

For this operand to be effective,
the system programmer must have
specified INBFMH=ALL or EODS in the
PCT entry for the transaction. 1If
INBFMH=NO is specified, inbound
FMHs will not be passed to the
application program, and the INBFMH
operand will never be operative.

LbpC

. Used for the 3601 logical unit
(but not for the 3614, even if
attached to the 3601) only.

This operand specifies the mnemonic
to be used by CICS to determine the
logical device code (LDC) that is
to be transmitted to the logical
unit in the function management
header.

mnemonic
is the two-character mnemonic
used to determine the
appropriate LDC numeric value.
The mnemonic represents a LDC
entry in the DFHTCT TYPE=LDC
macro.

YES
indicates that the application
program has placed the
mnemonic in TCATPLDM. The
LDC=YES and FMH=YES options
are mutually exclusive.

NONVAL=address

. Used with 3650 application
programs only.

This operand indicates the label of
the user-coded routine to receive
control if the name specified in
the PRGNAME operand is invalid.

NORESP=address

. Used with 3650 logical units
only.

This operand indicates the label of
a user-coded routine to receive
control if there is a no error
response.

PRGNAME=namg

. Used with 3650 logical units
only.

This operand indicates the name of
the 3650 application program. The
name (up to eight characters) is
transmitted to the 3651 for
verification by the 3650 control
program,

RDATT=symb-addr

indicates the label of the routine
to which control is to be
transferred if the read operation
that responds to a DFHTC TYPE=READ
macro is terminated by pressing the
attention (ATTN) key rather than
the return key.

Note: This operand is meaningful
only if 2761 Read Attention support
has been generated in the CICS
system. See "Read Attention™ and

-"Write Break™ under ™2741

Communication Terminal™ earlier in
the chapter.

SIGADDR=symb-addr

] VTAM only

Specifies the symbolic address of
the routine to be given control if
SIGNAL is received.

describes the terminal or logical
unit operations required, as
follows:

TYPE=CBUFF

. Used with 2980 General Banking
Terminal only.

This is a stand-alone parameter
used to place a message in the
common buffer of the 2972 terminal
control unit; the 2972 associated
with the current TCTTE receives the
output message. Both write and
wait are implied.

Note: The output message is
translated according to the model
of 2980 described by the current
TCTTE. If more than one model is
attached to a 2972 Terminal Control
Unit, the contents of the common
buffer are intelligible only to the
model for which the message was
translated. Since shift characters
are added to the message by CICS
during translation, the length of
the message is dependent upon the
contents of the message. Up to 23
characters, including shift
characters, can be transmitted.

TYPE=COPY

L Valid only for BSC-connected
devices which have the c¢copy
feature, that is, BTAM remote
connection, or VTAM non-SNA
remote connection.

138 CICS/VS Application Programmer's Reference Manual (Macro Level)

This parameter is used to copy the:
format and data contained in the
buffer of one terminal into the
buffer of another terminal attached
to the same remote 3270 control
unit. The terminal from which data
is to be copied can be identified
in either of two ways:

1. Set TIOATDL to a value of 1,
and the first byte of the
output data area (TIOADBA) to
the physical address of the
terminal to be copied; or

2. Set TIODATDL to a value of 6 and
the first four bytes of the
output data area (TIOADBA) to
the terminal identification of
the terminal to be copied. If
the terminal identification is
less than four bytes, it must
be left-justified with blank
padding on the right.

The copy control character (CCC),
which controls and defines the copy
function to be performed, must be
supplied in the CTLCHAR operand of
the DFHTC macro.

Note: For VTAM-supported 3270
logical units, it is not possible
to supply the physical address of
the terminal to be copied; the
terminal identification must be
supplied.

TYPE=DISCONNECT

U Switched lines and logical
units only.

For switched lines, DISCONNECT is
used to break the line connection
between the terminal and the
computer; if the terminal is a
buffered device, the data in the
buffer(s) is lost.

. CICS does not automatically
disconnect a 3270 display at
the end of a transaction. A
disconnection occurs at the
request of a terminal operator,
at the request of the
application program (through
this macro), or after a
specified number of time-outs
are encountered by DFHTEP for
the terminal. (Refer to the
appropriate CICS Customization
Guide for information about
DFHTEP.)

[When used with a TCAM terminal
or logical unit, DISCONNECT
sets the X'08' bit in the
communication control byte
(CCB) sent to TCAM. The
message handler should provide
the necessary function (that
is, issue IEDHALT, to terminate

the logical-unit session) for
disconnect. :

] When used with VTAM logical
units, DISCONNECT, which does
not become effective until the
task has been terminated,
terminates the session, without
causing a physical
disconnection.

TYPE=ENDFILE

. Used for 3740 Data Entry System
only.

Indicates that an end-of-file
record is to be written to the
terminal.

TYPE=SENDOUTPUT

. Used for 3740 Data Entry System
only.

Indicates that an end-of-output
record is to be written to the
terminal.

TYPE=EODS

. Used with 3650 interpreter
logical units only.

Causes an end of data set FMH to be
sent on behalf of the task. An 1/0
area need not be supplied by the
CICS application program. Refer to
the appropriate CICS IBM 3650/3680
Guide for details about
communicating with a 3650
application program.

Note: 1If the application receives
the FMH, the FMH may have been
presented on completion of a
previous read request. The end of
the data set is not until the CICS
EODS indicator is set on.

TYPE=ERASE

. Used with 2260 Display Station,
3270 Information Display
System, 3270 logical units,
3650 host-conversational
logical units, 3790
(3270~-display), and 3790
(3%70-printer) logical units
only.

This parameter is used with the
WRITE or WRITEL operand. It blanks
out the screen and sets the cursor
to the upper left corner.

Normally, TYPE=ERASE would be used
on the first output request of a
transaction to prepare the screen
for new output data.

TYPE=ERASE also sets the screen
size to that specified for the
transaction that issues the
command. Therefore when switching

Chapter 4.2. Terminal Control (DFHTC Macro) 139

from one screen size to another
between transactions, a TYPE=ERASE
must be issued to set the screen
size of a new transaction. If one
is not issued, the screen size will
remain unchanged from a previous
transaction's setting.

The CLEAR key, if used within a
transaction, sets the screen size
to its default. However, CICS will
reset the transaction specified
size following a CLEAR operation.

Note: To erase the screen,

1. Place the address of a TIOA
into TCTTEDA,

2. Place a data length of 0 into
TIOADTL, and

3. Issue a DFHTC TYPE=(WRITE,
ERASE) macro.

TYPE=ERASE and DEFRESP=YES are
mutually exclusive.

TYPE=ERASEAUP

° Used with 3270 logical units,
3650 host-conversational (3270)
logical units, 3790
(3270-display) and 3790
(3§7D-printer) logical units
only.

This parameter issues an "erase all
unprotected” command command and
causes the following functions to
be performed:

1. All unprotected fields are
cleared to nulls (X'00).

2. The modified data tags (MDTs)
in each unprotected field are
reset to zero.

3. The cursor is positioned to the
first unprotected field.

4. The keyboard is restored.

Neither WRITE, ERASE, nor COPY can
be specified in a DFHTC macro that
includes the ERASEAUP parameter.
No data stream is supplied.

TYPE=LAST

140

signals CICS that the WRITE is the
last output for a transaction and,
therefore, the end of a bracket.
Specifying this parameter can
improve system performance for VTAM
logical units except when used with
the 3270 logical unit.

] This parameter has no effect
whg: used with a 3270 logical
unit.

TYPE=NOTRANSLATE

prevents translation of form
description program (FDP) records
which are to be transmitted to a
3735 using ASCII transmission code.
(For further information, see "3735
Programmable Buffered Terminal",
earlier in the chapter.)

TYPE=PASSBK

. Used with 2980 General Banking
Terminal only.

This is a stand-alone parameter
used to cause output to be printed
on a banking passbook. Both WRITE
and WAIT are implied. If a
passbook is not present, no
printing occurs. An error message

.can be sent to the operator of the

terminal associated with the
requesting task.

TYPE=PRINT

. Used with 3270 logical units,
3650 host-conversational (3270)
logical units, 3790
(3270-display), and 3790 (3270-
printer) logical units only.

This parameter specifies that the
data currently displayed on a 3270
display is to be printed on an
eligible 3270 printer.

TYPE=PROGRAM

. Used with 3650 devices only.

This parameter is used to request
the loading of a 3650 application
program. If the program is loaded,
control is returned to the next
sequential instruction following
the DFHTC TYPE=program macro unless
NORESP=program is specified.
Otherwise, control is returned to
an address specified by one of the
other operands of the macro as
listed below.

TYPE=PSEUDOBIN

indicates that the data being read
is to be translated from System/7
pseudobinary representation to
hexadecimal. (For more information
about System/7 programming, see
"System/7", earlier in the
chapter.)

TYPE=READ

indicates that the data is to be
regg from a terminal or logical
unit. v

When the contents of a 3270 buffer
are read the programmer should be
aware that the attention identifier
byte and the cursor address are
made available at TCTTEAID and
TCTTECAD respectively. A set of
standard symbolic names for testing

CICS/VS Application Programmer's Reference Manual (Macro Level)

the 3270 attention identifier is
provided in a copy book called
DFHAID. For further details refer
to "Standard Attention Identifier
List (DFHAID)" in "Chapter 4.3.
Basic Mapping Support™ on page 143.

TYPE=READB

. Used with BTAM 3270 and 3270
and 3790(3270-display) logical
units only.

This parameter reads the contents
of the 3270 buffer, beginning at
buffer location 0 and continuing
until all contents of the buffer
have been read. All character and
attribute sequences (including
nulls) appear in the input data
stream in the same order that they
appear in the 3270 buffer. READB
cannot be specified for
TCAM-supported terminals nor can it
be used for 3790 (3270-printer)
logical units.

Note: Because of the relatively
long transmission times required to
transmit the entire contents of a
remote 3270 buffer, the READB
parameter should be used primarily
for testing and diagnosing; the
COPY parameter, which permits a
selective transfer of buffer
contents should be used in all
other cases.

TYPE=READL

. Used with 2260 only.

Indicates that the keyboard is to
remain locked at the completion of
a data transfer. This parameter is
applicable only to CICS/0S/VS, but
may be used on a CICS/DOS/VS
application if compatibility with
CICS/0S/VS is desired.

TYPE=RESET

J Used with binary synchronous
devices only.

This operand is used to relinquish
use of a communication line; the
next BTAM operation will be a read
or write initial. RESET is not
supported by TCAM, because line
ﬁggtrol is performed by TCAM in the

TYPE=SAVE

in the case of a read operation, it
indicates that the TIODA used in a
previous terminal operation is not
to be used as an input area; a new
TIOA is acquired. For a write
operation, it indicates that the
TIOA whose address is in TCTTEDA is
not to be released upon completion
of the write operation; however,

there is no guarantee that TCTTEDA
will remain unchanged.

TYPE=SIGNAL

. Used with VTAM interactive and
LUTYPE2, LUTYPE3, LUTYPE4 and
SCSPRT logical units, and VTAM
36?0 (3601) logical units,
only.

Indicates that this macro specifies
the action to be taken by the
application program when an inbound
SIGNAL data-flow-control command is
received from the logical unit.

The four-byte field TCTESIDI in the
terminal control table terminal
entry (TCTTE) is set to the signal
code received from the logical
unit. If a hard request change
direction (RCD) signal is received
(signal code X'00010000') from an
LUTYPEG unit, the transaction
should either end or read from the
unit. An attempt to follow the
signal with a write would be an
error.

Most logical units will send a
signal with a code of X'00010000'
when an attention key is pressed.

TYPE=STRFIELD

. Assembler language only.

Specifies that the TIOA contains
structured fields. If this operand
is specified, the contents of all
structured fields must be handled
by the application program.
(Structured fields are described in
the appropriate CICS IBM 3270 Data
Stream Device Guide.) CTLCHAR and
ERASE are mutually exclusive with
STRFIELD and their use will
generate an MNOTE .

TYPE=TEXT

. Used with 3270 only.

Is meaningful only when used in
conjunction with a READ request.
It specifies a temporary override
of the uppercase translation
feature of CICS to allow the task
to receive a message containing
both uppercase and lowercase data.

TYPE=TRANSPARENT

. Applicable to System/3 when it
indicates that output is to be
sent in transparent mode (with
no recognition of control
characters, and accepting any
of the 256 possible
combinations of eight bits as
valid transmittable data).

Chapter 6.2. Terminal Control (DFHTC Macro) 141

. Applicable to System/7 when it
indicates that the data being
read is not to be translated.

TYPE=WAIT

ensures that the terminal or
logical unit operation requested in
the macro is completed before
starting subsequent processing.
WAIT can be coded separately from a
READ +to accomplish overlapping of
logical unit I/0 operations; or
with the EOC, EODS, or INBFMH
operand, for example, to give
control to user-written routines
from within an end-of-data-set
routine entered as a result of
specifying the EODS operand.

TYPE=WRITE

indicates that data is to be
wr@tten to a terminal or logical
unit.

VALID=address

° Used with 3650 devices only.

This operand indicates the label of
a user-coded routine to receive
control if the name specified in
the PRGNAME operand is valid but
sufficient resources are not
available in the 3651 to initiate

the 3650 application program. This
routine can determine whether a
DFHIC TYPE=INITIATE or DFHIC
TYPE=PUT macro is to be issued in
order to restart the 3650
application program later.

WAIT=YES

specifies that the task is to be
suspended until SIGNAL is received.
This request is ignored if the
logical unit cannot send a SIGNAL
command; the contents of field
TCTESIDI will be set to X'00000000°
in these circumstances.

WRBRK=symb-addr

is the symbolic address to which
control is transferred if a write
operation started in response to
.this DFHTC TYPE=WRITE macro is
interrupted by the terminal
operator pressing the Attention
(ATTN) Kkey.

This operand is meaningful only if
2761 Write Break support has been
generated into the system, an
option available only under
CICS/0S/VS. See "Read Attention™
and "Write Break™ under %2741
Communication Terminal™ earlier in
the chapter.

142 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 4.3. BASIC MAPPING SUPPORT

Basic mapping support (BMS) provides the
CICS application programmer with various
formatting services that assist in
interpreting input data streams from and
preparing output data streams to the
terminal network. These formatting
services are provided by BMS modules
that act as an interface between the
user's application program and the CICS
terminal control program.

The application program passes data to
BMS and receives data from BMS in a
device-independent format. BMS macros
are issued by the application program to
control formatting of the data and to
initiate input from and output to the
terminal network.

You should refer to the appropriate CICS
Application Programmer's Reference

Manual (Command lLevel) for descriptions
of the additional attributes field

outlining (OUTLINE), mixed DBCS and
EBCDIC fields (S0SI), and background
transparency (TRANSP) that are new for
this release.

ADVANTAGES OF BMS

The two principal advantages to be
obtained by using BMS are device
independence and format independence.

DEVICE INDEPENDENCE

Device independence permits the
application program to send data to a
terminal or to receive data from a
terminal without regard for the physical
characteristics of the terminal. BMS
can be used for communication with any
of.:he following devices and logical
units:

1050

2740

2741

2770

2780

2980 Models 1 and 2

2980-4 (keyboard and printer only)

3270

3780

THWX

Tape storage devices

Disk storage devices

CRLP (a device declared as
card-reader-in/line-printer-out)

TCAM-connected terminals (defined by
TRMTYPE=TCAM in DFHTCT
TYPE=TERMINAL macro)

TCAM logical units (defined by
TCAMFET=SNA in DFHTCT TYPE=LINE
macro and SESTYPE=3600]3767]3770

{3790 BCHLUJINTLU in DFHTCT
TYPE=TERMINAL macro)
VTAM logical units:
3270
LUTYPEZ2
LUTYPE3
LUTYPES
SCSPRT
3600
3650 (host-conversational (3270)
5767 and interpreter LUs only)

3770
3790 (all except inquiry LU)

Some special BMS programming
considerations that apply only to
particular terminal subsystems are
described in the various CICS subsystem
guides (for example, the IBM

4700/3600/3630 Guide). ‘'These guides are

listed in the Bibliography.

With BMS, a CICS installation with more
than one type of terminal need provide
only one program for each application
transaction to support all terminal
types in the installation. BMS
identifies which terminal type is
requesting use of the application
program and provides for the conversion
of the device-dependent data stream to
and from the device-independent format
used by the application program. A CICS
installation using only one type of
terminal may nevertheless wish to use
the formatting services of BMS to
facilitate the addition of other
terminal types or the conversion to
another terminal type in the future.

FORMAT INDEPENDENCE

Format independence permits the
application program to provide data to
one or more terminals or to receive data
from a terminal without regard for the
physical placement of fields within the
data stream or on the terminal.

All references to data by the
application program are through symbolic
field names. The placement of fields
within the data stream is accomplished
by BMS through the use of information
stored in data format tables called
maps. A CICS installation in which BMS
is used may rearrange the fields to be
included in a terminal message by simply
changing some values stored in the map
that defines the format of the message.
The application program that causes the
message to be written need not be
modified. Programming maintenance can
thus be considerably simpler than if BMS
were not used.

Chapter 4.3. Basic Mapping Support 143

Format independence also permits certain
constant information, such as headings,
field-identifying keywords, and 3270
screen formats, to be stored in maps.
These constants can be modified simply
by changing their values in the maps.
Any programs that refer to the maps
benefit from the changes, but none of
the programs themselves need be
modified.

The format independence provided by BMS
may be compared with the independence
provided by DL/I for data bases. Both
remove from the application program the
requirement to know the physical
placement of fields within the data
record .or message. Fields may be
physically rearranged, removed, or added
without necessitating program
maintenance on all application programs
using the record or message.

FACILITIES OF BMS

The facilities that BMS provides are
data mapping and formatting, terminal
paging, and message routing.

DATA MAPPING AND FORMATTING

Data mapping is the technique used by
BMS to convert the standard
device-independent data format that the
application program uses to and from the
device-dependent data stream required
for the particular terminal type in use.
Device-dependent control characters are
embedded or removed by BMS during this
processing.

The application program may select any
of three standard data formats in which
to provide or accept data from BMS:
field data format, block data format, or
text data format.

When field data format is used, data is
passed to BMS as separate fields. Each
field is given a symbolic field name by
the application programmer. This name
is used when passing data to, or
retrieving data from, BMS. Each field
consists of a two-byte length area (used
by BMS on input), a single attribute
byte (used for 3270 output operations
only, but present for all terminal
types), and the data area. A map
describing the position of the field
when displayed or printed, the data
length, and other information about each
field is created to control the mapping
function.

When block data format is used, data is
passed to BMS as line segments. Fields
positioned within the line segments may
be given symbolic field names to aid the
application program in positioning the
fields. Each field provides for a
single attribute byte and the data area.
A gap consisting of several blanks may

separate consecutive fields in the line
segment. A map is used to describe the
number and lengths of line segments, the
field positions when displaved or
printed, data lengths, and other
necessary information.

When text data format is used, output
data consisting of a data stream with
optional new-line (X'15') characters is
passed to BMS. BMS divides the data
stream into lines no longer than those
defined for the particular terminal to
which the data stream is related. BMS
will only allow a line break to occur
where it encounters a blank (X'40'). 1If
a word will not fit into the space
remaining in a line, BMS places the
whole word on a new line. If new-line
characters are included in the data
stream, they too are honored. CICS
inserts the appropriate leading
characters, carrier returns, and idle
characters, and eliminates trailing
blanks from each line. If tab control
characters are contained in the data
stream, the user should also supply all
the necessary new-line characters. Maps
are not used with text data format.

Field data format is the commonest data
format for both display and printer
terminals. Block data format may be
used with both display and printer
terminals, but it is more useful for
input operations on printer terminals.
Text data format is used with both
display and printer terminals and is
especially convenient for handling data
that is not divided into fields. MWhen
text data format is used with a 3270
device, an attribute byte appears on the
3270 as a blank at the beginning of each
512e and in front of each new piece of
ata.

TERMINAL PAGING

Terminal paging permits the application
program to (1) combine several small
mapped data areas into one or more pages
of output, or (2) prepare more output
than can be contained in one page of
output. By definition, a page is the
physical area of a terminal on which
data is dlsplayed or printed at one
time. The size of the area (in numbers
of lines and columns) is specified for
the particular terminal in the CICS
terminal control table (the TCT) by the
system programmer.

Since a page of output may be
constructed by BMS from several small
maps, it is convenient to generate these
maps together in a map set. A map set
is a collection of maps generated and
stored together in the CICS program
library. A reference to one map in the
map set causes the entire map set to be
loaded into storage for the duration of
the task or until another map set is
referred to by the task. DFHMSD,

146 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHMDI, and DFHMDF macros, described
later in this chapter, are used in
constructing the map set.

During execution, the application
program issues DFHBMS TYPE=PAGEBLD
macros to position portions of an output
page. If all the data cannot be
contained on one page, BMS recognizes an
overflow condition and can transfer
control to an overflow routine within
the application program. This routine
normally causes the current page to be
written to temporary storage, a new page
to be started, a heading to be placed on
the new page, and the data causing the
overflow to be mapped on the new page.
As each page of the output message is
completed, the page is written to
temporary storage to await completion of
the logical message. A logical message
is the result of one or more BMS
requests for output services all of
which have the same disposition (0OUT,
STORE, or RETURN, as explained later in
this chapter). To cause the logical
message to be completed, the application
program issues a DFHBMS TYPE=PAGEOUT
macro. Alternatively, the logical
message is completed upon termination of
the application program unless a
short-on-storage condition exists, in
which case the logical message is
deleted.

Terminal paging provides the additional
function of building a logical message
without the use of maps. A DFHBMS
TYPE=TEXTBLD macro is issued to request
this type of page building. The data is
passed to BMS as text data, which BMS
places on succeeding lines (and pages,
if necessary) without reference to maps.
A word is not split between lines; any
word that cannot fit on the remaining
portion of a line is placed on the next
line. The formatting of the logical
message can be controlled through the
data itself by embedding new-line
characters (X'15') within the data. To
cause the TEXTBLD logical message to be
completed, the application program
issues a DFHBMS TYPE=PAGEOUT macro or
terminates execution.

DFHBMS TYPE=PAGEBLD and TYPE=TEXTBLD
macros cannot be used to build portions
of the same logical message. The
process of building a logical message
can be discontinued by means of a DFHBMS
TYPE=PURGE macro. This instruction
deletes the portions of the message
already built in main storage or on
temporary storage.

MESSAGE ROUTING

Message routing permits an application
program to build and route a logical
message to one or more terminals. The
message is automatically scheduled for
each designated terminal, to be
delivered as soon as the terminal is
available to receive messages or at some
future time.

The page building facility of BMS is
used for message routing, so the design
of application programs is very similar
for the two facilities. Message routing
allows application-built messages to be
sent to any prescribed terminals.

To initiate a routing operation, the
application program issues a DFHBMS
TYPE=ROUTE macro followed by DFHBMS
TYPE=(PAGEBLD,STORE) or
TYPE=(TEXTBLD,STORE) instructions to
build the logical message that is to be
routed. A DFHBMS TYPE=PAGEOUT macro
terminates the page building and causes
the message to be routed. HWhen
individual logical messages are routed
to a terminal, they are not necessarily
delivered in the sequence in which they
were issued. If a specific sequence is
required, the pages must be sent as one
message.

A parameter of the DFHBMS TYPE=ROUTE
macro points to a list of terminals to
receive the routed message. The list
may contain the terminal identification
and operator identification of each
terminal designated to receive the
message. If only a terminal
identification is specified, the message
is routed to that terminal, regardless
of who is signed on at the terminal. If
both the terminal identification and the
operator identification are specified,
the message is routed to the terminal
but delivered only when the specified
operator is signed on. If only the
operator identification is specified,
BMS scans the terminal control table and
delivers the message to the first
terminal at which the operator is signed
on.

Another parameter of the DFHBMS
TYPE=ROUTE macro is a specific operator
class code. If specified, only an
operator signed on with that class code
may receive the routed message. One to
twenty-four class codes may be assigned
to operators in the CICS sign-on table.

The DFHBMS TYPE=ROUTE macro further
designates whether the message is to be
delivered as soon as possible or at a
specific time or after some interval of
time. If the routed message cannot be
delivered within a specified length of
time, an error message may be returned
to the terminal sending the message or
to some designated alternative terminal.
The message may be deleted, or it may be
retained indefinitely, until delivered

Chapter 6.3. Basic Mapping Support 145

or until deliberately deleted by an
operator at the receiving terminal.

If a message is to be routed to more
than one terminal type, BMS builds a
device-dependent message for each
terminal type. Each such message is
stored on temporary storage until all
terminals for which it is destined have
received the message. If a terminal is
scheduled to receive a message but is
not eligible, the message is stored
until one of the following conditions
occurs:

. A change in terminal status allows
the message to be sent.

° A time period (specified at system
generation) has elapsed, causing the
message to be deleted by BMS.

. The message is deleted by the
destination terminal.

Another consideration of routing to
different terminal types is the handling
of overflow conditions. Since different
terminal types may have different page
sizes, the overflow condition is apt to
occur at different times in page
building. BMS returns control to an
overflow routine in the application
program, indicating which terminal type
caused the overflow and how many pages
gave been created for that terminal

vype.

If a message is routed to terminals with
alternate screen size capabilities, the
selection of the screen size to be used
is taken from the SCRNSZE parameter in
the PCT for the routing transaction.
(The SCRNSZE parameter is described in
the appropriate CICS Resource Definition

manual.)

The message routing facility of BMS is
an ideal tool for developing message
switching and broadcasting applications.
CICS provides a generalized message
switching transaction that uses the
message routing facility of BMS. Use of
the message switching transaction is
described in the appropriate
CICS-Supplied Transactions book.

MAPPING CONCEPTS AND TECHNIQUES

Most of the facilities of BMS (text data
format is the exception) require two
forms of map to be defined by CICS
macros and assembled offline in advance
of running the application program. The
two forms are: (1) a physical map used
by BMS to convert data to or from the
format desired by the application
programmer, and (2) a symbolic
description map used by the application
programmer to symbolically refer to the
data in the terminal buffer. The
physical map is a table of information
about each field, and is stored in the

CICS program library to be loaded by BMS
at execution time. The symbolic
description map is a set of source
statements that are cataloged into the
appropriate source library (Assembler,
COBOL, or PL/I) and copied into the
application program when it is assembled
or compiled.

The programmer defines and provides
names for fields and groups of fields
that may be written to and received from
the devices supported by BMS. The
symbolic description map can be copied
into each application program that uses
the associated physical map. Data can
thus be passed to and from the
application program under the field
names in the symbolic description map.
Since the application program is written
to manipulate the data under the field
names, altering the map format by adding
new fields or rearranging old fields
foe§ not necessarily alter the program
ogic.

If the map format is altered, it is
necessary in most cases to make the
appropriate changes to the macros that
describe the map and then reassemble
both the physical map and the symbolic
description map. The new symbolic
description map must then be copied into
the application program and the program
reassembled. There are certain map
alterations that can be made without
necessitating reassembly of the symbolic
description map.

An application program has access to the
input and output data fields using the
names supplied to the fields when the
maps were generated. The application
logic should be dependent upon the named
fields and their contents but should be
independent of the relative positions of
the data fields within the terminal
format. If it becomes necessary to
reorganize or add to a map format, the
existing application program must be
reassembled to gain access to the new
positions of these data fields.
Reprogramming is not necessary to
account for new fields or for the
changed terminal format of those fields.

By using BMS to construct and interpret
data streams, application programmers
can insulate application programs from
the device-dependent considerations
required to handle the data streams. If
necessary, the application program has
the facility to temporarily modify the
attributes or the initial data of any
named field in an output map. A
collection of named attribute
combinations is supplied within BMS so
that the application program remains
essentially independent of the data
stream format.

The ability to progressively add to map
definitions without obsoleting existing
application programs permits the design

146 CICS/VS Application Programmer's Reference Manual (Macro Level)

and implementation of systems in a
modular fashion with a progressive
expansion of the screen formats. Design
and programming of the first stages of
applications can begin before later
stages have been designed. These early
implementations are protected from
updates in the terminal formats.

MAP DEFINITION

All maps must be generated as members of
a map set; a single map must be
generated as the only member of such a
map set. A map set is a collection of
related maps that are generated and
stored together in the CICS libraries.

Map definition is accomplished through
the use of three different macros:
DFHMSD, DFHMDI, and DFHMDF.

The DFHMSD macro

o Defines a map set

. Indicates whether a particular set
of macros is for a physical map or
for a symbolic description map

] Specifies whether the map is for
input, output, or both

. Can specify the data format: field
or block.

The DFHMDI macro
] Defines a map

. Defines the position of the map on
the page, either absolutely or in
relation to other maps

U Specifies the size of the map

J Can specify the data format: field
or block.

The DFHMDF macro

. Defines a field within a map

. Specifies the position of the field
. Specifies the length of the field.

The formats of these macros are given
later in this chapter. An example of
their use and of the symbolic storage
definitions generated is given in
Appendix B.

The map definition macros are assembled
twice, once to produce the map used by
BMS, and once to produce the symbolic

storage definition (or DSECT) that will
be copied into the application program.

INPUT MAPPING

For an input map, the maximum data
length and the starting position of each
field must be defined.

The TIOA symbolic storage definition
contains an area for the length of each
input data field, followed by a flag
byte and an area for the data itself.
Space is reserved for the maximum number
of bytes defined for each field.

The program can access the length, flag,
?ng gata areas of any field by symbolic
abels.

The length area is a halfword binary
field and is addressed by the name
"fieldname.L™ or "groupname.lL™.

The flag area is a one-byte field and is
addressed by the name "fieldname.F"™ or
"groupname.F",

The data area of each field (or group of
fields) is contiguous with the length
and flag areas. A group of fields, or a
single field not within any group of
fields, has one data area addressed by
the name "groupname.I"™ or "fieldname.I"™.
For fields contained within a group,
there are no intervening length or flag
areas (only "groupname.l" exists) but
each field is addressed by a name
"fieldname.I™.

In assembler language programs, the
first byte of the first occurrence of a
field defined by the DFHMDF operand
OCCURS=n (where n is greater than 1) is
named "fieldname D", and the first byte
of the next occurrence of the field is
named "fieldname N". These names refer
to the first byte of the length area if
DATA=FIELD is specified, and to the
first byte of the attribute data if
DATA=BLOCK is specified.

In COBOL and PL/I programs, "fieldname
D" is the name of the array of minor
structures containing the length, flag,
and data areas of the field.

Note that "™." is a concatenation symbol
used here only to show how the symbolic
names are suffixed; the period is never
actually coded. For example, in the
case of field name XYZ, the length area
is referenced as XYZL; the flag area is
referenced as XYZF; and the data area is
referenced as XYZI.

The length specified for a field may
differ from the number of characters
that are entered for the field at
program execution time. If more data is
keved than specified in the map, the
data is truncated on the right to the
number of characters specified. The
length that is returned to the
application program is the truncated
length. If less data is keyed than
specified, the remaining character

Chapter 6.3. Basic Mapping Support 147

positions are filled with blanks or
zeros and the length of the keyed data
is returned in the length field.

With a 3270 or similar type of device,
the length of the input field will be
the number of nonnull characters
contained in the field. Note that a
previous output mapping operation may
havedentered nonnull characters into the
field.

The flag area is normally set to X'00°'.
However, if the field has been modified
but no data has been sent (as, for
example, if it has been modified to all
nulls), the length area is set to zeros
and the flag area is set to X'80°'.

Specifying ATTRB=FSET on the DFHMDF
macro (see page 163) causes the field to
be returned with the same length, flag,
and data areas as if the operator
entered it, unless the field was
originally nulls, in which case, length
is set to 0, flag is set to X'80', and
data is set to nulls,

Any fields that are entered as input but
are not defined in the map are
discarded. The length and data areas of
any fields defined but not keyed are set
to nulls (X'00').

For a pen-detectable field, although no
data is passed, a single data byte is
reserved. This byte contains X'FF' if
the field is selected or X'00'" if the
field is not selected. The length area
of a pen-detectable field contains a
pinar¥ one if selected or a binary zero
if not.

OUTPUT MAPPING

For each output field, the starting
location, length, field characteristics,
and default data (if desired) must be
defined.

The fields of an output map are assigned
names in the DFHMDF macro. The
characteristic or attribute byte is
named "fieldname.A" or "groupname.A".
For a field contained within a group,
the data area is given the name
"fieldname.0", but there is no separate
attribute byte for the field. (Only the
group name has the attribute byte.) For
a group name, or a field not contained
within a group, the data area is given
the name "groupname.0™ or "fieldname.0.™

In assembler language programs, the
first byte of the first occurrence of a
field defined by OCCURS=n (where n is
greater than 1) is named "fieldname D",
and the first byte of the next
occurrence of the field is named
"fieldname N". These names refer to the
first byte of the length area if
DATA=FIELD is specified, and to the

first byte of the attribute data if
DATA=BLOCK is specified.

In COBOL and PL/I programs, "fieldname
D" is the name of the array of minor
structures containing the attribute byte
and data area of the field, together
with the unused two-byte length field
(described below). A field not
contained within a group is treated as a
group containing one field entry. An
unused two-byte length field precedes
each attribute byte and data field to
provide a format similar to an input
symbolic storage description TIOA.

Note that "." is a concatenation symbol
used here only to show how the symbolic
names are suffixed; the period is never
actually coded. For example, in the
case of field name XYZ, the data is
referred to as XYZ0; the attribute byte
is referred to as XYZA.

If output maps are to be used by
application programs coded at command
level, the TIOAPFX=YES operand must be
specified in the DFHMSD or DFHMDI macros
that create the maps. Also, if the
symbolic description maps are referred
to by a PL/I program, the STORAGE=AUTO
operand must be specified in the DFHMSD
macro.

When defining fields, the user may
provide a name for any field that he
wishes to refer to at execution time.
Such names are associated with the
fields in the symbolic storage
definition of the TIOA to allow symbolic
references to be made to them. The user
may specify not only the characteristics
of the field but also the default data
to be written as output for a field when
no data is supplied for that field by an
application program. This facility
permits the specification of titles,
headers, and so forth, for output maps.
The user may temporarily override the
field characteristics, the data, or both
field characteristics and data of any
field for which he has specified a name.
The desired changes are simply inserted
into the TIOA under the specified field
name in the symbolic storage definition
(symbolic description map) in the
program.

Note: Output field data supplied by the
application program must not begin with
a null character (X'00'), or the entire
field will be ignored by BMS. A
suitable character to use in the first
position is blank (X'40').

Pen—-detectable fields should be Mauto
skip" to prevent data from being keyed
into them. Because of the nature of
pen—-detectable fields, in most
instances, they should not be modified.
If the data field is modified, the
application program must ensure that the
first character is a "wI%, W>w, "g", or

148 CICS/VS Application Programmer's Reference Manual (Macro Level)

blank character; otherwise, the field is
no longer pen-detectable.

Fields that can be keyed should be
delimited by a stopper field to ensure
that all the data keved and transmitted
can be mapped.

INPUT/0UTPUT MAPPING

Input/output (INOUT) maps combining all
the functions of input and output maps
can also be created using the DFHMSD,
DFHMDI, and DFHMDF macros.

The number of fields which can be
specified for a COBOL or PL/I
input/output map is limited. These
limits are stated in the description of
the DFHMDF macro later in this chapter.

MAP RETRIEVAL

Map sets placed in the CICS program
library are accessed by BMS through
program control DFHPC TYPE=LOAD macreos.
Therefore, each map set name must be
entered in the processing program table
(PPT) by the system programmer. When
device-dependent map sets are placed in
the CICS program library, they must be
identified by the device-dependent
suffixed name, and a corresponding entry
of the same name must appear in the PPT.
(Device-dependent suffixes are described
below under the "mapset" name of the
DFHMSD macro and under the SUFFIX and
TERM operands of that macro.)

To avoid having to load a map set during
execution, an assembler language
programmer using the macro level
interface may include the map set in the
program, place the address of the map
set at TCAMSMSA, and code MSETADR=YES in
the DFHBMS macro. Alternatively, the
programmer may code MSETADR=symb-addr,
where the symbolic address is the label
of the map set. The MAP=map-name
specification must also be provided with
the MSETADR parameter to locate a
specific map within the map set.
Similarly, the MAPADR operand enables an
assembler language programmer to
specify, directly or indirectly, the
address of an individual map.

COPYING SYMBOLIC DESCRIPTION MAPS

The symbolic description maps must be
copied into the application program as
shown in the following examples. These
examples use the macro level interface,
examples using the command level
interface are given in the appropriate
CICS Application Programmer's Reference
Manual (Command Level).

In the following examples, mapsetnamel,
mapsetname2, and mapsetname3 are the

names of members that contain the

assembly of a BMS symbolic storage

definition.

1. Assembler language COPY instructions
for each symbolic storage
definition. To ensure that each
definition overlays the same area,
the second and subsequent COPY
instructions must be preceded by an
ORG instruction to reposition the
assembler to the start of the TIDA
data area. :

COPY DFHTIOA
COPY mapsetnamel
ORG TIOADBA
COPY mapsetname2
ORG TIOADBA
COPY mapsetname3

2. COBOL COPY statements for each
symbolic storage definitien. 1In
this example, mapnamell, mapname2l,
and mapname3l are the names of the
first maps in the map sets.

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.
02 TIOABAR PIC 59(8) COMP.

01 DFHCSADS COPY DFHCSADS.

01 DFHTCADS COPY DFHTCADS.

01 DFHTIOA COPY DFHTIOA.

01 mapnamell COPY mapsetnamel.
01 mapname2l COPY mapsetname?l.
01 mapname3l COPY mapsetname3.

Note: For MODE=IN and MODE=INOUT
the format of the COPY statement is:

01 mapnamell COPY mapsetnamel

For MODE=0OUT the format of the COPY
statement is:

01 mapnamel0 COPY mapsetnamel
3. PL/I %ZINCLUDE statements.

%INCLUDE DFHTIOA;

2 DUMMY CHAR(1l);
%INCLUDE mapsetnamel;
%ZINCLUDE mapsetname?2;
%ZINCLUDE mapsetname3;

In addition to providing the BMS
symbolic storage definition for the
TIOA, the application programmer must
establish addressability for this
storage definition. Depending on the
programming language used, this is
accomplished as follows:

1. Assembler language L instruction to

set up TIOABAR, normally from
TCASCSA. For example:

Chapter 6.3. Basic Mapping Support 149

COPY DFHTIOA
COPY mapsetnamel
ORG TIOADBA
COPY mapsetname2
ORG TIOADBA
COPY mapsetnamed

DFHSC TYPE=GETMAIN,
NUMBYTE=mapname.E-TIOADBA,
CLASS=TERMINAL,

INITIMG=00
L TIOABAR, TCASCSA

Note: BMS offline macros generate a
label at the beginning and end of
each map description and a label at
the end of each map set description;
these labels have the form
"mapname.S™, "mapname.E"™, and
"mapsetname.T", respectively, where
nm." is a concatenation symbol used
only for documentational purposes.
The start of each map, or map set,
can be referred to by the label
TIOADBA. Thus an assembler language
programmer can specify the amount of
storage required in the way shown in
the example above. The last L
instruction establishes TIOA
addressability.

2. COBOL 02 level statements
immediately following the COPY
statement for the Linkage Section
Base Locator (BLL). These 02
statements must be coded in the same
order as the corresponding 01
statements. For example:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TIOABAR PIC S9(8) COMP.

02 MAPBASEl PIC S9(8) COMP.
02 MAPBASEZ2 PIC S9(38) COMP.
02 MAPBASE3 PIC S9(3) COMP.

DFHTIOA COPY DFHTIOA.

mapnamel COPY mapsetnamel.
mapname2 COPY mapsetname2.
mapname3d COPY mapsetname3.

. oocoo-.
fevpwpeyet

PROCEDURE DIVISION.

DFHSC TYPE=GETMAIN, NUMBYTE=120,
CLASS=TERMINAL, INITIMG=00
MOVE TCASCSA TO TIOABAR.
ADD 12 TIQABAR
GIVING MAPBASE]L.

MOVE MAPBASEl
TO MAPBASE2 MAPBASE3.

3. Set up the PL/I based pointer
variable (BMSMAPBR) on which the map
structures are based. For example:

%INCLUDE DFHTIOA;;

%INCLUDE mapsetnamel;
%ZINCLUDE mapsetname?2;
%ZINCLUDE mapsetname3;

DFHSC TYPE=GETMAIN,
NUMBYTE=120,
CLASS=TERMINAL,
INITIMG=00

TIOABAR=TCASCSA;

BMSMAPBR=ADDR(TIOADBA);

Note that this code assumes that the
TIOAPFX operand of the DFHMSD and DFHMDI
macros has been omitted or coded as
TIOAPF. Each of the maps (mapsetname
1-3) is based on the same pointer
variable - BMSMAPBR.

MAP DEFINITION MACROS

The syntax and operand descriptions of
the three map definition macros (DFHMSD,
DFHMDI, and DFHMDF) are given below.

You should refer to the appropriate CICS
Application Programmer's Reference
Manual (Command Level) for descriptions
of the additional attributes field
outlining (OUTLINE), mixed DBCS and
EBCDIC fields (S0SI), and background
transparency (TRANSP) that are new for
this release.

DEFINING A MAP SET (DFHMSD MACRO)

BMS generates and stores map sets in the
CICS program library under the names
selected by the application programmers.
A reference to one map in the map set
causes the entire map set to be loaded
into storage for the duration of the
task, or until another map set is
referred to by the task.

Information pertaining to an entire map
set is specified in the DFHMSD macro,
which always appears at the beginning
and end of each map set generation. The
one at the beginning indicates whether
physical maps or symbolic description
maps are being generated; the one at the
end indicates the end of the map set.

All operands other than the TYPE operand
of a DFHMSD macro are the same for a
physical map generation run and for the
corresponding symbolic description map
generation run. The application
programmer should specify TYPE=MAP for
the former, and TYPE=DSECT for the
latter. Alternatively, physical maps
and symbolic description maps can be
assembled in the same job by the use of
job control language options, as

150 CICS/VS Application Programmer's Reference Manual (Macro Level)

described in the appropriate CICS
Installation and Operations Guide.

The format of the DFHMSD macro is shown
in Figure 15.

The operands of the DFHMSD macro are as
follows:

mapset
is the one- to seven-character name
of the map set, to be specified in
the MAPSET operand of any DFHBMS
macro that refers to the map set.
The name must begin with an
alphabetic character and, if the
map is to reside in the CICS
program library, must differ from
other map names or program names.

A suffix specified by the SUFFIX
operand, or based on the terminal
type specified in the TERM operand
of the DFHMSD macro is appended to
the map set name during assembly.
This suffixed name is the name that
should be used in the NAME card
(CICS/057VS) or the PHASE card
(CICS/DOS/VS) in cataloging the map
set (see the appropriate CICS
Installation and Operations Guide
for further details), and the name
that should be specified by the
system programmer in the PPT entry
(see the appropriate CICS Resource
Definition manual). The suffixes
are tabulated in the description of
the TERM operand, below.

When a mapping operation is
requested by means of a DFHBMS
macro in an application program,
CICS automatically appends a
similar suffix to the map set name
specified in that macro, and
attempts to load a map set with the
suffixed name. If the load is
unsuccessful, that is, the suffixed
map set name cannot be found in the
library, CICS will load a map set
with an unsuffixed name (equivalent
to being suffixed with a blank).
CICS obtains the suffix from the
TCT terminal entry for the
appropriate terminal (either the
terminal associated with the
transaction or, for routing, the
destination terminal), and this
suffix depends on the terminal type
specified in the TRMTYPE operand
(together with the SESTYPE operand
for VTAM terminals) of the DFHTCT
TYPE=TERMINAL (or TYPE=LINE) macro.

If the alternate page size is being
used, as specified by the ALTPGE
operand of the DFHTCT TYPE=TERMINAL
system macro, and the ALTSFX
operand of that same system macro
has also been specified, an attempt
will be made to load the map set
that has the alternate suffix
specified in the SUFFIX operand of
the DFHMSD macro. If this load is

TYPE=

Chap

unsuccgssfu}, normal map set
selection will occur.

For example, if two maps are
assembled, one with TERM=CRLP and
the other with TERM=ALL, the first
will be suffixed with A and the
second with blank (that is,
unsuffixed). The system programmer
should use these suffixed names in
the PHASE/NAME cards and in the PPT
entry. If a CICS transaction now
routes a message to two terminals,
one of which has TRMTYPE=CRLP and
the other TRMTYPE=L3277, TRMMODL=2,
BMS will attempt to load mapset.A
and mapset.M to do the mapping in
the two cases. The second of these
will be unsuccessful, so BMS will
then look for the unsuffixed map
set name for routing to the 3277.

indicates the generation function
of the macro. If both map and
DSECT are to be generated in the
same job, the SYSPARM option can be
used in the assembler job execution
step, as described in the
appropriate CICS Installation and
Operations Guide.

DSECT
indicates that this is a
symbolic description map
generation run to create the
list of field names to be
copied into an application
program. If a single map set
is to be used by application
programs written in different
languages, a separate DFHMSD
TYPE=DSECT macro must be
written for each language to
put the table of field names
into the copy library of the
language.

MAP
indicates that this is a
physical map generation run to
create the control information
block used by BMS to perform
mapping. This physical map is
stored in the CICS program
library and loaded as required
by BMS. The assembler
language application
programmer can, alternatively,
generate the map in his
program and pass the address
of the map to BMS instead of
using this facility to
generate and store the map
beforehand in the CICS program
library. ~

FINAL
must be coded in the DFHMSD
macro that marks the end of
the map set. If other
parameters are coded in the
DFHMSD TYPE=FINAL macro, they
will be ignored.

ter 6.3. Basic Mapping Support 151

mapset | DFHMSD

TYPE={DSECT |MAP|FINAL}
[,BASE=namel

[,DATA={FIELD|BLOCK}]

HTAB=tabl, tabl...]
LDC=mnemonic]l

[

[

L,

L,

E»

[,0BFMT={YES|NO}]

E.PS={BASE|psid}]
»

L,

L,

[

[

[,

STORAGE=AUTO]
SUFFIX=nl
TERM=terminal—typel
TIOAPFX={YES|NO}]

VTAB=tabl, tabl...1]

[,COLOR={DEFAULT|BLUE|RED
YELLOW|NEUTRAL}
[,CTRL=CLPRINTIL, {L4O|L64
[,FREEKBIL,ALARMI

!PINK[GREENITURQUOISEI

,EXTATT={NO|YES|MAPONLY?}1
,HILIGHT={OFF | BLINK | REVERSE | UNDERLINE}]

LANG= {ASM|COBOL {PLI}]
MODE={IN]OUT | INOUT}]

:VALIDN=([MUSTFILL][,MUSTENTER])]

80| HONEOM?} 1
FRSETI)]

Figure 15.

DFHMSD Macro (Define a Map Set)

BASE=name

152

is used to indicate that the same
storage base will be used for the
symbolic description maps from more
than one map set. The same name is
coded in the BASE operand for each
map set that is to share the same
storage base. Since all map sets
with the same base describe the
same storage, data related to a
previously-used map set may be
overwritten when a new map set is
used. Furthermore, different maps
within the same map set will also
overlay one another.

This operand is not valid for
assembler language programs.

As an example, assume that the
following DFHMSD macros are used to
generate symbolic description maps
(symbolic storage definitions) for
two map sets.

MAP1 DFHMSD TYPE=DSECT,
TERM=27380,
LANG=COBOL,
BASE=DATAREAL,
MODE=IN

MAP2 DFHMSD TYPE=DSECT,
' TERM=3270,
LANG=COBOL,
BASE=DATAREAL,
MODE=0UT

The symbolic storage definitions of
this example might be referred to
in a COBOL application program as
follows:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TIOABAR PIC S9(8) COMP.
02 MAPBASELl PIC S9(8) COMP.

3

01 DFHTIOA COPY DFHTIOCA.
01 DATAREAl PIC X(1920).
01 name COPY MAP1.
01 name COPY MAP2.

MAP1 and MAP2 multiply redefine
DATAREALl; only one 02 statement is
needed to establish addressability.
However, the program can only use
the fields in one of the symbolic
map areas at a time.

If BASE=DATAREAl is deleted from
this example, an additional 02
statement is needed to establish
addressability for MAP2; the 01
DATAREA1l statement is not needed.
The program could then refer to
fields concurrently in both
symbolic map areas.

In PL/I application programs, the
name specified in the BASE operand
is used as the name of the pointer
variable on which the symbolic
storage definition is based. If
this operand is omitted, the
default name (BMSMAPBR) is used for
the pointer variable. The PL/I
programmer is responsible for
establishing addressability for the
based structures.

COLOR=

specifies the default color for all
fields in all maps in a map set
unless overridden explicitly by the

CICS/VS Application Programmer's Reference Manual (Macro Level)

CTRL=

COLOR operand of a DFHMDI or DFHMDF
macro. If this operand is
specified when EXTATT=NO, a warning
will be issued and the operand
ignored. If this operand is
specified, but EXTATT is not,
EXTATT=MAPONLY will be assumed.
Refer to the EXTATT operand for
device dependencies.

is used to specify device
characteristics related to
terminals of the 3270 Information
Display System. CTRL=ALARM is
valid for TCAM 3270 SDLC and
VTAM-supported terminals (except
interactive and batch logical
units); all other parameters for
CTRL are ignored. To be effective,
this operand must be specified on
the last (or only) map of a page
unless the CTRL operand of the
DFHBMS macro is being used to
override the corresponding operand
in the DFHMSD macro. If the CTRL
operand is specified in the DFHMDI
macro, it cannot be specified in
the DFHMSD macro.

PRINT
must be specified if the
printer is to be started; i
omitted, the data is sent to
the printer buffer but is not
printed. This operand is
ignored if the map set is used
with 3270 displays without the
Printer Adapter feature.

L40, L64%4, L80, HONEOM
are mutually exclusive options
that control the line length
on the printer. L40, L64, and
L80 force a carrier
return/line feed after 40, 64,
or 80 characters,
respectively. HONEOM causes
the default line printer
length to be used.

FREEKB
specifies that the keyboard
should be unlocked after this
map is written out. If
omitted, the keyboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible
alarm feature. For a VTAM
terminal ALARM signals BMS to
set the alarm flag in the
function management header;
this feature is not supported
by interactive and batch
logical units.

FRSET
indicates that the modified
data tags (MDTs) of all fields
currently in the 3270 buffer

are to be reset to a
not-modified condition (that
is, field reset) before any
map data is written to the
buffer. This allows the
DFHMDF ATTRB specification for
the requested map to control
the final status of any fields
written or rewritten in
response to a DFHBMS macro.

DATA=

specifies the format of the data as
seen by the application program.

FIELD
indicates that the data is
passed as contiguous fields in
the following format:

ILLIAldata...

LL is two bytes specifying the
length of the data as input
from the terminal (this field
is ignored in output
processing). A is a byte into
which the programmer may place
an attribute to override that
specified in the map used to
process this data (see
"Standard Attribute List and
Printer Control Characters
(DFHBMSCA),"™ later in this
chapter).

BLOCK
indicates that the data is
passed as a continuous stream
which is processed as line
segments of the length
specified in the map used to
process this data set. The
data is in the form that it
appears on the terminal; that
is, it contains data fields
and interspersed blanks
corresponding to any spaces
that are to appear between the
fields on output. The first
byte of each line is the
attribute byte; it is not
available for data.
EXTATT=YES cannot be used if
DATA=BLOCK is specified.

lAA Jdata field'space...

The data type associated with any
map depends on the DATA
specifications, or lack thereof, in
both the DFHMSD and DFHMDI macros:

1. A DATA operand in a DFHMDI
macro will always override that
in a DFHMSD macro.

2. If no DATA operand is coded in
the DFHMDI macro, the DATA
operand in the DFHMSD macro
will apply.

Chapter 4.3. Basic Mapping Support 153

‘3. If no DATA operand is coded in

either macro, DATA=FIELD is the
default.

EXTATT=

specifies whether the extended
attributes (COLOR, HILIGHT, PS, and
VALIDN) are supported.

NO
specifies that the extended
attributes are not supported;
the physical and symbolic
description maps will be the
same as those generated under
Version 1 Release 4. "NO" is
the default unless COLOR,
HILIGHT, PS, or VALIDN is
specified in the DFHMSD macro,
in which case EXTATT=MAPONLY
will be assumed. If the TERM
operand is specified and is
other than 3270, 3270-1,
3270-2, or ALL, EXTATT=MAPONLY
or EXTATT=YES will be invalid,
and the COLOR, HILIGHT, PS,
and VALIDN operands on the
DFHMSD, DFHMDI, and DFHMDF
macros will be invalid.

YES
specifies that the extended
attributes can be specified in
a map, and that they can be
modified dynamically. The
symbolic description map
(DSECT) will contain subfields
for the attributes, identified
by suffixes C (for COLOR), H
(for HILIGHT), P (for PS), and
V (for validation).

MAPONLY
specifies that the extended
attributes can be specified in
a map, but that the resulting
symbolic description map will
contain no fields for them,
and that it will be the same
as. one generated under Version
1, Release 4. This operand
can be used to add the
extended attributes to an
existing map without
recompiling the application
program.

HILIGHT=

154

specifies the default highlighting
attribute for all fields in all
maps in a map set. See the EXTATT
operand for device dependencies.

OFF
is the default and means that
no highlighting is used.

BLINK
specifies that the field is to
"blink™ at a set frequency.

REVERSE
specifies that the field is
displayed in "reverse video",

for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a field is
underlined.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

HTAB=tahl,tabl...

specifies one or more tab positions
for use with interactive and batch
logical units having horizontal
forms control.

LANG=

specifies the language in which the
application program referring to a

symbolic description map is written
and, hence, is applicable for only

a DFHMSD TYPE=DSECT macro.

ASM
indicates that the symbolic
description map is to be
referred to by an assembler
language program.

COBOL
indicates that the symbolic
description map is to be
referred to by a COBOL
program.

PLI
indicates that the symbolic
description map is to be
referred to by a PL/I progran.

RPG .
indicates that the symbolic
description map is to be
referred to by an RPGII
program. This parameter is
valid for CICS/DOS/VS only.

LDC=mnemonic

specifies the mnemonic to be used
by CICS to determine the logical
device code that is to be used for
a BMS output operation and
transmitted in the function
management header to the logical
unit if no LDC operand has been
specified on any previous BMS
output in the logical message.
This operand is used only for TCAM
and VTAM-supported 3600 terminals,
and batch logical units.

MODE=

IN
indicates an input map
generation.

CICS/VS Application Programmer's Reference Manual (Macro Level)

ouT
indicates an output map
generation.

INOUT

indicates that the map
definition is to be used for
both input and output mapping
operations.

Note: Input mapping is no
available for VTAM- supported 3600
terminals. However, INOUT may be
specified for map generation. The
map can then be used as a dummy
input map for input operations
using the DFHBMS TYPE=IN macro.

OBFMT=

specifies whether outboard
formatting is to be used. This
operand is available only for 3650
logical units. Refer to the
appropriate CICS 3650/3680 Guide
for details of 3650 logical units
and of outboard formatting.

YES
indicates that all maps within
this map set are eligible for
use in outboard formatting,
except those for which
OBFMT=NO is specified in the
DFHMDI macro.

indicates that no maps within
this map set are eligible for
use in outboard formatting,
except those for which
OBFMT=YES is specified in the
DFHMDI macro.

Specifies, for COBOL programs, that
the symbolic storage definitions of
the maps in the map set are to be
separate (that is, not.redefined)
areas. This operand is used when
the symbolic storage definitions
are copied into the WORKING-STORAGE
section of a program using the
command level interface and the
storage for the separate maps in
the map set is to be used
concurrently. (For information
about the command level interface,
see the appropriate CICS
Application Programmer's Reference
Manual (Command lLevel).

Specifies, for PL/] programs, that
the symbolic storage definitions
are to be declared as having the
AUTOMATIC storage class. If not
specified, the symbolic storage
definitions are declared as having
the BASED storage class.

If STORAGE=AUTO is specified,
BASE=name cannot be used. If
STORAGE=AUTO is specified and
TIOAPFX is not specified,
TIOAPFX=YES is assumed.

SUFFIX=n

specifies a one-character map set
suffix that overrides any suffix
implied by the TERM operand. A
message will indicate that the TERM
operand has been ignored. The user
should catalog the map set, with
this suffixed name, in the program
library, and ensure also that there
is no conflict with a generated
name of another version of the map.

The use of numeric suffixes would
PS= help prevent conflict.
specifies that programmed symbols

are to be used. see the EXTATT TERM=terminal type

operand for device dependencies.

BASE
specifies that only the basic
symbols are used.

indicates the type of output device
or logical unit associated with the
map set. The parameters that may
be coded after TERM= are given in
the left-hand column of the table

below.
psid
specifies a single EBCDIC TERM= Suffix
character or a hexadecimal
code on the form X'nn', that CRLP A
identifies the set of TAPE B
programmned symbols. ‘ DISK C
TWX D
If PS is specified when EXTATT=NO, 1050 E
a warning is issued and the option 2740 F
ignored. If PS is specified, but 2741 G
EXTATT is not, EXTATT=MAPONLY will 2770 I
be assumed. 2780 J
3780 K
STORAGE=AUTO 3270-1 (40-col display) L
3270-2 (80-col display) M
Specifies, for assembler language INTLU|3767|3770I|5SCS? P
programs, that separate maps within 2980 Q
a map set are to occupy separate 2980-4 R
storage, not to overlay one 3270 blank
another. 3601 U
36532)
3650UpP3 W

Chapter 4.3. Basic Mapping Support 155

3650/32704 X
BCHLU| 377083 Y
ALL blank

1 Use also for all interactive LUs,
the 3790 full function LU, and
SCS-printer LUs (3270 and 3290).

2 Use also for host conversational
(3653) LU.

2 Use also for interpreter LU.

4 Use also for host conversational
(3270 LU.

5 Use also for all batch and
batch data interchange LUs.

For TCAM-connected terminals (other
than 3270 or SNA devices), use
either CRLP or ALL; for
TCAM-connected 3270s or SNA
devices, select the appropriate
parameter in the normal way.

The application programmer who
specifies ALL in the TERM operand
must be certain that
device-dependent characters are not
included in the map set and must
ensure that format characteristics
such as page size are suitable for
all input/output operations (and
all terminals) in which the map set
will be applied. For example, some
terminals are limited to 480 bytes,
others to 1920 bytes; the 3604 is
limited to six lines of 40
characters each. MHWithin these
guidelines, use of ALL can offer
important advantages. Since an
assembly run is required for each
map generation, a specification of
ALL, indicating that one map is to
be used for multiple terminals, can
result in significant time and
storage savings.

However, better run-time
performance for maps used by single
terminal types will be achieved if
the terminal type (rather than ALL)
is specified in the TERM operand.
Alternatively, the BMS support for
device-dependent map sets can be
left ungenerated by specifying
NODDS in the BMS operand of the
DFHSIT system generation macro.
(See the appropriate CICS

Customization Guide for further
details.)

TICAPFX=
specifies whether BMS should
include a filler in the symbolic
TIOA description(s) to allow for
the unused TIOA prefix. If this
operand is coded, the same storage
address-may be used for TIOABAR and
the map base. !

YES
indicates that the filler
should be included in the
symbolic TIOA description(s).
This operand is ignored unless
TYPE=DSECT is coded.
TIOAPFX=YES is coded, all maps
within the map set have the
filler, except when TIOAPFX=NO
is coded on the DFHMDI macro.

is the default and indicates
that the filler is not to be
included. The filler may
still be included for a
specific map if TIOAPFX=YES is
coded on the DFHMDI macro.

Note: 1In previous versions of
CICS, it has not been valid to code
TIOAPFX=YES for an assembler
language application program. If
this operand was coded in this way,
CICS disregarded it and applied the
default specification (TIOAPFX=NO).
In CICS Version 1.4, it is valid to
code TIOAPFX=YES for an assembler
program: doing so will thus produce
a different object program under
CICS/VS 1.4 from that which would
be produced under earlier versions.

VALIDN=

MUSTFILL
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before
it has been filled, or to
transmit data from an
incomplete field, will raise
the inhibit input condition.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor
from an empty field will raise
the inhibit input condition.

See the EXTATT operand for device
dependencies.

VTAB=tabt ’tab] ee e
specifies one or more tab positions
for use with interactive and batch
logical units having vertical forms
control.

DEFINING A MAP (DFHMDI MACRO)

The DFHMDI macro is used to define a
single map. It defines the size of the
data to be mapped and its position
within the input or output. HWhen
defining more than one map within a map
set, the corresponding number of DFHMDI
macros must be used.

If the maps are for use in a COBOL
program, and STORAGE=AUTO has been

156 CICS/VS Application Programmer's Reference Manual (Macro Level)

specified in the DFHMSD macro, they must
be specified in descending size sequence
(size refers to the generated 01 level
COBOL data areas and not to the size of

the map on the screen).

The format of

the DFHMDI macro is shown in Figure 16
on page 158.

The operands of the DFHMDI macro are as
follows:

map

is the one- to seven-character name
of the map, to be specified in the
MAP operand of any DFHBMS macro
that refers to the map.

Map names within a map set, or
within multiple map sets that are
copied into one application
program, should be unique.

COLOR=

specifies the default color for all
fields in a map unless overridden
explicitly by the COLOR operand of
a DFHMDF macro. If this option is
specified when EXTATT=NO, a warning
will be issued and the option
ignored.

COLUMN=

specifies the column in a line at
which the map is to be placed, that
is, it establishes the left or
right map margin. The JUSTIFY
specification controls whether map
and page margin selection and
column counting are to be done with
reference to the left or right side
of the page. The columns between
the specified map margin and the
page margin are not available for
subsequent use on the page for any
lines included in the map.

number
is the column from the left or
right page margin where the
left or right map margin is to
be established.

NEXT
indicates that the left or
right map margin is to be
placed in the next available
column from the left or right
on the current line.

indicates that the left or
right map margin is to be
established in the same column
as the last map used that
specified COLUMN=number and
the same JUSTIFY parameters as
this macro.

Refer to the section "Map
Positioning™ on page 170 for a more
detailed discussion.

CTRL=

Chap

is used to specify device
characteristics related to
terminals of the 3270 Information
Display System. CTRL=ALARM is
valid for TCAM SNA 3270 SDLC and
VTAM~supported terminals (except
interactive and batch logical
units); all other parameters for
CTRL are ignored. To be effective,
this operand must be specified on
the last (or only) map of a page
unless the CTRL operand of the
DFHBMS macro is being used to
override the corresponding operand
in the DFHMSD macro. If the CTRL
operand is specified in the DFHMDI
macro, it cannot be specified in
the DFHMSD macro.

PRINT
must be specified if the
printer is to be started; if
omitted, the data is sent to
the printer buffer but is
printed. This operand is
ignored if the BMS output
request is directed to a 3270
display without the Printer
Adapter feature.

Lé4, L80, HONEOM
are mutually exclusive options
that control the line length

L4O0,

on the printer. L1640, L6%, and
L80 force a carrier
return/line feed after 40, 64,

or 80 characters,
respectively. HONEOM causes
the default line printer
length to be used.

FREEKB
specifies that the keyboard
should be unlocked after this
map is written out.
omitted, the keyboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible
alarm feature. For a VTAM
terminal, ALARM signals BMS to
set the alarm flag in the
function management header;
this feature is not applicable
to interactive and batch
logical units.

FRSET
indicates that the modified
data tags (MDTs) of all fields
currently in the 3270 buffer
are to be reset to a
not-modified condition (that
is, field reset) before any
map data is written to the
buffer. This allows the
DFHMDF ATTRB specification for
the requested map to control
the final status of any fields

ter 6.3. Basic Mapping Support 157

DFHMDI {,COLOR={DEFAULT|BLUE|RED|

map
YELLOW[NEUTRAL}]

DATA={FIELD|BLOCK}1]
EXTATT={NO|YES |MAPONLY}]
HEADER=YES

JUSTIFY=(L{LEFT|RIGHT}1L
LINE= {number |NEXT|SAME}]
OBFMT={YES|NQ}]
PS={BASE|psid}]
SIZE=(line,column)l
TIOAPFX={YES|NO21
TRAILER=YES]

L,
L,
L,
[,
[,
[,
L,
[,
[,
L,
[,
[,
L,
L,

COLUMN={number | NEXT|SAME}]
CTRL=C[PRINTIL, {L40|L64|L80| HONEOM}]
[,FREEKBIL,ALARMIL,FRSET]1)]

HILIGHT={QFF|BLINK|REVERSE|UNDERLINE}1

VALIDN=CIMUSTFILLIL,MUSTENTER])]

PINK|GREEN| TURQUOISE|

» {FIRST|LASTID]

Figure 16.. DFHMDI Macro (Define a Map)

written or rewritten in
response to a DFHBMS macro.

DATA=
specifies the format of the data
seen by the application program.

FIELD
indicates that the data is
passed as contiguous fields
the following format:

lLLlAldata...

LL is two bytes specifying the
length of the data as input
from the terminal (this field
is ignored in output
processing). A is a byte into
which the programmer may place
an attribute to override that
specified in the map used to
process this data. See
rStandard Attribute List and
Printer™ on page 181.

BLOCK
indicates that the data is
passed as a continuous stream
which is processed as line
segments of the length
specified in the map used to
process this data set. The
data is in the form that it
appears on the terminal; that
is, it contains data fields
and interspersed blanks
corresponding to any spaces
that are to appear between the
fields on output. The first
byte of each line is the
attribute byte; it is not
available for data.

| A ldata fieldlspace...

as

158 CICS/VS Application Programmer's Refere

A DATA specification in a
DFHMDI macro overrides a
specification in a DFHMSD
macro.

DATA

EXTATT=
specifies whether the extended
attributes (COLOR, HILIGHT, PS,
VALIDN) are supported.

NO

and

specifies that the extended
attributes are not supported;
the physical and symbolic
description maps will be the
same as those generated under
Version 1 Release 4. T"NO" is
the default unless COLOR,
HILIGHT, PS, or VALIDN is
specified in the DFHMSD macro,
in which case EXTATT=MAPONLY
will be assumed. If the TERM
operand is specified and is
other than 3270, 3270-1,
3270-2, or ALL, EXTATT=MAPONLY
or EXTATT=YES will be invalid,
and the COLOR, HILIGHT, PS,
and VALIDN operands on the
DFHMSD, DFHMDI, and DFHMDF
macros will be invalid.

YES
specifies that the extended
attributes can be specified in
a map, and that they can be
modified dynamically. The
symbolic description map
(DSECT) will contain subfields
for the attributes, identified
by suffixes C (for COLOR), H
(for HILIGHT), P (for PS), and
V (for validation).

MAPONLY
specifies that the extended
attributes can be specified in
a map, but that the resulting
symbolic description map will
contain no fields for them,

nce Manual (Macro Level)

and that it will be the same
as one generated under Version
l, Release 4. This operand
can be used to add the
extended attributes to an
existing map without
recompiling the application
program.

HEADER=YES

allows this map to be used during
PAGEBLD overflow without
terminating the overflow condition.
See "PAGEBLD Overflow Processing™
on page 173. This operand may be
specified for more than one map in
a map set.

HILIGHT=

specifies the default highlighting
attribute for all fields in a map.

OFF
is the default and means that
no highlighting is used.

BLINK
specifies that the field is to
"blink"™ at a set frequency.

REVERSE
specifies that the field is
displaved in Yreverse video",
for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a field is
underlined.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored.

JUSTIFY=

describes the margins on a page in
which a map is to be formatted.

LEFT
indicates that the map is to
be positioned starting at the
specified column from the left
margin on the specified line.

RIGHT
indicates that the map is to
be positioned starting at the
specified column from the
Ijght margin on the specified
ine.

FIRST
indicates that the map is to
be positioned as the first map
on a new page. Any partially
formatted page from preceding
DFHBMS requests is considered
to be complete. This operand
can be specified for only one
map per page.

LAST
indicates that the map is to
be positioned at the bottom of
the current page. . This
operand can be specified for
multiple maps to be placed on
one page. However, maps other
than the first map for which
it is specified must be able
to be positioned horizontally
without requiring that more
lines be used.

LEFT and RIGHT are mutually
exclusive, as are FIRST and LAST.
If neither LEFT nor RIGHT is
specified, LEFT is assumed. If
neither FIRST nor LAST is
specified, the data is mapped at
the next available position as
determined by other parameters of
the map definition and the current
mapping operation. FIRST and LAST
are ignored unless PAGEBLD is
specified, since otherwise only one
map is placed on each page.

Refer to the section ™Map
Positioning™ on page 170 for a more
detailed discussion.

specifies the starting line on a
page in which data for a map is to
be formatted.

numbenr
is a value from 1 to 240,
indicating a starting line
number. A request to map data
on a line and column that has
been formatted in response to
a preceding request causes the
current page to be treated as
though complete. The new data
is formatted at the requested
line and column on a new page.

NEXT

indicates that formatting of
data is to begin on the next
available completely empty
line. If LINE=NEXT is
specified in the DFHMDI macro,
it is ignored for input
operations and LINE=1l is
assumed.

SAME
indicates that formatting of
data is to begin on the same
line as that used for a
preceding DFHBMS request. 1If
the data does not fit on the
same line, it is placed on the
next available completely
empty line.

Refer to the section ™Map
Positioning” on page 170 for a more
detailed discussion.

Chapter 4.3. Basic Mapping Support 159

OBFMT=

PS

specifies whether outboard
formatting is to be used. This
operand is available only for 3650
logical units. Refer to the
appropriate CICS IBM 3650/3680
Guide for details of 3650 logical
units and of outboard formatting.

If OBFMT is not coded in the DFHMDI
macro, the OBFMT specification in
the DFHMSD macro is used.

YES
indicates that this map is to
be used with outboard
formatting.

NO

indicates that this map is not
to be used with outboard
formatting.

specifies that programmed symbols
are to be used.

BASE
specifies that only the basic
symbols are used.

psid
specifies a single EBCDIC
character or a hexadecimal
code on the form X'nn', that
identifies the set of
programmed symbols.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored.

SIZE=

gives the dimensions of a map in
terms of length and width.

line
is a value from 1 to 240,
indicating the length of a map
as a number of lines.

column
is a value from 1 to 240,
indicating the width of a map
as a number of characters per
line. Space for the attribute
byte should be included in the
column specification.

The SIZE operand is required in the
following cases:

. A P0OS=(line,column)
specification is given in a
DFHMDF macro defining a
specific field within this map.

. This map is to be referred to
in a DFHBMS TYPE=PAGEBLD macro.

U This map is to be used when
referring to input data from
other than a 3270 terminal in a

DFHBMS TYPE=IN or DFHBMS
TYPE=MAP macro.

TIOAPFX=

specifies whether or not BMS should
include a filler in the symbolic
TIOA description to allow for the
unused TIOA prefix. If this
operand is coded, the same storage
address may be used for TIOABAR and
the map base. If this operand is
not coded, the TIOAPFX
specification derived from the
DFHMSD macro is used.

YES
indicates that the filler
should be included in the
symbolic TIOA description for
this map. This operand is
ignored unless TYPE=DSECT is
coded on the DFHMSD macro.

NO
indicates the filler is not to
be included for this map.

Note: In previous versions of
CICS, it has not been valid to code
TIOAPFX=YES for an assembler
language application program. If
this operand was coded in this way,
CICS disregarded it and applied the
default specification (TIOAPFX=NQO).
In CICS In CICS Version 1.4, it is
valid to code TIOAPFX=YES for an
assembler program: doing so will
thus produce a different object
program under CICS/VS 1.4 from that
which would be produced under
earlier versions.

TRAILER=YES

allows this map to be used during
PAGEBLD overflow without
terminating the overflow condition
(see "PAGEBLD Overflow Processing,®
later in this chapter). This
operand may be specified for more
than one map in a map set. If a
trailer map is used other than in
the overflow environment, the space
normally reserved for overflow
trailer maps is not reserved while
mapping the trailer map.

VALIDN=

MUSTFILL .
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before
it has been filled, or to
transmit data from an
incomplete field, will raise
the inhibit input condition.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor
from an empty field will raise
the inhibit input condition.

160 CICS/VS Application Programmer's Reference Manual (Macro Level)

DEFINING A FIELD (DFHMDF MACRO)

The DFHMDF macro is used to define one
field in a map. One DFHMDF macro is
required for each field, giving
information such as symbolic field name,
field position, field length, attribute
byte (for 3270 terminals), initial
constant data, justification of input,
and COBOL or PL/I data picture.

The maximum number of named fields that
can be defined for a COBOL or PL/I
input/output map is 1023.

The format of the macro is shown in
Figure 17 on page 162.

The operands of the DFHMDF macro are as
follows:

fld
is the 1 through 7-character name
of the field, used as a symbolic
reference to the field by the
application program.

Field names within a map, or within
multiple maps that are copied into
one application program, should be
unique.

Although specification of a field
name is not required for every
field within a map, a field name
must be specified for at least one
field of any map to be compiled
under COBOL or PL/I. All fields
within a group must have names.

If no name is specified for a
field, an application program
cannot access the field map to
change its attributes or alter its
contents. For an output map,
omitting the field name may be
appropriate when the INITIAL
operand is used to specify field
contents. If a field name is
specified and the map that includes
the field is used in a mapping
operation, any data supplied by the
user overlays data supplied by
initialization (unless DATA=NO is
specified or assumed by default).

POS=
is used to specify the individually
addressable character location in a
map at which the attribute byte
that precedes this field is
positioned. Specification of the
DFHMDF macro must be sequenced by
the P0S operand except for output
mapping operations using
DATA=FIELD.

The P0OS operand defines the
location of fields in a map. The
location of data on the output
medium is dependent on DFHMDI macro
parameters as well.

For each field definition (DFHMDF
macro), the first position is
reserved for an attribute byte.
When supplying data for input
mapping from non-3270 devices, the
actual input data must allow space
for this attribute byte. Input
data must not start in column 1 but
may start in column 2.

The P0OS operand always contains the
location of the first position in a
field, which is normally the
attribute byte when communicating
with the 3270. For the second and
subsequent fields of a group, the
POS operand points to an assumed
attribute-byte position, ahead of
the start of the data, even though
no actual attribute byte is
necessary. If the fields follow on
immediately from one another, the
POS operand should point to the
last character position in the
previous field in the group.

When a position number is coded
which represents the last character
position in the 3270, then two
special rules apply:

. The IC attribute should not be
coded on that DFHMDF macro.
The cursor may be set to
location zero by using the
cursor operand of the DFHBMS
macro.

. If the field is to be used in
an output mapping operation
with the DATA=0ONLY
specification, an attribute’
byte for that field must be
supplied in the TIOA by the
application program.

number
is an absolute displacement
(relative to zero) from the
beginning of the map being
defined.

(line,column)
are line and column
specifications (relative to
one) within the map being
defined.

ATTRB=
is applicable only to fields to be
displaved on a 3270 and specifies
device~dependent characteristics
and attributes, such as the
capability of a field to receive
data or the intensity to be used
when the field is output. If the
ATTRB operand is specified within a
group of fields, it must be
specified in the first field entry.
A group of fields appears as one
field to the 3270. Therefore, the
ATTRB specification refers to all
of the fields in a group as one
field rather than as individual

Chapter 4.3. Basic Mapping Support 161

[f1dl |DFHMDF

»GRPNAME=group—namel

LENGTH=number1l
OCCURS=number]l
,PICIN='va1ue']
PICOUT="value']
PS= (BASEE psid}1l
VALIDN=(

POS={number|(line,column)}]

ATTRB= ([(ASKIP]PROTIUNPROT[NUM1}1, {BRT|NORM]DRK}1
COLOR= {DEgsaegl%E&él;gg{gIﬂKlGREENITURQUOISEI

’ YELLOW[NEUTRAL)]

HILIGHT= {OFFIBLINKIREVERSEIUNDERLINE}]
INITIAL="character data'

[,

L,

[

%

L, | XINIT=hexadecimal datal
E »JUSTIFY=CL{LEFT|RIGHT}IL, {BLANK|ZERO}1)1]
[,

[

L,

[,

L[,

MUSTFILLIL,MUSTENTER])]

Figure 17.

fields. (Refer to the publication
An _Introduction t BM_ 327
Information Display sttem for a
full explanation of the effects of
the attribute byte settings.)

This operand applies only to 3270
data stream devices; it will be
ignored for other devices,
including the SCS Printer lLogical
Unit. It will also be ignored if
PROPT=NLEOM is specified on the
DFHBMS TYPE=PAGEBLD macro for
transmission to a 3270 printer. In
particular, ATTRB=DRK should not be
used as a method of protecting
secure data on output. It could,
however, be used for making an
input field non-display for secure
entry of a password from a screen.

For input map fields, DET and NUM
are the only valid options; all
others are ignored.

ASKIP
indicates that data cannot be
kevyed into the field and
causes the cursor (current
location pointer) to
automatically skip over the
field.

PROT
indicates that data cannot be
keyed into the field.

If data is to be copied from
one device to another attached
to the same 3270 control unit,
the first position (address 0)
in the buffer of the device to
be copied from must not
contain an attribute byte for
a protected field. MWhen
preparing maps for 3270s,
ensure that the first map of
any page does not contain a
protected field starting at
position 0. Refer to the

publication An_Introduction_to

DFHMDF Macro (Define a Field)

he IBM 3270 Information
Display System for further

information.

UNPROT

NUM

BRT

NORM

DRK

DET

indicates that data can be
keyed into the field.

ensures that the data entry
keyboard is set to numeric
shift for this field unless
the operator presses the alpha
shift key, and prevents entry
of nonnumeric data if the
Keyboard Numeric Lock feature
is installed.

specifies that a
high-intensity display of the
field is required. By virtue
of the 3270 attribute
character bit assignments, a
field specified as BRT is also
potentially detectable.
However, for the field to be
recognized as detectable by
BMS, DET must also be
specified.

specifies that the field
intensity is to be normal.

specifies that the field is
nonprint/nondisplay. DRK
cannot be specified if DET is
specified.

specifies that the field is
potentially detectable.

The first character of a 3270
detectable field must be a
wew, nynw, ng", or blank. If
the first character is "&" or
blank, the field is an
attention field; if the first

162 CICS/VS Application Programmer's Reference Manual (Macro Level)

IC

character is "t" or ">", the
field is a selection field.
(See the publication An
Introduction to_the IBM 3270
Information Display System for
further details of detectable
fields.)

A field for which BRT is
specified is potentially
detectable to the 3270, by
virtue of the 3270 attribute
character bit assignments, but
is not recognized as such by
BMS unless DET is also
specified.

DET and DRK are mutually
exclusive options.

If DET is specified for an
input field, only one data
byte is reserved for each
input field. This byte is set
to X'00', and remains
unchanged if the field is not
selected. If the field is
selected the byte is set to
X'FF',

No other data is supplied,
even if the field is a
selection field and the ENTER
key has been pressed.

If the data in a detectable
field is required, all of the

following conditions must be
fulfilled:

1. The field must begin with
either a "M ">¥W, o MEN
and DET must be specified
in the output map.

2. The ENTER key (or some
other attention key) must
be pressed after the field
has been selected,
although for detectable
fields beginning with "&"
the ENTER key is not
required.

3. DET must not be specified
for the field in the input
map. DET must, however,
be specified in the output
map.

indicates that the cursor is
to be placed in the first
position of this field. The
IC attribute for the last
field for which it is
specified in a map is the one
that takes effect. If not
specified for any fields in a
map, the default location is
zero. Specifying IC with
ASKIP or PROT causes the
cursor to be placed in an
unkeyable field.

This option may be overridden
by specifying the CURSOR
operand for the BMS request
that causes the write
operation. See the
descriptions of the DFHBMS
TYPE=PAGEBLD, mEXTBLD, and OUT
macros, later in this chapter.

FSET
specifies that the modified
data tag (MDT) for this field
should be set when the field
is sent to a terminal.

Specification of FSET causes
the 3270 to treat the field as
though it has been modified.
On a subsequent read from the
terminal, this field is read,
whether or not it has been
modified. The MDT remains set
until the field is rewritten
without ATTRB=FSET or until an
output mapping request (for
example, DFHMSD CTRL=FRSET or
DFHBMS CTRL=FRSET) causes the
MDT to be reset.

Either of two sets of defaults may
apply when a field to be displayed
on a 3270 is being defined but net
all parameters are specified. If
no ATTRB parameters are specified,
ASKIP and NORM are assumed. If any
parameter is specified, UNPROT and
NORM are assumed for that field
unless overridden by a specified
parameter.

COLOR=

specifies the color to be used. If
this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

GRPNAME=group name

is the name used to generate
symbolic storage definitions and to
combine specific fields under one
group name. The group name has a
maximum length of seven characters.
The same group name must be
specified for each field that is to
belong to the group.

If this operand is specified, the
OCCURS operand cannot be specified.

The fields in a group must follow
on; there can be gaps between them,
but not other fields from outside
the group. A field name must be
specified for every field that
belongs to the group, and the POS
operand must be also specified to
ensure the fields follow each
other. All the DFHMDF macros
defining the fields of a group must
be placed together, and in the

Chapter 6.3. Basic Mapping Support 163

correct order (upward numeric order
of the POS operand).

For example, the first 20 columns
of the first six lines of a map can
be defined as a group of six
fields, so long as the remaining
columns on the first five lines are
not defined as fields.

The ATTRB= operand specified on the
first field of the group applies to
all of the fields within the group.

Appendix B contains examples
showing, amongst other things, the
effect of the GRPNAME operand.

HILIGHT=

specifies the type of highlighting
to be used.

is the default and means that
no highlighting is used.

BLINK
specifies that the field is to
hlink™ at a set frequency.

REVERSE
specifies that the field is
displayed in "reverse video™,
for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a field is
underlined.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

INITIAL='character

data' | XINIT=hexadecimal data

is used to specify constant or
default data for an output field.
The INITIAL operand is used to
specify data in character form; the
XINIT operand is used to specify
data in hexadecimal form. INITIAL
and XINIT are mutually exclusive.

For fields with the DET attribute,
initial data that begins with a
blank character, m"&", ">W", or MmMi"
should be supplied.

The number of characters that c¢an
be specified in the INITIAL operand
is restricted to the continuation
limitation of the assembler to be
used or to the value specified in
the LENGTH operand (whichever is
the smaller).

Hexadecimal data is written as an
even number of hexadecimal digits,
for example, XINIT=ClC2. If the

number of valid characters is
smaller than the field length, the
data will be padded on the right
with blanks. For example,
XINIT=C1C2 might result in an
initial field of 'AB ',

If hexadecimal data is specified
that corresponds with line or
format control characters, the
results will be unpredictable. The
XINIT operand should therefore be
used with care.

JUSTIFY=

indicates the field justifications
for input operations. This operand
is ignored for TCAM-supported 3600
and 3790, and for VTAM-supported
3600, 3650, and 3790 terminals, as
input mapping is not available.

LEFT
specifies that data in the
input field is left-justified.

RIGHT
specifies that data in the
input field is
right-justified.

BLANK
specifies that blanks are to
be inserted in any unfilled
positions in an input field.

ZERO
specifies that zeros are to be
inserted in any unfilled
positions in an input field.

LEFT and RIGHT are mutually
exclusive, as are BLANK and ZERO.
If certain parameters are specified
but others are not, assumptions are
made as follows:

Specified Assumed
LEFT BLANK
RIGHT ZERO
BLANK LEFT
ZERO RIGHT

If JUSTIFY is omitted, but the NUM
attribute is specified, RIGHT and
ZERO are assumed. If JUSTIFY is
omitted, but attributes other than
NUM are specified, LEFT and BLANK
are assumed.

Note: 1If a field is initialized by
an output map or contains data from
any other source, data that is
keyed as input will only overwrite
equivalent length existing data;
surplus existing data will remain
in the field and could cause
unexpected interpretation of the
new data.

LENGTH=numbenr

indicates the length (from 1 to 256
bytes) of this field. This

166 CICS/VS Application Programmer's Reference Manual (Macro Level)

specified length should be the
maximum length required for
application-program data to be
entered into the field; it should
not include the one-byte attribute
indicator appended to the field by
CICS for use in subsequent
processing. The sum of the lengths
of the fields within a group must
not exceed 256 bytes. LENGTH can
be omitted if PICIN or PICOUT is
specified but is required
otherwise.

The map dimensions specified in the
SIZE operand of the DFHMDI macro
defining a map may be smaller than
the actual page size or screen size
as defined for the terminal. The
length specification in a DFHMDF
macro cannot cause the map-defined
boundary on the same line to be
exceeded. That is, the length
declared for a field cannot exceed
the number of positions available
from the starting position of the
field to the final position of the
map-defined line. For example,
given an 80-position page line, the
following map definition and field
definition are valid:

DFHMDI SIZE=(2,40),...
DFHMDF P0S=22,LENGTH=17,...

but the following definitions are
not acceptable:

DFHMDI SIZE=(2,40),...
DFHMDF P0S=22,LENGTH=30,...

OCCURS=number

PICIN

specifies that the indicated number
of entries for the field are to be
generated in a map and that the map
definition is to be generated in
such a way that the fields are
addressable as entries in a matrix
or an array. This permits several
data fields to be addressed by the
same name (subscripted, of course)
without generating a unique name
for each field. OCCURS and GRPNAME
are mutually exclusive; that is,
OCCURS cannot be used when fields
have been defined under a group
name. If this operand is omitted,
a value of 1 is assumed.

Appendix B contains examples
showing, amongst other things, the
effect of the OCCURS operand.

='value'

specifies a picture to be applied
to an input field in an IN or INOUT
map; this picture serves as an
editing specification which is
passed to the application progran,
thus permitting the user to exploit
the editing capabilities of COBOL
or PL/I. The PICIN operand is not
valid for assembler programs. BMS
checks "value™ to ascertain that

the specified characters are valid
picture specification characters
for the language of the map.
However, no validity checking of
the input data is performed by BMS
or the high-level language when the
map is used, so any desired
checking must be performed by the
application program. The length of
the data associated with "value™
should be the same as that
specified in the LENGTH operand if
LENGTH is specified. If both PICIN
and PICOUT (see below) are used, an
error message is produced if their
calculated lengths do not agree;
the shorter of the two lengths is
used. If PICIN or PICOUT is not
coded for the field definition, a
character definition of the field
is automatically generated
regardless of other operands that
are coded, such as ATTRB=NUM,

Note: AP SV X9 / are the valid
picture values for COBOL maps.

As an example, assume the following
map definition is created for
reference by a COBOL application
program:

MAPX DFHMSD TYPE=DSECT
» LANG=COBOL
»MODE=INOUT

MAP DFHMDI LINE=1,COLUMN=1
»SIZE=(1,80)

Fl DFHMDF PO0S5=0, LENGTH=30

F2 DFHMDF PO0S=60,LENGTH=10
,PICOUT="1$$4$,$$0.00"

F3 DFHMDF PO0S=60,LENGTH=6
»PICIN='9999Vv99"
»PICOUT='Z2Z9.99"

DFHMSD TYPE=FINAL -

The following DSECT is generated:

01 MAPI
F1L COMP PIC S9(4).

02 F1A PICTURE X,

02 FILLER REDEFINES F1A.
03 FIF PICTURE X.

02 Fll PIC X(30).

02 FILLER PIC X.

02 F2L COMP PIC 59(4).

02 F2A PICTURE X.

02 FILLER REDEFINES FZA.
03 F2F PICTURE X

02 F21 PIC X(lO)

02 FILLER PIC X

02 F3L COMP PIC S9(4).
02 F3A PICTURE X.

02 FILLER REDEFINES F3A.
03 F3F PICTURE X.

02 F3I PIC 9999Vv99.

02 FILLER PIC X.
01 MAPO REDEFINES MAPI.
02 FILLER PICTURE X(3).
02 Fl0 PIC X(30)
02 FILLER PIC X
02 FILLER PICTURE X(3).
02 F20 PIC $$6,$$0.00.
02 FILLER PIC X.
02 FILLER PICTURE X(3).

Chapter 6.3. Basic Mapping Support 165

62 F30 PIC ZZ9.99.
02 FILLER PIC X.
PICOUT='value'

is similar to PICIN, except that a
picture to be applied to an output
field in the OUT or INOUT map is
generated.

Like PICIN, PICOUT is not valid for
assembler programs.

specifies the programmed symbol set
}9 ?5 used for the display of the
ield.

BASE
specifies that only the basic
symbols are used.

psid
specifies a single EBCDIC
character or a hexadecimal
code on the form X'nn', that
identifies the set of
programmed symbols.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

VALIDN=

MUSTFILL
specifies that the field must
be filled completely with.
data. An attempt to move the
cursor from the field before
it has been filled, or to
transmit data from an
incomplete field, will raise
the inhibit input condition.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor
from an empty field will raise
the inhibit input condition.

I/0 OPERATIONS USING BMS MACROS

Input and output operations using the
facilities of BMS are requested by
issuing DFHBMS macros. Parameters
provided by the application program
indicate whether an input or an output
operation is needed, the name of the map
to be used by BMS, and other information
to control the mapping function.

Control is passed to BMS, which performs
any required input/output operations
through terminal control.

Initial terminal input, which causes a
task to be initiated, is stored in the
initial TIOA of the task as a
native-mode data stream. The initial
input data can be mapped into a

particular format by issuing a DFHBMS
TYPE=MAP macro. The format of this
initial input data must correspond to
that of the requested map. Input data
to be mapped from a 3270 must contain
3270 device~dependent code (in
particular, the data stream must contain
an SBA). Similarly, the DFHBMS TYPE=MAP
macro can be used to map further input
data, obtained by means of a terminal
gontr:l READ request, into a particular
ormat.

Alternatively, the DFHBMS TYPE=IN macro
can be issued; this macro causes a
terminal control READ/WAIT operation to
occur, and the resulting terminal input
is mapped into a particular format. The
data returned from an input mapping
operation is in TIOA format. The
address of the TIOA containing the
mapped data is placed in TCTTEDA for a
TYPE=IN operation; for a TYPE=MAP
operation, or an output operation, the
address will be placed in the location
(TCTTEDA or TCAMSIOA) used to specify
the input data area. (See the section,
"Addressing Input/Qutput Areas," below,
for de?ails of specifying input data
areas.

For an output mapping operation, if data
is to be passed from the TIOA of an
application program, the application
program must have obtained, through
storage control, a TIOA large enough to
contain the symbolic storage definition
of the map being used. Any fields for
which data is not to be passed to the
mapping operation must be set to nulls
(X'00'); this is best achieved through
use of the INITIMG=00 operand of the
DFHSC TYPE=GETMAIN macro. The first
position of a field to be sent must not
contain a null; if it does, the field
will be ignored.

Maps are defined in a map set, which
permits the formatting of a page of
output using one or more of the maps in
the map set. If the map set has been
placed in the CICS program library, the
user should specify MAPSET=map-set—-name
and MAP=map—-name in any DFHBMS macro
requesting an operation in which the map
is required. If preferred, the user may
place the seven—-character name of the
map set at TCAMSMSN and the name of the
map at TCABMSMN; the MAPSET=YES and
MAP=YES operands inform BMS that the
names have been supplied in this way.

Implied READ/WRITE

DFHBMS TYPE=IN or TYPE=0UT macros result
in a terminal control READ or WRITE,
respectively. Therefore, the user does
not need to code any terminal control
(DFHTC) macros.

However, nothing prevents the user from
intermingling native mode and BMS
operations. A DFHBMS TYPE=MAP macro can

166 CICS/VS Application Programmer's Reference Manual (Macro Level)

be used to format a native mode input
TIOA. If a MAP operation is requested
for input from an unformatted 3270
buffer, mapping is not performed and the
unformatted native mode TIOA is returned
to the application program.

It is nevertheless possible to use
DFHBMS TYPE=MAP for the TIOA containing
a transaction-initiating data strean.
All that is necessary to do so is to
iorﬂat the screen with the preceding
ask.

Addressing Input/output Areas

Before a task issues a DFHBMS TYPE=MAP,
or any BMS output macro, the address of
the data being passed must be set up in
either TCTTEDA or TCAMSIOA. The rules

for deciding which area to use are:

. If the task is not
terminal-oriented, the address of
the TIOA-like area being used must
be put in TCAMSIOA. TCTTEDA cannot
$8T¥§ferenced as the task has no

J If the task is terminal-oriented,
but a TIOA is not being used, the
address of the TIOA-like area
containing the user data must be put
into TCAMSIOA and TCTTEDA must be
filled with binary zeros.

° If the task is terminal-oriented and
the data is in a TIOA, the address
of the TIOA may be put into either
TCTTEDA or TCAMSIOA. If the address
is put into TCAMSIOA, TCTTEDA must
be filled with binary zeros. If the
address is put into both TCTTEDA and
TCAESIOA, the address in TCTTEDA is
used.

TCTTEDA is altered by BMS; the user must
not assume that its contents are
unchanged.

A BMS input operation places the data
into a TIOA, and the address of the TIOA
is returned in TCTTEDA.

Terminal-oriented tasks need not use
actual TIOAs. Any task may pass data to
BMS in any portion of dynamically
acquired storage which looks like a TIOA
in all respects except two:

. The storage class need not be
terminal.

. The storage chain address need not
refer to a TCTTE or other terminal
storage.

Non-Terminal-Oriented Tasks

These tasks do not have a TIOA or a
TCTTE; therefore such tasks cannot issue
any BMS macros that use information in
these areas. They can issue only DFHBMS
TYPE=ROUTE, DFHBMS TYPE=PAGEBLD with a
disposition of STORE or RETURN, and
DFHBMS TYPE=TEXTBLD with a disposition
of STORE or RETURN.

Technigue for Setting TCTTEDA to Binary
Zeros in PL/I

The NULL built-in function cannot be
used to set TCTTEDA to binary zeros
because this places hexadecimal 'FF' in
the high-order byte of the address.
Insgead, the following statement can be
used.

UNSPECC(TCTTEDA)=32'0"B;

DFHBMS Macros

BMS macros are provided to enable the
application programmer to:

] Map data that is already in a TIOA -
(without any terminal I/0 taking
place) (DFHBMS TYPE=MAP)

L Read in and map data from a terminal
(DFHBMS TYPE=IN)

. Cumulatively build one or more pages
of output data using maps (DFHBMS
TYPE=PAGEBLD)

L Cumulatively build one or more pages
of output data without using maps
(DFHBMS TYPE=TEXTBLD)

° Terminate the accumulation of output
data that has been logically
combined and write it to an output
device (DFHBMS TYPE=PAGEOUT)

. Write data (without accumulation) to
an output device (DFHBMS TYPE=0UT)

] Discontinue the process of building
a logical message (DFHBMS
TYPE=PURGE)

U Define the terminal(s) or
operator(s) that are to receive an
output message (DFHBMS TYPE=ROUTE)

. Check the response to a BMS request
(DFHBMS TYPE=CHECK).

In the sections that follow, the syntax
of each type of DFHBMS macro is shown,
and the use of the macro is explained.
Parameters of the TYPE= operand are
discussed separately under each macro.
Descriptions of all other operands for
the DFHBMS macros are gathered into a
single section, arranged in alphabetical
order, at the end of the chapter.

Chapter 4.3. Basic Mapping Support 167

0ufput Operations

There are a variety of ways in which the
various DFHBMS macros can be used, and
combined, for output operations.

The simplest case is DFHBMS TYPE=0UT
(without PAGEBLD or TEXTBLD). This
macro results in a simple output
operation similar to that resulting from
a DFHTC TYPE=WRITE macro, but with a
mapping operation probably, but not
necessarily, included.

When an application programmer wishes to
output data which may occupy more than
one device output buffer he can build a
single logical message using a series of
DFHBMS TYPE=PAGEBLD macros (if he wants
mapping to be included) or DFHBMS
TYPE=TEXTBLD (if mapping is not
required). HWhen the logical message is
complete, he terminates the process of
accumulation and causes physical output
to occur by issuing a DFHBMS
TYPE=PAGEOUT macro.

The DFHBMS TYPE=ROUTE macro does not
itself cause any output operation to
occur; it defines the destination for
ensuing BMS output macros. The effect
of a ROUTE macro should be terminated by
a PAGEOUT macro before another ROUTE
macro is issued.

Output operations that do not send
user-supplied data (TYPE=PAGEBLD,
DATA=NO or TYPE=0UT, DATA=N0) do not
require TIOAs.

UT MAPPIN ITHO I/0 (TYPE=

To request that data already in an input
TIOA is mapped according to a specified
map.

DFHBMS TYPE=(MAPL[,SAVE])
[,MAP={map-name|YES}1]
[,MAPADR={symb~addr|YES}]
[,MAPSET={mapset-name|YES}1|
[,MSETADR={symb-addr|YES}]
[,MAPFAIL=symb-addr]

[, ERROR=symb-addr]
[, INVMPSZ=symb-addr]
[,NORESP=symb~addrl

TYPE=MAP
specifies an input mapping
operation without any associated
terminal I/0 operation.

The application program must have
placed the address of an input TIOA

containing data to be mapped into
TCTTEDA or TCAMSIOA. The data in
the TIOA is positioned into a new
TIOA using the map specified in the
MAP operand of the DFHBMS macro
instruction, but no terminal 1I/0
operation occurs. An example of
such a TIOA is the initial TIOA
given to a transaction upon
entering a transaction code. If
data is included with the
transaction code, the screen must
have been formatted previously by
another transaction, or the data is
not mapped. The address of the new
TIOA is returned to the application
program in the location in which
the original data area was
specified (TCTTEDA or TCAMSIOA).

The following types of data are not
mapped, but are left in the TIOA

unaltered.
. Data from TCAM-supported 3600
or 3790

. Data from VTAM-supported 3600
or 3650 (except 3650 host
conversation (3270) logical
unit)

. Data from 3790

L Word processing data streams,
that is, data received from a
word processing medium type 1,
2, 3, or 4,

SAVE
When used with MAP, SAVE specifies
that the user-supplied data area
addressed by TCTTEDA or TCAMSIOA is
not to be altered, and that a new
TIOA is to be acquired for the
operation. The address of the new
TIOA is returned to the application
program in the location in which
the original data area was
specified (TCTTEDA or TCAMSIOA).

The use of the SAVE operand merely
stops CICS overwriting a data area
that vou want to retain. It is
still necessary to store the
address of any such area elsewhere,
so that it can be accessed later,
because the location containing the
address is overwritten.

INPUT OPERATIONS WITH MAPPING (TYPE=IN)

To request BMS services for input
operations, a DFHBMS macro of the
following format is used:

168 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHBMS TYPE CINL,SAVEIL,TEXTD
[,MAP={map-name|YES} 1}

[, MAPADR {symb-addr}YES}]
[,MAPSET={mapset-name| YES)}]|
[,MSETADR={symb-addr|YES}]
[, EOC=symb~-addr]

[, EODS=symb-addr]

[, ERROR=symb-addr]l

[, INVMPSZ=symb-addr]
[,MAPFAIL=symb-addr]

[, NORESP=symb-addr]l
[,RDATT=symb~addr]l

TYPE=IN
specifies an input mapping
operation. Input is accepted from
the terminal through a terminal
control READ/WAIT request. The
input data is then mapped into the
TIOA and made available to the
application program by placing the
TIOA address at TCTTEDA. The
fields entered as part of the input
data stream are available to the
application program under the field
names specified in the DFHMDF
macros by which they are defined,
suffixed with the letter I to
correspond to the name generated by
CICS in the definition of the area.

The following types of data are not
mapped, but are left in the TIDA

unaltered.
] Data from TCAM-supported 3600
or 3790

. Data from VTAM-supported 3600
or 3650 (except 3650 host
conversation (3270) logical
unit)

. Data from 3790

. Word processing data streams,
that is, data received from a
word processing medium type 1,
2) 3) or 4.

If the terminal used for input is a
printer (for example, a 2740), the
output must be entered into the
correct lines and columns as if it
were a map on a screen. If the
first field to be entered is
defined as P0S5(3,16), two blank
lines must be entered followed by
16 blanks (including one blank for
the attribute byte which is the
first character of the field),
followed by the data for the field.

If DFHBMS TYPE=IN macros are used
to read data from a VTAM batch

logical unit, the inbound function
management headers (FMHs) will be
removed before the data is placed

in the TIOA. If an FMH is
required, the application
programmer should issue a DFHTC
TYPE=READ macro, deal with the FMH,
and then issue a DFHBMS TYPE=MAP
macro to map the data. Inbound
FMHs are applicable only to batch
logical units.

SAVE
when used with IN, specifies that
the data area addressed by TCTTEDA
is not to be altered; a new TIOA is
to be acquired for the operation,
and its address returned in
TCTTEDA.

The use of the SAVE operand merely
stops CICS overwriting a data area
that you want to retain. It is
still necessary to store the
address of any such area elsewhere,
so that it can be accessed later,
because the location containing the
address is overwritten.

TEXT
indicates that uppercase and
lowercase characters are contained
in the input data strean.

This parameter is used to override
a FEATURE=UCTRAN specification in
the DFHTCT macro used by the system
programmer for the input terminal.
(See the appropriate CICS Resourc
Definition manual.)

BUILDING QUTPUT PAGES USING MAPS
(TYPE=PAGEBLD)

To build an output page cumulatively,
using maps, the application program uses
the DFHBMS TYPE=PAGEBLD macro. This
causes the data in the area defined by a
specified symbolic description map to be
mapped according to the physical map.
The mapped data is positioned within an
area large enough to contain one page of
output. The application programmer
issues another DFHBMS TYPE=PAGEBLD macro
to map and position the next portion of
the output page. The mapping operation
continues until the application program
has completed the message to be sent to
the terminal.

Because of CICS terminal paging
facilities, the application programmer
need not keep track of when a page is
full. He can either let BMS force a new
page automatically or include the OFLOW
operand in the DFHBMS TYPE=PAGEBLD
macros to cause BMS to transfer control
to an overflow routine (which the
programmer must provide) when a page of
data cannot contain the data to be
mapped.

The format of the DFHBMS TYPE=PAGEBLD
macro is as follows:

Chapter 4.3. Basic Mapping Support 169

DFHBMS TYPE=(PAGEBLDI, {OUTL,WAITI]I
STORE|RETURN}]
[,SAVEIL,ERASE]IL, ERASEAUP]
[,LASTD
[,DATA={NO|YES|ONLY}]
[,MAP={map-name|YES}]
[,MAPSET={mapset-namel| YES}]]
[,MSETADR={symb~-addr|YES}]
[,CTRL=CIPRINTIL, {L40}|L64]|L8O]
HONEOM} 1
[,FREEKBIL,ALARMII[,FRSET1)]
[, CURSOR={number|YES}]
[, FMHPARM= {parameter|YES}]
[,LDC={mnemonic|YES}]
[,PROPT=NLEOM]
[,REQID={prefix|YES}]
[, ERROR=symb-addr]
[,IGREQID=symb-addr]
[, INVLDC=symb-addr]
[, INVMPSZ=symb-addr]
[, INVREQ=symb~addr]
[, NORESP=symb-addrl
[,0FLOW=symb-addr]
[,RETPAGE=symb-addr]
[,TSIOERR=symb-addr]
[, IGREQCD=symb-addrl?
[, HRBRK=symb-addrl?

1 ASM only
2 CICS/0S7VS only

where:

TYPE=PAGEBLD
indicates that one page of data is
to be accumulated and formatted
from data submitted through
multiple PAGEBLD requests. In each
PAGEBLD request, a map defines the
number of lines and columns that
the data is to occupy on the page.
When a page is complete, as defined
by one or more maps, it is written
according to an OUT, STORE, or
RETURN disposition.

MAP POSITIONING

The position of a map on a screen is
determined by two major factors: the
current contents of the screen, and the
values coded for the LINE, COLUMN, and
JUSTIFY operands of the DFHMDI macro.
Positioning is also affected if the
DFHMDI macro specifies HEADER=YES or
TRAILER=YES, and by the depth of the
deepest trailer map in the map set.

The Screen Contents

At any instant, the part of the screen
which is still available for maps is in
the form of either an L, a reversed L, a
rectangle, or an inverted T, as shown by
the unshaded area in the following
diagranm.

L X R Y

III/0 77777777 7707777777777 /777277777777
V11227772777 7772777272727777772777772702/777777
lI/I17 7777777777070 7777777772/ 7777777277
CII7 2077077777777 0 077777777777 7777777

77777777 L4444 484
I 7777 <—=Current line~> |/7//777777
77777777 17777777
I/ 777 rI17/70777
77777777 8444444

<~ Next free line

Free area

Trailer

The shape and size of this area is
represented internally by four
variables: current line, next free line,
next column from left (L), and next
column from right (R).

Three other pointers are maintained that
are relevant to map placement though
they do not affect the area available:
left reference column (X) and right
reference column (Y), which are used
when COL=SAME is specified, and trailer
size.

The Trailer Area

The trailer size is equal to the number
of lines that would be occupied by the
deepest trailer map in the map set
currently in use. It is determined when
the map set is assembled, and is copied
from the map set whenever one is loaded.

The area defined by trailer size is not
available for mapping unless no overflow
routine has been specified or the map
has TRAILER=YES specified in its DFHMDI
macro.

JUSTIFY=FIRST and JUSTIFY=LAST

If JUSTIFY=FIRST is specified, the map
is placed on a new page, so that the
only maps above it are the header maps
used in overflow processing. The LINE
operand may also be used with
JUSTIFY=FIRST to place the map below the
top of the page.

If JUSTIFY=LAST is specified, the map is
placed as low as possible on the page.
For a nontrailer map, this is ‘
immediately above the trailer area; for
a trailer map, it is at the bottom of
the page.

170 CICS/VS Application Programmer's Reference Manual (Macro Level)

A map defined with JUSTIFY=LAST cannot
be used in input operations unless it
was previously put out without PAGEBLD,
in which case JUSTIFY=LAST is ignored
and the map is positioned at the top of
the page.

The LINE Operand

The LINE operand specifies the line of
the screen on which the first line of
the map is to be placed. The initial
determination of this line is made
without regard to the specification of
the COLUMN operand or the columns
available on the screen on that
particular line. If it transpires that
the map will not fit on the chosen line,
the first subsequent line that will
satisfy the column requirements is
selected.

If LINE=SAME or LINE=NEXT is specified,
the initial line selected for the start
of the map is the current line or the
next free line, respectively. If a
number is specified in the LINE operand,
the line with that number is selected,
provided the number is greater than or
equal to the number of the current line;
if not, the overflow condition is raised
so that the map can be placed on the
next page.

The line selected becomes the new
current line and, if it is below the
next free line, the next free line is
reset to the same line; the next column
from the left and right are also reset,
to the left and right margins
respectively.

If the line selected is such that the
end of the map extends into the trailer
area for a nontrailer map or beyond the
end of the page for a trailer map, the
overflow condition is raised and the map
will be placed on the first available
line of the next page when the request
is reissued after handling the overflow.

The COLUMN and JUSTIFY Operands

The COLUMN specification may be either
NEXT, SAME, or a number and is processed
in conjunction with the LEFT or RIGHT
specification of the JUSTIFY operand.
JUSTIFY=LEFT is the default and implies
that the column specification is related
to the left hand margin. Conversely,
JUSTIFY=RIGHT implies that the column
specification is related to the
right-hand margin. For the purposes of
this explanation, it is assumed .
hereafter that JUSTIFY=LEFT has been
specified (or applied by default).

If COLUMN=NEXT is specified, the column
chosen for the map is the next column
from the left. If a numeric value is

specified, the column with that number
is chosen, counting from the left. If
COLUMN=SAME is specified, the left
reference column is chosen. - (The left
reference column is the one that was
most recently specified by number with
JUSTIFY=LEFT.)

The map is then checked to ensure that
its right margin is not to the right of
the next column from the right. If it
is, the map will not fit in the leg of
the inverted T, so a new line must be
selected. This will be either the next
full line or, if the map is too deep,
the first available line on the next
page.

Finally, the column pointers are updated
by setting the next column from the left
to the right margin of the map, and, if
COL=number was specified, by setting the
left reference column to the specified
column number.

Page Building Examples

The effects of the mechanisms described
above are illustrated by the following
examples. The examples show the
interactions between SIZE, LINE, COLUMN,
and JUSTIFY=LEFT or RIGHT; header and
trailer maps and JUSTIFY=FIRST or LAST
are not brought into the examples.

In processing a PAGEBLD request, BMS
determines whether the area of the page
required by the map is wholly available
or whether any part of it has been used
by an earlier PAGEBLD request. "Used™
means actually filled by a map or
rendered unavailable as described below.

1. Hhen the LINE operand of the DFHMDI
macro is coded, all lines above the
specified line are unavailable.

2. When JUSTIFY=LEFT is coded (or
applied by default), all columns to
the left of the leftmost map column,
for the full depth of the map, are
unavailable.

MAPA DFHMDI ...,LINE=3,COL=5,
JUSTIFY=LEFT,...

5

L7777 7 7777777777777 7277777777772777
L1777 P72 7777777777777 777777777
317777
7777
777/ Map A
/7777

Chapter 6.3. Basic Mapping Support 171

3. When JUSTIFY=RIGHT is coded, all
columns to the right of the
rightmost map column, for the full
depth of the map, are unavailable.

MAPA DFHMDI ...,LINE=3,COLUMN=35,
JUSTIFY=RIGHT,...

35 1

LI227 7777777777277 7777772777277777
VL2202 080020000000 000000002 4
3 /777777

VI 044
Map A 7117777
1177777

4. When two or more maps are placed so
that they share certain lines, all
columns beneath a map that ends
higher are unavailable to the depth
of the map that ends lowest.
Similarly unavailable are all
columns to the left (if the higher
map is left justified) or to the
right (if the higher map is right
justified) of the "used" area
beneath the higher map.

MAPA DFHMDI ...,LINE=3,COLUMN=2,
JUSTIFY=LEFT,...

MAPB DFHMDI ...,LINE=4,COLUMN=20,
JUSTIFY=LEFT,...

2 20

LIV 17 7777777777777 777777777777/ 77
L7770 77 7777707777777 7/777777777/777

1744
7/ ANAAVANALLANANN NN
7/ ASS SN
77 Map A ANSN RN Map B
7/ AN SN
Vs ASSSS SRR ENENNN

MAPA DFHMDI ...,LINE=3,COLUMN=2,
JUSTIFY=LEFT,...
MAPB DFHMDI ...,LINE=4,COLUMN=20,
JUSTIFY=RIGHT,...

2

IS LL717 77777777 7777727277777727/777277
L1117 7777277727777 7777777772/7777777

3177
7/ ANARRLNANANANNNN TN
/7 NANA\N
¢4 Map A Map B N\\\N
/77 AN N NY
/7 ASSANNRNNRNNNNNY

MAPA DFHMDI
MAPB DFHMDI

«+.»LINE=3,COLUMN=40,
JUSTIFY=RIGHT, ...
«++»LINE=3,COLUMN=1,
JUSTIFY=LEFT,...

VLR PR R R AR d s edd
L7777 7777/
3 7777
777/
Map A |777/
777/

Map B
ANSNSENENENNN
NNANNNNNNNNN
NANUNAINNNNNNNWN

Figure 18 on page 173 shows the effect
of several different maps on one page.

If BMS discovers that an area of the
page directly specified for a map has
already been used by a previous map, it
raises the overflow condition, described
below under "PAGEBLD Overflow
Processing.m

Handling Returned Pages

Whenever one or more pages have been
completed and the programmer has
specified TYPE=RETURN, TCAMSRLA contains
the address of a list of completed
pages. Since more than one page of
output may result from a single BMS
output request, there may be more than
one entry in the list for a given
terminal type. All entries for a
particular terminal type immediately
follow one another in the list. The
list is laid out as shown in (a) of
Figure 19 on page 174.

The page buffer pointer points to an
area of USER-class storage which has a
12-byte prefix similar to that of a
terminal input/output area (TIDA), as
shown in (b) of Figure 19.

At this point, page buffers are on the
USER-class storage chain and are
disassociated from BMS control blocks;
it is therefore the user's
responsibility to release page buffers

172 CICS/VS Application Programmer's Reference Manual (Macro Level)

LIS III ISP 777777 PSSP PP P 77777777 77777777777
SI227 7772777777770 777777077777 77 7777777777777 77777777777777777772772727777772727727277777

1777727
AHATHHHHHHEEHRRHHEEE AR A AR AR TR NN 177777/
ALTATLRERRRHTRETRR TR LA RARRR R RRER LR SANANY 77077777
NANNAN Map A 7777777
ASSN NN 7777777
NANANANN Vo222 44
NANNNN 1277777
NANNNN 7177777
NANNAN Map B . 7117777
NANANNN 717777
NAANANNN 1177777
NANNNN Map C 7777777
NANNNNT JUSTIFY 7777777
N\N\A\NN\| = LEFT 1117777
NANANANNN Map D 7777777
AN SN NN 7117777
ANANANANNNNNNNNNN JUSTIFY 1177777
AANNNANNNNNNNNNNNY = RIGHT VP24
ANNANANANNNNNNNNN JUSTIFY |/777777
ASSNN NN S S AR NRRNNY = RIGHT (rz777777
ANANNNANNNNNNNNNN JUSTIFY 7777777
ANAALNNRLLNNNNY = LEFT 7777777
AANANANANNANNNNNNN VI 2 244
AANANANNNNNNNNNNNYN 1777777
AANNLRANANANNNNNNNN 1177777
ASSN SRS NN RRRNENNNN 7777777
Figure 18. Map Positioning for More than One Map

when they are no longer needed. The
‘storage containing the list of buffers
should not be freed by the programmer;
it is the intention of BMS to reduce
processing time by reusing the list.
This list will be altered by the next
BMS request. Therefore, the programmer
must save the contents before issuing
the next BMS request.

Subsequent output of pages should
normally be done using BMS. The use of
the DFHTC macro to handle the output of
pages is not recommended. However, if a
DFHTC TYPE=WRITE macro is used, storage
must be obtained by a DFHSC TYPE=GETMAIN
macro with the CLASS=TERM operand
included, and the output pages moved to
the TIOA so acquired. The DFHTC
TYPE=WRITE macro can then be used to
transmit the pages from this new TIOA.

When terminals of the 3270 Information
Display System are used, the write
control character (WCC) containing the
CTRL specification can be found at
TIOACLCR in the page buffer after
addressability to the area has been
established. (TIODACLCR is a defined
field in DFHTIOA and is addressable if
the buffer address is loaded into
TIOABAR.)

PAGEBLD Overflow Precessing

Overflow occurs when the number of lines
in the requested map plus the number of
lines in the largest trailer map in the
map set (if there are any trailer maps)
is greater than the number of lines
remaining in the page being built for
the terminal involved in an output
operation.

For TCAM and VTAM terminals having LDC
support, pages are accumulated
individually by LDC mnemonic.
Therefore, overflow may occur at end of
page for each different LDC mnemonic
used in different BMS requests. The LDC
mnemonic is passed to the user's
overflow routine in TCAMSLDM, and the
LDC numeric value is passed in TCAMSLDC.
PAGEBLD overflow can occur on a logical
message being built for a ROUTE
environment. If the ROUTE environment
was created with a route list containing
more than one LDC mnemonic, the returned
LDC mnemonic and numeric value is the
I@rit LDC mnemonic resolved in the route
ist.

The routine to which control is
transferred must be in the application
program, but no special considerations
apply. The data which was to have been
mapped, but which caused the overflow,
is not mapped by BMS and remains
unaltered in the TIOA.

Chapter 6.3. Basic Mapping Support 173

(a) | TC lﬁPage Buffer

l TC [rPage Buffer

| X'FF ... FF" |

4 bytes

(b) | CICS Storage Acctng

G bytes

| Buffer Length |

4 bytes

Reserved l Data |

8 bytes

2 bytes

2 bytes X bytes

Figure 19. Page Address List

If a DFHBMS TYPE=ROUTE macro has not
been previously issued, there is only
one destination. If a DFHBMS TYPE=ROUTE
macro has been issued, the logical
message is probably being built for a
multiple-destination environment. Since
the application programmer has the
capability of concurrently building
pages for terminals that have
different-sized output, overflow may
occur at different times for different
terminal groups.

The overflow routine gets control every
time anhy one of the destinations or
groups of destinations encounters an
overflow condition, that is, every time
a specified map will not fit a page.

The application program overflow routine
must determine which destination or
group of destinations has encountered
the overflow.

Upon return to the application program
from a DFHBMS TYPE=ROUTE macro, a count
(relative to one) of the number of
destinations or groups of destinations
is available in TCAMSOCN. This overflow
control count tells the application
programmer how many overflow control
areas (for example, accumulators) he may
want to keep.

Whenever the overflow routine gets
control, TCAMSOCN indicates the relative
overflow control number of the
destination that has encountered the
overflow. This number indicates which
control area should be output, perhaps
through one or more trailer maps. In
addition to the relative control count,
BMS returns the current page number for
the destination that has encountered the
overflow. This page number is located
at TCAMSPGN.

To place trailer data on.a page, the
programmer codes DFHBMS TYPE=PAGEBLD
requests to process the trailer data.
The map(s) used to format the data must
contain TRAILER=YES so that the amount
of space on the page to reserve for
overflow can be calculated. More than
one trailer map may be placed on a page.
There should be a dummy trailer map (not

otherwise used) in the map set
specifying the number of lines to be
reserved for trailer data if no single
trailer map extends over the total
number of lines required for trailer
data (see diagrams).

Maps used to map trailer data may
contain JUSTIFY=LAST to force their
placement at the bottom of the page. If
the programmer tries to place more lines
of trailer data on the page than are
available, that trailer data is placed
on a separate page by itself. Still
another page is built to continue
mapping with or without a header map.

TR2
TR1 TR3

No dummy trailer required.

TR1

TR2 TR3

Dummy trailer required.

176 CICS/VS Application Programmer's Reference Manual (Macro Level)

To place header data on a page, the
programmer codes DFHBMS TYPE=PAGEBLD
request(s) to process the header data.
The map(s) used to map header data must
specify JUSTIFY=FIRST to complete
processing of the previous page if that
has not been done, and to begin a new
page. JUSTIFY=FIRST is ignored if BMS
is positioned at the top of a new page.
If the programmer tries to place more
header data on the page than the page
can contain, multiple pages are created.

After overflow has been raised, the
first map to be used in a TYPE=PAGEBLD
request must be one that specified
JUSTIFY=FIRST. Failure to do this will
result in overflow being raised again
immediately.

When all trailer and/or header data has
been processed, the programmer nmust
reissue the DFHBMS request that caused
the overflow, since this data has not
vet been mapped for all destinations.

If the user does not specify an overflow
routine while issuing PAGEBLD requests,
no overflow occurs and new pages will be
forced automatically. If a header is to
be placed on the first page and a
trailer on the last, the OFLOW parameter
would not be used.

A general overview of overflow
processing is given in the flowchart in
Figure 20 on page 176.

BUILDING OUTPUT PAGES WITHOUT USING MAPS
(TYPE=TEXTBLD]

To request the building of pages of data
without the use of maps, the application
program issues DFHBMS TYPE=TEXTBLD
macros. These macros cause BMS terminal
paging to create pages containing
application—-program-supplied text data.
The length of the data each macro is to
process must be supplied in TIOATDL,
prior to issuing the macro. Completion
of a logical message is signaled by a
DFHBMS TYPE=PAGEOUT macro. The
beginning and ending of pages are
handled by BMS and need be of no concern
to the application program.

The format of the DFHBMS TYPE=TEXTBLD
macro is as follows:

DFHBMS TYPE=(TEXTBLDL, {OUTL,WAIT1]|
STORE|RETURN}]
[,SAVEI[,ERASE][,LASTI)
[,HEADER={symb-addr|YES}]
[,JUSTIFY={FIRST|LASTI
line-number|YES)}]
[, TRAILER={symb-addr|YES}]
[,CTRL=CIPRINTIL, {LGO|L64G}
L8O HONEOMY]
[,FREEKBIL[,ALARMI)]
[,CURSOR={number|YES}]
[, FMHPARM= {parameter | YES}1
[,LDC={mnemonic|YES}]
[,PROPT=NLEOM]
[,REQID={prefix|YES}]
[, ERROR=symb-addr]
[,IGREQID=symb-addrl
[, INVLDC=symb-addr]
[, INVREQ=symb-addr]
[, NORESP=symb-addr]
[,RETPAGE=symb-addr]
[, TSIOERR=symb—-addr]
[, IGREQCD=symb-addrl?
[,WRBRK=symb-addrl?2

1 ASM only
2 CICS/0S/VS - 2741 only

where:

TYPE=TEXTBLD
indicates that (1) one page of
output is to be formed from data
submitted through multiple TEXTBLD
requests, or (2) multiple pages of
output are to be formed from one
TEXTBLD request. When TEXTBLD is
specified, no map is used. MWhen no
more data can fit on a page, the
page is written according to the
OUT, STORE, or RETURN disposition
(see below), and another page is
started if necessary.

DIRECT OUTPUT (TYPE=0OUT)

An output request in which neither
TEXTBLD nor PAGEBLD is specified can be
issued by the application program. Such
a request may cause multiple pages to be
written as output, but multiple requests
cannot be issued to accumulate and
format data within one page. One map
may be used to format data on one page,
and that page may be written directly to
the terminal (TYPE=0UT). The rules
governing this type of output are as
follows:

° Multiple requests cannot be
accumulated to build one page,
whether mapped or unmapped.

. When using maps, ohe request cannot
build more than one page.

Chapter 64.3. Basic Mapping Support 175

i

v

Application program issues
a PAGEBLD macro which
includes an OFLOW routine
address

Y

BMS processes the macro

Did Yes

overflow

BMS returns control to
the application program
and the PAGEBLD macro is
mapped for all
destinations

v

The application program
updates all overflow
control areas to reflect
the last PAGEBLD macro
(which may or may not have
caused overflow)

>

OVERFLOW ROUTINE

1. Save sufficient information to
be able to reissue the macro
that caused the overflow.

2. Using the overflow control

number in TCAMSOCN, determine

the appropriate control area

to map its contents via PAGEBLD

macro specifying trailer map(s).

3. The current page number is
available at TCAMSPGN and could
be supplied with the data to be
mapped by the trailer map(s);
and/or this page number could be
incremented and supplied with
the data to be mapped by header
map(s).

4. Return to A and reissue the
PAGEBLD macro.

v
4

Figure 20.

When not using maps, a single
request can result in more than one
page.

If the disposition is STORE,
multiple requests can cause multiple
pages (each request starting a new
page) to be included in one logical
message.

For both mapping and nonmapping
operations, if the disposition is
STORE, a DFHBMS TYPE=PAGEOUT request
must be issued to terminate the
logical message.

Overflow Processing by Application Programs under BMS

The format of the DFHBMS TYPE=0UT macro

is as follows:

176 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHBMS TYPE=(L{OUTL,WAIT]|STORE]
RETURN} 1L ,NOEDITI[,SAVE]
[,ERASEI]IL, ERASEAUPIL,LASTI)

»DATA={NOIYESIONLY}]

»MAP={map-name|YES}1|

,»MAPADR={symb-addr|YES}1 |

»MAPSET= {mapset—-name|YES} 1|

»MSETADR= {symb-addr|YES}]

,CTRL=CIPRINTIL, {LGO}L6G!

L80|HONEOM]
[,FREEKBIL,ALARMIL,FRSET1)]

[,CURSOR={number|YES)]

[,FMHPARM={parameter|YES}]

[,LDC={mnemonic|YES}1]

[,PROPT=NLEOM]

[,REQID={prefix|YES}]

[, ERROR=symb-addrl

[, IGREQID=symb-addr]}

E,INVLDC=symb-addrl

L,

L,

[,

[,

[,

[,

[
C
[
[
[

INVMPSZ=symb~addr]l
INVREQ=symb-addr]
NORESP=symb-addr]
RETPAGE=symb-addr]
TSIOERR=symb-addr]
IGREQCD=symb—-addr]?
WRBRK=symb~addrl?

1 ASM only
2 CICS/057VS only

where:

TYPE=OUT :
indicates that the output is to be
written to the originating terminal
at once if that terminal is to
receive 1it.

Once a DFHBMS macro with OUT
disposition has been issued, the
application program must not issue
a DFHSC TYPE=FREEMAIN,RELEASE=ALL
macro until either a DFHBMS
TYPE=PAGEOUT or DFHBMS TYPE=PURGE
macro has been issued.

JERMINATING A LOGICAL MESSAGE
(TYPE=PAGEQUT)

When the combining of pieces of data to
form a logical message has been
requested by means of DFHBMS
TYPE=PAGEBLD or TYPE=TEXTBLD macros,
such combining must be terminated by
means of a DFHBMS TYPE=PAGEOUT macro. A
logical message created by means of one
or more noncumulative output requests
with STORE disposition must be
terminated by a DFHBMS TYPE=PAGEOUT
macro.

The format of the DFHBMS TYPE=PAGEOUT
macro is as follows:

DFHBMS TYPE=(PAGEOUTL,LASTI)
[,CTRL=(I {PAGE|AUTOPAGE}1
» {RETAINIRELEASE} 1)
[, EODPURG={AUTO|OPER}]
[, FMHPARM={parameter|YES}]
[, TRAILER={symb-addr|YES}]
[, TRANSID=transaction codel
[, WRBRK={symb~addr | CURRENT|

ALL}]

E,ERROR=symb-addr]

[,

L,

L,

NORESP=symb-addr]l
RETPAGE=symb-addr]?
IGREQCD=symb-addr]l
TSIOERR=symb-addr]

1 ASM only

where:

TYPE=PAGEOUT
specifies the termination of a
logical message. No data is
formatted in response to this
request. Any remaining data in the
page buffer is processed according
to the OUT, STORE, or RETURN
described in the previous macro.
If a logical message is being built
for a routing environment, PAGEOUT
completes the logical message under
route. An additional PAGEOUT macro
is required to complete a logical
message to the originating
terminal.

If an error occurs during PAGEOUT
processing, control is returned to
the application program, and the
RETAIN or RELEASE specifications
are ignored. The logical message
is not considered complete. The
application program should either
retry the PAGEOUT operation or
PURGE the message.

Any logical message that has been
started but not completed when a
DFHSP (sync point) macro is issued
is forced to completion by an
implied TYPE=PAGEOUT macro.

DELETING A LOGICAL MESSAGE (TYPE=PURGE)

To discontinue the process of building a
logical message, a DFHBMS TYPE=PURGE
macro is issued. This instruction
causes the portions of the message
already built in main storage or on
temporary storage to be deleted and
returns control to the application
program at the instruction following the
DFHBMS TYPE=PURGE macro expansion. The
TYPE=PURGE instruction is not to be used
if TYPE=RETURN was used in the BMS
PAGEBLD or TEXTBLD request,

Chapter 6.3. Basic Mapping Support 177

The format of the DFHBMS TYPE=PURGE
macro is as follows:

DFHBMS TYPE=PURGE

where:

TYPE=PURGE
specifies that all data prepared
for a logical message but not yet
transmitted to a terminal is to be
deleted from the systenm.

MESSAGE ROUTING (TYPE=ROUTE)

A DFHBMS TYPE=ROUTE request defines the
terminal and/or operator to receive the
message created by subsequent DFHBMS
output requests. The message may be
directed to any or all BMS-supported
terminals. The ROUTE macro defines the
destination of the message; it does not
cause transmission to occur. The ROUTE
macro must be followed by one or more
BMS output macros. A DFHBMS
TYPE=PAGEOUT request causes the logical
message to be completed and terminates
the effect of the DFHBMS TYPE=ROUTE
macro.

If a ROUTE request followed by one or
more BMS output requests is not
terminated by a PAGEOUT request before a
subsequent ROUTE request is issued or
before the application program
terminates, the message is forced to
completion. Since the application
program did not issue the PAGEOUT
request, BMS applies the PAGEOUT
defaults to the message. A ROUTE
request may be issued immediately
following another ROUTE request. In
this case, the first ROUTE request is
nullified, and the second one determines
the routing environment.

A message is considered undeliverable to
a destination if it cannot be delivered
within a certain interval after the
requested delivery time. This interval
is specified in the PRGDLAY operand of
the DFHSIT PROGRAM=BMS macro by the
system programmer. If the PRGDLAY
operand is not included, no action is
taken for undelivered messages and the
message awaits delivery indefinitely.

If PRGDLAY is specified, the transient
data destination CSMT is notified of the
number of undeliverable messages purged
for a destination; the application
programmer can ensure that additional
documentation is provided for an
undeliverable message by including the
ERRTERM operand in the DFHBMS TYPE=ROUTE
macro.

Examples of situations causing
undeliverable messages might occur, for

example, when a message is routed to a
terminal that is out of service, or when
an operator identification is specified
with a terminal identification and that
operator is not signed on that terminal
at the time the message is to be
delivered.

Under CICS/DOS/VS only, operating in a
DL/1 environment, if it is required to
route a message to more than 40
terminals, several TYPE=ROUTE macros
must be issued, each with a LIST operand
that specifies a list of terminals with
no more than 40 entries. Each
TYPE=ROUTE macro must be issued with all
other DFHBMS macros relevant to the
message.

The format of the DFHBMS TYPE=ROUTE
macro is as follows:

DFHBMS TYPE=ROUTE

[, ERRTERM={termid|ORIG|YES}]
,LIST={symb-addr|YES|ALL)}]
»OPCLASS={decimal-value,

...1YES}]

,TITLE={symb-addr|YES}1}
» INTRVAL = {numeric-valuel
YES}1|L[,TIME=
numeric-value|YE5}1
,LDC={mnemonic|YES}]
,PROPT=NLEOM]
»REQID={prefix]YES}]
» ERROR=symb-addr]
» IGREQID=symb-addr]
» INVET=symb-addr]
» NORESP=symb-addr]
»RTEFAIL=symb-addr]

[
3
[
L
{
s
[
[
L
[
[
‘E
[,RTESOME=symb-addr]

where:

TYPE=ROUTE
specifies the initiation of an
output page routing operation.

Disposition and Message Routing

A routed logical message can be built
using either of two dispositions: STORE
or RETURN. The first BMS output request
issued following the ROUTE request (with
some exceptions noted below) determines
the disposition of the logical message.
This first request may specify STORE or
RETURN; if neither is specified, the
default is STORE. Once established, the
disposition remains unchanged until the
logical message is completed (PAGEOUT).
It need not be repeated for subsequent
requests. An output request specifying
a disposition that is not in effect
results in a return code of INVREQ.

A disposition of STORE is the normal
disposition and finally results in the
message either being delivered or

178 CICSs/VS Application Programmer's Reference Manual (Macro Level)

deleted. A disposition of RETURN causes
the routed logical message to be
returned to the application program. It
is the responsibility of the application
program to deliver the logical message.

A task can converse with the terminal to
which it is currently attached (assuming
the task is terminal-oriented) during
the time that it is building the logical
message. That attached terminal is
known as the direct terminal; a terminal
to which the message is to_be routed is
known as a routing terminal. If any
input requests (DFHBMS TYPE=IN or
TYPE=MAP) are encountered while the
message is being built, they are
processed as usual. To transmit output
to the direct terminal while the routed
logical message is being built, the task
can issue non-TEXTBLD, non-PAGEBLD
requests with an explicit disposition of
OUT. The disposition of OUT isolates
the output request to the direct
terminal from the requests that are
building the routed logical message.

The following points summarize the rules
for conversation with the direct
terminal while a routed logical message
is being built:

U OUT must be specified in any output
request that is to go to the direct
terminal.

. TEXTBLD and PAGEBLD requests with a
disposition of OUT are invalid and
result in a return code of INVREQ.

. The direct terminal may be included
in the routing environment without
impairing the ability to converse
with it while under ROUTE. Data
routed to the direct terminal will
be delivered as though the ROUTE had
been issued from another terminal.

A list of "abridged"™ requests, in order
of execution, is given below. The
action taken by BMS for each is
indicated.

. DFHBMS TYPE=0UT -~ Transmit to direct
terminal.

. DFHBMS TYPE=ROUTE - Establish
routing environment.

. DFHBMS TYPE=0UT - Transmit to direct
terminal.

. DFHBMS TYPE=IN - Receive from direct
terminal.

J DFHBMS TYPE=TEXTBLD - First output
request eligible for routing
establishes default disposition of
STORE and TEXTBLD as mode of page
building.

U] DFHBMS TYPE=0UT - Transmit to direct
terminal.

. DFHBMS TYPE=TEXTBLD,RETURN - INVREQ
- routed logical message has already
established a disposition of STORE.

. DFHBMS TYPE=TEXTBLD - Continue
building routed logical message.

] DFHBMS TYPE=PAGEBLD,STORE - INVREQ -
routed logical message being built
with TEXTBLD requests cannot
tolerate PAGEBLD request.

. DFHBMS TYPE=PAGEBLD,OUT - INVREQ -
cannot issue PAGEBLD or TEXTBLD
request to direct terminal while
building a routed logical message.

. DFHBMS TYPE=TEXTBLD,STORE - Continue
building routed logical message.

U DFHBMS TYPE=PAGEOUT - Terminate
routed logical message and routing
operation.

. DFHBMS TYPE=0UT - Transmit to direct
terminal.

ftagus Flag Byte in User-Supplied Route
is

Each route list entry contains a status
flag byte used by BMS to indicate to the
application program the status of the
destination at the time the DFHBMS
TYPE=ROUTE macro was issued. Upon
return, the application program can
investigate the status byte for each
roite list entry and take appropriate
action.

ENTRY SKIPPED
A route list entry that is flagged
as skipped was not included in the
resolved routing environment. If
an entry has been skipped, another
flag indicating why the entry was
skipped may be on in the status
byte. This second flag could be
one of the following:

. INVALID TERMINAL IDENTIFICATION

. ;ﬁgMINAL NOT SUPPORTED UNDER

. OPERATOR NOT SIGNED ON - only
an operator identification was
specified in the route list
entry and that operator was not
signed on any terminal

. OPERATOR SIGNED ON UNSUPPORTED
TERMINAL

o INVALID LDC MNEMONIC

If only the ENTRY SKIPPED flag is
on, neither a terminal
identification nor an operator
identification was specified in the
route list entry. The settings are
X'80' for ASM, 12-0-1-8 for COBOL,
and 10000000 for PL/I.

Chapter 4.3. Basic Mapping Support 179

INVALID TERMINAL IDENTIFICATION

This flag indicates that the
terminal identification specified
in the route list entry does not
have a corresponding TCTTE in the
terminal control table. This entry
is also flagged as ENTRY SKIPPED.
The settings are X'40' for ASM, no
gtnghes for COBOL, and 01000000 for
/1.

TERMINAL NOT SUPPORTED UNDER BMS

This flag indicates that the
terminal identification specified
in the route list entry is for a
terminal type that is not supported
under BMS or the terminal table
entry indicated that the terminal
identification was not eligible for
routing. This entry is also
flagged as ENTRY SKIPPED. The
settings are X'20"'" for ASM,
11-0-1-8-9 for COBOL, and 00100000
for PL/I.

OPERATOR NOT SIGNED ON

This flag indicates that the
specified operator is not signed
on. Any one of the following
co:ditions causes this flag to be
set:

1. An operator identification was
specified with a terminal
identification, but the
specified operator was not
signed on the terminal. This
entry is not skipped.

2. An operator identification was
specified without a terminal
identification, and the
operator was not signed on any
terminal. This entry is also
flagged as ENTRY SKIPPED.

3. The OPCLASS operand was
specified with the DFHBMS
TYPE=ROUTE macro and a terminal
identification was specified in
the route list entry, but the
operator signed on the terminal
did not qualify under OPCLASS.
This entry is not skipped. The
settings are X'10' for ASM,
12-11-1-8-9 for COBOL, and
00010000 for PL/I.

OPERATOR SIGNED ON UNSUPPORTED TERMINAL

180

This flag indicates that only an
operator identification was
specified in the route list entry,
and that operator was signed on a
terminal not supported by BMS.
This entry is also flagged as ENTRY
SKIPPED. The unsupported terminal
identification is returned in that
route list entry at URLTRMID for
informational purposes only. The
settings are X'08' for ASM, 12-8-9
for COBOL, and 00001000 for PL/I.

INVALID LDC MNEMONIC
This flag indicates that one of the
following conditions occurred:

1. The LDC mnemonic specified in
the route list does not appear
in the LDC list associated with
the TCTTE.

2. The device type generated in
the system LDC table for the
specified or implied LDC
mnemonic is not the same as the
device type for the first LDC
specified in the route '
environment.

A symbolic storage definition of
the user-supplied route list is
available on the source library(s)
under the member name DFHURLDS.
This symbolic storage definition
can be used as an aid in building
the route list, and if necessary,
in testing the status flag byte for
each entry upon return from a
DFHBMS TYPE=ROUTE request that
refers to a list. The symbolic
base register is URLBAR. The
settings are X'04' for ASM, 12-4-9
for COBOL, and 00000100 for PL/I.

CHECKING THE RESPONSE TO A BMS REQUEST
(TYPE=CHECK)

DFHBMS TYPE=CHECK

[, E0C=symb-addr]

[, EODS=symb-addr]

[, ERROR=symb-addr]
[,IGREQID=symb-addrl
[, INVET=symb-addr]
[, INVLDC=symb-addrl
[, INVMPSZ=symb~addr]
[, INVREQ=symb-addr]
[,MAPFAIL=symb-addrl
[,NORESP=symb-addr]
[,RETPAGE=symb-addr]
[,RTEFAIL=symb-addr]l
[,RTESOME=symb-addr]?
[, IGREQCD=symb-addr]}
[, TSIOERR=symb-addr]

1 ASM only

where:

TYPE=CHECK
indicates that the BMS response to
a request for BMS services is to be
checked.

Some response codes may appear in
combination with other response codes.
These combinations are: RTEFAIL and
INVET, and RTESOME and INVET. The order
used by BMS in checking for all
conditions that the application
programmer specifies is as follows:

CICS/VS Application Programmer's Reference Manual (Macro Level)

NORESP, TSIOERR, INVREQ, RETPAGE,
MAPFAIL, RTEFAIL, RTESOME, INVET,
IGREQID, INVLDC, INVMPSZ, EODS, EOC, and
ERROR. Thus, if the application
programmer has specified INVET and
RTEFAIL and both of these responses
apply, BMS transfers control to the
user-written exception-handling routine
identified in the RTEFAIL operand. 1In
this situation, the INVET operand is not
acted upon.

BMS RESPONSE CODES

To test a BMS response code the
application programmer must know the
codes and their meanings. For this
approach, the application programmer can
access the response code(s) at TCAMSRC1,
TCAMSRC2, and TCAMSRC3. Response codes
and their associated conditions are
shown in Figure 21 on page 182. The
keywords are explained at the end of the
chapter.

The examples in Figure 22 on page 183
show how to examine the response code
provided by BMS at TCAMSRCl, TCAMSRC2,
and TCAMSRC3, and transfer control to
the appropriate user-written routine
accordingly.

BMS MESSAGE RECOVERY

BMS provides message recovery for routed
and nonrouted messages. To be
recoverable, messages must satisfy the
following requirements:

. The DFHBMS TYPE=STORE operand must
have been specified on the BMS
output requests that built the
logical message.

. The BMS default REQID (¥%%) or the
specified REQID for the logical
message must have been identified to
temporary storage program (via the
TST) as recoverable.

° The task that built the message must
taVE reached its logical end of
ask .

. The temporary storage program (TSP)
and the interval control program
(ICP) must also support recovery.

JERMINAL CODE TABLE

A terminal code table is established
within BMS for reference in servicing
BMS-supported terminals. There is one
entry in this table for each terminal
supported under BMS. The terminal codes
that appear in the table are given
below. This code appears in the list of
completed pages available at TCAMSRLA

when the application programmer has
specified that pages of output be
returned (that is, RETURN is the
disposition parameter in the output
request). The code is available at
TCAMSRI1 when an invalid map size
(INVMPSZ) response is returned.

Code Terminal or Logical Unit

CRLP or TRMTYPE=TCAM terminals
Magnetic Tape

Sequential Disk

TWX Model 33/35

1050

g;gg-l,-z (without buffer receive)
2740-2 (with buffer receive)
2770

2780

3780

3270 (40-column displays)
3270 (80-column displays)
Interactive LU (3767, 3770
Interactive); 3790 Full
Function LU; and SCS Printer
LUs (3270 and 3790)

2980 Models 1 and 2

2980 Model 6

3601

Host Conversational (3653)
3650 User Program

365073270 Host Conver (3270)
Batch LU (3770 Batch), Batch
Data Interchange LU (3770,
3790, LUTYPEG)

VErXCHIOTMUOUOW>

S XE<CHO

STANDARD ATTRIBUTE LIST AND PRINTER
Control Characters (DFHBMSCA

The application programmer can obtain a
set of commonly used 3270 field
attributes and printer control
characters by copying DFHBMSCA into his
program. For COBOL, this definition
must be copied into the working storage
section. DFHBMSCA consists of a set of
EQU statements in the case of assembler
language, a set of 01 statements in the
case of COBOL, and DECLARE statements
defining elementary character variables
in the case of PL/I. One possible use
for DFHBMSCA is for the purpose of
temporarily changing attribute
characters in a map.

The field attributes/printer control
characters and corresponding symbolic
names are listed below. These
attributes cannot be combined by the
application programmer in any manner.
If any combinations other than those
listed are required, the application
programmer must either use the ATTRB
operand of the DFHMDF macro to obtain
the desired combinations or generate new
attribute combinations offline.

Chapter 6.3. Basic Mapping Support 181

DFHBMS Response Code Response
Service Condition Code
Request Assembler| COBOL PL/I Location
INPUT, OUTPUT, | NORESP X'00°" LOW-VALUES |00000000 TCAMSRC1,
ROUTING,CHECK| (Normal response) TCﬁMSRCZ.
an
TCAMSRC3
OUTPUT,CHECK |INVREQ (Invalid XT01"* 12-1-9 00000001 TCAMSRC1
request)
OUTPUT,CHECK |RETPAGE Xro2°" 12—-2-9 00000010 TCAMSRC1
(Return Page)
INPUT, CHECK MAPFAIL Xroq? 12—-4~9 00000100 TCAMSRC1
(Mapping attempt
failure)
INPUT,CHECK EODS X1046* 12-4-9 00000100 TCAMSRC3
(End of data set)
INPUT, OUTPUT, | INVMPSZ Xt08"* 12-8—-9 00001000 TCAMSRC1
CHECK (Invalid map size)
INPUT, CHECK EQC Xro8" 12-8-9 00001000 TCAMSRC3
(End of chain)
QUTPUT,CHECK JINVLDC X'10° 12-11-1-8—-9/00010000 TCAMSRC2
(Invalid LDC mnemonic)
QUTPUT, IGREQID X'10°* 12-11-1-8-9{00010000 TCAMSRC3
ROUTING,CHECK} (Ignore REQID
specification)
ROUTING,CHECK]INVET Xrz0°* 11-0—-1-8-9 |00100000 TCAMSRC1
(Invalid error
terminal)
ROUTING,CHECK|RTESOME X'640°" No punches [01000000 TCAMSRC1
(Routing to only some
terminals)
ROUTING, CHECK|{RTEFAIL X'80°" 12-0-1-8 10000000 TCAMSRC1
(Routing failure)
INPUT, OUTPUT |ERROR See note See note See note TCAMSRC1,
ROUTING,CHECK|{ (Any response other TCAMSRC2,
other than NORESP) and
TCAMSRC3
OUTPUT,CHECK |TSIOERR X'80°* 12-0-1-8 10000000 TCAMSRC2
(Temporary storage I/0
error)
OUTPUT,CHECK |IGREQCD (Request change X'40°* No punches [01000000 TCAMSRC2
direction ignored)
Note: The test for the ERROR response is satisfied by a not equal condition;
that is, not X'00', not LOW-VALUES, or not 00000000 for assembler, COBOL, and
PL/I, respectively.

Figure 21. BMS Response Codes

182 CICS/VS Application Programmer's Reference Manual (Macro Level)

ASM:
DFHBMS TYPE=(TEXTBLD,STORE) BUILD OUTPUT :
CLI TCAMSRC1,X'00" ANY UNUSUAL CONDITIONS, TEST 1
BNE ERROR ..YES, GO TERMINATE THE TASK
CLI TCAMSRC2,X'00" ..NO, ANY UNUSUAL CONDITIONS, TEST 2
BNE ERROR ..YES, GO TERMINATE. THE TASK
CLI TCAMSRC3,X'00°? ..NO, ANY UNUSUAL CONDITIONS, TEST 3
BE GOCD ..NO, GO CONTINUE PROCESSING

ERROR DS OH YES, TERMINATE THE TASK
DFHPC TYPE=ABEND TERMINATE THE TASK

GOOD DS OH

COBOL:
DFHBMS TYPE=(TEXTBLD,STORE) BUILD OUTPUT
IF TCAMSRC1 NOT = ' ' THEN GO TO ERROR.
IF TCAMSRC2 NOT = ' ' THEN GO TO ERROR.
IF TCAMSRC3 = * ' THEN GO TO GOOD.

ERROR.
DFHPC TYPE=ABEND TERMINATE THE TASK

GO0OD.
ithe value specified within the quotes is an unprintable
multipunch code for the hex value)

PL/1:
DFHBMS TYPE=(TEXTBLD, STORE) BUILD OUTPUT
IF TCAMSRC1 = '"0'B & TCAMSRC2 = '0'B

& TCAMSRC3 = '0'B THEN GO TO GOOD;

ERROR:
DFHPC TYPE=ABEND TERMINATE THE TASK

GOOD:

Figure 22. How to Examine BMS Response Codes

Chapter 6.3. Basic Mapping Support 183

Name AttributesControl Character
DFHBMPEM 3270 Printer end of message
DFHBMPNL 3270 Printer new~line char.
DFHBMASK Autoskip

DFHBMUNP Unprotected

DFHBMUNN Unprotected and numeric
DFHBMPRO Protected

DFHBMBRY High intensity

DFHBMDAR Dark, nonprint

DFHBMFSE MDT on

DFHBMPRF Protected and MDT on
DFHBMASF Autoskip and MDT on
DFHBMASB Autoskip and high intensit
DFHPS Programmed symbols :
DFHHLT Highlighting

DFHERROR Error character

DFHDFT Default value

DFHDFCOL Default color

DFHBLUE Blue

DFHRED Red

DFHPINK Pink

DFHGREEN Green

DFHTURQ Turquoise

DFHYELLOW Yellow

DFHNEUTR Neutral

DFHBASE Base PS

DFHDFHI Default highlight

DFHBLINK Blink

DFHREVRS Reverse Video

DFHUNDLN Underline

DFHMFIL Mandatory fill

DFHMENT Mandatory enter

DFHMFE Mandatory fill and enter
DFHALL Clear all settings
DFHCOLOR Color

DFHVAL Field validation

STANDARD ATTENTION IDENTIFIER LIST
(DFHAID)

To test the method of initiating an
incoming READ from the 3270 Information
Display System, the application
programmer is provided with a set of
3270 attention identifiers
(single~character variables called AlDs)
that can be used to test the value at
TCTTEAID. He can obtain this set of
attention identifiers by copying DFHAID
into his program. For COBOL, this
definition must be copied into the
working storage section.

DFHAID consists of a set of EQU
statements in the case of assembler
language, a set of 01 statements in the
case of COBOL, and DECLARE statements
defining elementary character variables
in the case of PL/I. The symbolic names
for the attention identifiers and the
corresponding 3270 functions are given
as follows:

Name 3270 Function

DFHENTER Enter key

DFHCLEAR Clear key

DFHOPID Operator Identification
Card Reader

DFHPEN Immediately detectable
field

DFHPA1 PAl key

DFHPA2 PA2 key

DFHPA3 PA3 key

DFHPF1 PFl key

DFHPF24 PF24 key

PROGRAMMING CONSIDERATIONS FOR PAGING
COMMANDS ON DISPLAY DEVICES

The commands used by terminal operators
to communicate with CICS BMS are
collectively known as terminal paging
commands, or simply as paging commands.
They are defined by the system
programmer through the DFHSIT macro,
which is described in the appropriate
CICS Resource Definition manual. Their
format and use are discussed in detail
in the appropriate CICS-Supplied

Jransactions book.

The application programmer must be aware
of the terminal paging commands in order
to write applications that involve
terminal operators. The use of BMS at
map definition time and in executable
programs can have a significant effect
on terminal operator procedures.

It is important to note that when in a
page retrieval session, that is, when
using paging commands, all PA and PF
keys are treated as paging commands,
regardless of whether or not they have
been defined in the SKRXXXX operand of
the DFHSIT macro.

Cursor placement is an important
consideration in programming for paging
commands. Any of the following items
can cause a paging command not to be the
first data read by CICS and therefore
not to be interpreted as a paging
command.

. After a print operation on a 3270
display, the cursor is set to
position zero. A paging command
entered at this location is not
recognized unless the last position
of the buffer contains an attribute
byte or the buffer has been cleared.

. A field sent with DATA=ONLY and no
attribute byte in the TIOA is
written into the buffer without an
attribute byte. If the application
programmer places the cursor in this
field and the operator keys a paging
command beginning at the cursor
location, the paging command is not
recognized.

184 CICS/VS Application Programmer's Reference Manual (Macro Level)

Since the field has no attribute
byte, the hardware considers the
data to be an extension of the
previously defined field. MWhen the
operator keys into the middle of the
hardware-recognized field and
presses the enter key, the field is
transmitted from the beginning of
the previously defined field. The
data at the beginning of the field
is examined for a paging command and
responded to accordingly.

Cursor specification in the DFHBMS
macro can adversely affect operator
action if the cursor is not set at
the beginning of a field. Paging
commands entered at a cursor
location that is not the beginning
of a field are not recognized by BMS
because data transmission starts at
the beginning of the field if the
field is not set to nulls X'00°'.

OPERANDS OF THE DFHBMS MACRO
CTRL=

PAGEBLD, TEXTBLD, and OUT Macros

In DFHBMS TYPE=PAGEBLD, TEXTBLD,
and OUT macros, CTRL= is used to
specify device characteristics
related to terminals of the 3270
Information Display System
(including VTAM 3270 logical units,
3650 host-conversational (3270)
logical units, and 3790
(3270-display and 3270-printer)
logical units). CTRL=ALARM is also
valid for TCAM SDLC and
VTAM-supported terminals (except
interactive and batch logical
units), for which all other
parameters for CTRL are ignored.

To be effective, this operand must
be specified in the DFHBMS
TYPE=PAGEBLD macro that causes a
page of output to be completed, or
in the DFHMDI macro for the
associated map, or in the DFHMSD
macro for the associated map set.
If the operand is specified in more
than one of these macros, the
specification in a DFHBMS macro
will override that in a DFHMDI
macro, which in turn overrides that
in a DFHMSD macro.

If PROPT=NLEOM is specified, this
operand is overridden; see the
description of the PROPT operand
later in this list of operands.

PRINT
must be specified if the
printer is to be started; if
omitted, the data is sent to
the printer buffer but is not
printed. This operand is
ignored for 3270 displays
without printer features.

L40,164,1.80, HONEOM
are mutually exclusive options
that control the line length
on the printer. L40, L64, and
L80 force a carrier -
return/line feed after 40, 64,
or 80 characters,
respectively. HONEOM cuses
the default printer line
length to be used.

FREEKB
specifies that the keyboard
should be unlocked after this
map is written out. If
omitted, the keyboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible
alarm feature. For TCAM and
VTAM terminals supporting
function management headers
(FMHs) (except interactive and
batch logical units), ALARM
signals BMS to set the alarm
flag in the FMH.

FRSET
is valid only when mapping is
used. FRSET indicates that
the modified data tags (MDTs)
of all fields currently in the
3270 buffer are to be reset to
a not-modified condition (that
is, field reset) before any
map data is written to the
buffer. This allows the
DFHMDF ATTRB specification for
the requested map to control
the final status of any fields
written or rewritten in
response to a DFHBMS macro.

PAGEOUT Macro

In the DFHBMS TYPE=PAGEOUT macro,
CTRL= specifies how pages are to be
displayed at the terminal (when the
disposition is OUT or STORE) and
whether or not control is to be
returned to the application
program.

PAGE
specifies that pages are to be
paged one at a time to the
terminal. BMS writes the
first page to the terminal
when the terminal becomes
available or upon request of
the operator. All subsequent
pages are written to the
terminal in response to a
terminal operator request.
See the description of paging
commands in the appropriate
CICS~Supplied Transactions
book. If automatic paging is
specified for the terminal at
system generation, this
specification overrides the

Chapter 6.3. Basic Mapping Support 185

automatic paging for this
logical message. For TCAM SNA
and VTAM-supported terminals,
PAGE applies to all LDC page
sets accumulated within the
logical message.

AUTOPAGE
specifies that pages are to be
paged automatically to the
terminal. BMS writes each
page of the logical message to
the terminal when it becomes
available. If paging upon
request was specified for the
terminal at system generation,
this specification overrides
it for this logical message,
provided that the terminal is
not a 3270 display terminal
(AUTOPAGE cannot be specified
for a 3270 display terminal).
For TCAM SNA and
VTAM~-supported terminals,
AUTOPAGE applies to all LDC
page sets accumulated in the
logical message.

A specification of PAGE for 3284 or
3286 devices is ignored. That 1is,
AUTOPAGE is assumed for these
devices. If neither PAGE nor
AUTOPAGE is specified, the paging
status specified for the terminal
at system generation determines how
pages are to be written to the
terminal. For TCAM SNA and
VTAM-supported terminals with LDC
support, paging status for each LDC
isbgbtained from the system LDC
able.

RETAIN
indicates that BMS is to
return control to the
application program for
further processing after it
has written the page(s) to the
terminal and has received data
other than a purge, copy, or
paging command from the
operator.

RETAIN is intended to be used
for a combination of page
display from the page file
(logical message built using
the STORE disposition) and
operator data entry. BMS
issues a GET to the terminal
after writing the appropriate
page(s) to the terminal.
issues the GET only if the
logical message was built with
STORE disposition. If the
logical message was not built
with STORE disposition, BMS
returns control to the
application program after the
last page is written to the
terminal, and without issuing
a GET to the terminal.

The operator may enter any
page, purge, or copy commands
that are valid for the
particular message. Any other
entered data is passed back:'to
the application program after
the current message is purged.
The address of the newly
acquired TIOA is in TCTTEDA.

A chaining command is not
valid at this point because it
requests the creation of a new
task for the terminal to which
a task is already attached.

RELEASE
indicates that control is to
be returned to the program at
the next higher logical level
after BMS has written the
page(s) to the terminal. Hhen
RELEASE is specified, LAST is
assumed for TCAM SNA and
VTAM-supported terminals,
except when the PAGEOUT is for
a route operation.

Note: To ensure that a
logical message appears at the
receiving terminal at once,
before any other transaction
is initiated from the terminal
and before any other messages
that may have been routed to
it, CTRL=RELEASE should be
specified.

If neither RETAIN nor RELEASE is
specified, and STORE is the
disposition for the logical
message, a new task is scheduled by
CICS task control for writing the
pages to the terminal, and control
is returned to the application
program at this time rather than
after the pages are written. After
the application program has
terminated, the pages will be
written to the terminal in response
to terminal operator requests. See
the description of paging commands
in the appropriate CICS-Supplied
Transactions book. If pages are
being routed, a specification of
either RELEASE or RETAIN is
ignored.

If messages are being chained, and
the second transaction uses BMS in
paging mode, the use of RETAIN will
prevent further chaining. RELEASE
must be used to allow more than two
transactions to be chained
together.

CURSOR=

is used to position the cursor upon
completion of a write operation to
a 3270 device. This operand is
valid in TYPE=0UT macros only when
maps are used.

186 CICS/VS Application Programmer's Reference Manual (Macro Level)

number
is an integer indicating a
particular position relative
to zero on the screen; the
range of values that may be
specified depends upon the
scrgen size of the 3270 being
used.

YES
indicates that a value
indicating the desired cursor
position has been placed in
TCABMSCP. - (Note, though, that
TCABMSCP may be used by CICS
for other purposes. The user
should not rely on the cursor
position specification
remaining intact throughout a
transaction.)

This operand overrides the IC
option of the ATTRB operand of the
DFHMDF macro, if it is specified in
a macro that completes a
pagebuilding operation and thus
causes a write operation. Previous
specifications of the IC option and
of the CURSOR operand for the other
maps making up the page are
ignored.

Similarly, a CURSOR operand on a
later TEXTBLD macro always
overrides a CURSOR operand on an
earlier TEXTBLD macro.

An alternate method may be used to
dynamically position the cursor on
the output screen. This method is
called symbolic cursor positioning;
it allows a field in the TIOA to be
marked, symbolically, such that the
cursor is placed under the first
data byte of the field on the
output screen.

Requirements for symbolic cursor
positioning are as follows:

. MODE=INOUT must be specified on
the DFHMSD macro for maps and
DSECTs which will be used with
symbolic cursor positioning.

U CURSOR=YES must be specified on
the DFHBMS macro.

] Field TCABMSCP must be
initialized with hexadecimal
Fs; for example, MVC
TCABMSCP,=X'FFFF'. (In COBOL
move minus one into TCABMSCP
which has been defined as PIC
S9(4) COMP.)

. The length field, suffix "L",
associated with the field under
which the cursor is to be
placed must be initialized with
hexadecimal Fs. For example,
MVC FIELD3L,=X'FFFF'. (In
COBOL move minus one into

FIELD3L which has been defined
as PIC S9(4) COMP.)

The remainder of the TIOA may be
built as desired by the user.
Symbolic cursor positioning is
operable only for devices which
allow cursor placement to be
performed independently of data
placement; for example, 3604 and
3270. Symbolic cursor positioning
is ignored for other devices.

DATA=

indicates one of the following
thsee output mapping data selection
modes .

NO
specifies that only default
data is to be written from the
selected map.

YES
specifies that data placed in
the TIOA by the application
programmer is to be merged
with default data from the
map. The user-supplied data
and/or attribute character
(3270 only) supplied for a
given field replaces the
corresponding default data
and/or attribute character
from the map.

ONLY
specifies that only data
placed in the TIOA by the
application programmer is to
be written. The attribute
characters (3270 only) must be
specified for each field in
the TIOA. Any default data or
attributes from the map are
ignored.

This operand is valid only when
mapping is used. If it is omitted,
DATA=NDO is assumed. The first
position of each field in data
placed in the TIOA by the
application program must contain a
nonnull character. A suitable
replacement character for a null
character is a blank (X'40%),.

If this option is used to send data
to a terminal defined in the TCT as
supporting 3270 data stream
extensions (color, programmed
symbols, and extended
highlighting), BMS transmits a data
stream that modifies the existing
fields. This data stream is valid
only when the screen is formatted,
so care must be taken not to send
it to an unformatted screen on an
extended data stream display unit.
The problem does not arise with
screens that do not support the
extensions, because CICS then sends
a data stream that simply

Chapter 4.3. Basic Mapping Support 187

overwrites the relevant part of the
buffer.

EOC=symb-addr

specifies the symbolic address of
the routine to be given control if
the request/response unit (RU) is
received, during a BMS input
operation, with the end-of-chain
indicator set. This operand is
used only for VTAM interactive and
batch logical units.

EODPURG=

specifies the manner in which CICS
deletes the current message.

AUTO
specifies that CICS is to
delete the message
automatically if the operator
enters a transaction that is
not a paging command.
Alternatively, the operator
may delete the message with a
purge command. See the
description of the purge
command in the appropriate

CICS-Supplied Transactions
book.

OPER
specifies that CICS is not to
delete the message until the
terminal operator explicitly
requests deletion with a purge
command.

Note: If temporary storage is
reinitialized, all messages are
lost, regardless of any other
specifications.

EODS=symb-addnr

indicates the label of a
user-written routine to receive
control if end-of-data-set (EQDS)
has been received during a BMS
input operation. If this condition
occurs, ho data has been received
(only a standalone function
management header). No data is
mapped and TCTTEDA is set to zero.
This operand applies only to VTAM
batch logical units.

ERROR=symb-addnr

specifies the entry label of the
user-written routine to which
control is passed if any of the
response conditions except NORESP
occurs. :

ERRTERM=

188

indicates the terminal to be
notified if the message is purged
because it is undeliverable. The
message number, title
identification, and destination of
the message are indicated.

termid
is the terminal identification
of the terminal to be

notified.
ORIG
indicates that the originating
terminal is to be notified.
YES

indicates that the terminal
identification of the terminal
to be notified has been placed
in TCAMSTI prior to issuing
the DFHBMS TYPE=ROUTE macro.

This operand is operative only if
the PRGDLAY operand was specified
in the DFHSG PROGRAM=BMS macro by
the system programmer. If PRGDLAY
was not specified, this operand has
no effect.

FMHPARM=

specifies information to be
included in a function management
header (FMH) being transmitted to a
3650 logical unit. Refer to the
appropriate CICS IBM 365073680
Guide for details of the FMH and of
3650 logical units.

This operand applies only to
VTAM-supported 3650 logical units
with outboard formatting. It
specifies the name of the map to be
used with this BMS request.

parameter
specifies the eight-character
name of the map.

YES
indicates that the map name
has been stored in the
eight-character TCAMSFMP field

HEADER=

specifies that header data is to be
placed at the beginning of each
3u:put page and points to that

ata.

symb-addr
is the symbolic address of the
header record that will be
used to place header
information at the beginning
of each page.

YES
indicates that the application
programmer has placed the
address of the header record
in TCAMSHDR prior to issuing
this DFHBMS macro.

If this operand is used in a DQS
COBOL program, the label must not
be longer than eight characters.

CICS/VS Application Programmer's Reference Manual (Macro Level)

The record pointed to by HEADER or
TRAILER operands has the following
format:

|LL]P|C|< Data PPPPP >|

where:

LL
is a 2-byte field containing
the length of the header or
trailer information.

is a one-byte field containing
a character of the user's
choice that indicates which,
if any, are the embedded page
number positions in the data
area. The character chosen
must, obviously, be one that
does not otherwise appear in
the data area. The embedded
page number positions will
initially contain this same
character. The character must
not be any of the following,
which are reserved: X'0C',
X*15', X'17', X'26', and
X'FFY. If page-numbering is
not required, P should be set
to blank (X'40').

is a reserved one-byte field.

Data and PPPPP
is the header or trailer
information to be placed at
the beginning or end of each
page of output. This
information consists of a
constant character string
with, optionally, a
page-number field of up to
five characters embedded
within it.

The placement of the
page-number field within the
data area is entirely at the
user's choice. If such a
field is defined, BMS will
place the current page number
in it for each page built.

The number is padded on the
left with zeros if it does not
fill the defined field; it is
truncated on the left if it is
too large for the defined
field. Page numbering starts
at 1 and can run up to 32,767.
It is automatically reset to 1
after each DFHBMS TYPE=PAGEOUT
request or if the output
disposition is changed. The
legibility of the code will be
improved if the page—-number
field is separated from the
constant data by blanks or
other suitable characters,
though such separation is not
required by BMS

New-line characters (X'15")
may be included in the
constant data if a
multiple-line header or
trailer is required.

IGREQCD=symb-addnr

specifies the entry label of a
user-written routine to which
control is passed if an output
operation is attempted after a
signal command with a hard request
change direction (RCD) code
(X'00010000') has been received
from an LUTYPESG logical unit.
Applies to output operations only.
Valid in assembler language only.

IGREQID=symb-addr

specifies the entry label of a
user-coded routine to which control
is to be passed if the prefix
specified is different from the
established (via a previous
specification or default) REQID for
this logical message.

INTRVAL=

specifies the interval of time
after which data being routed to
the page file is to be transmitted
to the terminal(s).

numeric value '
is of the form HHMMSS, where
HH represents hours from 00 to
99, MM represents minutes from
00 to 59, and SS represents
seconds from 00 to 59.

YES
indicates that the interval of
time has been placed in packed
decimal form (OHHMMSS+) in
TCAMSRTI prior to issuing the
DFHBMS TYPE=ROUTE macro.

INVET=symb~addnr

specifies the entry label of the
user-written routine to which
control is passed if the terminal
identification specified by the
ERRTERM operand of a DFHBMS
TYPE=ROUTE macro is invalid or is
assigned to a terminal of a type
not supported under BMS.

INVLDC=symb-addr

specifies the entry label of the
user-written routine to which
control is passed if the LDC
mnemonic specified by the LDC
operand does not appear in the LDC
list associated with the TCTTE.

INVMPSZ=symb=-addnr

specifies the entry label of the
user-written routine to which
control is to be passed if (1) the
specified map is too wide for a
receiving terminal, or (2) OFLOW
has been requested and the
specified map is too long for the

Chapter 4.3. Basic Mapping Support 189

receiving terminal. Upon entry to
the user-written routine, TCAMSRI1
contains a terminal code that
further identifies the receiving
terminal (see "Terminal Code (TC)
Table,™ earlier in this chapter).

INVREQ=symb-addr

specifies the entry label of the
user-written routine to which
control is passed if the request
for BMS services is invalid.

This response may be caused by any
of the following conditions:

. Changing the disposition of a
routed logical message prior to
its completion, through DFHBMS
TYPE=PAGEOUT

. Issuing a separate TYPE=TEXTBLD
or TYPE=PAGEBLD request to the
direct (originating) terminal
while in the process of
building a routed logical
message

. Mixing TYPE=TEXTBLD and
TYPE=PAGEBLD requests when
building a logical message

. Specifying NOEDIT with a
TYPE=PAGEBLD or TYPE=TEXTBLD
request

. Specifying the TRAILER operand
with TYPE=PAGEOUT when
terminating a logical message
built using TYPE=PAGEBLD
requests

. Issuing a DFHBMS request with
DATA=YES or DATA=NO and
specifying a map with no field
specifications

. Issuing a DFHBMS request with
TYPE=STORE from a CICS
application program
communicating with a host
copzersational (3653) logical
unit.

JUSTIFY=

describes the positioning of the
text data.

FIRST
indicates that this TEXTBLD
data is to be positioned at
the top of the page. Any
partially formatted page from
preceding DFHBMS requests is
considered to be complete. If
the HEADER operand is
specified, the header precedes
the TEXTBLD data.

LAST -
indicates that this TEXTBLD
data is to be positioned at
the bottom of the page. If
the TRAILER operand is

LDCc=

specified, the trailer appears
after the TEXTBLD data. The
page is considered to be
complete after the request is
processed.

line number
indicates that this TEXTBLD
data is to be positioned at
line nnn of the page.

YES
indicates that the application
programmer has placed a binary
value from 1 to 255 in TCAMSJ
prior to issuing this DFHBMS
TYPE=TEXTBLD macro. A value
in the range from 1 through
260 represents a line number;
254 represents LAST; and 255
represents FIRST. The values
from 241 through 253 are
reserved and should not be
specified.

specifies the mnemonic to be used
by CICS to determine the logical
device code that is to be used for
the BMS operation and transmitted
in the function management header
(FMH) to the logical unit. This
operand is meaningful only for TCAM
and VTAM terminals with LDC
support.

mnemonic
is the 2-character mnemonic
used to determine the
appropriate LDC numeric value.
The mnemonic represents an LDC
entry in the DFHTCT TYPE=LDC
macro.

YES
indicates that the application
program has placed the LDC
mnemonic in TCAMSLDM.

When an LDC is specified, BMS
uses the device type, the page
size, and the page status
associated with the LDC
mnemonic to format the
message. These values are
taken from the extended local
LDC table for the LU, if it
has one. If the LU has only a
local (unextended) LDC table,
the values are taken from the
system LDC table. The numeric
value of the LDC is obtained
from the local LDC table,
unless this is an unextended
table and the value is not
specified, in which case it is
taken from the system table.

If the LDC operand of the
DFHBMS macro is omitted, the
LDC mnemonic specified in the
DFHMSD macro is used, (except
in TEXTBLD operations, when
maps do not apply). If the

190 CICS/VS Application Programmer's Reference Manual (Macro Level)

LIST=

LDC operand has also been
omitted from the DFHMSD macro,
the action depends on the type
of the logical unit.

For a 3601 LU, the first entry
in the local or extended local
LDC table is used, if there is
one. If a default cannot be
obtained in this way, a null
LDC numeric value (X'00') is
used. The page size used is
the value that was specified
in the DFHTCT TYPE=TERMINAL
macro, or (1,40) if such a
value was not specified.

For a batch or batch data
interchange LU, the local LDC
table is not used to supply a
default LDC; instead, the
message 1s directed to the LU
console (that is, to any
medium that the LU elects to
receive such messages. Note
that for a batch data
interchange LU, this does not
imply sending an LDC in an
FMH). The page size is
obtained in the manner
described for the 3601 LU.

For DFHBMS TYPE=ROUTE
operations, the LDC operand of
the ROUTE macro takes
precedence over all other
sources. If this operand is
omitted and a route list is
specified (LIST=symbolic
address or YES), the LDC
mnemonic in the route list is
used; if the route list
contains no LDC mnemonic, or
no route list is specified, a
default LDC is chosen as
described above.

specifies the terminals and/or
operators to which paged data is to
be directed.

symb=-addr

is the label of a list of
terminals and/or operators to
which data is to be directed.
If this parameter is used on a
CICS/D0OS/VS COBOL application
program the label must not be
longer than eight characters.

YES
indicates that the address of
the list of terminals and/or
operators to which data is to
be directed has been placed in
TCAMSRLA prior to issuing the
DFHBMS TYPE=ROUTE macro.

ALL
indicates that all terminals
supported by BMS are to
receive the paged data.

There is a limit to the number
of terminals to which a
message can be sent. The
maximum cannot be defined
because it is dependent on the
other operands specified on
the routing command, but the
transaction will be abended
with an abend code of ABMC if
the limit is exceeded.

The list of destination terminals

and/or operators consists of

l6-byte entries whose contents are

as follows:

Bytes Contents

1-4 G¢-character (including
trailing blanks) terminal or
logical unit id, or blanks

5-6 2-character LDC mnemonic for
TCAM and VTAM terminals with
LDC support, or blanks

7-9 operator id, or blanks

10 status flag for route entry
See "Status Flag Byte in
User-Supplied Route List,"
earlier in the chapter.

11-16 reserved; must contain blanks

The end of the list is designated
as follows:

ASM: BC AL2(-1)
COBOL: PIC S9(4) COMP VALUE -1.
PL/I: DCL FIXED BINC15) INIT(-1);

It may be necessary for the
application program to supply this
list of destinations in
noncontiguous areas called
segments. If the list is supplied
in segments, every segment except
the last is terminated with (at
least) an 8-byte entry as follows:

Bytes Contents

1-2 ASM: DC AL2(-2)
COBOL: PIC S9(4) COMP VALUE -2.
PL/I: DCL FIXED BIN(15)
INIT(-2);

3-4 reserved

5-8 chain address to the first
entry of the next segment

The end of the list is designated
as described above for an
unsegmented list.

If, for any entry in the list,

1. The terminal identification is
specified but the operator
identification is omitted, the
data is routed to that terminal

Chapter 6.3. Basic Mapping Support 191

MAP=

without regard to operator
identification.

2. The operator identification is
specified but no terminal
identification is given, the
data is routed to the "first"
terminal at which the operator
is signed on under the
specified operator
identification. The "first"™ is
determined by the physical
location of the terminal entry
in the CICS terminal control
table. If no operator is
signed on under the specified
operator identification when
the DFHBMS TYPE=ROUTE macro is
executed, the route list entry
is ignored.

3. Both terminal identification
and operator identification are
specified, the data is routed
to that terminal.

For either 2 or 3 above, the data
is displayed only if the operator
with the specified identification
is signed on at the terminal when
the data is ready to be displayed,
or when the operator signs on after
the data is ready to be displaved.
Entries of all three types may be
included in one segmented or
unsegmented list.

It should be noted that the status
flag in each route list entry is
used to notify the application
program of certain status
conditions for that requested
destination. Therefore, if the
route list is contained within the
application program and BMS alters
the status flag, the application
program can no longer be considered
reentrant.

specifies the name of the map to be
used when mapping formatted pages.

map nhame
is the 1- through 7-character
name of the map within a map

set.
YES

indicates that the application
programmer has placed the name
of the map in TCABMSMN prior
to issuing this DFHBMS macro.
The name must be
left-justified and padded with
trailing blanks to 8
characters.

MAPADR=

specifies the address of the map to
be used when mapping formatted
pages. This operand is valid only

when the map has been coded within
an assembler language program.

symb-addr
is the 1- through 7-character
symbolic label that has been
assigned to the map.

YES
indicates that the application
programmer has placed the
address of the map in TCABMSMA
prior to issuing this DFHBMS
macro.

If MAPADR is specified, MAP,
MAPgET. and MSETADR should not be
used.

MAPFAIL=symb-addpr

specifies the entry label of the
user-written routine to which
control is passed if the data to be
mapped has a length of zero or does
not contain a SBA (start buffer
address) sequence. This response
can occur only if TYPE=IN or
TYPE=MAP is specified and data is
mapped from a 3270 device. For
TYPE=IN, the address of the
erroneous TIOA is available at
TCTTEDA. For TYPE=MAP, this
address is wherever the user placed
it prior to the request (either in
TCTTEDA or TCAMSIOA).

MAPSET=

specifies the name of the map set
to be used in the mapping
operation.

map set name
is the 1- through 7-character
name of the map set.

YES
indicates that the application
programmer has placed the name
of the map set in TCAMSMSN
prior to issuing the DFHBMS
macro. The name must be
left-justified and padded with
trailing blanks to 8
characters.

The map set established by this
operand must reside in the CICS
program library, and a
corresponding entry for the map set
must exist in the processing
program table (PPT).

If MAPSET is coded, MAP must also
be coded.

MSETADR=

specifies the address of the map
set to be used in the mapping
operation. - This operand is valid
only when the map has been coded
within an assembler language
program.

192 CICS/VS Application Programmer's Reference Manual (Macro Level)

symb-addnpr
is the 1- through 8-character
symbolic label that has been
assigned to the map set.

YES
indicates that the application
programmer has placed the
address of the map set in
TCAMSMSA prior to issuing this
DFHBMS macro.

MAPSET and MSETADR are mutually
exclusive operands. If MSETADR is
coded, MAP must also be coded.

NORESP=symb-addnr

specifies the entry label of the
user-written routine to which
control is passed if none of the
other response conditions (whether
checked for or not) occurs. NORESP
signifies "normal response".

OFLOW=symb-addr

specifies the symbolic address of a
routine to which control is to be
transferred if the mapped data does
not fit on the current page (see
"PAGEBLD Overflow Processing,"
earlier in the chapter).

OPCLASS=

specifies the operator class or
classes to which data is to be
routed.

decimal value,...
consists of 1 or more decimal
values in the range from 1
through 24, separated by
commas, specifically
identifying the operator
class(es).

YES
indicates that values
identifying operator classes
have been placed in TCAMSOC
(3-byte field) prior to
issuing the DFHBMS TYPE=ROUTE
macro.

A bit position corresponding to
each value from 1 through 24 is
established in a 3-byte field which
is matched against the 3-byte
operator class field in the CICS
terminal control table terminal
entry (TCTTEOCL) for a terminal.

At least one pair of corresponding
bits must match in order for the
message to be routed to the
terminal. The value in TCTTEOCL is
set during sign-on according to the
OPCLASS operand of the DFHSNT
TYPE=ENTRY macro specified by the
system programmer.

If data is to be routed to an
operator class, the application
programmer may do one of the
following:

1. Specify OPCLASS and omit LIST.
Data is routed to each terminal
at which an operator is signed
on with the specified OPCLASS
at the time the DFHBMS macro is
issued.

2. Specify OPCLASS and LIST=ALL.
Data is routed to all
terminals. However, it is not
necessary for an operator to be
signed on with the specified
OPCLASS at the time the DFHBMS
macro is issued.

In both cases, the data is not
displayed on a terminal until an
operator is signed-on with the
specified OPCLASS. In general,
LIST=ALL is specified with OPCLASS
only when it is anticipated that
someone will eventually sign on
with the specified OPCLASS at every
supported terminal.

If the application programmer
specifies OPCLASS and LIST=symbolic
address, and the list contains
operator identifications, a
specified operator identification
overrides OPCLASS for that entrvy.

PROPT=NLEOM

requests BMS to build a logical
message specifically for a 3270
printer or a 3270 display with the
Printer Adapter feature. If used,
this operand must be specified in
the first DFHBMS macro for each
logical message. If routing, this
operand must be specified on the
TYPE=ROUTE request. Specification
of this operand overrides the CTRL
operand, if present;
CTRL=(PRINT,HONEOM, FREEKB, PRESET)
is assumed.

Specification of this operand will
cause the page to be formatted
using new-line (NL) characters as
for the other hard copy devices.

An end-of-message (EM) character is
placed at the end of the data. As
the data is printed, a new-line
character causes printing to
continue on the next line. The
end-of-message character terminates
printing. The next print operation
will start on a new line.

The following restrictions apply
when using this parameter: buffer
updating and attribute modification
of fields previously written into
the buffer are not allowed. BMS
issues an ERASE with every write to
the terminal.

When building a logical message,
BMS will insert an NL character at
the end of each line and an EM
character at the end of the text.
Each NL and the EM character
occupies a 3270 buffer position;

Chapter 6.3. Basic Mapping Support 193

therefore, to avoid possible
wraparound due to excessive data in
the buffer, the PGESIZE values
defined in the DFHTCT system macro
should be such that the remainder
of the 3270 buffer will contain
these additional characters.

This operand is ignored if the
direct or a routing terminal is not
a 3270 printer or display with the
Printer Adapter feature.

RDATT=

specifies the address of a routine
to receive control if the operator
presses the ATTN key on a 2741 when
input is being entered from the
terminal in response to a DFHBMS
TYPE=IN request. This operand can
be specified only if 2741 Read
Attention support, an option
available under either CICS/DOS/VS
or CICS/70S/VS, has been generated
into the system (see "Read
Attention™ on page 121).

REQID=

specifies the prefix to be used
with the temporary storage
identification. The identification
(including the prefix) is used by
CICS when attempting message
recovery.

BMS message recovery is provided
for a logical message only if the
STORE operand is specified in the
BMS output request and if the
logical end of task has been
reached.

Only one prefix can be specified
for each logical message. If the
REQID operand is not specified,
CICS assigns the prefix %% (two
asterisks).

prefix
indicates the alphanumeric
prefix to be used as the first
2 characters of a temporary
storage identification.

YES
indicates that the prefix has
been stored at TCAMSRID.
RETPAGE=symb-addnr

specifies the entry label of the
user-written routine to which
control is passed if one or more
completed pages are returned to the
application program. This response
can occur only if TYPE=RETURN is
specified in the DFHBMS macro (see
the description of TYPE=RETURN for
further information).

RTEFAIL=symb-addnr

194

specifies the entry label of the
user-written routine to which
control is passed if a DFHBMS
TYPE=ROUTE request results in a

null routing environment (that is,
the message will be sent, by
default, to only the originating
terminal). (To determine why route
list entries were skipped, refer to
"Status Flag Byte in User-Supplied
Route List™ on page 179.)

RTESOME=symb-addr

specifies the entry label of the
user-written routine to which
control is passed if (1) some of
the entries in the user-specified
route list named in the LIST
operand of a DFHBMS TYPE=ROUTE
macro are excluded from the routing
environment, or (2) LIST=ALL is
specified and not all of the
entries in the terminal control
table are included in the routing
environment. (To determine why
some route list entries were
skipped, refer to "Status Flag Byte
in User-Supplied Route List"™ on
page 179.)

TIME=

specifies the time of day at which
data being routed to the page file
is to be transmitted to the
terminal(s).

numeric value
is of the form HHMMSS, where
HH represents hours from 00 to
99, MM represents minutes from
00 to 59, and SS represents
seconds from 00 to 59.

YES
indicates that the time of day
has been placed in packed
decimal form (OHHMMSS+) in
TCAMSRTI prior to issuing the
DFHBMS TYPE=ROUTE macro.

TITLE=

specifies the symbolic address of a
record that contains a title to be
associated with the logical message
created under this routing
environment.

symb-addr
is the symbolic address of the
title length field that
precedes the title in the
title record. If this
parameter is used in a
CICS/DOS/VS COBOL program the
label must not be longer than
8 characters.

YES
indicates that the address of
the title length field in the
title record has been placed
in TCAMSTA prior to issuing
the DFHBMS TYPE=ROUTE macro.

The title pointed to by the TITLE
operand is displayved with the
logical message ID when the
terminal paging query command is

CICS/VS Application Programmer's Reference Manual (Macro Level)

entered. See the description of
the page query command in the
appropriate CICS-Supplied
Transactions book. This title
serves as an additional message
identifier, displayed upon request
with the message ID, not on the
logical message. The value in the
2-byte length field preceding the
title includes the bytes used for
the length field. The length field
and title, in total, may be up to
64 bytes long. For example:

[X'OO}A’IMONTHLY INVENTORY REPORT]

2-byte 2G-byte
length title field
field

TRAILER=

specifies that user-defined trailer
data is to be placed at the foot of
each page completed by the TEXTBLD
macro in which the operand is
coded, or at the foot of the last
page if the operand appears on a
PAGEQUT macro. The operand is
ignored if no page is completed by
the macro in which it appears. The
operand is invalid in a PAGEOUT
macro that is completing a message
built using PAGEBLD macros; if
TRAILER= is used in such
circumstances, BMS returns an
INVREQ return code.

The format of trailer data is the
same as that for header data,
described above (see "HEADER=").
Page numbering can be accomplished
automatically, as with header data.

symb-addr
is the symbolic address of the
trailer record that will be
used to place trailer data at
the bottom of the last page.
If this parameter is used in a
CICS/D0OSs/VS COBOL program, the
label must not be longer than
8 characters.

YES
indicates that the application
programmer has placed the
address of the trailer record
in TCAMSTRL prior to issuing
this DFHBMS macro.

TRANSID=transaction code

specifies a 1- through 4-character
transaction identification to be
used with the next input message
entered from the terminal to which
this task is attached.

This operand is valid only when
CTRL=RELEASE is specified.

TSIOERR=symbh-addr

specifies the entry label of the
user-written routine to which

control is to be passed if an
unrecoverable temporary storage
input/output error occurs.

The following TYPE= parameters
distinguish macros with distinct
purposes. As such, they are not
treated as operands and so
described in this section; instead,
they are explained individually in
earlier sections in this chapter.

CHECK PAGEOUT
IN PURGE
MAP ROUTE
PAGEBLD TEXTBLD

The SAVE and TEXT parameters have
special meaning for TYPE=IN (both)
and TYPE=MAP (SAVE only) macros,
and are described with the
individual macros.

The following four TYPE= parameters
3ngicate the disposition of output
ata:

ouT
indicates that the output is
to be written to the
originating terminal when the
page is complete.

Once a DFHBMS macro with OUT
disposition has been issued,
the application program must
not issue a DFHSC
TYPE=FREEMAIN,RELEASE=ALL
macro until either a DFHBMS
TYPE=PAGEOUT or DFHBMS
TYPE=PURGE macro has been
issued.

When the OUT parameter is not
preceded by either PAGEBLD or
TEXTBLD, it effectively
distinguishes a macro with a
different purpose. This usage
is described earlier in this
chapter under the heading
"Direct Output (TYPE=0UT)I™ on
page 175.

RETURN
indicates that the complete
page(s) is to be returned to
the application programmer.
(See "Handling Returned
Pages," earlier, for further
information.) The application
program regains control (1)
immediately following the BMS
instruction if the current
page is not yet completed, or
(2) at an alternative entry
point specified through the
RETPAGE operand of this macro
if one or more pages have been
completed.

STORE .
indicates that the output is
to be placed in temporary

Chapter 4.3. Basic Mapping Support 195

storage to be displayed in
response to paging commands
entered by the terminal
operator. For more
information about these
commands, see the appropriate
-Su ied Transactio
book. If STORE is specified
with a REQID that is defined
in the temporary storage table
(TST), CICS provides message
recovery for logical messages
if the task has reached
logical end. CICS temporary
storage is needed to hold
messages awaiting delivery to-
terminals.

WAIT
indicates that BMS is to wait
until all output operations
are complete before returning
control to the application
program. WAIT must be
specified with every output
request except the following:

) The last output request
prior to task termination

L The last output requést
prior to an input
operation

. The last output request
prior to issuing a DFHBMS
TYPE=PAGEOUT macro that
precedes task termination
or an input operation.

If no disposition is specified, the
output is sent to the originating
terminal. Once the disposition has
been established for a logical
message, it is not necessary to
repeat the disposition for that
logical message. Any change of
disposition specified while in the
process of building a logical
message forces that logical message
to completion with its original
disposition. Then a new logical
message is started with a new
disposition. The disposition
parameter is handled differently
under DFHBMS TYPE=ROUTE. See
"Disposition and Message Routing™
on page 178.

The remaining TYPE= parameters are:

ERASE i

specifies that a 3270 buffer
or 3606 screen is to be erased
before this page of output is
displayed. A printer buffer
will contain meaningless data
from prior messages if all
positions are not filled with
current data. The first
output operation in any
transaction, or in a series
of pseudo-conversational
transactions, should always

specify ERASE. For
transactions attached to 3278
screens, this will also ensure
that the correct screen size
is selected as defined for the
transaction in the PCT.

ERASEAUP
specifies that all unprotected
character locations in a 32790
buffer are to be erased before
this page of output data is
displayed. There are no
further effects of specifying
this parameter.

LAST
signals to CICS that this is
the last output for a
transaction and, therefore,
the end of a bracket
operation. This operand is
meaningful only for TCAM SNA
terminals and for
VTAM-supported terminals and
is applicable only when OUT is
the specified disposition.
For TCAM, an indicator is set
in the communication control
byte (CCB) requesting that the
message handler send
end-of-bracket.

NOEDIT
specifies that CICS need not
insert device-dependent
control characters (carrier
return, line feed, idle
characters, and so on) into
the output data stream. The
application program,
therefore, assumes
responsibility for providing
any required control
characters. This parameter is
ignored for all output
operations specifying maps.
This parameter cannot be used
with 3601 devices.

SAVE
specifies that the
user-supplied data area
addressed by TCTTEDA or
TCAMSIOA is to be saved. The
location containing the
address of the data area will
be changed by BMS, so the
address should be stored
elsewhere before issuing the
macro.

WRBRK=

is used to specify the action that
is to occur if the ATTN key on a
2761 is pressed while data is being
written to the terminal.

symb-addr
specifies the symbolic address
of the routine to receive
control when the ATTN key on a
27641 is pressed during the
actual write to the terminal.

196 CICS/VS Application Programmer's Reference Manual (Macro Level)

This operand is operative when
2741 Write Break support has
been generated into CICS
(available only under 0S/VS)
and when the task would
normally have regained
control. It is not valid on
BMS macros where TYPE=STORE or
TYPE=RETURN is specified, or
on a PAGEOUT macro when
CTRL=RELEASE is specified.

CURRENT
specifies that transmission of
the current page to the
terminal is to cease, but, if
autopaging has been requested,
transmission of the next page
(if any) begins.

ALL
specifies that transmission of
the current page to the
terminal is to cease and that
no additional pages are to be
transmitted. The logical
message is purged.

Both CURRENT and ALL are meaningful
only if 2741 HWrite Break support
has been generated into CICS
(available only under 0S/VS), and
if TYPE=STORE was specified in
preceding DFHBMS requests, or data
has been sent to terminals other
than the originating terminal. In
these cases, data has been placed
in temporary storage and is being
displayed by a program other than
the one associated with the
originating terminal.

Chapter 4.3. Basic Mapping Support 197

CHAPTER 4.4. BATCH DAT ERCHANGE (DFHD

The CICS Batch Data Interchange program
provides for communication between an
application program and a named data set
(or destination) or a selected output
medium. The named data set (or
destination) must be part of a batch
data interchange logical unit in an
outboard controller; the selected output
medium must be part of either such a
logical unit or an LUTYPE4.

The term "outboard controller™ is a
generalized reference to a programmable
subsystem, such as the IBM 3770 Data
Communication System or the IBM 3790
Data Communication System, which uses
SNA protocols. (Details of SNA
protocols and the data sets that can be
~used are given in the appropriate
CICS/VS IBM 3767,3770/6670 Guide and the

appropriate CICS/VS IBM 3790,3730/8100
Guide.)

The batch data interchange macro (DFHDI)
is used to specify ADD, ERASE, REPLACE,
QUERY, END, ABORT, SEND, RECEIVE, and
CHECK operations on data sets in an
outboard controller. MWhere the
controller is an LUTYPE4 logical unit,
only the END, ABORT, SEND, RECEIVE, and
CHECK operations are supported.

The DFHDI macro can be used only with
assembler language application programs.
It is not available for COBOL or PL/I
programs, which must use the command
level interface if they require these
facilities.

ADDITION OF RECORDS TO A DATA SET
(TYPE=ADD)

DFHDI TYPE=(ADDL, {SAVE|NOSAVE}1]
[, {WAITINOWAIT21))

» DNADDR={symb-addr|YES}

s NUMREC={integer|YES}]

» DEFRESP=YES]

, VOLADDR= {symb~addr]YES}]

» NORESP=symb-addr]

» FUNCERR=symb-addr]

» SELNERR=symb-addr]

?

[
[
!
[
E
[,UNEXPIN=symb-addr]l

This macro specifies that a record in
the current TIOA, as indicated by the
TCTTEDA, is to be added to the
sequential or keved direct data set
corresponding to the destination name
specified in the DNADDR operand.

The SAVE parameter specifies that the
contents of the TIOA is to be saved;

ACRO

however, there is no guarantee that
TCTTEDA will remain unchanged.

The WAIT parame{er indicates that task
activity is to be suspended until the
DFHDI macro has been executed.

DELETION OF RECORDS FROWM A DATA SET
(TYPE=ERASE)

DFHDI TYPE=(ERASEL, {WAITINOWAIT}I)
» DNADDR={symb~addr|YES?}
{,KEYADDR={symb-addr]YES}|
»RRNADDR={record-id|YES}}
[, DEFRESP=YES]
[,VOLADDR={symb-addr|YES}]
[,NORESP=symb-addr]
[, FUNCERR=symb-addr]
[,SELNERR=symb-addr]l
[,UNEXPIN=symb-addr]l

This macro specifies that a record,
identified by the KEYADDR or RRNADDR
operand, is to be deleted from the keyed
direct data set corresponding to the
destination name specified in the DNADDR
operand.

The WAIT parameter indicates that task
activity is to be suspended until the
DFHDI macro has been executed.

REPLACEMENT OF RECORDS IN A DATA S
TTYPE=REPLAC'Q—&_" DS IN A DATA SET

DFHDI TYPE=(REPLACEI, {(SAVE|NOSAVE}1
[, {HAITINOWAITIT}DD
» DNADDR={symb-addr|YES}
{,KEYADDR={symb~addr|YES} |
+ RRNADDR={record-id|YES}}
[,NUMREC={integer{YES}]
[, DEFRESP=YES]
[,VOLADDR={symb~addr|YES}1]
[,NORESP=symb-addr]
E,FUNCERR=symb-addr3
»
£,

SELNERR=symb-addr]
UNEXPIN=symb-addr]

This macro specifies that a record
identified by the RRNADDR or KEYADDR
operand, in the current TIOA, is to
replace a record in the addressed direct
data set corresponding to the
destination name specified in the DNADDR
operand.

Chapter 4.4. Batch Data Interchange (DFHDI Macro) 199

Where more than one record is to be
replaced, the second and subsequent
records are replaced consecutively,
starting with the one specified in the
RRNADDR or KEYADDR operand. The number
of records to be replaced is specified
in the NUMREC operand.

The SAVE parameter specifies that the
contents of the TIOA are to be saved;
however, there is no guarantee that
TCTTEDA will remain unchanged.

The WAIT parameter indicates that task

activity is to be suspended until the
DFHDI macro has been executed.

INTERROGATION OF DATA SET (TYPE=QUERY)

DFHDI TYPE=QUERY
» DNADDR={symb-addr|YES}
[,VOLADDR={symb-addr]|YES}]
[, NORESP=symb-addr]
[, FUNCERR=symb-addr]
[, SELNERR=symb-addr]
[, UNEXPIN=symb-addrl

This macro specifies that the name of
the data set corresponding to the
destination name specified in the DNADDR
operand is to be solicited to allow the
outboard batch program to transmit the
data set to the host. The program must
issue input requests to receive the
records from the data set.

IEsﬂéNIE\T;Ou OF OPERATIONS ON A DATA SET
ATYPE=END)

DFHDI TYPE=END
(OB s e
, =

WPMEDIAl|WPMEDIA2]
WPMEDIA3|WPMEDIAGL,nnl1)|
YES}}}

[,VOLADDR={symb-addr|YES}]

[, NORESP=symb-addr]

[, FUNCERR=symb-addr]

[, SELNERR=symb-addr]

[,UNEXPIN=symb~addrl]

This macro specifies that operations on
a data set are to be terminated
normally. The current outboard
destination is deselected normally.

ABNORMAL TERMINATION OF OPERATIONS O
DATA_ SET_(TYPE=ABORT

DFHDI TYPE=ABORT
£ bt B (CLORsoL e PRINT] CARDI
, =
WPMEDIA1TWPMEDIA2]
WPMEDIA3|WPMEDIAGL ,nnl) |
YES}}}
[,VOLADDR={symb~addr|YES}]
[,NORESP=symb-addr]l
[, FUNCERR=symb-addr]
[,SELNERR=symb-addrl}
[,UNEXPIN=symb-addr]

This macro specifies that operations on
a data set are to be terminated
abnormally. The current outboard
destination is deselected abnormally.

TRANSMISSION OF DATA_FROM HOST TO OUTPUT
DEVICES (TYPE=SEND

DFHDI TYPE=(SEND[, {SAVE|NOSAVE}1]
[, {WAITINOWAITY1}1)
{{, DNADDR={symb~addr] YES}}
J {,SELECT={(CONSOLE]|PRINT|CARD]
WPMEDIA1TWPMEDIAZ | WPMEDIA3]
WPMEDIAGL,nnl1)|YES}}}
[,VOLADDR={symb~-addr|YES}]
[, DEFRESP=YES]
[, FUNCERR=symb-addr]
[,SELNERR=symb~addr]
{,UNEXPIN=symb~addr]l
[, NORESP=symb-addr]l

Data for an output medium is transmitted
to the logical unit from the TIOA, as
indicated by the TCTTEDA. The SAVE
parameter indicates that the TIOA is to
be saved; however, there is no guarantee
that TCTTEDA will remain unchanged.

The WAIT parameter indicates that task
activity is to be suspended until the
previous DFHDI macro has been executed.

TRANSMISSION OF DATA FROM DATA_ SET TO
HOST (TYPE=RECEIVE)

DFHDI TYPE=(RECEIVEL, {SAVE|[NOSAVE} D)
[, NORESP=symb—-addr]l
[, EODS=symb-addr]
[,DSSTAT=symb—-addr]
[,UNEXPIN=symb-addrl

200 CICS/VS Application Programmer's Reference Manual (Macro Level)

This macro specifies that DFHTC
TYPE=READ macros are to be generated to
obtain records from the inbound data
stream. These records are returned to
the application program in a TIOA
addressed by TCTTEDA. The number of
records returned by the TYPE=READ macro
depends upon whether the chain assembly
or logical read options have been
specified by the system programmer,
which in turn depend upon the data
format transmitted by the outboard
controller.

When an FMH is encountered it is removed
from the data stream and a response code

is set to inform the application program
of the change in destination selection

gt?tus. Response codes are discussed
elow.

When the FMH is for BEGIN or RESUME
DESTINATION, and no data is obtained
from the READ, a further READ is issued
so that the request can complete with
user data.

When the FMH is for SUSPEND, END, or
ABORT destination, the data, if present,
is presented first to the application
program with a normal response code; on
the next request, the appropriate
response code is set. The response code
indicating the change of destination
status is presented to the application
program with no user data. If a name is
sent, TCADIDNA is set, on completion of
each request, to point to a field
describing the host destination as a one
byte length field followed by the
destination name. If no destination
name is sent, the field TCADISEL is set
to the medium and sub-address sent. For
descriptions of the formats and codes
used, see the SELECT operand later in
the chapter.

When reading from multiple data sets on
an LUTYPESG, the DSSTAT condition will be
raised by any attempted read after an
end-of-data~set FMH has been received.
The condition indicates that the logical
unit has currently no more data to send.

The SAVE operand specifies that the
contents of the TIOA are to be saved;
however, there is guarantee that the
TCTTEDA will remain unchanged.

OBTAINING THE RELATIVE RECORD NUMBER OF
NEXT RECORD (TYPESNOTE)

DFHDI TYPE=NOTE
»DNADDR= {symb-addr|YES}
[,VOLADDR={symb-addr|YES}1]
[,NORESP=symb-addr]
[, FUNCERR=symb-addr]
[,SELNERR=symb—addr]
[,UNEXPIN=symb-addr]}

This macro specifies that the relative
record number of the position in the
data set of the next available record is
to be returned to the application
program in a fullword field whose
address is placed in the TCA at TCADIRNA
after execution of the macro. The
outboard destination is a user-defined
addressed direct data set.

SUSPENSION OF EXECUTION OF TASK
YPE=WAIT)

DFHADI TYPE=HAIT

This macro specifies that task activity
is to be suspended until the previous
DFHDI macro has been executed. This
macro is meaningful only following a
DFHDI TYPE=ADD, TYPE=ERASE,
TYPE=REPLACE, or TYPE=SEND.

JESTING RESPONSE TO A REQUEST FOR DATA
NTERCHANGE SERVICES (TYPE=CHECK)

DFHDI TYPE=CHECK
[, NORESP=symb-addr]
[, EO0DS=symb-addr]
»DSSTAT=symb-addr]
» FUNCERR=symb-addr]
» SELNERR=symb-addr]
» UNEXPIN=symb-addrl

[
f
[
L

This macro specifies that the response
code from the previous DFHDI macro is to
be tested and, where necessary, a branch
made to the user-written routine whose
address is specified in one of the
following operands: NORESP, EODS,
DSSTAT, FUNCERR, SELNERR, or UNEXIN.

BATCH DATA INTERCHANGE RESPONSE CODES

Response codes are grouped into
categories according to the operands.
Each category is given a code, for
example NORESP has category code X'00'
which is placed in field TCADIRC1 in the
TCA. Each category is subdivided into
response codes that indicate the success
or failure of a specified operation, for
example "End destination FMH received”
in category X'04' is 11. These response
codes are placed in field TCADIRCZ2 in
the TCA.

The categories, operands, response codes
and their causes are shown in Figure 23
on page 202.

Chapter 4.%. Batch Data Interchange (DFHDI Macro) 201

Category | Operand Condition Response
Code
X'90" NORESP Successful 00
Begin destination FMH received 01
Resume destination FMH received 02
X104" DSSTAT, EODS End destination FMH received 11
Suspend destination FMH received 12
Abort destination FMH received 13
Currently no data to send 15
X'08°" FUNCERR Request invalid for data set organization 21
Record too long 22
Data set full 23
Invalid keyword or record identifier 24
Resource not available 25
Invalid NUMREC 26
Insufficient resource. 28
Request for change direction (RCD) signaled 2B
Transient Data error during logging 60
Xroc!* SELNERR Data set not found 29
Destination does not exist 41
Media not supported 43
Invalid destination name (1)
Transient Data error during logging 60
Xtlo0* UNEXPIN Unexpected sense Fl
Unexpected FMH F2
Unsupported input F3

Figure 23.

OPERANDS OF DFHDI MACRO

Response codes are described above.

DEFRESP=YES

All DFHTC TYPE=WRITE macros issued
as a result of the current
invocation of DFHDI will request a
definite response from the outboard
batch program, irrespective of the
specification of message integrity
for the CICS task.

DNADDR=

202

specifies the name of an outboard
destination. If a destination with
a different name is currently
selected, it is deselected before
this one is selected. If the
current destination is being
respecified then no selection is
performed. This operand cannot be
used with the SELECT operand.

symbolic-address
is the address of a field
defining the destination name.
This field consists of a one
byte name length followed by
the name itself.

YES
indicates that the application
program has set this address
into the word field TCADIDNA.
The current implementation

Batch Data Interchange Response Codes

gives a maximum length of 8
characters for the destination
name.

DSSTAT=symb-addnr

specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates a
discontinuity in the inbound data
stream.

EODS=symb~-addr

specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates the end
of the data streanm.

FUNCERR=symb-addr

specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates a
function error.

KEYADDR=

This identifies a record of a keyved
direct data set.

symb-addr
specifies the address of a
field defining the primary key
of the record in a keyed
direct data set to be erased.
This field consists of a one

CICS/VS Application Programmer's Reference Manual (Macro Level)

byte key length followed by
the key itself.

YES
indicates that the application
has set this address into
fullword TCADIKYA. The
current implementation gives a
maximum length of 24
characters for the record key.

Note: This operand is not required
when adding records to a 3790 keyed
direct data set as the key value is
embedded in the data specified by
the DATA operand.

See the IBM_3790 Host System
Programmer's Guide for a

specification of valid keys.

NUMREC=

specifies the number of records
affected by the current request.
The 3790 will accept values greater
than 1 only for the REPLACE
operation on an addressed direct
data set. The value is not
meaningful to CICS but is conveyed
to the outboard batch program as
part of the function selection
information. Records are replaced
sequentially starting with the one
identified by the RRNADDR operand.

integer
specifies the number of
records, in the range 1
through 255, that are to be
replaced.

YES
specifies that the application
has set the binary value into
the one byte field TCADINRS.
If omitted this operand
defaults to the value 1.

NORESP=symb-addr

specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates normal
response, that is, no errors have
occurred during the processing
specified by a DFHDI macro.

RRNADDR=

identifies a record of an addressed
direct data set for the function
REPLACE.

record-id
is the address of a one word
field containing the relative
record number of the record
being replaced.

YES
indicates that the application
has set this address into the
fullword TCADIRNA.

Chapter 4.4.

Note: Record identifiers begin
with the value 1.

SELECT=

specifies the type of output medium
for the function SEND. This
operand cannot be used with the
DNADDR operand.

CONSOLE
specifies the medium provided
for messages to the operator.

PRINT
specifies a printer.

CARD
specifies a card reader/punch.

WPMEDIA1 through WPMEDIA4G
Specify, respectively, word
zrocessing media 1, 2, 3, and

nn
specifies a medium subaddress
in the range 00 to 15, where
15 means any available
ﬁgbaddress. The default is
YES

specifies the medium code and
subaddress have been placed in
the one-byte field TCADISEL by
the application program.
The first half of this field
must contain a hexadecimal
code indicating the type of
medium, as shown below. The
second half must contain the
hexadecimal value of the
subaddress (X'00' through
Xt1l5").

Code Meaning

X'o0? CONSOLE

Xr20" CARD

X'30°" PRINT

X'80°' WPMEDIAl

X'90°? WPMEDIAZ2

XTAQ" WPMEDIA3

X'Cco* WPMEDIAG

SELNERR=symb-addr

specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates errors
during destination selection.

UNEXPIN=symb=-addnr

specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates that
unexpected or unrecognizable input
or response is received in reply to
a DFHDI macro. Response codes are
described earlier in the chapter.

Batch Data Interchange (DFHDI Macro) 203

VOLADDR=

specifies, for the 3770
programmable subsystem only, the
name of the diskette volume
containing the data set named in
the DNADDR operand. This name is
used to qualify the data set name
for destination selection.
Subsequent specifications of the
same data set name without a
diskette volume name, or with a
different diskette volume name,
will cause a new destination to be
selected. In the former case, all
mounted diskette volumes will be

searched for the data set named in
the DNADDR operand.

symb-addr

specifies the address of the
field defining the diskette

volume name (to a maximum of
six characters). The field

consists of a one-byte name

length followed by the name

itself.

YES
indicates that the application
program has set this address
into the fullword field
TCADIVNA.

206 CICS/VS Application Programmer's Reference Manual (Macro Level)

PART 5. CONTROL OPERATIONS

Part 5. Control Operations 205

CHAPTER 5.1. INTRODUCTION TO CONTROL OPERATIONS

This part of the manual describes the

CICS macros that control the execution

of tasks within a CICS system. The

macros are associated with appropriate
control programs and the specification

of the various TYPE= operands invokes a
range of operations. .

The control programs and the macros
associated with each are as follows:

U Interval Control Program (DFHIC
Macro). This macro specifies
operations that depend on the time
of day and can have nine types of
operations associated with it:
GETIME, WAIT, POST, INITIATE, PUT, .
GET, CANCEL, RETRY, and CHECK.
These operations are described in
"Chapter 5.2. Interval Control
(DFHIC Macro)™ on page 209.

. Task Control Program (DFHKC Macro).
This macro specifies operations that
affect task activity or the control
of resources. It can have eight
tvpes of operation associated with
it: ATTACH, SCHEDULE, CHAP, HWAIT, .
ENQ, DEQ, PURGE, and NOPURGE. These
operations are described in "Chapter
5.3. Task Control (DFHKC Macro)" on
page 221.

U Program Control Program (DFHPC
Macro). This macro specifies
operations that affect the flow of
control between application
programs. It can have ten types of
operation associated with it: LINK,

XCTL, LOAD, RETURN, DELETE, ABEND,
SETXIT, RESETXIT, COBADDR, and
CHECK. These operations are
described in "Chapter 5.4. Program
Control (DFHPC Macro)™ on page 231.

Storage Control Program (DFHSC
Macro). This macro specifies
operations that affect the
acquisition and release of areas of
main storage. It can have two types
of operation: GETMAIN and FREEMAIN.
These operations are described in
"Chapter 5.5. Storage Control (DFHSC
Macro)™ on page 24l.

Transient Data Control Program
(DFHTD Macro). This macro specifies
operations that affect the queuing
and retrieval of data in main
storage or auxiliary storage. It
can have five types of operation:
PUT, GET, FEOV, PURGE, and CHECK.
These operations are described in
"Chapter 5.6. Transient Data Control
(DFHTD Macro)™ on page 245.

Temporary Storage Control Program
(DFHTS Macro). This macro specifies
operations that affect the temporary
storage of data in main storage or
auxiliary storage. It can have
seven types of operation: PUT, PUTQ,
GET, GETQ, RELEASE, PURGE, and
CHECK. These operations are
described in "Chapter 5.7. Temporary
Storage Control (DFHTS Macro)" on
page 251.

Chapter 5.1. Introduction to Control Operations 207

CHAPTER 5.2. INTERVAL CONTROL (DFHIC MACRO)

CICS maintains the current time of day
in two formats:

° a binary value, in CSACTODB, which
is updated automatically during task
dispatching to reflect the time of
day maintained by the operating
system

. a packed value, in CSATODP, which is
updated when control returns from an
operating system WAIT or when a
DFHIC TYPE=GETIME, FORM=PACKED macro
is executed.

The accuracy of these values at a given
moment depends upon the task mix and the
frequency of task switching operations.

Time management provides the capability
of controlling various task functions
based on the time of day or on intervals
of time. The services available are
listed below and are available to the
application programmer through the
interval control macro (DFHIC).

1. Provide the time of day in binary or
packed decimal representation.

2. Provide task synchronization based
on time-dependent events.

3. Provide automatic time-ordered task
initiation with associated data
retention and recovery support.

The application programmer must specify
parameter values when using the DFHIC
macro. The values can be specified in
either of two ways:

1. By including the parameters in
operands of the DFHIC macro by which
time services are requested, or

2. By coding instructions that place
the parameter values 1n fields of
the TCA prior to issuing the DFHIC
macro.

The second of these approaches provides

flexibility in that the parameter values

of a single DFHIC macro can be altered
at execution time.

The application programmer can check the
CICS response to a request for time
services as explained under "Test
Response to a Request for Time
Services", later in the chapter.
programmer does not check for a
particular response, and the condition

If the

corresponding to that response occurs,
program flow proceeds to the next
sequential instruction in the
application program. All operands that
can be included in the DFHIC macro are
discussed in detail at the end of the
chapter.

Expiration Times

The time at which a time-controlled
function is to be performed is called
the expiration time. Expiration times
can be specified in two ways, absolutely
as the time of day, or as an interval
that is to elapse before the function is
to be performed.

An interval is measured relative to the
current time and so the expiry time will
always be after the current time
(assuming a nonzero interval is
specified). An absolute time is
measured relative to midnight prior to -
the current time and may therefore be
prior to the current time.

CICS treats as expired a request for an
absolute time that is equal to the
current time or that precedes the
current time by up to six hours. If the
specified absolute time precedes the
current time by more than six hours,
CICS adds 24 hours, that is, the
requested function is performed at the
time specified but on the next day.

Examples of the DFHIC TYPE=INITIATE
macro specifying absolute time-of-day
requests, are as follows:

. DFHIC TYPE=INITIATE,TIME=123000
issued at 1000 hours on Monday will
expire at 1230 hours on the same
Monday.

. DFHIC TYPE=INITIATE,TIME=090000
issued at 1000 hours on Monday will
expire immediately because the
specified time is within the
preceding six hours

. DFHIC TYPE=INITIATE,TIME=020000
issued at 1000 hours on Monday will
expire at 0200 hours on Tuesday
because the specified time is more
:ban six hours before the current

ime.

] DFHIC TYPE=INITIATE,TIME=330000
issued at 1000 hours on Monday will
expire at 0900 hours on Tuesday.

Chapter 5.2. Interval Control (DFHIC Macro) 209

E-OF-DAY UP ING (TYPE=GETIM

DFHIC TYPE=GETIME
[,FORM={BINARY|PACKED 1]
[, TIMADR= {symb~addr|YES}]
[, NORESP=symb~addr]
[,INVREQ=symb-ader
[, ERROR=symb-addr]

In the course of normal operation, CICS
maintains the current time of day in
binary form at CSACTODB and in packed
decimal form at CSATODP. The binary
representation is expressed as a
four-byte positive value in hundredths
of a second. The packed decimal
representation is expressed as a
four-byte positive signed value of the
form HHMMSSt+ where the seconds are
truncated to tenths of a second.

The values are updated periodically
during task dispatching. The accuracy
of these values at any given moment
depends on the task mix and the
frequency of task switching operations.

The application programmer can ensure
that both these time-of-day values are
updated to a current setting by issuing
the DFHIC TYPE=GETIME macro. This macro
causes both forms of the time of day to
be updated in the CSA and, optionally,
places the requested form of the time of
day in a four-byte field specified by
the application programmer. MWhen the
programmer wants the time of day to be
returned in a field other than those of
the CSA, either the symbolic label of
the four-byte field must be specified in
the DFHIC TYPE=GETIME macro or the
address of the field must be placed in
TCAICDA prior to issuing the DFHIC
TYPE=GETIME macro.

Note: For performance reasons, it
should be recognized that lengthy
conversion routines must be executed
whenever updating of the packed decimal
representation of time of day is
requested.

The following example shows how to
request that the time of day be placed
at the storage locations represented by
the symbolic label CLOCK.

DFHIC TYPE=GETIME, FORM=PACKED,
TIMADR=CLOCK

The following examples show how to
request that the time of day be placed
in a field selected prior to (and
independent of) execution of the DFHIC
TYPE=GETIME macro.

ASM:
MVC TCAICDA,=A(CLOCK)
DFHIC TYPE=GETIME, FORM=PACKED,
TIMADR=YES
COBOL:
MOVE CLOCKADR TO TCAICDA.
DFHIC TYPE=GETIME, FORM=PACKED,
TIMADR=YES
PL/1:

TCAICDA=ADDR(CLOCK);

DFHIC TYPE=GETIME, FORM= PACKED,
TIMADR=YES

DELAY OCESSING OF A TASK (TYPE=WAIT
The format of the DFHIC macro to delay

processing of a task until a specified
time occurs is as follows:

DFHIC TYPE=WAIT

[,INTRVAL={numeric valuelYES}1|
[,TIME={numeric value|YES}]

[,REQID={name|YES| 'prefix'}]

[, NORESP=symb-addr]

[, INVREQ=symb-addr]

[,EXPIRD=symb-addrl

[, ERROR=symb-addr]

The task synchronization feature of CICS
time management provides the capability
either of delaying the processing of a
requesting task until a specified time
occurs or of signaling the requesting
task when a specified interval of time
has elapsed. It also supports the
cancellation of a pending time-ordered
synchronization event by another task.
See "Cancel a Request for Time Services
(TYPE=CANCEL)™ on page 215.

This macro causes the requesting task to
temporarily suspend processing, and to
resume control at a specified time of
day or after a specified interval of
time has elapsed. The INTRVAL and TIME
operands are mutually exclusive. This
macro supersedes and cancels any
previously initiated DFHIC TYPE=POST
macro for the task.

A numeric value specified in, or before
issuing, the DFHIC TYPE=WAIT macro is
used by CICS to calculate the time at
which the requested time service is to
be provided. See the section
"Expiration Times™ earlier in the
chapter.

210 CICS/VS Application Programmer's Reference Manual (Macro Level)

To identify the request and any data
associated with it, a unique
identification is assigned to each
time-ordered request. The application
programmer can specify a request
identification to be assigned to his
DFHIC TYPE=WAIT macro by the REQID
operand. If none is assigned by the
programmer, CICS assigns a unique
request identification. A request
identification should be specified by
the application programmer if he wishes
to provide another task with the
capability of canceling the unexpired
WAIT request. See "Cancel a Request for
Time Services (TYPE=CANCEL)"™ on

page 215.

The following example shows how to
temporarily suspend the processing of a
task for a specified period of time:

DFHIC TYPE=HWAIT,INTRVAL=500,
REQID=GXLBZQMR

The following examples show how to
request the suspension of a task until
the time of day stored previously in
TCAICRT is reached. A request
identifier previously selected by the
user is stored in TCAICQID as a unique
identifier for this request for time
service.

ASHM:
MVC TCAICRT,=PL4'124500°
MVC TCAICQID,UNIQCODE

.

DFHIC TYPE=WAIT,TIME=YES,REQID=YES

COBOL.:
MOVE 124500 TO TCAICRT.
MOVE UNIQCODE TO TCAICQID.

DFHIC TYPE=WAIT,TIME=YES,REQID=YES

PL/I:
TCAICRT=124500;
TCAICQID=UNIQCODE;

DFHIC TYPE=WAIT,TIME=YES,REQID=YES

SIGNAL EXPIRATION OF A SPECIFIED TIME
{TYPE=POST)

DFHIC TYPE=POST

[, INTRVAL={numeric valuelYES}1]|
[,TIME={numeric valuelYES}]

[,REQID={namelYES|'prefix'}]

[,NORESP=symb-addr]

[, INVREQ=symb-addr]

[, EXPIRD=symb-addr]

[, ERROR=symb-addr]

In response to this macro, CICS makes a
timer event control area available to
the user for testing. This four-byte
storage area is initialized to binary
zeros and its address is returned to the
requesting task in TCAICTEC.

When CICS determines that the time
specified in a DFHIC TYPE=POST macro has
expired, byte 0 of the timer event
control area is set to X'40' and byte 2
is set to X'80'. This form of posting
is compatible with the completion code
postings performed by the operating
systems. The timer event control area
can be used as the event control area
referred to in a DFHKC TYPE=WAIT macro.
(See "Synchronize a Task (TYPE=WAIT)"™ on
page 226.)

The timer event control area provided to
the user is not released or altered
(except as described above) until one of
the following events occurs:

J The task issues a subsequent DFHIC
TYPE=WAIT, DFHIC TYPE=POST, DFHIC
TYPE=INITIATE, or DFHIC TYPE=PUT
macro.

. The task issues a DFHIC TYPE=CANCEL
macro request to nullify the DFHIC
TYPE=POST macro (this releases the
storage area occupied by the timer
event control area).

. The task terminates, normally or
abnormally.

A task can have only one DFHIC TYPE=POST
request active at any given time. Any
DFHIC TYPE=WAIT, DFHIC TYPE=POST, DFHIC
TYPE=INITIATE, or DFHIC TYPE=PUT request
supersedes and cancels a previously
issaed DFHIC TYPE=POST request by the
ask.

Note: The expiration of any CICS
time-ordered event is determined by CICS
when it is performing its task
dispatching function. Therefore, for
"posting”™ to occur, the application
programmer must ensure that the task
relinquishes control of CICS before each
testing of the timer event control area.
This can be done directly by issuing the
DFHKC TYPE=WAIT or DFHKC TYPE=CHAP macro
(see "Synchronize a Task (TYPE=WAIT)" on
page 224) or indirectly by requesting a
CICS service that in turn initiates a
task service on behalf of the task.

A numeric value specified in, or before
issuing, the DFHIC TYPE=POST macro is
used by CICS to calculate the time at
which the requested time service is to
be provided. See the section
"Expiration Times™ earlier in the
chapter.

The application programmer can specify a
request identification to be assigned to
a posting request by the REQID operand.
If none 1s assigned by the programmer,

Chapter 5.2. Interval Control (DFHIC Macro) 211

CICS assigns a unique request
identification, which is returned to the
application program in TCAICQID. In
either case, the request identification
provides a means of symbolically
identifying the request.

This macro indicates that CICS is to
make a G-byte timer event control area
available to the application program for
testing. The area is initialized to
binary zeros, and its address is
returned in TCAICTEC to the application
program. This area is available to the
application program for the duration of
the task and is overridden if the
application program issues another DFHIC
request of the following types: POST,
WAIT, PUT, or INITIATE.

The following example shows how to
request that CICS provide a signal for
the task when a specified interval of
time has elapsed:

DFHIC TYPE=POST,INTRVAL=30

The following examples show how to
dynamically request that CICS provide a
signal for the task when the time of day
previously stored in TCAICRT is reached.
Since no request identification is
specified by the application programmer,
CICS automatically assigns one and
returns it to the application program at
TCAICQID.

ASM:
MVC TCAICRT,PACKTIME
DFHIC TYPE=POST,TIME=YES
MVC UNIQCODE, TCAICQID
COBOL:
MOVE PACKTIME TO TCAICRT.
DFHIC TYPE=POST,TIME=YES
MOVE TCAICQID TO UNIQCODE.
PL/I:

TCAICRT=PACKTIME;

DFHIC TYPE=POST, TIME=YES
UNIQCODE=TCAICQID;

INITIATE A TASK WITHOUT DATA
(TYPE=INITIATE]

DFHIC TYPE=INITIATE
[, INTRVAL={numeric value|YES}1]|
[,TIME={numeric value|YES}]
[,REQID={name|YES| "prefix'}]
[, TRANSID=namel
[, TRMIDNT={name| YES}]
[, NORESP=symb-addr]
[, INVREQ=symb-addr]
[, TRNIDER=symb—-addr]
[, TRMIDER=symb-addr]}
[, ERROR=symb-addr]

Through this macro, the application
programmer provides the transaction
identification of the task to be
initiated at some future time and other
information about the task. CICS queues
the request until the specified time
occurs. When the necessary resources
are available (for example, a terminal),
the task is initiated. Only one task is
initiated if multiple DFHIC
TYPE=INITIATE requests for the same
transaction and terminal expire at the
same time or prior to terminal
availability. No data can be passed to
the future task by means of the DFHIC
TYPE=INITIATE macro. (To do so, see
"Task Initiation with Data (PUT),"™ which
follows.) This request supersedes and
cancels any previously initiated DFHIC
IYPE=POST request by the initiating

ask.

A numeric value specified in or before
issuing the DFHIC TYPE=INITIATE macro is
used by CICS to calculate the time of
day at which the requested time service
is to be provided. See the section
"Expiration Times" earlier in the
chapter.

As stated earlier, a unique request
identifier is assigned to each
time-ordered request as a means of
symbolically identifying the request and
any data associated with it. The
application programmer can specify an
identifier for his 1n1t1at10n request,
or he can let CICS assign one, in which
case it is returned to the application
program in TCAICQID.

The application programmer must specify
the transaction identification of the
future task, either in the DFHIC
TYPE=INITIATE macro or by placing it in
TCAICTI before issuing the macro. CICS
validates the transaction identification
by scanning the program control table
(PCT). 1If the specified identifier is
not found in the table, CICS does not
provide the requested service;

response code is placed at TCAICTR (for
assembler language or PL/I) or at

212 CICS/VS Application Programmer's Reference Manual (Macro Level)

TCAICRC (for COBOL) to indicate that the
transaction identification is not valid.

If the future task must communicate with
a terminal, the application programmer
must also specify a terminal identifier,
either in the macro or by placing it
beforehand in TCAICTID. CICS validates
the terminal identifier by scanning the
terminal control table (TCT); if it
fails to locate the terminal identifier
in the TCT, CICS provides a response
code at TCAICTR (for assembler language
or PL/I) or at TCAICRC (for COBOL)
without servicing the request.

The following example shows how to
request automatic initiation of a
specified task not associated with a
terminal:

DFHIC TYPE=INITIATE,INTRVAL=10000,
TRANSID=TRNL

The following examples show how to
dynamically request automatic initiation
of a task associated with a terminal.
The task initiation time, transaction
identification, and terminal
identification are moved to fields of
the TCA before the DFHIC TYPE=INITIATE
macro is issued. Since no request
identification is specified by the
application programmer, CICS
automatically assigns one and returns it
to the application program at TCAICQID.

ASM:

;
)

MVC TCAICRT,=PL4'10000",
MVC TCAICTI,=CLG'TRN1'
MVC TCAICTID,=CL4'STA5'

DFHIC TYPE=INITIATE,
INTRVAL=YES,
TRMIDNT=YES

MVC UNIQCODE,TCAICQID

COROL:
MOVE 10000 TO TCAICRT.
MOVE *'TRN1* TO TCAICTI.
MOVE *'STA5' TO TCAICTID.

.

DFHIC TYPE=INITIATE,
INTRVAL=YES,
TRMIDNT=YES

MOVE TCAICQID TO UNIQCODE.

PL/X:
TCAICRT=10000;
TCAICTI="TRN1®;
TCAICTID="STAS';

.

DFHIC TYPE=INITIATE,
INTRVAL=YES,
TRMIDNT=YES

UNIQCODE=TCAICQID;

TASK_INITIATION WITH DATA (TYPE=PUT)

DFHIC TYPE=PUT ’
[, INTRVAL={numeric value|YES}1|
[, TIME={numeric value|YES}]
»REQID={namel| YES| 'prefix'}]
» TRANSID=name]
» TRMIDNT={name|YES}]
» ICDADDR= {symb~-addr]YES}]
» NORESP=symb—-addr]l
» INVREQ=symb~-addr]
» TRNIDER=symb-addr]
» TRMIDER=symb-addr]
» IOERROR=symb-addr]

[
[
[
[
[
[
[
E
[, ERROR=symb-addr]

This macro indicates that CICS is to
initiate a nonterminal-oriented task at
some future time and makes one data
record available to that task, or
provides time-ordered data to be made
available to a terminal-oriented task
:bat is to be initiated at some future
ime.

This macro is used to provide the
transaction identification, the location
of the data to be stored, and other
information applicable to the task to be
initiated. CICS stores the data and
queues the request until the specified
time occurs. As soon as all necessary
resources are available (for example, a
terminal), the task is initiated. CICS
temporary storage management facilities
support this facility of time
management.

The DFHIC TYPE=PUT macro is used only
when data is to be passed to a task to
be initiated at some future time. It
supersedes and cancels any previously
initiated DFHIC TYPE=POST request of the
task. If only task initiation at a
future time is needed, the DFHIC
TYPE=INITIATE macro should be used.

If the task to be initiated is
associated with a terminal, the initial
DFHIC TYPE=PUT request causes the task
to be initiated at the specified time.
Subsequent PUT macros with the same
terminal identification, transaction
identification, and expiration time are
used to store data for subsequent
retrieval by the initiated task. If the
task to be initiated is not associated
with a terminal, each DFHIC TYPE=PUT
request results in a task being
initiated at the specified time. That
is, only one physical data record can be
passed to a task not associated with a
terminal. (See the section "Retrieve
Time-Ordered Data (GET)"™, which
follows.)

Most operands of the DFHIC TYPE=PUT
macro are analogous to similar operands
of the DFHIC TYPE=INITIATE macro. The

Chapter 5.2. Interval Control (DFHIC Macro) 213

discussions of time calculation, request
identification, transaction
identification, and terminal
identification given in the section
"Task Initiation without Data
(INITIATE),™ which precedes this
section, apply to DFHIC TYPE=PUT in the
same manner as they apply to DFHIC
TYPE=INITIATE. In addition, because the
DFHIC TYPE=PUT macro permits data to be
passed, the application programmer must
specify the symbolic address of the
field containing the data. The label
may be provided as a parameter of the
macro or move the address to TCAICDA
prior to issuing the macro.

The data passed to an initiated task
must have the standard variable-length
format, with the first four bytes
containing LLbb. LL is a two-byte
binary length field (the value of which
includes the length of the data plus the
first four bytes), and bb is a two-byte
field containing binary zeros.

Note: An IOERROR will occur if there is
not enough auxiliary temporary storage
available to hold the data being passed.
See the appropriate CICS Customization
Guide discussion of temporary storage
for further details of auxiliary
temporary storage requirements.

The following example shows how to
request automatic task initiation and
request that time-ordered data be made
available to a task associated with a
terminal:

DFHIC TYPE=PUT,TIME=173000,
TRANSID=TRN2, TRMIDNT=STA3,
ICDADDR=DATAFLD

The following examples show how to
dynamically request automatic task
initiation and request that time-ordered
data be made available to a task
associated with a terminal. Values for
time, request identification,
transaction identification, and terminal
identification, as well as the address
of data to be passed, are moved to
appropriate fields of the TCA before
issuing the DFHIC TYPE=PUT macro.

ASM:
MVC TCAICRT,PACKTIME
MVC TCAICQID,UNIQCODE
MVC TCAICTI,=CLG'TRN2®
MVC TCAICTID,=CLG"STA3'
MVC TCAICDA,=A(DATAFLD)

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
REQID=YES,
-ICDADDR=YES

COBOL:
MOVE PACKTIME TO TCAICRT.
MOVE UNIQCODE TO TCAICQID.

MOVE °*TRN2' TO TCAICTI.
MOVE 'STA3' TO TCAICTID.
MOVE DATADDR TO TCAICDA.

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
REQID=YES,
ICDADDR=YES

PL/1:
TCAICRT=PACKTIME;
TCAICQID=UNIQCODE;
TCAICTI="TRN2*;
TCAICTID="STA3’';
TCAICDA=ADDR(DATAFLD);

.

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
REQID=YES,
ICDADDR=YES

RETRIEVE TIME-ORDERED DATA (TYPE=GET)

DFHIC TYPE=GET
[, ICDADDR= {symb-addr|YES}]
[,RELEASE=NO]
[, NORESP=symb-addr]
[, INVREQ=symb-addr]
[,NOTFND=symb-addr]
[, ENDDATA=symb-addr]
[, I0ERROR=symb-addr]
[, TSINVLD=symb~addr]
[, ERROR=symb-addr]

Only data from an expired DFHIC TYPE=PUT
request can be accessed using the DFHIC

TYPE=GET macro. To retrieve data stored
by use of a DFHIC TYPE=PUT request, the

DFHIC TYPE=GET macro must be used.

When time-ordered data is to be
retrieved by means of a DFHIC TYPE=GET
macro, the application programmer may
specify the address of a storage area
into which the data is to be placed.

The address is specified either by
including the address in the macro or by
storing it in TCAICDA prior to issuing
the macro. In either case, the storage
area must be large enough to contain the
four-byte length field (LL//) at the
beginning of the data record as well as
the data portion of the record. If the
application programmer does not select a
storage area, CICS automatically
acquires an area of sufficient size and
returns the address of that area in
TCAICDA.

Each originating DFHIC TYPE=PUT macro

provides the transaction identification
of the task to receive the data, and if
applicable, symbolically identifies the

214 CICS/VS Application Programmer's Reference Manual (Macro Level)

terminal associated with the task's
operation. MWhen CICS services a DFHIC
TYPE=PUT macro, it does so in two steps;
it first queues the request for
automatic task initiation at a specified
time and then stores the data. MWhen the
specified time occurs, the task is ready
to be initiated, and the stored data is
then available for retrieval.

A task not associated with a terminal
that is initiated as a result of an
expired DFHIC TYPE=PUT request can
access only the single physical data
record associated with the original
request. It does this by issuing one
DFHIC TYPE=GET macro. The storage
occupied by the data associated with the
task is released upon execution of the
DFHIC TYPE=GET request, or upon
termination of the task (normally or
abnormally) if no DFHIC TYPE=GET macro
is executed prior to termination.

A task associated with a terminal that
is initiated as the result of an expired
DFHIC TYPE=PUT macro, or that is active
at the time of expiration of a DFHIC
TYPE=PUT macro, can access all data
records associated with expired DFHIC
TYPE=PUT macros having the same
transaction identification and terminal
identification. Therefore, a task
associated with a terminal can retrieve
all data made available to the terminal
and the task up to the current time by
issuing consecutive DFHIC TYPE=GET
macros.

Expired data records are presented to
the task upon request in expiration time
sequence. (Note that the data record is
obtained from temporary storage using

the REQID of the original DFHIC TYPE=PUT
request as the temporary storage
DATAID.) The storage occupied by the
single data record associated with a
DFHIC TYPE=PUT request is released after
the data has been retrieved by a DFHIC
TYPE=GET request or upon termination of
CICS. Data passed in subsequent expired
DFHIC TYPE=PUT requests specifying the
same terminal identification and
transaction identification can be
retrieved in response to DFHIC TYPE=GET
requests by the same task if that task
is still active at their expiration
times. Otherwise, such a DFHIC TYPE=PUT
request causes a new task to be
initiated.

When all passed data for which specified
times have expired has been retrieved,
CICS provides an end-of-data response at
TCAICTR (for assembler language or PL/I)
or TCAICRC (for COBOL) in response to a
DFHIC TYPE=GET macro.

The following example shows how to
request retrieval of a time-ordered data
record into a data area specified in the
request:

DFHIC TYPE=GET,ICDADDR=DATAFLD

The following examples show how to
dynamically request retrieval of a
time-ordered data record. The address
of the storage area reserved for the
data record is placed in TCAICDA prior
to the issuance of the DFHIC TYPE=GET
macro.

ASM:
MVC TCAICDA,=A(DATAFLD)
DFHIC TYPE=GET,ICDADDR=YES
COBOL:
MOVE DATADDR TO TCAICDA.
DFHIC TYPE=GET, ICDADDR=YES
PL/1:

TCAICDA=ADDR(DATAFLD);

DFHIC TYPE=GET,ICDADDR=YES

CANCEL A REQUEST FOR TIME SERVICES
(TYPE=CANCEL)

DFHIC TYPE=CANCEL
[,REQID={name|YES}]
[, NORESP=symb-addr]
[, INVREQ=symb~addr]
[,NOTFND=symb-addr]
[, ERROR=symb-addr]l

This macro specifies that a request of
one of the following types is to be
acted upon as follows:

1. DFHIC TYPE=MWAIT issued by another
task (now suspended) is to be
treated as though expired.

2. DFHIC TYPE=POST issued by this task
is to be removed from the system.

3. DFHIC TYPE=POST issued by another
task is to be treated as though
expired.

4. DFHIC TYPE=INITIATE is to be removed
from the system.

5. DFHIC TYPE=PUT is to be removed from
the system.

The effect of the cancellation is
dependent on whether a request
identification is specified for the
DFHIC TYPE=CANCEL request and on the
type of service request being canceled.

Chapter 5.2. Interval Control (DFHIC Macro) 215

Cancel an Interval Control POST Request

A DFHIC TYPE=POST request can be
canceled by the originating task or by
another task through use of the DFHIC
TYPE=CANCEL macro.

When the originating task cancels a
DFHIC TYPE=POST request, no request
identification should be specified for
the cancellation request. This
cancellation request can be made either
before or after expiration of the
original request. In either case, the
storage reserved for the timer event
control area is released, and all
references to the original request are
removed from the system.

When a task other than the originating
task cancels a DFHIC TYPE=POST request,
the request identification of that
request must be specified. The effect
of the cancellation is the same as an
early expiration of the original DFHIC
TYPE=POST request. That is, the timer

I-0 ERROR RETRY (TYPE=RETRY)

DFHIC TYPE=RETRY
[,RELEASE=NO1]
[, NORESP=symb-addr]
[, INVREQ=symb-addr]
[,NOTFND=symb—addr]
[, IOERROR=symb-addr]
[, ERROR=symb-addr]

CICS attempts to retrieve the data
record whose symbolic eight-character
identification is specified at TCAICQID,
and place it into the data area
specified at TCAICDA. These fields are
preset by CICS at the time the I/0 error
response is returned to the application
program.

TEST RESPO

a for the originating
task is posted as though the original
expiration time had been reached.

Cancel an Interval Control WAIT Request

A DFHIC TYPE=WAIT request can only be
canceled prior to its expiration, and
only by a task other than the task that
issued the DFHIC TYPE=WAIT (the
originating task is suspended for the
duration of the request). The request
identification of the suspended task
must be specified.

The effect of the cancellation is the
same as an early expiration of the
original DFHIC TYPE=WAIT or DFHKC
TYPE=CHAP request. That is, the
originating task resumes control (based
on its normal dispatching priority) as
though the original expiration time had
been reached.

Cancel an Interval Control INITIATE or
PUT Request

A request identification must be
specified when the DFHIC TYPE=CANCEL
macro is used to cancel a DFHIC
TYPE=INITIATE or DFHIC TYPE=PUT request.

The effect of the cancellation is to
remove the original request from the
system, treating the original request as
though it had never been made. The
cancellation request is effective only
prior to expiration of the original
request.

SERVICES (TYPE=CHECK)

DFHIC TYPE=CHECK
[, NORESP=symb-addr]
[, INVREQ=symb-addr]
[,EXPIRD=symb-addr]
[, TRNIDER=symb-addr]
[, TRMIDER=symb-addr]l
[, NOTFND=symb-addr]
[, ENDDATA=symb-addr]
[, IOERROR=symb-addr]
[, TSINVLD=symb~addr]
[, ERROR=symb-addr]

INTERVAL CONTROL RESPONSE CODES

The assembler language or PL/I
programmer can access interval control
response codes at TCAICTR; the COBOL
programmer can access interval control
response codes at TCAICRC. The possible
response codes and the conditions to
which they correspond are identified in
the right-hand columns of Figure 24 on
page 217. DFHIC macros for which the
conditions are applicable are shown at
the left.

If the application programmer does not
check for a particular response to his
service request, and the exception
condition corresponding to that response
occurs, program flow proceeds to the
next sequential instruction in the
application program.

The following examples show how to
examine the response code provided by
CICS at TCAICTR (for assembler language
or PL/I) or TCAICRC (for COBOL) and
transfer control to the appropriate
user-written exception-handling routine.

216 CICS/VS Application Programmer's Reference Manual (Macro Level)

The alternative approach available to
COBOL programmers is also shown.

ASM: Alternatively, the COBOL programmer may
DFHIC TYPE=GET,ICDADDR=DATAFLD make use of the CICS generated condition
gél ESS£CTR,X'OO’ names to test responses. For example:
DFHPC TYPE=ABEND,ABCODE=TIME IF ICNORESP THEN GO TO GOOD.

GOOD DS OH .

COBOL: PL/1:

DFHIC TYPE=GET, ICDADDR=DATAFLD DFHIC TYPE=GET, ICDADDR=DATAFLD
IF TCAICRC = LOW-VALUES IF TCAICTR='0'B THEN GO TO GOOD;
THEN GO TO GOOD DFHPC TYPE=ABEND

ELSE NEXT SENTENCE. G0OD:

DFHPC TYPE=ABEND .

GOOD.

Time Services

Request by Condition Response Code

DFHIC Macro

Assembler| COBOL PL/I

ALL NORESP XT00° LOW-VALUES 00000000

(Normal response) (ICNORESP)
GET, CHECK ENDDATA X'01°® 12-1-9 00000001
(End of data condition) (ICENDDATA)

PUT,GET,RETRY, IOCERROR X'04" 12—-6-9 00000100

CHECK (INPUT/0utput error) (ICIOERROR)

INITIATE, PUT, TRNIDER X'11e 11-1-9 00010001

CHECK (Transaction (ICTRNIDER)

identification error)

INITIATE, PUT, TRMIDER Xriz2® 11-2-9 00010010

CHECK (Terminal identification (ICTRMIDER)

error)
GET, CHECK TSINVLD X'1l4" 11-69-9 00010100
(No temporary storage CICTSINVLD)
support)
WAIT,POST, CHECK EXPIRD Xr20° 11-0—-1-8—9 00100000
(Expired) (ICEXPIRD)
GET, CANCEL, NOTFND Xrgl1? 12-0-1 10000001
RETRY, CHECK (Not found) (ICNOTFND)
ALL INVREQ X'FF' |12-11-0-7—-8-9] 11111111}
(Invalid request) (ICINVREQ)

ALL ERROR (Note 2) (Note 2) (Note 2)
(Any response other than
NORESP)

Notes:

1. The names enclosed in parentheses in the COBOL column indicate the condition
names generated by CICS. These names may be used in testing for the
conditions in a COBOL program.

2. The test for the ERROR response is satisfied by a not equal condition; that
is, not X'00', not LOW-VALUES, or not 00000000 for assembler language, COBOL,
and PL/I, respectively.

Figure 24. Interval Control Response Codes

Chapter 5.2. Interval Control (DFHIC Macro)

217

OPERANDS OF DFHIC MACRO

ENDDATA=symb~-addnr
specifies the entry label of the
user-written routine to which
control is to be passed if no more
data is stored for the task issuing
a DFHIC TYPE=GET request. It can
be considered a normal end-of-file
response when retrieving sequential
time-ordered data records.

ERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if any of
the response conditions other than
NORESP occurs.

EXPIRD=symb=-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the time
specified in a DFHIC TYPE=POST or
DFHIC TYPE=WAIT request has_ explred
at the time

FORM=
indicates which time-of-day
representation is desired.

BINARY
specifies that a binary
representation of time of day
(a four-byte positive value in
hundredths of a second) is to
be updated and retained in
CSACTODB.

PACKED
specifies that the binary
representation of time of day
(described above) and the
packed decimal representation
(a four-byte positive value of
the form HHMMSSt+ where
seconds are truncated to
tenths of a second) are to be
updated and retained in
CSACTODB and CSATODP
respectively.

Note: COBOL and PL/I
programmers should be aware
that the zone portion of the
low-order byte of this
positive number contains
hexadecimal F rather than C or

ICDADDR= v
specifies the location of the data
to be stored for the task to be
initiated at some future time.

symb~-addr
is the symbolic address of the
storage area containing the
data to be made available to
the task.

YES
indicates that the symbolic
address of the storage area

containing the data has been
placed in TCAICDA.

If no data is to be passed,
DFHIC TYPE=INITIATE rather
thag DFHIC TYPE=PUT should be
use

INTRVAL=

specifies the interval of time that
is to elapse before CICS initiates
a task, or before CICS posting is
to occur, or for which a task is to
be suspended.

numeric value
is of the form HHMMSS, where
HH represents hours from 00 to
99, MM represents minutes from
00 to 59, and SS represents
seconds from 00 to 59. This
numeric value is added to the
current clock time by CICS
when the associated macro is
executed to calculate the time
—{clock time) when the
task is to be initiated or
posted, or when processing of
the task is to be resumed.
When used with TYPE=INITIATE,
if the specified interval is
zero, or if both INTRVAL and
TIME are omitted, the task is
initiated immediately.

YES
indicates that the interval of
time (in packed decimal form,
HHMMSS+) has been placed in
TCAICRT.

If this operand is specified, the
TIME operand cannot be specified.

INVREQ=symbh-addr

specifies the entry label of the
user-written routine to which
control is to be passed if an
invalid type of request was
received for processing by the
interval control program.

IOERROR=symb=-addr

specifies the entry label of the
user-written routine to which
control is to be passed if an
input/output error occurs during a
DFHIC TYPE=GET or DFHIC TYPE=PUT
operation on auxiliary storage.

The DFHIC TYPE=RETRY macro can be
used in the routine for handling
DFHIC TYPE=GET input/output errors.

One of the causes of this error is
during a TYPE=PUT if there is
insufficient auxiliary temporary
storage available to hold any data
which is to be passed. See the
appropriate CICS Installation and
Operations Guide. discussion of
temporary storage for further
details of auxiliary temporary
storage requirements.

218 CICSsVs Application Programmer's Reference Manual (Macro Level)

NORESP=symb-addr

specifies the entry label of the
user-written routine to which
control is to be passed if no error
occurs. NORESP signifies "normal
response.™

NOTFND=symb-addr

specifies the entry label of the
user-written routine to which
control is to be passed if the
request identification specified in
a DFHIC TYPE=CANCEL macro fails to
match an unexpired time-ordered
request. It is also applicable to
DFHIC TYPE=GET or DFHIC TYPE=RETRY
requests and signifies that the
time-ordered data stored for
retrieval through the DFHIC
TYPE=PUT macro cannot be located
using the unique request
identification contained in
TCAICQID at the time of this
request. This condition occurs on
a retrieval operation if some prior
task retrieved the data stored
under the request identification
directly through temporary storage
facilities and then released the
data area. It also occurs if the
request identification associated
with the original DFHIC TYPE=PUT
request fails to remain a unique
identification.

RELEASE=NO

indicates that CICS is not to
release the record from temporary
storage after obtaining the record
for the application program.

Upon completion of a successful
DFHIC TYPE=GET,RELEASE=NO request,
CICS places the identification of
the temporary-storage record in
TCAICQID. Using this
identification, the user can
retrieve or release the record from
temporary storage through the DFHTS
macro; the record is not available
to any subsequent DFHIC get
requests.

This operand is valid only for a
retry of a DFHIC TYPE=GET request.

REQID=

is an optional ouperand used to
assign a unique request
identification to this request, as
a means of symbolically identifying
the request. It should be used if
the application programmer wishes
to provide another task with the
capability of canceling an
unexpired WAIT reaquest (see the
discussion of DFHIC TYPE=CANCEL,
earlier in the chapter). The data
is put in temporary storage with
this identification.

name o
is a unique identifier, up to
eight characters in length,

selected for this request by
the application programmer.

YES
indicates that an
eight-character request
identification has been placed
in TCAICQID by the application
program.

"prefix’
is a two-character (including
blanks) prefix to be affixed
to the request identification
generated by CICS. 1If
REQID='' is specified, the
prefix is assumed to be in the
two-byte field TCAICQPX.

If this operand is omitted, CICS
generates a unique request
identification in the form
"DFNNNNNN"; the prefix is DF.

TIMADR=

is used when the time of day is to
be returned in an application
programmer-selected four-byte
field. For FORM=BINARY, the binary
representation is returned; for
FORM=PACKED, the packed decimal
representation is returned.

symb-addnr
is the symbolic address of the
field in which the time of day
is to be made available to the
application program.

YES
indicates that the symbolic
address of the field for the
time of day is in TCAICDA.

If this operand is omitted, the
fields of the CSA are updated, but
the time of day is not placed in
another field for reference by the
application program.

TIME=

specifies the time of day at which
CICS is to initiate the requested
service. See the section
"Expiration Times"”™ earlier in the
chapter.

numeric value
is of the form HHMMSS, where
HH represents hours from 00 to
99, MM represents minutes from
00 to 59, and SS represents
seconds from 00 to 59.

YES
indicates that the time of day
(in packed decimal form,
HHMMSS+) has been placed in
TCAICRT.

If this operand is specified, the
INTRVAL operand cannot be
specified.

Chapter 5.2. Interval Control (DFHIC Macro) 219

TRANSID=name

is the symbolic transaction
identification of the task to be
initiated. If this operand is
omitted, the transaction
identification is assumed to be in
TCAICTI.

TRMIDER=symb=-addr

specifies the entry label of the
user-written routine to which
control is to be passed if the
symbolic terminal identification
specified in the DFHIC
TYPE=INITIATE or DFHIC TYPE=PUT
request cannot be found in the
terminal control table (TCT).

TRMIDNT=

is the symbolic terminal
identification of the terminal
associated with the task to be
initiated. This operand is
required when the task to be
initiated must communicate with a

terminal; it should be omitted
otherwise.

TRNIDER=symb-addr

specifies the entry label of the’
user-written routine to which
control is to be passed if the
symbolic transaction identification
specified in a DFHIC TYPE=INITIATE
or DFHIC TYPE=PUT request cannot be
found in the program control table.

TSINVLD=symb-addr

specifies the entry label of the
user-written routine to which
control is to be passed if the CICS
temporary storage program does not
support a DFHTS TYPE=GET request
issued by the CICS interval control
program. This situation can occur
when a dummy temporary storage
program is included in the current
CICS system in place of a
functional temporary storage
program.

220 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 5.3. TASK CONTROL (DFHKC MACRO

Task management provides the capability
to process transactions (tasks)
concurrently. Transactions are
scheduled, through task control, and
processed according to priorities
assigned by the user. Control of the
processor is given to the highest
priority task that is ready to be
processed. Control of the processor is
returned to the operating system when no
further work can be done by CICS or by
user-written application programs.

When a transaction is initiated in CICS,
task control dynamically allocates
storage for the task control area (the
TCA), places the task in the dispatching
priority queue, obtains the
identification of the program initially
required to process the task from the
program control table (the PCT), and
transfers control to program control.

The task management macro (DFHKC) is
used to:

L Initiate a task
L Change the priority of a task
U Synchronize a task

] Synchronize the use of a resource by
a task

U Purge a task on system overload.

The application programmer must specify
parameter values when using the DFHKC
macro. The values can be specified in
either of two ways:

1. By including the parameters in
operands of the DFHKC macro by which
task control services are requested,
or

2. By coding instructions that place
the parameter values in fields of
the TCA prior to issuing the DFHKC
macro.

The second method adds flexibility by
letting the programmer vary the
parameter values of a single DFHKC macro
to meet the needs of a given progranm.

INITIATE A TASK (TYPE=ATTACH)

DFHKC TYPE=ATTACH
[, FCADDR=symb-addr]
[, TRANSID=namel

This macro causes task control to obtain
the TCA for a task and insert the task
in the dispatching priority queue
according to the overall transaction
processing priority of the task. This
macro is intended to be used by other
CICS control modules. However, it can
also be used by the application
programmer to initia