
---------- -----5 :=:. 55 ------~-,-

Customer
Information
Control
System
CICSNS

Licensed Program
Version 1.7

Program Numbers
5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/OOS/VS)

Application
Programmer's
Reference
Manual
(Macro Level)

SC33-0079-5

Sixth Edition (July 1987)

This edition applies to Version 1 Release 7 (Version 1.7) of the
IBM licensed program Customer Information Control System/Virtual
Storage (CICS/VS), program numbers 5740-XXI (CICS/OS/VS) and
5746-XX3 (CICS/DOS/VS), and to all subsequent releases and
modifications until otherwise indicated in new editions or
technical newsletters.

This edition is based on SC33-0079-3, which applied to
CICS/OS/VS Version I Release 6 and to CICS/DOS/VS Version 1
Release 6. Changes from that edition are indicated by vertical
lines to the left of the changes. The 1.6 edition remains
applicable and current for CICS/VS 1.6 users, and can now be
ordered by using the temporary order number STOO-I070.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370, 30xx, and 4300
Processors Bibliography, GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the addresses given below.
Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed either toz

International Business Machines Corporation, Department 6RIH,
180 Kost Road, Mechanicsburg, PA 17055, U.S.A.

or to:

IBM United Kingdom laboratories limited, Information Development,
Mail Point 095, Hursley Park, Hinchester, Hampshire, England,
S02l 2JN.

IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to
you.

This publication contains sample programs. Permission is hereby
granted to copy and store the sample programs into a data
processing machine and to use the stored copies for study and
instruction only. No permission is granted to use the sample
programs for any other purpose.

No other part of this publication may be reproduced in any form
or by any means, including storing in a data processing machine,
without permission in writing from IBM.

THE PUBLICAtION OF THE INFORMATION CONTAINED HEREIN IS NOT
INTENDED TO AND DOES NOT CONVEY ANY RIGHTS OR LICENSES, EXPRESS
OR IMPLIED, UNDER ANY IBH PATENTS, COPYRIGHTS, TRADEMARKS, MASK
WORKS OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS.

© Copyright International Business Machines Corporation 1977,
1978, 1980, 1982, 1983, 1985, 1987

PREFACE

This publication describes the IBM
Customer Information Control
System/Virtual Storage (CICS/VS) macro
level application programming interface;
it contains introductory and reference
information necessary to prepare
assembler language, COBOL, and Pl/I
application programs, using CICS macros,
to execute under either of two IBM
licensed programs: CICS/OS/VS (5740-XXl)
or CICS/DOS/VS (5746-XX3).

The publication is intended primarily
for use by application programmers, but
will be useful also for system
programmers and system analysts.

A knowledge of the concepts and
terminology introduced in the Customer
Information Control System/Virtual
Storage (CICS/VS) General Information
manual is required.

From CICS/VS Version 1 Release 6
onwards, enhancements to the CICS
licensed program for application program
use will, in general, only be provided
at the command level interface. This
interface is simpler and more usable
than the macro level interface and can
help increase application programmer
productivity and reduce coding errors.

However, for 1.7, the manual is issued
with the minimum number of changes to
make it usable by both CICS/OS/VS and
CICS/DOS/VS users who have migrated to
1.7. The opportunity has also been
taken to correct errors and incorporate
readers' comments.

This pUblication consists of eight
parts, the first seven comprising one or
more chapters and the eighth containing
appendixes. Each of the first seven
parts (except Part 1) contains
information on a particular topic, both
procedural and reference. In general,
each chapter consists of the following:

•

•

A brief introduction to the
facilities available by specifying
the macros that are described in
detail in the remainder of the
chapter.

The syntax of each macro in the
standard form (described in Chapter
1.2).

• The operands, in alphabetical order,
that can be specified with the
macros.

Where appropriate, examples in the three
programming languages (assembler
language, COBOL, and Pl/I) that can be
used with CICS have been included.

Part 1 is an introduction to macro level
application programming. It compares
the CICS DB/DC system with the
conventional batch system of data
processing. It also describes the
general format of a CICS macro and
explains the syntax notation used
throughout the publication.

Part 2 describes symbolic storage
definition. This, together with
addressability, must be specified in the
application program to enable the
application program to be executed under
CICS. The preparation of an application
program for execution is described in
the appropriate CICS Installation and
Operations Guide.

Part 3 describes files and data bases:
file control (including browsing) and
Dl/I services.

Part 4 describes data communication
operations: terminal control, basic
mapping support (BMS), and batch data
interchange. You should refer to the
appropriate CICS Application
Programmer's Reference Manual (Command
level) for descriptions of the
additional BMS attributes that are new
for this release.

Part 5 describes control operations:
interval control, task control, program
control, storage control, transient data
control, and temporary storage control.

Part 6 describes built-in functions:
table search, phonetic conversion, data
field verification, data field edit, bit
manipulation, input formatting, and
weighted retrieval.

Part 7 describes error handling and
debugging, trace services, dump
services, journal services, and
recovery/restart services.

Part 8 consists of appendixes. These
include sample programs, BMS examples,
fields that make up the application
programming interface, and translate
tables.

Experience in writing programs in
assembler language, COBOL, or in Pl/I is
assumed. (Note: in some places in the
publication, ASM is used as the
abbreviation for assembler language.)

In this publication, the term VTAM
refers to the record interface of
ACF/TCAM (CICS/OS/VS only), and to
ACF/VTAM and ACF/VTAME (CICS/DOS/VS
only).

Preface iii

The term TCAM refers both to TCAM and to
the DCB Interface of ACF/TCAM.

The term BTAM refers to BTAH (CICS/OS/VS
only) and to BTAM-ES (CICS/DOS/VS only).

The term DAM refers to BDAM (CICS/OS/VS
only) and to DAM (CICS/DOS/VS only).

For more information about CICS and
related subjects discussed in this

publication, the reader is referred to
the pUblications listed in the
bibliography, particularly to the
appropriate Facilities and Planning
~, which provides a good overall
description of CICS.

Details of system requirements and a
glossary of terms applicable to CICS ara
provided in the CICS/VS General
Information manual.

iv CICS/VS Application Programmer's Reference Manual (Macro level)

CONTENTS

Part 1. Introduction

Chapter 1.1. Macro-Level Application
Programming • • • • • • • • •

Chapter 1.2. Macro Format and Syntax
Notation • • • • • • • • •

Syntax Notation • • • • •

Chapter 1.3. Programming Techniques
and Restrictions • • • • •

Application Program Packaging
Quasi-Reenterability ••••
Storage Definition ••
Program Initialization
Restrictions

ASM
COBOL
Pl/I
Link-Editing ..•
Object Program Size .•••.
Entry Point Address ••••.
BMS Map Size

Assembly-Time Service (DFHCOVER
Macro) . . . • . . • • •

Testing Responses to Macros

Part 2. storage Definition

Chapter 2.1. Introduction to
• •

storage Definition . . .
CICS Storage Areas . ..

Copying Symbolic Storage
Definitions .•.•.

Addressability•.
Chaining of CICS Storage Areas
Required Storage Areas

Common System Area (CSA)
Common Work Area (CWA)

Task Control Area (TCA)
Transaction Work Area (TWA)

Chapter 2.2. Storage Definition -
Assembler Language •••

Storage Defined During
Initialization•••

Common System Area (CSA)
Terminal Control Table Terminal

Entry (TCTTE) .•.....•
storage Defined During Execution

Task Control Area (TCA)
Terminal Input/Output Area (TIOA)
File Input/Output Area (FIOA)
File Work Area (FWA) ••.•.
VSAM Work Area (VSWA) ...
Transient Data Input Area (TDIA)
Transient Data Output Area (TDOA)
Temporary Storage Input/Output

Area (TSIOA) • ...•..
Storage Accounting Area (SAA)
Journal Control Area (JCA)

Example of CICS Assembler Language
Application Program ..• ..

Chapter 2.3. storage Definition -
COBOL ••••••• • • •

Storage Defined During
Initialization

1

3

9
10

11
13
14
14
14
15
15
15
16
17
17
17
17

17
17

19

21
21

24
24
24
24
25
25
25
27

29

29
29

29
29
29
30
30
30
30
31
31

31
32
32

32

35

35

Common System Area (CSA)
Terminal Control Table Terminal

Entry (TCTTE)
Storage Defined During Execution

Task Control Area (TCA) ...
Terminal Input/Output Area (TIOA)
File Input/Output Area (FIOA)
File Work Area (FWA) •....
VSAM Work Area (VSWA)
Transient Data Input Area (TDIA)
Transient Data'Output Area (TDOA)
Temporary Storage Input/Output

Area (TSIOA)•
Storage Accounting Area (SAA)
Journal Control Area (JCA)

Additional Guidelines •...•
Example of CICS COBOL Application
Program •....••.•...

Chapter 2.4. storage Definition -
PL/I •••••••••••

Storage Defined During
Initialization ...

Common System Area (CSA) ...
Terminal Control Table Terminal

Entry (TCTTE) ••
Storage Defined During Execution

Task Control Area (TCA)
Terminal Input/Output Area (TIOA)
File Input/Output Area (FIOA)
File Work Area (FWA)
VSAM Work Area (VSWA) . ..
Transient Data Input Area (TDIA)
Transient Data Output Area (TDOA)
Temporary Storage Input/Output

Area (TSIOA) .•.. .•
Storage Accounting Area (SAA)
Journal Control Area (JCA) ..

Example of CICS Pl/I Application
Program • • • . . .

Part 3. Files and Data Bases •
Chapter 3.1. Introduction to Files
and Data Bases •• • • • •

File Control Macro •. .
Dl/I Services .•.••.

Chapter 3.2. File Control (DFHFC
Macro) ••••••••••••

Exclusive Control Deadlocks
Browsing
Alternate Indexing •...
Record Identification Field
DAM Data Sets
Direct Retrieval (TYPE=GET)

Direct Retrieval (Read-Only)
Direct Retrieval (VSAM Locate

Mode) •
Direct Retrieval (for Update)

Direct Addition or Update
(TYPE=PUT) . .

Direct Deletion, VSAM Only
(TYPE=DELETE)

Obtain a File Work Area
(TYPE=GETAREA) •.•

Release Storage/Exclusive Control
(TYPE=RELEASE)

35

35
36
36
36
36
37
37
37
37

38
38
38
38

39

41

41
41

41
41
41
42
42
42
43
43
43

43
44
44

44

47

49
49
49

51
52
53
53
S3
S4
56
57

59
61

62

65

6S

68

Contents v

Initiate Browse CTYPE=SETL)
Forward Browse CTYPE=GETNEXT)
Backward Browse, VSAM and Assembler

Language Only CTYPE=GETPREV)
Terminate Browse CTYPE=ESETL)
Reset Browse (TYPE=RESETL) .
Test Response to a Request for File
Services (TYPE=CHECK)

File Control Response Codes
Operands of DFHFC Macro

Chapter 3.3. DL/I Services •
Obtaining Addresses of Program

Communication Blocks
DFHFC Macro (CICS/OS/VS Only)
DL/I Call statement CCICS/DOS/VS
or CICS/OS/VS) ..•...•

Building Segment Search Arguments
Acquiring an I/O Work Area
Requesting DL/I Services· • • • •

DFHFC Macro (CICS/OS/VS)
DL/I Call Statement CCICS/OS/VS
or CICS/DOS/VS) 0......

Releasing a PSB in the CICS
Application Program . 0 • 0 •

DFHFC Macro (CICS/OS/VS Only)
DL/I Call Statement CCICS/DOS/VS
or CICS/OS/VS) 0.... 0 .

DL/I Services Response Codes
Test Response to a DL/I Request

(TYPE=CHECK) .•• 0 0 0 • • •

DL/I Requests in an Assembler
Language Program CCICS/OS/VS)

DL/I Requests in a COBOL Program
(CICS/OS/VS) . 0 0 0 0 0 0 • 0

DL/I Requests in a PL/I Program
(CICS/OS/VS) 0 0 0 0 0 0 •

Operands of DFHFC Macro (DL/I)

Part 4. Data Communication
Operations •••••••

Chapter 4.1. Introduction to Data
Communication Operations

Chapter 4.2. Terminal Control
(DFHTC Macro) •••••••••

Facilities for All Terminals and
Logical Units . 0 o. ••

Read Data from a Terminal or lU
Write Data to a Terminal or lU
Write Data and Read Reply
Synchronize Terminal I/O (WAIT)
Converse with a Terminal or LU
Disconnect a Switched Line
Examples o. 0 • 0 0 • • 0 0 0

Facilities for Logical Units
Send/Receive M~de
Overlapping Logical Unit Output
Chaining of Input Data
Chaining of Output Data
Chain Assembly o. 0 •

Logical Record Presentation
Definite Response 0"

Function Management Header CFMH)
Inbound FMH . 0 00 0 •

Outbound FMH 0 0 • 0

End of Data Set (EODS)
Logical Device Code (lDC)
Unsolicited Input
Signal Commands from Logical

Units
Bracket Protocol

69
72

75
76
77

80
80
81

87

87
87

88
88
89
89
90

90

90
90

91
91

91

93

95

97
98

101

103

105

106
106
107
107
108
108
108
109
110
110
110
III
III
111
112
112
112
113
113
113
113
114

114
114

Terminal-Oriented Task
Identification •••.••

Syntax of the DFHTC Macro .••
TCAM Supported Terminals and

Logical Units (CICS/OS/VS Only)
BTAM Programmable Devices
Teletypewriter Programming

Message Format . • • .
Message Length . • 0 •

Connection Through VTAM
System/3•••.
System/370 •.. 0

System/7 .. 0 • 0

2260 Display Station
2265 Display Station
2740 Communication Terminal
2741 Communication Terminal

Read Attention 0 0 •

Write Break (CICS/OS/VS Only)
2770 Data Communication System
2780 Data Transmission Terminal
2980 General Banking Terminal

Passbook Control•
Segmented Writes Control
Data Handling 0 0 • • 0 0 0

Example of Application Program
for the 2980 • • . . .

3270 Information Display System
(BTAM and TCAM) • 0 ••

3270 Logical Unit
3270 LUTYPE2 Logical Unit
3270 LUTYPE3 Logical Unit
3270 SCSPRT logical Unit 0 •••

3600 Finance Communication System
(BTAM)
Input . 0 0 • • • • •

Output •.. •••
Resend Message

3600 (3601) logical Unit
3600 Pipeline logical Unit
3600 (3614) logical Unit
3630 Plant Communication System
3650 Host Command Processor
logical Unit • 0 • 0 •••••

3650 Host Conversational (3270)
Logical Unit o. •
Output Device Control
The Erase Function ...••.

3650 Pipeline Logical Unit
3650 Host Conversational (3653)
logical Unit 0 •••• 0 •••

3650 Interpreter logical Unit
3660 Supermarket Scanning System

(BTAM) •... .•.•
3735 Programmable Buffered
Terminal 0" 0 • • • •

Autoanswer •. 0 • • • •

Autocall and Time-Initiated
3740 Data Entry System

Batch Mode Applications
3767 Interactive Logical Unit
3770 Interactive Logical Unit
3770 Batch and Batch Data

Interchange logical Unit
3770 Full Function logical Unit
3780 Data Communications Terminal
3790 Inquiry Logical Unit
3790 Full Function logical Unit
3790 (SCS Printer) Logical Unit
3790 (3270-Display) and 3790

(3270-Printer) logical Units
3790 Batch Data Interchange

Logical Unit 0 0 • 0

7770 Audio Response Unit

vi CICS/VS Application Programmer's Reference Manual (Macro Level)

115
lIS

117
117
117
118
118
118
119
119
119
120
120
120
120
121
121
122
122
122
122
123
123

124

125
126
127
127
127

128
128
128
129
129
129
129
129

129

129
130
130
130

130
130

130

130
131
131
131
131
132
132

132
132
133
133
133
133

133

133
134

LUTYPE4 Logical Unit
Other CICS-Supported Terminals
TCAM Supported Logical Units

(CICS/OS/VS Only)
Operands of DFHTC Macro

Chapter 4.3. Basic Mapping Support
Advantages of BMS

Device Independence
Format Independence

Facilities of BMS•
Data Mapping and Formatting
Terminal Paging ••..•
Message Routing

Mapping Concepts and Techniques
Map Definition
Input Mapping . • • • • .
Output Mapping ...
Input/Output Mapping
Map Retrieval . . • •
Copying Symbolic Description

Maps • •
Map Definition Macros

Defining a Map Set (DFHMSD
Macro). . • . • . .

Defining a Map (DFHMDI Macro)
Defining a Field (DFHMDF Macro)

I/O Operations Using BMS Macros
Implied READ/WRITE •.•..
Addressing Input/Output Areas
Non-Terminal-Oriented Tasks
Technique for Setting TCTTEDA
to Binary Zeros in PL/I

DFHBMS Macros • .
Output Operations

Input Mapping without I/O
(TYPE=MAP) ..• .

Input Operations with Mapping
(TYPE=IN)• .

Building Output Pages Using Maps
(TYPE=PAGEBLD)

Map Positioning .•..•..
The Screen Contents •••.
The Trailer Area .. •..
JUSTIFY=FIRST and JUSTIFY=LAST
The LINE Operand . • . .
The COLUMN and JUSTIFY

Operands . .
Page Building Examples
Handling Returned Pages
PAGEBLD Overflow Processing

Building Output Pages without
Using Maps (TYPE=TEXTBLD)

Direct Output (TYPE=OUT)
Terminating a Logical Message

(TYPE=PAGEOUT) .•.•.
Deleting a Logical Message

(TYPE=PURGE)
Message Routing (TYPE=ROUTE)

Disposition and Message
Routing' .•..

Status Flag Byte in
User-Supplied Route List

Checking the Response to a BMS
Request (TYPE=CHECK)

BMS Response Codes
BMS Message Recovery
Terminal Code Table • . . •
Standard Attribute List and
Printer•...

Standard Attention Identifier List
(DFHAID) •

134
134

135
135

143
143
143
143
144
144
144
145
146
147
147
148
149
149

149
150

150
156
161
166
166
167
167

167
167
168

168

168

169
170
170
170
170
171

171
171
172
173

175
175

177

177
178

178

179

180
181
181
181

181

184

Programming Considerations for
Paging Commands on Display
Devices ••....••••

Operands of the DFHBMS Macro

Chapter 4.4. Batch Data
Interchange (DFHDI Macro) •••

Addition of Records to a Data Set
(TYPE=ADD) .• ..•....

Deletion of Records from a Data
Set (TYPE=ERASE) .•••...

Replacement of Records in a Data
Set (TYPE=REPLACE) .••.

Interrogation of Data Set
(TYPE=QUERY) •..••.

Termination of Operations on a
Data Set (TYPE=END) . . .

Abnormal Termination of Operations
on a Data Set (TYPE=ABORT)

Transmission of Data from Host to
Output Devices (TYPE=SEND)

Transmission of Data from Data Set
to Host (TYPE=RECEIVE) .•

Obtaining the Relative Record
Number of Next Record (TYPE=NOTE)

Suspension of Execution of Task
(TYPE=WAIT) ..•....•..

Testing Response to a Request for
Data Interchange Services
(TYPE=CHECK) •.•......

Batch Data Interchange Response
Codes •.....•••.

Operands of DFHDI Macro

Part 5. Control Operations

Chapter 5.1. Introduction to
Control Operations ••••

Chapter 5.2. Interval Control
(DFHIC Macro) •••••••••

Expiration Times
Time-of-Day Updating (TYPE=GETIME)
Delay Processing of a Task

(TYPE=WAIT) . • • . . ~ .
Signal Expiration of a Specified

Time (TYPE=POST) ...•
Initiate a Task without Data

(TYPE=INITIATE) ..••.
Task Initiation with Data

(TYPE=PUT) •......
Retrieve Time-Ordered Data

(TYPE=GET) ...•••..•.
Cancel a Request for Time Services

(TYPE=CANCEL) .• . .
Cancel an Interval Control

POST Request • • • .
Cancel an Interval Control

WAIT Request . . .
Cancel an Interval Control

INITIATE or PUT Request
I/O Error Retry (TYPE=RETRY)
Test Response to a Request for

Time Services (TYPE=CHECK)
Interval Control Response Codes
Operands of DFHIC Macro ..•.

Chapter 5.3. Task Control (DFHKC
Macro) ••••• •••••

Initiate a Task (TYPE=ATTACH)
Change Priority of a Task

(TYPE=CHAP) .. . • .
Synchronize a Task (TYPE=WAIT)

184
185

199

199

199

199

200

200

200

200

200

201

201

201

201
202

205

207

209
209
210

210

211

212

213

214

215

216

216

216
216

216
216
218

221
221

224
224

Contents vii

Synchronize a Task with a
Single Event

Synchronize a Task with One of
a List of Events .••..

Relinquish Control to a Task
of Higher Priority •...

Enqueue Upon a Resource (TYPE=ENQ)
Dequeue Upon a Resource (TYPE=DEQ)
Declare a Task to be Purgeable

(TYPE=PURGE) ..••••• .
Declare a Task to be Nonpurgeable

(TYPE=NOPURGE) ..•••
Operands of DFHKC Macro •.•.

Chapter 5.4. Program Control
(DFHPC Macro) •••••••••

Pass Program Control Anticipating
Return (TYPE=LINK)

Transfer Program Control
(TYPE=XCTL) •... •••

Load a Program (TYPE=LOAD)
Return Program Control

(TYPE=RETURN) ..•••.
Delete a Loaded Program

(TYPE=DELETE)••.
Abnormally Terminate a Transaction

(TYPE=ABEND) •.•.•.••.
Activate or Cancel an Exit for

Abnormal Termination Processing
(TYPE=SETXIT) ••.

Reactivate an Exit for ABEND
Processing (TYPE=RESETXIT) •.

Convert Symbolic Label to Address
(TYPE=COBADDR) • .. •

Test Response to a Request for
Program Services (TYPE=CHECK)

Program Control Response Codes
Operands of DFHPC Macro

Chapter 5.5. storage Control
(DFHSC Macro) •••••••

Obtain and Initialize Main Storage
(TYPE=GETMAIN)

Release Main Storage
(TYPE=FREEMAIN) ...•.

Operands of DFHSC Macro

Chapter 5.6. Transient Data
Control (DFHTD Macro)

Dispose of Data (TYPE=PUT) .
Acquire Queued Data (TYPE=GET)
Force End of Volume on an
Extrapartition Data Set
(TYPE=FEOV)

Purge Intrapartition Data
(TYPE=PURGE) ..

Test Response to a Request for TD
Services (TYPE=CHECK)

Transient Data Response Codes
Operands of DFHTD Macro

Chapter 5.7. Temporary storage
Control (DFHTS Macro) ••

Store Temporary Data as a Single
Unit of Information (TYPE=PUT)

Store Data to a Temporary Storage
Message Set (TYPE=PUTQ)

Retrieve a Single Unit of
Temporary Data (TYPE=GET)

Retrieve Data- from a Temporary
Storage Message Set (TYPE=GETQ)

Release a Single Unit of Temporary
Data (TYPE=RELEASE) •.••••

225

225

225
225
226

227

228
228

231

231

232
233

233

234

234

235

236

237

237
237
238

241

241

242
243

245
246
247

248

249

249
249
250

251

252

253

253

254

255

Purge a Temporary Storage Message
Set (TYPE=PURGE) •.•..

Test Response to a Request for
Temporary Storage Services
(TYPE=CHECK)

Temporary Storage Response Codes
Operands of DFHTS Macro ...•

Part 6. CICS Built-In Functions

Chapter 6.1. Introduction to CICS
Built-In Functions ••••••

Chapter 6.2. storage Definition
for Built-In Functions (DFHBFTCA
Macro) ••••••••••

Chapter 6.3. CICS Built-In
Functions (DFHBIF Macro) •••

Table Search Built-in Function
(TYPE=TSEARCH) ••.••.

Returned Values ...•
Example - Separate Tables
Example - Complex Table

Phonetic Conversion Built-in
Function (TYPE=PHONETIC)

Returned Value
Phonetic Conversion Subroutine

Field Verify Built-in Function
(TYPE=FVERIFY) •...••

Returned Values ..••
Example

Field Edit Built-in Function
(TYPE=DEEDIT) ..•...•.•

Example: •...•••
Bit Manipulation Built-in

Functions
TYPE=BITSETON
TYPE=BITSETOFF
TYPE=BITFLIP
TYPE=BITEST .

Returned Values •.•
Input Formatting Built-in
Functions ...•.

Fixed Format
Positional Format
Keyword Format
Combination Input

Storage Definition
TYPE=DEFLDNM . •.

Required Delimiters
TYPE=INFORMAT

Returned Values
Examples

Weighted Retrieval Built-In
Function
Initiate Weighted Retrieval

(TYPE=WTRETST) . . • . . .
Returned Values .• ...

Establish Selection Criteria
(TYPE=WTRTPARM) ...

Retrieve Selected Records
(TYPE=WTRETGET) ..•
Returned Values

Release Weighted Retrieval
Storage Areas (TYPE=WTRETREL)

Test Response to a Request for
Weighted Retrieval
(TYPE=WTRETCHK)

Weighted Retrieval Response
Codes

Example
Operands of DFHBIF Macro

viii CICS/VS Application Programmer's Reference Manual (Macro Level)

255

255
255
256

259

261

263

265

265
265
265
266

266
266
266

267
267
267

267
267

268
268
268
268
269
269

269
269
269
270
270
271
271
271
271
272
273

273

274
274

275

275
275

276

276

276
277
278

Part 7. Error Handling and
Debugging •••••••••••

Chapter 7.1. Introduction to Error
Handling and Debugging •

Chapter 7.2. Sequential Terminal
Support ••••••••••••

Chapter 7.3. Trace Control (DFHTR
Macro) ••••••••

Trace Table ..•..
Trace Identification

Controlling the Trace
Initiate Trace (TYPE=ON) ..
Terminate Trace (TYPE=OFF) .
Selected Entry Trace (TYPE=ENTRY)
Operands of DFHTR Macro . .

Chapter 7.4. Dump Control (DFHDC
Macro) ••••••••••••

Dump Transaction Storage
(TYPE=TRANSACTION) .. .

Dump CICS Storage (TYPE=CICS)
Dump Transaction Storage and CICS
Storage (TYPE=COMPLETE)

Dump Partial Storage
(TYPE=PARTIAL)

Operands of DFHDC Macro

Chapter 7.5. Journal Control
(DFHJC Macro) •••••••••

Acquire a Journal Control Area
(TYPE=GETJCA). . .•.

Create a Journal Record and Wait
for Output (TYPE=PUT)

Create a Journal Record
(TYPE=WRITE)

Wait for Output of a Journal
Record (TYPE=WAIT)

289

291

293

295
295
296
296
297
297
297
297

299

299
300

300

301
302

305

306

307

308

312

Test Response to a Request for
Journal Services (TYPE=CHECK)

Journal Control Response Codes
Operands of DFHJC Macro . .

Chapter 7.6. Recovery/Restart
(sync Point) Control (DFHSP
Macro) ••••••••••••

Specify a Synchronization Point
(TYPE=USER) ..

Backout Recoverable Resources
(TYPE=ROLLBACK) (ASM Only)

Part 8. Appendixes

Appendix A. Example of a CICS
Application Program ••••••

APpendix B. BMS Map Definition
Example ••••••••••••

Appendix C. Inter-Release
Compatibility •••••••••

Definition of the Application
Programmer Interface

CICS Macros
CICS Control Block Fields and Area
Prefix Fields .. . •

Appendix D. Translation Tables
for the 2980 • • • •

Bibliography
CICS Publications

CICS/VS 1.7
CICS/OS/VS 1.7
CICS/DOS/VS 1.7

Associated Publications
Availability of Publications

Index

. . .

315
315
316

319

319

320

321

323

335

339

339
339

339

347

351
351
351
351
351
352
352

353

Contents ix

FIGURES

1. Conventional Batch Processing 2
2. Transaction Processing of CICS 2
3. CICS Processing of Multiple

Concurrent Transactions 4
4. CICS Transaction Flow .. 5
5. Comparison of Batch and Online

Envi ronments 12
6. Register Usage· under CICS 15
7. Summary of CICS Storage Areas 22
8. CICS System Sections 23
9. Symbolic Names and Base

Addresses of CICS Storage
Areas• 25

10. Chaining of CICS Storage Areas 26
11. Examples of Record

Identification (DAM Data Set) 55
12. CICS-DL/I Interface Response

Codes 92
13. Terminal-Oriented Task

Identification •..• 116
14. Summary of Programmable

Terminal Actions 118
15. DFHMSD Macro (Define a Map

Set) 152
16. DFHMDI Macro (Define a Map) 158
17. DFHMDF Macro (Define a Field) 162

18.

19.
20.

21.
22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

Map Positioning for More than
One Map •.
Page Address list
Overflow Processing by
Application Programs under
BMS
BMS Response Codes . .
How to Examine BMS Response
Codes
Batch Data Interchange
Response Codes ..
Interval Control Response
Codes
Task Synchronization under
CICS
logical Relationship of
Application Programs
ABEND Exit Processing
Selection of Records by
Weighted Retrieval
2980-1 Character
Set/Translate Table
2980-2 Character
Set/Translate Table
2980-4 Character
Set/Translate Table

173
174

176
182

183

202

217

223

232
236

275

347

348

349

Figures xi

SUMMARY OF AMENDMENTS

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE 7

This sixth edition (SC33-0079-S)
provides limited information about the
enhanced features introduced by Version
1 Release 7 for both CICS/OS/VS and
CICS/DOS/VS. This edition also contains
maintenance and editorial updates.

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE 7 (CICS/OS/VS ONLY)

The fifth edition (SC33-0079-4) provided
information about the enhanced features
introduced by CICS/OS/VS Version 1
Release 7, in the area of file control.
This edition also contained maintenance
and editorial updates.

SUMMARY OF AMENDMENTS FOR VERSION 1
""'RELEASE 6

The fourth edition (SC33-0079-3)
contained maintenance and editorial
updates only. The opportunity was taken
to change the format to double column, a
change that involved some reformatting.

Summary of Amendments xiii

Questionnaire Application Programmer's Reference Manual (ML)

(CICS/VS Version 1 Release 7)

To help us produce books that meet your needs, please fill in this questionnaire. It would help us if
you provide your name and address in case we need to clarify any of the points you raise. Please
understand that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

1. Please rate the book on the points shown below

The book is:
accurate 2 3
readable 2 3

well laid out 2 3
well organized 2 3

easy to understand 2 3
adequately illustrated 2 3
has enough examples 2 3

And the book as a whole?

excellent 2 3

2. When using this book, did you find what you were looking for?

What were you looking for?

What led you to this book?

Did you come straight to this book?

3. Which topics does the book handle well?

5. How could the book be improved?

6. How often do you use this book?

4 5 inaccurate

4 5 unreadable

4 5 badly laid out

4 5 badly organized

4 5 incomprehensible
4 5 inadequately illustrated

4 5 has too few examples

4 5 poor

4. And which does it handle badly?

Less than once a month? 0 Monthly? 0 Weekly? 0 Daily? 0

7. What sort of work do you use CICS for?

8. How long have you been using CICS? __ years/months

9. Have you any other comments to make?

Thank you for your time and effort. No postage stamp necessary if mailed in the USA. (Elsewhere,
an IBM office or representative will be happy to forward your comments or you may mail directly to
either address in the Edition Notice on the back of the title page.)

SC33-0079-5

Question na ire

Fold and tape

Fold and tape

Please Do Not Staple

BUSINESS REPLY MAil
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 6 R 1 H,
180 Kost Road,
Mechanicsburg, PA 17055, USA

Please Do Not Stapl,e

111111

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

Name•..........•..........................

==.==® - -------- - --- Job Title , •. Company•.•••...•••• - -- -------------, - Address ;

.. Zip

PART 1. INTRODUCTION

Part 1. Introduction 1

One
Application

Figure 1. Conventional Batch Processing

Data
Base

Figure 2.

Several
Applications

Transaction Processing of CICS

2 CICS/VS Application Programmer's Reference Manual (Macro Level)

Card Reader
Input

Printer
Output

CHAPTER 1.1. MACRO-LEVEL APPLICATION PROGRAMMING

The IBM Customer Information Control I • Control of access to data files or
to a data base System/Virtual storage CCICS/VS) is a

transaction-oriented data base/data
communication CDB/DC) system. It can be • Management of system resources, such

as main storage, to keep the system
in continuous operation

applied to most online IBM System/370
systems, since it offers terminal
facilities for many applications:
message switching, inquiry, data • Assignment of priorities to optimize

use of the processor. collection, order entry, and
conversational and batched data entry.

CICS works with either the Operating
System/Virtual Storage CMVS) or with
VSE/Advanced Functions. It can be
thought of as an extension of the
operating system or as an interface
between the operating system and the
user's application programs. The system
is modular: at system generation or
initialization, an installation can
select the components it needs to tailor
a CICS system for a given application.

In conventional batch processing (see
Figure 1 on page 2), similar
transactions are grouped for processing,
and the application programmer plans a
series of runs to edit input
transactions, update data sets, or write
output reports. Because the programmer
concentrates on manipulating data for
most efficient handling of each
transaction type, the data in batch
processing becomes closely tied to the
program logic and has little value for
other applications.

A realtime DB/DC system differs from
batch processing primarily in the number
and types of activities taking place in
the system at the same time. A
batch-processing system schedules each
application independently and provides
data base support unique to each
application. A DB/DC system controls
many random nonscheduled transactions
for many applications and provides one
integrated data base supporting all the
applications on the system (see Figure 2
on page 2).

The CICS licensed program (either
CICS/OS/VS or CICS/DOS/VS) performs many
functions essential to success in
realtime DB/DC systems. Its major
functions can be summarized as followsa

• Provision of rapid response to
simultaneously active online
terminals

• Control of a telecommunication
network of mixed devices

• Management of a wide mixture of
transactions being serviced by a
variety of application programs at
the same time

With these functions assumed by CICS,
application programmers can concentrate
on their particular applications.
Programming takes less time, debugging
is easier, and implementation time and
costs are reduced accordingly.

A key consideration in selecting a DB/DC
system is its adaptability to present
and future needs. CICS is a family of
systems that provides a DB/DC interface
to IBM System/370 at most levels of the
product line, offering a clear path for
growth or migration of an installation.

Figure 3 on page 4 indicates how CICS
supports the information needs of
multiple applications, independently and
concurrently.

Although application programmers need
not be concerned with details of CICS
structure or performance, they should
have a general understanding of how CICS
components interact to perform essential
processing steps. CICS consists of six
major components, explained in greater
detail in the appropriate CICS Diagnosis
Reference manual, as follows:

• System management

• System services

• System monitoring

• System reliability

• System support

• Application services.

Each of these components is divided into
functions which provide services to CICS
users. The components that most
directly affect the application
programmer are system management, system
monitoring, and system reliability. To
help the application programmer
understand some of the ways in which
CICS assists him, the system management
functions are summarized below.

• Terminal management - provides for
communication between terminals and
user-written application programs
through the terminal control

Chapter 1.1. Macro-level Application Programming 3

u

Device

CICS

Application
Programs

CICS

Data Base

Figure 3.

File Inquiry File Change Report Request

Program A Program B Program C

r----------~----------,
I I I

-~- -~- -~-('1 r ""I r '1
I I I I I

I I I
I Data I I Data I I Data
I Set I I Set I I Set
I A I I B I I c
I I I I I
I I I I I
'- ___ -J l ___ -J 1.. ___ -)

CICS Processing of Multiple Concurrent Transactions

4 CICS/VS Application Programmer's Reference Manual (Macro Level)

I I I I I I r:::::- I PROGRAM I DATA I I MESSAGE (
LIBRARY SETS LOG

\ \ \ ~ \ 1

~ \ ~ .~
TERMINAL TASK PROGRAM USER STORAGE FILE JOURNAL
CONTROL CONTROL CONTROL PROGRAM CONTROL CONTROL CONTROL

TRANSLATE MSG

+ INITIATE TASK ~~VALIDATE

r --­
I

I

I
I
I ,

SCHEDULE
WRITE

TRANSACTION

+ REQUEST
WORKSTORAGE ------------~--------~~~GETSTOrAGE

SCHED NEW TASK =-

• DISPAT,H TASK

SELECT PGM

+
LOAD PGM

WAIT ~-----f-__ -JI
BUILD DATA

~-------r------------.SETSEARCH

KEY I
~----~----------~ REQUEST

INPUT AREA

GET STORAGE~----JI
IL...-__ • READ FILE

RECORD

WAIT ... ~t-------t-----------+------I-----------~-----JI

REQUEST
TERMIN IAL AREA

GET
L...-----.... STORAGE

BUILD TERMINAL I
OUTPUT ... -I----+-----~

• BUILD ACTIVITY
RECORD PUT ACTIVITY

I~----~----------~------------~RECORDTO
LOG J

WAIT ... ·~----~----------~-----------~----------~----------~----~ ..
-- - - - --REQUEST I-----t------------+----------~--~J

TERMINAL WRITE • RErURN
TERMINATE • J

TRANSACTION ... _1-+-----'

I FREE
~---+-----------.... TRANSACTION

STORAGE
TERMINATE I
TASK ... ~I------+-----------~----------~---~

Figure 4. CICS Transaction Flow

Chapter 1.1. Macro-Level Application Programming 5

•

program. This function supports
automatic task initiation (ATI) to
process new transactions. The
testing of application programs is
accommodated by the simulation of
terminals by sequential devices such
as card readers, line printers, tape
units, or disk storage units.

File management - provides for the
addition, update, direct retrieval,
and selective retrieval (browsing)
of data on VSAM and BDAM data sets.
Additional capabilities provided
only for VSAM data sets include
record deletion, skip-sequential
processing, key-ordered mass
insertion, relative byte addressing,
search key high or equal, generic
key, and locate mode processing for
read-only requests.

Optional access to the DL/I facility
of the IBM Information Management
System/Virtual Storage (IMS/VS) is
provided under CICS/OS/VS. Such use
of DL/I requires installation of the
IBM licensed program IMS/VS Data
Base System.

Note: Users of CICS/DOS/VS can
interface with the IBM licensed
program DOS/VS DL/I through DOS/VS
DL/I CALLs, but CICS file control
macros cannot be used.

• Transient data management - provides
for optional queuing of data in
transit between user-defined
destinations. This function
facilitates message switching and
data collection.

• Temporary storage management -
provides an optional general-purpose
"scratch pad" function intended for
video display paging, broadcasting,
data collection suspension,
conservation of main storage,
retention of control information,
and similar. Where multiple records
are used and random access to those
records is required, this function
also provides a queuing facility.

• Storage management - provides
control of main storage allocated to
CICS. Storage acquisition,
disposition, initialization, and
request queuing are among the
services performed by this function.

• Program management - provides a
multiprogramming capability through
dynamic program management while
offering a realtime program fetch
capabi Ii ty.

• Time management - provides control
of variQus task functions (for
example, runaway task control, task
synchronization, and system stall

, detection) based on specified

•

•

intervals of time or the time of
day.

Task management - provides dynamic
multitasking necessary for
effective, concurrent transaction
processing, such as priority
scheduling, transaction
synchronization, and control of
serially reusable resources. This
function controls activities within
the eIes partition or region and is
in addition to the multitasking or
multiprocessing capabilities of the
host operating system.

Journal management - provides for
the creation and management of
special-purpose sequential data
sets, called journals, during
realtime execution of CICS.
Journals are intended for recording
(in chronological order) data that
the user may need in subsequent
reconstruction of data or events.
Examples of such data sets are an
audit trail, a change-file of data
base updates and additions, and a
record of system transaction
activity (often called a log).

• Sync point management - works in
conjunction with other eleS
functions such as transient data
management and file management, to
provide for an emergency restart of
eICS after abnormal termination.
The eIes transaction backout program
(DFHTBP) or a user-written
application program can make changes
to data base data sets or transient
data intrapartition queues for tasks
"in-flight" at time of failure based
on information recorded on a system
log during online execution of CICS.

eleS also provides dump management and
trace management, which are used in
program debugging. eIeS basic mapping
support (BMS) facilitates information
display on a wide variety of terminals
and provides device independence,
terminal paging, and message routing. A
number of built-in functions are
available for use by application
programs. eIeS also provides system
service programming to identify terminal
operators, to give control of the entire
system to a master terminal, to display
realtime system statistics, to intercept
abnormal conditions not handled directly
by the operating system, and to end
operation by collecting statistics,
closing data sets, and returning control
to the operating system.

To provide rapid response to terminal
users, CICS executes in a multitasking
mode of operation within its own
partition or region. Such multitasking
within a partition or region is
analogous to multiprogramming within the
total operating-system environment.
Generally, tasks are initiated as a

6 eICS/VS Application Programmer's Reference Manual (Macro Level)

result of transactions entered at
terminals. Whenever a task is forced to
wait for completion of an I/O operation,
availability of a resource, or some
other cause, processing of another task
within the system is initiated or
continued.

The processing of a typical transaction
is shown in Figure 4 on page 5. Some
general characteristics of application
programs to be run under CICS.and the
use of other functions that it provides
are explained in subsequent parts of
this publication.

Chapter 1.1. Macro-Level Application Programming 7

CHAPTER 1.2. MACRO FORMAT AND SYNTAX NOTATION

Application programs to be executed
under CICS can be written at the macro
level in assembler language, COBOL, or
Pl/I. Regardless of the language used,
it is strongly recommended that CICS is
allowed to perform all supervisory and
data management services for .
applications. Such services can be
invoked by using CICS macros. CICS
macros can also be used to request dump
and trace facilities when testing or
debugging an application program.

Although an application program is not
precluded from direct communication with
the operating system, the results of
such action are unpredictable and
performance may be affected. Such
action also has a limiting effect on
migration from CICS/DOS/VS to
CICS/OS/VS, a growth path that may
become highly advisable for the
CICS/DOS/VS user.

CICS macros are written in a format
similar to assembler language macros, as
follows:

Name Operation Operands Comments

Blank DFHxxxxx One or more Program
or operands comments
Symbol separated

by commas

The name field must not contain a label
if the macro is used in a COBOL or Pl/I
program; however, if a label is desired
for the macro, it may be placed on the
line preceding the macro. For COBOL
programs, the first six positions may
contain a sequence number.

The operation field must begin before
column 16 and must contain the
three-character combination nDFH" in the
first three positions of the operation
field. Up to five additional characters
can be appended to DFH to complete this
symbolic name for the appropriate
program or table. Since DFH is reserved
for CICS macros, no other line may begin
with this three-character combination.

The operands field is used to specify
the services and options to be
performed.

Note that, throughout the remainder of
the manual, the displays of syntax are
reduced to the essentials. The name and
comments fields are not always shown,
neither is the continuation character,
which if needed, must appear in column
72.

The following general rules apply to the
macros desc~ibed in this manual:

1. Operands that are written in
uppercase letters (for example,
TYPE=INITIAl) are to be coded
exactly as shown.

2. Operands that are written as a
combination of uppercase and
lowercase letters separated by an
equal sign are to be coded with the
keyWord on the left as it appears
and an appropriate substitution for
the general class of elements on the
right. For example, if the format
description contains
NORESP=symb-addr, the user may code
NORESP=NORMROUT.

3. Commas and parentheses are coded as
shown. However, the parentheses are
required only when more than one
operand is specified. For example,
the following coding is correct:

TYPE=READ
TYPE=(READ,WAIT)

The commas are used as separators,
but no comma should precede the
first operand entry or follow the
last one inside parentheses.
Similarly, no comma should follow
the last operand coded for a
particular macro.

4. Since a blank character indicates
the end of the operand field, the
operand field must not contain
blanks except after a comma on a
line to be continued or after the
last operand of the macro. The
first operand on a continuation line
must begin in column 16.

S. When a CICS macro is coded on more
than one line, each line containing
part of the macro (except the last
one) must contain a nonblank
character (for example, an asterisk)
in column 72 indicating that the
macro has been continued on the next
line.

6. If a macro that has positional
operands is coded with an invalid
operand, the operand will be
ignored. An error message will not
be issued.

7. If a keyWord is spelled incorrectly,
the operand may be treated as an
invalid positional operand as in
point 6.

8. The rules for writing CICS macro
operands are the same as those for
assembler language macros.

Chapter 1.2. Macro Format and Syntax Notation 9

SYNTAX NOTATION

Throughout this manual, wherever a CICS
macro is presented, the symbols (), I,
[), and ••• are used in defining the
instruction format. These symbols are
not part of the macro and are not coded
by the programmer. Their purpose is to
indicate how the macro may be written,
and they should be interpreted as
follows.

1. Braces () are used to delimit
parameters from which choices are
made. For example,

ARGTYP=(~IRBA)

which indicates that the coding
ARGTYP= must be followed either by
the keyWord KEY or by the keyWord
RBA.

2. The "or" symbol I indicates that a
choice is to be made. For example,

[,INTRVAL={numeric valuelYES»)

means that either "numeric value" or
"YES", but not both, can be
specified in the macro.

3. Square brackets [) denote options.
Anything enclosed in square brackets
mayor may not be coded, depending
on whether or not the associated
option is desired. For example,

MODE=[(~ILOCATE)]

If a default value is assumed by
CICS in the case of an omitted
operand, that default value is
indicated by underlining.

4. An ellipsis ..• (three dots) denotes
that the immediately preceding unit
may appear one or more times in
succession in the macro.

10 CICS/VS Application Programmer's Reference Manual (Macro Level>

CHAPTER 1.3. PROGRAMMING TECHNIQUES AND RESTRICTIONS

Application prog~ams to be run under
CICS may be coded at the macro level in
assembler language, COBOL, or PL/I.
Writing a program to be run under CICS
is not significantly different from
writing a program to be run on any of
numerous computing systems. However,
the CICS user should be aware that CICS
is an online system and that programs
running under CICS operate in an online
environment. Some of the basic
differences between online systems and
the traditional batch processing
environment are summarized in Figure 5
on page 12.

Single threading is the execution of a
program to process inputs to completion,
sequentially. Processing of one input
is completed before another input is
acted upon.

In contrast, multithreading is the
capability of using various sections of
a single program concurrently. Under
CICS, for example, the first section of
an application program may be executing
to process one transaction. When that
section is completed (in general,
signaled by the execution of a CICS
macro that causes a wait), processing of
another transaction using a different
section of code in the same program may
ensue.

Just as there is not usually one clearly
superior, correct way to solve a
problem, so there is not usually one
correct way to write a program to
implement that solution. Nevertheless,
there are good and bad techniques of
programming under CICS. How much time
and thought should be given to
programming style when writing a
program! The answer depends largely on
the expected usage of the program. Will
it be used once a day or once a year!
When used, will it run for two minutes
or five hours! The frequency and length
of use are important factors to consider
when deciding how much time to spend on
programming techniques (that is, to
devising the optimum solution to a
problem).

Some of the basic characteristics of
application programs to be run under
eICS are summarized below. These
characteristics should be viewed as
essential to successful operation under
CICS (although some are not mandatory,
they are highly advisable).

1. Programs must be quasi-reenterable.
See "Quasi-Reenterability" on
page 14.

2. CICS macros (rather than programming
language statements such as GET,
PUT, READ, or WRITE) are included to
control the functions required in
application programs. (See "Chapter
1.2. Macro Format and Syntax
Notation" on page 9.)

3. Input/output areas, temporary
storage areas, and work areas are
not included in an application
program. Allor portions of these
areas are defined outside of
application programs. The
application programmer must work
with CICS system programmers in
defining these areas by means of
tables within CICS. (See "Storage
Definition" on page 14, and in Part
2.>

4. Files are not defined within
application programs. As in item 3,
the application programmer works
with CICS system programmers in
establishing these definitions.
(See the appropriate CICS Resoyrce
Definition manuals and the
applicable operating system
publications.)

S. The application programmer must
establish addressability in his
program to CICS storage areas
accessed by his program.

6. Working storage should not be tied
up, for example, awaiting a reply
from a terminal user.

7. Programs should be as efficient as
possible, to work with CICS in
providing rapid response to
terminals.

8. Any feature, option, or statement
that will transfer control to the
operating system should not be used
in a CICS program.

9. Assembler language programmers
should be aware that the program
mask is undefined by CICS on entry
to a program. It is the user's
responsibility to set the program
mask for any module that requires a
specific value for the mask. CICS
does not preserve the mask value
across the interface to other called
programs, for example, when the
DFHPC TYPE=LINK or DFHPC TYPE=XCTL
macro is used.

10. Care must be taken if a program
involves lengthy calculations; since
an application program retains
control from one CICS macro to the
next, processing of other

Chapter 1.3. Programming Techniques and Restrictions 11

Batch Processing Online Application

Input Generally sequential from cards, Random, multiple, concurrent
tape, or a direct access but unrelated entries from
storage device (DASD); submitted terminals; immediate edit
as groups of related data, and verification of each
edited, and verified entry

Processing Sequential, generally Random, multithreading, as
single-thread, with updating of one aspect of multitasking
sequential master files within a partition or region;

for inquiry or updating
purposes or both

Ou.tput Generally in the form of Messages to terminals updated
updated master files and files, and system log of
printed reports activities

Sequence of Sta rt program System is initialized then
operations Read transaction transactions are processed

Read master as they occur, with data
Process rather than program as driver

End of job Signaled by last transaction Generally, end of shift or day

Amount of Predictable, known before run Not predictable, can
activity fluctuate widely

Master files/ Applications "own" master files Files accessible to multiple,
data sets on tape or DASD; placed online authorized applications;

when required for run must be online; are on DASD

Response Varies widely; usually involves Measured in seconds;
time manual procedures generally occurs as message

to terminal

Figure 5. Comparison of Batch and Online Environments

transactions is completely excluded.
However, the DFHKC TYPE=CHAP macro
can be used to allow other
transaction processing to proceed,
refer to "Chapter 5.3. Task Control
(DFHKC Macro)" on page 221 for
details.

The general structure of a CICS
application program can be summarized as
follows~

• Storage definition statements

• Program initialization statements

• Processing statements

• Termination statements.

No attempt is made in this text to teach
the use of typical programming language
statements or general programming
techniques within assembler language,
COBOL, or PL/I. Documentation for these
languages should be consulted for such
information (see the Bibliography).

CICS operates in a virtual storage
environment. The key objective of
programming in this type of environment
is the reduction of page faults (those
cases in which a program refers to an

instruction or data that does not reside
in real storage). When this occurs, the
page in virtual storage that contains
the referenced instruction or data must
be transferred (paged) into real
storage. The more paging required, the
lower the overall system performance.

The application programmer who writes
programs to be run in a virtual storage
environment should understand the
following conceptsl

•

•

•

Locality of reference - the
consistent reference, during the
execution of the application
program, to instructions and data
within a relatively small number of
pages (compared to the total number
of pages in a program) for
relatively long periods

validity of reference - the
consistent reference to valid data.
This ensures that few storage
references retrieve useless data

Working set - the number and
combination of pages of a program
needed for satisfactory performance
(low paging rate) during a given
period.

12 CICS/VS Application Programmer's Reference Manual (Macro Level)

In general, the application program
should use techniques to improve the
locality and validity of reference and
to minimize the size of the working set
at any time during execution of the
program, as foilowsl

1. To achieve locality of reference,
processing should be sequential for
both code and data, as far as
possible.

a. Initialize data as close as
possible to its first use.

b. Define new data items as close
as possible to the items that
use them.

c. Define arrays or other data
structures in the order in which
they will be referred to; refer
to elements within structures in
the order in which they are
stored, for example, by row
rather than by column when using
PL/I.

d. Separate error-handling or
unusual-situation routines from
the main section of a program;
they should be subprograms.

e. Subprograms that are short and
used only once or twice (other
than those in "d" above> should
be coded inline in the calling
program.

2. To achieve validity of reference.

a. Avoid long searches for data.

b. Use data structures that can be
addressed directly, such as
arrays, rather than structures
that must be searched, such as
chains.

c. Avoid indirect addressing and
any methods that simulate
indirect addressing.

3. To reduce the size of the working
set, the amount of storage that a
program refers to in a given period
should be as low as possible.

a. Write modular programs and then
structure the modules according
to frequency and anticipated
time of reference.

b. Use separate subprograms
whenever the flow of your
program suggests that execution
will not be sequential.

When all page frames in a real storage
environment are filled and another page
must be loaded into storage, a page
replacement operation is required. The
operating system replaces first those
pages that have not been referred to for

the longest period of time. If a page
to be replaced has been modified, that
page must be paged out onto virtual
storage before the required.page can be
read in. The more page-out operations
required, the lower the overall
performance of the system.

To avoid the ne~essity for page-out
operations, the application program
should be coded so that page-out
operations are not required when a page
containing a portion of the program must
be replaced in real storage. The
program need only avoid modifying
instructions or data within itself. A
program in which neither instructions
nor data are modified is said to be
reenterable. As noted earlier, programs
to be run in a CICS environment must be
quasi-reenterable. For performance
reasons, it may be wise to make them
truly reenterable programs.

The application program should not
attempt to use overlays, that is, to
incorporate paging techniques. System
paging is automatic and generally more
efficient.

APPLICATION PROGRAM PACKAGING

The design of an application program for
a virtual environment is similar to the
design of an application program in a
real environment. The system should
have all modules resident so that code
on un referenced pages need not be paged
in. If the program is dynamic, the
entire program must be loaded across
adjacent pages before execution begins.
Dynamic programs can be purged from
storage if not in use and an unsatisfied
storage request exists. Allowing
sufficient dynamic area to prevent
purging is less efficient than making
the programs resident since a dynamic
program will not share unused space on a
page with another program.

The reference pattern of the application
should touch the fewest concurrent pages
during its execution.

1. The main line execution should be as
straight a line as possible. The
ideal program executes sequentially
with no branch logic referencing
beyond a small range of address
space.

2. Literals and subroutines should be
coded as close to their use as
possible. This would include lTORG
statements at appropriate locations
in the program. Place constants
that are used only once near to the
place where they are used. Executed
instructions should be near the EX
instruction. Perform and GOTO
routines should be placed near the
caller.

Chapter 1.3. Programming Techniques and Restrictions 13

3. Avoid use of COBOL EXAMINE or
VARIABLE MOVE operations since these
expand into subroutine executions.

4. Do not alter anything within the
program module. An unchanged module
is reenterable and is not paged out.

5. Use the TWA for changeable data
during execution, that is counters,
switches, parameter passing, basic
mapping support output area (use BMS
SAVE).

6. Do few or no user GETMAINs to
minimize the task's reference
pattern.

7. Avoid LINKs since it will cause a
GETMAIN for an RSA and will search
the PPT.

8. Try to keep the execution path
straight line by using XCTL.

9. If specifying data for a CICS
service request by explicitly
assigning a value to a CICS field
(for example, in the task control
area), assign the value immediately
prior to issuing the service
request, with no other service
requests intervening. Also,
reassign the value immediately
before issuing any subsequent
request that needs it.

QUASI-REENTERABILITV

Application programs must be coded so
that they are "serially reusable"
between entry and exit points of the
program. A serially reusable portion of
an application program is executed by
only one transaction at a time, and must
initialize and/o~ restore any
instructions or data that it alters
within itself during execution. (It is
recommended, however, that all
applications- be truly reenterable to
minimize paging.) Entry and exit points
coincide with the use of CICS macros,
since an application program loses
control only upon execution of a CICS
macro.

This required quality of application
programs written to run under CICS is
called "quasi-reenterability," since the
programs need not meet System/370
specifications for true reenterability.
Quasi-reenterability allows a single
copy of a user-written application
program to be used to process several
transactions concurrently, thereby
reducing the number of copies of a
program that must be in main storage.

Intermediate_ exits may be taken during
execution of an application program.
Such exits constitute a transfer of
control from the program. All switches,
data, and intermediate results needed

upon subsequent return to the program
must be retained in a unique storage
area such as the transaction work area
(TWA). The application programmer must
provide that unique intermediate storage
area by symbolically defining it in his
program (as described in Part 2).

A serially reusable application program
that has no intermedia-te exi ts also has
the quality of quasi-reenterability.

STORAGE DEFINITION

The macro library supplied with CICS
contains symbolic storage definitions of
CICS control areas, work areas, and I/O
areas. It is strongly recommended that
the application programmer use these
definitions rather than develop actual
or direct displacements in his program.
This protects the application program in
the event of any relocation of CICS.

The assembler language programmer
includes symbolic storage definitions in
his program by means of assembler
language COpy statements. For the PL/I
programmer, the macro library contains
numerous BASED structures, in the form
of dummy control sections (DSECTS), that
describe CICS control areas. These
DSECTs are available to the user through
the use of Y.INCLUDE statements. The
COBOL programmer uses similar
definitions through COPY statements in
the linkage section of the data division
of his application program. These
definitions are discussed in Part 2.

PROGRAM INITIALIZATION

In the initialization section of the
application program, the assembler
language programmer must establish a
symbolic base address for his program,
because this is not done by CICS prior
to entry. In doing so, he identifies a
base register. Rl2 is reserved by CICS
for the address of the task control area
(TCA) for this task. R13 is reserved
for the address of the common system
area (CSA). Both these registers are
initialized by CICS prior to entry and
their contents must be preserved
throughout execution of the program.
For COBOL and PL/I, this preservation of
registers is done automatically by CICS.

RlS through Rll are available to the
user and their contents are preserved
when a CICS macro is executed; the
contents of R14 are destroyed whenever a
CICS macro is executed. The contents of
Rl are destroyed if parameters are
specified on a DL/I call.

The different types of the DFHPC-macro
that can be issued to transfer control
from or to an application program are
listed in the left-hand column of
Figure 6 on page 15. The status of all

14 CICS/VS Application Programmer's Reference Manual (Macro Level)

At program entry
because of:

Registers

IS, and 0-11 12 13 ,14

Initial Unknown TCA CSA User-program
Program Entry address

LINK Registers of program TCA CSA' User-program
issuing the LINK address

XCTL Registers of program TCA CSA User-program
issuing the XCTL address

Following
execution of:

LOAD Unchanged TCA CSA Next sequential
instruction

RETURN (issued Unchanged (from TCA CSA Next sequential
by a linked-to point-of-view of program instruction
program) issuing the LINK)

Figure 6. Register Usage under CICS

registers upon program entry or upon
return to a program is as shown in the
remaining columns.

Although Rl4 contains the program entry
address, it is not advisable to use Rl4
as the base register since it is used by
CICS to service requests for CICS
supervisory and data management
services.

RESTRICTIONS

There are language and other
restrictions that the application
programmer should be aware of when
writing programs to be run under CICS.

ASH

The use of CICS macros in an assembler
language application program precludes
the use of the assembler instruction COM
(define blank common control section).

COBOL

Note that VS COBOL II is not supported
at macro level.

The use of CICS macros in a COBOL
application program precludes the use of
the following:

1. The environment and data division
entries normally associated with
data management services.

2. The file section of the data
division.

3. The special features:

ACCEPT
DISPLAY
EXHIBIT
REPORT WRITER
SEGMENTATION
SORT
TRACE
UNSTRING

Any feature that requires an ,
operating system GETMAIN (CICS/OS/VS
only) .

4. The COBOL compiler options
(CICS/OS/VS only):

COUNT
DYNAM
ENDJOB
FLOW
STATE
SYMDMP
SYST
TEST

The COBOL compiler options
(CICS/DOS/VS only).

COUNT
FLOW
STATE
STXIT
SYMDMP

Any option that requires operating
system services.

S. The COBOL statements:

CLOSE
OPEN
READ
WRITE

Chapter 1.3. Programming Techniques and Restrictions 15

6. The QUOTE option, which signifies
that literals are to be delineated
by quotation marks (for example,
"74"). Because CICS macros generate
COBOL code using apostrophes to
delineate literals (for example,
'74'), the APOST option must be in
effect.

7. The OPTIMIZE option of DOS Full
COBOL Version 3 (5736-CB2)

SERVICE RELOAD statements must be coded
in programs compiled under the following
compilers when the OPTIMIZE option is
active:

• OS Full COBOL Version 4 (5734-CB2)

• OS/VS COBOL Release 1 (5740-CBI)

• DOS/VS COBOL (5746-CBl)

If the NOOPTIMIZE option is used,
SERVICE RELOAD can, but need not, be
used. Further details of SERVICE RELOAD
appear in "Additional Guidelines" in
"Chapter 2.3. Storage Definition -
COBOL" on page 35.

CICS macros should not be coded within a
COBOL statement, since each COBOL
statement generated by a CICS macro is
terminated by a period.

CICS macros generate COBOL statements
which use an apostrophe (') to delineate
literals. Code written by the
application programmer cannot utilize
quotes (ft) to delineate literals.

Duplicate· names may not be used. This
requirement is a result of preprocessing
by the translator before COBOL
statements are generated.

Any COBOL program that is to run under
CICS must contain at least one CICS
macro (for example, DFHPC TYPE=RETURN)
for proper operation.

Floating-point operations can be used,
but CICS does not dump the contents of
floating-point registers, and
programmers should be aware that a
floating-point interrupt will cause the
task to 'be abnormally terminated.

Users of the OS/VS COBOL Release 2
compiler must specify LANGLVL(I), and
must not use the INSPECT or USE FOR
DEBUGGING statements. Note that all the
COBOL examples throughout this manual
have been written to language level 68
(specify LANGLVL(l».

The macro level interface will not
support a COBOL program with a TGT
larger than 4K. If a program generates
a TGT greater than 4K the command level
interface must be used.

PL/I

The use of CICS macros in a PL/I
application program precludes the use of
the following:

1. The PL/I multitasking built-in
functions!

COMPLETION
PRIORITY
STATUS

2. The PL/I multitasking optionsl

EVENT
PRIORITY
TASK

3. The PL/I statements I

CLOSE
DELAY
DELETE
DISPLAY
EXIT
FETCH
GET
HALT
LOCATE
OPEN
PUT
READ
RELEASE
REWRITE
STOP
UNLOCK
WRITE

4. PL/I Sort/merge.

S. PL/I error handling.

6. A declaration for a nonstring
element variable with the attributes
STATIC EXTERNAL but without the
INITIAL attribute. (This
declaration will generate a common
CSECT that cannot be handled by
CICS).

7. The PL/I compiler options:

FLOW
GONUMBER
GOSTMT
REPORT

Refer to the appropriate Pl/I Optimizing
Compiler Programmer's Guide for more
information on the applicable
restrictions.

An application program written in PL/I
must consist of an external (MAIN)
procedure. Procedure CALLs (both
internal and external) are allowed in a
PL/I program to be run under CICS.

Floating-point operations can be used,
but CICS does not dump the contents of
floating-point registers, and
programmers should be aware that a

16 CICS/VS Application Programmer's Reference Manual (Macro Level)

floating-point interrupt will cause the
task to be abnormally terminated.

Any CICS macro operand which defines a
name or label of a storage area or
routine should comply with the assembler
language restrictions of 8 characters or
less. This requirement is a result of
preprocessing by the assembler before
PL/I statements are generated.

LINK-EDITING

Separate COBOL routines cannot be
link-edited together. Neither can
separate PL/I routines. Assembler
language routines may be link-edited,
but routines invoked by CALL statements
must conform to CICS application program
requirements. Facilities comparable to
link-editing are provided under CICS
through DFHPC TYPE=LINK and DFHPC
TYPE=XCTL (transfer control) macros,
which can be used to set up
communication between programs. For
details of the job control required to
compile and link-edit application
programs refer to the appropriate CICS
Installation and Operations Guide.

OBJECT PROGRAM SIZE

The object module resulting from any
application program must not occupy more
than 524152 bytes of main storage.

ENTRY POINT ADDRESS

For all programs, the entry point
address must be less than 32768 bytes
from the load point.

BMS MAP SIZE

The load module of a BMS map that is
loaded dynamically using the DFHPC
TYPE=LOAD macro must not exceed 65520
bytes.

ASSEMBLY-TIME SERVICE (DFHCOVER MACRO)

In addition to knowing the
execution-time considerations discussed
in this chapter, the application
programmer should be aware of an
assembly-time (or compile-time) service
available under CICS: the DFHCOVER
macro. This macro specifies that the
assembler or compiler in use print a
cover page on two consecutive pages,
which ensures that the application
program listing can be torn off with one
of the cover pages face up. Useful
information (program name, date, time of

assembly, remarks, and so on) may then
be written on the cover page.

The DFHCOVER macro requires no operands
and nothing else should appear on the
same coding line.

If the DFHCOVER macro is coded as part
of an assembler language application
program, it should be coded as the first
instruction in the program. If desired,
however, this macro may be coded after
anything that is not vital to the
listing (such as the TITLE line).

The first line of a PL/I source program
is printed as a header on each page of
the source listing. This means that
when the DFHCOVER macro is part of a
PL/I application program, the first line
should be a comment containing
information that the application
programmer wants printed as a header.
The second line should contain the
DFHCOVER macro. The actual PL/I code
should begin with the third line.

Since column 1 is used by the DFHCOVER
macro for line and page spacing under
PL/I, column 1 must be defined as
reserved for control characters and
columns 2-72 must be defined as
available for data. For information
concerning PL/I compile-time services,
see the appropriate PL/I Optimizing
Compiler Programmer's Guide.

The example in Appendix A shows how the
DFHCOVER macro is used.

TESTING RESPONSES TO MACROS

As a result of issuing CICS macros,
certain error conditions may be raised.
A programmer can test for these
conditions in any of the following ways.

• Code the appropriate operands in the
macro being issued. Each macro
syntax display lists the operands
available.

• Code a DFHXX TYPE=CHECK macro
immediately following the particular
macro by which the service is
requested.

• Code instructions, foll~wing the
macro by which the serVlce was
requested, that test the contents of
certain CICS control areas. The
relevant control areas and the
meaning of the returning bit
patterns are discussed in each
chapter that describes the services.

If the programmer does not check the
response to a request, program flow
continues with the next sequential
instruction.

Chapter 1.3. Programming Techniques and Restrictions 17

PART 2. STORAGE DEFINITION

Part 2. Storage Definition 19

CHAPTER 2.1. INTRODUCTION TO STORAGE DEFINITION

eICS provides symbolic storage
definitions in the form of dummy
sections (DSECTs) that describe the
layouts of a number of storage areas.
These storage definitions are contained
in the CICS libraries and can be copied
into application programs where, in
combination with user-defined layouts of
the user's sections of the storage
areas, they provide symbolic addressing
(addressability) to the storage areas.

CICS STORAGE AREAS

The storage areas for which symbolic
storage definitions are provided consist
of control areas, for example the Common
System Area (CSA), work areas, for
example the File Work Area (FWA), and
input/output areas, for example the
Terminal Input/Output Area (TIDA). CICS
storage areas are summarized in Figure 7
on page 22. CICS system sections are
shown in Figure 8 on page 23.

Some of these storage areas are acquired
by CICS during system initialization,
others are acquired and released during
execution of the system. Some areas are
acquired by CICS; some by the
application program; and some by either
CICS or the application program.

All CICS storage areas, with the
exception of the journal control area
(JCA) and VSAM work areas CVSWAs),
consist of two sections. The first is
the system section, used primarily by
CICS; the second is the user section,
defined and used exclusively by the
application program. This division
exists whether the storage areas are
acquired during system initialization
(for example, the CSA) or acquired
during execution (for example, a TIOA)

You should consult the appropriate CICS
Data Areas manual (which is the
authoritative source) for the sizes of
these storage areas. These sizes differ
according to the release level of your
CICS system.

All CICS pointers (areas containing
addresses) are 4 bytes in length.

A storage accounting field comprising 8
bytes preceding and 8 bytes following
each storage area is built by CICS for
every storage area acquired for the
user. If this field is altered or
destroyed, CICS may be abnormally
terminated.

The common system area (CSA) and the
task control area (TCA) must be defined
in every application program; other
areas are defined as needed. It is the
user's responsibility to define the CSA
and TCA as well as other storage areas
required by the application program.

Identifiers such as CSA and TCA, used in
this manual, are also used in symbolic
names, or labels, within CICS modules
and must be used by the application
programmer to refer to the data that
they represent. Names of fields within
a storage area generally begin with the
characters of the label for that area.
For example, TCA stands for .Task Control
Area, TCAFCAAA is a field in the TCA
that points to a Facility Control Area,
TCASCSA is a field in the TCA that
points to a Storage Control Storage
Area, and so on.

The letters A through G in Figure 7 on
page 22 denote the following:

A

B

Assembler language only.

The TCAFCAAA may also point to the
address of a DCT entry or to the
address of an automatic initiate
descriptor.

C COBOL equivalent:

D

E

F

G

01 DFHTCTTE COPY DFHTCTTE.
MOVE TCAFCAAA TO TCTTEAR.

PL/I equivalent:

YeINCLUDE DFHTCTTE;

EOB = End of block.

TCAFCAA, TCATSDA, and TCATDAA: The
same location within the TCA is
used for these 3 pointers, only
one of which is current at any given
time.

TCASCSA may also point to an area to
be released by a DFHSC TYPE=FREEMAIN
macro.

After a DFHPC TYPE=LDAD macro,
TCAPCLA points to the beginning
address of the loaded program.

Throughout Figure 7, the characters
"LLbb" represent a 4-byte field in which
the first 2 bytes define the length of
the area ("bb" represent 2 blank
characters).

Chapter 2.1. Introduction to Storage Definition 21

CSA copy DFHCSAOS

System Section CWA Common Work Area· User's Section
Pointe,. to CICSIVS Modules and T.t3Ies, Saw Are., Allocated at sysgen.
Statistics, ConstanU, Perametets, Time of OIly Default· 512, Maximum· 3584.

Initiallv binary zeros.
CSACOTA- Exists for duration of CICSIVS.
(currentt.1 Usable by multiple tasks for statistics, to pan data, etc •

. t-:- CSACBAR IREG.lll 0 LCSAWABA
I CICSIV5-acquired

TCA
TCACBA't(REG.121 0

TCTTE COpy DFHTCTTE Q
t COpy DFHTCADS L TCTTEAR, TCAFCAAA

System Section H SXstem Section 1"""-"""" -, .. ""', .. Program Control Information, Control Information TCTTEDA Size defined in TCT.
Task Priority, RSA Oper.tor Id. Use comparable to CWA.
Pointers, etc. Security Keys

LTCTTEAR LTCTTECIA
I CICSIVSoacQUired

TIOA COPY DFHTIOA
L TIOABAR, TCTTEDA

r-- TCAFCAAA System

~
User's Section

Section Terminal Input or output m g.s.
12 bytes Size defined in TCT, and obt.ined.s needed by CICs/VS. Also obtainable

through DFHSC TYPE' GETMAIN, CLASS' TERMINAL Idata length onlyl.

LTIOABAR LTIOADBA
I CICSIVS or user·acQUired

FIOA COpy DFHFIOA
L FIOABAR, TCAFCAA

~
"'-"""'" I "",', ... ,~ OS; 64 bytes + 16 if ISAM For file records. Size defined in FCT. Automatically acquited by FCP, as
DOS; 80 bytes required. All records (except VSAMI read into FIOA initially. Only one type

/Inquiry, unblocked) processed here. All others moved to FWA.

TCAFCAA CE) LFIOABAR L..FIOADBA
I CICSIVS·aCQuired

FWA COpy OFHFWADS
L FWACBAR, TCAFCAA

H
System User's Section
seCtiOn" ~s. Size defined in FCT, .nd acquired by FCP, as required, or through
16 bytes DFHFC TYPE = GETAREA. Records moved here from FIOA or VSAM buffer for

(G)
Inquiry. Blocked: Updating; Browse; Segmented. Also, new records assembled here.

TCAPCLA

L FWACBAR L FCUWA
I CICSIVS or user·acquired

VSWA copy DFHVSWA
L VSWABAR, TCAFCAA

Y
System Section for VSAM 110

Autom.tically acquired by FCP .s requ ired, .nd p d to user only for locate mode oper.tions.

LVSWABAR LVSWAREA LVSWALEN
I CICSIVS·.CQuired

SAA COpy DFHSAAoS
L SAACBAR, TCASCSA

System User's Section
TCASCSA Section ~ea.

~ Area acqu"ed through DFHSC TYPE = GETMAIN, CLASS' USER (d.ta length only).

LSAACBAR LSAASACA l User~acquired

0
TSIOA copy DFHTSIOA

L TSIOABAR, TCATSIlA

~ System User's Section

(E)
Section ·~r.gel/Oare •.

TCATSoA
I

12 bytes Autom.tically acquired by TSP on DFHTS TYPE' GET, or by user through
DFHSC TYPE = GETMAIN, CLASS = TeMPSTRG (data + 4 bytes for LLbbl.

incl"LLbb

LTSIOABAR L TSIOAoBA
I CICSIVS or user·acquired

l TOOA COPY DFHTDOA

(e)

L ToOABAR, TCATDAA
TCATDAA

I
.- System User's Section
~ Intrapartition output only. V/L records only. User-specified area. May be obtained

.. ~
12 bytes through DFHSC TYPE' GETMAIN, CLASS· TRANSDATA (data + 4 bytes for

LLbb).
PUT " incl LLbb

LTDOABAR LTDOAoBA I User·acquired

-. TWA . Transaction Work Area
!,!Jer's Section

COpy oFHTolA
Size defined in PCT TOIA
Default· O. L TolABAR, TCAToAA

system Us~r's Section
Work area; ~ 'n".partltlon input only. V/L records only. Size' size of largest record in QUeue.
task duration only. ~ OS; 40 bytes Automatically acquired by TOP, as reQUired.

DOS; 12 bytes
incl LLbb

L CICSIVS'acquired
LTolABAR LTDIADBA

I CICSIVS-acqui,ed

- TWACOBA

Figure 7. Summary of CICS Storage Areas

22 CICS/VS Application Programmer's Reference Manual (Macro Level)

TICA Terminal Input/Output Area (DFHTlOA)

WORD HALFWORD BYT' BYT' MESSAG'DATA I BYTE I
~--~~---;--~~~~-+---T-IO-A-S-C-A------------~---T-Io-A-T-D-L---+----~----~--T-IO-A-D--BA-----< I~'--------------~~~--~

X'85'

TIOABAR

TIOABAR - TIOA Be. Address Regilter
TIOACLCR - TIOA Control write - Line or Copv Request (same .. TlOALAC)
TIOADBA - TIOA Dete Begin Address
TIOALAC - TIOA Line Address Control (same .. TIOACLCR)

TIOALAC
TIOACLCR

TlOAWCI

TlOASAL - TlOA Stor.", Accounting - Ir. Length
TIOASCA - TlOA Star.", Chain Address
TIOATOL - TlOA Terminel - m_", Dlt, Length
TIOAWCI - TIOA Write Control Indicator

t
FIOABAR FICA File Input/Output Area (DFHFIOA)

_ X'BF" TWO WORDS

Itorage eccountlng control information

FIOABAR - File Input/Output Area Bese Address Regilter
FCFIOxxx - File Control File Input/Output xxx
FCFIO"FCT - FCFIO File" Control Table - entrv acldress

~:~l ... ~_-_-_-_-_-_-_-W~O~R~D----~I~: ,r';lr-______ W_O_R_D ____ ~~f
, FCFIOLRA , FCFIOFCT

FCFIOLRA - FCFIO Logical Record Addresl
FIOADBA - File Input/Output Area Data Begin Address (OOS)
FCOSOI,o - File Control Data - area (OS variable)

EOB

~TAJ
FIOADBA

FCDS01D

FWACtiAR

FWA File Work Area (DFHFWADS) I
t:X:'B:F:'::===============TW~O~W=O=R=D=S==============~r:~::::_W~O~R~D~ ______ -i-:::;.:~~W~O~R~D~ ______ -j~~~DATA~

storage 8C~ounting area FCUPDRA FCUFCTA FCUWA

FCUPDRA - Fila Control UPDate Record Addr ... FWACBAR - File Work Area Control Base Address Register
FCUFCTA - File Control Update File Control Table Address

FCUWA - File Control Update Work Area (data begin .ddress)

VSWA VSAM Work Area (DFHVSWA)

t
VSWABAR

~_~X~'B~F_,~I ___________ T~W~O~W~O~R~O~S~ __________ -L-if) I WORD

, VSWAREA
VSWABAR - VSAM Work Area Base Address Regilter
VSWAREA - VSAM Work Area REcord Address
VSWALEN - VSAM Work Area Record LENgth

(
; ,~(~l ... ~_-_-~-~-~~-~_W=O=R=O=:--__ --~--t)'ATAJ

, VSWALEN

SAACBAR

BYTE I
X'SC' BYTE HALFWORO

+ SAASAD

SAASAFI

SAASACI

SAA Storage Accounting Area (DFHSAAOS)

)
WORD

, DATA

SAASACA

SAACBAR - SAA Control Base Address Register
SAASACA - SAA Storage Accounting Chain Address
SAASACI - SAA Storage Accounting Class Identification

SAASAFI - SAA Storage Accounting Format Identification
SAASAO - SAA Storage Accounting DisPlacement (length)

TSIOABAR
TSIOA Temporarv Storage Input/Output Area (OFHTSIOA)

X'SE'

TSIOASCA

TSIOABAR - TSIOA Base Address Register
TSIOAOBA - TSIOA Data Begin Address

WORD

TSIOASAL - TSIOA Storage Accounting - area Length

TSIOADBA

TSIOASCA - TSIOA Storage Chain Address
TSIOAVRL - TSIOA Variable Record Length (LLbb)'"

TOOABAR
TOOA Transient Data Output Area (DFHTOOA)

X'SD'

TOOASCA

TDOABAR - TOOA Base Address Register
TDOAOBA - TDOA Data Begin Address

WORD

TOOASAL - TOOA Storage Accounting - area Length

TDOADBA

TDOASCA - TOOA Storage Chain Address
TOOAVRL- TDOA Variable Record Length (LLbb)"

TOIA Transient Data Input Area (OFHTDIA)

TDIASCA

TDIABAR - TDIA Base Address Register
TOIADBA - TDIA Data Begin Address

WORD

TDIAIRL - TDIA Intrapartition Record Length (LLbb)"

• Length is "Message Data" onlv
(does not include TIOATDL itself, or the EOB bvte).

•• Length includes LLbb and data.

TOIAOBA

TDIASAL - TDIA Storage Accounting - area Length
TDIASCA - TOIA Storage Chain Address

••• Length includes LLbb and dati unless
SfORCLS-TERMINAL in which caM
length is length of data oniV .

Figure 8. eICS System Sections

DATA

DATA

DATA

"

I

f

Chapter 2.1. Introduction to Storage Definition 23

Copying Symbolic Storage Definitions

Depending on the programming language
used, a statement of one of the forms
shown below is required to copy a
symbolic storage definition into an
application program.

1. Assembler language COPY statement of
the form:

COpy name

2. COBOL COPY statement of the form:

01 name COpy name.

specified in the linkage section of
the data division.

3. PL/I preprocessor statement of the
form:

Y.INCLUDE library(member);
or

Y.INCLUDE member;

For example, assume that one or more
TIOAs are to be acquired during program
execution. One of the statements below
must be included:

ASM: COPY DFHTIOA

COBOL: 01 DFHTIOA COPY DFHTIOA.

PL/I: Y.INCLUDE DFHTIOA;

This statement copies the storage
definition as a description or map of
the storage area into the application
program, but does not acquire storage
for it. As pointed out above, sometimes
CICS acquires the area; in other cases,
the user acquires it.

Addressability

The storage definition that has been
copied into the application program must
be mapped over the storage area
acquired. This is done by moving the
address of the area (stored in a
particular location by CICS) into a base
locator for that area. Addressability
through this base locator is limited to
4096 (0 through 4095) bytes. Depending
on the programming language, a statement
of one of the following forms will
normally be used to establish
addressability to the area:

1. Assembler language statement of the
form:

L base-locator,
location-containing-address

2. COBOL statement of the form:

MOVE location-containing-address
TO base-locator.

3. PL/I based pointer assignment of the
form:

base-locator=
location-containing-address;

For example, assume that a TIOA has been
acquired during program execution.
TCASCSA is a 4-byte field in the TCA
that contains the address of the storage
area that has been acquired. TIOABAR is
the TIOA base address register. One of
the statements below must be executed:

ASM: L TIOABAR,TCASCSA

COBOL: MOVE TCASCSA TO TIOABAR.

PL/I: TIOABAR=TCASCSAj

Figure 9 on page 2S contains the names
used in copying CICS-prov1ded symbolic
storage definitions into an application
program and the names that represent
base addresses used in establishing
addressability. These symbolic names
are used in Figure 7 on page 22 and
Figure 8 on page 23, which show how the
areas are related and give a summary of
the contents of each area.

Chaining of CICS Storage Areas

Storage acquired by the application
program through CICS storage management
is controlled by chaining together all
storage associated with a task. This
chaining allows CICS to release all
storage associated with the task, either
upon request from the user or when the
task is terminated, normally or
abnormally.

The CSA, whose address is provided by
CICS, points to the TCA which in turn
points to the other storage areas
required by the task. The TCA is the
head of the chain of storage associated
with each task, except for TIOAs, which
are chained from the TCTTE. Figure 10
on page 26 illustrates the chaining of
eleS storage areas and indicates the
symbolic base address used to locate
each storage area.

Required Storage Areas

At least two storage area definitions,
namely, those for the CSA and the TCA,
are required in every application
program to be run under CICS. The
following sections describe these areas.
Services performed by CICS components
are mentioned as necessary. Some tables
that are basic to CICS operation ar~
also mentioned. These tables are
explained in greater detail in the
appropriate CICS Resource Definition
manual.

24 CICS/VS Application Programmer's Reference Manual (Macro Level)

Storage Area

Common System Area (CSA)
Task Control Area (TCA)
Terminal Control Table Terminal Entry (TCTTE)
Terminal Input/Output Area (TIOA)
File Input/Output Area (FIOA)
File Work Area (FWA)
VSAM Work Area (VSWA)
Storage Accounting Area (SAA)
Temporary Storage Input/Output Area (TSIOA)
Transient Data Output Area (TDOA)
Transient Data Input Area (TDIA)
Journal Control Area (JCA)

Symbolic
Name for
Defined
Storage

DFHCSADS
DFHTCADS
DFHTCTTE
DFHTIOA
DFHFIOA
DFHFWADS
DFHVSWA
DFHSAADS
DFHTSIOA
DFHTDOA
DFHTDIA
DFHJCADS

Base Locator General
or Purpose

Base Address Register
Register Assignment

CSACBAR
TCACBAR
TCTTEAR
TIOABAR
FIOABAR
FWACBAR
VSWABAR
SAACBAR
TSIOABAR
TDOABAR
TDIABAR
JCABAR

* Any register except 12, 13, or 14 (which are used by CICS) or 0 (which cannot
be used as a base or index register)

Figure 9. Symbolic Names and Base Addresses of CICS Storage Areas

COMMON SYSTEM AREA (CSA)

The Common System Area (CSA) contains
areas and data required for the
operation of CICS. It can be extended
to include a user-defined common work
area (CWA) that can be referred to by
application programs.

Data in the CSA that is required for the
operation of CICS includes:

• CICS save areas

• Addresses of CICS management
programs

• Control system and user statistics
accumulators

• Addresses of CICS system control
tables

• Common system constants

• System control parameters.

Comman Work Area (CWA)

The Common Work Area (CWA) is an area
within the CSA that can be used by
application programs for user data that
needs to be accessed by any task in the
system. This area is acquired during
system initialization and its size is
determined by the system programmer at
system generation. It is initiallY set
to binary zeros. Its contents can be
accessed and altered by any task during
CICS operation.

Addressability for the CWA is provided
when copying the CICS storage definition
for the CSA. However, addressability is

limited to a combined total of 4096 (0
through 4095) bytes for the CSA and CWA.
Addressability for any portion of the
CWA extending beyond the 4096-byte limit
is the responsibility of the user.

Since the CWA is available to any task
while it has control ~f the system, it
is not advisable for an application
program to use this area for retention
of data when requesting CICS services;
instead, it would be better to use the
transaction work area (TWA) which has
been designed to be used by individual
tasks for their own purposes. The TWA
is described later in the chapter.

TASK CONTROL AREA (TCA)

The Task Control Area (TCA) is an area
of main storage acquired by CICS when a
task is initiated by the task control
program. Once acquired, the TCA exists
until the task is terminated. It
contains the current status of the task,
its relative dispatching priority, and
parameters and information being passed
between CICS and the application
program. During execution of the task,
the user can change the priority through
task management services; further
processing of the task is scheduled
accordingly.

The TCA provides the following items for
its associated task:

• Register save areas

• Unique fields (parameter areas) for
communicating requests to CICS

• Address of the related facility
control area (FCA)

Chapter 2.1. Introduction to Storage Definition 25

CICSIVS -+ CSAC8AA I

COMMON
SYSTEM
AREA
DFHCSADS

COMMON
WORK
AREA

I

< CWA-

'--
FACILITIES CONTROL
AREA ASSOCIATED
ADDRESS

STORAGE CONTROL
STORAGE ADDRESS

FILE CONTROL
AREA ADDRESS

TRANSIENT DATA
AREA ADDRESS

TEMPDAARYSTORAGE
DATA AREA

I
I
I
I

TRANSACTION WORK AREA I
I

~
I

TWA -

Figure 10. Chaining of CICS Storage Areas

FACILITIES FOR rASK C

FACILITIES FOR TASK B

I--__ ~TIOABAR

~--------------i +~

1~_12_B_Y_T_ES~I ______ ~ ______ ~

PUT

(SAACBAR)

.DFHSAADS

~1~_8_8Y_T_ES~I ______ ~ ____ ~.~

FWACBAR

+, DF":.,FWADS ,

~1 __ l_6_B_YT_E_S __ ~I ________ ~,~

FIOABAR

1 DFHFIOA
"~I ---'---.,

OSIVS-64 BYTES
DOSIVS.aO BYTES

VSWABAR

I

* I

+
DFHVSWA _________ ~A ________ ~ .-

I~ ____ ~
EXTRAPARTITION GET

• THIS AREA IS DEFINED AFTER THE DFHxxxxx. THE PLJI AND COBOL
PROGRAMMER MUST COMPLETE THE BASED STRUCTURE (SYMBOLIC
STORAGE DEFINITIONS) BY WRITING DECLARATIONS WITH A LEVEL
NUMBER GREATER THAN 1. THE ASSEMBLER LANGUAGE
PROGRAMMER MUST WRITE OS STATEMENTS'

•• TCAFCAA. TCATDAA. AND TCATSDA ARE OVERLAYED IN SAME STORAGE.

26 CICS/YS Application Programmer's Referance Manual (Macro Level)

• Task storage chain addresses.

The TCA makes no provision for residual
data such as statistics. However, the
TCA can be extended to include a
transaction work area (TWA), the size of
which is determined by the user to meet
the needs of the transaction. (See
"Transaction Work Area", below.)

The TCA consists of 3 parts:

• CICS system section

• Communication section

• Optional transaction work area
(TWA).

The CICS system section contains
addresses and data needed by CICS to
control the task. Access to this
section is limited to CICS management
and service programs.

The communication section is used by
CICS and by user-written application
programs for communication between the
application program and CICS management
and service programs. CICS functions
sometimes overwrite some of the fields
in the communication section of the TCA.
The assignment of required fields in the
TCA for a particular CICS request must
therefore be done immediately prior to
issuing the request, with no other
requests intervening.

The optional transaction work area is
reserved for the exclusive use of the
application program.

In those cases in which a task is
initiated from a terminal (nearly always
the case), CICS places into the TCA the
address of the terminal control table
terminal entry (TCTTE) associated with

the terminal. The TCTTE, in turn,
contains the address of the TIOA.

Transaction Work Area (TWA)'

The Transaction Work Area (TWA) is an
extension of the TCA and is created at
the option of the user to provide a work
area for a given task. The TWA can be
used for the accumulation of data and
intermediate results during the
execution of the task. It can also be
used when the amount of working storage
for a task is relatively static, when
data must be passed between user-written
application programs, or when data must
be accessed by different programs during
transaction processing. During multiple
entries of data for a transaction, the
application programs might retain the
data in the TWA. This approach cannot
be used for multiple transactions; the
TWA is released automatically at task
termination.

The size of the TWA for the task must be
determined by the application designer
and must be specified in the PCT by the
system programmer at system generation.
The TWA must be defined immediately
following the definition of the TCA in
the application program. The sizes of
TWAs within the system vary according to
the needs of the transaction. The TWA
is initiallY set to binary zeros. For a
discussion about establishing the TWA,
see the explanation of the program
control table in the appropriate CICS
Resource Definition manual. ----

Addressability of the TWA is provided
when copying the CICS storage definition
for the TCA. However, addressability is
limited to a combined total of 4096 (0
through 4095) bytes for the TCA and TWA.
Addressability for any portion of the
TWA extending beyond the 4095-byte limit
is the responsibility of the user.

Chapter 2.1. Introduction to Storage Definition 27

CHAPTER 2.2. STORAGE DEFINITION - ASSEMBLER LANGUAGE

The assembler language programmer must
define storage for the CICS control
areas and any other storage areas
required for the processing of the
application program. This is done by
using the assembler language COPY
statement to (1) copy the appropriate
symbolic storage definitions into the
application program and (2) specify the
names of the storage areas being
defined. All registers are available,
except R12, R13, and R14 (which are used
by CICS).

All application programs must contain
statements to copy the symbolic storage
definitions for the CSA and the TCA. If
a terminal is to be used, the storage
definition of a TCTTE must be copied
also. The expansions of the CICS macros
used in an application program refer to
fields within these areas, so their
locations must be identified. Whether
additional definitions must be copied
depends on the processing requirements
(storage areas and macros used) of the
application program.

STORAGE DEFINED DURING INITIALIZATION

During CICS initialization, the CSA is
allocated as part of the CICS nucleus.
For each terminal that is to be used, a
terminal control table terminal entry
(TCTTE) must be included in the TCT.

COMMON SYSTEM AREA (CSAl

The statement

COpy DFHCSADS

copies the symbolic storage definition
for the CSA and assigns R13 as its base
register.

If CICS is generated to include a CWA, a
symbolic definition for that area must
be included immediately following the
COPY DFHCSADS statement. In the
following example, a total of 16 bytes
of storage are defined by the three DS
statements. It is assumed that a CWA of
at least 16 bytes has been defined.

COpy
BUCKETI DS
BUCKET2 DS
TEMPNAME DS

DFHCSADS
F
F
Cl8

TERMINAL CONTROL TABLE TERMINAL ENTRY
(TCTTEl

The statement

COPY DFHTCTTE

copies the symbolic storage definition
for the TCTTE. This definition can be
used to obtain the address of the
current TIOA (the current terminal
control table terminal entry data
address, or TCTTEDA) or to request a
terminal control service via the DFHTC
macro. An EQU statement must be
included to set up a base register for
the TCTTE, equating the label TCTTEAR to
a general-purpose register.
Addressability must also be established
for the TCTTE by loading the address at
TCAFCAAA into TCTTEAR. The following is
an example of the coding requiredt

TCTTEAR EQU 5
COPY DFHTCTTE

.
l TCTTEAR,TCAFCAAA

STORAGE DEFINED DURING EXECUTION

During execution of a task, the TCA,
TIOA, and other storage areas required
by the task are allocated by CICS
storage management upon request from
either the application program or CICS.
The application program must include
symbolic storage definitions for these
storage areas by using COPY statements
as described below.

TASK CONTROL AREA (TCAl

The statement

COPY DFHTCADS

copies the symbolic storage definition
for the communication section only of
the TCA and assigns R12 as the base
register for the whole of the TCA. If
the application program requires the use
of a TWA, DS statements for the TWA must
immediately follow the COPY statement.
The following is an example of the
coding required to symbolically define
storage for both the TCA and TWA. In
the example, a total of 53 bytes of
storage are defined by the four DS
statements. It is assumed that a TWA of
at least 53 bytes has been defined in
the PCT for the transaction.

NAME
STREET
CITY
STATE

COPY DFHTCADS
DS Cl20
DS Cl20
DS CLIO
DS Cl3

Chapter 2.2. Storage Definition - Assembler language 29

TERMINAL INPUT/OUTPUT AREA (TIOA)

The statement

COPY DFHTIOA

copies the symbolic storage definition
for the CICS system section of the TIOA.
This storage definition should precede
the user's definition of a terminal
input or output message. The user must
code an EQU statement to set up a base
register for the TIOA, equating the
label TIOABAR to a general-purpose
register. Any action that requires a
TIOA can then be specified. For
example, a DFHSC TYPE=GETMAIN macro
requesting CICS storage control to
obtain dynamic storage for a TIOA for
the program can be specified, as
follows.

TIOABAR EQU
COpy

NAME DS
STREET DS

DS

9
DFHTIOA
Cl20
Cl20
Cl5

DFHSC TYPE=GETMAIN,NUMBYTE=45
,ClASS=TERMINAL

L TIOABAR,TCASCSA

For additional information about
obtaining storage, see "Obtain and
Initialize Main Storage (TYPE=GETMAIN)n
in "Chapter 5.S. Storage Control (DFHSC
Macro)" on page 241.

FILE INPUT/OUTPUT AREA (FIOA)

The statement

COPY DFHFIOA

copies the symbolic storage definition
for the CICS system section of the FIOA.
This storage definition should precede
the user's defined layout of an FIOA
when reading an unblocked record without
updating, or when reading DAM blocked
records without deblocking. If desired,
the user can identify that the area
returned in response to a user file
request is an FIOA, rather than an FHA
or VSWA, by testing label FIOAIND for a
mixed condition using mask FIOAM.

The user must code an EQU statement to
set up a base register for the FIOA,
equating the label FIOABAR to a
general-purpose register. The FIOA is
automatically acquired by CICS file
management whenever a request is made by
the user to access a data base data set.
For CICS/OS/VS only, if data is
retrieved using an existing ISAM
application in ISAM compatibility mode,
the FIOA must include a l6-byte filler
prior to the user's data definition.
The user must establish addressability
for an FIOA acquired in response to a

DFHFC macro before referring to the
FIOA. The following is an example of
the coding required; it includes the
optional test (TM and BM instructionsl
for FIOA identification.

FIOABAR EQU
COPY

NAME DS
STREET DS

.
l
TM
BM

7
DFHFIOA
Cl20
CLS

FIOABAR,TCAFCAA
FIOAIND,FIOAM
GOTFIOA

FILE WORK AREA (FWA)

The statement

COPY DFHFHADS

copies the symbolic storage definition
for the CICS system section of the FHA.
This storage definition should precede
the user's defined layout of a file
record area when reading or updating an
existing blocked record, when adding a
new record to a file, or when retrieving
records using the browse feature. If
desired, the user can identify that the
area returned in response to a user file
request is an FHA, rather than an FIOA
or VSWA, by testing label FHAIND for a
ones condition using mask FHAM.

The user must code an EQU statement to
set up a base register for the FHA,
equating the label FWACBAR to a
general-purpose register. The user must
also establish addressability for an FHA
acquired in response to a DFHFC macro
prior to any reference to the FWA. The
following is an "example of the coding
required; it includes the optional test
(TM and BO instructions) for FWA
identification:

FWACBAR EQU
COpy

NAME DS
STREET DS
ZIPCODE DS

l
TM
BO

7
DFHFWADS
Cl20
CL30
CL5

FWACBAR,TCAFCAA
FHAIND,FWAM
GOTFHA

VSAM WORK AREA (VSWA)

The statement

COPY DFHVSWA

copies the symbolic storage definition
for the CICS system section of the VSAM
work area (VSHA) and must be present in
all programs using locate mode I/O. See
"Direct Retrieval (VSAM Locate Mode)ft in

30 CICS/VS Application Programmer's Reference Manual (Macro level)

"Chapter 3.2. File Control (DFHFC
Macro)" on page 51. If desired, the
user can identify that the area returned
in response to a user file request is a
VSWA, rather than an FIOA or FHA, by
testing label VSWAID for a zero
condition using mask VSWAM.

The user must code an EQU statement to
set up a base register for the VSWA,
equating the label VSWABAR to a
general-purpose register. After a VSWA
is acquired by CICS in response to a
DFHFC macro using locate mode I/O, the
user must establish addressability for
the VSWA prior to any reference to that
area. The following is an example of
the coding required; it includes the
optional test (TM and BZ instructions)
for VSWA identificationa

VSWABAR EQU 7
COpy DFHVSWA

L
TM
BZ

VSWABAR,TCAFCAA
VSWAID,VSWAM
GOTVSWA

TRANSIENT DATA INPUT AREA (TDIA)

The statement

COPY DFHTDIA

copies the symbolic storage definition
for the CICS system section of the
intrapartition TDIA. This storage
definition should precede the user's
defined layout of the message area used
for data obtained from an intrapartition
destination by means of a DFHTD TYPE=GET
macro. (See "Acquire Queued Data
(TYPE=GET)" in "Chapter 5.6. Transient
Data Control (DFHTD Macro)" on
page 245.) The user must code an EQU
statement to set up a base register for
the TDIA, equating the label TDIABAR to
a general-purpose register. The user
must also establish addressability for
the TDIA following a DFHTD macro. The
following is an example of the coding
required:

TDIABAR EQU
COPY

NAME DS
STREET DS

L

9
DFHTDIA
CL20
CL20

TDIABAR,TCATDAA

TRANSIENT DATA OUTPUT AREA (TDOA)

The statement

COpy DFHTDOA

copies the symbolic storage definition
for the CICS system section of the
intrapartition TDOA. This storage
definition should precede .the user's
defined layout of the message area for
transient data to be directed to an
intrapartition or extrapartition
destination by means of a DFHTD TYPE=PUT
macro. (See "Dispose of Data
(TYPE=PUT)" in "Chapter 5.6. Transient
Data Control (DFHTD Macro)" on
page 245.)

The user must code an EQU statement to
set up a base register for the TDOA,
equating the label TDOABAR to a
general-purpose register. The address
of the data to be output (including the
four-byte length field in the case of
variable-length records) must be given
to transient data control either through
the TDADDR operand of the DFHTD macro or
by placing it in TCATDAA. The following
is an example of the coding required:

TDOABAR EQU
COPY

TIME DS
DATE DS
INTERM DS
OUTTERM DS

.

9
DFHTDOA
CL4
PL3
CL4
CL4

DFHSC TYPE=GETMAIN
,CLASS=TRANSDATA
,NUMBYTE=19

L TDOABAR,TCASCSA

DFHTD TYPE=PUT,DESTID=POST
,TDADDR=TDOAVRL

TDOAVRL is a name associated with the
first byte of the output message (LLbb
for variable length records).

TEMPORARY STORAGE INPUT/OUTPUT AREA
(TSIOA)

The statement

COpy DFHTSIOA

copies the symbolic storage definition
for the CICS system section of the
TSIOA. This storage definition should
precede the user's defined data fields.
The user must code an EQU statement to
set up a base register for the TSIOA,
equating the label TSIOABAR to a
general-purpose register. The address
of the data, which always includes a
length field (LLbb) for temporary
storage must be given to temporary
storage control either through the
TSDADDR operand of the DFHTS macro or by
placing it in TCATSDA. The following is
an example of the coding requireda

Chapter 2.2. storage Definition - Assembler Language 31

TSIOABAR EQU 6
DFHTSIOA
Pl2 PAGENO

TITLE
LINEI

COpy
DS
DS
DS

Cl30
CL70

DFHTS TYPE=GET
L TSIOABAR,TCATSDA
SH TSIOABAR,=H'8'

Upon execution of the DFHTS TYPE=GET
macro, CICS returns the address of the
data portion (LLbb field) of the
temporary storage record which is read
in TCATSDA. To establish addressability
to the TSIOA (that is, to use the
DFHTSIOA DSECT), the application program
must subtract eight from this address to
point to the storage accounting field of
the storage area acquired by CICS. If
the TSDADDR operand is included in the
DFHTS TYPE=GET macro, this is not
required.

STORAGE ACCOUNTING AREA (SAAl

The statement

COpy DFHSAADS

copies the symbolic storage definition
for the SAA. This storage definition
should precede the user's defined layout
of a unique work area that is used
within the application program. The
user must code an EQU statement to set
up a base register for the SAA, equating
the label SAACBAR to a general-purpose
register. The following is an example
of the coding required:

SAACBAR

SYMBLA
NAME
STREET
SYMBLB

EQU
COpy
EQU
DS
DS
EQU

9
DFHSAADS

* ClSO
CllS
*-SYMBlA

DFHSC TYPE=GETMAIN,INITIMG=OO
,NUMBYTE=SYMBlB,ClASS=USER

l SAACBAR,TCASCSA

Having copied the symbolic storage
definition for the SAA, the application
program can specify a DFHSC TYPE=GETMAIN
macro requesting CICS storage control to
obtain main storage for use by the
program. The address returned by CICS
in TCASCSA should be moved to SAACBAR,
the base address register for the SAA.

JOURNAL CONTROL AREA (JCAl

The statement

COPY DFHJCADS

copies the symbolic storage definition
for the CICS system section of the
journal control area (JCA) and must be
present in all programs requesting
journal services. (See "Journal
Control", "Chapter 7.5. Journal Control
(DFHJC Macro)" on page 305.) The user
must code an EQU statement to set up a
base register for the JCA, equating the
label JCABAR to a general-purpose
register. The following is an example
of the coding required:

JCABAR EQU 9
COpy DFHJCADS

A JCA is acquired by means of a DFHJC
TYPE=GETJCA macro. Addressability to
the JCA is automaticallY provided
through the macro expansion, which loads
the JCA address into JCABAR.

EXAMPLE OF CICS ASSEMBLER LANGUAGE
APPLICATION PROGRAM

The following example is an assembler
language program written to run under
CICS. The program asks a question of
the terminal operator, receives a reply,
dynamically acquires some storage, and
sends the operator's message back to the
terminal. In effect, an echo test is
performed. (The line numbers refer to
the following notes.)

32 CICS/VS Application Programmer's Reference Manual (Macro level)

01 BASEREG EQU
02 TCTTEAR EQU
03 TIOABAR EQU
04 COPY
05 COPY
06 LENGTH DS
07 MESSAGE DS
08 COPY
09 COpy
10 MESSG DS
11 CSECT
12 BALR
13 USING
14 L
15 l
16 MVC

17 MVC
18 DFHTC

19 l
20 MVC
21 MVC
22 DFHSC
23
24
25 l
26 ST
27 MVC
28 MVC
29 DFHTC
30 DFHPC
31 END

2
11
10
DFHCSADS
DFHTCADS
H
CL32
DFHTCTTE
DFHTIOA
CL32

BASEREG,O
JE,BASEREG
TCTTEAR,TCAFCAAA
TIOABAR,TCTTEDA
MESSG,=C'ENTER
MSG TO BE ECHOED'
TIOATDl,=H'26'
TYPE=(WRITE,READ,
WAIT,ERASE)
TIOABAR,TCTTEDA
lENGTH,TIOATDl
MESSAGE,MESSG
TYPE=GETMAIN,
ClASS=TERMINAl,
NUMBYTE=32
TIOABAR,TCASCSA
TIOABAR,TCTTEDA
MESSG,MESSAGE
TIOATDL,lENGTH
TYPE=WRITE
TYPE=RETURN

Line

01

02-03

04-05

06-07

08-09

10
11-13

14

15

16

17

18

19

20-21

22-24

25

26

27

28

29

30

31

Description

Assigns base register for
program.
Assigns base regist~r for
TCTTE and TIOA symbolic storage
definitions.
Copies CSA and TCA symbolic
storage definitions.
Defines fields in TWA as save
areas to provide for
quasi-reenterability.
Copies TCTTE and TIOA symbolic
storage definitions.
Defines message area in TIOA.
Begins program; establishes
addressability for program.
Establishes addressability for
TCTTE
Establishes addressability for
TIOA.
Moves message to output area of
TIOA.
Moves length of message to data
length field of TIOA.
CICS macro that writes message
to terminal, waits for
operator's reply, and reads
operator's reply.
Establishes addressability for
new TIOA, using address in
TCTTE.
Saves the message and the
length of the message in
the TWA save area.
CICS macro that requests 32
bytes of terminal type storage.
Establishes addressability for
new TIOA (address of newly
acquired storage area is in
TCASCSA field of the TCA).
Places address of new TIOA in
TCTTE.
Moves the message from
TWA save area to new TIOA.
Moves the message length to
data length field of new TIOA.
CICS macro that writes message
to terminal.
eICS macro that returns control
to CICS and terminates this task.
Required for assembler language.

Chapter 2.2. Storage Definition - Assembler language 33

CHAPTER 2.3. STORAGE DEFINITION - COBOL

The COBOL programmer must define storage
for the CICS control areas and any other
storage areas required for the
processing of the application program.
This is done by using (1) the COPY
statement in the linkage section of the
data division to copy the symbolic
storage definitions into the program and
specify the names of the storage areas
being defined, and (2) the MOVE
statement in the procedure division to
establish addressability by moving
symbolic storage addresses from one
location to another.

The working storage section of a COBOL
program should contain only data
constants. Variable data should be
placed in a TWA or in an area of storage
acquired by a DFHSC TYPE=GETMAIN macro.
(See "Obtain and Initialize Main Storage
(TYPE=GETMAIN)" in "Chapter 5.5. Storage
Control (DFHSC Macro)" on page 241.)
Note that all COBOL examples in this
manual are written to language level 68
(LANGLVL(l».

The statement

01 DFHBLLDS COPY DFHBLLDS.

must be the first statement in the
linkage section of the data division of
a COBOL program that is run under CICS.
This statement copies the symbolic
storage definition for the linkage
section base locator (BLL), which
provides the means by which a COBOL
program can address dynamically acquired
CICS storage areas. Included in this
definition are the symbolic base
addresses for the common system area
(CSA), common system area optional
features list (CSAOPFL), and task
control area (TCA). Symbolic storage
definitions for these areas must be
copied into every COBOL program.

If other eICS storage areas are needed,
the COpy statement for the BLL must be
followed immediately by statements of
the form:

02 name PIC S9(8) COMPo

where ftname" is the symbolic base
address used to locate a specific
storage area. There must be one of
these statements for each additional
type of storage needed by the
application program. Furthermore, these
02-level statements must be coded in the
same order as the corresponding 01-level
COPY statements coded subsequently to
copy the symbolic storage definitions
for the areas into the application
program.

If the user is going to communicate with
the system by means of a terminal, a
terminal input/output area (TIOA) and a
terminal control table terminal entry
(TCTTE) are needed. Assuming that only
the required control areas (CSA and
TCA), a TIOA, and a TCTTE are needed for
an application, the following example
shows the coding required in the linkage
section of the data division.

01 DFHBLLDS COpy DFHBLlDS.
02 TCTTEAR PIC S9(8) COMPo
02 TIOABAR PIC S9(8) COMPo

01 DFHCSADS COpy DFHCSADS.
01 DFHTCADS COpy DFHTCADS.
01 DFHTCTTE COpy DFHTCTTE.
01 DFHTIOA COpy DFHTIOA.

STORAGE DEFINED DURING INITIALIZATION

During CICS initialization, the CSA is
allocated as part of the CICS nucleus.
For each terminal that is to be used,
TCTTE must be included in the TCT. The
COBOL programmer must provide symbolic
storage definitions for the CSA and
TCTTE (if needed) as follows.

COMMON SYSTEM AREA (CSA)

The statement

01 DFHCSADS COPY DFHCSADS.

copies the symbolic storage definition
for the CSA. Addressability for the CSA
is included.

If CICS is generated to include a CWA, a
symbolic definition of that area must be
included immediately following the COpy
statement in the linkage section of the
application program. The following is
an example of the coding required.

01 DFHCSADS COpy DFHCSADS.
02 CWA.

03 FIELDl PIC X(4).

TERMINAL CONTROL TABLE TERMINAL ENTRY
(TCTTE)

The statement

01 DFHTCTTE COpy DFHTCTTE.

copies the symbolic storage definition
for the TCTTE and must be present in all
programs requesting communication with a
terminal. The user must code the
statement

Chapter 2.3. Storage Definition - COBOL 3S

MOVE TCAFCAAA TO TCTTEAR.

in the appropriate place in the
procedure division to establish
addressability for the TCTTE. TCAFCAAA
contains the address of the facility
that initiated the transaction. TCTTEAR
is the terminal control table terminal
entry address register.

STORAGE DEFINED DURING EXECUTION

During the execution of a task, the TCA,
the TIOA , and other storage areas
required by the task are allocated by
CICS storage management upon request
from either the application program or
CICS. Symbolic storage definitions for
these storage areas must be provided as
follows.

TASK CONTROL AREA (TeA)

The statement

01 DFHTCADS COPY DFHTCADS.

copies the symbolic storage definitions
for the CSA optional features list and
the TCA. The user must code the
statement

MOVE CSACDTA TO TCACBAR.

and can optionally code the statement

MOVE CSAOPFLA TO CSAOPBAR.

at the appropriate place in the
procedure division to establish
addressability for the TCA and the CSA
optional features list. CSACDTA
contains the address of the storage area
obtained for the TCA (the common system
area currently dispatched task address).
This address is stored in TCACBAR, the
TCA control base address register.

If the application program requires the
use of a TWA, the record layout of the
TWA must be defined immediately
following the COPY statement in the
linkage section of the application
program. The following is an example of
the coding requiredl

01 DFHTCADS COPY DFHTCADS.
02 TWA PIC X(40).

TERMINAL INPUT/OUTPUT AREA (TIOA)

The statement

01 DFHTIOA-COPY DFHTIOA.

copies the symbolic storage definition
for the CICS system section of the TIOA
and must be present in all programs that

use terminal input records or that
provide output records to a terminal.
The following is an example of the
coding required to define the recordCs)
in the TIOA:

01 DFHTIOA COpy DFHTIOA.
02 TRANSID PIC XXXX.
02 TIOAMSG PIC X(20).

The user must establish addressability
for the TIOA in the procedure division
by coding in the appropriate place
either the statement

MOVE TCTTEDA TO TIOABAR.

or the statement

MOVE TCASCSA TO TIOABAR.

The former statement is used to
establish addressability to a TIOA
acquired by CICS during execution for
data entered from a terminal. The
latter statement is used to establish
addressability for a new TIOA acquired
by a DFHSC TYPE=GETMAIN macro and should
be coded immediately following that
macro.

FILE INPUT/OUTPUT AREA (FIOA)

The statement

01 DFHFIOA COPY DFHFIOA.

copies the symbolic storage definition
for the CICS system section of the FIOA
and must be present in all programs
requesting a read of an unblocked record
without updating, or a read of blocked
records without deblocking. If desired,
the user can identify that the area
returned in response to a file request
is an FIOA, rather than an FWA or VSWA,
by testing FIOAM. For CICS/OS/VS only,
if data is retrieved using an existing
ISAM application in ISAM compatibility
mode, the FIOA must include a 16-byte
filler prior to the user's data
definition. The following is an example
of the coding required to define records
in the FIOAI

01 DFHFIOA COpy DFHFIOA.
02 KEYF PIC X(6).
02 NAME PIC X(20).
02 FIOAREC PIC X(74).

The user must code the statement

MOVE TCAFCAA TO FIOABAR.

prior to any reference to the FIOA
following a DFHFC macro in the procedure

36 CICS/VS Application Programmer's Reference Manual (Macro Level)

division to establish addressability for
the FIOA.

To identify the area returned as an
FIOA, the following instruction can be
used:

IF FIOAM
THEN GO TO GOTFIOA.

FILE WORK AREA (FWAl

The statement

01 DFHFWADS COpy DFHFHADS.

copies the symbolic storage definition
for the CICS system section of the FWA
and must be present in all programs
performing file operations with the
exception of a "read without update"
from an unblocked data set. If desired,
the user can identify the area returned
in response to a file request as an FWA,
rather than an FIOA or VSWA, by testing
FWAM. The following is an example of
the coding required to define records in
the FHA:

01 DFHFWADS COpy DFHFWADS.
02 KEYF PIC X(6).
02 NAME PIC X(20).
02 FWAREC PIC X(24).

The user must code the statement

MOVE TCAFCAA TO FWACBAR.

prior to any reference to the FWA
following a DFHFC macro in the procedure
division to establish addressability for
the FHA.

To identify the area returned as an FWA,
the following instruction can be used:

IF FWAM
THEN GO TO GOTFWA.

VSAM WORK AREA (VSWAl

The statement

01 DFHVSWA COpy DFHVSWA.

copies the symbolic storage definition
for the CICS system section of the VSAM
work area and must be present in all
programs using VSAM locate mode I/O.
See "Direct Retrieval (VSAM Locate
Mode)' in "Chapter 3.2. File Control
(DFHFC Macro)" on page 51. If desired,
the user can identify that the area
returned in response to a file request
is a VSWA, rather than an FIOA or FWA,
by testing VSWAM. The user must code
the statement.

MOVE TCAFCAA TO VSWABAR.

prior to any reference to the VSWA
acquired by CICS in response to a DFHFC
macro using locate mode I/O.

To identify the area returned-as a VSWA,
the following instruction can be used:

IF VSWAM
THEN GO TO GOTVSWA.

TRANSIENT DATA INPUT AREA (TDIAl

The statement

01 DFHTDIA COpy DFHTDIA.

copies the symbolic storage definition
for the CICS system section of the
intrapartition TDIA and must be present
in all programs requiring a message area
for transient data obtained by issuing a
DFHTD TYPE=GET macro that refers to an
intrapartition destination. (See
"Acquire Queued Data (TYPE=GET)" in in
"Chapter 5.6. Transient Data Control
(DFHTD Macro)" on page 245.) The
following is an example of the coding
required to define records in the TDIA:

01 DFHTDIA COpy DFHTDIA.
02 MESSAGE PIC X(25).

The user must code the statement

MOVE TCATDAA TO TDIABAR.

prior to any reference to the TDIA
following a DFHTD macro in the Procedure
Division to establish addressability for
the TDIA.

TRANSIENT DATA OUTPUT AREA (TDOAl

The statement

01 DFHTDOA COpy DFHTDOA.

copies the symbolic storage definition
for the CICS system section of the
intrapartition TDOA and should be
present in all programs issuing a DFHTD
TYPE=PUT macro to provide transient data
as output. (See "Dispose of Data
(TYPE=PUT)" in "Chapter 5.6. Transient
Data Control (DFHTD Macro)" on
page 245.) The following is an example
of the coding required to define records
in the TDOA.

01 DFHTDOA COPY DFHTDOA.
02 MESSAGE PIC X(20).

The user must code the statement

MOVE TCASCSA TO TDOABAR.

prior to any reference to the TDOA
following a DFHSC macro in the procedure
division to establish addressabilit)l: for
the TDOA.

Chapter 2.3. Storage Definition - COBOL 37

TEMPORARY STORAGE INPUT/OUTPUT AREA
(TSIOAl

The statement

01 DFHTSIOA COPY DFHTSIOA.

copies the symbolic storage definition
for the CICS system section of the TSIOA
and should be present in all programs
using temporary storage. The following
is an example of the coding required to
define records in the TSIOAI

01 DFHTSIOA COpy DFHTSIOA.
02 DATA PIC X(lO).

To establish addressability for the
TSIOA, the user must code the statements

MOVE TCATSDA TO TSIOABAR.
SUBTRACT 8 FROM TSIOABAR.

if the request is a GET or GETQ from
temporary storage and the TSDADDR
operand is not specified. The
subtraction of 8 bytes ensures that
TSIOABAR points to the storage
accounting field (that is, to the
beginning) of the storage area acquired
by CICS. The user must code the
statement

MOVE TCASCSA TO TSIOABAR.

if an I/O area has been acquired during
execution. In the case of a PUT or
PUTQ, the symbolic address of the data
is located at TSIOAVRL. Either
statement must appear in the appropriate
place in the Procedure Division of the
COBOL program.

STORAGE ACCOUNTING AREA (SAAl

The statement

01 DFHSAADS COPY DFHSAADS.

copies the symbolic storage definition
for the SAA. This storage definition
should precede the definition of user
storage acquired through the DFHSC
TYPE=GETMAIN,CLASS=USER macro. The
following is an example of the coding
required to define records in the SAAr

01 DFHSAADS COpy DFHSAADS.
02 NAME PIC X(20).
02 SAAREC PIC X(IO).

The user must code the statement

MOVE TCASCSA TO SAACBAR.

prior to any reference to the SAA
following a DFHSC macro in the Procedure
Division to establish addressability for
the SAA.

JOURNAL CONTROL AREA (JCAl

The statement

01 DFHJCADS COPY DFHJCADS.

copies the symbolic storage definition
for the CICS system section of the
journal control area (JCA) and must be
present in all programs requesting
journal services. (See "Journal
Control", "Chapter 7.5. Journal Control
(DFHJC Macro)" on page 305.)

A JCA is acquired by means of a DFHJC
TYPE=GETJCA macro. Addressability to
the JCA is provided automatically
through the macro expansion, which loads
the address of the area into JCABAR.

ADDITIONAL GUIDELINES

If the object of an OCCURS DEPENDING ON
clause is defined in the linkage
section, special consideration is
required to ensure that the correct
value is used at all times. In the
following example, FIELD-COUNTER is
defined in the linkage section. The
MOVE FIELD-COUNTER TO FIELD-COUNTER
statement is needed to ensure that
unpredictable results do not occur when
referencing DATA.

LINKAGE SECTION.
01 DFHFWADS COPY DFSFWADS.

.
02 FIELD-COUNTER PIC 9(4) COMPo
02 FIELDS PIC XeS) OCCURS

1 TO 5 TIMES
DEPENDING ON FIELD-COUNTER.

02 DATA PIC X(20).

.
PROCEDURE DIVISION.

DFHFC TYPE=GET, etc.
MOVE TCAFCAA TO FWACBAR.
MOVE FIELD-COUNTER
TO FIELD-COUNTER.
MOVE DATA TO TWA-FIELD.

The MOVE statement referring to
FIELD-COUNTER causes COBOL to
reestablish the value it uses to compute
the current number of occurrences of
FIELDS and ensures that it can correctly
determine the displacement of DATA.

If an area greater than 4096 bytes is
defined in the linkage section, special
considerations arise. An additional
02-level statement under DFHBlLDS and an
ADD statement following the MOVE
statement to establish addressability to
the area are required for each

38 CICS/VS Application Programmer's Reference Manual (Macro Level)

additional 4096 bytes. For example, if
a file work area (FWA) exceeds 4096
bytes, the following code can be used.

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 FWACBAR PIC S9(8) COMP
02 FWABRI PIC S9(8) COMP

01 DFHFWADS COPY DFHFWADS.
02 FIELDI PIC X(4000).
02 FIELD2 PIC X(1000).
02 FIELD3 PIC X(400).

PROCEDURE DIVISION.

~

DFHFC TYPE=GET,

MOVE TCAFCAA TO FWACBAR.
ADD 4096 TO FWACBAR GIVING FWABRI.

If the size of the COBOL working storage
is close to, or greater than 64K,
execution errors may occur.

If an application program is to be
compiled for execution under CICS/OS/VS
using the full COBOL V4 Compiler
(S734-CB2), the OS/VS COBOL Compiler
(S740-CBl) with the optimization
feature, or the DOS/VS COBOL Compiler
(S746-CBl) with the optimization
feature, a special translator control
statement must be inserted at
appropriate places within the program to
ensure addressability to a particular
area defined in the linkage section.
This control statement has the forml

SERVICE RELOAD fieldname.

where fieldname is the symbolic name of
a specific storage area, and is also
defined in an Ol-level statement in the
linkage section. The first four
statements of the Procedure Division
must be:

SERVICE RELOAD DFHBLLDS.
SERVICE RELOAD DFHCSADS.
MOVE CSAOPFLA TO CSAOPBAR.
SERVICE RELOAD CSAOPFL.

Statements such as.

MOVE TCAFCAAA TO TCTTEAR.
SERVICE RELOAD DFHTCTTE.

or

SUBTRACT 8 FROM TCASCSA
GIVING TSIOABAR.
SERVICE RELOAD DFHTSIOA.

can be used to establish addressabilitv
for a particular storage area. (Note
that the SERVICE RELOAD statement must
be used following each statement which
modifies addressability to an area
defined in the linkage section, that is,
whenever an address is moved to a field
named in an 02-level statement under 01
DFHBLLDS or the address in the 02-level
statement is changed in any way.)

To establish addressability to the TCA,
the following statements must be coded:

MOVE CSACDTA TO TCACBAR.
SERVICE RELOAD DFHTCA.

Note that the SERVICE RELOAD statement
specifies DFHTCA, not DFHTCADS.

If areas larger than 4096 bytes are
addressed, a SERVICE RELOAD statement
must be issued by the user after the
primary BLL is updated, but before the
secondary BLLs are updated.

Certain COBOL features cannot be used in
an application program to be run under
CICS. Generally, these features are
replaced by CICS services. They are
identified under "Restrictions" on
page IS.

EXAMPLE OF eIeS COBOL APPLICATION
PROGRAM

The following example is a COBOL program
written to run under CICS. The program
asks a question of the terminal
operator, receives a reply, acquires
storage, and sends the operator's
message back to the terminal. In
effect, an echo test is performed. (The
line numbers refer to the following
notes.)

Chapter 2.3. Storage Definition - COBOL 39

01
02
03
04
OS
06
07
08
09
10
11
12
13
14
IS
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

IDENTIFICATION DIVISION.
PROGRAM-ID.

'CBLSPRB'.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 DFHBLLDS COpy DFHBLLDS.

02 TCTTEAR PIC 59(8) COMPo
02 TIOABAR PIC S9(8) COMPo

01 DFHCSADS COpy DFHCSADS.
01 DFHTCADS COpy DFHTCADS.

02 SAVE-LENGTH PIC S9(8) COMPo
02 SAVE-MESSAGE PIC X(36).

01 DFHTCTTE COpy DFHTCTTE.
01 DFHTIOA COpy DFHTIOA.

02 TIOAMSG PIC X(36).
PROCEDURE DIVISION.

MOVE CSACDTA TO TCACBAR.
MOVE CSAOPFLA TO CSAOPBAR.
MOVE TCAFCAAA TO TCTTEAR.
MOVE TCTTEDA TO TIOABAR.
MOVE 'ENTER MESSAGE TO BE
ECHOED' TO TIOAMSG.
MOVE 26 TO TIOATDL.

DFHTC TYPE=(WRITE,READ,WAIT)
MOVE TCTTEDA TO TIOABAR.
MOVE TIOATDL TO SAVE-LENGTH.
MOVE TIOAMSG TO SAVE-MESSAGE.

DFHSC TYPE=GETMAIN,
NUMBYTE=36,
CLASS=TERMINAL

MOVE TCASCSA TO TIOABAR.
MOVE TIOABAR TO TCTTEDA.
MOVE SAVE-MESSAGE TO TIOAMSG.
MOVE SAVE-LENGTH TO TIOATDL.

DFHTC TYPE=WRITE
DFHPC TYPE=RETURN

GOBACK.

Line Description

01-05
06
07

08-09

10

11

12-13

14

15

16
17

18-21

22

23

24

25

26
27

28-30

31

32

33

34

3S

36

37

Required for COBOL.
Start of linkage section.
Copies symbolic storage
definition for BLL; contains
addresses of CICS storage
areas.
Adds addresses for TCTTE and
TIOA (required for statements
14 and 15).
Copies symbolic storage
definition for CSA.
Copies symbolic storage
definitions for TCA and CSA
optional features list.
Defines save areas in TWA to
ensure quasi-reenterability
(SAVE-LENGTH and SAVE-MESSAGE
are used to save operator's
reply).
Copies symbolic storage
definition for TCTTE.
Copies symbolic storage
definition for TIOA.
Defines message area in TIOA.
Required for COBOL (start of
Procedure Division).
Establishes addressability for
TCA, CSA optional features
list, TCTTE, and TIOA (CICS
establishes addressability for
BLL and CSA).
Moves message to output area of
TIOA.
Moves length of message to data
length field of TIOA.
CIeS macro that writes message
to terminal, waits for
operator's reply, and reads
operator's reply.
Establishes addressability for
new TIOA using address in
TCTTE.
Saves length of message in TWA.
Saves message in TWA.
CICS macro that requests 36
bytes of terminal storage
(terminal storage is chained to
terminal control table).
Establishes addressability for
new TIOA (address of newly
acquired storage area is in
TCASCSA field of the TCA).
Places address of new TIOA in
terminal control table.
Moves message to output area
(TIOA).
Moves length of message to
output area (TIOA).
CICS macro that writes message
to terminal.
CICS macro that returns control
to CICS.
COBOL statement that marks the
end of the program.

40 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 2.4. STORAGE DEFINITION - PL/I

The Pl/I programmer must define storage
for the CICS control areas and other
storage areas required for the
processing of the application program.
This is done by using a statement of the
form:

YeINClUDE library(member);
or

YeINCLUDE member;

to (1) copy the appropriate symbolic
storage definition into the application
program at the place where the YeINClUDE
statement appears, and (2) specify the
name of the storage area being defined.

The PL/I source code provided by CICS in
response to Y.INCLUDE statements is in
the form of based structures. These
structures describe the attributes of
the storage areas and include pointer
variables that provide the addresses of
the actual locations in storage that the
structures describe.

All application programs must contain
statements to copy the symbolic storage
defini tions for the common system ar'ea
(CSA) and task control area (TCA). The
expansions of the CICS macros used in an
application program refer to fields
within these areas, so their locations
must be identified. Whether additional
storage definitions must be copied
depends on the processing requirements
(storage areas and macros used) of the
application program. The statements to
copy the symbolic storage definitions
must be in the order CSA, TCA, TCTTE,
TIDA; this is because addressability for
the last three areas mentioned depends
on the previous area already having been
copied.

A PL/I program to be run under CICS must
contain the REENTRANT option in the
first PROCEDURE statement to satisfy the
CICS requirement that code be
quasi-reenterable. See "Programming
Techniques and Restrictions" in Part 1
for a list of Pl/I features that cannot
be used.

STORAGE DEFINED DURING INITIALIZATION

During CICS initialization, the CSA is
allocated as part of the CICS nucleus.
For each terminal that is to be used, a
terminal control table terminal entry
(TCTTE) must be included in the terminal
control table (TCT). The Pl/I
programmer must provide symbolic storage
definitions for the CSA and TCTTE (if
needed) as follows.

COMMON SYSTEM AREA (CSA)

The statement

YeINClUDE DFHCSADS;

copies the based structures that
symbolically define the CSA and the CSA
optional features list. Addressability
for both areas is included.

If CICS is generated to support a common
work area (CWA), coding such as the
following must be provided immediately
following the YeINClUDE DFHCSADS macro:

DCl 1 DFHCSAWK BASED{CSACBAR),
2 CSAFIlL CHARCSl2),
2 USERlBL1 attributes,

2 USERLBln attributes;

TERMINAL CONTROL TABLE TERMINAL ENTRY
(TCTTEl

The statement

YeINClUDE DFHTCTTE;

copies the based structure that
symbolically defines the TCTTE and must
be present in all programs requesting
communication with a terminal.
Addressability for the TCTTE is
included.

STORAGE DEFINED DURING EXECUTION

During execution of a task, the task
control area (TCA), terminal
input/output area (TIDA), and other
storage areas required by the task are
allocated by CICS ~torage management
upon request from either the application
program or CICS. Symbolic definitions
for these areas must be provided, as
follows.

TASK CONTROL AREA (TCAl

The statement

YeINClUDE DFHTCADS;

copies the based structure that defines
the TCA and establishes addressability.

The latter part of the based structure
consists of a DECLARE statement that is
not terminated by a semicolon. The
declaration of the TCA structure must be
completed by supplying an ending (for
example, a semicolon) or, if a

Chapter 2.4. storage Definition - Pl/I 41

transaction work area (TWA) is desired,
by supplying further declaration. The
following is an example of the coding
required:

Y.INCLUDE DFHTCADS;
2 TWA CHAR(40);

TERMINAL INPUT/OUTPUT AREA (TIOA)

The statement

XINCLUDE DFHTIOA;

copies the based structure that defines
the CICS system section of the TIOA and
establishes addressability. This
statement must be present in all
programs that use terminal input records
or that write output records to a
terminal. The declaration of the TIOA
structure must be completed by supplying
further declaration of the input/output
area, which could be merely a dummy
element. An action that requires a TIOA
can be requested. For example, a DFHSC
TYPE=GETMAIN macro to obtain storage for
a TIOA for the application program. The
following is an example of the coding
required:

Y.INCLUDE DFHTIOAi
2 NAME CHAR(20),
2 STREET CHAR(20);

DFHSC TYPE=GETMAIN,
NUMBYTE=40,
CLASS=TERMINAL

TIOABAR=TCASCSAi
/* TCASCSA FIELD OF TCA CONTAINS
ADDRESS OF NEWLY ACQUIRED STORAGE */

For additional information about
GETMAIN; see "Obtain and Initialize Main
Storage (TVPE=GETMAIN)" in "Chapter 5.5.
Storage Control (DFHSC Macro)" on
page 241.

FILE INPUT/OUTPUT AREA (FIOA)

The statement

XINCLUDE DFHFIOA;

copies the based structure that defines
the CICS system section of the FIOA and
must be present in all programs
requesting a read of an unblocked record
without updating, or a read of blocked
records without deblocking. If desired,
the user can identify that the area
returned in response to a file request
is an FIOA, rather than an FWA or VSWA,

by testing FIOAIND for a bit value of
01. The declaration of the FIOA must be
completed, and addressability must be
established for the FIOA using the
statement

FIOABAR=TCAFCAA;

following the DFHFC macro. For
CICS/OS/VS only, if data is retrieved
using an existing ISAM application in
ISAM compatibility mode, the FIOA must
include a 16-byte filler prior to the
user's data definition. The following
is an example of the coding required; it
includes the optional coding for FIOA
identification:

XINCLUDE DFHFIOAi
2 NAME CHAR(20),

·2 ADDR CHAR(20);

FIOABAR=TCAFCAA;
IF FIOAIND='OI'B THEN GO TO GOTFIOA;

FILE WORK AREA (FWAl

The statement

XINCLUDE DFHFWADSi

copies the based structure that defines
the CICS system section of the FWA.
This statement should precede a
user-declared file record area when
reading or updating an existing blocked
record, when addin9-B new record to a
data set, or when retrieving records
using the browse technique. If desired,
the user can identify that the area
returned in response to a file request
is an FWA, rather than an FIOA or VSWA,
by testing FWAIND for a bit value of 11.
The declaration of the FWA must be
completed, and addressability must be
established for the FWA using the
statement

FWACBAR=TCAFCAA;

following a DFHFC macro. The following
is an example of the coding required; it
includes the optional test for FWA
identification:

XINCLUDE DFHFWADS;
2 NAME CHAR(20),
2 ADDR CHAR (20);

.
FWACBAR=TCAFCAAi
IF FWAIND='II'B THEN GO TO GOTFWA;

42 CICS/VS Application Programmer's Reference Manual (Macro Level)

VSAM WORK AREA (VSWAl

The statement

~INCLUDE DFHVSWA;

copies the based structure that defines
the CICS system section of the VSAM work
area and must be present in all programs
using locate mode I/O. See "Direct
Retrieval (VSAM Locate Mode)" in
"Chapter 3.2. File Control (DFHFC
Macro)" on page 51. If desired, the
user can identify that the area returned
in response to a file request is a VSHA,
rather than an FIOA or FHA, by testing
VSHAID for a bit value of 00000000.
Addressability must be established for
the VSWA using the statement

VSWABAR=TCAFCAA;

following the DFHFC macro using locate
mode I/O which causes CICS to acquire
the VSWA.

To identify the area returned as a VSWA,
the following instruction can be used:

IF VSWAID='O'B THEN GO TO GOTVSWAj

TRANSIENT DATA INPUT AREA (TDIA)

The statement

~INCLUDE DFHTDIAj

copies the based structure that defines
the CICS system section of the
intrapartition TDIA and must be present
in all programs requiring a message area
for transient data obtained by issuing a
DFHTD TYPE=GET macro that references an
intrapartition destination. (See
"Acquire Queued Data (TYPE=GET)" in
"Chapter 5.6. Transient Data Control
(DFHTD Macro)" on page 245.) The
declaration of the TDIA must be
completed, and addressability must be
established for the TDIA using the
statement

TDIABAR=TCATDAAj

following a DFHTD macro. The following
is an example of the coding required:

~INCLUDE (DFHTDIA)j
2 MSG CHAR(40)j

.
TDIABAR=TCATDAA;

TRANSIENT DATA OUTPUT AREA (TDOA)

The statement

~INCLUDE DFHTDOA;

copies the based structure that defines
the CICS system section of the
intrapartition TDOA and should be
present in all programs issuing a DFHTC
TYPE=PUT macro to provide transient data
as output. (See "Dispose of Data
(TYPE=PUT)" in "Chapter 5.6. Transient
Data Control (DFHTD Macro)" on
page 245.) The declaration of the TDOA
must be completed, and addressability
must be established for the TDOA using
the statement

TDOABAR=TCASCSAj

following a DFHSC macro. The following
is an example of the coding required:

Y.INCLUDE DFHTDOA;
2 TIME CHAR(2),
2 DATA CHAR(3),
2 INTERM CHAR(4),
2 OUTTERM CHAR(4);

DFHSC TYPE=GETMAIN,
NUMBYTE=XX,
CLASS=USER

TDOABAR=TCASCSA;

TEMPORARY STORAGE INPUT/OUTPUT AREA
(TSIOA)

The statement

Y.INCLUDE DFHTSIOA;

copies the based structure that defines
the CICS system section of the TSIOA and
must be present in all programs using
temporary storage. The declaration for
the TSIOA must be completed. If the
request is a GET or GETQ from temporary
storage and the TSDADDR operand is not
specified, addressability must be
established for the TSIOA using coding
such as:

DCL TSIOABAA FIXED BIN(31)
BASEDCTSIOABAB);
TSIOABAR=TCATSDA;
TSIOABAB=ADDR(TSIOABAR);
TSIOABAA=TSIOABAA-8j

The subtraction of eight ensures that
TSIOABAA points to the storage
accounting field (that is, to the
beginning) of the storage area acquired
by CICS. The statement

TSIOABAR=TCASCSA;

must be coded if the I/O area has been
acquired during execution. In the case
of a PUT or PUTQ, the symbolic address
of the data is located at TSIOAVRL.

Chapter 2.4. storage Definition - PL/I 43

STORAGE ACCOUNTING AREA (SAA)

The statement

~INCLUDE DFHSAADS;

copies the based structure that defin"es
the SAA and must be present in all
programs requesting storage through use
of the DFHSC TYPE=GETMAIN,CLASS=USER
macro. This statement must precede the
definition of user storage. The
declaration for the SAA must be
completed, and addressability must be
established for the SAA using the
statement

SAACBAR=TCASCSA;

The following is an example of the
coding required,

~INCLUDE DFHSAADS;
2 MSG CHAR(40);

.
DFHSC TYPE=GETMAIN,

NUMBYTE=60,
CLASS=USER

SAACBAR=TCASCSA;

JOURNAL CONTROL AREA (JCA)

The statement

~INCLUDE DFHJCADSi

copies the based structure that defines
the CICS system section of the journal
control area (JCA) and must be present
in all programs requesting journal
services. (See "Chapter 7.5. Journal
Control (DFHJC Macro)" on page 305.)

A JCA is acquired dynamically by means
of a DFHJC TYPE=GETJCA macro.
Addressability to the JCA is provided
automaticallY through the macro
expansion, which loads the address of
the area into JCABAR.

EXAMPLE OF CICS PL/I APPLICATION pROGRAM

The following example is a PL/I program
written to run under CICS. The program
asks a question of the terminal
operator, receives a reply, acquires
storage, and sends the operator's
message back to the terminal. In
effect, an echo test is performed. (The
line numbers refer to the notes that
follow the coding.)

01 PLIPROG: PROC OPTIONS(MAIN,
REENTRANT);

02 Y.INCLUDE DFHCSADS;
03 ~INCLUDE DFHTCADS;
04 2 SAVE LENGTH BIN FIXED(lS),
OS 2 SAVE-MSG CHAR(36);
06 ~INCLUDE (DFHTCTTE)i
07 ~INCLUDE (DFHTIOA);
08 2 TIOAMSG CHAR(36);
09 TIOAMSG='ENTER MSG TO BE ECHOED';
10 TIOATDL=26;
11 DFHTC TYPE=(WRITE,READ,WAIT)
12 TIOABAR=TCTTEDA;
13 SAVE_LENGTH=TIOATDLi
14 SAVE_MSG=TIOAMSGi
15 DFHSC TYPE=GETMAIN,
16 NUMBYTE=36,
17 CLASS=TERMINAL
18 . TIOABAR=TCASCSA;
19 TCTTEDA=TIOABAR;
20 T10AMSG=SAVE_MSG;
21 TIOATDL=SAVE_LENGTH;
22 DFHTC TYPE=WRITE
23 END;

Line Description

01 Required for PL/I. REENTRANT
option specified to meet
requirement of CICS that
code be quasi-reenterable.

02 Copies symbolic storage
definitions for CSA and CSA
optional features list and
establishes addressability.

03 Copies symbolic storage
definition for TCA and
establishes addressability.

04-05 Defines the TWA and terminates
the DECLARE statement.
SAVE_MSG and SAVE_LENGTH are used
to preserve the operator's reply

06 Copies symbolic storage
definition for TCTTE and TCTTE
and establishes addressability.

07 Copies symbolic storage
definition for TIOA and
establishes addressability.

08 Describes I/O area for terminal
message and terminates the
DECLARE statement.

09 Places message to be sent to
operator in the TIOA.

10 Places the message length in the
terminal data length field of
the TIOA.

11 CICS macro that writes message
to the terminal, waits for, and
reads, the operator's reply.

12 Reestablishes addressability for
the TIOA using address in TCTTE.

13-14 Saves the operator's message
and its length in the TCA.

15-17 CICS macro requesting 36 bytes of
terminal storage (terminal storage
is chained to the TCT).

44 CICS/VS Application Programmer's Reference Manual (Macro Level)

18 Establishes addressability for the
new TIOA (address of the newly
acquired storage is in TCASCSA).

19 Places address of new TIOA in TCT.
20-21 Moves message and length of

22

23

message to output area (TIOA).
CICS macro that sends operator's
message back to the terminal.
PL/I statement that marks the
end of the procedure.-

Chapter 2.4. Storage Definition - PL/I 4S

PART 3. FILES AND DATA BASES

Part 3. Files and Data Bases 47

CHAPTER 3.1. INTRODUCTION TO FILES AND DATA BASES

The other two chapters in this part
describe the methods of handling
records: directly by the file control
macro; and indirectly by the DL/I
interface.

FILE CONTROL MACRO

"Chapter 3.2. File Control (DFHFC
Macro)" on page 51 describes how a CICS
application program handles records by
means of the file control program.
Records are operated on by the file
control macro (DFHFC), according to the
various TYPE operands; for example,
records can be retrieved by the DFHFC
TYPE=GET macro.

The file control program can be used
only with direct-access data sets.
Sequential data sets are handled by the
transient data program and the DFHTD
macro, as described in "Chapter 5.6.
Transient Data Control (DFHTD Macro)" on
page 245.

An application program can also browse a
data set by means of the file control
macro. Browsing is defined as the
retrieval of records in a direct-access
data set, starting and ending at

specified records, in ascending or
descending sequence.

DL/I SERVICES

"Chapter 3.3. DL/I Services" on page 87
describes the macros and calls available
to a CICS application program that
enable that program to use a DL/I data
base.

The method of invoking DL/l differs for
the two operating systems used with
CICS. For CICS/QS/VS, the DL/I
interface is invoked by either a DL/I
CALL statement or by a DFHFC macro. For
CICS/DOS/VS, the DL/I interface is
invoked only by a DL/I CALL statement.

DL/I is a general-purpose data base
control system that executes in a
virtual storage environment. When used
online, it simplifies the task of
creating and maintaining large data
bases that are to be accessed by various
application programs. For more
information about DL/I, refer to the
DL/I publications listed in the
bibliography and to the appropriate CICS
Facilities and Planning Guide.

Chapter 3.1. Introduction to Files and Data Bases 49

CHAPTER 3.2. FILE CONTROL (DFHFC MACRO)

The CICS file control program processes
fixed- or variable-length, blocked or
unblocked, or undefined records of a
data set that is stored in a
direct-access storage device.

File control uses the standard access
methods of the host operating system,
namely:

• VSAM (Virtual Storage Access Method)

• DAM (Direct Access Method).

Application programs can access DAM data
sets on a logical record level,
deblocking services being provided by
file control. Data sets on fixed block
architecture (FBA) devices can be
accessed by VSAM only.

Through the file control macro (DFHFC),
an application program can perform file
inquiry, that is, read a record from a
data seti browse through records in the
data set in sequence; update a record in
a data set; or add a record to a data
set. In the last case the application
program must obtain sufficient main
storage for the record by means of the
DFHFC TYPE=GETAREA macro. The
application program can also release the
main storage that has been acquired.

For VSAM key sequenced (KSDS) or
relative record (RRDS) data sets only,
the DFHFC macro can be used to delete
records, singly or in groups.

All buffers and work areas needed for
data set operations are acquired by file
control in accordance with the data set
definitions supplied in the file control
table (the FCT) by the system
programmer. All data sets referred to
in DFHFC macros must have been defined
in the FCT. The application programmer
should work with the system programmer
in setting up these data set
definitions. However, the application
program need deal only with logical
records; it is not directly involved
with other characteristics of the data
set.

For a VSAM data set, all data is read
into or written from one of three areas
in main storage:

• A file work area (FWA)

• A VSAM work area (VSWA)

• A file input/output area (FIOA).

In general, most data is read into or
written from an FWA. There are two
exceptions, a locate-mode read-only

request, and when operating in ISAM
compatibility mode. eISAM compatibility
mode is indicated by the system
programmer specifying UNBLOCKED in the
RECFORM operand of the FCT entry for the
data set.)

For locate-mode read only, the address
of the retrieved record, as it is
positioned in the VSAM buffer, is made
available to the application program in
a VSWA (in field VSWAREA). The record
(that must not be modified) remains in
this buffer.

In ISAM compatibility mode, the
retrieved record is moved to an FIOA for
a read only request for an unblocked
record. A symbolic storage definition
must be provided for this area (for
example, an assembler language DSECT)
and addressability must be established
to it. For CICS/OS/VS only, a l6-byte
filler must be defined before the user
data.

If an error occurs while a VSAM data set
is being accessed, a DFHFC TYPE=RELEASE
macro must be issued after the error has
occurred, otherwise a permanent wait may
result.

The user can determine which area (FWA,
VSWA, or FIOA) is returned in response
to a file request. Refer'to "Chapter
2.2. Storage Definition - Assembler
Language" on page 29, "Chapter 2.3.
storage Definition - COBOL" on page 35
or "Chapter 2.4. storage Definition -
PL/I" on page 41 (depending on the
programming language being used) for
details.

For a DAM data set, all data is read
into or written from either of two areas
in main storage:

• A file input/output area (FIOA)

• A file work area (FWA).

An FIOA is required to handle records
that are unblocked, and that are read
only.

An FWA is required to handle records
that are blocked, that are to be added,
or that are to be updated. In addition,
an FWA is always used in a browse.

File control executes at the priority of
the requesting program, under control of
the task control area (the TCA) of the
requesting program, saving and restoring
registers from this TCA. The response
to a request for file services can be
checked as explained in "Test Response
to a Request for File Services

Chapter 3.2. File Control (DFHFC Macro) 51

(TYPE=CHECK)" on page 80. Control can
be routed to any of various user written
exception handling routines based on the
outcome of the file operation.

Parameter values must be specified, when
using the file control macro, eitherl

• By including the parameters in
operands of the macro by which file
services are requested, or

• By coding instructions that place
the parameter values in fields of
the TCA before issuing the macro.

The second of these approaches is
provided to allow the application
program to specify parameters that can
only be determined during execution, for
example, input messages from a terminal.

EXCLUSIVE CONTROL DEADLOCKS

CICS exclusive control serializes
updates, additions, and deletions of
individual records, maintaining such
control until a sync point is t~ken or
the transaction ends.

VSAM exclusive control, that operates in
addition to CICS exclusive control,
serializes based on a control interval
that may contain more than one record.
It distinguishes between shared use and
exclusive use, and control lasts until
the request has ended. The rules
regarding exclusive control conflict,
and the determination that a request has
ended, vary according to the type of
request and whether or not the data set
is participating in VSAM Local Shared
Resources (LSR).

While it is not necessary to understand
the details of exclusive control
conflicts in VSAM, the application
programmer must follow certain rules in
designing and programming, so as to
reduce the probability of a deadlock in
CICS or in VSAM. The rules are more
stringent for data sets using LSR.
However, lSR is widely used and provides
many benefits. Even if the system
programmer has not specified resource
sharing for a data set (DFHFCT
TVPE=DATASET,LSRPOOL=I), he may do so in
the future. Therefore, it is strongly
recommended that applications be written
to execute correctly, without deadlock,
in the LSR environment.

There are four distinct types of
deadlock, and corresponding rules, when
accessing VSAM data sets through DFHFC
macrosl

1. Two tasks are updating multiple
resources. Each has CICS or VSAM
exclusive "control over one resource,
but each needs the resource owned by
the other in order to complete.
This type of deadlock is more fully

explained in the appropriate ~
Application Programmer's Reference
Manual (Command Level).

To prevent deadlock, all
applications updating multiple
resources should update them in the
same order.

2. A task holds position for exclusive
use over a control interval, and
attempts to do another operation
requiring exclusive use. If a task
has done a GET UPDATE and attempts a
GET UPDATE, DELETE, or PUT NEWREC;
or if it has done a PUT for
MASSINSERT and attempts a GET
UPDATE, DELETE, or PUT NEWREC not
for MASSINSERT, a deadlock may
occur. Also, a second PUT for
MASSINSERT with a nonascending key
can cause a deadlock.

To prevent deadlock, the programmer
should release position before
attempting another operation
requiring exclusive use. Follow a
GET UPDATE with a PUT UPDATE, PUT
DELETE, or RELEASE. Follow a PUT
for MASSINSERT by another PUT for
MASSINSERT with an ascending key, or
release position with a RELEASE.

3. A task holds position for exclusive
use over a control interval, and
attempts to do an operation
requiring shared use, in the LSR
environment. If a task has done a
GET UPDATE or PUT for MASSINSERT,
and attempts a browse (SETL) or
non-update get (GET MOVE or GET
LOCATE), a deadlock may occur.

To prevent deadlock, the programmer
should release position as described
above before attempting any other
operation on the data set, not just
an operation requiring exclusive
use.

4. A task holds position for shared use
over a control interval, and
attempts to do an operation
requiring exclusive use in the LSR
environment. If a task has done a
SETL, RESETL, GETNEXT, GETPREV, or
GET LOCATE, and attempts a GET
UPDATE, DELETE, or PUT NEWREC, a
deadlock may occur.

To prevent deadlock, the programmer
should release position by ending
all browses on the data set with
ESETL, or by ending a GET LOCATE
with a RELEASE, before attempting an
operation requiring exclusive use.

In summary, the application programmer
will prevent exclusive control deadlocks
by following these rules:

1. All applications should update
multiple VSAM data sets in the same
order.

S2 CICS/VS Application Programmer's Reference Manual (Macro Level)

2. Follow a GET UPDATE by a PUT UPDATE,
PUT DELETE, or RELEASE before
performing any other operation on
the same data set.

3. Follow a PUT for MASSINSERT by
another PUT for MASSINSERT with an
ascending key, or release position
with a RELEASE before performing any
other operation on the same data
set.

4. Before issuing a GET UPDATE, DELETE,
or PUT NEWREC, end all browses of
that data set with an ESETL.

5. Before issuing a GET UPDATE, DELETE,
or PUT NEWREC, end a GET LOCATE to
that data set with a RELEASE.

BROWSING

The application program can browse a
data set. The file control macro is
used to specify a starting point for the
browse, request each succeeding, or
preceding record, reset the starting
point for the browse (if desired), and
end the browse.

Browse operations are requested by the
appropriate TYPE operands of the DFHFC
macro; SETL, GETNEXT, GETPREV, RESETL,
and ESETL. The capabilities associated
with each are summarized below.
Operands to request checking of a
response can be specified with these
macros as with other DFHFC macros (see
"Test Response to a Request for File
Services (TYPE=CHECK)" on page 80).
Specific operands for each macro are
discussed in detail at the end of the
chapter.

When accessing a VSAM data set, the
browse facility can be used to perform
random skip-sequential processing in a
forward direction only. The following
steps are required:

1. Group several random requests into
ascending key sequence.

2. Issue a DFHFC TYPE=SETL macro that
finds the first required record. To
achieve this, the record
identification field pointed to by
the RDIDADR operand should be
initialized to the key of the
required record.

3. Prior to each DFHFC TYPE=GETNEXT
macro, place the key of the next
required record into the record
identification field.

This procedure allows quick direct
access to a VSAM data set by reducing
index search time. When the record
having the highest key has been
retrieved, an ESETL or RESETL should be
issued to terminate or reset the
operation.

A browse should always be terminated by
an ESETL macro, but will also be
terminated by the end of an LUW (that
is, at a sync point), or by.a normal or
abnormal end of task. .

ALTERNATE INDEXING

Alternate indexing is a feature of VSAM,
supported by CICS file control, that
allows key-sequenced and entry-sequenced
data sets to be accessed by one or more
alternate paths. Each alternate index
accesses the records in the base data
set through a different, alternate, key
within the record.

Also, a data set with an alternate index
can have two or more records with the
same alternate key. To retrieve the
first record with the same key the DFHFC
TYPE=GET macro with the DUPKEY operand
is sufficient. However, to continue
retrieving the remaining records with
the same key, a browse operation must be
initiated. The DUPKEY operand also must
be specified on the appropriate macro.
The records will be retrieved in the
order in which they were added to the
data set, the duplicate key condition
being raised for each record except the
last. When changing to the browse
operation, the first record will be
retrieved twice, once by the TYPE=GET
and once by the browse.

Defining the alternate indexes as part
of the upgrade set will eliminate the
possibility of one or more indexes
becoming invalid whenever the data set
is updated.

RECORD IDENTIFICATION FIELD

The record identification field is used
by the application program to
communicate to the file control program
the identity, in the form of a key or
address, of a specific record, or the
starting point of a set of records,
required in input/output operations.
This field is identified by the RDIDADR
operand of the DFHFC macro. The
contents of this field should not be
altered when doing a GET for UPDATE
operation.

If multiple browse operations are
performed concurrently by a single
application program, a unique record
identification field must exist for each
operation. The application program must
provide the storage area for the record
identification field. Generally, this
storage can be allocated within the
transaction work area (TWA) of the TCA,
or some area acquired dynamically by the
application program. Because CICS
application programs must be
quasi-reenterable, it is not advisable

Chapter 3.2. File Control (DFHFC Macro) 53

to set UP the record identification
field within the application program.

For a VSAM data set, the record
identification field contains either the
key or the relative byte address of the
desired record. If the generic key
option is used, the first byte of the
field must contain the length of the
key, in binary, and the remainder of the
field must contain the generic key.

A partial key may be used as a search
argument in a browse operation referring
to a VSAM data set.

For a DAM data set, the record
identification field consists of three
subfields that contain block reference
information, a physical key Cif keyed
data sets are being used), and a
deblocking argument (if blocked data
sets are being used). These fields are
as follows:

• A block reference for the data set
is specified by the RELTYPE operand
of the DFHFCT TYPE=DATASET system
macro and may be one of the
following:

•

•

Relative block CCICS/OS/VS
only), 3-byte binary
(RELTYPE=BLK)

Relative track and record,
2-byte TT, I-byte R
(RELTYPE=HEX)

Relative track and record (zoned
decimal format), 6-byte TTTTTT,
2-byte RR (RELTYPE=DEC)

Actual address, 8-byte MBBCCHHR
(RELTYPE omitted).

A physical key is required only if
the data set being accessed is
written with recorded keys. This
key must be the same length as
specified in the BLKKEYL operand for
the FCT entry that defines the data
set. It must immediately follow the
block reference.

A deblocking argument is required
only if the data set contains
blocked records and specific logical
records are to be retrieved from
within a block. Not every record
needs to be deblocked. If a
deblocking argument is not
specified, an entire block is read
into an FIOA. The deblocking
argument may be either a key or a
relative record number, and is
specified in the RETMETH operand of
the DFHFC macro. If used, the
deblocking argument must immediately
follow the· physical key (if present)
or the block reference Cif the
physical key is not present).

If the deblocking argument is a key,
it must be the same length as
specified in the KEYLEN operand of
the FCT entry that defines the data
set. The key used for deblocking
need not be the same size as the
physical record key (BLKKEYL).

Figure lIon page 55 shows examples of
record identification fields for a DAM
data set.

DAM DATA SETS

Records in a nonkeyed DAM data set may
be updated using either of two methods.
One method is to issue a DFHFC
TYPE=GET,TYPOPER=UPDATE to read the
record, change the data in the FHA, and
issue a DFHFC TYPE=PUT to update the
record. This is the normal way that
records are updated and should be used
when portions of the record are to be
changed and the contents of the record
are unknown.

An alternative method may be used when
the contents of the record to be updated
are known, or when the entire record is
to be changed, regardless of its
contents. A DFHFC TYPE=GETAREA macro is
used to acquire an FHA, the record is
built in the FHA, and a DFHFC
TYPE=PUT,TYPOPER=UPDATE is issued to
write the data at the location specified
in the record identification field,
overwriting whatever was previously
recorded at that location. Automatic
logging must not be specified for files
to be updated by this method.

When adding new records to a DAM data
set, the following considerations and
restrictions apply:

1. When adding undefined or variable
length records (keyed or nonkeyed),
the application programmer must
indicate the track on which each new
record is to be added. If space is
available on the track, the new
record is written following the last
previously written record, and the
record number is placed in the "R"
portion of the record identification
field of the record. The track
specification may be in any of the
acceptable formats except relative
block. If zoned decimal relative
format is used, the record number is
returned as a 2-byte zoned decimal
number in the seventh and eighth
positions of the record
identification field.

In the CICS/DOS/VS system, an
attempt to add a variable-length or
undefined record is limited to the
single track specified by the
application programmer. If
insufficient space is available on
that track, a "no space available"
error is returned, and the

54 CICS/VS Application Programmer's Reference Manual (Macro Level)

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS <---Bytes

RELBLKI N (CICS/OS/VS only) Search by relative block;
deblock by relative record

RELBLKI KEY (CICS/OS/VS only) Search by relative block;
deblock by key

T T R PH-KEY KEY Search by relative track
and record and key;
deblock by key

T T T T T T R R PH-KEY KEY I Search by zoned
decimal relative

track, record, and key.
Deblock by key.

T T R KEY Search by relative track
and record; deblock by key

M B B C C H H R N Search by address;
deblock by relative record

Figure 11. Examples of Record Identification (DAM Data Set)

application programmer may then try
to add the record on another track.
Under these circumstances, the
record is returned to the
application program in an FHA, the
address of which is at TCAFCAA. The
programmer need only modify the
track identification and issue
another DFHFC
TYPE=PUT,TYPOPER=NEWREC macro to add
the record on another track.

In CICS/OS/VS, the extended search
option allows the record to be added
to another track if no space is
available on the specified track.
Under these circumstances, the
location at which the record is
added is returned to the application
program.

2. The addition of keyed fixed-length
records to DAM data sets requires
that the data set first be formatted
with dummy records or nslots" into
which new' records may be added.
(The first byte of a dummy record is
a key of X'FF's; in CICS/OS/VS, the
first byte of data contains the
record number.) A preformatted DAM
data set cannot be added to by a
COBOL batch program.

3. For nonkeyed, fixed-length records,
the exact physical block reference
must be given in the record
identification field. The data in
the new records is written in the
exact location specified,

overwriting the previous contents of
that location.

4. For keyed, fixed-length record
additions, only the track
information is used as a starting
location for the search of a dummy
key and record. When a dummy key
and record are found, the new key
and record replace it. The.location
at which the new record is inserted
is returned to the application
program in the block reference
subfield of the record
identification field.

For example, suppose a user wishes
to add a keyed, fixed-length record
to a DAM data set. First, some
algorithm determines that the search
is to start at relative track 3.
The record identification field of
the new record might appear as
follows:

o 3 0 ALPHA

T T R KEY

When control is returned to the
application program, the record
identification field might reflect
the fact that the record was added
on relative track 4, record 6.

o 4 6 ALPHA

T T R KEY

Chapter 3.2. File Control (DFHFC Macro) SS

5. When adding records of undefined
length, the length of the physical
record must be placed in 2-byte
binary format at TCAFCURL. When an
undefined record is retrieved, the
application program must determine
its length.

6. When making additions to a DAM data
set containing variable-length
blocked or unblocked records, the
application program must include a
record descriptor field (RDF) that
contains the length (Llbb) of the
entire block to be written. Also,
for each logical record within that
block, an RDF must be included that
contains the length of the logical
record. Effectively, this allows
the application to add a block
containing multiple logical records,
as shown in the following diagram:

Iprefixl 961 541<-50->1 24 1<-:

I I I
Block Log rec Log rec

RDF RDF RDF

If a single logical record only is
to be added, the block RDF is still
required, as shown in the following
diagram:

100--->1

I I
Block log rec

RDF RDF

When updating records on a DAM data set,
the following restriction applies:

If the file is blocked, and if two or
more records are to be updated, a DFHFC
TYPE=GET macro to retrieve a record must
be followed by a DFHFC TYPE=PUT macro to
write the updated record (or a DFHFC
TYPE=RELEASE macro if the updated record
is not required) before any further
record in the same block is retrieved
for update. Failure to do so will
result either in one or more updates
being lost or in a lockout.

DIRECT RETRIEVAL (TVPE=GET)

This macro is used for direct read-only
(inquiry) or update (DFHFC TYPE=GET,
TYPOPER=UPDATE) operations. The
requested record is returned in:

• An FHA for update operations,
read-only operations with blocked
records, or for read-only operations
with a blocked VSAM data set

•

•

A VSWA for read-only operations in
locate mode on the records of a VSAM
data set.

An FIOA for read-only operations
with unblocked records from a VSAM

DFHFC TYPE=GET
[,DATASET=symb-namel
[,RDIDADR=symb-addrl
[,TYPOPER=UPDATEl
[,RETMETH={RELRECIKEy}]1
[,ARGTYP={KEYIRBA}]2
[,SRCHTYP=

{FKEQIFKGEIGKEQIGKGE}]2
[,MODE={MOVEILOCATE}]2
[,DUPKEY=symb-addr]2
[,NORESP=symb-addr]
[,ERROR=symb-addrl
[,DSIDER=symb-addr]
[,NOTFND=symb-addr]
[,INVREQ=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[,ILLOGIC=symb-addr1 2

1 DAM only
2 VSAM only

data set in move mode or a DAM data
set.

Before this macro is used, instructions
must be provided that define
symbolically the required FWA, and/or
VSWA, or FIOA, by:

1. Copying the appropriate storage
definitions (DFHFWADS, and/or
DFHVSWA, or DFHFIOA) provided by
CIeS

2. Providing storage definitions for
the user's part of the FIOA, FHA,
and/or the user's record in the VSAM
buffer.

eles performs the following services in
response to a DFHFC TYPE=GET macro:

1. Acquires the appropriate main
storage area (FHA, VSHA, or FIOA)
required to read a record

2. Reads the requested record into that
area

3. Makes the requested record available
to the application program

The record required in an input/output
operation is identified in a record
identification field. The format of
this field, as required for the various
access methods, is described in "Record
Identification Field" on page 53.

When a DAM data set is referenced, the
record identification field should
contain a block reference.

When a VSAM data set is referenced, the
required record is accessed by either a
relative byte address or a key. A
search by key may be for a key equal to
the search key or for one equal to or

56 eICS/VS Application Programmer's Reference Manual (Macro Level)

greater than the search key. A search
may also be for a partial key (the first
2 bytes, or any number specified by the
programmer), which may serve as a
generic key. The generic or partial key
search may, again, be either for an
equal key or for an equal or greater
key, but only the number of bytes
specified will be compared.

In addition, CICS can acquire an FWA
when the record is to be updated, or
when records are blocked, depending on
the operands included in the macro.

The length of the acquired FWA depends
on whether or not the record is to be
updated.

The FWA for a GET in move mode will also
be large enough to contain a record of
the maximum length defined in the FCT.

If the record is to be updated, the FWA
acquired will be sufficient to contain a
record of the maximum length specified
by the system programmer in the FCT;
otherwise, the FWA will be sufficient to
contain the requested record.

When a record of a VSAM data set is
retrieved in response to a read only
request, move-mode or locate-mode
processing can be specified. In move
mode, the record is handled in the same
way as a DAM record. In locate mode,
the record is made available to the
application program in the VSAM buffer.
The application programmer must have
copied the symbolic storage definition
for the VSWA (DFHVSWA) and must also
provide a symbolic storage definition
for the record that is retrieved.

After requesting file services, the
programmer must establish addressability
for any required FIOA or FWA. The
address of the area involved, provided
by CICS at TCAFCAA, must be placed in
FIOABAR or FWACBAR. In locate mode, the

ASH:

address of the VSWA is in TCAFCAA and
must be placed in VSWABAR. The address
of the area that holds the requested
record is at VSWAREA within·the VSHA and
must be moved to the base locator that
has been established for the symbolic
storage definition of the area.

When retrieving variable length records
from a VSAM data set in move mode, the
file control program creates a length
field and places it preceding the record
in the FHA. The format of this length
field is LLbb, where LL is a 2-byte
binary length (including the 4 bytes for
the length field itself) and bb is 2
bytes of binary zeros. In locate mode,
the length is not included in the record
itself but is placed at VSWALEN in the
VSHA.

When a VSAM record is retrieved for
update, VSAM maintains exclusive control
of the control interval containing that
record. A task should not attempt to
retrieve (for update) a second record
from the same control interval as a
record it is already holding for update,
otherwise a permanent wait will occur.
The update should first be completed, by
a DFHFC TYPE=PUT macro, or if it cannot
be completed, terminated by a DFHFC
TYPE=RELEASE macro.

A DFHFC TYPE=RELEASE macro frees an FIOA
or FHA acquired in response to a request
for file services, or a VSHA and VSAM
string established for a VSAM read-only
request using locate-mode I/O. Any of
these areas that are not freed by the
application program are freed by CICS at
task termination.

DIRECT RETRIEVAL (READ-ONLY)

The following examples show how to
retrieve a single record directly from a
master data set, assuming blocked
records.

COpy
KEYF DS

DFHTCADS
CL8

COpy TCA SYMBOLIC STRG DEFN
RECORD IDENT FIELD IN TWA

FWACBAR EQU
COpy

RECORD DS

.

7
DFHFWADS
OCL350

MVC KEYF,ACCTNO
READREC DFHFC TYPE=GET,

DATASET=MASTERA,
RDIDADR=KEYF

L FWACBAR,TCAFCAA

ASSIGN BASE REGISTER FOR FHA
SYMBOLICALLY DEFINE FWA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

MOVE RECORD IDENT TO KEY FIELD
GET RECORD FROM MASTER DATA SET

ESTABLISH ADDRESSABILITY FOR FWA

Chapter 3.2. File Control (DFHFC Macro) 57

COBOLI

02 FWACBAR PIC S9(8) COMPo

· 01 DFHTCADS COpy DFHTCADS.
02 KEYF PIC X(8).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

· MOVE ACCTNO TO KEYF.
READREC.

DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF

MOVE TCAFCAA TO FWACBAR.

PL/I:

~INCLUDE DFHTCADS;
02 KEYF CHAR(8);

~INCLUDE DFHFWADS;
02 RECORD CHAR(350);

· KEYF=ACCTNO;
READREC;

DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF

FWACBAR=TCAFCAA;

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COpy SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE RECORD IDENT TO KEY.

GET RECORD FROM MASTER DATA SET *

NOTE ESTABLISH FWA ADDRESSABILITY.

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/
/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*ASSIGN RECORD IDENT TO KEY FIELD*/

*

GET RECORD FROM MASTER DATA SET *
*

/*ESTABLISH ADDRESSABILITY FOR FWA*/

58 CICS/VS Application Programmer's Reference Manual (Macro Level)

DIRECT RETRIEVAL (VSAM LOCATE MODEl

The following examples show how to
retrieve a single record directly from a
VSAM data set using locate-mode I/O.

If the record is variable length, the
LLbb field will not be part of the
record. The length of the record can be
found in VSWALEN in the VSWA.

ASM:

COpy DFHTCADS COPY TCA SYMBOLIC STORAGE DEFN
KEYF DS CL8 DEFINE KEY FIELD IN TWA
VSWABAR EQU 7 ASSIGN BASE REGISTER FOR VSWA
RECBAR EQU 8 ASSIGN BASE REGISTER FOR RECORD

COPY DFHVSWA COpy VSWA SYMBOLIC DEFN
RECDS DSECT DUMMY SECTION FOR RECORD

USING *,RECBAR MAKE RECORD ADDRESSABLE
RECORD DS OCL350 DEFINE RECORD LAYOUT

MVC KEYF,ACCTNO MOVE RECORD ID TO KEY FIELD
READREC DFHFC TYPE=GET, GET A RECORD FROM MASTER

DATASET=MASTVSAM, VSAM DATA SET USING
RDIDADR=KEYF, LOCATE MODE
MODE=LOCATE

L VSWABAR,TCAFCAA ESTABLISH VSWA ADDRESSABILITY
L RECBAR,VSWAREA ESTABLISH RECORD ADDRESSABILITY
L 3,VSWALEN LOAD RECORD LENGTH INTO WORK'REG

*
*
*

Chapter 3.2. File Control (DFHFC Macro) S9

COBOL a

02 VSWABAR PIC S9(8) COMPo

02 RECBAR PIC S9(8) COMPo

01 DFHTCADS COpy DFHTCADS.
02 KEYF PIC X(8).
02 RECLEN PIC S9(8) COMPo

01 DFHVSWA COpy DFHVSWA.
01 RECDS SYNCHRONIZED.

02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE ACCTNO TO KEYF.
READREC.

DFHFC TYPE=GET,
DATASET=MASTVSAM,
RDIDADR=KEYF,
MODE=LOCATE

MOVE TCAFCAA TO VSWABAR.
MOVE VSWAREA TO RECBAR.
MOVE VSWALEN TO RECLEN.

PL/!a

7.INCLUDE DFHTCADS;
02 KEYF CHAR(8),
02 RECLEN FIXED BINARY(31);

7.INCLUDE DFHVSWA;
DCL 01 RECDS BASED (RECBAR),

02 RECORD CHAR(350);

KEYF=ACCTNO;
READREC:

DFHFC TYPE=GET,
DATASET=MASTVASM,
RDIDADR=KEYF,
MODE=LOCATE

VSWABAR=TCAFCAA;
RECBAR=VSWAREA;
RECLEN=VSWALEN;

NOTE DEFINE BASE REGISTER FOR VSWA.

NOTE DEFINE BASE REGISTER FOR RECORD.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE DEFINE RECORD LENGTH WORK AREA.

NOTE COPY SYMBOLIC STRG DEFN FOR VSWA.
NOTE DEFINE SYMBOLIC STRG DEFN FOR RECORD.
NOTE DEFINE RECORD LAYOUT.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE RECORD ID TO KEY FIELD.

GET A RECORD FROM MASTER
VSAM DATA SET USING
LOCATE MODE

NOTE ESTABLISH VSWA ADDRESSABILITY.
NOTE ESTABLISH RECORD ADDRESSABILITY.
NOTE MOVE RECORD LENGTH TO WORK AREA.

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/
/*DEFINE RECORD LENGTH WORK AREA*/
/*COPY SYMBOLIC STRG DEFN FOR VSWA*/
/*DEFINE SYMB STRG DEFN FOR RECORD*/
/*DEFINE RECORD LAYOUT*/

/*MOVE RECORD ID TO KEY FIELD*/

GET A RECORD FROM MASTER *
VSAM DATA SET USING *
LOCATE MODE *

/*ESTAB ADDRESSABILITY FOR VSWA*/
/*ESTAB ADDRESSABILITY FOR RECORD*/
/*MOVE RECORD LENGTH TO WORK AREA*/

60 CICS/VS Application Programmer's Reference Manual (Macro Level)

DIRECT RETRIEVAL (FOR UPDATE)

The following examples show how to
retrieve a single record directly from a
master data set for update.

ASMa

COpy DFHTCADS
KEYF DS CLS
FHACBAR EQU 7

COPY DFHFHADS
RECORD DS OCL350

MVC KEYF,ACCTNO
READREC DFHFC TYPE=GET,

DATASET=MASTERA,
RDIDADR=KEYF,
TYPOPER=UPDATE

L FHACBAR,TCAFCAA

COBOL a

02 FHACBAR PIC S9(S) COMPo

.
01 DFHTCADS COPY DFHTCADS.

02 KEYF PIC XeS).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

.
MOVE ACCTNO TO KEYF.

READREC.
DFHFC TYPE=GET,

DATASET=MASTERA,
RDIDADR=KEYF,
TYPOPER=UPDATE

MOVE TCAFCAA TO FHACBAR.

COpy TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN THA
ASSIGN BASE REGISTER FOR FHA
SYMBOLICALLY DEFINE FHA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

MOVE RECORD IDENT TO KEY FIELD
GET RECORD FROM MASTER DATA SET
FOR UPDATE

ESTABLISH ADDRESSABILITY FOR FWA

NOTE DEFINE BASE REGISTER FOR FHA .

NOTE COpy SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COpy SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FHA.

NOTE ESTABLISH TCA ADDRESSABILITY .

NOTE MOVE RECORD IDENT TO KEY.

GET RECORD FROM MASTER DATA SET ~

NOTE ESTABLISH FHA ADDRESSABILITY.

~
~

Chapter 3.2. File Control (DFHFC Macro) 61

PL/Is

XINCLUDE DFHTCADS;
02 KEYF CHAR(S);

XINCLUDE DFHFWADS;

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/

02 RECORD CHAR(3S0);
/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FHA*/

.
KEYF=ACCTNO;
READRECz

/*ASSIGN RECORD IDENT TO KEY FIELD*/

DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF,
TYPOPER=UPDATE

GET RECORD FROM MASTER DATA SET *

* lE

FWACBAR=TCAFCAA; /*ESTABLISH ADDRESSABILITY FOR FHAlE/

DIRECT ADDITION OR UPDATE (TVPE=PUT)

DFHFC TYPE=PUT
[,RDIDADR=symb-addrl
[,TYPOPER=

{NEWRECIUPDATEIDELETE}]l
[,ARGTYP={KEXIRBA}]2
[,NORESP=symb-addr]
[,ERROR=symb-addrl
[,DUPREC=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addrl
[,NOSPACE=symb-addrl
[,NOTOPEN=symb-addrl
[,ILLOGIC=symb-addr1 2

1 DELETE can be used only with a
VSAM KSDS or RRDS

2 VSAM only CARGTYP is only valid
with TYPOPER=NEWREC)

This macro is used tOI

• Add a new record to an existing data
set

• Update an existing record that has
been retrieved through the DFHFC
TYPE=GET,TYPOPER=UPDATE macro

• Update an existing record in a
nonkeyed DAM data set without first
reading the record for update.

A DFHFC TYPE=PUT macro must never be
issued without first issuing a DFHFC
TYPE=GET,TYPOPER=UPDATE or DFHFC
TYPE=GETAREA macro, because the results
of such action are unpredictable.

When a VSAM key-sequenced or
relative-record data set is being
processed, a DFHFC

TYPE=PUT,TYPOPER=DELETE macro can be
used to delete a record previously
retrieved by a DFHFC
TYPE=GET,TYPOPER=UPDATE macro.

An FWA is used to contain the record to
be written or updated. The first 16
bytes of the FHA form the CICS system
section, which is followed by the record
to be written to a data set.

CICS does the following in response to a
DFHFC TYPE=PUT macros

• Writes updated or new records in
user defined data sets

• Acquires or locates the main storage
and control blocks required to write
the record

• Releases all data set storage
associated with the request to
write.

Before file services can be requested by
means of the DFHFC TYPE=PUT macro, the
application program must include
instructions that do the followings

1. Symbolically define the FHA by (1)
copying the appropriate system
section storage definition
(DFHFWADS), and (2) providing a
storage definition for the user's
section of the FWA.

2. Establish addressability for the new
FHA by specifying a symbolic base
address for the FWA.

3. Place the address of the FWA in
TCAFCAA. For a request to add a new
record, this address is returned to
the application program by the
preceding DFHFC TYPE=GETAREA
request. For a request to update 0
delete a record, this address is
made available to the application
p og am in response to the p eceding
DFHFC TYPE=GET,TYPOPER=UPDATE
request. It must have been sto ed

62 CICS/VS Application P ogramme ·s Refe ence Manual (Macro level)

by the application program at that
time, and should be moved to TCAFCAA
immediately preceding the DFHFC
TYPE=PUT request, with no
intervening requests that could
cause the contents of TCAFCAA to be
altered.

If the records being written to a data
set are undefined, the length of the
record being written must be placed in
TCAFCURL.

For records written to a variable length
VSAM data set, the length of the record
should be placed in an LLbb field in the
beginning of the record. The field is 4
bytes long, the first 2 bytes containing
the length in binary (including the 4
bytes for the length field) and the last
2 bytes set to binary zeros. This field
is used by CICS to determine the length

ASM:

of the record and is not written to the
data set.

VSAM does not allow an update operation
on a control interval from which a
record has already been retrieved for
update. If a task attempts to perform
an update operation on such a control
interval before" a previous record
already held by the same task is updated
by a DFHFC TYPE=PUT, or before the
update is terminated by a DFHFC
TYPE=RELEASE, the program will go into a
permanent wait.

The programmer who is adding records to
a DAM data set should also refer to "DAM
Data Sets" earlier in the chapter.

The following examples show how to
retrieve a record, update it, and return
it to the data set.

COPY
KEYF DS

DFHTCADS
CLa

COpy TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA

FWACBAR EQU
COpy

RECORD DS

.

7
DFHFWADS
OCL3S0

READUPD DFHFC TYPE=GET,
DATASET=MASTERB,
RDIDADR=KEYF,
TYPOPER=UPDATE

L FWACBAR,TCAFCAA

(update record)

ST FWACBAR,TCAFCAA
WRITEUP DFHFC TYPE=PUT,

RDIDADR=KEYF

ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

READ RECORD FOR UPDATE

ESTABLISH ADDRESSABILITY FOR FHA

PLACE FWA ADDRESS IN TCA
WRITE THE UPDATED RECORD

Chapter 3.2. File Control (DFHFC Macro) 63

COBOL:

02 FWACBAR PIC S9(8) COMPo

01 DFHTCADS COpy DFHTCADS.
02 KEYF PIC xes).

01 DFHFWADS COpy DFHFWADS.
02 RECORD PIC X(350) .

.
PROCEDURE DIVISION.

MOVE CSACDTA TO TCACBAR.

READUPD.
DFHFC TYPE=GET,

DATASET=MASTERB,
RDIDADR=KEYF,
TYPOPER=UPDATE

MOVE TCAFCAA TO FWACBAR.

(update record) .
MOVE FWACBAR TO TCAFCAA.

WRITEUP.

PL/I:

DFHFC TYPE=PUT,
RDIDADR=KEYF

Y.INCLUDE DFHTCADS;
02 KEYF CHAR(S);

Y.INCLUDE DFHFWADSj
02 RECORD CHAR(3S0);

READUPD:
DFHFC TYPE=GET,

DATASET=MASTERB,
RDIDADR=KEYF,
TYPOPER=UPDATE

FWACBAR=TCAFCAA;

(update record)

TCAFCAA=FWACBAR;
WRITEUP:

DFHFC TYPE=PUT,
RDIDADR=KEYF

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FHA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

READ RECORD FOR UPDATE ~

NOTE ESTABLISH FHA ADDRESSABILITY.

NOTE MOVE ADDRESS OF FWA TO TCA.

WRITE THE UPDATED RECORD

/3ECOPY SYMBOLIC STRG DEFN FOR TCA3(/
/3EDEFINE KEY FIELD IN TWA~/
/3ECOPY SYMBOLIC STRG DEFN FOR FWA3E/
/3EDEFINE RECORD LAYOUT IN FWA3(/

3(
3(

READ RECORD FOR UPDATE ~
3(
3(

/3(ESTABLISH ADDRESSABILITY FOR FWA3(/

/3(PLACE ADDR OF WORK AREA IN TCA3(/

WRITE THE UPDATED RECORD 3(

64 CICS/VS Application Programmer's Reference Manual (Macro Level)

PIRECT DELETION, VSAM ONLY (TVPE=DELETE)

DFHFC TYPE=DELETE
[,DATASET=symb-namel
[,RDIDADR=symb-addrl
[,ARGTYP=KEY]
[,SRCHTYP=FKEQIGKEQ}]
[,NORESP=symb-addrl
[,ERROR=symb-addrl
[,DSIDER=symb-addr]
[,NOTFND=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addr]
[,NOTOPEN=symb-addrl
[,ILLOGIC=symb-addr]

This macro is used to perform the
following functions on KSDS and RRDS
data sets only:

• Delete a single record.

• Delete a group of records that share
the same partial key; that is where
the first part of the keys is the
same. This is called generic
delete.

To delete a single record, the key must
be placed in an area pointed to by the
RDIDADR operand.

To delete a group of records with the
same partial key, that is where the
first part of the keys is the same, the
partial key must be placed in an area
pointed to by the RDIDADR operand. The
binary length of the key must be placed
in the first byte of the area pointed to
by the RDIDADR operand. SRCHTYP=GKEQ
must be specified.

Neither an FIOA nor an FHA is required
for a delete operation.

Note that a DELETE operation is an
update operation, and therefore the
control interval concerned is held under
exclusive control. Exclusive control is
released either by successful completion
of the DELETE operation, or failing
this, by issuing a DFHFC TYPE=RELEASE
macro.

OBTAIN A FILE WORK AREA (TYPE=GETAREA)

DFHFC TYPE=GETAREA
[,DATASET=symb-namel
[,INITIMG={valueIYES}l
[,ARGTYP={KEYIRBA}]Z
[,TYPOPER=MASSINSERTll
[,NORESP=symb-addr]
[,ERROR=symb-addrl
[,DSIDER=symb-addrl
[,INVREQ=symb-addrl
[,NOTOPEN=symb-addrl

1 VSAM only

Z ARGTYP is only valid
with TYPOPER=MASSINSERT

This macro is used to obtain an FHA. (A
storage control DFHSC TYPE=GETMAIN
request cannot be used for file
operations.)

CICS performs the following services in
response to a DFHFC TYPE=GETAREA macrol

1. Acquires main storage (an FHA) for
the creation of a new record

2. Includes and initializes the FHA
control fields (a 16-byte prefix to
the FHA) required by file control.

If several new records whose keys are in
ascending sequence are to be added to a
VSAM data set, the TYPOPER=MASSINSERT
operand should be used, in which case,
the FHA is retained and made available
to the application program after each
DFHFC TYPE=PUT macro that adds a record
to the data set.

A mass insert operation is terminated by
a DFHFC TYPE=RELEASE macro. A lockout
condition will occur if more than one
transaction is simultaneously attempting
to perform a mass insert to the same
control interval of a protected data
set. A lockout will occur also if a
transaction uses keys that are not in
ascending sequence.

In a DFHFC TYPE=GETAREA macro, the
ARGTYP operand is only applicable when
TYPOPER=MASSINSERT has been specified.

When the DFHFC TYPE=GETAREA macro is
used, the application program must
include instructions that do the
following:

• Symbolically define the FWA by (1)
copying the appropriate CICS system
section storage definition
(DFHFHADS), and (2) providing a
storage definition for the user's'
section of the FHA.

Chapter 3.2. File Control (DFHFC Macro> 6S

• Establish addressabilitv for the new
FHA by specifying a symbolic base
address for the FHA. (The address
of the area involved, returned by

CICS at TCAFCAA, must be placed in
FWACBAR.)

The following examples show how to get.
an FWA, build a new record in the FWA,
and write that record to a data set.

ASH.

COpy DFHTCADS
KEYF DS CL8
FWACBAR EQU 7

COpy DFHFWADS
RECORD DS OCL3S0

.
NEWREC DFHFC TYPE=GETAREA,

DATASET=MASTERC
L FHACBAR,TCAFCAA

(build new record) .
ST FWACBAR,TCAFCAA

WRITNEW DFHFC TYPE=PUT,
TYPOPER=NEWREC,
RDIDADR=KEYF

COBOL,

02 FWACBAR PIC S9(8) COMPo

· 01 DFHTCADS COPY DFHTCADS.
02 KEYF PIC X(8).

· 01 DFHFWADS COpy DFHFWADS.
02 RECORD PIC X(3S0).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

· NEWREC.
DFHFC TYPE=GETAREA,

DATASET=MASTERC
MOVE TCAFCAA TO FWACBAR.

(build new record)

MOVE FWACBAR TO TCAFCAA.
WRITNEW.

DFHFC TYPE=PUT,
TYPOPER=NEWREC,
RDIDADR=KEYF

COpy TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

GET AN FHA TO CREATE A NEW
RECORD FOR A DATA SET
ESTABLISH ADDRESSABILITY FOR FWA

PLACE ADDR OF NEW RECORD IN TCA
WRITE THE NEW RECORD

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COpy SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

OBTAIN A FWA TO CREATE A NEW ~
RECORD FOR A DATA SET
NOTE ESTABLISH FWA ADDRESSABILITY.

NOTE ADDRESS OF NEW RECORD TO TCA.

WRITE THE NEW RECORD ~
~

66 CICS/VS Application Programmer's Reference Manual (Macro Level)

PLI'Ia

XINCLUDE DFHTCADS;
02 KEYF CHAR(8);

XINCLUDE DFHFWADS;
02 RECORD CHAR(3S0);

.
NEWRECa

DFHFC TYPE=GETAREA,
DATASET=MASTERC

FWACBAR=TCAFCAA;

(build new record) .
TCAFCAA=FWACBAR;
WRITNEWs

DFHFC TYPE=PUT,
TYPOPER=NEWREC,
RDIDADR=KEYF

I'~COPY SYMBOLIC STRG DEFN FOR TCA~I'
/*DEFINE KEY FIELD IN TWA~/
/~COPY SYMBOLIC STRG DEFN FOR FWA~/
/~DEFINE RECORD LAYOUT IN FWA~/

GET AN FWA TO CREATE A NEW *
RECORD FOR A DATA SET
/*ESTABLISH ADDRESSABILITY FOR FWA*/

"*PLACE ADDR OF NEW RECORD IN TCA*/

WRITE THE NEW RECORD *
*

Chapter 3.2. File Control (DFHFC Macro) 67

RELEASE STORAGE/EXCLUSIYE CONTROL
(TYPE=RELEASEl

The syntax of the DFHFC TYPE=RELEASE
macro is as followsl

DFHFC TYPE=RELEASE
[,NORESP=symb-addrl
[,ERROR=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addrl
[,ILLOGIC=symb-addrl 1

1 VSAM only

If the storage area to be released
contains a record that has been read for
update (by means of a DFHFC
TYPE=GET,TYPOPER=UPDATE macro), and the
update is no longer required, this macro
will release the record from exclusive
control as well as free the storage
areas associated with it.

Before the DFHFC TYPE=RELEASE macro is
executed, the address of the FHA, FIOA,
or VSHA to be released must be moved to
TCAFCAA. Any associated areas are also
released.

A mass insert operation on a VSAM data
set (initiated by the TYPOPER=MASSINSERT
operand, followed by DFHFC
TYPE=PUT,TYPOPER=NEHREC macros) is
terminated by a DFHFC TYPE=RELEASE
macro.

A DFHFC TYPE=RELEASE macro should also
be used to release the VSWA established
by CICS in response to· a read-only
request for a VSAM data set record
retrieved in locate mode. Failure to
release the VSWA may cause significant
performance degradation or task
suspension if subsequent accesses are
made to the file.

The DFHFC TYPE=RELEASE macro should not
be specified if the DFHFC
TYPE=PUT,TYPOPER=UPDATE macro is used to

ASH I

perform a successful write of an updated
record back to a data set. CICS
automatically releases all storage
associated with the write operation.
However, if an error condition occurs,
preventing successful completion of the
write, a DFHFC TYPE=RELEASE macro should
be issued to release the storage.

DFHFC TYPE=RELEASE must be issued
whenever a DUPREC, ILLOGIC, IOERROR, or
NOTFND condition occurs, even if UPDATE
is not specified in the GET.

For further details of these conditions,
see BOperands of DFHFC Macron on
page 81.

CICS performs the following services in
response to a DFHFC TYPE=RELEASE macro:

•
•

•

Releases an FWA, FIOA, and/or VSHA

Releases a VSAM string, if a VSWA is
released

Releases exclusive control of a
record retrieved for update (if
applicable).

Note, though, that for a file with
auto-logging specified (by the system
programmer), the resource remains under
the task control enqueue until either a
sync point is issued or end of task is
reached.

There is a limit to the number of VSAM
strings that may be in use at anyone
time, determined by the STRNO operand of
the DFHFCT TYPE=DATASET system macro.
If strings are not released when no
longer required, tasks may have to wait
unnecessarily owing to the strings all
being in use.

Any FHAs, FIOAs, VSWAs, and VSAM strings
acquired during execution of a task are
automatically released at termination of
the task, if not released earlier in
response to a DFHFC TYPE=RELEASE macro.

The following examples show how to
request the release of an FHA.

FHACBAR EQU
COPY

RECORD DS

7
DFHFWADS
OCL350

ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FHA

.
ST FHACBAR,TCAFCAA

RLSEREC DFHFC TYPE=RELEASE

RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

ADDRESS OF FHA TO BE RELEASED
IN TCA AND ISSUE RELEASE REQUEST

68 CICS/VS Application Programmer's Reference Manual (Macro Level)

COBOL:

02 FHACBAR PIC S9(8) COMPo

01 DFHFWADS COpy DFHFWADS.
02 RECORD PIC X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE FHACBAR TO TCAFCAA.
RLSEREC.

DFHFC TYPE=RELEASE

PL/I:

xINCLUDE DFHTCADS;

XINCLUDE DFHFHADS;
02 RECORD CHAR(350);

TCAFCAA=FHACBAR;
RLSEREC:

DFHFC TYPE=RELEASE

INITIATE BROWSE (TYPE=SETLJ

DFHFC TYPE=SETL
[,DATASET=symb-namel
[,RDIDADR=symb-addrl
[,RETMETH={RELRECIKEy}]l
[~ARGTYP={KEYIRBA}]2
[,SRCHTYP=

{FKEQIFKGEIGKEQIGKGE}]Z
[,MODE={MOVEILOCATE}]Z
[,NORESP=symb-addrl
[,ERROR=symb-addr]
[,DSIDER=symb-addrl
[,NOTFND=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addr]
[,NOTOPEN=symb-addr]
[,ILLOGIC=symb-addr]Z

1 DAM only
2 VSAM only

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COpy SYMBOLIC STRG DEFN FOR FHA.
NOTE DEFINE RECORD LAYOUT IN FHA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE ADDR OF FHA TO BE RELEASED.

ISSUE RELEASE REQUEST

/*COPY SYMBOLIC STRG DEFN FOR TCA*/

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FHA*/

/*ADDRESS OF FHA TO BE RELEASED*/

ISSUE RELEASE REQUEST

This macro is used to establish the
position within the data set where the
browse operation is to begin. It must
be issued before any DFHFC TYPE=GETNEXT
macro; however, no data is available
until a DFHFC TYPE=GETNEXT is used.

The starting point within a data set for
a browse operation is identified by a
record identification field established
for the data set. See "Record
Identification Field" on page 53.

For a DAM data set, the record
identification field must contain a
block reference (for example, TTR or
MBBCCHHR) that conforms to the
addressing method defined for that data
set. Processing begins with the
specified block and continues with each
subsequent block until the browse
operation is terminated. If the data
set contains blocked records, processing
begins at the first record of the first
block and continues with each subsequent
record.

Chapter 3.2. File Control (DFHFC Macro) 69

For a VSAM data set, the contents of the
record identification field may be a
key, a relative byte address, or a
relative record number. If the field
contains a relative byte address, the
browse begins at the specified address.
If the field contains a key, it may be
either specific or generic. If the key
is generic, the length of the partial
key is specified in the first byte of
the record identification field.

In either case, the application program
can specify that the browse operation is
to begin at the first record having a
key-that iss

• Equal to the key in the record
identification field (for generic,
compared on only the number of bytes
specified), or

• Equal to or greater than the key in
the record identification field
(again, for generic, compared on
only the bytes specified).

When the DFHFC TYPE=SETl macro is used,
the application programmer must provide
instructions that do the following;

• Symbolically define the FWA by (1)
copying the appropriate CICS system
section storage definition
(DFHFWADS), and (2) providing his
own storage definition for the
user's section of the FWA.

• Establish addressability for the FWA
by specifying a symbolic base
address for the FWA, typically
following the DFHFC macro. (The
address of the FWA, provided by CICS
at TCAFCAA, must be placed at
FWACBAR upon normal return from
execution of the SETl macro.)

In most cases, records retrieved during
a browse operation are returned to the
application program in a FWA. However,
in locate mode the addresses of the
record are passed in the VSWA. The FWA
allocated by CICS following a SETl
request is unique for the duration of
that particular browse operation. If
the application program issues another
SETl request, for the same or another
data set, a different FWA is created by
CICS. Thus it is possible for a single
application program to concurrently
browse the same data set at several
different locations.

CICS performs the following services in
response to a DFHFC TYPE~SETl macro I

1. Acquires the main storage I/O areas
and work areas to be associated with
this browse operation

2. Returns the address of the allocated
FWA in TCAFCAA for other than
locate-mode VSAM data set
processing; returns the address of
the allocated VSWA that will contain
the VSAM buffer-area address of each
retrieved record for locate-mode
VSAM data set processing.

The information supplied by the user in
the record identification field is
preserved by CICS for use when GETNEXT
requests are issued. Since CICS places
into this field the identification of
each record retrieved in response to a
subsequent GETNEXT request, the field
should not be released by the
application program.

The information placed into the record
identification field by CICS is always
in a form that completely identifies the
record. For example, assume a browse
operation is to start with the first
record of a blocked, keyed DAM data set.
Before issuing the DFHFC TYPE=SETl
macro, the application programmer should
place the TTR (assuming that is the
addressing method) of the first block
into the record identification field.
After executing each DFHFC TYPE=GETNEXT
macro, CICS places the complete record
identification into the record
identification field. After the first
GETNEXT, the record identification field
might contain

X'OOOOOl0504'

where 000001 represents the TTR value,
05 represents the block key, and 04
represents the record key.

As another example, if the application
program is browsing a blocked, nonkeyed
DAM data set and the second record from
the second physical block on the third
relative track is read in response to a
GETNEXT request, the record
identification field contains

X'0002020l'

upon return to the application program,
where 0002 represents the track, 02
represents the block, and 01 represents
the record within the block.

The following examples show how to
initiate a browse operation.

70 CICS/VS Application Programmer's Reference Manual (Macro level)

ASH.

COPY DFHTCADS
KEYF DS CLS
FHACBAR EQU 7

COPY DFHFHADS
RECORD DS OCL3S0

CSECT

· MVC KEYFCS),=C'JONES'

COPY TCA SYMBOLIC STORAGE DEFN

ASSIGN BASE REGISTER FOR FHA
DEFINE SYSTEM SECTION OF FHA
RECORD LAYOUT

XC KEYF+S(3),KEYF+S INITIALIZE KEY FIELD
START DFHFC TYPE=SETL, INITIATE BROHSE •

DATASET=MASTER, •
RDIDADR=KEYF, •
NOTOPEN=ERROR GO TO ERROR LABEL IF ERROR

L FHACBAR,TCAFCAA ESTABLISH ADDRESSABILITY FOR FHA

ERROR DS OH

COBOLa

02 FWACBAR PIC S9CS) COMPo

01 DFHTCADS COpy DFHTCADS.
02 KEYF PIC XCS).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PIC XC3S0).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE 'JONES' TO KEYF.
START.

DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF,
NOTOPEN=ERROR

MOVE'TCAFCAA TO FWACBAR.

ERROR.

ENTRY TO ERROR ROUTINE

NOTE DEFINE BASE REGISTER FOR FHA.

NOTE COpy SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN THA.
NOTE COPY SYMBOLIC STRG DEFN FOR FHA.
NOTE DEFINE RECORD LAYOUT IN FHA.

NOTE ESTABLISH TCA ADDRESSABILITY.

INITIATE BROWSE

GO TO ERROR LABEL IF ERROR

Chapter 3.2. File Control (DFHFC Macro> 71

PL/I:

Y.INCLUDE DFHTCADS;
02 KEYF CHAR(S);

/*COPY SYMBOLIC STRG DEFN FOR TCA*/

Y.INCLUDE DFHFWADS;
02 RECORD CHAR(3S0);

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FHA*/

KEYF='JONES';
START,

DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF,
NOTOPEN=ERROR

INITIATE BROWSE

GO TO ERROR LABEL IF ERROR
FWACBAR=TCAFCAA;

ERROR:

. FORWARD BROWSE (TVPE=GETNEXTl

DFHFC TYPE=GETNEXT
[,DUPKEY=symb-addr] 1

[,NORESP=symb-addrl
[,ERROR=symb-addrl
[,NOTFND=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[,ENDFILE=symb-addrl
[,ILLOGIC=symb-addrl

1 VSAM only

This macro can also be used to perform
skip-sequential processing upon a VSAM
data set. After a DFHFC TYPE=SETL macro
has been issued to initiate a browse,
the next (or first) record in ascending
sequence can be obtained by issuing the
DFHFC TYPE=GETNEXT macro. For a DAM
data set, CICS acquires the first record
specified by the user. Each subsequent
GETNEXT request causes CICS to acquire
the next record in ascending sequence.

When VSAM is used, a browse operation
can be specified to begin at a
particular relative byte location or
with a record identified by a key. In
the former case, the first GETNEXT
request retrieves that record. Each
succeeding GETNEXT retrieves the next
record in ascending sequence.

If a key is -specified for a VSAM data
set, it may be either specific or
generic, and the application programmer
can specify that the search begin (1) at

a record having a key equal to the
specific or generic key, or (2) at a
record having a key equal to or greater
than the specific or generic key. The
effects of GETNEXT macros are as
described below.

Before issuing the DFHFC TYPE=GETNEXT
macro, the application programmer must
place the address of the FHA associated
with the particular operation in
TCAFCAA. If the application program has
initiated multiple browse operations, it
must keep track of the FWA associated
with each operation and refer to a
specific FWA when requiring services
related to that browse. Similar
requirements apply to the address of a
specific VSWA in locate-mode processing
of VSAM records.

CICS performs the following services in
response to a DFHFC TYPE=GETNEXT macro
referring to a VSAM or DAM data set:

1. Retrieves the next sequential record
and places it in the FHA specified
by the user at TCAFCAA

2. Places the identification (key,
block identification, or the like)
of the record just retrieved into
the record identification field
specified in the DFHFC TYPE=SETL
request initiating the browse.

If the user issues a DFHFC
TYPE=GET,TYPOPER=UPDATE request on the
record returned in response to a DFHFC
TYPE=GETNEXT request, the address of the
record identification field can'be
specified in the DFHFC TYPE=GET request.
The update operation cannot be processed
immediately following the GETNEXT macro.
The browse must first be completed.

72 CICS/VS Application Programmer's Reference Manual (Macro Level)

The first DFHFC TYPE=GETNEXT macro
referring to a VSAM data set retrieves
the record located in response to the
DFHFC TYPE=SETL macro initiating the
browse. On a subsequent GETNEXT, CICS
checks the contents of the record
identification field set aside for
records of the data set. If this field
contains the identifier of the record
previously received, CICS retrieves the
next logical record in sequence and
places the identifier of that record in
the record identification field.
Sequential retrieval such as described
above for DAM data sets then occurs.

It is possible, however, when using VSAM
data sets, for the application
programmer to utilize skip-sequential
processing. All that is needed is to
place the identification of the next
record desired into the record
identification field before issuing a
GETNEXT macro. If, upon checking this
field, CICS determines that its contents
have been changed by the application
program, CICS accesses the record having
the identification currently stored in
the record identification field. This
record need not be the next sequential
record in the data set. Skip-sequential

ASH:

processing is available only for VSAM
data sets.

When VSAM skip-sequential processing is
used, the record identification placed
in the record identification field
before issuing the GETNEXT request must
be of the same form as that specified in
the SETL or last RESETL request for this
browse operation. That is, if the SETL
or last RESETL specified a generic key,
then the new record identification must
be a generic key. It need not be the
same length as that specified in the
SETL or last RESETL. If the SETL or
last RESETL specified an RBA, the new
identification must be an RBA. Note
that if the SETL or last RESETL
specified an equal search (FKEQ or
GKEQ), a GETNEXT request using
skip-sequential processing may result in
a NOTFND (record not found) condition.

If the NOTFND condition occurs during a
browse operation, the application
program must issue either a RESETL macro
to reset the browse or an ESETL macro to
terminate the browse. Both these macros
are discussed later in the chapter.

The following examples show how to
initiate a browse operation and retrieve
successive records from the data set.

COPY
KEYF DS
FWACBAR EQU

COPY
RECORDA DS

DFHTCADS
ax
7
DFHFWADS
OCL350

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN FWA BASE REGISTER

.
CSECT
MVC KEYF(a),=ax'oo'

INITIAL DFHFC TYPE=SETL,
DATASET=MASTER,
RDIDADR=KEYF

L FWACBAR,TCAFCAA

ST FWACBAR,TCAFCAA
DFHFC TYPE=GETNEXT
L FHACBAR,TCAFCAA

COPY CICS CONTROL SECTION OF FWA
DEFINE RECORD LAYOUT IN FHA.

START AT BEGINNING OF DATA SET
INITIATE BROWSE

ESTABLISH FHA BASE REGISTER

RESTORE FHA ADDRESS
GET NEXT SEQUENTIAL RECORD
ASSURE ADDRESSABILITY

Chapter 3.2. File Control (DFHFC Macro) 73

COBOL.

02 FWACBAR PIC S9(8) COMPo

· 01 DFHTCADS COPY DFHTCADS.
02 KEYF PIC S9(18) COMPo

· 01 DFHFWADS COpy DFHFHADS.
02 RECORD PIC X(3S0).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

· MOVE 0 TO KEYF.

INITIAL.
DFHFC TYPE=SETL,

DATASET=MASTER,
RDIDADR=KEYF

MOVE TCAFCAA TO FHACBAR.

MOVE FHACBAR TO TCAFCAA.
DFHFC TYPE=GETNEXT

MOVE TCAFCAA TO FHACBAR.

NOTE DEFINE BASE REGISTER FOR FHA.

NOTE COpy SYMBOLIC STRG DEFN FOR TCA.

NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FHA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE START AT BEGINNING OF DATA SET.

INITIATE BROWSE *
*

NOTE ESTABLISH FHA ADDRESSABILITY.

GET NEXT SEQUENTIAL RECORD.

74 CICS/VS Application Programmer's Reference Manual (Macro Level)

PL/I:

Y.INCLUDE DFHTCADSj
02 KEYF CHAR(8)j

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN THA*/

Y.INCLUDE DFHFWADS;
02 RECORD CHAR(350);

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

.
KEYF=LOW(8)j /*START AT BEGINNING OF DATA SET*/

INITIAL:
DFHFC TYPE=SETl,

DATASET=MASTER,
RDIDADR=KEYF

FHACBAR=TCAFCAAj

INITIATE BROWSE

/*ESTABLISH FWA ADDRESSABILITY*/

TCAFCAA=FWACBARj
DFHFC TYPE=GETNEXT

FHACBAR=TCAFCAAi .
GET NEXT SEQUENTIAL RECORD

BACKWARD BROWSE, VSAM AND ASSEMBLER
LANGUAGE ONLY (TYPE=GETPREVl

DFHFC TYPE=GETPREV
[,DUPKEY=symb-addr]
[,NORESP=symb-addrl
[,ERROR=symb-addrl
[,NOTFND=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[,ENDFILE=symb-addrl
[,ILLOGIC=symb-addrl

After a DFHFC TYPE=SETl macro has been
issued to initiate a browse operation,
the next (or first) record in descending
sequence can be obtained by issuing the
DFHFC TYPE=GETPREV macro.

A browse operation can be specified to
begin at a particular relative byte
location or with a record identified by
a key. In the former case, the first
GETPREV request retrieves that record.
Each succeeding GETPREV retrieves the
next record in descending sequence.

If a key is specified for a VSAM data
set, it must be specific, and the
application programmer can specify that
the search begin at a record having a
key equal to the specified key. The

effects of GETPREV macros are as
described below.

Before issuing the DFHFC TYPE=GETPREV
macro, the application programmer must
place the address of the FHA associated
with the particular operation in
TCAFCAA. If the application program has
initiated multiple browse operations, it
must keep track of the FHA associated
with each operation and refer to a
specific FWA when requiring services
related to that browse. Similar
requirements apply to the address of a
specific VSHA in locate-mode browsing of
VSAM records.

CICS performs the following services in
response to a DFHFC TYPE=GETPREV macro
referring to a VSAM data set:

1. Retrieves the next record in
descending sequence and places it in
the FHA specified by the user at
TCAFCAA

2. Places the identification (key, or
relative byte address) of the record
just retrieved into the record
identification field specified in
the DFHFC TYPE=SETl request
initiating the browse.

If the user issues a DFHFC
TYPE=GET,TYPOPER=UPDATE request on the
record returned in response to a DFHFC
TYPE=GETPREV request, the address of the
record identification field can be
specified in the DFHFC TYPE=GET request.

Chapter 3.2. File Control (DFHFC Macro) 75

The update operation cannot be processed
immediately following the GETPREV macro.
The browse must first be completed.

The first DFHFC TYPE=GETPREV macro
retrieves the record located in response
to the DFHFC TYPE=SETL macro initiating
the browse. On a subsequent GETPREV,
CICS checks the contents of the record
identification field set aside for
records of the data set. If this field
contains the identifier of the record
previously received, CICS retrieves the
next logical record in sequence and
places the identifier of that record in
the record identification field.

If the DFHFC TYPE=GETPREV macro is
issued following a DFHFC TYPE=SETL macro
using a generic key, an invalid request
will be indicated.

ASH:

TERMINATE BROWSE (TVPE=ESETLl

DFHFC TYPE=ESETL
[,NORESP=symb-addrl
[,ERROR=symb-addrl
[,INVREQ=symb-addrl
[,ILLOGIC=symb-addr] 1

1 VSAM only

Before this macro is issued, the
programmer must ensure that TCAFCAA
contains the address of the FWA
associated with the browse operation he
wishes to terminate.

When locate-mode processing of VSAM
records is used, TCAFCAA must contain
the address of the VSWA associated with
the browse operation being terminated.
In response to an ESETL request, CICS
releases all I/O and work areas
associated with the browse operation.

The following examples show how to end
two concurrent browse operations.

COpy
FWACELLl DS

* FWACELL2 DS

* FWACBAR.EQU

DFHTCADS
A

A

7
DFHFWADS
OCL3S0

COpy TCA SYMBOLIC STRG DEFN
CONTAINS ADDR OF FWA USED
FOR FIRST BROWSE OPERATION
CONTAINS ADDR OF FWA USED
FOR SECOND BROWSE OPERATION
ASSIGN FHA BASE REGISTER

COpy
RECORD DS

.
CSECT

.
MVC TCAFCAA,FWACELLl
DFHFC TYPE=ESETL
MVC TCAFCAA,FCACELL2
DFHFC TYPE=ESETL

DEFINE FHA SYMBOLIC STORAGE DEFN
DEFINE RECORD

MOVE BROWSE 1 FWA ADDR TO TCA
ISSUE ESETL MACRO INSTRUCTION
MOVE BROWSE 2 FWA ADDR TO TCA
ISSUE ESEiL MACRO INSiRUCTION

76 CICS/VS Application Programmer's Reference Manual (Macro Level)

COBOL:

02 FWACBAR PIC S9(8) COMPo

01 DFHTCADS COpy DFHTCADS.
02 FWACELLI PIC S9(8) COMPo
02 FWACELL2 PIC S9(8) COMPo

01 DFHFWADS COpy DFHFWADS.
02 RECORD PIC X(350).

MOVE FWACELll TO TCAFCAA.
DFHFC TYPE=ESETl

.
MOVE FWACELl2 TO TCAFCAA.

DFHFC TYPE=ESETl

PL/!:

xINCLUDE DFHTCADS;
02 FWACELLI POINTER;
02 FWACElL2 POINTERj

XINCLUDE DFHFWADSj
02 RECORD CHAR(350);

TCAFCAA=FWACELllj
DFHFC TYPE=ESETl

TCAFCAA=FWACELL2j
DFHFC TYPE=ESETL

RESET BROWSE (TVPE=RESETLJ

DFHFC TYPE=RESETL
[,ARGTYP={KEYIRBA}]l
[,SRCHTYP=

{FKEQIFKGEIGKEQIGKGE}]l
[,NORESP=symb-addr]
[,ERROR=symb-addrl
[,NOTFND=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[, ILLOGIC=symb-addrl 1

1 VSAM only

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD lAYOUT IN FWA.

NOTE PREPARE TO END FIRST BROWSE.
TERMINATE FIRST BROWSE .

NOTE PREPARE TO END 2ND BROWSE.
TERMINATE SECOND BROWSE.

/*COPY SYMBOLIC STRG DEFN FOR TCA*/

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*MOVE BROWSEI FWA ADDR TO TCA*/

/*MOVE BROWSE2 FWA ADDR TO TCA*/

For a VSAM data set, the type of search
argument used in retrieving records can
also be reset by issuing the DFHFC
TYPE=RESETl macro. Prior to issuing the
request, the application programmer
should place the address of the
appropriate FWA into TCAFCAA and the new
record identification in the record
identification field specified in the
original SETL request.

The use of the RESETl macro allows the
application programmer to avoid issuing
an ESETl request followed by another
SETl request, and causes CICS to use the
same I/O and work area. Upon return
from the RESETL request, TCAFCAA
contains the address of a new FWA that
the user can use for the browse
operation.

Once a browse operation has been
initiated, the application programmer
may, at any time before issuing an ESETl
macro for the browse, reset the search
argument to some record other than the
next sequential ~ecord in the data set.

The RESETL request allows the user to
Rskip" through his data set in a browse
operation with ease. A similar
capability is available to VSAM users
through the GETNEXT macro.

Chapter 3.2. File Control (DFHFC Macro) 77

A browse operation should be ended by
issuing a TYPE=ESETl macro, but a normal
or abnormal end of task will also end a
browse.

If browsing in backward mode (GETPREV)
and a request is made to reposition the
browse (RESETl), VSAM requires that a

ASH.

COpy DFHTCADS
KEYF DS D
FWACBAR EQU 7

COpy DFHFWADS
RECORDl DS OCl3S0

ORG RECORDI
RECORD2 DS OCl2S0

CSECT
MVC KEYF(8),=8X'OO'
DFHFC TYPE=SETl,

DATASET=MASTER,
RDIDADR=KEYF

l FWACBAR,TCAFCAA

ST FWACBAR,TCAFCAA
MVC KEYF(8),=Cl8'SMITH'
DFHFC TYPE=RESETl
l FHACBAR,TCAFCAA

specific key is used. If the key
supplied does not exist, NOTFND will be
returned.

The following examples show how to reset
the search argument for a browse
operation.

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN FHA BASE REGISTER
COpy FHA DSECT
DEFINE RECORD

DEFINE RECORD

INITIALIZE KEY FIELD
ISSUE INITIAL SETl MACRO •
FOR DATA SET "MASTERn •
INIT SEARCH ARG=O
ESTABLISH ADDRESSABIlITY TO FHA

STORE FWA ADDR IN TCA
ESTABLISH NEW SEARCH ARGUMENT
ISSUE RESETl MACRO
ESTABLISH ADDRESSABIlITY TO FHA

78 CICSI'VS Application/Programmer's Reference Manual (Macro level)

COBOL a

02 FWACBAR PIC 59CS) COMPo

.
01 DFHTCADS COpy DFHTCADS.

02 KEYF PIC S9(IS) COMPo
02 FIllER REDEFINES KEYF.

03 KEYC PIC XCS).

01 DFHFWADS COpy DFHFWADS.
02 RECORDI PIC X(3S0).

01 DFHFWA REDEFINES DFHFWADS.
02 FIllER PIC X(16).
02 RECORD2 PIC X(2S0).

.
MOVE 0 TO KEYF.
DFHFC TYPE=SETl,

DATASET=MASTER,
RDIDADR=KEYF

MOVE TCAFCAA TO FWACBAR.

MOVE FWACBAR TO TCAFCAA.
MOVE 'SMITH' TO KEYC.
DFHFC TYPE=RESETl
MOVE TCAFCAA TO FWACBAR.

PL/I:

XINClUDE DFHTCADS~
02 KEYF CHAR(8);

xINClUDE DFHFWADS;
02 RECORDI CHAR(3S0);

DECLARE 01 DFHXFWA BASEDCFWACBAR),
02 FIll CHARCI6),
02 RECORD2 CHARC2S0);

KEYF=lOW(S);
DFHFC TYPE=SETl,

DATASET=MASTER,
RDIDADR=KEYF

FWACBAR=TCAFCAAj

TCAFCAA=FWACBAR;
KEYF='SMITH';

DFHFC TYPE=RESETl
FWACBAR=TCAFCAA;

NOTE DEFINE BASE REGISTER FOR FHA •

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN THA.

NOTE COPY SYMBOLIC STRG DEFN FOR FHA.
NOTE DEFINE RECORD.

NOTE CREATE STRG DEFN FOR FWA.
NOTE lENGTH OF FWA.
NOTE DEFINE RECORD .

ISSUE INITIAL SETl MACRO INSTR ~
FOR DATA SET ftMASTER" ~
INITIAL SEARCH ARG=O
NOTE ESTABLISH ADDRESSABIlITY TO FHA.

NOTE STORE FWA ADDRESS IN TCA.
NOTE ESTABLISH NEW SEARCH ARGUMENT.
ISSUE RESETl MACRO
NOTE ESTABLISH ADDRESSABIlITYTO FHA.

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY*/

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD*/

/*lENGTH OF FWA*/
/*DEFINE RECORD*/

/~SET KEY VALUE TO ZERO~/
ISSUE INITIAL SETl MACRO INSTR *
FOR DATA SET ftMASTER" ~
INITIAL SEARCH ARG EQUALS ZERO *
/*ESTABlISH ADDRESSABIlITY FOR FHA*/

/*STORE FWA ADDR IN TCA*/
/*ESTABlISH NEW SEARCH ARGUMENT*/
ISSUE RESETl
/*ESTABlISH ADDRESSABIlITY TO FHA*/

Chapter 3.2. File Control (DFHFC Macro) 79

TEST RESPONSE TO A REQUEST FOR FILE
SERVICES (TVPE=CHECKl

DFHFC TYPE=CHECK
[,NORESP=symb-addrl
[,ERROR=symb-addrl
[,DSIDER=symb-addrl
[,NOTFND=symb-addrl
[,DUPKEY=symb-addr] 1

[,DUPREC=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addrl
[,NOSPACE=symb-addrl
[,NOTOPEN=symb-addrl
[,ENDFILE=symb-addrl
[,ILLOGIC=symb-addrl 1

1 VSAM only

FILE CONTROL RESPONSE CODES

To test a response code the application
programmer must know the CICS response
codes and their meanings, and the
symbolic labels by which he can refer to
the response codes. These are shown
below.

In an assembler language or PL/I program
the response code is in TCAFCTR; in a
COBOL program it is in TCAFCRC.

Condition
Name

NOR ESP

ERROR

DSIDER

ILLOGIC

INVREQ

NOTOPEN

ENDFIlE

IOERROR

NOTFNDI

DUPREC

NOSPACEz

DUPKEY&

Response Code
ASH COBOL PL/I

X'OO' LOW-VALUES 00000000

~X'OO' ~LOW-VALUES ~OOOOOOOO

X'Ol'

X'02'

X'OS'

X'OC'

X'OF'

X'SO'

X'Sl'

X'S2'

X'S3'

X'84'

12-1-9

12-2-9

12-S-9

12-4-8-9

12-7-8-9

12-0-1-S

12-0-1

12-0-2

12-0-3

N/A

00000001

00000010

00001000

00001100

00001111

10000000

10000001

10000010

10000011

N/A

1 NOTFND for GETNEXT, GETPREV, RESETL,
or SETL can occur only for VSAM
data sets.

Z NOSPACE can occur only when
TYPOPER=NEWREC or TYPOPER=UPDATE is
specified.

a VSAM and assembler language only.

The multipunch codes in COBOL commonly
correspond to unprintable characters.
In these cases, the response code can be
evaluated by referring to the condition
names generated by CICS (for example,
FCNORESP), as shown in the examples at
the end of this discussion.

The operands that can be used to request
tests of the response to a request for
file services (that is, a DFHFC macro)
are identified in the discussions of the
macro formats. The condition expressed
by each keyword is explained in detail
and should be referred to by the
application programmer when using any of
the checking methods described above.

When certain conditions (for example,
NOTFND, IOERROR, or DUPREC) occur, the
FIOA~ FWA, or VSWA that has been
acquired for the file control request,
is retained. Its address is available
to the application program. Before
other file control requests are issued,
the storage occupied by the FIOA or VSWA
should be freed by a DFHFC TYPE=RELEASE
macro. When the conditions DSIDER,
INVREQ, or NOTOPEN occur no storage
areas are acquired for the associated
file control request.

The following examples show how to
examine the response code provided by
CICS at TCAFCTR (for assembler language
or PL/I) or TCAFCRC (for COBOL) and
transfer control to an appropriate user
written error handling routine. The
alternative approach available to COBOL
programmers is also shown.

ASH

GOOD

DFHFC TYPE=GET,DATASET=MASTER,
RDIDADR=KEYF

CLI TCAFCTR,X'OO'
BE GOOD
CLI TCAFCTR,X'80'
BE ERROR
CLI TCAFCTR,X'08'
BE ERROR

DS OH

ERROR DS OH

COBOL

GOOD.

ERROR.

DFHPC TYPE=ABEND

DFHFC TYPE=GET,DATASET=MASTER,
RDIDADR=KEYF

IF TCAFCRC=LOW-VALUES GO TO GOOD
IF TCAFCRC=' , GO TO ERROR.
IF TCAFCRCY=' , GO TO ERROR.

DFHPC TYPE=ABEND

80 CICS/VS Ap~licati6n Programmer's"Reference Manual (Macro Level)

where the value specified within single
quotation marks is an unprintable
multipunch code for the required
hexadecimal value. For example, X'80'
has a multipunch code of 12-0-1-8.

The alternative approach to response
code checking, that is available to
COBOL programmers as described earlier,
is generally a coding convenience and
provides concise code documentation.
When this approach is used, the IF
statements above are replaced by
statements of the form shown below,
using the CICS generated condition
names:

PL/I

GOOD:

IF FCNORESP THEN GO TO GOOD.
IF FCIOERROR THEN GO TO ERROR.
IF FCINVREQ THEN GO TO ERROR.

DFHFC TYPE=GET,DATASET=MASTER,
RDIDADR=KEYF

IF TCAFCTR='OOOOOOOO'B
THEN GO TO GOOD;
IF TCAFCTR='lOOOOOOO'B
THEN GO TO ERROR;
IF TCAFCTR='OOOOlOOO'B
THEN GO TO ERRORi

ERROR:
DFHPC TYPE=ABEND

OPERANDS OF DFHFC MACRO

ARGTYP= (VSAM only)
describes the contents of the
record identification field.

KEY

RBA

indicates that the record
identification field contains
a search key or a relative
record number.

indicates that the record
identification field contains
a relative byte address.

In a DFHFC TYPE=GETAREA macro, this
operand can only be used when
TYPOPER=MASSINSERT is also
specified. It describes the record
identification fields of the
records to be mass inserted by
DFHFC TYPE=PUT macros. When used
in a mass insert operation, this
operand cannot be overridden.

DATASET=symb-name
specifies the name of the file to
be accessed. The name must appear
in the file control table (FCT).

If this operand is omitted, the
name is assumed to be in TCAFCDI.

This name corresponds to the file
name in the DLBL job control
statement, which identifies the
data set.

DSIDER=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the file
name specified by the DATASET
operand (or at TCAFCDI) cannot be
located in the FCT. The contents
of TCAFCAA are not meaningful.

DUPKEY=symb-addr (VSAM only)
specifies the entry label of the
user-written routine to which
control is to be passed if the
duplicate key condition is raised.
This condition indicates that a
record has been retrieved but that
there are other records in the data
set that have the same key. These
records can be retrieved by a
browse.

This condition can occur when a
record is retrieved via an
alternate index with the
NONUNIQEKEY attribute, and another
alternate index record with the
same key follows. It does not
occur as a result of a TYPE=GETNEXT
macro that reads the last of the
records having the nonunique key.

DUPREC=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
attempt is made to add a record
either to a data set, or to an
alternate index with the UNIQUEKEY
attribute, in which the same key
already exists.

TCAFCAA contains the address of a
VSWA if the PUT is for a VSAM data
set.

The FWA will be released by the
file control program. After
interrogation of the FIOA or VSWA
returned is complete, the program
should issue a DFHFC TYPE=RELEASE
macro.

ENDFILE=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
end-of-file condition is detected
during the sequential retrieval
(browse) of records in a data set.
This condition can occur in
response to a GETNEXT, GETPREV, or
CHECK request. TCAFCAA contains
the address of the FHA for the
browse operation if move mode is
specified or implied in the SETL
request. TCAFCAA contains the

Chapter 3.2. File Control (DFHFC Macro) 81

address of the VSHA that represents
the browse if locate mode is
specified.

ERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if any
error occurs on a file operation.
The CICS response code should be
further interrogated in this
user-written routine.

ILLOGIC=symb-addr (VSAM only)
specifies the entry label of the
user-written routine to which
control is to be transferred if an
error that does not fall within one
of the other CICS response
categories occurs. TCAFCAA
contains the address of a VSWA.
The user's routine may check the
logical error codes in the RPL that
is at VSWARPL. The error code is
at VSWAERRC, and the return code is
at VSWARTNC.

After interrogation of the area
returned, the program should issue
a DFHFC TYPE=RELEASE macro.

INITIMG=
specifies a I-byte (2-digit)
hexadecimal initialization value
for the FWA.

value

YES

is a 2-digit hexadecimal
numeral to be used as the
initialization value.

indicates that the hexadecimal
initialization value has been
placed in TCASCIB.

If this operand is omitted, the FHA
is initialized to EBCDIC blanks
(X'40').

INVREQ=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the
attempted file operation is not
provided for or allowed according
to the file entry specificatian in
the FCT, or if the FWA is
corrupted.

TCAFCAA contains X'OS' in byte 0,
and the following in bytes 1-3:

• A nonzero value if the request
is not allowed according to the
FCT entry for the file.

• Zero if the request is invalid
or if the code to support the
request has not been generated
into the FCT.

IOERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
input/output error occurs during a
file operation. When an I/O event
error code is not covered by one of
the CICS error classes (for
example, by NOSPACE or NOTFND), it
is considered to be an I/O error.

TCAFCAA contains:

• The address of an FIOA if the
request is against a DAM data
set

• The address of a VSWA if the
request is against a VSAM data
set.

The application programmer should
be aware of the following
considerations:

• For a DAM data set, a user
routine may check for error
codes in the FIOA: in field
FCFIOBEX for CICS/OS/VS or in
field FCIOERR for CICS/DOS/VS.
Because of access method and
operating system dependencies,
checks for these codes may have
a limiting effect on the
usability of an application
program in varying
environments, particularly if
migration from CICS/DOS/VS to
CICS/OS/VS becomes desirable.

•

•

For a VSAM data set, the error
codes may be checked in the
request parameter list (RPL)
located at VSWARPL. The error
code is at VSWAERRC, and the
return code is at VSWARTNC.
Because of access method and
operating system dependencies,
checks for these codes may have
a limiting effect on the
usability of an application
program in varying
environments, particularly if
migration from CICS/DOS/VS to
CICS/OS/VS becomes desirable.

For RESETL or GETNEXT the
browse operation is still
active, but the position in the
data set may have been lost. A
RESETL using the record
identification for the next
record required should be
issued to reestablish the
position in the data set. If
move mode is specified or
implied in the initiating SETL
request, the FWA representing
the browse operation must be
used for the RESETL; if locate
mode is specified in the SETl
request, the VSWA must be used.

S2 CIC.S/VS Applic~tionProgrammer's Reference Manual (Macro Level)

• For PUT, the FHA will have been
released.

Except for RESETL or GETNEXT,
after any interrogation of the
area returned is complete, the
program should issue a DFHFC
TYPE=RELEASE macro.

HODE= (VSAM only)
is used to specify the processing
mode for a read-only or browse
request.

MOVE
specifies move-mode
processing. Upon return to
the application program,
TCAFCAA contains the address
of the FHA acquired for the
read-only or browse operation.
If the data set referred to
contains variable-length
records, the LLbb length field
is included as part of the
record.

LOCATE
specifies locate-mode
processing. Upon return to
the application program,
TCAFCAA contains the address
of a VSHA. The address of the
retrieved record is at
VSHAREA. If the data set
referred to contains
variable-length records, the
LLbb length field is not
retrieved as part of the
record; instead, the length of
the record is placed in
VSHALEN. This parameter
cannot be specified if
TYPOPER=UPDATE is specified.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if no error
occurs on a file operation, that
is, a normal response.

The field TCAFCAA in the TCA of the
task contains:

•

•

•

The address of an FIOA after a
read only GET against an
unblocked non-VSAM data set or
a blocked DAM data set if
deblocking is not requested

The address of an FHA after a
GET against a blocked data set,
a GET for update, a GET AREA,
SETL, GETNEXT, or RESETL. An
FHA is always acquired for VSAM
move-mode operations,
regardless of blocking

The address of a VSHA after a
locate-mode GET or SETL against
a VSAM data set and after a
GETNEXT or RESETL for a browse

operation initiated by a
locate-mode SETL

• Meaningless information after a
PUT, DELETE, RELEASE, or ESETL.

NOSPACE=symb-addr
specifies the entry label of the
user-written routine to which
control is to be transferred if no
direct access space is available
for adding records to a data set.
(This error condition is not
applicable when adding records to a
fixed length DAM data set that does
not contain keys.) TCAFCAA
contains the address of an FHA
containing the record to be added.
This FHA may be at a different
storage location from the FHA
passed with the PUT request.

NOTFND=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
attempt to retrieve or delete a
record based on the search argument
provided is unsuccessful.

TCAFCAA contains:

• The address of an FIOA if the
request was a GET against a DAM
data set

• The address of a VSHA if the
request was a GET, DELETE,
SETL, RESETL, or GETNEXT
request using skip-sequential
against a VSAM data set.

The application programmer should
be aware of the following
considerations:

•

•

•

Except for RESETL or GETNEXT,
the program should issue a
DFHFC TYPE=RELEASE macro when
any interrogation of the area
is complete.

For SETL, the browse operation
was not initiated.

For RESETL or GETNEXT, the
browse operation is still
active, but the position in the
data set has been lost. A
RESETL should be issued to
reestablish the position in the
data set. If move mode is
specified or implied in the
SETL request initiating the
browse operation, the FWA
representing the browse must be
used for the RESETL; if locate
mode is specified in the SETL
request, the VSWA must be used.

NOTOPEN=symb-addr
specifies the entry label of the
user-written routine to which
control is to be transferred if the

Chapter 3.2. File Control (DFHFC Macro) 83

requested file is closed and
unenabled. This state is reached
after an open enabled file has been
closed.

This condition does not occur if
the request is made to a closed
enabled file, instead the file is
opened as part of executing the
request. A request made to a
closed disabled file causes the
application to terminate
abnormally.

This condition can occur in
response to a GET,PUT NEWREC that.
is not part of a MASSINSERT,DElETE
or the first of a GENERIC DELETE
sequence, GETAREA or SETl request.
When the condition is returned, the
contents of TCAFCAA are not
meaningful.

RDIDADR=
specifies the address of the record
identification field for a record,
or the relative record number of a
record. The contents of this field
should not be altered when a GET or
UPDATE macro is issued.

symb-addr
is the address of the record
identification field that
contains the block reference
(for DAM), or the key,
relative byte address, or the
relative record number (for
VSAM) of the record to be
processed. If this operand is
omitted, the address is
assumed to be in TCAFCRI.
This field is used when adding
a new record or when updating
an existing record in a
nonkeyed DAM data set without
previously reading it for
update.

Notes:

1. This operand must not
refer to a field in the
FWA, because the FWA might
be freed before the write
occurs.

2. The DFHFC
TYPE=PUT,TYPOPER=NEWREC
macros for a VSAM
mass-insert operation may
specify the same record
identification field or
different record
identification fields.

3. When adding a record to a
VSAM ESDS, there is no
need to supply an RBA.
However, a field must be
provided to receive the
RBA after the record has
been added; the address of
the field must be supplied

either in TCAFCRI or by
using the RDIDADR operand.

relative record number
is the number of the required
record in a VSAM RRDS. The
format of this field must be
fullword binary. If this
operand is omitted, the
address of the field that
contains the record number is
assumed to be in TCAFCRI.

Notes:

1. The SRCHTYP operand is
assumed to be FKEQ on all
DFHFC macros except SETl
and RSETl when only FKEQ
and FKGE will be accepted.

2. In skip sequential
operation, if the relative
record number refers to a
nonexistent or deleted
record, the NOTFND
condition will be raised,
even if SETl or RESETl
included SRCHTYP=FKGE.

RETMETH= (DAM only)
applies only to blocked data sets
and is used to specify the argument
type (retrieval method) for
deblocking the data sets. It is
also used to specify the format of
the information placed in the
record identification field each
time a record is retrieved in a
browse operation.

RELREC

KEY

specifies that retrieval is to
occur by relative record, with
the first record in a block
considered to be record zero.
It also specifies that a
one-byte binary relative
record number is provided in a
browse operation.

specifies that retrieval is to
occur by key or that in a
browse operation, a key is to
b~ provided.

If TYPOPER=UPDATE is specified, the
RETMETH operand is required. If
RETMETH is omitted and a request to
read a blocked DAM data set is
issued, the entire physical record
(block) is returned in the FIOA to
the application program. The block
reference field, required by DAM,
contains the criteria for
deblocking the data set. If a
retrieved record is "undefined,­
the application program must
determine the length of the record.

SRCHTVP= (VSAM only)
specifies how the search key in the
record identification field is to

84 CICS/VS Application Programmer's Reference Manual (Macro level)

be used. This operand is
meaningful only when ARGTYP=KEY is
specified or implied by default.

FKEQ

FKGE

GKEQ

GKGE

TVPOPER=

indicates that the search key
is a full key and that only a
record with an equal key
satisfies the search.

indicates that the search key
is a full key and that the
first record with a key equal
to or greater than the search
key satisfies the search.

indicates that the search key
is a generic (partial) key,
the binary length of which is
specified in the first byte of
the record identification
field. A record whose key is
equal to the search key
(compared on only the number
of bytes specified in the
first byte of the record
identification field)
satisfies the search. When
used with TYPE=DELETE, all
records whose keys begin with
the search key are to be
deleted. A count of the
number of records deleted is
returned in TCAFCNRD.

indicates that the search key
is a generic key and that the
first record with a key equal
to or greater than the search
key (compared on only the
number of bytes specified in
the first byte of the record
identification field)
satisfies the search.

describes the file operation to be
performed.

NEWREC
indicates that a new record is
to be added to an existing
data set.

UPDATE
when used with a TYPE=PUT
macro, it indicates that a
record retrieved previously by

a DFHFC TYPE=GET,TYPOPER=
UPDATE macro is to be updated
(in effect, rewritten to the
data set).

When used with a TYPE=GET
macro, it indicates that a
record is to be obtained for
updating, or, if a VSAM KSDS
is referred to, for either
updating or deletion. If the
record is from a blocked DAM
data set, the RETMETH operand
must be specified. If
TYPOPER=UPDATE is omitted, a
read-only operation is
assumed.

The UPDATE parameter can also
be used with TYPE=PUT to write
a record to a DAM data set
after building the record in
an area obtained by a DFHFC
TYPE=GETAREA macro. This
technique is described in
detail in "DAM Data Sets" on
page 54.

DELETE (VSAM only)
is valid when a KSDS data set
is being accessed and
indicates that a record
previously retrieved for
update by a DFHFC TYPE=GET,
TYPOPER=UPDATE request is to
be deleted from the data set.

MASSINSERT (VSAM only)
specifies that the acquired
FHA is to be used for a
mass-insert operation. This
ensures that the same FHA is
used for subsequent DFHFC
TYPE=PUT macros adding new
logical records with keys or
relative byte addresses in
ascending sequence to the data
set. The FHA is made
available to the application
program after each DFHFC
TYPE=PUT macro. The FHA is
reinitialized, before each
return to the application
program, to the value
specified in the INITIMG
operand (if specified) or
otherwise to EBCDIC blanks
(X'40'). A mass-insert
operation is terminated by a
DFHFC TYPE=RELEASE macro.

Chapter 3.2. File Control (DFHFC Macro) 85

CHAPTER 3.3. DL/I SERVICES

The CICS application programmer can
request DL/I services in two ways:

1. By issuing a DL/I CALL statement,
written according to DL/I
specifications. This method is
available to both CICS/OS/VS and
CICS/DOS/VS users. This DL/I CALL
is mandatory if the user wishes to
access remote Dl/I data bases using
ISC (intersystem communication).

2. By issuing a DFHFC macro. This
method is available to CICS/OS/VS
users only.

In both cases, control is passed to a
routine that acts as an interface
between the CICS application program and
the Dl/I request handler. This routine
performs validity checks on the CALL
list, prepares DL/I to handle the
request, and passes control and the CALL
list to DL/I. After DL/I has handled
the request, it returns control to the
calling program unless a DL/I
pseudoabend has occurred, in which case
the CICS task is abnormally terminated.

Under CICS, two or more transactions
(tasks) may require the same application
program at any given time during system
operation. Because CICS application
programs must be quasi-reenterable (see
"Quasi-Reenterability," in "Chapter 1.1.
Macro-Level Application Programming" on
page 3), DL/I areas that may be modified
under CICS/OS/VS (such as PCB pointers,
I/O work areas, and segment search
arguments) should not be placed in
static storage. They should also not be
placed in working storage (unless the
application program contains one or more
command level statements, in which case
working storage is dynamic). Storage
for such areas must be obtained from
CICS dynamic storage by each transaction
using the program.

Four steps must be performed by an
application program requesting DL/I data
base services. These steps are listed
below and explained in the sections that
follow.

1. Obtain addresses of program
communication blocks (PCBs) to be
used by the application program.

2. Build segment search arguments
(SSAs) if they are to be used in the
CALL.

3. Acquire I/O work areas for Dl/I
segments processed by the program.

4. Issue the DL/I CALL.

OBTAINING ADDRESSES OF PROGRAM
COMMUNICATION BLOCKS

An application program that uses the
CICS-DL/I interface accesses data bases
by means of program communication blocks
(PCBs). One PCB for each data base is
included in the program specification
block (PSB) for the program. To process
DL/I CALLs within a CICS transaction,
the PSB for the transaction must be
scheduled and the PCB addresses obtained
before any DL/I CALLs are made.
Scheduling involves, for example, that
all the required DL/I control blocks
exist and are in main storage, and that
the processing options associated with
this PSB permit it to be scheduled
concurrently with those PSBs already
scheduled. If they are not obtained, an
INVREQ (invalid request) indicator is
returned in response to any DL/I CALL
within the program.

A transaction may schedule only one PSB
at a time. An attempt to schedule a
second PSB while one is still scheduled
causes the INVREQ condition to be
returned.

A sync point request (see "Chapter 7.6.
Recovery/Restart (Sync Point) Control
(DFHSP Macro)" on page 319) by a task
that is scheduled to use DL/I resources
implies the release of those resources.
This means that if, after issuing a
DFHSP TYPE=USER macro, access to a DL/I
data base is required, the desired PSB
must be rescheduled. The previous
position of that data base has been
lost.

I/O PCBs (a type of control block used
by IMS/VS) ~re not passed to CICS
programs, even though they may be
included in a PSB for a transaction.

DFHFC MACRO (CICS/OS/VS ONLY)

To schedule the desired PSB and obtain
PCB addresses, the CICS/OS/VS
application programmer may use a special
form of the DFHFC macro, as follows:

Chapter 3.3. DL/I Services 87

DFHFC TYPE=(Dl/I,PCB)
[,PSB=

where:

{'psbname'lsymb-addrIYES}]
[,NORESP=symb-addr]
[,DlINA=symb-addr]
[,PSBSCH=symb-addr]
[,PSBNF=symb-addr]
[,PSBFAIl=symb-addrl
[,INVREQ=symb-addr]

TYPE=(DL/I,PCBl
indicates that PCB addresses are to
be acquired. (Dl/I may also be
coded as DlI or Dll.)

If the PSB has been located, TCADlPCB
contains the address of a list of PCB
addresses in the sequence in which the
PCB addresses were specified during the
PSBGEN of this PSB. If the PSB cannot
be found, TCADlPCB contains zero. If
the PSB pool or DMB pool is too small to
hold the requested blocks even when no
other PSBs or DMBs are in their pools,
the transaction is terminated with the
ADlA abend code.

DL/I CALL STATEMENT (CICS/DOS/VS OR
CICS/OS/VSl

Upon receiving control from CICS, a CICS
application program must issue a Dl/I
call to perform scheduling before
attempting to access Dl/I data bases.
If the scheduling call is successful,
the address of the PCB list is returned
in the field TCADlPCB and TCAFCTR is set
to zeros. If the call is unsuccessful,
TCAFCTR contains a one-byte return code.
Before continuing with subsequent Dl/I
calls, it is the application
programmer's responsibility to test
these indicators to determine whether
scheduling is successful.

The format of the CAll statement to
request scheduling is as follows:

ASM:

CAllDlI {ASMTDlIICBlTDlI},([parmcount,]
function, [psbl)

COBOL:

CAll 'CBlTDlI' USING [parmcount,]
function, [psbl.

PL/I:

CAll PlITDlI ([parmcount,]
function~[psb]);

where:

parmcount
is the name of a binary fullword
containing the parameter count
(value of one or two). This
parameter is optional.

function

psb

is the name of the field containing
the four-character function 'PCBb'.

is the name of the eight-byte field
containing the PSB generation name
which the application program
accesses. (This name is one to
eight bytes long under CICS/OS/VS,
or one to seven bytes long under
CICS/DOS/VS, and is left justified
and padded on the right with blanks
as appropriate.) This parameter is
optional. Under CICS/DOS/VS if it
is omitted, the PSB name is assumed
to be the first PSB name associated
with the application program name
in the Dl/I application control
table generation. Under CICS/OS/VS
if it is omitted, the PSB name is
assumed to be the name of the
application program associated with
the task in the PCT.

Note: With Pl/I, the preprocessor and
assembler steps cause a single CAll
PlITDlI statement to be expanded into a
series of Pl/I statements. If a single
CAll PlITDlI statement appears in a
THEN, ELSE, or WHEN clause, it should be
coded within

DO

END

statements.

If a single CAll PlITDlI statement is to
be coded in an ON-unit or is to be the
scope of a conditional prefix, the CALL
PlITDlI should be coded within

BEGIN

END

statements.

BUILDING SEGMENT SEARCH ARGUMENTS

Both CICS/OS/VS and CICS/DOS/VS
application programmers can use segment
search arguments (SSAs) in a DL/I CALL
to identify a specific segment, or, if
qualified, to identify the range of
values within which a segment exists.
In addition, the CICS/OS/VS programmer
can specify SSAs in a DFHFC TYPE=Dl/I
macro. If used, SSAs must be built by
the application programmer before a Dl/I
CAll is issued. (for information on how
to build an SSA, CICS/OS/VS application
programmers should refer to the IMS/VS

88 CICS/VS Application Programmer's Reference Manual (Macro level)

Application Programming for CICS/VS
Users; CICS/DOS/VS users should refer to
the DL/I DOS/VS Application Programming
Reference Manual. Note that for
CICS/OS/VS users all IMS/VS DB command
codes are supported, including the "Qn
code (although corresponding dequeueing
must be performed by a CICS sync point,
or by a DL/I TERM call, since the DEQ
call is not supported).)

In a Dl/I application program, SSAs are
built in fixed storage within the
program. In a CICS application program,
SSAs must be built in dynamic storage to
maintain the quasi-reenterability of the
program.

The storage acquired to build the SSAs
is addressed as foilowsl

• For assembler language programs, the
address should be placed in the
register that establishes
addressability for the SSA dynamic
storage.

• For COBOL programs, the address is
moved to the BlL pointer for this
storage. The BLL pointer is defined
under the COpy DFHBLLDS statement in
the linkage section and must be in
the same relative position in the
BLl list as the 01 statement for the
SSA dynamic storage is among the 01
statements in the linkage section.

• For PL/I, the address is stored in
the variable upon which the SSA
dynamic storage is based.

After the storage has been acquired and
the SSAs built, DL/I CALls in which the
SSAs are used can be issued by the
application program. The names of the
SSAs to be used, if any, are specified
in the parameter list of the CALL.
Under CICS/OS/VS, a DFHFC TYPE=Dl/I
macro can also be used. In a DFHFC
TYPE=Dl/I macro, the application
programmer can specify the number and
names of the SSAs in different ways:

1. SSAS=NO indicates that there are no
SSAs in this CALL.

2. SSAS=(ssacount,ssal,ssa2, ...), where
ssacount is optional, represents
either the fixed-point number of
SSAs in the CALL or the symbolic
address of the fullword that
contains the number of SSAs.
Specifying a field to contain the
number of SSAs provides the
application programmer with
flexibility in writing one DFHFC
statement to be used in many
different CAlls. ssal, ssa2, ... ,
are the symbolic names of the SSAs.

3. SSALIST=YES indicates that the
application programmer has built a
list of fullwords, optionally
containing the number of SSAs (which

may be zero) in the first word, and
the addresses of the SSAs in the
following words, and that he has
stored the address of this list at
TCADLSSA. .

4. SSALIST=symbolic address indicates
that the address of an SSA list
built by the application programmer
as indicated in item 3 is at the
location specified.

In assembler language programs,
ssacount,ssal,ssa2, ..• , can be contained
in registers if the specifications are
enclosed in parentheses.

ACQUIRING AN I/O WORK AREA

When issuing a request for DL/I
services, the address of a work area,
either that in which a current segment
is contained or that in which Dl/I is to
place the segment in a retrieval CALL,
is required. This area must be
specified by the CICS/OS/VS or
CICS/DOS/VS programmer who issues a Dl/I
CAll. It may be provided by the
interface, if the programmer desires,
for a retrieval-type DFHFC macro.

If the CICS/OS/VS application programmer
knows the address of the work area to be
used in the DFHFC macro, including the
case for which storage is acquired for a
retrieval-type (Gxxx) request, he
specifies the name of the pointer to
that storage in the WRKAREA=name
operand, or he places the address of the
storage in TCADLIO before issuing the
request and specifies WRKAREA=YES.

If the application programmer wishes to
allow the interface to obtain the work
area for a retrieval-type request, he
does not include the WRKAREA operand in
the DFHFC macro request. If the request
was serviced successfully, the address
of an acquired I/O work area is in
TCADLIO. The address at TCADlIO is the
address of the storage accounting area
(SAA) preceding the retrieved data. The
area becomes the responsibility of the
programmer and is not freed until he
frees it or until the transaction
terminates. If the application

,programmer elects to free the work area,
he must use a DFHSC TYPE=FREEMAIN macro.

Note: The address of the I/O area is
specified as the address of the storage
accounting area preceding the data when
a DFHFC macro is used; the address of
the first byte of the data area is
required when a Dl/I CAll is used.

REQUESTING DL/I SERVICES

The application program request for Dl/I
services may be either a CICS DFHFC
macro (CICS/OS/VS) or a DL/I call
(CICS/OS/VS or CICS/DOS/VS).

Chapter 3.3. Dl/I Services 89

DFHFC MACRO (CICS/OS/VS)

DFHFC TYPE=(DL/I [,function])
[,PCB={symb-addrICregister)}]
[,WRKAREA={symb-addrl

YESICregister)}]
[,SSAS={HQI([ssacount][,ssal1
[,ssa2, ...])IC[Cregisterl)]

wheref

[,(register2), .•. 1)}]
[,SSALIST={YESINO
Isymb-addrl(register)}]
[,NORESP=symb-addrl
[,PSBFAIL=symb-addrl
[,DLINA=symb-addrl
[,FUNCNS=symb-addrl
[,INVREQ=symb-addr]

TYPE=(DL/I [,function])
specifies the two- to four-byte
name of the function to be
performed. If the function is not
specified, it is assumed to be in
TCADLFUN. (DL/I may also be coded
as DLI or DLl.)

DL/I CALL STATEMENT (CICS/OS/VS OR
CICS/DOS/VS)

DL/I data base services are available to
CICS application programs through CALL
statements. The CALL statement formats
for COBOL and PL/I are similar. For
assembler language application programs,
a CALLDLI macro is used. The formats of
the DL/I calls are as followsa

ASM:

CALLDLI {ASMTDLIICBLTDLI}
[,([parmcount,]function,pcb
,workarea[,ssa, ...])]

COBOL:

CALL 'CBLTDLI' USING [parmcount,]
function,pcb,workarea[,ssa, •.•].

PL/I:

CALL PLITDLI (parmcount,function
,pcb,workarea[,ssa, •.. l);

where:

parmcount
is the name of a binary fullword
containing the parameter count or
argument count of the arguments
which follow; this is optional for
assembler language and COBOL.

function
is the name of the field containing
the four-character DL/I
input/output CALL function desired.

pcb
is the program communication block
(PCB) name (or DSECT name if
assembler).

workarea
is the name of the I/O work area.

ssal to ssan
are the names of the segment search
arguments (SSAs); these are
optional.

Notes:

1. If no parameters are specified in an
assembler language CALLDLI macro, Rl
is assumed to contain the address of
a parameter list.

2. In assembler language, an
alternative format may be useda

CALLDLI {ASMTDLIICBLTDLI}
,MF=(E,(register) or address)

where'

address
is the address of the parameter
list, or register that contains
the address of the parameter
list.

RELEASING A PSB IN THE CICS APPLICATION
PROGRAM

To reduce pool and intent contention,
the CICS/OS/VS application program can
release the PSB after a DL/I service has
been requested.

It is recommended that conversational
programs release the PSB before writing
to a terminal so that other transactions
can use the PSB while the conversational
program is waiting for an operator
response.

To ensure the integrity of the data
base, a request to release a PSB implies
the end of a logical unit of work for
the entire task. This means that a
DFHSP TYPE=USER macro is issued on
behalf of a task that is releasing a
PSB.

DFHFC MACRO (CICS/OS/VS ONLY)

To release a PSB for use by other
transactions, the CICS/OS/VS application
programmer may issue a macro of the
following formata

DFHFC TYPE=(DL/I,{TERMIT})
[,DLINA=symb-addr]
[,TERMNS=symb-addrl
[,INVREQ=symb-addrl

90 CICS/VS Application Programmer's Reference Manual (Macro Level)

where:

TVPE=(DL/I,TERMl
specifies that the PSB is to be
released for use by other
transactions, or, if not required,
its pool space and associated DMB
pool space may be released for
other purposes. (DL/I may also be
coded as DLI or DLI.)

Before issuing any other DL/I CALLs or
DFHFC macros requesting DL/I access to a
data base, the application programmer
must again issue a schedule request.
All positioning in data bases referred
to by the transaction is lost when the
PSB is released. If the program is
processing a hierarchy through GNxx
requests before releasing the PSB, it is
necessary to explicitly reposition the
data bases after issuing another
schedule request, to continue the GNxx
requests.

DL/I CALL STATEMENT (CICS/DOS/VS OR
CICS/OS/VSl

If the CICS application program desires
to relinquish control of the PSB, it
must issue a terminal call to DL/I. The
format of the CALL statement to request
termination is as follows:

ASM:

CALLDLI {ASMTDLIICBLTDLI}
,([parmcount,lfunction)

COBOL:

CALL 'CBLTDLI' USING
[parmcount,lfunction.

PL/I:

CALL PLITDlI
([parmcount,lfunction);

where:

parmcount
is the name of a binary fullword
containing the parameter count
value of one.

function
is the name of the field containing
the four-character function 'TERM'
or 'Tbbb'.

When a termination call is issued for a
previously scheduled PSB, the resources
acquired for the task are released, and
tasks awaiting the resources are given
an opportunity to be scheduled.

PL/I SERVICES RESPONSE CODES

To test a response code, the application
programmer must know the CICS response
codes and their meanings. If the
assembler language or PL/I programmer
uses this approach, he can access the
response codes for NORESP, INVREQ, and
NOTOPEN at TCAFCTR; the response codes
for all other ~onditions can be accessed
at TCADLTR. The COBOL programmer can
access the response codes for NORESP,
INVREQ, and NOTOPEN at TCAFCRC; the
response codes for all other conditions
can be accessed at TCADLTR. Response
codes and their associated conditions
are shown in Figure 12 on page 92.

TEST RESPONSE TO A DL/I REQUEST
lTYPE=CHECKJ

DFHFC TYPE=CHECK
[,NORESP=symb-addrl
[,DLINA=symb-addrl
[,PSBSCH=symb-addrl
[,PSBNF=symb-addrl
[,PSBFAIL=symb-addrl
[,FUNCNS=symb-addrl
[,TERMNS=symb-addrl
[,LANGCON=symb-addrl 1

[,TASKNA=symb~addrll
[,PSBNA=symb-addrl 1

[,INVREQ=symb-addrl

1 CICS/DOS/VS only

where:

TVPE=CHECK
indicates that the CICS-DL/I
interface response is to be
checked.

The application programmer may use the
DFHFC TYPE=CHECK macro following a DL/I
CALL statement or a DFHFC
TYPE=(DL/I[,functionl) macro. This
macro does not check the DL/I return
codes in the PCB. If DL/I issues a
pseudoabend during processing of the
request, control is not returned to the
application program. The transaction is
terminated with CICS abend code ADLA.
For CICS/DOS/VS, if Dl/I issues a
pseudoabend during a call, the
transaction is terminated with a Dnnn
abend code where nnn is the DL/I
pseudoabend code.

If the application programmer does not
provide for the checking of a particular
response, and if the exception condition
corresponding to that response occurs,
program flow proceeds to the instruction
following the DL/I request in the
application program.

Chapter 3.3. DL/I Services 91

Response Code
DL.lI Interface Request Condition

ASH COBOL PL.lI
--'-

CDL.lI,PCB),CDL.lI NOR ESP CNormal Response) X'OO' LOW-VALUES 00000000
[,functionl),CHECK CFCNORESP)

All INVREQ (Invalid Request) X'08' 12-8-9 00001000
(FCINVREQ)

CDL.lI[function]), NOTOPEN (Not Open) X'OC' 12-4-8-9 00001100
CHECK CFCNOTOPEN)

Codes returned in TCADLTR after NOTOPEN condition

(DL.lI[functionl), Data base not open; request X'OI' 12-1-9 00000001
CHECK issued in VSE system

Intent scheduling conflict X'02' 12-2-9 00000010

Codes returned in TCADLTR after INVREQ condition

ALL Data base not in FCT, or not X'OO' LOW-VALUES 00000000
open according to FCT, or in-
valid argument passed to DL.lI

(DL.lI,PCB),CHECK PSBNF (PSB Not Found) X'Ol' 12-1-9 00000001
(DLPSBNF)

CHECK TASKNA (Task Not Authorized) X'02' 12-2-9 00000010
(DLTASKNA)

(DL.lI,PCB),CHECK PSBSCH (PSB Already X'03' 12-3-9 00000011
Scheduled) (DLPSBSCH)

CHECK LANGCON (Language Conflict) X'04' 12-4-9 00000100
(DLLANGCON)

(DL.lI,PCB),CHECK PSBFAIL (PSB Initialization X'OS' 12-5-9 00000101
Failed) (DLPSBFAIL)

CHECK PSBNA (PSB Not Authorize'd) X' 06' 12-6-9 00000110
(DLPSBNA)

(DL.lI,T),CHECK TERHNS (Termination Not X'07 ' 12-7-9 00000111
Scheduled) (DLTERMNS)

(DL.lI[,functionl), FUNCNS (Function Not x'oa' 12-8-9 00001000
CHECK Scheduled) (DLFUNCNS)

All DLINA (DL.lI Not Active) X'FF' HIGH-VALUES 11111111
CDLINA)

Notesr

1. The TASKNA and LANGCON conditions apply only to CICS.lDOS.lVS.

2. PSBNA occurs only when the data base is on a VSE system.

3. The names enclosed in parentheses in the COBOL column indicate the names
generated by CICS. These names may be used in testing for the respective
conditions in a COBOL program.

4. For CICS.lOS.lVS only, NOTOPEN will never be returned to the application.
If a schedule reques't is made against a closed data base, PSBFAIL will be
returned. A data base cannot be closed until all activity against it has
been quiesced. While this is happening, no further scheduling is allowed.

Figure 12. CICS'-DL.lI Interface Response Codes

92 CICS.lVS Application Programmer's Reference Manual (Macro Level)

DL/I REQUESTS IN AN ASSEMBLER LANGUAGE
pROGRAM (CICS/OS/VSl

The application programmer must first
get the addresses of the PCB. When
CICS/OS/VS returns from servicing the
PCB request, if the programmer loads Rl
from TCADLPCB, his program is in the
same state as after an ENTRY DLITCBL
statement has been executed in an IMS/VS
DL/I application program.

COPY DFHTCADS

* PSBNAME DC CL8'PSBNAME'
PCB FUN DC CL4'PCBb'
PCBPTRS DSECT
* PCBIPTR DS F
PCB2PTR DS F

WORKAPTR DS F

* PCBl DSECT

PCB2 DSECT

WRKAREA DSECT
DS 2F

WORKAl DS CL40
SSAREA DSECT

DS 2F
SSAI DS CL40
SSA2 DS CL20

The examples that follow show the
options available to the application
programmer in a few of the acceptable
combinations. The application program
must be quasi-reenterable. If a DFHFC
macro is issued, the PCB and WRKAREA
operands are used to specify the
addresses of pointers to fields rather
than the addresses of fields desired.

COpy TCA DEFINITION - INCLUDES
DL/I FIELDS
NAME OF PSB TO aE USED
PCB FUNCTION
PCB POINTERS RETURNED BY
INTERFACE
STORAGE FOR PCB POINTERS

STORAGE FOR POINTER IN I/O WORK
AREA
PCB DSECT

PCB DSECT

DL/I WORK AREA DSECT
STORAGE PREFIX
WORK AREA
SSA DSECT
STORAGE PREFIX
SSAl LAYOUT
SSA2 LAYOUT

DFHFC TYPE=(Dl/I,PCB) USE PSB FOR THIS PROGRAM
DFHFC TYPE=(DL/I,PCB), GET PCB'S IN 'PSB14' *

PSB='PSB14'
DFHFC TYPE=(Dl/I,PCB), GET PCB'S IN SPECIFIED PSB *

PSB=PSBNAME
MVC TCADLPSB,=CL8'PSBA' PUT PSB NAME IN TCA
DFHFC TYPE=(Dl/I,PCB), GET PCB'S OF PSB NAMED IN TCA *

PSB=YES
l Rl,TCADLPCB GET ADDRESS OF PCB ADDR lIST
USING PCBPTRS,Rl REG 1 IS BASE OF PCB POINTERS * USER MUST PROVIDE ADDRESSABIlITY * TO PCB'S WHEN USING THEM * ISSUE A PCB REQUEST VIA CAllDlI
CALlDLI CBlTDlI,(PCBFUN) USE PSB FOR THIS PROGRAM
CALlDLI CBlTDLI,(PCBFUN,PSBNAME)GET PCB'S IN SPECIFIED PSB
l Rl,TCADlPCB GET ADDRESS OF PCB ADDRESS LIST * ACQUIRE STORAGE FOR WORK AREA
DFHSC TYPE=GETMAIN,... GET STORAGE FOR WORK AREA
L R2,TCASCSA REG 2 IS BASE FOR WORK AREA
USING WRKAREA,R2 TELL ASSEMBLER * ACQUIRE STORAGE FOR SSA'S
DFHSC TYPE=GETMAIN,... GET STORAGE FOR SSA'S
L R3,TCASCSA REG 3 IS BASE FOR SSA'S
USING SSAREA,R3 INDICATE TO ASSEMBLER

CALLDLI CBLTDLI,(function,PCB1,WORKAl,SSAl,SSA2)

Chapter 3.3. DL/I Services 93

* CALL DL/I VIA DFHFC MACRO -- VARIOUS EXAMPLES
* * EXAMPLE I
*

*

DFHFC TYPE=(DL/I,function),
PCB=PCBIPTR,
WRKAREA=WORKAPTR,
SSAS=(2,SSAl,SSA2),
NORESP=GOODI

* EXAMPLE 2
*

*

MVC TCADLPCB,PCBIPTR
LA RO,WRKAREA
ST RO,TCADLIO
DFHFC TYPE=(DL/I,DlET),

WRKAREA=YES,
SSAS=NO

* EXAMPLE 3
* MVC

DFHSC
L
LA
LA
ST
LA
ST
ST
01
DFHFC

L

TCADLFUN,=CL4'GU'
TYPE=GETMAIN, ...
R4,TCASCSA
R4,8CR4)
RO,I
RO,OCR4)
RO,SSAI
RO,4(R4)
R4,TCADLSSA
4(R4),X'80'
TYPE=DL/I,
PCB=PCBIPTR,

SSALIST=YES
R3,TCADLIO

PCB IS POINTED TO
WORK AREA IS POINTED TO
SSA COUNT AND SSAS SPECIFIED
NORMAL RESPONSE BRANCH

PRELOAD PCB POINTER
PICK UP WORK AREA ADDRESS
STORE IN TCA
FUNCTION SPECIFIED
WORK AREA ADDRESS PRELOADED
NO SSAS

PRELOAD FUNCTION
GET STORAGE FOR SSA LIST
PICK UP STORAGE ADDRESS
BYPASS PREFIX
GET COUNT OF SSA'S
STORE IN SSA LIST
GET ADDRESS OF 'SSAI'
STORE IN SSA LIST
STORE LIST ADDRESS IN TCA
SET ON THE END-OF-LIST BIT
DL/I CALL, FUNCTION PRELOADED *
POINTER TO PCB TO BE USED *
INTERFACE WILL PROVIDE WORK AREA*
PROBLEM PGM PROVIDES SSA LIST
PICK UP ADDRESS OF SUPPLIED
WORK AREA

94 CICS/VS Application Programmer's Reference Manual (Macro Level)

DL/I REQUESTS IN A COBOL PROGRAM
(CICS/OS/VS)

Upon program entry, the COBOL programmer
should obtain PCB addresses by issuing a
DFHFC TYPE=(DL/I,PCB) request or a DL/I
'PCB' call. After CICS/OS/VS returns
control, the programmer moves the
contents of TCADLPCB to the BLL pointer
which is the base for the layout of the
PCB pointers in the linkage section. He
then moves the addresses of the PCBs to
their BLL pointers to provide the base
addresses for the PCBs. When this is
done, the program is in the same state
as after an

ENTRY 'DLITCBL' USING PCB1,PCB2

WORKING-STORAGE SECTION.
77 PSBNAME PIC X(8) VALUE 'PSBNAME'.
77 PCB-FUNCTION PIC X(4) VALUE 'PCB/'.
77 FUNCTION-l PIC X(4) VALUE 'DlET'.
77 SSA-COUNT PIC S9(8) COMP VALUE 2.
lINKAGE SECTION.
01 DFHBlLDS COpy DFHBLlDS

02

02 B-PCB-PTRS PIC S9(8) COMPo
02 B-PCBl PIC S9(8) COMPo
02 B-PCB2 PIC 59(8) COMPo
02 B-WORKAREA PIC S9(8) COMPo
02 B-55AS PIC 59(8) COMPo

01 DFHCSADS COpy DFHCSADS.
01 DFHTCADS COpy DFHTCADS.

.
01 PCB-PTRS.

02 PCB1-PTR PIC S9(8) COMPo
02 PCB2-PTR PIC 59(8) COMPo

01 PCB1.

01 PCB2.

01 WORKAREA.
02 FILLER PIC X(8).
02 WORKAI PIC X(40).

01 SSAREA.
02 FILLER PIC X(8).
02 SSAI PIC X(40).
02 SSA2 PIC X(60).

statement has been executed in an IMS/VS
DL/I application program.

For an explanation of how BLl pointers
to 01 statements in the linkage section
are defined, see the discussion of COBOL
application programming in "Chapter 2.3.
Storage Definition - COBOL" on page 35.

Examples showing· how to write DL/I
requests are given below. Only some
combinations of operands are shown, but
other combinations are acceptable. Note
that, in a DFHFC request, Bll pointers
to the PCB and work area are used rather
than actual field names. This is the
onl y way the addres.ses can be passed to
DL/I.

NOTE POINTERS TO OTHER CICS
AREAS NEEDED

NOTE TWO DEFINITIONS.
NOTE OTHER AREA DEFINITIONS .

NOTE STORAGE PREFIX.

Chapter 3.3. Dl/I Services 95

· PROCEDURE DIVISION. * GET PCB ADDRESSES
DFHFC TYPE=(DL/I,PCB) GET PSB FOR THIS PROGRAM * GET PCB ADDRESSES VIA CALL
CALL 'CBLTDLI' USING PCB-FUNCTION,PSBNAME.

NOTE GET PCB'S FOR SPECIFIED PSB. * SAVE PCB ADDRESSES IN BLL TABLE SO PCB'S CAN BE ADDRESSED
MOVE TCADLPCB TO B-PCB-PTRS.
MOVE PCBI-PTR TO B-PCBI.
MOVE PCB2-PTR TO B-PCB2. * OPTIONALLY, ACQUIRE STORAGE FOR WORK AREA
DFHSC TYPE=GETMAIN, ...
MOVE TCASCSA TO B-WORKAREA. * OPTIONALLY, ACQUIRE STORAGE FOR SEGMENT SEARCH ARGUMENTS
DFHSC TYPE=GETMAIN, ...
MOVE TCASCSA TO B-SSAS. * CALL DL/I VIA CALL
CALL 'CBLTDLI' USING FUNCTION-I,PCBI,WORKAI,SSAI,SSA2.

* * EXAMPLE I OF DFHFC MACRO INSTRUCTION
DFHFC TYPE=(DL/I,GHU), FUNCTION *

PCB=B-PCBI, PCB POINTER *
WRKAREA=B-WORKAREA, WORK AREA POINTER *
SSAS=(SSA-COUNT,SSAI,SSA2) SSA COUNT AND NAMES

* * EXAMPLE 2 OF DFHFC MACRO INSTRUCTION
MOVE 'GNP' TO TCADLFUN. NOTE PRELOAD FUNCTION.
MOVE B-PCBI TO TCADlPCB. NOTE PRELOAD PCB ADDRESS.
DFHFC TYPE=DL/I, FUNCTION PRELOADED *

SSAS=NO PCB ADDRESS PRELOADED *
WORK AREA TO BE ACQUIRED *
NO SSA'S

MOVE TCADLIO to B-WORKAREA. NOTE SAVE ACQUIRED WORK AREA ADDR.

96 CICS/VS Application Programmer's Reference Manual (Macro l.vel)

DL/I REQUESTS IN A PL/I PROGRAM
(CICS/OS/VSl

Upon entry to his program, the PL/I
application programmer should get PCB
addresses through a DFHFC
TYPE=(DL/I,PCB) macro or a DL/I 'PCB'
call. When CICS returns, the base
address of a structure of PCB pointers
is in TCADLPCB. The PL/I programmer
must move the value from TCADLPCB to the
based variable for his declared
structure of PCB pointers. He then
loads the pointers to all PCBs from this
structure. When this has been done, the

program is in the same state as an
IMS/VS DL/I application program in which
the

DLITPLII PROCEDURE (pcbnamel, ...)
OPTIONS(REENTRANT,MAIN);

statement has been executed.

The PL/I programmer may then make DL/I
requests, either through CALLs or DFHFC
macros. Note that the PCB and WRKAREA
operands in a DFHFC request specify the
addresses of pointers to fields rather
than of the fields desired.

Y.INCLUDE DFHCSADS; /* CSA DEFINITION */
Y.INCLUDE DFHTCADS; /* TCA DEFINITION - INCLUDES */

/* DL/I FIELDS */
1 PCB POINTERS BASED CB_PCB_PTRS),

2 PCBl_PTR POINTER,
2 PCB2_PTR POINTER;

DECLARE 1 PCBl BASED (BPCBl), /* PCB DEFINITIONS */
2 •••
2 ••• ;

DECLARE 1 PCB2 BASED (BPCB2),
2 •••
2 ••• ;

DECLARE 1 DLI IOAREA BASED (BDLIIO), /* DL/I I/O AREA */
2 STORAGE PREFIX CHAR(S),
2 IOKEY CiiAR(6),
2 ... ;

DECLARE 1 DLI SSADS BASED (BSSADS), /* DL/I SSA LIST */
2 STORAGE_PREFIX CHAR(8),
2 SSAl,

3 SSAlKEY CHAR(6),
3 •••

2 SSA2,
3 •••
3 ••• ;

DECLARE PSBNAME CHAR(8) INIT ('PSBNAME');
DECLARE PCB FUNCTION CHAR(S) INIT C'PCB ');

/* OBTAIN PCB POINTERS */
DFHFC TYPE=(DL/I,PCB) GET PSB FOR THIS PROGRAM

/* OBTAIN PCB POINTERS VIA CALL */
CALL PLITDLI (PARM_CT,PCB_FUNCTION,PSBNAME) I /* GET SPECIFIED PSB */

/* SAVE POINTERS IN PCB BASES */
B PCB PTRS=TCADLPCB;
BPCBl'=PCBl_PTR;
BPCB2=PCB2_PTR;

/* ACQUIRE STORAGE FOR DL/I I/O AREA ./
DFHSC TYPE=GETMAIN,CLASS=USER, .••
BDLIIO=TCASCSA;

/* OPTIONALLY, ACQUIRE STORAGE IN WHICH TO BUILD SSA'S */
DFHSC TYPE=GETMAIN,CLASS=USER, ..•
BSSADS=TCASCSA;

/* OPTIONALLY, BUILD SEGMENT SEARCH ARGUMENTS */
SSAlKEY=TERMKEY;

Chapter 3.3. Dl/I Services 97

/* CALL DL/I */
CALL PLITDLI(PARM CT,DLI FUNCTION,PCBl,IOKEY,SSAl,
SSA2)j --

/* EXAMPLE 1 OF DFHFC MACRO INSTRUCTION ~/
DFHFC TYPE=CDL/I,ISRT),

PCB=BPCBl, PCB POINTER
WRKAREA=BDLIIO, WORK AREA POINTER
SSAS=CZ,SSAl,SSA2) SSA COUNT AND NAMES

/~ EXAMPLE Z OF DFHFC MACRO INSTRUCTION ~/
TCADLPCB=BPCBl;
DFHFC TYPE=CDL/I,GU),

SSAS=CSSA_COUNT,SSAl,SSAZ)

BDLIIO=TCADLIO;

PCB PRELOADED
WORK AREA TO BE ACQUIRED
SSA COUNT AND NAMES
/* SAVE WORK AREA ADDRESS */

/* EXAMPLE 3 OF DFHFC MACRO
TCADLFUN='GN';
TCADLIO=BDLIIO;

INSTRUCTION */

DFHFC TYPE=DL/I,
PCB=BPCBl,
WRKAREA=YES,
SSAS=NO

When using the PL/I Optimizing Compiler,
all SSAs used in DFHFC macros and all
parameters used in CALLs must be defined
as elementary items. This can be done
by defining structures based on the same
pointers as the structures containing
the nonelementary definitions, as
follows:

DCl 1 DLI_CALL_SSADS BASED (BSSADS),
Z STORAGE_PREFIX CHAR(8),
Z CALL_SSAI CHARC ...),
Z CALL SSAZ CHARC ...);

/* SET UP SSAI AND USE IN CALL */
SSAlKEY=SEARCH_KEY;
DFHFC TYPE=DL/I,

SSAS=(SSA_COUNT,CALl_SSAl)
CALL PLITDLI (PARM_CT,FUNCTION,PCBl,

IOKEY,CALL_SSAl);

OPERANDS OF DFHFC MACRO (DL/I)

DLINA=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if the CICS-DL/I
interface is inactive.

FUNCNS=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if a DL/I
function request Ca request other
than PCB or TERM) is made and the
task has no PSB scheduled.

INVREQ=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if:

1. One'of the conditions DlINA,
FUNCNS, LANGCON, PSBFAIL,
PSBNA, PSBNF, PSBSCH, TASKNA,
or TERMNS occurs and the
associated operand is omitted

/* PRELOAD FUNCTION ~/
/~ PRELOAD WORK AREA ADDRESS */
FUNCTION PRELOADED
PCB POINTER
WORK AREA ADDRESS PRELOADED
NO SSA'S

2. An error condition is
as follows:

a. The required data
not in the FCT

b. The required data

detected,

base is

base is
not open according to the
FCT

c. An invalid argument has
been passed to DL/I.

If an INVREQ condition occurs and
the INVREQ and an associated
expansion operandCs) are both
omitted, processing continues with
the next sequential instruction in
the application program.

LANGCON=symb-addr (CICS/DOS/VS only)
specifies the entry label of the
user-written routine to which
control is passed if the calling
program is in a different source
language than the called PSB.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is passed upon normal
execution of the request, that is,
if the PSB is located and the PCB
addresses are returned, or when the
application program regains
control. The CICS-DL/I interface
must have been able to pass control
to DL/I and a DL/I pseudoabend of
the transaction cannot have
occurred. The return code in the
PCB must be checked to determine
whether DL/I was able to service'
the request. NORESP signifies
nnormal response." If this operand
is omitted, but a described
condition applies, processing

98 CICS/VS Application Programmer's Reference Manual CMacro Level)

PCB=

PSB=

continues with the next sequential
instruction in the application
program.

specifies the field that contains
the address of the PCB.

symb-add~
is the symbolic address of the
field containing the address
of the PCB.

(register)
is valid only when assembler
language is used. It is the
number of a register that
contains the address of the
PCB.

specifies the name of the PSB to be
scheduled for the transaction.

~psbname'
is the name of the PSB to be
used.

symb-addr

YES

is the symbolic address of an
eight-byte field containing
the name of the PSB, padded to
the right with blanks.

indicates that the name of the
PSB has been placed in
TCADLPSB by the application
program.

If this operand is omitted,
the name of the program
associated with the
transaction in the eIeS
program control table (PCT) is
used as the PSB name.

PSBFAIL=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if the PSB fails
to initialize, also specifies the
entry label of the user-written
routine to which control is passed
if the data base specified in the
PCB used in this request is
logically (not necessarily
physically) closed. The PCB does
not contain a DL/I AI status code.

PSBNA=symb-addr (CICS/DOS/VS only)
specifies the entry label of the
user-written routine to which
control is passed if the task is
not authorized to access this PSB.

PSBNF=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if the PSB cannot
be found in the PSB directory.

PSBSCH=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if a PSB is
already scheduled for this task.

SSAlIST=

SSAS=

specifies whether or not segment
search arguments are used in this
request and if so, identifies the
list containing these arguments.

YES

NO

indicates that a list of
segment search arguments is
used and that the address of
the list has been placed in
TCADLSSA by the application
program.

indicates that no SSA list is
used in this request.

symb-addr
is the symbolic address of a
field that contains the
address of the SSA list.

(register)
is valid only when assembler
language is used. It is the
number of a register that
contains the address of the
SSA list.

If this operand is specified,
SSAS cannot be specified.

specifies whether or not segment
search arguments are used in this
request and, if so, identifies
them.

NO
indicates that no SSAs are
used in this request.

([ssacountl[,ssall[,ssa2, •••])
specifies the names of segment
search arguments used in this
request (thereby creating an
SSA list) .. The ssacount
parameter specifies the number
of SSAs to be usedi it is the
address of a fullword
containing the count, or, in
the case of assembler
language, may be expressed as
a numeric value. Each ssa
specification represents an
element of the SSA list. The
first element of an SSA list,
or it may point to a fullword
containing this counti the
remaining elements represent
addresses of SSAs. If the
first element of an SSA list
is not a count, all elements
of the SSA list are assumed to
be addresses of SSAsi the
high-order bit of the last
element of the list must be

Chapter 3.3. Dl/I Services 99

set on to indicate the end of
the list.

(((registerl)l(,(register2), ••• J)
is interpreted as described
above; that is~ Rl contains a
count of the SSAs in the list
or is the first list entry, R2
is the first or second list
entry (depending on whether a
count has been specified), and
so on.

If this operand is specified~
SSALIST cannot be specified.

TASKNA=symb-addr (CICS/DOS/VS only)
specifies the entry label of the
user-written routine to which
control is passed if the calling
task is not authorized to access
DL/I data bases.

TERMNS=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if a termination
request is made and the task has no
PSB scheduled.

WRKAREA=
specifies the address of the work
area to be used.

symb-addr
is the symbolic address of a
field that contains a pointer
to the work area.

YES
indicates that the address of
the work area to be used has
been placed in TCADLIO by the
application program.

(register)
is valid only when assembler
language is used. It is the
number of a register that
contains the address of the
work aea.

If this operand is omitted and
a Gxxx function is to be
performed, the CICS-DL/I
interface acquires storage for
the work area and returns the
address of the work area at
TCADLIO. The application
program must save this address
upon return. If any other·
type of function is requested,
the application program must
provide the work area. A work
area whose address is
specified in a DFHFC macro or
placed at TCADLIO prior to
execution of the DFHFC macro
includes the CICS storage
accounting area prefix. A
work area specified in a
CALLDLI or CALL statement does
not.

100 CICS/VS Application Programmer's Reference Manual (Macro Level)

PART 4. DATA COMMUNICATION OPERATIONS

Part 4. Data Communication Operations 101

CHAPTER 4.1. INTRODUCTION TO DATA COMMUNICATION OPERATIONS

This part describes the data
communication operations Terminal
Control, Basic Mapping Support, and
Batch Data Interchange.

The essential differences between these
data communication facilities is that
terminal control is the basic method of
communicating with devices, whereas both
basic mapping support CBMS) and batch
data interchange (BDI) extend the
facilities of terminal control to
simplify further the manipulation of
data streams. In fact, both BMS and BDI
use terminal control facilities.

Terminal Control (Chapter 4.2) provides
specific macros and options for
particular devices so that the
application programmer can tailor his
input and output requests according to
the requirements of the devices.
However, application programs written in
this way are dependent on data
formatting requirements of devices and
therefore the application programmer
must have detailed knowledge of the
devices.

Basic Mapping Support (Chapter 4.3)
provides macros and options that the
application programmer can use to format
data in a standard manner. BMS performs
the conversion of data streams provided
by the application program to conform to
the requirements of particular devices.
Conversely, data received from a device
is converted by BMS to a standard form.
However, not all devices supported by
CICS can be used with BMS and therefore
terminal control must be used. Also, in
some cases, the overhead incurred to
achieve data stream independence may
outweigh the advantages. The choice as
to whether BMS should be used is a
matter for application design and is
discussed more fully in the appropriate
CICS facilities and Planning Guide.

Batch Data Interchange (Chapter 4.4) is
a set of macros that may be used either
instead of terminal control macros, or
in conjunction with BMS macros to
communicate with the batch logical units
of the 3790 and 3770 subsystems.

Chapter 4.1. Introduction to Data Communication Operations 103

CHAPTER 4.2. TERMINAL CONTROL (DFHTC MACRO)

The CICS terminal control program
provides for communication between
user-written application programs and
terminals and logical units, by means of
terminal control macro instructions.

Terminal control uses the standard
access methods available with the host
operating system. The Basic
Telecommunications Access Method (BTAM)
is used by CICS for most start-stop and
BSC terminals. As an option for OS/VS,
the Telecommunications Access Method
(TCAM) can be specified. The Sequential
Access Method (SAM) is used where
keyboard terminals are simulated by
sequential devices such as card readers
and line printers. The Virtual
Telecommunications Access Method
(ACF/VTAM) or the Telecommunications
Access Method CTCAM) is used for systems
network architecture (SNA) terminal
systems.

Terminal control polls terminals to see
if they are ready to transmit or receive
data. Terminal control handles code
translation, transaction initiation,
synchronization of I/O operations, and
the line control necessary to read from
or write to a terminal. The application
program is freed from having to
physically control terminals. During
processing, an application program is
connected to one terminal for one task
and terminal control program monitors
which task is associated with which
terminal. The task to be initiated is
determined as described in
ftTerminal-Oriented Task Identificationft
on page 115. Terminal control detects
and logs errors, and also, where
appropriate, inserts a default.

Terminal control is used for
communication with terminals. In SNA
systems, however, it is used to control
communication with logical units. A
logical unit (LU) represents either a
terminal directly, or a program stored
in a subsystem controller which in turn
controls one or more terminals. The
CICS application program communicates,
by means of the logical unit, either
with a terminal or with the stored
program. For example, a 3767 terminal
is represented by a single logical unit
without any associated user-written
application program. In contrast, a
3790 subsystem is represented by a 3791
controller, user-written 3790
application programs, and one or more
3790 terminals; when the subsystem is
configured, one or more logical units
are designated by the user.

Facilities that apply specifically to
logical units are described in

"Facilities for Logical Units" on
page 110.

Terminal control macro instructions are
provided to request the following
services that are applicable to most, or
all, of the types of terminal supported
by CICS:

• Read data from a terminal.

• Write data to a terminal.

• Synchronize terminal I/O for a
transaction.

• Converse with a terminal.

• Read or write records to a card
reader, disk data set, magnetic tape
unit, or a line printer defined by
the system programmer as a
card-reader-in/line-printer-out
(CRLP) terminal. This facility
allows transactions to be tested
when normal communications terminals
are not available.

For-more information about the last of
these services, see "Chapter 7.2.
Sequential Terminal Support" on
page 293.

Other services available in response to
terminal control macros apply to
specific types of terminal. Because
many types of terminal are supported by
CIeS, many special services are
provided. For a list of terminals
supported by CICS, see the appropriate
CICS Facilities and Planning Guide. The
following list is representative of the
terminal-oriented input/output services
availables

•

•

•

•

•

Read the entire contents of a buffer
(3270 Information Display System).

Read a message containing both
uppercase and lowercase data (3270
Information Display System).

Print out the contents of an
information display buffer on a
printer (3270 Information Display
System).

Transmit a message to a common
buffer (2980 General Banking
System).

Read or write data in transparent
mode, that is, without translation
(System/7, System/370, System/3,
2770 Data Communication System, 2780
Data Transmission Terminal, 3600
Finance Communication System (BTAM),

Chapter 4.2. Terminal Control (DFHTC Macro) 105

•

3740 Data Entry System, and the 3780
Data Communications Terminal).

Use the attention key to interrupt a
write operation or signal a read
attention request (for example, on
the 2741 Communication Terminal).

The general form of the terminal control
macro (DFHTC) resembles that of other
CICS macros. Keyword operands are
separated by commas. Although most CICS
macros use only one entry following the
keyword TYPE, the DFHTC macro can
contain several, for example

DFHTC TYPE=(WRITE,READ)

causes a write to the terminal, a wait
for that write to be completed Can
implied wait), and a read from the
terminal to which data has just been
written.

Another example is the macro

DFHTC TYPE=(ERASE,WRITE,READ,WAIT)

which causes an erase and then a write
to a terminal, followed by an implied
wait, followed by a read and a requested
wait. The latter wait ensures that the
read is complete before control is
returned to the application program.

Two separate DFHTC macros must be used
when two options that would be
incompatible for the same macro are
needed. Examples of incompatible
options are:

DFHTC TYPE=(WRITE,PRINT)

DFHTC TYPE=(WRITE,READB)

DFHTC TYPE=CPRINT,READ)

In such cases, the first macro should
include the WAIT option; for example:

DFHTC TYPE=(WRITE,WAIT)

DFHTC TYPE=READB

As in other CICS macro operands, if only
one entry is given in the TYPE operand,
no parentheses are necessary.

The application programmer must
determine the combination of keywords
that follow TYPE=, depending on the
terminal (and sometimes, access method)
used and the operations required.
Additional operands may be required or
desired, again depending.upon the
terminal and access method used. Some
common input/output requests are
discussed later in the chapter.

Before using the DFHTC macro to request
terminal services, the application
program must include instructions that:

1. Symbolically define the TCTTE and
TIOA by copying the appropriate
storage definitions (DFHTCTTE and
DFHTIOA) provided by CICS. (It is
assumed that the storage definitions
for the CSA and TCA have already
been copied, as described in Part
2.)

2. Establish addressability for the
TCTTE by specifying a symbolic base
address. If using assembler
language or COBOL, the application
programmer must obtain the base
address of the TCTTE from TCAFCAAA
and place it in TCTTEAR; with PL/I,
addressability for the TCTTE is
established automatically. Any
field in the TCTTE can then be
accessed by field name.
Addressability for the TIOA must be
established each time a DFHTC
TYPE=READ or TYPE=WRITE macro is
issued. The ways of doing this are
described in the following section.

FACILITIES FOR ALL TERMINALS AND LOGICAL
UNITS

The facilities described in this section
apply to all terminals and logical
units. There may, however, be
additional facilities that apply to
specific devices. If this is so,
details are given later in the chapter
under headings for the relevant device
types.

READ DATA FROM A TERMINAL OR LU

Data can be read from a terminal or
logical unit by issuing the

DFHTC TYPE=READ

macro. The incoming data is placed in a
TIOA acquired by terminal control, which
also places the address of the TIOA in
TCTTEDA. The operation will be complete
when another terminal control TYPE=WAIT
has been issued~ On completion of the
read operation, the application program
must copy the address from TCTTEDA to
the TIOA base address register
(TIOABAR): any field in the TIOA can
then be accessed by field name.

The length of the data read into the
TIOA is stored in TIOATDL.

Terminal control attempts to reuse TIOAs
that have been used in previous
operations. For this purpose, it
maintains a chain of TIOAs whose
addresses are anchored in the TCTTE. If
no TIOA is attached to the chain, or if
the existing TIOAs are too short or are
otherwise unsuitable, terminal control
acquires a new TIOA. The current TIOA
as addressed by TCTTEDA may be freed by
terminal control unless the SAVE operand
is specified.

106 CICS/VS Application Programmer's Reference Manual (Macro Level)

Note that when using BTAM, data is read"
into a line input/output area (an LIOA).
BTAM determines which terminal has been
read, changes the LIOA into a TIOA and
places the address of that TIOA in
TCTTEDA after freeing the area
previously pointed to by TCTTEDA.

A new TIOA is also acquired by terminal
control for the read when the

DFHTC TYPE=(READ,SAVE)

macro is issued. All TIOAs currently
chained off the TCTTE are retained and
may subsequently be reused; a new TIOA
is dynamically acquired for this read
and is added to the chain.

A write, followed by a read operation,
can be specified in a single request.
See "Write Data and Read Reply", below.

When a TIOA which was previously
obtained as an LIOA by terminal control
is passed to a user task, the contents
of the data part cannot be guaranteed
beyond the data length supplied in
TIOATDl. Therefore users should not
attempt to interrogate the contents of a
TIOA beyond this supplied length.

When the contents of a 3270 buffer are
read (by using DFHTC TYPE=READB), the
programmer should be aware that the
attention identifier (AID) byte and the
cursor address are made available at
TCTTEAID and TCTTECAD respectively. A
set of standard symbolic names for
testing the 3270 AID is provided in a
copy book called DFHAID. For further
details refer to "Standard Attention
Identifier List (DFHAID)" on page 184.

WRITE DATA TO A TERMINAL OR LU

Data is written to a terminal or logical
unit using the

DFHTC TYPE=WRITE

macro. (For a transaction that has been
started by automatic transaction
initiation (ATI), a DFHTC TYPE=WRITE
macro should always precede the first
DFHTC TYPE=READ macro in a transaction.)

Before using this macro, the application
program must acquire a TIOA in which to
build the data to be transmitted, and
must place the address of the TIOA in
TCTTEDA and the length of the data to be
written in TIOATDL. The maximum data
length is 32,767 bytes which includes
the length of the function management
header (FMH) when writing to a logical
unit.

The required TIOA is acquired by a DFHSC
TYPE=GETMAIN,CLASS=TERMINAL macro. CICS
places the address of the TIOA in
TCASCSA, from where it must be copied

into the TIOA base address register
(TIOABAR).

The application program must not change
the contents of TCTTEDA until after the
I/O operation has completed. The
operation will only be complete when
another terminal control request has
been issued (that is, TYPE=WAIT or
TYPE=READ).

If WAIT is not specified on a terminal
control TYPE=WRITE operation, the
operation may be deferred until the next
terminal control request. When the next
terminal control request is issued, the
SNA flows are optimized before the
actual I/O is issued. For example, a
terminal control write followed by a
terminal control read could cause two
flows to be sent, whereas only one flow
is sent if it can be determined that the
next operation is a read request.

When writing data to a 3600
(nonpipeline) or 3790 inquiry logical
unit, the application program must not
put data into the first three bytes of
the TIOA, unless it is building its own
FMH. See "Function Management Header
(FMH)" on page 112. The FMH is built
either by CICS or by the application
program.

When the write operation is completed by
terminal control, the TIOA is released
to a dynamic storage pool (unless SAVE
is specified). Subsequent reference to
this TIOA by the application program
will produce unpredictable results.

However, a TIOA can be reused by the
application program after a write if the
request to write data to a terminal uses
the

DFHTC TYPE=(WRITE,SAVE,WAIT)

macro. In this case, the TIOA is not
released by terminal control. The WAIT
parameter ensures that the write of the
TIOA is complete before the area is
reused.

If a dump of the TIOA is required
following a terminal control write, the
SAVE and WAIT operands should be
included with the DFHTC TYPE=WRITE macro
that precedes the DFHDC macro.

WRITE DATA AND READ REPLY

As stated earlier, a write followed by a
read operation can be specified in a
single request by issuing the

DFHTC TYPE=(WRITE,READ)

macro. A typical use for this macro
occurs in a conversational environment
in which the application program writes
a question to the terminal, waits for a
reply, and subsequently reads the reply.

Chapter 4.2. Terminal Control (DFHTC Macro) 107

Because the SAVE parameter is not
specified, terminal control can reuse
the TIOA (from which data is written) as
a TIOA for the input data. Under
certain conditions, however, a new TIOA
is obtained for the read operation, for
example:

• Local 3270 terminals.

•
•

PSEUDOBIN specified with READ, WRITE.

The TIOA length for the WRITE
instruction less than that specified
by the system programmer in the
DFHTCT TYPE=TERMINAL,TIOAL=length
specification (binary synchronous
terminals> or in the DFHTCT
TYPE=LINE,INAREAL=length
specification (all other terminals).

• Certain error conditions.

The user should always reload TIOABAR
from TCTTEDA following the (WRITE,READ)
macro.

For a terminal connected to the 7770
Audio Response Unit, a read request that
does not include the WRITE parameter
causes the "ready" message (defined in
the terminal control table by the system
programmer> to be written to the
terminal before the read operation
occurs.

If both a write and a read operation are
specified in a single request by issuing

DFHTC TYPE=(WRITE,READ,SAVE)

the TIOA used for writing is saved; a
new TIOA is then acquired by terminal
control for the read. The size of the
TIOA is determined by the system
programmer when specifying the TCTTE for
the terminal (rather than by the size of
the TIOA'used for the write). If the
saved TIOA is reused later for either
writing or reading, the application
program must place the address of the
TIOA into TCTTEDA prior to issuing the
request to use the area.

The manner in which the address of a
TIOA is "remembered" is the application
programmer's responsibility .

Upon completion of a (WRITE, READ, SAVE),
place the value at TCTTEDA into TIOABAR
to establish addressability for the
newly-acquired TIOA.

SYNCHRONIZE TERMINAL I/O (WAIT)

In a task under which more than one
terminal or logical unit operation is
performed, the application programmer
must ensure that a current terminal
operation is complete before another
begins. Furthermore, for all
(WRITE, READ) and (WRITE, READ, SAVE)
requests, control is returned to the

application program after the write
operation is executed, but the read
operation has not necessarily been
completed at this time. Therefore, in
order that the data resulting from the
READ operation can be processed, the
application programmer must ensure that
the operations are completed. To do
this the

DFHTC TYPE=WAIT

macro is issued, where the WAIT
parameter is coded separately, as shown,
or in combination with READ or WRITE. A
PUT can be coded in place of a
(WRITE,WAIT); a GET can be coded in
place of a (READ,WAIT). To ensure that
the data has been transferred to the
TIOA, a wait must be issued for each
read-request.

A wait may cause execution of a task to
be suspended. If suspension is
necessary, control is r&turned to CICS.
Execution of the task is resumed when
the write or read is posted complete.

A wait need not be coded for a write if
the write is the last terminal operation
of the transaction. The TIOA is
retained until the data is written, even
if the transaction and its associated
storage are deleted from the system
before the write occurs.

CONVERSE WITH A TERMINAL OR LU

A conversational mode of communication
with a terminal or logical unit is
requested by the

DFHTC TYPE=CONVERSE

macro, where CONVERSE (or CONY) is the
same as (WRITE,READ,WAIT). This
instruction is always executed in the
sequence: WRITE, implied wait, READ,
WAIT.

It is possible, for most devices, to use
this macro rather than TYPE=READ, but it
must not be used for the 3600 or 3650
pipeline logical units. However, its
use is recommended for all other logical
units.

DISCONNECT A SWITCHED LINE

To break a line connection between a
terminal or logical unit and a host
processor, the

DFHTC TYPE=DISCONNECT

macro is used. This applies only to
devices operating on switched lines or
to logical units. .

When used with a VTAM terminal,
DISCONNECT, which does not become
effective until the task completes,

108 CICS/VS Application Programmer's Reference Manual (Macro Level)

signs off the terminal, frees the
COMMAREA, clears the next TRANID, stops
any BMS paging, and, if autoinstall is
in effect, deletes the terminal
definition.

When used with logical units,
DISCONNECT, which does not become
effective until the task has been
terminated, terminates the session,
without causing a physical
disconnection.

Note: CICS/OS/VS implements DISCONNECT
for World Trade Teletype Terminals by
writing a message to the terminal
indicating that the terminal operator
should manuallY disconnect.

EXAMPLES

The following examples, in assembler
language (ASM), COBOL, and PL/I, show
the use of a terminal control macro
(DFHTC) that erases the screen, returns
the cursor to the upper left corner of
the screen, writes to the terminal, and
reads from the terminal. The lines of
code in the examples are keyed to the
notes that follow.

ASH

1
2

3
4

L TCTTEAR,TCAFCAAA
DFHSC TYPE=GETMAIN,

NUMBYTE=80,
CLASS=TERMINAL

L TIOABAR,TCASCSA
ST TIOABAR,TCTTEDA

5
6

7

8

COBOL

1
2

3
4
5
6

7

8

PL/!

1
2

3
4
5
6

7

8

MVC TIOADBA(80),DATA
MVC TIOATDL,=H'80'

DFHTC TYPE=(WRITE,ERASE,
READ, WAIT)

L TIOABAR,TCTTEDA

MOVE TCAFCAAA TO TCTTEAR.
DFHSC

MOVE
MOVE
MOVE
MOVE

DFHTC

MOVE

TYPE=GETMAIN,
NUMBYTE=80,
CLASS=TERMINAL
TCASCSA TO TIOABAR.
TIOABAR TO TCTTEDA.
DATA!TO TIOADATA.
80 TO TIOATDL.

TYPE=(WRITE,ERASE,
READ,WAIT)
TCTTEDA TO TIOABAR.

TCTEAR=TCAFCAAA;
DFHSC TYPE=GETMAIN,

NUMBYTE=80,
CLASS=TERMINAL

TIOABAR=TCASCSA;
TCTTEDA=TIOABAR;
TIODATA=DATA;
TIOATDL=80;

.
DFHTC TYPE=(WRITE,ERASE,

READ,WAIT)
TIOBAR=TCTTEDA;

Chapter 4.2. Terminal Control (DFHTC Macro) 109

The statements in the above examples.

1. Establish addressability for the
TCTTE.

2. Acquire storage for use as a
terminal input/output area by use of
the DFHSC macro.

3,4 Place the address of the acquired
area into TCTTEDA.

S. Place data in the TIOA.

6. Place the length of the data to be
written into TIOATDl.

7. Issue a terminal control macro to a
3270 terminal, thus erasing the
screen, returning the cursor to the
upper left corner of the screen,
writing to the terminal, and reading
from the terminal (allowing terminal
control to manage storage for the
TIOA).

8. Establish addressability to the TIOA
into which the data has been read.

FACILITIES FOR LOGICAL UNITS

A CICS application program communicates
with a TCAM or VTAM logical unit in much
the same way that it does with BTAM or
TCAM terminals (that is, by using the
various forms of the DFHTC macro
described above). However,
communication with logical units is
governed by the conventions (protocols)
that apply to each type of logical unit.
This section describes the additional
facilities provided by CICS to enable
the application programmer to comply
with these protocols.

The types of logical units and the
related protocols for each of the SNA
subsystems supported by CICS are
described in the IBM 3270 Data Stream
Device Guide, and in the CICS SUbsystem
guides for the IBM 4700/3600/3630, IBM
3650/3680, IBM 3767/3770/6670 and the
IBM 3790/3730/8100. See "Bibliography"
on page 351.

SEND/RECEIVE MODE

For SNA logical units, a transaction
conversing with such a logical unit must
conform to the send/receive protocols of
SNA, unless the read-ahead queueing
feature has been specified.

However, a transaction is normally in
send mode and can issue any terminal
control request. For displays (for
example, the. 3270), the send/receive

mode is transparent to the application
program, but for logical units that
perform chaining, or make use of the
full SNA protocols (for example, the
3767), the send/receive mode should be
taken into account.

If the application program is in receive
mode, flag TCTEURCV in field TCTERCVI is
set on, and the application program must
continue to issue terminal control READ
requests.

For compatibility, the read-ahead
queueing feature (RAQ=YES specified in
the DFHSG PROGRAM=TCP system macro) is
provided so that the application program
is independent of the send/receive mode.
However, it is recommended that
application programs be changed to use
SNA send/receive protocols and that,
wherever possible, they specify RAQ=NO.

OVERLAPPING LOGICAL UNIT-OUTPUT

Write operations are not initiated until
a subsequent terminal control operation
to the logical unit is issued, a
syncpoint is taken, or the task
terminates.

If a terminal control write operation is
awaiting completion, a terminal control
wait should be issued unless the next
operation is a read request, in which
case a terminal control read can be
issued directly.

A terminal control write and wait
request causes the operation to be
initiated immediately. If only a
terminal control write is issued, the.
operation is delayed until the next
operation so that SNA flow handling can
be improved.

The point at which a wait is satisfied
depends upon whether task protection,
message integrity, or DEFRESP=YES is
requested for the task. Task protection
and message integrity are specified, by
the system programmer, in the DFHPCT
macro; if data is sent with task
protection or message integrity, a wait
is completed when a logical unit
responds to the write request;
otherwise, the wait is completed after
VTAM has accepted the output request.

If a task is operating under task
protection or message integrity and an
exception response is returned for an
output request, the output message is
still available in the TIOA. The node
error program (NEP) can therefore
request that the operation be retried as
many times as specified by the
installation.

110 CICS/VS Application Programmer's Reference Manual (Macro level)

CHAINING OF INPUT DATA

For transmission purposes, data handled
by a logical unit is divided into
request/response units CRUs). The data
may be transmitted as one or more RUs,
called a chain, depending on the length
of the data, and on the maximum size of
the RU defined for the logical unit or
that has been defined for the terminal
network in general.

Each RU contains a set of indicators
that specify whether the RU is the
first, middle, or end, of the chain
(FOC, MOC, or EOC, respectively). If
the chain consists of only one RU, this
RU contains both the FOC and the EOC
indicators.

Data is transmitted as a chain of one or
more RUs from a logical unit to the
application program. If the chain
contains more than one RU, further read
requests are required, one for each RU,
unless chain assembly has been
specified. (Chain assembly is described
later in the chapter.) The length of
each RU must be less than or equal to
the maximum RU size.

The EOC operand of the DFHTC
TYPE=(READ,WAIT) macro is used to test
for the presence of the EOC indicator.
If it is present, that is, the complete
chain has been received, control is
passed to a user-written routine that
provides additional processing.

For some logical units, the data
transmitted may contain a function
management header CFMH), in which case,
inbound-FMH processing will take
precedence over EOC processing.
(Inbound FMH is described later in the
chapter.)

Further, if the FMH indicates the end of
the data set, control will be passed to
the EODS routine instead of to the
INBFMH or EOC routines. The DFHTC
TYPE=WAIT macro with the EOC operand
specifies that control is to be passed
to an EOC routine from within either the
inbound FMH or the EODS routine.

An FMH may also occur in the first RU of
a chain that contains more than one RU.
In this case, control is passed to the
INBFMH routine when a DFHTC TYPE=READ is
satisfied by that RU.

The application program must read all
the data from the logical unit, that is,
it should not terminate (except
abnormally) before EOC has been
received. Application programs should
also ensure that the complete data
stream has been received from the
logical unit; this will be ensured if
the application program is not in
receive mode when it terminates.

CHAINING OF OUTPUT DATA

As in the case of input data, output
data is transmitted as request/response
units (RUs). If the length of the data
supplied in the TIOA exceeds the RU
size, CICS automatically breaks up the
data into RUs and transmits these RUs as
a chain. During transmission from CICS
to the logical unit, RUs are marked FOC,
MOC, or EOC to denote their position in
the chain. An RU that is the only one
in a chain is marked OCConly-in-chain).

If the system programmer specified that
the application program can control the
chaining of outbound data, the
application program can inhibit the
end-of-chain marker on the last (or
only) RU resulting from the write
request by including the CCOMPL=NO
operand (specifying that the chain is
not yet complete). The data supplied in
the TIOA for the next write request is
treated as a continuation of the chain.

CHAIN ASSEMBLY

Chain assembly, which is specified by
the system programmer in the TCTTE, is
the process of assembling RUs together
to form a chain which is transmitted as
an entity to the application program in
a single TIOA in response to a single
read request. This ensures the
integrity of the whole chain before
presentation to the application program.
If the EOC operand is specified in the
read request, the EOC routine receives
control for every read request (except
when an FMH is received and the
appropriate EODS or INBFMH routine is
specified, as described earlier in the
chapter under "Chaining of Input Data").

The length of the TIOA required to hold
a chain is unknown because a chain can
consist of any number of RUs. To allow
for this, two TIOA lengths can be
specified in the TCTTE by the system
programmer. The first length specifies
a TIOA that will normally be provided.
The second specifies a larger TIOA for
use when the normal TIOA is not large
enough. If the larger TIOA cannot hold
the complete chain, the node abnormal
condition program (DFHZNAC) is invoked
and the task is terminated abnormally.
Additional processing of the chain can,
however, be initiated by the node error
program (DFHZNEP) when a further read
request will be needed to cause
transmission of the rest of the chain.
The use of two TIOA sizes minimizes
storage requirements.

Chain assembly is recommended for most
interactive applications, because the
input data is usually made up of a chain
of more than one RU. In many cases the
application program logic is simplified
by use of this option.

Chapter 4.2. Terminal Control CDFHTC Macro) 111

LOGICAL RECORD PRESENTATION

NormallY a chain contains the data to be
processed and this chain is presented to
the application program in a TIOA as
specified in the TeTTE.

In some cases, however, the chain
contains many logical entities for
processing. These may be each RU
itself, or the RUs may be further
subdivided into logical records
delimited by interrecord separator
control characters, or new line
characters.

The entire RU will be presented to the
application program if chain assembly is
not specified in the TeTTE. However, if
the data stream is delimited by
separators into logical records, the
system programmer can specify in the peT
that logical records will be presented
to the application program instead of
RUs or chains, so overriding on an
application basis the TeTTE options for
the logical unit.

If the RU contains more than one logical
record, the records will be separated by
NL (new line), IRS (interrecord
separator), or TRN (transparent)
characters. Excapt in the case of
LUTYPE4, one logical record cannot be
transmitted in more than one RU; the end
of the RU is always the end of the
logical record. Data from an LUTYPE4
unit may contain logical records that
span RUs, in which case chain assembly
should be specified.

Because a card reader inserts an IRS
character after the last nonblank
character on the card, the us~r may
receive card images that are less than
80 characters in length. Conversely, a
series of full cards will begin at
81-character intervals.

For those application programs for which
this option is specified, each read
request results in one logical record
being presented to the application
program in a TIOA, regardless of whether
chain assembly is specified or not. If
the logical records are separated by IRS
or TRN characters, these are removed,
and do not appear in the TIOA.
Therefore, a blank card will appear as a
TIOA with a length of zero. If NL
characters are used to separate the
logical records, they are not removed,
and the NL character from the end of
each logical record appears at the end
of the TIOA. All the previously
described communication features are
still in operation. That is,
notification of end-of-chain, and (for
batch logical units only) notification
of end-of-data-set conditions and
presentation of the inbound FMH at the
beginning of a chain, still occurs.

If chain assembly has been specified, a
logical record ends with a delimiter
(either NL, IRS, or TRN), or the end of
the assembled chain. The end of chain
notification is given with the last
logical record of the chain.

DEFINITE RESPONSE

The type of response requested by CICS
for outbound data is generally
determined by the system programmer when
generating the peT. The system
programmer can specify that all outbound
data for an application program will
require a definite response, or allow
the exception-response protocol to be
used, which means that a response will
be made only if an error situation
occurs.

If exception response protocol is used,
a negative response may be received and
handled on a subsequent command.

The use of definite-response protocol
has some performance disadvantages, but
may be necessary for some application
programs. To provide a more flexible
method of specifying the protocol to be
used, the DEFRESP operand is provided
for use on the DFHTC TYPE=WRITE macro.
One example of the use of this operand
is to request a definite response for
every tenth write request, exception
response being the general rule.

Because a response cannot be received
until the whole chain has been sent, the
DEFRESP operand and the CCOMPL=NO
operand are mutually exclusive. The
DEFRESP operand and the ERASE operand
are also mutually exclusive.

FUNCTION MANAGEMENT HEADER (FMHl

A function management header (FMH) is a
field that can be included at the
beginning of an input or output message.
It is used to convey information about
the message and-how it should be
handled.

For some logical units, the use of an
FMH is mandatory, for others it is
optional, and in some cases FMHs cannot
be used at all.

For output, the FMH can be built by the
application program or by eICS. For
input, the FMH can be passed to the
application program or it can be
suppressed by CICS.

The rules governing the use of FMHs for
each type of logical unit, and the
formats of the FMHs, are given in the
CICS subsystem guides (for example, the
CICS IBM 3790/3730/8100 Guide), which
are listed in the Bibliography.

112 CICS/VS Application Programmer's Reference Manual (Macro Level)

Inbound FMH

The CICS application program can request
notification when an FMH is included in
the data received during a read from a
logical unit; when present, the FMH is
at the start of the TIOA.

Whether or not inbound FMHs will be
passed to the application program is
specified by the system programmer in
the PCT. It can be specified that no
inbound FMHs will be passed, or that
only the FMH indicating end of data set
(EODS) will be passed, or that all
inbound FMHs will be passed, or that the
data interchange program (DFHDIP) will
process the FMH.

The INBFMH operand of the DFHTC
TYPE=READ or WAIT macro specifies that
control is to be passed to a
user-written routine whenever an inbound
FMH is received. Use of the INBFMH
operand implies that the WAIT option of
the TYPE operand is in effect.

The user-written routine can examine the
FMH and take some action depending on,
for example, from which device the data
has come. The routine then scans the
TIOA for input data, starting after the
FMH. If the data is initial data from a
logical unit, the transaction
identification will start after the FMH.

When input data is received as a chain
of RUs, only the first (or only) RU of
the chain contains an FMH.

outbound FMH

Some logical units require or allow
control information to be specified by
means of an FMH. For 3600 (nonpipeline)
and 3790 inquiry logical units, CICS
will build the FMH, but the application
program must reserve space in the TIOA
for it. CICS will not build on FMH for
any other type of logical unit.

If the FMH is to be built by the
application program, the write request
must specify FMH=YES. The FMH must
start at the beginning of the TIOA.

END OF DATA SET (EODS)

The DFHTC TYPE=EODS macro specifies that
an FMH containing an EODS indicator is
sent to a 3650 interpreter logical unit.
This FMH delimits the output. The end
of the input is detected similarly by
the EODS operand of a DFHTC TVPE=READ
macro.

LOGICAL DEVICE CODE (LDC)

A logical device code (LDC) is a code
that can be included in an outbound FMH
to specify the disposition of the data
(for example, to which subsystem
terminal it should be sent).

An LDC is a CICS-supported and
installation-defined logical device
code. Each code can be represented by a
unique LDC mnemonic. The installation
can specify up to 256 two-character
mnemonics for each TCTTE, and two or
more TCTTEs can share a list of these
mnemonics. Corresponding to each LDC
mnemonic for each TCTTE is a numeric
value (the LDC itself whose code value
can range from 0 to 255). A device type
and a logical page size are also
associated with each LDC. "LDC" or "LDC
value" is used in this publication to
refer to the code specified by the user.
"LDC mnemonic" refers to the
two-character symbol that represents the
LDC numeric value.

Within the 3601 subsystem, a
user-written application program
provides the function of the logical
unit. For batch and batch data
interchange logical units the functions
of the logical unit are built in arid in
general cannot be modified further by
the user. The following paragraphs
discuss some of the functions that may
be provided in a user-written
application program.

When a CICS application program issues a
write request with the LDC operand
specified, the numeric value associated
with the mnemonic for the particular
TCTTE is inserted in the FMH. The
numeric value associated with the LDC
mnemonic is chosen by the installation;
the interpretation of that numeric value
is the responsibility of the subsystem
application program.

As a minimum, the installation can
choose a different LDC to correspond to
each device attached to the logical
unit. The values (codes) chosen for the
LDC can correspond exactly to the
logical device address (LOA) for each
device. The subsystem application
program can then take the CICS output
data and write it directly to the
indicated LDA.

LDCs can be used to provide support for
multiple-form printers. When used for
these printers, each LDC within a
specified range corresponds to a
particular type of form. Whenever the
subsystem application program receives
data with an LDC that indicates a
particular printer and a particular
form, the application program can check
the device to determine whether the
correct form is currently on the
printer. If the correct form is on the
printer, the application program

Chapter 4.2. Terminal Control (DFHTC Macro) 113

proceeds with the output operation. If
the correct form is not on the printer,
the application program can request the
operator to load the appropriate form
and to signal when the load is
completed.

Some lDCs can be used to indicate
certain standard actions to be
undertaken by the application program.
Using the lDC in this way can reduce the
overhead of writing messages to the
subsystem application program. An
example of this use of lDCs is an
instruction to the application program
to turn on specific indicator lights on
a device. A range of lDCs can be
specified for each device, each lDC
within this range corresponding to a
specific light. Upon receipt of such an
lDC, the application program determines
the appropriate device and indicator and
issues the commands necessary to turn on
the light. Other standard actions that
can be invoked by lDCs are dumping
operator totals, checking diskettes for
transaction backlogs, or indicating a
change in operational mode.

The lDC operand of the DFHTC TYPE=WRITE
macro is only for use with 3600 (3601)
nonpipeline logical units and provides a
symbolic way of conveying to CICS the
type of FMH it is to build on behalf of
the application program. Alternatively,
the application program may build its
own FMH (which may be greater than three
bytes) and indicate this by means of the
FMH operand.

Component or destination selection for
batch and batch data interchange logical
units is accomplished by means of an
FMH, the length of which depends on the
type of logical unit. The application
program must build its own FMH, or use
the lDC operands of the basic mapping
support (BMS) macros DFHMSD or DFHBMS
TYPE=OUT or TYPE=STORE to instruct BMS
to build the correct FMH. If the FMH is
to be built by the application program
the DFHTC CTYPE=lOCATE, lDC=YES macro
may be used to symbolically obtain the
component selection value to be inserted
in the appropriate FMH field. Refer to
the IBM 3770 and IBM 3790 guides for a
further discussion of component
selection.

UNSOLICITED INPUT

If a task is in progress and unexpected
data (that is, data from a terminal for
which a read request has. not been
issued) arrives from a start-stop or BSC
terminal, CICS ignores the data and it
is lost.

If, however~ unexpected data arrives
from a 3600, 3650, 3767 or 3770
interactive (contention only), or 3790
inquiry logical unit, it is queued and

is used to satisfy any future input
requests for that logical unit. For the
3270 logical unit (but not for the 3270
LUTYPE2 logical unit , data is queued
only if PUNSOl=NO is specified in the
DFHSG PROGRAM=TCP macro; otherwise it is
lost. Unsolicited input does not occur
for the other logical units.

SIGNAL COMMANDS FROM LOGICAL UNITS

Signal data-flow-control commands from
the logical unit must be handled by the
application program. The DFHTC
TYPE=SIGNAl macro allows an address to
be specified to which control will pass
when a signal command is received. The
associated signal code will be stored in
the four-byte field TCTESIDI in the
terminal control table terminal entry
(TCTTE).

If a hard request-change-direction (RCD)
signal is received from an lUTYPE4 unit
(signal code = X'OOOIOOOO'), the
transaction should either end or read
data from the logical unit. Any attempt
to write to the unit immediately
following a hard RCD would be an error,
indicated by the flag TCTERCD in the
TCTTE. If a further attempt to write to
the logical unit is made, CICS will
abnormally terminate the transaction
with an abend code of ATCL.

Most logical units that can send a
signal command with a code of
X'OOOlOOOO' do so when an attention key
is pressed.

BRACKET PROTOCOL

The use of bracket protocol is a means
of preventing interruption of the
exchange of data between CICS and a
logical unit. CICS or the logical unit
may send begin-bracket, but only CICS
may send the end-bracket. Brackets can
delimit a conversation between eIeS and
the logical unit or merely the
transmission of a series of data chains
in one direction.

Bracket protocol is used when CICS
communicates with a logical unit. The
use of brackets is usually transparent
to the CICS application program.

Only on the last write operation of a
task to a logical unit does the bracket
protocol become apparent to the CICS
application program. On the last output
request to a logical unit, the eICS
application program may specify lAST in
the DFHTC TYPE=WRITE macro. The last
output request is defined as either the
last DFHTC TYPE=WRITE macro specified
for a task without chain control; or as
the write operation that transmits the
FOC or OC marker of the last chain of a
transaction with chain control.

114 CICS/VS Application Programmer's Reference Manual (Macro level)

The LAST specification causes CICS to
transmit an end-bracket indicator with
the final output message to the logical
unit. This indicator notifies the
logical unit that the current
transaction is ending. If the LAST
operand is not specified, CICS waits
until the task detaches before sending
the end-bracket indicator. Since an
end-bracket indicator is transmitted
only with the first RU of a chain, the
LAST operand is ignored for a
transaction with chain control unless
FOC or OC is also specified. Refer to
the publication VTAM Concepts and
Planning for more details on bracket
protocol.

TERMINAL-ORIENTED TASK IDENTIFICATION

When CICS receives input from a terminal
to which no task is attached, it has to
determine which transaction should be
initiated. The methods by which the
user can specify the transaction to be
initiated and the sequence in which CICS
checks these specifications are as
follows (see also Figure 13 on
page 116).

Test 1:

Is the input from a PA key (of a 3270
terminal) that has been defined at
system initialization as the print
request key! If yes, printing of the
data displayed on the screen is
initiated.

Test 2:

a) Is this terminal of a type supported
by the basic mapping support terminal
paging facility!

b) Is the input a paging command! (The
terminal operator can enter paging
commands defined by the system
programmer in the DFHSIT macro. See the
appropriate CICS Resource Definition
manual.)

If yes to both (a) and (b), the
transaction CSPG, which processes paging
commands, is initiated.

Test 3:

If an attach FMH is present in the data
stream and tests 4 and 5 are not
fulfilled, the transaction specified in
the attach FMH is initiated. The
architectured attach names are converted
to "CSMI".

Test 4:

Does the terminal control table entry
for the terminal include a transaction
identification (specified by the TRANSID
operand of the DFHTCT macro)!

If yes, the specified transaction is
initiated.

Test 5:

Is a transaction specified by the
TRANSID operand of a DFHPC TYPE=RETURN
macro (or by the application program
moving the transaction name into
TCANXTID)!

If yes, the specified transaction is
initiated.

Test 6:

a) Is the terminal a 3270 (including
3270 logical unit and 3650
host-conversational (3270) logical unit,
connected via VTAM!)

b) Is the input from a PA key, PF key,
light pen attention (LPA), or magnetic
stripe card reader (OPID)!

c) Is this input (PA, PF, LPA, or OPID)
specified by the TASKREQ operand of a
DFHPCT TYPE=ENTRY macro! (See the
appropriate CICS Resource Definition
manual.)

If yes to (a), (b), and (c), the program
specified by the PROGRAM operand of same
DFHPCT TYPE=ENTRY macro is given
control.

Test 7:

Is a valid transaction identification
specified by the first one to four
characters of the terminal input!

If yes, the specified transaction is
initiated.

For all PA keys and some LPAs there
cannot be terminal input. If there is
no terminal input an "invalid
transaction identification" message is
sent to the terminal.

If none of the above tests is met, an
invalid transaction identification
exists. Message DFH2001 is sent to the
terminal.

Nate: The 3735 Programmable Buffered
Terminal makes an exception to this
sequence when operating in inquiry mode.
The test of input from the terminal
(Test 7 above) is given highest
priority.

SYNTAX OF THE DFHTC MACRO

This section shows the syntax of the
DFHTC macro available for use with each
type of device or logical unit, arranged
in numerical order.

The syntax displays for each device and
for the 3270 logical unit are followed
by information specific to that device

Chapter 4.2. Terminal Control (DFHTC Macro) 115

Send "invalid
transaction ident."
message to terminal

Yes

Yes

Initiate
Printing

Initiate specified

transaction

I nitiate specified

transaction

Initiate transaction

specified by

terminal input

Figure 13. Terminal-Oriented Task Identification

Initiate CSPG

No

Yes

116 CICS/VS Application Programmer's Reference Manual· (Macro level)

Initiate transaction

specified in
Attach FMH

I nitiate transaction

specified by

terminal input AID

or logical unit. However, information
about 3600, 3650, 3767, 3770, and 3790
logical units is given in the CICS
subsystem guides.

TCAM SUPPORTED TERMINALS AND LOGICAL
UNITS (CICS/OS/VS ONLY)

Under CICS/OS/VS only, because TCAM
permits many applications to share a
single network, the CICS-TCAM interface
supports data streams rather than
specific terminals or logical units.

Operations for terminals and logical
units connected through TCAM use the
same operands as the terminals and
logical units connected through the
other access methods used with CICS.

For input, TCAM supports only the READ
and READL operations. For output, TCAM
supports only the WRITE operation with
the optional use of ERASE. The DEST
operand can be specified for all TCAM
output operations. (The syntax of the
DFHTC macro for TCAM operations is given
later in the chapter.)

3650 logical units cannot be connected
through TCAM.

BTAM PROGRAMMABLE DEVICES

When BTAM is used by CICS for
programmable BSC (binary synchronous
communication) line management, CICS
initializes the communication line with
a BTAM "read initial" (TI); the terminal
response must be a "write initial" (TI)
or the equivalent. If a user-written
application program then issues a read,
CICS issues a "read continue" (TT) to
that line; if the application program
issues a write, CICS issues a "read
interrupt" (RVI) to that line. If "end
of transmission" (EOT) is not received
on the RVI, CICS issues a "read
continue" (TT) until the EDT is
received.

When TCAM is used, all of this line
control is handled by the MCP rather
than by CICS.

The programmable terminal response to an
RVI must be EOT. The EDT response may,
however, be preceded by writes, in order
to exhaust the contents of output
buffers; this is provided the input
buffer size is not exceeded by this
data. The input buffer size is
specified by the system programmer
during preparation of the TCT. CICS
issues a TT until it receives an EOT, or
until the input message exceeds the size
of the input buffer (an error
condition).

After rece1v1ng an EOT, CICS issues a TI
or the equivalent (depending on the type
of line). The programmable terminal
response must be a read initial (TI) or
the equivalent. -

If another write is issued by the
application program, CICS issues a write
continue (TT) to that line. If the
application program issues a read after
it has issued a write, CICS turns the
line around with a "write reset" (TR).
(CICS does not recognize a read
interrupt.)

When CICS initiates a transaction using
automatic transaction initiation, it
first of all issues a write initial (TI)
or the equivalent. The terminal must
respond with a read initial (TI) or the
equivalent. Reading from or writing to
the terminal can then continue as if the
write initial had been caused by a write
instruction in the application program.

ATI transactions attached to the device
will cause message DFH2S03 to be sent to
that device. The device must be
prepared to action it.

To ensure that binary synchronous
terminals (for example, System/370,
1130, 27S0) remain coordinated, CICS
processes the data collection or data
transmission transaction on any line to
completion, before polling other
terminals on that line.

The programmable terminal actions
required for the above activity, with
the corresponding user application
program macros and CICS actions, are
summarized in Figure 14 on page lIS.

Input data is deblocked to ETX,ETB, RS,
and US characters. These characters are
moved with the data to the TIOA but are
not included in the data length
(TIOATDL). The CICS application
programmer should be aware that
characters such as NL, CR, LF, and EM
are passed in the TIOA as data.

TELETYPEWRITER PROGRAMMING

The teletypewriter (World Trade only)
uses two different control characters
for print formatting:

< carriage return, (X'22' in ITA2
code or X'lS' in EBCDIC)

line feed, (X'2S' in ITA2 code
or X'2S' in EBCDIC)

The application programmer should always
use < first; that is <= or <===, but
never =<, otherwise following characters
(data)-may be printed while the typebar
is moving to the left.

Chapter 4.2. Terminal Control (DFHTC Macro) 117

Application Program CICS (note 1) Programmable
Terminal Program

Read initial (TI) Write initial (TI)

DFHTC TYPE=READ Read continue (TT) Write continue (TT)

DFHTC TYPE=WRITE (note 2)
(note 3)

Read interrupt (RVI) Write reset (TR), or
Read continue (TT) Write continue

Write reset
Write initial (TI) Read initial (TI)

DFHTC TYPE=WRITE Write continue (TT) Read continue (TT)

DFHTC TYPE=READ (note 4) Write reset (TR) Read continue (TT)
Read initial (TI) Write initial (TI)

Notes:

1. CICS issues the macro shown, or, if the line is switched, the equivalent.
The user-written programmable terminal program must issue the equivalent
of the BTAM operation shown.

2. An RVI sequence is indicated by the DECFLAGS field of the data extent
control block (DECB) being set to X'02' and a completion code of X'7F'
being returned to the event control block (ECB).

3. The read continue is issued only if the EOT character is not received on
the read interrupt.

4. Write reset is issued only for point-to-point terminals.

Figure 14. Summary of Programmable Terminal Actions

Message Format

Message Begin: to start a message on a
new line at the left margin, the message
text must begin with X'1517' (EBCDIC).
CICS recognizes the X'17' and changes it
to X'25' (X'17' is an idle character).

Message Body: to write several lines
with a single transmission, the lines
must be separated by X'1525', or if
multiple blank lines are required, by
X' 152525 ..• 25' .

Message End before Next Input: to allow
input of the next message on a line at
the left margin, the preceding message
must end with X'1517'. CICS recognizes
X'15' and changes the character
following it to X'25 ' .

Message End before Next Output: in the
case of two or more successive output
messages, the message begin and the
message end look the same; that is
X'1517', except for the last message
(see above). To make the message end of
the preceding message distinguishable
from the message begin of the next

message, the next to last character of
the message end must not be X'15'.

Message Length

It is recommended that messages for
teletypewriter terminals, do not exceed
a length of about 3000 bytes or
approximately 300 words.

CONNECTION THROUGH VTAM

Both the TWX Model 33/35 Common Carrier
Teletypewriter Exchange and the WTTY
Teletypewriter (World Trade only) can be
connected to CICS through BTAM, or
through VTAM using NTO.

If a device is connected through VTAM
using NTO, the protocols used are the
same as for the 3767 logical unit, and
the application program can make use of
these protocols. However, the data
stream is not translated to a 3767 data
stream but remains as that for a TWX
WTTY.

118 CICS/VS Application Programmer's Reference Manual (Macro Level)

SVSTEM/3

DFHTC TYPE=(READ[,SAVE])

DFHTC TYPE=(WRITE[,WAIT][,SAVE]
[,TRANSPARENT])
[,DEST={symb-addrIYES}]
[,ENDMSG=NO]

DEST is TCAM only

DFHTC TYPE={DISCONNECTIRESET}

TYPE=DISCONNECT applies to switched line
System/5s only.

SVSTEM/370

Support and macro syntax as for
System/5.

SVSTEM/7

DFHTC TYPE=(READ[,WAIT][,SAVE]
[,{TRANSPARENTIPSEUDOBIN}])

DFHTC TYPE=(WRITE[,WAIT][,SAVE]
[,{TRANSPARENTIPSEUDOBIN}])
[,DEST={symb-addriYES}]

DEST is TCAM only

CICS treats the System/7 as any other
programmable terminal. Transactions are
normally initiated from the System/7 by
issuing a four-character transaction
code which is sent in BCD mode.
Pseudobinary mode can be used only while
communicating with an active CICS
transaction; it cannot be used to
initiate the transaction. The message
length is given as the number of words
to be transmitted (not as the number of
characters).

When a transaction is initiated on a
System/7, CICS services that System/7
only for the duration of the
transaction; that is, to ensure
efficient use of the line, any other
System/7s on the same line are locked
out for the duration of the transaction.
Therefore, CICS application programs for
the multipoint System/7 should be
designed with the shortest possible
execution time.

It is an MSP/7 standard that the first
word (two characters) of every message
received by the System/7 be an
identification word. However, all
identification words beginning with "a"
(X'20') are reserved by eICS for future
use.

When the PSEUDOBIN parameter is
specified as part of an input request
(for example, DFHTC
TYPE=(READ,PSEUDOBIN», the length of
the TIOA provided by the application
program must be at least twice that of
the data to be read. If for example,
twenty System/7 words (40 bytes) are to
be read, the data area of the TIOA must
be at least 80 bytes in length.

When the PSEUDOBIN parameter is
specified as part of an output request,
terminal control always obtains a new
TIOA and frees the old TIOA unless SAVE
is specified. Therefore, on a DFHTC
TYPE=(WRITE,READ,PSEUDOBIN) request, the
application program must reload the TIOA
address (from TCTTEDA) to access the
input data from the System/7.

Chapter 4.2. Terminal Control (DFHTC Macro) 119

In the case of a System/7 on a dial-up
(switched) line, the System/7
application program must, initially,
transmit a four-character terminal
identification. (This terminal
identification is generated during
preparation of the TCT through use of
the DFHTCT TYPE=TERMINAL,
TRMIDNT=parameter specification.) CICS
responds with either a "ready" message,
indicating that the terminal
identification is valid and that the
System/7 may proceed as if it were on a
leased line, or an INVALID TERMINAL
IDENTIFICATION message, indicating that
the terminal identification sent by the'
System/7 did not match the
TRMIDNT=parameter specified.

Whenever CICS initiates the connection
to a dial-up System/7, CICS writes a
null message, consisting of three idle
characters, prior to starting the
transaction. If there is no program
resident in the System/7 capable of
supporting the Asynchronous
Communication Control Adapter (ACCA),
BTAM error routines cause a data check
message to be recorded on the CICS
(host) system console. This is normal
if the task initiated by CICS is to IPL
the System/7. Although the data check
message is printed, CICS ignores the
error and continues normal processing.
If a program capable of supporting the
ACCA is resident in the System/7 at the
time this message is transmitted, no
data check occurs.

When a disconnect is issued to a dial-up
System/7, the "busy" bit is sometimes
left on in the interrupt status word of
the ACCA. If the line connection is
reestablished by dialing from the
System/7 end, the "busy" condition of
the ACCA prevents message transmission
from the System/7. To overcome this
problem, the System/7 program must reset
the ACCA after each disconnect and
before message transmission is
attempted. This can be done by issuing
the following instruction:

PWRI 0,8,3,0 RESET ACCA

This procedure is not necessary when the
line is reconnected by CICS (that is, by
an automatically initiated transaction).

2260 DISPLAY STATION

DFHTC TYPE=({READIREADL}[,WAIT]
[,SAVEl)

DFHTC TYPE=(WRITE[,WAITl
[,SAVE1[,ERASE1)
[,DEST={symb-addrIYES}]

DEST is TCAM only

2265 DISPLAY STATION

Support and macro syntax as for 2260
Display Station except that the
hexadecimal equivalent of a line number
can be in the range 1 through IS (FO
through FE).

2740 COMMUNICATION TERMINAL

DFHTC TYPE=(READ[,WAIT])

DFHTC TYPE=(WRITE[,WAIT][,SAVE1)
[,DEST=symb-addrIYES}]

DEST is TCAM only

2741 COMMUNICATION TERMINAL

DFHTC TYPE=(READ[,WAIT])
,RDATT=symb-addr

DFHTC TYPE=(WRITE[,WAIT1[,SAVE])
,WRBRK=symb-addr
[,DEST=symb-addrIYES}]

DEST is TCAM only

If 2741 read attention support is
included by the system programmer at
system generation, a 2741 terminal
operator can signal Read Attention by
pressing the ATTN key after typing a
message. To provide for this, the
application programmer must issue a

DFHTC TYPE=READ,RDATT=symb-addr

macro, where symb-addr is the label of a
routine to which control is passed if
the terminal operator terminates the

120 CICS/VS Application Programmer's Reference Manual (Macro Level)

input by pressing the ATTN key. (See
"Read Attention" below.)

If 2741 write break support is included
by the system programmer at system
generation, a 2741 terminal operator can
terminate the receipt of a message by
pressing the ATTN key. To provide for
this, the application programmer must
issue a

DFHTC TYPE=WRITE,WRBRK=symb-addr

macro, where symb-addr is the label of a
routine to which control is passed if
the terminal operator presses the ATTN
key while a message is being received.
(Write Break support, described below,
is not available under CICS/DOS/VS.)

Read Attention support may be generated
in any CICS/OS/VS or CICS/DOS/VS system
to permit a response to the terminal
operator pressing the ATTN key (rather
than the return key) after typing a
message, or without typing a message if
no data is to be entered. Write Break
support may be generated in any
CICS/OS/VS system to permit a response
to the terminal operator pressing the
ATTN key while receiving a message. The
following features must be installed on
the 2741:

• For Read Attention: Transmit
Interrupt (7900).

• For Write Break: Receive Interrupt
(4708).

READ ATTENTION

If the terminal operator presses the
attention key after typing a message, it
is recognized as a Read Attention if:

• Read Attention support is generated
into the system (CICS/OS/VS or
CICS/DOS/VS).

• The message is read by a DFHTC
TYPE=READ,RDATT=symb-addr macro
(which has an implied WAIT).

When this occurs, control is transferred
to a CICS read attention exit routine,
if it has been generated into the
system. This routine is a skeleton
program that can be tailored by the
system programmer to carry out actions
such as the following:

•

•

•

Perform some data analysis or
modification on a Read Attention.

Return a common response to the
terminal operator following a Read
Attention.

Return a response and request
additional input that can be read

into the initial input area or into
a new area.

• Request new I/O without requ1r1ng a
return to the task to request
additional input.

When the Read Attention exit routine is
completed, control is returned to the
application program at the address
specified in the DFHTC TYPE=READ macro.
The return is made whenever one of the
following occurs:

• The exit routine issues no more
requests for input.

• The exit routine issues a DFHTC
TYPE=READ macro and the operator
terminates the input with a carriage
return. (If the operator terminates
the input with an Attention, the
exit routine is reentered and is
free to issue another READ.)

If the terminal operator presses the
attention key during a read, it is
recognized as a read attention only if
read attention support is generated and
if the RDATT operand is included in the
DFHTC macro requesting the input. If
either or both of these conditions do
not exist, the "attention" is treated as
a normal read completion, that is, as if
the return key had been pressed.

WRITE BREAK (CICS/OS/VS ONLY)

If the terminal operator presses the
attention key while a message is being
received, it is recognized as a Write
Break if:

• Write Break support is generated
into the system (available only in
CICS/OS/VS) by the system
programmer.

• The write was initiated by a DFHTC
TYPE=WRITE,WRBRK=symb-addr macro
(which has an implied WAIT).

When this occurs, the remaining portion
of the message is not sent to the
terminal. The write is terminated as
though it were successful, and a
new-line character eX'lS') is sent to
cause a carrier return. Control is
returned to the application program at
the address specified in the DFHTC
TYPE=WRITE macro.

If the attention key is pressed and the
Write Break feature is generated in
CICS/OS/VS, but the DFHTC TYPE=WRITE
macro does not have the WRBRK=symb-addr
operand, the write break is treated as
an I/O error. The same is true if the
attention key is pressed, but the Write
Break feature is not generated in
CICS/OS/VS. A write can be interrupted
only if both conditions identified above
are satisfied.

Chapter 4.2. Terminal Control (DFHTC Macro) 121

Note: TYPE=WAIT and/or SAVE can be
coded with READ and/or WRITE, but only
RDATT or WRBRK (not both) can be
specified in one DFHTC macro.

2770 DATA COMMUNICATION SYSTEM

Support and macro syntax as for
System/5. The 2770 Data Communication
System recognizes a read interrupt and
responds by transmitting the contents of
the I/O buffer. After the contents of
the buffer have been transmitted, the
2770 responds to the next read continue
with an EOT. If the I/O buffer is
empty, the 2770 transmits an EOT. CICS
issues a read interrupt and read
continue to relinquish use of the line
and to enable the application program to
write to the 2770.

Input from a 2770 consists of one or
more logical records. CICS provides one
logical record for each read request to
the application program. The size of a
logical record cannot exceed the size of
the I/O buffer. If the input spans
multiple buffers, multiple reads must be
issued by the application program.

The 2265 component of the 2770 Data
Communication System is controlled by
data stream characters, not BTAM macros.
Therefore, the user should provide the
appropriate screen control characters in
the TIOA.

For 2770 input, data is deblocked to
ETX, ETB, RS, and US characters. These
characters are moved with the data to
the TIOA but are not included in the
data length (TIOATDL). The application
programmer should be aware that such
characters as Nl, CR, and IF are passed
in the TIOA as data.

2780 DATA TRANSMISSION TERMINAL

Support and macro syntax as for
System/5. The 2780 Data Transmission
Terminal recognizes a read interrupt and
responds by transmitting the contents of
the I/O buffer. After the contents of
the buffer have been transmitted, the
2780 responds to the next read continue
with an EOT. If the I/O buffer is
empty, the 2780 transmits an EOT. CICS
issues a read interrupt and read
continue to relinquish use of the line
and to enable the application program to
write to the 2780.

Input from a 2780 consists of one or
more logical records. CICS provides one
logical record for each read request to
the application program. The size of a
logical reco~d .cannot exceed the size of
the I/O buffer. If the input spans
multiple buffers, multiple reads must be
issued by the application program.

Output to a 2780 requires that the
application programmer insert the
appropriate "escape sequence" for
component selection associated with the
output message. (For programming
details, see the pUblication Component
Description: IBM 2780 Data Transmission
Terminal.)

For 2780 input, data is deblocked to
ETX, ETB, RS, and US characters. These
characters are moved with the data to
the TIOA but are not included in the
data length (TIOATDl). The application
programmer should be aware that such
characters as NL, CR, and IF are passed
in the TIOA as data.

2980 GENERAL BANKING TERMINAL

DFHTC TYPE=(READ[,WAIT][,SAVE1)

DFHTC TYPE={CBUFFIPASSBK}
[DEST={symb-addrIYES}]

DEST is TCAM only

PASSBOOK CONTROL

Two one-byte fields of the terminal
control table terminal entry (TCrTE) may
be interrogated by an application
program servicing passbook requests from
the 2980. Thes~ fields are:

•

•

TCTTETAB, which contains the binary
representation of the number of tabs
necessary to position the print
element to the correct passbook
area.

TCTTEPCF, which contains the
indicators (flags) necessary for
passbook control operations. The
indicators TCTTEPCR and TCTTEPCW
indicate whether or not the passbook
is present on a read or a write
operation, respectively. The same
indicators are used to show the
presence of the Auditor key on the
2980 Model 2.

By testing indicators TCTTEPCR and
TCTTEPCW, the application program can
maintain positive control with regard to
the absence or presence of a passbook
during an update operation. Care must,
however, be taken not to alter these
indicators, otherwise unpredictable
results may occur.

If the passbook is present on a read
(entry) operation, the TCTTEPCR

122 CICS/VS Application Programmer's Reference Manual (Macro level)

indicator is turned on (set to a binary
one) by CICS. In this case, the
application program generally issues a
write operation back to the passbook
area to update the passbook. After the
write operation, the application program
must check the TCTTEPCW indicator to
ensure that the passbook was present at
the time the write occurred. If the
TCTTEPCW indicator is off (set to a
binary zero), the passbook was not
present and the write operation did not
occur. The data sent to the terminal
(and not printed because of the "no
passbook" condition) is, however,
returned to the application program in
its original form for subsequent
retransmission.

When the "no passbook" condition occurs
on a write, CICS allows an immediate
write to the terminal. The application
program should write an error message to
the journal area of the terminal to
inform the 2980 operator of this error
condition. To allow the operator to
insert the required passbook, CICS
automatically causes the transaction to
wait 23.S seconds before continuing.

After regaining control from CICS
following the writing of the error
message, the application program can
attempt another write to the passbook
area when it has ensured that the print
element is positioned correctly in the
passbook area. This is generally
accomplished by issuing two carrier
returns followed by the number of tabs
required to move the print element to
the correct position. (The correct
number of tabs can be acquired from
TCTTETAB.)

If the TCTTEPCW indicator is off
following the second attempt to write to
the passbook area, the application
program can send another error message
or take some alternative action (for
example, place the terminal "out of
service").

In summary, all writes to the passbook
area are conditional on a passbook being
present before a write can be executed
successfully. Therefore, a read
operation cannot be combined with a
passbook write. h Q passbook write.
For example, a DFHTC
TYPE=(WRITE,READ,WAIT) macro is an
invalid request for 2980 terminal
services involving the passbook area. A
DFHFC TYPE=PASSBK macro is permissible
because it implies only WRITE,WAIT.

Note: The application programmer should
not insert shift characters in output
data, because this is done automatically
by CICS. CICS removes shift characters
from input data.

SEGMENTED WRITES CONTROL

Segmented writes are supported for both
the journal area and the passbook area.
Journal area segmented writes are
limited in length by the hexadecimal
halfword value that the user stores in
TIOATDL. Passbook segmented writes are
limited to a one-line logical write to
ensure positive control when spacing
(indexing) past the bottom of the
passbook.

For example, consider a 2972 buffer
length of 48 and a 2980 Model 4 logical
write (print) area of 100 characters per
line. The application program can write
a logical record (DFHTC TYPE=PASSBK) of
100 characters to this areai CICS
automatically segments the record to
adjust to the buffer size. The
application program must insert the
passbook indexing character (X'2S') as
the last character written in one
logical write to the passbook area.
This is done to control passbook
indexing and thereby achieve positive
control of passbook presence.

If the message contains embedded
passbook index characters and
segmentation is necessary because of the
logical length of the message, the write
terminates if the passbook spaces beyond
the bottom of the passbooki the
remaining segments are not printed.

DATA HANDLING

SHIFT CHARACTERS: Shift characters are
handled by the terminal control program
and are of no concern to the application
programmer. They are stripped from
input messages and added to output
messages as required. Data can be
written in any mix of uppercase,
lowercase, or special characters. (See
the 2980 Translate Tables in Appendix
D.)

JOURNAL INDEXING: Journal indexing is
the responsibility of the application
programmer. Carriage returns (X'lS')
may be inserted anywhere in the logical
message. For further information, see
the appropriate SNA Guide.

PASSBOOK INDEXING: Passbook indexing
necessitates special consideration by
the application programmer to control
bottom-line printing on the passbook.
(See "Passbook Control" and nSegmented
Writes Control"; the two preceding
sections.)

TAB CHARACTERS: The tab character
(X'OS') is controlled by the application
programmer. As stated above, the number
of tabs required to position the print
element to the first position of the
passbook is available at TCTTETAB. This
value is specified by the system
programmer when generating the terminal

Chapter 4.2. Terminal Control (DFHTC Macro) 123

control table and may be unique to each
terminal. Other tab characters are
inserted as needed to control output
format.

MISCELLANEOUS CHARACTERS. Turn page,
message light, open chute, and special
banking characters can be used by the
application programmer as needed. (See
the 2980 Translate Tables in Appendix
D.)

AUDITOR KEY MODEL 2, Presence of the
Auditor key is controlled through use of
the DFHTC TYPE=PASSBK macro and may be
used in a manner similar to that for
passbook control. (See DPassbook
Control D, earlier in the Chapter.)

2980 MODEL NUMBER: TCTTETM contains the
2980 model number expressed as a
hexadecimal value (X'Ol', X'02', X'04').
Since CICS uses the model number to
select the correct translate table for
each of the 2980 models, the application
program should not alter this field.

COMMON BUFFER, Common buffer writes
(DFHTC TYPE=CBUFF) are translated to the
receiving TCTTE model character set. If
more than one 2980 model type is
connected to the 2972 Control Unit, the
lengths are automaticallY truncated if
they exceed the buffer size.

EXAMPLE OF APPLICATION PROGRAM FOR THE
2980

The following examples show how the
various facilities described above for
the 2980 are used.

In the following COBOL example, the
structure DFH2980 is copied into the
working storage section.

The application program is also expected
to test the TCTTEPCF field to determine
whether a passbook is present on a read
or write. TCTTEPCR and TCTTEPCW are
located in DFH2980 to aid in testing.

To test the TCTTEPCF field, statements
such as the following might be used:

MOVE TCTTEPCF TO HOLDPCF.
IF HOLDPCFB=(HOLDPCFB/TCTTEPCW>*TCTTEPCW
THEN GO TO BOOK-FOR-PRESENT-WRITE.

Substituting TCTTEPCR for TCTTEPCW tests
for the presence of a passbook on a
read. (HOLDPCF and HOLDPCFB are also
part of DFH2980.)

DATA DIVISION
WORKING STORAGE SECTION.
01 DFH2980 COPY DFH2980.

LINKAGE SECTION.
01 DFHBlLDS COPY DFHBLLDS.

02 TCTTEAR PIC S9(8) COMPo
02 TIOABAR PIC S9(8) COMPo

01 DFHTCTTE COpy DFHTCTTE.
01 DFHTIOA COpy DFHTIOA.

02 DATA PIC X(20).
02 FILLER REDEFINES DATA.

03 TABl-l PIC X.
03 DATAl PIC X(19).

02 FILLER REDEFINES DATA.
03 TABl-2 PIC X.
03 TAB2-2 PIC X.
03 DATA2 PIC X(18).

.
PROCEDURE DIVISION.

IF TCTTETAB = TAB-ONE GO TO ONETBCH.
IF TCTTETAB = TAB-TWO GO TO TWOTBCH.

ONETBCH.
MOVE TABCHAR TO TABl-l.
MOVE TOTAL TO DATAl.

.
TWOTBCH.

MOVE TABCHAR TO TABl-2, TAB2-2.
MOVE TOTAL TO DATA2.

In the following PL/I example, DFH2980
is included following the XINCLUDE
statement for the based structures.
DFH2980 contains constants that may be
used when writing application programs
for the 2980. To test the TCTTEPCF
field, statements such as the following
might be used:

IF (TCTTEPCFITCTTEPCW)
THEN GO TO BOOK_PRESENT_WRITE;

Substituting TCTTEPCR for TCTTEPCW tests
for the presence of a passbook on a
read.

124 CICS/VS Application Programmer's Reference Manual (Macro Level)

~INClUDE DFHTIOA;
2 DATA CHAR(20);

DCl I USERTIOA_I BASEDCTIOABAR),
2 TIOAFILL CHARCI2),
2 TABI_I CHARCI),
2 DATAl CHARCI9);

DCl I USERTIOA_2 BASEDCTIOABAR),
2 TIOAFILl CHAR(12),
2 TABl_2 CHARCl),
2 TAB2 2 CHARCl),
2 DATA2 CHARClS);

~INClUDE DFH29S0;

IF CTCTTETAB=TAB_ONE)
THEN GO TO ONETCBH;
IF (TCTTETAB=TAB_TWO)
THEN GO TO TWOTBCH;

.
ONETBCHa TABl_l=TABCHAR;

DATAl=AMOUNT;

TWOTBCHa TABl_2=TABCHAR;
TAB2 2=TABCHAR;
DATA2=AMOUNT;

To test the station identification and
to determine whether the normal station
or alternate station is being used,
values of the forms shown below are
predefined in DFH29S0:

STATION-I-A or STATION-I-N (COBOL)

STATION_I_A or STATION_I_N (PL/I)

where I is an integer (0 through 9) and
A and N signify alternate and normal
stations. The values are one-byte
character values and can be compared to
TCTTESID in an IF statement.

To test the teller identification on a
29S0 Model 4, the TCTTETID field is
defined as a one-byte character value.
It can be tested in an IF statement.

Thirty special characters are defined in
DFH29S0. Twenty-three of these can be
referred to by the name SPECCHAR-X or
SPECCHAR_X Cfor COBOL or Pl/I) where X
is an integer (1 through 23). The seven
other characters are defined with names
that imply their usage, for example,
TABCHAR. For further information on
these thirty characters, see Appendix D.

The names defined in DFH29S0 for COBOL
area

STATION-O-N
STATION-O-A
STATION-l-N
STATION-l-A
STATION-2-N
STATION-2-A
STATION-3-N

TCTTEPCR
TCTTEPCW
TABCHAR
OPENCH
JRNLCR
PSBKCR
MSGlITE

STATION-3-A
STATION-4-N
STATION-4-A
STATION-S-N
STATION-S-A
STATION-6-N
STATION-6-A
STATION-7-N
STATION-7-A
STATION-S-N
STATION-S-A
STATION-9-N
STATION-9-A
TAB-ZERO
TAB-ONE
TAB-TWO
TAB-THREE
TAB-FOUR
TAB-FIVE
TAB-SIX
TAB-SEVEN
TAB-EIGHT
TAB-NINE
HOLDPCFB
DFHFILL
HOLDPCF

BCKSPACE
TRNPGE
SPECCHAR-l
SPECCHAR-2
SPECCHAR-3
SPECCHAR-4
SPECCHAR-S
SPECCHAR-6
SPECCHAR-7
SPECCHAR-S
SPECCHAR-9
SPECCHAR-lO
SPECCHAR-ll
SPECCHAR-12
SPECCHAR-13
SPECCHAT-14
SPECCHAR-IS
SPECCHAR-16
SPECCHAR-17
SPECCHAR-lS
SPECCHAR-19
SPECCHAR-20
SPECCHAR-21
SPECCHAR-22
SPECCHAR-23

The names defined in DFH29S0 for Pl/I
are the same, except the underline
character is used in place of the
hyphen, and the names HOLDPCFB, DFHFIll,
and HOlDPCF are not defined for PL/I.

3270 INFORMATION DISPLAY SYSTEM (BTAM
AND TeAM)

DFHTC
TYPE=({READIREADB)[,WAIT]

[,SAVE][,TEXT1)

READB not available under TCAM

DFHTC
TYPE=({WRITEICOPYIPRINTIERASEAUP}

[,WAIT][,SAVE][,ERASE],[STRFIELD])
[,CTLCHAR={hex-numberIYES}]
[,DEST={symb-addrIYES}]

COpy and PRINT not TCAM

DEST is TCAM only

When input is to be received from a
terminal of the 3270 Information Display
System, the application programmer can
use

DFHTC TYPE=(READ,TEXT)
or
DFHTC TYPE=TEXT
DFHTC TYPE=READ
DFHTC TYPE=WAIT

Chapter 4.2. Terminal Control (DFHTC Macro) 125

to request a temporary override of the
uppercase translation features of CICS,
thus allowing a message containing both
uppercase and lowercase data to be
received from a terminal.

If the 3270 print request facility is
included in the terminal control program
at CICS system initialization, the
application program can issue a DFHTC
TYPE=PRINT to cause the data currently
displayed on a 3270 display to be
printed on the first available eligible
3270 printer.

For a printer to be available for
printing from a display, it must be in
service and not currently attached to a
task. For it to be eligible, it must be
attached to the same control unit as the
display, must have a buffer capacity
equal to or greater than that of the
display, and must have had FEATURE=PRINT
specified for it in the TCT by the
system programmer.

If the 3270 display is a 3275 with an
attached printer, and FEATURE=PRTADAPT
has been specified in the TCTTE; the
data will be printed on the attached
printer.

Some 3270 displays have the facility to
copy a screen image to a printer that is
attached to the same control unit,
without host intervention. This is a
hardware facility, and is not under the
control of CICS. For further details
see "printer authorization matrix", in
An Introduction to the IBM 3270
Information Display System.

For those devices with switchable screen
sizes, the size of the screen that can
be used and the size to be used for a
particular transaction are defined at
CICS system generation. These values
are available to the application
programmer in fields in the TCTTE.
These fields are listed in Appendix C.

3270 LOGICAL UNIT

DFHTC TYPE=({READIREADB}
[,WAIT1[,SAVE1[,TEXT1)
[,EOC=symb-addrl

DFHTC
TYPE=({WRITEIPRINTICOPYIERASEAUP}

[,WAIT][,SAVE][,ERASE],[STRFIELD])
[,CTLCHAR={hex-numberIYES}]
[,CCOMPL=NO]
[,DEFRESP=YES]
[,DEST={symb-addrIYES}]

DEST is TCAM only

In general, programming for a 3270
logical unit is the same as programming
for a 3270 via BTAM, that is, the COpy,
PRINT, READB, ERASE, and ERASEAUP are
supported as before. The' additional
operand (DEFRESP) has been added to the
DFHTC terminal control macro, and there
are some restrictions:

• ASCII code is not'supported (but,
for BSC 3270, code translation can
be carried out by NCP translation
tables in the 3704/3705
communications controller).

• DFHTC TYPE=COPY must specify a
symbolic terminal identification; a
physical device address cannot be
specified.

If the 3270 print request facility is
included at system initialization, the
DFHTC TYPE=PRINT macro will enable the
data displayed on the screen to be
printed on the first available printer
that is eligible.

An available printer is one that is in
service and that is not attached to a
task.

An eligible printer is one for which the
PRINTTO orALTPRT option has been
specified in the TCT.

If COPY has also been specified with
these options, the printer must be
attached to the same 3270 control unit
as that used for the display.

If an eligible printer is unavailable,
the data in the display buffer is
captured, a message is sent to the
master terminal operator by the terminal
abnormal or node abn~rmal condition
program (DFHZNAC) and control is passed
to a user-written terminal or node error
program which provides an appropriate
action, for example, if the printer is
already attached to a task, the
user-written error program can direct
the data to another printer or hold the
data until the busy printer becomes
available.

If the 3270 display is a 3275 with an
attached printer, and FEATURE=PRTADAPT
has been specified in the TCTTE; the

126 CICS/VS Application Programmer's Reference Manual (Macro Level)

data will be printed on the attached
printer.

Some 3270 displays have the facility to
copy a screen image to a printer that is
attached to the same control unit,
without host intervention. This is a
hardware facility, and is not under the
control of CICS. For further details
see "printer authorization matrix", in
An Introduction to the IBM 3270
Information Display System.

For those devices with switchable screen
sizes, the size of the screen that can
be used and the size to be used for a
particular transaction are defined at
CICS system generation. These values
are available to the application
programmer in fields in the TCTTE.
These fields are listed in Appendix C.

3270 LUTVPE2 LOGICAL UNIT

DFHTC TYPE=({READIREADB}
[,WAIT][,SAVE][,TEXT1)
[,EOC=symb-addrl

DFHTC
TYPE=({WRITEIPRINTICOPYIERASEAUP}

[,WAIT][,SAVE1[,ERASE1,[STRFIELD1)
[,CTLCHAR={hex-numberIYES}l
[,CCOMPL=NO]
[,DEFRESP=YES]
[,DEST={symb-addrIYES}]

DEST is TCAM only

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addrl,WAIT=YES}

logical unit type 2 (LUTYPE2) is a
logical unit defined by SNA, and which
accepts a 3270 display data stream.

Support and macro syntax are the same as
for the 3270 logical unit except that
TYPE=COPY is not supported.

Some 3270 displays have the facility to
copy a screen image to a printer that is
attached to the same control unit,
without host intervention. This is a
hardware facility, and is not under the
control of CICS. For further details

see "printer authorization matrix", in
An Introduction to the IBM 3270
Information Display System.

For those devices with switchable screen
sizes, the size of the screen that can
be used and the size to be used for a
particular transaction are defined at
CICS system generation. These values
are available to the application
programmer in fields in the TCTTE.
These fields are listed in Appendix C.

3270 LUTVPE3 LOGICAL UNIT

DFHTC TYPE=({WRITEIPRINTIERASEAUP}
[,WAIT][,SAVE][,ERASE1[,STRFIElD])
[,CTLCHAR={hex-numberIYES}]
[,CCOMPL=NO]
[,DEFRESP=YESl
[,DEST={symb-addrIYES}j

DEST is TCAM only

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addrl,WAIT=YES}

logical unit type 3 (lUTYPE3) is a
logical unit defined by SNA, and which
accepts a 3270 display data stream.

Support and macro syntax are the same as
for the 3270 logical unit except that
TYPE=READ, READB and COpy are not
supported, but TYPE=WRITE,WAIT,READ is
supported for STRFIElD to issue QUERY.

3270 SCSPRT LOGICAL UNIT

DFHTC TYPE=(WRITE[,WAITl
[,SAVE][,lAST])
[,CCOMPl=NOl
[,DEFRESP=YESl
[,DEST={symb-addrIYES}]

DEST is TCAM only

DFHTC TYPE=(READ[,WAIT][,SAVE1)
[,EOC=symb-addrl

Chapter 4.2. Terminal Control (DFHTC Macro) 127

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addrl,WAIT=YES}

The SCS printer logical unit (SCSPRT)
accepts an SCS data stream. SCS is
defined by SNA. Certain devices
connected as SCSPRT have input
capability (for example, PA keys on
3287), in which case TYPE=SIGNAL should
be used to detect operator input,
followed by TYPE=READ to obtain the
input. Alternatively, TYPE=(READ,WAIT)
can be issued alone, in which case the
program will wait for operator input.

3600 FINANCE COMMUNICATION SYSTEM (BTAM)

DFHTC TYPE=(READ[,WAIT1[,SAVE])

DFHTC TYPE=(WRITE[,WAIT1[,SAVEl
[,TRANSPARENT])

INPUT

The unit of transmission from a 3601 to
CICS is a segment consisting of the
start-of-text data link control
character (STX), the one byte
identification of the 3600 work station
that issued the processor write, the
data, and either an end-of-block (ETB)
or an end-of-text (ETX) control
character.

A logical work station sends a message
either in one segment, in which case the
segment ends with ETX, or in more than
one segment, in which case only the last
s'egment ends wi th ETX, all others ending
with-ETB.

The input TIOA passed to the
user-written application program
consists of the data only. The one-byte
field TCTTEDLM contains flags describing
the data-link control character (ETB,
ETX, or IRS) that ended the segment.
The application program can issue
terminal control macros to read the data
until it receives a segment ending with
ETX. If blocked data is transmitted, it
is received by CICS as blocks of
segments. Only the first segment in a
block starts with the STX control

character, and all segments are
separated by IRS characters. None of
the segments contain ETB or ETX
characters except the last, which has
the ETX character.

For blocked input, the flags in TCTTEDLM
only indicate end of segment, not end of
message. The CICS application program
still receives only the data, but
user-defined conventions may be required
to determine the end of the message.

The field TCTTEDLM also indicates the
mode of the input, either transparent or
nontransparent. Blocked input is
nontransparent.

The terminal control program does not
pass input containing a "start of
header" (SOH) data link control
character to a user-written application
program. If it receives an SOH it sets
an indicator in TCTTEDLM, passes the
input to the user exit in the terminal
control program, and then discards it.

OUTPUT

When an application program issues a
terminal control write, the terminal
control program determines, from the
value specified in the BUFFER parameter
of the DFHTCT TYPE=TERMINAL system
macro, the number of segments to be
built for the message. It sends the
message to the 3600 logical unit either
in one segment consisting of a
start-of-text character (STX), the data,
and an end-of-text character (ETX); or
in more than one segment, in which case
only the last ends with ETB.

The host input buffer of the 3600
controller and the input segment of the
receiving logical unit must be large
enough to accommodate the data sent by
CICS. However, space for the data link
control characters need not be included.
The 3600 application program reads the
data from the host, by means of an
LREAD, until it has received the entire
message.

The terminal control program sends data
in transparent mode when the
user-written application program issues
a DFHTC TYPE=TRANSPARENT macro.
Otherwise, data is sent in
nontransparent mode.

CICS system output messages begin with
nDFH" followed by a four-byte message
number and the message text. These
messages are sent in nontransparent
mode. It is suggested that CICS
user-written application programs do not
send messages starting with "DFH" to the
3601.

128 CICS/VS Application Programmer's Reference Manual (Macro Level)

RES END MESSAGE

When a logical unit sends a message to
the host and a short-on-storage
condition exists or the input is
unsolicited (the active task associated
with the terminal has not issued a
read), the terminal control program
sends a "resend" message to the logical
unit. The format of this message is
DFHI033 RE-ENTER followed by X'IS' (a
3600 new line character) followed by the
first eight bytes of the text of the
message being rejected. No message is
sent to the destinations CSMT or CSTL.

The first eight bytes of data sent to
CICS can be used by the 3600 application
program to define a convention to
associate responses received from CICS
with transactions sent to the host, for
example, sequence numbers could be used.

If a CICS user-written application
program has already issued a terminal
control write when a resend situation
occurs, the resend message is not sent
to the 3601 until the user-written
application program message has been
sent. A 3600 logical unit cannot
receive a resend message while receiving
a segmented message.

Only one resend message at a time can be
queued for a logical unit. If a second
resend situation occurs before CICS has
written the first, a resend message,
containing the eight bytes of data that
accompanied the second input transaction
from the 3600 logical unit, is sent.

The resend message is sent in
transparent mode if the input data from
the 3601 to be re-transmitted is
received by CICS in transparent mode.
Otherwise it is sent in nontransparent
mode.

3600 (3601) LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE1)
[,EOC=symb-addrl
[,INBFMH=symb-addr]

DFHTC TYPE=(WRITE[,WAIT1[SAVE][LAST])
[,LDC={mnemonicIYES}]
[,FMH={NOIYES}]
[,CCOMPL=NO]
[,DEFRESP=YESl
[,DEST={symb-addrIYES}]

DEST is TCAM only

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addrl,WAIT=YES}

3600 PIPELINE LOGICAL UNIT

DFHTC TYPE=(WRITE[,WAIT1[,SAVEl
[,LAST])

3600 (3614) LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT][,SAVE])

DFHTC TYPE=(WRITE[,WAIT1[,SAVE])

3630 PLANT COMMUNICATION SYSTEM

The 3630 Plant Communication System is
supported as a 3600. Two types of
logical unit can be defined for a 36301
the 3600 (3601) logical unit and the
3600 pipeline logical unit. The macro
syntax is as shown above for these
logical units.

3650 HOST COMMAND PROCESSOR LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE1)
[,EOC=symb-addr]

DFHTC TYPE=(WRITE[,WAIT][,SAVE])
[, FMH=YESl
[,CCOMPL=NO]

3650 HOST CONVERSATIONAL (3270) LOGICAL
UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE])
[,EOC=symb-addrl

Chapter 4.2. Terminal Control (DFHTC Macro) 129

DFHTC TYPE=({WRITEIPRINTIERASEAUP}
[,WAIT][,SAVE][,ERASE][,LAST])
[,CTLCHAR={hex-numberIYES}]
[,CCOMPL=NO]
[,DEFRESP=YESl
[,FMH=YESl

OUTPUT DEVICE CONTROL

Device control characters for 3650
devices can be inserted by CICS
application programs into output data
streams. To avoid designing such
device-dependent CICS application
programs, device responsibility can be
moved to the 3650 application programs.
Thus, the CICS application programs
would be concerned with data content,
while data format would be the
responsibility of the 3650 application
program.

Another alternative is available for
handling device-dependent matters.
Basic mapping support (BMS) can be used
to write data to logical units (except
for pipeline). BMS can be used to
format data and insert the necessary
3650 device control characters.

THE ERASE FUNCTION

The erase option is supported by the
DFHTC macro when this macro is issued
for a host conversational (3270) logical
unit. The erase function for this
logical unit is controlled as a
device-dependent character. The erase
function can be obtained using BMS.

3650 PIPELINE LOGICAL UNIT

DFHTC TYPE=CWRITE[,WAIT][,SAVE]
[,LAST])

3650 HOST CONVERSATIONAL (3653) LOGICAL
UNIT

DFHTC TYPE=(READ[,WAIT][,SAVE])
[,EOC=symb-addr]

DFHTC TYPE=(WRITE[,WAIT][,SAVEl
[,LAST])
[,CCOMPL=NO]
[,DEFRESP=YESl

3650 INTERPRETER LOGICAL UNIT

DFHTC TYPE=PROGRAM
,PRGNAME=name

[,VALID=addressl
[,NONVAl=address]
[,CONNECT={ACTIVATEICONVERSE}l
[,NORESP=addressl

DFHTC TYPE=CREAD[,WAIT1[,SAVE1)
[,EODS=symb-addrl
[,EOC=symb-addrl
[,INBFMH=symb-addrl

DFHTC TYPE=(WRITE[,WAITl
[,SAVE][,lAST])
[,FMH={YESINO}
[,DEFRESP=YESl

DFHTC TYPE=EODS VTAM only

3660 SUPERMARKET SCANNING SYSTEM (BTAM)

Support and macro syntax as for
System/3, except that the 3660 cannot
initiate communications; the host system
initiates all transactions.

3735 PROGRAMMABLE BUFFERED TERMINAL

DFHTC TYPE=(READ[,WAIT][,SAVE1)
[,EOF=symb-addrl

130 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHTC TYPE=(WRITE[,WAITl
[,SAVE][,NOTRANSlATE])
[, DEST={symb-addrIYES} 1

DEST is TCAM only

The 3735 Programmable Buffered Terminal
may be serviced by CICS in response to
terminal-initiated input, or as a result
of an automatic or time-initiated
transaction. Both are explained below.

AUTOANSWER

The 3735 transaction is attached by CICS
upon receipt of input from a 3735. Data
is passed to the application program in
476-byte blocks; each block (one buffer)
may contain multiple logical records.
The final block may be shorter than 476
bytes; zero-length final blocks are not,
however, passed to the application
program. If the block contains multiple
logical records, the application program
must perform any necessary deblocking
functions and the gathering of partial
logical records from consecutive reads.

It is recommended that the user spool
input data from a 3735 to an
intermediate data set (for example, an
intrapartition destination) to ensure
that all data has been captured before
deblocking and processing that data.

The application program must follow 3735
conventions and read to end-of-file
before attempting to write FDPs (form
description programs) or data to the
3735. For this reason, the
EOF=symb-addr operand must be used with
each DFHTC TYPE=READ request. When the
EOF branch is taken, the user may begin
to write FDPs or data to the 3735, or,
optionally, request CICS to disconnect
the line.

It is possible that the 3735 will
transmit the end-of-file condition
immediately upon connection of the line.
For this reason the user must code the
initialization request (DFHTC
EOF=symb-addr) before issuing any other
terminal control requests.

The user is responsible for formatting
all special message headers for output
to the 3735 (for example, SELECTRIC,
POWERDOWN). If FDPs are to be
transmitted to a 3735 with ASCII
transmission code, the NOTRANSLATE
operand must be included in the DFHTC
TYPE=WRITE request for each block of FDP
records.

The user must issue a DFHTC
TYPE=DISCONNECT macro when all output
has been transmitted to the 3735. If

the application program ends during
batch write mode prior to issuing the
DISCONNECT request, CICS forces a 3735
"receive abort" condition and all data
just transmitted is ignored by the 3735.

AUTOCALL AND TIME-INITIATED

In automatic and time-initiated
transactions, all considerations stated
above except use of the DFHTC
EOF=symb-addr macro apply when CICS
dials a 3735. The DFHTC EOF=symb-addr
macro is not used.

CICS connects the line and allows the
user to indicate the direction of data
transfer by means of the first terminal
control request. If this first request
is a WRITE and the 3735 has data to
send, the 3735 causes the line to be
disconnected.

3740 DATA ENTRY SYSTEM

DFHTC TYPE=(READ[,WAIT1[,SAVE1)
[,ENDFILE=symb-addrl not TCAM
[,ENDINPT=symb-addrl not TCAM

DFHTC TYPE=(WRITE[,WAIT1[,SAVEl
[,ENDFILE][,ENDOUTPUT]
[,TRANSPARENT])
[,DEST={symb-addrIYES}]

DEST is TCAM only

The 3740 Data Entry System may be
serviced by CICS as a batch or inquiry
mode application. Considerations for
both modes are described in the
following paragraphs.

BATCH MODE APPLICATIONS

In batch mode, the 3740 sends multiple
files of data to CICS during a single
transmission. All input data files must
be sent to CICS before the 3740 is able
to receive data from CICS. When able to
receive, the 3740 accepts multiple files
of data in a single transmission. To
communicate in this manner, a means is
provided in the DFHTC macro for
identifying end-of-file, end-of-input,
and end-of-output conditions.

When sending data to the 3740, the DFHTC
TYPE=ENDFILE macro must be issued after
each file to signal the end-of-file
(EXT) condition to the 3740. The DFHTC
TYPE=ENDOUTPUT macro should be issued

Chapter 4.2. Terminal Control (DFHTC Macro) 131

after all data has been sent to the 3740
(EOT) and must be immediately preceded
by a DFHTC TYPE=ENDFILE macro. Once
end-of-output is signaled in this
manner, no additional WRITEs should be
issued. The WRITE, ENDFILE, and
ENDOUTPUT operands may be combined in
the DFHTC macro. For example, a DFHTC
TYPE=(WRITE,ENDFILE) causes a write
operation followed by an end-of-file
signal.

A DFHTC TYPE=(WRITE,ENDFILE,ENDOUTPUT)
causes a write operation, an end-of-file
signal, and then an end-of-output
signal. A DFHTC TYPE=(ENDFILE,
ENDOUTPUT) causes an end-of-file signal
followed by an end-of-output signal.
The placement of the operand within the
macro has no effect on the sequence.

Note: If ENDFIlE is combined with any
other operand and SAVE is also present,
the TIOA used to write the end-of-file
record will be the current TIOA after
return from terminal control.

3767 INTERACTIVE LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE1)
[,EOC=symb-addrl

DFHTC TYPE=(WRITE[,WAIT]
[,SAVE1[,LAST])
[,FORCE=YES]
[,CCOMPL=NO]
[,DEFRESP=YESl
[,DEST={symb-addrIYES}l

DEST is TCAM only

DFHTC TYPE=SIGNAL
(,SIGADDR=symb-addrl,WAIT=YES)

3770 INTERACTIVE LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE])
[,EOC=symb-addrl

DFHTC TYPE=(WRITE[,WAITl
[,SAVE][,LAST1)
[,FORCE=YES]
[,CCOMPL=NO]
[,DEFRESP=YESl
[,DEST={symb-addrIYES) 1

DEST is TCAM only

DFHTC TYPE=SIGNAL
(,SIGADDR=symb-addrl,WAIT=YES)

3770 BATCH AND BATCH DATA INTERCHANGE
LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE1)
[,EODS=symb-addr]
[,EOC=symb-addr]
[,INBFMH=symb-addr]

DFHTC TYPE=(WRITE[,WAITl
[,SAVE][,LAST])
[,FMH={NOIYES}]
[,CCOMPl=NO]
[,DEFRESP=YESl
[,DEST={symb-addrIYES}]

DEST is TCAM only

3770 FULL FUNCTION LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT][,SAVE1)
[,EOC=symb-addr]
[,INBFMH=symb-addrl

DFHTC TYPE=(WRITE[,WAITl
[,SAVE1[,LAST1)
[,FMH={NOIYES}]
[,CCOMPl=NOl
[,DEFRESP=YES]
[,DEST={symb-addrIYES)l

DEST is TCAM only

132 CICS/VS Application Programmer's Reference Manual (Macro Level)

1780 DATA COMMUNICATIONS TERMINAL

Support and macro syntax as for
System/3.

3790 INQUIRY LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE1)
[,EOC=symb-addrl

DFHTC TYPE=(WRITE[,WAITl
[,SAVE][,lAST1)
[,FMH={NOIYES}l
[,CCOMPl=NO]
[,DEFRESP=YES]
[,DEST={symb-addrIYES}]

DEST is TCAM only

3790 FULL FUNCTION LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE1)
[,EOC=symb-addrl
[,INBFMH=symb-addrl

DFHTC TYPE=(WRITE[,WAITl
[,SAVE][,lAST])
[,FMH={N..QIYES}]
[,CCOMPL=NOl
[,DEFRESP=YES]
[,DEST={symb-addrIYES}]

DEST is TCAM only

3790 (SCS PRINTER) LOGICAL UNIT

DFHTC TYPE=(WRITE[,WAIT]
[,SAVE1[,lAST1)
[,CCOMPl=NO]
[,DEFRESP=YES]
[,DEST={symb-addrIYES}]

DEST is TCAM only

3790 (3270-DISPLAY) AND 3790
(3270-PRINTER) LOGICAL UNITS

These logical units are sometimes
referred to collectively as the 3270
compatibility logical unit. Support and
macro syntax are the same as for the
3270 logical unit, apart from the
following exceptions I

• DFHTC TYPE=READB is not supported
for the 3270-printer logical unit.

• DFHTC TYPE=COPY is not supported for
the 3270-display logical unit.

• When using the DFHTC TYPE=PRI~T
macro, if FEATURE=PTRADAPT has been
specified in the TCT, allocation of
the printer is controlled by the
3790. If FEATURE=PTRADAPT has not
been specified, allocation of
printers is governed by the PRINTTO
and AlTPRT options specified in the
TCT.

3790 BATCH DATA INTERCHANGE LOGICAL UNIT

Support and macro syntax as for 3770
Batch logical Unit.

Chapter 4.2. Terminal Control (DFHTC Macro) 133

7770 AUDIO RESPONSE UNIT

DFHTC TYPE=(READ[,WAIT1[,SAVE1)

DFHTC TYPE=(WRITE[,WAIT1[,SAVE1)

Although CICS does not distinguish
between special codes (characters)
entered at an audio terminal (for
example, the 2721 Portable Audio
Terminal), an application program is not
precluded from performing special
functions upon encountering these codes.
For example, the following special
hexadecimal codes may be entered from a
27211

Key Code

CALL END
CNCL
I
VERIFY
RPT
EXEC
Fl
F2
F3
F4
FS
00
000
IDENT

37 (see note)
18
3B (see note) or 7B
2D
3D
26 (see note)
Bl
B2
B3
B4
B5
AO
3B (see note) or BO
11, 12, 13, or 14
plus two other characters

Note: These codes cause a hardware
interrupt and are in the terminal
input/output area (TIOA) immediately
following the data; the codes are not
included in the data length.

For further information concerning the
2721, see the publication 2721 Portable
Audio Terminal Component Description.

The following special hexadecimal codes
may be entered from a Touch-Tone
telephone. (Touch-Tone is the trademark
of the American Telephone and Telegraph
Company.)

Key Code

AO
3B or BO

The * and I characters of a Touch-Tone
telephone correspond to the 00 and 000
characters, respectively, on a 2721
Portable Audio Terminal. The I and 000
characters cause an end-of-inquiry (EOI)
hardware interrupt (X'3B') unless the
EOI Disable feature (13540) is installed

on the 7770 Audio Response Unit Model 3.
If this feature is installed, the user
can elect that neither, or only one, of
the I and 000 characters will cause a
hardware interrupt. At the option of
the user, either or both of the I and
000 characters do not cause a hardware
interrupt, are presented in the TIOA
with the rest of the data, and are
included in the data length.

If, after receiving at least one
character from a terminal, no other
characters have been received by the
7770 for a period of five seconds, the
7770 automatically generates an EOI
hardware interrupt that ends the read
operation.

LUTVPE4 LOGICAL UNIT

DFHTC TYPE=(READ[,WAIT][,SAVE1)
[,EODS=symb-addrl
[,EOC=symb-addrl
[,INBFMH=symb-addrl

DFHTC TYPE=(WRITE[,WAITl
[,SAVE][,LAST1)
[,FMH={NOIYES}]
[,CCOMPL=NOl
[,DEFRESP=YESl

DFHTC TYPE=SIGNAL
{,SIGADDR=symb-addrl,WAIT=YES}

The TYPE=SIGNAL macro is required to
detect a hard request change direction
(RCD) signal from the terminal. The
application program should not issue a
TYPE=WRITE macro following such a
signal.

LUTYPE4 terminals can operate in
unattended mode. The application
programmer can detect unattended mode by
testing the TCTTE field TCTEMOP under
the mask TCTEMOPU.

OTHER CICS-SUPPORTED TERMINALS

DFHTC TYPE=(READ[,WAIT1[,SAVE1)

134 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHTC TYPE=(WRITE[,WAIT1[,SAVE1)
[,DEST={symb-addrIYES}]

DEST is TCAM only

TCAM SUPPORTED LOGICAL UNITS (CICS/OS/VS
!it!bY1

DFHTC TYPE=({READIREADL}[,WAIT]
[,SAVE])
[,INBFMH=symb-addr]

DFHTC TYPE=(WRITE[,WAIT]
[,SAVE][,ERASE][,LASTl
[,ERASEAUP])
[,FMH={NOIYES}]
[,CTLCHAR={hex numberIYES}]
[,LINEADR={numberIYES}]
[,DEST={symb-addrIYES}]

OPERANDS OF DFHTC MACRO

CCOMPL=NO

• Used with VTAM logical units
only.

Indicates that the last
request/response unit (RU) sent as
a result of this write request will
not complete the chain. If this
operand is omitted, the last RU
will terminate the chain.

Before this operand may be used,
the system programmer must have
specified that the application
program may control outbound
chaining indicators by coding a
DFHPCT TYPE=OPTGRP macro with the
MSGPOPT=CCONTRL operand. If
CCOMPL=NO is used without this
support, the task will be
abnormally terminated.

There are a number of restrictions
on the use of the CCOMPL=NO
operand; these restrictions are as
followsz

• If CCOMPL=NO is used without
the authority (CCONTR) of the
system programmer, the task
will be abnormally terminated.

• CCOMPL=NO cannot be used if the
DEFRESP=YES operand is
specified.

• If CCOMPL=NO is specified, the
application program must not
issue a read reque$t until a
write request that does not
specify CeOMPL=NO has been
issued; failure to observe this
restriction will lead to
abnormal termination of the
task.

• CCOMPL=NO is not valid for a
combined write and read
request, including
conversational write
operations. TYPE=LAST is
ignored if it is not FOe or OCt

CONNECT=

• Used with 3650 interpreter
logical units only.

This operand specifies the type of
connection to be established.

ACTIVATE
specifies that the 3650
application program will not
communicate with the host .
processor.

CONVERSE

CTLCHAR=

specifies that the 3650
application program will
communicate with the host
processor.

• Used for 3270 logical units,
3650 host-conversational (3270)
logical units,
3790(3270-display), and
3790(3270-printer) logical
units only.

This operand is used (1) in a DFHTC
TYPE=WRITE macro to provide the
hexadecimal representation of the
write control character (WeC) that
controls the requested write
operation, or (2) except for the
3650 host conversational (3270) LU,
in a DFHTe TYPE=eOPY macro to
provide the hexadecimal
representation of the copy control
character (CeC) that controls and
defines the copy function to be
performed.

hex-number

YES

is the hexadecimal
representation of the WCC or
cec required for the operation
specified in the TYPE= operand
of this DFHTC macro.

indicates that the appropriate
bit configuration has been
placed in TIOACLCR.

For DFHTC TYPE=WRITE, if the
functions defined by the wec only

Chapter 4.2. Terminal Control (DFHTC Macro) 135

are to be performed (that is, no
data stream is to be supplied),
TIOATDL must contain zero. If the
CTLCHAR operand is omitted, all
modified data tags are reset to
zero, and the keyboard is restored.
For DFHTC TYPE=COPY, if the CTLCHAR
operand is omitted, the contents of
the entire buffer (including nulls)
are copied and the start printer
flag is not on.

DEFRESP=YES

DEST=

• Used with VTAM logical units
only.

Indicates that a definite response
is required when the write
operation has been completed.
DEFRESP=YES cannot be specified if
the CCOMPL=NO operand is used.

This operand specifies, for this
write operation only, that a
definite response is required, even
if neither the MSGINTEG operand nor
the PROTECT operand has been
specified in the DFHPCT TYPE=OPTGRP
macro by the system programmer.

indicates that the output message
is to be sent to a TCAM destination
other than the source TCAM
terminal.

This operand is meaningful only for
TCAM-supported terminals.

symbolic name

YES

is the symbolic address of the
storage area containing the
TCAM destination to which the
message must be sent.

indicates that the application
program has placed the
four-byte message destination
in TCTTEDES before issuing the
WRITE. This can be used to
allow dynamic selection of the
message destination.

ENDFILE=symb-addr

• Used for 3740 Data Entry System
only.

Indicates the label of the routine
that is to receive control when
end-of-file is encountered on batch
input. It is set when a null block
is received, indicating the end of
a physical file. The task must
continue reading.

ENDINPT=sym~-addr

• Used for 3740 Data Entry System
only.

Indicates the label of the routine
that is to receive control when
end-of-input is reached on batch
processing. It is set by CICS when
an end of transmission signal is
received and the ENDFILE indicator
was set. After this condition the
task must not issue any further
reads to the device but must return
to CICS so that the 3740 can be set
to receive a new batch of input.

ENDMSG=NO

• Used for BTAM terminals only.

Indicates that the block sent as a
result of the write request does
not complete the message. If this
operand is omitted, the message
will be regarded as complete when
the write request has been
fulfilled. This operand is valid
only for assembler language
application programs.

Before this operand may be used,
the system programmer must have
specified that the application
program may control outbound
chaining by coding a DFHPCT
TYPE=OPTGRP macro with the
MSGPREQ=CCONTRL operand. If
ENDMSG=NO is used without this
support, the task will be
abnormally terminated.

There are a number of restrictions
on the use of the ENDMSG=NO
operand; these restrictions are as
follows:

• If ENDMSG=NO is used without
the authority CMSGPREQ=CCONTRL)
of the system programmer, the
task will be abnormally
terminated.

• If ENDMSG=NO is specified, the
application program must not
issue a read request until a
write request that does not
specify ENDMSG=NO has been
issued; failure to observe this
restriction will lead to
abnormal termination of the
task. '

• ENDMSG=NO is not valid for a
combined write and read
request, including
conversational write
operations.

EOC=symb-addr

• Used for logical units only.

Specifies the label of the'routine
that is to receive control if the
request/response unit (RU) is
received with the end-of-chain
CEOC) indicator set. If this
operand is specified, the WAIT

136 CICS/VS Application Programmer's Reference Manual (Macro Level)

parameter of the TYPE operand is
assumed. If an inbound FMH is
received, the INBFMH operand will
override this operand. If an
end-of-data-set FMH is also
received, the EOnS operand will
override both this operand and the
INBFMH operand. (Overridden
operands can be specified in a
DFHTC TYPE=WAIT macro.)

EODS=symb-addr

• Used for 3650 interpreter
logical units, batch logical
units, and LUTYPE4 logical
units only.

• Cannot be used for 3650 Host
Command Processor logical
units.

Indicates the label of a
user-written routine that is to
receive control if an
end-of-data-set FMH is received.
The TIOA contains the EODS
indicators. If EODS is specified,
the WAIT parameter of the TYPE
operand is assumed. If EODS is
specified, and end-of-data-set is
received, the EOC and INBFMH
operands are overridden; they can
be specified in a DFHTC TYPE=WAIT
macro within the end-of-data-set
routine.

Symbolic address is the address to
which control is to be given if the
CICS EODS indicator is set on. The
indicator is set when a READ is
issued and there is no data
remaining for this data set.

EOF=symb-addr

FMH=

indicates the label of the routine
that is to receive control when
end-of-file is encountered on batch
input. This operand can be used in
a special initialization macro,
DFHTC EOF=symb-addr, to test for
the end-of-file condition upon
initial connection to a 3735. It
must be included in the
initialization section of the
application program that handles
3735 input, preceding other DFHTC
~acros.

Note: When the EOF condition
occurs, TIOATDL is set to binary
zeros to indicate that the TIOA for
the input operation contains no
valid data.

• Used for 3600 (3601), 3650
host-conversational (3270),
3650 host-command processor,
LUTYPE4, 3770 batch, 3790 full
function, 3790 inquiry, and
3790 batch data interchange
logical units only.

This operand indicates whether the
function management header (FMH)
has been placed in the .TIOA by the
application program. If FMH is
omitted, NO is assumed.

For the 3600 (3601) and 3790
inquiry logical units, an FMH is
required and is provided as
described below. For the 3650
host-conversational (3270) logical
unit, the FMH is required if
outboard maps are to be used; the
FMH in such cases can be provided
by BMS, if BMS is being used, or
otherwise, by the application
program. For LUTYPE4 and batch
logical units, the FMH is required
for device selection and is
provided as described below.

YES

FORCE=VES

indicates that the application
program has not placed the FMH
in the TIOA. For the 3600
(3601) and 3790 inquiry
logical units, CICS is
responsible for placing the
FMH in the TIOA; if NO is
specified, space. must be
reserved in the TIOA for the
FMH. For the 3650
host-conversational (3270)
logical unit, CICS does not
build an FMH, and the data is
transmitted unmodified. For
all other logical units, no
FMH is sent; refer to the
appropriate CICS subsystem
guides for details of when an
FMH is necessary.

indicates that the application
program has placed the FMH
into the TIOA. Refer to the
appropriate CICS subsystem
guides for size and format of
the FMH for a specific
terminal. The FMH=YES and
lDC=YES options are mutuallY
exclusive.

• Used for interactive logical
units only.

This operand indicates that the
write operation is to be preceded
by an outbound SIGNAL
data-flow-control command to force
the terminal into receive mode.
This operand is used only for
interactive logical units operating
in contention mode, and is ignored
otherwise.

INBFHH=symb-addr
specifies the label of the routine
that is to receive control if the
request/response unit (RU) contains
an FMH, and CICS has passed this

Chapter 4.2. Terminal Control (DFHTC Macro) 137

LDC

FMH to the application program.
The presence of an inbound FMH
means that, if this operand is
specified, the fOC operand is
overridden. If an end-of-data-set
FMH is received, the EODS operand
will override the INBFMH operand.
(Overridden operands can be
specified in a DFHTC TYPE=WAIT
macro.)

For this operand to be effective,
the system programmer must have
specified INBFMH=ALl or fODS in the
PCT entry for the transaction. If
INBFMH=NO is specified, inbound
FMHs will not be passed to the
application program, and the INBFMH
operand will never be operative.

• Used for the 3601 logical unit
(but not for the 3614, even if
attached to the 3601) only.

This operand specifies the mnemonic
to be used by CICS to determine the
logical device code (LDC) that is
to be transmitted to the logical
unit in the function management
header.

mnemonic

YES

is the two-character mnemonic
used to determine the
appropriate lDC numeric value.
The mnemonic represents a LDC
entry in the DFHTCT TYPE=lDC
macro.

indicates that the application
program has placed the
mnemonic in TCATPlDM. The
LDC=YES and FMH=YES options
are mutuallY exclusive.

NONVAL=address

• Used with 3650 application
programs only.

This operand indicates the label of
the user-coded routine to receive
control if the name specified in
the PRGNAME operand is invalid.

NORESP=address

• Used with 3650 logical units
only.

This operand indicates the label of
a user-coded routine to receive
control if there is a no error
response.

PRGNAME=name

• Used with 3650 logical units
only.

This operand indicates the name of
the 3650 application program. The
name (up to eight characters) is
transmitted to the 3651 for
verification by the 3650 control
program.

RDATT=symb-addr
indicates the label of the routine
to which control is to be
transferred if the read operation
that responds to a DFHTC TYPE=READ
macro is terminated by pressing the
attention (ATTN) key rather than
the return key.

Note: This operand is meaningful
only if 2741 Read Attention support
has been generated in the CICS
system. See "Read Attention" and

·"Write Break" under "2741
Communication Terminal" earlier in
the chapter.

SIGADDR=symb-addr

• VTAM only

TYPE=

Specifies the symbolic address of
the routine to be given control if
SIGNAL is received.

describes the terminal or logical
unit operations required, as
follows:

TYPE=CBUFF

• Used with 2980 General Banking
Terminal only.

This is a stand-alone parameter
used to place a message in the
common buffer of the 2972 terminal
control unit; the 2972 associated
with the current TCTTE receives the
output message. Both write and
wait are implied.

Note: The output message is
translated according to the model
of 2980 described by the current
TCTTE. If more than one model is
attached to a 2972 Terminal Control
Unit, the contents of the common
buffer are intelligible only to the
model for which the message was
translated. Since shift characters
are added to the message by CICS
during translation, the length of
the message is dependent upon the
contents of the message. Up to 23
characters, including shift
characters, can be transmitted.

TYPE=COPY

• Valid only for BSC-connected
devices which have the copy
feature, that is, BTAM remote
connection, or VTAM non-SNA
remote connection.

138 CICS/VS Application Programmer's Reference Manual (Macro level)

This parameter is used to copy the­
format and data contained in the
buffer of one terminal into the
buffer of another terminal attached
to the same remote 3270 control
unit. The terminal from which data
is to be copied can be identified
in either of two ways I

1. Set TIOATDl to a value of 1,
and the first byte of the
output data area (TIOADBA) to
the physical address of the
terminal to be copied; or

2. Set TIOATDl to a value of 4 and
the first four bytes of the
output data area (TIOADBA) to
the terminal identification of
the terminal to be copied. If
the terminal identification is
less than four bytes, it must
be left-justified with blank
padding on the right.

The copy control character (CCC),
which controls and defines the copy
function to be performed, must be
supplied in the CTLCHAR operand of
the DFHTC macro.

Note: For VTAM-supported 3270
logical units, it is not possible
to supply the physical address of
the terminal to be copied; the
terminal identification must be
supplied.

TVPE=DISCONNECT

• Switched lines and logical
units only.

For switched lines, DISCONNECT is
used to break the line connection
between the terminal and the
computer; if the terminal is a
buffered device, the data in the
buffer(s) is lost.

•

•

CICS does not automatically
disconnect a 3270 display at
the end of a transaction. A
disconnection occurs at the
request of a terminal operator,
at the request of the
application program (through
this macro), or after a
specified number of time-outs
are encountered by DFHTEP for
the terminal. CRefer to the
appropriate CICS Customization
Guide for information about
DFHTEP.)

When used with a TCAM terminal
or logical unit, DISCONNECT
sets the X'08' bit in the
communication control byte
(CCB) sent to TCAM. The
message handler should provide
the necessary function (that
is, issue IEDHALT, to terminate

the logical-unit session) for
disconnect. .

• When used with VTAM logical
units, DISCONNECT, which does
not become effective until the
task has been terminated,
terminates the session, without
causing a physical
disconnection.

TVPE=ENDFILE

• Used for 3740 Data Entry System
only.

Indicates that an end-of-file
record is to be written to the
terminal.

TVPE=ENDOUTPUT

• Used for 3740 Data Entry System
only.

Indicates that an end-of-output
record is to be written to the
terminal.

TYPE=EODS

• Used with 3650 interpreter
logical units only.

Causes an end of data set FMK to be
sent on behalf of the task. An I/O
area need not be supplied by the
CICS application program. Refer to
the appropriate CICS IBM 3650/3680
Guide for details about
communicating with a 3650
application program.

Note: If the application receives
the FMH, the FMH may have been
presented on completion of a
previous read request. The end of
the data set is not until the CICS
EODS indicator is set on.

TYPE=ERASE

• Used with 2260 Display Station,
3270 Information Display
System, 3270 logical units,
3650 host-conversational
logical units, 3790
(3270-display), and 3790
(3270-printer) logical units
only.

This parameter is used with the
WRITE or WRITEL operand. It blanks
out the screen and sets the cursor
to the upper left corner.
Normally, TYPE=ERASE would be used
on the first output request of a
transaction to prepare the screen
for new output data.

TYPE=ERASE also sets the screen
size to that specified for the
transaction that issues the
command. Therefore when switching

Chapter 4.2. Terminal Controi CDFHTC Macro) 139

from one screen size to another
between transactions, a TYPE=ERASE
must be issued to set the screen
size of a new transaction. If one
is not issued, the screen size will
remain unchanged from a previous
transaction's setting.

The CLEAR key, if used within a
transaction, sets the screen size
to its default. However, CICS will
reset the transaction specified
size following a CLEAR operation.

Note: To erase the screen,

1. Place the address of a TIOA
into TCTTEDA,

2. Place a data length of 0 into
TIOADTL, and

3. Issue a DFHTC TYPE=(WRITE,
ERASE) macro.

TYPE=ERASE and DEFRESP=YES are
mutually exclusive.

TYPE=ERASEAUP

• Used with 3270 logical units,
3650 host-conversational (3270)
logical units, 3790
(3270-display) and 3790
(3270-printer) logical units
only.

This parameter issues an "erase all
unprotected" command command and
causes the following functions to
be performed:

1. All unprotected fields are
cleared to nulls (X'OO).

2. The modified data tags (MDTs)
in each unprotected field are
reset to zero.

3. The cursor is positioned to the
first unprotected field.

4. The keyboard is restored.

Neither WRITE, ERASE, nor COpy can
be specified in a DFHTC macro that
includes the ERASEAUP parameter.
No data stream is supplied.

TVPE=LAST
signals CICS that the WRITE is the
last output for a transaction and,
therefore, the end of a bracket.
Specifying this parameter can
improve system performance for VTAM
logical units except when used with
the 3270 logical unit.

• This.parameter has no effect
when used with a 3270 logical
unit.

TYPE=NOTRANSLATE
prevents translation of form
description program (FDP) records
which are to be transmitted to a
3735 using ASCII transmission code.
(For further information, see "3735
Programmable Buffered Terminal",
earlier in the chapter.)

TYPE=PASSBK

• Used with 2980 General Banking
Terminal only.

This is a stand-alone parameter
used to cause output to be printed
on a banking passbook. Both WRITE
and WAIT are implied. If a
passbook is not present, no
printing occurs. An error message
·can be sent to the operator of the
terminal associated with the
requesting task.

TYPE=PRINT

• Used with 3270 logical units,
3650 host-conversational (3270)
logical units, 3790
(3270-display), and 3790 (3270-
printer) logical units only.

This parameter specifies that the
data currently displayed on a 3270
display is to be printed on an
eligible 3270 printer.

TYPE=PROGRAM

• Used with 3650 devices only.

This parameter is used to request
the loading of a 3650 application
program. If the program is loaded,
control is returned to the next
sequential instruction following
the DFHTC TYPE=program macro unless
NORESP=program is specified.
Otherwise, control is returned to
an address specified by one of the
other operands of the macro as
listed below.

TYPE=PSEUDOBIN
indicates that the data being read
is to be translated from System/7
pseudobinary representation to
hexadecimal. (For more information
about System/7 programming, see
"System/7", earlier in the
chapter.)

TYPE=READ
indicates that the data is to be
read from a terminal or logical
unit.

When the contents of a 3270 buffer
are read the programmer should be
aware that the attention identifier
byte and the cursor address are
made available at TCTTEAID and
TCTTECAD respectively. A set of
standard symbolic names for testing

140 CICS/VS Application Programmer's Reference Manual (Macro Level)

the 3270 attention identifier is
provided in a copy book called
DFHAID. For further details refer
to "Standard Attention Identifier
List (DFHAID)" in "Chapter 4.3.
Basic Mapping Support" on page 143.

TVPE=READB

• Used with BTAM 3270 and 3270
and 3790(3270-display) logical
units only.

This parameter reads the contents
of the 3270 buffer, beginning at
buffer location 0 and continuing
until all contents of the buffer
have been read. All character and
attribute sequences (including
nulls) appear in the input data
stream in the same order that they
appear in the 3270 buffer. READB
cannot be specified for
TCAM-supported terminals nor can it
be used for 3790 (3270-printer)
logical units.

Note: Because of the relatively
long transmission times required to
transmit the entire contents of a
remote 3270 buffer, the READB
parameter should be used primarily
for testing and diagnosing; the
COpy parameter, which permits a
selective transfer of buffer
contents should be used in all
other cases.

TVPE=READL

• Used with 2260 only.

Indicates that the keyboard is to
remain locked at the ~ompletion of
a data transfer. This parameter is
applicable only to CICS/QS/VS, but
may be used on a CICS/DOS/VS
application if compatibility with
CICS/OS/VS is desired.

TVPE=RESET

• Used with binary synchronous
devices only.

This operand is used to relinquish
use of a communication line; the
next BTAM operation will be a read
or write initial. RESET is not
supported by TCAM, because line
control is performed by TCAM in the
MCP.

TVPE=SAVE
in the case of a read operation, it
indicates that the TIOA used in a
previous terminal operation is not
to be used as an input area; a new
TIOA is acquired. For a write
operation, it indicates that the
TIOA whose address is in TCTTEDA is
not to be released upon completion
of the write operation; however,

there is no guarantee that TCTTEDA
will remain unchanged.

TYPE=SIGNAL

• Used with VTAM interactive and
LUTYPE2, LUTYPE3, LUTYPE4 and
SCSPRT logical units, and VTAM
3600 (3601) logical units,
only.

Indicates that this macro specifies
the action to be taken by the
application program when an inbound
SIGNAL data-flow-control command is
received from the logical unit.

The four-byte field TCTESIDI in the
terminal control table terminal
entry (TCTTE) is set to the signal
code received from the logical
unit. If a hard request change
direction (RCD) signal is received
(signal code X'OOOlOOOO') from an
LUTYPE4 unit, the transaction
should either end or read from the
unit. An attempt to follow the
signal with a write would be an
error.

Most logical units will send a
signal with a code of X'OOOl~QOO'
when an attention key. is pressed.

TYPE=STRFIELD

• Assembler language only.

Specifies that the TIOA contains
structured fields. If this operand
is specified, the contents of all
structured fields must be handled
by the application program.
(structured fields are described in
the appropriate CICS IBM 3270 Data
Stream Device Guide.) CTLCHAR and
ERASE are mutuallY exclusive with
STRFIELD and their use will
generate an MNOTE •

TVPE=TEXT

• Used with 3270 only.

Is meaningful only when used in
conjunction with a READ request.
It specifies a temporary override
of the uppercase translation
feature of CICS to allow the task
to receive a message containing
both uppercase and lowercase data.

TVPE=TRANSPARENT

• Applicable to System/3 when it
indicates that output is to be
sent in transparent mode (with
no recognition of control
characters, and accepting any
of the 256 possible
combinations of eight bits as
valid transmittable data).

Chapter 4.2. Terminal Control (DFHTC Macro) 141

• Applicable to System/7 when it
indicates that the data being
read is not to be translated.

TVPE=WAIT
ensures that the terminal or
logical unit operation requested in
the macro is completed before
starting subsequent processing.
WAIT can be coded separately from a
READ to accomplish overlapping of
logical unit I/O operations; or
with the EOC, EODS, or INBFMH
operand, for example, to give
control to user-written routines
from within an end-of-data-set
routine entered as a result of
specifying the EOnS operand.

TVPE=WRITE
indicates that data is to be
written to a terminal or logical
unit.

VALID=address

• Used with 3650 devices only.

This operand indicates the label of
a user-coded routine to receive
control if the name specified in
the PRGNAME operand is valid but
sufficient resources are not
available in the 3651 to initiate

the 3650 application program. This
routine can determine whether a
DFHIC TYPE=INITIATE or DFHIC
TYPE=PUT macro is to be issued in
order to restart the 3650
application program later.

WAIT=VES
specifies that the task is to be
suspended until SIGNAL is received.
This request is ignored if the
logical unit cannot send a SIGNAL
command; the contents of field
TCTESIDI will be set to X'OOOOOOOO'
in these circumstances.

WRBRK=symb-addr
is the symbolic address to which
control is transferred if a write
operation started in response to
.this DFHTC TYPE=WRITE macro is
interrupted by the terminal
operator pressing the Attention
(ATTN) key.

This operand is meaningful only if
2741 Write Break support has been
generated into the system, an
option available only under
CICS/OS/VS. See "Read Attention"
and "Write Break" under "2741
Communication Terminal" earlier in
the chapter.

142 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 4.3. BASIC MAPPING SUPPORT

Basic mapping support CBMS) provides the
CICS application programmer with various
formatting services that assist in
interpreting input data streams from and
preparing output data streams to the
terminal network. These formatting
services are provided by BMS modules
that act as an interface between the
user's application program and the CICS
terminal control program.

The application program passes data to
BMS and receives data from BMS in a
device-independent format. BMS macros
are issued by the application program to
control formatting of the data and to
initiate input from and output to the
terminal network.

You should refer to the appropriate CICS
Application Programmer's Reference
Manual (Command Level) for descriptions
of the additional attributes field
outlining (OUTLINE), mixed DBCS and
EBCDIC fields (SOSI), and background
transparency (TRANSP) that are new for
this release.

ADVANTAGES OF BMS

The two principal advantages to be
obtained by using BMS are device
independence and format independence.

DEVICE INDEPENDENCE

Device independence permits the
application program to send data to a
terminal or to receive data from a
terminal without regard for the physical
characteristics of the terminal. BMS
can be used for communication with any
of the following devices and logical
units:

1050
2740
2741
2770
2780
2980 Models 1 and 2
2980-4 (keyboard and printer only)
3270
3780
TWX
Tape storage devices
Disk storage devices
CRLP (a device declared as

card-reader-in/line-printer-out)
TCAM-connected terminals (defined by

TRMTVPE=TCAM in DFHTCT
TYPE=TERMINAL macro)

TCAM logical units (defined by
TCAMFET=SNA in DFHTCT TYPE=lINE
macro and SESTYPE=36001376713770

13790lBCHlUIINTLU in DFHTCT
TYPE=TERMINAl macro)

VTAM logical units:
3270
LUTYPE2
lUTYPE3
lUTYPE4
SCSPRT
3600
3650 (host-conversational (3270)

and interpreter lUs only)
3767
3770
3790 Call except inquiry LU)

Some special BMS programming
considerations that apply only to
particular terminal subsystems are
described in the various CICS subsystem
guides (for example, the IBM
4700/3600/3630 Guide). 'These guides are
listed in the Bibliography.

With BMS, a CICS installation with more
than one type of terminal need provide
only one program for each application
transaction to support all terminal
types in the installation. BMS
identifies which terminal type is
requesting use of the application
program and provides for the conversion
of the device-dependent data stream to
and from the device-independent format
used by the application program. A CICS
installation using only one type of
terminal may nevertheless wish to use
the formatting services of BMS to
facilitate the addition of other
terminal types or the conversion to
another terminal type in the future.

FORMAT INDEPENDENCE

Format independence permits the
application program to provide data to
one or more terminals or to receive data
from a terminal without regard for the
physical placement of fields within the
data stream or on the terminal.

All references to data by the
application program are through symbolic
field names. The placement of fields
within the data stream is accomplished
by BMS through the use of information
stored in data format tables called
maps. A CICS installation in which BMS
is used may rearrange the fields to be
included in a terminal message by simply
changing some values stored in the map
that defines the format of the message.
The application program that causes the
message to be written need not be
modified. Programming maintenance can
thus be considerably simpler than if BMS
were not used.

Chapter 4.3. Basic Mapping Support 143

Format independence also permits certain
constant information, such as headings,
field-identifying keywords, and 3270
screen formats, to be stored in maps.
These constants can be modified simply
by changing their values in the maps.
Any programs that refer to the maps
benefit from the changes, but none of
the programs themselves need be
modified.

The format independence provided by BMS
may be compared with the independence
provided by DL/I for data bases. Both
remove from the application program the
requirement to know the physical
placement of fields within the data
record ·or message. Fields may be
physically rearranged, removed, or added
without necessitating program
maintenance on all application programs
using the record or message.

FACILITIES OF BMS

The facilities that BMS provides are
data mapping and formatting, terminal
paging, and message routing.

DATA MAPPING AND FORMATTING

Data mapping is the technique used by
BMS to convert the standard
device-independent data format that the
application program uses to and from the
device-dependent data stream required
for the particular terminal type in use.
Device-dependent control characters are
embedded or removed by BMS during this
processing.

The application program may select any
of three standard data formats in which
to provide or accept data from BMSz
field data format, block data format, or
text data format.

When field data format is used, data is
passed to BMS as separate fields. Each
field is given a symbolic field name by
the application programmer. This name
is used when passing data to, or
retrieving data from, BMS. Each field
consists of a two-byte length area (used
by BMS on input), a single attribute
byte (used for 3270 output operations
only, but present for all terminal
types), and the data area. A map
describing the position of the field
when displayed or printed, the data
length, and other information about each
field is created to control the mapping
function.

When block data format is used, data is
passed to BMS as line segments. Fields
positioned within the line segments may
be given symbolic field names to aid the
application program in positioning the
fields. Each field provides for a
single attribute byte and the data area.
A gap consisting of several blanks may

separate consecutive fields in the line
segment. A map is used to describe the
number and lengths of line segments, the
field positions when displayed or
printed, data lengths, and other
necessary information.

When text data format is used, output
data consisting of a data stream with
optional new-line (X'IS') characters is
passed to BMS. BMS divides the data
stream into lines no longer than those
defined for the particular terminal to
which the data stream is related. BMS
will only allow a line break to occur
where it encounters a blank (X'40'). If
a word will not fit into the space
remaining in a line, BMS places the
whole word on a new line. If new-line
characters are included in the data
stream, they too are honored. eIeS
inserts the appropriate leading
characters, carrier returns, and idle
characters, and eliminates trailing
blanks from each line. If tab control
characters are contained in the data
stream, the user should also supply all
the necessary new-line characters. Maps
are not used with text data format.

Field data format is the commonest data
format for both display and printer
terminals. Block data format may be
used with both display and printer
terminals, but it is more useful for
input operations on printer terminals.
Text data format is used with both
display and printer terminals and is
especially convenient for handling data
that is not divided into fields. When
text data format is used with a 3270
device, an attribute byte appears on the
3270 as a blank at the beginning of each
line and in front of each new piece of
data.

TERMINAL PAGING

Terminal paging permits the application
program to (1) combine several small
mapped data areas into one or more pages
of output, or (2) prepare more output
than can be contained in one page of
output. By definition, a page is the
physical area of a terminal on which
data is displayed or printed at one
time. The size of the area (in numbers
of lines and columns) is specified for
the particular terminal in the eIeS
terminal control table (the TeT) by the
system programmer.

Since a page of output may be
constructed by BMS from several small
maps, it is convenient to generate these
maps together in a map set. A map set
is a collection of maps generated and
stored together in the CIeS program
library. A reference to one map in the
map set causes the entire map set to be
loaded into storage for the duration of
the task or until another map set is
referred to by the task. DFHMSD,

144 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHMDI, and DFHMDF macros, described
later in this chapter, are used in
constructing the map set.

During execution, the application
program issues DFHBMS TYPE=PAGEBLD
macros to position portions of an output
page. If all the data cannot be
contained on one page, BMS recognizes an
overflow condition and can transfer
control to an overflow routine within
the application program. This routine
normally causes the current page to be
written to temporary storage, a new page
to be started, a heading to be placed on
the new page, and the data causing the
overflow to be mapped on the new page.
As each page of the output message is
completed, the page is written to
temporary storage to await completion of
the logical message. A logical message
is the result of one or more BMS
requests for output services all of
which have the same disposition (OUT,
STORE, or RETURN, as explained later in
this chapter). To cause the logical
message to be completed, the application
program issues a DFHBMS TYPE=PAGEOUT
macro. Alternatively, the logical
message is completed upon termination of
the application program unless a
short-on-storage condition exists, in
which case the logical message is
deleted.

Terminal paging provides the additional
function of building a logical message
without the use of maps. A DFHBMS
TYPE=TEXTBLD macro is issued to request
this type of page building. The data is
passed to BMS as text data, which BMS
places on succeeding lines (and pages,
if necessary) without reference to maps.
A word is not split between lines; any
word that cannot fit on the remaining
portion of a line is placed on the next
line. The formatting of the logical
message can be controlled through the
data itself by embedding new-line
characters (X'15') within the data. To
cause the TEXTBLD logical message to be
completed, the application program
issues a DFHBMS TYPE=PAGEOUT macro or
terminates execution.

DFHBMS TYPE=PAGEBLD and TYPE=TEXTBLD
macros cannot be used to build portions
of the same logical message. The
process of building a logical message
can be discontinued by means of a DFHBMS
TYPE=PURGE macro. This instruction
deletes the portions of the message
already built in main storage or on
temporary storage.

MESSAGE ROUTING

Message routing permits an application
program to build and route a logical
message to one or more terminals. The
message is automatically scheduled for
each designated terminal, to be
delivered as soon as the terminal is
available to receive messages or at some
future time.

The page building facility of BMS is
used for message routing, so the design
of application programs is very similar
for the two facilities. Message routing
allows application-built messages to be
sent to any prescribed terminals.

To initiate a routing operation, the
application program issues a DFHBMS
TYPE=ROUTE macro followed by DFHBMS
TYPE=(PAGEBLD,STORE) or
TYPE=(TEXTBLD,STORE) instructions to
build the logical message that is to be
routed. A DFHBMS TYPE=PAGEOUT macro
terminates the page building and causes
the message to be routed. When
individual logical messages are routed
to a terminal, they are not necessarily
delivered in the sequence in which they
were issued. If a specific sequence is
required, the pages must be sent as one
message.

A parameter of the DFHBMS TYPE=ROUTE
macro points to a list of terminals to
receive the routed message. The list
may contain the terminal identification
and operator identification of each
terminal designated to receive the
message. If only a terminal
identification is specified, the message
is routed to that terminal, regardless
of who is signed on at the terminal. If
both the terminal identification and the
operator identification are specified,
the message is routed to the terminal
but delivered only when the specified
operator is signed on. If only the
operator identification is specified,
BMS scans the terminal control table and
delivers the message to the first
terminal at which the operator is signed
on.

Another parameter of the DFHBMS
TYPE=ROUTE macro is a specific operator
class code. If specified, only an
operator signed on with that class code
may receive the routed message. One to
twenty-four class codes may be assigned
to operators in the CICS sign-on table.

The DFHBMS TYPE=ROUTE macro further
designates whether the message is to be
delivered as soon as possible or at a
specific time or after some interval of
time. If the routed message cannot be
delivered within a specified length of
time, an error message may be returned
to the terminal sending the message or
to some designated alternative terminal.
The message may be deleted, or it may be
retained indefinitely, until delivered

Chapter 4.3. Basic Mapping Support 145

or until deliberately deleted by an
operator at the receiving terminal.

If a message is to be routed to more
than one terminal type, BMS builds a
device-dependent message for each
terminal type. Each such message is
stored on temporary storage until all
terminals for which it is destined have
received the message. If a terminal is
scheduled to receive a message but is
not eligible, the message is stored
until one of the following conditions
occurs:

• A change in terminal status allows
the message to be sent.

• A time period (specified at system
generation) has elapsed, causing the
message to be deleted by BMS.

• The message is deleted by the
destination terminal.

Another consideration of routing to
different terminal types is the handling
of overflow conditions. Since different
terminal types may have different page
sizes, the overflow condition is apt to
occur at different times in page
building. BMS returns control to an
overflow routine in the application
program, indicating which terminal type
caused the overflow and how many pages
have been created for that terminal
type.

If a message is routed to terminals with
alternate screen size capabilities, the
selection of the screen size to be used
is taken from the SCRNSZE parameter in
the PCT for the routing transaction.
(The SCRNSZE parameter is described in
the appropriate CICS Resource Definition
manual.)

The message routing facility of BMS is
an ideal tool for developing message
switching and broadcasting applications.
CICS provides a generalized message
switching transaction that uses the
message routing facility of BMS. Use of
the message switching transaction is
described in the appropriate
CICS-Supplied Transactions book.

MAPPING CONCEPTS AND TECHNIQUES

Most of the facilities of BMS (text data
format is the exception) require two
forms of map to be defined by CICS
macros and assembled offline in advance
of running the application program. The
two forms are: (1) a physical map used
by BMS to convert data to or from the
format desired by the applicat10n
programmer, and (2) a symbolic
description ~ap used by the application
programmer to symbolically refer to the
data in the terminal buffer. The
physical map is a table of information
about each field, and is stored in the

eICS program library to be loaded by BMS
at execution time. The symbolic
description map is a set of source
statements that are cataloged into the
appropriate source library (Assembler,
COBOL, or Pl/I) and copied into the
application program when it is assembled
or compiled.

The programmer defines and provides
names for fields and groups of fields
that may be written to and received from
the devices supported by BMS. The
symbolic description map can be copied
into each application program that uses
the associated physical map. Data can
thus be passed to and from the
application program under the field
names in the symbolic description map.
Since the application program is written
to manipUlate the data under the field
names, altering the map format by adding
new fields or rearranging old fields
does not necessarily alter the program
logic.

If the map format is altered, it is
necessary in most cases to make the
appropriate changes to the macros that
describe the map and then reassemble
both the physical map and the symbolic
description map. The new symbolic
description map must then be copied into
the application program and the program
reassembled. There are certain map
alterations that can be made without
necessitating reassembly of the symbolic
description map.

An application program has access to the
input and output data fields using the
names supplied to the fields when the
maps were generated. The application
logic should be dependent upon the named
fields and their contents but should be
independent of the relative positions of
the data fields within the terminal
format. If it becomes necessary to
reorganize or add to a map format, the
existing application program must be
reassembled to gain access to the new
positions of these data fields.
Reprogramming is not necessary to
account for new fields or for the
changed terminal format of those fields.

By using BMS to construct and interpret
data streams, application programmers
can insulate application programs from
the device-dependent considerations
required to handle the data streams. If
necessary, the application program has
the facility to temporarily modify the
attributes or the initial data of any
named field in an output map. A
collection of named attribute
combinations is supplied within BMS so
that the application program remains
essentially independent of the data
stream format.

The ability to progressively add to map
definitions without obsoleting existing
application programs permits the design

146 CICS/VS Application Programmer's Reference Manual (Macro level)

and implementation of systems in a
modular fashion with a progressive
expansion of the screen formats. Design
and programming of the first stages of
applications can begin before later
stages have been designed. These early
implementations are protected from
updates in the terminal formats.

MAP DEFINITION

All maps must be generated as members of
a map seti a single map must be
generated as the only member of such a
map set. A map set is a collection of
related maps that are generated and
stored together in the CICS libraries.

Map definition is accomplished through
the use of three different macros:
DFHMSD, DFHMDI, and DFHMDF.

The DFHMSD macro

•
•

•

•

Defines a map set

Indicates whether a particular set
of macros is for a physical map or
for a symbolic description map

Specifies whether the map is for
input, output, or both

Can specify the data format: field
or block.

The DFHMDI macro

• Defines a map

• Defines the position of the map on
the page, either absolutely or in
relation to other maps

• Specifies the size of the map

• Can specify the data format: field
or block.

The DFHMDF macro

• Defines a field within a map

• Specifies the position of the field

• Specifies the length of the field.

The formats of these macros are given
later in this chapter. An example of
their use and of the symbolic storage
definitions generated is given in
Appendix B.

The map definition macros are assembled
twice, once to produce the map used by
BMS, and once to produce the symbolic
storage definition (or DSECT) that will
be copied into the application program.

INPUT MAPPING

For an input map, the maximum data
length and the starting position of each
field must be defined. .

The TIOA symbolic storage definition
contains an area for the length of each
input data field, followed by a flag
byte and an area for the data itself.
Space is reserved for the maximum number
of bytes defined for each field.

The program can access the length, flag,
and data areas of any field by symbolic
labels.

The length area is a halfword binary
field and is addressed by the name
ftfieldname.Lft or ftgroupname.Lft.

The flag area is a one-byte field and is
addressed by the name ftfieldname.Fft or
ftgroupname.Fft.

The data area of each field (or group of
fields) is contiguous with the length
and flag areas. A group of fields, or a
single field not within any group of
fields, has one data area addressed by
the name "groupname.I" or ftfieldname.I".
For fields contained within a group,
there are no intervening length or flag
areas (only ftgroupname.Lft exists) but
each field is addressed by a name
ftfieldname.I".

In assembler language programs, the
first byte of the first occurrence of a
field defined by the DFHMDF operand
OCCURS=n (where n is greater than 1) is
named "fieldname Dn, and the first byte
of the next occurrence of the field is
named "fieldname Nn. These names refer
to the first byte of the length area if
DATA=FIELD is specified, and to the
first byte of the attribute data if
DATA=BLOCK is specified.

In COBOL and PL/I programs, "fieldname
Dn is the name of the array of minor
structures containing the length, flag,
and data areas of the field.

Note that "." is a concatenation symbol
used here only to show how the symbolic
names are suffixedi the period is never
actuallY coded. For example, in the
case of field name XYZ, the length area
is referenced as XYZLi the flag area is
referenced as XYZFi and the data area is
referenced as XYZI.

The length specified for a field may
differ from the number of characters
that are entered for the field at
program execution time. If more data is
keyed than specified in the map, the
data is truncated on the right to the
number of characters specified. The
length that is returned to the
application program is the truncated
length. If less data is keyed ~han
specified, the remaining character

Chapter 4.3. Basic Mapping Support 147

positions are filled with blanks or
zeros and the length of the keyed data
is returned in the length field.

With a 3270 or similar type of device,
the length of the input field will be
the number of nonnull characters
contained in the field. Note that a
previous output mapping operation may
have entered nonnull characters into the
field.

The flag area is normally set to X'OO'.
However, if the field has been modified
but no data has been sent (as, for
example, if it has been modified to all
nulls), the length area is set to zeros
and the flag area is set to X'80'.

Specifying ATTRB=FSET on the DFHMDF
macro (see page 163) causes the field to
be returned with the same length, flag,
and data areas as if the operator
entered it, unless the field was
originally nulls, in which case, length
is set to 0, flag is set to X'80', and
data is set to nulls,

Any fields that are entered as input but
are not defined in the map are
discarded. The length and data areas of
any fields defined but not keyed are set
to nulls (X'OO').

For a pen-detectable field, although no
data is passed, a single data byte is
reserved. This byte contains X'FF' if
the field is selected or X'OO' if the
field is not selected. The length area
of a pen-detectable field contains a
binary one if selected or a binary zero
if not.

OUTPUT MAPPING

For each output field, the starting
location, length, field characteristics,
and default data (if desired) must be
defined.

The fields of an output map are assigned
names in the DFHMDF macro. The
characteristic or attribute byte is
named "fieldname.A" or "groupname.A".
For a field contained within a group,
the data area is given the name
"fieldname.O", but there is no separate
attribute byte for the field. (Only the
group name has the attribute byte.) For
a group name, or a field not contained
within a group, the data area is given
the name "groupname.O" or "fieldname.O."

In assembler language programs, the
first byte of the first occurrence of a
field defined by OCCURS=n (where n is
greater than 1) is named "fieldname D",
and the first byte of the next
occurrence of the field is named
"fieldname N". These names refer to the
first byte of the length area if
DATA=FIELD is specified, and to the

first byte of the attribute data if
DATA=BLOCK is specified.

In COBOL and PL/I programs, "fieldname
D" is the name of the array of minor
structures containing the attribute byte
and data area of the field, together
with the unused two-byte length field
(described below). A field not
contained within a group is treated as a
group containing one field entry. An
unused two-byte length field precedes
each attribute byte and data field to
provide a format similar to an input
symbolic storage description TIOA.

Note that "." is a concatenation symbol
used here only to show how the symbolic
names are suffixed; the period is never
actually coded. For example, in the
case of field name XYZ, the data is
referred to as XYZO; the attribute byte
is referred to as XYZA.

If output maps are to be used by
application programs coded at command
level, the TIOAPFX=YES operand must be
specified in the DFHMSD or DFHMDI macros
that create the maps. Also, if the
symbolic description maps are referred
to by a PL/I program, the STORAGE=AUTO
operand must be specified in the DFHMSD
macro.

When defining fields, the user may
provide a name for any field that he
wishes to refer to at execution time.
Such names are associated with the
fields in the symbolic storage
definition of the TIOA to allow symbolic
references to be made to them. The user
may specify not only the characteristics
of the field but also the default data
to be written as output for a field when
no data is supplied for that field by an
application program. This facility
permits the specification of titles,
headers, and so forth, for output maps.
The user may temporarily override the
field characteristics, the data, or both
field characteristics and data of any
field for which he has specified a name.
The desired changes are simply inserted
into the TIOA under the specified field
name in the symbolic storage definition
(symbolic description map) in the
program.

Note: Output field data supplied by the
application program must not begin with
a null character (X'OO'), or the entire
field will be ignored by BMS. A
suitable character to use in the first
position is blank (X'40').

Pen-detectable fields should be "auto
skip" to prevent data from being keyed
into them. Because of the nature of
pen-detectable fields, in most
instances, they should not be modified.
If the data field is modified, the
application program must ensure that the
first character is a "1", ">", "&", or

148 CICS/VS Application Programmer's Reference Manual (Macro Level)

blank character; otherwise, the field is
no longer pen-detectable.

Fields that can be keyed should be
delimited by a stopper field to ensure
that all the data keyed and transmitted
can be mapped.

INPUT/OUTPUT MAPPING

Input/output (INOUT) maps combining all
the functions of input and output maps
can also be created using the DFHMSD,
DFHMDI, and DFHMDF macros.

The number of fields which can be
specified for a COBOL or PL/I
input/output map is limited. These
limits are stated in the description of
the DFHMDF macro later in this chapter.

MAP RETRIEVAL

Map sets placed in the CICS program
library are accessed by BMS through
program control DFHPC TYPE=LOAD macros.
Therefore, each map set name must be
entered in the processing program table
(PPT) by the system programmer. When
device-dependent map sets are placed in
the CICS program library, they must be
identified by the device-dependent
suffixed name, and a corresponding entry
of the same name must appear in the PPT.
(Device-dependent suffixes are described
below under the "mapset" name of the
DFHMSD macro and under the SUFFIX and
TERM operands of that macro.)

To avoid having to load a map set during
execution, an assembler language
programmer using the macro level
interface may include the map set in the
program, place the address of the map
set at TCAMSMSA, and code MSETADR=YES in
the DFHBMS macro. Alternatively, the
programmer may code MSETADR=symb-addr,
where the symbolic address is the label
of the map set. The MAP=map-name
specification must also be provided with
the MSETADR parameter to locate a
specific map within the map set.
Similarly, the MAPA DR operand enables an
assembler language programmer to
specify, directly or indirectly, the
address of an individual map.

COPYING SYMBOLIC DESCRIPTION MAPS

The symbolic description maps must be
copied into the application program as
shown in the following examples. These
examples use the macro level interface,
examples using the command level
interface are given in the appropriate
CICS Application Programmer's Reference
Manual (Command Level).

In the following examples, mapsetnamel,
mapsetname2, and mapsetname3 are the

names of members that contain the
assembly of a BMS symbolic storage
definition.

1. Assembler language COpy instructions
for each symbolic storage
definition. To ensure that each
definition overlays the same area,
the second and subsequent COPY
instructions must be preceded by an
ORG instruction to reposition the
assembler to the start of the TIOA
data area.

COpy DFHTIOA
COPY mapsetnamel
ORG TIOADBA
COPY mapsetname2
ORG TIOADBA
COpy mapsetname3

2. COBOL COPY statements for each
symbolic storage definition. In
this example, mapnamelI, mapname2I,
and mapname3I are the names of the
first maps in the map sets.

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TIOABAR PIC S9(8) COMPo

.
01 DFHCSADS COpy DFHCSADS.
01 DFHTCADS COpy DFHTCADS.
01 DFHTIOA COPY DFHTIOA.
01 mapnamelI COpy mapsetnamel.
01 mapname2I COpy mapsetname2.
01 mapname3I COPY mapsetname3.

Note: For MODE=IN and MODE=INOUT
the format of the COPY statement is:

01 mapnamelI COpy mapsetnamel

For MODE=OUT the format of the COpy
statement is:

01 mapnamel0 COpy mapsetnamel

3. PL/I XINCLUDE statements.

XINCLUDE DFHTIOA;
2 DUMMY CHARCI);

XINCLUDE mapsetnamel;
XINCLUDE mapsetname2;
XINCLUDE mapsetname3;

In addition to providing the BMS
symbolic storage definition for the
TIDA, the application programmer must
establish addressability for this
storage definition. Depending on the
programming language used, this is
accomplished as follows:

1. Assembler language L instruction to
set up TIOABAR, normally from
TCASCSA. For example:

Chapter 4.3. Basic Mapping Support 149

COpy DFHTIOA
COPY mapsetnamel
ORG TIOADBA
COpy mapsetname2
ORG TIOADBA
COpy mapsetname3

DFHSC TYPE=GETMAIN,
NUMBYTE=mapname.E-TIOADBA,
ClASS=TERMINAl,
INITIMG=OO

l TIOABAR,TCASCSA

Nate: BMS offline macros generate a
label at the beginning and end of
each map description and a label at
the end of each map set description;
these labels have the form
"mapname.S", "mapname.E", and
"mapsetname.T", respectively, where
"." is a concatenation symbol used
only for documentational purposes.
The start of each map, or map set,
can be referred to by the label
TIOADBA. Thus an assembler language
programmer can specify the amount of
storage required in the way shown in
the example above. The last l
instruction establishes TIOA
addressability.

2. COBOL 02 level statements
immediately following the COPY
statement for the linkage Section
Base locator (Bll). These 02
statements must be coded in the same
order as the corresponding 01
statements. For exampler

LINKAGE SECTION.
01 DFHBllDS COPY DFHBllDS.

02 TIOABAR PIC S9(8) COMPo
02 MAPBASEI PIC S9(8) COMPo
02 MAPBASE2 PIC S9(8) COMPo
02 MAPBASE3 PIC S9(8) COMPo

01 DFHTIOA COpy DFHTIOA.
01 mapnamel COPY mapsetnamel.
01 mapname2 COPY mapsetname2.
01 mapname3 COpy mapsetname3.

PROCEDURE DIVISION.

DFHSC TYPE=GETMAIN,NUMBYTE=120,
ClASS=TERMINAl,INITIMG=OO
MOVE TCASCSA TO TIOABAR.
ADD 12 TIOABAR
GIVING MAPBASE1.
MOVE MAPBASEI
TO MAPBASE2 MAPBASE3.

3. Set up the Pl/I based pointer
variable (BMSMAPBR) on which the map
structures are based. For exampler

Y.INClUDE DFHTIOA;;
Y.INCLUDE mapsetname1;
Y.INClUDE mapsetname2;
Y.INCLUDE mapsetname3;

DFHSC TYPE=GETMAIN,
NUMBYTE=120,
CLASS=TERMINAl,
INITIMG=OO

TIOABAR=TCASCSA;
BMSMAPBR=ADDR(TIOADBA);

Note that this code assumes that the
TIOAPFX operand of the DFHMSD and DFHMDI
macros has been omitted or coded as
TIOAPF. Each of the maps (mapsetname
1-3) is based on the same pointer
variable - BMSMAPBR.

MAP DEFINITION MACROS

The syntax and operand descriptions of
the three map definition macros (DFHMSD,
DFHMDI, and DFHMDF) are given below.

You should refer to the appropriate CICS
Application Programmer's Reference
Manual (Command Level) for descriptions
of the additional attributes field
outlining (OUTLINE), mixed DBCS and
EBCDIC fields (SOSI), and background
transparency (TRANSP) that are new for
this release.

DEFINING A MAP SET (DFHMSD MACRO)

BMS generates and stores map sets in the
CICS program library under the names
selected by the application programmers.
A reference to one map in the map set
causes the entire map set to be loaded
into storage for the duration of the
task, or until another map set is
referred to by the task.

Information pertaining to an entire map
set is specified in the DFHMSD macro,
which always appears at the beginning
and end of each map set generation. The
one at the beginning indicates whether
physical maps or symbolic description
maps are being generated; the one at the
end indicates the end of the map set.

All operands other than the TYPE operand
of a DFHMSD macro are the same for a
physical map generation run and for the
corresponding symbolic description map
generation run. The application
programmer should specify TYPE=MAP for
the former, and TYPE=DSECT for the
latter. Alternatively, physical maps
and symbolic description maps can be
assembled in the same job by the use of
job control language options, as

150 CICS/VS Application Programmer's Reference Manual (Macro level)

described in the appropriate CICS
Installation and Operations Guide.

The format of the DFHMSD macro is shown
in Figure 15.

The operands of the DFHMSD macro are as
follows:

mapset
is the one- to seven-character name
of the map set, to be specified in
the MAPSET operand of any DFHBMS
macro that refers to the map set.
The name must begin with an
alphabetic character and, if the
map is to reside in the CICS
program library, must differ from
other map names or program names.

A suffix specified by the SUFFIX
operand, or based on the terminal
type specified in the TERM operand
of the DFHMSD macro is appended to
the map set name during assembly.
This suffixed name is the name that
should be used in the NAME card
(CICS/OS/VS) or the PHASE card
(CICS/DOS/VS) in cataloging the map
set (see the appropriate CICS
Installation and Operations Guide
for further details), and the name
that should be specified by the
system programmer in the PPT entry
(see the appropriate CICS Resource
Definition manual). The suffixes
are tabulated in the description of
the TERM operand, below.

When a mapping operation is
requested by means of a DFHBMS
macro in an application program,
CICS automatically appends a
similar suffix to the map set name
specified in that macro, and
attempts to load a map set with the
suffixed name. If the load is
unsuccessful, that is, the suffixed
map set name cannot be found in the
library, CICS will load a map set
with an unsuffixed name (equivalent
to being suffixed with a blank).
CICS obtains the suffix from the
TCT terminal entry for the
appropriate terminal (either the
terminal associated with the
transaction or, for routing, the
destination terminal), and this
suffix depends on the terminal type
specified in the TRMTYPE operand
(together with the SESTYPE operand
for VTAM terminals) of the DFHTCT
TYPE=TERMINAL (or TYPE=LINE) macro.

If the alternate page size is being
used, as specified by the ALTPGE
operand of the DFHTCT TYPE=TERMINAL
system macro, and the ALTSFX
operand of that same system macro
has also been specified, an attempt
will be made to load the map set
that has the alternate suffix
specified in the SUFFIX operand of
the DFHMSD macro. If this load is

TYPE=

unsuccessful, normal map set
selection will occur.

For example, if two maps are
assembled, one with TERM=CRLP and
the other with TERM=ALL, the first
will be suffixed with A and the
second with blank (that is,
unsuffixed). The system programmer
should use'these suffixed names in
the PHASE/NAME cards and in the PPT
entry. If a CICS transaction now
routes a message to two terminals,
one of which has TRMTYPE=CRLP and
the other TRMTYPE=L3277, TRMMODL=2,
BMS will attempt to load mapset.A
and mapset.M to do the mapping in
the two cases. The second of these
will be unsuccessful, so BMS will
then look for the unsuffixed map
set name for routing to the 3277.

indicates the generation function
of the macro. If both map and
DSECT are to be generated in the
same job, the SYSPARM option can be
used in the assembler job execution
step, as described in the
appropriate CICS Installation and
Operations Guide.

DSECT
-----indicates that this is a

symbolic description map
generation run to create the
list of field names to be
copied into an application
program. If a single map set
is to be used by application
programs written in different
languages, a separate DFHMSD
TYPE=DSECT macro must be
written for each language to
put the table of field names
into the copy library of the
language.

HAP

FINAL

indicates that this is a
physical map generation run to
create the control information
block used by BMS to perform
mapping. This physical map is
stored in the CICS program
library and loaded as required
by BMS. The assembler
language application
programmer can, alternatively,
generate the map in his
program and pass the address
of the map to BMS instead of
using this facility to
generate and store the map
beforehand in the CICS program
library.

must be coded in the DFHMSD
macro that marks the end of
the map set. If other
parameters are coded in the
DFHMSD TYPE=FINAL macro, they
will be ignored.

Chapter 4.3. Basic Mapping Support 151

mapset DFHMSD TYPE={~IMAPIFINAL}
[,BASE=namel
[,COLOR={DEFAULTIBLUEIREDlPINKIGREENITURQUOISEI

YELLOW NEUTRAL}
[,CTRL=([PRINT][1{L40IL64llS0IHONEOM}]

[1FREEKB][1ALARM] ,FRSET])]
[,DATA=<FIElDIBLOCK}]
[,EXTATT={NOIYESIMAPONLY}]
[,HILIGHT={OFFIBLINKIREVERSEIUNDERLINE}]
[,HTAB=tab[,tab] .•.]
[,LANG={ASMICOBOLIPLI}]
[,LDC=mnemonic]
[,MODE={INIOUIIINOUT)]
[,OBFMT={YE$lNO}]
[,PS={BASElpsid)]
[,STORAGE=AUTO)
[,SUFFIX=n]
[,TERM=terminal-type]
[,TIOAPFX={YESINQ})
[,VALIDN=([MUSTFILL][,MUSTENTER])]
[,VTAB=tab[,tab) ...)

Figure IS. DFHMSD Macro (Define a Map Set)

BASE=name
is used to indicate that the same
storage base will be used for the
symbolic description maps from more
than one map set. The same name is
coded in the BASE operand for each
map set that is to share the same
storage base. Since all map sets
with the same base describe the
same storage, data related to a
previously-used map set may be
overwritten when a new map set is
used. Furthermore, different maps
within the same map set will also
overlay one another.

This operand is not valid for
assembler language programs.

As an example, assume that the
following DFHMSD macros are used to
generate symbolic description maps
(symbolic storage definitions) for
two map sets.

MAPI DFHMSD TYPE=DSECT,
TERM=27S0,
LANG=COBOL,
BASE=DATAREA1,
MODE=IN

MAP2 DFHMSD TYPE=DSECT,
TERM=3270,
LANG=COBOL,
BASE=DATAREA1,
MODE=OUT

The symbolic storage definitions of
this example might be referred to
in a COBOL application program as
follows:

LINKAGE SECTION.
01 DFHBLLDS COpy DFHBLLDS.

02 TIOABAR PIC S9(S) COMPo
02 MAPBASEI PIC S9(S) CaMP.

01 DFHTIOA COPY DFHTIOA.
01 DATAREAl PIC X(1920).
01 name COpy MAPI.
01 name COpy MAP2.

MAPI and MAP2 multiply redefine
DATAREA1; only one 02 statement is
needed to establish addressability.
However, the program can only use
the fields in one of the symbolic
map areas at a time.

If BASE=DATAREAl is deleted from
this example, an additional 02
statement is needed to establish
addressability for MAP2; the 01
DATAREAl statement is not needed.
The program could then refer to
fields concurrently in both
symbolic map areas.

In PL/I application programs, the
name specified in the BASE operand
is used as the name of the pointer
variable on which the symbolic
storage definition is based. If
this operand is omitted, the
default name (BMSMAPBR) is used for
the pointer variable. The PL/I
programmer is responsible for
establishing addressability for the
based structures.

COLOR=
specifies the default color for all
fields in all maps in a map set
unless overridden explicitly by the

152 CICS/VS Application Programmer's Reference Manual (Macro Level)

COLOR operand of a DFHMDI or DFHMDF
macro. If this operand is
specified when EXTATT=NO, a warning
will be issued and the operand
ignored. If this operand is
specified, but EXTATT is not,
EXTATT=MAPONLY will be assumed.
Refer to the EXTATT operand for
device dependencies.

CTRL=
is used to specify device
characteristics related to
terminals of the 3270 Information
Display System. CTRL=ALARM is
valid for TCAM 3270 SDLC and
VTAM-supported terminals (except
interactive and batch logical
units); all other parameters for
CTRL are ignored. To be effective,
this operand must be specified on
the last (or only) map of a page
unless the CTRL operand of the
DFHBMS macro is being used to
override the corresponding operand
in the DFHMSD macro. If the CTRL
operand is specified in the DFHMDI
macro, it cannot be specified in
the DFHMSD macro.

PRINT
must be specified if the
printer is to be started; if
omitted, the data is sent to
the printer buffer but is not
printed. This operand is
ignored if the map set is used
with 3270 displays without the
Printer Adapter feature.

L40, L64, L80, HONEOM
are mutuallY exclusive options
that control the line length
on the printer. L40, L64, and
L80 force a carrier
return/line feed after 40, 64,
or 80 characters,
respectively. HONEOM causes
the default line printer
length to be used.

FREEKB
specifies that the keyboard
should be unlocked after this
map is written out. If
omitted, the keyboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

ALARM

FRSET

activates the 3270 audible
alarm feature. For a VTAM
terminal ALARM signals BMS to
set the alarm flag in the
function management header;
this feature is not supported
by interactive and batch
logical units.

indicates that the modified
data tags (MDTs) of all fields
currently in the 3270 buffer

DATA=

are to be reset to a
not-modified condition (that
is, field reset) before any
map data is written to the
buffer. This allows the
DFHMDF ATTRB specification for
the requested map to control
the final status of any fields
written or rewritten in
response to a DFHBMS macro.

specifies the format of the data as
seen by the application program.

FIELD

BLOCK

indicates that the data is
passed as contiguous fields in
the following formata

ILL I A I da ta • • .

LL is two bytes specifying the
length of the data as input
from the terminal (this field
is ignored in output
processing). A is a byte into
which the programmer may place
an attribute to override that
specified in the map used to
process this data (see
"Standard Attribute List and
Printer Control Characters
(DFHBMSCA)," later in this
chapter) .

indicates that the data is
passed as a continuous stream
which is processed as line
segments of the length
specified in the map used to
process this data set. The
data is in the form that it
appears on the terminal; that
is, it contains data fields
and interspersed blanks
corresponding to any spaces
that are to appear between the
fields on output. The first
byte of each line is the
attribute byte; it is not
available for data.
EXTATT=YES cannot be used if
DATA=BLOCK is specified.

I A Idata fieldlspace .•.

The data type associated with any
map depends on the DATA
specifications, or lack thereof, in
both the DFHMSD and DFHMDI macrOSI

1. A DATA operand in a DFHMDI
macro will always override that
in a DFHMSD macro.

2. If no DATA operand is coded in
the DFHMDI macro, the DATA
operand in the DFHMSD macro
will apply.

Chapter 4.3. Basic Mapping Support 153

3. If no DATA operand is coded in
either macro, DATA=FIELD is the
default.

EXTATT=
specifies whether the extended
attributes (COLOR, HILIGHT, PS, and
VALIDN) are supported.

YES

specifies that the extended
attributes are not supported;
the physical and symbolic
description maps will be the
same as those generated under
Version 1 Release 4. "NO" is
the default unless COLOR,
HILIGHT, PS, or VALIDN is
specified in the DFHMSD macro,
in which case EXTATT=MAPONLY
will be assumed. If the TERM
operand is specified and is
other than 3270, 3270-1,
3270-2, or ALL, EXTATT=MAPONLY
or EXTATT=YES will be invalid,
and the COLOR, HILIGHT, PS,
and VALIDN operands on the
DFHMSD, DFHMDI, and DFHMDF
macros will be invalid.

specifies that the extended
attributes can be specified in
a map, and that they can be
modified dynamically. The
symbolic description map
(DSECT) will contain subfields
for the attributes, identified
by suffixes C (for COLOR), H
(for HILIGHT), P (for PS), and
V (for validation).

MAPONLY

HILIGHT=

specifies that the extended
attributes can be specified in
a map, but that the resulting
symbolic description map will
contain no fields for them,
and that it will be the same
as· one generated under Version
1, Release 4. This operand
can be used to add the
extended attributes to an
existing map without
recompiling the application
program.

specifies the default highlighting
attribute for all fields in all
maps in a map set. See the EXTATT
operand for device dependencies.

BLINK

is the default and means that
no highlighting is used.

specifies that the field is to
"blink" at a set frequency.

REVERSE
specifies that the field is
displayed in "reverse video",

for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a field is
underlined.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

HTAB=tab[,tabJ •••

LANG:

specifies one or more tab positions
for use with interactive and batch
logical units having horizontal
forms control.

specifies the language in which the
application program referring to a
symbolic description map is written
and, hence, is applicable for only
a DFHMSD TYPE=DSECT macro.

ASH

COBOL

PLI

RPG

indicates that the symbolic
description map is to be
referred to by an assembler
language program.

indicates that the symbolic
description map is to be
referred to by a COBOL
program.

indicates that the symbolic
description map is to be
referred to by a PL/I program.

indicates that the symbolic
description map is to be
referred to by an RPGII
program. This parameter is
valid for CICS/DOS/VS only.

LDC=mnemonic

HODE=

specifies the mnemonic to be used
by CICS to determine the logical
device code that is to be used for
a BMS output operation and
transmitted in the function
management header to the logical
unit if no lDC operand has been
specified on any previous BMS
output in the logical message.
This operand is used only for TCAM
and VTAM-supported 3600 terminals,
and batch logical u"ni ts.

IN
indicates an input map
generation.

154 CICS/VS Application Programmer's Reference Manual (Macro level)

INOUT

indicates an output map
generation.

indicates that the map
definition is to be used for
both input and output mapping
operations.

Note: Input mapping is not
available for VTAM-supported 3600
terminals. However, INOUT may be
specified for map generation. The
map can then be used as a dummy
input map for input operations
using the DFHBMS TYPE=IN macro.

OBFMT=

PS=

specifies whether outboard
formatting is to be used. This
operand is available only for 3650
logical units. Refer to the
appropriate CICS 3650/3680 Guide
for details of 3650 logical units
and of outboard formatting.

YES
indicates that all maps within
this map set are eligible for
use in outboard formatting,
except those for which
OBFMT=NO is specified in the
DFHMDI macro.

indicates that no maps within
this map set are eligible for
use in outboard formatting,
except those for which
OBFMT=YES is specified in the
DFHMDI macro.

specifies that programmed symbols
are to be used. see the EXTATT
operand for device dependencies.

psid

specifies that only the basic
symbols are used.

specifies a single EBCDIC
character or a hexadecimal
code on the form X'nn', that
identifies the set of
programmed symbols.

If PS is specified when EXTATT=NO,
a warning is issued and the option
ignored. If PS is specified, but
EXTATT is not, EXTATT=MAPONlY will
be assumed.

STORAGE=AUTO

Specifies, for assembler language
programs, that separate maps within
a map set are to occupy separate
storage, not to overlay one
another.

Specifies, for COBOL programs, that
the symbolic storage definitions of
the maps in the map set are to be
separate (that is, not.redefined)
areas. This operand is used when
the symbolic storage definitions
are copied into the WORKING-STORAGE
section of a program using the
command level interface and the
storage for the separate maps in
the map set is to be used
concurrently. (For information
about the command level interface,
see the appropriate CICS
Application Programmer's Reference
Manual (Command level).

Specifies, for PL/I programs, that
the symbolic storage definitions
are to be declared as having the
AUTOMATIC storage class. If not
specified, the symbolic storage
definitions are declared as having
the BASED storage class.

If STORAGE=AUTO is specified,
BASE=name cannot be used. If
STORAGE=AUTO is specified and
TIOAPFX is not specified,
TIOAPFX=YES is assumed.

SUFFIX=n
specifies a one-character map set
suffix that overrides any suffix
implied by the TERM operand. A
message will indicate that the TERM
operand has been ignored. The user
should catalog the map set, with
this suffixed name, in the program
library, and ensure also that there
is no conflict with a generated
name of another version of the map.
The use of numeric suffixes would
help prevent conflict.

TERM=terminal type
indicates the type of output device
or logical unit associated with the
map set. The parameters that may
be coded after TERM= are given in
the left-hand column of the table
below.

TERM=

CRLP
TAPE
DISK
TWX
1050
2740
2741
2770
2780
3780
3270-1 (40-col display)
3270-2 (80-col display)
INTLUI376713770IISCSI
2980
2980-4
3270
3601
3653 2

3650Up3

Suffix

A
B
C
D
E
F
G
I
J
K
l
M
P
Q
R
blank
U
V
W

Chapter 4.3. Basic Mapping Support 155

3650/3270 4

BCHLUI3770B'
ALL

x
Y
blank

1 Use also for all interactive LUs,
the 3790 full function LU, and
SCS-printer LUs (3270 and 3290).

2 Use also for host conversational
(3653) LU.

~ Use also for interpreter LU.

4 Use also for host conversational
(3270) LU.

, Use also for all batch and
batch data interchange LUs.

For TCAM-connected terminals (other
than 3270 or SNA devices), use
either CRLP or ALL; for
TeAM-connected 3270s or SNA
devices, select the appropriate
parameter in the normal way.

The application programmer who
specifies ALL in the TERM operand
must be certain that
device-dependent characters are not
1ncluded in the map set and must
ensure that format characteristics
such as page size are suitable for
all input/output operations (and
all terminals) in which the map set
will be applied. For example, some
terminals are limited to 480 bytes,
others to 1920 bytes; the 3604 is
limited to six lines of 40
characters each. Within these
guidelines, use of ALL can offer
important advantages. Since an
assembly run is required for each
map generation, a specification of
ALL, indicating that one map is to
be used for multiple terminals, can
result in significant time and
storage savings.

However, better run-time
performance for maps used by single
terminal types will be achieved if
the terminal type (rather than ALL)
is specified in the TERM operand.
Alternatively, the BMS support for
device-dependent map sets can be
left ungenerated by specifying
NODDS in the BMS operand of the
DFHSIT system generation macro.
(See the appropriate ~
Customization Guide for further
details.)

TIOAPFX=
specifies whether BMS should
include a filler in the symbolic
TIOA description(s) to allow for
the unused TIOA prefix. If this
operand is coded, the same storage
address-may be used for TIOABAR and
the map base.

YES
indicates that the filler
should be included in the
symbolic TIOA description(s).
This operand is ignored unless
TYPE=DSECT is coded. If
TIOAPFX=YES is coded, all maps
within the map set have the
filler, except when TIOAPFX=NO
is coded on the DFHMDI macro.

is the default and indicates
that the filler is not to be
included. The filler may
still be included for a
specific map if TIOAPFX=YES is
coded on the DFHMDI macro.

Nate: In previous versions of
CICS, it has not been valid to code
TIOAPFX=YES for an assembler
language application program. If
this operand was coded in this way,
CICS disregarded it and applied the
default specification (TIOAPFX=NO).
In CICS Version 1.4, it is valid to
code TIOAPFX=YES for an assembler
program: doing so will thus produce
a different object program under
CICS/VS 1.4 from that which would
be produced under earlier versions.

VALIDN=

MUSTFILL
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before
it has been filled, or to
transmit data from an
incomplete field, will raise
the inhibit input condition.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor
from an empty field will raise
the inhibit input condition.

See the EXTATT operand for device
dependencies.

VTAB=tabE,tabl •••
specifies one or more tab positions
for use with interactive and batch
logical units having vertical forms
control.

DEFINING A MAP (DFHMDI MACRO)

The DFHMDI macro is used to define a
single map. It defines the size of the
data to be mapped and its position
within the input or output. When
defining more than one map within a map
set, the corresponding number of DFHMDI
macros must be used.

If the maps are for use in a COBOL
program, and STORAGE=AUTO has been

156 CICS/VS Application Programmer's Reference Manual (Macro Level)

specified in the DFHMSD macro, they must
be specified in descending size sequence
(size refers to the generated 01 level
COBOL data areas and not to the size of
the map on the screen). The format of
the DFHMDI macro is shown in Figure 16
on page 158.

The operands of the DFHMDI macro are as
follows:

map
is the one- to seven-character name
of the map, to· be specified in the
MAP operand of any DFHBMS macro
that refers to the map.

Map names within a map set, or
within multiple map sets that are
copied into one application
program, should be unique.

COLOR=
specifies the default color for all
fields in a map unless overridden
explicitly by the COLOR operand of
a DFHMDF macro. If this option is
specified when EXTATT=NO, a warning
will be issued and the option
ignored.

COLUMN=
specifies the column in a line at
which the map is to be placed, that
is, it establishes the left or
right map margin. The JUSTIFY
specification controls whether map
and page margin selection and
column counting are to be done with
reference to the left or right side
of the page. The columns between
the specified map margin and the
page margin are not available for
subsequent use on the page for any
lines included in the map.

number

NEXT

is the column from the left or
right page margin where the
left or right map margin is to
be established.

indicates that the left or
right map margin is to be
placed in the next available
column from the left or right
on the current line.

indicates that the left or
right map margin is to be
established in the same column
as the last map used that
specified COlUMN=number and
the same JUSTIFY parameters as
this macro.

Refer to the section "Map
Positioning" on page 170 for a more
detailed discussion.

CTRL=
is used to specify device
characteristics related to
terminals of the 3270 Information
Display System. CTRl=AlARM is
valid for TCAM SNA 3270 SDLC and
VTAM-supported terminals (except
interactive and batch logical
units); all other parameters for
CTRl are ignored. To be effective,
this operand must be specified on
the last (or only) map of a page
unless the CTRl operand of the
DFHBMS macro is being used to
override the corresponding operand
in the DFHMSD macro. If the CTRL
operand·is specified in the DFHMDI
macro, it cannot be specified in
the DFHMSD macro.

PRINT
must be specified if the
printer is to be started; if
omitted, the data ·is sent to
the printer buffer but is not
printed. This operand is
ignored if the BMS output
request is directed to a 3270
display without the Printer
Adapter feature.

L40, L64, L80, HONEOM
are mutually exclusive options
that control the line length
on the printer. l40, l64, and
l80 force a carrier
return/line feed after 40, 64,
or 80 characters,
respectively. HONEOM causes
the default line printer
length to be used.

FREEKB

ALARM

FRSET

specifies that the keyboard
should be unlocked after this
map is written out. If
omitted, the keyboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

activates the 3270 audible
alarm feature. For a VTAM
terminal, ALARM signals BMS to
set the alarm flag in the
function management header;
this feature is not applicable
to interactive and batch
logical units.

indicates that the modified
data tags (MDTs) of all fields
currently in the 3270 buffer
are to be reset to a
not-modified condition (that
is, field reset) before any
map data is written to the
buffer. This allows the
DFHMDF ATTRB specification for
the requested map to control
the final status of any fields

Chapter 4.3. Basic Mapping Support 157

map DFHMDI [,COLOR={DEFAULTIBLUEIREDIPINKIGREENITURQUOISEI
YELLOWINEUTRAL}]

r,COLUMN={numberINEXTISAME}]
[,CTRL=([PRINT][,{L40 L64IL80IHONEOM}]

[,FREEKB][,ALARM][,FRSET])]
[,DATA={FIELDIBLOCK}]
[,EXTATT={NQ!YESIMAPONLY}]
[,HEADER=YES
[,HILIGHT={OFFIBLINKIREVERSEIUNDERLINE})
[,JUSTIFY=([{LEFTIRIGHT}][,{FIRSTILAST}])]
[,LINE={numberINEXTISAME}]
[,OBFMT={YESINO}]
[,PS={BASElpsid}]
[,SIZE=(line,column)]
[,TIOAPFX={YESINO}]
[,TRAILER=YES]
[,VALIDN=([MUSTFILL][,MUSTENTER])]

Figure 16 .. DFHMDI Macro (Define a Map)

DATA=

written or rewritten in
response to a DFHBMS macro.

specifies the format of the data as
seen by the application program.

FIELD
indicates that the data is
passed as contiguous fields in
the following format:

LL is two bytes specifying the
length of the data as input
from the terminal (this field
is ignored in output
processing). A is a byte into
which the programmer may place
an attribute to override that
specified in the map used to
process this data. See
"Standard Attribute List and
Printer" on page 181.

BLOCK
indicates that the data is
passed as a continuous stream
which is processed as line
segments of the length
specified in the map used to
process this data set. The
data is in the form that it
appears on the terminal; that
is, it contains data fields
and interspersed blanks
corresponding to any spaces
that are to appear between the
fields on output. The first
byte of each line is the
attribute byte; it is not
available for data.

A Idata fieldlspace ...

EXTATT=

A DATA specification in a
DFHMDI macro overrides a DATA
specification in a DFHMSD
macro.

specifies whether the extended
attributes (COLOR, HILIGHT, PS, and
VALIDN) are supported.

NO

YES

specifies that the extended
attributes are not supported;
the physical and symbolic
description maps will be the
same as those generated under
Version 1 Release 4. "NO" is
the default unless COLOR,
HILIGHT, PS, or VALIDN is
specified in the DFHMSD macro,
in which case EXTATT=MAPONLY
will be assumed. If the TERM
operand is specified and is
other than 3270, 3270-1,
3270-2, or ALL, EXTATT=MAPONLY
or EXTATT=YES will be invalid,
and the COLOR, HILIGHT, PS,
and VALIDN operands on the
DFHMSD, DFHMDI, and DFHMDF
macros will be invalid.

specifies that the extended
attributes can be specified in
a map, and that they can be
modified dynamically. The
symbolic description map
(DSECT) will contain subfields
for the attributes, identified
by suffixes C (for COLOR), H
(for HILIGHT), P (for PS), and
V (for·validation).

MAPONLV
specifies that the extended
attributes can be specified in
a map, but that the resulting
symbolic description map will
contain no fields for them,

158 CICS/VS Application Programmer's Reference Manual (Macro Level)

HEADER=YES

and that it will be the same
as one generated under Version
I, Release 4. This operand
can be used to add the
extended attributes to an
existing map without
recompiling the application
program.

allows this map to be used during
PAGEBLD overflow without
terminating the overflow condition.
See "PAGEBLD Overflow Processing"
on page 173. This operand may be
specified for more than one map in
a map set.

HILIGHT=
specifies the default highlighting
attribute for all fields in a map.

is the default and means that
no highlighting is used.

BLINK
specifies that the field is to
"blink" at a set frequency.

REVERSE
specifies that the field is
displayed in "reverse video",
for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a field is
underlined.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored.

JUSTIFY=
describes the margins on a page in
which a map is to be formatted.

RIGHT

FIRST

indicates that the map is to
be positioned starting at the
specified column from the left
margin on the specified line.

indicates that the map is to
be positioned starting at the
specified column from the
right margin on the specified
line.

indicates that the map is to
be positioned as the first map
on a new page. Any partially
formatted page from preceding
DFHBMS requests is considered
to be complete. This operand
can be specified for only one
map per page.

LINE=

LAST
indicates that the map is to
be positioned at the bottom of
the current page. _ This
operand can be specified for
multiple maps to be placed on
one page. However, maps other
than the first map for which
it is specified must be able
to be positioned horizontally
without requiring that more
lines be used.

LEFT and RIGHT are mutually
exclusive, as are FIRST and LAST.
If neither LEFT nor RIGHT is
specified, LEFT is assumed. If
neither FIRST nor LAST is
specified, the data is mapped at
the next available position as
determined by other parameters of
the map definition and the current
mapping operation. FIRST and LAST
are ignored unless PAGEBLD is
specified, since otherwise only one
map is placed on each page.

Refer to the section "Map
Positioning" on page 170 for a more
detailed discussion.

specifies the starting line on a
page in which data for a map is to
be formatted.

number

SAME

is a value from 1 to 240,
indicating a starting line
number. A request to map data
on a line and column that has
been formatted in response to
a preceding request causes the
current page to be treated as
though complete. The new data
is formatted at the requested
line and column on a new page.

indicates that formatting of
data is to begin on the next
available completely empty
line. If LINE=NEXT is
specified in the DFHMDI macro,
it is ignored for input
operations and LINE=l is
assumed.

indicates that formatting of
data is to begin on the same
line as that used for a
preceding DFHBMS request. If
the data does not fit on the
same line, it is placed on the
next available completely
empty line.

Refer to the section "Map
Positioning" on page 170 for a more
detailed discussion.

Chapter 4.3. Basic Mapping Support 159

OBFMT=

PS=

SIZE=

specifies whether outboard
formatting is to be used. This
operand is available only for 3650
logical units. Refer to the
appropriate CICS IBM 3650/3680
Guide for details of 3650 logical
units and of outboard formatting.

If OBFMT is not coded in the DFHMDI
macro, the OBFMT specification in
the DFHMSD macro is used.

YES

NO

indicates that this map is to
be used with outboard
formatting.

indicates that this map is not
to be used with outboard
formatting.

specifies that programmed symbols
are to be used.

psid

specifies that only the basic
symbols are used.

specifies a single EBCDIC
character or a hexadecimal
code on the form X'nn', that
identifies the set of
programmed symbols.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored.

gives the dimensions of a map in
terms of length and width.

line
is a value from 1 to 240,
indicating the length of a map
as a number of lines.

column
is a value from 1 to 240,
indicating the width of a map
as a number of characters per
line. Space for the attribute
byte should be included in the
column specification.

The SIZE operand is required in the
following cases:

• A POS=(line,column)
specification is given in a
DFHMDF macro defining a
specific field within this map.

•

•

This map is to be referred to
in a DFHBMS TYPE=PAGEBlD macro,.

This map is to be used when
referring to input data from
other than a 3270 terminal in a

TIOAPFX=

DFHBMS TYPE=IN or DFHBMS
TYPE=MAP macro.

specifies whether or not BMS should
include a filler in the symbolic
TIOA description to allow for the
unused TIOA prefix. If this
operand is coded, the same storage
address may be used for TIOABAR and
the map base. If this operand is
not coded, the TIOAPFX
specification derived from the
DFHMSD macro is used.

YES

NO

indicates that the filler
should be included in the
symbolic TIOA description for
this map. This operand is
ignored unless TYPE=DSECT is
coded on the DFHMSD macro.

indicates the filler is not to
be included for this map.

Note: In previous versions of
CICS, it has not been valid to code
TIOAPFX=YES for an assembler
language application program. If
this operand was coded in this way,
CICS disregarded it and applied the
default specification (TIOAPFX=NO).
In eICS In CICS Version 1.4, it is
valid to code TIOAPFX=YES for an
assembler program: doing so will
thus produce a different object
program under CICS/VS 1.4 from that
which would be produced under
earlier versions.

TRAILER=YES
allows this map to be used during
PAGEBlD overflow without
terminating the overflow condition
(see "PAGEBLD Overflow Processing,"
later in this chapter). This
operand may be specified for more
than one map in a map set. If a
trailer map is used other than in
the overflow environment, the space
normally reserved for overflow
trailer maps is not reserved while
mapping the trailer map.

VALIDN=

MUSTFILL
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before
it has been filled, or to
transmit data from an
incomplete field, will raise
the inhibit input condition.

MUST ENTER
specifies that data must be
entered into the field. An
attempt to move the cursor
from an empty field will raise
the inhibit input condition.

160 CICS/VS Application Programmer's Reference Manual (Macro level)

DEFINING A FIELD (DFHMDF MACROl

The DFHMDF macro is used to define one
field in a map. One DFHMDF macro is
required for each field, giving
information such as symbolic field name,
field position, field length, attribute
byte (for 3270 terminals), initial
constant data, justification of input,
and COBOL or PL/I data picture.

The maximum number of named fields that
can be defined for a COBOL or PL/I
input/output map is 1023.

The format of the macro is shown in
Figure 17 on page 162.

The operands of the DFHMDF macro are as
foilowsl

fld

pos=

is the 1 through 7-character name
of the field, used as a symbolic
r.eference to the field by the
application program.

Field names within a map, or within
multiple maps that are copied into
one application program, should be
unique.

Although specification of a field
name is not required for every
field within a map, a field name
must be specified for at least one
field of any map to be compiled
under COBOL or PL/I. All fields
within a group must have names.

If no name is specified for a
field, an application program
cannot access the field map to
change its attributes or alter its
contents. For an output map,
omitting the field name may be
appropriate when the INITIAL
operand is used to specify field
contents. If a field name is
specified and the map that includes
the field is used in a mapping
operation, any data supplied by the
user overlays data supplied by
initialization (unless DATA=NO is
specified or assumed by default).

is used to specify the individually
addressable character location in a
map at which the attribute byte
that precedes this field is
positioned. Specification of the
DFHMDF macro must be sequenced by
the POS operand except for output
mapping operations using
DATA=FIELD.

The POS operand defines the
location of fields in a map. The
location of data on the output
medium is dependent on DFHMDI macro
parameters as well.

For each field definition (DFHMDF
macro), the first position is
reserved for an attribute byte.
When supplying data for input
mapping from non-3270 devices, the
actual input data must allow space
for this attribute byte. Input
data must not start in column 1 but
may start in column 2.

The POS operand always contains the
location of the first position in a
field, which is normally the
attribute byte when communicating
with the 3270. For the second and
subsequent fields of a group, the
POS operand points to an assumed
attribute-byte position, ahead of
the start of the data, even though
no actual attribute byte is
necessary. If the fields follow on
immediately from one another, the
POS operand should point to the
last character position in the
previous field in the group.

When a position number is coded
which represents the last character
position in the 3270, then two .
special rules apply:

• The IC attribute should not be
coded on that DFHMDF macro.
The cursor may be set to
location zero by using the
cursor operand of the DFHBMS
macro.

• If the field is to be used in
an output mapping operation
with the DATA=ONLY
specification, an attribute
byte for that field must be
supplied in the TIOA by the
application program.

number
is an absolute displacement
(relative to zero) from the
beginning of the map being
defined.

(line,columnl

ATTRB=

are line and column
specifications (relative to
one) within the map being
defined.

is applicable only to fields to be
displayed on a 3270 and specifies
device-dependent characteristics
and attributes, such as the
capability of a field to receive
data or the intensity to be used
when the field is output. If the
ATTRB operand is specified within a
group of fields, it must be
specified in the first field entry.
A group of fields appears as one
field to the 3270. Therefore, the
ATTRB specification refers to all
of the fields in a group as one
field rather than as individual

Chapter 4.3. Basic Mapping Support 161

[fld] DFHMDF [,POS=(numberICline,column)}]
[,ATTRB=C[(ASKIPIPROTIUNPROT[,NUM]}],{BRTINORMIDRK}]

[,DET][,IC][,FSET])]
[,COLOR={DEFAULTIBLUEIREDIPINKIGREENITURQUOISEI

YELLOWINEUTRAL}]
[,GRPNAME=group-name]
[,HILIGHT={OFFIBLINKIREVERSEIUNDERLINE}]
[,INITIAL='character data'IXINIT=hexadecimal datal
[,JUSTIFY=C[{LEFTIRIGHT}][,{BLANKIZERO}])]
[,LENGTH=numberl
[,OCCURS=number]
[,PICIN='value']
[,PICOUT='value'l
[,PS={BASE!psid}]
[,VALIDN=(MUSTFILL][,MUSTENTER1)]

Figure 17. DFHMDF Macro (Define a Field)

fields. (Refer to the publication
An Introduction to the IBM 3270
Information Display System for a
full explanation of the effects of
the attribute byte settings.)

This operand applies only to 3270
data stream devices; it will be
ignored for other devices,
including the SCS Printer Logical
Unit. It will also be ignored if
PROPT=NLEOM is specified on the
DFHBMS TYPE=PAGEBLD macro for
transmission to a 3270 printer. In
particular, ATTRB=DRK should not be
used as a method of protecting
secure data on output. It could,
however, be used for making an
input field non-display for secure
entry of a password from a screen.

For input map fields, DET and NUM
are the only valid options; all
others are ignored.

ASKIP

PROT

indicates that data cannot be
keyed into the field and
causes the cursor (current
location pointer) to
automatically skip over the
field.

indicates that data cannot be
keyed into the field.

If data is to be copied from
one device to another attached
to the same 3270 control unit,
the first position Caddress 0)
in the buffer of the device to
be copied from must not
contain an attribute byte for
a protected field. When
preparing maps for 3270s,
ensure that the first map of
any page does not contain a
protected field starting at
position O. Refer to the
publication An Introduction to

the IBM 3270 Information
Display System for further
information.

UNPROT

NUM

BRT

NORM

DRK

DET

indicates that data can be
keyed into the field.

ensures that the data entry
keyboard is set to numeric
shift for this field unless
the operator presses the alpha
shift key, and prevents entry
of nonnumeric data if the
Keyboard Numeric Lock feature
is installed.

specifies that a
high-intensity display of the
field is required. By virtue
of the 3270 attribute
character bit assignments, a
field specified as BRT is also
potentially detectable.
However, for the field to be
recognized as detectable by
BMS, DET must also be
specified.

specifies that the field
intensity is to be normal.

specifies that the field is
nonprint/nondisplay. DRK
cannot be specified if DET is
specified.

specifies that the field is
potentially detectable.

The first character of a 3270
detectable field must be a
nyu, ">", "a", or blank. If
the first character is "8 ft or
blank, the field is an
attention field; if the first

162 CICS/VS Application Programmer's Reference Manual (Macro Level)

IC

character is "1" or ">", the
field is a selection field.
(See the publication An
Introduction to the IBM 3270
Information Display System for
further details of detectable
fields.)

A field for which BRT is
specified is potentially
detectable to the 3270, by
virtue of the 3270 attribute
character bit assignments, but
is not recognized as such by
BMS unless DET is also
specified.

DET and DRK are mutually
exclusive options.

If DET is specified for an
input field, only one data
byte is reserved for each
input field. This byte is set
to X'OO', and remains
unchanged if the field is not
selected. If the field is
selected the byte is set to
X'FF'.

No other data is supplied,
even if the field is a
selection field and the ENTER
key has been pressed.

If the data in a detectable
field is required, all of the
following conditions must be
fulfilled:

1. The field must begin with
either a "1" ">", or "&"
and DET must be specified
in the output map.

2. The ENTER key (or some
other attention key) must
be pressed after the field
has been selected,
although for detectable
fields beginning with "&"
the ENTER key is not
required.

3. DET must not be specified
for the field in the input
map. DET must, however,
be specified in the output
map.

indicates that the cursor is
to be placed in the first
position of this field. The
IC attribute for the last
field for which it is
specified in a map is the one
that takes effect. If not
specified for any fields in a
map, the default location is
zero. Specifying IC with
ASKIP or PROT causes the
cursor to be placed in an
unkeyable field.

FSET

This option may be overridden
by specifying the CURSOR
operand for the BMS request
that causes the write
operation. See the
descriptions of the DFHBMS
TYPE=PAGEBLD, mEXTBLD, and OUT
macros, later in this chapter.

specifies that the modified
data·tag (MDT) for this field
should be set when the field
is sent to a terminal.

Specification of FSET causes
the 3270 to treat the field as
though it has been modified.
On a subsequent read from the
terminal, this field is read,
whether or not it has been
modified. The MDT remains set
until the field is rewritten
without ATTRB=FSET or until an
output mapping request (for
example, DFHMSD CTRL=FRSET or
DFHBMS CTRL=FRSET) causes the
MDT to be reset.

Either of two sets of defaults may
apply when a field to be displayed
on a 3270 is being defined but not
all parameters are specified. If
no ATTRB parameters are specified,
ASKIP and NORM are assumed. If any
parameter is specified, UNPROT and
NORM are assumed for that field
unless overridden by a specified
parameter.

COLOR=
specifies the color to be used. If
this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

GRPNAME=group name
is the name used to generate
symbolic storage definitions and to
combine specific fields under one
group name. The group name has a
maximum length of seven characters.
The same group name must be
specified for each field that is to
belong to the group.

If this operand is specified, the
OCCURS operand cannot be specified.

The fields in a group must follow
on; there can be gaps between them,
but not other fields from outside
the group. A field name must be
specified for every field that
belongs to the group, and the POS
operand must be also specified to
ensure the fields follow each
other. All the DFHMDF macros
defining the fields of a group must
be placed together, and in the

Chapter 4.3. Basic Mapping Support 163

correct order (upward numeric order
of the POS operand).

For example, the first 20 columns
of the first six lines of a map can
be defined as a group of six
fields, so long as the remaining
columns on the first five lines are
not defined as fields.

The ATTRB= operand specified on the
first field of the group applies to
all of the fields within the group.

Appendix B contains examples
showing, amongst other things, the
effect of the GRPNAME operand.

HILIGHT=
specifies the type of highlighting
to be used.

BLINK

is the default and means that
no highlighting is used.

specifies that the field is to
"blink" at a set frequency.

REVERSE
specifies that the field is
displayed in "reverse video",
for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a field is
underlined.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

INITIAL='character
data'IXINIT=hexadecimal data
is used to specify constant or
default data for an output field.
The INITIAL operand is used to
specify data in character form; the
XINIT operand is used to specify
data in hexadecimal form. INITIAL
and XINIT are mutually exclusive.

For fields with the DET attribute,
initial data that begins with a
blank character, "&", ">", or "Tn
should be supplied.

The number of characters that can
be specified in the INITIAL operand
is restricted to the continuation
limitation of the assembler to be
used or to the value specified in
the LENGTH operand (whichever is
the smaller).

Hexadecimal data is written as an
even number of hexadecimal digits,
for example, XINIT=CIC2. If the

number of valid characters is
smaller than the field length, the
data will be padded on the right
with blanks. For example,
XINIT=CIC2 might result in an
initial field of 'AB '

If hexadecimal data is specified
that corresponds with line or
format control characters, the
results will be unpredictable. The
XINIT operand should therefore be
used with care.

JUSTIFY=
indicates the field justifications
for input operations. This operand
is ignored for TeAM-supported 3600
and 3790, and for VTAM-supported
3600, 3650, and 3790 terminals, as
input mapping is not available.

LEFT
specifies that data in the
input field is left-justified.

RIGHT
specifies that data in the
input field is
right-justified.

BLANK
specifies that blanks are to
be inserted in any unfilled
positions in an input field.

ZERO
specifies that zeros are to be
inserted in any unfilled
positions in an input field.

LEFT and RIGHT are mutually
exclusive, as are BLANK and ZERO.
If certain parameters are specified
but others are not, assumptions are
made as follows,

Specified

LEFT
RIGHT
BLANK
ZERO

Assumed

BLANK
ZERO
LEFT
RIGHT

If JUSTIFY is omitted, but the NUM
attribute is specified, RIGHT and
ZERO are assumed. If JUSTIFY is
omitted, but attributes other than
NUM are specified, LEFT and BLANK
are assumed.

Note: If a field is initialized by
an output map or contains data from
any other source, data that is
keyed as input will only overwrite
equivalent length existing data;
surplus existing data will remain
in the field and could cause
unexpected interpretation of the
new data.

LENGTH=number
indicates the length (from 1 to 256
bytes) of this field. This

164 CICS/VS Application Programmer's Reference Manual (Macro Level)

specified length should be the
maximum length required for
application-program data to be
entered into the field; it should
not include the one-byte attribute
indicator appended to the field by
CICS for use in subsequent
processing. The sum of the lengths
of the fields within a group must
not exceed 256 bytes. LENGTH can
be omitted if PICIN or PICOUT is
specified but is required
otherwise.

The map dimensions specified in the
SIZE operand of the DFHMDI macro
defining a map may be smaller than
the actual page size or screen size
as defined for the terminal. The
length specification in a DFHMDF
macro cannot cause the map-defined
boundary on the same line to be
exceeded. That is, the length
declared for a field cannot exceed
the number of positions available
from the starting position of the
field to the final position of the
map-defined line. For example,
given an 80-position page line, the
following map definition and field
definition are valid:

DFHMDI SIZE=(2,40), ..•
DFHMDF POS=22,LENGTH=17, ...

but the following definitions are
not acceptable:

DFHMDI SIZE=(2,40), ...
DFHMDF POS=22,LENGTH=30, •..

OCCURS=number
specifies that the indicated number
of entries for the field are to be
generated in a map and that the map
definition is to be generated in
such a way that the fields are
addressable as entries in a matrix
or an array. This permits several
data fields to be addressed by the
same name (subscripted, of course)
without generating a unique name
for each field. OCCURS and GRPNAME
are mutually exclusive; that is,
OCCURS cannot be used when fields
have been defined under a group
name. If this operand is omitted,
a value of 1 is assumed.

Appendix B contains examples
showing, amongst other things, the
effect of the OCCURS operand.

PICIN='value'
specifies a picture to be applied
to an input field in an IN or INOUT
map; this picture serves as an
editing specification which is
passed to the application program,
thus permitting the user to exploit
the editing capabilities of COBOL
or PL/I. The PICIN operand is not
valid for assembler programs. BMS
checks "value" to ascertain that

the specified characters are valid
picture specification characters
for the language of the map.
However, no validity checking of
the input data is performed by BMS
or the high-level language when the
map is used, so any desired
checking must be performed by the
application program. The length of
the data associated with "value"
should be the same as that
specified in the LENGTH operand if
LENGTH is specified. If both PICIN
and PICOUT (see below) are used, an
error message is produced if their
calculated lengths do not agree;
the shorter of the two lengths is
used. If PICIN or PICOUT is not
coded for the field definition, a
character definition of the field
is automatically generated
regardless of other operands that
are coded, such as ATTRB=NUM.

Note: A P S V X 9 / are the valid
picture values for COBOL maps.

As an example, assume the following
map definition is created for- -
reference by a COBOL application
program:

MAPX DFHMSD TYPE=DSECT
,LANG=COBOL
,MODE=INOUT

MAP DFHMDI LINE=l,COLUMN=l
,SIZE=(1,80)

FI DFHMDF POS=0,LENGTH=30
F2 DFHMDF POS=40,LENGTH=10

,PICOUT='$$$,$$O.OO'
F3 DFHMDF POS=60,LENGTH=6

,PICIN='9999V99'
,PICOUT='ZZ9.99'

DFHMSD TYPE=FINAL

The following DSECT is generatedl

01 MAPI.
02 FIL COMP PIC 59(4).
02 FIA PICTURE X.
02 FILLER REDEFINES FlA.

03 FIF PICTURE X.
02 FII PIC X(30).
02 FILLER PIC X.
02 F2L COMP PIC 59(4).
02 F2A PICTURE X.
02 FILLER REDEFINES F2A.

03 F2F PICTURE X.
02 F21 PIC X(10).
02 FILLER PIC X.
02 F3L COMP PIC 59(4).
02 F3A PICTURE X.
02 FILLER REDEFINES F3A.

03 F3F PICTURE X.
02 F3I PIC 9999V99.
02 FILLER PIC X.

01 MAPO REDEFINES MAPI.
02 FILLER PICTURE X(3).
02 FlO PIC X(30).
02 FILLER PIC X.
02 FILLER PICTURE X(3).
02 F20 PIC $$$,$$0.00.
02 FILLER PIC X.
02 FILLER PICTURE X(3).

Chapter 4.3. Basic Mapping Support 165

02 F30 PIC ZZ9.99.
02 FILLER PIC X.

PICOUT='value'

PS=

is similar to PICIN, except that a
picture to be applied to an output
field in the OUT or INOUT map is
generated.

Like PICIN, PICOUT is not valid for
assembler programs.

specifies the programmed symbol set
to be used for the display of the
field.

psid

specifies that only the basic
symbols are used.

specifies a single EBCDIC
character or a hexadecimal
code on the form X'nn', that
identifies the set of
programmed symbols.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

VALIDN=

MUSTFILL
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before
it has been filled, or to
transmit data from an
incomplete field, will raise
the inhibit input condition.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor
from an empty field will raise
the inhibit input condition.

I/O OPERATIONS USING BMS MACROS

Input and output operations using the
facilities of BMS are requested by
issuing DFHBMS macros. Parameters
provided by the application program
indicate whether an input or an output
operation is needed, the name of the map
to be used by BMS, and other information
to control the mapping function.
Control is passed to BMS, which performs
any required input/output operations
through terminal control.

Initial terminal input, which causes a
task to be initiated, is stored in the
initial TIOA of the task as a
native-mode data stream. The initial
input data can be mapped into a

particular format by issuing a DFHBMS
TYPE=MAP macro. The format of this
initial input data must correspond to
that of the requested map. Input data
to be mapped from a 3270 must contain
3270 device-dependent code (in
particular, the data stream must contain
an SBA). Similarly, the DFHBMS TYPE=MAP
macro can be used to map further input
data, obtained by means of a terminal
control READ request, into a particular
format.

Alternatively, the DFHBMS TYPE=IN macro
can be issued; this macro causes a
terminal control READ/WAIT operation to
occur, and the resulting terminal input
is mapped into a particular format. The
data returned from an input mapping
operation is in TIOA format. The
address of the TIOA containing the
mapped data is placed in TCTTEDA for a
TYPE=IN operation; for a TYPE=MAP
operation, or an output operation, the
address will be placed in the location
(TCTTEDA or TCAMSIOA) used to specify
the input data area. (See the section,
"Addressing Input/Output Areas," below,
for details of specifying input data
areas.)

For an output mapping operation, if data
is to be passed from the TIOA of an
application program, the application
program must have obtained, through
storage control, a TIOA large enough to
contain the symbolic storage definition
of the map being used. Any fields for
which data is not to be passed to the
mapping operation must be set to nulls
(X'OO'); this is best achieved through
use of the INITIMG=OO operand of the
DFHSC TYPE=GETMAIN macro. The first
position of a field to be sent must not
contain a null; if it does, the field
will be ignored.

Maps are defined in a map set, which
permits the formatting of a page of
output using one or more of the maps in
the map set. If the map set has been
placed in the CICS program library, the
user should specify MAPSET=map-set-name
and MAP=map-name in any DFHBMS macro
requesting an operation in which the map
is required. If preferred, the user may
place the seven-character name of the
map set at TCAMSMSN and the name of the
map at TCABMSMN; the MAPSET=YES and
MAP=YES operands inform BMS that the
names have been supplied in this way.

Implied READ/WRITE

DFHBMS TYPE=IN or TYPE=OUT macros result
in a terminal control READ or WRITE,
respectively. Therefore, the user does
not need to code any terminal control
(DFHTC) macros.

However, nothing prevents the user from
intermingling native mode and BMS
operations. A DFHBMS TYPE=MAP macro can

166 CICS/VS Application Programmer's Reference Manual (Macro Level)

be used to format a native mode input
TIOA. If a MAP operation is requested
for input from an unformatted 3270
buffer, mapping is not performed and the
unformatted native mode TIOA is returned
to the application program.

It is nevertheless possible to use
DFHBMS TYPE=MAP for the TIOA containing
a transaction-initiating data stream.
All that is necessary to do so is to
format the screen with the preceding
task.

Addressing Input/Output Areas

Before a task issues a DFHBMS TYPE=MAP,
or any BMS output macro, .the address of
the data being passed must be set up in
either TCTTEDA or TCAMSIOA. The rules
for deciding which area to use are:

•

•

If the task is not
terminal-oriented, the address of
the TIOA-like area being used must
be put in TCAMSIOA. TCTTEDA cannot
be referenced as the task has no
TCTTE.

If the task is terminal-oriented,
but a TIOA is not being used, the
address of the TIOA-like area
containing the user data must be put
into TCAMSIOA and TCTTEDA must be
filled with binary zeros.

• If the task is terminal-oriented and
the data is in a TIOA, the address
of the TIOA may be put into either
TCTTEDA or TCAMSIOA. If the address
is put into TCAMSIOA, TCTTEDA must
be filled with binary zeros. If the
address is put into both TCTTEDA and
TCAMSIOA, the address in TCTTEDA is
used.

TCTTEDA is altered by BMS; the user must
not assume that its contents are
unchanged.

A BMS input operation places the data
into a TIOA, and the address of the TIOA
is returned in TCTTEDA.

Terminal-oriented tasks need not use
actual TIOAs. Any task may pass data to
BMS in any portion of dynamically
acquired storage which looks like a TIOA
in all respects except two:

•

•

The storage class need not be
terminal.

The storage chain address need not
refer to a TCTTE or other terminal
storage.

Non-Terminal-Oriented Tasks

These tasks do not have a TIOA or a
TCTTE; therefore such tasks cannot issue
any BMS macros that use information in
these areas. They can issue only DFHBMS
TYPE=ROUTE, DFHBMS TYPE=PAGEBlD with a
disposition of STORE or RETURN, and
DFHBMS TYPE=TEXTBlD with a disposition
of STORE or RETURN.

Technique for Setting TCTTEDA to Binary
Zeros in PL/I

The NUll built-in function cannot be
used to set TCTTEDA to binary zeros
because this places hexadecimal IFF' in
the high-order byte of the address.
Instead, the following statement can be
used.

UNSPEC(TCTTEDA)=32'0'B;

DFHBMS Macros

BMS macros are provided to enable the
application programmer to:

•

•

•

•

•

•

•

•

•

Map data that is already in a TIOA
(without any terminal I/O taking
place) (DFHBMS TYPE=MAP)

Read in and map data from a terminal
(DFHBMS TYPE=IN)

Cumulatively build one or more pages
of output data using maps (DFHBMS
TYPE=PAGEBlD)

Cumulatively build one or more pages
of output data without using maps
(DFHBMS TYPE=TEXTBlD)

Terminate the accumulation of output
data that has been logically
combined and write it to an output
device (DFHBMS TYPE=PAGEOUT)

Write data (without accumulation) to
an output device (DFHBMS TYPE=OUT)

Discontinue the process of building
a logical message (DFHBMS
TYPE=PURGE)

Define the terminalCs) or
operator(s) that are to receive an
output message (DFHBMS TYPE=ROUTE)

Check the response to a BMS request
CDFHBMS TYPE=CHECK).

In the sections that follow, the syntax
of each type of DFHBMS macro is shown,
and the use of the macro is explained.
Parameters of the TYPE= operand are
discussed separately under each macro.
Descriptions of all other operands for
the DFHBMS macros are gathered into a
single section, arranged in alphabetical
order, at the end of the chapter.

Chapter 4.3. Basic Mapping Support 167

output Operations

There are a variety of ways in which the
various DFHBMS macros can be used, and
combined, for output operations.

The simplest case is DFHBMS TYPE=OUT
(without PAGEBLD or TEXTBLD). This
macro results in a simple output
operation similar to that resulting from
a DFHTC TYPE=WRITE macro, but with a
mapping operation probably, but not
necessarily, included.

When an application programmer wishes to
output data which may occupy more than
one device output buffer he can build a
single logical message using a series of
DFHBMS TYPE=PAGEBLD macros (if he wants
mapping to be included) or DFHBMS
TYPE=TEXTBLD (if mapping is not
required). When the logical message is
complete, he terminates the process of
accumulation and causes physical output
to occur by issuing a DFHBMS
TYPE=PAGEOUT macro.

The DFHBMS TYPE=ROUTE macro does not
itself cause any output operation to
occur; it defines the destination for
ensuing BMS output macros. The effect
of a ROUTE macro should be terminated by
a PAGEOUT macro before another ROUTE
macro is issued.

Output operations that do not send
user-supplied data (TYPE=PAGEBLD,
DATA=NO or TYPE=OUT, DATA=NO) do not
require TIOAs.

INPUT MAPPING WITHOUT I/O (TVPE=MAP)

To request that data already in an input
TIOA is mapped according to a specified
map.

DFHBMS TYPE=(MAP[,SAVE])
[,MAP={map-nameIYES)]I
[,MAPADR={symb-addrIYES}]
[,MAPSET={mapset-nameIYES}]I
[,MSETADR={symb-addrIYES}]
[,MAPFAIL=symb-addr]
[,ERROR=symb-addr]
[,INVMPSZ=symb-addrl
[,NORESP=symb-addr]

TYPE=MAP
specifies an input mapping
operation without any associated
terminal I/O operation.

The application program must have
placed .the address of an input TIOA

SAVE

containing data to be mapped into
TCTTEDA or TCAMSIOA. The data in
the TIOA is positioned into a new
TIOA using the map specified in the
MAP operand of the DFHBMS macro
instruction, but no terminal I/O
operation occurs. An example of
such a TIOA is the initial TIOA
given to a transaction upon
entering a transaction code. If
data is included with the
transaction code, the screen must
have been formatted previously by
another transaction, or the data is
not mapped. The address of the new
TIOA is returned to the application
program in the location in which
the original data area was
specified (TCTTEDA or TCAMSIOA).

The following types of data are not
mapped, but are left in the TIOA
unaltered.

• Data from TCAM-supported 3600
or 3790

•

•
•

Data from VTAM-supported 3600
or 3650 (except 3650 host
conversation (3270) logical
unit)

Data from 3790

Word processing data streams,
that is, data received from a
word processing medium type 1,
2, 3, or 4.

When used with MAP, SAVE specifies
that the user-supplied data area
addressed by TCTTEDA or TCAMSIOA is
not to be altered, and that a new
TIOA is to be acquired for the
operation. The address of the new
TIOA is returned to the application
program in the location in which
the original data area was
specified (TCTTEDA or TCAMSIOA).

The use of the SAVE operand merely
stops CICS overwriting a data area
that you want to retain. It is
still necessary to store the
address of any such area elsewhere,
so that it can be accessed later,
because the location containing the
address is overwritten.

INPUT OPERATIONS WITH MAPPING (TVPE=IN)

To request BMS services for input
operations, a DFHBMS macro of the
following format is used:

168 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHBMS TYPE=(IN[,SAVE][,TEXT])
[,MAP={map-nameIYES}ll
[,MAPADR={symb-addrIYES}]
[,MAPSET={mapset-nameIYES}]I
[,MSETADR={symb-addrIYES}]
[,EOC=symb-addr]
[,EODS=symb-addr]
[,ERROR=symb-addrl
[,INVMPSZ=symb-addr]
[,MAPFAIL=symb-addrl
[,NORESP=symb-addr]
[,RDATT=symb-addrl

TYPE=IN
specifies an input mapping
operation. Input is accepted from
the terminal through a terminal
control READ/WAIT request. The
input data is then mapped into the
TIOA and made available to the
application program by placing the
TIOA address at TCTTEDA. The
fields entered as part of the input
data stream are available to the
application program under the field
names specified in the DFHMDF
macros by which they are defined,
suffixed with the letter I to
correspond to the name generated by
CICS in the definition of the area.

The following types of data are not
mapped, but are left in the TIOA
unaltered.

• Data from TCAM-supported 3600
or 3790

• Data from VTAM-supported 3600
or 3650 (except 3650 host
conversation (3270) logical
unit)

• Data from 3790

• Word processing data streams,
that is, data received from a
word processing medium type 1,
2, 3, or 4.

If the terminal used for input is a
printer (for example, a 2740), the
output must be entered into the
correct lines and columns as if it
were a map on a screen. If the
first field to be entered is
defined as POS{3,16), two blank
lines must be entered followed by
16 blanks (including one blank for
the attribute byte which is the
first character of the field),
followed by the data for the field.

If DFHBMS TYPE=IN macros are used
to read data from a VTAM batch
logical unit, the inbound function
management headers (FMHs) will be
removed before the data is placed

SAVE

TEXT

in the TIOA. If an FMH is
required, the application
programmer should issue a DFHTC
TYPE=READ macro, deal with the FMH,
and then issue a DFHBMS TYPE=MAP
macro to map the data. Inbound
FMHs are applicable only to batch
logical units.

when used with IN, specifies that
the data area addressed by TCTTEDA
is not to be altered; a new TIOA is
to be acquired for the operation,
and its address returned in
TCTTEDA.

The use of the SAVE operand merely
stops CICS overwriting a data area
that you want to retain. It is
still necessary to store the
address of any such area elsewhere,
so that it can be accessed later,
because the location containing the
address is overwritten.

indicates that uppercase and
lowercase characters are contained
in the input data stream.

This parameter is used to override
a FEATURE=UCTRAN specification in
the DFHTCT macro used by the system
programmer for the input terminal.
(See the appropriate CICS Resource
Definition manual.)

BUILDING OUTPUT PAGES USING MAPS
(TYPE=PAGEBLD)

To build an output page cumulatively,
using maps, the application program uses
the DFHBMS TYPE=PAGEBLD macro. This
causes the data in the area defined by a
specified symbolic description map to be
mapped according to the physical map.
The mapped data is positioned within an
area large enough to contain one page of
output. The application programmer
issues another DFHBMS TYPE=PAGEBLD macro
to map and position the next portion of
the output page. The mapping operation
continues until the application program
has completed the message to be sent to
the terminal.

Because of CICS terminal paging
facilities, the application programmer
need not keep track of when a page is
full. He can either let BMS force a new
page automatically or include the OFLOW
operand in the DFHBMS TYPE=PAGEBLD
macros to cause BMS to transfer control
to an overflow routine (which the
programmer must provide) when a page of
data cannot contain the data to be
mapped.

The format of the DFHBMS TYPE=PAGEBLD
macro is as follows:

Chapter 4.3. Basic Mapping Support 169

DFHBMS TYPE=(PAGEBLD[,{OUT[,WAIT]I
STOREIRETURN}]

[,SAVE1[,ERASE][,ERASEAUP]
[,LAST])
[,DATA={NOIYESIONLY}]
[,MAP={map-nameIYES}]
[,MAPSET={mapset-nameIYES}]I

[,MSETADR={symb-addrIYES}]
[,CTRL=([PRINT][,{L40IL64IL801

HONEOM}]
[,FREEKB][,ALARM][,FRSET])]
[,CURSOR={numberIYES}]
[,FMHPARM={parameterIYES}]
[,LDC={mnemonicIYES}]
[,PROPT=NLEOM]
[,REQID={prefixIYES}]
[,ERROR=symb-addrl
[,IGREQID=symb-addr]
[,INVLDC=symb-addr]
[,INVMPSZ=symb-addrl
[,INVREQ=symb-addr]
[,NORESP=symb-addr]
[,OFLOW=symb-addrl
[,RETPAGE=symb-addrl
[,TSIOERR=symb-addrl
[,IGREQCD=symb-addr]l
[,WRBRK=symb-addr1 2

1 ASM only
2 CICS/OS/VS only

where:

TYPE=PAGEBLD
indicates that one page of data is
to be accumulated and formatted
from· data submitted through
multiple PAGEBLD requests. In each
PAGEBLD request, a map defines the
number of lines and columns that
the data is to occupy on the page.
When a page is complete, as defined
by one or more maps, it is written
according to an OUT, STORE, or
RETURN disposition.

MAP POSITIONING

The position of a map on a screen is
determined by two major factors: the
current contents of the screen, and the
values coded for the LINE, COLUMN, and
JUSTIFY operands of the DFHMDI macro.
Positioning is also affected if the
DFHMDI macro specifies HEADER=YES or
TRAILER=YES, and by the depth of the
deepest trailer map in the map set.

The Screen contents

At any instant, the part of the screen
which is still available for maps is in
the form of-either an L, a reversed L, a
rectangle, or an inverted T, as shown by
the unshaded area in the following
diagram.

L x R Y
//////////////////////////////////////
//////////////////////////////////////
//////////////////////////////////////
//////////////////////////////////////
//////// /////////
//////// <-Current line-> /////////
//////// /////////
//////// /////////
//////// /////////

<- Next free line

Free area

~-------------------
Trailer

The shape and size of this area is
represented internally by four
variables: current line, next free line,
next column from left (L), and next
column from right (R).

Three other pointers are maintained that
are relevant to map placement though
they do not affect the area available:
left reference column (X) and right
reference column (Y), which are used
when COL=SAME is specified, and trailer
size.

The Trailer Area

The trailer size is equal to the number
of lines that would be occupied by the
deepest trailer map in the map set
currently in use. It is determined when
the map set is assembled, and is copied
from the map set whenever one is loaded.

The area defined by trailer size is not
available for mapping unless no overflow
routine has been specified or the map
has TRAILER=YES specified in its DFHMDI
macro.

JUSTIFY=FIRST and JUSTIFY=LAST

If JUSTIFY=FIRST is sp~cified, the map
is placed on a new page, so that the
only maps above it are the header maps
used in overflow processing. The LINE
operand may also be used with
JUSTIFY=FIRST to place the map below the
top of the page.

If JUSTIFY=LAST is specified, the map is
placed as low as possible on the page.
For a nontrailer map, this is
immediately above the trailer area; for
a trailer map, it is at the bottom of
the page.

170 CICS/VS Application Programmer's Reference Manual (Macro Level)

A map defined with JUSTIFY=LAST cannot
be used in input operations unless it
was previously put out without PAGEBLD,
in which case JUSTIFY=LAST is ignored
and the map is positioned at the top of
the page.

The LINE Operand

The LINE operand specifies the line of
the screen on which the first line of
the map is to be placed. The initial
determination of this line is made
without regard to the specification of
the COLUMN operand or the columns
available on the screen on that
particular line. If it transpires that
the map will not fit on the chosen line,
the first subsequent line that will
satisfy the column requirements is
selected.

If LINE=SAME or LINE=NEXT is specified,
the initial line selected for the start
of the map is the current line or the
next free line, respectively. If a
number is specified in the LINE operand,
the line with that number is selected,
provided the number is greater than or
equal to the number of the current line;
if not, the overflow condition is raised
so that the map can be placed on the
next page.

The line selected becomes the new
current line and, if it is below the
next free line, the next free line is
reset to the same line; the next column
from the left and right are also reset,
to the left and right margins
respectively.

If the line selected is such that the
end of the map extends into the trailer
area for a nontrailer map or beyond the
end of the page for a trailer map, the
overflow condition is raised and the map
will be placed on the first available
line of the next page when the request
is reissued after handling the overflow.

The COLUMN and JUSTIFY Operands

The COLUMN specification may be either
NEXT, SAME, or a number and is processed
in conjunction with the LEFT or RIGHT
specification of the JUSTIFY operand.
JUSTIFY=LEFT is the default and implies
that the column specification is related
to the left hand margin. Conversely,
JUSTIFY=RIGHT implies that the column
specification is related to the
right-hand margin. For the purposes of
this explanation, it is assumed
hereafter that JUSTIFY=LEFT has been
specified (or applied by default).

If COLUMN=NEXT is specified, the column
chosen for the map is the next column
from the left. If a numeric value is

specified, the column with that number
is chosen, counting from the left. If
COLUMN=SAME is specified, the left
reference column is chosen. - (The left
reference column is the one that was
most recently specified by number with
JUSTIFY=LEFT.)

The map is then checked to ensure that
its right margin is not to the right of
the next column from the right. If it
is, the map will not fit in the leg of
the inverted T, so a new line must be
selected. This will be either the next
full line or, if the map is too deep,
the first available line on the next
page.

Finally, the column pointers are updated
by setting the next column from the left
to the right margin of the map, and, if
COL=number was specified, by setting the
left reference column to the specified
column number.

Page Building Examples

The effects of the mechanisms described
above are illustrated by the following
examples. The examples show the
interactions between SIZE, LINE, COLUMN,
and JUSTIFY=LEFT or RIGHT; header and
trailer maps and JUSTIFY=FIRST or LAST
are not brought into the examples.

In processing a PAGEBLD request, BMS
determines whether the area of the page
required by the map is wholly available
or whether any part of it has been used
by an earlier PAGEBLD request. "Used"
means actually filled by a map or
rendered unavailable as described below.

1. When the LINE operand of the DFHMDI
macro is coded, all lines above the
specified line are unavailable.

2. When JUSTIFY=LEFT is coded (or
applied by default), all columns to
the left of the leftmost map column,
for the full depth of the map, are
unavailable.

3

MAPA DFHMDI ... ,LINE=3,COL=5,
JUSTIFY=LEFT, ...

5

/////////////////////////////////
/////////////////////////////////
////
////
//// Map A
////

Chapter 4.3. Basic Mapping Support 171

3. When JUSTIFY=RIGHT is coded, all
columns to the right of the
rightmost map column, for the full
depth of the map, are unavailable.

3

MAPA DFHMDI ••• ,LINE=3,COLUMN=3S,
JUSTIFY=RIGHT, .••

3S 1

/////////////////////////////////
/////////////////////////////////

///////
///////

Map A ///////
///////

4. When two or more maps are placed so
that they share certain lines, all
columns beneath a map that ends
higher are unavailable to the depth
of the map that ends lowest.
Similarly unavailable are all
columns to the left (if the higher
map is left justified) or to the
right (if the higher map is right
justified) of the "used" area
beneath the higher map.

3

MAPA DFHMDI ••. ,LINE=3,COLUMN=2,
JUSTI FY=LEFT , ..•

MAPB DFHMDI •.. ,LINE=4,COLUMN=20,
JUSTIFY=LEFT, ••.

2· 20

/////////////////////////////////
/////////////////////////////////
//
// """""""""" // ""'1 // Map A "'" Map B
// "'" // """"""'"

MAPA DFHMDI ••. ,LINE=3,COLUMN=2,
JUSTI FY=L EFT, ..•

MAPB DFHMDI ... ,LINE=4,COLUMN=20,
JUSTIFY=RIGHT, ...

3

3

2

/////////////////////////////////
/////////////////////////////////
//
// """""""'1""
// I"" // Map A Map B "" // "" // """""""

MAPA DFHMDI ..• ,LINE=3,COLUMN=40,
JUSTIFY=RIGHT, .••

MAPB DFHMDI ..• ,LINE=3,COLUMN=I,
JUSTIFY=LEFT, •••

/////////////////////////////////
/////////////////////////////////

////
////

Map A ////
////

Map B

"""""" """""" """"""

Figure 18 on page 173 shows the effect
of several different maps on one page.

If BMS discovers that an area of the
page directly specified for a map has
already been used by a previous map, it
raises the overflow condition, described
below under "PAGEBLD Overflow
Processing. ft

Handling Returned Pages

Whenever one or more pages have been
completed and the programmer has
specified TYPE=RETURN, TCAMSRLA contains
the address of a list of completed
pages. Since more than one page of
output may result from a single BMS
output request, there may be more than
one entry in the list for a given
terminal type. All entries for a
particular terminal type immediately
follow one another in the list. The
list is laid out as shown in (a) of
Figure 19 on page 174.

The page buffer pointer points to an
area of USER-class storage which has a
l2-byte prefix similar to that of a
terminal input/output area (TIOA), as
shown in (b) of Figure 19.

At this point, page buffers are on the
USER-class storage chain and are
disassociated from BMS control blocks;
it is therefore the user's
responsibility to release page buffers

172 CICS/VS Application Programmer's Reference Manual (Macro Level)

//
//

///////

"""""""""""""""""""""""""""""""" ///////

"""""""""""""""""""""""""""""""" ///////

""" Map A ///////

""" ///////

""" ///////

""" ///////

""" ///////

""" Map B ///////

"""
I I I I I I I I

///////

""" ///////

""" Map C ///////

""" JUSTIFY ///////

""" = LEFT ///////

""" Map D ///////

""" ///////

"""""""'" JUSTIFY ///////

"""""""'" = RIGHT ///////

"""""""'" JUSTIFY ///////

"""""""'" = RI~HT ///////

"""""""'" JUSTIFY ///////

"""""""'" = LEFT ///////

"""""""'" ///////

"""""""'"
I I I I I

///////

"""""""'" ///////

"""""""'" ///////

Figure 18. Map Positioning for More than One Map

when they are no longer needed. The
·storage containing the list of buffers
should not be freed by the programmer;
it is the intention of BMS to reduce
processing time by reusing the list.
This list will be altered by the next
BMS request. Therefore, the programmer
must save the contents before issuing
the next BMS request.

Subsequent output of pages should
normally be done using BMS. The use of
the DFHTC macro to handle the output of
pages is not recommended. However, if a
DFHTC TYPE=WRITE macro is used, storage
must be obtained by a DFHSC TYPE=GETMAIN
macro with the CLASS=TERM operand
included, and the output pages moved to
the TIOA so acquired. The DFHTC
TYPE=WRITE macro can then be used to
transmit the pages from this new TIOA.

When terminals of the 3270 Information
Display System are used, the write
control character (WeC) containing the
CTRL specification can be found at
TIOACLCR in the page buffer after
addressability to the area has been
established. (TIOACLCR is a defined
field in DFHTIOA and is addressable if
the buffer address is loaded into
TIOABAR.)

PAGEBLD Overflow Processing

Overflow occurs when the number of lines
in the requested map plus the number of
lines in the largest trailer map in the
map set (if there are any trailer maps)
is greater than the number of lines
remaining in the page being built for
the terminal involved in an output
operation.

For TCAM and VTAM terminals having LDC
support, pages are accumulated
individually by LDC mnemonic.
Therefore, overflow may occur at end of
page for each different LDC mnemonic
used in different BMS requests. The LDC
mnemonic is passed to the user's
overflow routine in TCAMSLDM, and the
LDC numeric value is passed in TCAMSLDC.
PAGEBLD overflow can occur on a logical
message being built for a ROUTE
environment. If the ROUTE environment
was created with a route list containing
more than one LDC mnemonic, the returned
LDC mnemonic and numeric value is the
first LDC mnemonic resolved in the route
list.

The routine to which control is
transferred must be in the application
program, but no special considerations
apply. The data which was to have been
mapped, but which caused the overflow,
is not mapped by BMS and remains
unaltered in the TIOA.

Chapter 4.3. Basic Mapping Support 173

(a) TC Page Buffer TC Page Buffer X'FF ••. FF'

4 bytes 4 bytes 4 bytes

(b) CICS Storage Acctng Buffer length Reserved Data
~--------------------------. . . 8 bytes 2 bytes 2 bytes x bytes

Figure 19. Page Address List

If a DFHBMS TYPE=ROUTE macro has not
been previously issued, there is only
one destination. If a DFHBMS TYPE=ROUTE
macro has been issued, the logical
message is probably being built for a
multiple-destination environment. Since
the application programmer has the
capability of concurrently building
pages for terminals that have
different-sized output, overflow may
occur at different times for different
terminal groups.

The overflow routine gets control every
time anyone of the destinations or
groups of destinations encounters an
overflow condition, that is, every time
a specified map will not fit a page.
The application program overflow routine
must determine which destination or
group of destinations has encountered
the overflow.

Upon return to the application program
from a DFHBMS TYPE=ROUTE macro, a count
(relative to one) of the number of
destinations or groups of destinations
is available in TCAMSOCN. This overflow
control count tells the application
programmer how many overflow control
areas (for example, accumulators) he may
want to keep.

Whenever the overflow routine gets
control, TCAMSOCN indicates the relative
overflow control number of the
destination that has encountered the
overflow. This number indicates which
control area should be output, perhaps
through one or more trailer maps. In
addition to the relative control count,
BMS returns the current page number for
the destination that has encountered the
overflow. This page number is located
at TCAMSPGN.

To place trailer data ona page, the
programmer codes DFHBMS TYPE=PAGEBlD
requests to process the trailer data.
The map(s) used to format the data must
contain TRAIlER=YES so that the amount
of space on -the page to reserve for
overflow can be calculated. More than
one trailer map may be placed on a page.
There should be a dummy trailer map (not

otherwise used) in the map set
specifying the number of lines to be
reserved for trailer data if no single
trailer map extends over the total
number of lines required for trailer
data (see diagrams).

Maps used to map trailer data may
contain JUSTIFY=LAST to force their
placement at the bottom of the page. If
the programmer tries to place more lines
of trailer data on the page than are
available, that trailer data is placed
on a separate page by itself. Still
another page is built to continue
mapping with or without a header map.

TR2

No dummy trailer required.

TRI

TR2 TR3

Dummy trailer required.

174 CICS/VS Application Programmer's Reference Manual (Macro Level)

To place header data on a page, the
programmer codes DFHBMS TYPE=PAGEBlD
request(s) to process the header data.
The map(s) used to map header data must
specify JUSTIFY=FIRST to complete
processing of the previous page if that
has not been done, and to begin a new
page. JUSTIFY=FIRST is ignored if BMS
is positioned at the top of a new page.
If the programmer tries to place more
header data on the page than the page
can contain, multiple pages are created.

After overflow has been raised, the
first map to be used in a TYPE=PAGEBlD
request must be one that specified
JUSTIFY=FIRST. Failure to do this will
result in overflow being raised again
immediately.

When all trailer and/or header data has
been processed, the programmer must
reissue the DFHBMS request that caused
the overflow, since this data has not
yet been mapped for all destinations.

If the user does not specify an overflow
routine while issuing PAGEBlD requests,
no overflow occurs and new pages will be
forced automatically. If a header is to
be placed on the first page and a
trailer on the last, the OFlOW parameter
would not be used.

A general overview of overflow
processing is given in the flowchart in
Figure 20 on page 176.

BUILDING OUTPUT PAGES WITHOUT USING MAPS
(TYPE=TEXTBLDl

To request the building of pages of data
without the use of maps, the application
program issues DFHBMS TYPE=TEXTBlD
macros. These macros cause BMS terminal
paging to create pages containing
application-program-supplied text data.
The length of the data each macro is to
process must be supplied in TIOATDl,
prior to issuing the macro. Completion
of a logical message is signaled by a
DFHBMS TYPE=PAGEOUT macro. The
beginning and ending of pages are
handled by BMS and need be of no concern
to the application program.

The format of the DFHBMS TYPE=TEXTBlD
macro is as follows:

DFHBMS TYPE=(TEXTBlD[,{OUT[,WAITll
STOREIRETURN}] _

[,SAVE1[,ERASE][,lAST])
[,HEADER={symb-addrIYES}]
[,JUSTIFY={FIRSTILASTI

line-numberIYES}]
[,TRAILER={symb-addrIYES}]
[,CTRl=([PRINT][,{L40Il641

l80IHONEOM}]
[,FREEKB][,AlARM1)]

[,CURSOR={numberIYES}]
[,FMHPARM= {parameterIYES} 1
[,LDC={mnemonicIYES}]
[,PROPT=NLEOMl
[,REQID={prefixIYES}l
[,ERROR=symb-addr]
[,IGREQID=symb-addrl
[,INVlDC=symb-addr]
[,INVREQ=symb-addrl
[,NORESP=symb-addrl
[,RETPAGE=symb-addrl
[,TSIOERR=symb-addrl
[,IGREQCD=symb-addrl 1

[,WRBRK=symb-addr1 2

1 ASM only
2 CICS/OS/VS - 2741 only

where:

TYPE=TEXTBLD
indicates that (1) one page of
output is to be formed from data
submitted through multiple TEXTBLD
requests, or (2) multiple pages of
output are to be formed from one
TEXTBlD request. When TEXTBlD is
specified, no map is used. When no
more data can fit on a page, the
page is written according to the
OUT, STORE, or RETURN disposition
(see below), and another page is
started if necessary.

DIRECT OUTPUT (TYPE=OUTl

An output request in which neither
TEXTBLD nor PAGEBlD is specified can be
issued by the application program. Such
a request may cause multiple pages to be
written as output, but multiple requests
cannot be issued to accumulate and
format data within one page. One map
may be used to format data on one page,
and that page may be written directly to
the terminal (TYPE=OUT). The rules
governing this type of output are as
follows:

• Multiple requests cannot be
accumulated to build one page,
whether mapped or unmapped.

• When using maps, one request cannot
build more than one page.

Chapter 4.3. Basic Mapping Support 175

~ v
Application program issues
a PAGEBLD macro which
includes an OFLOW routine
address

BMS processes the macro

Yes
">--------> OVERFLOW ROUTINE

V

BMS returns control to
the application program
and the PAGEBLD macro is
mapped for all
destinations

The application program
updates all overflow
control areas to reflect
the last PAGEBLD macro
(which mayor may not have
caused overflow)

I

1. Save sufficient information to
be able to reissue the macro
that caused the overflow.

2. Using the overflow control
number in TCAMSOCN, determine
the appropriate control area
to map its contents via PAGEBlD
macro specifying trailer map(s).

3. The current page number is
available at TCAMSPGN and could
be supplied with th~ data to be
mapped by the trailer map(s)j
and/or this page number could be
incremented and supplied with
the data to be mapped by header
map(s) .

4. Return to A and reissue the
PAGEBlD macro.

Figure 20. Overflow Processing by Application Programs under BMS

• When not using ~aps, a single
request can result in more than one
page.

• If the disposition is STORE,
multiple requests can cause multiple
pages (each request starting a new
page) to be included. in one logical
message.

• For both mapping and nonmapping
operations, if the disposition is
STORE, a DFHBMS TYPE=PAGEOUT request
must be issued to terminate the
logical message.

The format of the DFHBMS TYPE=OUT macro
is as followsl

176 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHBMS TYPE=([{OUT[,WAIT]ISTOREI
RETURN}][,NOEDIT1[,SAVEl
[,ERASE][,ERASEAUP][,LAST])

[,DATA={NOIYESIONLY}]
[,MAP={map-nameIYES}]I

,MAPADR={symb-addrIYES}] I
[,MAPSET={mapset-nameIYES}]I
[,MSETADR={symb-addrIYES}]
[,CTRl=([PRINT][,{L40Il641

l80IHONEOM]
[,FREEKB1[,ALARM][,FRSET1)]

[,CURSOR={numberIYES}]
[,FMHPARM={parameterIYES}]
[,LDC={mnemonicIYES}]
[,PROPT=NLEOMl
[,REQID={prefixIYES}]
[,ERROR=symb-addrl
[,IGREQID=symb-addrl
[,INVlDC=symb-addr]
[,INVMPSZ=symb-addrl
[,INVREQ=symb-addrl
[,NORESP=symb-addr]
[,RETPAGE=symb-addrl
[,TSIOERR=symb-addr]
(,IGREQCD=symb-addr] 1

(,WRBRK=symb-addr]2

1 ASM only
2 CICS/OS/VS only

where:

TVPE=OUT
indicates that the output is to be
written to the originating terminal
at once if that terminal is to
receive it.

Once a DFHBMS macro with OUT
disposition has been issued, the
application program must not issue
a DFHSC TYPE=FREEMAIN,RElEASE=AlL
macro until either a DFHBMS
TYPE=PAGEOUT or DFHBMS TYPE=PURGE
macro has been issued.

TERMINATING A LOGICAL MESSAGE
(TVPE=PAGEOUTJ

When the combining of pieces of data to
form a logical message has been
requested by means of DFHBMS
TYPE=PAGEBLD or TYPE=TEXTBlD macros,
such combining must be terminated by
means of a DFHBMS TYPE=PAGEOUT macro. A
logical message created by means of one
or more noncumulative output requests
with STORE disposition must be
terminated by a DFHBMS TYPE=PAGEOUT
macro.

The format of the DFHBMS TYPE=PAGEOUT
macro is as follows:

DFHBMS TYPE=(PAGEOUT[,LAST])
(,CTRL=([{PAGEIAUTOPAGE}]

, {RETAINIRELEASE}])
[,EODPURG={AUTOIOPER}]
[,FMHPARM={parameterIYES}]
(,TRAILER={symb-addrIYES)]
[,TRANSID=transaction code]
[,WRBRK={symb-addrICURRENTI

ALL}]
[,ERROR=symb-addrl
[,NORESP=symb-addrl
[,RETPAGE=symb-addr] 1

[,IGREQCD=symb-addrl
[,TSIOERR=symb-addrl

1 ASM only

where:

TVPE=PAGEOUT
specifies the termination of a
logical message. No data is
formatted in response to this
request. Any remaining data in the
page buffer is processed according
to the OUT, STORE, or RETURN
described in the previous macro.
If a logical message is being built
for a routing environment, PAGEOUT
completes the logical message under
route. An additional PAGEOUT macro
is required to complete a logical
message to the originating
terminal.

If an error occurs during PAGEOUT
processing, control is returned to
the application program, and the
RETAIN or RELEASE specifications
are ignored. The logical message
is not considered complete. The
application program should either
retry the PAGEOUT operation or
PURGE the message.

Any logical message that has been
started but not completed when a
DFHSP (sync point) macro is issued
is forced to completion by an
implied TYPE=PAGEOUT macro.

DELETING A LOGICAL MESSAGE (TYPE=PURGE)

To discontinue the process of building a
logical message, a DFHBMS TYPE=PURGE
macro is issued. This instruction
causes the portions of the message
already built in main storage or on
temporary storage to be deleted and
returns control to the application
program at the instruction following the
DFHBMS TYPE=PURGE macro expansion. The
TYPE=PURGE instruction is not to be used
if TYPE=RETURN was used in the BMS
PAGEBlD or TEXTBlD request.

Chapter 4.3. Basic Mapping Support 177

The format of the DFHBMS TYPE=PURGE
macro is as follows:

DFHBMS TYPE=PURGE

where:

TYPE=PURGE
specifies that all data prepared
for a logical message but not yet
transmitted to a terminal is to be
deleted from the system.

MESSAGE ROUTING (TYPE=ROUTE)

A DFHBMS TYPE=ROUTE request defines the
terminal and/or operator to receive the
message created by subsequent DFHBMS
output requests. The message may be
directed to any or all BMS-supported
terminals. The ROUTE macro defines the
destination of the message; it does not
cause transmission to occur. The ROUTE
macro must be followed by one or more
BMS output macros. A DFHBMS
TYPE=PAGEOUT request causes the logical
message to be completed and terminates
the effect of the DFHBMS TYPE=ROUTE
macro.

If a ROUTE request followed by one or
more BMS ou~put requests is not
terminated by a PAGEOUT request before a
subsequent ROUTE request is issued or
before the application program
terminates, the message is forced to
completion. Since the application
program did not issue the PAGEOUT
request, BMS applies the PAGEOUT
defaults to the message. A ROUTE
request may be issued immediately
following another ROUTE request. In
this case, the first ROUTE request is
nullified, and the second one determines
the routing environment.

A message is considered undeliverable to
a destination if it cannot be delivered
within a certain interval after the
requested delivery time. This interval
is specified in the PRGDLAY operand of
the DFHSIT PROGRAM=BMS macro by the
system programmer. If the PRGDLAY
operand is not included, no action is
taken for undelivered messages and the
message awaits delivery indefinitely.
If PRGDLAY is specified, the transient
data destination CSMT is notified of the
number of undeliverable messages purged
for a destination; the application
programmer can ensure that additional
documentation is provided for an
undeliverable message by including the
ERRTERM oper.and in the DFHBMS TYPE=ROUTE
macro.

Examples of situations causing
undeliverable messages might occur, for

example, when a message is routed to a
terminal that is out of service, or when
an operator identification is specified
with a terminal identification and that
operator is not signed on that terminal
at the time the message is to be
delivered.

Under CICS/DOS/VS only, operating in a
DL/I environment, if it is required to
route a message to more than 40
terminals, several TYPE=ROUTE macros
must be issued, each with a LIST operand
that specifies a list of terminals with
no more than 40 entries. Each
TYPE=ROUTE macro must be issued with all
other DFHBMS macros relevant to the
message.

The format of the DFHBMS TYPE=ROUTE
macro is as follows:

DFHBMS TYPE=ROUTE
[,ERRTERM={termidIORIGIYES}]
[,LIST={symb-addrIYESIALL}]
[,OPCLASS={decimal-value,

where:

... IYES}]
[,TITLE={symb-addrIYES}]
[,INTRVAL={numeric-valuel

YES}]I[,TIME=
{numeric-valueIYES}]
[,LDC={mnemonicIYES}]
[,PROPT=NLEOMl
[,REQID={prefixIYES}]
[,ERROR=symb-addrJ
[,IGREQID=symb-addrl
[,INVET=symb-addr]
[,NORESP=symb-addrl
[,RTEFAIL=symb-addrl
[,RTESOME=symb-addrl

TYPE=ROUTE
specifies the initiation of an
output page routing operation.

Disposition and Message Routing

A routed logical message can be built
using either of two dispositions: STORE
or RETURN. The first BMS output request
issued following the ROUTE request (with
some exceptions noted below> determines
the disposition of the logical message.
This first request may specify STORE or
RETURN; if neither is specified, the
default is STORE. Once established, the
disposition remains unchanged until the
logical message is completed (PAGEOUT).
It need not be repeated for subsequent
requests. An output request specifying
a disposition that is not in effect
results in a return c~de of INVREQ.

A disposition of STORE is the normal
disposition and finally results in the
message either being delivered or

178 CICS/VS Application Programmer's Reference Manual (Macro Level)

deleted. A disposition of RETURN causes
the routed logical message to be
returned to the application program. It
is the responsibility of the application
program to deliver the logical message.

A task can converse with the terminal to
which it is currently attached (assuming
the task is terminal-oriented) during
the time that it is building the logical
message. That attached terminal is
known as the direct terminal; a terminal
to which the message is to be routed is
known as a routing terminal. If any
input requests (DFHBMS TYPE=IN or
TYPE=MAP) are encountered while the
message is being built, they are
processed as usual. To transmit output
to the direct terminal while the routed
logical message is being built, the task
can issue non-TEXTBLD, non-PAGEBLD
requests with an explicit disposition of
OUT. The disposition of OUT isolates
the output request to the direct
terminal from the requests that are
building the routed logical message.

The following points summarize the rules
for conversation with the direct
terminal while a routed logical message
is being built:

•

•

OUT must be specified in any output
request that is to go to the direct
terminal.

TEXTBLD and PAGEBLD requests with a
disposition of OUT are invalid and
result in a return code of INVREQ.

• The direct terminal may be included
in the routing environment without
impairing the ability to converse
with it while under ROUTE. Data
routed to the direct terminal will
be delivered as though the ROUTE had
been issued from another terminal.

A list of "abridged" requests, in order
of execution, is given below. The
action taken by BMS for each is
indicated.

•

•

•

•

•

•

DFHBMS TYPE=OUT - Transmit to direct
terminal.

DFHBMS TYPE=ROUTE - Establish
routing environment.

DFHBMS TYPE=OUT - Transmit to direct
terminal.

DFHBMS TYPE=IN - Receive from direct
terminal.

DFHBMS TYPE=TEXTBLD - First output
request eligible for routing
establishes default disposition of
STORE and TEXTBLD as mode of page
building.

DFHBMS TYPE=OUT - Transmit to direct
terminal.

•

•

•

•

•

•

•

DFHBMS TYPE=TEXTBLD,RETURN - INVREQ
- routed logical message has already
established a disposition of STORE.

DFHBMS TYPE=TEXTBLD - Continue
building routed logical message.

DFHBMS TYPE=PAGEBLD,STORE - INVREQ -
routed logical message being built
with TEXTBLD requests cannot
tolerate PAGEBLD request.

DFHBMS TYPE=PAGEBLD,OUT - INVREQ
cannot issue PAGEBLD or TEXTBLD
request to direct terminal while
building a routed logical message.

DFHBMS TYPE=TEXTBLD,STORE - Continue
building routed logical message.

DFHBMS TYPE=PAGEOUT - Terminate
routed logical message and routing
operation.

DFHBMS TYPE=OUT - Transmit to direct
terminal.

status Flag Byte in User-Supplied Route
List

Each route list entry contains a status
flag byte used by BMS to indicate to the
application program the status of the
destination at the time the DFHBMS
TYPE=ROUTE macro was issued. Upon
return, the application program can
investigate the status byte for each
route list entry and take appropriate
action.

ENTRY SKIPPED
A route list entry that is flagged
as skipped was not included in the
resolved routing environment. If
an entry has been skipped, another
flag indicating why the entry was
skipped may be on in the status
byte. This second flag could be
one of the following:

• INVALID TERMINAL IDENTIFICATION

•

•

•

TERMINAL NOT SUPPORTED UNDER
BMS

OPERATOR NOT SIGNED ON - only
an operator identification was
specified in the route list
entry and that operator was not
signed on any terminal

OPERATOR SIGNED ON UNSUPPORTED
TERMINAL

• INVALID LDC MNEMONIC

If only the ENTRY SKIPPED flag is
on, neither a terminal
identification nor an operator
identification was specified in the
route list entry. The settings are
X'80' for ASM, 12-0-1-8 for COBOL,
and 10000000 for PL/I.

Chapter 4.3. Basic Mapping Support 179

INVALID TERMINAL IDENTIFICATION
This flag indicates that the
terminal identification specified
in the route list entry does not
have a corresponding TCTTE in the
terminal control table. This entry
is also flagged as ENTRY SKIPPED.
The settings are X'40' for ASM, no
punches for COBOL, and 01000000 for
PL/I.

TERMINAL NOT SUPPORTED UNDER BMS
This flag indicates that the
terminal identification specified
in the route list entry is for a
terminal type that is not supported
under BMS or the terminal table
entry indicated that the terminal
identification was not eligible for
routing. This entry is also
flagged as ENTRY SKIPPED. The
settings are X'20' for ASM,
11-0-1-8-9 for COBOL, and 00100000
for PL/I.

OPERATOR NOT SIGNED ON
This flag indicates that the
specified operator is not signed
on. Any ane of the following
conditions causes this flag to be
set:

1. An operator identification was
specified with a terminal
identification, but the
specified operator was not
signed on the terminal. This
entry is not skipped.

2. An operator identification was
specified without a terminal
identificationi and the
operator was not signed on any
terminal. This entry is also
flagged as ENTRY SKIPPED.

3. The OPCLASS operand was
specified with the DFHBMS
TYPE=ROUTE macro and a terminal
identification was specified in
the route list entry, but the
operator signed on the terminal
did not qualify under OPCLASS.
This entry is not skipped. The
settings are X'10' for ASM,
12-11-1-8-9 for COBOL, and
00010000 for PL/I.

OPERATOR SIGNED ON UNSUPPORTED TERMINAL
This flag indicates that only an
operator identification was
specified in the route list entry,
and that operator was signed on a
terminal not supported by BMS.
This entry is also flagged as ENTRY
SKIPPED. The unsupported terminal
identification is returned in that
route list entry at URlTRMID for
informational purposes only. The
settings are X'08' for ASM, 12-8-9
for COBOL, and 00001000 for Pl/I.

INVALID LDC MNEMONIC
This flag indicates that one of the
following conditions occurred.

1. The LDC mnemonic specified in
the route list does not appear
in the lDC list associated with
the TCTTE.

2. The device type generated in
the system LDC table for the
specified or implied LDC
mnemonic is not the same as the
device type for the first lDC
specified in the route
environment.

A symbolic storage definition of
the user-supplied route list is
available on the source library(s)
under the member name DFHURlDS.
This symbolic storage definition
can be used as an aid in building
the route list, and if necessary,
in testing the status flag byte for
each entry upon return from a
DFHBMS TYPE=ROUTE request that
refers to a list. The symbolic
base register is URlBAR. The
settings are X'04' for ASM, 12-4-9
for COBOL, and 00000100 for PL/I.

CHECKING THE RESPONSE TO A BMS REQUEST
(TYPE=CHECKl

DFHBMS TYPE=CHECK
[,EOC=symb-addr]
[,EODS=symb-addrl
[,ERROR=symb-addrl
[,IGREQID=symb-addrl
[,INVET=symb-addrl
[,INVLDC=symb-addrl
[,INVMPSZ=symb-addrl
[,INVREQ=symb-addrl
[,MAPFAIl=symb-addrl
[,NORESP=symb-addrl
[,RETPAGE=symb-addrl
[,RTEFAIL=symb-addrl
[,RTESOME=symb-addrl 1

[,IGREQCD=symb-addrl
[,TSIOERR=symb-addrl

1 ASM only

where:

TVPE=CHECK
indicates that the BMS response to
a request for BMS services is to be
checked.

Some response codes may appear in
combination with other response codes.
These combinations are: RTEFAIL and
INVET, and RTESOME and INVET. The order
used by BMS in checking for all
conditions that the application
programmer specifies is as follows:

180 CICS/VS Application Programmer's Reference Manual (Macro level)

NORESP, TSIOERR, INVREQ, RETPAGE,
MAPFAIL, RTEFAIL, RTESOME, INVET,
IGREQID, INVLDC, INVMPSZ, EODS, EOC, and
ERROR. Thus, if the application
programmer has specified INVET and
RTEFAIL and both of these responses
apply, BMS transfers control to the
user-written exception-handling routine
identified in the RTEFAIL operand. In
this situation, the INVET operand is not
acted upon.

BMS RESPONSE CODES

To test a BMS response code the
application programmer must know the
codes and their meanings. For this
approach, the application programmer can
access the response code(s) at TCAMSRCl,
TCAMSRC2, and TCAMSRC3. Response codes
and their associated conditions are
shown in Figure 21 on page 182. The
keywords are explained at the end of the
chapter.

The examples in Figure 22 on page 183
show how to examine the response code
provided by BMS at TCAMSRCl, TCAMSRC2,
and TCAMSRC3, and transfer control to
the appropriate user-written routine
accordingly.

BMS MESSAGE RECOVERY

BMS provides message recovery for routed
and nonrouted messages. To be
recoverable, messages must satisfy the
following requirements:

• The DFHBMS TYPE=STORE operand must
have been specified on the BMS
output requests that built the
logical message.

• The BMS default REQID (**) or the
specified REQID for the logical
message must have been identified to
temporary storage program (via the
TST) as recoverable.

• The task that built the message must
have reached its logical end of
task.

• The temporary storage program (TSP)
and the interval control program
(ICP) must also support recovery.

TERMINAL CODE TABLE

A terminal code table is established
within BMS for reference in servicing
BMS-supported terminals. There is one
entry in this table for each terminal
supported under BMS. The terminal codes
that appear in the table are given
below. This code appears in the list of
completed pages available at TCAMSRLA

when the application programmer has
specified that pages of output be
returned (that is, RETURN is the
disposition parameter in the output
request). The code is available at
TCAMSRII when an invalid map size
(INVMPSZ) response is returned.

Code Terminal or Logical Unit

A CRLP or TRMTYPE=TCAM terminals
B Magnetic Tape
C Sequential Disk
D TWX Model 33/35
E 1050
F 2740-1,-2 (without buffer receive)
G 2741
H 2740-2 (with buffer receive)
I 2770
J 2780
K 3780
l 3270 (40-column displays)
M 3270 (80-column displays)
P Interactive lU (3767, 3770

Interactive); 3790 Full
Function LUi and SCS Printer
lUs (3270 and 3790)

Q 2980 Models 1 and 2
R 2980 Model 4
U 3601
V Host Conversational (3653)
W 3650 User Program
X 3650/3270 Host Conver (3270)
Y Batch lU (3770 Batch), Batch

Data Interchange lU (3770,
3790, lUTYPE4)

STANDARD ATTRIBUTE LIST AND PRINTER

Control Characters (DFHBMSCA

The application programmer can obtain a
set of commonly used 3270 field
attributes and printer control
characters by copying DFHBMSCA into his
program. For COBOL, this definition
must be copied into the working storage
section. DFHBMSCA consists of a set of
EQU statements in the case of assembler
language, a set of 01 statements in the
case of COBOL, and DECLARE statements
defining elementary character variables
in the case of Pl/I. One possible use
for DFHBMSCA is for the purpose of
temporarily changing attribute
characters in a map.

The field attributes/printer control
characters and corresponding symbolic
names are listed below. These
attributes cannot be combined by the
application programmer in any manner.
If any combinations other than those
listed are required, the application
programmer must either use the ATTRB
operand of the DFHMDF macro to obtain
the desired combinations or generate new
attribute combinations offline.

Chapter 4.3. Basic Mapping Support 181

DFHBMS
Service
Request

Condition

INPUT,OUTPUT, NORESP
ROUTING, CHECK (Normal response)

OUTPUT,CHECK INVREQ (Invalid
request)

OUTPUT,CHECK RETPAGE
(Return Page)

INPUT,CHECK MAPFAIL
(Mapping attempt
failure)

INPUT,CHECK EODS
(End of data set)

INPUT,OUTPUT, INVMPSZ
CHECK (Invalid map size)

INPUT,CHECK EOC
(End of chain)

OUTPUT,CHECK INVLDC
(Invalid LDC mnemonic)

OUTPUT, IGREQID
ROUTING,CHECK (Ignore REQID

specification)

ROUTING,CHECK INVET
(Invalid error
terminal)

ROUTING, CHECK RTESOME
(Routing to only some
terminals>

ROUTING, CHECK RTEFAIL
(Routing failure)

Response Code

Assembler COBOL PL/I

X'OO' LOW-VALUES 00000000

X'OI' 12-1-9 00000001

X'02' 12-2-9 00000010

X'04' 12-4-9 00000100

X'04' 12-4-9 00000100

X'OS' 12-S-9 00001000

X'OS' 12-S-9 00001000

X'lO' 12-11-1-8-9 00010000

X'lO' 12-11-1-8-9 00010000

X'20' 11-0-I-S-9 00100000

X'40' No punches 01000000

X'80' 12-0-1-8 10000000

INPUT,OUTPUT ERROR See note See note See note
ROUTING, CHECK (Any response other

other than NORESP)

OUTPUT,CHECK TSIOERR X'80' 12-0-1-8 10000000
(Temporary storage I/O
error)

OUTPUT,CHECK IGREQCD (Request change X'40' No punches 01000000
direction ignored)

Response
Code
Location

TCAMSRCl,
TCAMSRC2,
and
TCAMSRC3

TCAMSRCI

TCAMSRCI

TCAMSRCI

TCAMSRC3

TCAMSRCI

TCAMSRC3

TCAMSRC2

TCAMSRC3

TCAMSRCI

TCAMSRCI

TCAMSRCI

TCAMSRC1,
TCAMSRC2,
and
TCAMSRC3

TCAMSRC2

TCAMSRC2

Note: The test for the.ERROR response is satisfied by a not equal conditionj
that is, not X'OO', not LOW-VALUES, or not 00000000 for assembler, COBOL, and
PL/I, respectively.

Figure 21. BMS Response Codes

182 CICS/VS Application Programmer's Reference Manual (Macro Level)

ASH:

ERROR

GOOD

COBOL:

ERROR.

GOOD.

PLI'I:

GOOD:

DFHBMS TYPE=(TEXTBLD,STORE) BUILD OUTPUT
ClI TCAMSRCl,X'OO' ANY UNUSUAL CONDITIONS, TEST 1
BNE ERROR .. YES, GO TERMINATE THE TASK
CLI TCAMSRC2,X'OO' .. NO, ANY UNUSUAL CONDITIONS,
BNE ERROR .. YES, GO TERMINATE THE TASK
CLI TCAMSRC3,X'OO' .. NO, ANY UNUSUAL CONDITIONS,
BE GOOD .. NO, GO CONTINUE PROCESSING
DS OH YES, TERMINATE THE TASK
DFHPC TYPE=ABEND TERMINATE THE TASK
DS OH

DFHBMS TYPE=(TEXTBLD,STORE) BUILD OUTPUT
IF TCAMSRCl NOT = , , THEN GO TO ERROR.
IF TCAMSRC2 NOT = , , THEN GO TO ERROR.
IF TCAMSRC3 = , , THEN GO TO GOOD.

DFHPC TYPE=ABEND TERMINATE THE TASK

(the value specified within the quotes is an unprintable
multipunch code for the hex value)

DFHBMS TYPE=(TEXTBLD,STORE) BUILD OUTPUT
IF TCAMSRCI = 'O'B & TCAMSRC2 = 'O'B

& TCAMSRC3 = 'O'B THEN GO TO GOOD;
ERROR:
DFHPC TYPE=ABEND TERMINATE THE TASK

TEST 2

TEST 3

Figure 22. How to Examine BMS Response Codes

Chapter 4.3. Basic Mapping Support 183

Name

DFHBMPEM
DFHBMPNL
DFHBMASK
DFHBMUNP
DFHBMUNN
DFHBMPRO
DFHBMBRY
DFHBMDAR
DFHBMFSE
DFHBMPRF
DFHBMASF
DFHBMASB
DFHPS
DFHHLT
DFHERROR
DFHDFT
DFHDFCOL
DFHBLUE
DFHRED
DFHPINK
DFHGREEN
DFHTURQ
DFHYELLOW
DFHNEUTR
DFHBASE
DFHDFHI
DFHBLINK
DFHREVRS
DFHUNDLN
DFHMFIL
DFHMENT
DFHMFE
DFHALL
DFHCOLOR
DFHVAL

Attribute/Control Character

3270 Printer end of message
3270 Printer new-line char.
Autoskip
Unprotected
Unprotected and numeric
Protected
High intensity
Da rk, nonpri nt
MDT on
Protected and MDT on
Autoskip and MDT on
Autoskip and high intensity
Programmed symbols
Highlighting
Error character
Default value
Default color
Blue
Red
Pink
Green
Turquoise
Yellow
Neutral
Base PS
Default highlight
Blink
Reverse Video
Underline
Mandatory fill
Mandatory enter
Mandatory fill and enter
Clear all settings
Color
Field validation

STANDARD ATTENTION IDENTIFIER LIST
(DFHAIDl

To test the method of initiating an
incoming READ from the 3270 Information
Display System, the application
programmer is provided with a set of
3270 attention identifiers
(single-character variables called AIDs)
that can be used to test the value at
TCTTEAID. He can obtain this set of
attention identifiers by copying DFHAID
into his program. For COBOL, this
definition must be copied into the
working storage section.

DFHAID consists of a set of EQU
statements in the case of assembler
language, a set of 01 statements in the
case of COBOL, and DECLARE statements
defining elementary character variables
in the case of PL/I. The symbolic names
for the attention identifiers and the
corresponding 3270 functions are given
as follows:

Name

DFHENTER
DFHCLEAR
DFHOPID

DFHPEN

DFHPAI
DFHPA2
DFHPA3
DFHPFI

.
DFHPF24

3270 Function

Enter key
Clear key
Operator Identification
Card Reader

Immediately detectable
field

PAl key
PA2 key
PA3 key
PFI key

PF24 key

PROGRAMMING CONSIDERATIONS FOR PAGING
COMMANDS ON DISPLAY DEVICES

The commands used by terminal operators
to communicate with CICS BMS are
collectively known as terminal paging
commands, or simply as paging commands.
They are defined by the system
programmer through the DFHSIT macro,
which is described in the appropriate
CICS Resource Definition manual. Their
format and use are discussed in detail
in the appropriate CICS-Supplied
Transactions book.

The application programmer must be aware
of the terminal paging commands in order
to write applications that involve
terminal operators. The use of BMS at
map definition time and in executable
programs can have a significant effect
on terminal operator procedures.

It is important to note that when in a
page retrieval session, that is, when
using paging commands, all PA and PF
keys are treated as paging commands,
regardless of whether or not they have
been defined in the SKRXXXX operand of
the DFHSIT macro.

Cursor placement is an important
consideration in programming for paging
commands. Any of the following items
can cause a paging command not to be the
first data read by CICS and therefore
not to be interpreted as a paging
command.

• After a print operation on a 3270
display, the cursor is set to
position zero. A paging command
entered at this location is not
recognized unless the last position
of the buffer contains an attribute
byte or the buffer has been cleared.

• A field sent with DATA=ONLY and no
attribute byte in the TIOA is
written into the buffer without an
attribute byte. If the application
programmer places the cursor in this
field and the operator keys a paging
command beginning at the cursor
location, the paging command is not
recognized.

184 CICS/VS Application Programmer's Reference Manual (Macro Level)

Since the field has no attribute
byte, the hardware considers the
data to be an extension of the
previously defined field. When the
operator keys into the middle of the
hardware-recognized field and
presses the enter key, the field is
transmitted from the beginning of
the previously defined field. The
data at the beginning of the field
is examined for a paging command and
responded to accordingly.

• Cursor specification in the DFHBMS
macro can adversely affect operator
action if the cursor is not set at
the beginning of a field. Paging
commands entered at a cursor
location that is not the beginning
of a field are not recognized by BMS
because data transmission starts at
the beginning of the field if the
field is not set to nulls X'OO'.

OPERANDS OF THE DFHBMS MACRO

CTRL=
PAGEBLD, TEXTBLD, and OUT Macros

In DFHBMS TYPE=PAGEBLD, TEXTBlD,
and OUT macros, CTRL= is used to
specify device characteristics
related to terminals of the 3270
Information Display System
(including VTAM 3270 logical units,
3650 host-conversational (3270)
logical units, and 3790
(3270-display and 3270-printer)
logical units). CTRL=ALARM is also
valid for TCAM SDLC and
VTAM-supported terminals (except
interactive and batch logical
units), for which all other
parameters for CTRL are ignored.

To be effective, this operand must
be specified in the DFHBMS
TYPE=PAGEBLD macro that causes a
page of output to be completed, or
in the DFHMDI macro for the
associated map, or in the DFHMSD
macro for the associated map set.
If the operand is specified in more
than one of these macros, the
specification in a DFHBMS macro
will override that in a DFHMDI
macro, which in turn overrides that
in a DFHMSD macro.

If PROPT=NLEOM is specified, this
operand is overridden; see the
description of the PROPT operand
later in this list of operands.

PRINT
must be specified if the
printer is to be started; if
omitted, the data is sent to
the printer buffer but is not
printed. This operand is
ignored for 3270 displays
without printer features.

L40,L64,L80,HONEOM
are mutually exclusive options
that control the line length
on the printer. L40, L64, and
L80 force a carrier­
return/line feed after 40, 64,
or 80 characters,
respectively. HONEOM cuses
the default printer line
length to be used.

FREEKB
specifies that the keyboard
should be unlocked after this
map is written out. If
omitted, the keyboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible
alarm feature. For TCAM and
VTAM terminals supporting
function management headers
(FMHs) (except interactive and
batch logical units), ALARM
signals BMS to set the alarm
flag in the FMH.

FRSET
is valid only when mapping is
used. FRSET indicates that
the modified data tags (MDTs)
of all fields currently in the
3270 buffer are to be reset to
a not-modified condition (that
is, field reset) before any
map data is written to the
buffer. This allows the
DFHMDF ATTRB specification for
the requested map to control
the final status of any fields
written or rewritten in
response to a DFHBMS macro.

PAGEOUT Macro

In the DFHBMS TYPE=PAGEOUT macro,
CTRL= specifies how pages are to be
displayed at the terminal (when the
disposition is OUT or STORE) and
whether or not control is to be
returned to the application
program.

PAGE
specifies that pages are to be
paged one at a time to the
terminal. BMS writes the
first page to the terminal
when the terminal becomes
available or upon request of
the operator. All subsequent
pages are written to the
terminal in response to a
terminal operator request.
See the description of paging
commands in the appropriate
CICS-Supplied Transactions
book. If automatic paging is
specified for the terminal at
system generation, this
specification overrides the

Chapter 4.3. Basic Mapping Support 185

automatic paging for this
logical message. For TCAM SNA
and VTAM-supported terminals,
PAGE applies to all lDC page
sets accumulated within the
logical message.

AUTOPAGE
specifies that pages are to be
paged automatically to the
terminal. BMS writes each
page of the logical message to
the terminal when it becomes
available. If paging upon
request was specified for the
terminal at system generation,
this specification overrides
it for this logical message,
provided that the terminal is
not a 3270 display terminal
(AUTOPAGE cannot be specified
for a 3270 display terminal).
For TCAM SNA and
VTAM-supported terminals,
AUTOPAGE applies to all LDC
page sets accumulated in the
logical message.

A specification of PAGE for 3284 or
3286 devices is ignored. That is,
AUTOPAGE is assumed for these
devices. If neither PAGE nor
AUTOPAGE is specified, the paging
status specified for the terminal
at system generation determines how
pages are to be written to the
terminal. For TCAM SNA and
VTAM-supported terminals with LDC
support, paging status for each LDC
is obtained from the system LDC
table.

RETAIN
indicates that BMS is to
return control to the
application program for
further processing after it
has written the page(s) to the
terminal and has received data
other than a purge, copy, or
paging command from the
operator.

RETAIN is intended to be used
for a combination of page
display from the page file
(logical message built using
the STORE disposition) and
operator data entry. BMS
issues a GET to the terminal
after writing the appropriate
page(s) to the terminal. BMS
issues the GET only if the
logical message was built with
STORE disposition. If the
logical message was not built
with STORE disposition, BMS
returns control to the
application program after the
last page is written to the
terminal, and without issuing
a GET to the terminal.

The operator may enter any
page, purge, or copy commands
that are valid for the
particular message. Any other
entered data is passed back'to
the application program after
the current message is purged.
The address of the newly
acquired TIOA is in TCTTEDA.
A chaining command is not
valid at this point because it
requests the creation of a new
task for the terminal to which
a task is alreadY attached.

RELEASE
indicates that control is to
be returned to the program at
the next higher logical level
after BMS has written the
page(s) to the terminal. When
RELEASE is specified, LAST is
assumed for TCAM SNA and
VTAM-supported terminals,
except when the PAGEOUT is for
a route operation.

Note: To ensure that a
logical message appears at the
receiving terminal at once,
before any other transaction
is initiated from the terminal
and before any other messages
that may have been routed to
it, CTRL=RELEASE should be
specified.

If neither RETAIN nor RELEASE is
specified, and STORE is the
disposition for the logical
message, a new task is scheduled by
CICS task control for writing the
pages to the terminal, and control
is returned to the application
program at this time rather than
after the pages are written. After
the application program has
terminated, the pages will be
written to the terminal in response
to terminal operator requests. See
the description of paging commands
in the appropriate CICS-Supplied
Transactions book. If pages are
being routed, a specification of
either RELEASE or RETAIN is
ignored.

If messages are being chained, and
the second transaction uses BMS in
paging mode, the use of RETAIN will
prevent further chaining. RELEASE
must be used to allow more than two
transactions to be chained
together.

CURSOR=
is used to position the cursor upon
completion of a write operation to
a 3270 device. This operand is
valid in TYPE=OUT macros only when
maps are used.

186 CICS/VS Application Programmer's Reference Manual (Macro Level)

number

YES

is an integer indicating a
particular position relative
to zero on the screenj the
range of values that may be
spec'i fi ed depends upon the
screen size of the 3270 being
used.

indicates that a value
indicating the desired cursor
position has been placed in
TCABMSCP.' (Note, though, that
TCABMSCP may be used by CICS
for other purposes. The user
should not rely on the cursor
position specification
remaining intact throughout a
transaction.)

This operand overrides the IC
option of the ATTRB operand of the
DFHMDF macro, if it is specified in
a macro that completes a
pagebuilding operation and thus
causes a write operation. Previous
specifications of the IC option and
of the CURSOR operand for the other
maps making up the page are
ignored.

Similarly, a CURSOR operand on a
later TEXTBLD macro always
overrides a CURSOR operand on an
earlier TEXTBLD macro.

An alternate method may be used to
dynamically position the cursor on
the output screen. This method is
called symbolic cursor positioningj
it allows a field in the TIOA to be
marked, symbolically, such that the
cursor is placed under the first
data byte of the field on the
output screen.

Requirements for symbolic cursor
positioning are as follows:

• MODE=INOUT must be specified on
the DFHMSD macro for maps and
DSECTs which will be used with
symbolic cursor positioning.

• CURSOR=YES must be specified on
the DFHBMS macro.

•

•

Field TCABMSCP must be
initialized with hexadecimal
FSj for example, MVC
TCABMSCP,=X'FFFF'. (In COBOL
move minus one into TCABMSCP
which has been defined as PIC
S9(4) CaMP.)

The length field, suffix "L",
associated with the field under
which the cursor is to be
placed must be initialized with
hexadecimal Fs. For example,
MVC FIELD3L,=X'FFFF'. (In
COBOL move minus one into

DATA:

FIELD3L which has been defined
as PIC S9(4) COMP.)

The remainder of the TIOA may be
built as desired by the- user.
Symbolic cursor positioning is
operable only for devices which
allow cursor placement to be
performed independently of data
placementj for example, 3604 and
3270. Symbolic cursor positioning
is ignored for other devices.

indicates one of the following
three output mapping data selection
modes.

NO

YES

ONLY

specifies that only default
data is to be written from the
selected map.

specifies that data placed in
the TIOA by the application
programmer is to be merged
with default data from the
map. The user-supplied data
and/or attribute character
(3270 only) supplied for a
given field replaces the
corresponding default data
and/or attribute character
from the map.

specifies that only data
placed in the TIOA by the
application programmer is to
be written. The attribute
characters (3270 only) must be
specified for each field in
the TIOA. Any default data or
attributes from the map are
ignored.

This operand is valid only when
mapping is used. If it is omitted,
DATA=NO is assumed. The first
position of each field in data
placed in the TIOA by the
application program must contain a
nonnull character. A suitable
replacement character for a null
character is a blank (X'40').

If this option is used to send data
to a terminal defined in the TCT as
supporting 3270 data stream
extensions (color, programmed
symbols, and extended
highlighting), BMS transmits a data
stream that modifies the existing
fields. This data stream is valid
only when the screen is formatted,
so care must be taken not to send
it to an unformatted screen on an
extended data stream display unit.
The problem does not arise with
screens that do not support the
extensions, because CICS then sends
a data stream that simply

Chapter 4.3. Basic Mapping Support 187

overwrites the relevant part of the
buffer.

EOC=symb-addr
specifies the symbolic address of
the routine to be given control if
the request/response unit (RU) is
received, during a BMS input
operation, with the end-of-chain
indicator set. This operand is
used only for VTAM interactive and
batch logical units.

EODPURG=
specifies the manner in which CICS
deletes the current message.

AUTO

OPER

specifies that CICS is to
delete the message
automaticallY if the operator
enters a transaction that is
not a paging command.
Alternatively, the operator
may delete the message with a
purge command. See the
description of the purge
command in the appropriate
CICS-Supplied Transactions
book.

specifies that CICS is not to
delete the message until the
terminal operator explicitly
requests deletion with a purge
command.

Note: If temporary storage is
reinitialized, all messages are
lost, regardless of any other
specifications.

EODS=symb-addr
indicates the label of a
user-written routine to receive
control if end-of-data-set (EODS)
has been received during a BMS
input operation. If this condition
occurs, no data has been received
(only a standalone function
management header). No data is
mapped and TCTTEDA is set to zero.
This operand applies only to VTAM
batch logical units.

ERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if any of the
response conditions except NORESP
occurs.

ERRTERM=
indicates the terminal to be
notified if the message is purged
because it is undeliverable. The
message number, title
identification, and destination of
the message are indicated.

termid

ORIG

YES

is the terminal identification
of the terminal to be
notified.

indicates that the originating
terminal is to be notified.

indicates that the terminal
identification of the terminal
to be notified has been placed
in TCAMSTI prior to issuing
the DFHBMS TYPE=ROUTE macro.

This operand is operative only if
the PRGDLAY operand was specified
in the DFHSG PROGRAM=BMS macro by
the system programmer. If PRGDLAY
was not specified, this operand has
no effect.

FMHPARM=
specifies information to be
included in a function management
header (FMH) being transmitted to a
3650 logical unit. Refer to the
appropriate CICS IBM 3650/3680
Guide for details of the FMH and of
3650 logical units.

This operand applies only to
VTAM-supported 3650 logical units
with outboard formatting. It
specifies the name of the map to be
used with this BMS request.

parameter

YES

HEADER=

specifies the eight-character
name of the map.

indicates that the map name
has been stored in the
eight~character TCAMSFMP field

specifies that header data is to be
placed at the beginning of each
output page and points to that
data.

symb-addr

YES

is the symbolic address of the
header record that will be
used to place header
information at the beginning
of each pa.ge.

indicates that the application
programmer has placed the
address of the header record
in TCAMSHDR prior to issuing
this DFHBMS macro.

If this operand is used in a DOS
COBOL program, the label must not
be longer than eight characters.

188 CICS/VS Application Programmer's Reference Manual (Macro Level)

The record pointed to by HEADER or
TRAILER operands has the following
format:

ILLIPICI<-Data--PPPPP-->1

where:

LL

p

c

is a 2-byte field containing
the length of the header or
trailer information.

is a one-byte field containing
a character of the user's
choice that indicates which,
if any, are the embedded page
number positions in the data
area. The character chosen
must, obviously, be one that
does not otherwise appear in
the data area. The embedded
page number positions will
initially contain this same
character. The character must
not be any of the following,
which are reserved: X'OC',
X'IS', X'17', X'26', and
X'FF'. If page-numbering is
not required, P should be set
to blank (X'40').

is a reserved one-byte field.

Data and PPPPP
is the header or trailer
information to be placed at
the beginning or end of each
page of output. This
information consists of a
constant character string
with, optionally, a
page-number field of up to
five characters embedded
within it.

The placement of the
page-number field within the
data area is entirely at the
user's choice. If such a
field is defined, BM5 will
place the current page number
in it for each page built.
The number is padded on the
left with zeros if it does not
fill the defined field; it is
truncated on the left if it is
too large for the defined
field. Page numbering starts
at I and can run up to 32,767.
It is automatically reset to 1
after each DFHBM5 TYPE=PAGEOUT
request or if the output
disposition is changed. The
legibility of the code will be
improved if the page-number
field is separated from the
constant data by blanks or
other suitable characters,
though such separation is not
required by BM5.

New-line characters (X'lS')
may be included in the
constant data if a
multiple-line header or
trailer is required,

IGREQCD=symb-addr
specifies the entry label of a
user-written routine to which
control is p"assed if an output
operation is attempted after a
signal command with a hard request
change direction (RCD) code
(X'OOOlOOOO') has been received
from an LUTYPE4 logical unit.
Applies to output operations only.
Valid in assembler language only.

IGREQID=symb-addr
specifies the entry label of a
user-coded routine to which control
is to be passed if the prefix
specified is different from the
established (via a previous
specification or default) REQID for
this logical message.

INTRVAL=
specifies the interval of time
after which data being routed to
the page file is to be transmitted
to the terminal(s).

numeric value

YES

is of the form HHMMSS, where
HH represents hours from 00 to
99, MM represents minutes from
00 to 59, and 55 represents
seconds from 00 to 59.

indicates that the interval of
time has been placed in packed
decimal form (OHHMMSS+) in
TCAMSRTI prior to issuing the
DFHBMS TYPE=ROUTE macro.

INVET=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if the terminal
identification specified by the
ERRTERM operand of a DFHBMS
TYPE=ROUTE macro is invalid or is
assigned to a terminal of a type
not supported under BMS.

INVLDC=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if the LDC
mnemonic specified by the LDC
operand does not appear in the lDC
list associated with the TeTTE.

INVMPSZ=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if (1) the
specified map is too wide for a
receiving terminal, or (2) OFlOW
has been requested and the
specified map is too long for the

Chapter 4.3. Basic Mapping Support 189

reCe1v1ng terminal. Upon entry to
the user-written routine, TCAMSRII
contains a terminal code that
further identifies the receiving
terminal (see "Terminal Code (TC)
Table," earlier in this chapter).

INVREQ=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if the request
for BMS services is invalid.

This response may be caused by any
of the following conditions:

• Changing the disposition of a
routed logical message prior to
its completion, through DFHBMS
TYPE=PAGEOUT

• Issuing a separate TYPE=TEXTBLD
or TYPE=PAGEBLD request to the
direct (originating) terminal
while in the process of
building a routed logical
message

• Mixing TYPE=TEXTBLD and
TYPE=PAGEBLD requests when
building a logical message

• Specifying NOEDIT with a
TYPE=PAGEBLD or TYPE=TEXTBLD
request

• Specifying the TRAILER operand
with TYPE=PAGEOUT when
terminating a logical message
built using TYPE=PAGEBLD
requests

• Issuing a DFHBMS request with
DATA=YES or DATA=NO and
specifying a map with no field
specifications

• Issuing a DFHBMS request with
TYPE=STORE from a CICS
application program
communicating with a host
conversational (3653) logical
unit.

JUSTIFY=
describes the positioning of the
text data.

FIRST

LAST

indicates that this TEXTBLD
data is to be positioned at
the top of the page. Any
partially formatted page from
preceding DFHBMS requests is
considered to be complete. If
the HEADER operand is
specified, the header precedes
the TEXTBLD data.

indicates that this TEXTBLD
data is to be positioned at
the bottom of the page. If
the TRAILER operand is

LDC=

specified, the trailer appears
after the TEXTBLD data. The
page is considered to be
complete after the request is
processed.

line number

YES

indicates that this TEXTBLD
data is to be positioned at
line nnn of the page.

indicates that the application
programmer has placed a binary
value from 1 to 255 in TCAMSJ
prior to issuing this DFHBMS
TYPE=TEXTBLD macro. A value
in the range from I through
240 represents a line number;
254 represents LAST; and 255
represents FIRST. The values
from 241 through 253 are
reserved and should not be
specified.

specifies the mnemonic to be used
by CICS to determine the logical
device code that is to be used for
the BMS operation and transmitted
in the function management header
(FMH) to the logical unit. This
operand is meaningful only for TCAM
and VTAM terminals with LDC
support.

mnemonic

YES

is the 2-character mnemonic
used to determine the
appropriate LDC numeric value.
The mnemonic represents an LDC
entry in the DFHTCT TYPE=LDC
macro.

indicates that the application
program has placed the LDC
mnemonic in TCAMSLDM.

When an LDC is specified, BMS
uses the device type, the page
size, and the page status
associated with the LDC
mnemonic to format the
message. These values are
taken from the extended local
LDC table for the LU, if it
has one. If the LU has only a
local (unextended) LDC table,
the values are taken from the
system LDC table. The numeric
value of the LDC is obtained
from the local LDC table,
unless this is an unextended
table and the value is not
specified, in which case it is
taken from the system table.

If the LDC operand of the
DFHBMS macro is omitted, the
LDC mnemonic specified in the
DFHMSD macro is used, (except
in TEXTBLD operations, when
maps do not apply). If the

190 CICS/VS Application Programmer's Reference Manual (Macro Level)

LIST=

lDC operand has also been
omitted from the DFHMSD macro,
the action depends on the type
of the logical unit.

For a 3601 lU, the first entry
in the local or extended local
lDC table is used, if there is
one. If a default cannot be
obtained in this way, a null
lDC numeric value (X'OO') is
used. The page size used is
the value that was specified
in the DFHTCT TYPE=TERMINAl
macro, or (1,40) if such a
value was not specified.

For a batch or batch data
interchange lU, the local lDC
table is not used to supply a
default lDC; instead, the
message is directed to the lU
console (that is, to any
medium that the lU elects to
receive such messages. Note
that for a batch data
interchange lU, this does not
imply sending an lDC in an
FMH). The page size is
obtained in the manner
described for the 3601 lU.

For DFHBMS TYPE=ROUTE
operations, the lDC operand of
the ROUTE macro takes
precedence over all other
sources. If this operand is
omitted and a route list is
specified (lIST=symbolic
address or YES), the lDC
mnemonic in the route list is
used; if the route list
contains no lDC mnemonic, or
no route list is specified, a
default lDC is chosen as
described above.

specifies the terminals and/or
operators to which paged data is to
be directed.

symb-addr

YES

ALL

is the label of a list of
terminals and/or operators to
which data is to be directed.
If this parameter is used on a
CICS/DOS/VS COBOL application
program the label must not be
longer than eight characters.

indicates that the address of
the list of terminals and/or
operators to which data is to
be directed has been placed in
TCAMSRLA prior to issuing the
DFHBMS TYPE=ROUTE macro.

indicates that all terminals
supported by BMS are to
receive the paged data.

There is a limit to the number
of terminals to which a
message can be sent. The
maximum cannot be defined
because it is dependent on the
other operands specified on
the routing command, but the
transaction will be abended
with an abend code of ABMC if
the limit is exceeded.

The list of destination terminals
and/or operators consists of
16-byte entries whose contents are
as follows:

Bytes

1-4

5-6

7-9

10

contents

4-character (including
trailing blanks) terminal or
logical unit id, or blanks

2-character lDC mnemonic for
TCAM and VTAM terminals with
lDC support, or blanks

operator id, or blanks

status flag for route entry
See "Status Flag Byte in
User-Supplied Route list,"
earlier in the chapter.

11-16 reserved; must contain blanks

The end of the list is designated
as follows:

ASM: DC Al2(-1)
COBOL: PIC S9(4) COMP VALUE -1.

DCl FIXED BINC1S) INIT(-l); Pl/I:

It may be necessary for the
application program to supply this
list of destinations in
noncontiguous areas called
segments. If the list is supplied
in segments, every segment except
the last is terminated with (at
least) an a-byte entry as follows:

Bytes contents

1-2 ASM: DC Al2(-2)
COBOL: PIC S9(4) COMP VALUE -2.
Pl/I: DCl FIXED BIN(15)

INIT(-2);

3-4 reserved

5-8 chain address to the first
entry of the next segment

The end of the list is designated
as described above for an
unsegmented list.

If, for any entry in the list,

1. The terminal identification is
specified but the operator
identification is omitted, the
data is routed to that terminal

Chapter 4.3. Basic Mapping Support 191

MAP=

without regard to operator
identification.

2. The operator identification is
specified but no terminal
identification is given, the
data is routed to the "first"
terminal at which the operator
is signed on under the
specified operator
identification. The "first" is
determined by the physical
location of the terminal entry
in the CICS terminal control
table. If no operator is
signed on under the specified
operator identification when
the DFHBMS TYPE=ROUTE macro is
executed, the route list entry
is ignored.

3. Both terminal identification
and operator identification are
specified, the data is routed
to that terminal.

For either 2 or 3 above, the data
is displayed only if the operator
with the specified identification
is signed on at the terminal when
the data is ready to be displayed,
or when the operator signs on after
the data is ready to be displayed.
Entries of all three types may be
included in one segmented or
unsegmented list.

It should be noted that the status
flag in each route list entry is
used to notify the application
program of certain status
conditions for that requested
destination. Therefore, if the
route list is contained within the
application program and BMS alters
the status flag, the application
program can no longer be considered
reentrant.

specifies the name of the map to be
used when mapping formatted pages.

map name

YES

is the 1- through 7-character
name of the map within a map
set.

indicates that the application
programmer has placed the name
of the map in TCABMSMN prior
to issuing this DFHBMS macro.
The name must be
left-justified and padded with
trailing blanks to 8
characters.

MAPADR=
specifies the address of the map to
be used when mapping formatted
pages. This operand is valid only

when the map has been coded within
an assembler language program.

symb-addr

YES

is the 1- through 7-character
symbolic label that has been
assigned to the map.

indicates that the application
programmer has placed the
address of the map in TCABMSMA
prior to issuing this DFHBMS
macro.

If MAPADR is specified, MAP,
MAPSET, and MSETADR should not be
used.

MAPFAIL=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if the data to be
mapped has a length of zero or does
not contain a SBA (start buffer
address) sequence. This response
can occur only if TYPE=IN or
TYPE=MAP is specified and data is
mapped from a 3270 device. For
TYPE=IN, the address of the
erroneous TIOA is available at
TCTTEDA. For TYPE=MAP, this
address is wherever the user placed
it prior to the request (either in
TCTTEDA or TCAMSIOA).

MAPSET=
specifies the name of the map set
to be used in the mapping
operation.

map set name

YES

is the 1- through 7-character
name of the map set.

indicates that the application
programmer has placed the name
of the map set in TCAMSMSN
prior to issuing the DFHBMS
macro. The name must be
left-justified and padded with
trailing blanks to 8
characters.

The map set established by this
operand must reside in the CICS
program library, and a
corresponding entry for the map set
must exist in the processing
program table (PPT).

If MAPSET is coded, MAP must also
be coded.

MSETADR=
specifies the address of the map
set to be used in the mapping
operation. This operand is valid
only when the map has been coded
within an assembler language
program.

192 CICS/VS Application Programmer's Reference Manual (Macro level)

symb-addr

YES

is the 1- through 8-character
symbolic label that has been
assigned to the map set.

indicates that the application
programmer has placed the
address of the map set in
TCAMSMSA prior to issuing this
DFHBMS macro.

MAPSET and MSETADR are mutually
exclusive operands. If MSETADR is
coded, MAP must also be coded.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if none of the
other response conditions (whether
checked for or not) occurs. NORESP
signifies "normal response".

OFLOW=symb-addr
specifies the symbolic address of a
routine to which control is to be
transferred if the mapped data does
not fit on the current page (see
"PAGEBLD Overflow Processing,"
earlier in the chapter).

OPCLASS=
specifies the operator class or
classes to which data is to be
routed.

decimal value, •••

YES

consists of I or more decimal
values in the range from 1
through 24, separated by
commas, specifically
identifying the operator
class(es).

indicates that values
identifying operator classes
have been placed in TCAMSOC
(3-byte field) prior to
issuing the DFHBMS TYPE=ROUTE
macro.

A bit position corresponding to
each'value from I through 24 is
established in a 3-byte field which
is matched against the 3-byte
operator class field in the CICS
terminal control table terminal
entry (TCTTEOCl) for a terminal.
At least one pair of corresponding
bits must match in order for the
message to be routed to the
terminal. The value in TCTTEOCl is
set during sign-on according to the
OPClASS operand of the DFHSNT
TYPE=ENTRY macro specified by the
system programmer.

If data is to be routed to an
operator class, the application
programmer may do one of the
following:

1. Specify OPClASS and omit LIST.
Data is routed to each terminal
at which an operator is signed
on with the specified OPClASS
at the time the DFHBMS macro is
issued.

2. Specify OPClASS and lIST=All.
Data is routed to all
terminals. However, it is not
necessary for an operator to be
signed on with the specified
OPClASS at the time the DFHBMS
macro is issued.

In both cases, the data is not
displayed on a terminal until an
operator is signed-on with the
specified OPCLASS. In general,
LIST=All is specified with OPClASS
only when it is anticipated that
someone will eventually sign on
with the specified OPClASS at every
supported terminal.

If the application programmer
specifies OPCLASS and lIST=symbolic
address, and the list contains
operator identifications, a
specified operator identification
overrides OPCLASS for that entry.

PROPT=NLEOM
requests BMS to build a logical
message specifically for a 3270
printer or a 3270 display with the
Printer Adapter feature. If used,
this operand must be specified in
the first DFHBMS macro for each
logical message. If routing, this
operand must be specified on the
TYPE=ROUTE request. Specification
of this operand overrides the CTRl
operand, if present;
CTRl=(PRINT,HONEOM,FREEKB,PRESET)
is assumed.

Specification of this operand will
cause the page to be formatted
using new-line (Nl) characters as
for the other hard copy devices.
An end-of-message (EM) character is
placed at the end of the data. As
the data is printed, a new-line
character causes printing to
continue on the next line. The
end-of-message character terminates
printing. The next print operation
will start on a new line.

The following restrictions apply
when using this parameter: buffer
updating and attribute modification
of fields previously written into
the buffer are not allowed. BMS
issues an ERASE with every write to
the terminal.

When building a logical message,
BMS will insert an NL character at
the end of each line and an EM
character at the end of the text.
Each Nl and the EM character
occupies a 3270 buffer position;

Chapter 4.3. Basic Mapping ,Support 193

therefore, to avoid possible
wraparound due to excessive data in
the buffer, the PGESIZE values
defined in the DFHTCT system macro
should be sueh that the remainder
of the 3270 buffer will contain
these additional characters.

This operand is ignored if the
direct or a routing terminal is not
a 3270 printer or display with the
Printer Adapter feature.

RDATT=
specifies the address of a routine
to receive control if the operator
presses the ATTN key on a 2741 when
input is being entered from the
terminal in response to a DFHBMS
TYPE=IN request. This operand can
be specified only if 2741 Read
Attention support, an option
available under either CICS/DOS/VS
or CICS/OS/VS, has been generated
into the system (see "Read
Attention" on page 121).

REQID=
specifies the prefix to be used
with the temporary storage
identification. The identification
(including the prefix) is used by
CICS when attempting message
recovery.

BMS message recovery is provided
for a logical message only if the
STORE operand is specified in the
BMS output request and if the
logical end of task has been
reached.

Only one prefix can be specified
for each logical message. If the
REQID operand is not specified,
CICS assigns the prefix ** (two
asterisks).

prefix

YES

indicates the alphanumeric
prefix to be used as the first
2 characters of a temporary
storage identification.

indicates that the prefix has
been stored at TCAMSRID.

RETPAGE=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if one or more
completed pages are returned to the
application program. This response
can occur only if TYPE=RETURN is
speeified in the DFHBMS macro (see
the description of TYPE=RETURN for
further information).

RTEFAIL=symb-addr
specifies the entry label of the
user-written routine to which
control is passed if a DFHBMS
TYPE=ROUTE request results in a

null routing environment (that is,
the message will be sent, by
default, to only the originating
terminal). (To determine why route
list entries were skipped, refer to
"Status Flag Byte in User-Supplied
Route List" on page 179.)

RTESOME=symb-addr

TIME=

specifies the entry label of the
user-written routine to which
control is passed if (1) some of
the entries in the user-specified
route list named in the LIST
operand of a DFHBMS TYPE=ROUTE
macro are excluded from the routing
environment, or (2) LIST=ALL is
specified and not all of the
entries in the terminal control
table are included in the routing
environment. (To determine why
some route list entries were
skipped, refer to "Status Flag Byte
in User-Supplied Route List" on
page 179.)

specifies the time of day at which
data being routed to the page file
is to be transmitted to the
terminal(s).

numeric value

YES

is of the form HHMMSS, where
HH represents hours from 00 to
99, MM represents minutes from
00 to 59, and SS represents
seconds from 00 to 59.

indicates that the time of day
has been placed in packed
decimal form (OHHMMSS+) in
TCAMSRTI prior to issuing the
DFHBMS TYPE=ROUTE macro.

TITLE=
speeifies the symbolic address of a
record that contains a title to be
associated with the logical message
created under this routing
environment.

symb-addr

YES

is the symbolic address of the
title length field that
precedes the title in the
title record. If this
parameter is used in a
CICS/DOS/VS COBOL program the
label must not be longer than
8 characters.

indicates that the address of
the title length field in the
title record has been placed
in TCAMSTA prior to issuing
the DFHBMS TYPE=ROUTE macro.

The title pointed to by the TITLE
operand is displayed with the
logical message ID when the
terminal paging query command is

194 CICS/VS Application Programmer's Reference Manual (Macro Level)

entered. See the description of
the page query command in the
appropriate CICS-Supplied
Transactions book. This title
serves as an additional message
identifier, displayed upon request
with the message ID, not on the
logical message. The value in the
2-byte length field preceding the
title includes the bytes used for
the length field. The length field
and title, in total, may be up to
64 bytes long. For example:

IX'OotA'IMONTHlY INVENTORY REPORT I

TRAILER=

2-byte
length
field

24-byte
title field

specifies that user-defined trailer
data is to be placed at the foot of
each page completed by the TEXTBlD
macro in which the operand is
coded, or at the foot of the last
page if the operand appears on a
PAGEOUT macro. The operand is
ignored if no page is completed by
the macro in which it appears. The
operand is invalid in a PAGEOUT
macro that is completing a message
built using PAGEBlD macros; if
TRAIlER= is used in such
circumstances, BMS returns an
INVREQ return code.

The format of trailer data is the
same as that for header data,
described above (see "HEADER=").
Page numbering can be accomplished
automatically, as with header data.

symb-addr

YES

is the symbolic address of the
trailer record that will be
used to place trailer data at
the bottom of the last page.
If this parameter is used in a
CICS/DOS/VS COBOL program, the
label must not be longer than
8 characters.

indicates that the application
programmer has placed the
address of the trailer record
in TCAMSTRl prior to issuing
this DFHBMS macro.

TRANSID=transaction code
specifies a 1- through 4-character
transaction identification to be
used with the next input message
entered from the terminal to which
this task is attached.

This operand is valid only when
CTRl=RElEASE is specified.

TSIOERR=symb-addr
specifies the entry label of the
user-written routine to which

control is to be passed if an
unrecoverable temporary storage
input/output error occurs.

TYPE= . .
The following TYPE= parameters
distinguish macros with distinct
purposes. As such, they are not
treated as operands and so
described in this section; instead,
they are explained individually in
earlier sections in this chapter.

CHECK
IN

PAGEOUT
PURGE
ROUTE
TEXTBLD

MAP
PAGEBLD

The SAVE and TEXT parameters have
special meaning for TYPE=IN (both)
and TYPE=MAP (SAVE only) macros,
and are described with the
individual macros.

The following four TYPE= parameters
indicate the disposition of output
data:

OUT
indicates that the output is
to be written to the
originating terminal when the
page is complete.

Once a DFHBMS macro with OUT
disposition has been issued,
the application program must
not issue a DFHSC
TYPE=FREEMAIN,RElEASE=ALL
macro until either a DFHBMS
TYPE=PAGEOUT or·DFHBMS
TYPE=PURGE macro has been
issued.

When the OUT parameter is not
preceded by either PAGEBlD or
TEXTBlD, it effectively
distinguishes a macro with a
different purpose. This usage
is described earlier in this
chapter under the heading
"Direct Output (TYPE=OUT)" on
page 175.

RETURN

STORE

indicates that the complete
page(s) is to be returned to
the application programmer.
(See "Handling Returned
Pages," earlier, for further
information.) The application
program regains control (1)
immediately following the BMS
instruction if the current
page is not yet completed, or
(2) at an alternative entry
point specified through the
RETPAGE operand of this macro
if one or more pages have been
completed.

indicates that the output is
to be placed in temporary

Chapter 4.3. Basic Mapping Support 195

WAIT

storage to be displayed in
response to paging commands
entered by the terminal
operator. For more
information about these
commands, see the appropriate
CICS-Supplied Transactions
book. If STORE is specified
with a REQID that is defined
in the temporary storage table
(TST), CICS provides message
recoverY for logical messages
if the task has reached
logical end. CICS temporary
storage is needed to hold
messages awaiting delivery to·
terminals.

indicates that BMS is to wait
until all output operations
are complete before returning
control to the application
program. WAIT must be
specified with every output
request except the following.

• The last output request
prior to task termination

• The last output request
prior to an input
operation

• The last output request
prior to issuing a DFHBMS
TYPE=PAGEOUT macro that
precedes task termination
or an input operation.

If no disposition is specified, the
output is sent to the originating
terminal. Once the disposition has
been established for a logical
message, it is not necessary to
repeat the disposition for that
logical message. Any change of
disposition specified while in the
process of building a logical
message forces that logical message
to completion with its original
disposition. Then a new logical
message is started with a new
disposition. The disposition
parameter is handled differently
under DFHBMS TYPE=ROUTE. See
"Disposition and Message Routing­
on page 178.

The remaining TYPE= parameters are.

ERASE
specifies that a 3270 buffer
or 3604 screen is to be erased
before this page of output is
displayed. A printer buffer
will contain meaningless data
from prior messages if all
positions are not filled with
current data. The first
output operation in any
transaction, or in a series
of pseudo-conversational
transactions, shoul.d always

specify ERASE. For
transactions attached to 3278
screens, this will also ensure
that the correct screen size
is selected as defined for the
transaction in the peT.

ERASEAUP

LAST

specifies that all unprotected
character locations in a 3270
buffer are to be erased before
this page of output data is
displayed. There are no
further effects of specifying
this parameter.

signals to CICS that this is
the last output for a
transaction and, therefore,
the end of a bracket
operation. This operand is
meaningful only for TCAM SNA
terminals and for
VTAM-supported terminals and
is applicable only when OUT is
the specified disposition.
For TCAM, an indicator is set
in the communication control
byte (CCB) requesting that the
message handler send
end-of-bracket.

NOEDIT

SAVE

WRBRK=

specifies that CICS need not
insert device-dependent
control characters (carrier
return, line feed, idle
characters, and so on) into
the output data stream. The
application program,
therefore, assumes
responsibility for providing
any required control
characters. This parameter is
ignored for all output
operations specifying maps.
This parameter cannot be used
with 3601 devices.

specifies that the
user-supplied data area
addressed by TCTTEDA or
TCAMSIOA is to be saved. The
location containing the
address of the data area will
be changed by BMS, so the
address should be stored
elsewhere before issuing the
macro.

is used to specify the action that
is to occur if the ATTN key on a
2741 is pressed while data is being
written to the terminal.

symb-addr
specifies the symbolic address
of the routine to receive
control when the ATTN key on a
2741 is pressed during the
actual write to the terminal.

196 CICS/VS Application Programmer's Reference Manual (Macro Level)

This operand is operative when
2741 Write Break support has
been generated into CICS
(available only under OS/VS)
and when the task would
normally have regained
control. It is not valid on
BMS macros where TYPE=STORE or
TYPE=RETURN is specified, or
on a PAGEOUT macro when
CTRL=RELEASE is specified.

CURRENT
specifies that transmission of
the current page to the
terminal is to cease, but, if
autopaging has been requested,
transmission of the next page
(if any) begins.

ALL
specifies that transmission of
the current page to the
terminal is to cease and that
no additional pages are to be
transmitted. The logical
message is purged.

Both CURRENT and ALL are meaningful
only if 2741 Write Break support
has been generated into CICS
(available only under OS/VS), and
if TYPE=STORE was ·specified in
preceding DFHBMS requests, or data
has been sent to terminals other
than the originating terminal. In
these cases, data has been placed
in temporary storage and is being
displayed by a program other than
the one associated with the
originating terminal.

Chapter 4.3. Basic Mapping Support 197

CHAPTER 4.4. BATCH DATA INTERCHANGE (DFHDI MACRO)

The CICS Batch Data Interchange program
provides for communication between an
application program and a named data set
(or destination) or a selected output
medium. The named data set (or
destination) must be part of a batch
data interchange logical unit in an
outboard controller; the selected output
medium must be part of either such a
logical unit or an LUTYPE4.

The term "outboard controller" is a
generalized reference to a programmabLe
subsystem, such as the IBM 3770 Data
Communication System or the IBM 3790
Data Communication System, which uses
SNA protocols. (Details of SNA
protocols and the data sets that can be
used are given in the appropriate

I

' CICS/VS IBM 3767/3770/6670 Guide and the
appropriate CICS/VS IBM 3790/3730/8100
Guide.)

The batch data interchange macro (DFHDI)
is used to specify ADD, ERASE, REPLACE,
QUERY, END, ABORT, SEND, RECEIVE, and
CHECK operations on data sets in an
outboard controller. Where the
controller is an lUTYPE4 logical unit,
only the END, ABORT, SEND, RECEIVE, and
CHECK operations are supported.

The DFHDI macro can be used only with
assembler language application programs.
It is not available for COBOL or PL/I
programs, which must use the command
level interface if they require these
facilities.

ADDITION OF RECORDS TO A DATA SET
(TYPE=ADDl

DFHDI TYPE=(ADD[,{SAVEINOSAVE}]
[,{WAITINOWAIT}]»

,DNADDR={symb-addrIYES}
[jNUMREC={integerIYES}]
[,DEFRESP=YES]
[,VOlADDR={symb-addrIYES}]
[,NORESP=symb-addrl
[,FUNCERR=symb-addrl
[,SElNERR=symb-addrl
[,UNEXPIN=symb-addr]

This macro specifies that a record in
the current TIOA, as indicated by the
TCTTEDA, is to be added to the
sequential or keyed direct data set
corresponding to the destination name
specified in the DNADDR operand.

The SAVE parameter specifies that the
contents of the TIOA is to be saved;

however, there is no guarantee that
TCTTEDA will remain unchanged.

The WAIT parameter indicates that task
activity is to be suspended until the
DFHDI macro has been executed.

PELETION OF RECORDS FROM A DATA SET
(TYPE=ERASEl

DFHDI TYPE=(ERASE[,{WAITINOWAIT}])
,DNADDR={symb-addrIYES}

{,KEYADDR={symb-addrIYES} I
,RRNADDR={record-idIYES}}

[,DEFRESP=YES]
[,VOlADDR={symb-addrIYES}1
[,NORESP=symb-addrl
[,FUNCERR=symb-addrl
[,SElNERR=symb-addrl
[,UNEXPIN=symb-addr]

This macro specifies that a record,
identified by the KEYADDR or RRNADDR
operand, is to be deleted from the keyed
direct data set corresponding to the
destination name specified in the DNADDR
operand.

The WAIT parameter indicates that task
activity is to be suspended until the
DFHDI macro has been executed.

REPLACEMENT OF RECORDS IN A DATA SET
(TYPE=REPLACE)

DFHDI TYPE=(REPLACE[,{SAVEINOSAVE}]
[,{WAITINOWAITIT}])

,DNADDR={symb-addrIYES}
{,KEYADDR={symb-addrIYES} I
,RRNADDR={record-idIYES}}

[,NUMREC={integerIYES}]
[,DEFRESP=YES]
[,VOlADDR={symb-addrIYES}]
[,NORESP=symb-addr]
[,FUNCERR=symb-addrl
[,SElNERR=symb-addrl
[,UNEXPIN=symb-addr]

This macro specifies that a record
identified by the RRNADDR or KEYADDR
operand, in the current TIOA, is to
replace a record in the addressed direct
data set corresponding to the
destination name specified in the DNADDR
operand.

Chapter 4.4. Batch Data Interchange (DFHDI Macro) 199

Where more than one record is to be
replaced, the second and subsequent
records are replaced consecutively,
starting with the one specified in the
RRNADDR or KEYADDR operand. The number
of records to be replaced is specified
in the NUMREC operand.

The SAVE parameter specifies that the
contents of the TIOA are to be saved;
however, there is no guarantee that
TCTTEDA will remain unchanged.

The WAIT parameter indicates that task
activity is to be suspended until the
DFHDI macro has been executed.

INTERROGATION OF DATA SET (TVPE=QUERVI

DFHDI TYPE=QUERY
,DNADDR={symb-addrIYES)

[,VOlADDR={symb-addrIYES}]
[,NORESP=symb-addr]
[,FUNCERR=symb-addr]
[,SELNERR=symb-addr]
[,UNEXPIN=symb-addrl

This macro specifies that the name of
the data set corresponding to the
destination name specified in the DNADDR
operand is to be solicited to allow the
outboard batch program to transmit the
data set to the host. The program must
issue input requests to receive the
records from the data set.

TERMINATION OF OPERATIONS ON A DATA SET
(TVPE=ENDl

DFHDI TYPE=END
{{,DNADDR={symb-addrIYES}}
I {,SElECT={CCONSOlEIPRINTICARDI

WPMEDIAllwPMEDIA21
WPMEDIA3IWPMEDIA4[,nn])I
YES}}}

'[,VOLADDR={symb-addrIYES}]
[,NORESP=symb-addr]
[,FUNCERR=symb-addr]
[,SELNERR=symb-addrl
[,UNEXPIN=symb-addr]

This macro specifies that operations on
a data set are to be terminated
normally. The current outboard
destination is deselected normally.

ABNORMAL T¥RMINATION OF OPERATIONS ON A
DATA SET (YPE=ABORTJ

DFHDI TYPE=ABORT
{{,DNADDR={symb-addrIYES}}
I {,SElECT={(CONSOLEIPRINTICARDI

WPMEDIAIIWPMEDIA21
WPMEDIA3IWPMEDIA4[,nn])I
YES}}}

[,VOlADDR={symb-addrIYES}1
[,NORESP=symb-addr]
[,FUNCERR=symb-addrl
[,SElNERR=symb-addrl
[,UNEXPIN=symb-addrl

This macro specifies that operations on
a data set are to be terminated
abnormally. The current outboard
destination is deselected abnormally.

TRANSMISSION OF DATA FROM HOST TO OUTPUT
DEVICES (TYPE=SENDJ

DFHDI TYPE=CSEND[,{SAVEINOSAVE)]
[,{WAITINOWAIT}l}])

{{,DNADDR={symb-addrIYES}}
I {,SElECT={CCONSOlEIPRINTICARDI

WPMEDIAllwPMEDIA21WPMEDIA31
WPMEDIA4[,nn])IYES}}}

[,VOlADDR={symb-addrIYES}]
[,DEFRESP=YES]
[,FUNCERR=symb-addr]
[,SElNERR=symb-addr]
[,UNEXPIN=symb-addr]
[,NORESP=symb-addrl

Data for an output medium is transmitted
to the logical unit from the TIOA, as
indicated by the TCTTEDA. The SAVE
parameter indicates that the TIOA is to
be saved; however, there is no guarantee
that TCTTEDA will remain unchanged.

The WAIT parameter indicates that task
activity is to be suspended until the
previous DFHDI macro has been executed.

TRANSMISSION OF DATA FROM DATA SET TO
HOST (TYPE=RECEIVEl

DFHDI TYPE=CRECEIVE[,{SAVEINOSAVE}])
[,NORESP=symb-addrl
[,EODS=symb-addr]
[,DSSTAT=symb-addrl
[,UNEXPIN=symb-addrl

200 CICS/VS Application Programmer's Reference Manual CMacro Level)

This macro specifies that DFHTC
TYPE=READ macros are to be generated to
obtain records from the inbound data
stream. These records are returned to
the application program in a TIOA
addressed by TCTTEDA. The number of
records returned by the TYPE=READ macro
depends upon whether the chain assembly
or logical read options have been
specified by the system programmer,
which in turn depend upon the data
format transmitted by the outboard
controller.

When an FMH is encountered it is removed
from the data stream and a response code
is set to inform the application program
of the change in destination selection
status. Response codes are discussed
below.

When the FMH is for BEGIN or RESUME
DESTINATION, and no data is obtained
from the READ, a further READ is issued
so that the request can complete with
user data.

When the FMH is for. SUSPEND, END, or
ABORT destination, the data, if present,
is presented first to the application
program with a normal response code; on
the next request, the appropriate
response code is set. The response code
indicating the change of destination
status is presented to the application
program with no user data. If a name is
sent, TCADIDNA is set, on completion of
each request, to point to a field
describing the host destination as a one
byte length field followed by the
destination riame. If no destination
name is sent, the field TCADISEL is set
to the medium and sub-address sent. For
descriptions of the formats and codes
used, see the SELECT operand later in
the chapter.

When reading from multiple data sets on
an LUTYPE4, the DSSTAT condition will be
raised by any attempted read after an
end-of-data-set FMH has been received.
The condition indicates that the logical
unit has currently no more data to send.

The SAVE operand specifies that the
contents of the TIOA are to be saved;
however, there is guarantee that the
TCTTEDA will remain unchanged.

OBTAINING THE RELATIVE RECORD NUMBER OF
NEXT RECORD (TYPE=NOTEl

DFHDI TYPE=NOTE
,DNADDR={symb-addrIYES)

[,VOLADDR={symb-addrIYES}l
[,NORESP=symb-addrl
[,FUNCERR=symb-addrl
[,SELNERR=symb-addrl
[,UNEXPIN=symb-addrl

This macro specifies that the relative
record number of the position in the
data set of the next available record is
to be returned to the application
program in a fullword field 'whose
address is placed in the TCA at TCADIRNA
after execution of the macro. The
outboard destination is a user-defined
addressed direct data set.

SUSPENSION OF EXECUTION OF TASK
(TVPE=WAITJ

DFHDI TYPE=WAIT

This macro specifies that task activity
is to be suspended until the previous
DFHDI macro has been executed. This
macro is meaningful only following a
DFHDI TYPE=ADD, TYPE=ERASE,
TYPE=REPLACE, or TYPE=SEND.

TESTING RESPONSE TO A REQUEST FOR DATA
INTERCHANGE SERVICES, (TYPE=CHECKl

DFHDI TYPE=CHECK
[,NORESP=symb-addrl
[,EODS=symb-addrJ
[,DSSTAT=symb-addrl
[,FUNCERR=symb-addrl
[,SELNERR=symb-addrl
[,UNEXPIN=symb-addrl

This macro specifies that the response
code from the previous DFHDI macro is to
be tested and, where necessary, a branch
made to the user-written routine whose
address is specified in one of the
following operands: NORESP, EODS,
DSSTAT, FUNCERR, SELNERR, or UNEXIN.

BATCH DATA INTERCHANGE RESPONSE CODES

Response codes are grouped into
categories according to the operands.
Each category is given a code, for
example NORESP has category code X'OO'
which is placed in field TCADIRCI in the
TCA. Each category is subdivided into
response codes that indicate the success
or failure of a specified operation, for
example "End destination FMH received"
in category X'04' is 11. These response
codes are placed in field TCADIRC2 in
the TCA.

The categories, operands, response codes
and their causes are shown in Figure 23
on page 202.

Chapter 4.4. Batch Data Interchange (DFHDI Macro) 201

Category Operand Condition Response
Code

X'OO' NORESP Successful 00

Begin destination FMH received 01
Resume destination FMH received 02

X'04' DSSTAT,EODS End destination FMH received 11
Suspend destination FMH received 12
Abort destination FMH received 13
Currently no data to send 15

X' 08' FUNCERR Request invalid for data set organization 21
Record too long 22
Data set full 23
Invalid keyword or record identifier 24
Resource not available 25
Invalid NUMREC 26
Insufficient resource. 28
Request for change direction (ReD) signaled 2B
Transient Data error during logging 60

X'OC' SELNERR Data set not found 29
Destination does not exist 41
Media not supported 43
Invalid destination name 44
Transient Data error during logging 60

X'IO' UNEXPIN Unexpected sense Fl
Unexpected FMH F2
Unsupported input F3

Figure 23. Batch Data Interchange Response Codes

OPERANDS OF DFHDI MACRO

Response codes are described above.

DEFRESP=YES
All DFHTC TYPE=WRITE macros issued
as a result of the current
invocation of DFHDI will request a
definite response from the outboard
batch program, irrespective of the
specification of message integrity
for the CICS task.

DNADDR=
specifies the name of an outboard
destination. If a destination with
a different name is currently
selected, it is deselected before
this one is selected. If the
current destination is being
respecified then no selection is
performed. This operand cannot be
used with the SELECT operand.

symbolic-address

YES

is the address of a field
defining the destination name.
This field consists of a one
byte name length followed by
the name itself.

indicates that the application
program has set this address
into the word field TCADIDNA.
The current implementation

gives a maximum length of 8
characters for the destination
name.

DSSTAT=symb-addr
specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates a
discontinuity in the inbound data
stream.

EODS=symb-addr
specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates the end
of the data stream.

FUNCERR=symb-addr
specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates a
function error.

KEYADDR=
This identifies a record of a keyed
direct data set.

symb-addr
specifies the address of a
field defining the primary key
of the record in a keyed
direct data set to be erased.
This field consists of a one

202 CICS/VS Application Programmer's Reference Manual (Macro Level)

YES

byte key length followed by
the key itself.

indicates that the application
has set this address into
fullword TCADIKYA. The
current implementation gives a
maximum length of 24
characters for the record key.

Note: This operand is not required
when adding records to a 3790 keyed
direct data set as the key value is
embedded in the data specified by
the DATA operand.

See the IBM 3790 Host System
Programmer's Guide for a
specification of valid keys.

NUMREC=
specifies the number of records
affected by the current request.
The 3790 will accept values greater
than I only for the REPLACE
operation on an addressed direct
data set. The value is not
meaningful to CICS but is conveyed
to the outboard batch program as
part of the function selection
information. Records are replaced
sequentially starting with the one
identified by the RRNADDR operand.

integer

YES

specifies the number of
records, in the range 1
through 255, that are to be
replaced.

specifies that the application
has set the binary value into
the one byte field TCADINRS.
If omitted this operand
defaults to the value 1.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates normal
response, that is, no errors have
occurred during the processing
specified by a DFHDI macro.

RRNADDR=
identifies a record of an addressed
direct data set for the function
REPLACE.

record-1d

YES

is the address of a one word
field containing the relative
record number of the record
being replaced.

indicates that the application
has set this address into the
fullword TCADIRNA.

Note: Record identifiers begin
with the value 1.

SELECT=
specifies the type of output medium
for the function SEND. This
operand cannot be used with the
DNADDR operand.

CONSOLE

PRINT

CARD

specifies the medium provided
for messages to the operator.

specifies a printer.

specifies a card reader/punch.

WPMEDIAl through WPMEDIA4

nn

YES

Specify, respectively, word
processing media I, 2, 3, and
4.

specifies a medium subaddress
in the range 00 to IS, where
IS means any available
subaddress. The default is
00.

specifies the medium code and
subaddress have been placed in
the one-byte field TCADISEL by
the application program.

The first half of this field
must contain a hexadecimal
code indicating the type of
medium, as shown below. The
second half must contain the
hexadecimal value of the
subaddress (X'OO· through
X'lS').

Code Meaning

X'OO' CONSOLE
X'20' CARD
X'30' PRINT
X'80' WPMEDIAI
X'90' WPMEDIA2
X'AO' WPMEDIA3
X'CO' WPMEDIA4

SELNERR=symb-addr
specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates errors
during destination selection.

UNEXPIN=symb-addr
specifies the entry label of the
user-written routine to which
control is passed when testing of
the response code indicates that
unexpected or unrecognizable input
or response is received in reply to
a DFHDI macro. Response codes are
described earlier in the chapter.

Chapter 4.4. Batch Data Interchange (DFHDI Macro) 203

VOLADDR=
specifies, for the 3770
programmable subsystem only, the
name of the diskette volume
containing the data set named in
the DNADDR operand. This name is
used to qualify the data set name
for destination selection.
Subsequent specifications of the
same data set name without a
diskette volume name, or with a
different diskette volume name,
will cause a new destination to be
selected. In the former case, all
mounted diskette volumes will be

searched for the data set named in
the DNADDR operand.

symb-addr

YES

specifies the address of the
field defining the diskette
volume name (to a maximum of
six characters>. The field
consists of a one-byte name
length followed by the name
itself.

indicates that the application
program has set this address
into the fullword field
TCADIVNA.

204 CICS/VS Application Programmer's Reference Manual (Macro Level)

PART 5. CONTROL OPERATIONS

Part S. Control Operations 205

CHAPTER S.I. INTRODUCTION TO CONTROL OPERATIONS

This part of the manual describes the
CICS macros that control the execution
of tasks within a CICS system. The
macros are associated with appropriate
control programs and the specification
of the various TYPE= operands invokes a
range of operations.

The control programs and the macros
associated with each are as follows:

• Interval Control Program (DFHIC
Macro). This macro specifies
operations that depend on the time
of day and can have nine types of
operations associated with its
GETIME, WAIT, POST, INITIATE, PUT,
GET, CANCEL, RETRY, and CHECK.
These operations are described in
"Chapter 5.2. Interval Control
(DFHIC Macro)" on page 209.

• Task Control Program (DFHKC Macro).
This macro specifies operations that
affect task activity or the control
of resources. It can have eight
types of operation associated with
it: ATTACH, SCHEDULE, CHAP, WAIT,
ENQ, DEQ, PURGE, and NOPURGE. These
operations are described in "Chapter
5.3. Task Control (DFHKC Macro)" on
page 221.

• Program Control Program (DFHPC
Macro). This macro specifies
operations that affect the flow of
control between application
programs. It can have ten types of
operation associated with it. LINK,

•

•

•

XCTL, LOAD, RETURN, DELETE, ABEND,
SETXIT, RESETXIT, COBADDR, and
CHECK. These operations are
described in "Chapter 5.4. Program
Control (DFHPC Macro)" on page 231.

Storage Control Program (DFHSC
Macro). This macro specifies
operations that affect the
acquisition and release of areas of
main storage. It can have two types
of operation: GETMAIN and FREEMAIN.
These operations are described in
"Chapter 5.5. Storage Control (DFHSC
Macro)" on page 241.

Transient Data Control Program
(DFHTD Macro). This macro specifies
operations that affect the queuing
and retrieval of data in main
storage or auxiliary storage. It
can have five types of operation:
PUT, GET, FEOV, PURGE, and CHECK.
These operations are described in
"Chapter 5.6. Transient Data Control
(DFHTD Macro)" on page 245.

Temporary Storage Control Program
(DFHTS Macro). This macro specifies
operations that affect the temporary
storage of data in main storage or
auxiliary storage. It can have
seven types of operation: PUT, PUTQ,
GET, GETQ, RELEASE, PURGE, and
CHECK. These operations are
described in "Chapter 5.7. Temporary
Storage Control (DFHTS Macro)" on
page 251.

Chapter 5.1. Introduction to Control Operations 207

CHAPTER 5.2. INTERVAL CONTROL (DFHIC MACRO)

CICS maintains the current time of day
in two formats:

• a binary value, in CSACTODB, which
is updated automatically during task
dispatching to reflect the time of
day maintained by the operating
system

• a packed value, in CSATODP, which is
updated when control returns from an
operating system WAIT or when a
DFHIC TYPE=GETIME,FORM=PACKED macro
is executed.

The accuracy of these values at a given
moment depends upon the task mix and the
frequency of task switching operations.

Time management provides the capability
of controlling various task functions
based on the time of day or on intervals
of time. The services available are
listed below and are available to the
application programmer through the
interval control macro (DFHIC).

1. Provide the time of day in binary or
packed decimal representation.

2. Provide task synchronization based
on time-dependent events.

3. Provide automatic time-ordered task
initiation with associated data
retention and recovery support.

The application programmer must specify
parameter values when using the DFHIC
macro. The values can be specified in
either of two ways:

1. By including the parameters in
operands of the DFHIC macro by which
time services are requested, or

2. By coding instructions that place
the parameter values in fields of
the TCA prior to issuing the DFHIC
macro.

The second of these approaches provides
flexibility in that the parameter values
of a single DFHIC macro can be altered
at execution time.

The application programmer can check the
CICS response to a request for time
services as explained under "Test
Response to a Request for Time
Services", later in the chapter. If the
programmer does not check for a
particular response, and the condition

corresponding to that response occurs,
program flow proceeds to the next
sequential instruction in the
application program. All operands that
can be included in the DFHIC macro are
discussed in detail at the end of the
chapter.

Expiration Times

The time at which a time-controlled
function is to be performed is called
the expiration time. Expiration times
can be specified in two ways, absolutely
as the time of day, or as an interval
that is to elapse before the function is
to be performed.

An interval is measured relative to the
current time and so the expiry time will
always be after the current time
(assuming a nonzero interval is
specified). An absolute time is
measured relative to midnight prior to
the current time and may therefore be
prior to the current time.

eICS treats as expired a request for an
absolute time that is equal to the
current time or that precedes the
current time by up to six hours. If the
specified absolute time precedes the
current time by more than six hours,
CICS adds 24 hours, that is, the
requested function is performed at the
time specified but on the next day.

Examples of the DFHIC TYPE=INITIATE
macro specifying absolute time-of-day
requests, are as follows:

•

•

•

•

DFHIC TYPE=INITIATE,TIME=123000
issued at 1000 hours on Monday will
expire at 1230 hours on the same
Monday.

DFHIC TYPE=INITIATE,TIME=090000
issued at 1000 hours on Monday will
expire immediately because the
specified time is within the
preceding six hours

DFHIC TYPE=INITIATE,TIME=020000
issued at 1000 hours on Monday will
expire at 0200 hours on Tuesday
because the specified time is more
than six hours before the current
time.

DFHIC TYPE=INITIATE,TIME=330000
issued at 1000 hours on Monday will
expire at 0900 hours on Tuesday.

Chapter 5.2. Interval Control (DFHIC Macro) 209

TIME-OF-DAV UPDATING (TYPE=GETIME)

DFHIC TYPE=GETIME
[,FORM={BINARYIPACKED }]
[,TIMADR={symb-addrIYES}]
[,NORESP=symb-addrl
[,INVREQ=symb-addr]
[,ERROR=symb-addrJ

In the course of normal operation, CICS
maintains the current time of day in
binary form at CSACTODB and in packed
decimal form at CSATODP. The binary
representation is expressed as a
four-byte positive value in hundredths
of a second. The packed decimal
representation is expressed as a
four-byte positive signed value of the
form HHMMSSt+ where the seconds are
truncated to tenths of a second.

The values are updated periodically
during task dispatching. The accuracy
of these values at any given moment
depends on the task mix and the
frequency of task switching operations.

The application programmer can ensure
that both these time-of-day values are
updated to a current setting by issuing
the DFHIC TYPE=GETIME macro. This macro
causes both forms of the time of day to
be updated in the CSA and, optionally,
places the requested form of the time of
day in a four-byte field specified by
the application programmer. When the
programmer wants the time of day to be
returned in a field other than those of
the CSA, either the symbolic label of
the four-byte field must be specified in
the DFHIC TYPE=GETIME macro or the
address of the field must be placed in
TCAICDA prior to issuing the DFHIC
TYPE=GETIME macro.

Note: For performance reasons, it
should be recognized that lengthy
conversion routines must be executed
whenever updating of the packed decimal
representation of time of day is
requested.

The following example shows how to
request that the time of day be placed
at the storage locations represented by
the symbolic label CLOCK.

DFHIC TYPE=GETIME,FORM=PACKED,
TIMADR=CLOCK

The following examples show how to
request that the time of day be placed
in a field selected prior to (and
independent of) execution of the DFHIC
TYPE=GETIME-macro.

ASH,

COBOL:

PL/la

MVC TCAICDA,=A(CLOCK)

.
DFHIC TYPE=GETIME,FORM=PACKED,

TIMADR=YES

MOVE CLOCKADR TO TCAICDA.

DFHIC TYPE=GETIME,FORM=PACKED,
TIMADR=YES

TCAICDA=ADDR(CLOCK);

DFHIC TYPE=GETIME,FORM=PACKED,
TIMADR=YES

DELAY PROCESSING OF A TASK (TYPE=WAIT)

The format of the DFHIC macro to delay
processing of a task until a specified
time occurs is as follows:

DFHIC TYPE=WAIT
[,INTRVAL={numeric valuelYES}ll

[,TIME={numeric valueIYES}]
[,REQID={nameIYESI'prefix'}]
[,NORESP=symb-addrl
[,INVREQ=symb-addrl
[,EXPIRD=symb-addr]
[,ERROR=symb-addr]

The task synchronization feature of CICS
time management provides the capability
either of delaying the processing of a
requesting task until a specified time
occurs or of signaling the requesting
task when a specified interval of time
has elapsed. It also supports the
cancellation of a pending time-ordered
synchronization event by another task.
See "Cancel a Request for Time Services
(TYPE=CANCEL)R on page 21S.

This macro causes the requesting task to
temporarily suspend processing, and to
resume control at a specified time of
day or after a specified interval of
time has elapsed. The INTRVAL and TIME
operands are mutually exclusive. This
macro supersedes and cancels any
previously initiated DFHIC TYPE=POST
macro for the task.

A numeric value specified in, or before
issuing, the DFHIC TYPE=WAIT macro is
used by CICS to calculate the time at
which the requested time service is to
be provided. See the section
"Expiration TimesR earlier in the
chapter.

210 CICS/VS Application Programmer's Reference Manual (Macro Level)

To identify the request and any data
associated with it, a unique
identification is assigned to each
time-ordered request. The application
programmer can specify a request
identification to be assigned to his
DFHIC TYPE=WAIT macro by the REQID
operand. If none is assigned by the
programmer, CICS assigns a unique
request identification. A request
identification should be specified by
the application programmer if he wishes
to provide another task with the
capability of canceling the unexpired
WAIT request. See "Cancel a Request for
Time Services (TYPE=CANCEL)" on
page 215.

The following example shows how to
temporarily suspend the processing of a
task for a specified period of time:

DFHIC TYPE=WAIT,INTRVAL=500,
REQID=GXLBZQMR

The following examples show how to
request the suspension of a task until
the time of day stored previously in
TCAICRT is reached. A request
identifier previously selected by the
user is stored in TCAICQID as a unique
identifier for this request for time
service.

ASM:

COBOL:

PL/I:

MVC TCAICRT,=PL4'124500'
MVC TCAICQID,UNIQCODE

DFHIC TYPE=WAIT,TIME=YES,REQID=YES

MOVE 124500 TO TCAICRT.
MOVE UNIQCODE TO TCAICQID.

.
DFHIC TYPE=WAIT,TIME=YES,REQID=YES

TCAICRT=124500j
TCAICQID=UNIQCODEj

DFHIC TYPE=WAIT,TIME=YES,REQID=YES

SIGNAL EXPIRATION OF A SPECIFIED TIME
lTYPE=POSTl

DFHIC TYPE=POST
[,INTRVAL={numeric valueIYES}]1

[,TIME={numeric valueIYES}]
[,REQID={nameIYESI'prefix'}]
[,NORESP=symb-addr]
[,INVREQ=symb-addrl
[,EXPIRD=symb-addr]
[,ERROR=symb-addrl

In response to this macro, CICS makes a
timer event control area available to
the user for testing. This four-byte
storage area is initialized to binary
zeros and its address is returned to the
requesting task in TCAICTEC.

When CICS determines that the time
specified in a DFHIC TYPE=POST macro has
expired, byte 0 of the timer event
control area is set to X'40' and byte 2
is set to X'80'. This form of posting
is compatible with the completion code
postings performed by the operating
systems. The timer event control area
can be used as the event control area
referred to in a DFHKC TYPE=WAIT macro.
(See "Synchronize a Task (TYPE=WAIT)" on
page 224.)

The timer event control area provided to
the user is not released or altered
(except as described above) until one of
the following events occurs:

•

•

•

The task issues a subsequent DFHIC
TYPE=WAIT, DFHIC TYPE=POST, DFHIC
TYPE=INITIATE, or DFHIC TYPE=PUT
macro.

The task issues a DFHIC TYPE=CANCEL
macro request to nullify the DFHIC
TYPE=POST macro (this releases the
storage area occupied by the timer
event control area).

The task terminates, normally or
abnormally.

A task can have only one DFHIC TYPE=POST
request active at any given time. Any
DFHIC TYPE=WAIT, DFHIC TYPE=POST, DFHIC
TYPE=INITIATE, or DFHIC TYPE=PUT request
supersedes and cancels a previously
issued DFHIC TYPE=POST request by the
task.

Note: The expiration of any CICS
time-ordered event is determined by CICS
when it is performing its task
dispatching function. Therefore, for
npostingn to occur, the application
programmer must ensure that the task
relinquishes control of CICS before each
testing of the timer event control area.
This can be done directly by issuing the
DFHKC TYPE=WAIT or DFHKC TYPE=CHAP macro
(see nSynchronize a Task (TYPE=WAIT)" on
page 224) or indirectly by requesting a
CICS service that in turn initiates a
task service on behalf of the task.

A numeric value specified in, or before
issuing, the DFHIC TYPE=POST macro is
used by CICS to calculate the time at
which the requested time service is to
be provided. See the section
nExpiration Timesn earlier in the
chapter.

The application programmer can specify a
request identification to be assigned to
a posting request by the REQID operand.
If none is assigned by the programmer,

Chapter 5.2. Interval Control (DFHIC Macro) 211

CICS assigns a unique request
identification, which is returned to the
application program in TCAICQID. In
either case, the request identification
provides a means of symbolically
identifying the request.

This macro indicates that CICS is to
make a 4-byte timer event control area
available to the application program for
testing. The area is initialized to
binary zeros, and its address is
returned in TCAICTEC to the application
program. This area is available to the
application program for the duration of
the task and is overridden if the
application program issues another DFHIC
request of the following types: POST,
WAIT, PUT, or INITIATE.

The following example shows how to
request that CICS provide a signal for
the task when a specified interval of
time has elapsed:

DFHIC TYPE=POST,INTRVAl=30

The following examples show how to
dynamically request that CICS provide a
signal for the task when the time of day
previously stored in TCAICRT is reached.
Since no request identification is
specified by the application programmer,
CICS automaticallY assigns one and
returns it to the application program at
TCAICQID.

ASH:

COBOL:

PL/I:

MVC TCAICRT,PACKTIME

DFHIC TYPE=POST,TIME=YES
MVC UNIQCODE,TCAICQID

MOVE PACKTIME TO TCAICRT.

.
DFHIC TYPE=POST,TIME=YES
MOVE TCAICQID TO UNIQCODE.

TCAICRT=PACKTIME;

DFHIC TYPE=POST,TIME=YES
UNIQCODE=TCAICQID;

INITIATE A TASK WITHOUT DATA
(TYPE=INITIATEJ

DFHIC TYPE=INITIATE
[,INTRVAL={numeric valueIYES)]1

[,TIME=(numeric valueIYES)]
[,REQID={nameIYESI'prefix'}]
[,TRANSID=name]
[,TRMIDNT={nameIYES}l
[,NORESP=symb-addrl
[,INVREQ=symb-addrl
[,TRNIDER=symb-addrl
[,TRMIDER=symb-addrl
[,ERROR=symb-addrl

Through this macro, the application
programmer provides the transaction
identification of the task to be
initiated at some future time and other
information about the task. CICS queues
the request until the specified time
occurs. When the necessary resources
are available (for example, a terminal),
the task is initiated. Only one task is
initiated if multiple DFHIC
TYPE=INITIATE requests for the same
transaction and terminal expire at the
same time or prior to terminal
availability. No data can be passed to
the future task by means of the DFHIC
TYPE=INITIATE macro. (To do so, see
"Task Initiation with Data (PUT)," which
follows.) This request supersedes and
cancels any previously initiated DFHIC
TYPE=POST request by the initiating
task.

A numeric value specified in or before
issuing the DFHIC TYPE=INITIATE macro is
used by CICS to calculate the time of
day at which the requested time service
is to be provided. See the section
"Expiration Times" earlier in the
chapter.

As stated earlier, a unique request
identifier is assigned to each
time-ordered request as a means of
symbolically identifying the request and
any data associated with it. The
application programmer can specify an
identifier for his initiation request,
or he can let CICS assign one, in which
case it is returned to the application
program in TCAICQID.

The application programmer must specify
the transaction identification of the
future task, either in the DFHIC
TYPE=INITIATE macro or by placing it in
TCAICTI before issuing the macro. CICS
validates the transaction identification
by scanning the program control table
(PCT). If the specified identifier is
not found in the table, CICS does not
provide the requested service; a
response code is placed at TCAICTR (for
assembler language or Pl/I) or at

212 CICS/VS Application Programmer's Reference Manual (Macro level)

TCAICRC (for COBOL) to indicate that the
transaction identification is not valid.

If the future task must communicate with
a terminal, the application programmer
must also specify a terminal identifier,
either in the macro or by placing it
beforehand in TCAICTID. CICS validates
the terminal identifier by scanning the
terminal control table (TCT); if it
fails to locate the terminal identifier
in the TCT, CICS provides a response
code at TCAICTR (for assembler language
or PL/I) or at TCAICRC (for COBOL)
without servicing the request.

The following example shows how to
request automatic initiation of a
specified task not associated with a
terminal,

DFHIC TYPE=INITIATE,INTRVAl=lOOOO,
TRANSID=TRNL

The following examples show how to
dynamically request automatic initiation
of a task associated with a terminal.
The task initiation time, transaction
identification, and terminal
identification are moved to fields of
the TCA before the DFHIC TYPE=INITIATE
macro is issued. Since no request
identification is specified by the
application programmer, CICS
automaticallY assigns one and returns it
to the application program at TCAICQID.

ASMz

COBOL,

PL/II

MVC TCAICRT,=PL4'10000',
MVC TCAICTI,=CL4'TRNI'
MVC TCAICTID,=Cl4'STAS'

DFHIC TYPE=INITIATE,
INTRVAL=YES,
TRMIDNT=YES

MVC UNIQCODE,TCAICQID

MOVE 10000 TO TCAICRT.
MOVE 'TRNI' TO TCAICTI.
MOVE 'STASi TO TCAICTID.

DFHIC TYPE=INITIATE,
INTRVAL=YES,
TRMIDNT=YES

MOVE TCAICQID TO UNIQCODE.

TCAICRT=IOOOO;
TCAICTI='TRN1';
TCAICTID='STAS';

DFHIC TYPE=INITIATE,
INTRVAl=YES,
TRMIDNT=YES

UNIQCODE=TCAICQID;

TASK INITIATION WITH DATA (TVPE=PUT)

DFHIC TYPE=PUT
[,INTRVAl={numeric valueIYES}]1

[,TIME={numeric valueIYES}]
[,REQID={nameIYESI'prefix'}]
[,TRANSID=name]
[,TRMIDNT={nameIYES}]
[,ICDADDR={symb-addrIYES}]
[,NORESP=symb-addr]
[,INVREQ=symb-addr]
[,TRNIDER=symb-addr]
[,TRMIDER=symb-addr]
[,IOERROR=symb-addrl
[,ERROR=symb-addrl

This macro indicates that CICS is to
initiate a nonterminal-oriented task at
some future time and makes one data
record available to that task, or
provides time-ordered data to be made
available to a terminal-oriented task
that is to be initiated at some future
time.

This macro is used to provide the
transaction identification, the location
of the data to be stored, and other
information applicable to the task to be
initiated. CICS stores the data and
queues the request until the specified
time occurs. As soon as all necessary
resources are available (for example, a
terminal), the task is initiated. CICS
temporary storage management facilities
support this facility of time
management.

The DFHIC TYPE=PUT macro is used only
when data is to be passed to a task to
be initiated at some future time. It
supersedes and cancels any previously
initiated DFHIC TYPE=POST request of the
task. If only task initiation at a
future time is needed, the DFHIC
TYPE=INITIATE macro should be used.

If the task to be initiated is
associated with a terminal, the initial
DFHIC TYPE=PUT request causes the task
to be initiated at the specified time.
Subsequent PUT macros with the same
terminal identification, transaction
identification, and expiration time are
used to store data for subsequent
retrieval by the initiated task. If the
task to be initiated is not associated
with a terminal, each DFHIC TYPE=PUT
request results in a task being
initiated at the specified time. That
is, only one physical data record can be
passed to a task not associated with a
terminal. (See the section "Retrieve
Time-Ordered Data (GET)", which
follows.)

)

Most operands of the DFHIC TYPE=PUT
macro are analogous to similar operands
of the DFHIC TYPE=INITIATE macro. The

Chapter S.2. Interval Control (DFHIC Macro) 213

discussions of time calculation, request
identification, transaction
identification, and terminal
identification given in the section
"Task Initiation without Data
(INITIATE)," which precedes this
section, apply to DFHIC TYPE=PUT in the
same manner as they apply to DFHIC
TYPE=INITIATE. In addition, because the
DFHIC TYPE=PUT macro permits data to be
passed, the application programmer must
specify the symbolic address of the
field containing the data. The label
may be provided as a parameter of the
macro or move the address to TCAICDA
prior to issuing the macro.

The data passed to an initiated task
must have the standard variable-length
format, with the first four bytes
containing LLbb. LL is a two-byte
binary length field (the value of which
includes the length of the data plus the
first four bytes), and bb is a two-byte
field containing binary zeros.

Note: An IOERROR will occur if there is
not enough auxiliary temporary storage
available to hold the data being passed.
See the appropriate CICS Customization
Guide discussion of temporary storage
for further details of auxiliary
temporary storage requirements.

The following example shows how to
request automatic task initiation and
request that time-ordered data be made
available to a task associated with a
terminal:

DFHIC TYPE=PUT,TIME=173000,
TRANSID=TRN2,TRMIDNT=STA3,
ICDADDR=DATAFLD

The following examples show how to
dynamically request automatic task
initiation and request that time-ordered
data be made available to a task
associated with a terminal. Values for
time, request identification,
transaction identification, and terminal
identification, as well as the address
of data to be passed, are moved to
appropriate fields of the TCA before
issuing the DFHIC TYPE=PUT macro.

ASH:

COBOL:

MVC TCAICRT,PACKTIME
MVC TCAICQID,UNIQCODE
MVC TCAICTI,=CL4'TRN2'
MVC TCAICTID,=CL4'STA3'
MVC TCAICDA,=A(DATAFLD)

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
REQID=YES,

. ICDADDR=YES

MOVE PACKTIME TO TCAICRT.
MOVE UNIQCODE TO TCAICQID.

MOVE 'TRN2' TO TCAICTI.
MOVE 'STA3' TO TCAICTID.
MOVE DATADDR TO TCAICDA.

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
REQID=YES,
ICDADDR=YES

TCAICRT=PACKTIME;
TCAICQID=UNIQCODE;
TCAICTI='TRN2';
TCAICTID='STA3';
TCAICDA=ADDR(DATAFLD);

.
DFHIC TYPE=PUT,

TIME=YES,
TRMIDNT=YES,
REQID=YES,
ICDADDR=YES

RETRIEVE TIME-ORDERED DATA (TVPE=GET)

DFHIC TYPE=GET
[, ICDADDR={symb-addrIYES) 1
[,RELEASE=NOl
[,NORESP=symb-addrl
[,INVREQ=symb-addrl
[,NOTFND=symb-addrl
[,ENDDATA=symb-addrl
[,IOERROR=symb-addrl
[,TSINVLD=symb-addrl
[,ERROR=symb-addrl

Only data from an expired DFHIC TYPE=PUT
reqUest can be accessed using the DFHIC
TYPE=GET macro. To retrieve data stored
by use of a DFHIC TYPE=PUT request, the
DFHIC TYPE=GET macro must be used.

When time-ordered data is to be
retrieved by means of a DFHIC TYPE=GET
macro, the application programmer may
specify the address of a storage area
into which the data is to be placed.
The address is specified either by
including the address in the macro or by
storing it in TCAICDA prior to issuing
the macro. In either case, the storage
area must be large enough to contain the
four-byte length field CLL//) at the
beginning of the data record as well as
the data portion of the record. If the
application programmer does not select a
storage area, CICS automatically
acquires an area of sufficient size and
returns the address of that area in
TCAICDA.

Each originating DFHIC TYPE=PUT macro
provides the transaction identification
of the task to receive the data, and if
applicable, symbolically identifies the

214 CICS/VS Application Programmer's Reference Manual (Macro Level)

terminal associated with the task's
operation. When CICS services a DFHIC
TYPE=PUT macro, it does so in two steps;
it first queues the request for
automatic task initiation at a specified
time and then stores the data. When the
specified time occurs, the task is ready
to be initiated, and the stored data is
then available for retrieval.

A task not associated with a terminal
that is initiated as a result of an
expired DFHIC TYPE=PUT request can
access only the single physical data
record associated with the original
request. It does this by issuing one
DFHIC TYPE=GET macro. The storage
occupied by the data associated with the
task is released upon execution of the
DFHIC TYPE=GET request, or upon
termination of the task (normally or
abnormally) if no ,DFHIC TYPE=GET macro
is executed prior to termination.

A task associated with a terminal that
is initiated as the result of an expired
DFHIC TYPE=PUT macro, or that is active
at the time of expiration of a DFHIC
TYPE=PUT macro, can access all data
records associated with expired DFHIC
TYPE=PUT macros having the same
transaction identification and terminal
identification. Therefore, a task
associated with a terminal can retrieve
all data made available to the terminal
and the task up to the current time by
issuing consecutive DFHIC TYPE=GET
macros.

Expired data records are presented to
the task upon request in expiration time
sequence. (Note that the data record is
obtained from temporary storage using
the REQID of the original DFHIC TYPE=PUT
request as the temporary storage
DATAID.) The storage occupied by the
single data record associated with a
DFHIC TYPE=PUT request is released after
the data has been retrieved by a DFHIC
TYPE=GET request or upon termination of
CICS. Data passed in subsequent expired
DFHIC TYPE=PUT requests specifying the
same terminal identification and
transaction identification can be
retrieved in response to DFHIC TYPE=GET
requests by the same task if that task
is still active at their expiration
times. Otherwise, such a DFHIC TYPE=PUT
request causes a new task to be
initiated.

When all passed data for which specified
times have expired has been retrieved,
CICS provides an end-of-data response at
TCAICTR (for assembler language or Pl/I)
or TCAICRC (for COBOL) in response to a
DFHIC TYPE=GET macro.

The following example shows how to
request retrieval of a time-ordered data
record into a data area specified in the
request:

DFHIC TYPE=GET,ICDADDR=DATAFlD

The following examples show how to
dynamically request retrieval of a
time-ordered data record. The address
of the storage area reserved for the
data record is placed in TCAICDA prior
to the issuance of the DFHIC TYPE=GET
macro.

ASM:
MVC TCAICDA,=A(DATAFlD)

.
DFHIC TYPE=GET,ICDADDR=YES

COBOLs
MOVE DATADDR TO TCAICDA.

DFHIC TYPE=GET,ICDADDR=YES

PL/I.
TCAICDA=ADDRCDATAFlD);

DFHIC TYPE=GET,ICDADDR=YES

CANCEL A REQUEST FOR TIME SERVICES
(TYPE=CANCELl

DFHIC TYPE=CANCEl
[,REQID={nameIYES}]
[,NORESP=symb-addr]
[,INVREQ=symb-addrl
[,NOTFND=symb-addrl
[,ERROR=symb-addrl

This macro specifies that a request of
one of the following types is to be
acted upon as follows:

1. DFHIC TYPE=WAIT issued by another
task (now suspended) is to be
treated as though expired.

2. DFHIC TYPE=POST issued by this task
is to be removed from the system.

3. DFHIC TYPE=POST issued by another
task is to be treated as though
expired.

4. DFHIC TYPE=INITIATE is to be removed
from the system.

S. DFHIC TYPE=PUT is to be removed from
the system.

The effect of the cancellation is
dependent on whether a request
identification is specified for the
DFHIC TYPE=CANCEl request and on the
type of service request being canceled.

Chapter 5.2. Interval Control (DFHIC Macro) 215

Cancel an Interval Control POST Request

A DFHIC TYPE=POST request can be
canceled by the originating task or by
another task through use of the DFHIC
TYPE=CANCEL macro.

When the originating task cancels a
DFHIC TYPE=POST request, no request
identification should be specified for
the cancellation request. This
cancellation request can be made either
before or after expiration of the
original request. In either case, the
storage reserved for the timer event
control area is released, and all
references to the original request are
removed from the system.

When a task other than the originating
task cancels a DFHIC TYPE=POST request,
the request identification of that
request must be specified. The effect
of the cancellation is the same as an
early expiration of the original DFHIC
TYPE=POST request. That is, the timer
event control area for the Orl.g1nat1ng
task is posted as though the original
expiration time had been reached.

Cancel an Interval Control WAIT Request

A DFHIC TYPE=WAIT request can only be
canceled prior to its expiration, and
only by a task other than the task that
issued the DFHIC TYPE=WAIT (the
originating task is suspended for the
duration of the request). The request
identification of the suspended task
must be specified.

The effect of the cancellation is the
same as an early expiration of the
original DFHIC TYPE=WAIT or DFHKC
TYPE=CHAP request. That is, the
originating task resumes control (based
on its normal dispatching priority) as
though the original expiration time had
been reached.

Cancel an Interval Control INITIATE or
PUT Request

A request identification must be
specified when the DFHIC TYPE=CANCEL
macro is used to cancel a DFHIC
TYPE=INITIATE or DFHIC TYPE=PUT request.

The effect of the cancellation is to
remove the original request from the
system, treating the original request as
though it had never been made. The
cancellation request is effective only
prior to expiration of the original
request.

I/O ERROR RETRY (TYPE=RETRY)

DFHIC TYPE=RETRY
[,RELEASE=NO]
[,NORESP=symb-addrl
[,INVREQ=symb-addrl
[,NOTFND=symb-addrl
[,IOERROR=symb-addrl
[,ERROR=symb-addrl

CICS attempts to retrieve the data
record whose symbolic eight-character
identification is specified at TCAICQID,
and place it into the data area
specified at TCAICDA. These fields are
preset by CICS at the time the I/O error
response is returned to the application
program.

TEST RESPONSE IDA REQUEST FOR TIME
SERVICES (TVPE=CHECK)

DFHIC TYPE=CHECK
[,NORESP=symb-addrl
[,INVREQ=symb-addrl
[,EXPIRD=symb-addrJ
[,TRNIDER=symb-addrl
[,TRMIDER=symb-addrl
[,NOTFND=symb-addrl
[,ENDDATA=symb-addrl
[,IOERROR=symb-addrl
[,TSINVlD=symb-addrl
[,ERROR=symb-addrl

INTERVAL CONTROL RESPONSE CODES

The assembler language or PL/I
programmer can access interval control
response codes at TCAICTR; the COBOL
programmer can access interval control
response codes at TCAICRC. The possible
response codes and the conditions to
which they correspond are identified in
the right-hand columns of Figure 24 on
page 217. DFHIC macros for which the
conditions are applicable are shown at
the left.'

If the application programmer does not
check for a particular response to his
service request, and the exception
condition corresponding to that response
occurs, program flow proceeds to the
next sequential instruction in the
application program.

The following examples show how to
examine the response code provided by
CICS at TCAICTR (for assembler language
or Pl/I) or TCAICRC (for COBOL) and
transfer. control to the appropriate
user-written exception-handling routine.

216 CICS/VS Application Programmer's Reference Manual (Macro level)

The alternative approach available to
COBOL programmers is also shown.

ASMs

GOOD

COBOls

GOOD.

DFHIC
CLI
BE
DFHPC
DS

TYPE=GET,ICDADDR=DATAFLD
TCAICTR,X'OO'
GOOD
TYPE=ABEND,ABCODE=TIME

OH

DFHIC TYPE=GET,ICDADDR=DATAFLD
IF TCAICRC = LOW-VALUES
THEN GO TO GOOD
ELSE NEXT SENTENCE.
DFHPC TYPE=ABEND

Time Services
Request by Condition
DFHIC Macro

ALL NORESP
(Normal response)

GET,CHECK ENDDATA

Alternatively, the COBOL programmer may
make use of the CICS generated condition
names to test responses. For example:

Pll'Is

GOODs

IF ICNORESP THEN GO TO GOOD.

DFHIC TYPE=GET,ICDADDR=DATAFLD
IF TCAICTR='O'B THEN GO TO GOOD;
DFHPC TYPE=ABEND

Response Code

Assembler COBOL PLI'I

X'OO' LOW-VALUES 00000000
(ICNORESP)

X'Ol' 12-1-9 00000001
(End of data condition) (ICENDDATA)

PUT,GET,RETRY, IOERROR X'04' 12-4-9 00000100
CHECK (INPUTI'Output error) (ICIOERROR)

INITIATE, PUT, TRNIDER X'11' 11-1-9 00010001
CHECK (Transaction (ICTRNIDER)

identification error)

INITIATE,PUT, TRMIDER X'12' 11-2-9 00010010
CHECK (Terminal identification (ICTRMIDER)

error)

GET,CHECK TSINVLD X'14' 11-4-9 00010100
(No temporary storage (ICTSINVLD)
support)

WAIT,POST,CHECK EXPIRD X'20' 11-0-1-8-9 00100000
(Expi red) (ICEXPIRD)

GET,CANCEL, NOTFND X'81' 12-0-1 10000001
RETRY,CHECK (Not found) (ICNOTFND)

ALL INVREQ X'FF' 12-11-0-7-8-9 11111111
(Invalid request) (ICINVREQ)

ALL ERROR (Note 2) (Note 2) (Note 2)
(Any response other than
NORESP)

Notes:

1. The names enclosed in parentheses in the COBOL column indicate the condition
names generated by CICS. These names may be used in testing for the
conditions in a COBOL program.

2. The test for the ERROR response is satisfied by a not equal condition; that
is, not X'OO', not LOW-VALUES, or not 00000000 for assembler language, COBOL,
and PL/I, respectively.

Figure 24. Interval Control Response Codes

Chapter S.2. Interval Control (DFHIC Macro) 217

OPERANDS OF DFHIC MACRO

ENDDATA=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if no more
data is stored for the task issuing
a DFHIC TYPE=GET request. It can
be considered a normal end-of-file
response when retrieving sequential
time-ordered data records.

ERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if any of
the response conditions other than
NORESP occurs.

EXPIRD=symb-addr

FORM=

specifies the entry label of the
user-written routine to which
control is to be passed if the time
specified in a DFHIC TYPE=POST or
DFHIC TYPE=WAIT request has expired
at the time the request is issued.

indicates which time-of-day
representation is desired.

BINARY
specifies that a binary
representation of time of day
(a four-byte positive value in
hundredths of a second) is to
be updated and retained in
CSACTODB.

PACKED
specifies that the binary
representation of time of day
(described above) and the
packed decimal representation
(a four-byte positive value of
the form HHMMSSt+ where
seconds are truncated to
tenths of a second) are to be
updated and retained in
CSACTODB and CSATODP
respectively.

Note: COBOL and Pl/I
programmers should be aware
that the zone portion of the
low-order byte of this
positive number contains
hexadecimal F rather than C or
D.

ICDADDR=
specifies the location of the data
to be stored for the task to be
initiated at some future time.

symb-addr

YES

is the symbolic address of the
storage area containing the
data to be made available to
the- task.

indicates that the symbolic
address of the storage area

INTRVAL=

containing the data has been
placed in TCAICDA.

If no data is to be passed,
DFHIC TYPE=INITIATE rather
than DFHIC TYPE=PUT should be
used.

specifies the interval of time that
is to elapse before CICS initiates
a task, or before CICS posting is
to occur, or for which a task is to
be suspended.

numeric value

YES

is of the form HHMMSS, where
HH represents hours from 00 to
99, MM represents minutes from
00 to 59, and SS represents
seconds from 00 to 59. This
numeric value is added to the
current clock time by CICS
when the associated macro is
executed to calculate the time
of day (clock t1me) when the
task is to be initiated or
posted, or when processing of
the task is to be resumed.
When used with TYPE=INITIATE,
if the specified interval is
zero, or if both INTRVAL and
TIME are omitted, the task is
initiated immediately.

indicates that the interval of
time (in packed decimal form,
HHMMSS+) has been placed in
TCAICRT.

If this operand is specified, the
TIME operand cannot be specified.

INVREQ=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
invalid type of request was
received for processing by the
interval control program.

IOERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
input/output error occurs during a
DFHIC TYPE=GET or DFHIC TYPE=PUT
operation on auxiliary storage.
The DFHIC TYPE=RETRY macro can be
used in the routine for handling
DFHIC TYPE=GET input/output errors.

One of the causes of this error is
during a TYPE=PUT if there is
insufficient auxiliary temporary
storage available to hold any data
which is to be passed. See the
appropriate CICS Installation and
Operations Guide. discussion of
temporary storage for further
details of auxiliary temporary
storage requirements.

218 CICS/VS Application Programmer's Reference Manual (Macro level)

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if no error
occurs. NORESP signifies "normal
response. n

NOTFND=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the
request identification specified in
a DFHIC TYPE=CANCEL macro fails to
match an unexpired time-ordered
request. It is also applicable to
DFHIC TYPE=GET or DFHIC TYPE=RETRY
requests and signifies that the
time-ordered data stored for
retrieval through the DFHIC
TYPE=PUT macro cannot be located
using the unique request
identification contained in
TCAICQID at the time of this
request. This condition occurs on
a retrieval operation if some prior
task retrieved the data stored
under the request identification
directly through temporary storage
facilities and then released the
data area. It also occurs if the
request identification associated
with the original DFHIC TYPE=PUT
request fails to remain a unique
identification.

RELEASE=NO
indicates that CICS is not to
release the record from temporary
storage after obtaining the record
for the application program.

Upon completion of a successful
DFHIC TYPE=GET,RELEASE=NO request,·
CICS places the identification of
the temporary-storage record in
TCAICQID. Using this
identification, the user can
retrieve or release the record from
temporary storage through the DFHTS
macro; the record is not available
to any subsequent DFHIC get
requests.

This operand is valid only for a
retry of a DFHIC TYPE=GET request.

REQID=
is an optional o~erand used to
assign a unique request
identification to this request, as
a means of symbolically identifying
the request. It should be used if
the application programmer wishes
to provide another task with the
capability of canceling an
unexpired WAIT request (see the
discussion of DFHIC TYPE=CANCEL,
earlier in the chapter). The data
is put in temporary storage with
this identification.

name
is a unique identifier, UP to
eight characters in length,

YES

selected for this request by
the application programmer.

indicates that an
eight-character request
identification has been placed
in TCAICQID by the application
program.

'prefix'
is a two-character (including
blanks) prefix to be affixed
to the request identification
generated by CICS. If
REQID=" is specified, the
prefix is assumed to be in the
two-byte field TCAICQPX.

If this operand is omitted, CICS
generates a unique request
identification in the form
"DFNNNNNNn; the prefix is DF.

TIMADR=

TIME=

is used when the time of day is to
be returned in an application
programmer-selected four-byte
field. For FORM=BINARY, the binary
representation is returned; for
FORM=PACKED, the packed decimal
representation is returned.

symb-addr

YES

is the symbolic address of the
field in which the time of day
is to be made available to the
application program.

indicates that the symbolic
address of the field for the
time of day is in TCAICDA.

If this operand is omitted, the
fields of the CSA are updated, but
the time of day is not placed in
another field for reference by the
application program.

specIfies the time of day at which
CICS is to initiate the requested
service. See the section
"Expiration Times" earlier in the
chapter.

numeric value

YES

is of the form HHMMSS, where
HH represents hours from 00 to
99, MM represents minutes from
00 to 59, and SS represents
seconds from 00 to 59.

indicates that the time of day
(in packed decimal form,
HHMMSS+) has been placed in
TCAICRT.

If this operand is specified, the
INTRVAL operand cannot be
specified.

Chapter 5.2. Interval Control (DFHIC Macro) 219

TRANSID=name
is the symbolic transaction
identification of the task to be
initiated. If this operand is
omitted, the transaction
identification is assumed to be in
TCAICTI.

TRMIDER=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the
symbolic terminal identification
specified in the DFHIC
TYPE=INITIATE or DFHIC TYPE=PUT
request cannot be found in the
terminal control table (TCT).

TRMIDNT=
is the symbolic terminal
identification of the terminal
associated with the task to be
initiated. This operand is
required when the task to be
initiated must communicate with a

terminal; it should be omitted
otherwise.

TRNIDER=symb-addr
specifies the entry label of the'
user-written routine to which
control is to be passed if the
symbolic transaction identification
specified in a DFHIC TYPE=INITIATE
or DFHIC TYPE=PUT request cannot be
found in the program control table.

TSINVLD=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the CICS
temporary storage program does not
support a DFHTS TYPE=GET request
issued by the CICS interval control
program. This situation can occur
when a dummy temporary storage
program is included in the current
CICS system in place of a
functional temporary storage
program.

220 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 5.3. TASK CONTROL (DFHKC MACRO)

Task management provides the capability
to process transactions (tasks)
concurrently. Transactions are
scheduled, through task control, and
processed according to priorities
assigned by the user. Control of the
processor is given to the highest
priority task that is ready to be
processed. Control of the processor is
returned to the operating system when no
further work can be done by CICS or by
user-written application programs.

When a transaction is initiated in CICS,
task control dynamically allocates
storage for the task control area (the
TCA), places the task in the dispatching
priority queue, obtains the
identification of the program initially
required to process the task from the
program control table (the PCT), and
transfers control to program control.

The task management macro (DFHKC) is
used to:

• Initiate a task

• Change the priority of a task

• Synchronize a task

• Synchronize the use of a resource
a task

• Purge a task on system overload.

by

The application programmer must specify
parameter values when using the DFHKC
macro. The values can be specified in
either of two ways:

1. By including the parameters in
operands of the DFHKC macro by which
task control services are requested,
or

2. By coding instructions that place
the parameter values in fields of
the TCA prior to issuing the DFHKC
macro.

The second method adds flexibility by
letting the programmer vary the
parameter values of a single DFHKC macro
to meet the needs of a given program.

INITIATE A TASK (TVPE=ATTACH)

DFHKC TYPE=ATTACH
[,FCADDR=symb-addrl
[,TRANSID=namel

This macro causes task control to obtain
the TCA for a task and insert the task
in the dispatching priority queue
according to the overall transaction
processing priority of the task. This
macro is intended to be used by other
CICS control modules. However, it can
also be used by the application
programmer to initiate additional tasks
which must terminate themselves by a
DFHPC TYPE=RETURN macro.

Most tasks running under CICS are
initiated at a terminal and are thus
associated with a terminal. Tasks
initiated by CICS management programs
(for example, automatic task initiation
by transient data control) mayor may
not be associated with a terminal. The
contents of TCAFCAAA varies depending
upon whether the attached task is
associated with a terminal, as discussed
in ftTask Control Area (TCA)ft on page 25.

The number of tasks that can be active
within the system at a given time is
limited by the availability of main
storage and/or by the' ftmaximum number of
tasks" control established by the system
programmer at system generation or
initialization. A new task is initiated
by CICS only when sufficient main
storage is available to process it,
otherwise the request is queued (stored)
until sufficient main storage becomes
available. Tasks initiated by CICS
management modules (for example,
terminal control) are subject to the
maximum number of tasks limitation.
Application program requests for
attachment of tasks are not subject to
this limitation and therefore are
allowed to exceed the maximum.

If the DFHKC TYPE=ATTACH macro is used
by the application programmer, he must
provide the facility control area
address and transaction identifier
required by CICS to initiate a new task.
The address and identifier can be
specified in two ways:

1. By coding two instructions that
assign a facility control area
address to TCAKCFA and a transaction
identification to TCAKCTI prior to
issuing the DFHKC TYPE=ATTACH macro,
or

2. By including the FCADDR and TRANSID
operands in the DFHKC TYPE=ATTACH
macro, which then stores the
assigned values in TCAKCFA and
TCAKCTI, respectively.

The facility control area address
provides a pointer to information that
the attaching task wishes to pass to the

Chapter 5.3. Task Control (DFHKC Macro) 221

new task, for example, it can be the
address of an entry in the DCT that is
associated with a resource such as a
data set.

The specified task is not attached if
the transaction identifier is not in the
peT or the program name is not in the
processing program table (the PPT). If
this situation exists or the attached
task abends, a message is sent to the
terminal operator, but the attaching
task is not notified of the condition.
Therefore the DFHKC TYPE=ATTACH macro
must be used with extreme caution by the
application programmer.

Ownership of a task's terminal cannot be
passed via the DFHKC TYPE=ATTACH macro
to the new task. Instead, one of the
following approaches should be used:

•

•

•

Automatic task initiation through
transient data management.

Automatic task initiation tin oU9h
time management (interval control
program); for example, a DFHIC
TYPE=INITIATE macro with a zero
interval.

Identification of the transaction
identifier to be used with the next
input message from the terminal by
means of the TRANSID operand of the
DFHPC TYPE=RETURN macro.

The transaction identifier stored in
TCAKCTI or specified in TRANSID is used
only for the current ATTACH; it cannot
be assumed that the value remains in
TCAKCTI for the duration of the task.
Subsequent ATTACHes must reestablish the
contents of TCAKCTI.

The flowchart in Figure 25 on page 223
shows Task A attaching Task Band
synchronizing the processing steps of
both tasks through use of the facility
control address passed to the newly
created task at attach time. Since Task
B is a nonterminal-oriented task, it is
unable to use terminal control macros.
FCADDR specifies the address of Task A's
TCA; EeBI and ECB2 are fields in the TWA
for Task A.

Figure 25 on page 223 includes steps
labeled "POST ECB". Posting an ECB
entails setting on the appropriate bit
in the ECB, which is a 4-byte field. In
CICS/OS/VS, the bit to be set on (that
is, set to "1") is bit 1 of byte OJ in
CICS/DOS/VS, it is bit 0 of byte 2.

The following examples show how to set
bits on for each programming language.

ASH (CICS/DOS/VS),

ECBI DC F'O'
MVC ECBI(3),=X'400080'

ASH (CICS/OS/VS),

ECBI DC F'O'
MVI ECBI,X'40'

COBOL (CICS/DOS/VS),

77 ECBI PIC S9(8) COMP VALUE ZERO.

PROCEDURE DIVISION.
COMPUTE ECBI = 2**15+2**30.

COBOL (CICS/OS/VS):

77 ECBI PIC S9(8) COMP VALUE ZERO.

PROCEDURE DIVISION.
COMPUTE ECBI=2**30.

PL/I (CICS/DOS/VS):

DCL ECBI BIT(32) ALIGNED INIT('O'B);
ECBI='OIOOOOOOOOOOOOOOl'B;

PL/I (CICS/OS/VS):

DCL ECBl BIT(32) ALIGNED INITC'O'B);
ECBl='OI'B;

The DFHPC TYPE=RETURN macro can be used
to terminate any tasks initiated by the
application programmer through use of
the task control DFHKC TYPE=ATTACH
macro.

The following example shows how to use
the DFHKC macro to provide a facility
control area address and transaction
identifier:

DFHKC TYPE=ATTACH,FCADDR=FACCTL,
TRANSID=TRNl

The following example shows the
assembler language coding required to
dynamically provide a facility control
area address and transaction
identification prior to issuing the
DFHKC macro:

MVC TCAKCTI,=CL4'TRNl'
MVC TCAKCFA,=A(FACCTL)

DFHKC TYPE=ATTACH

The equivalent instructions in COBOL
are:

MOVE 'TRNl' TO TCAKCTI.
MOVE FAeADR TO TCAKCFA.

The equivalent instructions in PL/I area

TCAKCTI='TRNl'j
TCAKCFA=FACADRi

222 CICS/VS Application Programmer's Reference Manual (Macro level)

If Tak 'B' is hi"'er
in priority it becomes
active here.

TASK A

Attach Task B
and Point FCADDR

toTCA

Wait on ECB1
(Note 1)

If Tak 'B' is lower
- in priority it becomes

active here.

YES

Tak 'A' is IWlre if
- - - - - - Tak 'B' completed

Processing Step 1.

Processing Step 2

Tak 'B' is aware
of completion

TASKB

Obtain Address of
ECB1 and ECB2 by

Use of Address
Now in TCAFCAAA

If

Processing Step 1

, ,

Post ECB1 to Make
Task 'A' Dispatchable

Wait on ECB2
(Note 2)

Tak 'B' gives ,up
control here.

of both Step 1
and Step 2. Tak 'B'regains

control here.

Post
ECB2

Give Up Control
By a Wait or PC Return

, r

Processing Step 3

Note I: If Tak B is not attached
(e.g. Trans 10 not in PeT),
or if Tak B ABEND, ECB 1
may never be posted.

Note 2: If Tak A ABEND, ECB2
may never be posted.

Figure 25. Task Synchronization under CICS

Chapter 5.3. Task Control (DFHKC Macro) 223

CHANGE PRIORITY OF A TASK (TVPE=CHAP)

DFHKC TYPE=CHAP
[,PRTY=priority value]

The overall transaction processing
priority of a task is the sum of related
transaction, terminal, and operator
priorities as specified or established
by default at system generation. This
priority determines the position of the
task in the dispatching priority queue
and, therefore, its scheduling under
CICS. The priority of an existing task
can be changed by issuing the DFHKC
TYPE=CHAP macro. The specified priority
value must be in the range from 0
through 255, where 255 represents the
highest priority. This task is placed
below all other tasks of equal or higher
priority in the dispatching priority
queue.

The application programmer can include
the PRTY=priority value operand in the
DFHKC TYPE=CHAP macro to assign a new
dispatching priority to a task.
Alternatively, the programmer can assign
a priority value to the dispatching
priority field (TCATCDP) prior to
issuing the DFHKC TYPE=CHAP macro.

A task can relinquish control to all
tasks of equal or higher priority by
issuing a DFHKC TYPE=CHAP macro. No
priority value need be specified, and
the current priority value of the task
as stored in TCATCDP is not changed.
However, the fact that the macro is
issued permits control to be transferred
from the task issuing the instruction to
an equal or higher priority task within
CICS. This capability is designed
particularly for compute-bound tasks
which, by continuallY demanding
inordinate amounts of processor time,
can significantly affect overall system
performance.

The following example shows how to
assign a new task dispatching priority
value:

DFHKC TYPE=CHAP,PRTY=255

The following example shows the
assembler language coding required to
assign a dynamically selected priority
value prior to issuing the DFHKC macro.
This value can be specified as a binary,
decimal, or hexadecimal number,
depending on the programming language
used.

MVI TCATCDP,X'FF'

.
DFHKC TYPE=CHAP

The equivalent instruction for COBOL iSI

MOVE HIGH-VALUES TO TCATCDP.

The equivalent instruction for PL/I is:

TCATCDP='lll!ll!!'B;

SYNCHRONIZE A TASK (TVPE=WAITl

The format of the DFHKC macro to
synchronize the execution of a task with
the completion of an event, or to
relinquish control to a task of higher
priority, is as follows:

DFHKC TYPE=WAIT
[,DCI={SINGLEILISTIDISPICICS)]
[,ECADDR=symb-addrl

The application programmer can
synchronize a task with the completion
of an event or one of a list of events
initiated by the same task or by another
task, or relinquish control to a task of
higher dispatching priority, by issuing
the DFHKC TYPE=WAIT macro. In the first
case, this macro provides a method of
directly relinquishing control to some
other task until the event being waited
on is completed. In the latter case,
the task remains dispatchable. That is,
execution of the task is resumed if no
task of higher priority is ready to be
processed.

If the task is to be synchronized with
the completion of a single event or an
event in a list of events, the
application programmer must specify the
address of either the single event
control area or the list of event
control areas. The address can be
specified by including the ECADDR
operand in the DFHKC TYPE=WAIT macro, or
by coding a single instruction that
places the event control address in
TCATCEA prior to issuing the DFHKC
TYPE=WAIT macro. In either case, the
referenced event control area(s) must
conform to the format and standard
posting conventions of ECBs.

Examples showing how to post ECBs are
given in the section "Initiate a Task
(ATTACH)," earlier in the chapter. An
event control area can also be the timer
event control area referred to in a
DFHIC TYPE=POST macro. (See the
discussion of task synchronization in
"Signal Expiration of a Specified Time
(TYPE=POST)" on page 211.> In a
CICS/OS/VS system, if two tasks are
allowed to wait on the same event
control area, CICS may terminate
abnormally .

224 CICS/VS Application Programmer's Reference Manual (Macro Level)

synchronize a Task with a Single Event

The DFHKC TYPE=WAIT macro is also used
by the application programmer to
synchronize a task with the completion
of a single event initiated by the same
task or by another task.

The following example shows how to
synchronize a task with a single event,
providing the address of the appropriate
event control area:

DFHKC TYPE=WAIT,DCI=SINGLE,
ECADDR=EVENTCTL

The following example shows, in
assembler language, how to synchronize a
task with a single event, dynamically,
providing the address of the appropriate
event control area prior to issuing the
DFHKC macro.

ST SINGADDR,TCATCEA

DFHKC TYPE=WAIT,DCI=SINGLE

The equivalent instruction for COBOL iss

MOVE SINGADDR TO TCATCEA.

The equivalent instruction for PL/I is.

TCATCEA=SINGADDRj

Synchronize a Task with One of a List of
Events

The DFHKC TYPE=WAIT macro is also used
by the application programmer to
synchronize a task with the completion
of one event of a list of events. This
list consists of a series of contiguous
four-byte fields, each field containing
the address of a single event control
area. The last four-byte field of the
list contains binary ones, hexadecimal
IFF's, or the card code (multipunch)
12-11-0-7-8-9.

As there is a limited amount of ECB
storage for DCI=LIST, care should be
taken not to specify too high a number
of ECBs. 'The amount of storage is
described in the appropriate CICS
Installation and Operations Guide.

The following example shows how to
synchronize a task with one of a list of
events, providing the address of the
appropriate list of events:

DFHKC TYPE=WAIT,DCI=LIST,
ECADDR=TOPOLIST

The following example shows, in
assembler language, how to synchronize a
task with one of a list of events,
dynamically providing the address of the
appropriate list of events prior to
issuing the DFHKC macro.

ST LISTADDR,TCATCEA

DFHKC TYPE=WAIT,DCI=LIST

The equivalent instruction for COBOL is:

MOVE LISTADDR TO TCATCEA.

The equivalent instruction for PL/I iss

TCATCEA=LISTADDRj

Relinquish Control to a Task of Higher
Priority

The DFHKC TYPE=WAIT macro is also used
by the application programmer to
voluntarily relinquish control to a task
of higher dispatching priority. Control
is returned to the task issuing the
macro if no other task of a higher
priority is ready to be processed.

When binary synchronous communication
lines are part of the user's
configuration, these lines may time out
if excessive processor time is requir.d
by an application program. One way to
avoid this condition is to include one
or more DFHKC TYPE=WAIT,DCI=DISP macros
in the application program to
voluntarily relinquish control before
the line time-out can occur.

The following example shows how to
voluntarily relinquish control to a task
of higher dispatching priority,

DFHKC TYPE=WAIT,DCI=DISP

The DFHKC TYPE=WAIT macro differs from a
TYPE=CHAP macro that does not indicate a
priority in that the former relinquishes
control only to a task of higher
priority, while the latter may
relinquish control to a task of either
equal or higher priority.

ENQUEUE UPON A RESOURCE (IYPE=ENQ)

The format of the DFHKC macro to enqueue
upon ao resource, causing execution of a
task to be synchronized with the
availability of that resource, is as
follows:

DFHKC TYPE=ENQ[,COND=YESIHQl
[,QARGADR=symb-addrl
[,QARGLNG=numberl

In the CICS environment, where tasks are
processed concurrently, it is sometimes
desirable to protect a given resource
from concurrent use by more than one
task. In effect, the resource can be
treated as serially reusable. To
provide this resource protection, an

Chapter S.3. Task Control (DFHKC Macro) 225

installation convention must be
established for all application
programmers to follow.

The convention is based on use of the
DFHKC TYPE=ENQ macro, identifying the
resource by an address or a
character-string argument. When
executed, this macro causes further
execution of the task issuing the
instruction to be synchronized with the
availability of the specified resource;
control is returned to the task when the
resource is available. When all tasks
accessing a resource adhere to the
convention of enqueuing upon the
resource, the resource is afforded
"single-server" protection.

When a single-server resource is being
used by a task and other tasks
concurrently enqueue upon the same
resource, the first task to issue the
DFHKC TYPE=ENQ macro receives the
resource when it becomes available. The
other tasks obtain the resource, in
turn, in the order in which they enqueue
upon it.

For assembler language application
programs only, when COND=YES is
specified, control is returned to the
requesting transaction whether or not
the requested resource is available;
task control places a return code in
TCATCTR indicating the result of the
enqueue request. The return codes and
their meanings arel

TCATCOK The requested resource has
been given to the requestor

TCATCONQ The requested resource is
not available

TCADUPQ The requestor alreadY has
the requested resource

COND=NO is the default, and when this is
specified, either explicitly or by
default, the normal enqueue mechanism
operates (that is, the requestor is
enqueued upon the resource if it is not
immediately available).

When issuing the DFHKC TYPE=ENQ macro,
the application programmer must identify
the single-server resource being
enqueued upon by one of the following
methods:

1. Specify a symbolic main storage
address that represents the
single-server resource. The
application programmer must provide
the symbolic main storage address in
the DFHKC TYPE=ENQ macro or by
coding instructions (prior to
issuing the DFHKC TYPE=ENQ macro)
that place the address in the
low-order three bytes of TCATCQA, a

four-byte field. Binary zeros must
be placed in the high-order byte.

2. Specify a symbolic main storage
address that contains a unique
character-string argument (for
example, an employee name) that
represents the single-server
resource. The unique argument may
be up to 2SS bytes in length,
beginning at the location pointed to
by the contents of the specified
address. The application programmer
must provide the symbolic main
storage address and the length in
the DFHKC TYPE=ENQ macro or by
coding instructions (prior to
issuing the DFHKC TYPE=ENQ macro)
that place the address in the
low-order three bytes of TCATCQA, a
four-byte field, and the length (in
bytes) in the high-order byte. eICS
task control makes a copy of this
pointer in its storage for use in
controlling the resource.

DEQUEUE UPON A RESOURCE (TYPE=DEQ)

The format of the DFHKC macro to dequeue
upon a resource (effectively, to revoke
a preceding enqueue request upon that
resource) is as follows:

DFHKC TYPE=DEQ
[,QARGADR=symb-addrl
[,QARGLNG=numberl

When issuing the DFHKC TYPE=DEQ macro,
the application programmer must identify
the resource he is dequeuing by the
method that was used in enqueuing. The
COBOL programmer may find it convenient
to use the program control DFHPC
TYPE=COBADDR macro (see the example
below) if preloading of the address is
desired.

If a task enqueues upon a resource but
does not dequeue it, task control
automatically dequeues the single-server
protection request upon termination of
the task. The single server protection
request is also dequeued automaticallY
if necessary during sync point
processing.

The following examples show how to
enqueue upon a single-server resource
using method 1, above. Substituting
"DEQ" for "ENQ" in these examples
illustrates the ways in which the
application programmer can release
single-server protection froma'resource
prior to termination of the associated
task.

226 CICS/VS Application Programmer's Reference Manual (Macro Level)

ASH:

COPY DFHCSADS
CSAWABA DS F

COBOL:

PL/I,

DFHKC TYPE=ENQ,
QARGADR=CSAWABA

OR

LA WORKREG,CSAWABA
ST WORKREG,TCATCQA

.
DFHKC TYPE=ENQ

01 DFHCSADS COpy DFHCSADS.
02 CSAWABA PIC X(50).

MOVE ZEROS TO TCATCQA.
DFHKC TYPE=ENQ,

QARGADR=CSAWABA

OR

DFHPC TYPE=COBADDR,
lABEl=CSAWABA

MOVE TCAPCLA TO TCATCQA.

DFHKC TYPE=ENQ

Y.INCLUDE DFHCSADS;
DCl 1 DFHEXCSA BASEDCCSACBAR),

2 FILLER CHAR (512),
2 CSAWABA CHAR (50);

DFHKC TYPE=ENQ,
QARGADR=CSAWABA

OR

TCATCQA=ADDR(CSAWABA);

DFHKC TYPE=ENQ

The following examples show how to
enqueue upon a single-server resource
using method 2. The resource to be
enqueued upon is identified by the
nine-character social security number in
a field labeled SOCSECNO. Task control
makes a copy of this field for its use
in controlling the resource.

Substituting "DEQ" for "ENQ" in these
examples illustrates the ways in which
the application programmer can release
single-server protection from a resource
prior to termination of the associated
task.

ASH:

COBOL:

PL/I:

DFHKC TYPE=ENQ,
QARGADR=SOCSECNO,
QARGlNG=9

OR

lA WORKREG,SOCSECNO
ST WORKREG,TCATCQA
MVI TCATCQA,X'09'

DFHKC TYPE=ENQ

DFHKC TYPE=ENQ,
QARGADR=SOCSECNO,
QARGlNG=9

DFHKC TYPE=ENQ,
QARGADR=SOCSECNO,
QARGlNG=9

OR

Y.INCLUDE DFHTCADS;
DCl 1 DFHEXTCA BASED(TCACBAR),

2 FILLER CHAR (20),
2 TCATCQAl BIT(S);

TCATCQA=ADDR(SOCSECNO);
TCATCQAl='OOOOlOOl'B;

DFHKC TYPE=ENQ

DECLARE A TASK TO BE PURGEABLE
lTVPE=PURGEl

The format of the DFHKC macro to declare
that a task may be purged if a system
stall condition occurs is as follows:

I DFHKC TYPE=PURGE

Certain overload conditions, where all
of a given system resource (for example,
main storage) has been allocated and
where each task requires still more of
that resource, can occur in CICS. The
result is a situation in which no task
is able to continue processing and no
new task can be initiated; the system
stalls.

CICS has the capability of detecting
certain system stall conditions and
taking corrective action, which
consists, in part, of purging (deleting)
the lowest priority task in the system
that is designated as stall purgeable.

Chapter S.3. Task Control (DFHKC Macro) 227

A task is initially defined as purgeable
or not purgeable in the program control
table (PCT) entry associated with the
transaction identification for that
task. This entry is established by the
system programmer at system generation.
The application programmer can
dynamically change the purgeability
status of a task by issuing the

DFHKC TYPE=PURGE

macro to indicate that the task is
purgeable, or the

DFHKC TYPE=NOPURGE

macro to indicate that the task is not
purgeable. The designated status
remains in effect for that task until
another change is initiated or until the
task is terminated. For example, a
long-running task may issue a DFHKC
TYPE=NOPURGE macro prior to critical
processing, then issue a DFHKC
TYPE=PURGE macro after that processing
is completed. This ensures that the
task is not stall-purged during the
critical processing.

DECLARE A TASK TO BE NONPURGEABLE
(TYPE=NOPURGEJ

The format of the DFHKC macro to declare
that a task cannot be purged if a system
stall condition occurs is as followsl

DFHKC TYPE=NOPURGE

The PURGE and NOPURGE options of the
DFHKC macro are intended to be used as
temporary overrides to the SPURGE
specification in the DFHPCT TYPE=ENTRY
macro for a task. For example, if a
DFHKC TYPE=NOPURGE macro is issued in a
program for a task, the task cannot be
purged even though SPURGE=YES is
specified in the DFHPCT TYPE=ENTRY
system macro for the task at system
generation. See the appropriate ~
Resource Definition manual.

OPERANDS OF DFHKC MACRO

COND=
specifies whether or not an enqueue
is to be conditional (assembler
language only).

YES
the enqueue request is
conditional. Control is
returned to the requestor
whether or not the requested
resource is available. A
return code at TCATCTR

DeI=

NO

indicates the result of the
request I

TCATCOK The resource has
been given to the
requestor

TCATCONQ The resource is not
available

TCADUPQ The requestor
already has the
resource

the enqueue is not
conditional. If the requested
resource is not immediately
available, the requesting
transaction will be enqueued
upon it. COND=NO is the
default.

specifies when synchronization is
to occur.

SINGLE

LIST

DISP

specifies that the task is to
be synchronized with the
completion of a single event.

specifies that the task is to
be synchronized with the
completion of one event in a
list of events.

specifies that the task is to
give up control to any higher
priority task that is ready to
be processed; if none exists,
control is to be returned to
this task.

CICS (OS only and ASH only)
specifies that the ECB will be
posted by another transaction
rather than by the operating
system. This option means
that the ECB will not be added
to the operating system WAIT
macro issued by CICS. ECBs to
be posted by other
transactions should reside in
permanent storage.

Tasks that are to synchronize
with each other as illustrated
in Figure 2S on page 223, may
do so by using either DCI=CICS
or DCI=SINGLE (CICS/DOS/VS
must use DCI=SINGLE only).
DCI=CICS must be used if more
than one synchronizing task is
going to wait on the same ECB.
In all other cases it is
preferable to use DCI=SINGLE.

ECADDR=symb-addr
is used with DCI=SINGLE or DCI=LIST
to specify the symbolic address of
the single event control area or

228 CICS/VS Application Programmer's Reference Manual (Macro Level)

list of event control areas
identifying the event with which
this task is to be synchronized; if
omitted when SINGLE or LIST is
specified, the address is assumed
to be in TCATCEA.

FCADDR=symb-addr
is the symbolic address of the
facility control area (FCA)
associated with this task; if
omitted, the address is assumed to
be in TCAKCFA.

PRTV=priority value
is a decimal numeral in the range
from 0 through 255 to be taken as
the priority value for this task;
if omitted, the priority value is
assumed to be in TCATCDP.

QARGADR=symb-addr
is either the symbolic address of
the resource to be enqueued or
dequeued, or the symbolic address
of a location that contains a
unique argument (for example, an

employee name) that represents the
resource. If this operand is
omitted, the address is assumed to
be in the three low-order bytes of
TCATCQA, a four-byte field.

QARGLNG=number
is the length, in bytes, of the
resource to be enqueued upon or to
be dequeued. This operand is
needed only if the QARGADR operand
is a unique argument that
represents the resource to be
enqueued. If omitted in such a
case, the contents of the
high-order byte of TCATCQA are
assumed to be the length of the
argument. COBOL programs must not
use this operand unless the QARGADR
operand is used.

TRANSID=name
is the transaction identification
for the task; if omitted, the
transaction identification is
assumed to be in TCAKCTI.

Chapter 5.3. Task Control (DFHKC Macro) 229

CHAPTER 5.4. PROGRAM CONTROL (DFHPC MACRO)

All program communication within CICS is
accomplished by program management. The
program management macro (DFHPC) is used
to request any of the following
services:

• Link one user-written application
program to another, anticipating
subsequent return to the requesting
program (TYPE=LINK).

•

•

•

•

•

•

•

Transfer control from one
user-written application program to
another, anticipating no return to
the requesting program (TYPE=XCTL).

Load a designated application
program, table, or map (generally,
for use with basic mapping support)
into main storage and return control
to the requesting program
(TYPE=LOAD).

Return control from one user-written
application program to another or to
CICS (TYPE=RETURN).

Delete a previously loaded
application program from main
storage (TYPE=DELETE).

Abnormally terminate a transaction
and its related task (TYPE=ABEND).

Activate, cancel, or reactivate an
exit that permits user-written
abnormal termination processing
(TYPE=SETXIT or TYPE=RESETXIT).

Convert a symbolic label in a COBOL
program into an address which is
returned in TCAPCLA (TYPE=COBADDR).

Application programs running under CICS
are executed at various logical levels.
For example, where one user-written
application program is linked to
another, the linked-to program is
considered to reside at the next lower
logical level. Where control is simply
transferred from one application program
to another, the two programs are
considered to reside at the same logical
level. A DFHPC TYPE=LINK macro is used
for the former; a DFHPC TYPE=XCTL macro
(where XCTL means transfer control) is
used for the latter. Figure 26 on
page 232 illustrates this difference
between program linkage and transfer of
program control. Each of the programs
shown in this figure may have been
written in any of the CICS-supported
languages (assembler language, COBOL, or
PL/I). Use of LINK, XCTL, RETURN, and
ABEND is explained in greater detail
below.

Tasks can share the use of common work
areas. However, each task requires the
use of a unique intermediate storage
area, such as the transaction work area
(TWA), to retain information needed upon
subsequent return to that task. The
application programmer must provide
addressability to that intermediate
storage area by symbolically defining it
in his program.

Parameters can be passed from one
program to another in the same task
through user-defined storage areas, for
example, the transaction work area
(TWA), the terminal input/output area
(TIOA), the terminal control table
terminal entry (TCTTE), or the file work
area (FWA).

CICS automatically saves program control
information and general-purpose
registers, when applicable, in the·task
control area (TCA). CICS automaticallY
restores general-purpose registers, as
necessary, to return control to a
program. The name of any program
referred to in a request for program
services must have been placed in the
processing program table (PPT) prior to
execution of CICS. If the program has
been defined with RELOAD=YES in the
DFHPPT TYPE=ENTRY system macro, it is
the user's responsibility to delete the
program by means of a storage control
FREEMAIN rather than by a program
control DELETE. Eight bytes must be
subtracted from the address at which the
program is loaded before issuing the
FREEMAIN.

PASS PROGRAM CONTROL ANTICIPATING RETURN
(TVPE=LINK)

The format of the DFHPC macro to pass
control to an application program at the
next lower logical level is as follows:

DFHPC TYPE=LINK
[,PROGRAM=namel
[,COND=YESl
[,NORESP=symb-addrl
[,PGMIDER=symb-addrl

When a DFHPC TYPE=RETURN macro is
executed in the linked-to program,
control is returned to the first program
at the next sequential (executable)
instruction.

The application programmer must specify
the name of the program to which control

Chapter 5.4. Program Control (DFHPC Macro) 231

>~
LEVEL 0

-~-----------------------------------V LEVEL 1

PROG A

.
LINK

> r--. .
RETURN f--

- -
V LEVEL 2

PROG B J> PROG C .
· XCTL LINK
· :--> .
· RETURN -

- -
V LEVEL 3

PROG D J> PROG E
· · XCTL ·

RETURN -
- -

Figure 26. Logical Relationship of Application Programs

is to be passed in the PROGRAM operand
or in a single instruction that places
the program name in TCAPCPI prior to
issuing this macro. The COND operand
specifies that control will be returned
to the first program if the specified
program is disabled or its name cannot
be found in the PPT.

The following example shows how to
request a link to an application
programl

DFHPC TYPE=LINK,PROGRAM=PROGI

The following example shows, for
assembler language, how to link to an
application program by means of an
instruction (MVC), executed prior to the
DFHPC TYPE=LINK macro, that places the
linked-to program name in the TCA.

MVC TtAPCPI,=CL8'PROGl'

.
DFHPC TYPE=LINK

The equivalent instruction for COBOL is:

MOVE 'PROGI' TO TCAPCPI.

The equivalent instruction for PL/I is.

TCAPCPI='PROGI';

TRANSFER PROGRAM CONTROL lTYPE=XCTLl

The format of the DFHPC macro to pass
(transfer) control to an application
program at the sama logical level is as
foilowsl

DFHPC TYPE=XCTL
[,PROGRAM=namel

This macro specifies that program
control is transferred from one
user-written application program to

232 CICS/VS Application Programmer's Reference Manual (Macro Level)

another at the same logical level. The
program from which control is
transferred is released. Any return
from the transferred-to program is to a
program from which there was an exit at
the next higher logical level. If there
is no user-written application program
at the next higher logical level,
control is returned to CICS.

The application programmer must specify
the name of the program to which control
is to be transferred in the PROGRAM
operand or in a single instruction that
places the program name in TCAPCPI prior
to issuing this macro. The field
TCAPCPI is eight bytes in length. If
the program name is less than eight
bytes, the field must be padded on the
right with blank~.

The following example shows how to
request a transfer of control to a
particular application program:

DFHPC TYPE=XCTl,PROGRAM=PROG2

The following example shows, for
assembler language, how to transfer
control to an application program by
means of an instruction (MVC), executed
prior to the DFHPC TYPE=XCTL macro, that
places the transferred-to program name
in the TCA.

MVC TCAPCPI,=ClS'PROG2'

DFHPC TYPE=XCTl

The equivalent instruction for COBOL is:

MOVE 'PROG2' TO TCAPCPI.

The equivalent instruction for Pl/I is:

TCAPCPI='PROG2'j

LOAD A PROGRAM (TYPE=LOADJ

The format of the DFHPC macro to load a
program, table, or map from its location
in a CICS program library is as follows:

DFHPC TYPE=lOAD
[,PROGRAM=namel
[,lOADLST=NOl
[,COND=YESl
[,NORESP=symb-addrl
[,PGMIDER=symb-addrl

This macro specifies that programs,
tables, or maps are to be fetched from
the library where they reside and loaded
into main storage. This facility is
used to (I) load a program that will be
used repeatedly, thereby reducing system
overhead through a one-time load, (2)
load a table to which control is not to

be passed, or (3) load a map to be used
in a mapping operation (see "Chapter
4.3. Basic Mapping Support" on
page 143). CICS returns the address of
the loaded program in TCAPCLA.

The loaded program remains in main
storage until the DFHPC TYPE=DElETE
macro is issued or until the task that
issued the DFHPC TYPE=lOAD is
terminated, either normally or
abnormally (unless lOADLST=NO is
specified). If lOADLST=NO is specified,
the loaded program remains resident
until it is deleted by this, or another,
task.

The application programmer must provide
the name (identification) of the program
to be loaded in the DFHPC TYPE=lOAD
macro or in a single instruction that
places the program name in TCAPCPI prior
to issuing the DFHPC TYPE=lOAD macro.

The following example shows how to load
a user-written application program:

DFHPC TYPE=lOAD,PROGRAM=PROG3

The following example shows, for
assembler language, how to load an
application program by means of an
instruction (MVC), executed prior to the
DFHPC TYPE=lOAD macro, that places the
program name in the TCA.

MVC TCAPCPI,=CLS'PROG3'

DFHPC TYPE=lOAD

The equivalent instruction for COBOL is:

MOVE 'PROG3' TO TCAPCPI.

The equivalent instruction for Pl/I is:

TCAPCPI='PROG3'j

RETURN PROGRAM CONTROL (TYPE=RETURNl

The format of the DFHPC macro to return
control from an application program to
the program at the next higher logical
level is as follows:

DFHPC TYPE=RETURN
[,TRANSID=transaction codel

When this macro is executed in a lower
level (linked-to> program, it restores
the registers of the higher level
(linked-from) program to their contents
at the time the DFHPC TYPE=lINK was
issued and releases save areas for the
lower-level program. In general, the
program to which control is returned
must have relinquished control by
execution of a DFHPC TYPE=lINK macro and

Chapter 5.4. Program Control (DFHPC Macro) 233

must reside one logical level higher
than the program returning control.
Upon normal termination of transaction
processing, control is returned to CICS.

If no default transaction code has been
assembled into the terminal control
table terminal entry (TCTTE) for a
particular terminal, the application
programmer can specify the transaction
identification for the next program to
be associated with that terminal in
either of two ways, (1) by including the
desired transaction identification in
the DFHPC TYPE=RETURN macro, or (2) by
coding a single instruction that places
the desired transaction identification
in TCANXTID prior to issuing the DFHPC
TYPE=RETURN macro. By doing so, the
programmer ensures that subsequent
unsolicited input can be entered from
the terminal without the specification
of a transaction identification. A
flexible means of starting the next task
is thus provided.

Note, however, that the methods of
specifying the transaction described
above may be overridden by issuing BMS
paging commands. (See
"Terminal-Oriented Task Identificationft
on page lIS, for a precise description.)

Note also that if the terminal is in
TRANSCEIVE status, a task started by ATI
(automatic task initiation) may run
before a task started by the next input
from the terminal. In this case, CICS
compares the transaction identifier of
the task started by ATI with that
specified in the TRANSID operand. If
they are the same, CICS erases its
record of the TRANSID transaction
identifier because it assumes that the
task started by ATI will perform the
same function.

DELETE A LOADED PROGRAM (TVPE=DELETEl

The format of the DFHPC macro to delete
a previously loaded program is as
follows:

DFHPC TYPE=DELETE
[,PROGRAM=namel

This macro specifies that a program
previously loaded through use of the
DFHPC TYPE=LOAD macro with or without
the LOADLST=NO operand is to be deleted.
If the DFHPC TYPE=LOAD macro includes
LOADLST=NO, the loaded program is
deleted only in response to a DFHPC
TYPE=DELETE macro. If LOADLST=NO is not
specified, the loaded program can be
deleted by a DFHPC TYPE=DELETE request,
or it will be automatically deleted when

the task that issued the load request is
terminated.

The application programmer must specify
the name (identification) of the program
to be deleted in the DFHPC TYPE=DElETE
macro or in an instruction that places
the program name in TCAPCPI prior to
issuing the DFHPC TYPE=DELETE macro.

The following example shows how to
delete a user-written application
program loaded in response to a DFHPC
TYPE=lOAD macro.

DFHPC TYPE=DElETE,PROGRAM=PROG4

The following example shows, for
assembler language, how to delete an
application program by means of an
instruction (MVC), executed prior to the
DFHPC TYPE=DElETE macro, that places the
program name in the TCA.

MVC TCAPCPI,=Cl8'PROG4'

DFHPC TYPE=DELETE

The equivalent instruction for COBOL is,

MOVE 'PROG4' TO TCAPCPI.

The equivalent instruction for Pl/I iSI

TCAPCPI='PROG4';

ABNORMALLY TERMINATE A TRANSACTION
(TYPE=ABENDl

The format of the DFHPC macro to
abnormally terminate a transaction
(task) is as follows:

DFHPC TYPE=ABEND
[,ABCODE={valueIYES}]
[,CANCEl=YES]

This macro specifies that a transaction
and its related task is to be terminated
abnormally. If a task is attached by
another task, only the task that issues
the ABEND is terminated. The main
storage associated with the terminated
transaction is released. If CANCEl=YES
is specified, all exits established by
DFHPC TYPE=SETXIT macros at any level in
the task are canceled.

The application programmer can request a
dump of main storage related to the
terminated transaction. The request
must specify a four-character abnormal
termination code that dump control will
place in the formatted storage dUmp to
identify the ABEND condition. This code
can be specified in either of two ways,

234 CICS/VS Application Programmer's Reference Manual (Macro level)

1.

2.

It can be specified in the
TYPE=ABEND macro, as follows:

DFHPC TYPE=ABEND,ABCODE=1234

It can be placed in TCAPCAC before
issuing the macro, as shown in the
following assembler language
example:

MVC TCAPCAC,=CL4'1234'

DFHPC TYPE=ABEND,ABCODE=YES

The equivalent instruction in COBOL
is:

MOVE '1234' TO TCAPCAC.

The equivalent instruction in PL/I
is:

TCAPCAC='1234';

Note: The DFHPC macro will preserve the
original contents of the two bytes
starting at TCAPCTR by moving them to
TCACCSVI. Thus a dump will contain the
response codes from the last CICS
service call. If ABCODE (but not
ABCODE=YES) is specified, the original
contents of TCAPCAC will also be
preserved in TCACCSV2. If ABCODE=YES is
specified, and you wish the original
contents of TCAPCAC to appear in the
dump, they must be stored elsewhere
before you store the ABEND code there.
It is therefore preferable to use method
I above when specifying a dump code.

ACTIVATE OR CANCEL AN EXIT FOR ABNORMAL
TERMINATION PROCESSING (TVPE=SETXIT)

The format of the DFHPC macro to
activate or cancel an exit to a
user-written routine or program to be
executed upon abnormal termination of a
task is as follows:

DFHPC TYPE=SETXIT
[,PROGRAM={nameIYES}]1
[,ROUTINE={symb-addrIYES}]
[,NORESP=symb-addrl
[,PGMIDER=symb-addr]

This macro specifies that a user exit is
to be:

1. Activated, if the PROGRAM or ROUTINE
operand is specified

2. Canceled, if no additional operands
are specified.

During abnormal termination of a task, a
program-level ABEND exit facility is
provided in CICS program control so that
a user-written exit routine can be

executed if desired. One example of a
function performed by such a routine is
the "cleanup" of a program that has
started but not completed normally. An
ABEND exit within an application program
is activated in response to the DFHPC
TYPE=SETXIT macro. The application
programmer must specify the name of a
program, or (for assembler language and
COBOL programs) the address of a
routine, to be given control when an
abnormal termination condition occurs.
The program name or routine address can
be specified in the DFHPC TYPE=SETXIT
macro, or placed in the appropriate
field in the TCA before the macro is
issued. A program name is placed in
TCAPCPI; a routine address is placed in
TCAPCERA. The PROGRAM and ROUTINE
operands are mutually exclusive.

A DFHPC TYPE=SETXIT macro in which a
program or routine name is specified
overrides (effectively, replaces) any
preceding DFHPC TYPE=SETXIT macro in any
application program at the same logical
level. (Logical levels are illustrated
in Figure 26 on page 232.) Thus, each
application program of a transaction can
have its own exit, but only one exit at
each logical level can be active. To
cancel a previously established exit at
the logical level of the application
program in control, the application
programmer can issue a DFHPC TYPE=SETXIT
macro in which neither the program name
nor the routine name operand is
specified.

When a task ABEND occurs, CICS searches
for an active exit, starting at the
logical level of the application program
in which the ABEND occurred, and
proceeding, if necessary, to
successively higher levels. The first
active exit found, if any, is given
control. This procedure is shown in
Figure 27 on page 236, which also shows
how subsequent ABEND exit processing is
determined by the user's exit routine or
program.

Note: When a DFHPC TYPE=XCTL macro is
to be used to transfer control from an
application program, and an exit routine
(rather than a program) is specified,
the exit will be reset. This situation
will not occur if an exit program is
specified, instead of a routine.
Routines can be used without risk in
application programs that do not use a
DFHPC TYPE=XCTL macro.

To prevent recursive ABENDs in an exit
routine, CICS deactivates an exit upon
entry to the exit routine. If
attempting a retry of the operation, the
programmer can branch to a point in the
program that was in control at the time
of the ABEND and issue the DFHPC
TYPE=RESETXIT macro to reactivate the
exit. The user can also use this macro
to reactivate an exit that was canceled

Chapter 5.4. Program Control (DFHPC Macro) 235

Yes

Terminate
the task

Task ABEND

Li n k to program
or branch to
label

Action taken r - - - - - - ...,
in exit program I_R_E_T..,U...,R,..N...:;_A.,..B.,.E_N_D_:.

or routine L _ __ J

No

Is appiication
program at the
highest level?

Yes

Ex it to program
at next higher
logical level

Terminate
the task .

Figure 27. ABEND Exit Processing

previously as described above. No
additional parameters are required.

Upon entry to an exit program, no
addressability can be assumed other than
that normally assumed for an application
program coded in the language. If the
exit logic is.in the form of a routine,
the amount of addressability varies with
the source language, as detailed under
nCreating a Program ABEND Exitn in the
appropriate CICS Customization Guide.

For additional information concerning
preparation of the exit routine, sea
that guide.

The following example shows how to
establish a program as an exit.

DFHPC TYPE=SETXIT,PROGRAM=EXITPGM

The following examples show how to
establish a program as an exit by
dynamically storing the program name
prior to executing the DFHPC TYPE=SETXIT
macro.

ASH.
MVC TCAPCPI,=CL8'EXITPGM'

.
DFHPC TYPE=SETXIT,PROGRAM=YES

COBOL.
MOVE 'EXITPGM' TO TCAPCPI.

DFHPC TYPE=SETXIT,PROGRAM=YES

PL/I.
TCAPCPI='EXITPGM';

.
DFHPC TYPE=SETXIT,PROGRAM=YES

The following examples show how to
establish a routine as an exit by
dynamically storing the address of the
routine prior to executing the DFHPC
TYPE=SETXIT macro. (Note that routines
cannot be established as exits in PL/I
application programs.)

ASH:

COBOL.

LA
ST

.
14, EXITRTN
14,TCAPCERA

DFHPC TYPE=SETXIT,ROUTINE=YES

DFHPC TYPE=COBADDR,LABEL=EXITRTN
MOVE TCAPCLA TO TCAPCERA .

.
DFHPC TYPE=SETXIT,ROUTINE=YES

REACTIVATE AN EXIT FOR ABEND PROCESSING
(TYPE=RESETXITJ

The format of the DFHPC macro to
reactivate an exit to a user-written
routine or program to be executed upon
abnormal termination of a transaction
(task) is as follows.

DFHPC TYPE=RESETXIT

236 CICS/VS Application Programmer's Reference Manual (Macro Level)

This macro specifies that an exit to
user-written abnormal termination
processing is to be reactivated after a
preceding application program
cancellation or CICS cancellation upon
execution of the exit routine.

CONVERT SYMBOLIC LABEL TO ADDRESS
lTYPE=COBADDRl

The format of the DFHPC macro to convert
a symbolic label appearing in a COBOL
program to an address is as follows:

DFHPC TYPE=COBADDR
,LABEL=symbolic label

This macro specifies that the address of
the location represented by a symbolic
label is to be returned in TCAPCLA to
the application program. The first byte
of TCAPCLA can be nonzero, and should
therefore be initialized if necessary.

A comparable facility is available
within both PL/I and assembler language;
this macro is designed to provide the
capability for COBOL programmers. COBOL
support must have been generated within
CICS to support COBOL programs.

TEST RESPONSE TO A REQUEST FOR pROGRAM
SERVICES (TVPE=CHECKl

The format of the DFHPC macro to test
the CICS response to a request for
program management services is as
follows:

DFHPC TYPE=CHECK
[,NORESP=symb-addrl
[,PGMIDER=symb-addrl

PROGRAM CONTROL RESPONSE CODES

To test the response code the
application programmer must know (1) the
CICS response codes and their meanings,
and (2) the symbolic label by which he
can refer to the response code; these
are shown below. In an assembler
language or PL/I program the response
code will be found in TCAPCTR. In a
COBOL program, the response code will be
found in TCAPCRC.

Condition

NORESP

PGMIDER

ASH

X'OO'

X'OI'

COBOL PL/I

LOW-VALUES 00000000
(PCARCNR)
12-1-9 00000001
(PCPGMIDER)

The names enclosed in parentheses in the
COBOL column indicate the condition
names generated by.CICS. These names
may be used in testing for the
conditions in a COBOL program.

Note: Because the multipunch codes to
be checked in a COBOL program commonly
correspond to unprintable characters, an
alternative facility is provided in CICS
for use by the COBOL programmer. In
COBOL the response code can be referred
to by a condition name, formed as a
two-character identification of the CICS
management module providing the
requested service, followed by the
keyword for the condition being checked
(for example, PCNORESP). Use of this
approach is illustrated in the examples
at the end of this discussion.

To provide for the possibility of
failure to find a requested program in
the processing program table (PPT), or
finding a disabled program in response
to DFHPC TYPE=LINK or TYPE=LOAD, the
COND operand must be included in these
macros. This operand causes control to
be passed to the user-specified
exception-handling routine specified in
the PGMIDER operand if the error occurs.
If the COND operand is not specified and
the error occurs, the requesting program
is abnormally terminated with an APCT
ABEND code.

The following examples show how to
examine the response code provided by
CICS at TCAPCTR (for assembler language
or PL/I) or TCAPCRC (for COBOL) and
transfer control to an appropriate
user-written error-handling routine.
The alternative approach available to
COBOL programmers is also shown.

ASH:

GOOD

COBOL I

GOOD.

DFHPC TYPE=SETXIT,PROGRAM=MYPROG
CLI TCAPCTR,X'OO'
BE GOOD
DFHPC TYPE=ABEND
DS OH

DFHPC TYPE=SETXIT,PROGRAM=MYPROG
IF TCAPCRC = , , THEN GO TO GOOD.
DFHPC TYPE=ABEND

Alternatively, the COBOL programmer may
test responses by using the CICS
generated condition names I

PL/I:

GOOD,

IF PCNORESP THEN GO TO GOOD.

DFHPC TYPE=SETXIT,PROGRAM=MYPROG
IF TCAPCTR='O'B THEN GO TO GOOD;
DFHPC TYPE=ABEND

Chapter 5.4. Program Control (DFHPC Macro) 237

OPERANDS OF DFHPC MACRO

ABCODE=
indicates that main storage related
to the transaction is to be dumped
and provides a four-character
abnormal termination code to
identify the output dump.

value

YES

is a combination of four
alphabetic, numeric, and/or
special characters to be
printed as the abnormal
termination code.

indicates that the abnormal
termination code has been
placed in TCAPCAC.

Note: If a dump is requested, any
information in the common control
area of the application program
communication section of the TCA is
likely to be different in the dump.
The DFHPC TYPE=ABEND macro
preserves the original contents of
the overwritten fields in the TCA
by moving the two bytes starting at
TCAPCTR to TCACCSVl. If an
explicit abnormal termination code
is specified, the macro will also
move the original contents of
TCAPCAC to TCACCSV2. If ABCODE=YES
is specified, and the original
contents of TCAPCAC are required in
the dump, the information must be
stored elsewhere before storing an
abnormal termination code there.
If the ABCODE operand is not
specified, the macro does not use
the TCAPCAC field.

CANCEL=VES
indicates that all exits
established by DFHPC TYPE=SETXIT
macros at any level in the task are
to be canceled; in effect, they are
ignored.

COND=VES
indicates that control is to be
returned to the program issuing the
macro if the program specified in
the PROGRAM operand cannot be found
in the PPT or is disabled. If this
operand is omitted and the
requested program cannot be found
or is disabled, the task is
abnormally terminated with the
ABEND code "APCT".

LABEL=symbolic label
is the symbolic label that
represents the location in the
COBOL program for which the address
is required.

LOADLST=NO
indicates that the loaded module is
not to be deleted when the task
issuing the load request is
terminated; that is, the loaded

module remains resident until
deleted at the request of this task
or of another task.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if no
errors occur during program control
processing. NORESP signifies
"normal response."

PGMIDER=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the
requested program cannot be found
in the PPT or is disabled. Control
will not be passed unless the COND
operand is specified also in the
TYPE=lINK or TYPE=lOAD macros, or
unless the PROGRAM operand is
specified also in the TYPE=SETXIT
macro.

PROGRAM=name
is the name of the program to which
control is to be passed or the name
of the program, table, or map to be
loaded; if omitted, the name is
assumed to be in TCAPCPI. TCAPCPI
is an eight-character field; names
less than eight characters must be
padded right with blanks. If the
requested program cannot be found
or is disabled, the task is
abnormally terminated with the
ABEND code "APCT".

For the TYPE=SETXIT macro only,
PROGRAM=name specifies the name, in
the PPT, of the program to receive
control if abnormal termination
occurs. PROGRAM=YES specifies that
the name of the program to receive
control has been placed iri TCAPCPI.

ROUTINE=
identifies the routine to receive
control if abnormal termination
occurs. (This operand applies only
to assembler language and COBOL
programs.)

There is a risk involved in the use
of this operand if the application
program transfers control using
DFHPC TYPE=XCTl. The occurrence of
a short-on-storage condition could
lead to the storage used by this
application program being re-used,
and any reference to the re-used
storage would have unpredictable
results.

symb-addr

YES

is the symbolic address of the
routine to receive control.

indicates that the address of
the routine to receive control
has been placed in TCAPCERA.

238 CICS/VS Application Programmer's Reference Manual (Macro Level)

TRANSID=transaction code
is the transaction identification
to be used with the next input
message entered from the terminal

with which this requesting task has
been associated prior to this
request for return of control.

Chapter 5.4. Program Control (DFHPC Macro> 239

CHAPTER S.S. STORAGE CONTROL (DFHSC MACRO)

Storage management controls all main
storage for CICS and for user-written
application programs. Requests to
acquire or release main storage are
communicated to CICS storage control by
means of the storage management macro
(DFHSC).

CICS management programs automatically
issue requests for main storage to
provide input/output areas, program load
areas, and user-defined work areas
needed to process a task. An
application program can also issue
requests for main storage to provide
intermediate work areas and any other
main storage area not automatically
provided by CICS but needed to process a
task. Main storage acquired by an
application program can be initialized
to any bit configuration, for example,
binary zeros or EBCDIC blanks.

Main storage associated with a task is
controlled and accounted for by CICS.
This allows CICS to release all main
storage associated with a task upon
request or when the task is normally or
abnormally terminated. Main storage is
accounted for as follows:

•

•

•

•

•

Task control areas (TCAs) are
accounted for through pointers in
the dispatch control areas (DCAs).
The DCAs are chained from the common
system area (CSA).

Task storage is chained off the task
control area (TCA).

Terminal storage is chained off the
TCTTE (the TCTTESC field is the
origin of the terminal input/output
area (TIOA) chain; the TCTTEDA field
contains the address of the current
TIOA regardless of the position of
that TIOA on the chain).

Program storage is accounted for in
the processing program table (PPT).

Suspended tasks are accounted for by
the suspending CICS management
program (task control, storage
control, or temporary storage
control).

If there is insufficient main storage to
satisfy a storage acquisition request,
TCASCSA is filled with binary zeros.
All activity within the task is
suspended until sufficient dynamic
storage becomes available and its
address is placed in TCASCSA, unless the
application programmer has specified in
his request that control is to be
returned to the application program.
Lack of storage will cause a

short-on-storage condition. The
initiation of new tasks is restricted by
CICS until the short-on-storage
condition is alleviated. Normally, this
occurs as a result of some other task
releasing storage currently reserved for
it. (See "Declare a Task to be
Purgeable (TYPE=PURGE)" on page 227, for
corrective action that can be taken if
the short-on-storage condition
continues.) .

OBTAIN AND INITIALIZE MAIN STORAGE
(TVPE=GETMAINl

The format of the DFHSC macro to get
main storage and initialize the area
obtained, if required, is as follows:

DFHSC TYPE=GETMAIN
[,INITIMG={numberIYES}]
[,NUMBYTE=number]
[,COND={YESI(YES,symb-addr)

I (NO,symb-addr)}]
[,CLASS={TERMINALIUSERI

TRANSDATAITEMPSTRG}]

This macro is used to get main storage
of a specified size and class and,
optionally, to initialize that storage
to a specified bit configuration. The
address of the storage area obtained is
placed in TCASCSA on a doubleword
boundary by CICS. TERMINAL, TRANSDATA,
and TEMPSTRG can be abbreviated to TERM,
TD, and TS respectively.

When using this macro, the application
programmer should:

• Check whether any existing storage
that is no longer required by the
task should be released, to avoid
causing a short-on-storage condition
to occur, or if it may be left for
CICS to release when the task is
terminated.

• Specify the class of storage
required using the CLASS operand.

•

•

Calculate the number of bytes
required and either specify that
amount in the NUMBYTE operand, or
place it in TCASCNB, in binary form,
before issuing the DFHSC macro. A
zero data length is not allowed for
a DFHSC TYPE=GETMAIN macro.

Specify the COND operand if control
is to be returned to the application
program, irrespective of whether the

Chapter 5.S. Storage Control (DFHSC Macro) 241

•

•

•

ASH:

COBOL,

PL/I:

MVI
MVC

TCASCIB,B'O'
TCASCNB,=H'I024'

DFHSC TYPE=GETMAIN,
INITIMG=YES,
COND=YES,
CLASS=TERMINAL

CLC TCASCSA,=F'O'
BE NOSTRG
L TIOABAR,TCASCSA

MOVE' , TO TCASCIB.
MOVE 1024 TO TCASCNB.

DFHSC TYPE=GETMAIN,
INITIMG=YES,
COND=YES,
CLASS=TERMINAL

IF TCASCSA EQUAL 0 GO TO
MOVE TCASCSA TO TIOABAR.

TCASCIB=O;
TCASCNB=1024;

INITIALIZE WITH BINARY ZEROS
SIZE OF STORAGE REQUESTED

OBTAIN NEW STORAGE AREA
INITIALIZE WITH BINARY ZEROS
RETURN CONTROL
CLASS OF STORAGE REQUESTED
WAS STORAGE AVAILABLE!
BRANCH IF NOT
LOAD REGISTER IF STORAGE FOUND

NOTE INITIALIZE WITH BLANKS
NOTE SIZE OF STORAGE REQUESTED.

OBTAIN NEW STORAGE AREA
INITIALIZE WITH BLANKS
RETURN CONTROL
CLASS OF STORAGE REQUESTED

NOSTRG.

/*INITIALIZE WITH BINARY ZEROS*/
/*SIZE OF STORAGE REQUESTED*/

OBTAIN NEW STORAGE AREA
INITIALIZE WITH BINARY ZEROS
RETURN CONTROL

DFHSC TYPE=GETMAIN,
INITIMG=YES,
COND=YES,
CLASS=TERMINAL

IF UNSPECCTCASCSA) = 0
TIOABAR=TCASCSA;

CLASS OF STORAGE REQUESTED
THEN GO TO NOSTRG;

/*LOAD REGISTER IF STORAGE FOUND*/

requested storage has been acquired
or not.

initialized and then request that the
storage be acquired.

Specify a symbolic base address for
the sto~age area.

Move the storage address located at
TCASCSA to the symbolic base
address. (This address points to
the storage accounting area of the
storage area.)

COpy the symbolic storage definition
for the appropriate input/output
area or storage accounting area
prior to the symbolic definition of
the user's program storage area.

RELEASE MAIN STORAGE (TVPE=FREEMAINJ

The format of the DFHSC macro to release
main storage is as follows:

DFHSC TYPE=FREEMAIN
[,RELEASE=ALLl

The following example shows how to
request a l024-byte area· of main storage
and initialize it with zeros:

If the task itself does not release
acquired storage, the storage is
released by CICS upon termination of the
task.

DFHSC TYPE=GETMAIN,INITIMG=OO,
NUM~YTE=I024,CLASS=TERMINAL

The above examples show how to specify
the size of a required storage area and
the value to which it is to be

When this macro is used to release a
single storage area, the address of that
area must be placed in TCASCSA prior to
execution of the macro. If all terminal
storage acquired by means of DFHSC
TYPE=GETMAIN,CLASS=TERMINAL macros in
the application program or by CICS on

242 CICS/VS Application Programmer's Reference Manual (Macro Level)

behalf of the task is to be released,
the RElEASE=All operand will achieve
that result; in this case, it is not
necessary to place an address in
TCASCSA.

The following example shows how to
release all main storage currently
allocated to a terminal:

DFHSC TYPE=FREEMAIN,RElEASE=All

The use of the RELEASE=AlL operand is
restricted during basic mapping support
(BMS) output operations having "OUT"
disposition, to preserve the terminal
storage used by BMS. Once a DFHBMS
macro with "OUT" disposition has been
issued, the application program must not
issue a DFHSC TYPE=FREEMAIN,RELEASE=ALl
macro until either a DFHBMS TYPE=PAGEOUT
or DFHBMS TYPE=PURGE macro has been
issued.

The use of the RElEASE=ALL operand is
also restricted during data interchange
output operations (ADD, ERASE, REPLACE,
NOTE, QUERY, END, and ABORT) to preserve
the terminal storage used by the data
interchange program (DFHDIP). Once a
destination has been selected,
RELEASE=ALl must not be specified until
TYPE=END, TYPE=QUERY, or TYPE=ABORT has
been specified in the DFHDI macro for
that destination.

The following example shows, in
assembler language, how to release a
single main storage area, placing the
address of the area to be released in
TCASCSA before issuing the release
request.

ST TIOABAR,TCASCSA

DFHSC TYPE=FREEMAIN

The equivalent instruction in COBOL is:

MOVE TIOABAR TO TCASCSA.

The equivalent instruction in PL/I is:

TCASCSA=TIOABAR;

OPERANDS OF DFHSC MACRO

CLASS=
specifies the class of the storage
to be acquired, as follows:

TERMINAL or TERM
. specifies that the storage

area is to be used as a
terminal input/output area
(TIOA), which is chained to
the terminal control table
terminal entry (TCTTE). Ali
requests for storage related
to terminal input/output must
specify this class.

COND=

USER

If storage other than TERMINAL
class is used as a TIOA for
subsequent terminal control
input/output operations,
storage violations may occur.

indicates that the storage
area is to be associated with
the application program and
used by that program. This
area chained to the TCA
associated with the requesting
task.

TRANSDATA or TD
specifies that the storage
area is to be used for
transient data record storage
(a TDIA or TDOA). This area
is chained to the TCA
associated with the requesting
task and is used by transient
data control.

TEMPSTRG or TS
specifies that the storage
area is to be used as a
temporary storage input/output
area (TSIOA). This area is
chained to the TCA associated
with the requesting task and
is used by temporary storage
control.

Note: USER, TRANSDATA, and
TEMPSTRG specifications have
essentially the same effect. The
advantage of using ClASS=TRANSDATA
or CLASS=TEMPSTRG when either is
appropriate is that the
specification serves as
documentation both in the program
and in the class code of the
storage accounting field for the
area.

specifies that control is to be
returned to the application
program, whether or not the
requested storage area is acquired.

YES
specifies that control is to
be given to the instruction
immediately following the
expansion for the DFHSC
TYPE=GETMAIN macro in the
application program. To
determine whether the
requested storage area is
acquired, the application
program must examine TCASCSA,
which is set to binary zeros
if the request cannot be
satisfied.

(YES, symb-addr 1
causes a branch to the
location specified by the
symbolic address if the
requested storage is acquired;
otherwise, control is returned

Chapter 5.5. storage Control (DFHSC Macro) 243

to the instruction immediately
following the expansion for
the DFHSC TYPE=GETMAIN macro
in the application program.

(NO,symb-addr)

INITIMG=

causes a branch to the
location specified by the
symbolic address if the
requested storage is not
acquired; otherwise, control
is returned to the instruction
immediately following the
expansion for this macro in
the application program.

specifies that the acquired storage
area is to be initialized to the
desired bit configuration.

number

YES

is a two-digit hexadecimal
numeral indicating the bit
configuration desired.

specifies that the desired bit
configuration is in TCASCIB.

NUMBYTE=number
is a decimal numeral up to 65520
specifying the size, in bytes, of
the storage area being requested;
if omitted, the number of bytes is
assumed to be stored in binary form
in TCASCNB. A zero data length is
not allowed for a DFHSC
TYPE=GETMAIN macro. In BMS mapping
operations, the number of bytes can
be specified as an assembler
language expression, for examplea

NUMBYTE=mapname.E-TIOADBA

Note: Depending upon the class of
storage specified (see the CLASS
operand), CICS storage management

automaticallY increments the amount
of storage requested to allow for
the storage accounting field and
other control information. For
CLASS=USER and CLASS=TERMINAL
(TIOA) storage, the exact number of
bytes required should be specified.
For CLASS=TRANSDATA (TDIA and TDOA)
and CLASS=TEMPSTRG (TSIOA) storage,
the amount requested must include
four additional bytes to allow for
a portion of CICS control
information, namely, the length
(LLbb) field at the beginning of
the area. (See also nStorage
Defined During Initialization" on
page 35 that apply when programming
in COBOL.)

RELEASE=ALL
specifies that all main storage
acquired by means of DFHSC
TYPE=GETMAIN,CLASS=TERMINAL macros
is to be released.

The use of the RELEASE=ALL operand
is restricted during basic mapping
support (BMS) output operations
that have an OUT disposition; this
restriction preserves the terminal
storage used by BMS. Once a DFHBMS
macro with an OUT disposition has
been issued, the application
program must not issue a DFHSC
TYPE=FREEMAIN,RELEASE=ALL macro
until either a DFHBMS TYPE=PAGEOUT
or DFHBMS TYPE=PURGE macro has been
issued.

If this operand is not specified,
only one storage area can be
released by a DFHSC TYPE=FREEMAIN
macro; the address of that area
must be in TCASCSA and must be the
main storage address returned as a
result of a previously issued DFHSC
TYPE=GETMAIN macro.

244 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 5.6. TRANSIENT DATA CONTROL (DFHTD MACRO)

Transient data management provides,
through transient data control, a
generalized queuing facility. nata can
be queued (stored) for subsequent
internal or external processing.
Selected units of information, as
specified by the application programmer,
can be routed to or from predefined
symbolic destinations, either
intrapartition or extrapartition. The
definitions for the destinations must be
contained in a destination control table
(nCT) established by the system
programmer at system generation. See
the appropriate CICS Resource Definition
manual.

Intrapartition destinations are queues
of data on direct access storage devices
developed for input to one or more
programs running asynchronously
(concurrently) as separate tasks; they
are internal to the CICS
partition/region. Data directed to or
from these internal destinations is
called intrapartition data and must
consist of variable-length records.
Intrapartition destinations can be
associated with either a terminal or an
output data set. Intrapartition data
may be ultimately transmitted upon
request to a destination terminal or
retrieved sequentially from the output
data set. Typical uses of this facility
involve message switching, broadcasting,
data base access, routing of output to
multiple terminals (for example, for
order distribution), queuing of data
(for example, for assignment of order
numbers or priority by arrival), and
data collection (for example, for
batched input from 2780 Data
Transmission Terminals).

An intrapartition queue is reusable.
The system programmer can indicate, by
symbolic destination, whether (1)
transient data space management is to
control the reuse of tracks associated
with a particular destination
identification (DESTID), or (2) the
releasing of track space is to be
controlled through use of the transient
data PURGE macro. If transient data
space managem~nt is not used, an
intrapartition queue continues to grow,
irrespective of whether the data has
been read, until the application
programmer purges it.

Extrapartition destinations are queues
(data sets) external to the CICS
partition/region, residing on any
sequential device (DASD, tape, printer,
and so on). In general, sequential
extrapartition destinations are used for
storing data external to the CICS
partition/region or for retrieving data

from outside the partition/region. For
example, one task may read data from a
remote terminal, edit the data, and
write the results to a data set for
subsequent processing in another
partition/region. Logging data,
statistics, and transaction error
messages are examples of data that can
be written to extrapartition
destinations. In general,
extrapartition data created by CICS is
intended for subsequent batched input to
non-CICS programs. Data can also be
routed to an output device such as a
line printer.

Data directed to or from an external
destination is called extrapartition
data and consists of sequential records
that are fixed- or variable-length,
blocked or unblocked. The record format
for a particular extrapartition
destination must be described by the
system programmer when setting up the
DCT.

Intrapartition and extrapartition
destinations can be used as indirect
destinations, which are symbolic
references to still other destinations.
This facility provides some flexibility
in program maintenance in that data can
be routed to a destination known by a
different symbolic name, without the
necessity for recompiling existing
programs that use the original name.
Only the destination control table need
be changed. The application programs
can route data to the destination using
the previous symbolic name; however, the
previous name is now an indirect
destination that refers to the new
symbolic name. Since indirect
destinations are established by means of
destination control table entries, the
application programmer need not usually
be concerned with how this is done.

For intrapartition destinations, CICS
provides the option of automatic task
initiation (ATI). A basis for ATI is
established by the system programmer by
specifying a nonzero trigger level for a
particular intrapartition destination in
the DCT. When the number of entries
(PUTs from one or more programs) in the
queue (destination) reaches the
specified level, a transaction specified
in the definition of the destination is
automatically initiated. Control is
passed to a program that processes the
data in the queue; the program must
issue repetitive GETs to deplete the
queue.

Once the queue has been depleted, a new
ATI cycle begins. That is, a new task
is scheduled for initiation when the

Chapter 5.6. Transient Data Control (DFHTD Macro) 245

specified trigger level is again
reached, whether or not execution of the
prior task has terminated.

If an automaticallY initiated task does
not deplete the queue, access to the
queue is not inhibited. The task may be
normally or abnormally terminated before
the queue is emptied (that is, before a
QUEZERO response is returned in response
to a DFHTD TYPE=GET macro). If the
destination is a terminal, the same task
is reinitiated regardless of the trigger
level. If the destination is a data
set, the task is not reinitiated until
the specified trigger level is reached.
If the trigger level of a queue is zero,
no task is automatically initiated. To
ensure that termination of an
automaticallY initiated task occurs when
the queue is empty, the application
program should test for a QUEZERO
condition rather than for some
application-dependent factor such as an
anticipated number of records. It is
the QUEZERO condition only that
indicates a depleted queue.

Requests for transient. data services are
communicated to transient data control
through CICS macros. Transient data
control then executes as a service
program under control of the TCA of the
requesting program.

It runs at the priority of the
requesting program and saves and
restores registers from its TCA. After
the requested transient data service has
been provided (or attempted), control is
returned to the next executable
instruction in the requesting program.

The transient data management macro
(DFHTD) is used to request any of the
following services,

1. Direct data to a predefined symbolic
destination which references a data
set or a terminal

2. Acquire data from a predefined
symbolic source which references a
data set or a terminal

3. Control the processing of an
extrapartition data set

4. Purge data associated with an
intrapartition data set

S. Check t~~ response to a request for
transient data services.

The application programmer must specify
the parameters required when requesting
transient data services. Parameters can
be specified in two ways: (1) by
including the parameters in operands of
the DFHTD macro by which the service is
requested, or (2) by coding i~structions
that move the required parameters to
fields of the TCA prior to issuing the
DFHTD macro. The latter approach

provides some degree of flexibility in
that a single DFHTD macro can be
tailored according to current logic
needs within the application program.

The application programmer can check the
CICS response as described in "Test
Response to a Request for TD Services
(TYPE=CHECK)" on page 249. The operands
that can be specified in DFHTD macros
are explained in detail at the end of
the chapter.

CICS routes a variety of messages
generated by CICS programs or tasks to
transient data control. For example,
terminal control detects a line or
terminal problem (not related to a
user-provided task) and routes control
to the CICS terminal abnormal condition
program (DFHTACP). DFHTACP then
generates a message to the control
system terminal log (CSTL) and/or to the
control system master terminal.

Destination definitions for all user and
CICS destinations must be included in
the DCT. Lack of a destination
definition leads to an IDERROR
(identification error) response to a
DFHTD macro.

DISPOSE OF DATA (TYPE=PUTJ

The format of the DFHTD macro to direct
transient data to a predefined symbolic
destination is as follows:

DFHTD TYPE=PUT
[,DESTID=symb-namel
[,TDADDR=symb-addrl
[,NORESP=symb-addrl
[,IDERROR=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[,NOSPACE=symb-addrl

Destinations are intrapartition if
associated with a facility allocated to
the CICS partition/region and
extrapartition if the data is directed
to some destination that is external to
the CICS partition/region. If
intrapartition data is to be placed in
the transient data output area, the
symbolic storage definition for this
area (DFHTDOA) should be copied in the
application program. The first four
bytes of this definition are a length
field. All references to the output
area should be made through the use of a
register (TDOABAR) which points to the
beginning of the area.

The address of the output area
containing the data to be written, must
either be specified in the TDADDR
operand or placed in TCATDAA prior to

246 CICS/VS Application Programmer's Reference Manual (Macro level)

issuing the macro. For variable-length
records or intrapartition data, the
first four bytes of the output area must
contain the length of the record. For
fixed length records, the start of the
output area must be the start of the
data. The format of the length field is
LLbb, where LL is a two-byte binary
length (the value of which includes the
length of the data plus the four bytes
for the length field) and bb should be
two bytes containing binary zeros.
Transient data control does not release
this area after the data is written as
output.

If the destination is extrapartition,
TYPEFLE=OUTPUT must be specified in the
appropriate DFHDCT TYPE=SDSCI system
macro, otherwise unpredictable results
or an abnormal termination will occur.

The following examples show how to write
data to a predefined symbolic
destination, in this case, the control
system message log (CSML). The address
of TDOAVRL, the 2-byte length field at
the beginning of the transient data
output area (TDOA), is a pointer to the
start of the variable-length data to be
written.

ASH:
TDOABAR

DATA

COBOL:

EQU
COpy
DS

DFHSC

L
MVC
MVC
MVC
DFHTD

7
DFHTDOA
CLIO

TYPE=GETMAIN,
CLASS=TRANSDATA,
INITIMG=OO,
NUMBYTE=14
TDOABAR,TCASCSA
TDOAVRL,LENGTH
DATA,MESSAGE
TCATDDI,=C'CSML'

TYPE=PUT,
TDADDR=TDOAVRL

02 TDOABAR PIC 59(8) COMPo

01 DFHTDOA COPY DFHTDOA.
02 SDATA PIC X(IO).

PL/I:

DFHSC TYPE=GETMAIN,
CLASS=TRANSDATA,
INITIMG=OO,
NUMBYTE=14

MOVE TCASC5A TO TDOABAR.
MOVE SLENGTH TO TDOAVRL.
MOVE SMESSAGE TO SDATA.
MOVE 'CSML' TO TCATDDI.
DFHTD TYPE=PUT,

TDADDR=TDOAVRL

XINCLUDE DFHTDOA;

2 DATA CHAR(IO);

.
DFHSC TYPE=GETMAIN,

CLASS=TRANSDATA;
INITIMG=OO,
NUMBYTE=14

TDOABAR=TCASCSA;
TDOAVRL=L'ENGTHi
DATA=MESSAGE;
TCATDDI='CSML'i
DFHTD TYPE=PUT,

TDADDR=TDOAVRL

ACQUIRE QUEUED DATA (TVPE=GET)

The format of the DFHTD macro to
retrieve queued data from an
extrapartition or intrapartition
destination is shown below. The address
of the retrieved data is returned at
TCATDAA.

DFHTD TYPE=GET
[,DESTID=symb-namel
[,QUEBUSY=symb-addrl
[,NORESP=symb-addrl
[,QUEZERO=symb-addrl
[,IDERROR=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl

If the data is extrapartition, TCATDAA
points to the first word of the data
area. For variable-length records, the
first four bytes of this area contain
the length (LLbb) as specified for
variable-length data sets.
TYPEFLE=INPUT or TYPEFLE=RDBACK.must be
specified in the appropriate DFHDCT
TYPE=SDSCI system macro, and DESTID must
not indicate a system spool file,
otherwise unpredictable results or an
abnormal termination will occur.

If the data is intrapartition, the
symbolic storage definition for the
transient data input area (DFHTDIA) must
have been copied in the application
program. TCATDAA points to a CICS input
area defined by DFHTDIA. TDIAIRL
contains the length (data length plus
the length of the length field) of the
area.

Transient data (either intrapartition or
extrapartition) must be moved from the
input area before it can be used in any
other input/output operation.

If the application programmer issues a
DFHTD TYPE=GET macro, the input area
acquired for the previous GET is reused
if it is long enough to contain the
input record. If it is not, CICS
acquires a new input area of sufficient
length and releases the input area
previously used. If the application

Chapter 5.6. Transient Data Control (DFHTD Macro) 247

programmer issues a DFHTD TYPE=PUT
macro, the input area acquired for a
previous GET may also be changed or
released. The application programmer
should always move data to be saved from
the input area to a user area to ensure
that it is not overlaid with new data.
Addressability to the area should also
be reestablished following each GET.

The application programmer should not
attempt to free storage acquired by the
transient data control program in
response to a DFHTD TYPE=GET macro.
This storage is freed by CICS in the
case of intrapartition data, or by the
operating system in the case of
extrapartition data. An attempt to free
storage acquired for extrapartition data
may result in an abnormal termination of
CICS, since the storage area address
returned by transient data control
points to storage that is not part of
the CICS dynamic storage subpool.

The following examples show how to read
a variable-length record from an
intrapartition data set specified prior
to issuing the DFHTD TYPE=GET macro. In
these examples, the data set is the
control system message log (CSML).

ASH:
TDIABAR

COBOL:

PL/I:

01

EQU
COpy

· MVC
DFHTD
L

7
DFHTDIA

TCATDDI,=C'CSML'
TYPE=GET
TDIABAR,TCATDAA

02 TDIABAR PIC S9(8) COMPo

· DFHTDIA COpy DFHTDIA.

MOVE 'CSML' TO TCATDDI.
DFHTD TYPE=GET
MOVE TCATDAA TO TDIABAR.

~INCLUDE DFHTDIA;
2 DUMMY CHAR(l);

· TCATDDI='CSML';
DFHTD TYPE=GET
TDIABAR=TCATDAA;

Assume that,-in the above examples, the
variable-length record is read from an
extrapartition data set. The address
placed at TCATDAA by CICS is the address
of the length (LLbb) field that precedes

the actual data. Since the DFHTDIA
symbolic storage definition is being
used, the address must be adjusted to
point to· the CICS system section
preceding the actual data. Therefore,
an instruction to adjust the address
should be inserted immediately following
the instruction that moves the contents
of TCATDAA to TDIABAR. The following
examples apply to CICS/OS/VS but are
applicable to CICS/DOS/VS if '36' is
replaced by '8'.

ASH: SH TDIABAR,=H'36'

COBOL: SUBTRACT 36 FROM TDIABAR.

PL/I= DeL TDIABAA FIXED BIN(3l)
BASEDCTDIABAB);
TDIABAB=ADDRCTDIABAR);
/* OVERLAY POINTER */
TDIABAA=TDIABAA-36
/* DO POINTER ARITHMETIC */

Since these examples deal with
variable-length records, the first byte
of the data is assumed to be the length
field CLLbb). If the examples dealt
with fixed-length records, appropriate
values would be 40 and 12 for CICS/OS/VS
and CICS/DOS/VS, respectively.

Note: These values are subject to
change in future versions of CICS,
because this DSECT is intended only for
intrapartition data sets. No DSECT is
provided for extrapartition data. Each
user should define the extrapartition
DSECT so as not to use the absolute
values in the above example.

FORCE END OF VOLUME ON AN EXTRAPARTITION
DATA SET (TYPE=FEOVl

The format of the DFHTD macro to create
a "forced end of volume" situation on an
extrapartition magnetic tape data set is
as follows:

DFHTD TYPE=FEOV
[,DESTID=symb name]
[,NORESP=symb-addr]
[,IDERROR=symb-addrl
[,NOTOPEN=symb-addr]

This macro specifies that a magnetic
tape reel is to be rewound and unloaded;
output labels are to be created as
required and new input labels verified
according to host operating system

248 CICS/VS Application Programmer's Reference Manual (Macro Level)

forced-end-of-volume processing. CICS
operation is halted, and the next tape
reel must be loaded before CICS
operation is resumed.

Note: This facility should be used with
caution, since CICS operation is halted
until the new tape reel has been loaded.

The following examples show how to
create a "forced end of volume"
situation on an extrapartition magnetic
tape data set.

ASH: MVC TCATDDI,=C'CSML'
DFHTD TYPE=FEOV

COBOL: MOVE 'CSML' TO TCATDDI.
DFHTD TYPE=FEOV

PL/I: TCATDDI='CSML';
DFHTD TYPE=FEOV

PURGE INTRAPARTITION DATA lTVPE=PURGEl

The format of the DFHTD macro to purge
all data associated with a particular
intrapartition destination (queue) is as
follows:

DFHTD TYPE=PURGE
[,DESTID=symb-namel
[,NORESP=symb-addrl
[,IDERROR=symb-addrl

When transient data associated with a
particular intrapartition destination
(queue) is no longer needed, the
application programmer can purge the
data associated with that destination by
issuing this macro, which causes all
storage associated with the destination
to be freed (deallocated).

This macro must be used to free storage
associated with a destination designated
as nonreusable in the destination
control table. Otherwise, the storage
remains allocated to the destination;
the data and amount of storage
associated with the destination continue
to grow whenever a DFHTD TYPE=PUT macro
refers to the destination.

TEST RESPONSE TO A REQUEST FOR TD
SERVICES (TVPE=CHECKl

The format of the DFHTD macro to test
the CICS response to a request for
transient data services is as follows:

DFHTD TYPE=CHECK
[,NORESP=symb-addrl
[,QUEZERO=symb-addrJ
[,IDERROR=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[,NOSPACE=symb-addrl

TRANSIENT DATA RESPONSE CODES

The assembler language or PL/I
programmer accesses transient data
response codes at TCATDTR; the COBOL
programmer accesses these response codes
at TCATDRC. In addition, the COBOL
programmer can refer to the response
codes by means of condition names (for
example, TDNORESP or TDQUEZERO). The
possible response codes and their
meanings are shown below.

If the application programmer does not
check for a particular response to a
service request, and the exception
condition corresponding to that response
occurs, program flow proceeds to the
next sequential instruction in the
application program.

Condition ASH COBOL PL/I

NORESP X'OO' LOW-VALUES 00000000
(TDNORESP)

QUEZERO X'Ol' 12-1-9 00000001
(TDQUEZERO)

IDERROR X'02' 12-2-9 00000010
(TDIDERROR)

IOERROR X'04' 12-4-9 00000100
(TDIOERROR)

NOTOPEN X'OS' 12-8-9 00001000
(TDNOTOPEN)

NOSPACE X'lO' 12-11-1-8-9 00010000
(TDNOSPACE)

The names enclosed in parentheses in the
COBOL column indicate the condition
names generated by CICS. These names
may be used in testing for the
respective conditions in a COBOL
program.

The following examples show how to
examine the response code provided by
CICS and transfer control to the
appropriate user-written
exception-handling routine.

ASH:
DFHTD TYPE=GET,DESTID=CSMl
ClI TCATDTR,X'OO'
BE GOOD

Chapter 5.6. Transient Data Control (DFHTD Macro) 249

DFHPC TYPE=ABEND,ABCODE=GETE
GOOD DS OH

COBOL:

GOOD.

DFHTD TYPE=GET,DESTID=CSML
IF TCATDRC = I I THEN GO TO GOOD.
DFHPC TYPE=ABEND,ABCODE=GETE

Alternatively, the COBOL programmer may
test responses by using the CICS
generated condition names.

GOODa

IF TDNORESP THEN GO TO GOOD.

DFHTD TYPE=GET,DESTID=CSML
IF TCATDTR='O'B THEN GO TO GOOD;
DFHPC TYPE=ABEND,ABCODE=GETE

OPERANDS OF DFHTD MACRO

DESTID=symb-name
specifies the symbolic name of the
destination to which the data is to
be routed and queued, or from which
queued data is to be read. This
name must appear in the destination
control table (the DCT). If this
operand is omitted, the symbolic
name of the destination is assumed
to be in TCATDDI. For a TYPE=GET
macro, DESTID must not indicate a
system spool file.

IDERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the
symbolic destination referred to by
a DFHTD macro cannot be found.

IOERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
input/output error occurs on a data
record and the data record in error
is skipped. Transient data returns
IOERROR as long as the queue can be
read; a QUEZERO response is

returned when the queue cannot be
read, in which case, the user may
attempt a restart. This condition
can also be raised if an attempt is
made to write a zero length record
to an intrapartition data set.
This condition can also be raised
under VSAM if the record is too
large to fit in a control interval.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if no error
occurs during a data set (file)
operation. NOR ESP signifies
"normal response."

NOSPACE=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if no more
space exists on a queue or if the
write request cannot be serviced.
If the NOSPACE response is
received, no more data should be
written to the queue, because it
may be lost.

NOTOPEN=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if a
destination is closed.

QUEBUSV=symb-addr
specifies the symbolic address of
the routine to receive control if
the input request attempts to
access a record on an input
intrapartition queue that has been
enqueued upon for output by a PUT
or PURGE request. If this operand
is omitted, the task issuing the
request waits until the queue is no
longer being used for output.

QUEZERO=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed when the
destination (queue) accessed by a
DFHTD TYPE=GET macro is empty.

TDADDR=symb-addr
specifies the symbolic address of
the output area containing data to
be written (for intrapartition data
and variable-length extrapartition
data, the first four bytes of this
area must contain the length of the
record). If this operand is
omitted, the address of the output
area is assumed to be in TCATDAA.

250 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 5.7. TEMPORARY STORAGE CONTROL (DFHTS MACRO)

Temporary storage control enables
user-written application programs to
store temporary data in main storage or
in auxiliary storage on a direct access
storage device.

Temporary data is stored, retrieved, and
released using a symbolic name (up to
eight characters) assigned to the data
by the originating task. (The symbolic
name must not consist solely of binary
zeros.)

The data may be a single record or
records retrieved from or added to a
temporary storage message set. The
former provides a typical "scratch pad"
capability. The latter is designed
primarily for terminal paging. It is
used in conjunction with basic mapping
support (see "Chapter 4.3. Basic Mapping
Support" on page 143) and page
supervision programs to achieve random
access to general-purpose storage files.
In general, the paging facility of
temporary storage should be used only
when multiple records are involved and
direct access to those records is
necessary. This queuing of message sets
should not be used for sequential data.
Transient data management provides
facilities for efficient handling of
sequential data sets. If data contained
in a message set is to be updated and
retrieved by multiple tasks, it may be
necessary to protect it by means of the
task control enqueuing facility.

Data placed in temporary storage can
remain intact beyond the time that the
originating task is active in the
system. That is even after the
originating task is terminated and its
transaction storage released, data
placed in temporary storage can be
accessed by other tasks through
references to the symbolic name under
which it is stored. Temporary data
remains intact until released by the
originating task or by any other task.
Prior to release, it can be accessed any
number of times.

When temporary data is released, the
space that it occupied is reusable. If
the data is in main storage, the storage
area becomes part of available dynamic
storage. If the data is in auxiliary
storage, the physical space that the
data occupied becomes available and can
be reused for other data.

Temporary data can be retrieved by the
originating task or by any other task
using the symbolic name assigned to it.
The name assigned to a single record
should be unique. If more than one
record has the same name, the record is

queued in temporary storage. If an
attempt is made to retrieve a record
from the queue, the records will be
presented on a first in first out basis.
All information moved to or from a
temporary storage message set is
referred to by a unique name assigned to
the message set. Specific entries
(logical records) within a message set
are referred to by relative position
numbers. To avoid conflicts caused by
duplicate names, a naming convention
should be established and followed by
all programmers. For example, the
operator identification, terminal
identification, or transaction
identification could be appended as a
prefix or suffix to each
programmer-supplied symbolic name.

Temporary data can be stored in either
main or auxiliary storage. Generally,
main storage should be used if the data
is needed for only short periods of
time; auxiliary storage should be used
if the data must be kept for extended
periods of time. Another consideration
is that data stored on auxiliary storage
is maintained after CICS termination and
can be recovered in a subsequent
restart. No attempt is made to recover
data in main storage. Main storage
might be used to pass data from task to
task or for unique storage that allows
programs to meet the requirement of CICS
that they be quasi-reenterable.

Some uses of the page queuing facility
follow:

1. Terminal paging. A task could
retrieve a large master record from
a direct access data set, format it
into several screen images, store
the screen images temporarily in
auxiliary storage, and then ask the
terminal operator which "page"
(screen image) is desired. The
application programmer can provide
coding (as a generalized routine or
unique to a single application) to
advance page by page, advance or
back up a relative number of pages,
and the like. This facility is
provided by CICS Basic Mapping
Support as described in "Chapter
4.3. Basic Mapping Support" on
page 143.

2. A suspend data set. Assume a data
collection task is in progress on a
certain terminal. The task reads in
one or more units of input and then
allows the terminal operator to
interrupt the process. If no
interruption occurs (some kind of
coded input), the task repeats the
data collection process. If the

Chapter 5.7. Temporary Storage Control (DFHTS Macro) 251

operator interrupts the data
collection stream with coded input,
the data collection task writes its
"incomplete" data to temporary
storage and terminates the task.
The terminal is now free for entry
of a different transaction (perhaps
a high-priority inquiry). When the
terminal is available to continue
the data collection operation, the
operator initiates the task in a
"resume" mode, causing the task to
recall its suspended data from
temporary storage and continue as
though it had not been interrupted.

3. An application that accepts input
data to be written as output on a
preprinted form.

The DFHTS macro is used to:

• Acquire data from main or auxiliary
storage

•

•

Send data to main or auxiliary
storage

Update data in main or auxiliary
storage

• Release temporary data in main or
auxiliary storage

• Check the response to a request for
temporary storage services.

Parameters can be specified in either of
two ways:

• By including the parameters in
operands of the DFHTS macro by which
temporary storage services are
requested, or

• By coding instructions that place
the parameter values in fields of
the TCA prior to issuing the DFHTS
macro.

The second of these approaches provides
flexibility in that the parameters of a
single DFHTS macro can vary to meet the
logic needs of the application program.

The eICS response to a request for
temporary storage services can be
checked, as explained under "Test
Response to a Request for Temporary
Storage Services," later in this
chapter. If the programmer does not
check for a particular response, and the
condition corresponding to that response
occurs, program flow proceeds to the
next sequential instruction in the
application program. All operands that
can be included in the DFHTS macro are
discussed at the end of the chapter.

STORE TEMPORARY DATA AS A SINGLE UNIT OF
INFORMATION (TYPE=PUTJ

The format of the DFHTS macro to store a
single unit of information as tempora~y
data in main or auxiliary storage (that
is, as though using a "scratch pad") is
as follows:

DFHTS TYPE=PUT
[,TYPOPER=REPlACEl
[,DATAID=namel
[,TSDADDR={symb-addrIYES}]
[,STORFAC={AUXIlIARYIMAIN}]
[,COND=YES]
[,NOSPACE=symb-addr]
[,NORESP=symb-addrl
[,IOERROR=symb-addrl
[,INVREQ=symb-addr]
[,ERROR=symb-addrl

This macro causes data to be written to
temporary storage as a single unit of
information (logical record).

Temporary data may be written from a
temporary storage input/output area
(TSIOA) or from a main storage area
identified by the application
programmer. It must have the standard
variable-length format, with the data
length specified in the first four
bytes. These bytes should contain llbb,
where II is a two-byte binary length
field (the value of which includes the
length of the data plus the four bytes
for the length field) and bb is a
two-byte field of binary zeros. The
maximum temporary storage record size is
based on user-specified data set
characteristics~ (See temporary storage
in the appropriate CICS Installation and
Operations Guide.)

Existing temporary storage data can be
updated by adding the TYPOPER=REPlACE
operand. This causes the current data
identified by the DATAID operand to be
released and replaced with the data
provided. If the data cannot be found,
the TYPOPER=REPlACE operand is ignored.

The following examples show how to write
a single record of information to
temporary storage. .

ASH.

TSIOABAR

DATA

EQU
COpy
DS

.

7
DFHTSIOA
Clil

DFHSC TYPE=GETMAIN,

l
MVC
MVC

ClASS=TEMPSTRG,
NUMBYTE=15
TSIOABAR,TCASCSA
TSIOAVRl,LENGTH
DATA, MESSAGE

252 CICS/VS Application Programmer's Reference Manual (Macro Level)

DFHTS TYPE=PUT,
DATAID=UNIQNME,
TSDADDR=TSIOAVRL

LENGTH
MESSAGE

DC AL2CL'MESSAGE+4)
DC C'HELLO THERE'

COBOLz

WORKING-STORAGE SECTION.
77 SMESSAGE PIC XCII) VALUE

'HELLO THERE'.
77 SLENGTH PIC 9(8) COMP VALUE 15
LINKAGE SECTION. .
02 TSIOABAR PIC S9{S) COMPo

01 DFHTSIOA COPY DFHTSIOA.
02 SDATA PIC X{ll).

DFHSC TYPE=GETMAIN,CLASS=TEMPSTRG,
NUMBYTE=lS

MOVE TCASCSA TO TSIOABAR.
MOVE SLENGTH TO TSIOAVRL.
MOVE SMESSAGE TO SDATA.

DFHTS TYPE=PUT,DATAID=UNIQNME,
TSDADDR=TSIOAVRL

PL/lz

Y.INCLUDE DFHTSIOA;
2 DATA CHARCII);

DFHSC TYPE=GETMAIN,CLASS=TEMPSTRG,
NUMBYTE=lS

TSIOABAR=TCASCSAj
TSIOAVRL=LENGTHi
DATA=MESSAGE;
DFHTS TYPE=PUT,DATAID=UNIQNME,

TSDADDR=TSIOAVRL
DCL MESSAGE CHAR{l!) INIT

('HELLO THERE');
DCL LENGTH FIXED BIN(15) INITClS);

STORE DATA TO A TEMPORARY STORAGE
MESSAGE SET (TVPE=PUTQ)

The format of the DFHTS macro to cause
an entry to be written to a temporary
storage message set is as follows:

DFHTS TYPE=PUTQ
[,TYPOPER=REPLACEl
[,DATAID=namel
[,TSDADDR={symb-addrIYES}]
[,STORFAC={AUXIlIARYIMAIN}]
[,ENTRY={nIYES}]
[,COND=YES]
[,NOSPACE=symb-addrl
[,NORESP=symb-addrl
[,IOERROR=symb-addrl
[,INVREQ=symb-addrl
[,ENERROR=symb-addr]
[,ERROR=symb-addrl

This macro causes a unit of information
to be written to a message set, or
queue, in temporary storage. The unit
is written in a relative position that
is one beyond the last entry written to
the message set. Following a ~UTQ
request, the relative record number is
returned to the user in TCATSRN, a
two-byte field.

Temporary data may be written from a
temporary storage input/output area
(TSIOA) or from a main storage area
identified by the application
programmer. It must have the standard
variable-length format, with the data
length specified in the first four
bytes. These bytes should contain LLbb,
where LL is a two-byte binary length
field (the value of which includes the
length of the data plus the four bytes
for the length field) and bb is a
two-byte field of binary zeros. The
maximum temporary storage record size is
based on user-specified data set
characteristics. (See temporary storage
in the appropriate CICS Installation and
Operations Guide.)

Existing temporary storage data can be
updated by specifying the
TYPOPER=REPLACE and ENTRY operands. The
specified record within the message set
is released and replaced with the data
provided. If the queue does not exist,
TYPOPER=REPLACE and ENTRY are ignored.
If the queue exists, but the specified
entry does not, EN ERROR is returned.

RETRIEVE A SINGLE UNIT OF TEMPORARY DATA
(TVPE=GETJ

The format of the DFHTS macro to
retrieve a single unit of temporary data
is as follows:

DFHTS TYPE=GET
[,STORCLS={TERMINALITERMI
TEMPSTRGITS}]

[,DATAID=namel
[,TSDADDR={symb-addrIYES}1
[,RELEASE={YESINO}]
[,NORESP=symb-addrl
[,IDERROR=symb-addrl
[,IOERROR=symb-addrl
[,INVREQ=symb-addrl
[,ERROR=symb-addrl

This macro causes a single record to be
retrieved from temporary storage. A
record stored in temporary storage by a
DFHTS TYPE=PUT macro can be retrieved
only by this macro. A record, once
retrieved, can be released by the
RELEASE=YES operand. If RELEASE=NO is
specified, or is assumed by default, the
record is retained until released by
another task or when CICS is terminated.

Chapter 5.7. Temporary Storage Control CDFHTS Macro) 253

The STORCLS and TSDADDR operands are
mutually exclusive.

If TSDADDR is specified, the record,
including its length field Cllbb), is
placed either in storage at the symbolic
address specified, or at the address in
TCATSDA if YES is specified.

If STORCLS=TEMPSTRG is specified, the
record, including its length field
(lLbb), is placed in a temporary storage
class storage area whose address is
returned in TCATSDA. Before this area
can be used as a TSIOA, the application
program must reduce the address in
TCATSDA by 8 bytes to include the
storage accounting area. This makes it
addressable by TSIOABAR.

If STORClS=TERMINAl is specified, the
record, including its length field
Cllbb), is placed in a terminal class
storage area. This area is prefixed by
CICS with an 8 byte storage area. The
address of the prefixed area is returned
in TCATSDA.

If neither STORClS nor TSADDR is
specified, STORCLS=TEMPSTRG is assumed
by default and processing is as
described above.

The following examples show how to read
a single record from temporary storage
with the required addressability and
adjustments. The examples show the use
of the DFHTS TYPE=GET macro with
STORClS=TEMPSTRG assumed by default.

ASM:
TSIOABAR EQU 7

COBOL:

PL/I:

COPY DFHTSIOA

.
DFHTS TYPE=GET,DATAID=UNIQNME
l TSIOABAR,TCATSDA
SH TSIOABAR,=H'8'

02 TSIOABAR PIC S9(8) COMPo

01 DFHTSIOA COPY DFHTSIOA.

DFHTS TYPE=GET,DATAID=UNIQNME
MOVE TCATSDA TO TSIOABAR.
SUBTRACT 8 FROM TSIOABAR.

Y.INCLUDE DFHTSIOA;
2 DATA CHAR(10);

DFHTS TYPE=GET,DATAID=UNIQNME
DCl TSIOBAA FIXED BIN(30)

BASEDCTSIOBAB);
TSIOABAR=TCATSDA;
TSIOBAB=ADDRCTSIOABAR)j
TSI OB"AA=TSIOBAA-8;

The following examples show the use of
the DFHTS TYPE=GET macro with
STORClAS=TERMINAl specified explicitly.

ASM:
TIOABAR EQU 7

COBOL:

PL/I:

COpy DFHTIOA

DFHTS TYPE=GET,STORClS=TERM,
DATAID=UNIQNME

l TIOABAR,TCATSDA

02 TIOABAR PIC S9(8) COMPo

01 DFHTIOA COPY DFHTIOA

DFHTS TYPE=GET,STORClS=TERM,
DATAID=UNIQNME

MOVE TCATSDA TO TIOABAR.

Y.INClUDE DFHTIOA;
2 DATA CHAR(lO)j

DFHTS TYPE=GET,STORClS=TERM,
DATAID=UNIQNME
TIOABAR=TCATSDAi

RETRIEVE DATA FROM A TEMPORARY STORAGE
MESSAGE SET (TVPE=GETQ)

The format of the DFHTS macro to
retrieve a logical record from a
temporary storage message set is as
follows:

DFHTS TYPE=GETQ
[,STORClS={TERMINAlITEMPSTRG}l
[,DATAID=namel
[,TSDADDR={symb-addrIYES} 1
[,ENTRY={nIYES}]
[,NORESP=symb-addrl
[,IDERROR=symb-addrl
[,IOERROR=symb-addrl
[,INVREQ=symb-addrl
[,ENERROR=symb-addrl
[,ERROR=symb-addr]

This macro causes an entry previously
written to a temporarY storage message
set, or queue, to be retrieved. A
record stored in temporary storage by a
DFHTS TYPE=PUTQ macro can only be
retrieved by a TYPE=GETQ macro. The
record to be retrieved from a queue is
identified by the ENTRY operand which
indicates its relative position within
the queue. The position of an entry is
determined by its order of creation.

254 CICS/VS Application Programmer's Reference Manual (Macro level)

RELEASE A SINGLE UNIT OF TEMPORARY DATA
(TVPE=RELEASEl

The format of the DFHTS macro to release
a single unit of data placed in
temporary storage by means of a DFHTS
TYPE=PUT macro is as follows:

DFHTS TYPE=RELEASE
[,DATAID=namel
[,NORESP=symb-addrl
[,IDERROR=symb-addrl
[,INVREQ=symb-addrl
[,ERROR=symb-addrl

This macro causes the main or auxiliary
storage area used for a single record of
temporary data (created by means of a
DFHTS TYPE=PUT macro) to be released.

If temporary data named in a DFHTS
TYPE=RELEASE macro is in main storage,
the area that it occupies is released
and returned to the available dynamic
storage area. If the data is in
auxiliary storage, the space is made
available for reuse.

A single unit of data should be released
at the earliest possible time to avoid
using excessive amounts of storage for
this purpose.

The following examples show how to
release a single record from temporary
storage.

ASH:

COBOL:

PL/I:

MVC TCATSDI,=C'UNIQNME'
DFHTS TYPE=RELEASE

MOVE 'UNIQNME' TO TCATSDI.
DFHTS TYPE=RElEASE

TCATSDI='UNIQNME'j
DFHTS TYPE=RElEASE

YURGE A TEMPORARY STORAGE MESSAGE SET
TVPE=PURGEJ

The format of the DFHTS macro to purge,
or free, data saved as a temporary
storage message set (that is, in
response to DFHTS TYPE=PUTQ macros) is
as follows:

DFHTS TYPE=PURGE
[,DATAID=namel
[,NORESP=symb-addrl
[,IDERROR=symb-addrl
[,INVREQ=symb-addrl
[,ERROR=symb-addrl

This macro causes all existing entries
in a temporary storage queue (created by
means of DFHTS TYPE=PUTQ macros) to be
freed. There is no way to free selected
records from a temporary storage message
set; in particular, a DFHTS TYPE=RElEASE
macro cannot be used to free a record
that is part of a message set created by
means of DFHTS TYPE=PUTQ.

If the temporary data is in main
storage, the area that it occupies is
freed and returned to the available
dynamic storage area. If the data is in
auxiliary storage, the space is made
available for reuse.

A temporary storage message set should
be purged at the earliest possible time
to avoid using excessive amounts of
storage for this purpose.

TEST RESPONSE TO A REQUEST FOR TEMPORARY
STORAGE SERVICES (TVPE=CHECK)

The format of the DFHTS macro to test
the CICS response to a request for
temporary storage services is as
follows:

DFHTS TYPE=CHECK
[,NOSPACE=symb-addrl
[,NORESP=symb-addrl
[,IDERROR=symb-addrl
[,IOERROR=symb-addrl
[,INVREQ=symb-addrl
[,ENERROR=symb-addrl
[,ERROR=symb-addrl

TEMpORARY STORAGE RESPONSE CODES

The assembler language or Pl/I
programmer can access temporary storage
response codes at TCATSTRi the COBOL
programmer at TCATSRC. In addition the
COBOL programmer can refer to the
response codes by means of condition
names (TSNORESP, TSIDERROR, and so on).
The possible response codes and their
meanings are shown below. (See also the
examples at the end of this discussion.)

Chapter 5.7. Temporary Storage Control (DFHTS Macro) 255

condition ASH COBOL PLI'I

NORESP X'OO' LOW-VALUES 00000000
(TSNORESP)

EN ERROR X'Ol' 12-1-9 00000001
(TSENERROR)

IDERROR X'02' 12-2-9 00000010
(TSIDERROR)

IOERROR X'04' 12-4-9 00000100
(TSIOERROR)

NOSPACE X'OS' 12-S-9 00001000
(TSNOSPACE)

INVREQ X'20' 11-0-1-8-9 00100000
(TSINVREQ)

The names enclosed in parentheses in the
COBOL column indicate the condition
names generated by CICS. These names
~ay be used in testing for the
respective conditions in a COBOL
program.

The test for the ERROR response is
satisfied by a not equal condition; that
is, not X'OO', not LOW-VALUES, or not
00000000 for ASM, COBOL, and Pl/I,
respectively.

If the application programmer does not
check for a particular response to a
service request, and the condition
corresponding to that response occurs,
program flow proceeds to the next
sequential instruction in the
application program.

The following examples show how to
examine the· response code provided by
CICS and transfer control to the
appropriate user-written
exception-handling routine.

ASH:

GOOD

COBOL:

GOOD.

DFHTS TYPE=GET,DATAID=UNIQNME,
TSDADDR=YES

ClI TCATSTR,X'OO'
BE GOOD
DFHPC TYPE=ABEND
DS OH

DFHTS TYPE=GET,DATAID=UNIQNME,
TSDADDR=YES

IF TCATSRC = , , THEN GO TO GOOD.
DFHPC TYPE=ABEND

Alternatively, the COBOL programmer may
test responses by using the CICS
generated condition names, as follows:

IF TSNORESP THEN GO TO GOOD.

PLI'I.

GOOD:

DFHTS TYPE=GET,DATAID=UNIQNME,
TSDADDR=YES

IF TCATSTR='O'B THEN GO TO GOOD;
DFHPC TYPE=ABEND

OPERANDS OF DFHTS MACRO

COND=YES
specifies that control is to be
returned to the application program
when the request cannot be
satisfied immediately because there
is not enough space on the
temporary storage data set. If
this operand is omitted, the
requesting task is suspended when
no space is available and is
resumed when the space becomes
available. Space becomes available
as it is released by other tasks in
the system.

DATAID=name
specifies the unique alphanumeric
name, up to eight characters in
length, to be assigned to the
temporary data. If this operand is
omitted, the name is assumed to be
in TCATSDI.

Note: The application program
should not construct a DATAID
beginning with any of the
characters X'FA' through X'FF'.
Use of these characters for this
purpose is reserved for CICS.

ENERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the
entry number specified or implied
is invalid (that is, not within the
limits of the message set).

ENTRY=
specifies the number, relative to
one, of the logical record to be
retrieved from the message set.

n

YES

is a decimal numeral to be
taken as the relative number
of the logical record to be
retrieved. This number may be
the number of any entry that
has been written to the
temporary storage message set.

indicates that the number (in
binary) of the logical record
to be retrieved is in TCATSRN,
a two-byte field.

If this operand is omitted, CICS
retrieves (1) the first logical
record from the message set, for
the first retrieval request, or (2)
the next sequenti~l logical record

256 CICS/VS Application Programmer's Reference Manual (Macro Level)

following the last-retrieved record
(by any task), for other than the
first request. In the latter case,
the relative record number is
returned in TCATSRN.

ERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an error
occurs and the corresponding
specific error routine operand (for
example, IDERROR) has not been
specified.

IDERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the
symbolic destination identification
referred to by a GET, GETQ,
RELEASE, or PURGE macro cannot be
found in either main storage or
auxiliary storage.

INVREQ=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if (1) a
PUT or PUTQ request refers to data
whose length is equal to zero or
greater than the control interval
size of the auxiliary data set
minus 84 bytes for control
information, or (2) the request is
otherwise determined to be invalid.

IOERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
unrecoverable input/output error
occurs.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if no
errors occur during temporary
storage processing. NORESP
signifies "normal response."

NOSPACE=symb-addr
specifies the entry label of the
user~written routine to which
control is to be passed when
insufficient space is available on
the temporary storage data set to
contain the data in a PUT or PUTQ
request. The user-written NOSPACE
routine is passed control only if
COND=YES is also specified in the
PUT or PUTQ request.

RELEASE=
specifies the disposition of the
temporary data following the move
operation.

YES
the data and storage area used
for the data are to be
released after this operation.

NO

STORCLS=

the data is to be retained,
available for subsequent
similar reference.

specifies the class of storage to
be obtained for the temporary data.
This operand is ignored if TSADDR
is specifi~d.

TERMINAL or TERM
specifies that the data is to
be placed in a TERMINAL class
storage area.

TEMPSTRG or TS
specifies that the data is to
be placed in a temporary
storage area.

If this operand is omitted,
TEMPSTRG is assumed.

STORFAC=
specifies the type of storage to be
used for the temporary data.

AUXILIARY

MAIN

indicates that the data is to
be placed in auxiliary storage
on a direct access storage
device.

indicates that the data is to
be placed in main storage.

If this operand is omitted,
AUXILIARY is assumed.

TSDADDR=
specifies the symbolic address of
the data portion (including the
LLbb field) of the area in which
the temporary data is stored.

symb-addr

YES

is the symbolic address of the
data portion of the storage
area that contains the
temporary data.

indicates that the symbolic
address of the data portion of
the storage area has been
placed in TCATSDA by the
application programmer.

If this operand is omitted, the
appropriate symbolic address is
assumed to be in TCATSDA.

TYPOPER=REPLACE
indicates that the specified record
within the data set or message set
is to be released and replaced with
the record or data provided. If
the message set does not exist
(DATAID cannot be found), the data
provided is placed in temporary
storage as in a normal PUTQ without
TYPOPER=REPLACE specified.

Chapter 5.7. Temporary Storage Control (DFHTS Macro) 257

For TYPE=PUTQ, whenever REPLACE is
specified the ENTRY operand must
also be coded.

258 CICS/VS Application Programmer's Reference Manual (Macro Level)

PART 6. CICS BUILT-IN FUNCTIONS

Part 6. CICS Built-In Functions 259

CHAPTER 6.1. INTRODUCTION TO CICS BUILT-IN FUNCTIONS

Several commonly used functions are
available to the application programmer
through CICS macros. These are
functions which would otherwise have to
be coded as separate subroutines by the
programmer. These functions, referred
to as built-in functions, provide the
following services:

• Table search

• Phonetic conversion

• Verification of a data field

• Editing ofa data field

• Bit manipulation

• Input formatting

• Weighted retrieval.

Requests for these services are
communicated to the CICS built-in
functions program (DFHBFP) through the

DFHBIF macro. DFHBFP is then executed,
at the priority of the requesting task,
under control of the common control
communication area (TCACCCA) of the TCA
of the requesting task. Normally,
control is returned to the next
sequential instruction following the
macro expansion in the requesting
program; however, conditional branch
options can be specified in the macro
request if desired.

Since DFHBFP uses TCACCCA, the
application program must issue the
DFHBFTCA macro to copy the symbolic
storage definition for this area and
store any required information therein
before issuing the DFHBIF macro.
"Chapter 6.2. Storage Definition for
Built-In Functions (DFHBFTCA Macro)" on
page 263 explains how to do this.

The formats and operands of the DFHBIF
macro are described in "Chapter 6.3.
CICS Built-In Functions (DFHBIF Macro)"
on page 265.

Chapter 6.1. Introduction to eICS Built-In Functions 261

CHAPTER 6.2. STORAGE DEFINITION FOR BUILT-IN FUNCTIONS (DFHBFTCA MACRO)

When CICS built-in functions (BIFs) are
used in an application program, the
symbolic storage definition for the
TCACCCA used by these built-in functions
must be copied into the application
program. This copying is achieved by
means of the DFHBFTCA macro, which must
immediately follow the statement that
copies the TCA and the user's definition
of a TWA, if any.

The format of the DFHBFTCA macro is as
follows:

DFHBFTCA [OPTION={BASICIWTRET}]
[,COBLANG={LVLlILVL2}]

wherez

OPTION indicates which built-in
functions are to be used.

BASIC is required if any of ~he
following functions are used: table
search, phonetic conversion, field
verification, field editing, bit
manipulation, or input formatting.

WTRET is required if weighted
retrieval is used.

If OPTION is omitted, both BASIC and
WTRET are assumed.

COBLANG indicates the language level of
a COBOL application program, as
foilowsl

LVLl specifies COBOL language 1

LVL2 specifies COBOL language 2

If COBLANG is omitted, LVLl is assumed.

The following examples show the
statements needed to copy the symbolic
storage definitions referred to by the
built-in functions, positioned as
required.

ASMz

NAME
STREET
CITY
STATE

COBOL.

COpy DFHTCADS
DS Cl20
DS Cl20
DS CLIO
DS Cl3
DFHBFTCA

01 DFHTCADS COpy DFHTCADS.
02 NAME PIC X(20).
02 STREET PIC X(20).
02 CITY PIC XClO).
02 STATE PIC X(3).
DFHBFTCA

PL/Iz

XINCLUDE (DFHTCADS);
2 NAME CHAR(20),
2 STREET CHAR(20),
2 CITY CHARClO),
2 STATE CHAR(3);
DFHBFTCA

TWA
TWA
TWA
TWA

NOTE TWA
NOTE TWA
NOTE TWA
NOTE TWA

/JETWAJE/
/JETWAJE/
/JETWAJE/
/JETWAJE/

Chapter 6.2. Storage Definition for Built-In Functions (DFHBFTCA Macro) 263

CHAPTER 6.3. Cles BUILT-IN FUNCTIONS (DFHBIF MACRO)

TABLE SEARCH BUILT-IN FUNCTION
(TVPE=TSEARCH)

DFHBIF TYPE=TSEARCH
[,ARG=symb-addr]
[,TARGET=symb-addr]
[,ATABLE=([sal][,sa2IYES}]

[,nl][,{n2IYES)][,n3])]
[,FTABLE=([{salIYES)]

[,{sa2IYES}][,{nlIYES}]
[,{n2IYES}])]

[,ORDER={ASCENDINGI
DESCENDING)]

[,SUBST={sal'lit value'}]
[,NOMATCH=symb-addr]
[,INDEX=symb-addr]
[,RANGE=YES]
[,ERROR=symb-addr]

This macro specifies that a table is to
be searched for a given entry, causing a
corresponding value within that table or
a second table, the address of the
corresponding value, and the index of
the selected entry (relative to one) to
be returned.

The search argument is compared on a
byte-for-byte ba$is with a specified
field of entries in the table being
searched. Optionally, a default value
can be returned instead of a
corresponding value if the searched-for
entry is not found. If an index is
requested, but the entry is not found,
an index value of zero is returned.

Note: In the syntax display,
"symb-addr" and "numeric value" have, in
some cases, been shortened to "sa" and
linn respectively, and "literal" has been
shortened to "lit".

Returned Values

An entry in the argument table that
matches the search argument satisfies
the table search built-in function. If
such an entry is found, the address of
the corresponding entry in the function
table is returned in TCATSA5, a fullword
field.

If TARGET is specified, the function
value is returned in the location
identified by that operand. If the
function table contains more than one
matching entry, the address (and the
function value, if requested) of the
first matching entrY encountered during
the search is returned.

If ORDER is specified, a binary search
is performed, and the address returned
is that of the first matching entry
found.

If ORDER is omitted, a sequential search
is performed, starting at the last entry
in the table, and the address returned
is that of the last matching entry in
the table. The index of the matching
entry is returned in TCATSH4 and in the
field identified by the INDEX operand if
specified.

If RANGE=YES is specified, a matching
entry satisfies the search as described
above. If no matching entry is found,
the search is satisfied in an
alternative manner.

•

•

If ORDER=ASCENDING is specified, the
argument table entry having the
largest argument value less than the
search argument satisfies the
search.

If ORDER=DESCENDING is specified,
the argument table entry having the
smallest argument value greater than
the search argument satisfies the
search.

The results of the table search built-in
function can be tested by examining the
response codes, as follows:

Condition ASM COBOL PL/!

Match found X'OO' LOW-VALUES 00000000
(TCATSMH)

ATABLE fa<ea X'04' 12-4-9 00000100
(sa2<sal> (TCATSER2)

FTABLE fa<ea X'OS' 12-S-9 00001000
(sa2<sal) (TCATSER1)

No match X'FO' '0' '0 •

Note: Here, "fa" means "field address",
$nd "ea" means "entry address". The
names in parentheses in the COBOL column
indicate the condition names generated
by CICS. These names may be used in
testing for the respective conditions in
a COBOL program.

Example - Separate Tables

The following example shows how the
macro is used in an assembler language
program. A four-character argument is
matched against fields in a seven-entry
argument table. If the search is
satisfied, the address of a
two-character corresponding field in the
function table is placed in TCATSA5 and

Chapter 6.3. eICS Built-In Functions (DFHBIF Macro) 265

the index value of the matching entry is
placed in TCATSH4. If no matching entry
is found, a branch to BRI occurs.

ERRORI

BRI

ATBL

AFLD

FTBL

FFLD

ARGI

DFHBIF TYPE=TSEARCH,ARG=ARGl,
ATABLE=(ATBL,AFLD,9,4,7),
FTABLE=(FTBL,FFLD,S,2),
ERROR=ERRORI,NOMATCH=BRI

DS OXL9 FIRST ENTRY OF ARG TABLE
DS XLS
DS XL4 FIRST ARGUMENT FIELD
DS 6XL9 SPACE FOR 6 MORE ENTRIES
DS OXLS FIRST ENTRY OF FUN TABLE
DS XL3
DS XL2 FIRST FUNCTION FIELD
DS 6XLS SPACE FOR 6 MORE ENTRIES
DS XL4 SEARCH ARGUMENT

Example - Complex Table

The following example shows how to
search a complex table, that is, a table
which contains both argument and
function values. The search is similar
to that above, except that only one
table is described.

ERROR I

BRI

TBLI
FLDA
FLDF

ARGI

DFHBIF TYPE=TSEARCH,ARG=ARGI,
ATABLE=CTBLI,FLDA,S,2,3),
FTABLE=CTBLI,FLDF,S,3),
ERROR=ERRORI,NOMATCH=BRI

DS OCLS ENTRY OF ARG/FUN TABLE
DS CL2 FIRST ARGUMENT FIELD
DS CL3 FIRST FUNCTION FIELD
DS 2CLS SPACE FOR 2 MORE ENTRIES
DS CL2 SEARCH ARGUMENT

PHONETIC CONVERSION BUILT-IN FUNCTION
(TVPE=PHONETICJ

DFHBIF TYPE=PHONETIC
[,FIELD=symb-addrl
[,ERROR=symb-addrl

This macro is used to encode a 16-byte
field of data phonetically. The macro
converts a name into a key, which can be
used to access data in a data base data
set. The key that is generated is based
upon the sound of the name; names that
sound alike, even though spelled
differently, produce identical keys.
For example, the names SMITH, SMYTH, and
SMYTHE produce the same key.

You should be aware that a change to the
phonetic conversion built-in function
has been incorporated in CICS Version I
Release 7. The encoding routine ignores
embedded blanks in a name. Records with
phonetic keys encoded before this change
may require reconversion before they are
used with CICS Version I Release 7.

In addition to the phonetic conversion
built-in function, a CICS subroutine
that performs similar conversion of keys
is available for use by offline
user-written programs. Together, these
facilities allow the CICS user to
organize his file according to name Cor
any similar alphabetic key) and access
the file using search arguments that may
be misspelled or misunderstood to
retrieve the required data.

Returned Value

The returned value is placed at TCAPHON.
This value is the four-byte phonetic
equivalent of the data passed to the
built-in function. It consists of the
first character of the data and three
EBCDIC digits representing the
characters in the remainder of the data.

If the first character is not
alphabetic, an error code is placed in
TCAPHNR. This code is X'SO' for
assembler language or '&' for both COBOL
and Pl/I. For COBOL, the condition name
(TCAPINN) generated by CICS can be used
instead.

Phonetic Conversion Subroutine

A CICS subroutine that performs phonetic
conversion of 16-character names in the
same manner as the phonetic conversion
built-in function is available for use
by offline user-written programs. The
name to be converted is provided as
input to the subroutine; the four-byte
phonetic equivalent of that name is
returned as a result.

The general form of the macro to invoke
the subroutine (in ASM, COBOL, and PL/I
respectively) is as follows:

CALL DFHPHN,Clang,name,phon)

CALL 'DFHPHN' USING lang name phon.

CALL DFHPHN (lang,name,phon)J

lang is the symbolic address of a
one-byte code indicating the
programming language being used: X'FO'
for ASM or COBOL, X'FI' for Pl/I. If
an error occurs during processing of
this request, X'SO' is returned in
this location. If no error occurs,
X'OO' is returned, and the location
must be reset to indicate the
programming language before the
location can be reused.

266 CICS/VS Application Programmer's Reference Manual (Macro Level)

name is the symbolic address of the
field that contains the l6-character
name to be converted.

phon is the symbolic address of the
field in which the four-byte phonetic
equivalent of the name passed to the
subroutine is returned to the calling
program.

FIELD VERIFY BUILT-IN FUNCTION
(TVPE=FVERIFYJ

DFHBIF TYPE=FVERIFY
[,FIELD=symb-addrl
[,LENGTH={symb-addrlnum-val}1
[,ALPHA=symb-addrl
[,NUMERIC=symb-addrl
[,PACKED=symb-addrl

This macro verifies that the contents of
a data field arel

• Entirely alphabeticl blanks or A-Z

• Entirely EBCDIC digits, with or
without trailing signa 0-9
(X'FO'-X'F9')

• Entirely packed decimal (COMP-3 in
COBOL or FIXED DEC in PL/I).

A branch is made to an appropriate
user-written routine accordingly.

The ALPHA, NUMERIC, and PACKED operands
may be specified in any combination or
order, but at least one of them must be
specified. The conditions specified are
tested upon request in the order ALPHA,
NUMERIC, PACKED, irrespective of the
order of the operands. If none of the
test conditions is met, control goes to
the instruction following the DFHBIF
TYPE=FVERIFY macro in the application
program.

Returned Values

The results of the verify built-in
function can be tested by examining the
response code at TCACHKR, as foilowsl

Condition ASH COBOL PL/I

Packed field X'20' 11-4-9 00100000
(TCACKPK)

Numeric field X'40' No punches 01000000
(TCACKNM)

Alpha field X'80' 12-0-1-8 10000000
(TCACKAL)

Mixed field X'EO' 0-2-8 11100000
(TCACKMX)

Note: The names in parentheses in the
COBOL column indicate the condition
names generated by CICS. These names

may be used in testing for the
respective conditions in a COBOL
program.

Example

DFHBIF TYPE=FVERIFY,FIELD=CONT,
LENGTH=16,ALPHA=MYROUT

The contents of CaNT, a 16-byte field,
will be checked to see if it contains
only alphabetic characters and/or
blanks. If it does, control is
transferred to MYROUT. Otherwise,
control returns to the instruction
following this DFHBIF macro in the
application program.

FIELD EDIT BUILT-IN FUNCTION
(TVPE=DEEDITJ

DFHBIF TYPE=DEEDIT
[,FIELD=symb-addr]
[,LENGTH={symb-addrlnum-val)]

This macro specifies that all bytes
(except the rightmost byte) containing
other than EBCDIC numeric characters are
to be deleted from the data field. The
remaining characters are right justified
in the field with zero padding at the
left as necessary. If the field ends
with a minus sign or a OCR", a negative
zone (X'D') is placed over the rightmost
(low-order) byt~. The zone portion of
the rightmost byte may contain any
hexadecimal character from X'A'-X'F'.
The digit portion of this byte may
contain one of the hexadecimal digits
from X'0'-X'9'. Where this is the case,
the rightmost byte is returned unaltered
(see the example below). This permits
the application program to operate on a
zoned numeric field. In any case, the
returned value is in the field that
initially contained the unedited data.

Note: A field of one byte will be
returned unaltered, no matter what the
field contains.

Example:

DFHBIF TYPE=DEEDIT,FIELD=CONTG,LENGTH=9

All characters other than EBCDIC numbers
are. removed from CONTG, a nine-byte
field. The edited result is returned in
that field to the application program.
Say, for example, CONTG contains

l4-6704/B

after editing, it will containa

00146704B

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 267

BIT MANIPULATION BUILT-IN FUNCTIONS

The bit manipulation built-in functions
are designed to change or test the state
of specified bits in a given area of
main storage. They are particularly
useful for COBOL application programs,
which are otherwise unable to manipulate
bits.

TVPE=BITSETON

DFHBIF TYPE=BITSETON
[,FIELD=symb-addrl
[,BIT={symb-addrlvalue}l
[,BITON=symb-addrl
[,BITOFF=symb-addrl

This macro specifies that all bits
selected by a specified bit pattern are
on after execution of the macro.

The application programmer specifies the
eight-bit mask (bit pattern) to be
applied against the byte containing bits
to be operated on. The mask can be
described by a single EBCDIC character
within single quotation marks: for
example, '5' or 'M'.

Alternatively, the symbolic address of a
one-byte field containing the mask can
be specified. If desired, control can
be transferred to a specified location
if all affected bits (or all bits in the
byte) are, on after completion of the bit
manipulation.

The returned value is the contents of
the byte specified in the FIELD operand,
with selected bits modified as
specifiedj for example:

DFHBIF TYPE=BITSETON,
FIELD=DATAF,
BIT=PATERN,
BITON=BLABEL

PAT ERN DC X'FF'

The macro ensures that all bits of the
one-byte field DATAF are set on and
causes a branch to BLABEL.

TYPE=BITSETOFF

DFHBIF TYPE=BITSETOFF
[,FIELD=symb-addrl
[,BIT={symb-addrlvalue}]
[,BITON=symb-addrl
[,BITOFF=symb-addrl

This macro specifies that all bits
selected by a specified bit pattern are
off after execution of this macro.

The application programmer specifies the
eight-bit mask (bit pattern) to be
applied against the byte containing bits
to be operated on. The mask can be
described by a single EBCDIC character
within single quotation marks: for
example, '5' or 'M'.

Alternatively, the symbolic address of a
one-byte field containing the mask can
be specified. If desired, control can
be transferred to a specified location
if all affected bits (or all bits in the
byte) are off after completion of the
bit manipulation.

The returned value is the contents of
the byte specified in the FIELD operand,
with selected bits modified as
specified.

TVPE=BITFLIP

DFHBIF TYPE=BITFLIP
[,FIELD=symb-addrl
[,BIT={symb-addrlvalue}l
[,BITON=symb-addrl
[,BITOFF=symb-addrl

This macro specifies that the state of
each bit selected by a specified bit
pattern is changed.

The application programmer specifies the
eight-bit mask (bit pattern) to be
applied against the byte containing bits
to be operated on. The mask can be
described by a single EBCDIC character
within single quotation marks: for
example, '5' or 'M'.

Alternatively, the symbolic address of a
one-byte field containing the mask can
be specified. If desired, control can
be transferred to a specified location
if all affected bits (or all bits in the
byte) are on, or if all affected'bits
(or all bits in the byte) are off, after
completion of the bit manipulation.

268 CICS/VS Application Programmer's Reference Manual (Macro Level)

The returned value is the contents of
the byte specified in the FIELD operand,
with selected bits modified as
specified.

TVPE=BITEST

DFHBIF TYPE=BITEST
[,FIELD=symb-addrl
[,BIT={symb-addrlvalue)]
[,BITON=symb-addrl
[,BITOFF=symb-addrl

This macro specifies that the state of
each bit in a specified bit pattern is
to be tested and an indicator is to be
set accordingly.

The BIT operand specifies the eight-bit
mask (bit pattern) that is to be applied
against the byte containing bits to be
operated on. The mask can be described
by a single EBCDIC character within
single quotation marks: for example, '5'
or 'M'.

Alternatively, the symbolic address of a
one-byte field containing the mask can
be specified. If desired, control can
be transferred to a specified location
if all affected bits (or all bits in the
byte) are on, or if all affected bits
(or all bits in the byte) are off, after
completion of the bit manipulation.

Returned Values

For BITEST, the result of the test is
returned in TCABITR as follows:

Condition

Bits off

Bits on

ASM COBOL PL/I

X'OO' LOW-VALUES 00000000
(TCABIFOF)

X'FO' '0' '0'
(TCABIFON)

Note: The names enclosed in parentheses
in the COBOL column indicate the
condition names generated by CICS.
These names may be used in testing for
the conditions in a COBOL program.

If BITON, BITOFF, or both BITON and
BITOFF are specified, and if certain
conditions are met as described in the
explanations of these operands, control
is transferred. For example, the macros

DFHBIF TYPE=BITEST,BIT='A'
,BITOFF=CLABEL

causes a bit pattern of 11000001 to be
applied to the one-byte field whose
address is stored in TCABITF. If all
tested bits are off, control is
transferred to CLABEL.

INPUT FORMATTING BUILT-IN FUNCTIONS

There are two versions of the DFHBIF
built-in function to handle-input
formatting, as follows:

TYPE=DEFLDNM defines keyWords in
free-for.mat input

TYPE=INFORMAT specifies formatting
of terminal input

Both these versions are described later
in the chapter.

The input formatting built-in function
allows free-format terminal input to be
converted into a predefined fixed format
that can be processed by the application
program. The application program can
accept any of three forms of input
(fixed, positional, or keyWord) from the
terminal. These forms are discussed in
order of increased flexibility below.

FIXED FORMAT

This is the simplest case, but it
requires a rigid adherence to form. The
input transaction must be identical in
format to the fixed internal format
established by statements in the
application program. For example,
assume the fixed internal format for
data consisting of a transaction
identification; last name, first name,
and middle initial; and identification
number is as follows.

Cols Description

1-4
5,6
7-18
19,20
21-30
31,32
33
34,35
36-41
42

Transaction id
blank
Last name
blank
First name
blank

"Middle initial
blank
Identification no
EOB (end-of-block)

Each input field must be entered by the
terminal operator in the positions
established for it in the fixed internal
format.

POSITIONAL FORMAT

This option allows the terminal operator
to enter a system-programmer selected
field-separator character to indicate
the. end of a field or the absence of a
field. The order of the fields on input
must be the same as the order
established for the fixed internal
format; the field lengths need not be
the same. If other fields follow, the
end of a field or the absence of a field

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 269

within the input must be indicated by a
field-separator character.

Assume that input consisting of a
transaction identification; last name,
first name, and middle initial; and
identification number is to be entered
from a terminal. Further assume that
the input formatting built-in function
is invoked by the application program to
process this input, recognizing the
slash (/) as a field-separator
character. The following examples show
permissible free-format positional
input. Each input transaction is
terminated by an EOB character.

• Complete input

INQR/HUGHES/JOHN/Q/0965S6 EOB

• Middle initial unknown

INQR/HUGHES/JOHN//096556 EOB

• Middle initial and identification
number unknown

INQR/HUGHES/JOHN EOB

KEYWORD FORMAT

The keyword format provides an even
greater degree of flexibility in that
terminal input can be entered in any
order. The terminal operator need only
be familiar with the keyword identifiers
that have been established for the input
fields. Each keyword identifier
consists of up to four characters
selected by the application programmer.
The keyword identifier must be preceded
by a field-name start character and
followed by a field-separator character,
both of which must be specified at
system initialization by the system
programmer. If either of these
characters is not specified, the default
assumed is a blank; however, since the
field-name start character must be
different from the field-separator
character, it is invalid to take both
defaults.

As an example, assume that keyword
identifiers are established by use of
the TYPE=DEFLDNM macro (described later
in the chapter) as follows:

LN
FN
MI
ID

last name field
first name field
middle initial field
identification number

Further assume that the period has been
specified as the field-name start
character and the equal sign has been
specified as. the field-separator
character. The following examples show
permissible free-format keyword input.

• Complete input

INQR.FN=JOHN.MI=Q.ID=096556.
LN=HUGHES EOB

• First name unknown

NQR.lN=HUGHES.MI=Q.ID=096556 EOB

• First name and identification
number unknown

INQR.lN=HUGHES.MI=Q EOB

The first entry in each of these
examples is the transaction
identification. Since CICS expects this
identification, it must be first and no
keyword identifier is required for it.
Succeeding data fields are entered in
any order. The input is terminated by
an EOB character.

COMBINATION INPUT

DFHBIF macros can be included in an
application program to permit a
combination of fixed, positional, and
keyword input. For example, the
following variations may be allowed.

• Complete input

INQR.lN=HUGHES.FN=JOHN/Q/096556 EOB
INQR.FN=JOHN.LN=HUGHES.MI=Q/096556 EOB
INQR/HUGHES/JOHN/Q 096556 EOB

• First name unknown

INQR.lN=HUGHES//Q/096S56 EOB
INQR/HUGHES//Q.ID=096556 EOB
INQR HUGHES//Q 096556 EOB

• First name and identification number
unknown

INQR.lN=HUGHES//Q EOB
INQR/HUGHES.MI=Q EOB
INQR HUGHES.MI=Q EOB

The application programmer can write a
program to handle free-format input
entered from a terminal. The
free-format input may be either
positional or keyword-oriented, or both,
and may be entered in combination with
fixed-format input. An example of
positional is:

INQR/HUGHES/JOHN/Q/096556 EOB

An example of keyword-oriented iSI

INQR.FN=JOHN.MI=Q.ID=096556.lN=HUGHES EOB

A task that issues DFHBIF macros to
provide input formatting must be
attached to a terminal.

270 CICS/VS Application Programmer's Reference Manual (Macro level)

storage Definition

As a first step in defining storage, the
programmer must copy the CICS control
section of the terminal input/output
area (TIDA) into his program.
Definitions of the fields for which
input data may be entered should follow
the definition of the CICS control
section. For example, the assembler
language programmer may write the
following code:

COPY DFHTIOA
TIOATI DS Cl4
TIOAlN DS CllS
TIOAFN DS Cl9
TIOAMI DS Cli
TIOAID DS Cl6

START OF TIOA
TRANS ID
lAST NAME
FIRST NAME
MIDDLE INITIAL
IDENTIFICATION

TIDADBA is the CICS-established name
representing the first byte of the
user's section of the TIOA for assembler
language only. Succeeding names are
application-programmer-selected
identifiers of the input fields. (The
copying of symbolic storage definitions
is described in Part 2.)

TYPE=DEFLDNM

The format of the DFHBIF macro that
defines keywords in free-format input is
as follows:

DFHBIF TYPE=DEFlDNM
,NAMES=(keyword[,keyword, ..•])
,lABEl=symb-addr

If this macro is used in a COBOL
program, it must appear in the working
storage section of the program. It must
appear with other data definitions in an
assembler language or Pl/I program.
This macro is not needed if only
free-format positional input is to be
handled by a program.

For example, a DFHBIF TYPE=DEFLDNM macro
defining keywords that the user can
enter to refer to fields of the TIOA in
the previous section, "Storage
Definition," is:

DFHBIF TYPE=DEFlDNM,
NAMES=(TI,LN,FN,MI,ID),
lABEl=DEFI

In this example, the keywords are formed
by taking the last two characters of the
TIOA field names. Use of similar names
within the DFHBIF macro and the TIOA
definition is wise programming practice,
but not a requirement. The following
macro is also acceptable.

DFHBIF TYPE=DEFlDNM,
NAMES=(TRAN,lAST,FIR,MID,IDEN),
LABEl=MYIN

In both of these examples, the first
keyword is a dummy name, because the
first field will contain the transaction
identi fication.· The keyword for this
field is provided to obtain the
correlation between the TIOA definition
and the macro, but would not appear in
the free-format input from the terminal.

Required Delimiters

When providing free-format
keyword-oriented input capabilities to
terminal users, the application
programmer, working with system
programmers, must define a field-name
start character and a field-separator
character for the system before
initialization. (See the appropriate
CICS Resource Definition manual for
details.)

TYPE=INFORMAT

The format of the DFHBIF macro that
specifies formatting of terminal input
is as foliowsl

DFHBIF TYPE=INFORMAT
,FIElDS=(symb-addr [,

symb-addr, ...])
[,NAMES={symb-addrIYES}]
[,lENGTH={symb-addrl

numeric value}]
[,ERROR=symb-addrl

Data entered as free-format input
(keyword or positional) is read into a
TIOA in the same manner as other data
entered from a terminal. CICS places
the address of the TIOA into TCTTEDA (as
it must be for a formatting operation).
To provide for the formatting of this
free-format input, a DFHBIF
TYPE=INFORMAT macro should be issued
immediately following the terminal
control (DFHTC) macro that causes data
to be moved into the TIOA to make sure
that the address of the TIOA containing
data to be formatted is in TCTTEDA.

This built-in function reformats data
from the input TIOA into a CICS-acquired
TIOA. Data is moved from the input TIOA
into locations in the output TIOA named
in the FIELDS operand. The length of
the data moved is the difference between
displacements of the field being
processed and the next field named in
the FIELDS operand. All data is treated
as alphanumeric, is left justified in
each output field, and is padded on the

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 271

right with blanks, or is truncated, as
necessary.

If, however, the form of input is
positional and an input data item is
longer than the internal field defined
for it, the data item is not truncated
unless it is for the last field.
Instead, a response code of 4 is set, as
described below, and the data is treated
as fixed-format input. (The reason for
this treatment is that mixed formats are
allowed, so it is impossible for the
built-in functions program to
distinguish between an intentional
fixed-format input for more than one
field and a positional input of
excessive length for a single field.)

The input TIOA supplied by the user is
released by the built-in function
program (DFHBFP). The address of the
fixed-format TIOA is returned in TCTTEDA
to the application program. The
application programmer should establish
addressability to this TIOA immediately,
just as for any TIOA used in the
program. (See the instructions for
copying symbolic storage definitions in
Part 2.)

If the DFHBIF TYPE=INFORMAT macro is
issued immediately following the read
instruction, the address of the TIOA
containing the data to be formatted will
be stored in TCTTEDA. If any
intervening macros are issued, the
application programmer is responsible
for saving and restoring the contents of
TCTTEDA. For COBOL, TIOABAR must be
loaded before a DFHBIF because the
expansion will contain "CALL DFHCBLI
USING fields."

Returned Values

The address of the fixed-format TIOA
containing the reformatted data is
available in TCTTEDA. This address must
be loaded into TIOABAR, the base
register for the area.

Certain error conditions may be detected
during execution of the DFHBIF
TYPE=INFORMAT macro. In such cases, an
error indication (response code) is
returned to the application program in
TCAINRC, a one-byte field. The error
conditions that may occur and the
response code for 'each are as follows:

Condition

No error

No FNS or FSI

Two FS charsz

Invalid name 3

No macro~

Length 5

Order. wrong 6

ASM COBOL PLI'I

X'OO' LOW-VALUES 00000000
(TCAINNOE)

X'20' 11-0-1-8-9 00100000
(TCAINALS)

X'Fl' 'I' 'I '
(TCAINERl)

X'F2' '2 ' '2'
(TCAINER2)

X'F3' , 3 ' '3'
(TCAINER3)

X'F4' , 4' '4'
(TCAINER4)

X'FS' , 5 ' '5'
(TCAINERS)

1 The input data does not contain
field name start (FNS) or field
separator (FS) characters. (Such data
may not be erroneous, if deliberately
entered in this manner.)

Z The input data contains two field
name start characters with no field
separator character between them.

3 The input data contains an invalid
name.

4 A field name is specified in the
input data, but no DFHBIF TYPE=DEFLDNM
macro is contained in the application
program.

5 The length of an input data field
exceeds the defined internal field size.

6 The subparameters of the FIELDS
operand are not specified in order of
ascending displacement within the TIOA.

The names enclosed in parentheses in the
COBOL column indicate the condition
names generated by CICS. These names
may be used in testing for the
conditions in a COBOL program.

For error conditions other than X'F4',
no reformatted data is returned; that
is, TCTTEDA does not contain the address
of a fixed-format TIOA containing the
reformatted data.

Application programmers and terminal
operators should be aware that if
fixed-format input is provided to an
application program designed to accept
free-format input, field overrun (X'F4')
errors are apt to occur.

272 CICS/VS Application Programmer's Reference Manual (Macro level)

Examples

Assume the TIOA definition and the first
DFHBIF TYPE=DEFlDNM macro above.
Further assume that the period has been
established as the field-name start
character and the equal sign and the
slash as field-separator characters.

The free-format positional input

INQR/HUGHES/JOHN/Q/096556 EOB

can be processed by issuing the
following macro:

DFHBIF TYPE=INFORMAT,
FIElDS=(TIOAIN,TIOAlN,TIOAFN,TIOAMI,

TIOAID)

The free-format keyword input

INQR.FN=JOHN.MI=Q.ID=096556.LN=HUGHES
EOB

can be processed by issuing the
following macro:

DFHBIF TYPE=INFORMAT,
FIElDS=(TIOAIN,TIOALN,TIOAFN,
TIOAMI,TIOAID),
NAMES=DEFI

A mixture of free-format positional and
keyword input can be handled by this
latter form of DFHBIF TYPE=INFORMAT
macro. For example,

INQR.LN=HUGHES//Q/096556 EOB

will be handled correctly.

WEIGHTED RETRIEVAL BUILT-IN FUNCTION

The weighted retrieval built-in function
allows the application programmer to
search a group of records in a VSAM key
sequenced data set, selecting only those
records that satisfy or are closest to
the selection criteria provided.

In general, a series of DFHBIF macros is
involved.

1. A DFHBIF TYPE=WTRETST macro
indicates the start of a weighted
retrieval operation.

2. One or more DFHBIF TYPE=WTRTPARM
macros provide the specifications to
be used by CICS in the weighted
retrieval process.

3. One or more DFHBIF TYPE=WTRETGET
macros retrieve one or more selected
records.

4. A DFHBIF TYPE=WTRETREL macro
releases the VSAM work area (VSWA)
and other main storage used for the
weighted retrieval process.

s. A DFHBIF TYPE=WTRETCHK macro
performs a check on the success of a
phase of the weighted ~etrieval
process.

Each of these macros is discussed more
fully below.

Each record with a specified partial key
(beginning with the first one, or with
the one having a specified relative
number) is examined to see whether
entries in certain other fields of the
record match the values specified for
those fields as selection criteria.
Matching may be on exact comparison or
within a given range.

Differentiating among individuals is one
example of an area in which weighted
retrieval processing is advantageous.
In federal and state governments, the
banking industry, and many other
application areas dealing with large
populations, name alone does not provide
unique identification. A number of
people may have the same name, so
additional identifying characteristics
are required. Such attributes as sex,
race, birth date, address, relatives,
and employment tend to permit unique
identification. A basic example showing
weighted retrieval on the basis of last
name, first initial, and mother's maiden
name is given later in this chapter.

Each comparison performed during
weighted retrieval causes a match value
to be added to a current total counter
maintained automatically by CICS. If
the comparison yields a match, the match
value is also added to a weighted
counter. If the compared fields do not
match, the no-match value is subtracted
from the weighted counter. Fields in
the search criteria or in a record being
examined that contain a predefined null
character may be ignored (not included
in the search) if desired.

When all fields to be considered in the
selection process have been examined, a
weighted qualification percentage (WQP)
is calculated for the record. If this
percentage is within the limits of
acceptability established in the
application program, the percentage and
complete key of the record are saved in
a key-save storage block.

After all records with the specified
partial key have been examined, the
saved keys are sorted into descending
percentage-value order. Under normal
processing, the records whose keys have
been saved are retrieved one at a time
and made available to the application
program in order of decreasing
acceptability. A further judgment ~s to
acceptability or verification of
identifiers is then made by the
application program, which may involve
the terminal operator in the final
selection.

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 273

If the number of saved keys exceeds a
maximum established in the application
program (say, n), all keys having a
weighted qualification percentage (WQP)
equal to or lower than that of the
"n+l"th key are dropped. If this
dropping causes less than the
application program-specified maximum
number of keys to be saved but some keys
are saved (as in Figure 28), no
indication is given to the application
program. However, if all percentages
are the same so that all keys are
dropped thereby, control is passed to an
overflow routine (if one is specified in
the application program). If the amount
of storage required for saved keys
exceeds the amount of storage available
for keys, an overflow also occurs, and
the application program is notified. An
alternative, lower maximum can be
established by the application program.
The maximum number of records that can
be retrieved is restricted by the
maximum size of a key-save block (64K).
This maximum is calculated as storage
size divided by saved key length plus
one.

Notes:

1. Because of the potential effect of
weighted retrieval operations on
system performance, this function
should not be used indiscriminately.
The amount of file accessing and the
use of main storage should be taken
into account.

2. The computations applied by CICS in
weighted retrieval processing can be
expressed as follows:

Let MV=match value
NMV=no-match value

a. The weighted counter (WC), which
holds the sum of all match
values that had a match minus
the sum of all no-match values
that had no match, is given by:

WC=(MV+MV+ ... +MV)­
(NMV+NMV+ ..• +NMV)

b. The sum of all match values
specified in WTRTPARM macros for
the weighted retrieval
operation; the potential count
(PC) is given by:

PC=MV+MV+ •.. +MV

c. The sum of all match values
generated by the record
comparisons (excludes those
comparisons bypassed because the
null character is present); the
current total counter (CTC) is
given by:

CTC=MV+MV+ ... +MV n~k

d. The weighted potential (WP) is
given by:

WP=PC+CTC
2

e. The weighted qualification
percentage (WQP) is given by.

WQP=WC
WP

An overall effect of this method of
computation is to provide a minimum
weighting penalty for records having
absent fields but yet prevent them from
being chosen in preference to records
that have all identifiers present.

INITIATE WEIGHTED RETRIEVAL
(TYPE=WTRETSTl

The format of the DFHBIF macro to
indicate the start of a weighted
retrieval operation is as follows:

DFHBIF TYPE=WTRETST
[,DATASET=symb-namel
[,RDIDADR=symb-addrl
[,INPUTNO={symb-addrl

numeric valuelYES}l
[,INPUTST={symb-addrl

numeric valueIYES}]
[,INPUTPC=([suboperandl]

[,suboperand2])]
[,NRECDS={symb-addrl

numeric valueIYES}]
[,NORESP=symb-addrl
[,DSIDER=symb-addrl
[,NOTOPEN=symb-addrl
[,NOTFND=symb-addrl
[,INVREQ=symb-addrl
[,IOERROR=symb-addrl
[,OFLOW=symb-addrl
[,ILLOGIC=symb-addrl

Returned Values

The address of a VSAM work area (VSWA)
to be used by weighted retrieval
throughout this series of weighted
retrieval operations is returned in
TCAWRAA, a four-byte field. Since any
CICS macro issued within the application
program may cause the contents of
TCAWRAA to be changed, the application
programmer should save this address. It
must be restored in TCAWRAA prior to any
subsequent DFHBIF macro included in this
series of weighted retrieval operations.
A response code indicating how CICS has
responded to this request is returned in
TCAWTRC, a one-byte field (see "Test
Response to a Request for Weighted
Retrieval," later in this chapter).

274 CICS/VS Application Programmer's Reference Manual (Macro Level)

Keys of records
evaluated by
Weighted Retrieval

< __________________________________ ~I------------------------~--------->

N I
I,N+l
V V !

WQP of these
WQP of these records is records WQP of these records is

greater than that (including N) is less than that
of N+l equal to that of of N+l

N+l

0 10 20 30 40 50 60 70 80 90

< I >< ----------------------~-----------------------> I
Keys of records made Keys dropped
available to
applicationl program

Figure 28. Selection of Records by Weighted Retrieval

ESTABLISH SELECTION CRITERIA
(TYPE=WTRTPARMl

The format of the DFHBIF macro to pass
selection criteria to CICS is as
follows:

DFHBIF TYPE=WTRTPARM
[,FIELDl=([symb-addr][,

numeric value][,char])]
[,FIElD2=([symb-addrl][,

symb-addr2)]
[,NULL={symb-addrlcharacter

valueIYES}]
[,MATCH={symb-addrl

numeric value}]
[,NOMATCH={symb-addrl

numeric value}]
[,RANGE=(suboperandl,

suboperand2[,suboperand31)]

One of these macros must be coded for
each field that is to be examined during
the selection process. Match and
no-match values are established
separately for each field. Then, during
weighted retrieval processing, the
applicable match and no-match values for
examined fields of a record are used to
determine a weighted qualification
percentage for the record.

RETRIEVE SELECTED RECORDS
(TYPE=WTRETGETl

The format of the DFHBIF macro to
retrieve a record that has been saved by
the weighted retrieval built-in function
is as follows:

DFHBIF TYPE=WTRETGET
[,NORESP=symb-addrl
[,ENDFIlE=symb-addrl
[,NOTOPEN=symb-addr]
[,NOTFND=symb-addr]
[,INVREQ=symb-addr]
[,IOERROR=symb-addr]
[,OFlON=symb-addrl
[,ILLOGIC=symb-addr]

This macro specifies that next record
saved by weighted retrieval (as ordered
according to decreasing weighted
qualification percentage) is to be
retrieved.

Before this macro is executed, TCAWRAA
must contain the address of the VSAM
work area (VSWA) used in this series of
weighted retrieval operations.

Returned Values

A record saved as the result of weighted
retrieval is returned to the application
program. The address of this record is
contained in VSWAREA within the VSWA
provided by the WTRETST macro. The
length of the record is returned in
VSWAlEN.

Chapter 6.3. eICS Built-In Functions (DFHBIF Macro) 275

In addition, the contents of several
halfword fields are significant.
TCAWGHI contains the highest percentage
of acceptability for this weighted
retrieval operation, TCAWGH2 contains
the lowest percentage of acceptability
for this weighted retrieval operation,
TCAWGH3 contains the percentage of
acceptability of this record, and
TCAWGH4 contains the number of records
left to be presented to the user. After
the first DFHBIF TYPE=WTRETGET macro,
TCAWGH5 contains a count of any records
dropped to remain within the maximum
specified in the NRECDS operand of the
WTRETST macro. On succeeding WTRETGETs l
TCAWGH5 contains zero. The full key of
the returned record is returned at the
location specified in the RDIDADR
operand of the DFHBIF TYPE=WTRETST macro
initiating this weighted retrieval
operation.

TCABFTR, a one-byte field, contains the
response code that describes the CICS
response to this DFHBIF TYPE=WTRETGET
macro. This response code can be
interrogated as described under "Test
Response to a Request for Weighted
Retrieval," below.

RELEASE WEIGHTED RETRIEVAL STORAGE AREAS
(TYPE=WTRETRELl

The format of the DFHBIF macro to
specify that the VSWA established when
the DFHBIF TYPE=WTRETST macro is issued
and the main storage used for saving the
records is released is as follows!

DFHBIF TYPE=WTRETREl
[,NORESP=symb-addrl
[,INVREQ=symb-addrl
[,IllOGIC=symb-addrl

TEST RESPONSE TO A REQUEST FOR WEIGHTED
RETRIEVAL (TVPE=WTRETCHKl

The general format of the DFHBIF
TYPE=WTRETCHK macro is as follows!

DFHBIF TYPE=WTRETCHK
[,NORESP=symb-addrl
[,DSIDER=symb-addrl
[,NOTOPEN=symb-addrl
[,NOTFND=symb-addrl
[,INVREQ=symb-addrl
[,ENDFIlE=symb~addr]
[,IOERROR=symb-addrl
[,OFlOW=symb-addrl
[,IllOGIC=symb-addrl

WEIGHTED RETRIEVAL RESPONSE CODES

The response codes and their
corresponding conditions are as follows!

Condition ASH COBOL PL/I

NORESP X'OO' lOW-VALUES 00000000

DSIDER X'Cl' 'A' 'A'

NOTOPEN X'C2' 'B' 'B'
NOTFND X'CS' 'H' 'H'

ENDFIlE X'C4' '0' 'D'

INVREQI X'C3' 'C' 'C'

IOERROR X'CS' 'E' 'E'

OFlOW2 X'C6' 'F' 'F'

IllOGICa X'C7' 'G' 'G'

Notes:

1. If the data set is not a VSAM filel
the field TCAWRAA is set to zero.
CICS file control handles other
errors of this typel in which casel
TCAWRAA contains the address of the
FCT entry for the data set.

2. For WTRETST, this response indicates
that the system-defined maximum
storage GETMAIN (64K) is
insufficient to hold all retrieved
record keys and these record keys
and these records have the same
percentage of acceptability. In
this case, the terminal operator
must specify a relative record
number (the relative position of the
first record to be retrieved among
the retrieval records) and a number
of records (NRECDS) to be presented.
For WTRETGET, this response means
that no records were returned
because all had identical
percentages of match and not all
could be returned because of the
limit specified in NRECDS.

3. This response indicates that a VSAM
error that does not fall into one of
the above categories has occurred.
The VSWA contains the VSAM request
parameter list that contains the
VSAM logical error.

If checking for a response to a weighted
retrieval macro is not provided, and if
the condition corresponding to that
response occurs, program flow proceeds
to the instruction following the
weighted retrieval macro in the
application program.

276 CICS/VS Application Programmer's Reference Manual (Macro level)

Example holds individual records retrieved from
the file.

The following example shows the use of
weighted retrieval on the basis of last
name, first initial, and mother's maiden
name.

The file is to be searched to retrieve
up to 100 records that satisfy (or come
closest to satisfying) the criteria:

Assume that, for purposes of state
welfare applications, a VSAM file
labeled SRCHFILE is maintained on disk.
SRCHRECD is an area of storage that

•
•

last name = SMITH

First initial = J

• Mother's name = MARY.

Example of Weighted Retrieval

lNAME
FINIT
MOM

COPY DFHTCADS
DS Cll8
DS Cli
DS Cl7
DFHBFTCA OPTION=WTRET

SRCHRECD DSECT

lAST
FIRST
MOTHER

USING JE,RCDBASE
DS Cll8
DS Cll
DS Cl7

.
DFHBIF TYPE=WTRETST,DATASET=SRCHFIlE,RDIDADR=KEYFlD, JE

INPUTNO=100,INPUTST=10,INPUTPC=(IOO,80),NRECDS=SO, *
NORESP=STARTOK

(Error processing)

STARTOK DS OH
l VSWABAR,TCAWRAA
DFHBIF TYPE=WTRTPARM,FIElDI=(lNAME,18,C),

FIElD2=(SRCHRECD,lAST),MATCH=SO
DFHBIF TYPE=WTRTPARM,FIElDI=(FINIT,l,C),

FIElD2=(SRCHRECD,FIRST),MATCH=30
DFHBIF TYPE=WTRTPARM,FIElDl=(MOM,7,C),

FIElD2=(SRCHRECD,MOTHER),MATCH=20
WRGET DS OH

GETOK

ST VSWABAR,TCAWRAA
DFHBIF TYPE=WTRETGET,NORESP=GETOK,ENDFIlE=ENDPROC

(Error processing)

DS
l

OH
RCDBASE,VSWAREA GET ADDRESSABIlITY TO RECORD

(On first WTRETGET, check if too many records have been skipped
enough records returned, acceptable range of X returned, and
the like.)

B WRGET PROCESS RETRIEVED RECORD

ENDPROC DS OH

ST VSWABAR,TCAWRAA
DFHBIF TYPE=WRETREL

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 277

OPERANDS OF DFHBIF MACRO

ALPHA=symb-addr
is the address to which control is
to be passed if the field consists
entirely of alphabetic characters
(A through Z) and/or blanks.

ARG=symb-addr
is the symbolic address of the
field that contains the search
argument; if omitted, the address
is assumed to be in TCATSAI, a
fullword field.

ATABLE=
is a description of the table to be
searched (the argument table).

symb-addrl
is the address of the first
entry in the argument table;
if omitted, the address is
assumed to be in TCATSA2, a
fullword field.

symb-addr2 or YES
is the address of the field in
the first entry of the
argument table to be compared
with the search argument. If
YES is specified, the field
address is assumed to be in
TCATSA4, a fullword field. If
this operand entry is omitted,
symbolic address2 is assumed
to be the same as symbolic
address!. If specified, the
address represented by
symbolic address2 must be
equal to or greater than the
address represented by
symbolic addressl. If it is
not, bit 4 of TCATSRC is set
on and no search is made.

numeric valuel
is the length of each entry in
the argument table (including
any other fields in the entry
or· slack bytes required for
boundary alignment). A value
in the range from I through
32767 may be specified. If
this operand entry is omitted,
the length is assumed to be in
TCATSH2, a halfword field.

numeric value2 or YES
is the length of the field in
the argument table to be
compared with the search
argument. If YES is
specified, the length is
assumed to be in TCATSAF, a
one-byte field.' If this
operand entry is omitted,
numeric value2 is assumed to
be the same as numeric valuel.
If.specified, the value must
be between I and 255
inclusive. If numeric valuel
is not within this range,

BIT=

numeric value2 must be
specified.

numeric value3
is the maximum number of
entries to be searched. A
value in the range from I
through 32767 may be
specified. If this operand
entry is omitted, the numeric
value is assumed to be in
TCATSHl, a halfword field.

If one or more of these operand
entries are omitted, but other
operand entries follow, the comma
that ordinarilY follows an omitted
entry must be included in the
operand.

specifies the bit pattern (mask) to
be applied to the specified byte.

symb-addr

value

is the address of a byte that
contains the bit pattern.

is a single EBCDIC character
enclosed in single quotation
marks.

If this operand is omitted, the bit
pattern is assumed to be in
TCABITV, a one-byte field.

BITOFF=symb-addr
is the symbolic address to which
control is transferred if:

• For BITSETON, BITSETOFF, or
BITFLIP:

All bits in the specified byte
are off after the operation is
completed.

• For BITEST:

All bits that are on in the bit
pattern are off in the field
that is tested.

BITON=symb-addr
is the symbolic address to which
control is transferred if:

• For BITSETON, BITSETOFF, or
BITFLIP:

All bits in the specified byte
are on after the operation is
completed.

• For BITEST:

All bits that are on in the bit
pattern are on in the field
that is tested.

DATASET=symbolic name
is the one- to eight-character
identification of the VSAM data set

278 CICS/VS Application Programmer's Reference Manual (Macro Level)

from which the retrieval is to be
made; if omitted, the data set
identifier is assumed to be in
TCAWTDI, an eight-byte field,.

DSIDER=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if the data
set specified by the DATASET
operand cannot be located. DSIDER
signifies "data set identification
error."

ENDFILE=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
end-of-file condition is detected.

ERROR=symb-addr
is the address to which control is
to be passed if an error occurs.
This branch is taken, for example,
if the address specified for the
function field to be examined is
lower than the address specified
for the first function table entry.

FIELD=symb-addr
is the symbolic address of the byte
or field to be processed; if
omitted, the address is assumed to
be in the fullword field TCACKFD
(for TYPE=FVERIFY), TCAFLD (for
TYPE=DEEDIT), or TCABITF (for
TYPE=BITSETON). However, for
TYPE=PHONETIC, the data is assumed
to be in TCANAME.

FIELDs=(symb-addr[,symb-addr, •••]1
are the labels of fields defined
within the internal fixed-format
TIOA to which the input data is to
be transferred. The fields must be
named in order of increasing
displacement from the start of the
TIOA, and there must be a
one-to-one correspondence between
the field names in this macro and
the fields in the TIOA. The length
of each field is determined by
calculations based on the location
represented by the symbolic address
of the following field. Each field
should be at least one byte in
length. For positional input, each
field for which data may be entered
(that is, each position in the
receiving area of storage) must be
defined.'

FIELD1=
specifies the characteristics of
the search field to be compared
against a corresponding field in
records of the data set on which
the weighted retrieval function is
to operate.

symb-addr
is the symbolic address of the
field. If omitted, the
address of the field is

assumed to be in TCAWPAI, a
four-byte field.

numeric value

char

is the length of the field in
bytes and may range from I to
32767. If omitted, the length
of the field is assumed to be
in TCAWPHl, a halfword field.

is one character indicating
the format of the data in the
field as follows:

Char Data Format

C EBCDIC characters
Z Zoned decimal numbers
P Packed decimal numbers
H Halfword binary
F Fullword binary

If this parameter'is omitted,
the character is assumed to be
in TCAWPBI, a one-byte field.

If one of these operand entries is
omitted but succeeding operand
entries follow, the comma that
otherwise follows the entry must be
included in the operand.

Notes:

1. The application programmer must
ensure that the integrity of
FIELDI is not destroyed prior
to the first DFHBIF
TYPE=WTRETGET macro. These
values are used by the built-in
functions program (DFHBFP) at
that time. In particular, it
is not advisable to utilize an
area within a TIOA for this
value.

2. The largest decimal number that
can be contained in a zoned
decimal (Z) or packed decimal
(P) field cannot exceed 16
digits, including the sign.

FIELD2=
specifies the location of the data
in the field of each record of the
data set involved in the comparison
with the search data in FIELDI.

symb-addrl
is the symbolic address
(label) of the first byte of
the storage area that will
contain the record to be
examined. If omitted, the
address of the main storage
area is assumed to be in
TCAWPA3, a four-byte field.

symb-addr2
is the symbolic address
(label) of the field within
the storage area identified by
symbolic addressl to be used

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 279

in the weighted retrieval
comparison. If omitted, the
address of the field is
assumed to be in TCAWPA4, a
four-byte field.

If the first operand entry is
omitted but the second is
specified, the comma that otherwise
follows the first entry must be
included in the operand.

FTABLE=
is a description of the table from
which a value is to be retrieved
(the function table). If no
function value is to be retrieved'
(for example, if only the index of
a matching argument table entry is
needed), this operand can be
omitted. If this operand is
specified, but some entries are
omitted, the values of the
corresponding entries in the ATABlE
operand are assumed to apply.

If a complex table (where each
table entry contains both an
argument and a function value) is
being searched, the argument table
and function table, as defined for
this macro, are actuallY within the
same table in storage.
Alternatively, two separate tables,
one containing search fields and
one containing function values, may
be used.

symb-addrl or YES
is the address of the first
function table entry. If YES
is specified, the address is
assumed to be in TCATSA3, a
fullword field.

symb-addr2 or YES
is the address of the function
field within the first
function table entry. If YES
is specified, the address is
assumed to be in TCATSA5, a
fullword field. This address
must be equal to or greater
than symbolic addressl. If it
is not, bit 5 of TCATSRPC is
set on and no search is made.

numeric valuel or YES
is the length of each entry in
the function table (including
any other fields in the entry
or slack bytes required for
boundary alignment). A value
in the range from 1 through
32767 may be specified. If
YES is specified, the value is
assumed to be in TCATSH3, a
halfword field.

numeric value2 or YES
is the length of the field to
be retrieved from the function
table. If YES is specified,
the length is assumed to be in

TCATSFF, a one-byte field.
The length must be between 1
and 255 inclusive. If this
operand is omitted, the
default is the corresponding
entry in the ATABlE, or its
default if the corresponding
entry is not specified in the
ATABlE. The default for this
operand is not numeric valuel
above.

ILLOGIC=symb-addr
specifies the entry label of
the user-written routine to
which control is to be passed
if a VSAM error that does not
fall within one of the other
CICS response categories
occurs.

INDEX=symb-addr
specifies the address of a halfword
field in which an index value
relative to one, identifying the
matching argument-table entry, is
to be returned to the application
program. In addition, the index
value is placed in TCATSH4, a
halfword field, whether or not the
INDEX operand is specified. Both
fields contain zero if no matching
entry is found.

INPUTNO=
specifies the maximum number of
records that can be examined. A
value from I to 32767 may be
specified.

symb-addr
is the address of a halfword
field that contains the
maximum number of records that
can be examined.

numeric value

YES

is a decimal numeral
indicating the maximum number
of records that can be
examined.

indicates that the maximum
number of records to be
examined has been placed in
TCAWTHl, a halfword field.

If this operand is omitted, a
default value of 512 is placed in
TCAWTHI.

INPUTPC=
specifies the percentages to be
used by the weighted retrieval
built-in function to determine the
limits of acceptability.

suboperandl
specifies the maximum
percentage, a value from 0 to
100; this value can be
indicated by the symbolic
address of a halfword field

280 CICS/VS Application Programmer's Reference Manual (Macro level)

containing the maximum value,
a decimal numeral, or YES,
which indicates that the value
has been placed in TCAWTH3.
If omitted, the maximum
percentage is assumed to be
100.

suboperand2
specifies the minimum
percentage, a value from 0 to
100i this value can be
indicated by the symbolic
address of a halfword field
containing the minimum value,
a decimal numeral, or YES,
which indicates that the value
has been placed in TCAWTH4.
If omitted, the minimum
percentage is assumed to be O.

If the first suboperand is omitted,
but the second is specified, the
comma that otherwise follows the
first suboperand must be included.
If only one suboperand is given, it
is assumed to be the first
suboperand (the maximum percentage,
100).

INPUTST=
indicates the number of records
with the specified partial key to
be skipped before examination of
records begins. The maximum value
that can be specified is 32767.

symb-addr
is the address of a halfword
field that contains the
relative number of the record
that is to be examined first.

numeric value

YES

is a decimal numeral
indicating the relative number
of the record that is to be
examined first.

indicates that the relative
number of the desired record
has been placed in TCAWTH2, a
halfword field.

If this operand is omitted, a
default value of 0 is placed in
TCAWTH2. The weighted retrieval
begins with the first record having
the specified partial key.

INVREQ=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
invalid type of request is
received.

IOERROR=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
input/output error occurs.

LABEL=symb-addr
is the label to be assigned to the
list of keywords. This label must
be unique within the application
program and may be from one to
eight characters in length.

LENGTH=
specifie~ the length of the field
to be processed or the size of the
TIOA to be acquired.

symb-addr
is the address of a halfword
field that contains the length
value.

numeric value
is the length, in bytes, of
the field to be processed, or.
the area to be acquired for
the TIOA.

The maximum length of a field
is 32767 bytes. The length of
the TIOA must be sufficient to
accommodate all fields
specified in the FIELDS
operand.

If this operand is omitted, the
length is assumed to be in the
halfword field TCACKLN «for
TYPE=FVERIFY), TCAFLN (for
TYPE=DEEDIT), or in TCAINHI (for
TYPE=INFORMAT).

MATCH=
specifies a value to be added to
the current total counter if the
comparison is performed and to the
weighted counter if the compared
fields are equal. The value may
range from -32768 through +32767.

symb-addr
is the symbolic address of a
halfword field containing the
value.

numeric value
is a decimal numeral in the
range stated above.

If this parameter is omitted, the
value is assumed to be in TCAWPH2.

Note: All match and no-match
values specified for a weighted
retrieval operation must have like
signs.

NAMES=
indicates that field names may be
present as keywords in the input
data stream.

symb-addr
is the LABEL parameter
specified in a DFHBIF
TYPE=DEFLDNM macro in which
the keywords that may be
specified are defined.

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 281

YES
indicates that the label
specified in the DFHBIF
TYPE=DEFLDNM macro defining
the field names is in TCAINA2,
a fullword field.

(keywordE,keyword, •••])

NOMATCH=

is a list of the keyWords that
may be entered by the terminal
user to indicate which fields
are to receive input data.
Each keyWord may be from one
to four characters in length.
Any combination of alphabetic,
numeric, and/or special
characters may be specified.
The keyWords must be specified
in the order in which the
corresponding fields that will
hold the data are defined in
the fixed-format TIOA.

specifies a value to be used during
weighted retrieval, or the address
to which control is to be passed if
matching is unsuccessful.

symb-addr
is the symbolic address of a
halfword field containing the
value to be subtracted from
the weighted counter if the
compared fields are not equal,
or it is the address to which
control is to be passed if no
table entry matching the
search argument is found.

numeric value
is a decimal numeral in the
range -32768 through +32767.

If this parameter is omitted, the
value is assumed to be in TCAWPH3.

Note: All match and no-match
values specified for a weighted
retrieval operation must have like
signs.

If this operand is specified, the
SUBST operand cannot be specified.

NORESP=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if no error
occurs. NORESP signifies "normal
response."

NOTFND=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
attempt at weighted retrieval is
unsuccessful. NOTFND signifies
"record not found."

NOTOPEN-symb-addr
specifies the entry label of the
user-written routine to which

control is to be passed if the
requested data set is not open.

NRECDS=

NULL=

indicates the maximum number of
records to be made available to the
application program. A value from
I to 32767 can be specified.

symb-add~
is the address of a halfword
field that contains the
maximum number of records.

numeric value

YES

is a decimal numeral
indicating the maximum number
of records.

indicates that the maximum
number has been placed in
TCAWGCNT, a halfword field.

If this operand is omitted, a
default value of 200 is assumed.

specifies a one-byte "null
character" which, if present in
either FIELDI or FIELD2, indicates
that no comparison is to be
performed.

symb-addr
is the symbolic address of a
one-byte field containing the
null character.

character value

YES

is a single EBCDIC character
within single quotation marks.

indicates that the null
character has been placed in
TCAWPNL, a one-byte field.

The null character cannot be a
binary zero (that is, X'OO');
such a specification is
ignored.

NUMERIC=symb-addr
is the address to which control is
to be passed if the field consists
entirely of EBCDIC numbers (X'FO'
through X'F9') with an optional
trailing minus sign or ·CR'.

OFLOW=symb-addr
specifies the entry label of the
user-written routine to which
control is to be passed if an
overflow condition occurs.

ORDER=
describes the sequence used in
ordering the entries of the
argument table and is optional if
RANGE is not specified. The
sequence must be EBCDIC; packed,
fullword and halfword binary, and
floating-point tables cannot be

282 CICS/VS Application Programmer's Reference Manual (Macro level)

searched. When this parameter is
specified, a quick binary search is
used (rather than a sequential
search) .

ASCENDING
indicates that table entries
are organized in ascending
order according to the entries
in the field to be compared
with the search argument.

DESCENDING
indicates that table entries
are organized in descending
order according to the entries
in the field to be compared
with the search argument.

In either case, the field values
are interpreted as EBCDIC
representations. If this operand
is not specified, the argument
table is assumed to be unordered
and is searched sequentially,
starting at the last entry of the
table.

PACKED=symb-add~
is the address to which control is
to be passed if the field consists
entirely of packed decimal
characters, that is, of half-bytes
with hexadecimal values in the
range 0 through 9, except for the
rightmost half-byte, which must
contain a hexadecimal value in the
range A through F.

RANGE=VES
is an optional operand indicating
that, if no field compared with the
search argument is an exact match,
an existing table entry that would
be adjacent to such an entry is to
be taken as the function value.
When this operand is specified,
ORDER must be specified; otherwise,
a sequential search of the table is
made, starting at the last entry.

RANGE=
indicates that the compared fields
are to be considered equal if
FIELD2 falls within a given range
of FIELDI.

subope~andl
specifies the type of range
used in the comparison. This
entry can be a single
character or YES, which
indicates that the single
character specifying type has
been placed in TCAWPTR. The
valid characters are as
follows:

Cha~

P
U
V

Type of Range

Percentage
Units
Value

suboperand2
specifies the upper limit,
exceeding the value in FIELDl,
whi ch is to be c'onsi dered a
match. This entry can be a
positive numeric value up to
32767 or YES, which indicates
that the upper limit has been
placed in TCAWPH4.

suboperand3
specifies the lower limit,
below the value in FIELDl,
which is to be considered a
match. This entry can be a
positive numeric value up to
32767 or YES, which indicates
that the lower limit has been
placed in TCAWPH5.

If suboperand3 is omitted,
suboperand2 is assumed to apply
both above and below the value in
FIELDl. For example, if the value
in FIELDI is 165 and RANGE=(U,5) is
specified, then any value from 160
through 170 is considered a match.
If RANGE=(U,5,10) is specified,
then any value between 155 and 170
is considered a match. If
RANGE=(P,20) is specified, then any
value between 132 and 198
{165*(1±20U)}is acceptable. If
RANGE=(V,190,160), then any value
between 160 and 190 is acceptable.
If the data field contains EBCDIC
characters (that is, C is specified
in the FIELDI operand), the RANGE
operand is ignored.

Note: The upper bound and lower
bound values are computed using the
following formulas (where K is the
value of FIELDl):

1. For P-type range, specified
(P,X,y) or (P,x):

UB=K*(I+x/l00) UB=K*(I+x/lOO)
or

LB=K*(1-y/100) LB=K*(1-x/100)

2. For U-type range, specified
(U,X,y) or (U,X):

UB=K+x UB=K+x
or

LB=K-y LB=K-x

3. For V-type range, specified
(V,X,y):

UB=x

LB=y

RDIDADR=symb-addr
is the symbolic address of the
record identification field that
contains the partial key of the
record at which the data set is to
be positioned prior to the
retrieval process; if omitted, the
address is assumed to be in

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 283

TCAWTRI, a fullword field. (The
format of the record identification
field for a VSAM data set is
described under "Record
Identification Field" in "Chapter
3.1. Introduction to Files and Data
Bases" on page 49.)

SUBST=
specifies a value to be stored in
TARGET if no entry matching the
search argument is found in the
argument table.

symb-addr
is the address of a field that
contains the value to be
stored.

'literal value'
is the value to be stored;
single quotation marks must
enclose the value in this
specification but are not
stored as part of the data.

If this operand is specified, the
TARGET operand must be specified,
and the NOMATCH operand cannot be
specified.

TARGET=symb-addr
is the symbolic address of the
field in which the built-in
function value is to be returned to
the application program. The
address of the function value is
placed in TCATSA5, a fullword
field, regardless of whether TARGET
is specified.

ALPHA=symb-addr
is the address to which control is
to be passed if the field consists
entirely of alphabetic characters
(A through Z) and/or blanks.

ARG=symb-addr
is the symbolic address of the
field that contains the search
argument; if omitted, the address
is assumed to be in TCATSAI, a
fullword field.

ATABLE=
is a description of the table to be
searched (the argument table).

symb-addrl
is the address of the first
entry in the argument table;
if omitted, the address is
assumed to be in TCATSA2, a
fullword field.

symb-addr2 Dr YES
is the address of the field in
the first entry of the
argument table to be compared
with the search argument. If
YES is specified, the field
address is assumed to be in
TCATSA4, a fullword field. If
this operand entry is omitted,

BIT=

symbolic address2 is assumed
to be the same as symbolic
addressl. If specified, the
address represented by
symbolic address2 must be
equal to or greater than the
address represented by
symbolic addressl. If it is
not, bit 4 of TCATSRC is set
on and no search is made.

numeric valuel
is the length of each entry in
the argument table (including
any other fields in the entry
or slack bytes required for
boundary alignment). A value
in the range from I through
32767 may be specified. If
this operand entry is omitted,
the length is assumed to be in
TCATSH2, a halfword field.

numeric value2 Dr YES
is the length of the field in
the argument table to be
compared with the search
argument. If YES is
specified, the length is
assumed to be in TCATSAF, a
one-byte field. If this
operand entry is omitted,
numeric value2 is assumed to
be the same as numeric valuel.
If specified, the value must
be between I and 255
inclusive. If numeric valuel
is not within this range,
numeric value2 must be
specified.

numeric value3
is the maximum number of
entries to be searched. A
value in the range from I
through 32767 may be
specified. If this operand
entry is omitted, the numeric
value is assumed to be in
TCATSHI, a halfword field.

If one or more of these operand
entries are omitted, but other
operand entries follow, the comma
that ordinarily follows an omitted
entry must be included in the
operand.

specifies the bit pattern (mask) to
be applied to the specified byte.

symb-addr

value

is the address of a byte that
contains the bit pattern.

is a single EBCDIC character
enclosed in single quotation
marks.

If this operand is omitted, the bit
pattern is assumed to be in
TCABITV, a one-byte field.

284 CICS/VS Application Programmer's Reference Manual (Macro level)

BITOFF=symb-addr
is the symbolic address to which
control is transferred if:

•

•

For BITSETON, BITSETOFF, or
BITFlIP,

All bits in the specified byte
are off after the operation is
completed.

For BITEST,

All bits that are on in the bit
pattern are off in the field
that is tested.

BITON=symb-addr
is the symbolic address to which
control is transferred if:

• For BITSETON, BITSETOFF, or
BITFlIP,

All bits in the specified byte
are on after the operation is
completed.

• For BITESTz

All bits that are on in the bit
pattern are on in the field
that is tested.

ERROR=symb-addr
is the address to which control is
to be passed if an error occurs.
This branch is taken, for example,
if the address specified for the
function field to be examined is
lower than the address specified
for the first function table entry.

FIELD=symb-addr
is the symbolic address of the byte
or field to be processed; if
omitted, the address is assumed to
be in the fullword field TCACKFD
(for TYPE=FVERIFY), TCAFlD (for
TYPE=DEEDIT), or TCABITF (for
TYPE=BITSETON). However, for
TYPE=PHONETIC, the data is assumed
to be in TCANAME.

FIELDS=(symb-addr[,symb-addr, •••]l
are the labels of fields defined
within the internal fixed-format
TIOA to which the input data is to
be transferred. The fields must be
named in order of increasing
displacement from the start of the
TIOA, and there must be a
one-to-one correspondence between
the field names in this macro and
the fields in the TIOA. The length
of each field is determined by
calculations based on the location
represented by the symbolic address
of the following field. Each field
should be at least one byte in
length. For positional input, each
field for which data may be entered
(that is, each position in the

receiving area of storage) must be
defined.

FTABLE=
is a description of the table from
which a value is to be retrieved
(the function table). If no
function value is to be retrieved
(for example, if only the index of
a matching argument table entry is
needed), this operand can be
omitted. If this operand is
specified, but some entries are
omitted, the values of the
corresponding entries in the ATABlE
operand are assumed to apply.

If a complex table (where each
table entry contains both an
argument and a function value) is
being searched, the argument table
and function table, as defined for
this macro, are actually within the
same table in storage.
Alternatively, two separate tables,
one containing search fields and
one containing function values, may
be used.

symb-addrl or YES
is the address of the first
function table entry. If YES
is specified, the address is
assumed to be in TCATSA3, a
fullword field.

symb-addr2 or YES
is the address of the function
field within the first
function table entry. If YES
is specified, the address is
assumed to be in TCATSA5, a
fullword field. This address
must be equal to or greater
than symbolic addressl. If it
is not, bit 5 of TCATSRPC is
set on and no search is made.

numeric valuel or YES
is the length of each entry in
the function table (including
any other fields in the entry
or slack bytes required for
boundary alignment). A value
in the range from 1 through
32767 may be specified. If
YES is specified, the value is
assumed to be in TCATSH3, a
halfword field.

numeric value2 or YES
is the length of the field to
be retrieved from the function
table. If YES is specified,
the length is assumed to be in
TCATSFF, a one-byte field.
The length must be between 1
and 255 inclusive. If this
operand is omitted, the
default is the corresponding
entry in the ATABlE, or its
default if the corresponding
entry is not specified in the
ATABlE. The default for this

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 285

operand is not numeric valuel
above.

ILLOGIc=symb-addr
specifies the entry label of
the user-written routine to
which control is to be passed
if a VSAM error that does not
fall within one of the other
CICS response categories
occurs.

INDEX=symb-addr
specifies the address of a halfword
field in which an index value
relative to one, identifying the
matching argument-table entry, is
to be returned to the application
program. In addition, the index
value is placed in TCATSH4, a
halfword field, whether or not the
INDEX operand is specified. Both
fields contain zero if no matching
entry is found.

LABEL=symb-addr
is the label to be assigned to the
list of keywords. This label must
be unique within the application
program and may be from one to
eight characters in length.

LENGTH=
specifies the length of the field
to be processed or the size of the
TIOA to be acquired.

symb-addr
is the address of a halfword
field that contains the length
value.

numeric value
is the length, in bytes, of
the field to be processed, or
the area to be acquired for
the TIOA.

The maximum length of a field
is 32767 bytes. The length of
the TIOA must be sufficient to
accommodate all fields
specified in the FIELDS
operand.

If this operand is omitted, the
length is assumed to be in the
halfword field TCACKLN (Cfor
TYPE=FVERIFY), TCAFLN (for
TYPE=DEEDIT), or in TCAINHI (for
TYPE=INFORMAT).

NAMES=
indicates that field names may be
present as keyWords in the input
data stream.

symb-addr
is the LABEL parameter
specified in a DFHBIF
TYPE=DEFLDNM macro in which
the keyWords that may be
specified are defined.

YES
indicates that the label
specified in the DFHBIF
TYPE=DEFLDNM macro defining
the field names is in TCAINA2,
a fullword field.

(keyword[,keyword, •••])

NOMATCH=

is a list of the keyWords that
may be entered by the terminal
user to indicate which fields
are to receive input data.
Each keyWord may be from one
to four characters in length.
Any combination of alphabetic,
numeric, and/or special
characters may be specified.
The keywords must be specified
in the order in which the
corresponding fields that will
hold the data are defined in
the fixed-format TIOA.

specifies the address to which
control is to be passed if matching
is unsuccessful.

symb-addr
is the address to which
control is to be passed if no
table entry matching the
search argument is found. is
a decimal numeral in the range
-32768 through +32767.

If this parameter is omitted, the
value is assumed to be in TCAWPH3.

If this operand is specified, the
SUBST operand cannot be specified.

NUMERIC=symb-addr
is the address to which control is
to be passed if the field consists
entirely of EBCDIC numbers (X'FO'
through X'F9') with an optional
trailing minus sign or 'CR'.

ORDER=
describes the sequence used in
ordering the entries of the
argument table and is optional if
RANGE is not specified. The
sequence must be EBCDIC; packed,
fullword and halfword binary, and
floating-point tables cannot be
searched. When this parameter is
specified, a quick binary search is
used (rather than a sequential
search).

ASCENDING
indicates that table entries
are organized in ascending
order according to the entries
in the field to be compared
with the search argument.

DESCENDING
indicates that table entries
are organized in descending
order according to the entries

286 CICS/VS Application Programmer's Reference Manual (Macro Level)

in the field to be compared
with the search argument.

In either case, the field values
are interpreted as EBCDIC
representations. If this operand
is not specified, the argument
table is assumed to be unordered
and is searched sequentially,
starting at the last entry of the
table.

PACKED=symb-addr
is the address· to which control is
to be passed if the field consists
entirely of packed decimal
characters, that is, of half-bytes
with hexadecimal values in the
range 0 through 9, except for the
rightmost half-byte, which must
contain a hexadecimal value in the
range A through F.

RANGE=VES
is an optional operand indicating
that, if no field compared with the
search argument is an exact match,
an existing table entry that would
be adjacent to such an entry is to
be taken as the function value.
When this operand is specified,
ORDER must be specified; otherwise,
a sequential search of the table is
made, starting at the last entry.

SUBST=
specifies a value to be stored in
TARGET if no entry matching the
search argument is found in the
argument table.

symb-addr
is the address of a field that
contains the value to be
stored.

'literal value'
is the value to be stored;
single quotation marks must
enclose the value in this
specification but are not
stored as part of the data.

If this operand is specified, the
TARGET operand must be specified,
and the NOMATCH operand cannot be
specified.

TARGET=symb-addr
is the symbolic address of the
field in which the built-in
function value is to be returned to
the application program. The
address of the function value is
placed in TCATSA5, a fullword
field, regardless of whether TARGET
is specified.

Chapter 6.3. CICS Built-In Functions (DFHBIF Macro) 287

PART 7. ERROR HANDLING AND DEBUGGING

Part 7. Error Handling and Debugging 289

CHAPTER 7.1. INTRODUCTION TO ERROR HANDLING AND DEBUGGING

A number of aids to testing, monitoring,
and debugging are provided by CICS, as
follows:

• Sequential Terminal Support -
provides a method in which
sequential devices, such as a card
reader or disk unit, can be made to
simulate the online interactive
terminals or subsystems of a CICS
network. This enables early testing
to be carried out without the need
for remote terminals or sUbsystems
in the network to be active.
Sequential terminal support is
described in "Chapter 7.2.
Sequential Terminal Support" on
page 293.

• Trace Management - provides a trace
table containing entries that
reflect the execution of CICS macros
by user-written application programs
and by CICS management programs.
The trace entries can also be stored
in auxiliary storage on a sequential
data set through the CICS auxiliary
trace facility. The trace table and
the DFHTR macro used to control its
contents are described in "Chapter
7.3. Trace Control (DFHTR Macro)" on
page 295.

• Du~p Management - provides a dump of
maln storage that can be analyzed to
locate errors in application

•

•

programs or in CICS. Areas of main
storage can be dumped onto a
sequential data set, either tape or
disk, for subsequent offline
formatting and printing by a CICS
utility program. The types of dumps
and the DFHDC macro that produces
them are described in "Chapter 7.4.
Dump Control (DFHDC Macro)" on
page 299.

Journal Management - provides a
journal or log of the realtime
activity that occurs during the
execution of the CICS system. This
journal is stored in sequential data
sets and the information it contains
is essential for the reconstruction
of that realtime activity. The
contents of a journal, and the DFHJC
macro used to control these
contents, are described in "Chapter
7.5. Journal Control (DFHJC Macro)"
on page 305.

Recovery/Restart (Syncpoint)
Management - provides for the
emergency restart of CICS after it
has terminated abnormally and also
allows for erroneous operations to
be backed out. The setting up of
the syncpoints and the DFHSP macro
used to do this are described in
"Chapter 7.6. Recovery/Restart (Sync
Point) Control (DFHSPMacro)" on
page 319.

Chapter 7.1. Introduction to Error Handling and Debugging 291

CHAPTER 7.2. SEQUENTIAL TERMINAL SUPPORT

Even at the simplest level of program
testing, the implementer faces problems.
It is not efficient to test a program
from a terminal if all test data must be
keyed into the system from that terminal
for each test shot. The programmer
cannot easily retain a backlog of proven
test data and quickly test programs
through the key-driven terminal as
changes are made. There is also the
risk that a fault developing in a test
procedure being used in an operational
system could affect the whole system.

CICS allows the application programmer
to begin testing programs without the
use of a telecommunication device. It
is possible to specify through the
terminal control table that sequential
devices be used as terminals. These
sequential devices may be card readers,
line printers, disk units, or magnetic
tape units. In fact, a terminal control
table can include combinations of
sequential devices such as: card reader
and line printer, one or more disk or
tape data sets as input, one or more
disk or tape data sets as output. A
table that contains references to these
card-reader-in/line-printer-out (CRLP)
terminals can also include references to
other terminals on the system.

The input data submitted from a
sequential device must be prepared in
the form that it would come from a
telecommunications device. A one- to
four-character transaction
identification only, or if data is
included, a one- to four-character
transaction identification (followed by
a system-defined transaction code
delimiter or a blank if less than four)
must appear in the first one to four
positions of the first input for a
transaction. If a sequential device is
being used as a terminal, an end-of-data
indicator, a 0-2-8 punched card code
(X'EO') or the equivalent as specified
at system generation, must follow the
input message or the system-defined data
termination character. The input is
processed sequentially and must be
unblocked. The Sequential Access Method
(SAM) is used to read and write the
necessary inputs and outputs. The
operating system utilities can be used
to create the input data sets and print
the output data sets.

Using this approach, it is possible to
prepare a stream of transaction test
eases to do the basic testing of a
program module. As testing progresses,
the user can generate additional
transaction streams to validate the
multiprogramming capabilities of his

programs or to allow transaction test
cases to be run concurrently.

At some point in testing, it is
necessary to use telecommunication
devices to ensure that the transaction
formats are satisfactory, the terminal
operational approach is satisfactory,
and the transactions can be processed on
the terminal. The terminal control
table can be altered to contain more and
different devices as the testing
requirements change.

When the testing has proven that
transactions can be processed
concurrently and the necessary data sets
(actual or duplicate) for online
operation have been created, the user
begins testing in a controlled
environment with the telecommunication
devices. In this environment, the
transaction test eases should represent
all functions of the eventual system,
but on a smaller, measurable scale. For
example, a company whose information
system will work with IS district
offices may select one district office
for the controlled test, during which
all transactions, data set activity, and
output activity from the system should
be measured closely.

Requests for input or output from a
sequential terminal are specified in
terminal control macros (DFHTC), just as
other requests for input/output
operations.

In response to a DFHTC TYPE=READ, where
the terminal has been described in the
terminal control table as a CRLP, DISK,
or TAPE terminal, data is read from the
input data set until any of the
following occurs:

• An end-of-data indicator is detected
in the input stream. (The indicator
must be defined by the user at
system generation time.)

• Sufficient input has been read to
fill the input area associated with
the line used for transmission. If
an end-of-data indicator is not
detected before the input area is
filled, all further data preceding
an end-of-data indicator is bypassed
and treated as a system error, which
is passed to the user-installation
terminal error program (DFHTEP).

• End of file (EOF) is detected. The
READ is considered complete. Any
subsequent READ is treated as a
system error, which is passed to the
user-installation terminal error
program (DFHTEP) with a response

Chapter 7.2. Sequential Terminal Support 293

code of 4. (Under CICS/DOS/VS, EOF
applies to a card reader only.)

In response to a DFHTC TYPE=WRITE from a
CRLP terminal, multiple lines are
written in print format as follows:

• If there is no new-line (X'lS')
character within the number of
characters contained in one print
line of the specified line size (as
found in TCTTELPL, a field in the
TCTTE), the output is written in

fixed-length lines of the size
specified.

• If new-line characters are
encountered, a new line is begun for
each. Writing of output continues
until the end of the terminal
input/output area (TIOA) is reached.

For additional information about the
DFHTC macro, see "Chapter 4.2. Terminal
Control (DFHTC Macro)" on page 105.

294 CICS/VS Application Programmer's Reference Manual (Macro Level)

CHAPTER 7.3. TRACE CONTROL (DFHTR MACRO)

The CICS trace facility is a debugging
aid for application programmers and IBM
field engineers. It maintains in main
storage a trace table consisting of
standard CICS entries and entries
defined by the user. The table is
filled in a wraparound mannerr when it
is full, subsequent entries begin to
overwrite the entries at the beginning
of the table.

Tracing can be activated and deactivated
by the DFHTR macro in an application
program or by the master terminal
transaction CEMT (or CSMT). The macro
can also be used to specify the events
to be 'recorded in the table.

The trace entries can also be stored in
auxiliary storage on a sequential data
set, as well as recorded in the trace
table, by the CICS auxiliary trace
facility, which is activated and
deactivated only by the the master
terminal transaction CEMT (or CSMT).
The auxiliary trace data set does not
wrap around: all entries are preserved
so that a complete history is obtained.
The CICS trace utility program (DFHTUP),
the use of which is described in the
appropriate CICS Installation and
Operations Guide, can be used to print
the contents of the auxiliary trace data
set or selected entries from it.

Standard entries can be recorded in the
trace table each time one of the
following macros is issued by an
application program or by a CICS
management or service program. This
list does not cover all entries; refer
to the appropriate CICS Problem
Determination Guide for further details.

• DFHKC (Task Control)

• DFHSC (Storage Control)

• DFHPC (Program Control)

•
•
•
•
•

DFHIC (Interval Control)

DFHDC (Dump Control)

DFHFC (File Control)

DFHTD (Transient Data Control)

DFHTS (Temporary Storage Control)

• DFHJC (Journal Control)

•
•

DFHBMS (Basic Mapping Support)

DFHBIF (Built-In Functions)

• DFHTC (Terminal Control for
VTAM-supported terminals only)

• DFHSP (Sync Point Program)

• DFHDI (Data Interchange Program)

• CICS-Dl/I Interface (OS only).

In addition to the standard entries,
entries produced by the terminal control
program (DFHTCP) for non-VTAM terminals
can be recorded in the trace table.
These entries, termed field engineering
(FE) entries, are normally inhibited but
can be activated by the DFHTR macro.

A third class of entry, the user entry,
can be defined by the application
programmer with the DFHTR macro.

Trace control is branched to by the
requesting program and executes as a
service routine under the TCA of the
requesting program. Registers are saved
and restored. Return after the
requested service has been performed is
to the next sequential instruction in
the requesting program.

TRACE TABLE

The CICS trace table, which is built
during system initialization, consists
of a trace header and a number of
fixed-length entries that can be used to
trace the flow of transactions through
the system. The number of trace table
entries is specified in the TRACE
parameter of the DFHSIT system macro, or
as a startup override.

The trace table can be initially
disabled by specifying OFF in the TRACE
parameter. The master terminal can be
used to turn trace or auxiliary trace on
or off during CICS execution. Note that
auxiliary trace entries are recorded
only when main storage trace is also
active.

Each entry in the trace table is 32
bytes in length and aligned on a 32-byte
boundary. The table is used in a
wraparound manner so that when the last
entry is used, the next entry is placed
at the beginning of the table. The
trace header contains pointers to the
last-used entry, and also to the first
and last entries in the trace table.
The address of the trace header is in
field CSATRTBA in the CSA.

The contents of trace table entries for
CICS programs are fully described in the
appropriate CICS Problem Determination
Guide.

Chapter 7.3. Trace Control (DFHTR Macro) 29S

For system trace entries only, if
consecutive, identical entries are
generated, the first entry only is
entered into the table. In these cases,
a special trace control entry with trace
identification X'FD' is created, and a
count of the number of times the
previous entry is repeated is stored
therein. Trace control entries with
trace identification X'FE' or X'FF'
indicate the turning on or turning off
of the trace facility, respectively.

The contents of any fields characterized
as "Not used" in the descriptions should
be ignored during the analysis of a
trace table entry.

Trace Identification

Each standard entry contains a trace
identification unique to the functional
area concerned, together with
information to aid the application
programmer in determining where the
macro was issued and what type of
request was made to the management
program.

The application programmer can make
direct, nonstandard entries in the trace
table by using the DFHTR macro. A trace
identification number from 0 through 199
(X'OO' through X'C7') and accompanying
data is assigned for each trace entry.
By defining several unique trace
entries, the programmer can trace the
logical path through a particular
application or group of application
programs.

CONTROLLING THE TRACE

The trace control macro DFHTR is used to
activate and deactivate tracing, and to
insert user-defined entries in the trace
table. The trace can be activated and
deactivated for the entire CICS system
or for the issuing task alone.

The tracing facility can be controlled
at various levels, as followsa

1. Master trace control

2. System, FE, or user control

a. Within system, class control

b. With user~ single task control.

To make a user trace entry, the master
trace control flag must be on, together
with either the user control flag on or

the single task trace flag on. The
first is accomplished by issuing

DFHTR TYPE=ON,STYPE=USER

the second is done by

DFHTR TYPE=ON,STYPE=SINGlE.

To activate all tracing functions, issue

DFHTR TYPE=ON,STYPE=All

To activate system trace entries only,
issue

DFHTR TYPE=ON,STYPE=SYSTEM

followed by

DFHTR TYPE=ON,STYPE=(appropriate
class name)

or use

DFHTR TYPE=ON,STYPE=All as above.

Tracing of each event specified in a
DFHTR TYPE=ON macro continues until
terminated by a DFHTR TYPE=OFF macro.
The STYPE operand in the DFHTR TYPE=OFF
macro specifies which events are no
longer to be logged.

The STYPE operand of the DFHTR macro is
used to specify whether the macro
applies to the entire CIeS system or
only to the issuing task (SYSTEM and
SINGLE parameters).

The application programmer can use the
DFHTR TYPE=ENTRY macro to place his own
entries in the trace table.

The following example illustrates how to
I, activate the trace facility for the
issuing task and then 2, to initiate
tracing for all classes of event except
FE. It also shows 3, how to suppress
tracing of user entries and finally 4,
to deactivate the trace facility.

1. DFHTR TYPE=ON,STYPE=SINGlE

.
2. DFHTR TYPE=ON,STYPE=All

.
3. DFHTR TYPE=OFF,STYPE=USER

4. DFHTR TYPE=OFF,STYPE=SINGlE

296 CICS/VS Application Programmer's Reference Manual (Macro level)

INITIATE TRACE (TYPE=ON)

The format of the DFHTR macro to start
logging entries into the trace table is
as follows:

DFHTR TYPE=ON
[,STYPE={SINGLEIALLI

(system symboll[,sys ...])1
SYSTEMIUSERIFE)]

TERMINATE TRACE (TYPE=OFFJ

The format of the DFHTR macro to stop
logging entries into the trace table is
as follows:

DFHTR TYPE=OFF
[,STYPE={SINGLEIALLI
(system symboll[,sys ...])1

SYSTEMIUSERIFE}]

SELECTED ENTRY TRACE (TYPE=ENTRYJ

The format of the DFHTR macro to cause a
given entry to be logged is as follows:

DFHTR TYPE=ENTRY
[,STYPE={SYSTEMIUSERIFE}]
,ID=number
[,DATAI={symboll(symbol)}]
[,RDATAI={registerICregister)}]
[,DATA2={symboll(symbol)}]
[,RDATA2={registerl(register)}]
[,DATAITP={HBINIFBINI

CHARIPACKIPOINTER}]
[,DATA2TP={HBINIFBINI

CHARIPACKIPOINTER}]

OPERANDS OF DFHTR MACRO

DATAI=
specifies the address of the data
to be placed in the first data
field (bytes 8 to 11) of the trace
table entry.

symbol
is the symbolic address of the
data to be placed in the first
data field of the table entry.

(symbol)
is the symbolic address of an
area that contains ihe address
of the data to be placed in
the first data field.

When this operand is included in a
high-level language program,
DATAlTP is required.

DATAITP=
specifies the format of the data to
be placed in the first data field
of the trace table entry. The
meanings of the keyword parameters
are:

HBIN Halfword binary
COBOL: 9(4) CaMP
PL/I: FIXED BIN(15)

FBIN

CHAR

PACK

POINTER

Fullword binary
COBOL: 9(8) COMP
PL/I: FIXED BIN(31)

1 through 4 characters
COBOL: X(4)
PL/I: CHAR(4)

1 through 4 bytes,
packed decimal
COBOL: 9(7) COMP-3
PL/I: FIXED DEC(7)

PL/I pointer variable
PL/I: POINTER

This operand is valid only for
COBOL and PL/I programs. If
omitted, the default is FBIN.

DATA2=
is similar to DATAl except that it
is used for the second data field
(bytes 12 to 15) of the trace table
entry.

When this operand is included in a
high-level language program,
DATA2TP is required.

DATA2TP=
is similar to DATAITP except that
it is used for the second data
field of the trace table entry.

ID=number
specifies the trace identification
number for this entry. It must be
coded as a self-defining term. A
number from 0 through 199 may be
specified when STYPE=USER. A
number from 200 through 255 may be
specified when STYPE=SYSTEM or
STYPE=FE, but you should refer to
the appropriate CICS Problem
Determination Guide for details of
the trace identification numbers
that are currently allocated to
each functional area of CICS.

Note: A flag in the trace entry
distinguishes between the three
types of entry (USER, SYSTEM, and
FE).

RDATAI= (ASM programs onlyJ
specifies the register whose
contents are to be placed in the

Chapter 7.3. Trace Control (DFHTR Macro) 297

first data field of the trace table
entry.

register
the number of the register
whose contents are to be
placed in the first data
field.

(register)
the number of the register
whose contents are the address
of the data to be placed in
the first data field.

RDATA2= (ASM programs only)
is similar to RDATAI except that it
is used for the second data field
of the trace table entry.

STYPE=
indicates the type of entries to be
logged or for which logging is to
be discontinued. If this operand
is omitted, USER is assumed.

SINGLE when included in the DFHTR
TYPE=ON macro, specifies that the
tracing of user entries is to be
turned on for the task issuing
the macro for the duration of the
task or until turned off by a
DFHTR TYPE=OFF, STYPE=SINGlE.

When included in the DFHTR
TYPE=OFF macro, specifies that
the tracing of user entries is to
be turned off for the task
issuing the macro.

ALL specifies that all tracing
facilities (except FE) are to be
turned on. This parameter turns
on the master system trace flag
and all of the individual system
trace flags, in addition to
performing the function of the
USER parameter. It also, when
used in the DFHTR TYPE=OFF macro,
specifies that all tracing
facilities (including Field
Engineering) are to be stopped.

(system symboll[,sys •••]) specifies
one or more system symbols that
turn on or off appropriate system
macro trace facilities. The
valid system symbols are as
follows:

Symbol Meaning

KC Task Control (DFHKC)
SC storage Control (DFHSC)
PC Program Control (DFHPC)
IC Interval Control (DFHIC)
DC Dump Control (DFHDC)
FC File Control (DFHFC)
TD Transient Data Control

(DFHTD)
TS Temporary storage

Control (DFHTS)
JC Journal Control (DFHJC)
BM Basic Mapping Support

(DFHBMS)
BF Built-In Functions (DFHBIF)
TC Terminal Control(DFHTC) (for

VTAM-supported terminals only)
SP Syncpoint Control (DFHSP)
DI Data Interchange

Control (DFHDI)
UE User Exit Interface

For TYPE=ON, each symbol turns on
a single system trace flag.
Before tracing of any system
macros occurs, the master system
trace flag must also be turned on
by means of the SYSTEM parameter.
Note that two DFHTR macros must
be issued to accomplish this;
SYSTEM and system symbols cannot
both be specified on the same
macro.

SYSTEM specifies that the entry is
a CICS entry. This parameter
turns on or off the system master
trace flag, which must be on in
addition to the individual system
trace flags before tracing of any
system macros occurs. When used
to turn off the master trace flag
it does not turn off the
individual system trace flags.
See also the description of the
system symbols above. Therefore,
although all tracing activities
for the system macros are
suppressed, the previous pattern
of activity could be reinstated
by issuing a DFHTR
TYPE=ON,STYPE=SYSTEM macro,
without the need to issue a DFHTR
TYPE=ON macro with the various
system symbols defined.

USER specifies that the entry is a
user entry and that when included
in a DFHTR TYPE=ON macro
specifies that the trace facility
is to be turned on for all user
entries for all active tasks;
that is, causes the trace
facility to begin logging user
entries to the trace table for
all tasks currently active in the
system, and for all tasks
becoming active subsequently,
until the user trace facility is
turned off.

FE (ASM programs only) specifies
that the entry is a Field
Engineering (FE) entry. This is
the only parameter that will turn
on the FE tracing facilities.

298 CICS/VS Application Programmer's Reference Manual (Macro level)

CHAPTER 7.4. DUMP CONTROL (DFHDC MACROl

Dump management provides the capability
of dumping specified areas of main
storage onto a sequential data set,
either tape or disk. This data set
contains information about the user's
transaction or application program, and
can be subsequently formatted and
printed offline (or while the dump data
set is closed) using a CICS dump utility
program (DFHDUP).

Requests for dump services are
communicated to dump control through the
DFHDC macro. A CICS snap dump can also
be requested by the master terminal
operator. Dump control executes at the
priority of the requesting program,
under control of the TCA of the
requesting program saving and restoring
registers from this TCA. After a
requested dump service has been
provided, control is returned to the
next executable instruction in the
requesting program.

Dump control operates as a serially
reusable program resource. Only one
service request is processed at a time.
If additional requests for dump services
are made while a dump is in progress,
the tasks associated with those service
requests are delayed (suspended) and
placed in "hold" status until the dump
is completed. Remaining dump requests
are serviced on a first-in first-out
basis.

The dump management macro (DFHDC) is
used to request any of the following
services:

•

•

•

•
•

Dump main storage areas related to a
transaction and its associated task
(or any other main storage areas).

Dump the following CICS control
tables: program control table (PCT),
processing program table (PPT),
system initialization table (SIT),
terminal control table (TCT), file
control table (FCT), and destination
control table (DCT).

Dump transaction-oriented storage
areas andCICS control tables.

Dump selected main storage areas.

For CICS/OS/VS only, dump DL/I
control blocks.

To ensure a dump of the TIOA following a
terminal control write that precedes a
DFHDC macro, the application programmer
must issue a SAVE and WAIT with the
DFHTC TYPE=WRITE macro.

When the DFHDC macro is executed,
information is stored in fields TCADCTR
and TCADCDC of the common communication
area (CCA) of the TCA, which is used for
CICS service requests. Before doing so,
however, the macro preserves the
previous contents of the fields by
copying TCADCTR (2 bytes) to TCACCSVl,
and TCADCDC (4 bytes) to TCACCSV2. The
previous contents can therefore be seen
in the dump. The field TCADCDC is saved
only if DMPCODE=value is specified. If
DMPCODE=YES is specified, the user must
preserve the contents of TCADCDC (if
they are to appear in the dump) before
storing the dump code in that field.

The dump control module will use the
register save area, TCACCRS, of the CCA.
To see the previous contents in a dump
the application program must obtain 14
words of storage into which to copy the
contents of TCACCRS before issuing the
DFHDC macro.

Every formatted and transaction dump
request will include the short symptom
string, TCA, CSA, and trace table,
unless one or more of these are
suppressed with the SUPPR operand. The
trace table will also be suppressed if
the trace facility is not currently
active.

DUMP TRANSACTION STORAGE
(TVPE=TRANSACTIONJ

The format of the DFHDC macro to specify
a dump is as follows:

DFHDC TYPE=TRANSACTION
[,DMPCODE={valueIYES}]
[,SUPPR=([CSA][,TCA][,TRT])IALL

This macro specifies a dump of all main
storage areas related to a transaction
arid its associated task. This dump is
normally used during testing and
debugging user-written application
programs. (CICS automatically provides
this service if the related task is
abnormally terminated.)

For CICS/OS/VS only, DL/I control blocks
will also be dumped.

The following main storage areas can be
dumped:

1. Task control area (TCA) and, if
applicable, the transaction work
area (TWA)

Chapter 7.4. Dump Control (DFHDC Macro) 299

2. Common system area (CSA), including
the user's portion of the CSA (CWA)

3. Trace table

4. Contents of general-purpose
registers upon entry to dump control
from requesting task

5. Either the terminal control table
terminal entry (TCTTE) or the
destination control table entry
associated with the requesting task

6. All transaction storage areas
chained off the TCA storage
accounting field

7. All program storage areas containing
user-written application programs
active on behalf of the requesting
task. Program storage areas will
not be dumped for programs defined
in the PPT as RELOAD=YES

8. Register save areas (RSAs) indicated
by the RSA chain off the TCA

9. All terminal input/output areas
(TIOAs) chained off the terminal
control table terminal entry (TeTTE)
for the terminal associated with the
requesting task (if any).

Whenever the TCTTE is dumped (see 5
above), the terminal control table user
area (if any) and the message control
blocks (if any) associated with the
TCTTE are dumped. The latter are used
by BMS.

The following example illustrates the
coding required to request a dump of
transaction storage'

DFHDC TYPE=TRANSACTION,DMPCODE=DOlO

DUMP eICS STORAGE (TYPE=CICS)

The format of the DFHDC macro to specify
a dump of system tables is.

DFHDC TYPE=CICS
[,DMPCODE=(valueIYES}]
[,SUPPR=([CSA1[,TCA][,TRT1)IALL]

The application programmer can request a
dump of PCT, PPT, TCT, FCT, and DCT by

issuing the DFHDC TYPE=CICS macro. This
dump is typically the first dump taken
during testing in which the base of the
test must be established; subsequent
dumps are usually of the TRANSACTION
type.

This macro specifies that PCT, PPT, SIT,
TCT, FCT, and DCT are to be dumped. The
TCA (and the TWA, if applicable), CSA
(and CWA), and trace table are also
dumped.

The following example illustrates the
coding required to request a dump of
PCT, PPT, SIT, TCT, FCT, DCT, CSA, TCA,
and the trace table:

DFHDC TYPE=CICS,DMPCODE=D020

DUMP TRANSACTION STORAGE AND CICS
STORAGE (TVPE=COMPLETEl

The format of the DFHDC macro to specify
a complete dump is.

DFHDC TYPE=COMPLETE
[,DMPCODE={valueIYES}]
[,SUPPR=([CSA][,TCA][,TRT1)IALLl

The application programmer can request a
dump of both transaction/task-related
storage and the PCT, PPT, SIT, TCT, FCT,
and DCT by issuing the DFHDC
TYPE=COMPLETE macro. For CICS/OS/VS
only, DL/I control blocks will also be
dumped.

To request a complete dump is sometimes
appropriate during execution of a task,
but this macro should not be used
excessively. CICS control tables are
primarily static areas; therefore,
requesting one CICS dump and a number of
TRANSACTION dumps is generally more
efficient than requesting a comparable
number of COMPLETE dumps. This macro
specifies that transaction/task-related
storage and the PCT, PPT, SIT, TCT, FCT,
and DCT are to be dumped.

The following example illustrates the
coding required to request a dump of
both transaction storage and the PCT,
PPT, SIT, TCT, FCT, and DCT.

DFHDC TYPE=COMPLETE,DMPCODE=D030

300 CICS/VS Application Programmer's Reference Manual (Macro Level)

PUMP PARTIAL STORAGE (TYPE=PARTIALJ

The format of the DFHDC macro to specify
a partial dump is:

DFHDC TYPE=PARTIAL
,LIST=C[TERMINAL1[,PROGRAMl
[,TRANSACTION1[,SEGMENT1)
[,DMPCODE={valueIYES}]
[,SUPPR=C(CSA][,TCA1[,TRT1)IALLl

The application programmer can request a
dump of selected main storage areas
related to the requesting task by
issuing the DFHDC TYPE=PARTIAL macro.
This type of dump can be used during
testing and debugging of user-written
application programs. It includes only
the storage areas specified.

If SEGMENT is specified in the LIST
operand, the application programmer must
code two instructions that place the
address of the main storage area to be
dumped into TCADCSA and the length Cin
binary) of the area to be dumped into
TCADCNB prior to execution of the DFHDC
TYPE=PARTIAL macro. The maximum length
that can be specified in TCADCNB is
32,767 bytes. The specified area must
be a valid area, that is, storage
allocated by the operating system within
the CICS region/partition boundaries.

ASH:

It is possible to dump several user
areas rather than just one. The
application programmer must construct a
table of the user areas to be dumped,
and their lengths, and place the address
of the table in TCADCSA. Also, TCADCNB
must be set to zero. Both of these
actions must precede the DFHDC
TYPE=PARTIAL macro. The table must
consist of eight-byte entries, each
entry containing a four-byte length
field followed by a four-byte address
field. The table should then be
completed by adding an extra four-byte
field containing X'FFFFFFFF'.

The following example shows how to
request a PARTIAL storage dump that
includes, along with all program storage
areas, all transaction storage areas
associated with this task:

DFHDC TYPE=PARTIAL,LIST=(TRANSACTION,
PROGRAM),DMPCODE=DT3P

This example is applicable to assembler
language, COBOL, or PL/I programs. All
values passed to CICS are specified in
the DFHDC macro. As noted above, when
SEGMENT is specified, certain values
must be stored in fields of the TCA
prior to execution of the DFHDC macro.
The programmer can also store the dump
code in the TCA prior to execution of
the macro.

The following examples show how to
request a PARTIAL dump of a selected
main storage area, using assembler
language, COBOL, or PL/I.

ST RS,TCADCSA
MVC TCADCNB,=H'16384'
MVC TCADCDC,=CL4'ABI2'
DFHDC TYPE=PARTIAL,

PLACE STORAGE ADDRESS IN TCA
PLACE LENGTH OF AREA IN TCA
PLACE DUMP CODE IN TCA

COBOL:

LIST=SEGMENT,
DMPCODE=YES

MOVE DATADDR TO TCADCSA.
MOVE 16384 TO TCADCNB.
MOVE 'ABI2' TO TCADCDC.
DFHDC TYPE=PARTIAL,

LIST=SEGMENT,
DMPCODE=YES

TCADCSA=ADDRCDATA);
TCADCNB=16384i
TCADCDC='ABI2';
DFHDC TYPE=PARTIAL,

LIST=SEGMENT,
DMPCODE=YES

REQUEST PARTIAL STORAGE DUMP
DUMP AREA PREVIOUSLY SPECIFIED
DUMP CODE PREVIOUSLY SPECIFIED

NOTE PLACE STRG ADDRESS IN TCA.
NOTE PLACE LENGTH OF AREA IN TCA.
NOTE PLACE DUMP CODE IN TCA.
REQUEST PARTIAL STORAGE DUMP ~
DUMP AREA PREVIOUSLY SPECIFIED ~
DUMP CODE PREVIOUSLY SPECIFIED

/~PLACE STORAGE ADDRESS IN TCA~/
/~PLACE LENGTH OF AREA IN TCA~/
/~PLACE DUMP CODE IN TCA~/
REQUEST PARTIAL STORAGE DUMP
DUMP AREA PREVIOUSLY SPECIFIED
DUMP CODE PREVIOUSLY SPECIFIED

Chapter 7.4. Dump Control (DFHDC Macro) 301

OPERANDS OF DFHDC MACRO

DMPCODE=

LIST=

is a four-character dump code to be
printed out with the requested dump
to identify it; this code should be
unique so that it is informative
concerning the condition that
caused the dump.

value

YES

is a combination of four
alphanumeric characters to be
printed as the dump code.

indicates that the dump code
has been placed in TCADCDC.

identifies specific areas to be
dumped.

TERMINAL
indica·tes that all storage
areas associated with the
terminal are to be dumped.
These storage areas are as
follows:

1. Task control area (TCA)
and, if applicable, the
transaction work area
(TWA)

2. Common system area (CSA),
including the user's
portion of the CSA (CWA)

3. Trace table

4. All terminal input/output
areas (TIOAs) chained off
the terminal control table
terminal entry (TCTTE) for
the terminal associated
with the requesting task

5. Contents of
general-purpose registers
upon entry to dump control
from the requesting task

6. Either the terminal
control table terminal
entry (TCTTE) or the
destination control table
entry associated with the
requesting task.

Whenever the TCTTE is dumped,
the terminal control table
user area (if any) and the
message control blocks (if
any) associated with the TCTTE
are dumped. The latter are
used by BMS.

PROGRAM
indicates that all program
storage areas associated with
this task are to be dumped.
These storage areas include:

1. Task control area (TCA)
and, if applicable, the
transaction work area
(TWA)

2. Common system area (CSA),
including the user's
portion of the CSA (CWA)

3. Trace table

4. All program storage areas
containing user-written
application program(s)
active on behalf of the
requesting task

5. Register save areas (RSAs)
indicated by the RSA chain
off the TCA

6. Contents of
general-purpose registers
upon entry to dump control
from the requesting task

7. Either the terminal
control table terminal
entry (TeTTE) or the
destination control table
entry associated with the
requesting task.

Whenever the TCTTE is dumped,
the terminal control table
user area (if any) and the
message control blocks (if
any) associated with the TCTTE
are dumped.

TRANSACTION
is typically used in
combination with other types
of PARTIAL dump requests to
include all transaction
storage areas associated with
the task. These areas
includes

1. Task control area (TCA)
and, if applicable, the
transaction work area
(TWA)

2. Common system area (CSA),
including the user's
portion of the CSA (CWA)

3. Trace table

4. Contents of
general-purpose registers
upon entry to dump control
from the requesting task

5. All transaction storage
areas chained off the TCA
storage accounting field

6. Either the terminal
control table terminal
entry (TCTTE) or the
destination control table

302 CICS/VS Application Programmer's Reference Manual (Macro level)

entry associated with the
requesting task

7. DL/I control blocks
(CICS/OS/VS only).

Whenever the TCTTE is dumped,
the terminal control table
user area (if any) and the
message control blocks (if
any) associated with the TCTTE
are dumped.

SEGMENT
is used to include in the
PARTIAL dump any area of main
storage specified. In
addition to the selected area,
the contents of the following
storage areas are displayed:

1. Task control area (TCA)
and, if applicable, the
transaction work area
(TWA)

2. Common system area (CSA),
including the user's
portion of the CSA (CWA)

3. Trace table

4. Contents of
general-purpose registers
upon entry to dump control
from the requesting task

5. Either the terminal
control table terminal
entry (TCTTE) or the
destination control table
entry associated with the
requesting task.

Whenever the TCTTE is dumped,
the terminal control table

SUPPR=

user area (if any) and the
message control blocks (if
any) associated with the TCTTE
are dumped.

These parameters are not
mutually exclusive. They can
be specified in any
combination and any order.
The parentheses are optional
when only one parameter is
specified. At least one
parameter is required. No
storage area is dumped more
than once as a result of a
single DFHDC TYPE=PARTIAL
request. For example, if

DFHDC TYPE=PARTIAL,
LIST=(TERMINAL,TRANSACTION)

is specified, the contents of
the TCA and CSA are displayed
only once.

indicates that one or more CICS
control tables will not be dumped.
The dumps to be suppressed are
determined by coding one or more of
the followingl

CSA
TCA
TRT

Common system area
Task control area
Trace table

These parameters are not mutually
exclusive. They can be specified
in any combination and any order.
The parentheses are optional when
only one parameter is specified.
At least one parameter is required.
Alternatively, all three of the
above areas can be suppressed by
coding SUPPR=ALL.

Chapter 7.4. Dump Control (DFHDC Macro) 303

CHAPTER 7.5. JOURNAL CONTROL (DFHJC MACRO)

Journal management provides facilities
for creating and managing
special-purpose sequential data sets,
composing "journals", during real-time
CICS execution. Journals may contain
data the user needs to facilitate
subsequent reconstruction of events or
data changes. For example, a journal
might act as an audit trail, a change
file of data base updates and additions,
or a record of transactions passing
through the system (often called a
"log").

In addition to the output services
described in this chapter, journal
management also provides support forI

• Operational control and disposition
of volumes (see the appropriate CICS
Installation and Operations Guider:-

• Requests to switch volumes and/or
read journal data sets during
real-time CICS execution (see the
appropriate CICS Resource Definition
manual).

Requests for journal output services are
made by issuing the journal control
macro (DFHJC), either directly from a
user task or from a CICS management
program on behalf of a user task. Data
may be directed to any journal specified
in the journal control table (JCT),
which defines the journals available
during a particular CICS execution. The
JCT may define one or more journals on
tape or direct access storage. Each
journal is identified by a number, in
the range 2 through 99. The value 1 is
reserved for a journal known as the
system log.

All buffer space and other work areas
needed for journal data set physical
operations are acquired and managed by
the journal control program (JCP). The
user task supplies only the address and
length of the data to be output. The
data is moved to journal buffer space by
JCP when building a journal record. The
user task retains the use and control of
the data and its CICS storage area.

Journal output requests are serviced by
JCP. Journal records are built into
blocks compatible with standard
variable-blocked format. JCP uses the
sequential access method of the host
operating system to write the blocks to
auxiliary storage.

Each logical journal record begins with
the standard 4-byte length field, a
user-specified identifier, and a
system-supplied prefix. This data is
followed in the journal record by any

user-supplied prefix data (optional),
and finally by the user-specified data.
Journal control is designed so that the
application programmer requesting output
services need not be concerned further
with the layout and contents of journal
records. He needs to know only which
journal to use, what user data to
specify, and what unique user-identifier
to supply. Normally, he obtains this
information from the application system
analyst or the person(s) responsible for
programs for reading journal data sets.
(See the appropriate CICS Resource
Definition manual.)

JCP builds journal records for output
requests at the priority of the
requesting program, under control of the
TCA of the requesting program. However,
the TCA is not used to communicate
requests or to save/restore registers.
Instead, a separate control area called
a journal control area (JCA) is used;
this area must be acquired by the task
before any journal output requests are
issued.

If no other event is in-process to the
journal, output to a journal data set is
also initiated under the requestor's
TCA. However, output event completion
is always processed under a different
TCA, that of a high-priority journal
task associated with the journal.
Journal tasks are activated when CICS
execution begins, but are suspended when
there are no output events outstanding.
In a heavy load situation, where many
user tasks request journal output while
one output is in-process, a journal task
initiates more output immediately after
completion of the in-process output
event.

The application programmer may specify
parameter values for journal control
requests in either of two ways I

• By including the parameters in
operands of the DFHJC macro by which
journal services are requested, or

• By coding instructions that place
the parameter values in fields of
the JCA prior to issuing the DFHJC
macro.

The second of these methods provides
greater economy, in that the parameter
values can be varied to meet the logic
needs of the application, but only a
single DFHJC macro need be coded.

Journal output services that may be
requested through the journal control
macro are introduced and explained in
the following paragraphs.

Chapter 7.S. Journal Control (DFHJC Macro) 30S

ACQUIRE A JOURNAL CONTROL AREA
(TVPE=GETJCA)

The format of the DFHJC macro to acquire
a journal control area (JCA) is as
followsr

DFHJC TYPE=GETJCA

This macro specifies that an area to be
used for communication between the
application program and the CICS journal
control program is to be acquired. The
address of the JCA is returned in
TCAJCAAD to the application program.

If journal output services are requested
in an application program through DFHJC
macros, the application programmer must
provide the symbolic definition of the
JCA by copying the CICS storage area map
DFHJCADS. The JCA must be acquired for
the task prior to any journal output
requests by issuing the macro:

DFHJC TYPE=GETJCA

The JCA may be acquired separately, as
shown above, in which case no other
operands are needed. Alternatively, the
JCA may be acquired by and with the
program's first journal output request;
for example:

DFHJC TYPE=(GETJCA,PUT)

If the latter approach is chosen, then
it is not possible to place additional
parameter values for the output request
directly into the JCA prior to the
request, because the JCA does not exist
prior to this request. If any such
request is attempted, warning messages
are issued and the request is not
processed.

In addition to acquiring the JCA for the
task, the DFHJC TYPE=GETJCA macro
establishes addressability to the area
by moving the contents of the JCA
address field (TCAJCAAD) to JCABAR, the
base locator specified for the area.
Once acquired for the task, the JCA is
reused for all subsequent journal
requests issued by or on behalf of the
task. Data may also be placed in the
JCA during a CICS request even though
that request may not result in logging.
Subsequent TYPE=GETJCA requests only
cause JCABAR to be reloaded with the
same value. The JCA may' not be released
by the user.

The following examples show how to
acquire the.journal control area (JCA)
for the task.

ASH Exampler

COPY DFHTCADS
JCABAR EQU 10

COPY DFHJCADS
GETJCA DFHJC TYPE=GETJCA

1
2
3
4

The numbers in the above example refer
to the following notes:

1.

2.

3.

4.

Copy the TCA symbolic definitions

Assign a base register for the JCA

COpy the JCA symbolic definitions

Request the acquisition of the JCA.

COBOL Example:

02 JCABAR PIC S9(8) COMPo 1
01 DFHTCADS COpy DFHTCADS. 2
01 DFHJCADS COPY DFHJCADS. 3
PROCEDURE DIVISION.

MOVE CSACDTA TO TCACBAR. 4
GETJCA.

DFHJC TYPE=GETJCA S

The numbers in the above example refer
to the following notes:

1. Define the base locator for the JCA

2. Copy the TCA symbolic definitions

3. COpy the JCA symbolic definitions

4. Load TCA base locator value

5. Request the acquisition of the JCA.

PL/I Example:

Y.INCLUDE DFHTCADS;
Y.INCLUDE DFHJCADS;
GETJCA:

DFHJC TYPE=GETJCA

1
2

3

The numbers in the above example refer
to the following notes:

1. Copy the TCA symbolic definitions

2. Copy the JCA symbolic definitions

3. Request the acquisition of the JCA.

306 CICS/VS Application Programmer's Reference Manual (Macro Level)

CREATE A JOURNAL RECORD AND WAIT FOR
OUTPUT (TYPE=PUTl

The format of the DFHJC macro to create
a journal record, initiate its output,
and wait for completion is as follows:

DFHJC TYPE={PUTI(WRITE,WAIT)}
,JFIlEID={nnISYSTEMIYES}
,JTYPEID={nnnnIYES}
,JCDADDR={symb-addrIYES}
,JCDLGTH={decimal valuelYES}

[,PFXADDR={symb-addrIYES} 1
[,PFXLGTH={decimal valueIYES}]
[,STARTIO={YESINO}]
[,NORESP=symb-addr]
[,IDERROR=symb-addrl
[,LERROR=symb-addr]
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[,INVREQ=symb-addr]
[,STATERR=symb-addrl

This macro specifies that a journal
record is to be created in the journal
buffer area and then written out; the
requesting task will wait until the
physical record has been written.
TYPE=(WRITE,WAIT) implies, and is
equivalent to, TYPE=PUT~

Because the maximum buffer length that
can be used to write a journal record is
32767 bytes, the combined length
specified by JCDLGTH and PFXLGTH (or
stored in JCALDATA and JCALPRFX,
respectively) cann~t exceed 32688.

The STARTIO=YES operand specifies that
the journal record is to be written out
immediately. This is the default for
all requests other than WRITE without
WAIT (that is, an asynchronous WRITE).
If STARTIO=NO is specified, initiation
of output will be delayed until the
journal buffer is full to the shift-up
point, output is initiated by another
request to the same journal, or one
second elapses.

Use of this macro ensures that the
journal record is written on the
auxiliary storage device associated with
the journal before processing continues;
the task is said to be "synchronized"
with the output event. Most
CICS-provided data output service is
performed in a synchronous manner.

The application programmer may request
synchronous journal output services
either by a DFHJC TYPE=PUT macro as
above, or by specifying DFHJC
TYPE=(WRITE,WAIT). In both cases,

certain additional keyword operands are
mandatory. These keywords are JFILEID
(the journal to receive data), JCDADDR
(the address of the user data to be
included in the journal record), JCDLGTH
(the length of the user data), and
JTYPEID (the 2-byte user-specified
hexadecimal identifier for the journal
record). Optional accompanying keywords
are PFXADDR (the address of user prefix
data for inclusion in the journal
record) and PFXlGTH (the length of the
user prefix data); the application
programmer may also include keyword
operands to direct control to
exception-handling routines in the
program. See "Test Response to a
Request for Journal Services
(TYPE=CHECK)" on page 315.

The following examples show how to
request and wait for journal output
service.

ASM Example:

COpy
JCABAR EQU

COpy
FWACBAR EQU

RECORD
KEYDATA
ACCNTNO
AMOUNT
NAME
ADDRESS

COpy
DS
DS
DS
DS
DS
DS
DFHJC

OK DS

DFHTCADS
10
DFHJCADS
9
DFHFWADS
OCL90
OCL8
PL4
Pl4
CL20
Cl40
TYPE=PUT,
JFILEID=2,
JCDADDR=KEYDATA,
JCDLGTH=8,
JTYPEID=OFOl,
NORESP=OK
OH

1
2
3
4
5

6

The numbers in the above example refer
to the following notes:

1. Copy the TCA symbolic definitions

2. Assign a base register for the JCA

3. Copy the JCA symbolic definitions

4. Assign a base register for the FWA

5. COpy the FWA symbolic definitions

6. The DFHJC macro requests synchronous
output to journal ID 2, of the 'key'
data of length 8 bytes, where OFOI
is the ID for the journal record,
and OK is the branch address for a
normal response.

Chapter 7.5. Journal Control (DFHJC Macro) 307

COBOL Example:

02 JCABAR PIC S9(8) COMPo 1
01 DFHTCADS COPY DFHTCADS. 2
01 DFHJCADS COpy DFHJCADS. 3
01 DFHFWADS COPY DFHFWADS. 4

02 RECORD.
03 KEYDATA.

04 ACCNTNO PIC S9(7) COMP-3.
04 AMOUNT PIC S9(7) COMP-3.

03 NAME PIC X(20).
03 ADDRESS PIC X(40).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR. 5

DFHJC TYPE=PUT, 6

OK.

JFILEID=2,
JCDADDR=KEYDATA,
JCDLGTH=8,
JTYPEID=OFOl,
NORESP=OK

The numbers in the above example refer
to the following notes:

1. Define the base locator for the JCA

2. Copy the TCA symbolic definitions

3. Copy the JCA symbolic definitions

4. Copy the FWA symbolic definitions

S. load the TCA base locator value

6. The DFHJC macro requests synchronous
output to journal ID 2, of the 'key'
data of length 8 bytes, where OFOI
is the ID for the journal record,
and OK is the branch address for a
normal response.

PL/I Example:

Y.INClUDE DFHTCADS; I
Y.INClUDE DFHJCADS; 2
Y.INClUDE DFHFWADS; 3

02 RECORD,
03 KEYDATA, 4

04 ACCNTNO FIXED DECIMAL (7),
04 AMOUNT FIXED DECIMAL (7),

03 NAME CHAR (20),
03 ADDRESS CHAR (40),

DFHJC TYPE=PUT,
JFIlEID=2,
JCDADDR=KEYDATA,
JCDlGTH=8,
JTYPEID=OFOl,
NORESP=OK

OK:

5

The numbers in the above example refer
to the following notes:

1. COpy the TCA symbolic definitions

2. COpy the JCA symbolic definitions

3. COpy the FWA symbolic definitions

4. This is an 8-byte minor structure

S. The DFHJC macro requests synchronous
output to journal ID 2, of the 'key'
data of length 8 bytes, where OFOI
is the ID for the journal record,
and OK is the branch address for a
normal response.

CREATE A JOURNAL RECORD (TYPE=WRITE)

The general format of the DFHJC macro to
create a journal record for subsequent
output is as follows:

DFHJC TYPE=WRITE
,JFIlEID={nnISYSTEMIYES}
,JTYPEID={nnnnIYES}
,JCDADDR={symb-addriYES}
,JCDlGTH={decimal valuelYES}

[,PFXADDR={symb-addrIYES}]
[,PFXlGTH={decimal valueIYES}]
[,STARTIO={YESINO}]
[,COND={(YES,symb-addr)iNO}]
[,NORESP=symb-addr]
[,IDERROR=symb-addr]
[,lERROR=symb-addr]
[,NOTOPEN=symb-addr]
[,INVREQ=symb-addr]
[,STATERR=symb-addr]

This macro causes a journal record to be
created in the journal buffer area, but
allows the requesting task to retain
control and thus to continue with other
processing.

At some later time, the task may wish to
ensure that the journal record has been
written. If the JCA is to be used for
any other journal requests, that task
should save the event control number (4
bytes) returned in JCAECN after a
journal record is successfully created
in response to the DFHJC TYPE=WRITE
request. The event control number must
be restored to the JCA immediately
before the DFHJC TYPE=WAIT request used
to check and wait for output. If the
JCA is not used in the interim for any
other journal requests for the task,
there is no need to save and restore the
event control number.

However, restoring the event control
number prior to issuing a DFHJC
TYPE=WAIT macro is a good programming
practice. CICS management modules also
use the JCA of the task for journal
requests. For example, automatic
journaling is used in the file control

308 CICS/VS Application Programmer's Reference Manual (Macro level)

program, and logging can be performed
for recovery purposes at the user's
option.

Additional keyword operands applicable
to TYPE=WRITE requests are as described
above under "Create a Journal Record and
Wait for Output."

The basic process of building journal
records in the buffer space of a given
journal continues until such time as one
of the following situations occurs:

• A request is made for synchronous
output of a journal record.

• A request is rejected because of
insufficient journal buffer space.

• The available buffer space is
reduced below a user-specified level
(see the appropriate CICS Resource
Definition manual).

At that time, all journal records
present in the buffer, including any
"deferred" output resulting from
asynchronous requests, are written to
external storage, as one block.

If a task creates deferred output and
delays synchronizing, the deferred
output may be written "for free" along
with other requests; when the task
attempts to synchronize, there will be
no need for it to wait. The advantages
that may be gained by deferring journal
output are:

1. Transactions may get better response
times by waiting less

2. The load of physical I/O requests on
the host system may be reduced

3. Journal data sets may contain fewer
but larger blocks and so better
utilize external storage devices.

However, these advantages are achievable
only at the cost of more buffer space
and greater programming complexity. It
is necessary to plan and program to
control synchronizing with journal

output. Additional decisions which
depend on the data content of the
journal record and how it is to be used
must be made in the application program.
In any case, the full benefit of
deferring journal output is obtained
only when the load on the journal data
set is high.

The STARTIO keyword governs whether
output is to be initiated (YES) or not
(NO). The default option is NO for
WRITE requests and YES for PUT,
(WRITE,WAIT), or WAIT requests. NO
should be used whenever possible
because, if every journal request uses
STARTIO=YES, no improvement over
synchronous output requests, in terms of
reducing the number of physical I/O
operations and increasing the average
block size, is possible.

The COND keyword governs what happens if
the journal buffer space available at
the time is not sufficient to contain
the journal record for the request. If
the default option COND=NO is taken, the
requesting task loses control. The
contents of the current buffer are
written out, and the journal record for
this request is built in the resulting
freed buffer space before control
returns to the requesting task.

If the requesting task is not willing to
lose control, for example, if some
housekeeping must be performed before
other tasks get control, then
COND=(YES,symbolic address) should be
specified~ If buffer space at that
moment is insufficient, no journal
record is built for the request, and
control is returned directly to the
requesting program at the location
identified by symbolic address .. The
requesting program can perform any
housekeeping needed before reissuing the
journal output request.

The following example shows how to
request deferred journal output, but
ensure that the requesting task retains
control to perform housekeeping, if
necessary.

Chapter 7.S. Journal Control (DFHJC Macro) 309

ASM,

COMDATA

SAVEDATA
MYDATA

JCABAR

OK

RETRY

COpy DFHCSADS
DS CLIO

COPY DFHTCADS
DS CLIO
DS CLIO

EQU 10
COpy DFHJCADS

MVC SAVEDATA,COMDATA
MVC COMDATA,MYDATA

DFHJC TYPE=WRITE,
JCDADDR=COMDATA,
JCDLGTH=lO,
JFILEID=SYSTEM,
JTYPEID=OlOl,
STARTIO=NO,
COND=(YES,RETRY),
NORESP=OK

.
DS OH

DS OH
MVC MYDATA,COMDATA
MVC COMDATA,SAVEDATA
DFHJC TYPE=WRITE,

JCDADDR=MYDATA,
JCDLGTH=lO,
JFILEID=SYSTEM,
JTYPEID=OlOl,
COND=NO,
STARTIO=NO,
NORESP=OK

COpy CSA SYMBOLIC DEFINITIONS
AND COMMON WORK AREA

COpy TCA SYMBOLIC DEFINITIONS
SAVE AREA FOR COMMON DATA
AREA FOR MY DATA

ASSIGN BASE REGISTER FOR JCA
COpy JCA SYMBOLIC DEFINITIONS

SAVE COMMON DATA
REPLACE WITH MY DATA FOR WORKING

REQUEST ASYNCHRONOUS OUTPUT ~
OF COMMON DATA AREA, ~
LENGTH=IO BYTES, ~
TO SYSTEM LOG. ~
(IDENTIFIER FOR JOURNAL RECORD) ~
REQUEST DEFERRED OUTPUT, ~
BUT RETAIN CONTROL IF BUFFER FULL. ~
BRANCH ADDR FOR GOOD RESPONSE

HOUSEKEEPING:
MOVE DATA, THEN
RESTORE COMMON DATA.
REQUEST ASYNCHRONOUS OUTPUT
OF DATA,
LENGTH=10 BYTES,
TO SYSTEM LOG.
(IDENTIFIER FOR JOURNAL RECORD)
IF BUFFER FULL, WE'LL WAIT.
DEFER OUTPUT.
BRANCH ADDR FOR GOOD RESPONSE

310 CICS/VS Application Programmer's Reference Manual (Macro Level)

COBOL:

02 JCABAR PIC S9(8) COMPo

01 DFHCSADS COpy DFHCSADS.
02 COMDATA PIC X(lO).

01 DFHTCADS COpy DFHTCADS.
02 SAVEDATA PIC X(lO).
02 MYDATA PIC X(lO).

01 DFHJCADS COPY DFHJCADS.

PROCEDURE DIVISION.

OK.

MOVE CSACDTA TO TCACBAR.

MOVE COMDATA TO SAVEDATA.
MOVE MYDATA TO COMDATA.

DFHJC TYPE=WRITE,
JCDADDR=COMDATA,
JCDLGTH=lO,
JFILEID=SYSTEM,
JTYPEID=OlOl,
STARTIO=NO,
COND=(YES,RETRY),
NORESP=OK

RETRY.
MOVE COMDATA TO MYDATA.
MOVE SAVEDATA TO COMDATA.

DFHJC TYPE=WRITE,
JCDADDR=MYDATA,
JCDLGTH=lO,
JFILEID=SYSTEM,
JTYPEID=OlOl,
STARTIO=NO,
COND=NO,
NORESP=OK

NOTE DEFINE BASE LOCATOR FOR JCA.

NOTE COPY CSA SYMBOLIC DEFINITIONS.
NOTE DEFINE COMMON DATA AREA.

NOTE COpy TCA SYMBOLIC DEFINITIONS.
NOTE SAVE AREA FOR COMMON DATA.
NOTE AREA FOR MY DATA.

NOTE COpy JCA SYMBOLIC DEFINITIONS.

NOTE LOAD TCA BASE LOCATOR VALUE.

NOTE SAVE COMMON DATA.
NOTE REPLACE WITH MY DATA FOR WORKING.

REQUEST ASYNCHRONOUS OUTPUT *
OF COMMON DATA AREA, *
LENGTH=lO BYTES, *
TO SYSTEM LOG. *
(IDENTIFIER FOR JOURNAL RECORD) *
REQUEST DEFERRED OUTPUT, *
BUT RETAIN CONTROL IF BUFFER FULL. *
BRANCH ADDR FOR GOOD RESPONSE

NOTE DO HOUSEKEEPING, THEN RETRY.
NOTE MOVE DATA, THEN.
NOTE RESTORE COMMON DATA.
REQUEST ASYNCHRONOUS OUTPUT
OF MY DATA,
LENGTH=lO BYTES,
TO SYSTEM LOG.
(IDENTIFIER FOR JOURNAL RECORD)
REQUEST DEFERRED OUTPUT,
BUT IF BUFFER FULL, WE CAN WAIT.
BRANCH ADDR FOR GOOD RESPONSE

Chapter 7.S. Journal Control (DFHJC Macro) 311

PL/I,

XINClUDE DFHCSADS;
DCl 01 DFHCSAWK BASEDCCSACBAR)

02 FILL CHAR (SI2),
02 COMDATA CHAR (10);

xINClUDE DFHTCADS;
02 SAVEDATA CHAR (10),
02 MYDATA CHAR (10),

XINClUDE DFHJCADS;

SAVEDATA=COMDATA;
COMDATA=MYDATAj

OK:

RETRY:

DFHJC TYPE=WRITE,
JCDADDR=COMDATA,
JCDlGTH=10,
JFIlEID=SYSTEM,
JTYPEID=OI01"
STARTIO=NO"
COND={YES,RETRY),
NORESP=OK

MYDATA=COMDATA;
COMDATA=SAVEDATA;

DFHJC TYPE=WRITE,
JCDADDR=MYDATA,
JCDLGTH=10"
JFIlEID=SYSTEM,
JTYPEID=0101,
STARTIO=NO,
COND=NO"
NORESP=OK

WAIT FOR OUTPUT OF A JOURNAL RECORD
(TVPE=WAITl

/*COPY CSA SYMBOLIC DEFINITIONS*/
/*AND COMMON WORK AREA*/

/*COPY TCA SYMBOLIC DEFINITIONS*/
/*SAVE AREA FOR COMMON DATA*/
/*AREA FOR MY DATA*/

/*COPY JCA SYMBOLIC DEFINITIONS*/

/*SAVE COMMON DATA*/
/*REPLACE WITH MY DATA FOR WORKING*/

REQUEST ASYNCHRONOUS OUTPUT *
OF COMMON DATA AREA, *
LENGTH=lO BYTES, *
TO SYSTEM LOG. *
(IDENTIFIER FOR JOURNAL RECORD) *
REQUEST DEFERRED OUTPUT" *
BUT RETAIN CONTROL IF BUFFER FUll. *
BRANCH ADDR FOR GOOD RESPONSE

/*HOUSEKEEPING=*/
/*MOVE DATA, THEN*/
/*RESTORE COMMON DATA.*/
REQUEST ASYNCHRONOUS OUTPUT
OF MY DATA,
LENGTH=10 BYTES,
TO SYSTEM LOG.
(IDENTIFIER FOR JOURNAL RECORD)
REQUEST DEFERRED OUTPUT,
BUT IF BUFFER FULL, WE CAN WAIT.
BRANCH ADDR FOR GOOD RESPONSE

DFHJC TYPE=WAIT

* * * * * * *

The general format of the DFHJC macro to
wait for output of a previously created
journal record is as follows:

,JFILEID={nnISYSTEMIYES}
[,STARTIO={YESINO}l
[,NORESP=symb-addrl
[,IDERROR=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[,INVREQ=symb-addrl

This macro specifies that the requesting
task is to be placed in a wait state
until the block containing a journal
record has been written as output (that

312 CICS/VS Application Programmer's Reference Manual (Macro level)

is, the journal operation is to'be
synchronized with continued execution of
the task issuing the journal write
request). If the block containing the
journal record has not been written, the
requesting task is placed in a wait
state until the write is completed.

Before issuing a synchronizing request,
the task must ensure that the event
control number (4 bytes) corresponding
to the journal record in question is in
field JCAECN of the JCA. An event
control number is returned in JCAECN
after every successful journal output
request. Since the JCA is used for
every journal request issued by the task
(or by CICS on its behalf), the
requesting program must save the event
control number immediately after an
asynchronous output request if it is to
be used later. This is necessary
because the particular event control
number may be overwritten during reuse
of the JCA.

ASMs

If the JCA is not reused between the
output request and the synchronization
request, the requesting program need not
save and restore the event control
number. It is the user's responsibility
to determine whether or not he needs to
save and restore it.

If the requesting program has made a
succession of successful asynchronous
output requests to the same journal data
set, it is only necessary to synchronize
on the last of these requests to ensure
that all of the journal records have
reached the external storage device.
This may be done either by issuing a
stand-alone DFHJC TYPE=WAIT request, or
by making the last output request itself
synchronous, a DFHJC TYPE=PUT or
TYPE=(WRITE,WAIT).

The following examples show a typical
sequence of instructions to request
synchronization with the output of a
journal record.

COpy DFHTCADS COpy TCA SYMBOLIC DEFINITIONS
SAVEDECN DS CL4 SAVED EVENT CONTROL NUMBER
JDATA DS CL36 DATA TO WRITE TO JOURNAL

JCABAR EQU 10 ASSIGN BASE REGISTER FOR JCA
COpy DFHJCADS COPY JCA SYMBOLIC DEFINITIONS

DFHJC TYPE=WRITE, REQUEST ASYNCHRONOUS OUTPUT * JCDADDR=JDATA, OF DATA AT JDATA, * ETC. * * * NORESP=OKI BRANCH TO OKI IF GOOD RESPONSE

OKI DS OH
MVC SAVEDECN,JCAECN SAVE EVENT CONTROL NUMBER

MVC JCAECN,SAVEDECN RESTORE EVENT CONTROL NUMBER,
DFHJC TYPE=WAIT, AND SYNCHRONIZE WITH OUTPUT.

NORESP=OK2 BRANCH TO OK2 IF GOOD RESPONSE

OK2 DS OH

Chapter 7.5. Journal Control (DFHJC Macro) 313

COBOL I

02 JCABAR PIC 59(8) COMPo

01 DFHTCADS COpy DFHTCADS.
02 SAVEDECN PIC X(4).
02 JDATA PIC X(36).

01 DFHJCADS COpy DFHJCADS.

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

OK1.

DFHJC TYPE=WRITE,
JCDADDR=JDATA,

NORESP=OK1

MOVE JCAECN TO SAVEDECN.

MOVE SAVEDECN TO JCAECN.

OK2.

DFHJC TYPE=WAIT,
NORESP=OK2

NOTE DEFINE BASE LOCATOR FOR JCA.

NOTE COpy TCA SYMBOLIC DEFINITIONS.
NOTE SAVED EVENT CONTROL NUMBER.
NOTE DATA TO WRITE TO JOURNAL.

NOTE COpy JCA SYMBOLIC DEFINITIONS.

NOTE LOAD TCA BASE LOCATOR VALUE.

REQUEST ASYNCHRONOUS OUTPUT
OF DATA AT JDATA,
ETC.

BRANCH TO OK1 IF GOOD RESPONSE

NOTE SAVE EVENT CONTROL NUMBER.

NOTE RESTORE EVENT CONTROL NUMBER.
AND SYNCHRONIZE WITH OUTPUT. ~
BRANCH TO OK2 IF GOOD RESPONSE.

314 CICS/VS Application Programmer's Reference Manual (Macro Level)

PL/I:

XINCLUDE DFHTCADS;
02 SAVEDECN CHAR (4),
02 JDATA CHAR (36);

XINCLUDE DFHJCADS;

OKl:

DFHJC TYPE=WRITE,
JCDADDR=JDATA,

.
NORESP=OKI

SAVEDECN=JCAECNi

JCAECN=SAVEDECNj

OK2:

DFHJC TYPE=WAIT,
NORESP=OK2

/*COPY TCA SYMBOLIC DEFINITIONS*/
/*SAVED EVENT CONTROL NUMBER*/
/*DATA TO WRITE TO JOURNAL*/

/*COPY JCA SYMBOLIC DEFINITIONS*/

REQUEST ASYNCHRONOUS OUTPUT
OF DATA AT JDATA,
ETC .

BRANCH TO OKI IF GOOD RESPONSE

/*SAVE EVENT CONTROL NUMBER*/

/*RESTORE EVENT CONTROL NUMBER,*/
AND SYNCHRONIZE WITH OUTPUT.
BRANCH TO OK2 IF GOOD RESPONSE

TEST RESPONSE TO A REQUEST FOR JOURNA~ Condition ASH COBOL PL/I
SERVICES (TYPE=CHECKJ

The general format of the DFHJC macro to
check the CICS response to a request for
journal services is as follows:

DFHJC TYPE=CHECK
[,NORESP=symb-addr]
[,IDERROR=symb-addrl
[,LERROR=symb-addrl
[,IOERROR=symb-addrl
[,NOTOPEN=symb-addrl
[,INVREQ~sy~b-addrl
[,STATERR=symb-addrl
[,VOLERR=symb-addrl
[,ERROR=symb-addrl

JOURNAL CONTROL RESPONSE CODES

To test a response code the application
programmer must know the actual settings
of the response code, which is returned
at JCAJCRC. The possible response codes
and the conditions to which they
correspond are as follows:

NORESP X'OO' LOW-VALUES 00000000
(JCARCNR)

IDERROR X'Ol' 12-1-9 00000001
(JCARCIDE)

INVREQ X'02' 12-2-9 00000010
(JCARCIRE)

STAT ERR X'03' 12-3-9 00000011
(JCARCSE)

VOLERR X'04' 12-4-9 00000100
(JCARCVE)

NOTOPEN X'OS' 12-5-9 00000101
(JCARCNOE)

LERROR X'06' 12-6-9 00000110
(JCARCLE)

IOERROR X' 07' 12-7-9 00000111
(JCARCIOE)

ERROR anything not equal to NOR ESP

Note: The names enclosed in parentheses
in the COBOL column indicate the
condition names generated by CICS.
These names may be used in testing for
the conditions in a COBOL program.

If the application programmer does not
provide for checking a particular
response code and the corresponding
condition occurs, program execution
resumes at the instruction immediately

Chapter 7.5. Journal Control (DFHJC Macro) 315

following the DFHJC macro which
requested the journal service.

OPERANDS OF DFHJC MACRO

COND=
specifies that control is to be
returned to the application program
if the request cannot be satisfied
immediately because insufficient
journal buffer space is available.
If control is to be returned, the
point of return must be specified
as a second parameter of this
operand.

(VES,symb-addrl

NO

indicates that control is to
be returned to the locati~n
represented by symbolic
address in the application
program if the request cannot
be satisfied immediately. No
journal record will have been
created for the request.

indicates that the contents of
the current buffer are to be
written out and the requesting
task placed in a wait state
until its request has been
satisfied (by the building of
a record in buffer space freed
by the write operation).

ERROR=symb-addr
is the address to which control is
to be returned if any of the
response conditions other than
NORESP occurs.

IDERROR=symb-addr
is the address to which control is
to be returned if the specified
journal file identification does
not exist in the journal control
table (JCT).

INVREQ=symb-addr
is the address to which control is
to be returned if the TYPE operand
is invalid.

IOERROR=symb-addr
is the address to which control is
to be returned if the physical
output of a journal record failed
because of an unrecoverable I/O
error. This operand is applicable
only to requests that may cause a
wait for completion of output, that
is, to TYPE=PUT, TYPE=(WRITE,WAIT),
or TYPE=WAIT.

JCDADDR=
is the address of the user data to
be buil~ into the journal record.

symb-addr
is the symbolic address of the
user data.

VES

JCDLGTH=

indicates that the address of
the user data has been placed
in JCAADATA prior to issuing
this macro.

is the length of the user data to
be built into the journal record.

decimal value

VES

JFILEID=

is a decimal numeral in the
range from 1 to 32000 (or a
lower maximum, because of the
journal buffer size),
indicating the length, in
bytes, of the user data.

indicates that the length, in
binary, of the user data has
been placed in JCAlDATA prior
to issuing this macro.

is the one-byte identification of
the journal referred to in this
journal operation.

nn
is a decimal value in the
range from 2 through 99 to be
taken as the journal file
identification.

SVSTEM

VES

JTVPEID=

indicates that the system log
data set is the journal for
this operation.

indicates that the journal
file identification has been
placed in JCAJFID prior to
issuing this macro.

is an identifier to be placed in
the journal record to identify its
origin.

nnnn

VES

is a 1 through 4-character
hexadecimal value to be taken
as the identifier for the
journal record; if fewer than
4 characters are specified,
padding with zeros occurs on
the right •.

indicates that the journal
record identification has been
placed in JCAJRTID prior to
issuing this macro.

LERROR=symb-addr
is the address to which control is
to be returned if the computed
length for the journal record
exceeds the total buffer space
allocated for the journal data set,
as specified in the JCT entry for
the data set.

316 CICS/VS Application Programmer's Reference Manual (Macro Level)

NORESP=symb-addr
is the address to which control is
to be returned if the requested
operation was performed
successfully.

NOTOPEN=symb-addr
is the address to which control is
to be returned when the journal is
closed and is not subject to
exclusive control.

PFXADDR=
is the address of user prefix data
to be included in the journal
record.

symb-addr

YES

PFXLGTH=

is the symbolic address of the
user prefix data.

indicates that the address of
the user prefix data has been
placed in JCAAPRFX prior to
issuing this macro.

is the length of the user prefix
data to be included in the journal
record.

decimal value

YES

is a decimal numeral in the
range from 1 to 32000 (or a
lower maximum, because of the
journal buffer size),
indicating the length, in
bytes, of the user prefix
data.

indicates that the length, in
binary, of the user prefix
data has been placed in

STARTIO=

JCALPRFX prior to issuing this
macro.

specifies whether output of the
journal record is to be initiated
immediately.

YES

NO

indicates that output of the
journal record is to be
initiated.

indicates that no output
operation is required at this
time.

The default value is YES if a
synchronizing request is
issued, namely PUT,
(WRITE,WAIT), or WAIT. The
default is NO for a simple
write request. If STARTIO=NO
is specified with a
synchronizing request the
maximum delay allowed before
output is initiated is one
second.

STATERR=symb-addr
is the address to which control is
passed if the current status of the
journal prevents the requested
operation. For example, the
request is a PUT or WRITE in a task
that has exclusive control of the
journal. (For further details,
refer to the appropriate CICS
Customization Guide.) ----

VOLERR=symb-addr (aS only)
is the address to which control is
to be passed if the volume is not
known.

Chapter 7.S. Journal Control (DFHJC Macro) 317

CHAPTER 7.6. RECOVERY/RESTART (SYNC POINT) CONTROL (DFHSP MACRO)

Sync point management works in
conjunction with other CICS components,
such as transient data management and
file management, to provide the user
with facilities needed for an emergency
restart after an abnormal termination of
CICS. In an emergency restart, changes
made in protected resources (for
example, in transient data
intrapartition queues) can be backed out
for tasks that were "in flight" at the
time of failure. This backout is based
upon information about the tasks
recorded on a system log during
execution.

Each synchronization point in an
application program marks the completion
of a logical unit of work (an LUW). By
definition, an LUW is an application
programmer-defined unit of work that
performs a complete processing function.
One task may perform one LUW, or several
LUWs, generally delimited by
conversational terminal operations (a
terminal write, followed by a terminal
read).

SPECIFY A SYNCHRONIZATION POINT
(TVPE=USER)

The format of the DFHSP macro that
specifies completion of a logical unit
of work, or sync point, is as follows:

DFHSP TYPE=USER

A sync point is always requested by CICS
at termination of a task.

The completion of a logical unit of work
indicates to CICS that:

• All updates or modifications
performed by the task are logically
complete, and should not be backed
out if a system failure occurs.

• Functions requested prior to the
sync point, but deferred until the
end of the logical unit of work, are
to be processed, even if a
subsequent system failure occurs.
An example of such an operation is a
purge of a transient data
intrapartition queue, as requested
by the application program.

• All resources protected
automatically on behalf of the task
up to this point are to be released.
An example of such a resource may be

a transient data intrapartition
destination that is logically
associated with the task or a
resource previously enqueued by the
user.

• All resources previously enqueued by
the user are dequeued.

The location of a sync point for a task
on the system log data set, relative to
other logged activity for that task,
determines the extent to which CICS (or
user programs) may need to provide
transaction backout. Generally, sync
points are not needed for short duration
tasks.

Sync points are also used by CICS to
delimit the extent to which user data
set modifications may need to be backed
out for a task. During emergency
restart, CICS collects all user data set
modifications for tasks that were
engaged in a lUW at the time of
uncontrolled shutdown and copies them in
a restart data set. The modifications
can then be read by the CICS transaction
backout program or by user-written
programs executed during the
post-initialization phase of restart.

Through these facilities, sync point
management not only permits emergency
restart but also provides the means by
which the activity required for such
restart can be controlled by the user.
The functions performed by other CICS
programs involved in sync point,
uncontrolled shutdown, or emergency
restart activities are explained in
greater detail in the appropriate ~
Facilities and Planning Guide.

A sync point request for a task that is
scheduled to use a DL/I resource implies
the release of that resource. This
means that if, after issuing a DFHSP
TYPE=USER macro, access to a DL/I data
base is required, the desired PSB must
be rescheduled through the DFHFC
TYPE=(Dl/I,PSB) macro. The previous
position of that data base has been
lost. Conversely, when a Dl/I
termination instruction is issued, CICS
will issue a DFHSP TYPE=USER instruction
on behalf of the task that is releasing
a PSB.

Any BMS logical message that has been
started but not completed when a DFHSP
macro is issued is forced to completion
by means of an implied DFHBMS
TYPE=PAGEOUT macro. (If a DFHBMS
TYPE=PAGEOUT macro is executed during
the building of a page, this could
result in an incomplete page being
output.)

Chapter 7.6. Recovery/Restart (Sync Point) Control (DFHSP Macro) 319

Note: If sync points are to be issued
in a transaction that is eligible for
transaction restart, the application
programmer must seek advice from the
systems programmer.

BACKOUT RECOVERABLE RESOURCES
(TYPE=ROLLBACK) (ASH ONLY)

The format of the DFHSP macro that
restores recoverable resources is as
follows:

DFHSP TYPE=ROLLBACK

This macro causes all changes to
recoverable resources made by the task
since its last sync point to be backed
out so that those resources are then in
the state that they were at the time the
sync point was taken.

After the recoverable resources have
been restored, a sync point is taken and
control is passed to the user.

320 CICS/VS Application Programmer's Reference Manual (Macro Level)

PART 8. APPENDIXES

Part 8. Appendixes 321

APPENDIX A. EXAMPLE OF A CICS APPLICATION PROGRAM

This appendix contains an executable
application program that performs a
limited message switching function; that
is, data collection, message entry, and

message retrieval. The sample program,
which is not supplied with the CICS
product, is shown in assembler language,
COBOL, and PL/I.

Message switching Sample Program in ASH

* ASS E M B L ERE X AMP L E PRO B L E M *

* TITLE 'CICS/VS MESSAGE SWITCHING PROGRAM EXAMPLE' *

DFHCOVER

* * * * A P P L I CAT ION PRO G RAM * * * *

* * '* DUM M Y SEC T ION S * * *
*** COpy DFHCSADS COpy COMMON SYSTEM AREA DSECT

EJECT LISTING CONTROL CARD - EJECT
COPY DFHTCADS COpy TASK CONTROL AREA DSECT

TWATSRL DS H TEMPORARY STORAGE RECORD LENGTH
DS H

TWATDDI DS CL4 DESTINATION IDENTIFICATION
TWAREAI DS CL4 RETRIEVE ALL INDICATOR
TWAQEMCI DS C QUEUE EMPTY MESSAGE CONTROL IND

EJECT LISTING CONTROL CARD - EJECT
TCTTEAR EQU 11 TERM CONT TABLE TERM ENT ADR RG

COPY DFHTCTTE COpy TERM CONT TABLE TERM ENTRY
TIOABAR EQU 10 TERM I/O AREA BASE ADDR REG

COPY DFHTIOA COpy TERMINAL I/O AREA DSECT
TIOADATA DS OCL80 DATA AREA
TIOATID DS CL4 TRANSACTION IDENTIFICATION

DS C DELIMITER
TIOARRI DS OCL6 RESUME REQUEST IDENTIFICATION
TIOARAII DS OCL3 RETRIEVE ALL INDICATOR 1
TIOADID DS CL4 DESTINATION IDENTIFICATION
TIOASSF DS OCL4 SUSPEND STORAGE FACILITY IDENT

DS C DELIMITER
TIOAMBA DS OC TERMINAL MESSAGE BEGINNING ADDR
TIOARAI2 DS CL3 RETRIEVE ALL INDICATOR 2

SPACE 8 LISTING CONTROL CARD - SPACE 8
TDIABAR EQU 9 TRANS DATA IN AREA BASE ADDR RG

COpy DFHTDIA COpy TRANS DATA INPUT AREA
EJECT LISTING CONTROL CARD - EJECT

* * * * A P P L I CAT ION PRO G RAM * * * *

CICSATP CSECT CONTROL SECTION - APPL TEST PGM

USING *,3 USING REGISTER 3 AT *
LR 03,14 LOAD PROGRAM BASE REGISTER
B ATPIPIN GO TO INIT PROG INSTR ENTRY

EJECT LISTING CONTROL CARD - EJECT

* * * DEC L A RAT I V E S * * *

MCPDIEM DC YCMCPDEML-4) TERMINAL MESSAGE LENGTH

DC H'O'
DC X'lS'
DC 08X'17'
DC C'DESTINATION

NEW LINE SYMBOL CONSTANT
HARDCOPY TERM IDLE CHARACTERS

IDENTIFICATION ERROR - PLEASE RESUBMIT'
NEW LINE SYMBOL CONSTANT
TERMINAL MESSAGE TOTAL LENGTH

DC X'IS'
MCPDEML EQU *-MCPDIEM

Appendix A. Example of a CICS Application Program 323

Message switching Sample Program in ASM (Continued)

* D A T A COL L E C T ION *
*** DCPDCAML DC YCL'DCPDCAMD) DATA COLL ACKNOWLEDGMENT LEN

DC H'O'
DCPDCAMD DC C' DATA COLLECTION HAS BEEN REQUESTED AND IS ABOUT TO BE*

GIN ' DATA COLLECTION ACKNOWLEDGMENT
DCPEODML DC

DC
DCPEODMD DC

YCL'DCPEODMD) END OF DATA MESSAGE LENGTH
H'O'
C' THE DATA HAS BEEN RECEIVED AND DISPATCHED TO THE DESI*
GNATED DESTINATION END OF DATA MESSAGE

DCPEOVML DC Y(L'DCPEOVMD)
DC H'O'

DCPEOVMD DC C' END OF VOLUME REQUEST HAS BEEN RECEIVED
DCPSRAM DC YCDCPSRAL-4) TERMINAL MESSAGE LENGTH

DC H'O'
DC X'lS'
DC 08X'17'
DC C'DATA COLLECTION
DC X'lS'

DCPSRAL EQU *-DCPSRAM
DCPRRAM DC YCDCPRRAL-4)

DC H'O'

NEW LINE SYMBOL CONSTANT
HARD COPY TERM IDLE CHARACTERS

SUSPENSION HAS BEEN REQUESTED'
NEW LINE SYMBOL CONSTANT
TERMINAL MESSAGE TOTAL LENGTH
TERMINAL MESSAGE LENGTH

DC X'lS' NEW LINE SYMBOL CONSTANT
DC 08X'17' HARDCOPY TERM IDLE CHARACTERS
DC C'DATA COLLECTION RESUMPTION HAS BEEN REQUESTED AND IS '
DC C'ABOUT TO BEGIN'
DC X'lS' NEW LINE SYMBOL CONSTANT

DCPRRAL EQU *-DCPRRAM TERMINAL MESSAGE TOTAL LENGTH
*** SPACE 4 LISTING CONTROL CARD - SPACE 4

* M E S SAG E E N TRY *
*** MEPMEAML DC YCL'MEPMEAMD) MSG ENTRY ACKNOWLEDGMENT LNGTH

DC H'O'
MEPMEAMD DC C' YOUR MESSAGE HAS BEEN RECEIVED AND DISPATCHED TO THE *

DESIGNATED DESTINATION 'MESSAGE ENTRY ACKNOWLEDGMENT

SPACE 4 LISTING CONTROL CARD - SPACE 4

* M E S SAG ERE T R I E V A L *

MRPNMMM DC YCMRPNMML-4) TERMINAL MESSAGE LENGTH

DC H'O'
DC X'lS'
DC 08X'17'
DC C'THERE ARE NO MORE '

NEW LINE SYMBOL CONSTANT
HARDCOPY TERM IDLE CHARACTERS

DC C'MESSAGES QUEUED FOR THIS DESTINATION'
DC X'lS' NEW LINE SYMBOL CONSTANT

MRPNMML EQU *-MRPNMMM TERMINAL MESSAGE TOTAL LENGTH
MRPNMQM DC YCMRPNQML-4) TERMINAL MESSAGE LENGTH

DC H'O'
DC X'lS' NEW LINE SYMBOL CONSTANT
DC 08X'17' HARDCOPY TERM IDLE CHARACTERS
DC C'THERE ARE NO MESSAGES QUEUED FOR THIS DESTINATION'
DC X'lS' NEW LINE SYMBOL CONSTANT

MRPNQML EQU *-MRPNMQM TERMINAL MESSAGE TOTAL LENGTH
*** EJECT LISTING CONTROL CARD - EJECT

324 CICS/VS Application Programmer's Reference Manual CMacro Level)

Message switching Sample Program in ASH (Continued)

*** * * * IMP ERA T I V E S * * *

* * * * *** DS OD STORAGE ALIGNMENT - DOUBLEWORD

DC CL32'MESSAGE CONTROL PROGRAM'
ATPIPIN DS OD INITIAL PROGRAM INSTRUCTION ENT

L TCTTEAR, TCAFCAAA LOAD TERM CONT AREA ADDR REG
L TIOABAR,TCTTEDA LOAD TERM I/O AREA ADDR REG
CLC =C'DSDC',TIOATID COMPARE TRANSACTION IDENT
BE ALPDCPN GO TO DATA COLLECTION PROG IF =
CLC =C'DSME',TIOATID COMPARE TRANSACTION IDENT
BE ALPMEPN GO TO MESSAGE ENTRY PROG IF =
CLC =C'DSMR',TIOATID COMPARE TRANSACTION IDENT
BE ALPMRPN GO TO MESSAGE RETRIEVAL PROG
DFHPC TYPE=ABEND, *

ABCODE=XAPT
EJECT LISTING CONTROL CARD - EJECT

*** * * A P P L I CAT ION LOG I C * *
*** * * D A T A COL L E C T ION * *
*** DC CL32'DATA COLLECTION PROGRAM'
*** ALPDCPN DS OH DATA COLLECTION PROGRAM ENTRY

CLC =C'RESUME',TIOARRI COMPARE FOR RESUME REQUEST
BNE DCPRRBN GO TO RESUME REQUEST BYPASS
MVC TIOATDLCDCPRRAL),DCPRRAM MOVE TERMINAL MESSAGE TO OUTPUT
MVC TCATSDI(4),=C'DSDC' MOVE TEMP STRG DATA IDENT
MVC TCATSDI+4(4),TCTTETI MOVE TEMP STRG DATA IDENT
DFHTS TYPE=GET, *

TSDADDR=TWATSRL, *
NORESP=DCPRRNR, *
RELEASE=YES

DFHPC TYPE=ABEND, *
ABCODE=XDCR

DCPFEOV EQU * FORCED END OF VOLUME ROUTINE
DFHTD TYPE=FEOV ISSUE TRANSIENT DATA MACRO
MVC TIOATDL((4+L'DCPEOVMD»,DCPEOVML
DFHTC TYPE=(WRITE)
B RETURN

*** DCPRRBN EQU * RESUME REQUEST BYPASS ENTRY
MVC TWATDDI,TIOADID MOVE DESTINATION IDENTIFICATION
MVC TCATDDI,TWATDDI
CLC TIOAMBA(4),=C'FEOV' CHECK FOR FORCED END OF VOL REQ
BE DCPFEOV BRANCH TO END OF VOLUME ROUTINE
MVC TIOATDLC(4+L'DCPDCAMD»,DCPDCAML

DCPRRNR EQU * RESUME REQUEST NORMAL RESPONSE
DFHTC TYPE=(WRITE)
DFHTC TYPE=(READ)

*** SPACE 4 LISTING CONTROL CARD - SPACE 4

Appendix A. Example of a eICS Application Program 325

Message switching Sample Program in ASH (Continued)

DCPTEWN DS OH
DFHTC TYPE=(WAIT)
L TIOABAR,TCTTEDA
CLC =C'DUMP',TIOATID
BE DCPDPTS
ClC =C'EOD',TIOADBA
BE DCPEXIT
ClC =C'SUSPEND',TIOADBA
BNE DCPSRBN
MVC TWATSRl,=H'32'
MVC TCATSDI(4),=C'DSDC'
MVC TCATSDI+4(4),TCTTETI
ClC =C'MAIN',TIOASSF
BNE DCPSRMB
DFHTS TYPE=PUT,

TSDADDR=TWATSRl,
STORFAC=MAIN

B DCPSRAB
DCPSRMB EQU ~

DFHTS TYPE=PUT,
TSDADDR=TWATSRL,
STORFAC=AUXIlIARY

DCPSRAB EQU ~
DFHTS TYPE=CHECK,

NORESP=DCPSRNR
DFHPC TYPE=ABEND,

ABCODE=XDCS

TERMINAL EVENT WAIT ENTRY

LOAD TERM I/O AREA ADDR REG

GO TO DUMP TRANSACTION STORAGE
COMP DATA FOR EOD INDICATION
GO TO EXIT IF EQUAL
COMPARE FOR SUSPEND REQUEST
GO TO SUSPEND REQUEST BYPASS
MOVE TEMP STRG RECORD lENGTH
MOVE TEMP STRG DATA IDENT
MOVE TEMP STRG DATA IDENT

GO TO MAIN STRG FACILITY BYPASS
~

GO TO AUX STRG FACILITY BYPASS
MAIN STORAGE FACILITY BYPASS

AUX STORAGE FACILITY BYPASS

*

DCPSRNR EQU ~ SUSPEND REQUEST NORMAL RESPONSE
MVC TIOATDL(DCPSRAL),DCPSRAM MOVE TERMINAL MESSAGE TO OUTPUT
DFHTC TYPE=(WRITE)
B RETURN

DCPSRBN EQU ~
MVC TCATDDI,TWATDDI
XC TCTTEDA,TCTTEDA
DFHTC TYPE=(READ)
lH l4,TIOATDl
lA 14,4(0,14)
STH l4,TIOATDl
DFHTD TYPE=PUT,

TDADDR=TIOATDl,
NORESP=DCPNRCN,
IDERROR=DCPDIEN

DFHPC TYPE=ABEND,

GO TO RETURN ENTRY
SUSPEND REQUEST BYPASS ENTRY
MOVE DESTINATION IDENTIFICATION
RESET TERMINAL DATA ADDRESS

LOAD TERMINAL DATA lENGTH
INCREMENT TERMINAL DATA lENGTH
STORE TERMINAL DATA LENGTH

ABCODE=XDCP
~~~~~~~~~~~~~~~~~~~~~~~***~**~*~~~~~*~~~***~***~***********~*******~*~~ 
DCPNRCN DS OH NORMAL RESP CODE ENTRY ADDRESS 

ST TIOABAR,TCASCSA STORE TERM I/O AREA ADDRESS 
DFHSC TYPE=FREEMAIN 
B DCPTEWN GO TO TERM EVENT WAIT ENTRY 

~~**~~**~**~**********~*~*~**~*~~*~***~*****************************~** 
SPACE 4 lISTING CONTROL CARD - SPACE 4 

*~**~*******************~***~**~*~~~*~*~**********~*******************~ DCPDPTS EQU ~ DUMP TRANSACTION STOR ROUTINE 
DFHDC TYPE=TRANSACTION,DMPCODE=TRAN 
XC TCTTEDA,TCTTEDA CLEAR TERMINAL DATA AREA ADDR 
DFHTC TYPE=(READ) 
B DCPNRCN RETURN TO MAINSTREAM LOGIC 

~~**~~**~~~***~~***~**~~****~~~***~**~**~*****~***********************~ 
SPACE 4 

*~***************************~***~~*~******~***~~*********************~ 
DCPEXIT EQU * EXIT 

MVC TIOATDL«4+L'DCPEODMD»,DCPEODML 
DFHTC TYPE=(WRITE) 
B RETURN GO TO RETURN ENTRY 

~*~*~*~~~**********~**~******~~*~*~~~~~***~**~************************~ 
EJECT LISTING CONTROL CARD - EJECT 

326 CICS/VS Application Programmer's Reference Manual (Macro Level) 



Message switching Sample Program in ASH (Continued) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~ M E S SAG E E N TRY .~

~~~*~******~*~**~~**~****************~****~*****~*~**~***************** DC CL32'MESSAGE ENTRY PROGRAM' 
*********************************************************************** ALPMEPN DS OH MESSAGE ENTRY PROGRAM ENTRY 

MVC TCATDDI,TIOADID MOVE DESTINATION IDENTIFICATION 
MVC TIOATID,TCTTETI MOVE SOURCE IDENTIFICATION 
LH 14,TIOATDL LOAD TERMINAL DATA LENGTH 
LA 14,4(0,14) INCREMENT TERMINAL DATA LENGTH 
STH 14,TIOATDL STORE TERMINAL DATA LENGTH 
DFHTD TYPE=PUT, * 

TDADDR=TIOATDL, * 
NORESP=MEPNRCN, * 
IDERROR=MEPDIEN 

DFHPC TYPE=ABEND, * 
ABCODE=XMEP 

******************************~~**~**~~~~***~**~*~**~*******~~~*~****~* 
MEPNRCN DS OH NORMAL RESP CODE ENTRY ADDRESS 

MVC TIOATDLCC4+L'MEPMEAMD»,MEPMEAML 
DFHTC TYPE=(WRITE) 
B RETURN GO TO RETURN ENTRY 

~~~~~~~~~**************~*~***~~*~~~~*~*~******~*~***~*******~*~~******* 
EJECT LISTING CONTROL CARD EJECT

~*******************~*~*********~******************~~*~~*~*~~*~~~*~
~ M E S SAG ERE T R I E V A L ~
~~*~*~~**~~*~~~~~~*~*~~~*~*~*~*~**~**~*~*~*~~*~*~~~****~~*~~***~~~~~~~~

DC CL32'MESSAGE RETRIEVAL PROGRAM'
~~*****~~**~******~** SPACE 4 LISTING CONTROL CARD - SPACE 4
******~*****~****~**~*~*~~*~****~~~~~**~~~**~*~~*************~*****~~*~
ALPMRPN DS OH MESSAGE RETRIEVAL PROGRAM ENTRY

MVC TWAREAI,TIOARAI2 MOVE RETRIEVE ALL INDICATOR
MVC TWATDDI,TCTTETI MOVE DESTINATION IDENTIFICATION
CLC =C'ALL',TIOARAI1 COMPARE ALL INDICATOR FOR ALL
BNE MRPAI1B
MVC TWAREAI,TIOARAII MOVE RETRIEVE ALL INDICATOR
B MRPDEBN

MRPAI1B DS OH ALL INDICATOR 1 BYPASS
CLC =CL4' ',TIOADID COMPARE DEST IDENT TO BLANKS
BE MRPDEBN GO TO DEST ID = BL IF EQUAL
MVC TWATDDI,TIOADID MOVE DESTINATION IDENTIFICATION

MRPDEBN DS OH DESTINATION IDENT EQUALS BLANKS
~************~~****~*~~****~~*~*~~~*~~~************~***~***~*****~***~*

SPACE 4 LISTING CONTROL CARD - SPACE 4
******************~******************~*~~*~***~*~****~~~***~~*~*~*~~~**
MRPGTDN DS OH GET TRANSIENT DATA ENTRY

MVC TCATDDI,TWATDDI MOVE DESTINATION IDENTIFICATION
DFHTD TYPE=GET, *

NORESP=MRPNRCN, ~
QUEZERO=MRPQERN, ~
IDERROR=MRPDIEN

DFHPC TYPE=ABEND, ~
ABCODE=XMRP

~~*************~****~*******~~~*~**~***~*********~~***~***~*****~~~*~
SPACE 2 LISTING CONTROL CARD - SPACE 2

Appendix A. Example of a CICS Application Program 327

Message switching Sample Program in ASH (Continued)

**********************~***~*~**~*****~~~*******~******~*~~************~ MRPNRCN DS OH NORMAL RESP CODE ENTRY ADDRESS
L TDIABAR,TCATDAA LOAD TRANS DATA AREA ADDRESS
DFHTC TYPE=CWAIT) .
MVC MRPMTDI+ICl),TDIAIRL+l MOVE DATA LENGTH TO MOVE INSTR

MRPMTDI MVC TIOATDLCO),TDIAIRL MOVE TRANS DATA TO TERM AREA
LH 14,TIOATDL LOAD TERMINAL DATA LENGTH
SH 14,=H'4' SUBTRACT 4 FROM LENGTH
STH 14,TIOATDL STORE TERMINAL DATA LENGTH
DFHTC TYPE=CWRITE, *

SAVE)
CLC =CL3'ALL',TWAREAI COMPARE RETRIEVE ALL IND TO ALL
BNE RETURN GO TO RETURN ENTRY IF NOT EQUAL
MVI TWAQEMCI,X'FF' MOVE MESSAGE CONTROL INDICATOR
B MRPGTDN GO TO GET TRANSIENT DATA ENTRY

~~*~*******~*****~~** SPACE 4 LISTING CONTROL CARD - SPACE 4
*******~*** MRPQERN DS OH DESTINATION QUEUE EMPTY ENTRY

CLI TWAQEMCI,X'FF' COMPARE MESSAGE CONTROL IND
BE MRPNMQMB GO TO NO MSG QUEUED MSG BYPASS
MVC TIOATDLCMRPNQML),MRPNMQM MOVE TERMINAL MESSAGE TO OUTPUT
B MRPWRCS GO TO WRITE & RETURN TO C S

MRPNMQMB DS OH NO MESSAGES QUEUED MSG BYPASS
DFHTC TYPE=CWAIT)
MVC TIOATDLCMRPNMML),MRPNMMM MOVE NO MORE MESSAGE TO T 0 A

******~*******~** MRPWRCS DS OH WRITE AND RETURN TO CONT SYS
DFHTC TYPE=CWRITE)
B RETURN GO TO RETURN ENTRY

*********************~*** EJECT LISTING CONTROL CARD - EJECT

* * * * ************************~** DCPDIEN DS OH DESTINATION IDENT ERROR ENTRY

ST TIOABAR,TCTTEDA STORE TERM I/O AREA ADDRESS
MEPDIEN DS OH DESTINATION IDENT ERROR ENTRY
MRPDIEN DS OH DESTINATION IDENT ERROR ENTRY

MVC TIOATDLCMCPDEML),MCPDIEM MOVE TERMINAL MESSAGE TO OUTPUT
DFHTC TYPE=CWRITE)

*** SPACE 4 LISTING CONTROL CARD - SPACE 4
RETURN DS OH RETURN TO CONTROL SYSTEM

DFHPC TYPE=RETURN
~************************~***

LTORG * LITERAL ORIGIN AT *
***~~** END CICSATP END OF ASSEMBLY - APPL TEST PGM

328 CICS/VS Application Programmer's Reference Manual CMacro Level)

Message Switching Sample Program ·in COBOL

*** COB 0 LEX AMP L E PRO B L E M

*

ID DIVISION.
PROGRAM-ID.
ENVIRONMENT DIVISION.
DATA DIVISION.

CICSATP.

WORKING-STORAGE SECTION.

77 DCPDCAML PIC 99 COMP VALUE 58.
77 DCPDCAMD PIC X(58) VALUE 'DATA COLLECTION HAS

77
77

, BEEN REQUESTED AND IS ABOUT TO BEGIN '.
DCPEODML PIC 99 COMP VALUE 73.
DCPEODMD PIC X(73) VALUE 'THE DATA HAS BEEN R

'ECEIVED AND DISPATCHED TO THE DESIGNATED DESTINATION , ,
77 MELMEAML PIC 99 COMP VALUE 77.
77 MEPMEAMD PIC X(77) VALUE 'YOUR MESSAGE HAS BEE

77
77
77

MRPNMML
MRPNQML
MCPDEML

'N RECEIVED AND DISPATCHED TO THE DESIGNATED DESTINAT
'ION

PIC 99
PIC 99
PIC 99

COMP
COMP
COMP

VALUE 68.
VALUE 63.
VALUE 64.

* 01 MESSG1.
03 MCPDIEM PIC 99 COMP VALUE 60.
03 FILLER PIC 99 COMP VALUE ZERO.
03 MESSAGE1 PIC X(60) VALUE' DESTINATION

• IDENTIFICATION ERROR - PLEASE RESUBMIT '.
* 01 MESSG2.

*
*

*
*

*
*

* 01

03 MRPNMMM PIC 99 COMP VALUE 64.
03 FILLER PIC 99 COMP VALUE ZERO.
03 MESSAGE2 PIC X(64) VALUE' THERE ARE N

'0 MORE MESSAGES QUEUED FOR THIS DESTINATION '

MESSG3.
03 MRPNMQM PIC 99 COMP VALUE 59.
03 FILLER PIC 99 COMP VALUE ZERO.
03 MESSAGE3 PIC X(59) VALUE' THERE ARE N

'0 MORE MESSAGES QUEUED FOR THIS DESTINATION '

LINKAGE SECTION.

01 DFHBLLDS COpy DFHBLLDS.
03 TCTTEAR PIC S9(8)
03 TIOABAR PIC 59(8)
03 TDIABAR PIC S9(8)

01 DFHCSADS COpy DFHCSADS.

01 DFHTCADS COpy DFHTCADS.
03 TWATDDI PIC X(4).
03 TWAREAI PIC X(4).
03 TWAQEMCI PIC S9

01 DFHTCTTE COpy DFHTCTTE.

01 DFHTIOA COpy DFHTIOA.
03 TIOADATA PIC X(80).

COMPo
COMPo
COMPo

COMPo

03 FILLER REDEFINES TIOADATA.
05 EODTEST PIC X(3).
05 FILLER PIC X(77).

03 FILLER REDEFINES TIOADATA.
05 TIOATID PIC X(4).
05 FILLER PIC X.
05 TIOADID PIC X(4).

Appendix A. Example of a CICS Application Program 329

Message switching Sample Program in COBOL (Continued)

OS FILLER REDEFINES TIOADID.
07 TIOARAI1 PIC X(3).
07 FILLER PIC X.

OS TIOARAI2 PIC X(3).
OS FILLER REDEFINES TIOARAI2.

07 TIOAMBA PIC X.
07 FILLER PIC XX.

OS FILLER PIC X(6S).
JE

01 DFHTDIA COpy DFHTDIA.
02 TDIADBA PIC X(SO).

JE
PROCEDURE DIVISION.

3000E***30E3E*30E*
ATPIPIN.

3E******JE*3EJEJEJEJE
MOVE CSACDTA TO TCACBAR.
MOVE TCAFCAAA TO TCTTEAR.
MOVE TCTTEDA TO TIOABAR.

IF TIOATID = 'BSDC'
THEN GO TO ALPDCPN.

IF TIOATID = 'BSME'
THEN GO TO ALPMEPN.

IF TIOATID = 'BSMR'
THEN GO TO ALPMRPN.

DFHPC TYPE=ABEND,
ABCODE=XAPT

JE
JEJE3EJEJEJEJEJEJE3EJE3EJE3E

ALPDCPN.
JEJEJE3EJEJEJEJEJEJEJEJEJEJE
3E DATA COLLECTION
JE

MOVE
MOVE
MOVE

DFHTC

DCPTEWN.
MOVE

IF
THEN

MOVE
MOVE
ADD

TIOADID TO TWATDDI.
DCPDCAML TO TIOATDL.
DCPDCAMD TO TIOADATA.

TYPE=(WRITE,READ,WAIT)

TCTTEDA TO TIOABAR.

EODTEST = 'EDO'
GO TO DCPEXIT.

TWATDDI TO TCATDDI.
ZEROES TO TCTTEDA.
4 TO TIOATDL.

DFHTD TYPE=PUT,
TDADDR=TIOATDL,
NORESP=DCPNRCN"
IDERROR=DCPDIEN

DFHPC TYPE=APEND"
. ABCODE=XDCP

330 CICS/VS Application Programmer's Reference Manual (Macro Level)

Message switching Sample Program ·in COBOL (Continued)

DCPNRCN.
MOVe:
DFHSC
DFHTC
GO TO

DCPEXIT.
MOVE
ADD
MOVE
DFHTC
GO TO

TIOABAR TO TCASCSA.
TYPE=FREEMAIN
TYPE=(READ,WAIT)
DCPTEWN.

DCPEODML TO TIOATDL.
4 TO TIOATDL.
DCPEODMD TO TIOADATA.
TYPE=WRITE
RETURNl.

* ************** ALPMEPN.
************** * MESSAGE ENTRY
* MOVE TIOADID TO TCATDDI.

MOVE TCTTETI TO TIOATID.
ADD 4 TO TIOATDL.

DFHTD TYPE=PUT,
TDADDR=TIOATDL,
NORESP=MEPNRCN,
IDERROR=MEPDIAN

DFHPC TYPE=ABEND,
ABCODE=XMEP

MEPNRCN.
MOVE
ADD
MOVE
DFHTC
GO TO

MEPMEAML TO TIOATDL.
4 TO TIOATDL.
MEPMEAMD TO TIOADATA.
TYPE=WRITE
RETURNl.

* ************** ALPMRPN.
************** * MESSAGE RETRIEVAL
* MOVE TIOARAI2 TO TWAREAI.

MOVE TCTTETI TO TWATDDI.

IF TIOARAIl NOT = 'ALL'
THEN GO TO MRPAI1B.

MOVE TIOARAIl TO TWAREAI.
GO TO MRPDEBN.

MRPAI1B.
IF TIOADID = SPACES
THEN GO TO MRPDEBN.

MOVE TIOADID TO TWATDDI.

MRPDEBN.
MRPGTDN.

MOVE TWATDDI TO TCATDDI.

DFHTD TYPE=GET~ *
NORESP=MRPNRCN, *
QUEZERO=MRPQERN, *
IDERROR=MRPDIEN

DFHPC TYPE=ABEND, *
ABCODE=XMRP

Appendix A. Example of a eICS Application Program 331

Message switching Sample Program in COBOL (Continued)

MRPNRCN.
MOVE TDIAIRL TO TIOATDL.
MOVE TDIADBA TO TIOADATA.
SUBTRACT 4 FROM TIOATDL.
DFHTC TYPE=(WRITE,WAIT,SAVE)

IF TWAREAI NOT = 'ALL'
THEN GO TO RETURNl.

MOVE 2SS TO TWAQEMCI.
GO' TO MRPGTDN.

MRPQERN.
IF TWAQEMCI = 2SS
THEN GO TO MRPNMQMB.

MOVE MRPNMQM TO TIOATDL.
MOVE MESSAGE3 TO TIOADATA.
GO TO MRPWRCS.

MRPNMQMB.
MOVE MRPNMMM TO TIOATDL.
MOVE MESSAGE2 TO TIOADATA.

MRPWRCS.
DFHTC TYPE=WRITE
GO TO RETURNl.

DCPDIEN.
MOVE TIOABAR TO TCTTEDA.

MEPDIEN.
MRPDIEN.

MOVE MCPDIEM TO TIOATDL.
MOVE MESSAGEl TO TIOADATA.
DFHTC TYPE=WRITE

* ************** RETURNl.

* DFHPC TYPE=RETURN

332 CICS/VS Application Programmer's Reference Manual (Macro Level)

Message switching Sample Program ·in PL/I

*** P L / I E X AMP L E PRO B L E M

/* PL/I EXAMPLE PROBLEM */

DFHCOVER
CICSATP: PROCEDURE OPTIONS (MAIN, REENTRANT);

~INClUDE DFHCSADS;
~INCLUDE DFHTCADS;

2 TWATDDI CHAR (4),
2 TWAREAI CHAR (4),
2 TWAQEMCI BINARY FIXED (8);

~INCLUDE DFHTCTTE;
~INCLUDE DFHTIOA;

2 TIOADATA CHAR (80);
DECLARE 1 TIOAI BASED (TIOABAR),

2 FILLI CHAR (12),
2 TIOATID CHAR (4),
2 FILL2 CHAR (I),
2 TIOARAII CHAR (3),
2 FILL3 CHAR (2),
2 TIOAMBA CHAR (1);

DECLARE 1 TIOA2 BASED (TIOABAR),
2 FIlLl CHAR (12),
2 EODTEST CHAR (3),
2 FILL2 CHAR (2),
2 TIOADID CHAR (4),
2 FILL3 CHAR (I),
2 TIOARAI2 CHAR (3);

~INCLUDE DFHTDIA;
2 TDIADBA CHAR (80);

DCL MCPDEML FIXED BIN INIT(S6), MCPDIEM CHAR(S6) INITIAL
(' DESTINATION IDENTIFICATION ERROR - PLEASE RESUBMIT');

DCl DCPDCAML FIXED BIN INIT(S7), DCPDCAMD CHAR(S7) INITIAL
(' DATA COLLECTION HAS BEEN REQUESTED AND IS ABOUT TO BEGIN');

DCl DCPEODMl FIXED BIN INIT(72), DCPEODMD CHAR(72) INITIAL
(' THE DATA HAS BEEN RECEIVED AND DISPATCHED TO THE DESIGNATED DESTINAT
ION');

DCL MEPMEAML FIXED BIN INIT(76), MEPEAMD CHAR(76) INITIAL
(' YOUR MESSAGE HAS BEEN RECEIVED AND DISPATCHED TO THE DESIGNATED DEST
INATION');

DCL MRPNMML FIXED BIN INIT(60), MRPNMMM CHAR(60) INITIAL
(I THERE ARE NO MORE MESSAGES QUEUED FOR THIS DESTINATION');

DCL MRPNQMl FIXED BIN INIT(SS), MRPNMQN CHARCSS) INITIAL
(' THERE ARE NO MESSAGES QUEUED FOR THIS DESTINATION');
ATPIPIN: TCTTEAR = TCAFCAAA;

TIOABAR = TCTTEDA;
IF TIOATID = 'PSDC' THEN GO TO ALPDCPN;
IF TIOATID = 'PSME' THEN GO TO ALPMEPNi
IF TIOATID = 'PSMR' THEN GO TO ALPMRPN;

DFHPC TYPE=ABEND, *
ABCODE=XAPT

/* DATA COLLECTION PROGRAM */
ALPDCPN: TWATDDI = TIOADID;

TIOATDl = DCPDCAML;
TIOADATA = DCPDCAMD;

DFHTC TYPE=(WRITE,READ,WAIT)
DCPTEWN:

TIOABAR = TCTTEDA;
IF EODTEST = 'EOD' THEN GO TO DCPEXIT;
TCATDDI = TWATDDI;
UNSPEC (TCTTEDA) = 0;
TIOATDl = TIOATDL + 4;

DFHTD TYPE=PUT,
TDADDR=TIOATDl,
NORESP=DCPNRCN,
IDERROR=DCPDIEN

DFHPC TYPE=ABEND,
ABCODE=XDCP

Appendix A. Example of a CICS Application Program 333

Message switching Sample Program in PL/I (Continued)

DCPNRCN: TCASCSA = TIOABAR;
DFHSC TYPE=FREEMAIN
DFHTC TYPE=(READ,WAIT)

GO TO DCPTEWNi
DCPEXIT: TIOATDl = DCPEODMl;

TIOADATA = DCPEODMD;
DFHTC TYPE=WRITE

GO TO RETURN;
/* MESSAGE ENTRY PROGRAM */
AlPMEPN: TCATDDI = TIOADID;

TIOATID = TCTTETI;
TIOATDl = TIOATDl + 4;

DFHTD TYPE=PUT,
TDADDR=TIOATDl,
NORESP=MEPNRCN,
IDERROR=MEPDIEN

DFHPC TYPE=ABEND,
ABCODE=XMEP

MEPNRCN: TIOATDl = MEPMEAMl; TIOADATA = MEPEAMD;
DFHTC TYPE=WRITE

GO TO RETURN;
/* MESSAGE RETRIEVAL PROGRAM */

AlPMRPN: TWAREAI = TIOARAI2; TWATDDI = TCTTETI;
IF TIOARAI1 ~= 'All' THEN GO TO MRPAI1B;
TWAREAI = TIOARAI1;
GO TO MRPDEBN;

MRPAI1B: IF TIOADID = , , THEN GO TO MRPDEBN;
TWATDDI = TIOADID;

MRPDEBN: MRPGTDN: TCATDDI = TWATDDI;
DFHTD TYPE=GET,

NORESP=MRPNRCN,
QUEZERO=MRPQERN,
IDERROR=MRPDIEN

DFHPC TYPE=ABEND,
ABCODE=XMRP

MRPNRCN: TDIABAR = TCATDAA;
TIOATDl = TDIAIRl - 4;
TIOADATA = TDIADBA;

DFHTC TYPE=(WRITE,WAIT,SAVE)
IF TWAREAI -= 'All' THEN GO TO RETURN;
TWAQEMCI = '1111111l'B;
GO TO MRPGTDN;

MRPQERN: IF TWAQEMCI = 'llllllll'B THEN GO TO MRPNMQMB;
TIOATDl = MRPNQMl;
TIOADATA = MRPNMQN;
GO TO MRPWRCS;

MRPNMQMB: TIOATDl = MRPNMMl; TIOADATA = MRPNMMM;
MRPWRCS:

DFHTC TYPE=WRITE
GO TO RETURN;

DCPDIEN: TCTTEDA = TIOABAR;
MEPDIEN: MRPDIEN: TIOATDL = MCPDEMl;

TIOADATA = MCPDIEM;
DFHTC TYPE=WRITE

RETURN:
END CICSATP;

334 CICS/VS Application Programmer's Reference Manual (Macro level)

APPENDIX B. BMS MAP DEFINITION EXAMPLE

This appendix shows the BMS map definition macros used to generate the symbolic
storage definition associated with an input map for a display with the format shown
below. The appendix also shows, for each programming language, the symbolic storage
definition that is generated by the macros.

• PAYROLL

• NAMEI

• DATE: • MMDDYY

• SEX: • !MALE

• SKILLS: • •

• PAY

The following map definition macros would be used to create the symbolic storage
definition (DSECT) associated with an input map for an assembler-language
application program. (To create the map itself, the TYPE=DSECT operand would be
replaced by a TYPE=MAP operand.)

MAPSET

MAPI

NAME

MONTH
DAY

YEAR

SEX

SKILLS

PAY

DFHMSD TYPE=DSECT,MODE=IN,CTRL=(FREEKB,FRSET),
lANG=ASM, EXTATT=MAPONlY

DFHMDI LINE=l,COlUMN=I,JUSTIFY=(lEFT,FIRST)
DFHMDF POS=9,LENGTH=7,INITIAl='PAYROLL',ATTRB=BRT,

HILIGHT=UNDERLINE
DFHMDF POS=40,lENGTH=8,INITIAL='NAME:'
DFHMDF POS=49,LENGTH=20,ATTRB=IC, COLOR=RED
DFHMDF POS=80,lENGTH=8,INITIAL='DATE:'
DFHMDF POS=89,LENGTH=2,GRPNAME=DATE,INITIAL='MM',ATTRB=NUM
DFHMDF POS=91,LENGTH=2,GRPNAME=DATE,INITIAL='DD',

JUSTIFY=(LEFT,BLANK)
DFHMDF POS=93,LENGTH=2,GRPNAME=DATE,INITIAl='YY'
DFHMD~ POS=120,LENGTH=8,INITIAL='SEX:'
DFHMDF POS=129,LENGTH=5,ATTRB=DET,INITIAl='!MAlE'
DFHMDF POS=160,LENGTH=8,INITIAL='SKIlLS:'
DFHMDF POS=169,LENGTH=4,ATTRB=UNPROT,OCCURS=3
DFHMDF POS=200,LENGTH=8,INITIAL='PAY:'
DFHMDF POS=209,LENGTH=6,ATTRB=NUM, COLOR=BlUE
DFHMSD TYPE=FINAL
END

The assembler DSECT produced as a result of the above statements would be as
follows:

Appendix B. BMS Map Definition Example 335

MAPII

NAMEL
NAMEF

NAMEI

DS
SPACE

DS
DS
DS
DS

SPACE

OC

CL2
OC
C
CL20

* START NEW DATA GROUP DATE
DATEL DS CL2
DATEF DS OC

DS C
DATEI DS OC

SPACE 2
MONTHI DS CL2

DAYI

YEARI

SEXL
SEXF

SEXI

SPACE
DS

SPACE
DS

SPACE
DS
DS
DS
DS

SPACE
SKILLSD DS
SKILLSL DS
SKILLSF DS

DS
SKILLSI DS
SKILLSN EQU

ORG

PAYL
PAYF

PAYI

SPACE
DS
DS
DS
DS

SPACE

CL2

CL2

CL2
OC
C
CLI

OC
CL2
OC
C
CL4
* SKILLSD+3*(3+4)

CL2
OC
C
CL6

* * * END OF MAP DEFINITION * * *
SPACE 3
ORG

MAPSETT EQU * * END OF MAPSET
* * * END OF MAP SET DEFINITION * * *

SPACE 3

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE
DATA FIELD

INPUT GROUP FIELD LENGTH
GROUP FIELD FLAG
GROUP FIELD ATTRIBUTE
GROUP FIELD ORIGIN

DATA FIELD

DATA FIELD

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE
DATA FIELD

FIRST OCCURRING FIELD
INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE
DATA FIELD
NEXT OCCURRING FIELD
ALLOCATE OCCURRING FIELD SPACE

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE
DATA FIELD

By changing. LANG=ASM to LANG=COBOL in the DFHMSD macro, the following symbolic
storage definition would be produced.

336 CICS/VS Application Programmer's Reference Manual (Macro Level)

01 MAPII.
02 NAMEL COMP PIC S9(4).
02 NA~1EF PIC X.
02 NAMEI PIC X(20).
02 DATEL COMP PIC S9(4).
02 DATEF PIC X.
02 DATEI.

03 MONTHI PIC X(2).
03 DAYI PIC X(2).
03 YEARI PIC X(2).

02 SEXL COMP PIC S9(4).
02 SEXF PIC X.
02 SEXI PIC XCI).
02 SKILLSD OCCURS 3 TIMES.

03 SKILLSL COMP PIC S9(4).
03 SKILLSF PIC X.
03 SKILLSI PIC X(4).

02 PAYL COMP PIC S9(4).
02 PAYF PIC X.
02 PAYI PIC X(6).

Similarly, changing LANG=ASM ~o LANG=PLI in ~he DFHMSD macro would produce the
following symbolic storage definition:

DCL 1 MAPII BASEDCBMSMAPBR) UNALIGNED,
2 NAMEL FIXED BIN(15,O),
2 NAMEF CHAR(l),
2 NAMEI CHAR(20),
2 DATEL FIXED BIN(15,O),
2 DATEF CHAR(l),
2 DATEI,

3 MONTHI CHAR(2),
3 DAYI CHAR(2),
3 YEARI CHAR(2),

2 SEXL FIXED BIN(15,O),
2 SEXF CHAR(l),
2 SEXI CHAR(l),
2 SKILLSD(3),

2
2
2
2

3 SKILLSL FIXED BIN(15,O),
3 SKILLSF CHAR(l),
3 SKILLSI CHAR(4),

PAYL FIXED BIN(15,O),
PAYF CHAR(l),
PAYI CHAR(6),
FILL0024 CHARCl);

/*. END OF MAP DEFINITION */

Appendix B. BMS Map Definition Example 337

APPENDIX C. INTER-RELEASE COMPATIBILITY

This appendix defines the compatibility
between application programs on the
current release of CICS and previous
releases of CICS. See the edition
notice on page ii for the current
releases of CICS.

There are two forms of application
program compatibility,

• Source compatibility. The source
code assembled or compiled on the
current release of CICS generates ·an
equivalent object program to that
generated by previous releases of
CICS

• Object compatibility. The object
program, when executed under the
current release of CICS will give
the same results as it will when
executed under previous releases of
CICS.

In releases of CICS before 1.4, you
could not code TIOAPFX=YES in the DFHMSD
or DFHMDI macro for an assembler
language application program. If you
did, CICS disregarded it and used the
default (TIOAPFX=NO). However, in
releases of CICS later than 1.4 you can
code TIOAPFX=YES for an assembler
language program. This is a source
incompatibility because you will get a
different object program under releases
of CICS later than 1.4 from that which
would be produced under releases earlier
than 1.4.

You should be aware that a change to the
phonetic conversion built-in function
Cdescribed in page 266) is an object
incompatibility.

With the withdrawal of native ISAM
support in CICS Version 1 Release 7, the
ISAM I/O error code field, FCFIOEX, is
no longer supported. Application
programs accessing this field will
exhibit both source and object
incompatibility and will require
modification.

DEFINITION OF THE APPLICATION PROGRAMMER
INTERFACE

The remainder of this appendix defines
the application programmer interface
(API) that applies to users converting
from previous releases.

The API is defined as the CICS macros,
control block fields, and area prefix
fields that are available for use by a
user-written application program. With

the exception of the single source
incompatibility (TIOAPFX=YES) described
above, applicati~n programs using these
macros or fields will execute
successfully under releases later than
1.4 of CICS without recompilation.

The macros and fields of the API that
are valid for a given release are those
documented in the CICS/VS Application
Programmer's Reference Manual (Macro
level) for that release.

We do not guarantee compatibility fort

• macros or fields other than those
documented in the manual

•

•

fields marked "unused" or "reserved"
in former releases

fields used for purposes other then
described in the manual.

Application programs containing such
macros or fields should be recompiled,
tested, and where necessary modified to
ensure correct execution.

CICS MACROS

The following macros are those for which
compatibility can be guar~nteed for
previous releases.

DFHBIF
DFHBMS
DFHDC
DFHDI

DFHFC
DFHIC
DFHJC
DFHKC

DFHMDF
DFHPC
DFHSC
DFHSP

DFHTC
DFHTD
DFHTR
DFHTS

The CICS/OS/VS CAllDlI macro is also
part of the API.

Only the operands and parameters of the
macros described in the CICS/VS
Application Programmer's Reference
Manual (Macro level) for the release
from which you are migrating are
supported by CICS for use by
user-written application programs.

CICS CONTROL BLOCK FIELDS AND AREA
PREFIX FIELDS

Many of the fields in CICS areas, for
example, the CSA, or prefixes to user
I/O areas, for example, a TIOA, are
referred to directly when a CICS macro
is executed and it is essential that
their location, type, and meaning remain
unchanged across releases.

The following fields form the API for
the current release of CICS.

Appendix C. Inter-Release Compatibility 339

CSABFNAC

CSABMS

CSACDTA

CSACTODB

CSADCNAC

CSAFCNAC

CSAICNAC

CSAICRNX

CSAJCNAI

CSAJCNA2

CSAJYDP

CSAKCNAC

CSAOPFLA

CSAPCNAC

CSASCNAC

CSASPNAC

CSATCNAC

CSATCRWE

CSATDNAC

CSATODP

CSATRMFI

CSATRMF2

CSATRMF3

CSATRNAC

CSATRTBA

CSATSNAC

CSAWABA

FCDSOID

FCFIOBEX

Address of built-in
functions

BMS address

Common System Area Current
Dispatched Task Address

Common System Area Current
Time of Day in Binary

Dump Control Entry Address

File Control Entry Address

Time Control Entry Address

NOP/Branch Flush Routine
Interface

Journal Control Macro
Entry Pointer I

Journal Control Macro
Entry Pointer 2

'Common System Area Date in
Packed dec (OOOYYDDD)

Task Control Entry Address

Common System Area Optional
Features List Address

Program Control Entry Addr

Storage Control Entry Addr

Sync Point Program Ent Addr

Terminal Control Entry Addr

Terminal Control Read/Write
Entry Address

Transient Data Control Entry
Address

Common System Area Time of
Day in Packed dec (4 bytes)

Trace Master Flags

Trace System Flags

Trace System Flags

Trace Control Entry Address

Common System Area TRace
Table Address

Temporary Storage Entry
Address

Common System Area Work
Area Beginning Address

Beginning Address Data Area

File Control File Input/
Output BDAM Error Code
(4 bytes)

FCFIOFCT

FCFIOLRA

FCIOERR

FCUFCTA

FCUPDRA

FCUWA

FIOADBA

FIOAIND

FWAIND

JCAADATA

JCAAPRFX

JCAECN

JCAJCRC

JCAJFID

JCAJRTID

JCALDATA

JCALPRFX

JCANOTE

JCARST

JCATRI

JCATR2

JCATR3

JCAVCD

JCAVSN

File Control Entry Table
Address

Logical Record Address

File Control File Input/
Output DAM Error Code
(2 bytes)

File Control Table Entry
Address

File Input/Output Area
Address

File Control Update Work
Area (data begin address)

Data Beginning Address

File I/O Area Indicator

File Work Area Indicator

Journal Control Area Addr
of DATA to be written to
journal data set

Journal Control Area Addr
of User-Prefix Data

Journal Control Area
Event Control Number
(4 bytes)

Journal Control Area
Journal Control Response
Code (1 byte)

Journal Control Area
Journal File
IDentification (1 byte)

Journal Control Area
Journal Record Type
IDentification (2 bytes)

Journal Control Area
Length of DATA to be
written to journal data
set (2 bytes)

Journal Control Area
Length of user PReFiX
(2 bytes)

Note Request Returned-Data

Run Start Time (HHMMSSS+)

Type Request By tel

Type Request Byte2

(Reserved for CICS usage)

Volume Creation Date
(YYDDD+)

Volume Sequence Number
(NNN+)

340 CICS/VS Application Programmer's Reference Manual (Macro Level)

SAASACA

SAASAD

SAASCI

SAASFI

TCAATAC

TCABFPAM

TCABFTR

TCABITF

TCABITR

TCABITTP

TCABITV

TCABMSCP

TCABMSMA

TCABMSMN

TCACCCA

TCACCSVI

TCACCSV2

TCACHKR

TCACKFD

TCACKlN

TCADCDC

storage Accounting Area
Storage Accounting Chain
Address

Storage Area Displacement

Storage Class
Identification

Storage Format
Identification

Abnormal Termination Abend
Code

Address Pointer
Initialization (Built-In
Functions)

Task Control Area Built-in
Function Type of Request
(1 byte)

Task Control Area BIT
Manipulation address of
one-byte bit Field to be
operated on

Task Control Area BIT
Manipulation Result of
BITEST operation (1 byte)

Bit Function Type Indicator

Task Control Area BIT
Manipulation address of bit
pattern (mask) to be
applied to a specified byte

Task Control Area basic
mapping support Cursor
Position (2 bytes)

Task Control Area basic
mapping support Map Address

Task Control Area basic
mapping support Map Name
(8 bytes)

Task Control Area Common
Control Communication Area

Save Area for Bytes
Overlaid by DFHDC

Save Area for Bytes
Overlaid by DFHDC

Response Indicator
(Built-In Function)

Task Control Area Field
Verify address of FielD to
be ChecKed

Task Control Area Field
Verify leNgth of field to
be ChecKed (2 bytes)

Task Control Area Dump
Control Dump Code (4 bytes)

TCADCNB

TCADCSA

TCADCTR

TCADIDNA

TCADIKYA

TCADINRS

TCADIRNA

TCADIVNA

TCADlFUN

TCADlIO

TCADlPCB

TCADlPSB

TCADlSSA

TCADlTR

TCAFCAA

TCAFCAAA

TCAFCDI

TCAFCI

TCAFCNRD

TCAFCRI

Task Control Area Dump
Control Number of Bytes in
area to be dumped (2 bytes)

Task Control Area Dump
Control Storage Address of
area to be dumped

Task Control Area Dump
Control Type of Request
(ASM or Pl/I; 2 bytes)

Task Control Area Batch
Data Interchange
Destination Name Address

Task Control Area Batch
Data Interchange Key Addr

Task Control Area Batch
Data Interchange Number of
Records in Request (1 byte)

Task Control Area Batch
Data Interchange Relative
Record Number Address

Task Control Area Batch
Data Interchange Volume
Name Address

Task Control Area Dl/I
FUNction (4 bytes)

Task Control Area Dl/I
Input/Output area address

Task Control Area Dl/I
Program Control Block addr

Task Control Area Dl/I
program specification block
name (8 bytes)

Task Control Area Dl/I
address of segment search
argument list

Dl/I Type of Invalid
Response

Task Control Area File
Control Area Address

Task Control Area Facility
Control Area Associated
Address

Task Control Area File
Control Data set
Identification (8 bytes)

Facility Control Indicator

Task Control Area File
Control Number of Records
Deleted (2 bytes binary)

Task Control Area File
Control Record
Identification (8 bytes)

Appendix C. Inter-Release Compatibility 341

TCAFCTR

TCAFCURL

TCAFLD

TCAFLN

TCAICCLS

TCAICDA

TCAICQID

TCAICQPX

TCAICRT

TCAICTEC

TCAICTI

TCAICTID

TCAICTR

TCAINAM

TCAINAI

TCAINA2

TCAINHI

TCAINRC

Task Control Area File
Control Type of Request/
Response (ASM or PL/I;
1 byte)

Task Control Area File
Control Undefined Record
Length (2 bytes)

Task Control Area Field
Edit address of FieLD to be
edited

Task Control Area Field
Edit LeNgth of Field to be
edited (2 bytes)

Unique Identification of
Request Identification

Task Control Area Interval
Control Data Area

Task Control Area Interval
Control reQuest
IDentification (8 bytes)

Task Control Area Interval
Control reQuest Prefix (2
bytes)

Task Control Area Interval
Control Request Time (4
bytes)

Task Control Area Interval
Control Timer Event Control
area address

Task Control Area Interval
Control Transaction
Identification (4 bytes)

Task Control Area Interval
Control Terminal
IDentification (4 bytes)

Task Control Area Interval
Control Type of Request/
Response (ASM or PL/I;
1 byte)

Name List Indicator

Task Control Area INput
Formatting Address of list
of offsets for the internal
fixed-format TIOA

Task Control Area INput
Formatting Address of list
of field names that may
appear in input stream

Task Control Area INput
Formatting length of TIOA
to be acquired for the
internal fixed-format
representation of data

- (Hal fword field)

Task Control Area INput
Formatting Response Code
(1 byte)

TCAJCAAD

TCAKCFA

TCAKCRC

TCAKCTA

TCAKCTI

TCAMSFMP

TCAMSFSC

TCAMSHDR

TCAMSIOA

TCAMSJ

TCAMSLDC

Task Control Area Journal
Control Area ADdress

Task Control Area Task
Control (KCP) Facility
control area Address

System Macro Return Code

Task Control Area Task
Control (KCP) TCA Address

Task Control Area Task
Control (KCP) Transaction
Identification (4 bytes)

Task Control Area Mapping
Support Function Management
Parameter

Field Separator Characters

Task Control Area Mapping
Support HeaDeR address
(4 bytes)

Task Control Area Mapping
Support Input/Output Area
Address

Task Control Area Mapping
Support Justification (one
byte)

Logical Device Code

TCAMSLDM LDC Mnemonic

TCAMSMSA Task Control Area Mapping
Support Map Set Address

TCAMSMSN Task Control Area Mapping
Support Map Set Name (8
bytes)

TCAMSOC Task Control Area Mapping
Support Operator Class
(3 bytes)

TCAMSOCN Overflow Control Number

TCAMSPGN Task Control Area Mapping
Support PaGe Number
(current page; 2 bytes
binary)

TCAMSRCl- - Task Control Area Mapping
TCAMSRC3 Support Response Code (one

byte each)

TCAMSRID Task Control Area Mapping
Support Request
IDentification

TCAMSRII Task Control Area Mapping
Support Return Information
(1 byte)

TCAMSRLA Task Control Area Mapping
Support Routing List
Address, or Returned page
List Address

342 CICS/VS Application Programmer's Reference Manual (Macro Level)

TCAMSRTI Task Control Area Mapping
Support Routing Time or
Time interval Indicator
(4 bytes packed decimal)

TCAMSTA Task Control Area Mapping
Support Title Address

TCAMSTI Task Control Area Mapping
Support error Terminal
Identification (4 bytes)

TCAMSTRl Task Control Area Mapping
Support TRailer address
(4 bytes)

TCAMSTRI- - Task Control Area Mapping
TCAMSTR7 Support Type Request (one

byte each)

TCAMSWCC

TCANAME

TCANXTID

TCAOClA

TCAOCTR

TCAPCAC

Write Control Characters

Task Control Area Phonetic
Conversion 16-byte field
containing data (NAME) to
be phonetically encoded

Task Control Area NeXt
Transaction IDentification
(4 bytes)

Open/Close list Address

Open/Close Type of Request

Task Control Area Program
Control ABEND Code (4 bytes)

TCASCNB

TCASCSA

TCASCTR

TCASPTR

TCASVMID

TCATCDC

TCATCDP

TCATCEA

TCATCEI

TCATCQA

TCAPCARO

TCAPCERA

Abend Recovery Option TCATCTR

TCAPCLA

TCAPCPI

TCAPCPSW

TCAPCSR

TCAPCTR

TCAPHNR

TCAPHON

TCAPURGI

TCASCIB

Task Control Area Program
Control Exit Routine Addr TCATDAA

Loaded Program Beginning
Address TCATDDI

Task Control Area Program
Control Program
Identification (8 bytes) TCATDTR

System Recovery Program PSW

Program Control Secondary
Request TCATPAPR

Type of Request/Response

Task Control Area PHoNetic
Conversion error Response
indicator (contains X'54'
if invalid name was
encountered; 1 byte)

Task Control Area PHONetic
Conversion 4-byte returned
value

Task Purge Indicator

Task Control Area Storage
Control Initialization Byte

TCATPCON

TCATPCSI

TCATPCS2

TCATPlDA

TCATPlDC

TCATPlDM

TCATPlRC

TCATPOC2

Task Control Area Storage
Control Number of Bytes of
storage requested (2 bytes)

Task Control Area Storage
Control Storage Address of
area acquired or to be
freed

Storage Control Type of
Request

Sync Point Request

Service Module Control
Identification

Task Control Area Task
Control Dispatcher Control
indicator (1 byte)

Task Control Area Task
Control Dispatching
Priority (1 byte)

Task Control Area Task
Control Event control area
Address (ECB, CCB or list)

Task Control Event Control
Indicator

Task Control Area Task
Control enQueued resource
length (high-order byte)
and Address (3
low-order bytes)

Task Control Type of
Request

Task Control Area Transient
Data Area Address

Task Control Area ·Transient
Data Destination
Identification (4 bytes)

Task Control Area Transient
Data Type of Request/
Response (ASM or Pl/I;
I byte)

Application Request
Response Code

Connection Type Flag

External Control Request
Byte I

External Control Request
Byte 2

logic Device Code Entry
Address

logical Device Code

logical Device Mnemonic

locate Return Code

Operation Control Byte 2

Appendix C. Inter-Release Compatibility 343

TCATPOC3

TCATPOSI

TCATPOS2

TCATPPNM

TCATPTA

TCATRFI

TCATRF2

TCATRID

TCATRIDI

TCATRMF

TCATRTR

TCATSAF

TCATSAI

TCATSA2

TCATSA3

TCATSA4

TCATSAS

TCATSDA

TCATSDI

TCATSFC

Operation Control Byte 3

External Operation Request
Byte I

External Operation Request
Byte 2

Program Name Field

Terminal Address or
Identification

Trace Entry Data Area I

Trace Entry Data Area 2

Trace Entry Identification

Trace Entry Identification
Extension

TCA Trace Control (Single
Task)

Type of Trace Request

Task Control Area Table
Search length of Field in
Argument table entry to be
compared with search
argument (I byte)

Task Control Area Table
Search Address of search
argument

Task Control Area Table
Search Address of first
entry in argument table

Task Control Area Table
Search Address of first
function table entry

Task Control Area Table
Search Address of field in
first entry in argument
table to be compared with
search argument

Task Control Area Table
Search Address of (1)
function field within first
function table entry, on
input, or (2) function
field within function table
entry which contained value
retrieved, on output

Task Control Area Temporary
Storage Data Address

Task Control Area Temporary
Storage Data Identification
(8 bytes)

Function Code (Built-In
Function)

TCATSFF

TCATSHI

TCATSH2

TCATSH3

TCATSH4

TCATSRN

TCATSRPC

TCATSTR

TCATSTR2

TCAWGAA

TCAWGCNT

TCAHGHI

TCAHGH2

TCAHGH3

Task Control Area Table
Search length of Field in
Function table entry to be
retrieved (1 byte)

Task Control Area Table
Search maximum number of
entries to be searched
(halfword)

Task Control Area Table
Search length of each
argument table entry
(halfword)

Task Control Area Table
Search length of each
function table entry
(halfword)

Task Control Area Table
Search index value
(relative to 1) identifying
the matching argument table
entry returned to
application program; if
zero, no matching entry was
found (halfword)

Task Control Area Temporary
Storage Record Number

Task Control Area Table
Search ResPonse Code

Task Control Area Temporary
Storage Type of
Request/Response (Assembler
or PL/Ij I byte)

Type of Request (Secondary)

Task Control Area WeiGhted
Retrieval VSHA pointer

Task Control Area Weighted
Retrieval Count of maximum
number of records to be
made available to
application program; NRECDS
parameter (halfword field)

Task Control Area WeiGhted
Retrieval highest
percentage of acceptability
for a weighted retrieval
function (halfword)

Task Control Area WeiGhted
Retrieval lowest percentage
of acceptability for a
weighted retrieval function
(halfword)

Task Control Area WeiGhted
Retrieval percentage of
acceptability of this
record saved as the result
of a weighted retrieval
operation (Halfword field)

344 CICS/VS Application Programmer's Reference Manual (Macro Level)

TCAWGH4

TCAWGH5

TCAWPAA

TCAWPAI

TCAWPA3

TCAWPA4

TCAWPBl

TCAWPHI

TCAWPH2

TCAWPH3

TCAWPH4

TCAWPH5

TCAWPNl

TCAWPTR

TCAWRAA

TCAWTDI

Task Control Area WeiGhted
Retrieval number of records
left to be presented to
user (Halfword field)

Task Control Area WeiGhted
Retrieval number of records
dropped to remain within
user-specified maximum
(NRECDS) (Halfword field)

VSWA Pointer

Task Control Area Weighted
Retrieval address of search
argument

Task Control Area Weighted
Retrieval address of area
containing record to be
examined

Task Control Area Weighted
Retrieval Address of field
within area containing
record to be examined

Task Control Area Weighted
Retrieval character
indicating format of search
argument (1 byte)

Task Control Area Weighted
Retrieval length of search
argument (halfword)

Task Control Area Weighted
Retrieval match value
(halfword)

Task Control Area Weighted
Retrieval no match value
(halfword)

Task Control Area Weighted
Retrieval upper limit of
comparison range (halfword)

Task Control Area Weighted
Retrieval lower limit of
comparison range (halfword)

Task Control Area Weighted
Retrieval Null character
(1 byte)

Task Control Area Weighted
Retrieval Type of Range
(1 byte)

- 'Task Control Area Weighted
Retrieval VSWA pointer

Task Control Area Weighted
ReTrieval Data
Identification (eight
bytes)

TCAWTHI

TCAWTH2

TCAWTH3

TCAWTH4

TCAWTRC

TCAWTRI

TCTEASCC

TCTEASCL

TCTEASCZ

TCTEDSCC

TCTEDSCl

TCTEDSCZ

TCTEEOCI

TCTEFMHI

TCTESIDI

TCTESIDO

TCTETDST

TCTETXTF

TCTEVlDC

TCTE32EF

TCTE32SF

Task Control Area Weighted
ReTrieval maximum number of
records to be retrieved
(halfword)

Task Control Area Weighted
ReTrieval relative number
of record with same partial
key to be examined first
(halfword)

Task Control Area Weighted
ReTrieval maximum
percentage of acceptability
for retrieved records
(halfword)

Task Control Area Weighted
ReTrieval minimum
percentage of acceptability
for retrieved records
(halfword)

Task Control Area Weighted
Retrieval Response Code
(1 byte)

Task Control Area Weighted
ReTrieval address of
partial key of Record at
which retrieval is to begin
(fullword)

3270 Alternate Screen
Size (Columns)

3270 Alternate Screen
Size (Rows)

3270 Alternate Screen Size

3270 Default Screen Size
(Columns)

3270 Default Screen Size
(Rows)

3270 Default Screen Size

EOC or OC Received Indicator

FMH Area for 3600 Devices

Field containing inbound
SIGNAL data (4 bytes)

Area for Outbound Signal
Data

Data Stream Type Byte

3270 Text Feature Flag
byte (APl/TEXT)

logical Device Code

3270 Data Stream
Extensions Flag

3270 Screen Size Flag

Appendix C. Inter-Release Compatibility 345

TCTTEAID

TCTTEBMN

TCTTECAD

TCTTECIA

TCTTECIL

TCTTECR

TCTTECRE

TCTTEDA

TCTTEDES

TCTTEFIB

TCTTEOCL

TCTTEPCF

TCTTESC

TCTTESID

TCTTETAB

TCTTETCM

TCTTETI

TCTTETID

TCTTETM

TCTTETS

TCTTETT

Terminal Control Table
Terminal Entry Attention
IDentifier (used with the
3270 Information Display
System; I byte)

Name of Format Image in
Buffer

Cursor Address in Binary

Terminal Control Table
Terminal Entry Control
Information Area pointer

Length of User Area

Request Completion Analysis

Request Completion Extension

Terminal Control Table
Terminal Entry Data Address

TCAM Destination Name

Terminal Feature Flag Byte

Operator Class Code

Terminal Control Table
Terminal Entry Passbook
Control Field (2980
General Banking Terminal
System; I byte)

Terminal Storage Chain
Address

Terminal Control Table
Terminal Entry Station/
IDentification (2980
General Banking Terminal
Syste:1; I byte)

Terminal Control Table
Terminal Entry TABs needed
to position print element
(2980 General Banking
Terminal System; I byte)

TCAM Operation Code Flag

Terminal Identification

Terminal Control Table
Terminal Entry Teller
IDentification (2980
General Banking Terminal;
I byte)

Terminal Control Table
Terminal Entry Terminal
'Model (1 byte)

Terminal Status

Terminal Control Table
Terminal Entry Terminal
Type (1 byte)

TDIADBA

TDIAIRL

TDIASAL

TDIASCA

TDOADBA

TDOASAL

TDOASCA

TDOAVRL

TIOACLCR

TIOADBA

TIOALAC

TIOATDL

TIOAWCI

TSIOADBA

TSIOASAL

TSIOASCA

TSIOAVRL

VSWAERRC

VSWAID

VSWALEN

VSWAREA

VSWARTNC

Transient Data Input Area
Data Begin Address

Transient Data Input Area
Intrapartition Record
Length (2 bytes)

storage Accounting Area
Length

Transaction Storage Chain
Address

Transient Data Output
Area Data Begin Address

Storage Accounting Area
Length

Transaction Storage Chain
Address

Transient Data Output
Area Variable Record
Length (2 bytes)

Terminal Input/Output
Area ControL CharacteR
(same as TIOALAC; I byte)

Terminal Input/Output
Area nata Begin Address

Terminal Input/Output
Area Line Address Control
(same as TIOACLCR; I byte)

Terminal Input/Output
Area Transmission nata
Length (2 bytes)

Write Control Indicator

Temporary Storage
Input/Output Area nata
Begin Address

Storage Accounting Area
Length

Transaction Storage Chain
Address

Temporary Storage
Input/Output Area
Variable Record Length
(2 bytes)

Error Code

RPL Identifier

VSAM Work Area record
LENgth (4 bytes)

VSAM Work Area REcord
Address

RPL Return Code

346 CICS/VS Application Programmer's Reference Manual (Macro Level)

APPENDIX D. TRANSLATION TABLES FOR THE 2980

This appendix contains translation
tables for the following components of
the IBM 2980 General Banking Terminal
System:

• 2980 Teller Station Model 1
• 2980 Administrative Station Model 2

KEY ENGRAVING LINE
No. TopeLC) FrontCUC) Code

0 MSG ACK 1 Fl
1 SEND AGAIN Q D8
2 CORR A Cl
3 HOLD OVRDE 2 F2
4 VOID Z E9
5 ACCT INQ W E6
6 ACCT TFR S E2
7 CIF 3 F3
8 MISC X E7
9 CLSD ACCT E C5

10 NO BOOK D C4
11 MORT LOAN 4 F4
12 C C3
13 NEW ACCT R D9
14 BOOK BAL F C6
15 INST LOAN 5 F5
16 SPEC TRAN V E5
17 SAV BOND T E3
18 SAV G C7
19 XMAS CLUB 6 F6
20 • B C2
21 DDA Y E8
22 00 H C8
23 MaN ORD 7 F7
24 0 N D5
25 7 U E4
26 4 J D1
27 CSHR CHK 8 F8
28 1 M D4
29 8 I C9
30 5 K D2
31 CASH RECD 9 F9
32 2 • 6B
33 9 0 D6
34 6 L D3
35 UTIL BILL 0 FO
36 3 • 4B
37 DEP + P D7
38 WITH - $ 5B
39 FEES - 60
40 TOTl / 61
41 CASH IN JE 5C
42 CASH CHK I 7B
43 VAL & 50
44 TAB 05
45 ALPHA ENTRY 36
46 NUM ENTRY 06
47 SEND 26-ETB

03-ETX
48 RETURN 15
49 NUM ENTRY 06
50 SPACE 40
S8 MSGLIGHT 17

• 2980 Teller Station Model 4.

The line codes and processor codes
listed in these tables are unique to
CICS and are represented as standard
EBCDIC characters.

CPU CODE HLL
NumericeLC) AlphaCUC) ID

AA Fl
D9 D8
C3 CI
C8 F2
E5 E9
D8 E6
AB E2 2
AC F3 3
AD E7 4
E7 C5
AE C4 5
AF F4 6
BO C3 7
Bl D9 8
B2 C6 9
B3 F5 10
B4 E5 11
B5 E3 12
B6 C7 13
B7 F6 14
4B C2
B8 E8 15
B9 C8 16
BA F7 17
FO D5
F7 E4
F4 D1
BB F8 18
F1 D4
F8 C9
F5 D2
BC F9 19
F2 6B
F9 D6
F6 D3
E4 FO
F3 4B
4E D7
60 5B
C6 60
E3 61
BD 5C 20
BE 7B 21

STATION ID 50
05 05 TABCHAR

15 IS JRNlCR

40 40
17 17 MSGLITE

Figure 29. 2980-1 Character Set/Translate Table

Appendix D. Translation Tables for the 2980 347

KEY ENGRAVING LINE CPU CODE HLL
No. Top(LC) Front(UC)l Code Numeric(LC) Alpha(UC) ID

0 = 1 F1 F1 (1) 7E (=)

1 Q D8 98 (q) D8 (Q)
2 A C1 81 (a) C1 (A)
3 2 F2 F2 (2) 4C «)
4 Z E9 A9 (z) E9 (Z)
5 W E6 A6 (w) E6 (W)
6 S E2 A2 (s) E2 (S)
7 j 3 F3 F3 (3) 5E (j)

8 X E7 A7 (x) E7 (X)
9 E C5 85 (e) C5 (E)

10 D C4 84 (d) C4 (D)
11 : 4 F4 F4 (4) 7A (:)
12 C C3 83 (c) C3 (C)
13 R D9 99 (r) D9 (R)
14 F C6 86 (f) C6 (F)
15 7. 5 F5 F5 (5) 6C (7.)
16 V E5 A5 (v) E5 (V)
17 T E3 A3 (t) E3 (T)
18 G C7 87 (g) C7 (G)
19 , 6 F6 F6 (6) 7D (.)
20 B C2 82 (b) C2 (B)
21 Y E8 A8 (y) E8 (Y)
22 H C8 88 (h) C8 (H)
23 > 7 F7 F7 (7) 6E (»
24 N D5 95 (n) D5 (N)
25 U E4 A4 (u) E4 (U)
26 J Dl 91 (j) D1 (J)
27 * 8 F8 F8 (8) 5C (*)
28 M D4 94 (m) D4 (M)
29 I C9 89 (i) C9 (1)
30 K D2 92 (k) D2 (K)
31 (9 F9 F9 (9) 4D (()
32 I , 6B 6B (,) 4F (I)
33 0 D6 96 (0) D6 (0)
34 L D3 93 (1) D3 (L)
35) 0 FO FO (0) 5D ())
36 .. 4B 4B (.) SF (-.)

37 P D7 97 (p) D8 (P)
38 ! $ 58 5B ($) 5A (!)
39 - 60 60 (-) 6D (-)
40 ! / 61 61 (/) 6F (1)
41 c I 5C 70 (I) 4A (c)
42 II # 7B 7B (#) 7F (II)

43 + & 50 50 (&) 4E (+)
44 TAB 05 05 05
45 LOCK 36 36 36
46 SHIFT 06 06 06
47 BACKSPACE 16 10 16 BCKSPACE
48 RETURN 15 15 15
49 SHIFT 06 06 06
50 (SPACE) 40 40 40
53 SEND 26-ETB

03-ETX

1 No keyfront engraving on a 2980 Administration Station Model 2

Figure 30. 2980-2 Character Set/Translate Table

348 CICS/VS Application Programmer's Reference Manual (Macro Level)

KEY ENGRAVING LINE CPU CODE HLL
No. Top(LC) Front(UC) Code NumericCLC) AlphaCUC) ID

0 CK $ - D9 BC 60 19
1 Q D3 D3 D8
2 A Cl C1 Cl
3 CK I 0 C9 B7 C9 14
4 Z E9 4B E9
5 W E6 5C E6
6 S E2 5B E2
7 IMD 2 1 5B 4F F1
8 X E7 AE E7 5
9 E C5 C5 C5

10 D C4 6F C4
11 IMD 1 2 4B BF F2
12 C C3 C3 C3
13 R 60 60 D9
14 F C6 C6 C6
15 CODE 3 E8 BB F3
16 V E5 AO E5 22
17 T E3 Al E3 23
18 G C7 C7 C7
19 AMT 4 5C BE F4 21
20 B C2 C2 C2
21 Y 61 61 E8
22 H D7 D7 C8
23 OB 5 D8 B2 F5 9
24 N D5 D5 D5
25 U E4 AF E4 6
26 J D1 D1 Dl
27 ACCT :I 6 C8 7B F6
28 N D4 E7 D4
29 I D6 D6 C9
30 K D2 D2 D2
31 7 7 F7 F7 F7
32 6B BLANK 6B
33 4 0 F4 F4 D6
34 1 l F1 Fl D3
35 8 8 F8 F8 F8
36 0 FO FO 4B
37 5 P F5 F5 D7
38 2 $ F2 F2 5B
39 9 9 F9 F9 F9
40 7B BO 7B 7
41 6 * F6 F6 5C
42 3 j F3 F3 7B
43 VAL & 50 50 50
44 TAB 05 05 05
45 ALPHA 36
46 NUMERIC 06
47 SEND 26-ETB

03-ETX
48 RETURN 15 15 15
49 NUMERIC 06
50 SPACE 40 40 40
51 FEED OPEN 04 OPENCH

Figure 31. 2980-4 Character Set/Translate Table

Appendix D. Translation Tables for the 2980 349

BIBLIOGRAPHY

CICS PUBLICATIONS

For farther information about CICS refer
to the following IBM publications:

CICS/VS 1.7

Customer Information Control
System/Virtual Storage (CICS/VS):

General Information, GC33-0l55

library Guide, GC33-0356

Application Programming Primer,
SC33-0l39

CICS/OS/VS 1.7

Customer Information Control
System/Operating System/Virtual Storage
(CICS/OS/VS) Version 1 Release 7:

Release Guide, GC33-0l32

Facilities and Planning Guide,
SC33-0202

Installation and Operations Guide,
SC33-007l

CICS-Supplied Transactions,
SC33-0240

Customization Guide, SC33-0239

Resource Definition (Macro),
SC33-0237

Resource Definition (Online),
SC33-0l86

Intercommunication Facilities Guide,
SC33-0230 .

Recovery and Restart Guide,
SC33-023l

Performance Guide, SC33-0229

Performance Data, SC33-02l2

Application Programmer's Reference
Manual (Command level), SC33-024l

Application Programmer's Reference
Summary (Command Level), GX33-6047

Messages and Codes, SC33-0226

IBM 3270 Data Stream Device Guide,
SC33-0232

IBM 4700/3600/3630 Guide, SC33-0233

IBM 3650/3680 Guide, SC33-0234

IBM 3767/3770/6670 Guide, SC33-0235

IBM 3790/3730/8100 Guide, SC33-0236

Problem Determination Guide,
SC33-0242

Program Debugging Reference Summary,
SX33-6048

Diagnosis Reference, lC33-0243

Data Areas, LY33-6035

Master Index, SC33-0227

CICS/DOS/VS 1.7

Customer Information Control System/Disk
Operating System/ Virtual Storage
(CICS/DOS/VS) Version 1 Release 7:

Release Guide, GC33-0l30

Facilities and Planning Guide,
SC33-0228

Installation and Operations Guide,
SC33-0070

CICS-Supplied Transactions,
SC33-0080

Customization Guide, SC33-0l31

Resource Definition (Macro),
SC33-0l49

Resource Definition (Online),
SC33-0238

Intercommunication Facilities Guide,
SC33-0l33

Recovery and Restart Guide,
SC33-0l35

Performance Guide, SC33-0l34

Performance Data, SC33-02l9

Application Programmer's Reference
Manual (Command level), SC33-0077

Application Programmer's Reference
Summary (Command Level), GX33-60l2

Application Programmer's Reference
Manual (RPGII), SC33-0085

Messages and Codes, SC33-008l

IBM 3270 Data Stream Device Guide,
SC33-0096

IBM 4700/3600/3630 Guide, SC33-0072

Bibliography 351

IBM 3650/3680 Guide, SC33-0073

IBM 3767/3770/6670 Guide, SC33-0074

IBM 3790/3730/8100 Guide, SC33-0075

Problem Determination Guide,
SC33-0089

Program Debugging Reference Summary,
SX33-60l0

Diagnosis Reference, lC33-0105

Data Areas, lY33-6033

Master Index, SC33-0095

ASSOCIATED PUBLICATIONS

The reader of this book may also want to
refer to the following IBM publications:

An Introduction to the IBM 3270
Information Display System, GA27-2739

Component Description: IBM 2721 Portable
Audio Terminal, GA27-3029

IBM 3790 Communication System library
Reference Summary, GX23-0205

VTAM Concepts and Planning, GC27-6998

Systems Network Architecture (SNA):

Function Description of Logical Unit
~, GC20-1868

Types of Logical Unit to logical
Unit Sessions, GC20-l869

DPPX/Distributed Presentation Services
Version 2 System Programming Guide,
SC33-0l17

Screen Definition Facility/CICS SDF/CICS
Program Reference Manual, SH19-6077

DOS/VS COBOL Compiler and library
Programmer's Guide, SC28-6478

OS/VS COBOL Compiler and library
Programmer's Guide, SC2B-6483

as Pl/I Optimizing Compiler Programmer's
Guide, SC33-0006

DOS Pl/I Optimizing Compiler
Programmer's Guide, SC33-000B

IMS/VS Application Programming for
CICS/VS Users, SH20-9026

Dl/I DOS/VS Application Programming
Reference Manual, SH12-5411

Dl/I DOS/VS Utilities and Guide for the
System Programmer, SH12-5412

AVAILABILITY OF PUBLICATIONS

The availability of a publication is
indicated by its use key, which is the
first letter in the order number. The
use keys and their meanings are:

G Generally available: provided to
users of IBM systems, products, and
services without charge, in
quantities to meet their normal
requirements. Can also be purchased
by anyone through IBM branch offices.
offices.

S Sold: Can be purchased by anyone
through IBM offices.

L licensed material, property of IBM:
available only to licensees of the
related program products under the
terms of the license agreements.

352 CICS/VS Application Programmer's Reference Manual (Macro level)

Special Characters

XINCLUDE statement 14

ABCODE operand 238
ABEND (abnormal termination) 235
ABEND type of DFHPC macro 234
abnormal termination

ABEND exit processing 235
activate ABEND exit 235
cancel ABEND exit 235
on data set (DFHDI) 200
reactivate ABEND exit 235
transaction 234

addition of records (DFHDI macro) 199
address of TIOA 106
addressability

application program 14
BMS operation 167
common system area (CSA)

assembler language 29
COBOL 35
PL/I 41

common work area (CWA)
assembler language 29
COBOL 35
PL/I 41

file input/output area (FIOA)
assembler language 30
COBOL 36
PL/I 42

file work area (FWA)
assembler language 30
COBOL 37
PL/I 42

for DFHTC macro 106
journal control area (JCA)

assembler language 32
COBOL 38
PL/I 44

storage accounting area (SAA)
assembler language 32
COBOL 38
PL/I 44

storage area 24
task control area (TCA)

COBOL 36
PL/I 41

temporary storage input/output area
(TSIOA)

assembler language 31
COBOL 38
PL/I 43

terminal control table terminal entry
(TCTTE)

assembler language 29
COBOL 35
PL/I 41

terminal input/output area (TIOA)
assembler language 30
COBOL 36

PL/I 42
transaction work area (TWA)

COBOL 36.
PL/I 41

transient data input area (TDIA)
assembler language 31
COBOL 37
PL/I 43

transient data output area (TDOA)
assembler language 31
COBOL ·37
PL/I 43

VSAM work area (VSWA)
assembler language 30
COBOL 37
PL/I 43

AID byte 107, 140
ALPHA operand 284

DFHBIF 278
alternate index 53
alternate key 53
API (application programmer
interface) 339

application programmer interface
(API) 339

application programs
addressability 14
and the operating system 9
basic characteristics 11
CICS macro 9
CWA restriction 25
deleting 234
general structure 12
initialization 14
languages 11
link-editing 17
linking programs 231
logical relationships 231
need for CSA and TCA 21
object module size restriction 17
overlay restriction 13
packaging 13
quasi-reenterability 14
register usage 14
restrictions 15
storage definition 21
system environment 11
techniques II, 13
testing and debugging 291
transfer of control 14
virtual storage 12

ARG operand 284
DFHBIF 278

ARGTYP operand 81
ASCENDING operand 286
assembler language

addressabi1ity of storage areas 24
addressability requirement 14
CSA (common system area) 29
CWA (common work area) 29
FIOA (file I/O area) 30
FWA (file work area) 30
JCA (journal control area) 32
link-editing 17
register usage 14
restrictions 15
SAA (storage accounting area) 32
storage definition 29

Index 353

TCTTE (TCT terminal entry) 29
TDIA (transient data input area) 31
TDOA (transient data output area) 31
TIOA (terminal I/O area) 30
transfer of control 14
TSIOA (temporary storage I/O
area) 31

TWA (transaction work area) 29
VSWA (VSAM work area) 30

assembly-time service 17
asynchronous journal output 308
ATABLE operand 284

DFHBIF 278
ATI (automatic task initiation) 245
ATTACH type of DFHKC macro 221
attaching tasks 221
ATTRB operand

DFHMDF 161
attributes, symbolic 181
autoanswer (3735) 131
autocall transaction (3735) 131
automatic task initiation (ATI) 245

backout recoverable resources 320
base addresses 24
BASE operand

DFHMSD 152
basic mapping support (BMS)

abnormally terminating a logical
message 177

address of data 167
address of TIOA 167
advantages 143
block data format 144
condition codes 179
copying symbolic maps 149
data mapping and formatting 144
data, address of 167
device independence 143
DFHAID 184
DFHBMSCA 181
disposition and message routing 178
establishing addressability 167
facilities 144
field data format 144
field definition macro 161
format independence 143
implied read/write 166
input mapping 147
input/output mapping 149
introduction to 143
map building 147
map definition macro 156
map positioning 170
map retrieval 149
map set definition macro 150
message recovery 181
message routing 145
non-terminal-oriented tasks 167
noncumulative page building 175
output mapping 148
overflow processing 173
page building examples 171
page building with mapping 169
page buil~irig without mapping 175
paging commands 184
physical map 146

printer control characters 181
program examples

map definition 335
test response code 181

programming considerations 146
response codes 181
specifying maps 147
standard attention identifier
list 184

standard attribute list 181
status flag byte 179
symbolic description map 146
terminal code table 181
terminal paging 144
terminating a logical message 177
test response 180
text data format 144
TIOA address 167
trailer map 174
using maps 166

batch data interchange (DFHDI
macro) 199

batch data interchange lU (3770) 132
batch data interchange lU (3790) 133
batch lU (3770) 132
batch mode (3740) 131
batch processing 3
bit manipUlation 268
BIT operand 284

DFHBIF 278
BITEST type of DFHBIF macro 269
BITFlIP type of DFHBIF macro 268
BITOFF operand 285

DFHBIF 278
BITON operand 285

DFHBIF 278
BITSETOFF type of DFHBIF macro 268
BITSETON type of DFHBIF macro 268
bracket protocol 114
browsing

abnormal condition handling 73
backward 75
description of 53
end 78
error handling 73
examples

end sequential retrieval 76
initiate browse operation 70
reset sequential retrieval 78
retrieve next record 73

forward 72
generic key 70
initiate 69
multiple browse 53
partial key 70
reset 77
sequential retrieval 69
skip-sequential processing 53
start browse 69
terminate 76

BTAM programmable device 117
built-in functions 261

bit manipUlation 268
copying storage referred to by

BIF 263
field edit 267
field verify 267
input formatting 269, 270
listing of 261
phonetic conversion 266
table search 265
weighted retrieval 273

354 CICS/VS Application Programmer's Reference Manual (Macro level)

cancel INITIATE request 216
CANCEL operand 238
cancel POST request 216
cancel PUT request 216
CANCEL type of DFHIC macro 215
cancel WAIT request 216
card-reader-in/line-printer-out

(CRLP) 293
CCOMPl operand 135
CCOMPL=NO operand III
chain

assembly III
for lUTYPE4 112
of RUs III

chaining of storage areas 24
CHAP type of DFHKC macro 222
CHECK type of DFHBMS macro 180
CHECK type of DFHFC macro 80
CHECK type of DFHFC macro (DL/I) 91
CHECK type of DFHIC macro 216
CHECK type of DFHJC macro 315
CHECK type of DFHPC macro 237
CHECK type of DFHTD macro 249
CHECK type of DFHTS macro 255
CICS storage dump 300
CICS type of DFHDC macro 300
CLASS operand
COBADDR type of DFHPC macro 237
COB LANG operand 263

DFHBFTCA 263
COBOL

addressability feature 39
addressability of storage areas 24
CSA (common system area) 35
CWA (common work area) 35
data constant location 35
FIOA (file I/O area) 36
FWA (file work area) 36, 37
guidelines, storage definition 38
JCA (journal control area) 38
link-editing 17
linkage section size restriction 38
OCCURS DEPENDING ON clause 38
optimization feature 39
optimization feature restriction 39
register usage 14
restrictions 15
SAA (storage accounting area) 38
SERVICE RELOAD 39
storage definition 35
TCTTE (TCT terminal entry) 35
TDIA (transient data input area) 37
TDOA (transient data output area) 37
TIOA (terminal I/O area) 36
transfer of control 14
TSIOA (temporary storage I/O
area) 38

TWA (transaction work area) 36
variable data location 35
VSWA (VSAM work area) 37
working storage 35
working storage size restriction 39

code translation 105
COLOR operand 152

DFHMDF 163
DFHMDI 157
DFHMSD 152

COLUMN operand
DFHMDI 157

common system area (CSA)

addressability of
assembler language 29
COBOL 35
PL/I 41

contents of 25
CWA 25
storage definition

assembler language 29
COBOL 35
Pl/I 41"

common work area (CWA)
addressability of

assembler language 29
COBOL 35
PL/I 41

addressability restriction 25
size 25
storage definition

assembler language 29
COBOL 35
PL/I 41

compatibility between releases of
CICS 339

compatibility LU (3790) 133
COMPLETE type of DFHDC macro 300
component of CICS 3
COND operand

DFHJC 316
DFHKC 228
DFHPC 238
DFHSC 243
DFHTS 256

CONNECT operand 135
control interval 52
CONVERSE type of DFHTC macro 108
converse with a terminal or LU 108
convert label to address 237
COPY statement 14
copying symbolic maps 149
CRLP

(card-reader-in/line-printer-out) 293
CTLCHAR operand 135
CTRL operand

DFHBMS 185
DFHMSD 153, 157

cursor address 107, 140
CURSOR operand 186

DAM data set
adding records 54
block reference 54
browse operation 69
deblocking 54
direct retrieval 56
extended search option 55
nonkeyed 54
physical key 54
record identification field 54
retrieval method 84
update a record 56
update nonkeyed record 54

data base concept 3
data base/data communication (DB/DC) 3
data handling (2980) 123
data length for write to terminal or

LU 107
data mapping and formatting CBMS) 144
DATA operand

DFHBMS 187

Index 355

DFHMDI 158
DFHMSD 153

data set
name 81

DATAID operand 256
DATASET operand 81

DFHBIF 278
DATAl operand 297
DATAITP operand 297
DATA2 operand 297
DATA2TP operand 297
DCI operand 228
DCT (destination control table) 245
deadlock 52
DEEDIT type of DFHBIF macro 267
deferred journal output 308, 309
definite response 112
DEFlDNM type of DFHBIF macro 271
DEFRESP operand

DFHDI 202
DFHTC 112, 136

delay processing of task 210
delete a program 234
DELETE type of DFHFC macro 65
DELETE type of DFHPC macro 234
deletion of records (DFHDI macro) 199
DEQ type of DFHKC macro 226
DESCENDING operand 286
DEST operand 136
DESTID operand 250
destination control table (DCT) 245
DFHAID 107, 140, 184
DFHBFTCA macro 263
DFHBIF macro

examples (see program examples)
operands 278, 284
prerequisites 261
TYPE=BITEST 269
TYPE=BITFLIP 268
TYPE=BITSETOFF 268
TYPE=BITSETON 268
TYPE=DEEDIT 267
TYPE=DEFLDNM 271
TYPE=FVERIFY 267
TYPE=INFORMAT 271
TYPE=PHONETIC 266
TYPE=TSEARCH 265
TYPE=WTRETCHK

operands 276
TYPE=WTRETGET

operands of 275
operation of 275
returned values 275

TYPE=WTRETREL
operands 276

. operation of 276
TYPE=WTRETST

operands 274
returned values 274

TYPE=WTRTPARM
operands 275
operation of 275

DFHBMS macro 167
examples (see program examples)
operands, list of 185
TYPE=CHECK 180
TYPE=IN 168
TYPE=MAP 168
TYPE=OUT 175
TYPE=PAGEBlD 169
TYPE=PAGEOUT 177
TYPE=PURGE 177
TYPE=ROUTE 178
TYPE=TEXTBlD 175

DFHBMSCA 181
DFHCOVER macro 17
DFHDC macro

CICS storage dump 300
examples (see program examples)
operands 301
TYPE=CICS 300
TYPE=COMPlETE 300
TYPE=PARTIAl 301
TYPE=TRANSACTION 299

DFHDI macro
abnormal termination operations on

data set 200
addition of records 199
deletion of records 199
interrogation of data set 200
operands 202
relative record number 201
replacement of records 199
response codes 201
suspend execution of task 201
terminate operations on data set 200
test response 201
transmission of data 200
TYPE=ABORT 200
TYPE=ADD 199
TYPE=CHECK 201
TYPE=END 200
TYPE=ERASE 199
TYPE=NOTE 201
TYPE=QUERY 200
TYPE=RECEIVE 200
TYPE=REPLACE 199
TYPE=SEND 200
TYPE=WAIT 201

DFHFC macro
examples (see program examples)
operands 81
TYPE=(DL/I,function) 90
TYPE=(DL/I,PCB) 87
TYPE=(DL/I,TERM) 90
TYPE=CHECK 80
TYPE=CHECK for Dl/I 91
TYPE=DELETE 65
TYPE=ESETl 76
TYPE=GET 56
TYPE=GETAREA 65
TYPE=GETNEXT 72
TYPE=GETPREV 75
TYPE=PUT 62
TYPE=RELEASE 68
TYPE=RESETl 77
TYPE=SETl 69

DFHIC macro
examples (see program examples) 209
operands 218
TYPE=CANCEl 215
TYPE=CHECK 216
TYPE=GET 214
TYPE=GETIME 210
TYPE=INITIATE 212
TYPE=POST 211
TYPE=PUT 213
TYPE=RETRY 216
TYPE=WAIT 210

DFHJC macro
examples (see program examples) 305
operands 316
TYPE=CHECK 315
TYPE=GETJCA 306
TYPE=PUT 307
TYPE=WAIT 312
TYPE=WRITE 308

DFHKC macro

356 CICS/VS Application Programmer's Reference Manual (Macro level)

examples (see program examples) 221
operands 228
TYPE=ATTACH 221
TYPE=CHAP 222
TYPE=DEQ 226
TYPE=ENQ 225
TYPE=NOPURGE 228
TYPE=PURGE 227
TYPE=WAIT 224

DFHMDF macro 161
DFHMDI macro 156
DFHMSD macro 150
DFHPC macro

examples (see program examples) 231
operands 237
TYPE=ABEND 234
TYPE=CHECK 237
TYPE=COBADDR 237
TYPE=DELETE 234
TYPE=LINK 231
TYPE=LOAD 233
TYPE=RESETXIT 235, 236
TYPE=RETURN 233
TYPE=SETXIT 235
TYPE=XCTL 232

DFHSC macro
examples (see program examples) 241
operands 243
TYPE=FREEMAIN 242
TYPE=GETMAIN 241

DFHSP macro
backout recoverable resources 320
operation of 319
TYPE=ROLLBACK 320
TYPE=USER 319

DFHTC macro 134
addressability 106
data length 107
examples (see program examples)
FMH length 107
incompatible options 106
LUTYPE4 logical unit 134
operands 135
other CICS supported terminals 134
program testing and debugging 293
storage definition 106
syntax 115
System/3 119
System/370 119
System/7 119
TCAM supported LUs 135
TYPE=CONVERSE 108
TYPE=DISCONNECT 108
TYPE=EODS 113
TYPE=SIGNAL 114
2260 Display Station 120
2265 Display Station 120
2740 Communication Terminal 120
2741 Communication Terminal 120
2770 Data Communication System 122
2780 Data Transmission Terminal 122
2980 data handling 123
2980 General Banking Terminal 122
2980 passbook control 122
2980 segmented writes control 123
3270 Information Display System 125
3600 Finance Communication Sys. 128
3630 Plant Communication System 129
3650 Retail Store System 129
3660 Supermarket Scanning System 130
3735 Programmable Buffered Term. 130
3740 Data Entry System 131
3767 Communication Terminal 132

3770 Communication System 132
3780 Data Communications Term 133
3790 Communication System 133
7770 Audio Response Unit 134

DFHTD macro
examples (see program examples) 245
operands 250
TYPE=CHECK 249
TYPE=FEOV 248
TYPE=GET 247
TYPE=PURGE 249
TYPE=PUT

DFHTR macro
examples (see program examples)
operands 297
TYPE=ENTRY 297
TYPE=OFF 297
TYPE=ON 297

DFHTS macro
examples (see program examples) 251
operands 256
TYPE=CHECK 255
TYPE=GET 253
TYPE=GETQ 254
TYPE=PURGE 255
TYPE=PUT 252
TYPE=PUTQ 253
TVPE=RELEASE 255

direct retrieval for update 61
direct update or add data 63
disconnect a logical unit 108
disconnect a switched line 108
DISCONNECT type of DFHTC macro 108
DL/I

ASM program examples 93
ASM requests 93
CALL statement 87, 90
CALL statement to release PSB 91
CALL statement to schedule PSB 88
CALLDlI statement 90
COBOL program examples' 95
COBOL requests 95
1/0 work area 89
message routing restriction 178
PCB address 87
Pl/I program examples 97
Pl/I requests 97
program communication block (PCB) 87
program specification block (PSB) 87
PSB scheduling 87
quasi-reenterability 87
releasing a PSB 90
response codes 91
segment search argument (SSA) 88

DL/I type of DFHFC macro 90
DLINA operand 98
DMPCODE operand 302
DNADDR operand

DFHDI 202
DSECT type of DFHMSD macro 151
DSIDER operand

DFHBIF 279
DFHFC 81

DSSTAT operand
DFHDI 202

dump services 299
CICS storage dump 300
macro 299
partial storage dump 301
transaction dump 299

DUPKEY operand 81
DUPREC operand 81

Index 357

ECADDR operand 228
ECB (event control block) posting 222
end a browse 53
end of data set (EODS) 113
ENDDATA operand 218
ENDFILE operand

DFHBIF 279
DFHFC 81
DFHTC 136

ENDINPUT operand
DFHTC 136

ENDMSG operand
DFHTC 136

EN ERROR operand 256
ENQ type of DFHKC macro 225
ENTRY operand 256
entry point address 17
ENTRY type of DFHTR macro 297
EOC indicator III
EOC operand

DFHBMS 188
DFHTC Ill, 136

EODPURG operand 188
EODS (end of data set) 113
EODS operand

DFHBMS 188
DFHDI 202
DFHTC 137

EODS type of DFHTC macro 113
EOF operand

DFHTC 137
ERROR operand

DFHBIF 279, 285
DFHBMS 188
DFHFC 82
DFHIC 218
DFHJC 316
DFHTS 257

ERRTERM operand 188
ESETL type of DFHFC macro 76
event control block (ECB) posting 222
exception response 112
exclusive control

deadlock 52
release 68

expiration time 209
EXPIRD operand 218
EXTATT operand 154, 158

DFHMSD 154, 158
extended search option 55
extrapartition data sets

alignment requirements 248
data 245
forced end of volume 248
indirect destinations 245
queue 245

facilities for logical units 110
FBA (fixed block architecture)
device 51

FCADDR operand· 229
FEOV type of DFHTD macro 248
field definition macro (BMS) 161
field edit macro 267
FIELD operand 285

DFHBIF 279
field verify macro 267
FIELDS operand 285

DFHBIF 279
FIELD1 operand

DFHBIF 279
FIELD2 operand

DFHBIF 279
file I/O area (FIOA)

addressability of
assembler language 30
COBOL 36
PL/I 42

storage definition
assembler language 30
COBOL 36
PL/I 42

use in file services 51
file services

access methods 51
accessing a record 56
add data 62
browsing 53
buffer 51
delete data 65
direct retrieval 56
generic delete 65
get a file work area 65
group delete 65
mass insert 68
priority of 51
program examples

build a new record 66
check response code 80
direct read-only operation 57
direct retrieval for update 61
direct update or add data 63
end sequential retrieval 76
get an FWA 66
initiate browse operation 70
releasing an FWA 68
reset sequential retrieval 78
retrieve next record 73
VSAM locate-mode I/O 59

read-only retrieval 56
release file storage 68
reset sequential retrieval 77
response codes 80
retrieval for update 56
retrieve next record 72
retrieve previous record 75
sequential retrieval 69
terminate sequential retrieval 76
update data 62
work area 51

file work area (FWA)
addressability of

assembler language 30
COBOL 37
PL/I 42

obtaining 65
release file storage 68
storage definition

assembler language 30
COBOL 37
PL/! 42

use in file services 51
FINAL type of DFHMSD macro 151
fixed block architecture (FDA}

device 51
floating point

COBOL 16
PL/I 16

FMH (function management header) 112

358 CICS/VS Application Programmer's Reference Manual (Macro Level)

FMH length 107
FMH operand

DFHTC 137
FMHPARM operand 188
FOC indicator III
force end of volume (transient
data) 248

FORCE operand
DFHTC 137

FORM operand 218
format notation of macros 10
forms, printer 113
FREEMAIN type of DFHSC macro 242
FTABlE operand 285

DFHBIF 280
FUNCERR operand

DFHDI 202
FUNCNS operand 98
function management header (FMH) 112
functions of CICS 3
FVERIFY type of DFHBIF macro 267

generic key 54, 70
GET type of DFHFC macro 56
GET type of DFHIC macro 214
GET type of DFHTC macro 108
GET type of DFHTD macro 247
GET type of DFHTS macro 253
GETAREA type of DFHFC macro 65
GETIME type of DFHIC macro 210
GETJCA type of DFHJC macro 306
GETMAIN type of DFHSC macro 241
GETNEXT type of DFHFC macro 72
GETPREV type of DFHFC macro 75
GETQ type of DFHTS macro 254
GRPNAME operand

DFHMDF 163

hard RCD signal 114
HEADER operand

DFHBMS 188
DFHMDI 159

HIlIGHT operand 154, 164
DFHMDF 164
DFHMDI 159
DFHMSD 154

HTAB operand
DFHMSD 154

I/O PCB (I/O program control block) 87
I/O work area for Dl/I 89
ICDADDR operand 218
ID operand 297
IDERROR operand

DFHJC 316
DFHTD macro 250

DFHTS 257
IGREQCD operand 189
IGREQID operand 189
IllOGIC operand

DFHBIF 286
DFHFC 82.

INBFMH operand 113
DFHTC 137

inbound FMH 113
INDEX operand

DFHBIF 280, 286
index, alternate 53
INFORMAT type of DFHBIF macro 271
INITIAL operand

DFHMDF 164
initiate a task 221

interval control 212
INITIATE type of DFHIC macro 212
INITIMG operand

DFHFC 82
DFHSC 244

input formatting
combination input 270
fixed format 269
keyword format 270
positional format 269
storage definition 271

input mapping (BMS) 147
input/output mapping (BMS) 149
input, unsolicited 114
INPUTNO operand

DFHBIF 280
INPUTPC operand

DFHBIF 280
INPUTST operand

DFHBIF 281
inquiry logical unit (3790) 133
inter-release compatibility 339
interrecord separator (IRS) 112
interrogation of data set (DFHDI

macro) 200
interval control

expiration time 209
intrapartition data sets

data 245
indirect destinations 245
purge 249
queue 245

INTRVAl operand
DFHBMS 189
DFHIC 218

INVET operand 189
INVlDC operand 189
INVMPSZ operand 189
INVREQ operand

DFHBIF 281
DFHBMS 190
DFHFC 82
DFHFC for Dl/I 98
DFHIC 218
DFHJC 316
DFHTS 257

IOERROR operand
DFHBIF 281
DFHFC 82
DFHIC 218
DFHJC 316
DFHTD 250
DFHTS 257

IRS (interrecord separator) 112
ISAM compatibility mode 51

Index 359

JCA (see journal control area)
JCDADDR operand

DFHJC 316
JCDLGTH operand

DFHJC 316
JCP (journal control program) 305
JCT (journal control table) 305
JFILEID operand

DFHJC 316
journal control area (JCA)

acquisition 306
addressability of

assembler language 32
COBOL 38
PL/I 44

storage definition
assembler language 32
COBOL 38
PL/I 44

journal control program (JCP) 305
journal control table (JCT) 305
journal record 305
journal services

acquire a JCA 306
asynchronous journal output 308
create a journal record 307, 308
deferred journal output 308
introd~ction to 305
priority of 305
record synchronization 312
response codes 315
summary of 6
synchronous journal output 307

JTYPEID operand
DFHJC 316

JUSTIFY operand
DFHBMS 190
DFHMDF 164
DFHMDI 159

key, alternate 53
KEYADDR operand

DFHDI 202

LABEL operand
DFHBIF 281, 286
DFHPC 238

LANG operand
DFHMSD 154

LANGCON operanu 98
LANGLVL operand 16
LAST operand 177
LDA (logical device address) 113
LDC (logical device code) 113
LDC operand

DFHBMS 1"90
DFHMSD 154
DFHTC 138

LENGTH operand
DFHBIF 281, 286

DFHMDF 164
LERROR operand

DFHJC 316
line control 105
LINE operand

DFHMDI 159
LINK type of DFHPC macro 231
link-editing 17
linking programs 231
LIST operand

DFHBMS 191
DFHDC 302

LOAD type of DFHPC macro 233
loading a program 233
LOADlST operand 238
local shared resources (LSR) 52
locality of reference 12
locate mode 57, 70
logical device address (LDA) 113
logical device code (LDC) 113
logical record presentation 112
logical unit (LU) 105
logical unit (TCAM-supported) 135
logical unit facilities 110
logical unit of work (LUW) 319
LSR (local shared resources) 52
LU (logical unit) 105

signal commands 114
LUs supported by TCAM 117
LUTYPE2 logical unit 127
LUTYPE3 logical unit 127
LUTYPE4 logical unit 134
LUW (logical unit of work) 319

macros

map

DFHBF 261
DFHBFTCA macro 263
DFHBMS 167
DFHDC 299
DFHFC 51
DFHFC (DL/I) 87
DFHIC macro 209, 210
DFHJC macro 305
DFHKC 222
DFHKC macro 221
DFHMDF macro 161
DFHMDI 156
DFHMSD macro 150
DFHPC macro 231, 232
DFHSC macro 241, 242
DFHSP macro 319
DFHTC 106
DFHTD macro 246, 247
DFHTS 252
DFHTS macro 253
general format 9
name field restriction 9
operand field rules 9
operation field rules 9
syntax notation 10

building 147
copying 149
definition 156
retrieval 149
size 17

MAP operand 192
map positioning 170
map set definition macro 150

360 CICS/VS Application Programmer's Reference Manual (Macro Level)

map set, definition of 144
MAP type of DFHMSD macro 151
MAPADR operand 192
MAPFAIL operand 192
MAPSET operand 192
mass insert 68
MATCH operand

DFHBIF 281
media selection in logical unit 200
message integrity 110
message recovery, BMS 181
message routing 178

disposition 178
DL/I restrictions 178
macro 178
status flag byte 179

MOC indicator III
MODE operand

DFHFC 83
DFHMSD 154

move mode 57
MSETADR operand 192
multiple form printer 113
multithreading 11

NAMES operand 286
DFHBIF 281

new line (NL) character 112
NL (new line) character 112
node abnormal condition program III
node error program III
NOMATCH operand 286

DFHBIF 282
NONVAL operand

. DFHTC 138
NOPURGE type of DFHKC macro 22~
NORESP operand

DFHBIF 282
DFHBMS 193
DFHDI 203
DFHFC 83
DFHFC for DL/I 98
DFHIC 219
DFHJC 317
DFHPC 238
DFHTC 138
DFHTD 250
DFHTS 257

NOSPACE operand
DFHFC 83
DFHTD 250
DFHTS 257

NOTFND operand
DFHBIF 282
DFHFC 83
DFHIC 219

NOTOPEN operand
DFHBIF 282
DFHFC 83
DFHJC 317
DFHTD 250

NRECDS operand
DFHBIF 282

NULL operand
DFHBIF 282

NUMBYTE operand 244
NUMERIC operand 286

DFHBIF 282
NUMREC operand 203

DFHDI 203

OBFMT operand
DFHMDI 160
DFHMSD 155

OCCURS operand
DFHMDF 165

OFF type of DFHTR macro 297
OFLOW operand

DFHBIF 282
DFHBMS 193

ON type of DFHTR macro 297
OPCLASS operand 193
operands of DFHDI macro 202
operands of DFHTC macro 135
OPTION operand 263

DFHBFTCA 263
ORDER operand 286

DFHBIF 282
OUT type of DFHBMS macro 176
outbound FMH 113
output mapping (BMS) 148
overlapping LU output 110

PACKED operand 287
DFHBIF 283

page building
COLUMN operand 171
examples 171
JUSTIFY operand 170, 171
LINE operand 171
map positioning 170
message routing 178
noncumulative 175
operation 144
overflow processing 173, 175
paging commands 184
returned pages 172
screen contents 170
terminating a logical message 177
trailer area 170
trailer map 174
with mapping 169
without mapping 175

page queuing facility 251
page-out operations 13
PAGEBLD type of DFHBMS macro 169
PAGEOUT type of DFHBMS macro 177
paging commands 184
partial key 54, 70
partial storage dump 301
PARTIAL type of DFHDC macro 301
passbook control (2980) 122
passing program control 231
PCB (program communication block) 87
PCB operand '99
PFXADDR operand

DFHJC 317
PFXLGTH operand

DFHJC 317
PGMIDER operand 238
phonetic conversion

macro 266
subroutine 266

Index 361

PHONETIC type of DFHBIF macro 266
physical map (BMS) 146
PICIN operand

DFHMDF 165
PICOUT operand

DFHMDF 166
pipeline logical unit (3600) 129
pipeline logical unit (3650) 130
PL/I

addressability of storage areas 24
CSA, common system area 41
CWA, common work area 41
FIOA, file I/O area 42
FWA, file work area 42
JCA, journal control area 44
link-editing 17
REENTRANT requirements 41
register usage 14
restrictions 16
SAA, storage accounting area 44
storage definitions 41

example of copying 44
required order of definition 41

TCA, task control area 41
TCTTE, terminal control table

terminal entry 41
TDIA, transient data input area 43
TDOA, transient data output area 43
TIOA, terminal I/O area 42
transfer of control 14
TSIOA, temporary storage I/O area 43
TWA, transaction work area 41
VSWA, VSAM work area 43

polling of terminals 105
pas operand

DFHMDF 161, 166
POST type of DFHIC macro 211
posting ECBs 222
PRGNAME operand

DFHTC 138
print request facility (3270) 126
printer authorization matrix 126, 127
printer control characters CBMS) 181
printer form 113
priority of a task 222
program communication block (PCB) 87
program examples

basic mapping support (BMS) 335
map definition 335
test response code 181

built-in functions
copying storage referred to by

BIF 263
copying storage definitions

assembler language 32
COBOL 39
PL/I 44

DL/I
assembler language 93
COBOL 95
PL/I 97

executable CICS sample program
assembler language 323
COBOL 329
PL/I 333

file services
build a new record 66
check response code 80
direct read-only operation 57
direct- retrieval for update 61
direct update or add data 63
end sequential retrieval 76
get an FWA 66
initiate browse operation 70

releasing an FHA 68
reset sequential retrieval 78
retrieve next record 73
VSAM locate-mode I/O 59

journal services
acquire the journal control
area 306

asynchronous journal output 309
journal record
synchronization 313

synchronous journal output 307
partial dump request 301
posting ECBs 222
storage services

abnormally terminate a
transaction 235

check response code 237
deleting a program 234
establish program exit 236
linking programs 232
loading a program 233
obtain and initialize main
storage 242

release main storage 243
transferring program control 233

table search built-in function 265
task services

attaching tasks 222
change priority of a task 224
multiple events task
synchronization 225

relinquish control to higher
priority task 225

single event task
synchronization 225

single-server resource
synchronization 226

temporary storage services
check response code 256
free temporary data 255
retrieve temporary data 254
store temporary data 252

time services
check response code 216
retrieval of time-ordered
data 215

signal for time expired 212
suspend task processing 211
task initiation with data 214
task initiation without data 213
time-of-day services 210

transient data services
acquire queued data 248
check response code 249
dispose of data 247
extrapartition alignment

requirements 248
forced end of volume 249

weighted retrieval 277
program initialization 14
PROGRAM operand 238
program services

abend a transaction 234
convert label to address 237
delete a program 234
introduction to 231
load a program 233
logical levels 231
logical relationships 231
pass control anticipating return 231
program management 231
response codes 237
return program control 233
summary of 6

362 CICS/VS Application Programmer's Reference Manual (Macro Level)

transfer control 232
program specification block (PSB) 87
program testing and debugging

card-reader-in/line-printer-out
(CRLP) 293

dump services 299
introduction to 291
sequential terminal support 293
trace services 295

PROPT operand 193
PRTY operand 229
PS operand 155

DFHMDF 166
DFHMDI 160
DFHMSD 155

PSB (program specification block) 87
PSB operand 99
PSBFAIL operand 99
PSBNA operand 99
PSBNF operand 99
PSBSCH operand 99
PURGE type of DFHBMS macro 177, 178
PURGE ·type of. DFHKC macro 227
PURGE type of DFHTD macro 249
PURGE .type of DFHTS macro 255
PUT type of DFHFC macro 62
PUT type of DFHIC macro 213
PUT type of DFHJC macro 307
PUT type of DFHTC macro 108
PUT type of DFHTD macro 246
PUT type of DFHTS macro 252
PUTQ type of DFHTS macro 253

QARGADR operand 229
QARGLNG operand 229
quasi-reenterability 14
QUEBUSY operand 250
QUEZERO operand 250

RANGE operand 287
DFHBIF 283

RCD (request-change-direction)
signal 114

RDATA1 operand 297
RDATA2 operand 298
RDATT operand

DFHBMS 194
DFHTC 138

RDF (record descriptor field) 56
RDIDADR operand

DFHBIF 283
DFHFC 84

read attention (2741) 121
read from a terminal or LU 106
read-ahead queueing 110
ready message for 7770 108
record descriptor field (RDF) S6
record identification field

DAM data set 54
multiple browse 53
RDIDADR operand 53, 84
VSAM data set 54

recovery/restart services
summary of 6

sync point management 319
reenterable program 13
register usage 14
relative record number (DFHDI
macro) 201

RELEASE operand
DFHIC 219
DFHSC 244
DFHTS 257

RELEASE type of DFHFC macro 68
RELEASE type of DFHTS macro 255
relinquish control to higher priority
task 225

replacement of records (DFHDI
macro) 199

REQID operand
DFHBMS 194
DFHIC 219

request-change-direction (RCD)
signal 114

request/response unit (RU) III
RESETL type of DFHFC macro 77
RESETXIT type of DFHPC macro 236
response codes

bit test 269
DL/I services 91
field verify 267
file control 80
input formatting 272
interval control 216
journal control 315
methods of testing 17
phonetic conversion 266
program control 237
table search 265
temporary storage control 25S
transient data control 249

response codes (DFHDI macro) 201
restore recoverable resources 320
restrictions

assembler language 15
COBOL 15
link-editing 17
object module size 17
overlays in application programs 13
PL/I 16

RETMETH operand 84
RETPAGE operand 194
retrieve time-ordered data 214
RETRY type of DFHIC macro 216
return program control 233
RETURN type of DFHPC macro 233
ROLLBACK type of DFHSP macro 320
route list 179
ROUTE type of DFHBMS macro 178
ROUTINE operand 238
RRNADDR operand

DFHDI 203
RTEFAIL operand 194
RTESOME operand 194
RU (request/response unit) III
RU indicators (FOC,MOC,EOC) III

sample program 323
SAVE operand 169
scratch pad (temporary storage) 6
SCSPRT logical unit 127
segment search argument (SSA) 88
segmented writes control (2980) 123

Index 363

SELECT operand
DFHDI 203

selecting media in logical unit 200
SELNERR operand

DFHDI 203
SEND/RECEIVE mode 110
sequential retrieval

end 76
reset 77
retrieve next record 72
retrieve previous record 75
skip-sequential processing 53
start 69

sequential terminal support 293
service invocation

journal services 305
program services 231
recovery/restart services 319
storage services 241
task services 221
temporary storage services 251
time services 209
transient data services 245

SERVICE RELOAD 39
SETL type of DFHFC macro 69
SETXIT type of DFHPC macro 235
SIGADDR operand

DFHTC 138
signal commands from LU 114
SIGNAL type of DFHTC macro 114
single event task synchronization 225
single server protection 226
single threading 11
SIZE operand

DFHMDI 160
skip-sequential processing 53, 73
SNA (systems network architecture)
system 105

SNA protocols 110
SRCHTYP operand 84
SSA (segment search argument) 88
SSALIST operand 99
SSAS operand 99
standard attribute list (BMS) 181
STARTIO operand

DFHJC 317
STATERR operand

DFHJC 317
status flag byte 179
storage accounting area (SAA)

addressability of
assembler language 32
COBOL 38
PL/I 44

storage definition
assembler language 32
COBOL 38
PL/I 44

storage areas
base addresses 24
chaining 24
required 24
summary 21
symbolic names 24

storage definition
addressability 24
base addresses 24
chaining of storage areas 24
common system area (CSA)

assembl~r language 29
COBOL 35
PL/I 41

common work area (CWA)
assembler language 29

COBOL 35
PL/! 41

copying 24
DFHTC macro 106
file input/output area (FIOA)

assembler language 30
COBOL 36
PL/I 42

file work area (FWA)
assembler language 30
COBOL 37
PL/I 42

journal control area (JCA)
assembler language 32
COBOL 38
PL/! 44

recommendation 14
required storage areas 24
storage accounting area (SAA) 32

assembler language 32
COBOL 38
PL/! 44

storage accounting field 21
task control area (TCA)

assembler language 29
COBOL 36
Pl/! 41

temporary storage input/output area
(TS!OA)

assembler language 31
COBOL 38
PL/I 43

terminal control table terminal entry
(TCTTE)

assembler language 29
COBOL 35
PL/I 41

terminal input/output area (TIOA)
assembler language 30
COBOL 36
PL/I 42

transaction work area (TWA)
assembler language 29
COBOL 36
PL/I 41

transient data input area (TDIA)
assembler language 31
COBOL 37
PL/I 43

transient data output area (TDOA)
assembler language 31
COBOL 37
PL/I 43

VSAM work area (VSWA) 30
assembler language 30
COBOL 37
PL/I 43

storage definitions
assembler language 29
COBOL 35
PL/I 41

STORAGE operand
DFHMSD 155

storage services
accounting for storage 241
activate ABEND exit 235
cancel ABEND exit 235
get main storage 241
initialize main storage 241
introduction to 241
macro 242
program examples

abnormally terminate a
transaction 235

364 CICS/VS Application Programmer's Reference Manual (Macro Level)

check response code 237
deleting a program 234
establish program exit 236
linking programs 232
loading a program 233
obtain and initialize main
storage 242

release main storage 243
transferring program control 233

reactivate ABEND exit 235
release main storage 242
storage control 241
storage management 241
summary of 6

STORCLS operand 257
STORFAC operand 257
strings, VSAM 68
STYPE operand 298
SUBST operand 287

DFHBIF 284
SUFFIX operand l5S

DFHMSD 155
SUPPR operand 303
suspend data set 251
suspend execution of task (DFHDI

macro) 201
switchable screen sizes 126, 127
symbolic cursor positioning 187
symbolic description map (BMS) 146
sync point management

summary of 6
sync point 319

sync point, specify 319
synchronization of I/O 105
synchronize a task 224
synchronize terminal I/O

DFHTC TYPE=WAIT 108
return of control 108

synchronous journal output 307
syntax notation of macros 10
system management functions

file services 51
journal control 305
program services 231
recovery/restart services 319
storage services 241
summary of 3
task services 221
temporary storage services 251
time services 209
transaction flow 7
transient data services 245

System/3 119
System/370 119
System/7 119
systems network architecture (SNA)

system 105

table search 265
TARGET operand 287

DFHBIF 284
task control area (TCA)

addressability
COBOL 36
PL/! 41

contents of 25
logical sections 27
storage definition

assembler language 29

COBOL 36
PL/I 41

task identification 115
task protection 110
task services

attaching tasks 221
change priority of a task 222
initiate a task 221
listing of 221
macro 222
multiple events task
synchronization 225

program examples
attaching tasks 222
change priority of a task 224
multiple events task
synchronization 225

relinquish control to higher
priority task 225

single event task
synchronization 225

single-server resource
synchronization 226

relinquish control to higher priority
task 225

single event task
synchronization 225

summary of 6
synchronize a task 224
task control 221
task management 221
task purgeability on system
overload 227

task synchronization 224
task synchronization 210
TASKNA operand 100
TCAM supported logical unit 135
TCAM supported LUs 117
TCAM supported terminals 117
TDADDR operand 250
teletypewriter programming 117
temporary storage I/O area (TSIOA)

addressability of 31
assembler language 31
COBOL 38
PL/I 43

obtaining a 243
storage definition

assembler language 31
COBOL 38
PL/I 43

temporary storage services
free temporary data 255
introduction to 251
macro 253
page queuing facility 251
program examples

check response code 256
free temporary data 255
retrieve temporary data 254
store temporary data 252

response codes 255
retrieve temporary data 253
scratch pad 6
store temporary data 252
summary of 6
temporary storage control 251
temporary storage management 251
test response 255

TERM operand
DFHMSD 155

terminal code table 181
terminal control table terminal entry

(TCTTE)

Index 365

addressabi1ity of
assembler language 29
COBOL 35
PL/I 41

storage definition
assembler language 29
COBOL 35
PL/I 41

terminal I/O area (TIOA)
address 106
addressability of

assembler language 30
COBOL 36
PL/I 42

data length warning 107
dump 107
for a chain 111
for a write 107
for storage control 243
reuse 107
storage definition

assembler language 30
COBOL 36
PL/I 42

terminal paging
BMS 144, 169
temporary storage services 251

terminal services 105
access methods 105
sequential devices 105
summary of 3

terminals supported by TCAM 117
terminate a browse 53
terminate operations on data set (DFHDI

macro) 200
TERMNS operand 100
test response

BMS services 180
journal services 315
methods of 17
program services 237
temporary storage services 255
time services 216
transient data services 249
weighted retrieval 276

test response (DFHDI macro) 201
TEXT operand 169
TEXTBLD -type of DFHBMS macro 175
TIMADR operand

DFHIC 219
time of day 210
TIME operand

DFHBMS 194
DFHIC 219

time services
cancel INITIATE request 216
cancel POST request 216
cancel PUT request 216
cancel WAIT request 216
delay processing of task 210
expiration of specified time 211
introduction to 209
program examples

check response code 216
get time-ordered data 215
signal when time expired 212
suspend task processing 211
task initiation with data 214
task initiation without data 213
time-of-day services 210

request cancellation 215
response codes 216
retry capability 216
summary of 6

task initiation 212
task initiation with data 213
task synchronization 210
time of day format 210
time-ordered data 214

time-initiated transaction (3735) 131
TIOAPFX operand

DFHMDI 160
DFHMSD 156

TITLE operand 194
trace services

introduction to 295
trace control 295
trace entry format 295
trace ENTRY function 297
trace OFF function 297
trace ON function 297
trace table

duplicate entries 296
location of 295
trace entry general format 295
trace header 295

TRAILER operand
DFHBMS 195
DFHMDI 160

transaction dump 300
transaction flow 7
transaction initiation 105
transaction storage dump 299
TRANSACTION type of DFHDC macro 299
transaction work area (TWA)

addressability of
COBOL 36
PL/I 41

addressabi1ity restriction 27
description 27
size 27
storage definition

assembler language 29
COBOL 36
PL/I 41

transfer of control 14, 232
TRANSID operand

DFHBMS 195
DFHIC 220
DFHKC 229
DFHPC 239

transient data input area (TDIAl
addressability of

assembler language 31
COBOL 37
PLI 43

obtaining a 243
storage definition

assembler language 31
COBOL 37
PL/I 43

transient data output area (TDOA)
addressability of

assembler language 31
COBOL 37
PL/I 43

obtaining a 243
storage definition

assembler language 31
COBOL 37
PL/I 43

transient data services
acquire queued data 247
automatic task initiation (ATI) 245
dispose of data 246
extrapartition data 245
forced end of volume 248
indirect destinations 245

366 CICS/VS Application Programmer's Reference Manual (Macro Level)

intrapartition data 245
introduction to 245
macro 247
program examples

acquire queued data 248
check response code 249
dispose of data 247
extrapartition alignment

requirements 248
forced end of volume 249

purge intrapartition data 249
response codes 249
summary of 6
test response 249
transient data control 245
transient data management 245

translation tables for the 2980 347
transmission of data (DFHDI) 200
transparent (TRN) character 112
TRMIDER operand

DFHIC 220
TRMIDNT operand

DFHIC 220
TRN (transparent) character 112
TRNIDER operand

DFHIC 220
TSDADDR operand 257
TSEARCH type of DFHBIF macro 265
TSINVLD operand

DFHIC 220
TSIOERR operand 195
TYPE operand

DFHBMS 195
DFHMSD 151

TYPE= parameter
DFHTC 138

TYPOPER operand
DFHFC 85
DFHTS 257

UNEXPIN operand
DFHDI 203

unsolicited input 114
upgrade set 53
USER type of DFHSP macro 319

VALID operand
DFHTC 142

validity of reference 12
VALIDN operand 156

DFHMDF 166
DFHMDI 160
DFHMSD 156

virtual storage
concepts 12
locality of reference 12
techniques 13, 14
validity of reference 12
working set 12

VOLADDR operand
DFHDI 204

VOLERR operand
DFHJC 317

VSAM data set

access error requirement 51
adding several records at once
alternate index 53
alternate key 53
browse operation 69
browsing 53
direct retrieval 56
exclusive control 57
ISAM compatibility mode 51
locate mode 51, 70
lockout 57
mass insert 65, 84
record identification field 54
skip-sequential processing 73
strings 68
TYPE=RELEASE after error 57
TYPE=RElEASE macro 51
TYPE=RELEASE requirements 63
variable-length records 57

VSAM shared resources 52
VSAM work area (VSWA)

addressability of
assembler language 30
COBOL 37
PL/I 43

storage definition
assembler language 30
COBOL 37
PL/I 43

VTAB operand
DFHMSD 156

WAIT operand
DFHTC 142

WAIT type of DFHIC macro 210
WAIT type of DFHJC macro 312
WAIT type of DFHKC macro 224
weighted retrieval

initiate 274
macros 273
operation 273
program example 277
release storage areas 276
retrieve selected records 275
selection criteria 275
test response 276

working set 12
WRBRK operand

DFHBMS 196
DFHTC 142

write break (2741) 121
write followed by a read 107
write to a terminal or LU 107
WRITE type of DFHJC macro 308
WRKAREA operand 100
WTRETCHK type of DFHBIF macro 276
WTRETGET type of DFHBIF macro 275
WTRETREl type of DFHBIF macro 276
WTRETST type of DFHBIF macro 274
WTRTPARM type of DFHBIF macro 275

XCTL type of DFHPC macro 232

65

Index 367

Numerics

2260 Display Station 120
2265 Display Station 120
2740 Communication Terminal 120
2741 Communication Terminal 120

read attention 121
write break 121

2770 Data Communication System 122
2780 Data Transmission Terminal 122
2980 General Banking Terminal 122
3270 attention identifier 107, 140
3270 data stream 107, 140
3270 field attributes 181
3270 Information Display System

BTAM and TCAM 125
LUTYPE2 logical unit 127
LUTYPE3 logical unit 127
SCSPRT logical unit 127
3270 local copy 126
3270 logical unit 126
3270 print request 126
3270 switchable screen size 126

3270 read buffer 107, 140
3600 Finance Communication System

BTAM 128
3600 (3601) LU 129

3600 (3614) logical unit 129
3600 pipeline logical unit 129

3630 Plant Communication System 129
3650

host command processor LU 129
host conversational (3270) LU 129
host conversational (3653) LU 130
Interpreter LU 130
pipeline logical unit 130

3650(3270) erase function 130
3660 Supermarket Scanning System 130
3735 Programmable Buffered Terminal 130
3740 Data Entry System 131
3767 Interactive LU 132
3770

batch data interchange LU 132
batch LU 132
Full Function Logical Unit 132
Interactive Logical Unit 132

3780 Data Communications Terminal 133
3790

batch data interchange LU 133
Full Function LU 133
inquiry logical unit 133
SCS Printer LU 133
3270 compatibility logical unit 133

7770 Audio Response Unit 134
ready message 108

368 CICS/VS Application Programmer's Reference Manual (Macro Level)

Customer Information Control System
CICS/VS Version 1 Release 7
Application Programmer's Reference Manual
(Macro Level)

Order No. SC33-0079-5

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. Your comments will be sent to the author's department for whatever review and
action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your
IBM representative or to the IBM branch office serving your locality.

Number of your latest Technical Newsletter for this publication ...

If you want an acknowledgement, give your name and address below.

Name .. .

Job Title Company

Address

. Zip

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
ffiM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.) ,

SC33-0079-5

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 6R1 H,
180 Kost Road,
Mechanicsburg, PA 17055, USA

Fold and tape Please Do Not Staple

==.=.=® - -------- - ---- - - -----------,-

IIIII
Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

