
--- -...._: __ .. _
.,-·:·=-= :=.=
.· ·----,) .. .,=-=.: ~:.
~-·-

.- .

PL/I
Progra·mming·
10103

Textbook 2

lndepend.ent
Study.·· ··
Program··

First Edition (July 1980)

All rights reserved. No portion of this text may be reproduced without express
permission of the author.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available outside the United States.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, Publications Services, Education
Center, South Road, Poughkeepsie, New York 12602

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright International Business Machines Corporation 1980

Contents

Textbook l

Textbook 2

Topic 0: Introduction to the Course
Topic I: Introduction to the PL/I Language
Topic 2: Elements of PL/I:
Topic 3: The DECLARE Statement and Data Elements
Topic 4: The Assignment Statement
Topic S: RECORD Input/Output Part 1 - MOVE Mode
Topic 6: Data Structures and Picture Variables
Topic 7: Control of Program Flow ;
Exercises A: ·. ,,
Topic 8: RECORD Input/Output Part 2 - LOCATE Mode
Topic 9: Input and Output - Further Considerations
Topic 10: CONSECUTIVE Organization
Exercises B:

Topic 11: REGIONAL Organization ..
Topic 12: INDEXED Organization ...
Topic 13: Virtual Storage Access Method
Topic 14: Variable Length Records·.
Topic 15: STREAM Input/Output .
Topic 16: Controlling the Compiler .
Topic 17: The PL/I Block Structure .
Topic 18: Subroutines and Functions
Topic 19: Handling Exceptional Conditions .
Topic 20: Testing and Debugging Aids
Topic 21: Overlay Defining
Topic 22: Structures and Arrays . .
Topic 23: Data Storage Allocation .
Appendix A: Solutions to Exercises
Appendix B: Additional PL/I Problems and Solutions

. . 1

. 1- lf'

. 2-1~

. 3-1 ..

. 4-lt:

. 5-1~

. 6-lf!.

. 7-1?
.XA.1

. 8-lf
.. 9-1~
. 10-1~

. XB.1

11-1
12-1
13-1 4-
14-1
15-1
16-1
17-1
18-1
19-1
20-1
21-1
22-1
23-1
A-1

. B-1

Contents

s

A
E D

y p
D u

M D
0 G

u p D E u p

R
N T y

OG p T OG M E
E N TU 0 E

Topic

11

A

E T
N

E p

N T y

T OG M
ST R

T
y

0

A
I

p

D

p

M

D

D

DE
T

D
p

N UD

T

D

E D y OG E D D RO D N ST 0
R AM D NT D R AM D NT ~ D NT DY P 0

R M ND ENT D p R M IND ENT ND EN D P D RO M
A IN E N TU p R IN E N u E N U P R IN

' NOE ST GR E P ND RA U E
~D T STU PR D ND TU PR R D ND TU Y 0 ND

T R G D EN E T R G D EN TU R R M END
ST P 0 PE D T ST P 0 N PE D T STU A ND N
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T

JD PROGRAM E N UDY PRO R~ E ·N UD PRO RA ND PE S
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D

~R GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U
GRAM IN P ND N S D PR GRAM P ND NT S D PRO R M I E EN T STU PR

~ NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
~ INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA
INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
)EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN
PENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
~DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
~ STUDY PROGRAM INDEPENDENT STUDY PROGRAM INpEPENDENT STUDY PROGRAM INDEPENDEN
~TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
OGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
RAM INDEPENDENT. STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROG
M TNnFPFNnFNT ~TtJnY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA

Topic 11

Regional Organization

Objectives

Introduction

In this topic you will learn about the three Regional organizations in PL/I: REGIONAL (1),
REGIONAL (2) (OS/VS only) and REGIONAL (3). You will learn about the physical layout
of each ·organization on disk, the reasons for using each of the three types and how to write
programs which use Regional data sets. If you are already familiar with Regional organization
you can leave out the associated sections within this topic and read the sections relating to
PL/I.

At the end of this topic you should be able to:

• understand the differences between the three Regional organizations

state the advantages of each type of Regional organization and when each type would be
used

write PL/I programs which use Regional data sets

understand the circumstances in which the KEY condition will be raised.

Regional organization is used when direct access to the data set is more important than
accessing the data set in a logical sequential order. Records are loaded onto the data set by
being directed to a particular 'slot' on the data set, relative to the beginning. A 'slot' or region
can either be the size of one record (REGIONAL (1) and (2)) or the size of one track of the
disk (REGIONAL (3)). Regions always start at Region 0.

The records on the data set will be retrieved directly using some field associated with, and
usually located within, each record. This field will be called a 'control field' in this topic and
might be a personnel number, a part number for spare parts, a branch number etc. The region
number for a particular record could be the same as this control field, in which case the
maximum region number, and hence the size of the data set, would be determined by the
maximum control number. However, it is more usual first to allocate a suitable space for the
data set - this decides how many regions there will be - and then to manipulate the record
control fields so that they fall within this range of regions. In order to subsequently retrieve
records from the data set, the same manipulation of the control field must be performed and
the resulting region searched.

Let's see how this is done for each of the Regional organizations.

Page 11 -1

Topic 11: Regional Organization

REGIONAL(1)

Page 11 -2

Suppose we have ten records to load onto a REGIONAL(1) data set. The control numbers are
101, 145, 132, 169, 178, 109, 188, 155, 111 and 190. We could simply take these control
numbers as region numbers and create the data set. This would be very wasteful of disk space
because the data set must start at region 0 and all regions up to the maximum region number
must be represented. So we must find a way of compressing the data set size. One commonly
used method is to allocate a number of regions to the data set (slightly more than there are
records), divide the control number by the number of allocated regions and take the remainder.
(Other methods can be used to generate the region number - see Exercise 6 at the end of this
topic - but the 'remainder' method is the most commonly used).

Let's allocate 16 regions to our data set (region 0 to region 15) and suppose that there will be
4 records per·track. If we divided each number by 16, then by definition, every remainder thus
generated would fall within the range 0 through 15. For our particular set of records we would
generate regions 5, 1, 4, 9, 2, 13, 12, 11, 15, 14 respectively.

So we would write record 101 in slot (region) 5, record 145 in slot (region) 1 etc.

0 1 2 3
145 178.

4 5 6 7
132 101

8 9 10 11
169 155

12
~

13 14 15
188 109 190 111

You can see that it would be easy to find two or more records wanting to go in the same
region. For example, suppose we had to write record 117 onto the data set; that would also
want to go into region 5.

Any record trying to go to a region in which a record already resides, is called a 'synonym'.

(Increasing the number of regions in the data set might reduce the number of synonyms but it
would increase the size of the data set; a compromise has to be reached).

Our program must be capable of recognizing that the region is already in use, and we must
therefore arrange to write the 'synonym' in an 'overflow' area. So in this particular case, we
might well have reserved an extra track full (i.e. an extra four regions, numbered 16, 17, 18,
19) into which we could write records which 'overflowed'.

~
0 1

145

4 5
132 101

8 9
169

12 13

188 109

16 17

Dummy Records in REGIONAL(1)

2
178

6

10

14
190

18

3

7

11

15

19

155

111

}

Topic 11: Regional Organization

OVERFLOW
AREA

It is the programmer's responsibility to recognize 'synonyms' and to direct such records to an
overflow area. In order to help him/her do this every 'unused' region in the REGIONAL(1)
data set is filled with a 'dummy' record by the Regional routines, when the data set is created.
A 'dummy' record contains (8)' l' Bin the first byte.

How does this help the programmer? Well, the program could read from a region before
writing to it. And if the record read was a dummy record? Then the program could write to the
region concerned knowing that the region was currently unused. And if the record read was
not a dummy record? Then the program would have to write the record in an overflow region -
but which overflow region (16, 17, 18 or 19)? A suitable choice would be the first overflow
region which was currently unused. This would be found by reading from each overflow region
in turn until a dummy record was retrieved that would indicate the first unused overflow
region.

So far we have been talking about creating the REGIONAL(l) data set. The same method of
converting the control number to a region number must be used on subsequent retrieval. If the
record read does not have the control number you require, then perhaps the record required
was a 'synonym'. Therefore search the overflow regions in turn until you find the record with
the control number you want. (There is always the possibility that the record might not be
there at all).

Pagel l -3

Topic 1. 1 : Regional Organization

REGIONAL(3}

Page 11 -4

REGIONAL(3) data sets are similar to Regional(l) data sets except that a Region is a track -
Le. it can hold more than a single record.

Let's take the same records as before and load them this time onto a REGIONAL(3) data set -
to which we have allocated 5 tracks numbered 0 through 4. We intend to use the final track,
i.e. track 4, for overflow records, therefore records must initially only be directed to tracks 0
through 3. We can achieve this by dividing the control numbers (101, 145, 132, 169, 178, 109,
188, 155, 111and190) by 4 and taking the remainder. This will produce regions 1, 1, 0, 1, 2,
1, 0, 3, 3 and 2 respectivel_Y.

Records are written in the next available space in the region specified. Several records can
exist in the same region,. therefore each record must have a recorded key (immediately
preceding the data) so that the REGIONAL(3) routines can distinguish between different ..
records in the same region. This recorded key is usually the control number.

0 132 188

1 101 145

2 178 190

3 155 111

I
I 4
l

169

I
I

J_

:
I
l

I
I

I
I

_l
T
I

l
I
I
I
1

109

} OVERFLOW
AREA

Topic 11: Regional Organization

OS/VS Considerations

If we subsequently wished to add a further record to track 1, the OS/VS PL/I routines are in
fact capable of continuing to search along track 2 until they find a vacant space. Indeed the
whole data set could be searched if necessary until a vacant slot was found. However, this
could result in time being wasted, not only to load the file, but in subsequent retrieval. So it is
possible to limit the number of tracks to be searched via a Job Control subparameter on the
DD card for the data set.

This subparameter is called the LIMCT subparameter and has the form LIMCT=n, where n is
the number of tracks to be searched. If LIMCT is omitted the search will continue to the end
of the data set and then from the beginning to the original track searched.

The Use of the KEY Condition

If no space is found when creating the REGIONAL(3) data set or a record is· not found on
retrieval, then the KEY condition is raised. The KEY condition is one of several 'on­
conditions' which PL/I recognizes as abnormal situations. The default action for most
on-conditions is to print a message and terminate the program but this default action can be
overridden by the programmer (see Topic 19). In particular the programmer can investigate
the reason for raising the KEY condition and take appropriate action.

For example if you are reading the REGIONAL(3) data set and the KEY condition is raised
because the record cannot be found, then read from the overflow region(s). If the KEY
condition is still raised because the record cannot be found in the overflow region(s) then the
record does not exist on the data set. (You might decide to print an appropriate message under
these circumstances).

The KEY condition is equally useful on creation. If the KEY condition were raised because
there was no room to write a record in the region specified, then you should arrange to write
the record in an overflow region.

The KEY condition is not raised under the same circumstances for REGIONAL(l) data sets.

For details about PL/I on-conditions (of which the KEY condition is one) and how to 'handle'
them, see Topic 19. Even at this stage, however, you should appreciate that the KEY condition
makes programming for REGIONAL(3) data sets much easier than programming for
REGIONAL(1) data sets.

Comparison of REGIONAL(1} and REGIONAL(3) Data Sets

REGIONAL(l) organization provides the fastest means of directly retrieving a record from a
data set (provided that there are not many overflows). REGIONAL(l) records are F- format
with no recorded keys - keys are not needed, because each region corresponds to a single
record.

REGIONAL(3) organization supports the following record formats: F, U, V (OS/VS only)
and VS (OS/VS only) ... Each record has a recorded key (because each region will probably
contain more than one record). REGIONAL(3) is not quite as fast as REGIONAL(1) for
direct processing (think about the reason for this) but it is more convenient to program
because of the KEY condition).

Programs which create REGIONAL(1) data sets are device independent in that the
REGIONAL(l) data set will always be the same size, regardless of the device. Programs
which create REGIONAL(3) data sets are not device independent in this manner, because the
number of records per track (i.e. region) will vary from device to device. For example, if we

Page 11 -5

Topic 11: Regional Organi~tion

Page ll -6

have to load 100 records on to a device which can hold 20 records per track then we might
allocate 6 tracks (regions 0 through 5) and divide the control number by 5 taking the remain­
der as the REGIONAL(3) region number; region 5 would be used as an overflow region. In
otder to load the same records on to a device which only holds 10 records per track we might
allocate 12 tracks (regions 0 through 11) and devi~ the control number by 10 taking the
remainder as the REGIONAL(3) region number; regions 10 and 11 would be used as overflow
regions. In other words, the program would have to be different for different devices.
REGIONAL(1) data sets do not have this disadvantage. ·

REGIONAL(2) organization (OS/VS only) combines the device independence of
REGIONAL(!) with the ease of coding of REGIONAL(3).

Topic 11 : Regional Organization

REGIONAL(2) - OS/VS Only

. REGIONAL(2) data sets are a combination of REGIONAL(l) and REGIONAL(3) data sets.
The region that you calculate in the program is a relative record slot (as in REGIONAL(l)) -
but at execution time, when the type of device being used is known, the PL/I REGIONAL(2)
routines convert this relative record slot to a relative track slot (as in REGIONAL(3)). The
record goes in the next available space in the relative track.

Let's take the same set of records again and create the REGIONAL(2) data set on a device
which will hold four records per track. We have allocated five tracks - 4 data tracks and one
overflow. The second column shows the relative record slot calculated in the program by
dividing by 16 and taking the remainder. The third column shown the relative track number at
execution time.

Record Remainder after
number divi~by 16

101 5
145 1
132 4
169 9
178 2
109 13
188 12
lSS 11
111 15
190 14

This is what the data set would look like:

0 1 2
145 178 0

4 5 6
1 101 132

8 9 10
2 169 155

12 . 13 14
3 109 188 111

16 17 18
4

,;.

3

7

11

15

19

Eventual relative
track number

1
0
1
2
0
3
3
2
3
3

190

,. }

OVERFLOW
AREA

The same rules apply to REGIONAL(2) data sets as to REGIONAL(3): if the original region
(track) is full, then the next one, and so on, will be searched until a space is found. Once again,
this search can be limited by the LIMCT subparameter on the Job Control DD card.

Page 11 -7

Topic 11: Regional Organization

Keys For REGIONAL(1)

The following is an example of a direct read statement for a Regional(!) data set:

The expression in brackets after the KEY option, is called the source key the key used within
the program. Regional(1) source keys specify a region number. So, the above statement will
read from region 619 or the REG 1 data set. The region number is assumed to be eight
characters long. If the source key is longer than eight characters, the right most eight charac­
ters are taken. If the source key is shorter than eight characters, blanks (interpreted as zeroes)
are assumed on the left. If the expression after the KEY option is not in character format, it
will be converted to charact~r format before being used.

Keys For REGIONAL(2) and REGIONAL(3)

Page II -8

The following is an example of a direct read statement for a REGIONAL(2) or
REGIONAL(3) data set:

The expression in brackets after the KEY option, is called the source key - the key used within
the program. Regional(2) and Regional(3) source keys specify a region number (the last eight
characters) and a recorded key.

The recorded key starts at the left of the source key; its length is specified in the KEY­
LENGTH environment option of the file declaration (OS/VS and DOS/VS) or in the DD
KEYLEN subparameter portion of each record on the data set - it is external to the data
portion - and is used to distinguish different records in the same region. (Recorded keys are
not necessary in REGIONAL(!)).

The region number is 12345999 (the rightmost eight characters). A KEYLENGTH specifica­
tion of 4 would indicate that the recorded key was 9999 (the leftmost 4 characters). A
KEYLENGTH specification of 12 gives a recorded key of 999912345999. The recorded key
and the region number can overlap within the source key or they can be separated by
'redundant bytes' within the source key:

RECORDED RECORDED
KEY KEY,

•

I I I I i I I I I I I I I I I I I I
...

REGION REGION

Topic 11: Regional Organization

The recorded key is normally the control number and so the source key would be a concatena­
tion of the control number with an 8-byte region number (declared as PIC'(8)9' or
CHAR(8)).

For example:

!~cd~~1.z~tJJ 1 Llf !RECORD DI RECIT I NP~T
: I 11 l I 11 l~NV (•••••• I~ EY LEN~ilH (6) i) j

101 c L }~E 6 T 1P} I c f (8 l CJ ' J_

- i - I I -+-+--t---r- . : ~I>jC L JC:TLNiO! 1~11C ' (") 'I ' i
i ' I I I r

-- 1 -r-IR/flADhF (LJE (li+eGJ2 3) I I NIT o[l A RE.A) KE y[(CT L~o111 REI~[);
I I 11 111 111 I 1 1

If the region specification is not in character format it will be converted to character and the
rightmost eight bytes used as the region number.

More information about source keys, recorded keys and Regional organization is contained in
the Language Reference Manual and the Programmer's Guide under the appropriate headings.

Page 11 -9

Top,ic 11: RegionalOrganization

Declaring a REGIONAL FILE- DOS/VS

I I
I

i i

: J
i l
' [

Page 11-10

An example of a file declaration for the Regional organization is shown below:

I I i ! ! I I I i i I
I I

T il)~C L iR/f a!FT1 L 1FT1 L eT 01 IR EC Ir KE[Y E.D
I

I I f+~wv~KEYLEN6TH(n } EX IT1E1~T1N UMB ER (n) I I I l
r i

+
1 i I T TR Ea 1 olNlA L (n) ·1 • • • • • • iJ j

T T T T T T T I T

Note the following points:

KEYED

DIRECT

must be specified (or implied) if you are using keys when processing or
creating the data set, i.e. the options KEY, KEYTO (see later) and
KEYFROM (see later) attached to the 1/0 statement.

specify if processing directly; DIRECT implies KEYED but not vice
versa.

The following are options of the ENVIRONMENT attribute:

KEYLENGTH(n)

REGIONAL(l) or REGIONAL(3)
EXTENTNUMBER(n)

specifies the length of the recorded key for
Regional('.)); not valid for Regional(l).

this specifies the number of extents of the data
set; the default is 1.

Topic 11: Regional Organization

Declaring a REGIONAL FILE - OS/VS

An example of a file declaration for the Regional organization is shown below:

tl 1 !lllrMt t4E qf I L FI
i I E.N
'

KEYED

DIRECT

L£ l> I RE ClIJ KE rt ED
V(I~ E.Y LE Ir" N(Gj H(n) Rf GI ON I~ L{ n))1

must be specified (or implied) if you are using keys when
processing or creating the data set, i.e. the options KEY, KEY­
TO (see later) and KEYFROM (see later) atta~hed to the I/O
statement.

specify if processing directly; DIRECT implies KEYED but no
vice versa.

The following are options of the ENVIRONMENT attribute:

KEYLENGTH(n) specifies the length of the recorded key for REGIONAL(2) and
REGIONAL(3); not valid for REGIONAL(l). This value can
be specified in the KEYLEN subparameter of the DD state­
ment:

REGIONAL(1), REGIONAL(2) or REGIONAL(3)

TRKOFL

Dummy Records

applies to REGIONAL(l) and REGIONAL(2) only. This feature
allows the record size to exceed the size of a track. You must include
this function when the operating system is generated and you must have
a special feature on the DASD control unit. This option enables better
space utilization on disk.

Dummy records in REGIONAL(l) have (8)'1 'B in the first byte of the data. In OS/VS,
REGIONAL(2) and REGIONAL(3) (fixed format) dummy records consist of a 'dummy'
recorded key with (8)' 1 'B in the first byte, and the first byte of the data contains the sequence
number of the record on the track. There are no dummy records in DOS/VS REGIONAL(3)
organization.

Cr:eation of -REGIONAL Data Sets

Regional data sets can be created either sequentially or directly.

In sequential creation the records must be written to the data set in ascending region number.
REGIONAL(3) organization obviously allows consecutive records to have the same region
number, but not REGIONAL(l) or REGIONAL(2). In REGIONAL(l) and REGIONAL(2)
sequential creation, any region omitted from the sequence is filled in with a 'dummy' record.
Any error in the region number sequence raises the KEY condition.

In direct creation records do not have to be written to the data set in a specific order. In
REGIONAL(l) and REGIONAL(2) the whole of the data set is preformatted with 'dummy'
records when the data set is opened for direct creation (DIRECT OUTPUT). The same

Page 11 -11

Topic t 1: Regional Organization

preformatting occurs with OS/VS REGIONAL(3) fixed-length-record data sets but not with
DOS/VS REGIONAL(3) data sets. Having opened the Regional data sets for DIRECT
OUTPUT, records can be written to the data set in any order and they will be placed in their
region or in the next available place in that region depending on tl).e type of Regional organiza­
tion.

PL/I Statements for Processing REGIONAL Data Sets

Let's look at the PL/I statements which processes Regional data sets both sequentially and
directly. There is a table in the Language Reference Manual, in the chapter on Record
Oriented Transmission, which summarizes the PL/I statements which can be used. Locate this
table now. The basic format of the I/0 statements is similar to CONSECUTIVE organization,
with the addition of several options. The table is divided into three columns: how the associat­
ed file can be declared, valid I/ 0 statements to use with the file declared in this way and other
options that can also be used. First let's look at the new options.

KEYFROM Option

KEY Option

KEYTO Option

This is used to specify the source key to be used when creating the data set. In REGIONAL(l)
the source key will be a region number.

In REGIONAL(2) and REGIONAL(3) the source key will normally be a control number
concatenated with a "region num~er.

For example:

J

This is used to specify the source key when reading the data set.

For REGIONAL(1) data sets, this option obtains the region number as an eight byte character
string and brin~s it into storage. If the variable specified in the KEYTO option has a length
other than eight characters, then truncation or padding will occur on the left.

Example:

-l--l-~~-+_._-+--l--l--l-+-l--4--+-+-1-+-+-+--+-+-1-+-+-+--+--+--+---1-~-+---+--+-+-+--t-t·-+--t--+-t-·-+

lR E A D F I L E (IR E G 1) I N T 0 (A RE A) K E YrT 0 (IR Eki N 0) ,

Page 11 ..:.12

In this example the first record read will place '00000' in· REG NO. Subsequent reads will
increment this by 1. It would be more usual (and wiser) to ensure that the KEYTO variable is
declared with the CHAR(8) attribute.

Topic 11: Regional Organization

For REGIONAL(2) and REGIONAL(3) data sets, the KEYTO option causes the recorded
key to be assigned to the specified variable. If this variable has the wrong length then trunca­
tion or padding with blanks will occur on the right (as in normal character assignment).

Example:

Suppose the data set REG23 has a keylength of 9 and a record with recorded key
'12345ABCD' is read, then '12345A' will be placed in RECKEY. It would be more usual to
ensure that the KEYTO variable has the same length as the recorded key length of the data set.

Sequential Processing of ~EGldNAL Data Sets

Both Move mode and Locate mode processing can be used. Records are retrieved in ascending
region number which will not usually be the same as ascending control number because of the
way in which region numbers are derived.

REGIONAL(1) - OS/VS and DOS/VS

Dummy records are retrieved and must be ignored within the program.

REGIONAL(2) and REGIONAL(3) - OS/VS Only

Dummy records are not retrieved.

REGIONAL(3) - DOS/VS Only

There are no dummy records.

Direct Processing of REGIONAL Data Sets

Move mode only can be used.

Regional data sets can be created directly (see section on Creating Regional Data Sets).

n order to read the data set directly declare the file DIRECT INPUT.

---+--- -~ I I I

.b CL RE q! I :N! Fi / IL1E
- ~-- +-- -~- . +-~-t,--+--+--l-+-+--+--!-+-i--l---l-+-+=-+-+-+--+--<--+--+-~'-+--l--~-+-__;__i---+--4--~-4-l-

~-4-<-- i ! ! i I

.R.E. ~-Q FI ~_.S(~Eti~· 1-+N__,_--'-'-) ,-+I iN-+-l~___,0--=--(>-'1A1--R_1 Ei--IA..L-1----=K-r-·E.....:-Y+:-(+-i<_-.--:E~:Y-+-F-+-L-+-1 0-l-!)~;~1 ~~__,_

Page 11 -13

· Topic l f: Regional Organization . .

When the file is declared DIRECT UPDATE existing records can be updated directly, usin~
the REWRITE statement, or new recqrds can be added using the WRITE statement.

FILE.(RE~UP) FROIM(A REA) KfYFROM{NEIWKfY);
1 I T

Deleting Records - OS/VS Only

Page 11 -14

In OS/VS it is also possible to logically delete records by converting them to 'dummy' records
using the DELETE statement with the file declared as DIRECT UPDATE.

If you try and retrieve a deleted (dummy) record directly in REGIONAL(2) or
REGIONAL(3) then the KEY condition will be raised. Remember, dummy records in
REGIONAL(2) and REGIONAL(3) have (8)'1'B in the first byte of the ·key, so the key
specified in the READ statement will not be found. During sequential processing, deleted
records are ignored.

Key Condition

REGIONAL(1)

Topic 11 : Regional Organization

This is one of many PL/I on-conditions which are raised when PL/I recognizes an abnormal
situation (see topic 19 - but not now). Reasons for raising the KEY condition are shown
below:

A region is specified which is outside the data set limits

An error in the region sequence on sequential creation

A duplicate region during sequential creation.

REGIONAL(2) and REGIONAL(3)

A region is specified which is outside the data set limits

• An error in the region sequence during sequential creation

Specified keys cannot be found

No room to add the record.

Page 11 -15

Topi~ 11: Regional Organization

Event Option

The EVENT option can be attached to 1/0 statements for Regional files which are UNBUF-
. FERED SEQUENTIAL or DIRECT (which is automatically unbuffered). This option causes
control to be passed immediately to the next statement in the program without waiting for the
completion of the associated 1/0 activity. The main use of the EVENT option is to overlap
processing with 1/0 when processing directly. This overlap is automatic for sequential
processing if more than one buffer is used but there are no buffers when directly processing
Regional data sets. The following coding is one way in which this overlap of processing and
I/ 0 might be achieved for DIRECT files.

D.C L REjG/(L j/L e:):i R/cT

DO "vi1i1 L~Efsw1rcH'>·i·

+-·-+-

Page 11 -16

. . RE·A~D· F·l ·L-E. (REGF I .L.)

: : .:B (AQ~--- E~! ~<~ (~~(~ F~/~~)
... ,. +

*. P. r C?.f~~~~ ~ •... l"~~ ~+9}"-+
A: I '.f x} · , . /*' ·t a. i. t ~
;+·•(·•·t'l .,J •+•

The first READ does not use the EVENT option and so control does not pass to the second
READ until the first READ has taken place. So, while the second READ is taking place, we
can process the record read into AREA 1. When we wish to process the record in AREA2 we
must issue a WAIT statement. In our example X is an EVENT VARIABLE which is contextu­
ally declared as such. An event variable links the WAIT statement to a particular I/ 0 event.

EXERCISES

Topic 11 : Regional Organization

1. With references to the Regional data sets relevant to your system.

(a) which provides the fastest means of direct retrieval?

(b) which is the most difficult to program?

(c) are there any other advantages/disadvantages of the different Regional data set
organizations?

2. 'ABCDEFG 1234' is the source key of a record which is to be written to a
REGIONAL(3) data set. A keylength of 8 has been specified. What will be the recorded
key?

3. Under what conditions will Regional dummy records be ignored? Specify any differences
between the different Regional organizations.

4. (OS/VS only) 'ABCD00123456' is specified as the source key of a Regional(2) record.
Where will the record be stored on the data set?

5. Declare a suitable file and write the necessary statements to replace a record in region
100 of a REGIONAL(l) data set with a record containing all blanks. Assume a record
size of 80.

6. A REGIONAL(3) data set is to be created. It will contain approximately 3500 records
with part numbers ranging from 1 to 10,000. The region number is to be calculated by
dividing the part number by 3 and taking the integer result as the region. The records to
be loaded on to the data set are read in from a card file which is not in any particular
order. Write the progr~m to create the Regional(3) data set. The structure of the records
is shown below. The recorded key is to be the part number (PARTN). You may omit
coding to deal with overflows.

7. You are creating a REGIONAL(l) data set directly. The record size is 80 bytes. Write
the necessary declarations and statements to load records on to the data set. Assume that
the records to be written are contained in an input file and make any other necessary
assumptions.

Page 11 -17

Topic 11: Regional Organization

Answern

I. (a) REGIONAL(!). The access method goes straight to a record (provided there are
not any overflows) rather than to a track and then to a record as in Regional(3)
(and Regional(2) in OS/VS).

(b) REGIONAL(!). Regional(3) (and Regional(2) in OS/VS) are easier: the KEY
condition can be used on input to detect record not found (therefore read from
overflow region(s)) and on output to detect no room to write in the region specified
(therefore write to the overflow region(s)).

(c) Programs which create REGIONAL(l) data sets are device independent.
Regional(3) data sets will usually save disk space because records go in the next
available space within a region. Regional(2) (OS/VS only) combines the above
two advantages.

2. 'ABCDEFG 1 '.

3. REGIONAL(!) dummy records are always retrieved. It is up to the programmer to
_ignore them within the program. REGIONAL(3) and REGIONAL(2) dummy records
are ignored on sequential processing. If you attempt to retrieve directly a deleted (i.e.
dummy) record from a REGIONAL(2) or REGIONAL(3) data set, using the original
key of the record, then the KEY condition is raised.

4. (OS/VS only). In the first available space found, starting from the beginning of the track
in which region 123456 is located (subject to the LIMCT restrictions).

5.

• • • • • j

~&EWiRil iT VI iLJW[REG 1} FROM (D~f11A) KEY FROM(c 9}¢~¢¢ t ¢0') ;
~: i ! I I I TTl I

. Page 11 -18

OS/VS solution

I

. T

- +­
I

--+--

Topic 11: Regional Organization

6. Notice how the JCL is specified.

Jl I l J
WJ§~. rR EjB 3} DID b~IH1• s1+'21fS 1 Ft.£,~ N t IT\~3 3 3Jj], s PACE= (cjy Li 11) uM~L = S~R = 3 (l}:WIOlBKll_
lll : l IDJSP=(HEIW; D~L~IT]E), D~8=(RE.CIF!M=F,BLKSIZE=B~1DlS~l~6=DIA)

1 I I I . I I

The KEYLENGTH could have been specified in the DCB parameter of the DD state­
ment as KEYLEN=5.

Page 11 -19

~

Topic 11: Regional Organization

DOS/VS Solution

6. Notice how the JCL is specified.

Page 11 -20

DCL
DCL -

DCL
DCL

7.

Topic t t: Regional Organization

Notice how the TITLE option is used to associate two files with the one data set. This is
done so that the data set can be preformatted with dummy records by opening the file
REGlOUT. The same data set is subsequently processed using REGl.

Page 11 -21

E
y

D
M

0
u p D

Topic

12

s p

D
A A

D T
p y

u E T
D N M

G 0
E u p E p D

R A
N T Y N T Y DE

D
p

T

OG P T OG M E T OG M P T D
E N TU 0 E ST R D N UD

E · D Y OG E D D R 0 D N ST 0
D NT D~ R AM D NT - D R AM D NT P 0

ND EN D P R M ND ENT D P R M IND ENT D RO M
E N U P A IN E N TU P R IN E N U R I Nl

NDE ST GR EP ND RA U Ef
D T STU PR D ND TU PR R D ND TU Y 0 ND

T R G D EN E T R G D EN TU R R M END
ST P 0 PE D T ST P 0 N PE D T STU A ND N
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T

D PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D

R GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U F
GRAM IN P ND N S D PR GRAM I P ND NT S D PRO R M I E EN T STU PRC

NDEP NDEN 5 UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0 F
I INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA~

NDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM l
1 EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN[
ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEF
~DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE~

NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENl

huDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ~
~y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STL

PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD)
ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY F

1GRAM INDEPENDENT S~UDY PROGRAM INDEPENQENT STUDY PROGRAM INDE~~NDENT STUDY PRC
AM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROG~

I INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA~

Topic 12

Indexed Organization

Objectives

Introduction

In this topic you will learn about the organization of INDEXED data sets and the reasons for
using them. In particular you will learn to declare INDEXED files and write PL/I statements
to access them. If you are already familiar with indexed organization you can leave out the
associated sections within this topic and rea~ the sections relating to PL/I.

At the end of this topic you should be able to:

• understand the reasons for using INDEXED organization

write PL/I programs which process INDEXED data sets

understand the circumstances in which the KEY condition will be raised

• describe the optimization options concerned with INDEXED data sets.

INDEXED data sets are used when it is required to process data sets directly (using keys) and
also sequentially in ascending key sequence. However INDEXED access routines are neither
so fast at sequential processing as CONSECUTIVE routines, nor so fast at direct processing as
REGIONAL routines.

Direct processing is achieved by associating each record with a recorded key (see later); the
access routines then look up this key in indexes in order to locate the record.

Page 12 -1

Topic. 12: Indexed Organization

Indexed Organization

/"

TRACKS

. ··---'-+ --e

-----·

Page 12 -2

INDEXED data sets can only be created sequentially. Records must be presorted into
ascending key sequence and then written to the data set one after another. The following
diagram illustrates an INDEXED data set of twelve cylinders. (For the sake of simplicity there
are only 6 tracks per cylinder).

MASTER INDEX

[450 l 900 l 2000 l
CYLINDER INDEX J

200 300 375 450

...... ~
500 600 700 900

.....
1000 1200 1500 2000 .::"':

1-\ rnAC' ""--
1500 2000

50 100 150 200 INDEX

Da~ •••••••••-••••••··-·-•••••• 919et.,,ee:!l!!!!!l9e

Data Data Dal a
10 20 40

) Data Data Dal a Data
60 70 80 100 PRIME

DATA

Data Data Data Data I/
AREA

110 120 130 150

Data Data Dal a Data
170 180 190 200

--------------------------------- ----------CYLINDER
OVERFLOW
AREA

CYLINDER 1 ------·-•••••••••••-••••••-•••••••••••••••• CYLINDER 11 CYLINDER 12

The various components of the data set are labeled in the diagram and are described below.
(Note that the indexes are built automatically by the INDEXED routines on creation of the
data set).

Topic 12: Indexed Organization

Prime Data Area

Track Index

Cylinder Index

Master Index

The Prime Data Area is the area of the data set to which records are originally written in
ascending key sequence. In OS/VS this is specified in the SP ACE parameter of the DD
statement. In DOS/VS it is specified by an EXTENT statement.

There is a Track Index for each cylinder of the data set. The Track Index for a particular
cylinder contains an entry for each track on that cylinder. One of the items of information in
each entry is the highest key on the associated track. The Track Index resides on the first track
of the cylinder; any remaining space on the first track is used by the Prime Data Area. (The
first track is track 0).

If the data set contains more than one cylinder a higher level index - the Cylinder Index - is
created on output. This contains the highest key on each cylinder. In DOS/VS the Cylinder
Index requires a separate EXTENT card with sequence number '1' and type code '4 '.

This is optional. It is an index to the Cylinder Index. Use it only if the Cylinder Index is quite
large. It is specified in OS/VS by the subparameter OPTCD=M on the DD statement. In
DOS/VS it is specified by the INDEXMULTIPLE option of the ENVIRONMENT attribute
of the file declaration.

In DOS/VS a separate EXTENT statement is required for the Master Index with sequence
number 'O' and type number '4'.

In OS/VS the Cylinder Index and Master Index (if used) together constitute the Index Area;
this Index Area can be specified either on a separate DD statement or the Index Area can be
combined with the Prime Data Area on a single DD statement.

Cylinder Overflow Area

This is the number of tracks per cylinder of the data set which are set aside for overflows. In
OS/VS this is specified by the subparameter OPTCD= Y on the DD statement; the subparam­
eter CYLOFL=n is used to specify the number of tracks to be used. In DOS/VS the number
of overflow tracks is specified by an option of the ENVIRONMENT attribute when declaring
the file: OFLTRACKS(n). The Cylinder Overflow Area is sometimes called the Embedded
Overflow Area.

Independent Overflow Area

This is a separate area of disk storage which can be used in case the Cylinder Overflow Areas
become full. It is specified in OS/VS by coding the subparameter OPTCD=I on the DD
statement; a separate DD statement can be used for the Independent Overflow Area or it may
be combined with the Prime Data Area and Index Area on one DD statement (see the
'Programmers Guide' under the section on INDEXED organization). In DOS/VS the
Independent Overflow Area is specified on a separate EXTENT card with type code '2'.

Page 12 -3

Topic 12: Indexed Organization

Addition of Records

Page 12-4

On creation records are placed in the Prime Data Area. Subsequently records can be added to
the data set in their key sequence position but this will always cause a record to 'overflow'; the
INDEXED routines will place the overflow record in the Cylinder Overflow Area (if there is
one, and space is available) or in the Independent Overflow Area. For example, the addition
of a record with key 25 would cause the following alteration to the first cylinder of the data
set:
_____ .. ________

0 TRACK
40 100 150 200 INDEX

----------- -------------------Data Data Data Data
10 20 25 40

•'•••-•-••411!fe@••e

2 Data Data Data Data
60 70 80 100 --------------·

3 Data Data Data Data
110 120 '130 150 --------------·

4 Data Data Data Data
170 180 190 200

-------------· -------------------~-~-
5 Data CYLINDER

50 OVERFLOW ________ o ______

AREA

Notice that the record (key 25) has been added in its 'logical' key-sequence position in the
data set; this has caused a record (key 50) to overflow. INDEXED routines place the overflow
record in the Cylinder Overflow Area (in this case) and also update the Track Index. The
INDEXED routines also make a note, in the Track Index record for track 1, that a record with
key 50 has overflowed from track 1 and they write the disk address of this record in the Track
Index record for track 1.

Consider the situation again after the addition of a record with key 30.

0 TRACK

30 100 150 200 INDEX

------------ ---------~--------Data Data Data Data
10 20 25 30

--------------·
2 Data Data Data Data

60 70 80 100 --------------
3 Data Data Data Data

110 120 130 150

-----·---------
4 Data Data Data Data

170 180 190 200

-------------· --------------------
5

Data Data CYLINDER
50 40 OVERFLOW

AREA

The INDEXED routines make a note (in the Track Index record for track 1) that 50 is the
highest key to have overflowed from track 1 but that 40 is the next key in sequence after the

Topic 12: Indexed Organization

highest key on track 1 (which is 30). Also the INDEXED routines write the disk address of
the record with key 40 in the Track Index record for track 1. In the overflow area, the
INDEXED routines set a pointer to point from record 40 to record 50. Thus the records of the
INDEXED data set can still be accessed in ascending key sequence after the addition of
records 25 and 30. Records 10, 20, 25 and 30 are retrieved and then a chain of pointers
enables records 40 and 50 to b~ retrieved. We will not consider the addition of any more
records but you should be able to see that, as more and more records are added to the dafa set,
the average retrieval time, for both sequential and direct processing, will be increased. Even!:u­
ally the data set may have to be recreated, eliminating the overflow records, in order to regain
the original performance.

Keys in Indexed Data Sets

Each INDEXED record is associated with a recorded key - this key appears with the record on
the data set. The recorded key is usually 'embedded' within the record.

I I Embed.ded I Key I
I

Data Record

(The system also has its own key which is external to each block on the data set - but this need
not concern us here).

The source key is the character string or character variable which is used in READ /WRITE
statements in order to retrieve/write the record.

DOS /VS Considerations

INDEXED data sets can contain fixed blocked or unblocked records. If the records are
blocked, each logical record must contain an embedded key. The location of this embedded
key within the data is specified by the KEYLOC(n) option of the ENVIRONMENT attribute
andthe length of the key is specified in the KEYLENGTH(n) option.

OS /VS Considerations

INDEXED data sets can contain either fixed length or variable length records, blocked or
unblocked. If you are creating a blocked data. set and the keys associated with each logical
record are not a part of the data of the record (i.e. non-embedded keys) then the non­
enibedded key will be attached to the front of the data of each logical record, provided that
you specify RKP=O in the DD statement. (The record length will be equal to the sum of the
data and key lengths).

RKP means Relative Key Position. An RKP value of 1 or greater indicates that there is an
embedded key within the data. RKP= 1 specifies that the embedded key starts at the second
byte; RKP=3 specifies the fourth byte. RKP=O means that the key is not embedded in the
data. For embedded keys the RKP specification can be overridden by the KEYLOC(n) option
in the file declaration. KEYLOC(1) indicates an embedded key starting in the first byte of the
data. If KEYLOC(O) is specified then the RKP specification is used. If no RKP value is
specified, RJ)P=O is assumed.

Page 12 -5

Topic 12: Indexed Organization

For variable length records the RKP specification includes the four byte control field. So
RKP=4, for a variable length record data set, would indicate an embedded key starting
immediately after the four byte controi fieid.

Declaring an Indexed File - OS/VS Considerations

Page 12 -6

An example of an OS/VS declaration for an INDEXED file which is to be read directly is
shown below:

The options KEYLOC and KEYLENGTH are usually replaced by the DCB subparameters
RKP and KEYLEN in the DD statement. DIRECT implies KEYED but not vice versa. Use
KEYED whenever you want to use keys, i.e. when using the KEY, KEYTO or KEYFROM
options (see later).

Topic 12: Indexed Organization

Declaring an Indexed File - DOS/VS Considerations

An example of a DOS/VS declaration for an INDEXED file which is to be read directly is
shown below:

DCL ISFILIE Fl Le DIREcm KIEYED INPl~T
f H v (K f v L 0 .c (n) I N D f ~IE D K E y L £1Nl<ill1HI(n)

EX\I ENITl., U"1B£ R (all o F LIIJBAC Ksldnl M& ... _E_Dl--+1 u--+-M--+-(~~ · ·~-·}

DIRECT implies KEYED but not vice versa. Use KEYED whenever you want to use keys, i.e.
when using the KEY, KEYTO and KEYFROM options (see later).

Most of the additional ENVIRONMENT options have been described in the preceding text.
EXTENTNUMBER(n) specifies the number of extents of the INDEXED data set: one for the
Prime Data Area, one for the Cylinder /Master Index Area and one for the Independent
Overflow Area. The default is EXTENTNUMBER(2) - no Independent Overflow Area.
HIGHINDEX(n) is required if the Cylinder /Master Index Area is on a different device type to
the Prime Data Area. HIGHINDEX (3330) specifies that the index is on a 3330 device but
the prime data is on some other device type.

PL/I Statements for Processing Indexed Data Sets

KEY Option

There is a table in the Language Reference Manual which summarizes the various ways in
which INDEXED data sets can be used. Look up this table in the chapter called 'Record­
Oriented Transmission'. Notice that an INDEXED. file cannot be declared DIRECT OUTPUT
- i.e.- there is no direct creation, only sequential.

The following options may be new to you.

This is used to specify the key to be used when reading the data set. This is called the source
key. It can be a character string or a character variable.

KEYFROM Option

This is used to specify the source key to be used when creating the data set. It can be a
character string or a character variable.

I I J J l I l l I i
I

I 1nlc L} JK!f y cJu !ART (}6) j

T I· i J T i I l l I j

T lWR 111'1£1 Fll L}f {I SjF I L E.) FR. OIM (~R flA) 11< E YF RO M (I(E. y) ;
I 1 I i ! ! I I I I I I I I I I I

P!}ge 12 -7

Topic 12: Indexed Organizati()n

KEYTO option

This brings the recorded key into the specified variable along with the record itself. This
option is not required if the key is embedded within the data of the record. It is useful for
records with non-embedded keys.

l> c ,_ l(f y CH AR (6 I> l .
lB EIAI D Fl LE. (I s Fl LE) IN IT IO(~ IR flA[l KE YIT 0 (Kf 00) lL

I I

Sequential Processing of Indexed Data Sets

The associated file must be buffered. Locate mode or move mode processing can be used. The
data set must be created, sequentially by writing records in ascending key sequence. When
reading the data set sequentially, records are retrieved in this ascending key sequence starting
with the first record on the data set. Sequential processing can start at a particular record by
using the KEY option; subsequent READ statements without the KEY option will read the
next record in the data set.

l l
I>JCL 11iF I LE. FI LE Rf COlkD Sf[g~!fNlI!~IL Kflt_fD

r-+--j--r I E.NV(INOE1(<.ED IKfYLEN<:illlH(+) •••••);

,_J~
1

Fih:.E(ISFI LIE) INITO(JAIRfA) Kl~Y(I 123[41')Li_

• -~l-4-+--+---+--+-+-+-~-+-~-+---+-f-+--4-i--+-+-~---+--+-+--1-4-t--+-+-+--+-f-+--+-+-+--+-+
l !R~~D FI LE. (IS F 1 LE) I NJliO (!&RE Al;
I I I

GENKEY Option

Page 12-8

The first READ statement reads a particular record into AREA. The next READ statement
reads the very next record on the data set into AREA. It is possible to start processing records
in a particular group (i.e. records whose keys start with the same characters) by using the
GENKEY option of the ENVIRONMENT attribute of the file. This specifies that you will be
using a short key (generic key) to specify the start of the group of records you want to read. If
GENKEY is not specified and a short key is used then the short key would be padded out on
the right with blanks to the length specified in the KEYLENGTH option for the file (or in the
KEYLEN DCB subparameter in OS/VS). . ..

: l
D _~ _ _J_~ F I L f F I t. f --·R. f. C 0 R. D S EIQjU f Nl111 AL J(f Y f. D

! ENV(INO£XfD ~fNKEY IKE~L£NGITH(q) .•••• 1i

Topic 12: Indexed Organization

The first READ statement reads the first record which starts with the characters '100'. The
next READ statement reads the very next record on the data set. This is very useful for
processing groups of records on the data set but it is up to the programmer(you) to detect the
end of each group.

It is possible to sequentially add records on the end of an Indexed data set provided that there
is space at the end and that the added records have keys which are higher than any already
existing on the data set. The associated file would be declared SEQUENTIAL OUTPUT. In
order to add records in the middle of the data set DIRECT processing must be used.

Records can be updated when the associated file is declared SEQUENTIAL UPDATE by
reading in the record, updating it and issuing the RE'NRITE statement.

OS/VS Considerations

In OS/VS records can be 'logically' deleted, during sequential processing, by reading in a
record and issuing a DELETE statement. The effect of the DELETE statement is to write
(8)'1 'B in the first byte of the data (see later section on deleted records). The DELETE
statement can only be used if OPTCD=L is specified in the DD statement that defined the
data set when it was created.

Direct Processing of Indexed Data Sets

Only move mode processing can be used.

When the associated file is declared as DIRE CT UPDATE records can be added in the middle
of the data set by using the WRITE statement or already existing records can be updated using
the REWRITE statement. The REWRITE statement can be used to update a record on the
data set without pre-reading it - this requires the use of the KEY option.

OS/VS Considerations

Records on the data set can also be flagged as deleted when the associated file is declared
DIRECT UPDATE. The DELETE statement writes (8)'1 'B into the first byte of the data.
This 'logical' deletion is only possible if OPTCD=L is specified in the DD statement that
defined the data set when it was created. Deleted records are ignored during subsequent
sequential processing. If you try and retrieve a deleted record directly then the KEY condition
will be raised (see later).

'. l l j_ I l l 1
I

! lt>IcLl l1sF1Lie. D1RE.jclr UPDAITE EINV(JINDE.XE.D J1<E.YL£NGt-rH_lq) ••••) ;
, 'l I T T
rl~iEL£T1£ Fldt £ c1Si=tl ti::> K£Y ('t 2 3l~%n 'l ·) ;

I l I I T T T T

KEY Condition

This is just one of many conditions which are raised when PL/I recognizes an abnormal
situation. (For more information on other PL/I On-conditions and how to handle them see the
topic 'Handling Exceptional Conditions' - but not now!). The main reason for raising the KEY
condition with Indexed data sets are:

a key sequence error on creating the data set

no room to add a record (overflow areas full)

Page 12 -9

Topic 12: Indexed Organization

EVENT Option

• an attempt to add a record with a key which already exists on the data set (duplicate
record)

• no record on the data set with the key specified in the READ statement.

This can be attached to I/0 statements for direct processing of INDEXED data sets. When
EVENT is used control passes immediately to the next statement in the program, rather than
waiting for the I/ 0 operation to complete.

It can be used to simulate the overlap of processing and I/ 0 which takes place automatically in
sequential processing if you specify more than one buffer. (It is not possible to have buffers
when processing INDEXED data sets direq~ly). The WAIT statement is used to halt process­
ing until the associated event has taken place. The following coding illustrates a possible
method of overlapping processing and I/ 0 by using the EVENT option, the WAIT Statement
and two I/ 0 areas.

The first READ does not have the EVENT option and so control does not pass to the second
READ until the first READ has taken place. So, while the second READ is taking place, we
can process the record in AREA 1. When we wish to process the record read into AREA2 we
must issue a WAIT statement to make sure that· the READ has completed. In our example, X
is an EVENT VARIABLE which is contextually declared as such; it could also have been
explicitly declared. An event variable links the WAIT statement to a particular I/ 0 event.

OPTIMIZATION Options

These are options· of the ENVIRONMENT attribute of the file which can be specified to
reduce program size or reduce execution time of the program.

INDEXAREA - OS/VS

Page 12 -10

This reduces execution time. The highest level index is brought into storage and searched there
rather than on disk. The programmer can limit the amount of storage allowed for this purpose
by specifying a size - INDEXAREA(n). If the highest level index is larger than the specified
size then it is not brought into main storage.

Topic 12: Indexed Organization

INDEXAREA - DOS/VS

NOW RITE

ADDBUFF

This reduces execution time by bringing in the cylinder index into storage and searching it
there rather than on disk. The programmer can specify that only part of the cylinder index
should be brought in at one time by adding a size value - INDEXAREA(n). If no size
specification is used, then the whole of the cylinder index is brought in to storage.

When a file is declared DIRECT UPDATE a program can add new records to the associated
data set (using the WRITE statement) and update existing records (using the REWRITE
statement). In OS/VS records can also be logically deleted (using the DELETE statement). If
you only want to update records directly and not add th!,' then specify NOWRITE in the file
declaration. This will prevent the inclusion of those access modules which add records to the
data set, thus reducing the size of your program.

This reduces execution time when you are adding records directly. With ADDBUFF the
addition of a record takes place by reading in the track concerned, adding the record in its
logical place, writing the track back to disk and writing to the overflow area the record which
was 'pushed off' the track._ to make room for the new record. If you do not want the whole
track to be brought into storage (because you do not have enough room) then you can specify
a size on the option: ADDBUFF(n). Obviously it is more efficient if the whole track is
brought into storage. Without the ADDBUFF option, the addition is performed 'out on disk'
by a process which involves more disk accesses but less computer storage.

Page 12 -11

Topic 12: Indexed Organization

Exercises

Page 12-12

1. What is the purpose of the master index?

2. (OS/VS only). Suppose that KEYLOC(O) and RKP=3 have been specified for the
records of an PB-format data set. Will the keys be embedded or non-embedded?

3. File Xis associated with a data set containing records, which consist of a 5 byte embed­
ded key followed by 10 bytes of character data. File Z is similar, but the keys are not
embedded.

a) Write a move mode input statement to read a record sequentially from the data set
associated with file X, so that the data goes into a filed called DAT A and the key
into a field called KEY. Include the declarations of these fields.

b) Repeat the above for file Z.

4. What is wrong with the following declaration?

5. Suppose you want to use the statement

to 'position' an indexed data set so that you can read it sequentially starting with the first
record whose key begins with 'X'. What must you specify in the ENV attribute of the
associated file, and why?

6. Declare a file ISET, associated with an indexed data set, and write suitable 1/0 state­
ments to perform the following:

a) Read the record in the data set with the key '168' into RECAREA

b) XAREA contains a new record whose key is in KEY AREA. Add this record to the
data set.

c) (OS/VS only) Delete the record whose key is '515'.

d) Replace the record whose key is '212' with a new record which is in NEWAREA.

7. Write the coding to create an INDEXED data set on a 3330 disk with serial number
30WORK. The records are 80 bytes long. The key is a 10 byte part number which starts
at the fourth byte of the record. There is to be an Independent Overflow Area created
for the data set and on each cylinder two tracks are to be reserved for overflow records if
records are subsequently added to the data set. The records are to be in blocks of 10.
Create the INDEXED data set from a card file which has already been sorted into
ascending key sequence.

8_ If y01..! h2ve read through the tcpic3 CCNSECUT!VTI, REGIONAL ai1<l INDEXED
organization, then summarize the advantages/ disadvantages of each type and indicate
when each would be used. ·

Answers

Topic 12: Indexed Organimtion

1. A Master Index contains entries which enable the system to select the correct track of the
Cylinder Index, prior to accessing a record. A Master Index is normally recommended
when the Cylinder Index occupies more than three tracks.

2. (OS/VS only). Since KEYLOC(O) has been specified, the RKP specification will be
used. An embedded key will therefore be used, starting at the fourth byte of each record.

3. a)

f -

; ' I
I

I

I
: L

+ t ' . ~-H-~- --+-- l I -t·1 -- -+-- -+--

M ,· +r-L f I I

~(-:
) I, :
- :¥.-

f ff.r; +- I

~ FJi]ELO); ~ ' 1

b)

I i

i~ i l
+ -r+-I

I

~Toi KE. Yll_;_
T

I
._ • .,. .. -..- _,... -· ·-··· +----- -+---· -- +- --4-----+- -""+·-· r-·-t

_l)_C L __ n_AT;A, _c _A,R.(1.¢)1; .. '. '~ +

bCL KE.Y CHAR.(5 1
)

1

·, • i '. i.
• • T • ~ -r-~ - ~~'--~ -r ~- -r -rt-+

:R~E :c: :F 1
1
'.Llf'(;)t-~-l~ N_f1tdt(ria~)1-tit

' . ' I I I '

4. GENKEY may only be specified with a SEQUENTIAL file. Otherwise this declaration is
satisfactory.

5. GENKEY must be specified to prevent the key from being padded to the right with
blanks, and the result being treated as a specific key.

6.

Page 12 -13

Topic t ~: Indexed Organization

OS/VS Solution

"7
'·

Page 12 -14

Topic 12: Indexed Organization

DOS/VS Solution

7.

~ 11?_ P RPt : PR~ ~ P!I IP NS (MA I ~ h1
D&L I SF I LE FI LE RE~OR.O lOUTPUIT KEYED

+--+-r--+-+-+-t--+-t-t-+--+ El'I v (I ND Ex ED KE' YIL EN Cl TH (1 ~) "E y LP c. Cl4)
•-+-+--+--+---+-+-+-I-+- -- - -i- - -+-!-+--+------1-+-+:+=+-F--+-8=+"+R--1--1£k:,--+s-+-1+-' z,_IE'+(+8+----:~t-:--!lt----+--tB-tL. 1<:=---t-s-+-1+z+::fh-CH&1/J--'-;til---Tld);:-t---T--;-----t-t-t---1r--t-t-t----t---r--r-----t---t-r-t-

M~ o 1 UM (SYS¢~ s~333~)

Page 12 -15

• Topk 12: Indexed Organization

Page 12 -16

8. CONSECUTIVE organization is used when you are only interested in processing the
data set sequentially, one record after another. REGIONAL organization is used when
you are primarily interested in retrieving records directly in no particular sequence.
REGIONAL data sets can also be processed sequentially but this will be in ascending
region number, which is not usually the same as ascending key sequence. INDEXED
organization provides sequential processing by ascending key sequence and direct
processing via a recorded key. INDEXED is neither as efficient at sequential processing
as CONSECUTIVE nor as efficient at direct processing as REGIONAL. In addition
INDEXED organization will generally occupy more space on disk than the other two
organizations because of the space required for the indexes.

E
y

D

0
u p

y

OG p
0 E

E D
M D NT

ND EN
E N u

:p NDE ST
ND T STU PR
E T R G

ST p 0

M

D

N

DY
D p

p

N

TU
y

E

T

R
R

A

A

D

u

T y

OG
0

OG
AM

M ND
IN E

Topic

s

D
p

u

G
p

R
N

M E
E ST

E D D
D NT D

ENT D p

N TU p R

A

E
N

E

T y

T OG
R

RO
R AM

R M IND
IN E

D

T
y

T

0
p

A

M p
D

D N
NT

ENT
N U

p

D

M D
p

D
T

DE
T D

N UD
ST 0

p 0
D RO M

R I f
RA GR EP ND U

D ND TU PR R D ND TU Y 0 ND
D ENE T R G D _EN TU R RM ENI
PE D T ST P 0 N PE D T STU A ND N

S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
IUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S

PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T I
PR GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U

~ GRAM IN P ND N S D PR GRAM P ND NT S D PRO R M I E EN T STU Pl
;R NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
~M INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGR,

INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
~DEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM II
=PENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDI
=NDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPI
)ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENI
~T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM.INDEPENDEI

STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S
DY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STU!

PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY Pl
GRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR01

- - - - ~ A • • • •• ~ ,.... ,.... ... '"" ,.... .. , T r- T , , f"'\ v o o ('\ r:_ o /1,. M 1 1\1 fl F P F N fl F 1\1 T ~ T 1 1 n y p R o GR ,

Topic 13

Virtual Storage Access Method

Objectives

Introduction

In this topic you will learn .about the three VSAM data set organizations and the reasons for
using them. If you are already familiar with VSAM organization then you can leave out the
associated sections within this topic and read the sections relating to PL/I.

At the end of this topic you should be able to:

understand the basic ideas of VSAM data set organization

describe the three types of VSAM data set organization (key sequenced data sets, entry
sequenced data sets and relative record data sets) and under what circumstances they
would be used.

write PL/I statements to declare and access VSAM data sets

understand and make use of alternative indexes

understand the circumstances in which the KEY condition will be raised.

Virtual Storage Access Method (VSAM) is a way of organizing and accessing data on disk.
VSAM is compatible across operating systems and across disk devices.

There are three types of VSAM organization.

The most important is the KSDS (key sequenced data set). This is intended for applications in
which records are processed directly b}' key (using indexes) and also sequentially in
ascending/ descending key seguence., It is, therefore, intended for similar applications to those
for which INDEXED organization is used but VSAM has been designed to minimize some of
the drawbacks of INDEXED organization (namely the increase in average retrieval time
resulting from the addition of new records to an INDEXED data set).

The entry sequenced data set (ESDS) is intended for applications in which records are

~~~--~~~9_g_Ee, after another without reference to kevs. CONSECUTIVE data sets are used 
similarlv but an ESDS has the advantage that records can be added at the end of the ESDS 
without the necessity of recreation (also, it is possible to process an ESDS directly, as we shall 
see). 

The relative record data set (RRDS) would be used in applications which require rapid direct 
access. Direct access is quicker with an RRDS than a KSDS. The records are retrieved directly 
from the RRDS by specifying the 'position' of the record within the data set (first, fifth, 
hundredth). The RRDS is thus intended for similar application areas to those for which 
REGIONAL( 1) organization is used. 

Page 13 -1 



Topic 13: Virtual Storage Access Method 

VSAM Data Spaces, VSAM Data Sets and VSAM Catalog 

VSAM data sets are allocated in an area on disk called a VSAM data space. There can be 
several VSAM data sets in this VSAM data space; there may be only one: the VSAM data 
space may even be empty. The VSAM data space and the vsam data sets are defined using a 
special utility AMS (Access Method Services) and information about the data space and the 
data set is placed ia a VSAM catalog - this is a central pool of information which contains, 
among other things, the names of each VSAM data set, its maximum record size and where it is 
situated. VSAM data sets consist of control areas which are subdivided into control intervals. 

Control Intervals 

Control Areas 

Page 13-2 

In other data set organizations the physical record (or block) is the unit of data· transfer 
between computer storage and the peripheral device containing the data set. In VSAM the unit 
of data transfer is the. control interval. 

Data records are placed in the control interval starting from the left-hand side and information 
about the length of the record is placed in the control interval starting from the right-hand side. 

Control Interval 

Data Data Data Data Control 
Record Record Record Record Information 

An~ and a KSDS can have Yariahle Jeng.th records but an RRDS must have {i)(~ length 
records. In a KSDS it is possible (and usual) to have a certain amount of 'free space' within 
each control interval. The purpose of free space will be explained later although you can 
probably see a use for-it already. Thus a control interval in a KSDS might look like this: 

Control Interval 

Data Data Data Data Free Control 
Record Record Record Record Space Information 

The size of the control interval can vary from 1/2 K to 32K. This size can be specified when 
the data set is setup - a typical size is 2K. 

Control Intervals are grouped into units called Control Areas. VSAM works out the Control 
Area size. The maximum control area size is one cylinder. For a KSDS it is possible (and 
usual} to leave a number of control intervals within each control area completely free of data 
records. Can you see a use for this? If not, it will be explained later. 



Topic 13: Virtual Storage Access Method 

KEY Sequenced Data Sets 

These consist of an index and data portion, each of which is divided into control intervals. The 
lowest level of index is the sequence set which contains the highest key for each control 
interval in the data set. Higher levels of index are used to refer to the sequence set. These 
higher levels are collectively called the index set - the highest level of all contains only one 
control interval. In the example below a control area in the data portion contains three control 
intervals - this is smaller than normal, but simplifies the diagram. 

x 
Q.) 

"O 
c 

~-{ c Q.) 
_(/) 

o-­
Q.) Q.) 
(/)(/) 

Adding a Record to a KSDS 

FS 

FS 

FS 

• 

Control invervals 
qt one control area 

Index control 
interval containing 
index record 
with 3 entries 

FS = free space 

• = control information 

A record can be added to a KSDS in its logical (key-sequence) position by moving other 
records about and reducing the free space within the affected control interval. There is no loss 
in performance. Sooner or later, however, the free space in the control interval will be used up. -
The diagram below illustrates a VSAM KSDS into which we wish to add a new _record with key 
5 8 but there is not enough room in the control interval to add this record. 

Page 13 -3 



Topic 13: Virtual Storage Access Method 

Sequence Set I 54 I 59 I 61 I FS I 
I I I I I 

Data 
Base 

Control Information 

51 t 531 54 I ~~~e I y 
Free Space 

57 ! 591 f1....-/----' 
Insertion of 

1 I 11 
Record 58 

60 61 Free Space Splits a 

... -·---------- Control 

I Free Space II 
Control Intervals in Control Area 
Before Insertion 

Interval 

I 54 I 56 
I I 

59 61 

I 55 I 56 I Free Space I 
160 I 61 I Free Space I 
I 57 I 58 159 H~~e I 

Control Intervals in Control Area 
After Insertion 

What happens? A control interval split takes place and roughly half the data in the original 
control interval is moved to the completely 'free' control interval at the end of the control area. 
This is fine and once again there is little or no loss in performance but what happens when 
there are no more 'free' control intervals within the control area? A control area split takes 
place and roughly half the control intervals in the original control area are moved to a com­
pletely new control area at the end of the data set. There is little or no loss in performance. 

You can see that VSAM reorganizes the data set whenever it is necessary but as far as you are 
concerned, as a programmer, you are just adding another record. Obviously when the data set 
is originally defined (using AMS) a certain amount of thought has to go into deciding suitable 
percentages of free space within a control interval, within a control area and within the data set 
as a whole. This should be part of the planning process, taking into account how the data set is 
going to be used - better to plan before than reorganize afterwards. 

VSAM Deletions on a KSDS 

Page 13-4 

A VSAM DELETE statement causes a record to be physically deleted from the data set. This is 
obviously useful because it increases the amount of free space within the control interval, 
enabling more records to be added later on. The diagrams below show a control interval before 
and after the deletion of the record with key 19. 



Control Interval 

5 15 19 25 

Control Interval 

Free 
5 15 25 Space 

Free 
Space 

Topic 13: Virtual Storage Acee~ Method 

Control 
Information 

Control 
Information 

Before 
Deletion 

After 
Deletion 

Updating Records on a KSDS 

5 

5 

Records can be updated in all three VSAM organizations but only in a KSDS can records be 
updated and written back to the data set with a different length. This is because only a KSDS 
has 'free space'. The diagrams below show a control interval before and after the updating of 
record with key 19, which is written back to the data set with a different length. 

Control Interval 

15 19 25 

Control Interval 
: 

15 19 25 

Free 
Space 

Free 
Space 

Control 
Information 

Control 
Information 

·. 

Before 
Update 

After 
Update 

Entry Sequenced Data Sets 

An ESDS consists of control intervals and control areas but there is no index and no free 
space. 

An ESDS is essentially processed sequentially although access by Relative Byte Address is also 
possible (see later). Records qn be added at the end of the data set by declaring the Fi~ 
DIRECT UPDATE and issuing a WRITE statement. You cannot delete rec2rd.s in an ESDS. 

Relative Record Data Sets 

An RRDS consists of control intervals and control areas but there is no index and no free 
space. An RRDS can be processed sequentially or directly by relative record number. 

When the RRDS 'is originally created some relative record positions can be left empty so that 
subsequent additions to the RRDS can be inserted in the data set. 

Records can be deleted from the data set - but this merely causes the associated relative record 
'>lot to be made empty (this is not the same as a VSAM deletion on a KSDS). 

Page 13 -5 



Topic 13: Virtual Storage Acee~ Method 

VSAM Keys 

I I 
~ 

Record 1 

For a KSDS the keys must be embedded within the data record. They must be fixed length and 
in a fixed position within the data record. 

Control Interval 

I I 
!////~ 

I Free Control 
Space Information 

_f f_ _t 
embedded key 

In an RRDS records are identified by a relative record number which starts at 1 and is 
incremented by one for each succeeding record. This relative record number can be used as_ a 
key to process the RRDS directly. The relative record number is a character string of length 8 
and must represent an unsigned fixed decimal constant. 

An ESDS is essentially intended for sequential processing but it can be processed using the 
Relative Byte Address (RBA) of the record as a key. The RBA is the displacement of the 
record, in bytes, from the start of the data set. 

Control Interval 

Record 2 Record 3 Record 4 Control 
(50 bytes) (40 bytes) (60 bytes) (80 bytes) Information 

t t t t 
RBA = 0 RBA = 50 RBA = 90 RBA = 150 

The RBA can be obtained by means of the KEYTO option (see later) when creating or reading 
the data set. This RBA can subsequently be used as a key to process the data set. 

Declaring a VSAM File 

Page 13 -6 

File attributes (such as DIRECT, SEQUENTIAL, INPUT etc.) were discussed in Topic 5 and 
they should be coded appropriately. However, because VSAM has a catalog (containing 
information such as key length and key position within the record) less information need be 
specified within the ENVIRONMENT attribute. For instance, you do not need to code the 
KEYLENGTH option of the ENVIRONMENT attribute but, if you do, then it will be checked 
against information in the VSAM catalog for the file concerned; the UNDEFINEDFILE 
condition will be raised if you specify the KEYLENGTH value incorrectly. 

A VSAM data set can be accessed using a file with the attribute ENV(VSAM) or 
ENV(INDEXED) - see later section on VSAM/ISAM compatibility interface. 

Also, VSAM gives you the option of having password protection for its data sets. The 
password, if used, is placed in the VSAM catalog when the data set is originally set up (using 
the AMS utility). Subsequently any programs which want to use the data set must specify the 
correct password in the PASSWORD option of the ENV attribute of the associated file~ 

(There are several levels of password protection and there is more information in the 



Topic 13: Virtual Storage Access Method 

Programmer's Guide). The password specified can be a character string or a character 
variable. 

Example: 

If the password is incorrect the operator can be given a chance to correct it. The number of 
attempts to specify the correct password is defined by AMS when setting up the data set. 
Failure to specify the correct password after the defined number of attempts results in the 
UNDEFINEDFILE condition (mentioned in a previous topic). 

The file attribute KEYED must be used whenever you are using keys, i.e. when using the 
KEY, KEYTO or KEYFROM options of the 1/0 statements (see later). The file attribute 
DIRECT implies KEYED but KEYED does not imply DIRECT. 

DOS/VS Consideration 

The MEDIUM option of the ENVIRONMENT attribute is not necessary for a VSAM file. 

PL/I Statements for Processing VSAM Data Sets 

KEY Option 

There are several tables in the Language Reference Manual which summarize the various ways 
in which VSAM data sets can be used. Look up this table in the chapter called 'Record 
Oriented Transmission'. 

The following options may be new to you. 

This is used to specify the key to be used when reading the data set directly. This key can be an 
embedded key (for a KSDS), a relative record number (for an RRDS) or an RBA (for an 
ESDS or, more rarely, a KSDS). The example below is reading directly from a KSDS with a-six 
byte embedded key: 

KEYFROM Option 

This is used to specify the key to be used when creating the data set. This key can be an 
embedded key (for a KSDS) or a relative record number (for an RRDS) - but not an RBA. 
The example below is writing a record to an RRDS using a relative record number. If a record 
with the same relative record number has already been written to the data set then the KEY 
condition will be raised (see later). 

+ +- ·--+ _j__J_ _+ 

. WR I :T1e. 0) 

Page 13 -7 



Topic 13: Virtual Storage Acee~ Method 

KEYTO Option 

KSDS 

ESDS 

RRDS 

Page 13 -8 

This brings the key of the record into the specified variable in storage. This key will be an 
embedded key (for a KSDS), a relative record number (for an RRDS) or an RBA (for an 
ESDS). The KEYTO option, if used at all, would normally be used on input but it can be used 
on output. The following example uses the KEYTO option to recover the RBA of a record as 
it is written: 

l I ! I 

l 1o c L RIB~ c H~l~i14 > ; 

The tables show all possible ways to declare and use the VSAM file. The following points 
should be noted. · 

The table to be used is the one which shows statements for 'creating and accessing VSAM data 
sets via prime or alternate indexes'. The prime index is the index component of the key 
sequenced data set and is built automatically by VSAM when the data set is created. Alternate 
indexes will be covered later. 

When a KSDS is created, the associated file must be declared KEYED SEQUENTIAL 
OUTPUT and records must be written to the data set in ascending key sequence. 

A file declared as UPDA'FE can be used to add records to the data set (WRITE statement), 
update records on the data set (REWRITE statement) or delete records from the data set 
(DELETE statement). 

An ESDS can only be declared SEQUENTIAL although KEYED access is possible using 
Relative Byte Addresses. If you retrieve a particular record using a key then subsequent 
sequential processing continues from this new position in the data set. Records can be added at 
the end of the data set by declaring the associated file UPDATE and issuing a WRITE 
statement. 

An RRDS can be created using a SEQUENTIAL OUTPUT file or a DIRECT OUTPUT file. 
In direct creation records are placed in the relative record slot specified by the KEYFROM 
option. In sequential creation records are placed in successive record slots unless the KEY­
FROM option is used to direct a record to a particular relative record slot. 



Topic 13: Virtual Storage Acee~ Method 

The Use of Sequential Keyed Files 

It is possible to start sequential processing from a particular record in the data set (KSDS, 
ESOS, or RRDS). For example, using a KSDS, 

The first READ reads a particular record; the second READ reads the next record after that 
record in the data set. 

In the example above the key is 9 characters long. If you want to start processing from a 
particular 'group' of records (for example records whose keys start with '123') then it is not 
sufficient merely to specify a key of '123' in the KEY option. The 'start key' would be padded 
on the right with blanks to a length of 9 characters - the specified key length - and a VSAM 
routine would search for a key '123 b \, b b b b '. There would probably not be a record with 
such a key on the data set. 

GENKEY Option 

To prevent this padding of the start key use the GENKEY (generic key) option of the 
ENVIRONMENT attribute. 

Example: 

The first READ statement reads the first record on the data set beginning with ' 123 '. The 
second READ statement reads the next record after the one just read. 

Page 13 -9 

.·. 



Topic 13: Virtual Storage Access Method 

KEY·condition 

KSDS 

.ESDS 

RRDS 

This is just one of many conditions which are raised when PL/I recognizes an abnormal 
situation. (For more information on PL/I ON-conditions and how to handle them see Topic 
19 - but not now!). The main reasons for raising the KEY condition with keyed VSAM data 
sets are: 

a key sequence error on creating the data set 

e attempting to add a record with a key which already exists on the data set (duplicate key) 

• no record on the data set with the key specified in the READ statement (also applies to 
generic key) 

• no room to add a record 

• the RBA, specified as the key, is not a valid RBA on the data set 

• attempting to add a record to a relative record position which already contains a record. 

BUFFERED and UNBUFFERED Files 

Page 13-10 

The BUFFERED attribute specifies that data records should pass through an area of storage 
within the program before being written to a data set (output) or being read by the program 
(input). This allows LOCATE mode processing to be used but.has the disadvantage that extra 
storage is required for the program. Other IBM access methods have always supported buffers 
for sequential processing but not for direct processing. VSAM supports buffering for sequen­
tial and direct processing.· 

~ cm -! I N Plu!T 
I 

BU. FF ER ED 
~V1 ( \!rs)~) i 
! I 1 

I. i 
·rsJEl1171PrrR > KE y( IK EY FL D) i 
- I 1 



EVENT Option 

Topic 13: Virtual Storage Acces.s Method 

This can be attached to 1/0 statements for processing of UNB~FERED VSAM data sets. 
The main use of EVENT is for overlapping of processing and I/ 0 during direct processing -
this takes place automatically during sequential processing if you specify more than one buffer. 
When EVENT is used control passes immediately to the next statement in the program, rather 
than waiting for the I/ 0 operation to complete. The WAIT statement is used to halt process­
ing until the associated event has taken place. The following coding illustrates a possible 
method of overlapping processing and I/ 0 by using the EVENT option, the WAIT statement 
and two I/ 0 areas. 

The first READ does not have the EVENT option and so control does not pass to the second 
READ until the first READ has taken place. So, while the second READ is taking place, we 
can process the record read into AREA 1. When we wish to process the record read into 
AREA2 we must issue a WAIT statement to make sure that the READ has completed. In our 
example X is an EVENT VARIABLE which is contextually declared as such; it could also 
have been explicitly declared. 

Page 13 -11 
•'. 



Topic 13: Virtual StorJlge .Access Meth.od 

VSAM/ISAM:;,Compatibitity: .. 

This section will be of interest to those people who currently use Indexed Sequential Access 
Method (ISAM) which is the access method for PL/I INDEXED files. VSAM can be used for 
all applications in which ISAM is used, but VSAM has many additional features. You may 
already have ISAM but wish to change to VSAM. If so, there is no need to rewrite all your 
previous INDEXED programs so that files have the attribute ENV(VSAM). The way in which 
PL/I handles this situation depends on the operating system being used. 

OS /VS Considerations 

Consider a program using an INDEXED file to access a VSAM data set. PL/I will provide 
access to the VSAM data set as if you were actually using a file with attribute ENV(VSAM) -
this is 'native' access and no compatibility interface is involved. However you may wish to 
force the use of the VSAM/ISAM compatibility interface in order to do an ISAM (logical) 
deletion as opposed to a VSAM (physical) deletion or because the INDEXED program 11ses 
records with non-embedded keys (not possible on a VSAM KSDS). In order to force the use 
of the VSAM/ISAM compatibility interlace you must code either RECFM=F /FB/V /VB or 
OPTCD=L in the AMP parameter of the DD statement for the data set. The AMP (Access 
Method Parameter) parameter replaces the DCB parameter used for other access methods. 

DOS /VS Considerations 

Page 13 -12 

PL/I will automatically invoke the VSAM/ISAM interface whenever you try and access a 
VSAM data set using a file with attribute ENV(INDEXED). Using the interface limits the 
processing of the VSAM data set to those situations which apply for an INDEXED data set, 
e.g. no variable length records and no DELETE statement. 



Topic 13: Virtual Storage Access Method 

Alternate Indexes and Paths 

I 
I 

The index of a KSDS is called the prime index. 

It is possible to define one or more alternate indexes over the base KSDS (referred to as the 
base cluster) in order to access the KSDS by a different key within the record. 

For example an insurance company might keep records containing information such as policy 
number, name and address and region. 

Prime Alternate 
Key Key 

I I I 

Record in base KSDS 
18050 

I I 
AOS I I showing prime key and alternate key 

I II 1 I I 
Policy Region 
Number 

Name and 
Address 

The prime key is the policy number but sometimes the company wishes to access the records 
by region. So an alternate index is built to relate the alternate keys to the prime keys. The 
relation between the alternate index and the base data is shown on the next page. 

You can see from the diagram that in the region AOS there is only one policy number (18050) 
and in the region ARY there are two policy numbers (10060 and 13500). 

Page 13 -13 



Topic 13: Virtual Storage Acee~ Method 

Page 13 -14 

c 
ill 
c 
0 

x a. 
(J) E 
-0 0 .= (.) 

c 
il> 
c 
0 
a. 

~E 
«) 0 
Cl() 

(-~ 
c: " (J) c 
c: -

x g_ ill 
(J) E E 
-0 0 ·.::: .= (.) e:. 

c 
il> 
c 
0 
a. 

~E 
«) 0 
Cl(.) 

"---------Alternate index record with two pointers to base cluster 
.,..._ ______ Alternate index record with one pointer to base cluster 

FS 

FS 

FS • 

Control intervals 
of one control area 

Control invervals 
of one control area 

Index record 
with 3 entries 
(2 prime keys 
and one free­
space entry) 

FS = free space 

• = control information 



Topic 13: Virtual Storage A~ce~ MethOd 

The alternate index is itself a VSAM KSDS in which each record contains the alternate key 
followed by the associated prime key (or keys) of the data in the base KSDS. An alternate 
index is unique if it contains only one prime key per alternate key, it is non-unique if it contain~ 

more than one prime key per alternate key. In our example the alternate index is non-unique. 

The alternate index is defined and (usually) built using the AMS utility. 

The alternate index and its associated base cluster must b~ 'linked' together before the base 
cluster can be accessed by alternate key. This link between alternate index and base cluster is 
called a path. A path is merely an entry in the VSAM catalog and it is defined using the AMS 
utility. 

In PL/I terms a path is treated as a file. Opening a path· opens both th~ alternate index and its 
associated base cluster. A base cluster might have two alternate indexes (see diagram below). 
To process the llase cluster using alternate index 1 you should open Path 1. 

Alternate index 1 

Alternate index 2 

You might find this use of the 'path' to be a little strange at first. In fact it is very useful - by 
opening the path .you are specifying that you want to process the base cluster via the alternate 
index; if you open the alternate index you are specifying that you want to process the alternate 
index on its own. 

An alternate index can also be defined on an ESDS. The alternate key would be some field 
within the record and the prime key would be an RBA for the associated record. The alternate 
index would be defined and built using the AMS utility. Once the path linking the alternate 
index to the base ESDS has been defined, using AMS, then the ESDS can be processed directly 
using the alternate key. 

Page 13 -15 



Topic 13: Virtual Storage Acee~ Method 

SAMEKEY Bui/tin Function 

Page 13 -16 

The SAME KEY builtin Function is useful for processing base data sets via a non-unique 
alternative index. SAMEKEY returns 'l 'B if the I/ 0 operation has been successful and there 
are more records on the data set with the same alternate key; otherwise SAMEKEY returns 
'O'B. 

The following coding shows an example of the use of SAMEKEY. The file KSDS is keyed on 
the first six characters (BOOKKEY). The key for the alternate index starts on the 42nd byte 
and is 22 bytes long (AUTHOR). Notice that the key length and key location do not have to 
be specified in the declarations - such information is contained in the VSAM catalog. 



• E:ND: 
i 

Topic 13: Virtual Storage Access Method 

The above program reads a record with key 'SFOOO 1' from KSDS file and then prints out all 
records whose authors are the same as the author of 'SFOOOI '. Remember that when you 
access the path you are accessing the base KSDS in alternate index sequence. The alternate 

Rage 13 -17 



Topic 13: Virtual Storage Access Method 

index would have been defined and built using AMS; the path would have been defined using 
AMS. 

Some Further Options 

BKWD Option 

SKIP Option 

Page 13 ..;18 

The following are options of the ENVIRONMENT attribute for the file. There are other 
options, mentioned in the Language Reference Manual, but they are not important at this 
stage. 

This is used to process the file sequentially in descending key sequence. When a file with the 
BKWD option is opened the associated data set is positioned at the end. 

This option applies to a KSDS accessed via a SEQUENTIAL file. It should be used to improve 
performance whenever records are accessed by key but the access is mostly in ascending key 
sequence. When the SKIP option is specified VSAM attempts to retrieve records by key using 
the sequence set only. If the records are in ascending key sequence this will always be possible. 
If records are not in ascending key sequence then all levels of the index component will have to 
be used and access will take longer. (F~r DIRECT files VSAM always accesses all levels of the 
index component). It is never a mistake to specify the SKIP option but its incorrect use may 
slow down processing. 



Exercises 

Topic 13: Virtual Storage Access Method 

1. Discuss the reasons for using a VSAM KSDS, ESDS or RRDS? 

2. Is anything wrong with the declarations below? 

I I I I 

3. Suppose you wish to use the statement 

to read the first record whose key starts with 'X'. 

What would you specify in the ENVIRONMENT attribute, and why? 

How would you declare the file and code the statement to read the next record after the 
one just read? 

4. Is it possible to insert a record in a VSAM RRDS? 

Under what circumstances? Write the declaration of the file and the statement which 
would add a record to relative record slot 5 . 

. 5. An ESDS has been created (using AMS) containing transaction records for a whole 
week. At the last minute, some further records have to be added to the ESDS before 

~ . ... f 

processing it. Does the data set have to be recreattrig to incorporate these new records in 
a new extended data set? How else could the records be incorporated? 

6. A KSDS consists of records with the following structure 

. t· 

. t­
i 

----+-

The prime key of the KSDS is EMPNO. An alternate index has been defined and built 
using AMS; the alternate key is DEPCODE. A path has been defined linking the base 
KSDS to the alternate index. Assume that the necessary JCL has been"provided. Write 
the necessary declarations and statements to read all records which have DEPCODE of 
'Cl' and update the DEPARTMENT to 'COMPUTER'. Assume no password protec­
tion. 

Page 13 -19 



Topic 13: Virtual Storage Access Method 

Answers-· 

Page 13 -20 

l, A KSDS is used in applications which process directly by embedded key and also 
sequentially in ascending/ descending key sequence. INDEXED organization also 
provides this facility but VSAM KSDS organization has the advantage of not requiring 
frequent reorganization to maintain the initial performance. Thus a VSAM KSDS would 
be especially useful in applications in which there were many additions during the life of 
the data set. 

An ESDS is used in applications which mostly process the records in a sequential 
manner. CONSECUTIVE organization also provides this facility but an ESDS can 
additionally be processed by key (RBA), if desired, and records can also be added to the 
end of an ESDS without recreating it. 

An RRDS would be used to give fast direct access by relative record 'slot' within the data 
set without the time overhead of looking up an index (as in KSDS organization) nor the 
space overhead of storing such an index on disk. 

2. GENKEY can only be used with a SEQUENTIAL file. The PASS WORD- option has 
been used perfectly correctly; obviously the field PASS should contain the valid password 
character string before the file DUDLEY is opened. 

3. GENKEY. Without GENKEY the key ('X') would be padded with blanks to the right 
for a length equal to the keylength of the file and then that particular key would be 
searched for. If the padded-out key were not there then the KEY condition would be 
raised. GENKEY stops the padding out of the key. Assuming no password protection, 
the file would be declared as 

The statement to retrieve the next record after the one retrieved by generic key would be 

4. Yes, provided that the relative record slot into which you are trying_ to add the record is 
empty (either because you left the particular slot empty during creation or because a 
record has subsequently been deleted from that slo~). 



Topic 13: Virtual Storage Access Method 

5. The ESDS does not have to be recreated. Records can be added at the end of the ESDS 
as follows: 

6. 

I• END; 

OS/VS JCL required, 

DOS/VS JCL required, 

Rage 13 -21 



) u 

OG 

ND 
E 

E 

p 

D 

y 

D 
M 

0 
D 

p 

E N 
E D 

NT DY 
EN D P 

N U P 

A 

E 

N T 
T 

TU 
y 

R 
R 

A 

s 

D 

u 
D 

G 
u p 

R 
y 

OG M E 
0 E 

OG E D 
AM D NT 

M ND ENT 
IN E N TU 

Topic 

1_,,,, 
. ·.·. 

A 

p 
E 

N 

E 

N T y 

T OG 
ST R 

D RO 
D R AM D 

D p R M IND 
p R IN E 

T 
y 

T 

0 
p 

A 

M p 

D 
D N 

NT 
ENT 

N U 

p 

M 

D 

D 

DE 
T 

D 
p 

T 

D 
N UD 

ST 0 
p 0 

D RO M 
R IN( 

NDE ST GR EP ND U Ef RA 
D T STU PR D ND TU PR R D ND TU Y 0 ND 

T R G D EN E T R G D EN TU R R M END 
ST P 0 PE D T ST P 0 N PE D T STU A ND N 
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T 

D PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S 
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D 

R GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U F 
GRAM IN P ND N S D PR GRAM P ND NT S D PRO R M I E EN T STU PRC 

NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0 F 
INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA~ 

NDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM l 
EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN[ 
ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEF 
DENT STUDY PROGRAM INDEPENDENT STUDY P~OGRAM INDEPENDENT STUDY PROGRAM INDEPE~ 

NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE 
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN-

1TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT : 
1 DY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STL 

PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD~ 

ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY F 
1GRAM INDEPENDENT STUDY P~OGRAM INDEPENDENT. STUDY PROGRAM INDEPENDENT STUDY PRC 
AM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY·P~OGRAM INDEPENDE~T STUDY .PROGF. 

I INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA~ 



Topic 14 

Variable Length Records 

Objectives 

Introduction 

In this topic you will learn about the various sorts of variable length records you are likely to 
meet, their format and methods of processing. You will also learn how to use variable length 
character strings. 

At the end of the topic you should be able to: 

describe the format of variable length records 

describe the creation of variable length records by using different length structures 

~escribe how the REFER option may be used to create and retrieve variable length 
records consisting of a fixed length header part followed by a variable number of fixed 
length trailer parts 

describe the implementation of VARYING character and bit strings 

describe the function of the SCALARVARYING option of the ENVIRONMENT 
Attribute. 

Variable length records are used mainly for the purpose of saving external storage space. Their 
use, however, generally increases execution time because they must be created with control 
bytes which specify the size of the logical record and the length of the physical block. These 
control bytes are supplied by the system on output and interpreted by the system when the 
data set is subsequently read. 

In theory, records which contain different sized fields could be handled as fixed length records 
by making each record the maximum possible size and ignoring or padding unused portions. 
This technique might even be practicable for data sets where the number of records and the 
range of records lengths are relatively small. However, in typical cases it is possible to make 
considerable external space savings by using variable length records. The significance of these 
savings increases with the range of record sizes, the number of records in the data set and the 
cost of the associated I/ 0 device. 

Page 14 -1 



Topic 14: Variable Length Records 
.. • 

Record Formats 

Blocked 

Unblocked 

Page 14 -2 

Variable length records can either be blocked or unblocked and their formats are shown in the 
following diagram. 

I 
R1 ----.-oojlJIJ., <1114t-om---- R2 -----i•.., 

t 
I 

POINTER 

The RECORD DESCRIPTOR WORD (RDW) is a 4 byte control field which precedes each 
record and contains information as to the length of the record. 

The BLOCK DESCRIPTOR WORD (BDW) is a 4 byte control field at the beginning of each 
block and contains information as to the length of that block. 

The control bytes which precede the 'data' portion of each logical 1/0 record are never 
included in the declaration of a structure (or element) which describes this record. During the 
creation of variable length records, the necessary control bytes are automatically prefixed to 
each logical record in the output buffer by compiler-generated code. Similarly, when these 
records are subsequently read into storage, the control byte~ are transmitted but they are not 
made available to the programmer. Thus a READ SET statement causes the pointer to be set 
to the first data byte of a record in the input buff er, while a READ INTO statement will 
transfer only the data portion of a rncord from the buffer to the named variable. 



Topic 14: Variable Length Records 

Record /Block Size 

:'\lthou~h control h~'tcs arc of no concern within the program, they must be specified in the 

maximum lo)!ictl record size or block size in the ENVIRONMENT attribute or the DD card 
( ( >S VS) as follows: 

RECSIZE = Max DAT A size + ROW 

BLKSIZE = RECSIZE *(number of records) + BDW 

In the next fow sections we shall discuss specific ways of processing variable length records in 
PL/I. Normally they will appear in one of three different ways. 

1. A multiple of record types, each type being different in length. 

2. A record consisting of a fixed length header part and a variable number of fixed length 
trailer parts. 

3. Records consisting of variable length character strings. 

These ways will be considered separately. 

The Use of Different Length Structures 

DCL 

DiCL 

One situation in which variable length records are used is where a data set contains multiple 
record types, each type being different in length. This can conveniently be handled by 
declaring a different structure to represent each type of record and specifying a WRITE or 
LOCATE statement for each structure. 

For example, suppose a data set consists of two types of record: 

Name and Address Records 80 bytes 
Transaction Records - 120 bytes 

then we can declare a structure for each type: 

Each record contains a field called TYPE which denotes whether it is a name/ address record 
or a transaction record. 

Page 14 -3 



Topic 14: Variable Length Records 

Page 14 -4 

To write a name/ address record we can code: 

. and to write a transaction record: 

Records can subsequently be retrieved by moving them into the structure TRAN and then the 
record description used depends upon the value of the first byte as follows: 

-+--•---'---+---+--.--+--+-+ ~+---·i--+- ·--t-,---r---r-·--·+---+·----1--·-+-

: ,£ NiDtj 
t--· -~·----+--+---+··- ···-·---+-·--+-- +---•---.---+----+--+---··~+·~- ~-+-----·-·+• --+---+·--+--+-

. -i E: Ni 1001 ; : 
· · ~ · · --·+-=--- -+-·-·+---+·---+--+---<~- ---........ =--.... --+--1-·-r-r: +----+ '--+--····----..... ..___._ 

·-+-·· -+- ,,,,_,, ;-·---+---··--t-·--+----1----+--+---t--+-Li--~---+-----·t--+--+--·--'.__ 

- +··--·+-·-.+--

< .. ---~---- ~-- '-L--+-·--+- +·--

I 
---t-' · +-----·--- ---r-· .. -.;-... ____ ~-----r-·----

E N1 DI; 
-+ --+--- ----r-·---;---- -----·-

Alternatively it is possible to create and retrieve records in LOCATE mode by a similar means. 
In this case the structure would have to be based as follows: 

' +h '-LL l± L I I + l I I 
-··_r--+-' --!---+- -----+--- -

D CLl 11 N!AI IB A,Sf EID ( :Pi)t,I , 
~: ~·· lr . 2Ll-riY Pif.1JN . 1c i 1ARti,) • k1 1 I~ INA-1DIE1TAJi!'s CHAR(1'1); 

·-. ··t·· i1 :11 rr 
' I l I +- I I 

~- olc ti -tj+-ti'+-~Afttrsi~sf o. ( P ) , 
f---. -t- -+-+-- --+-+- -+- -t;:t-

I i 2 TY P1EJ.J! CUA R_( 1 ), 
µ_I 1 2 T~A[NlsJ-DEITA I LS CUARi( 11 't); 

i 1 1 I f 1 I 



Topic 14: Variable Length Records 

The creation and retrieval statements would be: 

l 1 j j . ! 1 I 

1--1--+--+-i :1 _:-_:-1_-+-+--+-+---+-+---+-+l--lj_i.'-,__1 O+-C+A_f __,_-rj_:-_1e.:·:r:R:---iA:_N::F:1:.L-+-E-l--"l(+~+A--+rr--+-R+-A+-N-+)~; i-+--+-+-+-
: I l 

I i ! -+-+l-+--t-1-+-+-+-!-+--+--+-~f-+-+--t-+-+--+--+-+-i-+--+--+-
~----+---4-+-~-+--+~1R~i~El--Al--D+--+-F+l~L~f~(-N+-A~l•+R~A__._N~)+-+-s+E~'T~(-PI--)+-,~-+-+-+-

i 1/}F TYP E
1
_.N = 'N' THEN DO; 

·~~+t· ·~. . t ~ : 
··-- -' - -+ -+----1>----+··-··•;-... +--+--- --,..__.._, -+--+--+-+-+--t-+-l-+-+--+-+-+-+-+-+-1-+-+--+-t-+-+-I -+-

. ! ! f.ND; I 

-. ~ -t . 'f/iF~~rtvtP--+f.-41-----+--T-+--l-=-l--~-,-+T--+-'-+--+-T4H--l--E-4N-+--+-D-l-O-+-;+-'--+--I---+-+--+-
- • --+-+- -- - T i r--+-~Tj" 

"T 

1 .... ·• -~--+-·- •· +---

-- --+--1 i--- ---

~ --il+-

Record Condition 

RECORD CONDITION was introduced in Topic 9 'Input and Output - further 
considerations'. Then we were dealing with fixed length records. The situations when it could 
arise for variable length records are as follows: 

On input the work area is smaller than the stated record size. 

On output the stated record size is smaller than the word area. 

In other words, it is always possible to put something into somewhere larger than itself but not 
into somewhere smaller. In the latter case, the RECORD condition would be raised. 

The technique of processing variable length records by using different length structures is 
relatively simple. It is not necessary for the programmer to hold the length of each record 
within the record itself: this can be established on the basis of record type. 

This technique is suitable for data sets containing records of relatively few different lengths. 

P-age 14 -5 



Topic 14: Variable Length_ Records 

Based Variable With the Refer Option 

Self Defining Data 

Page 14-6 

It is sometimes necessary for the programmer to create a variable length record in such a way 
that it contains an indication of its own length (in addition to the control bytes, which are 
inserted by the system and which are not normally accessed within a PL/I program). This kind 
of record is known as a self-defining record. The following diagram illustrates a typical 
example: 

FIXED 
PART 

FIXED 
PART 

TRAILER 1 

TRAILER 1. 

TRAILER 2 TRAILER 3 TRAILER 4 

TRAILER 2 

This represents a very common type of variable-length record; each record contains a fixed 
length header section followed by a fixed length trailer portion which is repeated a variable 
number of times. An example might be a record consisting of a customer's bank account 
number, followed by a variable number of transactions. To facilitate processing the program­
mer should create a field within the record which contains the number of transactions. For 
example: 

NO. 
1, 

ACCOUNT OF TRANSACTION TRANSACTION TRANSACTION 
NO. TRANS. 1 2 3 \ 

~. 

jl 

~ TRANSACTION 
• n. 

~ 

Handling this type of record poses a problem. Consider a possible declaration of this record, 
assumin~ that the maximum number of transactions was 50. 

-·o'c L'. I 1 
1 ·f-·. 

. I 
-· ,.-- - 1-+- -

-+-· t . 
t . 

cCTR~~Nr~,-- -r it , + t i ' l I I l 
1 

-21·-rATCt-C:oJttfNT -:cjHARtti ~} ' 
t-2TJ~Jo~;oiF~ T RA]N s ]F I x E 0 DE c ( 3[), 

l~~R.~~1(~/?l- ~l~AR ( 20) 1 I~ 

If MOVE mode input/ output were used, then a possible record creation statement would be 

I 



Topic 14: Variable Length Records 

However this would always give fixed length records, each one being the maximum size of the 
structure C _TRAN. The alternative would be to have 50 structures ~ach one having a 
different size for the array TRANS and then writing out from the appropriate structure. 
Obviously this involves a tremendous amount of coding and also of storage. 

If LOCATE mode input/ output were used the structure C _TRAN would have to be based on 
a pointer and the record created by means of the statement 

At this stage the pointer is pointing to the start of the data part of the record buc no informa­
tion has been put into the control bytes about the length of the record. In fact, the length may 
not even be known! There is no way in which PL/I can add this information later on. Hence 
using LOCATE mode, another problem arises i.e. there is no way of assigning values to the 
control bytes to reflect the lengths of records. 

To overcome these problems, PL/I provides a feature called the REFER option and we will 
discuss it now. 

The REFER Option 

_l _j_ 

;De LI 
, L _L 

i 
! l 

i i 
' l r - DJC L 

T T 

f 

The REFER option is used in the declaration of a based structure: it specifies the length of a 

string variable or the bound of an array. 

Let's declare a structure which describes the customer transaction record outlined above: 

---r--+-+- i i _j_ i _l_ • ' _l_ _l_ + -+ 
c.-1rR AN lB A s}e}n C}P >I, l 1T 

j I l 
2: tlC cfo uTNlii iCJH~R (T1 ~0 1 , T : T i I I I 

2i ... 1Niot1-~f ~71RTAJN SJ_J!S! XIE D D!E C( 3 ) ' l i· 
-+2! h~RIAIN S}- ( ri'~iA Nls ~-iffi RE F!E R (N o;_, OF I-IT RiA NS ) ) CH AR (2 '1)) ; 

:T ~' 1+l1l 
111R ATNJs- CIT1 lF 1 xl£fo 1s11 lN ( 1 s) 

TT 1 1 1i 1 Tr , 
j 

TRANS is an array within the major structure C _TRAN; it describes the transactions made 
by this customer. It is not possible to declare explicitly the bounds of the array TRANS, 
because they are variable. Look closely at how they are declared: 

TRANS (TRANS_ CT REFER (NO_ OF_ TRANS)) 

TRANS is a one-dimensional array of which the upper bound is described by means of the 
REFER option which specifies two variable's - one inside the structure CTRAN and the other 
outside. TRANS_ CT is the variable which is declared outside the structure. In this variable 
the programmer keeps a count of the number of transactions relating to the current record. 

Page 14 -7 



Topic 14: Variable Length Records 

Page 14 -8 

Assuming that this count has a value, consider what happens when the programmer, in order to 
write out the record, issues the statement: 

This statement allocates C _TRAN in the buff er and sets P to identify the position of this 
allocation. Data can now be assigned to C _TRAN. The number of transactions which occur 
in the record is taken from the variable in the REFER specification which is declared outside 
the structure, i.e. TRANS_CT. The implementation uses this value to calculate the logical 
record length which is automatically prefixes to C_TRAN in the buffer,. i.e. the RDW has 
been given a value. Furthermore, the execution of the LOCATE statement causes the value in 
TRANS_ CT to be assigned to the variable NO_ OF_ TRANS. This is the other variable used 
in the REFER specification and it is declared inside the structure. Thus we now have an 
indication of the number of transactions which occur in a record within the record - and this is 
provided automatically as a consequence of using the REfER option. 

Notice that it is not possible to assign a value to NO_ OF_ TRANS before the LOCATE 
statement is executed because at that stage, it does not have any storage allocated to it. This is 
the whole point of -specifying two variables in the REFER option. The variable outside the 
structure provides the information which determines how much storage in the buff er is to be 
associated with the current record; the variable inside the structure receives this information 
automatically when storage is allocated thus making the record self-defining. 

To summarize, in order to create records of the self defining type, a value must he given to the 

upper bound of the array by means of the REFER option hef ore issuing LOCATE and then 

building up the current record by assignment statements. 

For example: 

• 1 ~ i.. i + " ~ l i- . ~ t ~-- i -~ 
NiO .. ,O,F i'T1RIAN!s1Aic !/ OiNS' :-Jf-1 

t t ~ . • 1 + t t r ·+-+-- ' 

t~ 
j 
I 

This record will be physically written to the associated data set when the next LOCATE 
statement is issued (assuming unblocked records). 



Topic 14: Variable Length Records 

Record Processing 

Now consider how the variable length records created above might subsequently be read and 
processed. The same structure (C _TRAN) used to create a record can be associated with a 
READ statement in order to retrieve the record. In this case the value for the upper bound of 
the array TRANS is taken from the variable NO_ OF_ TRANS inside the structure (i.e. from 
the record itself). Processing is simple because the programmer can interrogate the field 
NO_OF _TRANS directly to determine how many transactions there are (this is specified in 
that part of the record effectively overlaid by NO_ OF_ TRANS). Note that, on input, the 
value of TRANS_ CT has no effect, and that the value of NO_ OF_ TRANS is not assigned 
to TRANS_ CT. The programmer does not need to place a value in TRANS_ CT before 
issuing the READ statement. This is necessary only before allocation -in the output buffer. 

Because of this it would be possible to dispense with the use of the REFER option in the 
structure named in the READ statement. For instance, the array TRANS in the structure 
C _TRAN could be declared with fixed bounds equal to the maximum number of transactions 
that could occur in one record (it is permissible to process a variable length record by means of 
a fixed length structure which is equal to the maximum possible record length). In this case the 
programmer can still obtain the length of the variable part of the record by interrogating the 
field NO OF TRANS. 

\\ L' h~l\L' now "een that. in order to create \ariahlc length records (of the type described in this 
section) h:-. use of the REFER option. the prot!rammn must: 

I. Keep a count of the number of transactions relating to the current record in an independ­
ent \ ariablc ( X). 

2. Dcscrihc the variable length record by means of a structure which contains a field ( Y) for 
lwldint! the number of trailers in this record and which uses the REFER option. Y is 
linked to X hy mean~ of this REFER option. 

3. Allocate the correct amount of space in the output buffer by means of a LOCATE 
statement. This statement causes the value in X to be assigned to Y. 

4. Assiµ.n data to the buffer, using a DO loop (with Y as the control variable) in order to 
write the trailers. 

On subsequent retrieval of each record the field Y can be interrogated to determine the 
number of trailers. 

Page 14 -9 



Topic 14: Variable Length Records 

Varying Leng-th Character Strings 

The third type of variable length records are those which consist of variable length character 
strings. Before looking at processing these sorts of records we need to discuss the VARYING 
attribute. 

The VARYING Attribute 

Page·l4 -10 

we are familiar with the notion that string data is usually declared with a length specification. 
It is also possible to specify the VARYING attribute for both CHARACTER and BIT data. In 
this case a length specification is still normally supplied, but this is interpreted as a maximum 
length for the variable rather than a fixed length. For example: 

This declares X to be a variable length character string with a maximum length of 100. 

The compiler prefixed two bytes to a VAR YING string at the time that storage is allocated for 
it. These two bytes are used to contain the current length of the string (this is maintained 
automatically during the program execution by compiler-generated code). The programmer 
does not have to include the two length bytes in the length specification when he declares a 
VARYING string. The current length of a VARYING string is taken to be the length of the 
data most recently assigned to it. For example: 

After this assignment, X will have, for practical purposes, a length of 25. Note that padding to 
the right with blanks does not occur (unlike assignments to fixed length strings). This is the 
chief characteristic of a VARYING string - it takes both the value and the length of the string 
assigned to it. 

Let's consider another example - one which also illustrates that the result of concatenating a 
VARYING string with any other string (fixed-length or VARYING) is a VARYING string: 

[oc L N A ~f c ~~£ ~I~ ) MA RY IN q ; 
--t-- +--!---+--

-i~.c L I( A DDR)1 R2 , A lqD R3 bl c HA R( 2 st> ) v AR y I NG; 

~£LlA 
+ Iv D1C L: N A DD 1RI CH AR (_la ¢) A RY IN G ; I 

I lN A "' E 
1-J '!MR JO Nif SI , I l I 1- __i 

~ JA D D IR 1T = ., 1!3 H I G H Ro AD , ;l i 

l IA DD ~2 = 'A NY T'O IW N I • 
I ..... 

l ~ DD R.3 ,- ' c OU NIT y I j l 
[ ~! AIM E!_JA D !DR = NAM£jlADbR1JfADbR21JADDR3; 
I ; I I 



Topic t 4: Variable Length Records 

The field NAME _ADDR after the assignment has a practical length of 36 bytes and contains 
the string constant 

'MR JONES 13 HIGH ROAD ANYTOWN COUNTY' 

This is one of the advantages of using variable length character strings. If fixed length fields 
were used it would have been necessary to take substrings of the complete strings containing 
the relevant bytes and then concatenate them together. 

LENGTH Built-in Function 

Built-in functions are explained in detail in Topic 18, 'Subroutines and Functions'. One of 
them is the LENGTH built-in function which is useful for obtaining the current length of a 
VARYING string. For example, the effect of coding 

would be to assign the value 36 to the variable I. The LENGTH built-in function returns the 
current length of the specified string as a fixed binary integer. 

The SCALARVARYING Option 

We have seen that the compiler adds two length bytes to the beginning of a VARYING string 
but that the programmer need not be concerned with these within his PL/I program. Remem­
ber that it is never necessary to allow for the two length bytes when declaring a VARYING 
string. 

The programmer can, however, specify that these two bytes are to be included in the transmis­
sion when writing a record from a VARYING string. This is necessary when using locate mode 
output statements. 

In order to include the length prefix in the transmission of a VARYING string, the program­
mer must specify the SCALARV ARYING option in the ENVIRONMENT attribute when 
declaring the associated file. Let's now consider the effect of this option, first with respect to 
move mode I/ 0. 

Suppose that a programmer creates a variable length record in a VARYING string called X 
and transmits this record by means of a file called Fas follows: 

I J l l l l l 
DC I~ x CH ~I RI 1 tJ ¢J VA RY IN G; l 

F 111 v(v 
; • T. •1·1·. 1 

• 21 DCL F ~ LE R.£ co RD ~ u111 PU EN . 
-.. 

i 

/I~ ITO *rl 
--

AS S I ~N IVA 1 L UE x 

IW Rt IJ1E FI. LE (F) FR OM (X ) ; 

Page 14 -11 



Topic 14: Variable Length Records 

Page 14 -12 

Then the record would be transmitted without the length prefix in the following format: 

R 
D X 
w 

+- 4...... CURRENT LENGTH------..... 

In this diagram the field RDW represents the logical record length which is automatically 
constructed by data management (this field contains the 'control bytes' that we discussed 

earlier). 

Now suppose that the programmer specifies the SCALARV AR YING option in. the file 
declaration, viz: 

This would cause the VAR YING string to be transmitted with its length prefix, in the following 

format: 

R 
D x 
w 

+- 4 -..~2 ... .-------CURRENT LENGTH--------

For subsequent retrieval of this record, the SCALARVARYING option must be specified in 
the associated file declaration. This informs the system that the first two 'data' bytes of the 
record constitute a length prefix, and are to be interpreted as such for execution of the READ 
statement, which must transmit the record into a VARYING string field. 

Note that if SCALARVARYING is not specified when reading records into a VARYING 

string (thus indicating that the records do not contain a length prefix), the system is able to 
calcula~e the length prefix to be appended to the VARYING string in each case from the 
contents of the RDW field. Thus for MOVE mode processing the SCALARVARYING option 
is redundant. It just duplicates the information given in the Record Descriptor Word. 

The SCALARVARYING option is primarily intended for locate mode 1/0, where it must be 
specified. This is a consequence -of the fact that locate mode causes the maximum length of the 
VARYING string to be transmitted. This is because the LOCATE is executed before any 
values have been assigned to the output string and hence there is no indication as to what the 

length of the string will be. 



Topic 14: Variable Length Records 

Consider the following example: 

R' Fll lL E ( F) ; l : l i I I 
1 1 T 1 =f--+-+-+-+-t----t-j~-+-1--+-r~+-+-+-+-~-+-+-11+-+-+-+-+1-+-+1+1~T-+-+1~T-+-+--+-+H,H,~ 

Here the transmission of the length prefix associated with the string VR is specified by means 
of the SCALARVARYING option. The effect of the LOCATE statement would be to 

·allocate enough storage in the output buffer to accommodate the maximum size of VR and to 
set P to the beginning of the length prefix: 

VR 

+-4-+t~ 2~..------------100 

p 

I 
After each LOCATE statement data can be assigned to VR, thus constructing the current 
record and setting the corresponding value of the length prefix. If the current record does not 
fully occupy the allocated space, the unused positions are transmitted with the record. It is for 
this reason that the length prefix must be included in the transmission: this prefix enables the 
system to determine what portion of the record contains genuine data on subsequent retrieval. 
Note that the transmission of a VAR YING string by means of the LOCATE statement 
effectively creates fixed-length records. Therefore this technique should only be used in special 
cases. 

Page 14 -13 



Topic 14: Variable Length Records 

Summary 

Page 14 .;.14 

Variable length records are used to save external storage space. We have discussed three hasic 
types of variable-length records in this topic. They are: 

1. Multiple record types, each type being a fixed length. These can be created by writing to 
the data set from different length structures (each one corresponding to a different 
record type). 

2. Records which contain a fixed length header section followed by a fixed length trailer 
section which is repeated a variable number of times. This type of record may be 
conveniently created by using the REFER option to describe the number of occurrences 
of the trailer section in each record. 

3. Records in which all or several fields are variable. These may be created by concatena­
tion of a series of VAR YING strings. If these are to be outputted using LOCATE mode 
processing then the SCALARVARYING option of the ENVIRONMENT must be used. 



Exercises 

Topic 14: Variable Length Records 

1. (a) What is the main advantage of using variable-length records? 

(b) Why does the use of variable-length records generally increase execution time? 

2. 'The control bytes which the system prefixes to a variable-length record to describe its 
length need never concern the programmer.' Explain why this is not true. 

3. A data set is to contain three types of records - one 65 bytes, one 75 bytes, and the 
remaining one 100 bytes. Suggest a suitable method for creating this data set. 

4. What is meant by a self-defining record? 

5. 

Write statements which will examine the TYPE field in every transaction and, where this 
field contains the character 'A', increase the AMT field by the value 2. 

6. The maximum possible size of a variable-length record is 100. Records are constructed 
by concatenation of VARYING strings. 

Declare a VARYING string called VARY in which the programmer can build each 
I 

record, and state what maximum logical record length must be specified in the ENVI-
RONMENT attribute (or DD card) when the data set is created (or retrieved). 

Do this 

(a) when SCALARVARYING is specified. 

(b) when SCALARVARYING is not specified. 

Page 14 -15 



Topic 14~ Variable Length Records 

Answers 

Page 14 -16 

1. (a) The saving in external storage space. 

(b) Control bytes must be created and prefixed to a variable length record by the 
system. 

2. They must be allowed for when specifying the maximum logical record size and the block 
size. 

3. Declare three different structures, one for each type of record. 

4. One which contains information about its own fields (e.g. length) within it~elf. 

5. 

6. (a) 

Logical record length 

(b) 

Logical record length 

ROW + length prefix + VARY 
106 

= RDW +VARY 
= 104 

Note that the programmer does not need to allow for either the system control bytes, or 
the length prefix when decl~ring VARY. 



s 

A 
E D 

y 

D u 
M D 

0 G 
u p D E u p 

R 
N T y 

OG p T OG M E 

Topic 

15 

A 

p 

E 
N 

E p 

N T y 

T OG M 

p 

T 
y 

T 

0 

A 

p 

D 

M D 

D 

DE 
T 

p 

T 

E N TU 0 E ST R D N UD 
E D y OG E D D RO D N ST 

'1 D NT DY R AM D NT D R AM D NT p 0 
ND EN D p R M ND ENT D p R M IND ENT D RO 

E N U p A IN E N TU p R IN E N u R 
) NDE ST GR EP ND RA u 
~D T STU PR D ND TU PR R D ND TU y 0 ND 
- T R G D EN- E T R G D EN TU R R M 

ST P 0 PE D T ST P 0 N PE D T STU A ND N 
U Y ROGR NT S UDY ROGR NT s u y ROG EN 

JD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE 
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T 

~R GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S 
GRAM IN P ND N S D PR GRAM P ND NT S D PRO R M I E EN T STU 

~ NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 

D 

0 

M 
I f\ 

E 

ENC 

T 
s 

T C 
u 
PR 
0 

~ INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRJl 
INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM 
JEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM If\ 
PENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE 
~DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE 
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENC 
f STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE~ 

~TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT 
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT Sl 
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUC 
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY 
OGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUQY .PR 
RAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROG. 
1v1 1 l\1r\coc::"1r.c"1T c T11rw PRnr:o AM T NIJFPFNIJFNT STUDY PROGRAM INDEPENDENT STUDY PROGR,ll 



Topic 15 

Stream INPUT/OUTPUT 

Objectives 

Introduction 

As well as record-oriented input/ output, PL/I supports an entirely different approach, namely 
stream-orientated input/ output. This is useful for the input of test data, and the debugging of 
programs and also provides ease of control of layout of printed output. This topic describes the 
declarations of files for stream-orientated input/ output and the basic input/ output statements. 

At the end of this topic you should be able to: 

code valid I/ 0 statements - using the standard system files or programmer defined files -
for all three types of STREAM I/ 0 

describe when the ENDPAGE and NAME conditions arise 

describe the function of the COUNT, LINENO, DAT AFIELD built-in functions. 

Stream-oriented input/ output regards input and output data sets as a continuous stream of 
character information without record boundaries and thus can handle only consecutively 
organized data sets. The variables which are to receive input, or from which output is to be 
transmitted, do not have to be in adjacent parts of a structure or array. Any necessary 
conversion between the types of the variables and the character format of the data held 
externally will be done automatically on input or output. The input information will be 
distributed to the various variables which are to receive it, and the output information will· be 
collected from the various variables from which it originates. Because of the conversion during 
input/ output, stream input/ output is less efficient in terms of execution time and is not 
recommended for normal production programs. 

Page 15 -1 



Topic 15: Stream INPUT /OUTPUT 

File Declarations 

Expiicit 

Contextual 

Implicit 

Page 15 -2 

Files can be declared explicitly as stream by adding the attribute STREAM in the declaration 
statement, i.e. 

Note that STREAM is the alternative to RECORD and that if neither are _implied or specified 
then STREAM is the default. 

If the file referred to in a stream input/ output statement is not declared elsewhere then it is 
assumed to have the STREAM attribute, i.e. 

Both DOS/VS and OS/VS have standard system input and output files. These are called 
SYSIN and SYSPRINT respectively. If a filename is omitted in a GET statement (a stream 
input statement) then it is assumed that SYSIN is being used and similarly, for a PUT state­
ment (a stream output statement), SYSPRINT is assumed. The default attributes are as 
follows: 

SYSIN (DOS/VS): FILE STREAM INPUT EXTERNAL 
ENV(F RECSIZE(80) MEDIUM(SYSIPT)) 

SYSIN (OS/VS): FILE STREAM INPUT EXTERNAL 
ENV(F R_ECSIZE(80)) 

SYSPRINT (DOS/VS): FILE STREAM OUTPUT PRINT EXTERNAL 
ENV(F RECSIZE(121) MEDIUM(SYSLST)) 

SYSPRINT (OS/VS): FILE STREAM OUTPUT PRINT EXTERNAL 
ENV(VB RECSIZE(129)) 

The RECSIZE for SYSPRINT includes one character for a CTLASA control character. This is 
automatically supplied when transmissio·n statement options (see later) are included in the 
output statement. 



Topic IS: Stream INPUT/OUTPUT 

Stream 1/0 Types 

DAT A-directed 

LIST-directed 

ED/T--directed 

There are three different types of stream oriented input/ output. These are mentioned below 
along with. their uses. 

Used mainly for testing and debugging. It provides an easy method of entering test values into 
a program and for obtaining the value of variables at points throughout the program. 

As for DATA, but is also useful for jobs requiring a small amount of output where the layout 
of the print file is not important. 

Used when more control is required over the layout of stream files (particularly print files) and 
also the layout of initial input of data into a program from punched cards. 

If the type of input/ output is not specified, the LIST is the default. 

LIST-directed 1/0 

General 

When record-oriented input is used, the programmer is required to provide an input area (or 
based variable) which precisely matches the incoming data-records. List-directed input relieves 
him of this duty: the statement · 

will obtain the next data item from the input stream and assign it to VAR, converting it to the 
attributes and precision of VAR automatically. 

It is, therefore, only necessary for the user of list-directed input to know which variables have 
their values provided in the stream and, if there is more than one variable whose value appears, 
in what order the input stream is arranged. 

List-directed output is also greatly simplified. Zero~suppression and formatting are performed 
automatically, according to predefined rules, and the programmer is charged with the sole duty 
of ensuring that his output is intelligible. 

Page 15 -3 



Topic 15: Stream INPUT/OUTPUT 

LIST Directed Input 

Page 15-4 

The data items in the input stream must be character strings in the form of optionally signed 
valid constants. These strings are separated by commas, one or more blanks, or both. String 
constants are enclosed in quotes in the input stream, just as they would be written within a 
program. 

Example: 

-1.4,6.3,-9,8,'ALFA', 'BETA' 
-1.4 6.3 -9 8 'ALFA' 'BETA' 
-1.4 6.3 -9 8 'ALFA' 'BETA' 
-1.4 6.3 -9 8, 'ALFA','BETA' 

The above four sample streams are all equivalent. 

Data items are assigned to the variables specified in an input data list, in sequence; each 
variable in the list is assigned the subsequent item from the stream until the list is exhausted. 
The stream is then 'positioned' at the next data item, in preparation for the next GET. 

This statement will, in association with one of the input streams in the above example, cause 
-1.4 to be assigned to VAR 1 and 6.3 to V AR2. 

If the next input statement were 

then -9 would be assigned to V AR3 and 8 to V AR4. 

Finally, 

would assign 'ALFA' to VAR5 and 'BETA' to VAR6. (VAR5 and VAR6 would have to be 
declared as character string variables). 



Data List 

Topic 15: Stream INPUT /OUTPUT 

Although in the above example, VARI to VAR6 are element variables, other possibilities are 
unsubscripted/ subscripted array names or structure names. 

Example: 

µ __ ·-+-

~ I 
--+ 
l 

G~ 

Li 
-+--

IT 

·-1 IS TR , 
t--

tti 2 
21 !B 

LI sJ:!1(Js 
111 

I 1 I 

c HA~ L's [)_IL 
Iii IX 1£ D DIE. Ci 
17iRl i 

I I 

Assuming that the input stream contains: 

'ABCDE' ,900, .... 

I 

311 

the result of the above GET would be to perform the assignments: 

A I ABCDE' 
B 900 

Note: 

If the data items in the input stream are not of the same data type or precision as the 
variables to which they are to be transmitted, conversion will automatically take place, as 
necessary. This is true for all three types of stream-oriented transmission. 

Page 15 -5 



Topic 15: Stream INPUT/OUTPUT 

L/SFdirected Output 

Page ts -6 

As has previously been mentioned, in Topic 9 on 'Input and Output'; the PUT statement is 
used for stream output. The data items are converted to character form and piaced into the 
output stream, separated by blanks. 

When, as is usual, stream output is used for PRINT files, data items are automatically aligned 
on present tab positions, which are generated by software. (These are at positions 1, 25, 4·9, 
73, 97 and 121 on each line. The positions may be altered if required; the details are in the 
Programmer's Guide). 

Example: 

Suppose X, Y and Z are arithmetic variables having the current values 2.6, 6.3 and 5.8 
respectively. 

This statement will cause 

2.6 

to be printed. 

Example: 

6.3 5.8 

If the key condition were raised and the value of ONKEY were 10 (say) then the following 
would be printed: 

RECORD NOT FOUND,KEY= 10 



Topic 15: Stream INPUT/OUTPUT 

DATA-Directed 1/0 

General 

Data-directed 1/0 resembles List 1/0, except that not only do the values of variables appear in 
the input or output stream, but the names of the variables are also present. By using this 
technique, the programmer need not be aware of the order of data items in the input stream, 
since each of these takes the form of a self-identifying assignment (e.g. VAR 1 = 15 might 
appear in the input stream; 15 on its own is not permitted as a data-directed input item). 

When data is output by data-directed 1/0, the variables are automatically transmitted in the 
form of assignment statements. 

DAT A-directed Input 

Data List 

Data Stream 

The input statement is similar in format to that for list-directed input. 

The items within the parentheses are known as the data list and must be one ~'r the following: 

ELEMENT, UNSUBSCRIPTED ARRAY NAME, 
STRUCTURE NAME, A DEFINED VARIABLE 

The data list can be omitted. 

The data in the input stream is in the form of assignment statements and a typical input stream 
corresponding to the above GET statement might be 

A=3,B=4;A=6,B=2,C=7;A=6; 

where semicolons indicate the limit of assignments to-be performed by a single GET statement. 
Thus on the first execution of the GET statement the following assignments will be made: 

A=3 
B=4 

on the second 

A=6 
B=2 
C=7 

and on the third 

A=6 

Notes: 

1. Each assignment can be separated either by one or more blanks and/ or a comma. 

2. Assignment statements need not be in the same order as the items in the data list. 

3. Assignments need not be made to all items in the data list. In this case, those not 
appearing in the stream remain unchanged. 

Page ts -7 



Topic 15: Stream INPUT/OUTPUT 

Page 15 -8 

4. In the data stream subscripted array names may be used. 

Example: 

DCL 
lGEIT 
)GET 

A possible valid input stream is 

AR~1;AR=2;AR(1)=9;AR(9)=5; 

(The first two assignments are assignments to every element of the array AR). 

Note that repeated execution of the valid GET DAT A statement will read in all of the input 
stream even though some of the data refers to elements of the array while the rest refers to all 
of the array. 

It should also be noted that any qualifie.d name which appears in the input stream must be fully 

qualified. Partially qualified names are, however, permitted in data-lists (both for data-directed 
and list-directed 1/0). Example: 

2 A, 
-+--+-+-r~--+-+--+--+--+-t-+--+--+--t--+-+-i-+--~--+--+--r+-+-+--+-

3 B FIXED(l2), 
3 C FI XEOC.2) · 

--+--r--t---1--·-t .. -+--..... _,...__ r-+- -

Valid alternative GET statements: 

Valid input stream: 

STR.A.B=52; 

Invalid input streams: 

STR.B=52; 
B=52; 



Topic IS: Stream INPUT/OUTPUT 

NAME Condition 

If in the input stream there is an assignment to a field not mentioned in the data list, then the 
NAME condition will be raised. 

Example: 

with a corresponding input stream: 

A=6,B=7,C=8; 

DATAFIE/-.D Built-in Function 

If the standard system action is not required then a suitable on-unit should be coded. The 
DAT AFIELD built-in function is specifically designed to help deal with the NAME condition. 

This on-unit, if executed for the above example will produce the output 

C=8 

Note that if the data list is omitted on a GET statement then the NAME condition cannot be 
raised. 

DATA-directed Output 

Data list 

In the normal case, when the o_µ.tput is used for PRINT files the output, which is in the form of 
assignment statements, is aligned on the preset tab positions, as mentioned with LIST output. 

Example: 

would cause: 

A=2,B=9,C=12; 

to be printed (assuming these are the correct current values). 

As for input with the addition of subscripted array names. The data list can be omitted in 
which case all variables would be printed in the above format. This is uneconomical both in 
time and paper and should only be used for debugging very small programs. 

Page 15 -9 

... 



Topic 15: Stream INPUT/OUTPUT 

Data in thestream 

Page 15 -10 

As shown above, in the form of assignment statements terminated by a semicolon. Array 
elements are subscripted and printed in row n:1ajor order. Structures are printed element by 
element and are fully qualified. 

Example: 

DC L ~R (2 1 2 [i FI X£ D JfJ 
DCL 1 ISIT R, 

l~ Ml ~:f J 

3 ~- :F J x ED f 1 ) 
3 8 [F I X IE D( 1 ) 

12 [~ '" 2 FI XE o_(j 1 ) 

l 
PU IT" OA t"liA(,A ~:, sm R); 

T T 

will cause the following to be printed: 

AR(1,1)=1 
STR.MIN1 .A=2 

AR(1,2)=2 
STR.MIN1.B=7 

llN I l''f1 It _L l2 _L 

IN I \T1 ll 2)lL 
IN I 111 {7 ) 1 

IH '111 ( 6 J j 

AR(2,1)::i:3 
STR.MIN2=6 

3_1_ 14 [ J 

AR(2,2)=4 



Topic 15: Stream INPUT/OUTPUT 

EDIT-Directed 1/0 

General 

General format 

Neither DAT A nor LIST directed stream input/ output allows the programmer any control 
over the formatting of the input data or the layout of the output data. ED IT directed stream 
input/ output gives the programmer this control and thus provides a more flexible form of 
stream transmission. 

The general format of the edit directed input statement is: 

GET FILE(filename) EDIT(data-list)(format-list); 
(PUT will replace GET in the output statement). 

For the remainder of this section the FILE option will be omitted, thus implying 

FILE(SYSIN) for input 
and FILE(SYSPRINT) for output 

because these are the files with which all types of stream-oriented transmissions are most 
commonly used. 

In the statement 

GET EDIT(data-list)(format-list); 

the data-list is a list of variables, whereas the format-list is a set of instructions which describes 
how these variables are to be obtained from tlie input stream. The input stream itself is a 
continuous stream of characters: variable names are not included. as they are in data-directed 
input streams, nor are commas or blanks required, as for list-directed input. 

Example: 

Supose each card in the input stream is to contain the values of eight variables 
(A,B,C,D,E,F,G,H) in the form of ten-digit numbers. The first columns might contain 

1287698897613426789628631 ..... . 

so that 
and 

1287698897 is the value of A 
6134267896 is the value of B, and so on. 

Notice how there is nothing in the input stream itself to say how the figures are to be interpret­
ed. That is specified by the format list of the input statement: 

I 

6£ tr ~D 1tr (A ,8 LL IC 11 0 .~ Lt.F LL 6 .u l1 l 
[(F ( 1 ~) Lt. F lL f ~) I F l[1 ¢) lL F Lilt "') ,f (1 (IS) I F Il f lffil '[£ ( 1 m Lt.F [l 1 ~) ) _i_ 

I 

which may be abbreviated to: 

Page 15 -11 



Topic 15: Stream INPUT /OUTPUT 

The F(lO) means 'ten characters interpreted according to the F format item'. (The F format 
item means that the characters are the representation of fixed. decimal values; see under the 
heading 'The Format Items' below). 

Observe that each item in the data-list is associated with the item in the corresponding position 
of the format list, and that the repetition factor 8 is written with at least one space separating it 
from the format item F(lO). Suppose that variable A occupied only the first three columns of 
each card and variables B through H each occupied eleven columns. Then we should code: 

On output, the format item has a slightly different meaning: 

This statement means 'put X, Y and Z into the output stream (i.e. on to SYSPRINT), placing 
X into the next five character positions, Y into the 5 following character positions and Z into 
the 5 positions after that; before placing them into the stream, however, convert them to the 
character representation of fixed decimal values and perform any rounding or zero-suppression 
that is required; also supply a minus sign if necessary.' 

The Format Items 

The.F Item 

Page 15 -12 

The general format is 

F(w,d,p) 

where w specifies the total number of characters in the field, d specifies how many are to the 

right of the decimal point ( d = 0 is assumed if d is omitted), and p is a scaling factor (p is 
rarely used). It effectively multiplies the value of the corresponding data item by 10 to the 

power p on output, and multiplies the item in the data stream by this amount on input). 

Decimal points for input data may be specified in an F item, as above, or they may actually 
appear as characters in the input stream. If they are indicated in both of these ways, the 
specification in the F item is overridden. 



Input 

Output 

Topic 15: Stream INPUT/OUTPUT 

On input the data stream can consist of decimal digits with optional sign, decimal point and 
leading and trailing blanks. Any other character will produce an error. 

Example 

Format Contents of External Value 
Item Data Field AsSigned 

F(4,2) f>123 1. 23 

F(4,2) 1235 12.35 

F(4,2) -123 -1. 23 

F(4,2) 1. 23 1. 23 

F(4,4) 12.3 12.3 

F(4,4,2) 12.3 1230.0 

F(4) f>123 123.0 

F(4) 123n 123.0 

F(4) -123 -123.0 

F(4) 1. 23 1. 23 

F(4) 12.3 12. 3 

The target variable, be it DECIMAL FIXED/FLOAT or BINARY FIXED/FLOAT must be 
large enough to receive the value read. Low order digits will be truncated, or low order zeros 
may be added, as necessary. High order zeros will be added if necessary, but if high order 
significant digits are truncated, the result will be unpredictable. 

When a PUT statement uses the F item, the field width (w) is the number of character 
positions of the output stream which will be filled; since a decimal point and minus sign will be 
supplied if necessary, space should be left for them where they occur. 

Example: 

Format Value to be Output 
Item Printed Produced 

F(8,2) 0. 1 f>f>nn0.10 

F(8,2) -123.456 f>-123.46 

F(8,2) 101B nf>f>n-S. 00 

F(8,2,2) 101B f>n500.00 

F(8,2) 0 nnnn0.00 

F(8) 0.1 f>nf>nnnf>O 

F(8) 0.9 f:>nnnnnn1 

F ( 3, 1) -123.456 3.5 

Note that rounding is automatic. 

Page 15 -13 



Topic 15: Stream INPUT/OUTPUT 

The A Item 

Input 

Page 15 -14 

The general format is 

A(w) 

The A format item is used for input to character variables. It specifies that the next w charac­
ters in the input stream may be any characters, and are to be assigned to the next variable in 
the data list, e.g. 

This will take the three characters immediately after the last character read (assuming that it is 
not the first GET statement) and assign them to ELL If the length of the string read, and the 
!ength of the variable do not match, padding or truncation will take place as in assignments. 

Example 

Input stream: JANlOl 976 

This has the same effect as the assignments 

MONTH = JAN 
DAY = 10 
YEAR 1976 



Output 

Topic 15: Stream INPUT/OUTPUT 

The A format item causes the data list associated with it to be converted to a character stripg 
of length w. with truncation or padding on the right hand side, if necessary, and to be copi{{S'{to 
the output stream. The A may be specified without the field width in which case it is taken to 
be equal to the length of the character string specified in the data list. 

Example: 

Format String to be Output 
Item Printed Produced 

A(7) ALPHA l ALPHA 1 
A(S) ALPHA 1 ALPHA 
A ALPHA 1 ALPHA 1 
A(9) ALPHA 1 ALPHA lbb 

· A(6) BILL'S BILL'S 

The omission of the field width in the A format is useful when a character string constant, as 
opposed to a character string field, is to be printed. The text will be printed as it appears in the 
data list, with pairs of quotes within the string reduced to single quotes, i.e. 

The output from this statement will be 

MANAGER'S REPORT 

Page 15 -15 



Topic 15: Stream INPUT/OUTPUT 

TheP Item 

Input 

Output 

Page 15 -16 

The P item is used to specify ordinary picture editing for stream 1/0. 

On input, the P item can be used in two ways: to check that an item in the input stream 
satisfies a specified description, or to define how the arithmetic value of a numeric character 
string is to be interpreted. The picture characters used are no different from tho~e which 
appear in DECLARE statements. 

Example 

Input stream: $56.78923 .... 

Suppose the above stream represents cash amounts followed by customer numbers 
($56. 7 ,8923 ). An appropriate way of reading it in would be as follows: 

DC L CA SH Pl c ' $ 99 v. 9 I j_ 
-t-

D CL cu ST c H lA R (4 ) 1 
-+- ---

G ET ED IT cc A s H I c us T) ( p ' $ 99 v .9 I p· qq 99 , ) 
. I m -. 

Notice that CUST could have been assigned a value using the A format item but then there 
would have been no check to ensure that all digits were numeric. If the input stream had 
contained 89Z3 jnstead of 8923 the CONVERSION condition would have been raised. 

Notice also that we need not have kept the character representation of CASH within the 
program. CASH would contain the correct arithmetic value if it were declared thus: 

(The GET statement would not need changing). 

On output, the P item enables the programmer to specify picture editing. This is particularly 
useful for numeric fields. 

Example: 

l>EC('I); 

The resultant printout would consist of the following 10 characters: 

b b$bb bb562 

Observe how the $ floats and how the zeros are suppressed. 



Topic 15: Stream INPUT/OUTPUT 

The E, C and 8 Items 

These items are not going to be considered in detail, since their use is rather specialized. 
Further information can be retrieved from the Language Reference Manual (Section E). It is 
sufficient to say, at the moment, that E is used for floating point numbers, C for complex 
numbers ('complex' in its mathematical sense) and Bis used for bit strif!gs. 

Control Format Items 

The X Item 

These are ·ifoms which allow part of the input stream to be ignored or facilitate the control of 
printed layout. 

The X item is used to specify that a number of characters in the input stream are to be ignored, 
or that a number of blanks are to be inserted into an output stream. 

Thus, if the input stream is 

5813263 ..... . 

the statement 

has the same effect as the assignment 

VAR=32; 

If we say 

this specifies that the next six characters of the output stream are to contain four blanks, 
followed by the value of VAR as two digits. 

Page 15 -17 



Topic 15: Stream INPUT/OUTPUT 

The, SKIP Item 

Input 

Output 

Page ts -18 

The SKIP format item goes against the normal rule that stream input/ output ignores record 
boundaries. On input a record is a card and on output, it is a line. The general format is: 

SKIP(n) 

- On input it causes the remainder of the current record and also the next n-1 records to be 
ignored and the next item will be read from the nth record after the current one. 

Example: 

This statement will cause the next three characters in the input stream to be read to EL, the 
remainder of the current record, the whole o~ the next record and the first four characters of 
the record after that to'be ignored, and the next seven characters to be read to AR(l,2). 

Note that the instruction: 

I IP~M lslKl+l;I 1111111111111111111111111111 

has the same meaning as: 

Similarly with output, the statement: 

causes the rest of the current line to be filled with blanks, the printing of n-1 blank lines and 
the ne:i,c:t item will be printed at the beginning of the nth line after the current one. 

Example: 

will print the TOT AL field at the beginning of a line and the PAGE field at the beginning of 
another line with a blank line between. 



The PAGE Item 

Topic 15: Stream INPUT/OUTPUT 

The general format is: 

PAGE 

The PAGE format item is only appropriate to files with the PRINT attribute and causes a skip 
to the start of a new page. 

Example: 

will cause PAGE HEADING to be printed at the start of the first line of a new page. 

The COLUMN Item 

Input 

Output 

The general format is: 

COLUMN(n) or COL(n) 

The column format item causes scanninµ to recommence at column n of the current record. Jf 

that column has been passed, then the rest of the current record will be ignored and scanning 
will recommence at column n of the next record. 

Example: 

will have the same effect as the example given for the SKIP format item. 

Similarly with output, the COLUMN format item causes spacing to the nth character position 
on the current line, or the following line if that position is passed. 

Example: 

will print out the TOT AL field starting at column 3 of a new line and the PAGE field starting 
at column 20 of the same line. 

Page IS -19 



Topic 15: Stream INPUT/OUTPUT 

.TheLINE Item 

The general format is: 

LINE(n) 

The LINE format is also only appropriate to files with the PRINT attribute. It causes a skip to 
the beginning of the line specified. If that line on the page has not been passed, skipping will 
be to that line on the same page. If it has been passed, skipping will be to that line on the next 
page. 

Example: 

will cause PAGE HEADING to be printed in the center of the fifth line of a new page. 

Data List and Format List length 

Page 15 -20 

The number of items in the data list and t.he number of data format items in the format list 
need not be the same. The stream input/ output operation is controlled by the data list. As 
each item in the data list is processed, the format list is scanned until the next data format item 
is found. This is associated with the data list item, and all control format items between the last 
data format item and the current one will be acted on. When the data list is exhausted, any 
remaining format items will be ignored, including any control format items. Thus: 

will produce identical output to: 

In the first example, 'MESSAGE' will use the first A format item, and the rest of the format 
list will be ignored. It will not cause any error. 

If there are h1sufficient data format items in the format list, the format list will be re-used. 
Re-using the format list will cause no special effects on input or output, such as skipping 
records. The statement will be executed as if the format list has been repeated an indefinite 
number of times. When the data list has been exhausted, the rest of the format list will be 
ignored. 

Thus: 

will have identical effect to: 



Topic 15: Stream INPUT/OUTPUT 

Iteration within Format lists 

It is of ten necessary, when processing several items with similar attributes, to repeat items or 
groups of items in format lists, as in the last example. 

In the example: 

the group of items A(3 ), F(S,2), F(S,2) appears three times, and in each repetition, the item 
F(S,2) appears twice. Coding may be simplified by using iteration factors, i.e. 

and even further by: 

Page 15 -21 



Topic 15: Strea~ INPU1/0UTPUT 

Remote Format Lists 

When many input/ output statements share the same format specifications, there is no need to 
recode that specification each time. It can be coded as a separate format staten.1.ent and then 
referenced within the input/ output statement. 

Example: 

. Instead of coding 

we may code 

l : I J ! 1 11 I I , J j I 

:~ I~ 111 f D l,Ti(iA . Bi, le) (R (C ~N ) )' j r : I 
iPµfT1 E D iirI< P • QTJR) ( R cc "1N > ) ; ! I 
lPiL<fli E D I !Tl( x I Yl z ) f(1R (lCIM N) !) li ' I i 
1c~N: FofRtMAm(JFCJ[), sKI1 Pl. Fil151. 2>1, :P~IG£, Ac1'11> >l; l 
T: I , T , 1 T T T T, TT T TT ·, T 

(The FORMAT statement, whose label is CMN in the above example, is similar to a DE­
CLARE statement in that control automatically bypasses it during sequential execution of 
instructions. Also, it is forbidden to GO TO it) .. 

Expressions in the Format List 

Page 15 -22 

When considering the items in parenthesis within the format list, such as the number of lines to 
be skipped or the number of characters to, be printed, it is possible to have expressions or 
variables in these positions. 

Examples: 

Suppose the input stream consists of character fields of variable lengths, each field being 
preceded by a two byte fixed decimal field specifying the length of the character field then the 
stream could be read in with the following statement: 

The value of M is the length of the associated character field. 



Topic 15: Stream INPUT/OUTPUT 

Example: 

t--~-+--i q1 i I l l l l_ I 

;l):c ~EiC.I, l i I 
H~ . --< 

~+ 
I 2I FI KE D, 

-~ 

IP I c;I • l!f J_t l 3 ~'v. IM t 

..L 

l I l 3 l>A 111 ~ CH AR (f4-I~ ) I l 
µ_ .. } 21 M AR I A BL E. _( l11 Ctt ~R [_ 5) i 

I I I 

The above represents a structure consisting of a fixed length portion and up to seven portions 
of length five. The current number of the latter being given by the value of NUM. The 
following would print out the present length of the structure. 

Note. that the statement: 

would not produce the required result. This would print out each element of the structure, each 
with length 45+5*NUM. 

Repetitive Specifications in Data lists 

This facility is mainly of use when processing arrays, but it may be used for processing any 
items in a data list. 

When an array name appears in the data list of a GET or PUT statement, all elements of the 
array are processed in the order in which they are stored. It may be required to process the 
array in a different order or else only process part of the array. This can be achieved by using 
repetitive specifications. Repetitive specifications have a similar format to iterative DO group 
specifications and are treated as an item in the data list . 

•••• (items DO var=specification) •••• 

where 'items' are any items allowed in a data list, 'var' is an index variable and 'specification' is 
any specification or specifications allowed for in an iterative DO statement. 

Example: 

Page 15 -23 



Topic 15: Stream JNPUT /OUTPUT 

The repetitive specification is the only item in the list. It must have its own parentheses, and 
the whole list is enclosed in parentheses. The statement is equivalent to: 

•l -L-- l I l i ; l l l I l I -
I . :J)iO 011 1= !11 1-r O! jJ _;_ ! - l r-1--1-+--1--4 ~·t--+~ -+-

: I j : ! iEi!fiT' f D!J fj}(!f L( I ) ) (TA (3 ) ) li 
,--1 

:-.r~ ! 
1f.IN 1>l1I 1 I I l l I 

t-1 t--r--' I 11: ! I J , I I I I I 

Example: 

will cause a row of 50 asterisks to be printed. 

Transmission Statement Options 

With EDIT directed input/ output we have already discussed various control format items such 
as SKIP and COL which enable the positioning of input and output files. However, for DATA 
and LIST directed input/ output there is no direct equivalent. Instead we have TRANSMIS­
SION STATEMENT OPTIONS. These can be used with EDIT directed input/ output but as 
we shall see later, the control format items are more powerful. 

The COPY Option 

· Page 15 -24 

Any GET statement may include the COPY option, which causes the data from the input 
stream to be copied without modification on the specified file (or on SYSPRINT if no file is 
specified). 

Example: 

This not only causes assignments to A~ B or C to be made (if there are any in the next group of 
input data), but also causes these assignments to be written to the file COPFIL. 

The statement 

would cause the assignments to be written in data-directed format on the SYSPRINT file. 

The COPY option is an extremely convenient way of obtaining a hard copy of input data. 



Topic 15: Stream INPUT/OUTPUT 

The SKIP Option 

This option specifies that a numher of records or. for PRINT files. a number of lines. are to be 
skipped. It may optionally he used in conjunction with a Stream 1/0 specification and is 
followed by an optional expression (which may be a constant) which is converted to an integer 
indicating how many records, or lines, are to be skipped. If the expression is omitted, SKIP( 1) 

is assumed. 

For non-PRINT files, SKIP may be used either .for input or for output. Skipping is always 
performed before data transmission, regardless of the order in which the options are coded. 

Example: 

I , ; I 

, I 
I I 
, I 

I I 

Both the above statements mean the same, viz; 'skip to beginning of the third record on from 
here and GET DATA'. 

For PRINT files 

repositions the printer at the beginning of the current line, thereby permitting over-printing. 
SKIP(O) is never needed for non-PRINT files and is not permitted. 

The PAGE Option 

This may only be used with a PRINT file, and always causes the file to be repositioned at the 
start of a new page. It may be used on its own, or in conjunction with a stream output 
specification, in which case it will always be performed before output takes place. 

Example: 

causes SYSPRINT to be repositioned at the top of a new page. 

Page 15 -25 



Topic 15: Stream INPUT /OUTPUT 

TheLINE Option 

This, too, may be used only with PRINT files, and must be followed by a parenthesized 
expression or constant which indicates the absolute number of the line on the page which is to 
be skipped to. (The SKIP option specifies a line number relative to the current one). 

Thus: 

I IPH~ll·~IElc~HI 111111111111111 I 11111111111111111 

would cause the print file to be repositioned on line 31 of the current page (or of the next page 
if it is already past that line). 

aoth PAGE and LINE may appear in one statement, in which case PAGE always takes effect 
first, although they may be coded in any order. LINE may, in common with SKIP and PAGE, 
be used either on its own, or with a stream output specification. 

As mentioned above, EDIT directed input/ output control format items are more powerful than 
transmission statement options. For example the statement: 

would have to be written as follows using transmission statement options. 

I J I l l 'L 
'P1w L1'1 ED 1111 {X ) [{ IF IC 1 ) )1 t J .T 

PM m PA l!E Eb J IT1 [ltJ ) 1l Al. 2~ ) )- l .L t PIU m ~I I( I P( 2.) f'Z> I 111 IZ) (F ( 3 ). ) i l 
I l I I 

Instead of one statement, three would be needed. 

PAGESIZE and LINESIZE 

The default size of each line of a PRINT file is 120 characters, and the number of lines per 
page is 60. Both may be changed at OPEN time by means of the LINESIZE and PAGESIZE 
options. 

will cause pages of 40 lines each to be written, each line being only 50 characters in width. 

Note carefully that P AGESIZE may only be used with STREAM PRINT files, and LINESIZE 
only with STREAM OUTPUT files. 

Endpage Condition 

Page 15-26 

This condition will be raised when a PUT statement attempts to write a line beyond the limit 
set for the current page. The standard system action is to skip to a new page. For further 
information see Section H of the Language Reference Manual. 



Topic IS: Stream INPUT/OUTPUT 

Stream Handling Built-in Functions 

Lineno B.l.F. 

Count B.l.F. 

Summary 

This built-in function can only be us'ed for PRINT files. It returns the current line of the 
specified file. The general format is: 

LINENO(x) 

where x is the name of a file which must have the PRINT attribute. 

The general format is: 

COUNT(x) 

where x is a file having the STREAM attribute. It returns the number of items transmitted 
during the last GET and PUT operation. 

Example: 

R EIAb: 
I l~- CD U Nl11 i 

. 
f.!N rl)1_ 

~ ~ ISE Z>lo i 
I . I . 

-
E.~ Z> l. 

Thus when one hundred data items have been transmitted, the first 'DO Group' will be 
executed. 

T~e full range of PL/I input and output facilities has now bee~ covered, and you should now 
be in a good position to appreciate the great flexibility which they provide. For efficiency we 
have Record 1/0, while, for ease of programming, Stream 1/0 is supplied. 

Moreover, PL/I does not merely permit a single method of Stream 1/0 (as does FORTRAN), 
but has no less than three: data-directed for utmost simplicity of use; list-directed, which 
provides a little more flexibility but requires correspondingly more programming effort, and 
edit-directed for the programmer who wants complete control. 

Finally, a word of warning: List-directed I/ 0 is very inefficient, and data-directed even more 
so. Data-directed 1/0 not only incurs execution time penalties, but also lots of storage is taken 
up by the dictionary of data names which it needs to maintain. They should only be used in 
very infrequently executed routines. The only form of Stream I/ 0 which· should even be 
considered when any great quantity of data transmission is required is edit-directed. When 
execution time is an important consideration, however, all types of Stream 1/0 should be 
reserved for such things as 'one-time jobs' and infrequently used error routines. 

Page 15 -27 · 



·Topic lS; Stream INPUT/OUTPUT 

Exercises 

Page 15-28 

1. What is the minimum file declaration for SYSIN for your operating system? 

2. Write a statement that will print the values of Vl and V2 (but not the names) on the 
system printer .. 

3. What format would be required to produce the following outputs, assuming that they 
came from numeric variables? 

(a) 56.78 

(b) -5.67 

(c) CHARACTERS 

4. Cards contain in columns 1-2 a number indicating the starting column, within the same 
card, of a field called ADDR which is 10 bytes long. Write the STREAM input statement 
to read these cards, using X and/ or COLUMN format items. 

5. Rewrite the following statements in an abbreviated version: 

l l I I l l 
~UIT1 f Z> tl11( A .Ja ,Jc> v Fllh lL s /(I PIL f (lt ll. s I( / jP I f ( 1 ) ) j l 
PIWTI E. l>I trj(IL. ~ .~. o~_ lLA C 1 1.x[2~~~3) xllail~~LJ~ xll 2llL \Ai! 3l ]lu_ 

-- I I T I I 

6. Recode the following in full, without iteration factors, and explain what it means: 

(Assume that X was declared with the attribute CHAR(12) and that Y and Z were both 
declared as FIXED DECIMAL(2)). 

7. How will 

~oor-M4~WttH : 111111111111111111-1111111111 

be expanded by the compiler? What will be its effect? 



8. 

Topic 15: Stream INPUT/OUTPUT 

(a) Write a statement which will open this file and specify that each page should 
contain 20 lines, with 50 characters in each. 

(b) Write statements which will print a row of asterisks on the line below the bottom 
line of each page, and then start a new page. 

9. A program contains only three variables: X, Y and Z. They all have the attributes 
FIXED DECIMAL(9). Write the most suitable statements, including any necessary 
declarations, so that in the event of the raising of the ERROR condition, the values of all 
three variables will be output to SYSPRINT, for debugging purposes. (Each value should 
appear with its name). 

Page 15 -29 



Topic 15: Stream INPUT/OUTPUT 

Answers 

Page 15-30 

.1. No declarations are needed in DOS/VS or OS/VS for SYSIN or SYSPRINT. They are 
the standard system files. 

2. 

3. (a) F(S,2) 

(b) F(S,2) 

4. 

5. 

6. 

(c) A(lO), or A if the length of the item were 10 bytes long. 

The COL(N) can be replaced by X(N-3). 

PUT ED IT (A, B, C) ( f Ct ) , SK I P) ; ~~~~~-'~: l-
P UT EDIT(L,M,N,0) CA(1),3 CXC2),A(3))) 

-+---+--+--+-+--+--f----+--+--+-t-'-- f--t--'-1----+---'-+--~--+-+-+--+ 

I 

Print the values of X, Y and Z on line ten of a new page of SYSPRINT. X is to be twelve 
characters long, Y and Z are two characters long and there are to be 2 blanks between X 
and Y and also Y and Z. 



Topic 15: Stream INPUT/OUTPUT 

7. 

The stream input data read by the GET statement will be copied onto SYSPRINT. 

8. (a) 

(b) 

9. 
I r t- --+ 

0 N E R R 0 R B E G I- N • 
I 

p u Ir' D A Ir A . 
' 1--f-- -f-

E N D; J 
I I --+-

-tt 

B 

Page 15 -31 



u 

OG 

ND 
E 

D 

. E 

p 

D 

E 
E 

EN 
N 

0 

y 

p 

D 
NT 

u 

M 

D 

N 

D 
p 

DY 
p 

N 
T 

TU 
y 

E 

A 

T 

D 

y 

0 
OG 

R AM 

u 

OG 

R M ND 
A IN E 

D 

p 

M 

D 
E 

s 

u 

G 

R 

E 
D 
NT 

ENT 
N TU 

p 

E 

D 
p 

Topic 

N 

ST 
D 

T 

E 

16 

A 

E 
N 

T y 

OG 
R 

RO 
D 

p 
R AM D 

R M IND 
R IN E 

T 

p 

M 

D 

N 

T 
y 

0 

A 

p 
D 

N 
NT 

ENT 
u 

NDE ST GR EP ND RA U 
D T STU PR D ND TU PR R D ND TU Y 0 

p 

M 

D 

D 

DE 
T 

N 
ST 

D 
R 

T R G D EN E T R G D EN TU R R M 

D 
p 

UD 

T 

p 0 
RO 

D 

0 

M 
IN; 

E 
ND 

END 
ST P 0 PE D T ST P 0 N PE D T STU A ND N 
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T 

D PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S 
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D 

R GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U J 

GRAM I N P ND N S D PR GR AM I P ND NT S D PR 0 R M I E EN T S TU P Rt 
NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0 I 

I INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRAI 
NDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM 

1 EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM INI 
ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEi 
IDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEI 
NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDI 

STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN 
ITUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT '. 
IDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST! 

PROGRAM INDEPENDENT STUDY PROGRAM .1 NDEPENDENT STUDY PROGRAM INDEPENDENT STUD" 
'ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY I 
1GRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR1 
.AM INDEPENDENT· STUDY PROGRAM INDEPENDE~T STUDY PROGRAM INDEPENDENT STUDY PROGf 
I INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAI 



Topic 16 

Controlling the Compiler 

Objectives 

Introduction 

This topic discusses some of the compiler options available to the programmer, how he can 
control the use of them and how he can use them to locate and correct source statement errors. 

At the end of this topic you should be able to: 

• control the production of the various items of printed compiler output 

• interpret the information contained in the following: 

Source Listing 
Attributes and Cross-reference listing 
Diagnostics 

• locate and correct source statement errors diagnosed by the compiler 

• code statements to cause the compiler to incorporate text from a library by means of a 
%INCLUDE statement 

• using the Programmer's Guide, list all options that control compiler action, and describe 
the effect of each. 

The major purpose of the compiler is to translate PL/I source statements into machine 
instructions. A set of such instructions is called an object module. However, the compiler does 
not generate all the machine instructions required to represent the source statements. For 
various frequently used routines, it inserts references to standard subroutines in the DOS/VS 
or OS/VS PL/I RESIDENT LIBRARY which are then included by the Linkage Editor or 
OS/VS loader. Some other routines are loaded at execution time and the storage they occupy 
is released when they are no longer required. These routines reside in the DOS'lVS or OS/VS 
PL/I TRANSIENT LIBRARY . 

. ~ :,~ 

While it is processing a PL/I source program, the compiler produces a listing that contains 
information about the source program and the object module derived from it, together with 
diagnostic messages relating to errors or other conditions detected during compilation. Much 
of this information is optional and is supplied either by default or in response to a request, 
made by including appropriate options either in the compiler-control PROCESS statement that 
optionally precedes each source module or else as a PARM parameter on the end of the 
OS /VS EXEC statement. These options and their effects will be studied in this topic. 

Page 16 -1 



Topic 16: Controlling the Compiler 

Stages of Compilation 

( INSOURCE 

I 
• PRE PROGESSSOR 

l 
c::J ... SYNTAX -.. 

CHECK 

-Ir 

COMPILE 

Action taken by the compiler consists of three stages: 

Page 16 -2 

PREPROCESSING 

SYNTAX CHECKING 

COMPILING 

• LISTING 

• LISTING 

• LISTING 



Preprocessor 

Syntax Check 

Compilation 

Topic 16: Controlling the Compiler 

The initial stage, the preprocessor, is optional. Its function is to alter its input (known as the 
INSOURCE) according to appropriate commands. It treats this as a string of characters and its 
functions include: 

adding more text from libraries 
modifying the statements 
omitting statements 

The output from the preprocessor is known as the SOURCE which can be fed immediately 
into the next -;tage of the compiler or punched out onto cards (SOURCE DECK). Only the 
first of the above functions will be considered in this chapter. 

The second stage rs known as the syntax check. Here the input (SOURCE statements) is 
checked to ensure that it consists of valid PL/I statements. Various listings are produced at 
this stage. These will be discussed later in the topic. One of the listings is 'error diagnostics'. 
These are message giving information concerning possible or certain errors found in the 
SOURCE statements. They are classified according to severity of error as follows: 

informatory ... 
W warning 
E error 
S severe 
U unrecoverable 

Full information on the above can. be found by referring to the beginning of the OS/VS or 
DOS/VS PL/I Optimizing Compiler: Message Manual. 

The final stage of the compiler is to convert the SOURCE statements into machine readable 
code (known as the OBJECT PROGRAM). This stage can be made dependent upon the level 
of -success of the previous stages, because there is no point in producing an object program if 
there are errors within the source program. 

Page 16 -3 

... 



Topic 16: Controll~ the Compiler . . . 

Compiler Options 

Option Formats 

A list of all the options is given in the OS/VS or DOS/VS PL/I Optimizing Compiler:· 
Programrners Guide. Refer to the appropriate figure in Chapter 4. As can be seen, the figure is 
split into three columns, the first giving the name of the option and its alternatives, the second 
gives an abbreviated name which can be used, and the third gives the default when the 
compiler is first supplied. 

The options take one of three different formats: 

I. Keyword/Opposite e.g. AGGREGATE I NOAGGREGATE 

2. Keyword+ value e.g. MARGINS(m,n,c) 

3. Combination of above e.g. MARGINI('C') I NOMARGINI 

(Throughout this topic the notation' I' will be used to mean 'OR'). 

Installation Default 

The option defaults supplied by IBM may not satisfy the requirements of an installation and so 
the defaults can be modified to produce installation defaults. 

Installation Suppression 

Page 16-4 

An installation can also suppress options so that even if requested they cannot be obtained. 
Suppressed options can be reinstated for a compilation by means of the CONTROL option. 



Topic 16: Controlling the Compiler 

Programmer Control of Options 

Before looking at the options in d~tail, the methods by which the programmer can control them 
will be studied. At this stage various options will be mentioned by name although their 
meaning may not be known. The DOS/VS programmer has only one way of controlling the 
options and that is by the use of the PROCESS statement. The OS/VS programmer will 
normally use PARM parameters although in certain circumstances he (or she) may resort to 
the PROCESS statement (see later in the topic). 

PROCESS statement 

The general format is: 

*PROCESS options list; 

The rules governing the format are as follows: 

1. The PROCESS card - if used - must be the first card the compiler encounters within each 
compilation. 

2. There can be several of them if required (see example 1). 

3. The asterisk must be in column 1. 

4. The keyword PROCESS can begin in column 2, or there can be blank(s) before it. 

5. The options list consists of the options we wish to change for this compilation. 

6. The options are separated by commas or blanks (see examples 2 and 3). 

7. The entire statement must end with a semi-colon. 

8. There may be continuation cards (the scan is columns 2 through 72) (see example 3). 

Example 1 

lL tL EX EC PL I lo Ptr 
* PR ~ [(;. e.ss olE CK; 
*l JP t~p c. Els s MIA c RIO j 

l 1 1 i 

Example 2 

Example 3 

i r--r 11 __ JJ 1N{q 1 ~s o~lif c E i 
I I I I I 1 I I I I I i 

... 

j 

Page 16 -S 



Topi!! 16: Controlling the Compiler 

PARM parameters (OS/VS only) 

(See examples below) 

The parameters are enclosed in quotes and added onto the EXEC statement. Note that in a 
procedure the PARM field is qualified by the name of the job step in which the compiler is 
executed i.e. in example 2 we wish the compiler options to apply in the PL/I step of the 
procedure. Note also that in example 2, the MARGIN! option includes quotes and that these 
need to be doubled up when used as a PARM parameter. 

Example 1 

Example 2 

PR.OC,PAR. ' ' ) t 

Scope of Compilation 

The normal scope of compilation i.e. (how much will be compiled in one go) is from the first 
PROCEDURE statement to its respective END statement. Any interval procedures will be 
compiled. Thus in the following DOS/VS example, procedures A and B will be compiled but 
not procedure C: 

Example 

[LlL IE Xlf c p L I 0 PIT 

l--+·--+--+A-+-:-+--+-P+R-+o~c_+L"'-. t-+- -t--+-t--+-+--·l-·-+-+--+-t-+--+-r--+-+-+- +--+-+---t---+·--r-_.,__,_--.--._,_ 

I I I 11 i 1 

In this case the compiler would produce a diagnostic message stating that the logical end of the 
program (END A) has been found before the end of the source deck. 

Multiple Compilations 

Page 16 -6 

A program will normally consist of more than one external procedure and hence there is a 
requirement for the scope of compilation to be increased. One way would be to reinvoke the 
compiler for each external procedure as follows: 



Reinvocation 

Topic 16: Controlling the Compiler 

Example (DOS/VS) 

II ex E.C PL I 0 PITI 
~I: PIR oc; 

t 

f N ~ IA ; 
/]* 
!Tl E~ E.C PL I 0 PIT1 
LL B: p RO c; 

i 
! I I 

T 
E"ll> B/i I I I I 

VJ• /T&l-- ! I I --

I T I T T 

Example (OS /VS) 

One disadvantage of this method is that the compiler has to be loaded each time it is required. 
This is an I/ 0 operation and thus takes time. A quicker method would be to load the compiler 
once and then alter the options as necessary for each procedure. This can be achieved by 
inserting PROCESS statements between each individual compilation as follows: 

Page 16 -7 



Topic 16:· Controlling the Compiler 

Batched 

Page 16-8 

Example (DOS/VS) 

0/! c:Jx f. c }PL I 0 ,,,.. 
*i !P Rio c £ lsls }1> & CK, A Cf ; 

I ' A: p ~01c!; i I 

• 1 I 
I I 

EIN ID ~ ., l 
I I I ! 

···-

~eJ~H OE.1c K,~ * p RO c f lo ~-j -+ t-' 
8'• p Rioic, • i 
,. 

:.j...._ 1-- -··t·-+- j_ 
I • ' l l l 1-----1-h-_;_ 

8. ! I I 

!::-~ ~~ 'll ' l I 
l I 

c £1S'sJi: 1 
I I 

cl. P.lio c]; j "l. 
i l i I I • 

1----· 

E;N 0 ,- ;I 1 
QT--..... -t---t-

1} * 4 .iJ 
~~~ i , I ] 

I 1 1 I 11

Example (OS/VS)

~ /3 111 EIP E. x e. c PL IX C.6 I p AR I~ .p L. I = c IJE. CK ,A 6 I
I Pi L I • ~ltl SI N DD *

I

: lAI = PR OC; I I - -.
l _...,

~r~-~~ .EjN D jl

jtl

"1~t0
CE SS N Ol> f C K; ·r - I'--

IRO 8 : p c ;
-T

·1
! .

E.N 0 Bi i ! I I

*I PR oc E S\S NO Df C K, NO ~ ~j
I . c: PlRJO~LL

-- I U'I ·r
.

The resultant compilations by the batched method are still as separate as they were under the
reinvocation method. It is in the batched method that the OS/VS programmer needs to resort
to PROCESS statements. These are necessary to 'delimit' compilati~ns, even if no options are
coded on it. After each individual compilation, the options return m DOS /VS to the default

· options, and in OS/VS to the options set in the EXEC statement. Thus in the examples above
the settings of the DECK and AG options are as follows (assuming that NODECK and NOAG
are the defaults):

PROCEDURE A: DECK,AG
PROCEDURE B: NODECK,AG
PROCEDURE C: NODEC;K.,NOAG

Topic 16: Controlling the Compiler

Compiler Options

Chapter 4 of the OS/VS or DOS/VS PL/I Optimizing Compiler: Programmer's Guide gives a
complete meaning of each of the compiler options. Hence only some of the options will be
explained in full, giving details of how they would be used. Any others should be looked up as
required.

OPTIMIZE(TIME 1210) I NOOPTIMIZE

OPTIMIZE (TIME 12) have the same meaning and specify that full optimization of the
program is to occur. Thus the resulting program will be very efficient with a fast execution
time. This will be at the expense of compil.ation time which will be substantially increased.

OPTIMIZE(()) I NOOPTIMIZE have the same meaning and specify that a fast compilation
time is required at the expense of a less efficient object program.

The latter should be used when testing a program. At this stage the emphasis is on removing
errors and correcting the logic of programs. When the programmer is satisfied with his
program. it should be compiled once more under OPTIMIZE (TIME I 2) to produce a very
efficient production program.

A full discussion on optimization is. included in the Language Reference Manual. It includes
details of the various ways in which the compiler optimizes programs.

Preprocessor Options

MACRO I NOMACRO

MACRO specifies that the use of the preprocessor is required. NOMACRO specifies that the
first stage of compilation will be syntax checking. The full use of the preprocessor will not be
covered on this course.

INCLUDE I NOINCLUDE

One of the most used of preprocessor facilities is the inclusion of source text from the library.
Typical inclusions would consist of:

a) standard code which will be used repeatedly

b) file declarations

c) complex structures

The aim being to reduce programmer effort (i.e. avoid duplication of coding) and the chance of
errors in the coding. INCLUDE specifies that this and only this facility of the preprocessor is
required. The inclusion can then occur without the preprocessor stage being executed. The
inclusion will take place during syntax checking when the appropriate INCLUDE statements
are encountered. If MACRO and INCLUDE options are both specified, then the latter has no
effect.

Page 16 -9

Topic 16: .Controlling the Compiler

Source Text Inclusion

To include source text either MACRO or INCLUDE must be in effect.

Example

I I I

A: PR OCi

% IN CL IU DE SK N ~ ~I E. •
I

~ IN CL IU DE R.(80 01<) j

~ IN CL IU bf Bo OK 1, R(Bo ~ I~ 2) I B 00 K 3l1_
EN Di

The whole statement is a normal PL/I statement and thus must lie between columns 2 and 71.
Blanks between '%' and 'INCLUDE' are optional. In OS/VS BKNAME would be a
member within a partitioned data set defined by the SYSLIB card.

//SYSLIB DD DSN=

and BOOK would be a member within the data set defined by:

//RDDDSN=

In DOS/VS BKNAME will be in the default PL/I source statement library (P.) while BOOK
will be in the R. source statement library.

Included code can be complete procedures, statements or parts of statements. The only
non-permissible statement is a PROCESS statement.

Nested Includes

Page 16 -10

Within an included text it is possible to have %INCLUDE statements. This will lead to nested
includes where one set of included text is within another.

Example

I I

l
I

l
T I

-t--t-

1 1 I

; I T

Topic 16: Controlling the Compiler

Suppose that INTPROC and DCLS are the names under which the following two sets of
statements are cataloged into the P. library (DOS/VS) or the SYSLIB library (OS/VS).
INTPROC consists of:

j J_ i I ' ! • I l

r;· J NffiP ROiC: P ROC]; l i 1

j l

l 1
; ! I J .·-! ____.-_· ..__._I ~--+-~-+--~4-+--+--+--+-. -+!-+-+-+--+-+--+- _....__._ __
I I : 1. l 1

i l i % I H! C-i...:L-+U--;i_D+-f-+-+D_.C--+-L+-S-+14• --+-+-+-·-+-11--+-+-+-t-1--t--1--t-

DCLS consists of:

1--r--+--t- - -----+--4-+-+-+l -+-~-+-+--l---+--+-+-1-+-+--+-t-+-+--+-+-+-+-+-+-1-t-+-+-+J_-+-+­

r-r-~ c L_-+-+-f f-+-S+-T-+-R.-+-1-+N-+- ''.-+----<>-+-----+-+~+-+-~1---+--+-+--+--~+-+-+-+--+--+-+l--+-+­
~+-+---+--+--1--r---t-2-+---1IL't _P:....+= f=+-+-+-+-+-+C-+--H-+-A+--1 R+-"-11_1--+-1 l2_-'-+'l1~+-+-+-+-+-~t--t--+-

2 NIAME CHAIR~2¢~,, I

Then the expanded form of the procedure A will be as follows:

A:PR.OC;

I I•
t--+--+-+--1--1.-1---1--+--+-+-+-+-+-+--!i-+---1-+--1--~~-+-+--+--+--11-+-+--+-t-+-+--+-t-+-+-t-

1 I•NITPRJOC~PROC;
T l .

I---;--!' +--+-t

1 I D c L '1 stnR I N'

: I ! l I 2 ADD RE s s c H~ R (~Cl) ,
~ -+--l--+----t--+--11~1>---!l--+-1---1---i1 '--1--+--+-+=12+-+-A+-C+-C-t-O-+-U-t-H-+-'IT+-+::~+H+lA+=R+(;-i-~::1-:)-r;-r-t--t-

i I I •
t-· I !· I i T .T

al Ii END 11 NT PIRJOC _i_

1
1. T

J

i i 1 • l

! I l 1 I 1

Page 16 -11

Topic 16: Controlling the Compiler

Debugging Options

These options help the programmer to locate errors within his program and to correct them.

COUNT! NOCOUNT

COUNT specifies that at the end of execution a table will be printed showing how many times
each statement/ group of statements has been executed.

Below is a program and the assocfated count table produced when the program is executed
with the stated data.

~ _l i l~ IC 0 SIT (11) p I c ' <f <.f't "''t't I I

. Page 16 -12

Data:

0500001230000005000000900000070000025

~00000110000104

Count Output:

STATEMENT COUNT TABLES

EXECUTED STATEMENTS

PROCEDURE FLOW

FROM
1

TO

6
7
9

10
12
15
23
24
25

FLOW

5

8

11
14
18

TOTAL

GRAND TOTAL

STATEMENT COUNT TABLES

UNEXECUTEDSTATEMENTS

PROCEDURE FLOW

FROM TO
19 22

END OF COUNT TABLES

COUNT
1
2
1
3
2
7
2
2
3
1

51

51

Topic 16: Controlling the Compiler

Before a program can be said to be thoroughly tested, it is necessary that each statement
within the program has at some time been executed. The COUNT table will list out those
statements which have not been executed. If it is found that certain statements cannot be
executed, whatever input test data is used, the question to be asked is 'why are they in the
program?'

Another use of the COUNT option is as an aid for increasing p~ogram efficiency. If efforts are
being made to speed up program execution, then it will be far more useful to concentrate one's
effort on statements which are frequently executed rather than on ones which are only
executed once or twice.

Page 16 -13

Topic 16: Controlling the Compiler

GOSTMT I NOGOSTMT

If a program 'blows up' at execution time then normally a message is produced stating the
cause of the error. The GOSTMT option specifies that within the message, statement numbers
will be used to identify the location of the error. Later in the topic a more efficient method of
locating errors will be introduced. The message will be discussed in full in Topic 20,
'TESTING AND DEBUGGING AIDS'.

FLOW((n,m)) I NOFLOW

FLOW re.quests that a table be maintained, at execution time, of program branches. 'n'
specifies the number of entries to be maintained while 'm' specifies the number of procedures
to be maintained. The defaults for 'n' and 'm' are 25 and 10 respectively.

The table can be printed out on request by means of the SNAP option (see Topic 19,
'HANDLING EXCEPTIONAL CONDITIONS'). It is usually required on program failure
and is an aid for the programmer to trace the flow of the program. An example of the flow
output is given below. This is the flow produced by the program shown under the COUNT
option. It will be discussed at a later stage (Topic 20, 'TESTING AND DEBUGGING
AIDS').

14 TO 12
14 TO 12
14 TO 12
14 TO 12
18 TO 23
24 TO 9
14 TO 12
18 TO 23

listing Options

The options below refer to various listings produced by the compiler. While reading the
explanation you should refer to the sample listings in the appendix named 'PROGRAMMING
EXAMPLE' in the Programmers Guide.

OPTIONS I NOOPTIONS

The first listing is produced by the OPTIONS option. It gives two sets of information, first of
all a Hst of optiorn; that have been spedficaily requested, and secondly details of all the options
for this execution of the program. The options are listed in three columns, the first giving
options which are 'on', the second those which are 'off' and the third those which have a value
associated with them.

INSOURCE I NOINSOURCE

Page 16 -14

The second listing is the input to the preprocessor and produced by the
INSOURCE option. On this segment we will not be considering it in any
detail. Note, in the OS/VS example, that a number of statements commence
with a'%'. These are statements which give instructions to the preprocessor.
In the DOS/VS example there is a % INCLUDE statement. Note that it is
replaced by the included text in the SOURCE statement listing.

Topic 16: Controlling the Compiler

SOURCEINOSOURCE

After the preprocessor diagnostic message there appears the source statement listing, produced
by the SOURCE option. This is the input to the syntax checking and compilation. If the
STMT option is in force, each statement is numbered so it can be referenced by diagnostic
messages. The numbers on the righthand side are references to INSOURCE linenumbers.

NEST I NONEST

This option produces the columns headed LEV and NT on the source statement listing. LEV is
an indication of depth of block level and NT is an indication of DO group level. The columns
can be useful in checking how the compiler has matched up END statements with DO,
PROCEDURE and BEGIN statements.

ATTRIBUTES[(FULL I SHORT)] I NOATTRIBUTE

This option produces the attributes table: a list of all identifiers used within
the program. If an identifier has been explicitly declared, the statement in
which this occurred is stated. Otherwise, a row of asterisks is printed. The
attributes of the identifier are printed in the right-hand column. If the AT­
TRIBUTE option SHORT is in force then any unreferenced identifiers are
omitted.

XREF[(FULL I SHORT)] I NOXREF

This option produces a table of all identifiers and the source statements in which they have
been used. If the ATTRIBUTE option is in force then both printouts appear on the same
listing. The SHORT option of the XREF attribute has the same effect as the the ATTRIB­
UTES attribute.

These two listings are useful when queries regarding identifiers arise;

Three examples of their usage are as follows:

1. Checking the attributes of an identifier.

2. If the name of an identifier is to be altered, then all references to that identifier will also
have to be altered. The XREF listing will indicate where these references are.

3. If a punching error has created a wrongly spelled identifier, this will appear as an
implicitly declared identifier and can easily be detected.

AGGREGATE I NOAGGREGATE

The AGGREGATE LENGTH TABLE is the next listing. Here is displayed
information regarding structures and arrays used within the program. The size
of each element and also the number of elements in the array is presented.
For structures, the size of each element, the offset of the elements from the
beginning of the structure and also the total size of the structure is given.

The new few listings produced by the STORAGE, ESD and MAP options will .
not be discussed on this segment.

Page 16 -15

Topic 16: Controlling the Compiler

OFFSET l NOFFSET

LIST I NOLIST

This option produces the 'TABLES OF OFFSETS AND STATEMENT NUMBERS'. These
tables can be used to find the statement in which a program blew up, rather than use the
GOSTMT option. The tables consist of the OFFSET (the displacement) of each statement
from the beginning of the procedure in which it appears. The execution time error message will
contain the offset as follows:

••••••• AT OFFSET xx in PROCEDURE WITH ENTRY POINT name.

The statement, where the error occurred, can be found by searching the off set table of
procedure 'name' for the largest offset printed which is smaller than 'xx'. This will be the offset
of the desired statement. More detail on this subject will be found within Topic 20,
'TESTING AND DEBUGGING AIDS'.

The listing called OBJECT LISTING is produced by the LIST option. This is a breakdown of
the PL/I statements into pseudo-assem\:>ler coding. This will be of use to programmers with
knowledge of assembler language, for in-depth debugging.

FLAG(l I WI EI S)

Summary

Page 16-16

This option informs the compiler as to what level of error diagnostic messages are required to
be printed e.g. FLAG(E) means print only messages of severity level E and above. As can be
seen the format of the messages is

IELnnnnl severity level [Statement) Text

Full information about the messages can be found by looking up the appropriate message
number i:n the DOS/VS or OS/VS PL/I Optimizer Compiler: Messages Manual. The
statement number refers to the statement in error. In some cases it may be omitted if the
compiler cannot pin-point the statement e.g. if an END statement is'missing the compiler will
now know where-abouts the omission occurred and thus would be unable to give a statement
number.

This topic has acquainted you with options which may be specified for the compiler, how to
specify them, and what their effects are. You should be in a position to decide what options
you need for any given purpose, so that these can be specified precisely, others being rejected.
Check first however for any installation standards· which are in effect. It is important that you
do not specify options which are not required as these can be wasteful in time and paper.

Compilation errors can normally be eliminated easily be reference to the diagnostic messages.
It should be noted that frequently a single error in the program can produce several messages.
Even if the compiler has made the correct assumptions in the diagnostic messages, yoµ are,
advised to correct the error yourself otherwise compiler optimization is inhibited in future
compilations.

Exercises

Topic 16: ControUing the Compiler

1. Assume that the IBM default compiler options apply. Use your manual to answer the
following questions:

(a) What is the minimum severity of compiler messages which will be printed?

(b) Which other listings will be produced?

(c) How many lines per page will be printed for these listings?

(d) Between which columns can PL/I statements be coded?

2. What is indicated by a string of asterisks next to an identifier ~ame is the Attribute and
Cross-reference Table?

3. What is the main advantage of 'batched compilation'?

4. When the compiler was installed, the following changes were made to the defaults:

MARGINS(2,72) became MARGINS(l0,80)

CHARSET(60,EBCDIC) became CHARSET(48,EBCDIC)

NODECK became DECK

For a particular compilation, you require '+' printed down each side of the source
listing.

Your source deck was coded between the usual columns of 2 through 72, and you have
written in the 60 character set. You wish also to produce an object deck.

OS/VS Complete the EXEC card

DOS/VS Code the PROCESS card(s) required

Page 16 -17

T!>pic 16: Controlling the Compiler

Answers

1. (a) ALL messages will be printed, because FLAG(I) is the default.

(b) Source statement listing (SOURCE). Note the INSOURCE listing will not appear
because the MACRO option is not in effect.

(c) 55 (LINECOUNT (55))

(d) Columns 2 and 72 (MARGINS (2,72,0))

2. This indicates that the identifier has not been explicitly declared by the programmer.

3. Batched compilations save the overheads of repeated initialization of the compiler.

4. OS/VS

DOS/VS

* _PROCESS

Page 16 -18

Note that within CHARSET, only the required change needs to be specified; EBCDIC
can be omitted.

Top~

17

s p

D
A A

E D T
y p y

D u E T
M D N M

0 G 0
u p D E u p E p D

R A
y N T y N T y DE

OG p T OG M E T OG M p T
0 E N TU 0 E ST R D N

E D y OG E D D RO D N ST
M D NT DY R AM D NT D R AM D NT

ND EN D p R M ND ENT D p R M IND ENT D
E N u p A IN E N ~u p R IN E N u R

P NDE ST GR EP ND RA u
ND T STU PR D ND TU PR R D ND TU Y 0
E T R G D EN E T R G D EN TU R R M

D
p

T

D
UD

p
RO

0
0

M
I r

I
ND

EN!
ST P 0 PE D T ST P 0 N PE D T STU A ND N

S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
UD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S

PROG AM N EPE DE STU PR R N E END T ST PR G AM N· EPE T T I
PR GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U

. GRAM IN P ND N S D PR GRAM I P ND NT S D PRO R M I E EN T STU Pl
·R NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
1M INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGR,
INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM

!DEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM II
.PENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IND!
:NDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEP
1ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEN
IT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEI
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE.NT STUDY PROGRAM INDEPENDENT

"UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S
tY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STU
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
~OGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY P
;RAM INDEPENDENT S~UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRO
~M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGR

Topic 17

The PL/I Block Structure

Objectives

Introduction

In this topic you will learn about the two types of 'blocks' in PL/I: BEGIN and PROCE­
DURE. You will learn why and when they are used and what effect the block structure has on
the scope of names and on variables with automatic storage class.

At the end of this topic you should be able to:

• explain why there are 'blocks' in PL/I

explain the difference between BEGIN blocks and PROCEDURE blocks

• describe the relationship between the block structure and the scope of names

• describe the relationship between the block structure and the allocation of storage for
variables with AUTOMATIC storage class

• explain the effect of multiple closure of blocks and DO-groups.

It is generally accepted that any reasonably sized program is best divided into separate parts or
modules. This 'modular' approach has advantages not only during coding but also during
subsequent testing and debugging. Because of this, it is important that a programming
language should lend itself to the modular approach. This modular approach will be discussed
in detail in Topic 18.

The essential feature of PL/I which provides modularity is its flexible block structure. A block
constitutes one module or section of a PL/I program; it consists of a delimited sequence of
statements. In this topic we will discuss the nature and use of PL/I blocks.

Note that a block is not the same as a group or DO-group. A group in PL/I is a set of state­
ments beginning with a DO statement and ending with an END statement. Groups are used to
group together a collection of statements so that they may all be used as the THEN or ELSE
clause of an IF statement, or may be etecuted more than once (iterative DO-group), and that
is all.

A block is a collection of statements beginning with either a PROCEDURE statement or a
BEGIN statement and ending with an END statement. Blocks may be used to isolate identifi­
ers so that an identifier in one block refers to a different area of storage to an .identifier with
the same name in another block (see later in this topic). Blocks may be used to reduce the
amount· of storage required when executing the program (see later in this topic). Most
commonly, blocks are used to speed program development and to make sections of code usable
in other programs (see Topic 18).

Let's look at procedure blocks first. These can be either internal or external. We will explain
what they are, how they are used and the flow or control between procedure blocks. Towards
the end of this topic we will talk about BEGIN blocks - these are less important.

Page 17 -1

Topic 17: The PL/I Block St~cture

EXTERNAL PROCEDURE BLOCKS

Page 17 -2

Procedures may be complete in themselves and entirely separate from other procedures.
Consider the following example:

EN1D P~A IN;

IP 2 : p RIOCIEDUIRE j

IE ND p 1 ,
I T

-
The two procedures shown here, PMAIN and Pl, are separate from one another; they are
external procedures. Procedure blocks (both internal and external) must be labelled - the label
is called the entry name of the procedure.

The OPTIONS attribute can only be specified for an external procedure; OPTIONS (MAIN)
must be specified for the main or master procedure. At execution time, this procedure is given
control by the operating systemo Note that it is possible to specify OPTIONS (MAIN) for
more than one external procedure: the operating system will then invoke the one that it first
encounters.

Entry names of external procedures cannot exceed seven alphameric characters (this restriction
is imposed by the operating system). If an entry name (or any external name) is written with
more than seven characters, the compiler will shorten it by concatenating the first four with the
last three characters.

Topic 17: The PL/I Block Structure

INTERNAL PROCEDURE BLOCKS

A procedure may be nested within another procedure. Consider the following example:

p EIXIT: p RO Cl~I> URE ;

•
PIN[!: PRJQCEDIURE1

£ND PI N!Jli

l

In this example, the procedure PINT is nested within - or contained in - the external procedure
PEXT. PINT is therefore an internal procedure. Note that all the statements which constitute
PINT (including the PROCEDURE and END statements) occur between the PROCEDURE
and END statements of PEXT (the containing procedure).

Blocks may be nested to depths greater than one; thus an internal procedure may itself contain
another internal procedure. In addition, a procedure may contain two or more internal
procedures at the same level of nesting. The use of one or more internal procedures at one
(and only one) level of nesting is not uncommon; complicated nesting of internal procedures,
however, is not generally used. We shall confine our attention in this topic to the typical case
of an external procedure containing one internal procedure.

The entry name of an internal procedure may contain up to 31 characters, like most PL/I
identifiers. Variables declared in an external procedure may be referred to within a contained
internal procedure. This is one of the reasons for the provision of internal procedures and is
concerned with the scope of names (see later).

Page 17 -3

.. • Topic 17: The PL/I Block Structure

Flow .of Control of.·
Procedure Blocks

Page 17 -4·

We have already mentioned that a PL/I program becomes active when the initial procedure
(the one with the OPTIONS (MAIN) specification) is invoked by the operating system.
Thereafter the flow of control depends on the logic of the program. Normally control is passed
from each statement to its successor, in sequence, unless a branch or a loop causes some
modification.

External procedures (other than the initial one) and internal procedures can be activated (i.e.
given control) by means of a CALL statement. This is called a procedure reference and the
procedure would be a subroutine. (We will discuss subroutines in detail in Topic 18).

C~INTROL: PIROC OP[IO~S C~IAIN);

CAIUL SUB 1;

a t a t eln. e n t X ;
s UBl2: PIRlOC;

•
END SIUB~;
s t a t: elm e. n. t Y ;

s UIS 1 : PIR 0 c i

ENID :>U B 1 ;

Topic 17: The PL/I Block Structure

The statement CALL SUB 1; transfers control to the external procedure SUB 1. When SUB 1
has completed execution it returns control to the statement in CONTROL immediately
following the CALL statement which invoked it.

Similarly, the statement CALL SUB2; invokes the internal procedure SUB2. Control is
returned to CONTROL at the statement following the point of invocation.

Note that an internal procedure cannot be executed as part of normal sequential flow: it must
he specifically invoked. Thus, in the example, statement Y would he executed immediately after
statement X as part of the normal sequential flow within the external procedure CONTROL.

Procedures may also be invoked by means of a function ref ere nee and in this case the proce­
dure would be a function. (We will discuss subroutines and functions in the next topic).

Any procedure (whether external or internal) can invoke an external procedure which contains
an internal procedure. There are restrictions, however, on directly invoking an internal
procedure which is contained in some other procedure, and on the conditions under which one
internal procedure can refer to another one. Certain complications can arise when procedures
are nested to depths greater than one (the interested topic-reader should ref er to the Language
Reference Manual - but not now please!).

It is important to note that an invoking procedure remains active during execution of the
procedure which it invokes. The MAIN procedure remains active for the duration of the entire
program.

Blocks are only said to be terminated (i.e. become inactive) under certain conditions. The
following section discusses these conditions.

Termination of Procedure Blocks

A procedure block is normally terminated when it returns control to the invoking procedure.
This happens, for example, if control reaches a RETURN statement in the invoked procedure:

I I I I I I I I I I IRfMulRrl;l I
This statement returns control to the invoking procedure at the point immediately after the
point of invocation.

Control is also returned to the invoking procedure when the END statement of the invoked
procedure is reached. The effect is equivalent to that of the RETURN statement. (Note that
the RETURN statement can be used to return control from different points in the invoked
procedure).

A GOTO statement which transfers control from an internal procedure to the external
procedure which invoked it will terminate the internal procedure. This use of the GOTO
statement is not recommended. (In general, a GOTO statement may pass control to any active
block).

There are other, but much less common, causes of block termination. Details of these are in
the Language Reference Manu~l.

Page 17 -5

Topic 17:. The PL/I Block Structure

The Scope of Names

The scope of a name is the area of a program throughout which it can be directly ref erred to.
The following questions illustrate why the scope of names is important.

If you use a variable J declared in one external procedure, will it be ref erring to the same area
of storage as another variable called J declared in a separate external procedure? Would the
answer be any different if one procedure were internal to the other?

If you are writing .an internal procedure can you ref er to variables declared in the external
procedure?

The answers to these questions depend on the scope of the name (or identifier). The scope of
a name depends on how the variable is declared: explicitly, contextually or implicitly.

The Scope of an Explicit
Declaration

The scope of an explicitly declared identifier is the block in which the declaration is made and
any contained blocks which do not contain an explicit declaration of the same identifier.

For example:

IAO UITl p I N IA 8 8 I x
PO 1~11 : p IRO c j -

DC IL. Al, 8 .
I

•
lf IN IR :[p oc;

•
I) c L. 18 I X .~L,_
•

-·~ ---t-~ ~tQ ~_ir !N; .
ENID PO UIT;I

The lines to the right indicate the scope of the names. Points to note are:

1. A may be referred to in both POUT and PIN.

2. The B declared in POUT and the B declared in PIN have the same default attributes but
they refer to two different area of storage. These are represented as B and B' in the
headings to the right, to illustrate the corresponding scopes.

3. X may only be addressed in PIN; it is now known in POUT.

The Scope of a Contextual
Declaration

Page 17 -6

The scope of a contextual declaration is the external procedure in which the name appears (or
which contains an internal procedure in which the name appears) and all contained blocks in
which the same name is not explicitly declared.

Note that the scope extends to the external procedure even when the contextual declaration is
made in a block which is internal to this procedure.

Topic 17: The PL/I Block Structure

Example:

P]J IR 1 leTIR 1 I

In this example, three identifiers are contextually declared as POINTER variables; these are
PTR 1 and PTR2 in the external procedure EXTPROC, and PTR3 in the internal procedure
INTPROC. The scope of the various names is indicated by the lines to the right; note that
PTR 1 and PTR 1' denote two separate uses of the name PTR 1.

The diagram is self-explanatory. The important point to notice is that PTR3, which is contex­
tually declared in INTPROC, may be referred to in the external procedure EXTPROC. The
compiler treats a contextual declaration as if the declaration were made in the external
procedure. This is significantly different from the scope rules for explicitly declared identifiers
in internal procedures.

The Scope of an Implicit
Declaration

The rules are the same as those which govern the scope of a contextual declaration. An
identifier which is declared implicitly in an internal procedure is considered to be declared in
the external procedure. The following example illustrates the scope of two implicitly declared
identifiers, J and N (J is implicitly declared in the internal procedure; N is implicitly declared in
the containing external procedure):

Page 17 -7

Topic 17: The PL/I Hlock Structure

Example:

L I iN :a [¢ j

l I j • j I L ~· I l 1 N NE R.: .p RIO c i
I, !-+--· T I I l •

: ;
' i I DIO IN CH = 1 IT 0 1 2 i

~-:
I 11 i !--+- +---
I l i 1 1 •

l
I

11 .
J I

!
l 1 DIO J = 1 1ro 3 j
• I I '

I j ' l •

END lO.~T+E~R~~1·--~~-+-+--+-+-+-+-+-1-+-+-+-+-+-+-+-+-+-+-~~~-+--l-i-~+-I"~-+-~~.._
! I

1 I

The Scope Attributes

Page 17 -8

At this point we can introduce the scope attributes - INTERNAL and EXTERNAL (you may
already have noticed these on program listings).

The scope of an INTERNAL identifier is simply the scope of its declaration (explicit, contex­
tual or implicit).

The scope of an EXTERNAL identifier is the sum of the scopes of its declarations. In ·other
words, an EXTERNAL variable is known in all blocks in which it is declared EXTERNAL.

As you would expect, INTERNAL is the default scope attribute for most data types. Excep­
tions to this rule include file names and the entry names of external procedures, which are
EXTERNAL by default.

Topic 17: The PL/I Block Structure

Use of the EXTERNAL Attribute

The EXTERNAL attribute is used to provide a simple way of sharing the same data items
between two or more procedures. Consider the. following example. GETIT, CHEKIT, a~d
PUTIT are three external procedures: GETIT assembles data in a field called SHARE,
CHEKIT examines it for validity, and PUTIT prints it. The data in SHARE could be made
addressable in all three procedures by coding:

kilElIJI l!: P ROC i
DCL ~IHAI~£ CHAR(11) E~I~;
[OCL ~Y~VAI~ BIN FIXED (tS);

•
C~'LL C l-IEK I rT i

CH ~K llr :P I~ OC1
DC IL ~ HA IR E CH AR ('I f't) 1£1 xrr j

DC L ~ lt Jo- VA I~ ~ I I~ Fl XIE D lL 15) 1J
•
C~I LIL. PU 171 nr l
•

£ND CiH EK '111;
I

PU LT! •IT : 'P RO C1
DI~ L. ~ UA IR E CH IA R(q~) £IX T1
DC L IMIY IV ~· t- R SI H Fl XE D_(f 5) j

•
•

EN D PU Tl rr l

SHARE, which is required to be known in all three procedures, is declared with the EXTER­
NAL attribute in each of them. A reference to SHARE in any of the three procedures is then a
:reference to the same area of main storage.

In our example SHARE is declared with the same set of attributes. in each of the three
procedures. This is essential (since all the declarations refer to the same area) but impossible
for the compiler to check. Remember that external procedures are separately compiled:
GETIT, for example, could be coded and compiled on a Monday while CHEKIT may be
written by some other programmer and compiled the following Friday. The compiler deals
with EXTERNAL variables by generating an external reference which is subsequently resolved

Page 17 -9

Topic 17: The PL/I Block Structure

Page 17 -10

by the Linkage Editor. Care should therefore be taken to ensure that different declarations of
the same name with the EXTERNAL attribute do have matching attributes. Failure to do this
wiH create a misunderstanding between programmer and compiier that may have spectacular
(but unprofitable) repercussions during program execution.

We have seen that the EXTERNAL attribute provides a method for sharing data between
procedures which are external to each other.

If you ref er again to the previous examples, you will notice that each procedure contains a
declaration of a data item called MY_ VAR. Each declaration is INTERNAL by default, and
therefore each one refers to a different variable which can only be addressed from within the
block in which it is declared and any contained blocks. When a procedure alters its own
MY_ VAR, the other two MY_ V ARs remain unchanged. 1:'hus each MY_ VAR might, for
example, contain a count of how many times the associated procedure is invoked (CALLed).

Topic 17: The PL/I Block Structure

A Comparison of the Uses of External and Internal Procedures

Internal and External procedures have similar characteristics and are used in much the same
.way.

The distinguishing point about an internal procedure is that it is nested within another proce­
dure. The reason why PL/I allows one procedure to be nested within another is that the two
procedures can then conveniently share the use of certain variables. Variables in the contain­
ing procedure are known within the contained procedure. In addition, variables which are
declared explicitly in the internal procedure cannot be referred to in the outer procedure; an
identifier may be explicitly declared in an internal procedure with the same name as one used
in the containing procedure without causing confusion.

One disadvantage of an internal procedure is that a programmer might use an implicitly
declared identifier (e.g. I) in an internal procedure believing it to be inaccessible from outside
this procedure - but it is acces.sible (see Exerdse 12 later).

External procedures have much to recommend them. They can be coded, compiled and tested
separately, even by different programmers working apart from each other. Program mainte­
nance is facilitated because procedures can be updated individually. Internal procedures must
be amended with the containing procedure(s) and it is usually impracticable (or at best
unwieldy) to have one programmer coding an external procedure and another writing the
contained procedure. In addition, an external procedure used in one program can be link­
edited into different programs - thus saving coding.

At the same time, internal procedures are easier to use than external procedures although they
can cause problems - see Exercise 12 (later). Of course, where a procedure is used by more
than one program or more than one external procedure in the same program, it should be
written as an external procedure.

Storage Classes

It is often the case that main storage is not required for certain variables throughout a program,
but only for part of the program. If different variables require storage at different times during
execution, storage economy can be improved by allocating an area of storage tQ a particular
variable when that variable is needed, and releasing it again when the variable is no longer
required. This is known as 'dynamic.' storage allocation. AUTO MA TIC storage class is
'dynamic' in this manner. AUTO MA TIC is the default for INTERNAL variables.

Variables which are required throughout the duration of a program must be allocated storage
at the start of the program's execution or at compile time. This storage must not be released at
any time, or the current values of the variable will be lost. One way to preserve storage
throughout a program is to allocate it at compile time; this is called STATIC storage. STATIC
is the default of EXTERNAL variables. (In fact EXTERNAL variables must be STATIC -
think about it, but not for too long!).

Page 17 -11

Topic 17: The PL/I Block Structure

STATIC Storage

ST A TIC storage is assigned space at compilation time and this space is allocated in computer
storage during the loading of the program; the contents are also initialized at compilation time
if the INITIAL attribute is specified. The storage for ST A TIC variables is not released until
the program terminates.

·Example:

; l I

i PR 06 : p ~o c. j

I DC. u lW OR D CH AR (3) IN Irr _{' OL D') ST AT IC 1
1--1 •

PU 111 LI SIT Cl~ OR 0~1
•

IW OR D= 'N EIW I Jl
PIU 111 L I SIT 'o ~ I~ D) i

E.N Di

The first executable statement is a stre-am output statement which will print out 'OLD', and
the second output statement will print out 'NEW'.

Note that if the procedure PROG is executed again later, during the same program, the DCL
statement will not cause WORD to be re-initialized, since initialization of static variables is
determined at compile time. Provided no new assignments have been made in the interim
period, the first PUT statement will now print out 8'MPNEW'.

AUTOMATIC Storage

The AUTO MA TIC attribute is provided to save total storage requirements for the variables
used in multi=block programs. Its usefulness relies on the fact that variables of ten require
storage only for the duration of the block in which they are declared.

AUTOMATIC variables are allocated storage when the block which contains their declarations
is activated; initialization, if any, also takes place at this time. When the block is terminated,
the storage for its AUTOMATIC variables is released, and made available for dynamic storage
for other blocks. ('Nhen AUTOMATIC storage is released, the current values of the variables
are lost).

Every time a block is activated, its AUTOMATIC variables are initialized by the item in the
INITIAL attribute (if any). If WORD in the example above had been allowed to default to
AUTOMATIC storage class, it would have been reinitialized to 'OLD' every time the
procedure PROG had been activated.

AUTOMATIC vs STATIC

Page 17 -12

Use STATIC whenever a variable needs to hold its value throughout a multi-block program or
to improve execution time (no storage needs to be allocated at execution time as with AUTO­
MATIC). Use AUTOMATIC to save total computer storage requirements for multi-block_
programs.

BEGIN Blocks

Topic 17: The PL/I Block Structure

Up till now we have restricted our discussion to procedu~e blocks. It is appropriate now to
consider the other type of block which PL/I provides - the begin block. The begin block must
appear within a procedure block.

A begin block is a set of statements delimited by BEGIN and END statements:

J
J Lab et ~ : g EG l H ;
I ! --. . .

E.N D la be L]J __;_
I

Unlike a procedure block, a label is optional for a begin block. This is because control passes
into a begin block sequentiaUy, following execution of the preceding statement. A begin block
cannot be CALLed; it is activated and executed as part of normal sequential program flow or
by a GOTO statement.

This is the property that distinguishes begin blocks from internal procedures. Apart from this
the two types of block have much in common: the rules that govern the allocation of storage
and the scope of names for internal procedures also apply to begin blocks. (Note that the use
of begin blocks as on-units is a special case - see Topic 19).

Example:

Page 17 -13

Topk 17: The PL/I Block Structure

When the begin block FIRST is activated the storage is allocated for STRUC, TOT AL and any
other AUTOMATIC variables declared within FIRST. This storage is released when FIRST is
deactivated (by the END FIRST; statement), and so can be reused by any AUTOMATIC
variables within SECOND or within the external procedure EXTPROC when this procedure is
invoked.

Situations where it is worthwhile to use begin blocks in this manner do not often occur in
programs. The main use of begin blocks is as on-units for handling PL/I on-conditions (see
Topic 19).

Prologues and Epilogues

Page 17 -14

The use of blocks in a PL/I program involves a slight overhead of both time and space. When
a block is activated, certain activities must be performed before control can be given to 'the
first statement in the block. These activities are performed by a compiler-written routine called
the block prologue. The prologue is appended to the beginning of the block. It performs
essential housekeeping functions such as allocating storage for AUTO MA TIC variables
(including initialization if this is specified).

Similarly when a block terminates certain actions must be carried out before control is
transferred out of the block. A block.epilogue is provided by the compiler for this purpose. The
epilogue is appended to the end of the block and one of its functions is to release the storage
occupied by AUTOMATIC variables.

Further information about the functions of prologues and epilogues can be found in the
Language Reference Manual.

In most cases the advantages of 'building' a program from blocks (see next topic on subroutines
and functions) far outweight the slight overheads mentioned above.

Topic 17: The PL/I Block Structure

Multiple Closure of
Nested Blocks and
_Do-Groups

Normally an END sta~ement is matched up with the nearest preceding BEGIN, PROCEDURE
or DO statement which does not already have an END statement; its effect is to 'close' (i.e.
end) a block or a DO-group.

When the END statement is followed by the optional label, its power is considerably increased.
It closes the block or DO-group which has a matching label, and all intermediate (nested)
unclosed blocks or DO-groups. This is known as multiple closure.

Example:

In the example above, the statement END ACCOUNT; closes the external procedure AC­
COUNT, the internal procedure EDIT and the begin block READ. (The END statements,
written as comments, would have produced the same effect if written as actual statements).

Multiple closure is not recommended because it impairs program documentation. Blocks and
do-groups should be explicitly closed. Multiple closure can also affect program logic in
situations where an 'inner' END statement has been omitted. Beware of this.

The use of labels on END statements is quite useful as a documentation aid.

Page 17 -ts

Topic 17: The PL/I Block Structure

Exercises

Page 17 -16

1. Why does PL/I provide the facility to code a program in hlocks?

2. What is the essential difference between an external procedure and an internal proce­
dure?

3. Describe one way in which data variables may be referred to by more than one external
procedure.

4.

r r r T 1 T 1

Write down the scope of the follqwing variables:

A, B, X, I, PTR, J, PIP, Q, N

(Note: Distinguish between different uses of the same name where applicable).

5. How is a procedure block normally activated?

6. How is a procedu.re block terminated?

7. Give one advantage of using

a) external procedures

and

b) internal procedures

8. What is the feature that distinguishes a begin block from an internal procedure?

9. a) How are begin blocks terminated?

b) What is the most common use of begin blocks?

10. Name one function performed by

a) the block prologue.

b) the block epilogue.

11.

~: PR IO C; .
I lY :IP RO c j rt-
l • I

I

i lZI :8 ~ ~ IN ; ~ 1-- !----

l j_ •
I--

-L l •
1---

~1_,
1. ENID X;
I I i I I

What is the effect of the END X; statement?

(It is the only END statement in the coding).

12.

[R I C ~: p~ oc;
DC L (I ,~) 81 I~ Fl XE. 0
N •d j

l>O I = 1 IO IT 5;
N= lN+ J j

(1 S) l

CA LL t!N 111 l~R o~ i
EN D i

IN 111 PR 10 C: PR oc j

DC L ~A AIRJ IR y (5 } CH AR
•
bO I • 1 m 0 5;

l~ RR AY
EN D;

f~O IN IT p RO C1
EN lb tr RI Cll< i

I

What is the value of N after executing TRICK?

Topic 17: The PL/I Block Structure

I I

(1) j

I (,1) =IA IR IR A rl [}' I[) +2;

Page 17 -17

. Topic 17: The PL/I Block Structure

Answers

Page 17 -18

1. To facilitate modulai pmgrnmming (see Topic 18).

2. An internal procedure is nested (contained) within a containing procedure.

3. By use of the EXTERNAL attribute.

4.

Variable 'Known' In

A (declared in WATER) WATER
A (declared in MELON) MELON
B (explicit) WATER and MELON
x (explicit) WATER and MELON
I (implicitly declared in WATER) WATER
I (explicitly declared in MELON) MELON
PTR (contextual) WATER and MELON
J (implicit) WATER and MELON
PIP (explicit) MELON
Q (contextual) WATER and MELON
N (implicit) . WATER and MELON

5. By procedure invocation, for example, by using a CALL statement.

6. By use of the RETURN or the END statement.

7. a) External procedures can be compiled and tested independently.

b) An internal procedure can share variables with the containing procedure.

8. Control passes into a begin block during normal sequential flow or by a GOTO statement;
an internal procedure must be invoked.

9. a) when the END; statement for the block, Oi a GOTO statement which specifies a
label outside the block, is reached.

b) as on-units (we will come to these in Topic 19).

10. a) Allocation of AUTOMATIC storage.

b) Releasing storage occupied by AUTO MA TIC variables.

11. It closes.the external procedure X, the internal procedure Y, and the begin block Z.

12. The final value of N is 1. The first DO loop is only executed once. There is only one
variable called I in the whole of procedure TRICK (see scope of implicitly declared
variables). The value off will be 6 at the end of the DO loop within INTPROC (see the
DO statement expansion in section J of the Language Reference Manual). Thus, on
return from INTPROC, the first DO loop will be terminated.

s

A
E D

y p

D u
M D

0 G
'i u p D E u p

R
N T y

Topic

18

A
T

E T
N

E p

N T y

p

y

M
0

D
A

D

DE

D
p

T

OG P T oG· M E T OG M P T D
E N TU 0 E ST R D N UD

E D Y OG E D D RO D N ST 0
D NT DY R AM D NT D R AM D NT P 0

ND EN D P R M ND ENT D P R M IND ENT D RO M
E N U P A IN E N TU P R IN E N U R IN;

> NDE ST GR EP ND RA U E
JD T STU PR D ND TU PR R D ND TU Y 0 ND

T R G D EN E T R G D EN TU R R M END
ST P 0 PE D T ST P 0 N PE D T STU A ND N
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T

JD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
PROG AM N EPE DE STU PR R. N E END T ST PR G AM N EPE T T D

'R GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S U
GRAM IN P ND N S D PR GRAM I P ND NT S D PRO R M I E EN T STU PR

< NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
1 INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA
INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
)EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN
JENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
~DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
=NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
Y ~ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
OGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
RAM INDEPENDENT STUDY PROGRAM INDE~ENDENT STUDY PROGRAM JNDEPENDENT STUDY PROG
M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA

Topic 18

Subroutines and Functions

Objectives

Introduction

In this topic you will learn about the advantages of modular programming and how this is
implemented in PL/I using procedure blocks;·· these have been described in Topic 17. In this
topic you will learn about the two types of procedure block - subroutines and functions.

At the end of this topic you should be able to:

state the advantages of modular programming

state how modular programming is implemented in PL/I

state when you would use a function procedure and when you would use a subroutine
procedure

code subroutines and functions, sharing data as required

code a subroutine or function with secondary entry points

use PL/I builtin functions.

Modular programming requires programs to be written in units or modules. In PL/I these
modules are procedure blocks. We will look at the two kinds of procedure block - subroutine
and function. We will discuss the reasons for using one or other type and explain how control
is transferred to a subroutine or function procedure (and how control returns to the 'calling'
procedure). The previous topic on block structure explained the flow of control for subroutine
procedure blocks and so this will merely be summarized in the present topic. There will be
more information on the flow of control for function procedure blocks because these will be
new to you.

Later in the topic we will look at how data can be shared between procedure blocks - subrout­
ine or function - and discuss a few problems which might arise.

The final part of the topic is about various functions which are commonly required during
programming and which PL/I provides - these are the PL/I Builtin Functions.

Page 18 -1

Topic 1 ~: Subroutines and Functions

The Advantages of Modular Programming

Page 18 -2

The usefulness of dividing a program into separate modules (or procedures) which can be
written and tested separately is well recognized by experienced prngrammers. There are so
inany advantages to be gained by doing this that it is difficult to imagine any reasonably-sized
program not being written in modules. The most important benefits of modular programming
are:

1. It gives the program a sound logical structure.

2. It provides a disciplined method of working.

3. It ensures the provision of comprehensive documentation. Moreover, this is produced as
part of the programming process - not as a separate task.

4. Writing and testing are easier because:

a) Each module is a logical entity which may be written with very little reference to
other modules; at any one time the programmer can concentrate on part of the
program without having to consider all of it.

b) Different modules can be tested independently; once a module is functioning
satisfactorily it can be placed in a program library as an object module and subse­
quently linked into a program.

c) Parts of a program can be tested while the rest is being coded, thereby making
better use of machine time.

5. Program maintenance is less arduous and more efficient because:

a) up-to-date documentation is available.

b) amendments can be made at the module level; since a module is self-contained,
alterations to it will not normally have unexpected repercussions elsewhere.

6. Large programs may be brought quickly to the production stage by dividing the modules
between several programmers.

7. Trainees may be usefully employed in coding the small, straightforward modules of a
large program.

8. Good control can be exercised over a programming project when it is broken down into
several separate tasks; this allows progress to be effectively monitored.

9. Standard routines may be written once and then incorporated in several programs.

10. Different modules can be written in different languages. (For instance, it might be
necessary to write a particular module in Assembler Language; the other modules in the
program could be written in PL/I).

Modular programming has some disadvantages too. It carries overheads of both time and
space. This is because the compiler includes a prologue and an epilogue in each procedure (see
Topic 17) which means that there is extra code to be executed.

It is impossible to generalize about the maximum or minimum size (in terms of executable
statements) for a module" One very functional maximum would be the maximum number of
executable statements which can be contained on one page of computer listing. This is
convenient because you do not have to turn over any listing pages when reading through the
program - but it is not a rule. There is no functional minimum size for a module - it is up to the
programmer to decide.

Topic 18: Subroutines and Functions

Procedure Invocation

PL/I allows the programmer to write two distinct kinds of procedures (modules) - subroutines
and functions. (The examples of proqedure blocks in the previous topic on Block Structure
have been subroutines). Both subroutines and functions are written as separate procedures,
which may be external or internal and both are said to be invoked when receiving control from
some other procedure (the invoking procedure). A subroutine is invoked hy means of a CALL
statement; a function is invoked by use of the function name in a statement.

ENTRY Attribute

The ENTRY attribute is used to declare a procedure as an external procedure. It obviously
does not apply to internal procedures - they need no declaration at all.

If an external procedure name is undeclared but PL/I can detect that the name is being used as
a procedure name (either subroutines or function) then PL/I will assume that the name is an
external procedure name. However, PL/I will give a diagnostic message. (Remember that the
compiler compiles each external procedure separately. So, while it is compiling one external
procedure, it does not know of the existence of any other external procedures and therefore
can only make the assumption that any undeclared procedure, which is not internal to the
invoking procedure, is an external procedure which will be provided at linkage-edit-time).

It is invalid to write a declaration for a procedure which is internal to the invoking procedure.
PL/I can see that the procedure is internal (declaring a procedure with the ENTRY attribute
means that the procedure is external!).

CALLing a Subroutine

This has been covered in a previous topic. Basically a CALL statement transfers control to the
invoked procedure. Control is returned to the invoking procedure (to the statement after the
CALL statement) by the END statement in the invoked procedure. There are other ways of
returning control to the invoking procedure (e.g. the RETURN statement) - see previous topic.

Function Reference

A procedure is invoked as a function by using the function name in a statement.

The significant point about a function reference is that it represents a single value. Consider the
following example:

i l I

T : I~ I : p IRO c.;
~ f
! l .
I : .

I I

I : IF! u HC .,. J ; . .
·E ND l•l

Page 18 -3

Topic 18: Subroutines and Functions

Page 18 -4

I I I 11 IFlul~cl =IPIRloicl;I I I I I I I I I I I I I I I 11 I I I I I I I
·] T
1 I 1

t
I •
I ; l RIE TIU RN (3 • f !1:l*Nl ;

EINIC FUINC;
1

FUNC is an external function procedure (it could equally well be internal). It is invoked in Pl
by reference to its name in the expression FUNC + J. This has the effect of passing control to
the function procedure, which computes a single value and returns this value to Pl. The
expression FUNC + J is then evaluated using this returned value, and the result is assigned to
I. In effect therefore, a function reference in an expression is replaced by a single value.

A special form of the RETURN statement is used to cause a return from a function procedure.
The keyword RETURN is followed by a parenthesized element-expression which specifies the
function value to be returned to the invoking procedure. In our example we return the value
(3.14 * N) to Pl. The effect is the same as if we had written:

Pl : p RO Ci .
I .

I 1=i 3 • 11f *N +fJ1 .
•

-

~N D lf 11
I

(This assumes that N is known in Pl). This form of the RETURN statement is always used in a

function procedure and never used in a suhroutine; it is the one thing that always serves to
differentiate between the two.

Like an ordinary element variable, a function has attributes. These are the attributes of the
single returned value, and if they are not explicitly declared then default attributes will be
applied in the usual way, according to the first letter of the function name.

Even if the default attributes are those which are required it is still sensible to declare them
explicitly (for program documentation). They are specified in two places:

1. with the RETURNS attribute in a DECLARE statement in the invoking procedure.

2. with the RETURNS option in the PROCEDURE statement or ENTRY statement (see
later) in the function procedure.

Topic 18: Subroutines and Functions

Suppose that we wish FUNC to return a value with the attributes FIXED BINARY (15). We
would specify this as follows:

In the Invoking Procedure

Pl J p RO C;
DC L FU NC. f N lIJ Rti IR ET IUR INS IJs flN Ai~ ~ Fl x ED I ts) 11 1 .
•
,,~ Fl~ f N c+ µ; . .

E!N ~ IP r l
I I

In the Function Procedure

•

i

T

In Pl the RETURNS attribute specifies that FUNC will return a value whose attributes are
FIXED BINARY (15). So, when Pl is being compiled, a FIXED BINARY (15) field will be
set up within Pl to receive the returned value when the program is executed. In FUNC itself
the RETURNS option specifies that the attributes of the value returned by the RETURN
statement will also be FIXED BINARY (15). Thus at execution time, the attributes of the
value returned from FUNC will match the attributes of the field set up in Pl to receive the
returned value.

If there had been no RETURNS attribute in Pl then the attributes of the field set up in Pl to
receive the returned value would be DEC FLOAT (6) - according to the first letter of the
function name. If there had been no RETURNS option in FUNC the returned value would
also have had attributes DEC FLOAT (6) - according to the first letter of the function name.

For an external function procedure both the RETURNS option and the RETURNS attribute
should be specified (or both allowed to default to the same attributes) to ensure correct
execution. Remember that external procedures are compiled separately so, when PL/I is
setting up the field to receive the returned value (in the invoking procedure), it cannot see the
external function nor what attributes the returned value will have. The compiler therefore has
to be told what attributes to give to the field in the invoking procedure by means of the
RETURNS attribute or by default.

Page 18 -5

Topic 18: Subroutines and Functfons.

If the function is an internal procedure only the RETURNS option in the function procedure
statement need be specified (or allowed to default):

IP I: PRIOIC;

I =FIUHCI~_;

EIN D FUjNC;

This is because the compiler can 'see' the invoking procedure and the function procedure ,
together, and it does not need to be given the same information twice. In fact, declaring
FUNC in Pl with the RETURNS attribute by means of a DCL statement would in this case
constitute an error.

Sharing Data Between Procedures

Page 18 -6

Usually when contra~ is passed to a procedure block (subroutine or function) some information
(i.e. data) is made available to the invoked procedure. There are several ways in which data
can be shared in this manner.

If the invoked procedure is internal to the invoking procedure then any data declared in the
invoking proced~re can be referred to within the internal procedure (see scope of names in
topic 17).

Example:

FI Rls T: PIRO~; 1]De~ ~+u+:IM~5~E~Rt--t-++-+-+J-+-Fl~X-~E+D-+-+D~f-+-C~lr~rATL~(~5-r.-;)-;t-T--r-T-r

I I I DCLilUNT!TPIRt!Cf FIXED DECllMAL(!7 ~ 2)'

!

t-W D c~ -rr+A---+-X--+-+--+-+--+-+--+-+-+-F-+l-+X-+f--+D-+-+-l.>-+E-+C-+l-+~-+A-+L-+(-+l-5+'-+, -+2)"'-t·-'-t; -+-t-j

1--+-··+--+---+-+-·---+-....... -~t-Woc LI Tf 0 IT A L F 1 I X E D 0 EC I ~ A L (t'i , 2) ; i
1

1

... c L 1a1 0 1
..- A1

•
1 F 1 x E D o E c 1 MAL c 1 1 , 2) ·,

1--+-+-+----r-+--·-+- •-+ _l I LI L!
1

I I I~
I •

l--+-:·--+-~+1-+-·I---++ I '-+-+-t--+-l-t----+-11--+-f-t-+-t-+-t--t--+-t-t--+-t--t--t-1-r--t-1-r---T-t--t--1-
1 ~ • l

1 1 ! • 1

I 1 1 c IO s IT : p R 0 c ;
' I

I J !
·-~J+~~-+-+~~l-+-+-+-+--+-+-+JT-+O~IT~A~L~=~N~U-+IM-+B~E~R~l*~(~U~N~,~~-rP~R~l~C~E~+~[~1A~X~)~;-r-t-~

I I e I
I !

~+--+-I +-+-+-+--+--1 E N D c 0 s IT 1
j END j F I R SIT i
I 1

Topic 18: Subroutines and Functions

If the invoked procedure is external to the invoking procedure then the data can be declared
EXTERNAL (see previous topic).

Example:

IF! I R.~T: PIRO c i 1
DCL NUIMBfR lE I x ED DIE.le:.• lt-1 AL (5) EIX T f RN AL j
l>CL UN lltPRlCf IFl~EID DECllMAL (7,2) E~l1ERNAL;
l>C L ITIA~ FIXED DECl~AL (5,2) EX~El~~AL;

. DCL ITOITIAL FIXED DECIMAL (q,2) EX!Tfl~NAL;
DCL ~TlotTAL FIXEID Z>fCllMAL (ff, 2);

CALL CIOS!T;
qjTO/TA L=[§lliOl~ALl+!TOITAL;

EIN D F 1 IR SIT ;

c OIST: PIROC j

DCL ~U~ BER F J XE D D f CI lt-1 AL (5) f~IT f R/N AL ;
I D c L u N I IT PIR J c E

DCL !TAX FIX ED l)EC / IMAL (5, 2) E~ITERNAL;
DCL ITOTAIL: FIXED DECJ~AL (f1,2)EXTERNIAL;

T[QJT AL =NUMB EIS!f{t.HH TERI cf +IT AX) i

f N 0 C,O s)-r;
T

In the above example NUMBER, UNITPRICE, TAX and TOTAL in FIRST, will refer to the
same areas of storage, at execution time, as NUMBER, UNITPRICE, TAX and TOT AL in
COST. This is a perfectly valid method of sharing data. However the external variables must
be declared with the same names in both procedures. This might not be a problem when there
are few data items involved, but in a modular programming environment, where different
people might write each external procedure, then this limitation might be a significant restric­
tion.

Page 18 -7

Topic 18: Subroutines and Functions

. Page 18 -8

Also external variables are STATIC (see previous topic), i.e. they occupy storage from
compilation time onwards. So if the external procedures FIRST and COST w~re tested
separately, they would be stored separately on disk and within ~!!ch procedure there would be
storage for NUMBER, UNITPRICE, TAX and TOT AL. Thus the amount of disk space
required during testing is increased. (You may be wondering when these separate areas for
each external variable become 'combined' into one area. This takes place at linkage-edit-time.
The linkage editor takes just one area for each external variable and incorporates that area into
the final program. So, at execution time, any procedure which has a declaration for an external
variable will be referring to the same area of storage as any other procedure with a similar
external declaration for that variable).

Both the limitations of the previous method of sharing data can be overcome by specifying, in
the invoking procedure, a list of data items to be shared (called an argument list) and associat­
ing these data items with corresponding nanies in a list (called a parameter list) in the invoked
procedure.

Both a CALL statement and a function reference can specify an argument list in order to make
data available to the invoked procedure. The data items in question are written in a parenthes­
ized list following the entry name in a CALL statement or the function name in a function
reference. For example:

This CALL statement invokes the procedure SUB and specifies that two arguments, A and B,
are to be passed to it.

This statement invokes the function FUNCX and passes three arguments to it.

Arguments which are passed to a procedure are 'received' in that procedure by specifying a
parameter list with the corresponding PROCEDURE or ENTRY statement. Thus the parame­
ters corresponding to A and B might be specified with the PROCEDURE statement as
follows:

The parameters corresponding to P, Q and R might be specified as:

Topic 18: Subroutines and Functions

The number of arguments should be the same as the number of parameters; they are matched
one for one, from left to right in the lists. The parameter should be declared in the invoked
procedure with the same attributes as the corresponding argument in the invoking procedure.
However storage is only allocated for arguments in the invoking procedure; parameters occupy
no storage. In fact the address of the argument is passed to the invoked procedure and this
address is used in the invoked procedure whenever the corresponding parameter is ref erred to.
This overcomes one limitation of the previous method of sharing data using external variables.
Also the names of arguments and their associated parameters need not be the same - this
overcomes the second restriction of external variables.

By reference to its parameters, a subroutine or function may obtain values from the procedure
that invoked it. In addition, arguments may be provided for the purpose of receiving values
returned from a CALLed subroutine (this technique would not normally be applied to a
function reference since a function is commonly used to return only a single value, by means of
the RETURN statement).

Example:

:1P R10iC 1

;

o ctL· °CA.Rta~1
• -+ • • t '. . : i 1-~--r

• .. • . t ~ +' ·-+ -1 ~ +

c ALL s u 6 (AR'G 1 I A RG 2) ;
.. ~ •j. ... +- 1 ·-t- - •

i I + ---i---+- ---+---+- -+ - -~-~ --

- +-

- ~ I - -

'-;----

..... ~- t -
.E1N D

1

-F· 1 ·R S~T:;. -
t • • • +-+-- ·-
I

The above subroutine calculates the square of ARG2 and places its value in ARGl. I and J do
not occupy any storage within SUB.

Page 18-9

Topic 18: Subroutines and Functions

Non-matching Attributesfor Arguments I Pararneters

Page 18 -10

Suppose that the previous example had been coded as follows:

·11 /Fl RS]11~1PRo]c]; l
! l i 1 J : lo c tl J_(A RG f llWRG 2.l2_ \F I X EO IDJEIC T(1.5") ;j 1. '

I 1 : 1 · -+-, t-- -· I 1 l I I l I ' ! • l ! i I ! I I I ! J
l

1 1) ~CA!LJil_~@ CARa11, ARG2) ; I I
J. j

l I T I I· I i 1 1 I
I

i fiffil>4~-j RS tt ;J l f ! I
-

I T I I I I T I I I

I SU B :IP Roc1(
' I kl) _i

i
i J) cL.µ1 I I Fl XE D DE IC lL 5} l I

1 1
i !

i 1 • I I

l l i l 11 :1J ~ 2 ;j I

l l 11.. i I
l l EIN D JSIUB il l -T T 11 1 1 I

J has not been explicitly declared and so takes the default attributes of BINARY FIXED (15).
Now FIXED DECIMAL (5) occupies three bytes and BINARY FIXED (15) occupies two
bytes. So, when we refer to J in SUB above we are actually referring to the first two bytes of
ARG2 and interpreting them as if they were BINARY FIXED (15)! This will obviously not
give the right result at exe~ution time and may even cause a program interrupt.

In the previous example the mismatch of attributes was a mistake but there are circumstances
in which an argument has certain attributes for particular reasons (e.g. efficiency) and the
parameter in the invoked procedure has different attributes. This might arise if a previously
written procedure were being incorporated into a new program; the 'old' procedure might
contain parameters which had different attributes to those required .. Of course, the 'old'
procedure could be altered and recompiled so that the parameters had the correct attributes.

- i.
I
i--

1

j

Topic 18: Subroutines and Functions

Another solution is to use a parameter descriptor list which describes the attributes of the
parameters. This parameter descriptor list is attached to the declaration of the external
procedure, e.g.

i :

. j .
if 1NO •. J

I !

! I

In the above coding SUB is declared as an external procedure whose parameters have attrib­
utes FIXED DECIMAL (5) and BINARY FIXED (15) respectively.

During the compilation of FIRST, PL/I would then realize that the attributes of ARG2
(DECIMAL FIXED (5)) did not match those of the associated parameter (BINARY FIXED
(15)). So PL/I would set up a 'dummy' argument field which did have the correct attributes
and it would arrange to place the value in the original field into the dummy field, making the
necessary conversions. The address of this 'dummy' field would be passed across to the
invoked procedure at execution time. You can see from this that any operations on the
parameter associated with this dummy field would only affect the dummy field and not the
original field in the invoking procedure. For instance, if we had said:

in SUB in the previous example, the value of ARG2 would remain unaltered - the 'dummy'
field set up for ARG2 would contain the square of ARG2. Beware of this!

The parameter descriptor list could equally well have been written as:

The first item in the parameter descriptor list is a null specification; indicating that the attributes
of the first argument match those of the first parameter. Null specifications are indicated by a
comma.

Page 18 -11

Topic 18: Subroutines and Functions

It is important to realize that the problems caused by non-matching arguments and parameters
do not arise when the invoked subroutine or function is an internal procedure. Thus, if we
make SUB internal to FIRST, there is no need to declare the attributes of the parameters in a
parameter descriptor list:

FJRST:PROC~

DCL CARG1,ARG2) FIXED DEC (5)1
-1--'--4---'-4--+--+--+---+-+-+-4--+-l--+---+-+-f--l--+-+--+-~-+---~-+-+---+--+--+-~r-+--+--+--+--+-+-t-'-T--

c A LL s UB (A RG 1 I A RG 2 } j .
-+-- --- -1- --.

- I------ --- J -1 t---!--- - - -!--

s u 8 :P R 0 c (I I J) i
- --+-

- D c L I F IX E 0 D E c (5) i

END SUB;
-l--+---'--1--t--+--+--1--+--+-~-+-+=c..+--+-+--1-~---+-+--1--+-+-r---t--+-+---+---+--+--+-1--+---+---+----1-----<l--l--+--1-

END F I R s T j_+--+---+-+---+-- t---t--+---+----+--+--+-+---+I --+--+--- --t·--+--+--+--t--+---+---+--- - --+--+--+-t-+--

In this case the compiler can 'see' that the attributes of the argument ARG2 do not match
those of J, the corresponding parameter. It will therefore automatically create a dummy
argument with the correct attributes to replace ARG2.

The previous examples have used subroutines to illustrate the relationship of arguments and
parameters.

The same rules apply also to functions. It should be noted that a function PROCEDURE may
need to specify both a parameter list and the attributes of the returned value. For example,
suppose that FUNCX will be passed three arguments and is required to return a value with the
attributes FIXED DECIMAL (5, 1). This could be specified as follows:

Dummy Arguments

Page 18-12

We saw previously that a dummy argument was created when the compiler was able to detect
(or was told) that the attributes of the argument did not match those of the corresponding
parameter. A dummy argument is also cre~ted whenever a constant or an expression is used as
an argument. For example:

A dummy field is set up for the decimal constant 12.5 and the character string';\' and also for
the result of the expression NUMBER*UNITP. The addresses of these dummy fields are
passed across to the invok~d procedure (in this case a function).

Topic 18: Subroutines and Functions

You can 'force' the creation of a dummy argument be placing parentheses around an argument

field. For example:

A dummy argument would be set up for MY_SALARY and code would be inserted to place
the value of MY_ SALARY into its dummy field. The address of this dummy field would be
passed across to INCREASE at execution time. So it would be impossible to alter the original
value of MY_SALARY from within the subroutine INCREASE. This technique is useful for
fields which you want to share with other procedures for read-only purposes but which you do
not want to be altered, accidentally or otherwise!

Primary and Secondary Entry Points

The label attached to a PROCEDURE statement constitutes the primary entry point of that
procedure. We have seen that a procedure can be invoked at its primary entry point by either a
CALL statement or a function reference which specifies the procedure name. In addition it is
possible to specify secondary entry points in the invoked procedure by means of ENTRY
statements. Do not confuse this with the ENTRY attribute (see example below). Secondary
entry points apply equally to subroutines and functions.

Example:

'. i ;.- i : I !
I I

J
T 1 I

cj 1 RC LE : p IAO tj (IR, IAIA EIA) j

4 iD CL. ! ll IR, IA t 8, c, IAfc 1,:1.a) lE I XEIC Df.C (3) ;
__i ·~ IRE ~:: 13 • f ~ IJUf R;
I IRle 1Tf~ Nj j I

l h1RIA pi :1£1,,.TRJY I< A, 1e, le, AIR E~i) i
j i j !A1= (~ 8) I l2 i I

J JR E~t11 :1EJl"IT ~ [(A' t I AIR f ~) j_
! : Afo1c1..a1- AIM-C 1 . I ~ 1.-in I

EIN~l '. :1 . l
I
I

1 i • 1 i , 1 I I l I I I 1 I I I I I

Page 18 -13

Topic 18: Subroutines and Functions

CIRCLE, TRAP and RECT are explicitly declared with the ENTRY attribute in MAIN.
CIRCLE is the primary entry point. TRAP and RECT are secondary entry ·points and are
explicitly declared as such by appearing as the labels on ENTRY statements within CIRCLE.
Basically the procedure labelled CIRCLE calculates the area of a circle, trapezium
(quadrilateral with two sides parallel) or rectangle, depending on which entry point is used. If
we enter the procedure at the primary entry point (CIRCLE) we work out the area of the
circle and then return to MAIN before the TRAP entry point. However, if we enter at the
TRAP entry point, we work out the average length of the two parallel sides and then 'drop
through' the RECT entry point to multiply this average length by the perpendicular distance
between the parallel sides (C). When you 'drop through' an ENTRY statement during normal
sequential execution· of instructions, the ENTRY statement is treated as a comment. (Do not
worry about the geometry, just the PL/I).

Use of Functions and Procedures

You should have some idea now about when you would use a function and when you would
use a subroutine. Subroutines are used to divide the total program logic into smaller units (the
subroutines). Functions are used to return a single value to the point of invocation.

PL/I Built-in Functions

There are many functions which are often required by many users of PL/I; it would be
wasteful if they had to be coded by every programmer who required them. For this reason,
with every PL/I compiler a useful set of precompiled functions is provided. These are called
the PL/I built-in functions. They are described in section G of the Language Reference
Manual. In this topic we will look at the use of a few built-in functions. When you have time
(i.e. not now) look through section G of the Language Reference Manual to see what other
built-in functions are available.

The built-in functions (let's call them b.i.f.s from now on) are divided into different categories:

string handling b.i.f.s
arithmetic b.i.f .s
mathematical b.i.f .s
array handling b.i.f.s
condition handling. b.i.f.s
stream 1/0 b.i.f.s
storage control b.i.f.s

example later
example later
no examples
see Topic 22
see Topic 19
see Topic 15
example later

Declaring Built-in Functions - the BUil TiN Attribute

Page 18 -14

In general it is not necessary to tell the compiler that a particular identifier is a built-in
function; the name and its context will normally imply it.

In the statement

~11111 ~stfrlW>l;I 111111111111111
SQRT will be taken to mean the built-in function, unless it has been declared as something
else. This is because the fact that it is followed by a parenthesized item (2) means that it could
only possibly be a function or an array element, and if an array with the name SQRT has not
been declared, the latter possibility is eliminated.

Topic _18: Subroutines and Functions

Unless the programmer has declared SQRT as a function which he has coded himself the
compiler assumes that the built-in function is being referred to. This discussion is equally valid
for all the other built-in functions which make use of arguments.

Certain built-in function names are not followed by parenthesized ar~uments, however, and so
the compiler will not recognize them as built-in unless they are declared with the BUIL TIN
attribute. An example of these is DATE, which 'returns' a six character string. (This means
that at execution time the name DATA is replaced, wherever it occurs, by the value which the
function supplies).

Example:

j

i
-+---+-+---+-+-+-~-+-+-+--+-~

I • I
! I

Since DAT!\ has been given the BUIL TIN attribute, the built-in function will be invoked and
the value it returns will be assigned to FIELD.

Alternatively a null argument list (an argument list with no arguments) could have been
inserted after the DATE b.i.f. in the assignment st~tement. Then there would have been no
need to declare DATa as BUILTIN.

Example:

String-handling Built-in Functions

These b.i.f .s are used for manipulating character-strings or bit-strings. Look up the INDEX
and SUBSTR b.i.f.s in section G of the Language Reference Manual. These b.i.f.s will be used
in the following example.

The value of I will be 20 after execution of the INDEX b.i.f. The rest of the coding assigns the
first and second lines of the address to corresponding fields. Notice that if the third argument
for the SUBSTR b.i.f. is omitted, then the length is assumed to be to the end of the string.

Page 18 -15

Topic •8: Subrou~ines and Functio,ns

Arithmetic Built-In Functions

l> c L

FL Df
FL Dl
F ILD ll -

ll= LC> 2.T
'.l

I T I

Some of the b.i.f .s perform the simple operations which may otherwise be done with PL/I
operators. Instead of*, I and+, the b.i.f.s MULTIPLY, DiVIDE and ADD may be used. The
purpose is to avoid the possibility of loss of significant digits during complicated assignments,
e.g. X= Y*Z+Z**P /Q/R; (in such cases intermediate target areas of default precision are
used - by using the ADD, MULTIPLY and DIVIDE functions, however, any desired precision
may be retained throughout the calculation).

As well as these three arithmetic b.i.f .s there are many others, ·some of which also permit the
programmer to control precision. Arguments should be passed to arithmetic b.i.f.s in coded
arithmetic form (i.e. binary or decimal), and values will also be returned in coded arithmetic
form. If an argument is not in the correct form it will automatically be converted, where
possible.

As an example of this type of b.i.f., look up the ROUND b.i.f. which rounds a value at a
specified digit.

Example:

dF L 1> 1 l• FL ll2) FI XfD blE.; c (8 , 14) j

= 12 34 • 5 61 8 i I

= IR 01~ ND 01 Lt> 1 J__ 21) j /f FL 1> 2 Co NIT1 A J INS f 2 34 . s 7~ rJ ->A:/

= IR 01uJ ND (F Lll f) ') ; I* FL J) 2. co Nl11 Al NS 1 2 35 . 0 ¢¢0 *I _ _).

=:i JR OIU N l> CA LO 11, - 2) ; [[* FL l>l co Nlr Al NS 1 2 fl!~ ·l~ t~ <t>I~ ttlL
TT I 1 I

Storage control b.i.f.s

Page 18 -16

We will only cover the ADDR b.i.f. under this heading. Look it up in the Language Reference
Manual.

Example:

bCL 1 ST RU CA,
2 co bf. A CH Al~ (1))

" lg .. A. IN 1-r I 1,- ., IF ix :S. 0 uE IC (5) , ' ""I'\

I 2 I~ NI \T PR IC \e. Fl XE D J) EC (S) I J_

L 1 i .2 NA lt-1 E CH ~ R (7 3)j

I ~ I '

_j __
i 1D CL 1 SIT IR IU cs leA Sf D (p IT R) ,
~T 2 co DE 8 CH AR (1) , ' :
-~

! J I~ l~ I~ {1 lfl) j i l>E SC RI PT ION CH
-4 l

+-+--IJ~ I !

J JP triRJl= Ab blR (S TR UC A);
I I I I 1 I I

The above coding 'overlays' the area of storage occupied by STRUCA with an alternative
structure STRUCB. Thus two different 'record types', corresponding to STRUCA and
STRUCB, could exist on the same data set and be read into the one area STRUCA; the record

Topic 18: Subroutines and Functions

could then be interpreted with the appropriate structure depending on its code value in the first
byte. There are other methods of achieving this overlaying; they will be described in Topic 21.

Pseudo-variables

Some built-in functions can also be used as pseudo-variables.

A pseudo-variable is a built-in function which is used to insert information into a variable,
rather than to obtain information from it. It is a built-in function in reverse. Those built-in
functions which can be used as pseudo-variables are described in section G of the Language
Reference Manual.

Example:

The above illustrates the pseudo-variable use of SUBSTR. In effect it says 'Consider the
one-character string beginning from the fourth character of VAR, and assign 'N' to that
position'. (VAR will now contain 'CHANGE'). Contrast this with the built-in function use of
SUBSTR.

0 c L L f T]I~ R C U~l8 (1 l i
·-+-+--

p c L v A(B c .H At~ db) I N 1 [I {_ I c HIA Rlti £ I) l

This says 'consider the one-character string beginning from the fourth character of VAR, and
assign it to the variable LETIER'. (The variable LETTER will now contain the character 'R').

Although pseudo-variables may be used anywhere as a receiving field (e.g. in the data list of a
GET statement in stream I/O) the typical usage is on the left of an assignment sign, as in the
above example.

Page 18 -17

Topic 18: Subroutines and Functions

Exercises

L

2.

3.

Page 1s·-1s

1 1 1
I P:PIRO!C OP~llONS CIM~IN);

1
I

1 ~

i

DCL ARR ~1~1 OfC FIXED (S)i
J D c L. IT 0 TA L. I J) E ~ F I x £ .D (q) j

I 1 CIA LL s IAIM { AIR:RLt 17ioT~it..) ;
!

l ENI>;
I I

Code the external subroutine SUM which returns in TOT AL the sum of the values stored
in the elements of ARR. (Try not to make use of the SUM b.i.f.).

You may assume that at the time of the CALL these values have been correctly set up.

j I
jQ: PIROC OPJrl ONS (1"1A I N,[)1;

blCL ~ Al~lJ< IF ·~£ID b.EC (3);
nc/L COMM~NT ClfiAJR(4)j

I I

Code an external function ASSESS invoked from Q such that 'GOOD', 'FAIR',
'POOR', or'****' is moved into COMMENT depending on whether MARK is greater
than 75, 50, 25, or less than or equal to 25.

Also code the invoking statement and any others required in Q.

t I 11

~ I JO CL JQ IU 0111 IE CH AR AC TE fR (t SS) j
1 T Jb CL PH RA slf. CH IA IR AC TE I~ { 1 3) ; I i

1T 1 1 1

Find the position of the string 'YORICK' in QUOTE.

Place the 13 characters immediately following 'YORICK' into PHRASE.

Topic 18: Subroutines and Functions

4. Look up the TRANSLATE b.i.f. in section G of the Language Reference Manual. What
will the following coding place in FLD?

5. Look up the MOD b.i.f. in section G. Write PL/I coding which uses the MOD b.i.f. to
work out whether a particular year, contained in YEAR (declared below) is a leap year.
Move the character strings 'YES' or 'NO' into RESULT (declared below) depending on
the result. (Remember that a leap year is divisible by 4 exactly but century years, e.g.
1900, must be divisible by 400).

Page 18 -19

Topic 18: Subroutines and Functions

Answers

1
1.

s ulM : P IRJ o c < A , IT) ;
DCL A(f~) DEC IFIXEO (S);
DCIL IT DEC FIX£D (~)j
T1~¢; /I* Norn NEC&SSAIRY IF INllTIALISEO IN IP 1*17
D o I = 1 IT 0 1 jtJ' ;

IT':sjT+A (I) ;
1£N D j_

EIND;

2.

COMMIE NIT = ~s s Es s I~ARK) 1

END;

! IF M > 75 THEN iRtlTUR~ ('~OOD');
I F IM > ~ 0 ITH E. N R EITt.t RN lL (FIA 1 IR ,) ;

l
I I

3.

I = I [l[Q u 1otr Ell 'y ot~ ·~
11< , II 1 ,-IF (I) ltJJ) ~ I(I < 13 ~fj IT life ,t~ PH I~' SE = IS u as 111R (Q uo trf. , I +6 ,, 1 3rJ j

/I• IF I :s

'" ITIH £IN ' [)' OIR IC. 11< , IS NICJ IT IW llT '~' H IQU 011 E. I~

Page 18 -20

Topic 18: Subroutines and Functions

4. FLD will contain 123105 (all numeric).

5. The following solution uses the SELECT statement. The solution could have been
written using IF statements but this would have made the logic less easy to follow.

f;;h+-+- I i I l . l

:S!ELE~CIT (~OD (YEAR 1 1 f><})) j
i ; IW He Til(~: ., s EL E c T (!~ olo (y EA R, I~'~) } Li /1* CE HIT UR y YE AR *fl ::-+-+- :-r I 1 1wH EN<" >1 RE:s1uL T = , YE s, ;

·1_1~. TT~++ OiTIH E RIW I s E. Rf s ~ LiT = \ N 0 I ; · im · J END· - r pr,H!E. RfWl I "SlE s~+i.. f. CIT (M 0 D (y f A R , 4-)) ;
: . • . .] ~u EN (~.J RE s u L Tl 1= 'YE s' ;
---~-- ·:-~++·- 1 i-10fT Hf RIW I~ f. RE.SU LIT = ' No ' ;
-J-•--+-+-n ·+·-r+l- '

I ! : : i i I END[;

"D;11 1 i

i : I 1 11 1

Page 18 -21

s

A
E D

y p

D u
M D

0 G
I U p D E u p

R
N T Y

OG p T OG M E

Topic

19

A
T

E T
N

E p

A
N T Y

T OG M

0

p

y

M

D

D

DE

D
p

T

P T D

[

E N TU 0 E ST R D N UD C
E D Y OG E D D RO D N

D NT DY R AM D NT D R AM D NT
ND EN D P R M ND ENT D P R M IND ENT D

ST
p 0

RO

0

M
E N U P A IN E N TU P R IN E N u R I NC

NDE ST GR EP ND RA U EF
D T STU PR D ND TU PR R D ND TU Y 0 ND

T R G D EN E T R G D EN TU R R M END
ST P 0 PE D T ST P 0 N PE D T STU A ND N 1
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T

D PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D

R GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U F
GRAM IN P ND N S D PR GRAM I P ND NT S D PRO R M I E EN T STU PRC

NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0 ~

INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA~

NDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM I
EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM.INDEPENDENT STUDY PROGRAM INC
ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEF
DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE~

NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENl

TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ~

DY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STL
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT·STUDY PROGRAM INDEPENDENT STUD'l

ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY F
GRAM INDEPENbENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRC
AM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGF

INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY·PROGRA~

Topic 19

Handling Exceptional Conditions

Objectives

Introduction

When there is an interrupt to the normal flow of a program the system has a standard default
course of action. This topic describes how the programmer can code suitable statements to
override this action and to take other action more appropriate to the situation.

At the end of this topic you should be able to:

use the PL/I exceptional condition facilities to

(a) ENABLE/DISABLE conditions

(b) control the action to be taken when an ENABLED condition arises

use the PL/I Built-in-Functions that are specifically designed to help in exceptional
condition handling

• control the point at which execution is resumed after handling an exceptional condition

state the effects of, and code, SIGNAL and REVERT statements

state the function of the SNAP option of the ON statement.

An EXCEPTIONAL CONDITION is a statement which causes interruption of the normal
program flow. Some have already been met in earlier topics:

END FILE

KEY

RECORD

There are many more. A full list is given in section H of the Language Reference Manual.
Although the meaning of some will be mentioned in passing, you are advised to look others up
in the manual, to leave you thoroughly acquainted with them and to know in which circum­
stances they apply.

PL/I has a default course of action associated with each of these conditions. This is called
STANDARD SYSTEM ACTION (SSA for short). This varies from condition to condition.
Each SSA is listed in the manual under the appropriate condition heading.

However, it is possible, in our program, to code what action we wish to be taken should
particular situations arise, e.g.

This statement indicates that if the end of file marker for file INFILE is read then we are to set
the bit field SW to zero rather than take the .§~A_ which is to print a message and raise the
ERROR condition (see later).

Page 19 -1

Topic 19: .Handling Exceptional Conditions

Enablement/Disablement

Enabled

Disabled

Page 19 -'2

EXCEPTlONAL CONDITION

ENABLED DISABLED

PROGRAMMER
SSA WRITIEN NULL

There are two possible states for an exceptional condition: ENABLED or DISABLED.

An ENABLED condition is one which is being monitored throughout program execution, awJ
when it occurs an interrupt will be caused and the program will have to take one of three
actions:

1. STANDARD SYSTEM ACTION

2. a programmer written action

3. NULL action (see later)

A DISABLED condition is one which is not being monitored and thus there will be no program
interrupt even if the situation associated with the condition were to occur. For example, if
ZERO DIVIDE condition (raised by dividing by zero) is disabled, then even if within the
program a division by zero occurs, no interrupt will be caused and the program will continue
executing normally (even though the result of dividing by zero is unpredictable). ,

Categories

Topic 19: Handling Exceptional Conditions

Exceptional conditions fall into one of three categories:

1. those which are disabled by default and can be enabled

2. those which are enabled by default and can be disabled

3. those which are enabled by default and can not be disabled.

Those in category 1 are known as RANGE CHECKING conditions and will be met in more
detail in the topic named 'TESTING AND DEBUGGING AIDS'. Included in category 3 are
all the conditions which are associated with file handling, e.g. ENDFILE, RECORD and KEY.

Condition Pref ix

A condition is enabled/ disabled by means of condition prefixes. A condition prefix is the
name of the condition, preceded by the letters NO if it is to be disabled, enclosed in parenthes­
es and preceding the statement to which it applies and any labels which that statement has. It
is separated from the statement or its labels, if any, by means of a colon.

Example:
I l 1--1 t--1 1--

{ NQ_C 0 N VE RS JO Nl : I N~ [Ml!: PIB oc OP lr I o~ s(J M Al N);_ .
! I I .

.
t----1 f N I~ IRF IW) x 1*1 I~ 00 E LO : = y l .

I .
.
EN D ;

I

~: .· f,J
Here condition prefixes have been used to disable CONVERS.NfleN- throughout the main
procedure NAME and to disable OVERFLOW just for the duration of one assignment. Notice
that there is no intervening space between NO and the condition-name.

The RANGE CHECKING conditions, as mentioned, are disabled by default and so a condi­
tion prefix is only required if they are to be enabled.

Example:

Note that more than one condition prefix may appear within the parenthesis.

Example:

Page 19 -3

Topic 19: Handling Exceptional Conditions

Scope of Conditions

Page 19-4

A condition prefix to a PROCEDURE or BEGIN statement applies to the complete procedure
except where it has been respecified. A condition prefix to any other statement applies to that
statement only.

External procedures take default. disablement/ enablement unless specifically overridden by a
condition prefix. Internal procedures inherit disablement/ enablement from their immediate
containing procedure unless overridden by a condition prefix.

Example:

~ j' T T ·~ l T l ; 1 (c OIN v) : B : p ~ oc- ;
!--+-· - ~-~+- ~-+-·l, .. ~!--+-+-·+~-+---~-+--+--+--<~-+--+--+_._--+-~-+--l-lf-l--+-~-+--+-+--+--4-~~-+-+--+-4~

+
, t j _J. I·,

1
.· l'(Hoc

1
0INV): ~l~Tt: I = 8 + C;

··- +-- t- ·"'t +-+··- t-t ... ~·--t--t--t-·-t--t--+-+-·-t--t-+--+--t-f---t--+-f---t--1---+-+--t--+--1--1---t-·+-+-+--t-

.. '. ~~ -~-+- i ! f . ~- _, ··~ t· -t+·-+--+,-......._-+-··-+--+·-+--+--+-+--+-f-+-N+-D--+-; +--+-+--+--+-+--+-1--+--+-+-+-+--+-+-

• ~ ~--l--+- I l ···t-H-+--+1--+-+-+-+-1--+-C-+--+: --+--P+-R-+-O_Cl-'--j-+--+--+-+--+--+--1--+--+--+-+--+--+--+-

' r lJ,_ ' + ~-; +-t t+th-+-·-+--+--t--t--+-·+--+-f-+N-· t-D-t-;-t--1-t--t--t---+--+-+-+--t--t--+-+--+-t-

:~==~ . .l If Ni Qt;+-+--+--+---+---1-+-I -+--+--+---+-+--+-+--+--+-1--+-____,1--+--+--1--+--+--t--+-+--+---+-
I I

ri -1- -+-r·-+-·~~-+-+-+-4-+·+--+--+---+-~,-+-~~---~-+--+-+-+-+-+-i>-+---+-+-"--+--+-+-+--1--+--<1-+--+-+-+-

,__._ __ +-+-·~-~-1-~~--+·+--~+-lt--+-+--+-;-+--+-~-+-+--+-l-1--+-+-ir--+--;-1-1--~-+--t-t--+-+--1e--!--t-1'-t-+-+-t-t-
i l

•
fND;

In the above coding the CONVERSION condition is enabled in procedure D and in procedure
B, excluding the statement labelled STMTl. It is disabled elsewhere.

Note

A condition prefix to a DO group only applies to the DO statement itself, not to the complete
DO group. A condition prefix to an IF statement only applies to the IF clause, not to the
THEN or EESE units. (AltQough these units may be given their own condition prefixes).

Example:

'if_ NO co N l~U: I F ~ : 8 lJj HI! ~ i .SI I> : ZI~ DIC(;_ .
.
I~ I~ D .L

Topic 19: Handling Exceptional Conditions

Enabled Conditions

As mentioned· previously, if an exceptional condition is raised then one of three actions must
be taken; N~L, Standard System Action (SSA) or programmer written:

Programmer Written Routine

The programmer controls the action to be taken on the occurrence of an interrupt by coding a
statement or group of statements known as an ON-UNIT. A simple example is

which means that from now on if the end of file marker for file INFILE is read then set the bit
field SW to zero. The phrase 'from now on' is important because it implies that the ON-UNIT
must establish the action to be taken, before it is possible for the interrupt to occur. Thus in
most programs, ON-UNITs are coded at the beginning. The established action will exist until
either:

a) the termination of the block in which the action was set

or

b) it is overridden by another action - i.e. another ON-UNIT.

Example:

l>~IL PR.OC8 f~ITRY i
/* S.S.A. ~/

I• AER.R *I
O~ CONVERSl~N CIA~L 1eeRIB;

Cl>\ LjL P ROCI~;
l/i* 8E~IR1 *ILJ

CIALL PROCC;

{jNOCONVl: lf!_BOCC:
~· DI SABLl~D I~

OIN c OIHV ERS' OIN CIA LL Cf RIR i
~*-CfRR *I

Page 19 -5
.·.

Topi~ 19: Handling Exceptional Conditions

The action 'CALL AERR' overwrites the 'SSAs' and, in turn, is overwritten by 'CALL
BERR'. In PROCB, this later action is overwritten by 'CALL CERR'. However, on return­
ing to PROCA, PROCB is tenrJ.nated and the action reverts back tu lhal established on entry
to PROCB. Note that within PROCC the action is still 'CALL BERR' although there is no
possibility of an interrupt causing a CONVERSION condition.

Revert Statement

Page 19 -6

The REVERT statement is used within a PROCEDURE or BEGIN block to re-establish the
action which was in effect at the time of entry to that block.

Example:

l I l
PROTcA:

1 i 1
•

t

l

ll
PROC O Pl1j1 O~~[IM~ I~) i

l I
lj

: iOIN F 0 FL CIAiLL1
J I

I ··~ CIA!L L p R. 0 c 8 i
l
i

! ~ lRE.VERT FOFL;t

I• .s.s.~.
Al~~R;
I* AERR

/1*1 AERR.

'r* I

i l : ~ .. l l I * s . ~ . /~ . * I : .
~~-t--t-+-~---r-+-lf~~iN-~D-+-·- ~Tt-1--~--t-+-+-;---+-+--1-1--+-t-+-+-t-+-1~-1--+-+-

~-·~ ··-~ --1f--+--+-+--+-+-=+--+- I --+-i -·-+--+--1-+--+--t---+-+--+--+-+--+--i--+-+-+-+--+--+--+-+--+-+--+-

! i I
iP!RIOCB: PIROC!;
! i ! I l /it A ~~R

In PROCB the REVERT statement has the same effect as the statement

However if PROCB is a procedure which is called from various other procedures, each having
different actions established for fixed overflow, then the REVERT statement is the only way
of returning to the action in force on entry to PROCB for each case. This is, in particular,
appropriate in modular programming, the program being composed of several procedures some
of which are likely to be called repeatedly from the other procedures.

Topic 19: Handling Exceptional Conditions

ON Statements

The general format of the ON-STATEMENTs which a programmer may code is

ON condition ((qualifier)) (SNAP) on-unit;

Condition

The condition is the name of the exceptional condition, e.g. SIZE, ZERODIVIDE etc.

Qualifier

For all those conditions in the input/output group (e.g. ENDFILE, RECORD, KEY) the
condition must be further qualified by the name of the associated file.

SNA.P

Coding SNAP is optional. If present then the flow table, maintained if the compiler
option FLOW has been specified (see Topic 16, 'CONTROLLING THE COMPILER')
will be written onto SYSPRINT before the on-unit is executed. This is a useful debugging
aid, enabling the programmer to trace the flow of the program immediately previous to
the point of interrupt. An example of the output is given in Topic 20, 'TESTING AND
DEBUGGING AIDS'.

On-unit

This is the action to be associated with the condition (system, programmer, null).

The on-un!t must be either a single unlabelled simple statement or else, if a group of
statements is required to be executed as an on-unit, they must be coded as a 'begin­
block'.

Examples:

ON ERR.PR BflG I Nl

f.ND;

o~ fNDFILE(INFILf~ SNA~ s~: '0'81

O~ CIONVERSJON. X : ~;

O~ CONIVERSIOIN ~~LL EIRR;

ONI Ck>:NVERSIONi

Page 19 -7

Topic 19: Handling ·Exceptional Conditions

System on Units

These are only needed to 'reset' the action back to STANDARD SYSTEM ACTION from a
programmer written action. The general format is

ON condition SYSTEM;

Dynamically Descendent On-Units

Suppose that during exe.cution of. a CONVERSION on-unit the CONVERSION condition
were raised. The flow of control would then be back to the beginning of that on-unit and to
execute it again, and hence produce a loop within the program. This can be prevented as
follows:

ON co H VE. IR SI OH 8E GI ~;
ON co lN VE RS 10 H sy SIT f~; .
.

f~I ID i

If "the CONVERSION condition were raised now within the on-unit, the resulting action would
be STANDARD SYSTEM ACTION. On exit from the on-unit, the block is terminated and
the resulting action, due to CONVERSION condition, reverts back to execution of the on-unit.

NULL ON-UNITS

Page 19-8

This is almost the same as disabling a condition. With a disabled condition, processing
continues as if nothing had happened. With a null on-unit however, we still get Normal
Return, i.e. with

where the normal return is to raise the ERROR condition, the program will stop executing (see
later).

Disabling a condition is more efficient than a null on-unit because the former actually prevents
the occurrence of the interrupt altogether while the latter says 'let the interrupt occur, but do
nothing when it does'. However, some conditions cannot be disabled and in these cases one
needs to resort to null on-units.

Topic 19: Handling Exceptional Conditions

Flow of Control

After execution of an on-unit, one problem remains: which is the next instruction to be
executed? Consider the following:

~: IP ,ffO C;
OIN ZE ~o I~ IV ID f 8£ 6 ''"1 . .

El~ I> i
~

DI M " : ~ c IIJ/ lkl lL • ~ = -*' 1£1 '40 i
I

On execution of the instruction labelled DIVO, the ZERODIVIDE condition will be raised and
the BEGIN block will be executed. To discbver the flow of control after the termination of the
BEGIN block (the on-unit) it is necessary to refer to section H of the Language Reference
Manual again: the ZERODIVIDE condition section· and the paragraph headed NORMAL
RETURN. The answer is found here, in this case the flow of control passes to the point
immediately following the point of interruption i.e. the next statement.

It should be noted that the NORMAL RETURN varies for different exceptional conditions
and reference should always be made to the manual. The programmer may override normal
return by means of a GOTO statement within the on-unit and then the latter will not have a
'normal termination'.

The Signal Statement

When a program contains ON-units, it is a good idea to test them before the interrupts start to
occur in production runs. There is no need to invent ingenious routines for generating such
things as CONVERSION interrupts to test CONVERSION ON-units. An easier and more
economical method is provided, namely the SIGNAL statement.

The formttt is:

SIGNAL Condition-name;

and the effect is precisely the same as if the named interrupt had occurred 'naturally'. The
NORMAL RETURN from an ON-UNIT raised by the SIGNAL statement is always the
statement following the SIGNAL statement.

Obviously, once the program is working any SIGNAL statements should be removed.

Page 19 -9

Topic 19: Handling :Exceptional Conditions

Error Condition

The ERROR condition is often raised as the STANDARD SYSTEM ACTION for other
conditions, e.g. look up the STANDARD. SYSTEM ACTION for KEY condition in the
Language Reference Manual. It is also raised for interrupts which have no ON conditions (see
ONCODES later). The STANDARD SYSTEM ACTION for the ERROR condition is to halt
the program. Its major use is that instead of having to write several ON statements, one for

· each condition that could arise, the interrupts can be 'trapped' at a later stage by an ON
ERROR statement which will account for all the possible conditions, e.g.

ON ER. RO R 8£ GI Ni
ON ER ROR Sy ST EM; .
.

E.IH1 Di

This is the most common ON-unit appearing within programs. Note the SYSTEM on-unit
within the ERROR on-unit to prevent any looping.

Condition Built-in Functions

Datafield

Page 19-10

These are special purpose built-in functions which can only be used within ON-units.

A single type of interrupt may have a multitude of possible causes. The CONVERSION
condition, for example, might be raised anywhere in the program for any number of reasons.
(One common cause of the CONVERSION condition is attempting arithmetic on character
fields containing non-numeric characters (e.g. '12348'); this can be caused by mispunching).
The purpose of the condition built-in functions is to determine the precise reason for a given
interrupt, either for debugging or so that the program might attempt error-recovery. The
various codes and their meanings are listed at the beginning of Section H of the Language ·
Reference Manual.

If they are used it is necessary to declare them as builtin, e.g.

I I I I I I I I

Full details of each function can be found in Section G of the Language Reference Manual.

This function identifies the contents of the field in error when the NAME condition is raised
during a GET statement (see STREAM INPUT/OUTPUT topic).

ON CHAR

ON SOURCE

ONCODE

Topic 19: Handling Exceptional Conditions

This function identifies the character in error when the CONVERSION condition is raised.

This function identifies the whole field in error when the CONVERSION condition is raised.

The latter two functions can be used as ps~udovariables, i.e. on the lefthand side of assignment
statements. Thus values can be assigned to them in an~attempt to correct the conversion error.
If either are used within a CONVERSION o_n-unit, then the NORMAL RETURN from that
on-unit is to retry the statement causing the CONVERSION condition to be raised, otherwise

~ the .NORMAL RETURN is to cancel the program. Care needs to be taken that any attempt at
correction will not reproduce the CONVERSION condition, otherwise the program will loop.

Example:

1-4-+-4--+--+-+--<~4-+-~-.+--4--~-1--+--~-+.-+-1---4--+--+-----l-4--1---4--~--J---4-----l--~~_j_-L.--l-J_~_

DCLCONSOURCELONCHAR) BUILTIN;
ON CONVERSION BEGIN:

PUT LISjTCONSOURCE);
l--+--+---+--+--l-~--l--+--+---+---+--1---4--+-·-+-·->--.i--J-+---+--I- - 1----t- -- f--"-+-- ---

PUT LISTCONCHAR);
11£~ c HAR = ' fl I ; --+'--+----+--+--·-+-

1---+---l---+--1----+---l---+---1----+---I---+- 4------+--.+-·" D ; I ~+ I - r-- l- ---+-+-----+-1 --+-, -

This on-unit, using STREAM output, prints the field and character causing the error and then
replaces the character by a zero.

This function identjfies the cause of error more precisely. The function is replaced by a
number which uniquely defines the cause. On the initial pages of Section H of the Language
Reference Manual, the codes are listed alongside the error conditions. Note that any code
greater than 1000 raises the ERROR condition.

Example:

DCL ONCODE BUIL~llN;
ON KEY(ISFIL) BEGIN;

S EL E CIT (ON C 0 DE) ;
WHEN(51) CALL NO_REC;
WHENC52) CALL DUPL KE~;
O~HERIWISE £AbL ERJL~RT~tL

END;
t-+-+-+-t-+-t--+-+-f--+--+-~~-+--+-+-+-~--+-~'----l--+--+-+-+-+--4-~-1--4----~4-+--L--~-1---4-----+-+--

E ND;

Page 19 -11

Topic 19: .Handling Exceptional Conditions

ONFILE

ON KEY

ONLOC

Summary

Page 19 -12

This function identifies the file for which an I/0 or CONVERSION condition was raised.

This function returns the value of the key of the record when KEY condition is raised.

This function returns the entry point to a procedure in which any condition is raised.

The PL/I ON-unit has been. shown to provide a simple and convenient way of dealing with
interrupts and of diagnosing programming errors. Certain conditions, such as ENDFILE and
ENDPAGE are frequently used during production programs which are functioning normally, in
order to handle interrupts which are not errors. Others may also be used in this way: a
program might, for example, be designed to raise ZERODIVIDE condition in certain cases,
causing the activation of a suitable on-unit. Also, ON conditions are used to aid debugging.
Especially helpful in this respect are the condition built-in functions which will pinpoint the
causes of interrupts and possibly attempt to correct the errors.

Exercises

Topic 19: Handling Exceptional Conditions

1. Write an ON statement and the associated coding which will have the arithmetic value of
a field called BIG and double that of a field called SMALL whenever a FIXED OVER­
FLOW occurs.

2. What does the SNAP option do?

3. A program statement is coded as follows

J js~~=J ~ H J+HzJ;l I I I I I I I I I I J I I I I I I 11111
and the following facts should be noted:

(a) An ON OVERFLOW statement was in force when the program block containing
STMT was entered. This has since been overridden. It is required to restore the
original ON-unit for statement STMT and onwards.

(b) It is required to override a previously specified ON CONVERSION statement and
to restore standard system action for this condition · for statement STMT and
onwards.

(c) It is required to enable the SIZE condition for STMT and STMT alone.

Rewrite the statement STMT together with the coding which will fulfil these require­
ments.

4. Write the coding which will cause a branch to the procedure labelled BIG if RECORD
condition is raised, for the file called INFILE, due to the record variable being larger than
the record size. If it is raised for any other reason, a branch to the procedure labelled
SMALL is to take place.

Page 19 .;.JJ

Topic 19: Handling Exceptional Conditions

. Page 19 -14

5. Consider the following coding:

A: PRO~EDURE OPITIOIHS~MAIH}1
P: X = ONE;
CIAL L IS i
CIA L. L. c i

B: PROCEDURIEl

IQ : y •IT1HI~! f. *1«11 9) i

E'4D;

c : PIRIO c f Du R E j

•
ENID j

If SIZE is raised in Procedure A, then Xis to be set to 0, and processing continued. If it
is raised in Procedure B no action is to be taken. If it is raised in Procedure C system
action is to be taken. Complete the above coding as necessary.

Topic 19: Handling Exceptional Conditions

Answers

1.

O~i FO IFL SE 16. IN i
18 I ~ ::: Bl ~[Z 1li_
ISM At. L. : s~ I~ L L. I* l_g ;
IO; E~;

I

2. Prints out the table maintained by the FLOW option.

3.

4.

j j j I

IF ONCO~E • 22 !THE~ CALL 816;

~ND;

Page 19 -15

Topic 19: Handling Exceptional Conditions

5.

J_~ - ·w ._ - _[_ w ,,.-. ~ • ·"1
_ ... -- - -· " • - •"' • "!""•" • • ... I ;

T ON 3 I lzl~ x • cd ;
P: x:: ON f;
•
c~ LL 8 ;
•
CA l~L. c ii

8 : PIA oc E.D lufR E;
ON SI ZE;
•
Q: Y= TH RE E.* If 1 fJ i .

I EN ID j

EH D;

(S I I~ f) : c : IP1 RO 1C ED UIR £;
OIN ~I I ZE. s ys m EIM; .
R: IZ =F 10 UIR +IF ti\/ £;
•

EIN D· I

Page 19 -16

Topic 20

s p

D
A A

E D T
y p y

D u E T
M D N M D

0 G 0 p
u p D E u p E p D

R A T
N T y N T y DE

OG p T OG M E T OG M p T' D
E N TU 0 E ST R D N UD

E D y OG E D D RO D N ST 0
I D NT DY R AM D NT D R AM D NT p 0
ND EN D p R M ND ENT D p R M IND ENT D RO M

E N u p A IN E N TU p R IN E N u R IN
NDE ST GR EP ND RA u E

ID T STU PR D ND TU PR R D ND TU Y 0 ND
T R G D EN E T R G D EN TU R R M END

ST P 0 PE D T ST P 0 N PE D T STU A ND N
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T

ID PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
PROG AM N EPE· DE STU PR R N E END T ST PR G AM N EPE T T D

'R GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U
GRAM IN P ND N S D PR GRAM P ND NT S D PRO R M I E EN T STU PR

NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
I INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA
NDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
~EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN
1 ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
IDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
:NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
. STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
,TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IND£PENDENT
JOY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
. PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
1 ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
>GRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
~AM INDEPEND~NT STUDY PROGRAM INDEPENDENT STU~Y P~OG~AM INDEPENDENT STUDY PROG
1 INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA,

Topic 20

Testing and Debugging Aids

Objectives

Introduction

The purpose of this topic is to discuss the PL/I facilities which are useful for execution time.
debugging and testing.

On completion of this topic you should be able to:

• Locate statements in error using object time messages

List the on-conditions used to evaluate range values

• Use standard facilities to provide flow control tables during execution

Describe the use of SNAP, CHECK and programmer defined conditions in program
checkout.

A program which compiles and link edits successfully can produce one of three results when
executing:

1. It can terminate normally with the correct output.

2. It can terminate normally with incorrect output.

3. It can terminate abnormally.

This topic deals with the latter two results. Result 2 is normally caused by logic errors; the only
clue as to what went wrong is the output. This may not be sufficient. Aids will be introduced
which will allow the programmer to follow the flow of his program and to determine the value
of variables at any point within the program. Result 3 can have various causes:

invalid data

uninitialized fields

unset pointers, etc.

When a program terminates abnormally, the message produced contains sufficient information
for the programmer to be able to locate the point of termination ,.and the immediate cause.

Page 20 -1

Topic 20: Testing and Uebugging Aids

ObjectTimeMessages·

Page 20-2

In Topic 19, 'HANDLING EXCEPTIONAL CONDITIONS', it was stated that the standard
system action for the majority of ON-conditions is to raise the ERROR condition and to print
a message. The general format of the message is: ·

IBMnnn

For example:

ONCODE=nnn 'conditionname' CONDITION
RAISED message text - including error location

IBM037 ONCODE=0612 CONVERSION CONDITION
RAISED CONVERSION FROM CHARACTER TO BIT IN
STATEMENT 207
AT OFFSET A8C IN PROCEDURE WITH ENTRY PROGl

The message text will of course vary with the condition that has been raised.

The phrase 'IN STATEMENT n' will only be printed if the compiler option GOSTMT is in
effect, as mentioned in the topic named 'CONTROLLING THE COMPILER'. This phrase
informs you immediately as to which statement is in error. If GOSTMT is not in effect then
the offset must be looked up in the OFFSET table (produced by the OFFSET compiler
option).

Topic 20: Testing and Debugging Aids

Example:

The following program, when compiled, produces the offset listing shown below.

8 L} :a Li

TABLES OF OFFSETS AND STATEMENT NUMBERS

WITHIN PROCEDURE OFFSET

OFFSET (HEX) 0 7B BO 00 E6
STATEMENT NO. 1 5 6 7 8

WITHIN PROCEDURE LARGE

OFFSET (HEX) 0 C6 DE 128 144
STATEMENT NO. 9 11 12 13 14

WITHIN PROCEDURE SMALL

OFFSET (HEX) 0 SE 76 9E B6
STATEMENT NO. 15 16 17 18 19

Page 20 -3

Topic 20: Testing and Debugging Aids

The off sets ref er to the displacement of the numbered statement from the beginning of the
appropriate procedure. To find the required statement from the offset given, you need to find
the largest offset in the table less than the one in the message. The statement number below
this offset is the required one. Thus in the above example if the message text is:

AT OFFSET CA IN PROCEDURE WITH ENTRY LARGE

then the required off set is C6 and hence the program terminated when executing statement
number 11. Note that even if the offset in the message was DE the pr.ogram still terminated at
statement number 11.

A full explanation of each object time message will be found in the following manuals:

DOS PL/I TRANSIENT LIBRARY MESSAGES SC33-0035

OS PL/I OPTIMIZER COMPILERMESSAGES SC33-0027

In OS/VS these messages will be directed to the printer and so will appear with any other
printed output. In DOS/VS, they will be directed to the operator's console unless the
STREAM file SYSPRINT is open within the program. Obviously while testing a program, it is
useful to have the messages with the printed output, so it is best to ensure that SYSPRINT is
open. If the SNAP option has been used then this will be the case, otherwise the insertion of
the statement

will open SYSPRINT. (This is a STREAM output statement which means 'go to the beginning
of the current line' and so its inclusion will not affect the program logic in any way).

Thus when a program terminates abnormally you should be able to find the point of failure and
the reason for it by using the execution-time message. Normally there will be no need to use
further checkout facilities.

ON-CONDITIONS For Range Checking

Page 20-4

These are the ON-CONDITIONS which are disabled by default. They should only be enabled
when the program is being tested and not when it is a production program. This is because
they have high overheads in terms of time and storage. They are used to check that the
RANGES of various variables within the program are large enough to handle all possible valid
data input. Thus when they are enabled, the program should be tested with a complete range
of test data inputs and any resulting errors corrected. After this there should be no possibility
of the program abending during a production run due to the reasons mentioned below. Full
details of these conditions are found in section H of the Language Reference Manual.

Topic 20: Testing and Debugging Aids

SIZE Condition

The SIZE condition is raised when high order binary or decimal digits are lost either in an
· assignment to a variable or in a STREAM input/ output operation.

· Example:

If the value of Xis 99.9 and the value of Y is o·.1 (assume that X and Y are suitably declared)
then the result of this calculation is 100.0. This would be assigned to SUM as 00.00. The SIZE
condition would be raised, because the high-order digit (1) is lost.

Note that the SIZE condition would not be raised if only low-order digits were lost as the result
. of an assignment statement.

Example:

would cause the value 03 .14 to be assigned to SUM with loss of the low-order fractional digits
1593. This would not raise the SIZE condition.

STRINGSIZE Condition

The STRINGSIZE condition occurs when a string is assigned to a shorter string and truncation
occurs.

Example:

I) CL y ·cu ~I R(b) VIA RY IN ~;
DC L. x CH AR (I+> i

(bS. til RI N ~s IZ l~l : lX1 = y;

If the current length of Y is greater than four then STRINGSIZE condition will be raised.

Page 20 -5

Topic 20: Testing and Debugging Aids

STRlN'GRAAJ:GE;Condition

This should be used during debugging if the program uses the SUBSTR built-in function,
particularly if expressions are used in the argument list. The STRINGRANGE condition is
raised when the substring defined by the SUBSTR built-in function (or pseudo-variable) does
not lie within the given string (the precise rules which are used to determine whether or not a
substring is valid can be found in the Language Reference Manual).

·Example:

1) CL SIT IR. I NG CH A R. {') ;

_(ST R~) : SU 8 = SIA. BS TIR (~ m R. I 1~<1 , IJ +- 1 ' 2) i

If N had the value of 5, for instance, then an attempt is being made to obtain a substring of
STRING consisting of positions 6 and 7. STRING, however, only has 6 positions. This would
result in STRINGRANGE condition being raised.

SUBSCRIPTRANGE Condition

Page 20-6

The SUBSCRIPTRANGE condition is raised when a subscript is used whose value is outside
the bounds specified in the declaration of the associated array.

Example:

OC L A(t ") f I XE D(3) j . . .
J l DO I :: 1 TO Ni
!(js UB R fi) : ~ {I) = ~ (I) + 3 ;
I EN D ;
T I I

If N is greater than 10, then SUBSCRIPTRANGE condition would be raised on the 11th
execution of the DO loop.

There is a standard system action associated with all the range checking conditions - see
Language Reference Manual (Section H). If required the programmer can write an ON
statement to override the standard system action with a programmer-defined on-unit. Note
that the normal return from an on-unit for the SUBSCRIPTRANGE condition is to terminate
the program.

FLOWTRACE

FLOW Option

Topic 20: Testing and Debugging Aids

This compiler option has already been discussed in Topic 16. It is specified as FLOW (n,m)
and causes the compiler to maintain a table of the last n program branches and the last m
blocks that were entered.

The information in this table is printed as part of the SNAP output whenever an on-unit with
the SNAP option is entered. It appears as a list of the most recent transfers of control,
indicating the relevant statement numbers. In addition, where a transfer of control is from one
block to another block, the names of the two blocks (either procedures or on-units) ar~ also
shown.

An example of the output is given below. This is the flow table produced when the program
mentioned in Topic 16, under the subheading 'COUNT option, is executed with the associated
data.

'ENDFILE' CONDmON RAISED IN STATEMENT 23 AT OFFSET +000250 IN
PROCEDURE WITH ENTRY FLOW

14 TO 12
14 TO 12
14 TO 12
14 TO 12
18 T023
24 T09
14 TO 12
18 T023

The information printed here informs us that the program executed
instructions sequentially until statement 14. It then returned to
statement 12 and executed statements 12 to 14 four more times before
continuing executing sequentially to statement 18 where the next branch
occurred, and so on. By printing out this table within an ON-UNIT, the
program flow immediately prior to program failure can be examined,
possibly giving useful information as to the cause of failure.

Page 20 -7

Top~c ~O: Testing and Debugging Aids

Pl/I Dump

The flow table can also be produced by calling a PLIDUMP. The general
format of the required statement:

CALL PLIDUMP ('options list');

A full list of options is given in the PL/I PROGRAMMERS GUIDE in the
. chapter named 'PROGRAM CHECKOUT'. It should be noted that it is

normally not necessary to obtain a full dump of the program partition.

Example:

The.option 'T' states a flow trace is required. This is similar to the
ou~put from the SNAP option. 'F' states that a list of the full file
attributes and the contents of their buffers are required, and 'C'
states that execution is to continue after the dump is taken.

The purpose of the flowtrace facilities is for the programmer to be able
to follow the flow of control in the program in order to enable him to
discover the 'route' the program took towards the error, and hence the
reason for it.

CHECK Condition

Page 20-8

Another method of tracing the flow of a program is with the CHECK
condition. This is normally disabled and is enabled in the usual way
i.e. with a condition prefix

The condition in the above example would be raised when:

1. a labelled statement is executed, and

2. an assignment is made to a variable.

The standard system action in case 1 is to print out the label and in
case 2 to print out the variable and its value.

Hence a printout of every label branched to (including sequential
execution) and also of each variable every time its value changes, can
be obtained. This information is very useful for checking how the
program has flowed and also for checking the values of variables to
discover whereabouts in the program your logic has erred.

Topic 20: Testing and Debugging Aids

In a large program you can imagine that this would involve a great deal
of printout and sorting out the useful information from the rest can be
quite difficult. Provision is therefore given, whereby a subset of the
labels and of the variables can be specified by enclosing the required
ones in parentheses after the prefix as follows:

(C Hf. CK (L 1 l, L1 ,L 3, ~ I)) : ~: PR oc;
L.1 : Vt - 1 j

Do J • 1
Vt =

L2: EIN D ;
L3: j

EN Di

The output as it appears on SYSPRINT is as follows:

L 1;

V1= 1.00000E+OO;

V1= 2.00000E+OO;

L2;

V1= 3.00000E+OO;

L2;

v·1= 4.00000E+OO;

L2;

L3;

IT 0 3i
V1 + f j

The variables and labels being monitored can be varied throughout the program by disabling
the CHECK for selective variables e.g.

[l NO cu EC j((L1)) : 8£ ~ IN l .
.
EN D ;

would switch off the monitoring of L1 for the BEGIN block. Also the state of the CHECK at
entry to a procedure can be reobtained by use of the REVERT statement i.e.

I l+H+H H+M+H+ l+l>I; 111111111111111111

Page 20-9

Topic 20: Testing and _DebUggfug Aids

The PUT Statement

bA

!

i '

! I
l

1 I

The PUT statement is not specifically a debugging feature but it can conveniently be used to
obtain debugging output, particularly within ON-units. It is, in fact, a STREAM output
statement. The format is:

PUT DATA (data list);

· The data list can be omitted. If it is, then an execution of the statement will result in the
printing of every variable within· the program and its value in the form of assignment state­
ments. Every element of an array will be printed and so will all elements of a structure, fully
qualified.

Example:

The output from the following program is shown below.

I I

TA: PR 101c OP 171 I 0 NS (M At N) ;

DCL ~R R(b) CH AR. (1) IN IT (f A, ' B ,) 'c ' I~ ,* ' F I I> j I J)

DCL 1 Sill R,
I z ~I IN OR1 cu AR (1) IN 1111 -c I Cl ,) ,

2 Ml IN ol~ 2i J

3 FB FI XfO 8 I N(3) IN t 171 (1) 1_

3 FD Fl XED Of C{ ,, 2.) IN 1111 (3 .2 };
DC L Pl C/T Pl C' qq qv • q I I N IT l(J wS ·~) ll
PU 111 DA T~ i
E.N D i

I

PICT=065.4 STR.MINOR1='G' STR.MINOR2.FB= 1 STR.MINOR2.FD= 3.20 ARR(1)='A'
ARR(2)='B' ARR(3)='C' ARR(4)=' I ARR(S)=' I ARR(6)='F';

Page 20-10

Thus the values of variables at any point within a program can be found. In large programs this
would result in large amounts of printout. Normally, you are only interested in specific
variables, and you can limit the printout to the values of these variables. This is achieved by
inserting the variables into a data list within the PUT DAT A statement. Thus in the above
program when the PUT DATA statement is replaced by

then the output will be

STR.MINOR1='G' STR.MINOR2.FB= STR.MINOR2.FD= 3.20;

A word of warning concerning the use of the PUT statement is necessary. Any attempt to
PUT a fixed-decimal data item which does not contain a valid representation of a fixed decimal
number will result in a data interrupt. This is particularly liable to happen when PUT DAT A is
used without a data list (when you print every variable the chances of encountering uninitial­
ized or unassigned fixed-decimal data are fairly high).

Topic 20: Testing and Debugging Aids

Programmer-Defined Condition

The programmer is free to make up his own on-conditions and give them any name he desires.
He can then, later on within the program, SIGNAL his own conditions. An example of this use.
is as follows:

ON CONDll~l~N[~f~£) SNAP BE61H;

I = J + 1;
IEH I);

DCL I FIXED DifC{2) IN/~~1~ EXT£RHAL_i

Sl~NAL CONDl~ION~~INf) i

The on-condition has been called MINE, and each time it is executed, the flow table is printed,
the values of Vl, V2 and V3 are printed out together with a message stating which 'test point'
it is. (The latter is a STREAM output statement). Then, wherever in the program this
information needs to be extracted, all that needs to be coded is the SIGNAL statement as
shown.

Page 20-11

TopiC 20: Testing and Debugging Aids

Exercises

Page 20-12

.1. Give two ways in which the point of interrupt in a program can be determined from a
system action message.

2. Write down two PL/I features which are suitable for displaying the contents of data
variables during program execution, for debugging purposes.

3. In the following coding, assuming that all exceptional conditions are enabled, which ones
could possibly be raised.

1

I> CL A[{_ 1~) cu AR (',) i

DCL 8 CH lAI R. lL 1 fJ)" VA Rrt I H fi j

DO I = 1 ITi 0 Ni
/I_, AS SI el~ VA L. I ,, IF1 IE LD 111 0 8; * f/I ~I <11) = 8; 1

f.N l> j
T

4. Add code to the following 'skeleton' procedure such that, if an assignment to a binary or
decimal field causes loss of high-order digits, then the value of all variables within the
program will be printed on the printer; execution should resume at the statement follow­
ing the assignment.

ITEIST: p R.OC;

..

Topic 20: Testing and Debugging Aids

Answers

1. a. Use of the GOSTMT option

b. Table of offsets and statement numbers

2. a. CHECK condition

b. PUT statement

3. a. STRINGSIZE condition

b. SUBSCRIPTRANGE condition

4.

t il l I I

s J I~ E)T: TE ~IT : p RO c;
T ~ ON SI Z£ p um DA TA;
T I .
I

I
I .

T .
~+ EN D ;,

I I I

Note that NORMAL RETURN resumes execution at the following statement.

Page 20 -13

Top~

21

s p
D

A A
E D T

y p y

D· u E T
M D N M D

0 G 0 p
u p D E u p E p D

R A T
(N T y N T y I DE

OG P T OG M E T OG M p T D
) E N TU 0 E ST R D N UD

E D Y OG E D D RO D N ST 0
~ . D NT DY R AM D NT D R AM D NT P 0

ND EN D P R M ND ENT D P R M IND ENT D RO M
E N U P A IN E N TU P R IN E N U R I~

' NDE ST GR EP ND RA U E
~D T STU PR D ND TU PR R D ND TU Y 0 ND

T R G D EN E T R G D EN TU R R M ENC
ST P 0 PE D T ST P 0 N PE D T STU A ND N
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T

JD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D

>R GR INDEPEN EN S Y PR GR DEPE ENT ST DY ~R GR INDEP DENT S U
GRAM IN P ND N S D PR GRAM I P ND NT S D PRO R M I E EN T STU PR

NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
1 INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA
:NDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
>EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY .PROGRAM IN
'ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
JDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
:NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
~ STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
>TUDY PROGRAM INDEPENDENT STUDY PROGRAM (NDEPENDENT STUDY PROGRAM INDEPENDENT
JOY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT .ST
' PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
'ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
>GRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY~PROGRAM INDEPENDENT. STUDY PR
~AM INDEPENDENT STUDY PROGRAM INDEPENDENT. STUDY PROGRAM INDEPENDENT STUDY PROG
1 INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA

Topic 21

Overlay Defining

Objectives

Introduction

•'.

This topic looks at some ways of sharing storage - i.e. ref erring to one area of storage by more
than one name (often called overlaying). The majority of the topic will be concerned with the
three types of defining using the DEFINED attribute - this gives overlaying at compilation
time. Another method ~f sharing storage uses based storage and the ADDR built-in function -
this gives overlaying at execution time.

At the end of this topic you should be able to:

understand the rules for simple and string overlay defining and be aware of the conse­
quences of breaking these rules

understand iSUB defining for arrays

• understand how based variables and the ADDR builtin function can be used to share
storage

use the appropriate storage sharing technique for a particular situation.

There are certain situations in which it. is convenient to interpret one area of storage in
different ways. For instance, a program might read a file which contains two types of record -
let's say one type contains the name and address of a customer and the other type contains
details of purchases made by him/her. A 'code' could be included in each record to indicate
the 'type' of record (e.g. an 'N' in the first byte means a name and ~ddress record, a 'P'
means a purchases record). Once the record has been read into a Je area it can be
'interpreted' using an appropriate structure, which corresponds to the Sl.v1.age area itself or is
'overlayed' on that area.

The three types of defining using the DEFINED attribute are simple, string overlay and iSUB.
Based variables and the ADDR builtin function can be used to give overlaying of storage areas
at execution time - this is useful in situations where the use of the DEFINED attribute would
break the rules of the language (see later).

Page 21 -1

Topic 21 :. Overlay Defining

The Defined Attribute

Page 21 -2

The DEFINED attribute is used to specify that the variable being declared refers to all or part
of some other area of storage. This takes place at compilation time.

Example:

Note that DEF is the standard abbreviation of DEFINED.
Here QUANTITY is the 'defined variable' and NUMBER is called the 'base variable' (which is
nothing to do with based storage). The two declarations need not be next to one another. The
base variable must be known in the block in which the defined variable is declared. If we refer
to QUANTITY we are referring to the same area of storage as when we refer to NUMBER.
QUANTITY is, therefore, effectively initialized by the initialization of NUMBER. It is not
possible to initialize a defined variable directly (think about it).

Defined variables do not 'inherit' the data type or precision of the base variable; they must be
declared with. suitable attributes and precision of their own. The suitability of attributes
depends on the type of defining being used - simple or string overlay (see later).

The preceding example was used to illustrate several points about the DEFINED attribute.
The following is a more realistic use of the DEFINED attribute.

DCL LclTl.IfRS CHAiR(J);

The area of storage, in this example, can be referred to by the name LETTERS when it
contains character data. Alternatively the same area can be referred to by the name NUM­
BERS when we wish to perform arithmetic on the contents of the field - in which case the
contents must be numbers or else an execution error will resul~. (Arithmetic can be performed
on a numeric character field but this is less efficient than using a numeric picture field).

Topic 21: Overlay Defining

The following is a summary of the more important points about the DEFINED attribute. Do
not try to learn these points. Merely try to understand the reasons behind them. More informa­
tion is contained in Section I of the Language Reference Manual under the DEFINED
heading.

1. Base variables are declared in the ordinary way, which may be explicitly, implicitly or
contextually.

2. Base variables cannot themselves be defined on another variable, nor may they be
BASED on a pointer.

3. Defined variables cannot have the EXTERNAL attribute, although base variables may be
INTERNAL or EXTERNAL.

4. Defined variables have the storage class of their base variables; they cannot be declared
with their own storage class (i.e. they cannot be given the AUTOMATIC, BASED,
CONTROLLED or STATIC attribute).

5. Only the base variable may be initialized.

6. Any number of variables may be defined on a single base variable.

7. The base variable is in no way changed or affected merely by having at?-other variable
defined on it, but any assignments to a defined variable will change the contents of the
base variable.

Simple Defining

Elements

Arrays

The basic rule about simple defining is that the defined variable must 'match' the base variable
(see below).

Two element variables are said to match when they are of the same data type and precision.
However a defined string (character or bit) can be equal to or less than the size of the base
string.

Example:

I

C>C IL CIH AIRJ ' CH A R. (612_1
J)C /... ~. HA lM CH ~ R (141) /)' E. F c[H Al~ 'i

I

The simple defining of arrays involves a one-to-one correspo,µdence between elements with the
same subscripts in the base array and defined array. These ·elements must match in the sense
described above. The bounds of the base array and defined array can be different, however
the defined array should be completely contained in the base array.

Examples:

l
~c L AlB!Ri 3)
1z>cl~ ~BR.IA1 t (3)

I I I I

c ,., A 1R L121 11~ 11-r r · o a , . • L A • • \ n • , ll 1
CHAIR(1) (JfF Al~R_i

Page 21 -3

Topic 21: Overlay Defining

Structures

Page 21 -4

In the above example ARRA Yl only refers to the first character in each element of the base
array ARR. Heney ARRAY! has been effectively initialized so that ARRAY(l) is '0',
ARRAY 1 (2) is 'L' and ARRAY (3) is 'D'; ARRA Y2 has been def~ned on top of the second
and third elements of ARR and so has effectively been initialized so that ARRA Y2(2) is 'LA'
and ARRAY2(3) is 'DI'. ELEM is defined on top of a particular element so ELEM is
effectively initialized to '0'. Notice that ARRAY 1 consists of 'non-connected' areas of
storage.

The simple defining of structures involves a correspondence between elements in the same
'logical position' within the structures. Structures are said to match when their logical organi­
zation is identical and corresponding elements match. In addition, the defined structure must
be a major (level-one) structure. However the base structure can be a minor structure.

Examples:

.l
~gc L. 1 I "41Rlf CIOIR D 1 ll

2 CID!~~ C Hl~R1 (f) ,
2 INAIME,

-t-H--10 c L 1

The above examples illustr.at~ lll()St of the points. In particular INITIALS. FIRST is effectively
initialized to 'J' and INITIALs effectively initialized to 'A'. INITIALS consists of 'non­
contiguous' areas of storage.

Whenever the base variable does not match the defined variable (different structuring or
different element attributes for 'corresponding' structure elements) then simple defining is
impossible and string overlay defining. (see next section) is attempted. The compiler normally
issues a message to indicate this. However, if the defined and base structure consist entirely of
character string elements or entirely of bit string elements and the sizes of the two structures
are the same, then string overlay defining will take place automatically and the compiler will
give no message even if the structuring is different.

String overlay defining is also used if the POSITION attribute is specified (see next section).

Topic 21: Overlay Defining

String Overlay Defining

In the case of a simply defined data aggregate, it is defined element by element upon the base
aggregate. We have seen that, when the elements of the defined aggregate are strings which
are shorter than those of the base aggregate, the defined aggregate will contain 'gaps' in main
storage: it will be 'non-contiguous'.

The distinguishing feature of string overlay defining is that aggrega!~s are not defined element
by element, but each aggregate is treated as a continuous string. It follows that the defined
aggregate always occupies a contiguous portion of the storage occupie4.. by the base aggregate.
In string overlay defining, neither the base variable nor the defined variable may be non­
contiguous. Only string yariaJ:>les may be defined in this way. Base and defined variables may
be either elements or aggregates, but they must be both character string data, or both bit string
data. (Here picture data is included as character string data).

The chief application of string overlay defining is the defining of more than one structure upon
a single input or output area, so that records of different types may be accommodated.
Remember that string overlay defining automatically occurs whenever the defined and base
items do not 'match', and also whenever the defined variable has the POSITION attribute.

Ex~mple:

ID~L 1
CHAR(1),

2 NAM~ CHA!A {2~) >

[2. Al> C[R ES S

12. ITlYJ p E c 1-iAIR!f 1) > I

RE~lb FILE~l~~ILIE) lN!TO R£C~1)i

•
E.N I> j

Here the file INFILE contains both name/address _and purchase item records and structures
have been declared to correspond with these two record types. The two structures consist
entirely of character string elements and the sizes of the same, therefore the compiler will
produce string overlay defining automatically. ·

Page 21-5

Topic 21: Overlay Defining

The POSITION Attribute

There are occasions when the defined variable 'matches' the base variable, and yet simple
defining is not required. In this case we may use the POSITION attribute to produce string
overlay defining. (The POSITION attribute may be abbreviated to POS).

Example:

l~c L. 1 1 Nl~E.lci ,

2 L I N EJ C HIA R (3 ~) j

nclW 1 1nw1N~£C ~£F INREC l~OS(1),
2 HALF CHA!Rj(5),
2. Ri~sl11 CHAIR(S)i

In these declarations, TWINREC is string overlay defined upon INREC. Thus HALF refers to
the storage occupied by the first five characters of WORD, and REST refers to that occupied
by the second five characters of WORD. If string overlay defining had not been forced by
POS(l), however, simple defining would have been in effect (because the structures match):
HALF would then have ref erred to the same storage as before, but REST would have referred
to the storage occupied by the first five characters of LINE.

As you may have guessed, the POSITION attribute is not always specified as POS(l). The
parentheses may contain any expression, which is evaluated as an integer. This specifies the bit
or character of the base variable where the defined variable is to start.

Example:

t I j

oc llJ A\RRIC 3) CM AR (3) I N •IT (I BL A' l CK p) (00 L' l2_ ; l J_

I oc ,_ MH>1{3) CH Al~ (1) DIEJ IF AR R PQ s[(4-) j
I T I

Here, although MID matches ARR, the defining is not simple. String overlay defining is used
because of the POS attiibute aud the three elemeuts of MID are effectively iuitialized to 'C',

'K' and 'P'.

Non-Matching Base and Defined Variables

Page 21 -6

Although it is possible to 'define' structures, arrays or elements on areas of storage whose
attributes are different, this is not to be recommended. The effect is to 'force' string overlay
defining - the rules of this say that both the defined and the. base variable must be bit or both
must be character. In many cases (e.g. fixed decimal field overlaying a character field) the
rules for string overlay defining will be broken. The compiler merely issues a message and it is
possible for the· program to execute. The programmer should be aware that he is breaking the
'rules', however, because future releases of the compiler might not be so lenient. One way of
'legally' string overlaying completely different structures on the same storage area is to use the
based storage class and the ADDR builtin function.

Topic 21: Overlay Defining

Based Variables

Example:

DCL 1 SlrRUCA,
2 CObE. CHl~R(1),

DCIU 1 S0CRUC8 6ASEO{P),

I

The above coding associates the pointer P with the address of STRUCA at execution time by
means of the assignment statement (look up the ADDR builtin function if you have forgotten).
This has the same effect as the following coding:

l>C. I~ f SIT lB I~ CB l>E F ~. TR jLC jq A I~ OS (1) '
2 IE ltvt 'l!J c~ AR l 1~) l

2 be SC jR ' p 111 f lq N c~I Al~ (3 1;) j

Page 21 -7

Topic 21: Overlay Defining

Page 21 -8

However, string overlay defining takes place at compilation time.

The use of based variables differs from string overlay defining in another important respect.
Data of any type or organization may be given the same main storage address as data of any
other type or organization: the programmer will only become aware of absurdities when they
generate execution time errors. This sharing of storage between completely different data
types enables storage to be used more economically.

Example:

l>CL. f D~SCRtPITION 6ASf0(P),
2. IT y p e. c H~ R (1) I

i 2. DESC CHAl~(3l'f);
D. c L 11 I) El*·' L I

i l '! I .. ~ WAR f.H 0 L(s E. c 1-4 AR (2 8) LL I

Jjl i 4-+-~l~-l-4-+--l-l-~--4-~4-4--1-1--+-+-+--"_._+-+--4-+--+--+-+-~~-l--+----+-+-+-t-+--
l_J!{ = Ail> DR. (bf. TIAl I Li) I; I I
i JR! S Ail> l~ I L E. (J N Fl I L f) l NT 0 (b E.111A I L. }1

J_ If !F IT1YIP e. :: c A I THIE.N '*' i
+· J_f I/* P ROC ES S b £[IA IL. _BE cgR~ 1*[7
. i j_ I l IS.~ib i

I F IT v p E I= \ 8 I IT .. , E.N l> 0 i
1 1 ,+-+-~i~/~l*-+-4~P~R~o~c~E~~~!S+-+-b~f~s~c~R~,·~P~T-+-t1-o~N~R~E~c~o~IR~D-+-+*~/-:t-

f.Nl> i
I

The above coding could be used to h3;ndle a file which contains two completely different
record types corresponding to DESCRIPTION and DETAIL. (Note that even more storage
could be saved by declaring DETAIL and DESCRIPTION based on pointer P. Then locate
mode statements (READ SET) could be used to process the records in the buffer.

iSUB Defining

Topic 21: Overlay Defining

This is similar to the simple defining of arrays, except that it is used when the programmer does
not wish the subscripts of each element of the defined array to be the same as the subscripts of
the corresponding element in the base array; instead he is able to specify an algebraic relation­
ship between the subscripts of corresponding elements.

A list of dummy variables called an iSUB list is used to define this relationship. There are as
many items in this list as there are dimensions in the base array; they specify the algebraic
operations to be performed on the subscripts of a defined element to obtain the subscripts of
the corresponding base element. The items in the iSUB list can be constants or expressions
involving iSUB where i refers to a dimension of the.defined array (see examples).

~-~ r ~ __ ,r_E;i_],_ m1~ mt 1~1i_. ~-~ f 1r~t1~r~1-_~11 ~1r~ 11:_~ ! !1~~~!H ~ ~,~ ~~~~ ·~
Jci, s juAA~cf1·lz>tt~~q=H~EjOfckJ!F ~/<sEi1f~~~. ms+ 1) 1

DIAGONALl is a one dimensional, 3 element array defined on BASE such that

DIAGONALl(l) corresponds to BASE(l,1)
DIAGONAL! (2) corresponds to BASE(2,2)
DIAGONAL1(3) corresponds to BASE(3,3)

2,1 0 -DIAGONAL.1

D - DIAGONAL.2

* *
G 3,2 G • -COL.LIMN 2

* -SQUARE

DIAGONAL! thus corresponds to the 'forward' diagonal and DIAGONAL2 corresponds to
the 'reverse' diagonal. COLUMN2 corresponds to the second colum.n of BASE. SQUARE
corresponds to the four elements shown in the diagram as follows:

SQUARE(1,1) corresponds to BASE(1+1,1+1) i.e. BASE(2,2)
SQUARE(1,2) corresponds to BASE(1+1,2+1) i.e. BASE(2,3)
SQUARE(2,1) corresponds to BASE(2+1,1+1) i.e. BASE(3,2)
SQUARE (2, 2) corresponds to BASE (2+ 1 ,;u-1) i.e. BASE (3, 3)

You should now be reasonably familiar w_ith how to use iSUB defining but why is it used?
Well, once an array has been iSUB-defined on selected elements of the base array, then
operations can easily be perf o~ed on those selected portions using the defined array within a
DO loop. For instance, an insurance company might use an array of insurance premiums for
men and women of different ages, weights and occupations. An iSUB defined arr·ay could be
used to alter the premiums for a particular category of person (e.g. male computer program­
mers over 27 years old and less than 180 lbs. in weight).

Page 21 -9

Topic. 2 t: Overlay Defining

Exercises

Page 21 -10

1. Twenty bytes of storage are to be. treated as a twenty character field called LONG, or as
an array of four FIXED DECIMAL(9) fields, called ARRAY. Write the necessary
declarations and any other statements required.

2. Declare a four element array, called FOUREL, such that each element has the CHAR(2)
attribute, and which occupies bytes 7-14 inclusive of the storage occupied by the array
LINEAR, which has been declared as:

3. Declare a 20 byte character field whose sole purpos~ is to contain data which can be
accessed two characters at a time. You might call the field TRICK (hint!).

4. Declare a '3-by-3' array, ARR2, whose elements correspond to the shaded elements of
ARR 1 as shown in the diagram.

ARR 1 is declared as:

Answers

Topic 21: Overlay Defining

1.

l I l l l i l I

} jl>1C L: TL10 Njq R.{ c HA 21¢) j I
I

~jb c L ATRj~ y (~) Fl Xf. b bf K:I (Cf) BA SE b_(j p) ;
: lP =l~l>.l>IJt (!-ON ~) i

2.

3.

4.

l I T i

Based variables and the ADDR builtin function are used because ARRAY has different
attributes to LONG. It is possible, at present, to use string overlay defining here but it is
brea~ing the rules (see section on non-matching base and defined variables).

No DEF attribute is required! Arrays are intended to be used exactly as described in the
question.

Page 21 -11

Topic 22

s p

D
A A

E D T
y p y

D u E T
M D N M D

0 G 0 p
u p D E u p E p D

R A T
(N T y N T y DE

OG p T OG M E T OG M p T D
) E N TU 0 E ST R D N UD

E D y OG E D D RO D N ST 0
'1 D NT DY R AM D NT D R AM D NT p 0

EN D p R M ND ENT D p R M IND ENT D RO M ND
E N u p A IN E N TU p R IN E N u R IN

' NOE ST GR EP ND RA u E
~D T STU PR D ND TU PR R D ND TU Y 0 - ND

T R G D EN E T R G D EN TU R R M END
ST P 0 PE D T ST P 0 N PE D T STU A ND N
U Y ROGR NT S UDY ROGR NT S U Y ROG EN T

JD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D

'R GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U
GRAM IN P ND N S D PR GRAM I P ND NT S D PRO R M I E EN T STU PR

< NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
'1 INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA
lNDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
)EPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN
'ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
~DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
:NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
r STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
iTUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
JOY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
(PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
'ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
)GRAM INDEPENDENT ~TUDY PROGRAM INDEP~NDENT. SJUDY PROGRAM INDEPENDENT STUDY PR
<AM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROG
'1 INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA

Topic 22

Structures and Arrays

Objectives

Introduction

This topic deals with various uses of structures and arrays which have not been covered so far.
The first part of the topic is concerned with structures, the second part with arrays.

At the end of this topic you should be able to:

• use the LIKE attribute for declaring structures, where applicabl~

use BY NAME assignment for structures, where applicable

understand and be able to use cross section of an array

use array handling built-in functions

• understand the CONNECTED attribute and when to use it.

PL/I uses elements of data which can have attributes of decimal fixed, binary float, character
etc. PL/I also allows the programmer to refer to aggregates of these data elements. Structures
are aggregates whose elements may have different attributes~ Arrays are aggregates whose
elements have. the same attributes.

Page 22 -1

Topic 22: Structures and Arrays

Structures

LIKE Attribute

Page 22 -2

The LIKE attribute is used to declare a major or minor structure with the same structuring as
that of another major or minor structure. Minor structure names, elementary names and
attributes are copied exactly .

. Example:

DC L 1 MASl11Rt.:C I

2 c 0 DE. ~IH~A R (1) I

T 3 FIRSf~ CHAR{1~~~
I I i · 3 S ECONID CH[l\R(1~},

...._..l--+--+-1-i:l 2 JAIJ> ORES S CH A1n ''..<.191 J !

i ~47-=r"]CL. 1 UPDA[11e LIKE ;;J:RE;;
l !f*T i JEFF ecrrl1 VELY /71Hf SAME A~ 1~/
I /I~ DCL 1 UPDAITIE, *I

[[_ l(l*! 1
- 2 1c o of c HAIR{] 1 J , *I

h---+-+--+--f-l il'! i I 2 N'AM E , *I
._._ ___ J ___ Jl~--- i 1 _ T T 3 F I RS

111 C HA R (1 ~) , *I
; . I fl tt 3 1.5 E c 0 H °- c HAIK(1 !ll[)'L *17
I : (~L++ 2 A Dfl>IR Es s c HIA R (lf~) j_ ltt I

"[•-+- _ +fitEJA1
itf I JLf. (!MAST FI L) I N\TO LCJM ASIT REC) l

i - REIAO fl1L.f(UPF 11..) INTO (UPOIATE.ll j

~,,,__, -+-+-~-+-MAISITIR EC. Al> bR ES S 1= Ui~DIAl7if.. IA l>I> RESS ;
T I

You can see from the example that the LIKE attribute saves coding at declaration time.
(Remember, however, that references to elements within the two structures would have to be
qualified by the major stru~ture name, e.g. MASTREC.ADDRESS, in order tc avoid ambigui­
ty). See section I in the Language Ref ere nee Manual for further information.

Topic 22: Structures and Arrays

BY NAME Assignment

The BY NAME assignment is a special case of the assignment of one structure to another
structure. A BY NAME assignment only t4kes place for those elements whose element names
are the same in the structures concerned and whose qualifying names, except the highest-level
qualifier appearing in the assignment statement, are also the same.

In the example below the programmer has arranged that the relevant parts of the printline
structure have the same names (and qualifying names) as the input record structure. Having
taken this small amount of care, the necessary assignments can then be carried out in one
statement.

Example:

DCIL f

, I

2 jA l> l>~ E S ~ C HAR (T-4 ~) i

ID C L 1 PR. I NIT L I N E ,
. 1 · J 2 ~ s~ _c HAR (1 > 1 N 1 T (' ') ,

3 FIRS~ CHAR(10),
3 SECOHD ~UAR(f~),

IREAD FILf(~A~TIFIL) INITO (~ASl~RfC);
PRINITLINE = ~A~liR£C,8jy NAMIE;
~RITE FJLE[PRl~F/L~ FRIOIM [PRIN!TILINE);

Pagt;22 -3

Topic 22: Structures and Arrays

ARRAYS

Introduction

You should already be familiar with the terms, dimensions, bounds, extents and elements as
applied to arrays.

Cross-Sections of Arrays

Page 22-4

· It is possible to specify a particular row or column of an array using asterisk notation.

Example:

l> CL AR R.A Y(3 ,J4-1) CH AR (1 l I H IT ((1T2T) (1) ' '11 -+--
I

I
.AR RA I~ l(I* _1_3)= ':c:, ; /* TH I RD co LU IM IN *I
JAiR l~A y (3 'I*)= '1RI' j /I* IT HJ RD IR OjW I~ ~ l

T T T T I

ARRAY (*,3) refers to all the elements in the third column of ARRAY; ARRAY (3,*) refers
to all the elements of the third row. ARRAY will be stored row by row (right subscript varying
faster). So ARRAY (* ,3) will be in condguous storage; ARRAY (3, *) will be in non-contiguous
storage. After the above assignments ARRAY will look like:

c

c

R R R R

Incidentally, if you do not understand the initialization expression ((12)(1)' ') then re-read
the appropriate section in Topic 7.

Topic 22: Structures and Arrays

Array Handling Built-in Functions

By now, you will be familiar with the use of PL/I built-in functions. In this section we will be
looking at some of the more useful built-in functions concerned with arrays.

The following example illustrates the use of the DIM, LBOUND and HBOUND built-in
functions. Look them up in section G of the Language Reference Manual before reading the
example. The subroutine SUB has been written to process any three-dimensional array with
BINARY FIXED (15) attributes, regardless of the bounds in each dimension. This is indicated
by declaring the parameter ARR with an asterisk for each of the three dimensions. Within
SUB the extent of the associated array can be ref erred to by the DIM built-in function, and the
upper and lower bounds in a particular dimension can be referred to by the HBOUND and
LBOUND respectively.

DCL A(S:1l~18,-3:1l B1H FIXED(f5);
CALL SUB(A)j_

SUB:PROC(ARR);

IF Dl~(ARR,2)=8 I
THEN DIO J = LBOIUND(ARR,l) m~ HBOUNO(ARR,2)1

A!~RAY(l,J,K)=Al~RJA]Y(l~~,K)~1~1
EIND;

E.N D;

For the example above, the assignment statement in the DO loop would result in:

The SUM and PROD built-in functions can be used to return the sum or product of all the
elements of an array or of a particular crosssection.

Example:

l l

I
~ 1~2_j_2l Bl N Fl X]£1D!Lt 5'.1_ IN l[Jj[t -'-2l.J3La ~) 1

! ,,

! 1T --1 !

PiRIQOl(_ARI~(*I ·1)) l I* v = 3 */
I : I ~ i I I I T T

T
._l

I !
l l

T

Page 22 -5

Topic 22: Structures and Arrays

CONNECTED attribute

Page 22 -6

The CONNECTED attribute applies to array parameters.

When an array is passed as an argument, the compiler cannot assume that the elements of this
array will be contiguous in storage. This is because the array could be a cross-section of
another array, or it could be simple-defined on another array. Unless the compiler is explicitly

. told otherwise, it will cater for the possibility that an array parameter refers to non-contiguous
storage. This involves the use of less efficient code than if the array parameter referred to
contiguous storage. Therefore if you know that the array parameter refers to contiguous
storage, declare the parameter as CONNECTED for efficiency.

Furthermore, it is necessary to declare the array parameter as CONNECTED if you wish to
use it as:

a) a target or source field in a record 1/0 statement

b) a base variable for string overlay defining (but not simple defining).

It is possible to pass a non-contiguous array argument (e.g. a column cross-section) to an array
parameter declared as CONNECTED. If the CONNECTED parameter is declared in an
internal procedure then the compiler-can detect that the non-contiguous argument does not
match the CONNECTED parameter and so the compiler will set up a 'dummy' argument in
contiguous storage. If the CONNECTED parameter is declared in an external procedure then
you must indicate this in a parameter descriptor list within the calling procedure, so that the
compiler can set up a 'dummy' argument in contiguous storage within the calling procedure. In
either case remember that if you alter the CONNECTED parameter, this is actually altering
the dummy argument set up in the calling procedure but not the original non-contiguous array
argument.

Example:

CORFU:PROC;
t-+-+-+-+--t--t--+-+-r--+-t--t--P-t-+-+-·+--t--r- !-- -+-+--; -- 1--1 - --+·-+---+---<--..__._--+--+-+-+-

DC L CRETE ENTRYCCZ) CHAR(1) CONNEcmED):
•--+--+-+--+--+--+----+--+--+--+··-!-- ·--, ··-·~---+-.. -t--t-t-·t--+-+--" -!-~ -t--+-t--

D CL ARRAYC2,4) CHAR(1);
!---f--i---t--t-·- - - t--+--+---1 -t-~ -t- ·t--· .

• . . i
c ALL c RE TE (ARR Av (*' 2))mm· .. ·-·· ... --Tj" ... n··--- ---t-t-+"-1-t-+ t-+-t--

1---t-t-· t-·--1 - +--+-+--+---+--.- +-=+-- --+---- - ---+-+--+--·- - -~... _: __ .J J - -- .. . t---1

,__._-+-+--+--+--+--+--+--+-+-+- --+--t--t-·-j - -- . - - - . - --- - .. --· -+- t-+-1 t--· ...

,__,__+-+-E-+-N_,...D~; -<---+--+-

fND1

Topic 22: Structures and Arrays

In the preceding example a dummy argument will be created for ARRAY (* ,2) in contiguous
storage within procedure CORFU and the address of this dummy argument will be associated
with ISLAND in procedure CRETE.

Note that ISLAND must be declared CONNECTED within CRETE because it is used as a
source variable in the WRITE statement.

Page22-7

Exercises

Page 22 -8

1.

lll Ji JI I l
I

1T1 I I I
I I l I j t

ROSS ETJ!ll l(1
1

2.

What is wrong with the above coding? (Hint: Section G of the Language Reference
Manual might be useful here).

I i I J .1 '

~A~: P!R.OC ;J

! l I \ FI .l. '[§ '..L l H, ' ' I , 111

l t-I : I

t- I
T·

i

1 l ! ! !

I!AX I : PROC!(~JRRl2_ti_
l>ICL l.4J~R(3) CHAIR (1) CONINfCJjfD i

• i

o I

t-+-+-1-+-+-+-•-t--+-+-+- -- --- -+--t----+- --t---+-4 -- ---+---t--t----1 - -t----+---+---+--t--+-+--<--+---1--+--+---· --+-+-----+-+- ·--+--t--+-<f-f--+---+---t---+--+-+--4---t-

EN Di l l
! 1

Write the statement required in procedure MAN which will enable ARR (in TAXI) to
refer to the required non-contiguous cross-section of ARRAY (in MAN).

Are there any restrictions on the way in which ARR can be used within procedure
TAXI?

Answers

Topic 22: Structures and Arrays

1. The argument of the SUM built-in function cannot be an iSUB-defined array.

2.

Reading or assigning data into ARR will affect the dummy argument within MAN but
not the original argument ARRAY (*,3).

Page 22 -9

E

u p

y

OG
0

E
M D

ND
E N

y

D

0

p

E
D
NT

EN
u

M

D

N

DY
D p

p

A
D

D

E u

N T y

T OG
TU 0

y OG
R AM D

R M ND
A IN E

Topic

s

p

u

G
p E

R
N

M E T
E ST

E D D
NT D R

ENT D p R
N TU p R

23

A

E
N

T y

OG
R

RO
AM

M IND
IN E

D

T
y

T

0
p

A

M p
D

D N
NT

ENT
N U

RA P NOE ST GR EP ND U

p

D

M D
p

D
T

DE
T

N UD
ST

p 0
D RO

R

ND T STU PR D ND TU PR R D ND TU Y 0 ND

D

0

M
H

E T R G D EN E T R G D EN TU R R M EN[
ST P 0 PE D T ST P 0 N PE D T STU A ND N

S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
UD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S

PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T [
PR GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U

GRAM IN P ND N S D PR GRAM I P ND NT S D PRO R M I E EN T STU P~

R NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
M INDEPEN ENT S UDY PROG AM IND ENDE T S ~DY ROGRAM I DEPENDEN STUDY PROGRt
INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
DEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM I~

PENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
NDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRO;RAM INDEPENC
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE~

STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT Sl
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUC
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
OGRAM INDEPENDENT STUDY PROGRAM· INDEPENDENT STUDY PROGRAM .INDEPENDENT STUDY PR
RAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROG
M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGR~

Topic 23

Data Storage Allocation

Objectives

This topic describes the way in which various forms of data aggregates and elements are
arranged in storage and considers the problems which can occur with the mapping of
structures.

By the end of the topic the student should be able to:

state the number of storage bytes required to hold variables of each type

• describe the internal mapping of structure aggregates

state the effect of the ALIGNED/UNALIGNED attribute

describe the impact of alignment on 1/0 operations

state the function of the COBOL option of the ENVIRONMENT attribute.

.Page 23 -1

Topic 2~: Data Storage AUoca~ion

System/370 Storage
Alignment Requirements

Page 23-2

One of the functions of the compiler is to decide how the data items used by a program should
be arranged or 'mapped' in main storage. It does this for both element variables and data
aggregates.

As far as element variables are concerned it is not essential to know the rules but in the case of
· structures it is most important that the programmer is familiar with those aspects of the
mapping process which affect record 1/0. We shall be discussing this in detail in this topic but
first let's take a look at the simple rules which govern the mapping of element variables.

System/370 machines are capable of manipulating all forms of data, regardless of where that
data is located in our partition. However, certain types of data can be dealt with more
efficiently if they start at a particular 'sort' of address.

For instance a field declared in our PL/I program as

BINARY FIXED (15)

could be dealt with more efficiently if it began at an address in the machine's storage, divisible
by2.

When the system is generated it is possible to indicate that we wish these alignment require­
ments to be maintained.

The PL/I compiler assumes that this is the case, and therefore, to our declaration of BINARY
FIXED (15), it adds the default attribute ALIGNED. When allocating storage to this variable,
PL/I ensures that it starts at an address divisible by 2 - i.e. a HALFWORD boundary. Let's
look at the other boundaries that exist.

..
II
0 1 2 3
B B B B
H H
F
D

Divisible by-

i
4
B
H
F

1
2
4
8

I
5
B

6 7
B B
H

ii
8 9 10 11
B B B B
H H
F
D

Boundary type

Byte
Halfword
Fullword
Doubleword

12 13 14 15
B B B B
H H
F

ii
16 etc.
B
H
F
D

Topic 23: Data Storage Allocation

PL/I Element Variables

Bit

Character

Picture

Decimal Fixed

These fields require CEIL (x/8) bytes - where CEIL is the built_-in function which returns the
smallest integer greater than or equal to the expression in parentheses and x is the number of
bits in the field. Bit fields are aligned on byte boundaries.

These fields require one byte for every character and can start on any byte boundary.

These fields require one byte for every picture character other than V, and can start on any
byte boundary.

These require one half byte for a sign, plus a half-byte for each digit, rounded up to a complete
number of bytes, e.g. DECIMAL FIXED (5) and DECIMAL FIXED (4) both require three
bytes. The number of digits beyond the decimal point has no effect on the field size require­
ments. Decimal Fixed fields can start on any byte boundary.

Binary Fixed /Float and
Decimal Float

The following fields require the following alignments and have lengths as indicated.

BINARY FIXED (1-15) H 2 bytes
BINARY FIXED (16-31) F 4 bytes
BINARY FLOAT (1-21) F 4 bytes
BINARY FLOAT (22-53) D 8 bytes
DECIMAL FLOAT (1-6) F 4 bytes
DECIMAL FLOAT (T-16) D 8 bytes

Example:

DCL A CHARC14); I * 1 4 B V tr E S f*I/

DCL B PIC'$$$,~$$,l$9V,99'; /* 1 4 BYTES ~/

DCL C DECIMAL FIXED(1¢,6)1

01CL D FLOAT;

~-+--+--~~-+--+--4--+--+--l-+-+--+---+--+--+--1~-+--+--+-+--+--+--+--+---+--+-+--1---+-+--+- ~·--1-----+---+---+----l'----+-+---+--

D CL F BITC16), I* ~BYTES*/
--+---~---+---l-----+--~-l-~---4---l--+--+--=--l-~-+-+--+--+-+--t---+-+--+--+-+--+--1-+-+---+--+--+---+-+-

DCL G BllrC17); 3 BYTES!*/
1

Page 23 -3

.- .

Topic 23: Data Storage Allocation

Storage Mapping of
Element Variables

Page 23 -4

PL/I will shuffle individual fields around in order to make the most efficient use of storage. If
the compiler allocated storage for data items in the order in which they were declared, it would
have to insert 'padding' or 'slack' bytes in certain cases.

Example:

D c L A c H A R (5) I

F Fl x E D B IN (1 6) . I

Assuming that the next available byte started on a doubleword boundary, the compiler would
have to allocate storage for A and F as follows:

F

f Ooubleword Slack+ Bytes

The compiler seeks to avoid or at least minimize the wasteful occurrence of slack bytes by
mapping element variables in the following order:

1. Items requiring a·doubleword boundary

2. . Items requiring a fullword boundary

3. Items requiring a halfword boundary

4. Items requiring a byte boundary.

Thus in our example, the compiler would map F and A as follows:

II F, F, F, FIA1A1A LAllA,

Topic 23: Data Storage Allocation

Structure Mapping

The above mentioned 'shuffling' around of storage cannot take place with structures, where
the relationship of one field to another is important. Otherwise it would not be possible to
transmit data to and from structures using RECORD 1/0 nor would it be possible to DEFINE
other variables over a structure.

The mapping of a structure in PL/I only needs careful consideration when the structure
contains fields requiring half, full and/or double word alignment, i.e. BINARY
FIXED/FLOAT and DECIMAL FLOAT fields.

This is of more interest to the scientific rather than the commercial programmer, the latter
being more concerned with structure elements having byte alignment (character, picture and
fixed decimal fields).

We are now going to consider the rules for structure mapping. Before we do, it should be
noted that structure mapping does not involve actual physical movement of data items in
storage. In fact it is the process by which the relative location of each element in the structure
is calculated. This process is completed by compiler-generated code before storage is allocated
for the structure. Thus, when the structure is allocated, the addressability of the elements
within it is already established.

It is not our intention to give a formal list of the structure mapping rules in this section. What
we shall do is to illustrate the process by describing the mapping of two different structures.
The full rules are located in the Language Reference Manual - Section K, 'DATA
MAPPING'.

Example 1:

DC L 1 SIT R~ c f]L
12 A,
I~ & CH A[~ (2) '
I~ c 81 NIA RY FI XE D(31) j

I I

Structures are mapped by the PL/I compiler, relative to a double word and thus STRUCl
would be mapped as follows:

STR u c 1 II A A A A I B B
I I I I I

JIC C C C
I I I I

The field C requires alignment on a full word boundary and hence cannot follow immediately
on from the field B.

Thus records written from this structure would be 12 bytes long, incorporating two embedded
blanks, and not, as might have been expected, 10 bytes long.

Page 23-5

Topic 23: Data Storage AUocation

Page 23-6

Example 2:

. l I I l
'DC L 1 ~iTRUC 2., T

2 A [EiC' 'l't' I

2. 8,
3 c CHIA R (s) I
3 l> FLO~fr{l4>lL

12 E,
3 F CHAR(3),

Mapping occurs from the deepest logical level outwards, i.e. A, B and E are mapped as three
separate units, and then joined together top to bottom.

Consider unit A. It would be mapped as:

II i
Unit B would initially be mapped as:

I I

This implies three embedded bytes between C and D. However, Chas only an individual byte
alignment requirement and so can be moved 3 bytes to the right to give:

8 II I I 1clctG'ICtclo10101ol II

Similarly the final mapping of E will appear as

E , 1 , , , n , I I

It is now necessary to join A, Band E together, keeping in mind the alignment requirements.
Initially STRUC2 will appear as:

srnuc2 II A I A I I c I c I c I c I c g D I D I D I D I I F I F I F u G I G I G I G I

In this case there are 2 embedded bytes. The field A only has a byte alignment requirement
and so can be moved to the right, one byte, to eliminate one embedded byte. The second one
cannot be eliminated because of the full word boundary alignment requirements of both D and
G. Hence STRUC2 will finally appear as:

Topic 23: .Data Storage Allocation

being in fact 19 bytes long, incorporating one embedded blank.

One impact of this is that the RECSIZE of the relative file in an 1/0 operation must be of size
19 even though there are only 18 data bytes.

Effect of Alignment
Requirements on 1/0
Operations

MOVE mode

When using LOCATE mode processing it is essential that the programmer gives careful
~bought to record alignment within the buffer. First let's consider MOVE mode processing,
which has no 'alignment problems' then we will look at LOCATE mode processing and the
'alignment problems' which can arise.

Consider the following structure:

l> CL f ST R,
2 IT ICH AIR (t) lL

2 IU Fl x1e D Bl IN AR y {_ 31)j_

The map for this structure is:

.STA II

Suppose that we wish to create a FB-format record with logical records defined by this
structure. If we do this by coding WRITE ... FROM(STR) statements, then the records would
be transferred to the buffer (which always begins on a double word boundary) as follows:

STA
I ;l U I U I ,..U ~-U-' ' _____ *

BUFFER 11 T , u , u , u 1 u , T , u , .u 11 u, u , ~ , u 1 u , u., J , r 1

II

Note that the alignment of the record in the buffer is different from its alignment in the
structure STR. The record starts on a double word boundary in the buff er; moreover, the first
U (which requires fullword alignment) is aligned on a byte boundary.

This causes no problem if the records are subsequently retrieved using READ .. .INTO(STR)
statements, because the records would first be read into an input buff er and then transferred
from this buffer to a correctly aligned structure (this is the output process in reverse).

Page 23-7

Topic 23: Data Sto~age Allocation

LOCATE mode

The first data byte of the first record in a block is aligned in the buff er on a double word
boundary. If an attempt is made to process the records in the buffer itself, where they are not
correctly aligned, then problems will occur.

Consider the following based structure:

DCL 1 s111 R ~IA S£ J) (p) I

2 lI CH AR (1) I

l2 llA Fl Xf D 81 Nl,6J RY l3 f) .i.

Suppose we attempt to retrieve the records, created above by READ.. (P) statements, then the
records would be moved into the input buffer (which starts on a double word boundary) and
the pointer would be set, initially, to this boundary. Thus the structure STR would effectively
be overlaid on the data in the buffer as follows:

II TI u I u_ I u I u 'T I u I u II u I u IT I u I u I u I u IT nu I u I u I u p I u I u I u n u I t _______________ J
p

An attempt to access the data in the first STR. U would be in error, because this name would
ref er to data aligned on a byte boundary, not a fullword as the program expects.

The ERROR condition (ONCODE=8096, specification exception) would be raised.

The same problem would be caused if we attempt to create the record in question using a
LOCATE statement. The specified pointer on which the structure is based would be set to
address a double word and thus a reference to STR. U would be invalid.

Thus two possible problems of alignment requirements have now been isolated: that of
embedded blanks and that of LOCATE mode 1/0. Two methods of overcoming these
problems will not be discussed.

Structure Design

Page 23-8

First, it must be emphasized that this will usually be the function of the systems analyst, not
the programmer.

Embedded blanks can be eliminated by redesigning the structure so that the fields are in
decreasing order of alignment requirements i.e.

Doublewords

Fullwords

Halfwords

Bytes

ALIGNED/UNALIGNED
Attribute

Topic 23: Data Storage Allocation

Two attributes which can be added to the declaration statements of variables are
ALIGNED/UNALIGNED. ALIGNED is the default, and maintains the alignment require­
ments that we have been discussing up to this point in the topic.

If the UNALIGNED attribute is specified for a structure (major or minor) then data which
normally requires half word, fullword or doubleword alignment may be aligned on a byte
boundary. The rules for structure mapping are the same as above but the reduced alignment
requirements are used. This makes the process considerably easier; in fact the map can be
written down directly~

Consider the structure

DC L 1 SIT RU C2 i~ I~ AJL. lG NE l> ..L

2 ~I [~I C' qq I

LL

12 B,
3 c CH AR (5) I

3 ID IF1 LO Ai11 (~) I

12 f,
3 F c~ A R. (3) I
3! ~ 81 NA RIY1 Fl ~I E~ (2 ¢)1

I

previously considered under the heading 'STRUCTURE MAPPING' but now UNALIGNED.
It would be mapped as:

II A I A I c I c I c I c I c I D II D I D I D I F I F I F I G I G HG I GI I . I

and hence records with that mapping could be read into STR, using either LOCATE or MOVE
mode, without any alignment problems,(referred to as 'specification exceptions').

Page 23 -9

Topic 23: Data Storage Allocation

Conservation of External Storage

The UNALIGNED attribute can also conserve storage on external medium, in particular when
writing out from data aggregates.

Example:

This array occupies 100 bytes of storage, although only 1 bit of each byte h~s meaningful data.

Element bit fields cannot be UNALIGNED but when they are grouped together in a data
aggregate they can be UNALIGNED and so they can start on any bit boundary.

Thus the array B will occupy 13 bytes of storage (the last 4 bits being unused).

Efficiency Considerations

Page 23-10

The conservation of external storage must be measured against the programming inefficiencies
involved in handling UNALIGNED data. If arithmetic is to be done on an UNALIGNED field
then the compiler will generate an extra workfield, correctly aligned, to which the field would
be moved. This, of course, will increase the execution time of the program.

If individual bits in a bit array are to be tested or have values assigned to them, it is much more
efficient in execution if the array of bits is declared with the ALIGNED attribute.

Topic 23: Data Storage Allocation

COBOL Option

The way in which the COBOL compiler maps a structure is different from the method used by
the PL/I compiler.

Example:

Consider the structure

DC i. 1 SITIR I

2 IT c HIAlB (t) '

The PL/I mapping is:

while the COBOL one is:

Thus difficulties could arise if a COBOL program is attempting to read a data set created by a
PL/I program, and vice versa. The problem is over~ome by· adding the COBOL option in the
ENVIRONMENT attribute of the PL/I file declaration:

MOVE Mode 1/0 must be used. The PL/I compiler would generate not only our STR but a
COBOL-type structure. The fields would be moved from the PL/I structure to the COBOL
structure, and the WRITE would actually be done from the latter structµre.

The record length in the file declaration would have to be 8 and not 5 as before. A COBOL
structure would only be produced for those structures which are different and these would be
shown on the AGGREGATE listing. The above also applies to data sets created by COBOL
programs and read by PL/I programs.

Page 23-11

Topic 23: Data Storage Allocation

Exe.rcises

1. How much storage is occupied by the following fields:

D c L A F IX E D D E c (~ ,2) ;

D c L B F I~ E D D E c (7 , ·2) ;

D ~ iL c B I tr1 (2 3) :
D c L D p IC 'ii lcE 1$1 9 ,C/ q </V I 'I I

I,, "I' 1
D c L E F IX E D B IN A R M (17) ;

I I I

2. a) In what order does the compiler map element variables?

b) Why does the compiler use this order?

I

l
I I I

3. 'The UNALIGNED attribute has no effect on the way arrays are mapped in storage'.
Is this statement true or false (give reasons)?

4. Draw the map of the following structure stating the record length:

DC L 1 GRAD f I

2 UPPER,
1l
I I

I
1 I

3 s Ft'J(fD s1~I1s)lL
2 Ml J)J)Lf,

12 E FIXED 81N(3t);

Page 23 -12

. (

Answers

II

1. A 4 bytes
B 4 bytes
c 3 bytes
D 10 bytes
E 4 bytes

2. (a) Doublewords
Fullwords
Halfwords
Bytes

b) In order to eliminate any slack bytes of storage.

3 .. False: Bit arrays may be mapped differently
if given the UNALIGNED attribute.

4.

The record length is 21 bytes.

Topic 23: Data Storage Allocation

Page 23 -13

s

A
E D

y

D u
M D

0 G
u p D E u p

R
y N T y

OG p T OG M
) E N TU 0 E

E D y OG E D
"1 D NT R AM D NT

ND EN R M ND ENT

Appendix

A

A

p

E
N

E

N T y

E T OG
ST R

D RO
D R AM D

D p R M IND

T
y

T

0
p

A

M p

D
D N

NT
ENT

p

D

M D
p

D
T

DE
T D

N UD
.. ST 0

p 0
D RO M

E N u

DY
D p

p A IN E N TU p R IN E N U R I I\
R.A P.NDE ST GR EP ND U E

~D T STU PR D ND TU PR R D ND TU Y 0 ND
- T R G D EN E T R G D EN TU R R M ENC

ST P 0 PE D T ST P 0 N PE D T STU A ND N
S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
UD PROGRAM E N UDY PRO.RA E N UD PRO RA ND PE S

PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T C
PR GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U

GRAM IN P ND N S D PR GRAM P ND NT S D PRO R M I E EN T STU PR
R NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
"1 INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PRO~RA

INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
DEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN
PENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
NDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENC
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUC
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
OGRAM. INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
RAM INDEPENDENT. STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY .PROG
M INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRA

Appendix A

Solutions to Machine Exercises

Below are suggested solutions to the exercises. Try not to look at them until you have coded
and tested your own solutions. Then compare them and try and pick out the advantages of
each method with particular reference to the following:

• ease of reading and understanding

• ease of maintenance

• speed of execution.

Solutions to Exercise A.1

S~Eics0ll1 I
. b:f~ RECS,IJZf !_f>O l); t---t-t-

I 1 I-+

j ttWi t , HnP·Fn~m::
--+-!-

- -t-

~--t- +-+-+- , +_, +- , I
! : I : ! ' : I I : J I !

-' ' : I . - . I I I ; ! . : I
I : : . I I ' ' ! ! ! '

--l----+---11-+-+---+-+-+--+-+-+-+- t-t--+--- - - +--+--" - t--:--r-- t--1 ---

DC L WiOR£-DATA BJJS+W_-r-WlTLftl;)?_)_ ~Lt-~+- -t_- __

1
r-_-____________

1
_

H~N ENF I LE CI NF I LE) ~IORE_DA~-t r-=, ~-to_,~~!i j _

IDR 1 if E F , L E1 ca u;r1F, LE) F1foM c H EIA o 1 Ne)}; - -rr--- 1 i - , r
I T I ' I I I I t ,-t

Page A -1

Appendix A

DO ~HILE (MORE~D~ITA);
RADIUS - INPU~~RADIUSi /*CONVERT ~O CO~PUTA~llONAL FOR~I */
IF RADIUS<= 0 1-+--t--+--+-+--+-+---+---+--t-+--+-+--+-+---+-+----+-+-+--+--+- -+--+--+--+--+- >---+--+--+--+--+-. t-+--+--t-·-t-+ -+-+--+-~-+--+~--+--f-+-+--+--+-+-+-+--+--t--+---+--+--+-+-+-

T HEN DO;
sAo~RA01lus 1~ 1NPUI-RA01us; - i--+-•--+-4--+-+-+-+--+-+-~-+-+­
~ R I Tc F I LE' (0 u rF I LE) FR o~ (R E c 0 ~)2.e ~;> i8~~1~-t-" 8+-AiC?-+-l-t-U--+-S-+-)-+-:-+--+--t-+--+-+---t--1-

E ND;
t-t-+-t--+---t--t--t--+-+-+--t--t--t-r--,r-+-;--+-~-~-·--+---t--+-1"- ~--+-- t--- ~- . - t-- --+-t--1 ~+-+-+--+-+--1--+--+---+----f-· !-- -+-+-+--+--+--+--+--+--+---+--+-+--+--

ELSE DO; I

0 U Ti-RAD I US = I NP U!T _RA 0 I U S ;-t--H-- -r- -- _ _,__..___+--+-_,__.....__,,___, ___ -

AREA= 3.11~1~ *RADIUS *~~i -+-+--+-~---1~~-+~r--+-t-+-+-+-+--+---+--+--t-+-+-t---+--+-+--+-+--

O UT_ AR EA == ARE A11 --+---+--t-1

t-+-+--+--+-+--+---+-o-+-u-+-11'1-+---+-v-+-_ o L u ME = 4 * ~ R EA ~ R Ao 1 u s-t/--,;t---t-3-+-,-.-+ 1 -+--+--+--+-- r-- -i

WRJ~E FILE (OUTFILE) FROM (OU~RECORD):
. -L

RE AD F I LE (I NF I L E) I N~]O C I N R EC 0 RD) ;
11-E~Nlt::rD;rr~/tl*t-t:E~NtD~OtF:t-i:;;~r,HEEH-=Dr-Ot-t:-:~r.IH~lrl~Er-r-*F./R=-FF~4--+-~~~l-+-~-+-l-+-l-+-W-l-W-+-+--+--+--+---+--+-+--

E.NO EX1;

PageA-2

Appendix A

Solution to Exercise A.2A

EXAZt PROC OP[IONS (~AINl1
OCL CNUIMBER, ~EAN, ~o]AL, VARllANCE) FL~AtCl&)l

OCL CO~PSA~PC4~) FLOA[C6);

D c L
1 ~ U~I~ ~ ~ ~ ~ h:IH A R (~~) I N I j'fi C ' _.::, " -+-N 0 ~ 6'f" SA~ PL E S = ··1-o-,· t!t---l-_L l--+--lf---+-1~·-1-+­

i PIU~jNO PIC 'Z9' I

,__.__...>--+-+--+-+ 2 F I L L E R 2. C H A R (1 2~)-+-+-+I N-+-+I tT-+-+1 (-+·,.,-t-+--+--+-~M-+-E-+-P>.-t-N-+-+-=-+--l'-'=~-+-)-+-L'-+--+-~t--t-t--+-1t--t-t--t-i--r--1--+-1r--r-

2 0 UT MEAN P I C ' Z 9V • 9 ' lL . ·- - +·- +'-+"-+-+--+--1---+--+--+-+--+-+-+-+-+-+-+--+--t-+-

2. FI l,..LER3 CHAR(I 6) IN llT'C I '/AR\ANCE = I))

,__.._..._.,.._,__._-+--+-2.-+---+-0-+-U_,_lTIV~'R P 1. C 'ZZ~l~jtY. ._t!J
1

~L.:-i _ _ r-1--1-r--. r--t--- _ --+-+---+-+-+-+--+--+--+--t·-+--+-+-+-+---+-+--+-·+-+-

1--t--l--+-+-+-+--+-2-+-+-F+-I, L L ER~ C HA R (7) I N I [Tj (' ' \;..j ·-+--+-+-t--+--+-+-+-+-+--t--+--t-t--+--+-+-

0 CL tQutr1MIE~lN1$ff1ARS c HAR (4) DEF 1lt£t)-'-1ouT~EIA'N; H-t-++-t-+-+-1-+-_t--_ 1--+-·1--t--+-+-+-t-+-+-+-+-

DC L OU TV~IRS!TIARS CHlA R ([7[2 DEF I NED 0 u[y A Rµ_1--+-- ---t-+--+~ ·+-l---+--+--1-+-+-+--+--+-+-+--+--1-1--+-1-+-

F) 14-

t--+-+-1-+-+--+-+--+-+--+-+-+-+-+-+-+-+--+--+-+-1--+-;.-+-1---+-+--+--+--+- r-t-1; - ··- - -+-+·--+ -+--+-+-+-+--+--+-+-+-+-+-+-t-+-t--t-1-+-t-+-+-t-+-!--+-

D c L CA RD I N REC OR Dt--~~t~~EO l_t!I~_(sy s+um- .I. ?J.5-f4~~-~r_r:~g<;~_J1-Z-!--Ef-0-(!--8,0_I-'-) f-O-)~:+-+-+-t--1-1-·+-+­
DCL RIEPORl1i RECORD OU!TP'U_J-_ EN'{~(~Lt;to I UM(SVSLS!T, _1_40~_s_E_£~1 ZE (10)

/~I MEDIU~ OP~ltON DOS ONLY~/ ~
l--+--+-1-+-+-+-+--+-+--+---+-- ·-+-+-- --+ t--+-- - - ··t-- ··-+- -t--+--+-t--t--t-+-l--t--l--t--1r--+----l,--t-+-+-+-+-+-+-+--+--t-

RE~ID FILE(CARDIN) IN!TO <INRECORD);

NV~BER~ ~o~AL~ VARIANCE • ~;

l-+-1--+-4-4-+1£=t[,t'lc.:µD~1i:...i--1-+--1-+-h>-1-+-++-l-+--+-+-+-+-1-+--1---+-+-+-·1_,. + _. ·+-+--lf-+--+-+--... -t-.-··t---... -· ... -+-t-+-+-+ +-+-+-•-+-T- i--++-+ --+--+-+-+--+-+-+--1---+-

o ur~o • INVIMB EIR;

Page A-3

.. Appendix A

Solution to Exercise A.28

Page A-4 .

Appendix A

WRl~iE FILE (ov~IFILE~ IA~oM CHEIA01N41);
!WR I r E F I L f (0 UT FI LE) FROM (ij f AD I 1-H~ l);
!WRITE FllLE (OU~jFlLE) fl~OIM (BLANK_LINE);

1-1-D1-1-l~~f---+--lM~O~R~E--+~OA~tt~A-l-+S_1_T~(~1~)-+-+-l~IN~l~T~(~'~1~'~8~)~;~~-+-1-t--t-+--t-~~-+-+---;---+---t-+--+-+-+--+--+--+-+--~
ON ENDFI LE (CAl~DIN) MORE-DIAITIA • 'O'I~;
READ FllWE (CARDIN~ INITO (lNReC~IRD);

Page A-5

Appendix A

Soluti'o.n to Exercise B

/1tt l' I' ,, 'I' L... I

PageA-6

Appendix A

DCL Ncosm FIXED(7,2)i
OCL PERCENT FIXED(3, 1[i
DC L NO F I XE Dl{!3LJ_~) I NI r C ~) l
DCL MEANPER FIXED(7,1) INITIC0);
DCL C~OS] FIXED(7_t2)1
D c L l--'-Yl--Rl--'-Sl-+--1--+-1'-+--l--+-+--+-+--+-+-+-+-+-·t--'--+'- x E DI (3 1. ~) !± . ----r.-- - I:+- -+--' --t-+-+--+-+-+--+-+-t- ·-+-+-+--+-+-+--+·-1-t-t--

D C L S ~ B I I < 1) _ l NJ T-+-(·+--' +"---+~ __,_' B_-+-)-+=-; +-+--+---+-+--~>-+--t--+-+-+--+--+--+--t--+-+--1--+-+---+-
D CL I FIXED BIH(f5~~);
D Cll..j p -t---1--t--lp '"'='Itt-R~Mt-; Hf-=--t-t--l··tr---t--1. r-_-i c-i_ t-t-1-~---+-t-1_:-_~-~-=-~+~-1··· i---__ :::::-:__~-:_---i;---t--l;_::_:_:-:.:.t--lt-t-r--+--1-

~ir--+--JL~.+--+-.+--+-+--+-+-+-+-+--+--+--+--+--+--+-+-+--+-+--t-l/+--+-+-+--t-+--+-+-+-+--t__._._-+--+--+--+--+-+-"~-+-t-i--+-+--+-+-~--~~·-+-t--i-t--+--+--1--+--+-

[7 --+-+--+- .
H-H/,1~t--·:t- J.+_~I l_~~J_~~lI_I ON -r--~ -- . ·-- - -- - . - -- . t-++ ·- --1- ·-t--+-·+-+-+--+--t---t--1·--+-+-- - -+-+-+--t---+-+-

j(-+-t-+--H . --! /-+- !-+-- -· ·1·+-1-+ - -t- +- --t--+--'--t-+-1 - -J---h+- -t--+-1 --+- t-+-t-t·- ··~ -t-- - t-1-· - . ++-+-- ·-+--+ -t-t--t- i-· -· -++-+-+--
H 1 = 'MAKE'· I

H 2 = ' ANNUAL DE P/R EC I An- I ON ·: - (~t-r ·t-+ -. . H-- 1--t-+-+- -- -f--+--1-+--+-+·-+-+--+-+--+--i--t--+--+-t--+-+-

lti lL t---+--+- 1- i--r.., ·-1r---+-- ·- --+- -t---t--+-+-+--+·-+-+·-t-+-+-+·-+--+--+--+--+--+-+-+-+-+--+-+-+-+-

H 3 ; \ L"i) I l t--+-1 ... -I -,- - - - -+- +-- - 1-i- -l--+--+-+--+--+-+-+-+-+-+--+-+-+-t---t-i--

Hl4 ; ' A GE I i ' i I -!r--+-t--t--+ - +-- - t-· t- -- ·- - -· ---H .. - ·- --t--

H 5 _ _;_iliAlG~ J t-1 - ~-1 - - + --- - - 1 " - --+--++-t--·+-+---- - -- --i-+-t-+-+--+--+--+--t--+--+--+--+--+-

p U]]j PAGE ; -t-++- -- - -+-+-· - H -t--+--· +--

IWlR I [E F1]dt (PR Ft LE)-+--+-FRblMrLlNET7° _L -1-- . --

L I N E = ' I ; - t--4-t--+-- - I I ~-+---+--+-+--+--+--r-+-,_..__·~-•---+--+

r-r-+--+--+·i-+-+-+-+-+-+--+--+--+-+-+-+--+--+--+--+--t--t-+--+-+--+--

Page A-7

Appendix A

/~ MAIN LOGIC 1~

END;
t-+-+E+N-+~-+-l .. i -+-1-+---+-+--1-F~-+--l-+-1-+-+-+--+-1--+-+--l--1f--i---~+--i---+.- ,_ -+--l--+-t--t--+--+--+--+--+--+--+-+-+--+-+-+- +-4--+--+-1--+--+--+~-+-+-+-

E ND EXB1

Page.A-8

s

A
E D

y

D u
M D

0 G
u p D E u p

R
y N T y

OG p T OG M
0 E N TU 0 E

E D Y OG E D

Appendix

B

A

p

N

E

N T y

E T
ST R

D RO

T
y

E T

0
p

A

OG M p

D
D N

p

M

D

D

DE
T

D
p

N UD

T

D

ST 0
M D

ND
NT

EN
DY R AM D

D P R M ND
NT

ENT
D R AM D

D P R M IND
NT

ENT
p 0

D RO M
E N U P A IN E N TU P R IN E N U R IN

P NDE ST GR EP -ND RA U E
ND T STU PR D ND TU PR R D ND TU Y 0 ND
E T R G D EN E T R G D EN TU R R M END

ST P 0 PE D T ST P 0 N PE 0 T STU A ND N
S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
UD PROGRAM E N UDY PRO R~ E N UD PRO RA ND PE S

PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T D
PR GR INDEPEN EN S Y PR GR DEPE ENT ST DY PR GR INDEP DENT S U

GRAM IN P ND N S D PR GRAM I P ND NT S D PRO R M I E EN T STU PR
R NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
~ INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGRA
INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROG~AM

DEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN
PENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
~DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
T STUDY PROGRAM INDEPENDENT STUDY -PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
3TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
JDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
f PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
~ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
JGRAM INDEPENDENT STUDY PRO-GRAM INDEPENDENT- S.TUDY PROGRAM INDEPENDENT STUDY PR
~AM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROG
'-1 INDEPENDENT STUDY PRO{;RAM I NDEPFNIJFNT ~ TlHW PR()~RAM T NfJFPFNfJFNT c:; Tl JnY PRnr:R l:J.

Appendix B

Additional PL/I
Problems and Solutions

The exercises contained on the following pages have been designed as practice problems for
students learning PL/I. Included among them are examples of a scientific and commercial
nature. An instructor may assign a subset of these problems as required exercises, and
recommend others as optional exercises. Depending on their background individual students
may elect problems of particular interest to them, and should also be encouraged to work on
problems of their own design.

Suggested solutions may be found in the latter part of the appendix. The solutions were tested
on an OS System. However, most of these solutions will also work in a DOS environment with
appropriate changes to file declarations where_ applicable.

PL/I Problems

Problem 1. Sum of Squares

Compute the sum of squares of the first 10, the first SO, and the first 100 integers, that is, write
a program to evaluate

10 50 100

Sl= L:i 2
, S2= L:i 2 , and S3= L:i2

i=l i=l i=l

and print out the three sums S 1, S2, and S3.

Problem 2. Minimax

Read a set of numbers from a card into an array. Assuming these numbers to be in random
order find the largest and smallest element.

a. Write the program for a fixed (constant) number of elements.

b. Adjust the program so that it will work for a variable number (n) of elements, where the
value for n is punched in the leading field of the input card.

c. Convert this program into a subroutine that can be called with any list of numeric data to
produce the minimum and maximum element.

Problem 3. Indian Problem

Assume that the Indians who sold Manhattan Island in 1627 for $24.00 deposited that amount.
How much interest would they have accumulated in .their account if the interest is compounded
yearly at 3.5 percent, and rounded to the nearest cent each year? Print out the original
principal, the rate, total accumulated interest, and total accumulated balance in the account.

Page B -1

· · Appendix B

Problem 4. Sort

Consider a set of elements (numeric or alphabetic data) contained in an array in random
sequence. Write a program which will sort these elements into ascending sequence.

a. Apply the "interchange" method.

b. Sort by "ranking" (tallying); this technique minimizes the amount of data movement, and
incidentally illustrates the use of subscripted subscripts.

Problem 5. Table LookMup

Page B -2

Consider a set of arguments xi and corresponding functions f(x i) , i= 1,2, ... n, arranged in
tabular form:

f (Xn)

The choice of tables is left to the student; the x's and f's could be of arithmetic type (for
example, tables of integers and their squares), or character strings (e.g., names of people and
their telephone numbers).

Assume the pair of tables to be contained in two separate one-dimensional arrays. (The
student may want to consider alternative data organizations, such as constructing both tables
in a two-dimensional array, or an array of structures, or a structure composed of two arrays.)

Given a 'search' argument x in the range x1 ::;; x::;; x0 .find the xi (if it exists) equal to x, and
obtain the corresponding f(x). Test the program with several search arguments read from
cards. Provide for an error routine if the search argument is not contained in the table.

a. Perform sequential search, i.e. scan table starting with x1.

b. Perform binary search. (For simplicity let table consist of 32 elements.) In order to use
this method the table of arguments must be in sequence.

The search argument is then determined to be in either the lower or upper half of the
table by comparing to a middle element. Then the half of the table that does not contain
the search argument can be ignored and the process repeated on the remaining half. This
process is repeated until the remaining table is reduced to one element. A large table can
be searched quickly this way. For example, a table of 1000 arguments would only require
10 lookups to find a required search argument.

Further, it should be noted that for equally spaced numeric arguments, x i , the subscripts
required to fetch f(x i) can be computed thus eliminating the need for a table search
altogether.

Appendix B

Problem 6. Concatenation of String Elements

Consider a list of character strings of variable length in an array with a variable number of
elements. For example, the strings might represent names of cities such as

ATLANTA

BOSTON

CHICAGO

DENVER

WASHINGTON

Construct a single string composed of the concatenation of all array elements separated by
commas.

Problem 7. Square Root

Write a program to compute y=v'X by the following iteration method. Obtain successive
approximations Yo. Yi. Yz whose values will converge toward the root. Let the initial (old)
approximation Yo = x/2. Then compute new approximations by repeated evaluation of Yi+! =
1/2 (yi + x/yi) until the condition I Yi + 1 - yi I < E is satisfied, where E is a constant.
(Suggested value for E = .001, which will res~lt in a root correct to three decimal places.) The
last evaluated y is the root.

For a concrete example, let x=36. Then y0 = x/2 = 18, and

Yi = 1/2 (18 + 36/18) = 10,
y2 = l/2 (10 + 36/10) = 6.8, etc.

until the absolute value of the difference between a pair of successive y's is less than .001.
(Write your own code for the absolute value rather than using the built-in function.)

Problem 8. Polynomial

Write a program to evaluate a set of 3rd-degree polynomials

f (x) = a 3x 3 + a 2x2+ aix +a0 = ((a3x + a 2) x + a 1) x + a 0

for X=l,2, ... ,30.

Generalize the program so that it will work for nth degree polynomials:

· Problem 9. Series Expansion

Write a program to compute several terms of the series:

ex = 1 + x/1 ! + x2/2<! + x3/3+ ...

sin x = x - x3/3! + xS/5! x7/7 ! +

cos x = - x2 I 2 ! + x 4 I 4 ! - x 6 I 6 ! · +

Compare the values computed with those obtained from the built-in functions, for x = 0, .1,
.2, etc., up to 1.0.

Page B -3

Appendix. B

Problem 10. Integration

Evaluate the definite integral J 01 (l/l+x2) dx by Simpson's rule. Let the interval h= D.x = .01 and
let y = 1 I (1 + x * x).

Compute (h/3)(1 + 4y1 + 2y2 + 4y3 + 2y4 + ... + 2y0 _2 + 4y0 _1 + 1/2)

Ans. 'IT/4 or about .7853982

Problem 11. Prime Numbers

Generate and list all prime numbers < 1000

a. Test for divisibility.

b. Sieve of Eratosthenes. (Hint: Use bit strings to sift out primes.)

Problem 12. Perfect Numbers

In mathematics, a number is considered to be perfect if the sum of all of its divisors (except
itself) is equal to the original number.

E~ample: The divisors of 6 are 1, 2, and 3.

1 + 2 + 3 = 6

Write a program that will determine all perfect numbers from 1 to 100, and which will exhibit
as output all the divisors of the number (except itself), and the perfect number.
(Ans: 6, 28)

Problem 13. Factorials and Binomial Functions

Page B-4

a. Write a function procedure for computing factorials (n!).

b. Write a function procedure which returns binomial coefficients n!/ (n-k) !k! and utilizes
the function procedure written for the factorials.

c. Write a test program to evaluate and print out the binomial coefficients for n = 0, 1, 2,
... , 10 with k ranging from 0 ton. For each n print the results on a separate line.

Appendix B

Problem 14. String Manipulation

a. A character-string of length n (say n= 100) may contain an arbitrary number of *
(asterisks), possibly none. Also allow for the occurrence of adjacent asterisks. For
example a portion of text in the string might be

'PL/I*FORTRAN*COBOL**ALGOL*APL*BASIC etc.'.

Count the number of asterisks in the string, and extract all substrings delimited by
asterisks. (The substrings are sequences of characters appearing to the left of the first
asterisk, between successive asterisks, and to the right of the last asterisk.) Print the
extracted substrings on consecutive lines leaving a blank line for a null substring.

b. A character-string of varying length may contain blanks freely intermixed with other
characters. Replace it by a new string obtained by "squeezing" out all blanks.

c. Scan a bit string of varying length to find the longest sequence of consecutive 1 bits.
Print its length and the position of the first and last bit of that sequence within the
containing string.

d. Write a subroutine that scans a string (1st argument) for a pattern (2nd argument)
counting the frequency of that pattern within the string; put the count into a 3rd argu­
ment.

Assume that the first argument has a maximum length of 400 characters, the second
argument has a maximum length of 20 characters. Write a test program which invokes
the subroutine.

Problem 15. Brand Names

Create brand names by generating the 125 possible combinations (concatenations) of five
prefixes, five roots, and five suffixes. Each prefix, root, and suffix is to be a maximum of six
characters. Print 5 brand names to a line.

Example

1.

2.
3.

4.

5.

Prefixes

SUPER

MAXI

BEAU

GRAND

MINI

Problem 16. Combinations of Coins

Roots

DRIVO

BUICK

Suffixes

MAT IC

Write a program to calculate the number of different ·.vays a dollar bill can be broken into
change (i.e. 1-50¢, 1-25¢, 25-1¢ is one way; 2-25¢, 2-10¢, 6-5¢ is another). Output the
result. (Answer is 292).

PageB-5

Appendix B

Problem 17. Calendar Problem

Page B-6

If Y is the year (1901 to 2099) the day of the week (Dl) for January 1 counting fro·m
SUNDAY =0 may be computed as follows:

K = Y - 1901 ;
D1 = MOD(TRUNC(K/4) + K + 2, 7);

Using the value of Dl prepare a calendar for any year read in as an input value. The first page
is to look something like this:

.JANUARY 1981

SUN MON TUE WED THUR FRI SAT

1-----------1----------1-----------1~--~----1-----------j-----------1-----------1
I I I I I 1 12 I 3 I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I 1-----1-------1---.---1-------1--------1-------1---------1
i4 1s 16 IT ta 19 110 I
I I I I I I I I
I I I J I I I I
I I I I I I I I
I I I I I I I I 1--------1-------1------1--------1--------1--------1----------1 111 112 113 114 11s 116 lt7 I
I I I I I I I I
I I I I I I I I
I I I I I I I I
e I ! ! I I I I
1--------1-----------1-----------1-----------1-----------1-----------1-----------1
118 119 120 121 122 123 124 l
I I I I I I I I
I I - I 1 I I I I
I I I I I I I I
I I I I I I I I
1-----------1-----------1-----------1--------~--1----------1-----------1--~------1
~25 12~ !27 12a 129 1..;o J31 I
I I I I I I I I
I . I I I I I I I
I I I I I I I I
I I I I I I I I
1-----------1-----------1-----------1-----------1-----------1-----------1----------1

Use record 1/0 in this problem for both input and output.

Appendix B

Problem 18. Student Performance Problem

An instructor keeps a class record for each student in his courses. Each student's record is
punched into one or more cards in record I I 0 format. The input for each student is a structure
with the following elements

Course name

Student's name

Attendance

(last name, first name, middle initial)

(an array of 20 items, each a single character, where '1'
represents "present", and 'O' represents "absent" for 20
lecture periods)

Three test grades and a final exam grade. (Grades are
integers 0 - 100)

At the end of each course the instructor wishes to list each student's performance. The report
is printed in record-directed format and contains the following items:

Course name

Student's name

Attendance

Status

'INCOMPLETE'

'DROPPED'

'PASSED'

'FAILED'

Grades

Average·

(print starting in position 5 of first line of a page)

(print on the left, 3 lines below course name or previous
student's data)

(print 'LECTURES ATTENDED' and the number of the
next line, indented to the right)

(on the following line, below attendance, print either

if absent during a test or exam session; (these sessions are 4,
9, 13, 20), or

if absent every session after the third, or

if average (see below) is 65 or above, or

if average (see below) is below 65.)

(print test and exam grades on a single line below Status
information, but do not list if status is 'INCOMPLETE' or
'DROPPED'.)

(Print on line below grades, but omit if status is
'INCOMPLETE' or 'DROPPED'. The final exam is twice
as difficult as the tests and should be weighted appropriately
in the computation of average).

Make up your own test cases for a machine run.

The following card format is suggested for input data:

Course name:

Student's name:

Attendance:

Grades:

Col. 1-20

Col. 21-40 (10 columns for Last, 9 for First, 1 for Middle)

Col. 41-60

Col. 61-72 (3 columns for each of 4 grades)

Page·B -7

Appendix B

Problem 19; French Plurals

Read in a series of French words from cards each of which do not exceed 10 characters. Each
card may contain 1 to 8 words beginning in columns 1, 11, 21 ~ 31, etc. Print each word and its
plural on a separate line. If a word ends in 'S', 'X', or 'Z' the plural is the same. If a word ends
in 'AL' the plural is formed by changing the 'L' to 'UX'; if a word ends in 'EU' or 'AU' the
plural is formed by adding 'X'; otherwise the plural is formed by adding 'S'.

Problem 20. Check Writing Problem

Using list-directed input read in a series of money values up to 9999.99 and generate the
equivalent value in words. Center the result into a 73 character string preceding the words and
following the words by asterisks. For each value exhibit on a separate line the original value
and the 73 character string. Test with a wide variety of money values.

Problem 21. EASTER

PageB-8

Easter is the first Sunday following the Paschal Full Moon which happens upon or next aftel_'.
March 21. The Paschal Full Moon is the 14th day of a lunar month reckoned according to an
ancient ecclesiastical computation and not the astronomical full moon.

To find the date (Gregorian Calendar) of Easter Day apply the following rule:

DIVIDE BY

The year Y 19
The yearY 100
B 4
B+8 25
B-F+l 3
19A+B-D-G+ 15 30
c 4
32+2E+21-H-K 7
A+11H+22J 451
H+J-7M+114 31

QUOTIENT

A
B
D
F
G

I

M
N

REMAINDER

c
E

H
K
J

p

Then N is the month and P+ 1 is the day of the month on which Easter falls.

Write a program to develop a table of Easter dates for the 20th Century in the following form:

APRIL 7 1901
- 1902

1925

EASTER DATES

APRIL 4 1926
- 1927

1950

MARCH 25 1951
- 1952

1975

APRIL 18 1976
- 1977

2000

Appendix 8

Problem 22. Chess

a. Eight queens can be placed on a chessboard such that no queen in on the same row,
column or diagonal as another queen. Write a program that will determine all such
possible arrangements for 8 queens. (Answer 192.)

Optionally, generalize the problem for N queens on an N by N board and develop the
solutions for N = 4, 5, 6, 7, and 8. IDustrate with a board diagram the first solution for
each N and print the solutions as a list of row positions. For example, for N =4 one
solution is 2 4 1 3 indicating a queen in the second square of the first row, a queen in the
fourth square of the second row, etc.

b. In chess the Knight can move from the comer of any orthogonally placed 2 squares by 3
squares rectangle to the opposite comer. Place a Knight on any square of a chessboard.
In 63 moves have the Knight visit every other square once and only once. Write a
program that will attempt to find such a "Knight's tour". Illustrate the successful tours.

Page B-9

Appendix B

PL'/ I Soluti'ons

Problem 1. Sum of Squares

1 SUMSQ: PROC OPTIONS(MAIN);
2 DCL (S1,S2,S3,I) FIXED BIN(31);
3 S1 = 1;
4 DO I = 2 TO 10;
5 S1 = S1 + I*I;
6 END;
7 S2 = S 1;
8 DO I 11 TO 50;
9 S2 = S2 + I * I;

10 END;
11 S3 = S2;
12 DO I 51 to 100;
13 S3 = S3 + I*I;
14 END;
15 PUT DATA (S 1 , S2 I S3) ; -
16 END SUMSQ;

S1= 385 S2= 42925 S3= 338350;

If the user did not code precision and used fixed binary, only the first correct answer would be
obtained because the default would be FIXED BIN (15) which can only go up to 32767.

If FIXED DEC of default precision 5 were used, only two correct answers would be obtained
as the maximum value for FIXED DEC (5) is 99999.

If FLOAT or FLOAT DEC were specified, all 3 answers above would be obtained, but the
solution would be a bit longer in execution time.

Problem 2. Minimax

Solution A: Fixed Number of Elements

MINMAXA: PROC OPTIONS(MAIN);
/* FIND LARGEST AND SMALLEST FOR FIXED NUMBER OF ITEMS */
/* TRY IT FOR A DOZEN ITEMS */

2 DCL (ARRAY(12), MIN, MAX) FIXED DEC(S);
/* OTHER NUMERIC DATA TYPES ARE, OF COURSE, POSSIBLE */

3 GET LIST(ARRAY);
4 MIN,MAX = ARRAY(1);
5 DO K = 2 to 12;
6 IF ARRAY(K) < MIN

THEN MIN= ARRAY(K);
7 ELSE IF ARRAY (K) > MAX

THEN MAX= ARRAY (K);
8 END;
9 PUT DATA(ARRAY,MIN,MAX);

10 END MINMAXA;

Page B-lO

Solution B: Variable Number of Elements

MINMAXB: PROC OPTIONS(MAIN);
/*FIND LARGEST AND SMALLEST FOR VARIABLE NUMBER OF ITEMS (N),

WHERE N IS THE FIRST FIELD ON FIRST INPUT CARD */
2 GET LIST (N);
3 B: BEGIN;
4 DCL (ARRAY(N),MIN,MAX) FIXED DEC(S);
5 GET LIST (ARRAY);
6 MIN,MAX = ARRAY(1);
7 DO K=2 TO N;
8 IF ARRAY(K) < MIN

THEN MIN= ARRAY(K);
9 ELSE IF ARRAY {K) > MAX

THEN MAX= ARRAY (K);
10 END;
11 PUT DATA(ARRAY,MIN,MAX);
12 END B;
13 END MINMAXB;

Solution C: Minimax as a Subroutine

TEST: PROC OPTIONS(MAIN);
/* THIS IS A SHORT TEST PROGRAM TO TEST MINMAXC,

THE REQUIRED SUBROUTINE */
2 DCL LIST(7) FIXED DEC INIT(8,31,14,37,-3,17,0);
3 DCL (MINI,MAXI) FIXED DEC, NUMBER INIT(7);
4 CALL MINMAXC (NUMBER,LIST,MINI,MAXI);
5 PUT DATA(LIST,MINI,MAXI):
6 MINMAXC: PROC(N,ARRAY,MIN,MAX);

/* SUBROUTINE TO COMPUTE MINIMUM AND MAXIMUM OF AN ARRAY OF N
ELEMENTS. ASSUMED DATA TYPE IS FIXED BIN(15) FOR N-AND FIXED DEC(S)
FOR OTHER DATA */

7 DCL (ARRAY{*), MIN, MAX) FIXED DEC;
/* NOTE USAGE OF THE * HERE FOR AN ARRAY WITH ONE DIMENSION

PASSED AS A PARAMETER */
8 MIN,MAX = ARRAY(1);
9 DO K=2 TO N;

10 IF ARRAY(K) < MIN
THEN MIN= ARRAY(K);

11 ELSE IF ARRAY (K) >MAX
THEN MAX = ARRAY (K);

12 END;
1 3 END MINMAXC;
14 END TEST;

Page B -11

Appendix B

Problem,J: lndianProbleH1>

INDIAN: PROC OPTIONS(MAIN);
/* COMPUTE INTEREST ON $24.00 AT 3.5% INTEREST COMPOUNDED

ANNUALLY AND ROUNDED TO THE NEAREST PENNY EACH YEAR */
2 DCL (ORIG PRINC INIT(24.00), BALANCE, INTEREST) FIXED DEC(11,2);
3 DCL RATE FIXED DEC (3,3) INIT(.035);
4 BALANCE = ORIG PRINC;
5 DOK= 1628 T0-1981; /*FIRST INTEREST PAID IN 1628, LAST IN 1981 */
6 BALANCE = BALANCE * (1 + RATE) +.005;
7 END;
8 INTEREST = BALANCE - ORIG_PRINC;
9 PUT DATA;

10 END INDIAN;

RATE= 0.035 ORIG_PRINC=
K= 198.2;

BALANCE= 4667547.87 INTEREST=

Problem 4: Sort

Solution A: Interchange Method

SORTA: PROC OPTIONS(MAIN);

24.00

4667523.87

/* SORT BY INTERCHANGE--ILLUSTRATE 10 CHARACTER ELEMENTS */
2 DCL ARRAY(10) CHAR(7) INIT('BAKER' ,'GEORGIE' ,'DOG' ,'ABLE' ,'FOX',

'CHARLIE' ,'ITEM', 'HARVEY' I 'JUDY', 'EASY');
3 DCL TEMP CHAR(7);
4 DO UNTIL (INTERCHANGE=O); /*TESTED AT END OF LOOP*/
5 INTERCHANGE =O;
6 DO J = 1 TO 9;
7 IF ARRAY(J) > ARRAY(J+1)

THEN DO;
8 TEMP = ARRAY (J).;
9 ARRAY(J) = ARRAY(J+1);

10 ARRAY(J+1) =TEMP;
11 INTERCHANGE= 1;
12 END;
13 END;
14 END; /* IF INTERCHANGE STILL 0 NO INTERCHANGE TOOK PLACE

AND ARRAY IS NOW SORTED */
15 PUT EDIT (ARRAY) (COL(1),A(7));
16 END SORTA;

Page B-12

ABLE
BAKER
CHARLIE
DOG
EASY
FOX
GEORGIE
HARVEY
ITEM
JUDY

2
3
5
6
7
8
9

1 o.
11
12
13
14
15
16
17

18
19

Solution B: Ranking

SORTR: PROC OPTIONS(MAIN);
/* SORT BY RANKING--EXAMPLE WITH VARIABLE NUMBER OF NUMERIC ELEMENTS */
GET LIST (N);

B: BEGIN; DCL (AIN, AOUT, RANK) (N) FIXED BIN;
GET LIST (AIN);
RANK = 1;
DO I= 1 TO N-1;

DO J = I+1 to N;
IF AIN(I) > AIN(J)

END;
END;

THEN RANK { I) RANK (I) + 1 ;
ELSE RANK(J) = RANK(J) + 1;

DO I = 1 TO n;
AOUT(RANK(I)) = AIN(I); /*ARRANGE IN ORDER BY RANK*/

END;
PUT EDIT (I AIN RANK AOUT I) (A) ;
PUT SKIP(2) EDIT((AIN(I) ,RANK(I),AOUT{I) DO I

(COL (1) I 3 F (6)) ;
END B;

END SORTR;

Sample Output With 10 Elements

AIN RANK AOUT

37 2 -256
-256 1 37

300 5 126
222 4 222
333 6 300
777 8 333
126 3 655
956 10 777
823 9 823
655 7 956

1 TO N))

Appendix B

Page B -13

Appendix B

Problem 5: Table Look~up

Solution A: Sequential Search

SEARCHA: PROC OPTIONS(MAIN);
/* ILLUSTRATE SEQUENTIAL SEARCH OF A TABLE */

2 DCL 1 TABLE (32),
2 NAME CHAR(20),
2 EMP NO CHAR(6);

/* LOAD TABLE ASSUMING 32 INPUT CARDS WITH NAME IN FIRST 20
POSITIONS FOLLOWED BY EMPLOYEE NUMBER IN NEXT 6 POSITIONS */

3 GET EDIT(TABLE) (COL(1) ,A(20) ,A(6));
4 DCL A(32) CHAR(20) DEFINED NAME, B(32) CHAR(6) DEFINED EMP NO;
5 DCL ARG CHAR(20), FUNC VALUE CHAR(6); -

/* IF TWO TABLES, A AND B ARE DEFINED APPROPRIATELY AND ARG AND
FUNC VALUE ARE ALSO DEFINED APPROPRIATELY THEN THE FOLLOWING
GENERAL CODE CAN BE USED */

6 DCL MOREDATA BIT(1) INIT('1'B);
7 ON ENDFILE(SYSIN) MOREDATA = 'O'B;
8 GET LIST(ARG);
9 DO WHILE(MOREDATA);

10 SCANTABLE: DO K TO 32;
11 IF A(K) = ARG

THEN DO;
12 FUNC VALUE= B(K);
13 PUT SKIP DATA(K,ARG,FUNC_VALUE);
14 LEAVE SCANTABLE;
15 END;
16 END SCANTABLE;
17 IF K = 33 THEN PUT SKIP LIST('SEARCH ARGUMENT NOT FOUND: ',ARG);
18 GET LIST(ARG);
19 END; /* END OF THE DOWHILE */
20 END SEARCHA;

Page B -14.

Solution B: Binary Search

SEARCHB: PROC OPTIONS(MAIN);
/* ILLUSTRATE BINARY SEARCH OF A SORTED TABLE */

2 DCL 1 TABLE (32),
2 NAME CHAR(20),
2 EMP NO CHAR(6);

/* LOAD TABLE ASSUMING 32 INPUT CARDS WITH NAME IN FIRST 20
POSITIONS FOLLOWED BY EMPLOYEE NUMBER IN NEXT 6 POSITIONS */

3 GET EDIT(TABLE) (COL(1),A(20),A(6}};
4 DCL A(32} CHAR(20) DEFINED NAME, B(32) CHAR(6) DEFINED EMP NO;
5 DCL ARG CHAR(20}, FUNC VALUE CHAR(6); -

/* IF TWO TABLES, A AND B ARE DEFINED APPROPRIATELY AND ARG AND
FUNC VALUE ARE ALSO DEFINED APPROPRIATELY THEN THE FOLLOWING
GENERAL CODE CAN BE' USED */

6 DCL MOREDATA BIT(1) INIT('1'B);
7 ON ENDFILE(SYSIN) MOREDATA = 'O'B;
8 GET LIST(ARG);
9 DO WHILE(MOREDATA);

10 NLO = 1; NHI = 32; /*INITIALIZE FOR FULL TABLE*/
12 DO WHILE (NHI > NLO);
13 NMID = (NLO + NHI)/2;
14 IF ARG > A(NMID) /* DETERMINE WHICH HALF OF TABLE */

THEN NLO NMID + 1;/* ARGUMENT IS IN AND RESET */
15 ELSE NHI = NMID; /* THE PROPER LIMIT */
16 END;
17 IF A(NLO) = ARG

THEN DO;
18 FUNC_VALUE = B(NLO};
19 PUT SKIP DATA (NLO, ARG, FUNC_VALUE);
20 END;
21 ELSE PUT SKIP LIST('SEARCH ARGUMENT NOT FOUND: ',ARG);
22 GET LIST(ARG);
23 END; /* END OF THE DOWHILE */
24 END SEARCHB;

Problem 6. Concatenation of String Elements

BLDSTRING: PROC OPTIONS(MAIN);
/*BUILD A VARIABLE LENGTH STRING SEPARATING THE ELEMENTS BY A COMMA */

2 GET LIST (N}; /*OBTAIN THE NUMBER OF ELEMENTS*/
3 B: BEGIN;
4 DCL A(N) CHAR(20) VARYING;
5 GET LIST (A);
6 DCL STRING CHAR(9999) VARYING;
7 STRING= A(1};
8 DO K = 2 TO N;
9 STRING= STRING I I ',' I I A(K);

10 END;
11 PUT LIST (STRING); /*EXHIBIT THE RESULT*/
12 END B;
13 END BLKSTRING;

Appendix B

PageB -15

Appendix B

Ptoblem 7. Square Root

SQROOT: PROC. OPTIONS(MAIN);
/* OBTAIN SQUARE ROOT BY ITERATION */

2 DCL MOREDATA BIT (1) INIT (' 1 'B);
'3 ON ENDFILE (SYSIN) MOREDATA = 'O'B;
4 GET LIST (ARG);
5 DO WHILE (MOREDATA);
6 Y = ARG/2; /* INITIALIZE Y */
7 DO UNTIL (YDIF < .001); /*TEST AT END OF LOOP*/
8 YNEW = (Y + ARG/Y) /2;
9 YDIF = Y - YNEW;

10 IF YDIF < 0 THEN YDIF = - YDIF;
11 Y = YNEW;
12 END;
13 PUT EDIT('THE SQUARE ROOT· OF ',ARG,' IS ',Y)

(COL (1) , A , F (7 , 3) , A , F (6 , 3)) ;
14 GET LIST (ARG);
15 END;
16 END SQROOT;

Page B-16

Sample Output

THE SQUARE ROOT OF 1.000 IS 1.000
THE SQUARE ROOT OF 2.000 IS 1.414
THE SQUARE ROOT OF 3.000 IS 1.732
THE SQUARE ROOT OF 4.000 IS 2.000
THE SQUARE ROOT OF 5.000 IS 2.236
THE SQUARE ROOT OF 6.000 IS· 2.449
THE SQUARE ROOT OF 6.250 IS 2.500
THE SQUARE ROOT OF 17.000 IS 4.123
THE SQUARE ROOT OF 100.000 IS 10.000
THE SQUARE ROOT OF 200.000 IS 14.142

Problem 8. Polynomial

2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
14

POLY: PROC OPTIONS(MAIN);
/*EVALUATE THE POLYNOMIAL A(O)+A(1)*X+A(2)*X**2+ ... +A(N)*X**N
GET LIST (N) ;

B: BEGIN;
DCL A(O:N);
GET LIST(A) COPY;
DO X = 1 TO 30;

END;
END B;

ENDPOLY;

F = A(N);
DOK= N-1 TO 0 BY -1;

F = F*X + A (K) ;
END;
PUT EDIT('X =',x,' F(X)

Sample Output

- . 1 . 01 -.001 .0001
x = 1 F(x) 0.90910
x = 2 F(x) 0.83360
x 3 F(x) 0.77110
x 4 F(x) 0.72160
x = 5 F(x) 0.68750
x = 6 F(x) 0.67360
x 7 F(x) 0.68710
x 8 F(x) 0.73760
x = 9 F(x) 0.83710
x 10 F(x) 1.00000
x 11 F(x) 1.24310
x = 12 F(x) 1.58560
x = 13 F(x) 2.04910
x = 14 F(x) 2.65760
x = 15 F(x) 3.43750
x 16 F(x) 4.41760
x 17 F(x) 5.62910
x 18 F(x) 7. 10560
x 19 F(x) 8.88310
x = 20 F(x) 11.00000
x = 21 F(x) 13.49710
x = 22 F(x) 16.41759
x = 23 F(x) 19.80708
x = 24 F(x) 23.71358
x = 25 F(x) 28.18745
x = 26 F(x) 33.28157
x = 27 F(x) 39.05106
x 28 F(x) 45.55356
x 29 F(x) 52.84903
x = 30 F(x) 60.99991

I 'F) (COL (1 } 'A, F (3) 'A' F (1 0' 5)) ;

Notice that the answers
are accurate to about 6
significant digits. The
answer for x = 30, for
example, should be 61.
Greater accuracy can be
achieved by declaring the
identifiers X, A, and F as
DECIMAL FLOAT (15) .

Appendix B

*/

Page B -17

Appendix B

Problem 9 .. Se.ries Expansion

SERIES: PROC OPTIONS(MAIN);
/* EVALUATE SOME MATHEMATICAL FUNCTIONS BY SERIES EXPANSION */
/* THEN COMPARE THE RESULTS WITH THE BUILTIN FUNCTIONS */

2 DEFAULT RANGE (*)FLOAT DEC VALUE (FLOAT DEC(15));
3 DCL J FIXED BIN;
4 PUT EDIT (I EXP (X) I I I SIN (X) I I I cos (X) 'I

'X', ('SERIES BUILTIN' DO J = 1 TO 3))
(COL(14) ,A,COL(36) ,A,COL(5~) ,A,COL{2) ,A,3(X(4) ,A));

5 DO X = 0 TO 1.0 BY .1;
6 EX, TEX= 1; /*INITIALIZE SERIES*/
7 SINX, TSINX = X;
8 COSX, TCOS = 1;
9 DO K = 1 TO 10; /* GET TEN MORE TERMS OF SERIES */

10 TEX = TEX * X / K;
11 EX - EX+ TEX;
12 TWOK = K + K;
13 TSINX = -TSINX * X * X /(TWOK * (TWOK+1));
14 SINX = SINX + TSINX;
15 TCOSX = -TCOSX * X * X / ((TWOK-1) * TWOK);
16, COSX·= COSX + TCOSX;
17 END;
18 PUT SKIP EDIT(X,EX,EXP(X),SINX,SIN(X),COSX,COS(X))

(F(3,1), 6 F(11,6));'
19 END;
20 END SERIES;

Output

EXP(X) SIN(X) COS(X)
x

0.0
0. 1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1. 0

SERIES
1.000000
1.105171
1.221403
1.349859
1.491825
1 .648721
1.822119
2.013753
2.225541
2.459603
2.718282

BUILTIN
1. 000000
1.105171
1.221403
1.349859
1.491825
1.648721
1.822119
2.013753
2.225541
2. 459603
2. 717282

SERIES
0.000000
0.099833
0.198669
0.295520
0.389418
0.479426
0.564642
0.644218
0. 717356
0.783327
0.841471

BUILTIN
0.000000
0.099833
0. 198669
0.295520
0.389418
0.479426
0.564642
0.644218
0.717356
0.783327
0.841471

SERIES
1.000000
0.995004
0.980067
0.955336
0.921061
0. 877583
0.825336
0. 7648Li2
0.696707
0.621610
0.540302

BUILTIN
1.000000
0.995004
0.980067
0.955336

.Q·.921061
0. 877583
0.825336
0.764842
0.696707
0.621610
0.540302

Note: If stRtement 2 of the solution were omitted the series
computation for EXP(X) would only be accurate to six
digits instead of the seven digits shown.

Page B-18

Problem 10. Integration

INTEGRAL: PROC OPTIONS(MAIN);
/* EVALUATE INTEGRAL OF (1+(1+X**2)DX OVER RANGE 0 TO 1 */
/* BY USING SIMPSONS RULE WITH INTERVAL .01 */

2 DEFAULT RANGE (*)FLOAT DEC VALUE (FLOAT DEC(15));
3 QUAN= 1.5; /*INITIALIZE TO SUM OF FIRST & LAST TERMS*/
4 ONE= 1.0;
5 DO X = .01 TO .99 BY .01;
6 QUAN= QUAN+ (3+0NE}/(1 + X*X);
7 ONE = -ONE; /* MAKE 3+0NE ALTERNATE: 4,2,4,2,ETC */
8 END;
9 RESULT = QUAN * .01/3;

10 PUT EDIT('INTEGRAL OF 1/(1+X**2)DX FROM 0 TO 1 IS '.RESULT)
(A, F(8, 7));

11 END INTEGRAL;

Sample Output

INTEGRAL OF 1/(l+X**2)DX FROM 0 TO 1 IS .7853982

Problem 11. Prime Numbers

Solution A: Test for Divisibility

PRIMEA: PROC OPTIONS(MAIN);
/* GENERATE LIST OF PRIMES LESS THAN 1000 */

2 DEFAULT RANGE (*) FIXED BIN VALUE(FIXED BIN(31));
3 DCL PRIME (200) ;
4 PRIME (1) = 1 ; PRIME(2) = 2; PRIME(3) = 3;
7 L=3; /* INDEX FOR LAST ITEM IN PRIME LIST */
8 DO K = 5 TO 999 BY 2; /* K IS NEXT CANDIDATE *I
9 T: DO N = 2 BY 1;

10 .QUOT = K/PRIME (N);
1 1 IF K - QUOT * PRIME(N) = 0 THEN LEAVE;
1 2 IF QUOT < PRIME(N) THEN DO;
1 3 L=L+1;
14 PRIME(L)=K;
1 5 LEAVE T;
16 END;
1 7 END;
18 END;
19 PUT EDIT ((PRIME (J) DO J 1 TO L)) (COL (1) I 16F(4));
20 END PRIMEA;

Output

1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 77 71 73 79 83 89 97 101 103 107 109 113 127

1 31 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211
223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307
311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401
409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499
503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607
613 617 619 631 641 643 647 653 659 661 67'3 677 683 691 701 709
719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823
827 829 839 853 857 85.9 863 877 881 883 887 907 911 919 929 937
941 947 953 967 971 977 983 991 997

Appendix B

Page B -19

. Appendix B

PRIMEB: PROC OPTIONS(MAIN);
/* GENERATE LIST OF PRIME NUMBERS LESS THAN 1000 BY SIFTING */

2 DCL SIEVE(1000) BIT(1) INIT ((1000) (1) '1'B) ALIGNED;
3 DON= 2 TO 31;
4 IF SIEVE(N) = '1'B THEN

DO K = N*N TO 1000 BY. N;
5 SIEVE(K) = 'O'B;
6 END;
7 END;
8 OPEN FILE (SYSPRINT) LINESIZE (64);
9 PUT EDIT((K DOK= 1 TO 1000)) (F(4*SIEVE(K)));

/* THE FORMAT ITEM SUPPRESSES PRINTING WHEN SIEVE(K) = 'O'B */
1 0 END PRIMEB; ·

The ALIGNED attribute in statement 2 is quite important. Each bit will be put at the begin­
ning of a separate byte. Without the ALIGNED attribute 8 bits will be put into a byte. This
will save storage, but accessing the individual bits will be relatively time consuming and cause
the execution time of the program to increase .about 40%.

Problem 12. Perfect Numbers

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

PERFECT: PROC OPTIONS(MAIN);
/* OBTAIN AND LIST ALL PERFECT NUMBERS LESS THAN 100 */
DEFAULT RANGE(*) FIXED BIN VALUE (FIXED BIN(31));
DCL DIVISOR(SO);
DIVISOR (1) =1;

DO N = 4 TO 100 BY 2; /*.ALL PERFECT NUMBERS ARE EVEN */
L, SUM = 1;

END1

DOD= 2 BY 1 UNTIL (QUOT<= D + 1);
QUOT = N/D;
IF N - QUOT*D = 0

END;
DO K

SUM
END;
IF SUM

THEN DO;
DIVISOR(L+1) = D;
DIVISOR(L+2) = QUOT;
IF QUOT > D THEN L L+2;

ELSE L = L+1;
END;

2 TO L;
SUM+ DIVISOR(K);

N THEN PUT SKIP(2) EDIT(N,' IS A PERFECT NUMBER')
(F(3) ,A)

('ITS DIVISORS ARE',(DIVISOR(K) DOK= 1 TO L))
(SKIP, A, (L) F (4));

END PERFECT;

6 IS A PERFECT NUMBER
ITS DIVISORS ARE 1 2 3

28 IS A PERFECT NUMBER
ITS DIVISORS ARE 1 2 14 4 7

Page B-20

13. Factorial and Binomial Functions.

Solution A: Factorial Function

1 FCTRL: PROC(N) RETURNS (FLOAT DEC(15));
2 DCL (M,N,VALUE) FLOAT DEC(15);
3 VALUE 1;
4 DOM= 2 TON BY 1;
5 VALUE = VALUE * M;
6 END;
7 RETURN (VALUE);
8 END FCTRL;

Solution B: Binomial Function

1 BINOM: PROC (N,K) RETURNS (FLOAT DEC(15));
2 DCL (N, K) FLOAT DEC (15);
3 RETURN (FCTRL(N)/(FCTRL(N-K) * FCTRL(K)));
4 END BINOM;

Solution C: Test Program

1 TEST: PROC OPTIONS(MAIN);
2 DEFAULT RANGE(*) FLOAT DEC VALUE(FLOAT DEC(15));
3 DO N = 0 TO 10;
4 PUT SKIP;
5 DO K = 0 TO N;
6 PUT EDIT (BINOM(N,K)) (F(S));
7
8
9

END;
END;

END TEST;

Expected Output

1
2 1
3 3 1
4 6 4 1
5 10 10 5 1
6 15 20 15 6
7 21 35 35 21
8 28 56 70 56
9 36 84 126 126

10 45 120 210 252

1
7 1

28 8 1
84 36 9 1

210 120 45 10

Appendix B

Page B -21

. Appendix B

Problem 14. String Manipulation

Solution A:

STRNGA: PROC OPTIONS(MAIN);
/* SEPARATE FIELDS SEPARATED BY AN ASTERISK */

2 DCL ARG CHAR(100);
3 GET LIST(ARG) COPY;
4 L = 1 ; . I* SET LOCATOR *I
5 DO WHILE (L < 100);
6 K =INDEX (SUBSTR(ARG,L),'*');
7 IF K = 0 THEN K = 102 - L;
8 PUT SKIP LIST (SUBSTR(ARG,L,K-1));
9 L =· L + K;

10 END;
1 1 END STRNGA;

Sample Output

'PL/I*FORTRAN*COBOL **ALGOL* APL *BASIC* ASSEMBLER'

PL/I
FORTRAN
COBOL.

ALGOL
APL
BASIC
ASSEMBLER

Solution B:

STRNGB: PROC OPTIONS(MAIN);

2
3
4
5
6
7
8

/* REMOVE BLANKS FROM A VARYING LENGTH CHARACTER STRING */
DCL (ARG, RESULT) CHAR (100) VARYING;

9_
10

GET LIST (ARG) COPY;
LIM = LENGTH (ARG);
L = 1; /*SET LOCATOR*/

DO WHILE (L < LIM) ;
K = INDEX(SUBSTR(ARG,L),' ');
IF K=O THEN K=LIM+2-L;
RESULT= RESULT I I SUBSTR(ARG,L,K-1);
L = L + K;

11 END;
12 ·puT SKIP LIST(RESULT);
13 END STRNGB;

Sample Output

CDE FG HIJK LM NO

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Page B-22

PQ RS T U V WXYZ 9

Solution C:

STRNGC: PROC OPTIONS(MAIN);
/* FIND THE LONGEST STRING OF ONES IN A BIT STRING */

2 DCL ARG BIT(100) VARYING;
3 GET LIST(ARG) COPY;
4 MAXLENGTH = 0;
5 K = INDEX(ARG,'1'B);
6 IF K = 0

THEN PUT SKIP LIST ('NO ONES IN STRING');
7 ELSE DO;
8 L = K + 1;
9 LIM = LENGTH(ARG);

10 DO WHILE (L <LIM);
11 KZ = INDEX(SUBSTR(ARG,L),'O'B);
12 IF KZ > MAXLENGTH

THEN DO;
13 MAXLENGTH = KZ;
14 KFIRST = L - 1;
15 KLAST = KFIRST + KZ - 1;
16 END;
17 L = L + KZ;
18 K = INDEX(SUBSTR(ARG,L),'1'B);
19 IF K = 0 THEN L = LIM;
20 ELSE L = L + K;
21 END;
22 PUT SKIP DATA(KFIRST, KLAST, MAXLENGTH);
23 END;
24 END STRNGC;

KFIRST=

Sample Output

'0011110101010011100000111111100110100101 lO'B

23 KLAST= 29 MAXLENGTH=

Appendix B

7.
I

Page B -23
...

Appe'1dix B

Solution D:

STRNGD: PROC (ARG, PAT, COUNT);
/* SCAN ARG FOR # OF OCCURRENCES OF PAT VALUE, COUNT THEM */

2 DCL ARG CHAR(400) VARYING, PAT CHAR(20) VARYING;
3 DCL COUNT FIXED BIN;
4 LPAT = LENGTH(PAT);
5 LIM = LENGTH(ARG) + 1 - LPAT;
6 L = 1; /*INITIALIZE LOCATOR*/
7 DO WHILE (L <=LIM);
8 K =INDEX (SUBSTR(ARG,L), PAT);
9 IF K = 0 THEN L =LIM+ 1;

10 ELSE DO;
11 COUNT COUNT + 1 ;
12 L = L + K - 1 + LPAT;
13 END;
14 END;
15 END STRNGD;

Test Program

1 TESTD: PROC OPTIONS(MAIN);
2 DCL TESTARG CHAR(100) VARYING, TESTPAT.CHAR(2) INIT('IE');
3 GET LIST(TESTARG) COPY;
4 DCL STRNGD ENTRY(CHAR(400) VARYING, CHAR(20) VARYING, FIXED BIN);
5 CALL STRNGD(TESTARG, TESTPAT, KOUNT);
6 PUT SKIP EDIT('NUMBER OF OCCURRENCES OF ',TESTPAT,' IS',KOUNT)

(A, A, A, F(4));
7 END TESTD;

Paige B -24

Sample Output

'SIEVE,BELIEVE,CEILING,TRIEZE,IEIEEIEEEIE'

NUMBER OF OCCURRENCES OF IE IS 7

Note that in the test program, TESTD, that the first 2 arguments in statement 5 do not match
the parameters indicated in statement 4. The PL/I compiler will create appropriate dummy
arguments that do match. Without statement 4 erroneous results would occur when arguments
do not match the parameters in the subroutine.

Problem 15. Brand Names

1 BRAND: PROC ·OPTIONS(MAIN);·
2 DCL (PREFIX, ROOT, SUFFIX) (5) CHAR (6) VARYING;
3 GET LIST (PREFIX, ROOT, SUFFIX) COPY;
4 DO I = 1 TO 5;
5 DO J = 1 TO 5;
6 PUT SKIP;
7 DO K = 1 TO 5;
8 PUT EDIT (PREFIX(I) I IROOT(J) I ISUFFIX(K)) (X(2),A);
9 END;

10 END;
11 END;
12 END BRAND;

Sample Output,

'SUPER' 'MAXI' 'BEAU' 'GRAND'' 'MINI'
'DRIVO' 'BUICK' 'DUPER' 'TURBO' 'ZAPPER'
'MATIC' 'WHIZZ' 'JOGGER' 'REYER' 'OOGY'

SUPERDRIVOMATIC SUPERDRIVOWHIZZ SUPERDRIVOJOGGER SUPERDRIVOREVER SUPERDRIVOOOGY
SUPERBUICKMATIC SUPERBUICKWHIZZ SUPERBUICKJOGGER SUPERBUICKREVER SUPERBUICKOOGY
SUPERDUPERMATIC SUPERDUPERWHIZZ SUPERDUPERJOGGER SUPERDUPERREVER SUPERDUPEROOGY
SUPERTURBOMATIC SUPERTURBOWHIZZ SUPERTURBOJOGGER SUPERTURBOREVER SUPERTURBOOOGY
SUPERZAPPERMATIC SUPERZAPPERWHIZZ SUPERZAPPERJOGGER SUPERZAPPERREVER SUPERZAPPEROOGY
MAXIDRIVOMATIC MAXIDRIVOWHIZZ MAXIDRIVOJOGGER MAXIDRIVOREVER MAXIDRIVOOOGY
MAXIBUICKMATIC MAXIBUICKWHIZZ MAXIBUICKJOGGER MAXIBUICKREVER MAXIBUICKOOGY
MAXIDUPERMATIC MAXIDUPERWHIZZ MAXIDUPERJOGGER MAXIDUPERREVER MAXIDUPEROOGY
MAXITURBOMATIC MAXITURBOWHIZZ MAXITURBOJOGGER MAXITURBOREVER MAXITURBOOOGY
MAXIZAPPERMATIC MAXIZAPPERWHIZZ MAXIZAPPERJOGGER MAXIZAPPERREVER MAXIZAPPEROOGY
BEAUDRIVOMATIC BEAUDRIVOWHIZZ BEAUDRIVOJOGGER BEAUDRIVOREVER BEAUDRIVOOOGY
BEAUBUICKMATIC BEAUBUICKWHIZZ BEAUBUICKJOGGER BEAUBUICKREVER BEAUBUICKOOGY
BEAUDUPERMATIC BEAUDUPERWHIZZ BEAUDUPERJOGGER BEAUDUPERREVER BEAUDUPEROOGY
BEAUTURBOMATIC BEAUTURBOWHIZZ BEAUTURBOJOGGER BEAUTURBOREVER BEAUTURBOOOGY
BEAUZAPPERMATIC BEAUZAPPERWHIZZ BEAUZAPPERJOGGER BEAUZAPPERREVER BEAUZAPPEROOGY
GRANDDRIVOMATIC GRANDDRIVOWHIZZ GRANDDRIVOJOGGER GRANDDRIVOREVER GRANDDRIVOOOGY
GRANDBUICKMATIC GRANDBUICKWHIZZ GRANDBUICKJOGGER GRANDBUICKREVER GRANDBUICKOOGY
GRANDDUPERMATIC GRANDDUPERWHIZZ GRANDDUPERJOGGER GRANDDUPERREVER GRANDDUPEROOGY
GRANDTURBOMATIC GRANDTURBOWHIZZ GRANDTURBOJOGGER GRANDTURBOREVER GRANDTURBOOOGY
GRANDZAPPERMATIC GRANDZAPPERWHIZZ GRANDZAPPERJOGGER GRANDZAPPERREVER GRANDZAPPEROOGY
MINIDRIVOMATIC MINIDRIVOWHIZZ MINIDRIVOJOGGER MINIDRIVOREVER MINIDRIVOOOGY
MINIBUICKMATIC MINIBUICKWHIZZ MINIBUICKJOGGER MINIBUICKREVER MINIBUICKOOGY
MINIDUPERMATIC MINIDUPERWHIZZ MINIDUPERJOGGER MINIDUPERREVER MINIDUPEROOGY
MINITURBOMATIC MINITURBOWHIZZ MINITURBOJOGGER MINITURBOREVER MINITURBOOOGY
MINIZAPPERMATIC MINIZAPPERWHIZZ MINIZAPPERJOGGER MINIZAPPERREVER MINIZAPPEROOGY

A slightly more efficient solution:

1 BRAND: PROC OPTIONS(MAIN);
2 DCL (PREFIX, ROOT, SUFFIC) (5) CHAR (6) VARYING;
3 GET LIST (PREFIX, ROOT, SUFFIX) COPY;
4 PUT EDIT((((PREFIX(I) I I ROOT(J) I I SUFFIX(K)

5 END BRAND;

...

DO K=1 TO 5) DO J=1 TO 5) DO I=1 TO 5))
(SKIP , 5 (X (2) , A)) ;

Appendix B

Page B -25

Appendix B

Problem 16; Combination of Coins

COINS: PROC OPTIONS(MAIN);
/* DETERMINE NUMBER OF WAYS TO MAKE CHANGE FOR A DOLLAR */

2 J=O; /* SET INITIAL COUNT TO ZERO */
3 A: DO NSO= 0 TO 2; /* NSO IS NUMBER OF HALVES */
4 DO N25 = 0 TO 4 - 2 * NSO; /* N25 ~S THE NUMBER OF QUARTERS */
5 DO N10 = 0 TO 10 - 5 * NSO - CEIL(2.5*N25);
6 DO NS = 0 TO 20 - 10 * NSO - 5 * N25 - 2 * N10;

/* THERE IS NOW A WAY TO MAKE CHANGE FILLING IN
BALANCE WITH PENNIES SO ADD 1 TO COUNTER */

7 J=J+1;
8 END A;
9 PUT LIST (J);

10 END COINS;

Page B-26

Problem 17. Calendar

1 CALENDAR: PROC OPTIONS(MAIN);
2 DEFAULT RANGE(*) FIXED BIN;
3 DCL SYSIN FILE RECORD INPUT

ENV (F RECSIZE(80) BLKSIZE(80) TOTAL);
4 DCL SYSPRINT FILE RECORD OUTPUT

ENV (FB RECSIZE(86) BLKSIZE(860) TOTAL CTLASA);
5 DCL 1 RECIN, 2 KYR PIC '9999', 2 FILLER PIC '(76)X';
6 DCL MOHEADING CHAR(86) INIT('1'),

PMONTH CHAR(9) DEFINED MOHEADING POS(34),
PYEAR CHAR(4) DEFINED MOHEADING POS(51);

7 DCL DAYHEADING CHAR(86) INIT('O SUN MON TUE
WED THUR FRI SAT');

8 DCL IDASHES CHAR(86) INIT((' I' I I (7) '-----------1 ')),
CTLIDASHES CHAR(1) DEFINED IDASHES POS(1);

9 DCL IBLANKS CHAR(86} INIT((I I I 11 (7) I I I)};

10 DCL IDAYNO CHAR(86);
11 READ FILE(SYSIN} INTO(RECIN);
12 PYEAR,COMPYR=KYR;
13 DCL NDAY(12) INIT{31,28,31,30,31,30,31,31,30,31,30,31);
14 IF MOD{COMPYR,4)=0 THEN NDAY(2)=29;
15 K=COMPYR-1901; NZ=MOD(DIVIDE(K,4,31,0)+K+2,7);

/* NZ IS NOW THE DAY OF THE WEEK FOR JAN 1 COUNTING FROM SUNDAY=O */
17 DO M0=1 TO 12;
18 PMONTH=SUBSTR('JANUARY FEBRUARY MARCH APRIL MAY JUNE JU

LY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER ',9*M0-8,9);
19 WRITE FILE(SYSPRINT)FROM'{MOHEADING);
20 WRITE FILE(SYSPRINT) FROM (DAYHEADING);
21 CTLIDASHES='O';
22 WRITE FILE(SYSPRINT) FROM (IDASHES);
23 CTLIDASHES=' ';
24 DAYLIM=NDAY(MO);
25 IDAYNO=IBLANKS;
26 K=1; KF=7-NZ;
28 D = 1; L= 12 *NZ+ 3;
30 DO UNTIL (KF>DAYLIM);
3 1 CALL WEEKOUT;
32 KF=KF+7; L=3;
34 END;
35 NZ=DAYLIM+7-KF;
36 IF NZ > 0

THEN DO;
37 KF=DAYLIM;
38 IDAYNO=IBLANKS;
39 CALL WEEKOUT;
40 END;
41 END;
42 WEEKOUT: PROC;
43 DO UNTIL (K>KF);
44 SUBSTR(IDAYNO,L,2}=SUBSTR('1 2 3 4 5 6 7 8 9 1011121314151617181920212

2232425262728293031 I ,D,2);
45 D=D+2; L=L+12;
47 K=K+1;
48 END;
49 WRITE FILE(SYSPRINT) FR?M (IDAYNO);
50 DO I=1 TO 4;
51 WRITE FILE(S~SPRINT) FROM(IBLANKS);
52 END;
53 WRITE FILE(SYSPRINT) FROM (IDASHES);
54 END;
55 END;

Appendix B

The TOT AL option in statements 3 and 4 allows inline code to be generated for I/ 0 opera­
tions on the related files.

Page B -27

Appendix B

Problem 18~'' Student Performance

l STPERF: PROC OPTIONS(MAIN);
2 DCL 1 RECIN,

2 COURSE_NAME CHAR(20),
2 STUDENT NAME CHAR (20),
2 ATTENDANCE (20) CHAR (1),
2 GRADES (4) PIC 'Z99',
2 FILLER CHAR(8);

3 DCL HDNGOUT CHAR (26) INIT ('1'),
COURSE CHAR (20) DEF HDNGOUT POS (6);

4 DCL NAMEOUT,
2 CC CHAR (1) INIT ('-'),
2 STUDENT_NAME_OUT CHAR (20);

5 DCL ATTENDANCEOUT,
2 cc CHAR (1) INIT (I I) '

2 LIT CHAR (24) INIT (' LECTURES ATTENDED: '),
2 NUMB ATTENDED PIC 'Z9';

6 DCL STATUS CHAR (11);
7 DCL 1 GRADESOUT,

· 2 CC CHAR (1) INIT (' '),
2 GRADESPRINT (4) PIC 'ZZ99';

8 DCL 1 AVERAGEOUT,
2 cc CHAR (1) INIT (I I) I

2 AVERAGE PIC 'ZZ99';
9 DCL MOREDATA BIT (1) INIT ('1'B);

10 DCL SYSIN FILE RECORD INPUT ENV(F RECSIZE(80) BLKSIZE(80) TOTAL);
11 DCL SYSPRINT FILE RECORD OUTPUT

ENV (V BLKSIZE(36) RECSIZE(32) CTLASA TOTAL);
12 ON ENDFILE (SYSIN) MOREDATA = 'O'B;
13 READ FILE (SYSIN) INTO (RECIN);
14 DO WHILE (MOREDATA);
15 IF·COURSE_NAME ~=COURSE I L > 50

THEN DO;
16 COURSE = COURSE_NAME;
17 WRITE FILE (SYSPRINT) FROM (HDNGOUT);
18 L = 1; /* INITIALIZE LINE INDICATOR*/
19 END;
20 STUDENT NAME OUT STUDENT NAME;
21 WRITE FILE (SYSPRINT) FROM-(NAMEOUT);
22 M, N = O;
23 DO K = 1 TO 3;
24 IF ATTENDANCE(K)= '1' THEN M=M+1;
25 END;
26 DO K=4 TO 20;
27 IF ATTENDANCE(K)~'1' THEN N=N+1;
28 END;
29 NUMB_ATTENDED = M+N;
30 WRITE FILE (SYSPRINT) FROM (ATTENDANCEOUT);
31 IF N = 0

THEN STATUS= ' DROPPED';
32 ELSE IF ATTENDANCE(4)='0' I ATTENDANCE(9)='0'

I ATTENDANCE(13)='0' I ATTENDANCE(20)='0'
THEN STATUS= ' INCOMPLETE';

33 ELSE DO;
34 AVERAGE=(SUM(GRADES) + GRADES(4) + 2.5)/5;
35 IF AVERAGE >= 65

THEN STATUS= 'PASSED';
36 ELSE STATUS=' FAILED';
37 END;
38 WRITE FILE (SYSPRINT) FROM (STATUS);
39 L = L+5; /* INCREMENT LINE INDICATOR BY 2 FOR SKIPPED */

/* LINES AND 3 MORE FOR PRINTED LINES */

Page B-28

40 .IF STATUS = I PASSED' I STATUS = I FAILED'
THEN DO;

41 GRADESPRINT = GRADES;
42 WRITE FILE (SYSPRINT) FROM (GRADESOUT);
43 WRITE FILE (SYSPRINT) FROM (AVERAGEOUT);
44 L = L+2;
45 END;
46 READ FILE(SYSIN) INTO (RECIN);
47 END;
48 END STPERF;

Sample Output

ADVANCED CALCULOS

JOHNSON ALFRED W
LECTURES ATTENDED: 18

INCOMPLETE

MAZYRICH FRIEDA J
LECTURES ATTENDED: 20

PASSED
80 90 75 85
83

SMITH JUDY A
LECTURES ATTENDED: 4

PASSED
100 95 95 99

98

JONES BERTRAM Q
LECTURES ATTENDED: 3

DROPPED

HEATH DAVID M
LECTURES ATTENDED: 19

FAILED
70 65 60 50
59

Appendix B

Page B -29

Appendix~

Problem 19. French Plurals

PLURAL: PROCEDURE OPTIONS(MAIN);
/* FRENCH PLURALS */

2 DECLARE MOT CHARACTER(10), PLMOT CHARACTER(11), FIN CHARACTER (1),
FIN2 CHARACTER(2), MOREDATA BIT(1) INIT('1'B);

3 ON ENDFILE (SYSIN) MOREDATA = 'O'B;
4 GET EDIT (MOT) (A(10));
5 DO WHILE (MOREDATA);
6 IF MOT 1= (10) I I

THEN DO;
7 L = INDEX (MOT, I I) - 1 i
8 IF L = -1 THEN L = 10;
9 FIN= SUBSTR (MOT,L,1);

10 FIN2 = SUBSTR (MOT,L-1,2);
11 IF FIN='S' I FIN='X' I FIN='Z'

THEN PLMOT = MOT;
12 ELSE IF FIN2 = 'AL'

THEN PLMOT = SUBSTR (MOT,1,L-1) I I 'UX';
13 ELSE IF FIN2 = 'EU' I FIN2 = 'AU'

THEN PLMOT = SUBSTR (MOT,1,L) I I 'X';
14 ELSE PLMOT = SUBSTR (MOT,1,L) I I 'S';
15 PUT SKIP EDIT(MOT, PLMOT) (A,X(2),A);
16 END;
17 GET EDIT(MOT) (A(10));
18 END; .
19 END PLURAL;

Sample Output

Page B -30

ROSE
PRIX
CHATEAU
CHEVAL
MOT
BAS

ROSES
PRIX
CHATEAUX
CHEVAUX
MOTS
BAS

Problem 20. Check Writing

1 T: PROC OPTIONS(MAIN);
2 DCL COUT CHAR(73) VARYING;
3 DCL CVAL(0:19) CHAR{10) VARYING INIT{'','ONE ','TWO ','THREE ','FOUR'

'FIVE ','SIX ','SEVEN ','EIGHT ';'NINE ','TEN ','ELEVEN ','TWELVE I

'THIRTEEN ','FOURTEEN ','FIFTEEN ','SIXTEEN ','SEVENTEEN',
'EIGHTEEN ','NINETEEN'),

XENTY(2:9)CHAR{8)VARYING INIT{'TWENTY ','THIRTY ','FORTY ','FIFTY'
'SIXTY ','SEVENTY ','EIGHTY ','NINETY');

4 DCL VALUE FIXED DECIMAL(6,2);
5 DCL MOREDATA BIT{1) INIT('1'B);
6 ON ENDFILE(SYSIN)MOREDATA='O'B;
7 GET LIST(VALUE);
8 DO WHILE (MOREDATA);
9 KH=VALUE/100; /* # OF HUNDREDS OF DOLLARS */

10 KTC=VALUE - 100*KH; /* # OF DOLLARS WITHOUT HUNDREDS */
11 K=(VALUE-TRUNC{VALUE))*100; /*INTEGER NUMBER OF CENTS*/
12 IF KH > 0

THEN IF KH > 19 I KH = 10
THEN DO;

13 J=KH/10; JJ=KH-10*J;
15 IF JJ=O THEN COUT=CVAL(J) I I 'THOUSAND';
16 ELSE COUT=XENTY(J) I ICVAL(JJ) I I 'HUNDRED ';
17 END;
18 ELSE COUT=CVAL(KH) I I 'HUNDRED';
19 ELSE COUT='';
20 IF KTC > 0

THEN IF KTC > 19
THEN DO;

21 J=KTC/10; JJ=KTC-10*J;
23 COUT=COUTI IXENTY(J) I ICVAL{JJ);
24 END;
25 ELSE COUT=COUTI ICVAL(KTC);
26 IF VALUE> 1.99

THEN COUT=COUTI I 'DOLLARS';
27 ELSE IF VALUE> .99 THEN COUT=COUTI I 'DOLLAR';
28 IF K > 0 THEN DO;
29 IF VALUE> .99 THEN COUT=COUTI I' AND';
30 IF K > 19

THEN DO;
31 J=K/10; JJ=K-10*J;
33 COUT=COUTI IXENTY(J) I ICVAL(JJ) I I 'CENTS';
34 END;
35 ELSE IF K > 1 THEN COUT=COUTI ICVAL(K) I I 'CENTS';
36 ELSE COUT=COUTI I 'ONE CENT';
37 END;
38 L = LENGTH(COUT); J = (73-L)/2; /* J= #OF* NEEDED AT THE LEFT*/
40 COUT=REPEAT('*',J-1) I ICOUTI IREPEAT('*',72-L-J);
41 . PUT SKIP LIST(VALUE,COUT);
42 GET LIST(VALUE);
43 END; /* END OF THE DO WHILE */
44 END T;

Appendix B

Page B -31

? G.Ol

= m.02
I 0.40 ~ w

~.89

1.00
leOl
1.os

U3.00
1•.17
15.66

101.01
1001.01
200.00
220.10

2000.00
1234.56
2345.67
3040.50
7777.77

********************************ONE CENT*********************************
********************************T*O CENTS********************************
******~:************~***********FORTY CENTS**~****************************
****************************EIGHTY NINE CENTS***********•****************
***********************-****~***ONE DOLLAR********************************
*************************ONE DOLLAR ANO O~E CENT*************************
************************ONE DOLLAR AND Fl~E CENTS************************
********.*******************THIRTEEN DOLLARS*****************************
******************FOURTEEN DOLLARS ANO SEVENTEEN CENTS*******************
*******************FIFTEEN DOLLARS AND SIXTY SIX CENTS*******************
******************ONE HUNDRED ONE DOLLARS ANO ONE CENT*******************
******************ONE THOUSAND ONE DOLLARS ANO ONE CENT******************
***************************TWO HUNDRED DOLLARS***************************
****************TWO HUNDRED TWENTY DOLLARS AND TEN CENTS*****************
**************************TWO THOUSAND DOLLARS•**************************
*********TWELVE HUNDRED THIRTY FOUR DOLLARS ANO FIFTY SIX CENTS**********·
******TWENTY THREE HUNDRED FORTY FIVE DOLLARS ANO SIXTY SEVEN CENTS******
**************THREE THOUSAND FORTY DOLLARS ANO FIFTY CENTS***************
SEVENTY SEVEN "HUNDRED SEVENTY SEVEN DOLLARS ANO SEVENTY SEVEN CENTS

f =
~
=

Problem 21. Easter

ETABLE: PROC OPTIONS (MAIN);
/* GENERATE TABLE OF EASTER DATES FOR THE TWENTIETH CENTURY */

2 DEFAULT RANGE(I:N) FIXED BIN VALUE(FIXED BIN(31));
3 DCL (KM CHAR(5), KD, KY) (4);
4 PUT PAGE EDIT ('EASTER DATES') (COL(36),A);
5 DO I = 1 TO 25;
6 DO J = 1 TO 4;
7 KY(J) = 1875 + 25*J + I;
8 CALL EASTER {KY(J), M, KD(J));
9 IF M = 3 THEN KM(J) ='MARCH';

10 ELSE KM(J) ='APRIL';
11 END;
12 PUT SKIP EDIT ((KM(J), KD(J), KY(J) DO J=1 TO 4))

(X(6), A(5), F(3), F(5));
13 END;
14 END ETABLE;

1 EASTER: PROC (YEAR, MONTH, DAY);
2 DEFAULT RANGE(*) FIXED BIN VALUE (FIXED BIN(31));
3 A MOD (YEAR,19);
4 B YEAR/100;
5 C YEAR - 100*B;
6 D B/4;
7 E B - 4*D;
8 F (B+8)/25;
9 G (B - F + 1)/3;

10 H MOD (19*A + B - D - G + 15, 30);
11 I C/4;
12 K C - 4*I;
13 J MOD (32 + 2*(E+I) - H - K, 7);
14 M (A+ 11*(H + J + J))/451;
15 Q H + J - 7*M + 114;
16 MONTH= Q/31;
17 DAY= 1 + Q - MONTH*31;
18 END EASTER;

APRIL
MARCH
APRIL
APRIL
APRIL
APRIL
MARCH
APRIL
APRIL
MARCH
APRIL
APRIL
MARCH
APRIL
APRIL
APRIL
APRIL
MARCH
APRIL
APRIL
MARCH
APRIL
APRIL
APRIL
APRIL

7 1901
30 1902
12 1903

3 1904
23 1905
15 1906
31 1907
19 1908
11 1909
27 1910
16 1911

7 1912
23 1913
12 1914

4 1915
23 1916

8 1917
31 1918
20 1919

4 1920.
27 1921
16 1922

1 1923
20 1924
12 1925

APRIL
APRIL
APRIL
MARCH
APRIL
APRIL
MARCH
APRIL
APRIL
APRIL
APRIL
MARCH
APRIL
APRIL
MARCH
APRIL
APRIL
APRIL
APRIL
APRIL
APRIL
APRIL
MARCH
APRIL
APRIL

EASTER
4 1926

17 1927
8 1928

31 1929
20 1930

5 1931
27 1932
16 1933

1 1934
21 1935
12 1936
28 1937
17 1938

9 1939.
24 1940
13 1941

5 1942
25 1943

9 1944
1 1945

21 1946
6 1947

28 1948
17 1949

9 1950

DATES
MARCH 25
APRIL 13
APRIL 5
APRIL 18
APRIL 10
APRIL 1
APRIL 21
APRIL 6
MARCH 29
APRIL 17
APRIL 2
APRIL 22
APRIL 14
MARCH 29
APRIL 18
APRIL 10
MARCH 26
APRIL 14
APRIL 6
MARCH 29
APRIL 11
APRIL 2
APRIL 22
APRIL 14
MARCH 30

1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

APRIL
APRIL
MARCH
APRIL
APRIL
APRIL
APRIL
APRIL
APRIL
APRIL
MARCH
APRIL
APRIL
MARCH
APRIL
MARCH
APRIL
APRIL
APRIL
APRIL
APRIL
MARCH
APRIL
APRIL
APRIL

18 1976
10 1977
26 1978
15 1979

6 1980
19 1981
11 1982

3 1983
22 1984

7 1985
30 1986
19 1987

3 1988
26 1989
15 1990
31 1991
19 1992
11 1993

3 1994
16 1995

7 1996
30 1997
12 1998

4 .1999
23 2000

Appendix B

· Page'B :.;;33

Appendix B

Problem 22> Chess

A: Queens

QUEENS: PROC OPTIONS(MAIN);
/* SOLVE THE QUEENS PROBLEM FOR SQUARE BOARDS */

2 DEFAULT RANGE(A:Z) FIXED BIN;
3 DO N= 4 TO 8; /* LETS GET SOLUTIONS FOR SQUARE BOARDS UP TO 8 BY 8 */
4 BEGIN;
5 DCL Q(N), P(N);

/* IN SCANNING FOR A SOLUTION Q(J)=1 IF COLUMN J HAS NOT BEEN USED. */
/* P(L) WILL BE THE POSITION OF THE QUEEN ON ROW L. */

6 NSOL=O;
7 DO I=1 TO N;
8 Q=1; Q(I)=O; P(1)=I;

11 ROWINC: DO L=2 BY 1;
12 PROC: DO J=1 BY 1;
13 COLTEST: DO WHILE(Q(J)1=0);
14 DIAGTEST: DO K=1 TO L-1;
15 IF ABS(J-P(K))=L-K THEN LEAVE COLTEST;
16 END DIAGTEST;
17 P(L)=J;
18 IF L<N THEN DO;
19 Q(J) = O;
20 LEAVE PROC;
21 END;

/* WE HAVE A SOLUTION */
22 IF NSOL=O THEN PUT PAGE EDIT('FIRST SOLUTION FOR PLACING ',N,

I QUEENS ON I ,N, I BY ',N, I SQUARE BOARD so THAT''
1 NO QUEEN IS ON 'l'HE SAME ROW, COLUMN, OR DIAGONAL IS ILLUSTRATED')
((3) (A,F(2)) ,A,SKIP,A)
((('I 'DO J=1 TO N-1),'I I',('----' DO J=1 TO N-1),'-----',

('I 'DO J=1 TO N-1),'I l','Q' DO K=1 TON),
('I I DO J=1 TO N-1),' I I',('----' DO J=1 TO N-1),'-----')

(SKIP, (N)A,SKIP(O), (N)A,SKIP, (N)A,SKIP(O),COL(4*P(K)-1) ,A);
23 /*PRINT ROW POSITIONS*/ PUT SKIP EDIT(P) (F{2)};
24 NSOL=NSOL+1;
25 J = N;
26 LEAVE COLTEST;
27 END COLTEST;
28 IF J = N THEN

DO UNTIL (J < N) ;
29 L = L - 1;
30 IF L = 1 THEN LEAVE ROWINC;
31 J = P(L);
32 Q(J) = 1;
33 END;
34 END PROC;
35 END ROWINC;
36 END;
37 END; /* END OF THE BEGIN BLOCK */
38 PUT EDIT('NUMBER OF SOLUTIONS FOR ',N,' BY ',N,' IS',NSOL)

(SKIP (2) , A, F (1) , A, F (1) , A, F (4)) ;
39 END; /* END OF THE OUTER DO LOOP */
40 END QUEENS;

Page B-34

Appendix B

Output

FIRST SOLUTION FOR PLACING 4 QUEENS ON 4 BY 4·SQUARE BOARD SO THAT
NO QUEEN IS ON THE SAME ROW, COLUMN, OR DIAGONAL IS ILLUSTRATED

t---t---t---t---+
I I t I I I
t---1---t---t---+
I I I I Q I
t---t---+---t---t
I Q I I I I
t---+---1---t---t
I I I Q I I
1---t---+---+---t

2 4 1 3
3 1 4 2

NUMBER OF SOLUTIONS FOR 4 BY4 IS 2

FIRST SOLUTION FOR PLACING 5 QUEENS ON 5 BY 5 SQUARE BOARD SO THAT
NO QUEEN IS ON THE SAME ROW, COLUMN, OR DIAGONAL IS ILLUSTRATED

+---+---1---1---1---t
I Q I I I I I
+---+---+---+---+---+
I I I Q I I I
+---t---+---+---1---t
I I I I I Q I
+---+---+---t---+---+
I I Q I I I I
+---+---+---+---+---+
I I I I Q I I
t---1---+---t---+---t

1 3 5 2 4
1 4 2 5 3
2 4 1 3 5
2 5 3 1 4
3 1 4 2 5
3 5 2 4 1
4 1 3 5 2
4 2 5 3 1
s 2 4 1 3
5 3 1 4 2

NUMBER OF SOLUTIONS FOR 5 BY 5 IS 10

Page B-35

Appendix _B

FIRST SOLUTION FOR PLACING 6 QUEENS ON 6 BY 6 SQUARE BOARD SO THAT
NO QUEEN IS ON THE SAME ROW, COLUMN, OR DJj\GONAL IS ILLUSTRATED

t---t---t---t---t---1---t
I I Q I I I I I
t---1---t---t---t---+---t
I I I I Q I I I
t---+---t---t---t---t---t

. I I I I I I C I
1---t---1---+---t---t---t
I 0. I I I I I I
t---1---t---t---t---+---t
I I I Q I I I I
t---t---1---t---t---1---+
I I I I I Q I I
t---t---1---+---+---+---t

2 4 6 1 3 5
3 6 2 5 1 4
41526.l
5 3 1 6 4 2

NUMBER OF SOLUTIONS FOR 6 BY 6 IS 4

FIRST SOLUTION FOR PLACING 7 QUEENS ON 7 BY 7 SQUARE BOARD SO THAT
NO QUEEN IS ON THE SAME ROW, COLUMN, OR DIAGONAL IS ILLUSTRATED

1---1---1---+---+---+---t---+
I Q ! I I I ! I I
t---+---1---1---+---1---t---t
I I I Q I I I I I
-t---1----t---t---t--·-+---+---t
I I I I I Q I I I
t---+---1---+---1---1---1---+
I I I I I I I Q I
t---1---1---+---1---1---1---t
I I Q I I I I I I
1---1---t---+---t---+---+---t
I I I I Q I I ·1 I
+---+---+---+---1---1---1---t
I I I I I I C I I
t---+---+---1---1---+---+---t

1 3 5 7 2 4 6
1 4 7 3 6 2 5
1 5 2 6 3 7 4
1642753

. etc.

NUMBER OF SOLUTIONS FOR 7 BY 7 IS 40

Appendix B

FIRST SOLUTION FOR PLACING 8 QUEENS ON 8 BY 8 SQUARE BOARD SO THAT
NO QUEEN IS ON THE SAME ROW, COLUMN, OR DIAGONAL IS ILLUSTRATED

1---t---t---t---t---t---t---t--~t
I Q I I I I .I I I I
t---t---t---t---t---1---t---t---t
I I I I I Q I I I I
t---1---1---t---t---t---t---t---t
I ·r· I I I I I. I Q I
i---1---t---t---t---t---t---+---t
I I I I I I C I I I
1---t---1---t---t---t---t---+---t
I I I Q I I I I I I
t---t---t---t---t---t---+---t---t
I I I I I I I C I I
t---t---t---t---t---t---t---t---t
I I Q I I I I I 1 I
t---1---1---t---1---t---+---t---t
I I I I Q I I I I I
t---t---t---t---t---1---t---t---t

1 5 8 6 3 7 2 4
1 6 a J 1 4 2 s
17468253
1 7 5 8 2 4 6 3
2 4 6 8 3 ·1 7 5

. etc.

NUMBER OF SOLUTIONS FOR 8 BY 8 IS 92

Page B .. 37

Appen~ix B

1

2

3
4
5
6
7
8

9
10
1 1
12
1 3
14
15

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

31
32
33
34
35
36

37
38
39
40
41
42
43

44
45
46
47

48
49
50
51
52
53
54

B: Knight's Tour

KNIGHT: PROC OPTIONS(MAIN);
I* KNIGHTS TOUR PROBLEM */
bCL 1 LOC(64), /*FOR EACH SQUARE*/

2 NUMBR /* NUMBER OF LEGAL KNIGHT MOVES */
2 LEGAL(8) · /* LIST OF SQUARES WHERE KNIGHT MAY MOVE */

DCL 1 LOCSAVE(64J
6

2 NNN.t. 2 LLLL(8);
DCL (BOARD(64) R W) FIX~D BIN;
DO I = 1 TO 64; /* FILL LOCSAVE TABLE WITH LIST OF */

NNN(I) = O<· /* LEGAL MOVES WHEN BOARD IS EMPTY */
ROW= (I-11/8 + 1;

~*=KR~~! ~g~E~TfAt~~ LEGi~ ~Nf~H~ ~oB~~ITI~o~~~ ~~~T~~L~~~T*6F */.
/* THE BOARD ALL 8 POSSIBILITIES FOR K ARE LEGAL BUT FOR MANY */
/* SQUARES AT OR NEAR THE EDGES THERE ARE LESS THAN 8 LEGAL MOVES*/
bO K = J-21,J-19,J-12,J-8,J+8,J+12,J+19,J+21;

NEWROW = K/10;
DO;

IF NEWROW < 1 I NEWROW > 8 THEN LEAVE;
NEWCOL = K - NEWROW*10·
IF NEWCOL < 1 I NEWC6L > 8 THEN LEAVE·
NNN(I) = NNN(I) + 1; /*UP COUNT OF LEGAL MOVES--SQUARE I*/
I* CALCULATE SQUARE # FOR LEGAL MOVE AND PUT IN ARRAY: */
LLLL(I, NNN(I)T = (NEWROW-1)*8 + NEWCOL;

END;
END;

END;
OPEN FILE(SYSPRINT) PAGESIZE(54)f,· /* 3 BOARD DISPLAYS PER PAGE */
DO M = 1 TO 64· /* TRY AL POSSIBLE STARTING MOVES */

LOC = LOCSAVE; /* FETCH THE LIST OF LEGAL MOVES */
L = M; /* INI"TIALIZE L--SQUARE NUMBER FOR MOVE K */
BOARD(L~ = 1~ /* PUT 1 IN THE STARTING POSITION */
DO ~*=DEL~~E ~~FERENb~sL~gPLT~Rg~Nf~If XR~~~U~~Tc~~¥~~s;{oN */

bO JL = 1 TO NNN(L);
J = LLLL (L JL) ·
JJLIM = NUMBR(J).
JJLOOP: DO JJ = ~ TO JJLIM;

IF LEGAL(J,JJ) = L
THEN DO;

END JJLOOP;

NUMBR(J) = NUMBR(J) - 1·
LEGAL(J~JJ) = LEGAL(J,JJLIM);
LEAVE JuLOOP;

END;

7~~6VE TO SQUARE FROM WHICH LEAST NUMBER OF LEGAL MOVES REMAIN:*/
N = NUMBR (LT ·
IF N = 0 THEN LEAVE;

~f~~I~ ~ ~n~~~~~f~btR)i,
DO J = 2 TO N; {* TRr TO FIND A SMALLER NUMBER */

LL = LEGAL(L J ;
IF NUMBR(LL)'< MINVAL

THEN DO;
MINVAL = NUMBR(LL);
MINPTR = LL;

END;

7~D~ERO OUT THE NUMBER FOR OLD L AND PPDATE CURRENT LOCATION: */
NUMBR (L) = 0;
L = MINPTR;
BOARD(L) = K;

END;
IF N > 0 THEN PUT SKIP (2) EDIT (BOARD) (SKIP(2), 8 F(3));

END;
END KNIGHT;

Page B-38

Appendix B

Sample Output

20 41 16 36 39 14 63 Shown here is the second
page of the output. The

17 2 19 40 15 64 35 38 solution generates 64
successful tours of which

42 21 50 45 58 37 62 13 8 are circuitous. The
first tour shown here is

3 18 43 48 61 52 59 34 circuitous.

22 49 46 51 44 57 12 53

7 4 25 56 47 60 33 30

26 23 6 9 28 31 54 11

5 8 27 24 55 10 29 32

55 14 43 26 16 63 20

42 27 56 15 62 19 2 17

13 54 51 44 25 58 21 64

28 41 34 57 52 61 18 3

35 12 53 50 45 24 59 22

40 29 38 33 60 49 4 7

11 36 31 46 9 6 23 48

30 39 10 37 32 47 8 5

14 11 30 43 16 34 45

29 42 15 12 57 44 17 2

10 13 56 31 50 33 46 35

41 28 51 58 55 60 3 18

24 9 40 61 32 49 36 47

27 64 25 52 59 54 19 4

8 23 62 39 6 21 48 37

63 26 7 22 53 38 5 20

	0001
	0002
	001
	002
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	14-00
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	15-00
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	16-00
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	17-00
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	18-00
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	19-00
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	20-00
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	21-00
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	22-00
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	23-00
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39

