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This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the catalog
management routines that are used when the
Time Sharing Option has been selected at
system generation time.

This manual is based on the IBM
System/360 Operating System Catalog
Management Program Logic Manual, GY28-6606.
It should be used in place of the above
manual only if the Time Sharing Option has
been specified at system generation time.

Publications that contain external
information about the catalog and its use
are: :

IBM Systemn/360 Operating System
Supervisor and Data Management Services,
Form C28-6646

IBM System/360 Operating System
System Programmer's Guide, Form C28-6550
management routines.

IBM System/360 Operating System
Direct Access Device Space Management,
Form Y28-6607

IBM System/360 Operating System
Sequential Access Methods, Form Y28-6604

This manual is divided into seven major
sections with three appendizxes.

The "Introduction" describes the catalog
management routines and the catalog as they
relate to the rest of the Operating System.

The "Catalog Data Set" section describes
the structure and organization of the

Preface

catalog data set. An understanding of this
data set is a prerequisite for an
understanding of the routines used to
access and modify it.

The "Method of Operation" section
describes the logical functions of the
catalog management routines.

The "Program Organization" section
describes each module cf the routines in
detail, with particular emphasis on the
differences between the actual code
involved and the logical functions of the
routines.

The "Directory" is a chart that enables
the reader to find a section of code, a
flowchart, or a text reference, given any
one of the three.

The "Data Area Laycuts" section
describes in detail each of the catalog
entries and also the user's parameter list.

The "Diagnostic Aids" section contains
charts of register usage at various stages
in catalog processing and of the factors
involved in determining which module gets
control wvhen.

The three appendixes contain detailed
flowcharts, a diagram cf the device type
field found in data set rointer entries and
CVOL rcinter entries, and a description of
a CVOL pointer entry which is no longer
created by the catalog management routines
but which may still exist in some
installations.
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Catalog management is the facility of
the Operating System for locating data sets
when the user specifies only the data set
names. The catalog, itself a data set
(DSNAME=SYSCTLG) , contains data set names
correlated with volume and device type
information. The catalog management
routines supervise the organization of the
catalog; insert, remove, and locate entries
in the catalog; and format new catalogs and
partitioned data set directories.

Organization by Level of Qualification

Operating System data set names may be
either simple or qualified. A simple name
is a collection of up to eight EBCDIC
characters. A qualified name is a
collection of simple names separated by
periods (.) with a total length of up to
44 bytes.

Catalog management uses the periods in a
qualified name as delimiters and uses the
simple names (called qualifiers) as index
names. The catalog is divided into
indexes, each of which represents one level
of qualification of a qualified name.

The catalog management routines can be
used to build or delete a single index or a
whole index structure. To catalog a data
set called A.B.C, for example, the user may
either first create index A, then index

'A.B, and then catalog A.B.C, or request

that catalog management create any missing
index levels needed to catalog A.B.C.

The highest level index, called the
volume index, is built automatically the
first time a new catalog is used by the
catalog management routines.

Generation Data Group Structure

The same structure is used to maintain
generation data groups. A generation data
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set may be referred tc by its absolute name
(e.g., A.B.C.G0006V00) for any catalog
functions, or by a relative generation
number (e.g., A.B.C(-2) ) for the locate
function. The catalog management routines
keep only the specified number of entries
in the gemeration index (index °'C' in this
case), deleting older cnes and adding new
ones when necessary, and emptying the index
and deleting the data sets themselves if
the user specified the EMPTY or DELETE
options when he created the generation
index.

For a description of the use of
generation data groups, see IBM System/360
Operating System: Supervisor and Data
Management Services, Form C28-6646.

Control Volumes

Any direct access vclume may contain a
catalog; any such volume is called a
control volume (CVOL). The system
residence volume always contains a catalog.

An item in the catalog of a CVOL other
than the system residence volume can ke
made available to the system if the CVOL is
"connected" to the system residence volume.
To connect a CVOL to the system residence
volume, the catalog management routines
insert a control volume pointer entry into
the volume index of the catalog on the
system residence volure. This entry
contains, in its name field, the name of a
high level index which already exists on
the CVCOL to be connected. (See Figure 1.)

Any search of the catalog may start on
the system residence vclume, but if the
catalog management routines encounter a
control volume pointer entry attached to
the highest level of the name in the volume
index, they continue the search for the
fully-qualified name cn the CVOL whose
serial number is in the control pointer
entry. The caller of the catalog
management routine may specify what CVOL is
used for the search.

Introduction 7
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Calling the Catalog Management
Routines

The catalog management routines are
accessed through three assembler language
macro instructions: LOCATE, INDEX, and
CATALOG. The macro instructions generate a
reference to a parameter list, which the
user must build, and an SVC 26 instruction.
The user's parameter list contains a group
of flags that indicate what function he is
asking the catalog management routines to
perform. Figure 2 summarizes these
functions, and the secticn "Data Area
Layouts" contains a detailed description of
the user's parameter list.

The catalog management macro

instructions are most commonly used by the
utility IEHPROGM, the job scheduler, and

8 TSO Catalog Management PLM (Release 20.1)

A Control Volume Connected to the System Residence Volume

TSO, although they may be employed by any
user of assembler language.

IEHPROGM creates and deletes indexes,
aliases, and generaticn indexes, and
catalogs and uncatalogs data sets according
to specifications supplied by the user of
IEHPRCGM.

The job scheduler calls the catalog
management routines when it must locate a
data set, given only its name, or when the
DISP parameter on a DD card is CATLG or
UNCATIG.

TSC dynamic allocation locates old data
sets and catalogs new data sets. TSO
command processors alsc call the catalog
management routines tc manipulate the
catalog.




I = y

Figure

2.

T 1
1 FUNCTION | ABBREVIATION®* |
t i !
= LOCATE a data set by name | NAME
| a block in the catalog by TTR | BLOCK
T
BUILD a normal index | BLDX
a generation index | BLLG
| an alias to a high-level index | BLLCA |
t T 1
DELETE an index | DLTX
| an alias | DLTA |
1 4 ]
] i |
| CONNECT two control volumes | LINKX |
DISCONNECT two control volumes DRPX
| | |
| CATALOG a data set CATALOG
| a data set and build index CATBX
| structure | |
1 4 i |
I I |
| UNCATALOG a data set | UNCAT |
| a data set and delete index | UCATBX |
| structure | |
i i' i
| RECATALOG a data set (change the volume | RECAT |
| serial number associated with an | |
| already cataloged data set) | |
| ) |
| *The abbreviations here are used in the comments of the |
| source code to indicate what operation the user requested. |
| |
L J

Functions of the Catalog Management Routines

Introduction
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Catalog Data Set

Physically, a catalog is arranged in
blocks with keys. Logically, it is
arranged in index levels. This section
will describe the catalog's physical
organization, its logical organization, and
the way in which its keys are used.

Physical Blocks

The physical organization of the catalog
is identical with that of a partitioned
data set directory.

A catalog data set is formatted into
256-byte blocks with 8-byte keys. Each
block contains a 2-byte count field, which
contains a number indicating how many bytes
are used in this block (including this
count field).

The‘keys of the catalog blocks may
contain any value from X*0000000000000000"
up to, and including, X'FFFFFFFFFFFFFFFF'.
A nonzero key indicates a block containing
information, while a zero key denotes a
block that is available for new entries.
The keys are present because the catalog
routines use the BLDL routine (IECPBLDL) to
read the catalog. The BLDL routine expects
to find 256-byte records with 8-byte keys.
It ignores blocks with keys of zero.

See Figure 3 for an illustration of a
typical block in the catalog.

Index Levels

The catalog is organized into a series
of indexes or levels. The highest level,
called the volume index, is initialized by
the catalog management routines when the
catalog data set is first opened.

Entries in each index are in standard
EBCDIC collating sequence by their name
fields.

The volume index is all that is required
to catalog simple names. It also is the
only index that may contain control vclume
pointer entries (pointers to another
catalog) or alias entries. Lower level
indexes are required tc catalog qualified
names, one index for each level of
qualification except the last.

To illustrate the crganization of
indexes, consider the simple data set name,
'DSET' (Figure 4). If this were cataloged,
only one entry would be made in the
catalog: a data set pcinter entry in the
volume index. However, a two-level name,

c Data Set | Index | Data Set | Index .

o] g:t?"o‘ Pointer | Pointer | Pointer Link g\:;n ingless
u 4 Entry Entry Entry Entry

N

T

[ Length in bytes = COUNT ——.I

256 bytes >
Figure 3. Typical Physical Block in the Catalog
10 TSO Catalog Management PLM (Release 20.1)
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Volume Index: Pointer Entry Pointer Entry
ey T — . ——— (¢ T — {C
)Y T LR T 1R}
Volume Index Various Pointer Entries | Name I Volume Various Pointer Entries | Name I TTR of Various Pointer Entries
Control with Name Value < 'DSET' Serial and | with Name Value < 'SYST' | Index with Name Value
Entry 'DSET' Device 'SYS1" and > 'DSET' | >'sys1
| Type
¢ l { ¢ l {1
)T )Y R}
' | Data Set
Index 'SYS] Pointer Entry
{C L
)Y )Y
Index Various Pointer Entries |Name Volume Various Pointer Entries
Control with Name Value < 'PROCLIB'; Serial and with Name Values
Entry 'PROCLIB' Device > 'PROCLIB'
| Type
(¢ : (L
Y 1B
Figure 4. TILogical Organization of the Catalog: Normal Index Structure
such as SYS1.PROCLIB requires another parts of more than one index. The last

index. To catalog this name, two entries
would have to be made: an index pointer
entry with name 'S¥YS1' and a data set
pointer entry with name 'PROCLIB'.

The periods (.) in a data set name act
as level delimiters. The characters to the
left of the first period are assumed to
indicate a name in the volume index, the
next level is assumed to be the name of an
entry in the index indicated by the pointer
in the volume index, and so on, until the
last level is a name in the lowest level
index and is associated with a data set
pointer entry or volume control block
pointer entry.

A data set pointer entry and a volume
control block both contain volume serial
numbers and device type information for the
catalog data set. A data set pointer entry
can contain only five volume serial
numbers, while a chain of volume control
blocks can describe any number of volumes.

A generation data group index contains
data set pointer entries and volume control
block pointer entries. Figure 5 shows how
a catalog containing generation data group
indexes and volume control blocks might
look. This sample catalog lists generation
data sets named "WEEKLY.INVNTRY.Gnnnnvxx"
to illustrate generation indexes, and a
data set named "LOTSA.VOLUMES" to
illustrate volume control blocks.

CHAINING OF BLOCKS

Indexes may span blocks, but one block
may not contain more than one index, or

entry in each index block is called an
index link entry. (See Appendix B for
specific fields.) If the block is the last
one in an index, the pcinter field of the
link entry contains zeros. If the index is
continued in another blocck, the pointer
field of the link entry contains the TTR of
the next block in the index. These link
entries are present, but unused, even when
the several blocks of an index are
contiguous (See Figure 6).

USE OF KEYS

The keys of catalog blocks are designed
to allow hardware to perform much of the
search with the "search key high or equal"
command. The name field of the desired
entry is always used as the search argument
for this command. Thus, the search is
stopped and a block is read into main
storage whenever a key with this wvalue or
higher is encountered.

The key of a block in the catalog has
the value of the name field of the last
entry in the block if the next block of the
index is not contiguous to this block.

This key will always be X'FF ... FF',
because the last entry in any block is an
index link entry, and the name field of an
index 1link entry is X'"FF ... FF'.

The key of a block in the catalog has
the value of the name field of the
next-to-last entry in the block if the next
block in the index is contiguous with this
block.

The Catalog Data Set 11



Volume Index:

3¢ | A it
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)) I 37T
Index Control Pointer entries with Name I TR of Pointer entries with
Entry name value <'VOLUMES' |'VOLUMES' | vCB name value >'VOLUMES®
I
15 — 5
Volume Control Block .
I;l YT
o |Serial No. Serial No. | Serial No. Serial No.
f land device | and device | and device and device Pointer to next VCB or zero if
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e R

Figure 5. ILogical Organization of the Catalog: Generation Indexes and Volume Control
Blocks
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Figure 6.

Physical Organization of the Catalog
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Index Entry Types

An index always contains one control
entry and any number of pointer entries.
The control entry is always the first entry
in the index, (See Figure 6) and its
position here is assured by giving it a
name field of value X'1'. There are two
types of control entries: volume index
control entries and normal index control
entries. The general information about

14 TSO Catalog Management PLM (Release 20.1)

these entries is given in Figure 7, while
specific information about fields and their
values is given in the section "Data Area
Layouts."

There are several types of pointer
entries. A summary of each type and the
information it contains is given in Figure
7, while specific infeormation about exact
placerent of fields, etc., is given in the
section "Data Area Laycuts."




ENTRY TYPE CONTENTS

Alias Entry Contains the name of the alias, a pointer tc
the next lower level index, and the true name.

CVOL Pointer Contains the name of a high level index and a

Entry pointer to the control volume on which this
index may be found.

Data Set Contains the lowest level of the data set name

Pointer Entry and up to five entries specifying volume
serial numbers and device ccdes for the volumes

of the data set.

Contains the address of the last block in this
index, the address of the first block (the
address of the klock which contains this
entry), a count of the number of unused bytes
in the last block of this index, and a count
cf the number of aliases to this index.

Index Control
Entry

Contains the name of the generation index, the
number of entries to be maintained in the
index, the number of entries currently in

the index, codes for "delete" and "empty"
options, and a pointer to the index.

Generation Index
Pointer Entry

Contains a name field of X'FFFFFFFFFFFFFFFF',
and a zero to indicate the end of this index,
or a pointer to the next block in this index.

Index Link
Entry

Contains an index name and a pointer to the
named index.

Index Pointer
Entry

Contains an indication of the number of
volumes named in the klock and a list of the
volume serials, device type codes, and data
set sequence numbers of these vclumes, plus a
rointer to the next volume control block, or
a zero to indicate end of chain.

Volume Control
Block

Contains the lowest level of the data set

name and a pointer to the volume control blcck
which describes the volumes cf this data set.
Contains the address of the last block in the
volume index, the address of the last block in
the SYSCTLG data set, and the address of the
first available block in the SYSCTLG data set.
It also contains a count of the number of
unused bytes in the last block of the volume
index.

Volume Control
Block Pointer
Entry

Volume Index
Control Entry

[ e S e e e . B B . e, B e i e . e e S e e o e . . B . e, e e e B . o . e, . e Sy e S e S M. . S . e . s Sy e
}.___—____)__——_L____-——-—-}-—__.‘_———-1——-———..—.1-.—.—————-\.__._._.1.__-——-&-——-0-_-4
e e T e e L ST R S -

Figure 7. Index Entries

The Catalog Data set 15



Method of Operation

This section describes the operation of
each logical function of the catalog
management routines. Since many of the
functions are quite similar to each other,
several of these functions have sometimes
been combined into one section. The
sequence of events described in this
section is the actual sequence of events
performed by the routines. However, the
division of the routines into modules does
not necessarily correspond tc the division
of functions used in this section.

Housekeeping Functions

Before actually beginning to search or
update the catalog, the catalog management
routines must perform some initialization.
This initialization does two things:

e It protects the integrity of the
catalog.

e It opens the catalog data set.

MAINTAINING CATALOG INTEGRITY

Since catalog management routines
operate in multiprogramming and
multiprocessing environments, they must
protect the part of the catalog they are
manipulating from simultaneous accessing
and modification by other prcgrams and
CPU's. This protection is afforded by the
use of the RESERVE and ENQ supervisor
functions.

The RESERVE function protects the device
containing the contrcl volume being
searched or modified from access by another
CPU in a multiprocessing environment.

The ENQ function protects the part of
the catalog being manipulated from access
by other programs in a multiprogramming
environment.

An ENQC function can be either shared or
exclusive. A shared ENQ for a catalog
resource allows simultaneous access to the
resource by other shared ENQ requests. An
exclusive ENQ for a catalog resource calls
for exclusive control of that resource.

16 TSO Catalog Management PLM (Release 20.1)

To provide complete protection of the
catalog with minimum accessing delays, the
catalog resources are divided into three
different types:

e A volume index rescurce represents a
complete CVOL. Control of such a
resource allows fcr the accessing of
high level names, aliases, and CVOL
pointers.

e A high-level name resource represents
the complete index tree structure
associated with that high-level name
even though the tree structure may
involve several ccntrol volumes.

e A volume index control entry (VICE)
resource represents the free space in
the catalog and thus the ability to
modify the catalog data set.

The catalog management routines issue
ENQ requests only for the resources
necessary to accomplish a particular
function leaving the remaining resources
open to access by other users.

For example, to mcdify a low level
index, the routines obtain exclusive
control of a high-level name and the VICE,
while to perform a locate function, the
routines request shared control of a
high-level name and (temporarily) the
volume index. By separating catalog
resources, both operations can be performed
concurrently on the same control volume.

Since these routines are reenterable and
cannot store within themselves, they oktain
a storage area in the user's region by
issuing a GETMAIN racrc instruction. The
area is freed when the catalog routines
terminate. If storage is not available,
the calling task is abnormally terminated.

OPENING THE CATALOG DATA SET

To ready the catalcg data set for
reading and writing, the catalog management
routines do not use the data management
open routine (SVC 19). 1Instead they have a
special open function called through an SVC
28. This routine builds a data extent
block and a data contrcl block so that the
catalog routines can use the BLDL and EXCP
routines. For a more detailed discussion
of the open routine, see the section "The
CVOL Rocutines."
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The catalog open routine is called
before each search of a catalog. 1If a
search encounters a control volume (CVOL)
pointer entry, the old CVOL is closed and
the new one is opened.

Liocate Function

Regardless of the particular object of
one use of the catalog routines - whether
the user wishes to medify the catalog or
just locate a data set - the program always
first tries to locate as much of the
user-supplied name as possible.

The locate routine uses the resident
BLDL routine (IECPBLDL) to search the
catalog for the user-suprlied name. This
search always begins with the volume index.
BLDL returns the entry with the desired
name field, the locate routine examines it,
and calls BLDL again to find a lower level
index or returns to the caller (function
requested is locate) or passes control to
another phase (function is anything but
locate).

The locate portion of the program then
passes an error code to other portions to
indicate how much of the name was found.

BLDX, LINKX, and BLDG Functions

These functions are quite similar to
each other. First, the locate routine
finds as much of the user-surplied name as
possible and notes how much of the name it
found and what kind of entry it found at
the lowest level. If anything in the
locate process is inconsistent with the
function requested, the index/catalog
portion of the program frees all its main
storage, dequeues, and passes a NoOnzero
return code to the caller.

For example, assume that a user wished
to catalog data set "A.B.C'. The locate
routine would first search the catalog to
find the data set pointer entry, and would
pass a zero error code to index/catalog if
it found the entry. Index/catalog would
immediately return with an error code to
the caller because it cannot catalog a name
that has already been cataloged. If the
locate routine indicated that it had found
A.B, but not C, and that it had found an
index pointer entry at B, then
index/catalog would update the index by
inserting the new pointer entry.

If the request is to build an index
(BLDX), index/catalog first finds an
available block in the catalog and

initializes it as an empty index. To do
this, it creates an index control entry and
an index link entry with a pointer field of
zero, and writes a high key
(X'FFFFFFFFFFFFFFFF') for the new index
block.

A new index pointer entry must then be
inserted in the next higher level index.
To do this, index/catalog searches the
index until it finds an entry which has a
name field with value higher than that of
the new index pointer entry and which is
not an index link entry with a nonzero
pointer field. When it finds such an
entry, it inserts the pointer to the new
index and rewrites the rest of the index.

The index always must be completely
rewritten because the insertion of the new
entry may cause the chain of index blocks
to break differently.

LINKX is just 1like BLDX, except that a
CVOL pointer is created instead of an index
pointer.

BLDG is also similar to BLDX, except
that the index pointer entry contains the
appropriate generation counts and flags.

Catalog and RECAT Functions

To catalog a data set, the program does
much the same thing as when the function is
BLDX or BLLG except that:

e No new index is created. The new data
set pointer entry is simply inserted at
the appropriate place in the existing
index.

e If the data set to ke cataloged resides
on more than five vclumes, one or more
volume control blocks (VCBs) must ke
created. The creation of this block
resembles the creaticn of a new index
very closely, except that instead of a
new index, a new VCE is created.

To catalog a data set that is part of a
generation data group (GDG), the routines
must first find the absolute generation
number if only the relative generation
number was given. First, the latest entry
in the index is found. This entry will be
the first one in the index even though it
has the highest generaticn number, because
the catalog stores generation numbers in
complement form. Then the given relative
generation number is added to or subtracted
from the fcund generaticn number to give
the desired true gemeration number.

The given name is ncw compared with the
present entries in the catalog to check for
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duplications, and the new name is inserted
as any other data set pointer entry or VCB
pointer entry. The generation count is
updated, and, if necessary, the oldest
entry in the index is removed. The flags
of the generation index pointer entry are
checked to see if the index must be emptied
or if any data sets must be deleted. If
any data sets have toc be deleted, the
routines transfer control to the Delete
routine of Direct Access Device Space
Management (DADSM) by issuing an SVC 29.
(For a discussion of the Delete routine see
IBM System/360 Operating System: Direct
Access Device Space Management, Form
Y¥28-6607.)

For RECAT, the routines uncatalog the
old data set, then catalcg the new, as
above.

BLDA Function

The BLDA function is basically similar
to the BLDX function, except that BLDA only
creates a pointer entry; it builds no new
index.

Locate finds the name for which an alias
is being built, and checks to be sure it is
a high-level name. If it is, the routines
read the block containing the high-level
name, add one to the entry alias count, and
rewrite the block.

The routines then create an alias entry
and insert it in alphameric order into the
volume index. The volume index is
reorganized as for BLDG and BIDX.

DLTX, DLTA, DRPX, and UNCAT

Functions

The sequence of operations to delete an
index or an alias or to uncatalog a data
set or disconnect control volumes is
basically similar to the other functioms
involving reorganization of the catalog:

1. The catalog is searched for the
user-supplied name. In this case the
entire name must be found.

2. If a pointer entry is deleted, the block
it points to must alsc be deleted. 1In
the case of UNCAT, a VCB may have to ke
freed. With DLTX, an index block always
has to be freed. With DLTA and DRPX, no
blocks should have toc be freed unless
deleting the pointer makes the volume
index short enough so that it takes up
fewer blocks than before.

3. To delete a block, the program writes a
zero key for that block. The data
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inside the block remains unchanged. The
program recognizes any block with a zero
key as a free block.

4. The index from which the entry was
deleted is reorganized just as when a
nevw entry is added.

CATBX and UCATDX Functions

The CATBX and UCATDX functions are
similar to the CATALOG and UNCAT functioms.
The difference lies with the building and
deleting of the index tree structure
associated with the cataloged data set.
The CATBX function generates any missing
index levels needed tc catalog the data.
set, and the UCATDX function deletes any
index levels that exist only as
qualifications of the data set name in
guestion.

In both cases, if only one level of
index is involved, the functions are
performed as in CATALOG or UNCAT.

If the function is CATBX and more than
one level of index is missing, a BLDX
function is performed tc insert the highest
level mrissing index entry into the existing
catalog structure. Free blocks for each
remaining index level are then obtained and
chained together, creating an index
substructure which is then chained to the
entry created by BLDX.

If the function is UCATDX and more than
one level of index beccmes superfluous when
the data set is removed from the catalog, a
DLTX function is perfcrmed on the highest
level index entry to be deleted and the
blocks' centaining all lower level index
entries are freed. The highest level index
entry eligible for deletion is determined
while the LOCATE functicn is being
performed. UCATDX deletes all superfluous
index levels except the volume index.

The CVOL Routines

The CVOL routines cpen cr extend the
SYSCTLG data set, format new catalogs or
extensions of old catalogs, and format
partitioned data set (PDS) directories.

The routines receive from their callers
the address of the unit control block (UCB)
of the device containing the data set to be
opened or extended, and a parameter
indicating whether the request is to open a
catalog, to extend a catalcg, or to format
a PDS directory. i
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OPEN ROUTINE

If the request is to open a catalog, the
routines build a data extent block (DEB)
and a data control block (DCB) for the
SYSCTLG data set using information from the
unit control block (UCB) and volume table
of contents (VIOC) of the volume being
opened. If no space has been allocated for
the SYSCTLG data set, an error code is
returned to the user.

The Format 1 data set control block
(DsCB) for the catalog data set has a
format switch which indicates whether this
SYSCTLG data set has been previously
formatted. If the switch shows that the
data set has not been formatted, the open
routine passes control tc the formatting
routine. Otherwise, it returns to the
caller.

EXTEND ROUTINE

To extend the data set, the CVOL routine
transfers control to the Extend routine of
Direct Access Device Space Management.

This routine extends the data set by
updating the VTIOC (provided a secondary
allocation quantity was specified when
space for SYSCTLG was initially allocated),
and transfers control to the formatting

routine. The formatting routine formats
the extension, but does not initialize a
volume index, since there is already one
present. It does, however, update the
volume index control entry to show the
extra space.

FORMATTING ROUTINE

The formatting routine formats the
allocated space into 256-byte records with
8-byte keys, and initializes the volume
index with a volume index control entry and
an index link entry with a zero pointer
field. The key of this block is set to
X'FFFFFFFFFFFFFFFF' while the keys of all
the other blocks are set to zero. It sets
the format switch in the DSCB to indicate
that the data set has been formatted and
returns to the caller.

To format a partiticned data set
directory, only the formatting routine is
used. The oren routine immediately passes
control to the formatting routine.

Formatting takes place in the same
general way as for SYSCTLG data sets, with
256-byte records and 8-kyte keys. Instead
of initializing a volume index, however,
the routine initializes the first block as
an empty PLS directory.
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Program Organization

The catalog management modules are
designed to fit in the 1024-byte transient
areas of the nucleus. They are
reenterable. 1In general, the modules pass
control from one to the cther through the
XCTL macro instruction, although they
sometimes use SVCs. The follovwing
discussion will enlarge upon the Method of
Operation section by discussing the
routines module by module. Figure 8 shows
the relationships among the catalog
management routines, as well as between the
catalog management routines and other parts
of the Operating System.

NOTE: In this discussion, the term 'write'
always refers to the use of an EXCP macro
instruction. 'Read' generally refers to
the use of the resident routine IECPBLDL,
but the modules occasionally use channel
programs here, also.

IECPBLDL, the resident BLDL routine, is
accessed by the catalog management routines
through the communication vector table
(CVT). The routines find the address of
IECPBLDL in the CVT, put the address of the
catalog DCB in register 1 and the address
of the BLDL list in register 0, and execute
a BALR to the BLDL routine. For the
functions of the BLDL routine, see IBM
System/360 Operating System: Sequential
Access Methods, Y28-6604.

Initialization and Housekeeping:

Module IGCOO02F

Entry to the catalog management
routines, except the open routine, is
through an SVC 26, which gives control to
module IGCOO0O02F.

It validates the user‘'s parameter list,
gets main storage for an open work area,
and searches the unit control block (UCB)
table to find the UCB of the specified
control volume (CVOL) or the system
residence device, if no CVOL is specified.
The UCB address is then passed to the
catalog open routine (IGC0002H) which is
entered with an SVC 28.

Any one of three diagnosed error
conditions can cause a return to the user
(via SVC 3) with the appropriate error
code:

e Invalid user parameter list.
e Control volume UCB not found.
s Open error.
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After a successful cgen, the routine
issues a GETMAIN macrc instruction to
obtain storage for work areas, determines
the specified function from user
parameters, and then either transfers
contrcl to IGGOCLC1 if the function is
locate by block or uses the IECPBLDL
routine to search for the high-level name
specified in the user's rarameter area.

If the high-level name search returns a
CVOL pcinter entry, the new CVOL
informration is stored in the user's
parameter list, and prccessing is resumed
with the UCB search rcutine after work
areas are freed.

Oonce the correct ccntrol volume is
found, the routine issues a RESERVE request
for the CVOL and passes control to
IGGOCLCl.

Locate: Module IGGOCLCI1

This module always gets control from
IGC0002F. It searches the specified
catalog for the supplied name and passes
control to one of twc cther modules,
depending cn the functicn requested and the
type of entry found at the lowest level.

An input parameter indicates whether the
user wishes to locate a data set by name or
to locate an entry in the catalog by giving
the TTR of the block.

If the request is tc search for a
specified block, the mcdule passes the
block's address to the resident routine
IECPBLDL. IECPBLDL searches the catalog
and returns the correct entry to the
caller. The only errcr possible is that
the block might be outside of the SYSCTLG
data set, in which case an error code is
set and the module returns control to the
caller.

If the request is tc search for a name
or to index or catalog a name, IGGOCLC1l
isolates the first level of the name. It
uses BLDL to search the volume index for
this simple name and analyzes what type of
pointer is associated with it. Several
different things can happen, depending on
what pointer type was found and what
functicn was requested.

In the most typical case, the routines
will find an index pointer entry and note
that there are more qualifiers left in the
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name. In this case, the module isolates
the next qualifier and searches for that
name, specifying to BLDL that the search is
to begin at the TTR specified in the found
index pointer entry. This process is
repeated until either all levels of the
name are exhausted or an entry which is not
an index pointer entry is found.

For CATBX and UCATDX functions, IGGOCLC1l
performs initialization by either preparing
for a BLDX for the first index entry to be
built in a CATBX or preparing for a DLTX

for the first index entry to be deleted in
a UCATDX and saving the TTR link entry of
the deleted index.

When Locate has found all of the
pointers it can find, it determines what
action to take on the Lkasis of what kind of
pointer was the last fcund, how much of the
name could not be found, and what function
was requested. It may transfer control to
IGGOCLC2 to build new entries in the
catalog, to IGGOCLC4 tc search generation
indexes, or to IGGOCLC6 for error
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processing or successful completion of a
LOCATE.

If control is going anyvhere but back to
the caller, Locate reads several relevant
blocks into main storage:

e Block Containing Volume Index Control
Entry - This is necessary to indicate
where the first available block in the
catalog is. It has to be updated if any
new blocks are used or any old ones are
freed.

e Block Containing Index Control Entry -
This entry is the control entry for the
last index searched. It will probakly
have to be changed.

Index/Catalog, Normal Structure:
Modules IGGOCLC2, IGGOCLCS3,
IGGOCLCSB, and IGGOCLC7

These modules together update a normal
index structure. They build new indexes
and insert pointers to them in old indexes,
they delete old pointers and free the
associated blocks, they build aliases, and
they update control entries.

The catalog is updated in two phases.
Phase one, done by IGGOCLC2 (or, in the
case of generation indexes, IGGOCLC4 and
IGGOCLC5) builds new indexes and pointer
entries and deletes old blocks. Phase two,
done by IGGOCLC3 and IGGOCLC7, reorganizes
the index into which the new pointer will
be inserted, or from which a pointer will
be deleted. IGGOCLC7 also has the ability
to build and delete index structures.

IGGOCLC2

This module constructs all new entries
except entries in a generation index and
index structures built by IGGOCIC7. It
checks to be sure the existing catalog
structure is consistent with the new entry
and returns to the caller with an error
code if it is not. It always receives
control from IGGOCLC1l and passes control to
IGGOCLC3.

First the module determines from the
user's parameters whether a new entry is
needed. If it is, the module determines
what type of entry, and whether this entry
is consistent with what the locate routine
found. If, for example, the desired
function were catalog and the locate
routine had found an entry for every level
of the name, this module would set an error
code and return. The same name may not ke
cataloged twice.
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The module then determines whether any
blocks have to be freed. If the function
was RECAT, for example, and the old entry
was a VCB pointer, the old VCB would ke
freed before the new pcinter entry vas
created. To free a block, the module
writes zeros as its key and updates the
volume index control entry.

If no new entry is to be created, the
module only frees unused blocks. This
would be the case if the requested function
were to delete an index or uncatalog a data
set, for example.

IGGOCLC2 also writes certain new blocks
when they are required. When a catalog
request necessitates VCBs, this module
finds available blocks and writes the VCBs
in them. If the request is to build an
index (either generaticn or normal), the
module builds an empty index and notes its
location for the next module.

IGGOCLC6

This module receives control from either
IGGOCLCl1 or IGGOCLC2. IGGOCLC6 is entered
either upon the successful completion of a
LOCATE function (from IGGOCLC1l) or an error
condition (from either module). 1In either
case, IGGOCLC6 frees the main storage
acquired by all previcus modules, dequeues
all resources, and returns the appropriate
informaticn to the user.

IGGOCLC3

This module adds or deletes a pointer
entry in an index and rewrites the index in
such a vay that the entries maintain their
alphameric order. It receives control
either from IGGOCLC2, which constructs new
entries for normal indexes, or from
IGGOCLC5, which constructs new entries for
generation indexes.

First, the module locks at the TTR of
the index to be updated and the entry to be
added or deleted. The name of this entry
becomes the search argument for determining
where to update the index. When blocks of
the index are contiguous, the search is
rapid because each key field of the blocks
in the chain contains the name of the
highest alphamerically ordered significant
entry in the block. The hardware compares
the search argument with the key fields of
the blocks in the chain, starting with the
lowest. When the comparison shows that the
search argument is higher than the key
field, the search continues on the key




field of the next contiguous block. When
the key field is greater than or equal to
the search argument the block is read into
main storage.

With the block in main storage, the
module goes through it entry by entry, each
time comparing the name of the current
entry with the search argument entry name.
When it finds an entry with a name greater
than or equal to the search argument name,
it performs the update.

Key fields with hexadecimal F's denote
index blocks that are either at the end of
the index or at the end of a contiguous
chain within a single index. If the key
denotes the end of a chain, then the index
link entry in its block will point to the
next block of the index. The search
channel program is restarted at the address
specified in the pointer and the search is
continued as before. If this block is the
end of the index, however, the link entry
contains zeros, and the module makes the
update in this block.

IGGOCLC3 checks the number of bytes in
its output buffer continuously, and when
the end of a 256-byte block is approaching
it builds an index link entry.

IGGOCLC7

This module always receives control from
IGGOCLC3 via an XCTL macro instruction. It
writes the last block of the updated index,
updates and writes contrcl entries, frees
the main storage acquired by IGCO0002F,
dequeues the system resources, and returns
to the user with a zero (no error)
completion code in register 15.

When IGGOCLC7 receives control, it puts
an index link entry with a TTR field of
zeros in the last index block, and
calculates the number of bytes remaining in
the block. If a block has been freed
during the updating operation, the module
fills its key field with zeros. Hovever,
if the index expands into an additional
block, the module fills the key field of
the new block with hexadecimal F's. 1In
either case, the module updates index
control entries and volume index control
entries as necessary to record the
availability and location of free index
blocks. Then it writes the updated entries
with the updated index block.

At this point, IGGOCLC7 determines
whether CATBX or UCATDX processing is
called for. For CATBX processing, an index
structure is constructed as follows:

1. A data set entry or VCB chain is
created.

2. An index substructure is built
beginning with the lowest index level.
Cne block is built at a time and
chained to the previous block until
all wmissing index levels are filled.

3. The index substructure is chained to
the empty index created by the BLDX
part of CATBX processing and the index
is rewvritten to link the substructure
to the catalog.

For UCATDX processing, IGGOCLC7 uses the
TTR link entry saved during initialization
for the DLTX part of UCATDX processing as a
starting point to free all blocks in the
index structure. Each klock is read into
main storage and rewritten with a zero key
after its TTR link entry is saved. Each
block in the index structure is freed until
the complete structure is deleted.

When all the writing functions are
complete, the module frees all the main
storage and dequeues all the system
resources used before returning to the
calling routine via an SVC 3.

Catalog Protection

The ENQ supervisor function is used by
several job management routines to achieve
catalcg prctection. Figure 9 shows how
catalog resources are enqueued and dequeued
by the catalog management routines.

The ENC macro instruction requires the
specification of two names: a general name
and a resource name. The catalog
management routines use the following names
for the indicated catalog resources:

Resource QNAME RNAME
volume index SYSCTLG SYSCTLGbOOua
VICE SYSCTLG tbkbbbbb00ua

high-level name SYSCTLG name

Where ua is the two-byte address of the UCB
of the CVOL being used, and name is the
left-justified high-level name of the data
set.
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Use of ENQ and DEQ Functions
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Module

Locate Generations:
IGGOCLC4

Generation data groups require
significantly different locating and
cataloging procedures from other data sets
for two reasons:

(1) Generation data groups may be
specified by relative generation number (as
in GENR(+1)), in which case the absolute
generation number must be calculated, and

(2) The absolute generation number is
stored in the catalog in hexadecimal
complement form, that is, generation
G0001vV00 would be stored as X'C7 OF OF OF
OE E5 FO FO0'. (Note that the version
number and the characters 'G' and 'V' are
not complemented.) In this way the most
recent generation (the one with the highest
absolute number) is always the first entry
in the index after the index control entry.

In this manual, the term "absolute
generation number" refers to the number as
it is coded by the user and as it appears
in the name field of a data set control
block (DSCB). It does nct refer to the
number as it is stored in the catalog, in
complement form.

Module IGGOCLCH locates the lowest level
of a generation name. When IGGOCLCl1l finds
a generation index pointer entry correlated
with the next to last level of a name, it
passes control to this module. It may also
be entered from IGGOCLC5 when that module
finds it must empty an index.

This module first checks to see whether
entry is from IGGOCLC5 (empty request) or
from IGGOCLC1 (normal lccate path). If it
was from IGGOCLCS, the mcdule rewrites the
generation index, this time with only the
highest entry, and frees any blocks no
longer needed by the shortened index.

If the path is a normal locate path
(entry from IGGOCLC1l), IGGOCLCH4 checks the
format of both relative generation numkers
and absolute generation numbers and returns
to the user with an error code of 20 if the
format of the supplied name is not correct.
If the name is in relative format, the only
valid function is locate; if any other
function has been specified, the module
returns with an error code of 20.

If the name is in relative format, the
module must calculate its absolute
generation number. It dces this by adding
or subtracting the relative number given
and the actual number of the first entry in
the index. If the index is empty, the
module sets up a dummy 'found' entry called
*G0000V00' as the basis for absolute
generatiocn number calculation. If the

relative number is negative and exceeds the
nunber of entries in the index, the module
returns to the user with an error code of
8.

Cnce the relative generation number in
the user's area has been replaced with the
absolute generation numker, the module
proceeds as though the user had supplied
the absolute number in the first place.

With the generation numker in absolute
format, the module uses BLDL to read the
entry associated with the name. If the
function is catalog, ccntrol is passed to
IGGOCLCS via the XCTL macro instruction.
If the function is locate, the module
checks BLDL's error code. If the name wvas
found, the module moves the data into the
user's area and checks to see if it must
read a volume control block to complete the
description of the data set. If it does,
the volume control blcck is read into the
user's area.

If BLDL cannot find the name, the module
returns to the user with an error code.

Catalog Generations: Module

IGGOCLCS

This module builds new entries for
generation indexes, maintains generation
index pointer entries Ly updating the
generation count, and marks entries for
deleticn or data sets for deletion if the
empty or delete optiocn was specified when
the generation index was created.

The module first checks the findings of
IGGOCLCYH to be sure the current structure
of the index is compatikle with the
function requested. If the requested
function is catalog, fcr example, and the
full name of the data set is found, the
error code is set to eight and the module
returns control to the user. Similarly, if
the functicn is anything but catalog and
the name was not found, the module takes an
error exit. '

If the function requested by the user is
consistent with the ccntents of the index,
the module checks the generation count and
maximum number of generations to be
maintained in this index. This indicates
whether the module must delete any entries
to add a new one. The mcdule increases or
decreases the generaticn count according to
the function requested (increase for
catalog, decrease for uncatalog, leave
alone for recatalog). It rewrites the
index block containing the updated
generation index pointer entry.
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If an entry must be removed from the
index, IGGOCLCS5 removes it and rewrites the
index block which contained this entry. If
the empty option is indicated by the flags
in the generation index pointer entry, the
module transfers control back to IGGOCLCY
to empty the index. If the delete option
is indicated, the module calls the SCRATCH
function of Direct Access Device Space
Management (DADSM)#* with an SVC 29 to
scratch the data set. After the module
deletes whatever entries it must delete, it
builds any new entries necessary.

When all the counts have been updated,
the necessary entries removed from the
index, and the specified data sets
scratched, IGGOCLCS5 reads the index to ke
updated and transfers control to IGGOCLC3.
IGGOCLC3 reorganizes the index just as if
it were a normal index.

The CVOL Routines: Modules
IGCOO0O2H and IGGOCLF2

These modules together take care of the
open and initialization functions for the
catalog management routines. IGCO0002H
opens or extends the catalog by building or
modifying a data control block (DCB) and a
data extent block (DEB) for the SYSCTLG
data set and IGGOCLF2 formats new catalogs,
extensions of the catalog, and new
partitioned data set directories..

IGCO0002H

This module is entered by an SVC 28, or
by XCTL if returning from the Extend
routine of DADsM*. If entry is by sSvcC 28,
the module opens or extends the catalog,
depending on input parameters. If entry is
by XCTL from the DADSM Extend routine, the
module finishes extending the catalog.

To open the catalog, the module searches
the volume table of contents (VTOC) of the
volume whose unit control block (UCB)
address was specified by the caller
(IGCO0002F). If it does not find a format 1
data set control block (DSCB) with name
SYSCTLG in the VTOC, it sets a return code
of 4 and exits. If it does find the format
1 DSCB, it constructs a DCB and DEB from
information in the DSCB and from
information contained in the module itself
(information common to all SYSCTIG data
sets such as blocksize and record format).

*See IBM System/360 Operating System:
Direct Access Device Space Management
Program Logic Manual, Fcrm Y28-6607.
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There is a switch in the DSCB of a
SYSCTLG data set that indicates whether the
data set has been formatted or not. If
this switch is off, IGC0002H transfers
control to IGGOCLF2, the formatting
routine, to format the data set. If the
switch is on, the module releases any
unused DEB or DCB space and exits.

To extend. the catalog, the module gets
main storage for the Extend routine of
DADSM, reads the format 1 DSCB for SYSCTLG,
and checks the secondary allocation
quantity in the DSCB. If this quantity is
zero, the catalog cannot be extended and
IGC0002H returns to the caller with an
error code of 4. If there is a secondary
allocation quantity sprecified in the DSCB,
the module builds a parameter list for the
Extend routine and transfers control to
module IGGO0533A.

The Extend routine cf DADSM returns
control to the beginning of IGC0002H, which
indicates that the data set must be
formatted and where the formatting is to
begin, and then passes control to the
formatting routine (IGGOCLF2). It also
builds a new DEB which includes the newly
allocated space.

IGGOCLF2

This module formats new catalogs,
extensions of existing catalogs,  and new
partitioned data set (PDS) directories. It
does this by filling the available space
with 256-byte records with 8-byte keys. If
it is formatting a new SYSCTLG data set or
a PDS directory it alsc initializes the
first block.

If the request is toc format a PDS
directory, the module constructs a channel
program to write one 256-byte block at a
time. The first write operation writes an
empty directory, and each subsequent write
writes an 8-byte zero key and 256-byte zero
record. When it has fcrmatted all the
requested blocks, it writes an end of data
mark, and returns to the caller via an SVC
3.

If the request is tc format a catalog,
the module constructs a channel program to
write keys and data, a full track at a
time. The module uses information from the
DSCB tc determine how many blocks will fit
on a track. It keeps a record of the last
relative track formatted to insert it into
the volume index contrcl entry.




When the module has reached the end of
the extent assigned to SYSCTLIG, it checks
to see if it has been formatting a new
catalog or an extension. If it has been
formatting an extension, it returns
directly to the caller. If it has been
formatting a new SYSCTLG data set, it
builds an empty volume index, containing a

volume index control entry and an index
link entry with zero TTR field, and sets
the format switch in the DSCB to indicate
that the data set has keen formatted.
Before returning to the caller, the module
always frees the working storage obtained
for it by IGC0002H.
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Directory

This chart, Figure 10, contains informatiocn to assist the reader in
making the transiticn from this manual to the assembler language
listings of the catalog management modules. It correlates information
from three sources:

e The source code

e The executable load modules

e This manual

T
DESCRIPTION CSECT | FLOWCHART

NAME | NUMBERS

T
LOAD MODULE| RESIDENCE
NAME

IGCO002F SYS1.SVCLIB Initialize IGCO026 1

IGGOCLC1 SYS1.SVCLIB Locate IGGOCLC1 2

IGGOCLC2 SYS1.SVCLIB Build and free IGGOCLC2

block

—_—— e e -

IGGOCLC3 SYS1l.SVCLIB Update blocks IGGOCLC3 4

of reorganized
index

IGGOCLCH SY¥S1.SVCLIB Locate gener- IGGOCLCH 5

ations

IGGOCLCS SYS1.SVCLIB Build gener-
ation index

entries

IGGOCLCS5 | 6

IGGOCLCG SYS1.SVCLIB Process IGGOCLC6
errors; Exit
for LOCATE

processing

I1GGOCLC7 SYS1.SVCLIB Update control IGGOCLC7
entries;
Release blocks;
Build and
delete index

structures

D e S B T S S e St a—t e

IGC0002H SYS1.SVCLIB Open/extend 1GC028

catalog

IGGOCLF2 SYS1.SVCLIB | Format catalog IGGOCLF2 10

|
& PDS |
directory |

i

S
i Fy St L S Sy St Sy Wy Sy Wy Sy Sy p—
T Sy S Wy WNSyREYS: Ty R S Uy Wy Sy—— S———

b e e e i s e o, . s e S e s, ket . . . e el . w— c— ekt w—— ki on— —— . m———— ————. w— i w———

e e s s s =

Figure 10. Directory
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This section contains illustrations.and
explanations of the l@youts of the various
types of catalog entries and of the.
parameter list which the user supplies to
the catalog management rcutines.

Catalog Entries

This section describes in detail the
format of each of the possible entries in
the catalog. Figures 11 and 12 represent
each entry pictorially and the following
text describes the contents of each field.

The Volume Index Control Entry contains
information about the entire catalog and
the volume index. It is always the first
entry in the catalog. It is 22 bytes long
and contains 8 entries.

Field 1: This is the name field. It
always contains the value
X'0000000000000001" to ensure that this
entry is always first in the volume index.

Field 2: This field contains the TTR of
the last block in the volume index.

Field 3: This field contains the numker
5 to indicate that five halfwords of user
data follow.

Field 4: This field contains the TTR of
the last block in the SYSCTLG data set.

Field 5: This is the alias count field
in a normal index, but since this is the
volume index it will always contain zero.

Field 6: This field contains the TTR of
the first unused block in the catalog.

Field 7: This field contains zero.
Field 8: This field contains a count of

the number of unused bytes in the last
block of the volume index.

An Index Control Entry is quite similar
to a volume index control entry, but it
only contains information about the index
which it begins. It is 18 bytes long and
contains six fields.

Field 1: This name field contains
X'0000000000000001"' to ensure that this
entry is first in its index.

Data Area Layouts

Field 2: As in the volume index control
entry, this field contains the TTR of the
last block in this index.

Field 3: This field contains the number
3 to indicate that three halfwords follow.
It identifies this entry as an index
control entry.

Field 4: This field contains the TTR of
the first block in this index. This
address is always the address of the klock
which contains this entry.

Field 5: This field contains a count of
the number of aliases in the catalog that
reference this index. This count will be
nonzero only for indexes one level removed
from the volume index.

Field 6: This field contains a count of
the number of unused bytes in the last
block cf the index.

Index Link Entries and Index Pointer
Entries are quite similar. An index link
entry is used to chain several blocks of an
index together and an index pointer entry
is used to chain an index to the next lower
level index. An index link entry is always
the last entry in any index block. These
blocks ccntain three fields and are 12
bytes long.

Field 1: This is the name field and
contains the name of the index to which
this entry points. If the entry is an
index link entry, the name field contains
X'FFFFFFFFFFFFFFFF'.

Field 2: This is the pointer field and
contains either the TTR of the first klock
of the index, in the case of an index
pointer entry, or the TTR of the next klock
of the index, in the case of an index 1link
entry.

Field 3: This is the count field, and
it contains zero to indicate that the entry
ends here.

The Data Set Pointer Entry contains the
actual information for which the catalog
exists: the volume serial number, data set
sequence number, and device type code of
the data set which the fully qualified name
represents. The entry can be from 26 to 74
bytes long, depending cn how many volumes
the data set occupies.
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Volume Index Control Entry

Field 1:  Name Field 2: 05 | Field 4: Field & Field 7:
TTR of last TTR of last TTR of first Count of
X'0000000000000001* block in C | block in unused block unused .
volume O | SYSCTLG 00 | in SYSCTLG | 9 bytes in
index U | data set data set last blockd
N of volume|
T index
0 7 8 10 11 12 14 15 16 18 19 20 21
- Total Length: 22 bytes - i
Index Control Entry
Field 1:  Name Field 2: 03 | Field 4 Count of
TTR of last TTR of first |, =]unused *
X'0000000000000001" block in this | C | block in < g bytes in
index O | this index 2 O|lost block
U QO|of this
N index
T
0 7 8 10 11 12
Total Length 18 bytes >

Index Link Entry

Field 1:  Name Field 2: 00
X'FFFFFFFFFFFFFFFF' TIR of next |
block in o
index U
(or zero if no N
next block) T
0 7 8 10 11
< Total Length: 12 bytes ————%|

Index Pointer Entry

Field 1: Name Field 2: 00
TTR of index

Index Name (padded to right C

with blanks if necessary) 8
N
T

0 7 8 10 1

[¢—————— Total Length 12 bytes ———————%

Data Set Pointer Entry

Field 1:  Name Field 2: * | Field 4 Field 5: Field & Field 7:

Lowest level name of data Dummy Volume Device Code Serial Number of voiume Data set

set or complemented generation pointer field: Count on which data set resides sequence

number (if part of GDG) zeros number
(zero for
direct
access)

0 7 8 10 11 12 13 U4 17 18 23 24 2

Repeated for each volume
Total Length 26 to 74 bytes — >

* Count: equal to 6 times the number
of volumes, plus 1.

Figure 11. Catalog Entry Formats
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Volume Control Block Pointer Entry

Volume Control Block

Field1:  Name Field 2: 01 | Field 4:
Lowest level of data set name TTR of C | Dummy
Volume O | data
Control U | entry:
Block N | zeros
T
0 7 8 10 11 12 13
- Total Length: 14 bytes ———————

Control Volume Pointer Entry

21

Field 1:  Name Field 2: 05 | Field 4: Field 5
Name of index on Dummy pointer| C | Device Code of Serial number of
other control volume field: zeros O | control volume control volume
U
N
T
0 7 8 10 11 12 15 16
Total Length: 22 bytes
NOTE:  Prior to release 17, the Control Volume Pointer Entry contained a count
of 03 and did not have a Device Code field (Field 4
Alias Entry
Field 1: Name Field 2: 04 Field 3:
Name of alias TR of index | C Name of high level index
named in field] O to which this is an alias
u
N
T
0 7 8 10 11 12 19

- Total Length: 20 bytes
Generation Index Pointer Entry
*1 | *2
Field 1: Name Field 2: 02 Field &
Name of generation index TIR of C Count of
generation (@) genera-
index U tions
N currently
T in index
0 7 8 10 11 12 13 14 15
- Total Length: 16 bytes
*1 Field 4:
Flags: bits  meaning
0-5  Reserved
6 Delete
7 Empty
*2 Field 5:

Count of maximum gererations to be maintained in index

Figure 12.

More Catalog Entry Formats

Lata

C Field 2: Field 3: Field 4 Field 5: Field &
[e) Device Serial number Data set sequence | Ten bytes of zeros TTR of next
U Code of volume n number for the volume control 00
N volume described block, or zero
T in field 5. Zero if none
for direct access
0 1 m m+3  mtd mt9 mt+10 m+11 242 251 252 254 255
T T T —
Repeated once for each volume; total 6 to 20
- 4§ Total Length: 256 bytes

Area Layouts




Fields one through four occur only once
while fields five through seven occur once
for each volume of the data set.

Field 1: This field contains the lowest
level of the data set name.

Field 2: This would normally be the
address field, but since a data set pointer
entry references no other entries in the
catalog, it contains zeros.

Field 3: Count of user data. This
field indicates how many halfwords of data
follow. The number in here will be six
times the number of volumes (there are six
halfwords for each volume) plus one (for
the volume count).

Field 4: This field contains a count of
the volumes following (one to five).

Field 5: This field contains the device
type code of the device on which the volume
with the following serial can be mounted.
(See Appendix C.)

Field 6: This field contains the volume
serial number of one of the volumes oOf the
data set.

Field 7: This field contains the
sequence number of the data set on a
magnetic tape volume. It is zero for any
other device.

A Volume Control Block Pointer Entry is
used instead of a data set pointer entry
when the data set occupies more than five
volumes. This entry points to a volume
control block, which, in turn, describes
the data set. The entry is 14 bytes long.

Field 1: This name field contains the
lowest level of the data set name.

Field 2: This field contains the TTR of
the first (or only) volume control block
for the data set.

Field 3: The count field contains zero
to indicate that this is the end of the
entry.

A Volume Control Block contains the
description of all the vclumes of a data
set which resides on more than five
volumes. One volume control block can
describe up to twenty volumes and volume
control blocks may be chained together, so
that a data set can be cataloged no matter
how many volumes it requires. The volume
control block is always 256 bytes long,
regardless of how many volumes it
describes.

Field 1: The first two bytes of a
volume control block contain a count of the
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number of volumes described by this volume
control block and any following it. For
example the count fields of a series of
VCBs for a data set that occupied sixty
volumes would show sixty, forty, and twenty
as the volume count.

This is the only kind of block in the
catalog in which the first two bytes are
not used as a count of the number of used
bytes in the block.

Field 2: This field can contain up to
twenty 12-byte volume descriptions,
consisting of device type codes (See
Appendix C) and volume serial numbers.

Field 3: This field contains ten Lytes
of zeros, followed by the TTR of the next
volume control block fcr this data set,
followed by one byte cf zeros. If there
are no more volume control blocks for this
data set, the TTR is zero.

A Control Volume Pointer Entry is used
to indicate that a particular index resides
on a vclume other than the system residence
volume. Control volumre pointer entries can
exist only in the volume index. They are
22 bytes long.

Field 1: The name field contains the
name of the high level index which resides
in the volume described by this entry.

Field 2: The address field contains
zeros, because this entry references no
others in the catalog.

Field 3: The count field contains the
nunmber 5 to indicate that five halfwords
follow.

Field 4: This field contains the device
type code of the specified control volume.
(See Appendix C.)

Field 5: This field contains the volume
serial number of the ccntrol volume which
has an entry in its vclume index of the
same name as this entry.

An Alias Entry is used to specify a
substitute name for a high level index.
Alias entries only apgear in the volume

index. They are 20 bytes long.

Field 1: The name field contains the
alias.

Field 2: The address field contains the

TTR of the first block cf the index for
which this entry specifies an alias.

Field 3: The count field contains the
number 4 to indicate that four halfwords of
data fcllow.




Field 4: This field contains the true
name of the index for which this entry is
an alias.

A Generation Index Pointer Entry points
to a generation index. It is basically the
same as an Index Pointer Entry, except that
it includes the flag and count fields. It
is 16 bytes long.

Field 1: The name field contains the
lowest level name of the generation data
group. That is, a generation data set
named WEEKLY.INVNTRY.G0001V00 would have
the name "INVNTRY" in the generation index
pointer entry name field.

Field 2: The address field contains the
TTR of the first block of the generation
index.

Field 3: The count field contains the
number 2 to indicate that two halfwords
follow.

Field 4: This field contains the flags
which indicate special handling for
generation data sets. Bit 7 indicates the
Empty opticn and bit 6 indicates the Delete
option. Bits 0-5 are reserved and are
always zero.

Field 5: This field indicates the
maximum number of entries to be maintained
in the index at one time.

Field 6: This field indicates the
number of entries currently in the index.
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User’s Parameter List

This parameter list, Figure 13, must be supplied by the user before
he calls the catalog management routines. The CAMLST macro instruction,
described in IBM System/360 Operating System:

System Programmer's
Guide, Form C28-6550, can be used to generate the list.
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Register

0 0
4 4
8 8
12 C

1 At entry to IGC0002F, register 1 points to the user's parameter list.

Option
Flags
(see below)

Generation
Count

Pointer to Fully
Qualified Name

Pointer to Serial Number
of Control Volume

Pointer to User's Work Area

At all other times, register 8 points there.

Byte 0 1...
-X..
..l
PR §
Byte 1 X...
ela.
-a1l.
aael

oo e e
- e e e
e eee

Byte 2 1...
-1..

-« XX

ceeeae

Note: Function is locate by name if all flags are zero.
CATBX if CTLG and BLDX flags are both ones.

laoa.
-Xaa
..1.
eeeX

e eoa
eesa
“eaen

le..
1.
<. X
eeal

ow ee

1...

« XXX

Option Flags
Catalog is on System Residence Device

Not used by the Catalog Management rcutine

CTLG Catalog a data set

RECAT Recatalog a data set

UNCAT Uncatalog a data set

Not used by the Catalog Management rcutine
BLOCK Read a block by TTR

Not used by the Catalog Management rcutine
Not used by the Catalog Management rcutine

BLDX Build normal index structure

BLDG Build generation index

BLDA Build an alias to a high-level
name

LINKX Connect ccntrol volumes

DLTX Delete an index Structure

Not used by the Catalog Management routine

DLTA Delete an alias entry

DRPX Disconnect control volumes

DELETE Scratch generation data sets

when they are uncataloged
Not used by the Catalog Management rcutine
EMPTY Remove all entries from the
index when the maximum gen-
eration count has been reached
Not used by the Catalog Management rcutine

and DLTX flags are both ones.

Figure 13. User's Parameter List
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Diagnostic Aids

This section includes miscellaneous charts and tables that might be
useful in locating program errors.

Module Selection Chart

This chart, Figure 14 can be used to determine what modules of the
catalog management routine will ke used to perform a particular
function, given the function required and the current status of the
catalog. '

r T-T- T T~ 7T 7T71T°7171
[ |11213|4|5]6]7]|8]
1 L 11 i L-J
f T 1T h] LR
| FUNCTION: LOCATE lY || N
L JiJ 1 11l l_1_1_1
[} L L L L L L L L R |
| OTHER 111 lelely|y|e|y|
I Lol_l1 1l L]
r LRI ] T 1
| TYPE INDEX FOUND: NORMAL Y|y |y RN
¢ B o
I GENERATION || Y| | | | |Yl¥]
L B T OO G (NN TGN TR I I I |
r T T 17T TTTT1T1
| NONE L eyl ||
T LI
UNFORMATTED CATALCG IN|Y|N|Y|N|Y
+-1-4
141 d L
LI T L]
IGCO002F IXIX|X|X[X|X|X]|X
+-1+-4 +-1+-1
| IGC0002H XX XXX XXX
L dodd 1l d it 1l_1_J
1 3 T TV T v T T 17T 7T
| IGGOCLF2 Pl X x|
b =411+ +-1
| IGGOCLC1 XX |X|X|X|X|X]|X]
o o
IGGOCLC2 I IXIXIXIX] |
1 J_1_1 R
T T T T T T
 IGGOCLCH YR
i lol_.1 Ll
) | I B ) T T
| IGGOCLCS TR
L Jidd it d 1l 111
r Tr T 1T v TrmrrTTr7r T
I IGGOCLC3 Il IXIXIX XXX
L | 1 N I T TSN I N U A |
3 TV TV 1T 7T vV 1T v v 1
| IGGOCLC? L1 IXIXIX|X| XX
L il 4l 1t 1.1 1.3

Figure 14. Module Selection Chart
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Register Usage

Figure 15 is a register usage chart. In the chart, the ccntents of
certain registers is given, as it apppears at entry to each mcdule and
just before each module loses control. All entries in the takle, except
those marked "*", are addresses. That is, when the table indicates that
at entry to module IGGOCLC1l register 9 is 'DCB', this means that
register 9 contains the address of the data control block. When the
table indicates that at entry to module IGGOCLC2 register 6 is "No. of
Levels Searched *," this means that register 6 contains that number.
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Figure 15.

Register Usage
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Module Registers
Name 0 1 2 3 4 5 6 8 s | 1o 1 12 | 13 15
1GCO002F User's SVRB
niry Param=
eter List
Function ENQ User's DCB Work | BLDL
Exit Code* Parameter Parameter Area | Work
List List Area
IGGOCLC1 Function ENQ User's DCB Work | BLDL
Entry Code* Parameter Parameter Area | Work
: List List Area
Exit (To ENQ No. of User's DCB Generation | Work | BLDL
IGGOCLC2 or Parameter | Levels Parameter Index Area | Work
1GGOCLC4) List Searched*| List Block Area
Exit No. of Locate Error
(To User) Levels Error Code*
Searched* |Code*
IGGOCLC2 No. of  [User's DCB| Work
Entry Levels Parameter Area
Searched* | List
No. of  |User's DCB|Work
Exit Levels Parameter Area
Searched* | List
IGGOCLC3 User's DCB| Work
Entry Parameter Area
List
No. of Locate Index
Exit Levels Error Catalog
Searched* |Code* Error Code*
1GGOCLC4 Entry User's DCB Work | BLDL
Entry Indicator Parameter Area | Work
* List Area
Entry User's DCB Gen, Index| Work | BLDL
Exit Indicator Parameter Pointer Area | Work
* List Entry Area
IGGOCLCS Entry User's DCB Gen. Index|Work | BLDL
Entry Indicator Parameter Pointer Area | Work
) * List Entry Area
Exit No. of  |Locate Index
(User) Levels Error Catalog
Searched* |Code* Error Code*
Exit User's DCB Work |BLDL
(IGGOCLC3) Parameter Area | Work
List Area
Exit Entry User's DCB Work | BLDL
(IGGOCLC4) Indicator Parameter Area | Work
* List Area
IGGOCLCé Index Cat-f Locate No. of DCB Locate
Entry alog Error | Error Levels Work
Code* Code* Searched* Area
No. of Locate Error
Exit Levels Error Code*
Searched* |Code*
IGGOCLC7 Link Entry|Area for DCB| Work
Entry Old Updated Area
Index Link Entry
Error
Exit Code*
IGCO002H | Entry UCB of ork Bin Number
(Via SVC 28) CcvoL Area for fif CVOL is
or DCB DEB/DCBjon 2321*
Entry A Extend Bin DCB|TTR of [UCB
(XCTL from Negative Work Number new
ExtendRtne) [Value* Area if 2321% Extent*|
Exit Error
(To Caller) Code*
Exit (To DCB Work DEB ucs Non-
DADSM Area zero*
Extend Rine)
Exit Zero* DCB No.of [Subpool ID | Work Begin
(To Blocks/|and Size of| Area TTR*
IGGOCLF2) Track* [Work Area”
IGGOCLF2 DCB Work DEB ucs Non-
Entry Area zero*
Error
Exit Code*
0 1 2 3 4 5 6 8 9 10 11 12 13 15




- — Y

e,

Appendix A: Flowcharts

These flowcharts illustrate the operation of the catalog management
routines module by mocdule. Each label in the charts is taken directly
from the assembler language source code for the module. The charts are
intended to bridge the gap between the textual material of this manual
and the code itself, so they are best used in conjunction with the code
and the text (particularly the Program Organization section).
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Chart 2. Catalog Management IGC0002H (Part 1 of 2)
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Chart 2. Catalog Management IGC0002H (Part 2 of 2)
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Chart 3. Catalog Management IGGOCLC1l (Part 2 of 2)
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Chart 4. Catalog Management IGGOCLC2 (Part 2 of 3)
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Chart 5.
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Chart 5. Catalog Management IGGOCLC3 (Part 2 of 2)
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Chart 6. Catalog Management IGGOCLC4 (Part 1 of 3)
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Chart 6. Catalog Management IGGOCLCY4 (Part 2 of 3)
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Chart 6. Catalog Management IGGOCLCY4 (Part 3 of 3)
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Chart 7. Catalog Management IGGOCLC5 (Part 1 of 2)
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Chart 9. Catalog Management IGGOCLC7
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Appendix B: Old CVOL Pointer

Before Release 17, the control volume pointer entry had nc device
type code field. sSince some control volumes may still contain the old

entry, and since the routines still check for it, its format is given
here.

Field 1: Field 2: 03 Field 4:

Name Zeros Control Volume
Serial Number

0 7 8 10 11 12 17

18 Bytes >
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Appendix C: Device Type Field

The device code portion of data set pointer entries, volume control
blocks, and control volume pointer entries is identical to the UCBTYP
field of the unit control block. This descriptiocn is included here for
easy reference.

For a complete description of the fields above, please refer to IBM
Systen/360 Operating System: System Control Blocks, Form C28-6628. A

brief description of some of the fields appears below.

Device Class: (Byte 3; values are in hex)

X'80"' Magnetic Tape
X'20' Direct Access
X'08"' Unit Record
X'10' Grarghics

X'40' Conmmunications

When Byte 3 indicates direct access, byte 4 indicates the specific
device as follows:

X'01*' 2311 Disk Storage Drive
X*'02"' 2301 Parallel Drum

X*03' 2303 serial Drum

X'04"' 2302 Disk Storage

X'05' 2321 Data Cell Drive

X'08"'" 2314 Disk Storage Facility

10S
Flags

"é%‘éil Optional Features Device Class Unit Type

Byte 1

Byte 2 Byte 3 Byte 4
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Catalog management is the facility of
the Operating System for locating data sets
when the user specifies only the data set
names. The catalog, itself a data set
(DSNAME=SYSCTLG), contains data set names
correlated with volume and device type
information. The catalog management
routines supervise the organization of the
catalog; insert, remove, and locate entries
in the catalog; and format new catalogs and
partitioned data set directories. For
further information concerning Rotational
Position Sensing (RPS), which is mentioned
throughout this manual, refer to the
section concerning this feature in IBM
System/360 Operating System: Direct Access
Device Space Management Program Logic
Manual, GY28-6607.

Organization by Level of
Qualification

Operating System data set names may be
either simple or gualified. A simple name
is a collection of up to eight EBCDIC
characters. A qualified name is a
collection of simple names separated by
periods (.) with a total length of up to
44 bytes.

Catalog management uses the periods in a
qualified name as delimiters and uses the
simple names (called qualifiers) as index
names. The catalog is divided into
indexes, each of which represents one level
of qualification of a qualified name.

The catalog management routines can be
used to build or delete a single index or a
whole index structure. To catalog a data
set called A.B.C, for example, the user may
either first create index A, then index
A.B, and then catalog A.B.C, or request
that catalog management create any missing
index levels needed to catalog A.B.C.

The highest level index, called the
volume index, is built automatically the
first time a new catalog is used by the
catalog management routines.

Generation Data Group Structure

The same structure is used to maintain
generation data groups. A generation data

Introduction

set may be referred to by its absolute name
(e.g., A.B.C.G0006V00) for any catalog
functions, or by a relative generation
number (e.g., A.B.C(-2) ) for the locate
function. The catalog management routines
keep only the specified number of entries
in the generation index (index 'C' in this
case), deleting older ones and adding new
ones when necessary, and emptying the index
and deleting the data sets themselves if
the user specified the EMPTY or DELETE
options when he created the generation
index.

For a description of the use of
generation data groups, see IBM System/360
Operating System: Supervisor and Data
Management Services, Form C28-66U46.

Control Volumes

Any direct access volume may contain a
catalog; any such volume is called a
control volume (CVOL). The system
residence volume always contains a catalog.

An item in the catalog of a CVOL other
than the system residence volume can be
made available to the system if the CVOL is
"connected" to the system residence volume.
To connect a CVOL to the system residence
volume, the catalog management routines
insert a control volume pointer entry into
the volume index of the catalog on the
system residence volume. This entry
contains, in its name field, the name of a
high level index which already exists on
the CVOL to be connected. (See Figure 1.)

Any search of the catalog may start on
the system residence volume, but if the
catalog management routines encounter a
control volume pointer entry attached to
the highest level of the name in the volume
index, they continue the search for the
fully-qualified name on the CVOL whose
serial number is in the control pointer
entry. The caller of the catalog
management routine may specify what CVOL is
used for the search.

Introduction 7



System Residence Volume

Volume Table of Contents

Volume Index

Volume Serial
Number of
Control Volume

Index

Figure 1.

Calling the Catalog Management
Routines

The catalog management routines are
accessed through three assembler language
macro instructions: LOCATE, INDEX, and
CATALOG. The macro instructions generate a
reference to a parameter list, which the
user must build, and an SVC 26 instruction.
The user's parameter list contains a group
of flags that indicate what function he is
asking the catalog management routines to
perform. Figure 2 summarizes these
functions, and the section "Data Area
Layouts"™ contains a detailed description of
the user's parameter list.

The catalog management macro

instructions are most commonly used by the
utility IEHPROGM, the job scheduler, and

Control Volume

Volume Table of Contents

Volume
Index
DSCB

Volume Index

;
E : Pointer to
| Index E
1
T T
: : Volume
Index Pointer to
Al F 1 Number
{ Index A { of F
Data
Set
E.F
H i
I Volume Volume
Iniex L : Number | p : Number
| of L 1 of P
H 1
Data Data
Set Set
E.A.L E.A.P

A Control Volume Connected to the System Residence Volume

TSO, although they may be employed by any
user of assembler language.

IEHPROGM creates and deletes indexes,

aliases, and generation indexes,

and

catalogs and uncatalogs data sets according
to specifications supplied by the user of

IEHPROGM.

The job scheduler calls the catalog
management routines when it must locate a
data set, given only its name, or when the
DISP parameter on a DD card is CATLG or

UNCATIG.

TSO dynamic allocation locates old data

sets and catalogs new data sets.

TSO

command processors also call the catalog
management routines to manipulate the

catalog.



Liocate Generations: Module

IGGOCLC4

Generation data groups require
significantly different locating and
cataloging procedures from other data sets
for two reasons:

(1) Generation data groups may be
specified by relative generation number (as
in GENR(+1)), in which case the absolute
generation number must be calculated, and

(2) The absolute generation number is
stored in the catalog in hexadecimal
complement form, that is, generation
G0001V00 would be stored as X'C7 OF OF OF
0E E5 FO FO'. (Note that the version
number and the characters 'G' and 'V' are
not complemented.) 1In this way the most
recent generation (the one with the highest
absolute number) is always the first entry
in the index after the index control entry.

In this manual, the term "absolute
generation number" refers to the number as
it is coded by the user and as it appears
in the name field of a data set control
block (DSCB). It does not refer to the
number as it is stored in the catalog, in
complement form.

Module IGGOCLCY4 locates the lowest level
of a generation name. When IGGOCLC1l finds
a generation index pointer entry correlated
with the next to last level of a name, it
passes control to this module. It may also
be entered from IGGOCLC5 when that module
finds it must empty an index.

This module first checks to see whether
entry is from IGGOCLCS5 (empty request) or
from IGGOCLC1l (normal locate path). If it
was from IGGOCLCS, the module rewrites the
generation index, this time with only the
highest entry, and frees any blocks no
longer needed by the shortened index.

If the path is a normal locate path
(entry from IGGOCLC1l), IGGOCLCY4 checks the
format of both relative generation numbers
and absolutée generation numbers and returns
to the user with an error code of 20 if the
format of the supplied name is not correct.
If the name is in relative format, the only
valid function is locate; if any other
function has been specified, the module
returns with an error code of 20.

If the name is in relative format, the
module must calculate its absolute
generation number. It does this by adding
or subtracting the relative number given
and the actual number of the first entry in
the index. If the index is empty, the
module sets up a dummy *found' entry called
*GO000V00' as the basis for absolute
generation number calculation. If the

relative number is negative and exceeds the
number of entries in the index, the module
returns to the user with an error code of
8.

Once the relative generation number in
the user's area has been replaced with the
absolute generation number, the module
proceeds as though the user had supplied
the absolute number in the first place.

With the generation number in absolute
format, the module uses BLDL to read the
entry associated with the name. If the
function is catalog, control is passed to
IGGOCLCS wvia the XCTL macro instruction.
If the function is locate, the module
checks BLDL's error code. 1f the name was
found, the module moves the data into the
user's area and checks to see if it must
read a volume control block to complete the
description of the data set. If it does,
the volume control block is read into the
user's area.

If BLDL cannot find the name, the module
returns to the user with an error code.

Module

Catalog Generations:

IGGOCLCS

This module builds new entries for
generation indexes, maintains generation
index pointer entries by updating the
generation count, and marks entries for
deletion or data sets for deletion if the
empty or delete option was specified when
the generation index was created.

The module first checks the findings of
IGGOCLCU4 to be sure the current structure
of the index is compatible with the
function requested. If the requested
function is catalog, for example, and the
full name of the data set is found, the
error code is set to eight and the module
returns control to the user. Similarly, if
the function is anything but catalog and
the name was not found, the module takes an
error exit.

If the function requested by the user is
consistent with the contents of the index,
the module checks the generation count and
maximum number of generations to be
maintained in this index. This indicates
whether the module must delete any entries
to add a new one. The module increases or
decreases the generation count according to
the function requested (increase for
catalog, decrease for uncatalog, leave
alone for recatalog). It rewrites the
index block containing the updated
generation index pointer entry.

Program Organization 25



Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

If an entry must be removed from the
index, IGGOCLC5 removes it and rewrites the
index block which contained this entry. If
the empty option is indicated by the flags
in the generation index pointer entry, the
module transfers control back to IGGOCLCH
to empty the index. If the delete option
is indicated, the module calls the SCRATCH
function of Direct Access Device Space
Management (DADSM) * with an SVC 29 to
scratch the data set. After the module
deletes whatever entries it must delete, it
builds any new entries necessary.

When all the counts have been updated,
the necessary entries removed from the
index, and the specified data sets
scratched, IGGOCLCS reads the index to be
updated and transfers control to IGGOCLC3.
IGGOCLC3 reorganizes the index just as if
it were a normal index.

The CVOL Routines: Modules
IGCOOO2H and IGGOCLF2

These modules together take care of the
open and initialization functions for the
catalog management routines. IGCO0002H
opens or extends the catalog by building or
modifying a data control block (DCB) and a
data extent block (DEB) for the SYSCTLG
data set and IGGOCLF2 formats new catalogs,
extensions of the catalog, and new
partitioned data set directories.

IGC0002H

This module is entered by an SVC 28, or
by XCTL if returning from the Extend
routine of DADsSM*. If entry is by svC 28,
the module opens or extends the catalog,
depending on input parameters. If entry is
by XCTL from the DADSM Extend routine, the
module finishes extending the catalog.

To open the catalog, the module searches
the volume table of contents (VTOC) of the
volume whose unit control block (UCB)
address was specified by the caller
(IGCO002F). If it does not find a format 1
data set control block (DSCB) with name
SYSCTLG in the VTOC, it sets a return code
of 4 and exits. If it does find the format
1 DSCB, it constructs a DCB and DEB from
information in the DSCB and from
information contained in the module itself
(information common to all SYSCTLG data
sets such as blocksize and record format).

*See IBM System/360 Operating System:
Direct Access Device Space Management
Program Logic Manual, Form Y28-6607.

26

For RPS devices, IGCO0002H obtains an RPS
work area (and frees it when it frees the
DCB and DEB area.) When the DCB and DEB
are constructed initially for an RPS
device, control is transfered by XCTL to
the RPS setup module, IGGO19EK. Upon
return from IGGO19EK, normal DEB
construction continues.

There is a switch in the DSCB of a
SYSCTLG data set that indicates whether the
data set has been formatted or not. If
this switch is off, IGCO0002H transfers
control to IGGOCLF2, the formatting
routine, to format the data set. If the
switch is on, the module releases any
unused space and exits.

To extend the catalog, the module gets
main storage for the Extend routine of
DADSM, reads the format 1 DSCB for SYSCTLG,
and checks the secondary allocation
quantity in the DSCB. If this quantity is
zero, the catalog cannot be extended and
IGCO0002H returns to the caller with an
error code of 4. If there is a secondary
allocation quantity specified in the DSCB,
the module builds a parameter list for the
Extend routine and transfers control to
module IGGO0533A.

The Extend routine of DADSM returns
control to the beginning of IGC0002H, which
indicates that the data set must be
formatted and where the formatting is to
begin, and then passes control to the
formatting routine (IGGOCLF2). It also
builds a new DEB which includes the newly
allocated space.

IGGOCLF2

This module formats new catalogs,
extensions of existing catalogs, and new
partitioned data set (PDS) directories. It
does this by filling the available space
with 256-byte records with 8-byte keys. If
it is formatting a new SYSCTLG data set or
a PDS directory it also initializes the
first block.

If the request is to format a PDS
directory, the module constructs a channel
program to write one 256-byte block at a
time. The first write operation writes an
empty directory, and each subsequent write
writes an 8-byte zero key and 256-byte zero
record. When it has formatted all the
requested blocks, it writes an end of data
mark, and returns to the caller via an SVC
3.
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If the request is to format a catalog,
the module constructs a channel program to
write keys and data, a full track at a
time. The module uses information from the
DSCB to determine how many blocks will fit
on a track. It keeps a record of the last
relative track formatted to insert it into
the volume index control entry.

When the module has reached the end of
the extent assigned to SYSCTLG, it checks
to see if it has been formatting a new
catalog or an extension. If it has been
formatting an extension, it returns

directly to the caller. If it has been
formatting a new SYSCTLG data set, it
builds an empty volume index, containing a
volume index control entry and an index
link entry with zero TTR field, and sets
the format switch in the DSCB to indicate
that the data set has been formatted.
Before returning to the caller, the module
tests for an RPS device. If the device has
the RPS feature, the RPS work area is freed
and the RPS appendage module, IGGO19EK, is
deleted. Then the working storage oktained
by IGC0002H is freed.

Program Organization 27



Directory

This chart, Figure 10, contains information to assist the reader in
making the transition from this manual to the assembler language
listings of the catalog management modules. It correlates information
from three sources:

e The source code

e The executable load modules

e This manual

LOAD MODULE
NAME

RESIDENCE DESCRIPTION CSECT

NAME

FLOWCHART
NUMBERS

IGC0002F SYS1l.SVCLIB Initialize IGC026 1

IGGOCIC1 SYSl1l.SVCLIB Locate IGGOCLC1 2

IGGOCLC2 SYSl1l.SVCLIB Build and free IGGOCLC2

block

IGGOCILC3 SYS1l.SVCLIB Update blocks
of reorganized

index

IGGOCLC3

IGGOCLCH SYSl1l.SVCLIB Locate gener- IGGOCLCY

ations

IGGOCLCS SYS1.SVCLIB Build gener- IGGOCLCS

ation index
entries

IGGOCLC6 SYS1.SVCLIB Process IGGOCLC6
errors; Exit
for LOCATE

processing

IGGOCLC7 SYS1.SVCLIB Update control IGGOCLC7
entries;
Release blocks;
Build and
delete index

structures

IGC0002H SYS1.SVCLIB Open/extend IGC028

catalog

IGGOCLF2 SYS1.SVCLIB Format catalog IGGOCLF2 10

& PDS
directory

[ o e o e o e e e e S e e e s M e e S S e e M e e . B e e B e B e S e e )

P e e b —

et e Rt 2t e e e e Mt st P
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o
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Figure 10. Directory
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Register
Option .
Generation
0 0 Flags
(see below) Count
4 4 Pointer to Fully
Qualified Name
8 g Pointer to Serial Number
of Control Volume
12 C Pointer to User's Work Area

1 At entry to IGCO0002F, register 1 points to the user's parameter list.
At all other times, register 8 points there.

Option Flags

| Byte 0 1... .... Catalog is on CVOL

eXee eaee Not used by the Catalog Management rcutine
eele ... CTLG Catalog a data set
ceel L.l RECAT Recatalog a data set
eeee loa. UNCAT Uncatalog a data set
cees oXea Not used by the Catalog Management routine
eeee ool. BIOCK Read a block by TTR
ceee eeeX Not used by the Catalog Management routine

Byte 1 Xeee cees Not used by the Catalog Management rcutine
1. ... B1IDX Build normal index structure
eele .. BLDG Build generation index
eeel can. BLDA Build an alias to a high-level

name

eeee 1l... LINKX Connect control volumes
cece ol.. DLTX Delete an index Structure
eeee ooX. Not used by the Catalog Management rcutine
ceee esel DITA Delete an alias entry

Byte 2 l... .... DRPX Disconnect control volumes
elee eee. DELETE Scratch generation data sets

when they are uncataloged

eeXX cuen Not used by the Catalog Management routine
eces leowe. EMPTY Remove all entries from the

index when the maximum gen-
eration count has been reached
eeee o XXX Not used by the Catalog Management routine

Note: Function is locate by name if all flags are zero. Function is
CATBX if CTLG and BLDX flags are both ones. Function is UCATDX if UNCAT
and DLTX flags are both ones.

Figure 13. User's Parameter List

Data Area Layouts 35



LOCATE
OTHER

| FUNCTION:

This section includes miscellaneous charts and tables that might be
r

useful in locating program errors.
This chart, Figure 14 can be used to determine what modules of the

catalog management routine will be used to perform a particular
function, given the function required and the current status of the

Module Selection Chart
catalog.
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| chart 2. catalog Management IGCO002H (Part 1 of 2)

IGGOCLF2

=P\ |
ENTRY VIA XCTL BUILD ECB AND
FROM IGGOOO2H })——» IOB,nghOCATE

I1s
EQUEST_TO
FO! T BPAM

DIRECTORY

2:
NIT TGO START

FOR EOD MARK

BPLOOP2 EZ/

BPNFRST
G

HAS LAST
RECORD BEEN
WRTN.

SET UP CHANNEL
PROG_TO WRITE
D MARK

BPNLST

HAVE ALL
RECORDS BEEN
WRITTEN

3
GO_BACK_ 1 TRK
TO PASS LAST TT
IN CATALOG TO
CALLER

IS REQST TO
FORMAT EXT OF
CAT

BUILD VOLUME

FIRST WRITE INDEX CONTROL
BLOCK
F 3
SET UP 1ST CCW
T ITE RPS SID
SPECIAL BLK FOR WRITE IT APPG PRESENT
EMPTY DIRECTORY

READ THE
SYSCTLG DSCB

Y

1

SET FORMATTED
SW ON IN DSCB

WRITE_BACK
THE DSCB

BPLOOP1

B

WRITE FULL
FORMATTED
BLOCKS

CALLED BY
CATLG

RESTORE AVT
PTRS

FREEMAIN RPS WK A
AREA

EXTENDED «I
"

PUT LAST TT IN
DATA SET IN REG
TO RETN TO

SET ERROR CODE
TO ZERO

L®

—

Appendix A: Flowcharts
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Chart

2.

FREEMAIN FOR
UNUSED_ DEB,
DCB SPACE

I

S _FORMAT
SWITCH ON

1

SET ERROR CODE
TO ZERO

D1

PLACE DCB ADDR
IN REGISTER 1

E1
RETURN TO
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Catalog Management IGGOCLF2
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Appendix B: Old CVOL Pointer

Before Release 17, the control volume pointer entry had nc device
type code field. Since some control volumes may still contain the old

entry, and since the routines still check for it, its format is given
here.
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Appendix C: Device Type Field

The device code portion of data set pointer entries, volume control
blocks, and control volume pointer entries is identical to the UCBTYP
field of the unit control block. This description is included here for
easy reference.

For a complete description of the fields above, please refer to IBM
System/360 Operating System: System Control Blocks, Form C28-6628. A
brief description of some of the fields appears below.

Optional Features: (Byte 2; values are in hex)

X'10" Rotational Position Sensing (RPS)

Device Class: (Byte 3)

X'80'" Magnetic Tape
X'20"' Direct Access
X'08"' Unit Record
X'10" Graphics

X'40' Communications

When Byte 3 indicates direct access, byte 4 indicates the spe01f1c
device as follows:

X'01"' 2311 Disk Storage Drive
X'02*' 2301 Parallel Drum

X'03" 2303 serial Drum

X"04' 2302 Disk Storage

X'05"' 2321 Data Cell Drive

X'06' 2305 Model 1 FHSF

X'07' 2305 Model 2 FHSF

X*08"' 2314 Disk Storage Facility
X' 09*' 3330 Disk Storage Facility

Appendix C: Device Type Field 59
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