
IBM System/360 Operating System:

Time Sharing Option

Catalog Management

Program Logic Manual

Program Number 360S-DM-50B

This publication provides customer engineers
and other technical personnel with information
describing the internal organization and
logic of the catalog management routines that
are used with the Time Sharing Option has been
selected at system generation time. These
routines provide the facility of locating data
sets when only data set names are specified.

This manual is based on the IBM System/360
Operating System: Catalog Management, Program
Logic Manual, GY28-6606. It should be used in
place of. the above manual qnly if the Time
Sharing Option has been specified at system
generation time.

Information in this publication for TSO
is for planning purposes until that item is
available.

File No. S360-36
Order No. GY28-6745-0

Program Logic

First Edition (March, 1971)

This edition applies to release 20.1, of IBM System/360 Operat­
ing System., and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes
are periodically made to the information herein1 before
using this publication in connection with the operation of IBM
systems, refer to the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM -Corporation, Programming Systems Publica­
tions, Department DSB, PO Box 390, Poughkeepsie, N. Y. 12602

~Copyright International Business Machines Corporation 1971

'I /

(

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the catalog
management routines that are used when the
Time Sharing Option has been selected at
system generation time.

This manual is based on the IBM
system/360 Operating system cataiOq
Management Program Logic Manual,. GY28-6606.
It should be used in place of the above
manual only if the Time Sharing Option has
been specified at system generation time.

Publications that contain external
information about the catalog and its use
are:

IBM System/360 Operating System
supervisor and Data Management services.
Form C28-6646

IBM System/360 Operating System
System Programmer's Guide. Form C28-6550
management routines.

IBM System/360 Operating System
Direct Access Device Space Management.
Form Y28-6607

IBM System/360 Operating System
Sequential Access Methods,. Form Y28-6604

This manual is divided into seven major
sections with three appendixes.

The "Introduction• describes the catalog
management routines and the catalog as they
relate to the rest of the Operating System.

The "Catalog Data Set• section describes
the structure and organization of the

Preface

catalog data set. An understanding of this
data set is a prerequisite for an
understanding of the routines used to
access and modify it.

The "Method of Operation" section
describes the logical functions of the
catalog management routines.

The "Program Organization• section
describes each module of the routines in
detail, with particular emphasis on the
differences between the actual code
involved and the logical functions of the
routines.

The "Directory" is a chart that enables
the reader to find a section of code, a
flowchart, or a text reference. given any
one of the three.

The "Data Area Layouts• section
describes in detail each of the catalog
entries and also the user's parameter list.

The "Diagnostic Aids" section contains
charts of register usage at various stages
in catalog processing and of the factors
involved in determining which module gets
control when.

The three appendixes contain detailed
flowcharts, a diagram cf the device type
field found in data set pointer entries and
CVOL pointer entries. and a description of
a CVOL pointer entry which is no longer
created by the catalog management routines
but which may still exist in some
installations.

.1

(

INTRODUCTION .• • • • • .• • • .• .• • • • • 7
Organization by Level of Qualification • 7
Generation Data Group Structure • • • • 7
Control Volumes • • • • • • .• • • • • • 7
Calling the Catalog Management Routines 8

CATALOG DATA SET • • • • •
Physical Blocks
Index Levels .•••

Chaining of Blocks
Use of Keys

Index Entry Types

METHOD OF OPERATION
Housekeeping Functions .• •

Maintaining Catalog Integrity
Opening the Catalog Data Set •

Locate Function • • • • • • • •
BLDX, LINKX, and BLDG Functions
Catalog and RECAT Functions

• • 10
• • 10
• • 10
• • 11
•• 11
• • 14

•• 16
16

• • 16
•• 16
•• 17

17
• 17

• • 18 BLDA Function • • • • • • • .• •
DLTX, DLTA, DRPX, UNCAT Functions
CATBX and UCATDX Functions •

• • • 18

The CVOL Routines • • .• • .• • • .• .•
Open Routine • • • •
Extend Routine • • •
Formatting Routine •

• • 18
• • 18
• • 19

19
19

PROGRAM ORGANIZATION • 20
Initialization and Housekeeping: Module
IGC0002F • .• • • .• .• • • • • • • • • • • 20

Contents

Locate: Module IGGOCLC1 • • • • • • • • 20
Index/Catalog, Normal Structure:
Modules IGGOCLC2, IGGOCLC3, IGGOCLC6,
and IGGOCLC7 • • • • • • • • • • 22

IGGOCLC2 • • 22
IGGOCLC6 • • 22
IGGOCLC3 • .• • 22
IGGOCLC7 • • • • 23

Catalog Protection • • • • • 23
Locate Generations: Module IGGOCLC4 •• 25
catalog Generations: Module IGGOCLC5 •• 25
The CVOL Routines: Modules IGC0002H and
IGGOCLF2 • • • • • •

IGC0002H •
IGGOCLF2 • • • • •

DIRECTORY

DATA AREA LAYOUTS
Catalog Entries
User's Parameter List

DIAGNOSTIC AIDS
Module Selection Chart •
Register Usage •

APPENDIX A: FLOWCHARTS •

• 26
• • 26

• • • • 26

28

• 29
• • • • 29
• • • • 34

• • • • 36
• Ill •• • • • • • 36

• • • • 37

• • • • 39

APPENDIX B: OLD CVOL POINTER • • • • 58

APPENDIX C: DEVICE TYPE FIELD • .• • • • 5 9

INDEX .. , .. ········· • • • • 61

Contents 5

Illustrations

Figure!s

Figure 1. A control Volwne Connected
to the System Residence Volume 8
Figure 2. Functions of the Catalog
Management Routines • • • • • • • • 9
Figure 3. Typical Physical Block in
the Catalog • • • • • • • • • • • .• • • 10
Figure 4. Logical Organization of
the Catalog: Normal Index structure • 11
Figure 5. Logical Organization of
the Catalog: Generation Indexes and
Volume Control Blocks • • • • • • • • • 12

Charts

Chart 1. Catalog Management IGC0002F 40
Chart 2. Catalog Management IGC0002H
(Part 1 of 2) 41
Chart 2. Catalog Management IGC0002H
(Part 2 of 2)• 42
Chart 3. Catalog Management IGGOCLC1
(Part 1 of 2) 43
Chart 3. Catalog Management IGGOCLC1
(Part 2 of 2) . . . ·• 44
Chart 4. Catalog Management IGGOCLC2
(Part 1 of 3) 45
Chart 4. Catalog Management IGGOCLC2
(Part 2 of 3)• 46
Chart 4. Catalog Management IGGOCLC2
<Part 3 of 3) 47

6 TSO Catalog Management PLM (Release 20.1)

Figure 6.
the Catalog
Figure 7.
Figure 8.
Figure 9.
Functions
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Chart 5.
(Part 1 of
Chart 5.
(Part 2 of
Chart 6.
(Part 1 of
Chart 6.
(Part 2 of
Chart 6.
(Part 3 of
Chart 7.
(Part 1 of
Chart 7.
(Part 2 of
Chart 8.
Chart 9.
Chart 10.

Physical Organization of
• • • • 13

Index Entries
Catalog Module Flow
Use of ENQ and DEQ

• • • • 15
.• • • • 21

• ~ • • • • • • • • • • 24
Directory • • .• • • • • 2 8
Catalog Entry Formats • • • 30
More Catalog Entry Formats • 31
User's Parameter List • 35
Module selection Chart 36
Register Usage • • • 38

Catalog Management IGGOCLC3
2) 48
Catalog Management IGGOCLC3
2) 49
Catalog Management IGGOCLC4
3)• 50
Catalog Management IGGOCLC4
3) 51
catalog Management IGGOCLC4
3) 52
Catalog Management IGGOCLC5
2)• 53
catalog Management IGGOCLC5
2) 54
Catalog Management IGG0CLC6 55
Catalog Management IGGOCLC7 56
Catalog Management IGGOCLF2 57

I

(

(

Catalog management is the facility of
the Operating System for locating data sets
when the user specifies only the data set
names. The catalog .• itself a data set
(DSNAME=SYSCTLG), contains data set names
correlated with velum:! and device type
information. The catalog management
routines supervise the organization of the
catalog; insert, remove, and locate entries
in the catalog; and format new catalogs and
partitioned data set directories.

Organization by Level of Qualification

Operating System data set names may be
either simple or qualified. A simple name
is a collection of up to eight EBCDIC
characters. A qualified name is a
collection of simple names separated by
periods (.) with a total'length of up to
44 bytes.

Catalog management uses the periods in a
qualified name as delimiters and uses the
simple names (ca~ied qualifiers) as index
names. The catalog is divided into
indexes, each of which represents one level
of qualification of a qualified name.

The catalog management routines can be
used to build or delete a single index or a
whole index structure. To catalog a data
set called A.B.C, for example, the user may
either first create index A, then index
A.B, and then catalog A.B.C, or request
that catalog management create any missing
index levels needed to catalog A.B.C.

The highest level index, called the
volume index, is built automatically the
first time a new catalog is used by the
catalog management routines.

Generation Data Group Structure

The same structure is used to maintain
generation data groups. A generation data

Introduction

set may be referred to by its absolute name
(e.g., A.B.C.G0006V00) for any catalog
functions, or by a relative generation
number <e.g., A.B.C(-2)) for the locate
function,. The catalog management routines
keep only the specified number of entries
in the generation index (index •c• in this
case), deleting older ones and adding new
ones when necessary, and emptying the index
and deleting the data sets themselves if
the user specified the EMPTY or DELETE
options when he created the generation
index,.

For a description of the use of
generation data groups, see IBM system/360
Operating system: supervisor and Data
Management services, Form C28-6646.

Control Volumes

Any direct access volume may contain a
catalog; any such volume is called a
control volume (CVOL). The system
residence volume always contains a catalog.

An item in the catalog of a CVOL other
than the system residence volume can be
made available to the system if the CVOL is
"connected• to the system residence volume.
To connect a CVOL to the system residence
volume, the catalog management routines
insert a control volume pointer entry into
the volume index of the catalog on the
system residence volume. This entry
contains, in its name field, the name of a
high level index which already exists on
the CVOL to be connected. (See Figure 1.)

Any search of the catalog may start on
the system residence volume, but if the
catalog management routines encounter a
control volume pointer entry attached to
the highest level of the name in the volume
index, they continue the search for the
fully-qualified na:rr.e on the CVOL whose
serial number is in the control pointer
entry. The caller of the catalog
management routine may specify what CVOL is
used for the search.

Introduction 7

System Residence Volume

Volume Table of Contents

Volume Index

Index
E

Index
B

Index
A

I
I

A1
I

I
L I

I
I

Control Volume

Volume Table of Contents

Pointer to
Index A

Volume
Number
ofl

Data
Set

Volume
Index
DSCB

Volume Index

I

E : Pointer to
1 Index E

I
I

FI
I

I Volume
p l Number

of P I

Data
Set

E.A.L E.A.P

Data
Set
E.F

Figure 1. A Control Volume Connected to the System Residence Volume

Calling the Catalog Management
Routines

The catalog management routines are
accessed through three assembler language
macro instructions: LOCATE, INDEX, and
CATALOG. 'Ihe macro instructions generate a
reference to a parameter list, which the
user must build, and an SVC 26 instruction.
The user's parameter list contains a group
of flags that indicate what function he is
asking the catalog management routines to
perform. Figure 2 summarizes these
functions, and the section "Data Area
Layouts" contains a detailed description of
the user's parameter list.

The catalog management macro
instructions are most commonly used by the
utility IEHPROGM, the job scheduler, and

8 TSO Catalog Management PLM (Release 20.1)

TSO, although they may be employed by any
user of assembler language .•

IEHPROGM creates and deletes indexes,
aliases, and generation indexes, and
catalogs and uncatalogs data sets according
to specifications supplied by the user of
IEHPROGM.

The job scheduler calls the catalog
management routines when it must locate a
data set, given only its name,, or when the
DISP parameter on a DD card is CATLG or
UNCATLG.

TSO dynamic allocation locates old data
sets and catalogs new data sets. TSO
command processors also call the catalog
management routines to manipulate the
catalog.

I

-------------------------.---------------, l------------------;~CTION I ABBREVIATION* I
·---------------------------------~------------+---------------f
I I I
I LOCATE a data set by name I NAME I
I a b1ock in the cata1og by TTR I BLOCK I
J--+---------------f
I I I
I BUILD a normal index I BLDX I
I a generation index I BLDG I
I an a1ias to a high-1eve1 index I ELDA I

(_

·--+---------------f
I I I
j DELETE an index I DLTX I
I an a1ias I DLTA I
·--+---------------f
I I I
I CONNECT two control volumes I LINKX I
·--+---------------f
I I I
I DISCONNECT two control volumes I DRPX I
·------------------------------~---------------+---------------f
I I I
I CATALOG a data set I CATALOG I
I a data set and build index I CATBX I
I structure I I
·--+---------------f
I I I
I UNCATALOG a data set I UNCAT I
I a data set and de1ete index I UCATBX I
I structure I I
·--+---------------f
I I I

(I RECATALOG a data set (change the volume I RECAT I
I seria1 number associated with an I I
I a1ready cataloged data set) I I
.--1---------------f
I I
I •The abbreviations here are used in the comments of the I
I source code to indicate what operation the user requested. I
I I L__ __ J

Figure 2. Functions of the Cata1og .Management Routines

Introduction 9

Catalog Data Set

Physically,. a catalog is arranged in
blocks with keys. Logically. it is
arranged in index levels. This section
will describe the catalog's physical
organizat;ion. its logical organization, and
the way in which its keys are used.

Physical Blocks

The physical organization of the catalog
is identical with that of a partitioned
data set directory.

A catalog data set is formatted into
256-byte blocks with 8-byte keys. Each
block contains a 2-byte count f ieldw which
contains a number indicating how many bytes
are used in this block (including this
count field).

" The-kefs of the catalog blocks may
contain any value from x•oooooooooooooooo•
up to. and including, X'FFFFFFFFFFFFFFFF'.
A nonzero key indicates a block containing
information, while a zero key denotes a
block that is available for new entries.
The keys are present because the catalog
routines use the BLDL routine (IECPBLDL) to
read the catalog. The BLDL routine expects
to find 256-byte records with 8-byte keys.
It ignores blocks with keys of zero,.

c Control Data Set Index Data Set Index Meaningless 0 Pointer Pointer Pointer Link
u Entry

Entry Entry Entry Entry Data

N
T

See Figure 3 for an illustration of a
typical block in the catalog.

Index Levels

The catalog is organized into a series
of indexes or levels. The highest level.
called the volume index. is initialized by
the catalog management routines when the
catalog data set is first opened.

Entries in each index are in standard
EBCDIC collating sequence by their name
fields.

The volume index is all that is required
to catalog simple names. It also is the
only index that may contain control volume
pointer entries (pointers to another
catalog> or alias entries. Lover level
indexes are required tc catalog qualified
names. one index for each level of
qualification except the last.

To illustrate the organization of
indexes. consider the simple data set name,
'DSET' (Figure 4). If this were cataloged,
only one entry would be made in the
catalog: a data set pointer entry in the
volume index. However, a two-level name,

1:1------ Length in bytes =COUNT ----.,Ml I
~------------ 256 bytes ------.,----11.,..i

Figure 3. Typical Physical Block in the Catalog

10 TSO Catalog Management PLM (Release 20.1)

(

Volume Index:
Data Set Index

Pointer Entry Pointer Entry
...--~~~~~..-~~ T-~~~-r~'--~......;;;;T--='--~-T~~~-\·~\-~~~-i-~~~~~~~~....;,...~~~"""~~~~-

) J ~

Volume Index
Control

Various Pointer Entries Name I Volume Various Pointer Entries Name TTR of Various Pointer Entries

Entry
with Name Value < 'DSET' I Serial and with Name Value <
'DSET' I Device 'SYSl" and > 'DSET'

'SYSl' Index with Name Value
> 'SYSl'

l_ Type
"-~~~~~..__~~-;~r~~~~ ~~~.._~~~ ~~~ 1~~~~~~~~~~~~~~~~~~~~~-

Data Set
Pointer Entry Index 'SYSl'

~~~~~~~~~~-1iL~~~~-r-~~~~,...--~~~-.-~~---'li,,__~~~-

lndex Various Pointer Entries Name I Volume Various Pointer Entries 
Control with Name Value < 'PROCLIB'I Serial and with Name Values 
Entry 'PROCLIB' Device > 'PROCLIB' 

I Type 
'---~~~~~-'-~~~-\~L~r~~~--''--~~~~~~--''--~~ ........ ~~~~~~ 

Figure 4. Logical Organization of the Catalog: Normal Index Structure 

such as SYS1.PROCLIB requires another 
index.. To catalog this name, two entries 
would have to be made: an index pointer 
entry with name 'SYS1' and a data set 
pointer entry with name 'PROCLIB'. 

The periods (.) in a data set name act 
as level delimiters. The characters to the 
left of the first period are assumed to 
indicate a name in the volume index, the 
next level is assumed to be the name of an 
entry in the index indicated by the pointer 
in the volume index, and so on, until the 
last level is a nqme in the lowest level 
index and is associated with a data set 
pointer entry or volume control block 
pointer entry. 

A data set pointer entry and a volume 
control block both contain volume serial 
numbers and device type information for the 
catalog data set. A data set pointer entry 
can contain only five volume serial 
numbers, while a chain of volume control 
blocks can describe any number of volumes. 

A generation data group index contains 
data set pointer entries and volume control 
block pointer entries. Figure 5 shows how 
a catalog containing.generation data group 
indexes and volume control blocks might 
look. This sample catalog lists generation 
data sets named "WEEKLY.INVNTRY.GnnnnVxx" 
to illustrate generation indexes., and a 
data set named "LOTSA.VOLUMES" to 
illustrate volume control blocks. 

CHAINING OF BLOCKS 

Indexes may span blocks, but one block 
may not contain more than one index., or 

parts of more than one index. The last 
entry in each index block is called an 
index link entry. (See Appendix B for 
specific fields.) If the block is the last 
one in an index, the pointer field of the 
link entry contains zeros.. If the index is 
continued in another block, the pointer 
field of the link entry contains the TTR of 
the next block in the index. These link 
entries are present, but unused, even when 
the several blocks of an index are 
contiguous (See Figure 6). 

USE OF KEYS 

The keys of catalog blocks are designed 
to allow hardware to perform much of the 
search with the "search key high or equal" 
command. The name field of the desired 
entry is always used as the search argument 
for this command. Thus, the search is 
stopped and a block is read into main 
storage whenever a key with this value or 
higher is encountered. 

The key of a block in the catalog has 
the value of the name field of the last 
entry in the block if the next block of the 
index is not contiguous to this block. 
This key will always be X'FF ••• FF', 
because the last entry in any block is an 
index link entry, and the name field of an 
index link entry is X'FF FF'. 

The key of a block in the catalog has 
the value of the name field of the 
next-to-last entry in the block if the next 
block in the index is contiguous with this 
block. 

The Catalog Data set 11 



" 

Volume Index 
Control Entry 

Index WEEKLY 

Index Control 
Entry 

c Index INVNTRY 

Index Control 
Entry 

Index LOTSA 

Index Control 
Entry 

Name 
'LOTSA' 

TTR of 
Index 

Name 
'WEEKLY' 

TTR of 
Index 

GOG Index Pointer Entry 
~ 

__( l 
-, T T 

T I 
Name I TTR of I Flags 
'INVNTRY' I Index 

I I 
--1l 1 l -, .- J 

Data set and/or VCB pointers of the form 'GXXXXVNN' 
where XXXX is the complement of the true generation 
number. Pointers are in order of name value. 

L 
IV T 

Pointer entries with Name I TTR of 
name value <'VOLUMES' 'VOLUMES' I VCB 

I 
...!l 

I 
I 

l 
IT 

__IL -, 

-, 

Pointer entries with 
VOLUMES' name value>' 

..l 
I 

..l 

' 

..l 
I 

(Volume Control Block 

j 

N ~,-

o. 
0 Serial No. Serial No. Serial No. Serial No 
f and device and device and device and devic e Pointer to next VCB or zero if 
v Type of Type of Type of ... ... . .. Type of 
0 Volume 1 Volume 2 Volume 3 Volume n I 

no more VCBs. 

s. 
l 

I 

Figure 5. Logical Organization of the Catalog: Generation Indexes and Volume Control 
Blocks 

12 TSO Catalog Management PLM (Release 20.1) 



Volume Table af Contents 

.... 

Volume Labe 
Format 1 

I Format 4 Format 5 Various DSCB's DSCB for Various DSCB's DSCB DSCB 'SYSCTLG' 

7 

( 
\ SYSCTLG Data Set 

yes 
key 

Volume In d-.tJ 

Volume 
Index 
(Cont.) 

f 

' 

G 
Index 'AAA ' G 
Volume In 
(Cont.) ®·G 

c 
0 
u 
N 
T 

(" 
c 
0 
u 
N 
T 

' c 
0 
u 
N 
T 

I' 

c 
0 
u 
N 
T 

256 bytes of data 

I 

Volume ITTR 
Index Various Pointer Entries Namel f Various Pointer 
Control 'AAA' 0 Entries 

1'003' Entry 
_L 

7 

Various Pointer Entries 

I 
Index Name I TTR 
Control Various Pointer Entries X 'FF' of 
Entry I '000' 

lrTR Name Various Pointer Entries X 'FF'lof 
'000' 

I 
_L 

I 

ITTR 
Namel f Meaningless Data X 'FF' 0 

(002' 

_L 

I TTR 
Namel f Meaningless Data 
X 'FF'I ?004• 

' ' 

Meaningless Data 

Meaningless Data 

-- GI ~~~l _______ ~_~n-gle-~D-~------~ 
__J !.-count field 2 bytes 

Figure 6. Physical Organization 0£ the Catalog 

The Catalog Data Set 13 



Inde:x: Entry Types 

An index always contains one control 
entry and any number of pointer entries. 
The control entry is always the first entry 
in the index, <see Figure 6) and its 
position here is assured by giving it a 
name field of value X'l'. There are two 
types of control entries: volume index 
control entries and normal index control 
entries. The general information about 

14 TSO Catalog Management PLM (Release 20.1) 

these entries is given in Figure 7, while 
specific information about fields and their 
values is given in the section "Data Area 
Layouts.• 

There are several types of pointer 
entries. A summary of each type and the 
information it contains is given in Figure 
7, while specific information about exact 
placement of fields. etc., is given in the 
section "Data Area Layouts." 

I 



r~--~-----~-~---,-------------~-------------------------------------1 

I ENTRY TYPE I CONTENTS I 
~--------------~---+----------------------~-----------------------------i 
I Alias Entry I Contains the name of the alias, a pointer to I 
I I the next lower level index, and the true name.. I 
~-------------------t----------------------------------------------------i I CVOL Pointer I Contains the name of a high level index and a I 
I Entry I pointer to the control volume on which this I 
I I index may be found. I 
~-------------------+-----------------~----------------------------------i 
I Data Set I Contains the lowest level of the data set name I 
I Pointer Entry I and up to five entries specifying volume I 
I I serial numbers and device codes for the volumes I 
I I of the data set. I 
~------------------+----------------------------------------------------i 
I Index Control I Contains the address of the last block in this I 
I Entry I index, the address of the first block (the I 
I I address of the block wh~ch contains this I 
I I entry), a count of the number of unused bytes I 
I I in the last block of this index, and a count I 
I I Cf the number of aliases to this index. I 
~--------------~---+----------------------------------------------------i 
I Generation Index I Contains the name Of the generation index, the I 
I Pointer Entry I number of entries to be maintained in the I 
I I index, the number of entries currently in I 
I I the index, codes for •delete• and "empty• I 
I I options, and a pointer to the index. I 
~-------------------+----------------------------------------------------i 
I Index Link I Contains a name field of X'FFFFFFFFF·FFFFFFF', I 
I Entry I and a zero to indicate the end of this index, I 
I I or a pointer to the next block in this index. I 
~------------------+----------------------------------------------------i 
I index Pointer I Contains an index name and a pointer to the I 
I Entry I named index. I 
~-------------------+------------------------~-------------------------~ I Volume Contrpl J Contains an indication of the number of I 
I Block I volumes named in the block and a list of the I 
I I volume serials, device type codes, and data I 
I I set sequence numbers of these volumes, plus a I 
I I pointer to the next volume control block, or I 
I I a zero to indicate end of chain. I 
~-------------------+---------------~------------------------------------i 
I Volume Control I Contains the lowest level of the data set I 
I Block Pointer I name and a pointer to the volume control block I 
I Entry I which describes the volumes of this data set. I 
~-------------------+------------------------~---------------------------i 
I Volume Index I contains the address of the last block in the I 
I Control Entry I volume index, the address of the last block in I 
I I the SYSCTLG data set, and the address of the I 
I I first available block in the SYSCTLG data set. I 
I I It also contains a count of the number of I 
I I unused bytes in the last block of the volume I 
I I index. I 
L--------------------'----------------------------------------------------J 
Figure 7. Index Entries 

The Catalog Data set 15 



Method of Operation 

This section describes the operation of 
each logical function of the catalog 
management routines,. Since many of the 
functions are quite similar to each other, 
several of these functions have sometimes 
been combined into one section. The 
sequence of events described in this 
section is the actual sequence of events 
performed by the routines. However,, the 
division of the routines into modules does 
not necessarily correspond to the division 
of functions used in this section. 

Housekeeping Functions 

Before actually beginning to search or 
update the catalog, the catalog management 
routines must perform some initialization. 
This initialization does two things: 

• It protects the integrity of the 
catalog. 

• It opens the catalog data set. 

MAINTAINING CATALOG INTEGRITY 

Since catalog management routines 
operate in multiprogramming and 
multiprocessing environments, they must 
protect the part of the catalog they are 
manipulating from simultaneous accessing 
and modification by other programs and 
CPU's. This protection is afforded by the 
use of the RESERVE and ENQ supervisor 
functions. 

The RESERVE function protects the device 
containing the control volume being 
searched or modified from access by another 
CPU in a multiprocessing environment. 

The ENQ function protects the part of 
the catalog being manipulated from access 
by other programs in a multiprogramming 
environment. 

An ENQ function can be either shared or 
exclusive. A shared ENQ for a catalog 
resource allows simultaneous access to the 
resource by other shared ENQ requests. An 
exclusive ENQ for a catalog resource calls 
for exclusive control of that resource. 

16 TSO Catalog Management PLM (Release 20.1) 

To provide complete protection of the 
catalog with minimum accessing delays, the 
catalog resources are divided into three 
different types: 

• A volume index rescurce represents a 
complete CVOL. Control of such a 
resource allows fer the accessing of 
high level names, aliases, and CVOL 
pointers. 

• A high-level name resource represents 
the complete index tree structure 
associated with that high-level name 
even though the tree structure may 
involve several ccntrol volumes. 

• A volume index control entry (VICE) 
resource represents the free space in 
the catalog and thus the ability to 
modify the catalog data set. 

The catalog management routines issue 
ENQ requests only for the resources 
necessary to accomplish a particular 
function leaving the remaining resources 
open to access by other users. 

For example, to modify a low level 
index, the routines obtain exclusive 
control of a high-level name arid the VICE, 
while to perform a locate function, the 
routines request shared control of a 
high-level name and <temporarily) the 
volume index. By separating catalog 
resources, both operations can be performed 
concurrently on the same control volume. 

Since these routines are reenterable and 
cannot store within themselves, they ottain 
a storage area in the user's region by 
issuing a GETMAIN rnacrc instruction. The 
area is freed when the catalog routines 
terminate. If storage is not available, 
the calling task is abnormally terminated. 

OPENING THE CATALOG DATA SET 

To ready the catalog data set for 
reading and writing, the catalog management 
routines do not use the data management 
open routine (SVC 19). Instead they have a 
special open function called through an SVC 
28. This routine builds a data extent 
block and a data contrcl block so that the 
catalog routines can use the BLDL and EXCP 
routines. For a more detailed discussion 
of the open routine, see the section nThe 
CVOL Routines." 



The catalog open routine is called 
before each search of a catalog. If a 
search encounters a control vol\Dlle (CVOL) 
pointer entry, the old CVOL is closed and 
the new one is opened. 

Locate Function 

Regardless of the particular object of 
one use of the catalog routines - whether 
the user wishes to modify the catalog or 
just locate a data set - the program always 
first tries to locate as much of the 
user-supplied name as possible. 

The locate routine uses the resident 
BLDL routine (IECPBLDL) to search the 
catalog for the user-supplied name. This 
search always begins with the volume index. 
BLDL returns the entry with the desired 
name field, the locate routine examines it. 
and calls BLDL again to find a lower level 
index or returns to the caller (function 
requested is locate) or passes control to 
another phase (function is anything but 
locate). 

The locate portion of the program then 
passes an error code to other portions to 
indicate how much of the name was found. 

BLDX, LINKX, and BLDG Functions 

These functions are quite similar to 
each other. First. the locate routine 
finds as much of the user-supplied name as 
possible and notes how much of the name it 
found and what kind of entry it found at 
the lowest level. If anything in the 
locate process is inconsistent with the 
function requested, the index/catalog 
portion of the program frees all its main 
storage, dequeues, and passes a nonzero 
return code to the caller. 

For example, assune that a user wished 
to catalog data set 1 A.B.c 1 • The locate 
routine would first search the catalog to 
find the data set pointer entry, and would 
pass a zero error code to index/catalog if 
it found the entry.. Index/catalog would 
immediately return with an error code to 
the caller because it cannot catalog a name 
that has already been cataloged. If the 
locate routine indicated that it had found 
A.B, put not c, and that it had found an 
index pointer entry at B, then 
index/catalog would update the index by 
inserting the new pointer entry. 

If the request is to build an index 
(BLDX), index/catalog first finds an 
available block in the catalog and 

initializes it as an empty index. To do 
this, it creates an index control entry and 
an index link entry with a pointer field of 
zero, and writes a high key 
(X 1 FFFFFFFFFFFFFFFF 1 ) fer the new index 
block. 

A new index pointer entry must then be 
inserted in the next higher level index. 
To do this, index/catalog searches the 
index until it finds an entry which has a 
name field with value higher than that of 
the new index pointer entry and which is 
not an index link entry with a nonzero 
pointer field. When it finds such an 
entry, it inserts the pointer to the new 
index and rewrites the rest of the index. 

The index always must be completely 
rewritten because the insertion of the new 
entry may cause the chain of index blocks 
to break differently. 

LINKX is just like ELDX, except that a 
CVOL pointer is created instead of an index 
pointer. 

BLDG is also similar to BLDX, except 
that the index pointer entry contains the 
appropriate generation counts and flags. 

Catalog and RECAT Functions 

To catalog a data set, the program does 
much the same thing as when the function is 
BLDX or BLI:G except that: 

• No new index is created. The new data 
set pointer entry is simply inserted at 
the appropriate place in the existing 
index. · 

• If the data set to be cataloged resides 
on more than five volumes, one or more 
volume control blocks (VCBs) must be 
created. The creation of this block 
resembles the creation of a new index 
very closely, except that instead of a 
new index, a new VCE is created. 

To catalog a data set that is part of a 
generation data group (GOG), the routines 
must first find the absolute generation 
number if only the relative generation 
number was given. First, the latest entry 
in the index is found. This entry will be 
the first one in the index even though it 
has the highest generation number, because 
the catalog stores generation numbers ih 
complement form. Then the given relative 
generation number is added to or subtracted 
from the found generation number to give 
the desired true generation number. 

The given name is now compared with the 
present entries in the catalog to check for 

Method of Operation 17 



duplications, and the new name is inserted 
as any other data set pointer entry or VCB 
pointer entry. The generation count is 
updated, and, if necessary,, the oldest 
entry in the index is removed. The flags 
of the generation index pointer entry are 
checked to see if the index must be emptied 
or if any data sets must be deleted.. If 
any data sets have to be deleted. the 
routines transfer control to the Delete 
routine of Direct Access Device Space 
Management CDADSM) by issuing an SVC 29. 
(For a discussion of the Delete routine see 
IBM System/360 Operating System: Direct 
Access Device Space Management, Form 
Y28-6607.) 

For RECAT, the routines uncatalog the 
old data set, then catalog the new, as 
above. 

BLDA Function 

The BLDA function is basically similar 
to the BLDX function, except that BLDA only 
creates a point~r entry; it builds no new 
index. 

Locate finds the name for which an alias 
is being built, and checks to be sure it is 
a high-level name. If it is, the routines 
read the block containing the high-level 
name, add one to the entry alias count, and 
rewrite the block. 

The routines then create an alias entry 
and insert it in alphameric order into the 
volume index.. The volume index is 
reorganized as for BLDG and BLDX. 

DLTX, DLTA, DRPX, and UNCAT 
Functions 

The sequence of operations to delete an 
index or an alias or to uncatalog a data 
set or disconnect control volumes is 
basically similar to the other functions 
involving reorganization of the catalog: 

1. The catalog is searched for the 
user-supplied name. In this case the 
entire name must be found. 

2. If a pointer entry is deleted, the block 
it points to must alsc be deleted. In 
the case of UNCAT, a VCB may have to be 
freed. With DLTX, an index block always 
has to be freed. With DLTA and DRPX, no 
blocks should have to be freed unless 
deleting the pointer makes the volume 
index short enough so that it takes up 
fewer blocks than before. 

3. To delete a block, the program writes a 
zero key for that block. The data 

18 TSO Catalog Management PLM (Release 20.1) 

inside the block remains unchanged. The 
program recognizes any block with a zerb 
key as a free block. 

4. The index from which the entry was 
deleted is reorganized just as when a 
new entry is added. 

CATBX and UCATDX Functions 

The CATBX and UCATDX functions are 
similar to the CATALOG and UNCAT functions. 
The difference lies with the building and 
deleting of the index tree structure 
associated with the cataloged data set. 
The CATBX function generates any missing 
index levels needed to catalog the data 
set, and the UCATDX function deletes any 
index levels that exist only as 
qualifications of the data set name in 
question. 

In both cases, if only one level of 
index is involved., the functions are 
performed as in CATALOG or UNCAT. 

If the function is CATBX and more than 
one level of index is missing, a BLDX 
function is perfor~ed to insert the highest 
level missing index entry into the e¥isting 
catalog structure. Free blocks for each 
remaining index level are then obtained and 
chained together, creating an index 
substructure which is then chained to the 
entry created by BLDX. 

If the function is UCATDX and more than 
one level of index beccmes superfluous when 
the data set is reRoved from the catalog, a 
DLTX function is perfcrmed on the highest 
level index entry to be deleted and the 
blocks containing all lower level index 
entries are freed. The highest level irtdex 
entry eligible for deletion is determined 
while the LOCATE function is being 
perforn:ed. UCATDX deletes all superfluous 
index levels except the volume index. 

The CVOL Routines 

The CVOL routines cpen or extend the 
SYSCTLG data set, format new catalogs or 
extensions of old catalogs, and format 
partitioned data set CPDS) directories. 

The routines receive from their callers 
the address of the unit control block (UCB) 
of the device containing the data set to be 
opened or extended, and a parameter 
indicating whether the request is to open a 
catalog, to extend a catalog, or to format 
a PDS directory. 



( 

( 

OPEN ROU'IINE 

If the request is to open a catalog, the 
routines build a data extent block (DEB} 
and a data control block (DCB} for the 
SYSCTLG data set using information from the 
unit control block (UCB) and volume table 
of contents (V'fOC) of the volume being 
opened. If no space has been allocated for 
the SYSCTLG data set, an error code is 
returned to the user. 

The Format 1 data set control block 
(DSCB} for the catalog data set has a 
format switch which indicates whether this 
SYSCTLG data set has been previously 
formatted. If the switch shows that the 
data set has not been formatted., the open 
routine passes control to the formatting 
routine. Otherwise, it returns to the 
caller. 

EXTEND ROUTINE 

To extend the data set, the CVOL routine 
transfers control to the Extend routine of 
Direct Access Device Space Management. 
This routine extends the data set by 
updating the VTOC (provided a secondary 
allocation quantity was specified when 
space for SYSCTLG was initially allocated}, 
and transfers control to the formatting 

routine. The formatting routine formats 
the extension, but does not initialize a 
volume index, since there is already one 
present. It does, however, update the 
volume index control entry to show the 
extra space .• 

FORMATTING ROUTINE 

The formatting routine fonnats the 
allocated space into 256-byte records with 
8-byte keys, and initializes the volume 
index with a volume index control entry and 
an index link entry with a zero pointer 
field. The key of this block is set to 
X'FFFFFFFFFFFFFFFF' while the keys of all 
the other blocks are set to zero. It sets 
the format switch in the DSCB to indicate 
that the data set has been formatted and 
returns to the caller. 

To format a partiticned data set 
directory, only the formatting routine is 
used. The open routine immediately passes 
control to the fornatting routine. 

Formatting takes place in the same 
general way as for SYSCTLG data sets, with 
256-byte records and 8-byte keys. Instead 
of initializing a volume index, however, 
the routine initializes the first block as 
an empty P:CS directory. 

Method of Operation 19 



Program Organization 

The catalog management modules are 
designed to fit in the 1024-byte transient 
areas of the nucleus. They are 
reenterable. In general, the modules pass 
control from one to the other through the 
XCTL macro instruction, although they 
sometimes use svcs. The following 
discussion will enlarge upon the Method of 
Operation section by discussing the 
routines module by module. Figure 8 shows 
the relationships among the catalog 
management routines, as well as between the 
catalog management routines and other parts 
of the Operating System. 

NOTE: In this discussion, the term 'write' 
always refers to the use of an EXCP macro 
instruction.. 'Read' generally refers to 
the use of the resident routine IECPBLDL, 
but the modules occasionally use channel 
programs here, also. 

IECPBLDL, the resident BLDL routine, is 
accessed by the catalog management routines 
through the communication vector table 
(CVT). The routines find the address of 
IECPBLDL in the CVT, put the address of the 
catalog DCB in register 1 and the address 
of the BLDL list in register O,, and execute 
a BALR to the BLDL routine. For the 
functions of the BLDL routine, see IBM 
System/360 Operating System: Sequential 
Access Methods, Y28-6604. 

Initialization and Housekeeping: 
Module IGC0002F 

Entry to the catalog management 
routines, except the open routine, is 
through an SVC 26, which gives control to 
module IGC0002F. 

It validates the user's parameter list, 
gets main storage for an open work area, 
and searches the unit control block (UCB) 
table to find the UCB of the specified 
control volume (CVOL) or the system 
residence device, if no CVOL is specified. 
The UCB address is then passed to the 
catalog open routine (IGC0002H) which is 
entered with an SVC 28. 

Any one of three diagnosed error 
conditions can cause a return to the user 
(via SVC 3) with the appropriate error 
code: 

• Invalid user parameter list. 
• Control volume UCB not found. 
• Open error. 

20 TSO Catalog Management PLM (Release 20.1) 

After a successful cpen, the routine 
issues a GETMAIN macro instruction to 
obtain storage for work areas, determines 
the specified function from user 
parameters, and then either transfers 
control to IGGOCLCl if the function is 
locate by block or uses the IECPBLDL 
routine to search for the high-level name 
specified in the user's parameter area. 

If the high-level name search returns a 
CVOL pointer entry, the new CVOL 
inforroation is stored in the user's 
parameter list, and precessing is resumed 
with the UCB search routine after work 
areas are freed. 

Once the correct central volume is 
found, the routine issues a RESERVE request 
for the CVOL and passes control to 
IGGOCLCl. 

Locate: Module IGGOCLC 1 

This module always gets control from 
IGC0002F. It searches the specified 
catalog for the supplied name and passes 
control to one of twc ether modules, 
depending en the function requested and the 
type of entry found at the lowest level. 
An input parameter indicates whether the 
user wishes to locate a data set by name or 
to locate an entry in the catalog by giving 
the TTR of the block. 

If the request is to search for a 
specified block, the module passes the 
block's address to the resident routine 
IECPBLDL. IECPBLDL searches the catalog 
and returns the correct entry to the 
caller. The only error possible is that 
the block might be outside of the SYSCTLG 
data set, in which case an error code is 
set and the module returns control to the 
caller. 

If the request is tc search for a name 
or to index or catalog a name, IGGOCLCl 
isolates the first level of the name. It 
uses BLDL to search the volume index for 
this simple name and analyzes what type of 
pointer is associated with it. Several 
different things can happen, depending on 
what pointer type was found and what 
function was requested. 

In the most typical case, the routines 
will find an index pointer entry and note 
that there are more qualifiers left in the 

I 



( 

( 

( 

name. In this case, the module isolates 
the next qualifier and searches for that 
name, specifying to BLDL that the search is 
to begin at the TTR specified in the found 
index pointer entry. This process is 
repeated until either all levels of the 
name are exhausted or an entry which is not 
an index pointer entry is found. 

For CATBX and UCATDX functions. IGGOCLC1 
performs initialization by either preparing 
for a BLDX for the first index entry to be 
built in a CATBX or preparing for a DLTX 

SVC 26 

( Enter ) 

IGC0002F 

for the first index entry to be deleted in 
a UCATDX and saving the TTR link entry of 
the del~ted index. 

When Locate has found a11 of the 
pointers it can find, it determines what 
action to take on the tasis of what kind of 
pointer was the last fcund,, bow much of the 
nam~ could not be found, and what function 
was requested. It may transfer control to 
IGGOCLC2 to build new entries in the 
catalog, to IGGOCLC4 to search generation 
indexes, or t~ IGGOCLC6 fox error 

Initialize SVC 28 

2 

Return ) IGGOCLCl IGC0002H IGGOCLF2 

Generation Data Group 

Locate as 
Much of Name 
as Possible 

Function 
is Locate 

Open Catalog ..... Formal 
Extend Catalog ,........ ___ Catalog or h 

PDS Directory 

IGGOCLC41 IGGOCLC2 
Function 
is Locate Locate 

Generation 
Data Set 1 2 

IGGOCL .. c_sl ...... _...__ c Return ) 

Build 
Generation 
Index Entries 

p 
SVC 29 

DADSM r 

Build New 
Entries Free 1---~~-1 
Old Blocks 

IGGOCLC6 

Free ReS'Ources 
Set Return 
Codes 

.l. 

2 ·c Return ) 

SVC 28 

(If there is no more 
room in the catdlog.) 

r-~ __ .__.., 
IGGOClC3 

IGGOCLC7 

I Scratch I 
I Previous I 
I Generation I 
L------...1 

1 This is a return to the issuer of SVC 28: 
IGGOCLCl, IGGOCLC3, br IGGOCLC7, 

2This is a return to the issuer of SVC 26: 
the user. 

Update Blocks Bui Id lilr Delete 
XCfL Index Structure of Reorganized 1-------..._ ____ _ 

Index Update Index 
<::;ontrol Entry 

Return 

Figure 8. catalog MOdule Flow 

( Return ) 

Program Organization 21 



processing or successful completion of a 
LOCATE. 

If control is going anywhere but back to 
the caller, Locate reads several relevant 
blocks into main storage: 

• Block Containing Volume Index Control 
Entry - This is necessary to indicate 
where the first available block in the 
catalog is. It has to be updated if any 
new blocks are used or any old ones are 
freed. 

• Block Containing Index Control Entry -
This entry is the control entry for the 
last index searched. It will probably 
have to be changed. 

Index/Catalog, Normal Structure: 
Modules IGGOCLC2, IGGOCLC3, 
IGGOCLC6, andIGGOCLC7 

These modules together update a normal 
index structure. They build new indexes 
and insert pointers to them in old indexes. 
they delete old pointers and free the 
associated blocks, they build aliases,, and 
they update control entries,. 

The catalog is updated in two phases. 
Phase one, done by IGGOCLC2 (or, in the 
case of generation indexes,, IGGOCLC4 and 
IGGOCLC5} builds new indexes and pointer 
entries and deletes old blocks. Phase two, 
done by IGGOCLC3 and IGGOCLC7, reorganizes 
the index into which the new pointer will 
be inserted, or from which a pointer will 
be deleted. IGGOCLC7 also has the ability 
to build and delete index structures. 

IGGOCLC2 

This module constructs all new entries 
except entries in a generation index and 
index structures built by IGGOCLC7. It 
checks to be sure the existing catalog 
structure is consistent with the new entry 
and returns to the caller with an error 
code if it is not. It always receives 
control from IGGOCLC1 and passes control to 
IGGOCLC3. 

First the module determines from the 
user's parameters whether a new entry is 
needed. If it is, the module determines 
what type of entry, and whether this entry 
is consistent with what the locate routine 
found. If, for example,, the desired 
function were catalog and the locate 
routine had found an entry for every level 
of the name, this module would set an error 
code and return. The same name may not be 
cataloged twice. 

22 TSO Catalog Management PLM (Release 20.1) 

The module then determines whether any 
blocks have to be freed. If the function 
was RECAT, for example,, and the old entry 
was a VCB pointer,, the old VCB would be 
freed before the new pointer entry was 
created. To free a block, the module 
writes zeros as its key and updates the 
volume index control entry. 

If no new entry is to be created, the 
module only frees unused blocks. This 
would be the case if the requested function 
were to delete an index or uncatalog a data 
set, for example. 

IGGOCLC2 also writes certain new blocks 
when they are required. When a catalog 
request necessitates VCBs, this module 
finds available blocks and writes the VCBs 
in them. If the request is to build an 
index (either generaticn or normal}, the 
module builds an empty index and notes its 
location for the next module. 

IGGOCLC6 

This module receives control from either 
IGGOCLC1 or IGGOCLC2. IGGOCLC6 is entered 
either upon the successful completion of a 
LOCATE function (from IGGOCLC1} or an error 
condition (from either module}. In either 
case, IGGOCLC6 frees the main storage 
acquired by all previous modules, dequeues 
all resources,, and returns the appropriate 
information to the user. 

IGGOCLC3 

This module adds or deletes a pointer 
entry in an index and rewrites the index in 
such a way that the entries maintain their 
alphameric order,. It receives control 
either from IGGOCLC2, which constructs new 
entries for normal indexes,, or from 
IGGOCLCS, which constructs new entries for 
generation indexes. 

First, the module looks at the TTR of 
the index to be updated and the entry to be 
added or deleted,. The name of this entry 
becomes the search argument for determining 
where to update the index. ~hen blocks of 
the index are contiguous, the search is 
rapid because each key field of the blocks 
in the chain contains the name of the 
highest alphamerically ordered significant 
entry in the block. The hardware compares 
the search argument with the key fields of 
the blocks in the chain, starting with the 
lowest. When the comparison shows that the 
search argument is higher than the key 
field, the search continues on the key 



( 

field of the next contiguous block. When 
the key field is greater than or equal to 
the search argument the block is read into 
main storage. 

With the block in main storage, the 
module goes through it entry by entry, each 
time comparing the name of the current 
entry with the search argument entry name. 
When it finds an entry with a name greater 
than or equal to the search argument name, 
it performs the update. 

Key fields with hexadecimal F's denote 
index blocks that are either at the end of 
the index or at the end of a contiguous 
chain within a single index. If the key 
denotes the end of a chain, then the index 
link entry in its block will point to the 
next block of the index.. The search 
channel program is restarted at the address 
specified in the pointer and the search is 
continued as before. If this block is the 
end of the index, however, the link entry 
contains zeros, and the module makes the 
update in this block. 

IGGOCLC3 checks the number of bytes in 
its output buffer continuously,, and when 
the end of a 256-byte block is approaching 
it builds an index link entry. 

IGGOCLC7 

This module always receives control from 
IGGOCLC3 via an XCTL macro instruction. It 
writes the last block of the updated index, 
updates and writes control entries., frees 
the main storage acquired by IGC0002F, 
dequeues the system resourcesw and returns 
to the user with a zero (no error) 
completion code in register 15. 

When IGGOCLC7 receives control., it puts 
an index link entry with a TTR field of 
zeros in the last index block, and 
calculates the number of bytes remaining in 
the block. If a block has been freed 
during the updating operation., the module 
fills its key field with zeros. However, 
if the index expands into an additional 
block, the module fills the key field of 
the new block with hexadecimal F's. In 
either case, the module updates index 
control entries and volume index control 
entries as necessary to record the 
availability and location of free index 
blocks. Then it writes the updated entries 
with the updated index block. 

At this point, IGGOCLC7 determines 
whether CA~BX or UCATDX processing is 
called for. For CATBX processing, an index 
structure is constructed as follows: 

1. A data set entry or VCB chain is 
created. 

2. An index substructure is built 
beginning with the lowest index level. 
one block is built at a time and 
chained to the previous block until 
all missing index levels are filled. 

3. The index substructure is chained to 
the empty index created by the m:.nx 
part of CATBX processing and the index 
is rewritten to link the substructure 
to the catalog. 

For UCATDX processing, IGGOCLC7 uses the 
TTR link entry saved during initialization 
for the DLTX part of UCATDX processing as a 
starting point to free all blocks in the 
index structure. Each block is read into 
main storage and rewritten with a zero key 
after its TTR link entry is saved. Each 
block in the index structure is freed until 
the complete structure is deleted. 

When all the writing functions are 
complete, the module frees all the main 
storage and dequeues all the system 
resources used before returning to the 
calling routine via an SVC 3. 

Catalog Protection 

The ENQ supervisor function is used by 
several job management routines to achieve 
catalog protection. Figure 9 shows how 
catalog resources are enqueued and dequeued 
by the catalog management rQutines. 

The ENQ macro instruction requires the 
specification of two names: a general name 
and a resource name. The catalog 
management routines use the following names 
for the indicated catalog resources: 

Resource 

volume index 
VICE 
high-level name 

SYSCTLG 
SYSCTLG 
SYSCTLG 

~ 

SYSCTLGbOOua 
l:bbbbbbbOOua 
name 

Where ua is the two-byte address of the UCB 
of the CVOL being used, and name is the 
left-justified high-level name of the data 
set. 

Program organization 23 



LOCATE 

high-level name 
shared 

shared 
volume index 

locate Volume Indexes locate Lawer Leve Is Return Info To User 

IGC0002F IGGOCLCl IGGOCLC6 

LOCATE BY BLOCK 

VICE 
shared 

locate By Block Return· Info To User 

IGC0002F IGGOCLCl IGGOCLC6 

LOCATE GENERATION DATA SET INDEX 

high-level name 
shared 

volume index 
shared 

locate Volume Indexes locate Lawer Levels locate Generation Index 

IGC0002F IGGOCLCl IGGOCLC4 

MODIFY LOW LEVEL INDEX 
I 

high-level name 
exclusive 

volume index 
shared 

VICE 
exclusive/SMC .... 

Locate Volume Indexes Locate Lower Leve Is Modify lnitia lization Modify Indexes Build/Delete Index Structures 

IGC0002F IGGOCLCl IGGOCLC2 IGGOCLC3 IGGOCLC7 

MODIFY GENERATION DATA SET INDEX :, " 
high-level name exclusive 

volume index 
shared 

VICE .... exclusive .... 
locate Volume Indexes Locate Lower Leve Is locate & Bui Id Generation 

Modify Indexes Retu~n to User Indexes 

IGC0002F IGGOCLCl I GGOC LC4/I GGOC LC5 IGGOCLC3 . IGG,OC.LC7 

MODIFY VOLUME INDEX AND LOW LEVEL INDEX . ·' ··'" 

high-level name 
exclusive i 1,. I. 

~ 

volume index .... shared_,. exclusive/SMC 
~ ~ 

VICE 
exclusive I I 

Locate Volume Indexes locate Lower Levels Modify. Initialization Modify Indexes Bui Id/be lete Index Structures 

IGC0002F IGGOCLCl IGGOCLC2 IGGOCLC3 IGGOCLC7 

Figure 9. Use of ENQ a·nd DEQ Functions 

24 TSO Catalog Management PLM (Release 20.1) 



( 

Locate Generations: Module 
IGGOCLC4 

Generation data groups require 
significantly different locating and 
cataloging procedures from other data sets 
for two reasons: 

(1) Generation data groups may be 
specified by relative generation nmnber (as 
in GENR(+l)), in which case the absolute 
generation number roust be calculated, and 

(2) The absolute generation number is 
stored in the catalog in hexadecimal 
complement form, that is, generation 
GOOOlVOO would be stored as X'C7 OF OF OF 
OE ES FO FO'. (Note that the version 
number and the characters 'G' and 'V' are 
not complemented.) In this way the most 
recent generation (the one with the highest 
absolute number> is always the first entry 
in the index after the index control entry. 

In this manual, the term "absolute 
generation number" refers to the nmnber as 
it is coded by the user and as it appears 
in the name field of a data set control 
block (DSCB). It does net refer to the 
number as it is stored in the catalog, in 
complement form. 

Module IGGOCLC4 locates the lowest level 
of a generation name. When IGGOCLCl finds 
a generation index pointer entry correlated 
with the next to last level of a name, it 
passes control to this module. It may also 
be entered from IGGOCLCS when that module 
finds it roust empty an index. 

This module first checks to see whether 
entry is from IGGOCLCS (empty request) or 
from IGGOCLCl (normal locate path). If it 
was from IGGOCLCS, the module rewrites the 
generation index, this time with only the 
highest entry, and frees any blocks no 
longer needed by the shortened index. 

If the path is a normal locate path 
(entry from IGGOCLCl), IGGOCLC4 checks the 
format of both relative generation numbers 
and absolute generation numbers and returns 
to the user with an error code of 20 if the 
format of the supplied name is not correct. 
If the name is in relative fo.zmat, the only 
valid function is locatei if any other 
function has been specified., the module 
returns with an error code of 20. 

If the name is in relative format, the 
module roust calculate its absolute 
generation number. It does this by adding 
or subtracting the relative number given 
and the actual number of the first entry in 
the index. If the index is empty. the 
module sets up a dummy 'found' entry called 
'GOOOOVOO' as the basis for absolute 
generation number calculation. If the 

relative number is negative and exceeds the 
nurrber of entries in the index, the module 
returns to the user with an error code of 
8. 

Once the relative generation number in 
the user's area has been replaced with the 
absolute generation number, the module 
proceeds as though the user had supplied 
the absolute number in the first place. 

With the generation number in absolute 
format, the module uses BLDL to read the 
entry associated with the name. If the 
function is catalog, control is passed to 
IGGOCLCS via the XCTL macro instruction. 
If the function is locate, the module 
checks BLDL's error code. If the name was 
found, the module moves the data into the 
user's area and checks to see if it must 
read a volume control block to complete the 
description of the data set. If it does, 
the volume control block is read into the 
user's area. 

If BLDL cannot find the name, the module 
returns to the user with an error code. 

Catalog Generations: Module 
IGGOCLCS 

This module builds new entries for 
generation indexes, maintains generation 
index pointer entries by updating the 
generation count, and marks entries for 
deletion or data sets fer deletion if the 
empty or delete option was specified when 
the generation index was created. 

The module first checks the findings of 
IGGOCLC4 to be sure the current structure 
of the index is compatible with the 
function requested. If the requested 
function is catalog,, fer example,, and the 
full name of the data set is found, the 
error code is set to eight and the module 
returns control to the user. Similarly, if 
the function is anything but catalog and 
the name was not found, the module takes an 
error exit. 

If the function requested by the user is 
consistent with the contents of the index, 
the module checks the generation count and 
maximum number of generations to be 
maintained in this index. This indicates 
whether the module roust delete any entries 
to add a new one. The module increases or 
decreases the generaticn count according to 
the function requested (increase for 
catalog, decrease for uncatalog, leave 
alone for recatalog). It rewrites the 
index block containing the updated 
generation index pointer entry. 

Program Organization 25 



If an entry must be removed from the 
index, IGGOCLC5 removes it and rewrites the 
index block which contained this entry. If 
the empty option is indicated by the flags 
in the generation index pointer entry, the 
module transfers control back to IGGOCLC4 
to empty the index. If the delete option 
is indicated, the module calls the SCRATCH 
function of Direct Access Device Space 
Management (DADSM)* with an SVC 29 to 
scratch the data set. After the module 
deletes whatever entries it must delete, it 
builds any new entries necessary. 

When all the counts have been updated., 
the necessary entries removed from the 
index, and the specified data sets 
scratched, IGGOCLC5 reads the index to be 
updated and transfers control to IGGOCLC3. 
IGGOCLC3 reorganizes the index just as if 
it were a normal index. 

The CVOL Routines: Modules 
IGC0002H and IGGOCLF2 

These modules together take care of the 
open and initialization functions for the 
catalog management routines. IGC0002H 
opens or extends the catalog by building or 
modifying a data control block (DCB) and a 
data extent block (DEB} for the SYSCTLG 
data set and IGGOCLF2 formats new catalogs, 
extensions of the catalog., and new 
partitioned data set directories. 

IGC0002H 

This module is entered by an SVC 28, or 
by XCTL if returning from the Extend 
routine of DADSM*. If entry is by SVC 28, 
the module opens or extends the catalog, 
depending on input parameters. If entry is 
by XCTL from the DADSM Extend routine, the 
module finishes extending the catalog. 

To open the catalog, the module searches 
the volume table of contents (VTOC) of the 
volume whose unit control block (UCB) 
address was specified by the caller 
(IGC0002F}. If it does not find a format 1 
data set control block (DSCB) with name 
SYSCTLG in the VTOC, it sets a return code 
of 4 and exits. If it does find the format 
1 DSCB, it constructs a DCB and DEB from 
information in the DSCB and from 
information contained in the module itself 
(information common to all SYSCTLG data 
sets such as blocksize and record format). 

*See IBM system/360 Operating svstem: 
Direct Access Device Space Management 
Program Logic Manual, Form Y28-6607. 

26 TSO Catalog Management PLM {Release 20.1) 

There is a switch in the DSCB of a 
SYSCTLG data set that indicates whether the 
data set has been formatted or not. If 
this switch is off, IGC0002H transfers 
control to IGGOCLF2., the formatting 
routine, to format the data set. If the 
switch is on, the module releases any 
unused DEB or DCB space and exits. 

To extend,the catalog, the module gets 
main storage for the Extend routine of 
DADSM, reads the format 1 DSCB for SYSCTLG, 
and checks the secondary allocation 
quantity in the DSCB. If this quantity is 
zero, the catalog cannot be extended and 
IGC0002H returns to the caller with an 
error code of 4. If there is a secondary 
allocation quantity specified in the DSCB, 
the module builds a parameter list for the 
Extend routine and transfers control to 
module 1GG0533A. 

The Extend routine cf DADSM returns 
control to the beginning of IGC0002H, which 
indicates that the data set must be 
formatted and where the fo:r:matting is to 
begin,, and then passes control to the 
forrratting routine (IGGOCLF2). It also 
builds a new DEB which includes the newly 
allocated space. 

IGGOCLF2 

This module formats new catalogs, 
extensions of existing catalogs,· and new 
partitioned data set (PDS) directories. It 
does this by filling the available space 
with 256-byte records with 8-byte keys. If 
it is formatting a new SYSCTLG data set or 
a PDS directory it alsc initializes the 
first block. 

If the request is to fo:r:mat a PDS 
directory., the module constructs a channel 
program to write one 256-byte block at a 
time. The first write operation writes an 
empty directory, and each subsequent write 
writes an 8-byte zero key and 256-byte zero 
record. When it has formatted all the 
requested blocks, it writes an end of data 
mark, and returns to the caller via an SVC 
3. 

If the request is tc fo:r:mat a catalog, 
the module constructs a channel program to 
write keys and data, a full track at a 
time. The module uses information from the 
DSCB to determine how many blocks will fit 
on a track. It keeps a record of the last 
relative track formatted to insert it into 
the volume index contrcl entry. 



( 

( 

( 

When the module has reached the end of 
the extent assigned to SYSCTLG,, it checks 
to see if it has been formatting a new 
catalog or an extension. If it has been 
formatting an extension., it :returns 
directly to the caller. If it has been 
formatting a new SYSCTLG data set., it 
builds an empty voluae index, containing a 

volume index control entry and an index 
link entry with zero TTR field, and sets 
the format switch in the DSCB to indicate 
that the data set has been formatted. 
Before returning to the caller, the module 
always frees the working storage obtained 
for it by IGC0002H. 

Prcgram Organization 27 



Directory 

This chart~ Figure 10. contains information to assist the reader in 
making the tra·nsi ti on from this manual to the assembler language 
listings of the catalog management modules. It correlates information 
from three sources: 

• The source code 

• The executable load modules 

• This manual 

r--------,.----------y-------------T----------T----------1 
jLOAD MODULE! RESIDENCE I DESCRIPTION I CSEC'l' !FLOWCHART I 
I NAME I I I NAME I NUMBERS I 
·----------t------~--t---------------+----------t---------i 
I IGC0002F jSYSl.SVCLIB I Initialize I IGC026 I 1 I 
·----------t----------+----------------+---------+----------i 
I IGGOCLC1 ISYSl.SVCLIB I Locate I IGGOCLC1 I 2 I 
.-----------t-----------+----------------+---------+----------i 
I IGGOCLC2 jSYSl.SVCLIB I Build and free I IGGOCLC2 I 3 I 
I I I block I I I 
·----------t-----------+----------------+---------t----------i 
I IGGOCLC3 ISYS1.SVCLIB I Update blocks I IGGOCLC3 I 4 I 
I I I of reorganized I I I 
I I I index I I I 
·-----------t-----------+----------------+----------+----------i I IGGOCLC4 I SYSl. SVCLIB I Locate gener- I IGGOCLC4. I 5 I 
I I I ations I I I 
·------~--t----------+---------------+---------+----------i 
I IGGOCLCS ISYSl.SVCLIB I Build gener- I IGGOCLCS I 6 I 
I I I ation index I I I 
I I I entries I I I 
·--~-----t-----------+---------------+---------t----------i 
I IGGOCLC6 jSYSl.SVCLIB I Process I IGGOCLC6 I 7 I 
I I I errors; Exit I I I 
I I I for LOCATE I I I 
I I I processing I I I 
·-----------t---------+---------------+----------t----------i 
I IGGOCLC7 ISYS1.SVCLIB I Update control I IGGOCLC7 I 8 I 
I I I entries; I I I 
I I I Release blocks; I I I 
I I I Build and I I I 
I I I delete index I I I 
I I I structures I I I 
·----------t-----------+----------------+----------t----------i 
I IGC0002H ISYSl.SVCLIB I Open/extend I IGC028 ·I 9 I 
I I I catalog I I I 
·-------'"'.'--t------------+---------------+-------.---t----------i 
I IGGOCLF2 jSYSl.SVCLIB I Format catalog I IGGOCLF2 I 10 I 
I I I ' PDS I I I 
I I I directory I I I 

'-------.1------------~--------~-----~----------L----------J 

Figure 10. Directory 

28 TSO Catalog Management PLM (Release 20.1) 



( 

This section contains illustrations.and 
explanations of the layouts of the various 
types of catalog entries and of the_ 
parameter list which the us~r supplies to 
the catalog management routines. 

Catalog Entries 

This section describes in detail the 
format of each of the possible entries in 
the catalog. Figures 11 and 12 represent 
each entry pictorially and the following 
text describes the contents of each field. 

The Volume Index Control Entry contains 
information about the entire catalog and 
the volume index. It is always the first 
entry in the catalog. It is 22 bytes long 
and contains 8 entries. 

Field 1: This is the name field. It 
always contains the value 
X'0000000000000001' to ensure that this 
entry is always first in the volume index. 

Field 2: This field contains the TTR of 
the last block in the volume index. 

Field 3: This field contains the number 
5 to indicate that five half words of user 
data follow. 

Field 4: This field contains the TTR of 
the last block in the SYSCTLG data set. 

Field 5: This is the alias count field 
in a normal index, but since this is the 
volume index it will always contain zero. 

Field 6: This field contains the TTR of 
the first unused block in the catalog. 

Field 7: This field contains zero. 

Field 8: This field contains a count of 
the number of unused bytes in the last 
block of the volume index. 

An Index Control Entry is quite similar 
to a volume index control entry, but it 
only contains information about the index 
which it begins. It is 18 bytes long and 
contains six fields. 

Field 1: This name field contains 
x•ooooooooooooooo1• to ensure that this 
entry is first in its index. 

Data Area Layouts 

Field 2: As in the volume index control 
entry . ., this field contains the TTR of the 
last block in this index. 

Field 3: This field contains the number 
3 to indicate that three halfwords follow. 
It identifies this entry as an index 
control entry. 

Field 4: This field contains the 'ITR of 
the first block in this index. This 
address is always the address of the tlock 
which contains this entry. 

Field 5: This field contains a count of 
the number of aliases in the catalog that 
reference this index. This count will be 
nonzero only for indexes one level removed 
from the volume index. 

Field 6: This field contains a count of 
the number of unused bytes in the last 
block cf the index. 

Index Link Entries and Index Pointer 
Entr:res-are quite similar.~index link 
entry is used to chain several blocks of an 
index together and an index pointer entry 
is used to chain an index to the next lower 
level index. An index link entry is always 
the last entry in any index block. These 
blocks contain three fields and are 12 
bytes long. 

Field 1: This is the name field and 
contains the name of the index to which 
this entry points. If the entry is an 
index link entry, the name field contains 
X'FFFFFFFFFFFFFFFF'. 

Field 2: This is the pointer field and 
contains either the TTR of the first tlock 
of the index, in the case of an index 
pointer entry, or the TTR of the next block 
of the index, in the case of an index link 
entry. 

Field 3: This is the count field, and 
it contains zero to indicate that the entry 
ends here. 

The Data Set Pointer Entry contains the 
actual information for which the catalog 
exists: the volume serial number, data set 
sequence number, and device type code of 
the data set which the fully qualified name 
represents. The entry can be from 26 to 74 
bytes long, depending en how many volumes 
the data set occupies. 

Data Area Layouts 29 



Volume Index Control Entry 

Field I: Name Field 2: 05 Field 4: Field 6: Field 7: 
TTR of last TTR of last TTR of first Count of 

x '0000000000000001 ' block-in c block in unused block unused 
volume 0 SYSCTLG 00 in SYSCTLG 00 bytes in 
index u data set data set last block 

N of volume 
T index 

I ..... 0 ____________ 7_ : ••• , ~~. 
11 ·12 

21 .. I 
22 bytes ---------------.i--

14 15 16 18 19 20 

Index Control Entry 

Field I: Name Field 2: 03 Field 4: Count of 
TTR of last TTR of first .,.,1-- unused 

X'OOOOOOOOOOOOOOOI' block in this c block in <(Z bytes in -:::> 
index 0 this index -'O last block 

u <u of this 
N index 
T 

1 .. 
0 7 8 I 0 11 12 I 

.... -------------Total Length 18 bytes ----------1.,..i 
Index Link Entry 

Field I: Name Field 2: 00 
X' FFFFFFFFFFFFFFFF' TTR of next c block in 

index 0 
(or zero if no u 

next block) N 
T 

I-o 7 8 JO 11 I 
""--------Total Length: 12 bytes ---+I 

·.".I ,, 

Index Pointer Entry 

Field I: Name Field 2: 00 
TTR of index 

Index Name (padded to right c 
with blanks if necessary) 0 

u 
N 
T 

1 .. 
0 7 8 10 11 .. 1 

------Total Length 12 bytes-------

Data Set Pointer Entry 

Field I: Name Field 2: * Field 4: Field 5: Field 6: Field 7: 
Lowest level name of data Dummy Volume Device Code Serial Number of vo1ume Data set 
set or complemented generation pointer field: Count on which data set resides sequence 
number (if part of GOG) zeros numbec 

(zero for 
directl_ 

_g_ccess 

I o 7 8 JO ll 12 13 -J.!.__----·17._.,0......_~----·2·3-24;.1 ~I Repeated for each volume 

..... .----------------- Total Length 26 to 74 bytes 
* Count: equal to 6 times the number 

of volumes,. plus I . 

Figure 11. Catalog Entry Fonnats 

30 TSO Catalog Management PLM (Release 20.1) 



Volume Control Block Pointer Entry 

Field 1: Name Field 2: 01 Field 4: 
Lowest level of data set name TTR of c Dummy 

Volume 0 data 
Control u entry: 
Block N zeros 

T 

1 .. 0 7 8 10 11 12 13 .. 1 
"'·-t---------Total Length: 14 bytes -------~-· 

Voi ume Control Block 

c Field 2: Field 3: Field 4: 
0 Device Serial number Data set sequence 
u Code of volume n number for the 
N volume described 
T in field 5. Zero 

for direct access 

Field 5: 
Ten bytes of zeros 

0 1 m m+3 m+4 m+9 m+lO m+ll 242 
.._,. 

Repeated once for each volume; total 6 to 20 
-\ r Total Length: 256 bytes 

Control Volume Pointer Entry 

Field 1: Nome Field 2: 05 Field 4: Field 5: 
Name of index on Dummy pointer c Device Code of Serial number of 
other control volume field: zeros 0 control volume control volume 

u 
N 
T 

251 

1 .. 
0 7 8 10 11 12 15 16 21.,I 

""-t----------------Total Length: 22 bytes--------------.. --i. 

NOTE: Prior to release 17, the Control Volume Pointer Entry contained a count 
of 03 and did not have a Device Code field (Field 4) 

Alias Entry 

Field 1: Name Field 2: 04 Field 3: 
Name of al ios TTR of index c Name of high level index 

named in field 0 to which this is an alias 
3 u 

N 
T 

I 
0 7 8 10 JI 12 191 

"""t------------- Total Length: 20 bytes --------------<"'"" 
Generation Index Pointer Entry 

*1 *2 
Field 1: Name Field 2: 02 Field 6: 
Name of generation index TTR of c Count of 

generation 0 genera-
index u tions 

N currently 
T in index 

1 .. 
0 7 8 10 11 12 13 14 1 .. 51 

---------- Total Length: 16 bytes ----------1-..i. 
*1 Field 4: 

Flags: 

*2 Field 5: 

bits 

0-5 
6 
7 

meaning 

Reserved 
Delete 
Empty 

Count of maximum gererations to be maintained in index 

Figure 12. More Catalog Entry Formats 

Field 6: 
TTR of next 
vol·ume control 

00 block, or zero 
if none 

252 ,,. ~I 

Data Area Layouts 31 



Fields one through four occur only once 
while fields five through seven occur once 
for each volume of the data set. 

Field 1: This field contains the lowest 
level of the data ~et name. 

Field 2: This would normally be the 
address field, but since a data set pointer 
entry references no other entries in the 
catalog, it contains zeros. 

Field .3: Count of user data. This 
field indicates how many half words of data 
follow. The number in here will be six 
times the number of volumes <there are six 
halfwords for each volume> plus one {for 
the volume count>. 

Field 4: This field contains a count of 
the volumes following {one to five).. 

Field 5: This field contains the device 
type code of the device on which the volume 
with the following serial can be mounted. 
<see Appendix c.> 

Field 6: This field contains the volume 
serial number of one of the volumes of the 
data set. 

Field 7: This field contains the 
sequence number of the data set on a 
magnetic tape volume. It is zero for any 
other device. 

A Volume control Block Pointer Entry is 
used instead of a data set pointer entry 
when the data set occupies more than five 
volumes. This entry points to a volume 
control block., which, in turn, describes 
the data set. The entry is 14 bytes long. 

Field 1: This name field contains the 
lowest level of the data set name .• 

Field 2: This field contains the TTR of 
the first <or only) volume control block 
for the data set. 

Field 3: The count field contains zero 
to indicate that this is the end of the 
entry. 

A Volume Control Block contains the 
description of all the volumes of a data 
set which resides on more than five 
volumes. One volume control block can 
describe up to twenty volumes and volwne 
control blocks may be chained together, so 
that a data set can be cataloged no matter 
how many volumes it requires. The volwne 
control block is always 256 bytes long, 
regardless of how many volumes it 
describes. 

Field 1: The first two bytes of a 
volume control block contain a count of the 

32 TSO Catalog Management PLM (Release 20.1) 

number of volumes described by this volume 
control block and any followi.Dg it. For 
example the count fields of a series of 
VCBs for a data set that occupied sixty 
volumes would show sixty, forty, and twenty 
as the volwne count. 

This is the only kind of block in the 
catalog in which the first two bytes are 
not used as a count of the number of used 
bytes in the block. 

Field 2: This field can contain up to 
twenty 12-byte volume descriptions, 
consisting of device type codes {See 
Appendix C) and volume serial numbers. 

Field 3: This field contains ten bytes 
of zeros, followed by the TTR of the next 
volume control block fer this data set, 
followed by one byte of zeros. If there 
are no more volume control blocks for this 
data set., the TTR is zero. 

A Control Volume Pointer Entry is used 
to indicate that a particular index resides 
on a volume other than the system residence 
volume. Control volume ~ointer entries can 
exist only in the volume index. They are 
22 bytes long. 

Field 1: The name field contains the 
name of the high level index which resides 
in the volume described by this entry. 

Field 2: The address field contains 
zeros, because this entry references no 
others in the catalog. 

Field 3: The count field contains the 
number 5 to indicate that five halfwords 
follow. 

Field 4: This field contains the device 
type code of the specifi,ed control volume. 
{See Appendix c.> 

Field 5: This field contains the volume 
serial number of the central volume which 
has an entry in its vclume index of the 
same name as this entry. 

An Alias Entry is used to specify a 
substitute name for a high level index. 
Alias entries only appear in the volume 
index. They are 20 bytes long. 

Field 1: The name field contains the 
alias. 

Field 2: The address field contains the 
TTR of the first block cf the index for 
which this entry specifies an alias. 

Field 3: The count field contains the 
number 4 to indicate that four halfwords of 
data follow. 

,,, 



( 
Field 4: This field contains the true 

name of the index for which this entry is 
an alias. 

A Generation Index Pointer Entry points 
to a generation index. It is basically the 
same as an Index Pointer Entry. except that 
it includes the flag and count fields. It 
is 16 bytes long. 

Field 1: The name field contains the 
lowest level name of the generation data 
group. That is, a generation data set 
named WEEKLY.INVNTRY.G0001VOO would have 
the name •INVNTRY• in the generation index 
pointer entry name field. 

Field 2: The address field contains the 
TTR of the first block of the generation 
index. 

Field 3: The count field contains the 
number 2 to indicate that two halfwords 
follow. 

Field 4: This field contains.the flags 
which indicate special handling for 
generation data sets.. Bit 7 indicates the 
Em}?ty option and bit 6 indicates the Delete 
option. Eits 0-5 are reserved and are 
always zero. 

Field 5: This field indicates the 
maximum number of entries to be maintained 
in the index at one time. 

Field 6: This field indicates the 
number of entries currently in the index. 

Data Area Layouts 33 



User's Parameter List 

This parameter list, Figure 13, must be supplied by the user .before 
he calls the catalog management routines. The CAMI.ST macro instruction, 
described in IBM System/360 Operating System: System Proqrammer's 
Guide, Form C28-6550, can be used to generate the list. 

34 TSO Catalog Management PLM (Release 20.1) 



(' 

l Register I 

Option Generation 
0 0 Flags Count (see below) 

4 4 Pointer to Fully 
Qualified Name 

8 8 Pointer to Serial Number 
of Control Volume 

12 c Pointer to User's Work Area 

1 At entry to IGC0002F1 register 1 points to the user's parameter list. 
At all other times, register 8 points there. 

Byte 0 1 ••• 

Byte 1 

Byte 2 

.x •• 
•• 1. 
••.. 1 

x .••• 
.1 .•• 
•• 1. 
••• 1 

1 •.•• 
.1 ... 

•.• xx 

1 ..•• 
.x .. 
•• 1. 
•·• .x 

1 .•.•• 
.1 .•• 
•• x .• 
..•• 1 

1 .••• 

....... xxx 

Option Flags 
Catalog is on System Residence Device 
Not used 
CTLG 
RECAT 
UNCAT 
Not used 
BLOCK 
Not used 
Not used 
BLDX 
BLDG 
BLDA 

LINKX 
DLTX 
Not used 
DLTA 
DRPX 
DELETE 

Not used 
EMPI'Y 

Not used 

by the Catalog Management routine 
Catalog a data set 
Recatalog a data set 
Uncatalog a data set 

by the Catalog Management routine 
Read a block by TTR 

by the Catalog Management routine 
by the Catalog Management routine 
Build normal index structure 
Build generation index 
Build an alias to a high-level 
name 
connect control volumes 
Delete an index Structure 

by the Catalog Management routine 
Delete an alias entry 
Disconnect control volumes 
Scratch generation data sets 
when they are uncataloged 

by the Catalog Management routine 
Remove all entries from the 
index when the maximum gen­
eration count has been reached 

by the Catalog Management routine 

Note: FUnction is locate by name if all flags are zero. Function is 
CATBX if CTLG and BLDX flags are both ones. FUnction is UCATCX if UNCAT 
and DLTX flags are both ones. 

Figure 13. User's Parameter List 

Data Area Layouts 35 



Diagnostic Aids 

This section includes miscellaneous charts and tables that might be 
useful in locating program errors. 

Module Selection Chart 

This chart, Figure 14 can be used to detennine what modules of the 
catalog management routine will be used to perf onn a particular 
function, given the function required and the current status of the 
catalog. 

r-----------------------------------rr-T_T_T_T_T_T_T_1 
I 111121314151617181 
~-----------------------------------++-+-+-+-+-+-+-+-i I FUNCTION: LOCATE I IY IY I I I I I I I 
~-----------------------------------++-+-+-+-+-+-+-+-i 
I OTHER II I IYIYIYIYIYIYI 
~-----------------------------------++-+-+-+-+-+-+-+-i 
I TYPE INDEX FOUND: NORlolAL llYIYIYI I I I I I 
~---------------------------------++-+-+-+-+-+-+-+-i 
I GENERATION 11 IYI I I I IYIYI 
~-----------------------------------++-+-+-+-+-+-+-+-i 
I NONE 11 I I I I y I y I I I 
~-----------------------------------++-+-+-+-+-+-+-+-i 
I UNFORMATTED CATALOG II I INIYINIYINIYI 
~-----------------------------------++-+-+-+-+-+-+-+-i 
~-----------------------------------++-+-+-+-+-+-+-+-i 
I IGC0002F 11x1x1x1x1x1x1x1x1 
~-----------------------------------++-+-+-+-+-+-+-+-i 
I IGcooo2a 11x1x1x1x1x1x1x1x1 
~-----------------------------------++-+-+-+-+-+-+-+-i 
I IGGOCLF2 11 I I (XI IXI (XI 
~----------------------------------++-+-+-+-+-+-+-+-i 
I IGGOCLC1 11x1x1x1x1x1x1x1x1 
~----------------------------------++-+-+-+-+-+-+-+-i 
I IGGOCLC2 11 I 1x1x1x1x1 I I 
~-----------------------------------++-+-+-+-+-+-+-+-i 
I IGGOCLC4 11 IXI I I I 1x1x1 
~---------------------------------++-+-+-+-+-+-+-+-i 
I IGGOCLCS II I I I I I 1x1x1 
~-----------------------------------++-t-t-+-+-+-+-+-i 
I IGGOCLC3 II I 1x1x1x1x1x1x1 
~----------------------------------++-+-+-+-+-+-+-+-i 
I IGGOCLC7 II I 1x1x1x1x1x1x1 
L-----------------------------------1.L-.l-i-i-i-i-L-i-J 

Figure 14. Module Selection Chart 

36 TSO Catalog Management PLM (Release 20.1) 



( 
Register Usage 

Figure 15 is a register usage chart.. In the chart., the ccntents of 
certain registers is given, as it apppears at entry to each module and 
just before each module loses control. All entries in the table, except 
those marked "*", are addresses. That is, when the table indicates that 
at entry to module IGGOCLC1 register 9 is 'DCB', this means that 
register 9 contains the address of the data control block. When the 
table indicates that at entry to module IGG0CLC2 register 6 is "No. of 
Levels Searched *•" this means that register 6 contains that number. 

Diagnostic Aids 37 



Module Registers 

Name 0 1 2 3 4 5 6 B 9 10 11 12 13 15 

IGC0002F User's SVRB 
Entry Pa ram-

eter List 

Function ENO User's DCB Work BLDL 
Exit Code* Parameter Parameter Area Work 

List List Area 

IGGOCLCl Function ENO User 1s DCB Work BLDL 
Entry Code* Parameter Parameter Area Work 

List List Area 
Exit (To ENO No. of User's DCB Generation Work BLDL 
IGGOCLC2 or Parameter Levels Parameter Index Area Work 
IGGOCLC4) List Searched* List Block Area 
Exit No, of Locate Error 
'(To User) Levels Error Code* 

Searched* Code* 

IGGOCLC2 No. of User's DCB Work 
Entry Levels Parameter Area 

Searched* list 
No, of User's DCB Work 

Exit Levels Parameter Area 
Searched* List 

IGGOCLC3 User 1s DCB Work 
Entry Parameter Area 

List 
No. of Locate Index 

Exit Levels Error Catalog 
Searched* Code* Error Code* 

IGGOCLC4 Entry User's DCB Work BLDL 
Entry Indicator Parameter Area Work . list Area 

Entry User's DCB Gen. Index Work BLDL 
Exit Indicator Parameter Pointer Area Work . List Entry Area 

IGGOCLC5 Entry User 1s DCB Gen. Index Work BLDL 
Entry Indicator Parameter Pointer Area Wark . List Entry Area 

Exit No. of Locate Index 
(User) Levels Error Catalog 

Searched* Code* Error Code* 

Exit User 1s DCB Work BLDL 
(IGGOCLC3) Parameter Area Work 

List Area 

Exit Entry User 1s DCB Work BLDL 
(IGGOCLC4) Indicator Parameter Area Work . List Area 

IGGOCLC6 Index Cat- Locate No, of DCB Locate 
Entry olog Error Error Levels Work 

Code* Code* Searched* Area 

No, of Locate Error 
Exit Levels Error Code* 

Searched* Code* 

IGGOCLC7 Link Entry Area for DCB Work 
Entry Old Updated Area 

Index Link Entry 

Error 
Exit Code* 

IGC0002H Entry UCB of ~ork Bin Number 
(V;a SVC 28) CVOL Area for H CVOL ;s 

or DCB DEB/DCB on 2321* 

Entry A Extend Bin DCB TTR of UCB 
(XCTL from Negative Work Number new 
Extend Rtne) Value* Area ;f 2321* Extent* 

Exit Error 
(To Caller) Code* 

Ex;t (To DCB Work DEB UCB Non-
DA DSM Area zero* 
Extend Rtne) 

Exit Zero* DCB No.of Subpool ID Work Begin 
(To Black~~ and Size o f Area TTR* 
IGGOCLF2) Track* Work Area"" 

IGGOCLF2 DCB Work DEB UCB Non-
Entry Area zero* 

Error 
Exit Code* 

4 6 10 11 12 13 15 

Figure 15. Register Usage 

38 TSO Catalog Management PLM (Release 20.1) 



Appendix A: Flowcharts 

These flowcharts illustrate the operation of the catalog management 
routines module by module. Each label in the charts is taken directly 
from the assembler language source code for the module. The charts are 
intended to bridge the gap between the textual material of this manual 
and the code itself. so they are best used in conjunction with the code 
and the text (particularly the Program Organization section>. 

Ai:;pendix A: Flowcharts 39 



Chart 1. Catalog Management IGC0002F 

01 

ERROR CODE 
TO 32 

J 
EVIA SVC 3) 

ERROR CODE 
TO 4 

0-

NOTE: THIS CHECK IS TO 
AVOID A LOOP CAUSED 
BY CVOL POINTER ENTRIES 
ON TWO CONTROL 
VOLUMES THAT POINT 
TO ONE ANOTHER. 

40 TSO Catalog Management PLM (Release 20.1) 

. j 



Chart 2. Catalog Management IGC0002H (Part 1 of 2) 

IGG0002H 

-A1---­NTRY VIA XCTL 
FROM EXTEND OR 

VIA SVC 28 

RETURN 

l 

us---­
XCTL TO 

IGG0533A 

Appendix A: Flowcharts 41 



Chart 2. 

E1"""'"---. 
RETURN TO 

CALLER 

Catalog Management IGC0002H (Part 2 of 2) 

B14---­
XCTL TO 

IGG0CLF2 

42 TSO Catalog Management PLM (Release 20.1) 



Chart 3. Catalog Management IGGOCLC1 (Part 1 of 2) 

01 

-A1----... 
ENTRY XCTL FRO 

IGC0002F 

fOI:\. L...:/-
LOCEXI T 

CODE 

1 ..... __ _ 

XCTL TO 
IGGOCLC6 

K2""""---... 
XCTL TO 

IGGOCLC2 

YES 

NO 

[OT.\. 
LY 

ERR12 
F41"""'----. 

ERROR CODE 
TO 12 

H4-----. 
ERROR CODE 

TO 20 

CALLBLDL 

AS----... 
ENTRY VIA BAL 
CALLBLDL, 14 

r'J_, 
SPECIFIED BLOCK I AND NAME I 

D1s-;i.... __ 

RETURN VIA BR 
14 

E5·-----
ERROR CODE 

TO 24 

F5i_. __ _ 

XCTL TO 
IGG0CLC6 

Appendix A: Flowcharts 43 



Chart 3. Catalog Management IGGOCLCl (Part 2 of 2) 

D2,_. ___ .. 

ERROR CODE 
TO 12 

AJ;----. 

ERROR CODE 
TO 0 

BJ----..., 

SAVE ADDR OF 
GEN. INDEX 

POINTER 

D,3-.._ __ _, 

ERROR CODE 
TO 16 

Lrv 

44 TSO Catalog Management PLM (Release 20.1) 

NO 

LE!) 

FSi_. __ _ 

XCTL TO 
IGG0CLC4 



,,, 
I~ 

Chart 4. Catalog Management IGGOCLC2 (Part 1 of 3) 

IGGOCLC2 

-Al----ENTRY VIA XCTL 
FR IGG0CLC1 

E2:...i.---.. 

UP EMPTY 
INDEX 

K2:-"--­
XCTL TO 

IGG0CLC3 

YES 

SET.UP LNGTH 
FIELD (X'03') 

FOR cv~~RPTR, 0 

~ 
L'.'/ 

RETURN 

04-----... 
XCTL TO 

IGG0CLC6 

H'I-----. 
ON EMPTY SW 
USER AREA 

YES SET ON DELETE 
>---+ISW IN USER AREA 

MOVE CVOL 
SERIAL NO. TO 

USER AREA 

Appendix A: Flowcharts 45 



Chart 4. Catalog Management IGGOCLC2 (Part 2 of 3) 

E2~---­
ERROR CODE 

TO 12 

FRETBLK 

Cll)lT 

ACOUNT 

46 Tso Catalog Management PLM (Release 20.1) 

L~ 

YES 
UPDATE VOL INDX 
CNTRL BLK WITH 

>---+I ADDR OF 1ST 
HOLE 



Chart 4. 

CNVT 

~A1 
ENTER VIA 

IO 

( 

catalog Management IGGOCLC2 (Part 3 of 3) 

NO 

(IO) 

c.B2 
~ER VIA BAL) 

E2:----.. 

ERROR CODE 
TO 28 

L~ 

L~ 

~ 
L.J' 

VCBRTN 

8-

L~ 

YES 

WRITENEW 

IO 40 1 

SEARCH FOR NEXT 

E~¥~ ¥~L~6NE 

-.rs 
SAVE THIS , ____ ._{RETURN V6 IA REG) 

BLOCK'S ADDRESS,- ' • 

Appendix A: Ficwcharts 47 



Chart s. Catalog Management IGGOCLC3 (Part 1 of 2) 

AE3 

AF2 

a2-----. 
CALCULATE 

LENGTH OF OLD 
ENTRY 

roT:\ L...:/-

J~'.>-j 
E2!-'----, 

ADD ENTRY 
LENGTH TO 

OUTPl!T POINTER 

48 TSO Catalog Management PLM (Release 20.1) 

H41----. 
READ 

INDICATED 
BLOCK INTO 
INPUT AREA 



Chart 5. Catalog Management IGGOCLC3 (Part 2 of 2) 

AG3 

roI\. L..:/ .... 

H2 

YES 

t e 

L[Y 

E31-----. 

ERROR CODE 
TO 20 

F3i...:.--­
RETURN TO 

CALLER VIA SVC 
3 

BU LINK 
ENTR H TTR 

PO IN 
OU AREA 

H3 

ENTIRE 
X'FF' 

Appendix A: Flowcharts 49 



Chart 6 .. Catalog Management IGGOCLC4 (Part 1 of 3) 

IGGOCLC4 

-A1----
RY VIA XCTL 

FR IGGOCLC1 OR 1-----<K 
IGGOCLCS 

! 
8 

RETURN TO 
CALLER VIA SVC 

3 

ERR20 

rm 
~ 

! 
8 

NO 

50 TSO Catalog Management PLM (Release 20.1) 

SKIP . I 
XCTL TO 

IGGOCLCS 



Chart 6. Catalog Management IGGOCLC4 (Part 2 of 3) 

~ 
L:/ 

A1.....1.----

CONVERT 
RELATIVE GEN. 
NO. TO BINARY 

~'- ]-----. 
,81 

/READ A BLK OF 
HE GENERATION 

INDEX 

' j 

,,! 

0 

LLY 

YES 

I 

L(5 

F3 

' j 
I 

L(5 

Appendix A: Flowcharts 51 



Chart 6. 

IT 

Catalog Management IGGOCLC4 (Part 3 of 3) 

~ 
LJ' 

EMPTY 

' j 

ERROR CODE 
TO ZERO 

L[Y 

-G 

YES 

0 

UPDATE VOLUME 
INDEX CONTROL 

BLOCK 

e-.1-· _ ____. 
fH3 

/READ NEXT BLK 
IN CHAIN USING 

BLDL 

SET KEY OF 
OUTPUT AREA TO 

ZERO 

52 TSO Catalog Management PLM (Release 20.1) 



Chart 7. Catalog Management IGGOCLCS (Part 1 of 2) 

CLCS 

Gr'R¢ i-V-IA __ l<_C_T_L.,. 

FROM IGGOCLC4 l-----1.C 

E2:.-.---. 

ITE UPDATE 
BLOCK 

E4-..__.._ .. 

FUNCTION TO 
RECAT 

BLDLENTR'l 047F2 

BUILD NEW ENTRY 

Appendix A: Flcwcharts 53 



Chart 7. Catalog Management IGGOCLC5 (Part 2 0£ 2) 

YES 

L[Y 

B2-----. 
ERROR CODE 
TO ZERO 

E2-----. 
RETURN TO 

CALLER VIA SVC 
3 

BLDLENTRY 

CFF2 
ENTER VIA 

YES 

J 
XCTL TO 

IGG0CLC4 TO 
EMPTY INDEX 

REP ET ERE 

c:::! VIA BAL) 

BUILD 
APPROPRIATE 

NUMBER OF VCBS 

54 TSO Catalog Management PLM (Release 20.1) 

SCRINIT 

(FD~ 
ENTER VIA 

~E IT BY 
WRITING A ZERO 

KEy 

047D5 

DATA 
REQ'D 

SCRATCH 

c::: VIA BAL) 

BR 



Chart 8. Catalog Management IGGOCLC6 

01 

A2----... 
XCTL FROM 

IGGOCLC1 OR 
IGGOCLC2 

H4-'---... 

EXIT VIA SVC 3 

YES 

Appendix A: Flcwcharts 55 



Chart 

01 

9. Catalog Management IGGOCLC7 

ERROR CODE 
TO 0 

NO 

UPDATE VICE IF 
NECESSARY 

G-

i 
G 

56 TSO Catalog Management PLM (Release 20.1) 

YES 

YES 

SETX 
CREATE ENTRY 

& CHAIN TO PREV 
BUILT BLK 

FIND NEXT EMPTY 
BLOCK 

VCD 
vcBit. 

BUiLT VCB 
CHAIN 



( 

Chart 10. Catalog Management IGGOCLF2 

IGG0CLF2 

-A1----. 
ENTRY VIA XCTL 

FROM IGG0002H 1----+-I 

BPNLST ' j 

E3 

J 
~!TE 

YES 

IT I 

NO 

BPLOOP1 B,---.---. 
WRf~ b~LL -83 FORMATTED 

BLOCKS 

EXTENDED 

PUT LAST TT IN 
DATA SET IN REG __ ......_...., TO RETN TO 

CALLER 

Appendix A: Flew charts 57 



Appendix B: Old CVOL Pointer 

Before Release 17, the control volume pointer entry had nc device 
type code field. Since some control volumes may still contain the old 
entry., and since the routines still check for it, its format is given 
here. 

Field l: Field 2: 03 Field 4: 

Name Zeros Control Volume 
Serial Number 

18 Bytes 
'~] 

7 8 10 11 12 

58 TSO Catalog Management PLM (Release 20.1) 



IOS 
Flags 

Byte 1 

Appendix C: Device Type Field 

The device code pdrtion of data set pointer entries. volume control 
blocks, and control volUJlle pointer entries is identical to the UCBTYP 
field of the unit control block. This description is included here for 
easy reference. 

For a complete description of the fields above, please refer to IBM 
System/360 Operating System: System Control Blocks. Form C28-6628.--"A 
brief description of some of the fields appears below. 

Device Class: <Byte 3; values are in hex> 

X' 8.0' Magnetic Tape 
X'20' Direct Access 
x•oa• Unit Record 
X'lO' Gra:phics 
x • 4 O • communications 

When Byte 3 indicates direct access,, byte 4 indicates the specific 
device as follows: 

Model 
Code 

X'Ol' 2311 Disk storage Drive 
X'02' 2301 Parallel Drum 
X'03' 2303 serial Drum 
X'04' 2302 Disk storage 
x•os• 2321 Data Cell Drive 
x•oa• 2314 Disk storage Facility 

Optional Features Device Class Unit Type 

Byte 2 Byte 3 Byte 4 

Appendix C: Device Tyfe Field 59 





(' 

Index 

Indexes to program logic manuals are consolidated in the publication IBM System/360 
Operating system: Program Logic Manual Master Index, Fonn Y28-6717. For additional 
information about any subject listed below, refer to other publications listed for the 
same subject in the Master Index. 

Where more than one page reference is given, the major reference is first. 

abbreviations of routine names 9 
abnormal termination 16 
absolute generation number 

complement form of 25 
obtained from relative gen~ no. 25,17 
reference to catalog using 7 

address 
fields of catalog entries <see 
description of specific entry> 

of UCB as a parameter 18,26 
of IECPBLDL 20 

alias entries 
count of, in index control entry 29 
creating 18 
deleting 18 
description of 

detailed 29,32-33 
general 15 

allocated space for SYSCTLG 18,26-27 
allocation quantity, secondary 18,26-27 
assembler language code 28 

BALR instruction as linkage 20 
ELDA function 18 
BLDG function 17 
BLDL routine (IECPBLDL) 

linkage to 2 0 
treatment of keys by 11,10 
used to search for name 

by locate generations 17,25 
by normal locate 17,20 

BLDX function 1 7 
blocksize of SYSCTLG 10 

calculation of absolute generation 
numbers 25 

calling 
of catalog management routines 8 
parameters passed 35 
of CVOL routines 18 
of IECPLDL 2 0 

CAMLST macro instruction 34 
CATALOG macro instruction 8 
catalog function 17 
CATLG sub-parameter on DD card 8 
chaining 

of physical blocks 11 
of volume control blocks 32 

channel programs 
to format catalog 26,27 
to read and write blocks 2 0 

communication vector table (CVT) 20 
complement form of generation number 25,17 

connecting control volumes 7-9 
count field 

of physical blocks 10 
of catalog entries 29,32-33 

CSECT names of routines 28 
CTLG parameter 35 
CVOL (control volume) 

description 7 
old pointer entry 58 
pointer entry 16,32 
routines 18, 26 

CVT (communication vector table) 20 

DADSM routines 26,18 
DCB (data control block) for SYSCTLG 
DEB (data extent block) for SYSCTLG 
delete option 25,35 
DEQ macro instruction 23 
device type field 59 
directory of a partiticned data 
set 26,18-19· 

disconnecting control volumes 18 
DISP parameter of DD card 8 
DLTA function 1 8 
DLTX function 1 8 
DRPX function 1 8 
DSCB (data set control block) 

format switch in 26,19 
information from 26 
representation of generation nos. 
in 25 

secondary allocation quantity in 
dummy generation number 25 

empty option 25,35 
ENQ macro instruction 16,23 
EXCP macro instruction 

initialization for 16 
use of 20 

extend routine 
catalog 19 
DADSM 26 

extending SYSCTLG data set 19-26 

flags 
in user's parameter list 35,8 
in generation index ~ointer entry 

flowcharts 39-57 
format switch in SYSCTLG DSCB 26,19 
formatting routine 19,26 
free blocks 1 8 
fully-qualified name 7 
functions of routines-chart 9 

26,19 
26,19 

26 

33,25 

Index 61 



GOG {generation data group) 7,17 
generation index 

building (see BLDG function) 
deleting (see DLTX function) 
inserting entries into 25 
locating entries in 25 
pointer entry 15,33 
order of entries in 25 

generation numbers 
absolute (see absolute generation 

numbers) 
relative (see relative generation 

numbers) 
GETMAIN macro instruction 16,20 
GOOOOVOO (see dummy generation number) 

high-level name 18 
housekeeping functions 16,20 

IECPBLDL 20 
IEHPROGM 8 
IGC0002F 20 
IGC0002H 26 
IGC026 28 
IGC028 28 
IGGOCLCl 20 
IGGOCLC2 22 
IGGOCLC3 22-23 
IGGOCLC4 25 
IGG0CLC5 25 
IGGOCLC6 22 
IGG0CLC7 23 
IGGOCLF2 26-27 
IGG0533A 26 
index control entry 29,15 
index, generation (see generation index) 
index levels 10 
index link entry 29 
index, normal 

building (see BLDX function) 
deleting Csee DLTX function) 
entry type 15 
inserting entries into Csee catalog 
function) 

pointer entry 29,15 
removing entries from (see UNCAT 

function) 
structure 1 0 

initialization 
of new catalogs 26 
of processing 20 

input to the routines 35 

job scheduler 8 

keys 
description of 11,10 
initialization of 19,26 
use of 11 

levels of qua lif ic ati on 7-11 
link fields (see index link entry 

volume control block) 
LINKX function 17 
locate function 

description 17,20 
output from 20,21 

and 

62 TSO Catalog Management PLM (Release 20.1) 

logical organization of the catalog 
(figure) 11 

macro instructions 
CAMLST 35 
CATALOG 8 
INDEX 8 
LOCATE 8 

master indexes, note 60 
modules of the routines 28 (see also 
specific module names) 

multiprocessing environment 16 
multiprogramming environment 16 

NAME parameter 35 

open routine 19,26 
options (see empty option, delete option) 
order of entries 

in generation indexes 25 
in normal indexes 1 0 

parameters passed to routines 35 
partitioned data set CPDS) directory 

formatting of 26,19 
similarity of catalog to 10 

physical organization cf catalog 10,11 
pointer entries 29-33 

'qname' used in ENQ macro instruction 23 
qualifiers 7 

reading the catalog 20 
RECAT function 17 
records (see physical crganization) 
reenterable routines 16,20 
region 16 
register usage (chart) 37-38 
relative generation numcer 

in calculating absolute 25 
validity of 7 

RESERVE macro instruction 16 
'rname' used in ENQ macro instruction 23 

scratch routine 26 
searching the catalog 16,17 
secondary allocation quantity 26 
sequence of entries in catalog (see order 
of entries) 

serial number, volume Csee volume serial 
number) 

simple names 10,7 
supervisor calls (SVCs) 

SVC 3 20 
SVC 19 16 
SVC 26 8 I 20 
SVC 28 26,16,20 
SVC 29 18 I 26 

SYS CT LG 
as name for ENQ/DEQ 
data set 

allocation of space 
definition of 7 
extending 19,26 
formatting 19,26 
opening 19,26 

SYSl.SVCLIB 28 

23 

for 18 



unit control block (UCB) 
device type field of 59 
of control volume 

as part of 'rname' 23 
as parameter 18,26 
searching for 20 

UNCAT function 18 
user's parameter list 35 
utility programs 8 

VICE 15,16 
volume control block (VCB) 15,32 

volume serial number 
of cataloged data set 11 (see also 

volume control blocks and data set 
pointer entry) 

of control volume 2 0 
volume table of contents (VTOC) 19,26 

writing in the catalog 20 

XCTL macro instruction 20,26 

Index 63 



GYZB-6745-0 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Curporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

V1 

~ 
<D 

~ 
0 

0 
V1 

.... 
V1 

0 
n 
0 a 
0 co 

~ 
::> 
0 

co 
"' ~ 
::!. 
" .... 
~ 
V1 
w 
(>. 
0 
I 

~ 



.. 

READER'S COMMENT FORM 

IBM System/360 Operating System: 
TSO Catalog Management 
Program Logic Manual 

Order No. GY28•6745-0 

Please use this form td express your opinion of this publication. We are interested in your 
comments about its technical accuracy, organization, and completeness. All s1..99estions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additional copies of publications. 
All such requests should be directed to your IBM representative or to the IBM Branch Office 
serving your locality. 

• Please indicate your occupation: 

• How did you use this publication? 

D Frequently for reference in my work. 

D As an introduction to the subject. 

O As a textbook in a course. 

D For specific information on one or two subjects. 

• Comments (Please include page numbel's and give examples.): 

• Thank you for your comments. No postage necessary if mailed in the U.S.A. 



GY28-6745-0 

YOUR COMMENTS, PLEASE . . . 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

n s. 

I 

I 
I 
I 
I 
I 
I 
I 

~ ~ I 
·-------------------------------------------~-! 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY If MAILED IN THE UNITED STATES 

Attention: Programming Systems Publications 
Department D5B 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Aven,ue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N. Y. 

Fald 

I 
I 
I 
I 

Vl 
'< ; 
~ 
0 

0 
Vl 

-I 
Vl 

0 
() 
c 
Q 
0 cc 

c 
v, 
),. 



( 

READER'S COMMENT FORM 

IBM System/360 Operating System: 
TSO Catalog Management 
Program Logic Manual 

Order No. GY28-6745-0 

Please use this form to express your opinion of this publication. We are interested in your 
comments about its technical accuracy, organization, and completeness. All suggestions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additional copies of publications. 
All such requests should be directed to your IBM representative or to the IBM Branch Office 
serving your locality. 

• Please indicate your occupation: 

• How did you use this publication? 

D Frequently for reference in my work. 

D As an introduction to the subject. 

0 As a textbook in a course. 

D For specific information on one or two subj•cts. 

• Comments (Please include page numbers and give examples.): 

• Thank you for your comments. No postage necessary if mailed in the U.S.A. 



GY28-6745-0 

YOUR COMMENTS, PLEASE . . . 

This manual is part of a library that serves as a reference souroe for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

~: Please direct any requests for copies ·of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

Fold Fold _________________ ......., _________ ..,.. _____ ....._ __________ _ 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Programming Systems Publications 
Department D58 

Fold 

llrn~ 
® 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Businass Machinas Corporation 
Data Procassing Division 
1133 Wastchastar Avanua, Whita Plains, New York 10604 
[U.S.A. only] 

IBM World Trada Corporation 
821 United Nations Plaza, Naw York, Naw York 10017 
[Intarnational) 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N, Y. 

Fold 

("I 
c ... 
~ 

l 
..-
~-

Vl 

l 
~ 
0 

0 
Vl 
..... 
Vl 
0 
() 
Q 

Q 
0 

(Q 

~ 
::i 
Q 

Ul 
CD 

i 
'I. ..,, ..-s: --Vl 
c.> 

°' 0 
l:, 
~ 

..,, 
~. 
::i 
iD 
0.. 

:;· 
c , ' ;,, 
),. 

G) 
-< 
"' 00 

6-
'I ..,. 
O'I 
I 

0 



Technical Newsletter File Number S360-20 (OS Rel. 20 .1) 

Re: Order No. GY28-6745-0 

This Newsletter No. GN28-2481 

Date June 1, 1971 

Previous Newsletter Nos. 

IBM SYSTEM/360 OPERATING SYSTEM: 
TSO CATALOG MANAGEMENT 

© IBM Corp. 1971 

This Technical Newsletter, a part of release 20.1 of IBM 
system/360 Operating System, provides replacement pages for the 
subject publication. These replacement pages remain in effect for 
subsequent releases unless specifically altered. Pages to be 
inserted and/or removed are: 

cover,Edition Notice 
6.1 
7, 8 
25-28 
35,36 
41, 42 
57-62 

A change to the text or a small change to an illustration is 
indicated by a vertical line to the left of the change. 

Summary of Amendments 

This Technical Newsletter adds information on the Catalog Support 
for Rotational Position Sensing. 

Note: Please file this cover at the back of the manual to provide 
a-record of changes. 

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602 

None 

PRINTED IN U.S.A. 



_/ 



rf. \\ 

( 

IBM System/360 Operating System: 

Time Sharing Option 

Catalog Management 

Program Logic Manual 

Program Number 3605-DM-508 

This publication provides customer engineers 
and other technical personnel with information 
describing the internal organization and 
logic of the catalog management routines that 
are used when the Time Sharing Option has been 
selected at system generation time. These 
routines provide the facility of locating data 
sets when only data set names are specified. 

This manual is based on the IBM System/360 
Operating System: Catalog Management, Program 
Logic Manual, GY28-6606. It should be used in 
place of the above manual only if the Time 
Sharing Option has been specified at system 
generation time. 

File No, S360-36 
Order No. GY28-6745-0 

Program Logic 



Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481 

First Edition (March 1 1971) 

This edition with Technical Newsletter GN28-2481 applies to 
Release 20.1, of IBM System/360 Operating System, and to all 
subsequent releases until otherwise indicated in new editions 
or Technical Newsletters. Changes are periodically made to 
the information herein; before using this publication in 
connection with the operation of IBM systems, refer to the 
latest IBM System/360 SRL Newsletter, Order No. GN20-0360, for 
the editions that are applicable and current. 

Requests for copies of IBM publications should be made to 
your IBM representative or to the IBM branch office serving 
your locality. 

A form for readers' comments is provided at the back of 
this publication. If the form has been removed, comments may 
be addressed to IBM Corporation, Programming Systems Publica­
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602 

©Copyright International Business Machines Corporation 1971 



Page of GY28-6745-0 1 Revised June 1 1 1971 1 By TNL GN28-2481 

Summary of Major Changes 

Release 20.1 (GY2B-6745-0) 

r-------~-----------T------~--------------------------~--~-----------T--------------1 
I Item I Description I See Pages: I 
~--------------------+------------------------------~-------------------+--------------~ 
!Rotational Position !An I/O feature that permits channel use during seekl7 1 26 1 27 1 351 41, I 
!Sensing (RPS) for !time and record search operations. 157 1 59 I 
13330 and 2305 I I I 
L--------------------i--~--------~------------------------~-----------i--------------J 

/ 

summary of Major Changes 6.1 





Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481 

Catalog management is the facility of 
the Operating system for locating data sets 
when the user specifies only the data set 
names. The catalog, itself a data set 
(DSNAME=SYSCTLG}, contains data set names 
correlated with volurne and device type 
information. The catalog management 
routines supervise the organization of the 
catalog; insert, remove, and locate entries 
in the catalog; and format new catalogs and 
partitioned data set directories. For 
further information concerning Rotational 
Position Sensing (RPS), which is mentioned 
throughout this manual, refer to the 
section concerning this feature in IBM 
System/360 Operating System: Direc~ccess 
Device Space Management Program Logic 
Manual, GY28-6607. 

Organization by Level of 
Qualification 

Operating System data set names may be 
either simple or qualified. A simple name 
is a collection of up to eight EBCDIC 
characters. A qualified name is a 
collection of simple names separated by 
periods (.} with a total length of up to 
44 bytes. 

Catalog management uses the periods in a 
qualified name as delimiters and uses the 
simple names (called qualifiers} as index 
names. The catalog is divided into 
indexes, each of which represents one level 
of qualification of a qualified name. 

The catalog management routines can be 
used to build or delete a single index or a 
whole index structure. To catalog a data 
set called A.B.c, for example, the user may 
either first create index A, then index 
A.B, and then catalog A.B.c, or request 
that catalog management create any missing 
index levels needed to catalog A.B.C. 

The highest level index, called the 
volume index, is built automatically the 
first time a new catalog is used by the 
catalog management routines. 

Generation Data Group Structure 

The same structure is used to maintain 
generation data groups. A generation data 

Introduction 

set may be referred to by its absolute name 
(e.g., A.B.C.G0006VOO} for any catalog 
functions, or by a relative generation 
number (e.g., A.B.C(-2} } for the locate 
function. The catalog management routines 
keep only the specified number of entries 
in the generation index (index 'C' in this 
case>, deleting older ones and adding new 
ones when necessary, and emptying the index 
and deleting the data sets themselves if 
the user specified the EMPTY or DELETE 
options when he created the generation 
index. 

For a description of the use of 
generation data groups, see IBM System/360 
Operating system: Supervisor and Data 
Management services, Form C28-6646. 

Control Volumes 

Any direct access volume may contain a 
catalog; any such volume is called a 
control volume (CVOL}. The system 
residence volume always contains a catalog. 

An item in the catalog of a CVOL other 
than the system residence volume can be 
made available to the system if the CVOL is 
"connected" to the system residence volume. 
To connect a CVOL to the system residence 
volume, the catalog management routines 
insert a control volume pointer entry into 
the volume index of the catalog on the 
system residence volume. This entry 
contains, in its name field, the name of a 
high level index which already exists on 
the CVOL to be connected. (See Figure 1.} 

Any search of the catalog may start on 
the system residence volume, but if the 
catalog management routines encounter a 
control volume pointer entry attached to 
the highest level of the name in the volume 
index, they continue the search for the 
fully-qualified name on the CVOL whose 
serial number is in the control pointer 
entry. The caller of the catalog 
management routine may specify what CVOL is 
used for the search. 

Introduction 7 



System.Residence Volume 

Volume Table of Contents 

Volume Index 

Index 
E 

Index 
8 

Index 
A 

Control Volume 

Volume Table of Contents 

I 

A: Pointer to 
Index A I 

I Volume 
l I Number 

I ofl I 

Data 
Set 

E.A.L 

Volume 
Index 
DSCB 

Volume Index 

I 

E : Pointer to 
1 Index E 

I 
I 

FI 
I 

I 
p: 

I 

Volume 
Number 

of P 

Data 
Set 

E.A.P 

Data 
Set 
E.F 

Figure 1. A Control Volume Connected to the System Residence Volume 

Calling the Catalog Management 
Routines 

The catalog management routines are 
accessed through three assembler language 
macro instructions: LOCATE, INDEX, and 
CATALOG. The macro instructions generate a 
reference to a parameter list, which the 
user must build, and an SVC 26 instruction. 
The user's parameter list contains a group 
of flags that indicate what function he is 
asking the catalog management routines to 
perform. Figure 2 summarizes these 
functions, and the section "Data Area 
Layouts" contains a detailed description of 
the user's parameter list. 

The catalog management macro 
instructions are most commonly used by the 
utility IEHPROGM, the job scheduler, and 

8 

TSO, although they may be employed by any 
user of assembler language. 

IEHPROGM creates and deletes indexes, 
aliases, and generation indexes, and 
catalogs and uncatalogs data sets according 
to specifications supplied by the user of 
IEHPROGM. 

The job scheduler calls the catalog 
management routines when it must locate a 
data set, given only its name, or when the 
DISP parameter on a DD card is CATLG or 
UNCATLG. 

TSO dynamic allocation locates old data 
sets and catalogs new data sets. TSO 
command processors also call the catalog 
management routines to manipulate the 
catalog. 



Locate Generations: Module 
IGGOCLC4 

Generation data groups require 
significantly different locating and 
cataloging procedures from other data sets 
for two reasons: 

(1) Generation data groups may be 
specified by relative generation number (as 
in GENR(+l)), in which case the absolute 
generation number must be calculated, and 

(2) The absolute generation number is 
stored in the catalog in hexadecimal 
complement form, that is, generation 
GOOOlVOO would be stored as X'C7 OF OF OF 
OE E5 FO FO'. (Note that the version 
number and the characters 'G' and 'V' are 
not complemented.) In this way the most 
recent generation (the one with the highest 
absolute number) is always the first entry 
in the index after the index control entry. 

In this manual, the term "absolute 
generation number• refers to the number as 
it is coded by the user and as it appears 
in the name field of a data set control 
block (DSCB). It does not refer to the 
number as it is stored in the catalog, in 
complement form. 

Module IGGOCLC4 locates the lowest level 
of a generation name. When IGGOCLCl finds 
a generation index pointer entry correlated 
with the next to last level of a name, it 
passes control to this module. It may also 
be entered from IGG0CLC5 when that module 
finds it must empty an index. 

This module first checks to see whether 
entry is from IGGOCLC5 (empty request) or 
from IGGOCLCl (normal locate path). If it 
was from IGGOCLC5, the module rewrites the 
generation index, this time with only the 
highest entry, and frees any blocks no 
longer needed by the shortened index. 

If the path is a normal locate path 
(entry from IGGOCLCl), IGG0CLC4 checks the 
format of both relative generation numbers 
and absolute generation numbers and returns 
to the user with an error code of 20 if the 
format of the supplied name is not correct. 
If the name is in relative format, the only 
valid function is locate; if any other 
function has been specified, the module 
returns with an error code of 20. 

If the name is in relative format, the 
module must calculate its absolute 
generation number. It does this by adding 
or subtracting the relative number given 
and the actual number of the first entry in 
the index. If the index is empty, the 
module sets up a dummy 'found' entry called 
'GOOOOVOO' as the basis for absolute 
generation number calculation. If the 

relative number is negative and exceeds the 
number of entries in the index, the module 
returns to the user with an error code of 
8. 

Once the relative generation number in 
the user's area has been replaced with the 
absolute generation number, the module 
proceeds as though the user had supplied 
the absolute number in the first place. 

With the generation number in absolute 
format, the module uses BLDL to read the 
entry associated with the name. If the 
function is catalog, control is passed to 
IGGOCLC5 via the XCTL macro instruction. 
If the function is locate, the module 
checks BLDL's error code. If the name was 
found, the module moves the data into the 
user's area and checks to see if it must 
read a volume control block to complete the 
description of the data set. If it does, 
the volume control block is read into the 
user's area. 

If BLDL cannot find the name, the module 
returns to the user with an error code. 

Catalog Generations: Module 
IGGOCLCS 

This module builds new entries for 
generation indexes, maintains generation 
index pointer entries by updating the 
generation count, and marks entries for 
deletion or data sets for deletion if the 
empty or delete option was specified when 
the generation index was created. 

The module first checks the findings of 
IGGOCLC4 to be sure the current structure 
of the index is compatible with the 
function requested. If the requested 
function is catalog, for example, and the 
full name of the data set is found, the 
error code is set to eight and the module 
returns control to the user. Similarly, if 
the function is anything but catalog and 
the name was not found, the module takes an 
error exit. 

If the function requested by the user is 
consistent with the contents of the index, 
the module checks the generation count and 
maximum number of generations to be 
maintained in this index. This indicates 
whether the module must delete any entries 
to add a new one. The module increases or 
decreases the generation count according to 
the function requested (increase for 
catalog, decrease for uncatalog, leave 
alone for recatalog). It rewrites the 
index block containing the updated 
generation index pointer entry. 

Program Organization 25 



Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481 

If an entry must be removed from the 
index, IGG0CLC5 removes it and rewrites the 
index block which contained this entry. If 
the empty option is indicated by the flags 
in the generation index pointer entry, the 
module transfers control back to IGGOCLC4 
to empty the index. If the delete option 
is indicated, the module calls the SCRATCH 
function of Direct Access Device Space 
Management (DADSM) * with an SVC 29 to 
scratch the data set. After the module 
deletes whatever entries it must delete, it 
builds any new entries necessary. 

When all the counts have been updated, 
the necessary entries removed from the 
index, and the specified data sets 
scratched, IGGOCLC5 reads the index to be 
updated and transfers control to IGGOCLC3. 
IGGOCLC3 reorganizes the index just as if 
it were a normal index. 

The CVOL Routines: Modules 
IGC0002H and IGGOCLF2 

These modules together take care of the 
open and initialization functions for the 
catalog management routines. IGC0002H 
opens or extends the catalog by building or 
modifying a data control block (DCB) and a 
data extent block (DEB) for the SYSCTI.G 
data set and IGGOCLF2 formats new catalogs, 
extensions of the catalog, and new 
partitioned data set directories. 

IGC0002H 

This module is entered by an SVC 28, or 
by XCTL if returning from the Extend 
routine of DADSM*. If entry is by SVC 28, 
the module opens or extends the catalog, 
depending on input parameters. If entry is 
by XCTL from the DADSM Extend routine, the 
module finishes extending the catalog. 

To open the catalog, the module searches 
the volume table of contents CVTOC) of the 
volume whose unit control block (UCB) 
address was specified by the caller 
(IGC0002F). If it does not find a format 1 
data set control block (DSCB) with name 
SYSCTLG in the VTOC, it sets a return code 
of 4 and exits. If it does find the format 
1 DSCB., it constructs a DCB and DEB from 
information in the DSCB and from 
information contained in the module itself 
(information conunon to all SYSCTLG data 
sets such as blocksize and record format). 

*See IBM System/360 Operating System: 
Direct Access Device Space Management 
Program Logic Manual, Form Y28-6607. 

26 

For RPS devices, IGC0002H obtains an RPS 
work area (and frees it when it frees the 
DCB and DEB area.) When the DCB and DEB 
are constructed initially for an RPS 
device, control is transfered by XCTL to 
the RPS setup module, IGG019EK. Upon 
return from IGG019EK, normal DEB 
construction continues. 

There is a switch in the DSCB of a 
SYSCTLG data set that indicates whether the 
data set has been formatted or not. If 
this switch is off, IGC0002H transfers 
control to IGGOCLF2, the formatting 
routine, to format the data set. If the 
switch is on, the module releases any 
unused space and exits. 

To extend the catalog, the module gets 
main storage for the Extend routine of 
DADSM, reads the format 1 DSCB for SYSCTLG, 
and checks the secondary allocation 
quantity in the DSCB. If this quantity is 
zero, the catalog cannot be extended and 
IGC0002H returns to the caller with an 
error code of 4. If there is a secondary 
allocation quantity specified in the DSCB, 
the module builds a parameter list for the 
Extend routine and transfers control to 
module IGG0533A. 

The Extend routine of DADSM returns 
control to the beginning of IGC0002H, which 
indicates that the data set must be 
formatted and where the formatting is to 
begin, and then passes control to the 
formatting routine (IGGOCLF2). It also 
builds a new DEB which includes the newly 
allocated space. 

IGGOCLF2 

This module formats new catalogs, 
extensions of existing catalogs, and new 
partitioned data set (PDS) directories. It 
does this by filli?XJ the available space 
with 256-byte records with 8-byte keys. If 
it is formatting a new SYSCTLG data set or 
a PDS directory it also initializes the 
first block. 

If the request is to format a PDS 
directory, the module constructs a channel 
program to write one 256-byte block at a 
time. The first write operation writes an 
empty directory, and each subsequent write 
writes an 8-byte zero key and 256-byte zero 
record. When it has formatted all the 
requested blocks, it writes an end of data 
mark, and returns to the caller via an SVC 
3. 



( 

Page of GY28-674~-o. Revised June 1, 1971, By TNL GN28-2481 

If the request is to format a catalog, 
the module constructs a channel program to 
write keys and data, a full track at a 
time. The module uses information from the 
DSCB to determine how many blocks will fit 
on a track. It keeps a record of the last 
relative track formatted to insert it into 
the volume index control entry. 

When the module has reached the end of 
the extent assigned to SYSCTLG, it checks 
to see if it has been formatting a new 
catalog or an extension. If it has been 
formatting an extension, it returns 

directly to the caller. If it has been 
formatting a new SYSCTLG data set, it 
builds an empty volume index, containing a 
volume index control entry and an index 
link entry with zero TTR field, and sets 
the format switch in the DSCB to indicate 
that the data set has been formatted. 
Before returning to the caller, the module 
tests for an RPS device. If the device has 
the RPS feature, the RPS work area is freed 
and the RPS appendage module, IGG019EK, is 
deleted. Then the working storage obtained 
by IGC0002H is freed. 

Program Organization 27 



Directory 

This chart, Figure 10, contains information to assist the reader in 
making the transition from this manual to the assembler language 
listings of the catalog management modules. It correlates information 
from three sources: 

• The source code 

• The executable load modules 

• This manual 

r-----------T---~--~---T----------------T----------T----------1 

!LOAD MODULE! RESIDENCE I DESCRIPTION I CSECI' !FLOWCHART I 
I NAME I I I NAME I NUMBERS I 
·-----------+---~--~---+----------------t-----~---+----------i 
I IGC0002F ISYS1.SVCLIB I Initialize I IGC026 I 1 I 
·-----------+---~-------t----------------+----------+----------i 
I IGGOCLC1 ISYS1.SVCLIB I Locate I IGGOCLC1 I 2 I 
·-----------+---~-------t-------~--------t-----~---+----------i 
I IGGOCLC2 ISYS1.SVCLIB I Build and free I IGGOCLC2 I 3 I 
I I I block I I I 
·-----------+---~-------t----------------+----------+--~------i 
I IGGOCLC3 ISYS1.SVCLIB I Update blocks I IGGOCLC3 I 4 I 
I I I of reorganized I I I 
I I I index I I I 
·-----------+-------~---+~--------------t----------+----------i 
I IGGOCLC4 JSYS1.SVCLIB I Locate gener- I IGGOCLC4 I 5 I 
I I I a tions I I I 
·-----------+------------+----------------t-----~---+----------i 
I IGGOCLCS ISYS1.SVCLIB I Build gener- I IGGOCLCS I 6 I 
I I I ation index I I I 
I I I entries I I I 
·-----------+---~-------+-------~-------+-~--~---+---------~i 
I IGGOCLC6 ISYS1.SVCLIB I Process I IGGOCLC6 I 7 I 
I I I errors; Exit I I I 
I I I for LOCATE I I I 
I I I processing I I I 
·--~-------+------------+----------------+-~-------+----------i 
I IGGOCLC7 ISYS1.SVCLIB I Update control I IGGOCLC7 I 8 I 
I I I entries; I I I 
I I I Release blocks; I I I 
I I I Build and I I I 
I I I delete index I I I 
I I I structures I I I 
·-----------+---~--~---+----------------+----------+----------i 
I IGC0002H ISYS1.SVCLIB I Open/extend I IGC028 I 9 I 
I I I catalog I I I 
·-----------+-------~---t-------~---~--+-----~---+----------i 
I IGGOCLF2 ISYS1.SVCLIB I Format catalog I IGGOCLF2 I 10 I 
I I I & PDS I I I 
I I I directory I I I 
L-----------i---~-------~----------------~-----------L----------J 

Figure 10. Directory 

28 

""·· 



( 

Page of GY28-67~5-0, Revised June 1, 1971, By TNL GN28-2481 

[ Register I 

Option Generation 
0 0 Flags Count (see below) 

4 4 
Pointer to Fully 
Qualified Name 

8 8 Pointer to Serial Number 
of Control Volume 

12 c Pointer ta User's Work Area 

1 At entry to IGC0002F, register 1 points to the user's parameter list. 
At all other times, register 8 points there. 

I Byte 0 1. •• 
.. x •• 
.• 1. 
.•. 1 

Byte 1 X ••• 

Byte 2 

• 1 •• 
•• 1. 
••• 1 

1 ... 
• 1 •• 

•• xx 

.... 

1 •.• 
. x .• 
•• 1. 
•.. x 

1 .•• 
.1 •• 
•• x. 
••• 1 

1 ••. 

.xxx 

Option Flags 
Catalog is on CVOL 
Not used by the Catalog Management routine 
CTLG Catalog a data set 
RECAT Recatalog a data set 
UNCAT Uncatalog a data set 
Not used by the Catalog Management routine 
BLOCK Read a block by TTR 
Not used by the Catalog Management routine 
Not used by the Catalog Management routine 
BIDX Build normal index structure 
BIDG Build generation index 
BIDA Build an alias to a high-level 

name 
LINKX Connect control volumes 
DLTX Delete an index Structure 
Not used by the Catalog Management routine 
DLTA Delete an alias entry 
DRPX Disconnect control volumes 
DELETE scratch generation data sets 

when they are uncataloged 
Not used by the Catalog Management routine 
EMPTY Remove all entries from the 

index when the maximum gen-
eration count has been reached 

Not used by the Catalog Management routine 

Note: Function is locate by name if all flags are zero. Function is 
CATBX if CTLG and BLDX flags are both ones. Function is UCATDX if UNCAT 
and DLTX flags are both ones. 

Figure 13. User's Parameter List 

Data Area Layouts 35 



Diagnostic Aids 

This section includes miscellaneous charts and tables that might be 
useful in locating program errors. 

Module Selection Chart 

This chart. Figure 14 can be used to determine what modules of the 
catalog management routine will be used to perform a particular 
function, given the function required and the current status of the 
catalog. 

r--~--~--~----~------------~----,-T-T-T-r-T_T_T_T_1 

I 111121314151617181 
·------~--~----------------~-----++-+-+-+-+-+-+-+-1 
I FUNCTION: LOCATE I IY IY I I I I I I I 
·------~---------------------------++-+-+-+-+-+-+-+-1 
I OTHER II I IYIYIYIYIYIYI 
·------~--------~-----~---~-----++-+-+-+-+-+-+-+-1 

i_:.:::_I~:~-:~~~~-----~~~~-----t+:+:~:t-~-+-+-+-~ 
I GENERATION I I IY I I I I I y I y I 
·----------------~-----~----------++-+-+-+-+-+-+-+-1 
I NONE I I I I I I y I y I I I 
·------~---------------------------++-+-+-+-+-+-+-+-1 
I UNFORMATTED CATALOG I I I INIYINIYINIYI 
·-----------------------~----------++-+-+-+-t-+-+-+-1 
·-----------------------------------++-+-+-+-+-+-+-+-1 
I IGC0002F 11x1x1x1x1x1x1x1x1 
·------~---------------------------++-+-t-+-t-+-+-t-1 
I IGC0002H 11x1x1x1x1x1x1x1x1 
·------~---------------~---~-----++-+-+-+-+-+-+-t-1 
I IGGOCLF2 11 I I JXI IXI IXI 
·-----------------------------------++-+-t-+-t-+-+-+-1 
I IGGOCLCl 11x1x1x1x1x1x1x1x1 
·------~--~-----------~----------++-+-+-+-+-+-+-+-1 
I IGGOCLC2 II I 1x1x1x1x1 I I 
·--~------------~----------~-----++-+-+-+-+-+-+-+-1 
I IGGOCLC4 11 IXI I I I 1x1x1 
·-----------------------~--~------++-+-+-+-t-+-+-+-1 
I IGGOCLCS II I I I I I 1x1x1 
·----------~-----------~----------++-+-+-+-+-+-+-+-1 
I IGGOCLC3 II I 1x1x1x1x1x1x1 
·----------------~-----~----------++-+-+-+-+-+-+-t-1 
I IGGOCLC7 I I I 1x1x1x1x1x1x1 
L------~--~-----------~----------~~-..L-..L-..L-...1.-...1.-~-~-J 

Figure 14. Module Selection Chart 

36 



,,:-

4' 
~' 

I Chart 2. 

IGGOCLF2 

-All---­
ENTRY VIA XCTL 

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481 

Catalog Management IGC0002H (Part 1 of 2) 

FROM IGG0002H 1-~~~_.1 

' j 
!NIT TO START 

AT BEGINNING OF 
DIR. AND ALLOW 

FOR EOD MARK 

,,! 

YES 

l 
GO BACK 1 TRK 

TO PASS LAST TT 
IN CATALOG TO 

CALLER 

E3 

rb T 

H3 

'j 

81 
K3 

LG 

NO 

BPL00P1 
B4---...., 

WR~~ b~LL -83 FORMATTED 
BLOCKS 

. j 
AVT 

' j 
WK 

EXT~l 
PUT LAST TT IN 
DATA SET IN REG 

TO RETN TO 
CALLER 

KS 
RETURN TO 

CALLER VIA SVC3 

Appendix A: Flowcharts 41 



Chart 2. 

42 

1 l 
ERROR CODE 

ZERO 

J 
RETURN TO 

CALLER 

Catalcg Management IGC0002H (Part 2 of 2) 

XCTL 

B4-----
XCTL TO 

IGGOCLF2 



( 
1 Chart 10. 

IGC0002H 

-A1----... 
ENTRY VIA XCTL 
FROM EXTEND OR 

BLDEB 

VIA SVC 28 

D1 ..... --...... 

BU I LD DEB AND 
FOR ENTIRE 
VOLUME 

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481 

Catalog Management IGGOCLF2 

l 

EXPT1 

84-----. 
SET SW TO 

INDICATE 2ND 
PASS OF 

EXTENDED 
FUNCTION 

DS----... 

YES SET UP FOR XCTL 
>----+I RPS FORMAT 

IGG029R1 

G-]--
F3, .... ____ __ 

DEB 

XCTL 

Appendix A: Flcwcharts 57 



Appendix B: Old CVOL Pointer 

Before Release 17, the control volume pointer entry had no device 
type code field. Since some control volumes may still contain the old 
entry, and since the routines still check for it, its format is given 
here. 

58 



Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481 

Appendix C: Device Type Field 

The device code portion of data set pointer entries, volume control 
blocks, and control volume pointer entries is identical to the UCBTYP 
field of the unit control block. This description is included here for 
easy reference. 

For a complete description of the fields above, please refer to IBM 
System/360 Operating system: system Control Blocks I ForJT, C28-6628. A 
brief description of some of the fields appears below. 

Optional Features: (Byte 2; values are in hex> 

X'lO' Rotational Position Sensing CRPS) 

Device Class: (Byte 3) 

X'SO' Magnetic Tape 
X'20' Direct Access 
X'08' Unit Record 
X' 10' Graphics 
X'40' Communications 

When Byte 3 indicates direct access, byte 4 indicates the specific 
device as follows: 

X'Ol' 2311 Disk Storage Drive 
X'02' 2301 Parallel Drum 
X'03' 2303 Serial Drum 
X'04' 2302 Disk Storage 
X'05' 2321 Data Cell Drive 
X'06' 2305 Model 1 FHSF 
X'07' 2305 Model 2 FHSF 
X'OS' 2314 Disk Storage Facility 
X'09' 3330 Disk storage Facility 

Appendix C: Device Type Field 59 





Index 

Indexes to program logic manuals are consolidated in the publication IBM system/360 
Operating System: Program Logic Manual Master Index, Form Y28-6717. For additional 
information about any subject listed below, refer to other publications listed for the 
same subject in the Master Index. 

Where more than one page reference is given, the major reference is first. 

abbreviations of routine names 9 
abnormal termination 16 
absolute generation number 

complement form of 25 
obtained from relative gen. no. 25,17 
reference to catalog using 7 

address 
fields of catalog entries (see 
description of specific entry) 

of UCB as a parameter 18,26 
of IECP BLDL 2 0 

alias entries 
count of, in index control entry 29 
creating 18 
deleting 18 
description of 

detailed 29,32-33 
general 15 

allocated space for SYSCTLG 18,26-27 
allocation quantity, secondary 18,26-27 
assembler language cede 28 

BALR instruction as linkage 20 
ELDA function 18 
BLDG function 17 
BLDL routine (IECPBLDL) 

linkage to 2 0 
treatment of keys by 11,10 
used to search for name 

by locate generations 17,25 
by normal locate 17,20 

BLDX function 1 7 
blocksize of SYSCTLG 10 

calculation of absolute generation 
nwnbers 25 

calling 
of catalog managerrent routines 8 
parameters passed 35 
of CVOL routines 18 
of IECPLDL 2 0 

CAMI.ST macro instruction 34 
CATALOG macro instruction 8 
catalog function 17 
CATLG sub-parameter en DD card 8 
chaining 

of physical blocks 11 
of volume control blocks 32 

channel programs 
to format catalog 26,27 
to read and write blocks 20 

communication vector table (CVT) 20 
complement form of generation number 25,17 

connecting control volumes 7-9 
count fiel<i 

of physical blocks 10 
of catalog entries 29,32-33 

CSECT names of routines 28 
CTLG parameter 35 
CVOL (control volurre) 

description 7 
old pointer entry 58 
pointer entry 16,32 
routines 18, 26 

CVT (communication vector table) 20 

DADSM routines 26,18 
DCB (data control block) for SYSCTLG 
DEB (data extent block) for SYSCTLG 
delete option 25,35 
DEQ macro instruction 23 
device type field 59 
directory cf a partitioned data 
set 26,18-19· 

disconnecting control volumes 18 
DISP parameter of DD card 8 
DLTA function 1 8 
DLTX function 18 
DRPX function 1 8 
DSCB (data set control block) 

format switch in 26,19 
information frorr 26 
representation of generation nos. 
in 25 

secondary allocation quantity in 
dumrry generation number 25 

empty option 25,35 
ENQ rracro instruction 16,23 
EXCP macro instruction 

initialization for 16 
use of 20 

extend routine 
catalog 19 
DADSM 26 

extending SYSCTLG data set 19-26 

flags 
in user's parameter list 35,8 

26,19 
26,19 

26 

in generation index pointer entry 33,25 
flowcharts 39-57 
format switch in SYSCTLG DSCB 26,19 
formatting routine 19,26 
free blocks 18 
fully-qualified name 7 
functions of routines-chart 9 

Index 61 



Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481 

GDG (generation data group) 7,17 
generation index 

building (see BLDG function) 
deleting <see DLTX function) 
inserting entries into 25 
locating entries in 25 
pointer entry 15,33 
order of entries in 25 

generation numbers 
absolute <see absolute generation 

numbers} 
relative (see relative generation 

numbers} 
GETMAIN macro instruction 16,20 
GOOOOVOO (see dummy generation number} 

high- level name 1 8 
housekeeping functions 16,20 

IECPBLDL 20 
IEHPROGM 8 
IGC0002F 20 
IGC0002H 26 
IGC026 28 
IGC028 28 
IGGOCLC1 20 
IGGOCLC2 22 
IGG0CLC3 22-23 
IGGOCLC4 25 
IGG0CLC5 25 
IGGOCLC6 22 
IGGOCLC7 23 
IGGOCLF2 26-27 
IGG0533A 26 
index control entry 29,15 
index, generation (see generation index> 
index levels 10 
index link entry 29 
index, norma 1 

building (see BLDX function} 
deleting (see DLTX function} 
entry type 15 
inserting entries into <see catalog 
function) 

pointer entry 29,15 
removing entries from (see UNCAT 

function} 
structure 1 0 

initialization 
of new catalogs 26 
of processing 20 

input to the routines 35 

job scheduler 8 

keys 
description of 11,10 
initialization of 19,26 
use of 11 

levels of qualification 7-11 
link fields (see index link entry and 

volume control block) 
LINKX function 17 
locate function 

description 17,20 
output from 20,21 

62 TSO Catalog Management PLM (Release 20.l) 

logical organization cf the catalog 
(figure) 11 

macro instructions 
CAMLST 35 
CATALOG 8 
INDEX 8 
LOCATE 8 

master indexes, note 60 
modules of the routines 28 (see also 
specific module names} 

multiprocessing environment 16 
multiprogramming envircnment 16 

NAME rarameter 35 

open routine 19,26 
options (see empty option, delete option) 
order cf entries 

in generation indexes 25 
in normal indexes 1 0 

parameters passed to routines 35 
partitioned data set (PCS} directory 

formatting of 26,19 
similarity of catalog to 10 

physical organization cf catalog 10,11 
pointer entries 29-33 

'qname' used in ENQ macro instruction 23 
qualifiers 7 

reading the catalog 20 
RECAT function 17 
records (see physical crganization} 
reenterable routines 16,20 
regicn 16 
register usage (chart} 37-38 
relative generation nun:l::er 

in calculating absclute 25 
validity of 7 

RESERVE macro instruction 16 
'rname' used in ENQ macro instruction 23 
RPS work area 26 

scratch routine 26 
searching the catalog 16,17 
secondary allocation quantity 26 
sequence of entries in catalog (see order 
of entries> 

serial number, volume (see volume serial 
number) 

simple names 10,7 
supervisor calls (SVCs) 

SVC 3 20 
SVC 19 16 
SVC 26 8 ,20 
SVC 28 26,16,20 
SVC 29 18,26 

SYS CT LG 
as name for ENQ/DEQ 23 
data set 

allocation of space for 18 
definition of 7 
extending 19,26 
formatting 19,26 
cpening 19,26 

SYS1.SVCLIB 28 



) 

/ 
I 

I"' 

( 

READER'S COMMENT FORM 

IBM System/360 Operating System: 
TSO Catalog Management 
Program Logic Manual 

Order No. GY28-6745-0 

Please use this form to express your opinion of this publication. We are interested in your 
comments about its technical accuracy, organization, and completeness. All suggestions 
and comments become the property of IBM. 

Please do not use this form to request technical information or additional copies of publications. 
Ail such requests should be directed to your IBM representative or to the IBM Branch Office 
serving your locality. 

• Please indicate your occupation: ---------------------

• How did you use this publication? 

D Frequently for reference in my work. 

D As an introduction to the subject. 

O As a textbook in a course. 

D For specific information on one or two subjects. 

• Comments (Please include page numbers and give examples.}: 

• Thank you for your comments. No postage necessary if mailed in the U.S.A. 



GY28o.6745-0 

YOUR COMMENTS, PLEASE . . . 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

Fold 

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Programming Systems Publications 
Department D58 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machinas Corporation 
Data Processing Division 
1133 Wastchaster Avenue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N. Y. 

Fold 

() 

s. 
> 
0 
:I 

'° c 
:I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

/ 

"--

Vl 

~ 
it 

i-
0. 
0 

0 
Vl 

-I 
Vl 

0 
() 
0 
Q 

'-- / 
0 
'° 
~ 
::J 
0 
r.c 
(I) 

~ a ,, 
r-
3: 
'G 
"' 0. 
0 
I 

"' ~ 

~ 
:I 
it 
"-
::> 

c 
;,, 

> 
G') 
-< 
"' CD 
I 
0. ...... 
~ 
01 
I 

0 


