IBM System/360 Operating System:
Time Sharing Option
Catalog Management

Program Logic Manual

Program Number 360S-DM-508

This publication provides customer engineers
and other technical personnel with information
describing the internal organization and

logic of the catalog management routines that
are used with the Time Sharing Option has been
selected at system generation time. These
routines provide the facility of locating data
sets when only data set names are specified.

This manual is based on the IBM System/360
Operating System: Catalog Management, Program
Logic Manual, GY28-6606. It should be used in
place of the above manual only if the Time
Sharing Option has been specified at system
generation time.

Information in this publication for TSO
is for planning purposes until that item is
available.

File No. S360-36
Order No. GY28-6745-0

Program Logic

First Edition (March, 1971)

This edition applies to release 20.1, of IBM System/360 Operat-
ing System, and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes
are periodically made to the information herein; before

using this publication in connection with the operation of IBM
systems, refer to the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica-
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

© Copyright International Business Machines Corporation 1971

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the catalog
management routines that are used when the
Time Sharing Option has been selected at
system generation time.

This manual is based on the IBM
System/360 Operating System Catalog
Management Program Logic Manual, GY28-6606.
It should be used in place of the above
manual only if the Time Sharing Option has
been specified at system generation time.

Publications that contain external
information about the catalog and its use
are: :

IBM Systemn/360 Operating System
Supervisor and Data Management Services,
Form C28-6646

IBM System/360 Operating System
System Programmer's Guide, Form C28-6550
management routines.

IBM System/360 Operating System
Direct Access Device Space Management,
Form Y28-6607

IBM System/360 Operating System
Sequential Access Methods, Form Y28-6604

This manual is divided into seven major
sections with three appendizxes.

The "Introduction" describes the catalog
management routines and the catalog as they
relate to the rest of the Operating System.

The "Catalog Data Set" section describes
the structure and organization of the

Preface

catalog data set. An understanding of this
data set is a prerequisite for an
understanding of the routines used to
access and modify it.

The "Method of Operation" section
describes the logical functions of the
catalog management routines.

The "Program Organization" section
describes each module cf the routines in
detail, with particular emphasis on the
differences between the actual code
involved and the logical functions of the
routines.

The "Directory" is a chart that enables
the reader to find a section of code, a
flowchart, or a text reference, given any
one of the three.

The "Data Area Laycuts" section
describes in detail each of the catalog
entries and also the user's parameter list.

The "Diagnostic Aids" section contains
charts of register usage at various stages
in catalog processing and of the factors
involved in determining which module gets
control wvhen.

The three appendixes contain detailed
flowcharts, a diagram cf the device type
field found in data set rointer entries and
CVOL rcinter entries, and a description of
a CVOL pointer entry which is no longer
created by the catalog management routines
but which may still exist in some
installations.

INTRODUCTION . <« o« « o -
Organization by Level of Quallf
Generation Data Group Structure
Control Volumes . . a e o =
Calling the Catalog Management

CATALOG DATA SET o« o o o o « =
Physical Blocks . <« <« . . . «
Index Levels v o o o o o o o« o
Chaining of BlockS « « « « «
Use Of KeYS o « o o o o « =
Index Entry TypesS .« « « « « «

METHOD OF OPERATION
Housekeeping Functions -

Maintaining Catalog Integrlty

Opening the Catalog Data Set
Locate Function . - -
BLDX, LINKX, and BLDG Functlons
Catalog and RECAT Functions .
BLDA Function . <« <« « o« « o

DLTX, DLTA, DRPX, UNCAT Functions

CATBX and UCATDX Functions . .

The CVOL Routines . . « . .
Open Routine . . « <« o «
Extend Routine . . . <« . .
Formatting Routine . . .

PROGRAM ORGANIZATION . < o« <

ication

Routines

LR R S S N)
s 6 & 8 8 8 8
LR R N T R R |
s s 8 3 s s

e s s s 0

-
-
-

s s 8 3 s
L N T S Y T
O Y T B N}

Initialization and Housekeeping: Module

IGCOOO2F v w o a @ = o o« o o «

Locate: Module IGGOCLC1 .

Contents

Index/Catalog, Normal Structure:

Moduies IGGOCLC2, IGGOCLC3,
and IGGOCLC7 . . .
IGGOCLC2 ., « «
IGGOCLC6 . . . «
IGGOCLC3 . . . «
IGGOCLC7 o o« o o o « «
Catalog Protection
Locate Generations: Module

« o o @
« o o
« o o
« o e

IGGOCLCS,

e e e e

- « o e

IGGOCLCQ . e

Catalog Generations: Mcdule IGGOCLCS

The CVOL Routines: Mcdules
IGGOCLF2 + « « «
IGCO0002H . . .
IGGOCLF2 . . .

DIRECTORY 4 2 o « @« o o« =

DATA AREA LAYOUTS o« « =« «
Catalog Entries
User's Parameter List . .

DIAGNOSTIC AIDS o « « = o
Module Selection Chart . .
Register Usage . . « « .« .

APPENDIX A: FLOWCHARTS . .

IGC0002H and

APPENDIX B: OLD CVOL POINTER « @« « « <

APPENDIX C: DEVICE TYPE FIELD

INDEX 2 o o o o @ ¢ o o o

® ® e e e e e

Contents

39
58

59

61

5

Illustrations

Figures
Figure 1. A Control Volume Connected Figure 6. Physical Organization of
to the System Residence Volume e e <« » 8 the Catalog <« « « o o o o @ o« o « « « « 13
Figure 2. Functions of the Catalog Figure 7. 1Index Entries 15
Management Routines . « « ¢« @ « o « « « 9 Figure 8. Catalog Module Flow 21
Figure 3. Typical Physical Block in Figure 9. Use of ENQ and DEQ .
the Catalog =« « ¢ ¢« ¢ ¢« ¢ o o o o« « « « 10 Functions . ¢ o @ o @ ¢ ¢ o « « « « <« « 24
Figure 4. Logical Organization of Figure 10. Directory . <« « « « <« . « . 28
the Catalog: Normal Index Structure . 11 Figure 11. Catalog Entry Format « -« « 30
Figure 5. Logical Organization of Figure 12. More Catalcg Entry Formats . 31 .
the Catalog: Generation Indexes and Figure 13. User's Parameter List . . . 35
Volume Control BIlockS .« « « o o « « « « 12 Figure 14. Module Selection Chart < « 36
Figure 15. Register Usage e < < <« <« o 38
Charts
Chart 1. Catalog Management IGCOO002F 40 Chart 5. Catalog Management IGGOCLC3
Chart 2. Catalog Management IGCO0002H (Part 1 of 2) . 2 o & o o o o o« « « o« o U8
(Part 1 Oof 2) @ ¢ @ ¢ 6 ¢ o o o o o « o« W1 Chart 5. Catalog Management IGGOCLC3
Chart 2. Catalog Management IGCO0002H (Part 2 of 2) . . & & @ ¢ o o « &« « o« o U9
(Part 2 of 2) @ ¢ @ @ 4 ¢ ¢ @ o o o o« o U2 Chart 6. Catalog Management IGGOCLCU
Chart 3. Catalog Management IGGOCLC1 (Part 1 of 3) . & ¢ @ ¢« o ¢ o < &« « & & 50
(Part 1 of 2) 4 2@ @ 4 o o o o « o« o« « « U3 Chart 6. Catalog Management IGGOCLCY
Chart 3. Catalog Management IGGOCLC1 (Part 2 of 3) . ¢ ¢ ¢ ¢ ¢ @ @ & &« « « & 51
(Part 2 Of 2) @ ¢ o o o @ o o o o =« o« o U4 Chart 6. Catalog Management IGGOCLCY
Chart 4. Catalog Management IGGOCLC2 (Part 3 0of 3) . ¢ ¢ @ ¢ ¢ ¢« @ o &« o « <« 52
(Part 1 0f 3) & 2 4 o o @ o« « « « o« « o« U5 Chart 7. Catalog Management IGGOCLCS
Chart 4. Catalog Management IGGOCLC2 (Part 1 of 2) . @ ¢ ¢« ¢« ¢ e o o « & o« & 53
(Part 2 Of 3) @ @ o @ @ @ o« o o o« « o« o U6 Chart 7. Catalog Management IGGOCLC5
Chart 4. Catalog Management IGGOCLC2 (Part 2 of 2) . . . e - . 54

(Part 3 of 3) ¢ ¢ ¢ ¢ o ¢ ¢ o« o o = « o 47 Chart 8. Catalog Management IGGOCLC6 55
Chart 9. Catalog Management IGGOCLC7 56
Chart 10. Catalog Management IGGOCLF2 57

6 TSO Catalog Management PLM (Release 20.1)

Catalog management is the facility of
the Operating System for locating data sets
when the user specifies only the data set
names. The catalog, itself a data set
(DSNAME=SYSCTLG) , contains data set names
correlated with volume and device type
information. The catalog management
routines supervise the organization of the
catalog; insert, remove, and locate entries
in the catalog; and format new catalogs and
partitioned data set directories.

Organization by Level of Qualification

Operating System data set names may be
either simple or qualified. A simple name
is a collection of up to eight EBCDIC
characters. A qualified name is a
collection of simple names separated by
periods (.) with a total length of up to
44 bytes.

Catalog management uses the periods in a
qualified name as delimiters and uses the
simple names (called qualifiers) as index
names. The catalog is divided into
indexes, each of which represents one level
of qualification of a qualified name.

The catalog management routines can be
used to build or delete a single index or a
whole index structure. To catalog a data
set called A.B.C, for example, the user may
either first create index A, then index

'A.B, and then catalog A.B.C, or request

that catalog management create any missing
index levels needed to catalog A.B.C.

The highest level index, called the
volume index, is built automatically the
first time a new catalog is used by the
catalog management routines.

Generation Data Group Structure

The same structure is used to maintain
generation data groups. A generation data

Introduction

set may be referred tc by its absolute name
(e.g., A.B.C.G0006V00) for any catalog
functions, or by a relative generation
number (e.g., A.B.C(-2)) for the locate
function. The catalog management routines
keep only the specified number of entries
in the gemeration index (index °'C' in this
case), deleting older cnes and adding new
ones when necessary, and emptying the index
and deleting the data sets themselves if
the user specified the EMPTY or DELETE
options when he created the generation
index.

For a description of the use of
generation data groups, see IBM System/360
Operating System: Supervisor and Data
Management Services, Form C28-6646.

Control Volumes

Any direct access vclume may contain a
catalog; any such volume is called a
control volume (CVOL). The system
residence volume always contains a catalog.

An item in the catalog of a CVOL other
than the system residence volume can ke
made available to the system if the CVOL is
"connected" to the system residence volume.
To connect a CVOL to the system residence
volume, the catalog management routines
insert a control volume pointer entry into
the volume index of the catalog on the
system residence volure. This entry
contains, in its name field, the name of a
high level index which already exists on
the CVCOL to be connected. (See Figure 1.)

Any search of the catalog may start on
the system residence vclume, but if the
catalog management routines encounter a
control volume pointer entry attached to
the highest level of the name in the volume
index, they continue the search for the
fully-qualified name cn the CVOL whose
serial number is in the control pointer
entry. The caller of the catalog
management routine may specify what CVOL is
used for the search.

Introduction 7

System Residence Volume

Control Volume

Volume Table of Contents

Volume Index

y T
nter to E :

Index B

Volume Serial
i Number of
i Control Volume

Index

Volume Table of Contents

Volume
Index
DSCB

Volume Index

1
I
E
I
1

Pointer to
Index E

Ingex A Pointer to F

Index A

b ————]

Volume
Number
of F

Data
Set
E.F

Volume
Number |p
of L

Index

Volume
Number
of P

Data Data
Set Set
E.A.L E.A.P

Figure 1.

Calling the Catalog Management
Routines

The catalog management routines are
accessed through three assembler language
macro instructions: LOCATE, INDEX, and
CATALOG. The macro instructions generate a
reference to a parameter list, which the
user must build, and an SVC 26 instruction.
The user's parameter list contains a group
of flags that indicate what function he is
asking the catalog management routines to
perform. Figure 2 summarizes these
functions, and the secticn "Data Area
Layouts" contains a detailed description of
the user's parameter list.

The catalog management macro

instructions are most commonly used by the
utility IEHPROGM, the job scheduler, and

8 TSO Catalog Management PLM (Release 20.1)

A Control Volume Connected to the System Residence Volume

TSO, although they may be employed by any
user of assembler language.

IEHPROGM creates and deletes indexes,
aliases, and generaticn indexes, and
catalogs and uncatalogs data sets according
to specifications supplied by the user of
IEHPRCGM.

The job scheduler calls the catalog
management routines when it must locate a
data set, given only its name, or when the
DISP parameter on a DD card is CATLG or
UNCATIG.

TSC dynamic allocation locates old data
sets and catalogs new data sets. TSO
command processors alsc call the catalog
management routines tc manipulate the
catalog.

I = y

Figure

2.

T 1
1 FUNCTION | ABBREVIATION®* |
t i !
= LOCATE a data set by name | NAME
| a block in the catalog by TTR | BLOCK
T
BUILD a normal index | BLDX
a generation index | BLLG
| an alias to a high-level index | BLLCA |
t T 1
DELETE an index | DLTX
| an alias | DLTA |
1 4]
] i |
| CONNECT two control volumes | LINKX |
DISCONNECT two control volumes DRPX
| | |
| CATALOG a data set CATALOG
| a data set and build index CATBX
| structure | |
1 4 i |
I I |
UNCATALOG a data set	UNCAT
a data set and delete index	UCATBX
structure	
i i' i	
RECATALOG a data set (change the volume	RECAT
serial number associated with an	
already cataloged data set)	
)	
*The abbreviations here are used in the comments of the	
source code to indicate what operation the user requested.	
L J

Functions of the Catalog Management Routines

Introduction

9

Catalog Data Set

Physically, a catalog is arranged in
blocks with keys. Logically, it is
arranged in index levels. This section
will describe the catalog's physical
organization, its logical organization, and
the way in which its keys are used.

Physical Blocks

The physical organization of the catalog
is identical with that of a partitioned
data set directory.

A catalog data set is formatted into
256-byte blocks with 8-byte keys. Each
block contains a 2-byte count field, which
contains a number indicating how many bytes
are used in this block (including this
count field).

The‘keys of the catalog blocks may
contain any value from X*0000000000000000"
up to, and including, X'FFFFFFFFFFFFFFFF'.
A nonzero key indicates a block containing
information, while a zero key denotes a
block that is available for new entries.
The keys are present because the catalog
routines use the BLDL routine (IECPBLDL) to
read the catalog. The BLDL routine expects
to find 256-byte records with 8-byte keys.
It ignores blocks with keys of zero.

See Figure 3 for an illustration of a
typical block in the catalog.

Index Levels

The catalog is organized into a series
of indexes or levels. The highest level,
called the volume index, is initialized by
the catalog management routines when the
catalog data set is first opened.

Entries in each index are in standard
EBCDIC collating sequence by their name
fields.

The volume index is all that is required
to catalog simple names. It also is the
only index that may contain control vclume
pointer entries (pointers to another
catalog) or alias entries. Lower level
indexes are required tc catalog qualified
names, one index for each level of
qualification except the last.

To illustrate the crganization of
indexes, consider the simple data set name,
'DSET' (Figure 4). If this were cataloged,
only one entry would be made in the
catalog: a data set pcinter entry in the
volume index. However, a two-level name,

c Data Set | Index | Data Set | Index .

o] g:t?"o‘ Pointer | Pointer | Pointer Link g\:;n ingless
u 4 Entry Entry Entry Entry

N

T

[Length in bytes = COUNT ——.I

256 bytes >
Figure 3. Typical Physical Block in the Catalog
10 TSO Catalog Management PLM (Release 20.1)

//‘; 5

PN

Data Set

Index

Volume Index: Pointer Entry Pointer Entry
ey T — . ——— (¢ T — {C
)Y T LR T 1R}
Volume Index Various Pointer Entries | Name I Volume Various Pointer Entries | Name I TTR of Various Pointer Entries
Control with Name Value < 'DSET' Serial and | with Name Value < 'SYST' | Index with Name Value
Entry 'DSET' Device 'SYS1" and > 'DSET' | >'sys1
| Type
¢ l { ¢ l {1
)T)Y R}
' | Data Set
Index 'SYS] Pointer Entry
{C L
)Y)Y
Index Various Pointer Entries |Name Volume Various Pointer Entries
Control with Name Value < 'PROCLIB'; Serial and with Name Values
Entry 'PROCLIB' Device > 'PROCLIB'
| Type
(¢ : (L
Y 1B
Figure 4. TILogical Organization of the Catalog: Normal Index Structure
such as SYS1.PROCLIB requires another parts of more than one index. The last

index. To catalog this name, two entries
would have to be made: an index pointer
entry with name 'S¥YS1' and a data set
pointer entry with name 'PROCLIB'.

The periods (.) in a data set name act
as level delimiters. The characters to the
left of the first period are assumed to
indicate a name in the volume index, the
next level is assumed to be the name of an
entry in the index indicated by the pointer
in the volume index, and so on, until the
last level is a name in the lowest level
index and is associated with a data set
pointer entry or volume control block
pointer entry.

A data set pointer entry and a volume
control block both contain volume serial
numbers and device type information for the
catalog data set. A data set pointer entry
can contain only five volume serial
numbers, while a chain of volume control
blocks can describe any number of volumes.

A generation data group index contains
data set pointer entries and volume control
block pointer entries. Figure 5 shows how
a catalog containing generation data group
indexes and volume control blocks might
look. This sample catalog lists generation
data sets named "WEEKLY.INVNTRY.Gnnnnvxx"
to illustrate generation indexes, and a
data set named "LOTSA.VOLUMES" to
illustrate volume control blocks.

CHAINING OF BLOCKS

Indexes may span blocks, but one block
may not contain more than one index, or

entry in each index block is called an
index link entry. (See Appendix B for
specific fields.) If the block is the last
one in an index, the pcinter field of the
link entry contains zeros. If the index is
continued in another blocck, the pointer
field of the link entry contains the TTR of
the next block in the index. These link
entries are present, but unused, even when
the several blocks of an index are
contiguous (See Figure 6).

USE OF KEYS

The keys of catalog blocks are designed
to allow hardware to perform much of the
search with the "search key high or equal"
command. The name field of the desired
entry is always used as the search argument
for this command. Thus, the search is
stopped and a block is read into main
storage whenever a key with this wvalue or
higher is encountered.

The key of a block in the catalog has
the value of the name field of the last
entry in the block if the next block of the
index is not contiguous to this block.

This key will always be X'FF ... FF',
because the last entry in any block is an
index link entry, and the name field of an
index 1link entry is X'"FF ... FF'.

The key of a block in the catalog has
the value of the name field of the
next-to-last entry in the block if the next
block in the index is contiguous with this
block.

The Catalog Data Set 11

Volume Index:

3¢ | A it
|
Volume Index Name TTR of Name TTR of
Control Entry 'LOTSA' : Index '"WEEKLY"' Index
£ ' ¢)}
1} * 7 3§ J ¢
GDG Index Pointer Entry
Index WEEKLY 0 N
13 T T)Y
' I
Index Control Name I TTR of | Flags)
Entry INVNTRY' | Index | 9
' |
¢ S 4
Index INVNTRY 1
)y
Index C | Data set and/or VCB pointers of the form 'GXXXXVNN?!
E“ ex Coniro where XXXX is the complement of the true generation
ntry number. Pointers are in order of name value.
((
)7
Index LOTSA
L (Yt
)) I 37T
Index Control Pointer entries with Name I TR of Pointer entries with
Entry name value <'VOLUMES' |'VOLUMES' | vCB name value >'VOLUMES®
I
15 — 5
Volume Control Block .
I;l YT
o |Serial No. Serial No. | Serial No. Serial No.
f land device | and device | and device and device Pointer to next VCB or zero if
V | Type of Type of Type of e e T Type of no more VCBs.
? Volume 1 Volume 2 Volume 3 Volume n
s, e
e R

Figure 5. ILogical Organization of the Catalog: Generation Indexes and Volume Control
Blocks

12 TSO Catalog Management PLM (Release 20.1)

; - “

Volume Table of Contents

/

Volume Label

Format 4
DSCB

'SYSC

Format 1

E‘gfg‘;” Various DSCB's DSCB

for Various DSCB's
TLG'

SYSCTLG Data Set

J

—“| ﬁebyyfes |‘— |« 256 bytes of data gl
c N |
0| Volume lrm b lrre
Volume Index 'FF! U Endex Various Pointer Entries .Name.l of Vunf)us Pointer N?me.lof Meaningless Data
N | Control AAA 1003 Entries X 'FF 1002"
1| Entry | |
IJ 1
c i
Volume . (o] N | TTR
Index 'EF' U . . . ame .
(Cont.) [I\.l Various Pointer Entries X ,FF,l ?(f)04' Meaningless Data
1 \
L]
c |
O Index Name | T
Index 'AAA' 'FF* U | Control Various Pointer Entries X 'FF' of Meaningless Data
'}‘ Entry | 1000’
1
(1
5 lrr
(e}
E/c‘:’lu;"‘; Index | vpp, u Various Pointer Entries Q??:.lOf Meaningless Data
ont. N '000'
N !
1
C
(o]
Free Block 100! U Meaningless Data
N
T
—»I L—Coun’r field 2 bytes

Figure 6.

Physical Organization of the Catalog

The Catalog Data Set 13

Index Entry Types

An index always contains one control
entry and any number of pointer entries.
The control entry is always the first entry
in the index, (See Figure 6) and its
position here is assured by giving it a
name field of value X'1'. There are two
types of control entries: volume index
control entries and normal index control
entries. The general information about

14 TSO Catalog Management PLM (Release 20.1)

these entries is given in Figure 7, while
specific information about fields and their
values is given in the section "Data Area
Layouts."

There are several types of pointer
entries. A summary of each type and the
information it contains is given in Figure
7, while specific infeormation about exact
placerent of fields, etc., is given in the
section "Data Area Laycuts."

ENTRY TYPE CONTENTS

Alias Entry Contains the name of the alias, a pointer tc
the next lower level index, and the true name.

CVOL Pointer Contains the name of a high level index and a

Entry pointer to the control volume on which this
index may be found.

Data Set Contains the lowest level of the data set name

Pointer Entry and up to five entries specifying volume
serial numbers and device ccdes for the volumes

of the data set.

Contains the address of the last block in this
index, the address of the first block (the
address of the klock which contains this
entry), a count of the number of unused bytes
in the last block of this index, and a count
cf the number of aliases to this index.

Index Control
Entry

Contains the name of the generation index, the
number of entries to be maintained in the
index, the number of entries currently in

the index, codes for "delete" and "empty"
options, and a pointer to the index.

Generation Index
Pointer Entry

Contains a name field of X'FFFFFFFFFFFFFFFF',
and a zero to indicate the end of this index,
or a pointer to the next block in this index.

Index Link
Entry

Contains an index name and a pointer to the
named index.

Index Pointer
Entry

Contains an indication of the number of
volumes named in the klock and a list of the
volume serials, device type codes, and data
set sequence numbers of these vclumes, plus a
rointer to the next volume control block, or
a zero to indicate end of chain.

Volume Control
Block

Contains the lowest level of the data set

name and a pointer to the volume control blcck
which describes the volumes cf this data set.
Contains the address of the last block in the
volume index, the address of the last block in
the SYSCTLG data set, and the address of the
first available block in the SYSCTLG data set.
It also contains a count of the number of
unused bytes in the last block of the volume
index.

Volume Control
Block Pointer
Entry

Volume Index
Control Entry

[e S e e e . B B . e, B e i e . e e S e e o e . . B . e, e e e B . o . e, . e Sy e S e S M. . S . e . s Sy e
}.___—____)__——_L____-——-—-}-—__.‘_———-1——-———..—.1-.—.—————-\.__._._.1.__-——-&-——-0-_-4
e e T e e L ST R S -

Figure 7. Index Entries

The Catalog Data set 15

Method of Operation

This section describes the operation of
each logical function of the catalog
management routines. Since many of the
functions are quite similar to each other,
several of these functions have sometimes
been combined into one section. The
sequence of events described in this
section is the actual sequence of events
performed by the routines. However, the
division of the routines into modules does
not necessarily correspond tc the division
of functions used in this section.

Housekeeping Functions

Before actually beginning to search or
update the catalog, the catalog management
routines must perform some initialization.
This initialization does two things:

e It protects the integrity of the
catalog.

e It opens the catalog data set.

MAINTAINING CATALOG INTEGRITY

Since catalog management routines
operate in multiprogramming and
multiprocessing environments, they must
protect the part of the catalog they are
manipulating from simultaneous accessing
and modification by other prcgrams and
CPU's. This protection is afforded by the
use of the RESERVE and ENQ supervisor
functions.

The RESERVE function protects the device
containing the contrcl volume being
searched or modified from access by another
CPU in a multiprocessing environment.

The ENQ function protects the part of
the catalog being manipulated from access
by other programs in a multiprogramming
environment.

An ENQC function can be either shared or
exclusive. A shared ENQ for a catalog
resource allows simultaneous access to the
resource by other shared ENQ requests. An
exclusive ENQ for a catalog resource calls
for exclusive control of that resource.

16 TSO Catalog Management PLM (Release 20.1)

To provide complete protection of the
catalog with minimum accessing delays, the
catalog resources are divided into three
different types:

e A volume index rescurce represents a
complete CVOL. Control of such a
resource allows fcr the accessing of
high level names, aliases, and CVOL
pointers.

e A high-level name resource represents
the complete index tree structure
associated with that high-level name
even though the tree structure may
involve several ccntrol volumes.

e A volume index control entry (VICE)
resource represents the free space in
the catalog and thus the ability to
modify the catalog data set.

The catalog management routines issue
ENQ requests only for the resources
necessary to accomplish a particular
function leaving the remaining resources
open to access by other users.

For example, to mcdify a low level
index, the routines obtain exclusive
control of a high-level name and the VICE,
while to perform a locate function, the
routines request shared control of a
high-level name and (temporarily) the
volume index. By separating catalog
resources, both operations can be performed
concurrently on the same control volume.

Since these routines are reenterable and
cannot store within themselves, they oktain
a storage area in the user's region by
issuing a GETMAIN racrc instruction. The
area is freed when the catalog routines
terminate. If storage is not available,
the calling task is abnormally terminated.

OPENING THE CATALOG DATA SET

To ready the catalcg data set for
reading and writing, the catalog management
routines do not use the data management
open routine (SVC 19). 1Instead they have a
special open function called through an SVC
28. This routine builds a data extent
block and a data contrcl block so that the
catalog routines can use the BLDL and EXCP
routines. For a more detailed discussion
of the open routine, see the section "The
CVOL Rocutines."

s,

The catalog open routine is called
before each search of a catalog. 1If a
search encounters a control volume (CVOL)
pointer entry, the old CVOL is closed and
the new one is opened.

Liocate Function

Regardless of the particular object of
one use of the catalog routines - whether
the user wishes to medify the catalog or
just locate a data set - the program always
first tries to locate as much of the
user-supplied name as possible.

The locate routine uses the resident
BLDL routine (IECPBLDL) to search the
catalog for the user-suprlied name. This
search always begins with the volume index.
BLDL returns the entry with the desired
name field, the locate routine examines it,
and calls BLDL again to find a lower level
index or returns to the caller (function
requested is locate) or passes control to
another phase (function is anything but
locate).

The locate portion of the program then
passes an error code to other portions to
indicate how much of the name was found.

BLDX, LINKX, and BLDG Functions

These functions are quite similar to
each other. First, the locate routine
finds as much of the user-surplied name as
possible and notes how much of the name it
found and what kind of entry it found at
the lowest level. If anything in the
locate process is inconsistent with the
function requested, the index/catalog
portion of the program frees all its main
storage, dequeues, and passes a NoOnzero
return code to the caller.

For example, assume that a user wished
to catalog data set "A.B.C'. The locate
routine would first search the catalog to
find the data set pointer entry, and would
pass a zero error code to index/catalog if
it found the entry. Index/catalog would
immediately return with an error code to
the caller because it cannot catalog a name
that has already been cataloged. If the
locate routine indicated that it had found
A.B, but not C, and that it had found an
index pointer entry at B, then
index/catalog would update the index by
inserting the new pointer entry.

If the request is to build an index
(BLDX), index/catalog first finds an
available block in the catalog and

initializes it as an empty index. To do
this, it creates an index control entry and
an index link entry with a pointer field of
zero, and writes a high key
(X'FFFFFFFFFFFFFFFF') for the new index
block.

A new index pointer entry must then be
inserted in the next higher level index.
To do this, index/catalog searches the
index until it finds an entry which has a
name field with value higher than that of
the new index pointer entry and which is
not an index link entry with a nonzero
pointer field. When it finds such an
entry, it inserts the pointer to the new
index and rewrites the rest of the index.

The index always must be completely
rewritten because the insertion of the new
entry may cause the chain of index blocks
to break differently.

LINKX is just 1like BLDX, except that a
CVOL pointer is created instead of an index
pointer.

BLDG is also similar to BLDX, except
that the index pointer entry contains the
appropriate generation counts and flags.

Catalog and RECAT Functions

To catalog a data set, the program does
much the same thing as when the function is
BLDX or BLLG except that:

e No new index is created. The new data
set pointer entry is simply inserted at
the appropriate place in the existing
index.

e If the data set to ke cataloged resides
on more than five vclumes, one or more
volume control blocks (VCBs) must ke
created. The creation of this block
resembles the creaticn of a new index
very closely, except that instead of a
new index, a new VCE is created.

To catalog a data set that is part of a
generation data group (GDG), the routines
must first find the absolute generation
number if only the relative generation
number was given. First, the latest entry
in the index is found. This entry will be
the first one in the index even though it
has the highest generaticn number, because
the catalog stores generation numbers in
complement form. Then the given relative
generation number is added to or subtracted
from the fcund generaticn number to give
the desired true gemeration number.

The given name is ncw compared with the
present entries in the catalog to check for

Method of Operaticn 17

duplications, and the new name is inserted
as any other data set pointer entry or VCB
pointer entry. The generation count is
updated, and, if necessary, the oldest
entry in the index is removed. The flags
of the generation index pointer entry are
checked to see if the index must be emptied
or if any data sets must be deleted. If
any data sets have toc be deleted, the
routines transfer control to the Delete
routine of Direct Access Device Space
Management (DADSM) by issuing an SVC 29.
(For a discussion of the Delete routine see
IBM System/360 Operating System: Direct
Access Device Space Management, Form
Y¥28-6607.)

For RECAT, the routines uncatalog the
old data set, then catalcg the new, as
above.

BLDA Function

The BLDA function is basically similar
to the BLDX function, except that BLDA only
creates a pointer entry; it builds no new
index.

Locate finds the name for which an alias
is being built, and checks to be sure it is
a high-level name. If it is, the routines
read the block containing the high-level
name, add one to the entry alias count, and
rewrite the block.

The routines then create an alias entry
and insert it in alphameric order into the
volume index. The volume index is
reorganized as for BLDG and BIDX.

DLTX, DLTA, DRPX, and UNCAT

Functions

The sequence of operations to delete an
index or an alias or to uncatalog a data
set or disconnect control volumes is
basically similar to the other functioms
involving reorganization of the catalog:

1. The catalog is searched for the
user-supplied name. In this case the
entire name must be found.

2. If a pointer entry is deleted, the block
it points to must alsc be deleted. 1In
the case of UNCAT, a VCB may have to ke
freed. With DLTX, an index block always
has to be freed. With DLTA and DRPX, no
blocks should have toc be freed unless
deleting the pointer makes the volume
index short enough so that it takes up
fewer blocks than before.

3. To delete a block, the program writes a
zero key for that block. The data

18 TSO Catalog Management PLM (Release 20.1)

inside the block remains unchanged. The
program recognizes any block with a zero
key as a free block.

4. The index from which the entry was
deleted is reorganized just as when a
nevw entry is added.

CATBX and UCATDX Functions

The CATBX and UCATDX functions are
similar to the CATALOG and UNCAT functioms.
The difference lies with the building and
deleting of the index tree structure
associated with the cataloged data set.
The CATBX function generates any missing
index levels needed tc catalog the data.
set, and the UCATDX function deletes any
index levels that exist only as
qualifications of the data set name in
guestion.

In both cases, if only one level of
index is involved, the functions are
performed as in CATALOG or UNCAT.

If the function is CATBX and more than
one level of index is missing, a BLDX
function is performed tc insert the highest
level mrissing index entry into the existing
catalog structure. Free blocks for each
remaining index level are then obtained and
chained together, creating an index
substructure which is then chained to the
entry created by BLDX.

If the function is UCATDX and more than
one level of index beccmes superfluous when
the data set is removed from the catalog, a
DLTX function is perfcrmed on the highest
level index entry to be deleted and the
blocks' centaining all lower level index
entries are freed. The highest level index
entry eligible for deletion is determined
while the LOCATE functicn is being
performed. UCATDX deletes all superfluous
index levels except the volume index.

The CVOL Routines

The CVOL routines cpen cr extend the
SYSCTLG data set, format new catalogs or
extensions of old catalogs, and format
partitioned data set (PDS) directories.

The routines receive from their callers
the address of the unit control block (UCB)
of the device containing the data set to be
opened or extended, and a parameter
indicating whether the request is to open a
catalog, to extend a catalcg, or to format
a PDS directory. i

i,

OPEN ROUTINE

If the request is to open a catalog, the
routines build a data extent block (DEB)
and a data control block (DCB) for the
SYSCTLG data set using information from the
unit control block (UCB) and volume table
of contents (VIOC) of the volume being
opened. If no space has been allocated for
the SYSCTLG data set, an error code is
returned to the user.

The Format 1 data set control block
(DsCB) for the catalog data set has a
format switch which indicates whether this
SYSCTLG data set has been previously
formatted. If the switch shows that the
data set has not been formatted, the open
routine passes control tc the formatting
routine. Otherwise, it returns to the
caller.

EXTEND ROUTINE

To extend the data set, the CVOL routine
transfers control to the Extend routine of
Direct Access Device Space Management.

This routine extends the data set by
updating the VTIOC (provided a secondary
allocation quantity was specified when
space for SYSCTLG was initially allocated),
and transfers control to the formatting

routine. The formatting routine formats
the extension, but does not initialize a
volume index, since there is already one
present. It does, however, update the
volume index control entry to show the
extra space.

FORMATTING ROUTINE

The formatting routine formats the
allocated space into 256-byte records with
8-byte keys, and initializes the volume
index with a volume index control entry and
an index link entry with a zero pointer
field. The key of this block is set to
X'FFFFFFFFFFFFFFFF' while the keys of all
the other blocks are set to zero. It sets
the format switch in the DSCB to indicate
that the data set has been formatted and
returns to the caller.

To format a partiticned data set
directory, only the formatting routine is
used. The oren routine immediately passes
control to the formatting routine.

Formatting takes place in the same
general way as for SYSCTLG data sets, with
256-byte records and 8-kyte keys. Instead
of initializing a volume index, however,
the routine initializes the first block as
an empty PLS directory.

Method of Operation 19

Program Organization

The catalog management modules are
designed to fit in the 1024-byte transient
areas of the nucleus. They are
reenterable. 1In general, the modules pass
control from one to the cther through the
XCTL macro instruction, although they
sometimes use SVCs. The follovwing
discussion will enlarge upon the Method of
Operation section by discussing the
routines module by module. Figure 8 shows
the relationships among the catalog
management routines, as well as between the
catalog management routines and other parts
of the Operating System.

NOTE: In this discussion, the term 'write'
always refers to the use of an EXCP macro
instruction. 'Read' generally refers to
the use of the resident routine IECPBLDL,
but the modules occasionally use channel
programs here, also.

IECPBLDL, the resident BLDL routine, is
accessed by the catalog management routines
through the communication vector table
(CVT). The routines find the address of
IECPBLDL in the CVT, put the address of the
catalog DCB in register 1 and the address
of the BLDL list in register 0, and execute
a BALR to the BLDL routine. For the
functions of the BLDL routine, see IBM
System/360 Operating System: Sequential
Access Methods, Y28-6604.

Initialization and Housekeeping:

Module IGCOO02F

Entry to the catalog management
routines, except the open routine, is
through an SVC 26, which gives control to
module IGCOO0O02F.

It validates the user‘'s parameter list,
gets main storage for an open work area,
and searches the unit control block (UCB)
table to find the UCB of the specified
control volume (CVOL) or the system
residence device, if no CVOL is specified.
The UCB address is then passed to the
catalog open routine (IGC0002H) which is
entered with an SVC 28.

Any one of three diagnosed error
conditions can cause a return to the user
(via SVC 3) with the appropriate error
code:

e Invalid user parameter list.
e Control volume UCB not found.
s Open error.

20 TSO Catalog Management PLM (Release 20.1)

After a successful cgen, the routine
issues a GETMAIN macrc instruction to
obtain storage for work areas, determines
the specified function from user
parameters, and then either transfers
contrcl to IGGOCLC1 if the function is
locate by block or uses the IECPBLDL
routine to search for the high-level name
specified in the user's rarameter area.

If the high-level name search returns a
CVOL pcinter entry, the new CVOL
informration is stored in the user's
parameter list, and prccessing is resumed
with the UCB search rcutine after work
areas are freed.

Oonce the correct ccntrol volume is
found, the routine issues a RESERVE request
for the CVOL and passes control to
IGGOCLCl.

Locate: Module IGGOCLCI1

This module always gets control from
IGC0002F. It searches the specified
catalog for the supplied name and passes
control to one of twc cther modules,
depending cn the functicn requested and the
type of entry found at the lowest level.

An input parameter indicates whether the
user wishes to locate a data set by name or
to locate an entry in the catalog by giving
the TTR of the block.

If the request is tc search for a
specified block, the mcdule passes the
block's address to the resident routine
IECPBLDL. IECPBLDL searches the catalog
and returns the correct entry to the
caller. The only errcr possible is that
the block might be outside of the SYSCTLG
data set, in which case an error code is
set and the module returns control to the
caller.

If the request is tc search for a name
or to index or catalog a name, IGGOCLC1l
isolates the first level of the name. It
uses BLDL to search the volume index for
this simple name and analyzes what type of
pointer is associated with it. Several
different things can happen, depending on
what pointer type was found and what
functicn was requested.

In the most typical case, the routines
will find an index pointer entry and note
that there are more qualifiers left in the

-

name. In this case, the module isolates
the next qualifier and searches for that
name, specifying to BLDL that the search is
to begin at the TTR specified in the found
index pointer entry. This process is
repeated until either all levels of the
name are exhausted or an entry which is not
an index pointer entry is found.

For CATBX and UCATDX functions, IGGOCLC1l
performs initialization by either preparing
for a BLDX for the first index entry to be
built in a CATBX or preparing for a DLTX

for the first index entry to be deleted in
a UCATDX and saving the TTR link entry of
the deleted index.

When Locate has found all of the
pointers it can find, it determines what
action to take on the Lkasis of what kind of
pointer was the last fcund, how much of the
name could not be found, and what function
was requested. It may transfer control to
IGGOCLC2 to build new entries in the
catalog, to IGGOCLC4 tc search generation
indexes, or to IGGOCLC6 for error

of Reorganized

SVC 26
Enter
IGCO002F ¢
Initialize Sve 28
y 2
Return IGGOCLC1] 1GCOo002H ¢ |GGOCLF2
Locate as Format
Much of Name Open Catalog = Catalog or
as Possible Extend Catalog PDS Directory
)
Generation Data Group
Function
. is Locate
IGGOCLC4 IGGOCLC2 :
Function
Locate is Locate Build New | Return
Generation Entries Free
Data Set 2 Old Blocks
I6GOCLES] (Retorn) IGGOCLCHY (If the're i$ no more
room in the catdlog.)
- Free Resources
Build Set Return
Generation > Codes
Index Entries L
‘ S
SVC 29 ¥ 2 vez
DADSM (
:__; _;; -1 IGGOCLCS | IGGOCLC? _
cratc| | Build or Delete
| Previous : Update Blocks XGTL | Index Structure

| Generation

Index

]This is a return to the issuer of SVC 28:
IGGOCLC1, IGGOCLC3, or IGGOCLCT,

Zhis is a return to the issuer of SVC 26:
the user.

Figure 8. Catalog Module Flow

"] Update Index
Control Entry

y 2

‘ Return ’

Prcgram Organization 21

processing or successful completion of a
LOCATE.

If control is going anyvhere but back to
the caller, Locate reads several relevant
blocks into main storage:

e Block Containing Volume Index Control
Entry - This is necessary to indicate
where the first available block in the
catalog is. It has to be updated if any
new blocks are used or any old ones are
freed.

e Block Containing Index Control Entry -
This entry is the control entry for the
last index searched. It will probakly
have to be changed.

Index/Catalog, Normal Structure:
Modules IGGOCLC2, IGGOCLCS3,
IGGOCLCSB, and IGGOCLC7

These modules together update a normal
index structure. They build new indexes
and insert pointers to them in old indexes,
they delete old pointers and free the
associated blocks, they build aliases, and
they update control entries.

The catalog is updated in two phases.
Phase one, done by IGGOCLC2 (or, in the
case of generation indexes, IGGOCLC4 and
IGGOCLC5) builds new indexes and pointer
entries and deletes old blocks. Phase two,
done by IGGOCLC3 and IGGOCLC7, reorganizes
the index into which the new pointer will
be inserted, or from which a pointer will
be deleted. IGGOCLC7 also has the ability
to build and delete index structures.

IGGOCLC2

This module constructs all new entries
except entries in a generation index and
index structures built by IGGOCIC7. It
checks to be sure the existing catalog
structure is consistent with the new entry
and returns to the caller with an error
code if it is not. It always receives
control from IGGOCLC1l and passes control to
IGGOCLC3.

First the module determines from the
user's parameters whether a new entry is
needed. If it is, the module determines
what type of entry, and whether this entry
is consistent with what the locate routine
found. If, for example, the desired
function were catalog and the locate
routine had found an entry for every level
of the name, this module would set an error
code and return. The same name may not ke
cataloged twice.

22 TSO Catalog Management PLM (Release 20.1)

The module then determines whether any
blocks have to be freed. If the function
was RECAT, for example, and the old entry
was a VCB pointer, the old VCB would ke
freed before the new pcinter entry vas
created. To free a block, the module
writes zeros as its key and updates the
volume index control entry.

If no new entry is to be created, the
module only frees unused blocks. This
would be the case if the requested function
were to delete an index or uncatalog a data
set, for example.

IGGOCLC2 also writes certain new blocks
when they are required. When a catalog
request necessitates VCBs, this module
finds available blocks and writes the VCBs
in them. If the request is to build an
index (either generaticn or normal), the
module builds an empty index and notes its
location for the next module.

IGGOCLC6

This module receives control from either
IGGOCLCl1 or IGGOCLC2. IGGOCLC6 is entered
either upon the successful completion of a
LOCATE function (from IGGOCLC1l) or an error
condition (from either module). 1In either
case, IGGOCLC6 frees the main storage
acquired by all previcus modules, dequeues
all resources, and returns the appropriate
informaticn to the user.

IGGOCLC3

This module adds or deletes a pointer
entry in an index and rewrites the index in
such a vay that the entries maintain their
alphameric order. It receives control
either from IGGOCLC2, which constructs new
entries for normal indexes, or from
IGGOCLC5, which constructs new entries for
generation indexes.

First, the module locks at the TTR of
the index to be updated and the entry to be
added or deleted. The name of this entry
becomes the search argument for determining
where to update the index. When blocks of
the index are contiguous, the search is
rapid because each key field of the blocks
in the chain contains the name of the
highest alphamerically ordered significant
entry in the block. The hardware compares
the search argument with the key fields of
the blocks in the chain, starting with the
lowest. When the comparison shows that the
search argument is higher than the key
field, the search continues on the key

field of the next contiguous block. When
the key field is greater than or equal to
the search argument the block is read into
main storage.

With the block in main storage, the
module goes through it entry by entry, each
time comparing the name of the current
entry with the search argument entry name.
When it finds an entry with a name greater
than or equal to the search argument name,
it performs the update.

Key fields with hexadecimal F's denote
index blocks that are either at the end of
the index or at the end of a contiguous
chain within a single index. If the key
denotes the end of a chain, then the index
link entry in its block will point to the
next block of the index. The search
channel program is restarted at the address
specified in the pointer and the search is
continued as before. If this block is the
end of the index, however, the link entry
contains zeros, and the module makes the
update in this block.

IGGOCLC3 checks the number of bytes in
its output buffer continuously, and when
the end of a 256-byte block is approaching
it builds an index link entry.

IGGOCLC7

This module always receives control from
IGGOCLC3 via an XCTL macro instruction. It
writes the last block of the updated index,
updates and writes contrcl entries, frees
the main storage acquired by IGCO0002F,
dequeues the system resources, and returns
to the user with a zero (no error)
completion code in register 15.

When IGGOCLC7 receives control, it puts
an index link entry with a TTR field of
zeros in the last index block, and
calculates the number of bytes remaining in
the block. If a block has been freed
during the updating operation, the module
fills its key field with zeros. Hovever,
if the index expands into an additional
block, the module fills the key field of
the new block with hexadecimal F's. 1In
either case, the module updates index
control entries and volume index control
entries as necessary to record the
availability and location of free index
blocks. Then it writes the updated entries
with the updated index block.

At this point, IGGOCLC7 determines
whether CATBX or UCATDX processing is
called for. For CATBX processing, an index
structure is constructed as follows:

1. A data set entry or VCB chain is
created.

2. An index substructure is built
beginning with the lowest index level.
Cne block is built at a time and
chained to the previous block until
all wmissing index levels are filled.

3. The index substructure is chained to
the empty index created by the BLDX
part of CATBX processing and the index
is rewvritten to link the substructure
to the catalog.

For UCATDX processing, IGGOCLC7 uses the
TTR link entry saved during initialization
for the DLTX part of UCATDX processing as a
starting point to free all blocks in the
index structure. Each klock is read into
main storage and rewritten with a zero key
after its TTR link entry is saved. Each
block in the index structure is freed until
the complete structure is deleted.

When all the writing functions are
complete, the module frees all the main
storage and dequeues all the system
resources used before returning to the
calling routine via an SVC 3.

Catalog Protection

The ENQ supervisor function is used by
several job management routines to achieve
catalcg prctection. Figure 9 shows how
catalog resources are enqueued and dequeued
by the catalog management routines.

The ENC macro instruction requires the
specification of two names: a general name
and a resource name. The catalog
management routines use the following names
for the indicated catalog resources:

Resource QNAME RNAME
volume index SYSCTLG SYSCTLGbOOua
VICE SYSCTLG tbkbbbbb00ua

high-level name SYSCTLG name

Where ua is the two-byte address of the UCB
of the CVOL being used, and name is the
left-justified high-level name of the data
set.

Program Organization 23

LOCATE

d
high-level name share

. shared
volume index

Locate Volume Indexes
1GCO002F

Locate Lower Levels

1GGOCLC1

Return Info To User
IGGOCLCS

LOCATE BY BLOCK

VICE shared

1GCO002F

Locate By Block
IGGOCLC1

Return'Info To User

1GGOCLCo

LOCATE GENERATION DATA SET INDEX

shared

high=level name =

. shared
volume index

Locate Volume Indexes

1GCO002F

Locate Lower Levels

IGGOCLC1

Locate Generation Index

1GGOCLC4

MODIFY LOW LEVEL INDEX

exclusive

high-level name

i shared
volume index — —egr——
VICE

Locate Volume Indexes

exclusive/SMC

Locate Lower Levels

Modify Initialization

Modify Indexes

Build/Delete Index Structures

VICE

Locate Volume Indexes

)

1GCO0002F IGGOCLC1 1GGOCLC2 1GGOCLC3 1GGOCLC7
MODIFY GENERATION DATA SET INDEX .
high-level name = exclusive . >
volume index shared
exclusive

Locate Lower Levels

Locate & Build Generation

Modify Indexes

Return to User

VICE

Locate Volume Indexes

1GCO002F

Indexes
1GCO002F IGGOCLC1 IGGOCLC4/1GGOCLCS 1GGOCLC3 16GOCLC7
MODIFY VOLUME INDEX AND LOW LEVEL INDEX
high-level name - exclusive i -
volume index shared - exclusive/SMC -~
exclusive

Locate Lower Levels

1GGOCLC1

Modify, Initialization
1GGOCLC2

Modify Indexes
1GGOCLC3

Build/Delete Index Structures
1GGOCLC7

Figure 9.

Use of ENQ and DEQ Functions

24 TSO Catalog Management PLM (Release 20.1)

Module

Locate Generations:
IGGOCLC4

Generation data groups require
significantly different locating and
cataloging procedures from other data sets
for two reasons:

(1) Generation data groups may be
specified by relative generation number (as
in GENR(+1)), in which case the absolute
generation number must be calculated, and

(2) The absolute generation number is
stored in the catalog in hexadecimal
complement form, that is, generation
G0001vV00 would be stored as X'C7 OF OF OF
OE E5 FO FO0'. (Note that the version
number and the characters 'G' and 'V' are
not complemented.) In this way the most
recent generation (the one with the highest
absolute number) is always the first entry
in the index after the index control entry.

In this manual, the term "absolute
generation number" refers to the number as
it is coded by the user and as it appears
in the name field of a data set control
block (DSCB). It does nct refer to the
number as it is stored in the catalog, in
complement form.

Module IGGOCLCH locates the lowest level
of a generation name. When IGGOCLCl1l finds
a generation index pointer entry correlated
with the next to last level of a name, it
passes control to this module. It may also
be entered from IGGOCLC5 when that module
finds it must empty an index.

This module first checks to see whether
entry is from IGGOCLC5 (empty request) or
from IGGOCLC1 (normal lccate path). If it
was from IGGOCLCS, the mcdule rewrites the
generation index, this time with only the
highest entry, and frees any blocks no
longer needed by the shortened index.

If the path is a normal locate path
(entry from IGGOCLC1l), IGGOCLCH4 checks the
format of both relative generation numkers
and absolute generation numbers and returns
to the user with an error code of 20 if the
format of the supplied name is not correct.
If the name is in relative format, the only
valid function is locate; if any other
function has been specified, the module
returns with an error code of 20.

If the name is in relative format, the
module must calculate its absolute
generation number. It dces this by adding
or subtracting the relative number given
and the actual number of the first entry in
the index. If the index is empty, the
module sets up a dummy 'found' entry called
*G0000V00' as the basis for absolute
generatiocn number calculation. If the

relative number is negative and exceeds the
nunber of entries in the index, the module
returns to the user with an error code of
8.

Cnce the relative generation number in
the user's area has been replaced with the
absolute generation numker, the module
proceeds as though the user had supplied
the absolute number in the first place.

With the generation numker in absolute
format, the module uses BLDL to read the
entry associated with the name. If the
function is catalog, ccntrol is passed to
IGGOCLCS via the XCTL macro instruction.
If the function is locate, the module
checks BLDL's error code. If the name wvas
found, the module moves the data into the
user's area and checks to see if it must
read a volume control block to complete the
description of the data set. If it does,
the volume control blcck is read into the
user's area.

If BLDL cannot find the name, the module
returns to the user with an error code.

Catalog Generations: Module

IGGOCLCS

This module builds new entries for
generation indexes, maintains generation
index pointer entries Ly updating the
generation count, and marks entries for
deleticn or data sets for deletion if the
empty or delete optiocn was specified when
the generation index was created.

The module first checks the findings of
IGGOCLCYH to be sure the current structure
of the index is compatikle with the
function requested. If the requested
function is catalog, fcr example, and the
full name of the data set is found, the
error code is set to eight and the module
returns control to the user. Similarly, if
the functicn is anything but catalog and
the name was not found, the module takes an
error exit. '

If the function requested by the user is
consistent with the ccntents of the index,
the module checks the generation count and
maximum number of generations to be
maintained in this index. This indicates
whether the module must delete any entries
to add a new one. The mcdule increases or
decreases the generaticn count according to
the function requested (increase for
catalog, decrease for uncatalog, leave
alone for recatalog). It rewrites the
index block containing the updated
generation index pointer entry.

Prcgram Organization 25

If an entry must be removed from the
index, IGGOCLCS5 removes it and rewrites the
index block which contained this entry. If
the empty option is indicated by the flags
in the generation index pointer entry, the
module transfers control back to IGGOCLCY
to empty the index. If the delete option
is indicated, the module calls the SCRATCH
function of Direct Access Device Space
Management (DADSM)#* with an SVC 29 to
scratch the data set. After the module
deletes whatever entries it must delete, it
builds any new entries necessary.

When all the counts have been updated,
the necessary entries removed from the
index, and the specified data sets
scratched, IGGOCLCS5 reads the index to ke
updated and transfers control to IGGOCLC3.
IGGOCLC3 reorganizes the index just as if
it were a normal index.

The CVOL Routines: Modules
IGCOO0O2H and IGGOCLF2

These modules together take care of the
open and initialization functions for the
catalog management routines. IGCO0002H
opens or extends the catalog by building or
modifying a data control block (DCB) and a
data extent block (DEB) for the SYSCTLG
data set and IGGOCLF2 formats new catalogs,
extensions of the catalog, and new
partitioned data set directories..

IGCO0002H

This module is entered by an SVC 28, or
by XCTL if returning from the Extend
routine of DADsM*. If entry is by sSvcC 28,
the module opens or extends the catalog,
depending on input parameters. If entry is
by XCTL from the DADSM Extend routine, the
module finishes extending the catalog.

To open the catalog, the module searches
the volume table of contents (VTOC) of the
volume whose unit control block (UCB)
address was specified by the caller
(IGCO0002F). If it does not find a format 1
data set control block (DSCB) with name
SYSCTLG in the VTOC, it sets a return code
of 4 and exits. If it does find the format
1 DSCB, it constructs a DCB and DEB from
information in the DSCB and from
information contained in the module itself
(information common to all SYSCTIG data
sets such as blocksize and record format).

*See IBM System/360 Operating System:
Direct Access Device Space Management
Program Logic Manual, Fcrm Y28-6607.

26 TSO Catalog Management PLM (Release 20.1)

There is a switch in the DSCB of a
SYSCTLG data set that indicates whether the
data set has been formatted or not. If
this switch is off, IGC0002H transfers
control to IGGOCLF2, the formatting
routine, to format the data set. If the
switch is on, the module releases any
unused DEB or DCB space and exits.

To extend. the catalog, the module gets
main storage for the Extend routine of
DADSM, reads the format 1 DSCB for SYSCTLG,
and checks the secondary allocation
quantity in the DSCB. If this quantity is
zero, the catalog cannot be extended and
IGC0002H returns to the caller with an
error code of 4. If there is a secondary
allocation quantity sprecified in the DSCB,
the module builds a parameter list for the
Extend routine and transfers control to
module IGGO0533A.

The Extend routine cf DADSM returns
control to the beginning of IGC0002H, which
indicates that the data set must be
formatted and where the formatting is to
begin, and then passes control to the
formatting routine (IGGOCLF2). It also
builds a new DEB which includes the newly
allocated space.

IGGOCLF2

This module formats new catalogs,
extensions of existing catalogs, and new
partitioned data set (PDS) directories. It
does this by filling the available space
with 256-byte records with 8-byte keys. If
it is formatting a new SYSCTLG data set or
a PDS directory it alsc initializes the
first block.

If the request is toc format a PDS
directory, the module constructs a channel
program to write one 256-byte block at a
time. The first write operation writes an
empty directory, and each subsequent write
writes an 8-byte zero key and 256-byte zero
record. When it has fcrmatted all the
requested blocks, it writes an end of data
mark, and returns to the caller via an SVC
3.

If the request is tc format a catalog,
the module constructs a channel program to
write keys and data, a full track at a
time. The module uses information from the
DSCB tc determine how many blocks will fit
on a track. It keeps a record of the last
relative track formatted to insert it into
the volume index contrcl entry.

When the module has reached the end of
the extent assigned to SYSCTLIG, it checks
to see if it has been formatting a new
catalog or an extension. If it has been
formatting an extension, it returns
directly to the caller. If it has been
formatting a new SYSCTLG data set, it
builds an empty volume index, containing a

volume index control entry and an index
link entry with zero TTR field, and sets
the format switch in the DSCB to indicate
that the data set has keen formatted.
Before returning to the caller, the module
always frees the working storage obtained
for it by IGC0002H.

Prcgram Organization 27

Directory

This chart, Figure 10, contains informatiocn to assist the reader in
making the transiticn from this manual to the assembler language
listings of the catalog management modules. It correlates information
from three sources:

e The source code

e The executable load modules

e This manual

T
DESCRIPTION CSECT | FLOWCHART

NAME | NUMBERS

T
LOAD MODULE| RESIDENCE
NAME

IGCO002F SYS1.SVCLIB Initialize IGCO026 1

IGGOCLC1 SYS1.SVCLIB Locate IGGOCLC1 2

IGGOCLC2 SYS1.SVCLIB Build and free IGGOCLC2

block

—_—— e e -

IGGOCLC3 SYS1l.SVCLIB Update blocks IGGOCLC3 4

of reorganized
index

IGGOCLCH SY¥S1.SVCLIB Locate gener- IGGOCLCH 5

ations

IGGOCLCS SYS1.SVCLIB Build gener-
ation index

entries

IGGOCLCS5 | 6

IGGOCLCG SYS1.SVCLIB Process IGGOCLC6
errors; Exit
for LOCATE

processing

I1GGOCLC7 SYS1.SVCLIB Update control IGGOCLC7
entries;
Release blocks;
Build and
delete index

structures

D e S B T S S e St a—t e

IGC0002H SYS1.SVCLIB Open/extend 1GC028

catalog

IGGOCLF2 SYS1.SVCLIB | Format catalog IGGOCLF2 10

|
& PDS |
directory |

i

S
i Fy St L S Sy St Sy Wy Sy Wy Sy Sy p—
T Sy S Wy WNSyREYS: Ty R S Uy Wy Sy—— S———

b e e e i s e o, . s e S e s, ket . . . e el . w— c— ekt w—— ki on— —— . m———— ————. w— i w———

e e s s s =

Figure 10. Directory

28 TsSO Catalog Management PLM (Release 20.1)

This section contains illustrations.and
explanations of the l@youts of the various
types of catalog entries and of the.
parameter list which the user supplies to
the catalog management rcutines.

Catalog Entries

This section describes in detail the
format of each of the possible entries in
the catalog. Figures 11 and 12 represent
each entry pictorially and the following
text describes the contents of each field.

The Volume Index Control Entry contains
information about the entire catalog and
the volume index. It is always the first
entry in the catalog. It is 22 bytes long
and contains 8 entries.

Field 1: This is the name field. It
always contains the value
X'0000000000000001" to ensure that this
entry is always first in the volume index.

Field 2: This field contains the TTR of
the last block in the volume index.

Field 3: This field contains the numker
5 to indicate that five halfwords of user
data follow.

Field 4: This field contains the TTR of
the last block in the SYSCTLG data set.

Field 5: This is the alias count field
in a normal index, but since this is the
volume index it will always contain zero.

Field 6: This field contains the TTR of
the first unused block in the catalog.

Field 7: This field contains zero.
Field 8: This field contains a count of

the number of unused bytes in the last
block of the volume index.

An Index Control Entry is quite similar
to a volume index control entry, but it
only contains information about the index
which it begins. It is 18 bytes long and
contains six fields.

Field 1: This name field contains
X'0000000000000001"' to ensure that this
entry is first in its index.

Data Area Layouts

Field 2: As in the volume index control
entry, this field contains the TTR of the
last block in this index.

Field 3: This field contains the number
3 to indicate that three halfwords follow.
It identifies this entry as an index
control entry.

Field 4: This field contains the TTR of
the first block in this index. This
address is always the address of the klock
which contains this entry.

Field 5: This field contains a count of
the number of aliases in the catalog that
reference this index. This count will be
nonzero only for indexes one level removed
from the volume index.

Field 6: This field contains a count of
the number of unused bytes in the last
block cf the index.

Index Link Entries and Index Pointer
Entries are quite similar. An index link
entry is used to chain several blocks of an
index together and an index pointer entry
is used to chain an index to the next lower
level index. An index link entry is always
the last entry in any index block. These
blocks ccntain three fields and are 12
bytes long.

Field 1: This is the name field and
contains the name of the index to which
this entry points. If the entry is an
index link entry, the name field contains
X'FFFFFFFFFFFFFFFF'.

Field 2: This is the pointer field and
contains either the TTR of the first klock
of the index, in the case of an index
pointer entry, or the TTR of the next klock
of the index, in the case of an index 1link
entry.

Field 3: This is the count field, and
it contains zero to indicate that the entry
ends here.

The Data Set Pointer Entry contains the
actual information for which the catalog
exists: the volume serial number, data set
sequence number, and device type code of
the data set which the fully qualified name
represents. The entry can be from 26 to 74
bytes long, depending cn how many volumes
the data set occupies.

Cata Area Layouts 29

Volume Index Control Entry

Field 1: Name Field 2: 05 | Field 4: Field & Field 7:
TTR of last TTR of last TTR of first Count of
X'0000000000000001* block in C | block in unused block unused .
volume O | SYSCTLG 00 | in SYSCTLG | 9 bytes in
index U | data set data set last blockd
N of volume|
T index
0 7 8 10 11 12 14 15 16 18 19 20 21
- Total Length: 22 bytes - i
Index Control Entry
Field 1: Name Field 2: 03 | Field 4 Count of
TTR of last TTR of first |, =]unused *
X'0000000000000001" block in this | C | block in < g bytes in
index O | this index 2 O|lost block
U QO|of this
N index
T
0 7 8 10 11 12
Total Length 18 bytes >

Index Link Entry

Field 1: Name Field 2: 00
X'FFFFFFFFFFFFFFFF' TIR of next |
block in o
index U
(or zero if no N
next block) T
0 7 8 10 11
< Total Length: 12 bytes ————%|

Index Pointer Entry

Field 1: Name Field 2: 00
TTR of index

Index Name (padded to right C

with blanks if necessary) 8
N
T

0 7 8 10 1

[¢—————— Total Length 12 bytes ———————%

Data Set Pointer Entry

Field 1: Name Field 2: * | Field 4 Field 5: Field & Field 7:

Lowest level name of data Dummy Volume Device Code Serial Number of voiume Data set

set or complemented generation pointer field: Count on which data set resides sequence

number (if part of GDG) zeros number
(zero for
direct
access)

0 7 8 10 11 12 13 U4 17 18 23 24 2

Repeated for each volume
Total Length 26 to 74 bytes — >

* Count: equal to 6 times the number
of volumes, plus 1.

Figure 11. Catalog Entry Formats

30 TSO Catalog Management PLM (Release 20.1)

- !

Volume Control Block Pointer Entry

Volume Control Block

Field1: Name Field 2: 01 | Field 4:
Lowest level of data set name TTR of C | Dummy
Volume O | data
Control U | entry:
Block N | zeros
T
0 7 8 10 11 12 13
- Total Length: 14 bytes ———————

Control Volume Pointer Entry

21

Field 1: Name Field 2: 05 | Field 4: Field 5
Name of index on Dummy pointer| C | Device Code of Serial number of
other control volume field: zeros O | control volume control volume
U
N
T
0 7 8 10 11 12 15 16
Total Length: 22 bytes
NOTE: Prior to release 17, the Control Volume Pointer Entry contained a count
of 03 and did not have a Device Code field (Field 4
Alias Entry
Field 1: Name Field 2: 04 Field 3:
Name of alias TR of index | C Name of high level index
named in field] O to which this is an alias
u
N
T
0 7 8 10 11 12 19

- Total Length: 20 bytes
Generation Index Pointer Entry
*1 | *2
Field 1: Name Field 2: 02 Field &
Name of generation index TIR of C Count of
generation (@) genera-
index U tions
N currently
T in index
0 7 8 10 11 12 13 14 15
- Total Length: 16 bytes
*1 Field 4:
Flags: bits meaning
0-5 Reserved
6 Delete
7 Empty
*2 Field 5:

Count of maximum gererations to be maintained in index

Figure 12.

More Catalog Entry Formats

Lata

C Field 2: Field 3: Field 4 Field 5: Field &
[e) Device Serial number Data set sequence | Ten bytes of zeros TTR of next
U Code of volume n number for the volume control 00
N volume described block, or zero
T in field 5. Zero if none
for direct access
0 1 m m+3 mtd mt9 mt+10 m+11 242 251 252 254 255
T T T —
Repeated once for each volume; total 6 to 20
- 4§ Total Length: 256 bytes

Area Layouts

Fields one through four occur only once
while fields five through seven occur once
for each volume of the data set.

Field 1: This field contains the lowest
level of the data set name.

Field 2: This would normally be the
address field, but since a data set pointer
entry references no other entries in the
catalog, it contains zeros.

Field 3: Count of user data. This
field indicates how many halfwords of data
follow. The number in here will be six
times the number of volumes (there are six
halfwords for each volume) plus one (for
the volume count).

Field 4: This field contains a count of
the volumes following (one to five).

Field 5: This field contains the device
type code of the device on which the volume
with the following serial can be mounted.
(See Appendix C.)

Field 6: This field contains the volume
serial number of one of the volumes oOf the
data set.

Field 7: This field contains the
sequence number of the data set on a
magnetic tape volume. It is zero for any
other device.

A Volume Control Block Pointer Entry is
used instead of a data set pointer entry
when the data set occupies more than five
volumes. This entry points to a volume
control block, which, in turn, describes
the data set. The entry is 14 bytes long.

Field 1: This name field contains the
lowest level of the data set name.

Field 2: This field contains the TTR of
the first (or only) volume control block
for the data set.

Field 3: The count field contains zero
to indicate that this is the end of the
entry.

A Volume Control Block contains the
description of all the vclumes of a data
set which resides on more than five
volumes. One volume control block can
describe up to twenty volumes and volume
control blocks may be chained together, so
that a data set can be cataloged no matter
how many volumes it requires. The volume
control block is always 256 bytes long,
regardless of how many volumes it
describes.

Field 1: The first two bytes of a
volume control block contain a count of the

32 TSO Catalog Management PLM (Release 20.1)

number of volumes described by this volume
control block and any following it. For
example the count fields of a series of
VCBs for a data set that occupied sixty
volumes would show sixty, forty, and twenty
as the volume count.

This is the only kind of block in the
catalog in which the first two bytes are
not used as a count of the number of used
bytes in the block.

Field 2: This field can contain up to
twenty 12-byte volume descriptions,
consisting of device type codes (See
Appendix C) and volume serial numbers.

Field 3: This field contains ten Lytes
of zeros, followed by the TTR of the next
volume control block fcr this data set,
followed by one byte cf zeros. If there
are no more volume control blocks for this
data set, the TTR is zero.

A Control Volume Pointer Entry is used
to indicate that a particular index resides
on a vclume other than the system residence
volume. Control volumre pointer entries can
exist only in the volume index. They are
22 bytes long.

Field 1: The name field contains the
name of the high level index which resides
in the volume described by this entry.

Field 2: The address field contains
zeros, because this entry references no
others in the catalog.

Field 3: The count field contains the
nunmber 5 to indicate that five halfwords
follow.

Field 4: This field contains the device
type code of the specified control volume.
(See Appendix C.)

Field 5: This field contains the volume
serial number of the ccntrol volume which
has an entry in its vclume index of the
same name as this entry.

An Alias Entry is used to specify a
substitute name for a high level index.
Alias entries only apgear in the volume

index. They are 20 bytes long.

Field 1: The name field contains the
alias.

Field 2: The address field contains the

TTR of the first block cf the index for
which this entry specifies an alias.

Field 3: The count field contains the
number 4 to indicate that four halfwords of
data fcllow.

Field 4: This field contains the true
name of the index for which this entry is
an alias.

A Generation Index Pointer Entry points
to a generation index. It is basically the
same as an Index Pointer Entry, except that
it includes the flag and count fields. It
is 16 bytes long.

Field 1: The name field contains the
lowest level name of the generation data
group. That is, a generation data set
named WEEKLY.INVNTRY.G0001V00 would have
the name "INVNTRY" in the generation index
pointer entry name field.

Field 2: The address field contains the
TTR of the first block of the generation
index.

Field 3: The count field contains the
number 2 to indicate that two halfwords
follow.

Field 4: This field contains the flags
which indicate special handling for
generation data sets. Bit 7 indicates the
Empty opticn and bit 6 indicates the Delete
option. Bits 0-5 are reserved and are
always zero.

Field 5: This field indicates the
maximum number of entries to be maintained
in the index at one time.

Field 6: This field indicates the
number of entries currently in the index.

Cata Area Layouts 33

User’s Parameter List

This parameter list, Figure 13, must be supplied by the user before
he calls the catalog management routines. The CAMLST macro instruction,
described in IBM System/360 Operating System:

System Programmer's
Guide, Form C28-6550, can be used to generate the list.

34 TSO Catalog Management PLM (Release 20.1)

Register

0 0
4 4
8 8
12 C

1 At entry to IGC0002F, register 1 points to the user's parameter list.

Option
Flags
(see below)

Generation
Count

Pointer to Fully
Qualified Name

Pointer to Serial Number
of Control Volume

Pointer to User's Work Area

At all other times, register 8 points there.

Byte 0 1...
-X..
..l
PR §
Byte 1 X...
ela.
-a1l.
aael

oo e e
- e e e
e eee

Byte 2 1...
-1..

-« XX

ceeeae

Note: Function is locate by name if all flags are zero.
CATBX if CTLG and BLDX flags are both ones.

laoa.
-Xaa
..1.
eeeX

e eoa
eesa
“eaen

le..
1.
<. X
eeal

ow ee

1...

« XXX

Option Flags
Catalog is on System Residence Device

Not used by the Catalog Management rcutine

CTLG Catalog a data set

RECAT Recatalog a data set

UNCAT Uncatalog a data set

Not used by the Catalog Management rcutine
BLOCK Read a block by TTR

Not used by the Catalog Management rcutine
Not used by the Catalog Management rcutine

BLDX Build normal index structure

BLDG Build generation index

BLDA Build an alias to a high-level
name

LINKX Connect ccntrol volumes

DLTX Delete an index Structure

Not used by the Catalog Management routine

DLTA Delete an alias entry

DRPX Disconnect control volumes

DELETE Scratch generation data sets

when they are uncataloged
Not used by the Catalog Management rcutine
EMPTY Remove all entries from the
index when the maximum gen-
eration count has been reached
Not used by the Catalog Management rcutine

and DLTX flags are both ones.

Figure 13. User's Parameter List

Data Area Layouts

Function is
Function is UCATLCX if UNCAT

Diagnostic Aids

This section includes miscellaneous charts and tables that might be
useful in locating program errors.

Module Selection Chart

This chart, Figure 14 can be used to determine what modules of the
catalog management routine will ke used to perform a particular
function, given the function required and the current status of the
catalog. '

r T-T- T T~ 7T 7T71T°7171
[|11213|4|5]6]7]|8]
1 L 11 i L-J
f T 1T h] LR
| FUNCTION: LOCATE lY || N
L JiJ 1 11l l_1_1_1
[} L L L L L L L L R |
| OTHER 111 lelely|y|e|y|
I Lol_l1 1l L]
r LRI] T 1
| TYPE INDEX FOUND: NORMAL Y|y |y RN
¢ B o
I GENERATION || Y| | | | |Yl¥]
L B T OO G (NN TGN TR I I I |
r T T 17T TTTT1T1
| NONE L eyl ||
T LI
UNFORMATTED CATALCG IN|Y|N|Y|N|Y
+-1-4
141 d L
LI T L]
IGCO002F IXIX|X|X[X|X|X]|X
+-1+-4 +-1+-1
| IGC0002H XX XXX XXX
L dodd 1l d it 1l_1_J
1 3 T TV T v T T 17T 7T
| IGGOCLF2 Pl X x|
b =411+ +-1
| IGGOCLC1 XX |X|X|X|X|X]|X]
o o
IGGOCLC2 I IXIXIXIX] |
1 J_1_1 R
T T T T T T
 IGGOCLCH YR
i lol_.1 Ll
) | I B) T T
| IGGOCLCS TR
L Jidd it d 1l 111
r Tr T 1T v TrmrrTTr7r T
I IGGOCLC3 Il IXIXIX XXX
L | 1 N I T TSN I N U A |
3 TV TV 1T 7T vV 1T v v 1
| IGGOCLC? L1 IXIXIX|X| XX
L il 4l 1t 1.1 1.3

Figure 14. Module Selection Chart

36 TSO Catalog Management PLM (Release 20.1)

Register Usage

Figure 15 is a register usage chart. In the chart, the ccntents of
certain registers is given, as it apppears at entry to each mcdule and
just before each module loses control. All entries in the takle, except
those marked "*", are addresses. That is, when the table indicates that
at entry to module IGGOCLC1l register 9 is 'DCB', this means that
register 9 contains the address of the data control block. When the
table indicates that at entry to module IGGOCLC2 register 6 is "No. of
Levels Searched *," this means that register 6 contains that number.

Diagnecstic Aids 37

Figure 15.

Register Usage

38 TSO Catalog Management PLM (Release 20.1)

Module Registers
Name 0 1 2 3 4 5 6 8 s | 1o 1 12 | 13 15
1GCO002F User's SVRB
niry Param=
eter List
Function ENQ User's DCB Work | BLDL
Exit Code* Parameter Parameter Area | Work
List List Area
IGGOCLC1 Function ENQ User's DCB Work | BLDL
Entry Code* Parameter Parameter Area | Work
: List List Area
Exit (To ENQ No. of User's DCB Generation | Work | BLDL
IGGOCLC2 or Parameter | Levels Parameter Index Area | Work
1GGOCLC4) List Searched*| List Block Area
Exit No. of Locate Error
(To User) Levels Error Code*
Searched* |Code*
IGGOCLC2 No. of [User's DCB| Work
Entry Levels Parameter Area
Searched* | List
No. of |User's DCB|Work
Exit Levels Parameter Area
Searched* | List
IGGOCLC3 User's DCB| Work
Entry Parameter Area
List
No. of Locate Index
Exit Levels Error Catalog
Searched* |Code* Error Code*
1GGOCLC4 Entry User's DCB Work | BLDL
Entry Indicator Parameter Area | Work
* List Area
Entry User's DCB Gen, Index| Work | BLDL
Exit Indicator Parameter Pointer Area | Work
* List Entry Area
IGGOCLCS Entry User's DCB Gen. Index|Work | BLDL
Entry Indicator Parameter Pointer Area | Work
) * List Entry Area
Exit No. of |Locate Index
(User) Levels Error Catalog
Searched* |Code* Error Code*
Exit User's DCB Work |BLDL
(IGGOCLC3) Parameter Area | Work
List Area
Exit Entry User's DCB Work | BLDL
(IGGOCLC4) Indicator Parameter Area | Work
* List Area
IGGOCLCé Index Cat-f Locate No. of DCB Locate
Entry alog Error | Error Levels Work
Code* Code* Searched* Area
No. of Locate Error
Exit Levels Error Code*
Searched* |Code*
IGGOCLC7 Link Entry|Area for DCB| Work
Entry Old Updated Area
Index Link Entry
Error
Exit Code*
IGCO002H | Entry UCB of ork Bin Number
(Via SVC 28) CcvoL Area for fif CVOL is
or DCB DEB/DCBjon 2321*
Entry A Extend Bin DCB|TTR of [UCB
(XCTL from Negative Work Number new
ExtendRtne) [Value* Area if 2321% Extent*|
Exit Error
(To Caller) Code*
Exit (To DCB Work DEB ucs Non-
DADSM Area zero*
Extend Rine)
Exit Zero* DCB No.of [Subpool ID | Work Begin
(To Blocks/|and Size of| Area TTR*
IGGOCLF2) Track* [Work Area”
IGGOCLF2 DCB Work DEB ucs Non-
Entry Area zero*
Error
Exit Code*
0 1 2 3 4 5 6 8 9 10 11 12 13 15

- — Y

e,

Appendix A: Flowcharts

These flowcharts illustrate the operation of the catalog management
routines module by mocdule. Each label in the charts is taken directly
from the assembler language source code for the module. The charts are
intended to bridge the gap between the textual material of this manual
and the code itself, so they are best used in conjunction with the code
and the text (particularly the Program Organization section).

Arpendix A: Flowcharts 39

Chart 1.

01

40

USER
PARAMETER
LIST VALID

Catalog Management IGCO0002F

Al
ENTRY _VIA SVC
26

SET ERROR_CODE
TO 32

A\
D |
‘EXIT VIA SVC 3 ’

1

FREEMAIN OPEN
WORK AREA

NO

Ok

1

SET ERROR CODE
TO 4

1
EXIT VIA SVC 3

EN? SHARED ON
HIGH LEVEL
NAME

CVOL
ER TO

E: THIS CHECK IS TO
D A LOOP CAUSED
OL POIgTER ENTRIES

TO ONE ANOTHER.

OINT:
PREVIOUSLY
OPENED

9

O,

GET MAIN OPEN
WORK AREA

D

SEARCH UCBS FOR
SYSRESéCVOL
UNI

E

CONTROL
VOLUME FOUND

DE% PREVIOUS
VOLUME INDEX —

RESOURCES

ENO SHARED ON
VICE RESOURCE

L®

ENQ EXCLUSIVE
ON"HIGH-LEVEL
NAME

1

IGCO002H OPEN
CVOL

OPEN
SUCCESSFUL

[—

©

l

GETMAIN
FUNCTION WORK
AREA

A

SET FUNCTION SW

FROM USER FLAGS

GET NEW CVOL
INFORMATION

FREEMAIN BOTH
WORK AREAS

L®

IGH LEVEL
NAME FOUND

CVOL
POINTER ENTRY

RESERVE CVOL
UNDER HIGH-
LEVEL NAME

I

DEQ VOLgME
RESOURCE

®->
5=

(XCTL_TO >
IGGOCLC1

Chart 2. Catalog Management IGC0002H (Part 1 of 2)

IGGOOO2H

A1
NTRY VIA XCTL
FROM_ EXTEND OR
VIA SVC 28

EXTENDED
FREEMAIN FOR SET SW TO
EXTENDED WK GETMAIN FOR INDICATE 2ND
AREAS, OLD »| |NEW DCB, DEB > 3 —_
DCB AKD DEB EXTENDED
. FUNCTION
EXTEND
. c ’
WHAT GETMAIN FOR
FUNCTION WAS EXTEND
REQUESTED MODULES
BLDEB
BUILD DEB AND
DCB FOR_ENTIRE
VOLUME
L)
BUILD_IOB AND
ECB
ERROR4 RETURN
WAS DATA NO SET ERROR CODE FREE_ALL MAIN RETURN TO
SET FOUND TO 4 STORAGE —_— CALLER
. XCTL
H
2ND SECONDARY CONSTRUCT A BUILD IOB, DCB, XCTL_TO
LOC. . DUMMY JFCB FOR > DEB™ CHAIN IGG0533A
ZERO' DADSM
.

NOFMT

MQVE THESE_INTO
EXISTING DEB

NO CALC EXTENT
ENTRIES FOR DEB

MUST DATA
SET BE
FORMATTED

v

YESFMT

SET FORMAT READ THE
SWITCH FORMAT 3 DSCB

Appendix A: Flowcharts 41

Chart 2. Catalog Management IGC0002H (Part 2 of 2)

>

1

FREEMAIN FOR
UNUSED_DEB,
DCB SPACE

FORMAT . o XCTL

SET U]

P _DCB B
IS_FORMAT GETMAIN FOR ADDR, INDICATE XCTL TQ
SWITCH ON FORMAT »| REQUEST 1S T0 |——-——> IGGOCLF2
ROUTINE FO! T CATALOG

1
SET ERROR CODE
TO ZERO

A

D1

PLACE_DCB ADDR
IN REGISTER 1

E] A
RETURN TO
CALLER

42 TSO Catalog Management PLM (Release 20.1)

Chart 3.

01

i —
ENTRY XCTL_FROI
‘ IGCO002F ’

Y

IS FUNCTIOI S

LOCATE BY
BLOCK

ET ERROR CODE
TO 8

01 >
C1)—»

ALLSET
" |

SET NAME TO
ZEROQ, TTR TO
USER's VALUE

ALIAS

L

ENQ TRUE HIGH
LEVEL NAME

D3

D1
CALLBLDL 36A5

READ SPECIFIED
BLOCK_USING
BLDL

DEg ALIAS
IAME

Y

WITH TRUE NAME

REPLACE ALIAS

CATENTRY

IS LOCATE
ERROR1gODE <

MOVE LOCATE INITIALIZE FOR
ERROR CODE TO BLDX FUNCTION
REGISTER ONE

WAS
DELIMITER A
BLANK

—
11 N
SET ERROR CODE ENQ EXCLUSIVE
TO 8 ON VICE
RESOURCE

CALLBLDL 036A5

D
1 READ INDEX
XCTL_ TOQ AND VOL INDEX
IGGOCLC6 ONTROL BLOCKS

SEARCH FOR BLK
CONTAINING NAME

K2
(XCTL_TO)
IGGOCLC2

L®

Catalog Management IGGOCLC1 (Part 1 of 2)

]

12

SET ERROR_CODE
TO 12

SET ERROR CODE
TO 20

CALLBLDL

A
ENTRY VIA BAL

CALLBLDL, 14

B5:

READ
SPECIFIED BLOCK
AND NAME

IS THERE
UNCORRECTABLE
I/0 ERROR

D5
RETUR?AVIA BR

SET ERROR CODE
TO 24

F5
(XCTL_TO)
IGGOCLC6

Appendix A: Flowcharts

Chart 3. Catalog Management IGGOCLC1l (Part 2 of 2)

2 £

S FUNCTIO]
UCATDX

INITIALIZE FOR
DLTX FUNCTION

L®

S _ENTRY A
DATA SET
POINTER

is THER%
QUALIFIER

SET ERROR CODE
| TO O

GINDEX

ENTRY A WAS SAVE ADDR OF SAVE DELIMITER SEPARATE OUT
DELIMITER GEN._ INDEX > AND —> NEXT NAME
BLANK POINTER DELIMITER

1Oy

C
S_ENTRY A IS THERE SET ERROR CODE . 'was
VCB POINTER ANOTHER TO 16 DELIMETER
QUALIFIER BLANK

D

IS THERE NO SET ERROR_CODE SET ERROR CODE ENQ EXCLUSIVE
ANOTHER > TO 12 TO 16 ON VICE
QUALIFIER RESOURCE

LB LB

INITIALIZE FOR
DLTX FUNCTION

IS INDEX
DELETABLE

A

F S
SET TTR IN USER XCTL_TO
AREA T‘C}CEIR OF |« IGGOCLC4

S

SAVE DLTX
INFORMATION

LB

44 TSO Catalog Management PLM (Release 20.1)

Chart 4.

IGGOCLC2

g |
Y _VIA XCTL
FR IGGOCLC1

CATPHASE

ALL HIG
LEVEL INDEXES
EXIST

WAS NAMED IS FUNCTIOI
ITEM FOUND IN CATALOG
CATALOG

IS FUNCTION
BLDX OR BLDG

SET UP_EMPTY
INDEX

WRITENEW 40E

WRITE NEW BLK
SEARCH FOR NEXT
HOLE

SET ERROR _CODE
TO 16

ARE THERE
MORE THAN 5
VOLS

SET CATALOG
ERROR CODE TO 8

MDY M——

MOVE GENERATION
COUNT TO USER
AREA

1

SET VOLUME
INDEX RESOURCE
IN ENQ LIST

SSARY

ENg EXCLUSIVE
WITH SMC=STEP

K 2
XCTL_TO
IGGOCLC3

DOPTION

WAS EMPTY
OPTION
SPECIFIED

Catalog Management IGGOCLC2 (Part 1 of 3)

4

CALC ENTRY
LENGTH MOVE TO
USER AREA

C (2 5 ey
E
FIELD (X'03") MOVE CvOL
FOR CVOL PTR, 0 SERIAL NO. TO
TTR USER AREA

B -®

RETURN

v

D
XCTL TO

IGGOCLC6

SET ON_EMPTY SW
IN USER AREA

AS DELETE
OPTION
SPECIFIED

SET ON DELETE
SW IN USER AREA

Appendix A: Flowcharts 45

Chart 4. Catalog Management IGGOCLC2 (Part 2 of 3)

DLTPHASE

QCAT

IS L E WAS A VCB
ERROR CODE 12 LOCATED

S FUNCTIOI
BLDA OR DLTA

DROP

AS A CVOL NO
PTR LOCATED

S INDEX A
HIGH LEVEL
INDEX

D4

BUILD_THE ALIAS
ENTRY

ACOUNT Yy

CNVT 040A1
SET ERROR_CODE
TO 12 WRITE BACK ORIG
ENTRY
NEW ALIAS COUNT

IS INDEX
EMPTY

FRETBLK
CNVT 040A1

FREE BLK BY
WRITING ZERO
KEY

G

S THIS NO
1ST_HOLE IN
CATALOG

UPDATE_VOL INDX

CNTRL BLK WITH
ADDR OF
HOLE

YES OES INDEX

D NO
HAVE AN ALIAS

1sT

S ANOTHER WAS THIS
VCB IN CHAIN BLK A VCB

46 TSO Catalog Management PLM (Release 20.1)

S

Chart

CNVT

AT
‘ ENTER VIA BAL »

Y

B

CONVERT TTR
TO_ABSOLUTE
DISK ADDR

(10)

B2
‘ ENTER VIA BAL ’

10

D) 2:
CE’I‘URN_IXIA REG)

SET ERROR CODE
END OF EXTENT] TO 28

LB

03
a3

VCBRTN 1

CALC NO. OF
VCB'S REQUIRED

ADDBACK

SET _UP TO_WRITE
REVERSE ORDER

@*

WRITENEW 40E4

WRITE VCB
SEARCH FOR NEXT
HOLE

ANY MORE
VCB'S TO
WRITE

PUT TTR OF 1ST
VCB_IN USER
AREA

WRITENEW

Catalog Management IGGOCLC2 (Part 3 of 3)

SET UP_CHAINING
| PTRS FOR NEXT
VCB

E4:
‘ ENTER VIA BAL ’

EXTEND _VIA
SVC 28

WAS
EXTENSION
SUCCESSFUL

 ——CT

SET ERROR CODE
TO 20

LB

L

CNVT 40A1

WRITE_SPECIFIED
RECORD

P,

10 40C1

SEARCH FOR_NEXT
AVAIL HOLE

EXTEND IF NONE

CONVERT ADDR
OF BLK FOUND
TO TTR

N— 7'

E THIS
BLOCK'S ADDRESS

SAV H

Appendix A: Flcwcharts

g] 5
CETURN VIA REG)
— 6

47

Chart 5.

A1
ENTRY VIA XCTL
FROM IGGOCLgZ —_—
GOCLC!

OR IG

PUT LINK ENTRY
WITH ZERO TTR
IN OUTPUT AREA

11 Y

CALCULATE BYTE
COUNT OF BLOCK
AND STORE IN
OUTPUT AREA

e
XCTL TQ
IGGOCLC7

A2

READ INDEX
BLK_TO BE
ALERTED

AE3

AF2

AG2

YES

B

AD3P1

CALCULATE
LENGTH OF OLD
ENTRY

NEW>OLD

OOM I
OUTPUT AREA
FOR OLD ENTRY

YES

01
D2)—»

D) 2 en—
MOVE OLD ENTRY
TO OUTPUT AREA

LENGTH_TO_INPUT
POINTER

DELETE

NO

01
E2)—»

E 2.

ADD ENTRY
LENGTH_TO
OUTPUT POINTER

1s
COMPLETION
SWITCH ON

MORE
NTRIES IN
INPUT AREA

1S THE TTR
POINTER ZERO

48 TSO Catalog Management PLM

Catalog Management IGGOCLC3 (Part 1 of 2)

SET UP_COMPARE
5 CHARA(
INSTEAD O:

CTgRS

COMPARE NE!
NAME _TO_FOUND
NAME

SET COMPLETION
SWITCH

ON

CALCULATE
LENGTH OF NEW
ENTRY

D3

ADD LENGTH TO
INPUT POINTER

A

SET COMPLETION
SWITCH ON

IS _FUNCTIOI
RECATALOG

GET ADDRESS OF
CONSECUTIVE
BLOCK

A

3

CONVERT TTR TO

READ
INDICATED

ABSOLUTE
ADDRESS

BLOCK INT
INPUT AREA

—J 3:

SAVE TTR OF
NEXT BLOCK

(Release 20.1)

Chart 5. Catalog Management IGGOCLC3 (Part 2 of 2)

9

CALC LENGTH OF
NEW_ ENTRY
SUBTRACT FROM
INPUT POINTER

—
OOM I
OUTPUT AREA MOVE ENTRY TO
FOR NEW ENTRY OUTPUT AREA

LB

D
RESET INPUT
POINTER, MOVE
ENTRY TO INPUT
AREA

3,

SET ERROR CODE
TO 20

CAN IS A F 3
NEXT NEW _BLOCK RETURN TO
- CONTIGUOUS TO BE ADDED CALLER VIA SVC
BLOCK BE TQ THE 3
USED INDEX

BUILD LINK
TS UPDATED ENTRY WITH TTR
BLOCK _CONTIG POINTER IN
IN INDEX T OUTPUT AREA
SET KEY TO NAME SET THE ENTIRE
OF LAST ENTRY KEY TO X'FF

IN OUTPUT AREA

WTBLK

RESET OUTPUT
AREA POINTERS

Appendix A: Flowcharts 49

Chart 6. Catalog Management IGGOCLC4 (Part 1 of 3)

IGGOCLC4

RELATIVEB

FORMAT OF
RELATIVE NO.
CORRECT

SET ERROR CODE
TO 20

D2

READ NAMED
ENTRY USING
BLDL

NOERR CATGEN

WAS BLDL

SET ERROR CODE
ERROR CODE TO 8
ZERO

ERRORO8 SKIP

F4s
SET ERROR CODE XCTL_TO
TO 8 IGGOCLC5

FOUND

1

MOVE ENTRY DATA
INTO USER'S |
AREA

IS ENTRY A
VCB POINTER

EAD VCB_INTO
SER'S_AREA
USING BLDL

DEQUE

FREEMAIN
STORAGE_ AND
DEQUEUE

2
RETURN_TO
CALLER gIA sve

50 TSO Catalog Management PLM (Release 20.1)

Chart 6. Catalog Management IGGOCLCY4 (Part 2 of 3)

CONVERT
RELATIVE GEN.
NO. TO BINARY

NXTBLK v
B

EXAMINE NAME
FIELD OF AN
ENTRY IN INDEX

IS IT 8X'FF'

IS GIVEN
REL. GEN. NO.
NEGATIVE

-

COMPLEMENT GEN.
| NO. OF FOUND
ENTRY

POINT TO_NEXT
ENTRY_ADD 1
REL. REG. NO.

IS GIVEN
REL. GEN. NO
ZERO

MOVE FOUND NAME
COMPLEMENTED TO
USER AREA

IS_GIVEN
POSITIVE

2

SET UP DUMMY
FOUND NAME OF
G0000VOo0

ARE GIVEN REL.
{VALUE TO FOUND
GEN

MOVE TOTAL_TO
USER AREA AS
GEN.. NAME

Appendix A: Flowcharts

) IIIl

51

Chart 6. Catalog Management IGGOCLCY4 (Part 3 of 3)

Ca

EMPTY

SET UP OUTPUT
AREA WITH X'FF'

(&
NEW ENTRY

MOVE INDEX LINK
ENTRY TO OUTPUT
AREA

2
EAD _THE OLD
INDEX

WRITE
CONTENTS OF
OUTPUT AREA

5 Y

SCAN FOR LAST
ENTRY IN BLK
JUST READ

INCREMENT TTR
DOES NAME TO NEXT
FIELD CONTAIN SEQUENTIAL —_—
8X'FF' BLOCK

1

G.
TTR_OF
LD INDEX

YES O UPDATE VOLUME
LT 1ST_AVAIL
HOLE.

INDEX CONTROL
BLOCK

IS CHAIN
POINTER ZERO

READ VOL
INDEX USING
BLDL

H1

UPDATE VOL
INDEX CONTROL
NECESSARY
1 S o A
SET ERROR CODE SET KEY OF
REWRITE IT [————» TO ZERO

OUTPUT AREA TO
ZERO

LB L®

52 TSO Catalog Management PLM (Release 20.1)

Chart 7. Catalog Management IGGOCLC5 (Part 1 of 2)

CLCS

pr—ly|
ENTRY VIA XCTL
FROM IGGOCLC4

SEARCH

4
FREEMAIN FOR
SET Eggog CODE ALL USED DEQ

ON ALL
RESOURCES

B5
K RETURN_TO
{—————»\CALLER ‘?/:IA svc

S REQUEST
UNCATALOG

TO

O

D D3 .
SUBTRACT 1 FROM SEARCH FOR NAME WAS NAME YES
GENERATION IGNORING FOUND IS INDEX FULL
COUNT VERSION NO.

<

SET FUNCTION TO
RECAT

ADD 1 TO
GENERATION
COUNT

REPETERE 047E3

FRBE ALL VCBS
FOR THIS NAME

WAS A VCB ITE UPDATED

INDEX BLOCK

POINTER FOUND

e

o]
BLDLENTRY 047F2

BUILD NEW ENTRY

BLDLENTRY O047F2

BUILD NEW ENTRY

'READ BLOCK TO
BE UPDATED

XCT.
IGGO!

3

LC3

Appendix A: Flcwcharts 53

Chart 7.

q

FIND OLDEST

ENTRY IN INDEX

RESET
GENERATION
COUNT TO ONE

A3
ITE_UPDATED
—_— BLOCK

A

SET ERROR CODE
TO ZERO

SCRINIT 047D4

SCRATCH ANY OLD
VCBS

LASTENT
C

NEW ENTRY
OLDER THAN
OLDEST

D | =
SCRINIT 047D4

H ANY

SCRATC
VCBS OF OLDEST
ENTRY

DEL! LAS

ETE T
ENTRY IN INDEX

WRITE THE
UPDATE BLOCK

YES

FREEMAIN | v

DE%UEUE

FRE IN FOR

ALL STORAGE
USED

E2-'
RETURN TO
CALLER gIA sve

BLDLENTRY

F 2
‘ ENTER VIA BAL)

OVER 5 VOLS
IN DATA SET

____cﬁ‘
BLDLENTRY 047F2

BUILD NEW ENTRY

D 3

XCTL TO
IGGOCLC4 TO
EMPTY INDEX

REPETERE

E3:
‘ ENTER VIA BAL)

Catalcg Management IGGOCLCS (Part 2 of 2)

SCRINIT

::::Dj:::::::::
ENTER VIA BAL

S——

BUILD
|.. APPROPRIATE
NUMBER OF VCBS

"H 2o

BUILD NEW DATA
SET_PTR_OR VCB
PTR ENTRY

2
RETURN VIA BR

54 TSO Catalog Management PLM (Release 20.1)

VCBPTR

READ VCB

WAS VCB
POINTER FOUND

SCRATCH 047D5

SCTATCH DATA
SET IF REQ'D

IS THERE
ANOTHER VCB

SCRATCH

D5
‘ ENTER VIA BAL)

/AS_SCRATC
OPTION
SPECIFIED

SCRATCH DATA
SET W%gH svc

RETURN VIA BR

5
RETURN VIA BR

ﬁﬁﬁ\

Chart

01

8.

A2
XCTL_FROM
IGGOCLC1 OR
IGGOCLC2

B

NTRY FROM
IGGOCLC1

I/0 ERROR

DEVELOP CORRECT
RETURN CODE

Catalog Management IGGOCLC6

LOCATE

YES CONTROL_VOLUME
AND DEVIC
TG USER

RE.

RETURN BLOCK

LOCTEST

GET _ADDR OF ENQ
PARM LIST

URCES

NO
LOCATE

ES

FREE

FREEMAIN
GOTTEN WORK
AREA

DE%UEUE HIGH
LEVEL NAME
RESOURCE

FREEMAIN OPEN
WORK AREA

H4:
‘EXIT VIA svVC 3 ,

Appendix A: Flcwcharts

55

Chart 9. Catalog Management IGGOCLC7
01

A1
XCTL FROM
IGGOCLC3

FIND NEW FIRST
AVAILABLE BLOCK

GIVEBAC](B2
SET KEY OF
BLOCK TO BE
WRITTEN TO ALL
X"FF" BYTES

A

AST

UPDATE VICE IF
NECESSARY

D.

DEQ_VOLUME
RESOURCE

E1

ITE UPDATED
INDEX_ CONTROL
BLOCK

AS_VOLUME
MODIFIED

F1

ITE UPDATED
VOLUME_INDEX
CONTROL BLOC!

READ NEXT
LOWER BLOCK

EWRITE BLOCK
WITH ZERO KEY

p—G 1
SET ERROR CODE
TO O

FREEMAIN ALL
WORK AREAS

DE8 ALL
RESOURCES

NK
TO NEW CHAIN

K1
‘EXIT VIA sVC 3 '

56 TSO Catalog Management PLM (Release 20.1)

 Ste——
chR‘mBs .

CREATE DATA SET
ENTRY

UILD DS OR —
VCB ENTRY BUILT VCB
CHAIN
L
CREATE VCB
ENTRY

SETX
CREATE ENTRY
& CHAIN TO PREV
BUILT BLK

H e

WRITE BLOCK

FIND NEXT EMPTY
BLOCK

Chart 10.

IGGOCLF2

P L
ENTRY VIA XCTL
FROM IGGOOO2H })———>»

BUILD ECB AND
I0B, RELOCATE
THEM

INIT TO START
AT BEGINNING OF
DIR. AND ALLOW

FOR EOD MARK

SET UP_1ST_CCW
TO_WRITE

SPECIAL BLK FOR
EMPTY DIRECTORY

Catalog Management IGGOCLF2

AS END OF
EXTENT BEEN
REACHED

3
O _BACK 1 TRK

1S REQST TO
FORMAT EXT OF
CAT

BUILD VOLUME
INDEX CONTROL
BLOCK

' 3o

WRITE IT

BPNFRST

HAS LAST
RECORD BEEN
WRTN.

SET UP CHANNEL
PROG_TO WRITE
EOD MARK

BPNLST /

HAVE ALL
RECORDS BEEN
WRITTEN

A

SET FORMATTED
SW ON IN DSCB

WRITE BACK
THE DSCB

BPLOOP1
WRITE FULL
FORMATTED
BLOCKS

EXTENDED
p—]

PUT LAST TT IN
DATA SET IN REG
TO RETN TO

Y

SET ERROR CODE
TO ZERO

FREEMAIN
PROVIDE BY

IGCOOO2H

Arpendix A: Flcwcharts

Appendix B: Old CVOL Pointer

Before Release 17, the control volume pointer entry had nc device
type code field. sSince some control volumes may still contain the old

entry, and since the routines still check for it, its format is given
here.

Field 1: Field 2: 03 Field 4:

Name Zeros Control Volume
Serial Number

0 7 8 10 11 12 17

18 Bytes >

58 TSO Catalog Management PLM (Release 20.1)

Appendix C: Device Type Field

The device code portion of data set pointer entries, volume control
blocks, and control volume pointer entries is identical to the UCBTYP
field of the unit control block. This descriptiocn is included here for
easy reference.

For a complete description of the fields above, please refer to IBM
Systen/360 Operating System: System Control Blocks, Form C28-6628. A

brief description of some of the fields appears below.

Device Class: (Byte 3; values are in hex)

X'80"' Magnetic Tape
X'20' Direct Access
X'08"' Unit Record
X'10' Grarghics

X'40' Conmmunications

When Byte 3 indicates direct access, byte 4 indicates the specific
device as follows:

X'01*' 2311 Disk Storage Drive
X*'02"' 2301 Parallel Drum

X*03' 2303 serial Drum

X'04"' 2302 Disk Storage

X'05' 2321 Data Cell Drive

X'08"'" 2314 Disk Storage Facility

10S
Flags

"é%‘éil Optional Features Device Class Unit Type

Byte 1

Byte 2 Byte 3 Byte 4

Appendix C: Device Tyge Field 59

=

A

Index

Indexes to program logic manuals are consolidated in the publication IBM System/360

Operating System:

Program Logic Manual Master Index, Form Y28-6717.

For additional

information about any subject listed below, refer to other publicaticns listed for the

same subject in the Master Index.

Where more than one page reference is given, the major reference is first.

abbreviations of routine names 9
abnormal termination 16
absolute generation number
complement form of 25
obtained from relative gen. no.
reference to catalog using 7
address
fields of catalog entries (see
description of specific entry)
of UCB as a parameter 18,26
of IECPBLDL 20
alias entries
count of, in index control entry 29
creating 18
deleting 18
description of
detailed 29,32-33
general 15
allocated space for SYSCTLG 18,26-27
allocation quantity, seccndary 18,26-27
assembler language code 28

25,17

BALR instruction as linkage 20
BLDA function 18
BLDG function 17
BLDL routine (IECPBLDL)
linkage to
treatment of keys by 11,10
used to search for name
by locate generations
by normal locate 17,20
BLDX function 17
blocksize of SYSCTLG 10

17,25

calculation of absolute generation
numbers 25
calling

of catalog management routines 8

parameters passed 35

of CVOL routines 18

of IECPLDL 20
CAMLST macro instruction 34
CATALOG macro instruction 8
catalog function 17
CATLG sub-parameter on DD card 8
chaining

of physical blocks 11

of volume control blocks 32
channel programs

to format catalog 26,27

to read and write blocks 20
communication vector table (Ccvr) 20

complement form of generation number 25,17

connecting control volumes 7-9
count field
of physical blocks 10
of catalog entries 29,32-33
CSECT names of routines 28
CTLG parameter 35
CVOL (control volume)
description 7
0ld pointer entry 58
pointer entry 16,32
routines 18,26
CVT (communication vector table) 20

DADSM routines 26,18
DCB (data control block) for SYSCTLG 26,19
DEB (data extent block) for SYSCTLG 26,19

delete option 25,35

DEQ macro instruction 23

device type field 59

directory of a partiticned data

set 26,18-19

disconnecting control volumes 18

DISP parameter of DD card 8

DLTA function 18

DLTX function 18

DRPX function 18

DSCB (data set control block)
format switch in 26,19
infcrmation from 26
representation of generation nos.

in 25

secondary allocaticn quantity in 26

durmy generation number 25

empty option 25,35

ENQ macro instruction

EXCP macro instruction
initialization for 16
use of 20

extend routine

16,23

catalog 19

DADSM 26
extending SYSCTLG data set 19-26
flags

in user's parameter list 35,8

in generation index pointer entry
flowcharts 39-57
format switch in SYSCTLG DSCB
formatting routine 19,26
free blocks 18
fully-qualified name 7
functions of routines-chart 9

33,25
26,19

Index 61

GDG (generation data group)

7,17

generation index

building (see BLDG function)
deleting (see DLTX function)
inserting entries into 25
locating entries in 25
pointer entry 15,33

order of entries in 25

generation numbers

GETMAIN macro instruction

absolute (see absolute generation
numbers)

relative (see relative generation
numbers)

16,20

GO000VO00 (see dummy generation number)

high-level name

18

housekeeping functions 16,20
IECPBLDL 20

IEHPROGM 8

IGC0002F 20

IGC0002H 26

IGC026 28

IGC028 28

IGGOCLC1 20

IGGOCLC2 22

IGGOCLC3 22-23

IGGOCLCY4 25

IGGOCLC5 25

IGGOCLC6 22

IGGOCLC7 23

IGGOCLF2 26-27

IGG0533A 26

index control entry 29,15

index, generation (see generation index)

index levels

10

index link entry 29
index, normal

building (see BLDX function)

deleting (see DLTX function)

entry type 15

inserting entries into (see catalog
function)

pointer entry 29,15

removing entries from (see UNCAT
function)

structure 10

initialization

input to the routines

26
20

of new catalogs
of processing
35

job scheduler 8

keys
" description of 11,10

levels of qualification

initialization of 19,26

use of 11

7-11

link fields (see index link entry and
volume control block) '

LINKX function 17

locate function
description 17,20
output from 20,21

62

TSO Catalog Management PLM (Release 20.1)

logical organizaticn cf the catalog

(figure) 11
macro instructions
CAMLST 35
CATALOG 8
INDEX 8
LOCATE 8

master indexes, note 60
modules of the routines
specific module names)
multiprocessing envircnment
multiprogramming envircnment

28 (see also

16
16

NAME parameter 35
open routine 19,26
options (see empty option,
order cof entries
in generation indexes
in normal indexes 10

delete option)

25

parameters passed to rcutines 35
partitioned data set (PDS) directory
formatting of 26,19
similarity of catalcg to 10
physical organization cf catalog
pointer entries 29-33

10,11

‘gqname’' used in ENQ macro instruction
qualifiers 7

23

reading the catalog

RECAT function 17

records (see physical crganization)

reenterable routines 16,20

regicn 16

register usage (chart) 37-38

relative generation nunker
in calculating absclute
validity of 7

RESERVE macro instructicn 16

‘rname' used in ENQ macro instruction

20

25

23

scratch routine 26

searching the catalog 16,17

seccndary allocation quantity 26
sequence of entries in catalog (see order
of entries)

serial number, volume (see volume serial
number)

simple names 10,7

supervisor calls (SVCs)

svc 3 20
sSvc 19 16
svc 26 8,20
sSvCc 28 26,16,20
SVC 29 18,26
SYSCTLG
as name for ENQ/DEQ 23
data set

allccation of space for 18
definition of 7
extending 19,26
formatting 19,26
cpening 19,26
SYS1.SVCLIB 28

unit control block (UCB)
device type field of 59
of control volume
as part of 'rname' 23
as parameter 18,26
searching for 20
UNCAT function 18
user's parameter list 35
utility programs 8

VICE 15,16
volume control block (VCB)

volume serial number
of cataloged data set 1l (see also
volume control blccks and data set
pointer entry)
of control volume 20
volume table of contents (VTOC) 19,26

writing in the catalog 20

XCTL macro instruction 20,26

Index

63

GY28-6745-0

TSIV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

(96-09€S) Wd +uswabouoyy 6ojpio) OSL SO 09gtwaishs

‘VTSTN Ul paiulyd

0-S¥£9-8CAO

P TR E RIS

seecessenscscrccsnne

csegttgssccecnce

READER’S COMMENT FORM

IBM System/360 Operating System: ;
TSO Catalog Management Order No. GY28-6745-0

Program Logic Manual

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All sLggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

® Please indicate your occupation: ‘ .

® How did you use this publication?
0 Frequently for reference in my work.
[0 As an introduction to the subject.
[As a textbook in a course.
O For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

® Thank you for your comments. No postage necessary if mailed in the U.S.A.

GY28-6745-0

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your

IBM system, to your IBM representative or to the IBM branch office serving your locality.

| —— o — — — — — — — — — — —— —— — — — — — — —— — — — ——— —— — —— — — — — — — st s, . e

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

TSIV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International]

aurq Buojy 4n)

(96-09€S) Wd 4uswebouoyy Bojpip) OSL SO 09¢/uaishs

"¥*$°N Ul pajuigd

0-6¥£9-8TAO

T,

secesrrreracccccnce

cesaatsssssecstnserenee

seecegrtgescscnnce

READER’'S COMMENT FORM
IBM System/360 Operating System:
TSO Catalog Management _ Order No. GY28-6745-0
Program Logic Manual

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office

serving your locality.

® Please indicate your occupation:

® How did you use this publication?
J Frequently for reference in my work.
[0 As an introduction to the subject.
[J As a textbook in a course.
[0 For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

® Thank you for your comments. No postage necessary if mailed in the U.S.A.

GY28-6745-0

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your

e

IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT- NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

o —— S —— — s ot ot e e, e e i s s, e, i s, St et s i e st e e et i s s e i, st sttt

TSIV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

sur Buopy 4n3

(9€-09€S) Wd +usweboupyy Bojpip) OSL SO 09¢/Wwaishs

V*S*N Ul pajulyd

0-G¥£L9-8TAD

IBM Technical Newsletter File Number S$360-20 (0s Rel. 20.1)

Re: Order No. GY28-6745-0
This Newsletter No. GN28-2u81
Date June 1, 1971
Previous Newsletter Nos. None

IBM SYSTEM/360 OPERATING SYSTEM:
TSO CATALOG MANAGEMENT

© IBM Corp. 1971

This Technical Newsletter, a part of release 20.1 of IBM
System/360 Operating System, provides replacement pages for the
subject publication. These replacement pages remain in effect for
subsequent releases unless specifically altered. Pages to be
inserted and/or removed are:

Cover,Edition Notice
6.1

7,8

25-28

35,36

41,42

57-62

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change.

Summary of Amendments

This Technical Newsletter adds information on the Catalog Support
for Rotational Position Sensing.

Note: Please file this cover at the back of the manual to provide
a record of changes.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U.S.A.

IBM System/360 Operating System:
Time Sharing Option
Catalog Management

Program Logic Manual

Program Number 360S-DM-508

This publication provides customer engineers
and other technical personnel with information
describing the internal organization and

logic of the catalog management routines that
are used when the Time Sharing Option has been
selected at system generation time. These
routines provide the facility of locating data
sets when only data set names are specified.

This manual is based on the IBM System/360
Operating System: Catalog Management, Program
Logic Manual, GY28-6606. It should be used in
place of the above manual only if the Time
Sharing Option has been specified at system
generation time.

File No. S360-36
Order No. GY28-6745-0

Program Logic

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-248]

First Edition (March, 1971)

This edition with Technical Newsletter GN28-2481 applies to
Release 20.1, of IBM System/360 Operating System, and to all
subsequent releases until otherwise indicated in new editions
or Technical Newsletters. Changes are periodically made to
the information herein; before using this publication in
connection with the operation of IBM systems, refer to the
latest IBM System/360 SRL Newsletter, Order No. GN20-0360, for
the editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica-
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

© Copyright International Business Machines Corporation 1971

Release 20.1 (cv2s-

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

Summary of Major Changes

6745-0)

Item

- ——
b —

T
Description | See Pages:
1

1
|Rotational Position |

|Sensing (RPS) for |
|3330 and 2305 |
L

A

T
An I/0 feature that permits channel use during seek|7,26,27,35,41,
time and record search operations. 157,59

A Sp——

L

Summary of Major Changes 6.1

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

Catalog management is the facility of
the Operating System for locating data sets
when the user specifies only the data set
names. The catalog, itself a data set
(DSNAME=SYSCTLG), contains data set names
correlated with volume and device type
information. The catalog management
routines supervise the organization of the
catalog; insert, remove, and locate entries
in the catalog; and format new catalogs and
partitioned data set directories. For
further information concerning Rotational
Position Sensing (RPS), which is mentioned
throughout this manual, refer to the
section concerning this feature in IBM
System/360 Operating System: Direct Access
Device Space Management Program Logic
Manual, GY28-6607.

Organization by Level of
Qualification

Operating System data set names may be
either simple or gualified. A simple name
is a collection of up to eight EBCDIC
characters. A qualified name is a
collection of simple names separated by
periods (.) with a total length of up to
44 bytes.

Catalog management uses the periods in a
qualified name as delimiters and uses the
simple names (called qualifiers) as index
names. The catalog is divided into
indexes, each of which represents one level
of qualification of a qualified name.

The catalog management routines can be
used to build or delete a single index or a
whole index structure. To catalog a data
set called A.B.C, for example, the user may
either first create index A, then index
A.B, and then catalog A.B.C, or request
that catalog management create any missing
index levels needed to catalog A.B.C.

The highest level index, called the
volume index, is built automatically the
first time a new catalog is used by the
catalog management routines.

Generation Data Group Structure

The same structure is used to maintain
generation data groups. A generation data

Introduction

set may be referred to by its absolute name
(e.g., A.B.C.G0006V00) for any catalog
functions, or by a relative generation
number (e.g., A.B.C(-2)) for the locate
function. The catalog management routines
keep only the specified number of entries
in the generation index (index 'C' in this
case), deleting older ones and adding new
ones when necessary, and emptying the index
and deleting the data sets themselves if
the user specified the EMPTY or DELETE
options when he created the generation
index.

For a description of the use of
generation data groups, see IBM System/360
Operating System: Supervisor and Data
Management Services, Form C28-66U46.

Control Volumes

Any direct access volume may contain a
catalog; any such volume is called a
control volume (CVOL). The system
residence volume always contains a catalog.

An item in the catalog of a CVOL other
than the system residence volume can be
made available to the system if the CVOL is
"connected" to the system residence volume.
To connect a CVOL to the system residence
volume, the catalog management routines
insert a control volume pointer entry into
the volume index of the catalog on the
system residence volume. This entry
contains, in its name field, the name of a
high level index which already exists on
the CVOL to be connected. (See Figure 1.)

Any search of the catalog may start on
the system residence volume, but if the
catalog management routines encounter a
control volume pointer entry attached to
the highest level of the name in the volume
index, they continue the search for the
fully-qualified name on the CVOL whose
serial number is in the control pointer
entry. The caller of the catalog
management routine may specify what CVOL is
used for the search.

Introduction 7

System Residence Volume

Volume Table of Contents

Volume Index

Volume Serial
Number of
Control Volume

Index

Figure 1.

Calling the Catalog Management
Routines

The catalog management routines are
accessed through three assembler language
macro instructions: LOCATE, INDEX, and
CATALOG. The macro instructions generate a
reference to a parameter list, which the
user must build, and an SVC 26 instruction.
The user's parameter list contains a group
of flags that indicate what function he is
asking the catalog management routines to
perform. Figure 2 summarizes these
functions, and the section "Data Area
Layouts"™ contains a detailed description of
the user's parameter list.

The catalog management macro

instructions are most commonly used by the
utility IEHPROGM, the job scheduler, and

Control Volume

Volume Table of Contents

Volume
Index
DSCB

Volume Index

;
E : Pointer to
| Index E
1
T T
: : Volume
Index Pointer to
Al F 1 Number
{ Index A { of F
Data
Set
E.F
H i
I Volume Volume
Iniex L : Number | p : Number
| of L 1 of P
H 1
Data Data
Set Set
E.A.L E.A.P

A Control Volume Connected to the System Residence Volume

TSO, although they may be employed by any
user of assembler language.

IEHPROGM creates and deletes indexes,

aliases, and generation indexes,

and

catalogs and uncatalogs data sets according
to specifications supplied by the user of

IEHPROGM.

The job scheduler calls the catalog
management routines when it must locate a
data set, given only its name, or when the
DISP parameter on a DD card is CATLG or

UNCATIG.

TSO dynamic allocation locates old data

sets and catalogs new data sets.

TSO

command processors also call the catalog
management routines to manipulate the

catalog.

Liocate Generations: Module

IGGOCLC4

Generation data groups require
significantly different locating and
cataloging procedures from other data sets
for two reasons:

(1) Generation data groups may be
specified by relative generation number (as
in GENR(+1)), in which case the absolute
generation number must be calculated, and

(2) The absolute generation number is
stored in the catalog in hexadecimal
complement form, that is, generation
G0001V00 would be stored as X'C7 OF OF OF
0E E5 FO FO'. (Note that the version
number and the characters 'G' and 'V' are
not complemented.) 1In this way the most
recent generation (the one with the highest
absolute number) is always the first entry
in the index after the index control entry.

In this manual, the term "absolute
generation number" refers to the number as
it is coded by the user and as it appears
in the name field of a data set control
block (DSCB). It does not refer to the
number as it is stored in the catalog, in
complement form.

Module IGGOCLCY4 locates the lowest level
of a generation name. When IGGOCLC1l finds
a generation index pointer entry correlated
with the next to last level of a name, it
passes control to this module. It may also
be entered from IGGOCLC5 when that module
finds it must empty an index.

This module first checks to see whether
entry is from IGGOCLCS5 (empty request) or
from IGGOCLC1l (normal locate path). If it
was from IGGOCLCS, the module rewrites the
generation index, this time with only the
highest entry, and frees any blocks no
longer needed by the shortened index.

If the path is a normal locate path
(entry from IGGOCLC1l), IGGOCLCY4 checks the
format of both relative generation numbers
and absolutée generation numbers and returns
to the user with an error code of 20 if the
format of the supplied name is not correct.
If the name is in relative format, the only
valid function is locate; if any other
function has been specified, the module
returns with an error code of 20.

If the name is in relative format, the
module must calculate its absolute
generation number. It does this by adding
or subtracting the relative number given
and the actual number of the first entry in
the index. If the index is empty, the
module sets up a dummy *found' entry called
*GO000V00' as the basis for absolute
generation number calculation. If the

relative number is negative and exceeds the
number of entries in the index, the module
returns to the user with an error code of
8.

Once the relative generation number in
the user's area has been replaced with the
absolute generation number, the module
proceeds as though the user had supplied
the absolute number in the first place.

With the generation number in absolute
format, the module uses BLDL to read the
entry associated with the name. If the
function is catalog, control is passed to
IGGOCLCS wvia the XCTL macro instruction.
If the function is locate, the module
checks BLDL's error code. 1f the name was
found, the module moves the data into the
user's area and checks to see if it must
read a volume control block to complete the
description of the data set. If it does,
the volume control block is read into the
user's area.

If BLDL cannot find the name, the module
returns to the user with an error code.

Module

Catalog Generations:

IGGOCLCS

This module builds new entries for
generation indexes, maintains generation
index pointer entries by updating the
generation count, and marks entries for
deletion or data sets for deletion if the
empty or delete option was specified when
the generation index was created.

The module first checks the findings of
IGGOCLCU4 to be sure the current structure
of the index is compatible with the
function requested. If the requested
function is catalog, for example, and the
full name of the data set is found, the
error code is set to eight and the module
returns control to the user. Similarly, if
the function is anything but catalog and
the name was not found, the module takes an
error exit.

If the function requested by the user is
consistent with the contents of the index,
the module checks the generation count and
maximum number of generations to be
maintained in this index. This indicates
whether the module must delete any entries
to add a new one. The module increases or
decreases the generation count according to
the function requested (increase for
catalog, decrease for uncatalog, leave
alone for recatalog). It rewrites the
index block containing the updated
generation index pointer entry.

Program Organization 25

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

If an entry must be removed from the
index, IGGOCLC5 removes it and rewrites the
index block which contained this entry. If
the empty option is indicated by the flags
in the generation index pointer entry, the
module transfers control back to IGGOCLCH
to empty the index. If the delete option
is indicated, the module calls the SCRATCH
function of Direct Access Device Space
Management (DADSM) * with an SVC 29 to
scratch the data set. After the module
deletes whatever entries it must delete, it
builds any new entries necessary.

When all the counts have been updated,
the necessary entries removed from the
index, and the specified data sets
scratched, IGGOCLCS reads the index to be
updated and transfers control to IGGOCLC3.
IGGOCLC3 reorganizes the index just as if
it were a normal index.

The CVOL Routines: Modules
IGCOOO2H and IGGOCLF2

These modules together take care of the
open and initialization functions for the
catalog management routines. IGCO0002H
opens or extends the catalog by building or
modifying a data control block (DCB) and a
data extent block (DEB) for the SYSCTLG
data set and IGGOCLF2 formats new catalogs,
extensions of the catalog, and new
partitioned data set directories.

IGC0002H

This module is entered by an SVC 28, or
by XCTL if returning from the Extend
routine of DADsSM*. If entry is by svC 28,
the module opens or extends the catalog,
depending on input parameters. If entry is
by XCTL from the DADSM Extend routine, the
module finishes extending the catalog.

To open the catalog, the module searches
the volume table of contents (VTOC) of the
volume whose unit control block (UCB)
address was specified by the caller
(IGCO002F). If it does not find a format 1
data set control block (DSCB) with name
SYSCTLG in the VTOC, it sets a return code
of 4 and exits. If it does find the format
1 DSCB, it constructs a DCB and DEB from
information in the DSCB and from
information contained in the module itself
(information common to all SYSCTLG data
sets such as blocksize and record format).

*See IBM System/360 Operating System:
Direct Access Device Space Management
Program Logic Manual, Form Y28-6607.

26

For RPS devices, IGCO0002H obtains an RPS
work area (and frees it when it frees the
DCB and DEB area.) When the DCB and DEB
are constructed initially for an RPS
device, control is transfered by XCTL to
the RPS setup module, IGGO19EK. Upon
return from IGGO19EK, normal DEB
construction continues.

There is a switch in the DSCB of a
SYSCTLG data set that indicates whether the
data set has been formatted or not. If
this switch is off, IGCO0002H transfers
control to IGGOCLF2, the formatting
routine, to format the data set. If the
switch is on, the module releases any
unused space and exits.

To extend the catalog, the module gets
main storage for the Extend routine of
DADSM, reads the format 1 DSCB for SYSCTLG,
and checks the secondary allocation
quantity in the DSCB. If this quantity is
zero, the catalog cannot be extended and
IGCO0002H returns to the caller with an
error code of 4. If there is a secondary
allocation quantity specified in the DSCB,
the module builds a parameter list for the
Extend routine and transfers control to
module IGGO0533A.

The Extend routine of DADSM returns
control to the beginning of IGC0002H, which
indicates that the data set must be
formatted and where the formatting is to
begin, and then passes control to the
formatting routine (IGGOCLF2). It also
builds a new DEB which includes the newly
allocated space.

IGGOCLF2

This module formats new catalogs,
extensions of existing catalogs, and new
partitioned data set (PDS) directories. It
does this by filling the available space
with 256-byte records with 8-byte keys. If
it is formatting a new SYSCTLG data set or
a PDS directory it also initializes the
first block.

If the request is to format a PDS
directory, the module constructs a channel
program to write one 256-byte block at a
time. The first write operation writes an
empty directory, and each subsequent write
writes an 8-byte zero key and 256-byte zero
record. When it has formatted all the
requested blocks, it writes an end of data
mark, and returns to the caller via an SVC
3.

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

If the request is to format a catalog,
the module constructs a channel program to
write keys and data, a full track at a
time. The module uses information from the
DSCB to determine how many blocks will fit
on a track. It keeps a record of the last
relative track formatted to insert it into
the volume index control entry.

When the module has reached the end of
the extent assigned to SYSCTLG, it checks
to see if it has been formatting a new
catalog or an extension. If it has been
formatting an extension, it returns

directly to the caller. If it has been
formatting a new SYSCTLG data set, it
builds an empty volume index, containing a
volume index control entry and an index
link entry with zero TTR field, and sets
the format switch in the DSCB to indicate
that the data set has been formatted.
Before returning to the caller, the module
tests for an RPS device. If the device has
the RPS feature, the RPS work area is freed
and the RPS appendage module, IGGO19EK, is
deleted. Then the working storage oktained
by IGC0002H is freed.

Program Organization 27

Directory

This chart, Figure 10, contains information to assist the reader in
making the transition from this manual to the assembler language
listings of the catalog management modules. It correlates information
from three sources:

e The source code

e The executable load modules

e This manual

LOAD MODULE
NAME

RESIDENCE DESCRIPTION CSECT

NAME

FLOWCHART
NUMBERS

IGC0002F SYS1l.SVCLIB Initialize IGC026 1

IGGOCIC1 SYSl1l.SVCLIB Locate IGGOCLC1 2

IGGOCLC2 SYSl1l.SVCLIB Build and free IGGOCLC2

block

IGGOCILC3 SYS1l.SVCLIB Update blocks
of reorganized

index

IGGOCLC3

IGGOCLCH SYSl1l.SVCLIB Locate gener- IGGOCLCY

ations

IGGOCLCS SYS1.SVCLIB Build gener- IGGOCLCS

ation index
entries

IGGOCLC6 SYS1.SVCLIB Process IGGOCLC6
errors; Exit
for LOCATE

processing

IGGOCLC7 SYS1.SVCLIB Update control IGGOCLC7
entries;
Release blocks;
Build and
delete index

structures

IGC0002H SYS1.SVCLIB Open/extend IGC028

catalog

IGGOCLF2 SYS1.SVCLIB Format catalog IGGOCLF2 10

& PDS
directory

[o e o e o e e e e S e e e s M e e S S e e M e e . B e e B e B e S e e)

P e e b —

et e Rt 2t e e e e Mt st P

e s e At st S e S e e el

s T e e el
o

S5 Sy SO S Sy Sy GO SR SN SO S SN |

Figure 10. Directory

28

i

Page of GY28-6745-0, Revised Jure 1, 1971, By TNL GN28-2481

Register
Option .
Generation
0 0 Flags
(see below) Count
4 4 Pointer to Fully
Qualified Name
8 g Pointer to Serial Number
of Control Volume
12 C Pointer to User's Work Area

1 At entry to IGCO0002F, register 1 points to the user's parameter list.
At all other times, register 8 points there.

Option Flags

| Byte 0 1... Catalog is on CVOL

eXee eaee Not used by the Catalog Management rcutine
eele ... CTLG Catalog a data set
ceel L.l RECAT Recatalog a data set
eeee loa. UNCAT Uncatalog a data set
cees oXea Not used by the Catalog Management routine
eeee ool. BIOCK Read a block by TTR
ceee eeeX Not used by the Catalog Management routine

Byte 1 Xeee cees Not used by the Catalog Management rcutine
1. ... B1IDX Build normal index structure
eele .. BLDG Build generation index
eeel can. BLDA Build an alias to a high-level

name

eeee 1l... LINKX Connect control volumes
cece ol.. DLTX Delete an index Structure
eeee ooX. Not used by the Catalog Management rcutine
ceee esel DITA Delete an alias entry

Byte 2 l... DRPX Disconnect control volumes
elee eee. DELETE Scratch generation data sets

when they are uncataloged

eeXX cuen Not used by the Catalog Management routine
eces leowe. EMPTY Remove all entries from the

index when the maximum gen-
eration count has been reached
eeee o XXX Not used by the Catalog Management routine

Note: Function is locate by name if all flags are zero. Function is
CATBX if CTLG and BLDX flags are both ones. Function is UCATDX if UNCAT
and DLTX flags are both ones.

Figure 13. User's Parameter List

Data Area Layouts 35

LOCATE
OTHER

| FUNCTION:

This section includes miscellaneous charts and tables that might be
r

useful in locating program errors.
This chart, Figure 14 can be used to determine what modules of the

catalog management routine will be used to perform a particular
function, given the function required and the current status of the

Module Selection Chart
catalog.

Diagnostic Aids

P e e e e e e oy e S S S ey e s Y ey — oy —

> LB BENE R LR
o e = o e e e e o e e e e o e e e e e
> Z | > » o] <= <=
e e e A = e e e — o — e = e e e e —
41X Y%inxrxixiua NN N
po e e e —— A — — e e e e o e e e e e s e e
b | X > <o

p—t— - — == — = —F—t+—
> el K
TIIITIITI.lr.W.‘ll.ll—llv-AIlTWAlllle.lTnl.llIVAllllLI‘IilliTli

> Z I = <X > =
T.Iir.liT|||TIillnllJTIIITIJTNAIIIIILIWAIIT.lllllJIIL
TIV.ILI..VFLTILIILTITHLTWA:L!IJTIlllllelill.l:!lllr.IL

> R >

e e e e e e e e e e o e e e e e e e e e e e e e o
e e
2
o
B
218
215,
S1&18
2|0 Z
F. ool = Nl O >
N
RRERE IS IR I3I313
| o o QO O Q Q Q Q Q
. | oljlojlo ||l |lOo|o |9 |9
m < QI IivIVvIVvIVvIVIY
551 U] U} U] O} [0} O] [0} 0] 0]
2 P4 H | H | HlH | H [= [H | H
N ¢
3 :
m 3]
ALl
2 2
B oo} | | n
r..l.Lr..llL.l'Ll-lnLr-L.llllLl'L.llLfIlulllfll.llll.lllill

Module Selection Chart

Figure 14.
36

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

| chart 2. catalog Management IGCO002H (Part 1 of 2)

IGGOCLF2

=P\ |
ENTRY VIA XCTL BUILD ECB AND
FROM IGGOOO2H })——» IOB,nghOCATE

I1s
EQUEST_TO
FO! T BPAM

DIRECTORY

2:
NIT TGO START

FOR EOD MARK

BPLOOP2 EZ/

BPNFRST
G

HAS LAST
RECORD BEEN
WRTN.

SET UP CHANNEL
PROG_TO WRITE
D MARK

BPNLST

HAVE ALL
RECORDS BEEN
WRITTEN

3
GO_BACK_ 1 TRK
TO PASS LAST TT
IN CATALOG TO
CALLER

IS REQST TO
FORMAT EXT OF
CAT

BUILD VOLUME

FIRST WRITE INDEX CONTROL
BLOCK
F 3
SET UP 1ST CCW
T ITE RPS SID
SPECIAL BLK FOR WRITE IT APPG PRESENT
EMPTY DIRECTORY

READ THE
SYSCTLG DSCB

Y

1

SET FORMATTED
SW ON IN DSCB

WRITE_BACK
THE DSCB

BPLOOP1

B

WRITE FULL
FORMATTED
BLOCKS

CALLED BY
CATLG

RESTORE AVT
PTRS

FREEMAIN RPS WK A
AREA

EXTENDED «I
"

PUT LAST TT IN
DATA SET IN REG
TO RETN TO

SET ERROR CODE
TO ZERO

L®

—

Appendix A: Flowcharts

K5
FREEMAIN RETURN TO
PROVIDE BY ———(CALLER VIA SVC3
IGCOOO2H

41

Chart

2.

FREEMAIN FOR
UNUSED_ DEB,
DCB SPACE

I

S _FORMAT
SWITCH ON

1

SET ERROR CODE
TO ZERO

D1

PLACE DCB ADDR
IN REGISTER 1

E1
RETURN TO
CALLER

42

FORMAT

GETMAIN FOR
FORMAT
ROUTINE

—_—

-

SET
ADDR

REQUEST I
FO

UP_DCB

INDICATE
S_TO
T CATALOG

Catalog Management IGC0002H (Part 2 of 2)

XCTL

B4
XCTL TQ
—_— IGGOCLF2

o

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

Catalog Management IGGOCLF2

| Chart 10.
IGCO002H
P 1
ENTRY VIA XCTL NTRY FROM
FROM EXTEND OR RPS FORMAT
VIA SVC 28
EXTENDED .
FREEMAIN FOR SET SW TO
ENTRY EXTENDED WK GETMAIN FOR INDICATE 2ND
AREAS, OLD —————»| |NEW DCB, DEB PASS OF —
DCB AND DEB EXTENDED
FUNCTION
EXTEND s
SET SW TO
WHAT GETMAIN FOR INDICATE 1ST
FUNCTION WAS EXTEND —————»|PASS OF EXTEND
REQUESTED MODULES FUNCTION
D5
YES SET UP FOR XCTL
RPS FQ
I1GGO29R1

APPNG

ET LINK LIB

G
————>»| APPG POINTERS

D1

BUILD DEB AND

DCB FOR ENTIRE
VOLUME

EXPT1 .
G

BUILD_IOB AND MOVE APP
ECB POINTER INTO

NEW DEB
(:::>-’ «

FINISH DEB

4
RETURN TO
CALLER

ERROR4 RETURN N
FREE ALL MAIN
STORAGE

Gf) 2
WAS ;:;:\\\\\NO SET ERROR CODE
SET Foiff////* —> TO 4 »
YES i
N XCTL
H5me
BUILD IOB, DCB, XCTL_TO
DEB CHAIN B — IGGO553A

CONSTRUCT A
—

DUMMY JFCB FOR
DADSM

EXTENDA

SECONDARY
ALLOC. QTY.
ZERO

2ND 1ST OR 2ND
PASS OF
EXTEND
NOFMT
J e 21 e, | 3 e———
MUST DATA NO CALC EXTENT MOVE THESE INTO
SET BE » 1 ENTRIES FOR DEB —»| EXISTING DEB
FORMATifB///, [
YES
—_—
YESFMT
1 K4
SET FORMAT READ THE
SWITCH —_— FORMAT 3 DSCB
Appendix A: Flcwcharts 57

58

Appendix B: Old CVOL Pointer

Before Release 17, the control volume pointer entry had nc device
type code field. Since some control volumes may still contain the old

entry, and since the routines still check for it, its format is given
here.

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

Appendix C: Device Type Field

The device code portion of data set pointer entries, volume control
blocks, and control volume pointer entries is identical to the UCBTYP
field of the unit control block. This description is included here for
easy reference.

For a complete description of the fields above, please refer to IBM
System/360 Operating System: System Control Blocks, Form C28-6628. A
brief description of some of the fields appears below.

Optional Features: (Byte 2; values are in hex)

X'10" Rotational Position Sensing (RPS)

Device Class: (Byte 3)

X'80'" Magnetic Tape
X'20"' Direct Access
X'08"' Unit Record
X'10" Graphics

X'40' Communications

When Byte 3 indicates direct access, byte 4 indicates the spe01f1c
device as follows:

X'01"' 2311 Disk Storage Drive
X'02*' 2301 Parallel Drum

X'03" 2303 serial Drum

X"04' 2302 Disk Storage

X'05"' 2321 Data Cell Drive

X'06' 2305 Model 1 FHSF

X'07' 2305 Model 2 FHSF

X*08"' 2314 Disk Storage Facility
X' 09*' 3330 Disk Storage Facility

Appendix C: Device Type Field 59

Index

Indexes to program logic manuals are consolidated in the publicaticn IBM System/360
Operating System: Program Logic Manual Master Index, Form Y28-6717. For additicnal

information about any subject listed Lkelow, refer tc other publicaticns listed for the

same subject in the Master Index.

Where more than one page reference is given, the major reference is first.

abbreviations of routine names 9
abnormal termination 16
absolute generation number

complement form of 25

obtained from relative gen. no. 25,17

reference to catalog using 7
address

fields of catalog entries (see

description of specific entry)

of UCB as a parameter 18,26

of IECPBLDL 20
alias entries

count of, in index control entry 29

creating 18

deleting 18

description of

detailed 29,32-33
general 15

allocated space for SYSCTLG 18,26-27
allocation quantity, seccndary 18,26-27
assembler language cocde 28

BALR instruction as linkage 20
BLDA function 18
BLDG function 17
BLDL routine (IECPBLDL)
linkage to 20
treatment of keys by 11,10
used to search for name
by locate generations 17,25
by normal locate 17,20
BLDX function 17
blocksize of SYSCTLG 10

calculation of absolute generation
numbers 25
calling

of catalcg management routines 8

parameters passed 35

of CVOL routines 18

of IECPLDL 20
CAMLST macro instruction 34
CATALOG macro instruction 8
catalog function 17
CATLG sub-parameter cn DD card 8
chaining

of physical blocks 11

of volume control blocks 32
channel programs

to format catalog 26,27

to read and write blocks 20
communication vector table (cvr) 20

complement form of generation number 25,17

connecting control vclumes 7-9
count fiela
of physical blocks 10
of catalog entries 29,32-33
CSECT names of routines 28
CTLG parameter 35
CVOL (control volure)
description 7
old pcinter entry 58
pointer entry 16,32
routines 18,26
CVT (communication vector table) 20

DADSM routines 26,18

DCB8 (data control blcck) for SYSCTLG 26,19
DEB (data extent block) for SYSCTLG 26,19

delete option 25,35

DEQ macro instruction 23

device type field 59

directcry cf a partiticned data

set 26,18-19

disconnecting control vclumes 18

DISP parameter of DD card 8

DLTA function 18

DLTX function 18

DRPX function 18

DSCE (data set contrcl block)
format switch in 26,19
infcrmation from 26
representation of generation nos.

in 25

secondary allocaticn quantity in 26

dunrry generation number 25

empty opticn 25,35
ENQ macro instruction 16,23
EXCP macro instructicn
initialization for 16
use of 20
extend routine
catalog 19
DADSM 26
extending SYSCTLG data set 19-26

flags
in user's parameter list 35,8

in generation index rointer entry 33,25

flowcharts 39-57

format switch in SYSCTLG DSCB 26,19
formatting routine 19,26

free blocks 18

fully-qualified name 7

functicns of routines-chart 9

Index

Page of GY28-6745-0, Revised June 1, 1971, By TNL GN28-2481

GDG (generation data group) 7,17
generation index
building (see BLDG function)
deleting (see DLTX function)
inserting entries into 25
locating entries in 25
pointer entry 15,33
order of entries in 25
generation numbers
absolute (see absclute generation
numbers)
relative (see relative generation
numbers)
GETMAIN macro instruction 16,20
G0000V00 (see dummy generation number)

high-level name 18
housekeeping functions 16,20

IECPBLDL 20
IEHPROGM 8
IGCO0002F 20
IGC0002H 26
IGC026 28
IGC028 28
IGGOCLC1 20
IGGOCLC2 22
IGGOCLC3 22-23
IGGOCLC4 25
IGGOCLCS5 25
IGGOCLC6 22
IGGOCLC7 23
IGGOCLF2 26-27
IGG0533A 26
index control entry 29,15
index, generation (see generation index)
index levels 19
index link entry 29
index, normal
building (see BLDX function)
deleting (see DLTX function)
entry type 15
inserting entries into (see catalog
function)
pointer entry 29,15
removing entries from (see UNCAT
function)
structure 10
initialization
of new catalogs 26
of processing 20
input to the routines 35

job scheduler 8

keys
description of 11,10
initialization of 19,26
use of 11

levels of qualification 7-11
link fields (see index link entry and
volume control block)
LINKX function 17
locate function
description 17,20
output from 20,21

62 TSO Catalog Management PLM (Release 20.1)

logical organizaticn cf the catalog
(figure) 11
macro instructions

CAMLST 35
CATALOG 8
INGEX 8
LOCATE 8

master indexes, note 60

modules of the routines 28 (see also
specific module names)

multiprocessing envircnment 16

multiprogramming envircnment 16

NAME rarameter 35

open routine 19,26
options (see empty coption, delete option)
order cf entries

in generation indexes 25

in normal indexes 10

parameters passed to rcutines 35
partitioned data set (PLS) directory
formatting of 26,19
similarity of catalcg to 10
physical organization cf catalog 10,11
pointer entries 29-33

'gname' used in ENQ macro instruction 23
qualifiers 7

reading the catalog 20
RECAT function 17
records (see physical crganization)
reenterable routines 16,20
regicn 16
register usage (chart) 37-38
relative generation nunker
in calculating absclute 25
validity of 7
RESERVE macro instructicn 16
'rname' used in ENQ macro instruction 23
RPS work area 26

scratch routine 26
searching the catalog 16,17
secondary allocation quantity 26
sequence of entries in catalog (see order
of entries)
serial number, volume (see volume serial
number)
simple names 10,7
supervisor calls (SVCs)
svc 3 20
SvC 19 16
svc 26 8,20
svCc 28 26,16,20
SVC 29 18,26
SYSCTLG
as name for ENQ/DEQ 23
data set
allccation of space for 18
definition of 7
extending 19,26
formatting 19,26
cpening 19,26
SYS1.SVCLIB 28

cerrrevere

Ctsssses

cscegyagecssase

READER’S COMMENT FORM

IBM System/360 Operating System:
TSO Catalog Management Order No. GY28-6745-0

Program Logic Manual

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
Ail such requests should be directed to your IBM representative or to the IBM Branch Office
serving your locality.

® Please indicate your occupation:

® How did you use this publication?
[0 Frequently for reference in my work.
O Asan introduction to the subject.
] As a textbook in a course.

[0 For specific information on one or two subjects.

e Comments (Please include page numbers and give examples.):

e Thank you for your comments. No postage necessary if mailed in the U.S.A.

GY28-6745-0

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

|
BUSINESS REPLY MAIL
]
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES
]
|
POSTAGE WILL BE PAID BY ... —
]
]
IBM Corporation e
P.O. Box 390 I
Poughkeepsie, N.Y. 12602
Attention: Programming Systems Publications
Department D58
Fold Fold

BN

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

—— — — — — — — — — 3uyq Buoyy jn>

(9€-09€S) W1d +uswabouoyy Bojoip) OSL SO 09/ waisAs

‘V°STN Ul pajulyd

0-G¥L9-8TAD

