Systems Reference Library

IBM System/360 Operating System:‘
Time Sharing Option

Guide to Writing a

Terminal Monitor Program

or a Command Processor

0S Release 21.8

This publication describes features of TSO that
can be replaced, modified, oxr added to by each
installation of TSO, to adapt the command system
to the installation's particular needs. The
manual is intended for programmers whose
responsibility is to modify the portions of TSO
that communicate directly with the user at the
terminal.

The publication discusses the Terminal
Monitor Program and the Command Processors from
the viewpoint of their replaceability, and
describes the programming features provided
within TSO for user-written Terminal Monitor
Programs, Command Processors, and applications
programs. These features include:

Service Routines

Macro Instructions

SVCs

The Dynamic Allocation Interface Routine
(DAIR) \

The TEST Command Processor

File No.
Order No.

5360-36
GC28-6764-2

SR AT S

as

.

Third Edition (August, 1972)

This is a major revision of, and obsoletes, GC28-6764-1 and
Technical Newsletter GN28-2524. Changes are listed in the

- Summary of Amendments. Changes or additions to the text and
jllustrations are indicated by a vertical line to the left of
the change.

This edition applies to release 21.6 of the IBM System/360
.Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein.
Before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and System/370 SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM repesentative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie,

N.Y. 12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1971,1972

This publication describes features of TSO
that can be replaced, modified, or added to
by each installation of TSO, to adapt the
command system to the installation's
particular needs. The manual is intended
for programmers whose responsibility is to
modify the portions of TSO that communicate
directly with the user at the terminal.

The publication discusses the Terminal
Monitor Program and the Command Processors
from the viewpoint of their replaceability,
and describes the programming features
provided within TSO for user-written
terminal monitor programs, command
processors, and applications programs.
These features include:

Service Routines

Macro Instructions

SVCs

The Dynamic Allocation Interface Routine
(DAIR)

The TEST Command Processor

This publication contains information
required by a programmer writing a terminal
monitor program or a command processor for
the Time Sharing Option. It discusses the
functions that a Terminal Monitor Program
or a command processor should provide, and
it describes the macro instructions and
service routines that can be used to
provide these functions.

The book is divided into twelve
sections:

e Introduction
e Terminal Monitor Program
e Command Processors

e Message Handling

e Attention Interruption Handling -- The
STAX Service Routine

e Dynamic Allocation of Data Sets -- The
Dynamic Allocation Inter face Routine
(DAIR)

e Using BSAM or QSAM for Terminal I/O

e Using the TSO 1/0 Service Routines for
Terminal I/0

e Using the TGET/TPUT SVC for Terminal
I/0

Preface

e Using Terminal Control Macro
Instructions

e Command Scan and Parse -- Determining
the Validity of Commands

e Testing a Newly Written Program -- The
TEST Command

The first four sections describe the
functions performed by a terminal monitor
program or a command processor, and explain
message processing conventions peculiar to
the Time Sharing Opticn.

The next seven sections describe the
macro instructions and service routines
that a programmer can use to provide the
required functions. These macro
instructions and service routines can be
used to schedule and process attention
interruptions, to allocate, free,
concatenate, and deconcatenate data sets
during program execution, to provide I/0
between a program and a terminal, to
control terminal functions and attributes,
and to determine the validity of commands,
subcommands, and operands entering the
system.

The last section describes the TEST
command and how it can be used to test a
newly written program at the terminal.

Prerequisite and Reference Publications

The reader of this publication should
have a knowledge of the structure of the
Time sSharing Option, as described in IBM
System/360 Operating System: Time Sharing
Option Guide, GC28-6698.

In addition, the reader should have the
following publications available for
reference:

IBM System/360 Principles of Operation,
GA22-6821.

IBM System/360 Operating System:

Data Management for System Programmers,
GC28-6550 (formerly System Programmer's
Guide).

Data Management Macro Instructiomns,
GC26-3794.

Data Management Services, GC26-3746.

Job Control Lanquage Reference,
GC28-6704.

Preface 3

Supervisor Services and Macro Command Processor Program Logic
Instructions, GC28-6646. Manual, GY28-6771 through GY28-6776.

System Control Blocks, GC28-6628. Control Program, Program Logic
Manual, GY27-7199.

Storage Estimates, GC28-6551.

Terminal Monitor Program and Service
Time Sharing Option: Routines, Program logic Manual,

GY28-6770.

Command Lanquage Reference,
GC28-6732. Texrminal User's Guide, GC28-6763.

4 Guide to Writing a TMP or a CP (Release 21.6)

SUMMARY OF AMENDMENTS FOR GC28-676u-2
OS RELEASE 21.6 . . < ¢ « o o o « o .

SUMMARY OF AMENDMENTS FOR GC28-6764-1
AS UPDATED BY GN28-2523 COMPONENT
RELEASE 360S-0S-586

SUMMARY OF AMENDMENTS FOR GC28-6764-1
OS RELEASE 21 . ¢ o ¢ o« o o o o o « &

SUMMARY OF AMENDMENTS FOR GC28-6764-0
AS UPDATED BY GN28-2484 OS RELEASE 20.1

INTRODUCTION « o o o o o o o o o & .
The Terminal Monitor Program (TMP)
and Command ProceSSOYS « « « « o « =
Basic Functions of Terminal Monitor
Programs and Command Processors . .

Communicating with the User at the
Terminal . . ¢ o ¢ ¢ ¢ o o« o « « &
Passing Control to Commands and
Subcommands e e o o .
Responding to Abnormal Terminations
Responding to Attention
Interruptions «
Other Functions Provided with TSO .
The Dynamic Allocation of Data Sets
Testing a Terminal Monitor Program
or a Command Processor . « « . « -«
SUMMAXY « o « o o o o o o o o o o =

THE TERMINAL MONITOR PROGRAM
Specifying Data Sets at LOGON
Terminal Monitor Program Initialization
Requesting A Command . « « « « « « « &
Intercepting An ABEND . . « « « « « .
Intercepting a Subtask ABEND
Intercepting a TMP TASK ABEND . . .
Processing An Attention Interruption .
Parameters Received by Attention
Handling Routines "
The Attention Exit Parameter List
The Terminal Attention Interrupt
Element (TAIE) . . ¢« o« o« o o o« « =
Processing a STOP Command . . <« « - .

COMMAND PROCESSORS « o o « « = = « o
Response Time . . o o o o o o o o o «
Program Design . « .« « « o « o« o «
Module Size and Storage Requirements
Command Processor Use of the TSO
Service Routines . . « « o « « o o o =
STACK Service Routine . . « « « « .
GETLINE Service Routine
PUTLINE Service Routine
PUTGET Service Routjine
DAIR Service Routine . « « « « « « =
Command Scan Service Routine
PARSE Service Routine o o
STAE/STAI Exit Routines - Interceptlng
an ABEND « « .« . . & e @ o o @ ® ° @
Attention Exit Routlnes e o o o s o o

11

12

13

15

17

17

18

18

Contents

Adding Commands to the Time Sharing

Option e o o o o o s s o o @

The HELP Data Set e o o o o o o o o @
Private HELP Data Sets . . . « . . .
Formatting the HELP Data Set

MESSAGE HANDLING . ¢« o o o o o o « « =
Message Levels ¢« v o o o o o o o o o =
Effects of the Input Source on Message
ProCcessing « « o« « o o « « o « o o o «

ATTENTION INTERRUPTION HANDLING - THE
STAX SERVICE ROUTINE .
Specifying a Terminal Attention Exit -
The STAX Macro Instruction
The STAX Parameter List
Coding Example of the STAX Macro
Instruction . . . e o s o o e o o @
Return Codes From the STAX Service
ROUtINE =« ¢ o o o 2 o o o s o o o o o

DYNAMIC ALLOCATION OF DATA SETS -- THE

DYNAMIC ALLOCATION INTERFACE ROUTINE
(DAIR) v« o o o 2 o o a s s s @ o o s @
Using DAIR « « « « . = . - o .
The DAIR Parameter LlSt (DAPL) PO
The DAIR Parameter Block (DAPB)
Code X'00' - sSearch the DSE for a
Data Set Name . . . o . . o

Code X'04' - Search the DSE and

the System Catalog for Data Set
NAE€ v« ¢ o o o o o s @ o @ o o o =

Code X'08' - Allocate a Data Set
DY DSNAME « v =« « « o o o o « o« =
Code X'0C' - Concatenate the

Specified DDNAMES . « « « o « o« =«
Code X'10' - Deconcatenate the
Indicated DDNAME « o « « « o o o =«
Code X'14' - Return Qualifiers for
the sSpecified DSNAME
Code X'18' - Free the Spe01f1ed
Data set « « e« o o = o
Code X'1C' - Allocate the
Specified DDNAME to the Terminal .
Code X'24' - Allocate a Data Set
DY DDNAME « = 2 o o o o o o « o
Code X'28' - Perform a List of
DAIR Operations . « « « o o o «
Code X'2C' - Mark Data Sets as Not
in USE v o o o o o o o o o o o o« =
Code X'30' - Allocate a SYSOUT
Data Set o« ¢ o o ¢ o o ¢ o o o o o
Code X'34' - Build or Delete an
Attribute Control Block (ATRCB) .
DAIRACB - DAIR Attribute Control
Block e e o o o o s @
Return Codes from DAIR e e o o e o o @
Return Codes from Dynamic Allocation .

USING BSAM OR QSAM FOR TERMINAL I/O .
BSAM/QSAM Macro Instructions
SAM Terminal Routines . . . « « . «

Contents

47

47
51

52

53

60
63
64
65
66
68
69
72
73
74
76
77
80
85

86
87

GET
PUT and PUTX .
READ « « « «
WRITE
CHECK o« o« o o« @ . o o .
Record Formats, Bufferlng Technlques,
and Processing Modes . « « « « « = & &
Specifying Terminal Line Size
End of File (EOF) for Input Processing
Modifying DD Statements for Batch or
TSO PrOCESSING « « o o o o o = o o o =

USING THE TSO I/O SERVICE ROUTINES FOR
TERMINAL I/0 . . . a e o s e o o

Interface with the I/O Serv1ce Routines

The Command Processor Parameter List
The Input Output Parameter List . .
Passing Control to the I/0 Service
ROULINES v v ¢ o o o « o o o o o « o «
The I/0 Service Routine Macro
Instructions . . . - - - .«
STACK - Changing The Source of Input
The STACK Macro Instruction - List
Form . . . - e o o o e s o @
The STACK Macro Instructlon -
Execute FOrm « o« o « o ¢ @« o o o o«
Sources of Input - .
Building the STACK Parameter Block
Building the List Source
Descriptor (LSD) «
Return Codes From STACK . « « « «
GETLINE - Getting a Line of Input .
The GETLINE Macro Instruction -
List Form o o o o e o @
The GETLINE Macro Instructlon -
Execute FOrm « « « o o o« o o o o
Sources of Input . « « . . < . . .
End of Data Processing « « « « « «
Building the GETLINE Parameter
BlOoCK &« ¢ ¢ o o ¢« o a o o a s o
Input Line Format - The Input
Buffer © o o o 8 ° o
Examples of GETLINE o o o o o o @
Return Codes from GETLINE
PUTLINE - Putting a Line Out to the

Terminal « e o e e o
"The PUTLINE Macro Instructlon -
List Form « o o e o ®
The PUTLINE Macro Instructlon -
Execute Form . . . “
Building the PUTLINE Parameter
Block e o o o s o

Types and Formats of Output Lines
PUTLINE Message Line Processing: .
Return Codes From PUTLINE
PUTGET - Putting a Message Out to
the Terminal and Obtaining a Line of
Input in Response« e
The PUTGET Macro Instructlon -
List FOXM .« ¢ & o o o« o o s o o =
The PUTGET Macro Instruction -
Execute Form “ o »
Building the PUTGET Parameter
Block (PGPB) . & « & o « o+ « .
Types and Formats of the 0utput
Line " e e e .

« s o s 0
o]
o]

. 90

921
. 92
. 92
. 95

. 95
. 96

- 96
. 98
.100
.101
.105
.110
.110
<111
.113
.116
.116

-116
.118
-119
.122
.122
.123
.126
-.131
.133
.141
- 149
.149
.150
.154
.160

.162

Passing the Message Llnes to PUTGET 162

PUTGET Processing . « « « « « & o

.165

Input Line Format - the Input

Buffer . . . c ® o e o @ = @
An Example of PUTGET c e o e o e o
Return Codes From PUTGET

USING THE TGET/TPUT SVC FOR TERMINAL
I/70 @ o o e o o o o o s ® o o o o .
The TPUT Macro Instruction - Wr1t1ng a
Line to the Terminal « « « « o « « o« «
Return Codes From TPUT
The TGET Macro Instruction -- Gettlng
a Line From the Terminal
Return Codes from TGET . .« « « « « «
Formatting the TGET/TPUT Parameter

Registers e o o o o e ®
Coding Examples Of TGET And TPUT Macro
Instructions e e e e o e

Examples of Both TPUT and TGET Using
the Default values
Example of TPUT Macro Instructlon -
Buffer Address and Buffer Length in
Registers. « o e = o o
Example of the TGET Macro

Instruction -- Register Format . . .

USING TERMINAL CONTROL MACRO

INSTRUCTIONS e o = . .« .
GTSIZE -- Get Termlnal Llne Slze .
RTAUTOPT -- Restart Automatic Line
Numbering or Character Prompting .
SPAUTOPT -- Stop Automatic Line
Numbering or Character Prompting .
STATTN -- Set Attention Simulation

STATUS -- Change Subtask Status .
STAUTOCP -- Start Automatic
Character Prompting . . « « « .« «
STAUTOLN -- Start Automatic Line
Numbering . « ¢« ¢« ¢« ¢« o« &« & + « .
STBREAK -- Set Break
STCC -- Specify Terminal Control
Characters . « « « o « o . . .

STCLEAR -- Set Disrlay Clear

Character String . . « +« « « « « &
STCOM -- Set Inter-Terminal

Communication o =
STSIZE -- Set Terminal L1ne Slze .
STTIMEOU -- Set Timeout Feature .
TCLEARQ -- Clear Buffers

COMMAND SCAN AND PARSE - DETERMINING
THE VALIDITY OF COMMANDS . « « « « « &
Sequence of Operations
Using The Command Scan Service Routine
(IKIJSCAN) &« o o« o o « 2 o o « o o o =
Command Name SyntaXx .« « « « « « « &
The Parameter List Structure
Required by Command Scan
The Command Scan Parameter List .
Flags Passed to Command Scan . . .
The Command Scan Output Area . . .
The Operation of The Command Scan
Service Routine & ¢« <« .+ .
Results of the Command Scan
Return Codes from Command Scan . . .
Using the Parse Service Routine
(IKJPARS) e o © s s o e o o o e o o e
Command Parameter Syntax . « « « . .
Positional Parameters« . .

6 Guide to Writing a TMP or a CP (Release 21.6)

.166
.168
172
173

.174
<177

.178
.180

.181
.182

.182

.183

.184

.185
.185

.186

.187
.188
.189

.190

.191
.192

.193

.195

.196
.196
.198
.199

.201
. 201

.202
202

.203
.204
. 204
.204

.205
.207
. 207

.208
.211
.211

Keyword Parameters . « « « « « « « 221 Additional Facilities Provided by
Using the Parse Macro Instructions Parse e o 2 e e o o o « « 2270
to Define Command Syntax <222 Translation to Upper Case270
IKJPARM - Beginning the PCL and Insertion of Default Values270
the PDL . &« & o o o o o = « « o o« 2223 Passing Control to a Validity
IKJPOSIT - Describing a Checking Routine271
Delimiter-Dependent Positional Insertion of Keywords272
Parameter . « o« o« o o o« o o o o o 2224 Issuing Second Level Messages . . .272
IKJTERM - Describing a Prompting « « « o« o o o o o « o o« <273
Delimiter-Dependent Positional Examples of Using the PARSE Service
Parameter . .« o o o o o o« o o o o 2228 Routine e o o o o o o o 275
IKJOPER - Describing a Return Codes from the Parse Service
Delimiter-Dependent Positional Routine . . ¢ ¢ o & ¢ o ¢ o« &« « « . .288
Parameter . . o o o o o o o o o o 2232
IKJRSVWD - Describing a TESTING A NEWLY WRITTEN PROGRAM -- THE
Delimiter-Dependent Positional TEST COMMAND . v o =« o« « o o « o « « =« 2290
Parameter . . o« ¢« ¢ « o o = o o « 236 When You Would Use TEST . .« « . . . 292
IKJIDENT - Describing a Addressing Restrictions293
Non-Delimiter Dependent Positional Executing a Program Under the
Parameter e o = « 239 Control of TEST . . « « « « « « « « <293
IKJKEYWD - Descrlblng a Keyword Establishing and Removing
Parameter e o o o « o244 Breakpoints Within a Program:295
IKINAME - Listing the Keyword or Displaying Selected Areas of Storage .295
Reserved Word Parameter Names . . .245 Changing Instructions, Data Areas,
IKJSUBF - Describing a Keyword or Register Contents . « « « « « « o 2297
Subfield <« « « o248 Forcing Execution of Program
IKJENDP - Ending the Parameter Subroutines o ¢ o o o & o o 297
Control List =« ¢ &« ¢ ¢« o ¢« &« o« o . 2249 Using TEST After a Program ABEND . . .298
IKJRLSA - Releasing Storage Determining Data Set Information . .298
Allocated by Parse . . . « « « o . 249
Passing Control to the Parse Service APPENDIX A: TSO CONTROL BLOCKS299
Routine . . ¢ @ o o o o o o o « =« « 2250 Environment Control Table300
The Parse Parameter List251 Protected Step Control Block301
Formats of the PDEs Returned by Parse 252 Time-Sharing Job Block « « « «303
The PDL Header . . . - - « 252 User Profile Table306
PDEs Created for P031t10na1
Parameters o« o« « « o o o o o o o o« 252 APPENDIX B: NOTATION FOR DEFINING
Affect of List and Range Options MACRO INSTRUCTIONS . « 2 « « « « « « « 2307
on PDE Formats e o o o 263
The PDE Created for a Keyword GLOSSARY 2 o « « « « s o o o o o « « « <309
Parameter . « « ¢ o« « o « o o « « 2270

Contents 7

Figures

Figure 1. A LOGON Procedure
Containing Four DD DYNAM Entries .- .
Figure 2. Requesting a Command . . .
Figure 3. The TSEVENT Macro
Instruction Specifying PPMODE
Figure 4. ABEND, STAE, STAI
Relationship © e % e o o e o @ = e o
Figure 5. The Test Parameter List
(Part 1 of 3) . . o ¢ o« o o o w o &« =
Figure 6. Parameters Passed to the
Attention Exit Routine « t e e e e e
Figure 7. The Attention Exit
Parameter List o e e o o« o e o =
Figure 8. The Term1na1 Attention
Interrupt Element« e
Figure 9. Storage Map - MVT w1th
Time Sharing Option . . « . « « .« .« .
Figure 10. Cards Used to Format a
HELP Data Set . . . e o o o e o =
Figure 11. Coding Example --
Including the SAMPLE Command in the
HELP Data Set .« ¢ « o« o o o o o o o «
Figure 12. The STAX Macro Instruction
-- List and Execute Forms . . . <. . .
Figure 13. Using Registers in the
STAX Macro Instruction “ e e e e e .
Figure 14. The STAX Parameter List .
Figure 15. Coding Example -- STAX
Macro Instruction . . « o o
Figure 16. Control Blocks Passed to
DAIR « o o e« e o s e e o o s e e @
Figure 17. Format of the DAIR
Parameter List (DAPL) « « . .
Figure 18. DAIR Entry Codes and Their
Functions . « « o o o o « « o « o «
Figure 19. DAIR Parameter Block --
Entry Code X'00"' . . « & & ¢ o o o o .
Figure 20. DAIR Parameter Block --
Entry Code X'O04°' c o s o o s e = o @
Figure 21. DAIR Parameter Block --
Entry Code X'08'" (Part 1 of 3) « . .
Figure 22. DAIR Parameter Block --
Entry Code X'0OC*® « o e o o o e e o
Figure 23. DAIR Parameter Block --
Entry Code X'10" . . . ¢ ¢ ¢ o o « o .
Figure 24. DAIR Parameter Block --
Entry Code X"14' . . . ¢ ¢ o o o o o «
Figure 25. DAIR Parameter Block --
Entry Code X*'18' (Part 1 of 2) « o
Figure 26. DAIR Parameter Block --
Entry Code X"1C" ¢ o o« o o o o o s « @
Figure 27. DAIR Parameter Block --
Entry Code X'24' (Part 1 of 3) « e .
Figure 28. DAIR Parameter Block --
Entry Code X"28" . . . & ¢ ¢« 4 o o o .
Figure 29. DAIR Parameter Block --
Entry Code X'002C" v & o v o o o « o =
Figure 30. DAIR Parameter Block --
Entry Code X'30' (Part 1 of 2) o o e
Figure 31. DAIR Parameter Block --
Entry Code X'34' e o o e s o ° s e o

22
24

25
26
27
31
32
32
36
43

4y
48

50

52
55
56
57
58
59
60
63
64
65
66
68
69
72
73
74

76

Figure 32.

Block (DAIRACB)

Figure 33.

DAIR Attribute Control
(Part 1 of 2
BSAM/QSAM Function under

TSsO (Part 1 of 2) e e e e e

Figure 34.

Control Block Interface

Between TMP and CP s s o = s o o »

Figure 35.

The Command Processor

Parameter List (CPPL)

Figure 36.
List .- .
Figure 37.

The Input Output Parameter

Control Block Interface

Between TMP and I/0 Service Routine .

Figure 38.

The List Form of the STACK

Macro Instruction . . ¢ =« ¢« ¢ o + o o

Figure 39.

The Execute form of the

STACK Macro Instruction . . .

Figqure 40.
Figure 41.
In-Storage
Figure 42.
Sspecifying
Source .

Figure 43.

Figure u44.
In-Storage
Figure 45.
Specifying

The STACK Parameter Block
STACK Control Blocks: No
List o o o o ¢ o o o @ -

Coding Example -- STACK
the Terminal as the Input
The List Source Descriptor
STACK Control Blocks:
List Specified
Coding Example -- STACK
an In-Storage List as the

Input Source (Part 1 of 3) « e s e e

Figure 46.

The List Form of the

GETLINE Macro Instruction . . . - .

Figure 47.

The Execute Form of the

GETLINE Macro Instruction

Figure 48.
Block . .
Figure 49.

The GETLINE Parameter

Format of the GETLINE

Input Buffer e o o o @ ® o % = e o e

Figure 50.
Input Line
Figure 51.
Executions
Figure 52.

PUTLINE Macro Instruction

Figure 53.

GETLINE Control Blocks -
Returned . « « « o« o « o« &
Coding Example -- Two

of GETLINE (Part 1 of 2) .
The List Form of the

The Execute Form of the

PUTLINE Macro Instruction

Figure 54.

The PUTLINE Parameter

Block (Part 1 of 2) . «v ¢ o o o o « &«

Figure 55.
Format
Figure
Single
Figure
Format .
Figure 58.
Multi-Line
Figure 59.
Figure 60.

56.

57.

PUTLINE Single Line Data

Coding Example -- PUTLINE

Line Data e e o o e s e @& o @

PUTLINE Multi-Line Data
Coding Example -- PUTLINE
Data (Part 1 of 2)
The Output Line Descriptor
Control Block Structures

for PUTLINE Messages « o e - o

Figure 61.

PUTLINE Functions and

Message TYPES =« o o o o o o o o o o =

8 Guide to Writing a TMP or a CP (Release 21.6)

. 77
. 86
. 91

. 92
. 93
. 94
. 96
. 98
.102
.103
.104
105

.106

.107
.111
.113
117
.118
-119
.120
.123
.127
.132
.134
.135
.136

.137
139

.140

141

Figure 62.

Coding Example —-- PUTLINE

Text Insertion (Part 1 of 2)

Figure 63.

(Part 1 of
Figure 6U4.
PUTGET
Figure
PUTGET
Figure 66.
(Part 1 of
Figure 67.
(OLD) .
Figure 68.
for PUTGET
Figure 69.
Buffer .
Figure 70.

65.

Structure - Input Line Returned

Coding Example -- PUTLINE
Second Level Informational Chaining

2)

The List Form of the

Macro Instruction o e
The Execute Form of the
Macro Instruction P

The PUTGET Parameter Block

2) ... e e e ..

The Output Line Descriptor

Control Block Structures
Output Messages .

Format of the PUTGLT Input

PUTGET Control Block

Figure 71. Coding Example -- PUTGET
Multi-Level PROMPT Message (Part 1 of
3) e e e e e e e e s e e s e e eoae
Figure 72. The TPUT Macro Instruction
-- Standard and Register Forms « e .
Figure 73. The TGET Macro Instruction
-- Standard and Register Forms « . .
Figure 74. TGET/TPUT Parameter
REgIiSters .« o o o o o o a o o a o o =
Figure 75. Coding Example -- of TPUT
and TGET Macro Instructions Using the
Default values o o o = - “ o e .
Figure 76. Coding Example. TPUT Macro

Instruction Buffer Address and Buffer

Length in Registers
Coding Example: TGET

Figure 77.
Instruction
Figure 78.
Instruction
Figure 79.
Instruction
Figure 80.
Instruction
Figure 81.
Instruction
Figure 82.
Instruction
Figure 83.
Instruction
Figure 84.
Instruction
Figure 85.
Instruction
Figure 86.
Figure 87.
Instruction
Figure 88.
Instruction
Figure 89.
Instruction
Figure 90.
Instruction
Figure 91.
Instruction
Figure 92.

Structure Passed to Command Scan

Figure 93.
List . .

Register Format .
The GTSIZE Macro

The RTAUTOPT Macro
The SPAUTOPT Macro

The STATTN Macro

The STATUS Macro
The STAUTOCP Macro
The STAUTOLN Macro

The STBREAK Macro

« & e e e e = =

The STCC Macro Instruction

The STCLEAR Macro
The STCOM Macro
The STSIZE Macro
The STTIMEOU Macro
The TCLEARQ Macro

The Parameter List

Macro

The Command Scan Parameter

e e @ ®» & e & o e e

.luu

. 147
.150
.155
.160
.163
.164
.167

.168

.169
174
.178
.181

.182

.183
.184
.186
.186
.187
.188
.189
.191
.192

.193
194

.195
.196
.197
.199
.200
.203

.204

Figure 94. The Command Scan Output
Area e« e o+ s e o o e o s s o e e o
Figure 95. Character Types Recognized
by Command Scan and Parse . « « . . .
Figure 96. Return from Command Scan -
CSOA and Command Buffer Settings .- o
Figure 97. A Command Processor Using

the Parse Service Routine
Figure 98. Delimiter-Dependent
Parameters e o o o o s o o s o e
Figure 99. The IKJPARM Macro
Instruction . . « ¢« & « o o « « &
Figure 100. The Parameter Control
Entry Built by IKJPARM
Figure 101. The IKJPOSIT Macro
Instruction . . « « o« o ¢ o o o &«
Figure 102. The Parameter Control
Entry Built by IKJPOSIT (Part 1 of
Figure 103. The IKJTERM Macro
Instruction . « « ¢« ¢« ¢ ¢ o o o« &
Figure 104. The Parameter Control
Entry Built
Figure 105. The IKJOPER Macro
Instruction . « « ¢ o ¢ « o o o &
Figure 106. The Parameter Control
Entry Built
Figure 107. The IKJRSVWD Macro
Instruction . . « ¢ ¢« o o« o « « &«
Figure 108. The Parameter Control
Entry Built by IKJRSVWD (Part 1 of
Figure 109. The IKJIDENT Macro
Instruction . « ¢« ¢ o ¢ o o o o
Figure 110. The Parameter Control
Entry Built by IKJIDENT (Part 1 of
Figure 111. The IKJKEYWD Macro
Instruction . .« . ¢ ¢ « ¢ o o «
Figure 112. The Parameter Control
Entry Built by IKJKEYWD (Part 1 of
Figure 113. The IKIJNAME Macro
Instruction (When used with the
IKJKEYWD Macro Instruction) . . .
Figure 114. The IKJNAME Macro
Instruction (when used with the
IKIJRSVWD MACYO) =« « o « o o o o =

Figure 115. The Parameter Control
Entry Built by IKINAME e e o
Figure 116. The IKJSUBF Macro :

Instruction <« « « ¢ o ¢ o o o o @
Figure 117. The Parameter Control
Entry Built by IKJSUBF « e e e e
Figure 118. The IKJENDP Macro
Instruction . « « &« &« o ¢ o o o &
Figure 119. The Parameter Control
Entry Built by IKJENDP e o o o o
Figure 120. The IKJRLSA Macro
Instruction . . . ¢« ¢ ¢ ¢ ¢ ¢ o .
Figure 121. Control Flow Between
Command Processor and Parse . . .
Figure 122.
Figure 123. A PDL Showing PDEs
Describing a List o
Figure 124. A PDL Showing PDEs
Describing a Range e e e e e e e
Figure 125. PDL Showing PDEs
Describing LIST and RANGE Options
Figure 126. PDL - LIST and RANGE

2)

e ®

by IKJTERM (Part 1 of 2) .

e e

by IKJOPER (Part 1 of 2) .

2)

3)

2)

The Parse Parameter List

e o

Acceptable, Single Parameter Entered

Figures

. 205
.206
.207
.209
.212
.223
.223
. 224
. 226
.228
. 230
.232
-234
.236
. 237
.239
.241
.244

.2hy

. 245

. 246
. 247
.248
.248
.249
. 249
.249

.250
.251

. 264
. 265
. 266

. 267

9

Figure 127. PDL - LIST and RANGE
Acceptable, Single Range Entered .« o
Figure 128. PDL - LIST and RANGE
Acceptable, LIST Entered .« .« .
Figure 129. PDL - LIST and RANGE
Acceptable, A LIST of Ranges Entered
Figure 130. Format of the Validity

Check Parameter List e o o o o o o o
Figure 131. Return Codes from a
Validity Checking Routine
Figure 132. Coding Example 1 -- 031ng
Parse Macros to Describe Command

Parameter Syntax . o . o e e
Figure 133. An IKJPARMD DSECT
(Example 1) e o o .« « o o =
Figure 134. The IKJPARMD DSECT and

the PDL (Example 1) . o« o« o o« o « o &
Figure 135. Coding Example 2 -- Using
Parse Macros to Describe Parameter
Syntax e o e o o o o e o o o e = o o
Figure 136. An IKJPARMD DSECT
(Example 2) ¢ 2 o o o o o« o o o o o «

.267
.268
.269
271

272

.276
277
.278

279

.280

Figure 137. The IKJPARMD DSECT and
the PDL (Example 2) e o o o s e o
Figure 138. Coding Example 3 -- Using
Parse Macros to Describe Parameter
Syntax “ o ® o o ® &2 ® o a 8 s ®° ® o
Figure 139. An IKJPARMD DSECT
(Example 3) o ¢ o ¢ o o o o o o o o
Figure 140. The IKJPARMD DSECT and
the PDL (Example 3) o« o o . .
Figure 141. Coding Example u - U31ng
Parse Macros to Describe Parameter
Syntax e o o o o o s e ° s s e e o @
Figure 142. An IKJPARMD DSECT
(Example U4) < & ¢ o o o o o o o o o @
Figure 143. The IKJPARMD DSECT and
the PDL (Example 4) e o« % e o o ®
Figure 144. The TEST Subcommands . .
Figure 145. Issuing the TEST Command
Figure 146. Environment Control Table
Figure 147. Protected Step Control

Block (Part 1 of 2)
Figure 148. Time-Sharing Job Block
(Part 1 of 3) o o o

Figure 149. User Profile Table .« e

10 Guide to Writing a TMP or a CP (Release 21.6)

.282

.283
.284

. 285

. 286
.287
.288
.291
.294
.300
.301

.303
.306

DAIRACB - DAIR Attribute Control Block
A correction is made to Figure 30.2.

USING THE PARSE SERVICE ROUTINE (IKJPARS)
The following three macro instructions
are added to the Parse Service Routine.

e IKJTERM
e IKJOPER
e TKJRSVWD

These macro instructions provide syntax
checking for the following positional
parameter types.

CONSTANT
VARIABLE
STATEMENT NUMBER
EXPRESSION
RESERVED WORD

Information is provided in the section
entitled "Using the Parse Service
Routine" (IKJPARS)

Summary of Amendments
for GC28-6764-2
OS Release 21.6

IKIJNAME - Listing the Keyword or Reserved

Word Parameter Names

The IKJNAME macro instruction can be
used with the additional Parse macro
instructions.

RETURN CODES FROM THE PARSE SERVICE ROUTINE

Return code 24 (decimal) is added to
the Parse routine.

Summary of Amendments 11

Summary of Amendments

for GC28-6764-1

as Updated by GN28-2523
Component Release 360S-0S-586

DYNAMIC SPECIFICATION OF DCB PARAMETERS

New fields are defined for the following Two new parameter blocks are described:
DAIR Parameter Blocks (DAPB): DAPB, Entry Code X'34'
Entry Code X'08"' DAIRACB - DAIR Attribute Control
Entry Code X'iC"' Block

Entry Code X"24°
Entry Code X'30°

12 Guide to Writing a TMP or a CP (Release 21.6)

LOGON PROCEDURE (Page 20)
A error is corrected in Fiqure 1.

INITIALIZATION OF THE TERMINAL MONITOR
PROGRAM (Page 21)
The length subfield of the PARM field
of the LOGON EXEC statement is
described.

INVALID INFORMATION IN A JOB FILE CONTROL
BLOCK (Page 32)
A previously used job file control
block may contain invalid information
from an earlier used DCB. The problem
and the procedure to circumvent this
problem is clarified.

ADDING COMMANDS TO THE TIME SHARING OPTION
(Page 39)
The method of adding a new member to
SYS1.CMDLIB or concatenating a new
command library to SYS1l.CMDLIB is
clarified.

FORMATTING THE HELP DATA SET (Pages 40-42)
Method of adding new information to the
HELP data set is clarified.

STAX MACRO INSTRUCTION (Pages 45,47)
Clarification and guidance on the use
of this macro have been added.

DAIR PARAMETER BLOCKS (Pages 55-73)
Miscellaneous changes, corrections, and
clarifications have been added.

DYNAMIC ALLOCATION INTERFACE ROUTINE (Pages

52-54,74-79)
Errors have been corrected, and new
return codes have been added and others
deleted for DAIR and Dynamic
Allocation. Requirements for
availability of a direct access device
have been stressed. The description of
the DAIR parameter list has been
improved.

TERM=TS PARAMETER (Page 84)
Typographic error is corrected.

Summary of Amendments
for GC28-6764-1
OS Release 21

STACK PARAMETER BLOCK (Pages 97-98)
Corrections and clarifications are
added.

PUTLINE PARAMETER BLOCK (Page 128)
Additional information on the PTPBOPUT
field has been added.

PUTGET PARAMETER BLOCK (Page 155)
Corrections have been added.

PUTGET Return Codes (Page 167)
Clarifications and corrections have
been made.

TPUT MACRO INSTRUCTION (Pages 169-172)
Describes the capability of the TJID
operand when the macro is issued from a
background program.

Describes two new operands, HIGHP and
LOWP.

In addition, adds general
clarifications to the TPUT description.

TGET MACRO INSTRUCTION (Pages 174-175)
Adds clarifications and corrections.

TERMINAL CONTROL MACRO INSTRUCTIONS (Pages
180-195))
The following macro instructions have
been moved from the Supervisor and Data
Management Macro Instructions SRL to
this book:

GTSIZE, RTAUTOPT, SPAUTOPT, STATTN,
STATUS, STAUTOCP, STAUTOLN, STBREAK,
STCC, STCLEAR, STCOM, STSIZE, STTIMEOU,
TCLEARQ.

Clarifications and corrections have
made throughout.

COMMAND SCAN SERVICE ROUTINE (Page 197)
Adds new topic to describe command name
syntax for a user-written command.

PARSE MACRO INSTRUCTIONS (Pages 213-215)

Typographic errors are corrected.

Summary of Amendments 13

QUOTED STRING NOTATION (Pages 215-216)
The quoted string option SQSTRING is
added to the IKJPOSIT macro
instruction.

TEST COMMAND (Pages 255-257,261)
COPY, a new subcommand, and Assignment
(=), an old subcommand previously
omitted, have been added to the list of
TEST subcommands. The use of symbolic
addresses has been clarified.

TSO CONTROL BLOCKS (Page 263)
A legend has been added that describes
the "bytes and alignment" column of
each control block.

ENVIRONMENT CONTROL TABLE (ECT) (Page 264)
Errors have been corrected, and the
tabulation has been clarified.

PROTECTED STEP CONTROL BLOCK (PSCB) (Pages
265-266)
Errors have been corrected, and the
tabulation has been clarified.
Information on the default unit name
(PSCBGPNM) has been added.

TIME SHARING JOB BLOCK (Pages 267-269)
New fields have been added and
clarifications have been made.

USER PROFILE TABLE (Page 270)
Descriptions have been improved.

14 Guide to Writing a TMP or a CP (Release 21.6)

FLUSHING OF TGET AND TPUT BUFFERS
When an attention interruption is
received, the TGET and TPUT buffers are
flushed. The contents of these buffers
(if any) are lost.

NEW RETURN CODES FROM DAIR
The meaning of DAIR return code 32 has
been changed. DAIR return code U4 has
been added.

NEW OPERAND ADDED TO THE STAX MACRO
INSTRUCTION
A new operand, DEFER=YES or NO, has
been added to the STAX macro
instruction to allow the deferring of
attention processing.

EDIT AND ASIS OPERANDS HAVE BEEN REDEFINED
The descriptions of the EDIT and ASIS
operands have been rewritten. These
changes appear in the GETLINE, PUTLINE,
and PUTGET macro descriptions as well
as in the TGET and TPUT macro
descriptions.

Summary of Amendments
for GC28-6764-0

as Updated by GN28-2484
OS Release 20.1

TSEVENT MACRO INSTRUCTION, PPMODE, HAS BEEN
DESCRIBED
The TSEVENT macro instruction should be
issued by a newly written Terminal
Monitor Program, to update SMF records
and the TSO Trace Writer entries.

REVERSE MERGE INTO THE JOB FILE CONTROL

BLOCK HAS BEEN DESCRIBED

A previously used JFCB may contain
invalid information obtained from an
earlier used Data Control Block.

NEW OPERANDS ON THE PUTGET MACRO

INSTRUCTION

The TERM and ATTN operands have been
added to the PUTGET macro instruction.
These operands affect especially the
processing of I/0 from an Attention
Exit.

summary of Amendments 15

16 Guide to Writing a TMP or a CP (Release 21.6)

Introduction

TSO, the Time Sharing Option of the IBM System/360 Operating System,
consists of many, relatively small, functionally distinct modules of
code. One major benefit of this modular construction is that the Time
Sharing Option may be added to or modified to better suit the needs of
the installation and each user. You can add to TSO, replace
TSO-supplied code with your own, and delete those functions of TSO which
you do not require.

TSO is composed of modules that perform timing, control, and
accounting functions, and other modules that communicate with the user
at the terminal and perform the work requested by him.

Modifications to the control program portions of TSO should be made
only by system programmers responsible for the proper functioning of the
Time Sharing Option within the System/360 MVT configuration of the
operating system. These modifications are discussed in the Time Sharing
Option Guide.

Each installation of the Time Sharing Option can replace those
portions of TSO that communicate directly with the user at the terminal.
The portions of TSO that communicate with the user are the Terminal
Monitor Program (TMP) and the command processors.

If you choose to write your own Terminal Monitor Program or command
processors, you can use service routines, interface routines, and macro
instructions, supplied with TSO or modified to support TSO, to provide
many of the functions required by a TMP or a command processor.

THE TERMINAL MONITOR PROGRAM (TMP) AND COMMAND PROCESSORS

The Terminal Monitor Program is a reenterable problem program that
accepts and interprets commands, and causes the appropriate command
processors to be scheduled and executed.

When a user logs on to TSO, he must specify, via the LOGON command,
the name of a LOGON procedure. The program named in the EXEC statement
in the LOGON procedure is attached during the log on as the Terminal
Monitor Program. The program named in the EXEC statement can be either
the TMP supplied with TSO, one provided by the installation, or one you
have written yourself.

Any Terminal Monitor Program must be able to communicate with the
user at the terminal, fetch and pass control to command processors,
respond to abnormal terminations at its own task level or at lower
levels, and respond to and process attention interruptions.

Once the log on has completed, the Terminal Monitor Program requests
the user at the terminal to enter a command name. The TSO-supplied TMP
writes a READY message to the terminal to request that a command be
entered. The TMP determines if the response entered is a command,
attaches the requested command processor, and the command processor
performs the computing functions requested by the user at the terminal.

You can write your own command processors and add them to the
TSO-supplied command library; you can concatenate your own command
library to the one supplied with TSO, or you can replace the entire TSO
command library with your own.

Introduction 17

Command processors must be able to communicate with the user at the
terminal, respond to abnormal terminations, process attention
interruptions, and if required, fetch, pass control to, and respond to
abnormal terminations of subcommand processors.

BASIC FUNCTIONS OF TERMINAL MONITOR PROGRAMS AND COMMAND PROCESSORS

You can see from the preceding discussion, that any Terminal Monitor
Program and any command processor must provide four basic functions:

1. Both the TMP and command processors must be able to communicate
with the user at the terminal.

2. The TMP must be able to fetch and pass control to a command
processor. A command processor must be able to fetch and pass
control to its subcommand processors if it has any.

3. Both the TMP and command processors must be able to intercept and
investigate abnormal terminations.

4. Both the TMP and command processors must be able to respond to and
process attention interruptions entered from the terminal.

You can provide each of these functions to a Terminal Monitor Program
or a command processor by using a service routine or a macro instruction
provided with or modified to support TSO.

Communicating with the User at the Terminal

With TSO there are three ways a program can communicate with a user at a
terminal:

1. The BSAM or QSAM access methods. The major benefit of using BSAM
or QSAM to process terminal I1I/0 is that programs using these access
methods do not become TSO dependent or device dependent and can
execute either under TSO or in the batch environment.

2. The STACK, GETLINE, PUTLINE, and PUTGET I/0 service routines.
Reached through the STACK, GETLINE, PUTLINE, and PUTGET macro
instructions, the I1/0 Service routines provide the following
functions:

STACK - The STACK service routine establishes and changes the
source of input by adding elements to or deleting elements from, an
internally maintained input stack. The top element on the input
stack determines the current source of input.

GETLINE - The GETLINE service routine obtains all input lines other
than commands or subcommands, and responses to prompting messages
(a prompting message asks the user at the terminal to supply
required information). The GETLINE service routine returns these
lines of input from the input source designated by the top element
of the input stack.

PUTLINE - The PUTLINE service routine formats output lines, writes
them to the terminal, and chains second level messages to be
written out in response to a question mark from the terminal.

PUTGET - The PUTGET service routine writes a message to the
terminal and obtains a response from the terminal. A message
written to the user at the terminal which requires a response is
called a conversational message.

18 Guide to Writing a TMP or a CP (Release 21.6)

3. The TGET and TPUT supervisor call. A supervisor call routine, SVC
93, is reached through the TGET and TPUT macro instructions. TGET
and TPUT provide a route for I/0 to a terminal. The functions are
not as extensive, however, as those provided by the I/0 service
routines.

Each of these methods performs different functions and is thus suited
for particular I/0 situations. The programmer designing his own TMP or
command processor must understand which of the I/0 methods best provides
the I/0 support required in different programming situations.

Passing Control to Commands and Subcommands

A Terminal Monitor Program must be able to recognize a command name
entered into the system, fetch the requested command processor, and pass
control to it. A command processor must be able to perform the same
functions when a subcommand name is entered.

You can use the Command Scan service routine to scan the input line
for a syntactically valid command name or subcommand name, issue the
BLDL macro instruction to search command libraries for the requested
command processor or subcommand processor, and issue the ATTACH macro
instruction to pass control to the requested routines.

When you write a command processor or subcommand processor, you can
use the Parse macro instructions to describe to the Parse service
routine the operands that may be entered with the command name. You can
then use the Parse service routine to determine which operands are
present in the input buffer. The Parse service routine compares the
information you supplied in the Parse macro instructions with the
contents of the input buffer. This comparison indicates which operands
are present in the input line. The Parse service routine returns a list
to the calling routine, indicating which operands were found in the
buffer. These operands indicate to the processing routines which
functions the user at the terminal is requesting.

Responding to Abnormal Terminations

Oone of the responsibilities of a programmer coding a routine to run
within TSO is to do all possible to keep that routine from causing the
abnormal termination of TSO. If you write your own Terminal Monitor
Program or command processors, you should use the STAE macro instruction
and the STAI operand on the ATTACH macro instruction to provide error
handling exits.

Use the STAE macro instruction to provide the address of an error
handling routine to be given control if any routine at the same task
level as the error handling routine begins to terminate abnormally.

Use the STAI operand on the ATTACH macro instruction to provide the
address of an error handling routine to be given control if a routine at
a lower task level begins to terminate abnormally.

Responding to Attention Interruptions

The Terminal Monitor Program and any command processor that accepts
subcommands must be able to respond to an attention interruption entered
from the terminal. An attention interruption is interpreted within TSO
as a signal that the user may want to request a new command or
subcommand. You must provide attention exits that can obtain a line of
input from the terminal and respond to that input.

Use the STAX service routine, reached through the STAX macro

instruction, to build the control blocks and queues necessary for the
system to recognize and schedule your attention handling routines.

Introduction 19

OTHER FUNCTIONS PROVIDED WITH TSO
Aside from the four basic functions provided by a Terminal Monitor

Program or a command processor, other functions, peculiar to time
sharing, can be obtained using routines provided with TSO.

Two of these functions are:

1. The dynamic allocation of data sets.

2. The immediate, on-line testing of a newly written Terminal Monitor
Program or command processor.

These two functions are provided through the Dynamic Allocation
Interface Routine (DAIR), and the TEST command processor.

The Dynamic Allocation of Data Sets

The LOGON procedure named in the LOGON command contains DD statements
that define the data sets to be used during a TSO session, and other DD
statements, called DD DYNAMS. These DD DYNAMS do not define data sets;
they are used by Dynamic Allocation routines to provide data sets
requested during program execution by a Terminal Monitor Program or a
command processor.

If you write your own Terminal Monitor Program or command processor,
you can use the Dynamic Allocation Interface Routine (DAIR) to invoke
Dynamic Allocation routines. Using DAIR, you can request Dynamic
Allocation to:

Obtain the current status of a data set.
Allocate a data set.

Free a data set.

Concatenate data sets.

Deconcatenate data sets.

Testing a Terminal Monitor Program or a Command Processor

After you have coded a new Terminal Monitor Program or command
processor, you will want to test it before you enter it into the Time
Sharing Option. You can use the TEST command to do this.

The TEST command permits a user at a terminal to test an assembly
language program. You test a program by issuing the TEST command and
the various TEST subcommands that perform the following basic functions:

e Execute the program under test from its starting address or from any
address within the program.

e Display selected areas of the program as it appears in main storage,
or display the contents of any of the registers.

e Interrupt the program under test at a specified location or
locations.

e Change the contents of specified program locations in main storage
or the contents of specific registers.

In addition to these basic debugging functions, you can use the TEST

command processor to display various control blocks, program status
words, or a main storage map of the program being tested.

20 Guide to Writing a TMP or a CP (Release 21.6)

SUMMARY

Most of the functions of a terminal monitor program or a command
processor can be provided with macro instructions, service routines, or
supervisor call routines supplied with the Time Sharing Option.

The following sections describe when and how to use these various
macro instructions and routines.

Introduction 21

The Terminal Monitor Program

The Terminal Monitor Program (TMP) is a reenterable problem program that
provides an interface between the terminal user, command processors, and
the Time Sharing Control Program. The TSO LOGON/LOGOFF Scheduler
attaches the TMP. The TMP is the program you name on the EXEC statement
of your LOGON cataloged procedure.

Specifying Data Sets at LOGON

The volumes that contain your data sets cannot be mounted during a
terminal session. The volumes must be mounted before the terminal user
logs onto the system. The LOGON procedure indicated on the LOGON
command contains DD statements that define the data sets to be used
during the TSO session, and other DD statements, called DD DYNAM
statements, that do not define data sets. These DD DYNAM statements
provide blank entries in the Task Input Output Table and the Data Set
Extension. These entries are available for the dynamic allocation of
previously unallocated data sets. Figqure 1 shows an example of a user
LOGON procedure containing four DD DYNAM entries. For a complete
discussion of a LOGON procedure, see Time Sharing Option Guide.

/\/\viRlplRlolcl | 1EIXIEId | 1P6m=17klv|FIA 7101

/\/\8|7IElPILI/ 1Bl 10|10 0\SIV|=|AIBRZ /108885 |/ |51P = |SWe
/\/ o D\S V|=|Plv|7icIMD|, 10!/ 15|P=l0lL 1D
/I oo DisIV=Islyisiz]. clmiplL]/1B]; [0/]s]Pl=is v/
/\/\0oi2 D\0 oYy \wAM

// 0oz Dlp Dly |w\Alm

/I/SWisiviriz] | olp 0I5 IN=|8|€15 lyislviT|2], WY TI=12{3 121,
/V SPACIE = (TTIRI4, (1214, 150)

I/ WELIPOY | \Dp olsW=lslyislz]. [Wiel Pl 10l s\Pl=Is Wi
/l/10\03 DD A

/0104 Lp Dl IMA

Figure 1. A LOGON Procedure Containing Four DD DYNAM Entries

The Terminal Monitor Program you use can be the TMP supplied with
TSO, or one provided by the installation, or one you have supplied
yourself. If you choose to write your own Terminal Monitor Program, use
the TSO service routines and macro instructions described in this book
to help you code the TMP and fit it into the Time Sharing Option.

The TMP must be able to respond to the following four conditions:

1. Normal completion of a command processor or user program, and the
requesting of another command.

2. An error causing termination of the TMP, a command processor, or a
user program.

3. An attention request from the terminal, causing an interruption of
the current program.

22 Guide to Writing a TMP or a CP (Release 21.6)

4. A STOP operator command, forcing a LOGOFF for the user.

This section explains how to respond to these conditions. It
describes in general terms how the TSO-supplied TMP functions, and how
it fits together with the rest of the Time Sharing Option. For a more
specific description of the TSO-supplied TMP, see the TSO Terminal
Monitor Program and Service Routines PLM.

Terminal Monitor Program Initialization

When the TMP is attached by the LOGON/LOGOFF scheduler:

e Register 1 contains the address of the value found in the PARM field
of the EXEC statement in the LOGON cataloged procedure. The
TSO-supplied TMP uses this PARM value as the first command
requested. The first two bytes of the PARM value are on a halfword
boundary and contain the length of the PARM value. (The length
value does not include the two length bytes.)

e Register 13 contains the address of the register save area.

e Register 14 contains the return address of the LOGON/LOGOFF
scheduler.

e Register 15 contains the entry point address of the TMP.

The TMP sets up the tables and control blocks it requires, loads the
TIME command processor, sets up the STAE and STAI exits to respond to
abnormal terminations, sets up the attention exits, builds the command
buffer, and initializes the input stack to point to the terminal. The
TMP then uses the EXTRACT macro instruction to obtain the addresses of
the STOP/MODIFY ECB and the Protected Step Control Block (PSCB) built by
the LOGON/LOGOFF scheduler.

The TSO-supplied Terminal Monitor Program attaches the command
processor named in the EXEC statement PARM field. If no command was
named as a PARM operand, the TMP issues a PUTGET macro instruction to
obtain the first command. The TMP shares subpool 78 with the attached
command processor but does not share subpool 0. The command processor,
in turn, must share subpool 78 with any lower level tasks.

Requesting a Command
Figure 2 summarizes the steps taken by a Terminal Monitor Program to

obtain a command, to pass control to that command, and to detach that
command when it has finished processing.

The Terminal Monitor Program 23

Terminal Monitor

Program

IKPTGT b PUTGET service routine
e A gets next command from
P NI terminal .

IKJSCAN SCAN Service Routine

-t checks for valid command EDIT covveennnn Ceeeeann .

~ name syntax
~——ee Command Library
A~

BLDL BLDL searches the Command
e N Library for the Command Command

Processor

Processor
A,

Main Storage

ATTACH attaches the
Command Processor

—_—— TSO User's Region

DETACH detaches the

E
1

Command Processor _/

Coyyfand

e Progegsor
e / N\

IKJDAIR P DAIR frees data sets
A dynamically allocated by

e - the Command Processor

Figure 2. Requesting a Command

To request a command from the terminal, use the PUTGET service
routine. The PUTGET service routine first writes a line to the terminal
to inform the user that another command is expected, then returns a line

entered in response to the request, and places that line into a command
buffer.

Use the Command Scan service routine to determine that the line of
input is a syntactically valid command name.

Use the BLDL macro instruction to search the command library or
libraries for the command processor load module indicated by the command
name, and use the ATTACH macro instruction (specifying a STAI exit
routine) to pass control to the requested command processor.

24 Guide to Writing a TMP or a CP (Release 21.6)

Your TMP must create any parameters expected by the command processor
and pass them to the newly attached command processor. The TSO-supplied
TMP passes the address of a Command Processor Parameter List in register
one. See the section headed "Interface with the I/0 Service Routines".

When the command processor completes, the TMP issues a DETACH macro
instruction for it, uses the DAIR service routine to mark dynamically
allocated data sets available to be freed, and uses the PUTGET service
routine to obtain anocther command.

Please note that the use of an installation-supplied program in place
of the Terminal Monitor Program can result in invalid values for the
core occupancy time field in SMF record 34, and may cause invalid TSO
Trace Writer entries. This situation occurs only when a single user is
assigned to a foreground region and the installation-supplied program
runs to completion without being swapped out of main storage.

To avoid this problem, your user-written Terminal Monitor Program
should issue the TSEVENT macro instruction, specifying the PPMODE
operand, before attaching each command processor and after each command
processor returns. This issuance of the TSEVENT macro instruction
causes SMF record 34 and the TSO Trace Writer entries to be updated.

Issue the TSEVENT macro instruction as follows:

1. Set register one to point to the first character of the command
name being attached or released.

2. Set the high order bit in register one to:
1 if the command processor is beginning execution.
0 if the command processor is ending.

3. Code the TSEVENT macro instruction as shown in Figure 3.

r T T
| [labell | TSEVENT | PPMODE

L L L

Figure 3. The TSEVENT Macro Instruction Specifying PPMODE

S

Intercepting an ABEND

The Terminal Monitor Program must be able to recognize and respond to
two basic types of ABEND situations:

1. An attached subtask, for example a command processor, is
terminating abnormally.

2. The TMP itself or a program linked to by the TMP, for example TEST
or Command Scan, is terminating abnormally.

INTERCEPTING A SUBTASK ABEND

When a subtask of the Terminal Monitor Program begins to terminate
abnormally, the TMP STAI exit, specified by the TMP when it attached the
subtask, receives control. The TMP STAI exit receives control under the
TCB of the abending subtask. The subtask will already have performed
its own STAE processing, if any was specified. Figure 4 shows the
ABEND, STAE, STAI relationship.

The Terminal Monitor Program 25

Terminal Monitor Program

STAE Exit - For ABEND at
TMP TCB Level.

STAI Exit - For ABEND at
daughter TCB level.

ATTACH

(with STAI operand)
Command

Processor ABEND

SvC 13 ;

error

STAE Exit - For ABEND at
this TCB level

Figure 4. ABEND, STAE, STAI Relationship

The TMP must inform the user at the terminal of the ABEND situation,
and allow the user to enter another command at this time. Use the
PUTGET service routine, specifying the TERM operand, to inform the user
of the ABEND and to return a line of input from the user.

The terminal user has four options:

1. He can allow the ABEND to continue by entering a null line
(carriage return).

2. He can stop processing of the ABEND by entering a command name
other than TEST or TIME.

3. He can request any secondary messages concerning the terminating
program by entering a question mark.

26 Guide to Writing a TMP or a CP (Release 21.6)

4. He can place the terminating program under the control of the TEST
command processor by entering the command name TEST.

Use the Command Scan service routine to determine what the user has
entered at the terminal.

If he enters a null line, the TMP returns control to the ABEND
routine, and the task is allowed to terminate abnormally. If he enters
a command name, other then TEST and TIME, the TMP processes the new
command name after detaching the incomplete subtask.

If the user enters a question mark, the PUTGET service routine causes
the secondary level informational message chain (if one exists) to be
written to the terminal, again puts out the message, and returns the
response from the terminal.

If the user enters the command name TEST, the TMP passes control to
the TEST command processor via a LINK macro instruction. If any
operands were entered on the TEST command, the TMP detaches all subtasks
before linking to the TEST command processor. If no operands were
entered, the TMP does not detach any currently active subtasks. The
user is requesting that the abnormally terminating task be run under the
control of TEST.

When the TMP links to the TSO-supplied TEST command processor,
register one must contain a pointer to a Test Parameter List (TPL).
Figure 5 shows the format of the Test Parameter List you must build and
pass to the TEST command processor.

Number of

Bytes Field Contents or Meaning

+——

4 TPLCBUF | The address of the Command buffer used by the

| last attached command processor.
4

b e e e s e o

|3

TPLUPT |The address of the User Profile Table (UPT).
|The UPT is built by the LOGON/LOGOFF
| scheduler from information stored in the User
|Attribute Data Set (UADS) and from
|information contained in the LOGON command.
| The address of the UPT is found in the
|PSCBUPT field of the Protected Step Control
|Block (PSCB). See Appendix A for the format
|of the UPT.
4

]

TPLPSCB |The address of the Protected Step Control
|Block (PSCB). The PSCB is built by the
| LOGON/LOGOFF scheduler from information
|stored in the UADS. The TMP can obtain the
|address of the PSCB with the EXTRACT macro
| instruction. See Appendix A for the format
|of the PSCB.
}

TPLECT {The address of the Environment Control Table
| (ECT). The ECT must be built by the TMP
|during its initialization process and is used
|by the TSO service routines. See Appendix a

r
|
I
s
|
|
k
I
I
|
|
|
|
|
|
I
t
|
|
|
I
I
|
|
t
I
|
|
|
| |for the format of the ECT.
L 1

fp—————t e —— e e e e e e —

L g

Figure 5. The Test Parameter List (Part 1 of 3)

The Terminal Monitor Program 27

Number of
Bytes

Field

TPLTBUF

I
|Contents or Meaning
1
+

|The address of the TEST command buffer. The
|TEST command buffer contains the TEST command
|and all operands entered by the terminal
|user. The variable length command buffer is
|located in subpool 1. It is preceded by a

| four-byte header consisting of a two byte

| length field and a two byte offset field.

The length field contains the total length of
the buffer including the four bytes of header
information.

TPLCTCB

The address of the Task Control Block (TCB)
of any attached command processor. A value
of zero is placed in this field when the
command processor is detached. Both the TMP
and the TEST command processor are

| responsible for maintaining this field.

1

TPLSTAIL

+
|The address of the TMP STAI exit routine

| specified as an operand of the ATTACH macro
|instruction issued by the TMP to attach the
|current command processor. This exit routine
|gains control when the attached command
|processor begins to terminate abnormally.

4

TPLSPLS

+
| The address of the STAI exit parameter list
| specified on the ATTACH macro instruction
|issued by the TMP to ATTACH the current

| command processor.

1

bt e s s o, gy S e, T e, S i, ey S . —— — — i — —— — ——— —— o— gy So— e sl

TPLNECB

$
| This four-byte field contains an Event
|Control Block (ECB) belonging to the TMP STAI
| exit routine which gets control when a

| command processor terminates abnormally.

| This ECB must be posted by either the TMP or
|the TEST program before the abnormally

| terminating command processor can resume
|processing. A post code of X'7F' indicates

| that a recovery is being attempted. Any

| other post code causes the ABEND to continue.
1 .

o

TPLNTCB

I

| The address of the Task Control Block (TCB)
|in control when a command processor started
| to terminate abnormally. The TMP should set
|this field to zero if the TEST program is
!invoked by the Attention exit routine.

r
|
|
k
|
I
I
I
I
I
|
I
I
|
F
|
|
|
|
|
|
F
|
!
|
I
|
I
F
!
|
|
I
}
I
|
|
|
I
|
|
I
|
I
k
I
I
I
|
I
F
I
|
|
I
I
I
I
|
L

e e e e e e e e e S . e e e e . e e e e e e e s, S e e S e e e S . e . s e s e s S e

L

TPLMECB

+
| This four-byte field contains an Event
|Control Block (ECB) used by TSO to STOP a
|terminal user's session. When this ECB is
|posted, the TEST program should return to the
| TMP as soon as possible. The TMP then must
|take the appropriate action to DETACH any

| subtasks before returning to the LOGON/LOGOFF
|scheduler for a terminal disconnect.

L

b o e e e o e e e ey S o — .

Figure 5.

The Test Parameter IList (Part 2 of 3)

28 Guide to Writing a TMP or a CP (Release 21.6)

Number of
Bytes

T
|

Field | Contents or Meaning
4
T

TPLCECB |The address of an Event Control Block (ECB)
|used by the MVT control program to indicate
jthe termination of an attached task. This
| ECB address is the one you specify as the ECB
|operand on the ATTACH macro instruction
|issued to attach the command processor.

]

}
TPLIECB |The address of an Event Control Block (ECB)
|used by the TMP STAI exit routine to indicate
|that the attached command processor is
| terminating abnormally.
1

1

TPLAECB |The address of an Event Control Block (ECB)
|used by the TMP Attention exit routine to
|[indicate that an attention interruption has
|occurred.
4

4

——-W—————q—— —— — - g ——— — — U p— —
£
s B T T e

T
RESV | Reserved.
L

[S SR S S——

Figure 5. The Test Parameter List (Part 3 of 3)

When the TEST Command processor returns control to the TMP, use the
PUTGET service routine to obtain a new command.

INTERCEPTING A TMP TASK ABEND

When the TMP (or any program linked to by the TMP except TEST) causes an
ABEND, the TMP STAE exit gains control. The TMP specifies its own STAE
exit routine by issuing the STAE macro instruction. (See Supervisor
Services and Macro Instructions for a discussion of the STAE macro
instruction.)

Your TMP STAE exit routine can use the contents of the STAE work area
created by the STAE macro instruction to determine the type of error,
the cause of the error, the PSW at the time of the ABEND, the last PSW
before the program ABEND, and the contents of the program registers.

If your TMP STAE exit routine cannot correct the problem, it should
use the PUTLINE macro instruction to inform the user at the terminal
that a task running under the TMP TCB is terminating abnormally, take a
dump of the user's region if a SYSABEND or a SYSUDUMP data set was
specified in the user's LOGON cataloged procedure, clear the user's
region, then load a fresh copy of the TMP, and begin processing as if
the TMP had been invoked by the LOGON/LOGOFF Scheduler.

If the error persists; that is, the TMP fails again, control should

pass to the PUTLINE service routine to notify the user. A log off
should be forced by returning to the LOGON/LOGOFF Scheduler.

The Terminal Monitor Program 29

Processing an Attention Interruption

After having been attached by the LOGON/LOGOFF Scheduler, the TMP must
set up its attention handling facilities during its initialization
process. You can use the STAX macro instruction to pass the address of
your attention handling routine to the system.

Several attention handling routines may be enqueued at any one time;
that is, both the TMP and the currently active command processor may
have issued STAX macro instructions. The attention exit routine
specified by the last attached task is the one given control if one
attention interruption occurs.

The attention handling routine you specify for the Terminal Monitor
Program is given control under any of the following conditions:

1. An attention interruption is entered from the terminal while the
Terminal Monitor Program is in control.

2. An attention interruption is received from the terminal while a
program other than the Terminal Monitor Program is in control, but
that program has not provided an attention handling routine.

3. A program other than the Terminal Monitor Program is in control.
The program has provided an attention exit, but the user at the
terminal has issued sufficient attention interruptions to reach the
Terminal Monitor Program's attention handling routine. As an
example, if a command processor that has provided an attention
handling routine is in control, and a user enters two successive
attention interruptions from the terminal, the Terminal Monitor
Program's attention exit receives control.

You can defer attention interruption processing with the DEFER
operand of the STAX macro instruction. If you do use the DEFER option,
attention interruptions are queued as they are received, and are not
processed until you request that the DEFER option be removed.

PARAMETERS RECEIVED BY ATTENTION HANDLING ROUTINES

When your attention exit routine is entered, the registers contain the
following information:

Register Contents

0,2-12 Irrelevant

1 The address of the Attention Exit Parameter List.

13 Save area address.

14 Return address.

15 Entry point address of the attention handling routine.

The Attention Exit Parameter List pointed to by register one,
contains the address of a Terminal Attention Interruption Element
(TAIE).

The parameter structure received by your attention exit routine is
shown in Figure 6.

30 Guide to Writing a TMP or a CP (Release 21.6)

Entry from the STAX service routine

Attention Exit Routine

Register 1
Attention Exit
Parameter List
Terminal Attention
Interrupt Element
—~——————]
Figure 6. Parameters Passed to the Attention Exit Routine

The Terminal Monitor Program

31

The Attention Exit Parameter List

Figure 7 shows the format of the Attention Exit Parameter List pointed
to by register one when an attention exit routine receives control.

Number of
Bytes

Field

i

T
|
| Contents or Meaning
4
1)

| The address of the Terminal Attention

N
I
I
d
I
| Interrupt Element (TAIE). |
+ v |

T i
|The address of the input buffer you specified|
|as the IBUF operand of the STAX macro i
| instruction. Zero if you did not include the|

| IBUF operand in the STAX macro instruction. |
4 J

oo e, S — S . — . W, S e, . S, S B2y

el e e s

T 1
|The address of the user parameter information|
|you specified as the USADDR operand of the |
| STAX macro instruction. ZERO if you did not |
|exclude the USADDR operand in the STAX macro |

I

J

| instrxuction.
L

Figure 7.

The Attention Exit Parameter List

The Terminal Attention Interrupt Element (TAIE)

The first word of the Attention Exit Parameter List contains the address

of an eighteen-word Terminal Attention Interrupt Element (TAIE). Figure
8 shows the format of the TAIE.

Number of
Bytes

Field

Contents or Meaning

s s e

2

TAIEMSGL

+——-

|The length in bytes of the message placed
|into the input buffer you specified as the

| IBUF operand on the STAX macro instruction.
| Zexo if you did not code the IBUF operand in
| the STAX macro instruction. :
il

TAIETGET

1

|The return code from the TGET macro
| instruction issued to get the input line from
|the terminal.

e S ———

-+

| Reserved.

-+

TAIEIAD

| Interruption address. The right half of the
| interrupted PSW. The address at which the
|program (or a previous attention exit) was

| interrupted.

1

64

P-—W_——__q-_."-__—-‘___—_—-”—_—q

o e s e e e e e e e e e, S e, o S . e, S e e, S e

TAIERSAV

+
| The contents of general registers, in the
|order 0 - 15, of the interrupted program.
L

N SN SN S,

Figure 8.

The Terminal Attention Interrupt Element

32 Guide to Writing a TMP or a CP (Release 21.6)

If you did not include the IBUF and the OBUF operands in the STAX
macro instruction that set up the attention handling exit, use the
PUTGET macro instruction, specifying the TERM operand, to send a mode
message to the terminal identifying the program that was interrupted,
and to obtain a line of input from the terminal.

If you specify the OBUF operand on the STAX macro instruction without
an IBUF operand, or with an IBUF length of 0, you can then use the
PUTGET macro instruction, specifying the ATTN operand. This causes the
PUTGET service routine to inhibit the writing of the mode message, since
a message was already written to the terminal from the output buffer
specified in the STAX macro instruction. The PUTGET service routine
merely returns a logical line of input from the terminal.

In either of the above cases, if the user enters a question mark, the
PUTGET service routine automatically causes the secondary level
informational message chain (if one exists) to be written to the
terminal, again puts out the mode message, and returns a line from the
terminal.

If you used the IBUF operand on the STAX macro instruction, note that
no logical line processing or question mark processing is performed. If
the user returns a question mark, you will have to use the PUTLINE macro
instruction to write the secondary level informational message chain to
the terminal. Then issue a PUTGET macro instruction, specifying the
TERM operand, to write a mode message to the terminal and to return a
line of input from the terminal.

Use the Command Scan service routine to determine that the line of
input is syntactically correct in the input buffer returned by the
PUTGET service routine, or in the attention input buffer (pointed to by
the second word of the Attention Exit Parameter List).

Special functions such as the TIME function should be performed
immediately by the attention handling routine, and a new READY message
should then be put out to the terminal, so that the terminal user may
enter another command.

Any other command should be passed to the TMP mainline routine for
processing as if it were a newly entered command.

Note that the TGET and TPUT buffers are flushed when an attention
interruption is entered. If the user enters an attention interruption
from the terminal and then enters a null line to continue processing,
the contents, if any, of the TGET and TPUT buffers are lost.

Processing a STOP Command

A STOP/MODIFY ECB is created by the time sharing system and can be
obtained by your TMP by use of the EXTRACT macro instruction. During
TMP processing, if a STOP command is indicated by a post to the STOP
ECB, return to the LOGON/LOGOFF Scheduler so that the user may be logged
off the system.

The Terminal Monitor Program 33

Command Processors

A command processor is a problem program invoked by the TMP when a user
at a terminal enters a command name.

The internal logic of the TSO-supplied command processors is
described in the TSO Command Processor PLM. The command language used
to request each of these command processors is described in the TSO
Command Langquage Reference.

If you choose to write your own command processors, you should be
familiar with the Service Routines described in this book.

This section discusses the relationships between the command
processors and the rest of the Time Sharing Option, and provides
guidelines for coding your own command processors.

The section is divided into the following topics:

e Response Time - Discusses the steps you should take to insure that
your command processor does not adversely affect system response
time.

e Command Processor Use of the TSO Service Routines - Briefly
discusses each of the TSO Service Routines and the situations in
which they should be used.

e The STAE and STAI Exit Routines - Discusses the functions your error
routines should provide.

e Attention Exit Routines - Discusses the need for attention handling
exits and the functions those exits should perform.

e Adding Commands to the Time Sharing Option - Discusses the methods
you can use to place a newly written command processor into the Time
Sharing Option.

¢ The HELP Data Set - Discusses the HELP data set, private HELP data
sets, and the means of entering information into a HELP data set.

Programming Note: In TSO, assembly language programs may fail or cause
a performance impact when they use the same job file control block
(JFCB) more than once for the same data set. When the data set is
opened, the Open routine fills any unspecified fields in the data
control block from information in the data set control block (DSCB) and
the job file control block. The Open routine then does a "reverse
merge" from the data control block back into the job file control block,
filling zeroed or unspecified fields in the job file control block. If
the same data set is reopened by a later program by use of a new OPEN
macro instruction, the Open routines will retrieve old information from
the job file control block for fields not specified in the data set
control block. The retrieved information could be unwanted for the new
use of the data set and therefore could cause program failure or
performance impact. -Examples of such unwanted information include key
length for BSAM and QSAM, and buffer size or channel program parameters
for QSAM.

If any of your command processors specify DCB information which could
cause a failure on a subsequent use of a JFCB, you can follow the
procedure outlined below to inhibit the reverse merge from the DCB back
into the JFCB.

34 Guide to Writing a TMP or a CP (Release 21.6)

1. Issue a RDJFCB macro instruction to read the JFCB into your own
main storage.

2. Set the JFCBTSDM field (offset 52 decimal, 34 hex in the Job File
Control Block) to X'OA' to inhibit the DCB to JFCB merge.

3. Issue an OPEN macro instruction specifying TYPE=J.

For a discussion of the RDJFCB macro instruction and the OPEN macro
instruction type J, see Data Management for System Programmers.

Response Time

A Time Sharing system depends upon fast response. If you write your own
command processors to run under the IBM Time Sharing Option, your
command processors will directly affect system response time. The
following recommendations are included to help you keep system response
time to a minimum.

PROGRAM DESIGN

Any command processors you write should not modify themselves in any way
during their execution. They should obtain all work areas with a
GETMAIN macro instruction so that the in-line code remains unchanged.
This allows the command processor to be executed from the Time Sharing
Link Pack Area, and used by several tasks concurrently.

TSO provides, along with the system Link Pack Area, a Time Sharing
Link Pack Area. Figure 9, a storage map of MVT with the Time Sharing
Option, shows the Time Sharing Link Pack Area within the Time Sharing
Control Region.

Frequently used Command Processors can be placed in the Time Sharing
Link Pack Area. Placing programs in the Time Sharing Link Pack Area
reduces the amount of time required to access them since they are
resident in the system and need not be brought in from an external data
set.

Besides reducing access time, placing command processors in the Time
Sharing Link Pack Area provides two additional benefits:

1. Swap time is reduced. Swap time is the time required to move one
user's programs and data from a foreground region to a swap data
set and to move the next user's programs and data from a swap data
set back into the foreground region.

One of the factors that affects swap time is the amount of data
that must be swapped. If the currently active command processor is
executing from the Time Sharing Link Pack Area, it is not swapped
when the foreground region is swapped. You therefore swap less
data if your command processors are resident in the Time Sharing
Link Pack Area than if they execute from the foreground region.

See Time sharing Option Guide for a discussion of the swapping
algorithms used in TSO.

Command Processors 35

2. If you are running several foreground regions, your total storage
requirement is less if frequently used command processors are
resident in the Time Sharing Link Pack Area. Command processors
resident in the Time Sharing Link Pack Area can be executed for any
foreground region and need not be loaded into those regions. Your
foreground regions may therefore be smaller if some of the larger
command processors can be executed in the Link Pack Area.

Link Pack Area

Master Scheduler

TCAM
Message Control Program and Buffers

Time Sharing Control Region

o Time Sharing Control Task
Region Control Task
TSO Driver
Time Sharing Link Pack Area
Buffers

Foreground (TSO) Region
o Terminal Monitor Program /

Local System Queue Area

Background (Batch) Regions

S __V

System Queue Area

MVT Nucleus

Figure 9. Storage Map - MVT with Time Sharing Option

36 Guide to Writing a TMP or a CP (Release 21.6)

MODULE SIZE AND STORAGE REQUIREMENTS

Command processors that do not execute in the Time Sharing Link Pack
Area should be designed to minimize the average amount of data swapped.

The more a command processor interacts with a user, the more often it
must wait for input from the terminal. Since programs waiting for input
from the terminal are eligible to be swapped, the probability is great
that the program will be swapped. If a command processor is large and
is likely to be swapped several times before it can complete its
function, consider dividing it into several load modules to reduce the
amount of data swapped. Keep in mind however, that additional time is
required to perform a BLDL and a fetch for each of the additional load
modules.

Keep in mind also that the device type used to contain the swap data
sets affects the amount of time for each swap. See Storage Estimates
for block sizes swapped to various device types.

Command Processor Use of the TSO Service Routines

Use the TSO-provided service routines described in this manual when
coding your own command processors. Read the sections on the various
service routines and macro instructions for an understanding of what
services they perform and how to use them. The following topics provide
information on when to use each of the service routines.

STACK SERVICE ROUTINE

Use the STACK service routine to change the source of input by adding an
element to the input stack, and to reset the input stack to the terminal
element originally specified by the Terminal Monitor Program.

A command processor should issue the STACK macro instruction in the
following circumstances:

1. Your command processor has created a series of commands to be
executed after the command processor terminates. The command
processor builds an in-storage list containing the commands to be
executed and uses the STACK macro instruction to place a pointer to
the 1list on the input stack.

2. You may want to pass data from one of your command processors to
another command processor. This data may be passed in storage via
the input stack. Issue the STACK macro instruction to place a
pointer to the in-storage data on the input stack.

3. If you write a command processor to perform functions similar to
those performed by the TSO-supplied EXEC command, (that is, to
execute a command procedure), issue the STACK macro instruction to
place a pointer on the input stack to the command procedure to be
executed.

4. Whenever one of your command processors terminates with an error

condition, its error handling routine should issue the STACK macro
instruction to reset the input stack.

Command Processors 37

GETLINE SERVICE ROUTINE

Your command processors should use the GETLINE service routine to obtain
data. The buffer returned by GETLINE is in subpool 1 and is owned by
your command processor. If your command processor issues multiple
GETLINE macro instructions, it should free the buffers either with the
DETACH or the FREEMAIN macro instructions.

PUTLINE SERVICE ROUTINE

Your command processors should use the PUTLINE service routine to write
informational messages or data to the terminal and to chain second level
informational messages. PUTLINE writes the output lines to the terminal
regardless of the source of input.

PUTGET SERVICE ROUTINE

Your command processors should use the PUTGET service routine for
prompting and for subcommand requests. Use the operands on the PUTGET
macro instruction to specify logical line processing with editing and
the WAIT option.

If the user at the terminal enters a question mark in resronse to a
message issued with a PUTGET macro instruction, the PUTGET service
routine prints the second level messages chained by previous PUTLINE
macro instructions. If the user responds with a subcommand name, the
second level messages are deleted and the storage they occupied is
freed. See the topic headed "PUTGET Processing"” for exceptions to this
usual method of processing.

As with the GETLINE service routine, the buffers returned by the
PUTGET service routine belong to, and should be freed by, the command
processor.

DAIR SERVICE ROUTINE

Your command processors should use the DAIR service routine to allocate
and free data sets and to obtain information concerning data sets.
command processors should allocate data sets by DSNAME and use the
DDNAMES returned by DAIR -- if necessary passing them on to any
subcommands or problem programs running under the command processor.

Whenever the user specifies a password for a data set, the password
should be passed by the command processor to DAIR when allocation is
requested.

Command processors that accept subcommands should use the DAIR
service routine to mark any data sets allocated by the subcommands as
allocatable before detaching the terminated subcommand.

COMMAND SCAN SERVICE ROUT INE

Your command processors should use the Command Scan service routine to

scan for valid subcommand names. The option of checking the remainder

of the input line for non-separator characters should be requested. If
no additional significant characters are found in the line, the command
processor subroutine need not invoke the PARSE service routine to scan

the command operands (none will be present).

38 Guide to Writing a TMP or a CP (Release 21.6)

PARSE SERVICE ROUTINE

Your command processors and subcommand processors should use the PARSE
service routine to scan the operands entered with the command or
subcommand name. The PARSE service routine returns a Parameter
Descriptor List to the calling routine. The Parameter Descriptor List
describes the operands found in the command buffer.

Command processors and subcommand processors can specify to PARSE
that validity checking exits be taken on certain types of operands.
Since the PARSE Service routine checks the operands only for syntax
errors, you should specify that validity checking routines be entered
whenever a logical, rather than a syntactical, error might occur.

STAE/STAIl Exit Routines - Intercepting an ABEND

Use the STAE and STAI exits in your command processors to keep the
system operable if abnormal termination occurs. STAE/STAI exits should
be used in such a way that the command processor gets control if a
subcommand abnormally terminates. STAE provides the command processor
with the ability to intercept an ABEND so that cleanup, bypass, and if
possible, execution retry can be accomplished. (See Data Management for
System Programmers, for a discussion of the STAE macro instruction. See
Supervisor Services and Macro Instructions for a a discussion of the
STAI operand of the ATTACH macro instruction.)

The following types of command processors should use STAE exit
routines:

e All command processors that process subcommands.

e All command processors that request system resources that are not
freed by ABEND or DETACH.

e Command processors that process lists, to allow processing of other
elements in the list if a failure occurs while processing one
element in the list.

Command processors that attach subcommands should also provide a STAI
exit to intercept abnormally terminating subcommand processors.

STAE and STAI exit routines should observe the following guidelines:

1. The error handling exit routine should issue a diagnostic error
message of the form:

1st level command name ENDED DUE TO ERROR
subcommand name

2nd level COMPLETION CODE IS XXXX

where the name supplied in the first level message is obtained from
the Environment Control Table, and the code supplied in the second
level message is the completion code passed to the STAE or STAI
exit from ABEND.

The routine should issue these messages so that the original cause

of abnormal termination is recorded should the error handling exit
itself terminate abnormally before diagnosing the error.

Command Processors 39

When an ABEND is intercepted, the command processor STAE exit
routine should determine whether retry is to be attempted. If so,
the exit routine should issue the diagnostic message and return,
indicating via return code that a STAE retry routine is available.
If a retry is not to be attempted, the exit routine should return,
indicating via return code that no retry is to be attempted. The
TMP STAI exit routine will issue the diagnostic message. (For a
description of the return codes and their meanings, see Supervisor
Services and Macro Instructions.)

2. The STAE or STAI routine that receives control from ABEND should
perform all necessary steps to provide system cleanup. This
cleanup should be performed in the STAE exit routine rather than in
the STAE retry routine because DETACH with the STAE=YES operand
does not allow the subtask to retry from a STAE/STAI exit.

3. The error handling exit routine should attempt to retry program
execution when possible. If the command processor can circumvent
or correct the condition that caused the error, the error handling
routine should attempt to do so. In other cases, however, RETRY
has no function and the command processor STAE exit should not
specify the RETRY option.

Attention Exit Routines

An attention exit routine should be provided by any command processor
that accepts subcommands. Use the STAX macro instruction to specify the
address of your attention handling routine. See the section headed
"ATTENTION INTERRUPTION HANDLING - THE STAX SERVICE ROUTINE", for a
complete discussion of the STAX macro instruction.

If you did not include the IBUF and the OBUF operands in the STAX
macro instruction that set up the attention handling exit, use the
PUTGET macro instruction, specifying the TERM operand, to send a mode
message to the terminal identifying the program that was interrupted,
and to obtain a line of input from the terminal.

If you specify the OBUF operand on the STAX macro instruction without
an IBUF operand, or with an IBUF length of 0, you can then use the
PUTGET macro instruction, specifying the ATTN operand. This causes the
PUTGET service routine to inhibit the writing of the mode message, since
a message was already written to the terminal from the output buffer
specified in the STAX macro instruction. The PUTGET service routine
merely returns a logical line of input from the terminal.

In either of the above cases, if the user enters a question mark, the
PUTGET service routine automatically causes the secondary level
informational message chain (if one exists) to be written to the
terminal, again puts out the mode message, and returns a line from the
terminal.

If you used the IBUF operand on the STAX macro instruction note that
no logical line processing or question mark processing is performed. If
the user returns a question mark, you will have to use the PUTLINE macro
instruction to write the secondary level informational message chain to
the terminal. Then issue a PUTGET macro instruction, specifying the
TERM operand, to write a mode message to the terminal and to return a
line of input from the terminal.

Whether you use the IBUF operand on the STAX macro instruction or the

PUTGET macro instruction to return a line from the terminal, you can use
the Command Scan service routine to determine what the user has entered.

40 Guide to Writing a TMP or a CP (Release 21.6)

If the user enters a null line, the attention handling routine should
return to the point of interruption. Note however, that the TGET and
TPUT buffers are flushed during attention interruption processing. 1If
any data was present in these buffers, it is lost.

If a new command or subcommand is entered, the attention handling
routine should:

e Reset the input stack.

e Post the command processor's Event Control Block to cause active
service routines to return to the command processor.

e Exit.

Adding Commands to the Time Sharing Option

There are two methods you can use to place a new command processor into
the Time Sharing Option. You can enter your newly written command
processor as a member of the partitioned data set SYS1.CMDLIB, via the
Linkage Editor, or you can create your own command library and
concatenate it to the SYS1.CMDLIB data set. 1In the latter case, use the
utility IEBUPDTE to create new statements in the link list (LNKLSTO00) in
SYS1.PARMLIB. If you choose to concatenate your library to SYS1.CMDLIB,
note that you cannot do it during a terminal session. You must
concatenate the two libraries with data definition statements within
your LOGON procedure. The DDNAME must be STEPLIB.

See Data Management Services for information on creating data sets,
entering members into data sets, and concatenating data sets.

The HELP Data Set

A terminal user can enter the HELP command to retrieve information about
commands and subcommands. This information is stored in a data set
labeled SYS1.HELP (the HELP data set). If you add command processors to
the Time Sharing Option, you should either add HELP information to the
existing SYS1.HELP data set, or create your own private HELP data set.

SYS1.HELP is a cataloged, partitioned data set consisting of one
member, named "COMMANDS", and individual members for each command in the
system. The 'COMMANDS' member contains a list of the commands available
to the user, and a brief description of each. The individual members
for each command are named with the command name, and contain more
specific information about the command and its subcommands. The HELP
information contained within any member of the HELP data set consists of
card images. The logical record length is therefore 80 characters.

Each of the SYS1.HELP members, other than the "COMMANDS" member, is
divided into the following subgroups, each of which can be displayed at
the terminal:

e A subcommand list - This information appears only if the command has
subcommands .

e Functional description - This subgroup provides a brief description
of the function of the command or subcommand.

o Syntax - This information describes the syntax of the command or
subcommand.

Command Processors 41

e Operand description - This subgroup provides information on the
command positional operands, followed by individual sections
containing brief descriptions of each keyword and its parameters.

PRIVATE HELP DATA SETS

Private HELP data sets must be structured exactly like the SYSl1.HELP
data set, since both data sets are processed alike.

You may concatenate your data set to the SYS1.HELP data set (or vice
versa) but the data sets must have the same attributes. Concatenated
data sets are searched in the order of concatenation. If SYS1.HELP and
a private HELP data set have been concatenated, the first *"COMMANDS'
member encountered by the HELP processor is used as the list of
available commands. Thus, if you concatenate your own HELP data set to
SYS1.HELP, you should make additions to the "COMMANDS" member of
SYsl.HELP.

FORMATTING THE HELP DATA SET

Use the IEBUPDTE utility program to update SYS1.HELP. Use the
information described in Figure 10 to format the data set when you add
to SYS1.HELP or set up your own HELP data set. The control characters,
beginning in card column 1, divide the data set into the subgroups
previously described, and thereby permit the HELP command processor to
select message text according to the operands supplied on the terminal
user's HELP command. (See TSO Command Lanquage Reference for a
discussion of the HELP command.)

42 Guide to Writing a TMP or a CP (Release 21.6)

Control
Character

b e e

Purpose of Data Card

e e o

)S | This card indicates that a list of commands or
|subcommands follows.
1

1

)F |This card indicates that the functional discussion of
|the command or subcommand follows.
il

— ks e s e s .

+
)X |This card indicates that the syntax description of the
|command or subcommand follows.
1
T
)O | This card indicates that the command operands and
|their descriptions follow. Positional operands must
| follow immediately after the ")O" control card and
|before the ")) keyword" control cards.
i

))keyword fThis card indicates that information follows
|describing the named keyword. One of these control
|cards must be present for each KEYWORD operand within
|the command. Each card contains the name of the
|keyword it describes.

4

i

=subcommandname|This card indicates that information follows
|concerning the subcommand named after the equal sign.
|One of these cards is required for each subcommand
|accepted by the command being described. Note that
| this card merely names the subcommand; it does not
|describe it. Describe the subcommand in the same
|manner you would describe a command.
| If the subcommand has an alias name, you may
|include the alias name on the control card, i.e.
| =subcommandname=subcommandalias. Note that no
|blanks may appear between the subcommand name and the
lalias.
L

T e bl E e S e st S e S L S

g s e . o e ot o e o — e —— S — — — —— —— e, . et s S e

Figure 10. Cards Used to Format a HELP Data Set

All data cards, except the =subcommandname card, can contain
additional information. If you include additional information on the
cards, the control characters)S,)F,)X, and)O must be followed by at
least one blank, and the control character))keyword by at least one
blank or a left parenthesis. Use the left parenthesis when the keyword
you are describing is followed by operands enclosed in parentheses. See
Figure 9 for an example of this.

The only restrictions on data cards are that columns 72-80 are
reserved for sequence numbers, and column one must contain either a
right parenthesis or an equal sign.

For example, information concerning the sample command shown below
could be formatted for entry into the HELP data set (or your own private
help data set) using the cards shown in Figure 11. The fictitious
SAMPLE command could have the following format:

|r SAMPLE |T positl [, (posit2)][KEYWD1 [(posit3,positi)]] |
L]

Command Processors 43

The

the EXAMPLE subcommand.

fictitious EXAMPLE subcommand has the following format:

The SAMPLE command has one subcommand,

g o S e

] [REYWD13(posit12)]

KEYWD10

KEYWD11
KEYWD12

positlo,positll[

b e = e

EXAMPLE

[e

Figure 11 shows data cards that would present and format information

about the SAMPLE command for inclusion in the HELP data set.

LNT] YN
Q \!
~ [N N e 4 . < N
[7) Ql [%[9 A IS 1o
Q W QlQ Q > IR EEEN
<> 0n|Q > < < x| Ql N
< ~IT S T < N[V} ~
I 19 QOIS TQ AN X9 [2la] (v Y
EINED XIS ~ N YR Q X
Ol IX(vlwioivulgxldg [N [RIENY (NN Q N
[¥) 3 ASLNEISILNIY ~ Y 0~
[LK [7RI [NN Oy [V) Q
N NIRRT P D N 0~ PN >
ST STolNT Q] ¥ NN VRN <
NLTIN Q > Yol 85 W
O WINKISTXIO[OIR] [~ ~ S ol DR
= ININRX[W =< > QW ~{ac N MATIAT oY
NINLNINLY NN RN o Y N Q[& ~
RNEE IV MEY W s o]\ < 1Q Q HEHIRLT
ol I[N Q]9 0Wy WY X Wl Jw NIBYEY W*
HILNENE IR NI Ty) RN N
! NINIES N Y ~ WN Q QW N~ MRS
Q TR RIINTINENY QXX Y RS XININ[N X
[Ny RN <[WL Y ~ T(Q NI [N NTENINY R
INIYEIILY Y INANIS NS Q N R 0
Wy NINEN y Q NENEY I [75) (%) NESENENIN »
ENENEY 1) BN R N LY <X < Wiylyl %N
INENINENLDNININSIELY [8) RN LRI R IR IEY Qs
R Y Q[Q [N) Wﬁ
\2) ANAILTANRIINIES [0 NEN () Qls Q NENEENES Q
<[Q]S <[< &[] A Qly <>\ > ¢/ QIR[N LTI
T IS ST [0 X VI SN <[I QO &[]
INENEIESIEY n|Q NI < NN/ R|Q]Q ~
Q NESIETIESTINIEN Q '] Q W EE»WW Y
< ~ %) SNEIEEY Q NI Q [NNINEN X
T Il W IN [} NEY] UIN [Y4y ANKS
S OI~N[UN]OD < [T < QI oq NI L3
S| [0[Q[Q[Y TR EILUES (%) QW]
Yyl IS0 S [S Q WXl 10 O] e~ YW [4
SINIINEINNEIRIICIEN © ~ N[y LIRY Q3 ~ NENEYEY ~ 0
QU 1»n [N [\ [NINEYEILNIN Wl o W [NTNENININEELY
WS IQ Is[W[Ol 14 SISTRISISIST NP TQINTST N NEN 4 ~
NI WSTWRTINTO N=-{0[W NN SIS [n Q[0 Y N®[T
[YEREIRY ORI I 9 QINWIKISIR NHW W [N LRI R RS
[TTESIAN [N Q Q/QQ [0/ QAQ] NS << Q <[QAQAISISISTIN [\
<| N IS N <[NN S~ IS 1T Ixls &% ~
Wl N N [%) -0 < Al & N QW Yl QIO[OIN N
i)) T QA Ol Q €] [NN Nin N
Wy < G %Wy (Y%} < [T eI [ETIATIENY
] 1D Q X yixiq Wiy) NEY QX[QIQIQIR] S
[NEEEN > KRIN XNS Q [GILN K 2[LN
~
~ Wy NERERES
[N QN
NN
W < Wl W[y
> AR EVIES
[2) W x Q 'Y > Q SN[~~~
N ~ ~ ~ ~| 0 ~ N DDIAND

Coding Example -- Including the SAMPLE Command in the HELP

Data Set

Figure 11.

44 Guide to Writing a TMP or a CP (Release 21.6)

Message Handling

TSO messages are divided into three classes:

e Prompting messages
e Mode messages
e Informational messages

Prompting messages are of the form ENTER... or REENTER..., and
require a response from the user. Prompting messages should be
initiated by the PARSE service routine, using the text supplied by the
command processor as the PROMPT operand of the IKJPOSIT, IKJTERM,
IKJOPER, IKJRSVWD or IKJIDENT parse macro instructions. See the section
headed "Using the PARSE Service routine (IKJPARS)" for a discussion of
| the PrROMPT operand on the these macro instructions.

Mode messages are the READY message sent by the Terminal Monitor
Program, and any other similar messages sent by command processors, such
as the EDIT mode message sent by the EDIT command processor. They
inform the user which command component is in control and let him know
that the system is waiting for him to enter a new command or subcommand.

Informational messages include all others; that is, any message which
does not require an immediate response from the user.

Prompting and Mode messages should be displayed using the PUTGET
service routine. Informational messages should be displayed using the
PUTLINE service routine.

Message Levels

Messages usually should have associated with them other messages that

more fully explain the initial message. These messages, called second
level messages, third level messages, and so forth, are displayed only
if the user specifically requests them by entering a question mark "?".

Prompting messages may have any number of additional levels. The
second level is displayed if the user enters a question mark in response
to the initial message. The last level is displayed if the user enters
a question mark in response to the next to the last message. If the
user at the terminal enters a question mark after all levels have been
displayed, PUTGET displays the message "NO INFORMATION AVAILABLE". Pass
your second level prompting messages to the PARSE service routine by
coding them as the HELP operand in the IKJPOSIT, IKJTERM, IKJOPER,
IKJRSVWD and IKJIDENT parse macro instructions.

An informational message can have only one second level message
associated with it. Since many informational messages might be
displayed at the terminal before a question mark is returned from the
terminal, PUTLINE moves all second level informational messages to
subpool 78 and chains them off the Environment Control Table. This
chain exists from one PUTGET for a mode message to the next. In other
words, whenever the user can enter a new command or subcommand, he can
enter a question mark instead, requesting all the second level messages
for informational messages issued during execution of the previous
command or subcommand. If he does not enter a question mark, PUTGET
deletes the second level messages and frees the main storage they
occupy.

Message Handling 45

Mode messages cannot have second level messages, since a question
mark entered in response to a mode message is defined as a request for
the second levels of previous informational messages. Your program
should request' all commands or subcommands by issuing a mode message
with the PUTGET service routine so that second level informational
messages may be properly handled.

Effects of the Input Source on Message Processing

Message handling is considerably affected if the input source designated
by the input stack is an in-storage list rather than a terminal. See
the explanation of the STACK macro instruction for a discussion of
in-storage lists. In-storage lists may be either procedures or source
lists.

If a procedure is being executed, the PUTGET Service Routine does not
display prompting messages, but returns an error code (12) in register
15. If the PARSE Service Routine issued the PUTGET macro instruction,
PARSE issues an informational message to the terminal, and returns an
error code to its caller, (code 4). The command processor should reset
the input stack and terminate. If a command processor issued the PUTGET
macro instruction, the command processor should use the PUTLINE serxrvice
routine to write an appropriate informational message to the terminal
prior to terminating.

If a source in-storage list is being processed, prompt messages are
displayed to, and responses read from, the terminal by the PUTGET
Service Routine.

If the user at the terminal has specified the PAUSE operand on the
PROFILE command, PUTGET issues a special message, "PAUSE", if all of
these three conditions exist:

(1) A mode message is to be written out.
(2) Second level messages exist.
(3) An in-storage list is being processed.

The user may enter either a question mark or a null line. If he enters
a question mark, the chain of second level messages is written to the
terminal. If he enters a null line, control returns to the executing
command processor. In either case, the next line from the in-storage
list is returned to the command processor.

A special situation arises if: an in-storage list is being
processed, second level messages are chained, and the user has specified
NOPAUSE as an operand of the PROFILE command. Normally, if a subcommand
encounters an error situation, it issues an information message and
returns. The command processor then uses the PUTGET service routine to
issue a mode message on the assumption that the user can take corrective
action with other subcommands. When processing from an in-storage 1list,
this is not true. If NOPAUSE was specified, PUTGET merely returns an
error code (12) to the calling routine. In most cases, the command
processor should reset the input stack and terminate. If the message
producing the second level message was purely informational and does not
require corrective action, the command processor may set the ECTMSGF
flag in the Environment Control Table to delete the second level
message, and reissue the PUTGET macro instruction to continue.

46 Guide to Writing a TMP or a CP (Release 21.6)

Attention Interruption Handling -- The STAX Service Routine

The STAX service routine creates the control blocks and gqueues necessary
for the system to recognize and schedule user exits due to attention
interruptions. Your Terminal Monitor Program, your command processors,
or the problem program provide the address of an attention exit to the
STAX service routine by issuing the STAX macro instruction. You should
provide attention exit routines within the Terminal Monitor Program and
any command processors that accept subcommands.

When the attention exit routine is entered, all the subtasks of the
interrupted task are stopped. If the subtasks must be dispatchable
during attention exit processing, it is the user's responsibility to
start the subtasks again by issuing the STATUS macro instruction.

Note that when an attention interruption is entered from the
terminal, the TGET and TPUT buffers are flushed. Any data contained in
these buffers is lost. If the user then attempts to continue processing
from the point of interruption, he may have lost an input or an output
record, or an output message from the system.

Specifying a Terminal Attention Exit - The STAX Macro Instruction

The STAX macro instruction is used to specify the address of an
attention exit routine that is to be given control asynchronously when
the attention key is struck or when a simulated attention is specified.
(See the STATTN macro instruction for a description of the simulated
attention function.)

The STAX macro instruction can also be used to cancel the last
attention exit routine established by the task. To do this, specify the
STAX macro instruction without the exit address and DEFER operands.

The STAX macra instruction is used only in a time sharing
environment. It is ignored in a system that includes the time sharing
option (TSO) if TSO is not active when the macro instruction is issued.
In addition, attention exits can be established only for time sharing
tasks operating in the foreground.

Issue the STAX macro instruction to provide the information required
by the STAX service routine. The STAX macro instruction has a list and
an execute form.

The List form of the STAX macro instruction (MF=L) generates a STAX
Parameter List. The EXECUTE form of the STAX macro instruction
(MF=E, (address)) completes or modifies that list and passes its address
to the STAX service routine only if you specify either or both on exit
address or deferral action.

Figure 12 shows the format of the list and the execute forms of the
STAX macro instruction; each of the operands is explained following the
figure. Appendix B describes the notation used to define macro
instructions.

Attention Interruption Handling - the STAX Service Routine 47

STAX | [exit address [,OBUF=(output buffer address,size)]]

—

{ [symbol]
[, IBUF=(input buffer address,size)]

[, UsADDR=user address]

,REPLACE= YES}
NO

[, DEFER= {Isggs}]

,MF=L
,MF=(E,(address))}

o e e e e e s s e s e e e e]
|
T ————

o o——
e o o, S e S

Figure 12. The STAX Macro Instruction -- List and Execute Forms

exit address
Specify the entry point of the routine to be given control when an
attention interruption is received. You must specify the exit
address in both the list and the execute forms of the STAX macro
instruction when you are establishing an attention interruption
handling exit.

You need not specify an exit address if you are using the DEFER
operand as long as you code no other operands (except the MF
operand). If you exclude the exit address and the DEFER operand
and code other operands, the STAX service routine merely cancels
the previous attention exit established by the task issuing this
STAX macro instruction. If you exclude the exit address and code
the DEFER operand, with or without other operands, only the
deferral status is changed.

OBUF= (output buffer address, output buffer size)
Output buffer address - Supply the address of a buffer you have
obtained and initiated with the message to be put out to the
terminal user who entered the attention interruption. This message
may identify the exit routine and request information from the
terminal user. It is sent to the terminal before the attention
exit routine is given control.

Ooutput buffer size - Indicate the number of characters in the
output buffer. The size may range from 0 to 32,767 (215-1
inclusive).

IBUF=(input buffer address,input buffer size)
Input buffer address - Supply the address of a buffer you have
obtained to receive responses from the terminal user. The
attention exit routine is not given control until the STAX service
routine has placed the terminal user's reply into this buffer.

Input buffer size - Indicate the number of bytes you have provided
as an input buffer. The size may range from 0 to 32,767 (215-1
inclusive).

USADDR= (user address)

The user address is a pointer to any information you want passed to
your attention handling exit routine when it is given control.

48 Guide to Writing a TMP or a CP (Release 21.6)

REPLACE=YES or NO

YES indicates that the attention exit specified by this STAX macro
instruction replaces any attention exit specified by a STAX macro
instruction previously issued by this task. YES is the default
value. REPLACE implies add, if no previous attention exit has been
established.

NO indicates that this attention exit is an additional exit to any
that have been previously established for this task.

DEFER=YES or NO

MF=L

The DEFER operand is optional. If the DEFER operand is coded in
the STAX macro instruction, the option you request (YES or NO)
applies to all tasks within the task chain in which the macro
instruction was issued. Any task may issue the STAX macro
instruction to specify DEFER=YES or NO; the issuing task need not
itself have provided an attention exit routine. If the DEFER
operand is not coded in the macro instruction, no action is taken
by the STAX service routine regarding the deferral of attention
exits.

YES indicates that any attention interruptions received are to be
queued and are not to be processed until another STAX macro
instruction is executed specifying DEFER=NO, or until the program
that issued the STAX with the DEFER=YES terminates.

NO indicates that the defer option is being cancelled. Any
attention interruptions received while the defer option was in
effect are to be processed in a first-in, first-out manner. If the
DEFER operand is omitted, the control program leaves the deferral
status unchanged.

Be aware that if a program issues a STAX macro instruction
specifying DEFER=YES, it can get into a situation where an
attention interruption cannot be received from the terminal. If
your program enters a loop or an unending wait before it has issued
a STAX macro instruction specifying DEFER=NO, you cannot regain
control at the terminal by entering an attention interruption.

You need not specify an exit address in a STAX macro instruction
issued only to change deferral status. Note, however, that a STAX
macro instruction entered without an exit address is considered to
be a STAX cancel if any operands are included other than DEFER and
MF.

When control is passed to another routine with an XCTL macro
instruction, the routine receiving control assumes the deferral
status of the routine that issued the XCTL macro instruction.

When control is passed to another routine with a LOAD or CALL macro
instruction, the routine receiving control also receives the
deferral status of the routine that passed control. If the routine
receiving control changes deferral status, it remains changed when
control is returned.

When control is passed to another routine with a LINK macro
instruction, the routine receiving control maintains its own
deferral status: It does not receive a deferral status when it
receives control nor does it return a deferral status when it
returns control.

This specifies the list form of the STAX macro instruction. It
generates a STAX Parameter List.

Attention Interruption Handling - the STAX Service Routine 49

MF=(E, (address))
This specifies the execute form of the STAX macro instruction. It
completes or modifies the STAX Parameter List and passes the
address of the Parameter List to the STAX service routine. Place
the address of the STAX Parameter list (the address of the list
form of the STAX macro instruction) into a register and specify
that register number within parentheses.

You can place each of the required address and size parameters into
registers and specify those registers, within parentheses, in the STAX
macro instruction. Figure 13 shows how an execute form of the STAX
macro instruction may look if you load all the required parameters into
registers.

If an attention exit is specified in the list form, but no attention
exit is specified in the execute form, then this is considered a cancel
operation.

{ STAX (2),IBUF=((3),(4)),0BUF=((5),(6)),USADDR=(7),MF=(E, (1))
L

Figure 13. Using Registers in the STAX Macro Instruction

50 Guide to Writing a TMP or a CP (Release 21.6)

The STAX

Parameter List

When the list form of the STAX macro instruction expands, it builds a
five word STAX Parameter List. The list form of the macro instruction
initializes this STAX Parameter List according to the operands you have

coded.

The execute form of the STAX macro instruction modifies the STAX
Parameter List and passes its address to the STAX service routine.
Figure 14 describes the contents of the STAX Parameter List.

Bytes

Number of

Field

4

STXEXIT

|
|Contents or Meaning
[
T

|The address of the attention exit routine to
|receive control in response to an attention
|interruption. This is the address you

| supplied as the exit address operand on the
| STAX macro instruction.

L

STXISIZ

+
|Contains a binary number representing the
|size of the input buffer you provided as the
| IBUF operand on the STAX macro instruction.
|The maximum buffer size is 4095 bytes.

i

STXOSI1Z

IContains a binary number representing the
|size of the output buffer you provided as the
| OBUF operand on the STAX macro instruction.
|The maximum buffer size is 4095 bytes.

j |

STXOBUF

1

|Contains the address of the output buffer you
|provided as the OBUF operand on the STAX
|macro instruction.

N

—-‘P—_—-‘-_————-‘P—_——-‘F—————T-__-'

STXIBUF

+
|Contains the address of the input buffer you
|provided as the IBUF operand on the STAX
|macro instruction.

i

R WS S SN S S

———

STXOPTS

«0ee .e.n
«le. ...

eele caee

eeel ...

X eeoeo XXXX

T

| STAX option flags.

| REPLACE=YES

| REPLACE=NO

|Defer attention interruption processing, that
| is DEFER=YES.

|Cancel the deferral of attention interruption
| processing, that is DEFER=NO.

| Reserved bits.

1

- o e e e e e — e
w

STXUSER

.-———-———-"-—_———_-—_—.4,.._..—__-‘}—___-.".._—_—.0._—_—.0-_—____”-—_.;(

TContains the address of the parameters you
|want passed to your attention handling exit
|routine when it is given control. This is
| the address you supplied as the USADDR
|operand on the STAX macro instruction.

L

o e e e e e S o e s s s e)

Figure 14.

The STAX Parameter List

Attention Interruption Handling - the STAX Service Routine 51

Coding Example of the STAX Macro Instruction

The coding example shown in Figure 15 uses the 1list and the execute
forms of the STAX macro instruction to set up an attention handling
exit. The OBUF operand provides a message to be written to the terminal
when the attention interruption is received, and the IBUF operand
provides space for an input buffer. This example does not code the
REPLACE operand in the macro instruction; YES is the default value. The
attention handling exit established by this execution of the STAX macro
instruction replaces the previous attention handling exit established
for this task.

XL | TIHI/ S| [Cloo) WIG| [EXIAMIPILIE] |/ (SISIVIEIS| AL ISITIAXI MAICIRIO! [/ WISITIRIUICITI/ IOW! T10
X! | (SIEIT] (UIP) AN AITITIENTION |EX)/T] -
X ¥
X PRIOICIEISISI/INIG
X AL
X e s
LA 31, IS|TIAIXIL |/ |SIT]
Xl | I/ ISISWVIE] ITIHIE| |EXIEICIUITIE] IFloieMl 10IF| |TIHIE| |SITIAXI MAICIRI0] |/IN|SITIRIUICITI/ IoW
X X
SITAX TITWIEX/ (71, 0BIUF = (0T IBIUIFL 13171) L ZIBIUFI=|(LINBIUF s | 714401) |,
'"'(51(3))
X LY
X| | ICHEICK| |THE| RIEITURIN| [CIODE| |FIRIoM. [TIHIE [SITAIX| ISIERWV/ICIE] [RlolulTl INE
¥ | Al ZIERIO] REITIURW ICIODIE |/ WID|/ICIAITIELS! ISIUICICIEISISIFIUIL! [CIOMIPILIEIT| IOV
X X
LITIR 7150,(115
Z ERR|TW
X X
X| | IPRIOICIEISIS|I MG
* ~ — G P
X AN AT
EIRRTV o e I ¥
oA T~ TN 1
¥ X
X ¥
AT T/ [(A PP
A~ A A
/-_,'-\/—~\.L__’\-_1—-—\,/L~
o~~~ N
¥ L
X | [SITIORIAIGIE| DIEICILIARAITI/ IOVIS
L X
SITAX LI/ ISIT] ISTIAX] | ATITINEIX T, MFI=IL] | |THLS] [LISIT] IFORML 10IF| [TIHIE| ISITIALX
AICIRI0| |/ WISITIRUICITI/ 1OV [EIXIPAWVIDIS] IAINID
PRIOV|/IDES| ISIPAICIEL |FIOIR [TIHE SITIAIX
PARAMETER| ILIIIS]T.
X X
0UITIBIUIF DIC CUTIHILSL 111S] Al [SIAMPLIE! AITITEENTI/[OM LEIX|IIT'
0|S F
IINBIUIF DIC CILI7140)' 2 TWILTIHAILLZE] |1 #19) IBIYITIEIS] |TI0] [ZIEIR|0
X S| [TIHIE |/ INPUT| 1BIUIFIFIER
X X
EINID
Figure 15. Coding Example -- STAX Macro Instruction

52 Guide to Writing a TMP or a CP (Release 21.6)

Return Codes From the STAX Service Routine

When the STAX service routine returns control to the program that issued
the STAX macro instruction, register 15 contains one of the following
return codes:

CODE MEANING
0 The STAX service routine successfully completed the function
you requested. That is, it queued the attention exit you
passed it, or it cancelled an existing attention exit.

4 Deferral of attention exits has already been requested and
is presently in effect. Any other operands you specified in
the STAX macro instruction have been processed successfully.

8 Invalid parameter passed to the STAX service routine; your
STAX macro instruction was ignored.

Attention Interruption Handling - the STAX Service Routine 53

Dynamic Allocation of Data Sets -- The Dynamic Allocation Interface

Routine (DAIR)

Dynamic Allocation routines allocate, free, concatenate, and
deconcatenate data sets dynamically; that is, during problem program
execution. With the Time Sharing Option, dynamic allocation permits the
Terminal Monitor Program, Command Processors, and other problem programs
executing in the foreground region to alloccate data sets after LOGON and
free them before LOGOFF.

For a complete discussion of Dynamic Allocation, see the TSO Terminal
Monitor Program and Service Routines PLM.

The Dynamic Allocation routines may be accessed from a TSO foreground
region only through the Dynamic Allocation Interface Routine (DAIR). 1In
general, DAIR obtains information about a data set and, if necessary,
invokes Dynamic Allocation routines to perform the requested function.

You can use DAIR to perform the following functions:

Obtain the current status of a data set.

Allocate a data set (See note).

- Free a data set.

Concatenate data sets.

Deconcatenate data sets.

Build a list of attributes (DCB parameters) to be assigned to data
sets.

e Delete a list of attributes.

Not e:
If you wish to allocate a data set to a direct access device, the
device must ke available. To be available, the device must be:

e On line

e Ready

e Shareable.

Further conditions:

e An offline or unload condition must not be pending.

e There must be no outstanding MOUNT message.
e The volume attributes must have been defined.

54 Guide to Writing a TMP or a CP (Release 21.6)

Using DAIR

Enter the DAIR service routine with a LINK macro instruction to entry
point IKJEFDOO in load module IKJEFD0O. The control block structure
required by the DAIR service routine is shown in Figure 16. Note that
the DAIR Parameter Block (DAPB) is a variable-size block; the block size
depends upon the function requested by the calling routine. That
function is indicated to the DAIR service routine by the code in the
first two bytes of the DAIR Parameter Block.

LINK
DAIR

Reg. 1 |

16

o

DAPB

Entry Code

\/\/_Wv

P entin

Figure 16. Control Blocks Passed to DAIR

The Dynamic Allocation Interface Routine (DAIR) 55

THE DAIR PARAMETER LIST (DAPL)

At entry to DAIR, register 1 must point to a DAIR Parameter List that
you have built. Figure 17 shows the format of the DAPL. The addresses
of the user profile table, environment control table, and protected step
control block may be obtained from the command processor parameter list
(CPPL) that the TMP passes to your command processor (See Figure 33).
Additional information on the address and creation of the user profile
table, environment control table, and protected step control block is
shown in Figure 5 (the Test Parameter List).

r T) | 1
| Number of | | |
| Bytes | Field |Contents or Meaning |
1 4 1 1'
1 1 L
| 4 | DAPLUPT |The address of the User Profile Table. |
{ $ d
i T T 1
4 | DAPLECT | The address of the Environment Control Table.|
1 h]
T T
4 | DAPLECB |The address of the calling program's Event |
	Control Block. The ECB is one word of	
	storage declared and initialized to zexro by	
		the calling routine.
{ 4 4 J		
T T T 1		
4	DAPLPSCB	The address of the Protected Step Control
! l lBlock. J		
r] T 1		
4	DAPLDAPB	The address of the DAIR Parameter Block,
		created by the calling routine.
L L 4 J

Fiqure 17. Format of the DAIR Parameter List (DAPL)

56 Guide to Writing a TMP or a CP (Release 21.6)

THE DAIR PARAMETER BLOCK (DAPB)

The fifth word of the DAIR Parameter List must contain a pointer to a
DAIR Parameter Block built by the calling routine.

It is a variable-size parameter block that contains, in the first two
bytes, an entry code that defines the operation requested by the calling
routine. The remaining bytes contain other information required by DAIR
to perform the requested function. Figure 18 is a list of the DAIR
entry codes and the functions requested by those codes.

-
-
—

Code | Function Performed by DAIR

- T
|X* 00" |[Seaxrch the DSE for information about a data set by DDNAME or
| DSNAME.

|
X'04"'|search the DSE for information about a data set by DSNAME. If
|not found, search the system catalog.

|
|X"08'|Allocate a data set by DSNAME.
| |
|X*0C'|Concatenate data sets by DDNAME.
| |
|X"10'| Deconcatenate data sets by DDNAME.

| |
|X"14"| Search the system catalog for all qualifiers for a DSNAME.
| | (The DSNAME alone represents an unqualified index entry.)

| I

|X*18" |Free a data set.
| |

|X*"1C* |Allocate a DDNAME to a terminal. |
| |

|X'24"* |Allocate a data set by DDNAME or DSNAME. |
X'28" |Perform a list of operations.
X'2C' |Mark data sets as not in use.
| |

|X*'30*|Allocate a SYSOUT data set. |

X'34° |Build or delete an attribute control block (ATRCB).

Figure 18. DAIR Entry Codes and Their Functions

The DAIR Parameter Blocks have the formats shown in the following
tables. The formats of the blocks depend upon the function requested by
the calling routine. The function is indicated by the entry code in the
first two bytes of the DAIR Parameter Block.

The Dynamic Allocation Interface Routine (DAIR) 57

Code X'00'

- Search the DSE for a Data Set Name

Build the DAIR Parameter Block shown in Figure 19 to request that DAIR
search the Data Set Extension for a fully qualified data set name.

—
| Number of i i]
| Bytes | Field | Contents or Meaning |
F + t {
| 2 | DAOOCD |Entry code X'0000° |
- + + '
] 2 | DAOOFLG |A flag field set by DAIR before returning to
| | |the calling routine. The flags have the
| | |following meaning:
I | Byte 1 |
| | 0000 |[Reserved. Set to zero. |
| |] +.-« 1... |DSNAME or DDNAME is permanently allocated. |
| | +.... .1.. |DDNAME is a DYNAM.
| | +e<e« «..1. |The DSNAME is currently allocated; it appears
| | |in the DSE.
| | <<« <..1 |The DDNAME is currently allocated to the
| | | terminal. |
| | Byte 2 |
| | 0000 0000 |Reserved. Set to zero. |
- f + !
| 4 | DAOOPDSN |Place in this field the address of the DSNAME|
| | |buffer. The DSNAME buffer is a 46 byte field
| | |with the following format:
| | |The first two bytes contain the length, in |
| | | bytes of the DSNAME;
| | |The next 44 bytes contain the DSNAME, left
| | | justified, and padded to the right with |
| | | blanks. |
t t : i
| 8 | DAOODDN |Contains the DDNAME for the requested data
| | |set. If a DSNAME is present, the DAIR
| | | service routine ignores the contents of this |
| | | field. |
b { ¢ i
| 1 | DAOOCTL |A flag field: |
| | 00.0 0000 |Reserved bits. Set to zero. |
! eele <... |Prefix userid to DSNAME.
1
T |
2 | |Reserved bytes; set these bytes to zero.
L 4 1]
r] T 1
| 1 | DAOODSO |A flag field: These flags describe the |
| |organization of the data. They are returned
| |to the calling routine by the DAIR service
| | | routine. |
] lee. |Indexed Sequential (IS).
| <1.. |Physical Sequential (PS).
| .<1. |Direct Organization (DO).
| ...0 00.. |Reserved bits. Set to zero.
| | eeee «.l. |Partitioned Organization (PO). |
! l eees ool |Unmoveable. |
4]
Figure 19. DAIR Parameter Block -- Entry Code X'00°

After DAIR searches the Data Set Entry for the fully qualified data
set name, register 15 contains one of the following DAIR return codes;

0, 4

See the topic "Return Codes from DAIR" for return code meanings.

58 Guide to Writing a TMP or a CP (Release 21.6)

Code X'04°'

- Search the DSE and the System Catalog for Data Set Name

Build the DAIR Parameter Block shown in Figure 20 to request that DAIR
search the Data Set Extension for a fully qualified data set name.

the data set is not found in the DSE, DAIR also searches the system

Iif

catalog.
) T T 1
| Number of | | |
| Bytes | Field | Contents or Meaning |
L 4 'R J
r L T 1
| 2 | DAO4CD | Entry code X'0004°. |
; t t !
2	DAO4FLG	A flag field set by DAIR before returning to
		the calling routine. The flags have the
		following meaning:
	Bytel	
	0000 0..0	Reserved bits. Set to zero.
	eeeea <.l..	DAIR found the DSNAME in the catalog.
	<<« ..1l.	The DSNAME is currently allocated in the Data
		Set Extension.
	Byte 2	I
	0000 0000	Reserved. Set to zero.
8 IS 4 4		
[} 1] T]		
2		Reserved bytes. Set to zero.
4 4 i		
T T 1		
2	DAO4CTRC	These two bytes will contain an error code
		from the catalog management routines if an
		error was encountered by catalog management.
— N 1]		
i 4	DAO4PDSN	Place in this field the address of the DSNAME
	buffer. The DSNAME buffer is a 46-byte field	
		with the following format:
		The first two bytes contain the length, in
	bytes, of the DSNAME;	
	The next 44 bytes contain the DSNAME, left	
		justified, and padded to the right with
		blanks.
[N 4 } 4		
1) T T 1		
1	DAO4CTL	A flag field:
	00.0 0000	Reserved bits. Set to zero.
	«<le	Prefix userid to DSNAME. !
i 4		
r T 1		
2 i	Reserved bytes; set these bytes to zero.	
s L L 4		
T i)		
i 1 T DAO4DSO	A flag field. These flags are set by the	
		DAIR Service routine; they describe the
		organization of the data set to the calling
		routine. These flags are returned only if
		the data set is currently allocated in the
		DSE.
	l1eee <eeo..	Indexed Sequential (IS).
	+1..	Physical Sequential (PS).]
	e<le <e...	Direct Organization (DO).
	<..0 00..	Reserved bits. Set to zero.
	eeee ..1.	Partitioned Organization (PO).
	e« ..l	Unmoveable.
L 1 L J
Figure 20. DAIR Parameter Block -- Entry Code X'0u4'

After attempting the requested function, DAIR returns one of the
following codes in register 15:

o,

4, 8

See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR)

59

Code X'08' - Allocate a Data Set by DSNAME

Build the DAIR Parameter Block shown in Figqure 21 to request that DAIR
allocate a data set. The exact action taken by DAIR depends upon the
presence of the optional fields and the setting of bits in the control
byte.

If the data set is new and you specify DSNAME, (NEW, CATLG) DAIR
catalogs the data set upon successful allocation. If the catalog
attempt is unsuccessful, DAIR frees the data set.

If the proper indices are not present, the catalog macro CATBX
attempts to build indices for DAIR.

DAIR searches the Data Set Extension in a manner that depends upon
the information you supply in the DAIR Parameter Block. DAIR may search
on DSNAME alone, DSNAME and DDNAME if both are specified, DDNAME alone
if no DSNAME is specified, or DAIR may search for any available entry.
If DAIR searches for an available entry in the DSE, the order of
selection is:

1. A DYNAM entry.

2. A data set that is currently allocated but not in use and not
permanently allocated.

3. A concatenated data set not in use and not permanently allocated.

If neither of the above types of DSE entries can be found, allocation
cannot take place. If an entry can be found from number 2 (above) DAIR
frees the entry and uses it for the requested allocation. If DAIR can
find an entry from number 3 (above), it deconcatenates, then frees the
data set.

To allocate a utility data set use DAIR code X'08' and use a DSNAME
of the form &name. If the &name is found allocated in the Data Set
Extension, that data set is used. If the é&name is not found, DAIR
attempts to allocate a data set.

To supply DCB information, provide the name of an attribute list that
has been defined previously by a X'34' entry into DAIR.

The DAIR Parameter Block required for entry code X'08' has the
following format:

r T T -
| Number of| | |
|Bytes |Field |Contents or Meaning |
F + & z
| 2 | DAO8CD |Entry code X'0008°'. |
[l N i .'
r T T

| 2 | DAOSBFLG |A flag field set by DAIR before returning to the |
| | |calling routine. The flags have the following |
: : Bvte 1 :meaning: ;

yte

| | 1ee.|The data set is allocated but a secondary error |
| | |]occurred. Register 15 contains an error code.

| | .000 0000|Reserved bits. Set to zero. |
| | Byte 2 |Reserved. Set to zero. |
& + 4 .'
L T T

2	DAO8DARC	This field contains the error code, if any,
		returned from the Dynamic Allocation routines.
		(See "Return Codes from Dynamic Allocation."™)
t + % .		
2	DAOSCTRC	This field contains the error code, if any,
		returned from Catalog Management Routines.
L L 1 J

Figure 21. DAIR Parameter Block -- Entry Code X'08' (Part 1 of 3)

60 Guide to Writing a TMP or a CP (Release 21.6)

r T
| Number of|

| Bytes

|Field
4

Contents or Meaning

u

}
| DAOSPDSN

e ey e el

Place in this field the address of the DSNAME|
buffer. The DSNAME buffer is a 46 byte field|
with the following format:

The first two bytes contain the length, in
bytes, of the DSNAME; the next 44 bytes
contain the DSNAME, left justified and padded
to the right with blanks.

DA 0 8DDN

This field contains the DDNAME for the data

set. 1If a specific DDNAME is not required,

fill this field with eight blanks; DAIR will
place in this field the DDNAME to which the

data is allocated.

b e . e e e ot e

DAOSUNIT

Unit name desired. If name blank, defaults
to PSCBGPNM contents. If name is less than
eight bytes long, pad it with blanks at
right.

|
|
I
|
|
|
4
T
|
|
|
|
l
4
T
|
l
|
|
1
T
|

Serial number desired. Only the first six
bytes are significant. If the serial number
is less than six bytes, it must be padded to
the right with blanks. If the serial number
is omitted, the entire field must contain
blanks.

DAO8 BLK

Block size requested. This figure represents
the average record length desired.

DAO8 PQTY

Primary space quantity desired. The high
order byte must be set to zero; the low order
three bytes should contain the space quantity
required. If the quantity is omitted, the
entire field must be set to zero.

e e . . ey e ey = e e e s e o e e e e

DA08SQTY

—_———————e e —— e —

Secondary space quantity desired. The high
order byte must be set to zero; the low order
three bytes should contain the secondary
space quantity required. If the quantity is
omitted, the entire field must be set to
zero.

DA08DQTY

Directory quantity required. The high order
byte must be set to zero; the low order three
bytes contain the number of Directory blocks
desired. If the quantity is omitted, the
entire field must be set to zero.

L o

DA 0 8MNM

Contains a member name of a partitioned data
set. If the name has less than eight
characters, pad it to the right with blanks.
If the name is omitted, the entire field must
contain blanks.

’._-—_.—_-1’..—-—____1_—____ -,.._—_.___.—-'-___—_qr_—___1_.__.__._—*_,-—._—q_.__-___q;—_ —— e, S e, S,

DAO8PSWD

o e e e e e e —_————

e e A e e e e e e e e e e e

Contains the password for the data set. If
the password has less than eight characters,
pad it to the right with blanks. If the
password is omitted, the entire field must
contain blanks.

e e e e s iy = e e e e hn

Figure 21.

DAIR Parameter Block -- Entry Code X'08' (Part 2 of 3)

The Dynamic Allocation Interface Routine (DAIR) 61

r T
| Number of |

| Bytes | Field Contents or Meaning
4

—+—

4
1 | DA0O8DSP1 |Flag byte. Set the following bits to indicate
| the status of the data set:
0000|Reserved. Set these bits to zero.
eees 1...|SHR
eeee o+1..|NEW
eeee +.1.|MOD
eeees «e.1|OLD
1

+
DA08DPS2 |Flag byte. Set the following bits to indicate
| the normal disposition of the data set:
0000|Reserved bits. Set them to zero.
eeee lo..|KEEP
eeees «1..|DELETE
eess ..1l.|CATIG

1
DAO8DPS3 |Flag byte. Set the following bits to indicate
|the abnormal disposition of the data set:
0000|Reserved bits. Set them to zero.
eeee 1l...|KEEP
eees «1..|DELETE
eeee ..1l.|CATLIG

eeee ..1|UNCATLG
—_—

'.
I
I
I
I
I
Jf
I
I
I
|
|
I
| <o« ...1|UNCATLG
+ 1
|
I
[
|
I
|
I
%
|

T
DAOSCTL |Flag. byte. These flags indicate to the DAIR

|service routine what operations are to be
| pexformed:

XX.. «...|Indicate the type of units desired for the space
| parameters, as follows:

0l..|Units are in average block length.

10..|Units are in tracks (TRKS).

11..|Units are in cylinders (CYLS).

«el.|Prefix userid to DSNAME.

«sel|RLSE is desired.

eees l...|The data set is to be permanently allocated; it
|]is not to be freed until specifically requested.

eees «1l..|A DUMMY data set is desired

eess ool.]Attribute list name supplied.

eeee «..0|Reserved bit; set to zero.
i

e e s ot e e s e o e e e, e e e, e e . e e e e, e e, ey e . e, e s, e e, el e s o}

1
|Reserved bytes; set them to zero.
1

+
DA08DSO |A flag field. These flags are set by the DAIR
| service routine; they describe the organization
|of the data set to the calling routine.
l...|Indexed Sequential (IS).
«l..|Physical Sequential (PS).
..1.|Direct Organization (DO).
«+.0 00..|Reserved bits. Set to zero.
eeee ..l.|Partitioned Organization (PO).
eese «..l|Unmoveable.
4

8

[e S e e . S e, S e S s MUY R S . S o, e . i, S i, W e, S e, . e, S Y T e, . i, S e . B e, S e, e e, e e, B o, . e, . e, e s, S

I
|
I
I
|
I
I
I
I
|
[
I
|
I
_JI
I
+
I
!
|
I
I
I
I
I
I
{7
I
L

1
DAOSALN |Attribute list name.
1

b e iy e s s s e S— — — — i o—

Figure 21. DAIR Parameter Block -- Entry Code X'08' (Part 3 of 3)

After attempting the requested function, DAIR returns one of the
following codes in register 15:
o, 4, 8, 12, 16, 20, 28, 32, uu
See the topic "Return Codes from DAIR" for return code meanings.

62. Guide to Writing a TMP or a CP (Release 21.6)

Code X'0C' - Concatenate the Specified DDNAMES

Build the DAIR Parameter Block shown in Figure 22 to request that DAIR
concatenate data sets. Entry code X'0C' indicates that the DDNAMES
listed in the DAIR Parameter Block are to be concatenated in the order
in which they appear. All data sets listed by DDNAME in the DAIR
Parameter Block must be currently allocated.

DAIR marks the DSE entry for each member it concatenates. This is
done in case a subsequent request for allocation of a data set request
a member of the group. If the group was concatenated by DAIR, DAIR
deconcatenates the group and proceeds with the requested allocation.
the group was concatenated at LOGON, DAIR makes a duplicate entry for

S

If

the data set; that is, there will be two entries in the DSE for the same

data set.
] T T 1
| Number of | | |
| Bytes | Field |Contents or Meaning |
L i i 4
r T T 1
| 2 | DAOCCD | Entry code X'000C' |
! } 1 4
r T T 1
| 2 | DAOCFLG |Reserved. Set this field to zero. |
1 4 i 4
1 3 T T h)
2	DAOCDARC	This field contains the error code, if any,
		returned from the Dynamic Allocation
		routines. (See "Return Codes from Dynamic
		Allocation. ™)
I] I 1		
] T T 1		
2		Reserved field . Set this field to zero.
t 1 1 4		
) Ll T 1		
2	DAOCNUMB	Place in this field the number of data sets
		to be concatenated.
F t + 1		
2		Reserved. Set this field to zero.
1 i L]		
) T L} 1		
8	DAOCDDN	Place in this field the DDNAME of the first
		data set to be concatenated. This field is
		repeated for each DDNAME to be concatenated.
L L L]
Figure 22. DAIR Parameter Block -- Entry Code X'0C'
After attempting the requested function, DAIR returns one of the
following codes in register 15.
0, 4, 12

See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR) 63

Code X'10' - Deconcatenate the Indicated DDNAME

Build the DAIR Parameter Block shown in Figure 23 to request that DAIR
deconcatenate a data set. Entry code X'10' indicates that the DDNAME
specified within the DAIR Parameter Block has been previously
concatenated and is now to be deconcatenated.

r T 1 1
| Number of | | |
| Bytes | Field | Contents or Meaning |
L 4 1 J
r T T 1
| 2 | DA10CD | Entry code X'0010' |

L +

T 1}

2 | DA10FLG |Reserved. sSet this field to zero.

1 1

T T
| 2 | DA10DARC |This field contains the error code, if any, |

| | returned from the Dynamic Allocation

| |routines. (See "Return Codes from Dynamic
| | |Allocation. ™)
F t t {
| 2 | |Reserved field. Set this field to zero. |
L [1 4
r T T 1
| 8 | DA10DDN |Place in this field the DDNAME of the data |
| | | set to be deconcatenated. |
L L 41 J
Figure 23. DAIR Parameter Block -- Entry Code X'10'

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 12

See the topic "Return Codes from DAIR" for return code meanings.

64 Guide to Writing a TMP or a CP (Release 21.6)

Code X'14' - Return Qualifiers for the Specified DSNAME

Build the DAIR Parameter Block shown in Figure 24 to request that DAIR
return all qualifiers for the DSNAME specified.

You must also provide the return area pointed to by the third word of
the DAIR Parameter Block. If the area you provide is larger than needed
for all returned information, the remaining bytes in the area are set to
zero by DAIR. If the area is smaller than required, it is filled to its
limit, and the return code specifies this condition.

T

_
Number of |
Bytes | Field |Contents or Meaning
+ I
|

¥
2 DA14CD |Entry code X'0014'.

B S ——

2 DA14FLG Reserved. Set this field to zero.

DA14 PDSN |Place in this field the address of the DSNAME
|buffer. The DSNAME buffer is a 46 byte field
Jwith the following format:
|The first two bytes contain the length, in
| bytes, of the DSNAME;
|The next 44 bytes contain the DSNAME, left
| justified and padded to the right with
|blanks. DSNAME alone represents an
junqualified index entry.

it e . . . e o s gy

|

|

|

|

|

|

|

|

|

+ T

DA1l4PRET	Place in this field the address of the return
	area in which DAIR is to place the qualifiers
	found for the DSNAME. Place the length of
	the return area in the first two bytes of the
	return area. Set the next two bytes in the
	return area to zero. DAIR returns each of

| | the qualifiers it finds in two fullwords of
| |storage beginning at the first word (offset
| |0) within the return area.

+

|

|

|

|

|
+
|

L

r
|
|
k
I
t
|
F
|
|
|
|
|
|
|
|
|
k
|
|
|
|
|
|
|
|
|
L

-

DA14 CTL A flag field:

—

Byte 1
00.0 0000 |Reserved bits; set them to zero.
eele ... |Prefix userid to DSNAME.

N

3

e v et s s s S s gy T . o w—

|
|
|
I
I
L
r
|
L

T
|Reserved bytes. Set this field to zero.
[

Figure 24. DAIR Parameter Block -- Entry Code X'14°

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 36, 40

See the topic "Return Codes from DAIR' for return code meanings.

The Dynamic Allocation Interface Routine (DAIR) 65

Code X'18"'

- Free the Specified Data set

Build the DAIR Parameter Block shown in Figure 25 to request that DAIR

free a data set.

Entry code X'18' indicates that the data set name

represented by DSNAME is to be freed. If no DSNAME is given, the data
set associated with the DDNAME is freed. If both DDNAME and DSNAME are
given, DAIR ignores the DDNAME.

If the specified DSNAME appears several times in the Data Set
all such entries are freed.

Extension,

Number of
Bytes

Field

Contents or Meaning

2

DA18CD

JL-_.._-I

Entry code X'0018°'.

2

DA18FLG

Byte 1

leee cens

-000 0000

Byte 2

e e o e e]

|A flag field set by DAIR before returning to
| the calling routine. The flags have the
jfollowing meanings:

|

|

| The data set is freed but a secondary error
|occurred. Register 15 contains an error

| code.

|Reserved bits. Set to zero.

|Reserved. Set to zero.
4

DA18DARC

iThis field contains the error code, if any,
| returned from the Dynamic Allocation
|routines. (See "Return Codes from Dynamic
|Allocation.")

'y

DA18CTRC

b
|This field contains the error code, if any,
|returned from Catalog Management routines.
i

DA18PDSN

|Place in this field the address of the DSNAME
|buffer. The DSNAME buffer is a 46 byte field
|with the following format:

|The first two bytes contain the length, in

| bytes, of the DSNAME;

|The next 44 bytes contain the DSNAME, left

| justified and padded to the right with

| blanks.

L

e e e e e e e e s i e e e e s e e e g

DA18DDN

¢
|Place in this field the DDNAME of the data
|set to be freed, or zeros.

4

DA18MNM

e e e i e s s s o e

+
|Contains the member name of a partitioned
|data set. If the name has less than eight
|characters, pad it to the right with blanks.

| If the name is omitted, the entire field must
|contain blanks.

L

P___Wr—_.—__—qy———qp—————————q—-——-‘-_—.———q—-———-—____ -———1-—-|F'-——-‘-|

’._—....-i-____._.__‘P._—-_,_.__.____—_d\-___n.____-—.,ﬁ__—__.—_—-_—_—_-b——_’_.___‘

DA18SCLS

+
| SYSOUT class. An alphabetic or numeric
|character. If SYSOUT is not specified, this
|field must contain blanks.

L

fa o e s ey S c— — — —

Figure 25.

DAIR Parameter Block -- Entry Code X'18' (Part 1 of 2)

66 Guide to Writing a TMP or a CP (Release 21.6)

r Ll T 1
Number of | | |
Bytes | Field | Contents or Meaning J

L J i

r T T 1

1 | DA18DPS2 |Flag byte. sSet the following bits to |

| jindicate the normal disposition of the data |

set: |

% 0000 %Reserved bits. Set them to zero. |

	eeee 1l...	KEEP
	<ee. .1l..	DELETE
+<ee ..1l.	CATLG	

| <eee «..1 |UNCATLG |

t ¢ :

1 | DA18CTL |Flag byte. These flags indicate to the DAIR |

| |service routine what operations are to be |

		performed:
	<.1.	Prefix userid to DSNAME.
00.. 0000	Reserved bits; set them to zero.	

| e<«-1 |If this bit is on, permanently allocated data]|

| | sets are unallocated and marked "not in use."|

| | | If the bit is off, the data set will be |

i | |marked "not in use," if it is permanently |

| | | allocated. |

F t + 4

| 8 | DA18JBNM | Place the jobname for enqueuing SYSOUT data |

		sets in this field. If the jobname is
		omitted, DAIR takes the jobname from the
		TIOT.

L L 1 3

Figure 25. DAIR Parameter Block -- Entry Code X'18' (Part 2 of 2)

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4, 8, 12, 24, 28

See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR) 67

Code X'1C' - Allocate the Specified DDNAME to the Terminal

Build the DAIR Parameter Block shown in Figure 26 to request that DAIR

allocate a DDNAME to the terminal. Entry code X'1C' indicates that the

DDNAME specified within the DAIR Parameter Block is to be allocated to
the terminal. If the DDNAME field is left blank, DAIR returns the

allocated DDNAME in that field. To supply DCB information, provide the

name of an attribute list that has been defined previously by a X'34'
entry into DAIR.

r T L) 1
| Number of | | |
| Bytes | Field | Contents or Meaning
L 1 L
) 1} 1}
| 2 | DA1CCD |Entry code X'001cC’

2 DA1CFLG Reserved field; set it to zero.

2 DA1CDARC This field contains the error code, if any,
		returned from the Dynamic Allocation
]	routines. (See "Return Codes from Dynamic	
		Allocation.")
L Il N d		
[3) ¥ 1		
1		Reserved field; set it to zero.
L L L i		
L) v 1]		
1	DA1CCTL	Control byte:
	ecee le...	The data set is to be permanently allocated;
		it is not to be freed until specifically
		requested.
] eeee eol.	Attribute list name supplied.	
i	xxxx .x.x jEach x represents a reserved bit.	
L i il		
[} T T		
8	DA1CDDN	Place in this field the DDNAME for the data
		set to be allocated to the terminal.
L L 4 Jq		
[})] L}		
8	DA1CALN	Attribute list name.
L L 4 J

Figure 26. DAIR Parameter Block -- Entry Code X'icC'

After attempting the requested function, DAIR returns one of the
following codes in register 15:

o, 4, 12, 16, 20, 28

See the topic "Return Codes from DAIR" for return code meanings.

68 Guide to Writing a TMP or a CP (Release 21.6)

Code X'24' - Allocate a Data Set by DDNAME

Build the DAIR Parameter Block shown in Figqure 27 to request that DAIR
allocate a data set by DDNAME.

DAIR searches the Data Set Extension using as an argument the DDNAME
you specify in the DAIR Parameter Block.

If DAIR locates the DDNAME you specify and a DSNAME is currently
associated with it, the associated DSNAME is allocated overriding the
DSNAME pointed to by third word of your DAIR Parameter Block. DAIR
replaces the DSNAME in your DSNAME buffer with the DSNAME found
associated with the DDNAME you specified, and updates the buffer length
field. The DDNAME must also be permanently allocated when found or
allocation will be by DSNAME with a generated DDNAME.

If there is no DSNAME associated with the DDNAME you specified, it is
DYNAM or does not exist. DAIR searches the DSE using the DSNAME you
specify as an argument. If DAIR cannot allocate by DDNAME, it will give
control to code X*'08' to allocate by DSNAME and will generate a new
DDNAME.

r T T 1
| Number of | | |
| Bytes | Field | Contents or Meaning
4 4
1
2 | DA24CD |Entry code X'0024°.
1 } L |
[}] T 1
| 2 | DA24FLG |A flag field set by DAIR before returning to |
| |the calling routine. The flags have the
| | following meaning:
| | Byte1l | |
| 1l... «... |The data set is allocated but a secondary
| |error occurred. Register 15 contains an
| | error code.
| eece l... |DDNAME requested is allocated as DUMMY.
| | -.000 .000 |Reserved bits. Set to zero. |
| Byte 2 |Resexrved. Set to zero. |
L | i |
T T 1
2 | DA24DARC |This field contains the error code, if any, |
	returned from the Dynamic Allocation	
		routines. (See "Return Codes from Dynamic
		Allocation.™)
b : b 4		
2	DA24CTRC	This field contains the error code, if any,
		returned from Catalog Management Routines.
1 1 4+		
] T		
4	DA24PDSN	Place in this field the address of the DSNAME}
		buffer. The DSNAME buffer is a 46 byte field
		with the following format:
		The first two bytes contain the length, in
		bytes, of the DSNAME;
		The next 44 bytes contain the DSNAME, left
		justified and padded to the right with
		blanks.
k 1 t		
8	DA24DDN	Place here the DDNAME for the data set to be
		allocated. This DDNAME is required.
} 4 + 3		
] T T 1		
8	DA2LUNIT	Unit name desired. If blank, defaults to
		PSCBGPNM contents. If the unit name is less
		than eight bytes, pad it to the right with
		blanks.
L L L J

Figure 27. DAIR Parameter Block -- Entry Code X'24' (Part 1 of 3)

The Dynamic Allocation Interface Routine (DAIR) 69

Number of
Bytes

Field

Contents or Meaning

-+

DA24'SER

|serial number desired. Only the first six
|bytes are significant. If the serial number
|is less than six bytes, it must be padded to
|the right with blanks. If the serial number
|is omitted, the entire field must contain
|blanks.

4

R S———

DA24BLK

+
|Block size requested. This figure represents
|the average record length desired.

L

DA24PQTY

]

|Primary space quantity desired. The high
|order byte must be set to zero; the low order
| three bytes should contain the space quantity
| required. If the quantity is omitted, the
|entire field must be set to zero.

L

DA24 SQTY

+
| Ssecondary space quantity desired. The high
|order byte must be set to zero; the low order
|three bytes should contain the secondary

| space quantity required. If the quantity is
|omitted, the entire field must be set to

| zero.

4

DA24 DQTY

TDirectoxy quantity required. The high order
| byte must be set to zero; the low order three
|bytes contain the number of Directory blocks
|desired. If the quantity is omitted, the
|entire field must be set to zero.

L

DA24MNM

b
|Contains a member name of a partitioned data
|set. If the name has less than eight
|characters, pad it to the right with blanks.
| If the name is omitted, the entire field must
|contain blanks.

4

DA24PSWD

I

|Contains the password for the data set. If
|the password has less than eight characters,
|pad it to the right with blanks. If the
|password is omitted, the entire field must
|contain blanks.

4

DA24DsSP1

0000

LRI

lews
.l..

.ol
...1 |OLD
4

I

|Flag byte. Set the following bits to
|indicate the status of the data set:
| Reserved. Set these bits to zero.

| SHR

| NEW

| MOD

o o e S . . T e e S e S e T . S T e e S e e SO e, . e S e B o, e e e e G S e S e, o e, G e . . e, e, B . . S

— e]

L

DA24DPS2

0000

1...
-1.'
«al.

...1 |UNCATLG
L

1

|Flag byte. Set the following bits to

| indicate the normal disposition of the data
|set:

|Reserved bits. Set them to zero.

| KEEP

| DELETE

| CATLG

b e e . e e e . e g e e . e e s e e e e . e s i e . e . . gy s e e e e iy e e S o S . ey e e e s, e i e, e]

Figure 27.

DAIR Parameter Block -- Entry Code X'24' (Part 2 of 3)

70 Guide to Writing a TMP or a CP (Release 21.6)

Number of

Bytes Field

DA24DPS3

0000

e oee 1..-
envnee 01..
seee -‘-1-

eeee sael

T
|
|Contents or Meaning
4
LD

|Flag byte. Set the following bits to
|indicate the abnormal disposition of the dat
|set:

|Reserved bits. Set them to zero.

| KEEP

| DELETE

| CATLG

| UNCATLG

4

a

DA24CTL

XXee eeee

0l..
10.. «...
11..

eele aaee

esel ...

—— e e e S . S . G S . S .

P P

L 01‘.
R

cees 2420

+
| Flag byte. These flags indicate to the DAIR
| service routine what operation are to be

| performed:

| Indicate the type of units desired for the
|space parameters, as follows:

|Units are in average block length.

|Units are in tracks (TRKS).

|Units are in cylinders (CYLS).

|Prefix userid to DSNAME.

| RLSE is desired.

|The data set is to be permanently allocated;
|it is not to be freed until specifically
| requested.

|A DUMMY data set is desired

|Attribute list name supplied.

|Reserved bit; set to zero.

4

1]
|Reserved bytes; set them to zero.
s

B i S |

DA24 DSO

leee ceens
elee cene
eele e
.0 00..
cees sole

R §

+
|A flag field. These flags are set by the
|DAIR service routine; they describe the
|organization of the data set to the calling
|routine.

| Indexed Sequential (IS).

|Physical Sequential (PS).

|Direct Organization (DO).

|Reserved bits. Set to zero.

|Partitioned Organization (PO).

| Unmoveable.

i

8 DA24ALN

o e —— e e e . e . o e o

s D

+
|Attribute list name.
L

\-—.JB_—_—-._.—__—_.*—.L

Figure 27. DAIR Parameter Block -- Entry Code X'24' (Part 3 of 3)

After attempting the requested function, DAIR returns one of the
following codes in register 15:

o, 4, 8, 12, 16, 20

See the topic "Return Codes from DAIR" for return code meanings.

The

Dynamic Allocation Interface Routine (DAIR)

71

Code X'"28'

- Perform a List of DAIR Operations

Build the DAIR Parameter Block shown in Figure 28 to request that DAIR
perform a list of operations. This DAIR Parameter Block points to other
DAPBs which request the operations to be performed.

All valid DAIR functions are acceptable; however, code X'14' or
another code X'28' are ignored.

DAIR processes the requested operations in the order they are

requested.

DAIR processing stops with the first operation that fails.

Number of
Bytes

Field

T

Contents or Meaning

2

DA28CD

Entry code X'0028°'.

2

DA 28NOP

| Place in this field the number of operations
|to be performed.
4

DA 28PFOP

1)

|DAIR £ills this field with the address of the
| DAIR Parameter Block for the first operation
| that failed. If all operations are
|successful, this field will contain zero upon
|return from the DAIR service routine. If
|this field contains an address, register

| fifteen contains a return code.

+

[e S e T s S P . S, S s, S S . S B . s S s sy

o o o e e o e . o e e e e e e e e e e e o}

DA280OPTR

+
|Place in this field the address of the DAIR
| Parameter Block for the first operation you
|want performed. Repeat this field, filling
| it with the addresses of the DAPLs, for each
|of the operations to be performed.

L

b s e e e sy T e S e S — — - c— — b o o iy e e v

Figure 28.

DAIR Parameter Block -- Entry Code X'28'

After attempting the requested function, DAIR returns one of the
following codes in register 15:

Any code accepted by any of the other DAIR functions, except '36' and

'uo..

For return code meanings see the topic "Return Codes from DAIR."

72 Guide to Writing a TMP or a CP (Release 21.6)

Code X'2C' - Mark Data Sets as Not in Use

Build the DAIR Parameter Block shown in Figure 29 to request that DAIR
mark DSE entries associated with a Task Control Block as not in use.
This allows TIOT entries to be reused.

This is the code which the TMP should pass to DAIR prior to detaching
a command processor. This code should also be issued by any command
processor which attaches another command processor and detaches that
command processor directly.

r
| Number of
| Bytes

—_——

Field Contents or Meaning

— gy ——

2 DA2CCD Entry code X'002C"'.

- —

2 DA 2CFLG |A flag field. Set the bits to indicate to
|the DAIR service routine which data sets you
|want marked not in use. |
| |
|Hex setting Meaning
joooo Mark all data sets of the
| indicated TCB "not in use". |
| 0001 Mark the specified DDNAME "not

in use".
0002 Mark all DSEs associated with
lower tasks "not in use".

for the task whose data sets are to be marked

| |

| |

t 4

DA2CTCB |Place in this field the address of the TCB |

| |

| "not in use". |

+ !
| §

|

|

|

J

DA2CDDN |Place in this field the DDNAME to be marked
| "™not in use"™. DA2CFLG must be set to hex
|0001.

L

e e o e e e e e e e e e e e

[s S e g S . S B S, S e, S, e S St S

Figure 29. DAIR Parameter Block -- Entry Code X'002C"

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4

For return code meanings see the topic "Return Codes from DAIR."

The Dynamic Allocation Interface Routine (DAIR) 73

Code X'30°'

- Allocate a SYSOUT Data Set

Build the DAIR Parameter Block shown in Figure 30 to request that DAIR
allocate a SYSOUT data set. The exact action taken by DAIR is dependent
upon the presence of the optional fields and the setting of bits in the

control byte.

DAIR.

To supply DCB information, provide the name of an
attribute list that has been defined previously by a X'34' entry into

Number of
Bytes

Contents or lMeaning

2

Entry code X'0030°'.

2

.000 0000

Byte 2

.d-...__“____‘

|A flag field set by DAIR before returning to
|the calling routine. The flags have the
|following meaning:

|

|

IThe data set is allccated but a secondary

|error occurred. Register 15 contains an
| error code.
|Reserved bits. Set to zero.

—— s, S & s, s S, . e, ey s, el e, e e}

|Reserved. Set to zero.
4

.”.————————-——-—————-l—-—-”__—q

DA30DARC

+
|This field contains the error code, if any,
| returned from the Dynamic Allocation |
| routines. (See "Return Codes from Dynamic
|Allocation. ™)

4

L]
|Reserved. sSet this field to zero.
L

P p—

DA30PDSN

t
|Place in this field the address of the DSNAME|
| buffer. The DSNAME buffer is a 46 byte field|
|with the following format: |
|The first two bytes contain the length, in
| bytes, of the DSNAME;

| The next 44 bytes contain the DSNAME, left
| justified and padded to the right with |
| blanks.
1

DA30DDN

L]

|This field contains the DDNAME for the data
|set. If a specific DDNAME is not required,
|£i11 this field with eight blanks; DAIR will
|place in this field the DDNAME to which the
|]data is allocated.

1

DA3QUNIT

]

|Unit name desired. If blank, defaults to
| PSCBGPNM contents. If name is less than
|eight bytes, pad it at right with blanks.
i

DA30SER

|
|
|
.'
|
|
.'
|

1

| Serial number desired. Only the first six
|bytes are significant. If the serial number
|is less than six bytes, it must be padded to
| the right with blanks. If the serial number
|is omitted, the entire field must contain |

[e . o S S e (. S S s, S e S e S s S S G . S, S . S, S . S S . A s S . S B s S e, W . § . M, S . e e G e S e, e 22

o e e e e e s e e = e T e . = e, T S e, = s . = e = e

DA30BLK

| blanks.
+]

+
|Block size requested. This figure represents
| the average record length desired.

L

J

Figure 30.

DAIR Parameter Block -- Entry Code X'30' (Part 1 of 2)

74 Guide to Writing a TMP or a CP (Release 21.6)

Number of
Bytes

Field

Contents or Meaning

q-—-——‘-’l

—— e e oy

DA30PQTY |Primary space quantity desired. The high

|order byte must be set to zero; the low order
| three bytes should contain the space quantity

| required. If the quantity is omitted, the
|entire field field must be set to zero.
1

T
DA30SQTY |Secondary space quantity desired. The high

| order byte must be set to zero; the low order
|three bytes should contain the secondary space

|quantity required. If the quantity is

|omitted, the entire field must be set to zero.
L

.
|
|
{
I
|
|
I
I
.’
|
I
|

4

}
DA3OPGNM |Place in this field the member name of a

|special user program to handle SYSOUT
|operations. Fill this field with blanks if
|you do not provide a program name.

4
f ——
DA3OFORM |Form number. This form number indicates that |

|the output should be printed or punched on a

| specific output form. It is a four character
| number. This field must be filled with blanks

| if this parameter is omitted.
4

}
DA30OCLS |SYSOUT class. Place a single alphameric

| character in either byte of this field and a

|blank in the other byte. The data set will be
|allocated to the message class, regardless of

| the class that you specify here. To place a
| SYSOUT data set in a class other than the
| message class, use DAIR entry code X'30',
| specifying any valid class. When the output
|has been written, specify the desired SYSOUT

|class either by using DAIR entry code X'18' or

| by issuing the FREE command.

Reserved. Set this field to zero.

[e S e e e e S e . e S (i, . s, S WA . . S . e, S . S . e et S . WA S e S . i S

8

T
|
|
t
I
|
I
|
I
%
|
I
I
|
|
%
I
|
|
|
{7
|
|
I
|
|
IT
I
|
|
|
|
I
|
|
|
|
I
1
I
%
|
|
I
I
[
I
I
|
I
|
|
I
|
|
I
I
[
L

—t ——

DA30CTL |Flag byte. These flags indicate to the DAIR

XX..

01..
10..
11..
«el.
eeel

| service routine what operations are to be
| pexformed.

s« |Indicate the type of units desired for the
| space parameters, as follows:

...« |Units are in average block length.

eee«.|Units are in tracks (TRKS).

«e-.|Units are in cylinders (CYLS).

«e..|Prefix userid to DSNAME

e+« |RILSE is desired.

1...|The data set is to be permanently allocated;

]it is not to be freed until specifically
| requested.
.1..|A DUMMY data set is desired.
..1l.|Attribute list name specified.
...0|Reserved bit; set to zero.

DA30ALN |Attribute list name.

L

Figure 30.

DAIR Parameter Block -- Entry Code X'30' (Part 2 of 2)

After attempting the requested function, DAIR returns one of the
following codes in register 15:

0, 4,

12, 16,

20, 28

See the topic "Return Codes from DAIR" for return code meanings.

The Dynamic Allocation Interface Routine (DAIR)

75

Code X'34' - Build or Delete an Attribute Control Block (ATRCB)

Build the DAIR Parameter Block shown in Figure 30.1 to request that DAIR
construct an ATRCB, delete an ATRCB, or search the chain of ATRCBs for a
specific name. The exact action taken by DAIR is dependent upon the
setting of bits in the control byte.

Note: When you request that DAIR construct an ATRCB, you must also
build a DAIR Attribute Control Block (DAIRACB).

|operations are to be performed.
DA34SRCH |
leee <... |Search the ATRCB chain for the attribute list
| name specified in field DA3UNAME.

r T T 1
Number of | |
Bytes | Field Contents or Meaning |

4
1
2 DA34CD Entry code X'0034°'. |

L

k 1

| 2 | DA34UFLG |A flag field set by DAIR before returning to |

the calling routine. The flags have the |

following meaning: |

| Byte 1 | I

| | DA3UFIND | {
] l1.e. c...	An attribute list name was found.	
	Oeee eeeo	An attribute list name was not found.
	<000 0000	Reserved bits. Set to zero.
	Byte 2	Reserved.

F t t {

| 2 | DA3UDARC |This field contains the code returned from |

| | |the Dynamic Allocation routines. (See |
| | | "Return Codes from Dynamic Allocation.™) |

t 4 4

3 1 T {

| 1 | DA34CTRL | Flag byte. These flags indicate to DAIR what|

I | |

I | |

| | |

| | |
| | |

DA 34CHN |
elee .ece.. |Build and chain an attribute list (ATRCB).
DA 34UNCH |
| eel. <.... |Delete an ATRCB from the chain. |
| <..0 0000 |Reserved bits. Set to zero. |
t t !
1 Reserved.
8 DA 34NAME This field contains the name for the list of
attributes.
¢ : {
4 | DA34ADDR This field contains the address of the DAIR |
| Attribute Control Block (DAIRACB). |
1 L L J

Fiqure 31. DAIR Parameter Block -- Entry Code X'34°'

76 Guide to Writing a TMP or a CP (Release 21.6)

DAIRACB - DAIR Attribute Control Block

Build the DAIRACB shown in Figure 32 when you request that DAIR

construct an attribute control block (ATRCB).

Place the address of the

DAIRACB into the DA3Y4ADDR field of the code X'34' DAIR parameter block
shown in Figure 31.

1]] T 1
| Number of | | |
| Bytes | Field | Contents or Meaning |
- 1 t H
| 8 |Reserved. | |
| 8 DAIMASK |First 6 bytes and eighth byte are reserved. |
| DAILABEL |seventh-byte flags. These flags indicate the|
| | | INOUT/0OUTIN options of the OPEN macro. |
| | DAIINOUT | |
| l1... |Use the INOUT option. |
| DAIOUTIN | [
| «le. «... |Use the OUTIN option. |
| | «.xx xxxx |Reserved bits. |
L 1 L "
|) L T
| 3 | | Reserved. |
t t t+ i
| 3 | DAIEXPDT |This field contains a data set expiration |
| date. |
| DAIYEAR The first byte contains the expiration year. |
| | DAIDAY |The next 2 bytes contain the expiration day, |
| | left justified (x'dddn). |
L
3 1
| 2 Reserved. |
L i
r 1
| 1 | DAIBUFNO |This field contains the number of buffers |
| | | required. |
t t } 4
| 1 | DAIBFTEK |This field contains the buffer type and |
| |alignment. |
| <le. ... |Simple buffering (S). |
| -.11. |Automatic record area construction (a). |
| eel. |Record buffering (R). |
| | eeel ... |Exchange buffering (E). |
| | <eee <.l. |Doubleword boundary (D). |
| eeee «c.l |Fullword boundary (F). |
| x... xx.. |Reserved bits. |
3 + + 4
| 2 | DAIBUFL |This field contains the buffer length. |
L 1 1
[] v Ll "
| 1 | DAIEROPT |This field indicates the error options: |
| | 1... |Accept error record. |
| elee <e... |Skip error record. |
| eele <«e.. |Abnormal ECT. |
| «..x xxxx |Reserved bits. |
i L J
1 T 1
1 | DAIKEYLE |This field contains the key length. |
+ + 1
6 | | Reserved. |
L L L J
Figure 32. DAIR Attribute Control Block (DAIRACB) (Part 1 of 2)
The Dynamic Allocation Interface Routine (DAIR) 77

Number of
Bytes

Field

Contents or Meaning

e e

1

—— Y . S

DAIRECFM

1
S
11..
eele cean
eeel ceee
P
eces ol..

eees oal.

|This field indicates the record format:
|Fixed (F).

|Variable (V).

|Undefined (U).

|Track overflow (T).

|Blocked (B).

| standard Blocks (S).

| ASA printer characters (A).

| Machine control characters (M).

eees <..X |Reserved bits.
L

DAIOPTCD

leee eoee
eele ...
P

ecee oala

eXeX XX

TThis field contains the error option codes:
|Write validity check (W).

|Chained scheduling (C).

|ANSI translate (Q).

|User totaling (T).

|Reserved bits.

+

DAIBLKSI

b
|This field contains the maximum block size.
4L

——— — T —
N

DAILRECL

+
|This field contains the logical record
| length.

[

DAINCP

}
|This field contains the maximum number of
|channel programs.

e s b e e i e g < e o e s e i o . s S s S e, S, i, S, e e, e

4

p——t————— o —————— e —

Reserved.

Figure 32.

DAIR Attribute Control Block (DAIRACB) (Part 2 of 2)

The fields that you do not use must be initialized to zero.

78 Guide to Writing a TMP or a CP (Release 21.6)

Return Codes from DAIR

DAIR returns a code in general register 15 to the calling routine. 1In
addition, DAIR sets certain return codes in the DAxxXDARC field of a DAIR
Parameter Block. (See items preceded by an asterisk in "Return Codes
from Dynamic Allocation.")

The DAIR return codes have the following meaning:

CODE

MEANING

decimal
0
4

8

12

16

20

24
28

32

36

40

4y

48

DAIR completed successfully.

The parameter list passed to DAIR was invalid.

An error occurred in a catalog management routine; the
catalog management error code is stored in the CTRC field of
the DAIR Parameter Block.

An error occurred in dynamic allocation; the dynamic
allocation error code is stored in the DARC field of the
DAIR Parameter Block.

No TIOT entries were available for use.

The DDNAME requested is unavailable.

The DSNAME requested is a member of a concatenated group.

The DDNAME or DSNAME specified is not currently allocated,
or the attribute list name specified was not found.

The requested data set was previously permanently allocated,
or was allocated with a disposition of new, and was not
deleterd. DISP=NEW cannot now be specified.

An error occurred in a catalog information routine.

The return area you provided for qualifiers was exhausted
and more index blocks exist. If you require more
qualifiers, provide a larger return area.

The previous allocation specified a disposition of DELETE
for this non-permanently allocated data set. Request
specified OLD, MOD, or SHR with no volume serial number.

Returned from DAIR STAE routine when an ABEND has occurred.

The Dynamic Allocation Interface Routine (DAIR) 79

Return Codes from Dynamic Allocation

Both DAIR and the Dynamic Allocation routines called by DAIR may return
a code in the DAxxDARC field of the DAIR Parameter Block.

Note: Codes that can be returned by DAIR are preceded by an asterisk.
The asterisk is not part of the return code.)

The return codes have the following meaning:

RETURN CODE

MEANING

hexadecimal
0000

ooou

002w

003x

1€

Dynamic Allocation completed successfully.

Dynamic Allocation could not delete a table that was
loaded using a LOAD macro instruction. The data set is
still allocated.

The temporary data set was freed and deleted. The
disposition specified by the calling routine is invalid
for a temporary data set.

The data set was successfully freed, but the disposition
(catalog or uncatalog) was unsuccessful. The hexadecimal
digit 'w' is a code indicating the reason for the
failure.

Explanation

A control volume was required and a utility program must
be used to catalog the data set.

The data set to be cataloged had previously been
cataloged or the data set to be uncataloged could not be
located, or no change was made to the volume serial list
of a data set with a disposition of CATIG.

A specified index did not exist.

The data set could not be cataloged because space was not
available on the specified volume.

Too many volumes were specified for the data set; because
of this, not enough main storage was available to perform
the specified cataloging.

The data set to be cataloged in a generation index is
improperly named.

The data set to be cataloged was not opened and no
density information was provided. (For dual density tape
requests only).

An uncorrectable input/output error occurred in reading
or writing the catalog

The data set was successfully freed, but the requested
disposition (delete) was unsuccessful. The hexadecimal
digit 'x' is a code indicating the reason for failure.

80 Guide to Writing a TMP or a CP (Release 21.6)

0104

0108

01i0cC

0204
0208

020C

0210

0214

*0218

021cC

1™

Explanation

The expiration date had not occurred.
No device was available for mounting during deletion.

Too many volumes were specified for deletion.

Either no volumes were mounted or the mounted volumes
could not be demounted to permit the remaining volumes to
be mounted.

The SCRATCH routine could not delete the data set from
the volume.

A job was cancelled and was deleted from any one of the
following queues:

Input Queues

Background Reader Queue

Hold Queue

Automatic SYSIN Batching (ASB) Queue
Output Queues

Dynamic Allocation encountered an I/0 error while
attempting to read from SYSl.SYSJOBQE.

Dynamic Allocation encountered an I/0 error while
attempting to write to SYS1.SYSJOBQE.

Dynamic Allocation encountered an I/0 error while
enqueueing on SYS1.SYSJOBQE.

Reserved.
No space is available on SY¥S1.SYSJOBQE.

The calling routine made a request for the exclusive use
of a shared data set. The request can not be honored.

The data set requested is not available. This data set
is allocated to another job and its usage attributes
conflict with this request.

A direct access device is not available. To be available
it must satisfy the following requirements:

It must be online.

It must be ready.

It must not be pending offline.

It must not be pending an unload.

It must be shareable.

A MOUNT message must not be currently outstanding.
The volume attributes must have been defined.

The required volume was not mounted on an available
device. Either DAIR or Dynamic Allocation can set this
return code.

(See Cynamic Allocation return code 214 for the
requirements for an available device.)

Incorrect unitname supplied.

The Dynamic Allocation Interface Routine (DAIR) 81

0220
through

0264

0268

0304

0308

030C

0310

0314

0318

031cC

0320

0324

0328

032¢C

*0330

0334

0338

033C

0340

0344

0348
through
o34cC

Reserved.

Concatentaion was requested, but the DCBTIOT offset
cannot be found in this job's DEB/DCB chain.

The ddname was not specified by the calling routine.

The ddname specified by the calling routine was not
found.

An invalid function code was specified by the calling
routine.

The "exchange" option was specified by the calling
program and the TIOT entry for the second (new) ddname
could not be found.

Restoring ddnames, as per this request, would have
resulted in duplicaie ddnames -- duplicate ddnames are
not permitted.

Invalid characters are present in the ddname provided by
the caller.

Invalid characters are present in the membername provided
by the caller.

Invalid characters are present in the dsname provided by
the caller.

Invalid characters are present in the SYSOUT program name
provided by the caller.

Invalid characters are present in the SYSOUT form number
provided by the caller.

An invalid SYSOUT class was specified by the caller.

A membername was specified but the data set is not a
partitioned data set. DAIR, not Dynamic Allocation, sets
this return code.

The supplied data set name exceeded 44 characters in
length.

The data set disposition specified by the caller is
invalid.

More than one mutually exclusive keyword (DSNAME, DUMMY,
TERM, or SYSOUT) was specified.

The dsname was not specified and the disposition was not
"new". (If the disposition is "new" the dsname may be
omitted.)

Dynamic Allocation was specified in a non-TSO
environment.

Reserved.

82 Guide to Writing a TMP or a CP (Release 21.6)

0350

0354
0358
035C-0360

0364

ou oy

0408

osocC

o410

ouly

o418

*¥041C

ou20

ou2y

ou28

ou2cC

o430

0504

L]
Jobname field contains zeros. This field may be blank,
but may not contain zeros.

Reserved.
DELETE cannot be specified if the data set is shared.

Reserved.

JOBLIB DDNAME or STEPLIB DDNAME can not be specified.
These data sets have been opened and thus cannot be
allocated.

The device to be freed is not a direct access device.
(Only direct access devices are supported for dynamic
allocation.)

The new DDNAME is a duplicate of a DDNAME in the TIOT.
The calling routine requested allocation of a file name
(DDNAME) already used for the job.

The specified ddname is associated with a DYNAM entry.
DYNAM entries may not be concatenated.

The specified ddname is allocated to a data set. The
ddname must be associated with a DYNAM entry.

The specified ddname is already allocated to a terminal
entry (TERM=TS).

The referenced data set is a member of a concatenated
data group. If the data set was dynamically concatenated
it must be deconcatenated before this request can be
honored. 1If concatenated at LOGON, the data set may not
be freed until LOGOFF.

The referenced data set is a multi-volume data set.
Multi-volume data sets (data sets on more than one
volume) are not supported by Dynamic Allocaticn. Either
DAIR or Dynamic Allocation can set this return code.

The specified ddname is associated with an open data set.
(A data set must be closed to be used by Dynamic
Allocation.)

Reserved.

The specified ddname is part of a previously allocated
space. Dynamic Allocation cannot free it.

The ddname to be freed is associated with a generation
data group. Generation data groups are not supported in
Dynamic Allocation.

The specified ddname is associated with a passed data
set. Passed data sets cannot be freed or converted.

A serious error of undetermined cause has occurred
involving system data.

The Dynamic Allocation Interface Routine (DAIR) 83

*x7zz A Dynamic Allocation return code of this form is
constructed of an identifier (x) representing the system
macro instruction returning the code, and the code itself
(zz) returned by the macro instruction.

If "x" equals 1, the LOCATE macro instruction
returned the code. DAIR, not Dynamic Allocation,
returns this code.

If "x" equals 4, the DADSM macro instruction
returned the code.

If "x" equals 6, the OBTAIN macro instruction
returned the code. DAIR, not Dynamic Allocation,
returns this code.

"zz" is the low order byte from register 15 as returned
by the macro instruction.

The return codes for the LOCATE and the OBTAIN macro
instructions are described in Data Management £Cr Systiem

Programmers.

The return codes for the DADSM macro instruction are as
follows:

Code Meaning

00 The operation completed successfully.

o4 Duplicate name DSCB.

08 No available DSCB's in the VTOC.

oc A permanent I/0 error occurred in reading or

writing a DSCB.

10 The absolute track requested is not available.
14 The quantity of space requested is not available.
18 The record length specified is greater than the

track length.

30 The number of tracks requested for a split
cylinder data set is greater than the number of

tracks per cylinder.

34 The disk pack is a DOS volume and the request is
not absolute track.

38 The volume does not have enough space for the
directory.

80 The directory space requested is larger than the

primary space requested.

84 Guide to Writing a TMP or a CP (Release 21.6)

Using BSAM or QSAM for Terminal 1/0

The Basic Sequential and Queued Sequential access methods provide
terminal I/0 support for programs operating under the Time Sharing
Option. For a complete discussion of the use of BSAM and QSAM, see the
publication Data Management Services.

The major benefit of using BSAM or QSAM to process terminal I/0 under
TSO is that programs using these access methods do not become TSO
dependent or device dependent and may execute either under TSO or in the
batch environment. Therefore, your existing programs that use BSAM or
QOSAM for I/0 may be used under TSO without modification or
recompilation.

This section describes:

The BSAM/QSAM macro instructions

e SAM Terminal routines

Record formats, buffering techniques, and processing modes

Specifying the terminal line size

End of file (EOF) for input processing

Modifying DD statements for batch or TSO processing

Using BSAM or QSAM for Terminal I/0 85

BSAM/QSAM Macro Instructions

Some of the BSAM and (SAM access method routines have been modified to
provide special services under TSO; others provide the same function
that is provided in a batch environment. Those BSAM/QSAM macro
instructions that are not relevent to terminal I/O act as nc-ops. All
of the BSAM/QSAM macro instructions, when executed in the batch
environment, provide the non-terminal functions as explained in Data

lManagement Macro Instructions.

Figure 33 shows the functions performed

by the BSAM and QSAM macro instructions when used for terminal I/O.
Following the table are more detailed explanations of the GET, PUT,
PUTX, READ, WRITE, and CHECK macro instructions.

T T

SAM Macro

——

|
| Terminal

Instruction |BSAM|QSAM|Interpretation
4

BSP

>

X

]
| NoP

BUILD

(
i

+~h
Ias in batch

|1nstruct10n
| constructed
| area.

+

prccess:.ng, the BUILD macro
causes a buffer pool to be
in a user-provided main storage

BUILDRCD

}
| NoP
1

CHECK

+
| Takes an EODAD exit after a READ EOF. NOP
|after a WRITE.

1

CLOSE

>

+
| The CLOSE macro instruction frees the control
|blocks built to handle I/0O and deletes the

| loaded SAM terminal routines.

— e — — e G e e s B . e . §

CNTRL

>

OP

e s e S s o . e, e . s e o e, = . s e o
<

FEOV

O i s S S = S Sy ——

ol X

FREEBUF

i
+
|N

t

| NOP
{7

|As in batch
|instruction

|return a buffer to the buffer pool assigned to
|the specified data control block.
i

processing, the FREEBUF macro
causes the control program to

— . e e

FREEPOOL

b

]
|As in batch
|instruction

| previously assigned as a buffer pool for a
|specified data control block, to be released.
4

processing, the FREEPOOL macro
causes an area of main storage,

GET

+
| The GET macro instruction obtains data from
|the terminal via the TGET macro instruction.

GETBUF

>

lAs in batch
|instruction

|obtain a buffer from the buffer pool assigned
|to the specified data control block, and to

| return the address of the buffer in a
|designated register.

L

processing, the GETBUF macro
causes the control program to

GETPOOL

>

———— e e e e e e e e e e e}
tel >

[o s e B e e e e e e Y e e S e e e e B e . s e S e
—— e S o e S e . S i e e e e e S e e e =

4 L

]

|As in batch
|instruction
| constructed

| the control
L

SR SN YN SO S

processing, the GETPOOL macro
causes a buffer pool to be

in a main storage area provided by
program.

Figure 33. BSAM/QSAM Function under

TSO (Part 1 of 2)

86 Guide to Writing a TMP or a CP (Release 21.6)

r -7 T T - 1
| SAM Macro | | |Terminal |
| Instruction |BSAM|QSAM|Interpretation]
F } + t 1
| NOTE | X | | NOP |
t + + + i
OPEN	X	X	The OPEN macro instruction loads the proper
			SAM terminal I/O routines and constructs the
			necessary control blocks.
— 4 4 4 .'
L) T 1 T

| POINT | X | | NOP |
8 4 4 '} 4
r 1] T] 1
| PRTOV | X | X |NopP |
1 4 4 ' {
r T T L . .

| PUT | | X |The PUT macro instruction routes data to the |
| | | | terminal via the TPUT macro instruction. |
L 4 1 i

r T T T "
| PUTX | | X |The PUTX macro instruction routes data to the |
| | | | terminal via the TPUT macro instruction. |
L 1 4 4 ,'
L 3 i T T

| READ | X | | The READ macro instruction obtains data from |
| | | | the terminal via the TGET macro instruction. |
— 4 1 4 *
I 1 T 1

| RELSE | | X |NoP |
L 4 4 4 J
) T T v 1
| SETPRT] X | X |NoOP [
8 | i 4 {
1 1 ¥

| TRUNC | | X |NoP |
b f-——p—t {
| WRITE | X | | The WRITE macro instruction routes data to thej|
| | | |terminal via the TPUT macro instruction. |
L 4 L L 3

Figure 33. BSAM/QSAM Function under TSO (Part 2 of 2)

SAM TERMINAL ROUTINES

The GET, PUT, PUTX, READ, WRITE, and CHECK macro instructions perform
differently in terminal I/0 than the way they do in the batch
environment. Descriptions of these differences are presented here, but
for a detailed explanation of how to use the macro instructions, see
Data Management Macro Instructions. ’

GET

The GET macro instruction causes a record to be retrieved from the
terminal and placed in either the first buffer of the buffer pool
control block (locate mode) or in a user specified area (substitute or
move mode). In either case, the address of the record is returned in
register 1.

The record is moved via a TGET macro instruction which does not
return control until the transfer of data is completed.

The input to the GET macro instruction consists of the DCB address
and the user's area address (omitted for locate mode). The output is
edited (i.e., specially-indicated characters are deleted from the
message).

When the terminal user types /*, end of*file is indicated and control

is passed to the problem program's EODAD routine. If no EODAD routine
is specified, the job will ABEND with a system code of 337.

Using BSAM or QSAM for Terminal I/O0 87

PUT and PUTX

Both the PUT and the PUTX macro instructions cause a record to be
written to a terminal. This transfer of data is accomplished with the
TPUT macro instruction which does not return control until the transfer
is completed.

In locate mode, the first use of PUT or PUTX causes an address
pointing to a buffer to be returned in register 1. The first record is
placed in this buffer by the problem program and is written out when the
next PUT or PUTX for the same data control block (DCB) is issued.
Succeeding records are written in the same manner. The last record is
written at CLOSE time.

In move or substitute mode, the PUT or PUTX macro instruction moves a
record from the user-specified work area to the terminal. You must
supply the work area address to the PUT macro instruction.

The input to the PUT and PUTX macro instruction consists of the DCB
address and the user's area address (omitted for locate mode).

READ

The READ macro instruction causes a block of data to be retrieved from
the terminal and placed in a user-designated area in main storage. This
transfer of data is done via a TGET macro instruction which does not
return control before the transfer is completed.

The input to the READ macro instruction consists of the string of
parameters explained in Data Management Macro Instructions.

WRITE

The WRITE macro instruction causes a block of data to be written from
the user-specified area to the terminal. This transfer of data is done
via a TPUT macro instruction which does not return control before the
transfer is completed.

The input to the WRITE macro instruction consists of the string of
parameters explained in Data Management Macro Instructions.

CHECK

The CHECK macro instruction used after a WRITE macro instruction results
in a NOP. When it is used after a READ macro instruction, it performs
as a NOP unless an end of file (EOF) condition is encountered. The end
of file signal from the terminal is /*. When end of file is
encountered, CHECK takes the EODAD exit specified in the data control
block. If no EODAD exit is specified, CHECK will cause the job to ABEND
with a system code of 337.

The input to the CHECK macro instruction is the address of the
problem program's data event control block (DECB).

88 Guide to Writing a TMP or a CP (Release 21.6)

Record Formats, Buffering Techniques, and Processing Modes

All record formats -- Fixed (F), Variable (V), and Undefined (U) -- are
supported under TSO. Before passing the data to the problem program,
TSO automatically generates the first 4 bytes of control information for
V format records coming in from the terminal. When you send V format
records to the terminal, TSO automatically removes the control
information before writing the line.

Both simple and exchange buffering techniques are supported, as are
all four processing modes for the queued access method.

Specifying Terminal Line Size

If the LRECL and BLKSIZE fields are not specified in the DCB, the
terminal line size default (or the line size the terminal user has
specified via the TERMINAL command) is merged into the data control
block fields as if it came from the label of the data set.

For BSAM, BLKSIZE is used by TSO to determine the length of the text
line it is to process. For both BSAM and QSAM, if the text entered from
the terminal is shorter than the value specified for LRECL, and if F
format is used, blanks are supplied on the right. For either access
technique, if the text entered is longer than BLKSIZE or LRECL, the next
GET or READ retrieves the remainder of the message. If the record
generated by the problem program is longer than the specified line size,
multiple lines are printed at the terminal.

End of File (EOF) for Input Processing

The sequential access method GET and CHECK terminal routines recognize
/% from the terminal as an end of file (EOF). The EODAD exit in the
data control block is taken for the EOF condition. If no EODAD exit has
been specified, and an EOF has been signaled from the terminal, the job
ABENDs with a system code of 337.

Modifying DD Statements for Batch or TSO Processing

A new parameter, TERM=TS, has been provided for the JCL Data Definition
{DD) statement.

TERM=TS, when added to a DD statement defining an input or an output
data set, is ignored in the batch processing environment, but under TSO
indicates to the system that the unit to which I/O is being addressed is
a time sharing terminal. Thus a user who wants his job to run in either
the foreground or the background could provide a DD statement as
follows:

r=
|77DD1 DD TERM=TS,SYSOUT=A
L

In this example the output device is defined as a terminal under TSO
processing, and as the SYSOUT device during batch processing. For a
complete description of the TERM=TS parameter, see Job Control Language
Reference.

Using BSAM or QSAM for Terminal I/O 89

Using the TSO 1/0 Service Routines for Terminal 1/0

The TSO I/O Service Routines process terminal I/O requests initiated by
the Terminal Monitor Program (TMP), Command Processors (CPs), and other
service routines. If you write your own Command Processors, or replace
the TSO-supplied Terminal Monitor Program with one of you own design,
you should use the I/0 Service Routines to process terminal I/O.

The I/0 Service Routines -- STACK, GETLINE, PUTLINE, and PUTGET --
offer the following features:

1. They provide an interface between an I/0 request and the TGET and
TPUT supervisor calls.

2. They provide a method of selecting sources of input other than the
terminal. Reguests for imnput can be directed to an in-storage list
as well as to the terminal.

3. They provide a message formatting facility with which you can
insert text segments into a basic message format, and print or
inhibit the printing of message identifiers at the terminal.

4. They process requests for more information (question mark
processing), and they analyze processing conditions to determine if
I/0 requests should be disregarded or honored.

The I/0 Service Routines build, modify, or make use of various
control blocks. The following control block DSECTS are provided in
SYS1.MACLIB for your use:

IKJCPPL - The Command Processor Parameter List
IKJIOPL - The Input Output Parameter List
IKJSTPB - The STACK Parameter Block

IKJGTPB - The GETLINE Parameter Block

IKJPTPB - The PUTLINE Parameter Block

IKJPGPB - The PUTGET Parameter Block

IKJLSD The List Source Descriptor

IKJECT The Environment Control Table

You pass control to the I/0 Service Routines and indicate the
functions you want performed by coding the operands you require in the
List and the Execute forms of the I/O Service Routine macro
instructions. Each of the I/0 Service Routine macro instructions
(STACK, GETLINE, PUTLINE, and PUTGET) has a List and an Execute form.

The List form of each Service Routine macro instruction initializes
the parameter blocks according to the operands you code into the macro
instruction.

The Execute form is used to modify the parameter blocks and to
provide linkage to the Serwvice Routines, and can be used to set up the
Input Output Parameter List. The Input Output Parameter List contains
addresses required by the I/0 services routines.

90 Guide to Writing a TMP or a CP (Release 21.6)

This following paragraphs describe:

e The Interface with the I1/0 Service Routines

e Passing Control to the I/O0 Service

Routines

e The I/0 Service Routines Macro Instructions

STACK
GETLINE
PUTLINE
PUTGET

Interface with the 1/0 Service Routines

When the Terminal Monitor Program attaches a Command Processor, register

1 contains a pointer to a Command Processor Parameter List (CPPL)
containing addresses required by the Command Processor.
located in subpool 1, which is read-only storage for the Command

The CPPL is

Processors. The control block interface between the TMP and an attached
CP is shown in Figure 34.

Terminal
Monitor
Program

ATTACH

—

Command
Processor

|
|
|
|
|
|
|

Register 1

cPpL

Figure 34. Control Block Interface Between TMP and CP

Using the TSO I/0 Service Routines for Terminal I/0

91

THE COMMAND PROCESSOR PARAMETER LIST

You must pass certain addresses contained in the CPPL to the I/O Service
Routines. Your user-written Command Processors can access the CPPL via
the symbolic field names contained in the IKJCPPL DSECT by using the
address received in register 1 as a starting address for the DSECT. The
use of the DSECT is recommended since it protects the Command Processor
from any changes to the CPPL.

The Command Processor Parameter List, as defined by the IKJCPPL
| DSECT, is a four word parameter list: Figure 35 describes the contents
of the CPPL. (See Figure 5, the Test Parameter List, for a definition
of each table whose address is in the CPPL.)

r T T 1
| Number of | |
| Bytes | Field Name |Contents or Meaning |

4

T

4 | CPPLCBUF The address of the command buffer.

4

1
i 4 | CPPLUPT | The address of the User's Profile Table
| | | (UPT). |
| 4 i1 .’
r T T
| 4 | CPPLPSCB |The address of the Protected Step Control |
| | |Block (PSCB). |
L 4 + {
1) T T
| 4 | CPPLECT |The address of the Environment Control Table |
| | | (ECT). |
L L L J

Figure 35. The Command Processor Parameter List (CPPL)

You must place the addresses of the User Profile Table and the
Environment Control Table in another control block, the Input Output
Parameter List, and pass them to the I/0 Service Routines.

THE INPUT OUTPUT PARAMETER LIST

The I/0 Service Routines use two of the pointers contained in the
Command Processor Parameter List -- the pointer to the User Profile
Table and the pointer to the Environment Control Table. These addresses
are passed to the Service Routines in another parameter list, the Input
Cutput Parameter List (IOPL). Before executing any of the TSO I/0 macro
instructions (GETLINE, PUTLINE, PUTGET, or STACK) you must provide an
JOPL and pass its address to the I/0 Service Routine. There are two
ways you can construct an IOPL:

1. You can build and initialize the IOPL within your code and place a
pointer to it in the execute form of the I/0 macro instruction.

2. You can provide space for an IOPL (4 fullwords), pass a pointer to
it together with the addresses required to fill it, to the execute
form of the I/0 macro instruction, and let the 1I/0 macro
instruction build the IOPL for you.

The Input Output Parameter List, as defined by the IKJIOPL DSECT, is
| a four word parameter list. Figure 36 describes the contents of the
IOPL.

92 Guide to Writing a TMP or a CP (Release 21.6)

T

Number of

Bytes Field Name |Contents or Meaning
4

1

IOPLUPT |The address of the User Profile Table from
| the CPPLUPT field of the Command Processor
| Parameter List.
4

—— gy — s ud

$
IOPLECT |The address of the Environment Control Table
| from the CPPLECT field of the CPPL.
4

— ki

1]

IOPLECB |The address of the command processor's Event
|Control Block (ECB). The ECB is one word of
| storage, declared and initialized to zero by
| the command processor. Command processors
|with attention exits can post this ECB after
|an attention interruption to cause active |
|service routines to exit.
$

IOPLIOPB fThe address of the parameter block created by
|the list form of the I/0 macro instruction.
| There are four types of parameter blocks, one
|for each of the I/0 Service Routines:

Getline Parameter Block (GTPB)
Putline Parameter Block (PTPB)
Putget Parameter Block (PGPB)

[—— — — . g S e S B . G S . e it e WA . B, SR . S e S S . dy
o e e e e e s e s = s . e o, e e . S . o S e, e S .

|
|
|
Stack Parameter Block (STPB) |
|
|
|
3

P_—__—

Fiqure 36. The Input Output Parameter List

The Parameter Block pointed to by the fourth word (IOPLIOPB) of the
I/0 Parameter List is built and modified by the I/0 Service routine
macros themselves. It is created and initialized by the list form of
the I/0 macro instruction, and modified by the execute form. Thus you
can use the same parameter block to perform different functions. All
you need to do is code different parameters in the execute forms of the
macro instructions; these parameters provide those options not specified
in the list form, and override those which were specified. Each of
these parameter blocks -- the STACK, GETLINE, PUTLINE, and PUTGET
Parameter blocks -- is described in the separate sections on each of the
I/0 macro instructions.

Figure 37, an extension of Figure 34, summarizes the control block

interfaces established between the Terminal Monitor Program and an I/O
Service Routine. '

Using the TSO 1I/0 Service Routines for Terminal I/O 93

Terminal Command 1/0
Monitor Processor Service
Program ATTACH LINK Routine

—

l
I
l
|
I

Reg. 1 Reg. 1

CPPL IOPL

Parameter

Block
1
| [
| [
l |
| !
| |
I |

Figure 37. Control Block Interface Between TMP and I/0 Service Routine

94 Guide to Writing a TMP or a CP (Release 21.6)

Passing Control to the 1/0 Service Routines

There are two ways you can pass control to the I/0 Service routines.

1. You can issue a LOAD macro instruction for the load module
containing the required service routine, and code the entry point
address of that routine in the TSO I/0 macro instruction via the
ENTRY parameter. In this case, the I/0 macro instruction will
execute a branch and link register instruction (BALR) using the
entry point as the branch address. All of the TSO Terminal I/O
Service Routines are contained within the IKJPTGT load module.
Their entry points are:

Service Routine Entry Point
e STACK IKJSTCK
e GETLINE IKJGETL
e PUTLINE IKJPUTL
e PUTGET IKJPTGT

If your region space requirements are critical, you can use the
DELETE macro instruction to release the main storage area occupied
by the load module when you have finished with your terminal I/O.

2. You can issue the 1I/0 macro instruction and not include the ENTRY

parameter. In this case, the I/0 macro instruction generates a
LINK macro instruction to invoke the I/0 Service Routine.

The 1/0 Service Routine Macro Instructions

The 1/0 Service routines -- STACK, GETLINE, PUTLINE, and PUTGET -- each
perform a specific I/0 function:

STACK determines the source of input.

GETLINE obtains a line of input.

PUTLINE puts a line of output to the terminal.

PUTGET puts a line to the terminal and gets a line in response.

In order to perform these functions, the I/0 macro instructions use
the control blocks explained in the section 'INTERFACE WITH THE I/O
SERVICE ROUTINES", and other, more individualized control blocks, the
parameter blocks. Each of the I/0 macro instructions has a list and an
execute form. The list form sets up the Parameter Block required by
that I/0 service routine; the execute form can be used to set up the
Input Output Parameter List, and to modify the parameter block created
by the 1list form of the macro instruction.

The Parameter Block required by each of the I/0 service routines is
different, and each one may be referenced through a DSECT. The
Parameter Blocks and the DSECTS used to reference them are:

e The STACK Parameter Block IKJSTPB
e The GETLINE Parameter Block IKJGTPB
e The PUTLINE Parameter Block IKJPTPB
e The PUTGET Parameter Block IKJPGPB

Each of these blocks is explained in the section describing the 1I/0
macro instruction that builds it.

Using the TSO I/0 Service Routines for Terminal I/O 95

STACK - CHANGING THE SOURCE OF INPUT

Use the STACK macro instruction to establish and to change the source of
input. The currently active input source is described by the top
element of the Input Stack, an internal pushdown list maintained by the
I/0 service routines. The first element of the Input Stack is
initialized by the Terminal Monitor Program (TMP), and cannot thereafter
be changed or deleted. The TSO-supplied TMP initializes this first
element to indicate the terminal as the current input source. The STACK
Service Routine adds an element to the input stack or deletes one or
more. elements from it, and thereby changes the source of input for the
other I/0 sexvice routines.

This topic describes:

e The List and Execute forms of the STACK macro instruction.

The Sources of input.

The STACK Parameter Block.
e The List Source Descriptor.
e Return codes from STACK.

Coding examples are included where needed.

The STACK Macro Instruction - List Form

The list form of the STACK macro instruction builds and initializes a
STACK Parameter Block (STPB), according to the operands you specify in
the macro. The STACK parameter Block indicates to the STACK service
routine which functions you want performed. Figure 38 shows the list
form of the STACK macro instruction; each of the operands is explained
following the fiqure. Appendix B describes the notation used to define
macro instructions.

r T T = —_ b
			TERM=%	
		, SOURCE		
[symboll	STACK		STORAGE=(element addressq{,PROCN)	,MF=L
		» PROCL		
			DELETE=(TOP	
: I{_ PROC :				
ALL
{ L l -]

Figure 38. The List Form of the STACK Macro Instruction

TERM=%*
Add a terminal element to the input stack.

STORAGE=element address
Add an in-storage element to the input stack. The element address
is the address of the List Source Descriptor (LsSD). The LSD is a
control block, pointed to by the Stack Parameter Block, which
describes the in-storage list. The in-storage element must be
further defined as a SOURCE, PROCN, or PROCL list. SOURCE is the
default.

SOURCE

The element to be added to the Input Stack is an in-storage source
data set.

96 Guide to Writing a TMP or a CP (Release 21.6)

PROCN
The element to be added to the Imput Stack is a command procedure
and NOLIST option has been specified.

PROCL
The element to be added to the Input Stack is a command procedure
and the LIST option has been specified. Each line read from the
command procedure is written to the terminal.

DELETE=
Delete an element or elements from the Input Stack. The element to
be deleted must be further defined as TOP, PROC, or ALL.

The topmost element (the element most recently added to the Input
Stack) is to be deleted.

PROC
The current procedure element is to be deleted from the Input
Stack. If the top element is not a PROC element, all elements down
to and including the first PROC element encountered are to be
deleted.

All elements are to be deleted from the Input Stack except the
bottom element (the first element).

Indicates that this is the List form of the macro instruction.

NOTE: In the List form of the macro instruction, only the following is
required:

r
| STACK MF=L
|

T p——

The other operands and their sublists are optional because they may be
supplied by the execute form of the macro instruction:

r) |
| TERM=+# |
| |
- |
| , SOURCE |
| STORAGE= (element address{,PROCN) |
| ,PROCL |
| or |
| TOP |
|DELETE={PROC} I
| ALL |
L J

The operands you specify in the list form of the STACK macro
instruction set up control information used by the STACK Service
Routine. The TERM=%, STORAGE=, and DELETE= operands set bits in the
STACK Parameter Block. These bit settings indicate to the STACK Service
Routine which options you wish performed.

Using the TSO I/0 Service Routines for Terminal I/0 97

The STACK Macro Instruction - Execute Form

Use the execute form of the STACK macro instruction to perform the
following three functions:

1. You can use it to set up the Input Output Parameter List (IOPL).

2. You can use it to initilize those fields of the STACK Parameter
Block not initialized by the list form of the macro instruction, or
to modify those fields already initialized.

3. You use it to pass control to the STACK Service Routine which
modifies the Input Stack.

Figure 39 shows the Execute form of the STACK macro instruction; each
of the operands is explained following the figure. Appendix B describes
the notation used to define macro instructions.

r) T) |
| [symboll | STACK | [PARM=parameter addressl[,UPT=upt address] |
] 1 1
1 |
i | [,ECT=ect addressl[,ECB=ecb address] |
| I b =
| | | + TERM=%
I I | + SOURCE
| | | +STORAGE=(element address{,PROCN))
| | ,PROCL 1
| |
I |
| | TOP
| | | sDELETE=({PROC
| | ALL
| | I = - I
I		
	1 ,	
		[.ENTRY= (entry address} ,MF=(E,{llst address})
		{ 15) 1)
L L L J

Figure 39. The Execute form of the STACK Macro Instruction

PARM=parameter address
Specifies the address of the 2-word STACK Parameter Block (STPB).
It may be the address of the list form STACK macro instruction.
The address is any address valid in an RX instruction, or the
nunber of one of the general registers 2-12 enclosed in
parentheses. This address will be placed in the Input Output
Parameter List (IOPL).

UPT=upt address
Specifies the address of the User Profile Table (UPT). This
address may be obtained from the Command Processor Parameter List
pointed to by register one when the Command Processor is attached
by the Terminal Monitor Program. The address may be any address
valid in an RX instruction or the number of one of the general
registers 2-12 enclosed in parentheses. This address will be
placed in the Input Output Parameter List (IOPL).

ECT=ect address
Specifies the address of the Environment Control Table (ECT). This
address may be obtained from the CPPL pointed to by register 1 when
the Command Processor is attached by the Terminal Monitor Program.
The address may be any address valid in an RX instruction or the
number of one of the general registers 2-12 enclosed in
parentheses. This address will be placed in the IOPL.

98 Guide to Writing a TMP or a CP (Release 21.6)

ECB=ecb address
Specifies the address of an Event Control Block (ECB). This
address will be placed into the IOPL. You must provide a one-word
Event Control Block and pass its address to the STACK service
routine by placing it into the IOPL. The address may be any
address valid in an RX instruction or the number of one of the
general registers 2-12 enclosed in parentheses.

TERM=+#
Add a terminal element to the Input Stack.

STORAGE=element address
Add an in-storage element to the Input Stack. The element address
is the address of the List Source Descriptor (LSD). The LSD is a
control block, pointed to by the Stack Parameter Block, which
describes the in-storage list. The in-storage list must be further
defined as a SOURCE, PROCN, or PROCL list. SOURCE is the default.

SOURCE
The element to be added to the Input Stack is an in-storage source
data set.

PROCN

The element to be added to the Input Stack is a command procedure
and the NOLIST option has been specified.

PROCL
The element to be added to the Input Stack is a command procedure
and the LIST option has been specified. Each line read from the
command procedure is written to the terminal.

DELETE
Delete one or more elements from the input stack. Specify which
element, either TOP, PROC, or ALL.

TOP
The topmost element (the element most recently added to the input
stack) is to be deleted.

PROC
The current procedure element is to be deleted from the input
stack. If the top element is not a procedure element, all elements
down to and including the first procedure element encountered are
to be deleted.

ALL
All elements are to be deleted from the input stack except the
bottom element (the first element).

ENTRY=entry address or (15)
Specifies the entry point of the STACK service routine. The
address may be any address valid in an RX instruction or (15) if
the entry point address has been loaded into general register 15.
If ENTRY is omitted, a LINK macro instruction will be generated to
invoke the STACK Service Routine.

MF=E
Indicates that this is the Execute form of the macro instruction.

Using the TSO I/0 Service Routines for Terminal I/0 99

listaddr
(1)
The address of the 4-word Input Output Parameter List (IOPL). This
may be a completed IOPL that you have built, or it may be 4 words
of declared storage that will be filled from the PARM, UPT, ECT,
and ECB operands of this Execute form of the STACK macro
instruction. The address is any address valid in an RX instruction
or (1) if the parameter list address has been loaded into general
register 1.

NOTE: In the Execute form of the STACK macro instruction only the
following operands are required:

r

| STACK MF=(E,{list address})
| (6B

L

[——

The PARM= UDPT= ECT=, zand ECE= nd

——— g

‘ 1ot reguired if you have
built an IOPL in your own code.

The other operands and their sublists are optional because they may be
supplied by the list form of the macro instruction:

r 1
| TERM=+ I
| or |
| » SOURCE |
| STORAGE= (element address !,PROCN) |
I PROCL |
| or |
| TOP |
| DELETE={ PROC |
| ALL |
L J

The ENTRY= operand need not be coded in the macro instruction. If it
is not, a LINK macro instruction will be generated to invoke the I/0
Service routine.

The operands you specify in the execute form of the STACK macro
instruction are used to set up control information used by the STACK
service routine. You can use the PARM=, UPT=, ECT=, and ECB= operands
of the STACK macro instruction to complete, build, or alter an IOPL.
The TERM=#*, STORAGE=, and DELETE= operands set bits in the STACK
Parameter Block. These bit settings indicate to the STACK Service
Routine which options you want.

sources of Input

The input sources provided are defined as follows:

1. Terminal.
If the terminal is specified in the STACK macro instruction as the
input source, all input and output requests through GETLINE,
PUTLINE, and PUTGET are read from the terminal and written to the
terminal. The user at the terminal controls the Time Sharing
Option by entering commands; the system processes these commands as
they are entered; and returns to the user for another command.

100 Guide to Writing a TMP or a CP (Release 21.6)

2. In-Storage List
An in-storage list can be either a list of commands or a source
data set. It may contain variable length records (with a length
header) or fixed length records (no header and all records the same
length). In either case, no one record on an In-storage list may
exceed 256 characters.

The in-storage list can be specified as one of two types through
the PROC or SOURCE parameters of the STACK macro instruction.

e PROC - Indicates that the in-storage list is a command procedure
-- a list of commands to be executed in the order specified. If
you specify PROC, requests through GETLINE are read from the
in-storage list, but PROMPT requests from the executing command
processor are suppressed. MODE messages, those messages normally
sent to the terminal requesting entry of a command or a
sub-command, are not sent but a command is obtained from the
in-storage list. If the LIST option was specified in the STACK
macro instruction when the command procedure was added to the
input stack, the command is displayed at the terminal.

e SOURCE - Indicates that the in-storage list is a source data set.
Requests through GETLINE are read from the in-storage list, but
PROMPT requests from the executing command processor are honored
if prompting is allowed, and a line is requested from the
terminal. MODE messages are handled the same way as with PROC.
No LIST facility is provided with SOURCE records.

Building the STACK Parameter Block

When the list form of the STACK macro instruction expands, it builds a
two word STACK Parameter Block (STPB). The list form of the macro
instruction initializes this STPB according to the operands you have
coded. This initialized block, which you may later modify with the
execute form of the macro instruction, indicates to the I/0 service
routine the functions you want performed.

By using the list form of the macro instruction to initialize the
block, and the execute form to modify it, you can use the same STPB to
perform different STACK functions. Keep in mind however, that if you
specify an operand in the execute form of the macro instruction, and
that operand has a sublist as a value, the default values of the sublist
will be coded into the STPB for any of the sublist values not coded. If
you do not want the default values you must code each of the values you
require, each time you change any one of them.

As an example: If you code the list form of the STACK macro
instruction as follows:

r 1
| STACK STORAGE=(element address,PROCN) ,MF=L |
L J
and then override it with the execute form of the macro instruction as
follows:

r |
| STACK STORAGE=(new element address) ,MF=(E,list address) |
L J

The element code in the STACK Parameter Block would default to SOURCE,
the default value. If the new in-storage list was another PROCN list,
you would have to respecify PROCN in the execute form of the macro
instruction.

Using the TSO I/0 Service Routines for Terminal I/0 101

The STACK Parameter Block is defined by the IKJSTPB DSECT. Figure 40
contents of the STPB.

describes the

Number of
Bytes

Field

I
|Contents or Meaning
il
+

1

none
i
e

eele ceee

eeel aaae

eeees XXXX

|Operation code: A flag byte which describes
| the operation to be performed.

|One element is to be added to the top of the
| Input Stack.

|The top element is to be deleted from the

| Input Stack.

| The current procedure element is to be
|deleted from the Input Stack. If the top
|element is not a PROC element, all elements
|]down to and including the first PROC element
| encountered are deleted, except the bottom

| element.

|All elements except the bottom one (the first
{element) are Lo be deleted.

|Reserved bits.

4

U R Sp——

none

leee een
R
eeee «.0.

ceees ool

cees ool

e e XX XXa.e

+
| Erlement code: A flag byte describing the
|element to be added to the Input Stack.

|A terminal element.

|An in-storage element.

|The in-storage element is a source element.
| The in-storage element is a procedure
|element.

|The list option (PROCL) has been specified.
|Reserved bits.

Reserved

L]
|
|
4
1
|
I
|
|
|
|
|
|
|
I
I
|
I
1
]
I
4
T
|
I
|
|
|
|
|
I
|
1
1}
I
4
L
|
[
I
l
|
L

[o S e S e Gy T T e S . . S e S e W S e S . . S e, S i, . e, S s, . S, G S st sy

STPBALSD

+—+

|The address of the List Source Descriptor

| (LsD). An LSD describes an in-storage list.
|If the input source is the terminal, or if

| DELETE has been specified, this field will

| contain zeros.

L

b s e e . . gy e S . —— — s — — —— iy — —

Figure 40. The STACK Parameter Block

102 Guide to Writing a TMP or a CP (Release 21.6)

If the TERM or DELETE operands have been coded in the STACK macro
instruction, the second word of the Stack Parameter Block will contain
zeros and the control block structure will end with the STPB. Figure 41
describes this condition.

Terminal Command STACK
Monitor Processor Service

Program ATTACH LINK Routine

|
|
|
|
|
I
|

Reg. 1 Reg. 1

CPPL 10PL

STPB

| |

00000000

Figure 41. STACK Control Blocks: No In-Storage List

To add an in-storage list element to the input stack, you must
describe the in-storage list and pass a pointer to it to the STACK I1/0
service routine. You do this by building a List Source Descriptor
(LSD).

Using the TSO I/0 Service Routines for Terminal I/O 103

Figure 42 is an example of the code required to add the terminal to
the input stack as the current input source. In this example, the
execute form of the STACK macro instruction is used to build the Input
Output Parameter list for you. The list form of the STACK macro
instruction expands into a STACK Parameter Block, and its address is
passed to the execute form of the macro instruction as the PARM operand
address.

x| | [EINTIRIY] [FIRIOM_[7IMP] [~[[RIE|6]1]sITIEIRL 0INE] [cloIN[TIAL/INIS] [A] [Plol1INITIEIR] [Tlo

XL | |TIHIE| |CIPIPIL

X HIO|VISIEIKIEIEIP]I INIG) -

X AIDIDIRIE|S|SIAIB! ILI{T]Y]|.

X SIAIVIE| [ARIEIA] |CIHIA[IIN|IIN|G

¢ L
R 20,1 SIAIVIE| {TIHIE| |AIDIDIRIEISIS| |0F| ITIHIE| |C|PIPIL].
L 31, 141€|2]) PILIAICIE] |TIHIE| [UIP|T| |AIDIDIRIEISIS| I/ INITIO] |A

% RIEG|! |SITIEIR
L 4| 112](]2]) PILIAICIE| |TIHIE] |EICIT| |AIDIDIRIEISIS] |/ INIT]O] |A

% RIE|G|/|S|TIEIR
LIA 5, |E[C|B PILIAICIE| [TIHIE| |EICIB| |AIDIDIRIEISIS| |/|NITIO] |A

¥ RIEIG|/ |S|TIEIR

¥ 11S|S|U|E| |TIHIE| |EIXIEICIUITIE] |FIORIM| |OIF| |TIHIE] ISITIAICIK| [MIAICIR|O| [!INISITIRIUICIT|/|OINI3

% | |SIPIEICIIIFIY| [TIHIE| |TIEIRMIIINAIL] |AIS| [TIHIE| [1INIPIUIT| [SIOURICIE|5] |BlUJIILID| |TIHIE

¥| | LZI0PIL| MIITIH| |TIHIE| IS|TIAICIK| IMAICIRIOl |/|N|S|TIR|UICIT|!|OIN].

P ¥
SITIAICK] |PIAIRIMI=1S|TIAIKIBILIOIK] s |UIPIT|=1 (131 |EICITI=IC 1411 |EICIBI=I (511, [TIEIRIM= |5

MIFI=|(€], TIOPIL])

X X

X PIRIOICIE[SIS|/ MG

X *

X SITIORIAIGIE| DIEICILIARIAIT|/IONS

* X

J10PIL DIC 4" SIPIAICEE] [FIOR| |THIE| [[INPLUT] loluiTiPIUIT

X PIAR AMIEITIER] ILI/|SIT].

EICIB DIC Fl'ig SIPIAICIE| [FIOR| ITIHE| |EIVIEINIT] |ClON(TIRIOIL

¥ BILIOICIK].

SITIAKIBILIOK] [SITIAICIK] [MIF|=IL TIHIEL [LUIS{T] |FIOR M\ l0IF| |TIHIE] |SITIAICIK

¥ MAICIRIOL [/ INISITIRWUICITIIOING (=1 1IT| W/ {LIL

% EWXIPIAINID] |1INT10] [A] [SITIAICIK| [PIAIRIAMIEITIEIR

¥ BIL|OICIK]-
EN|D

Figure 42. Coding Example -- STACK Specifying the Terminal as the Input
Source

This sequence of code does not make use of the IKJCPPL DSECT to
access the Command Processor Parameter List, nor does it provide
reenterable code.

104 Guide to Writing a TMP or a CP (Release 21.6)

Building the List Source Descriptor (1LsSD)

A List Source Descriptor (LSD) is a four word control block which
describes the in-storage list pointed to by the new element you are
adding to the Input Stack. If you are designating the Terminal as the
input source, no LSD is necessary and the second word of the STPB will
be zero. If you specify STORAGE as the input source in the STACK macro
instruction, your code must build an ISD, and place a pointer to it as a
sublist of the STORAGE operand. The LSD must begin on a double word
boundary, and must be created in the shared subpool designated by the
Terminal Monitor Program; the IBM-supplied TMP shares subpool 78 with
the Command Processors. The LSD is defined by the IKJLSD DSECT. Figqure
43 describes the contents of the LSD.

r T T 1
| Number of | | |
| Bytes | Field |Contents or Meaning |
L 4 1 ¥
r T T 1
| 4 | LSDADATA |The address of the in-storage list. |
L 4 N J
r L} 1B 1
2	LSDRCLEN	The record length if the in-storage list
		contains fixed length records. Zero if the
		record lengths are variable.
L. 1 1 {
L B T T

2	LSDTOTLN	The total length of the in-storage list; the
		sum of the lengths of all records in the
		1list.
b t -		
4	LSDANEXT	Pointer to the next record to be processed.
		Initialize this field to the address of the
		first record in the list. The field is
		updated by the GETLINE and PUTGET service
		routines.
k + + 1		
4	LSDRSVRD	Reserved
L L L 4

Figure 43. The List Source Descriptor

If you have provided an LSD, and specified the STORAGE operand in the
STACK macro instruction, the second word of the Stack Parameter Block
will contain the address of the LSD, and the STACK control block
structure will look like Figure 44.

Using the TSO I/0 Service Routines for Terminal I/O 105

Terminal
Monitor
Program

ATTACH

_—

Command
Processor

LINK

Reg. 1 I

I
I
|
I
I
l

CbpI
y ~ v -

- Routine
| -

STACK

Service

STPB

Lo
LsD
o
In=Storage List
Figure 44. STACK Control Blocks: In-Storage List Specified

106 Guide to Writing a TMP or a CP (Release 21.6)

Figure 45 is an example of the code required to use the STACK macro
instruction to place a pointer to an in-storage list on the input stack.

In the example, the GETMAIN macro instruction is used to obtain
storage in subpool 78 for the List Source Descriptor and the in-storage
list itself. The execute form of the STACK macro instruction
initializes the Input Output Parameter List required by the STACK
service routine. The list form of the STACK macro instruction expands
into a STACK Parameter Block, and its address is passed to the STACK
service routine via the PARM operand in the execute form of the STACK
macro instruction.

¥ | [7Wl/is| IclovE| Alslsiumeis| Ewirely] Felop] (7wP] |-| WIEIGI s|7IER] lowie| Icon-4a/ms
TWE| BIDIDREISIS| PF| TWE| commanp| PrRIOICESISor| IPARAMIETE /15171,
X *
% Wowls EWIEElP /G
% Uiblolelelsisialg/ L]/ Ty
% sklvie| KWIREA| cHAl/W7Vie
e
LIR 21, |7 slviel TWiE| WbbREISIS| [0F| TWE
* clommAaweo| PRIOKIESISIOR PARAMET IER
* Ll/1S\7].
visl/wig| lclPlple), |2 SlEl7] WA ALIPIRESISAIBI L TN IFlolR| |THIE
X clelAL|-
A 3, lClPlPlL |PIT ALlAlclE| [THIE| MPBREISS| o TWIEl KkPT]
/Wirlol Al REGIZISITIER] -
- , ICIPIRPILIEC|TT LWICE| THE| HDPREISIS| loF| ITHIE! EICIT
* /wirio W eEle|/is|ImER .
% %
x| | |/15|siEl W leleirmalrMm Floe iswiBlPoolL| 78] THE| K|2Isl7] IslowieclE
% DEIs|ciel/iPirioe| UWD| FHIE| vl STolRUlGE L1/ 18171 |/\TISIELIA WMuisin BIE| LOKAITED
¢ | /W IslviBlPoolL]| |718].
% *
GETTWAl WV LU, LAz RERQUVIES T, Al=UMSWE R, SP|=|718
% ¥
¢ Pe
¥ | 0BITAII IV [THIEl APPRESIS| [/ V| IsvBPIolo| (78] Flow [TwiEel Ll/Bir IslowirCiE]
| | DESICIRY PTOKR UMD MOWVIEL [7THIEL iLISiD| [/WiTlo| THAIT| ARPEA
X% *
L 59 S WE
mv|C a(I716],151) |, 1AMLIS|D
% *
¥ | 0BITAlY W THIEL KIDDRES|S| /W] [svBrlolos| |7i8] (FolR |THIEl |7iv|-IsiToKieie] 1LY ISIT
x| | |[AWMD| molVie| [THIEl |2 W|-isirioelalelel 1Ll/isln /Wi Alr| ARE
% %
L 4, AMS|WER ¢
1S|77 6) s 7l0RE| I7WE| RILIDREISIS| loF| ITWE| |-
S |, B1(sl olellsld c]/Isi [7Wirlo o Fl’Elos
Figure 45. Coding Example -- STACK Specifying an In-Storage List as the

Input Source (Part 1 of 3)

Using the TSO I/0 Service Routines for Terminal I/0 107

e T M 1A el Isl Isblklcle] blesicle/ 7ok
mvic W70, 6D, /Wil isir
% X
x| | I/[sisiviE] AW Elquriel Folew loF| rwkel sirae Ulcielo| I visimelvic7l o] 7o
e wivr A o/ V\7TKEWR (7o) TWIEl |7vi-SITI0RKRIGIEl KiZzislZ| lom |7 &] (7P (si7UIcK] .
* *
STUIC K| PARMI= ISiTicikiLisiTl, lwiPlm=1(13D s lelcin=[(¥ |, |EICBl= |ElciBi4 DS *
SI710RAIGIE = (|(15)) |, |PRIoIE W) |, MF|=|(El, ZIOALHIDS)
* *
be cisi7| [THWE| PETVRAM clowie] Flowl ISiviciciesisiFlue| clonirlbl7l oM 10F ITHiE]
% | Is|nalcK] IsiEldvi/ iclE eloviry vE.
X *
7ie 7151, 17151
BV LRRTWI
X %
x| ARloCIElSIsl viG
£
™ - || L
ERETM
e e
* a8
P %
x| | |S|710/RUIGIE PEICILARIAITY PWMS
X *
AW ISID DS A TWIE ToT UL WIEWGETH| oA ITWiE| IL]/|si7
pIC X’ Pgdd solukicle PES|cel/Pror, | welsla,| /s
DiC X gy’ sl-xIrlsleM 1BEls| [(pElc]/ riale))
D|S|
ke ‘gl
* %
rwie | Is|7 DiC X gl \dpdda|’
Dic cl' leol] lor4l lolPi8l [oAd
plc X' 0d)7|4 ’
D¢ c|'lrelslA loAral olArs lolArie |
pic x|/ e del/
p|C c| lAdolA/lclE | wiomisie\Z] violRrlome|r|’
Figure 45. Coding Example -- STACK Specifying an In-Storage List as the

Input Source (Part 2 of 3)

108 Guide to Writing a TMP or a CP (Release 21.6)

N Q
! [%)) [0) [[\
Q 0w \ 1] <
B ~ NN X
Q < . AT NY VN (%)
Q [TIEL) M N < [W! ~ .
2] [N 1)) R (YL W NIQ< N
~ <[W N NW| (W - [\ NS [0)
L) T[NN[0 NS ~
~ g Y RQOISY 0 TINILN LR
N W T(0[Q NI N g DN NI
v N[KNINCW[N[& N 0 N[y NILTIRNL Y
N ~ < [CYY) N) @) LISy
N - IR INIRTIRS [[< NIGJRILN
> Qs QN ~ X0 X NN & QW
N [T [WINVENDILNLNES NI <[V
[\ <> [%) ATIES) Y N Q <
o S Q nis[al -ISIN [4ES) N 4%
N NYES Y INNENEANN NIRNYEN INEIEN
[0) [<IKN KIWNIQlw 00 [WV2AN [(IRYENLY
N & NI N INELY X N (NN
J [QN [0 LN K0 % < K% %
[Q NIINERISIDIENIIN) nl2Q Q9]0
g [HYIN) < Uix|Wgls] NINNEY O[QIL|W
[C) N UIYTI[OSTYISNTS AN IR N)
< [n [MREIES NIRRT NILTIEYS N KN
~ [\ NIES LN EAEININE Q9 n [¥ QL
N [N QN xX[Q QISN[GN IR NIEILN [TRNATEN)
7)) N > NEY INKVATTENRY [T X N SV
N <[y QST [S[R]IOT [X[O INAIEGIEYEATENINLY
~ 1 X N
> TN Q%
N [0 NIN
Q . [} [
D [TN < 0nis
Q) NN (N Q>
N Nisc NIQ \'
X [~ (ST
[N Q X B
O QL LWigl - NIO
~ [[NYISIR3 SIs s NS < N
Q] X[Q Q IS NAYEAVE Y] AN
A N ERINDDTRNEEGL 'Y ~] AN
S s [O) (V1R AN RN NN 2 9 < RELY
x1O >0 N XY x| [SIEN TN
WY X Q
NILN 0| & NS ¥
N [TIENAY [N [§) [X)
~ R RV [TTILT < S Q
VIV < N > (S]AVIAN] QW \S) N (M1ESIE <
Q NS [HIRN QQlq ~ Q %) LY Y
QI Ql~ 0y
N|Q NEYR) <X
Q N & K K ()
Wi [~ D) N & 1w wlQ
X JWNIX TW [MBN 1] N Q<
XX [IENEI N 0n(YQ X </
<] [%) Q[
[2 N 09
ENES FAENES MESESEIES EIES < BHEIEIES NIYIES

Coding Example -- STACK Specifying an In-Storage List as the

Input Source (Part 3 of 3)

Figure Uu45.

Using the TSO I/0 Service Routines for Terminal I/0 109

Return Codes From STACK

When it returns to the program which invoked it, the STACK Service
Routine will provide one of the following return codes in general
register fifteen:

Code Meaning
0 STACK has completed sucessfully
4 _One or more of the parameters passed

to STACK were invalid.

GETLINE - GETTING A LINE OF INPUT

You use the GETLINE macro instruction to obtain all input lines other
than commands or subcommands, and PROMPT message responses. Commands,
subcommands, and PROMPT message responses should be obtained with the

NIIMAaTm

PUTGET macio instruction.

When a GETLINE macro instruction is executed, a line is obtained from
the current source of input - the terminal or an in-storage list - or
optionally, from the terminal, regardless of the current source of
input. The processing of the input line varies according to several
factors. Included in these factors are the source of input, and the
options you specify for logical or physical processing of the input
line. The GETLINE Service Routine determines the type of processing to
be performed from the operands coded in the GETLINE macro instruction,
and returns a line of input.

This topic describes:

e The list and execute forms of the GETLINE macro instruction.
e The sources of input.

e The GETLINE Parameter Block.

e The input line format.

e Examples of GETLINE.

¢ Return codes from GETLINE.

110 Guide to Writing a TMP or a CP (Release 21.6)

The GETLINE Macro Instruction - List Form

The list form of the GETLINE macro instruction builds and initializes a
GETLINE Parameter Block (GTPB), according to the operands you specify in
the GETLINE macro. The GETLINE Parameter Block indicates to the GETLINE
service routine which functions you want performed. Figure 46 shows the
list form of the GETLINE macro instruction; each of the operands is
explained following the figure. Appendix B describes the notation used
to define macro instructions.

[symbol]l

-
GETLINE | |INPUT=(ISTACK}{,LOGICAL })
| TERM , PHYSICAL

|
| ,TERMGET—‘-({EDIT} ,WAIT)| ,MF=L
| ASIS{ |,NOWAIT

L.

Figure 46. The List Form of the GETLINE Macro Instruction

|
|
|
|
|
|
L

o e e e —
[

INPUT=
Indicates that an input line is to be obtained. That input line is
further described by the INPUT sublist operands ISTACK, TERM,
LOGICAL, and PHYSICAL. ISTACK and LOGICAL are the default values.

ISTACK
Obtain an input line from the currently active input source
indicated by the input stack.

TERM
Obtain an input line from the terminal. If TERM is coded in the
macro instruction, the input stack is ignored and regardless of the
currently active input source, a line is returned from the
terminal.

LOGICAL
The input line to be obtained is a logical line; the GETLINE
service routine is to perform logical line processing.

PHYSICAL
The input line to be obtained is a physical line. The GETLINE
service routine need not inspect the input line.

NOTE: If the input line you are requesting is a Logical line
coming from the input source indicated by the input stack, you need
not code the INPUT operand or its sub-list operands. The input
line description defaults to ISTACK, LOGICAL.

TERMGET
Specifies the TGET options requested. GETLINE issues a TGET SVC to
bring in a line of data from the terminal, this operand indicates
to the TGET SVC which of the TGET options to use. The TGET options
are EDIT or ASIS, and WAIT or NOWAIT. The default values are EDIT
and WAIT.

EDIT

Specifies that in addition to minimal editing (see ASIS), the
buffer is to be filled out with trailing blanks.

Using the TSO I/0 Service Routines for Terminal I/O 111

ASIS
Specifies that minimal editing is to be done as follows:

a. Transmission control characters are removed.
b. The line of input is translated from terminal code to EBCDIC.
c. Line deletion and character deletion editing is performed.

d. Line feed and carriage return characters, if present, are
removed.

WAIT
Specifies that control is to be returned to the routine that issued
the GETLINE macro instruction only after an input message has been
read.

NOWAIT
Specifies that control is to be returned to the routine that issued
the GETLINE macro instruction whether or not a line of input is
available. If a lime of input is not available, a return code of
12 decimal is returned in register 15 to the command processor.

MF=L
Indicates that this is the list form of the macro instruction.

NOTE: In the list form of the macro instruction, only

r
|GETLINE MF=L
L

e = ot

is required. The other operands and their sublists are optional because
they may be supplied by the execute form of the macro instruction, or

automatically supplied if you want the default values:

| INPUT=({ISTACK}{,LOGICAL })
TERM ,PHYSICAL

| ,TERMGET=({EDIT}{,WAIT })

.
|

|

|

| and
I

|

| ASISf|,NOWAIT
L

b e e e ————d

The operands you specify in the list form of the GETLINE macro
instruction set up control information used by the GETLINE service
routine. The INPUT= and TERMGET= operands set bits in the GETLINE
Parameter Block to indicate to the GETLINE service routine which options
you want performed.

112 Guide to Writing a TMP or a CP (Release 21.6)

The GETLINE Macro Instruction - Execute Form

Use the execute form of the GETLINE macro instruction to perform the
following three functions:

1.
2.

You may use it to set up the Input Output Parameter List (IOPL).

You may use it to initialize those fields of the GETLINE Parameter
Block (GTPB) not initialized by the List form of the macro
instruction, or to modify those fields already initialized.

You use it to pass control to the GETLINE service routine which
gets the line of input.

Figure 47 shows the execute form of the GETLINE macro instruction;

each of the operands is explained following the figure. Appendix B
describes the notation used to define macro instructions.

[o S e e e s, S i . o, B e S s ay

[symbol]

T
GETLINE |[PARM=parameter addressl[,UPT=upt address]

|
|[,ECT=ect addressl[,ECB=ecb address]

|
, INPUT= ({ISTACK) f, LOGICAL })
TERM , PHYSICAL

[,TERMGET= ({EDIT {,WAIT })]

I
|
|
I
I
| ASIS |,NOWAIT
|

I

| (15) (1)
L

T

.
|
|
I
I
|
I
|
|
[
|
l
|
I
|
|
L

|[,ENTRY={entry address}],MF=(E,{list address})

Figure 47. The Execute Form of the GETLINE Macro Instruction

PARM=parameter address

Specifies the address of the 2-word GETLINE Parameter Block (GTPB).
It may be the address of a list form GETLINE macro instruction.

The address is any address valid in an RX instruction, or the
number of one of the general registers 2-12 enclosed in
parentheses. This address will be placed in the Input Output
Parameter List (IOPL).

UPT=upt address

Specifies the address of the User Profile Table (UPT). You may
obtain this address from the Command Processor Parameter List
pointed to by register one when the command processor is attached
by the Terminal Monitor Program. The address may be any address
valid in an RX instruction or the number of one of the general
registers 2-12 enclosed in parentheses. This address will be
placed in the IOPL.

ECT=ect address

Specifies the address of the Environment Control Table (ECT). You
may obtain this address from the CPPL pointed to by register 1 when
the Command Processor is attached by the Terminal Monitor Program.
The address may be any address valid in an RX instruction or the
number of one of the general registers 2-12 enclosed in
parentheses. This address will be placed into the IOPL.

Using the TSO I/0 Service Routines for Terminal I/0 113

ECB=ecb address

Specifies the address of an Event Control Block (ECB). You must
provide a one-word Event Control Block and pass its address to the
GETLINE Service Routine by placing it into the IOPL. The address
may be any address valid in an RX instruction or the number of one
of the general registers 2-12 enclosed in parentheses. This
address will be placed into the IOPL.

INPUT=

Indicates that an input line is to be obtained. This input line is
further described by the INPUT sublist operands ISTACK, TERM,
LOGICAL, and PHYSICAL. ISTACK and LOGICAL are the default values.

ISTACK

TERM

Obtain an input line from the currently active input source
indicated by the input stack.

Obtain an input line from the terminal. If TERM is coded in the
macro instruction, the input stack will be ignored and regardless
of the currently active input socurce, a iine 1s returned from the
terminal.

LOGICAL

The input line to be obtained is a logical line; the GETLINE
service routine is to perform logical line processing. (See
Glossary for the definition of "logical line.")

PHYSICAL

The input line to be obtained is a physical line. The GETLINE
service routine need not inspect the input line.

NOTE: If the input line you are requesting is a Logical line
coming from the input source indicated by the input stack, you need
not code the INPUT operand or its sublist operands. The input line
description defaults to ISTACK, LOGICAL.

TERMGET

EDIT

ASIsS

WAIT

Specifies the TGET options requested. GETLINE issues a TGET SVC to
bring in a line of data from the terminal, this operand indicates
to the TGET SVC which of the TGET options to use. The TGET options
are EDIT or ASIS, and WAIT or NOWAIT. The default values are EDIT
and WAIT.

Specifies that in addition to minimal editing (see ASIS), the input
buffer is to be filled out with trailing blanks.

Specifies that minimal editing is to be done by the TGET SVC. The
following editing functions will be performed by TGET:

a. Transmission control characters are removed.

b. The line of input is translated from terminal code to EBCDIC.
c. Line deletion and character deletion editing are performed.

d. Line feed and carriage return characters, if present, are

removed.

Specifies that control is to be returned to the routine that issued
the GETLINE macro instruction, only after an input message has been
read.

Guide to Writing a TMP or a CP (Release 21.6)

NOWAIT
Specifies that control is to be returned to the routine that issued
the GETLINE macro instruction whether or not a line of input is
available. If a line of input is not available, a return code of
12 decimal is returned in register 15 to the command processor.

ENTRY=entry address or (15)
Specifies the entry point of the GETLINE service routine. If ENTRY
is omitted, a LINK macro instruction will be generated to invoke
the GETLINE service routine. The address may be any address valid
in an RX instruction or (15) if the entry point address has been
loaded into general register 15.

MF=E
Indicates that this is the execute form of the macro instruction.

listaddr
(1)

The address of the 4-word Output Parameter List (IOPL). This may
be a completed IOPL that you have built, or it may be 4 words of
declared storage that will be filled from the PARM, UPT, ECT, and
ECT operands of this execute form of the GETLINE macro instruction.
The address is any address valid in an RX instruction or (1) if the
parameter list address has been loaded into general register 1.

NOTE: In the execute form of the GETLINE macro instruction only the
following is required:

r
| GETLINE MF=(E,{list address})
I (1)

L

The PARM=, UPT=, ECT=, and ECB= operands are not required if you have
built your IOPL in your own code.

The other operands and their sublists are optional because you may have
supplied them in the list form of the macro instruction or in a previous
execution of GETLINE, or because you are using the default values:

r -
INPUT=({ISTACK}{,LOGICAL })
TERM , PHYSICAL

and

e e e e ——— —)

|
|
I
|
| TERMGET=(EDIT} , WAIT })
| {ASIS {,NOWAIT

L

The ENTRY= operand need not be coded in the macro instruction. If it is
not, a LINK macro instruction will be generated to invoke the I1I/0
service routine.

The operands you specify in the execute form of of the GETLINE macro
instruction are used to set up control information used by the GETLINE
Service Routine. You can use the PARM=, UPT=, ECT=, and ECB= operands
of the GETLINE macro instruction to build, complete, or modify an IOPL.
The INPUT= and TERMGET= operands set bits in the GETLINE Parameter
Block. These bit settings indicate to the GETLINE Service Rcutine which
options you want performed.

Using the TSO I/0 Service Routines for Terminal I/O 115

Sources of Input

There are two sources of input provided; they are the terminal and an
in-storage list.

TERMINAL: Input comes from the terminal under either of the following
conditions:

e You have specified the terminal as the input source by including the
TERM operand in the GETLINE macro instruction.

e You have specified the current element of the Input Stack by
including the ISTACK operand in the GETLINE macro instruction, and
the current element is a terminal element.

If you specify terminal as the input source, you have the option of
requesting the GETLINE Service Routine to process the input as a logical
or physical line by including the LOGICAL or the PHYSICAL operand in the
macro instruction. LOGICAL is the default value.

Physical TLine DProcesgsing: A physical line is a line which is returned
to the requesting program exactly as it is received from the input
source. The contents of the line are not inspected by the GETLINE
service routine.

Logical Line Processing: A logical line is a line which has had
additional processing by the GETLINE service routine before it is
returned to the requesting program. If logical line processing is
requested, each line returned to the routine that issued the GETLINE is
inspected to see if the last character of the line is a continuation
mark (a dash '-'). A continuation mark signals GETLINE to get another
line from the terminal and to concatenate that line with the line
previously obtained. The continuation mark is overlaid with the first
character of the new line.

IN-STORAGE LIST: If the top element of the input stack is an in-storage
list, and you do not specify TERM in the GETLINE macro instruction, the
line will be obtained from the in-storage list. The in-storage list is
a resident data set which has been previously made available to the I/0
Service Routines with the STACK Service Routine. No logical line
processing is performed on the lines because it is assumed that each
line in the in-storage list is a logical line. It is also assumed that
no single record has a length greater than 256 bytes.

End of Data Processing

If you issue a GETLINE macro against an in-storage list from which all
the records have already been read, GETLINE senses an end of data (EOD)
condition. GETLINE deletes the top element from the Input Stack and
passes a return code of 16 in register 15. Return code 16 indicates
that no line of input has been returned by the GETLINE service routine.
You can use this EOD code (16) as an indication that all input from a
particular source has been exhausted and no more GETLINE macro
instructions should be issued against this input source. If you reissue
a GETLINE macro instruction against the input stack after a return code
of 16, a record will be returned from the next input source indicated by
the input STACK. You can identify the source of this record by the
return code (0 = terminal, 4 = in-storage).

Building the GETLINE Parameter Block

When the list form of the GETLINE macro instruction expands, it builds a
two word GETLINE Parameter Block (GTPB). The list form of the macro
instruction initializes this GTPB according to the operands you have
coded in the macro instruction. This initialized block, which you may

116 Guide to Writing a TMP or a CP (Release 21.6)

later modify with the execute form of the macro instruction, indicates
to the GETLINE Service Routine the function you want performed.

You must supply the address of the GTPB to the Execute form of the
GETLINE macro instruction. For non-reenterable programs you can do this
simply by placing a symbolic name in the symbol field of the list form
of the macro instruction, and passing this symbolic name to the execute
form of the macro instruction as the PARM value. The GETLINE Parameter
Block is defined by the IKJGTPB DSECT. Figure 48 describes the contents
of the GTPB.

r T T 1
| Number of | | |
| Bytes | Field | Contents or Meaning |
L 4 4 d
[] 1B 1
2		Control flags. These bits describe the
		requested input line to the GETLINE service
		routine.
	Byte1	
	<<0e «e..	The input line is a logical 1line.
	«<l. «...	The input line is a physical line.
	<<-0 <...	The input line is to be obtained from the
		current input source indicated by the input
		stack.
	<<l	The input line is to be obtained from the
		terminal.
	xx.. xxxx	Reserved bits.
	Byte 2	
	=xxxx xxxx	Reserved.
F 1 t 1		
2		TGET options field. These bits indicate to
		the TGET SVC which of the TGET options you
		want to use.
	Byte1	
	1ee. «e...	Always set to 1 for TGET.
	«<<0 «...	WAIT processing has been requested. Control
		will be returned to the issuer of GETLINE
	Jonly after an input message has been read.	
] eeel	NOWAIT processing has been requested.	
		Control will be returned to the issuer of the
		GETLINE macro instruction whether or not a
		1ine of input is available.
	eee«. ..00	EDIT processing has been requested. 1In
		addition to the editing provided by ASIS
		processing, the input buffer is to be filled
	Jout with training blanks to the next	
		double-word boundary.
	e<.« «.01	ASIS processing has been requested. (See the
		ASIS operand of the GETLINE macro instruction]
		description).
	.xx. xx..	Reserved bits.
	Byte 2	
	=xxxx xxxx	Reserved.
F t t :		
4	GTPBIBUF	The address of the input buffer. The GETLINE
]		service routine fills this field with the
		address of the input buffer in which the
		input line has been placed.
L 4 L J
Figure 48. The GETLINE Parameter Block

Using the TSO I/O Service Routines for Terminal I/0 117

Input Line Format - The Input Buffer

The second word of the GETLINE Parameter Block contains zeros until the
GETLINE service routine returns a line of input. The service routine
places the requested input line into an input buffer beginning on a
double word boundary located in subpool 1. It then places the address
of this input buffer into the second word of the GTPB. The input buffer
belongs to the command processor that issued the GETLINE macro
instruction. The buffers returned by GETLINE are automatically freed
when your C.P. relinquishes control. If space is a consideration, you
should free the input buffer with the FREEMAIN macro instruction after
you have processed or copied the input line.

Regardless of the source of input, an in-storage list or the
terminal, the input line returned to the command processor by the
GETLINE Service Routine is in a standard format. All input lines are in
a variable length record format with a full-word header followed by the
text returned by GETLINE. Figure 49 shows the format of the input
buffer returned by the GETLINE service routine.

Length Offset Text

2 Bytes 2 Bytes

Figure 49. Format of the GETLINE Input Buffer

The two-byte length field contains the length of the input line
including the header length (4 bytes). You can use this length field to
determine the length of the input line to be processed, and later, to
free the input buffer with the R form of the FREEMAIN macro instruction.

The two-byte offset field is always set to zero on return from the
GETLINE Service Routine.

Figure 50 shows the GETLINE control block structure after the GETLINE
Service Routine has returned an input line.

118 Guide to Writing a TMP or a CP (Release 21.6)

Terminal Command GETLINE
Monitor Processor Service
Program ATTACH LINK Routine

-

Reg. 1 Reg. 1

y CPPL IOPL

GTPB

Input Buffer

[| DATA &

Figure 50. GETLINE Control Blocks - Input Line Returned

Examples of GETLINE

Figure 51 is an example of the code required to execute the GETLINE
macro instruction. 1In this example two execute forms of the GETLINE
macro instruction are issued. The first one builds the IOPL, and uses
the parameters initialized by the list form of the macro instruction to
get a physical line from the terminal with the NOWAIT and ASIS options.

In the second execution of the GETLINE macro instruction, the same
IOPL is used, but the GETLINE options are changed from TERM to ISTACK,
and from NOWAIT to WAIT explicitly, and from PHYSICAL to LOGICAL and
from ASIS to EDIT by default.

Notice also that the IKJCPPL DSECT is used to map the Command

Processor Parameter List, and the IKJGTPB DSECT is used to map the
GETLINE Parameter Block.

Using the TSO 1I/0 Service Routines for Terminal I/O 119

wni=
=2w wy|—
O~ [Ze) -
— > =
[() S
Olw = —
S[3<] S —
72w — O
— — - >
[22)[%) [S) = oL
=|— = o |
—[=z cl=[— %)
~ . —[<z|— =
o7 [%2) () -
uy = >
~- — o
—
[72)
=

SAVIE| [THE| AIDIDRESIS| |0F| [TIHE| (CIPIPILI.

ADDRIEISSABIILIITY| |FIOR ICIPPPIL

PILIAICE| THIE| |AIDIDIRIEIS|S| |0F| [THIE| |UPIT

IINIT|0| |A| RIEIG|!|SITIEIR|-

PILIAICIE| TIHE| |ADDIRIEIS|S| |OIF| |TIHIE| EICT

AND| NIOWAI[T| 0/PIERIANDIS| [CO|DIEDD

SEIT| |UlP| |AIDIDIRIEIS|SIAIB|I|L{IITLY| |FIOR| |TIHIE

GITIPB|-

GEIT| |TIHE| |ADIDRIEIS|S| |OF| ITIHE| ILIIINIE|.

[T JUISIEIS| [THIE| |[T|0PIL| (CIONISITIRIUICIT EID| |BJY

PARM=GIETT BILIOICK], UIPIT|=I(|3]) |, |EICIT]|=IC4]) s

EICIBI=|EICBIAIDIS|, MF|=\(|E|,|I|O/PILIADIS|)

TIH|/|S| |ONE| |GEITIS| |A ILIIINIE| |FIRIOM| [TIHIE| ICIURRIENITIL]Y

ENTRIY| [FIRIOM_TMP| -1 IRIEIGI/ISITIEIR] |7] [CIOINTIAIIINIS| A[[PlolI[NITIER] |TI0] |TIHIE

[\SS|VE| |AN, EXIEICIUTIE| |FIORM [OF| IT\HIE| |GIETIL|IINIE| MAICRIO
TI0) |GEE[T] |A] |PHIY|SIIICIAIL] \LI/INE] |FRIOM [THE| [TERMIINAL,.

FIORM_|BIUI/\LIDIS| |AINIDL |1 N\IITILAIL|ZIEIS| TIHIE| |IINPUIT| OUTIPIUT] PAIRAMETIER

GIEIT| |TIHIE| |AIDIDIRIEIS|S| 1OIF| [TIHE| REEITUIRINIEID |LIIINIE| |FIRIOM |TIHIE| GIEITIL | NIE

[ISISUE| |ANOITHEIR] EIXIEICUITIE| |FIORM 10IF| [TIHIE| |GIEITIL |/ INIE| [MAICIRIO

THE| [FIRISIT| |EXIEICUITIION| [OIF] THE| |GIETILIIINE] |MAICIRIO

[=)
[543
[X)
<t
= [=Y
- [~
~ w (&)
w = <<
— - =
—J -
[uy
[w =
[T) O |-
~ ol
wy D win[i—
= T/—w
< ~ [2I[G) 4 [T wy
[= —~ ~ << [8)) =2 !
< > — Q (%) . w S [Ya) —
Q ~[<< > [T oS! s — —] wy
O|~|T N -] ~J~ o [N\ O
[ES IS - Q a = [<< | ~[al wy o
O~~~ -~ Q. Q 4SS - Wi~ =])
N QT ~ia S Q. (=) el) X wa|vo ~ [«
Wniw<T|w ~Q. -~ - w v [} N=] = [%0)
WS N[O) =5 [T >|= [=) OB\ [72)
O (ND<T = wis(oe ~ w =
ol [) -~ [l N [Ya) (L) w =D
xln|elw =) > [T = [[SI=N
QD> ~ ~ Ol & - S —=
olalwa| ~[wvw) W S|~ wl Il [a% —|—
QT[T ~N S] I (G S [=[%) ~ ~ [a_ (&)
[T W >l
< [= o>
~ [%2) < ~|—
= [Ve) —wijw o Wi~
(=) -~ || < =0
(&)] [NSE [= Y —|<T
X| XK KX KiIX[XK|XK X K XKIXKiX k> X XXX X

Ccoding Example -- Two Executions of GETLINE (Part 1 of 2)

Figure 51.

120 Guide to Writing a TMP or a CP (Release 21.6)

S 2] [~
— — wla
W= x Ql—
>~ — =2
[4N] [N] — ~ ~J <T
= w = > 3 S) [aY[72)
— L — a. ~Q oy —— (%)
=4[0)] — W= ~ N iy
[N ol=| — > QSN = —o o<
S —[|<T|~ Ly (=) Q, ol Al wwa
- —|T[— [W< [= = ==
= ~ [[SY[=) — Wi | |> — <<
o ~ > W [X8) > ~ Q_ |~ Swujon I~
S — o -~ = o =[~| = [)
L <t —~liwy —~ = SIOW oW | o [—
= N[— — | O[] [OlRe[J
~ ~| =20 = — Q[<[(&)=Y
[%) " ——~I<T (= [¥T][7%) SO wicoe WO |
— ~ (G [x|—| ~ IMIDINI= I <z || JI[=
— [47) OO [N =N O —<T — QA i—A~|ea[>~
[GY [| W~ — wv
[Te] = [%) - w Oc[oe[<T | 1SS x|x[= [S3[%4
= [2 I O[D = SIWOER=(S [<[=) ~[olwiw
~ [¥] =—<< — U [~~~ wrnnunu |~
M~ |5 —J L NN~ ~ * wnQiwv Wi~
>~ ~ wivniwl WS> SS|WXFlw=W=
) —~ == = (S5 4= o N I N e L) (Y [L d S S S
Y4 —[J w | x[a WO Q| oa oW~
=) ()] Sy = Q| ~[RT(I(=|aVn[x>=<[[n[T—
[¥T) << ~|<T|T % wa = O~ nigaaw<ztala /=] |
— [Wl [~ > oS
<[- N~ (Dl — Wil +
= 1% [=Y{%) Ly (2
x| ~Q w) oz |~
O ~— 11| <x | ~ Xz [
— [] —[X|<T wl o Y] w —~
Y] [S) >Slal Q[= > = [G) S
Al Ao w[<T —~ x — << aQln
~[a¢ [~ ol ~ - [a%3 =~
D~ ~| -~ SN1 [N [a) j=) —
%) W =< S Ql W] [~ |- S
W= - | . —= = [0 <
b o] QIO N 70104 [G) — <
— uw [(uf~[~ no - Q w Ly ~
[=) eSS — wo [N [72) w = WN [N] o)
212 = uy << [[[<3 = a_ Q
[T8] [— | Q0 W =9 — a —
— <t —J Sl Q (&) —J —J (= [
SRS OIS <o ol O — -) Q
—~ W Wy — [¥] [(&) ') () ¢ =
[=Y["N] &) (%) (] — a Q Q D QN ~l [¥7)
S= [TV [V o =[]
=— S[— ~[= 3
—J wn=|<c T [V [
Ql~ — <<= [[=) S [%)
=y =[S L[<T << — Q
S4[G) ~O= [GY[=W - =) <t
Q ~ e
[=) wy Q
KX EIESES EREXR B X =1E4[G) PAEAEIMNEIESESES Sie[K

Coding Example -- Two Executions of GETLINE (Part 2 of 2)

Figure 51.

Using the TSO I/0 Service Routines for Terminal I/0 121

Return Codes from GETLINE

When it returns to the program that invoked it, the GETLINE service
routine returns one of the following codes in general register fifteen:

CODE MEANING

0 GETLINE has completed successfully. The line was obtained
from the terminal.

4 GETLINE has completed successfully. The line was returned
from an in-storage list:

8 The GETLINE function was not completed. An attention
interruption occurred during GETLINE processing, and the
user's attention routine turned on the completion bit in the
communications ECB.

12 The NOWAIT option was specified and no line was obtained.

ie LOD - An attempt was made to get a line frum an in-storage
list but the list had been exhausted.

20 Invalid parameters passed to the GETLINE Service Routine.

24 A conditional GETMAIN was issued by GETLINE for input
buffers and there was not sufficient space to satisfy the
request.

PUTLINE - PUTTING A LINE OUT TO THE TERMINAL

Use the PUYLINE macro instruction to prepare a line and write it to the
terminal. Use PUTLINE to put out lines that do not require immediate
response from the terminal; use PUTGET to put out lines that require
immediate response. The types of lines which do not require response
from the terminal are defined as data lines and informational message
lines.

The PUTLINE service routine prepares a line for output according to
the operands you code into the list and execute forms of the PUTLINE
macro instruction. The operands of the macro instruction indicate “«o
the PUTLINE service routine the type of line being put out (data line or
informational message line), the type of processing to be performed on
the line (format only, second level informational message chaining, text
insertion) , and the TPUT options requested.

This topic describes:

e The list and execute forms of the PUTLINE macro instruction.
e The PUTLINE Parameter Block.

e The types and formats of output lines.

e PUTLINE message processing.

e Return codes from PUTLINE.

Coding examples are included where needed.

122 Guide to Writing a TMP or a CP (Release 21.6)

The PUTLINE Macro Instruction - List Form

The list form of the PUTLINE macro instruction builds and initializes a
PUTLINE Parameter Block (PTPB), according to the operands you specify in
the macro instruction. The PUTLINE Parameter Block indicates to the
PUTLINE service routine which functions you want performed. Figure 52
shows the list form of the PUTLINE macro instruction; each of the
operands is explained following the figure. Appendix B describes the
notation used to define macro instructions.

T

-t

+SINGLE
OUTPUT=(output address{:TERM ,MULTLVL } (, INFOR))
FORMATY {,MULTLIN) \,DATA

I
[symboll| PUTLINE
|

CONTROL) {,NOWAIT {),HOLD ,BREAKIN

EDIT
, TERMPUT= ({ASIS {,WAIT }{,NOHOLD}{,NOBREAK})

+MF=L

[e S o — — . B— — — —

-
I
|
|
|
|
I
|
I
|
!
|
L

b s . — ————— —

|
I
|
|
!
I
|
I
L

Figure 52. The List Form of the PUTLINE Macro Instruction

OUTPUT=output address
Indicates that an output line is to be written to the terminal.
The type of line provided and the processing to be performed on
that line by the PUTLINE service routine are described by the
OUTPUT sublist operands TERM, FORMAT, SINGLE, MULTLVL, MULTLIN,
INFOR and DATA. The default values are TERM, SINGLE, and INFOR.

The output address differs depending upon whether the output line
is an informational message or a data line. For DATA requests, it
is the address of the beginning (the full-word header) of a data
record to be written to the terminal. For informational message
requests (INFOR), it is the address of the Output lLine Descriptor.
The Output Line Descriptor (OLD) describes the message to be put
out, and contains the address of the beginning (the full-word
header) of the message or messages to be written to the terminal by
the PUTLINE Service Routine.

TERM
Write the line out to the terminal.

FORMAT
The output request is only to format a single message and not to
put the message out to the terminal. The PUTLINE Service Routine
returns the address of the formatted line by placing it in the
third word of the PUTLINE Parameter Block.

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be
specified.

MULTLIN
The output data consists of multiple lines. DATA must be
specified.

INFOR
The output line is an informational message.

Using the TSO I/0 Service Routines for Terminal I/O 123

DATA

The output line is a data line.

TERMPUT

EDIT

ASIS

Specifies the TPUT options requested. PUTLINE issues a TPUT SVC to
write the line to the terminal, this operand indicates which of the
TPUT options you want to use. The TPUT options are EDIT, ASIS, or
CONTROL, WAIT or NOWAIT, NCHOLD or HOLD, and NOBREAK or BREAKIN.
The default values are EDIT, WAIT, NOHOLD, and NOBREAK.

Specifies that in addition to minimal editing (see ASIS), the
following TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to
the terminal. If a blank line is sent, the terminal vertically
spaces one line.

b. Control characters are added to the end of the output line to
position the carrier to the beginning of the next line.

c. All terminal control characters (for example: bypass, restore,
horizontal tab, new line) are replaced with a printable
character. "Backspace" is an exception; see (d.) underxr ASIS.

Specifies that minimal editing is to be performed by TPUT as
follows:

a. The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to
prevent program caused I/0 errors. This does not mean that all
unprintable characters are eliminated. "Restore", "upper
case", "lower case", "bypass", and "bell ring", for example,
might be valid but nonprinting characters at some terminals.
(See CONTROL).

b. Transmission control characters are added.

c. EBCDIC "NL", placed at the end of the message, indicates to the
TPUT SVC that the carrier is to be returned at the end of the
line. "NL" is replaced with whatever is necessary for that
particular terminal type to cause the carrier to return. This
"NL" processing occurs only if you specify ASIS, and the "NL"
is the last character in your message.

If you specify EDIT, "NL" is handled as described in (c.)
under EDIT.

If the "NL" is embedded in your message, it is sent to the
terminal as a carriage return. No idle characters are added
(see f. below). This may cause overprinting, particularly on
terminals that require a line-feed character to position the
carrier on a new line.

d. If you have used "backspace" in your output message, but the
"backspace" character does not exist on the terminal type to
which the message is being routed, TPUT attempts alternate
methods to accomplish the backspace.

124 Guide to Writing a TMP or a CP (Release 21.6)

e. Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the
terminal line size.

f. 1Idle characters are sent at the end of each line to prevent
typing as the carrier returns.

CONTROL
Specifies that the output line is composed of terminal control
characters and will not print or move the carrier on the terminal.
This option should be used for transmission of characters such as
"bypass", "restore", or "bell ring".

WAIT
Specifies that control will not be returned until the output line
has been placed into a terminal output buffer.

NOWAIT
Specifies that control should be returned whether or not a terminal
output buffer is available. If no buffer is available, a return
code of 8 (decimal) will be returned in register 15, to the Command
Processor.

NOHOLD
Specifies that the control is to be returned to the routine that
issued the PUTLINE macro instruction, and that routine can continue
processing as soon as the output line has been placed on the output
queue.

HOLD
Specifies that the routine that issued the PUTLINE macro
instruction cannot continue its processing until this output line
has been put out to the terminal or deleted.

NOBREAK
Specifies that if the terminal user has started to enter input, he
is not to be interrupted. The output message is placed on the
output queue to be printed after the terminal user has completed
the line.

BREAKIN
Specifies that output has precedence over input. If the user at
the terminal is transmitting, he is interrupted, and this output
line is sent. Any data that was received before the interruption
is kept and displayed at the terminal following this output line.

MF=L
Indicates that this is the list form of the macro instruction.

Note: 1In the list form of the macro instruction, only the following is
required:

r - 1
| PUTLINE MF=L |
L —_—1

The output line address is required for each issuance of the PUTLINE
macro instruction but it may be supplied in the execute form of the
macro instruction:

e

r
| OUTPUT=(output address)
L

Using the TSO I/0 Service Routines for Terminal I/O0O 125

The other operands and sublists are optional because you can supply
them in the execute form of the macro instruction, or they may be
supplied by the macro expansion if you want the default values:

OUTPUT=({,TERM ,SINGLE ,INFOR))
,FORMAT{{ ,MULTLVL |, DATA
,MULTLIN

and

ASIs , NOWAIT(|,HOLD BREAKIN

, TERMPUT=((EDIT {,WAIT }{,NOHOLD}{,NOBREAK})
CONTROL

[e — . —— — t— — — —
b e s e — o ——— ————

The operands you specify in the list form of the PUTLINE macro
instruction set up control information used by the PUTLINE service
routine. This control information is passed to the PUTLINE service
routine in the PUTLINE Parameter Block, a three word parameter block

. s s s a: : L T
built and initialized by the list form of the PUTLINE macid insiruction.

The PUTLINE Macro Instruction - Execute Form

Use the execute form of the PUTLINE Macro instruction to put a line or
lines out to the terminal, to chain second level messages, and to format
a line and return the address of the formatted line to the code that
issued the PUTLINE macro instruction. The execute form of the PUTLINE
macro instruction performs the following functions:

1. It can be used to set up the Input Output Parameter List (IOPL).

2. It can be used to initialize those fields of the PUTLINE Parameter
Block (PTPB) not initialized by the List form of the macro
instruction, or to modify those fields already initialized.

3. It passes control to the PUTLINE service routine.

The PUTLINE Service Routine makes use of the IOPL and the PTPB to
determine which of the PUTLINE functions you want performed.

126 Guide to Writing a TMP or a CP (Release 21.6)

Figure 53 shows the execute form of the PUTLINE macro instruction;
each of the operands is explained following the figure. Appendix B
describes the notation used to define macro instructions.

(1)

:ENTRY={entry address}],MF=(E{ list address})
(15)

- 1=
Figure 53. The Execute Form of the PUTLINE Macro Instruction

L] L) h]
| [symboll T PUTLINE |[PARM=parameter address][,UPT=upt address] |
| |
%	[,ECT=ect addressl[,ECB=ecb addressl	
I		
		[, OUTPUT= (output address {,TERM +SINGLE
		[{,FORMAT} {,MULTLVL} I
I I , MULTLIN I		
		{-M_QB})
		» DATA
		{@E }
I		,TERMPUT=({ASTS ,WALT , NOHOLD ,NOBREAK})I
	L CONTROL {,NOWAIT}{,HOLD }{,BREAKIN]	
I		
L L 1

PARM=parameter address <
Specifies the address of the 2-word PUTLINE Parameter Block (PTPB).
It may be the address of a List form PUTLINE macro instruction.
The address is any address in an RX instruction, or the number of
one of the general registers 2-=12 enclosed in parentheses. This
address will be placed into the IOPL.

UPT=upt address
Specifies the address of the User Profile Table (UPT). You may
obtain this address from the Command Processor Parameter List
(CPPL) pointed to by register one when a Command Processor is
attached by the Terminal Monitor Program. The address may be any
address valid in an RX instruction or it may be placed in one of
the general registers 2-12 and the register number enclosed in
parentheses. This address will be placed into the IOPL.

ECT=ect address
Specifies the address of the Environment Control Table (ECT). You
may obtain this address from the CPPL pointed to by register 1 when
a command processor is attached by the Terminal Monitor Program.
The address may be any address valid in an RX instruction or it may
be placed in one of the general registers 2-12 and the register
nunmber enclosed in parentheses. This address will be placed into
the IOPL.

ECB=ecb address
Specifies the address of the Event Control Block (ECB). You must
provide a one-word event Control Block and pass its address to the
PUTLINE service routine. This address will be placed into the
IOPL. The address may be any address valid in an RX instruction or
it may be placed in one of the general registers 2-12 and the
register number enclosed in parentheses.

Using the TSO I/0 Service Routines for Terminal I/0 127

OUTPUT=output address
Indicates that an output line is provided. The type of line
provided and the processing to be performed on that line by the
PUTLINE service routine are described by the OUTPUT sublist
operands TERM, FORMAT, SINGLE MULTLVL, MULTLIN, INFOR and DATA.
The default values are TERM, SINGLE, and INFOR.

The output address differs depending upon whether the output line
is an informational message or a data line. For DATA requests, it
is the address of the beginning (the full-word header) of a data
record to be put out to the terminal. For informational message
requests (INFOR), it is the address of the Output Line Descriptor.
The Output Line Descriptor (OLD) describes the message to be put
out, and contains the address of the beginning (the full-word
header) of the message or messages to be written to the terminal by
the PUTLINE service routine.

TERM
Write the line out to the terminal.

FORMAT
The output request is only to format a single message and not to
put the message out to the terminal. The PUTLINE service routine
returns the address of the formatted line by placing it in the
third word of the PUTLINE Parameter Block.

SINGLE
The output line is a single line.

MULTLVL
The output message consists of multiple levels. INFOR must be
specified.

MULTLIN
The output data consists of multiple lines. DATA must be
specified.

INFOR
The output line is an informational message.

DATA
The output line is a data line.

TERMPUT
Specifies the TPUT options requested. PUTLINE issues a TPUT SVC to
write the line to the terminal, this operand indicates which of the
TPUT options you want to use. The TPUT options are EDIT, ASIS, or
CONTROL, WAIT or NOWAIT, NOHOLD or HOLD, and NOBREAK or BREAKIN.
The default values are EDIT, WAIT, NOHOLD, and NOBREAK.

EDIT

Specifies that in addition to minimal editing (see ASIS), the
following TPUT functions are requested:

a. Any trailing blanks are removed before the line is written to
the terminal. If a blank line is sent the terminal vertically
spaces one line.

b. Control characters are added to the end of the output line to
position the carrier to the beginning of the next line.

c. All terminal control characters (for example: bypass, restore,

horizontal tab, new line) are replaced with a printable
character. "Backspace" is an exception; see (d.) wunder ASIS.

128 Guide to Writing a TMP or a CP (Release 21.6)

ASIs

Specifies that minimal editing is to be performed by TPUT as
follows:

A.

f.

CONTROL

The line of output is translated from EBCDIC to terminal code.
Invalid characters are converted to a printable character to
prevent program-caused I/0 errors. This does not mean that all
unprintable characters are eliminated. "Restore", "upper
case", "lower case", "bypass", and "bell ring", for example,
may be valid but nonprinting characters at some terminals.

(See CONTROL).

Transmission control characters are added.

EBCDIC "NL", placed at the end of the message, indicates to the
TPUT SVC that the carrier is to be returned at the end of the
line. "NL" is replaced with whatever is necessary for that
particular terminal type to cause the carrier to return. This
"NL" processing occurs only if you specify ASIS, and the "NL"
is the last character in your message.

If you specify EDIT, "NL" is handled as described in (c.)
under EDIT.

If the "NL" is embedded in your message, a semicolon is
substituted for "NL" and sent to the terminal. No idle
characters are added (see f. below). This may cause
overprinting, particularly on terminals that require a
line-feed character to position the carrier on a new line.

If you have used "backspace" in your output message, but the
"backspace" character does not exist on the terminal type to
which the message is being routed, the PUTLINE service routine
attempts alternate methods to accomplish the backspace.

Control characters are added as needed to cause the message to
occur on several lines if the output line is longer than the
terminal line size.

Idle characters are sent at the end of each line to prevent
typing as the carrier returns.

Specifies that the output line is composed of terminal control
characters and will not print or move the carrier on the terminal.
This option should be used for transmission of characters such- as
"bypass", "restore", or "bell ring".

WAIT

Specifies that control will not be returned until the output line
has been placed into a terminal output buffer.

NOWAIT

Specifies that control should be returned whether or not a terminal
output buffer is available. If no buffer is available, a return
code of 8 (decimal) is returned in register 15.

NOHOLD

Specifies that control is returned to the routine that issued the
PUTLINE macro instruction, and it can continue processing, as soon
as the output line has been placed on the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>