IBM System/360 Operating System
Control Program With Option 2

Program Numbers 360S5-CI-505, 360S-DM-508

Multiprogramming with a fixed number of
tasks is Option 2 of the control program
for the IBM System/360 Operating System.
This publication describes the internal
logic of the control program to the extent
that it is modified for Option 2. These
modifications affect the job management,
task management, and data management rou-
tines of the control program.

The Program Logic Manual is to be used
with the program assembly listings and is
primarily a guide to those listings. It is
intended for personnel involved in program
maintenance and system programmers who are
altering the system design. Program logic
information is not necessary for the use
and operation of the control program;
therefore, distribution of this document is
limited to those with the aforementioned
requirements.

Restricted Distribution

Y27-7128-0

Program Logic

PREFACE

This publication describes the differen-
ces in internal logic that are introduced
by the expansion of the control program to
include Option 2: multiprogramming with a
fixed number of tasks. It is assumed that
the reader of this publication is thorough-
ly familiar with the basic operation of the
control program. Only areas of difference
are discussed in detail; however, informa-
tion on sequential scheduling systems in
general is included where necessary to
assist the reader in relating new topics to
known characteristics of the system.

The manual is divided into four major
sections. The first section, the Introduc-
tion, outlines the function and organiza-
tion of the entire control program and
provides references to sources of informa-
tion on various control program elements.
The Theory of Operation section describes
control program flow, with emphasis on job
management operations, which is the aspect
of the control program most significantly
different under Option 2. The Program
Organization section provides detailed des-
criptions of added or significantly changed
routines. The Load Modules and Assembly
Modules section contains a directory to the
contents of the nucleus, the SVC library,
and the link library.

Information in this document is directed
to the customer engineer who maintains and
services IBM System/360 Computing Systems
and who is responsible for field mainten-
ance and updating of IBM System/360 Operat-
ing System. This information may also be
used by the programming systems maintenance
programmer and the development programmer
who will expand the system.

RESTRICTED DISTRIBUTION: This publication is intended
primarily for use by IBM personnel involved in program
design and maintenance. It may not be made available
to others without the approval of local IBM management.

This publication was

This publication may be used to locate
those areas of the system to be analyzed or
modified. The information is presented to
enable the reader to relate Option 2 func-
tions to the program listings (coding) for
those functions. The comments in the list-
ings provide information for thorough anal-
ysis and understanding of the coding.

PREREQUISITE PUBLICATIONS

Knowledge of the information in the
following publications is required for a
full understanding of the manual.

IBM System/360: Principles of Operation,
Form A22-6821 -
IBM System/360: Operating System: Con-
cepts and Facilities, Form C28-6535
IBM System/360 Operating System: Control
Program Services, Form C28-6541

IBM System/360 Operating System: Linkage
Editor, Form C28-6538

IBM System/360 Operating System: System
Programmer's Guide, Form C28-6550

IBM System/360 Operating System: System
Generation, Form C28-6554

IBM System/360 Operating System: Intro-
duction to Control Program Logic,
Program Logic Manual, Form ¥Y28-6605

IBM System/360 Operating System: Fixed-
Task Supervisor, Program Logic
Manual, Form Y28-6612

IBM System/360 Operating System: Job
Management, Program Logic Manual,
Form Y28-6613

prepared for production using an IBM computer to

update the text and to control the page and 1line format. Page impres-

sions for photo-offset printing were obtained from an IBM 1403 Printer

using a special print chain.

A form for reade;'s comments appears at the back of this publication.
Address any additional comments concerning the contents of this publica-

tion to: IBM Corporation, Programming Publications,
Neighborhood Road, Kingston, New York 12401

’o International Business Machines Corporation 1966

Department 637,

INTRODUCTION . & <« « o 4 o 2 o o o o =«

Functions of the Control Program with
Option 2. ¢ ¢ o ¢ ¢ o o« ¢ o« o o o o =
Job Management Routines
Task Management Routines. .
Data Management Routines.

Organization of the Control Program. .
Resident Portion of the Control
Program.« . « . - . . -
Nonresident Portion of the Control
Program. « « « « « « o s « « « o« =

System Environment
Machine TYpeS « « « o o « « = o o« =
Minimum Required Configuration. . .

THEORY OF OPERATION. . . « o o « <«
Program FIOW « o o o o« o o o o o o o «

Job Management . . « ¢ < o o o o o o o
Job Scheduler Functions
Communication Task Functions. . . .
Job Processing. e e e e .

Entry to Job Management
Following Initial Program
Loading o « « o o o o o o o o @

Entry to Job Management
Following Step Execution. . . .

Control Statement Processing . .

Step Initiation.

Job and Step Termination

Operator-System Communication
Processing. « « « o o o o o « o s o @
Command Processing . . « « « o «
WTO/WTOR Macro-Instruction -
Processing. « « « « « 2 o o o =
External Interruption Processing

ENQ/DEQ Processing . « « « « o o o o «
ENQ/DEQ Control Blocks
Sequence of Execution for

Enqueued TaskS. « . « ¢« « & « o«

Load MOAULES « o o« o o o o o o o o o =

PROGRAM ORGANIZATION . « « « o « o « &

~ ~ [=)) [A< E, T,] (6,]

[eIV-JN]

17
17

17
18

18
18

19
21
22

CONTENTS

Job Scheduler Modifications. . « . . .
Partition-Related Scheduler Control
BlOCKe o ¢ o ¢ o o o o o o o o o @
Termination « « « « o « « « o « o «
Scheduler Controller.

Communication Task « « o« o o o o« o« o »
Communication Task Control Flow .
Console Interrupt Routine

Communication Task WAIT Routine . .

Communication Task Router

Console Device Processor Routines .
Master Command Processor Routine. .
Master Command Routine.
Write-To-Operator Routine
External Interrupt Routine.

Supervisor Modifications
WAITR--Single Event . . « .« « <« o«
Nucleus Initialization Program. . .

ENQ/DEQ SUPPOTt. o o o o o « o o o o =
Enqueue Service

Routine--IEAQENQO . . . « « . «

Dequeue Service Routine.

DADSM Modifications. . « « « . « . .
Allocate Rout1nes——Non~Indexed
Sequential Data Sets.
Allocate Routines—--Indexed
Sequential (ISAM) Data Sets . .
Extend Routines. « . « « « o« « o«
Scratch Routine. . . . « « « « «
Release Routine. . . « o o « o =«

LOAD MODULES AND ASSEMBLY MODULES. . .
Load Modules e e o o
Load Modules Contalned in the
SYS1.Nucleus Data Set. . . . o o
Load Modules Contained in the
SYS1.SVCLIB Data Set = « « « « « =«
Modules Contained in the
SYS1.LINKLIB Data Set. « . « « « «
Assembly Modules and Control Sections.
Control Sections and Assembly Modules.
CHARTS @« o« 2 o o o o e s o o o o o o =

INDEXe o« o o o o o o o o o o o 2 o« «

33

33
34

35

35

37
37
38
38
u7
53
55

83

ILLUSTRATIONS

FIGURES

Figure 1. Storage Allocation for a
Four-Partition System . . . « « . . .
Figure 2. Division of Main Storage
for the Operating System.
Figure 3. Example of CPU Control
Flow for a Job Processing Cycle . . .
Figure 4. Job Management Logic . . .
Figure 5. Attention Interruption
Processing F1lOoWw . .« « ¢ « ¢ o« o o «
Figure 6. WTO/WTOR Macro-Instructlon
Processing FIOW « « « ¢ ¢ ¢ ¢ o o o &

CHARTS

Chart 01. Job Management
Chart 02. Communication Task Control
FIOW o o o o o o o o o o o o o o o
Chart 03. Communication Task
Initialization Routine. . . « « « « =«
Chart 04. Console and External
Interrupt Routines. . . . e e o o =
Chart 05. Master Command EXCP Routine.
Chart 06. Write-To-Operator Routine. .
Chart 07. Communications Task Wait
ROUtINe o o o & o o o o o o o o « o «
Chart 08. Communications Task Router
ROULINE o v o o o o o o o o o o o o «
Chart 09. External Interrupt Processor
ROULINE ¢ o o o o o 2 « a o o o o o
Chart 10. Communications Task

Processor Routine . « « o« o o o o o «

Chart 11. OPEN/CLOSE Routine
Chart 12. Initiator/Terminator Control
FlOWe ¢ o ¢ o o o o o o o o o o o o
Chart 13. Pre-Termination Routine
(IEFSDO34). .
Chart 14. Termination Control Flow . .

e e e o e e e e e e e e

11
16

18
18

55
56

57

61
62
63

64
65

66

67

Figure 7. External Interruption
Processing Flow o e
Figure 8. ENQ/DEQ Control Block
Creation and Deletion . . «
Figure 9. Control Block
Relationships « « ¢ ¢ ¢ o ¢ o o o o @
Figure 10. OQueue-manager's Extent
Layout. « o ¢ o o o o o o o o o o « o
Figure 11. Communication Task Control
FlOWe ¢« ¢ ¢ ¢ ¢ o o o o o o o o o o @

Chart 15. Job Termination Routine. . .
Chart 16. Shift Count Interrogator
Routine (IEFSD035). <« o o« ¢ ¢ o o o «
Chart 17. Scheduler Upshift Routine

(IEFSDO31) . v v o o o o o o o o o o o

Chart 18. Scheduler Downshift Routine
(IEFSD030). & v o o o o« o o o o o o =
Chart 19. Enqueue Service Routine. . .
Chart 20. Enqueue Service Routine
(continued) . « ¢ ¢« ¢ ¢ o o ¢ o o o «
Chart 21. Enqueue Service Routine
(continued) . « ¢ ¢« ¢ ¢ o ¢ ¢ o o o« «
Chart 22. Must Complete Routine. . . .
Chart 23. Dequeue Service Routine. . .
Chart 24. Dequeue Service Routine
(continued) . « ¢ ¢ ¢ ¢ ¢ o « o « o &
Chart 25. Decrement SVRB/TASK Switch
ROULINE & ¢ ¢ & o o o o o o o o o o @
Chart 26. ENQ/DEQ Validity Check
ROULINE ¢ &« ¢ o o ¢ o o o o o o o «
Chart 27. 18K Configuration Load
Module Control FIow . « « ¢ « ¢ o «
Chart 28. 44K Configuration Load
Module Control Flow . « « « o o o o &

19
20
24
27

29

69
70
71

72
73

T4

78
79
80
81
82

In a single-task environment main stor-
age is divided into two areas: the fixed or
system area, and the processing program
area. In a multiprogramming environment
with a fixed number of tasks, the process-
ing program area is further divided into
from one to four partitions. Figure 1
shows the division of main storage for a
four-partition system. One task uses each
partition, and all tasks operate concur-
rently.

The system area is used for system
routines that perform control functions
during the execution of a processing pro-
gram, and for control blocks and tables
used by the system for the performance of
those control functions. Each partition is
used for a processing program and its data,

control blocks, and tables.

Option 2 of the control program provides
for +the concurrent execution of up to four
jobs, each in its own fixed partition of
main storage. Each job consists of a
single task. The Option 2 system provides
for task switching between the user tasks
operating in the partitions, and between
those tasks and the communication task
(master scheduler) in the system area.

Jobs are sequentially scheduled in the
Option 2 system. The job scheduling func-
tion is unchanged, except that the capabil-
ity for performing that function in differ-
ent partitions at different times is added.

With the Option 2 system, task dispatch-
ing differs primarily in that task switch-
ing 1is required, and that certain system
functions such as abnormal termination must

Low High
Address Address

SYSTEM
e———— o
AREA ™ PROBLEM PROGRAM AREA

NUCLEUS

P3 P2 P1 PO
(Lowest Priority (Highest Priority
Partition) Partition)

INTRODUCTION

be carried out in such a way that other,
unrelated tasks are not affected.

Job and task management functions are
performed under control program Option 2
through modified or expanded versions of
the corresponding routines described in the
publications IBM System/360 Operating
System: Job Management, Program Logic Manu-
al, and IBM System/360 Operating System:
Fixed-Task Supervisor, Program Logic Manu-

al. General information on those modifica-
tions and expansions 1is provided in this
publication.

FUNCTIONS OF THE CONTROIL PROGRAM WITH
OPTION 2

Control program routines
into three functional areas:

are grouped

¢ Job Management routines.
¢ Task Management routines.

e Data Management routines.

JOB MANAGEMENT ROUTINES

Job management routines provide communi-
cation between the user and the operating
system by:

e Analyzing the input Jjob stream and
collecting the information needed to
prepare a job for execution.

e Analyzing operator commands, and trans-
mitting messages from a program to the
operator.

There
routines:

are four major Jjob management

e Master scheduler, referred to for the
Option 2 system as the communication
task, which analyzes commands from the
console and transmits messages to the
operator.

e Reader/interpreter, which reads the
input job stream and constructs control
blocks and tables from information in
the control statements.

e Initiator/terminator, which collects
the information and resources needed to

Figure 1. Storage Allocation for a Four-

Partition System

execute a job step and performs the
operations required to terminate a job
step.

Introduction 5

e Scheduler controller, which governs the
sequence 1in which operation of the
reader/interpreter and the initiator/
terminator occurs in the system's prob-
lem program partitions; this function
is added for the Option 2 system.

The operation of these routines, to the
extent that operational differences exist,
is described in this publication. Opera-
tions of these routines that are not signi-
ficantly different in either environment
are described in the publication IBM
System/360 Operating System: Job Manage-
ment, Program Logic Manual.

TASK MANAGEMENT ROUTINES

Task management routines monitor and
control the entire operating system, and
are used throughout the operation of both
the control and processing programs.

There are six functions
these routines:

performed by

e Interruption handling
e Task supervision
e Main storage supervision

e Contents (and

fetch)

supervision program

e Overlay supervision
e Time supervision

The task management routines are collec-
tively referred to as the "supervisor." Of
these functions, all are identical for
either environment except for task supervi-
sion, changes to which are discussed in
this publication. A description of all
task management routines is given in the
publication IBM System/360 Operating Sys-
tem: Fixed-Task Supervisor, Program Logic

write required data, but also to 1locate
input data sets and to reserve auxiliary
storage space for output data sets of the
problem programs.

There are five categories of data man-
agement routines:

e Input/output (I/0O) supervisor, which
performs I/0 operations and processes
I/0 interruptions.

e Access methods, which communicate with
the I/O0 supervisor.

e Catalog management, which maintains the
catalog and locates data sets on auxil-
iary storage.

e Direct-access device space management
(DADSM) , which allocates auxiliary
storage space.

¢ Open/Close/End-of-Volume, which per-
forms required initialization for I/0

operations and handles end-of-volume
conditions.
of these routines, the only category

affected by the selection of control pro-
gram Option 2 is DADSM. All other data
management routines operate identically
with or without Option 2. The differences
in DADSM operation are summarized in the
"Program Organization" section of this pub-
lication. The operation of all data man-
agement routines is described in the fol-
lowing publications:

IBM System/360 Operating System:
Input/Output Supervisor, Program
Logic Manual; Form Y28-6616

IBM System/360 Operating System: Sequen-—
tial Access Methods, Program Logic
Manual; Form Y28-6604

IBM System/360 Operating System: Basic
Direct Access Method, Program Logic
Manual; Form Y28-6617

IBM System/360 Operating System: Catalog

Manual.

DATA MANAGEMENT ROUTINES

Data management routines control all

operations associated with input/output
devices: allocation of space on volumes,
channel scheduling, storing, naming, and

cataloging of data sets, movement of data
between main and auxiliary storage, and
handling of errors that occur during I/O
operations. Data management routines are
used both by problem programs and by con-
trol program routines that require data
movement. Problem programs use data man-
agement routines primarily to read and
write data. The control program uses data
management routines not only to read and

Management, Program Logic Manual;
Form Y28-6606

IBM System/360 Operating System: Direct
Access Device Space Management, Pro-
gram Logic Manual; Form Y28-6607

IBM System/360 Operating System:
Input/Output Support
(OPEN/CLOSE/EOV) , Program Logic Manu-
al, Form Y28-6609

ORGANIZATION OF THE CONTROIL_ PROGRAM

Different portions of the control pro-
gram operate from different areas of main
storage. The fixed (system) area of main
storage 1is the lower portion of main stor-
age; its size is determined by the control
program configuration. The system area

contains those control program routines
that perform a system function during the
execution of a processing program.

The problem program area is the upper
portion of main storage. It is defined at
system generation as containing from two to
four partitions; the number of partitions
may be reduced and the size of each may be
redefined at nucleus initialization, but is
fixed thereafter until another initial pro-
gram loading (IPL) is performed. Each
partition may be occupied by a processing
program, or by control program routines
that either prepare job steps for execution
(i.e., 3job management routines), or handle
data for a processing program (i.e., the
access methods).

On auxiliary storage, the control pro-
gram resides in three partitioned data sets
that are created when the operating system
is generated. These data sets are:

e The NUCLEUS partitioned data set
(SYS1.NUCLEUS), which contains the
resident portion of the control program
and the nucleus initialization program.

e The SVCLIB partitioned data set
(SYS1.SVCLIB), which contains the non-
resident svcC routines, nonresident

error handling routines, and the access
method routines.

e The LINKLIB partitioned data set
(SYS1.LINKLIB), which contains the
other nonresident control program rou-
tines and the IBM-supplied processing
programs.

Figure 2 shows the main storage areas
into which the routines from each parti-
tioned data set are loaded.

RESIDENT PORTION OF THE CONTROL PROGRAM

The resident portion (nucleus) of the
control program resides in the NUCLEUS
partitioned data set. This portion of the
control program is made up of those rou-
tines, control blocks, and tables that are
brought into main storage at IPL and that
are never overlaid by another part of the
operating system. The nucleus is loaded
into the system area of main storage.

The resident task management routines
are: all of the routines that perform
interruption handling, main storage super-
vision, and time supervision; and some of
the routines that perform task supervision,
contents supervision, and overlay supervi-
sion. These routines are described in this
publication and in the publication IBM
System/360 Operating System: Fixed-Task
Supervisor, Program Logic Manual.

Resident for job management are those
portions of the communication task that
receive commands from the operator. The
communication task is described in this
publication.

The resident data management routines
are the input/output supervisor and the
BLDL routines, which are part of the parti-
tioned access method. These routines are

described in the publications IBM
System/360 Operating System: Input/Output
Supervisor, Program Logic Manual and IBM
System/360 Operating System: Sequential

Access Methods, Program Logic Manual.

NONRESIDENT PORTION OF THE CONTROL PROGRAM

The nonresident portion of the control
program is made up of those routines that
are loaded into main storage as they are
needed, and can be overlaid after their
completion. The nonresident routines oper-
ate from the partitions and from two sec-
tions of the system area called transient
areas.

TRANSIENT AREAS: The transient areas are
two blocks of main storage defined in the
nucleus and embedded in the system area.
The first, the SVC transient area, is
reserved for nonresident SVC routines. The
second, the I/0 supervisor transient area,
is used by nonresident I/O error handling
routines that are brought in by the I/0
supervisor. Each transient area contains
only one routine at a time. When a nonres-
ident SVC or error handling routine is
required, it 1is read into the appropriate
transient area. All routines read into the
transient areas reside in SYS1.SVCLIB.

PARTITIONS: Each partition may be used for
a processing program as well as for the
access method routines and the nonresident
job management routines of the control
program. When the control program needs
main storage to build control blocks or for
a work area, it obtains this space from the
partition in which the processing program
that caused the requirement to arise was
operating.

Access method routines are brought into
each partition from SYS1.SVCLIB. Job man-
agement routines are brought in from
SYS1.LINKLIB. Processing programs are
brought in from either SYS1.LINKLIB, or a
user-specified partitioned data set.

The program area is subdivided as shown
in Figure 2. Job management routines,
processing programs, and routines brought
into storage via a LINK or XCTL macro-
instruction are loaded into the lowest
available portion of a partition. The

Introduction 7

Resident Portion of the Control Program

e
N

Non-Resident SVC Routines

{ SYS1.NUCLEUS I

SYS1,SVCLIB

1/O Error Handling Routines
Access
Method
Non-Resident Routines
Control Program
Routines or
Processing Program
1/O Supervisor
Transient
Area
(Highest
Priority
i
Sve Partition)
L ! Transient
Area
System Area v
/
P3 P2 P1 — PO /
/
Low Address — High Address
/
- /
— /
/
— /
/
_— - Partition /
— (Typical for each) /
— AL
— N/
Routines Access
Processing Brought Method
Program In via Available Routines Task
or LINK Main Brought Input/
Job and Storage In via Output
Management | XCTL LOAD Table
Routine Macro- Macro-
Instruction Instruction
Figure 2. Division of Main Storage for the Operating System

-

highest portion of a partition is occupied
by a table (the task input/output table)
built by a job management routine. This
table is wused by data management routines
and contains information about DD
statements. It remains in storage for the
whole job step. Access method routines and
routines brought into storage via a LOAD
macro-instruction are placed in the highest
available locations in a partition.

SYSTEM ENVIRONMENT

MACHINE TYPES

The control program with Option 2 is
designed for use with IBM System/360, Model
30 or higher. A two-partition system using
the 18K scheduler (where K is equal to 1024
bytes) will operate in a configuration
having a 64K byte main storage capacity; a
system having more partitions and/or using
the U4K scheduler requires additional main
storage.

MINIMUM REQUIRED CONFIGURATION

Selection of Option 2 does not affect
the minimum required configuration.

Introduction

9

THEORY OF OPERATION

PROGRAM FLOW

The stages
the Option 2 system of the
Operating System are:

of program execution under
IBM System/360

0. Loading the nucleus into main storage
(IPL).

1. Reading control statements.
2. 1Initiating a job step.

3. Executing a job step, and (optionally)
activating a lower-priority partition.

4. Terminating a job step, and (option-
ally) preparing for job scheduling in
a higher-priority partition.

The operating system is given control of
the computer when the control program
nucleus is loaded. Thereafter, jobs may be
processed without reloading the nucleus.

When the user introduces a job into the
input stream, the initial processing
required to prepare his job for execution
is performed by job management routines.
Control statements for a complete job are
read during stage 1.

Stage 2 is the processing required to
initiate the execution of a user's job
step. Stage 3 occurs when CPU control is
passed to that job step.

Up to this point, only one partition has

been active. During stage 3 the problem
program can cause another partition to
become active; stages 1, 2, and 3 then

proceed in that partition. This process
can be repeated in each partition until all
are active, with Jjob step execution pro-
ceeding concurrently in each partition.

The Control Program with Option 2 is
designed to operate with single-step,
unending jobs in all partitions except the
partition of lowest priority. In that
configuration, step and Jjob termination
normally occur only in the 1lowest-priority
partition. When a program enters stage 4,
job management routines perform termination
procedures for the step (and, when applica-

ble, for the job).

Upon completion of a job, control passes
back to stage 1. If further job step
control statements had been read during

stage 1, control passes to the initiation

of the next job step (stage 2).

The wuser can, through a system command
(SHIFT), reverse the process through which
successive partitions are made active.
When stage &4 is complete in a partition,
stage 1 will normally proceed in the same

10

partition; however, the user can cause the
partition from which the terminating parti-
tion was originally activated, rather than
the terminating partition itself, to be the

next partition in which stage 1 is to
proceed.
When termination is complete for all

jobs in the system and there are no further
jobs in the input job stream, the control
program places the CPU in the wait state.
As 1long as the nucleus remains intact in
main storage, the user can introduce new
jobs into the job stream without reloading
the nucleus.

Reading control statements and initiat-
ing a job step are performed by the
reader/interpreter and the initiator/ter-
minator routines, respectively. Descrip-
tions of these routines are given in the
publication IBM System/360 Operating Sys-
tem: Job Management, Program Logic Manual.

A job step is performed by a user-
written program (e.g., a payroll program),
or an IBM-supplied processing program
(e.g., linkage editor, COBOL).

Terminating a job step is performed by
the initiator/terminator and the super-
visor. Terminator functions peculiar to
the Option 2 system are discussed in the
"Job Management” section of this
publication. Descriptions of these rou-
tines applicable to either environment are
given in the publications IBM System/360
Operating System: Job Management, Program
Logic Manual, and IBM System/360 Operating
System: Fixed-Task Supervisor, Program

Logic Manual.

The routines through which successive
partitions are activated during problem
program execution and relinquish control
after termination are described in the "Job
Management"™ section of this publication.

Figure 3 describes the overall flow of
CPU control through the job processing
cycle. These paragraphs describe the pro-
cessing performed by various components of
the control program as it loads the
nucleus, reads control statements, ini-
tiates the job step, causes processing to
begin or end in successive partitions, and
terminates the job step. Control program
processing performed during the execution
of a job step, including control flow to
the control program, control flow to a
processing program, and input/output con-
trol, is unchanged wunder the Option 2
system. For a discussion of those topics,
refer to the publication IBM System/360
Operating System: Introduction to Control
Program Logic, Program Logic Manual.

(o o s e e, e S s e S S~ e — — t— — ——— — — —— — — — ———— S _— — {— — — — — — — —— — — — — r—— — — — {——" {— — — —— o o s 8, S S S e e e e St et S

IPL

Load
IPL
Program

Nucleus

L

NIP

Initialize
Nucleus

l

SUPERVISOR

Bring
Reader/Interpreter
and Part of
Communications
Task
into Current
Partition

COMMUNICATIONS
TASK

SET

Interpret
Commands

READER/INTERPRETER

Read and Interpret
Control Statements

Build Tables

%

SUPERVISOR

Bring
Initiator/
Terminator
into Partition

START READER
START WRITER

To load the nucleus, the operator speci-
fies the device on which the system resi-
dence volume is mounted, and presses the
load button on the console. This action
causes an IPL record to be read and to be
given CPU control. This record reads a
second IPL record which, in turn, reads the
rest of the IPL program into main storage.

The IPL program searches the volume
label to locate the volume table of con-
tents (VTOC) of the system residence vol-
ume. The volume table of contents is then
searched for the SYS1.NUCLEUS. The nucleus
is brought into the system area, and the

nucleus initjalization program (NIP) is
brought into the dynamic area. NIP
receives CPU control from the IPL program,

and initializes the nucleus. Nucleus ini-
tialization includes initializing the con-
trol blocks that establish the absolute
location and extent of each partition with-
in the processing program area; communi-
cation between the operator and the system
provides for the redefinition, if desired,
of the partitions to be used. After com-
pleting its processing, NIP causes the
reader/interpreter to be brought into the
highest-priority partition 1in the problem
program area. (NIP remains in main stor-
age, but is not re-entered. It may or may
not be overlayed as successive partitions

When the start reader (START RDR), start
writer (START WTR), and set date (SET)
commands are issued, the resulting inter-
ruption causes CPU control to be given to
the master command routine. After process-
ing the commands, this communication task
routine passes CPU control to the
reader/interpreter. The reader/interpreter
is described in the publication IBEM
System/360 Operating System: Job Manage-
ment, Program Logic Manual. Changes to the

communication task that, in the Option 2
system, replaces the master scheduler are
described below.

The reader/interpreter reads the control
statements from the input job stream.
Information from the JOB, EXEC, and DD
statements is used to control the execution
of job steps. This information is used to
construct a job control table (JCT) for the
job being read, a step control table (SCT)
for the job step being read, and a job file
control block (JFCB) and step input/output
table (SIOT) for each data set being used
or created by the job step. Information
from these tables and control blocks is
combined with information in the data con-
trol block (DCB) and data set control block
(DSCB) or label when a data set is opened
during step execution.

b s o s o s e — o — — — — — — — — —— — — — — ——— —— — — —— —{— —— — — —— — —— — ——— —— —— — —— — —— ——— S— — — —————————— oo, woms]

Figure 3.

Example of CPU Control Flow for a Job Processing Cycle (Sheet 1 of 4)

Theory of Operation

11

i
1
|
|
I
!
|
|
|
|
|
1
|
1
1
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
!
|
|
|
|
|
|
1
|
l
|
|
|
|
|
|
1
|
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|
!

INITIATOR/TERMINATOR

Locate Input Data Sets

Assign Input/Output Devices
to Data Sets

Allocate

Auxiliary

Storage Space

Write Tables and

Contro

| Blocks

SUPERVISOR

The reader/interpreter is itself re-
placed in the highest-priority partition by
the initiator/terminator routine.

After receiving CPU control, the
initiator/terminator prepares to initiate
the job step that has been read and inter-
preted. Using the data which the
reader/interpreter extracted from the DD
statements, the initiator/terminator:

Locates Input Data Sets: The initiator/
terminator determines the volume containing
a given input data set from the data
definition (DD) statement, or from a search
of the catalog. This search is performed
by a catalog management routine that is
entered from the initiator/terminator. A
description of the routines that maintain
and search the catalog is given in the
publication IBM System/360 Operating Sys-
tem: Catalog Management, Program Logic
Manuail.

Assigns I/0 Devices: A job step cannot be
initiated wunless there are enough I/0 de-
vices to fill its needs. The initiator/
terminator determines whether the required
devices are available, and makes specific
assignments. If necessary, messages to the
operator direct the mounting of volumes
(tapes, etc.).

Allocates Auxiliary Storage Space: Direct

Bring
Processing Program
into
Current Partition

access volume space required for output
data sets of a job step is acquired by the
initiator/terminator, which uses DADSM. A
description of the operation of DADSM is
given in the publication IBM System/360
Operating System: Direct Access Space Man-

agement, Program Logic Manual.

Allow
Highest-Priority Ready

Task to

Execute

PROCESSING PROGRAM

Issues First

WAITR

D

The JFCB, which contains information
concerning the data sets to be used during
step execution, is written on auxiliary
storage. This data is used when a data set
is opened, and when the job step is termi-
nated (e.g., disposition).

The initiator/terminator causes itself
to be replaced by the problem program to be

executed.

The processing program can be one of the
IBM-supplied processors (e.g., COBOL, link-
age editor), or a user-written program.
The processing program uses control program
services for operations such as loading
other programs and performing I/0 opera-
tions.

b e o e — — — — —— — —— ——— —— —— — — — —— —— — —— — — ——————— — —— — —— ——— — — — — — ———— ———— — — — — —————— — a—

Figure

12

3. Example of CPU Control Flow for a Job Processing Cycle (Sheet 2 of 4)

SCHEDULER CONTROLLER

Make Next-Lower=Priority
Partition Available
(Assign Reader/Interpreter)

SUPERVISOR

Is
Current
Task in a Wait
Condition

<
2

Dispatch
Highest-Priority Ready
Task

PROCESSING PROGRAM

Resume Processing
Until a Wait Condition
is Entered

SUPERVISOR

Task Ready
to Terminate

i

Set Up for Dump,
if Required

!

Load Initiator/Terminator

&

P o e e e e e e e e o o o s i i e e, . i i . e o o S e . . S . . . e e e, e . S B . o e e S, i, . s i . e e

Initiation of operations in another par-
tition begins when a WAITR macro-
instruction is issued in the processing
program. When a WAITR is encountered,
control passes to the scheduler controller,
which is resident in the nucleus. That
routine restructures the system job queue
in such a way that information related to
the partition from which the WAITR was
issued is saved, and a new area, to be used
in connection with the partition now to be
activated, is available to the readexr/
interpreter. Control then returns to the
supervisor.

After a WAITR has been processed, both
the partition in which the macro-
instruction was issued and the next-lower-
priority partition contain tasks that are
potentially dispatchable. (The communica-
tion task is always potentially
dispatchable, and is of higher priority
than any partition-related task.) When the
supervisor is re-entered, the task dis-
patcher dispatches the ready task of
highest priority; therefore, processing
continues in the partition from which the
WAITR was issued until a Wait condition is
entered in that partition. A Wait causes
the next-lower-priority-partition's task to
be dispatched. This causes the reader/
interpreter to be brought into the lower-
priority partition and to receive control.
The reader/interpreter proceeds as describ-
ed above, exactly as though the new job
were the first to have been read after IPL
or START; however, the reader/interpreter
is now working with a different portion of
the system job queue and in a different
segment of main storage.

When a processing program terminates,
the supervisor receives CPU control. The
supervisor uses the OPEN/CLOSE/EOV routines
to close any open data control blocks.
These routines are described in the
publication IBM System/360 Operating Sys-—
tem: Input/Output Support (OPEN/CLOSE/EOV),
Program Logic Manual.

Under abnormal termination conditions,
the supervisor may also provide special
termination procedures such as a storage
dump.

- — — — — ———— — — —— ————— —— — —— —— — — — — —— —— — — — ——— — —— — — — —— — — — T — ———— — —— —— — —— — — oo s awommen. wee]

Figure 3. Example of CPU Control Flow for a Job Processing Cycle (Sheet 3 of 4)

Theory of Operation

13

INITIATOR/TERMINATOR

l

Wait for Scheduler

|

User Accounting Routine

!

Dispose of Data Sets
Write Messages

Is SHIFT

Command
Outstanding

SCHEDULER CONTROLLER

Execute
SHIFT

Command

ot o o o i i e S i S i e S S S S . i S et e S s St i, S, St i e, S, i S, S o St S S St et St e S S e, s . et e, e,)

o e e s e

SUPERVISOR

Bring
Reader/Interpreter
into
Current Partition

9

The supervisor passes control to the
initiator/terminator, which is brought into
the partition in which termination is to
occur. The initiator/terminator determines
whether the scheduler is currently asso-
ciated with the partition; if not, the task
in the terminating partition must WAIT
until the scheduler has been re-associated
with the partition.

When the scheduler is again available,
the initiator/terminator performs the func-
tions required to terminate individual job
steps and complete jobs. It executes an
installation accounting routine if one if
provided.

The initiator/terminator releases the
I/0 devices, and disposes of data sets used
and/or created during the job step. (This
requires reading tables prepared during
initiation. Some of these tables are part
of the system job queue. It 1is for this
reason that termination cannot proceed
until the scheduler has again been asso-
ciated with the terminating partition --
that is, until the portion of the job queue
containing information for the terminating
partition has again become the apparent
"single"™ job queue for the system.)

If the control statements for the next
job step were read and interpreted, the
initiator/terminator initiates that step.
If the statements were not read, the
initiator/terminator determines whether a
shift operation is pending. (A shift oper-
ation is pending when a SHIFT command has
been entered by the operator or encountered
in the job stream and has not been fully
effected.) If no shift is outstanding, the
initiator/terminator is replaced in the
same partition with the reader/interpreter,
which starts. the read-initiate-execute-
terminate cycle for the next job. If a
shift is outstanding, the initiator trans-
fers control to the scheduler controller,
which reverses the previous restructuring
of the job queue so that the effective job
queue 1is associated with the next-higher-
priority partition. The scheduler control-
ler then causes the reader/interpreter to
be brought not into the partition that just
terminated, but into the next-higher-
priority partition; the
read-initiate-execute-terminate cycle then
begins in that higher-priority partition.

e o s e e i i S —————————— ——— —— ——— —— ——— ———— _— — —— —{— —— —— —— — — — — — ——— — — — — — — o— o o ot . . . e s, e

Figure 3.

14

Example of CPU Control Flow for a Job Processing Cycle (Sheet 4 of 4)

JOB MANAGEMENT

Job management (Chart 1) is the first
and 1last portion of the control program
that a job encounters. Its primary
function is to prepare job steps for execu-
tion and, when they have been executed, to
direct the disposition of data sets created
during execution. Prior to step execution,
job management:

e Reads control statements from the input
job stream.

e Places information contained in the
statements into a series of tables.
(1/0)

e Analyzes require-

ments.

input/output

e Assigns I/0 devices.
e Passes control to the job step.

Following
ment:

step execution, job manage-

e Releases main storage space occupied by
the tables.

e Frees I/0 devices assigned to the step.

e Disposes of data sets referred to or
created during execution.

Job management also performs all pro-
cessing required for communication between
the operator and the control program.
Major components of job management are the
job scheduler, which introduces each job
step to System/360, and the communication
task, which handles all operator-system
communication.

JOB SCHEDULER FUNCTIONS

The job scheduler includes three pro-
grams: the reader/interpreter, the
initiator/terminator and the scheduler
controller. The functions of the reader/
interpreter are unchanged from the sequen-
tial scheduling system; for further infor-
mation, refer to the publication IBM
System/360 Operating System: Job Manage-
ment, Program Logic Manual.

After all control statements for a job
have been processed, or when data is
encountered in the input job stream, the
reader/interpreter gives control to the
initiator/terminator. The initiator por-
tion of the initiator/terminator function
is unchanged from the sequential scheduling
system; for further information, refer to

the publication IBM System/360 Operating
System: Job Management, Program Logic Manu-
al.

When the job step has been executed,
control 1is again given to the initiator/
terminator which, when the scheduler is
assigned to the partition in which the job
step has executed, performs data set dispo-
sitions and releases I/O resources. The
shift count is interrogated, at job termi-
nation, to determine if the scheduler is to
be shifted into a higher priority parti-
tion.

COMMUNICATION TASK FUNCTIONS

The routines of the communication task
process the following types of communi-
cation between the operator and the system.

whether they are
or through

e Operator commands,
issued through the console
the input job stream.

e Write-to-operator (WTO) and write-to-
operator with reply (WTOR) macro-
instructions.

e Interruptions caused when the INTERRUPT
key is pressed.

JOB PROCESSING

Figure 4 shows the major components of
job management and illustrates the general
flow of control.

Control is passed to
whenever the supervisor
are no program request
request block queue. This can occur for
two reasons: either the initial program
loading (IPL) procedure has just been com—
pleted or a job step has just been execut-
ed.

job management
finds that there
blocks in the

Entry to Job Management Following Initial
Program Loading

Following IPL, certain actions must be
taken by the operator before job processing
can begin. Therefore, control passes to
the communication task and a message is
issued to the operator instructing him to
enter commands. These "initialization"
commands include a SET command, a start
writer (START WTR) command, and a start
reader (START RDR) command. When a START
command with a blank operand is issued,
control is passed to the reader/inter-
preter.

Theory of Operation 15

READER/ SCHEDULER
INTERPRETER CONTROL
Adeokk A% %k kAo kokkk FkkKAI Rk kKK KKKk
* *
* ENTRY * * ENTRY *
* *
e koo Aok ko ok okok ok koo ook ok ok ok ok ok k
- -
. .
- -
« FROM NIP « FROM SUPERVISOR
o (AFTER IPL) o (AFTER STEP EXECUTION)
. -
. X
X e¥ke
*****Bl********** *****BZ********** 33 *-
Ss -15 SCHEDULER*. YES
*INITIALIZAT!DN *Xo.o-----*!NITIALIZE MAIN* %o ASSIGN TO e*eeseccccccscccccnce
* COMMANDS ST * THIS PART!TION .
*o . .
***************** ***************** *e o¥% .
. * NO -
- . -
. - -
. - .
- - .
- - .
- - X
- Aok C 2%k dokok ko ok X Aekdkodkok C4 ok kkkok ok kokk
o * * HRERCTHHRHRXRRR * DO POST-STEP *
. * OPEN * * * * HOUSEKEEPINGs *
eesescecccccebeces e XkSYSTEM DEVICES * * WAIT * *EXECUTE USER'S *
* * * % ACCOUNTING *
* * ek o e e e o ok ok ok o kK * ROUT INE *
Aok ok okokokok % ok RN RN XN
- .
. .
- -
. -
. .
- X
- e¥e
- D4 *e
. .* *.
- NO
- *.LAST STEP OF .*....
- Jo ok
- *- ¥
. *eo ok
. * YES
- -
. -
- .
- -
- -
- o %a X
. E3 *eo *****EA**********
- -* *e DO POST-JOB *
- NO *o * HOUSEKEEPING, *
eXeooosen*.SHIFT PENDINGe*Xooeoeeee*EXECUTE USER'S *
. - - * ACCOUNTING *
. *eo ok * UT INE *
. *e ¥ ek ok ok ok ok ok ok ok ok kR
- * YES
. -
- -
o -
. .
. -
. X
. Fekok ok 3 3 dokok ok ok ok kok
. * *
- * SCHEDULER TO %
. ee¥ NEXT-HIGHER- * .
. * PRIORITY * -
- * PARTITION * -
- Fkdkokdokdkkkokkkkkkkk .
- .
- -
. -
- -
- .
- -
X .
R H K G2% K KA R kA K -
* READ AND * -
% PROCESS JOB * -
* CONTROL *Xeeoe -
* STATEMENTS * . .
* * . .
Aesdookodeok ke ok ok ok sk kokok ok . -
. Fdkk .
. * * -
. * G2 * .
- * * .
. *dkkk .
X .
o¥a .
e steofeofe ik H 1 ok e okook ook dkokok H2 *e .
* * o¥ *eo -
* REQUEST * YES % COMMAND *e -
* AND PROCESS ¥Xoooeeosoaks PENDING ok -
* COMMAN * *o ¥ -
* * *e ok .
Aotk ok kKb ok kokod ok ok *o o¥ .
. * NO -
. . .
. . -
- X

*****KS#**#******
ON ITR, *
*ASGN SCHEDULER * *
eee*TO NEXT—LOWER~ ¥*Xeeeocseoi PRDCESSING :
* *

e« * PRIORITY PTN

- * *
X dedkdekkok Aok kkkokkokkkEk
ok

*
*kokk

Figure 4. Job Management Logic

16

eXe

.

X
Aekdok ok J 4 dokkokdkokkkok
* INITIALIZE *
* TA (2}

* I/0 DEVICES *
* *
ok e ok ok ok ok ok ok k-

-

Xe o oo

****K4*********

PROGRAM
ok Aok ok ok ok ko ko

Entry to Job Management Following Step
Execution

Following step execution, control is
routed to the step termination routine of
the initiator/terminator. If the job had
been completed, control is also passed to
the Jjob termination routine of the
initiator/terminator. Both routines are
described under "Job and Step Termination."

Control Statement Processing

After completion of the processing that
immediately follows IPL, or after termina-
tion of a job or of a step containing data
in the input job stream, control is passed
to the reader/interpreter. The reader/
interpreter reads and processes control
statements until one of the following con-
ditions is encountered:

e A DD * or DD DATA statement.
e Another JOB statement.
e A null statement.

e An end-of-data set (EOF) on the system
input device.

Meanwhile, if the operator has pressed
the REQUEST key and has entered a request
(REQ) command during execution of the job
step or any of the above processing, the
communication task routines set a command-
pending indicator on during the ensuing
interruption. The indicator is now checked
and, if found to be on, control is passed
to the communication task, which causes a
message to be issued instructing the
operator to enter commands, and then pro-
cesses the commands.

Step Initiation

Control next passes to the
initiator/terminator, which examines I/0
device requirements, assigns (allocates)

I/0 devices to the job step, issues mount-
ing instructions, and verifies that volumes
have been mounted on the correct units.
Finally, the initiator/terminator passes
control to the job step.

Job and Step Termination

When processing program execution is
completed, the supervisor, finding no pro-
gram request blocks in its request block
queue, passes control to the job management
routines. Entry is first made to the step
termination routine.

Step termination may occur only when the
scheduler is attached to the terminating
partition. If termination cannot occur,

the pre-termination routine issues a
'PARTITION n WAITING TO TERMINATE' message
and waits until the partition gains control
of the scheduler. The step termination
routine performs end-of-step housekeeping
and passes control to the user's accounting
routine, if one was provided. When the
accounting routine has been executed, the
supervisor returns control to the step
termination routine. If the job termina-
tion indicator is on, control is then
passed to the job termination routine; or
to the reader/interpreter if the indicator
is off and no more steps are ready for
initiation; or to the step initiation rou-
tine.

The Jjob termination routine performs
end-of-job housekeeping. It exits to the
user's accounting routine, if one was pro-
vided. After the accounting routine is
executed, the supervisor returns control to
the job termination routine which decre-
ments the partition shift count by one if
neither the partition number nor shift
count 1is already zero. Control is then
passed to the reader/interpreter.

OPERATOR-SYSTEM COMMUNICATION PROCESSING

The routines that handle operator-system
communication are contained in the communi-
cation task. Communication may take one of
two forms: commands, which allow the opera-
tor to change the status of the system or
of a Jjob or job step; and the WTO or WTOR
macro-instructions, which allow processing
programs oOr system components to issue
messages to the operator. The communi-
cation task routines also switch functions
from the primary console device to an
alternate console device when the INTERRUPT
key is pressed.

Command Processing

Commands may be issued by the operator
in two ways: he may insert command state-
ments between job steps in the input job
stream, or he may issue commands through
the console input device. Commands encoun-
tered in the input job stream cause control
to be passed to the communication task,
which processes them. Before entering com-
mands through the console, however, the
operator must press the REQUEST key to
cause an attention interruption. Figure 5
shows the actions taken after the key is
pressed.

WTO/WTOR Macro-Instruction Processing

WTO or WTOR macro-
issued, a supervisor
(See Figure 6.)

Whenever the
instruction is
interruption occurs.

Theory of Operation 17

External Interruption Processing

When the operator presses the INTERRUPT
key, an external interruption occurs. The
communication task then switches functions
from the primary to the alternate console
I/0 device. (See Figure 7.)

ENQ/DEQ PROCESSING

The enqueue and dequeue service rou-
tines, through which the ENQ and DEQ macro-

instructions are implemented, provide for
controlled, sequential access to serially
reusable resources such as data sets,

programs, or work areas in main storage.
The routines service both problem program
ENQ/DEQ requests, and requests from the
system's job management and fixed-task
supervision routines. The primary function
of the enqueue and dequeue service routines
is to test for the availability to the
requesting task of a serially reusable
resource, to enqueue the request if neces-
sary, and to dequeue the request when use
of the resource is complete.

In addition, the service routines permit
system routines to set a system-must-
complete flag before performing a critical
operation, then to remove' (reset) the flag
when the operation has been successfully
completed. This feature is available only
to system routines; use of the system—must-
complete feature in a problem program
causes abnormal termination.

ENQ/DEQ Control Blocks

Resources are identified by the request-
- er through a major name, specifying a set
of resources, and a minor name, specifying
a particular resource within that set. An

Supervisor

Operator Presses

Identifies
Type of
Interruption

REQUEST Key

Communication Task

Requests
Asynchronous
Exit
Processing

Dispatches
the
Request

Issues Message
Requesting a
Command

Wait for
Operator Action

Returns Control
to point of
Interruption

Operator Enters Processes

Command

Command

Figure 5. Attention Interruption Process-

ing Flow

18

N

Supervisor

Program Issues

WTO/WTOR Macro-Instruction

Identifies
Type of
Interruption

Communication Task

Writes Message
(Generates Returns
Reply Queue Entry Control to
if WTOR) Point of
Interruption
A. Message Processing
Supervisor
Operator Presses |
dentifies
REQUEST Key Type of
Interruption
Communication Task
Reads
Repl
Py Returns
Control to
Point of
Interruption
Processes
Reply

B. Reply Processing

WTO/WTOR Macro-Instruction
Processing Flow

Figure 6.

enqueued request has associated with it
three control blocks: a major queue control
block (QCB), a minor QCB, and a queue

element. (See the program listing for the
structure and contents of these control
blocks.)

The major QCB represents the set of
resources specified by the major name pa-
rameter of the ENQ request. All major QCBs
existing in the system at a given time are
linked together; the head of the major QCB
chain is a control field (IEAQQCBO) within
the enqueue service routine.

Queued on each major QCB are the minor
QCBs corresponding to the minor names of
the specific resources for which requests
have been issued. Queued on each minor QCB
are gqueue elements representing the tasks
under which the outstanding requests were
issued.

Supervisor

Operator Presses
INTERRUPT Key

Identifies Type of
Interruption, Posts
to Communication
Task ECB

Communication Task

Switches between
Primary and
Alternate
Console

Returns Control
to point of
Interruption

External
ing Flow

Figure 7. Interruption Process-

Note: TIf the STEP operand is included in
an ENQ or DEQ macro-instruction, the pro-
tection key for the job step is treated as
part of the minor name when the minor QCB
queue is searched. If two requests specify
the same major and minor name and if either
request or both includes the STEP operand,
both requests will be represented by the
same major QCB but different minor QCBs.
However, because the Option 2 system does
not include the ATTACH and DETACH macro-
instructions, the STEP operand has no
effect.

If the SYSTEM operand is included in an
ENQ or DEQ macro-instruction, the minor
name is used as specified. Two requests
specifying the same major and minor name
and SYSTEM will be represented by the same
major QCB and the same minor QCB.

All ENQ/DEQ control blocks are dynami-
cally created and deleted, as ENQ and DEQ
requests are processed and as other system
functions, such as abnormal termination,
are performed. The physical 1location of
the major and minor QCBs, with respect to
the partition in which the requesting task
was operating, varies depending upon the
circumstances of their creation and dele-
tion. When an ENQ request is serviced, a
GETMAIN is issued to obtain main storage
for a major QCB, a minor QCB, and a queue
element. The queue element 1is always
developed and 1linked to the appropriate
control block; queue elements remain in the
requesting partition from their creation
(on ENQ) until their deletion (normally on
DEQ) . The main storage obtained for the
QCBs may or may not be used at the time
that the queue element is created. Major
and minor QCBs are copied from partition to
partition as required by the sequence in
which queue elements are dequeued. If the
required major and/or minor QCB already
exist in another partition, the correspond-
ing area(s) in the requesting partition is

reserved for use if it becomes necessary to
copy the QCB(s) into the requesting parti-
tion.

For a summary of typical control block
patterns during ENQ/DEQ, see Figure 8.

Sequence of Execution for Enqueued Tasks

The queue elements enqueued upon any one

minorxr QCB represent tasks that have
requested access to the corresponding
resource. When control within a task pass-

es to the enqueue service routine, the task
may enter an effective wait until the
request 1is serviced; that is, control is
not returned from the enqueue service rou-
tine to the processing program until the
resource has actually been made available
to the task. The time at which a task
proceeds (through re-entry to the calling
routine) 1is determined by the relative
position of shared and exclusive requests
on the queue, and by the status of each, as
described in the following paragraphs.

A queue element may be thought of as
being ready or not-ready, where the condi-
tion ascribed to the queue element is
actually the condition of the associated
task. Then an ENQ specifying several
resources 1is issued, the wait count in the
SVC request block (SVRB) associated with
the request is set to the number of resour-
ces requested by, but unavailable to, the
task. Whenever the wait count in an SVRB
is non-zero, the routine to which the SVRB
points cannot proceed, although the the
task with which the SVRB is associated may
not be waiting. This condition is summar-
ized by describing the queue element as
not-ready. Conversely, a queue element may
be described as "ready" when the wait count
in the associated SVRB is zero.

If any queue element preceding the first
exclusive request on the queue for a
resource is shared and ready, the task
associated with that queue element pro-
ceeds. Furthermore, the tasks represented
by any subsequent shared and ready requests
on the queue that precede the first exclu-
sive request proceed concurrently. The
first exclusive request, whether ready or
not-ready, and all subsequent requests,
whether exclusive or shared, are not ser-
viced at this time.

If the queue element at the head of the
queue is exclusive and ready, the task
associated with that queue element pro-
ceeds. No other task represented on that
queue proceeds until the exclusive request
has been dequeued.

Theory of Operation 19

PARTITION A PARTITION B PARTITION C
Méé(B)R An ENQ is issued in partition A. None of the
required control blocks exist -~ therefore, all
MINOR three are created in partition A,
QCB
QEL
0 An ENQ is issued in partition B. A QCB
exists. for the specified major name, but not
MAJOR for the minor name. Major QCB space is
Qcs reserved in partition B. The minor QCB is
MINOR < . created and added to the chain of minor QCBs
QCB for the existing major QCB. The new queue
QEL element is created.
QCB
QEL
MAJOR Two ENQss are issued in partition C. The
QCB < > MAJOR first request names a new set of resources; a
QcCB full set of control blocks is created and the
MINOR o MINOR major QCB is linked to the existing major
QCB N QCB QCB.
QEL MINOR QEL
QCB
QEL < The second request is for the same resource
ENQJ upon in partition B. Since both a
major and a minor QCB exist, the correspon-
ding space in partition C is reserved; a queue
element is created and added to the minor
QCB's queue element chain.
-————
| MAJOR i MAJOR < N MAJOR .
- QCB - QCB N g QCB A DEQ is issued in partition A, Because
— = there is a second minor QCB (in partition B)
MIQhégR —————3 Mgégk MCI;;:K;R chained to the major QCB, the major QCB
- is copied into the reserved space in partition
— 9__“-_ 1 QEL B. Since there are no further QELs enqueued
on the minor QCB in partition A, it need not
be copied. The QEL is no longer required.
(QELs are never copied.) After the major
QCB has been copied, the main storage used
for all three control blocks is freed.
| |
| MAJOR A DEQ is issued in partition B. There are
r QcB no further minor QCBs in the major QCBs
| MINOR chain, but there is another QEL linked to
. QcB __ the minor QCB. Therefore, both the major
L QEL and the minor QCBs are copied into the
- reserved space associated with the remain-
ing QEL. The control blocks in the DEQing
partition are then deleted via FREEMAIN,
Key: reserved Q head of major —> |ink pointer
QCB queve (addr
in IEAQQCBO) copy operation
Figure 8. ENQ/DEQ Control Block Creation and Deletion

20

If the queue element at the head of the
queue is exclusive and not-ready, no tasks
represented on the queue can proceed.

LOAD MODULES

Most job management routines exist as a
series of load modules that reside on a
permanently resident volume. The only
exceptions are the posting routines of the
communicatidn task, which reside in the
nucleus. The "Load Modules and Assembly
Modules"™ section contains a 1list of the
routines that make up each job management
load module.

Theory of Operation

21

PROGRAM ORGANIZATION

JOB SCHEDULER MODIFICATIONS

PARTITION-RELATED SCHEDULER CONTROL BLOCK

The partition-related scheduler control
block (PRSCB) is the only new control block
introduced into the system by Option 2 of
the control program. One PRSCB is created
for each partition at nucleus initializa-

tion. The PRSCBs reside in the nucleus, as
module IEFSD032, and are defined by a
DSECT, module IEFSD033. PRSCBs are con-

tiguous and are arranged by priority order,
beginning with highest priority (Partition
0). A pointer to the PRSCB for a given
partition is contained in the three bytes
immediately preceding the boundary box for
that partition. The content and structure
of the PRSCB are described below.

] i
| SD33ECB |
| |
L 4
r a
| |
| SD33CTTR |
| |
L J
v |
| |
| SD33STTR |
| |
{ 4
L 3] T 1
| | | |
] SD33QSTT | SD33LNGH| SD33IND |
| | | |
L L 4 4
Field Bytes Contents

SD33ECB 4 Scheduler-controlling event
control block. This ECB is
posted complete whenever the
scheduler is assigned to the
partition through a WAITR
issued in the next-higher-
priority partition. The
wait flag in this ECB is
turned on when the scheduler
is relinquished, either
through a WAITR in this par-
tition or through processing
of a SHIFT command.

SD33CTTR u Current TTR save area. When
a partition relinquishes
scheduler control through a
WAITR, the scheduler down-
shift routine stores in this
field (in TTR form) the next
location in the queue-
manager's extent that would
have been used by the

22

Field Bytes Contents

queue-manager if further
records were to have been
written for the relinquish-

ing partition. The system
job queue variable area
applicable to the next-
lower-priority partition

begins on the next full
track following this loca-
tion.

Fixed-area table save area.
When a partition relinquish-
es scheduler control through
a WAITR, the relinquishing
partition's JCT, SCT, and
LCT are moved from the fixed
area to this save area, fol-
lowing the variable informa-
tion for the relinquishing
partition.

SD33STTR 4

SD33QSTT 2 Starting track location save
area. This area contains
(in TT form) the location of
the track on which the vari-
able area for the partition

begins.

Offset to PRSCB for active
partition. This byte is
meaningful only in the PRSCB
for Partition 0. Whenever a
scheduler upshift or down-

SD33LNGH 1

shift is effected, the
length of one PRSCB (16
bytes) is added to or sub-

tracted from this field in
the Partition 0 PRSCB. This
value, added to the address
of the PRSCB Partition 0,
yields the address of the
PRSCB for the partition to

which the scheduler is cur-
rently assigned.
SD33IND 1 Partition identification;

contains 00 for Partitiomn O,
01 for Partition 1, etc.

TERMINATION

The termination function of the
initiator/terminator (Chart 12) performs
post-step and post-job housekeeping. It is

normally given control following step exe-
cution, but is also given control when a
job management routine encounters an
irrecoverable error while processing a job
step. Termination routines:

e Release space occupied by tables.
e Free I/0 devices.

e Dispose of data sets referred to or

created during execution.
Major components of termination are:

e The pre-termination routine, which de-

termines if the scheduler is currently
associated with the terminating parti-
tion.

e The step termination routine, which

performs post-step housekeeping func-
tions.

e The job termination routine, which per-
forms post-job housekeeping functions.

e The shift count interrogator, which
determines whether a shift is to be
performed.

The disposition and unallocation subrou-
tine is used by both the step and job
termination routines. Basically, this sub-
routine handles disposition of data sets
and frees devices allocated to a step. The
disposition and unallocation subroutine is
described in the publication IBM System/360
Operating System: Job Management, Program

Logic Manual.

PRE-TERMINATION ROUTINE: The pre-
termination routine (Chart 13) is new for
the Option 2 system. The routine is
entered from the supervisor when the prob-
lem program has issued its highest-level
return, causing the supervisor's ABEND rou-
tine to be entered; the second load module
of the ABEND routine exits to the job
management GO module.

Working through the communication vector
table, the pre-termination routine obtains
the address of the TCB for the current task
(the task that is attempting to terminate),
obtains from the TCB a pointer to the
related boundary box, and obtains from the
boundary box the address of the partition-
related scheduler control block (PRSCB) for
the partition in which the terminating task
was operating (see Figure 9). The first
fullword of the PRSCB is the scheduler-
controlling ECB for that partition.

The ECB is posted complete if the
terminating partition has never issued a
first WAITR macro-instruction, and has
therefore never relinquished control of the
scheduler, or if the partition has relin-
quished control but has again been assigned
scheduler control through SHIFT command
processing. If the wait flag is on in the
ECB, the partition has relinquished schedu-

ler control through a WAITR and the schedu-
ler is currently oriented toward some par-
tition of 1lower priority; termination can
proceed only after the scheduler has been
re-associated with the terminating parti-
tion.

If the wait flag is on in the
scheduler-controlling ECB for the
terminating partition, the pre-termination
routine issues a 'PARTITION n WAITING TO
TERMINATE' message and waits on the ECB.

(The ECB 1is posted complete when a SHIFT
command causes the scheduler upshift rou-
tine to pass control of the scheduler from
the next-lower-priority partition to this

partition.) If the complete flag is on,
the routine bypasses the message, issues a
WAIT on the ECB to decrement the wait
count, and continues processing.

When the wait for scheduler control is
satisfied, the pre-termination routine
examines the completion code in the ECB. A
completion code of 4 indicates that schedu-
ler control was relinquished by, and
returned to, the terminating partition.
Control was originally relinquished through
a WAITR macro-instruction; when the WAITR
was processed, the first-time WAITR switch
for this partition was turned off. If this
is the case, the pre-termination routine
turns the switch back on, in preparation
for the first WAITR macro-instruction in
the next job (if any) to be scheduled into
the terminating partition, and resets the
completion code in the ECB to zeros.

If the completion code is not 4, the

terminating partition has never relin-
quished control and its first-time WAITR
switch 1is, therefore, still on. In this

case, resetting the switch is bypassed.

the
step

When these actions are complete,
pre-termination routine enters the
termination routine through a branch.

STEP TERMINATION ROUTINE: The step termi-
nation routine performs its functions when
a step has been terminated either normally
due to successful completion of execution
or abnormally due to an error condition.
It uses five major routines:

e Step termination control routine.

e Step termination data set driver rou-
tine. ‘

e Job statement condition code routine.

e Disposition and unallocation subrou-
tine.

e User's accounting routine (if included
in the configuration).

Program Organization 23

B BOX

QUEUE-
MANAGER'S
EXTENT

Fixed
Area

Partition-
Related
Area 0

Figure 9.

24

Control Block Relationships

Partition-
Related
Area 1

COMMUNI-
CATIONS
(Master
Scheduler)
TCB
B BOX
PARTITION
0
TCB
PARTITION
0
PRSCB
PARTITION
1
PRSCB
B BOX
PARTITION
2
PARTITION PRSCB
1
TCB
PARTITION
3
PRSCB
B BOX
PARTITION
2
TCB
B BOX
PARTITION
3
TCB

Partition-
Related
Area 2

Partition=
Related
Area 3

Remainder

(Unused)

S

Upon successful execution of a step or
abnormal termination of execution, control
is passed from the supervisor to the step
termination control routine. In addition,
when a job management routine encounters an
irrecoverable error, it immediately passes
control to the step termination control
routine.

First, the initiator/terminator task

input/output table (TIOT) and the 1linkage
control table (LCT) are read into main
storage. Next, the cancel ECB is set to
zero in the selected job queue. The job
control table (JCT) and the step control

table (SCT) are then read into main storage
(if they are not in main storage at the
time), and a step status code is inserted
into the SCT.

The step data set driver routine is then
entered. It reads the step input/output
table (SIOT) for each data set into main
storage and branches to the disposition and
unallocation subroutine. The loop through
the data set driver routine and the dispo-
sition and unallocation subroutine is then
repeated for each SIOT.

When all data sets have been processed
by the disposition and unallocation subrou-
tine, the updated SCT is returned to auxil-
iary storage. Control is then passed to
the job statement condition code routine,
unless it ~is known that there are no
further steps for the Jjob (the readers

interpreter had encountered a JOB or null
statement). In the 1latter case the Jjob
statement condition code routine is
bypassed.

The job statement condition code routine
processes condition codes specified in the
JOB statement.

If, upon entry into the job statement
condition code routine, it is found that
there were no condition codes specified in
the JOB statement, control is returned to
the step termination routine. Each condi-
tion code in the JCT for the job is in turn
compared with the step completion c¢ode of
the previous step, which appears in its
SCT. Up to eight conditions are checked by
this routine for each step. Any additional
condition codes are ignored. If any of the
condition operators are satisfied by the
codes, the job-failed indicator in the JCT
is updated to indicate that the job failed,
the message subroutine is used to issue a
message to the programmer, and control is
returned to the step termination routine.

Upon return from the job statement con-
dition code routine, or if it had been
bypassed, the step termination routine
exits to the user's accounting routine, if
one is present. On return from the

accounting routine, or if there was none,
the step termination routine passes control
to:

if the
last

e The job termination routine,
current step is known to be the
step of the job.

e The initiator/terminator system control
routine, if additional steps have been
interpreted and are ready to be ini-
tiated.

e The reader/interpreter control routine,
which resumes processing the input job
stream.

JOB TERMINATION ROUTINE: The job termina-
tion routine (Chart 15) performs its func-
tions when an entire job has been executed
and step termination for its last step has
been completed. It consists of four major
routines:

e Job termination control routine.
e Release job queue routine.

e Disposition and unallocation subrou-
tine.

e User's accounting routine (if included

in the configuration).

Control is passed to the job termination
control routine from the step termination
routine.

The job termination control routine de-
termines if a passed data set queue exists
and, if so, reads each block into main
storage and tests for unreceived data sets.
(An unreceived data set is a passed data
set to which no reference is made after
PASS 1is specified.) When an unreceived
data set is found, entry 1is made +to the
disposition and unallocation subroutine.
When all unreceived data sets have been
processed, or if no passed data set queue
exists, the job termination control routine
passes control to the accounting routine,
if there is one.

When the accounting routine returns, or
if there 1is no accounting routine, the
completed job's control tables are removed
from the system by the release job queue
routine. This routine releases the auxil-
jary storage space occupied by all control
tables for the job. If the job notifica-
tion switch is on, the message

IEF402I jobname ENDED
is written on the console device. Control

is then passed to the shift count interro-
gation routine.

Program Organization 25

SHIFT COUNT INTERROGATION ROUTINE: For the
Option 2 system, the shift count interroga-
tor (Chart 16) is added as the final step
of the Jjob termination routine. If the
scheduler is not already in partition 0 and
the shift count is not zero, the count is
decremented by one and control is passed to
the scheduler upshift routine. Otherwise
the shift count is zeroed out and control
is passed to the reader/interpreter control
routine.

SCHEDULER CONTROLLER

Acting in conjunction with the
reader/interpreter and the initiator/ter-
minator, the scheduler controller is the
third element of the job scheduler. The
function of the controller is to adjust the
system job queue and monitor the operation
of the reader/interpreter and initiator/
terminator as required for multi-partition
processing.

The system job queue is a data set
containing control information produced by
the reader/interpreter and used throughout
job scheduling. The direct access area on
which the data set resides is known as the
queue-manager extent (see Figure 10). This
extent is.defined at system generation time
and is initialized at nucleus initializa-
tion.

During initial reader/interpreter opera-
tions -- that is, up until the +time when
the first Jjob in the input stream begins
execution and issues a WAITR -- the con-
tents of the queue-manager extent is organ-
ized as for the sequential scheduled sys-
tem. The extent includes a fixed area
(sometimes referred +to as the "pre-empted
track area"™) immediately followed by a
variable area. Within the fixed area are,
among other control fields, three key con-
trol tables: a 1link control table (LCT), a
job control table (JCT), and a step control
table (SCT). The variable area contains
additional control fields and tables.
(Each record in the variable area is fixed
at 176 bytes; however, the number of
records in the area can vary.)

Major scheduler control components are:

e The downshift routine, which reinitial-
izes the scheduler for operation in the
next-lower-priority partition.

e The upshift routine, which is entered
when the scheduler is to be shifted to
the next-higher-priority partition.

SCHEDULER DOWNSHIFT ROUTINE: The scheduler
downshift routine (Chart 18) is entered as
a result of WAITR issuance in the next-
higher-priority partition. This routine

26

scheduler for operation
partition,

reinitializes the
in the next-lower-priority
issues the message

PARTITION n STARTED

and exits to the reader/interpreter. The
following paragraphs describe how prepara-
tion for scheduling in the second partition
is performed. (Throughout the following
discussion, ‘'Partition A' refers to the
partition in which the WAITR was issued and
which is relinquishing the scheduler.
'Partition B' refers to the next-lower-
priority partition -- the partition to
which the scheduler is being assigned.)

When the scheduler downshift routine is
entered, the PRSCB for Partition B is
cleared to zeroes, except for the complete
flag in the scheduler-controlling ECB,
which was just set on by the WAITR routine,
and the partition identification byte which
remains constant. The routine then gets
main storage and reads in the LCT, JCT, and
SCT from the queue-manager's extent on
direct access. New job, 1link, and step
control tables are constructed and read
back into the fixed area; the tables that
were read in from the fixed area are then
written into the variable area associated
with Partition A.

The variable area associated with
Partition A now contains the scheduler
information in the same state as when the
scheduler was operating in that partition.
The control information in the standard
portion of the variable area is applicable
only to Partition A and will not be affect-
ed by operation of the scheduler in another
partition. The control information in

those portions of the fixed area that are
always referred to by the scheduler (the
ICT, SCT, and JCT), regardless of what
partition it is operating in, has been

saved and the fixed area re-initialized for
further use.

When this operation is complete, the
pointers in the PRSCB for Partition A
indicate (in TTR form) the location of:
SD33QSTT The beginning of Partition A's
variable area.

SD33STTR The beginning of the LCT/SCT/JCT
save area within that variable
area.

The next available TTR on the
queue-manager's extent; i.e., the
location beyond which the vari-
able area for Partition B, if one
is required, is to be built.

SD33CTTR

Control is
interpreter.

then passed to the reader-

QUEUE-MANAGER'S EXTENT

Fixed Area Variable Area
(Pre~Empted Track Area) (Up to four partitioned-related areas)
e / \\ \
7 \
// / \ \
\
/ \ \
-, / \ \
7 \
’ 7 / \ \
- \
7 / N \
/// / \\ \
7 / \\ \
\
// / \ \
. / \ \
NWRT | JFCBI | JFCB2 | JFCB3 | JFCB4 | JFCBS5 | JFCB6 | LCT | IWA | JFCB7 | TIOT | JCT | scT \
* * * \
The fixed area (described by / '
DSECT IEFSDOOS) is used for \
scheduling in any partition. / \
¥ These tables are used for scheduling the active
/ partition, and are saved in the variable area \
/ . associated with the active partition when sched- \
/ uler control is relinquished. \
/ PARTITION 0 PARTITION 1 \
(First Variable Area) (Second Variable Area) \
/ A A
4 N A
JCT SICTs Problem
SMBs JFCBs Program
SCTs VOLUME Tables TIOoT LCT SCT Jcr
ACTs DSNAME Tables
‘ Y S
~
- TT saved in TTR saved in - TTR saved in
SD33QSTT SD33STTR SD33CTTR
Control data used for sched- Area where fixed area
uling when partition has tables are stored when
scheduler control control is relinquished

Figure 10. Queue-manager's Extent Layout

SCHEDULER UPSHIFT ROUTINE: The scheduler reader/interpreter. This main storage is
upshift routine (Chart 17) is entered from freed, and a GETMAIN is issued to obtain
the shift count interrogator when job the main storage required by the pointer
termination has been completed in a parti- restore routine. Into this main storage is
tion (Partition B, for purposes of read the ILCT, SCT, and JCT associated with
discussion) and the scheduler is to be Partition A.
shifted to the next-higher-priority parti-
tion (Partition A) in response to a non- After reading the required control
zero shift count. tables into main storage, the routine
writes them into the queue-manager's fixed
When the scheduler upshift routine is area and resets the queue-manager's ‘active
entered, the 1last of the scheduler's area' pointer (SCATALLY) to the beginning
termination routines has already issued a of Partition A's variable area. The con-
GETMAIN for main storage to be used by the trol information available to the queue

Program Organization 27

manager 1is now in exactly the same status
as it was when scheduler control was ini-
tially relinquished.

With the scheduler switch complete, the
routine posts the scheduler-controlling ECB
for Partition A and issues a wait on the
ECB for Partition B. This wait is satis-
fied if a subsequent job scheduled into
Partition A issues a WAITR; if the wait is
satisfied, the scheduler downshift routine
is brought into Partition B and executed.

COMMUNICATION TASK

The communication task (Chart 02) pro-
cesses all operator commands and messages
directed to the operator through use of the
WTO and WTOR macro-instructions. It also
performs console switching when the secon-
dary console is to be used in place of the
primary console.

The eight major routines of the communi-
cation task are:

Console interrupt routine, which noti-
fies the communication task wait routine
that a console read has been requested.

Communication task wait routine, which
waits for all WTO/WTOR requests and
console interrupts and calls the com-
munication task router routine.

Communication task router routine, which
determines the type of request or inter-
rupt that occurred and passes control to
the appropriate processing routine.

Console device processor routine, which
performs console read and write opera-
tions and error checking.

Master command processor routine, which
processes all commands read from the
console input device except SET, START
RDR, and START WTR.

Master command routine, which analyzes
command verbs dand routes control to
appropriate command execution routines.

Write-to-operator routine, which manages
WTO buffers and requests console writes
via the communication task wait routine.

External interrupt routine, which
switches to the alternate console device
when an external interruption occurs.

COMMUNICATION TASK CONTROL FLOW

Commands are issued through either the
console I/0 device or the input reader (see

28

Figure 11). Before entering commands
through the console I/0 device, the opera-
tor must cause an I/0 interruption. When
he does, control is given to the supervisor
which recognizes the interruption and pass-
es control to the I/0 supervisor. The I/0
supervisor determines that the interruption
is an attention signal and passes control
to the master scheduler console interrupt
routine.

The console interrupt routine resides in
the nucleus. It posts the attention ECB in
the unit control module (UCM) and sets the

attention flag in the UCM list entry cor-
responding to the device from which the
interrupt came. Posting of the attention

ECB causes the communication task wait
routine to be dispatched.

The communication task wait routine
waits on all communication ECBs associated
with WTO/WTOR. The wait module issues a
maltiple wait macro-instruction on a 1list
of event control blocks contained in the
UCM. When one of the event control blocks
is posted, as by attention or external
interrupts, the wait is satisfied and the
communication task thus becomes ready.
When it becomes the active task, it issues
the SVC 72. This SVC includes the console
communication service routines and the
router.

Because the communication task serves a
number of purposes, the first segment of
SVC 72 is a routine that distinguishes
among these purposes and establishes the
order of response. This routine is called
the router. The primary order of response
is: external interruption, I/0 completion,
attention, and WTO(R).

When a posted ECB is found by the
router, the router XCTLs to the specified
processor module.

The console- device processor routines
perform reading and writing by using the
EXCP macro-instruction. The processor rou-

tines consist of a routine to service
external interruption and three device-
oriented routines: 1052 operator console
routine, card reader routine, and printer
routine. With each of the three console

I/0 processor routines 1is associated an
OPEN/CLOSE support routine, which provides
Data Management and I/0 Supervisor control
blocks.

The specified processor routine reads
the input message into a buffer area and
calls the master command processor routine
via an SVC.

Supervisor

Attention
Interruption

1/0 N

Supervisor [I R

I Reader/Interpreter
| Control Routine

Attention]

Handler [L

o

. . l_. i 1 — —
Communication -— — Master
Task _ c d Routi
Wait Routine — 1 | ommand Routine |
- 4 - \— —] —I

Program Fetch

Commands

Nucleus Transient . SET
Area START RDR
START WTR

Master
Command
Processor
Routine

|
l
|
|
|
|
Fault Subroutine l— _’

(Message Processor)

S

Commands

CANCEL
DISPLAY
MOUNT
REPLY

REQ

SHIFT

START (blank)
STOP
UNLOAD
VARY

Figure 11. Communication Task Control Flow

Program Organization 29

The master
analyzes the

command processor routine
command for validity. Ten
commands (REQ, START (blank), CANCEL,
DISPLAY, MOUNT, STOP, UNLOAD, VARY, SHIFT
and REPLY) are always accepted and process-
ed. All other commands are ignored
(control is returned to the supervisor) if
issued at any time other than in response
to a message issued by the master command
routine. If the command is acceptable, it
is moved from the buffer into which it was
read to a 1local buffer, and control is
passed to the master command routine.

The master command routine analyzes com-

mands and routes control to appropriate
command execution routines. If a command
is issued through the input job stream,

control is passed directly to the master
command routine by the reader/interpreter.
When all commands have been entered and
processed, control returns to the
reader/interpreter.

The write-to-operator routine moves the
text from the requesting program's area
into a buffer area within the nucleus and
posts the communication ECB for write-to-
operator. If the request was a WTOR, a
message ID is generated and a reply dqueue
entry 1is created to allow handling of the
reply by the operator. :

The external interrupt routine assigns
the functions performed by the primary
console device to the alternate console
device. When the operator presses the
INTERRUPT key on the console, an external
interruption occurs and control is given to
the supervisor, which identifies the
interruption and passes control to the
external interrupt routine. The external
interrupt routine then switches consoles
and returns control to the supervisor.
Console functions may later be reassigned
to the primary console device if the opera-
tor causes another external interrupt.

CONSOLE INTERRUPT ROUTINE

The console attention interrupt routine
(Chart O4) POSTs the communication task
attention ECB to request reading of the
console. The routine is logically part of
IOS. It operates in privileged mode, I/0
interrupt disabled, without destroying the
registers, and without macro access to
supervisor services. Using the pointer to
the UCB found in register 7, the UCB
address is matched to a UCM entry. The
attention flag for the entry is turned on.
A branch entry to POST pointing at the
attention ECB in the UCM, is then taken.
Register 14 is used to return to IOS.

30

COMMUNICATION TASK WAIT ROUTINE

The communication task wait routine
(Chart 07) issues a WAIT to the list of ECB
addresses contained in the Event Indication
List (EIL). The communication task is thus
able to respond to a variety of events
since the POSTing of any one ECB satisfies
the wait. The POST issued in the console
attention interrupt routine satisfies the
wait, and results in the placement of the
TCB on the ready queue. When next dis-
patched, the wait routine issues an SVC 72
which results in: (1) the creation of an
SVRB; and (2) the fetching of the first
segment of the console processor routines
into the system transient area.

COMMUNICATION TASK ROUTER

The router (Chart 08), IEECVCTR, is the
first segment of SVC 72 brought into the
transient area. Since the communication
task serves a number of purposes, and since
service requests may be simultaneously
pending, the router establishes the order
of response. The primary order of treat-
ment is extermnal interrupt, I/0 completion,
attention (console interrupt), and WTO(R).
Multiple attentions are treated in order of
appearance in the UCM. Multiple I/0 com-
pletions are treated in order of first use
of the device. The router responds to an
attention by building a parameter 1l1list in
the SVRB extended save area. It consists
of a remote XCTL parameter list, a pointer
to the appropriate UCM entry, and a pointer
to the UCM (contents of CVTCUCB). The
router then passes control to a processor
routine by issuing an XCTL to the remote
parameter list, using the name obtained
from the UCB entry. The flag signifying
the request to be serviced by the processor
routine will be turned off by the processor
routine. Consequently, processor routines
return control to the router with XCTL to
allow it to schedule service for other
requests.

If no requests are pending, the router
exits to the wait routine using the address
in register 14.

In addition to distinguishing the output
request from other requests, the router
selects the particular device to which the
message is to be sent. The router estab-
lishes the output device by interrogating
ucB entry attribute indicators. The
appropriate entry is the first active entry
that supports WTO. As before, the router
builds a remote interface for, and passes
control via XCTL to, a processor routine.

CONSOLE DEVICE PROCESSOR ROUTINES

Control flow in a processor routine
(Chart 10) is determined almost exclusively

by the setting of flags in the router-
selected UCM entry. The close flag is
tested first. If this flag is on, any

pending I/0 activity 1is suspended by
issuing a WAIT. An XCTL is then issued to
an associated OPEN/CLOSE support routine
for release of various control blocks. If
the close flag is off, the busy flag is
tested to determine I/O status. If there
is outstanding I/0 activity, error checking
and buffer disposition occur if the activi-
ty has been POSTed complete. Otherwise,
any attention request is temporarily aban-
doned (so are output requests), and an XCTL
return to the router is taken. If the busy

flag is off, the attention flag is tested,
and if on, the status of the device is
examined. If the device has not been

opened, an XCTL to an associated OPEN/CLOSE
support routine is issued for the purpose
of obtaining core for a DCB and access-
method dependent control blocks, and for
execution of the OPEN macro.

When return is made from the OPEN/CLOSE
support routine, a response to the
attention flag is prepared. A fixed buffer
in the UCB is reserved and an access-method
dependent interface is constructed. I/0
activity is initiated by issuing EXCP for a
1052, and by issuing a READ for a unit
record device. In no case does the process
routine await completion of this activity.
Control is immediately returned to the
router by issuing XCTL.

Control flow within the processor rou-
tine 1is as previously described up to the
point at which the output request flag is

tested. If on, the processor routine
obtains the address of an output buffer
from the UCM. The element is not removed

from the queue at this time; this occurs
only on successful completion of I/O. The
reason 1is to preserve a natural method of
having the message retried if an external
interrupt intervenes before the message is
successfully presented to the current
device. Since output buffers are always
selected from the top of the queue, the
initiation of output to an alternate device
would be unaffected by any previous
attempts to present the message to the
primary device.

Having selected a buffer, the processor
routine establishes data management and IOS
control block linkages; and issues EXCP for
a 1052, or WRITE for a printer. Without
awaiting completion of the I/0, the proc-
essor routine returns via XCTL to the
router. :

MASTER COMMAND PROCESSOR ROUTINE

The master command processor routine
(Chart 05) processes the CANCEL, DISPILAY,
MOUNT, REPLY, REQ, SHIFT, START (blank),
STOP, UNLOAD, and VARY commands. It

resides on the system residence device and
is brought into the transient area of the
nucleus by the supervisor when an SVC 34
instruction is issued by the communication
task or the master command routine.

If the command is one of the +ten pre-
viously mentioned commands, it is processed
by the SVC 34 routine. SET, START RDR, and
START WTR commands are ignored unless they
were issued in response to a message from
the master command routine. If so, control
is passed to the master command routine,
which processes them.

If entry to the master command processor
routine was from the master command rou-
tine, the command is available in a buffer
(placed there by the master command
routine). The command is processed.

The master command processor routine
returns control to the router.

MASTER COMMAND ROUTINE

The master command routine analyzes com-
mand verbs and routes control to appropri-
ate command execution routines. It also
issues a message to the operator, informing
him that commands will be accepted from the
console. The master command routine is
brought into main storage and entered when
any of the following occur:

e The reader/interpreter encounters a
command in the input job stream.

e The reader/interpreter is performing
the initialization procedures that fol-
low IPL.

e The reader/interpreter finds the com—
mand pending switch on. (The command
pending switch is turned on by the
routine that processes the REQ
command.)

e The .reader/interpreter encounters an
end-of-data set condition in the input
job stream, indicating the end of a job
step or job. Control is passed to the
master command routine after the job
step has been processed.

Upon entry to the master command rou-
tine, general register 0 is examined. If
it contains zeros, entry was made because
the reader/interpreter encountered a com-
mand in the input job stream. The command
is moved to the master command routine

Program Organization 31

buffer and is written out on the console
output device for the operator's records.
The command verb is then analyzed: if it is
a SET, START RDR, or START WTR command,
control is passed to an appropriate command
execution routine. Otherwise, an SVC 34
instruction is used to pass control to the
master command EXCP routine.

If general register-'0 does not contain
zeros upon entry to the master command
routine, the IPL pending, new reader pend-
ing, and new writer pending switches are
checked. If any of these switches are on,
the command pending switch is turned on and
a message is issued requesting the operator
to enter commands. Control is then passed
to the initialization command routine,
which provides certain commands, specified
by the installation during system genera-
tion (SYSGEN), to relieve the operator of
entering initialization commands. Each of
the commands provided is moved to the
master command routine buffer, written on
the console output device for the
operator's records, and executed.

If general register 0 does not contain
zeros and none of the previously-mentioned
pending switches are on, entry to this
routine was made because the reader/inter-
preter found the command pending switch on,
or encountered an end-of-data set condition
in the input job stream. A message is
issued requesting commands from the opera-
tor. After the operator has issued com-
mands and they have been processed, control
is returned to the reader/interpreter.

WRITE-TO-OPERATOR ROUTINE

The write-to-operator routine (Chart 06)
writes operator messages on the console
output device when a WTO or WTOR macro-
instruction is issued. These macro-
instructions may be issued by the system
component programs and processing programs.
Messages and replies are buffered; the
period of time between the message and the
reply is available for processing.
Issuance of either macro-instruction causes
an SVC interruption. When the interruption
is handled, the supervisor has the routine
read into the transient area of the nucleus
and passes control to it.

There are two console gueues: the buffer
queue and the reply queue. Each WTO and
WTOR results in the addition of a WTO Queue
Element (WQE) to the buffer queue, and each
WTOR results in the addition of a Reply
Queue Element (RPQE) to the reply queue.
WTO and WTOR represent requests to present
a message to the operator. SVC 35 sets up
the user's messages and, if WTOR, inserts
the message identification (ID) which the
operator must use for his reply. The same

32

message ID is placed in the RPQE with other
information to insure passing the reply,
when received, to the proper area. WTO
messages are invariably written out; a WTOR
message may be purged (removed from the
queue) if the issuing task terminates while
the message is on the buffer queue. There-
fore, an RPQE differs from a WQE in that it
contains the address of the issuing task's
TCB. The buffer queue is accessed through
the entry UCMWTOQ in the UCM.

The reply queue contains RPQEs for oper-
ator replies to WTOR. Elements in this

queue, like WTOR elements in the buffer
queue, contain a TCB address to permit
purging.

The extent of both queues is limited by
specifying the number of buffers at system
generation. An attempt to exceed a thres-
hold value will result in an ENQ of the
requesting task.

For a reply (to WTOR), the processor
issues SVC 34 (command processing). The
SVC routine determines that the incoming-
command is 1in fact a reply, processes the
reply, POSTs the user's ECB and branches
back to the processor.

EXTERNAL INTERRUPT ROUTINE

The external interrupt routine (Chart
04) switches to an alternate console device
when the operator presses the INTERRUPT key
on the console. This routine resides in
the nucleus.

SUPERVISOR MODIFICATIONS

WAITR--SINGLE EVENT

For the Option 2 system, the WAIT ser-
vice routine also processes WAITR macro-
instructions issued by a processing program
to cause job management to be initiated in
the next-lower-priority partition. If,
when the routine is entered, the wait count
is negative -- i.e., has been complemented
-- a WAITR has been issued. The routine
determines whether the WAITR is the first
that has been issued by the processing
program. If the WAITR is not the first, or
if the WAITR has been issued in the lowest-
priority partition (from which no down
shift is possible), the WAITR is treated as
a WAIT with the same parameters.

When a first WAITR is encountered and
there is a next-lower-priority partition,
the routine makes the task associated with
that partition dispatchable. When that
task is dispatched, job management routines
are entered to cause a job to be scheduled
into the partition.

When a first WAITR is serviced, a switch
is set so that any subsequent WAITR issued
in the same partition is treated as a WAIT.
This switch is reset only upon termination
of the job.

NUCLEUS INITIALIZATION PROGRAM

The primary change in the operation of
NIP under control program Option 2 is that
the standard partition initialization
functions are repeated for each partition
in the system. For each partition, just as
for the single partition that exists with-
out Option 2, a boundary box, a free area
queue element, a PRB, and the required XCTL
code are established. For a fuall explana-
tion of the nucleus initialization program,
including partition initialization, refer
to IBM System/360 Operating System: Fixed-
Task Supervisor, Program Logic Manual.

ENQ/DEQ SUPPORT

Enqueue Service Routine--IEAQENQO

This routine (see Charts 19 through 22)
is entered through a branch from a system
routine, or from the SVC second-level
interrupt handler in response to an ENQ
(SVC 56). When the routine is entered, the
major and minor QCBs are searched for
existing control blocks representing the
requested resource. If the required major
and/or minor QCB are not found, the routine
takes the action appropriate to the
RET=parameter, as follows:

e RET=TEST -- the routine sets a return
code of 00 (resource is available).

e RET=USE or HAVE -- the routine sets a
return code of 00. The routine issues
a GETMAIN and creates a queue element.
A minor QOCB or a minor and a major QCB
is created if required..

e RET=NONE (or parameter left blank) --
no return code is set by the routine;
control blocks are constructed as for
RET=USE.

When the required action is complete, the
routine branches to the pre-exit subroutine
described below, or begins again with the
queue search if additional requests are to
be processed.

Pre-Exit Subroutine: This subroutine
(TESTEND1 and TESTEND2 in CSECT IGCO048) is
entered to determine if the calling task
can proceed. The task can always proceed
if the RET=TEST parameter was used. Reg-
ister 15 is set and control is returned to
the task. If the SVRB wait count is not
zero, the registers are saved in the TCB,

the resume PSW is set to the address of the
SMC test, the new PSW is set to zero, and
the routine then branches to the dispatch-
er. The return codes are set and control
is returned to the calling task if the SVRB
wait count is zero and must-complete is not
requested. If must-complete is requested,
the routine proceeds as described below.

If the specified major QCB is found, the
routine searches the major QOCB's queue of
minor QCBs for the specified minor name.
If the minor QCB is not found, a return
code 1is set and/or control blocks are
created as explained above. If the minor
QCB is found the queue elements queued on
the minor QCB are searched for another
queue element for the enqueueing task
chained to the same minor QCB. Such a
duplicate queue element indicates that the
task has attempted to enqueue twice on the

same resource without an intervening
dequeue. If a duplicate request is encoun-
tered, the routine causes the task to be
abnormally terminated unless the new
request is an inquiry (RET=HAVE, USE, or
TEST) . If the request 1is an inquiry, a
return code of 08 is set and a subroutine

is entered to determine whether the request
includes a must-complete requirement.

For a non-duplicate request, the routine
determines whether all queue elements
already enqueued on the minor QCB are
"shared" and whether this 1is also a
"shared"™ request. If both conditions are
true, a queue element is created, the count
field in the TCB (TCBCT) is incremented by
one for each resource enqueued upon, and a
return code is set and/or QCBs are created
as explained above.

If a dqueue element representing an
"exclusive" request is already enqueued on
the resource, the wait count in the SVRB
associated with the new request is incre-
mented by one. This wait count, which will
be decremented by the dequeue service rou-
tine when the exclusive request is satis-
fied, causes the requesting task to wait in
the enqueue routine but does not affect the
dispatchability of the task as a whole.
Asynchronous routines, called by IRBs added
to the TCB's request block chain, can still
operate under the task's control.

The wait count is not incremented if the
RET=USE parameter was included. In that
case, the routine sets the "resource in
use" return code and processes any further
requests or proceeds to the pre-exit sub-
routine.

If must-complete was specified and the
requesting task is a system task (rather
than a user task, which would be abnormally
terminated if 'set-must-complete' were
specified), the subroutine sets on the

Program Organization 33

must-complete flag in the queue element and
waits until any preceding requests on the
queue have been dequeued. During this
period the must-complete condition is not
in effect. The flag in the gqueue element
is set on to indicate that the condition is
to be imposed, but only after use of the
resource has actually begun.

When the queue element containing the
must-complete flag reaches the top of the
resource queue -- that is, when the
resource becomes available to the task that
requested the resource and the must-
complete restriction -- the step or system
must-complete flag is set on in the task's
TCB and all other TCBs in the system are
made non-dispatchable. This ensures that
the task that imposed the must-complete
restriction will be the only task operating
until the restriction is lifted, through
issuance of a release-must-complete in that
task.

An exception arises if the system
interrupt request block (SIRB) has been
placed in the RB chain of another task. 1In
that case, the task under which the SIRB is
running is not set non-dispatchable, but a
flag is set on in the exit routine of the
supervisor's exit and transient area han-
dler. The two tasks operate concurrently
until the restriction is 1lifted by the
responsible task (upon DEQ), or the task
under which the SIRB is being serviced
exits. Exit from the SIRB causes the task
for which non-dispatchability was deferred
to be set non-dispatchable.

Dequeue Service Routine

The dequeue service routine (see Charts
23 through 25) is entered through the SVC
second-level interrupt handler in response
to a DEQ (SVC 48), or through a branch from
a system routine. The function of the
dequeue service routine is to remove from
the list of pending requests a request that
has been satisfied, and to cause the next
request (if any) on the 1list to be ser-
viced. In addition, the routine resets the
must-complete condition when a reset is
specified by a system task.

After performing initial validity checks
(Chart 26), the routine searches the major
and minor QCB queues for the control blocks
corresponding to the major and minor names
specified by the requester. If the
required QCBs are not found, the action
taken is determined by the value of the
RET=parameter:

e If RET=HAVE, the request was condi-
tional. A return code of 08 is set to
indicate that the task in which the DEQ
was issued was never enqueued upon the
resource, and the routine proceeds to

34

check for more parameter 1list entries

to process.

e If RET=NONE or the parameter was omit-
ted, the task in which the DEQ was
issued is abnormally terminated with an
error code of 130.

If the specified major QCB and minor QCB
are found, the queue elements enqueued on
the minor QCB are examined to determine
whether a dequeue can be performed, and
whether, if a dequeue cannot be performed,
a return code 1is to be provided or the
dequeueing task is to be abnormally termi-
nated.

A dequeue can be performed if the queue
element enqueued by the task issuing the
dequeue request is:

e An exclusive request at the head of the
queue, or

e A shared request in any position
preceding the first exclusive request
on the queue.

If either of those two conditions is met,
the routine proceeds to dequeue the ele-
ment.

If these conditions are not met, there
are two possibilities: either the queue
element being sought by the dequeueing task
is not in the queue, or it is in the queue
but has never been serviced. If the queue
element is not in the queue, the routine
sets a return code of 08 and continues if
RET=HAVE was specified, or abnormally ter-
minates the dequeueing task. If the ele-
ment is in the queue but has never been
serviced, the routine:

1. sets a return code of 04 and proceeds
to the next item in the parameter list
or

2. abnormally terminates the task

depending on the RET=parameter. The 04
return code in this case indicates that the
request was not at the top of the queue and
is exclusive, or is shared but is preceded
on the queue by an exclusive request.

When a queue element to be dequeued is
found, the count field in the TCB (TCBCT)
is decremented by one and the queue element
is removed from the queue. The TCBCT field
is a record of the number of outstanding
requests associated with the task. The
count is incremented by 1 for each resource
enqueued upon when the task issues an ENQ
and decremented by 1 for each resource
dequeued when a DEQ is issued by the task.
This field is referred to, if the task is

abnormally terminated, to determine when
all outstanding requests have been purged.

If there are no more requests remaining
on the minor QCB's queue after the queue
element is dequeued, the minor QCB itself
is dequeued from the major QCB; similarly,
if no additional minor QCBs remain, the
major OQOCB is removed from the chain of
major QCBs. A FREEMAIN is then issued,
releasing the main storage formerly occu-
pied by the removed control blocks.

The presence of another queue element
after the element removed through the DEQ
means that the resource is now to be made
available to the next enqueued task(s). If
the next queue element represents an exclu-
sive request, the DECSVRB subroutine is
entered (see below) to enable the request-
ing task to receive control. If the next
queue element represents a shared request
and the previous queue element was exclu-
sive, the same function is performed not
only for the task associated with the
shared queue element, but for all subse-
quent shared tasks in the queue as well,
until the end of the queue or an exclusive
request 1is reached. After preparing for
the receipt of control by the necessary
task or tasks, the routine frees the main
storage used for any removed control blocks
and proceeds.

The DECSVRB subroutine (Chart 25) deals
with a queue element that has just become
the first element of the resource queue, or
with a shared queue element not preceded by
an exclusive request and therefore effec-
tively at the top of the queue. The wait
count in the SVRB associated with the queue
element is examined. If the wait count is
already zero (not the normal case), the
subroutine exits. Otherwise, the wait
count is decremented by one. If this does
not reduce the wait count to zero, the
enqueued task is still waiting for other
resources and cannot, therefore, receive
control; the subroutine exits. But if the
wait count in the SVRB does reduce to zero,
the enqueued task now has available to it
all of the resources it requires and can
receive control. A task switch is effected
if the now-ready task is of higher priority
than the task (pointed to by the NEW task
control block address pointer in the com-
munication vector table) last in control.
If the enqueued task is of lower priority,
no task switch occurs. In either case,
however, the zero SVRB wait count makes it
possible for the task to proceed when next
dispatched.

After the FREEMAIN operation for removed
control blocks 1is complete, the routine
loops back to process any further elements
on the parameter list, or proceeds to reset
must-complete (if required), check for

return codes, and exit. Exit takes one of
two paths: either to the caller (the task
in which the DEQ was issued), or to the
newly ready task (the task in which the ENQ
was originally issued). If the contents of
NEW have Dbeen changed by the dequeue rou-
tine, the dispatcher performs the required
task switch by giving control to the rou-
tine in which the ENQ had been issued.

Major and minor QCB's are moved to the
partition represented by the next QEL when

they reside in the partition that is issu-
ing the DEQ. (See Figure 8.)
DADSM MODIFICATIONS

To provide volume table of contents
(VTOC) integrity in a multi-task environ-

ment, the DADSM allocate, extend, scratch,
and release routines use the ENQ and DEQ
macro-instructions and the must-complete
options thereof to ensure that no task
other than the task performing a VTOC
update will access the VTOC while the
update is in progress. The manner in which
the ENQ and DEQ macro-instructions are used
is summarized below. For further informa-
tion on those routines, refer to the publi-
cation IBM System/360 Operating System:
Direct-Access Device Space Management, Pro-
gram ILogic Manual; Form Y28-6607.

Note: Except where specifically noted, the
resource to which ENQ and DEQ requests
relate is the VTOC for the volume upon
which the DADSM routines are operating.

Allocate Routines--Non-Indexed Sequential
Data Sets

On entry to the allocate routine, an ENQ
is 1issued by the duplicate name search
routine. The must-complete condition is
subsequently set in (1) the sub-allocation
routine, or (2) the DSCB creation routine.
A DEQ 1is 1issued and the must-complete
condition is reset in the VTOC updating
routine.

Allocate Routines--Indexed Sequential
(ISAM) Data Sets

An - ENQ is issued by the duplicate name
search routine. The must-complete condi-
tion is set in either (1) the DSCB build
routine, (2) the duplicate format 1 action
routine, or (3) the embedded index routine.
A DEQ is 1issued and the must-complete
condition is reset by the completion of
processing routine.

If additional volumes are to be process-
ed, an ENQ specifying the VTOC for the next
volume is issued before the allocate rou-
tines are re-entered for that volume.

Program Organization 35

Extend Routines

An ENQ is issued and the must-complete
condition is set by the duplicate name
search routine. The VTOC updating issues a
DEQ and resets the must-complete condition.

Scratch Routine

An ENQ is issued and the must-complete
condition is set by the UCB search routine;
DEQ is issued and the must-complete condi-
tion is reset by the VTOC updating routine.

36

This process 1is repeated on each pass
through the routine for a multi-volume data
set.

Release Routine

An ENQ is issued and must-complete con-
dition is set by the first module of the
release routine. DEQ is issued and must-
complete condition is reset by the close
routine of I/O Support, to which the
release routine transfers control when VTOC
updating is complete.

This section 1lists job management load
modules and indicates the assembly modules
that are processed by the linkage editor
into each load module during system genera-
tion. Included is a separate 1list that
shows the load modules in which each assem-
bly module is contained.

Job management routines for Option 2 of

the control program are packaged in two
configurations: 18K and U44K (where K is
1024 bytes of main storage). The numbers

represent the maximum amount of main stor-
age occupied by job management routines and
work areas at any time. Both job manage-
ment configurations function identically
but differ in both the number of load
modules and the number of assembly modules
within each load module.

The configuration chosen at system gen-
eration determines the minimum partition
size in the Option 2 system. Job manage-
ment routines occupy each partition of main
storage alternately with processing pro-
grams, therefore the scheduler size deter-
mines the minimum size permissible for each
partition.

LOAD MODULES

In each configuration, all load modules
are contained in three data sets:
SYS1.NUCLEUS, SYS1.SVCLIB and SYS1.LINKLIB.
These data sets also contain other parts of
the control program. The.load modules in
the first two data sets remain the same for
both job management configurations, but the
SYS1.LINKLIB data set contains a different
set of load modules for each configuration,
depending on which one was selected at
system generation time. In the 18K con-
figuration, LINKLIB contains 36 1load
modules; in the 44K configuration, it con-
tains 25 load modules.

Charts 27 and 28 show the control flow
among load modules. The decision to trans-
fer control (XCTL) to a particular succeed-
ing load module is made in the previous
load module. Each subsequent module loaded
in response to an XCTL macro-instruction is
read into main storage directly over the
previous load module. Such load modules
are read into the low-numbered end of the
partition in which job scheduling is being
performed.

LOAD MODULES AND ASSEMBLY MODULES

Modules that are brought into storage
with LINK macro-instructions and LOAD
macro-instructions occupy separate storage
areas within the partition; such modules
are shown on the control-flow charts.
Because storage is used in this manner, the
load module lists may be used with chart 27
or 28 to determine the approximate layout
of a partition at different times during
the execution of job management routines.
Other items present in the partition at the
same time as the load modules are not shown
on the control flow charts because,
although these items are necessary, control
is not passed among them. They are, gener-

ally, the tables and control blocks, work
areas, access methods, buffers, and reg-
ister save areas.

In the following 1load module 1lists,

entry points are shown if a 1load module
contains more than one assembly module. If
only one assembly module is named, the
entry point is the same as the assembly
module's control section (CSECT) name given
in the Assembly Modules and Control Sec-
tions table in this section.

LOAD MODULES CONTAINED IN THE SYS1.NUCLEUS
DATA SET

The load modules and assembly modules in
the following list are contained in the
SYS1.NUCLEUS data set, and are always pre-
sent in the nucleus, or system area of main
storage, regardless of the job management
configuration.

Load Module Name: SYS1.NUCLEUS

Assembly Modules:

IEEBC1PE External interrupt routine.
IEECIRO01 Console interrupt routine.
IEERSC01 Master scheduler buffers,
switches, input/output block
(IOB), event control block
(ECB), channel control word
(CCW), and device end block
(DEB). This load module forms
master scheduler resident main
storage in the nucleus area when
the primary or alternate console
(1052) is used.

Master scheduler buffers,
switches, IOB, ECB, CCW, and
DEB. This load module forms
master scheduler resident main
storage in the nucleus area when
the composite console is used.

IEERSRO1

Load Modules and Assembly Modules 37

IEFDPOST
MCONRESA

Unsolicited-interrupt routine.
Table store subroutine work
area.

External Interrupt Routine
(Option 2)

Console Interrupt Routine
(Option 2)

Communication Task buffers,
switches, input/output blocks
(I0B), event control blocks
(ECB), device end blocks (DEB),
and data control blocks (DCB).
This data area is used for oper-
ator communication in Option 2
systems.

Operator communication reply
queue purging routine (Option
2).

Communication Task Wait Module.

IEECVCRX
IEECVCRA

IEECVUCM

IEECVPRG
IEECVCTW

LOAD MODULES CONTAINED IN THE SYS1.SVCLIB
DATA SET

The load modules and assembly modules in
the following 1list are contained in the
SYS1.SVCLIB data set, and are called in
response to SVC instructions.

Load Module Name: IGC0003D

Assembly Modules:

IEEMXCO1 Master command EXCP routine

) (Part 1) -- primary/alternate
console.

Master command EXCP

routine (Part 1) -- composite
console.

Option 2 Master Command EXCP
routine (overlay module).

IEEMXRO1
IEEMCPO1

Load Module Name: IEE1203D

Assembly Module:

IEE1203D Option 2 Master Command Reply
Processor (overlay module).

Load Module Name: IGC0007B

Assembly Module:

IEECVCTR Communication Task Router
module.

Load Module Name: IGC0107B

Assembly Module:

IEECVPMX Option 2 Communication Task
Process module -- access method
EXCP (1052).

Load Module Name: IGC0113D

Assembly Module:

IEECVPMC Option 2 Communication Task
Process module -- access method
BSAM (2540).

38

Load Module Name: IGC2103D

Assembly Module:

IEECVPMP Option 2 Communication Task
Process module -- access method
BSAM (1443).

Load Module Name: IGCOIO3D

Assembly Module:

IEECVOCX Option 2 Console unit initiali-
zation EXCP input/output.

Load Module Name: IGC1IO03D

Assembly Module:

IEECVOCC Option 2 Console unit initiali-
zation BSAM input.

Load Module Name: IGC2I03D

Assembly Module:
IEECVOCP Option 2 Console unit initiali-
zation BSAM output.

Load Module Name: IGCX07B

Assembly Module:

IEECVCTX Option 2 Communication Task
external interrupt processor.

Load Module Name: IGCO0O03E

Assembly Modules:

IEEWTCO1 Write-to-operator (WTO) routine
-- primary/alternate console.

IEEWTRO1 Write-to-operator (WTO) routine
-- composite console.

IEECVWTO Option 2 WTO/WTOR queueing rou-

tine.

Load Module Name: IGC0103D

Assembly Module:

IGC0103D Master command EXCP routine
(Part 2), or command processing
routine.

IGC0113D Option 2 Master Command EXCP

routine (overlay module).
Load Module Name: IGCOOO3F
Assembly Module:
IEEBH1PE Not used in sequential schedul-
ing system.

MODULES CONTAINED IN THE SYS1.LINKLIB DATA
SET

The load modules and assembly modules in
the following 1lists are contained in the
SYS1.LINKLIB data set. A list is provided
for both of the packaging configurations in
which job management routines are avail-
able.

18K CONFIGURATION

Load Module Name: IEECVCTI
Assembly Modules:

IEECVCTI Option 2 Communication Task
Initialization routine.
IEEVRFRX Option 2 CVT, TCB, RB, TIOT, and

UCB look-up module.

Load Module Name: IEFSTERM
Alias: IEFYN

Alias: GO

Entry Point: IEFSDO34
Assembly Modules:

IEFSDO11 Entry to job management from
supervisor.

IEFW42SD Passes control to IEFIDUMP (in
IEFIDUMP Load Module) if neces-
sary, or to IEFYNIMP (in this
module).

IEFYNIMP Step termination routine.

IEFYPJB3 Step data set driver routine.

IEFVJIMP Job statement condition code
routine.

IEFZGST1 Disposition and unallocation
subroutine.

IEFACTLK Linkage to user's accounting
routine.

IEFACTRT Dummy, to be replaced by user's

accounting routine.
(The preceding two modules may be replaced
by IEFACTFK assembly module if no account-
ing routine is specified as a system gene-
ration option.)

IEFSD017 Places logical track address
(TTR) of first system message
block (SMB) into job control
table (JCT).

IEFW22SD Passes control to IEFYNIMP (in
this load module), then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFJTERM load
module).

IEFSD002 Exit to IEFO08FAK or IEF09FAK
(both in this load module).

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFSDO34 Pre-termination exits to
IEFSDO11

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFVJIMSG Contains initiator terminator

: messages.

IEFYNMSG Contains initiator terminator
messages.

IEFYPMSG Contains initiator terminator
messages.

IEFZGMSG Contains initiator terminator
messages.

IEFZHMSG Contains initiator terminator

messages.

IEFIDFAK Linkage to IEFIDUMP (in IEFIDUMP
load module).

IEFZAFAK Linkage to IEFZAJB3 (in IEFJTERM
load module).

IEF08FAK Linkage to IEFSD008 (in IEFINTFC
load module).

IEFO09FAK Linkage to IEFSD009 (in IEFSELCT
load module).

Load Module Name: IEFSELCT

Alias: IEFSD009

Entry Point: IEFSD009

Assembly Modules:

IEFSDO006 Converts record number to logi-
cal track address (TTR).

IEFSD009 Initializes
initiator/terminator.

IEFW21SD System control routine.

IEFVKIMP Execute statement condition code
routine. :

IEFVMLS1 JFCB housekeeping control rou-
tine.

IEFVM2LS JFCB housekeeping fetch DCB
routine.

IEFVM3LS JFCB housekeeping generation
data group (GDG) single routine.

IEFVM4LS JFCB housekeeping generation
data group (GDG) all routine.

IEFVM5LS JFCB housekeeping patterning
data set control block (DSCB)
routine.

IEFVM76 Processes passed, non-labeled
tape data sets.

IEFWSTRT Job started message routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFWMAS1 Device name table.

IEFVKMSG Contains initiator terminator
messages.

IEFVMLKS Linkage to IEFVMLS6 (in IEFERROR
load module).

IEFXAFAK Linkage to IEFXCSSS (in IEFALOC1
load module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

Load Module Name: IEFALOC1
Alias: IEFXJ000

Alias: IEFXA

Entry Point: IEFXA
Assembly Modules:

IEFXCSS Allocation control routine.

IEFXJIMP Allocation error recovery rou-
tine.

IEFYSSMB Message enqueuing routine.

IEFQMSSS Table store subroutine.

IEFXAMSG Contains initiator terminator
messages.

IEFXJIMSG Contains initiator terminator
messages.

Load Modules and Assembly Modules 39

IEFWAFAK Linkage to IEFWA000 (in IEFALOC2
load module).

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

Load Module Name: IEFALOC2
Alias: IEFWAO000

Entry Point: IEFWAO000
Assembly Modules:

IEFWAO000 Demand allocation routine.

IEFWSWIN Passes control to decision allo-
cation or automatic volume
recognition (AVR) routine.

IEFX5000 Decision allocation routine.

IEFX300A Device strikeout routine.

IEFXHO000 Separation strikeout routine.

IEFWMSKA Device mask table.

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).

IEFXJFAK Linkage to IEFXCSSS (in IEFALOC1
load module).

IEFS15XL Check for duplicate allocation.

Load Module Name: IEFALOC3
Alias: IEFWC000

Entry Point: IEFWCO000
Assembly Modules:

TIEFWCIMP Task Input/Output Table con-
struction routine.

IEFXHO000 Separation strikeout routine.

IEFWDFAK Linkage to IEFWDO0OO (in IEFALOCU
module).

IEFXJFAK Linkage to IEFXCSSS (in IEFALOC1
module).

Load Module Name: IEFALOCU
Alias: IEFWDO0O0O

Entry Point: IEFWDOOO
Assembly Modules:

IEFWDO0OO0OO External action routine.

IEFWD001 Message directory for external
action routine.

IEFXTOOD Space request routine.

IEFXKIMP Allocation error nonrecovery
routine.

IEFXTDMY Queue overflow routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFXKMSG Contains initiator terminator
messages.

IEFXTMCG Contains initiator terminator
messages.

IEFW41SD Exit to IEFO4FAK (in this load
module).

IEFO4FAK Linkage to IEFSD0OO4 (in IEFATACH
load module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFSD006 Converts record number to logi-

cal track address (TTR).

Load Module Name: IEFATACH
Alias: IEFSDOO4
Entry Point: IEFSDOO4

40

Assembly Modules:

IEFSDOOY Step initiation routine, with
exit to processing program.
Converts record number to logi-
cal track address (TTR).

Call to table store subroutine.
Dequeues and writes out system
message blocks (SMBs).

Table store subroutine.

IEFSD006

IEFSDO007
IEFSD010

IEFQMSSS

Load Module Name:
Aljias: IEF5DDHD
Alias: IEFMF
Alias: IEFMC
Alias: IEFKA
Entry Point: INDMRTN
Assembly Modules:

IEFCNTRL

TIEF7KAXX Reader/interpreter control rou-
tine.

IEF6DDHD DD routine.

IEF6BOCM Breakout routine.

IEF6MFXX Verb identification routine.

IEF6MCXX Scans job control language (JCL)
statements.

IEF6STNM Scan stepname routine.

IEF6NAME Qualified name routine.

IEF6FRRS Resolves DD forward references.

IEF6DCBO DCB refer-back routine.

IEF6MKXX Continuation routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFK4DUM Linkage to IEFK4ENT (in IEFKY4
load module).

IEF6DHX1 Linkage to IEF6SCAN (in IEFDD
load module).

IEFKLDUM Linkage to IEF6KLXX (in IEF1STMT
load module).

IEFJMDUM Linkage to IEF6NCJB (in IEFJOB
load module).

IEFEMDUM Linkage to IEF6NJEX (in IEFEXEC
load module).

IEF60UT2 DD output routine, with exit to
IEF7KAXX (in this load module).

IEFKGDUM Linkage to IEF7KGXX (in IEFINTFC
load module).

IEFKPDUM Linkage to IEF7KPXX (in IEFCOMND
load module).

IEFK3DUM Linkage to IEF7K3XX (in IEFEOF

load module).

Load Module Name: IEFDD

Alias: IEF5SCAN
Entry Point: INDMON
Assembly Modules:

IEF6SCAN DD scan routine.

IEF6BOCM Breakout routine.

IEFSD012 DD* statement routine.

IEF6DDNM DD name routine.

IEF6DSNM DS name routine.

IEF6RFWD Processes DD forward references.
IEF6RTPR Right parenthesis routine.
IEF6LFPR Left parenthesis routine.
IEF6EQUL Equal sign routine.

IEF6LIST Subparameter list routine.

IEF6NLST Routine for no subparameter
list.

IEF6NDDP DD parameter list table.

IEF6DCDP Data control block (DCB) DD
parameter list table.

IEFSD013 Assigns unit to system output
(sysouT) .

IEF60RDR Order subroutine.

IEF6INST Insert routine.

IEF6VALU Value subroutine.

IEF6CLNP Clean up after DD routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEF6ERR1 DD error-handling routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS

IEFQMSSS Table store subroutine.

IEF6CN17 Linkage to IEF6DDHD (in IEFCNTRL

load module).

Load Module Name: IEFINTFC

Alias: IEFSDO00S8
Alias: IEFSD001
Alias: IEFKG

Entry Point: IEFSD008
Assembly Modules:

IEFSD008 Initiator/terminator to
reader/interpreter interface.

IEF7KGXX Output tables for step.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD0O07 Call to table store subroutine.

IEEMCSO01 Master command routine.

IEF7TMMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFSDO01 Reader/interpreter entry to
IEFO9FAK or to IEFW23SD (both in
this load module).

IEFO9FAK Linkage to IEFSD009 (in IEFSELCT
load module).

IEF23FAK Linkage to IEFW23SD (in IEFJTERM
load module).

IEFMFDUM Linkage to IEF6MFXX (in IEFCNTRL
load module).

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL
load module).

IEFK3DUM ' Linkage to IEF7K3XX (in IEFEOF

load module).

Load Module Name: IEFEXEC
Alias: IEFEM

Entry Point: IEFEM
Assembly Modules:

IEF6NJEX Execute (EXEC) statement rou-
tine.

IEF6BOCM Breakout routine.

IEF6STNM Scan stepname routine.

IEF6NAME Qualified name routine.

IEF6RFBK Refer-back routine.

IEF6PROC Procedure name routine.

IEF6TIME TIME keyword routine.

IEF6COND Condition (COND) keyword rou-
tine.

IEF6PARM Parameter (PARM) keyword rou-
tine.

IEF6NFCM Accounting information routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFS8LINK Linkage to IEF6COND (in this
module).

IEFMFDUM Linkage to IEF6MFXX (in IEFCNTRL

load module).

Load Module Name: IEFJOB
Alias: IEFJM

Entry Point: IEFJM
Assembly Modules:

IEF6NCJB Job (JOB) statement routine.

IEF6BOCM Breakout routine.

IEF6STNM Scan stepname routine.

IEF6NAME Qualified name routine.

IEF6NFCM Accounting information routine.

IEF6NIJB TYPRUN keyword routine.

IEF6NYJB Priority (PRTY) keyword routine.

IEF6COND Condition (COND) keyword rou-
tine.

IEF6NXJB Message level (MSGLEVEL) keyword
routine.

IEF6NZJB Message class (MSGCLASS) keyword
routine.

IEF6NIJB Parenthesis routine.

IEF7TMMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFMFDUM Linkage to IEF6MFXX (in IEFCNTRL

load module).

Load Module Name: IEFJTERM

Alias: IEFW23SD
Alias: IEFZA

Entry Point: IEFZA
Assembly Modules:

IEFW23SD Initializes for job termination,
exits to IEFZAJB3 (in this load
module) .

IEFZAJB3 Job termination routine.

IEFWTERM Job ended message routine.

IEFZGJB1 Disposition and unallocation
subroutine.

IEFACTLK Linkage to user's accounting
routine.

IEFACTRT Dummy module to be replaced by

user's accounting routine.
(The preceding two modules may be replaced
by IEFACTFK assembly module if no account-
ing routine is specified as a system gene-
ration option.)

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFZHFAK Call to ZPOQMGR1 subroutine.

Load Modules and Assembly Modules 41

IEFZGMSG Contains initiator terminator
messages.

IEFZHMSG Contains initiator terminator
messages.

IEFW31SD Exit to IEFSD003 (in this load
module).

IEFSD003 Passes control to IEFSD010, then
to IEFO08FAK, (both in this load
module).

IEFSD010 Dequeues and writes out system
message blocks (SMBs).

IEFSD035 Check for downshift (exit to
IEFSD031).

Load Module Name: IEFCOMND

Alias: IEFKP

Entry Point: IEFKP

Assembly Modules:

IEF7KPXX Processes commands in input
stream,

IEEMCSO01 Master command routine.

IEEILCDM Prevents unresolved IEEICCAN
symbol after initialization.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Module Name: IEF1STMT
Alias: IEFKL

Entry Point: IEFKL
Assembly Modules:

IEF6KLXX First statement routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFMCDUM Linkage to IEF6MCXX (in IEFCNTRL
load module).

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Module Name: IEFEOF
Alias: IEFK3

Entry Point: IEFK3
Assembly Modules:

IEF7K3XX Input stream end-of-file (EOF)
routine.

IEF7R4XX Close devices routine.

IEF7K2XX Open devices routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEEMCSO01 Master command routine.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL
load module).

IEEILCDM Prevents unresolved IEEICCAN

symbol after initialization
(IPL).

42

Load Module Name: IEFKU4

Entry Point: IEFK4DUM
Assembly Modules:

IEFK4ENT Switch input readers routine.

IEF7R4XX Close devices routine.

IEF7K2XX Open devices routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDO007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

Load Module Name: IEFERROR

Alias: IEFVM6LS

Entry Point: IEFVMSGR

Assembly Modules:

IEFVMLS6 JFCB housekeeping error message
processing routine.

IEFYSSMB Message enqueuing routine
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFVMLS7 Contains initiator/terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

Load Module Name: IEFIDUMP

Entry Point: IEFIDUMP

Assembly Modules:

IEFIDUMP Indicative dump routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFIDMPM Contains initiator/terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

Load Module Name: IEFDCB

Alias: IEF5DCDP

Assembly Module:

IEF6DCDP Data control block (DCB) DD

parameter list table.

Load Module Name: IEFMSGO01

Assembly Module:

IEF3MSG1 Contains reader/interpreter
messages.

Load Module Name: IEFMSG02

Assembly Module:

IEF3MSG2 Contains reader/interpreter
messages.

Load Module Name:

Assembly Module:

IEF3MSG3 Contains reader/interpreter
messages.

IEFMSGO3

Load Module Name: IEFMSGO4

Assembly Module:

IEF3MSGY Contains reader/interpreter
messages.

Load Module Name: IEFMSG05

Assembly Module:

IEF3MSG5 Contains reader/interpreter

messages.

Load Module Name: IEFMSGO06

Assembly Module:

IEF3MSG6 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO7

Assembly Module:

IEF3MSG7 Contains reader/interpreter
messages.

Load Module Name: IEFINITL

Alias: IEFK1

Assembly Modules:

IEF7K1XX Entry to job management from
nucleus initialization program
(NIP).

IEEMCS01 Master command routine.

IEEILCO1 Automatic command routine.

IEF7K2XX Open devices routine.

IEFWSDIP Linkage control table (LCT)
initialization routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDO007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL
load module).

Load Module Name: IEESET

Alias: IEEGESTO

Assembly Module:

IEEGESO1 Master scheduler SET command
routine.

Load Module Name: IEFJOBQE

Alias: IEFINTQS

Assembly Module:

IEFINTQA Initializes SYS1.SYSJOBQE data
set.

Load Module Name: IEETIME

Alias: IEEQOTO0O0

Assembly Module:

IEEQOTO00 Sets time and date.

Load Module Name: IEEFAULT

Alias: IEEGKIGM

Assembly Module:

IEEGK1GM Fault routine -- issues master

scheduler messages.

Load Module Name: IEESTART
Alias: IEEIC1PE
Entry Point: IEEIC1PE

Assembly Modules:

IEESTART START command routine.
IEEREADR Start reader routine.

IEEWRITR Start writer routine.

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Module:

IEEIC3JF Contains preformatted JFCB for

one START command.

Load Module Name:

IEESJFCB
Alias: IEEIC2NQ
Entry Point: IEEIC2NQ

Assembly Modules:
IEEIC2NQ Saves START command JFCBs.
IEFQMSSS Table store subroutine.

Load Module Name: IEFSD030
Assembly Modules:

IEFSDO030 Scheduler downshift routine.
IEFSD006 Converts record number to logi-
cal track address (TTR).
IEFSD007 Call to table store subroutine.
IEFSQMSS Table store subroutine.

Load Module Name: IEFSD031
Assembly Modules:

IEFSDO031 Scheduler upshift routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFSQMSS Table store subroutine.

Load Module Name: IEFPRINT

Alias: SPRINTER

Alias: IEFPRT

Assembly Module:

IEFPRTXX Tape SYSOUT to printer.

44K CONFIGURATION

Load Module Name: IEECVCTI
Assembly Modules:

IEECVCTI Option 2 Communication Task
Initialization routine.
TIEEVRFRX Option 2 CVT, TCB, RB, TIOT, and

UCB look-up module.

Load Module Name: IEFSTERM
Alias: IEFYN

Alias: IEFSD009

Alias: GO

Entry Point: IEFSDO34

Assembly Modules:

IEFSD011 Entry to job management from
supervisor.

IEFW42SD Passes control to IEFIDUMP (in
IEFIDUMP load module) if indica-
tive dump is needed, or to IEF-
YNIMP (in this load module).

IEFYNIMP Step termination routine.

IEFYPJB3 Step data set driver routine.

IEFVJIMP JOB statement condition code
routine. :

IEFVZGST1 Disposition and unallocation
subroutine.

Load Modules and Assembly Modules 43

IEFACTLK

IEFACTRT
IEFSD017

IEFW22SD

IEFSD002

IEFSD009

IEFSDO34

IEFW21SD
IEFVKIMP

IEFVMLS1
IEFVM2LS
IEFVM3LS
IEFVMU4LS
IEFVM5LS
IEFVM76

IEFWSTRT
IEFWMAS1
IEFSD006

IEFSD007
IEFYSSMB

IEFQMSSS
IEFVJIMSG

IEFVKMSG
IEFYNMSG
IEFYPMSG
IEFZGMSG
IEFZHMSG
IEFiDFAK
IEFVMLKS
IEFXAFAK
IEFZAFAK

IEFO08FAK

Load Module Name:

Linkage to user's accounting
routine.

Dummy user's accounting routine.
Places logical track address
(TTR) of first system message
block (SMB) in job control table
(JCT).

Passes control to IEFYNIMP (in
this load module), and then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFCNTRL load
module).

Exit to IEFO8FAK or IEFSD009
(both in this load module).
Initiator/terminator
initialization of output unit,
passes control to IEFW21SD (in
this load module).
Pre-termination (exits to
IEFSDO11).

System control routine.

EXEC statement condition code
routine.

JFCB housekeeping control rou-
tine.

Fetch DCB routine.

GDG single routine.

GDG all routine.

Patterning DSCB routine.
Processes passed non-labeled
tape data sets.

Job started message routine.
Device name table.

Converts record number to logi-
cal track address (TTR).

Call to table store subroutine.
Message enqueuing routine,
enqueues SMBs.

Table store subroutine.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator terminator
messages.

Linkage to IEFIDUMP (in IEFIDUMP
load module).

Linkage to IEFVMLS6 (in IEFERROR
load module).

Linkage to IEFXCSSS (in IEFALLOC
load module).

Linkage to IEFZAJB3 (in IEFCNTRL
load module).

Linkage to IEFSD008 (in IEFCNTRL
load module).

IEFALLOC

Alias:

IEFXA
Entry Point:

IEFXA

Assembly Modules:

IEFXCSSS

4y

Allocation control routine.

IEFXJIMP

IEFWA000
IEFWSWIN

IEFX5000
IEFX300A
IEFXHO000
IEFWMSKA
IEFWCIMP

IEFWDO0OO
IEFWDOO1

IEFXTOOD
IEFXKIMP

IEFW41SD
IEFSDOOY

IEFSD006

IEFSDO007
IEFSD010

IEFXTDMY
IEFYSSMB
IEFQMSSS
IEFXAMSG
IEFXJMSG
IEFXKMSG
IEFXTMSG
IEFYNFAK

IEFS15XL

Allocation error recovery rou-
tine.

Demand allocation routine.
Passes control to decision allo-
cation or AVR routine.

Decision allocation routine.
Device strikeout routine.
Separation strikeout routine.
Device mask table.

Task input/output table (TIOT)
construction routine.

External action routine.

Message directory for external
action routine.

Space request routine.
Allocation error nonrecovery
routine.

Exit to step initiation routine.
Step initiation routine, with
exit to processing program.
Convert record number to logical
track address (TTR).

Call to table store subroutine.
Dequeue and write out system
message blocks (SMBs).

Queue overflow routine.

Message enqueuing routine.

Table store subroutine.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Linkage to IEFYNIMP (in IEFSTERM
load module).

Check for duplicate allocation.

Load Module Name: IEFCNTRL

Alias: IEF5DDHD
Alias: IEFZA
Alias: IEFSD008
Alias: IEFMC
Alias: IEFKA

Entry Point:

IEFKA

Assembly Modules:

IEF7KAXX
IEF6MCXX

IEF6BOCM
IEF6NAME
IEF6STNM
IEF6MFXX
IEF6MKXX
IEF6NCJB
IEF6NFCM
IEF6N1JB
IEF6NYJB
IEF6COND

IEF6NXJB
IEF6NZJB
IEF6NIJB
IEF6NJEX

Reader/interpreter control rou-
tine.

Scans job control language (JCL)
statements.

Breakout routine.

Qualified name routine.

Scan stepname routine.

Verb identification routine.
Continuation routine.

JOB statement routine.
Accounting information routine.
TYPRUN keyword routine.

Priority (PRTY) keyword routine.
Condition (COND) keyword rou-
tine.

MSGLEVEL keyword routine.
MSGCILASS keyword routine.
Parenthesis routine.

EXEC statement routine.

IEF6RFBK Refer-back routine.

IEF6PROC Procedure name routine.

IEF6TIME TIME keyword routine.

IEF6PARM Parameter (PARM) keyword rou-
tine.

IEF6DDHD DD statement routine.

IEF6SCAN DD scan routine.

IEFSDO012 DD* statement routine.

IEF6DDNM DD name routine.

IEF6FRRS Resolves DD forward references.

IEF6DSNM DS name routine.

IEF6RFWD Processes DD forward references.

IEF6LFPR Left parenthesis routine.

IEF6RTPR Right parenthesis routine.

IEF6EQUL Equal sign routine.

IEF6LIST Subparameter list routine.

IEF6NLST Routine for no subparameter
list.

IEF6NDDP DD parameter list table.

IEF6DCBO DCB refer-back routine.

IEF6DCDP DCB DD parameter list table.

IEF60RDR Order subroutine.

IEF6INST Insert routine.

IEF6VALU Value subroutine.

IEF6CLNP Clean up after DD routine.

IEF6ERR1 DD error-handling routine.

IEF7KPXX Processes command in input

. stream.

IEEMCS01 Master command routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

IEF7KGXX Output tables for step.

IEFSD013 Assigns unit for system output
(SYsouT).

IEFSDO008 Initiator/terminator to
reader/interpreter interface
routine.

IEFSD001 Reader/interpreter entry to
IEFO9FAK or to IEFW23SD (both in
this load module).

IEFW23SD Performs initialization for job
termination routine and exits to
IEFZAJB3 (in this load module).

IEFZAJB3 Job termination routine.

IEFWTERM Job ended message routine.

IEFZGJB1 Disposition and unallocation
subroutine.

IEFACTLK Linkage to user accounting rou-
tine.

IEFACTRT Dummy routine to be replaced by

user's accounting routine.
(The preceding two modules may be replaced
by IEFACTFK assembly module if no account-
ing routine is specified as a system gener-
ation option.)

IEFYSSMB Message enqueuing routine
enqueues SMBs.

IEFW31SD Job termination éxit to IEFSD003
(in this load module).

IEFSD003 Passes control to IEFSD010, then
goes to IEFSD008 (both in this
load module).

IEFSD006 converts record number to logi-
cal track adpress (TTR) .

IEFSD007 Call to table store subroutine.

IEFSDO010 Dequeue and write out system
message blocks (SMBs).

IEFZHFAK Linkage to subroutine ZPOQMGR1.

IEFZGMSG Contains initiator/terminator
messages.

IEFZHMSG Contains initiator/terminator
messages.

IEEILCDM Prevents unresolved IEEICCAN
symbol after IPL time.

IEFK4DUM Linkage to IEFK4ENT (in IEFNEWRD
load module).

IEFO09FAK Linkage to IEFSD009 (in IEFSTERM
load module).

IEF8LINK Linkage to IEF6COND (in this
load module).

IEFKLDUM Linkage to IEF6KLXX (in IEF1STMT
load module).

IEF60UT2 Linkage to IEF6SCAN (in this
load module).

IEFK3DUM Linkage to IEF7K3XX (in IEFEOF
load module).

IEFSDO035 Check for downshift (exit to

IEFSDO031).

Load Module Name: IEF1STMT
Alias: IEFKL

Entry Point: IEFKL
Assembly Modules:

IEF6KLXX First statement routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Readers/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

IEFMCDUM Linkage to IEF6MCXX (in IEFCNTRL
load module).

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Module Name: IEFEOF

Alias: IEFK3
Entry Point: TIEFK3
Assembly Modules:

IEF7K3XX Input stream end-of-file (EOF)
routine.

IEF7K4XX Close devices routine.

IEF7K2XX Open devices routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDO007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

IEEMCS01 Master command routine.

IEEILCDM Prevent unresolved IEEICCAN
symbol after IPL.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Module Name: IEFKY4

Entry Point: IEFK4DUM
Assembly Modules:

IEFKU4ENT Switch input readers routine.

IEFTR4XX Close devices routine.

IEF7K2XX Open devices routine.

IEFSD006 Convert record number to logical
track address (TTR).

IEFSD007 Call to table store subroutine.

Load Modules and Assembly Modules 45

IEF6MIXX Reader/interpreter call to table
store subroutine.
IEFQMSSS Table store subroutine.

Load Module Name: IEFERROR
Alias: IEFVM6LS

Entry Point: IEFVMSGR
Assembly Modules:

IEFVMLS6 JFCB housekeeping error message
processing routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFVMLS7 Contains initiator/terminator
messages

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

Load Module Name: IEFIDUMP

Entry Point: IEFIDUMP

Assembly Modules:

IEFIDUMP Indicative dump routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFIDMPM Contains initiator/terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

Load Module Name: IEFDCB

Alias: IEF5DCDP

Assembly Module:

IEF6DCDP DCB DD parameter list table.

Load Module Name: IEFMSGO1

Assembly Module:

IEF3MSG1 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO02

Assembly Module:

IEF3MSG2 Contains reader/interpreter
messages.

Load Module Name:

Assembly Module:

IEF3MSG3 Contains reader/interpreter
messages.

IEFMSGO03

Load Module Name: IEFMSGO4

Assembly Module:

IEF3MSGH Contains reader/interpreter
messages.

Load Module Name: IEFMSGO05

Assembly Module:

IEF3MSG5 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO06

Assembly Module:

IEF3MSG6 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO07
Assembly Module:

46

IEF3MSG7 Contains reader/interpreter

messages.

Load Module Name: IEFINITL
Alias: IEFK1

Entry Point: IEFK1
Assembly Modules:

IEF7K1XX Entry to job management from
nucleus initialization program
(NIP).

IEEMCSO01 Master command routine.

IEEILCO1 Automatic command routine.

IEF7K2XX Open devices routine.

IEFWSDIP Linkage control table (LCT)
initialization.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDO007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Module Name: IEESET

Alias: IEEGESTO

Assembly Module:

IEEGESO1 Master scheduler SET command
routine.

Load Module Name: IEFJOBQE

Alias: IEFINTQS

Assembly Module:

IEFINTQA Initializes SYS1.SYSJOBQE data
set.

Load Module Name: IEETIME
Alias: IEEQOTO00

Assembly Module:

IEEQOTO00 Sets time and date.

Load Module Name: IEEFAULT

Alias: IEEGKIGM

Assembly Module:

IEEGK1GM Fault routine, issues master
scheduler messages.

Load Module Name: IEESTART
Alias: IEEIC1PE

Entry Point: IEEIC1PE
Assembly Modules:

IEESTART START command routine.
IEEREADR Start reader routine.

IEEWRITR Start writer routine.

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Module:

IEEIC3JF Contains preformatted JFCB for

one START command.

Load Module Name: IEESJFCB

Alias: IEEIC2NQ

Entry Point: IEEIC2NQ

Assembly Modules:

IEEIC2NQ Save JFCBs for START commands.
IEFQMSSS Table store subroutine.

Load Module Name: IEFSDO030

Assembly Modules:

IEFSD030 Scheduler downshift routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFSQMSS Table store subroutine.

Load Module Name: IEFSD031

Assembly Modules:

IEFSD031 Scheduler upshift routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDO07 Call to table store subroutine.

IEFSQMSS Table store subroutine.

Load Module Name: IEFPRINT

Alias: SPRINTER

Alias: IEFPRT

Assembly Module:

IEFPRTXX Tape SYSOUT to printer.

ASSEMBLY MODULES AND CONTROL SECTIONS

The following table shows in which 1load
modules each assembly module is used in the
three configurations of Jjob management.
The first column lists the assembly module
names in alphameric order. Except for
those indicated with asterisks, all assem-
bly modules are contained in load modules
in the SYS1.LINKLIB data set. As a system
generation option, the assembly module IEF-
ACTFK may replace both IEFACTLK and IEF-
ACTRT. The second column lists the control
section names that correspond to the assem-
bly module names in the first column. The
next two columns of the table indicate
which load modules of each configuration
contain each assembly module. The two
right-hand columns of the table refer +to
the CHARTS section of +the PLM. If a
particular control section is shown as a
subroutine block, the flowchart number is
listed in the SUBR. BLOCK column; if the
flow within a control section is given in a
chart, the flowchart number is listed in
the "Flow is Defined" column. Chart num-
bers which appear in parentheses refer to
charts which can be found in the publica-
tion IBM System/360 Operating System: Job
Management , Program Logic Manual, Form
Y28-6613.

Load Modules and Assembly Modules

47

Assembly Modules and Control Sections

48

r T T T 1
| | | Load Modules in Which | Chart Number |
| | | | Assembly Modules are Used T 9
| Assembly | | Control t T Appears As | Flow is |
|Module Name |Notes|Section Name] 18K 44K Subr. Block | Defined |
t -1 4 4 } { 1
IEEBC1PE	*	IEEBC1PE			(02)	04,(07)
IEEBHIPE	Not	IEEBH1	IGCO003F	IGCOOO3F]		
	Used					
IEECIRO1	*	IEEBA1l			(02)	ou,(03)]
IEECVCTI		IEECVCTI	IEECVCTI	IEECVCTI		1
IEEGESC1		IEEGESTO	IEESET	IEESET	(05)	
IEEGK1GM		IEEGK1GM	IEEFAULT	IEEFAULT	(05,15)	
IEEIC2NQ		IEEIC2NQ	IEESJFCB	IEESJFCB -		
IEEIC3JF	**x	IEEIC3JF	IEEJFCB	IEEJFCB		
IEEILCDM		IEEICCAN	IEFINTFC	IEFCNTRL (05)		
			IEFCOMND	IEFEOF		
	[IEFEOF				
IEEILCO1	#**	IEEICCAN	IEFINITL	IEFINITL		
IEEMCRO1		IEEBB1	IEFINTFC	IEFCNTRL	10,(02,09)	(05)
			IEFCOMND	IEFINITL		
I [IEFINITL	IEFEOF				
			IEFEOF	[l		
IEEMXCO01		IGCO03D	IGC0003D	IGC0003D (02)	05, (04	
IEEMSRO1	#***	1IGCO3D	IGC0003D	IGCO003D	02(02)	oW
IEEQOT00		IEEQOT00	IEETIME	IEETIME		
IEEREADR		IEEICRDR	IEESTART	IEESTART		
IEERSCO1	*	IEEMSLT				
IEERSRO1	*	IEEMSLT]	
IEESTART		IEEICIPE	IEESTART	IEESTART		
IEEVRFRX		IEEVRFRX	IEECVCTI	IEECVCTI		[
IEEWRITR	IEECWTR	IEESTART	IEESTART			
IEEWTCO1	IGCO3E	IGCO0003E	IGCOOO3E		(06)	
IEEWTRO1 ***	IGCO3E	IGCO0003E	IGCOOO3E		(06)	
IEFACTFK		IEFACTFK	IEFSTERM	IEFSTERM		
			IEFJTERM	IEFCNTRL		
IEFACTLK	IEFACTLK	IEFSTERM	IEFSTERM			
		IEFJTERM	IEFCNTRL			
IEFACTRT	IEFACTRT	IEFSTERM	IEFSTERM	15, (3®)		
		IEFJTERM	IEFCNTRL			
IEFDPOST	*	IEFDPOST				
IEFEMDUM		IEFEM IEFCNTRL				
IEFIDFAK	IEFIDUMP	IEFSTERM	IEFSTERM			
IEFIDMPM	IEFIDMPM	IEFIDUMP	IEFIDUMP	[
IEFIDUMP		IEFIDUMP	IEFIDUMP	IEFIDUMP	I	
IEFINTQA	IEFINTQS IEFJOBQE	IEFJOBQE				
IEFJMDUM	IEFIM IEFCNTRL		[
IEJKADUM	IEFKA IEFINITL	IEFINITL				
	IEFEOF	IEFEOF	[
	IEFINTFC	IEF1STMT	[
	IEFCOMND					
IEFKGDUM		IEFKG IEFCNTRL		[
IEFKLDUM		IEFKL	IEFCNTRL	IEFCNTRL		
IEFKPDUM		IEFKP	IEFCNTRL	\		
IEFKRESA	*	IEFJOB				
IEFK3DUM		IEFK3	IEFCNTRL	IEFCNTRL		
			IEFINTFC	1 I [
IEFR4DUM		IEFK4	IEFCNTRL	IEFCNTRL		[
IEFK4ENT		IEFR4DUM	IEFK4	IEFKY4		[
IEFMCDUM		IEFMC	IEFAISTMT	IEF1STMT		[
IEFMFDUM		IEFMF	IEFINTFC			[
		'	IEFEXEC			
			IEFJOB			I
IEFPRTXX		SPRINTER	IEFPRINT	IEFPRINT		[
L L 1 L 1 4 4 y]
(Continued)

Assembly Modules and Control Sections (Continued)

Load Modules and Assembly Modules

r T T T T |
| | | | Load Modules in Which | Chart Number
| | | |Assembly Modules are Used T q
| Assembly | | Control b T Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | 44K | Subr. Block | Defined |
1 1 [} 1 1 (] 1 d
r T T T T T) 1
IEFQMSSS		IEFQMSSS	IEFSTERM	IEFSTERM	17,(12,16)	
			IEFSELCT	IEFALLOC		
			IEFALOC1	IEFCNTRL		
			IEFALOCY4	IEF1STMT		
I		IEFATACH	IEFEOF			
			IEFCNTRL	IEFK4 I		
			IEFDD	IEFERROR		
[IEFINTFC	IEFIDUMP		
			IEFEXEC	IEFINITL		
i		IEFJOB	IEESJFCB			
[IEFJTERM			
			IEFCOMND			
			IEF1STMT			
[IEFEOF			
I I	IEFK4	I I				
			IEFERROR	[I	
[IEFIDUMP			
[[IEFINITL				
[IEESJFCB	I		
IEFSD0O1		IEFSDOO1	IEFINTFC	IEFCNTRL	(09)	
IEFSD002		IEFSD002	IEFSTERM	IEFSTERM		
IEFSD003		IEFSD003	IEFJTERM	IEFCNTRL		
ZIEFSDOO4		IEFSDOOu4	IEFATACH	IEFALLOC		(32)
IEFSD006		IEFSD006	IEFSTERM	IEFSTERM		
			IEFALOC2	IEFALLOC		
			IEFALOCY4	IEFCNTRL	(18)	
			IEFATACH	IEFEOF		
		IEFCNTRL	IEFK4		I	
		IEFDD	IEFINITL			
		IEFINTFC				
		IEFJTERM				
	IEFCOMND					
	IEFEOF	[
	IEFK4 I I					
		IEFINITL				
IEFSD007		IEFSDO07	IEFSTERM	IEFSTERM		
	[IEFATACH	IEFALLOC			
	IEFINTFC	IEFCNTRL	(18)			
	IEFJTERM	IEFEOF	an			
			IEFEOF	IEFK4		
			IEFK4	IEFINITL	I	
			IEFINITL			
IEFSD008	IEFSD008	IEFINTFC	IEFCNTRL		(09	
IEFSD009	IEFSD009	IEFSELCT	IEFSTERM			
IEFSD010		IEFSD010	IEFATACH	IEFALLOC		
			IEFJTERM	IEFCNTRL		
IEFSDO11		IEFSDO11	IEFSTERM	IEFSTERM (14,33)	3w	
IEFSDO12		IEFSD012	IEFDD	IEFCNTRL		
TIEFSDO013	IEFSDO013 IEFDD IEFCNTRL					
IEFSD017	IEFSD017 IEFSTERM	IEFSTERM				
IEFSDO030	IEFSD030 IEFSD030 IEFSD030	18				
IEFSDO031	IEFSDO031 IEFSD031	IEFSDO031		17		
IEFSDO34	IEFSDO34	IEFSTERM	IEFSTERM	13		
IEFSD035	IEFSDO035 IEFJTERM	IEFCNTRL	16			
IEFVJIMP	IEFVJ IEFSTERM	IEFSTERM (34)	35			
IEFVJIMSG	IEFVIMSG IEFSTERM	IEFSTERM i				
IEFVKIMP	IEFVK IEFSELCT	IEFSTERM (14)	@e)			
IEFVRKMSG	IEFVKMSG IEFSELCT	IEFSTERM				
IEFVMLKS	IEFVMé IEFSELCT	IEFSTERM				
L L 1 IS 1 J
(Continued)

49

Assembly Modules and Control Sections (Continued)

[om e e o s, s, e s e, . S o T S S o — o — —— {— — —{—— — — — —— — c— — o S T o S o S— . i, S i, e . . " S o S S S — o — . S, S e . e, s S

50

T T T T 1
| | | Load Modules in Which | Chart Number |
| | |Assembly Modules are Used} T 9
Assembly | | Control b T Appears As | Flow is |
Module Name |Notes|Section Name] 18K 4uxK Subr. Block | Defined |
1 L] 1] 4 ¥ |
T T T L) L) 1
IEFVMLS1 | | IEFVM1 | IEFSELCT | IEFSTERM | @an | as) |
IEFVMLS6 | | IEFVMé | IEFERROR | IEFERROR | (17,18) | 2w |
IEFVMLS7 | | IEFVM7 | IEFERROR | IEFERROR | | |
IEFVM2LS | | IEFVM2 | IEFSELCT | IEFSTERM | 17,18) | (20) |
IEFVM3LS | | IEFVM3 | IEFSELCT | IEFSTERM | 17,18 | (21 |
IEFVM4ULS | | IEFVM4 | IEFSELCT | IEFSTERM | (17,18) | (22) |
IEFVMSLS | | IEFVMS | IEFSELCT | IEFSTERM | 17,18 | 23) |
IEFVM76 | | IEFVM76 | IEFSELCT | IEFSTERM | | |
IEFWAFAK | | IEFWA000 | IEFALOC1 | | | |
IEFWA000 | | IEFWA7 | IEFALOC2 | IEFALLOC | (25) | @D |
IEFWCFAK | | IEFWC000 | IEFALOC1 | | | |
| | | IEFALOC2 | I | |
IEFWCIMP | | IEFWC000 | IEFALOC3 | IEFALLOC | (25) | @9 |
IEFWDFAK | | IEFWD00O | IEFALOC3 | | | |
IEFWD00O | | IEFWD00O | IEFALOCY4 | IEFALLOC | (25) | GO |
IEFWD0OO1 | | IEFWD0O1 | IEFALOCY4 | IEFALLOC | | |
IEFWMASL | #** | DEVNAMET | IEFSELCT | IEFSTERM | | |
IEFWMSKA | ** | DEVMASKT | IEFALOC2 | IEFALLOC | | |
IEFWSDIP | | IEFWSDIP | IEFINITL | IEFINITL | | |
IEFWSTRT | | IEFWSTRT | IEFSELCT | IEFSTERM | I |
IEFSWIN | | IEFSWIT | IEFALOC2 | IEFALLOC | | |
IEFWTERM | | IEFWTERM | IEFJTERM | IEFCNTRL | | |
IEFW21SD | | IEFW21SD | IEFSELCT | IEFSTERM | aw) | a |
IEFW22SD | | IEFW22SD | IEFSTERM | IEFSTERM | (38) l |
IEFW23SD | | IEFW23SD | IEFJTERM | IEFCNTRL | | |
IEFW31SD | | IEFW31SD | IEFJTERM | IEFCNTRL | | |
IEFW41SD | | IEFW41SD | IEFALOC4 | IEFALLOC | | |
IEFW42SD | | IEFW42SD | IEFSTERM | IEFSTERM | | |
IEFXAFAK | | IEFXAa | IEFSELCT | IEFSTERM | | [
IEFXAMSG | | IEFXAMSG | IEFALOC1 | IEFALLOC | | |
IEFXCSSS | | IEFXA | IEFALOC1 | IEFALLOC | (25) | 26) |
IEFXHO00 | | IEFXHO00 | IEFALOC2 | IEFALLOC | | |
| | | IEFALOC3 | | | |
IEFXJFAK | | IEFXJ00O0 | IEFALOC2 | | | [
| [| IEFALOC3 | [| [
IEFXJIMP | | IEFXJ000 | IEFALOC1 | IEFALLOC | | |
IEFXJMSG | | IEFXJIMSG | IEFALOC1 | IEFALLOC | | [
IEFXKIMP | | IEFXK000 | IEFALOC4 | IEFALLOC | | |
IEFXEMSG | | IEFXKMSG | IEFALOCY4 | IEFALLOC | | |
IEFXTDMY | | IEFXTDMY | IEFALOCY4 | IEFALLOC | | |
IEFXTMSG | | IEFXTMSG | IEFALOCY4 | IEFALLOC | | |
IEFXTOOD | | IEFXT000 | IEFALOCY4 | IEFALLOC | (25) | 31
IEFX300A | | IEFX3000 | IEFALOC2 | IEFALLOC | |
IEFX5000 | | IEFX5000 | IEFALOC2 | IEFALLOC | (25) | 28

IEFYNFAK | | IEFYN | IEFSELCT | IEFALLOC | |
| | | IEFALOC1 | IEFERROR | | |

| | | IEFALOCH4 | IEFIDUMP | |

| | | IEFERROR | | |

|] | IEFIDUMP | | |

IEFYNIMP | | IEFYN | IEFSTERM | IEFSTERM | |
IEFYNMSG | | IEFYNMSG | IEFSTERM | IEFSTERM | | |
IEFYPJB3 | | IEFYP l IEFSTERM | IEFSTERM | 31) | 3D |
IEFYPMSG | | IEFYPMSG | IEFSTERM | IEFSTERM | | |
IEFYSSMB | | IEFYS | IEFSTERM | IEFSTERM | | |
| I | IEFSELCT | IEFALLOC | i |
| I | IEFALOC1 | IEFCNTRL | | [
| | | IEFALOCY4 | IEFERROR | | |
| | | IEFJTERM | IEFIDUMP | | i
[| | IEFERROR | | | |
L 1 L L L L J
(Continued)

Assembly Modules and Control Sections (Continued)

Load Modules and Assembly Modules

r L] T T T 1
| | | | Load Modules in Which | Chart Number |
| | | | Assembly Modules are Used} T 4
| Assembly | | Control F T { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K 44K | Subr. Block | Defined |
b =1t + } $ + 1
| [| | IEFIDUMP | | [[
IEFZAFAK		IEFZA	IEFSTERM	IEFSTERM		
IEFZAJB3		IEFZA	IEFJTERM	IEFCNTRL	(33) (36)	
IEFZGJB1		IEFZG	IEFJTERM	IEFCNTRL	15,(36)	(38)
IEFZGMSG		IEFZGMSG	IEFSTERM	IEFSTERM		
I	i IEFJTERM	IEFCNTRL				
IEFZGST1		IEFZG	IEFSTERM	IEFSTERM		
IEFZHFAK		IEFZPOQM	IEFJTERM	IEFCNTRL		
IEFZHMSG		IEFZH	IEFSTERM	IEFSTERM		
			IEFJTERM	IEFCNTRL		
IEFO4FAK		IEFSDOO4	IEFALOCH			
IEFO8FAK		IEFSD008	IEFSTERM	IEFSTERM		
I		IEFINTFC	I I			
			IEFJTERM			
IEFO9FAK		IEFSD009	IEFSTERM	IEFCNTRL		
1 i [IEFINTFC	[I				
IEF23FAK		IEFW23SD	IEFINTFC			
IEF3MSG1l		IEFMSG1	IEFMSG01	IEFMSGO1	i	
IEF3MSG2		IEFMSG2	IEFMSG02	IEFMSGO2		
IEF3MSG3		IEFMSG3	IEFMSG03	IEFMSGO3		
IEF3MSG4		IEFMSGHY	IEFMSGO4	IEFMSGOU4		
IEF3MSG5		IEFMSG5	IEFMSG05	IEFMSGO5		
IEF3MSG6		IEFMSG6	IEFMSG06	IEFMSGO06	l	
IEF3MSG7		IEFMSG7	IEFMSGO7	IEFMSGO7	I	
IEF6BOCM		IEFBM	IEFCNTRL	IEFCNTRL		
			IEFDD		I	
	[IEFJOB	[[[
	!	IEFEXEC	I			
IEF6CLNP		IEFMO2	IEFDD	IEFCNTRL		
IEF6CN17		INDMRTN	IEFDD i			
IEF6COND		IEF6COND	IEFEXEC	IEFCNTRL		
l [[IEFJOB	[[
IEF6DCBO		IEF6DCBO	IEFCNTRL	IEFCNTRL		
IEFé6DCDP		INDMB	IEFDD	IEFCNTRL		
			IEFDCB	IEFDCB		[
IEF6DDHD		INDMRTN	IEFCNTRL	IEFCNTRL	(12)	
IEF6DDNM		INDMO1	IEFDD	IEFCNTRL		
IEF6DHX1		INDMON	IEFCNTRL			
IEF6DSNM		INDMO3	IEFDD	IEFCNTRL		
IEF6EQUL		INDMOP	IEFDD	IEFCNTRL		
IEF6ERR1		IEF6ERR1	IEFDD	IEFCNTRL		
IEF6FRRS		IEF6FRRS	IEFCNTRL	IEFCNTRL		
IEF6INST		INDMOZ	IEFDD	IEFCNTRL		
IEF6KLXX		IEFKL	IEFASTMT	IEF1STMT		
IEF6LFPR		INDMOS1	IEFDD	IEFCNTRL		
IEF6LIST		INDMOY	IEFDD	IEFCNTRL		
IEF6MCXX		IEFMC	IEFCNTRL	IEFCNTRL	09)	
IEF6MFXX		IEFMF	IEFCNTRL	IEFCNTRL	(09)	
IEF6MIXX		IEFMI	IEFCNTRL	IEF1STMT		
			IEFDD	IEFNEWRD		
			IEFINTFC	IEFEOF		
			IEFEXEC	IEFINITL		
			IEFJOB	IEFCNTRL		
l I	IEFCOMND		' i			
[IEFISTMT	[[[
			IEFEOF			
	[IEFR4				
I		IEFINITL		I 1		
IEF6MKXX		IEFMK	IEFCNTRL	IEFCNTRL		
L L 1 1 1 1 1]
(Continued)

51

Assembly Modules and Control Sections (Continued)

r T T T T 1
| | | | Load Modules in Which | Chart Number |
| | | |Assembly Modules are Used} T 9
| Assembly | | Control I T { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | 4uxr | Subr. Block | Defined |
% $———t t ¢ 4 ¢ 1
IEF6NAME		INNAME	IEFCNTRL	IEFCNTRL		
			IEFEXEC		I	
[[IEFJOB	[
IEF6NCIB	**	IEFJM	IEFJOB	IEFCNTRL	(08)	Qo
IEF6NDDP		INDMA	IEFDD	IEFCNTRL		
IEF6NFCM		IEFAM	IEFEXEC	IEFCNTRL	I	
			IEFJOB	[
IEF6NIJB		IEFNI	IEFJOB	IEFCNTRL		

IEF6NJEX		IEFEM	IEFEXEC	IEFCNTRL	(08)	an
IEF6NLST		INDMOX	IEFDD	IEFCNTRL		
IEF6NXJB		IEFNX	IEFJOB	IEFCNTRL		
IEF6NYJB		IEFNY	IEFJOB	IEFCNTRL		
IEF6NZJB		IEFNZ	IEFJOB	IEFCNTRL		
IEF6N1JB		IEFN1 l IEFJOB	IEFCNTRL		[
IEF60RDR		INDMOV	IEFDD	IEFCNTRL		
IEF60UT2		INDMOH	IEFCNTRL	IEFCNTRL	(12)	
IEF6PARM		IEFPARM	IEFEXEC	IEFCNTRL		
IEF6PROC		IEFPROC	IEFEXEC	IEFCNTRL		
IEF6RFBK		IEFRFBK	IEFEXEC	IEFCNTRL		
IEF6RFWD		IEF6RFWD	IEFDD	IEFCNTRL		
IEF6RTPR		INDMOR	IEFDD	IEFCNTRL		
IEF6SCAN		INDMON	IEFDD	IEFCNTRL	(08)	a2
IEF6STNM		IEFSTNM	IEFCNTRL	IEFCNTRL		
			IEFEXEC	I	I	
I		IEFJOB		I		
IEF6TIME		IEFTIME	IEFEXEC	IEFCNTRL		
IEF6VALU		INDMOT	IEFDD	IEFCNTRL		
IEF7RAXX		IEFKA	IEFCNTRL	IEFCNTRL	(09)	
IEF7KGXX		IEFKG	IEFINTFC	IEFCNTRL	09	1
IEF7KPXX		IEFKP	IEFCOMND	IEFCNTRL	(09)	
IEF7K1XX		IEFK1	IEFINITL	IEFINITL	(08)	09
[IEFRS	[[
IEF7R2XX		IEFK2	IEFINITL	IEFINITL		
			IEFK4	IEFK4		
			IEFEOF	IEFEOF		
IEF7TK3XX		IEFK3	IEFEOF	IEFEOF		
IEF7K4XX		IEFK4	IEFK4	IEFNEWRD		
			IEFEOF	IEFEOF		
IEF7MMCM		IEFWMSG	IEFCNTRL	IEFCNTRL		[
I		IEF1ISTMT	IEFISTMT		1	
			IEFDD I	I		
I I	IEFINTFC					
			IEFEXEC			
			IEFJOB		[
	I	IEFCOMND				
IEFSLINK		IEFLINK	IEFEXEC	IEFCNTRL		
IGC0103D	***	IGC0103D	IGC0103D	IGC0103D	(02,04)	[
% L L	1 i N i {					
Notes:						
*Assembly modules in SYS1.NUCLEUS data set.						
**Modules are assembled at system generation time.						
***Assembly modules in SYS1.SVCLIB data set.						
L J

52

CONTROL SECTIONS AND ASSEMBLY MODULES

The following 1list provides a cross-
reference between job management control
section (CSECT) names, which appear in
alphameric order, and the corresponding
assembly module names. Control section
names are also 1listed in the preceding
assembly module to load module cross
reference table.

CSECT Assembly
Name Module Name
DEVMASKT IEFWMSKA
DEVNAMET IEFWMAS1
IEEBAl1 IEECIRO01
TEEBB1 IEEMCRO1
IEEBC1PE IEEBC1PE
IEEBH1 IEEBH1PE
IEECVCTI IEECVCTI
IEEGESTO IEEGESO1
IEEGK1GM IEEGK1GM
IEEICCAN IEEILCDM
IEEICCAN IEEILCO1
IEEICRDR IEEREADR
IEEICWTR IEEWRITR
IEEIC1PE IEESTART
IEEIC2NQ IEEIC2NQ
IEEIC3JF IEEIC3JF
IEEMSLT IEERSCO01
IEEMSLT IEERSRO1
IEEQOTO00 IEEQOTO00
IEEVRFRX IEEVRFRX
IEFACTLK IEFACTLK
IEFACTRT IEFACTRT
IEFAM IEF6NFCM
IEFBM IEF6BOCM
IEFCOND IEF6COND
IEFDPOST IEFDPOST
IEFEM IEFEMDUM
IEFEM IEF6NJEX
IEFIDMPM IEFIDMPM
IEFIDUMP IEFIDFAK
IEFIDUMP IEFIDUMP
IEFINTQS IEFINTQA
IEFJM IEFJMDUM
IEFJM IEF6NCJB
IEFJOB IEFKRESA
IEFKA IEFKADUM
IEFKA IEF7KAXX
IEFKG IEFKGDUM
IEFKG IEF7KGXX
IEFKL IEFKLDUM
IEFKL IEF6KLXX
IEFKP IEFKPDUM
IEFKP IEF7KPXX
IEFK1 IEF7K1XX
IEFK2 IEF7K2XX
IEFK3 IEFK3DUM
IEFK3 IEF7K3XX
IEFKY4 IEFK4DUM
IEFKY IEF7RU4XX
IEFK4DUM IEFK4ENT
IEFLINK IEF8LINK
IEFMC IEFMCDUM
IEFMC IEF6MCXX
IEFMF IEFMFDUM
IEFMF IEF6MFXX

CSECT Assembly
Name Module Name
(Cont.) (Cont.)
IEFMI IEF6MIXX
IEFMK IEF6MKXX
IEFMO2 IEF6CLNP
IEFMSG1 IEF3MSG1l
IEFMSG2 IEF3MSG2
IEFMSG3 IEF3MSG3
IEFMSGU IEF3MSGY
IEFMSG5 IEF3MSG5
IEFMSG6 IEF3MSG6
IEFMSG7 IEF3MSG7
IEFNI IEF6NIJB
IEFNX IEF6NXJB
CSECT ASSEMBLY
IEFNY IEF6NYJB
IEFNZ IEF6NZJB
IEFN1 IEF6N1JB
IEFPARM IEF6PARM
IEFPROC IEF6PROC
IEFQMSSS IEFQMSSS
IEFRFBK IEF6RFBK
IEFSD001 IEFSD001
IEFSD002 IEFSD002
IEFSD003 IEFSDO003
IEFSDOO4 IEFSDOOUY
IEFSDOO4 IEFO4FAK
IEFSD006 IEFSD006
IEFSD007 IEFSD007
IEFSD008 IEFSD008
IEFSD008 IEFO08FAK
IEFSD009 IEFSD009
IEFSD009 IEFO9FAK
IEFSD010 IEFSD010
IEFSDO011 IEFSDO11
IEFSD012 IEFSD012
IEFSD013 IEFSD013
IEFSD017 IEFSD017
IEFSD030 IEFSD030
IEFSD031 IEFSD031
IEFSD034 IEFSDO34
IEFSD035 IEFSD035
IEFSTNM IEF6STNM
IEFTIME IEF6TIME
IEFVJIMSG IEFVJIMSG
IEFVJ IEFVJIMP
IEFVKMSG IEFVKMSG
IEFVK IEFVKIMP
IEFVM1 IEFVMLS1
IEFVM2 IEFVM2LS
IEFVM3 IEFVM31sS
IEFVM4 IEFVMU4LS
IEFVMS IEFVMSLS
IEFVM6 IEFVMLK5
IEFVM6 IEFVMLS6
IEFVM76 IEFVM76
IEFVM7 IEFVMLS7
IEFWA000 IEFWAFAK
IEFWA7 IEFWAO0Q00
IEFWCO000 IEFWCFAK
IEFWCO000 IEFWCIMP
IEFWDO00O IEFWDFAK
IEFWDO00O IEFWDOOO
IEFWDO001 IEFWD0O01
IEFWMSG IEF7MMCM
IEFWSDIP IEFWSDIP
IEFWSTRT IEFWSTRT

Load Modules and Assembly Modules

53

CSECT
Name
(Cont.)
IEFWSWIT
IEFWTERM
IEFW21SD
IEFW22SD
IEFW23SD
IEFW23SD
IEFW31SD
IEFW41SD
IEFW42SD
IEFXAMSG
IEFXA
IEFXA
IEFXHO0O00
IEFXJIMSG
IEFXJ000
IEFXJ000
IEFXKMSG
IEFXK000
IEFXTDMY
IEFXTMSG
IEFXTO000
IEFX3000
IEFX5000
IEFYNIMP
IEFYNMSG
IEFYN
IEFYPMSG
IEFYP
IEFYS
IEFZA
IEFZA

54

Assembly
Module Name
(Cont.)
IEFWSWIN
IEFWTERM
IEFW21SD
IEFW22SD
IEFW23SD
IEF23FAK
IEFW31SD
IEFW41SD
IEFW42SD
IEFXAMSG
IEFXAFAK
IEFXCSSS
IEFXHO000
IEFXJIMSG
IEFXJFAK
IEFXJIMP
IEFXKMSG
IEFXKIMP
IEFXTDMY
IEFXTMSG
IEFXTOOD
IEFX300A
IEFX5000
IEFYNIMP
IEFYNMSG
IEFYNFAK
IEFYPMSG
IEFYPJB3
IEFYSSMB
IEFZAPAK
IEFZAJB3

CSECT
Name
(Cont.)
IEFZGMSG
IEFIZIG
IEFZG
IEFZH
IEFZPOQM
IEF6DCBO
IEF6ERR1
IEF6FRRS
IEF6RFWD
1GC0103D
IGCO03D
IGCO3E
INDMA
INDMB
INDMOH
INDMON
INDMON
INDMOP
INDMOR
INDMOS1
INDMOT
INDMOV
INDMOX
INDMOY
INDMOZ
INDMO1
INDMO3
INDMRTN
INNAME
SPRINTER

Assembly
Module Name
(Cont.)
IEFZGMSG
IEFZGJB1
IEFZGST1
IEFZHMSG
IEFZHFAK
IEF6DCBO
IEF6ERR1
IEF6FRRS
IEF6RFWD
IGC0103D
IEEMXCO01
IEEWTCO1
IEF6NDDP
IEF6DCDP
IEF60UT2
IEF6DHX1
IEF6SCAN
IEF6 EQUL
IEF6RTPR
IEF6LFPR
IEF6VALU
IEF60RDR
IEF6NLST
IEF6LIST
IEF6 INST
IEF6DDNM
IEF6DSNM
IEF6CN17
IEF6NAME
IEFPRTXX

Cchart 01. Job

Management

B2

* *
CONSOLE DEVICE
* *

* SYSTEM *
INPUT DEVICE
* *

B kk Rk kR kK E
. .
. *kkk .
. * * o
. * C3 *eXe
. * * o
- E2 223 -
X
* 02A1% *
* *eooee * READER/ *
* COMMUNICATION * * INTERPRETER *
* TASK * * *
.
.
-
.
.
.
X
D3 D4
* 12A3%
sk ek ke m * SYSTEM *
* INITATOR/ %eeeseaeeX OUTPUT DEVICE
* TERMINATOR * * *
* *
kkk kR kR kR kR Rk R TS PR TR
.
.
-
.
o
X
E3 E4
* *
* * * JOoB
* JOB STEP *eo o seeX STEP OUTPUT
* * * DEVICE *
* *
ok kkk Rk kR kK dokRkk Rk Rk ok Kk
.
.
.
X
Kk
* *
* C3 *
* *
N

CHARTS

Charts

55

Chart 02. Communication Task Control Flow

HEEKALFEREKKERK
*
* ENTRY *
* *
Hokok kR Kk ok kR koK

-
o FROM SUPERVISOR
o AFTER IPI

.
-

HRMHD] RN RN NR
*IEECVCTI 03A2%
Hm e K e A e A K
* COMMUN!CATKON *
* *

’INIYIALIZATIDN *
Akl Aok ok R kR ok

Xesoo oo

HRERC]HERRHERRR
*

* EXIT *
deokdok ok k ok ok ok kKo k

TO COMMUNICATIONS
TASK WAIT ROUTINE

kKD 1 kkkkkkkEk
* *

NOTE THE MASTER COMMAND ROUTINE
IS UNCHANGED FROM THAT OF
SEQUENTIAL SCHEDULING SVSTEM-
FOR_FLOWCHART SEE JOB MANAGE-

* 'ENTRY *
* *
Hdk koK e ok ok ok ok ok ok

-

.

.

« FROM INPUT/0UTPUT

e SUPERVISOR

-

.

X
FokkkRE D dekkkkkkkkk
*IEEBA1 04A1%

e e o e e e
* CONSOLE *
* INTERRUPT *
* ROUTINE *

e e ok o o e ok ke ke ok ok ok ok ok ok ok
-

Xeo o

dokkkF 1 kokokokkokk Rk
* *
* EXIT *
* *

okokok ok ok kokokkkkk
TO
SUPERVISOR

Kk KG1 kkkAkkkkk
* *
* ENTRY *

R
-

FROM
« SUPERVISOR
-
.

X
FodokokokH 1 kdkokokokkkkkk
IEEBCIPE 04A3
e e e S e o
* EXTERNAL *
* INTERRUPT *
* ROUTINE *
HREREEEERERERERRR

-

sss e

X
dokkkd 1 Rkkkkkkkk
* *
* EXIT *
e e o e e e ok ok ke ok ok ok ok

TO
SUPERVISOR

56

MENT PLM, FORM Z28-6613

AT IR HRRRAL RN RN NI A SRR
* * *
* ENTRY * * ENTRY * * ENTRY *
* * * * * *
dokkkdokk R Rk Rk SRk ok dok ok Aok ok kR kK
. . .
- .
. .
o FROM FROM < FROM
e SUPERVISOR SUPERVISOR e ‘SUPERVISOR
. .
» .
X X
EEEEI-FEL LS L L L S *IEEBBI * 0SA1% *1GC0113D 06A1%
* *— —n_*_*_*-*-*_* B e s e e I I e e e e
* ENTRY *oeeeeoee Xk TER * COMMAND * * WRITE-TO- *
COMMAND RDUTINE * PROCESSOR * * OPERATOR *
96300 3NN (sl NOTE) * * * ROUTINE *
. . .
- . .
FROM . . .
READER/ INTERPRETER . . .
. . .
. . -
- . .
X X X
kR RCI kk kR kkkk Ak K C4 ok kA kK deokdkok C Sk ok dokokok ok
* EXIT * * EXIT * * EXIT *
Aok ok kR dok dokkkkdokdodok ok ok Sk ok ook ko %
TO SUPERVISOR OR TO SUPERVISOR TO SUPERVISOR
READER/INTERPRETER

Aok R E 4 ok ke kokkok
*
* ENTRY *
IR HRRK
-
.
: FROM COMMUNICATIONS TASK
e INITIALIZATION AFTER IPL
« OR FROM SUPERVISOR
.
X
FokkkkF 4 kkkkkkkokkk
1aecvcru 07A2 HERRFSERRRERRRK
———————— *
*COMMUNICATIONS *..--o--.X* EXIT *
* TASK WAIT * *
* ROUT INE * Ak kokkokkkkkkE Rk
P
X
.
. TO
. SUPERVISOR
-
X
-
lEECVCTR 08A3 *IEECVCTX 09A3*
_____ Xm Rk K W e e K K
*ROUTER ROUT[NE ¥eeoooeeeXk EXTERNAL *
* * * INTERRUPT *
* * * PROCESSOR *
*
e X
o .
.
.
. .
. .
X .
1. .
*1GCO3D 05A1% *IEECVPM 10A2% -
* .
*¥Xeoeooeesccccccccce

* COMMAND
* PROCESSOR
*

ek ok ok ok ok koK ok ok ok

XeoooeeeX¥
*

* PROCESSOR *
* ROUT INE *
Fedk kR Rk ko kokok Rk Rk R

Xe oo oo

e ok J 4 ok ok ke sk Ok ok ok ok
*IEECVOC 11A3%
*— K~k km K
* Heeoosovece

* OPEN/CLOSE *
V) *
Fdedkok ok dokokok ok Rk Kk

-
B
B
.
.
.
B
.
.
.
.
-
.
.
.
.
B
.

esccsccasn

Chart 03. Communication Task Initialization Routine

T1EECVCTI
*kkKkA2K kK kkkkkk
* *
* ENTER *
* *
ok ok ok ok ok ok ok ok koK

Xesoesee

FokkkkBkkkdokkdkokkk
* PLACE *
*POINTER TO ucMm *
* COMMUN!CAT[ON *

THE _UNIT

CONTROL MODULE
(UCM) CONTAINS
DATA NECESSARY
TO COMMUNICATION

* VECTOR TABLE TASK OPERATION
*t*********#**##*

-

-

-

-

.

.

X
*IEEVRFRX * MARK UCB AS

bt beral S

* CONV DEV NMS *ceesvees Xk ALTERNATE

*IN UCM ENTRIES #
* TO UCB ADDR %

* PRIMARY OR

LT XX R

* ACCORDING TO
* UCM FLAG

X
K D2 KRR N
* BUILD *

* EVENT *
INDICATION LIST
* (EIL) *

* *
ek e oo ek ok ok ok ok ok ok

Xe o000

HERRE2HRRXRRNRR

*
* RETURN *
ek ok ok dokok ok R kK

THE EIL

PART OF THI

UCM AND CONTAINS
POINTERS

ECB'S + UCB'S.
THE ECB POINTERS

IEECVCTW

Charts

57

Chart O4. Console and External Interrupt Routines

CONSOLE EXTERNAL
INTERRUPT INTERRUPT
ROUTINE ROUTINE
IEEBA1 1EEBC1PE

Aekokdk A LKk kA kKoK RHRRATH RN RERR
* * *
* ENTRY * * ENTRY *
* *

ok Aok o ok o ok ke ok ok ok ok ok Fokokokdkkokkkokkokkkk

. .
X X
ERBLERRR RN * kB3 kkkkkkk
* * * *

* POST * * POST *
* COMMUNICATION * * COMMUNICATION *
* TASK * * T *
* *

Aok ok ok ok ok ok ok Ak ok kkk kK
. .

. .

. B
. .

o .

. .

X
Aok C 1k okdkokok koo ok ok
* * Ak kR C3 ke kok KAk Kk
* FLAG DEVICE * *
* ENTRY IN UNIT * * EXIT *
* *

*CONTROL MODULE *
* Fkk kR R kk R koK

*
L e e e

Fokk kD] kK kk kK

*

* EXIT *
* *
ek ok ok ko ok Kok ok ok ok

58

Chart 05. Master Command EXCP Routine

16C03D
NI A LN
* *
* ENTRY *
*kkkokkkk Rk Rk kk

FROM
SUPERVISOR

#Xe o 00

okeo
B1 *

. *kkkRB2KkK kKK kK
ok *e * *

kK
o* *. YES * TURN ON * *
%o REQ COMMAND o%eeceseesX*COMMAND PENDING*eeooX¥ F1 *

* * SWITCH * * *
*kokk

*
*e ok ok kR kKR

. ot

D1 *e D2 *e

o ¥ *o ok *a
¥ *e YES o¥ START *e NO
*eSTART COMMANDe*eoecceeoXke (BLANK) ekeooesesscscccceeX
* ¥ *o COMMAND <%

-
-
-
.
-
-
-
-
-
-
-
-
-
-
-
-
.
.
-
X
*,

.
*eo ok . -
*e o¥ e ok
* NO * YES
. .
- .
. .
. .
. .
X X e¥e
RERRE] RN NRR NN R 2 W RN E3 *o
* XCTL TO * * * ok *e *kkk
* COMMAND * * TURN OFF * oe* IS MASTER *. NO * *
* PROCESSING * *COMMAND PENDING*eseee oo X¥COMMAND RTN INe*eeeeX%k F1 *
* ROUT INE * * SWITCH * *e STORAGE o% * *
* (1GC0113D) * * * . - kKK
akkokok ok dkok ok ok ok ok koK Aok ok e ek ook Kok ok Xk *e o
. * YES
*kkok . -
* . .
* Fl *¢Xe -
* . -
dkkk . .
. X
X HKF 3k kkkkok
XN RN R * * Fokokk
* * * POST * *
* EXIT * * MASTER *eoeeX* F1 *
SCHEDULER ECB * *
*kkkkkkkkkkokokkk * * Rk
Aok ook ok o koK ok ok

TO SUPERVISOR

Charts

59

Chart 06. Write-To-Operator Routine

1GCOO003E
HEEEATHRERERRRR
* *
* ENTRY *

e ek ek kokok ok ok ok kR
-

FROM
SUPERVISOR

o0 0008 %

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P
-
-
-

.
-
-
-
-
-
-
-

#Xe 000000

.

*eo

-
-

ok

*o
*e

Hkokk kB3 Rk okkkk kK k%K
*ENQ *

Kk k= WAL Tk—k—kmk
X¥ UNTIL REPLY *
* QUEUE ELEMENT *

* AVAILABLE *
ek ek ok e o ok ok ok ek okok ok
* NO -
. -
. .
- -
eXeososevsessecccssscecncccccse
o

ook ek C 2% Ak deok Aok ek
* GETs *
* SETUP, + LINK %
*#IN REPLY QUEUE ¥
*ELEMENT ASSIGN X
* REPLY ID *
ke sk e ke ek ke ke ok kool ok ok ok ook

ok
NO % WAS *e
Xeoessossesscesseee*eENQ REQUIRED o%
*

.
X
o¥a
D2 *e
*e
. .
*o o¥
*e o¥
* YES
.
-
.
.
.
X
I DTN RN
*DEQ *
Fom K
* CANCEL *
* PREVIOUS ENQ %
* REQUEST *
ek okok o ok ok ok ok ok kR

Rk RKF 2%k Kook koK
*ENQ *
e A i A e

o ¥ wTO YES
*e QUEUE LIMIT o*eseeeseeXk WAIT UNTIL *
*

%e REACHED o%
o ¥

'*. ¥
* NO
-

X
Hkokk Ak G 1 Ak ok ok sk ok ok
*
GET, SETUP, + *
LINK IN WTO %
QUEUE ELEMENT *

* *
Aok kok ok dokok Rk okkok ¥k

LR X

#Xe o000

-
H1 *o
ok *e
ok WAS *e YES
*,ENQ REQUIRED
*e
*eo ok
*e ok

*e
*o YES

. -

ccescce

X* CANCEL
* PREVIOUS ENQ *
QUEST

dkkkkH2Rk kR Rk ok
*DEQ *
d— kK — =k — k=K

*

* REQU
koo ko ok ok odkok ok ok ok

Ak kkk 2%k kkkkkkkk
* *
*

MOVE *
e¥sseseeeeXk REPLY ID INTO *
* * MESSAGE *

* *
ook ek ok ROk kR Rk

TR NN T RN
*

*
* MOVE WTO MSG

P
* * WTO/WTOR *

INTO WTO QUEUE %eeeeeeceeX REQUEST FOR *ececceceeX*k

* ELEMENT *

* *
Sekdkokokkkkokkkkkkokkk

60

HEC WX R
* FkREK I kR kR Rk *
* *
RETURN *
COMMUNICATION
* ASK * seakodokok ok ok dokokok ok ok Xk
Aeddeokdokdokk Kok

Chart 07. Communications Task Wait Routine

IEECVCTWX
Rk A 2%k kkkokok ko
* *
* ENTER *
* *
e e ot ok ook ok ok Kok kok
-
.
.
« FROM
e SUPERVISOR
.
-
X
Aok ok ok ok B 2 %k ook k kkokk
*IEECVCTI 03A2% 1. EXTERNAL
Fm R e e INTERRUPT
* L INK *
*TO INITe COMM. * 2. ATTENTION
* TASK INTERRUPT
Aokokdok ook ok Aok kok Rk
. 3. WTO-WTOR
. REQUEST
.
- 4e WTL REQUEST
(NOT SUPPORTED)
i Se 10 COMPLETION
HRC2HEXNRENR
*

*
* WAIT FOR *
EVENT

X% EN
* COMPLETION ¥
* *

*

ek kok ok ok ok ok ok kK

-

Xe oo o0

*KD2% KKKk K
* *
* svc72 *
e+ +*¥PROCESS POSTED *
* EVENT *
* *
IR NN

* IEECVCTW NEVER TERMINATES

Charts 61

Chart 08. Communications Task Router Routine

IEECVCTR
HERKASK A KKK KRR
*
* ENTRY *
*
dk Kk Rk kKKK K
.
.
. .
« FROM
« SUPERVISOR
.
X
o ke
B3 e
ok *e FRRKBA KKK KRR
*o YES XCTL
oEXTERNAL ECB o eseeX TO IEECVCTX *
*o POSTED <% * *
*o ok P e
*e ok
* NO
N
M
.
.
X
o,
ERHEECE kk Kk RRKEE
«¥ANY 1/0%. * *
«*COMPLETION *. YES *SET UP POINTERS*
%o ECB POSTED e*¥eecesseeX¥ FOR PROCESSOR ¥eeveeseeX
*. o * MODULE IN XSA *
*e ok * *
*e ok e ok ok ok ok kR ok kR kR K
* NO X
N -
. .
- .
. .
X .
o ke .
03 *. .
ok - .
ok *o YES .
*oATTENTION ECBe%e .
*o POSTED <% .
. . .
*e ok .
* NO .
. .
- .
. .
. .
X .
ke .
E3 %o kR KES Rk KAk KA KAk
o* *e * LOCATE *
*o YES * CURRENTLY

ok wTOo
e ECB POSTED e%eececceeX ACTIVE WTO/R
* * DEVICE

* 3 %%

. .
*eo ok *
e o I NREE
* NO
.
.
.
-
X
ko
HRRREF 2NN ERRR F3 *o FA AR G AR KA AR RKE
* * ¥ *e *
* SET * NO o % wTL *e YES * SET *
*RETURN CODE OF *Xee eseke ECB POSTED o%*e eee s XXkRETURN CODE OF *
* Xe*o00* * - ok * X*04" *
* * *eo ok * *
koo ok dokok ok ok ok k ok Kok *e ok dodkokokkkdokokokdkokkokkkE
. * -
- .
- .
. .
. .
- .
. .

X X
FRRRG2EHRRNRNER Kk kG4 Aok Rk kkkk
* RETURN * * RETURN *
* TO IEECVCTW * * TO IEECVCTwW *

* *
*kkkokkkkkkkkkkk Fkokkkok ok kkkkkkk

62

*kkkC

Sk kokok*®

XCTL TO IEECVPM
CESSOR *

MoD

*kk Kk

JODULE *
e ok ok ok kok kK

Chart 09. External Interrupt Processor Routine

Fk kAR C2%% K kkkkkdkk
* *

TURN *
ON CLOSE FLAG *Xe
*

LE R 2

*
Ea g 222 T2 2222 2 2
-

Xe oo

*kkkRD2¥kkkkR K kK
* *
* *
*ADJUST UCM AND *
* ucs *

*
ok Aok ko ko Kok kokkkk

X
FkkkE 2%k koK kkkk
* XCTL TO *
PROCESS MOD. TO¥

* Ci
ek ok kol ok ok ok Kok

IEECVCTX
FH RN TN IR N
* ENTRY :
*t#*t***********

.

Xe es s

ek kKB 3k Kok ko Rk
*

INITIALIZE
POINTERS

Aok dodkkokok kR okkkokdk kK

Rk
% 3%k

.
.
.
.
eXeeoocscssse
X
%o

c3 *o

ok *e
YES <% DEVICE *eo

ea¥e ACTIVE AND %
*e OPEN ok
*

*

.

.

*
asesesssesssce

ok .
¥ *e NO
*e LAST DEVICE e¥*esoe
*e

Xe oo 00

HREEHKEIHRREREREER

REINITIALIZE
UCM POINTERS

*

ek Aok ok oo ok ok ok o ok ok ok
.
.
-
.
eXeoeosscscene
o

LR X
EEX X X

X
Fkok wRF 3k kkokokokkokkk
* FLIP *
* DEVICE *
ACTIVE/INACTIVE
® FLAG *

* *
IR XK

-
.
.
-
-
.
.
-
.
.
-
.
-
.
-
-

#Xo 0000

e¥e

G3 *o
ok *eo
* *eo NO
*e LAST DEVICE e¥eeooe
*eo o¥
*eo ok

*e ok
YES

Xe 0o 00 %

kR kHI Kk kkkFkkkk
*

* K ¥

*
*CLEAR EXTERNAL
* ECB

* *
ek koo ok dokok kokok ko

Xeoes e

EEEENKES S S L EE 22
* *
* RETURN *
* *

ook ok ek e ok o ook ok Kk K

Charts

63

Chart 10. Communications Task
IEECVPM
Rk kA% k¥ kkkkk¥k
* *
* ENTRY *
dedokkokkkokkdkokkkkk
.
:
*kokk kBl kkkkkkkkkk -
*IEECVOC 11A3% *ao
Pt D S St D Bt 22 2t 3 YES % *eo
* %#Xeeeoeeee* e CLOSE REQUEST.*
* OPEN/CLOSE * - -
* ROUT *ao ok
Fkdkokdkokkkokkkkkokkkk ¥e o¥
* NO
.
:
:
:
X
o¥ e
c2 *e
ok *

-
ekoose
.

¥ .*
*e BUSY FLAG
, o

*e ok .
Ko ok .
* YES
. .
. -
- -
- -
X .
o¥e .
D2 *o .
kkkkD1 dkkkkkkkk ¥ *e -
* NO <% 1/0 *o -
* RETURN *Xeo «*« COMPLETE ECB o¥
- -
HRRAENERA RN KRR RE *o -
*eo ok B
* YES .
. -
- .
. -
- -
. .
X
ok kkkE2kkkIokkkkkk
* *
* CLEAR * .
* 1/0 COMPLETE * .
* ECB * .
* * .
e -
- .
. B
. -
-
.
X .
e¥ e -
SeokokokokF 1 Aok ok kakok ok F2 *o .
*IEEBB1 * ok *eo .
e e N W N N R B YES o% *, .
* OMMAND *Xeoosoesoke INPUT ok -
*PROCESSOR (SVC * *eo * .
* 4 * *e . .
edokok ok okokdkokok kokk ok ok ok *eo ok
- * NO
- . -
. . .
. - .
- . .
. . .
X X -
*kkkkG 1 kkdkokkokkdkkk kARG k KKk Kkkkk .
* * * * .
* * * *
* RELEASE INPUT * *RELEASE OUTPUT *
* BUFFER * * BUFFER * .
* * * * .
e 3ok o e o ok ok ok ok ok ok ok ok ek ok ok ok kokok ok kok ok .
- - .
. . .
. eXeeoosssccse
. -
eecccccccccsscsccssccccsccceXe
oo
kK KH 1 ok ok ok ok ok ok H2 *eo
*IEECVOC 11A3%

*— ki e K Hm K
*

* OPEN/CLOSE *
ROUTI
e e ok ok ok kok Kok ok ok ok ok Rk

*

64

ok *eo
ES % OPEN *eo
NECESSARY %
- o ¥

*Xeoosoecoke

NE *

*. ATTENTION
*e REQUEST o%
* *

- -
*e ok
* NO
-

-
X

Fdokk

BS

R

* %%
* % *

Processor Routine

*%¥
* *

« YES
ekeeee Xk B4 X

*
ke kk

Fdkk
* *

* BS %
* *
XXX
.

X
HEXREDSH R XX RNAK
* *
* OBTAIN *
* QUTPUT BUFFER *
* *

* *
Aok kokokokkkkdokkkkkk

kKR CSRRR R Rk kkkk
* *

* INITIALIZE
*0OUTPUT CHANNEL
* PROGRAM

L X2

*HEk
* *
* B4 *

* *

XX

.

X
FEHREEEBG XXX ERRRE
* *

OBTAIN *
* INPUT BUFFER *
* *
* *
kdokRokk kK kK ko

.

.

.

X
kR CA Rk Rk
* *
* INITIALIZE *
* INPUT CHANNEL *
* PROGRAM *
* *

.

.

X
Fok Rk kD4 Rk kK kk Kk
* *
* *
* SET BUSY FLAG *
* *

Xeeesoseesecsccccscccccccccce

* *
B

*
*

*
*
*

.

R

X
*RkE4kkERXEX
* *
EXCP

* *
Fkkk kR Rk kkkk
.

.

.

-
X
ok kkF 4k kokkkkkk
RETURN

ek ok kol okok ok Rk Rk k

*
*
*

.
.
-

Chart 11. OPEN/CLOSE Routine

1EECvOC
HHREAT RN RRN
* *
* ENTRY *
*
Fkokkkdokkokkkkkkk
-
-
-
-
-
-
X
eke
B3 *o KB4 dkkkkkk
ok *e *
¥ *e¢ CLOSE * *
*eOPEN OR CLOUOSEe*ee Xk CLOSE DCB *
*e ok * *
*e o ¥ * *
*e ok Hokdok kKR kk Kk
* OPEN -
- .
- B
. .
- .
- .
X X
Ikk o
* * * *
* INITIALIZE * * *
*DCBs UCM, ETC, * * ADJUST UCM *
* FOR OPEN * * *
* * *
- -
. -
- -
- -
- .
- -
X -
%%kD 3 kkokkkkk X
* * *kkEDGH KKK R EREEK
* * * T T
* OPENJ * * EXTERNAL *
* * * PROCESSOR *
* * ek ok ok ook ok Rokok ok
ook ok dkkk Aok
.
o
.
-
-
o
X

HERXREIHEREIRRE NN

* *
*_ ADJUST UCM *
TO REFLECT OPENx
* STATUS *

*
e 30 3 ke ok ko Kok ok k ok Kok

Xes o000

ERRREZEE AL SR N
* XCTL *
* TO PROCESS *

ok Rk ok kkk Rk ¥k

Charts 65

Chart 12. Initiator/Terminator Control Flow

RS P L L S E LT
* *
* ENTRY *
* *

kR koK ok ook ok ok ok ok

-
«FROM READER/
« INTERPRETER

Xe s oo

BTN NN

A e e R

* *

* INITIATOR *

* CONTROL *

Ak ok ok ko ok ok
.

Xe oo

AokkkRCI Kk kkkokkkkk

Hem e e e K kK

*

*ALLOCATION AND *

* SETUP *

R S e e e e
.

Xe oo

HkAokRD3 Rk kR kR kK
* *
L e e e s o o
* *
STEP INITIATION
* *
*kkkkk Rk Rk Rk kR Rk

Xeeoe e

*RRKEI Kk Hokkkkkk
* EXIT *
FkkkkR Rk kR R kkkk

TO PROCESSING
PROGRAM

HRkKF 3 kR kkokkkkk
* *
* ENTRY *

*
kkkkkkRkkkkkkkk

-
«FROM

« SUPERVISOR

«OR AN INIT/TERM
«ROUTINE

-

-

X
ERRRRGIHERER XXX RN
3A1%
Rt St S St St e et
* *
* TERMINATOR *
* *

Ak kR R Rk ok Rk kR Rk

Xeoso o

EEERHIERRRRRRNR

* *
* EXIT *
* *

kR EEERERFRREERRE
TO READER/

INTERPRETER OR
INITIATOR CONTROL

66

Chart 13. Pre-Termination Routine (IEFSDO034)

*RERKAL SRR REREKEK
*

* ENTRY *
* *
Hkkkkkkkkkkkkkk

FROM ABEND WHEN PROB PROG
ISSUES HIGHEST-LEVEL RETURN

Xeoooee

HRRERDLEERRRRERRR
* ACCESS *
* PTN'S PRSCB *
*THROUGH PNTRIN *
: CURRENT TCB'S :

X
RkkkkkRRR Rk Rkkkk

Xe o oo

oko

*e
¥ POST #,
«*¥FLAG ON (IS*e. NO * ISSUE MSG-——

*EREKC2UR KRR RRXE
* *

X *kkkkD2¥kkkkkkkKXK
*Ek¥D1 kkkkkkEKEK * *
* WAIT ON PTN'S # * ISSUE WAIT *
*SCHDLR—CONTROL *Xeeeoeeeekx TO DECREMENT *
* ECB * * WAIT COUNT *
FkkkRkERRKKKKKXK *

- khkEERkERR KRR EEEEE

-

-

e SATISFIED BY POST _IN

o IEFSD031 CHART 17

-

.

X

bt 2 S L LS L LS
* SET *
* FIRST-TIME *
WAITR SWITCH ON¥
* IF COMPLETION*
* CODE IS 4 *
*kkkkkkkkkkk Rk

Xeooso oo

HEEEF L RRERERREE
* *
* EXIT *
* *

kkkkkkkkkkkkkkk

TO TERMINATOR'S STEP TERM-
INATION ROUTINE (IEFSDO11)

PROBLEM PROGRAM HAS COMPLETED
JOB IS ATTEMPTING
TO TERMINATE IN THIS PARTITION

Charts

67

Chart 14. Termination Control Flow

*kkKAI kK KKK KKK XK
* *
* ENTRY *
Fkkkkkkkkkkkkkk
.
«FROM SUPERVISOR OR
«AN INIT/TERM ROUTINE

xXe oo

*kkkkB3kkkkkkkkkk
*IEFSDO11
*—k—%k—k—%k—%—%—%—%NO MORE STEPS
* STEP ®eesccsscscsccccsccscccccccccace
* TERMINATION *TO BE RUN
* ROUTINE *
Hokokokokdkokokokokok R ko ok Rk

.

Xeoo e o

*kkRCIkkkkkkkkk
*
* EXIT *

*
e

TO READER/
INTERPRETER OR
SYSTEM CONTROL
ROUTINE

HEREDIAE XK XX R
*
* ENTRY *

Fkkkkkkkkkkkkkk
o

«FROM READER/
« INTERPRETER
.
-

X
Rk KE S dok kR ok kK
15A1%

*1EFZA
Fm e e R W N R R

R R R R I N N R A S S S S A T S T T S ST ST SRS

* JoB *Xeeeeececccccccccsscscscsccsccce
* TERMINATION *
* UTINE *
¥k kkkkkokkkkkkkkk

-

Xe oo e

Fok ok kF 3 ok kkkkkokk
*
* EXIT *
* *
kR ERERRERREREK

TO _READER/
INTERPRETER

68

Chart 15. Job Termination Routine

1EFZA
dkokk AL ddkkdkkkkkdk
* *
* ENTRY *
*
e e e o o o e ol ok ok ok kR koK
*FROM READER/INTERPRETER
SCONTROL ROUTINE OR
SSTEP TERMINATION ROUTINE
:
ZAA100 X
*%xB1%kkk¥kkkk

GETMAIN FOR

* REG. SAVE ¥
*AREAes PDQy AND *
* DISP/UNALDC *

ARE

kXo o000

oko

Cc1 *e
o* *eo Fkkk
NO * *

*e
*- THERE A PDQ %
*o o

*e o ¥k Fokkk
*o ok
* YES
t*** .
*
* Dt *-Xo

-

ZAA300 X
*iii*plii*lll****
*IEFZA
——*—*—*—*—#—*—*
*
* PDQ D!R BLOCK *
* *

ek ok e ook ook ok ok ok okok ok k ok
.

ZAA3150
*****El***#***#**
*IEFZA
Pt S
* READ *
PDQ ENTRY BLOCK
* *

LR)

.
**** .
* F1 *oX-
-
* X
ZAA320 oko
F1 *eo
*eo dokdok
o LAST *e NO * *
*e PDQ ENTRY oe*eseeX* B4 %
*e BLOCK <% * *
*eo ok dokokk
*o ok
* YES
.
.
.
X
ke
G1 *eo
*e ****
NO *
.PDQ DIR BLDCK.‘.-..X’ D1 *
*e ¥ * *
*e ok kK
*e ok
* YES
XX N
* H1 *oXeo
*
Fokkk .
ZAAS20 X
*t***Hl###**t*tt*
*IEFZ

G
A
* JoB *
* TERMINATE SRT #
* CLEANUP *
e e e ok o ke kokok ok kkok ok

-
.
.
.
.
ZAA600 X IEFACTLK oo
PSP TR T2 Jz *. *tt*#d3¥*********
* *IEFACTRT
* .*!S THERE A *o YES talto e —*—*—*—*—*
* FREEMAIN *o-oocoooX*USER'S ACCOUNTe*oooeeoee Xk USER'S *
** *e RDUTINE ok * ACCOUNT!NG *
¥ *
##**#***#** *. ok **************#**
* NO .
- -
. .
X X
dokokkk Fokokdok
*16 * *16 *
* Al%x * Al
* % * *
*

TO READER/!NTERPRETER
CONTROL ROUTI NE

T0 READER/INTERPRETER

CONTROL ROUTINE
1EFS0008

ZAA4OO

ZAA4

*kkk
ZAA33

DATA *o

1 YE!
* iET RECEIVED .*....x* G4 *
*

Xe oo 0

Fk kR Codkkkkkkkokk
* *
* SET uP *
*LCT PARAMETERS *
* *

* *
KNI NN

#Xe o000

oke

D4 *e
. ¥ *e
o% IS DATA %

%o SET ON DeAe e*ecoese

*e DEVICE %
*e *

*e o¥k

Aok E G KRk kKK
* *
* TURN *
*ON DeAe SWITCH *
* *
* *
e o 3 ook ook ok ok

eXesessccces

20
*t***Fa*****x***t
*IEF2G
——*—*—*—*—*—*—*
* PERFORM DISP %
* ¥*

* UNALLOCATION *
Fkkkk ok kR Rk kokkkk

-
**** .

* G4 *.Xo
*

-
.
330 X
HEEARGHRRRXRXXRRE

INCREMENT
DATA SET
POINTER

ek ko ok okok ok kR Rk ok
.

LR X X R
EEX X 2

X
Fkkk
*
* F1 *

R

.
-
.
-
-
-
-

-
.
-
-
.
-

ERR

*

Charts

69

Chart 16. Shift Count Interrogator Routine (IEFSD035)

Fkk kAL kkkkkkkkk
* *
* ENTRY *
*

e e 3k ke ke e ok ok ok o ke ok ok ok ok

FROM IEFACTLK IF NO USER'S
ACCOUNTING ROUTINE——
OTHERWISE, FROM IEFACTRT

Xe oo oo

IR D] NI N
*ACCESS CURRENT *
* PRSCB THROUGH *
*Me Se RESIDENT *
* CONTROL DATA *

*

JOB IN PARTITION TO WHICH SCHEDULER IS
ASSIGNED HAS COMPLETED TERMINATION.

*
Fkkkk kR k kR
.
.
.
.
.
X
e¥e
c1 *eo Fokdokk C2k ok dokkkk
PE *e * * FEEKCI ok kR k
e% SCHEDULER *. YES * ZERO OUT * *
*e ALREADY IN o*ceceeeeeX® ANY REMAINING *ceoeeoeeX¥ EXIT *
ePARTITION X * SHIFT COUNT x *
e 0 o* . * * Fkdkdokkkkkkkkkkk
e o - B3NN
* NO .
. .
. . TO READER/INTERPRETER
- . CONTROL ROUTINE (IEFSD008)
. .
X -
ke .
D1 *o .
¥ *eo .
ok *e YES o
*e¢ SHIFT COUNT e*eccese
ZERO ok
*eo xS
*eo ok

Kk KE D kkkkkkkkkk
* *
* DECREMENT *
*SHIFT COUNT BY *
* 1 *

* *
ook de ok ook koK kK k ok ok

Xeoosse

kR RF L ok kkkkkk
* *
* EXIT *
*

ek ok o 3 3 o ok o ok ok ok ok ok

TO SCHEDULER UPSHIFT
ROUTINE CHART 17

70

Chart 17. Scheduler Upshift Routine (IEFSD031)

dokkA L ddkokkk Rk ok k
*

* ENTRY *
* *

R I
.

Xe oo oo

FHERABL R KRR E
*FREEMAIN
-*-*—t—*—*—*—*—*
*FREE CORE GOT- *
*TEN BY TERMINA-%
* TION ROUTINES *
BN I IR R
.

Xo o 00

Hokkk R C kR kkk kK *k
*GETMAIN
* e *—l—i—*—i—{—i
GET CORE
FDR USE_BY YHIS
ROUT INE

*t##***tt##******

Xeseee

*t***Dl******#t*#
*IEFSDO

-—*—*—*—*—*~*—#
*READ PTN A LCT *
SCTs + JCT FROM
*Q—MGR VAR AREA *
A ok ok ok ok ko ok ke ok ok ok ok

-

Xese e

ARREKE L AR AR RKEK
*[EFQMSSS

------ H—k—k
* WRITE PTN A *
* LCT/SCT/JCT *
*INTO FIXED AREA¥
Ak dkok ok kkkkkkkkkkk

.

Xe oo e

it S a2 T2
*FREEMAIN

o e o A
* FREE GOTTEN

* CORE (EXCEPT

LEX X X

* JCT)
ok ok koK ko ok ok kkok ok ok

Xe oo o0

kR RGL Rk kkkkk
* *

*POINTER TO PTN *
*WITH SCHEDULER *
* CONTROL *
* (SD33LNGH) *
RN NI RN XN

Xesooon

Ak kM kkkkkkdkkkk
* MAKE FORMER %
*PTN B VARIABLE *
* AREA AVAIL TO *

* Q-MGR RE= *
* ASS!GNMENT *
Fokkkkk kR kkkkkkkkk

.

.

.

-

.

.

X

FokkkkJ 1 kkkokkkkkkEk
* POST *
% SCHEDULER=- *
CONTROLL ING ECB¥
FOR PARTITION Ax

* *
ook ok o ok ok ok ok ok koK ok ok K
.

Xe oo oo

KKK L kkkkkkkkk
* WAIT ON PTN %

*
* B'S SCHEDULER *eesceceseXk
* *

* C B8
% o ok ok o ok ok ok ok ok ok kK

FROM SHIFT COUNT
INTERROGATOR (IEFSD03S)

FEokkK 2%k kkkkkokk

e dekokok kokok kK Rk kK

PARTITION B —— RELINQUISHING SCHEDULER CONTROL
(JOB HAS TERMINATED, SHIFT COUNT
WAS NON-ZERO)

PARTITION A =— NEXT-HIGHER-PRIORITY PAR
TITION (RECEIVING SCHDLR CONTROL.)

TO IEFSDO30 CHART 18 WHEN
SCHEDULER AGAIN RELEASED
* PARTITION B THROUGH WAITR
* IN PARTITION A.

Charts

71

Chart 18.

NI DN
*

* ENTRY *
*

ok ok ok ok ok ok ok ok ko

CHART

Xe oo st

ek B 2 3 ok ke ok ok ok k ok

INITIALIZE

LA X X
3 3 k3

Fok gk dodkokokk ook ok kkokk

Xe s oo

FRkERC2¥ kA F Rk Kk
* ZERO *
* OUT PTN B'S %
* PRSCB EXCEPT *
:POST FLAG + ID :

e 3 e o e e o o e ke e ok ok ek

Xe oo oo

t#***Dz******#**t
*GETMA

bl it A
* GET 488 BYTES *
* FOR THIS_RTN %
#(INCLe SCT/JCT)*
ok e ek oo oo kg ok ok ke ok ok

Xesooe

FERRREREARRERERE
*IEFSDO07 *
Hom e e A e e
* READ IN LCT =*
* USED_FOR *
* PARTITION A *
ek ok ok deok Kok ok ok Kok kok ok

-

Xe oo 0

*****FZ**********
*GETMAIN
——*—*—*—*—*—*-*
* GET_CORE FOR *
*LCT _TO BE USED *
* FOR PTN B *
e T e e s 2
-

Xe o000

Aok ok ok G2 %k kKA kkk

* SRT, +_TCB *
* PTR-s ZERO *
* REMAINDER *
ek sk ook ook ok ok ok ok Kok kR

Xe oo o0

*x***ua*:*:******

Aok kokokok Rk kR ok kR kkk

Xe s oo

ek J 230k ok k okok ok

*1EFSDOO *

e o o S o e e

WR‘TE PTN A LCT
IN A

* VARIABLE AREA *

e e ek ke ek kokokok dkok ok

Xe oo

IR QIR R RN
*IEFSD0O06 *
A S e e e — e e e

* GET *oe
TTR FOR JCT AND
* sSCT *

et ARk Aok ok ok deok ok k.

72

FROM IEFSDOSS

esssss st et

.
-
.
-
.
.
.
.
.
-
.
-
.
-
.
-
.
-
.

.
.
-
-
.
.
.

-
.
-
-
.
-
.

-
-
.
-
.
.
-
-
-
-
-
.
-
.
.
.
.

.
.
-
.
.
o
-
.
.
-
-
.
-
-
.

.
-
.
-
.
-
o

scsccee

PARTITION A —— I
PARTITION B -— N

ook kB4 3ok dok ok kkokk
*IEFQMSSS *
——*—*—* *-*—*-*

*

PARTIYION A SCT
AND JCT

-

Xe s oo

RREARCLH®HERHER

* *

* TURN ON FLUSH¥
B *

* PARTITION A*'S*k

* JCT *

e gededok koK kR kKK

Xe oo o

Fdkok kD4 kKKK kK kk
*

* PREPARE
* TO WRITE JCT
* AND SCT

EE R X R]

E T)
.

.
.
-
.
.

dededkok R E 4 ok kR Rk okokkkk
* *

* SAVE POINTERS *
*TO Q-MGR EXT INxX
* PTN A'S PRSCB *

* *
e 3 e ol e o e ok ok ok ko ko

Xe oo e

*****F4***t**t***
*IEFQMSSS

——*—#—*—*—*—*—*
WRITE PTN B JCT
* AND SCT INTO *
* FIXED AREA *
Heskokok ok ko ok %ok k kokokk

Xeoseae

*****GA**********
*FREEMAIN
‘-*—*—*—*‘*'*—*
* FREE ‘304 OF *
488 BYTES (SAVE
JCT FOR R/I1) *

Xeoo oo

L T e)

* SSUE *
* *PARTITION B *
* STARTED® *
* MESSAGE *
* *
okadkok ook kok ok Kk kokk Rk

.

-

.

.

.

-

X
HEREJLERRRRRERR
* *
* XCTL *

*
Fokokkdkdokkkokkkkk
TO READ!
(«

Scheduler Downshift Routine (IEFSD030)

SSUED WAITR

EXT

ER/INTERPRETER
IEFSD008)

LOWER-
RIORITY PARTITION

chart 19. Enqueue Service Routine

1GC0S6
FEERALHRERRNRRR
* *
* ENTRY *
Fddkodokkkokokkkokkokk
.
.
e« FROM SVC FLIH
.
.
.
X
o¥eo
B1 *eo
¥ *eo FokkEBX K kEkkKKEK
o ¥ « NO *
%eVALID REQUESTe*eeee X% ABEND *
*e . *
*a ¥ Fokodeakodok ok dokok ok kokok
*eo ok
* YES
.
.
.
-
.
X
deokdokok C 1 dkkkokokkokokokok HRERECTHRHEEEHE XN
*F INDMAJ * * *
e e o e e e TEST * SET *
.o X* FIND QcCB * eeesee Xk *AVAILABLE"' *eeoe
e *MATCHING MAJOR * - * RETURN CODE *
. NAM! * * *
- eokok ok kR ook ok ok k ok ok kok ddkkEdokkokokkkRkkkkk
* .
* %
*19 * .
* Blx .
kKKK .
X
¥y o¥g
D1 *eo D2 *o HEEFRDIkFkkkkIokkk
. . *e *
¥k *o XAMINE %o

¥ .
*eo

B
.
.
.
-
.
-
.
-
-
-
-
-
-
-
-
-
.
X

*okkkF 1kkokkokkkkkk
*FINDMIN *
He— e e Y e e — kR — X

* FIND QcCB *
*MATCHING MINOR *
*

*
L e e 2 2

#Xe 0000

e¥ae o¥
G1 *eo G2
-
¥ MINGOR
*eo QCB FOUND
*

. .
*e ok *eo
*o ok *e
* YES *

Xe o oo

L2222 SR 222 222222
*FINDQEL *
ke K e

* FIND *

* QEL MATCHING %

* MASK *

Ackdeokokokdkokkokokkkkkkk
.

-
.

X
ok Kk
*20 *
* Bl

* ¥

*

MAJOR NO o E
*eo QCB FOUND e¥eeoseeoeeXkoeRET PARAMETERe*e o
*q ¥

¥
*

*a

. *e
«¥ EXAMINE ¥,
X%¥eRET PARAMETERs*e
* *

-
¥

ok

-
.
.
-
.
.
.

sesessne

* SET
eeeee Xk YAVAILABLE"'
HAVE * RETURN CODE

USE, * SET

* ¥ % ¥

*
P e e e 2 T
-

PO

AR RKEI ke kF kR R KKKk

eseeX¥ MAJOR QCB, *eoe

*MINOR QCBs AND *
* *
Fkkkkkkkkkkkkkkkk

*kERRF Ik kkrrkk kX
* *

TEST * SET *
eoe e X¥ *AVAILABLE"* *eooe

* RETURN CODE *
* *

ek dekodok ok ok ok kR ko ok kK

FkkkKGIkkkkkkkkkk
* *

AVAILABLE
RETURN CODE

3ok % H

kR kkkkk Rk kR kk

Xe oo e e

HREXEHTIEE HEE XX XX
GET

*
NONE * STORAGE AND *

-
-
-
-
-
-

R EEREE]

se e 00 Xe

B
.
-
-
X
-
-

.
.
.
.

.
.
.
.
.
.
X

eecceeX¥ CREATE MINOR *coccccee
*

GCB AND QEL
ok kokokokok ok Rk ok okok ok ok

EHEEER

*21 *

* Bl¥
* %
*

Charts

73

Chart 20. Enqueue Service Routine (continued)

*Hkkk

*20 *

* Blx%

* *
*
.
.
X

o,y oo TESTSMC oke

B1 *o B2 ke FARRRBI Rk Aok kR kK B84
o¥k - * * ¥ *q
* DUPLICATE *. ¥ MUST - *e NO

eXee

* SET *
«X¥08 RETURN CODE *oe
* *

*e REQUEST BY % .
#eTHIS TASKe#* Si * *eREQUESTED« % -
*eo ok *eTEST) e ¥ * * *e o¥ -
e o¥ Ko ok 69636 9606369696 23N H, o¥ -
* NO * NO * YES -
. . . -
. . . .
- . - -
. . . .
. . X -
. X e¥e -
- #HC 2NN NENE Cc4 *e -
. * - *o -
. * * NO «*SUPERVISOR *. .
. * ABEND *¥Xeeseoseooeseccccssccscccsccsccsccsncssake ROUT INE ok .
- * * *REQUESTING«* .
. * * *eo - -
- Hookkok ok ok ke kR Kk *e o¥ -
. * YES .
. . -
- . -
. . -
. - -
X . -
oXe oke X .
D1 *o D2 *eo *okkkEDI ok kkkkkkkk Aok kD4 Rk ARk Rk kk -
o ¥ *o ¥ *o * * * SE * -
o¥ ALL *e NO ok RET *e YES * SET * *MUST — COMPLETEX* X
*¥eQEL'S SHARED e¥*eesosceceoX¥e PARAM 'USE' e*eceoececcee X¥'IN USE' RETURN¥* * FLAG (STEP OR *eececses
*e ¥ X *eo ok * CODE * *SYSTEM) IN QEL * X
*e ok . *e ok * * dodkokk
*e o - *o o kR ROk Rk ook Rk ok sk ok Rk kR Rk ok *21 *
* Y - * NO . * Bl%
. . * %
. . - *
- . .
. . .
X . .
ke .
E1l *e . * R kRKE 2%k K kok ko kokkk
o ¥ *e . *UPSVRB *
+**SHARED' OR¥, EXCL o W WU N W W R N
*e 'EXCLUSIVE' o%ecccece * INCREMENT *
eo REQUEST o *SVRB WAIT COUNT*
*e ok *
*e ok ok ook o ok ok ok ko ok
* SHRD .
. .
. .
. .
eXeoeo eeccscsccccsccce .
.
.
. FokkkkF 2Rk Rk kR kK
- * *
. TEST * SET *
. eeseX® 'AVAILABLE' *.400
. : RETURN CODE *
. .
. . ook e o o e e ok ek ok ok ok
. .
. -
- .
. .
- .
X .
ek, .
G1 *eo - *kokokdk G2 %k kkkkkkkk
. *e . * *
ok EXAMINE %o e USEs * *
*eRET PARAMETERe*eeecece o Xk *AVAILABLE* *
. . e HAVE ®* RETURN CODE *
*e oX . *
*o ok . ok ok kR kR ok Rk
* . .
-
.
.

Xe os e

HRRIRHDH RN XN
*

*
NONE * GET *
eeeseeXk STORAGE AND *eeee
*

* CREATE QEL -
* .
Aok Aok e Aok ok ok ok ok kR ok .
.
-
.
X

Fokokokk

*21 *

* Bl%

* ¥

*

74

Chart 21. Enqueue Service Routine (continued)

*kkkk
*21 *
* Bl*x
* *
*
TESTEND1
TESTEND2
.
*

MORE
*e ELEMENTS T
%« PROCESS
*

¥ RET
*.PARAM EQ TE
. .
*o o
ok
NO

*
.
-
.
-
-

TOP PARAMET
ON LIST, US
FOR REMAINL

LR X X

*
ededeokokokkokkokkok kR okkk

#Xe o000

E1l

ok SVRI
*e WAIT COUNT
*eo ZERO
*o
*e ok
* YES
.
.

.
X
OPRSMC o¥e
F *eo
e* QEL %

ok *o NO
*eMUST—COMPLETE e*e0cececsccccsccscccccccoscnccnse

-
*o YES

e¥esae

0
o¥

X
L2 a2]
*19 *
* Clx%

* *

*

*e
*e YES

STe¥eseesecccccscccccscccaccscsccascce

ER
E
NG

*e
*

ok

Aok ok kD 1 dedok ok ok ok koK
*

LEE X

-

o

NO * SAVE
esesccseXk REGISTERS IN
* TCB

EXITWAIT

HEERRE QIR HHIHHE R
* *

*

* *
ek o o e o e o ok okok ok ko

*eFLAGS ON o%
*eo ok
e ok
* YES
-
.
.
.
X
o¥e
G1 *eo
ok
«* SYSTEM
*eMUST COMPLE
*e
*e o ¥ .
*e o¥ .
* NO .
. -
- .
. -
- -
- .
X SETCOMP X)
FokkkkH] kkkkokkkkkx FokkkkH2% kb kkokk
* * * *
* SET ON 'STEP % *SET ON *SYSTEM *
*MUST COMPLETE® * *MUST COMPLETE® *
% FLAG IN TCB * * FLAG IN TCB *
* * * *
Fkkk ¥k *%k
- -
-
.
B .
- o
- X
. ek J 2% % ke kol ok ok ko
. *SETRSMC 2281%
. e e e e e o e i K
B * SET TCB *
. *DISPATCHABILITY#*
REQUIRED %
. Aok dkodok Rk Rk Rk kEk
- -
- -
. -
- .
eeccccscssccscsccscccccccccXe

RET X
I 2 N XN
* *

* DEFER *
* ASYNCHRONOUS *ee
* EXITS *
* *
oo e e e e e 3k ok o ok o ok ok Kok

¥eowese
*

.
.
B
.
-

EREEEEER)

.
.
.
.
.
.
-

-
.
.
.
.
-
-
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
X

EXI

KK KE 3 e dokdok kkk Kk
* *

*SET RESUME PSW *
X* TO SMC ADDRe *
* NEW TO GPR1S *

* *
ekl ok ok ok ook koo k ok

Xeo o000

*kkAFI kX kkkkkkk
* *
* EXIT *

ko kkkkkkk

TO DISPATCHER

T

Fekk kK 3 kk ok kokkkkk
*MCRET2 21A4%
e W e W W Y W N
X CHECK *
*AND SET RETURN *
* CODES *
dekk ok kR kkdkokkokkokk

MCRET2

.
X
PRSI VELEEEE L LY
* 4 *
* SCAN RETURN *
* CODES IN *
*PARAMETER LIST *
* *

e o b e ok ook ok ok kR Rk

*Xe oo 00

o¥e
B4 *eo

o ¥ *ao
*eo

% ALL Y
¥eRETURN CODES e¥eeceeccsccccccccoe
0 o*

*o ZER
*e ok
*eo o¥
NO

RN

e]
*

*PARAMETCR LIST *
* *
esddok ook ok ook kokkk ok

.
eXeosescsccccssaccscscsccccas

.
-

X
X DG KRN
* *
* RETURN *
*
Aok deokdokok ko kakok ¥k

Xeoooooeen

R COW XN R Rk
* *
* SET *
* GPR15 TO ZERO *
* *

* *
ek ok dokodokokok ok Rk

Charts

75

Chart 22. Must Complete Routine

L3322

*22 *

* Bl*
* %
*

coe

IEAGSM

SMC X
FkkkkB L kkkkkkkkokk
* *

* SET UP *
* BASE REGISTER *
* *

* *
HRREREREERAEREEER
.

.

.
X
ko
Cc1 *e
ok *eo ARk C2H KKKk KE
«* STEP MUST *. YES
. . e¥eosssseeXk RETURN *
*e REQUESTED« ¥
*o ok R e L e 2 L
*eo ok
* NO
-
.
.
.
.
SETRSMC X
FdkokD L kR kodok ke Kok
* *
* GET FIRST *
* PARTITION TCB *
* ADDRESS *
* *
e ook e ek A ook ok ok ok ok ok ok
-
Xk .
* * o
* E1 ¥eXe
*)
* k% X
¥
E1 *eo AokkkkE 2k Fok kR KKk RR
ok *eo * SET *
o% SET MUST *e NO * TCB *
- . e*eeseoceeXk DISPATCHABLE *
oREQUESTED * *
*e ok * *
*e ¥ Ao ke kok koo ook dkok
* ¥YES -
- .
.
. .
. .
. -
X X
HEHREF L HERXRREEER HHHRF IR HHREN
* * * *
* SET TCB * * GET *
* IN=- *ooeeeee e XEKNEXT PARTITION *
* DISPATCHABLE * * TCB *
* * * *
kR KRR ROk ARk Rk R KRR
.
.
.
.
.
X
oke
G2 *e FERAKGI KKK KK KK
¥ *o * *
ok *e YES * GET *
*e END e¥eesecees X¥REQUESTING TCB *
*e o% * ADDRESS *
. ok * *
*e ok Fokk Rk Rk Rk Rk Rk ko
* NO -
. .
. .
X .
*RHE .
* * .
* E1 % X
* * FookkokH 3 4ok Rk kR Kok
kKK

76

*SET REQUESTING *
* *
* DISPATCHABLE %
* *
dekdokkokokdokkkokkkkkk

Xeos s s

Aok J 3 ok ko okokok ok

*
* RETURN *
* *

LR e e

Chart 23. Dequeue Service Routine

WAL NI RX R
* *
* ENTRY *
*

Hekok ok ok ok ok ok ok Kok

FROM SVC FLIH

#Xe s o000

CHKLIST oke
*a
-* *. ****52*********

NO
-VAL!D REQUEST.........X* ABEND *
* *

PARMLDOP
*****cx**a*******
*F INDMAJY

B i S
* *

* LOCATE MAJOR *
* QacB *
e 3k o o A o e ok o ok ok ok ok ok ok

kX o o0

D1 *o

¥ *o
ok MAJOR *e NO
*e QCB FOUND %
*e ¥

*e ¥k
*e

Xe oo

HEREKE L HERRRERRR
*FINDMIN

o e e o o e e
* *
* LOCATE MINOR *
* QcB *
kekeokokodok ook ok ok okok ok

o

XX
* F2 %

*
Hkkok

#Xe o 00

e¥ka DQERR1
F1 *e
o® *e

ok MINOR *e NO

.* *q

Xe o o0 00000000ttt 00 et

YES

*****F3**********
*

es QCB FOUNDx*. RET o*o---.-..X*SET REYURN CODE*
*e - *eo *
*e ok *a
*e ok *****************
* YES -
. -
. .
. X
. Fkkkk
. *24 *
X * Fax
FREREG LKAk bk * %
* ****Gz****t**** *
TOP QEL *
#IN MINOR QCB'S * *ABEND WITH CUDE*
UE * 1
* ***********x***
******t******tt##
.
.
.
.
. PPN
X X
o¥e QELLIST oXeo DQERR2 e¥e
*eo H2 .
«% DID *. .* IS *e ok *e ok WAS ke
«% DEQ'ING *e NO *e EXCL <% END OF *e NO % (NEXT)QEL *e
eTASK ENQ THIS.....--..X*.EXCLUSIVE OR e¥esesoeeeX¥e QEL QUEUE o*eescseeceX*e ENQ'D BY -
*e QEl ok X *e SHARED ek X %« REACHED o% DEQ'ING o%
*e . . *e ok . . . *.TASK o%
*e ok . ke ok - e ok *e o
* YES - * SHRD Ty * YES * YES
. . . * * . .
. . . * H3 * . .
X - . * * X -
kK - . sokkk Ak .
*24 * . X * * X
* AL¥® «GETNEXT o¥a * F2 % DQERR2A ke
* % . 2 * * J dkokkok JSkkkkkokkd ok
* - X He ¥ * *
. * *
- *e RET = +X*SET RETURN CODE*
. B . * 04 *
. *e ok * *
- *e o¥ Y Y Y Y YL L]
. * * NO .
. . . .
. . . .
. . . X
- o . XN
. X . *24 %
«QELNEXT ke e¥e . * F4x
. K2 = *. K3 X * *
. ok WAS ¥e o ls AR ARRKRIAEE *
e NO <*(NEXT) QEL *e. YES *. EXCL *
eseek*e ENQ'D BY .*...-.-..X*.EXCLUSIVE OR e*eoee *ABEND WITH CDDE*
*e DEQ'ING eo% *e¢ SHARED % . * 530
*#TASK o% *e ok . x**************
*e oX o X X
* * SHRD R
. * *
. * H3 *
X * *
FdkkE *kkE
*24 *
* Alk
* %
*

Charts

77

Chart 24. Dequeue Service Routine (continued)

kKA kAo kK kkkk

* *

* SET RETURN *

cece e XX CODE 00 *
(AVAILABLE) *

*

*
IR NN
-

-
. -
- -
eXeoeoecoe
.

X
*****Bl****#t****
*DECTCB
——*-*-&-*-*-*-*
* DECREMENT
:TCB COUNT FIELD:

kR dokkkkkkkkkkk

Xy

X
*kkkkC 1 kkkkkkkkkEk
*

* COMPLEMENT

CURRENT QEL

* ADDRIF SHARED

ek ok o ok ok ok ok ok ok kK k ok ok
-

L R X X

Xe oo oo

REMO'

VE
#Dl#******tt*
*DQELEMENT

-—t~*-*-:-*—*-:
*REMOVE ELEMENT *
* FROM MINOR *

* QCB'S QUEUE = *kkk¥
kR kR kkkkk kR kK *24 *
- * E4%
. * *
. *
. -
. .
X
oke PROCMIN okae NXTINPUT X
E1l %, ii&**Ezii***;iiii E3 *o *****Ea****t**tt*
ok - *DQMINOR .* *. *FREEUP
ok MORE *e NO *-*—*—*—*-*—*-*-# MORE YES *—*-*-*—*—i~*-*—*
e QEL'S ON e¥eeoseeeeeXk REMOVE MINOR t------..x- MINOR QCB‘S .*........xt FREEMAIN FROM *
*e QUEUE <% * QCB FROM * *eON QUEUE o% X * REMOVED QEL'S *
*o o¥® * MAJOR'S QUEUE * *o ok - * AND/OR QCB'S *
*e ok EE T T S R P *o o¥ - Fkkdkkkk ok kR kK
* YES * NO -
. - *kk¥ -
. . . *24 * -
. . - * F4 *eXe
. . - * -
X - - L2 2] X
o¥ke PLUSQEL X eNXTINPT1 oko
F1 *eo kkkkkF 2Rk kkkkkkkk t*t**F3***t**#tt* - Fa .
o* *o *DECSVRB 25A1% *DQELEM - o¥ *eo
ok NEXT %o EXCL o e o o A e e e *—*-*—t—*—*-*—t-# - ok YES
t.OEL EXCLUSIVE-‘...---qu* DECREMENT * * REMOVE *eooe .INPUT ENTRIES.*.
*¢OR SHAREDe ¥ SVRB/TASK * *MAJOR QCB FROM * - -
o o° t SWITCH * * QUEUE . *eo o ¥ -
*e o¥ e e 2 sk Rk ok ok Rk kokkokk - *o ok
* SHRD . - * NO *kkkk
. *23 *
- @e00cccsrccceccsescscscccccsnccccscssccceXe . * D1%
. . . * ¥
- - .
X . .
ko X
G1 *eo KRk RRGE Rk kkkkkdkokk
¥ *eo . *RMCOMP 22B1*
o* *e YES e e e — o e
*eo REMDVED QEL .*o.-.o-o...o.o---o-.-----.........-.-q.-........c.-....--Xc * RESET *
*o SHARED % . * MUST—COMPLETE *
. ¥ . *
*e ok B Fdkkk kR kkkkk Rk
* NO . -
. .

Xe oo o0

.
- . -
. X .
- kR kH kkkkkkkkkk - FREREHE XX RRRREEN
. *DECSVRB 25A1% - *MCRET2 21A4%
- P s o e - Fme o o e e e K e
- * DECREMENT * . * CHECK *
- * SVRB/TASK * - * FOR _RETURN *
- * SWITCH * . * S *
. kR Rk kR kR Rk Rk Fekopkkkokkokokkkkokokkk
. . .
- - - .
. . . .
. . . .
. . . .
. X . X
. o¥e . ekeo
- J1 *eo - J& *eo
- . o* *, HEEE ISR K
«*¥DOES *NEW' %o YES * *
e TCB POINTER % ° o X¥ EXIT *
*e QUEUE % . *eEQe 'OLD®o% * *
- - . . *e ¥ kkkkkkkkkkkkkkk
. *e ok . e ¥
- * YES . * NO
- . . .
. . . .
. - . .
- . . .
X . .
o¥e - X
K1 *q - ‘****K‘**t#t*****
. o¥ . ****KS*********
oYES o¥ XT #o . OAD
eccoke QEL SHARED D R R R R R R R XL RY t EXIT PSN INTO #.....-..x* EXIT *
o¥ * *
’o ¥ t****i**tt#***t
e o¥ ##ﬁ‘tt*#*tt*#*t**
* TO DISPATCHER

78

Chart 25.

DECSVRB
dokkok kA 1 Ak ok ok kokok Kok
* *

* GET *
POINTER TO SVRB
* *

* *
ERRREE KRR KR RKEK

#Xe o

B1 *o
*

-
SVRB_ *e YES

o* IS
*e WAIT COUNT e*eoe
*eo ZERO -k
*q ¥
*e ok
NO

Xeoooe n

FkkRECLFRRRARKK TR
* *
* *
*DECREMENT WAIT *
* COUNT *

* *
W R IR T KR

#Xe o000

okeo
D1 *eo
ok

¥ SVRB
*eSTILL WAITINGe*eeo
*e ok
*o ¥

*e o¥
NO

*
-
.
.
.
X

o ke
E1l * o
**TASK®S ko
o% PRIORITY *e NO
*e HIGHER THAN e¥ece
o 'NEW' TCBe

* RESOURCE
Aokogok ok ook kkkkk
-

-
eXeoeseecose
-

Xe oo

kKRG kR kkkkkk
*
* EXIT *
RN RN N W RRRR

TO CALLING ROUTINE

-
-
-
-
-
-
-
.
.
-
-
-
.
-
-
-
-
-
.
-
-
.
-

*a -
*o4 YESX

ssen

.
.
-
-
-
X
.
-

-
.
.
.
-
B
.
.

.
-
.
.
-
-
.

RMCOMP o ke
A3

Decrement SVRB/TASK Switch Routine

.
o *o

ok *o
eRMC REQUESTED

- -
*eo ¥
*y o¥

* YES
-
-
-
-
X

oe¥e

B3 *eo
ok

*e
S *o STEP

¥ WA
*eSMC SYSTEM ORe*ecceecscccccccccas
STEP ok .

*eo
*e ok

*e ok
SYST

cee o0 x

X
kxR CI Rk kkkkk
* TURN *

* OFF *
* SYSTEM—MUST- *
* COMPLETE FLAGX

Xeososnvee

Fkkdkk Chkkrkkkk
* *

* TURN OFF *
* STEP—-MUST *
* COMPLETE FLAG*

IN TCB * * IN TCB *
ek dokokdkokk kkokkk Fokkokok ok ok R kR okk

- .

- .

. .

- .

- -

. .

X .
ek kKD 3 ke ko ok ok ok .
*SETRSMC 22D1% .

o e e o K e R X .
* SET_TC8'S * .
* DISPATCHABLE * .
* * .
Aok e gk ok koo ok ok ok .

. .

. .

- .

‘e .

. .

. .

X ALLOWAX X
EREREETE XX RH AHERRELEEHRHRERER
* * *
* RESET * * ALLOW *
* SIRB EXIT *eeoeseeseXk ASYNCHRONOUS *
* SWITCH * * EXITS *
* * * *
Aok ok ok kK kR Rk ke ok e kokokok ok ok kokak ok

.
.
.
.
.
-

X
KEKEFLHEHERRRRKR
* *
* EXIT *

*
ok g koK kok ok ok okokk ok

TO CALLING ROUTINE

Charts

79

Chart 26. ENQ/DEQ Validity Check Routine

Aok KA LRk KRR Kk
* *
* ENTRY *
* *
IR RN RN
.
.
.
.
X
CHKLIST eke
B1 *e
- ¥ *g B 2NN N XN
ok *e YES * *
%o SYSTEM TASK e*eeessseeX¥ EXIT *
*e ¥ *
*e ok dedokokoddokokokkkokkkk
o o¥
* NO TO CALLING ROUTINE
.
.
.
.
X
e¥e
C1 *e
- ¥ *e Fkokk C2% ke ke kkkdkkk
¥ *. YES * *
*eMUST/COMPLETEe*eoseeeeeXkABEND WITH CODEx*
* e REQUESTED« * * = *
- ok gk ok Kok kkok koK
*o %
*
.
.
.
.
X
e¥keo
*e
o* PARAM %, Fokokok D2k kK Aok kK Kk

% LIST IN *. NO * *
*o CALLING e¥ecceecsecesX*ABEND WITH CODE*
* * = *

*oTION o% P -

*e o¥
*
.
.
.
-
X
CHKFRNT %o INVALID
El *e

. *o kR RE2Fkkkk kK%
% MAJOR AND %o NO * *
eeeX¥e MINOR NAMES o*eceoeeceeeX*ABEND WITH CODE*
*e IN PI * X % = 4 *
*e ok . ook ok ok ok ok R kK
*e ok .
* Aokkk
- * *
- * E2 *
. * *
. Fokkk
X
eke
F1 *o

sessress s

-
.
-
-
-
-

-
-
-
.
-
-
-

80

* GET *
oo e XNEXT PARAMETER *
* *

. *e kEREF 2%k Kok kKKK
ok MINOR *o NO * *
%e NAME LENGTH e*eesoeceeeoeX¥*ABEND WITH CODE*

VAL * =

H
%

*o o LR S e 2]
*e o¥
*
.
.
.
.
X
oke
G1 *e
o* *

-
¥ ALL *e YES
*e REQUESTS e¥eeoccccscssccsccane

%o CHECKED o% -
*e . -
*e o .
* NO .
. B
. -
. .
- -
. X
X oke
Fkk kML Rokkk kR kk H2 *o
* * e¥ PARAM %o

e¢ CALLING o
* * * oPRTN o %
Aedokokk dokokokkok ok kokkok ok ¥e ok

* NO

R

Fokkk J2%kkdkokk kKK
: EXIT *
ek e ek ok ok ok Rk k.
TO CALLING ROUTINE

* %

¥ LIST *o YES
*eEXTENDS PAST oe¥eeese

-

X
*xkk
E2
Fkkk

LR

NOTE: VALUE OF X
IN ABEND CODE IS
0 IF ERROR

ON ENQ
8 IF ERROR
ON DEQ

Chart 27. 18K Configuration Load Module Control Flow

HENRAD KR NNNHRR

* *
*ENTRY FROM NIP *
* *

* JOB ROUTINE %
* *

* COMMUNICATION *
SK

CDMMAND ROUTINE LINK
*

% START COMMAND *
R *

****AS*********
* ENTRY
FROM SUPERV!SOR

XCTL* ROUTINE *

tsssssescesss e

.
-
.
.
.
-
.
-

.
-
.
.
.
.
-

Fdokkok kR ok Rk ok kR kR k%
«XCTL «XCTL
- .
. .
- .
. .
. .
. .
X X
*t***Bl***#***#**LOAD ok kk B 2% % kokk ok kkk FokkkkB4 kkkkkkkkkk XCTL *****BS**********
*IEFDCB *IEFINITL * *IEFIDUMP . oX*lEFSTERM
—*—*—*—*—*—*—*—*DELETE W W W N — e N Hm K Kk kK —k—k—K=K e ee — e — e ko —*-*
* ocB cece * READER/INTRPR * * . *JOB MANAGEMENT *
* REFERENCE * . *INITIALIZATION * *INDICAT!VE DUMP* e eeeee*INTERFACEs STEP*Xeee
* ROUTINE * - * ROUTINE * ROUT INE . e *TERMINATION RT *
ook b ok ok ok ok ok ok ke ek ko ok ok Ak ko t***#**#********* o o eeXKEEFKKKKKIKKIKKER
«XCTL XCTL e o o X
. eeescccccescrcccsscncccccaccesccsossace o o .
. . o e .
. - .
. . .
- . . P .
2 . X X . o «XCTL
Idokok ok C 1 Aok dokokkkk - FkkkkC2kkkkkkkkdkk XCTL HEAXRCTHXRHERRREE XCTL HHEHRCH AR EXRTR R o o HEARRECSEREEXXNNAK
*IEFMSGO1-07 **IEFCNTRL Xeooeoooe s *IEFINTFC *¥XeoeseeoeeXx[EFUJTERM * e o *IEFERROR *
——*—*-*-*—*-*—* i o S e o S e Ko Kk — *~*-*—*—*-*—*—*—* o o k—k—dk—dk—k—k—k—k—¥
* ...a....* READER/INTRPR * * READER/INTRPR * * JOB Xeeoso o ¥ JFCB
* MESSAGES *LOAD AND *CONTROL AND DD * * RE—-ENTRY * XCTL * TERMINATION *XCTL . * HOUSEKEEPING *
* *DELETE * ROUTINES *ooooesee X¥ INTERFACE *eosssceeX¥® ROUT INE e *ERROR ROUTINES *
Feodok ok ok KKk Rk Kk kKoK ek ook s ok e ok ok ok ok ok ook Aok Aok ok KoKk dok ok ok ***************** o Aok koK KoKk KKKk KK
XCTL o X XCTL XCTL » . XCTL X
. . .
- eessccee . .
- - . . . cesscce
- - . - . .
- - . XCTLe . «XCTL
- - . X . - X
- Fokok kD 1 kR Aok Rk . . R EEKDA Kk Rk KKKk kK RKDSKKERKKKKKR C
- *IEF1STMT . . *IEFSELCT *—eeceeee X¥IEFALOCI * T
- Rt e e e St . St . - - ok e R k= k- k=% XCTL ok K=k m k=% L
«X¥ FIRST * . * SYSTEM * # ALLOCATION *
* STATEMENT *q0X . *CONTROL ROUTINE* X*CONTROL ROUTINE*ee
- * ROUT * o o * * . * *
- Aokt AR R KRR KR ok o o R o ee eI NNNRRRNKK
- o o - e NO DD X .
- .o o . - STATE—- «XCTL o
- . o o . MENTSs .
- o o OPERATOR - - OR . .
- . o ACTION . . ERROR « .
- . PERMITS o o . * XCTL
- ALLOCATION - X
bbbl 3 Sl A A s S bk 5 RECOVERY - *****ES**********
- *IEFK4 * o o AND RETRY e o *IEFALOC2
- *—*—*—*—*—*—*—*—* o o . . *-*‘*—*—*—’—*—*—*
ese e XX *eoeXe o - . DEMAND *
- * CLOSE DEVICES * o o - . * AND DECISION *
- * ROUT INE o o e o * ALLOCN RTNS *
- *#t*t********#**t P o o EEEkRRKERRKERERERK
- o o . . «XCTL
- . e o . .
. . . .
o o . .
- . o - .
- . - -
- . o NOTE 1 LOAD AND . X
- 1 * . e *kkxk LINK kR EKF 3Rk RkkkkdkkDELETE e S e P T - kR AR E Skokok Rk R
- *1EFJ0B * . o *[EEMCRO1 *eeeseeee XXIEESTART *eeeoeee s XXIEEJFCB * e e«X*IEFALOC3 *
- e e o S e e ke kR P *-*—*-*—;-*-*—x—* LINK —*—*—*—*-*—*-*-* A e e et e e - chL*~*-*—*-t-*—*—* —%
aeeaXk *eoXe o ¥eeeoes * JFCB'S FOR * o *
- o o . * CDNSTRUCTIDN *
- .
-

HE KRR HHARER

Aok k G 1 ddokokodokkokokk
*IEFEXEC
W e Y N W Fm e R — N

X% *eo
:EXECUTE ROUTINE:
Fokokokok ook kokkkkkk Rk

sk H | dokok gk kkkdok
*IEFDD
B =

ceeX¥

*o
DD SCAN ROUTINE
* *
ke ok ok oKk ok Rk okok Rk ok

*****Jl****‘*****
*1EFCOMND
‘—*—*—*,*-*—*—*

se e Xk

S *oeo
COMMAND ROUT INE
* *
Fdeokokdkokkok Rk kkokk Rk k

LS a LSS 2 s 2222 2]
*IEFEOF *

-
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

.
xXe

* UT I *X
Aok ko kok kkkokkkk

x x
R R I R I I R R R N A A N A NN R R R R)

Oe

'Yy

6 6000060600000 0000000000000 000000s00ss 0000000000 00000000

SVC *IEETIME
EXIT*~*—*—#—*—*—*—*-*

* *Xeoe & ¥eeo0e * OUT INE
33363 I NN NN . o ok ok ok kokokkokok ok Kok - EE LSS A S s E L L L L]
X . o . L -
. B o . o IF .
. - o . «ERROR -
. - o . - “
. . o . - .
- - o . . .
. . . . X .
. - o o FokkkRGIHkkkkkkkkk . **tt*GA**********
- - o oo« X¥XIEEFAULT . X*IEESJFCB
. - Rt St Sk S St St ot et 3 *—*—*—*—*—t—*e*-#
. . - * * *INTERFACE WITH *
- . eseeece® FAULT ROUTINE * eeeeeX®* TABLE STORE *
. - * * . * SUBROUTINE *
. . EXI THkkdokkdkkkkkkkkkkk - EkkkkRERRERREEEERE
- . XXCTL o
- . o IF o
- - «ERROR .
- - . .
. .
- .
: : **&**Ha&**l*&**i& - HRR KIS R REHH
- - *IEESET *1EFJOBQE
- - * *-*-*_*_*-*-* * LINK *—*—*—*—*—*-*—t—*
- seccccecccse
- LINK*COMMAND ROUTINE* LINK *lNlTlALIZA;XDN *
- cee * RO
. ***#************* (AT !PL)*****************
. « XCTL
- -
. -
. .
. o
. X
. *****J3********t*
-
-
-

ececcsccscccccscas

SUPERVISOR TIME
* R

o NI *
FERERE RN KRR RRR

NOTE 1
N LOAD MODULES IEFINITL,
AND IEFINTFCe

THE MESSAGE MODULES IEFMSGO1 THROUGH
IEFMSGO7 CAN BE LOADED AND DELETED
AND ONE OF THE FOLLOWING MODULES,
IEF1STMT, I1EFK4s IEFJOBs, IEFEXECs
IEFCOMND, AND IEFOFe

IEFEOF,

NOTE 2

THE ASSEMBLY MODULE IEEMCRO1 IS INCLUDED
TEFCOMND,

BY
IEFCNTRL,
IEFDDs

PR R LR L E 22 Ll Sttt s

Xeoonn

*****GS****‘*‘***
*IEFALOC4

e — e e e R *
EXTERNAL ACTION
* AND SPACE
* REQUEST RTNS
sokokokkdokok Rk R okokokok ¥ ¥

«XCTL

rF=-0x

R R SH KR AOK

*IEFATACH *
R e R W
* STEP
* INITIATION *
ROUTINE *
t*******#**
.
-
-
-
-
o
x
LR E S NETE S 22222 Ly
* *
* *
* PROCESSING *
* PROGRAM *
* *
F TR R XA
-
.
-
-
.
.

X
Ak KSHR KK REEKE
* EXIT *
* TO SUPERVISOR *
* *
Wk kokkk Rk Rk Rk

Charts

-
B
.
-
-
.
-
.
-
-
.
-
.
.
.
.
.
-
.

*eone
*

81

Chart 28. 44K Configuration Load Module Control Flow

LOAD
AkokokkB 1 kK kkkkkkk AND
*IEFDCB * DELETE
e e Y e W W Yo W

* pcs *Xeoo
* REFERENCE * -
* ROUT INE * .
ek koo ok ook ok ok ok ok -

*****Cl*#******#t
*1EFMS *
—-*—*-#—*—*—*—*
* *Xeo
*
*

sccee

.o

* MESSAGES

ek e ek ok ok ok ok ok ok ok kXK
LOAD AND

DELETE
(NOTE 2)

X

*RAAKD L HRK KKK EKKR
*IEFMSGO2 *
Hm o e m Kmk— K
*Xoo
*

* oX
* MESSAGES

ok gkokdkk ok kR kR

-
-
-
-
-
.
-
.
-
-
-
-
-
-
-
-
.
-

I E | IR XN

*IEFMSGO3 *

Fm e e hm Km
*Xoo

MESSAGES

*
*
ek o o o e ok e ook ok ok ok ok ok ok ok

* X
*
*

.
-
-
-
-
.
-
-
-

seees e

AR RE 1ok kokkokkokk
*IEFMSGO4
Fm R o e K ke K— X

O N AN A A A A S AT AP N S N ST A S AT S ST S ST ST A ST AT A

* X X
* MESSAGES *

LT R T T

Xeeooo

-
-
-
-
-
-
-
.

H kA G 1 ek ke ok ok ok kK
*IEFMSGOS

s e e L S
* *Xoo
* MESSAGES *

ek ok o oo o e ook ok ok ok ok ok

-
-
.
-
-
.
-
-

Aok ol 1 dekokodkok ko ok ok
*IEFMSG06

Eant Set Dol Do Sk 2ok St St
* *Xeo
* MESSAGES *

Aok ok kokokok Rk ok kR kKK

dokkkokJ L Rkkokk Rk
*IEFMSGO7 *
e ot S S
* *

-
-
-
-
-
.
-
o
.
-
-
-
-
-
.
-
-
-
-
-

Xeoe

* MESSAGES

e e o o e e e ok ok e ok ok ko ok ok ok

*

NOTE 1 THE ASSEMBLY MODU

E:
1EFEOFs AND IEFCNTRL
THE MESSAGE MDDULES
CAN BE LOADED
DELETED BY IEFCNTRL AND
1EFEOF o

NOTE 2

82

A2 NN
* *
*ENTRY FROM NIP *
*

A dedkdkokok ko dkokokok ko

CTL

.
-
B
.
-
.

*****Bz*****t**#*
*IEFINITL
_—*-*—*—Q—*—*—*

* RDR/INTERP *
*INITIALIZATION *
* ROUTINE *

At e et ook ok ok ok ok ko

«XCTL

-

-

-

.

-

X
*****CZ**********
*TEFCNTRL
——*—*—*-*—*—*—*
* RDR/INTERP *X

AND JOB *X
* TERMINATE *

Eabb b R L EE 2L L 2SS
CTL

*****DZ*****#****
*IEF1STMT

A L
*
*
* *
ek o o o e ok o ok ok sk ok ok ok ok

*
.
.
x

FIRST
STATEMENT
ROUT INE

****iEziﬁl*******
*IEFNEWRD

t-t-*-*-*-*—*-t-*
* OPEN/CLOSE *o
DEVICES ROUTINE

X

#*x**Fz******xt*t
*1EFEO!
—-t-*-*-*—*—*-*

40008 00000000000 0000000000000 0000000

* END OF *eoX
* DATA SET
* ROUTINE *
B bt el
«LOAD AND
« DELETE
«(NOTE 2)

ecscsccce

FEEABA R LR RERE
*1EFIDUMP
—-*-*—#—*-*—*—*

* *
*INDICATIVE DUMP¥
* ROUT INE *

Aok ook ok dokokkokkokok

X

-

.

-

.

-

B

. XCTL

eescecsscscccssce
XCTL

ek ok ok A 5%k ek Ak ok koK K
* Y *
FROM SUPERVISOR¥
* *

Ak ok ok Rk ok ok ok

-

Xe oo eoveessoces ot

XCTL
23 %% C 5K %X XNk
«X*IEFSTERM *
F ok

- X% INTERFACE AND *
*

—*—*—*—*—t—*—*—* LINK

— *—*—*—*—*—*-

. oX* TERMINAT!ON *
. L
. .
. .
. .
. .
. .
. .
X XCTL
*****DA********** **t*tos#*********
*IEFERROR *IEFALLO
-—*-*-*—*—*—*-* *—*-*—*—*—*—*—* *
* JFC3 * * *
* HOUSEKEEPING * ALLOCATION *
*ERROR ROUTINES * * *
.
.
.
.
.
X XCTL
*okkokkE Sk dkk kR dk
* *
* *
* PROCESSING *
. * PROGRAM *
! * *
\ E
E TURN
«OR
«ABEND
-
-
.
.
X
*k KA Sk kKRR Ak
* *
* TO SUPERVISOR *
* *
sk kR kR
LOAD
AND
NOTE 1 DELETE
LIN *%G4 R
*IEEMCRO1 ...-.X*IEESTART *eoee X*IEFJFCB *
—-*—*-* k—k—k—%k LINK %— —*—*—*—* *-*-* F— ke k— ke
¥eooeee * JFCB'S FOR *
* COMMUNICATIDN * . *COMMAND ROUTINE* LINK * START COMMAND *
*Xeo o PR * ROUTINE *
. . . B
X . o e -
. . . . -
. . .
. . . .
. . . . -
.
. N . X -
. . o o HRHERHL - % ¥
. . e eeeX*IEEFAULT *X*IEESJFCB *
. . . Fm e e K R B e e
. . - * * *INTERFACE WITH *
- . . e% FAULT ROUTINE * * TABLE STORE *
. - * * eeeseX* SUBROUTINE *
. Rk .
. . XXCTL .
. . «IF .
- . «ERROR -
. . - .
. . . -
- - . .
. . - .
. . *****J4********** . Rk dok JS Rk kR Rk ok
- LINK *IEESET *EFJOBQE *
.
.

s

eee e X¥

ET
tCDMMAND ROUT!NE*.......

.X*INITIAL!ZATKON *
*

«XCTL
.
.
-

X
ek kI G 3%k %k ok kK

*1EETIME
0—*-*~*-*—*-*—*-*
eeeccccencscsscccccsssonk *
svcC *SUPERVISDR TIME*

EXIT * NE

******#**********

*k

(AT iPL)

Where more than one page reference is
given, the first page number indicates the
major reference.

ABEND ccccccocccsccoccccscsccsscscncsassasnnncas 23
Abnormal termination ccccececccecccccccas 13
Access MethOdS cceccececccccacsacsacsncaca 6
Assembly mOdUleS c.ccececcccccccccacances 37

BLDL rOUtiNe .cceececcccscacccaccascsnsananse 1
Boundary bOX ecccecececcscaccccncasass 22,33

CANCEL command ecceccececccecccccscaseaas 30,31
Catalog management ...cececeescccecccseass 6,12
Command ProcCessSing .ceceececececcccassceaes 17
Commands
CANCEL cccecccccscccsecscccccsscncascss 30,31
DISPLAY cccceccceccsccacscasnsscssas 30,31
MOUNT ccecesccsccsscscscsccacnaseasss 30,31
OpPEratoOr cceceececccccccccncacccnscncae 15
REPLY cececccccacecnccccnaannensaas 30,31
REQUEST (REQ) cccccsesccecseceass 17,30,31
SET eveceecesacaceacaeasasas 15,11,28,31,32
SHIFT ececcececseasessass 10,14,22,23,30,31
START (blank) ..ccececececceccececasss 30,31
START RDR <cecccacscasesesas 15,11,28,31,32
START WTR ceecccsacesessas 15,11,28,31,32
STOP eeeeeccecaccccccnacaccaansaases 30,31
UNLOAD eececceee cececsecsssccscsecess 30,31
VARY cecececceccsccancscacccnsoasnss 30,31
Communication task ...cc¢e2... 11,7,15,17,28
Router routine ...cececececcceccasass 28,30
WAIT YOUtINEe ccceccaacccacacccnassaccss 28
Confiquration, Option 2 .ceceeccececcacas 9
Console device processor
YOULINE cececescsccccascsccacncanacacss 28
Console interrupt routinececeeeece.. 28
Contents sSUPErvision .c.ccececcececccccccecs 6
Control blocks
attention ECB cceccesnsccascssacaaase 28,30
communication ECB ccccsceccacccccccsscs 28
Data Control Block (DCB)
Data Set Control Block
(DSCB)
DEQ cccoececsasscascaanccanscssccnass 18,19
ECB ccccecccacsccoscscscscscacscscnnsscncssase 23
ENQ ccecceaccscsscansssssnaccsccsss 18,19
Job File Control Block
(JFCB)
Major Queue Control Block ee.ceco.... 18,19
Minor Queue Control Block ...e2.... 18,19
Partition Related Scheduler
Control Block (PRSCB) ccceccecececesss 22,26
Program Request Block (PRB) .cccecee.. 15
Queue element .cccccecccccccaasca.s 18,19
Scheduler controlling ECB «ccecess. 22,26
SVC request block (SVRB) ..c.cce... 19,30
Task Control BloCk ccceceececccecacocassas 30
Control Program
Nonresident portion .c.ceeccceccccccceees 7
0rganization ecceccececcecceccccccccceacccasas 6
Resident portion c.ceececececececcceccccces 7

cscscscaccscs 12

ceccecccecccccscsccnscasscencs 12

eseccscccccescscscscncccscccss 12

INDEX

Control statements
DD teceacoccacnacaccccccscsccscsnncsanas 17

DD * deeeeececseacssccccccanssncacaacaase 17

End-of-data set (EOF)
EXEC cceccceccccccccccccscccscccccscscsanss 11
JOB tecececcscsccccacacacacnscccacncces 11
NULL cccccccccccsccccccsccnccccccccccce 17
PrOCESSINg eccceccecccecccccccccccccensce 17
Count
field TCB cccccecccacccccccccnaaasas 33,34
SHIFT ccceccceccccccccacscnacncecess 15,17

P I

DADSM ccceeccscsccsacasacenasncscccec-ocsecesss 6,12
Data control bloCK ecececececccccccccacancce 12
Data management ..c.ccececcecccccasccaccace 7
Data management routines ...ceccececese. 6,7
Data set control block ccccececcncccaceecs 12
DCB 2eccescasacccsccccscccsccccscscccccascace 12
DD cccecccasasccssacscsnscccscsccccssecss 12,13,17
DECSVRB subroutine .c.ccceccececcccssscsccss 35
DEQ macro-instruction 18,19,34,35,36
Dequeue service routine ..cccceecee... 18,35
Direct-access device space

MANAGEMENt . ccceccccccccccccsccscsccscceccce O
DISPLAY cOmMMANd cccceccencancaascasssas 30,31
Disposition and unallocation

SUDbYOUtine ...ceecceccccscccccccncccacas 23

DSCB ceceececaccsccncccscsccacccacnscccaas 12

28,30
3 . 1¢]
End-of-data Set ceececccccscsaccccacsaas 17
ENQ macro-instruction 18,19,34,36
Enqueue service routine ...ccecec..... 18,33
EOF ¢eececcasacccaccsscasaacsssasasncana 17
Event Indication List (EIL)
Exclusive request cecececececccccccccccces 19
EXEC ccceccccsccccacccancoscsasscsssascsassncces 12
External interrupt routine 28,32

ECB cecccccccsaccscsancsccsaccsccsccccnnns

P 11]

Free area queue element ..cceccececccaces 33

I/0 SUPEIViSOY ccccecccccccncccacannacs 6,7
I/0 supervisor transient area cecececececceese 7
Initial Program Loading (IPL)
Initialization, NUClEUS .cccceccceccccccces 7
Initiator/terminatorc..... 5,10,12,14,
15,17,22,25
INTERRUPT K€Y sececceacsesess 15,17,18,30,32
Interruption
attention c.cececeeccccccccccscecnncaes 17
external ..cccceccececcccccccsacccccnsss 18
handling cccececececcecccceccccccccccccee 6,7
SUPEYVIiSOY wececceccccccccnccccccnscsass 17
IPL ecececccccsccscacesass 71,10,11,13,15,31

cececsccacas 1

Job Control Table (JCT)
Job File Control Block (JFCB) ..c.... 11,12
Job management cceccececceccccccececacaces 5,15
Job scheduler .ccccecececscccacscccccnnccnas 15
Job statement condition code

YOULINE ccceeccccccasscccncanccncass 23,25

ceceacascass 25,26,27

Index 83

Job termination ..cccccececccccccccaases 17,25
Job termination control
YOULINE ceccceccccccccencccsncsccnne 23,25

LINK Macro-Instruction .cccecscecccccceaceas 7
Link Control Table (ILCT) 23,25,26
LINKLIB partioned data set ...cecceeees 7,37
LOAD Macro-Instruction .ceecececacccscceaas 9
Load mOodUleS .ccececcacssccscacncnasse 21,37

Macro-Instructions
DEQ ccceacccsacascnscscscsass 18,19,34-36
ENQ cccceccceccoccccancacssaassss 18,19,34,36
LINK ceccecccccsccscsscsccccccscscsnncncsne [

LOAD ccccceccnccacccacccsnccccscacnancccns 9

WAIT cececcccscccccascsasecsncasas 13,14,30

WAITR cceeeeacecccaceceass 13,22,23,26,32

WPO ececececacscccacccccacassasananss 17,28

WTOR ceccececccsccncsaascacscncasceass 17,28

XCTL cececccecccccccascocoacsnsncancccsancas 7
Main storage supervision ec.cccecececcss. 6,7
Major queue control block .c.cececeeccessa 18
Management, Catalog eccccceccceccccccsees 6,12
Management, JOb ..cccccceccccaccaacess 5,15
Master command processor

TOULINE cecececccsccccccacscanacenscs 28,30
Master command routinec..... 11,28,30
Master scheduler

(communication task) ..ccccceeeee. 5,11,17
Minimum required configuration ...ccccc.. 9
Minor queue control blockccc.... 18,19
MOUNT cOmMmMAand ceececeecescsccscccsscsascs 30,31
Must-complete ..cccecececcecccesceces 18,33-36

NIP ..ccecacccccacscsaccnnscccassanas 7,11,33
Nucleus e.cecececcaceceess 7,11,13,21,22,26,33
Nucleus Initialization Program . 7,11,33
NUCLEUS partitioned data set ...ceee.. 7,37
NULL ccccccaccccccccanscccsscancasacsccecse 17

OPEN/CLOSE/EOV ccccccccccccccccccccsas 6,13
operator commandS ececcecececescscsccsscscscse 15
Operator-system communication

PrOCESSINg ceececeeccccccccccecccccccaasa 17
Ooverlay SUpervision ecccecececececececceces 5,7

Partition-Related Scheduler
Control blOoCK ceeeccecccscccsccccces 22,26
Partitioned data sets

SYS1.LINKLIB ccccceaccaccccccanccasas 7,37

SYS1.NUCLEUS ..cccacecccaacasccacccss 1,37

SYS1.SVCLIB cccccccaccccaccacaccnsas 7,37
Pre-termination routine ..c.cecececee.. 23,37
Processing

comMMANd ccceeccacscccsccscsccancccsacncas 17

operator-system

commUNication ..ccccececcccecsccacascs 17

Program fetCch ..ccccceccccecccccaceccaaae 6
Program request blocks (PRB) 15,33
PRSCB cccccccccccsasccnccncsnanccnace 22,26

QCB cccecccccaceccecasccccscses 18,19,33-36
MAJOY ceecceccccceanscncaearass 18,19,33-36
MiNOY eecevaceccennececeaaasas 18,19,33-36
queue elementccccecece.. 18,19,33-36

Queue
element ...ccccccecesacssssee 18,19,33-36

84

system JOb cceecccccccccncccacacaes 13,14
Queue-manager's extent ...ecceccccccees 22,26

Reader/Interperter 5,10,11-15,25,26,
. 30,31
Release job queue routine eceececececeee. 25
Release-must—complete cececececccccccecss 3l
REPLY command ccccececcccecccccncsscss 30,31
Reply queue element (RPQE) cccecceccccess 32
Reply queue entry eccccecececcccccacceacees 30
REQ cOMMANd ceeeccesccccccccascess 17,30,31
REQUEST K€Y ccececccccacsncconsssaasnaas 17
Resident routines
BIDL cccccaccccaccsccacaccccccccscncsonnas 7
communication task cceceecececccceccccaces 7
contents SUPErViSiON ccececececcecccccceace 7
control program ecceceececcececccccccccces 6,7
data management c.ccccecccccccccccccccce 7
input/output SUPErvisSor ..cceecccecccecace 7
interruption handling cceececececccccccees 7
main storage SUpPErvision ec.ccecceeccecceces 7
overlay SUPErvisSion ccceececceccccecece 7
task management ..ecccececceccscccccccccccas 7
task SUPEYViSion sccccececccccccccccaas 7
time SUPErvision .cececceccececccccccceccacas 7
RET= parameter (ENQ/DEQ
MACYOS) ceececccsccsaccsassccscccnscsccas 33,304
RPQE (Reply Queue Element)

.

Schedule€r ...ccccececcscecsesss 9,13,23,26,37
Scheduler controller<..... 13,14,15,26
Scheduler controlling ECB ccceecccaccesces 22
Scheduler downshift routine ...ccccccec.. 26
Scheduler, jOb .cc.ccececccccccccccacacas 15
Scheduler upshift routine .c.cceee... 26,27
Scheduler, 18K .ccccecceccecceceeccess 37,7,38
Scheduler, UUK cc.cecccaccscacccases 37,7,43
SCT ccecoccccnsccccccccccccasas 11,22,25,26
SET command .ccecccceccecscecess 15,28,31,32
Shared request cccececececceccccacecccanasaass 19
SHIFT command .cccececeese-s. 10,14,22,30,31
SHIFT coOUNt ..cccccececcecccccancccncss 15,17
Shift count interrogation
YOULINE cececcecccccccccccccccnccncanas 26
Shift count interrogator .ccccececceeacess. 23
SIOT ceccoccccsccccccccscccccccncacsnesss 11,25
SIRB (System Interrupt Request
BlOCK) ceccecccccccccceccccccncacaccnsas 34
SMC (Set-Must-Complete)
START coOmMMANd ccecceeccccccacccccccccces 13
START (blank) command ..ccccecececees.s 30,31
START RDR command e«ceeee.... 11,15,28,31,32
START WTR command e<.eece..... 11,15,28,31,32
Step Control Table .ccccceee... 11,22,25,26
Step initiation c.ccecceccccceccccenccacass 17
Step Input/Output Table ccccccecececee. 11,25
STEP operand (of ENQ/DEQ)
Step termination .ecceccecceccccceccecccaces 17
Step termination control
TOULINE cceccecccciccccccsccccccconnnces 23
Step termination data set
driver routine cccececcecccccncccccccccas 23
Step termination routine ..c.cccece.. 17,23
STOP cOmMMANd .ccccecceccccsasccsncasas 30,31
SUPEervisor .cc.cceceece... 6,7,13,14,15,17,23
Input/Output c.ccceccccccccceccaaes 6,7,28

SVC cecvccecccacaccnnsccccscacccccnccnnscas 1

A X

eccececccscces 19

Supervisor request block

(SVRB) cecececcccoceccccanacansas 71,19,30,34
SVC transient area ...c.cceceecea.. 7,19,30,34
SVCLIB partitioned data set ..cccece.. 7,37
System _

AYEA cececccsccssccscssscscsnssnccncssons D

interrupt request block .ccccceceeecae. 304

job qUEUe .cieceeccccccccccccenase 13,14,22
SYSTEM operand (of ENQ/DEQ) .«cecececcecees 19
System-must-completecc000000... 18,33
SYS1.LINKLIB cccccccecccaccccacsccacnseas 7,37
SYS1.NUCLEUS .ccccesccscccscccncnassces 1,37
SYS1.SVCLIB ccccccccccccccacccncccseaes 7,37

Tables
Job control (JCT) ececasae... 11,25,26,27
Link control (LCT) ..ecee.... 11,22,25,26
Step control (SCT) ...c.ccc... 11,22,25,26
Step Input/Output (SIOT) 11,25
Task Inputs/Output (TIOT) ..cceeeecec.. 9,25
Volume table of contents
(VTOC)
Task
dispatching ceccecececcecceccccccaceccccnae 5
input/output table (TIOT) .ccccecee. 9,25
MANAGEMENt ccecccecccccncccccnccsoscccaas O
SUPErViSiOn ccccececccccccscsvccancnse 6,7
SWitChing ccceecececececececccascccccanees 5
TCB ecceccscaascsscscaccascsascassnanca 22,30
TCBCT (TCB count field) ...ccccceece.. 33,34
Termination .cccecccceccscscesaess 10,17,25
Abnormal .c.ceccececccccccccccccccccncas 13

evescscecsccsccasscncncecass 11,35

JOD tecicecccccacenacnccccccccaanss 17,25

StEPD eceecccccccccccccnccscccccnascccece 17
TEerminator ..cceecececcceccccccccccccssscs 10
Time SUPErviSion c.cccececececcccccccccaes 6,7
Transient area

Input/Output SUPEIViSOr eceeciececccececcas 7

SVC cieeccacececccsoscccsccncncannscnsne 7

Unit Control Block (UCB) .<.ce..... 28,30,31
Unit Control Module (UCM) 28,30,31
UNLOAD commMand cecececceccececccceccccccsecss 30,31

VARY commMand ccceccsceccccccacccssssss 30,31
Volume table of contents

(VTOC)
VIOC integrity eccececececcecsceccceccesss 11,35

P I IC 1.

WAIT macro-instruction ..<.<.cce.... 13,14,30
WAIT service routine .c.c.ceeceecececsccccecass 32
WAITR macro-instruction 13,22,23,26,32
WOE (WTO queue element)
Write-to-operator c.cccecccecececcsccccass 15
Write-to-operator with reply .c.ccesee.. 15
Write-to-operator routine 28,30,32
WTO macro-instruction ..cccccececcsceccces 28
WTOR macro-instruction .c.cccceceese.. 17,28

ccseecscccscnscs 32

XCTL macro-instruction ...eccaececceccccace 7

18K Schedulercceccccccocccessss 37,7,38
44K Scheduler ..ccceececccccecascceccss 37,7,U43

Index 85

Y27-7128-0

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENTS

IBM System/360 Operating System; Control Program With Option 2
Program Numbers 360S-CI-505, 360S-DM-508

¥27-7128-0

Your comments will help us to produce better publications for your use. Please check or
£fill in the items below and add explanations and other comments in the space provided.

Which of the following terms best describes your job?

I Programmer I Systems Analyst
I Manager I Engineer

I Operator X Mathematician

I Instructor X Student/Trainee

Does your installation subscribe to the SRL Revision Se
How did you use this publication?

X As an introduction

K As a reference manual

X As a text (student)

I As a text (instructor)

n For another purpose (explain)

I Customer Engineer
I Systems Engineer
I Sales Representative
X Other (explain)

rvice? X Yes I No

Did you find the material easy to read and understand?
Did you find the material organized for convenient use?
Specific Criticisms (explain below)

Clarifications on pages

Additions on pages

Deletions on pages

Errors on pages

Explanations and Other Comments

X Yes X No (explain below)

I Yes X No (explain below)

No postage necessary if mailed in U.S.A.

¥27-7128-0

FIRST CLASS
PERMIT NO. 116
KINGSTON, N. Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION
NEIGHBORHOOD ROAD
KINGSTON, N. Y. 12401

ATTN: PROGRAMMING PUBLICATIONS
DEPARTMENT 637

TSIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

