0S ISAM Logic
Release 21

Program Number 3605—10—526

This publication describes the program logic of the two indexed
sequential access methods: the queued indexed sequential access
method (QISAM) and the basic indexed sequential access method
(BISAM). It also discusses the relationship of indexed sequential
access method routines to other parts of the control program.

File Number S360-30
Order Number GY28-6618-5

Program Logic

Sixth Edition (February 1972)

This is a major revision of, and makes obsolete, the edition of this manual identified as
GY28-6618—4.

This edition applies to OS Release 21 and to all subsequent releases until otherwise indicated
in new editions or technical newsletters. Changes to the information in this book may be
made at any time; before using this publication in connection with the operation of IBM
systems, consult the latest SRL Newsletter, GN20-0360, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to
the IBM Branch Office serving your locality.

Forms for readers’ comments are provided at the back of this publication. If the forms have
been removed, comments may be addressed to IBM Corporation, Programming Publications,
Department D78, Monterey and Cottle Roads, San Jose, California 95114. Comments
become property of IBM.

© Copyright International Business Machines Corporation 1966, 1968, 1969, 1971, 1972

PREFACE

This publication describes the program structure of the two indexed sequential access
methods: queued indexed sequential access method (QISAM) and basic indexed
sequential access method (BISAM).

The manual is divided into seven sections:

“Section 1: Introduction” is an overview of indexed sequential access method
organization and an overall description of ISAM operations.

“Section 2: Method of Operation” comprises four parts:

1. ISAM common open, common close, and validation modules — a discussion of
the common processing operations for QISAM scan, QISAM load, and BISAM.

2. Queued Indexed Sequential Access Method, Load Mode — a discussion of the
operations and routines unique to creating data sets with QISAM.

3. Queued Indexed Sequential Access Method, Scan Mode — a discussion of the
operations and routines involved in retrieving and updating records sequentially
using QISAM.

4. Basic Indexed Sequential Access Method — a discussion of the techniques and
operations used in the direct storage and retrieval of records in an indexed
sequential data set.

“Section 3: Program Organization” contains flowcharts of individual ISAM routines.

“Section 4: Director” contains a table of ISAM modules, by type, and module
selection tables for QISAM load mode, open executors, and close executors.

“Section 5: Data Areas” contains descriptions of data management control blocks and
work areas used by ISAM.

“Section 6: Diagnostic Aids’” summarizes appendage, asynchronous, and exception
codes set and used by ISAM routines.

“Section 7: Appendixes” supplements this manual and program listings with a
description of ISAM data set organization (Appendix A) and the ISAM channel
programs (Appendix B).

Prerequisite Knowledge

Before reading this book, you should understand the material presented under
“Processing an Indexed Sequential Data Set” in OS Data Management Services
Guide, GC26-3746.

Recommended Reading

The following publications contain information that you may need in conjunction with
reading this book:

OS DADSM Logic, GY28-6607
OS Data Management Macro Instructions, GC26-3794

oS
oS
oS
os
oS
oS
(N

Data Management for System Programmers, GC28-6550
1/0 Supervisor Logic, GY28-6616

MFT Guide, GC27-6939

MVT Guide, GC28-6720

Open/Close/EOV Logic, GY28-6609

Supervisor Services and Macro Instructions, GC28-6646
Sytem Control Blocks, GC28-6628

iv

CONTENTS

Preface
Summary of Changes for Release 21

Section 1: Introduction
Open Phase

Processing Phase

Close Phase

Section 2: Method of Operation
ISAM Common Open, Common Close, and Validation Modules
The ISAM Common Open Executors
The Validation Modules
Common Close Phase Executors
Queued Indexed Sequential Access Method, Load Mode
Load Mode Open Phase Operations
Initial Load or Reload Open Operations
Resume Load Open Operations
Full-Track-Index—Write Open Operations
The Final Load Mode Open Phase Operations
Load Mode Open Phase Organization
Initial Load Organization
Resume Load Open Organization
Full-Track—-Index—Write Phase Organization
The Final Executors in Load Mode Open Phase Organization
Load Mode Processing Phase Operations
Put Routine
Beginning—of—Buffer Routine
End-of-Buffer Routine
Full Track—Index—Write
Appendages
Load Mode Processing Phase Organization
Channel Programs
Control Blocks and Work Areas
Load Mode Close Phase Operations
Load Mode Close Phase Organization
Queued Indexed Sequential Access Method, Scan Mode
Scan Mode Open Phase Operations
Scan Mode Open Phase Organization
Scan Mode Processing Phase Operations
Buffer Control Techniques
SETL Routine
Get Routine
EOB Routine
Scheduling Routine
PUTX Routine
ESETL Routine
RELSE Routine
Appendages

51
51
51
52
52
55
55
56
60
61
62
64
65
67
68
71
71
89
91

93

139
141

147
149
149
159
160
167
170
172
174
175
179
187
193
196
198

199
201
201
201
201
202
202
203
204
204
205

Scan Mode Processing Phase Organization
Processing Routines
Scan Mode Channel Programs

Scan Mode Control Blocks and Work Areas

Scan Mode Close Phase

Basic Indexed Sequential Access Method

BISAM Open Phase Operations

BISAM Open Phase Organization

BISAM Processing Phase Operations
An Example of BISAM Processing Flow
Privileged Macro—time Routines
Nonprivileged Macro—-time Routines
Appendage and Asynchronous Routines
Dynamic Buffering Routines
Check Routine

BISAM Processing Phase Organization
BISAM Channel Programs
BISAM Control Blocks and Work Areas
BISAM Close Phase

Section 3: Program Organization

Section 4: Directory
ISAM Module Identified in Alphameric Sequence

Section 5: Data Areas

ISAM Control Blocks and Data Areas
Data Control Block (DCB)
Data Event Control Block (DECB)
Data Set Control Block (DSCB)
Data Extent Block (DEB)
Input/Output Block (I0OB)
Buffer Control Block (BCB)—BISAM
Buffer Control Block (BCB)—QISAM
Buffer Control Table IOBBCT)
QISAM Load Mode DCB Work Area
QISAM Scan Mode DCB Work Area
BISAM DCB Work Area
QISAM Track-Index Save Area
ISAM DCB Field Area

Section 6: Diagnostic Aids
Appendage Codes
QISAM Scan Mode Appendage Codes
BISAM READ and WRITE K Appendage Codes
BISAM WRITE KN Appendage Codes
Asynchronous Codes
BISAM READ and WRITE K Asynchronous Codes
BISAM WRITE KN Asynchronous Codes
Exception Codes
QISAM Exception Codes
BISAM Exception Codes

vi

207
209
209
209
211
211
213
215
222

285

Section 7: Appendixes
Appendix A: ISAM Data Set Organization
Introduction
Data Set Structure
Prime Data Area
Index Areas
Adding Records to a Data Set
Detailed Index Description
Appendix B: ISAM Channel Programs

Index

vii

ILLUSTRATIONS

Figures

10
11
14
17
25
26
27
28
29
30
31

32

34
36
38
40
40
43
44
46
47
48
51
53
54
56
59
62
64
66
67
68
69
70
71
71
72
73
76
77
78

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

WXL R W

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

SIO Appendage for ISAM RPS

ISAM Open Flow of Control

RPS Identification Field in the Data Event Block
Flow of control through the Close Executors

Flow of Control through Load Mode Open Executors
Load Mode Put Routine

Load Mode BOB Routine

Load Mode EOB Routine

Load Mode Channel-end Appendage Routine

Load Mode Abnormal-end Appendage Routine

. Load Mode Processing Modules
. QISAM—Load Mode Channel Program Flow (Fixed—Length

Records)
QISAM—Load Mode Channel Program Flow (Variable-Length
Records)
Load Mode Control Blocks and Work Areas
The Flow of Control through QISAM Load Mode Close Executors
Flow of Control through Scan Mode Open Executors
Scan Mode Channel Program/Buffer Queues
Buffer Queuing and Movement in Scan Mode
Scan Mode SETL Routine
Scan Mode GET Routine
Scan Mode EOB Routine
Scan Mode Scheduling Routine
Scan Mode ESETL Routine
QISAM Scan Mode Processing Modules
Scan Mode Channel Program
Scan Mode Control Blocks and Work Areas
BISAM Open Executors
Flow of Control through BISAM Open Executors
Privileged Macro—time Routines
Nonprivileged Macro—time Routines
BISAM Appendage and Asynchronous Routines
Dynamic Buffering Routines
BISAM Check Routine
BISAM Processing Flow (Not WRITE KN)
BISAM Privileged Macro—time Modules
BISAM Nonprivileged Macro—time Modules
BISAM Asynchronous Modules
BISAM Appendage Modules
BISAM Channel Program Modules
READ K, WRITE K, READ KU Channel Program Flow
WRITE KN Channel Program Flow—Index Searching
WRITE KN Channel Program Flow—Add to Prime
(Fixed-Length Unblocked Records, System Work Area)

79

80

81

82

83

84

85

86

87

88

89

90

91
142
143
150
159
161
166
170
172
174
175
180
186
187
193
196
197
198
204
205
210
211
212
213
215
216
219
220
221
223

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

43.

44.

45.

46.

47.

48.

49.

50.

S51.

52.

53.
54.
S5.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
17.
18.
79.
80.
81.
82.
83.
84.

WRITE KN Channel Program Flow—Add to Prime
(Fixed-Length Unblocked Records, User Work Area)

WRITE KN Channel Program Flow—Add to Prime
(Fixed-Length Blocked Records, System Work Area)

WRITE KN Channel Program Flow—Add to Prime
(Fixed-Length Blocked Records, User Work Area)

WRITE KN Channel Program Flow—Add to Prime (Variable—
Length Records, System Work Area)

WRITE KN Channel Program Flow—Add to End (Fixed—Length
Records, System Work Area)

WRITE KN Channel Program Flow—Add to End (Fixed-Length
Records, User Work Area)

WRITE KN Channel Program Flow—Add to End (Variable—
Length Records)

WRITE KN ChanneLl Program Flow—Add to Overflow (Fixed—
Length Records, System Work Area)

WRITE KN Channel Program Flow—Add to Overflow (Fixed—
Length Records, User Work Area)

WRITE KN Channel Program Flow—Add to Overflow (Variable—
Length Records)

Elements of a BISAM Request

BISAM Control Blocks and Processing Modules

BISAM Work Areas and Queues

ISAM Modules Identified by Function and Mode

ISAM Modules Identified by Alphameric Sequence

BISAM/QISAM DCB

Data Event Control Block

Format-2 DSCB

ISAM Extention to DEB

ISAM Extension to IOB

Fields of the BISAM Dynamic Buffering BCB

Fields of the QISAM BCB

QISAM Load Mode Buffer Control Table

QISAM Load Mode DCB Work Area

Area Y: QISAM Load Index Fields

QISAM Scan Mode DCB Work Area

BISAM Work Area

Track-Index Save Area

TISA Control Fields

DCB Field Area

QISAM Exception Code Summary

BISAM Exception Code Summary

Indexed Sequential Data Set Structure

Initial Structure of Prime Cylinder

Structure of Cylinder Index and Track Index

Structure of Prime Cylinder after Cylinder Overflow

Structure of Prime Cylinder after Independent Overflow

Format of ISAM Index Entry

Description of Track Indexes

Description of Cylinder Indexes

Description of Master Indexes

ISAM Channel Program Summary

Flowcharts

95

98
100
101
102
105
108
109
110
114
116
130
133
134
136

137

Chart AA
Chart AB
Chart AC
Chart AD
Chart AE
Chart AF
Chart AG
Chart AH
Chart Al

Chart AJ

Chart AK
Chart AL
Chart AM
Chart AN
Chart AP

Chart AQ

First Common Open Executor (IGG0192A)

Second Common Open Executor (IGG0192B)

Third Common Open Executor (IGG0192C)

Fixed-length Validation Open Executor (IGG01920)

First Load Mode Open Executor (IGG0192I)

First Initial Load Mode Open Executor (IGG0192D)

First Resume Load Open Executor (IGG0196D)

Last Scan Mode Open Executor (1GG01924)

First Scan Mode Open Executor (IGG01928)

ISAM Common Close Executor Module (IGG0202D)

QISAM Scan Processing Module (IGG019HB)

Scan Mode Appendage (IGGO19HG)

Scan Mode Close Executor Module (1GG02029)

BISAM Open Executor—Load Privileged Module (IGG0192I)
BISAM Nonprivileged Macro—-time Processing— READ K,
READ KU, WRITE K (IGG019JV)

BISAM Privileged Macro—time Processing Module (WRITE KN,
without Read, and Update) (IGG019JX)

Xi

SUMMARY OF CHANGES FOR RELEASE 21

Control Block Changes

Several fields containing addresses of ISAM routines have been moved to the DEB
from the DCB and DCB work areas. These changes are for QISAM load and scan
modes and for BISAM.

New QISAM Load Mode Open Executors

There are two new open executors for load mode — IGG01925 and IGG01927. They
are executed when high—level indexes are created on 2301 and 2321 devices.

Summary of ISAM Modules

A table listing all ISAM modules in alphameric order has been added to the Directory.
The table indicates the pages on which each module is described and replaces individual
module names in the index.

Summary of ISAM Channel Programs

A table listing all ISAM channel programs has been added to the introductory text of
Appendix B.

Miscellaneous Changes

. This manual is to be used with MFT and MVT systems. All information about
PCP has been removed.

. New information has been added to channel programs 20 and VXCCW(1A) in
Appendix B.

. Technical and editorial corrections have been made throughout the manual.

xiii

SECTION 1: INTRODUCTION

Open Phase

The indexed sequential access methods (ISAM) are data management techniques used
for storing indexed sequential data sets on direct—access devices, or for retrieving those
data sets.

A detailed description of the structure of an indexed sequential data set is provided in
Appendix A of this manual. Detailed information on how to create and process an
indexed sequential data set is in the publication OS Data Management Services
Guide, GC26-3746.

ISAM routines are part of the operating system control program. They are grouped
into modules that are placed in the supervisor call (SVC) library during system
generation. Only the modules needed to perform those functions required by a
processing program are loaded into main storage from the system—residence volume.
Wherever possible, all processing programs use the same copy of a module.

There are two indexed sequential access methods: queued indexed sequential access
method (QISAM) and basic indexed sequential access method (BISAM).

QISAM has routines for two modes: load mode routines, which are used to create an
indexed sequential data set and to add records to the end of a data set; and scan mode
routines, which are used to retrieve and update records from a previously created data

set.

BISAM routines provide direct storage and retrieval of any logical record by its record
key. The BISAM routines also permit records to be updated in place. The BISAM
Write—-Key—-New (WRITE KN) routine provides the user a means of inserting new
records into an indexed sequential data set.

Routines within QISAM load mode, QISAM scan mode, and BISAM are divided into
three phases of execution: the open phase, the processing phase, and the close phase.

When a data control block (DCB) is opened to process an indexed sequential set, the
Open routine gives control to ISAM open executors. (The Open routine is described in
OS Open/Close/EOV Logic, GY28-6609.)

The ISAM open executors are modules that perform the initial ISAM processing. Open
processing is performed in two stages: the first or common open stage which is
executed for both QISAM and BISAM; and the second or mode—oriented stage which is
executed by separate open modules for QISAM load mode, QISAM scan mode, and
BISAM.

The common open executors receive control from the Open routine of I/0 support
when it is determined that an indexed sequential access method is to be used. The
same executors are used for both QISAM and BISAM. These common open executors
determine which mode of ISAM has been specified in the processing program and then
select the required ISAM modules from the system-residence library. The common
open executors determine storage requirements for the access method routines and also
begin the building of control blocks and control lists for subsequent use by the
processing and closing phases. When these operations are completed, the common
open executors transfer control to the mode—oriented, second—stage open executors.

Section 1: Introduction 1

The common open executors are described in detail in the first part of the Method of
Operation section of this manual; the mode—oriented executors are discussed in their
respective QISAM and BISAM parts.

Processing Phase

During the processing phase of indexed sequential access method operations, several
types of routines are invoked: these include input/output routines (in some cases, both
privileged and nonprivileged) and their related channel programs, channel program
appendage routines, asynchronous routines, and buffer management routines. Control
blocks, work areas, and queues are used by the processing phase routines and by the
corresponding channel programs.

When an input or output macro instruction is encountered in the processing program,
ISAM routines construct the needed channel programs for processing the data and
request the I/O supervisor to schedule those channel programs for execution. If an
error occurs during the execution of the channel program, the ISAM appendage and
asynchronous routines inform the processing program of the error. In the processing
phase of ISAM, buffers are allocated, queued, and scheduled (buffer management);
indications of whether or not the channel programs have been executed successfully are
given by both the buffer management and appendage routines.

Processing Routines

The ISAM processing routines select and complete the channel programs that store,
process, and retrieve an indexed sequential data set. These routines perform various
operations and construct different channel programs depending on the characteristics of
the data to be processed, the type of macro instruction issued by the processing (user)
program, and the indexed sequential access method (or mode) being used.

For QISAM load mode, the primary processing routine is the Put routine. The load
mode Put routine is used in creating or resuming the creation (see ‘‘Resume Load”) of
an indexed sequential data set.

In QISAM scan mode, five macro instruction routines are used for data retrieval and
updating; the scan mode routines are described under Scan Mode Processing Phase in
the Method of Operation section.

The BISAM processing routines consist of several variations of the basic Read and
Write routines. In BISAM, both nonprivileged and privileged routines are used to
facilitate channel program execution.

The QISAM load, QISAM scan, and BISAM processing routines are described fully in
their respective sections of this manual.

Appendage Routines

2 OS ISAM Logic

The appendages are routines entered from the input/output supervisor when a channel
program is to be started or when a channel program ends. The appendage routine
determines if additional processing is necessary before an input/output operation has
started or after it has been completed. For example, more than one channel program
may be needed to satisfy completely a specific input or output request from the
processing program. In such a case, the channel appendage would keep track of the

channel programs needed and assist in initializing and scheduling these channel
programs sequentially. Appendages may also schedule asynchronous routines to handle
the additional processing of an I/O request. (Appendages and asynchronous routines
are described in OS Data Management for System Programmers, GC28—6650.)

Rotational Position Sensing Start I/O Appendages

The rotational position sensing (RPS), start I/O (SIO) appendage routines decrease
channel time by disconnecting the channel from RPS devices whenever possible. This
is done by inserting channel command word (CCW) slots in the various ISAM channel
programs.

When an ISAM data set is being used with an RPS device, the RPS start I/O
appendages modify the channel command word slots dynamically to either an NOP, Set
Sector, Read Sector, or a TIC, depending on the device type and the channel program.

Three RPS SIO appendages are used: one each for QISAM scan and load modes, and
one for BISAM. These SIO appendages convert non—RPS channel programs to RPS
channel programs and vice versa, as necessary.

Conversion of a non—-RPS channel program to an RPS channel program involves:

. Conversion of the CCW slots from TICs or NOPs to Read or Set Sectors

. Possibly modifying a CCW’s command—chaining flag so that the RPS CCWs are
executed

. Interposing an RPS channel program prefix when the channel program starts with
a search ID of five bytes

. Setting up sector values where necessary

Note: The rotational position sensing (RPS) devices referred to in this manual are the
IBM 3330 and 2305 Direct—Access Storage Devices.

10S appendage
entry

Set up
channel program
for RPS

Return |t Update sector value

Figure 1. SIO Appendage for ISAM RPS

Set up non-RPS

channel program RPS device

Section 1: Introduction 3

Asynchronous Routines

Asynchronous routines are used in QISAM scan mode and in BISAM to perform any
additional processing of an I/0O request required when a channel program ends.

Complete processing of an I/O request may require several channel programs. For
BISAM, the asynchronous routines set up and schedule the requests as required. Also,
when I/0 request processing is complete, whether satisfactorily or in error, the
completion must be posted. These routines do the posting. For QISAM scan mode,
the asynchronous routine schedules the channel programs when the next record is to be
read or written on another device.

The appendage routines of QISAM scan mode and BISAM select and schedule the
appropriate asynchronous routines.

Further description of the scan mode asynchrcnous routines can be found in the
discussion of “Appendages” under “Scan Mode Open Phase Operations” in Section 2.
For more detail about the BISAM asynchronous routines, see ‘“Appendage and
Asynchronous Routines” under “BISAM Processing Phase Operations” in Section 2.

Buffer Handling Routines

4 OS ISAM Logic

Buffer handling or buffer management routines are provided in both modes of QISAM
and, optionally, in BISAM.

In QISAM load mode, the Put routine has two subsidiary buffer handling routines: the
beginning—of-buffer (EOB) routine and the end—of-buffer (EOB) routine. The BOB and
EOB routines perform both the Put move mode and Put locate mode processing.

In move mode, the Put routine and its buffer handling routines move an output record
from the user work area or input area to an output buffer.

In locate mode, the Put routine and its subsidiary routines give the address of an output
buffer area to the user; the user must move the record to the buffer.

In QISAM scan mode, five buffer queues are used to control input/output operations.
The queuing of buffers is handled primarily by the Get routine and its subsidiary
routines—the scheduling routine and the end—of-buffer routine.

In scan mode, a copy of channel program 22 (CP 22) is allocated to each buffer. The
buffers are manipulated among the queues and scheduled for I/O operations according
to the macro instructions issued in the processing program. Refer to the discussion of
“Buffer Control Techniques” under “Scan Mode Processing Phase Operations” in
Section 2 for a description of the buffer queues.

Dynamic buffering may be used in BISAM to allow the queuing of multiple read
requests. A buffer is automatically acquired from a buffer pool and assigned to the
request just before data transfer begins. The buffer is returned automatically to the
buffer pool when its contents are written, or it is returned under programmer control
with the free dynamic buffer (FREEDBUF) macro instruction. Dynamic buffering
requires relatively fewer buffers since the read requests waiting in the queue do not
monopolize buffers.

Close Phase

When a DCB for an ISAM data set is closed, the Close routine gives control to ISAM
close executor modules which terminate processing for the particular mode of ISAM
being used. As do the open executors, the close executors have two stages: (1) the
mode—oriented stage (that is, the load mode, scan mode, or BISAM close executors), and
(2) the common close stage executor.

When invoked by the CLOSE macro, the CLOSE routines first determine that an
ISAM data set is being processed. They then examine the DCBMACREF field in the
DCB to determine which mode of ISAM is in use and which mode—oriented close
executor should be given control. The close executors for load mode, scan mode, and
BISAM are described in their respective sections.

Section 1: Introduction 5

SECTION 2: METHOD OF OPERATION

Section 2: Method of Operation 7

ISAM Common Open, Common Close, and Validation Modules

There are three distinct indexed sequential access methods: QISAM load mode, QISAM
scan mode, and BISAM. Each comprises a group of modules.

In addition to the three separate groups of modules, certain ISAM modules are used for
both QISAM and BISAM processing. In particular, the three common open executor
modules (IGG0192A, IGG0192B, and IGG0192C), the common close executor
module (IGG0202D), and the validation open executor modules (IGG01920,
1GG01922, and IGG01950) are used in both modes of QISAM and in BISAM.

This part of the manual describes the common open and common close executors in
detail, and generally describes the validation modules which are further detailed in the
discussion of QISAM (load, scan) and BISAM.

The ISAM Common Open Executors

The first stage, or common, open executors receive control from the Open routine. A
preexecutor module of Open (module IGG0190W):

1. Reads in the additional DSCBs for this data set (if multivolume)
2. Tests first volume for a format—2 DSCB

3. Checks DSCBs for ascending order on the same sequence in which space was
allocated

4. Transfers control (XCTL) to the first ISAM open executor

The common executors, upon completion, pass control to second stage open executors
required to initialize the specific form of QISAM or BISAM called for by the
processing program.

The DCB Integrity Feature: ISAM routines maintain DCB integrity by preserving
pertinent DCB fields and maintaining the current status of these fields during
processing. The DCB integrity feature is invoked for the user whenever he opens with
DISP=SHR.

This feature prevents multiple tasks, when sharing the same indexed sequential data set,
from altering the data set without updating its attributes in the DCB. This could
happen if one of the tasks opens the data set for Write—Key—New and modifies an area
in order to change various DCB fields. For example, adding records to the last
prime—data track would result in updating DCBLPDA and possibly DCBLIOV.
Another task with concurrent access to the data set in QISAM scan mode would not
process the added records.

With the DCB integrity feature, any change in the DCB caused by a modification of
the data set causes a corresponding change in all DCBs currently open for that prticular
data set. An ISAM common open module, IGG0192C, determines whether another
ISAM data set has previously been opened, and if not, obtains space for a DCB field
area (DCBFA) associated with each ISAM data set that is opened. The DCB field
area is obtained (by a GETMAIN from subpool 255) by the ISAM open executor
module, IGG0192C, when a data set is opened for the first time.

Section 2: Method of Operation 9

10 OS ISAM Logic

The DCBFA contains the DCB information that can be changed while processing the
data set and is pointed to by all DCBs opened for that data set. The DCB fields that
require this updating are DCBLIOV, DCBLPDA, DCBNOV, DCBNOREC,
DCBNREC, DCBRORG1, DCBRORG?2, DCBRORG3, DCBST, and DCBTDC.
These fields require a 36—byte DCB field area.

During procesing of a data set opened for WKN or RU, ISAM routines gain access to
the associated DCB fields and modify them from the DCBFA. This eliminates the
possibility of a user’s inadvertently and incorrectly modifying these fields.

The ISAM open executors are each 1024 bytes in length and overlay each other in the
transient area.

The three common open executor modules are IGG0192A, IGG0192B, and
IGG0192C. The flow of operations among these executors and to the second stage
open executors is depicted in Figure 2.

Open routine
—_— —— — =

—
I IFG0198Y |
L

{

Common open executors

cooroa |
| 1GG01928 |

1GG0192C
[_feeomc

_—) -
-

Second stage |open executors

\

BISAM open QISAM scan mode QISAM load mode
executors open executors open executors
(see Figure 28) (see Figure 16) (see Figure 5)

L

Open routine

I

Processing
program

Figure 2. ISAM Open Flow of Control

Note: The second stage open executors return control to the Open routine of 1/0
support, which returns control to the processing program.

Common open executor IGGO192A receives control from the Open routine of
input/output support. The primary functions of IGG0192A are:

1.

It calculates the space needed for the DEB. (16 bytes are allocated for the DEB
prefix, and 32 bytes for the basic section of the DEB.) The number of extents
indicated by the user’s data definition statements is picked up from the DSCBs
(the data sets allocated must be online). The number of extents, plus 1, is
multiplied by 16. Thus, each extent has 16 bytes.

It executes a GETMAIN macro instruction for the DEB.
It places a pointer to the DEB in the DCB and a pointer to the DCB in the DEB.

It sets the pointer to the UCB in each extent (there may be from 1 to 16 extents
per volume.) The UCB in each extent points to the direct—access device where
the data set (or extent) resides.

It checks the devices allocated to the data set to see if these devices have the
rotational position sensing (RPS) feature and sets a bit in DSCCW1+4
accordingly. If bit O, 1, or 2 is on and if the data set is being opened for either
QISAM scan mode or BISAM, a count of 1 is added to the module count
(DEBNMSUB) in anticipation of loading the necessary RPS start I/O appendage.
(See the description of these bits in Figure 3, DEBRPSID.)

After the GETMAIN macro instruction has been performed for the DEB, IGG0192A
moves the byte at DXCCW1+4 to DEBISAD in the DEB; the result is that DEBISAD
has its high—order byte cleared to Os if no RPS devices are being used. If RPS devices
are being used, the bit is set as shown in Figure 3.

Field

DEBRPSID

Bit Setting Meaning

Prime is on an RPS device

Index is on an RPS device
Overflow is on an RPS device

An S10 appendage has been loaded
(set by IGG0192K)

[N Y

Figure 3. RPS Identification Field in the Data Event Block

Upon completion, IGG0192A transfers control to the common open executor module
IGGO0192B. The primary functions of IGG0192B are outlined below:

1.

1GG0192B uses the DCBBUFNO and DCBBUFL fields (plus 8 bytes for a
control field) to develop the buffer pool.

It develops the buffer control block (BCB), using DCBBUFNO and DCBBUFL,
and uses a GETMAIN from subpool 250 for the BCB space.

It also calculates the buffer lengths (using DCBBLKSIZE) and places the
calculation in the DCBBUFL field (unless the user sets up his own buffers).

The number of buffers (DCBUFNO) field is checked, and if none have been
specified, two buffers are allocated for the data set.

If the computed buffer length is inadequate, IGG0192B schedules an ABEND
with a completion code of hexadecimal 37.

Section 2: Method of Operation 11

6. IGGO192B then returns to the initialization of the DEB, initializing the extent
entries with the address and count fields already established in the DEB.

The DEB now contains the UCB pointer, the starting addresses of the extents
(cylinder, track, and head), and the number of cylinders per extent.

ISAM common open executor IGG0192B passes control to common open module,
IGGO0192C. The functions of IGG0192C are outlined below:

1.. Frees the inain storage space occupied by all data set control blocks (DSCBs)

except the format—1 and the format-2 DSCBs.
2. Sets the device type fields (DCBDEVT and DCBOVDEYV).

3. If the data set can be shared by two or more tasks (as indicated with a
DISP=SHR parameter in the JCL), IGG0192C executes a GETMAIN macro
instruction from subpool 255 for the DCBFA (DCB field area), unless the
DCBFA was previously obtained for this same data set.

The Validation Modules

Modules 1GG01920, IGG01922, and IGG01950 are open executors used to validate
and maintain DSCB and DCB fields for resume load, scan mode, and BISAM. An
initial load (or reload) in load mode does not cause execution of the validation
modules.

The operaﬁons done in 1GG01920, IGG01922, and IGG01950 are described in detail
below. Thereafter the validation modules are referred to in the load, scan, and BISAM
discussions.

Modules IGG01920 and IGG01922 process fixed—-length records and module
IGGO01950 processes variable-length records.

The validation modules may not be executed, although they are entered if the user has
specified that the data set may be shared by other tasks (DISP=SHR). They are not

- executed in that case because another DCB may have already been opened for the data
", set and a DCBFA (DCB field area) already set up for the purpose of maintaining the

12 OS ISAM Logic

DCB fields.

Open Executor 1GG01920
1. Validate and reset, if necessary, the following fields in the format—2 DSCB:

a. 'DS2LPRAD-—the address of the last record in the prime—data area. This
address is in the form MBBCCHHR and subsequently moved to the
DCBLPDA field.

b. DS2PRCTR—the number of records in the prime~data area. This count is
later moved to the DCBNREC field.

Open Executor IGG01922

1.

Validate and reset, if necessary, the following fields in the format—2 DSCB:

a.

DS2LOVAD—the address of the last record in the current independent
overflow area. This address is in the form of an MBBCCHHR address and
subsequently moved to the DCBLIO field.

DS2BYOVL—the number of bytes remaining on the current independent
overflow track. This count is later moved to the DCBNOV field.

DS2RORG2—the number of tracks remaining in the independent overflow
area; subsequently merged into the DCBRORG? field.

DS20VRCT—the number of records in all overflow areas; later merged to
DCBNOREC.

These fields may be incorrect if the data set was previously closed improperly.

Open Executor IGG01950

1.

Validate and reset, if necessary, the following fields in the format—2 DSCB:

a.

DS2LPRAD—the address of the last record in the prime—data area. This
address will be in the form MBBCCHHR and subsequently moved to the
DCBLPDA field.

DS2L.OVAD—the address of the last record in the current independent
overflow area. This address will be in the form of an MBBCCHHR address
and subsequently moved to the DCBLIOB field.

DS2BYOVL—the number of bytes remaining on the current independent
overflow track. This count is later moved to the DCBNOV field.

DS2RORG2—the number of tracks remaining in the independent overflow
area; subsequently merged into the DCBRORG?2 field.

DS20VRCT—the number of records in all overflow areas; merged to
DCBNOREC.

These fields may be incorrect if the data set was previously closed improperly.

Common Close Phase Executors

Like the open executors, the close executors are 1024 bytes in length and overlay each
other in the transient area. The common close executor module is module IGG0202D;
its functions are as follows:

1.
2.

4.

Obtains main—storage space for the format—2 DSCB.

Reads the format—2 DSCB, updates it from the DCB, and writes it back into the
volume table of contents (VTOC).

If operating with QISAM load mode, frees the main storage used for the load
mode work area and channel programs.

If initial load, sets bit 2 of the DCB status byte field (DCBST).

The flow of control through the I/O support routines and the stages of ISAM close
executors is shown in Figure 4.

Section 2: Method of Operation 13

Input/output
support
Close routine

|

\ ‘ QISAM load mode
QISAM scan close executors

1GG02021,0r
BISAM mode close 1GG02028.
close executor executor

1GG0202J,
1GG0202A 1GG02029 1GG0202K,

1GG0202L,
1GG0202m

ISAM common
close executor
1GG0202D

Input/output
support
Close routine

Figure 4. Flow of Control through the Close Executors

Queued Indexed Sequential Access Method, Load Mode

14 OS ISAM Logic

The load mode of QISAM is used to create (or recreate) indexed sequential data sets
and may also be used to reopen existing data sets to add records to the end of the
prime—data area. Creating a data set is called initial loading; recreating one is called
reloading; and reopening a data set is called resume loading. (See OS Data
Management Services Guide, GC26-3746, for a user—oriented discussion of resume
loading.)

Since it is part of the queued access method, load mode handles all required buffering,
blocking, and I/O activity synchronization.

There are three groups of QISAM load mode routines:
. The open phase

. The processing phase

. The close phase

The open phase routines include executor modules that perform tasks needed to open a
data set, initialize data areas, and prepare to load other routines for the processing
phase. The open phase executors receive control from the Open routine. The
processing phase routines include the Put routine (which receives control and is
executed when a PUT macro instruction is issued in the user’s program), appendages,
and channel programs. The processing phase routines perform the actual access

method functions in QISAM load mode. The close phase routines perform functions
essential to closing the indexed sequential data set when all processing phase operations
are finished. The close phase routines are executor modules that receive control from
the Close routine.

Load Mode Open Phase Operations

There are two stages of ISAM open executors. The first stage executors are entered
for all indexed sequential access methods and are the common open executors (see
Figure 2). The second stage open executors for load mode receive control from the
common open executors. These second stage executors perform initialization
operations required for load mode processing, whether creating, reloading, or resume
loading the data set, with either variable or fixed—length records.

The second—stage executor for load mode (module IGG01921) is entered for both initial
and resume loading to provide main storage space for the load mode work area.
ISLCOMON is the load mode DCB work area and contains the input/output blocks
(IOBs), location tables, counters, and various pointers. The load mode processing
modules and channel programs refer to and modify the ISLCOMON area.

The IOBs, tables, and pointers in ISLCOMON are used in scheduling, controlling,
checking the load mode processing operations, filling the buffers with records, loading
these records into the ISAM data set, and referring to these records and their locations
in the various ISAM indexes.

Besides obtaining main storage space for an initializing ISLCOMON, the beginning
open executor for load mode determines if the user intends to create a new ISAM data
set (initial load), to reload an old data set, or to reopen an existing data set.

Initial Load or Reload Open Operations

For the initial load or reload of an ISAM data set, the ISAM load mode open executors
structure, allocate space for, and format the prime—data area, the track—index area, and,
if specified, the high—level index areas. An initial load open module (IGG0192G) also
initializes fields in the ISLCOMON area to be used by the load mode buffering
routines.

The initial load or reload open routines of the load mode open executors also determine
whether or not the last track of the track index for each cylinder will contain one or
more data records, (that is, shared track). If there is to be a shared track, temporary
records representing each track—index entry (preformat) must be written so the first
data records can be written before the actual index entries are developed and written.
Refer to the descriptions of modules IGG0192D and IGG0192S in the discussion of
“Load Mode Open Phase Organization” for further information on the preformatting
of shared tracks.

Resume Load Open Operations

When opening an existing ISAM data set to add records at the end of the prime—data
area (resume load), the load mode open executors for resume load must ensure that the
addressing control fields for prime, index, and overflow records are accurate and usable
for locating the last records in each area and loading additional records into the data
set. Control fields for buffering and record—-moving logic must be initialized in
accordance with the dimensions of the already created data set; this is also done as part
of the resume load open operations. (Refer to ‘“‘Resume Load Open Organization” for
further details.)

Section 2: Method of Operation 15

Full-Track-Index—Write Open Operations

The Final Load Mode

The full-track—index—write feature of load mode allows for accumulating and writing a
full track of track—index entries as a group rather than singly (refer to ‘“Appendix A:
ISAM Data Set Organization”). The track—index entries are accumulated in the
track—index save area (TISA) shown in Section 5. A full track of track index is written
into the track—index area of the data set when the TISA is full, when end-of—cylinder
is reached, or when the data set is closed.

When the user opens the DCB for load mode and specifies the full-track—index—write
option (DCBOPTCD=U), the load mode open phase executors perform operations
especially for the initialization of the full-track—index—write feature. These operations
include acquiring the track—index save area, and initializing channel program 20 to
write the track—index entries from the TISA to the direct—access storage device.

Open Phase Operations

The final load mode open phase operations are performed for all load mode open
options. The final load mode open executors:

1. Load the needed ISAM load mode modules containing the appropriate routines,
appendages, and channel programs.

2. Initialize and execute channel program 19 for preformatting shared track in Area
Z of ISLCOMON when required.

3. Initialize channel programs 20 and 21 for writing track—index and high—level
index entries.

Load Mode Open Phase Organization

16 OS ISAM Logic

Load Mode Open Executor IGG01921

As indicated in the load mode open operations discussion, the first load mode open
executor, module IGG01921, is entered for both initial and resume load. The
operations for this module are outlined below.

1. Obtains main—storage space for the load mode work area (ISLCOMON) and sets
the work area pointers.

2. Fills in the load mode input/output blocks (IOBs) in ISLCOMON.

3. Determines from the DISP parameter the user’s intent to reload the data set;
resets the DCB status bits if necessary, and reinitializes the data set in
accordance with DCB parameters supplied in the DD statement.

4. Calculates and sets the DCBHIRPD field (highest record that can be written in
the prime area) and the DCBHIROV field (highest record of overflow).

5. Determines if track capacity of the independent overflow device is sufficient to
contain the maximum length record for an overflow chain (the longest possible
record in an overflow chain).

6. Checks the data control block for contradictory specifications; issues an ABEND
macro instruction if RKP + key length is greater than LRECL.

Upon completion of module IGG01921, the selection of modules to continue load
mode open operations depends on whether initial or resume loading is to take place:
this is indicated by Figure 5 which shows the flow of control through the load open

executors.

ISAM common
open executor

1GG0192C
Initial or Resume
Load Open Executors

Resume Loading
1GG01921
Vanable | Fixed
length length
Initial Load Records ’ Records
[= " (or reload)
Cylinder/Master
Indexes
1GG0192D 1GG01920
On On On
2301 2321 Other
Device *
Y / Y 1GG01950
1GG01925 1GG01927 IGGO192E 16601922
A
1IGG0192F 1GG0196D
1GG0192G 1GG0195G
Cylinder Master
indexes
1GG0196G

1GG0195D

Figure 5 (Part 1 of 2). Flow of Control through Load Mode Open Executors

Initial Load Organization

If an indexed sequential data set is to be created, the first load mode open executor
(IGG01921) passes control to module IGG0192D.

Section 2: Method of Operation 17

No Full Track Index Write

Full Track Index Write
Open Executors
FTIW
IGG0195T
FTIW
1GG0195U
e e e e —— e —— o —— -
Write-checking V No Write-checkin:
1GG0192U IGGO192R
Final Load Mode
Open Executors
1GG0192S
Write-checking l No Write-checking
1GG0192V 1GG0192T
A
1/0 support

Open routine

Figure 5 (Part 2 of 2). Flow of Control through Load Mode Open Executors

OS ISAM Logic

Load Executor IGG0192D

IGG0192D calculates several control fields needed in load mode processing. Listed
below are some of the primary functions performed by module IGG0192D in
structuring the prime—data area and calculating various DCB fields needed to allocate
direct—access device storage for track, cylinder, and master indexes:

1.

Determines if the higher levels of index are to be used and where they are to be
located.

Determines whether the track index will share a track with prime—data records
(shared track).

Uses the DEBFIEAD field (indicates if high—level indexes are to be used and set
from the user—specified OPTCD parameter in the DCB) to determine whether
high—level indexes are to be used. If the user has not specified an independent
index area, the DEBNOEE field is used to determine whether an independent
overflow area has been specified.

Module IGG0192D also sets indicators to specify whether the independent index,
the independent overflow, or the prime area is to be used for the high—level
indexes when they are requested by the user. The indicators are passed to
module IGG0192E, module IGG01925, or module IGG01927 when high—level
indexes are required. Module IGG0192D transfers control to module IGG0192F
if high—level indexes are not needed.

Before transferring control, module IGG0192D establishes several fields in the
DCB work area, ISLCOMON, to be used by other open modules.

Determines if the last index track can be shared by caiculating the number of
index entries required per cylinder and dividing by the number of entries that fit
on a track, to yield the number of entries on the final track and the portion of the
track available for data.

If a 3330 device is being used, IGG0192D treats the cylinder value on the device
as a halfword. It also refers to the two halfwords, defined in IGG01921
(described previously), rather than to the I/O device table for its track capacity
calculations for prime—data records. A similiar field is used during open
processing for the analogous calculations on the index device. However, this field
is already defined in the DSECT for the QISAM load mode work area and is
returned to its normal usage at the completion of open operations. The index
backup routine in IGG0192D set bits 1 or 2 of DEBRPSID, if necessary, as does
IGGO0195D.

The Load Mode Open Executors IGG0192E, IGG01925, and 1IGG01927

If in the initial loading (creation) or reloading of an ISAM data set, cylinder or master
indexes are specified, then executor IGG0192D passes control to module IGG01925 if
the indexes are on a 2301 device, module IGG01927 if the indexes are on a 2321
device, or module IGG0192E of the indexes are on any other device. The functions of
these executors are outlined below:

1.

Structures the high—level indexes, using information from the data fields
established by module IGG0192D.

Section 2: Method of Operation 19

2. Allocates space for the cylinder and/or master indexes in the independent
overflow, or prime areas depending on the user’s specifications (in his DCB and
data definition statements).

Load Mode Open Executor IGG0192F

If cylinder or master indexes are not required in the initial load for creating an ISAM
data set, then module IGG0192D passes control directly to module IGG0192F, instead
of IGGO0192E, IGG01925, or IGG01927. Executor IGG0192F might also receive
control from IGG0192E, IGG01925, or IGG01927 after the high—level index areas
have been structured. The primary functions of IGG0192F are:

1. Initializes several index location table pointers (the ISLIXLT fields in
ISLCOMON) to point to high-level indexes if these indexes have been created by
module IGG0192E.

2. Initializes pointers in the DCB to the high—level index entries.

3. Places the calculated amount of storage needed for cylinder and master indexes in
the DCBNCRHI field. This field of the DCB is useful to the user if he later
needs to bring the high—level indexes into main storage to search them.

4. Module IGGO192F also computes the number of tracks available for independent
and cylinder overflow and places this calculation in the DCB, the JFCB, and the
DSCB.

Note: When the JFCB or DSCB are modified, they are scheduled for rewriting.

Load Mode Open Executor IGG0192G

During the initial loading of an ISAM data set, control is transferred from module

IGGO0192F to executor module IGG0192G.

1. Module IGG0192G sets up the buffer control table (IOBBCT) used by the Put
macro processing modules.

2. Formats and initializes several fields in the DCB work area (ISLCOMON) which
are used later in load mode processing. These fields include:
. ISLCBF — a pointer to the buffer to be loaded next by the Put processing

routine.

. ISLBMPR — calculated by adding the logical record length to the key
length and used to facilitate ‘““stepping through” a series of records in
blocked buffers.

. ISLFBW — (equal to the number of buffers specified in the DCB minus 1)
used to determine when buffers are filled and can be scheduled for writing.

. ISLEOB — contains the end—of—block address calculated from adding the
contents of the DEBBUFL field to the starting address of the buffer.

Resume Load Open Organization

20 OS ISAM Logic

If the user is adding new records to the prime area of a previously created data set
(resume loading), then module IGG01921 doesn’t pass control to module IGG0192D
and the rest of the initial load modules; instead, control goes to the resume load
modules beginning with IGG01920 (and 1GG01922) or IGG01950.

The beginning open executors for resume load ensures the accuracy of the required
DSCB and DCB fields. If the user is resume loading a data set containing fixed—length
records, module IGG01920 is the first module entered. If variable—length records are
being added to the prime area, module IGG01950 is entered first.

=

Load Mode Open Executor IGG0196D

From module IGG01922 or module IGG01950, module IGG0196D is given control
during the opening of a DCB for resume load. The functions of IGG0196D follow:

1.
2.

Sets up the buffer control table.

Sets up the R, F, and P bytes for the current—normal and current—overflow
track—index entries.

Initializes and executes channel program 31A which reads the key portion of the
last overflow track—index entry of the last cylinder. CP 31A reads this last
overflow track—index entry into the key save area of ISLCOMON.

If necessary, module IGG0196D initializes and executes channel program 31B.
CP 31B is used when the last prime—data block allocated for the data set is not
full. CP 31B reads this unfilled last prime—data block into the first buffer
specified in the buffer control table.

Load Mode Open Executor IGG0195G

The next module, after IGG0196D, to be executed during open processing for resume
loading is module IGG0195G. IGGO0195G is the resume load counter — a part of the
initial load module IGG0192G. Both modules calculate and initialize fields in the
ISLCOMON area for buffer and record management in load mode. IGG0195G also:

1.

Sets up ISLCBF, ISLEOB, ISLBMPR, and ISLFBW in the load mode DCB work
area (ISLCOMON). (See module IGG0192G, and the ISLCOMON area in
“Section 5: Data Areas.”)

Sets the DCBMSWA field to the direct—access device address (MBBCCHH) of
the next—to—last track in the last prime—data extent. The DCBMSWA field
normally contains the address of a user—supplied work area used when records are
being added to an existing data set.

Initializes record moving logic.

Initializes Area Y, the load mode processing work area containing a high—level
index entry, and normal and overflow track—index entries. Area Y is shown in
Figure 68. ISLVPTRS (in ISLCOMON) points to area Y.

Load Mode Open Executor IGG0196G

1.

Sets the count fields in ISLCOMON as follows:

. ISLNCNT — the count field for the current normal—-track—index entry.

. ISLOCNT — the count field for the current overflow—track—index entry.
. ISLDCNT — the count field for the current dummy-track—index entry.
Sets the count field in the first buffer.

Checks the DCBST field to determine where the data set is loaded.

Reads in the last block to determine setting of appropriate IOBS field in buffer
control block (BCB).

Section 2: Method of Operation 21

Load Mode Open Executor IGG0195D

If the user has no high—level indexes (cylinder or master indexes), then upon
completion of module IGG0196G, all the open executors used for resume load only
will have been executed; the flow of control will pass to the rest of the load mode open
executors which are used for both initial and resume load.

However, if during the opening of a DCB for resume loading, high—level indexes are
required, control is transferred from module IGG0196G to module IGG0195D.

The functions of IGG0195D, the last resume load open executor, are described below:

1. Initializes the index location table (ISLIXLT) in the load mode DCB work area
(ISLCOMON). ISLIXLT contains the beginning and ending address for each
level of index above the track index.

2. Corrects the bin number in the index location table if the direct—access device
being used is a 2321.

Full-Track-Index—Write Phase Organization

If the full-track—index—write option has been selected by the user, two load mode open
executors (used exclusively with full-track—index—write initialization) are entered.
These modules are IGG0195T and IGG0195U. Both modules are executed during a
resume load when the full-track—index—write option has been selected. For an initial
load, module IGG0195U receives control from IGG0195T but is not executed.

Modules IGG0195T and IGG0195U are both described below.

Load Mode Open Executor IGG0195T

1. Calculates the size of the track—index save area (TISA). When the full-track—
index—write feature is selected, the TISA is used by the full-track—index—write—
put routine module (either IGGO01911 or IGG0192, see Figure 11) to accumulate
track—index entries and write them as a group. This is done once for each track
of track index. (The full-track—index—write is described in ‘“Load Mode
Processing Phase Operations.”)

2. Calculates the size of the appropriate version of channel program 20.

3. Obtains main—storage space for both the TISA and CP 20 and initializes both. If
main-storage space is not available, the full-track—index—write feature will not be
employed.

Load Mode Open Executor IGG0195U

If the data set is being opened for resume loading, IGG1095U initializes the
track—index save area and CP 20 to resume writing track—index entries. Otherwise,
IGGO0195U transfers control to the final load mode open executors.

The Final Executors in Load Mode Open Phase Organization

From the resume or initial load open modules, and from the full-track—index—write
modules (if used), control is passed to the final load mode open modules which are
used for all forms of load mode open processing.

22 OS ISAM Logic

Load Mode Open Executor IGG0192U

The first of the final open executors entered may be either module IGG0192U or
IGGO192R. IGGO0192U receives control if the user has specified that write—checking is
used; module IGGO192R receives control if write—checking is not used.
1. Load the modules that contain the:
. Macro—time routines — modules IGG019GB or IGG0191B for the Put
routine, or module IGG01912 for full-track—index—write routine
. Appendage routines — module IGG019GD
. Channel programs — module IGG019GF or IGG019IF
2. Module IGG0192U also obtains main—storage space for the channel programs
needed by the processing routines.

3. Module IGG0192U builds channel program 18 from its skeleton brought in by
module IGGO19GF or IGGO19IF.

Load Mode Executor IGG0192R

IGGO192R performs exactly those functions outlined above for module IGG0192U,
except those necessary for write—checking.

Load Mode Executor IGG0192S
Module IGG0192S receives control from either IGG0192U or IGG0192R.

1. This module builds channel program 19 from its skeleton. CP 19 is used to
initialize the cylinder overflow record and to preformat shared tracks when
required with fixed—length records.

2. If a track is being shared, the temporary index entries on the shared track of the
first cylinder are written. This is referred to as preformatting the first shared
track. Channel program 19 is used to preformat shared index tracks and to write
the cylinder overflow control record (COCR). The preformatting of shared
tracks pertains to fixed—length records only. Area Z in ISLCOMON is used as a
work area in preformatting the first shared track.

The description of module IGG0192D also discusses the shared track feature.
3. This module loads the RPS SIO appendage module (IGG019GG).

Load Mode Processing Phase Operations

When loading or resuming the loading of an ISAM data set, the user issues a PUT
macro instruction to place the record in the data set. The Put routine moves the record
to the buffer. When a specified number of buffers are full, channel programs are
scheduled to write the buffers into the prime—data area of the data set and to create or
update any required index entries.

An appendage routine analyzes the results of each channel program execution. When
necessary, the appendage routine will start a new channel program to continue or
complete the request, or it will process and resolve errors resulting from the channel
program execution. When necessary, the appendage routine will start a new channel
program to continue or complete the request, or it will process and resolve errors
resulting from the channel program execution. If the original request was successfully
completed, the appendage routine returns control to the user.

Section 2: Method of Operation 23

Put Routine

24 OS ISAM Logic

Information about the data set is communicated among the processing routines and the
channel programs in control blocks and work areas. These data areas are described in
detail in “Section 5: Data Areas.” @

This part describes the processing routine logic, the flow of control through the channel
programs, in addition to the relationships of the data areas to each other, the channel
programs, and the processing routines.

Successive PUT macro instructions cause entries to the Put routine which places
records into the data set and creates the necessary indexes. The records must be in
data key sequence. The Put routine (shown in Figure 6) may operate in either of two
modes: move or locate. In move mode, the routine actually moves a logical record
from an input buffer or work area into an output buffer. In locate mode, the routine
supplies the address of an output buffer to the processing program, which must then
move the record to that buffer. The mode of PUT is specified in the DCBMACRF
field of the DCB.

The Put routine utilizes the beginning—of—buffer and end—of-buffer subsidiary routines
to accomplish buffer management. The Put routine initializes the various channel
programs and requests their execution when writing data or indexes. The appendage
modules gain control after channel program execution and indicate whether or not the
writing was successful.

The Put routine first checks to see if the appendage routine has signaled (in
DCBEXCD1) an uncorrectable write error on a previous attempt to write either data
or index entries. If so, the Put routine takes the exit to the processing program’s
synchronous error routine, where the user may either issue a CLOSE macro instruction
or terminate the task. In any event, no more records will be accepted. The results are v
unpredicatable if the programmer issues another PUT macro instruction.

BN

The Put routine then performs a check on the data key. (In locate mode the key
checked is that of the previous record.) If the keys are not in ascending sequence,
control is given to the user’s synchronous error routine. However, in this case, if the
processing program is able to correct the sequence error, it may issue another PUT
macro instruction for this record, and continue normal processing.

For variable—length records, the Put routine compares the length of the record with the
maximum record length specified in DCBLRECL. If it is greater than the maximum
record length, the Put routine sets bit 4 of DCBEXCD2 and enters the user’s)
synchronous error routine. The user may either change the record length and reissue a
PUT macro instruction for this record or he may reissue one for the next record.

The Put routine next determines if the processing mode is move or locate mode.

Move Mode Processing

Fixed—Length Records: If the current buffer is full, the routine links to the
beginning—of-buffer routine to initialize a new buffer.

It then moves the user’s record to the buffer. If this record completes the buffer, the

routine links to the end—of-buffer routine to attempt to write the buffer. If the buffer

is not full but a write—channel program is available, the routine uses the end—of-buffer

routine to attempt to write any previously filled buffers which could not be written for

lack of a channel program. C{

The routine then returns control to the user.

Variable—Length Records: If the record format is blocked and the record fits in the
current buffer and/or on the current track, it is moved into the buffer and control is
returned to the user. If the record format is unblocked or if the current buffer is full,
control is passed to the end—of-buffer routine to schedule the current buffer for
writing. The end—of-buffer routine will pass control to the beginning—of—buffer
routine to initialize the next buffer. Then the record is moved into the new buffer and
control is returned to the user.

Entry from
PUT macro

Previous
permanent
1/0 error

Sequence check Set error signal

Error return

EOB routine

Locate

Current
buffer full

Attempt to write
current buffer

BOB routine BOB routine

Current buffer full Initialize new buffer

No r

Provide buffer pointer Initiahize new buffer

—g-

Move record
to buffer

Channel program

Current buffer full
available

EOB routine

EOB routine

Attempt to wr.te
current buffer

Attempt to write
previous buffers

|

¥

Y

Figure 6.

Load Mode Put Routine

P Return ’

If the record does not fit on the current track either as part of the current buffer or as
another block, the current buffer is marked as the last for the current track. Control is

Section 2: Method of Operation 25

26 OS ISAM Logic

then passed to the end—of—buffer routine to schedule the current buffer for writing.
The end—of-buffer routine passes control to the beginning—of—buffer routine to
initialize the next buffer. The record is moved into the new buffer and control is
returned to the user.

Locate Mode Processing

Fixed—Length Records: If the current buffer is full, the Put routine links to the
end—of-buffer routine to attempt to write the buffer just filled and then immediately
links to the beginning—of-buffer routine to initialize a new buffer. If the current buffer
is not full but channel program 18 is now available, the routine links to the
end—of-buffer routine to attempt to write any buffers that could not be written
previously because the channel program was in use.

The locate Put routine then provides the processing program with the address of an
available buffer and returns control to the processing program.

Variable—Length Records: The Put routine computes the number of bytes remaining in
the current buffer, using the buffer size and subtracting the sum of the logical record
lengths of the records that have already been placed in the buffer by the user. Then

the routine determines if another record of maximum LRECL can be placed into the
address of the available position in the buffer. Otherwise, if the number of bytes
remaining in the buffer is less than LRECL or if record format is unblocked, control is
passed to the EOB and BOB routines, as described in the discussion of move mode. If
it is determined the LRECL bytes added either to the current buffer or as another
block exceeds the remaining capacity of the current track, the current buffer is marked
as the last for the track. Control is then passed to the EOB and BOB routines.

Beginning
of buffer

Locate count field
in previous buffer

Will new count
start new cylinder

Preformat
new cylinder

Preformat

Initialize
new buffer

|
Return

Figure 7. Load Mode BOB Routine

Beginning—of-Buffer Routine

The beginning—of-buffer routine (shown in Figure 7) initializes a new buffer and
determines the device location into which the buffer will eventually be written. If the
records are fixed—length and the location for this buffer proves to be the first location
available for data records on a new cylinder, CP 19 may be called to preformat the
track index of the cylinder if it is to contain a shared track and/or a cylinder overflow
control record. In the preformatted records, only the count field is significant.

If writing this buffer causes the data set to exceed the prime—data space allocated to it,
or if the appendage routine has indicated that an uncorrectable write error occurred
during an attempt to add the previous contents of this buffer to the data set, the
beginning—of—buffer routine takes the exit to the processing program’s synchronous
error routine.

The user may either issue a CLOSE macro instruction or terminate the task. In any
event, no additional records will be accepted when either of these errors occurs. The
end—of-buffer routine is entered when the Put routine has determined that the current
buffer is full. The EOB routine initiates writing of the current buffer and any
previously filled buffers not yet written under these conditions: when the current buffer
is marked as the last one for the current tracks, or when the number of buffers ready
for writing is equal to the value of ISLFBW.

End—-of-Buffer Routine

The number of buffers that must be filled in order for a write to be scheduled (so that
the number of writes per track is kept minimal) is maintained in the field ISLFBW. Its
content depends on the number of buffers in the pool; however, it does not exceed the
number of buffers necessary to fill an empty tracy. if one is to be started or to fill a
partially written track if one has already been started.

If a channel program is available and if the number of full buffers is equal to the
content of ISLFBW, the end—of-buffer routine (shown in Figure 8) schedules a write
channel program for that number of buffers and then recomputes the number. If a
track or cylinder is to be completed, it also schedules channel programs to write index
entries.

End of buffer

Should Channel Schedule Compute number
write be program channel =1 of buffers to be
executed available program(s) written next

Y

‘ Return ’

Figure 8. Load Mode EOB Routine

Section 2: Method of Operation 27

Full Track—Index—Write

The full track—index—write is an option for load mode that may be selected by
specifying DCBOPTCD=U.

Channel End Channel End
CP 18/20 CP 19

Entry from 10S Entry from 10S

Reset CP 18/20 Less than 10
busy bit entries to write

Normal return
to 10S

\

Set status bits
‘Buffer Available’ for
each buffer written

Set CP start address
to skip cylinder
overflow control
record write

r 1

First execution
of CP 19

Update pointer to Initialize Final execution
next buffer group to count fields '”gf CXPC]S !
be written (IOBPTRA) inarea Z

EXCP return
to 10S

Normal return Normal return
to 10S to 10S

Channel End
CP 21

Entry from 10S

Master index
entries to write

Construct entry In area
Y portion of load
mode work area

{

Inttialize CP 21
to write
master index entry

EXCP return
to 10S

Figure 9. Load Mode Channel-end Appendage Routine

Normal return
to 10S

Note CP 21 writes the cylinder and master index entries
on initial entry to the cylinder index entry already
written

When the full-track—index—write option is specified, ISAM accumulates track—index
entries in a track—index save area (TISA) obtained during open processing and writes
these entries as a group, once for each track of track index.

The TISA obtained during open processing is preceded by a 20-byte control field
which controls placement of entries. If an area of sufficient size is not available for the
TISA, ISAM defaults to the usual mode of processing. (Normal and overflow entries
written at the end of each prime—data track.)

28 OS ISAM Logic

Appendages

The TISA is written when it is full, when end—of—cylinder is detected, or at processing
time.

There are both channel-end and abnormal—end appendages (shown in Figures 9 and
10) for the channel programs of load mode.

Channel-End Appendage: The channel-end appendage for CP 18 and CP 20 indicates
successful completion of the channel program to the Put routines. The channel-end
appendage of CP 21 indicates successful writing of an index record and determines
whether a higher level index entry is needed. If so, it creates that index entry and
issues an EXCP so that entry will be written. The channel-end appendage of CP 19
receives control after ten index entries have been written on a shared track and checks
to see if more are needed. If the track is not yet full, it continues to issue EXCP
commands until the track is properly formatted.

Abnormal-end
Appendage

Entry
from 10S

Permanent
1/0 error

Normal return
to 10S

CP 18 Set status bits Move first 16 bytes
prime data of buffer(s) of 10B to load
n error mode work area

'

Load reg 0—address
of buffer in error,
reg 1—address of first
1/0 error 16 bytes of 10B

!

Normal return
to 10S

Set DCBXCD1
uncorrectable -t

Figure 10. Load Mode Abnormal-end Appendage Routine

When write—checking has been specified, the CP 18 and CP 19 channel-end
appendages reinitialize those channel programs to reread the data or index entry written
before indicating successful completion. Appendages do not modify the channel
programs when CP 20 and CP 21 are used with write—checking, because those channel
programs are designed to read back without modifications.

Abnormal-End Appendage: The abnormal-end appendage for CP 18, upon finding a
permanent error, identifies the buffer in error, saves the contents of the appropriate
input/output block (IOB), and indicates the error to the Put routine. The abnormal-
end appendages for CP 19, CP 20, and CP 21 also indicate permanent errors to the
Put routine.

Section 2: Method of Operation 29

When write—checking has been specified, the CP 18 and CP 19 abnormal—-end
appendages have an additional function. If an error (for example, data check) is
detected during read—back, the appendage reinitializes CP 18 or CP 19 for writing and
issues the EXCP command.

Load Mode Processing Phase Organization

The processing routines of load mode include one module that contains the Put routine
and its subsidiary routines: the beginning—of—buffer (BOB) routine and the
end-of-buffer (EOB) routine. In addition, there is one module of appendages and one
module of channel programs. Each of these modules exists in several versions; the
version selected and executed depends on the options specified by the user. Load
mode open executors, IGG0192U and IGG0192R, load the proper version according to
the user’s program options. Figure 11 shows the load mode processing modules.

Module Name Additional Considerations Function

IGGO19GA No write-check

Fixed-length Records . .

. Put processing contains Put
Write-check
IGGO19GB rite-chec routine, EOB routine, and
. BOB routine.

IGGO19I1A No write-check

Variable-length Records
1GG019IB Write-check
IGGO1911 Full track index write No write-check

(Fixed-length records only)
1GG01912 Write-check
1IGG019GC No write-check Put appendage routines—
channel-end and

1IGGO19GD Write-check abnormal-end.
IGGO19GE No write-check

Fixed-length Records Channel program skeletons—
IGGO19GF Write-check contains CP 18, CP 19, CP 20

and CP 21.
IGGO19IE No write-check
Variable-length Records

IGGO19IF Write-check
IGG019GG RPS S10 appendage

Figure 11. Load Mode Processing Modules

30 OS ISAM Logic

PUT

{ l Yes

L CP 19 / CP 19 Appendage|
More preformat
entries to be
written

JNo

BOB Routine
- T /"
\ I
Calculate device l
address for buffer l
I
I
|

Will this
buffer begin new
cylinder

Preformat
track index

L _

EOB Routine

Update extent
number and
extent address

1 Jve

/ CP 21 / CP 21 Appendage
Write cyhinder
and (if needed)
master indexes

Next level index
to be written?

Jmo

CP 20A/
20B/20C
Write accumu-

lated track
index entries

Full track
index write
option

Full track
of track index
entries,

£
|
I
|
I
I
I
I
I
l
l
I
I
|
I
I
I
|
|

Accumulate
Write track track index
index entry in TISA
/ CP 18 / CP 18/20 Appendage!
Y o)

‘ rite prime

[o I data record
Y
(Return to user I

Figure 12. QISAM—Load Mode Channel Program Flow (Fixed-Length Records)

Channel Programs

The channel programs (except CP 31 and CP 91) exist in write—checking and
no—write—checking versions. CP 19 and CP 20 also exist in different versions for
fixed—length records and variable—length records. Figure 11 shows which channel
program skeleton modules are loaded for each combination of user options. Flow of
control through the channel programs is shown in Figure 12 for fixed—length records
and in Figure 13 for variable—length records.

Section 2: Method of Operation 31

BOB Routine
F———t———

| Y |
' Calculate device l
I address for buffer |
! |

EOB Routine
—

Update extent
number and
extent address

f Tve

/ CcpP 21] CP 21 Appendage

Write cylinder
and (if needed) Next level index
I master indexes, to be written?
| I No
T
|
I l crPi9 7 CP 19 Appendage

Cylinder
overflow option

Write COCR
on new
cylinder

Write track
index

Will this
buffer begin new
track

No

[cpis] CP 18/20 Appendagd

|
I
I
[
I
|
|
Y \ i _=J Write prime
L J data record

Y

(Return to user)

Figure 13. QISAM—Load Mode Channel Program Flow (Variable—~Length Records)

CP 18 Used to write prime—data records.

CP 19 Fixed—length Records: used to initialize cylinder overflow record and shared
index tracks (preformat).

Variable-length Records: used to initialize cylinder overflow control record.

CP 20 Used to write track—index entries.

32 OS ISAM Logic

—

CP 20A

CP 20B
CP 20C
CP 21

CP 31A

CP 31B

CP 91

Control Blocks and Work Areas

Used to write a full track of track—index entries on a nonshared track of
track—index entries.

Used to write a shared track of track—index entries.
Used to perform write—checking for CP 20A and CP 20B.
Used to write cylinder and master—index entries. |

Used to read the key portion of the last overflow track—index ehtry of the
last prime—data cylinder into the key save area. (Resume loading only,
located in IGG0196D.) :

Used when the last prime—data block is not full enough to read it into the
first buffer specified in the buffer control table. (Resume loading only,
located in IGG0196D.)

Used to fill unused index tracks with inactive and dummy entries. (CP 91 is
located in IGG0202K.)

Information about the data set and processing requests is carried in various control
blocks and work areas. The relationship of these areas to each other and to the data
set and processing programs is shown in Figure 14.

Load Mode Ciose Phase Operations

The first load mode close executor is entered from the Close routine. When all
previously scheduled writes are finished, the load mode close executors complete the
data set activity for load mode. The load mode close phase:

. Pads the last buffer

. Completes the writing of buffers

. Completes the writing of index entries

. Writes end—of—data mark

. Pads track indexes on unused cylinders

. Pads high—level indexes

Load Mode Close Phase Organization o |

The close phase of QISAM load mode comprises six executor modules that perform
operations required to complete data set activity when a previously scheduled write
operation is completed.

Section 2: Method of O‘pération 33

DCB

DCB WORK AREA (ISLCOMON)

NOTE Displacements are in hexadecimal

Channel Programs

Figure 14. Load Mode Control Blocks and Work Areas

(A 0 ECB 10BA
14 | DCBBUFCB 2c £CB 1088 P18
20 DCBDEBAD
(58 ECB 108C
84 Area Z (Preformat Work Area) CP 20/20A
DC Index Location Table cP 21
E4 DCBWKPT1
FO | DCBWKPT4 —’@
F4 DCBWKPTS @ 144 Various buffer/data set work CP 19/91
F8 | DCBWKPT6 fields and pointers
\ 284 cP 31A/318
ISLVPTRS CP 208
(Pointers to CPs, Area Y)
CP 20C
Buffer Control Table
TISA
/_“DEB > Area Y
-20 | * SIO appendage
-18 | t CE appendage table)—-b-@ Key save Area
-14 | 1 AE appendage table > @
ISAM DATA SET
& Prefix section
_ Index
18 | DEBDCBAD Basic section BUFFERS
— 1C | DEBAPPAD C
20 # Index DEBFIEAD —
24 | #Prme DEBFPEAD M~ O
28 | #Overflow DEBFOEAD ™'*™ -
o1 2C | t ISAM Extension
- Prime extents =+ Prime ('_
C
= Index extents = -—
L
= Overflow extents JN <—
T Module ID table ES Overflow (|
k—. 1 Put module
@ ucB
‘ Vector table __ |
RPS - T~
sio Put module Put
appendage app:nldage
module
!

Load Mode Close Executor IGG02021

After receiving control from the Close routine for a fixed—length record data set,
1GG0202I does the following:

1. Pads (fills with dummy records) the last buffer, if necessary

2. Writes all filled but unwritten buffers

3. Completes the index entries

34 OS ISAM Logic

Load Mode Close Executor IGG02028

This module receives control from the Close routine for variable—length record data
sets only. It then:

1. Pads the last buffer when necessary
2. Writes all buffers that are filled but not yet written into the data set

3. Completes the index entries so these reflect the complete data set

Load Mode Close Executor IGG0202J
1. Writes the end—of—data mark after the last data record

2. Writes the end—of—file mark in independent overflow

Load Mode Close Executor IGG0202K

1. Performs calculations for modules IGG0202L and IGG0202M in padding unused
index space

2. Initializes channel program CP 91 which is used to fill unused index tracks with
inactive dummy entries

Load Mode Close Executor IGG0202L
1. Writes the final dummy end—index entry.

2. Pads, with inactive entries, the unused track—index space of the cylinder
containing the last prime—data record. Module IGG0202L uses ISLNIRT to
signal the end—of—track index padding.

Load Mode Close Executor IGG0202M

1. Determines if higher level indexes exist and, if so, writes the final dummy entries
for them.

2. Pads any unused index space with inactive entries. (See ‘“Appendix A: ISAM
Data Set Organization” for information on dummy entries and padding.)

The flow of control through the close executors is shown in Figure 15. After the
mode—oriented close executors have completed their functions, the ISAM common
close executor (IGG0202D) receives control. After completing the closing functions
common to all ISAM, it returns control to the input/output support close routines.

Queued Indexed Sequential Access Method, Scan Mode

The scan mode of QISAM retrieves and updates the records of an indexed sequential
data set in a manner similar to that of the queued sequential access method.

There are three phases of scan mode routines:
. The open phase
. The processing phase

. The close phase

Section 2: Method of Operation 35

Input/Output Variable-length Records
Support

Close Routine

Fixed-length Records *

1GG0202!

1GG02028

\

1GG0202J

1GG0202K

1

1GG0202L

Y

1GG0202M

1

ISAM common
close esecutor
1GG0202D

Y

Input/Output
Support
Close Routine

Figure 15. The Flow of Control through QISAM Load Mode Close Executors

Scan Mode Open Phase Operations

36 OS ISAM Logic

The ISAM common open executors are executed when an indexed sequential data set is
opened and is to be processed by scan mode. The last ISAM common open executor
passes control to the scan mode open executors. The scan mode open executors:

1. Move format—2 DSCB items to the DCB
2. Construct the DCB work area
3. Load the scan mode modules

4. Initialize channel programs and free queues.

Scan Mode Open Phase Organization

The scan mode open executor modules are IGG01920, IGG01922, IGG01950,
1GG01928, IGG01929, and IGG01924.

The common open executor IGG0192C transfers control to the beginning open
executors which are the validation modules, IGG01920, IGG01922, and IGG01950.
The validation modules ensure that the DSCB and DCB fields needed are still accurate.
If the data set contains fixed-length records, module IGG01920 will be the first
module entered. For variable-length records, module IGG01950 is entered first.
1IGG01920, IGG01922, and IGG01950 are described in the common processing
module description part of this manual.

Upon completion, the validation modules pass control to the first executor used
exclusively in opening for scan mode, module IGG01928.

Scan Mode Open Executor IGG01928

1. Obtains main storage space for and structures the QISAM scan mode DCB work
area (see “Section 5: Data Areas”).
Loads scan mode processing modules processing routines.

3. Loads module IGGO19HL which contains the channel program skeletons.

Moves the required channel program skeletons into the scan mode work area (see
Figure 26). This includes moving one copy of the read/write channel program,
CP 22, into the work area for each buffer.

5. Deletes the channel program skeleton module, IGG019HL, from main storage.

6. Tests the bits at DEBRPSID for an RPS device. If any of the bits are on, the
scan mode RPS SIO appendage, IGGO19HA, is loaded by executor IGG01924.
A GETMAIN macro instruction for a 16-byte larger work area is issued to allow
for the channel program prefix required RPS devices.

Scan Mode Open Executor IGG01929

1. Initializes the channel programs loaded by module IGG01928 in the DCB work
area. If necessary, it initializes these channel programs to their non—RPS state.

2. Chains the copies of CP 22 together. Assigns a buffer to each copy of CP 22.

Scan Mode Open Executor IGG01924

1. Moves the format—-2 DSCB fields needed into the DCB. (See modules IGG01950
and IGG01920 in Section 2.)

Loads the RPS SIO appendage if required. (See module IGG01928 above.)
3. Completes the initialization of the scan mode work area.

Obtains the interruption request block (IRB) that is used by the supervisor to
maintain information concerning an asynchronous routine located in the Get
appendage module (IGGO19HG). Among the information in the IRB is the entry
point address (RBEP—see the IRB as shown in Figure 26) of the asynchronous
routine within module IGG019HG. (See the discussions of the scan mode Get
routine and the appendages for further information on this asynchronous routine.)

Section 2: Method of Operation 37

5. Calculates W1ICNOT, which is equal to the integer that contains the number of
buffers (DCBBUFNO) divided by (W1ICNOT=BUFNO/2).

WIICNOT is located in the scan mode DCB work area, and is used in scheduling
input/output requests. The read/write channel program (CP 22) is only
scheduled if the WI1ICNOT field is set.

1GG0192C

1GG01950 1GG01920

1GG01922

——]
1GG01928

L

1GG01929

1GG01924

y

0s
Open routine

Figure 16. Flow of Control through Scan Mode Open Executors

Scan Mode Processing Phase Operations

38 OS ISAM Logic

QISAM scan mode is designed to read records from and/or write records back to an
ISAM data set, selectively. Scan mode may be used to retrieve and update indexed
sequential data records sequentially or randomly. The basic features of scan mode that
make it able to retrieve and update records from any point in the data set are:

. A buffer controlling technique that allocates a copy of the read/write channel
program (CP 22) to each buffer.

. Several logical buffer queues to which each copy of CP 22 and the buffer that the
CP 22 points to may be moved. Figure 17 illustrates the chaining of channel
program 22 and the buffers on these queues.

. Use of the WIICNOT field in the scan mode DCB work area. W1ICNOT is
equal to the number of buffers being used (DCBBUFNQ/2) or the number of
records on a prime track, whichever is less. W1ICNOT is especially important in
the scheduling routine operations. (Refer to the scheduling routine description.)

The five macro instructions that cause scan mode processing routines to retrieve and
update indexed sequential data records are SETL, GET, PUTX, ESETL, and RELSE.
These macro instructions are described fully in OS Data Management Macro
Instructions, GC26-3794.

The SETL routine sets the starting point of retrieval. The Get routine makes records
available to the processing program. The PUTX routine restores the records to the
data set. The ESETL routine terminates scanning of the data set. The RELSE routine
causes the remaining records of the current buffer to be bypassed.

SETL initializes channel programs to search the indexes for the start—of—retrieval point
and to read in the first buffer or buffers. GET initializes channel programs to read
successive buffers, and PUTX causes the same channel programs to be reset and
rescheduled to write the updated buffers back into the data set.

The channel programs for scan mode are described in detail in “Appendix B: ISAM
Channel Programs.” Appendage routines analyze the results of each channel program
and initiate further processing operations depending on the status of the channel
program’s successful or unsuccessful execution.

Information about the data set is communicated among the processing routines and the
channel programs in control blocks, work areas, and queues. This section shows the
relationship of these areas to each other. They are described in detail in “Section 5:
Data Areas.”

This section describes the processing routine logic.

Buffer Control Techniques

Buffers are attached, by a copy of CP 22, to any one of the five buffer queues. (See
Figure 17.) These queues are used in controlling input/output operations. The buffers
are assigned to particular queues according to the current status of each buffer.

. Free queue buffer is not in use.

. Read queue buffer is scheduled to be filled (a version of CP 22 reads a record or
records into the buffer).

. User queue buffer is made available for processing program use by the GET
macro instruction.

. PUTX queue buffer is flagged as ready to be written.
. Write queue buffer is scheduled to be written.

The queuing on these buffer queues is handled by the Get routine and its subsidiary
routines — the scheduling routine and the end—of-buffer (EOB) routine. However, all
scan mode routines handle the buffer queuing to some degree. Figure 18 illustrates the
buffer movement during scan mode processing.

The buffer queue movements of SETL and ESETL are shown in the upper portions of
Figure 18, and the effects of Get and PUTX in the lower portion. The routines that
process the queues are indicated on the flowlines to and from queues.

Section 2: Method of Operation 39

Free Queue Read Queue

User Queue PUT X Queue Write Queue
First CP First CP First CP First CP First CP
Last CP Last CP Last CP Last CP Last CP
C R C [C C

Channel Program 22 Channel Program 22

Channel Program 22

Channel Program 22

Buffer 1 Buffer 2 Buffer 3~ " °" Buffer i
Note:

C= The number of buffers in the queue.

R=

scheduling of overflow records.

Figure 17. Scan Mode Channel Program/Buffer Queues

A residue of unused buffers in the Read queue. The R field is used to provide more efficient

ESETL
A
To initiate a Scan To Terminate a Scan
SETL ESETL ‘ ESETL
/ \
Free Read User PUTX WRITE
Queue Queue Queue Queue Queue
L A A y \ 3
Scheduling Routine GET/EOB Routine EOB Routine EOB Routine
(I1f PUTX is Issued)
End of Buffer or ESETL

(If No PUTX is Issued)

GET/End of Buffer Routine

Figure 18. Buffer Queuing and Movement in Scan Mode

40 OS ISAM Logic

An Example of Buffer Movement in Scan Mode

For this example, it has been assumed that the number of buffers=3, the number of
logical records per buffer=2, and each GET macro instruction issued is followed by a
PUTX macro instruction.

Macro Instructions

1.

1.

8.

OPEN

SETL

GET (1st GET)

PUTX

GET (2nd GET)

GET (3rd GET)

GET (4th GET)

GET (5th GET)

Buffer Movement

All buffers (3 buffers in this example) are placed on
the Free queue.

a.

Locate the starting record of the file (or string
of records) specified in the SETL macro instruction.

Place buffer 1 on the Read queue and schedule a read
of the specified records into buffer 1; wait for completion
of the read.

Move buffer 1, which has been filled, to the User
queue.

Move buffers 2 and 3 to the Read queue and schedule a
read operation.

Return the address of the first retrieved record to the
user.

Any PUTX will set an indicator that the current record is to
be written back to the data set and returned.

a.

e

If the outstanding reads from the previous GET are
completed, move those buffers to the User queue.

Return the address of the next input record to the
user.

On the third GET macro instruction, move the processed
buffer (buffer 1) to the PUTX queue. (It is assumed that
a PUTX macro instruction follows each GET macro
instruction in the processing program.)

Move buffers 2 and 3 from the Read queue to the User
queue, unless these buffers were moved to the User
queue by the Get routine in step 5.

Return the address of the next input record in the file
to the user.

Return the address of the next input record to the processing
program.

a.

Move the processed buffer (buffer 2, in this instance) to
the PUTX queue.

Move two buffers from the PUTX queue to the Write
queue and schedule a write operation. Since the PUTX
has been executed for two buffers, a Write may now be
scheduled. (See “Scheduling Routine”’ and

“EOB Routine.”)

Return the address of the next input record.

Section 2: Method of Operation 41

SETL Routine

42 OS ISAM Logic

9. GET (6th GET)

o

If the scheduled write is completed (step 8), move the two
buffers from the Write queue to the Read queue and
schedule a read.

b. Return the address of the next input record.

On the seventh GET, the processed buffer (buffer 3, in
this example) is moved to the PUTX queue.

10. GET (7th GET)

P

b. When the scheduled read is completed (step 9), move two
buffers to the User queue. (It may be necessary to wait
for the last scheduled write, move the buffers to the
Read queue, issue a Read, and wait for that Read
before this step can be executed.)

c. Return the address of the next input record.

11. GET/PUTX The succeeding GET and PUTX macro instructions repeat
steps 7 through 10. Every time a read takes place, 2
blocks will have been filled. For a write to occur,

2 buffers must be filled.

12. ESETL a. Wait for any outstanding read or write to be completed.

b. Move buffers from the Read or Write queue to
the Free queue.

c¢. Move any buffers from the User queue to the
PUTX queue or to the Free queue.

d. Move any buffers on the PUTX queue to the Write
queue and schedule a write.

13. CLOSE a. Wait for any scheduled, but uncompleted writes
to be completed.

b. Return all buffers to the buffer pool.

The SETL routine (shown in Figure 19) determines the start of a scan by executing a
channel program (dependent on the SETL option used) to search the indexes for the
first record or block to be retrieved. In scan mode, records are retrieved from the
beginning of the data set unless a SETL macro instruction is used.

In addition to determining the starting point, the SETL routine initializes the buffer
queues. When scanning is initiated, all buffers are on the Free queue. (See “Scan
Mode Open Phase Operations.””) However, when subsequent scans are to be initiated,
it is possible that buffers remain on the Write queue from the previous scan. When this
is the case, the SETL routine moves these buffers to the Free queue after awaiting the
completion of any writes in progress. The SETL routine then moves a buffer from the
Free queue to the Read queue, initiates a read operation, and upon completion of the
read operation, returns control to the processing program.

If the SETL routine detects any error condition, it sets the corresponding bit for that
error in the DCB exceptional condition (DCBEXCD1) field. (The exceptional
condition codes are described in “Section 6: Diagnostic Aids.””) After setting this bit,
SETL passes control to the processing program’s synchronous error routine (SYNAD).
If no synchronous error routine is present, the task is abnormally terminated.

Get Routine

SETL macro

SVC 54

Refresh DCB

Determine
start of scan

WAIT

For completion
of Wnite

Move Write
queue to
Free queue

Move one
buffer from
Free queue

to Read queue

Move N/2
buffers from
Free queue

to Read queue

WAIT
For completion
of Read

Figure 19. Scan Mode SETL Routine

When the data set is shared (DISP=SHR), the SETL routine issues an SVC 54
instruction to update the DCB field area (DCBFA). (See “The DCB Integrity
Feature” under “The ISAM Common Open Executors.”)

The Get routine (shown in Figure 20) retrieves records from the data set sequentially
and gives the processing program access to a record in the current buffer on the User
queue. (SETL fills the first buffer.) The Get routine has two subsidiary routines: the
end—of-buffer routine and the scheduling routine.

Section 2: Method of Operation 43

44 OS ISAM Logic

If, on entry from the macro instruction, the user has already been given access to the
last record of the User queue buffer currently being scanned, the routine links to the
end—-of-buffer routine to advance to a new buffer.

Then, if a write has been initiated and is complete, the Get routine moves the buffers
on the Write queue to the Free queue. If the Get routine finds that an appendage
routine has indicated unsuccessful completion of a previous write, the exit to the
processing program’s synchronous error routine is taken. Another GET macro
instruction must be issued before a record becomes available for processing.

If the previous attempt to schedule a read has been unsuccessful because of a shortage
of available buffers (refer to “Scheduling Routine” for criteria for determining the
minimum number of buffers necessary), the scheduling routine is used to make another
attempt to execute the read.

‘ GET macro)

EOB routine

End of buffer Yes Advance to

new buffer

Move Write
queue to
Free queue

Wr
queue

Write
complete

Schedule

Move Read

Queue to New Read
User queue

Read
queue empty

Read
complete

A

(Return ,

Figure 20. Scan Mode Get Routine

If a read has been initiated and is complete, the routine moves the buffers on the Read
queue to the User queue and uses the scheduling routine (refer to “Scheduling
Routine”) to attempt to schedule a new read.

If a buffer on the User queue has been incorrectly read, each GET command issued to
that buffer causes control to pass to the synchronous error routine. For blocked

EOB Routine

Scheduling Routine

records, successive GET commands to the buffer give the synchronous error routine
access to each record of the buffer in turn. When the buffer is exhausted and another
GET macro instruction is issued, the return to the processing program is normal unless
another read error occurred.

The end—of-buffer (EOB) routine, which is shown in Figure 21, moves the buffer just
completed from the User queue to either the PUTX queue or the Free queue. It moves
the buffer to the PUTX queue if the user has issued a PUTX macro instruction for any
of the records in that buffer; otherwise, it moves the buffer to the Free queue.

If there is a minimum of N/2 buffers on the PUTX queue and a previous write has
been completed, the routine moves the Write queue buffers to the Free queue, the
PUTX queue buffers to the Write queue, and initiates a write.

If at this point there are buffers on the User queue, the routine returns control to the
calling routine. Otherwise, the routine must move buffers from the Read queue to the
User queue. If the Read queue is empty, the routine waits for completion if a write is
in progress, moves the Write queue to the Free queue and uses the scheduling
subroutine to initiate a read and, on completion of that read moves the Read queue to
the User queue. If the Read queue is not empty, the routine moves the Read queue to
the User queue. It then returns control to the calling routine.

Before moving a buffer from the Write queue to the Free queue, the routine ensures
that the write operation of that buffer was successfully completed. If not, the
synchronous error routine is given control.

Processing in the scheduling routine (shown in Figure 22) depends primarily on
whether the next record to be read is on a prime—data or overflow track.

If an overflow record is to be read, a read may be scheduled if there are at least two
buffers on the Free queue. It may also be scheduled if there is only one buffer and
that buffer is on the Free queue. Before initiating the read, the routine moves the Free
queue to the Read queue. It then returns control to the calling routine.

If prime data is to be read, it attempts to schedule a read of N/2 buffers. Provided
N/2 buffers are available and at least N/2 blocks remain on the track, this can be
done. It can also be done with fewer than N/2 blocks remaining on the track if the
track is not the last one of a cylinder and no overflow chain is associated with the
track. If these conditions are met, the routine moves N/2 buffers from the Free queue
to the Read queue, initiates a read, and returns control to the calling routine.

If these conditions are not met, the scheduling routine initiates a read operation to
complete the last track of a cylinder or a track having an overflow chain associated
with it, provided that sufficient buffers are available on the Free queue. As before, it
moves the buffers required to the Read queue, initiates a read, and returns control to
the calling routine.

If a read cannot be initiated, the routine returns control to the calling routine.

Section 2: Method of Operation 45

46 OS ISAM Logic

EOB routine

Move buffer
from User
queue to
PUTX queue

Move buffer
from User
queue to
Free queue

Less . Write
than N/2 Writing ueue to
on PUTX complete a
Free queue

gueug

PUTX queue

b to Write

queue

EXCP

Write

Writing
completed

User queue
empty

For Write
completion

/

Write queue
to Free

queue

Schedule Read

.|

For Read

Read queue to
User queue

.

Figure 21. Scan Mode EOB Routine

Y

‘ Return)

PUTX Routine

Scheduling routine

Next
record on
overflow
track

At
least N/2

At
least 2

on Free
queue

EXCP

Free queue Read

to Read queue

Has overflow Yes

blocks on prime data
track

least N/2

chain

No Last track

buffers on Free
queue

N/2 from Free
queue to
Read queue

EXCP

Read

of cylinder

Yes

A

Move buffers to
complete track
Free queue to
Read queue

Enough
buffers on Free
queue to com-
plete track

Return

Figure 22. Scan Mode Scheduling Routine

The PUTX macro is used in updating data sets. When the PUTX macro instruction is
issued in the processing program, the PUTX routine of scan mode will be used (see
Processing Routines — Figure 24). The PUTX routine causes records obtained by the
locate mode GET macro instructions to be written back to the data set.

Section 2: Method of Operation 47

The PUTX routine sets an indicator flag associated with the current buffer on the User
queue. The GET macro instruction’s end—of—buffer (EOB) routine uses this indicator
to determine if the User queue buffer should be moved to the PUTX queue.
Eventually, the buffer will be moved from the PUTX queue to the Write queue (it is
moved either by the EOB routine for GET or by the ESETL routine when an ESETL
is issued in the processing program). Once on the Write queue, the buffer is scheduled
to be written — that is, the channel program used to read or write the buffer (a copy
of CP 22 is used with each buffer) is reset and scheduled to write the udpated buffer
back into the data set.

ESETL Routine

The ESETL routine (shown in Figure 23) ends scanning of the data set.

ESETL macro

Move buffer
from User
queue to
PUTX queue
No

Move buffer

from User

queue to

to Free queue

y
WAIT

Read
queue empty

Read queue

For read
toFree queue

completion

PUTX
queue empty

Write
queue empty

Write queue
to Free queue

For write
completion

PUTX queue
to Write queue

EXCP

[
Return

Figure 23. Scan Mode ESETL Routine

48 OS ISAM Logic

RELSE Routine

Appendages

If the user has issued a PUTX macro instruction for any of the records in the current
buffer on the User queue, the routine moves the buffer to the PUTX queue. If the
Read queue is not empty, the routine awaits completion of pending reads and then
moves the Read queue to the Free queue.

If the PUTX queue is empty, the routine returns control to the processing program.
Otherwise, the routine awaits completion of pending writes and moves the Write queue
to the Free queue if the write was successful. (If the write was not successful, the
synchronous error routine is entered, and another ESETL macro instruction must be
issued to end this scan.) It then moves the PUTX queue to the Write queue, initiates a
write, and returns control to the user.

The RELSE routine links to the end—of-buffer routine causing the current buffer to be
released and a new buffer to be initialized. If the current record is the first or last
logical record in the buffer, the request is ignored. The RELSE routine then returns to
the user.

The RELSE routine also determines if there were any write errors for those buffers on
the Write queue whose writing had been completed. If so, the processing program’s
synchronous error routine is given control and another RELSE must be issued to
release this buffer.

There are both channel-end and abnormal-end appendages for those routines that
cause input/output operations. (Refer to Figure 24.)

The channel-end appendage of the SETL I routine causes a normal return to the 1/0
supervisor if CP 25 was completely executed. If CP 25 was not completely executed,
either the channel-end or abnormal-end appendage of the SETL I routine may be
entered, depending on the setting of the CSW status bits. In the case of incomplete
execution, an indicator is set so that the SETL I routine can later inform the processing
program that the record was unreachable. A normal return to the I/O supervisor is
issued.

The channel-end and abnormal-end appendages of the SETL K (or SETL KC) routine
examine CP 23 to find out where and why the channel program terminated. Based on
this examination, either CP 23 is reinitialized to continue searching for the desired key
by issuing an EXCP return, or an indicator is set to inform the processing program that
the key could not be found and a normal return is issued. Whether the examination is
performed by the channel-end or abnormal-end appendage depends on the setting of
the CSW status bits and the contents of the higher level indexes.

The channel-end appendage of the Get routine issues a normal return to the I/O
supervisor if there are no more buffers on the Read queue, or the last record on a track
has been read, or the buffers on the Read queue were filled with records read from a
prime—data area. This channel-end appendage issues an EXCP return to the 1/0
supervisor, or schedules an asynchronous routine to issue an EXCP return if an
overflow record was read after it modified CP 22 to continue reading the records in the
overflow chain. When the last record of an overflow chain has been read, a normal
return is issued. The abnormal-end appendage of the Get routine sets an indicator to
mark the buffer that contains the record in error and issues an EXCP return if there
are more records to be read. Otherwise, it issues a normal return.

Section 2: Method of Operation 49

50 OS ISAM Logic

The channel-end appendage of the PUTX routine (without write—checking) makes a
normal return to the I/O supervisor if there are no more buffers on the Write queue.
An EXCP return is issued if there are more buffers on the queue to be written. The
abnormal-end appendage makes the same returns under the same conditions, but, in
addition, it sets both a write—error indicator and an indicator to inform the processing
program which buffer contains the record in error.

When a write—checking is in effect, the PUTX routine channel programs are
command—chained to write the contents of a set of buffers at a time, rather than
writing all the buffers on the Write queue. For prime—data records, a set of buffers is
the number of buffers on the queue or the number needed to complete the current
track, whichever is lower. For overflow records, a set is one buffer. The contents of a
set of buffers is written and checked before the next set is written.

If return is to the channel-end appendage after the inital write of a set, CP 22 is
modified to accomplish readback, and an EXCP return to the I/O supervisor is issued.

If return is made to the abnormal-end appendage after the initial write of any buffer in
the set, that buffer is marked unreachable or unwritable and an EXCP return is issued
to write the remaining buffers in the set; if no buffers remain in the set, CP 22 is
modified to accomplish readback of the successfully written buffers, and an EXCP
return is issued. No attempt will be made to rewrite the buffer in error; the processing
program will be informed of the error the next time a GET macro instruction is issued
for the buffer.

If channel-end return is made for both writing buffers and reading them back, an
EXCP return is issued if there is another set to be written. Otherwise, a normal return
is issued.

If a return to the abnormal—-end appendage occurs when reading back a buffer that was
successfully written, an EXCP return is issued to rewrite, and an additional EXCP
return is issued to recheck the buffer in error. Up to ten rewrites and rechecks per
buffer are permitted; CP 22 must be modified for each readback and rewrite. If a
successful readback cannot be accomplished, or if an abnormal—-end return is made on
any of the attempts to rewrite the buffer, the buffer is marked as unwritable and an
EXCEP return is issued to start writing the next set. If there are no more sets to be
written, a normal return is issued.

When an EXCP return is to be issued and the next record to be written or searched is
on another device, the appendage routine cannot issue the EXCP command itself.
Instead, it schedules an asynchronous routine (located in the GET appendage). When
the asynchronous routine receives control, it issues the EXCP macro instruction.

Scan Mode Processing Phase Organization

Processing Routines

The modules containing the scan mode processing routines are shown in Figure 24.

Module Name Function

IGGO19HB

(Fixed-

length

records) Get, PUTX, RELSE, ESETL, SETL B
processing routines

IGGO19HN

(Variable-

length

records)

IGGO19HD SETL K processing routines

IGGO19HF SETL I processing routines

IGGO19HG Get channel-end ar!d abnormal-end appendages and
asynchronous routine

IGGO19HH PUTX channel-end and abnormal-end appendages, no write-check

1GGO19HI PUTX channel-end and abnormal-end appendages, write-check

1IGGO19HJ SETL | channel-end and abnormal-end appendages

IGGO19HK SETL K channel-end and abnormal-end appendages

IGGO19HL channel program skeletons

IGGO19HA RPS SIO Appendage

Figure 24. QISAM Scan Mode Processing Modules

Scan Mode Channel Programs

The scan mode channel program skeletons are contained in module IGGO19HL. The
channel program skeletons are moved to a work area and completed during the open
phase of scan mode.

Section 2: Method of Operation 51

In processing and updating an ISAM data set, the following scan channel programs are
used:

Channel Program 22 (CP 22) The two versions of CP 22 are used to read or
write data records. Version 224 (CP 22A4) is
used to read the key and data fields of
unblocked records. Version 22B (CP 22B) is
used to read either the data field of unblocked
records, or any blocked records.

Channel Program 23 (CP 23) Used to locate the data record by SETL K or
KC; searches the index and data tracks.

Channel Program 24 (CP 24) Used to read count and data fields of the
track—index entries.

Channel Program 25 (CP 25) Used with SETL I to obtain track—index entries.

Channel Program 26 (CP 26) Used on overflow chains as an extension of CP
23 (SETL K).

If the user has allocated enough buffers and is reading a full track at a time, as many
CP 22s as are needed (one for each buffer) are chained together for reading the track;
the same is true for writing a full track at one time, that is, all copies of CP 22 are
chained together.

Assuming the use of a file with no overflow, CP 23 is used by SETL to locate the
proper record; then CP 22 is used to read the record; CP 24 then reads the next level
of track—index entries and schedules the next CP 22.

Figure 25 illustrates the operations of one scan mode channel program (CP 23).
Channel program 23 is used by SETL to position to the first record of the specified
file. For this example, it is assumed that no master indexes are being used.

Scan Mode Control Blocks and Work Areas

Information about the data set and processing requests is carried in various control
blocks, work areas, and queues. The address relationships of these areas to each other
and processing routines and channel queues are shown in Figure 26.

Scan Mode Close Phase

52 OS ISAM Logic

The QISAM scan mode close phase has only one close executor, module IGG02029,
which is entered from the I/0 support Close routine. Module IGG02029 uses the
ESETL routine to terminate scanning and clear the buffer queues. (Refer to “ESETL
Routine” and ‘“Buffer Control Techniques.”)

Even if the user has already issued an ESETL, the close executor issues another one.
The close executor then awaits completion of any outstanding writes. If any of these
writes are unsuccessful, the user synchronous error is entered. The user must return to
the close executor to complete the release of buffers and work areas to the operating
system.

If the oustanding writes or the return from the synchronous error routine to the close
executor have been completed successfully, then the close executor:

1. Returns all buffers to the buffer pool.

ARl

— e o —— — —— — — — __I
Cyhinder
Index Read the home Seek to l
ISearch address (RO} of I-— — cylinder I
the cylinder |r:1dex
I index track |
I
| |
| |
Search |
| for key EQ or |
| GT in cylinder |
I
' l
I |
I Read data of Locate the |
the cylinder |- — —correct track I
l index entry index track (
[_________ S ——————————
Find (
Index Seek to the '
|Entry track index track I
|
| |
[|
‘ Read the Postition to }
home address __ beginning
l of the track of track |
l index index track]
| |
> |
[
| !
| Read count :
I l
| !
| |
l LT Search {
for key EQor l
l
L I
______ [€ — |

Read data

|
: ! entry

of the key

Read count

index entry

Read data
field of
index entry

|
I
I
l field of
|
|
|
I

Lieoe=2

Seek data track

Read home
address of
data track

Figure 25. Scan Mode Channel Program 23

_____ 1
Read l
Index
Entry I

|
I
|
I
I
I
T

Read ID-

Data

Record

Count field of
record to be
read by CP 22

Releases the work area.
Updates the DCB tag deletion count, DCBTDC.
Updates the number—of—overflow-references field in the DCB, DCBRORG3.

Moves the DCB fields that may have been changed during processing from the
DCB field area (DCBFA) to the DCB if the data set was opened for DISP=SHR.
Frees the DCB field area if this is the last DCB open for the data set.

Section 2: Method of Operation 53

When finished, the scan close executor, module IGG02029, passes control to the ISAM
common close executor.

o DCB DCB Work Area B
(14 DCBBUFCB @ 0 Input ECB
2D Get
DCBDEBAB
r— 4C DCBSETL —b-@ 4 Input 10B processing module
54 DCBESETL
30 Output ECB
34 Output I0B
o>
E4 DCBWKPT1 J SETL

60 Sense bits and pointers
processing module
80 Queue table® -~
BC Track index information)
and save area Get
r_.' appendage module
W1CP23PT Channel O (asynchronous
Faq W1CP26PT program “\ G routine) F
W1CP25PT pointers
P DEB '(> 130 CP 24
-20 1 SI0 appendage lod{ SETL
-18 TCce appendage table 150 WI1DCBFA F1\ appendage module
.14 T AE appendage table
1A4)
0 L— i
8 DEBIRBAD
)
18 DEBDCBAD CP 22
N— 16 DEBAPPAD (one copy per buffer)
r—— 2C TISAM Extension JV 1 p PUTX
~ ~ L»- appendage module
= Extent descriptions ~ -~
—p 0 T Get or Put module > @ »
4 1 ucs ~N CP 23/26 or CP 25
8 T Get appendage module »(E M
c Channel-end AVT >@ RPS SIO
appendage module
24 Abnormal-end AVT - @
IRB* A Buffers”
-
c RBEP ->® { DCBFA
ucs**

+ Figures 17 and 18 describe the channel
program/buffer queues

*» If the prime area 1s on a different volume than
the high level indexes, the asynchronous
routine 1s executed and a different UCB is needed.

Note Displ s are in h

Figure 26. Scan Mode Control Blocks and Work Areas

54 OS ISAM Logic

Basic Indexed Sequential Access Method

The basic indexed sequential access method (BISAM) provides direct storage and
retrieval of the records in an indexed sequential data set. The READ K macro
instruction permits the retrieval of a logical record from main storage by its record key.
The READ KU and WRITE K macro instructions, when used together, provide the
ability to update logical fixed—length (or variable—length if the record length does not
change) records in place. The WRITE K macro instruction, when used without READ
KU, allows the user to replace unblocked fixed—length (or variable—length if the record
length does not change) logical records. The WRITE KN macro instruction is used
with the READ KU macro instruction to update variable—length records when the
record length can change. The WRITE KN macro instruction allows the user to insert
new logical records into the data set or to replace a variable-length logical record with
one having the same key and possibly a different record length.

Since storage and retrieval of records are direct in BISAM, the BISAM routines are not
able to read ahead as the QISAM scan mode Get routine can. Consequently, the user

must issue a WAIT or CHECK macro instruction in order to determine whether a read
operation has been completed.

As in QISAM, there are three phases of BISAM routines:
. The open phase
. The processing phase

. The close phase

BISAM Open Phase Operations

The first BISAM open executor is entered from the last common ISAM open executor.
The BISAM open executors load the BISAM processing routines, selecting the
processing phase modules according to the processing program options. Particular
processing modules are selected depending on such options and considerations as:

. The number of levels of index to be searched on the direct—access device (NLSD)
. Whether the records are blocked or unblocked

. Whether work areas are supplied by the user or by the access method routines

. Whether or not write—checking is to be used

. Are buffers controlled by the user program or by the ISAM dynamic buffering
routine (module IGG019JI)

. The user’s intent to add new records to the data set with the WRITE KN macro
instruction

Section 2: Method of Operation 55

Some of these considerations also affect the sequence in which the BISAM open
executors are called. Figure 27 illustrates the flow of control through the BISAM open
executors,

Those BISAM open executors that initialize channel programs include conversion to a
non—RPS state as part of their processing.

BISAM Open Phase Organization

When a DCB is being opened for BISAM processing, one or two of the validation
modules are selected to correlate format—2 DSCB and DCB fields. The validation
modules (IGG01920, IGG01922, and IGG01950) are also used in open processing for
resume load and scan mode.

If the records are fixed—length records, modules IGG01920 and IGG01922 are selected
for validation and initial BISAM open processing.

BISAM open
executors

Y

Move format-
2 DSCB
1items to DCB

Read high- |
level index |
Into storage

]

Determine
and load
modules

/

Construct
work area

Need
system area for
WRITE KN

Construct
system area for
WRITE KN

‘ Return to open ’

Figure 27. BISAM Open Executors

PN

56 OS ISAM Logic

These two modules reset certain fields in the DCB and format-2 DSCB which may be
incorrect if the data set was previously closed improperly.

If variable—length records are used, module IGG01950 is selected to merge end
pointers from the format—2 DSCB to the DCB and adjust, if necessary, the
independent overflow control information in the DCB.

IGGO01950 is the VLR counterpart to modules IGG01920 and IGG01922. It is the
first BISAM open module entered when variable—length records are being added.

The validation module may not be executed, although it will be entered, if the user has
specified that the data set may be shared by other tasks (DISP=SHR). It will not be
executed in that case if another DCB has already been opened for the data set and a
DCB field area (DCBFA) set up for the purpose of maintaining the DCB fields. (See
“The DCB Integrity Feature’ under ‘“The ISAM Common Open Executors’ and the
description of the DCBFA.)

Module IGG0192W or IGG0192H receives control from modules IGG01920 and
1GG01922, or module IGG01950 during the opening of a DCB for BISAM.

BISAM Open Executor IGG0192H (Fixed-length records)
1. Moves the format—2 DSCB fields needed for BISAM into the DCB.

2. Obtains and structures the work areass and provides pointers to the work area.

BISAM Open Executor IGG0192W (Variable-length records)
1. Moves the format—2 DSCB fields needed for BISAM into the DCB.

2. Obtains and structures the work areas and provides pointers to the work areas.

BISAM Open Executor IGG0192P

1. When the high—level indexes are to be searched in main storage, module
IGGO0192P schedules CP 87 to read the high—level index into the user—specified
work area. The work area is specified in the DCB at DCBMSHI. Channel
program 87 is contained in module IGG0192P.

2. After reading the high—level index into the user work area, module IGG0192P
saves the address of the last active entry in the high—level index.

BISAM Open Executor IGG01921

1. Selects and loads the proper privileged module, according to the options specified
in DCBMACREF by the user. (See Figure 35 for the privileged macro—time
module.)

2. Selects, loads, and initializes CP 1 when cylinder and master indexes are to be
searched on the direct—access device.

3. Selects, loads, and initializes CP 2 when the cylinder index is the highest level
index to be searched on the device.

Section 2: Method of Operation 57

58 OS ISAM Logic

If an RPS device is being used, IGG0192I saves and restores the high—order byte
of DEBISAD when storing the address of the privileged macro—time module.
(See step 1.) This is done to preserve the RPS bits at DEBRPSID.

This module also initializes RPS fields in the DCB work area.

Initializes the error queue counter to 2(NCP) + DCBBUFNO.

BISAM Open Executor IGG0192K (READ K, READ KU, WRITE K)

1.
2.

Selects and loads CP 4, CP 5, CP 6, and CP 7; initializes these channel programs.

Selects and loads the nonprivileged macro—time routine, module IGG019JV, for
READ K, READ KU, and WRITE K.

If dynamic buffering is specified, loads the dynamic buffering module, IGG019J1.

If RPS is used and the dynamic buffering module loaded, IGG0192K also sets bit
3 of DEBRPSID.

BISAM Open Executor IGG0192L (WRITE KN)

1.

Loads the set of WRITE KN channel programs needed with the data set being
processed — blocked or unblocked records, user work area or'system work area,
etc. (See BISAM channel programs, Figures 40-52.)

Loads the nonprivileged macro—time routines for WRITE KN, module
IGGO19JW.

Initializes CP 8 and CP 10B.

BISAM Open Executor IGG0192M (WRITE KN with fixed—length records)

1.

Initializes CP 14 which is used to update the cylinder overflow control record
(COCR) and writes overflow records. There are six different versions of this
channel program, which are described in “Appendix B: ISAM Channel
Programs.”

BISAM Open Executor IGG0192X (WRITE KN with variable-length records)

1.

Performs the same functions as IGG0192M as described above. See CP 14 in
“Appendix B: ISAM Channel Programs.”

BISAM Open Executor IGG0192Q (WRITE KN)

1.

Initializes CP 1 or CP 2, CP 10A, CP 15, CP 16, CP 17.

ISAM common
open executor
1GG0192C

Varniable-length Records Fixed-length Records

1GG01920

1GG01950
1GG01922
High-level Index
Search in Main Storage
1GG0192W IGGO192H

No High- [No High-
level Index I level Index
Search in IGGo192P Search in

Main Storage Main Storage

1GG0192I
WRITE KN and/or READ K, READ KU, WRITE K WRITE KN only
IGG0192K [>
No WRITE KN
1GG0192L
Variable-length Records Fixed-length
4 Records
1GG0192X [1GG0192M
1GG0192Q
User Provides Work Area
Variable-length Records Fixed-length Records ISAM Provides
Work Area
[1GG0192Z I 1GG01920 J [1GG0192N
Input/output
1GG0192J support Open
routine

Figure 28. Flow of Control through BISAM Open Executors

Section 2: Method of Operation 59

BISAM Open Executor IGG01920 (WRITE KN, fixed-length records, user work area)

1. Initializes CP 12 or CP 13 series, and CP 123W, deletes skeleton channel
program modules.

BISAM Open Executor IGG0192N (WRITE KN, fixed-length records, system work
area)

1. Initializes CP 9 series or CP 11 series; deletes skeleton channel program modules.

BISAM Open Executor IGG0192Z (WRITE KN, variable-length records)

1. Initializes CP 12AV, CP 12BV, and CP 123WYV, deletes skeleton channel
program modules.

BISAM Open Executor IGG0192J

1. Module IGG0192J selects and loads the proper appendage modules and one
asynchronous module. Refer to the BISAM appendage and asynchronous
modules tables shown in Figures 37 and 38.

2. Initializes the interrupt request block (IRB) used by the asynchronous routine.

3. If any of the RPS bits at DEBRPSID in the DEB are set, IGG0192J loads the
RPS SIO appendage, IGG0O19JH.

During processing, if bit 3 of DEBRPSID is on, control is passed to IGG0O19JH.

BISAM Processing Phase Operations

60 OS ISAM Logic

BISAM processing is performed by channel programs that read and search indexes,
prime—data tracks, and overflow chains. They also write prime—data and overflow
records and index entries. The channel programs are set up and controlled by the

BISAM processing routines.

All BISAM READ and WRITE macro instructions enter a nonprivileged macro—time
routine, which enters a privileged macro—time routine where I/O interruptions may be
readily enabled or disabled. The privileged routine returns to the nonprivileged routine
upon completion. The nonprivileged routine then starts a channel program, if possible,
and returns control to the user.

When a channel program ends, the I/O supervisor passes control to an appendage
routine that analyzes the manner in which the channel program ended and determines
the action to be taken as a result. This involves either an EXCP return to the I/0
supervisor or the scheduling of an asynchronous routine. The overall control flow
through these routines is shown in Figure 7.

The user can supply his own buffers or use the dynamic buffering option of BISAM.
In the latter case, the dynamic buffering routine obtains and frees buffers for each
processing request.

A check routine is available to all BISAM requests to allow the user to analyze
processing errors.

Information about the data set and the processing requests is communicated among the
processing routines and the channel programs in control blocks, work areas, and
queues. This section describes the processing routine logic, the flow of control through
the channel programs, and the relations of the data areas to each other and to the
processing routines and channel programs.

Descriptions of the channel programs are in “Appendix B: ISAM Channel Programs.”
“Section 5: Data Areas” contains detailed layouts of the data areas.

An Example of BISAM Processing Flow

Whenever a BISAM macro is issued, a nonprivileged macro—~time module is entered. In
this example the nonprivileged module entered will be IGG019JW after a WRITE KN
macro instruction is issued.

1.
2.

The WRITE KN is issued from the processing program.

The nonprivileged module is entered; module IGG019JW issues an SVC 54 to
disable interrupts and link to the privileged macro—time routine. In the case of a
WRITE KN without READ K, WRITE K, or READ KU, the privileged routine
module entered is IGG019JX. (See Figure 35.)

Module IGG019JX:
a. Initializes the I0B.

b. Determines if another WKN is in progress; if so, the IOB is added to the
on—schedule queue and the on-schedule switch is set on.

c. If another WKN is not in progress and it is'necessary to search the
high—level index in main storage, the following operations are done:

(1) The first WKN channel program is initialized.

(2) The Seek address for the channel program is determined, using the
DCBFTHI field.

(3) If the track index is the highest level of index (this is assumed for this
example), the appendage code is set to 8.

Channel program 8 is initialized — CP 8 is used to determine where the new
record should be inserted.

Return to the SVC 54 issued by IGG019JW.
The SVC 54 exits to the original nonprivileged module.

Module IGG019JW tests the on—schedule switch; if it is set, return is made to the
processing program. If the on-schedule switch is off, an EXCP is issued using
the IOB just created.

When the channel program ends, the appendage routine uses the appendage code
in the IOB and the appendage vector table in the appendage module to select the
needed appendage routine for this particular channel program.

Section 2: Method of Operation 61

Privileged Macro—time Routines

A privileged macro-time routine (shown in Figure 29) schedules the first channel
program for a given macro instruction. BISAM has several modules of privileged
macro—time routines (refer to Figure 35). However, no more than one of these
modules is loaded into storage by the BISAM open executor, IGG0192I, for a single

DCB.

Write K
for update

108
on update
queue

Entry from
disable

No

No Signal

invalid request

Obtain 10B
from update
queue

Is 10B Yes
on error -1
queue

Remove from
error queue

Is 108
on update
queue

Read KU

Confhict
with other
macro

Write for
update

Yes Place 10B
on unscheduled
queue

Index to
be searched in
main storage

Determine
first channel
program

Initialize
channel
program

Construct
108
|
Search
Signal no
Y
hd Successful No 'S record]
found
Place 10B
on unscheduled ¥
queue

Figure 29. Privileged Macro—time Routines

@
Return via
SVC routine

62 OS ISAM Logic

Selection of the macro—time routine module to be loaded depends on the BISAM
macro instructions specified in the DCB, the record format, and the number of levels of
index searched on a direct—access device (rather than searched in main storage). These
factors determine the choice of channel programs needed in a macro—time routine.

A nonprivileged macro—time routine enters a privileged macro~time routine by means
of an SVC 54 (disable) instruction to disable I/0 interruptions. If the IOB being
reused has a dynamic buffer associated with it, the buffer is returned to the dynamic
buffer pool.

For any read or write request, the routine checks the error queue and the update queue
to see if any existing IOB refers to the data event control block (DECB) of the present
request. If so, the old IOB is reused for the current request. If the IOB being reused
has a dynamic buffer associated with it, the buffer is returned to the dynamic buffer
pool unless the request requires a dynamic buffer. If no IOB is found that refers to the
DECB of the present request, and a dynamic buffer must be assigned to the request,
DECBAREA is zeroed to force the assignment of a dynamic buffer in function 1 of the
dynamic buffer module (IGG019JI).

When a WRITE K macro instruction is issued after a READ KU, both with the same
DECB, an I0B for the DECB should be on an update queue (as the result of the
READ KU). If the IOB is not on the update queue, an invalid request condition exists
and the privileged routine returns to the calling nonprivileged routine. Otherwise, the
privileged routine for the WRITE K associated with a previous READ KU removes the
IOB from the update queue. In all other cases, the routine constructs an IOB for the
request.

Subsequently, the privileged routine attempts to schedule the first channel program
needed for the user’s request. If the channel program is available and the high—level
index is to be searched in main storage, the routine performs this search. If the search
is unsuccessful, a record—not—found condition exists and the routine posts the DECB as
complete, sets the appropriate exceptional condition bit in DECBEXCD, and returns
control to the nonprivileged routine. (Searching is always successful in the case of
WRITE KN.) If the search is unsuccessful or no search in main storage is necessary,
the routine determines the first channel program to be scheduled. If it is available, the
routine schedules it. If it is unavailable, an unscheduled condition exists, and the
routine queues a request for the channel program by placing the IOB on a queue called
the unscheduled queue. The routine then returns to the nonprivileged routine.

A special case exists if the WRITE KN macro instruction is being used with other
READ or WRITE macro instructions. Possib*z conflicts between these macro
instructions are avoided because WRITE KN changes indexes and record positions. Its
channel programs are not scheduled if another WRITE KN, WRITE K, READ K, or
READ KU has been scheduled but not completed, or if a READ KU has been
completed but a FREEDBUF or a WRITE K for that DECB has not. The WRITE KN
channel programs are not scheduled if there are IOBs on the update queue, or if there
are IOBs on the unscheduled queue for reasons other than those associated with
WRITE KN. Similarly, WRITE K, READ K, and READ KU are not scheduled if a
WRITE KN has been scheduled but not completed, or if a previous WRITE KN cannot
be scheduled.

Section 2: Method of Operation 63

Note: Entry to the privileged routine from the asynchronous routine is also possible.
In this case, the return will be to the asynchronous routine.

Nonprivileged Macro—time Routines

There are two modules of nonprivileged macro—~time routines. (Refer to Figure 36.)
The READ K, READ KU, and WRITE K macro instructions link to one routine and
the WRITE KN macro instruction links to the other. The nonprivileged routine is
shown in Figure 30.

READ/WRITE
macro

Invalid Stgnal
record length invalid
spec record
length
Tsvesa R
| (Disable) |
| Refresh DCB :
! |
| No
|] [
| | |
|
| Execute privileged |
| macro time |
l routine |
L T T _t
POST
Invalid
Completion

request

No record
found

Unscheduled

EXCP

Start
channel
program

/
Return

Figure 30. Nonprivileged Macro—time Routines and SVC 54

64 OS ISAM Logic

If the user has specified a record length in a READ K, READ KU, or WRITE K macro
instruction, the respective macro instruction routine checks the record length specified
against the logical record length supplied by the user in the DCB (DCBLRECL). If
the length specified in the macro instruction is invalid or if the user has specified a
record length in a WRITE KN macro instruction, the nonprivileged macro—time
routines set the record length check indicator in the DECB exceptional condition code
field (DECBEXCD1) and return control to the user. Otherwise, an SVC 54 is issued
to link to a privileged macro-time routine. The privileged routine, upon completion,
returns to the nonprivileged routine.

If no channel program was scheduled, the nonprivileged macro—-time routine issues the
EXCP and returns to the user. When the channel program is completed, an I/0
interruption takes place and the I/O supervisor links to an appendage routine.
(Appendage routines are described in the BISAM “Appendage and Asynchronous
Routines” section.)

If no channel program was scheduled because of an invalid request, a no—record—found
condition, or an unscheduled condition, the nonprivileged routine returns to the user.
In the case of an invalid request, the routine posts the DECB as complete and returns
to the user.

Appendage and Asynchronous Routines

The BISAM appendages and asynchronous routines are shown in Figure 31. The
asynchronous modules are listed in Figure 37; the appendage modules are listed in
Figure 38.

Appendage routines determine the action to be taken when a channel program ends.
Asynchronous routines perform that action except in certain cases, which are explained
below. Appendage modules consist of an appendage vector table and a group of
appendage routines. Asynchronous modules consist of an asynchronous vector table
and a group of asynchronous routines.

When a channel program ends, a general appendage routine uses a combination of the
appendage code in the IOB and the appendage vector table for the module to select the
appropriate appendage routine. A list of appendage and asynchronous codes is
contained in “Section 6: Diagnostic Aids.”

If the channel program is complete, the appendage routine schedules an asynchronous
routine that sets up the next channel program. If the channel program is not complete,
the appendage routine returns to IOS to reschedule that channel program.

If the channel program did not end in error, the action taken depends on whether (1) it
is the final channel program needed to satisfy the user’s request, (2) an additional
channel program is needed to satisfy the request and no other requests are waiting for
the channel program just completed, or (3) neither of the above conditions exists.

In the first case, the appendage routine schedules an asynchronous routine to report
completion to the user. If the data set is shared (DISP=SHR), the DCBFA (DCB field
area) is reset as needed before completion is posted. In the second case, the
appendage routine schedules the additional channel program by a special return to the
I/0 supervisor. In the third case, the appendage schedules an asynchronous routine
which in turn schedules an additional channel program for the current request and, if
possible, reschedules the channel program just completed for a waiting request.

If the present request used a dynamic buffer, the address of the buffer is saved in the
IOB before the IOB is placed on either the update or error queue.

Section 2: Method of Operation 65

66 OS ISAM Logic

Place on

queue

unscheduled

10S appendage Reschedule
entry via 10S
Yes

Report error via
asynchronous routine

rupt to read or
write an overflow,

Set up
channel Return via 10S
orogram

Schedule
asynchronous
routine (create
IRB)

f

Dispatcher

Enter
asynchronous
routine

Another
request awaiting

For that
request

Place 108 °
on error queue

Permanent
1/0 error

Place 10B
Final channel on update
program queue
Next channel Free 10B
program area
available
Y
POST
Refresh
This Completion DCBFA
channel
program

®;

Return via
supervisor

Figure 31. BISAM Appendage and Asynchronous Routines

The first time a channel program ends in error, the appendage routine returns control
to the I/O supervisor to retry the operation. If the I/O supervisor finds the error is
permanent, it reenters the appendage routine which schedules an asynchronous routine
to report the error to the user and place the request on the error queue.

Dynamic Buffering Routines

The READ K and READ KU macro instructions require an area into which a block
can be read. The user may supply this area or use BISAM routines to provide the area
through the dynamic buffering option of the macro instruction. Figure 32 shows the
dynamic buffering routines.

When the dynamic buffering option is used, BISAM routines release the buffer when a
corresponding WRITE K macro is completed. If no WRITE K is issued, the processing
program may release the area obtained with dynamic buffering for a READ K or
READ KU by issuing a free dynamic buffer (FREEDBUF) macro instruction.

Also, the privileged macro routine automatically releases the buffer if a READ macro
instruction is followed by a WRITE KN or another READ. The buffer is released,
reusing a DECB, without an intervening WRITE K or FREDBUF.

The dynamic buffering module contains two routines. The first, called function 1,
obtains buffers in response to the dynamic buffering option of a READ K or READ
KU macro instruction. The second routine, called function 2, frees the buffers.

Dynamic Dynamic
buffering buffering SIO

Buffer
needed
Yes

Any
on available
queue

Can
another
10B use
a buffer

Place buffer
area on
available
list

Place 10B
on queue
awaiting
buffers

Remove 10B
from

waiting
queue

EXCP Remove |
buffer Skip posting
Channel from Return to 10S

rogram
prog queue

i
Return Normal
return to 10S

Figure 32. Dynamic Buffering Routine

Section 2: Method of Operation 67

Check Routine

68 OS ISAM Logic

Function 1 is an appendage routine entered by the I/O supervisor just prior to
executing the scheduled channel program. When used by the FREEDBUF macro
instruction, function 2 is considered a macro—time routine. When used on completion
of a WRITE K macro instruction, function 2 is considered an asynchronous routine.
The function 2 routine of IGG019JI, when executed from FREEDBUF, also frees any
10B on the error or update queue that is associated with the DECB, regardless of
whether a dynamic buffer is also associated with the DECB.

Rather than returning to I0S, IGGO019J1 passes control to the RPS SIO appendage
(IGGO019JH) if bit 3 of DEBRPSID is set.

A description of the BISAM dynamic buffering buffer control block appears in
“Section 5: Data Areas.”

The check routine module (shown in Figure 33), loaded when check is specified in the
DCBMACREF field, gets control each time the user issues a CHECK macro instruction.

1GG019JC

Y

ECB
status
complete

Wait

Get DECB
on error
queue

Get 10B+2

ABENDC

System
ABEND 001

Go to SYNAD
routine

Figure 33. BISAM Check Routine

Processing [— " " FRIVILEGED —_— _j

Program - ENT’—R_IVEG_EB_ —_— MACRO ROUTINE
—— [m@ﬂo_uw&__] —————}'ﬂ _________ _:
—— T l
- | | i | Construct 108 T don
R btain from
— | Invalid > - Srpgate or to be searched
- : | reco:;/dlelngth : BALR l error queve { Storegs l
o specified - — = l
- | | EXIT - |
- an
—_— l I l 108 be Search index I
READ/WRITE | Drsable | scheduled |
o interruptions E I
| (SVC 54) |
- | |
- | [l Initialize Place channel ‘
i g l prosen o,
o | Invahd length I l program queue |
- I in DECB T |
T | | |
—_—— Entry
P | 108 | No from asynchronous
- | scheduled routine
WAIT | |]
—_— - -
R, l | ',__— APPENDAGE ROUTINE :
— Return to user | | l
_ [|
—— I | |
- | |
- - I
- | ;
1/0 SUPERVISOR ile
v | f I
|— —| T ' protg;ldrom Updd‘e Yes
| | | | tnatize cP6 I0BSEEK I
| EXCP for overflow field
I Execute Ifentry | chain |
o scheduled fromB
I 108 1 | e |
I
| | |
Interrupt Channel-end, | e l
| abnormal-end T l
l I asynchronous I
code
| | | ¥ |
E ! Error processing i | Schedule l
L asynchronous
I ! R ..
|], | ©) T Tememowieme. T —
| T }l;_— — - - - — —4
! I | |
Another
_ - — “’J request awaiting
| completed I
IRB | Final
T l CP of request
— 1 Permanent l
- | error
- Free 10B or |
- i place on
- Place 10B update queue |
—— l on error * I
| queue POST
| Request _—'—‘—"®
complete |
. -~ - - - _ __—_ ___—__ __ 4

Figure 34. BISAM Processing Flow (Not WRITE KN)

Section 2: Method of Operation 69

The check routine examines the DECB exception code (DECBEXCD) fields. If a
permanent error has been posted, it searches the error queue for the corresponding
IOB. The check routine then either gives control to-the user’s synchronous error
(SYNAD) routine or, if the user has no SYNAD routine, issues SVC 55 (EOV) to
request an ABEND with a code of 001.

Upon entry to the SYNAD routine, register 0 contains the address of the first sense
byte of the IOB (sense information is valid only when a unit check has occurred) and
register 1 contains the address of the DECB. In the SYNAD routine, the user can
issue a SYNADAF macro instruction. It places all pertinent information on the request
in a buffer and returns the buffer’s address to the user. For a description of the
SYNADAF macro instruction, refer to OS Data Management Macro Instructions,

GC26-379%4.

Macro Instructions Additional Considerations Module Names
READ K, WRITE K ' *NLSD=0 1GG019J6
READ KU Fixed-length Records

NLSD#0 1GG019J7

Variable-length Records IGGO19H7

WRITE KN None IGG019JX

READ K, WRITE K NLSD=0 IGG019J0
READ KU in combination Fixed-length Records

with WRITE KN NLSD#0 1GG019J3

Variable-length Records IGGO19H3

*NLSD represents the number of levels of indexing (cylinder or master indexes) that are searched
on the device.

NLSD=0 represents the case where the data set was allocated no more than one cylinder and has no
cylinder or master indexes or there is only a cylinder index and it is searched in main storage.

NLSD#0 means: (1) there is only a cylinder index that is searched on the device and (2) there are
at least two levels of indexing, one of which is searched in main storage and the other is
searched on the device.

Figure 35. BISAM Privileged Macro—time Modules

70 OS ISAM Logic

P

Macro Instructions Additional Considerations Module Names

READ K, WRITE K, READ KU None 1IGGO19JV

WRITE KN None IGGO19JW

Figure 36. BISAM Nonprivileged Macro—time Modules

Macro Instruction Additional Considerations Modules
Fixed-length Records 1GG019G X
READ K, WRITE K, READ KU
Variable-length Records 1IGG0O191X
No Write Check 1IGGO19GY
Fixed-length Records
Write Check IGG019GV
Variable-length Records IGG0191Y
No Write Check 1GG019GZ
READ K, WRITE K, READ KU Fixed-length Records
in combination with Write Check IGG019GW
WRITE KN
Variable-length Records IGG0191Z

Figure 37. BISAM Asynchronous Modules

BISAM Processing Phase

BISAM Channel Programs

Organization

BISAM uses the channel programs that are enumerated below and described in
Appendix B. The flow of control through the READ K, WRITE K, and READ KU
channel programs is shown in Figure 40 and the flow for WRITE KN channel
programs is shown in Figures 41 through 52. Channel program modules are indicated
in Figure 39.

Note: Figures 40 through 52 show only the normal (nonerror) flow of control through
the channel programs. For WRITE KN, two different methods are used to add records
to the data set. For fixed—length records with a system work area, the prime track is
rewritten and the index entries are updated before the overflow record is written. For
fixed—length records with a user—supplied work area and for variable—length records,
the overflow record is written before the prime track and index entries. This requires
two different methods for executing CP 14 as explained in “Appendix B: ISAM
Channel Programs.”

Section 2: Method of Operation 71

Macro Instructions

Additional Considerations

Module Names

Area, No Write Check

READ K, WRITE K, _— -) No Write Check IGG019G8
READ KU Ixed-Length Records Write Check IGG019G9
Variable Length Records 1GG01919
Unblocked, System Work
' IGG019GL
Area, No Write Check IGGOT9G0 and
Unblocked, System Work
Area, Write Check IGG019G1 and IGGO19GM
Unblocked, User Work
Area, No Write Check 1GG019G2 and IGG019GL
Unblocked, User Work
Area, Write Check 1GG019G3 and IGG019GM
WRITE KN Fixed-Length Records Blocked, System Work IGGO19G4 and 1GGO19GL

Blocked, System Work
Area, Write Check

IGGO19G5 and IGGO19GM

Blocked, User Work
Area, No Write Check

IGG019G6 and IGGO19GL

Blocked, User Work
Area, Write Check

IGG019G7 and IGGOT19GM

Variable-Length Records

1GG01910 and IGG019IM

READ K, WRITE K,
READ KU in
combination with
WRITE KN

Unblocked, System Work
Area, No Write Check

IGG019G0 and IGGO19GN

Unblocked, System Work
Area, Write Check

IGG019G1 and IGG019GO

Unblocked, User Work
Area, No Write Check

IGG019G2 and IGGO19GN

Unblocked, User Work

Fixed-Length Records Area, Write Check

IGG019G3 and IGGO19GO

Blocked, System Work
Area, No Write Check

1GG019G4 and IGGO19GN

Blocked, System Work
Area, Write Check

IGG019G5 and IGGO19GO

Blocked, User Work
Area, No Write Check

IGG019G6 and IGGOT19GN

Blocked, User Work
Area, Write Check

1GG019G7 and IGG019GO

Variable-Length Records

1IGG01910 and IGGO19IN

RPS SIO Appendage

IGGO19JH

Figure 38. BISAM Appendage Modules

72 OS ISAM Logic

=

Macro Instructions

Additional Considerations

Module Names

Channel Programs

NLSD =1 1GG019JK 2
Any READ or WRITE
NLSD > 1 1GG019JJ 1
None 1IGGO19JL 4567
READ K, WRITE K, READ KU
Write Check 1IGGO19JM | 4 BW 6W 7W
Unblocked, System Work 8 9A 9B 9C 10A
Area, No Write Check IGGO19IN 10B 14 15 16 17
Unblocke'zd, System Work 1GGO19JP 8 9A 9BW 9CW 10AW
Area, Write Check 10BW 14W 15 16 17W
Unblocked, User Work 8 10A 10B 12A 12B
Area, No Write Check IGGO19JR 12C 14 15 16 17
Unblockgd, User Work 1GGO19JT 8 10AW 10BW 12A 12B
Area, Write Check 12CW 14 15 16 17W 123W
WRITE KN | Fixed-Length Records S W S 10A 108 1A 118
Blocked, System Work
Area, No Write Check 1GG019J0 14 15 16 17
Blocked, System Work 8 10AW 10BW 11A 11BW
Area, Write Check 1GGo18JQ 14W 15 16 17W
Blocked, User Work 8 10A 10B 13A 13B
Area, No Write Check 1GG019JS 13C 14 15 16 17
Blocked,.User Work 1GGO19JU 8 10AW 10BW 13A 13B
Area, Write Check 13CW 14W 15 16 17W 123W
Variable-Length Records IGGO19HP 8 12AV 12BV 14/14W

15 16 17 123WV

Figure 39. BISAM Channel Program Modules

CP 1
CP 2

CP 4

CP5

CP 5W

Used to search master and cylinder indexes.

Used to search a cylinder index when it is the highest level to be

searched on a device.

Used to search a track index. CP 5 and CP 5W are always appended

to this channel program.

Used to search prime—data tracks and to read or write prime—data

records.

Write—checking version of CP 5.

Section 2: Method of Operation 73

CP 6 Used to search an overflow chain and read or write overflow records.

CP 6W Write—checking version of CP 6.

CP 7 Used to write data records when WRITE K is associated with READ
KU.

CP 7TW Write—checking version of CP 7.

CP 8 Used to search track indexes and search prime—data tracks for the

place to insert a new record. There are separate versions for
fixed—length records and variable-length records.

The following channel programs are used for insertion of fixed—length unblocked
prime—data records when the work area is provided by the system.

CP 9A Used to read into the work area the record occupying the position at
which an insertion is to be made.

CP 9B Used to read an even—numbered record after writing a record into the
previous slot and write back the last record of a non—-EOF track when
the number of records bumped is odd.

CP 9BW Used instead of CP 9B when write—checking is specified.

CP 9C Used to read an odd—-numbered record after writing a record into the
previous slot and write back the last record of a non—EOF track when
the number of records bumped is even.

CP 9CW Used instead of CP 9C when write—checking is specified.

The following channel programs are used for fixed—length records regardless of whether
they are blocked or unblocked or whether the work area is obtained by the system or
the user.

CP 10A Used to write a record or block to replace an EOF mark.
CP 10AW Used instead of CP 10A when write—checking is specified.
CP 10B Used to write an EOF mark.

CP 10BW Used instead of CP 10B when write—checking is specified.

The following channel programs are used for insertion of fixed—length prime—data
records into blocks when the work area is provided by the system.

CP 11A Used to read into the work area a block to be bumped.
CP 11B Used to write back a rearranged block.
CP 11BW Used instead of CP 11B when write—checking is specified.

The following channel programs are used for insertion of fixed—length unblocked
prime—data records when the work area is supplied by the user.

CP 12A Used to read all records from the track following the slot into which a
new record is to be inserted.

74 OS ISAM Logic

CP 12B Used to write a new record followed by the records read by CP 12A.

CP 12C Used to write a new record with a key identical to that of a record
which, although logically deleted, is still physically present on the
track.

CP 12CW Used instead of CP 12C when write—checking is specified.

The following programs are used for insertion of blocked or unblocked variable-length
records.

CP 12AV Used to read all records from the track following the slot into which a
new record is to be inserted.
CP 12BV Used to write a new record and the records read by CP 12AV.

The following channel programs are used for insertion of fixed—length prime—data
records into blocks when the work area is provided by the user.

CP 13A Used to read all blocks from the track following and including the slot
into which a record is to be inserted.

CP 13B Used to write back the rearranged blocks read by CP 13A.

CP 13C Used to write back a block if the insertion is a record with a key

identical to that of a record which, although logically deleted, is still
physically present within the block.

CP 13CW Used instead of CP 13C when write—checking is specified.

The following channel programs are used regardless of whether records are
fixed—length or variable-length, blocked or unblocked, or whether the work area is
obtained by the system or the user.

CP 14 Used to update track—index entries, update the cylinder overflow
control record (COCR), and write overflow records. The six different
setups for this channel program are explained in ‘“Appendix B: ISAM
Channel Programs.”

There are separate versions for fixed—length records and for
variable—length records.

For variable—length records and fixed—length records with a
user—supplied work area, CP 14 is divided into two parts. Part I writes
the overflow record and Part II udpates the COCR and index entries.
See “Appendix B: ISAM Channel Programs” for details.

CP 14W Used instead of CP 14 when write—checking is specified.

CP 15 Used to read in the cylinder overflow control record and the overflow
track—index entry when a new record is added to the end of a data set.

CP 16 Used to search an overflow chain for the record that logically precedes
or is equal to the new record to be added, or the last record in the
chain.

CP 17 Used to change the key in a normal or normal-and—overflow

track—index entry or in a higher—level index entry.
CP 17TW Used instead of CP 17 when write—checking is specified.

CP 87 Used to read a high—level index into main storage.

Section 2: Method of Operation 75

Addendum to CP 12A and CP 12B or to CP 13A and CP 13B when
write—checking is specified (fixed-length records).

CP 123W
CP 123WV Addendum to CP 12BV when write—checking is specified
(variable—length records).
\;‘I::;:‘IPEKK Create 0B for
READ KU Request

Search it

Higher level
index searched on
storage

Search cylinder
and master
indexes

Cyhinder
and Master

Highest level
index searched on

Cyhinder

Search
cylinder
index

Search overflow
cham _ _

Read or write
records

Y
CP 5/5W
Search prime

_data track
Read or write
records

Abnormal End

Normal End

FREEDBUE>

Place I0Bon | =~
update queue

READ KU

READ K
Type of request

WRITE K

|

Remove 10B from
update queue

Free 10B

WRITE K

[

A
(Request complete

CP 7/7W
Write record
back in data

Free 10B

NOTE Search is Key High or
Equal If unsuccessful, “No Record

Found” condition exists
*FREEDBUF may be 1ssued by the
user or automatically by the

privileged macro-time routine
(Request complete)

Figure 40. READ K, WRITE K, READ KU Channel Program Flow

76 OS ISAM Logic

WRITE KN
Create 10B

for request

Highest
level index
searched in main
storage

Search highest
level index

Search

Search ndexes searched T "
cylinder any

cylinder on device Cylinder master

index and Master indexes

Add to end

/| higher than any on
Fixed-length Records, System Work Area -Figure 47
Fixed-length Records, User Work Area -Figure 48
-Figure 49

Variable-length Records

Search track
index

Search prime
index

Record on
overflo Fixed-length Records, System Work Area -Figure 50
Add to overflow Fixed-length Records, User Work Area -Figure 51
-Figure 52

Variable-length Records

Record on Prime

Fixed-length Unblocked Records, System Work Area -Figure 42

Fixed-length Unblocked Records, User Work Area -Figure 43
Fixed-length Blocked Records, System Work Area -Figure 44

Fixed-length Blocked Records, User Work Area -Figure 45

-Figure 46

Variable-length Records

Figure 41. WRITE KN Channel Program Flow — Index Searching

Section 2: Method of Operation 77

Fixed-length
Unblocked Records, (Add to prime ’ From Figure 41

System Work Area

Read record
occupying inser-
tion position

New
key a duplicate

Original
record marked for,

deletion

Bumped Record to
be Deleted

Write new
record in place
of original

Write new
record In place

of original
Bumped Record Written

Report ““duplicate

record” error to
in Overflow

Change key 1n
normal track
index entry

Y

‘ Request complete
user
A

CP 14 Setup 1

Write overflow
record, COCR,
and index entries,

in overflow to
add another

Report ““space
not found”
error to user

Last record
on track read

EOF Read

Write new record,

Read (even)
bumped record
EOF Not Read

EOF Read

record back
Read 3rd

Last record on
EOF Not Read

track read

Write last
record back
to prime
Leftover Record
y Written in Overflow

Leftover
Record Deleted

\

CP 14 Setup 1

Write overflow
record, COCR,
land index entries

Update key in
normal track
index entry

/

A

Y

Work Area)

Write record

to replace
EOF mark

Write
EOF mark

Y

‘ Request complete)

O,
‘ Request complete)
Figure 42. WRITE KN Channel Program Flow — Add to Prime (Fixed—Length Unblocked Records, System

—

78 OS ISAM Logic

Fixed-length Insert to
Unblocked Records, prime From Figure 41

User Work Area

Read all blocks
after insertion

point

New key
duplicate

Old record
marked for
deletion

after inserting
new record

Report “duplicate

Y
Request complete { record” error
to user
CP 14
Setup 1 part 1

Write
overflow

record

Rewrite
rearranged

track

Last prime
track of
data set

Bumped
record marked
for deletion,

Write new
EOF mark

Y
‘ Request complete

Last track full

Write out
prime track

Independent
overflow

Write out

prime track
Change key of

normal track
index entry

14
1 part 2

Update COCR
and track
indexes

Y
(Request complete)

Figure 43. WRITE KN Channel Program Flow — Add to Prime (Fixed— Length

\

{
(Request complete '

Unblocked Records, User Work Area)

Section 2: Method of Operation 79

Fixed-length
Blocked Records,
System Work Area

CP11B
rite back block

after new
record inserted

Request complete

Old
record marked

Report ““duplicate
record’’ error to

‘ Add to prime ’ From Figure 41

Read block oc-
cupying inser-
tion position

New key a

user No for deletion duplicate
No
Yes
No °
Report "'space No Space Last block
not found"”’ exists for overflow previously full o Request complete
error to user record
Yes Yes
CP 14 Setup 1 CP 118 Form padding
Write overflow Write out records following
record, COCR, rearranged bumped record in
and index block new block
entries
No Y
Bumped No Last prime Yes Has
record marked data track of last block been Zvlmz new
for deletion, data sét written Eg(f:: ove‘l('
mar
Yes Yes No
cP 17 °
Change key in Last block full Write new
normal track Yes EOF k
index entry mer
No
Y Set last block
Last record and last track
Request complete Re
Yes padding No full switches auest complete
on

Figure 44. WRITE KN Channel Program Flow — Add to Prime (Fixed—Length
Blocked Records, System Work Area)

80 OS ISAM Logic

Fixed-length Blocked Records, Insert to prime From Figure 41
User Work Area " P

J

Read all blocks
after insertion
point

Old
record marked for
deletion

New key
duplicate

Write back block,
after inserting
new record

Report “duplicate Last
" Write back
Request complete record”’ error block previously . d
to user full No-Padding rwr:(ange
Record trec
Yes Bumped

\

Insert new record Form padding
in block records following '
bumped records Request complete

k
Rearrange trac in new block

Rewrite
rearranged
track

CP 14
Setup 1 part 1
Write

overflow
record

Write new
EOF mark

Y

Last block full

Independent
overflow

Write out
prime
track

Write out
prime track

Set last block
and last track
full switches ON

Last
record padding

Last
prime track of
data set

Update COCR
and track
indexes

Change key
of normal

track index
entry

Request complete

Request complete

Figure 45. WRITE KN Channel Program Flow — Add to Prime (Fixed— Length Blocked Records, User
Work Area)

Section 2: Method of Operation 81

Oid
record to be
replaced

Report “ 00
record found”
error to user

Y

Variable-length Records < Add to Prime ’ From Figure 41

CP 12AV
Read records
after inser-

tion point

Old
record marked
for deletion

New key
a duplicate

Merge new
record and <
reorganize
records

record to be
replaced

CP 12AV

All

CP 12BV

Write back
track with
new record

Y ! <

blocks after
sertion point
read

Read more

Report “duplicate
blocks

record"’ error to user

Y

Write new
EOF mark

CP 14 Extension

—CP 12BV

Rewrite
prime track

Oneor
more records
bumped to
overflow,

CP 14 Setup 1 part 1

Write
overflow
records

New
key highest on
track

More
records to be
written

Rewrite
index
entry

Independent
overflow

WRITE KN Channe

Request complete

1 Program Flow — Add to Prime (Variable— Length Records)

82 OS ISAM Logic

Fixed-length Records
4 ‘ ’ F F
System Work Area Add to end rom Figure 41

Read COCR
and overflow
track-index

entry

Overflow No

chain already

Y

[cP16Setup2 | [cPiasewp2]
Write overflow
record, COCR
and index
entries

Write new
record over
mark

Search over-
flow chain for
last record

CP 14 Setup 3
Write overflow
records, COCR
and index
entries

A

Independent
overflow

Update track
index entries

Update master

Executed Once for
index entry

Each Index Level

Y

‘ Request complete

Figure 47. WRITE KN Channel Program Flow — Add to End (Fixed-Length Records, System Work Area)

Section 2: Method of Operation 83

Fixed-length Records ()
User Work Area Add to end From Figure 41

Read COCR and
overflow track
index entry

Overflow
chain already
exists

CP 14
Setup 2 part 1

!V
CP 16 Setup 2 [

Search overflow
chain for last
record

Write new
record over
EOF mark

Write over-
flow record

Y

CP14
Setup 3 part 1

Write new
EOF mark

Write over-
flow records

Independent
overflow

Update track
index entries

Y
Executed
Write new Update master / Once for
EOF mark index entry Each Index
Level

Y

‘ Request complete

CP14
Setup 3 part 2
Write index en-

tries and (if cyl
ovfl) COCR

Y

Request complete

Figure 48. WRITE KN Channel Program Flow — Add to End (Fixed-Length Records, User Work Area)

84 OS ISAM Logic

Variable-length Records (Add to end From Figure 41

Read COCR and
overflow track
index entry

Overflow
chain already
exists

CP 14
Setup 2 part 1
Write over-
flow record

No
Add to Prime

Figure 46

CP 16 Setup 2
Search over-

flow chain for
last record

Y
CP 14
Setup 3 part 1

Write over-
flow records

Independent
overflow

Write new
EOF mark

CP 14 Setup
2 or 3 part 2
Write index en-
tries and (f cyl
ovfl) COCR

Y
(Request complete)

Figure 49. WRITE KN Channel Program Flow — Add to End (Variable— Length
Records)

Section 2: Method of Operation 85

Fixed-length Records ,
System Work Area Add to overflow) From Figure 41

Does
overflow chain
exist

CP 14 Setup 5
Write overflow

CP 16 Setup 3

'Search over-

CP 14 Setup 4

Write over-

New Record

flow records flow chain for 1ston Chain' [record, COCR
and COCR | Freceding logically pre- and index entry|
Record ceding record
Exists

Equal Record Exists

CP 14 Setup 6

Write new rec-
ord over delet-
ed one and

change index

Equal
record
deleted

Independent
overflow

Report “‘duplicate
record”’ error to
user

Request complete

Figure 50. WRITE KN Channel Program Flow — Add to Overflow (Fixed—Length
Records, System Work Area)

86 OS ISAM Logic

Fixed-length Records.,
User Work Area

Does
overflow chain
exist

CP 14
Setup 4 part 1

CP 16 Setup 3

Add to overflow

Write over-

Search overflow[New Record

From Figure 41

CP 14
Setup 5 part 1

chain for
logically pre-
ceding record

flow records

Exists

Equal
record
deleted

No Independent

overflow

Write new

Equal Record

EOF mark

Report “duplicate
record’’ error to

' user
13

Write over-
flow record

1st on Chain

CP 14 Setup 6

Independent
overflow

Request complete

Write new
EOF mark

Setup 4 part 2

Request complete

-t

CP 14
Setup 5 part 2
Write index en-
try and (if cyl
ovfl) COCR

Y

< Request complete)

Figure 51. WRITE KN Channel Program Flow — Add to Overflow (Fixed-Length

Records, User Work Area)

Section 2: Method of Operation 87

From Figure 41

Add to overflow

Does
overflow chain
exist

Variable-length Records

CP 14
Setup 5 part 1

CP14
'Search over- New Record \
flow chain for st on Cham P~/ Write over-
flow record

Write over-

flow records logically pre-

ceding record
Equal Record
Exists

CP 14 Setup 6
Write new rec-
ord over delet-
ed one and
change index

Preced-

ng
Record
Exists

Independent
overflow

Equal
record
deleted

Independent
overflow

CP 14 Extension

Write new
EOF mark

\

Request complete
CP 14

A
“ tup 5 part 2
Report “‘duplicate Setup 5 p
record”’ error to Write index en-
try and (if cyl
ovfl.)COCR

Write new
EOF mark

CP14
Setup 4 part 2

user
Y

‘ Request complete ’

Request complete

Figure 52. WRITE KN Channel Program Flow — Add to Overflow (Variable-Length

Records)

88 OS ISAM Logic

BISAM Control Blocks and Work Areas

Information about the data set and processing requests is carried in control blocks,
work areas, and queues. The address relationships of the control blocks to the
processing modules, work areas, buffers, channel programs, IOB, and channel program
queues are shown in Figures 54 and 55. Figure 53 below shows the elements of a

BISAM READ or WRITE request.

Buffer I“ |

Channel
program

1
.a

I Key l RecordJ

108 DECB

R

(

Control blocks

and
work areas

DCB

Processing
modules

—

DEB

Figure 53. Elements of a BISAM Request

Section 2: Method of Operation 89

. DCB

Figure 54. BISAM Control Blocks and Processing Modules

{created dynamically by Open)

(D

e Check module
e 2C DCBDEBAD
4C DCBSETL
Zg ggg II:\’I:‘VQ'I\\II Nonprivileged Nonprivileged
macro module macro module
(WRITE KN) (Non-WRITE KN)
E8 DCBWKPT2
o
o DCB Dynamic
work area buffering
r -20 T SI10 appendage F}-@ (See Figure 55) module
-18 T CE appendage table
14 T AE appendage table
- 0
8 DEBIRBAD)
. 18 DEBDCBAD 2 _
—| 1c DEBAPPAD H E
|
A I Appendage Appendage
\ | module module
T | (part 1) (part 2)
2C T ISAM extension |
= = [}
0 DEBDISAD o
4 DEBWKPT4 _>.®
8 DEBWKPTS *‘
c DEBFREED Privileged RPS SIO
10 DEBRPSIO a0) macro appendage
module module
IRB / (1f dynamic buffering
1s not used.)
C RBEP
Asynchronous
module

90 OS ISAM Logic

14 DCBBUFCB _>® Full-track work area
for WRITE KN
40 DCBMSWA
49 DCBMSHI >
——————— Storage area for highest level
E4 DCBWKPT1 index (if searched in storage)
E8 DCBWKPT2
EC| DCBWKPT3 [———__ DCB Work Area
0 DCWFCP4
4| bpcwrcpy /_\
(| c| opcwFiosu Unscheduled]
_______ 10 DCWLIOBU {queue
:' T There 1s one copy of 14| DCWFUPDI [Update] 108 108
| P 1/2 and the WRITE 18 | DCWLUPDI |queue
| | KNCPs They are ‘ ‘)
| CP1/2 | described by DSECTS
| | n processing module
| N and addressed by using 108 0B
b DCBWKTP1/3 asa
base register 30 | DCWFIOBE Error]
34| DCWLIOBE [queue {)
L——»;— —_—— 3C| DCWDCBFA
' } 108 108
: cpPs ! _ .
| followed by : P4 (
other required
: WRITE KN CPs } cP5
10B 10B
CP6
I 2
CP4 108
CP5
CP6
Buffer Control Block
0 | BCBFIOB [IOBs needlng]
or7 4 | BCBLIOB Lbuffers
8 | BCBNAVB| Next buffer
cP7 available

Figure 55. BISAM Work Areas and Queues

DCB Field Area

Buffer 1

Buffer 2

1
Buffer 3

o

Buffer 4

BISAM Close Phase

The BISAM close executor (module IGG0202A) is entered from the I/O support Close
routine. It terminates outstanding I/0 requests and releases main storage obtained for
the work area and for channel programs. If dynamic buffering was used, it releases the
system—obtained buffer area. If the data set was opened for DISP=SHR, move the
DCB fields that may have been changed during processing from the DCB field area
(DCBFA) to the DCB. If this is the last DCB open for the data set, free the DCB
field area. The BISAM close executor passes control to the ISAM common close

executor.

Section 2: Method of Operation 91

SECTION 3: PROGRAM ORGANIZATION

Section 3: Program Organization 93

IGG0192A

Al
‘ ENTRY)
SCAN DSCB'S FOR

PRIME, INDEX, AND
OVERFLOW EXTENT ENTRIES

ISLOOA3

SET FORMAT 1
DSCB_AND UCB
POINTERS

ISLOOB2
C1

INCREMENT
PRIME EXTENT
COUNTER

PRIME EXTENT

ISLOO0C2 ISLOOB3

C
3/“\\\\\\\\YES INDICATE PRIME
RPS DEVICE ON RPS DEVICE
| [0} ‘ : »
T NO
4

D2:

D

IS _DEVICE
2321

YES INCREMENT

INDEX EXTENT
COUNTER

WRITE
CHECKING
SPECIFIED

INDEX EXTENT RPS DEVICE

- <::>

INDICATE SET WRITE CHECK
OVERFLOW ON RPS - OPTION
I DEVICE

ISLOOD2

E2:

OVERFLOW INCREMENT
EXTENT

ISLOOE3
F1 F3

DECREMENT
DSCB_EXTENT
COUNT

YES

INDICATE
RPS DEVICE OVERFLOW ON RPS
DEVICE

ISLOOF4
G2

3
CALCULATE
OFFSET-

FORMAT 1 DSCB NON-FORMAT 1
DsCB

5 Y

ISLOOF3 ISLOOF41
H1 H

MORE
EXTENTS THIS
DSCB

H

ANY MORE
DSCB'S

ADVANCE DSCB
POINTER TO NEXT,
DSCB

FORMAT 3 DSCB

e | @
1SL00J3 ISLOOH3 ¥ ISLOOHS T
RESET EXTENT
SET EXTENT YES YES COUNTER _AND
COUNTER = 9 FORMAT-1 DSCB | _OFFSET FOR
FORMAT3 DSCB

Chart AA1 First Common Open Executor (IGG0192A) (Part 1 of 3)

Section 3: Program Organization 95

DETERMINE NUMBER
OF MODULES TO

L
BE LOADED
ISLOOD11
B2

ISLOOE2
B1 B3

INCREMENT
MODULE COUNTER

YES SETL OR

SETL K/1I

SCAN MODE

ISL00D12C ISLOODS

EAD OPTIO!
SPECIFIED

INCREMENT
ODULE COUNTER

ISLOOF2
D2

INCREMENT
[ODULE CQUNTER
BY 2

WRITE
UPDATE _OPTION
SPECIFIED

ISLOOE2A
E1 E
INCREMENT YES
MODULE COUNTER SCAN MODE

ISLOOE2B
F

NO WRITE KEY
NEW OPTION

SPECIFIED

INCREMENT
ODULE CQUNTER
BY 2

[N0

ISLOOE2C ISLOOE2D
H1 H2

PUT/PUTX

ISLOOF21

ABEND

CODE = 3B
UNSUCCESSFUL
LOAD

ISLOOD1
H3
NO
MOVE/LOCATE

SPECIFIED

2

INCREMENT
MODULE COUNTER

YNAMIC
BUFFERING
OPTION
SPECIFIED

INCREMENT

ISLOOE2E
1 K 2:

INCREMENT
MODULE COUNTER

NO YES

ISAM CHEC!
SPECIFIED

ISL00C1
ABEND
»|CODE = 30 MACRF
INCORRECT

Chart AA2 First Common Open Executor (IGG0192A) (Part 2 of 3)

D5
———-b‘ ABEND EXIT ’

HS
-———————b‘ ABEND EXIT ’

96 OS ISAM Logic

GET MAIN
STORAGE SPACE
FOR DEB

ISL0O0G2
B1 B2
INCREMENT
NDEX PRIM. ODULE COUNT
OR _OQVERFLOW FOR RPS SIO
ON RPS APPENDAGE

ISLOOF5
e |

DETERMINE DEB
REQUIREMENTS

1

D
GETMAIN

MAIN STORAGE
SPACE FOR DEB

.

COMPLETE_PREFIX
SECTIONS OF DEB

ISL0O0J2

INITIALIZE
APPENDAGE
VECTOR_TABLE
FOR BISAM

ISLOOK21

COMPLETE_DEB
OVERFLOW FIELDS

ISLOOK3
H1 H

RECORDS
BLOCKED

FIXED
LENGTH
RECORDS

ISLO1DS
presv—] 2t
ABEND

1 OR_MORE
PRIME EXTENTS

CODE = 36 NO
PRIME EXTENTS

K 2:
‘ ABEND EXIT ’

ISLFIXUB 3

SET_DCBBLKSIZE
EQUAL TO
BLRECL

Om

ISLO1E4

PERFORM
WHERE-TO-GO
LOGIC

TCTLRTN

VARIABLE-
LENGTH
RECORDS

Chart AA3 First Common Open Executor (IGG0192A) (Part 3 of 3)

XCTL

TO: IGGO192B

Section 3: Program Organization 97

.
©

IGGO192B

A1
‘ ENTRY ’
ISLOIE4
ISLOTH3 __
COMPUTE DCBBUFL
FOR OISAM OR

SAM, BLOCKED
OR UNBLOCKED

ISLO1E41
C1

USER
BUFFERS
SUPPLIED

ISLO1GS ISLOTHS
ABEND
USER
BUFFERS |coDE = 37 uskr
ADEQUATE S
INADEQUATE
E2
ABEND EXIT

ISLO2A1 @

SET DCBBUFNO=2

NO
ISLO1G56
G1

SER_BUFFER
POOL_ADDRESS
VALID

ISAM READ
SPECIFIED

ISLO2A11
J2’J

DYNAMIC
BUFFERING
SPECIFIED

WRITE
SPECIFIED

ISLO2B2

BISAM READ

QISAM WRITE

GETMAIN

BUFFERPOOL

—_— BUFFER POOL
FROM gggPOOL

IsL02C1 ISL02C2 B%ggM
ALIGN FIRST SET ADDRESS OF
BUFFER ON 1ST BUFFER IN
FULLWORD ——»] THIRD WORD OF
BOUNDARY BCB

ISLO2D1

INIT BCBALIGN
FIRST BUFFER ON
DOUBLEWORD
BOUNDARY

ISLO2D2

ISLO2E1 #
- D

Chart AB1 Second Common Open Executor (IGG0192B) (Part 1 of 2)

LOAD BCB
SET POINTER TO SET LAST BUFFER
1ST BUFFER IN |———| POINTER = 0
1ST WORD OF BCB
ISLO2E2
CHAIN LINK
BUFFERS
-
ISLO2A3
BUILD USERS_DEB
EXTENT ENTRIES
OM POINTERS
SAVED_FROM
IGGO192A

ISLO2A32 _ y

GET UCB_ADDR
FOR DEB_AND
DEVICE TYPE FOR
DEB SET PTR _TO
1ST EXTENT ENT

98 OS ISAM Logic

ISLO2A5

CYLINDERS
NEEDED WITH
2301 OR 2321

ISL02114
E2

EXT DSCB =
FORMAT 3

ISLO2K3

SET POINTER
1ST FORMAT
EXTENT

TO 3

O

TCTLRTN

H2:
‘ XCTL)

TO: IGG0192C

Chart AB2 Second Common Open Executor (IGG0192B) (Part 2 of 2)

Section 3: Program Organization 99

IGG0192C

Al
‘ ENTRY ’

ANYMORE
B1

NOMODSCB

IF INDEPENDENT OVERFLOW

ON DIFFERENT DEVICE TYPE,

SET DEVICE TYPE| RESET DCBDEVT TO REFLECT

FOR _INDEPENDENT| PRIME DEVICE TYPE
OVERFLOW

ADDITIONAL
DSCB'S IN
CHAIN

SET DEVICE TYPE ANY
FOR PRIME DATA OVERFLOW
EXTENTS EXTENTS

YES
NOINDOV
c 2 3
INITIALIZE
NO OBTAIN KEY & WHERE-TO-GO
FORMAT-1 DSCB DATA LENGTH FOR LOGIC FOR
FORMAT 3 DSCB MODULE
1GG01921
ES
FREEDSCB
FREEMAIN
YES
LOAD MODE
FREE DSCB

L

FININIT

RE-INIT
WHERE-TO-GO
LOGIC FOR
MODULE
IGG01920

LENGTH
RECORDS

IGG01950

RELOOP Y

PERFORM
WHERE-TO-GO
LOGIC
TCTLRTN
S
XCTL
TO: IGG01921, OR
IGG01920, OR
IGG01950

Chart AC1 Third Common Open Executor (IGG0192C)

100 OS ISAM Logic

IGG01920

A1
‘ ENTRY '

COMMON

NOEXEC1 _ NOEXEC

THIS

EXECUTOR

ENTERED FROM
RESTART

MOVE VALID
FORMAT~2 DSCB
FIELDS TO DCBFA

B FIELDS
PREVIOUSLY
VALIDATED

DISP = SHR

NEXTEXEC
CNTINU RELOOP
INITIALIZE EOF PERFORM WTG
CHANNEL PROGRAM ——>»|LOGIC FOR NEXT
MODULE LOAD
D1
GETMAIN TCTLRTN

GET BUFFER TO D4
VALIDATE
XCTL

TO: IGG01922

1

VAL IDATE
BUFFER, SET
BUFFER_ADDR §
BUF SIZE IN EOF

EOTREAD

1
READ PRIME DATA
EOT

GOABEND
ABEND 5

E = 33 — ABEND EXIT
PERMANENT ERROR
READING EOF/EOT

EQOT =_END
OF FILE

ESTART IN
CONTROL

END OF EXTENT

SETLPDA
DCB! START
BITS OK RFORM
(LAST TRK ¢ WIG LOGIC FOR
BLK FULL) RESTART MOD
(IGCOWO5B)

PADLOOP NOPAD
e we—
SET LAST BLK 3

ADDING IN FULL INDICATOR

LAST BLK (DS2STIND XCTL
x"02")
TO: IGG01922
TRKNFULL
PADDING) OKDCBST
SET LAST TRACK FREEMAIN
FULL SWITCH
(DS2STIND = »| FREE BUF USED |—>
X7017) [TO_SET LAST BUF
FULL SWITCH

Chart AD1 Fixed-length Validation Open Executors (IGG01920)

Section 3: Program Organization 101

IGG01921

Al
‘ ENTRY ’

ISLO4AS
B1

CB OPENED
FOR OUTPUT

DCB KEY SET ABEgg CODE

3

YES

LENGTH ———»(aBenp ExiT
SPECIFIED
RELATIVE
DCBRECFM=
RKP=0
TESTRKP
F1
RKP +
KEYLEN >
DCBLRECL
G 2 e—— G
SET FULL TRK
YES IDX WR_OBTN OF
VLR IN DCBOPTCD RKP < 4
FIELD FTIW
ILLEGAL W VLR
0 o
|
RKPOK COMPARE CLEER
GETMAIN 1
OBTAIN WORK CLEAR 256 BYTES
OF WORK AREA
(ISLCOMON)

LASTIME

CLEAR REMAINDER

OF 1 M
SAVE REGISTERS
AT ISLVRSAV

ISLCOMON

©
1
©

L prmms,] 5

DEVRTN GETGAPS
FIND PRIME GET RECORD
DEVICE TYPE OVERHEAD GAPS
ENTRY ADDRESS

Chart AE1 First Load Mode Open Executor (IGG01921) (Part 1 of 3)

!

SAVE DEV TBL
PTR AT DCBLRAN
& ISLOCNT. SAVE

ISLLGAP_§&

ISLIGAP

102 OS ISAM Logic

AE2

B1 >
ISL02G21 P

SET IOBFLAGS
FOR DATA &

CHAINING

IF DISP= OLD & DATA SET
OPENED FOR LOAD, USER
INTENDS TO USE PRE-
ALLOCATED SPACE

ISLO3K1 ISLO3K1A
C2 C 4
DISP = NO RESTORE
NEW/MOD LOADING RELOAD ONLY REGISTERS
INDICATED
D1
TEST-
CLEAR DCBST AND ILL OVFLO
DCBHIIOV LINK FIT WITH
UNBLK'D
RCD'S

ISLFCO013 ISLFC012
E4

CALCULATE HIROV
(HIGHEST R FOR
LINDE

CcY R
OVERFLOW)

VARIABLE
LENGTH
RECORDS

ISLFCOA

DCBHIIOV CALCULATE AND
SWITCH ON SET DCBHIROV INITIALIZE
DCBHIRPD

YES

ISLFCO14

INDPNT
OVFLO OPTN
SPECIFIED
INDCB

INDPNT
OVERFLOW_Ol

SET DCBHIIOV SAME DEVICE

5
SET DCBOVDEV=
8CBDEVT (OVFLO

N SAME DEVICE)

LB L=

e, J 4 9
DEVRTN
FIND OVFLO
DEVICE TYPE
ENTRY ADDR
GETGAPS

SET_OVERFLOW
OVERHEAD GAPS

L®

Chart AE2 First Load Mode Open Executor (IGG01921) (Part 2 of 3)

ISLFCO15

SET DCBHIIOV
SWITCH ON

DCBDEVT=

DCBOVDEV

(OVFLO ON
SAME

Section 3:

Program Organization 103

AE3___
B1

ISLFO1A

INITIALIZE
WHERE-TO-GO

SET DCBHIIOV LENGTH | LOGIC TO LOAD
RECORDS MODULE_IGG01920
NEXT
AE3 L*
ISLFO1E
RELOOP R
RESTORE INITIALIZE
REGISTERS, WHERE-TO-GO

PERFORM <+——| LOGIC TO LOAD
WHERE-TO-GO MODULE _IGG01950
LOGIC NEXT

TCTLRTN

DS-—'
‘ XCTL '

E3 E4:
‘ ENTRY ’ ‘ ENTRY ’

FROM: AE1-J4
AE2-J4

FROM: AE1-J5
AE2-K4
AE3

F1
TOOLONG _ 1 DEVRTN v GETGAPS Fu

3, c

FIND DEVICE
ENTRY ADDRESS
IN DEVICE TABLE

SET ABEND CODE CALCULATE
= 20 RECORD_OVERHEAD
FOR 3330 DEVICE

3330 DEVICE

: ; .

CALCULATE
ABEND EXIT EXIT RECORD OVERHEAD |———> EXIT

TO: AE1-J5 TO:
AE

Chart AE3 First Load Mode Open Executor (IGG01921) (Part 3 of 3)

104 OS ISAM Logic

1GG0192D

Al
‘ ENTRY ’

ISLFAOT y
CALCULATE AND
STORE-

1
GET NUMBER OF
RKS OF TRK
OVERFLOW AND
NUMBER_OF TRKS/
CYLINDER

ISLFAO3 ISLFBO1

3,

D. i
CALCULATE & BEGIN
STORE DCBLDT CALCULATIONS
(HH OF LAST —————|FOR_TRACK INDEX
ALLOCATOR

OVERFLOW

ISLFBOS

CALCULATE_§
STORE DCBHIRSH

F
SHARED TRACK)

TOOLONG

E.

SHARED
TRACK

POSSIBLE

SET ABEND CODE
= 20

VLR

F1 CONTINUE TRACK
INDEX

ABEND EXIT CALCULATIONS

SET DCBgIRSH =

ISLFBO6

SET ISLNIRT

(HHR OF THE
DUMMY TRK_INDEX
ENTRY USED IN

CLOSE)

S

CALC & STORE
DCBNCRHI (STOR-
AGE LOCATIONS
NEEDED TO HOLD
HIGHEST INDEX)

SET DCBFIRSH
WITH SHARED

TRACK

ISLFBO4

SET DCBFIRSH
(HHR OF 1ST
RCD ON

Chart AF1 First Initial Load Mode Open Executor (IGG0192D) (Part 1 of 3)

Section 3: Program Organization 105

AFZ

B1
ISLFCO1 1
CLEAR
DCBNLEV
DCBRORG2
DCBNOV
TO ZERO

1 ‘
STORE NUMBER OF

PRIME CYLINDERS
(DCBNOV) AT

D

2321 DEVICE 2301 DEVICE

ISLFCO1A

CALCULATE e
SAVE_NUMBER
BRIME CYLINDBRS
AT ISLOC (2301)

ISLFC02

D
CALCU ATE &

(NOT_2301 O
2321)

ISLFCO2E
F3

MORE THAN
ONE_EXTENT IN
DATA SET

ISLFCO3

I ATE
CYLINDER INDEX

SET DCBNLEV TO

13

SET ISLg} =
ISLOC (# OF
PRIME CYLS)

SEPARATE
INDEX AREA

ISLFCO02D

P

SET _MBBCCHH IN SET_ISLDORE =
NO DCBFTHI FOR X'ES',

TRACK INDEX, |———|INDICATES ONLY

DATA SET | OF 1 1 CYLINDER USED

[——
SET ISLDORE =
'E1’

INDICATES ONLY
PRIME EXTENTS
IN DATA S

NO

SEPARATE
OVERFLOW AREA

Chart AF2 First Initial Load Mode Open Executor (IGG0192D) (Part 2 of 3)

106 OS ISAM Logic

ISLFEH1

INDEX &
PRIME ON_SAME
DEVICE

ISLFEH1A 5

DETERMINE AND
STORE DCBHIRCM

ISLFEH11
D1

GET NUMBER OF

INDEX EXTENTS
(DEBNIEE)

AF3

D2>
ISLFEH2
D.

GET NO. OF
OVFLO EXTENTS
(DEBNOEE)
(INDEXESIN
OVERFLOW AREA)

ISLFEH3

DETERMINE &

TABLE ENTRY
(ISLIXLT)

A

SET _UP MBBCCHH
OF _END ADDRESS

IN ISLIXLT
(INDEX LOCATION
TABLE)

ISLFEH4

SET ISLSB EQUAL
TO NUMBER OF
PRIME CYLINDERS
PLUS 1

ISLFEHS
ISLFEH55

1
STORE NUMBER OF
TRACKS PER
CYLINDER AT
ISLP (IN
ISLCOMON)

A

SET, ISLDORE =
%x713',” (INDEXES
NOT IN PRIME

AREA)

SAVE ADDRESS OF
INDEX EXTENT AT
DCBWKPTS

ISLCO4

SAVE POINTER TO
—> I/ODEVICE
TABLEAT ISLQ

—C
RESTORE _REGS
INITIALIZE WTG

LOGIC TO LOAD
MODULE _IGGO192E
NEXT

AF3
D4

ISLCO4F

INITIALIZE
ISLAREAZ 1IN
ISLCOMON

ISLCO4G
RELOOP A

PERFORM
WHERE-TO-GO
LOGIC

TCTLRTN

Fl)
‘ XCTL ’

Chart AF3 First Initial Load Mode Open Executor (IGG0192D) (Part 3 of 3)

Section 3: Program Organization 107

IGGO196D

UPDATE

DCB_FROM
FO! R T =2 DSCB
ELDS

GET INDEX
DEVICE TYPE

SETTYPE

INDEX AREA)

SAVE INDEX DEV
PE (USE PRIME
NO INDEPENDENT

TEST2321
F1

PRIME ON
23271 DEVICE

FTHIBIN
H
INDEX AREA
ON 2321
DEVICE

-

1

ADJUST DEVICE
ADDRESS FOR
DCBFTHI

TSTHSK

USER—
SPECIFIED
DCBBUFNO

SET ISL%UFNO =

-

TSTHKO00S5

o8

INITIALIZE
BUFFER CONTROL
TABLE (IOBBCT)

EXCP_ (EXECUTE
CP 31)

TSTHKO
TSTHKO14
TSTHKO MASKA
SET DCBHMASK
INITIALIZE FIELD MOVE
BUFFER POOL DEVICE MASK TO
SLOTS ISLAREAZ + 87
EXIT
TSTHKO3 TSTEXIT
INIT RFP BYTES INITIALIZE
F ISLNDAT HERE-TO-GO
(CURRENT NORMAL LOGI TO LOAD
NDEX MODULE IGG0195G
ENTRY)

Y

RELOOP

INIT REP BYTES

ODAT
(CURR

OVERFLOW TRK

INDEX ENTRY)

PERFORM
WHERE—TO GO
LOGIC

3y

TCTLRTN

SET ISLECBA
ISLECBB ISLEéBc
COMP LEPE B

TO VO
PREMATURE WAITS

Y

F Yo
‘ XCTL ’

GETCORE

TO: IGG0195G

GETMAIN
(OBTAIN IN
STORAGE SPACE

FOR CP31)

1

SET_UP_FIRST
IOB ADDRESS

K ——
INIT CP31A TO
RE Y

KEYSAVE AREA

INITIALIZE

P31B TO READ
COUNT & DATA OF

LAST PRIME

L

CHANNEL PROGRAM 31 INITIALIZED
USING SKELETON IN THIS MODULE

(INTO FIRST BUFFER
SPECIFIED IN IOBBCT)

Chart AG1 First Resume Load Open Executor (IGG0196D)

108 OS ISAM Logic

1GG01924

Al
‘ ENTRY)

SISO05A2
B 1

pr—(|

MOVE FORMAT 2
DSCB FIELDS TO
DCB

SIS05A3
SET W1ICNOT =
SMALLEST

INTEGER
CONTAINING
BUFNO/2

WI1ICNOT >

SET W1ICNOT = SEE_SCHEDULING
DCBHIRPD DCBHIRPP RT!

ICNOT FIELD

SIS05A4 . _
SAVE SIOo PLACE RPS_SIO SET SIO PREFIX
ANY EXTENTS YES LOAD (RPS SIO APPENDAGE APPENDAGE ID ON IN DCB_WORK
ON RPS DEVICE APPENDAGE ADDRESS AT ~——————» | SUBROUTINE NAME]-————] AREA WI1ISECT
IGGO19HA) DEBSIOAD LIST W1ICPEXT
W10CPEXT
SIS05J4
A S— e yr—— e 3
SET ECB INITIALIZE SET ECB_AND DCB SET W1CURLEN
COMPLETE BITS FLAGS IN IOB'S PTRS- W1IECBAD (IN SCAN DCB
(W1ECBI AN — (W1IOB — W10ECBAD —»| WORK AREA) =
W1ECBO) (W1I0BO W1IDCBAD DCBLRECL
W10DCBAD
CIRB (CREATE
REUSABLE IRB STORE_IRB
FOR ASYN ———»|ADDRESS IN DEB
ROUTINE) AT DEBIRBAD
SISOSEND
RELOOP
PERFORM
WHERE-TO-GO
LOGIC
TCTLRTN
K S
XCTL
Chart AH1 Last Scan Mode Open Executor (IGG01924) ()

Section 3: Program Organization 109

1G6G01928
SIS04A2
Al
‘ ENTRY ’
P22 FOR EACH
gggF%R IN SCAN MODE
SIS04B2

ALC SIZE OF
SCB WORK_AREA

SIS04B21

C

ADD LNG OF
CP25 TO SCAN
DCB WORK AREA

SIZE

SETL K_OR

SETL ID
SPECIFIED

l

D2:
ADD_LNGS OF
CP23 & CP26
TO SCAN MODE
DCB WORK AREA,

SIZE

SIs04cC2

ADD LNG OF
PS DEVICE RPS EXTENSION
USED TO g?%EWORK

SISNORPS SIs04C21
ADD LNG OF
V. EXT
(WIVLRLN) TO
DCB WORK AREA

GETMAIN
(OBTAIN DCB
WORK AREA

SPACE)

SIS04D2
SET POINTER TO
ORK_AREA IN
DCBWKPT1, CLEAR
WORK AREA

SISO4E2
CLEAR WORK_AREA

NO. U
(W1FREEC)

SIS04G2

LOAD (LOAD
APPDGE_CNTL
RTN & READ
APPDGES)

Sk
SET RELOC'D
TNS IN CHAN —p |AI2

B

END & ABNORM 1
END VEC TBLS

Chart AI1 First Scan Mode Open Executor Module (IGG01928) (Part 1 of 4)

110 OS ISAM Logic

SI1S04G21
B

B 2
ET WRITE CHECK
PUTX RITE_CHEC YES LOAD (LOAD APPENDAGE PTRS
SPECIFIED SPECIFIED WRITE CHECK ~—————| IN APPENDAGE
APPENDAGE) VECTOR TABLES

SIS04G22 _ S1S04G23
LOAD (LOAD SET WRITE
WRITE APPENDAGE VARIABLE
APPENDAGE-_ NO —| POINTERS IN RECORD FORMAT
WRITE=CHECK) VECTOR TABLES
SISLDGET
D
LOADING FIXED LOAD (LOAD
LENGTH GET GET MODULE)
MODULE

STORE ENTRY PT
ET MOD

SIS04G27__

PUT_THE ADDR OF

MODULE TO
BE LOADED FOR D
SETL AT DCBSETL

PTRS

SETL K
MODULE TO BE
LOADED

SIS04G26

LOAD (LOAD
SETL_MOD &
SETL
APPENDAGE

MODULE)

A

ST SETL ENT PT
ADDR AT DCBSETL
SET PTRS FOR
SETL &ITS APDGE
IN VECTOR TBL

Chart AI2 First Scan Mode Open Executor Module (IGG01928) (Part 2 of 4)

Section 3: Program Organization 111

AI3

B1>
SIS04A3
LOAD (LOAD
CHAN PROG
MODULE)

SIS04B3
e |
MOVE CP24 INTO
THE DCB_WORK
AREA
SIs04C3
D1 D
SPACE SET W10SBIT3 TO
BLOCKED N BUFFERS INDICATE K-D
RECORDS (TEST FOR_KEY AND TYPE CHAN_ PROG
DCBRECFH) DATA ALLOWED

FIND FIRST SP%CE

AFTER_WORK AREA
FOR CP22 COPIES

SIS04C34 SIS04C32
E2 E3 E4
ALLOW FOR
GET 'G' PS EXT. TO RPS EXTENSION
FACTOR FOR _KEY WORK AREA SPACE_IN CALC
OF CP22 LOC'S,

& DATA SPACE

SINORPS SISNO
GET_ADDRESS OF SET W1FR1ST
FIRST SPACE éPTR TO 1
AFTER THE WORK |——————|CP22 ON FREE Q)
EA_(NO RPS = ADDR OF SPACE
FOR CP'S

SIS04C33
MOVE 1 _COPY OF
CP22 FOR_EACH
BUFFER_ INTO
SPACE FOLLOWING
WORK ~AREA

SET WIFRLAST = éPTR TO LAST CP22

ADDRESS OF LASTJON FREE QUEUE)
CP22 LOCATED
AFTER WORK AREA

LB

Chart AI3 First Scan Mode Open Executor Module (IGG01928) (Part 3 of 4)

112 OS ISAM Logic

——

SIS04G3
B1

SETL I OR
SPECIFIED

SISO4H4

MOVE CP25 INTO

WORK AREA, SET

PTR TO CP25 IN
WORK _AREA
(WICP25PT)

SIS04G4

MOVE CP23 AND
CP26 INTO DCB
WORK AREA

SIS04J3
D.

”,

DELETE
(DELETE CHAN
PROG MODULE)

E 2o
INITIALIZE
TG_LOG T

RELOOP

PERFORM
WHERE-TO-GO
LOGIC

TCTLRTN

2
‘ XCTL)

TO: 1IGG01929

Chart AI4 First Scan Mode Open Executor Module (IGG01928) (Part 4 of 4)

Section 3: Program Organization 113

I1IGG0202D

Al
‘ ENTRY }
IF DCB BEING CLOSED IS FOR GET

WITHOUT PUTX OR READ WITHOUT
WRITE, FMT-2 DSCB IS NOT UPDATED

PUT OR
WRITE USED

LOAD MODE

RESTORE
DCBWKPT3 §
DCBWKPT4 FROM
DCWOPCLS

RDFMT2
GETMAIN (GET

MAIN STG SP
FOR FMT-2
DSCB)

INITIALIZE
CHANNEL PROGRAM
TO READ FORMAT-

2 DSCB

EXCP (READ
DSCB INTO
MAIN STG)

WAIT (WAIT
COMPLETION)

TESTMODE 3

PERMANENT FORMAT=2
I/0_ERROR ON DSCB READ
READ OF

ABEND3A .
CLEAR

3
ABEND, ABEND
CODE = 3A

Chart AJ1 ISAM Common Close Executor Module (IGG0202D) (Part 1 of 2)

ISP = NEW
OR_MOD (TEST
DEBOFLGS)

DSC!
FIELDS EXCEPT
DS2FMTID &
PTRDS

YES

ALL

114 OS ISAM Logic

AJ2

B1 >
MODNEW .

FREEMAIN

(FREE LOAD
MODE CHAN
PROG AREA)

FREECORE 1

FREEMAIN

(FREE LOAD

MODE WORK
AREA)

TESTSCAN
D2

r___Dl-__—____-
MOVE LOAD MODE
DCB_FIELDS INTO
FORMAT-2 DSCB

D
MOVE FIELDS
NO UNI 8E TO BISAM

F B
FORMAT~2 DSCB

SCAN MODE
DCB BEING
CLOSED

LIKELOAD . ITISSCAN .
MOVE FIELDS MOVE FIELD FOR
COMMON TO_LOAD SCAN (DCBTDC)
MODE & BIS ROM DCB_TO
FROM DCB_TO FORMAT-2 DSCB
FORMAT-2 DSCB

. RITEBACK

EXCP (WRITE
SET STATUS BIT FORMAT—-2 DSCB
(DCBST) FOR —_— INTO THE

RESUME LOAD VTOC)

2 G
WAIT (WAIT PERMANENT
FOR WRITE I/0 ERROR ON
COMPLETION) WRITE

3
H
FREEMAIN
(FREE_DSCB
SPACE IN MAIN
STORAGE)

AJ2

33)

EXI
RELOOP 3
——

PERFORM
WHERE-TO-GO
LOGIC

TCTLRTN
K 3
‘ XCTL '

Chart AJ2 ISAM Common Close Executor Module (IGG0202D) (Part 2 of 2)

Section 3: Program Organization 115

SISCTsA

A1
‘ ENTRY '

SISSAB1

EINFO AK14-A3

INFORM USER OF
ERRORS

O '

DATA SET
EMPTY

-k

ANY WRITE
ERRORS

SISSAB3
ADD TO CURRENT
WITH LENGTH_ OF
CUR

SISSAC31
EOB AKll-Al
ADVANCE TO NEXT

BUFFER QUEUE
PRESENT BUFFER

J |
o ©}

F1
YES
FIXED RECORDS
[0}

MOVE LOGICAL
RECORD LENGTH
OF CURRENT
RECORD_TO
W1CURLEN

SISSAC3
E1

SISSAB32
CHECK AKl4-Al
CHECK FOR READ
ERROR THIS
BUFFER

IF_ERROR CHECK RTN

GOES TO USER INSTEAI
(=)
SISTABJ 4—] NO
J2

B
SISTAB2 71 SISTAB31

DELETE
OPTION
SPECIFIED

®

'HIS RECORD
DELETED

prm—(3

INDICATE SETL
STARTED BY GET
MACRO, SET CODE

—_—
FOR SETL B/KD

TO END OF FILE IN
END=OF=BUFFER RTN

SETL AK4-AL

START SE:
RETRIEVA

-

SISTAC2
E4

S THIS TH

I NO
LAST BLOCK

SISTAD2
F4

AST BLOCK YES
FULL

YES
FIXED RECORDS

CURRENT
BUFFER = MOVE
MODE

YES

LOCATE MODE

SAVE BUF ADDR
AND KEY ADDR

Chart AK1 QISAM Scan Processing Module (IGG019HB) GET Macro Routine (Part 1 of 14)

116 OS ISAM Logic

MOVE MODE ROUTINE

SISSAD4

ARE KEY AND
DATA READ

MOVE KEY TO
USER AREA FIRST

DATA ONLY

SISSAD4A
GET NUMBER OF

MOVED FROM

SISSAD41

D2

MOVE 256 BYTES
OF THE RECO%D

MORE THAN
256 BYTES TO
MOVE TO USER ARE.

SISSADA2 'y
MOVE LAST (OR

ONLY) PART OF
RECORD_TO USER
AREA

AKZN
Fi

SISSAE3
F1

SET OVERFLOW

IS THIS AN
OVERFLOW READ

SISSAF3
QUEUE~ AK10-Al

SET IOB-0

MOVE BUFFERS _|————| COMPLETE BIT
FROM_WRITE Q TO OFF
FREE Q

1 ey

-
O,

SISSAK3

SCHEDULE AK7-Al

SET UP_CP FOR
READ

AST TRY TO
SCHED_LOCKED
BUFFERS

SISSAH3
QUEUE~ AK10-Al
MQVE_BUFS FROM

READ QUEUE TO
USER QUEUE

GETOUT
x Y

K 4
SET IOB-I
COMPLETE BIT RETURN
OFF

TO: USER

L®

Chart AK2 QISAM Scan Processing Module (IGG029HB) GET Macro Routine (Part 2 of 14)

Section 3: Program Organization 117

(PUTX RTN)

NOPUTX
B2:
{ ERROR EXIT ’

PUTX
SPECIFIED

YES

NO IS A BUFFER

ON USER CP

D1
SET PUTX FLAG
ON IN CP_OF
CURRENT BUFFER
ON USER QUEUE

PUTXOUT

E1
‘ RETURN)

TO: USER

Chart AK3 QISAM Scan Processing Module (IGG019HB) PUTX Macro Routine, RELSE Macro Routine

(Part 3 of 14)

SISREA2

Al
(ENTRY »

SISREA3

WRITE Q ERROR

RELSE RTN

SISREA4

EINFO AK14-A3

INFORM USER OF
ERROR

SISREB3
C4

RELSE BIT SET

YES

SET RELSE BIT
(W10SBIT2)

RELSE BIT SET
BY LAST RELSE
MACRO A SETL
NOT FOLLOWED BY
A GET

IN BU

FFER

SISREB2 A

EOB AK11l-al

TO
END-OF-BUFFER
ROUTINE

SISREC2

RESTORE
REGISTERS

SISRED2
4
RETURN

TO BYPASS OTHER
RECORDS IN BLOCK

TO: USER

118 OS ISAM Logic

SISCTBS
Al
‘ ENTRY ’
SISBSA2
B1

DISP = SHR

YES

SVC 54
(REFRESH_DCB
FIELDS FROM

DCBFA)

CNTINU RETURN TO USER

DATA SET
EMPTY

SISBSA3
E1

IS WRITE I
PROGRESS

SISBSB3
F1 TEST FOR WRITE ERROR

WRITE Q EMPTY

BLOCKED
RECORDS

SISBSB1

SET INVALID
REQUEST BIT IN
DCBEXCD1

SISBSC1

SER_SYNAD
DDR
SPECIFIED

GET USER_SYNAD
ADDRESS

0]

ERROR_IN
SPECIFYING SETL
ISBSF1
ISBSAB

K1
‘ ABEND EXIT ’

s
S

Chart AK4 QISAM Scan Processing Module (IGG019HB) SETL B Macro Routine (Part 4 of 14)

o8

SISBSD2

INITIALIZE _CCW
FOR CP22B

A

SISBSC3
G3

KEY AND
DATA
REQUESTED

SISBSD1

RESTORE
REGISTERS

DATA ONLY

TAST CP ON
QUEUE

GET NEXT CP ON
QUEUE

D

BLOCKED
RECORDS

SISBSD2B

INITIALIZE CCW
FOR CP22A

INITIALIZE
FOR USE OF

SISBSE1
4

—_— SYNAD EXIT

Section 3: Program Organization 119

ADDR

AT. T
INITIALIZE
W1LPDR

SISBSG3

“SCAN_MODE

SISBSG1 '
D1

SET OVERFLOW
MODE SWITCH OFF
SET _CYLINDER
INDICATOR ON

=9

IS THIS SET SHARED
SHARED TRACK TRACK INDICATOR
(W10SBIT2)
SISBSH1
SCHEDULE AK7-Al
READ 1ST RECORD
& TRACK INDEX
ENTRY
SISBSJ1
G
WAIT
WAIT
NECESSARY (FOR_READ
?OMPLETION)
0
SISRSJ2 y
ZERO HI-ORDER
OF 0
FORCE ENTRY TO
EGB ROUTINE
AK5
J2
SISBSH3 SISBSH4

SETL B RTN
ENTERED FROM
GET

SISBSH3A

K1
‘ RETURN ’

TO: GET

Chart AK5 QISAM Scan Processing Module (IGG019HB) SETL B Macro Routine (Part 5 of 14)

SET ON RELSE
BIT (W10SBIT2)
ESTOR.
REGISTERS

SISBSA4

WRITING FROM LAST
SCAN NOT COMPLETED

N

WAIT

OR _LAST
ITE)

(F
WR

SISBSB4

SISBSBS
EINFO AKl4-A3

INFORM USER OF
WRITE ERROR

ANY WRITE
ERRORS

0 l_’
SISBSC4
QUEUE AK10-Al

MOVE ENTIRE
WRITE QQTO FREE

L

SISBSHS

—_—

3
RETURN

TO: USER

120 OS ISAM Logic

SISCTES

Al
‘ ENTRY ,

SISESA4

EINFO AK14-A3

INFORM USER OF
ERRORS

SISESB2

FIRST
BUFFER ON
USER Q PUTX

SISESB3

QUEUE AK10-Al

MOVE 1 BUF FROM
USER TO
PUTX

SISESC3

QUEUE AK10-Al

MOVE ALL OF
USER_QUEUE_TO
FREE QUEUE

SISESD2

SISESD3

READ IN
PROGRESS

WAIT (FOR READ)

SISESE4

QUEUE AK10-Al
MOVE BUFS ON
READ 070

SISESE2

Chart AK6 QISAM Scan Processing Module (IGG019HB) ESETL Macro Routine (Part 6 of 14)

SISESE1

SISESF2 SISESF3

WRITES IN
PROGRESS

SISESG2 SISESG3

WRITE ERRORS

SISESH2

QUEUE AK10-Al

MOVE BUFS ON <
PUTX OUEUE TO
WRITE QUEUE

QUEUE~AK10-Al

MOVE WRITE Q
BUFS TO FREE Q

SISESJ2

SETC4 AK13-Al

PREPARE WRITE
CP FOR OUTPUT

SISESK1

EXCP

(BEGIN
WRITES)

UTX gUEUE
EMPTY

SET OFF_STATUS
BIT.

K 4¢
‘ RETURN ’

SISESG1A
e]

SET CLOSE
ENTERED SETL
(WIOSBIT3)

K 5
‘ RETURN ,

TO: CLOS
IGGO

TO: USER
E
2

EXECUTOR
029

Section 3: Program Organization 121

SISCTSB

Al
‘ ENTRY ’

END OF DATA

(0]

SISSBB1 __ l

(W1ASBIT1)

SET SCHEDULING

AK7
D1 -

SISSBA2

SISSBB2
E1

CYLINDER
INDICATOR ON

SISSBB3

AT LEAST
ONE BUFFER

SISSBB30
SET CYLINDER

WITCH
(W1WDNXDM)

SISSBB34 1

INCREMENT
TRACK NUMBER

SWITCH ON_RESET
Y S

SISSBB31

B2
‘ RETURN)

NEXT RECORD ON
o SAME CYLINDER

AST TRACK
OF EXTENT

ANY MORE
PRIME EXTENTS

MOVE TO NEXT
EXTENT SINCR
W1LPDR)

L®

SISSBB33
ADDONE

INCREMENT H OF
CCH ADDRESS (TO
NEXT CYLINDER)

SISSBB32 1

SET CCHH_FOR
WIWCNXDM_AND R
FOR WILPDR

4
SET READ_ TRACK

(W10SBIT1)

SHARED TRACK

INDEX SWITCH ON

) IIII

SET SHARED

TRACK BIT
AK7
Fa)%
SISSBES

QUEUE AK10-Al

0 READ QUEUE

¥OVE FREE QUEU

SISSCA2

CP22 ON READ
QUEUE

INITIALIZE IOBI
C TR TO _1ST

AK7
H4)
CB2'

CB21
4

END OF TRACK

INCREMENT R OF
WI1LPDR BY 1

EAD TRACK
INDEX SW ON

SISSCB3

SET_OFF SHARED
TRACK SWITCH
SET O? LPDR =

SISSCB31

Chart AK7 QISAM Scan Processing Module (IGG019HB) Schedule Routine (Part 7 of 14)

122 OS ISAM Logic

DETERMINE WHAT IS
TO BE READ

SISSRKSI
B4

YES

ENOUGH
BUFFERS

AKS8

C5>
SISSBK2 SISSCD2
e e 5

SISSBD3
GET HIGH R SET OFF SET UP CHANNEL
SHARED TRACK OVERFLOW BIT ROG! FOR
READ PRIME DATA

AK8
COMPARE “ﬁu —
W1ICNOT
SISSBE2 SISSBE3 SISSBK3 y SISSCE2
LESS THAN BURFERS NO SET ON_CYLINDER LAST YES
N/2 BLOCKS ON LESS THAN BIT CHAN PROG IN
TRACK W1ICNOT CHAIN
SISSBF2 SISSBG2 SISSBCS
TRACK SET ON_OVERFLOW SET APPENDAGE
OVERFLOW SWITCH ———1 CODE FOR READ
SISSBF3 .
LAST EXCP
TRACK ON (INITIATE
CYLINDER READ)
SCHEDULE
SUCCESSFUL
SISSBG3 SISSBG31 SISSBD51 _
G1 G2 5
AN ENOUGH NO SET_OFF
INACTIVE BUFFERS SCHEDULING BIT
ENTRY
ES :::
_’
SISSBD5
' - H5
SET OFF SAME SET ON END OF
CYLINDER SWITCH DATA BIT RETURN

SISSBH2

AST RECORD
OF TRACK READ

-

END OF DATA

Chart AK8 QISAM Scan Processing Module (IGG019HB) Schedule Routine (Part 8 of 14)

Section 3: Program Organization 123

SISSBA3
B1

AK9
B4 —_1

SISSCF2

ENOUGH ADVANCE TO_ NEXT
BUFFERS Ccp OgEggAD

LB

SISSBA4

QUEUE AK10-Al

MOVE BUFFERS ON
FREEQ TO

SISSBAS
D

INITIALIZE 1ST
CP_TO_READ
OVERFLOW

SISSBBS

IALIZE ALL
S ON READ
QUEUE

LB

INIT
Cp'

Chart AK9 QISAM Scan Processing Module (IGG019HB) Schedule Routine (Part 9 of 14)

124 OS ISAM Logic

SISCTSD

Al
‘ ENTRY ’

SISSDD2
B1

SISSDA4
B2
CHAN PROGS
TO BE gOVED = RETURN

SET ON QUEUE
LINK FIELDS FOR
MOVED ENTRIES
ENOUGH CPS o
ALREADY ON Q
BEING MOVED
TO FOR ENTS
BEINGMOVED
SISSDD21C1

SISSDE1

SISSDF3
ADJUST NO. OF 4
USED CHAN PROGS
ON BY NO. OF
ENTRIES BEING
MOVED

RETURN

SISSDF2

TO: CALLING ROUTINE
SET PTR TO 1ST
CHAN PRO

G_ON
QUEUE ENTRIES
ARE MOVING

D2:
T ‘ RETURN)
"FROM"

CHAN -
PROGS ON CHAIN NEW CPS
UEUE_MQVING | ON_QUEUE viIa
wpon TIC ADDRESS

"TO" QUEUE
IS EMPTY

SISSDF3

MOVE

SISSDG1)

SISSDH2
——C
0. OF SET "N" (NO. OF
NTRIES TO YES ENTRIES TO
MOVE > CPS ON MOVE) = NO. OF
FROM CPS ON "FROM" Q

SISSDJ2

SISSDK2

GET ADDRESS OF
LAST CP ENTRY
ON "FROM" QUEUE

SISSDJ3

-

STORE ADDRESS
IN LAST PTR
FIELD F8R "TO"

Chart AK10 QISAM Scan Processing Module (IGG019HB) Queue Routine (Part 10 of 14)

Section 3: Program Organization 125

SISCTSE
Al
‘ ENTRY ’

SISSEA2

YES

SISSFF1
HIS BUFFER SET APPENDAGE
END-OF-DATA CODE_FOR
WRITING
5 SISSEB2 o v
‘o QUEUE~ AK1U-AL EXCP
BUFFER PUTXED MOVE_USER (INITIATE
BUFFER, 10 FREE WRITES)
TES
SISSEA3
QUEUE AK10-Al 7% OUEDD WAIT
MOVE_USER EuBrY {EoR
BUFFER TO RITES)
PUTX QUEUE
AK11 (:::)
F4
SISSEC3 SISSED3 SISSEF3
F1 F3 Fu
CAN WRITE _NO [_,,’GZER QUEUE UFFER LAST
BE SCHEDijiB//, 1 EMBTY OF PRIME DATA
YES

® L

SISSEC2

© m—

WRITES
COMPLETE

NO MARK THIS
BUFFER_AS
END-OF-DATA

SISSEC2A SISSEF3A
H H5

QUEUE1 AK10-AL 2

MOVE PUTX L o WRITE ERRORS
8UEUE TO
RITE QUEUE

YES CURRENT

RECORD
OVERFLOW

SISSEE1
SETC4 AK13-Al
PREPARE CHAN

S ON WRITE
Q FOR OUTPUT

L@ .
K5

SISSEC1 SISSEJS
QUEUE~ AK10-A1

K4 SET W1EOB SET
OFF SETL K
L——| MoVE WRITE EXIT -— BLKED BIT
QUEUE ' 1O (WTJOSBIT2)
REE QUEUE

Chart AK11 QISAM Scan Processing Module (IGG019HB) End—of-Buffer Routine (Part 11 of 14)

o A PR [T A—

SET OFF IOBO SET W1CBF FOR
COMPLETE BIT SETL_K NORMAL/
BLOCKED

126 OS ISAM Logic

SISSEC2 SISSEA4
B1 B3

READ IN

ND~OF -DATA
ADDRESS PROGRESS

B2:
‘ EXIT >

TO: USER EOD ADDR

BUFFER ON
READ Q

1
‘ ABEND EXIT ’

SISSEDS
D3

WRITE IN
PROGRESS

SISSEG3
E2

SISSEH3
E1

FIXED RECORDS SETL K BIT ON

E 3
YES WAIT (ON
WRITES)

SISSEES
F

SET WICBF_FOR SET WI1CBF_TOQ
OVERFLOW RECORD 1ST_RECORD IN
BUFFER

.

WRITE ERRORS

SISSEC4

SISSEAS]

Bl
‘WAIT (FOR READ)’

QUEUE aK10-Al

MOVE READ Q TO
USER Q

SET SCHEDULE
BIT ON, NEXT
GET WIL
ATTEMPT
SCHEDULE

=

SISSEBS

SET IOBI
COMPLETED BIT
TO ZERO

EINFO AK14-A3
INFORM _USER OF
ERROR

SISSEESA

QUEUE~ AK10-Al

MOVE_WRITE Q TO
FREE Q

SISSEG3A 5

INCREMENT
BUFFER LENGTH

SISSEF5

END OF DATA

s, | 3 e

SCHEDULE AK7-Al

#3 SCHEDULE #4
INPUT

READ
COMPLETED

-~

©

Chart AK12 QISAM Scan Processing Module (IGG019HB) End—of-Buffer Routine (Part 12 of 14)

Section 3: Program Organization 127

SISCTSF
Al
‘ ENTRY)

SISSFA2

SISSFB2

pr—(2

SET CHAN PROG
CCW (CP13) FOR
WRITE KEY-DATA

SISSFC2

OVERFLOW
RECORD TO
WRITE

SISSFD2
E1
LAST
RECORD
ON TRACK

YES

1

SET POINTER TO

NEXT CHANNEL
PROGRAM

AN OVERFLOW
RECORD TO
WRITE

EXT RECORD

ON SAME TRACK

CHAIN TO
PREVIOUS CHAN
PROG GET THE

NEXT CHAN PROG

Chart AK13 QISAM Scan Processing Module (IGG019HB) SETC4 Subroutine (Part 13 of 14)

SISSFD3
D

SET_OFF
OVERFLOW
INDICATOR IN CP

SISSFE3
D

SET_END=OF-SET
INDICATOR

YES
END OF QUEUE

GET 1ST CP ON
NEXT SET TO BE
WRITTEN

L®

SISSFF4

SET IOB SEEK
ADDR SET W10CPS
TO INITIATE THE

WRITE

F
RETURN

TO: CALLING ROUTINE

128 OS ISAM Logic

SISCTSGC

A1
() CHECK RTN
ENTRY

SISSAG2
B1

INPUT ERROR

SISSGC3
D1

SET ON_DCBEXCD1
UNREACHABLE
BLOCK BIT

SISSGD3

SET PTR TO
BUFFER_ON ERROR
FOR EINFO RTN

F1
(EXIT ,

TO: EINFO RTN

SISSGB3

SET ON_DCBEXCD1
ON READABLE
BLOCK BIT

2
RETURN

SISCTSGE

A 3:
(> EINFO RTN
ENTRY

SISSGF2 SISSGF3
B3

SET OFF WRITE
|ERROR INDICATOR

EINFO
ENTERED FROM
CLOSE

C

RECORD
UNWRITABLE

BUFFER
UNREACHABLE RETURN

SISSGG3 ‘ SISSGF21 __ 1

L D!
SET ON SET ON QUEUE AK10-Al
UN-CORRECTABLE UNREACHABLE
O/D ERROR BIT | OUTPUT BIT IN MOVE ONE CP
AT DCBEXCD1 DCBEXCD FROM WRITE Q TO
FREE Q
l
SISSGG31
SET OFF ALL
FLAG BITS
EXCEPT DATA
~KEY/DATA

SISSGAB

F4-
ABEND CODE = 31
ABEND EXIT

SISSGG4
F3

USER SYND
RTN PRESENT

SISSGH4

SET POINTER TO

IOB STATUS BITS

POINTER TO BAD
BUFFER

ERROUT

H4:
‘ EXIT ’

TO: JSER SYNAD

SISSGJ4

> ‘ K3
SET POINTER TO (>
BUFFER IN ERROR _——-?—__‘. EXIT
@ TO: 1GG02029

Chart AK14 QISAM Scan Processing Module (IGG019HB) Check Routine and EINFO (Error Information)
Routine (Part 14 of 14)

Section 3: Program Organization 129

SISSAPRET

Al
‘ ENTRY ’

FROM: IOS

1
RETURN

SISAPAS4

D1
‘ ENTRY ’
ASYNCHRONOUS
ROUTINE ENTRY

;
GET 10B,DCB
DEB, WORK AREA,
ECB ADDRESSES
FROM RQE

F1-]

SAVE ECB, SET
POINTER TO
EXTENT OF M

4

R— L

MOVE DEB BB
INTO IOBI

RESTORE ECB

K1
‘ RETURN)

Chart AL1 Scan Mode Appendage (IGGO19HG) (Part 1 of 3)

SIS

CERTN

A3
‘ ENTRY ’

NNEL =

CHA!
END O

SI1s

N READ

SISABRTN

A4
‘ ENTRY '

ABNORMAL =
END ON REA

SET POINTER TO
CHANNEL END
VECTOR TABLE

APCOM

ADD SELECTED
APPENDAGE CODE
FROM IOB TO GET

VECTOR TABLE
ENTRY

C.

RITE CHE!
APPENDAGE

2

ADD 8 TO GET
MODULE BASE
ADDRESS

F3
‘ EXIT '

SET POINTER TO
ABNORMAL END
VECTOR TABLE

SISAPO1 #

ADD APPENDAGE
CODE TO_GET

— MODULE BASE
ADDRESS

TO: APPENDAGE
ROUTINE

130 OS ISAM Logic

SISRAB2

Al
‘ ENTRY)

ABNORMAL~END
APPENDAGE READ QUEUE

SISRAC2

SET POINTER TO
CCW WITH ERROR

PERMANENT
ERROR

SISRAC3B
D2

D4
INCREMENT

SEEK _H
EQUAL FIRSH

SISRAC3A

MARK BUFFER
UNREACHABLE

SISRAD2C _

G
MARK BUFFER OVERFLOW
UNREADABLE RECORD

MOVE IOB FIELDS
INTO CHANNEL
PROG R _USER

ERROR EXIT

REDUCE READ
COUNT BY ONE

LB

SISRAF2
J1

YES

OVERFLOW MODE

AL2
K2
SISRAJ4

INITIALIZE
FIELDS TO
CONTINUE

READING

SISRAF3

YES
<«— END OF READ Q

NO

Chart AL2 Scan Mode Appendage (IGG019HG) Abnormal-end, Read Queue (Part 2 of 3)

SHARED TRACK

SISRAC3D
F4:

INCREMENT HH
OF IDAD BY ONE

YES

END OF READ Q

POINT TO NEXT
CHANNEL PROGRAM
ON QUEUE

L®

K 3
———————b‘ EXIT ’
TO: IOS EXCP ROUTINE

Section 3: Program Organization 131

SISCTRG

Al
‘ ENTRY)

o8

SISRQE2 SISRQB5

SET OVERFLOW
SET_END OF DATA SWITCH OFF
OVERFLOW MODE END OF FILE BIT ON IN DECREMENT NO.
W10SBIT1 OF BUFSQON READ
AL3
c3)
SISRQC3 SISRQF2 c
DECREMENT READ SET IOBI
Q COUNT_BY ONE COMPLETION BIT NO AST PRIME
B > DATA_RECORD
EXCEPTION BIT 3 EXCEPTION BIT READ
OFF OFF

MARK BUFFER AS
END OF DATA SET
OVFLO CHAIN BIT

L

D-OF- YES

EN
OVERFLOW
CHAIN

TO: IOS

SISRQCH4
2 E1

1

SET OFF MT,CC
AND ALL FLAGS
BUT DATA ON

SISRQE4

SET OVERFLOW
BIT ON, SET IOB
& CCW LN6 TO
LINK ADDR

OVERFLOW
RECORD ON
SAME DEV

H2
‘ EXIT »

TO: ASYNCHRONOUS ROUTINE

Chart AL3 Scan Mode Appendage (IGG019HG) Channel-end, Read Queue (Part 3 of 3)

132 OS ISAM Logic

SISC4A1

Al
{ ENTRY }

A READ IN
PROGRESS

3 2
(FOR_READ
COMPLETION)

SISC4A2
prmemmeee " |

SET ON _CLOSE
BIT_IN DCBEXCD2
FOR USER

SISC4B1 SIsc4c2
EINFO

PREPARE_ FOR
ERROR EXIT

FER
S

SISC4F1 SISC4D1
ESETL AK6-A1 SYNCH
INITIATE LAST (TO_USER
WRITES, MOVE SYNAD RTN)
BUFS TO FREE 0
sIscact
e 2 e, USER SYNAD
WRITES IN AIT (FOR WRIT RESTORE_SCAN MUST RETURN
PROGRESS COMPLETION) REGISTERS TO CLOSE
EXECUTOR
SISC4G1
G
SISC4J1 SISC4I11
CHAIN ALL WRITE
QUEUE BUFFERS
SISC4J2 SISCaJ22
e G —
CHAIN ALL FREE
QUEUE BUFFERS
SISC4J3 RELOOP TCTLRTN
RESTRUCTURE FREEMAIN PERFORM
BUFFER CONTROL +|| (FREE WwoRk »| wHERE-TO-GO |—-->
BLOCK AREA) LOGIC

Chart AM1 Scan Mode Close Executor Module (IGG02029)

HAS CLOSE
ENTERED ESETL

RETURN POINT
WHEN

ALL_BUFS

WITH WRITE
ERRORS HAVE
BEEN HANDLED

NO

EXIT

TO: 1GG0202D

Section 3: Program Organization 133

IGG01921

Al
‘ ENTRY)

B
YES
DISP = SHR
(o]

DEQUEUE
(DEQUEUE
FORMAT

OPNOSF1
C

1
FIXED
FORMAT

RECORDS

2 —
CALC RECORD
OVERHEADS FOR

PRIME AND
INDEPENB&NT

OVERFL

OPNGAPS

3330 DEVICE YES
USED

INIT OVERHEAD
COUNT FOR 3330
IN HALFWORDS

OPNSTRGP

SET RECORD

OVERHEADS IN

WORK AREA AT

DCWIPG AND
DCWIOG

OPNO5F2

TEST IF READ &
UPDATE OR WRITE
KN, OR BOTH

SPECIFIED

OPNO7K2B
E4

OPNCLI
ANY
LEVELS OF
INDEX TO SRCH
ON DEV

YES
HI-LEVEL INDEX ON
DEVICE, NSLD # O

5
LOGIC

MODULES

-
opNoTKZC, .
LOAD (LOAD
CHECK YES BISAM CHK RTN
SPECIFIED E-
1GG019JC)

|

STCKRE ADDRESS
OF CHECK MODULE
AT DCBSETL

ADJUST ADDR OF
ECK MODULE
AND_MOVE MODULE
ID TO DEB

Chart AN1 BISAM Open Executor — Load Privileged Module (IGG01921) (Part 1 of 2)

134 OS ISAM Logic

OPNQ470 l

LOAD_(LOAD
SELECTED
PRIVILEGED

MODULE)

1
MOVE MODULE ID
TO DEB

HI-LEVEL
INDEX TO_SRCH
ON DEVICE

D

ZERO PTR _TO CP1
OR_XP2 IN DCB |—»
DCBWKPT1

OPNO7B2
E1

INITIALIZE
LOAD (LOAD PARTS OF CP1
CP1 IN MODULE > THAT ARE
IGG019JJ) DIFF ,Rég FROM
OPNO7C2 OPNO7E1
LOAD (LOAD DELETE

CP2 IN MODULE DELETE _CHAN

IGGO019JK) ROG MODULE)

3

INITIALIZE CP2
(OR SIMILAR
PARTS OF CP1)

OPNO7A3
H3

READ AND
UPDATE TO BE
USED

OPNO7AA3

OPNO7B5
SAVS WKN CP
DCBWKPT3, INIT
WTG TO LOAD
IGG0192L

OPNEND2I
mekieestenly 7}

CALCULATE
MAXIMUM ERROR
QUEUE IOB'S AND
SET AT DCWERRCT

RELOOP

PERFORM
WHERE-TO-GO
LOGIC

DCWERRCT =
2_(NCP) + BUFNO
CF. DCWFIOBE

TCTLRTN

K5
————————b‘ XCTL ’

TO:

Chart AN2 BISAM Open Executor — Load Privileged Module (IGG0192I) (Part 2 of 2)

Section

3: Program Organization 135

IGG019av
Al
‘ ENTRY ’

RWMACRO

RESET EXCEPTION
FLAGS (DECBEXC1
& DECBEX2) IN
DATA EVENT CNTL
BLK (DECB)

RWMRWA 1

RWMRWA2 e RWMRWH2

YNAMIC
BUFFERING REgUEST
SPEC'D IN DCB INDICATOR AT

DECBEXC1

3 emee—
SET_INVALID

RWMRWB2

EW_ LN
SPEC 2 LNG
DCBBLKSI

LNG
OVERRIDED
DECBTYP2

BLOCKED
RECORDS

RWMRWC3 RWMRWH 1

SAVE RET -

ADDR FOR SET_DECBEXC1 TO
PRIVILEGED INDICATE RECORD
MACRO-TIME LENGTH CHECK

ROUTINE
QING . i
SVC 54 - PRIV
MACRO-TIME

RTN ENTERED

RWMRWH3 RWMRWJ 3

TURN_OFF
POST §SEENAL || |oechBkee Switcn
REQUEST) T

©

DECBEXC1

REQUEST
COMPLETE

YES

EXCP (EXECUTE
REQUEST)

-
©,

.
©

_—

FIXED=
LENGTH
RECORDS

READ K ISSUED

4.
RETURN

TO: USER- (PROCESSING PROGRAM)

136 OS ISAM Logic

IGGO19JX

A1
‘ ENTRY ’

FROM: NON-PRIVILEGED MACRO-TIME
ROUTINE VIA QING SVC
ot

OBTAIN ADDRESS
OF FIRST IOB

QHNQXB30

HNQXB6 7
QHNQ: c1 2 QHNQXB
FIND IOB (AND Dé%gﬁgg%N?” THIS LAST NO
DECB) FOR THIS |—————»{OF SLOTS ON ERR, IOB ON QUEUE
REQUEST UEUE Ag B,

QHNQHB30

SET_DCWLIOBE =
IOBBCHAD
(BACKWARD

CHAINING LAST
I0B)

QHNQXB1

FIRST
QUEUE

ALLOW FOR RPS
CHANNEL CMD
WORD IN IOB

HIS
IOB ON

—
QHNQHB31 OHOXB14
ET DCWFI =
(gt fhnce o[RS
FOR IOB) I0B)

QHNQHB8

WKNN2E2

WKNN2E24 _
PLACE I0B ON SET WRITE KN SW
THE UNSCHED'D 0 PREVIOQUS IN EA
NCR DCWNUWKN WRITE KN IN DCWWKNT) ~ SET
(# OF WKN IOB'S PROGRESS UNSCHED'D BIT
WALTING) OFF IN IOB
(IOBINDCT)
——t —
SET IOBUNSOR ¢ WKNS5B1 AQ2-Al
IOBINDCT FOR
IOB NOT SCHED'D SET UP_FIRST
ANOTHER WKN IN CHAN PROGRAM
PROGRESS
L
WKNN2J 2
K
RETURN

TO: NONPRIVILEGED
{ AT SVCROUTINE)

Chart AQ1 BISAM Privileged Macro—time Processing Module (WRITE KN, without Read and Update)
(IGGO019JX) (Part 1 of 2)

Section 3: Program Organization 137

A1
‘ ENTRY ’

FROM: CC1-J5, OR ASYNCHRONOUS RTN

WKNS5B1

BITS (DISABLE
INTERRUPTS)

4

SET_ADD TO END
INDICATOR
(DCWWKNI) OFF

SET SYE:EM MASK

HI-LEVEL
INDEX IN MAIN
STORAGE

WKNS5B3

WKNS5B34_

SEARCH INDEX IN
IN STG, FIND
KEY HIGH OR

EQUAL

WKNS5C3

NO
ADDING TO END

WKNS5C5
G

SET IOB
APPENDAGE COBE
= X'0E'

VLR

WKNSVAR

WRITE CHECK

D
SET_I0B SEEK
ADDRESS =

'THI

SET SEEK
ADDRESS FOR KEY
INSERTION

PREPARE LNG
CALC'S FOR USE
OF CP10B & CP14

(VLR_END OF

FILE EXTENSION)

g,] 2 ‘
INITIALIZE CP15
USED IN ADDI
DATA

ES

ALLOW FOR WRITE
CHECK CHAN
COMMAND WORDS

L®

WKNS5D1

TRACK
INDEX
HIGHEST INDEX

SET 10B
APPENDQGg'CODE
INITIALIZE CP1

AND CP2

NO
MASTER INDEX

WKNS5G2 Y

SET_SYSTEM MASK
BITS OFF

3JV

RETURN

WKNS5E1

SET IOB
APPENDAGE CODE
= X'05', INIT
CHAN PROGRAM 8

.
©

CYLINDER INDEX HIGHEST
LEVEL, USE CP2

TO: CC1-K5, OR ASYNCHRONOUS RTN

Chart AQ2 BISAM Privileged Macro—Time Processing Module (WRITE KN, without Read and Update)
(IGG019JX) (Part 2 of 2)

138 OS ISAM Logic

SECTION 4: DIRECTORY

Section 4: Directory 139

—

ISAM Modules Identified in Alphameric Sequence

All ISAM modules are listed according to function and mode in Figure 56 and in
alphameric order in Figure 57.

Section 4: Directory 141

Modes

QISAM Load Mode QISAM Scan Mode BiSAM
Function
Common 192A 192B 192C | 192A 192B 192C | 192A 192B 192C
Validation
1920 1950 1922 | 1920 1950 1922 |1 1920 1950 1922
Modules
Open
Executor 192D 192T 195D | 1924 192H 192N 1927
192E 192U 195G | 1928 1921 1920
Mode- 192F 192V 195T | 1929 192J 192P
oriented 192G 1921 195U 192K 192Q
192R 1925 196D 192L 192W
192S 1927 196G 192M 192X
19GA 19I1A 1911 19HB 19HD 19HF | 19JV 19J0 19H3
Macro-time 19GB 19IB 1912 19HN 19JW 19J3 19H7
19JX 19J6
1947
Channel-end 19GC 19HG 19GL 19G3 19IM
and 19GD 19HH 19GM 19G4 19IN
Abnormal-end 19HI 19GN 19G5 1910
Appendages 19HJ 19GO 19G6 1919
19HK 19G0 19G7
19G1 19G8
19G2 19G9
Processing | SIO 19GG 19HA 19JH
Modules Appendage
19GE 19HL 19HP 19JO0 19JU
19GF 19JJ 19JP
Program 191F 19JL 19JR
19JM 19JS
19JN 19JT
199GV 19GY 191X
Asynchronous 19GW 119Gz 191y
19GX 191z
Other 054(SVC54) 054(SVvC5h4)
19JC (CHECK)
19J1 (Dynamic Buffer)
Mode- 2021 202K 202M | 2029 202A
Close oriented 202J 202L 2028
Executor
Common 202D 202D 202D

Figure 56. ISAM Modules Identified by Function and Mode

142 OS ISAM Logic

Module

IGGO19GA
IGG019GB
1GGO019GC
IGGO19GD
IGGO19GE
IGGO19GF
IGG019GG
IGGO19GL
IGGO19GM
IGGO19GN
IGG019GO
IGGO19GV
IGGO19GW
IGGO19GX
IGGO19GY
1IGG019GZ
IGG019G0
1GG019G1
IGG019G2
1GGO019G3
IGG019G4
IGG019G5
1GG019G6
IGGO19G7
IGG019G8
1GG019G9
IGGO19HA
IGGO19HB
IGGO1SHD
IGGO19HF
IGGO19HG
IGGO19HH
IGGO19HI
IGGO19HJ
IGGO19HK
IGGO19HL
IGGO19HN
IGGO19HP
IGGO19H3
IGGO19H7
IGGO19IA
1GG0191B
IGGO19IE
IGGO19IF
IGGO19IM
IGGO19IN
1GG01910
1IGGO19IX
1GGO19lY
1GG0191Z
1GG019I11
1GG01912

Mode and Function Text
Pages

QISAM load (macro routines)
QISAM load (macro routines)
QISAM load (appendage routines)
QISAM load (appendage routines)
QISAM load (channel programs)
QISAM load (channel programs)
QISAM load (RPS appendage routine)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (asynchronous routines)
BISAM (asynchronous routines)
BISAM (asynchronous routines)
BISAM (asynchronous routines)
BISAM (asynchronous routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
QISAM scan (RPS appendage routines)
QISAM scan (macro routines)
QISAM scan (macro routines)
QISAM scan (macro routines)
QISAM scan (appendage routines)
QISAM scan (appendage routines)
QISAM scan (appendage routines)
QISAM scan (appendage routines)
QISAM scan (appendages)
QISAM scan (channel programs)
QISAM scan (macro routines)
BISAM (channel programs)
BISAM (macro routines)

BISAM (macro routines)

QISAM load (macro routines)
QISAM load (macro routines)
QISAM load (channel programs)
QISAM load (channel programs)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (appendage routines)
BISAM (asynchronous routines)
BISAM (asynchronous routines)
BISAM (asynchronous routines)
QISAM load (macro routines)
QISAM load (macro routines)

References
Figures
Pages

30
30
30
30
30
30
30
72
72
72
72
A

71

Al

71

71

72
72
72
72
72
72
72
72
72
72
51
51

51
51
51
51

51
51
51
51
51
73
70
70

Figure 57 (Part 1 of 3). ISAM Modules Identified in Alphameric Sequence

Flowcharts
Pages

116

130

Section 4: Directory 143

References

Module Mode and Function Text Figures Flowcharts
Pages Pages Pages

1GG01919 BISAM (appendage routines) 72

1GG019JC BISAM (check routine) 68

IGGO19JH BISAM (RPS appendage routine) 68 72

IGGO19JI BISAM (dynamic buffering routine) 67-68

1GG019JJ BISAM (channel programs) 73

1IGG0O19JK BISAM (channel programs) 73

1GGO19JL BISAM (channel programs) 73

1GG019JM BISAM (channel programs) 73

1IGGO19JN BISAM (channel programs) 73

1IGG019J0O BISAM (channel programs) 73

1IGGO19JP BISAM (channel programs) 73

IGG019JQ BISAM (channel programs) 73

IGGO19JR BISAM (channel programs) 73

IGG019JS BISAM (channel programs) 73

IGGO19JT BISAM (channel programs) 73

IGG019JU BISAM (channel programs) 73

IGGO19JV BISAM (macro routines) 71 136

1GGO19JW BISAM (macro routines) 71

1IGG019JX BISAM (macro routines) 70 137

1GG019J0 BISAM (macro routines) 70

1GG019J3 BISAM (macro routines) 70

1IGG019J6 BISAM (macro routines) 70

1GG019J7 BISAM (macro routines) 70

1IGGO192A Common open executor 9 10 95

1GG0192B Common open executor 9 10 98

1GG0192C Common open executor 9 10,17,38,59 100

1GG0192D QISAM load (open executor) 19 17 105

IGGO192E QISAM load (open executor) 19 17

IGGO192F QISAM load (open executor) 20 17

1GG0192G QISAM load (open executor) 20 17

1IGGO192H BISAM (open executor) 58 59

1GG0192!| BISAM (open executor) 57 59 134

1GG0192J BISAM (open executor) 60 59

1IGG0192K BISAM (open executor) 58 59

1IGG0192L BISAM (open executor) 58 59

IGG0192M BISAM (open executor) 58 59

IGGO192N BISAM (open executor) 60 59

1IGG01920 BISAM (open executor) 60 59

IGG0192P BISAM (open executor) 57 59

1IGG0192Q BISAM (open executor) 58 59

IGGO192R QISAM load (open executor) 23 17

1GG0192S QISAM load (open executor) 23 17

1GG0192T QISAM load (open executor) 17

1GG0192U QISAM load (open executor) 23 17 101

1IGG0192V QISAM load (open executor) 17

1IGG0192W BISAM (open executor) 57 59

1IGG0192X BISAM (open executor) 58 59

1GG0192Z BISAM (open executor) 60 59

1GG01920 Common open executor (validation) 12 17,38,59 101

1GG01921 QISAM load (open executor) 16 17 102

1GG01922 Common open executor (validation) 12 17,38,59 103

1GG01924 QISAM scan (open executor) 37 38 109

Figure 57 (Part 2 of 3). ISAM Modules Identified in Alphameric Sequence

144 OS ISAM Logic

References

Module Mode and Function Text Figures Flowcharts
Pages Pages Pages

1GG01925 QISAM load (open executor) 19 17

1IGG01927 QISAM load (open executor) 19 17

1GG01928 QISAM scan (open executor) 37 38 110

1GG01929 QISAM scan (open executor) 37 38

IGG0195G QISAM load (open executor) 22 17

1IGG0195G QISAM load (open executor) 21 17

IGGO195T QISAM load (open executor) 22 17

1GGO0195U QISAM load (open executor) 22 17

1GG01950 Common open executor (validation) 12 17,38,59

IGG0196D QISAM load (open executor) 21 17 108

1GG0196G QISAM load (open executor) 21 17

IGG0202A BISAM (close executor) 13 14

1GG0202D Common close executor 13 14,36 114

1GG0202I QISAM load (close executor) 34 14,36

1GG0202J QISAM load (close executor) 35 14,36

1GG0202K QISAM load (close executor) 35 14,36

1GG0202L QISAM load (close executor) 35 14,36

1GG0202M QISAM load (close executor) 35 14,36

1GG02028 QISAM load (close executor) 35 14,36

1GG02029 QISAM scan (close executor) 52 14 133

Figure 57 (Part 3 of 3). ISAM Modules Identified in Alphameric Sequence

Section 4: Directory 145

SECTION 5: DATA AREAS

Section 5: Data Areas 147

~ -

ISAM Control Blocks and Data Areas

Indexed sequential access method (ISAM) routines use a number of control blocks that
are common to all of data management.

The control blocks are:

Data control block (DCB)

Data event control block (DECB)
Data set control block (DSCB)
Data extent block (DEB)
Input/output block (IOB)

ISAM routines also use certain work areas and buffer control areas.

The ISAM work areas are:

QISAM load mode work area

QISAM scan mode work area

BISAM work area

QISAM load mode track—index save area (TISA)
ISAM DCB field area

The ISAM buffer control areas are:

BISAM dynamic buffering buffer control block (BCB)
QISAM buffer control block (BCB)
QISAM load mode buffer control table (IOBBCT)

Data Control Block (DCB)

The data control block (DCB) is the major means of communication between the
problem program and the control program. The sources for ISAM DCB information
are: the open executors, the DCB macro instruction, the problem program, the data
definition (DD) statement, and the data set control block (DSCB). Figure 58 shows
the portion of the DCB that is unique to ISAM.

Section 5: Data Areas 149

49(31) DCBGET/DCBPUT
52(34) DCBOPTCD 53(35) DCBMAC 54(36) DCBNTM 53(17) DCBCYLOV
56(38) DCBSYNAD
60(3C) DCBRKP 62(3E) DCBBLKSI
64(40) DCBMSWA
68(44) DCBSMSI 70(46) DCBSMSW
72(48) DCBNCP 73(49) DCBMSHI
76(4C) DCBSETL
80(50) DCBEXCD1 81(51) DCBEXCD2 82(52) DCBLRECL
84(54) DCBESETL
88(58) DCBLRAN
92(5C) DCBLWKN
96(60) DCBRELSE
100(64) DCBPUTX
104(68) DCBRELX
108(6C) DCBFREED
112(70) DCBHIRTI 113(71)
DCBFTMI2
120(78) DCBLEMI2
125(7D)
DCBFTMI3
132(84) DCBLEMI3
137(89) DCBNLEV 138(8A) DCBFIRSH
DCBFIRSH (cont.) 141(8D) DCBHMASK 142(8E) DCBLDT
144(90) DCBHIRCM 145(91) DCBHIRPD 146(92) DCBHIROV 147(93) DCBHIRSH
148(94) DCBTDC 150(96) DCBNCHRI

Figure 58 (Part 1 of 2). BISAM/QISAM DCB

150 OS ISAM Logic

152(98) DCBRORG3
166(9C) DCBNREC
160(A0) DCBST 161(A1)
DCBFTCI
168(A8) DCBHIIOV 169(A9)
DCBFTMI1
176(B0) DCBNTHI 177(81)
DCBFTHI
184(B8)
DCBLPDA
192(C0)
DCBLETI 197(C5) DCBOVDEV 198(C6) DCBNBOV
200(C8)
DCBLECI 205(CD) Reserved 206(CE) DCBRORG2
208(D0)
DCBLEMIN 213(D5) Reserved 214(D6) DCBNOREC
216(D8)
DCBLIOV
224(E0) DCERORG 226(E2) Reserved
228(E4) DCBWKPT1
232(E8) DCBWKPT2
236(EC) DCBWKPT3
240(FO0) DCBWKPT4
244(F4) DCBWKPTS
248(F8) DCBWKPT6

Figure 58 (Part 2 of 2). BISAM/QISAM DCB

Section 5: Data Areas 151

Offset Field Name

49(31) DCBGET/DCBPUT

Field Description
Address of Get module or address of Put module.

Note: This field is not used by ISAM routines. See the extension of the data extent block (DEB).

53(34) DCBOPTCD
53(35) DCBMAC
54(36) DCBNTM
55(37) DCBCYLOV
56(38) DCBSYNAD

152 OS ISAM Logic

Option codes:

Bit 0 W — Write validity—check
1 U — Full track—index write
2 M — Master index(es)

3 1 — Independent overflow area
4 Y — Cylinder overflow area
5 Reserved

6 L — Delete option
7

R — Reorganization criteria
MACRF Extension for ISAM

Bit 0 3 — Reserved
4 U — Update type of READ
5 U — Update type of WRITE
6 A — Add type of WRITE

7 Reserved

The number of tracks that determine the
development of a master index. If the number of
tracks in the cylinder index exceeds this

number, a master index is developed. If the
number of tracks in the master index in turn
exceeds this number, then a higher level master
index is developed, and so forth. Maximum
permissible value: 99.

The number of tracks to be reserved on each
prime—data cylinder to hold records that

overflow from other tracks on that cylinder.

Refer to the section on allocating space for an

ISAM data set in the OS Data Management Services
Guide, GC28-3746, to determine how to calculate
the maximum number.

Address of user’s synchronous error routine
to be entered when uncorrectable errors are
detected in processing data records.

Offset Field Name Bytes Field Description

60(3C) DCBRKP 2 The relative position of the first byte of the
key within each logical record. Maximum
permissible value: logical record minus key
length.

62(3E) DCBBLKSI 2 Blocksize. For fixed-length record formats,
this must be an integral multiple of DCBLRECL.
For variable-length record formats, it must
be maximum blocksize and must include the
4-byte block length field.

64(40) DCBMSWA 4 Address of a work area supplied by the user
when new records are being added to an existing
data set.

68(44) DCBSMSI 2 Number of bytes in an area reserved to hold the

highest level index. The address of this area
is in DCBMSHI. Maximum size allowed is 65,535
bytes.

70(46) DCBSMSW 2 Number of bytes in work area used by the control
program when new records are being added to
the data set. The address of this area is
in DCBMSWA. Maximum size allowed is 32,767
bytes.

72(48) DCBNCP 1 Number of copies of the READ/WRITE type K
channel programs that are to be established
for this data control block (99 maximum).

73(49) DCBMSHI 3 Address of a main—storage area to hold the
highest level index.

76(4C) DCBSETL 4 Address of SETL module for QISAM. Address of
Check module for BISAM.

80(50) DCBEXCD1 1 First byte in which exceptional conditions

detected in processing data records are reported
to the user (see “Appendix B: ISAM
Channel Programs”).

Bit 0 —Lower key limit not found

—Invalid device address for lower limit
—Space not found

—Invalid request

—Uncorrectable input error

— Uncorrectable output error
—Unreachable block (input)
—Unreachable block (update)

~N O B W N =

Section 5: Data Areas 153

Offset
81(51)

82(52)

84(54)

88(58)
92(5C)
96(60)

100(64)

104(68)
108(6C)

Field Name
DCBEXCD2

DCBLRECL

DCBESETL

DCBLRAN
DCBLWKN

DCBRELSE

DCBPUTX

DCBRELX

DCBFREED

Bytes

Field Description

Second byte in which exceptional conditions
detected in processing data records are reported
to the user (See “Appendix B: ISAM

Channel Programs”).

Bit 0 —Sequence check
1 —Duplicate record
—DCB closed when error was detected

2

3 —Overflow record

4 —The logical record length
specified in the record field
is greater than that specified in
DCBLRECL. (Variable-length
records only).

Logical record length for fixed—length record
formats. For variable-length record formats,
may either be maximum logical record length or
an actual logical record length changed
dynamically by the user when creating the data
set.

QISAM: Address of the ESETL routine in the
Get module.

Address of READ/WRITE K module.
Address of WRITE KN module.

Work area for temporary storage of register
contents.

Work area for temporary storage of register
contents.

Reserved.

Address of dynamic buffering module.

Note: This field is not used by ISAM routines. See the extension of the data extent block (DEB).

112(70)

DCBHIRTI

154 OS ISAM Logic

1

Highest number of index entries that fit on
a prime—data track.

Offset Field Name Bytes Field Description

113(71) DCBFTMI2 7 Direct—access device address of the first
track of the second level master index (in
the form MBBCCHH). If the second level
master index crosses an extent boundary,
the first B byte holds the M of the last
active entry in this master index (LEMI2).
Otherwise, the first B byte will be 0.

120(78) DCBLEMI2 5 Direct—access device address of the last
active entry in the second level master
index (in the form CCHHR). The M for this
address is the same as the M contained in
the field DCBFTMI2 (above) if the first B
byte of that field is 0. Otherwise,
the M for the address is contained in the
first B byte of DCBFTMI2.

125(7D) DCBFTMI3 7 Direct—access device of the first track of
the third level master index (in the form
MBBCCHH). As for FTMI2, the first B byte
will either be 0 or will hold the M of
the last active entry in the index (in this
case, the M for LEMI3).

132(84) DCBLEMI3 5 Direct—access device address of the last
active entry in the third level master index
(in the form CCHHR). The M for this address
is the same as the M for FTMI3 if the first
B byte is contained in the first B byte of
FTMI3.

137(89) DCBNLEV 1 Number of levels of index. Has a maximum
value of 4, corresponding to the case
where there is a cylinder index and three
master indexes. If the track index is
the highest level index, then NLEV=0.

138(8A) DCBFIRSH 3 HHR of the first data record on each
cylinder. The first data record on each
cylinder may be on the last track of the
track index for that cylinder (in which
case, the track is said to be shared).

141(8D) DCBHMASK 1 If the device is a 2301 drum, HMASK = X‘37’;
otherwise, HMASK = X‘FF’.

Section 5: Data Areas 155

Offset
142(8E)

144(90)

145(91)

146(92)

147(93)

148(94)

150(96)

152(98)

156(9C)

Field Name

DCBLDT

DCBHIRCM

DCBHIRPD

DCBHIROV

DCBHIRSH

DCBTDC

DCBNCHRI

DCBRORG3

DCBNREC

156 OS ISAM Logic

Bytes

Field Description

HH of the last prime—data track on each
cylinder. This differs from the last
physical track on a cylinder when the user
has reqeusted cylinder overflow areas.

Highest possible R for tracks of the cylinder
and master indexes. This is the number of
index entries that fits on a track. Note

that these indexes may be on a different type
of device than the rest of the data set.

Highest possible R for any prime—data track.
This is the number of records or blocks
that fits on a prime—data track.

Highest possible R for overflow data tracks,
fixed-length record formats only. This

is the number of fixed-length records

or blocks that fits on an overflow data track.

R of the last data record on a shared track,
if applicable (fixed—length records only).

Tag deletion count. A field reserved for the

user in which he may keep the number of records
that have been tagged for deletion. It is

merged to and from the format—2 DSCB for
BISAM, scan mode, and load mode resume load.

Number of storage locations needed to hold the
highest level index. This is equal to

(KL + 10) (N), where N is the total number of
index entries, including dummy entries. Note
that the track index may be the highest level
index, and the track index is never held and
searched in main storage.

For each use of the data set, the number of
Read or Write accesses to an overflow record
which is not the first in a chain of such
records.

Number of logical records in the prime—data
area.

Offset Field Name Bytes Field Description
160(A0) DCBST 1 Status indicators.

Bit 0 —Single schedule mode
1 —XKey sequence to be checked

2 —Initial load has been
completed

3 —Data set extension (resume loading)
will begin on new cylinder

—Reserved

—Last block full

4
5 —First macro not yet received
6
7 —Last track full

161(A1) DCBFTCI 7 Direct—access device address of the first track
of the cylinder index (in the form MBBCCHH). As
for FTMI2, the first B byte will either be 0
or will hold the M of the last active entry in
the index (in this case, the M for LEMI).

168(AB) DCBHIIOV 1 Highest R for independent overflow track.

169(A9) DCBFTMI1 7 Direct—access device address of the first track
of the first level master index (in the form
MBBCCHH). As for FTMI2, the first B byte will
either be O or will hold the M of the last
active entry in the index (in this case, the M

for LEMI1).
176(B0) DCBNTHI 1 Number of tracks of the high—level index.
177(B1) DCBFTHI 7 Direct—access device address of the first track

of the highest level index (in the form
MBBCCHH). Note that this may be the track
index.

184(B8) DCBLPDA 8 Direct—access device address of the last
prime—data record in the prime—data area (in
the form MBBCCHHR).

192(C0) DCBLETI 5 Direct—access device address of the last active
normal entry of the track index on the last
active cylinder (in the form CCHHR). The M
of this entry is the same as the M of LPDA.

197(C5) DCBOVDEV 1 Independent overflow device type (field
description same as DCBDEVT).

Section 5: Data Areas 157

Offset
198(C6)

200(C8)

205(CD)
206(CE)

208(D0)

213(DS5)
214(D6)
216(D8)

224(E0)
226(E2)
228(E4)

232(E8)
236(EC)
240(F0)

Field Name

DCBNBOV

DCBLECI

DCBRORG2

DCBLEMI1

DCBNOREC
DCBLIOV

DCBRORG1

DCBWKPT1

DCBWKPT?2
DCBWKPT3
DCBWKPT4

Bytes

Field Description

Number of bytes remaining on current overflow
track (variable-length records only).

Direct—access device address of the last active
entry in the cylinder index (in the form CCHHR).
The M for this address is the same as the M for
FTCI if the first B byte in FTCI is O.

Otherwise the M for this address is contained

in the first B byte of FTCIL.

Reserved for future use.

Number of tracks (partially or wholly) remaining
in the independent overflow area.

Direct—access device address of the last active
entry in the first level index (in the form
CCHHR). The M for this address is the same
as the M for FTMI1 if the first B byte in FTMI1
is 0. Otherwise the M for this address is
contained in the first B byte of FTMI1.

Reserved for future use.
Number of logical records in an overflow area.

Direct—access device address of the last record
written in the independent overflow area (in
the form MBBCCHHR).

Number of cylinder overflow areas that are full.
Reserved for future use.

BISAM: pointer to CP 1 or CP 2.
QISAM: pointer to DCB work area.

BISAM: pointer to DCB work area.
BISAM: pointer to CP 8.

BISAM: pointer to appendage module (part 1).
QISAM: pointer to UCB.

Note: This field is not used by ISAM routines. See the extension of the data extent block (DEB).

244(F4)

DCBWKPTS5

4

BISAM: pointer to appendage module (part 2).
QISAM: pointer to appendage module.

Note: This field is not used by ISAM routines. See the extension of the data extent block (DEB).

248(F8)

DCBWKPT6

158 OS ISAM Logic

4

QISAM: pointer to DCB work area vector pointers
(ISLVPTRS).

Data Event Control Block (DECB)

The data event control block is constructed as part of the expansion of a READ or
WRITE macro instruction. The DECB contains a parameter list, an event control
block, a pointer to the desired logical recovd, and an exception code. Figure 59 shows
the format of the DECB.

€ 4 bytes >
0(0) DECBECB
4(4) DECBTYP1 5(5) DECBTYP2 6(6) DECBLGTH
8(8) DECBDCBA
12(C) DECBAREA
16(10) DECBLOGR
20(14) DECBKEY
24(18) DECBEXC1 25(19) DECBEXC2

Figure 59. Data Event Control Block

Offset Field Name Bytes Field Description
0(0) DECBECB 4 Standard ECB
4(4) DECBTYP1 1 First byte of macro type field
Bit 0-5 - Reserved
6 — Length coded as ‘S’ (take
length from DCBBLKSI)
7 — Area coded as ‘S’ (dynamic
buffer option)
5(5) DECBTYP2 1 Second byte of macro type
Bit 0 — READ K
1 — Reserved
2 — READ KU
3 — Reserved
4 - WRITE K
5 — WRITE KN
6—-7 — Reserved
6(6) DECBLGTH 2 Number of bytes read or written
8(8) DECBDCBA 4 Data control block address

Section 5: Data Areas 159

Offset Field Name Bytes Field Description

12(C) DECBAREA 4 Address of storage area for record
16(0) DECBLOGR 4 Pointer to logical record
20(14) DECBKEY 4 Record key address
24(18) DECBEXC1 1 Exceptional condition code byte (see
“Appendix B: ISAM Channel Programs”)
Bit 0 — Record not found
1 — Record length check
2 - Space not found in which to

add a record
— Invalid request
— Uncorrectable 1/0 error
Unreachable block

— Overflow record

N 0 W
|

— Duplicate record presented
for inclusion in data set

25(19) DECBEXC2 1 Exceptional condition code byte (see
“Appendix B: ISAM Channel Programs’’)

Bit 0-5 — Reserved

6 — Channel program initiated by an
asynchronous routine (variable—
length records only)

7 — Previous macro was READ KU
Data Set Control Block (DSCB)

Data sets on direct—access devices use a control block called a data set control block
(DSCB) as their data set label. There are actually three kinds of DSCBs used to
describe the attributes and extents of an ISAM data set. The information in the
attribute fields of the DSCBs includes data set organization, record format, and other
information needed to refer to and use a data set. The extent entries in the DSCBs
describe the physical boundaries of a data set.

The three kinds of DSCBs used to describe ISAM data sets are:

. The identifier (format—1) DSCB contains such items as the data set name, the
number of extents on the volume, creation and expiration dates, block length,
logical record length, and three extent entries that are used to build the DEB.
There is one format—1 DSCB for each volume of a data set. (OS DADSM
Logic, GY28-6607, provides additional details on the construction of the
DSCBs at allocation of the data set.)

. The index (format—2) DSCB is used only for ISAM data sets. There is one
format—2 DSCB for each data set; it is used in constructing the ISAM DCB
interface. The format—2 DSCB resides in the VTOC of the first volume on which
the data set was allocated. When the QISAM scan mode open executor module
(IGG01928) or the BISAM open executor module (IGG0192H) is executed, data

160 OS ISAM Logic

in the associated format—2 DSCB are moved to the BISAM/QISAM interface portion
of the DCB. The DCB field corresponding to each DSCB field is shown in the
following detailed description of the format—2 DSCB. The format—2 DSCB is shown in
Figure 60.

. The extension (format—3) DSCB is required on each volume of a data set that
contains more than three extents. It contains as many as 13 additional extent
entries, permitting a maximum of 16 extent entries per volume.

Detailed descriptions of DSCBs are given in OS System Control Blocks,

GC28-6628.
- 4 bytes >
0(0) 1(1)
DS22MIND
8(8) DS2L2MEN
13(D)
DS23MIND
20(14) DS2L3MIN
25(19)
Reserved
44(2C) DS2FMTID 45(2D) DS2NOLEV 46(2E) DS2DVIND 47(2F) DS21RCYL

Figure 60 (Part 1 of 2). Format-2 DSCB

Section 5: Data Areas 161

(Continued)

DS21RCYL (cont.) 50(32) DS2LTCYL
52(34) DS2CYLOV 53(35) DS2HIRIN 54(36) DS2HiRPR 55(37) DS2HIROV
56(38) DS2RSHTR 57(39) DS2HIRTI 58(3A) DS2HIIOV 59(3B) DS2TAGDT
DS2TAGDT (cont.) 61(3D) DS2RORG3
64(40) DS2NOBYT 66(42) DS2NOTRK 67(43) DS2PRCTR
DS2PRCTR (cont.) 71(47) DS2STIND

72(48)

DS2CYLAD

79(4F)
DS2ADLIN
86(56)
DS2ADHIN
93(5D)
DS2LPRAD
101(65) DS2LTRAD
DS2LTRAD (cont.) 106(6A)
DS2LCYAD
111(6F)

DS2LMSAD
116(74)

DS2LOVAD
124(7C) DS2BYOVL 126(7E) DS2RORG2
128(80) DS20VRCT 130(82) DS2RORGT1
132(84) DS2NIRT 135(87)

DS2PTRDS

Figure 60 (Part 2 of 2). Format-2 DSCB

162 OS ISAM Logic

PrratcN

Offset

0(0)

1(1)

8(8)

13(D)

20(14)

25(19)

44(20)

45(2D)
46(2E)

47(2F)

50(32)

52(34)

53(35)

54(36)

Field Name

DS22MIND

DS2L2MEN

DS23MIND

DS2L3MIN

DS2FMTID

DS2NOLEV

DS2DVIND

DS21RCYL

DS2LTCYL

DS2CYLOV

DS2HIRIN

DS2HIRPR

Bytes

19

Field Description

Contains hexadecimal code 02 in order to

avoid conflict with a data set name.

Address of the first track of the
second—level master index (in the
form MBBCCHH).

Contains the CCHHR of the last active
index entry in the second—level master
index.

Address of the first track of the
third-level master index (in the
form MBBCCHH).

Contains the CCHHR of the last active
index entry in the third—level master
index.

Reserved.

Format identification for format—2
DSCB (EBCDIC “2”).

Number of index levels.

Number of tracks determining
development of the master index.

Contains the HHR of the first data
record on each cylinder.

Contains the HH of the last data
track on each cylinder.

Number of tracks of cylinder overflow
area on each cylinder.

Highest possible R on a track
containing high—level index entries.

Highest possible R on prime—data
tracks for format—F records.

Section 5: Data Areas 163

DCB Field
to Which

Moved

DCBFTMI2

DCBLEMI2

DCBFTM3

DCBLIMI3

DCBNLEV

DCBNTM

DCBFIRSH

DCBLDT

DCBCYLOF

DCBHIRCM

DCBHIRPD

Offset

55(37)

56(38)

57(39)

58(3A)

59(3B)

61(3D)

64(40)

66(42)

67(43)

71(47)

72(48)

Field Name

DS2HIROV

DS2RSHTR

DS2HIRTI

DS2HIIOV

DS2TAGDT

DS2RORG3

DS2NOBYT

DS2NOTRK

DS2PRCTR

DS2STIND

DS2CYLAD

164 OS ISAM Logic

Bytes

7

Field Description

Highest possible R on overflow data
tracks for format—F records.

Contains the R of the last data
record on a shared track.

Highest number of index entries that
fit on a prime—data track.

Highest R for independent overflow
track.

The number of records that have been
tagged for deletion. This field is
updated by the user during BISAM, scan
mode, and load mode resume loading.

The number of random references to
overflow records other than the first
overflow record in a chain.

The number of bytes needed to hold the
highest-level index in main storage.

The number of tracks occupied by the
highest—level index.

The number of records in the prime—
data area.

Status indicators.

Bits Bit Setting Meaning

DCB Field
to Which
Moved

DCBHIROV

DCBHIRSH

DCBHIRTI

DCBHIIOV

DCBTCD

DCBRORG3

DCBNCRHI

DCBNTHI

DCBNREC

DCBST

0 0 Reserved

1 1 Key sequence to be
checked

2 1 Initial load has been
completed

3-5 1 Reserved (must remain zero)

6 1 Last block full

7 1 Last track full

Address of the first track of the
cylinder index (in the form
MBBCCHH).

DCBFTCI

A\ 4

Offset

79(4F)

86(56)

93(5D)

101(65)

106(6A)

111(6F)

116(74)

124(7C)

126(7E)

128(80)

130(82)

132(84)

135(87)

Field Name

DS2ADLIN

DS2ADHIN

DS2LPRAD

DS2LTRAD

DS2LCYAD

DS2LMSAD

DS2LOVAD

DS2BYOVL

DS2RORG2

DS20VRCT

DS2RORG1

DS2NIRT

DS2PTRDS

Bytes

Field Description

Address of the first track of the
lowest—level master index (in the
form MBBCCHH).

Address of the first track of the
highest—level master index (in the
form MBBCCHH).

Address of the last record in the

prime—data area (in the form
MBBCCHHR).

Contains the CCHHR of the last normal
entry in the track index on the last
cylinder.

Contains the CCHHR of the last index
entry in the cylinder index.

Contains the CCHHR of the last index
entry in the master index.

Address of the last record written in
the current independent overflow area
(in the form MBBCCHHR).

The number of bytes remaining on the
current independent overflow track.

The number of tracks remaining in the
independent overflow area.

The number of records in the overflow
area.

The number of cylinder overflow areas
that are full.

HHR of the dummy track—index entry.

If there are more than 3 extent segments
for the data set on this volume, this

field contains the address of a format-3
DSCB (in the form CCHHR). Otherwise,
this field contains binary Os.

Section 5: Data Areas 165

DCB Field
to Which
Moved

DCBFTMI1

DCBFTHI

DCBLPDA

DCBLETI

DCBLECI

DCBLEMI1

DCBLIOV

DCBNBOV

DCBRORG?2

DCBNOREC

DCBRORG1

ISAM-dependent Section (Occurs only once)

Load Mode Extension

ISAM Extension

32(20) DEBNIEE 33(21) DEBFIEAD

36(24) DEBNPEE 37(25) DEBFPEAD

40(28) DEBNOEE 41(29) DEBFOEAD

44(2C) DEBRPSID 45(2D) DEBEXPTR

Device-dependent Section (Occurs once for each extent)

+0(0) DEBDVMOD +1(1) DEBUCBAD

+4(4) DEBBINUM +6(6) DEBSTRCC
+8(8) DEBSTRHH +10(A) DEBENDCC
+12(C) DEBENDHH +14(E) DEBNMTRK
+0 DEBSUBID Subroutine Name Section (Occurs once for each subroutine)

Figure 61. ISAM Extensions to DEB

+0(0) DEBPUT
Scan Mode Extension
+0(0) DEBGET, DEBPUT +4(4) DEBWKPT4
+8(8) DEBWKPTS +12(C) DEBCREAD
+16(10) DEBCSETL +20(14) DEBCWRIT
+24(18) DEBCCHK +28(1C) DEBCREWT
+32(20) DEBCRECK +36(24) DEBAREAD
+40(28) DEBASETL +44(2C) DEBAWRIT
+48(30) DEBACHK +52(34) DEBAREWT
+56(38) DEBARECK

BISAM Extension
+0(0) DEBDISAD +4(4) DEBWKPT4
+8(8) DEBWKPT5 +12(C) DEBFREED
+16(10) DEBRPSIO

166 OS ISAM Logic

£

o

4

Data Extent Block (DEB)

The ISAM open executors construct the data extent block (DEB). The DEB contains
the extents of the opened data set, pointers to the unit control blocks (UCBs) for the
extents, and the names of access method routines to be used. The ISAM~—dependent,
device—dependent, and subroutine name sections of the DEB are shown in Figure 61.

ISAM-DEPENDENT SECTION

Offset Field Name Bytes Field Description

32(20) DEBNIEE 1 Number of extents of independent index area

33(21) DEBFIEAD 3 Address of first index extent

36(24) DEBNPEE 1 Number of extents of prime—data area

37(25) DEBFPEAD 3 Address of the first prime—data extent

40(28) DEBNOEE 1 Number of extents of independent overflow
area

41(29) DEBFOEAD 3 Address of the first overflow extent

44(2C) DEBRPSID 1 Identifiers for prime, index, or overflow
areas on an RPS direct—access storage
device.

Bits Meaning

0 Prime area is on an RPS device.

1 Index area is on an RPS device.

2 Overflow area is on an RPS device.
3

An SIO appendage for RPS has been
loaded. (This bit set by IGG0192K.)

4-7 Reserved.
45(2D) DEBEXPTR 3 Address of ISAM DEB extension.

The device—dependent sections (one for each
extent) are in the following order: prime
extents, index extents, overflow extents.

DEVICE-DEPENDENT SECTION
Offset Field Name Bytes Field Description

+0(0) DEBDVMOD 1 Device modifier: file mask.

Section 5: Data Areas 167

Offset
+1(1)
+4(4)

+6(6)
+8(8)

+10(A)
+12(C)

+14(E)

Field Name
DEBUCBAD

DEBBINUM

DEBSTRCC

DEBSTRHH

DEBENDCC

DEBENDHH

DEBNMTRK

DEBSUBID

Load Mode Extension

+0(0)

DEBPUT

Scan Mode Extension

+0(0)
+4(4)
+8(8)
+12(C)
+16(10)
+20(14)

+24(18)

DEBGET, DEBPUT

DEBWKPT4
DEBWKPTS
DEBCREAD
DEBCSETL

DEBCWRIT

DEBCCHK

168 OS ISAM Logic

Bytes

Field Description
Address of UCB associated with this data extent.

Bin number if the device is a 2321 data cell drive, O
for other devices.

Cylinder address for the start of an extent limit.

Read/write track address for the start of an
extent limit.

Cylinder address for the end of an extent limit.

Read/write track address for the end of an extent
limit.

Number of tracks allocated to a given extent.

SUBROUTINE NAME SECTION

2n

Subroutine identification. Each access method
subroutine, appendage subroutine, and IRB
routine has a unique 8-byte name. The low—order
two bytes of each routine name are in this field

if the subroutine is loaded by the open

routine.

ISAM EXTENSION

N N N N N N N

Address of the PUT processing module

Address of the Get processing module

Address of the UCB

Pointer to the Get appendage module

Address of channel-end appendage for Read
Address of channel-end appendage for SETL
Address of the channel-end appendage for Write

Address of the channel-end appendage for
Write—validity—check

Offset Field Name Bytes Field Description

+28(1C) DEBCREWT 4 Address of the channel-end appendage for
Rewrite

+32(20) DEBCRECK 4 Address of the channel-end appendage for
Recheck

+36(24) DEBAREAD 4 Address of the abnormal-end appendage for
Read

+40(28) DEBASETL 4 Address of the abnormal-end appendage for
SETL

+44(2C) DEBAWRIT 4 Address of the abnormal-end appendage for
Write

+48(30) DEBACHK 4 Address of the abnormal-end appendage for
Write—validity—check

+52(34) DEBAREWT 4 Address of the abnormal-end appendage for
Rewrite

+56(38) DEBARECK 4 Address of the abnormal-end appendage for
Recheck

BISAM Extension

+0(0) DEBDISAD 4 Address of the privileged module entered
when a BISAM macro instruction is
executed.

+4(4) DEBWKPT4 4 Address of the Part 1 appendage module
(abnormal—-and channel-end appendages).

+8(8) DEBWKPTS5S 4 Address of the Part 2 appendage module
(abnormal-and channel-end appendages).

+12(C) DEBFREED 4 Address of the dynamic buffering module.

+16(10) DEBRPSIO 4 Address of the RPS SIO appendage module

if dynamic buffering is used. (If dynamic
buffering is not used, the appendage vector
table of the DEB contains the address of
the RPS SIO appendage module.)

Section 5: Data Areas 169

Input/Output

Block (IOB)
The input/output block (IOB) contains information required by the I/O supervisor to
perform an input/output operation. The ISAM routine constructs an IOB for each
such operation.

The I0B consists of 40 bytes of standard information as described in OS System
Control Blocks, GC28-6628. The standard information is common to all access
methods. BISAM and QISAM (scan mode) use extensions of the standard IOB, and
QISAM uses an IOB prefix. The ISAM extensions and prefix are shown in Figure 62.

QISAM Prefix
-4(-4) Event Control Block
BISAM Extension
40(28) I0BCCWAD
44(2C) IOBINDCT 45(2D) IOBUNSQR 46(2E) IOBAPP 47(2F) IOBASYN
48(30) IOBCOUNT 49(31) IOBFCHAD
52(34) IOBBCHAD
56(38) 10BCCW1
64(40) 10BCCW2
QISAM Extension (scan mode)
40(28) Q1EXTEN-W10OEXTEN
Figure 62. ISAM Extensions to IOB
Offset Field Name Bytes Field Description
QISAM Prefix
-4(-4) 4 Event control block.
BISAM Extension
40(28) IOBCCWAD 4 Address of first CCW of channel program

or address of buffer after completion
of a READ KU (BISAM dynamic buffering).

170 OS ISAM Logic

Offset Field Name Bytes Field Description
44(2C) IOBINDCT 1 Indicators.

Bit Bit Setting Meaning

0 1 Remove channel program
from queue.

1 1 IOB is on the unscheduled
queue.

2 0 DECBAREA (+6) points to

overflow record data, DCBMSWA
points to the key and data of
an overflow record.

3 0 DECBKEY points to overflow record
key.
1 DCBMSWA (+8) points to overflow
record key.
4-6 0 Reserved.
7 0 Normal channel end has occurred.
1 Abnormal channel end has occurred.
45(2D) IOBUNSQR 1 Reason for unscheduled or error queue.

Bit Bit Setting Meaning

0 1 CP 1 or CP 2 busy.
1 1 No CP 4, CP 5, or CP 6.
2 1 No CP 7.
3 1 WRITE KN is in effect (unscheduled
IOB is for WRITE KN).
4 1 WRITE KN is in effect (unscheduled
I0B is for READ or WRITE K).
5 1 An error condition is associated
with this IOB.
6-7 0 Reserved.
46(2E) IOBAPP 1 Appendage code (see “Section 6: Diagnostic Aids”).
47(2F) IOBASYN 1 Asynchronous routine code (see “Section 6: Diagnostic
Aids”).
48(30) IOBCOUNT 1 Write—check counter.
49(31) IOBFCHAD 3 Forward chain address.
52(34) IOBBCHAD 4 Backward chain address.
56(38) IOBCCW1 8 Set sector CCW for use with RPS direct—access

storage devices.

64(40) IOBCCW?2 8 TIC CCW to the channel program,
used with RPS devices.

Section 5: Data Areas 171

Offset Field Name Bytes Field Description
QISAM Extension (scan mode)

40(32) QI1IEXTEN 2 Appendage codes (see “Section 6: Diagnostic Aids”).
WI1OEXTEN

Buffer Control Block (BCB)—BISAM

The buffer control block (BCB) used to control dynamic buffering in BISAM is
structured by the stage 2 Open executor IGG0293B if the problem program has
requested dynamic buffering. If the user does not specify the number of buffers he
desires, two buffers are provided. The fields of the BISAM BCB are shown
schematically in Figure 63.

- 4 bytes >
0(0) BCBFIOB

4(4) BCBLIOB

8(8) BCBNAVB

12(C) BCBSIZE

16(10) Reserved (for doubleword alignment)

20(14) First Buffer (Link Field)"

24(18)

First Buffer (continued)

Second Buffer (Link Field)

Second Buffer (continued)

Nth Buffer (Link Field)

Nth Buffer (continued)

"The first buffer begins at 20(14) if buffer alignment specified was fullword; it begins at 24(18) if alignment was at doubleword.

Figure 63. Fields of the BISAM Dynamic Buffering Buffer Control Block

The following describes the contents and uses of the fields of the BISAM BCB.

Field Name: BCBFIOB
Offset: 0(0)
Bytes: 4

172 OS ISAM Logic

Field Description:

Field Name:
Offset:
Bytes:

Field Description:

Field Name:
Offset:

Bytes:

Field Description:

If there are not enough buffers available for the number of
READ K or READ KU requests issued, the dynamic buffering
routine, entered from the start I/O appendage routine, activates
this field as a pointer to the first IOB that needs a buffer. Later,
when a buffer has become available (because it was released by
either the WRITE K macro instruction or the FREEDBUF macro
instruction), the dynamic buffering routine, entered through one
of those macro routines, updates BCBFIOB to point to the next
IOB that needs a buffer. If there are no more IOBs on queue for
a buffer, this field is then reset to 0. Initially, this field is set to O
by the ISAM open module IGG0192B.

BCBLIOB
4(4)
4

If there are not enough buffers available for the number of
READ K or READ KU requests issued, the dynamic buffering
routine, entered from the start I/O appendage routine, activates
this field as a pointer to the last IOB that needs a buffer (the
IOB of the latest Read requested). The IOB forward chain
address (IOBFCHAD) of the IOB previously pointed to by this
field, if BCBLIOB has been previously activated, is also set to
point to this latest IOB. IOBFCHADs thus provide the linkage
between BCBFIOB and BCBLIOB. BCBLIOB is initialized and
reset whenever BCBFIOB is.

BCBNAVB
8(8)
4

Points to the next buffer available to a READ K or READ KU
request. Initially, BCBNAVB is set to point to the first buffer
by ISAM Open module IGG0192B. The dynamic buffering
routine is entered from the start I/O appendage routine to select
the buffer pointed to by this field when a read is issued. The link
field of the buffer selected is placed into BCBNAVB. When a
buffer has been released either by a FREEDBUF macro
instruction or because it has been written back into the data set,
entry is made to the dynamic buffering routine. If an IOB is
waiting for a buffer (see BCBFIOB), the buffer just released is
assigned to the IOB, and an EXCP is issued. If, however, the
I0B queue is empty, the buffer is placed on the available queue.
This is accomplished by placing a pointer to the buffer in
BCBNAYVB after moving the contents of BCBNAVB into the
link field of the buffer. When there are no buffers on the
available queue, BCBNAVB contains 0.

Section 5: Data Areas 173

Field Name:
Offset:
Bytes:

Field Description:

Field Name:
Offset:
Bytes:

Field Description:

BCBSIZE
12(C)
4

Total main—storage size of the BCB and the attached buffers.
Calculated by open module IGG0192B. Used by Close module
IGGO0202A to free the buffer control block and the associated
buffers.

First Buffer (Link Field)
20(14)
4 (first 4 bytes of each buffer)

If a buffer is on the available queue, its link field contains the
address of the following buffer to be made available. When a
buffer is the last buffer on the available queue, its link field
contains 0. When a buffer is not on the available queue, these 4
bytes are used as a part of the buffer.

Buffer Control Block (BCB)—QISAM

The BCB used in QISAM differs in format from the BISAM BCB. Figure 64 pictures
schematically the fields of the QISAM BCB. This BCB may result from a GETPOOL
or BUILD macro instruction issued by the processing program, or it may be
constructed by the stage 1 open executors. The information it contains is needed by
the stage 2 open executors.

174 OS ISAM Logic

0(0)
ADDRESS OF FIRST BUFFER
4(4) 6(6)
NUMBER OF BUFFERS LENGTH OF EACH
BUFFER

Figure 64. Fields of the QISAM Buffer Control Block

The following is a description of the contents and uses of the fields of the QISAM

BCB.

Field Name:
Offset:
Bytes:

Address of first buffer
0(0)
4

Buffer Control Table (IOBBCT)

Field Description:

Field Name:
Offset:
Bytes:

Field Description:

Field Name:
Offset:
Bytes:

Field Description:

Load mode open module IGG0192G uses this address to
initialize the load mode buffer control table field named
IOBABUF. Scan mode open module IGG01929 uses the address
(in conjunction with the link field of each buffer) to initialize its
channel programs.

Number of buffers
4(4)
2

The number of buffers in this buffer pool.

Length of each buffer
6(6)
2

Scan mode open module IGG01929 uses this field to ensure the
buffer size is adequate for the records to be retrieved.

The buffer control table, used by QISAM load mode to control the filling of buffers, is
initialized by Stage 2 Open executor module IGG0192G. The area for the IOBBCT is
obtained by Stage 1 Open executor module IGG0192B. The fields of the buffer
control table are shown schematically in Figure 65.

0(0) IOBFLAGS 1(1) IOBPTRA
4(4) 10BB 5(5) IOBPTRB
10BS IOBABUF
8(8) (1st Buffer) 9(9) (1st Buffer)
~ A
Il T
10BS IOBABUF
2N+10 IN+11
(Nth Buffer) (Nth Buffer)

Figure 65. QISAM Load Mode Buffer Control Table

Section 5: Data Areas 175

176 OS ISAM Logic

The following is a description of the contents and uses of the fields of the IOBBCT.

Field Name:
Offset:
Bytes:

Field Description:

Bit O:

IOBFLAGS
0(0)
1

General I/0 conditions pertaining to all buffers. IOBFLAGS is
initialized by open executor IGG0192G. At this time, bit 4 is
set; all other bits are reset.

When the end—of-buffer routine schedules an EXCP to use CP
18/CP 20 (to write data records and the associated track
indexes), the bit is set on to indicate CP 18/CP 20 are busy.

The CP 18/CP 20 appendage routine resets the bit.

Bit 1:

Bit 2:

Bit 3:

Bit 4:

Bit 5:

Bit 6:

When the end—of-buffer routine cannot schedule the EXCP
because CP 18/CP 20 are busy (bit 0 = 1), this bit is set. It is
interrogated after every PUT macro instruction and, if set,
another attempt is made to schedule the EXCP. If the attempt is
successful, the bit is reset.

When bit 1 = 1 and an attempt is being made to write previously
filled buffers, but the current buffer is not full, this bit must be
set to tell the end—of-buffer routine, which schedules the EXCP,
to return to the Put routine.

This bit is set by close executor module IGG0202I. It ensures
return to closing routines after using channel programs to
complete processing of the final buffers.

This bit is set by the Put routine (in move mode only) when the
last record PUT filled a buffer. It is interrogated by the Put
routine to determine if a new buffer must be initialized before
moving the current record and is reset by the
beginning—of-buffer routine after the new buffer has been
intialized.

When the Put routine determines that there is enough space on
the current track—index track for only one more normal and
overflow track—index entry, it sets this bit. Prior to this
determination, it has reset this bit. If the Put routine determines
that an end—of—cylinder condition exists, it interrogates the bit to
see if the extra track—index dummy entry will fit on the current
track (bit 5 = 0), or whether a new track is needed (bit 5 = 1).

This bit is set by close executor module IGG0202I. It ensures
return to closing routines after completing the data set’s
high—level index.

Bit 7:

Field Name:
Offset:
Bytes:

Field Description:

Field Name:
Offset:
Bytes:

Field Description:

Field Name:
Offset:
Bytes:

Field Description:

Field Name:
Offset:
Bytes:

Set by open executor module IGG0192R (or IGG0192U) if the
data set consists of unblocked records whose relative key position
(RKP) is 0. The bit is interrogated during initialization of CP 18.

IOBPTRA

1(1)

3

This field serves as a pointer to the address of the first buffer of
the group that is written next. During the execution of CP 18, it
points to the address of the first buffer of the group currently
being written. When CP 18 is completed, the appendage routine
updates this field to point to the address of the first buffer of the
next group. IOBPTRA is needed to initialize CP 18 before CP

18 is executed. IOBPTRA is initialized by open executor module
IGGO0192G to point to the address of the first buffer.

IOBB
4(4)
1

IOBB contains the number of buffers filled but not yet scheduled
for writing. It is updated by the Put routine as each buffer is
filled and reset to O by the end—of-buffer routine when the
buffers are scheduled for writing. IOBB is initialized to O by
open executor module IGG0192G.

IOBPTRB
5(5)
3

This field serves as a pointer to the address of the buffer
currently being filled. It is updated when the
beginning—of-buffer routine is called to prepare a new buffer
before executing a PUT command. IOBPTRB is initialized by
open executor module IGG0192G to point to the address of the
first buffer.

I0BS
2n+10 where n is the buffer number.

1

Section 5: Data Areas 177

178 OS ISAM Logic

Field Description:

Bit 0:

Bits 1 and 2:

Bit 3:

Bit 4:

Bit 5:

Bit 6:

There is one status byte (IOBS) for each buffer. The bits are
used to indicate conditions peculiar to each buffer. All status bits
(except bit 0) are initially reset by open executor module
IGG0192G.

Set (by open executor module IGG0192G) if this is IOBS field
for buffer N (last buffer); otherwise reset. Interrogated to ensure
proper sequence of buffering when going from last to first buffer.

A 2-bit code indicating buffer availability as follows:

00 — buffer available — set by CP 18/CP 20 appendage
routine after writing; interrogated by beginning—of-
buffer routine prior to using buffer again.

01 — contents of buffer caused permanent write
error — set by CP 18/CP 20 appendage routine;
interrogated by beginning—of—buffer routine prior to
using buffer again.

10 — buffer full, but not yet scheduled for writing — set
by Put routine when buffer becomes full; prevents
refilling of buffer before writing.

11 — buffer scheduled for writing — set by end—of-buffer
routine when scheduled; interrogated by appendage
routine to reset these bits and to update IOBPTRA.

This bit is set by the beginning—of—buffer routine when it
determines that this buffer, when written, will begin a new
extent. Interrogated, then reset, by end—of—buffer routine before
scheduling writing of this buffer in the new extent.

This bit (the T-Bit) is set by the beginning—of-buffer routine
when it determines that this buffer will be the last written on a
track. Interrogated by end—of-buffer routine so that CP 20 is
executed to write the track index. The T-Bit is reset by the CP
18/CP 20 appendage routine.

This bit (the C—Bit) is set by the beginning—of—buffer routine
when it determines that this buffer, in addition to being the last
written on a track, is also the last written on a cylinder.
Interrogated by end—of-buffer routine so that CP 21 is executed
to write the cylinder index when necessary. The C-Bit is reset
by the CP 21 appendage routine.

This bit (the PF-Bit) is set by the beginning—of-buffer routine
when it determines that this buffer is the first buffer written on a
cylinder and track—sharing is in effect. CP 19 is used to
preformat the shared track. The end—ofbuffer—routine
interrogates this bit and does not schedule a write on the new
cylinder until the CP 19 appendage routine has reset the bit.

Bit 7: Not used.

Field Name: IOBABUF
Offset: 2n+11 where n is the buffer number.
Bytes: 3

Field Description: There is one IOBABUF field for each buffer, and it contains the
address of its associated buffer. Stage 1 open executor module
IGGO0192B provides the address of the first buffer (through
DCBBUFCB) and Stage 2 open executor module IGGG0192G
uses the buffer link field of each buffer to fill out the remaining
IOBABUFs. (When buffers are structured, the first four bytes of
each buffer — the buffer link field — contain the address of the
next buffer in the chain. After these addresses are put into the
IOBBCT, these four bytes become part of the buffer.) Buffer
addresses are used for initialization of CP 18 and provide the
storage location into which records are to be moved.

QISAM Load Mode DCB Work Area

The QISAM load mode DCB work area is pointed to by the DCBWKPT]1 field of the
DCB. The DCB work area format is shown in Figure 66.

Offset Field Name Bytes Field Description

0(0) ISLECBA 4 The ECB for CP 18 and CP 20.

4(4) ISLIOBA 40 The IOB for CP 18 and CP 20.

44(2C) ISLECBB 4 The ECB for CP 21.

48(30) ISLIOBB 40 The IOB for CP 21.

88(58) ISLECBC 4 The ECB for CP 19 and CP 91.

92(5C) ISLIOBC 40 The IOB for CP 19 and CP 91.

132(84) ISLAREAZ 88 This area contains the data field for cylinder

overflow records and the count field for ten index
entries. These are used to preformat shared tracks
during the Put load mode function and to pad dummy
track indexes on unused cylinders during the Close
routine.

Area Z appears as follows:

CYL.OVL.
CTRL.RCD.] COUNT 1 | COUNT 2 COUNT 10
HHRYYT

z Z+6(6) Z+14(E) Z+78(4E)

Section 5: Data Areas 179

A

8 bytes

Y

0(0) ISLECBA 4(4)
ISLIOBA
44(2C) ISLECBB
48(30)
ISLIOBB
88(58) ISLECBC 92(5C)
ISLIOBC
132(84)
ISLAREAZ
220(DC)
ISLIXLT
327(147)
324(144) ISLNIRT ISLHIRT
328(148) ISLCBF 332(14C) ISLBMPR
336(150) ISLFBW 340(154) ISLEOB
344(158) ISLNCNT
352(160) ISLOCNT

Figure 66 (Part 1 of 2). QISAM Load Mode DCB Work Area

180 OS ISAM Logic

(Continued)

360(168) ISLDCNT
368(170) ISLNDAT
378(17A) Reserved 380(17C) ISLODAT
290(176) 391(187)
Reserved ISLBUFNO
392(188) ISLBUFN 396(18C) ISLMVC
400(190) ISLMVCT 404(194)
ISLVRSAV
476(1DC)
ISLAPSAV
516(204)
ISLWRSAV
580(244) TSTWK1C
584(248) TSTWK2C 588(24C) Reserved
592(250) ISLNOENT 596(254) ISLOFFST
600(258) ISLD 604(25C) ISLFSTBF
608(260) ISLLSTBF 612(264) ISLCCFAD
616(268) ISLKEYAD 620(26C) CL1AD/ISLF8AD
624(270) CM1AD/ISLFXAD 628(274) CQ1AD/ISLFYAD
632(278) CQT1AD/ISLFZAD 636(27C) CQ40AD/ISLPAAD
640(280) CQ45AD/ISLF1AD 644(284)
ISLVPTRS (pointed to by DCBWKPT6)
704(2C0) ISLIGAP 706(2C2) ISLLGAP 708(2C4) ISLRPSSS
Variable-length areas follow:
Pointed to by 1SLVPTRS
Area Y (See Figure 67)
Key save area
Buffer control table
Channel programs

Figure 66 (Part 2 of 2). QISAM Load Mode DCB Work Area

Section 5: Data Areas 181

Offset
220(DC)

324(144)

327(147)

328(148)

332(14C)

Field Name
ISLIXLT

ISLNIRT

ISLHIRT

ISLCBF

ISLBMPR

182 OS ISAM Logic

Bytes
104

Field Description

The index location table contains the direct—access
device addresses for high—level indexes.

IND. BEGIN STEPPING END
0(0) MBBCCHHR| MBBCCHHR | MBBCCHHR| CYL
26(1A) MBBCCHHR| MBBCCHHR | MBBCCHHR| M1
52(34) MBBCCHHR| MBBCCHHR | MBBCCHHR| M2
78(4E) MBBCCHHR| MBBCCHHR | MBBCCHHR| M3

There is an indicator byte and three device addresses for

each level of index; cylinder, and up to three master index

levels.

The begin and end addresses are set during the Open

routine according to formulas based on space allocation.
The stepping addresses are used during data set creation
to point to the current index entry location at each level.

The indicator byte is as follows:

Bit 0

1

w
]

1 for last level

0 otherwise

1 for dummy switch on
0 for dummy switch off

1 for current level

0 otherwise

1 during Close

0 otherwise

1 when track index has been written
but not cylinder index
0 when cylinder index has been written

Indicator bit 4 only applies to the first level of

the index location table.

HHR of the dummy track—index entry. It is used in
Close to signal the end—of—track index padding.

The number of index entries that fit on a prime—data

track.

Buffer control pointer. This field contains the
address of the current record in the current buffer.
It is used to move records into a buffer.

Size of individual records (equal DCBLRECL or
DCBLRECL + DCBKEYLE). This field is used to bump

ISLCBF to next record location in a buffer.

Offset
336(150)

340(154)

344(158)

352(160)

360(168)

368(170)

378(17A)
380(17C)

390(186)
391(187)
392(188)
396(18C)

400(190)

404(194)

476(1DC)

516(204)

Field Name
ISLFBW

ISLEOB

ISLNCNT

ISLOCNT

ISLDCNT

ISLNDAT

ISLODAT

ISLBUFNO
ISLBUFN
ISLMVC

ISLMVCT

ISLVRSAV

ISLAPSAV

ISLWRSAV

Bytes

10

10

72

40

64

Field Description

The number of buffers scheduled to be written. This
number is determined immediately following each
execution of CP 18. It is the number of buffers
(DCBBUFNO) minus one, or the number of buffers
that completes a track, whichever is smaller.

End—of-buffer address. When ISLCBF and ISLEOB are
equal, a buffer has been filled.

CCHHRKDD. This is the count field for the current
normal track—index entry.

CCHHRKDD. This is the count field for the current
overflow track—index entry.

CCHHRKDD. This is the count field for the current
dummy track—index entry.

MBBCCHHRFP. This is the data field for the current
normal track—index entry.

Reserved.

MBBCCHHRFP. This is the data field for the current
overflow track—index entry.

Reserved.
Number of buffers. ISLBUFNO equals DCBBUFNO.
Address of Slot N in buffer control table.

The count used for the Executed Move at ISLFX21
when moving a record from the user’s work area into
a buffer. This count equals R—1 where R is the
remainder when dividing ISLBMPR by 255. If R=0,
ISLMVC is set decreased (see ISLMVCT).

The count used for the BCT at ISLFX21 when moving a
record from the user’s work area into a buffer.

This is the number of 255-byte moves, plus one,

needed to move the record. This count equals Q+1 where
Q is the quotient when dividing ISLBMPR by 255. When
R, alone, equals 0, ISLMVCT is set to equal Q.

Index register save area. This area is used during load
mode macro time to save index registers within load mode.

Index register save area. This area is used during load
mode appendage time to save index registers belonging to
either the I/0 supervisor or load mode Close.

Index register save area. This area is used during load
mode Close to save index registers belonging to common
Close.

Section 5: Data Areas 183

Offset

580(244)
584(248)
588(24C)
592(250)

596(254)

600(258)

604(250)

608(260)

612(264)

616(268)

620(26C)

624(270)

628(274)

632(278)

636(27C)

Field Name
TSTWKI1C
TSTWK2C

ISLNOENT

ISLOFFST

ISLD

ISLFSTBF

ISLLSTBF

ISLCCFAD

ISLKEYAD

CL1AD
ISLFS8AD

CM1AD
ISLFXAD

CQ1AD
ISLFYAD

CQT1AD
ISLFZAD

CQ40AD
ISLPAAD

184 OS ISAM Logic

Field Description
Open work field.
Open work field.
Reserved.

Number of spaces for track—index entries remaining on
the current track—index track.

Size of WRITE channel commands in CP 18. If
unblocked records, RKP=0, ISLOFFST=8. Otherwise,
ISLOFFST=24.

At Macro Time:
ISLD is the displacement from the start of CP 18
to the CC flag in the first WRITE CCW in the chain.
If unblocked records, RKP=0, ISLD=28. Otherwise,
ISLD=44. (ISLOFFST+20)

During Close:
ISLD is a set of switches used when padding indexes:

Bit 0 = 1 for new cylinder; 0 otherwise
1 = 1 for end entry; O otherwise

2 = 1 for chained entry; 0 otherwise
Pointer to first buffer scheduled for writing. This
is the slot number in the buffer control table associated
with the first buffer to be written in the current output
chain.

Pointer to last buffer scheduled for writing. This is the
slot number in the buffer control table associated with
the last buffer to be written in the current output chain.

Address of CC flag in the last WR CKD CCW in CP 18
chain. This CC flag is turned off to stop the write chain.

Address of the key in the last record that is placed on the
current prime—data track. This key becomes the
track—index key for the given track.

Address of the CP 18 skeleton (Open).
Address of instruction at ISLF800+4+6=PUT base (Close).

Address of the CP 19 skeleton (Open).
Address of the instruction at ISLFYO01 (Close).

Address of the CP 20 skeleton (Open).
Address of the instruction at ISLFYO01 (Close).

Address of CP 20 write—check extension skeleton (Open).
Address of the instruction at ISLFZ01 (Close).

Address of the CP 21 skeleton (Open).
Address of the instruction at ISLPAO1 (Close).

Offset
640(280)

644(284)

704(2C0)

706(2C2)

708(2C4)

Field Name

CQ45AD
ISLF1AD

ISLVPTRS

ISLIGAP

ISLLGAP

ISLRPSSS

Bytes

60

Field Description

Address of CP 21 write—check extension skeleton (Open).
Address of the instruction at ISLF110 (Close).

Address of variable—length areas and channel programs.

0(0) — A(Area Y) (Figure 67)
+ 4(4) — A(Key save)
+ 8(8) — A(IOBBCT)

+ 12(C) — A(CP 18)

+ 16(10) — A(CP 19)

+ 20(14) — A(CP 20A or 0s) — full track—index
write option

+ 24(18) — A (CP 21)

+ 28(1C) — Size of DCB work area — ISLCOMON (for
FREEMAIN in Close)

+ 32(20) — Size of channel program area for
FREEMAIN

+ 36(24) — A (TISA)

Bit 0 — full track—index write
Bit 1 — successful GETMAIN

+ 40(28) — A (CP 31A/31B) — resume load
A (CP 20B or 0s) — full track—
index write option

+ 44(2C)— A (CP 20C or 0s) — full track—
index write option

+ 48(30) — ISLFXWKI1 (macro work field)
+ 52(34) — ISLFXWK2 (macro work field)
+ 56(38) — ISLF9WKI1 (work field)

Note: When there is a permanent I/0 error, ISLVPTRS+
36 is overlaid with the address of the buffer that caused
the error if CP 18 failed; otherwise, it is set to O.
ISLVPTRS+40 is overlaid with the SYNAD address and
ISLVPTRS +44 is overlaid with the second word

of the IOB.

Overhead (record gap) for other than the last record.
Used in RPS device space allocation calculations for
VLR track capacity of prime—data records.

Last record overhead for RPS devices. Used to
calculate VLR track capacity of prime—data records.

Sectors values used in CP 18, CP 19, CP 20, and CP 21
for RPS devices.

Section 5: Data Areas 185

HIGH LEVEL INDEX ENTRY
COUNT DATA

CCHHRKDD MBBCCHHRFP

y y+8(8)

TRACK INDEX ENTRIES

NORMAL OVERFLOW
COUNT DATA COUNT DATA

CCHHRKDD MBBCCHHRFP CCHHRKDD MBBCCHHRFP

y+18(12) y+26(1A) y+36(24) y+44(2C)

DUMMY ENTRY

CCHHRKDD KEY OF ALL 1s MBBCCHHRFP

y+54(36) y+62(3E) y+62(3E) +key length

Figure 67. Area Y: QISAM Load Index Fields

186 OS ISAM Logic

QISAM Scan

Mode DCB Work Area

The QISAM scan mode DCB work area is pointed to by .the DCBWKPT!]1 field of the
DCB. The DCB work area format is shown in Figure 68.

-« 8 bytes —>
0(0) W1ECBI 4(4)

W1108B

44(2C) W1IEXTEN 46(2E) W1CPNUP

48(30) W1ECBO 52(34)

W110BO

92(5C) W10EXTEN 94(5E) W1SAV7
9(i/§/6100)SBIT‘I 97V§1611C;SB|T2 9?/\(161;%))SBIT3 9%61?)CNOT 100(64) WIKEYBLK
104(68) W1LPDR
112(70) W1CBF 116(74) W1EOB
120(78) W1COUNTR PRIMEIND FIXIND 124(7C) W1FCPS
W1QTABLE
128(80) WI1FRIST 132(84) W1FRLAST
136(88) Reserved W1FREEC 140(8C) W1RDIST
144(90) W1RDLAST 148(94) W1READR 150(96) W1READC
152(96) W1USIST 156(9C) W1USLAST
160(A0) Reserved 162(A2) W1USERC 164(A4) W1PX1ST
168(A8) W1PXLAST 172(AC) Reserved 174(AE) WIPUTXC
176(B0) WI1WRIST 180(B4) WIWRLAST
184(B8) Reserved 186(BA) W1IWRITEC
Figure 68 (Part 1 of 2). QISAM Scan Mode DCB Work Area
Section 5: Data Areas 187

(Continued)

WIWAREA
188(BC) W1WCOUNT

WIWCOUNT (cont.) 196(C4) WIWCNXDM

WIWCNXDM (cont.) 204(CC) W1WOV FL

WIWOVFL (cont) 214(D6) WIWDNXDM

WIWDNXDM (cont.)
224(E0) WIWPLEN |226(E2) WICURLEN | 228(E4) W1TEMPSA
232(E8) W1REGSV2 236(EC) W1REGSAV
240(F0) W1REGSV3 244(F4) W1CP23PT
248(F8) W1CP26PT 252(FC) W1CP25PT
256(100) W1CP24
324(144) W1WDCXDM
sa(ag) wnsect [Bo08F) | 33s(150) W1DCBFA
340(154) W1ICPEXT
356(164) W10CPEXT
372(174) W1RDCNT
380(17C) W1RDSECT
388(184) W1CNBSAV 392(188)
W1RPSSA
408(198) WITOTAL | 410(19A) W1RECLEN

412(19C) WIOVLEN |414(19E) WIFSTSH m‘;‘;:&) \‘,‘vmgg"é; 3\/118;321) Wf’éz,gfz)

Figure 68 (Part 2 of 2). QISAM Scan Mode DCB Work Area

188 OS ISAM Logic

Offset Field Name Bytes Field Description

0(0) WI1ECBI 4 Input ECB.
4(4) WI1IOBI 44 Input IOB and extension. This includes:
40 10B.
44(2C) WIIEXTEN 2 Input appendage code.
46(2E) WI1CPNUP 2 Save area for schedule routine.
48(30) WI1ECBO 4 Output ECB.
52(34) W1I0BO 44 Output 10B and extension. This includes:
40 IOB.
92(5C) WIOEXTEN 2 Output appendage code.
8 — Write
C — Check
10 — Rewrite
14 — Recheck
94(5E) WI1SAV7 2 Save area for schedule routine.
96(60) WI1O0SBIT1 1 Overall status, byte 1.
Bit O Scan mode
1 End of data set
2 Overflow
3 Read track index
4 Key found (for SETL K)
5 Unreachable record
6 IOBI completion
7 IOBO completion
97(61) W10SBIT2 1 Overall status, byte 2.
Bit O Unwritable record
1 Work bit for write appendage
2 Same—cylinder indicator
3 Shared track
4 GET — SETL communication
5 Scheduling
6 RELSE
7 SETL K blocked

Section 5: Data Areas 189

Offset

98(62)

99(63)

100(64)

104(68)
112(70)
116(74)

120(78)

122(7A)
123(7B)
124(7C)
128(80)

128(80)

132(84)
136(88)
138(8A)
140(8C)
144(90)
148(94)
150(96)

152(98)

Field Name

WI10OSBIT3

WIICNOT

WIKEYBLK

WI1LPDR

WI1CBF

WI1EOB

WI1COUNTER

PRIMEIND
FIXIND
WI1FCPS
WI1QTABLE

WI1FRI1ST

WI1FRLAST

WI1FREEC
WI1RDI1ST
WI1RDLAST
WI1READR
WIREADC

W1US1ST

190 OS ISAM Logic

Bytes

Field Description

Overall status, byte 3.

Bit 0 Buffer size
1 CLOSE — ESETL communication
2 Bad set indicator for write—checking
3—-7 Unused

BUFNO/2— used to schedule input/output.

Used by SETL K for address within the block of the
requested record.

Seek — Search address of the last prime—data record read.
Current buffer address.
End—of-buffer address.

Counter used to count number of retries for
Write—validity—checking.

Switch for testing same device.

Temporary storage.

First Write channel program scheduled.
Queue table (comprising the following fields)

Pointer to first channel program on the
Free queue.

Pointer to last channel program on the Free queue.
Reserved.

Number of buffers on the Free queue.

Pointer to first channel program on the Read queue.
Pointer to last channel program on the Read queue.
Number of unusued buffers on the Read queue.
Number of buffers on the Read queue.

Pointer to the first channel program on the User queue.

Offset

156(9C)
160(A0)
162(A2)
164(A4)
168(A8)
172(AC)
174(AE)
176(BO)
180(B4)
184(B8)
186(BA)

188(BC)

188(BC)
196(C4)
204(CC)
214(D6)
224(E0)
226(E2)
228(E2)
232(E8)
236(EC)
240(F0)
244(F4)

248(F8)

Field Name

WI1USLAST

WI1USERC

WI1PXI1ST

WI1PXLAST

WI1PUTXC

WIWRIST

WI1WRLAST

WIWRITEC

WI1WAREA

WIWCOUNT

WI1WCNXDM

WI1WOVFL

W1WDNXDM

WI1WPLEN

WI1CURLEN

WITEMPSA

WI1REGSV2

WIREGSAV

WI1REGSV3

WI1CP23PT

W1CP26PT

Bytes

Field Description

Pointer to the last channel program on the User queue.
Reserved.

Number of buffers on the User queue.

Pointer to first channel program on the PUTX queue.
Pointer to last channel program on the PUTX queue.
Reserved.

Number of buffers on the PUTX queue.

Pointer to the first channel program on the Write queue.
Pointer to the last channel program on the Write queue.
Reserved.

Number of buffers on the Write queue.

Area for track—index entries (comprising the following
three fields).

Count of current index entry.

Count of next normal or dummy entry.
Data of current overflow entry.

Data of next normal or dummy entry.
Byte length of work area.

Length of current logical record.
Temporary storage.

Area to save contents of a register.
Area to save contents of a register.
Temporary storage.

Address of CP 23.

Address of CP 26.

Section 5: Data Areas 191

Offset

252(FC)
256(100)

324(144)

334(14E)
335(14F)
336(150)

340(154)

356(164)

372(174)
380(17C)

388(184)

392(188)
408(198)
410(19A)
412(19C)
414(19E)
416(1A0)
417(1A1)
418(1A2)

419(1A3)

Field Name

WI1CP25PT

W1CP24

W1wWDCXDM

WIISECT

WI1OSECT

WI1DCBFA

WIICPEXT

W10CPEXT

WI1RDCNT

WIRDSECT

WI1CNSSAV

WIRPSSA

WITOTAL

WIRECLEN

WI1OVLEN

WI1FSTSH

WI1RPSC1

WIRPSC2

WI1RPSI1

S1RPSI2

192 OS ISAM Logic

Bytes

68

16

16

Field Description

Address of CP 25.
CP 24 — read track indexes.

Data of current normal track—index entry
(variable—length records only).

Current input channel program sector value.
Current output channel program sector value.
Pointer to DCB field area.

Extension to the input channel program used with
an RPS device. Set sector and TIC to input channel

program.

Extension to the output (PUTX) channel program
used with an RPS device.

Read count of next block for channel program.
Read Sector of next block for channel program.

Save area to restore TIC address CN5 during
overflow processing.

Register save area for RPS processing.
Byte count on track.

Minimum record length, prime records.
Minimum record length, overflow records.
Byte count to first shared track.

Lower limit cylinder overflow.

Upper limit cylinder overflow.

Lower limit independent overflow.

Upper limit independent overflow.

BISAM DCB Work Area

The BISAM DCB work area is pointed to by the DCBWKPT? field of the DCB. The
DCB work area format is shown in Figure 69.

0(0) DCWFCP4

4(4) DCWFCP7

8(8) DCWNUCPS 9(9) DCWNUCP4 10(A) DCWNUCP7 11(B) DCWNLSD
12(C) DCWFIOBU

16(10) DCWLIOBU

20(14) DCWFUPDI

24(18) DCWLUPDI

28(1C) DCWHIAV 29(1D) DCWWKNI 30(1E) DCWLEVC 31(1F) DCWNUWKN
32(20) -DCWMSHIL

36(24) DCWHIRPS 37(25) DCWNACT 38(26) DCWSIZE

40(28) DCWOPCLS

48(30) DCWERRCT 49(31) DCWFIOBE

52(34) DCWLIOBE

56(38) DCWSIOA

60(3C) DCWDCBFA

64(40) DCWIPG 66(42) DCWLPG

68(44) DCWIOG 70(46) DCWLOG

Figure 69. BISAM Work Area

Section 5: Data Areas 193

Offset Field Name Bytes Field Description

0(0) DCWFCP4 4 Pointer to the first available set of channel programs in
the CP 4-CP 5—CP 6 or CP 4—CP 5W-CP 6W queue. The
second word of the second CCW in the channel program set
points to the next set of channel programs. The
pointer is O in the last set on the queue. If no set of
channel programs is available, this field is O.

4(4) DCWFCP7 4 Pointer to the first available CP 7 or CP 7W. This queue is
handled similarly to the one pointed to by DCWFCP4.

8(8) DCWNUCPS 1 The number of I0Bs awaiting CP 1 or CP 2.

9(9) DCWNUCP4 1 The number of IOBs awaiting CP 4—CP 5-CP 6 or
CP 4-CP 5W-CP 6W.

10(A) DCWNUCP7 1 The number of IOBs awaiting CP 7 or CP 7W.

11(B) DCWNLSD 1 The number of high—level indexes searched on a device. This

number equals DCBNLEV unless the highest level index
is searched in main storage in which case the number equals
DCBNLEV minus 1.

12(C) DCWFIOBU 4 Address of the first IOB in the queue of unscheduled
IOBs. This field is O if no IOBs are unscheduled.

16(10) DCWLIOBU 4 Address of the last IOB in the queue of unscheduled IOBs.
This field is O if no IOBs are unscheduled.

20(14) DCWFUPDI 4 Address of the first IOB in the update queue, that is, the

queue of I0OBs for which a READ KU has been successfully
completed, but for which no WRITE K has yet been issued.
This field is 0 when the queue is empty.

24(18) DCWLUPDI 4 Address of the last IOB in the update queue. This field
is 0 when the queue is empty.

28(1C) DCWHIAV 1 Switches

Bit Meaning

0 CP 1 or CP 2 is available.

1 Highest—level index must be searched in main storage.
2—-7 Reserved.

29(1D) DCWWKNI 1 0 WRITE KN is in process.
1 First time switch (used with various WRITE KN channel
programs which are executed repetitively).
2 Same module switch.
3 Add to the end of the data set.
4 CP 12A or CP 13A detected an end—of—file mark.
5 CP 11A—First use by a given WRITE KN.
6 Work area for WRITE KN was obtained by Open (VLR

only)
7 Reserved.

194 OS ISAM Logic

Offset
30(1E)
31(1F)

32(20)

36(24)

37(25)

38(26)

40(28)

48(30)

49(31)

52(34)

56(38)

Field Name
DCWNLEVC
DCWNUWKN

DCWMSHIL

DCWHIRPS

DCWNACT

DCWSIZE

DCWOPCLS

DCWERRCT

DCWFIOBE

DCWLIOBE

DCWSIOA

Bytes

4

Field Description
Counter used when rewriting high—level indexes.

The number of WRITE KN IOBs awaiting completion of
WRITE KN.

Address of the last active high—level index entry in main
storage. This field is O when the high-level index
is not searched in main storage.

Used with WRITE KN. It contains DCBHIRPD if the current
track of prime data being processed is not shared with a
track index or DCBHIRSH if it is.

The number of READ or WRITE K I0Bs awaiting completion
of WRITE KN.

The total size, in doublewords, of (1) the DCB work area, (2)
all the channel programs, and (3) the minimum size work area
used by WRITE KN if the user has not supplied a work area.

Data saved by common ISAM open executor in DCBWKPT3
and DCBWKPT4. This data will be restored in these two
fields by the BISAM Close routine and used by the common
ISAM close executor. (The data saved is the address of the
format-2 DSCB and the UCB address of the device on which
the volume containing the DSCB is mounted. This address
has 5 bytes for CCHHR and 3 bytes for UCB address.)

Number of positions left for IOBs to be placed on the error
queue. Maximum value = 2(NCP)+DCBUFNO.

Address of the first IOB on the error queue, which contains
requests that ended with a permanent error or used a dynamic
buffer. This address is O if the queue is empty.

Address of the last IOB on the error queue. This address is
0 if the queue is empty.

Address of the RPS SIO appendage.

Note: This field is not used by ISAM routines. See the ISAM extension of the DEB.

60(3C)
64(40)

66(42)
68(44)

70(46)

DCWDCBFA
DCWIPG

DCWLPG
DCWIOG

DCWLOG

NN

Pointer to DCB field area.

Prime record (other than the last) overhead (variable—length
records only).

Last prime record overhead (variable-length records only).

Overflow record (other than the last) overhead (variable—
length records only).

Last overflow record overhead (variable—length records
only).)

Section 5: Data Areas 195

QISAM Track—Index Save Area
Calculations for the track—index save area

The size of the track—index save area (TISA) is equal to the total of the following five
items:

1. TISA control fields — 20 bytes.
2. Area for the track—index entries

a. Number of entries equal to the maximum number of entries on a track. This
is ISLNIRT if the track index is on one track; otherwise, ISLHIRT is used.
If ISLHIRT is odd, then the calculations are performed with the number of
entries equal to ISLHIRT + 1 to allow the save area enough space for the
last pair of entries.

b. Size of each entry equals COUNT + KEY + DATA

COUNT=8
KEY=KEY LENGTH
DATA=10
Pointers To Save Area Save Area
ISLVPTRS +36
TISA CONTROL FIELDS
TRACK INDEX ENTRIES
ISLVPTRS +20
CP20A
ISLVPTRS +40
CP20B
ISLVPTRS +44
CP20C

Figure 70. Track—Index Save Area

3. Channel program 20A if no shared track.
4. Channel program 20B if shared track.

5. Channel program 20C if write—check.

196 OS ISAM Logic

Track—Index Save Area (TISA)

+0
FTIWIOB
+8
SIZE FLAGS HIGHR CURRR NEXTTI
+16
TISASIZE
Figure 71. TISA Control Fields
Field Name Bytes Description
FTIWIOB 8 MBBCCHHR for the prime—data track which is pointed to
by the seek CCW in CP 20 and the search CCW in CP 18.
SIZE 2 Length of one track—index entry (8+KL+10).
FLAGS 1 X‘80° — Resume load. Turned on for the first track
index write.
X‘40> — Close. Turned on by 202I to force writing of
the «.ack index.
X220 — End of track—index track.
X‘10’ — End of cylinder.
X‘08° — Execute CP 20 alone (with one CP 18).
X‘04> — Close. Track—index entries previously
generated.
HIGHR 1 Highest record number for the current track of track index

(either ISLHIRT or ISLNIRT).

CURRR 1 Current record number (last record moved to TISA).
Initialized to O.

NEXTTI 3 Address in TISA where the next track—index entry will be
placed. Initialized to TISA + 20.

TISASIZE 4 Size of TISA saved for the Close routine to issue a
FREEMAIN.

Section 5: Data Areas 197

ISAM DCB Field Area

00(00) DFATDC 02(02) DFARORG3 06(06) DFANREC
10(0A)
DFANREC (cont.) DFAST 11(0B) DFALPDA
23(17)
DFALPDA (cont.) 19(13) DFANBOV 21(15) DFARORG2 DFANOREC
DFANOREC | 5519) DFALIOV
(cont.)
DFALIOV 35(23)
eont) |33221) DFARORGI Notused | 36(24) DFACOUNT
Figure 72. DCB Field Area
Offset Field Name Bytes Field Description
00(00) DFATDC 2 Tag deletion count. User’s count field for records
marked for deletion. (Refer to DCBTDC in the data
control block.)
02(02) DFARORG3 4 The number of times an overflow record was referred to
by a READ or WRITE instruction.
06(06) DFANREC 4 Number of logical records in the prime—data area.
10(0A) DFAST Status indicators.
Bit 0 — Single schedule mode
1 — Key sequence to be checked
2 — [Initial load has been completed
3 — Data set extension (resume loading) will
begin on new cylinder.
4 — Reserved
5 — First macro not yet received
6 — Last block full
7 — Last track full
11(0B) DFALPDA 8 Direct—access device address of the last prime—data record
in the prime—data area (in the form MBBCCHHR).
19(13) DFANBOV 2 Number of bytes remaining on current overflow track
(variable-length records only).
21(15) DFARORG?2 2 Number of tracks (partially or wholly) remaining in the
independent overflow area.
23(17) DFANOREC Number of logical records in a overflow area.
25(19) DFALIOV Direct—access device address of the last record written in
independent overflow area (in the form MBBCCHHR).
33(21) DFARORGI1 2 Number of full cylinder overflow areas.
35(23) Not used.
36(24) DFACOUNT 4 Number of open DCBs on this data set.

198 OS ISAM Logic

SECTION 6: DIAGNOSTIC AIDS

Section 6: Diagnostic Aids 199

Appendage Codes

Before an EXCP command is issued, QISAM scan mode and BISAM enter an
appendage code into the IOB extension. When the appendage is entered from the I/0
supervisor, the appendage routine tests the code to determine which functions to
perform to complete processing for the input/output request.

When an appendage routine schedules an asynchronous routine, it puts an
asynchronous code into the IOB extension. When the asynchronous routine gains
control it tests the asynchronous code to determine the functions it must perform.

QISAM Scan Mode Appendage Codes

The following codes apply under both channel-end and abnormal-end conditions:

Code Meaning

0 Completion of READ

4 Completion of SETL (K or I)

8 Completion of WRITE (with or without write—checking)

12 Completion of CHECK (read-back for write—checking)

16 Completion of REWRITE (write—back when write—checking)
20 Completion of RECHECK (read-back after REWRITE during

write—checking)

BISAM READ and WRITE K Appendage Codes

The following codes apply under both channel-end and abnormal—end conditions:

Code Meaning

0 Completion of CP 4-5-5W for READ
1 Completion of CP 4-5-5W for WRITE
2 Completion of CP 7 or 7TW

3 Completion of CP 1 or 2

5 Completion of CP 6 or 6W

(=)}

Compietion oi CP 5W for write—checking after WRITE

BISAM WRITE KN Appendage Codes

The following codes apply under both channel-end and abnormal-end conditions:
Code Meaning

4 Completion of CP 14 part 2 (fixed—length records with user work area)
7 Completion of CP 1 or CP 2 for WRITE KN

Section 6: Diagnostic Aids 201

Asynchronous Codes

Code

10

11

12

13

14

15

16

17

18

19

20
21
22
23
24

Meaning
Completion of CP 8

Completion of CP 10A for true insert or part 2 of CP 14 (variable-length
records), for EOF extension

Completion of CP 10B for true insert or part 2 of CP 14 (variable-length
records), when part 1 has been executed

Completion of CP 10B for addition to end—of—data set

Completion of CP 14 or part 1 of CP 14 (fixed—length records with user
work area and variable—length records), for setups 1, 2, and 5
(asynchronous routine codes 9, 10, and 13)

Completion of CP 14 or part 1 of CP 14 (fixed-length records with user
work area and variable—length records), for setups 3, 4, and 6
(asynchronous routine codes 11, 12, and 14)

Completion of CP 15

Completion of CP 16 for setup 2 (search overflow chain for last overflow
record in the chain: addition to end—of—data set)

Completion of CP 16 for setup 2 (search overflow chain for record which
logically precedes or is equal to new record to be added: true insertion)

Completion of CP 17 when used for track index only or part 2 of CP 14
(variable-length records) when part 1 has not been executed (no overflow)

Completion of CP 17 when used for track index and when it is to be
continued for higher level indexes

Completion of CP 17 when it is to be started or continued for higher level
indexes

Completion of CP 9A, CP 11A, CP 12A, CP 13A, or CP 12AV
Completion of CP 9B, CP 11B, CP 12B, CP 13B, or CP 12BV
Completion of CP 9C, CP 123W, or CP 123WV

Completion of CP 10A for addition to end of data set
Completion of CP 12C or CP 13C

BISAM READ and WRITE KN Asynchronous Codes

The following codes direct asynchronous coding to the proper routines:

202 OS ISAM Logic

Code
0

Condition

Successful completion of CP 4-5-6

Code

[W

Condition

EXCP macro instruction to be issued
Successful completion of CP 7
Successful completion of CP 1 or CP 2
Unsuccessful completion of CP 4-5-6
Unsuccessful completion of CP 1

Unsuccessful completion of CP 1 or CP 2

BISAM WRITE KN Asynchronous Codes

The following codes direct asynchronous coding to the proper routines:

Code
1

10

11

12

13

14

15

16

Condition

Scheduled to issue an EXCP which could not be done in an appendage
routine because a different device (UCB) was involved.

Scheduled upon the successful or unsuccessful completion of a WRITE KN
macro instruction.

Scheduled to set up and execute CP 14 when a record is bumped from a
prime—data track as a result of a new record being placed on that track
(setup 1).

Scheduled to set up and execute CP 14 when a new record is to be added to
the end of the data set, the last track is full, and no overflow chain currently
exists for the last track (setup 2).

Scheduled to set up and execute CP 14 when a new record is to be added to
the end of the data set, the last track is full, but an overflow chain already
exists for the last track (setup 3).

Scheduled to set up and execute CP 14 when a new record is a true insert
and is to go in the middle of an overflow chain (setup 4).

Scheduled to set up and execute CP 14 when a new record is a true insert
and it is to become the first record in an already existing overflow chain
(setup 5).

Scheduled to set up and execute CP 14 when a new record is a true insert
and it has a key equal to that of the key of a record in the overflow chain
(the record is marked for deletion). The new record simply replaces the
deleted record (setup 6).

Scheduled to set up and execute CP 14 (for variable—length records only)
when more than one record is bumped from a prime—data track (setup 1).

Scheduled to set up and execute the CP 14 extension (the variable—length
records only) to write an EOF mark in independent overflow.

Section 6: Diagnostic Aids 203

Exception Codes

QISAM Exception Codes

QISAM exception codes and the macro instructions which set them are summarized in

Figure 73.
Exception Code Code Set By
Condition if On
Field Bit CLOSE GET PUT PUTX SETL
DCBEXCD1 0 Type K Record is not found
1 Tvoe | Invalid actual address
P for lower limit
2 X Space is not found in
which to add a record
3 X Invalid request
4 X Uncorrectable input error
5 X X X Uncorrectable output error
6 X X Block cogld not be
reached (input)
Block could not be
/ X X reached (update)
DCBEXCD2 0 X Sequence check
1 X Duplicate record
Data control block is closed
2 X when error routine is entered
3 X Overflow record’
Length of logical record is
4 X greater than DCBLRECL
(Variable length records only)
5-7 Reserved for future use
TThe SYNAD routine is entered only if bit4, 5, 6, or 7 of DCBEXCD1 is also on.

Figure 73. QISAM Exception Code Summary

204 OS ISAM Logic

BISAM Exception Codes

BISAM exception codes and the macro instructions which set them are summarized in

Figure 74.
Exception Code Code Set By
Condition if On
Field Bit READ WRITE
DECBEXCD1 0 X Type K Record is not found
1 X X Record length is checked
2 Type KN Space is not found
3 Type K Invalid request
4 X X | Uncorrectable 1/0 error
5 X X Unreachable block
6 X Overflow record
7 Type KN Duplicate record
DECBEXCD2 0-5 Reserved for future use
Channel program initiated
6 X X by an asynchronous routine
(variable length records only)
7 X Previous macro was
READ KU

Figure 74. BISAM Exception Code Summary

Section 6: Diagnostic Aids 205

SECTION 7: APPENDIXES

Section 7: Appendixes 207

Appendix A: ISAM Data Set Organization

Introduction

The indexed sequential access methods (ISAM) can be defined as the combination of
data set organization and the techniques used to process the data. With the indexed
sequential organization, data records are arranged in logical sequence by a key field.
An indexed sequential data set resides on direct—access storage devices and can occupy
up to three different areas:

. Prime area

This area contains data records and related track indexes. It exists for all ISAM
data sets.

o Overflow area

This area contains overflow from the prime area when new data records are
added. It is optional.

. Index area

This area contains master and cylinder indexes associated with the data set. It
exists for a data set that has a prime area occupying more than one cylinder.

The indexes of an ISAM data set are analogous to the card index in a library. For
example, if the library user knows the name of the book or the author, he can look in
the card index and obtain a catalog number which will enable him to locate the book in
the book files. He would then go to the shelves and proceed through each row until he
found the shelf containing the book. Usually each row contains a sign to indicate the
beginning and ending numbers of all books in that particular row. Thus, as he
proceeded through the rows, he would compare the catalog number obtained from the
index with the numbers posted on each row. Upon locating the proper row, he would
then search that row for the shelf that contained the book. Then he would look at the
individual book’s numbers on that shelf until he found the particular book.

ISAM uses the indexes in much the same way to locate records in an indexed
sequential data set. The operating system provides both the queued and basic access
techniques to process an indexed sequential data set. The queued access technique is
used to create the data set and add records to the end. It can also be used to
sequentially process or update the records. The basic technique is used to read or

updatc records and to insert new records at any place in the data set.

Data Set Structure

The overall structure of an indexed sequential data set is shown in Figure 75. The
prime area contains data records arranged according to the collating sequence of a key
field in each record. As the records are stored (written) in the prime area, the system
prepares a track index. Each entry in the track index identifies the key of the last
record on each track. There is a track index for each cylinder in the data set. If more
than one cylinder is used, the system develops a higher level index called a cylinder

Section 7: Appendixes 209

index. Each entry in the cylinder index identifies the key of the last record in the

cylinder.
CYLINDER 1 CYLINDER 2 CYLINDER N
| Track Index Track Index Track Index PRIME
AREA
100 200 6850
—p 100 200 550 CYLINDER
INDEX
i 800
]
r’l’*
ﬁ 6850
—— |
~—— 550 800 1650 MASTER INDEX
(1st LEVEL)
— 2300
3550
|-> 6850
| |
1650 | 2300 | 3550 4700 MASTER INDEX
(2nd LEVEL)
6850
4700 | 6850 MASTER INDEX
(3rd LEVEL)

Figure 75. Indexed Sequential Data Set Structure

To increase the speed of searching the cylinder index, you can request the system to
create a master index that indexes the cylinder index. You can specify through the
data control block (NTM and OPTCD operands) that, if the size of a cylinder index
exceeds a certain number of tracks, a master index should be created. The example in
Figure 75 shows an entry in the master index (first level) for each one track of cylinder
index entries. If the size of the master index exceeds the number of tracks specified in
the data control block the master index is automatically indexed by a higher level
master. This is illustrated in Figure 75 by the second level master. Three such higher
level master indexes can be constructed.

210 OS ISAM Logic

Prime Data Area

Records are written in the prime area when the data set is created or updated. Figure
76 illustrates the initial structure of a cylinder of the prime area. The track index is
contained on the first track of the cylinder. Note that a pair of track index entries is
associated with each prime track in the cylinder. In this example, the last track of the
cylinder is reserved for a cylinder overflow area.

NJIOJN|JO|N|O N|O TRACK
81819119 |27)27 100[100 INDEX
2 4 6 8
PRIME
ATA
e 14 15 16 19 b
—] 22 24 26 27
]
/‘1 [—— "]
-~ 90 93 97 100
CYLINDER
OVERFLOW

Figure 76. Initial Structure of Prime Cylinder

Index Areas

The operating system automatically generates at least two levels of indexes: a track
index and a cylinder index. (Up to three levels of master indexes are created if
requested.)

Track Index: This is the lowest level of index and is always present. There is one such
index for each cylinder in the prime area; it is written on the first track of the cylinder
that contains the indexes. The index consists of a series of paired entries; that is, a
normal and an overflow entry for each prime track. The normal entry contains the
home address of the prime track and the key of the highest record on the track. The

Section 7: Appendixes 211

overflow entry is originally the same as the normal entry but is changed when records
are added to the data set.

In Figure 77, the track index is an expanded detail of the index shown in Figure 76.
Note that the data area of the first normal entry points to track 01 and the key area
represents the highest key on track 01. Since this figure illustrates the initial structure
of the data set, the first overflow entry is the same as the normal entry.

Cylinder Index

100 01000 200 02000 310 03000 seeee Dummy
t——— Data: Home address of track One such entry for
index for cylinder 01 each cylinder of
Key: Highest key on ‘ the prime data area
cylinder 01 j
Track Ind
rack Index Normal Overflow Normal Overflow
000 COCR 008 01011 008 01011 019 01021 019 01021
Home L—— Data: Home address of One normal and one
Addr. prime data track 01 overflow entry for
Key: Highest key on each prime data track

prime data track 01 on cylinder 01

100 01031 100 01031 Dummy Data Records S

Figure 77. Structure of Cylinder Index and Track Index

212 OS ISAM Logic

Cylinder Index: For every track index created, the system generates a cylinder index
entry. There is one cylinder index for a data set, each entry of which points to a track
index. Since there is one track index per cylinder, there is one cylinder index entry for
each cylinder in the prime area. In Figure 77, the data area of the first cylinder index
entry points to the home address of the track index for cylinder 01. The key area
contains the number 100 which represents the highest key on the cylinder. For
simplicity, in Figure 77 only the cylinder, track, and record number portion of the
address in the data areas is shown.

Overflow Areas: As records are added to an indexed sequential data set, space is
required to contain those records that do not fit on the prime data track on which they
belong. You can request that a number of tracks be set aside as a cylinder overflow
area to contain overflows from prime tracks in each cylinder. When a cylinder
overflow area is specified, record O of the track index is used as a cylinder overflow
control record (see Figure 77). ISAM uses this record to keep such information as the
address of the last the overflow record in cylinder and the number of bytes remaining
on the current overflow track.

An advantage of using cylinder overflow areas is a reduction of search time required to
locate overflow records. To access the cylinder overflow area requires only a seek to

another track within the cylinder. This can be performed with less system overhead
than a seek to another cylinder as is required to access an independent overflow area.

Instead of, or in addition to, cylinder overflow areas, you can request an independent
overflow area. Overflow from anywhere in the prime data area is placed in a specified
number of cylinders reserved for this area. An advantage for having an independent
overflow area is a reduction in unused space reserved for overflow. A disadvantage is
the increased search time required to locate overflow records in an independent area
(see Figure 79).

It is good practice to request cylinder overflow areas large enough to contain a
reasonable number of additional records, and an independent overflow area to be used
as the cylinder overflow areas are filled.

Adding Records to a Data Set

A new record added to an indexed sequential data set is placed into a location on a
track determined by the value of its key field. If records were inserted (added) in

precise physical sequence, insertion would require shifting all records of the data set
with keys higher than that of the one inserted. However, because an overflow area

7— — = Key of normal entry changed
!/ /~ = = Data of overflow entry changed

N|O|IN]JO|N}O NJ|O TRACK
618 }|15}19|27]27 100{100 INDEX

2 3 4 6

PRIME

9 10 14 15 DATA

22 24 26 27

920 93 97 100

= P “n CYLINDER

° v "o OVERFLOW

Figure 78. Structure of Prime Cylinder After Cylinder Overflow

exists, the indexed sequential data organization allows a record to be inserted into its
proper position with only the records on the track in which the insertion is made being
shifted. When a record is to be inserted, the records already on the prime track that

Section 7: Appendixes 213

214 OS ISAM Logic

are to follow the new record are written back on the track after the new record. If the
addition of records results in insufficient track space for all the records to be written
onto the track, the records that do not fit are written onto an overflow track. This
technique maintains the sequential order of records on the prime track. Three
situations may occur when a record is added to a data set. Each is discussed below.

First Addition to a Prime Track: When a data set is created, its records are placed on
the prime tracks in the storage area allocated to the data set as shown in Figure 76. If
a record (for example, record 3) is to be inserted into the data set, the indexes indicate
that record 3 belongs on prime track 01. Record 3 is written immediately following
record 2, and records 4 and 6 are retained on prime track 01 (see Figure 78). Since
record 8 no longer fits on this track, it is written on track 09 (cylinder overflow track).

The key area of the normal index entry is changed, since record 6 is now the highest
record on the track. The data area of the overflow index entry is changed; it now
points to record 8 as the first record on track 09. The first addition to a track is
always handled in this way.

When records 9 and 10 are added, prime track 02 receives these records as shown in
Figure 78. Record 19 is shifted to track 09 (cylinder overflow track). Record 16 is
also shifted to the overflow track after record 19. Note that records 16 and 19 are
chained together to show the logical sequence and to indicate that they are associated
with the same prime track. (Overflow records are chained through a link field which
forms the first 10 bytes of each overflow record.)

Subsequent Additions to a Track: Subsequent additions are written either on the prime
track where they belong or as part of the overflow chain from that track. If the
addition belongs between the last prime record on a track and a previous overflow from
that track, it is written in the first available location in the overflow area, with its link
field containing the address of the next record in the chain. Because the data area of
the overflow index entry always refers to the address of the lowest key in a chain, it is
changed.

If subsequent additions belong on a prime track, they are written in proper sequential
location on the prime track. For example, records 11 and 13, as shown in Figure 79,
are written in proper sequential position on track 01. Record 15 (previously the
highest record on the prime track) is shifted to the cylinder overflow area with its link
field chaining to record 16. Record 14 is shifted to the independent overflow area
since the cylinder overflow area is full. The link field in record 14 points to record 15,
the next record in the chain. The key area of the normal index entry is changed to
indicate that record 13 is the highest on the prime track. The data area of the overflow
index entry is changed to point to record 14 in the independent overflow area as the
first record in the overflow chain.

Addition of High Keys: A record with a key higher than the current highest key in the
data set is placed at the end of the prime area, if there is room. Such an addition is
handled, in effect, as if it had been presented when the file was first created.

===\

ot 4

NJOIN]JO|NJ}O N}1O TRACK
6|8 131912727 100[100 INDEX
2 3 4 6
PRIME
9 10 1 13 DATA
22 24 26 27
—
90 93 97 100
CYLINDER
8 19 16 15 OVERFLOW
INDEPENDENT
14 EOF OVERFLOW

/\ —

Figure 79. Structure of Prime Cylinder After Independent Overflow

If the prime area is full, the new record is written in the overflow area and linked to
the overflow chain from the last prime track. The key area of higher level indexes is
changed to reflect the addition.

Detailed Index Description

All index records have ihree seciions: couiit, Key, and data {cxcept the cylinder
overflow control record, which has no key section). Index records are formed in main
storage and written on direct—access devices by QISAM load mode channel programs
operating with I/0 supervisor. BISAM channel programs may later cause sections of
the indexes to be updated when deleting and/or adding records to the data set. In all
records (index and data), the BB portion of MBBCCHHR is 0. The BB portion of the
IOB is filled prior to EXCP from the DEB. This avoids having to mount 2321 bins

back into their original position. Figure 80 shows the ISAM index entry format.

Section 7: Appendixes 215

——- 8 Bytes —— - K —————— ~ 10 ByteS e
1D K DD INDEX ENTRY
ccC HH | R ‘000A’ M|BB |[CC|HH| R|F|P
COUNT KEY DATA

Figure 80. Format of ISAM Index Entry

The count section is 8 bytes in length, in the following format: CC HH R K D D.

CCHHR
is the direct—access device address of this index entry; the components of this
address vary with the type of device.

is the length of the key of each record in the data set. It is also the length of the
key section of each index entry.

DD
is the length of the data section of each index record. It is always hexadecimal
‘000A” (indicating 10 bytes) except for the cylinder overflow control record,
whose data section is 8 bytes long.

The key section is always the same length as the key of each record in the data set and
has a value equal to the highest key referenced by this entry.

The data section is always (except for the cylinder overflow control record) 10 bytes in
length, in the following format:

M BB CCHHRFP.

The first 8 bytes contain the direct—access device address of the data record whose key
is equal to the key section of this index entry.

This address is represented as follows:

M
is the DEB extent serial number.

BB CC HH R
is the direct—access device address of the data record. The components of the
address vary with the type of device.

F, the flag reference code byte, is broken down into bits, as follows:

Bit 01234567
CCCCCITII1

where CCCCC is the index entry type code and I I I indicates the level of index entry.

216 OS ISAM Logic

o

£

The following are valid index entry type codes:

CCCCC = 00000 normal entry data record resides on unshared track
00001 normal entry data record resides on shared track
00010 overflow entry end (last entry in chain)
00011 overflow entry chained (not last entry in chain)
00100 dummy entry end of index
00101 dummy entry chained
00110 inactive entry

Inactive entries are written by QISAM load mode Close executors to fill out allocated,
but unused, space at the end of each index.

The following are valid codes for level of index entry:

IIT = 000 The track index
001 The cylinder index
010 The first level master index
011 The second level master index
100 The third level master index

P, the command code byte, is referenced by channel programs. The three valid
hexadecimal command codes are 1B, 0B, and 07.

1B =Seek HH These are used for entries whose data records are on the
same volume as the index entry.

0B =Seek CC HH

07 =Seek BB CC HH This is used when the data record is on a volume other than
the one on which the index entry resides. For the 2321
data cell drive, the seek code must be 07 if the data set
crosses a strip. It is also used in all overflow and dummy
index entries. Its purpose is to cause an interrupt during the
execution of ISAM channel programs (protection check) so
that the ISAM appendage routines can issue another EXCP
or check for an error or special procedure.

Track-Index Records: Track—index entries consist of a series of paired entries; that is,
a normal and an overflow entry for each track. A dummy end entry indicates the end
of the index, which may be padded with inactive entries. The first track of a track
index may contain a cylinder overflow control record.

Track Capacity Receord: The track capcity record is RO of each prime—data track for
variable—length records. Bytes 0—1 of the data portion contain the number of unused
bytes currently left on the track. Byte 2 contains the highest record ID currently on
the track.

Section 7: Appendixes 217

218 OS ISAM Logic

Cylinder Overflow Control Record: The cylinder overflow control record is the RO
record on the first track of the track index, if the DCBOPTCD field has specified the
cylinder overflow option. It has no key section. The 8—byte data section is in the
following format:

HHR YY TO00
Initially,

HH R
indicates the first track of the cylinder overflow area, and R = 0.

After overflow has occurred,

HH R
indicates the track and record number of the last overflow record.

YY
indicates the number of unused bytes remaining on the current overflow track,
but is not maintained when the data records are of fixed length.

indicates the number of tracks remaining unused in the cylinder overflow area.

00
indicates that these two bytes are not used.

Figure 81, which follows, contains a detailed explanation of track—index records.
Overflow Linkage: On the first overflow from a prime—data track:

1. The data portion of that track’s overflow index entry is written onto the overflow
track as a link field in front of the data section of the overflow record.

2. The key of the prime—data track’s normal index entry is updated to contain the
key of the last record remaining on the prime—data track.

3. M BB CC HH R in the data portion of the prime—data track’s overflow index
entry is updated to contain the address of the overflow record. The F byte is
changed from CCCCC = 00010 to CCCCC = 00011 to indicate that this
overflow index entry is pointing to an overflow chain.

On subsequent overflows from the prime—data track:

1. The link fields of all but the highest overflow record are modified to contain the
location of the next higher overflow record. The F byte indicates CCCCC =
00011 (overflow chain).

2. The link field of the highest overflow record will contain a meaningless address
and the F byte indicates CCCCC = 00010 (end of the overflow chain).

3. The key of the overflow index entry for the prime—data track is modified, if
necessary, to contain the highest overflow key. This occurs only when adding a
record to the end of the data set.

4. The key of the normal index entry for the prime—data track is modified to contain
the key of the last record on the prime—data track.

5. The data portion of the overflow index entry for the prime—data track is modified,
if necessary, to contain the location of the lowest overflow record.

Data
Type of Entry Key M BB CC HH R E P
Normal, Data Highest key on prime | Location of track whose | Hexadecimal ‘00’ |CCCCC = | Hexadecimal ‘1B’
Record on data track pointed highest key equals the 00000,
Unshared Track | to by data portion of | key field of this index 111 =000
this index entry. entry. (The cylinder is
the same cylinder on
which this index entry
resides.)
Normal, Data Same as Normal, Same as Normal, Data Record number of | CCCCC = [Hexadecimal ‘1B’
Record on Data Record on Record on Unshared first data record 00001,
Shared Track Unshared Track. Track. on the shared track.| I11 = 000
For variable length
records, R equals
the highest record
ID currently on
the track that the
index entry
references.
Overflow, End | End—same as pre- End—same as preceding | End—Hexadecimal |End— Hexadecimal ‘07’
and Chained ceding normal index | normal index entry. ‘FF’. Chained— CCCCC =
entry. Chained— Chained—location of record number with|00010,
highest key to over- record with lowest key lowest key to 111 =000
flow from the track to overflow from the overflow the track |Chained—
referenced by this track referenced by referenced by CCCCC=
entry. this entry. this entry. 00011,
111 =000
Dummy, End Maximum value Minimum Value (each Hexadecimal ‘00’ |CCCCC = | Hexadecimal ‘07’
of Index (each byte equal to byte equal to 00100,
hexadecimal ‘FF’). hexadecimal ‘00°). 111 =000
inaciive Maximum value Minimuim value {gach Hexadecimal ‘00’ CCCCC = | Hexadecimal ‘077
(each byte equal to byte equal to 00110,
hexadecimal ‘FF’). hexadecimal ‘00’). 111 =000

Figure 81. Description of Track Indexes

Section 7: Appendixes 219

Data
Type of Entry Key
M BB CC HH R F P
Normal Highest key on the Location of start of track | Record number CCCCC =| Hexadecimal ‘07’
cylinder whose track { index on the cylinder of first data 00000, if this cylinder
index begins at whose highest key record on first 11'=001 | index entry
location specified equals the key of this track of the track references a
by data portion of index entry. index. If no data track entry on
this index entry. records on that either a different
track (an unshared volume, orona
track), R = different strip
hexadecimal ‘00’. if the device is
a 2321 data
drive. Hexa-
decimal ‘0B’ if
same volume
or strip.
Dummy, Maximum value, Minimum value, (each Hexadecimal ‘00’ |CCCCC =| Hexadecimal ‘07’
End (each byte equal to | byte equal to hexa- 00100,
hexadecimal ‘FF’). decimal ‘00'). 111 =001.
Dummy, Maximum value Location of next track Hexadecimal ‘00’ | CCCCC =| Hexadecimal ‘07’
Chained (each byte equal of this cylinder index. 00101,
to hexadecimal 111 =001
‘FF’).
Inactive Maximum value Minimum value (each Hexadecimal ‘00° |CCCCC =| Hexadecimal ‘07’
(each byte equal byte equal to hexa- 00110,
to hexadecimal ‘FF’).| decimal ‘00°). 111 =001

Figure 82. Description of Cylinder Indexes

Cylinder Index Records:

A cylinder index is created for the data set if the processing

program has requested space that extends over more than one cylinder. Figure 82

contains a detailed explanation of cylinder index records.

Master Index Records:

DCBOPTCD field has specified this option.

Figure 83 contains a detailed explanation of master index records.

220 OS ISAM Logic

One or more levels of master indexes are created if the

Data
Type of Entry Key
M BB CC HH R F P
Normal Highest key on a Location of the track Hexadecimal ‘00’ | CCCCC = | Hexadecimal ‘1B’
track of the next within next lower level 00000 if next lowest
lower level index. index, whose highest 111 =010, | level index is on
That track is key equals the key of 011, or same cylinder
pointed to by the this index entry. 100 as this index
data portion of entry.
this index entry. Hexadecimal ‘0B’
if not on same
cylinder, but, for
2321 data cell
drive, on same
strip.
Hexadecimal ‘07’
for 2321 data
cell drive if
indexes cross
strip boundaries.
Dummy, Maximum value Minimum value (each Hexadecimal ‘00’ | CCCCC = | Hexadecimal ‘07’
End (each byte equal to byte equal to hexa- 00100,
hexadecimal ‘FF’). decimal ‘00’). 11 =010,
011, or
100
Dummy, Maximum value Location of next track Hexadecimal ‘00’ | CCCCC = | Hexadecimal ‘07’
Chained (each byte equal to of this level master 00101,
Hexadecimal ‘FF’). index. 111 =010,
011, or
100
Inactive Maximum value Minimum value (each Hexadecimal ‘00’ | CCCCC= | Hexadecimal ‘07’
(each byte equal to byte equal to hexa- 00110
hexadecimal ‘FF’). decimal ‘00’). 111 =010,
011, or
100

Figure 83. Description of Master Indexes

Section 7: Appendixes 221

Appendix B: ISAM Channel Programs

222 OS ISAM Logic

The channel program for each request using ISAM is constructed by the appropriate
module. All ISAM channel programs are listed in Figure 84. The address of the
channel program is placed in the IOB for that request. A channel program consists of
a group of channel command words (CCWs), each word of which has the following
format:

Command Code Address Flags 000 (ignored) Count
(1 byte) (3 bytes) (5 bits) (3 bits) (1 byte) (2 bytes)

Note: The last 4 bytes are ignored by a transfer—in—channel (TIC) command word.

(In some TIC CCWs, these bytes contain flags or a chain address.) The entry in the
address field is one of the following:

. The main—storage address where data is to be placed or found; for a Read or a
Write command word

. The location of the seek or search argument; for a Seek or Search command word
. The CCW to which a transfer is made; for a transfer—in—channel command word
The entry (or entries) in the flags field has the following meanings:

CC Command chaining

DC Data chaining between gaps of a record

SK Skip the transferring of data

SLI Suppress incorrect length indication

The entry in the count field represents either the number of data that are to be
transferred or the number of bytes of data on which a search is to be made for
comparison.

The function or purpose of each command word or group of words is given in the
comment following the count field. The channel command words are identified by the
number to the left of the command code.

The following abbreviations are used in the address and count fields:
WA Work area

KL Key length

DL Data length

CF Storage area for count fields (8 x DCBHIRPD bytes)

Those BISAM or QISAM scan mode channel programs beginning with a Search ID
with a count of 5 bytes are executed with a channel program prefix if a rotational
position sensing (RPS) device is being used. The prefix will be a Set Sector followed
by a TIC to the regular channel program. The channel command words that vary
depending on the presence of RPS are shown in the following channel programs with
both possible command codes.

Channel

Program Description Mode

1 Searches cylinder and master indexes. BISAM (all)

2 Searches a cylinder index when it is the highest— BISAM (all)
level index searched on the device.

4 Searches a track index. BISAM (no

WRITE KN)

5/5W Searches prime—data tracks and reads or writes BISAM (no
prime—data records. WRITE KN)

6/6W Searches an overflow chain and reads or writes BISAM (no
overflow records. WRITE KN)

7/7W Writes data records when WRITE K is associated BISAM (no
with READ KU. WRITE KN)

8 Searches the track index and the prime—data track BISAM (WRITE KN)
for place to insert new record.

9A Reads the record occupying the position at which BISAM (WRITE KN)
a new record is to be inserted into the work area.

9B/9BW Reads an even—numbered record after writing a record BISAM (WRITE KN)
into the previous slot and writes back the last
record of a non—EQF track when the number of records
bumped is odd.

9C/9CW Reads an odd—numbered record after writing a BISAM (WRITE KN)
record into the previous slot and writes back the
last record of a non—EOF track when the number of
records bumped is even.

10A/10AW Writes a record or block to replace an EOF mark. BISAM (WRITE KN)

10B/10BW Writes an EOF mark. BISAM (WRITE KN)

11A Reads an odd—numbered record after writing a BISAM (WRITE KN)
record into the previous slot.

11B/11BW Writes a rearranged block back onto the prime— BISAM (WRITE KN)
daia irack.

12A Reads data records following slot into which new BISAM (WRITE KN)
records are to be inserted.

12AV Records variable—length data records or blocks BISAM (WRITE KN)
following point at which a new record is to be
inserted.

Figure 84 (Part 1 of 3). ISAM Channel Program Summary

Section 7: Appendixes 223

224 0OS ISAM Logic

Channel
Program

12B

12BV

12C/12CW

13A

13B

13C/13CW

14/14W

15

16

17/17wW

18
19
20
20A
20B
20C

21

22A

22B

23

Figure 84 (Part 2 of 3). ISAM Channel Program Summary

Description

Writes back prime—data records.

Writes back variable—length prime—data records
or blocks.

Writes a new record which has replaced a deleted
record.

Reads all blocks from the track following and
including the slot into which a record is to be
inserted.

Writes back the blocks read by CP 13A after they
have been rearranged.

Writes back a block if the record inserted has the
same key as a record which has been logically
deleted but is still physically present in the block.

Writes some combination of COCR, normal and over—

flow track—index entries, and overflow records.

Reads in the COCR and the overflow track—index
entry when a new record is added to the end of
a data set.

Searches an overflow chain for (1) the record that
logically precedes or i1s equal to the new record to
be added or (2) the last record in the chain.

Changes the key in a normal or overflow-track—index

entry or in a higher level index entry.

Writes prime—data records or blocks.

Preformats the shared track and/or writes the COCR.

Writes track—index entries.

Writes a full track of a nonshared track index.
Wiites a full track of a shared track index.
Write—check for CP 20A and 20B.

Writes high—level (cylinder and master) index
entries and end-of-data marks.

Reads or writes prime—data records (key and data,

unblocked records).

Reads or writes prime—data records (data only,
unblocked records, and all blocked records).

Searches high—level indexes, the track index, and
the prime—data track when a SETL K is issued.

Mode

BISAM (WRITE KN)

BISAM (WRITE KN)

BISAM (WRITE KN)

BISAM (WRITE KN)

BISAM (WRITE KN)

BISAM (WRITE KN)

BISAM (WRITE KN)

BISAM (WRITE KN)

BISAM (WRITE KN)

BISAM (WRITE KN)

QISAM load
QISAM load
QISAM load
QISAM load
QISAM load
QISAM load

QISAM load

QISAM scan

QISAM scan

QISAM scan

Channel
Program
24
25
26

31A

31B

87

N

123W

123WV

CLOSE
CCW(1)

CLOSE
CCWwW(2)

VXCCW
(1A)

VXCCW
(1B)

'YXCCW
(2)

Description

Reads track—index entries.
Reads track—index entries when SETL | 1s 1ssued.
Extension of CP 23 to read overflow chains

Reads the key of the last overflow track—index
entry into the Key save area (resume loading only).

Reads the count and data of the last prime—data
block into the first buffer specified in the buffer
control table (resume loading only).

Reads the highest level index into the user work
area (specified by DCBMSHI).

Fills unused index tracks with inactive and dummy
(end—of—index) entries (same as CP 19).

Extension of CP 12A and CP 12B or CP 13A and
CP 13B when write—checking is specified.

Extension of CP 12AV and CP 12BV when write—
checking is specified.

Reads the format—2 DSCB for updating by close
phase.

Writes the format—2 DSCB back in the volume table
of contents (VTOC).

Reads to the end of the file or the end of the
last track in the prime—data area.

Reads to end of file of independent overflow
area.

Reads to the end of the prime—data track.

Figure 84 (Part 3 of 3). ISAM Channel Program Summary

Mode

QISAM scan
QISAM scan
QISAM scan

QISAM load

QISAM load

BISAM (all)

QISAM load

BISAM (WRITE KN)

BISAM (WRITE KN)

Common Close

Common Close

Common Open

(validation)

Common Open
(validation)

Common Open
(validation)

Section 7: Appendixes 225

CHANNEL PROGRAM 1

Searches cylinder and master indexes
Command Code Flags
CCw
— Address Count Comments
No. Hex Description Hex Description
CO1 31 | Search ID equal | IOBSEEK+3 | 60 CC, SLI 4 Search for equal CCHH to verify seek—
IOBSEEK set from either DCBFTHI or

Cco2 08 | TIC Cco1 00 0 index entry in main storage
C1 69 | Search key high | Contents of | 60 CC, SLI KL |Too far along index? Search for

or equal DECBKEY master index

entry
C2 08 |TIC c4 00 0 No
C2B 03 | NOP
23 | Set sector C2B+5 60 CC,SLI 1 Set sector to zero

C3 1A | Read home Cc8 50 CC, SK 5 Yes, position to

address start of track
C4 E9 | Search key high | Contents of | 40 cc KL Search for entry

or equal (MT) DECBKEY
C5 08 |[TIC c4 00
C6 06 | Read data C8+7 00 CC (lowest 10 When found, read master index, CC off if

40 master) lower level master index is to be searched
C7 08 | TIC C10 00 0 Go search cylinder index
ces | === === Master index entry—lOBSEEK set to
C8+7 when this CP is restarted for

Cc9 BBCCHHRF lower level master index
Cc10 P Seek Cc9 40 cC 6 Seek cylinder index (Figure 83)
C10A | 31 | Search ID equal | C9+2 40 CcC 4 Search for equal CCHH to verify seek
C10B | 08 | TIC C10A 40 cC 0
C11 69 | Search key high | Contentsof | 40 CcC KL Too far along index? Search for

or equal DECBKEY cylinder

index entry
C12 08 |TIC Ci14 00 0 No
Ci28 | 03 | NOP C12B+5 60 CC, SLI 1 Set sector to zero
23 | Set sector

C13 1A | Read home (of:] 50 CC, SK 5 Position to start of track

address
C14 E9 | Search key high | Contentsof | 40 cCc KL | Search for entry

or equal (MT) DECBKEY
C15 08 | TIC C14 00 0

226 OS ISAM Logic

CHANNEL PROGRAM 1 (continued)

Searches cylinder and master indexes

ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
C16 06 | Read data C17 00 DL |Read in cylinder index entry
Cc17 MBBCCHHR Cylinder index entry—|OBSEEK for
CP4 set to C17
Cc18 FP—-——— — — —

Section 7: Appendixes 227

CHANNEL PROGRAM 2

Searches a cylinder index when it is the highest level index searched on the device
Command Code Flags
ccw 9
Address Count Comments
No. Hex Description Hex Description
Cc28 31 | Search ID equal | IOBSEEK+3 | 60 CC, sLi 4 Search for equal CCHH to verify seek—
IOBSEEK set from either DCBFTHI or

C29 08 |TIC C28 00 0 index entry in main storage
C30 69 | Search key high | Contents of | 60 CC, SLI KL Too far along index? Search for

or equal DECBKEY cylinder index

entry
C31 08 |TIC C33 00 0 No
€318 | 03 | NOP C31B+5 60 CC, SLI 1 Set sector to zero
23 | Set sector

C32 1A | Read home C37 50 CC, SK 5 Yes, position to start

address of track
C33 E9 | Search key high | Contents of | 40 CcC KL |Search for entry

or equal (MT) DECBKEY
C34 08 |TIC C33 00 0
C35 06 | Read data C36 00 10 Read in cylinder index entry.
C36 MBBCCHHR Cylinder index entry—IOBSEEK set to

C36 when CP4 is executed

C37 FP-—-_- - - -

228 OS ISAM Logic

CHANNEL PROGRAM 4

Searches a track index

ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
CAO01 | 31 Search ID equal | IOBSEEK+3 | 60 CcC 4 Search for equal CCHH to verify seek—
IOBSEEK set from C17 (CP1), C36
(CP2), DCBFTHI or entry in main
storage
CAQ02 | 08 | TIC CAO01 Address of CP5 in CP 4-5-6
chain (see Figure 55)
CA03 [08 | TIC CAlorCA5 | 00 0 TIC to CA1 if shared track is present.
Otherwise, TIC to CAb.
CA1 71 Search ID high | IOBSEEK+3 | 40 cC 5 In prime data part of track? |Search
or equal track
index
CA2 08 | TIC CA5 00 0 No
CA4 08 | TIC CA7 or CABB| 00 0 Yes
CA5 69 | Search key high | Contentsof | 60 CC, SLI KL | Too far along in index?
or equal DECBKEY
CA6 08 | TIC CA8 00 0 No
CA6B 03 | NOP CA6B+5 60 CC, SLI 1 Set sector to zero
23 | Set sector
CA7 1A | Read home 50 CC, SK 5 Yes, position to start of track|
address
CAS8 E9 | Search key high | Contents of | 40 cC KL | Search for entry
or equal (MT) DECBKEY
CA9 08 | TIC CA8 00 0
CA10 | 06 | Read data CA12+7 40 cc 10 If found, read index entry
CA11 | 08 | TIC CA14 00 0
cal2: == == = - Track index entry
CA13 BBCCHHR
CA14 | P Seek CA13 40 CC (to CP5) 6 Seek prime-data track (see Figure 81)

Section 7: Appendixes 229

CHANNEL PROGRAM 5/5W

Searches prime data tracks and reads or writes prime data records

ccw Command Code Flags
] Address Count Comments
No. Hex Description Hex Description
23 | Set sector Position to beginning of track if RPS
CATS 03 | NOP CAT5+5 60 CC, st ! device. Set sector to zero if RPS.
CA16A | 31 [Search ID equal | CA13+2 40 CcC 5 Search past index on shared track or past
RO on normal track. Should be RHA
and TIC to CA20 for VLR.
CA16B| 08 |TIC CA16A 00 0
CA16C| 08 |[TIC CA21 00 0 Avoid read count of FIRSH+1. (CA25+3
set to FIRSH prior to execution.)
CA20 12 |Read count CA25+3 60 CC, SLI 5 Read count of record (see CA25)
CA21 29 | Search key equal| Contents of 60 ceC. SLI KL Search (29) if Read, Records Unblocked,
69 | Search key equal| DECBKEY ! or Write. Search (69) if Read, Records
or high Blocked.
CA22 | 08 [TIC CA20 00 0
06 | Read data Contents of Read prime data or write prime data
CAZ3 05 | Write data DECBAREA 40 cc DL
03 [NOP Obtain address of record just read or
CA24 22 | Read sector I0BSECT 60 cC. st ! written. No CC if read.
CA2407 gg Set sector I0BSECT 40 cc 1
CA24A"| 31 |Search ID equal | CA25+3 40 cC 5 Search for record again
CA24B*| 08 |TIC CA24A 00 0
CA24C*| 06 | Read data 10 SK DL Read it back
CA24D* 31 |[Search ID equal | IOBSEEK+3 | 40 CcC 5 Rewrite record if necessary
CA24E*| 08 |TIC CA24D 00 0
CA24F*| 05 [Write data Contents of | 40 cc DL
DECBAREA
CA24G* 08 |TIC CA24A or 40 cC 0 Write check again
CA240
CA25 — ——CCHHR If Read KU, CHHR of count is moved

into IOBSEEK+4 (without destroying
MBBC in IOBSEEK) when record is
written back (CP7)

*Write Validity Check

230 OS ISAM Logic

CHANNEL PROGRAM 6/6W

Searches an overflow chain and reads or writes overflow records
ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
CA26* | 31 |Search ID equall IOBSEEK+3 | 40 cc 5 Search for first record in overflow
chain—IOBSEEK set from CA12+7
CA27 | 08 |TIC CA26 00 0 (CP4)
69 | Search key RKP=0 and blocked or RKP+0; read
CA28 equal or high
29 | Search key Contents of 40 cc 0 Check key in overflow record. If equal,
equal DECBKEY read (CA31) or write (CA40) record;
otherwise, go to next one in chain
CA29 | 08 |TIC CA32 00 0
CA31
A 08 |TIC 00 0
CA30 CA40
iContents of
CA31 | 06 | Read data DECBAREA 00 *x DL40 | Read the overflow record (end of CP)
(+6)
CA31B| 22 | Read sector IOBSECT 00 1
CA32 | 06 | Read data CA34+7 60 CC, SLI 10 Read link field to next record
CA33 | 08 |TIC CA36 00 0
(07, % 7 T M Link field from overflow entry
CA35 BBCCHHREF
Seek next record in overflow chain
CA36 |P(07) | Seek CA35 40 ce 6 (see Figure 81 for value of P—seek
command code)
03 | NOP R .
CA36B 23 | Set sector I0OBSECT 60 CC, SLI 1 NOP if CP unbroken. Set sector if stop
at CA32 or CA30 (estimate if VLR).
CA37 31 | Search ID equal | CA35+2 40 cC 5 Search for overflow record
CA38 [08 |TIC CA37 00 0
CA39 | 08 |TIC CA28 00 0 If found, check key
CA40 | 06 | Read data Contents 60 CC, SLi 10 Read 1ink fieid Write
(+6) of overflow
DECBAREA record
CA%0A| 00 | pentsoctor | 10m9EcT | %0 | ©C 1
ead sector Position to record again
CA40B | 23 | Set sector IOBSECT 40 cC 1
*This channel program is preceded by a set sector—TIC if RPS is present. This prefix is located in (continued)
the 10B extension.
**CC if RPS

Section 7: Appendixes 231

CHANNEL PROGRAM 6/6W (continued)

Searches an overflow chain and reads or writes overflow records
Command Code Flags
cew - Address Count Comments
No. Hex Description Hex Description
CA41 31 | Search ID equal | CA35+2 40 CcC 5 Position to record again | Write
overflow
CA42 | 08 |TIC CA41 00 0 record
CA43 | 05 [Write data Contents (+6) | 40 CcC Write record
of
DECBAREA
CA430" 03 | NOP I0BSECT 60 CC, SLI 1 Reposition to correct record
23 | Set sector
CA43A™ 31 | Search ID equal | CA35+2 40 CC 5 Find record again
CA43B*| 08 |TIC CA43A 00 0
CA43C*| 06 | Read data 10 SK 0 Read it back

*Write Validity Check

232 OS ISAM Logic

CHANNEL PROGRAM 7/7W

Writes data records when WRITE K is associated with READ KU

ccw Command Code Flags
Address Count Comments
No. Hex| Description Hex | Description
CA44* |31 | Search ID equal | IOBSEEK+3 | 40 CcC Search for record to be updated—
See CA25 (CP5)
CA45 08 | TIC CA44 Address of next
CP7 in queue
(see Figure 55)
CA46 05 | Write data Contents of | 40 cC DL Write updated record
DECBAREA
CA460™ 03 | NOP IOBSECT 60 CC,SLI
23 | Set sector
CA46A™* 31 | Search ID equal | IOBSEEK+3 | 40 cc Find record again
CA46B** 08 | TIC CA46A 00
CA46C**| 06 | Read data 10 SK Read it back

*This channel program is preceded by a prefix if RPS is present. The prefix consists of a set sector and TIC which are
located in the |OB extension.
**Write Validity Check

Section 7: Appendixes 233

CHANNEL PROGRAM 8

Searches track index and prime data track to determine first record to be moved and position to insert it.
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description
CB1* 31 | Search ID equal | IOBSEEK+3 | 40 CcC 5 Search for (COCR) RO
CB2 08 | TIC CB1 00 0
CB3 06 | Read data CB22 60 CC,SLI 6 Read RO COCR (HHRYYT) into CB22
CB4 92 | Read count (MT) CB22+6 60 CC, SLI 5 Read count of index entry
CB5 69 | Search key equal| Contents of | 40 CcC KL Search for index entry
or high DECBKEY
CB6 08 |TIC CB4 00 0
CB7 06 | Read data CB10+7 40 CcC 10 Read data of track index entry
CB8 92 | Read count (MT) CB24 40 CC 8 Read count of following entry
CB8A | 06 | Read data CB25 40 ccr* 10 Read data of next entry
CB9 08 [TIC CB12 00 0
cgio | - === = = = M Track-index entry contains search
address for prime or overflow data
CB11 BBCCHHREF
Seek prime or overflow track.
cB12 | P Seek CB11 40 cC 6 See Figure 81 for value of P
(Seek Command Code).
03 | NOP Position to beginning of track if RPS.
cB16 23 | Set sector CB16+5 60 CC. St ! Set sector to 0 if RPS.
The following versions of CB17-CB20 are used with fixed-length records
CB17 31 | Search ID equal | CB11+2 40 cC 5
Search for prime record
CcB18 | 08 | TIC CcB17 00 0
CB18A[08 | TIC CB19 00 0 Avoid skipping first record
CB18B| 12 | Read count CB23+3 60 CC,SLI 5 Get count of insertion record
CB19 | 69 |Search key equall Contents of
or high DECBKEY | 0 cesil KL
Search track for insertion block
CB20 [08 ([TIC CB18B 00 0
*This channel program is preceded by . .. IOB extension.

234 OS ISAM Logic

CHANNEL PROGRAM 8- (Continued)

Searches track index and prime data track to determine first record to be bumped and place to insert it.

cew Command Code Flags
Address Count Comments
No. | Hex | Description Hex | Description
The following versions of CB17-CB20 are used with variable-length records
CB17 | 16 ;‘; gigsome 0 70 CC,SK,SLI 1 Position to beginning of track
CB18 08 | TIC CB18B 00 0 Avoid skipping first record
CB18A| 06 | Read data WATKL 60 Cc,sLI 0 Read in block prior to insertion block
CB18B| 12 | Read count CB23+3 60 CC,sLI 5 Get count, probable insertion block
cB1g | 69 | Search key equall COMaRSOf | 40 | cc KL
or hig Search for probable insertion block
CB20 08 | TIC CB18A 00 0
CB21 03 | NOP I0OBSECT 20 SLI 1 Read insert-block sector for RPS
22 | Read sector
CB22 HHRYYTCC COCR--start of count of index
entry
CB23 HHRCCHHR Finish count of index entry and

count of record after insertion
(record to be bumped)

CB24 CCHHRKLDLDL Count of the index entry following the
entry that meets the search conditions

CB25 MBBCCHHR Data field of the index entry following
the entry that meets the search

CB26 FP— — - — — — conditions

Section 7: Appendixes 235

CHANNEL PROGRAM 9A

Read into work area an unblocked record oceupying the position at which an insertion is to be made

ccw Command Code Addre Flags c
ress t

No. Hex Description Hex Description oun Comments
CB30 31 | Search ID equal | IOBSEEK+3 | 40 CcC 5 Search for record
CB31 08 |TIC CB30 00 0
CB32 OE | Read key and WA 80 DC KL Read record into work area

data

CB33 00 WA+KL+16 | 00 DL

CHANNEL PROGRAM 9B/9BW

Reads an even numbered record after writing a record into the previous slot and writes back the last record of a non-EOF
track when the number of records bumped is odd.

Command Code Flags
cew Address : Count Comments
No. Hex Description Hex Description Y
CB34* 31 | Search ID equal | IOBSEEK+3| 40 cC 5 Search for record
CB35 08 | TIC CB34 00 0
CB36 0D | Write key and | Contents of 80 DC KL | Write new record or record pointed to
data DECBKEY by DECB
CB37 00 Contents of | 00 DL
DECBAREA
CB370** 03 | NOP IOBSECT 60 CC, SLI 1
23 | Set sector
CB37A*731 | Search ID equal 0 | cc 5 | Search for record again
CB37B**(08 | TIC CB37A 00 0
CB37C**|0E | Read key and 10 SK KL+DL | Read it back
data
CB38 OE | Read key and Contentsof | 80 DC KL Read next record
data DECBKEY
CB39 00 Contentsof | 00 DL

DECBAREA

*This channel program is preceded by a set sector—TIC if RPS is present. This prefix is located in the IOB extension.
**Write Validity Check

236 OS ISAM Logic

P

CHANNEL PROGRAM 9C/9CW

Reads an odd numbered record after writing a record into the previous slot and writes back the last record of a non-EOF
track when the number of records bumped is even.

Command Code Flags
ccw Address Count Comments
No. Hex Description Hex Description Y
CB40* 31 | Search ID equal | IOBSEEK+3 | 40 cC 5 Search for record
CB41 08 | TIC CB40 00 0
CB42 0D | Write key and | WA 80 DC KL Write record into work area
data
CB43 00 WA+KL+16 00 DL
CB430™* 03 | NOP IOBSECT 60 CC, SLI 1
23 | Set sector
CB43A™* 31 | Search ID equal | IOBSEEK+3 | 40 cC 5 Search for record again
CB43B**|08 | TIC CB43A 00 0
CB43C**|0E | Read key and 10 SK KL+DL | Read it back
data
CB44 OE | Read key and WA 80 DC KL Read record and point DECB to that
data area
CB45 00 WA+KL+16 | 00 DL

*This channel program is preceded by a set sector—TIC if RPS is present. This prefix is located in the |OB extension.
**Write Validity Check

Section 7: Appendixes 237

CHANNEL PROGRAM 10A/10AW

Writes a record or block to replace an EOF mark
Command Code Flags
cew — Address Count Comments
No. |Hex | Description Hex | Description
CB46* 31 | Search ID equal | IOBSEEK+3 | 40 CC 5 Search for last data record
CB47 08 | TIC CB46 00 0
cB4g8 | ID | write count, key| CB51 80 DC 8 Write record or block over EOF mark
and data
CB49 00 Contents of 80 DC KL
DECBKEY
CB50 00 WA+KL+16 | 40 cC DL
cB500++|03 | NOP l0BCCW2+4 | 60 | cC, SLI 1
23 | Set sector
CB50A**[31 | Search ID equal | IOBSEEK+3 | 40 cc 5 Search for record again
CB50B**|08 | TIC CB50A 00 0
CB50C**[1E | Read count, key, 10 SK 8+KL | Read it back
and data +DL
CB51 CCHHRKLDL DL Count of record or block which
replaces EOF

*This channel program is preceded by a set sector—TIC if RPS is present.

extension.
**Write Validity Check.

238 OS ISAM Logic

This prefix is located in the 10B

CHANNEL PROGRAM 10B/10BW

Writes an EOF mark
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description
CB52* |31 | Search ID equal | IOBSEEK+3 | 40 CC 5 Search for last data record
CB53 08 | TiC CB52 00 0
CB54 1D | Write count, CB55 40 cC 8 Write EOF mark
key, and data
«x| 03 [NOP
CB540 23 | set sector IOBSECT 60 CC, SLI 1
CB54A** 31 | Search ID equal | IOBSEEK+3 | 40 CcC 5 Search for EOF mark
CB54B**| 08 | TIC CB54A 00 0
CB54C**|1E | Read count, 10 SK 8 Read it back
key, and data
CB55 CCHRROOO EOF mark (count field)

*This channel program is preceded by a set sector—TIC if RPS is present. This prefix is located in the IOB extension.
**Write Validity Check

Section 7: Appendixes 239

CHANNEL PROGRAM 11A

Reads an odd numbered record after writing a record into the previous slot

ccw Command Code Flags
Address Count Comments
No Hex Description Hex Description
CC1 31 Search ID equal | IOBSEEK+3 | 40 CcC 5 Search for block
CC2 08 | TIC CC1 00
CC2A | OE | Read key and WA 80 DC KL Read in block
data
CC3 00 WA+KL+RL| 00 DL
CHANNEL PROGRAM 11B/11BW
Writes a re-arranged block back onto the prime data track
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description
cc4” 31 | Search ID equal | IOBSEEK+3 | 40 CcC 5 Search for insertion point
CC5 08 |TIC CC4 00 0
CC6 0D [Write key and WA 40 cc KL+DL | Write block
data
CCe60™ 03 | NOP IOBSECT 60 CC, SLI 1
23 | Set sector
CCBA™| 31 Search ID equal [IOBSEEK+3 40 CcC 5 Search for block again
CC6B™| 08 | TIC CC6A 00 0
CC6C”*| OE | Read key and 10 SK KL+DL| Read it back
data

*This channel program is preceded by a set sector - TIC if RPS is present. This prefix is located in the IOB extension.
**Write Validity Check

240 OS ISAM Logic

CHANNEL PROGRAM 12A

Reads data records following slot in which new record is to be inserted

ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
CD1 31 Search ID equal | IOBSEEK+3 | 40 CC 5 Search for block prior to insert
CD2) 08 | TiC CD1 00 0
CD3 OE | Read key and WA+10 60 CC, SLI KL+DL| Read first prime data block
data
CDh4 1E Read count, key,| WA+10+ 60 CC, SLI DL Read successive prime data record.
and data KL+DL There is one copy of CD4 for each

record on a prime data track; the CC
bit is set off in the appropriate copy
depending on how many blocks are to
be read.

Section 7: Appendixes 241

CHANNEL PROGRAM 12AV

Reads variable length data records or blocks following point at which new record is to be inserted
Command Code Flags
ccw Address Count Comments
No. [Hex | Description Hex | Description

CDO CCHHROOS Capacity record for prime data track

CDOA YYR—- - ———

CDOA T 31 Search 1D equal | CDO 40 CcC 5 Search for RO (track capacity record)

CDOA2| 08 | TIC CDOAI1 00 0

CDOB | 06 | Read data CDOA 60 CC, SLI 3 Read capacity record

CDOC | 08 |TIC CDOD or 00 0 TIC to CD3 if a full track is to be read
CD3 or prior block full

3
CDOD 0 NOP IOBSECT+1 | 60 CC, SLI 1
23 | Set sector

CD1 31 | Search ID equal | IOBSEEK+3 | 40 cC 5 Search for record prior to insert point

CD2 08 |TIC CD1 00 0

CD2A | 08 | TIC CD2B or 00 0 TIC to CD2B if this is first execution of
CD3 channel program™*

CD2B OE | Read key and WA 60 CC, SLI KL Read key of record prior to insert point

data

CD3 06 | Read data WA+KL+CF | 60 CC,SLI DL Read data portion of record. There is

+LRECL one copy of CD3 for each record which
can be read in a single execution.”

*This channel program is preceded by a set sector-TIC if RPS is present. This prefix is located in the IOB extension.
**With unblocked records and a large HIRPD, the WRITE KN work area (DCBMSWA) may not be large enough to contain
all records past the insertion point. CP 12AV is then executed more than once. “ISAM Buffer and Work AREA
Requirements’’ in Data Management Services Guide, GC26-3746, tells how to determine the best size for the work area.

242 OS ISAM Logic

CHANNEL PROGRAM 12B

Writes back prime data records

ccw Command Code Flags
- Address Count Comments
No. | Hex | Description Hex | Description
CE1 31 Search ID equal | IOBSEEK+3 | 40 CcC 5 Search for block prior to insert
CE2 08 | TIC CE1 00 0
CE3 1D | Write count, key| WA+2 80 DC 8 Write prime data records. There is one
and data set of CE6-CE7 for each record on a
prime data track; the CC bit is set off
CE4 00 DECBKEY 80 DC KL in the appropriate copy of CE7
depending on how many records are
CE5 00 DECBAREA | 40 cC DL | \written back.
CE6 1D | Write count, key| WA+KL+ 80 DC 8
and data DL+10
CE7 00 WA+10 40 cC KL+DL

Section 7: Appendixes 243

CHANNEL PROGRAM 12BV

Writes back variable length prime data records or blocks
Command Code Flags
cecw Address Count Comments
No. Hex Description Hex Description
CEO* | 31 Search ID equal | CDO 40 CcC 5 Search for RO
CEOA | 08 | TIC CEO 00 0
CEOB | 05 | Write data CDOA 60 CC, SLI 3 Write updated track capacity record
03 | NOP
+

CEOC 23 | set sector IOBSECT+1 | 60 CC, SLI 1
CE1 31 | Search ID equal | IOBSEEK+3 | 40 CcC 5 Search for record prior to insert point
CE2 08 |TIC CE1 00 0
CE3 08 |TIC CE4 00 0 TIC to CE4 to write partial track
CE3A | 39 [Search home CDO 40 CcC 4 Search for start of track

address
CE3B (08 |TIC CE3A 00 0
CE3C | 15 | Write RO CDO 60 CC, SLI 11 Write updated track capacity record

again

CE4 1D | Write count, WA+KL 80 DC 8 Write prime data record. The number of

key, and data sets of CE4-CE6 equals DCBHIRPD;

the CC bit is set off in the appropriate
CE5 00 WA+KL+CF | 80 DC KL |copy of CE6 depending on how many
+(DL-LRECL records are written back
+RKP

CE6 00 WA+KL+CF | 40 CcC DL

*This channel program is preceded by a set sector—TIC if RPS is present. The prefix is located in the |OB extension.

244 OS ISAM Logic

CHANNEL PROGRAM 12C/12CW

Writes a new record which has replaced a deleted record

ccw Command Code Flags
Address Count Comments

No. Hex Description Hex Description
cL1* 31 | Search ID equal { IOBSEEK+3 | 40 CcC 5 Search for deleted record
CL2 08 |[TIC cu1 00 0
CL3 05 | Write data Contents of | 40 cC DL |Replace deleted record

DECBAREA
cL30** 03 | NOP IOBSECT 60 CC, SsLi 1
23 | Set sector

CL3A** 31 |Search ID equal | IOBSEEK+3 | 40 cc 0 Search for record again
CL3B**| 08 [TIC CL3A 00 0
CL3C**| 06 | Read data 10 SK DL |Read it back

*This channel program is preceded by a set sector - TIC if RPS is present. This prefix is located in the IOB extension.
**Write Validity Check

Section 7: Appendixes 245

CHANNEL PROGRAM 13A

Reads all blocks from the track following and including the slot into which a record is to be inserted
Command Code Flags
w
ce — Address Count Comments
No. Hex Description ' Hex Description
CF1 31 | Search ID equal | IOBSEEK+3| 40 CcC 5 Search for first record to be read
CF2 08 | TIC CF1 00 0
CF3 06 | Read data Data address [00 DL Read first prime data block
CF4 12 | Read count WA 40 CcC 8 Read successive prime data block. There
is one copy of CF4-CF5 for each block
CF5 06 Read data Data address | 40 cC DL on a prime data track; the CC bit is set
off in the appropriate copy of CF5
depending on how many blocks are to
be read.
CHANNEL PROGRAM 13B
Writes back the rearranged blocks read by CP13A
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description
CG1 31 Search ID equal | IOBSEEK+3 | 40 CcC 5 Search for record before insertion point
CG2 08 | TIC CG1 00 0
CG3 1D | Write count, WA 80 DC 8 Write back prime data block. There is
key, and data one copy of CG3-CG4-CG5 for each
i track; the CC bit
cGa 00 Key address | 80 DC KL !:)Iock on _a prime data |jac e i
is set off in the appropriate copy of
i ki
cG5 00 Data address | 00 DL CF5 depend.lng on how many blocks
are to be written.

246 OS ISAM Logic

CHANNEL PROGRAM 13C/13CW

Writes back a block if the insertion is a record with a key identical to that of a record, which although logically deleted,

is still physically present within the block.

ccw Sommeng o Address o Count Comments
No. Hex Description Hex Description
CcL5* 31 Search ID equal | IOBSEEK+3| 40 CcC 5
CL6 08 | TIC CL5 00 0 Search for block insertion point
CL7 05 | Write data Data address| 40 CcC DL Replace block
cL7o™* gg 'S\'g':ector IOBSECT | 60 | cC,SLI 1 Find record again
CL7A"*| 31 | Search ID equal | IOBSEEK+3| 40 5
CL7B**| 08 TiC CL7A 00 0
CL7C**| 06 | Read data 10 SK DL | Read it back

*This channel program is preceded by a set sector—TIC if RPS is present. The prefix is located in the I0B extension.
**Write Validity Check

Section 7: Appendixes 247

CHANNEL PROGRAM 14/14W — Fixed Length Records

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN Asynchronous
Codes in Section 6 for descriptions of the setups of this channel program.)
Part II—Rewrites COCR and track index *
ccw Command Code Flags
Address Count Comments
No. | Hex Description Hex Description
CH1** 31 Search ID equal IOBSEEK+3 40 cC 5 Search for COCR Entry point for Setups
1-5 (add to cylinder overflow)
CH2 08 TiC CH1 00
CH3 05 Write data CcB22 60 CC,SL! 6 Write updated COCR from CP8
CH3aees 23 | Setsector CH3A1+5 60 cc, sLi 1 Set sector to zero If RPS
03 NOP
CH3A**% 31 Search ID equal IOBSEEK+3 40 cC 5 Search for COCR again
CH3B***| 08 TIC CH3A 00 0
CH3C***| 06 Read data 70 CC, SK, SLi Read 1t back
CcH4 08 | TiC CHS5, CH9, 00 0 TIC to CHS for Setup 1, CH9 for Setups 2, 3
CH55,CH14, 5; CH14 for Setup 4
or CH8D
03 NOP
CHS 23 | Set sector 10BSECT 60 cc, sl 6
1B Seek head CI5
CH55 31 Search 1D equal CB22+6 40 CcC 5 Search for prime indexentry; entry point for
Setups 1-2 (add to independent overflow)
CH6 08 TIC CHb55 00 0
CH7 oD Write key and data] Contents of 80 DC 0 Write new hi-key prime data chain
DECBKEY
CH8 00 CB10+7 40 CcC 10 Write prime index entry
ICH30*** 03 NoP I0OBSECT 60 CC, SLI 1
23 Set sector
CH8A**1 31 Search ID equal CB22+6 40 CcC 5 Search for entry again
CH8B***| 08 TIC CH8A 00 o]
CH8C***| OE Read key and data 50 CC, SK 0 Read 1t back
CH8D 3 Search ID equal CB24 40 cc 5 Search for overflow track index entry
CH8E 08 TIC CH8D 00 0
CHS8F 05 Write data CB25 10 SK 10
CH8G 08 TIC CH13+8 00 0

*CP14 1s executed in two parts only when the work area 1s provided by the user.

**This channel program Is preceded by a set sector—TIC if RPS s present. This prefix s located in the |OB extension.
***Write Validity Check

248 OS ISAM Logic

(Continued)

CHANNEL PROGRAM 14/14W — Fixed Length Records (continued)

Writes some combination of COCR, normal and overflow track index entries, and overflow records (See BISAM Write KN Asynchronous
Codes in Section 6 for descriptions of the setups of this channel program.)

Part I1—Rewrites COCR and track index **

ccw Command Code Flags
Address Count Comments
No. | Hex Description Hex Description
CH9 . NoP I0BSECT+1 60 CC, SLi 1
23 Set sector
CH95 31 Search 1D equal CB24 40 cc 5 Search overflow track index entry
CH10 08 TIC CH95 00 0
CH12 oD Write key and data 80 DC 0 Write new overflow key-data chain
CH13 05 Write data CB25 40 CC 10 Write overflow index entry
CH130* s NOP IOBSECT+1 60 CC, sLi 1
23 Set sector
CH13A*| 31 Search ID equal CB24 40 ccC 5 Search for entry again
CH13B*| 08 TIC CH13A 00 0
CH13C*| OE Read key and data 50 CC, SK KL+DL | Read 1t back
CH14 07 Seek CH23+1 40 cc Seek new overflow record (seek Is set by

OB | Seek cylinder

appendage routine). For user work area
1B | Seek head PP g

this CCW 1saNOP,

03 | NOP
Part |—Writes overflow record.**

0 P
CH150 3 NO IOBSECT+2 60 CC, SLi 1 Entry point for Setup 6

23 Set sector
CH15 31 Search ID equal CH23+3 40 cc 5 Search for overflow slot
CH15A | 08 TIC CH15 00 0
CH16 1D | Write count, key, CH24 80 DC 8 Write new overflow record

and data
CH17 00 Contents of 80 DC KL
DECBKEY
Contents of

CH18 00 DECBAREA 40 CcC DL
CH180* 03 NoP I0BSECT+2 60 CC, SLI 1

23 Set sector
CH18A*| 31 Search ID equal CH23+3 40 cc 5 Search tor new overflow recora again
CH18B*| 08 TIC CH18A 00 0
CH18C*| 1E Read count, key, 10 SK 0 Read 1t back. Termination for Setups 1, 2,

and data 5,6

CH19 07 |Seek CJ11+1 40 CC 6 Seek previous overflow record (appropriate

0B | Seek cylinder seek set by appendage routine).

1B | Seek head

*Write Vahdity Check
**CP14 1s executed In two parts only when the work area Is provided together

(continued)

Section 7: Appendixes 249

CHANNEL PROGRAM 14/14W — Fixed Length Records (continued)

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN Asynchronous
Codes 1n Section 6 for descriptions of the Setups of this channel program.)
Command Code Flags
cew g
. Address . Count Comments
No. Hex Description Hex Description

CH200 03 Nop IOBSECT+3 60 CC, SLI 1

23 Set sector
CH20 31 Search ID equal CJ11+3 40 ccC 5 Search for record
CH21 08 TIC CH20 00 0
CH22 05 Write data WA 40 CcC 0 Write back previous overflow record
CH220* 03 NOP I0OBSECT+3 60 CC, SLI 1

23 Set sector
CH22A* [31 Search ID equal CJ11+3 40 cc 5 Search for previous overflow record again
CH22B* | 08 TIC CH22A 00 (4]
CH22C* | 06 Read data 10 SK DL Read 1t back. Termination for Setups 3-4.
CH23 MBBCCHHR Search address of new overflow record
CH24 CCHHRKLDL DL Count of new overflow

*Write Vahdity Check

250 OS ISAM Logic

CHANNEL PROGRAM 14/14W—Variable Length Records

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN
Asynchronous Codes in Section 6 for descriptions of the Setups of this channel program.)
cow Command Code Addre Flags . .
No. | Hex Description ress Hex Description ount omments
Part ||—Rewrites COCR and Track Index
CH1* |31 Search ID equal CH23+3 40 cC 5 Search for COCR Entry point for Setups
1-5 (add to cylinder overflow)

CH2 08 | TIC CH1 00
CH3 05 | Write data CB22 60 CC, SLi 6 Write updated COCR from CP8

23 Set sector .

b + f RP
CH3A1 03 NOP CHA1+5 60 CC, SLI 1 Set sector to zero i S
CH3A** 31 | Search ID equal | CH23+3 40 cc 5 Search for COCR again
CH3B**| 08 | TIC CH3A 00 0
CH3C**| 06 Read data 70 CC, SK, SLI Read it back
CH4 08 | TIC CH50, CH5, 00 0 TIC to CHb5 for Setup 1; CH8G for
CH3FO0,CH3GV Setups 2, 3, 5; CH14 for Setup 4
or CH14

03 NOP
CH5 23 Set sector IOBSECT 60 CC, SLI 6

1B Seek head Ci5
CH55 31 Search ID equal CB22+6 40 CcC 5 Search for prime index entry; Entry

point for Setups 1-2 (add to
CH6 08 | TIC CH55 00 0 independent overflow)
CH7 0D | Write key and Contents of]| 80 DC 0 Write new hi-key prime data chain
data DECBKEY

CHS8 00 CB10+7 40 cC 10 | Write prime index entry
CH80™* 03 NOP IOBSECT 60 CC, sLI 1

23 Set sector
CH8A** 31 Search ID equal CB22+6 40 CcC 5 Search for entry again
CH8B**| 08 | TIC CH8A 00 0
CH8C**| OE | Read key and 50 CC, SK 0 Read it back

data

*This channel program is preceded by a prefix if RPS is present. The prefix consists of a set sector and TIC, which are
located in the IOB extension.

**Write Validity Check (continued)

Section 7: Appendixes 251

CHANNEL PROGRAM 14/14W—Variable Length Records (continued)

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN
Asynchronous Codes in Section 6 for descriptions of the setups of this channel program.)
cew Sommend 2o Address e Count Comments
No. Hex Description Hex Description
CH8D | 08 | TIC CH8G5 00 0
CHS8F This CCW not used
Part I|—Rewrites COCR and Track Index
CH8G (2)3 ze(;;ecmr loBCCW2+5 | 60 | CC,SLI 1
CH8G5| 31 Search ID equal | CB24 40 CcC 5 Search overflow track index entry
CH9 08 | TIC CH8G5 00 0
CH10 | 08 TIC CH120or CH13| 00 0 THC to CH13 to write data only of
overflow record
CH12 0D |Write key and data 80 DC 0 Write new overflow key-data chain
CH13 | 05 Write data CB25 40 CC 10 | Write overflow index entry
CH130" 03 | NOP IOBSECT+1 | 60 CC, SLI 1
23 | Setsector
CH13A*| 31 Search ID equal CB24 40 CcC 5 Search for entry again
CH13B*| 08 | TIC CH13A 00 0
CH13C*| OE |Read key anddata 50 CC, SK KL+10 | Read it back
CH14 | 03 | NOP 20 SLI 1

*Write Validity Check

252 OS ISAM Logic

(continued)

CHANNEL PROGRAM 14/14W—Variable Length Records (continued)

Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN
Asynchronous Codes in Section 6 for descriptions of the setups of this channel program.)
cew Smmend oc Address s Count Comments
No. Hex J Description Hex Description Y
Part |-Writes Overflow Record
03 | NOP
CH150 | o | et sector IOBSECT+2 CC, SLI
CH15 | 31 Search ID equal | CH23+3 40 CcC 5 Search for overflow slot
CH15A| 08 | TIC CH15 00 0
CH16 1D Write count, key| CH24 80 DC 8
and data
cH17 | 00 Contentsof | 80 | DC kL | Write new overflow record
DECBKEY
Contents of
CH18 | 00 DECBAREA 40 cC DL
CH180" 03 | NOP IOBSECT+2 | 60 CC, SLi 1
23 Set sector
CH18AY 31 Search ID equal | CH23+3 40 CcC 5 Search for new overflow record again
CH18B*| 08 | TIC CH18A 00 0
CH18C*| 1E Read count, key, 10 SK 0 Read it back. Termination for Setups
and data 1,2,5,6
07 Seek Seek previous overflow record
. +
CH19 0B | Seek cylinder gIJEl:}r+13 40 cc 6 (appropriate seek set by appendage
1B | Seek head routine).
CH200 03 | NOP 10BCCW2+7 60 CC, SLi 1
23 Set sector
Search for record
CH20 | 31 Search |ID equal CJ11+3 40 CcC 5
CH21 08 | TIC CH20 00 0
CH22 05 Write data WA 40 CcC 0 Write back previous overflow record
P
CH2207 03 NO IOBSECT+3 60 CC, SLI 1
23 Set sector
CH22AY 31 Search ID equal CJ11+3 40 CcC 5 Search for previous overflow record
again
CH22B*| 08 | TIC CH22A 00 0
CH22C*| 06 Read data 10 SK DL | Read it back. Termination for Setups
3-4
*Write Validity Check (continued)

Section 7: Appendixes 253

CHANNEL PROGRAM14/14W—Variable Length Records (continued)

CH23 MBBCCHHR Search address of new overflow record
Writes some combination of COCR, normal and overflow track index entries, and overflow records. (See BISAM Write KN
Asynchronous Codes in Section 6 for descriptions of the Setups of this channel program.)
ccw Cammand S Address ree Count Comments
No. Hex Description Hex Description
CH24 CCHHRKLDLDL Count of new overflow
EOF Extension
CH25 31 Search ID equal CH31+3 40 cc 5
Search for last overflow record

CH26 | 08 TIC CH25 00 0
CH27 |1p [Writecount key, a0 a0 | cc 8 | Write EOF mark

and data
CH280* 03 NOP I0OBSECT 60 CC,SLlI 1

23 Set sector
Search for record again

CH28™ | 31 Search ID equal | CH31+3 40 cC 5
CH29* | 08 TIC CH28 00 0

R
CH3o* | 1 | ead countkey, 30 SK, SLI 8 | Read it back

and data
CH31 MBBCCHHR Address of last overflow record
CH32 CCHHRKKD EOF mark

*Write Validity Check

254 OS ISAM Logic

a5

CHANNEL PROGRAM 15

Reads in the cylinder overflow control record and the overflow track index entry when a new record is added to the end
of a data set
cow Command Code Address Flags Count c N
No. | Hex Description Hex Description oun omments

ci* 31 Search ID equal | IOBSEEK+3 | 40 CcC 5
Search for COCR

CIMA 08 | TIC ci 00 0

Ci1B 06 | Read data CB22 60 CC, sLI 6 Read RO (COCR) into CP8

Clic 1B | Seek head Cl5 40 cc 6 Find last active index track

CI1D 03 | Nop IOBSECT+1 | 60 CC, sLlI 1

23 | Set sector !

Search for last active normal track

CIE 31 Search ID equal | CI5+2 40 CcC 5 index entry

Cl2 08 | TiC CI1E 00 0

CI3 92 Read count CB24 40 CcC 8 Read count of last overflow entry
into CP8

Cl4 06 Read data CB25 00 10 | Read data of last overflow entry
into CP8

Ci5 BBCCHHR — ID of last active normal track index
entry

*This channel program preceded by a set sector—TIC if RPS is present. This prefix is located in the I0B extension.

Section 7: Appendixes 255

CHANNEL PROGRAM 16

Searches an overflow chain for (1) the record that logically precedes or is equal to the new record to be added or
(2) the last record in the chain.
cew Cammend o Address o Count Comments
No. Hex Description Hex Description
CJ1** | 3 Search ID equal | IOBSEEK+3| 40 ccC 5 Search for next overflow record in chain
CJ2 08 TIC CJ1 00 0
CJ3 69 Search key Contents of 40 cc KL | Is this the desired record?
equal or high DECBKEY
CcJa 08 TIC CJ10 00 0 No
CJAA 03 NOP IOBSECT 60 CC, SLI 1
23 Set sector
CJ5 31 Search ID equal | IOBSEEK+3| 40 CcC 5 Search for overflow record
CJ6 08 TiC CJ5 00 0
CJ7 29 Search key Contents of 490 CcC 0 Test If key equals user key
equal DECBKEY
CcJ8 03 NOP 0 20 SLI 1 No, stop here
CJ9 06 Read data WA 20 SLI 11 Yes, read 11 bytes of equal key record
CJ10 06 Read data WA* 0ot ?:'0*** Read nextoverflow record in chain
CJ11 MBBCCHHR Address of record in chain before insert

*The address is WA+20 for variable length records
**This channel program preceded by a prefix if RPS is present. The prefix consists of a set sector and TIC which are

located in the IOB extension.

***DL+14if VLR

TSLIif VLR

256 OS ISAM Logic

CHANNEL PROGRAM 17/17W

Changes the key in a normal or overflow track index entry or in a higher level index entry

ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
CK1* |31 Search ID equal | IOBSEEK+3| 40 cc 5 Search for last entry in index
CK2 08 [TIC CK1 00 0
CK3 06 Read data CK8 40 CcC 10 | Read data of last entry
03 NOP
CK30 23 | Set sector IOBSECT 80 CC, SLI 1
Search for entry again
CK4 31 Search ID equal | IOBSEEK+3| 40 cC 5
CK5 08 |[TIC CK4 00 0
CK6 0D [Write key Contents of | 80 DC KL
and data DECBKEY Write new high key and rewrite data
of entry
CK7 00 CK8 40 cC 10
CK70 (2)3 SOP IOBSECT 60 CC,SLI 1
et sector Search for updated entry
CK7A™" 31 Search ID equal | IOBSEEK+3| 40 cC 5
CK7B**|08 |TIC CK7A 00 0
ICK7C**| OE |Read keyand data 10 SK KL+10 | Read it back
CK8 MBBCCHHR Data of index entry
CK9 FP————— -

*Write Validity Check
**This channel program preceded by a prefix if RPS is present. The prefix consists of a set sector and TIC which are located
in the I0B extension.

Section 7: Appendixes 257

CHANNEL PRKOGRAM 18

Write Prime Data Blocks—Load Mode, 1ISAM.

ccw Command Code Flags
— Address Count Comments
No. Hex Description Hex Description
CLO 23 Set sector ISLRPSSS 40 CcC 1 Position for first record
cLt, (31 Search ID equal | IOBSEEK+3 | 40 cC 5 Search for count field of the block pre-
CQ1, CQ14A ceding the block to be written next

CL2, 08 TIC CL1, 00 0 The count field contains the address of
the write check segment of this channel
program (CL12)

CL3, 08 TIC CL4 or CL6| 00 0 Transfer to the first CCW of the group
of write CCWs to be executed next.
The count field contains the address of
the last read CCW in the write check
segment of this channel program +8.

One copy of CL4 for each buffer. CL4 is used to write blocks for fixed length, unblocked record formats where RKP = 0
because count, key, and data are contiguous.

CL40 |[1D

Write count,
key data

Buffer N

40

CcC

8+KL
+DL

Write prime data records when
RECFM=F, RKP=0

One copy of C
where RKP#0

, fixed length, blocked formats

L6, CL7, CL8 for each buffer. CL6, CL7, CL8 are used to write blocks for fixed length, unblocked formats

because count, key, and data are not contiguous.

CL60 |1D Write count Buffer N 80 DC 8
CL7 00 Write key Buffer 80 DC KL
N+8+RKP

Buffer
CL8 00 | Write data N+8 40 cc# DL

Write prime data records when
RECFM=F; RKP#0 or RECFM=FB;
RKP—N/A

The next CCW follows each copy of CL4 or CL8 except the last. It transfers to the beginning of the Write Validity Check
segment of this channel program (CL1,), if this is the last of the current group of write CCWS; otherwise it transfers to
the next copy of CL4 or CL6. This CCW is omitted if Write Validity Check is not specified.

08

TIC

cL1,,
CLA_ or
CL6,

00

0

The count field of this CCW contains

the address of the next sequential
copy of CL4 or CL6

The next CCW (CL5) follows the last copy of CL4 or CL8. It transfers to the beginning of the Write Validity Check
segment of this channel program (CLO2), if this is the last of the current group of write CCWs; otherwise it transters to
the first copy of CL4 or CL6. If Write Validity Check is not specified, this CCW points to the first copy of CL4 or CL6.

CL5 08

TIC

CL1,,CLO,,
cL4 ,
or CL6,

00

0

The count field of this CCW contains
the address of CL41 or CL6,

258 OS ISAM Logic

(continued)

CHANNEL PROGRAM 18 (continued)

Write Prime Data Blocks—Load Mode, ISAM.

ccw Command Code Flags
— Address Count Comments
No. | Hex | Description Hex | Description
23 Set Sector -
1
CLO2 03 NOP ISLRPSSS 60 CC, SLI Position for first record
CL‘I2 131 Search ID equal | IOBSEEK+3 | 40 cC 5 Search for the count field of block
or Buffer N preceding the first block of the group

N) last written; Buffer N is the address of
CL2," | 08 Tic CL1, 00 0 the count field if this is a shared track.
The following CCW (CL32) transfers to the first read CCW to be executed.
CL3, *108 TIC CL9 00 0

One copy of CL9 s generated for each buffer. Each copy of CL9 is command chained except the last. CL3 transfers to
the copy of CL9 whose position in relation to the last copy of CL9 is equal to the number of blocks written by this

execution of channel program 18.

CL9™ | 1E Read count, 50 CC, SK# 0
key, and data
#Command chain is off if this is the last read or write of a group to be executed.

*Write Validity Check
d0For shared (preformatted) tracks. The count field is not written.

Section 7: Appendixes 259

CHANNEL PROGRAM 19/91

CP19—Preformat shared track and/or write cylinder overflow control record (COCR)
CP91—Fill unused index tracks with inactive and dummy (end of index) entries
cow Command Code Addrecs Flags Count c .
No. Hex Description Hex Description oun omments
CMO#t| 23 | Set sector CMO+5 40 CcC 1 | Position for COCR
CM1# | 31 Search ID equal | DCBLPDA | 40 CcC 5 |When CP is being generated, DCBLPDA
contains the DADAD of the record
preceding the first prime data record
CM2#] 08 | TIC CM1 00
CM3# | 05 Write data Area 2 60 CC, SLI 8 Write COCR
CM4# | 1B Seek head DCBLPDA | 40 cc 6 DCBLPDA if COCR and DCBFIRSH
or CM27+1 are same track, otherwise CM27+1
cmao | 23 | Setsector ISLRPSSS+1 | 60 | cC, SLI 1| Position to index entries
03 NOP
CM5 31 Search ID equal | DCBLPDA 40 CcC 5 DCBLPDA if COCR and DCBFIRSH
or CM27+3 are same track, otherwise CM27+3
CM6 08 | TIC CM5 00
cm7 1D | Write count,key,| Area Z+6 80 DC 8
data
CM8 00 Buffer 40 cC KL+10 | Write inactive track index entries
CMm9 1D | Write count,key| Area Z+14 80 DC 8
data
CM10 | 00 Buffer 40 cC KL+10
CM11 1D Write count, Area Z+22 80 DC 8
key, data
CM12 | 00 Buffer 40 cc KL+10
CcM13 | 1D Write count, Area Z+30 80 DC 8
key, data
CM14 | 00 Buffer 40 cC KL+10
CM15 | 1D | Write count, Area Z+38 80 DC 8
key, data
CM16 | 00 Buffer 40 CcC KL+10
CM17 | 1D | Write count, Area Z+46 80 DC 8
key, data
#Cylinder Overflow Control Record (COCR) to be written. With variable length records, (continued)

CP19 consists of CM1 through CM4 only because the track index is not preformatted.
tSet sector to zero if RPS.

260 OS ISAM Logic

CHANNEL PROGRAM 19/91 (continued)

CP19—Preformat shared track and/or write cylinder overflow control record (COCR)

CP91—Fill unused index tracks with inactive and dummy (end of index) entries

Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description Y
CM21 | 1D | Write count, Area Z+62 80 DC 8
key, data
CM22 | 00 Buffer 40 cc KL+10
CM23 | 1D Write count, Area Z+70 80 DC 8
key, data
CM24 | 00 Buffer 40 Ccc KL+10
CM25 | 1D | Write count, Area Z+78 80 DC 8
key, data
Cwm26 | 00 Buffer 00 KL+10
CmM27 MBBCCHHR If the COCR and the Shared Track are
not the same track ; this field is used to
store the Seek and Search arguments
for CM4 and CMb.
Thi - -
cm27 | o8 TIC CM5 00 0 is CCW resides in the CP91
skeleton only and replaces CM1 only
when COCR is not to be written.
CM28 | OD (Writekey and datal Buffer 00 0 This CCW can replace CM8
CM29 | 1D Write count, Area Z+6 80 DC 8 This CCW can replace CM7

key, and data

Section 7: Appendixes 261

CHANNEL PROGRAM 20--Fixed Length Records

Writes Track Index Entry(s)
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description

The following segment of CP20 is executed for fixed length record formats when shared tracks are in effect. CP19 has

preformatted the track index by writing a count field for each entry.

CcQo 23 Set sector ISLRPSSS+2| 40 CcC 1 Position for normal track index entry

caQ1 31 Search ID equal | ISLIOBA 40 CcC 5 Search for normal track index entry to
be written next

CQ2 08 TIC ca1l 00 0

ca3 0D Write key, data | Buffer N+8 80 DC KL | Write normal track index entry

+RKP
CQ4 00 Area Y+26 40 CC 10
CQ5 B1 Search ID equal | Area Y+36 40 CcC 5 Search for track to write overflow track
(MT) index entry
CQ6 08 TIC CQ5 00 0
cQ7 oD Write key, data | Buffer N+8 80 DC KL Write overflow track index entry
+RKP
CQ8 00 Area Y+44 40 CcC 10
CcQ9 (08 TIC CQ10,CQT1, | 00 0 Transfer to write dummy track index
or CQ13 entry (CQ10) or to CQT1 if Write

Validity Check is specified, or transfer to
to CQ13 if CP18 (write prime data) is
to be executed next

CQ10 |B1 Search ID equal | Area Y+54 40 CcC 5 Search for dummy track entry to be

(MT) written next

cQa1l (08 TIC ca1o 00 0

CQ12 |oD Write key, data | Area Y+62 40 CcC KL+10 [Write key, data fields of dummy track
index entry

CQ13 |1B Seek HH ISLIOBA+33 | 40 CcC 6

CQ14 |08 TIC CQT1orCL1| 20 SLI 5 Transfer to CQT1 if Write Validity Check
is specified, or to CL1 (CP18); this CCW
is a NOP during Close processing.

262 OS ISAM Logic

(continued)

CHANNEL PROGRAM 20--Fixed Length Records (continued)

Writes Track Index Entry(s)
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description
CQ14A MBBCCHHR Seek address for CP18
CQ14B| 23 Set sector ISLRPSSS+2 | 40 cc 1 Position to next index entry
CQ15 |31 Search ID equal | Area Y+18 40 cC Index entry to be written next
(R=R-1)
CQ16 |08 TiC cQi1s 00 0
CcQ17 | 1D Write count, Area Y+18 80 DC 8 Write count, key, and data fields of
key, data normal track index entry
ISLKEYAD points to key
CcQ18 (00 Buffer N+8 80 DC KL
+RKP
CQ19 |00 Area Y+26 40 cc 10
CQ20 |08 TIC CQ21 or CQ27| 00 0 Transfer to CQ21 if normal and overflow
entries are on the same track, or to
CQ27 if normal and overflow entries
are on different tracks
CQ21 1D Write count, Area Y+36 80 DC 8 Write overflow index entry
key, data ISLKEYAD points to key
CQ22 |00 Buffer N+8 80 DC KL
CQ23 |00 Area Y+44 40 cCc 10
CQ24 |08 TIC CQT1 00 0 Transfer to CQT1 if Write Validity
CQ13 Check is specified, or to CQ13 if
CQ25 CP18 is to be executed next, or to
cQ27 CQ25 if overflow and dummy track
index entries are on the same tracks, or
to CQ27 if overflow and dummy track
index entries are on different tracks
cQ25 (1D Write count, Area Y+54 40 cc B+KL+10| Write count, key, and data of dummy of
key, data index entry
CQ26 (08 TIC CQT1 00 0 Transfer to CQT1 if Write Validity
or CQ13 Check is specified, or to CQ13 if
CP18 is to be executed next
CQ27 |B1 Search ID equal | CQ30+3 40 CcC 5 Index entries are split across tracks.
Search for next physical track
CQ28 |08 TiC cQ27 00 0

(continued)

Section 7: Appendixes 263

CHANNEL PROGRAM 20—Fixed-length Records (continued)

Writes Track-index Entry(s)
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description
CQ29 |08 TIC CQ21 or CQ25| 00 0 Transfer to write overflow track index
entry (CQ21), or to write dummy track
index entry (CQ25)
CQ30 MBBCCHH Search argument for next track if index
entries are split across track boundary
CQTO*| 23 |Set sector ISLRPSSS+2 | 40 CcC 1 Position for track index
CQT1*| 31 |Search ID equal | Area Y+18 40 cc 5 Find last normal entry written
CcQT2*|{ 08 |TIC CQT1 00 0
CQT3* 0E |Read key 50 CC,SK KL+10 | Read entry back
and data
CQT4*| B1 | Search ID Area Y+36 40 cc 5 Find last overflow entry written
equal (MT)
caTaA 08 | TIC cQT4 00 0
CQT5*| OE | Read key 50 CC.SK KL+10 | Read entry back
and data
caTsA 08 |TIC car7 60 Cc,sLi 1 No inactive entry written
08 |TIC cQT? 60 CC,SLI 1 Inactive entry written
cQTss’| B1 | Search ID Area Y+54 40 cc 5 Find inactive entry
equal (MT)
caTsC’| 08 | TIC cQT58 00 0
CQT6" OE | Read key 50 CC,SK KL+10 |Read entry back
and data
CQT7% 1B | Seek head CQ14A+1 40 cc 6 |FLR — Prime track
cQT8*| 08 |[TIC cL1 0 0 FLR — Transfer to write prime—CP 18

*Write-validity-check

264 OS ISAM Logic

CHANNEL PROGRAM 20—Variable Length Records

Writes Track Index Entry(s)
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description

cQot |23 Set sector CQO0+5 40 cc 1 Position for RO

cQ1 31 Search ID equal | CQ5+3 40 CcC 5 Search for RO on current prime track

cQ2 08 |TIC cQ1 00 0

cQ3 05 | Write data [eloy) 40 CcC 3 Write track capacity record

CQ4a 08 TIC CL1 00 0 TIC to CP18 to write prime data

CcQ5 LL-—CCHMHR Maximum record length (LL) and RO
ID for current prime track

CQ6 This CCW not used

cQ7? YYR - - - — — Data of track capacity record (RO)

cQs8 This CCW not used

CcQ9 - -—YYR - — ~ Running capacity

caio This CCW not used

ca PPLL - - — — PP—pointer to last used CCW in CP18,
LL—length of current record

cQ12 This CCW not used

CQ13 (1B |Seek HH ISLIOBA 40 cC 6

CQ14 |08 |[TIC CQT1or CL1 20 SLI 5 Transfer to CQT1 if Write Validity
Check is specified, or to CL1 (CP18)
if it is not specified; this CCW is a
NOP during close processing

CQ14A MBBCCHHR Seek address for CP18

CcQ14B| 23 Set sector ISLRPSSS+2 | 40 cC 1 Position for next entry

CQi1s5 | 31 Search ID equal | IOBSEEK+3 | 40 cc 5 Index entry to be written next

CQ16 |08 [TiIC cQi15 00 0

CQ17 |1D |Write count, Area Y+18 80 DC 8 Write count, key,and data fields of

key, and data normal track index entry

ISLKEYAD points to key

CQ18 {00 Buffer N+8 80 DC KL

+RKP
CcQ19 (00 Area Y+26 40 cc 10

tSet sector to zero if RPS

(continued)

Section 7: Appendixes 265

CHANNEL PROGRAM 20—Variable-length Records (continued)

Writes Track Index Entry(s)
Command Code Flags
CCW g
N — Address Count Comments
o. Hex Description Hex Description
CQ20 |08 |[TIC CQ21orCQ27[00 0 Transfer to CQ21 if normal and overflow|
entries are on the same track, or to
CQ27 if normal and overflow entries are
on different tracks
CQ21 [1D | Write count, Area Y+36 80 DC 8 Write overflow index entry
key, data
CQ22 |00 Buffer N+8 80 DC KL | ISLKEYAD points to key
+RKP
CQ23 |00 Area Y+44 40 CcC 10
CQ24 |08 |[TIC CQT1 or 00 0 Transfer to CQT1 if Write Validity
CQ13 or Check is specified, or to CQ13 if CP18
CQ25 or is to be executed next, or to CQ25 if
cQ27 overflow and dummy track index entries
are on the same tracks , or to CQ27 if
overflow and dummy track index entries
are on different tracks
CQ25 | 1D | Write count, Area Y+54 40 cC 8+KL+10| Write count, key, and data of dummy
key, data index entry
CcQ26 |08 |TIC CQT10orCQ13| 00 0 Transfer to CQT1 if Write Validity
Check is specified, or to CQ13 if
CP18 is to be executed next
CQ27 |B1 Search ID equal |CQ30+3 40 CcC 5 Index entries are split across tracks.
(MT) Search for next physical track
CcQ28 |08 |TIC cQ27 00 0
CQ29 |08 TIC CQ21 or CQ25| 00 0 Transfer to write overflow track index
entry (CQ21), or to write dummy track
index entry (CQ25)
CQ30 MBBCCHH Search argument for next track, if track
entries are split across track boundary
CQTO0*| 23 | Set sector ISLRPSSS+2 | 40 CcC 1 Position for track index
CQOT1*| 31 |Search ID equal | Area Y+18 40 cC 5
Find last normal entry written
cQT2*| 08 |TIC CQaT1 00 0

*Write-validity-check

266 OS ISAM Logic

CHANNEL PROGRAM 20—Variable length Records (continued)

Writes Track Index Entry(s)

Command Code Flags
cew . Address L. Count Comments
No. Hex Description Hex Description
CQT3*| OE |Read keyand data| * 50 CC,SK KL+10 | Read entry back
CQT4*| B1 | Search ID Area Y+36 40 cC 5 Find last overflow entry written
equal (MT)
caTaA| o8 | TiC caT4 00 0
CQT5"| OE | Read key * 50 CC,SK KL+10 |Read entry back
and data
caTsA| 08 | TIC carz 60 cc,SL 1 | No inactive entry written
08 | TIC caT7 60 CC,SLI 1 Inactive entry written
*
CQT5B | B1 | Search ID Area Y+54 40 CcC 5
equal (MT) Find inactive entry
catsC| o8 | TIC caTsB 00 0
CQT6*| OE | Read key * 50 CC,SK KL+10 | Read entry back
and data
CQT7*| 1B | Seek head CcQ5+2 40 cc 6 VLR-Track capacity record
CcQT8*| 08 | TIC cQ1 0 0 VLR-Write track capacity record

*Write-validity Check

Section 7: Appendixes 267

CHANNEL PROGRAM 20A

Write a non-shared track of track index

ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
CcQo 23 Set sector ISLRPSSS+2 | 40 cC 1 Position for the track index entry
cQ1 31 Search ID equal |[IOBASEEK+3] 40 cC 5 Search for the Count Field of the record
preceding the record to be written next
CQ2 08 TIC cQ1 00 The count field contains the address of
the CCW that TICs to CP18 when non-
write check
cQ3 08 TIC CcQ4 00 TIC to the first write CCW to be
executed, as follows:
1. CQ4
2. Resume Load write CCW (some CQ4)
3. Non-shared last track of track index.
The address of some CQ4 is stored in
the count portion of this TIC (may
be CQ4)
One copy of CQ4 for each track index entry
CQ4 1D | Write count, TISA+20 or 40 cc 8+HKL+10} Write a track index entry
key,and data TISA+20+N
(8+KL+10)

For non-write

checking, the following two CCW's are at the end of CP20,

1B | Seek head TISA+1 40 CcC 6 Seek on the prime data track to be
written
08 |TIC CP18 00 0 TIC to CP18
For write checking, the following CCW is at the end of CP20A
08 |TIC CP20C 00 0 TIC to CP20C

268 OS ISAM Logic

PN

CHANNEL PROGRAM 20B

Write a shared track of track index

ccw Command Code Flags
- Address Count Comments
No. Hex Description Hex Description
CQo 23 Set sector ISLRPSSS+2 | 40 cC 1 Position for the next index entry
CQ1 31 Search ID equal |IOBASEEK+3| 40 CcC 5 Search for the count field of the record
to be written next
cQ2 08 TIC cQa1 00 The count field contains the address of
the CCW that TICs to CP18 for non-
write check
CcQ3 08 TIC CQ4 00 TIC to the first write key, data CCW to
be executed, as follows:
1. CQ4
2. Resume Load write KD CCW
(some CQ7)
CQ4 0D | Write key, data |TISA+20+8or| 40 CcC KL+10 | Write the first track index entry on a
TISA+20+8+N shared track
(8+KL+10)
One copy of CQ5, CQ6,and CQ7 for each remaining track index entry
CQ5 31 Search ID equal [TISA+20+N 40 CcC 5 Search for the count field of the record
(8+KL+10) to be written next
CQ6 08 |TIC CQ5 00 0 TIC to CQ5
caQ7 0D | Write key, data | TISA+20+8+ | 40 cC KL+10 | Write the key and data portion of a
N (8+KL+10) track index entry

For non-write

checking, the following two CCW's are at the end of CP20B

1B Seek head TISA+1 40 cC 6 Seek on the prime data track to be
written
08 [TIC CP18 00 0 TIC to CP18
For write checking, the following CCW is at the end of CP20B
08 |[TIC CP20C 00 0 TIC to CP20C

Section 7: Appendixes 269

CHANNEL PROGRAM 20C

Write check fo

r CP20A and B

ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
03 | norp N)
CQo0 | o3 Set sector ISLRPSSS+2 | 60 CC,sLI 1 Position for the next index entry
cQ1 31 |Search ID equal | IOBASEEK+3 40 CcC 5 Search for the count field of the record
to be written next
cQ2 08 |TIC cQ1 00 CQ9 | The count field contains the address of
the CCW that TICs to CP18
cQ3 08 |TIC CQ4 00 TIC to the first read CCW to be executed
as follows:
1. CQ4
2. Resume Load read CCW (some CQ7)
3. Read CCW for non-shared last track
or shared track. The address of this
CCW is stored in the count portion
of this TIC (may be CQ4).
cQ4 OE Read key, data | TISA+20+8 50 CC,SK KL+10 | Read back a track index entry
or TISA+20+
8+N
(8+KL+10)
One copy of CQ5, CQ6,and CQ7 for each remaining track index entry.
CQ5 31 Search ID equal | TISA+20+N 40 CcC 5 Search for the count field of the record
(8+KL+10) to be written next
Ca6 (08 |TIC CQ5 00 0 TIC to CQ5
caQz OE Read key, data | TISA+20+8+ | 50 CC,SK KL+10 | Read back a track index entry
N (8+KL+10)
CQ8 1B | Seek head TISA+1 40 cC 6 Seek on the prime data track to be
written
CcQ9 08 |TIC CP18 00 0 TIC to CP18

270 OS ISAM Logic

CHANNEL PROGRAM 21

Write High Level Index and End of Data (EOD) Mark(s)

cCcw Command Code Flags
Address Count Comments
No. Hex Description Hex Description

CQ39A| 23 | Set sector ISLRPSSS+3 | 40 CcC 1 Position for entry

CQ40 | 31 | Search ID equal |Area Y 40 cc 5 Search for ID of index entry to be
written with R=R-1

cQ41 08 | TIC CQ40 00

cQ42 1D | Write count, Area Y 80 DC# 8 Write count field of current under entry

key, data
cQ43 | 00 ISLKEYA or| 80 DC KL ISLKEYAD is used for normal entry
Area Y+62 area Y+62 is used for dummy and

inactive entry

cass | 00 Area Y48 00 CC‘(V.VI‘IT.G 10 Write data field of high level index entry

40 | validity check)
03 | NOP
* | ..

CQ44A 23 | Set sector ISLRPSSS+3 | 60 CC,SL 1 Position for entry

CQ45* | 31 | Search ID equal | Area Y 40 CC 5 Search for ID (CCHHR) of current
index entry with R=R-1

CQ46”* | 08 | TIC CQ45 00 0

CQ47*| 1E | Read count, 10 SK KL+18 | Read back current high level index

key, data entry

#Close processing utilizes CP21 to write end of data marks in the prime data area and independent overflow area. ISL
area Y is initialized with the ‘KDD’ portion of the count field set to zero. The data chain bit is turned off.
*Write Validity Check

Section 7: Appendixes 271

CHANNEL PROGRAM 22A

Read/Write data record —key and data, unblocked records

ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
CN1* | B1 | Search ID CN6+3 40 ccC 5 MT set off for 1st CP 22 in chain
equal (MT)
CN2 08 | TIC CN1 XX CN2+4 used 0 See description of CN2+4 and CN2+5
as buffer below
flags
Transfer is set when records are blocked
CN3 08 | TIC CN4 00 0 or when data only (instead of key and
data) is read or written
OE R:gd key and B:err 80 oe kL | SKIP bitsset on in CN3 and CN4 for
0D | Write key and address and write check processing
data offset
CN4 06 | Read data Buffer 40 CC (off when DL Fixed-length records: the blocksize
05 | Write data address end of chain) (DL) is constant so the count field is
and offset unless CN5 is set at open
used for RPS) Variable-length records: the actual
block size is set in the count field by
the EOB routine each time this CP is
executed
CN5 08 | TIC Next CN 1 00 0 Transfer to next CP 22 in chain if record
is not last or not RPS
* % If RPS, and record is not last on track
88 | TIC WIREADSC | 00 Y and last in chain, transfer to RDCNT
and RDSECTOR for read only.
22 | Read sector CN2+6 00 1 Save sector of record read for PUTX.
CN6 MBBCCHMHR Set from W1LPDR or link field in
overflow record
CN7 Address buffer and offset Set from DCBBUFCB init.

*If RPS is present and this channel program is not chained from CP 24, it will be preceded by a set sector and a TIC. The
set sector and TIC are located in the work area. If the channel program is chained from CP 24, the set sector will be per-
formed in CP 24.

**W10SECT of channel program is writing.

The following is a description of buffer flags at CN2+4 and CN2+5.

CN2+4
BIT O
1
2
3
4
5
6
7

272 OS ISAM Logic

CN2+5

Buffer marked for PUTX BIT

Overflow record

Key and data to be read

Data only to be read

End of data buffer

Input error
. . Unwritable block
1 . Unreachable block

Reserved

End of track

CHANNEL PROGRAM 22B

Read/Write data records—data only, unblocked records; all blocked records

ccw Command Code Flags
Address Count Comments
No. Hex Description Hex Description
CN1* | B1 | Search ID equal | CN6+3 40 cC 5 MT is set for first CP 22 in chain
(MT)
CN2 08 | TIC CN1 XX CN2+4 used 0 See description of CN2+4 and CN2+5
as flags for below, CP 22A
buffer de-
scription
CN3 08 | TIC CN4 80 DC (ignored) KL
CNa 06 | Read data Buffer 40 CC (off when DL Fixed length records: the block size
05 | Write data address last in chain (DL) is constant so the count field is
and offset unless CN5 set,at open time.
is used for
RPS) Variable length records: the actual
block size is set in the count field by
the EOB routine each time this CP is
executed.
cNs | 08 | TiC Next CN1 | 00 o | Transfer to 1st CCW in next CP22
in chain if not lost in chain or if
not RPS
WIREADSEC** If RPS, and record is not last on track
88 | TIC 00 0 and last in chain, transfer to RDCNT
and RDSECTOR for read only.
22 |Read sector CN2+6 00 1 Save sector of record read for PUTX
CN6 MBBCCHHR Set from WILPDR or link field in
overflow record
CN7 Address buffer and offset Set from DCBBUFCB

*See note to CP22A.
**W10SECT if channel program is writing.

Section 7: Appendixes 273

CHANNEL PROGRAM 23

Search hi-level indexes, track index, and data track for SETL K or KC
Command Code Flags
CcCcw 9
— Address Count Comments
No. Hex Description Hex Description
CS1 31 | Search ID equal |W1IMBBCC+3| 40 CcC 4 Position read head to first index track
CS1A 08 | TIC CS1 00 0
CS1B 69 | Search key high |Key address 60 CC, SLI KL Too far along index
or equal
CS1C 08 | TIC CS2 00 0 No
csS1D 03 | NOP CS1D+5 60 ce, SLI 1 Set sectc?rlto zer(‘) if RPS .
23 | Set sector Yes, position to index point.
CS1E 1A | Read home 50 CC, SK 5 Position to home address
address
CS2 E9 | Search key high |Key address 40 CcC KL Key address passed in register O
or equal (MT)
CS3 08 | TIC CS2 00 0
CS4 06 | Read data CS6+7 40 | CC (off for 10 CC set on when read cylinder index ;
master indexes) read data of current index entry
CS5 08 | TIC CS8 00 0
cs¢e | == === ==
CS7 BBCCHHR Address of next lower level index
CS8 P Seek CS7 40 CcC 6 Seek track index. See Figure 82 for
value of P (seek command code).
03 | NOP
+ |
CS80 23 | Set sector CS80+5 60 CC, SL 1
CS9 31 | Search ID equal |CS7+2 40 CcC 5 Starting CCW when only track index;
position read head to RO to track index
CS9A 08 | TIC CS9 00 0
CS10 92 |Read count (MT){WIWCOUNT 40 CcC 8 Read count of current index entry
(normal or overflow)
CS11 69 |Search key high |Key address 40 cC KL Key address passed in register 0
or equal
CS12 08 [TIC CS10 00 0
CS13 06 | Read data CS17+7 40 CC 10 Read data of current index entry
(normal or overflow)
CS14 92 |Read count (MT){WIWCNXDM | 40 CcC 8 Read count of next index entry
(normal or overflow)

274 OS ISAM Logic

(continued)

CHANNEL PROGRAM 23 (continued)

Search hi-level indexes, track index, and data track for SETL K or KC

CCW Command Code Flags
Address Count Comments
No. Hex Description Hex Description

CS15 06 | Read data WI1WDNXDM] 60 CC, SLI 10 Read data of next index entry (normal
or overflow)

CS16 08 | TIC CS19 00 0

csiz = = - = - = M

BBCCHHREF Track index entry contains address of

CS18 prime data or overflow track containing
record

C19 P Seek CS18 40 cCc 6 Seek data track. (Figure 81)

03 | NOP Set sector to zero if RPS

CS19A 23 | Set sector C519A+5 60 CC. St ! Position to start of track if RPS

CS20 31 | Search ID equal |CS18+2 40 cC 5 | Search to the first data record on track

CS21 08 | TIC CS20 00 0

CS26 08 |[TIC CS22 00 0

CS25 12 | Read count First CN6+3 60 CC, SLI) Read count (CCHHR) of record into
first CP22; R set to 0

€S22 29 | Search key equallKey address 60 | CC, SLI (on KL Search for desired record (29) or search

69 | Search key high for KC) for desired block (69)
or equal
CS23 08 | TIC CS25 00 0
P
CS24 03 INO 00 20 SLI 1 Exit when record found

22 | Read sector W1ISECT

Section 7: Appendixes 275

CHANNEL PROGRAM 24

Read track index entries
Command Code Flags
ccw Address Count Comments
No. Hex Description Hex Description
CN8* 31 |Search ID equal |WIWCOUNT | 40 CC 5 | WIWCOUNT — count of current index
entry; set from WIWCNXDM
CN9 08 |TIC CN8 00 0
CN10 06 |Read data W1DCXDM 40 cC 10 Read data of current normal index entry
CN11 86 |Read data (MT) |W1WOVFL 40 cC 10 Read data of current overflow index
entry
CN12 92 |[Read count (MT)[W1IWCNXDM | 40 CC 8 Read count of next normal or dummy
entry
CN13 06 |(Read data WIWDNXDM | 40 CC 10 Read data of next normal or dummy
entry
CN14 1B |Seek HH CN6+1 40 CcC 6 Seek to track in W1LPDR
CN14A 03 |NOP CN14A+5 60 cc, SLI 1 Set.sgctor to‘zero
23 |Set sector Position to first record next track
CN15 08 |TIC CN1 00 0 Transfer to read or write the record

*If RPS is present this channel program will be preceded by a set sector - TIC located in the work area.

276 OS ISAM Logic

CHANNEL PROGRAM 25

Read track index entries for SETL |

ccw Command Code Flags
— Address Count Comments
No. Hex Description Hex Description
CN20* | 31 [Search ID equal [W1IDAD 40 CC 5 | Search to record at actual direct-access
address
CN21 08 (TIC CN20 00 0
CN22 OE [Read key and CN7+5 60 CC, SLI KL Read record key into 1st buffer
data
ICN23 1B | Seek head CN31+1 40 CcC 6 | Seek to beginning of track index
CN23A 23 |NOP CN23A+5 60 cc, sLI 1 Set'stlector to-zero
23 | Set sector Position to first record of next track
CN24 1A | Read home CN31 50 CC, SK 5 Position read head to start of track
address
CN25 E9 |Search key high [CN7+5 40 CcC KL Serially search index tracks for index
or equal (MT) entry containing key
CN26 08 |TIC CN25 00 0
CN27 06 |Read data W1WDCXDM| 40 CcC 10 Read data of current normal index
entry
CN28 86 |Read data (MT) |[W1WOVFL 40 CC 10 Read data of current overflow index
entry
CN29 92 |Read count (MT)|W1IWCNXDM| 40 CcC 8 Read count of next normal or dummy
entry
CN30 | 06 |Read data WI1WDNXDM| 00 10 Read data of next normal or dummy
entry
CN31 MBBCCHMHR Address of track index; set from lower

entry with HH=0, R=1

*If RPS is present this channel program will be preceded by a set sector-TIC located in the work area.

Section 7: Appendixes 277

CHANNEL PROGRAM 26

Extension of CP23 to read overflow chains
Command Code Flags
C|\?°V~V Hex Description Address Hex Description Count Comments

CS27* | 31 |Search ID equal |W1IMBBCC+3| 40 cC 5 | Search to first record of overflow chain

CS28 08 ’i‘IC Cs27 00 0

CS29**| 69 | Search key high |Key address 40 cc KL | SLI on when KC, search for desired

or equal record in chain

CS30 08 |TIC CS32 00 0

Cs31 03 | NOP 20 St 1 Exit when record found if RKP =0,
unblocked

08 |TIC CN4 of buffer| 20 1 Read in record if RKP=0 or blocked

format

CS32 06 | Read data CS34+7 60 CC, SLI 10 Read link field of overflow record

CS33 08 |TiC CS36 00 0

¢s¢ | - === = = = M Address of overflow record

CS35 BBCCHHR

osae [P |seak o | w0| oo o | Soh gurfon ek comining hxt
value of P (seek command code).

CSs37 31 | Search ID equal |CS35+2 40 cc 5 | Search for overflow record

Cs38 08 |TIC Cs37 00 0

CS39 08 |TIC CS29 00 0

*If RPS is present this channel program will be preceded by a set sector—TIC located in the work area.
**Search key equal if RKP=0, RECFM=F and not SETL KH or SETL KDH.

278 OS ISAM Logic

CHANNEL PROGRAM 31A

Reads the key of the last overflow track index entry into the Key save area
ccw Command Code Flags
— Address Count Comments
No. Hex Description Hex Description
CA1 31 | Search ID equal [IOBASEEK+3| 40 CcC 5 Search for the last normal track index
entry
CA2 08 |TIC CA1 00
CA3 9E | Read count, 920 DC, SK 8 Read last overflow track index entry
key, data
CA4 00 Key save 80 DC KL Read key of last overflow track index
area entry into key save area
CA5 00 10 | SK 10
50 | CC, SK is turned
onif CP31B is
executed

CHANNEL PROGRAM 31B

Reads the count and data of the last prime data block into the first buffer specified in the Buffer Control Table
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description

CA1 1B | Seek head CAB+1 40 cC 6 Seek to the head of the last prime
data block

CA2 31 | Search ID equal [CA6+3 40 CC 5 Search for the next to last prime data
record

CA3 08 |TIC CA2

CA4 12 | Read count First buffer 40 CcC 8 Read count of the last prime data block
into the first buffer (buffer control
table + 9)

CAS5 06 | Read data First buffer 00 DL Read data of the last prime data block

+8 B into the first buffer + 8

CA6 MBBCCHMHR MBBCCHHR of DCBLPDA, R is set

to R-1

Section 7: Appendixes 279

CHANNEL PROGRAM 87

Reads high-level index into user work area (specified by DCBMSHI)—this channel program is in module IGG0192P

ccw Command Code Flags
Address Count Comments
No. | Hex Description Hex | Description
cz1 31 | Search ID equal |IOBSEEK+3 | 40 CcC 5
Search for first entry of high level index
Cz2 08 |TIC czi 00 0
CZ3 8E | Read key and DCBMSHI 40 CC 0 Read it into the work area. There are

data (MT)

several copies of CZ3. The channel
program is executed as many times as
needed to read in the entire index.

280 OS ISAM Logic

CHANNEL PROGRAM 123W

Addendum to CP 12A and CP 12B or to CP 13A and CP 13B when write-checking is specified

ccw Command Code Flags
- Address Count Comments
No. | Hex | Description Hex | Description
03 | NOP
CEAO00
23 | set sector IOBSECT 60 CC, SLI 1
CEA 31 | Search ID equal 40 cc 5 Search for record or block again
CEB 08 [TIC CEA 00 0
CEE 1E | Read count, 10 SK 0 Read 1t back
key,and data
CHANNEL PROGRAM 123WV
Addendum to CP 12AV and CP 12BV when write-checking is specified
Command Code Flags
cew Address Count Comments
No. Hex Description Hex Description
CEAQ0 03 | NOP CEA00+5 40 CcC 1 Set sector to 0
23 | Set sector
CEAOQ 31 | Search ID equal |CDO 40 CcC 5
Search for track capacity record (RO)
CEAQ5 | 08 |TIC CEAOQ 00 0
CEA1 06 | Read data 70 | CC, SK, SL!I 3 Read capacity record
CEA2 08 |TIC CED or CEA3| 00 0 | Transfer to CED if the full track is
being checked
ceas | 9 |NOP IOBSECT+1 | 40 | cC,SLI 1
23 | Set sector
Search for first data record written
CEA 31 | Search ID equal |IOBSEEK+3 40 CcC 5
CEB 08 |TIC CEA 00 0
CED 1€ | Read count. 90 DC, SK 8
key,and data Read record back.
The number of CEE-CEF sets equals
CEE OE | Read key and 50 CC, sK KL+DL| pCBHIRPD, the CC flag is set off in
data the appropriate CCW depending on how
many records are read.
CEF 1E | Read count, key, 90 DC, SK 8+KL+
and data DL

Section 7: Appendixes 281

CHANNEL PROGRAM CLOSECCW(1)

Reads format-2 DSCB—this channel program is in module 1GG0202D

Command Code Flags
CCw
— Address Count Comments

No. Hex Description Hex Description

DXCCW1|31 | Search ID equal | Format-2 60 CC, SLI 5 | Search for format-2 DSCB
DSCB address

DXCCW2[08 |TIC DXCCwW1 00 0
DXCCW3|0E [Read key and DXDADDR 00 140 Read format-2 DSCB into work area

data

CHANNEL PROGRAM CLOSECCW(2)

Writes format-2 DSCB back in the VTOC - this channel program is in module 1GG0202D
Command Code Flags

ccw Address Count Comments

No. | Hex | Description Hex | Description
DX 31 | Search ID equal |Format-2 60 CC, sLl 5 Search for format-2 DSCB position
CCW1 DSCB address
DX 08 |TIC DXCCwi1 00 0
CCw2
DX 0D | Write key and DXDADDR 40 cc 140 | \write format-2 DSCB back in VTOC
CCw3 data
DX 31 Search ID equal |Format-2 60 CC, sLI 5 Search to format-2 DSCB again
ccwa* DSCB address
DX 08 TIC ccw4 00 0
CCcws*™
DX OE Read key and 10 SK 140 | Read back
ccwe™ data

*Write-validity-check

282 OS ISAM Logic

CHANNEL PROGRAM VXCCW (1A)

Reads to EOF or end of LPDA track for prime data—this channel program is in module IGG01920

ccw Command Code Flags
— Address Count Comments
No. Hex Description Hex Description
VX 31 Search ID equal |DS2LPRAD+3| 40 cc 5
CCwi1
Search to the last prime data record
VX 08 TIC VXCCW1 00 0
CCW2
VX 08 TIC VXCCW3A 00 0 Skip fi d
CCW2A J 1p first read count
VX 92 | Read count, VXCCW6 60 CC, sLl 8 Read count field (normally, count of
CCw3 (MT) EOF)
VX 06 Read dat WA* 60 i
CCW3A ead data CC,SLI DL | Read in block
VX 92 Read count, VXCCW7 60 CC, SLI 8 Executed when DS2LPRAD s incorrect
CCw4 (MT)
VX 6 Read d * DL | Read in block
CCW4A 0 ead data WA 60 CC,SLI ead in bloc
VX 08 TIC VXCCW3 00 0
CCW5
VX CCHHRKLDL DL Count field
CCW6
VX CCHHRKL DL DL Count field
CCw?7

*The work area is obtained by a GETMAIN.

Section 7: Appendixes 283

CHANNEL PROGRAM VXCCW(1B)

modules 1GG01922 and IGG01950

Reads to EOF for independent overflow or end of LPDA track for prime data —this channel program is in

CCW Command Code Flags
Address Count Comments

No. Hex Description Hex Description
VX 31 | Search ID equal |DS2LOVAD+3 40 CcC 5 Search to the last overflow record
CCw1
VX 08 TIC VXCCW1 00 0
CCw2
VX 9E Read count, key,| VXCCW6 60 CC, SL! 8 Read count field (should be count of
CCw3 and data (MT) EOF)
VX 9E Read count, key,| VXCCW7 60 CC, SLI 8 Executed when DS2LOVAD is incorrect
ccw4 and data (MT)
VX 08 TIC VXCCW3 00 0
CCW5
VX CCHHRKL DL DL Count field
CCwe
VX CCHHRKLDL DL Count field
CCw7?
CHANNEL PROGRAM VXCCW(2)

Reads to end of track - this channel program is in module IGG01920

ccw Command Code Flags

— Address Count Comments

No. Hex Description Hex Description

VX 12 | Read count SAVEREG 60 CC, SLI 8 Read count of each record on track
ccw4

VX 08 | TIC VXCCw4 00 0 CP will end with count of last record on
CCw5 track in SAVEREG

284 OS ISAM Logic

INDEX

Indexes to program logic manuals are consolidated in the publication IBM System/360 Operating System:
Program Logic Manual Master Index, GY28-6717. For additional information about any subject listed
below, refer to other publications listed for the same subject in the Master Index.

abnormal end appendages
(see Appendages)
adding records to data set
basic description 213-214
allocating space on ISAM data set 152
appendage codes 201-202
appendage definition 2
appendages
BISAM
codes 201-202
diagram 66
modules 72
pointers to 90
processing 65,69
vector table 65,90
QISAM (load mode)
abnormal end 29
channel-end 28
pointers to 34
processing 23,30
vector table 34
write checking functions 29
QISAM (scan mode)
abnormal end 49
channel-end 49
codes 201
GET 49,44
modules 52
pointers to 54
processing 49,50
PUTX 50,47
SETL 49,42
vector table 54
write-checking function 50
AreaY 185,181,34
AreaZ 180,179,34
asynchronous codes
asynchronous routines - BISAM
codes 202
flow diagram 66,69
modules 72
pointers to 90
vector table 65

BCB
(see buffer control block)
BCT
(see buffer control table)
beginning-of-buffer (BOB) routine
flow diagrams 26,30,31,32
processing 27
BISAM
channel programs
(see Channel programs, BISAM)
code phase 91
control blocks and work areas 89-91
DCB work area 193-195
flowcharts
processing routines 134-138
channel program flow 76-88
open phase 55
processing flow 69
processing phase 61
buffer control block
BISAM
format 172-174
pointers to 91
use by dynamic buffering routine 67
use by open routines 172
QISAM 174
buffer control table (load mode)
format 175-179
pointers to 34
use by open routines 175
Buffers
BISAM
conuoi biock 172-174
dynamic buffering 67-68
pointers to 90
queues 91
QISAM(scan mode)
control block 174
control technique 39
initialization 37
pointers to 40,54
queues and processing 39-42
scheduling 45

Section 7: Appendixes 285

Buffers (continued)

QISAM (load mode)
closing functions 33
control block 174
control table 175-179
pointers to 34
processing 15,34,35
scheduling 23-27

C-bit 178
CCWs, explanation of 222
Chaining
channel program 22
scan mode 38,45
Chains
(see overflow chains)
Channel program descriptions and
formats 226-290
CLOSECCW(1) 286
CLOSECCW(2) 287
VXCCW(1A) 288
VXCCW(1B) 289
VXCCW(2) 290
1 226-227
2 226
4 229
5/SW 230
6/6W 231-232
7/7TW 233
8 234-235
9A 236
9B/9BW 236
9C/9CW 237
10A/10AW 238
10B/10BW 239
11A 240
11B/11BW 241
12A 242
12B 243
12C/12CW 244
12AV 245
12BV 246
13A 247
13B 248
13C/13CW 249
14/14W (fixed length records) 250-252
14/14W (variable length records) 253-256
15 257
16 258
17/17W 259
18 260-261
19/91 260-261
20 (fixed length records) 262-264
20 (variable length records) 265-267
20A 268
20B 269
20C 270
21 271

286 OS ISAM Logic

22A 272 (ﬁ
22B 273 ‘
23 274-275
24 276
25 277
26 278
31A 279
31B 279
87 280
123w 281
123wV 281
Channel programs
BISAM
flow-of-control (non write KN) 76
flow-of-control (write KN) 77-78
functions 71-76,60
modules 73
list of 143
QISAM (load mode)
flow-of-control 31-32
functions 32-33
modules 30
QISAM (scan mode)
functions 51-52
modules 51
queues S5
Check routine — BISAM
description 68
flow diagram 68
Close phase executors and modules
common 13-14
BISAM 91 \\
errors during 205-205,53
flow-of-control 14
QISAM
load mode 33-35
scan mode 52,204
COCR
(see cylinder overflow control record)
codes
appendage 201-202
asynchronous 202-203
exception (error) 204,205
common close 13-14,9
channel programs used 286-287
flow diagram 14
module 13
common open 9-12
channel programs used 288-289
modules 9
count field 216
CP
(see channel programs)
cylinder index
BISAM processing 77,71
definition 212
direct access extents 157,158,182
format 216
load mode processing 31-32
Cylinder overflow area 212
cylinder overflow control record (COCR)
definition 212 y

cylinder overflow control record (COCR) (continued)

BISAM processing 77-88
format 218

data control block (DCB)
BISAM processing use 89-91
format 149-158
initialization
BISAM 56
common 9
QISAM
load mode 16
scan mode 37
integrity feature 9
QISAM -- load mode processing use 34
QISAM - scan mode processing use 54
data extent block (DEB)
BISAM processing use 89-91
format 166-169
initialization 11
QISAM
load mode processing use 34
scan mode processing use 54
data event control block (DECB)
BISAM processing use 89,69
format 159-160
data set control block (DSCB)
format 161-165
use by open routines 9,12
use by close routines 13
data set organization 209
adding records of data set 213
indexes 211
detail description 215
overflow area 212
prime data area 211
DCB
(see data control block)
DCB work area
BISAM
format 193-195
initialization 57
pointers to 90-91
QISAM
load mode
format 180-185
pointers to 34
QISAM
scan mode
format 187-192
pointers to 54
DCW
(see DCB work area — BISAM)
DEB
(see data extent block)
DECB
(see data event control block)

deletion, record
BISAM asynchronous code 202
count fields tagged for deletion 156,164
processing 78-88
disable SVC 63-64
DSCB
(see data set control block)
DS2
(see data set control block)
dummy index entries
creation 35
format 212,216-217
duplicate records
error indications 204-205
processing 78-88
dynamic buffering routine — BISAM
description 67,60
control block 170-172
flow diagram 67
initialization 58
pointers to 90

ECB
(see event control block)
enable, BISAM I/O interruptions 61
end-of-buffer (EOB) routine
load mode
description 27,30
fields used 174-179
flow diagram 27
scan mode
description 45,46
flowchart 126
end-of-cylinder processing
fields used
flowcharts 31,32
end-of-extent processing
fields used 174-179
flowcharts 31,32
end-of-file (EOF) mark processing 78-88
end-of-track processing
fields used 174-179
flowcharts 31,32
end index entries, format 212
cylinder 220
master 221
track 219
EOB
(see end-of-buffer routine)
EOF
(see end-of-file mark)
error codes
BISAM 205
QISAM 204

Section 7: Appendixes 287

error descriptions
duplicate record 78-88
record length — BISAM 65
sequence error 24
write K with read KU 63
error queue — BISAM
format 91,195
flowchart references 137
use in processing 65,69
ESETL macro instruction 39
ESETL routine — scan mode
description 48
flowchart 121
event control block
BISAM 159
QISAM
load mode 170,34
scan moae 170,54
exception codes
BISAM 205
QISAM 204
EXCP
BISAM 69,201
QISAM
load mode 28,29
scan mode 49
executors

(see open executors and close executors)

extents 157,163

flowcharts
BISAM macro time routines 136-138
BISAM open executor 134-136
common close executor 114-115
common open executors 95-100
load mode open executors 101-108
scan mode appendage routines 130-132
scan mode close executors 133
scan mode open executors 109-113
scan mode processing routines 116-129
format, data set
(see data set organization)
free queue - scan mode
format 40
flow diagram references 43-48
use in processing 43-48
FREEDBUF macro instruction 63,173
(see also dynamic buffering routine)
full track index
full track index write 16
track index save area 196

GET appendage routine — scan mode

288 OS ISAM Logic

description 49
module §1
pointers to 54
GET macro instruction 39,204
GET routine - scan mode
description 43-44
flowchart 116
module 51
pointers to 54,149

inactive index entries 219-221
index
(see cylinder, master, or track)
index location table -- load mode
format 180,182
initialization
pointers to 34
input/output block (I0B)
BISAM
pointers to 90-91
processing use 61-62,106,172-174
queues 91,193
format 170-172
channel program use 226
codes 201-203
QISAM
load mode 34,179
scan mode 54,189
I0B
(see buffer control table)
integrity feature, DCB
(see data control block integrity feature)
ISAM data set
(see data set organization)
ISL
(see DCB work area - load mode)

keysave area — load mode 33,34

levels of indexes
description 211-212
format 216-221
library, SVC 1
load mode 14
channel programs 31
descriptions flow of control 31-32
close phase 33-35
control block and work areas 34

load mode (continued)
DCB work area 180-185,34
flow diagrams 25-29
open phase 15-23
processing phase 23-33
locate mode processing 26

M=0 DEB extent 34,167
macro instructions
(see GET, PUT, etc.)
Macro-time routines
(see privileged and nonprivileged)
master indexes
format 221
BISAM processing 76,77
direct access extents 149,163,182
QISAM load mode processing 31-32
MBBCCHHRFP 216
modules directory 143-145
move mode processing 24

N/2 buffers 45
new high key records
BISAM 78,83-85
QISAM load mode 24
nonprivileged macro-time routine — BISAM
description 64
flow diagram 64,69
modules 70
pointers to 90
normal track index entry
description 212
format 216-219

organization data cet
(see data set organization)
open phase executors and modules
BISAM 59-60
common 9-12
QISAM
load mode 15-16
scan mode 37-38
overflow records and chains
BISAM processing 76-77
description 212
format 218

QISAM - scan mode processing 38,53,54

overflow track index entry
description 212
format 216-219

padding records 35
PF-bit 178
phase
(see open, close, or processing)
pointer diagrams
BISAM 89-92
QISAM
load mode 34
scan mode 54
prime data area
adding records to 213
pointers to 31
prime data track, shared
(see shared track)
privileged macro-time routine — BISAM
description 62-64
flow diagrams 62,69
modules 70
pointers to 90
processing phase
BISAM 60
QISAM
load mode 23
scan mode 38
PUT appendage
(see appendage routines — load mode)
PUT macro instruction 23
exception codes set 204
PUT routine - load mode
description 24-25
flow diagrams 25
pointers to 34
PUTX appendage
(see appendage routines scan mode)
PUTX macro instruction 39
exception codes set 204
PUTX queue —~ scan mode
format 40,54,191
flow diagram references 46,48
use in processing 39-42
PUTX routine - scan mode
description 47
flowchart 118
pointers to 54

QISAM modes

(see load mode and scan mode)
queues

BISAM load mode 34

QISAM
scan mode 40-42,54

reopen data set
(see resume loading)

Section 7: Appendixes 289

Read appendages
(see appendage routines — BISAM)
READ macro instruction 56
exception codes set 205
Read queue - scan mode
format 40-42,54
flow diagram references 43-48
use in processing 38-48
RELSE macro instruction 39
RELSE routine
description 49
flowchart 118
pointers to 54
resume loading 20
channel programs 31-33
initialization 21-22
rotational position sensing
devices 3
identification in DEB 11
start I/O appendages 2-3

scan mode
channel programs 51,52
close phase 52
control blocks and work areas 52,54
DCB work area 187-192,54
flowcharts 116-133
open phase 37
processing phase 38
queues 40-42,54
schedule routine -- scan mode
description 45
flowchart 122
pointers to 54
scheduling of BISAM
channel programs 61-63
SELT macro instruction 39
exception codes set 204
SETL routine - scan mode
description 42
flowchart 119
pointers to 54
shared track
channel programs used 51,33
fields used
BCB 178
DCB 156
DCB work area (load) 180
DSCB 164
initialization 23
index format 216-217
processing 33
stages of open and close executors 1-4
status indicators
buffers ~ load mode 173
DCB 157
DSCB 164
scan mode 189
SYNAD macro instruction
(see synchronous error routine)
SYNADAF macro instruction 70
synchronous error routine

290 OS ISAM Logic

address 152

BISAM use 68-70

QISAM
load mode use 24,27
scan mode use 42-49,52

T-bit 178
TISA

(see track index save area)
track index

BISAM processing 76-89

description 219

format 216-217

QISAM

load mode processing 31-32

track index save area (TISA) 196-197
track, shared

(see shared track)

unit control block (UCB), pointers to 34,54
unreachable block error 205
unscheduled queue — BISAM

format 91

pointers to 91,194

use in processing 62,64,66,171
update processing — BISAM 76,60
update queue - BISAM

format 91

pointers to 91,194

use in processing 60
User queue - scan mode

format 40,54,190-191

flowchart references 44,46,47

use in processing 39-42

WAIT macro instruction — BISAM 55
Write appendages
(see appendage routine — BISAM)
WRITE macro instructions 55
exception codes set 205
WRITE K processing 58,76
channel programs 73
flow of control 77,88
differing methods of adding records to a data
set 71-72
Write queue — scan mode
format 40,54,191
flowchart references 44,46,47,48
use in processing 39-42

=

s — —— o ———————————— ———————————————————————— ——————— ———————— —— - — ———————— — — - ———————— ——_—— — ———

READER’S COMMENT FORM

OS ISAM Logic Order Number GY28-6618-5

Your comments about this publication will help us to produce better publications for your use. If
you wish to comment, please use the space provided below, giving specific page and paragraph
references.

Please do not use this form to ask technical questions about the system or equipment or to make
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen-
tative or to the IBM Branch Office serving your locality.

Reply requested Name

Yes [] Job Title

No D Address

Zip

No postage necessary if mailed in the US A

Order Number GY28-6618-5

YOUR COMMENTS, PLEASE . ..

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold fold
FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.
I
BUSINESS REPLY MAIL [
NO POSTAGE STAMP NECESSARY IF MAILEDIN U. S. A.. EE—
I
]
POSTAGE WILL BE PAID BY . . . S
|
IBM Corporation R
Monterey & Cottle Rds. [LITTEES
San Jose, California R
95114 L]
L
Attention: Programming Publications, Dept. D78
fold fold

BN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

=N

Order Number GY28-6618-5

BN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

