0S Sort/Merge Logic

Program Number 360S5-5M-023

0S Release 21

This publication describes the internal logic of

the

0S sort/merge program. This program logic

manual is directed to the IBM customer engineer

who
can
and
the

is responsible for program maintenance. It

be used to locate specific areas of the program,
it enables the reader to relate these areas to
corresponding program listings.

This version of the sort/merge program is

designed to:

Sort a data set using as intermediate storage
the IBM 2400 Series (7- or 9-Tracks) Magnetic
Tape Unit, or the IBM 3400 Series Magnetic Tape
Units, or the IBM 2311 Disk Storage Drive, or
the IBM 2314 Direct Access Storage Facility, or
the IBM 2301 Drum Storage.

Merge up to 16 previously sorted data sets.

File No. S$360/S370-33
Order No. GY28-6597-4

Program Logic

Fifth Edition (January 1972)

This is a major revision of, and obsoletes,GY28-6597-3 and TNL GY33-803Q. .
Descriptions of the following new features have been added. ’

Support for Advanced Checkpoint/Restart.
Support for Variable Spanned Records.
Support for 2420-7 Tape Drive.

Support for Blocked Input on SYSIN.

Changes to the text and illustrations are indicated by
a vertical line to the left of the change.

| This edition applies to release 21 of IBM System/360
Operating System and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes are
continually made to the specifications herein; before using this
publication in connection with the operation of IBM systems,
consult the latest IBM System/360 SRL Newsletter, Order No.GN20-0360,
for the editions that are applicable and current.

I Requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your locality.

A form for readers' comments appears at the back of this
publication. If the form has been removed, comments may be addressed
to the IBM Nordic Laboratory, Publications Development, Box 962,
S-181 09, Lidingd 9, Sweden. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1968, 1970 ,‘

Section 1: Introduction
Relationship to the Operating System
Structure of the Sort/Merge Program
Definition Phase
Optimization Phase
Sort Phase « & o &« & o o @
Intermediate Merge Phase
Final Merge Phase « . . .
Initiating the Sort/Merge Program
Combining Sort/Merge Program

SECTICN 2: SORT/MERGE PROGRAM
OF OPERATION ¢ ¢ @« o o o o o o o o o
Sorting Technique « « . « «
vVariable-Length Records
Fixed-Length Records
Sequence Distribution Techniques . .
Forcing Techniques« . . &«

THEORY

Modules .

Intermediate Storage Requirements for

Direct Access
2311, 2301,
Technique . . . « « < « « « « &
2314 with Crisscross Technique .

Balanced Direct Access Technique .

Crisscross Direct Access Technique

Balanced Tape Technique

Polyphase Tape Technique
Example of Sequence Distribution
Polyphase Tape Technique
Tables Used to Compute
Sequence-Level Numbers

Oscillating Tape Technique

Merging Technique
Intermediate Merge Phase
Final Merge Phase « « .

Record Movement in the Sort/Merge

Program . « « « « o o o o o o o« o &«

Modules Used for Record Movement .

Record Movement Techniques
Fixed-Length Records
Variable-Length Records

SECTION 3: PROGRAM ORGANIZATION . .
Sort System Interface
Definition Phase
Optimization Phase
Sort Phase . « < ¢ ¢ o o o« o o o o =«

and 2314 with Balanced

Contents

Selecting Modules for the Sort Phase
Intermediate Merge Phase
Selecting Modules for the
Intermediate Merge Phase
Final Merge Phase . . . e o e « o @
Selecting Modules for the Final
Merge Phase . . ¢ ¢ ¢ ¢ o o o o o« &

SORT/MERGE PROGRAM FLOWCHARTS AND

TABLES « ¢ «c ¢ ¢ o o o o o o o o o o =
SECTION 4: MODULE DIRECTORY
SECTION 5: DETAILED LAYOUTS
Overlay Structure < <« « o .

Storage Layouts « e e
Phase-to-Phase Information (PPI)

APPENDIX A: USER PROGRAM-MODIFICATION
EXITS ¢ o o o o o o o o o o o o o o =
APPENDIX B: REGISTER USAGE

APPENDIX C: MESSAGES PRODUCED BY THE
SORT/MERGE PROGRAM . . ¢ ¢« ¢« o« o« o o

APPENDIX D: FORMAT CODES« -
Formrat Codes for Fixed-Length Records
Format Codes for Variable-Length
Records e e e e e e e e e e
Condition Codes for Fixed- and
Variakle-Length Records

APPENDIX E: CHECKPOINT/RESTART
FACILITY ¢ ¢ o o o o o o o o o o o o =

APPENDIX F: PROGRAM LISTING STANDARDS

AND CONVENTIONS 4« « @« o o 2 2 o o« o o
Module NAMES o« 2 o « o « = « « « « o
Module Classifications
Instruction Names . « o« « o« « o« «
Constant Names « « « « o o o o « « «
Work Area Name€s . « « « o« o o o o« @
Takle Names .« « « o« o « « . . .
Phase-to-Phase Information
Use of Routines in More Than One
Module . & ¢ o ¢ @ 4 « o o o o « « @

INdeX &« o o v« o o o « o o o o o o o =

. u5
. 4o

. 97

.101
.101

.101

.102

.103

<104
.104
.104
.104
.104
-.104
.104

Area Names 105

.105

.106

Illustrations

Figures

Figure 1. Sort Parameter List . . .
Figure 2. Sort Initiation via LINK
MACTO @« v« o o o o o o o o o o o o o
Figure 3. Combining Sort/Merge
Program Modules ¢ ¢ ¢« « « o &
Figure 4. Replacement-Selection
Technique . . o o« o o« o o« o « o o o =
Figure 5. Tree Structure for
Variable-Length Records With RSA of 17
Records (16+1) c e e e o e © o o o @
Figure 6. Tree Structure for
Fixed-Length Records With RSA of 65
Records (64+1) e e e = o o o e ° s @
Figure 7. Example of Balanced Direct
Access Sequence Distribution Technique
Figure 8. Example of Crisscross
Direct Access Distribution Technique
(Paxt 1 of 3) . . ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o .
Figure 9. Example of Balanced Tape
Sequence Distribution Technique . . .
Figure 10. Example of Polyphase Tape
Sequence Distribution Technique . . .

Tables

Table 1. Sequence Distribution
Technique Requirements

Charts

Chart 00. Structure of Sort/Merge
Program . « ¢« o o o o o o o o o o o =
Chart 0l1. Sorting Applications
Initiated by EXEC . ¢ o o o o « « « =
Chart 02. Sorting Applications
Initiated by ATTACH, LINK, or XCTL . .
Chart 03. Merging Applications . . .
Chart 04. Sorting Applications Using
Linkage Editor ¢ ¢« ¢« ¢ o o« < .
Chart 10. Overall Control of Flow in
the Sort/Merge Program . « « « « « « o
Chart 20. Overall Organization
Definition Phase . . . <« ¢ « « <« <« . .
Chart 30. Overall Organization
Optimization Phase ¢« « « «
Chart 40. Overall Organization of
Sort Phase for Balanced Direct Access,
Polyphase Tape, and Balanced Tape
Technigues .« ¢ « o ¢ ¢ = o o o o « o =
Chart 41. Sort Phase Assignment for
Balanced Direct Access, Polyphase
Tape, and Balanced Tape Techniques . .
Chart 42. Sort Phase Decision Tables
Chart 43. Sort Phase Decision Tables

11

18

19

20

23

25
29

31

22

12
13

14
15

16
49
50

51

52

53

55

Figure 11. Example of Oscillating
Tape Sequence Distribution Technique
(Part 1 of 2) . . ¢ ¢ ¢ ¢ ¢ ¢ o« o« o .
Figure 12. Merging Technique Using
Binary- Compare Network
Figure 13. DMovement of Records in the
Sort/Merge Program e« o o e o e o o @
Figure 14. Fixed-Length Record Format
in the Record Storage Area o o o o o
Figure 15. First Bin Format for
Variable-Length Record in Record
Storage Area e« o o o o o e o o o o
Figure 16. Continuation Bin Format
for variable-Length Record in Record
Storage Area e« e e o e o e o e o e
Figure 17. Example of a
Variakle-Length Record in Contiguous
Bins in Record Storage Area
Figure 18. Variable-Length Record ot
in Contiguous Bins of Record Storage
Area © e e o o o e @ o e o o e o

Chart 44. Sort Phase Decision Tables
Chart 50. Overall Organization of
Intermediate Merge Phase for Balanced
Direct Access, Polyphase Tape, and
Balanced Tape Techniques
Chart 51. Intermediate Merge Phase
Assignment for Balanced Direct Access,
Polyphase Tape, and Balanced Tape
Techniques ¢ ¢ ¢ ¢ ¢ o « « .
Chart 52. Intermediate Merge Phase
Decision Tables ¢ « <« <« « <
Chart 53. Intermediate Merge Phase
Decision Tables <« . < « « « .
Chart 60. Overall Organization of
Sort/Merge Phases for Oscillating Tape
and Crisscross Direct Access Techniques
Chart 61. Sort/Merge Phase Assignment
for Oscillating Tape and Crisscross
Direct Access Techniques « . .
Chart 70. Overall Organization of
Final Merge Phase ¢ « « « =«
Chart 71. Final Merge Phase Assignment
Chart 72. Final Merge Phase Decision
TaklesS o o o ¢ ¢ o o o o o o © o o « =
Chart 73. Final Merge Phase Decision
TableS ¢ ¢ ¢« o« ¢ o o o o o o o« o« o o =

34

36

37

39

40

41

41

42

56

57

58
59

60

62

63
64

65

66

The IBM System/360 Operating System sort/
merge program is a generalized program that
can sort and merge blocked and unblocked
fixed-length or variable-length records
based on control information supplied by
the user. The formats and uses of the
various sort/merge control statements are
described in the publication 0S Sort/Merge.

This version of the program is designed
to:

® Sort a data set using one of the fol-
lowing devices for intermediate
storage:

IBM 3400
IBM 2400
IBM 2311
IBM 2301
IBM 2314

Series Magnetic Tape

Series Magnetic Tape

Disk Storage

Drum Storage

Direct Access Storage Facility
e Merge up to 16 previously sorted data
sets.

Relationship to the Operating System

The sort/merge program is a processing pro-
gram of the operating system and, as such,

it communicates through macro instructions

and interruptions with the following parts

of the operating system control program:

e Job management routines that analyze
job control statements and print
messages.

e Task management routines that allocate
main storage to various segments of the
program and analyze conditions that
have caused an interruption in the
program.

e Data management routines that read data
from and write data onto input/output
devices.

The initial sorting and final merging
I/0 operations are performed by the data
management QSAM routines. The EXCP macro
instruction is used for intermediate
storage I/0 operations.

Section 1: Introduction

Structure of the Sort/Merge Program

The sort/merge program consists of five
phases as shown in Chart 00. (Charts 00-04
are at the end of Section 1.)

e A definition phase, which reads and
interprets sort/merge control state-
ments and determines the sequence dis-
tribution technique to be used.

e An optimization phase, which optimizes
the usage of channels and 1I/0 devices.

e A sort phase, which arranges input
records into ordered sequences and
rlaces the sequences onto intermediate
storage devices.

e An intermediate merge phase, which
merges the sequences produced by the
sort phase into a lesser number of
sequences and places them onto interme-
diate storage devices.

e A final merge phase, which, for a sort,
combines the sequences produced by the
intermediate merge phase into one
sequence or, for a merge, combines the
input data sets into one sequence.

DEFINITION PHASE

This phase is obtained from the link
library (SYS1.LINKLIB) and selects the user
routines, if any, to be link edited. 1t
reads and interprets sort/merge control
statements and selects one of five sequence
distribution techniques to be used by the
sort phase:

1. Balanced Direct Access, which is used
when the intermediate storage device
is a 2314 with six or fewer work
areas, a 2301, or a 2311.

2. Crisscross Direct Access, which is
used when a 2314 with more than six?
work areas is the intermediate storage
device.

3. Balanced Tape, which is always used
whenever an estimated or exact input
data set size is not given by the user

iCrisscross can be used on a 2314 when
exactly six work areas are provided by the
user if the user "forces"™ the technique,
see "Forcing a Technique" in Section 2.

Section 1: Introduction 7

and if at least four tape internediate
storage data sets are provided by the
user.

4. Polyphase Tape, which is always used
whenever only three intermediate tape
storage data sets are provided by the
user.

5. Oscillating Tape, which may be used
whenever the user supplies an exact or
estimated data set size, provides more
than three intermediate storage data
sets, and does not specify the tape
drive containing SORTIN as an interme-
diate storage device.

For sorting applications initiated by an
EXEC statement, and for merging applica-
tions, the sort/merge control statements
are provided in the SYSIN library. If
user-modification routines are included,
they are provided in the SYSIN data set
and/or partitioned data sets. Any user
routines appearing in SYSIN are copied onto
a partitioned data set (SORTMODS).

For sorting applications initiated by an
ATTACH, LINK, or XCTL macro instruction,
the sort/merge control statements, user-
modification routines and EXEC statement
PARM field options, if any, are provided in

main storage. The addresses of the control
statements and user routines are passed to
the sort/merge program by means of a para-
meter list. In addition to the addresses,
this parameter list may contain some
optional information. The format of the
parameter list is illustrated in Figure 1.

The byte count defines the length (in
bytes excluding itself) of the parameter
list. It may be set to one of the follow-
ing hexadecimal values, depending upon the
number of optional entries included in the
parameter list:

X'0018' -- if none of the optional entries
is included.

X'001C' -- if one of the optional entries
is included.

X'0020' -- if two of the optional entries
are included.

X'0024' -- if three of the optional entries
are included.

X'0028' -- if four of the optional entries
are included.

X'002C' -- if all five of the optional

entries are included.

All other values for this field are
invalid.

4 bytes

- T
Unused |
41

Byte Count

Starting address of SORT statement?

Ending address of SORT statement?

Starting address of RECORD statement?

Ending address of RECORD statement?

Address of routine for exit E15 or zeros?

Address of routine for exit E35 or zeros?

Four alphameric charactersi, not BALN, OSCL, POLY, CRCX, or DIAG
(to replace characters "SORT" in ddnames)

——t e e e e i e e e e e e Y/

T
X'00" |
R

Optional main storage value?

These entries are

The characters DIAG
(for diagnostic messages)

optional and, if
included, may appear
in any order.

]
X'FF* | Unused
]

| Message printing
| control characters?
1

Sequence distribution

(BALN, OSCL, POLY, or CRCX)

technique selection characters?

1Refer to the publication IBM System/360 Operating System:

Sort/

<
r
I
L
r
|
L
)
|
L
)
|
L
r
|
L
r
|
L
r
|
L
r
|
I
L
r
I
L
r
|
|
L
r
|
|
L
)
|
|
L
r
| . ; Syst
| Merge for a discussion of this field.
L

b e s e e s ek — . — — ke — —— —

Figure 1. Sort Parameter List

The inclusion in the parameter list of
an entry containing the characters DIAG
causes the sort/merge program to print di-
agnostic messages, control statements, and
a module map. Such an entry should be
included only if a problem is encountered
while trying to execute the sort/merge pro-
gram. This entry must not be included in a
normal sort environment because it will
impair sort performance.

Figure 2 is an example of the use of the
LINK macro instruction to initiate a sort-
ing application. This figure also shows
the format of the associated parameter list
and illustrates the method by which the
address of the parameter list is made
available to the sort/merge program.

Register 1

Addrass of /Unusw\‘ [X'0018'

80 Parameter Starting Address of SORT Statement
List Ending Address of SORT Statement

High-Order Starting Address of RECORD Statement
Byte Must Ending Address of RECORD Statement
Contain a Add.of Routine for Exit E15 (zeros if not used)
X80’ Add.of Routine for Exit E35 (zeros if not used)

MACRO Example:

LINK EP=SORT,PARAM= (LIST)
.
]

[
DS OF
DC H'O'

LIST DC X'0018"
DC A (STRTSORT)
DC A (ENDSORT)
DC A (STARTREC)
DC A (ENDREC)
DC A(E15)
DC A(E35)

Figure 2. Sort Initiation via LINK Macro

The linkage editor will be called during
the definition phase if the user has
included modification routines which
require link editing. (The user codes
either a MODS statement with no fourth
parameter or with S as a fourth parameter.)
Refer to Chart 04 at the end of this
section.

The linkage editor is obtained from the
link library (SYS1.LINKLIB); it edits and
combines the user routines and the asso-
ciated phase modules.

Input to the linkage editor is a sequen-
tial data set (SYSLIN) containing INCLUDE

Page of GY28-6597-4
Revised January 31, 1973
By TNL GN33-8164

statements which point to members in one of
the following two locations:

e SORTMODS, which contains user-
modification routines copied from
SYSIN.

» User-specified data sets, which contain
user-modification routines.

In addition to the above-mentioned data
sets, the linkage editor uses SYSUT1 as a
work device. When user routines request
link editing, the output from the linkage
editor is placed on SYSLMOD. The diagnos-
tic output is placed on SYSPRINT, unless
the sort/merge cataloged procedures, SORT
or SORTD, are used, in which case no diag-
nostic output is produced.

The following names are given to the
phases on SYSLMOD:

Sort Phase S11,PH1 (For sorting
applications
only)

Intermediate S21,PH2 (For sorting

Merge Phase applications
only)

Final Merge S31,PH3 (For sorting

and merging
applications)

Phase

OPTIMIZATION PHASE

The optimization phase is obtained from the
link library (SY¥S1.LINKLIB) and optimizes
the usage of the channel configuration of
intermediate input/output devices.

SORT PHASE

The sort phase is obtained from the SORTLIB
library. If any user routines are included
in the program, they are obtained either
from the SYSLMOD library created by the
linkage editor or from the user-prepared
library. This phase arranges the input
records into ordered sequences according to
the information in the user-specified con-
trol fields. It then writes these
sequences onto intermediate storage devices
(SORTWKO1,...,SORTWK32) according to a pre-
determined sequence distribution procedure.
Refer to Section 2 for a discussion of the
"Sorting Technique" and "Sequence Distribu-
tion Techniques" implemented in the sort/
merge program. The movement of records in
the sort phase is described in Section 2
under "Record Movement in the Sort/Merge
Program."”

Section 1: Introduction 9

INTERMEDIATE MERGE PHASE

This phase is obtained from the SORTLIB
library. If any user routines are to be
used in this phase of the program, they are
obtained either from the SYSLMOD library
created by the linkage editor or from the
user-prepared library. This phase combines
(merges) the short sequences produced by
the sort phase into a lesser number of
longer sequences. These longer sequences
are again written onto intermediate storage
devices (SORTWKO01,...,SORTWK32) according
to a predetermined sequence distribution
procedure. This phase is executed as many
times as necessary until the number of
sequences is less than or equal to the
merge order. The sequence-combination
method and the sequence-distribution proce-
dures are described in Section 2 under
"Merging Technique" and "Sequence Distribu-
tion Techniques," respectively. The move-
ment of records in the intermediate merge
phase is described in Section 2 under
"Record Movement in the Sort/Merge
Program."

In both the oscillating sort and criss-
cross sort, two of the five possible
sequence distribution techniques, the sort
and intermediate merge phases are kept in
storage at the same time and control alter-
nates between the two as directed by an
algorithm. (Refer to the discussions of
the Oscillating and Crisscross Techniques
in Section 2.}

FINAL MERGE PHASE

The final merge phase is obtained from the
SORTLIB library. Any user routines to be
used in the phase are obtained either from
the SYSLMOD library created by the linkage
editor or from the user-prepared library.
For a sorting application, this phase com-
bines the remaining sequences on the inter-
mediate storage devices (SORTWKO1,...,
SORTWK32) and produces a single sequence.
For a merging application, this phase com-
bines the sequences from the input devices
(SORTINO1,...,SORTIN16) and produces a
single sequence. This sequence is then
written on the output device (SORTOUT).

The method used to combine the sequences
is described in Section 2 under "Merging
Technique.™ The movement of records in the
final merge phase is described in Section =
under "Record Movement in the Sort/Merge
Program."”

10

INITIATING THE SORT/MERGE PROGRAM

A sorting operation is initiated by either
of two methods:

e An EXEC statement in the input stream.
(See Chart 01.)

e An ATTACH, LINK, or XCTL macro instruc-
tion in another program. (See Chart
02.)

A merging operation is initiated by an
EXEC statement in the input stream. (See
Chart 03.)

COMBINING SORT/MERGE PROGRAM MODULES

The modules required for a specific sort or
merge must be combined at program execution
time. Figure 3 shows how the sort/merge
program modules and user routines are
combined.

During generation of the operating sys-
tem, sort/merge program modules are copied
from SYS1.SM023 and placed in the sort
library, SYS1.SORTLIB. The modules needed
for the definition phase and optimization
phase are link edited into the 1link
library, SY¥S1.LINKLIB. The modules for the
sort, intermediate merge, and final merge
phases are placed in the sort library.

When the sort/merge program is to be
executed, the definition phase modules are
obtained from SYS1.LINKLIB. Sort/merge
control statements are obtained either from
SYSIN or from main storage.

If the linkage editor is required, it is
obtained from SYS1.LINKLIB as are the opti-
mization phase modules. Modules for the
sort phase are obtained from SYS1.SORTLIB.
Modules for the intermediate merge phase
and final merge phase come from SYS1.
SORTLIB. User routines are picked up from
SYSLMOD if they were link edited during the
current sort/merge execution, or from a
user library if they were 1link edited pre-
viously and did not require further link
editing.

J

At System Generation

SYSI.
SORTLIB

SORT.LIB

Figure 3.

Definition

At Sort/Merge Program Execution Time

Call the Sort/
Merge Program

Load and Execute

User Routines and Sort/Merge Control SYSIN,

Definition Phase

|

Link Edit
User Routines

: &

Execute
Optimization
Phase

Merge
Sort or Merge

Sort

Execute
Sort Merge

L &

Execute
Intermediate
Merge Phase

Execute
Final Merge
Phase

Combining Sort/Merge Program Modules

Statements

Main Storage

o,
%,
< 7,
01’% ey
4
&
s,.'p
..
”,
s
>
User
Specified
Data
Set
0\)".‘“e :
o Use! ¥ &
o <
ot o W vy
22
ORY
PR
) N (3?
g2 $
<€
Sort py,
ase
User Rou tines
<
)
Ny User
se
3, ediote Merae Pha
ch interm Routines
o
S, S
\x'} o0
N A
S e
&
<& Q\\o"e\)
Ty
\ N€
aed
Section 1: Introduction

SYSL
MOD

11

Chart 00. Structure of Sort/Merge Program

(Enter ’

A

Definition
Phase

Need
Linkage

No

ditor,

-

|

Optimization
Phase

Merge

Sort Phase
Produces
Sequences

|

Balanced
and Poly -
phase Tape
and Balanced
Direct Access
Sorts

No.
of Sequences Yes

Oscillating and Crisscross Sorts
®

-

i

Sort Phase
Produces
a Sequence

Final

< Merge

Intermediate
Merge Phase

12

L Merge

Phase

Exit

No.
of Sequences
= Merge
Order

Merge at
Next Level

No

Optimize
Merging

Final
Merge
Phase

Exit

C

SYSIN Sort/

Input
Data
Set

[] o o
3-32

Intermediate
Storage

Data Sets

Merge Cony
trol State
ments

LINKLIB

Chart 01. Sorting Applications Initiated by EXEC

Cataloged

Procedure

Procedure

Definition
Phase

-

L

Optimization
Phase

Sort Phase

Intermediate

Library

User
Specified
Library

Merge Phase

Final
Merge
Phase

Output
Data

Set

Section 1:

SORTLIB

Introduction

13

Chart 02. Sorting Applications Initiated by ATTACH, LINK, or XCTL

. NOTE: Control statements and
Definition user modification routines,
Phase if any, exist in main storage.
LINKLIB
Optimization
Phase
Input
Data Sort Phase
Set
o o ©
Intermediate
3-32 Merge SORTLIB
Intermediate Phase
Storage
Data Sefs

Final
Merge
Phase

14

Chart 03. Merging Applications

SYSIN Sort/
Merge Con- Cataloged . Procedure
trol State Procedure Library
ments
Definition
Phase
L User
LiNKLIB p| Optimization Specified
Phose Library
[-] o
Final
Merge SORTLIB
Phase

Section 1: Introduction 15

Chart 0O4. Sorting Applications

Using Linkage Editor

Procedure

Library

EXEC
PROC =
SORT
SYSIN Sort/
Merge Con
trol State-
ments Cataloged
Procedure
SYSIN
User wl Definition
Routines o Phase
)
_inkage
Editor

LINKLIB

Input

\

SYSLIN

/ SORTMODS

User

Optimization
Phase

Data
Set

o o o

3-32
Intermediate
Storage
Data Sets

16

\

Sort Phase

Intermediate
Merge Phase

Final Merge

Routines

SYSLMOD

SORTLIB

User
Specified
Library

Section 2: Sort/Merge Program Theory of Operation

This section describes the sorting and
merging techniques used by the sort/merge
program. The section also describes the
format and movement of records from the
time they are read in from the input device
until they are placed on the output device.

Sorting Technique

The sort/merge program uses the
"replacement-selection technique" to sort
records. This technique:

1. Reads a block of records from the
input data set to an input buffer.

2. Moves one of the records from the
input buffer into the record storage
area (RSA). Variable-length spanned
records (VRE) are moved from the input
buffer to a work area, which is large
enough to contain the largest record
in the input data set. There the seg-
ments of the spanned record are
gathered before the record is moved to
the RSA.

3. Determines which record in the RSA
should be placed next in an ordered
sequence.

4. Moves that record to an output buffer.

5. Replaces the moved record with the
next record from the input buffer.

6. Repeats from 2 until the input buffer
is empty, and then repeats from 1
until the input data set end-of-file.

If the new record should follow the
selected output record in the current
sequence, the new record forms a part of
the group of records from which the next
output record is selected. If the new
record should precede the selected output
record, the new record is retained in RSA
for the next sequence. The sorting process
continues for the current sequence until
there are no more replacement records that
fit in the current sequence. The last
block of records in the current sequence is
then written, a new sequence is started,
and the procedure is repeated until the
entire input data set has been processed.

The RSA has space for one more record
than the number of records that can be
sorted at one time. After a record is
selected for output, it remains in the RSA
and a new record is read into the extra
space. After the new record and the output
record have been compared to determine
whether the new record fits in the current

Section 2:

sequence, the output record is moved to an
output buffer and the space it occupied in
the RSA is made available for another new
record.

The RSA is primed with a group of rec-
ords from the input buffer. Sort/merge
then selects the first output record from
the contents of the RSA. In Figure 4,
sort/merge selects record 5 as the first
output record. Before placing record 5 in
the output buffer, however, sort/merge
brings the first record from the input
buffer, record 75 into the RSA and compares
it with the selected output record. Record
5 becomes the first output record. Record
6 is selected as the second output record.
Record 91 is brought in from the input
buffer and is compared with record 6.
Record 6 becomes the second output record
and record 91 takes the place of record 6
in the RSA. Record 11 is then selected for
output and is compared with record 3 which
has just been brought in from the input
buffer. Record 3 has arrived too late for
this sequence; record 11 becomes the third
output record and record 3 is flagged to
indicate that it must wait for the next
sequence. Record 3 takes the place of
record 11 in the RSA. This process con-
tinues until none of the records in the RSA
fit in the current sequence. Sort/merge
then concludes that sequence and begins a
new one.

The replacement-selection technique puts
records in sequence as they come into the
RSA and keeps track of RSA addresses by
forming a "tree structure." The tree
structure may be defined as an area of main
storage divided into "nodes," each contain-
ing information about the comparison of
either two or four records in the RSA,
depending on the network used. The nodes
are grouped into "levels," each represent-
ing one of a series of record comparisons.
(Refer to Appendix D for a description of
how nodes are constructed.)

In either an oscillating or crisscross
sort, on every Mth sequence, the sort phase
proceeds as if an EOF had occurred, and the
tree is flushed. (M is the merge order and
is equal to N-1, where N is the number of
intermediate work units.) Then control is
passed to the intermediate merge phase.
When merging is complete, the sort process
is reinitialized; i.e., RSA is filled again
and production of sequences continues for
another M sequences or until an actual EOF
has occurred.

Sort/Merge Program Theory of Operation 17

Input Data Set SORTIN

74 91 3 82171817891197212i

Next record from buffer

BW

91 I’
70

25-€—Fourth record selected for output

3*
Input Buffer (usually one of two)
Record 8 does not fit 74
[74] 91] 3| 8 |21]7 [18]17] 89| in the current sequence
Output Buffer
Record from buffer RSA (already primed) | 25 | 1] 6 5—|
6
74 compare 70
25 Next record from buffer ¢
to see if record 74 fits 11 1
in current sequence ; 5<€—First record selected for c 70 <€—Fifth record selected for output
i.e., collates higher output ZIW g*
than record selected 3* .
for output Record 21 does not fit 74
Output Buffer Qutput Buffer
| 5] [7o[2s[n]e]s]
Next record from buffer Next record from buffer
9l 6 <€—Second record selected 91
compare 70 for output 21*
Record 91 fits in 25 7 8*
this sequence n compare 3*
q 74 74 <4—Sixth record selected for output

Output Buffer

Record 7 does not fit

Output Buffer

[e]5] L [7]rofas[n]e]s]]’
Next record from buffer Next record from buffer
3 1 18 . 91-€—Seventh record selected for output
70 Wz]*
compare 25 g*
11 <€ Third record selected Record 18 does not fit 3*
74 for output 7*
This record does not fit into
the current sequence. It
replaces record 11 and is Output Buffer
flagged. It will not be
examined again until the | |91 |74| 7o|25 | 1 |6 5 |
next output sequence is
begun.
End current sequence - 18
begin new sequence 21
Output Buffer 8
[]e]s] ;
Figure 4. Replacement-Selection Technique

18

3

VARIABLE-LENGTH RECORDS

Records are brought into the RSA one at a
time. Associated with each pair of records
is the address of a first-level node. The
records in each pair are compared to deter-
mine which record in the pair should appear
first in an ordered record sequence (i.e.,
which record collates lawer for ascending
sequences or which collates higher for
descending sequences). The record chosen
from each pair is called the "winner" reco-
rd; that not chosen is called the "loser"
record.

After the comparisons are made at the
first-level nodes, the addresses of the
loser records are recorded in the nodes.
The winner records are then compared at the
second-level nodes referred to by the next
level addresses in the first-level nodes.
(See Figure 5.)

The comparisons at the second-level
nodes produce loser records whose addresses
are kept in the nodes, and winner records
that are compared at the third-level nodes.
The process continues until there is a
single winner record selected from the com-
parison at the last-level node. The
selected record is the first record to be
written in an ordered sequence.

After a record is selected for output, a
new record is brought into the empty space
in the RSA. The new record is associated
with the same first-level node as the rec-
ord just selected for output.

Conceptual Layout of Tree Structure for Variable - Length Records

Third
Level

Fourth
Level

Second
Level

First
Level

Each Line

to the Left
of the First
Level Nodes, 3
Represents

A Record in
the Record
Storage Area

Main Storage Layout of Tree Structure for Variable - Length Records
[~nopE 1] NODE 2] NODE 3] NODE 4] NODE 5[NODE ¢ | | [NODE 14 NODE 15]
N e—— > N —

Fourth Third Second First
Level Level Level Level
Node Construction (3 Words) for Variable-Length Records
Next Level Format | Loser Record
Address Code Address
Figure 5. Tree Structure for Variable-

Length Records With RSA of 17
Records (16+1)

Section 2:

The new record is compared to the output
record. If the new record precedes the
selected output record in the current
sequence, it is retained for the next
sequence. The new record's address is
flagged and remains in the tree. After the
new record and the output record are com-
pared, the output record is moved to an
output buffer. The space in the RSA occu-
pied by the output record is now considered
empty.

The new record, whether flagged or not,
is then compared to the loser record
referred to by the record address in the
relevant first-level node. This comparison
produces a loser record and a winner rec-
ord. Flagged records always lose. The
address of the loser record is kept in the
node. The winner record is compared to the
loser record whose address is in the
second-level node referred to by the first-
level node. This comparison produces a
loser record and a winner record. Succes-
sive node comparisons continue until a
winner record is selected for output.
Another record is moved into the RSA and
the above process is repeated until the
entire input data set has been processed.

The node structure is established at
assignment time and the format code indi-
cates that it is empty. After the last
record is introduced, the remaining records
are flushed out.

FIXED-LENGTH RECORDS

The tree structure for 64 fixed-length
records (RSA=65) is shown in Figure 6.

The sorting technique used for fixed-
length records is similar to that used for
variable-length records except for the fol-
lowing differences:

1. The address of each first-level node
is associated with four records in the
RSA.

2. At each level, the new record is

ordered with three loser records at
that level.

3. Each node contains information about
the comparison of four records.
Hence, records are ordered in groups
of four.

4. After each grouping, there are three
loser records and one winner record;
each node has space for three loser
record addresses.

The format code in a node indicates
the status of the node's three loser
records.

Sort/Merge Program Theory of Operation 19

Conceptual Layout of Tree Structure for Fixed-Length Records

NODE 2

o

First Level Second level Third Level
NODE 6
NODE 7
-NODE 2

NODE 8

NODE 9

NODE 10

NODE 11
Each Line NODE 12 NODE 3
to the Left _
of the First
Level Nodes NODE 13 NODE 1 Winner
Represents _ Record
A Record in NODE 14
the Record
Storage Area NODE 15 NODE 4

NODE 16

NODE 17

NODE 18

> NODE 19
_NODE 5

NODE 2

Main Storage Layout of Tree Structrure for Fixed - Length Records
11l
[NopE 1]NobE 2 [Nobe 3 [Nopt 4 [Nope 5] NoDE 6] | [[NobE 20 [NoDE 2]
e —A
Third Second First
Level Level Level

A J
y

<

Node Construction (5 Words) for Fixed-Length Records

Loser Loser Loser
Record 1 Record 2 | Record 3
Address Address Address

\ J

v
Loser records are ordered depending
upon ascending or descending sequence.

Next Fe ¢
Level orma
Address Code

Tree Structure for Fixed-Length
Records With RSA of 65 Records
(64+1)

Figure 6.

Sequence Distribution T'echniques

The sort/merge program can use five dif-
ferent techniques for sequence distribu-
tion. Each technique differs in the way in
which sequences are distributed onto the
intermediate storage devices and in the
order in which the number of intermediate
merge passes are reduced. The five techni-
ques are:

1. Balanced direct access technique.
2. Crisscross direct access technique.
3. Balanced tape technique.

4. Polyphase tape technique.

5. Oscillating tape technique.

The balanced direct access technique is
used if the intermediate work areas are on
2301 drum storage or 2311 disk storage. If
the intermediate work areas are on a 2314
direct access storage facility, either the
balanced or crisscross direct access tech-
nique is used depending on the number of
work areas available as follows:

20

1. If less than six work areas are pro-
vided by the user, the balanced tech-
nique is used.

2. If more than six work areas are pro-
vided, the crisscross technique is
used.

3. If exactly six work areas are pro-
vided, the balanced technique is used
unless the user forces the crisscross
technique.

If the interrmediate storage medium is
tape, either the balanced, polyphase, or
oscillating tape technique is used. The
program evaluates the sort parameters spe-
cified by the user to determine which of
the three possible tape techniques it will
use. The program needs an exact or closely
estimated input data set size (SORT state-
ment SIZE operand) to select the most effi-
cient tape technique. If the user does not
specify a file size, sort/merge chooses the
polyphase technique if only three interme-
diate storage tapes are available, or the
balanced technique if four or more tapes
are available.

Sort/merge evaluates the following sort
parameters to determine which tape tech-
nique to use:

1. Input data set size -- exact, esti-
mated, or omitted.

2. N -- the number of intermediate
storage tapes available to the sort.

3. Tape densities.

4. Amount of main storage available to
the sort.

5. Channel configuration (multiplex, 1
selector, 2 selectors, read-while-
write tape control unit, or tape
switch).

6. User input/output blocking factors.

Maximum input for a tape sort varies
with technique. The formulas for tape
technique capacities are as follows, where
N is the number of intermediate storage
tapes:

Oscillating tape technique -- maximum
input is N-2 reels of tape at sort
blocking.® 4<N<17.

iThe publication IBM System/360 Operating
System: Sort/Merge Timing Estimates con-
tains sort blocking factors for various
combinations of record lengths and main
storage values.

»

Balanced tape technique -- maximum input
is (N/2)-1 reels of tape at sort block-

ing. 4<N<32.

Polyphase tape technique -- maximum
input is 1 reel of tape at sort block-
ing. 3<N<17.

If only three intermediate storage tapes
are available, sort/merge always chooses
the polyphase technique. If the input unit
is also specified as an intermediate
storage unit, the oscillating technique
cannot be used. The balanced and polyphase
techniques require the input unit as a work
unit only after the entire input file has
been processed, whereas the oscillating
technique requires the input unit as a work
unit after N-1 input strings have been
processed.

If the number of intermediate storage
tapes available to the sort exceeds 17, the
polyphase and oscillating techniques are
evaluated using 17 units as maximum. The
balanced technique is evaluated with up to
32 available units. The polyphase and
oscillating techniques, with their higher
merge orders, may allow a more efficient
sort despite the reduction in the number of
intermediate storage units used. This will
also expand the capacity of the specified
sort.

FORCING TECHNIQUES

The user can force a particular technique
to be used for a sorting application.

Section 2:

However, since the sort/merge program
attempts to select the most efficient tech-
nique, the user should be aware that forc-
ing a technique can seriously impair sort/
merge performance.

Table 1 shows the requirements of the
five techniques. If the user forces a
technique, but does not provide sufficient
main storage or intermediate storage, sort/
merge will select another technique rather
than terminate the sorting application.

The method used to override the sort/
merge program and force a particular tech-
nique is governed by the manner in which
the sort is initiated. If the sort is
initiated by an EXEC statement, overriding
is effected by including one of the follow-
ing parameters in the PARM field of that
statement:

BALN -- for the balanced tape or
balanced direct access technique

OSCL -- for the oscillating tape
technique

POLY -- for the polyphase tape technique

CRCX -- for the crisscross direct access
technique

If the sort is initiated by an ATTACH,
LINK, or XCTL macro instruction, overriding
is effected by including one of the above
parameters as an optional entry in the sort
parameter list. (Refer to Figure 1.)

Sort/Merge Program Theory of Operation 21

Table 1. Sequence Distribution Technique Requirements

I T L} T T T
|Technique |Minimum |Maximum |Minimum | Maximum | Comments 1
	Main Storage	Input	Intermediate	Intermediate	
	For Sort/		Storage Areas	Storage Areas	
	Merge		Required	Permitted	
t t t t 1 + 1					
Balanced 112,000 bytes	15 reels	2 (x+1), where	32 tape units	Always used if more	
Tape			x is the num-		than three inter-
BALN			ber of input		mediate storage tapes
			volumes		are available and
					input data set size is
					not specified or
					estimated.
b 1 1 t t t :					
Ppolyphase [12,000 bytes	l reel	3 reels	17 tape units	Always used if only	
Tape					three intermediate
POLY					storage tapes are
					available.
b 4 $ { t ¢ 4					
0scillating	21,000 bytes	15 reels	x+2 or 4,	17 tape units	Input data set size
Tape			whichever is		must be given or
joscL			greater, where		closely estimated. The
			x is the num—		tape drive containing
			ber of input		SORTIN, cannot be as-
			volumes		signed as an interme-
					diate storage unit.
I 4 t + t t 1					
Balanced 113,000 bytes		3 areas	6 areas	The only technique	
Direct					available for the 2301}
Access					and 2311. Always used
BALN		No fixed			on 2314 when less than
		maximam—			six work areas are
		depends on		available. Used on	
		available			2314 when six areas
		main			are available unless
		storage			CRCX is forced.
L 1 _Iand L i 1 4					
r T 1 r T 1) 1					
Crisscross	24,000 bytes	available	6 areas	17 areas	Always used on 2314
Direct		inter-			when more than six
Access		mediate			work areas are avail-
CRCX		storage			able. Used on 2314
					when six areas are
					available but must be
					forced. Not used on
					2301 or 2311.
L L 1 L L L d
INTERMEDIATE STORAGE REQUIREMENTS FOR k
DIRECT ACCESS is B/L
2311, 2301, and 2314 with Balanced B
Technique is 3400 for the 2311
18000 for the 2301
Total number of tracks = _S(N) +2N 7000 for the 2314
k(N-1)
where L
is the length in bytes of the

N records in the input data set;

is the number of intermediate storage maximum length for variable

areas 3<N<6 length records.
S Oonly the integer portion of k is

is the number of records in the input used. If the formula yields k=0,

data set, exact or approximate. use k=1.

22

b

o

B

2314 with Crisscross Technique

Total number of tracks = 1.25S
k
where

S
is the number of records in the input
data set, exact or approximate.

is B/L

B
is 7000

L
is the length in bytes of the
records in the input data set;
maximum length for variable
length records.
Oonly the integer portion of k is
used. If the formula yields k=0,
use k=1.

BALANCED DIRECT ACCESS TECHNIQUE

The sort phase distributes sequences onto
all but the largest area set aside for
intermediate storage. The order (ascending
or descending) of the control fields of all
the sequences is the same as the order
desired for output.

Each area has a directory in which the
locations of individual sequences are main-
tained. The directory for each area
resides in that area and is pointed to by a
parameter in the phase-to-phase information
area (PPI). For example, if an intermedi-
ate storage area contains 50 tracks, sort/
merge begins writing sequences on the first
track and places the directory on the last
track. One track is always used for the
directory and more tracks may be required
depending on the number of sequences placed
in the work area. An additional track
immediately preceding the directory area is
reserved for EOF processing.

The intermediate merge phase combines
sequences from one of the filled areas into
longer sequences and places these sequences
onto the empty area. When the filled area
has been completely exhausted, it is consi-
dered empty and can then receive sequences
from some other area. The merging process
continues until the total number of
sequences in all the areas is less than or
equal to the maximum possible merge order.
At that time, the final merge phase combi-
nes the remaining sequences into a single
sequence and places it onto the output
device.

Figure 7 shows an example of the
balanced direct access technique. BArea A
is the same size or smaller than area B,

Section 2:

which is the same size or smaller than area
C. Due to the amount of main storage
available for this example, 5 is the maxi-
mum merge order that could be chosen.

Merge orders of 4-4-3 are selected as most
efficient for this example. The sort phase
distributes 22 sequences onto area A and 16
sequences onto area B. The intermediate
merge phase merges the 16 sequences from B
into 4 longer sequences and places them on
C. Since C is equal to or larger than B,
all the sequences from B fit on C.

Output of
Sort Phase Area A Area B
22 Sequences 16 Sequences
\
Output of
Int. Merge __J
Phase -
Pass One
Area B Area C
6 Sequences 4 Sequences
N e
Output of
Int. Merge <
Phase -
Pass Two
Area A Area B
2 Sequences 1 Sequence

* *
|

Output of l

Final Merge <
Phase I
Qutput Device
1 Sequence
~
*Directory

Figure 7. Example of Balanced Direct
Access Sequence Distribution

Technique

‘B is now considered empty and can
receive sequences from A. The 22 sequences
on A are merged into 6 longer sequences and
placed on B. A is now empty. Since the
total number of sequences (10) on B and C
is greater than the maximum possible merge
order (5), another intermediate merge phase
pass is required. The 6 sequences from B
are merged into 2 sequences and placed on
A. Since B contains sequences originally

Sort/Merge Program Theory of Operation 23

from A, the sequences fit on A. B is now
empty. The 4 sequences from C are merged
into one long sequence, which is placed on
B. The total number of sequences on A and
B is now less than the maximum possible
merge order, so the final merge phase com-
bines the remaining 3 sequences into a
single sequence and places it onto the out-
put device.

CRISSCRCSS DIRECT ACCESS TECHNICUE

The merge order for the crisscross tech-
nique is one less than the number of inter-
mediate storage areas available to sort/
merge. Control alternates between the sort
phase, which produces and distributes
sequences, and the intermediate merge
phase, which combines the sequences into
longer sequences. The crisscross technique
merges the shorter sequences first and
delays handling the longer sequences until
absolutely necessary. This action mini-
mizes the amount of data handled during
each intermediate merge phase pass and
results in more efficient operation.
Another advantage of the crisscross tech-
nique is its ability to sort large input
data sets. Crisscross is used only on the
2314 and only when six or more intermediate
storage areas are available.

The crisscross sort begins by distribut-
ing, via the sort phase, a sequence onto
all but one of the intermediate storage
areas. Then the intermediate merge phase
combines the sequences into a longer
sequence and places it on the empty area.
The sort phase then creates and distributes
sequences onto all but one of the areas (a
different area this time) and the interme-
diate merge phase combines them and places
the resulting sequences onto the area that
did not receive a sequence. This continues
until all but one of the areas contain a
longer sequence formed from the original
sequences created by the sort phase. This
point in crisscross is termed the first
base level. If the number of intermediate
storage areas is referred to as N, base
levels are attained whenever all but one of
the areas contains (N-1) K sequences, where
K is an integer greater than zero. For
example, if the number of intermediate
storage areas is six, the first base level

24

occurs when all but one of the areas con-
tains a sequence made up of five original
sequences. The second base level occurs
when all kut one of the areas contains a
single sequence formed from 25 original
sequences. Whenever a base level occurs,
one of the areas is empty.

Note: Each of the N-1 sequences that
exists at the time a kase level is attained
is referred to as a base sequence.

After the first base level is attained,
the crisscross sort distributes a sequence
onto each of N-1 work areas and merges
these sequences into a single sequence,
which is placed onto the Nth work area. It
does this N-2 times, varying the work areas
onto which the N-1 sequences are distri-
buted. At this point, N-2 additional
sequences, each formed from N-1 original
sequences, have been made. The crisscross
sort then merges the N-2 additional
sequences with one of the base sequences to
form a sequence that is made up of (N-1)2
original sequences. It does this entire
process N-1 times to yield the second base
level. The sequences at the second base
level are each formed from (iN-1)2 original
sequences. Continuing in this manner, the
crisscross sort develops successive base
levels whose base sequences are formed from
(N-1)3, (N-1)%4,... original sequences,
until the end-of-file is reached. At this
point, the crisscross sort carries out suc-
cessive N-1 way merges to reduce the numoer
of remaining sequences to N-1 or fewer.
control is then passed to the final merge
phase to complete the sorting application.

Note: As the crisscross sort proceeds to
higher base levels (e.g., from base level
(N-1)2 to kase level (N-1)3), successive
merges, without an intervening distribution
of sequences, may occur after each group of
N-2 cycles (i.e., after N-1 sequences have
been distributed and then merged into one
longer sequence a total of N-2 times).

Figure 8 illustrates the crisscross sort
technique using 125 sequences and six work
areas named A, B, C, D, E, and F.

The method of selecting the work areas
into which the N-1 sequences are distri-
buted is described in the comments column
of Figure 8.

J

r T T T |
|Distribution]| work Areas and | |) |
|Cycle Number | Sequence Arrangement | Operation Performed | Comments (if any) |
L i { ——— 4 ¥
r T T T X 1
| | A B C D E Fo| |This cycle distriputes se- |
| 1 |1+ 12 13 14 1s |Distribute N-1 sequences|quences onto each of N-1 work |
| | ! !areas. }
| k - t t i
| | 5 lMerge to Jth area ! !
I8 +
r T - T T 1
| | 5 | | Each of the next WN-2 cycles |
| 2 |12 13 14 1s 1% |Distribute N-1 sequences|distributes: (a)the first of |
b + {the N-1 sequences onto the
| r T 1 q S .
| | 5 5 |Merge to Nth area |work area that did not receive|
b + -——4 - {a sequence during the previous|
5 B) cycle; (b)the second of the |
| | . y
| 3 |12 14 15 1 12 |Distribute N-1 Sequences|N-1 sequences onto the work |
+ — {area that received the first
|]’ T 1 N "
| | 5 5 5 |Merge to w~th area | sequence during the previous |
3 - +- {cycle; (c) the third of the |
| | 5 5 5 | N-1 sequences onto the work |
| 4 |14 1s 1 12 13|Distribute N-1 sequences|area that received the second |
V---——— 4= {sequence during the grevious
| r 15€q
| | 5 5 5 5 |merge to Nth area |cycle; etc. |
I _+_ ——— S, 4 I
r T 1
| | 5 5 5 5 | | |
5 1s 12 12 13 1“4|Distribute N-1 sequences| |
| | q
| t 1 o t -
| | 5 5 5 5 5 |Merge to ith area | First base level attained. |
| | | | (Frocessing to this point is |
| | | |identical to the oscillating |
| | | | tape sort, but, from here on, |
deviation occurs.) |
| ! ! ! 1
r T T T - -
| | 5 5 5 5 5 | |This cycle distributes: (a) |
| 6 |12 1 1s 14 13|Distribute N-1 sequences|the first of the N-1 sequences|
| | | |onto the work area that did |
| | | |not receive a sequence during |
| | | | the previous cycle; (b) the |
| | | | second of the N-1 sequences |
onto the work area that
| |
| | | |received the last sequence |
| | | |during the previous cycle; (c)|
the third of the N-1 sequences|
| [
| | | |onto the work area that |
| | | |received the next-to-the-last |
| | | | sequence during the previous |
| | | |cycle; etc. Thus, this cycle |
| | | |changes the direction of the |
| | | |distribution. |
| t 4 + i
| | 5 5 5 5 5 | [I
| | 5 |Merge to Nth area | |
F t 4 t -—
| | 5 5 5 5 5| | Each of the next N-3 cycles |
| 7 | 5 |Distribute N-1 sequences|distributes the N-1 sequences |
| |12 12 1 1s 14 |in the manner described for |
| b T icycles 2 through 5 above. :
| | 5 5 5 5 5
| | 5 5 |Merge to Nth area | |
[N] Il b I
r T ¥ 1
| | 5 5 5 5 5 | | |
| 8 | 5 5 |Distribute N-1 sequences |
| |Lll-0 13 1= 11 15! Jl ||
I r T 1
| | 5 5 5 5 5 | | |
| | 5 5 5 |Merge to Nth area | |
k + t 4 I
| | 5 5 5 5 5 | | |
| 9 | 5 5 5 |Distribute N-1 sequences| |
I [1s 1% 13 12 12 | | |
| t 4 i |
| | 5 5 5 5 5 | | |
| | 5 5 5 5 |Merge to Jth area | |
| k + t -—
| 125 5 5 5 5 |Merge to produce a se- | |
uence made up of (N-1)2
| quenc
| ! lorlglnal sequences ! j
L J—

Figure 8.

Section 2:

Example of Crisscross Direct Access Distribution Technique (Part 1 of 3)

Sort/Merge Program Theory of Operation

I T T T 1
|Distribution| Work Areas and | | |
|Cycle Number | Sequence Arrangement | Operation Performed | Comments (if any) |
IS 1 i 4 d
] T) T 1
	25 5 5 5 5		This cycle distributes the N-1
10	13 12 1* 1s 1“	Distribute N-1 sequences	sequences in the same manner
			as they were distributed N-3
			cycles prior to it
			(in cycle 7).
t + 1			
125 5 5 5 5			
	5	Merge to Nth area	
I 4] 1 4			
T T T T 1			
	25 5 5 5 5		Each of the next N-3 cycles
11	5	Distribute N-1 sequences	distributes the N-1 sequences
	14 13 12 12 15		in the manner described for
			cycles 2 through 5 above.
I + 1			
125 5 5 5 5			
	5 5	Merge to Nth area	
L 4 4 4 I
[] T » T 1

	25 5 5 5 5		
12	5 5	Distribute N-1 sequences	
	18 1 13 12 1		
t + {			
	25 5 5 5 5		
	5 5 5	Merge to Nth area	
L 4 i 4 |
] T T 1

	25 5 5 5 51		
13	5 5 5	Distribute N-1 sequences	
	1s 1 13 12 11		
[b - } 1 I			
125 5 5 5 5			
	5 5 5 5	Merge to Nth area	
k } t 1			
	25 25 5 5 5	Merge to produce second	
		sequence made up of	
		(N-1)2 original se-	
		quences	
b t + + !			
125 25 5 5 5		This cycle distributes the n-1	
14	14 13 12 12 15	Distribute N-1 sequences	sequences in the same manner
3 + {as they were distributed n-3			
125 25 5 5 5	cycles prior to it (in		
	5	Merge to Nth area	cycle 11).
L } } 1 ¥			
r T T T 1			
	25 25 5 5 5		Each of the next N-3 cycles
15	5	Distribute N-1 sequences	distributes the N-1 sequences
	15 14 13 12 1		in the manner described for
3 + {cycles 2 through 5 above.			
	25 25 5 5 5		
	5 5	Merge to Nth area	
k + t 1			
125 25 5 5 5			
16	5 5	Distribute N-1 sequences]
	1s 14 13 12 11		
F + i			
125 25 5 5 5			
	5 5 5	Merge to Nth area	
1 1 1 4 I
r T T 1

	25 25 5 5 5		
17	5 5 S5	Distribute N-1 sequences	
	12 1s 14 13 12)		
k } 1			
125 25 5 5 5 1			
15 5 5 5	Merge to Nth area		
t + 1			
	25 25 25 5 5	Merge to produce third	
		sequence made up of	
1		(N-1)2 original se-	
		quences	
F f t f -			
125 25 25 5 5		This cycle distributes the wn-1	
18	18 14 13 12 12	Distribute N-1 sequences	sequences in the same manner
b $ {as they were distributed N-3			
	25 25 25 5 5		cycles prior to it (in
	5	Merge to dtn area lcycle 15).	
L L 1 1 J
Figure Example of Crisscross Direct Access Distribution Technique (Part 2 of 3)

26

¢

o

¢

r T T T 1
|Distribution| Wwork Areas and | | |
|Cycle Wumber | Sequence Arrangenient | Operation Ferforned | Comrments (if any) |
b t - -—1 = {
125 25 25 5 5		kach of the next W-3 cycles	
19	5	Distribute N-1 sequences	distributes the -1 seguences
	1% 14 13 12 11	in the sawme manner as des-	
3 1 {criced for cycles 2 through			
	25 25 25 5 5		5 above.
15 5	Merge to Nth area		
k + + 1			
	25 25 25 5 A		
20 15 5	Distribute N-1 sequences		
	12 1s 14 13 12		
k + 1			
	25 25 25 5 5		
	5 5 5	Merge to Nth area	
k + + - -1 I			
125 25 25 5 5			
21	5 5 5	Distribute N-1 sequences	
	12 1t 15 1« 13		
k t 1 I			
	25 25 25 5 5		
	5 5 5 5	Merge to Nth area	
b e $-- {			
	25 25 25 25 5	Merge to produce fourth	
		sequence made up of	
		(N-1)2 original se-	
		quences	[
b + : = {			
	25 25 25 25 5		This cycle distributes the N-1
22	1s 1« 13 12 11	Distribute N-1 sequences	sequences in the same manner
8 - + J {as they were distributed nN-3			
	25 25 25 25 5		cycles prior to it (in
	5	Merge to Nth area	cycle 19).
L e 1 1 d			
I t T T 1			
125 25 25 25 5		Each of the next N-3 cycles	
23	5	Distribute N-1 sequences	distributes the N-1 sequences
	12 1s 1% 13 12		in the same nmanner as des-
3 + {cribed for cycles 2 through			
	25 25 25 25 5		5 above.
	5 5	Merge to Nth area	
k + t 1 [
125 25 25 25 5			
24 15 5	Distribute N-1 sequences		
	12 11 1s 14 13		
b + 1			
	25 25 25 25 5		
	5 5 5	Mexrge to Wth area	
8 } 1] I
r T L 1

125 25 25 25 5			
25	5 5 5	Distribute N-1 sequences	
113 12 11 1s 14			
t - t 1 I			
125 25 25 25 5			
	5 5 5 5	Merge to Nth area	
F t t i			
	25 25 25 25 25	Merge to produce fifth	
		sequence made up of	Second base level attained
		(N-1)2 original se-	
		quences	
lf L L 4 =			
*Indicates the first work area to receive a sequence during the distribution cycle.			
2Indicates the second word area to receive a sequence during the distribution cycle.			
3Indicates the third work area to receive a sequence during the distribution cycle.			
“Indicates the fourth work area to receive a sequence during the distribution cycle.			
®Indicates the fifth work area to receive a sequence during the distribution cycle.			
L 4

Figure 8.

Example of Crisscross Direct Access Distribution Technique (Part 3 of 3)

Section 2: Sort/Merge Program Theory of Operation 27

BALANCED TAPE TECHNIQUE

The sort phase distributes sequences onto
half of the tapes used for intermediate
storage. (If there is an odd number of
tapes, the number that receives sequences
is one more than the number that do not.)
The sequences are placed onto successive
tapes. That is, all tapes receive one
sequence each before any receives a second
sequence, and so on. All sequences pro-
duced by the sort phase are in the same
order (i.e., ascending or descending), and
the order is opposite to that desired for
output.

Since the sort/merge program writes for-
ward onto tape and reads backward from
tape, successive passes of the intermnediate
merge phase reverse the order of all
sequences.

The intermediate merge phase nerges one
sequence from each tape that received
sequences in the sort phase. A single
sequence from each of the input tapes is
combined to form a single output sequence.
The output sequences are written succes-
sively onto those intermediate storage
tapes that were left empty in the sort
phase. This is repeated until all input
sequences have been processed. When all
sequences from the input tapes are merged
onto the output tapes, the tapes used for
input and output are alternated. The merg-
ing process continues until the number of
sequences is less than or equal to the
rerge order. At that time, the final merge
phase merges the remaining sequences into a
single sequence on the output device.

For fixed- or variable-length records,
at the end of the sort phase and at the end
of each pass of the intermediate merge
phase, sort/merge checks to determine if
two or less passes remain. If two interme-
diate passes remain, the program tests to
see if the final sequences will be in the
desired order. If the sequences will not
be in the desired order, the output of the
next pass is blocked in reverse order. At
the end of that pass, the tapes are rewound
and then read forward during the next pass
with normal deblocking.

For fixed-length records, if at the end
of the sort phase the number of sequences
is less than or equal to the merge order
and these sequences are found to be in
reverse order, the work tapes are rewound.
The final merge phase is then performed by

28

deblocking the records from the back of the
buffer to the front to produce desired
sequences, thus eliminating the copy pass.
However, for variable-length records it is
not feasible to deblock the buffers in
reverse. Therefore, a copy pass is
required.

Figure 9 shows an example of the
balanced tape technique. The output is to
be in ascending order. The sort/merge pro-
gram estimates an even number of intermedi-
ate merge passes. Therefore, the sort pro-
duces sequences in descending order (i.e.,
opposite to the output order).

The sort phase distributes successive
sequences onto tapes A, B, and C. A
receives the first, fourth, seventh, tenth,
and thirteenth sequences; B the second,
fifth, eighth, eleventh, and fourteenth;
and C the third, sixth, ninth, and twelfth.

Tapes A, B, and C are input for the
first intermediate merge phase pass; tapes
D, E, and F are output. The intermediate
merge phase merges one sequence from each
input tape onto successive output tapes.
Because the sort/merge program reads back-
wards from tape, the sequences are merged
and distributed as follows: sequences 12,
13, and 14 are merged into one sequence and
placed onto D; sequences 9, 10, and 11 are
merged and placed onto E; sequences 6, 7,
and 8 are merged and placed onto F;
sequences 3, 4, and 5 are merged and placed
onto D; and sequences 1 and 2 are merged
and placed onto E. The sequences are now
in ascending order.

Since the total number of sequences on
D, E, and F (five) is greater than the
merge order (three), another intermediate
merge phase pass is required.

The input and output tapes are switched
and the merging process continues.
Sequences 1 through 8 are merged into one
sequence and placed onto A. Sequences 9
through 14 are merged and placed onto B.
The resulting sequences are in descending
order.

When the total number of sequences is
less than the merge order, the final merge
is executed. The final merge phase com-
bines the remaining two sequences into one
sequence and places it onto the output
device. The resulting sequence is in
ascending order, the order desired for the
output.

9

Balanced Tape Technique

® . @

Sequence 1
4
7 >
10 9=
13 o wn
8 3
Input Sort Tape) Sequence 2 \ o, §
Device, Phase B 5 a 2
8 o°
n g >
14 e
-
Sequence 3
6
9 J
12
Tape Tape | Sequence 1,2,3,4,5,6,7,8
D A J N ~)

Both Sequences are in
Descending Order

Tape Intermediate T r A \
EP Merge Phase ape Sequence 9,10,11,12,13,14
B

(Pass Two)
T‘}':Pe @ No Sequences

Figure 9.

POLYPHASE TAPE TECHNIQUE

The sort phase distributes sequences onto
all but one of the tapes used for interme-
diate storage. The order of the sequences
on each tape alternates between ascending
and descending. The sequences are distri-
buted on the tapes in such an order that,
when processed during the intermediate
merge phase, the sequences on the tapes are
depleted in a predetermined sequence.

The order of the first sequence on the
first tape that receives a sequence is the
same as the order desired for the output.
The order of the first sequence on the
other tapes is the opposite of the order
desired for the output.

The intermediate merge phase combines
sequences into longer sequences and places
them onto the empty tape, until all the
sequences on one tape are exhausted. That
tape is now considered empty and can
receive sequences from the other tapes,
including the tape which was previously
being used as output. The merging process
continues until one sequence is left on
each tape except one.

Section 2:

Tape Tape Sequence 12, 13, 14
D Sequence 3, 4, 5
Intermediate :
Tape Sequence 9, 10, 11 = o~
Merge Phase e
(Pass One) Sequence 1, 2

@ f

Tape

Q @ °

Example of Balanced Tape Sequence

19piQ Buipuadsy
ur a1y sasuanbag ||y

Sequence 6, 7, 8

Final Output Sequence 1,2,3,4,5,. . .,
Merge Device/ 13. 14
Phase Records are in Ascending Order

Distribution Technique

In the polyphase technique, the
sequences are produced as directed by the
sort algorithm. If a copy pass is
required, it is used only for the last
unordered sequences rather than the whole
file.

The final merge phase combines the
remaining sequences into a single sequence
and places it onto the output device.

Since the sort/merge program writes forward
onto tape and reads backward from tape,
each time sequences are merged their order
is reversed. The input to the final merge
phase is such that a sequence in the
desired order is produced.

Example of Sequence Distribution in

Polyphase Tape Technique

For clarification, the following text
describes a simplified method for the
sequence distribution algorithm used in the
polyphase technique. In the example below,
four tapes are available for intermediate
storage. Each of the resulting sets of
numbers represents a distribution of
sequences by the sort phase.

Sort/Merge Program Theory of Operation 29

Since there are four tapes, three of the
tapes (W, X, and Y) can receive sequences
from the sort phase.

Initially, an N-by-N identity matrix is
formed for the N tapes receiving sequences
from the sort phase. Shown below is the
3-by-3 identity matrix formed for the three
tapes W, X, and Y.

1 0
0 0
0 1

oo

The N numbers in the column for each
tape are added together to find the first
sequence-distribution set. The resulting
set of numbers forms part of the column for
each tape. Shown below is the addition
resulting in the set of numbers 1, 1, 1.

Rloo
ROk O
Rk oo

The results of the addition are now con-
sidered part of the matrix. The last N
numbers in the column for each tape are
added together to find the second set of
sequence distribution. Shown below is the
addition resulting in the set of numbers 1,
2, 2.

R o ol
NP o Rlo
vlR - olo

The third set of sequence distribution
is obtained in similar manner, as shown
below.

Nl = Oolo
(TS S el | i o]
£V RPOO

Additional sets of sequence distribution
are obtained in the same manner. Shown
below are the first eight sets of sequence
distribution obtained from the original
3-by-3 identity matrix.

1 1 1 *
1 2 2

2 3 4

4 6 7

7 11 13 *
13 20 24
24 37 Ly
by 68 81

30

The sets that contain only odd numbers
(*¥) are not used. The remaining sets are
shown below.

1 2 2
2 3 4
4 6 7
13 20 24
24 37 44
Ly 68 81

These sets each have one odd number.
The odd number in each set is associated
with the first tape (Y) to receive a
sequence by rotating the numnbers in some
sets. The resulting sets are shown below.

L} p:S X
2 2 1
4 2 3
4 6 7
20 24 13
uy 24 37
4y 68 81

Each of these sets of sequence-level
nurbers represents a distribution of
sequences that, when used as input to the
intermediate merge phase, will result in an
efficient merging process. For instance,
if the sort phase produced nine output
sequences, it would place four on W, two on
X, and three on Y. If the number of output
sequences 1s not equal to the sum of the
nunbers in any set, the tapes are assigned
dummy sequences by using counters until the
total of actual and dumuy sequences distri-
buted equals the sum of the numbers in a
set. The intermediate merge phase then
considers each dummy sequence as if it were
an actual sequence in setting up a pass.
When a durmy sequence is encountered during
a merge pass, it is dropped if it is to be
merged with an actual sequence. However,
if all the sequences to be merged are dum-
mies, a dummy sequence is carried to the
next level.

Figure 10 illustrates the use of the
polyphase technique. Tapes W, X, ¥, and 2%
are used as intermediate storage devices.
In this figure, the sort phase distributes
14 sequences onto W, X, and Y according to
the set of sequence level numbers computed
above. Since the total number of sequences
(14) is not equal to the total of the num-
bers in any set, dummy sequences are
assigned to X and Y until the total number
of actual and dummy sequences equals the
total of the next larger number (17) in the
set 4, 6, 7. The A indicates an ascending
sequence, D indicates a descending
sequence, and d indicates a dummy sequence.

J\.,

SORTUUT
p(4,8,3,11,10,2,6,5,13,12,1,7,14,9)

- - 1
‘ { Polyphase Technique |
t——— T 8|
I [|
| W p3 Y z [w b X z |
| A(3) A(2) D(1) | A(2) D(1) A(9)
| D(5) D(4) A(6) | D(4) A(6) D(7,14)
| A(7) A(11) D(8) | D(8) 2(5,13,12) |
| D(9) D(13) A(10) | n(3,11,10) |
| d D(12) | |
| d A(1Y4) | Jote: Dummy sequences dropped.
| d | |
' | Figure 10a. Sequences Produced by Sort | Figure 10b. Sequences lNerged Onto z by
| Phase | Intermediate Merge Phase
t - + 1
| I |
| ® X X z | W b Y oz |
| A(4,8,3,11,10) D(1) 2(9) | A(4,8,3,11,10) A(2,6,5,13,12 3(9) |
| 0(2,6,5,13,12) D(7,14) | 1,7,14) |
| |
1Figure 10c. Sequences Merged Onto W by |Figure 10d. Sequences Merged Onto X Dy |
| Intermediate Merge Phase | Intermediate Merge Phase
b—- trB— 1
|
|
|
|
|
t
|

Figure 10e. Sequences Merged Onto SORTOUT by Final Merge Phase
N

ote: kach term (e.g., A(3), D(3,11,10), A(4,8,13,11,10)) in Figure 10 represents a
|single sequence. Each number within parentheses in Figure 10a represents an original
| sequence (i.e., a sequence produced by the sort phase) and indicates the order in which
‘ |that sequence was produced and distributed by the scrt phase. (The numbers in Figure

|10a do not represent records or control field values.) Two or more numbers within the
|parentheses of a term indicate that the termr represents a sequence that was formed by a
|merge operation; in this case, the numrbers in parentheses identify the original
|sequences (excluding dummy sequences) that were combined via one or more merge opera-
|tions to form the sequence represented by the term.

L

e e e e e e e —

Figure 10. Ltxample of Polyphase Tape Sequence Distribution Technique

Descending order is desired for the Tables Used to Compute Sequence-Level
final output. Therefore, the first work Numbers
unit (Y) receives its initial sequence in
descending order, and W and X receive their
initial sequences in ascending order. The actual implementation of the polyphase
technique is accomnplished by using three
tables in the PPI area (IERRCA). (refer to

The last sequences from W, X, and Y are Section 5.) Module IERRCA is the phase-to-
combined into one sequence of the opposite phase information (PPI) area that resides
order which becomes the first sequence on Z in storage throughout the sort program.
(D9, 4, and 4 from W, X, and Y, respective- This area serves as temporary storage and
ly, go as A(9) to Z). This is repeated is used to communicate information among
until W becomes empty and available to the various segments of the program. The
receive sequences as shown in Figure 10b. three tables, with displacement in decimal

form, are:
The intermediate merge phase combines

. the sequences as shown in Figures 10b, 10c,
and 104 until W, X, and Z each have one PPITPTBL+34
sequence, and Y has no sequences. PPITPTBL+102
PPITPTEL+68
The final merge phase merges the remain-
ing three sequences from W, X, and Z and
combines them onto SORTOUT (the output The functions of these tables vary from
‘ tape) in descending order. (See Figure phase to phase. Following is a description
10e.) of their functions for each phase.

Section 2: Sort/Merge Program Theory of Operation 31

Sort Phase (Module 1rRROJ)

Table Purpose

PPITPTBL+3U Contains sequence counters
for each physical unit.
Each counter is incremented
by one each time a sequence
has been written on that

physical unit.

Contains the total nurkber
of sequences required on
each physical unit at the
next higher level. These
numbers are used to deter-
mine whether or not a unit
should be used as the out-
put device for the next
sequence by comparing these
nurbers against the
sequence counters in table
PPITPTBL+34.

PPITPTBL+102

Contains the number of
sequences for each logical
unit. The next sequence
level is calculated in this
table after each level has
been reached, moved to
PPITPTBL+102, and then
rotated to place the odd
numbered seguence count on
the desired unit.

PPITPTBL+68

Intermediate Merge Phase (Module IERROS)

Table Purpose

PPITPTBL+34 Contains the sequence coun-
ters for each physical unit
frow the sort phase. Each
counter is decremented Ly
one each time a sequence is
merged from the unit and
incremented by one each
time a sequence is merged
onto the unit.

Contains the counters that
maintain proper order for
using the sequence-level
numbers.

PPITPTBL+102

Contains numbers (that have
been computed in table
PPITPTBL+102 during the
sort phase) that represent
the difference between
table PPITPTEL+34 and table
PPITPTBL+102. These num-
bers are used to determine
whether or not a given tape
should be used as an input
device for this intermedi-
ate merge operation.

PPITPTBL+68

32

Final Merge Phase

Table Purpose
PPITPTBL+34 This table is used to

determine the input units
for the final merge phase.

Takles PPITPTBL+102 and PPITPIBL+68 are not
used in this phase.

Exarple of Table use: The use of these
takles for computing the segquence-level
nunmbers is best illustrated in an exarple
of a four-tayre, 3-way merge.

Logical Tapes A B C D
Original Sequence-
Level dumbers 1 1 1

The number associated with the rightmost
work unit (C) is added to each of the other
(N-2) numbers to form the new sequence-
level numbers. First the rightmost number
is saved, and then the following takes
place:

rightmost + E replaces C
rightmost + A rerlaces B, and finally
rightmost replaces A

Lcgical Tapes A B C
Resultant

Sequence-Level

Numbers 1 2 2

The resultant sequence-level nunbers are
then rearranged so that the odd number of
sequences 1is always associated with the
same physical unit.

Logical Tapes A B C
(PPITPTEL+68) 1 2 2
Physical Tapes X Y Z

2 2 1

If the above computations are done again
on the old resultant sequence-level numbers

(1, 2, 2), the resultant sequence-level
nunbers are:
Logical Tapes A B C
Resultant
Sequence-Level
Numbers 2 3 4

The resultant sequence-level nurbers are
then rearranged so that the odd number of
sequences is always associated with the
sare physical unit.

Logical Tapes A B C
(PPITPTBL+68) 2 3 4
Physical Tapes X Y Z

4 2 3

J

The sequence-level nurbers require
updating when a working counter set in IER-
ROJ equals zero. The value of this counter
is obtained from a multiplication of the
largest of the old sequence numbers in
PPITPTBL+102 times the merge order minus
one. The result of this multiplication is
the number of segquences to be written
before the sequence-level nurnbers are
updated again. 7The counter is decremented
by one each time a sequence is produced.

Example of 3-Way Merge

01ld Sequence-Level
Nunbers Before 1 2 2

Update

Sequence-Level
Numbers Afterx 2 3 4

Update

Number of Sequences
to Be Written Is

2(2) =4

This summation is done twice when the
sequence-level numbers are all odd. To
determine whether the numbers are all odd,
a counter is initially set to the merge
order plus one. This counter is decre-
mented by one each time a sequence level is
reached. When this counter equals zero,
all sequence-level numbers are odd. The
action at this time is to:

e Reset the counter to the merge order
+1.

e Update the sequence-level numbers
again.

e Decrement the counter by one.

e Continue sorting.

OSCILLATING TAPE TECHNIQUE

The oscillating tape technique requires
fewer passes over the data than do poly-
phase or balanced tape techniques discussed
above. For optimum efficiency, this tech-
nique uses tape switching or read-while-
write capabilities, when available.

The oscillating tape technique begins
with the sort phase developing sequences of
records on all but one of the intermediate
work tapes. After the sort has created one
sequence on each of the N-1 tapes, the sort
goes to the merging operations immediately.
Thus, the oscillating technique integrates
the sort phase with the intermediate merge
phase.

Section 2:

The N-1 sequences are read backwards and
merged onto the available ith tape. The
N-1 tapes are then at load point, and con-
trol is passed to the internal sort. The
next sequence is written onto tape N. The
next N-2 sequences are written onto the
next N-2 tapes. Control is again trans-
ferred to the merging portion of the pro-
gram, and these N-1 sequences are merged
onto the remaining available merge tape.

This process is continued until each of
N-1 tapes has had N-1 sequences merged onto
it; i.e., the oscillating sort has created
N-1 sequences from (N-1)2 sequences. At
this point, the N-1 sequences are merged
onto the available tape. The process
repeats until another tape contains a
sequence forned from (N-1)2 sequences.

When each of N-1 tapes contains a
sequence formed from (J-1)2 original
sequences, these sequences are again merged
onto the available tape which now contains
a sequence formed from (N-1)3 original
sequences. This iterative process con-
tinues until all the input records have
gone through the sort. A partial merging
pass ray be required, followed by a final
merge operation onto the output tape. Par-
tial merges are performed as necessary to
reduce the number of remaining sequences to
N-1 or fewer. Figure 11 illustrates the
technique using 27 sequences with four work
tapes.

The selection of the work tapes onto
which the N-1 sequences are distributed
during each distribution cycle is deter-
mined Ly the following method:

1. The first cycle distributes a sequence
onto each of N-1 work tapes. An
example of this is distribution cycle
number 1 in Figure 11.

2. Each subsequent cycle distributes:
(a) the first of the -1 sequences
onto the work tape that did not
receive a sequence during the previous
cycle; (b) the second of the N-1
sequences onto the work tape that
received the first sequence during the
previous cycle; (c) the third of the
N-1 sequences onto the work tape that
received the second sequence during
the previous cycle. For example, see
distribution cycles 2 through 9 in
Figure 11.

Thus, in this method, sequences are dis-
tributed onto the work areas in groups of
N-1 or three per distribution cycle in the
order: ABC, DAB, CDA, BCD, ABC, DAB, CDA,
BCD, ABC.

Sort/Merge Program Theory of Operation 33

f T
|Distribution| Work Tapes and

|Cycle Number|Sequence Arrangement Operation Performed

T 1

| |

| I
| : e 1
| | A B c D | |
| 1 | 12 1= 13 |Distribute N-1 sequences |
I t + - : -—
| | 3 |Merge to Nth tape |
[- + - - 1
| [30 |
| 2 | 12 13 11 |Distribute N-1 sequences |
| k 1 1
[1 3 3 !Merge to Nth tagpe }
r B T -~ -
| [3 03 | |
| 3 | 13 12 12 |Distribute N-1 sequences |
I b———- -—= - 1
| | 3 3 3 |Merge to Nth tape |
| t —- + — — S 1
| | 9 |Merge to produce a sequence made up of (N-1)2 origin-|
| | |al sequences |
— $-———- ——4- - - 1
| BE o |
| 4 | 11 12 13 |Distribute N-1 sequences
| ’ —~—t - 1
| I 9 | I
| | 3 | Mexge to Nth tape |
| 1 + 1
| | 9 I |
| 5 | 3 |Distribute N-1 sequences
| I+ 12 13 | |
| e + 4
| I 9 31 I
| | 3 | Mexge to Nth tape |
L —_ 4 —_ i I, e {
r T T
| I 9 3] |
| 6 | 3 |Distribute N-1 sequences
| I 1= 12 1t I
| F = -~ 1
| | 9 303 | _ |
| | 3 | Mexge to Nth tape |
| F + - - 1

Merge to produce second sequence made up O N-
9 9 ge t d d d f (N-1)2

] | |original sequences
b= 1 1 — - - - 1
| I 9 9 o |
| 7 | 13 11 12 |Distribute N-1 sequences
| t t ———- .
| I 9 9 | |
| | 3 | Mexge to Nth tape |
L 1 L _ 4

Figure 11. Example of Oscillating Tape Sequence Distribution Technique (Part 1 of 2)

34

¢

|tIndicates the first work tape to receive a sequence during the distribution cycle.
|2Indicates the second work tape to receive a sequence during the distribution cycle.
| 3Indicates the third work tape to receive a sequence during the distribution cycle.
L

r - T - T 1

|Distribution| Work Tapes and |

Cycle Number|Seqguence Arrangement Operation Performed

y q 9 p

F -+ oo - .

| | 9 9 L |

| 8 | 3 |Distribute N-1 sequences |

11 12 13

| S— o i

I 9 9 | I

{ J 3 3 iMerge to nth tape J

) T I E - -

| I 9 9 L |

| 9 | 3 3 | Distribute N—-1 sequences

| R |

— + —— —

I I 9 9 301 I

| | 3 3 | Mexge to Nth tape |

| F - }— —- 1

| | 9 9 9 |Mexrge to produce third sequence made up of (iN-1)=2

| | |original sequences |

| b - —- 1

| | 27 |Merge to produce a sequence made up of (N-1)3 origin-|

| | |al sequences |

b 4 —_ 5 —_]

) 1
I
|
|
1

Figure 11. Example of Oscillating Tape Sequence Distribution Technique (Part 2 of 2)

Section 2: Sort/Merge Program Theory of Operation

35

Merging Technique

The sort/merge program uses a binary- com-
pare network as the merge technique to
merge the input to (1) successive passes of
the intermediate merge phase for sorting
applications and (2) the final merge phase
for both sorting and merging applications.

In performing the merge operations, an
input record is inserted in proper sequence
within an already ordered sequence. The
insertion of the input record forces out
the next output record. (See Figure 12.)
In the intermediate and final merge phases,
fixed-length and variable-length unspanned
records are moved directly from the input
buffers to the output buffers. Records
which are VRE records for output are
handled somewhat differently in the final
merge phase. These records pass through a
work area before being moved to the output
buffers by the data management PUT routine
in move node. In either case, only the
record addresses are manipulated in forming
sequences.

New Record - - - -

Ordered Sequence --- - 18] 22] 27[38] 40] 45[51

Obtain next record for ascending sequence and
produce new ordered sequence

@ Compare 25 to 38

[DEREEnEE
efels,

Records Under Consideration

@ Compare 25 to 22

Tafez]z]

Records Under
Consideration

EmEE

\#
Records Not Under
Consideration

@ Compare 25 to 27

=]
Wz k) [eess]
— ~—~— —_—
Records Not Under Record Under Records Not Under
Consideration Consideration Consideration
@ Insert 25 into Ordered Sequence, Forcing Out 18

New Ordered Sequence [22]25]27]38[40[45]51]

Output Record

(From Same Data Set as Output Record)

Next Input Record

Figure 12. Merging Technique Using Binary-

Compare Network
The first step is to compare the new

record to the middle record in the ordered
sequence to determine if the new record

36

collates higher or lower. If it collates
higher, all lower records are eliminated
from consideration. If it collates lower,
all the higher records are eliminated.

The new record is then compared to the
middle record of the remaining records
under consideration to determine in which
half of these records the new record
belongs. The process continues until there
is one record remaining. The new record
belongs on either one side or the other of
this record, depending upon how the new
record collates. The records on one side
of the newly inserted record are shifted
one position and the new lowest record is
then moved to the output buffer.

INTERMEDIATE MERGE PHASE

The following is a discussion of intermedi-
ate merge phase processing for the balanced
tape technique.

Initially, one block of records from
each data set to be merged is brought into
main storage. The relative collating order
of the first record from each sequence is
deterrined, and an ordered table of their
addresses is set up. The lowest of these
determines the first record to be written.
After a record is selected for output,
another record is taken from the same block
that contained the output record. The new
record's sequencing relative to the other
records is determined using the binary-
compare network.

The process continues until an end-of-
sequence is reached. The merge order is
then reduced by one and the merging process
continues. When the end of all the sequen-
ces is reached, the merge of the input se-
quences is complete. The output data set
now contains a complete sequence and an
end-of-sequence indicator is written.

The merge network is reset to its origi-
nal value for the merge order, the process
is initialized again by placing the first
block of records from each new input
sequence into main storage, and the merging
process continues.

Output sequences are produced in this
manner until an input end-of-file is
reached from one of the input data sets.
At this point the merge order is again
reset to its original value minus the num-
ber of input data sets that have reached
end-of-file.

When all input data sets reach end-of-
file, an entire pass of the intermediate
merge phase is completed, and the merge
order is reset to its original value for
the next pass.

J

FINAL MERGE PHASE

The operation of the binary-compare network
in the final merge phase is identical to
the intermediate merge phase, except that
there is only one sequence on each input
data set.

Record Movement in the Sort/Merge
Program

The sort/merge program contains several
logical points at which records are moved
from one location to another. Figure 13
illustrates the movement of records from
the time they are read from the input
device until they are written out on the
output device.

MODULES USED FOR RECORD MOVEMENT

The sort/merge program uses the input/
output modules (read, write, block, and
deblock) to control the flow of records.
The input/output modules also control the
operational overlap of channel processing
with CPU operations, thus providing effi-
cient utilization of system resources. In
performing these functions, the input/
output modules communicate with the data

Intermediate
Storage
Device

Input Device

Input Buffer Area Input Buffer Area

Work Area (VRE)

Record Storage Area

Output Buffer Area

VAT

Output Buffer Area

A Y

Intermediate
Storage
Device

Intermediate
Storage
Device

Record Movement
In Intermediate
Merge Phase

Record Movement
In Sort Phase

Figure 13.

Section 2:

management area of the control program,
with the input/output devices used for
internediate storage, and with other sort/
merge modules.

For the initial input to the sort/nerge
programr and for the final output, the
input/output modules use the data manage-
ment Queued Sequential Access Method ((SAM)
routines, using the GLT and PUT macro
instructions. Locate mode is used for
fixed or variable unspanned records. For
spanned variable records, an extra work
area is required and move mode is used.
This permits device independence between
the sort/merge program and the user's data
sets. All other input/output activity
within the sort/merge program uses the
Execute Channel Program (EXCP) macro
instruction. The read and write modules
used in this connection are device depen-
dent, since each module is oriented to a
particular type of intermediate storage
device.

The particular read, write, block, and
deblock modules used in any given applica-
tion depend on the intermediate storage
device, the form of the records (fixed or
variable) being processed, the type of app-
lication (sorting or merging), and the pre-
sence of user modifications.

Intermediate
Storage
Device

Input Device

Input Buffer Area Input Buffer Area

< Work Area (VRE) < Work Areas (VRE)

Qutput Buffer Area

Output Buffer Area

y A

Final
Output
Device

Final
Output
Device

Record Movement
In Merge Only

Record Movement
In Final Merge
Phase

Movement of Records in the Sort/Merge Program

Sort/Merge Program Theory of Operation 37

In general, the assignment program
modules perform initialization functions,
such as setting up areas, setting counters,
and modifying instructions to adapt the
running programs to a particular applica-
tion. The input/output functions begin by
establishing buffer areas and opening the
data sets. This is done before the actual
running program for each phase.

In the discussion that follows, consid-
eration is given only to the running pro-
gram modules, those modules that perform
the actual sorting and merging. The input
to the sort phase of a sorting application
and the input to a merging application rely
on the data management QSAM routines to
£fill the input buffers and to deblock rec-
ords. The intermediate merge phase and
final merge phase for a sorting application
use the EXCP macro instruction to place
records from the input data sets into buf-
fers and to prime (initially fill) the
merging network areas. Deblocking of rec-
ords in the intermediate merge and the
final merge for a sorting application is
done by the sort/merge program.

In the sort phase, the deblock modules
move records from the input buffers to the
RSA. Variable spanned records are treated
differently. The deblock modules move them
from the input buffers to a work area and
then into the KSA. The records remain in
the RSA during the processing performed by
the sorting modules. To identify the rec-
ords being sorted, the deblock modules pro-
vide the RSA addresses of the records to
the sorting modules.

In the intermediate merge phase and the
final merge phase, the records are
sequenced while they remain in the input
buffer area. Part of the buffer-filling
function of these two phases is to assign
an increment (value) to each input data set
and to the first record taken from each
data set. This increment is used to iden-
tify the data set from which to select new
records. This is the same data set that
provided the current output record.

The deblock modules used in these phases
provide the merging modules with the buffer
addresses of the records. The increments
are placed in the high-order byte of the
record addresses and serve as keys for
identification of the records.

The blocksdeblock modules keep count of
the records in the input data sets as they
are brought into the sort/merge program.

At the end of a phase, a comparison is made
between the record count in the phase-to-
phase information area and the current
value as recorded by the blocks/deblock
module being used. The effects of user
modifications that insert or delete records

38

are not included in the comparison. If the
corparison is unequal, the message IERO47A
is printed and the sorting operations
terminate.

In the intermediate merge and in the
final merge, deblock modules determine when
the input buffers are empty. When a buffer
is empty, a deblock module gives control to
a read module to refill the buffer.

After the input areas have been filled,
the modules that control the ordering of
records begin to produce record sequences.
As each output record is determined, the
ordering module gives the record address to
a blocking module which moves the output
record to an output buffer. In the final
merge phase, VRE records pass through a
work area before being moved to the output
buffer. The block modules also give the
address of each current winner record to
the deblock module so that another record
from the same input area can be passed to
the ordering routine for sequencing.

When an output block of records is com-
pleted and ready to be written on the out-
put data set, the block modules transfer
control to the write modules in both the
sort phase and the intermediate merge
phase.

For applications using tape for interme-
diate storage, the ordered records are
placed in the output buffers in such a
manner that the first record is located at
the numerically highest main storage loca-
tions in the buffer. The second record is
then placed on the low-address side of the
first record. Continuing in this manner,
the output buffers are constructed in a
high-to-low direction. Thus, when the
write modules place the records on the
intermediate storage device, these records
appear in a backward arrangement. This
technique of putting the records in ascend-
ing and descending orders is implemented to
process records in a proper manner for
reading backwards.

When the records are read backward, they
appear in reverse order. For each subse-
quent pass through the intermediate merge
phase of the sort/merge program, the order-
ing of the output sequences is always oppo-
site to the ordering of the previous pass.
This read-backwards procedure eliminates
the need for rewinding the tape.

For direct access applications the rec-
ords are placed in order from low to high
main storage locations.

In the final merge and for a merging
application, the actual blocking of records
is done by data management according to the
format specified on the SORTOUT dd state-

9

9

ment. The block routine moves the record instruction moves that portion of the rec-

to an output buffer specified by the (SAM ord remaining after the last 256-byte move.
PUT macro instruction (locate mode) if The multiple move is used whenever:

fixed or variable unspanned records are

used. If variable spanned records are e Record length is greater than 256

used, they are moved to a work area by the bytes; or

block routine and from the work area into

an output buffer by the ¢(SAM PUT macro e User modifications to the records are
instruction (move mode). present.

RECORD MOVEMENT TECHNIQUES FIXED-LENGTH RECORDS IN THE SORT PHASE:

When fixed-length records are placed in the
The various record-movement techniques, the RSA for the sort phase, they are placed in
conditions determining their selection, and sections called bins. Each kin has the

the RSA structure for fixed- and variable- same size: this size is calculated by the
length records are discussed in the follow- definition phase. The calculated bin size
ing sections. is placed in the phase-to-phase information
area, which also contains the starting
Fixed-Length Records address of the RSA.
There are two types of fixed-length record For fixed-length records, a bin in the
moves: the in-line move and the multiple RSA has the format shown in Figure 14.
move.
To determine the locations of records in
The in-line move consists of a single the RSA, a deblock assignment module
move instruction appropriate to the record assigns a value K to the starting address
length for the particular application and of the first record in the KSA. (See
is used whenever: Figure 14.)

e Record length is 256 bytes or less; and K = RSA start address + Bin size - Record

|Tree address is a value associated with the record's location in the sort network tree
| structure. (Refer to Sorting Techniques.) The tree address occupies four bytes and
|begins on a full-word boundary.

|Extract data is from zero bytes to 256 bytes in length. When the extract module is not
|used, it is zero bytes. When the extract module is used, it is from 4 to 256 bytes and
|contains the extracted control fields of the record.

|K represents the starting address of the first record in the RSA.

|The complete fixed-length record occupies the remainder of the bin. The record itself
|must begin on a full-word boundary.

L

e No user modifications are present. Length
The multiple move consists of a set of In this equation, the record length is
instructions (called the move list) and is rounded off to the next full word if it is
used to move each complete record. The not already in multiples of a full word. K
move list moves records in increments of represents the initial address that is
256 bytes. If the record length is not a given to the sorting module by the running
multiple of 256 bytes, the final move deblock module.
.' o |
| | |
I L T T 1 I
I I | | | |
	tree	extract	record area	
	address	data		
I L L —— L J I				
<——-4 bytes———-> <-—-0-256 bytes—->				
< BIN SIZE >				
t 1				
J

Figure 14. Fixed-Length Record Format in the Record Storage Area

Section 2: Sort/Merge Program Theory of Operation 39

The RSA may not be in contiguous loca-
tions. Hence, when incrementing by bin
size to get the address of the next record,
a check for the end of the current RSA seg-
ment must be made. If the end is reached,
the starting address of the next RSA seg-
ment becomes the address of the next
record.

FIXED-LENGTH RECORDS IN THE MERGE PHASES:
In the intermediate merge, the final merge,
and the merge only operation, the move list
is used to transfer records directly from
input buffer to the output buffer.

To allow for any changes in record
length due to user nodifications in a pre-
ceding rphase, the move list is generated in
each phase by an assignment program.

Variable-Length Records

The sort phase has a separate move module

to move variable-length records. This move

module moves variable unspanned records from
an input buffer to an RSA bin or from a bin

to an output buffer. The module moves vari-
able spanned records from an input buffer to
a work area and then to an RSA bin, or from

a bin to an output buffer.

In the two merge phases and the merge
only phase, variable-length unspanned rec-
ords are moved from the input buffer to the
output buffer by the appropriate block/
deblock module via a multiple move routine.

For spanned records, the same move routine
is used in the intermediate merge phase,
but in the final merge phase, the records
are moved into a work area and the data
management routine PUT in move mode is used
to move them to the output buffer. In the
merge only operation, the records are
placed in the work area by the (SANM GET
macro instruction in move mode and moved
from there into a second work area. The
PUT macro instruction in move mode moves
them from the second work area to the out-
put buffer.

VARIABLE-LENGTH RECORDS IN THE SORT PHASE:
Variable-length records occupy bins in the
RSA in a manner similar to that used for
fixed-length records. The definition phase
calculates a bin size for variable-length
records so that the available main storage
is most efficiently used. The bin size and
the starting address of the xSA are placed
in the phase-to-phase information area. A
bin may contain all or part of one record.

For variable-length records, the initial
bin for each record in the RSA has the for-
mat shown in Figure 15.

When a variable-length record requires
more than one bin, the extra bins, called
continuation bins, have the format shown in
Figure 16.

The location of each continuation bin
for a record is given in the chain address
portion of the previous bin that contains

|Tree address is a value associated with the record's location in the sort network tree

|structure. (Refer to Sorting Techniques.)
|begins on a full-word boundary.

|Extract data is from zero bytes to 256 bytes
|used, it is zero bytes.
|contains the extracted control fields of the

The tree address occupies four bytes and

i '|
| K
| | |
| I - T T T = |
[_		
	tree	extract	record area	chain	
	address	data		address	
l	I, L L —_ 1				
Lo — 4 bytes———-> <—0-256 bytes——> <———-4 bytes———-—>					
———— BIN SIZE—- ->					
I					

When the extract module is used,

in length. When the extract module is not|
it is from 4 to 256 bytes and|

record.

|K represents the initial address of the first record in the RSA.
|Record area contains as much of the record as will fit in the bin after the other three

|areas have been accounted for; it must begin

on a full-word boundary.

|record is located if the current bin does not contain the end of the record; otherwise

|
I
|
|Chain address, which must begin on a full-word boundary, indicates where more of the |
|
|
]

|this address is meaningless.
L

Figure 15.

40

First Bin Format for Variable-Length Record in Record Storage Area

C

part of the same record. Each bin is
always filled before a continuation bin is
used. In the final bin, the record area
may or may not be completely used. (See
Figure 16.) The chain address in a bin for
a variable-length record must begin on a
full-word boundary; also, all continuation
bins must begin on a full-word boundary.

If a variable-length record extends into
two or more bins, the bin size must be
large enough so that all control data
fields (extracted or not) appear in the
first bin. This is because the compare
networks and routines are able to address
only the first bin.

The RSA address of the beginning of the
first record, K, (see Figure 15) is found
from the equation:

K = RSA start address + (Bin size - 4) -
(Length of the first bin record area)

The address constant indicating the
beginning of each continuation bin for a
record is found by adding BIN SIZE to the

record storage area address of the preced-
ing bin. This location is placed in the
chain address area of the preceding bin.
For example, if the RSA starts at location
12500, the extract occupies 12 bytes, the
BIN SIZE is 64 bytes, and the first
variable-length record is 150 bytes long,
then the record will occupy parts of three
bins as shown in Figure 17.

At the start of processing, a phase
assignment program chains together all bins
in the RSA, taking into consideration that
RSA may not be in one contiguous piece.

I1f the variable-length record illus-
trated in Figure 17 was not the first rec-
ord in the input data set but was placed
into the record storage area some time
after the initial filling of the record
storage area, it might occupy three noncon-
tiguous 6L4-byte bins as shown in Figure 18.
(A1l bins are the same size, i.e., 6U4
bytes.)

When a record is written out from the
bins in the RSA, the address of the next

|Record area, which must begin on a full-word boundary, contains as much of the record
J]as will fit in the bin after the chain address area has been accounted for.
|a portion cf the record area storage allotment may be unused if the end of the record
chain address.

a full-word boundary,
not contain the end of the record; otherwise this

|occurs before the beginning of the
|chain address, which must begin on
|record is located if this bin does
|address is meaningless.

L

I

I

| r T T -1
I I I | |
| | record area | a portion | chain |
| | | may be unused | address

| I | I |
| L 4 L J— |
| <-——-4 bytes——->
I

| < BIN SIZE- -—2
I

Note that

indicates where more of the

e e o — e ——— e —

Figure 16. Continuation Bin Format for Variable-Length Record in Record Storage Area
RSA
Starting
Address
(12500) 12504 12516 12560 12564 12624 12628 12674 12688 124692
5 5
Extract Record Area Chain 1 Record Chain 2 Chain 3
;LZ?_ess Data (44 Bytes) Address Area Address ?i‘;or: 'Are)c H:u;ed) Address
(12 Bytes) (4 Bytes) (60 Bytes) (4 Bytes) ytes ytes (4 Bytes)
{ £
ary
- Bin 1 Bin 2 — - gin3d —m8@8m8™ ™ ———»
Chain address 1 is 12564, the starting address of bin 2
Chain address 2 is 12628 the starting address of bin 3
Chain address 3 is not used because bin 3 is the last in the series.
Figure 17. Example of a Variable-Length Record in Contiquous Bins in Record Storage Area

Section 2:

Sort/Merge Program Theory of Operation 41

available bin, which has been saved in the
PPI area, is placed in the last location of
the bins just made free. The beginning
address of the first bin is placed in loca-
tion PPIBDSVA, which is also a part of the
PPI. This address is maintained by the
deblock and block modules used in the par-
ticular application. The bin addresses are
given to the deblock module by the block
module being used via PPI. New records are
assigned bin locations from the available
list. If a new record requires more bins
than are available, the move is not com-
pleted until enough bins are made available
by the block routine.

As a deblock module assigns bins to new
records, it uses the chaining address to
tie together bins that may be scattered
throughout the RSA. The address of the
first bin of each record is given to the
sorting module.

The sort phase move module for variable-
length records requires the:

¢ Address of the first bin of the record.

e Bin size used in the sort/merge
application.

¢ Buffer address (for unspanned records).
e Work area address (for spanned records).

e Size of the record.

s Movement of the record, i.e., whether
the records are to be moved from the
input area to the RSA (deblocking) or
from the RSA to the output buffer area
(blocking). Note that for VRE records,
record movement is as follows: from the
work area to the RSA (deblocking) and
from the RSA to the output buffer area
(blocking).

¢ Indication by the deblock module whether
or not this is a continuation of the
previously incomplete move.

VARIABLE-LENGTH RECORDS IN THE MERGE
PHASES: The buffer-to-buffer move in the
final merge phase or merge only phase
requires the location of the input buffer
from which the record is to be moved and
the location of the output buffer into
which the record is to be moved. These
moves are not in a separate module; they
are coded in-line in the particular block/
deblock module used. In the final merge
phase, variable spanned records are moved
from the input buffer to a work area and
then to an output buffer. The locations of
the buffers and the work area are required.

In a merge only phase, variable spanned
records are moved from an input buffer to
an input work area (one for each input data
set) to an output work area (one only), and
then to the output buffer. The locations
of the buffers and the work areas are
required.

13332 13336 13348 13392 13396

| — T - T T 1

| | | 12692 |

| tree | extract | record area | chain |

| address | data | (44 bytes) | address |

| (4 bytes) | (12 bytes) i | (4 bytes) |

L 4 [l L |

< Bin 1 >
12692 12752 12756

r T 1

| | 12948 |

| record area | chain |

| (60 bytes) | address |

| | (4 bytes) |

L L i |

< Bin 2 >
12948 12994 13008 13012

r T T 1

| | |end of |

| record area | unused | chain |

| (46 bytes) | (14 bytes) | address |

| | | (4 bytes) |

L L L J

< Bin 3 >

Figure 18.

42

Variable-Length Record Not in Contiguous Bins of kecord Storage Area

This section describes the functions and
structure of the sort system interface and
each of the five phases that make up the
sort/merge program. For a sorting applica-
tion, all five phases are used, unless the
intermediate merge phase can be bypassed,
as explained under "Overall Flow of the
Sort/Merge Program" in Section 1, and as
shown in Chart 10. (Charts 10-73 are at
the end of Section 3.) For merging appli-
cations, only the definition, optimization,
and final merge phases are used.

At system generation time, four load
modules are produced: two (IERRCO00, alias
SORT, and IERRCB) for the sort systemn
interface and one each (IERRCM and IERRCZ)
for the definition and the optimization
phases.

For every sorting application, the
object modules required for the sort,
intermediate merge, and final merge phases
are selected during the execution of that
phase.

Provisions are contained in the sort,
intermediate merge, and final merge phases
for inclusion of user routines at program-
modification exits. For the phase having
the exit, the linkage editor includes the
user routines in the load module. When
proper specifications are provided on the
MODS control statements, link editing does
not occur. (See Appendix A for the various
modification exits.) The data areas used
by the assignment program are functionally
related to all assignment program object
modules and, therefore, reside in main
storage during execution of the assignment
program.

Sort System Interface

The two load modules (IERRCO00 and IERRCB)
in the sort system interface perform the
following functions:

The IERRCO00 module requests execution of
the definition phase, linkage editor when
required, and IERRCB.

The IERRCB module:

1. Requests execution of the optimization
phase.

2. Loads IERRCV and branches to it.

3. Returns control to the control program
upon termination of the sort/merge
program.

Section 3: Program Organization

Definition Phase

The definition phase consists of a control
module (IERRCM) and a set of sequentially
executed modules. (See Chart 20.)

The modules in this phase:
1. Read and interpret control statements.

2. Obtain information from the operating
system's control blocks and tables
(TIOT, UCB, JFCB, and DSCB).

3. Determine bin size for the record
storage area.

4. Calculate the blocking factor (B) for
intermediate storage devices and the
number of records (G) that can be
sorted at one time for sorting
applications.

5. Determine if there is enough storage
available for a merging application.

6. Produce lists of user routines to be
link edited as specified on the MODS
statement.

Optimization Phase

The optimization phase performs the calcu-
lations needed to optimize the execution of
the sort/merge program for a given
application.

This phase consists of a control module
(IERRCZ) and a set of sequentially executed
modules. (See Chart 30.) Where one of
several modules is used, this phase deter-
mines which module to use, based on data in
the phase-to-phase information area.

The modules in this phase:

1. Expand the phase-to-phase information
area.

2. Obtain information from the operating
system's control blocks and tables for
a sorting application.

3. Store information about intermediate
storage devices in the phase-to-phase
information area for a sorting
application.

Section 3: Program Organization 43

4. Generate the extract module, if
required. (The extract module is used
to optimize record comparisons in the
sort, intermediate merge, and final
merge phases.) The extract module is
required when modification exit E61 is
used or if the control fields in the
data records contain anything other
than binary data on byte boundaries
and/or character data.

5. Generate the equals module (similar in
function to the extract module), if
records contain more than one control
data field and the extract module is
not generated.

6. Optimize the usage of channel confi-
guration in order to provide the maxi-
mum overlap of input/output
operations.

Sort Phase

The sort phase (Charts 40 through 44) per-
forms the initial ordering of the input
records. This is a one-pass phase (that
is, each record is processed only once)
that arranges the records of the input data
set into ordered sequences. The sequences
are written on the intermediate storage
devices according to a predetermined dis-
tribution procedure.

The sort phase contains a load module,
assignment modules, and running modules.
Initial entry to the sort is to the phase
control module IERRCV. This module
requests the execution of the appropriate
sort phase routines as directed by IERRC6,
and the load routine IERRCY loads these
modules into main storage with the phase-
to-phase information area. Each of the
assignment routines is brought in and
executed by the load routine one at a time.
After all the assignment routines have been
executed, the load routine deletes the last
assignment routine and branches to the
first running program which is already
loaded. The first running program deletes
IERRCY9 and actual processing of records is
begun.

SELECTING MODULES FOR THE SORT PHASE

Module IERRC6 checks PPISW1 in the phase-
to-phase information area to determine:

1. The type of device to be used for
intermediate storage.

2. The sequence distribution technique
chosen by the definition phase.

uy

3. The presence of user modification rou-
tines for exits E15, E16, and E25.

4. Whether or not the input or output
will contain spanned records.

IERRC6 sets bits in WSWITCH to indicate
its findings. It then ORs WSWITCH into
each entry in TBLPH1RN, a table of phase 1
running module masks. A result of all ones
indicates that the module is needed for the
sort/merge execution. IERRC6 stores the
last three characters of each necessary
running module in the phase-to-phase infor-
mation area and sets up a load list of user
rodification routines for phase 1.

Assignment modules are selected in the
same manner using TBLPH1AS, a table of
assignment module masks, and a load list of
the necessary assignment modules is
created.

Referring to the load list and the
phase-to-phase information area module
list, IERRC9Y9 loads the modules.

When messages are to be printed in the
sort phase, the conditions are detected by
the assignment and running modules and the
actual printing is done by the control
module IERRCV. If the sort is terminated
for any reason, control is given to the
phase control module which, in turn,
returns control to the sort system inter-
face module IERRCB.

The assignment modules initialize the
sort phase. Their functions include:

1. Setting up the sorting tree structure,
data control blocks, and input/output
blocks.

2. Orening the data sets.

3. Modifying the running-program modules
to adapt them for a specific
application.

The actual processing of the records is
performed by the running-program modules.
These modules bring records into main
storage, sort them into ordered sequences,
and then write these sequences onto inter-
mediate storage devices.

The main functions of the running pro-
grams in the sort phase are as follows:

1. Initiate input operations.

2. Deblock records and pass them to the
ordering network.

3. Sequence the records using the
replacement-selection technique.

9

4. Block the records when received from
the ordering network.

5. Initiate output operations.
6. Close the files on detecting EOF.
7. Check record totals.

The sort phase after performing the initial
processing of the records passes control to
IERRCV which initiates the loading of the
intermediate merge phase.

The input of records is controlled by
the control program's data management rou-
tines, and the output is controlled by the
sort/merge program. (Refer to "Record
Movement in the Sort/Merge Program.") The
sorting method used to order the records
into sequences is a version of the
replacement-selection technique.
"Sorting Technique.")

(Refer to

A set of decision tables (Charts 42
through 44) shows the sort phase modules
used for a given application.

Intermediate Merge Phase

The intermediate merge phase (Charts 50
through 53) combines the short sequences
produced by the sort into a lesser nurnber
of longer sequences. Each pass is capable
of merging up to 16 previously sorted reco-
rd sequences. This phase makes as many
passes as necessary until the number of
record sequences resulting from a given
pass is equal to or less than the merge
order.

The intermediate merge phase contains a
load module, assignment modules, and run-
ning modules. Initial entry to the inter-
mediate merge phase is to the phase control
module IERRCV. This routine requests the
execution of the appropriate routines as
directed by IERRC7, and the load routine
IERRCY loads these modules into main
storage with the phase-to-phase information
area. Each of the assignment routines is
brought in and executed by the load routine
one at a time. After all the assignment
routines have been executed, the load rou-
tine deletes the last assignment routine
and branches to the first running program.
At this time IERRCY9 is deleted and actual
processing of records is begun.

SELECTING MODULES FOR THE INTERMEDIATE
MERGE PHASE

Module IERRC7 checks PPISW1l in the phase-
to-phase information area to determine the
characteristics of the sorting application

and sets bits in WSWITCH to reflect the
characteristics. It then ORs WSWITCH into
each entry in TBLPH2RN, a table of phase 2
running module masks. A particular module
is needed for sort/merge execution if the
OR operation results in all ones. IERRC7
stores the last three characters of the
module name of each required module in the
phase-to-phase information area and pre-
pares a load list of user modification rou-
tines to be used in phase 2.

Using TBLPH2AS, a table of phase 2 assi-
gnment module masks, IERRC7 selects the
required assignment modules and places
their names in a load list. IERRC7
branches to module IERRCY9, which refers to
the load list and the phase-to-phase infor-
mation area module list, to load the
modules.

When it is necessary for messages to be
printed in the intermediate merge phase,
such requests are passed from the running
and the assignment modules to IERRCV which
controls the actual printing. When this
phase is terminated for any reason, control
is given to the phase control module which,
in turn, returns control to the sort system
interface module IERRCB.

The assignment modules initialize the
intermediate merge phase. Their functions
include:

1. Setting up the buffer areas for the
rerge modules.

2. Generating data control blocks and
input/output blocks.

3. Opening all the intermediate storage
data sets.

4. Modifying the running-program modules
to adapt them for a given application.

The actual processing of records is per-
formed by the running-program modules.
These modules bring records into main
storage, merge the existing record
sequences into longer sequences, and write
the resulting sequences on the indicated
intermediate storage devices.

The main functions of running programs
in the intermediate merge phase are as
follows:

1. Initiate input operations.

2. Deblock records and pass them to the
merge network.

3. Sequence the records using the binary-

insertion technique.

Section 3: Program Organization 45

4. Block the records when received from
the merge network.

5. 1Initiate output operations.
6. Close files on detecting EOF.
7. Check record totals.

8. Determine if another intermediate
merge pass is required.

After reducing the number of sequences to
less than or equal to the specified merge
order, the intermediate merge phase passes
control to IERRCV, which loads the final
merge phase.

The input and output of records is con-
trolled by the sort/merge program. (Refer
to "Record Movement in the Sort/Merge Pro-
gram.") The sequence distribution methods
used to form the output record sequences
are the balanced direct access technique,
the crisscross direct access technique, the
balanced tape technique, the polyphase tape
technique, and the oscillating tape tech-
nique. (Refer to "Sequence Distribution
Techniques.")

A set of decision tables (Charts 52 and
53) indicates the intermediate merge phase
modules used for a given application.

When the oscillating tape or crisscross
direct access sequence distribution techni-
ques are used, control alternates between
the sort phase which produces and distri-
butes sequences and the intermediate merge
phase which combines the sequences into
longer sequences. See Charts 60 and 61.

Final Merge Phase

The final merge is a one-pass phase (Charts
70 through 73) and produces a single
ordered record sequence, thus completing
the sorting/merging process. 1In a sorting
application, this phase follows the inter-
mediate merge phase. In a merging applica-
tion, this phase is executed immediately
after the optimization phase.

The final merge phase contains a load
module, assignment rodules, and running
modules. Initial entry to the final merge
phase is to the phase control module
IERRCV. This module requests the execution
of appropriate routines for the final merge
phase as directed by IERRC8, and the load
routine IERRCY9 loads these modules into
main storage with the phase-to-phase infor-
mation area. Each of the assignment rou-
tines is brought in and executed by the
load routine one at a time. After all the
assignment routines have been executed, the

ué

load routine deletes the last assignment
routine and branches to the first running
program which is already loaded. The first
running program deletes IERRCY9 and starts
the processing of records.

SELECTING MODULES FOR THE FINAL MERGE PHASE

Module IERRC8 determines the characteris-
tics of the sorting or merging application
by checking PPISW1l in the phase-to-phase
information area and sets the corresponding
bits in WSWITCH. IERRC8 ORs WSWITCH into
each entry in TBLPH3RN, a table of phase 3
running module masks. When the OR opera-
tion yields all ones, the module is
required for sort/merge execution. IERRCS8
stores the last three characters of each
needed module in the phase-to-phase infor-
mation area and prepares a load list of
user modification routines for phase 3.

The phase 3 assignment module masks are
in table TBLPH3AS. IERRC8 selects the
required assignment modules and places
their names in a load list. Referring to
the load list and the phase-to-phase infor-
mation area, module IERRCY9 loads the
required modules.

If messages are to be printed in the
final merge phase, requests are made by the
running and assignment modules and the
actual printing is done by the control
module. If this phase is terminated for
any condition, control is returned to the
phase control module, which, in turn,
returns control to the sort system inter-
face module IERRCB.

The assignment modules initialize the
final merge phase. Their functions
include:

1. Setting up the buffer areas for the
merge modules.

2. Generating DCBs and IOBs.

3. Opening the input data sets for a
scrting application.

4. Opening the input data sets for a
merging application.

5. Modifying the running-program modules
to adapt them to a given application.

The actual processing of records is per-
formed by the running-program modules.
These modules open the output data sets,
read the sequences into main storage, merge
ther into one final sequence, and then
write the combined sequence on the indi-
cated output device.

9

<9

, The main functions of running modules in
‘ the final merge phase are as follows:

1. Determine if this is a final merge or

merge

only operation.

2. Initiate input operations.

3. Open the output data set.

4. Deblock records and pass them to the

- merge

network.

5. Sequence records using binary-
insertion technique.

6. Block

merge
7. Close
8. Check

records when received from the
network.

files on detecting the EOF.

record totals.

After the final merge phase has produced a
single ordered record sequence, control is
returned to IERRCV to terminate the job.

For a merging application, record input
and output operations are performed by the
control program's data management routines.
For the final merge of a sorting applica-
tion, the sort/merge program handles the
record input operation, and data management
is used to handle the record output opera-
tion, as in a merging case. (Refer to
"Record Movement in the Sort/Merge Pro-
gram.") The record sequences appearing on
the final merge phase input devices are
combined into one final sequence in a
single merge pass.

A set of decision tables (Charts 72 and
73) indicates the final merge phase modules
used for a given application.

Section 3: Program Organization 47

Sort/Merge Program Flowcharts and Tables

This series of flowcharts describes the
overall organization of each individual
phase and the flow of control from one
module to another module. Modules are
represented by subroutine blocks in these
flowcharts. The namres used to identify
these blocks are the same as the module
names used in the program listing. Where a
number appears in a block, it indicates a

48

reference to another flowchart in the
section.

Each module name consists of six charac-
ters; the first three are always IER. For
the reader's convenience, the module names
in the flowcharts are mentioned by their
last three characters only.

Chart 10.

‘tttn EE TS

LIN *
‘AT” CH "OR XCTL *
*

R
AERAEEA AR AR

tt“thtt'ol»ttt#

* iE *
LR R R LR RS S

Ry e
’D‘FINITAON 20+
F_t_ G0 ¥
» ﬁLhU CONTROL #
*STATEMENTS AND *
DEFINE PROGRAM #
AEERRERERRR R R A AN

v
ttt»tPQtttttttttt

*RCO

e %k t
* LINK TO *
* LINKAGE *

* DITOR
AR RERRRRRR KR A ARk

SRk kkhk &
* I.I“h«r\&t *
OR

ttt*‘ﬁztt&tvtt‘tt

*2CC

ok ke kR Xk ¥
* XCTL TO *
* RCp *

* *
LR T L T T T Y

ttt‘tﬂzttttt‘tt“

*RCB
Bk k kK ko

t
*
*
*

HASE
tt*tttt*ttt‘tttt*

KOOI TN IS E kAR

‘OPTIMIZFTION 30%
* o *_*
* *

»

*
*

A
tt:t:tttttttt»tct

v
LR 3
*.C3 o
*

X

NOTE~

n
or

NUMNEER IFN THL
A I'ROCLSSIN

Overall Control of Flow in the

ALﬂd(hAhT CR_DECISION TABLE

MODUL: IS USEL

ERER]

EE R

o ..
*ISORT OR MERGL.
i 0

tt#‘#b}ttttt%%ttt
*RCV

ok _k_k_k_¥_ ko ‘
PASL COGNTROL TO#
+ SOKT PHAS: *
*

*
AREREERE AR R K

v
FEERCE JRRER KRR KKK
T SORT 4o*
L e

.. iG .
.*0r SE(GTR *, NO
*. TdAN FRG
*. ORDFR .
., .

o, L
* YES

v
FAEEFL TR R AR AR RS
*RCV M

D s e
S_CONTROL TO*

INTERNMEDIATE *
* MEKGE PHASE *
R R R R Rk

I ENEE T LTS T
I I 50%

———%

MLKGE
SEQ INTO *
LONG STIu *

ttt!tt*t“‘t‘t‘}ﬁ

"Ai()NIN(
FOR Tt} GPFKATION.

UPFPEK KI(HI—“M”! Cfnle

WHICH

EREAAGURE R R A aray

KN *
t¢¢tt‘t¢tt¢tttt¢t

v
ARk LRk R Rk Rk Rk
*RCV *
Kok k_k_k_k_ kA _*

tt‘tttt*t!tt*tt‘t

\%
N]
+RCE *
F e e)
* RETURN TO *
* HIGHLK TASE *
* OR PROGKRAMN *
R e

v
4$¥4hu¥¥#$t***t
* AIGAER L:VE
*I'RCGRAM OKR ﬂb”ﬁ
* OR JOH SCHLD #
LR R E S SR RS LRSS

Sort/Merge Program

II\ ING AND
JCROSS HOrT

<

FRFRRCSERF KRR RR Y
*

Pnhh“(l A
FCUENCE

*
*
*
*
*

*
R s

T* (ud.rrk *

. ‘{Lu

v
FRARK]Se e bR AR
*

* MERGE *
* a1 UEAT LEVID *
* *
*
»

*
ARERERE KRR R AR A

EE R T R]

* +
* OMVITiIZi *
* FMERGING *
* *
* *

(RS EEE RS RS RS
*r k¥
*
->% Fu
* *

LR

Section 3:

*
* -
*

Program Organization 49

Chart 20.

FREADTRE RN AR
* SCRT SYSTEM *

* INTERIACE D
* o)

*
EAKEERERRRAR RN

LA VAL L LY
*RCl *
Kok kR k%

>* BRANCH AND *
*

NK TO *
* AQQ‘LE 8CM *
FRRERRRRRERRR R

Overall Organization

Definition Phase

t‘tttA}tttttt.t{t
8CM

‘—t-.-‘-‘-‘-‘»t-‘
>*% PROCESS PARM *
* FIILD CR SORT #*
*PARAMETER LIST *
LR R L T

*

ANCH AND *
‘LINK Tg MODULE :
*

““"“t‘*‘.‘t‘

EREIOICTI oo RRRRES
RCC

ATEME
ARRRERFRERRAR

LR AINERT TR ST LY
*

* BRANCH AND
‘LINk TS MODULE ‘

"“‘tt't‘tt‘t“t

RIS E R RN
*RCE *

* INTEKPRET *
* SCRT OK MERGE *
* STATEMENT

ARARRREARRR AR AR

t‘titFlt#!!tit‘tt
*RCly
O_t-‘_'_‘_t—‘-‘_'
NCH AND *
‘LINK TO MODULE ’

RCG
!ttttttttt‘#“t!t

v
ARRRAGIARERR R RN RN
G *

L et
* INTERPth
*

* STATEN)NT

*
*
*
*
EA R R R L R R R

FEERRH] AR R RN
*RCP *
btk k%%
* EBRANCH AND *
$LINK TC MODULE *

FREREERE R R AR

ARRRRTIRRR R AR RN
*RCH *
L e et I]

* INTERPRET e
* MODS *

* STATEMENT *
R

50

FOOVAC 2000000 D %

*
e b k%
* BRANCH AND *
‘LlVK TO MODULE '

19
n.ntt.ttt.ttttt..

AARRAD2RR R R AR RN RN
#

‘CALCULATE g AND'

‘CROSa D A SOKT ‘
FERERRRRRRRRRRRRR

EARRRE2RRR AR R AR RN
*RCM *
Gk Kk *

*_
-=->% BRANCH AND *

*LINK TO MODULE *
* *
L T T P T)

LR RS E R R]
*RC1 *
ok k¥
* GET INFO FROM *
*SYSTEM CONTROL *
*BLOCKS, TABLLES *
nattttgi.:atna.na

ttttththttt“tt
*RCM

t—!-‘-t—t-t-‘_‘_‘
* BRANCH AND *
:LINK TO MODULE :

LR e

\
FRERRR R RN
*RC2 *
F I)
*DETERMINE SIZE *
OF FXTRACT RUN-#
* NING MODULE *
AR AR AR R AR AR KR

v
AAERRT2RR AR AR RN
M *

-w

ULE RCN
t‘ttttt“t“‘t“t

* tttt:tnt

t
*
*
*
*

LEEE]
* By *
* *

Ak

¥

BU *,
« ¢DIRECT

‘ *. DIRECT
Iss *. ACCESS .*ACCESS SCKT
CRO S SORT ¥ mmmm== = [TAPI SON"
* 4. MERG
Tk, . ¥ *.
., L *
* NO * TAPL

\
t“‘.c}‘t“t!ttt‘
*RCM
n_t_n_n_t_t_‘_:_‘
* BRANCH AND *
:LINK TO MCDULE *

*
ARERRRRERRR AR RN

HERRADIRRRE R R R
*RCK *
L e P e .)
CALCULATE B AND

CED '

‘!!"'...t“““‘

HERRRHIRR AR R R RN
*

ER R e L

AERATIHRRRR R AR
* SOKT SYSTEM *
* INTERFACE *

* RCO *
RARERE AR RN

11.

ERERACUSRSAR I LY
*KCh

:_‘_n_:_:_:_a_:_‘
* BRANCh ANL *
*LINK TO MODULL *

* RCS *
ER R L R

t‘tttbhttttttt’tt
*RCS
t_t_t_‘—‘-‘-t—‘—‘
CALCULATE *
QR *
TAPE SONT *
AR ER AR RRR R RN

-

t‘t“LSQQ“t"‘.’
*RCM

‘_‘-‘_!_‘_t_‘_t_t
* BRaNCH AND *
*LINK TO MODULL *

* RCL *
EEEERRRRE AR R RN R

““!Dﬁ“““‘#‘l
*RCL

'—‘-t-‘-t-‘—t-‘_t
* CALCULATE _ *
*STORAGE, NE:LDED #
* "FOR MEKGE *
LA R R R SRR R R L)

---------- >
o e
E3° s,
.* MODS TO .
*. BE _LINK #---4 NOTLS-
. EDITED .
. 1. MODULES RCF (BLOCK E1), RCG (BLCCK G1), AND KCn
L (BLOGCK J1) USE 1HE SCAN MODULL TO SCAN'CONTKOL
* YE3 STATEMLNTS, MODULE RCD USES THE MESSAGE LiODULL,
RC3, IF NECESSARY.
2. THE LEFINITION PdASE USES MODULE RCC FOR INTRA-
PHASE DATA RLRFERENCES.
3. MODULr RCM (BLOCK B1l) REFLRS TO AM1, WnICH IS
:;E&'FJ"“"*"‘ CREATED WdEN THE GPERATING SYSTEM 15 GENFXATEL.
*
‘—*—‘-t-‘—t—‘—'—‘ 4. AM1--SPECIFIES STORAGE SIZE FOR SORT/MEKGL PRO-
* BKANCH AND * GRANM AND PRCVIDES OPTION TO PRINT MESSAGES.
‘LINK TC MODULE ‘
RCP 5. MODULE RCC_(BLOCK Cl) USES MEGSAGE MODULE RCF,
ttttttt‘ttititi‘t IF NECESSARY.
6. MODULE RCE (BLOCK E1) USES MESSAGE MODULE RCF,
IF NECESSARY.
7. MODULE RCG (BLOCK G1) USES MESSAGE MODULF RCW,
IF NECESSARY.
“*“G3"““"" 8. MODULE RCH (BLOCK J1) USES MESSAGE MODULL RCX,
*RC IF NECESSARY.
L .-._._‘—‘—‘—‘
* FORM MODULE #* 9. MODULhS RCI, (BLOCK F2), RC2 (BLOCK H2), RCN
* LIST FOR * {BLO K2), RCK (BLOCK H3) RCS, BGB, AND RCP
*LINKAGE EDITOR * (BLOCh Gb) 'USE MESSAGE MODULE RéU, 1f NECESSA-
EERERERRRERR R R NR
MODULE RCS (BLOCK D4) USES MODULE RCk FOR SUB-
<= ROUTINES AND DATA.

THE _CDEFINITION PHASE USES THE CONDENS?D PHASE-

*KCM lNTEkFACE DULF RCC. THE ONDENSED PHASh TU-
bbb e PHASL lNFbRMATlON AREA IS EXPANDED INTO Tdl
* RETURN TO * PHASE-TO-PHASE INFORMATION ARLA, MODULL RCA,
* SORT_SYSThLM * BY THE OPTIMIZATION PHASE (CHART 30).
* INTERFACE *

Chart 30.

NOTES~

1.

~

ThL OP IPIZA ' 10N PhA
ASE-TO-PH

INFORMATION AKED FOF

TNTER-THASL DATA REFER-

MUDULL RCl TRAYJF‘R In-

FCRMATI FRi ON=—
DLNSED PﬂubF TO PHPSE IN-
FORMA ION AREA INTO Thxz
PUASE-TO-PHASE 1NFOR-
MATION AREA, MODULL RCA.
THE CONDENSED FHASE-
TO-PHASE INFbRF¢TIOh
AxEA 1§ RESIRVED

Sle sY !

GuLe
FATTe "9y
NITION Biiadt " (CHART

THE CPTIMIZATION PHASE
USES il SSAGES MODULE
RCU, IF NECLSSARY.

FREALD A REA AR
* SORT SYSTEM *
* INTERFACE *
* CB *

FEERREEERBAABASE

t*‘tththt#tt‘t#
*KCZ *
Aok Rk k%%
3RANCH AND LINK#
* TO MODULE :

* 5
FERERR R R KRR E ARk

ttttth#.t#ttt‘tt

*RC1
Aok kR _ K '

* FXPAJD-PHASE- *
* TO-PHASE *

* INFO ARLEA *
RAEERER R R R

P N
*RCZ *
E_k_ kL k kK k%
URANCH AND LINK
* 10 MODULE *
*

* RCG
FERFREERETEEERE RN

LR R RS I TR TSR 20
*RCH *
LR e S
* GET INFC FRCM *
*SYSTLM CONTROL *
*BLOCKS, TABLES *
Arsesentateseanes

¥,
G2 *.
_t *, Rk
TAPE_* *
+IbIrcer A(LESS.*~--—>‘ BS *
*. OR TAFF % *
*V‘t

Tk,
‘DIRECT LCCESS

AR AR KRR R AR
*RCZ *

Aok F_k_k_k_¥_*
8RANCH AND LINK#
* TO MODULE *

* RCu *
EREERRRRE KRR R AR

v
FEERRT2NR AR KRR E

*
Ak kK _k_k_F_

*_
* CHECK *
* T ACCESS *
* CRPACITY *
*

AEREERAR DR RN

LA R
* *
* LB o*x
*

EEE LY

Overall Organization Optimization Phase

Rk
* By *
* *

R AE

‘*t‘tgutttittttt#
*RCZ

b b ___ ‘
HKANCn ANL LINK#
* TO MODULE *

* AO1 *
FEEEERERERERRRERS

%tti%Lutit#*t#ttt

*A01
t ok z t » LI a

*
‘ DIKPCT ACCL(’ ‘

tt:ttttt:ttttz‘tt

5.
* . NEITugk .+
* *
*
¥

LR RSN EEEEEE SRR]
*RCZ *
Kk _k_d_k_k_*__ ¥
BRANCH ANL LINK
+ TO MODULE *
* *
RERE XD AR F R R RN T Rk

\
tttttuutttttttttt

*A0OL
Eok_ Ktk Kk :
* GENERATE *

*EQUAuo RUNNING #
ULE *

4tttott$¢ttz¢at‘t

FERER U kR E R R R EE R
*RCZ *
F s A
* RETURN TO *
* SORT SYSTEm *
TERFAC *

*

FEERRRERERR LR RRH

S LN L T Y
* SORT SYSTEM *
* INTEKFACL *
* B *

RCB
AEERERERER RN

Section 3:

tttttBStt#tttt#tt
*RCZ

Rk Bk ko ;
BRANCH AND LINK
* TO MODULE *

* AO2 *
AR AERRRER R A AR AR

tit#tcs‘#ti*ttttt

*A02

‘*4**““
* SET UP *
. TARE *

. TABLE *
LR RS T R Y

v
KEEIIESEIP L RN KRS
*RCZ *
ot s _t__x_%_%
BKANCH AND LINK
* TU MODULLE *
* *
LR EE RS E RS L S

v
‘tt‘tGStt‘tttt#t’
*A0M
L
* GLNERATE *
EXTRACT RUNNLING#
* MODULE *

ok t

HERERKERREER AR RS

Program Organization 51

Chart 40. Overall Organization of Sort Phase for Balanced Direct Eccess, Polyphase Tape,

and Balanced Tape Techniques

NO!
1.
AERERlOCOOO o kR
* * 2.
* PHASE CONTROL *
*) *
k¥ kb kR kkkkkk k%
3.
u.
\Y
KR AACLEkehkE kR kR
*RC6 *
F_ ko k kK _K_k_% 5.
* DEFINL SC *
* FHASE *
* * LR L
LR * *
* L2 *
* *
+hkk 6.
l
Lk, 7.
D2 *.

kR ERDL R AR R R R A E
c9 *

ko k_k_k_k_k__* .t
* LOAD FODULES *
* FOR SORT

NOKE
INPUT

*
* PHASE *
EAEEERRRFRAA AR RS

v
R
DE BLO(K
_ —

—*_
GL

A
RECURD
AERARFRRRRAES

43
% *

* *

v
PFL
Fi *, SR E R L
* . *DEHLQCK 43#
* FNL OF * *_ —e_¢ ift—t
INPUT DATA —-—=D% tIVt * -
, SLT . * INP RE COR‘ *
*. - * *TO h[lLACLVtuI .
* * EEEEAERF R AR AR AR
* YLS

FEEERGLEEEER R R AR
GA *

FoE_ Kk _k_k_k_*

* CLOSE *
* INPUT *
* DATA SET(S) *
FRRAERERERRS R AR

FakkkHlhhF ke s

* SORT *
* _k_ k. _k_k_ % ¥
--% MODIEY TKEE.
MOVE LAST *
s ERPGRbRT.
LRSS RS RS 2
EEE L]
* *
* GY *
* *
LR R

“t*‘thty'Otttt**t
WRITE 42
kR _ ¥k _F_k_ k¥
PLACL BLOCh
ON OdTrbT

tttt‘t#att*t‘

* *

52

TES-
A NUMBER IN THE UPPER RIGHT-HAND CORNER OF A
PR OCES)X\ BLOCK REFEKS 10 Tn. E FLOWCHAKT OR LECLSION
TABLE SHOWING WHICH MODULh 1S USED FOR Thk OPLRATICON.
THE SORT PHASE USES TLF FHASc-TO-PLASF INFORMATION
AREA, MOLDULE RCA, FOR DATA REFERLNCE.
THE SORT PHASE USES MESSAGE MODULE KMA, IF NECESSARY.
THE SORT MODJLE (BLOCh F3) USES THE FQUALS MGDULE 1F RECORLS
HAVE MORE THAN ONE CONTROL DATA FIELD AND EXTHACT IS NOT USED.
THE SORT MODULE (BLOCKR F3) USES THE [XTKRACT MCODULF (AITd :XIT Eel)
IF US MODIFICATICNS TO NLCORL, ARE MADE BEFORE GOPTING,
OR IF KFLORDu CONTAIN OTHER THA
LOGICAL DATA ON EYTE MOJ\DH\I‘«. OR
(Z) CHARAC1ER DATA
THE SEQUENCE DISTRIBUTICHN #CDULE FOR RALANCED D1RECT ACCHSS (BLUCK J4)
USES THE WRITL MODULE AS A SULROUTINI .
KCV IS GIVEN CONTRGI BY RCB. KCV KoFFPS5 CONTROL UNT1L Tl
TASK I COMPLETED. IT THEN RETURNS TO RCIs WHICH
GIVES CONTROL TO THE NEXT TASH
--------- 2. USER LXITS-- E15 FROM THl OELLOCK MCLULL (SIOCK F2)
E16 FROM Tnk DEBLCCK MODDLE (SLOCK F2)
E17 FxOM MODULL RPI'C, AnlCcH IS CALLEL HBY
"UD‘IL] RCV (BLOCK HS)
F&1 FROM GOKRT MCLULL (BLOCK F3)
A%
EERRKFIRRERR RN A AR
*SORT u2x
A S _k_K_%
>#* UETZRMINE *
* wINhtR t
RECORD ETEE)
t!ttvttvtt‘tttt)t * *
* Gy *
* *
]
\%
-k, v
G3 *, EEEEFRGUEFRFERF A RS
.+ Is *, WRITL 42
.* WINNER *. YIS R e e A
*. IN NEW B i > OUTPUT
.SECUENCE . * CURR.NT *
*, ¥ SECJENCL
*.ox LYY PR VL T
* NO
v v
o*. ¥
H3 .. iy * . tt‘t‘hi#'#t't*t‘t
.* 15 * *. ‘RQV
.* OUTFUT ALL ¢ *
. BLCCK KRECORL.E
*. FULL . *. CSOKRTel .
¥ - *, . ¥ *EXED ING S
. L X, L * t‘t#t*t't‘*t‘tttt
* NO * NO

FERERTIH AR AR
4

AEEERTO KA KR ERER N
*BLOCK T 42+

FREATSRRRE R AR R S

[
*

e e) ok %k k4 *
>* PLACE ~XVNtR * *+ DETLKMINE ¥ + WNEXT PHRASE *
* RECO * * NbaT OUTKLT ‘ * *
* OUTlUr LLbLk * * FEERARREF KRR A AR

AR R AR RIR KRR AR t“t*ttv‘#t*‘t‘*t

v
LEE L *kkk
* * * *
L2 % * L2 o
* * * *
EEE 2] LR R

Chart 41.

ttttpz#t#ttqttt

* *

* PhASE CONTROL *
*
ttttt‘tt‘t‘t‘t‘

t“‘tc2¢tt#$#“
*RC9

0 ‘_t_t_t_t_t
* LOAD RUNNING *
: PROGS AND APG :

AEERREE AR RR R

\Y
AEERAD2HRERR RSN
*

* PHASE *
* LAYOUT *
* CALCULATIONS #
T e T T

ERERREDRRE KRR KK KR
*RCY *

kKK
JFLETL n9h AND ‘
LOAD

) NEXT
ASSIGNMENT RTN ‘
#antotottotvt‘t“

“‘ttFZthtt‘at“
‘SOKT ASSIGN 32:
* RLPLACLMENT *
* NETWORK *
* ASSIGNMENT *
FEERRRRER R RN

\
SEE
NOTE 5

ARERRG R AR R R
UOVE ASSIGN 4u

%% — k%
‘ GkNERATOR *
* (FIXFD) OR *
*ASSIGN VAR.REC *
FRRRR AR R R R R

SEE
NOTE S5
AR R R R AR AR R
*BLK ASGN 43%
kb kR _k_R_ ¥
‘ SET OP *
* FOR *
* KUNNING *
AR R R R R AR
v
SEE
NOTE 5

EEERET 2O O Rk Rk k
*SEQ DIST 42%

kbbb _k_k_ %
' MODIFY *
* rUNNING *
* ™OCULES *
AR RERR KRR R R Rk

|

SEE

NOTE 5

ERR R AR R Rk
oCB, IOR Gu
‘ *_ ‘—._l-.,‘,. *

‘ DATA SEF INFO *
*

AR RRRR AR AR R R R

e

Sort Phase Assignment for balanced Direct Access, Polyphase Tape, and Balanced

Tape Techniques

HOTES-

1. A NUNHER IN THE UPPER RLIGHT-HANu CORNER OF A
PROCESSING BLOCK REFLxS TO THE FLOWCHART OR DECISICN
R THl OPERATION.

TAPLE SHOWING WHICH NMCDULE IS USLED FO

2. MODULE AMA I3 AN AREA ST ASIDE FOR SOKRT PHASE WESSAGES.
THIS AREA IS ESTABLISnED BEFORE EXECUTION OF MNOLCULE APG.

3. THE DCB GENEXATION NMODULLS (BLCCK K2) USE THE PARAMETER AREA,
AP1, CONTAIN THE ADDRESSLS GF GENERATED LCES
AND' DCB CPTIONS.

4. ThE OPEN MODULE (BLOCK G5) ANR {HL WRITE ™CDULE (BLOCK G3)
Pl.

REFER TO THc PARAMETEr AREA,

5. AN INCOMPLETE LINE BLETWEEN MODULE BLUCKS INDICATES THAT
EACH TIME AN ASSLIGNMLNT PROGRAM 1S LOADED AND EXECUTED,
CONTROL RETURNS TO OLULk RC9.

6. MODULE APC (BLOCK GS5) BRANCHES AND LINKS TO MODULE CHK, WHICH

ISSUES CHECKPOINT MACRO INSTRUCTIONS, IF REQUESTED.

E11 FROM MODULE APC (BLOCK D2)
E18 EROM L[CB, IOB GFNLRATOR (BLOCK K2)
E19 FROM DCB, ICB GENERATOR (BLOCK K2)

-

USER EXITS --

EERREGIERRR KRR KN RGO Rk Rk n##n#gs####t‘t‘t‘

ARITE A(SIGN UZ *DBRLK ASGN L3 *APC

L e . kKKK _k_k_ % Mok k ok ke kK 1
->SEc* SET UP FOR ‘----> SiL* SET UP FOR #--—--> GEE* OPEN *
NOTE* RUNNING PROG * NCTE 5% RUNMNLNG * NOTL ¥ DATA ‘
5 ¢ SET IO LINKG # * PRCGRAN * * FrT

L T R T Y LR o‘ttttt#t#t‘#“oa

v
TEE
NOTE 5
aonnoh5ontttvt¢0n
*ADM
O . - '
* SK1P
* RECORD 0

* UFTION *
LR R R R R R

v
ERERR TSR R R KRR RRRR
*RCY *
Aok Kk kb
* BRANCH TO *
* FLIRST RUNNING *
* MODULE *
R T T R

RRR KR SRRk R F Rk
LOXT PdASL *
UNNINb *
*

LE
tt“‘ttt‘ttttta

*ww

Section 3:

Program Organization

53

SCRTING

Sort Phase Decision Tables

Chart 42.

III“IIJIII'IJ1IIJ.IIIIJII'JI'IJI||JIIII1I|J T T e e e T N T e e T e
o]
[S)] | ~
L~ n =
(=3 n 0 =
o B - O0Om
oo H M N
= S
() f——r——t——— e — e — e ——]
~ . =< x| < bl | m
[oTRV)] | T | bl
-~ I Q| M
i e] 1A
=R Z g FP—t————t———t—— e ——
S0 - | A
SwW o H =l Ww >
|||||| ‘e ——e— — e — e — — e — e — — =l g |-~
— x milAa
o © B e e e e e e
18] Q [}
+ 2] Q k]
= =] ©
O M =
0own P e e — e
+ < = > bl Q
Q®mo —
— T g [} 3
o M 0 < L MM 122 1 €&
(=IO) Ol A 2Pyt Ry Ry A
e S | <K | <K | OO
NwH O e e e e s e e e s e e i e e i e e
||||M|.?|||.?|||T||1|||.?||...T||.T||.T||1
)
o
=]
[}
l
|
Q | > > b k]
=0
Q o
T M
o~ o [T e —— e — e —— e —— i ——— ———
M O |
o O |
> X [~
|||||| - e e e e — e e] nunx
S | | 0N n- b
+ | I | ~ O m
o | | | H oM
= I | | (SR
() | | e e e e e e e e e e —]
~ 0 | 1 | o
| T =< > | > | =< —~ &
T M e Q
(Ve =z O+ >
w0 @] 0w o o
A D I H | O—H J
X I H p—m——tr e e e e e e = e —
|||||| +————r e ————— — e — e e e e — D ()
Q | | | M ~0n Qo
0] | | ! - O bl
1] | | x oOc m
fe] B4 =P eT 2]
[or] > > B N p————t————t————— e —— - — —
>N = m
—~ a >
O m M |
A 3] Lo] A |
|||||| e e e e e e e e e e e e] QO | O bt e e e e e e e e e e
| Q | = QO | M | |
=} (] | =] =] 9] | > |
Q 1] o) (1] o | |
(O] S (o [a] | |
2 DO M o7 tel =< bl =< = .m po e e e e e e e e e e e e e e e oo
508 ™0 0 [} | |
HNOooH [o7] x| |
OH4LP C0m 1] | |
e ORAH [| |
||||| ||Tﬂ||lt||1T|||T||1T||1T||1..||1T||1 ||Lr|1lﬂ||+||...1||1||||“u||17||L
|
5| = |
< [saes] QO aaQ Il oy By VY janfan} Q | |
? 1822(22 (22|22 2292|282 2 1855183155383 /5% |53
D = ZICm | X | KK | KK K| 0O
IIIIII e e e e e e e e e e e e e e et e e b — s s e e sl e e e e — — — e — — i — — i — — e —— b ——]

54

Chart 43. Sort Phase Decision Tables

DEBLOCK - BALANCED TAPE, BALANCED DIRECT ACCESS, OR POLYPHASE TAPE TECHNIQUE

] T T T T T T T h
		variable-	Fixed-length	Fixed-length			
Use	Fixed-length	length	In-line move	Multiple move	Variable	User	iNo User
	Records	Records	<256	>256	Move	Exits	Exits
L	‘1		R				
t + ——1 + + + + + 1							
Module							I
IADB		I	I				
[RDB	X		X	I	x		
t + t 1 ——t— t + + 1							
[ADC							
IRDC	X			X		x	
k t + 1 + + t--—- - 1							
ADD						E15	
RDD	X			X I	E16		
t + t 1 t + + + 1							
IADE		I			E1S		
IRDE		X		I X	E16		
t t + + + + + + 1							
IADG							
IRDG		X			X	I x	
L 1 1 4 4 4 4 4 4							
BLOCK — BALANCED TAPE, BALANCED DIRECT ACCESS, OR POLYPHASE TAPE TECHNIQUE							
r T T L] T T T T 1							
IABB							
IRBB	X	I X				x	
F t t + +-—— + + + 1							
[ABC						I	
RBC	X I i	X		I x			
5 + + + + — t t 1							
IABE							
IRBE		X i I	X	I x			
L L KN A L L L L J

Section 3: Program Organization

55

Chart 44. Sort Phase Decision Tables

DEBLOCK - OSCILLATING OR CRISSCROSS TECHNIQUE

r i - B T . T . T T T 1
| | |Variable-|Fixed-length|Fixed-length | | |
Use Fixed-length| length In-line move|Multiple move|Variable|User |No User|
g g - .
	Records	Records	<256	<256	Move	Exits	Exits
			I	[
é - i i i t t + + 8							
Module		[I I					
ADP I			1		[
L N o [N L							
r T =T T T ¥ T - 1							
aDQ				}			
RDQ	X	[[X	I [X				
o	i	i T s T					
ADR		E					
RDR	X					B16	
e— —1 t { ¢ p———t 1							
ADS	I		I	E15			
RDS	[X	[X	E16			
t t —+% t +—- t + + 1							
ADT [I	[[
RDT		X	j l X ! 1 X }				
L 1 L 1							
BLOCK - OSCILLATING OR CRISSCRCOSS TECHNIQUE							
r T T T T T T T 1							
ABA							
RBA		X			X 1 l X J		
t --+ + + + + + + {							
ABY [[I				
RBY	X		X	I		X I	
3 + + + + } + t .							
IABZ	[[: I			
RBZ	X X		X				
L L IL _j[! L L L J							
MOVE							
GENERATE DCB, IO0OB							
r T T : _ r T T T T 7 1							
Use	Fixed—1ength	Virlaiie }			Balanced	~	Criss-
	Recoxds IRegggds		Use		Disk/	Oscillating	cross
	i H		Tape	Drum	Tape	(2314) !	
[[} + i + + 1					
[voduLe	I T BaT x						
Module	BGA X						
ABF			- + + + + 1				
IRBF		X		AGI		X	
5 1 + 1 k + t + + .							
ABS	X			AGN			X
L L 1 + t + 1 + t 1							
9GN				X [
L AL AL L L J

56

Chart 50.

Overall Organization of Intermediate NMerge Phase for Balanced Direct Access,

Polyphase Tape, and Balanced Tape Techniques

EEAST RO ARERS

* *
t PHASE CONTROL *

rCV
ttt*t'*t"*!tv*

‘!‘t!cl!z!‘*!“!t
*RCT *
Kok _k_ K k_k_¥_ ¥
* DEEINF G

+ EFHAS

*
FEEREERERERDERR AR

v
HEEERD]RFRREERRRE
*RCI *

* LOAD
‘ FOR INT W}RGE ‘

PHASE
tttttttttt'ttt‘tx

PLLL %hPUT

ERS

AEERRER R R

EARARP]RRRRRA KR AR
*

+ BULLL INDUT *
* HUFFER *
* ADLRLES TABLE *

FAERRRRE R RN Ak

v
AARRAGT R F Rk
MERGE H2#
[T .

SECUENCE ALL #*
INITIAL RrLOFLS
* (ONL/DUEFER)

t*!#‘tiittitttitt

*

NOTES -
1. A MULBLR IN THE UPPER RIGHT-HANJ CORNER OF A PROUCESSING
LOCK REFERS TO THE FLOWCHAKT OR DLCI ION TABLE SHOWING WHICH
bUDUL} IS UScD FOR THE GPERATIGN
2. 1HE INTERMEDIATE MERGL PHASE USES THE PHASE-TO-PHASE
INFORMATLON AREA, MODULE RCA, FOR DATA REFEKENCE.
3. TdF INTERMFDIATE MERGE PHASE USES MESSAGE MODULE
wMB, IF NECESSARY.
4. 'ME MERGE MODULE (BLOCKS Gl AND E3) USES THE L%UALS
ODULE If MORE THAN CNE CONTROL DATA FIELD IS PRESENT
PLR RECGRD AND IF FXTRACT MODULE IS NOT USED.
5. THE MERGE MODULE (BLCCKS Gl AND E3) USES THE E
MCDULE (WITH EXIT E61) IF USER MODIFICATIONS ARh FADE
EES OR IF RECORDS CONTAIN OTHER THAN-
* * 1) LOGICAL DATA ON BYTE BOUNDAKIELS, OR
1o (2) CHARACTER DATA.
b 6 1n£ BALANCED DIRECT ACCESS SEQUENCE LISTR1BUTION MODULE
| (BLOCK G5) USES BOTH THE READ MODULE AND THE WRLTE
) FOD LE A‘ SUBROUTINES.
S*. 7. USER EXITS --— FZS FROM BLOCK MODULE (BLOCK G2)
27 quv #ODULE RPF, WAICH IS
- . ALLED BY MODULE RCV (BLOCK E3)
o *. MO 61 FRCN MERGE MODULE (BLOCK E3)
Tk, .+ 8. THE SEQ DIST MODULE (BLOCK G5) BRANCHES AT CERTAIN INTERVALS

* *
* YES
v
o ¥ v
D2 *. EREEELIORERR KRR KR
.* AT *, *DEBLOCK 52#%
END *, [ap e)
OF INPUT - * -=>* NEXT INPUT *
* . SEQUENCE .#* * RECORD TO *
*, o * * MERGE NETWORK *
oL L R e
¢ NO

v
KERREEED OIS 00 00 kA AR tttt’b]toottttt!t
5

FILL EMPTY BUF-
FER FROM INPUT --
* DATA SET *

EEERERR KRR Ak

* RECORD *
EREEERRE R AR R AR A

. ¥

LR AR R R k] ..

* * . \T *,

* RLDUCE * - th UF *,
* ALERGE CuUTUT .
* ORDLK * *.SL&ULNCL .‘
* * .,

LR R EEE L RS S EEE R . 0

'
l
R Y
. ObTAUT *,
RLCCK ¥
. FULL .+
* ¥

EE I YoV TR TR THY
SLOCT

*

* WINNER 1IN
* QUTPUT 3LOCK *
FARA AR R AR AR AR RY *

l *
R KK

* *

* C2 *

ttt#»tH]tt*tttt#ttt

WRTTE
*;t,t_t_o_OAt_t_t

¥
YES

OUTVUT BLOC
* ON ouTPUT *
DEVICE
AEBEERREERRER

TO MODULE CHK, WHICH ISSUES CHECKPOINT MACRO INSTRUCTIONS,
IF REQUESTED.

AEEEERPU AR Rk kR
ARIT

LAST BLOCh
* (Ch ourpur =
LEVICE
LA EE S S EE SR]

EEREKGO R R RERAKES
52#
Pt k_¥_ %

ERMINE *

* NEXT OUTPUT *
DEVICE *

R T

v
FR R R U R R R Rk
53 *

*

*

* F NEXT *
* uUB—“Pau *
* *
*

AEERRRR R R Rk R

FErrJURR kKRR RS

*

* NEXT PdASE *

* OR PASS *
R e TR

Section 3: Program Organization 57

Chart 51. Intermediate Merge Phase Assignment for Balanced Direct Access, Polyphase

Tape, and Balanced Tape Techniques

t'ttBZQOttt#t##
INT. ME.
PHASE CONTROL ‘

ttttttttttttttt

e

*ttttcztttttttt#t
*RCY
t_t_t_t_;_t_t_t_t
* LOAD RUNNING *
* PROGRAgS AND :
*

LRI R T F e E 2 Y

#ttttpztttttttttt

*APH

e PP
* PHASE *
* LAYOUT *

* CALCULATIONS *
P T T P L

FHSGSEDRR AR RN
*RC9 *

E_d Rk k¥
‘DELETE Agh AND ‘

LOA EXT
‘ASSIGNMENT PROG*
EEOPORRRRRRRRKRRS

xR REFI ARk h AR RE bR
52+

*SEQ DIST
Kok bk K _ k%
. #ODJT FY *
* RUNN ING *
* MODULES *
EEEEEOOOD ER kR KR KK

SEE
NOTE 5
a*L
G2 *.
o ¥ *.
NO .#* *,
-, NEED -*
. ABR -
N ¥
*, L%
* YES

tttttﬂztttttttttt
*ABR

t_t_t_t_t_t_t_t_t
* FIXED RECORD *
* MOVE LIST *
* GENERATOR *
EREEERERERERR R

e Ny P TERY T
52%

tBLK/DEBLK
______ _X_#%

EEEREREERERRE AR AR
SEE
NOTE 5

I ¢RI R T ER LY
*

= .
* BUFFER TABLE *
LR T T T S 1

58

NOTES-

1. A NUMBER IN THE UPPER RIGHT-HAND CORNER OF
PROCESSING BLOCK REFERS TO THE DECISION TABLE SHOWING
WHICH MODULE WILL BE USED FOR THE OPERATION.

2. MODULE AMB IS AN AREA SET ASIDE FOR INTERMEDIATE
MERGE PHASE MESSAGES. THIS AREA IS ESTABLISHED BE-
FORE EXECUTION OF MODULE APH.

3. THE DCB_GENERATION MCDULES (BLOCK F3) USE THE PARA-
YETER AREA 0 CONTAIN ADDRESSES OF GENERATED
DCBS AND DEB oPtIONS:

4. THE OPEN MODULE (BLOCK GS5), THE WRITE MODULE (BLOCK
F4), AND THE READ MODULE (BLOCK H5) REFER TO THE
PARAMETER AREA, AP2.

5. AN INCOMPLETE LINE BETWEEN MODULE BLOCKS_ INDICATES
THAT EACH TIME AN ASSIGNMENT PROGRAM IS LOADED AND
EXECUTED, CONTROL RETURNS TO MODULE RC9Y.

6. IF CHECKPOINTS ARE REQUESTED, MODULE APJ (BLOCK G5)
WILL BRANCH TO MODULE CHK, WHICH ISSUES CHECKPOINT
MACRO INSTRUCTIONS.

7. USER EXITS —- E21 FROM MODULE APH (BLOCK D2)
E28 FROM LCB, "TOB GENERATOR
FROM DCB, IOB GENERATOR
(BLOCK F3%)

AEEERFIRRAERERRRR EE I Y EEERRFSERERR AR KRR
*DCE, I0B 53% WRITE ASSIGN 53 $MERGE ASSIGN 52%
Kok kR k% R _F_k_k_d_F_k_ %k K _k_k_k__k_k_%_
> SELe SET UP DATA e---—> CEEe SET UP_FOK = #---=> *NETHORK .+
NOTE* SET INFQ * NOTE 5% RUNNING 2 norE" S*INITIALIZATION *
5 x FOR 1/0 * * PROGRAN * *
R RE R R R AR R SR SRR EERER KRS R AR R t““‘#‘#t‘i##“t

SEE
NOTE 5

EEERRGORRE R R R kR

* SETS *
L T T e e L

SEE
NOTE 5

FEEEEHSEEERERERESE
KLAD ASSIGN 53

*GENERATE CHANL *
* PROG. MODIFY *
RUNNING PROGRANM
EERERERRRRERRE RS

kR TSERE KR RRRES
* RC9 *

Kk kKK k_k_ ¥

L R T T Y]

v
FEEERSERERRRRE S
* MERGE PHASy *
* ORDERING *

* MODULE *
T R

Chart 52. Intermediate Merge Phase Decision Tables
MERGING SEQUENCE DISTRIBUTION
I T~ - T T 1 I T T - 1
| |single | | [| | | | I _ |
| Use|Control/|Multiple| | | | Use| Ralanced | Poly-|Oscil-|Criss- |
| |Extracts|Control | | | | t T T { phase|lating|cross
| | Used | (Equals) |8-way|l6-way | | | Tape |Disk|Drum|Tape |Tape | (2314)
% 4 4 4 4 ——— L 1 4 1 4 4 4 4
] T T T T r) T T T T T T A
|Module| | | | | |Module| I | | | | |
jaop | | | | | |AOR | | | | | | |
IROP | I X | I x| |[ROR | X | | | | | |
t + + + 1 - t t t t + 1 t 1
|pOQ | | | | | |pOS | | | | | | |
[ROQ | X | | I x| IrROS | | | I x| | I
% 1 | _+__ 1 4 L 1 4 4 4 4 1 4
T T T T 1 r T T T T T T 1
|aou | | | | | |aOT | | | | | | I
[ROU | I X X | | [ROT | I x| I I | |
% 1 1 4 4 4 (8 1 1 1 + 1 1 ,I
T T T T T 1 [) T T T T T
jaov | | I I |03 | I | | I | I
I[ROV. | X | | x| | [rRO3 | | I X | | | |
L L 41 1 J— J I 4 4 +____+ 4 4 .|
r T T T T
[pON | I | | | | |
IRON | | | | [x | |
k + t————1 t - t-—— 1
jgon | | | I | | |
[9oN | | I | | | x|
| S, L 1 4 4L L L J
BLOCK/DEBLOCK - BALANCED TAPE, BALANCED DIRECT ACCESS OR POLYPHASE TAPE TECHNIQUE

=T

| Records
i

|
1

T_ T, T
| Fixed-Length|Fixed-Length |

Records |

<256

>256

| Move

T
| No

| User
| Indicated |Exits

T
|User

r
|
| Use|Fixed-Length|Variable-Length|In-Line move|Multiple move|Variable|Exits
|
[N
)

| Module
|ABG
|RBG

[N

>

)

| ABH
| RBH
L

>

r

|ABI
|RBI
[N

|

|

|
—_———— e ——

>

)
|ABJ
| RBJ
|

I
|
I
I
I
I
—+
I
I
I
I
i

E25

L}
| ABK
| RBK
L

o o e e e e e e e e e e o}

e — e e —

X

F——t——t——t ————

P — et — e — e e —

1
L
|
|
I
1
T
|
I
1
1
I
|
Il
]
|
|
i
T
I
|
i

X

E25

T e

po ——

p—— e

BLOCK/DEBLOCK -

OSCILLATING OR CRISSCROSS TECHNIQUE

r
| ABT
| RBT
L

>

3
| ABU
| RBU
L

[
| ABV
| RBV
L

>

>

[}
| ABW
| RBW
L

E25

r
| ABX
| RBX
L

R S iy S5 Sy S

S Sy NS SR S ———

R S LA S S ——

—— e e e e — —

s t t e e tnl

E25

o e e e — e — e
o e e — . — — . —— e ——]
Ty SN SN SN S——

Section 3:

Program Organization

59

Chart 53. Intermediate Merge Phase Decision Tables

READ WRITE

r T T T T . T . 1] T T T 1
Use	Back-	Balanced	For-	Oscil-	Criss-		Use		Balanced	Criss-		
	ward p—-———g————{ward	lating	cross			}———1-————{cross						
	Tape	Disk	Drum	Tape	Tape	(2314)			Tape	Disk	Drum	(2314)
t t p—— -t ——1 t	b R B e {											
Module								Module				
IAGB | | | | | | | |APD | | | | |
IRGB | X | I I I x| I IRPD | X | | [I
L 1 4 4 4 4 3 ¥ i i } 4 4 J
acL |] i i e || i
IRGL | I | | X | I I IRPE | I x| | I
L 1 1 1 4 4 4 { L 1 4 4 L i |
r L] T T T T T) L L) T T 1
eee 1 oix i 41 | k0 |1 ix | |
RGC X RPO X
L 3 4 4 1 4 3 { L 3 4 4 4 4
r T T T T T T ¥ T L) T T 1
[AGO | | I | | | | |8PA | | | | |
IRGO | | I x | | | | [9PA | | I | X |
t -t $ 1 L b .
18GB | | | | | I |
196B | | I | | I X |
L L 4 L L L L 4

GENERATE DCB, IOB
r T T T - - T " 1
| Use| |Balanced |Oscillating|Crisscross |
| | Tape | Disk/Drum|Tape | (2314) |
F ———1 } ¢ !
| Module| : : II }
AGG X
Y | . j
r T T T i 1|
AGJ X
| 1 ! !]
r T T L)) 1
IAGN | | | X I |
L iy 4 | 4 J
r T T T T 1
I9GN | I | I X |
L L . - L 4 J

60

Chart 60. Overall Organization of Sort/Merge Phases for Oscillating Tape and Crisscross
Direct Access Techniques

NOTES-

1. A NUMBER IN THE UPPER RIGHT-EAND CORNER OF
A PROCESSING BLOCK REFERS TO THE DECISION TABLE

AR RED] AR kR AR AR WHICH IS USED FOR TnE OPERATIO
* PHASE CONTROL *
* (RCV) * 2. USER EXITS -- E15 DROM DEBLOCK MODULE (BLOCK D1)
* * E16 FrROM DEBLOCK MODULE (BLOCK Dl)
FH AR AR ek E17 FKOM EITHEKR MODULE <PM OR 8P
* * WHICH IS CALLEC BY MODULE RLV {BLOCK G5)
* B2 * E25 FROM NLOCK SODULE (BLOCK G3)
* *
Rk 3. IN AN OSCILLATING SORT, IF CHECKPOINT HAS BEEN SPECIFIED,
THE SEQ DIST MODULE (BLOCK Fu4) WILL BRANCH TO MODULE CHK
AT CERTAIN INTERVALS. CHK ISSUES CHECKPOINT MACRO
INSTRUCTIONS.
#ttttBltttttt*ttt S PR R L T
*RC6/RC7 WRITE u2
t_t_t_t_#_t_t_t_t)
* DEFINE SORT * PLACE BLOCK
* AND MERGE * * OUTPUT #
* PHASES * U T *EEk
FARERRAOO OOk Rk Rk ARREED O RAAR AR *
* C3 *
* *
*EEk
v
L
tttttcltttt#‘*ttt c2 *. PR RRRC IR ARk R R R
*RCY g *. READ 53
Ak k kK t NO .* END *, AR R _k_k_ kK %
* LOAD MODULES * -—%. OF SEQUENCE .* FILL <--
* FOR SORT AND * *. o * * EMETY *
* MERGE PHASES * *, . ¥ RUFFER(S)
B x, L.* FRRkE R R R RRE R
Rk * YES
*EEE * *
* * * pl o*
* D1 *-> * *
* * *EkE
*rkk
v v
Fk AR DL AR IR R kR KREFADEF R KRR tttttD}ttttttt‘tt
DEBLOCK 44 *SFQ DIST y2* *DEBLOCK
* A s 0 s _%_% % Hok kK _k_k_k_k_k ok Rk _k_k_k_ t
GET * DETERMINE * >* GET *
* A * * NEXT OUTPUT * * A *
RECORD * UNIT * * RECORD *
LEREER R ST LR R e T Y EEE ST F TP
v v
JEL L FL
FEARRE Ak k Rk R kR E2 *. E3 *,
SORT 42% ¥ . ¥ *
Ik d_k_k_k_k_k_* -*¥ SEQ UEMCES *. YES ¥ *. YES
* RECGRD TO * *. DISTRIBUTED .*--- *.BUFFER EMPTY .#*---
* RSA * .. . *. o*
* * *, * l * Lk
Rk RERRRRRRL R Rk R L *, L
* NO EEEES * NO
* *
a3
* *
EEE RS
v
< *o PN v
F1 *, F2 *, FEREEF IO 00 RR AR KR AARERFLOOOS OO ERRR
¥ *, -1 *, 5 *SEQ DIST 52%
NO .#* RSA .. . QU NCES %, NO *—k— -0
--+. FILLED o* o DEERRIBOTED T+lo- -->% RMINE
. . . . * NEAT QUTIUT #
. o *. o * RECCRD * NIT *
v L. . Lk EEE R T TS TP Y L T R T T)
LT * YIS * YES LT
* * * *
* Dl o* + D1 *
* * * *
EEL Y akkk
\4 \Y FL
HERRAGLEF kAR RREE FEERRGORERERRRR KR FRRERGIRERRRE AR KR Gl *, FERRRGORRE KK RI KRR
*SORT 42% * * *BLOCK 52% ¥ *. *RCV *
kK KKk _k_ kR * PREPARE * Fo ko kR _k_X L » ok kK _k_ kK X
* DETERMINE * * TO FLUSH TREE * * WINNER TO * *. END OF FILE >*CONTROL CLOSING*
* WINNER * * * ‘ OUTPUT * *, ¥ ILES AND *
* * * » BUFFER * *. . * ‘FRLLING OF STRG#*
FEERRKRRRRRRREREER B e T ttaat*t*ttttt##t# *, L ¥ AR AR kAR RERE R R
l * NO
LT TS
- *
* D1 * LHL Lx,
AERFRHLRRR R R RS S * * H3 *, ﬂu t,
BLOCK gu Rk L* %, . . AR SRR Rk Rk
Bk _k_k_k_d_k_k_* NO ¥ *. . * ANOTHER *. * TO FINAL *
* WINNER RECORD * -*. BUFFER FULL .* *. =RG . * MERGE *
* TO OUTPUT * *, . * * PO uIBLL o* * PHASE *
* BUFFER * *, ¥ *, o * LR T
HOEPEREOETO I RRRE . L *, L
+ YES * NG *kk
* *
* C) %
* *
Rk
v
L*. v
J1 *, EREERRIJRRRRRRAR KRR ARk RTU R RNk R
o *. WRIT * *
NO .# *. ok k% * REINITIALIZL *
-—*. BUFFER FULL .* OUTPUT BLOCK * FOR SOKTING *
*. o * *+ ON OUTPUT * * OF RECORDS *
*, . * DEVICFE * *
x, L * EEE TR T TR LR LT R T
ETE T * YRS
* *
* D1 *
* *
*Ekh ko *EEE
* * * *
* B2 * _*. + Dl o*
* * K3 *, * *
EEE L* *, R
NO .* LN OF *. YES
-*. OUTPUT k-
* . SEQUENCE .*
*, ¥
*, L
*

Section 3: Program Organization 61

Chart 61. Sort/Merge Phase Assignment for Oscillating Tape and Crisscross Direct Access
Techniques

NOTES-

1. A NUMBER IN THE UPPER RIGAT-HAND CORNER OF
PROCESSING BLOCK REFERS TO THE DECIS10ON TABLE SHOAING
WHICH MODULE IS USED FOR THE OPERATION.
EEEEBLIEREREEERS

* SORT/MERGE * 2. AN INCONPLETE LINE BETWEEN MODULE BLOCKS AINDICATES THAT
* PHASE CONTROL * EAC. IME AN ASSIGNMENT PROGRAM IS LCADED AND EXECUTEL,
* K * CONTROL RETURNS TO MODULE RC9.

3. MODULE APC (BLOCK G4) BRANCHES TO MODULE CHK, WHICH ISSUES
CHECKPOINT MACRO INSTRUCTIONS, IF REQUESTED.

4. USER EXITS -- E11 FROM MODULE APL (BLOCK D1)
E18 FROM DCB, IOB GENEKATOR (BLOCK L2
E19 FROM DCB, IOB GENEKATOR (BLOCK D2
E21 FROM MODULE APL (BLOCK D1) 2
2

K
EEEELEE RN RO

)
)
E28 FROM DCB, IOB GcNERATGR (BLOCK D2)
tt‘;‘cl‘t““t“t E29 FROM DCB IOB GENERATOR (BLOCK D2)
*RC *
L)
* LOAD RUNNING *
: PROGS_AND :

AP
LRI T R Y

LR TR LR ARk REDD KRRk Rk esesODI0 LI RRRES FERRRDUEER R AR
*A *

P. *LCR, IOR bus 'NHITE ASGN u2%* *MERGE ASGN 52%
Bk k_k_k_k_k_k_% AR bk _k_d_¥_¥ —t_d_d_w_e_¥_¥_% ok R kG e k_k_%
* LAYOUT * ->SEE* SET UP DATA #%---> SEL* SET UP FOR *#---> GSLE* WETWORK *
* CALCULATIONS * OTE* SET INFO * NOTE 2¢ RUNNING * NOTE 2*INIT1ALIZATION *
* * 2 OR I * . PROGRAM * * *
FEEERRRRRR AR AR AR ttt“t“‘tt“t‘t‘ BREERRERRRRRR R RR L T)

v
SEE SEr
NOTE 2 NOTE 2

FEERIE] OO PO R bR RS

FERRREURRERRERERE

‘SORT ASGN 42% *REPD ASGN 53%
______ k% Lt e e)
‘ EPLACEMENT * ‘GLNLRATE CHANL *

NETWORK * PR MOLDIFY #

*
* ASSIGNMENT *
LR e e L]

SEE
NOTE 2

s
‘MOVL ASGN Yu*
_____ ok k%
‘ GENERATOR *
* (FIXED) OR *
*ASSGN VAR. REC *
FERRRR KRR RRR R RE

SEE
NOTE 2

‘ RUV PROG *
RAEERRAEE R RRR NS

ShE
NOTE 2

FERRRFURRER R r bk ®
*DbBLK ASGN 4y
Rk kRN *
* SET UP FCR *
* RUNNING *

* PROGRAM *
EREERREERRRERR RS

SEE

NOTL 2
EREEGLOORERRRER FEERRGUERIERERERS
*BLK ASGN 4us *AP
L e ot T B LI e Tt I B
* SET UP * * OPEN *
* FOR * * DATA *
ING * * ET!

* NN
EE T T TR E R PR Y T

SEE _
NOTE 2

LRI SRR R R R T Y

SETS
EEEERRRRERERE R

SEE
NOTE 2

o“ttﬂutttttttttt

*SEQ DIST 42% *ADM

SRk Rk R k¥ L 25 D t
* MODIFY * * GKIg *
* RUNNING * * RECORD *
* MODULES * * OPTION *
FEERRERRRERRR AR RS P R TR Y

SEE
NOTE 2

LRI NSRS TR LTS
52+

*BLR/DBLK
_____ o .

R RRRRRRRR R Rk

SEE
NOTE 2

R REK e bR eb b h s
Al *

DE! C.
* BUFFER TABLE
“tn‘ttt“““t‘t

62

v
EERRTURERRRR R RS
*RC9Y *
L T T Sk i ot =]
* ERANCH TO *
: FIRST RUNNING :
RRRERRERRRRR R AR

e e T T
* TO *
* RUNNING *

+ MODULES *
EEEEERRERERR AR

Chart 70. Overall Organization of Final Merge Phase

NOTLS-

1. A NUMBER IN THE UPPER RIGHT-HAND CORNER OF
£ PROCESSING BLOCK REFERS TO THE DECIS1ON TABLE
SHOWING WHICH MODULE IS USED FOR THE OPERATION.

2. HE FINAL MERGE PHASE USES THE PHASE-TO-PHA.
INFORMATION AREA, MODULE RCA, FOR DATA RFFBRENCES.

3. THE MERGE PHASE USES MESSAGE MCDULF
RMC, IF NECESSARY.

4. THE MERGE MODULE (BLOCKS E1 AND E3) USES THE EQUALS MODULE IF
MORE THAN ONE CONTROL DATA FILLD IS PRLSENT PER RECORD AND
1F EXTRACT MODULE IS NOT USED.

SESSBLEESERNNES
. *
* PHASE CONTROL #*
* *

FERREERERRIR S

O...OCl..tO.t...‘
*RC8

o_o_.-a_t-t_o_o_n
* DEFINE FINAL *
: MERGE PHASE :

SEEEEAREERERRRRNS
SEESED1EREERR 044
.

.
* FOR FINAL *
* MERG HASE *
R TP rE F Y T

SHESSELS SRR 00004
*MERGE T2
A b

‘SE UENCE FIRST *

EACH
oooaooaoooo..‘tt‘

seRseGle

*BLOCK
Bkt s b

SEREENNS
72¢

-
o
=1
3
g
=]
w
-

LR L TR T R L

\'
L R T PP Y T
. PUT .

A
. RECORD .

SEEERSER0E0 S

LT

e

* YES

BERORRE2H RSN RRI NN Ot“‘E]‘OO“0.00.

R ‘ME 2
- _o_o-o_o_n_o_o
REFILL_BUFFER ‘ DETERMINE .
* FROM INPUT # * WINNZR .

. RECORD *
FESEFESREEEE NS

St bk kb

SEERERRBEESES

---------- >
.t ..
F2 .. F3 ..
. .
.* END OF *. NO . AST .
*. INPUT DATA .#%----- *. RECORD FROM .*
., SET .. *. MERGE
ETS R
* YES l NO
l [y
. *
... * Gl *
. * .
o .. e
———t, MERGE .t
NLY .
* YES

oooooﬂzttontooooo

*RGF
o_t_t_t_o_.-o_t_o

* CLOSE INPUT =+
: DATA SET .

SEEBEEEEEEARERN RN

->

EEEBT200 00008
. *

. REDUCL *
. MERGE .
: ORDER ‘.
EEEEEEEEEEEEES

T

ELEL]

USER DODIFICATIONQ ARE MADE
DATA ON 9YT£ BOUNDAkIhS OR

THE DEBLOCK MODULE (BLOCK
REFILL BUFFEK AREAS.
FROM BLOCK NODULE (BLOCK F4)

C
CA.
FROM MERGE MODULE (BLOCK E3)

seee (HITH EXIT E61) IF
* * IF RECORDS CONTAIN OTh
* C2 * 1) LOGICAL
* * {2) CHARACTER DATA
has
6. FOR MEKGING APPLICATIONS,
., ISSUES A 'GET' TO
c2 .,
* ..
MERG .* SORT .. 7. USER EXITS -- E35
-———, OR .. E37
. MERGE .
., .* E61
)
* SORT
.
D2 . ttt..D]..tttO‘...
o ., ‘DEELOCK
.. 15 *, NO = #_#_%_s_e_ n_o_o-o
* . INPUT BUFFER --)‘ NEXT INPUT *
*. EMPTY . * RECORD TO *
., .* ¢ MERGE NETWORK *
., . SEAERAERAERANNNNS

ooooapnooootooooo
LOC. 72+

*B

Y .-._._._._O_.—._.

-------- >+ PLACL LAST #--------
* C N *

RECORD 1
* OUTPUT BLOCK #
L T P P T T Y Y T T

*EEesHUSEE RS0 0000
*R

* OUTPUT ¢ *
. ATA SE' *
FEEEEERRERRRRNNNS

<

\
BEEERTUSSEEER RN
RCV *

bbbt
* FREE STORA%E. .

TO_S
b4 M INTERFACE *
TR T P T P Y

EEREKUSE R RO REN
* SORT SYSTEM *
* INTERFACE .

b RCB *
SARBEREEERO RS

Section 3:

5. THE MERGE MODULE (BLOCKS E1 AND E3) USES THE EXTRACT MODULE
'

D3)

SEASSEFSHER SIS RN
. PUT A *
b KECORD *
FEENNERBERNNS

SEEESLSEE SN0 N
RPG
S
* CLOSE OUTPUT

* AND INPUT

* DATA SETS
LRI TR T LY

resene

Program Organization

Chart 71. Final Merge Phase Assignment

AEEKDDSO G0 0000 &
* FINAL ERGE *
: PHASE CONTRCL *

*

ARERRR KRR KRR KR

NOTES-

1. A NUOMBER IN THE UPPER RIGHT-HAND CORKNER OF A PROCESSING
bBLOCK REFERS 10 THE DECISION TABLP ShOWING WHICH MODULE
WILL BE USED FOR THE GPLRATIO

LIRS : YRR AR LR L LA TY
RCY *

Hok kR k% 2. THE MNODULE AMC 15 AN AREA SET ASIDE FOR FINAL ME (h PHASE
* LOAD PUJNING * IFESSAGES. THI1S AREA IS ESTABLISHED BLFOKE EXECUTION OF MODULE API.
‘ PROGRANMS AND *

ttttttttttttttt#t

3. THE DCB GENERATION MODULES (BLOCK
AP3, TO CONTAIN ADDRESSLS OF LCAS

F2) USES TAE PARAMETER AREA,
ARD DCE OPTIONS.

\%
FRERKCLRR KRR KK KK
I

*AP

Kok KKk Kk k% 4. THE OPEN MODULE (BLOCH F4) AND THF REAL MODULE (BLOCK G4)
* PHASE * REFER TO THE PARAMETER AREA, APJ.

* AYOUT *

* ALCULATIONS *

AREERRRRR KRR RE
5. AN INCOMPLETE LINL BETWEEN MODULE BLOCKS INDICATE
THAT £ACH TIME AN ASSIGNMENT MCDULE IS LOADED AND EXECUTED,
CONTROL RETURNS TO MOLULEL RC9Y.

6. MODULE AGH (BLOCK F4) BRANCHES TO MODULE CHK,
CHECKPOINT MACRO INSTRUCTIONS, IF REQUESTED.

WHICH ISSUES

v
tt#ttpzttttt#tt#t 7.

USER EXITS -- E31 FROM MNODULE API (BLOCK C2)
*RC9 E38 FROM LCB, IOB GENLRATOR (RLOCK F2)
——*—*—‘—*—*—‘—* E39 FRO:M DCB, 1OB GERzRATOR (RLOCK F2)

DELLTE API AND #
* LOAD NEXT AS- *
* STGHMENT PROG *
AARRRRR R KRR RR KK

EEKFKED OO Ok Rk Rk kK

*MERGE ASSIGN 72%
a t-t- _‘_#_t t

ETWO
*INITIALIZATION :
*
AERKAD OGO O KRR RKKE

64

SEE
NOTE 5
k.

EEE Ty EE T T T T Y F3 * . *****Fh***‘******
*pCt, IOB 73+ ¥ SOAT ». *AGH
Fok_ Rk KKKk % ¥ OR *. SORT D e Jub pur t
* SET UP DATA * > L MFRGE 4 ¥mmm—emee >* OPEN
* SET INFO * ‘.‘ ONLY ‘.* * DAT, ‘

* FOR 1/0 *
FERKKRRRRRRRRR RN AR

*, .#.
MERGE
ONLY

SLE
NOTE 5
EARERGIHRRR KR AR RN
*DBLK ASGN T2%
Kok k_ kK kK%
* PRIME
* MERGE
- . * NETWORK
*, % FEEERRRRRRR KRR KK

v
‘tt‘thztttttt#‘t‘ FEEREH IR AR R AR AR
RC

*ABQ 9 *
Mt 1 U ko kKK kKK
4+ FIXED RECORD * *DELETE DEBLOCK *
* MOVE LIST * * AND BRANCH *
* GENERATION * TO /PG *
KERRERE KRR KRR KRR KRERRRRE KRR AR A

SEE
NOTE 5

v
ERERKT2O O KRR KRR KK AR RT IR R KRR KRR R E
*

‘BLOCK ASaIGN 72‘ *RPG
_____ Kbtk %
--)' ShT UP ‘--- #DELETE RC9 AND *
* RUNNING * * OPEN OQUTPUT =

* PROGRAM * e DATA SFT *
EEERRRR KRR RR R KK EERERRE AR R

* GETS *
LR L T

SEE

NOTE 5
KERKKGUORI SRR KRR
*READ ASGN T2%
f S e)

FILL *
* INPUT *
* BUFFERS *
R Y

READING

Final Merge Phase Decision Tables
MERGING

Chart 72.

e T T T e e T e T —— IIIMIJ_IIIIJ‘lIIJ_lIIl“lIIJIIIJ
M |
| ~] |
nunx 20 |]
0w n- bl N |
- O m o m |
MM AN [|
QO 0~ o e e e e e e e e e s e e e e]
b o e e e e e e e e e s e e e e e e e e]] |
T o |
M ~ > |]
© 9 |
20 > 2 |
N - t—————t—_——t———t——
O ®
M E 4+
TIJIMITIIILTI'LIIILTIILTIIJ M < < bl
T |3 9]
(O] te] F————t e e ———— e ——— [e e e o e e e e e e e e e
O 1A N
S P e e e e e e e e e e e]]
© | M | n n
=] | D+) = > <) <] »
o | -~ <o - |
m A | o % I I
et e e e e e e e ——] Z | |
T | p————————t—_—_—t——————t—— po e
] | 2] | U] n n
1] | M | m m ™
K | -~ | = = =
20 =< | 0 X |
0 | = H |
© © | pr———— e e e e — — e e e e e e e e e e e e ———
[E | | Q
P————t————t—————— ————— -
| o | Q
— [| © > o >]
) =] | | '~ QO |
(2} iel[=p=] = = MDA [SNS] N> |
jom] o|0 U ORY] [CRCENORO) OB} © O
Zld @ | X CE | <K | o P =
—— e e e e —— e e I|MIILIIIIILTIILTIllTIILTIIIIL o e e e e e e e e e e e — e e ——]
(OB RN}
L&Y » »
- QN
B2 A M
r—————————t—_—_—t—_——pr———tr—_——) p——t————— e —— e — — e — —
[e ey e e o T o
> (OO =
] X > n o2} b
kJ -~ QN
| < < 5=V
O b e e e e e e e e e e e e] o e e e e e e e e e e e e — e
— G e
e — e e = e — Q = Q
> m + =]
] o =1 <) < <
k3 te] > m =1 [1°]
[= v Q
(<] al-duwn 9]
pr————t————t———t——— ——] | O o e e e e e e e e e e] p——————t———t———t———t—— = ——]
[0} ~ UM T
— = 0 —~ O Q
20— Q0 =
o~ M ™ © g =1
L 3 < < a4 "] bl < bl <
— oo | | M (e
7 0/ | | © [B]
20w | > (=}
p——— e — e e — o (=]
()] o e e e e e e e e — s e —— e —— e o e e e e e e e e e e e s e i s e S e
—~ 12}
Q00 | T
— M © TP M
OO M < te] Vo0 < bl < < te] <
== X g 0
—H O X - O
0 oo = |
Tll'lTﬂIILTIILTIlLTIIL TIllllrﬂlIlTllLTIIIIIILTIIL o e e e e e e e e e e e e o e e]
— —
e =} (] =} |
n | o A DD > > (2] -Jm H - e iy <o Bl A | 2= Z Z Q QO Ry =z Z Q0O
o] Q|0 O Q [eNe] Qo QO) OMD MD MD MD o/ MB_MB MB MB MB m /M m |
2l | X | <X | €X = 24 29 24 M| ©o ~o| 24 ~ = M |oon | ©n
e e e e e e e —— e e — e b e s e e ——— — e e e — — ey — e i s e e e e i e i s e i e e i e e i e e e e e

C
C

65

Program Organization

Section 3:

Chart 73. Final Merge Phase Decision Tables

C

GENERATE DCB, IOB OPEN DATA SETS

I] T T T 1 r T T T T 1
| Use| iDirect| | | | Usej I | | |
| | Tape|Access | Sort |Merge| | | Chkpt|Build|Sort |Merge|
L 4 1 1 4 y | [4 4 4 4 4
) T T L] 1 1 1] T T T 1
| Module | | | | | | Module| | I | I
IaGK | I x| x | | lac | x| I x | |
b — i b I Ht B S
IaPF | X | X | I x| IAGF | [x| x|
I R - ¢ b
IaAPK | X | [x | |

L L 1 y 1 d

66

Section 4: Module Directory

This section contains an alphabetic list of modules in the sort/merge program.

Each sort/merge module name consists of six characters, the first three of which are

always {ER. For easy reference, the module names are listed by their last three charac-
ters only.

Section 4:

r T -
| CSECT | Phase in | 1
{ Name l Which Used l Purpose for Which Used |
r T T = 4
| 8BN | Fin.Merge |Block variable-length spanned records]
8BO	Fin.Merge	Block variable-length spanned records with modifications
8CI	Def.	Contains tables and constants for module RCI
8CM	Def.	Process PARM field and sort parameter list, initialize module
		CPI, open SYSCUT if requested
: 8DJ } Fin.Merge	Deblock variable-length spanned records for a merge operation	
8GB	Int.Merge	Read for crisscross technique }
8GC	Fin.Merge	Read for crisscross technique
80N	¢-C sort	Crisscross technique algorithm
8PA	Ssort and	Write for crisscross technique
	Int.Merge	
8PM	€C-C Sort	End of phase housekeeping for crisscross technique
9BN	Fin.Merge	Assignment block variable-length spanned records
9BO	Fin.Merge	Assignment block variable-length spanned records with
		modification
i 9DJ	Fin.Merge	Assignment deblock variable-length spanned records for a merge
		operation
I	I	
9GB	Int.Merge	Read assignment for crisscross technique
9GC	Fin.Merge	Read assignment for crisscross technique
9GN	¢-C Sort	Generates DCBs, IOBs, ECBs, and alternate CCW pointers
90N	¢-C Sort	Assignment crisscross algorithm
9PA	Sort and	Write assignment for crisscross technique
	Int.Merge	
ABA	Osc. and	Assignment routine sort block variable-length records
	¢c-C Sort	
ABB	Sort	Block fixed-length records with in-1line move
ABC	Sort	Block fixed-length records with link to multiple move
ABE	Sort	Block variable-length records with move
ABF	Sort	Move module for variable-length records
ABG	Int.Merge	Block or deblock fixed-length records with in-line move
ABH	Int.Merge	Block or deblock fixed-length records with link to multiple move
ABI	Int. Merge	Block/deblock variable-length records - multiple move
ABJ	Int.Merge	Block or deblock fixed-length records with modification
ABK	Int. Merge	Block/deblock variable-length records
ABL	Fin.Merge	Block fixed-length records with in-line move
ABM	Fin.Merge	Block fixed-length records with modifications
L L L1 d
(Part 1 of 6)

Module Directory 67

| Contain
1

68

(Part 2 of

] T T
| CSECT | Phase in | 1
| Name | Which Used | Purpose for Which Used
: + t i
] ABN | Fin.Merge |Block variable-length records]
| ABO | Fin.Merge |Block variable-length records with modifications
| ABP | Fin.Merge |Block fixed-length records with link to multiple move
ABQ	Fin.Merge	Move generator for fixed-length records
ABR	Int.Merge	Move generator for fixed-length records
ABS	Sort	Move generator for fixed-length records
ABT	Osc. and	Assignment routine for merge blocks/deblock fixed-length
	C-C Merge	records<256 bytes
ABU	Osc. and	Assignment routine for merge block/deblock fixed-length
	C-C Merge	records>256 bytes
ABV	Osc. and	Assignment routine for merge block/deblock variable-length
	C-C Merge	records
ABW	Osc. and	Assignment routine for merge block/deblock fixed-length records =
	C-C Merge	with user exits
ABX	Osc. and	Assignment routine for merge blocks/deblock variable-length
	C-C Merge	records with user exits
ABY	Osc. and	Assignment routine sort block fixed-length records<256 bytes
	c-C sort	
ABZ	0sc. and	Assignment routine sort block fixed-length records>256 bytes :
	¢c-C Sort	
ADB	Sort	Deblock fixed-length records with in-line move I
ADC	sort	Deblock fixed-length records with link to multiple move
ADD	sort	Deblock fixed-length records with user exits
ADE	sort	Deblock variable-length records with user exits
ADG	Sort	Deblock variable-length records
ADH	Fin.Merge	Deblock fixed-length records for a sort
ADI	Fin.Merge	Deblock variable-length records for a sort
ADJ	Fin.Merge	Deblock for a merge
ADL	Int. Merge	Assignment phase builds tables of input buffer address
ADM	sort	Skip record option
ADP	Osc. and	Assign sort deblock fixed-length records<256 bytes
	c-C sort	
ADC	Osc. and	Assign sort deblock fixed-length records>256 bytes
	¢-C Sort	
ADR	Osc. and	Assign sort deblock fixed-length records with user exits
	C-C Ssort	
ADS	Osc. and	Assign sort deblock variable-length records with user exits
	c-C sort	
ADT	Osc. and	Assign sort deblock variable-length records without user exits 1
	¢-C sort	
ADX	Fin. Merge-)Deblock assignment for read-forward, fixed-length tape sort	
	sorting	
I	appl.	
AGA	sort	Generate DCBs, IOBs, and DCB addresses; tape only
AGB	Int.Merge	Read tape assignment
AGC	Int.Merge	Read disk assignment
AGD	F@n.Merge	Read tape assignment
, igg I g}n.ﬁerge :gead g@ik assignment =		
in.Merge pen files		
AGG	Int.Merge	Generate DCBs, IOBs, and DCB addresses; tape only
AGH	Fin.Merge	Open files and initiate checkpoint operations
AGI	Sort	Generate DCBs, IOBs, and DCB addresses; disk only
AGJ	Int.Merge	Generate DCBs, IOBs, and DCB addresses; disk only
AGK	Fin.Merge	Generate DCBs, IOBs, and DCB addresses; disk only
AGL	Int. Merge	Read forward assignment - tape sort
AGM	Fin. Merge-	Read forward assignment - tape sort
	Sorting	
	appl. I	
AGN	Osc. Sort	Generate DCBs and IOBs
AGO	Int. Merge	Read assignment for drum
AGP	Fin. Merge	Read assignment for drum
AMA	Sort all messages for the sort phase assignment modules	
L 1 d
)

[=,)

¢

C

¢

r T T 1
| CSECT | Phase in | I
| Name | Which Used | Purpose for Which Used |
I 1 1 _ —_—— JI
[AMB i Int.Merxrge IContain all messages for the merge phase assignment modules |
AMC	Fin.merge	Contain all messages for the final merge and merge-only phases
I	assignment modules	
AM1	Def.	Specify core storage for the sort/merge program and also provide
]option for printing messages
AOA	Sort	Replace sort control for fixed-length records
AOB	sort	Replace sort control for fixed-length records
AQC	Sort	Replace sort control for variable-length records
AOD	Sort	Replace sort control for variable-length records

AOE	Sort	Replace sort control for fixed-length records in polyphase
AQF	sort	Replace sort control for fixed-length records in polyphase
AOG	Sort	Replace sort control for variable-length records in polyphase
AOH	Sort	Replace sort control for variable-length records in polyphase
AOI	Sort	Balanced tape sort algorithm
AQJ	Sort	Polyphase sort algorithm
AOK	sort	Balanced disk sort algorithm
AOL	opt.	EQuals routine
AOM	Opt.	Extract routine
AON	Osc. Sort	Assignment oscillating algorithm i
AQO	sort	Assignment drum-sort algorithm
AOQP	Int. & Fin.	l6-way merge network with multiple control fields
	Merge I	
AOQ	Int. & Fin.	1l6-way merge network with single control fields

	Merge	
AOR	Int. Merge	Balanced tape merge algorithm
AOS	Int.Merge	Polyphase tape merge algorithm
AQT	Int.Merge	Balanced disk merge algorithm
AQU	Int. & Fin.	8-way merge network with multiple control fields
	Merge	I
AQV	Int. & Fin.	8-way merge network with single control fields

| | Merge I I
| AOW | Osc. and | Assignment - oscillating initialization routine, multiple

		control
	C-C Sort	fields fixed-length records
AOX	Osc. and	Assignment - oscillating initialization routine, single control
	C-C Ssort	fields fixed-length records

AQY] Osc. and	Assignment - oscillating initialization routine, multiple	
	¢-C Sort	control fields variable-length records
AQZ	Osc. and	Assignment - oscillating initialization routine, single control
	C-C Sort	fields variable-length records
A0l	opt.	Optimize disk/drum unit assignment
AO2	Opt.	Optimize tape unit assignment
AO3	Int. Merge	Drum merge algorithm l
APA	Sort	Write tape assignment
APB	Sort	Write disk assignment
APC	Sort	Open files and initiate checkpoint operations

APD	Int.Merge	Write tape assignment
APE	Int.Merge	Write disk assignment
APF	Fin.Merge	Generate DCBs and DCB addresses
APG	sort	Calculate storage for I/0 buffers, RSA, and generated cores
APH	Int.Merge	Calculate storage for I/0 buffers and generated cores

| API | Fin.Merge §&|Calculate storage for I/0 kuffers and generated cores

| | Merge-only | |
| APJ | Int.Merge |Open files and initiate checkpoint operations

| APK | Fin.Merge |Generate DCBs, IOBs, and DCB addresses; tape only |
| APL | Osc. and |calculate storage for I/0 buffers, RSA, and generated cores |
| | ¢-C sort l [
APN	Sort	Drum write assignment routine
APO	Int. Merge	Drum write assignment routine
AP1	Sort	Specify area for DCB list for open
AP2	Int.Merge	Specify area for DCB list for open

| AP3 | Fin.Merge |
L 1

| Specify area for DCB list for open
L

™

(Part 3 of

Section 4: Module Directory

6)

69

Fin. Merge

I L] T

| CSECT | Phase in |]
| Name | Which Used | Purpose for Which Used |
b t + 1
| BGA | opt. |Calculate B and G values for tape]
BGB	opt.	calculate B and G values for crisscross application
CHK	All phases	Checkpoint routine
DM4	All phases	Hexadecimal and decimal conversion routine
] EX1	Sort	Resolve user-exits entries link edited for sort phase
EX2	Int. Merge	Resolve user-exits entries link edited for Int. merge phase
EX3	Fin. Merge	Resolve user-exits entries link edited for Fin. merge phase
RBA	Osc. and	Block variable-length record
	¢c-C sort	
RBB	Sort	Block fixed-length records with in-line move
RBC	Sort	Block fixed-length records with link to multiple move
RBE	sort	Block variable-length records with move
RBF	Sort	[Move module for variable-length records
RBG	Int.Merge	Block or deblock fixed-length records with in-line move
RBH	Int.Merge	Block or deblock fixed-length records with link to multiple move
RBI	Int.Merge	Block or deblock variable-length records with move
RBJ	Int.Merge	Block or deblock fixed-length records with modifications

RBK	Int.Merge	Block or deblock variable-length records with modifications
RBL	Fin.Merge	Block fixed-length records with in-line move
RBM	Fin.Merge	Block fixed-length records with modifications
RBN	Fin.Merge	Block variable-length records
RBO	Fin.Merge	Block variable-length records with modifications
RBP	Fin.Merge	Block fixed-length records with link to multiple move
RBT	Osc. and	Merge blocks/deblock fixed-length record<256 bytes
	C-C Merge	
RBU	Osc. and	Merge block/deblock fixed-length record>256 bytes
	C-C Merge	
RBV	Osc. and	Merge block/deblock variable-length record
	C-C Merge	
RBW	Osc. and	Merge block/deblock fixed-length record with user exits
	C-C Merge	
RBX	Osc. and	Merge blocks/deblock variable-length record with user exits

	C-C Merge	
RBY	Osc. and	Sort block fixed-length record<256 bytes
	c-C sort	
RBZ	Osc. and	Sort block fixed-length record>256 bytes
	c-C sort	
RCA	All but	Specify phase-to-phase information area
I	Def. I	
RCB	A1l but	Sort system interface for the sort/merge program
I	Def. I I	
RCC	Def.	Read control cards
RCD	Def.	Scan control cards
RCE	Def.	Interpret sort or merge cards
RCF	Def.	Contains error messages for sort/merge cards
RCG	Def.	Interpret record cards
RCH	Def.	Interpret modification cards
RCI	Def.	Search for control syster
RCJ	opt.	Check direct access capacity
RCK	Def.	Calculate B and G for disk and drum
RCL	Def.	Calculate B and G for merge-only applications
RCM	Def.	Sort system interface for definition
RCN	Def.	Allocate bin sizes and chose technique for 2314 sort {
RCO	Def.	Sort system interface for use with the linkage editor
RCP	Def.	Specify user exits to be link edited
RCQ	Def.	Specify input area for control statements
RCR	Def.	Specify B and G constants using tape
RCS	Def.	Specify B and G codes using tape
RCT	Sort, Int.	Frees storage between phases
	Merge, &	
L 1

I
1

J

70

(Part 4 of

6)

1

|tiple control fields
L

T LD
{ CSECT | Phase in | |
| Name | Which Used | Purpose for Which Used J
- 4 4 4
i RCU i Def. §& Opt.IContains error messages for definition and optimization phases |
| RCV | Sort, Int. |Sort system interface for processing records |
| | Merge, & | |
| | Fin. Merge | |
| RCW | Def. | Contains messages for record card interpretation |
| RCX | Def. |Modifications card error messages |
| RCY | Def. | Read control card error messages |
| RCZ | Opt. | Sort system interface used after linkage editor |
| RC1 | opt. | Expand phase-to-phase information area |
| RC2 | Def. | Extract calculations |
| RC3 | Def. | Contains messages required for scan routine |
| RCU | opt. |Control system search after linkage editor |
| RC6 | Sort | Soxrt phase definition |
| RC7 | Int. merge |Intermediate merge definition |
| RC8 | Fin. merge |Final merge or merge-only definition |
| RCY | sort, Int. |Load routine for phases |
| | Merge, & | I
| | Fin. Merge | |
| RDB | Sort |Deblock fixed-length records with in-line move |
| RDC | Sort | Deblock fixed-length records with link to multiple move |
| RDD | sort | Deblock fixed-length records containing user exits |
| RDE | sort |Deblock variable-length records containing user exits |
| RDG | Sort | Deblock variable-length records |
| RDH | Fin.Merge |Deblock fixed-length records for a sort
| RDI | Fin.Merge |Deblock variable-length records for a sort
| RDJ | Fin.Merge |Deblock for a merge operatiocn |
| RDL | Int.Merge |Set up deblock area |
| RDP | Osc. and | Soxrt deblock fixed-length record<256 bytes |
| | c-Cc sort | I
| RDQ | Osc. and | Sort deblock fixed-length record>256 bytes
| | c-C sort I
| RDR | Osc. and | Sort deblock fixed-length record with user exits |
| | c-C sort I
| RDS | Osc. and | Sort deblock variable-length record with user exits |
| | ¢c-C sort |
| RDT | Osc. and | Sort deblock variable length record without user exits |
| | c-C sort | |
| RDX | Fin. Merge |Deblock for read-forward, fixed-length records in tape sort |
| RGA | sort |Indicate an input end-of-file - sort phase |
| RGB | Int.Merge |Read tape - intermediate merge phase |
| RGC | Int.Merge |Read disk - intermediate merge phase |
| RGD | Fin.Merge |Read tape - final merge phase |
| RGE | Fin.Merge |Read disk - final merge phase |
| RGF | Fin.Merge |Indicate an input end-of-file - merge-only application |
| RGL | Int. Merge |Read tape forward |
| RGM | Fin. Merge |Read tape forward |
| RGO | Int. Merge |Read drum |
| RGP | Fin. Merge |Read drum |
| RMA | Sort |Contains all messages for sort phase |
| RMB | Int.Merge |Contains all messages for merge phase |
| RMC | Fin.Merge |Contains all messages for final merge and merge only phases |
| ROA | Sort | Fixed-1length replacement with multiple control fields |
| ROB | Sort | Fixed-1length replacement with single control fields |
| ROC | sort | variable-length replacement with multiple control fields
| ROD | Sort |Variable-length replacement with single control fields |
| ROE | Sort | Using polyphase technique for fixed-length records with multiple|
| | |control fields |
| ROF | Sort |Using polyphase technique for fixed-length records with single |
| | | control fields |
| ROG | sort | Using polyphase technique for variable-length records with mul- |
] !)
)

(Part 5 of 6

Section 4: Module Directory 71

72

r I T
| CSECT | Phase in | i
| Name | Which Used | Purpose for Which Used |
b + { 1
| ROH | Sort |Using polyphase technique for variable-length records with }
		single control fields
ROI	sort	Balanced tape sort algorithm
ROJ	Sort	Polyphase sort algorithm
ROK	Sort	Balanced disk sort algorithm
RON	Osc. Sort	Oscillating sort algorithm; initiates checkpoint operations
ROO	Sort	Drum-sort algorithm
ROP	Int. & Fin.	l6-way merge network
	Merge	with multiple control fields
ROC	Int. & Fin.	l6-way merge network
	Merge	with single control fields
ROR	Int.Merge	Balanced tape merge algorithm
ROS	Int.Merge	Polyphase tape merge algorithm; initiates checkpoint operations
ROT	Int.Merge	Balanced disk merge algorithmr; initiates checkpoint operations
ROU	Int. & Fin.	8-way merge network
	Merge	with multiple control fields
ROV	Int. & Fin.	8-way merge network
	Merge	with single control fields
ROW	Osc. and	Fixed-length records with multiple control fields
	C-C Ssort	
ROX	Osc. and	Fixed-1length records with single control fields
	c-C sort	
ROY	Osc. and	variable-length records with multiple control fields
	C-C sort	
ROZ	Osc. and	variable-length records with single control fields
	c-C sort	
RO3	Int. Merge	Drum-merge algorithm
RPA	Sort	Wwrite tape - sort phase
RPB	Sort	Write disk - sort disk
RPC	Sort	Indicate an end of housekeeping procedures in the sort phase
RPD	Int.Merge	Write tape - intermediate merge phase
RPE	Int.Merge	Write disk - intermediate merge phase
RPF	Int.Merge	Indicate an end of housekeeping procedures in the intermediate
		merge phase
RPG	Fin.Merge	Indicate an end of housekeeping procedures and open output in
		the final merge phase
RPM	Osc. Sort	End of phase housekeeping for oscillating sort]
RPN	Sort	Write drum
RPO	Int. Merge	Write drum
L 4 L 4
(Part 6 of 6)

Page of GY28-6597-4
Revised January 31, 1973
By TNL GN33-8164

* . .
. Section 5: Detailed Liayouts
N
Overlay Structure
This topic illustrates the overlay structure of the five phases of the sort/merge pro-
¢ gram. In the multiprogramming environments the same modules are used but may not be
placed in contiguous locations.
. —_—
RCM
AM1
RCU
8CM RCQ RC2
— _|rReN
RCC RCD __[RCI
RCY RC3 RCP 8ClI BGB RCL
d RCR
- RCE |RCG _|rek
RCW
RCF " | rcH
RCX
RCS
BGA
/ —
P Overlay Structure - Definition Phase -

Section 5: Detailed Layouts 73

Page of GY28-6597-4
Revised January 31, 1973
By TNL GN33-8164

RCA
RCZ
RCU
RC1
RC4 AO1
1 AOL
RCJ
- AO2 L _

Overlay Structure -- Optimization Phase

74

AOM

(,

RCA

RCV

RC9

RBF

RPC

CHK (if requested)

RBB, RBC, or RBE

RGA

RPA or RPB or RPN

RDB,RDC, RDD, RDE, or RDG

ROI,ROJ, or ROK or ROO

ROA,ROB, ROC, ROD, ROE, ROF, ROG, or ROH

Overlay Structure -- Sort Phase (Not applicable to Oscillating and Crisscross Sorts)

RMA

User Exits

AP1

AMA
ACA, ABF or ABB, AOI, AGA APA ADB, APC
AOB, ABS ABC, or |AOJ, or or ADC,
AOC, | ABE or AGI APB ADD, _ |
AOD, AOK or ADE or
ACE, or AOO APN ADG

APG AOF o 1

AOG,
or AOH —

Section 5:

ADM

Detailed Layouts

75

RCA

RCV

RC9

CHK (if requested)

ROA, ROB, ROC, or ROD

ROW, ROX, ROY, ROZ

RBF

RBA, RBZ, or RBY

80N or RON

RBT, RBU, RBV, RBW, or RBX

RDL

RGA

8PA or RPA

ROP, ROQ, ROU, or ROV

8GB or RGB

RDP,RDQ,RDR, RDS, or RDT

RMA, RMB

User Exits

AP1

AMA, AMB

8PM or RPM (Called in at end of phase)

APL AOA, [AOW,
AOB, |AOX,
AOC, AQY, or
or AOD |AOZ
L

ABF,
ABR, or
ABS

ABA,
ABR, or
ABY

Overlay Structure == Oscillating and Crisscross Sorts

76

AON
90N

ABT or |ADL AGN APA
ABU, 9GN 9PA
ABV,
ABW,
or ABX

AOP,
AOQ,
AOU,
or AOV

AGB
9GB

ADM

C

RCA

=

s

] CHK (if requested)

ROP, ROQ, ROU, or ROV

RBG, RBH, RBI, RBJ, or RBK

RDL

RGB or RGC or RGL or RGO

RPD or RPE or RPO

ROR, ROS, or ROT or RO3

APH

AOR,

AOS
or

AOT
or

— AC3

ABR

ABG,
ABH,
ABI,

ADL

ABJ,
or

ABK

RPF
RMB
User Exits
AP2
AMB
APD or AOP, APJ
APE AOQ, ——
or AOQU,
APO or
AQV

AGJ _—
or

AGG

Overlay Structure -- Intermediate Merge Phase (Not applicable to Oscillating and Crisscross Sorts)

AGER or
AGC

or
AGL

or

AGO

Section 5: Detailed Layouts

77

RCA
T
RCV

RC9

CHK (if requested)

ROP, ROQ, ROU, or ROV

RBL,RBM,RBN,RBO, RBP,8BN, or 880

RDH,RDI,RDJ,RDX, or 8DJ

RGD,RGE,RGF,RGM,RGP, or 8GC

AP|

ACP,
AOQ,
AOU,
or AOV

4

RPG

E?MC

User Exits

AP3

AMC
ABL, AGF or

ABQ ABM, AGH

ABN,
ABO,
ABP,
9BN
or 9O

AGK, APF, or APK

Overlay Structure -- Final Merge Phase

78

9DJ,
ADH, ADI,
or ADJ, or ADX

AGD, AGE,AGM, AGP, or 9GC

Storage Layouts

This topic illustrates the main storage layout of the sort, intermediate merge, and
final merge phases of the sort/merge program. The labels in these figures represent the
pointers located in the PPI area. If user routines are included and a listing of the
module map produced by linkage editor is desired, the following DD statement must be
included in the job step used to execute the sort:

//SORT.SYSPRINT DD SYSOUT=A

This will override the //SYSPRINT DD DUMMY statement in the SORT cataloged procedure,
and a module map from the linkage editor will be written on the data set SYSPRINT.

A module map may also be obtained, under any conditions, through use of the DIAG
parameter discussed in Appendix C.

Note that the storage layouts illustrated below may not apply when the program is
operating in a multiprogramming environment.

SORT PHASE STORAGE LAYOUT GENERATED STORAGE LAYQUTS
i ing Di For Techniques Other For Oscillating and
Using Tape Using Direct Access T:::neocs:iﬁ:ﬁng ond Crisscross Sorts
IERRCB T Crisscross Sorts
Sort System Interface
PPISPGN1
A(IERRCA) —> ——| BLOCK COUNT TABLE
PPl PPISBLCT
|ERRCB ———|
. READ CCWs
Sort System Interface A(IERRCY) 4
Running Programs
A(IERRCA) — EXTRACTED
PRI CONTROL
A(IERRCY) — 8 Byte Identity FIELDS
Running Programs PPILABO4 —|] G [PPisPeNT WRITE cCwe WRITE CCWs
OUTPUT BUFFER 1 < /O CONTROL
PPILABO4 — S & ——
L] S & | PPISTDCB BLOCK TABLES PPISTDCB —| DCB ADDRESS TABLE
OUTPUT BUFFER 1 3 i
z 8 Byte Identity Vo
PPILABO5 ——=f PPILABOS — CONTROL
/o BLOCKS
OUTPUT BUFFER 2 OUTPUT BUFFER 2 CONTROL
BLOCKS DEBLOCK BUFFER
PPIBDSVA+ —=
PPILABOS ——| PPILABO6 —] TABLE
8 Byte Control Buffer 8 Byte Control Buffer
PPIUNTCT — UNIT COUNTERS
PPILABO3 { INPUT BUFFER 1 PPILABO3 { INPUT BUFFER 1 SEQUENCE DISTRI-
PPIBDSVA+4 — MOVE LIST BUTION TABLE
INPUT BUFFER 2 INPUT BUFFER 2 PPIBDSVA+4—> MOVE LISTS
+8
[Work Area (VRE)] [Work Area (VRE)]
_________________ TREE
Record Record TREE
Storage Storage
Area Area
RSA GETMAIN SIZE
(RSA) (RSA) PPIGETSZ — TABLE
GETMAIN ADDRESS
INPUT BUFFER
PPILABO2 — TABLE PPIGETMN —»| TABLE
PPISPG NI — PPISPGN1—
PPILABOS —| RSA TABLE PPILABO8 —— RSA TABLE
Generated Generated
GETMAIN SIZE MERGE INPUT
Storage Storage PPIGETSZ —| TABLE PPILAB10—— BUFFER TABLE
GETMAIN ADDRESS SORT INPUT
PPIGETMN = TABLE PPILABOZ—=| prreR TABLE

Section 5: Detailed Layouts 79

INTERMED |ATE MERGE PHASE STORAGE LAYOUTS

GENERATED STORAGE LAYOUTS

JERRCB ——

A(IERRCA) —»

A(IERRCY) —

PPILABO4 —|

Using Tape

[T

Sort System Interface

PPI

]

Running Programs

-

OUTPUT BUFFER 1

PPILABOS —~

QUTPUT BUFFER 2

INPUT BUFFER 1

PPILABO3 {

INPUT BUFFER 2

INPUT BUFFER n

PPISPGN 11—

Generated
Storage

PPILABO7

Using Direct Access

IERRCB
Sort System Interface
A(IERRCA) — i

A(IERRCV) —»

PPILABO4 —

PPILABOS —= [

PPILABO3

PPISPGN 1—

PPI

Running Programs

8 Byte |dentity

|

OUTPUT BUFFER 1

8 Byte Identity

I

QUTPUT BUFFER 2

INPUT BUFFER 1

INPUT BUFFER n

Generated
Storage

PPILABO7

PPISPGNT .| BLOCK COUNT TABLE
PPISBLCT

e

EXTRACTED

PPISTDCB —

For Techniques Other
Than Oscillating and
Crisscross Sorts

READ CCWs

CONTROL
FIELDS
WRITE CCWs ‘

/O CONTROL
BLOCK TABLES

PPIBDSVA+ —=

/O
CONTROL
BLOCKS

DEBLOCK BUFFER
TABLE

PPIBDSVA+8 —|

MOVE LIST

PPILABO2 —

INPUT BUFFER
TABLE

PPIGETSZ

GETMAIN SIZE
TABLE

PPIGETMN —

GETMAIN ADDRESS
TABLE

PPISPGNT
PPISBLCT

PPISTDCB —

PPIBDSVA+]1—~

PPIUNTCT—

PPIBDSVA+4 —
+8

For Oscillating and
Crisscrass Sorts

BLOCK COUNT TABLE

READ CCWs

EXTRACTED
CONTROL
FIELDS

WRITE CCWs

DCB ADDRESS TABLE

/o]
CONTROL
BLOCKS

DEBLOCK BUFFER TABLE

UNIT COUNTERS

SEQUENCE DISTRI-
BUTION TABLE

MOVE LISTS

PPIGETSZ —

PPIGETMN —»

PPILABO8 ——

PPILAB1O—

PPILABOZ—

TREE

GETMAIN SIZE
TABLE

GETMAIN ADDRESS
TABLE

RSA TABLE

MERGE INPUT
BUFFER TABLE

SORT INPUT
BUFFER TABLE

80

FINAL MERGE PHASE
STORAGE LAYOUT

GENERATED STORAGE

LAYQUT

Using Tape/Direct Access

|ERRC B————| T
Sort System Interface

A(IERRCA)—»| 7

PPI

A(IERRCV)—> |

Running Programs

PPILABO6 —
8 Byte Control Buffer

PPILAB4—>| |

OUTPUT BUFFER 1 PPILABO7

PPILABOS—

OUTPUT BUFFER 2

PPILABO3 INPUT BUFFER 1

INPUT BUFFER n

[WORK AREA (VRE)]

PPISPGNT ——

Genrated
Storage

For All Techniques

PPISPGNI—
PPIBDSVA+1

DEBLOCK
BUFFER
TABLE

PPISBLCT—

BLOCK
COUNT
TABLE

READ CCWs

PPIBDSVA+8—

MOVE LIST

PPISTDCB —

/O CONTROL
BLOCK TABLES

I/O
CONTROL
BLOCKS

PPILABO2 —|

PPIGETSZ—|

EXTRACTED
CONTROL
FIELDS

INPUT BUFFER
TABLE

GETMAIN SIZE
TABLE

PPIGETMN —»

GETMAIN ADDRESS
TABLE

Section 5:

Detailed Layouts

81

MERGE ONLY
STORAGE LAYOUT

GENERATED STORAGE
LAYOUT

Using Tape/Direct Access

IERRCB——

Sort System Interface

A(IERRCA)—="]
PPI

A(IERRCV) —

Running Programs
PPILABO6 —

8 Byte Control Buffer
PPILABO4 ——

OUTPUT BUFFER 1
PPILABO5 —|

OUTPUT BUFFER 2
PPILABO3
(Includes 8
Bytes for INPUT BUFFER 1
QSAM

~

Control Buffer) L

PPISPGN1——

INPUT BUFFER n

[Input Work Area | (VRE):I

]

Generated
Storage

PPILABO7

PPISPGNT
PPIBDSVA+!

DEBLOCK
BUFFER
TABLE

PPISBLCT —>

BLOCK
COUNT
TABLE

PPIBDSVA+8 —»|

MOVE LIST

PPISTDCB ——

DCB ADDRESS TABLES

e}
CONTROL
BLOCKS

EXTRACTED
CONTROL
FIELDS

PPILABO2 ——

INPUT BUFFER
TABLE

PPIGETSZ —

GETMAIN SIZE
TABLE

PPIGETMN—

GETMAIN ADDRESS
TABLE

82

Phase-to-Phase Information (PPI) Area

This topic contains a storage map of the phase-to-phase information (PPI) area. PPI is
a communication area for all modules of the sort/merge program. It is created during
the definition phase and resides in main storage throughout the execution of a sort.
PPI is not executable and has the name IERRCA. An explanation of each field within PPI
is contained in the program listing of module IERRCA.

The sort/merge program uses general purpose register 13 as the base register for PPI.
Reference to any field within PPI can be made by adding the appropriate displacement to
the contents of register 13. The displacement for each field within PPI appears in
hexadecimal and decimal form to the left of the storage map. Byte counts within paren-
theses are in decimal form.

Displ.
Hex. Dec. < 8 BYTES »-
0 0
PPISVARE
48 72
PPIWKARE (256 bytes)
PPIPDWA (64 bytes) PPIP1ASZ
PPIPIGC (4 bytes)
50 80
PPISKPRD PPIATPTE
58 88
PPIIPBLK PPIBUF1
60 96
PPIEXTSZ PPIFFF
68 104
PPIPBUFF Reserved for Future Use
70 112
78 120 PPINUMCF PPIPCFO1 PPIMCFO1 T PPIFCFO1
80 128 PPIPCF02 PPIMCFO2 PPIFCF02 PPIPCFO3
PPIPCFO3 F PPIMCFO3 PPIFCFO3 PPIPCFO4 PPIMCF04
g8 13 | o
PPIMCF04
(cont)
PPIPSVA PPIFCFO4 PPIPCFO5 PPIMCF05 PPIFCFO5
(64 bytes)
90 144
PPIPCF06 PPIMCFO6 PPIFCFO6 PPIPCF07
98 152
PPIPCFO7
(cont)
PPIDSKED PPIMCFO7 PPIFCFO7 PPIPCFO8 PPIMCFO8
136 bts.
A0 1eo | (136
PPIMCF08 PPIFCFO8 PPIPCFO9 PPIMCFO09 PPIFCF09
(cont)
A8 168
BO 176 PPIPCF10 PPIMCF10 PPIFCF10 PPIPCF11
PPIPCF11 PPIMCF11 PPIFCF11 PPIPCF12 PPIMCF12
(cont)
B8 184
PPIMCF12 PPIFCF12
co 192 |_feont)
(END OF "PPIPSVA" ALLOCATION)
c8 200

Section 5: Detailed Layouts 83

cs8 200

PPILABO1
PPITPPT
F8 248
PPITPTBL (136 bytes)
118 280
PPIDIRAD (END OF "PPIDSKED" ALLOCATION)
120 288
PPISTAR (136 bytes), PPIODOM (64 bytes)
(END OF "PPIWKARE" ALLOCATION)
(END OF "PPIODOM" ALLOCATION)
(END OF "PPITPTBL" ALLOCATION)
180 384
(END OF "PPISTAR" ALLOCATION)
1A8 424
PPIENDAR (136 bytes)
(END OF "PPIENDAR" ALLOCATION)
230 560

8y

230
238
240
248
250

260
268
270
278
280
288
290
298
2A0
2A8
2B0
2B8
2C0
2C8
2D0
2D8
2E0
2E8

2F8
300
308
310
318
320
328
330
338
340
348
350
358

360
368

370
378
380
388
390
398
3A0
3A8

560

568
576
584
592

608
616
624
632
640
648
656
664
672
680
688
696
704
712
720
728
736
744

760
768
776
784
792
800
808
816
824
832
840
848

856
864
872

880
888
896
904
912
920
928
936

+2 +3 +4 +6 +7
PPIMODEX PPILINK
PPICOUNT PPIDELCT
PPIINSCT PPIRCDCT
PPISEQCT PPIFIZ
PPIBINSZ PPINMAX
PPIRMAX PPISRTG
PPISRTBL ‘ PPIOPBLK PPIBUF23 Reserved
PPIOPFMP
PPIDEPHO
PPIRCDLI ' PPIRCD 2 PPIRCDL3 I PPIRCD L4
PPIRCDLS PPIMRGMX PPIMRGAL PPIMRGOP
PPIDDOLI PPIAXERT
PPIUSER PPILEXFD PPILEXFF
PPINDSKA PPIBPTRK PPILABO3
PPILABO7 PPIDOUO (4 bytes), PPILABO9
PPIP2GC PPIP3GC
PPIP3ASZ PPIATP3E
PPITAVLC PPITREND
PPISPG N1 PPILABO2
PPILABO4 PPILABOS
PPILABOS PPIDOOBA (4 bytes), PPILABO8
PPIBDSVA
PPISTDCB PPISBLCT
PPISTIOB PPIUNTCT
PPILAB10 PPIGETMN
PPIGETSZ PPISORCE
PPISORCE (cont) PPISLIB
PPIRCY PPIADSSC
PPIALG
PPIDEB
PPINET
PPIBLK
PPIWRT
PPIVMV
PPIRD
PPIDEB2
PPINETM
PPIBLK2
PPIINT
PPICONV
PPIEOF
PPIRMA

PPIRMB, PPIRMC (8 bytes)

PPIAMA

Section 5:

Detailed Layouts

3A8
3B0
3B8
3C0
3C8
3D0
3D8
3E0
3E8
3F0
3F8
400
408
410
418
420

86

936
944
952
960
968
976
984
992
1000
1008
1016
1024
1032
1040
1048
1056

PPIAMB, PPIAMC (8 bytes)

PPIOPEN

PPIX11

PPIX21, PPIX31 (8 bytes)

PPIX15

PPIX25, PPIX35 (8 bytes)

PPIX17

PPIX27, PPIX37 (8 bytes)

PPIX18

PPIX28, PPIX38 (8 bytes)

PPIX19

PPIX29, PPIX39 (8 bytes)

PPIX61

PPIX16

PPIADDCF

PPIDDSRT (*SORT")

VER. #

Not used

PPICHKAD

Displacement

Hex. Dec. Field Name Bytes Field Description
0 0 PPISVARE 72 Register save area
48 72 PPIWKARE 256 Starting address of sort work area
PPIPDWA 64 Merge network prime area
PPIP1GC 4 Size of sort phase generated core
4c 76 PPIP1ASZ 4 Phase 1 assignment size
50 80 PPISKPRD 4 Skip record count
54 84 PPIATP1E 4 Address of ATTACHors phase 1 exit
58 88 PPIIPBLK 4 ' Input blocking
5C 92 PPIBUF1) Number of buffers -- phase 1
60 96 PPIEXTSZ 4 Size of extract routine
64 100 PPIFFF 4 Displacement of F field
68 104 PPIPBUFF 4 Displacement of packing buffer
6C 108 reserved 4
70 112 PPINUMCF 2 Number of control fields
72 114 PPIPCFO01 3 Ccontrol field 1 position
75 117 PPIMCFO02 2 Control field 1 length
77 119 PPIFCFO1 1 Control field 1 format and sequence
78 120 PPIPCF02 3 Control field 2 position
7B 123 PPIMCF02 2 Control field 2 length
7D 125 PPIFCFO02 1 control field 2 format and sequence
1E 126 " PPIPCFO03 3 control field 3 position
81 129 PPIMCFO03 2 Control field 3 length
83 131 PPIFCFO3 1 Control field 3 format and sequence
84 132 PPIPCFO4 3 Control field 4 position
87 135 PPIPMCFOU4 2 Control field 4 length
88 136 PPIPSVA 64 Merge network prime save area
89 137 PPIFCFOU 1 Control field 4 format and sequence
8A 138 PPIPCF05 3 control field 5 position
8D 141 PPIMCFO05 2 control field 5 length
8F 143 PPIFCFO05 1 control field 5 format and sequence
90 144 PPIPCF06 3 Control field 6 position
93 147 PPIMCFO06 2 control field 6 length
95 149 PPIFCF06 1 Control field 6 format and sequence
96 150 PPIFCFO07 3 control field 7 position

Section 5: Detailed Layouts

Displacement

Hex.

88

98

99

9B

9c

9F

Al

A2

A5

A7

A8

AD

B1

B3

B4

B7

B9

Cc8

Fu

F8

Dec.

152

153
155
156
159
161
162
165
167
168
171
173
174
177
179
180
183
185

200

244

248

Field Name Bytes Field Description
PPIDSKED 136 Used for up to 17 disk addresses. During general
assignment, the address format is ABC
A = 1 byte channel address
B = 1 byte unit address
C = 2 bytes, number of tracks
During running program, the address format is
M BB CC HH R
PPIMCFO07 2 Control field 7 length
PPIFCFO07 1 Control field 7 format and sequence
PPIPCFO08 3 Control field 8 position
PPIMCFO08 2 Control field 8 length
PPIFCFO08 1 Control field 8 format and sequence
PPIPCF09 3 Control field 9 position
PPIMCFO9 2 Ccontrol field 9 length
PPIFCFO09 1 control field 9 format and sequence
PPIPCF10 3 Control field 10 position
PPIMCF10 2 Control field 10 length
PPIFCF10 1 Control field 10 format and sequence
PPIPCF11 3 Control field 11 position
PPIMCF11 2 Control field 11 length
PPIFCF11 1 Control field 11 format and sequence
PPIPCF12 3 control field 12 position
PPIMCF12 2 Control field 12 length
PPIFCF12 1 Control field 12 format and sequence
PPILABO1 6u Utility storage position, used for read/write
directory
PPITPPT 4 Tape table pointer -- high order byte is channel of
SORTIN
PPITPTBL 136 Tape table -- two byte entry for each unit of the
form
r T 1
| x1X2x%X3%,0000 | DCB Increment
L 1 |
x; — I1/0 bit
1 = input

0 = output
X5 - Open bit
1 = open routine should open unit
X3 — Full reel bit (oscl only)
1 = unit contains full reel
0 = unit does not contain full reel
X4 = Collating sequence bit (oscl only) set at EOF or
RMAX time only
1 = descending
0 ascending

J

Displacement

Hex.
118

120

120

1A8

230

Dec.
280

288

288

424

560

Field Name

Bytes

Field Description

PPIDIRAO

PPIODOM

PPISTAR

PPIENDAR

PPISW1

8

64

136

136

Disk directory address

Odometer table for oscl sort,

levels
Byte 0
Bytes 1-3 = Address of next tape table entry to be

Direct access starting addresses, one entry for each

= number of sequences at this level

used as output for this level

of 3-17 extents

Direct access ending addresses reset from PPIDSKED
for 2301-2311
Phase 3 starting disk addresses for 2314 read priming

Switch -- 64 Lits
Bit 0 fixed -- used by read/write rtns
Bit 1 variable -- used by read/write rtns

If on, the following bits mean:

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

Bit

Bit

Bit
Bit

Bit

28

29

31

single control field
multiple control field
balanced
polyphase
oscillating

1 to 8

1 to 16

tape

disk

no data chaining

data chaining input

data chaining output

MOLS

no NODS

records .LT. 256

records .GT. 256

skip option

phase 1

phase 2

phase 3

merge only

checkpoint

equals

extract

user's output sequence

= 1 - descending

= 0 - ascending

phase 1 collating order or
merge input order

= 1 descending

= 0 ascending

disk merge table collating order
= 1 descending

= 0 ascending

attached, linked, or executed
filesize estimated

= 1 - estimated

= 0 - not specified

merge only - assignment or
running program EOF

= 1 - running program EOF
= 0 - assignment EOF
oscillating QSAM has detected EOF
1 QSAM EOF
0 QSAM has not detected EOF

Section 5: Detailed Layouts

one word for each of 16

89

Displacement

Hex. Dec. Field Name Bytes Field Description
Bit 32 E type control fields present
Bit 33 SORT card present
Bit 34 MERGE card present
Bit 35 RECORD card present
Bit 36 MODS card present
Bit 37 execute entire system search
Bit 38 doubleword alignment for buffers
Bit 39 single word alignment for buffers
Bit 40 read error flag
Bit 41 write error flag
Bit 42 even/odd switch for baln
Bits 43-44
00 = 1 mpx
01 = 1 mpx and 1 sel, or 1 sel
10 = 1 mpx and N sel, or N sel
Bit 45 input unit used as work unit
Bit 46 switch or TAU
Bit 47 N channel environment
Bit 48 deblock backward
Bit 49 read forward
Bit 50 close with rewind
Bit 51 block forward
Bit 52 read forward later
Bit 53 drum
Bit 54 2314 using crcx
Bit 55 diagnostic
= 1 - diagnostics
= 0 - no diagnostics
Bit 56 user EOF (oscl only)
Bit 57 RMAX reached (oscl only)
Bit 58 user insert in process (oscl only)
Bit 59 track tape
= 0-9 track
= 1-7 track
Bit 60 merge pass to follow -- 2314
Bit 61 2311s using 2314 technique (never on)
Bit 62 value count of 256 for FIELDS parameter or
= 1 - baln on 2314
= 0 - not baln on 2314
Bit 63 accept/skip option activated
238 568 PPIMODEX 4 Modification exits activated
Bit Meaning Bit Meaning
0 E11 11 E37
1 E15 12 E38
2 E1l6 13 E61
3 E17 14 E19
4 E18 15 E29
5 E21 16 E39
6 E25 17-21 not used
7 E27 22 VRE on input
8 E28 23 VRE on output
9 E31 24-31 not used
10 E35
23c 572 PPILINK 4 MOD exit link edit information

Bits 0-16 represent exits in the order specified in
PPIMODEX field

1 = exit rtn was link edited via sort

0 = exit rtn not link edited via sort

90

C

Displacement

Hex.

240

244
248

24C

250
25C

260
264
268

26C
270
272
274
276
278
280
288

28A

28C

28E

290

Dec.

576

580
584

588

592

604

608
612
616

620
624
626
628
630
632
640
648

650

652

654

656

Field Name Bytes Field Description
Bit Meaning if =1
17 E11 link edited separately
18 E21 link edited separately
19 E31 link edited separately
20 link editing was done
21 not used
22 link edit error
23-31 not used
PPICOUNT 4 Record counter
Phase 1 - oscl count of records deblocked from input
data set
Phase 2 - count of records written out on work units
Phase 3 - count of records placed on SORTOUT
PPIDEICT 4 Deleted records count
PPIINSCT 4 Inserted records count
PPIRCDCT) Record counter -- total records, including inserts,
entering a phase
PPISEQCT 12 Sequence counters
PPIFILSZ 4 File size from SIZE parameter on SORT or MERGE con-
trol card
PPIBINSZ 4 Bin size
PPINMAX L) Nmax
PPIRMAX 4 For fixed-length records, number of records at sort
blocking that can be contained in a full reel
For variable-length records, number of bytes at sort
blocking that can be contained in a full reel
PPISRTG 4 G -- number records in RSA
PPISRTBL 2 B -- sort blocking
PPIOPBLK 2 Output blocking
PPIBUF23 2 Number of buffers -- phases 2 and 3
reserved 2
PPIOPFMP 8 Output unit for phase 3
PPIDEPHO 8 Output unit address
PPIRCDL1 2 Fixed -- input record length
Variable -- maximum input record length
PPIRCDL2 2 Fixed -- sort record length
Variable -- maximum sort record length
PPIRCDL3 2 Fixed -- output record length
Variable -- maximum output record length
PPIRCDLY 2 Fixed -- not used
Variable -- minimum sort record length
PPIRCDLS 2 Fixed -- not used
Variable -- modal record length

Section 5: Detailed Layouts

91

Displacement

Hex. Dec. Field Name Bytes Field Description
292 658 PPIMRGMX 2 Maximum merge order
294 660 PPIMRGAL 2 Alternate werge order
Poly = 1
Oscl =1
Baln = alternate merge order
Disk = maximurw merge order saved
296 662 PPIMRGOP 2 Optimum merge order

Poly none
Baln none
Oscl none
Disk optimum merge order

298 664 PPIDDOL1 4 Merge network's major control field

29¢C 668 PPIAXERT 4 Address of equals or extract module

2A0 672 PPIUSER 4 User communication area

2n4 676 PPILEXFD 2 Length of extracted fields

276 678 PPILEXFF 2 Length of extracted fields full

228 680 PPINDSKA 2 Number of disk areas

23R 682 PPIBPTRK 2 Blocks/track for direct access

2AC 684 PPILABO3 4 Input buffer size; first byte -- number of input
buffers

2B0O 688 PPILABO7 4 output buffer size; first byte -- number of output
buffers

2B4 692 PPIDOUO 4 User option for sequence check

2B4 692 PPILABOY 4 Byte 0 - number of phase 2 output buffers

Byte 1 - number of phase 3 output buffers
Bytes 2-3 - Phase 3 output buffer size

2B8 696 PPIP2GC 4 Size of merge phase generated core
2BC 700 PPIP3GC 4 Size of final merge phase generated core
2C0 704 PPIP3ASZ 4 Message index
2chy 708 PPIATP3E 4 Address of ATTACHor's phase 3 exit
2c8 712 PPITAVLC 4 Sort phase available core
2cc 716 PPITREND 4 Ending address of tree
2D0 720 PPISPGN1 4 Address of next available byte in generated core
2D4 724 PPILABO2 4 Address of input buffer table
0Oscl -- address of sort phase input buffer table
2D8 728 PPILABO4 4 Address of output buffer 1
2DC 732 PPILABOS 4 Address of output buffer 2
2E0 736 PPILABO6 4 Address of control buffer

Phase 1 -~ input buffer pool
Phase 3 merge-only -- output buffer pool

92

Displacement
Hex. Dec. Field Name Bytes Field Description

2E4 740 PPIDOOBA 4 Byte 0 - Number of entries in RSA table
Bytes 1-3 - Address of RSA table

2E8 744 PPIBDSVA 16 Block/deblock save area
Byte 0 - Total number of work units
Bytes 1-3 - Address of input buffer table for phases

2 and 3
Bytes 4-7 - Fixed -- address of move list phase 1
Variable -- address of next available
bin
Bytes 8-11 - Fixed -- Address of move list phases 2
and 3
Variable -- Number of available bins
Bytes 12-15 - Variable -- entry to move routine
phase 1
2F8 760 PPISTDCB 4 Starting address of DCB table
2FC 764 PPISBICT 4 Address of block count table
300 768 PPISTIOB 4 Starting address of IOB table
304 772 PPIUNTCT 4 Oscl only -- address of unit count table
308 776 PPILAB10 4 Oscl only -- address of input buffer table for merge
phase
30C 780 PPIGETMN 4 Address of GETMAIN table of addresses
310 784 PPIGETSZ 4 Address of GETMAIN takle of sizes
314 788 PPISORCE 8 ddname of user mod library
DCB addresses of SYSLMOD user library
31cC 796 PPISLIB 4 DCB addresses of sort library
320 800 PPIRCV 4 Sort system control for running program
324 804 PPIADSSC 4
Module interface list, 4 bytes 4 bytes
Format of each entry is: r T 1
|3 character symbolic| absolute |
| names | address |
L 4 ¥
328 808 PPIALG 8 Algorithm phases 1 and 2
330 816 PPIDEB 8 Deblock phases 1 and 3
338 824 PPINET 8 Network phases 1 and 3
340 832 PPIBLK 8 Block phases 1 and 3
348 840 PPIWRT 8 Write phases 1 and 2
350 848 PPIVMV 8 Variable move -- sort phase
358 856 PPIRD 8 Read phases 2 and 3
360 864 PPIDEB2 8 Deblock phase 2 prime routine
368 872 PPINETM 8 Merge network phase 2
370 880 PPIBLK2 8 Block/deblcok phase 2
378 888 PPIINT 8 Initialize sort and tree, oscl

Section 5: Detailed Layouts

Displacement

Hex.

380
388
390
398
398
3a0
3A8
328
3B0O

3B8
3Co
3co

3C8
3D0
3D0

3D8
3EO0
3E0

3E8
3F0
3F0

3F8
400
400

408
410

418

41c

420
421

424
428

42A

9y

Dec.

896
904
912
920
920
928
936
936
ouy

952
960
960

968
976
976

984
992
992

1000
1008
1008

1016
1024
1024

1032
1040

1048

1052

1056
1057

1060
1064

1068

Field Name Bytes Field Description
PPICONV 8 Convert hex to characters for message
PPIEOF 8 EODAD for QSAM phase 1 and merge only
PPIRMA 8 Messages for phase 1 running program
PPIRMC 8 Messages for phase 3 running program
PPIRMB 8 Messages for phase 2 running program
PPIAMA 8 Messages for phase 1 assignment prog
PPIAMC 8 Messages for phase 3 assignment prog
PPIAMB 8 Messages for phase 2 running prog
PPIOPEN 8 Open list for phases 1, 2, and 3
PPIX11 8 Exits for
PPIX31 8 user initialization
functions
PPIX21 8
PPIX15 8 Exits for
logical record
SRS 8 modification
PPIX25 8
PPIX17 8 Exits for closing
data sets at
PPIX37 8 end of phase
PPIX27 8
PPIX18 8 Exits for
PPIX38 8 read
errors
PPIX28 8
PPIX19 8 Exits for
write
PPIX39 8 errors
PPIX29 8
PPIX61 8 Exit for extract
PPIX16 8 Exit for Nmax
PPIADDCF 4 Address of control field info for more than 12 con-
trol fields
PPIDDSRT 4 Four letter identification from EXEC statement PARM
field - - used when sort is linked to or attached
1 PPI version number
Not used
PPICHKAD 4 Checkpoint module address
PPIDCBIN 2 Size of SORTIN DCB
PPIDCBOU 2 Size of SORTOUT DCB

Appendix A: User Program-Modification Exits

This appendix lists the sort/merge modules User program—modification exits in the
that have provisions for exits to a user's intermediate merge phase are as follows:
modification routine. For a description of

the modification exits, see the publication

0S Sort/Merge. Exit Module(s)
E21 IERAPH, IERAPL
E25 IERRBJ, IERRBK, IERRBW, IERRBX
E27 IERRPF, IERRPM, IERS8PM
User program-modification exits in the E28 IERAGG, IERAGJ, IERAGN, IER9GN
sort phase are as follows: E29 IERAGG, IERAGJ, IERAGN, IER9GWN
E61 IERROQ, IERROV
Exit Module(s) User program-modification exits in the
Ell IERAPG, IERAPL final merge phase are as follows:
E15 IERRDD, IERRDE, IERRDR, IERRDS
E16 IERRDD, IERRDE, IERRDR, IERRDS Exit Module(s)
E17 IERRPC, IERRPM, IERSPM E31 IERAPI
E18 IERAGA, IERAGI, IERAGN, IER9GN E35 IERRBM, IERRBO, IER8BO
E19 IERAGA, IERAGI, IERAGN, IERIGN E37 IERRPG
E61 IERROB, IERROD, IERROF, IERRCH E38 IERAGK, IERAPF, IERAPK
E39 IERAGK, IERAPF, IERAPK
E61 IERROQ, IERROV

Appendix A: User Program-Modification Exits 95

Appendix B: Register Usage

The general registers used by the sort/
merge program for linkage and communication
of parameters follow operating system
conventions.

General register 1 is used to pass the
address of a parameter list to the called
routine.

General register 13 contains the address of
an area set aside by the sort/merge pro-

96

gram, in which a user routine may save the
contents of registers.

General register 14 contains the address of
the sort/merge program return point.

General register 15 contains the address of
the user routine. It is also used Ly the
user routine as a return code register to
communicate information to the sort/merge
program.

C

Appendix C: Messages Produced by the Sort/Merge Program

This appendix lists the messages produced by the various modules of the sort/merge

program.
i Message j Module Causing Message Execution]
L —_—
{ IER001A COL 1 OR 1-15 NOT BLANK T RCC]
: IER002A EXCESS CARDS I RCC :
: IERO03A NO CONTIN CARD I RCC ‘
: IEROO4A INVALID OP DELIMITER : RCC :
: IERO0O5A STMT DEFINER ERR I RCC :
: IER006A OP DEFINER ERR I RCC 1
: IEROO7A SYNTAX ERR-XXX I RCD {
: IERO08A FLD OR VALUE GT 8 CHAR-XXX = RCD I
: IER009I EXCESS INFO ON CARD-xXXX : RCD =
: IERO10A NO S/M CARD = RCE !
= IERO11A TOO MANY S/M KEYWORDS : RCE :
= IERO12A NO FLD DEFINER ‘ RCE ‘
: IERO13A INVALID S/M KEYWORD ‘ RCE l
: IERO14A DUPLICATE S/M KEYWORD : RCE %
: IER015A TOO MANY PARAMETERS l RCE :
: IER016A INVALID VALUES IN FLD = RCE ‘
: IER017A ERR IN DISP/LENGTH VALUE : RCE :
= IER018A CTL FLD ERR I RCE I
: IER019A SIZE/SKIPREC ERR I RCE %
: IER020A INVALID REC KEYWORD : RCG l
: IER021A NO TYPE DEFINER i RCG {
: IER022A RCD FORMAT NOT F/V ‘ RCG =
: IER023A NO LENGTH DEFINER = RCG :
: IERO24A ERR IN LENGTH VALUE = RCG =
} IER025A RCD SIZE GT MAX I RCG =
; IERO026A L1 NOT GIVEN : RCG :
i IER027A CF BEYOND RCD i RCG, RCI l
4
(Part 1 of 3)

Appendix C:

Messages Produced by the Sort/Merge Program 97

Message

Module Causing Message Execution

[T s S e S e e S e, e S, e S . S e e (e S . S S, S S S . . . i, e e e, . . e, S . . e . e S e B e, S . . S s, ey

IER028A
IER029A
IERO030A
IERO31A
IER032A
IERO033A
IERO34A
IERO035A
IERO036I
IERO371
IER038I
IERO039A
IERO4OA
IEROU41A
IEROU42A
IEROU3A

IEROU4UT

IEROUSI
IEROULG6A

IEROL4TA

IEROU48I
IEROU49T
IERO50I
IERO51A
IERO052T
IEROS53A
IEROSU4TI
IERO55I
IER056A

IEROS57A

TOO MANY EXITS

IMPRCPER EXIT

MULTIPLY DEFINED EXIT
INVALID MODS OP CHAR

EXIT E61 REQUIRED

CF SEQUENCE INDIC E REQUIRED
PARAM ERR FOR MODS

DUPLICATE MOD RTN IN PHASE

B XXXXXX

G

XXXXXX

NMAX = XXXXXX

INSUFFICIENT CORE

INSUFFICIENT WORK UNITS

N GT NMAX

UNITS ASGN ERROR

DATA SET ATTRIBUTES NOT SPECIFIED

EXIT Exx INVALID OPTION

END SORT PH
SORT CAPACITY EXCEEDED

RCD CNT OFF, IN XXXXXX,
OUT XXXXXX

NMAX EXCEEDED

SKIP MERGE PH

END MERGE PH

UNENDING MERGE

EOJ

OUT OF SEQ

RCD IN xxxxxX, OUT XXXXXX
INSERT xxxxxX, DELETE XXXXXX
SORTIN/SORTOUT NOT DEFINED

SORTIN NOT SORTWKO1

o . s s e e . e, T e, S o — — — ——— ————— —— ———————— —— ———————— — — —— — ————— —— " —]

RCH,
RCH
RCH
RCH
RCH
RCH
RCH

RCH

RCD

RCK-BGA-BGB

RCK-BGA-BGB

RCJ-BGA

RCP,
RCI,
RCJ
RCI
RCI

AGA,
9GN

RPC
AOK,

RPC,

RDD,
RPC
RPF,
ROR
RPG
ROP,
RPG
RPG
RCI

RCI

RCK,

RCJ

AGG,

ROK,

RPF,

RDE,

RPM,

ROC,

RCL,

APK,

ROR,

RPG,

RDR,

8PM

ROU,

RCS, RCI, BGB

APF, AGI, AGJ, AGK, AGN,

ROS, ROI, RON, 8ON, RPE

RPM, 8PM, RON, 8ON

RDS

ROV

b s e e o S — — — ——— —— ——————————— ——— — ——— ———————— i —— —— —— — ———— —— —— — —— — — — . S s i s,

98

(Part 2 of 3)

¢

C

C

i Message i Module Causing Message Execution]
i IER058A SORTOUT A WORK UNIT i RCI]
‘ IER059A RCD LNG INVALID FOR DEVICE : RCI :
‘ IER060A DSCB NOT DEFINED : RCL ,
‘ IER061A I/0 ERR Xxx I AGD, AGE, AGM, AGP, RGB, RGC, RGD, RGE, }
| | RGL, RGM, RGO, RGP, RPA, RPB, RPD, RPE, |
| | RPO, RPN, 8GB, 9GC, 8GC, 8PA |
1 IER062A LE ERR : RCO |
% IER063A OPEN ERR XXXXXX I RCM,RCZ |
} IERO64A DELETE ERR = RCV =
: IER065A PROBABLE DECK STRUCTURE ERROR I RCH |
: IER066A APPROX REC CNT XXXXXX { AOK, ROK, ROR, ROS, ROI, RON, 8ON, RPE I
: IER067I INVALID EXEC OR ATTACH PARAMETER : 8CM l
i IERO68A OUT OF SEQ SORTINXxxX i ROP, ROQ, ROU, ROV j

(Part 3 of 3)

In addition to the above messages, the sort/merge program provides the facility to
print diagnostic messages, control statements, and a module map. Use this option only if
a problem is encountered while trying to execute the sort/merge program. This option is
designed to print addresses of areas which are critical to program execution and enables
qualified IBM representatives to pinpoint possible system and/or machine problems. Do
not include this option in a normal sort environment; it impairs sort performance.

To print diagnostic messages, control statements, and a module map, the following spe-
cifications must be provided in the execute card:

SORT
//STEP1 EXEC PROC= %,PARM='DIAG'

SORTD

If the DIAG message is used critical messages will give a system
completion code of 0Cl. If SYSABEND or SYSUDUMP DD cards are included
in the job stream a storage dump will be written on this data set.

Appendix C: Messages Produced by the Sort/Merge Program 99

The following diagnostic messages result from using DIAG:

[Diagnostic Message i Module Causing Message Execution j
i IER900I GENERATED CORE END ADDR XXXX } APG, APL]
1 IER901I INPUT BFR TBL ADDR XXXX I APG, APL ,
‘ IER902I OUTPUT BFR ADDR XXXX, XXXX I APA, APB, APN, 9PA {
I IER903I RSA TBL ADDR XXXX = APG, APL :
I IER904I TREE ADR FROM xxxX to xxxXx I AOA, AOB, AOC, AOD, AOE, AOF, AOG, ACH :
= IER905I MOVE RTN ADDR XXXX I ABF, ABS =
‘ IER906I DCB TBL ADDR XXXX : AGA, AGI, AGN, 9GN ’
‘ IER907I O/P CCW ADDR XXXX : APA, APB, APN, 9PA ,
1 IER908I OUTPUT IOB ADDR XXXX : APA, APB, APN, 9PA ,
‘ IER909I OPEN LIST ADDR XXXX : APA, APB, APN, 9PA ,
1 IER920I GENERATED CORE END ADDR XXXX : APH l
1 IER921I INPUT BUF TBL ADDR XXXX : APH, APL :
‘ IER922I OUTPUT BFR ADDR XXXX, XXXX I APD, APE, APO :
{ IER923I MOVE RTN ADDR XXXX I ABR :
1 IER924I DCB TBL ADDR XXXX : AGG, AGJ, AGP =
‘ IER925I O/P CCW ADDR XXXX { APD, APE, APO :
‘ IER926I IOB TBL ADDR XXXX } APD, APE, APO {
‘ IER927I I/P CCW ADDR XXXX { AGB, AGC, AGL, AGO, 9GB ,
I IER940I GENERATED CORE END ADDR XXXX ’ API :
1 IER941I INPUT BFR TBL ADDR XXXX I API {
1 IER942T OUTPUT BFR ADDR XXXX, XXXX } ABL, ABM, ABN, ABO, ABP, 9BO, 9BN :
‘ IER943I MOVE RTN ADDR XXXX I ABQ }
‘ IER944T DCB TBL ADDR XXXX : APF, APK, AGK ,
I IER945I I/P CCW ADDR XXXX ’ AGD, AGE, AGM, AGP, 9GC ,
‘ IER961I TECHNIQUE XxXXX = BGA, RCK, BGB :
= IER962I NO/SIZE OF BFRS, PH x, X, XXXX l BGA, RCK, BGB }
‘ IER9631I MAX. SYSGEN CORE XXXX ‘ BGA, RCK, BGB ;
% IER964I CALC. CORE PH1=xxxx I BGA, RCK, BGB }
1 IER965I MERGE ORDER=XXXX I BGA, RCK, BGB }
i IER988I IERyyy LOC. AT xxxx?1 i RC6, RC7, RC8, RCI J
;1This message will appear frequently and is designed to provide the starting addresses]
{ of the sort/merge program modules. J

100

This appendix describes the structure of a
node and the various format codes as they
appear in the second word of that node.

For fixed-length records, the node con-
sists of five words. The first word con-
tains the address of the next-level node to
which records associated with the current-
level node are compared. In other words,
the first-level node points to the second-
level node, which points to the third-level
node, etc.

The second word contains the format
code. This code is a number that is used
as a displacement value to index a branch
table in the ordering module. The entries
in the branch table reflect the sequence
(0ld or new) to which each record at a node
belongs. This knowledge precludes needless
compares and facilitates the updating of a
node after the position of a new record is
determined.

The last three words refer to the actual
addresses of the three records in the RSA.
A binary compare is made to determine which
word in the node is to receive which RSA
address. If the user specifies ascending
sequence, the address of the record having
the smallest control field is placed into
the first word, the address of the record
having the largest control field is placed
into the third word, and the address of the
record having the control field that
collates in the middle is placed into the
second word. For descending sequences, the
address of the record having the largest
control field is placed into the first
word, the address of the record having the
smallest control field is placed into the
third word, and the address of the record
having the control field that collates in
the middle is placed into the second word.

For variable-length records, the node
consists of only three words. The first
two words contain the next-level node
address and format code and are functional-
ly similar to the fixed-length record node
described above.

Because of the complexity of address
structuring in the variable-length record
format, only one record is referred to in
the RSA. Hence, only one word is required
in the node for this purpose. Functional-
ly, however, the word is similar to that in
the fixed-length record node.

Appendix D: Format Codes

FORMAT CODES FOR FIXED-LENGTH RECORDS

The format codes for fixed-length records
are interpreted as follows:

Format Code Meaning
0 No record addresses in node.
16 An event has occurred: flush-

ing completed, winner
obtained, or new string
started. This is a program
node, as opposed to a tree
node.

32 One address in the node.
Record is for new sequence.

48 One address in the node.
Record is for same sequence.

64 Two addresses in the node.
Both records for new sequence.

80 Two addresses in the node.
One record for new sequence,
and one record for same
sequence.

96 Two addresses in the node.
Both records for same
sequence.

112 Three addresses in the node.
All records for new sequence.

128 Three addresses in the node.
Two records for new sequence,
and one record for same
sequence.

144 Three addresses in the node.
Two records for same sequence,
and one record for new
sequence.

160 Three addresses in the node.
All records for same sequence.

FORMAT CODES FOR VARIABLE-LENGTH RECORDS

For variable-length records, a slight
difference occurs in the format codes
because only one record address is entered
in each node. The various codes and their
meanings are as follows:

Appendix D: Format Codes 101

Format Code Meaning
0 No record address in the node.
16 An event has occurred: flush-

ing completed, winner
obtained, or new string
started. This is a program
node, as opposed to a tree
node.

32 Describes the status of the
node. (See program listing
for details.)

48 Record address in the node is
for a new sequence.

64 Describes the status of the
node. (See program listing
for details.)

80 Record address in the node is
for the same sequence.

CONDITION CODES FOR FIXED- AND
VARIABLE-LENGTH RECORDS

The format code determines the point of
entry into the instruction sequence. When
the instruction sequence is entered, one of
four condition codes exists. These condi-
tion codes dictate the final disposition of
the record and are as follows:

Condition Interpretation
Flush Force records from the tree.
Fill Continue filling the tree.
Same Record is of same sequence as
previous records.
New Record begins a new sequence.
Examples: Fixed-Length Records

The examples below will aid in interpreting
the listings for fixed-length records. The
character to the left of the slash repre-
sents the record entering the node, and the
three characters to the right of the slash
represent the records already in the node.
Hence, in the program listing, when the
comments contain a statement "This case
handles an x/xxx situation,” it can be
resolved as follows:

102

Condition Interpretation .

S/SSS New record is of same sequence J
as three previous records.

N/SSS New record begins new
sequence; previous three rec-
ords of same sequence.

-/SSS Records in tree are of the
same sequence, and the program
is in flush mode.

N/SSN Two sequential records, one
new sequence in node. New
sequence record entering.

-/NNN Flush mode; all records of new
sequence to be flushed.

-/SS- Flush mode; two records of
same seqeunce to be flushed.

N/S-- One record in the node is of

the same sequence; new record
begins a new sequence.

Examples: Variable-Length Records

For variable-length records, the listings
may be interpreted as explained below. The
two characters to the left of the slash
represent the record entering the node and
the two characters to the right of the
slash represent the record already in the
node.

Condition Interpretation

S1/s51 New record is of same sequence

as previous record.

Record in node is of the same
sequence as others in tree.
Set status of node to reflect
this condition.

T1l/s51

Record in node is of the same
sequence. New record will
change sequence. Set status
of node to reflect change.

T2/51

Record in node is of new
sequence. New record is also
for new sequence.

S2/52

Record in node is for new
sequence. Set node status to
temporary new sequence record.

T2/S2

T2/T1 Set node status at temporary
before next record is

introduced.

Appendix E: Checkpoint/Restart Facility

To eliminate the need for completely re-
executing a sorting application after an
I/0 error, a machine check, an intentional
operator interruption, or a similar event,
the sort/merge program makes use of the
Operating System Checkpoint/Restart facili-
ty. The user directs the sort/merge pro-
gram to use this facility by (1) including
the checkpoint parameter (CKPT) on the SORT
control statement and (2) providing a
SORTCKPT DD statement to define the check-
point data set. (Refer to the publication
IBM System/360 Operating System;

Sort/Merge.)

When directed in this manner, the sort/
merge program issues checkpoint macro
instructions (CHKPT) at the start of the
sort phase, during the intermediate merge
phase (for all techniques except criss-
cross), and at the start of the final merge
phase. The checkpoint macro instructions
cause checkpoint records to be written on
the checkpoint data set. These records
contain information needed to restart
processing.

The sort/merge program can be restarted
from the checkpoint taken at the start of
the sort phase or from the last checkpoint
written.

Appendix E:

The interface between the sort/merge
program and the checkpoint restart facility
is module IERCHK, which issues checkpoint
macro instructions. The sort/merge progranm
modules that interface with the checkpoint
restart facility through module IERCHK are:

e IERAPC -- Start of the sort phase (all
techniques).

e IERAPJ -- Start of the intermediate
merge phase (all techniques
except crisscross and oscil-
lating). Start of each
intermediate merge phase pass
(balanced direct access
technique).

e IERRON -- During the intermediate merge
phase (oscillating
technique).

e IERROS -- During the intermediate merge
phase (polyphase technique).

e IERROT -- During the intermediate merge
phase (balanced disk
technique).

e IERAGH -- Start of the final merge
phase (all techniques).

Checkpoint/Restart Facility 103

Appendix F: Program Listing Standards and Conventions

To facilitate the identification of
modules, work areas, tables, and other
aspects of the sort/merge program listing,
symbolic names are assigned to assembler
language statements according to a definite
pattern.

MODULE NAMES

The format of all module names is IERTMM,
where:

e IER is the identification for sort/
merge modules.

e T, in general, is either an "A" for an
Assignment or an "R" for a Running type
module; however, for some assignment
modules associated with the crisscross
technique, T is "9", and for some run-
ning modules associated with the criss-
cross technique, T is "8."

e MM is the unique portion of the module
nane.

Note: Modules EX1, EX2, and EX3 do not
follow the rules of name format and are
used only if user-modification routines are
link edited. Module DM4 also does not fol-
low these rules and is used only if the
option to print diagnostic messages is spe-
cified. Module BGA is always included for
tape B and G calculations, and module BGB
is always used for crisscross direct access
B and G calculations. Module CHK issues
checkpoint macro instructions when check-
point is requested.

MODULE CLASSIFICATIONS

Four classifications of modules appear in
the program listings as follows:

A
The operation of the module does not
depend upon a particular internal
representation of the external
character set.

B

The operation of the module does not
depend upon a particular internal
representation of the external
character set except that the decimal
numbers are coded. The numbers are
coded so that the low-order four bits,
when considered as binary integer,
identify the value of the digit.

104

C
The operation of the module depends
upon an internal representation of the
external character set equivalent to
the one used at assembly time.

D

The operation of the module depends
upon a classification of the external
character set by means of a table.
This table is constructed for the
EBCDIC character set. The table is
arranged so that the redefinition of
character constants by reassembly will
result in a correct table for new
definitions, if the external bit
remains unchanged.

INSTRUCTION NAMES

The format of all internal type instruction
names is MMNNNNNO or MMMNNNNO where:

e MM or MMM represents the last two or
three characters of the module name.

e NNNNN or NNNN is a unique designation
assigned by the programmer and may be
from one to five characters.

e O is an "X" if the label is externally
used; otherwise it can be used as
another N.

CONSTANT NAMES

The names of constants start with a K. The
rest of the name is meaningful with rela-
tionship to some characteristic of the con-
stant (e.g., KONEH might be used as the
name of a halfword one).

WORK AREA NAMES

The names of work areas have the same for-
mat as that of constants except that the
first character of the work area is a W.

TABLE NAMES

The names of tables have the same format as
that of constants except that the first
character of the table name is a T.

J

9

PHASE-TO-PHASE INFORMATION AREA NAMES

All references to locations within the PPI
area (IERRCA) will have the format PPI
nnnnn, where nnnnn is the unique designa-
tion that has been specified in the sort/
merge program.

USE OF ROUTINES IN MORE THAN ONE MODULE
Some routines are used in more than one
module. To permit these routines to be

inserted in several modules without making
any changes, the format of all internal

Appendix F:

type instruction names in these routines is
SMNNNNNO, where:

e S is an "S".
e M is a unique alphameric character

designated for the routine.

e NNNNN is a unique designation assigned
by the programmer and may be anywhere
from one to five characters.

e O is an "X" if the label is externally
used; otherwise it is used as another
N.

Program Listing Standards and Conventions 105

Index

Address
chain cescecccana ceeea. U40,41,42
of buffer cececaccccacs ceeacccaaa 42
Oof DCB table ...cceececccaaaas ceecaaa 93
of disk directory cecccccaccase 89
Oof GETMAIN tableS .cceeecccccacccacana 93
of IOB tables ceaaas eeccacaas .. 93
of unit count table ceccaas «.a 93
Ascending S€qUEeNCeS ..cc.eecececees ccecccaaa 19
Assignment modules, list of 67-72
ATTACH ccccecccaaaaase ceescceassas 8,10,14,21
B cecccccaaccacaacaaannaa ceccacaaaccas 43,91

Balanced dlrect access
technique 23-24,20-22,4652-54,57,58

block/deblock modules eeee 55,59,65
DCB, IOB modulesS ..ccceccccaas . 56,60,66

Balanced tape

technique 28-29,20-22,46,52-54,57,58
block/deblock modules ...cccececccaan 55,59
DCB, IOB moduleS ..ccccecccccces 56,60,66
intermediate merge record movement .. 36

BALN cccceccccaaacacanes ceecacccccacas 21,22
in parameter 1list ...ccccecececacaaans 22

(see also Balanced tape and Balanced
direct access techniques)

Base level ...ccececaaaa eecccscacaas eeaeaas 24
Bin tececccescscaascasa cecccaaaa 39-40

continuation eeeccccsscaccae 40,41

SiZ€ cecaceaan ceccecana ceecccaa 41,42,91
Binary

COMPAYEe cceceeceas cececsccae eeeeess 36-37

control fields ..ccececccacan eeesescaas U4
BlOCK .cceccccccccacaaaanna eeeaca eeeascaas U7
BlOCKING ccecceccecccaccaacaccacacans 42,43
Block/deblock mOAUleS e.cccccecacccaacans 38
Buffer

address .c.eecee.. cecasscscaaa cceceacaaasn 42

deblocking of cccscecaccccscccs 28
Buffer-to-buffer move eececeaas U2
Build module ..ccccceccccacccacaccacacas 66
Chain addresSs ..cccececccacaaccaaas 40,41,42
Channelcccecccccacans deeesssccaccaas 20
Character control fields ..cccccecceaaa.. U4
Checkpoint

data set cecesscccsccscsaccsccs 103

modules ceeeccsccsccccsasccaacas 66

YECOYAS cecececcccccacacacanccsnaaaas 103

Checkpoint/restart ...ccccecececececcacas.e 103
CKPT 103
Codes

completioncccca... ecessccccccaas 102

formatcccceececcceeeae. 19,101-102
Collation ceeccccscscccne eeccccecss 19
Completion codesS c.cececcacas cecccccase
Constant names cecccccscecscacsasn
Continuation bins ...c.cceccccccaccas 40,41

106

Control
blocks eccececc.. secscacaces eescecccccese 43
fields .ccccececcacn cececcacaccan 44,87-88
statements eeseccccsansasssaccne 8
COpPY PASS ecccacaccacaas cececececcccccsas 29
CRCX cccececaccaccacaccas cecccacccccaas 21,22
in parameter listc.cccce... ceecee 8
(see also Crisscross direct access
technique)
Crisscross direct access
technique 24-27,7,10,17,20-22,46
block/deblock modules ..cececeecee 56,59,65
DCB, IOB modules ceccsccas 56,60,66
read/write moduleS ...cceeecccccccccas 60
sort/merge module organization ... 61,62
sOrt modulesS ..cceceecececccccccccancanaa . 54
Data
management cecccence ceees 1,36
YOUtINeS .ccccceeccaccacccacnccccacans 47
set S1Z2€ .c.ccccccacaana cececccacaa . 7,20
DCB table addresSs ...ccceccccccccccccaacse 93
Ddnames
modification of cececcaccaccacana 8
Dekblocking ...eec.. ceccccccaaas 28,38,42,47
Decision tables cececcccaaana 54-55
Definition phase cecccea .. 7,49,50
functions of cecccccccccasaas 43
module list ceccces cecacccacs 67-76
Density .ccccecec.. cececaae cssecccasaccana 20
Descending S€QUENCEeS .cccececccaccccans eees 19
DIAG ccccecccccaca eececessccsccccccccsae eeeas 19
in parameter 1list ..c.cceceececcaan ee. 8
Message ...ceceeeeccncens ceceeccaceease99
Diagnostic
MESSAGES ccecccccccccaacane .. 8,9,99-100

output of linkage edltor ceecccssscecse 9
Direct access technique

(see Balanced direct access technique

and Crisscross direct access technique)
Directory

intermediate storage area cecsas 23

module 67-72
Disk directory addresSs ...ceccececccacas. 89
Dummy sequences

ceeccccscecscccsacacccan 30

End-of-file on inputc.ccccecccccaca. 17
Error messages 97-99
Equals modUle ..ccccecccccccaccaccanaaas Ul

EXCP cccccaccceacsccscaccccsscacnannacanes 1,37
EXEC statement ...cccccececccacaacas «ee 10,13
Extract
data .c.ececcaaaae ecccaaae cecccaca . 39,40
MOAUlE .cccceecacaaacaacacaccnccnanaas Ul
routine ecosscacaas ceececascaeeas 87

E15 routine
address in parameter list 8
E35 routine
address in parameter list eececces 8
E61 routine

9

F field .cccecceeccccccacccccacccancaaas 87
File SiZ€ ciciececcccencacaaaacaaacenaas 91
Final merge phase eecceecsas 1,10
ChartsS ..ccccececcccacccccacacesas 63,64
decision tables ceeaccaccascas 65-66
determining input units for 32
functions Oof ...cceeeecnecaccaaaas UO6-UT
module 1ist .cccececccccccacaacaes 67-76
name on SYSLMOD ccceccecceccccasacascaaae 9
Fixed-length records
blocks/deblock modules 55,56-59,65
completion codes ...ccccccecaacaasa. 102
format codes ...ccceccacecccccnacaas 101
format in RSA S 1]
merging techniquescccceececacaa.. 36
movement ..ccccecececceccccsccaccacaaaaa 39-40
move modulesS .c.ccccecccaaccas cecccacas D6
NOdES ceceecccaccccaananaa ceccesesss 101
sorting technique 19-20
SOrt MmodulesS ..ccecececcacacacaca eeeeaas 5S4
tree structure ...ceeceecececcccaaceacas 19-20
Flagged recOrds ...cceceeecececcccaccaccasa 19
FloWCharts ccccceececccceacecacccacaaas U49-66
Format code€S ..ccceececaccaceaaas 19,101-102

G cecaanan cecadecccccccscssccccccccas 47,91

GET 2ccccecccccccccsccscccasanacasaaaaa 37,40
GETMAIN tables, addresseS ..ececceaceccaa.. 93

Identify matriX ccceeeeecececcccceacacaas 30
JERAGH .cccccccccccccacacacnocsaccacacsaans 103
IERAPC ceccceee eeaccccacse ceceesascasccas 103
JERAPT ccccececccccccccacan essesccsace .. 103
JERCHK ccccceecccccacacacnsancsasaacnaas 103
JERRCA ccccccccscccacaccscacscsaanccaacanscae 31
JERRCB cccccccacccaccacacaaccscscacacnancasn . 43
IJERRCM tccccccccccaacccsaccccsnacccaanse eees U3
JERRCOOO cccecceccccccaccaacanacacancas . 43
IERRCV e eeeeecececacacanaacanacaanaas 43,40
IJERRCZ ccccceccccccccccas ceecsasae ceceaceaass U3
JERRCO ccceecccacaaccccaasacccaaasncsasaea Ul
JERRC7 cccceacacaaacase eesecaccancce eecacse U5
JERRC8 cccccacccscanccaaacacnaaaas sacccaas 46
JERRCY ..ccecccccecccacacacanannnaccasass Ul
JERROJ ccccccececncccncccanae eesecesseas 32,33
JERRON cccccccaccccsccassccscacasasnaacasas 103
JERROS ccccececcccccsccaccsccaaaaasaas 32,103
JERROT ccececcececacscacccccsacsaasccasacacas 103
Initiating sort/merge ...c.cccecececececceea 10
Inline MOVE ...ccceccccacaaacsasaaaass 39,55
Input
bloCcking ccecececeeccccacecccccaaaaaa 87
buffer ...cccecccccccacana ceeeasseas 17,42
SIiZEe ciiceececcccccccscsanccccaaas 92
data sets ceecccccaccscccsacccca U6
Input/output
intermediate storage ..cceccecceccccacss 7
MOdULlEeS .cecececcccccccacacccnaccnacaaae 37
Instruction NAMES ...cccececccaacccasaa 104
Intermediate merge phase eeeess 1,10
decision tablesS ..cccecccccccccnaas 59-60
functions of easesacasans U5-U6
module 1iSt cecceeccccccccaacaaaanas 67-76
name Oon SYSLMOD .cccccececaccccccaacas 9
sequence control ..ccecececccccaccecacs 32

Intermediate storage
formulas .eceececiieeaceccaceaaaaea 22-23
I/0 OpexratioOnS ..ceecececcecccacaaaas R
UNits .cccceeeccccccccccaaacacaanas 21-22
IOB tables, address ..ccecceccccaacas eees 93

P 1]

LINK ceececoaccaceccacccaaancsass 8,10,14,21

example cccccccsscaacacscnncas eee 9
Linkage editOr ...cecececcccccacasss 9,16,43
Link editceccc.n. ceesccccccccana .. 7,10
Link 1ibrary .cccceeccceeccccccaces .. 71,9,10
Listing standards ...cccceececececesa. 104-105
Load point, oscillating technique 33
Load routine, sort phase ...c..ceceecen .. Uy
Locate MOAE ceceeececccacacccacacaacaane 37
Logical

tAPE cecececccccccacecacancaans cecees 32

UNit c.eiececeecceccccaccaaacccaacsccsee 32
Loser reCOrd c.ececeececcecccaanca eceacccces 19

Main storage ..ccececececcecccccacacaacaaa 20,22
layout ceeececececacccccccccccacaas 19-82
requirement for various techniques .. 22
value in parameter listccccec.. 8

Maximum
input, tape .ceccececcecccacaass. 20-21,22
merge order cecccccccccns cecees 23

MErge .cceceecececeee cescecccscccanaa eeeee 10,15
network ceccaceaaccsass U5-46,47

Prime area ..c.ccececcccecacccccaaas 87
order ...cccee.a ceeececcecssas 23,33,46,92
CYriSSCYOSS eeccccccsacccaaaccsaaaaas 2U

Merging techniqueccceceecann. .. 36,37

MessagesS ceceeeecec. ceacaae eececes 97-99,100

MOAE ceceeeeccacaccsaccansanaaaancaass 36,37

Modification routinesccececccccacacs 9

MODS statementccc... ceececcscas 9,43

Module
block/deblocKk ..cceeceaceaeca. 55,56,59,65
build ...cc.... cecccccacanas B -1
classifications Of ..cceccccccacnaaas 104
DCB, IOB c.ccceacaanccsancccacas 956,60,66
direCtOry ceceececcececcacacacaaaas 67-76
€QUAlS ceeececccacccaccenanccacccaaes ULlU
eXtYXact cccececccccccscccancaccscaaaa Ul
interface 1list ...ccececccccacaacs 93-94
list c.eccceeaann ceccccacsccscccaas 6776
MAP ecceccecccscccscccccccscacccncacs 79,99
names, format ofcccccccacacccss 104
object cecscacs cecesecscccacccas U3
phase control ecsscccccsse eeees L4
read/Writeccececaccccccacacaaaas 60
SOt ceecececaeae ceccan cecacas eecacseas SU

Move
in=1ine .cccccccccaccacccaacaacanse . 39-55
list ceeeceeen cecescescccaacaas eesaaas 39
MOAE .eceecccccccccacaccsacnncaanse 36,37
multiple c.cceececeaceccacaacacaas 39,55
variable c.ccececccccacccccccan . 55,56,65

5 . 20
Names
CONStant cecceccececccccccccsccccaacase 104
instruction ...cccccceccccccacascaes. 104

Index 107

of phases in SYSLMOD .c.ccececcaacecaas 9
PPI, format Ofeccceacecacasaaasa 105
NIAX ecceeascacccscasasacccscscacssasssacsscscces 91

Nodes 17,19,101-102

Object modules, selection of 43
Optimization phase 7,9,43-44,49,51
OSCL ccceccccccccccscsansaacannssnsans 21,22
in parameter 1list ...c.cccecccccccccss.. 8
(see also Oscillating tape techniques)
Oscillating tape
techniques 33-35,8,10,17,20-22,46
block/deblock modules-..... 56,59
DCB, IOB modules 56,60,66
example Of ...cccecceccccaaacaaaas 3U4-35
module 1iSt ..ccccceccccacccacaass 6776
read moAUle ...cccccccacccancccacsccs 60
SOXt MOdUleS ..ceccceccccocccccssanasas 5Ol
sort/merge module organization ... 61,62
table
Output
DlOCKING cceeccccecacccccacaccnnncass 91
buffer 17,19,36,42
SI1ZE@ eeeeecccacccccscscsssnnascaas 92
of linkage €ditOr ...cccceeccccceccaccaes 9
OpPErations ..eceeececcecccancncanneas U6
OVEXlaAp cecececcceccccccccacccancacnccass 37
Overlay structureccccceceeee-.. 713-78

csscsscsccsccscsssccncaacsnssses 89

Packing bufferccccceccccccccecc.. 87
Parameter 1liSt ..c.ccceccccccccecasaacs. 8,21
PARM field options ...ccceecececececeeas 8,21
Performance, impairmentccceceeecee. 9
Phase control module ...c.cceececececceeaes LU
Phase-to-phase information area 83-94,23,43
names, format of 105
Physical
tAPE ceecccccccceccaccacaccacsancccas 32
UNit cieceecacacccccaccsacasscacnnaas 32
POLY 21,22
in parameter 1listccccecece.. eeceees 8
Polyphase tape
techniques ..
block/deblock modules
DCB, IOB modules

29-33,8,20-22,46,52-54,57,58
55,59
ceccccccsascss 96,60,66
PPI ceccecccaccccccancacansaasass 83-94,23,31

names, format of 105
PPIBDSVA .cccccecccaccacscccscsccsccaces eeeas U2
PPISW1 89-90,44,46
PPITPTBL ccccecccccacacccnascacssaacanccsae 32
Program listing standards 104,105
PUT routine ..c..cceccecccacececasaas 36,37,40

QSAM roUtine ..ccccecesccsacccaascasas 1,37
Record
area in bin
count during blocks/deblock 38
COUNter ..cceecceccceccccccccccncacaas 91
movement techniquesc.ccccece... 39
StOrage area ecccececceccecccecccccccns . 17
RECORD statementccccceccececcccccceacacs 8
Records
fixed-length
(see fixed-length records)

cecesesescascsaccascscaces U0

108

flagged .c.eeececececneeenccaccaaaaa. 19
movement of 37-42
number of ...eeeeeieeieeeenccanceaaas U3
spanned
(see spanned records)
variable-length
(see variable-length records)
variable-length spanned 17
VRE

P Y}

Read
backwards 28,38
final merge phase modules 65
modules 37,60
while-write, oscillating technique .. 33
Read/write modulesS ..c.cecececeaccccccccccccs 37
Register
SAVE AYECQA eccecescscsccscacacccccacass 87
USAQE eceeeccccccccccsccaccacssnccanas I6
Replacement-selectioncccc..... 17-18
illustration Of ..ccceecceccccaacaaas 18
Restart ...ceeecceccscaccscsccsasncansscasass 103
RMAGX ceeecececccccccacsacncccccacsasannascaas 91
RSA cceiceccecscccanasancasccenass 17,19,38
Running modules, list of 67-76

Sequence
asCeNdiNg eeeecececececacacacanacneas 19
counters 32,91
descending ceeececececceccacacacncaas 19
AUIMMY «ecececccacacccccccacncnanasaas 30
level NUMDErS .ccceececeacccacasas 32-33

Sequence distribution 20-22,7,9,46
modules used fOr ..cccccceaccacccaaas 59

Size
of buffer ...ccceecececcceccccacacaas 92
of data set ...cccceccccccanaaa. 71,20,91
Of fil€ .cceceeeccceaccanaaanansaaaaa 91

SIZE OF€Xand eceececececceccccccccacanacasaae 20

Skip record countccececcceccaccceaa. 87

Sort
blocking cccecceccccacaccanacaaaas 20,91
1ibrary .cceeceeeecececcecacecncacaneas 10
system interface ...cccciceceecaaaa.. U3
WOXK Qr€a@ ..cececececsccccscaccccsaaaes 87

Sort phase .c.c.cceeceeececccaaaae 71,9,49,52,53
decision tables 54-56
functions of ...cciiiieencnnanaaa. UU-US
module 1lisSt ..cccecccccccacacccaas 67-76
namre on SYSLMOD cccccecccccccccnanccas 9
sequence controlc.c.ceccecaccccaas 32

SORT statement .ccccececececcecececcacccacaacas 8

SORTIN ccccecccacccasccacascscacscsanacascnas 8

Sorting techniquecccceccececncence. 17

SORTINO1-16

SORTLIB

SORTMODS

cesescccecsscsaccccccccccccases 10
9,10,11
cecectcecccceccccscccccancnccccce I
SORTOUT DD statement 10,38
SORTWK data SetS cccececccccccccaaceaes 9,10
Spanned records 38-39,40,42,44

merging techniquec.ceceeacess 36
SYSIN cececccecccacccccacccceacancacccasse 9
SYSLIN .ccccccccccccacccaccccccnanacssasas 9
SYSLMOD 9,10
SYSPRINT .cccccccccccccccacannccccanancass 9
System generationc.cccceccce... 10,43
SYSUT] ccececcecccccccccascccancanscnncns 9
SYS1.SM023

cesecccsscscssccecccccnacascs 10

Tables

for polyphaseeceeenaceaceaaas 31-32
NANES ccceccccccccccnccccnnanse ceceene 104
TAPE ececececens csecsscassanes ccccccaces 7,20
logical .ceeceeceecccnann ceecsecccecccss 32
physical ..ceceececnccanee cecceenan .. 32

switching, oscillating technique 33

table ceciceccecccccccccccecnccacasss 88
Tape techniques ceessenseae 28-53

record arrangement in buffer 38
TBLPHIRN cceciccccccccccccacncccanncaceas Ul
TBLPHIAS ccceeccecccccccccccncaccnncanas 4y
TBLPH2AS cececccccsas ceesececscssesccnan 45
TBLPH2RN .cccccccccccccacscccaccsccsaccass U5
TBLPH3AS eevececvecsecsccseannmesn eeees U6
TBLPH3RN .cccceeeecan cceacsscsasne csecens 46
Tree address ceecccsscescascace 39,40
Tree structure caeacecns cesaeae 17,19
Unit count table address .ccccceccecccecceaas 93

USer eXitS ceeeeeccccecssccccscscnccsnnas 95
blocks/deblock modules for .. 55,56,59,65
User modificatiONnS ..eeeeacaccceccassacas 8
effect on record wovement

Variable-length records

blocks/deblock modules for .. 55,56,59,65

completion codes ecceeccccccaaas eeeee 102
format codes ...ccccceccccccnn .. 101-102
merging technique eeeees 36
movement Ofciccececcaaccacana 40-42

move modules c..cececcccccan cecesccscaas 96
NOAJES c.cceaccccanccsassscacaassassanas 101
sorting techniques ceeees 19

sort modules for

tree structurecccceceenceceeae 19
Variable-length spanned records 17

{see also VRE records, spanned records)

variable move cecessecscascs 95,56,65
VRE reCordsS .ceceecececeeccecacanse 17,37,40,42,44
block/deblock modules for 55,56,65

merging techniquecccceeececce.. 36

Winner record ceaasa ceescccaccanaaa 19
WOXrK Qr€a .eceecececccecccecssssess 1,20,21,22
AddreSS ccccececacecccccscacccacaas ceee U2
for VRE recOrdS cececcecccacs weas 17,36,40
NAMES eeevaeeasn S 1 1)
Work tape, oscillating technique 33
Work unit teeccccceacncacannaa 21,22
Write moduUleS .cccececcccccccassanasas 37,60
WSWITCH ceeecccoscscecnccanccccasaaas H44,U5,U46
XCTL cecccscacacca ceaceans . 8,10,14,21
8-way merge, modules for eeees 59,65
l6-way merge, modules fOr ..cccececen 59,65
2301 cieiiceccccncccacananne ceccaasses 1,20
2311 c.ececeaaan cececacecsanacanse eseese 1,20
D i ecacssesess 1,20
| 3400 ¢viiiiiiitineeennennnnns et reereeenne 7
Index 109

EM Technical Newsletter

This Newsletter No. GN33-8164
Date January 31, 1973

Base Publication No. GY28-6597-4
File No. S360/5S370-33

Previous Newsletters None

0S SORT/MERGE LOGIC

©IBM Corp. 1973

This Technical Newsletter, a part of release 21 of 0S, provides
replacement pages for the subject manual. These replacement pages
remain in effect for subsequent versions and modifications unless
specifically altered. Pages to be inserted and/or removed are:

Front Cover,?2
9,10
73,74

A change to the text or to an illustration is indicated by a
vertical line to the left of the change.

Summary of Amendments

Correction of errors.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Nordic Laboratory, Publications Development, Box 962, S-181 09 Lidingd 9, Sweden

Printed in U.S.A.

Reader’'s Comment Form

0OS Sort/Merge Program Logic GY28-6597-4

Your comments about this publication will help us produce better publications
for your use. If you wish to comment, please use the space provided below,
giving specific page and paragraph references.

Please do not use this form to ask technical questions about the system or
egquipment or to make requests for copies of publications. Instead, make such

inquiries or requests to your IBM representative or to the IBM Branch Office
serving your locality.

Reply requested Name
ves [] Job Title
No E] Address

Zip

No postage necessary if mailed in the U.S.A.

GY28-6597-4

YOUR COMMENTS, PLEASE . ..

Your answers to the questions on the back of this form, together
with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons
responsible for writing and publishing this material. All comments
and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or
for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

Attention. Department 813 L

B

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International]

ceeseenaan ANIT SIHL ONO1V 1nD ~ -

cessscccssns

21307 weIdold 3313 /WOS SO

'V 'S ' ut pajutd

¥-L659-82AD

C

Reader’s Comment Form

0S Sort/Merge Program Logic GY28-6597-4

Your comments about this publication will help us produce better publications
for your use. If you wish to comment, please use the space provided below,
giving specific page and paragraph references.

Please do not use this form to ask technical questions about the system or
egquipment or to make requests for copies of publications. Instead, make such

inquiries or requests to your IBM representative or to the IBM Branch Office
serving your locality.

Reply requested Name
Yes I:l Job Title
No E] Address

Zip

No postage necessary if mailed in the U.S.A.

GY28-6597-4

YOUR COMMENTS, PLEASE . ..

This SRL manual is part of a library that serves as a reference
source for system analysts, programmers and operators of IBM systems.
Your answers to the questions on the back of this form, together
with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons
responsible for writing and publishing this material. All comments
and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or
for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. V.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY |F MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

Attention: Department 813 L

TSI

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM Waorld Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

tar s -sssens

INITSIHLONOIV 1nD ~"

e

.

eseesccses

csecccccevcsnce

scecsece

v 'S 0 ul pajutyd O1807 3813 /10§ SO

v—L6S9—-8TAD

