
IBM Sys1tem/360 Operating System:

Job Manllgement,

Program Logic Manual,

Program Number 360S-CI-505

This publication describes the internal logic
within the job management portion of the IBM
System/360 Operating System Primary Control
Program. .Job management prepares jobs for
execution, and directs the disposition of data
sets created during job execution. It also
handles all communication between the operator
and the pr:imary control program. Included in
the publication are descriptions of tables and
work areas used by the job management rout~nes
and a directory of names and purposes of con­
trol sections, assembly modules, and load
modules.

File No. S360-36 (OS)
GY28-6613-5

PrDgram LDgic

The information contained in this publication
applies only to the primary control program.

This manual is intended for persons involved in
program ma:intenance, and system programmers who
are altering the program design. Program logic
information is not necessary for use and operation
of the pro9ram.

sixth Edition (June, 1970)

This is a major revision of, and obsoletes, GY28-6613-4. In
addition to incorporating information previously released,
this edition also describes the changes made to p]~imary con­
trol program job management in Release 19 of the operating
system. These changes include:

• The Write-To-Programmer (WTP) facility of the Write-To­
Operator and Write-To-Operator-With-Reply maCl:O
instructions

• Description of and figure for the Write-To-Programmer
Control Block (WTPCB)

• The In-Stream Procedure job control feature
• Description of and figure for the In-Stream Work Area
• Explanation of the loading and deletion of thE~ Device

Name and Device Mask Tables
• New Key Values for the JCL Scan Routine
• Changes to Job Management Tables
• Additional assembly modules in the SYS1.NUCLEUS, SYS1.

SVCLIB, and SYS1GLINKLIB data sets

Other changes to text, and small changes to illus1:ration, are
indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol • to
the left of the caption.

This edition applies to Release 19 of IBM SystE~m/360
Operating System, and to all subsequent releases until other­
wise indicated in new editions or Technical NewslE~tters.
Changes are continually made to the information herein;
before using this publication in connection with 1:he opera­
tion of IBM Systems, consult the latest IBM Systerv360 SRL
Newsletter, Order No. GN20-0360, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at thE~ back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming SystE~ms Publica­
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

©Copyright International Business Machines Corpol:ation 1966, 1967, 1968, 1969, 1970

'l?his publication describes the structure of
the sequential scheduler configuration of
:job management, its functions, and the con­
t:rol flow between its major routines. It
is divided into an introduction in which
:job management is briefly described and
t:hree major s~ctions, master scheduler, in­
t:erpreter, and initiator/terminator, in
~1hich the corresponding components are de-

I scribed in greater detail. Included are
four appendixes. Appendix A describes two
subroutines used frequently by job manage-
ment routines. Appendix B shows job man­
agement tables and work areas that are not
described in the body of the publication.
J~ppendix C lists job man.agement load
Modules and the assembly modules that each

I contains. Appendix D lists the acronyms
used in this publication and the meaning of
E~ach. Further information on job manage­
ment may be obtained from the program
listings.

Preface

Readers should have a thorough under­
standing of IBM System/360 programming and
should be familiar with the following
publications:

IBM System/360 Operating system:

Introduction, GC28-6534

Concepts and Facilities, GC28-6535

Operator's Reference, GC28-6691

Job Control Language Reference,
GC28-6539

Introduction to Control Program Logic,
Program Logic Manual, GY28-6605

system Control Blocks, GC28-6628

I~~RODUCTION 0 0 0 • • 0 0

Job Scheduler Functions
Master Scheduler Functions
Job Processing 0 • • • • •

9
9

• • •• 9
o 10

Entry to Job Management Following
Initial Program Loading •• • 0 • • • 10
Entry to Job Management Following
Step Execution • 0 • • 0 • •

Control statement Processing • •
step Initiation 0 • • 0 • 0

Job and step Termination • 0

Operator-System Communication
Processing 0 0 • • 0 0 0 0 • 0

Command Processing 0 0 0 •

WTO/w~OR Macro Instruction

• 10
• 10

• • • 10
o • • 10

• 10
• 0 12

Processing 0 0 0 0 0 • • • 0 12
External Interruption Proc1essing • • 13

Load Modules • • • • • 13

MASTER SCHEDULER •
Ma.ster Scheduler Control :Flow
Console Interrupt Routine
Ma.ster Command EXCP Routine
Ma.ster Command Routine • •
Write-To-Operator Routine •• • •

• • • 14
• 0 0 14

• 16
• • • 16

• 16
o 17
• 18

o • • 18 I WTP Error Hand ling • •
WTP Control Transfer •

Ex:ternal Interrupt Routine • 0 • • • 18

INTERPRETER 0 • 0 0 • • •

Initializing the Interpre"ter • • • • •
In.put And Control Operations •

• 19
• 20
• 20

Reading Control Statements •
End-of-Data and Null Statements
Processing Control statements
Processing JOB, EXEC, and DD

• 20
• 20
• 21

Statements ••••• 0 .0 0 22
Queue Entry Processing • • • • 22
Post-Processing Entry • • • • • • 23

scanning the JCL statemenlt 0 24
Processing JCL Statements 0 28

Recognizing Checkpoin"t Res1tart • 28
Auxiliary Routines 0 • • • • 34

The Get Parameter Routine • 34
The Test and Store Routine • • 35
The Dictionary Entry Routine • • • 36
The Dictionary search Routine • • • • 36
The Interpreter Message Routine • 36
The Queue Manager Interface Routine • 36

In.terpreter Termination • • 0 37

INITIATOR/TERMINATOR • 0

Initiator Control
• 38

• 0 39
System Control Routine 0

Execute Statement Condi1t.ional
Execution Routine • 0 0 • • 0 •

JFCB Housekeeping Routines • 0

o 0 0 39

JFCB Housekeeping Control Routine
Allocate Processing Routine

o 39
o 0 40

o 41
• 41
• 41
• 41

Fetch DCB Processing Routine •
GDG single Processing Routine
GOG All Processing Routine • • • • • 41

Contents

Patterning DSCB Processing Routine • 42
Error Message Processing Routine 0 • 42

Allocation and setup • • • • • • • • • • 42
Allocation Control Routine • • • • • • 42
Demand Allocation Routine •• •• 44

Allocate Work Table Construction • • 44
Volume Affinity Resolution . 45

• • • 46
Data Set Device Requirement
Calculation • • • • • • • • •
Channel Load Assignments • •
Allocation of Resident Devices •
Device Range Reduction • 0 • •

SYSIN Allocation • • • • • • •
Specific Device Allocation • •
Exits From Demand Allocation •

Automatic Volume Recognition • •
Processing Requests for Mounted

• 46
• • 47

• 49
• 50
• 50
• 50

o • • 50

Volumes • • • • 0 • • • • • • • • • 51
Processing Requests for Unmounted
Volumes • • • • • • • • •

Decision Allocation Routine
Data Set Selection
Device Selection • • • • • •
Device Allocation

TIOT Construction Routine
External Action Routine
Space Request Routine

51
52

• • • • 53
• 53
• 53
• 54

55
• • • 56

Obtaining Space If a Device Was
Allocated • • 0 • • • • • • • • • • 56
Obtaining Space If a Device Was Not
Allocated • • • • • • • 56

TIOT compression Routine • • • • • 56
DADSM Error Recovery Routine • • 56
Allocation Error Routines • 57

Step Initiation • • • • 57
Termination • • 0 0 • 58

step Termination • • • • • • 58
Job Termination Routine • 59

APPENDIX A: MAJOR SUBROUTINES • • 61
Table Store Subroutine 0 • • • • • • • • 61
Disposition and Unallocation Subroutine 62

Entry From the step Termination
Routine • • • • • • 0 • • • • • • • • 62

Disposition Processing • 0 •• • 62
Device Availability Processing • 63

Entry From the Job Termination
Routine • • • • • 0 0 • • • • • • • • 63

APPENDIX B: TABLES AND WORK AREAS • • • 65
Account Control Table
Device Mask Table • • • • •
DSNAME Table 0 • 0 • • 0 • •

Generation Data Group Bias Count
I In-Stream Procedure Work Area •

Job. Control Table •• • • • • •

• • • 65
• 66
• 66

Table • 67
• 68

• • 69
I Job File Control Block • • • • •

Master Scheduler Resident Data Area. •
71

• 73
75 New Reader or Writer Table • •

• • • • 76 Passed Data Set Queue
Step Control Table • 0 • •

Step Input/Output Table
• • • 0 • • • 77

• • 79

System Message Block • • • • • • • •
Volume Table • • • • • • • • • • •

I Write-To-Programmer Control Block

APPENDIX C: LOAD MODULES AND ASSEMBLY

81
• 81
• 82

Hodules Contained in the
BYS1.LINKLIB Data Set • • • • • • •

Assembly Modules and Control Sections
Control Sections and Assembly Modules

• 84
• 99
.106

MODULES • • • • • • • • • •
Load Modules • • • • • • • • • •

83 I APPENDIX D: LIST OF ACRONYMS •• 108
• 83

Load Modules Contained in the
SYS1.NUCLEUS Data Set •••••••• 83
Load Modules Contained in the
SYS1.SVCLIB Data Set •••••• • 84

CH1\RTS • • •

INDEX

••• 109

••• 165

Figure 1. Job Management Control
F.low • • • • • • • • • • • •
Figure 2. Attention Int:erruption
Processing Flow • • • •
Figure 3. WTO/WTOR Macro Instruction
P:['ocessing Flow • .. • • • • •
Figure 4. .l!;xternal IntE~rrupt~ion
Processing Flow .. • • .. • .. •
F:igure 5.. Master Scheduler _. Command
Processing Network •••••
F:igure 6. Master Scheduler

• 11

.. 12

• 12

• 13

• 15

Interruption Queue Element • • • 16
F:igure 7.. Interpreter Data E'low .. • • 19
F:igure 8.. Internal List: Entry Format 24
Figure 9. Scan Dictionary Entry
F4::>rmat 25
F:igure 10.. JOB statement: Para.meter -
Dispositions 29
Figure 11.. EXEC statement Parameter
Dispositions • 29
Figure 12. DD Statement Parameter
Dispositions (Part 1 of 4) • 30
Figure 13. Keyword Branch Table Entry 34
Figure 14. Parameter Descript.or Table
(PDT) • • • • • .. •
Figure 15. Linkage Contx:ol Table
Figure 16. Selected Job Queue
Figure 17.. Execute statE~ment COND

.. 35
• 39
.. 39

Parameter Options • • • • • • • • 40
Figure 18. Formulas for Determining
Allocation Table Sizes • • • 43
Figure 19. Relative Positions of
Tables Used for Allocation
Figure 20.. Allocate Cont~rol Block
Figure 21. Allocate Volume Table

.. 43

.. 44

Entry • 44
Figure 22. Allocate Work Table Entry • 45
Figure 23. Allocate Work Table Entry -
Sources •• • • • • • • • • • • • • • • 46

Illustrations

Figure 24. Scheduler Lookup Table
Fiqure 25. Channel Load Table
Fiqure 26. Potential User on Device

.. .. 48

.. • 49

Table • • • • • • • • • • • • • • • 53
Fiqure 27. Formulas for Determining
Task Input/Output Table Space
Requirements ••••••••••••.• 55
Fiqure 28. Task Input/Output Table 55
Fiqure 29. Task Input/Output Table
Entry Sources •• • • • • • • • • • • • 55
Fiqure 30. Macro Parameter List • 58
Figure 31. Table Store Subroutine
Paraffieter Area •••••••••
Figure 32. QMPCA-QMPEX List • • • •
Fiqure 33. Table store Subroutine

62
62

• 62
• • • 65

Parameter Requirements •••••
Figure 34. Account Control Table
Fiqure 35. Device Mask Table
Fiqure 36. Dsname Table
Fiqure 37. GDG Bias Count Table

• 66
• • 66

67
I Figure 38. In-Stream Procedure Work

Area • 68
Figure 39. Job Control Table • • 70
Figure 40. Job File Control Block
(Part 1 of 2) .. • .. • 71
Figure 40. Job File Control Block
(Part 2 of 2) • • • 72
Figure 41. Master Scheduler Resident
Data Area • • • • • • • .. • • • • • • • 74
Figure 42. New Reader or Writer Table 75
Figure 43. Passed Data Set Queue
Tables ~ • • • • .. 76
Figure 44. step Control Table and SCT
Extension Block • • • .. • • • • .. • • • 78
Figure 45. Step Input/Output Table • .. 80
Fiqure 46. System Message Block 81
Figure 47. Volume Table ••••••• 81

I Fiqure 48. Write-To-Programmer Control -
Block • • • • • • • .. • • • • • 82

Charts

Chart 01. JOD Management ••••••
Chart 02. Master Scheduler •••••
Chart 03. Console Interrupt Routine
Chart 04. Master Conunand EXCP Routine
Chart 05. Haster Command Routine
Chart 06. Write-to-Operator Routine
Chart 07. Write-to-Operator

.109

.110
• 111
112

.113

.114

With Reply Routine • • •
Chart 08. Hrite-to-Programmer
Routines (Part 1 of 5) •••••
Chart 09. t-lrite-to-Programmer
Routines (Part 2 of 5)

• • 115

.116

• 117
Chart 10. tolrite-to-Programmer
Routines (Part 3 of 5) .••••••• 118
Chart 11. Write-to-Programm~r
Routines (Part 4 of 5) •••••••• 119
Chart 12. Write-to-Programmer
Routines (Part 5 of 5) ••••. .120
Chart 13. External Interrupt Routine .121
Chart 14. Interpret,er Control Flow •• 122
Chart 15. Interpreter Initialization .123
Chart 16. Interpreter Control Routine 124
Chart 17. Interpreter Scan Routine •• 125
Chart 18. JCL Statement Processors .126
Chart 19. In-Stream Procedure Routines 127
Chart 20. Interpreter Termination .128
Chart 21. Initiator/Terminator .129
Chart 22. Initiator Control •••••• 130
Chart 23. System Control Routine ••• 131
Chart 24. Execute statement
Conditional Execution Routine • • .13~
Chart 25. ,JFCB Housekeeping Routines .133
Chart 26. JFCB Housekeeping Control
Routine •••••••••••••••• 134
Chart 27. Mount Control Volume Routine 135
Chait 28. Allocate Processing Routine 136
Chart 29. Fetch DCB Processing
Routine • • • • • • • • • • • • . • •• 137

Chaj:t 30. GDG Single Proces~ing
Rou~ine
Cha:ct 31 •
Cha:ct 32.

GDG All processing Routine
Patterning DSCB Processing

.138

.139

Routine •••••••••••••••• 140
Cha:rt 33. ~rror Message Processing
Rout.ine • • • • • • • • • • • • • •
Cha:ct 34. Allocation and Setup
Cha:ct 35. Allocation Control Routine
Cha:ct 36. Demand Allocation Routine
Cha:ct 37. Automatic Volume
Rec1)gnition (IEFXV001) ••••
Cha:r-t 38. Automatic Volume

• .141
• .142

.143

.144

• .145

Recognition (IEFXV002) • • • • .146
Cha:r-t 39. Obtain Devices ••••••• 147
Chart 40. Decision Allocation Routine 148
Chact 41. TIOT Construction Routine .149
Chact 42. External Action Routine •• 150
Chdct 43. Space Request Routine •••• 151
Cha,ct 44. DADSM Error Recovery Routine 152
Chact 45. TIOT Compression Routine •• 153
Chart 46. step Initiation •••••• 154
Chart 47. Termination •••••••• 155
Chact 48. step Termination Routine •• 156
Chart 49. Restart Preparation Routine .157
Chact 50. Job statement Condition
Code Routine ••••••••••••• 158
Chart 51. Job Termination Routine •• 159
Chart 52. Disposition and
Unallocation Subroutine --Entry From
Step Termination Routine
Chart 53. Disposition and
Unallocation Subroutine -- Entry From

.160

Job Termination Routine ••• 161
Chart 54. 18K Configuration Load
Module Control Flow •••••••••• 162
Chart 55. 44K Configuration Load
Module Control Flow •••••••••• 163
Chart 56. lOOK Configuration Load
Module Control Flow •••••••••• 164

Item

Write-to-Programmer
(WTP)

In-Stream Procedure

Device name table,
Device mask table

JCL Processing

Summary of Major Changes--Release 19

DI::!scription

A facility added to WTO and
WTOR macro instruction
processing, allowing
programmer messages to be
written to SYSPRINT

An added job control feature
that allows procedures to be
placed in the job stream
rather than in a procedure
library.

Discussion of the separate
loading and deletion of
these tables has been added

New key values have been
assigned in scan processing;
and the DD statement
parameter disposition list
has been updated.

Areas Affected

Charts, pages 114-120
Initiator-terminator,

pages 38, 58
Job processing, page 12
Load and assembly modules,

pages 83-84
Master scheduler, pages

14, 17-18
Tables and work areas,

page 82

Assembly modules and
control sections,
pages 100-102, 105

Charts, page 127
Interpreter, pages 19-22
Load and assembly modules.

pages 86, 89-90, 92,
94-95, 98

Tables and work areas,
page 68

Assembly modules and
control sections,
pages 99-100, 103

Initiator/terminator,
pages 41, 50

Load and assembly modules,
pages 84-85, 88, 90-91,
94, 96-98

Tables and work areas,
page 66

Interpreter, pages 25-27,
30-33

Summary of Major Changes - Release 19 7

~rob management (Chart 1) is the first and
last portion of the control program that a
:job encounters. Its primary function is to
prepare job steps for execution and, when
t:hey have been executed, to direct the dis­
position of data sets used during execu­
t:ion. Prior to step execution, job
management:

• Reads control statements from the input
job stream.

• Places information contained in the
statements into a series of tables.

• Analyzes input/output (I/O)
requirements.

• Assigns I/O devices.

• Passes control to the job step.

}i'ollowing step execution, job management:

• Releases main storage space occupied by
the tables.

• Frees I/O devices aSoigned to the step.

• Disposes of data sets referred to or
created during execution.

Job management also performs all pro­
cessing required for communication between
t:he operator and the control program.
~1ajor components of job management are the
:job scheduler, which int.roduces each job
step to System/360, and the master schedu­
ler, which handles all operator-system­
operator communication.

,Job Scheduler Functions
The job scheduler includes tw'O programs:
t.he reader/interpreter and the initiator/
i:erminator. The interpreter is given con-
1:.rol whenever a job step is to be obtained
from the input job stream and processed.
It directs the reading of control state­
ments and from them constructs:

• A job control table (JCT) to describe
the job.

• A step control table (SC'I') to describe
the job step.

• An account control table (ACT) to de­
scribe accounting information related
to the job.

Introduction

• Job file control blocks (JFCB) (one for
each DD statement) to describe the data
sets to be used by the job.

• step input/output tables (SlOT) (one
for each DD statement) to describe the
I/O requirements of the job step.

• Volume tables (VOLT) (one for each
step) with an entry for each DO state­
ment containing serial numbers of
volumes to be used by the job step.

• Data set name (DSNAME) tables (one for
each step, with an entry for each DO
statement) containing names of pre­
viously defined data sets to be used by
the job step.

In addition to the above, the interpreter
creates system message blocks, in which
diagnostic messages to the programmer are
stored before they are written onto the
system output data set.

After all control statements for a job
have been processed, or when data is
encountered in the input job stream, the
interpreter gives control to the initiator/
terminator. The latter analyzes the I/O
requirements of the job step and, upon con­
sidering such factors as requests for spe­
cific units, volumes, and channels and
their current employment, it assigns de­
vices in such a way' as to achieve maximum
overlap of I/O activity during step
execution.

When all devices requested for the step
have been assigned, the initiator/termina­
tor issues mounting messages (if any are
required) and verifies for direct access
requests that the operator has mounted
volumes on the correct units. Control is
then passed to the job step. When the step
has been executed, control is given to the
initiator/terminator, which performs data
set dispositions and releases I/O
resources.

Master Scheduler Functions
The routines of the master scheduler pro­
cess any communication between the operator
and the system. The master scheduler
processes:

• Operator commands, whether they are
issued through the console or through
the input job stream.

Introduction 9

• Write-to-operator (WTO) and write-to­
operator with reply (WTOR) macro
instruct.ions , either of which may
involve write-to-programmer (WTP).

• Interruptions caused when the INTERRUPT
key is pressed.

Job Processing
Figure 1 shows the major components of job
management a.nd illustrates the general flow
of control.

Control is passed to job management
whenever the supervisor finds that there
are no program request blocks in the re­
quest block queue. This can occur for two
reasons: either the initial program load­
ing (IPL) procedure has just been completed
or a job step has just been executed.

ENTRY TO JOB MANAGEMENT FOLLOWING INITIAL
PROGRAM LOADING

Following IPL, certain actions must be
taken by the operator before job processing
can begin. Therefore, control passes to
the master scheduler, which issues a mes­
sage to the operator instructing him to
enter commands. These "initialization"
commands include a SET command, a start
writer (START WTR) conmand, and a start
reader (START RDR) command. The last
initialization command to be issued is a
START command with no parameters; when this
command is issued, control passes to the
interpreter for control statement
processing.

ENTRY TO JOB ~~NAGEMENT FOLLOWING STEP
EXECUTION

Following step execution, control is routed
to the step termination routine of the
initiator/terminator. If the job had been
completed, control is also passed to the
job termination routine of the initiator/
terminator. ooth routines are described
under "Job and Step Termination."

CONTROL STATEMENT PROCESSING

After completion of the processing that
immediately follows IPL, or after termina­
tion of a job or of a step containing data
in the input job stream, control is passed
to the interpreter. The interpreter reads
and processes control statements until one
of the following conditions is encountered:

• A DD * or DD DATA statement.
• Another JOB statement.

10

• A null statement.
• An end-of-data set (EOF) on the system

input device.

l>1eanwhile, if the operator has pressed
the REQUEST key and has entered a request
(REQ) command during execution of the job
step or any of the above processing, the
masiter scheduler sets a command-pending
indicator in the nucleus during the ensuing
inb~rruption. 'I'he indicator is now checked
and, if found to be on, control is passed
to t:.he master scheduler, which issues a
mesBage instructing the operator to enter
conunands, and then processes the commands.

STEP INITIATION

Control next passes to the initiator/
terminator, which examines I/O device
requirements, assigns (allocates) I/O de­
vicc~s to the job step, issues mounting
instructions, and verifies that direct
access volumes have been mounted on the
correct units. Finally, the initiator/
terminator passes control to the job step.

JOB AND STEP TERMINATION

When processing program execution is com­
ple1:.ed, the supervisor, finding no program
request blocks in its request block queue,
paSBes control to the job management rou­
tines. l!.ntry is first made to the step
termination routine.

~rhe step termination routine performs
end"of-step housekeeping and passes control
to 1:he user I s accounting routine, if one
was provided. When the accounting routine
has been executed, the supervisor returns
con1:rol to the step termination routine.
Coni:rol is then passed to the job termina­
tion routine if there are no more steps in
the job; to the interpreter if the next
step of this job has not been read yet
(i.e., the step just terminated had data in
the input stream); or to the step initia­
tion routine if the next step of this job
has been read.

~~he job termination routine performs
end"of-job housekeeping. It exits to the
user's accounting routine, if one was pro­
vidE!d. After the accounting routine is
executed, the supervisor returns control to
the job termination routine, which passes
con1:rol to the interpreter.

OPEHATOR-SYSTEM COMt-mNICATION PROCESSING

The routines that handle operator-system
corr~lunication are contained in the master
schE!duler. Communication may take one of
two forms: commands, which allow the

Figure

MASTER
SCHEDULER

Process
Initialization
Commands

Request And
Process
Commands

(

C2

---1

--1

G2

Yes , ~

READER/
INTERPRETER

Entry

B3

From NIP
(After IPL)

C3

Initialize
Main
Storage

D3

Open
System
Devices

F3

Read And Process
Job Control
Statements

G3

Command
Pending

No

1. Job lVlanagement Control :F'low

(

INITIATOR /
TERMINATOR

B4

Entry)
From Supervisor
(After Step
Execution)

C4

Do Post-Step
Housekeeping,
Execute User's
Accounting
Routine

D4

Last
Step Of

Job

Yes

E4

Do Post-Job
Housekeeping,
Execute User's
Accounting
Routine

H4

Initialize Tables
For Step, Allocate
I/o Devices

J4

Exit

To Process i ng
Program

No

Introduction 11

operator t.O change the status of the system
or of a job or job step; and the WTO or
WTOR macro instructions. which allow pro­
cessing programs or system components to
issue messages to the operator through the
console output device, or to the programmer
through the system message class output
device when the write-to-programmer facili­
ty is invoke,d. The master scheduler also
switches functions from the primary console
device to an alternate console device when
the INTERrtUPT key is depressed.

Command Processing

Commands may De issued by the operator in
two ways: he may insert command statements
between job steps in the input JOD stream,
or he may issue commands through the con­
sole input d.evice. Commands encountered in
the input job stream cause control to be
passed to the master scheduler, which pro­
cesses them. Before entering corr~ands
through the console, however, the operator
must press the REQUEST key to cause an
attention in.terruption. Figure 2 shows the
actions taken after the key is pressed.

Open

REQL

ltor Presses

EST Key

(ltor Enters Oper

Comn land
~

Master Scheduler

Requests
Asynchronous

Exit Processing

Issues Message
Requesting

a Command

Processes
Command

upervisor

Identifies
Type of

Interruption

Dispatches
the

Request

Returns Control
to Point

of Interruption

Fiqllre 2. Attention Interruption Process­
inq Flow

WTO/WTOR Macro Instruction Processing

Whenever the wTO or WTOR macro instruction
is issued, an SVC interruption occurs.
(Sec~ Figure 3.)

SUPERVISOR

System Component or Processi ng Pro.§l:_ra_m_. __ . _______ . ____________ ~ Identifies type of
Interruption

Coded
WTO or
Uncoded

issues WTO/WTOR macro instruction

WTO

Coded
WTP
Only .-

Writes Message to
Console Output

Wri tes Message to
System Message

Device

Routing
code de

C lass Data Set

Code for WT P is 11; any other
notes WTO/WTOR

MASTER ~JlER
I WTOR
I

I

Coded I Coded
WTP/ I WTPOnlyor
WTO WTP/WTOR

] Writes Message to Wri tes Message to
Console Output System Message
Device C lass Data Set

Wri tes Message to] Writes Message to
System Message Console, Waits for
Class Data Set Reply

-~-~---

-Figure 3. WTO/WTOR Macro Instruction Processinq Flow

12

Coded
WTOR or
Uncoded

Wri tes Message to
Console, Waits for
Reply

SUPERVISOR

Returns Control to
Point of Interrup-
tion

External Interruption Processj~

When the operator presses the INTERRUPT
key, an external interruption occurs, fol­
lowinq which the master scheduler switches
functions from the primary to the alternate
console I/O· device. (See Figure 4.)

Supervisor

Operator Presses .. Identifies
Type of

Interruption,
I NTERRUPT Key Master Scl,eduler

Posts to
Switches from MIS ECB

Primary to f+.-----t--------\
Alternate Console

Returns Control ... to Point
of Interruption

Figure 4. External Interruption Process­
inq folow

LOAD MODULES

Most job management routines exist as a
series of load modules that reside in the
link linrary (SYS1.LINKLIB). The excep­
tions are the interruption-handling rou­
tines of the master scheduler, which reside
in the nucleus, and the master command EXCP
routine which is in the SVC library (SYS1.
SVCLIB). Appendix C contains a list of the
routines that make up each job management
load module.

Introduction 13

Master Scheduler

The master scheduler (Chart 2) processes
all operator' commands and messages directed
to the operator through use of the WTO and
W'l'OR macro instructions. It also performs
console switching when the secondary con­
sole is to be used in place of the primary
console.

The five major routines of the master
scheduler are:

• Console interrupt routine, which pro­
vides the supervisor with the informa­
tion necessary to queue a request for
processing an attention interruption.

• Master command EXCP routine, which
reads commands from the console input
device and processes all commands
except SET, START RDR, and START WTR.

• Master command routine, which analyzes
command verbs and routes control to
appropriate command execution routines.

• ~!:.ite-to-operator routine, which pro­
cesses messages to the operator and/or
the pr09ramrner, and all operator
replies to these messages.

• ExternaJ. interrupt routine, which
switches to the alternate console
device when an external interruption
occurs.

Master Scheduler Control Flow
Commands are issued through either the con­
sole I/O device or the input reader. (See
Figure 5.) Before entering commands
through the console I/O device, the opera­
tor must cause an I/O interruption by
pressing the REQUEST key. When he does,
control is qi ven to the supervisor. 'l'he
supervisor determines that an I/O interrup­
tion has occurred and passes control to the
I/O supervisor. The I/O supervisor deter­
mines that an attention interruption has
occurred and passes control to the master
scheduler console interrupt routine.

The console interrupt routine resides in
the nucleus~ It passes to the supervisor
the address of an interruption queue ele­
ment to be added to an asynchronous exit
queue. The interruption queue element con~
tains the address of an interruption re­
quest block that points to the master
scheduler interrupt request block routine.

14

Con'trol is passed to the interrupt request
block routine when the request is honored
ny the supervisor. A description of the
asynchronous exit queue and the manner in
which it is used is contained in the publi­
cation IBM System/360 Operating System:
Fix,=d-Task supervisor« Program Logic Manu­
al, GY28-6612. The format of the master
sch=duler interruption queue element is
giv,en in the section entitle6. "Console
Interrupt Routine."

'rhe interrupt request block routine
causes the master command EXCP routine to
be Drought into the su~ervisor call (SVC)
transient area of the nucleus, where con­
trol is passed to it.

The master command EXCP routine uses an
EXCP macro instruction to read the command.
(The PROCEED light on the 10$2 Printer­
Keyboard is turned on at this time.) hight
commands, the RE~, START (blank), CANCEL,
DISPLAY, MOUNT, STOP, UNLOAD, and VARY COff;­

manls, are always accepted and processed.
All other commands are ignored (control is
returned to the supervisor) if issued at
any time other than in response to a mes­
saqe issued by the master command routine.
If the command is acceptable, it is moved
from the buffer into which it was read to a
local Luffer, and control is passed to the
master command routine.

The mastE:r command routine analyzes com­
mands and routes control to appropriate
command execution routines. If a command
is issued through the input job stream,
control is passed directly to the master
command routine by the interpreter. When
all commands havE: been entered and pro­
cessed, control returns to the interpreter.

The write-to-operator routine is entered
from the SVC handler when a WTO or WTOR
macro instruction is issued. When either
macro instruction is issued, an SVC inter­
ruption occurs and the write~to-operator
routine is brouqht into the SVC transient
area of the nucleus. Basically, the write­
to-operator routine uses an EXCP macro
instruction to write the message on the
console output device and, if a reply is
expected, to read the reply, which is
placed into an area designated by the re­
quester. Either W'I'O or WTOR may contain
parameters which will result. in the message
being written to the programmer on the sys­
ten message class data set, with or without
a write to the console, depending upon the
coding. (See Figure 3.) Control is
returned to the supervisor.

The external interrupt rout:ine assigns
the functions performed by the primary con­
sole device to the alternate console
device. When the operator presses the
INTERRUPT key on the console. a.n external
interruption occurs and control is given to
the supervisor. which identifi~es the inter­
ruption and passes control to the external

Attention

I nllerrupti on

1/ 0 Superv isor

Console Interrupt
Routine

Interrupt Request
Block Routine

,
:C
I
I
I
L

c
I­
I
I
I
I
I
I
I
L __

interrupt routine. The external interrupt
routine then switches consoles and returns
control to the supervisor. Console func­
tions may later be reassiqned to the pri­
mary console device if the operator causes
another external interruption (the external
interrupt routine will again switch
functions).

Supervisor

--I
-l I

I I
I I
I I

__ J I
-~

==-=l I

Program Fetch

Nucleus
Transient Area

I
I
I

I
I
I

-~

Master Command
EXC P Routine

Commands

CANCEL
DISPLAY
MOUNT
REQ
START (blank)
STOP
UNLOAD
VARY

Write-to-Operator
Routine, REPLY

Command

r--
I ,-
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

I
I L-..
I
I
I
I
L __ _

Reader/ Interpreter
Control Routine

Master Command
Routine

I I
1 i'

Commands

SET
START RDR
START WTR

~ I

I I
I ..

Fault Subroutine

(Message Processor)

Figure 5. Master Scheduler - Command Processinq Network

Master Scheduler 15

Console Ilnterrupt Routine

The console interrupt routine (Chart 3)
provides the supervisor with the address of
the routine to be given control when the
supervisor processes an attention interrup­
tion. The console interrupt routine is
part of the nucleus and is entered from the
I/O supervisor each time an attention
interruption occurs.

Upon entry to the console interrupt rou­
tine, the console flag switch is checked.
If this switch is on, either the master
command routine or the console interrupt
routine is processing a prior request, and
a RETURN is made to the I/O supervisor.

When an interruption is not being pro­
cessed by either routine, the console flag
switch is turned on, the address of the
master scheduler interruption qUeue element
is placed into general register 1, and con­
trol is passed to the supervisor. The
interruption queue element is shown in
Figure 6.

r--,

Legend

Link

<--4 Bytes-->
r-----------,
I Link I
~-----------~
I Parameter I
~-----------~
IIRB address I
~-----------~
ITCB address I L _____ . ______ J

used by the supervisor to link mem­
bers of the queue.

Parameter
contains the address of the
request block routine.

interrupti
I
I

IRB address
address of the interruption request
block.

TCB address
address of the task control block.

I
I
I
I
I
I L _________________________________ . ______ . __ J

Figure 6. Master Scheduler Interruption
Queue Element

The interruption request block contains
the address of the interrupt request block
(IRB) routine to which control is passed by
the supervisor when it dispatches the re­
quest. 'rhe IRB routine uses an SVC 34
instruction to cause the master command
EXCP routine to be hrought into the tran­
sient area of the nucleus.

16

Master Command EXCPRoutine
The master command EXCP routine (Chart 4)
prc:)cesses the CANCEL, DISPLAY, MOUNT, REQ,
START (blank), STOP, UNLOAD, and VARY com­
mands. It resides in SYS1~SVCLIB, and is
brl,::>ught into the transient area of the nuc­
lelils by the supervisor when an SVC 34
in:3truction is issued by the master schedu­
le:c interrupt request block routine or the
master command routine.

If entry to this routine was from the
interrupt request block routine, an EXCP
macro instruction is used to read the com­
mand from the console and place it into the
command buffer. If the command is one of
thc~ eight previously mentioned commands, it
is processed.

SET, STAR'I' RDR, START W'I'R, and STOP WTR
cOI~ands are ignored unless they were
issued in response to a message from the
manter command routine. If so, control is
passed to the master command routine, which
processes them.

Following return from the master command
routine, or after execution of the REQ or
ST1~RT (blank) commands, the console flag
switch is turned off to indicate to the
console interrupt routine that another
att;ention interruption can be processed.

If entry to the master command EXCP rcu­
tine was from the master command routine,
thE' command is available in a buffer
(placed there by the master command rou­
tine). The command is processed.

The master command EXCP routine returns
control to the supervisor.

Mc$Lster Command Routine
The master command routine (Chart 5) ana­
lyzes command verbs and routes control to
appropriate command execution routines. It
also issues a message to the operator,
informing him that commands will be
accepted from the console. The master com­
mand routine is brought into main storage
and entered when:

• The interpreter encounters a command in
the input job stream.

• The interpreter is performing the
initialization procedures that follow
IPL.

• The interpreter finds the command pend­
ing switch on. (The command pending
switch is turned on by the routine that
processes the REQ command.)

• The interpreter encounters an end-of­
data set condition in the input job
stream, indicating the end of a job
step or job. Control is passed to the
master command routine after the job
step has been processed.

Upon entry, general reqister 0 is
examined. If it contains zeros, entry was
made because the interpre1:er encountered a
command in the input job stream. The com­
mand is moved to the master command routine
buffer and is written out on the console
output device for the opel::-ator's records.
'1'he command verb is then analyzed, and if
it· is a SET, START RDR, START ~lTR, or STOP
WTR command, control is passed to an appro­
priate command execution routine. Other­
wise, an SVC 34 instruction is used to pass
control to the master command EXCP routine.

If general register 0 does not contain
zeros upon entry to the master command rou­
tine, the IPL pending, new reader pendingJ

and new writer pending switches; are
checked. If any of these switches are on,
th.e command pending switch is t.urned on and
a message is issued requesting the operator
to enter commands. Control is then passed
to the initialization command J:.·outine,
which provides certain commands, specified
by the installation during system genera­
tion (SYSGEN), to relieve the operator of
en1tering initialization commands. Each of
thlese commands, if there are any, is moved
to the master command rout~ine buffer, writ­
ten on the console output device for the
0p4=ra tor's records, and executed.

If general register 0 cloes not contain
zelros and none of the previously mentioned
pending switches are on, entry to this rou­
tine was made because the intez'preter found
th_= command pending switch on, or encoun­
telred an end-of-data set condition in the
input job stream. A message is issued
requesting commands from t:he operator.
Aft.er the operator has issued commands and
th_~y have been processed, contz'ol is
ret,urned to the interpreter.

W rite-To-Operator Routline

WhE~n a WTO or WTOR macro instruction is
issued, the write-to-operator routine
(Chart 6) gains control by means of an SVC
35 interruption. The rout.ine searches for
routing codes specified as values of the
ROlJTCDE= parameter of WTOI'WTOR. If routing
code 11, assigned to write-to-programmer
messages, is present, the message will be
written on the system message class data
sei: in SYS1.SYSJOBQE. If, for a WTO macro
instruction, it is desired that the message
also be written to the console output
de"ice, an additional rout,ing code (any

other than 11) must be present. For a WTOR
macro instruction, the message goes to the
console whether or not an additional rout­
inq code is found.

If the message does not carry the
assigned WTP routing code, either form of
the macro instruction writes the message to
the console device and immediately retuzns
control to the supervisor. Processing is
resumed at the point of interruption (with
a WAIT macro instruction if an operator's
reply is to be entered).

If the 1in'P code is present in the mes­
sage, however, control is transferred to
write-to-programmer processing under the
following conditions:

• A WTO macro instruction containing both
WTO and WTP routing codes will write
the message to the console before
transferring control to WTP.

• A W'I'O macro instruction containing only
the WTP routing code will transfer con­
trol to WTP but will not write the mes­
sage to the console.

• A WTOR macro instruction, regardless of
routing code content, transfers control
to WTP before writing the message to
the console.

WTP messages may originate both in sys­
tem components and in processing programs.
The operating system uses W'IP to provide
the programmer with dynamic descriptions in
the event of abnormal occurrences during
execution of a processing program. The
facility is used by processing programs to
write a limited number of messages to the
system message class output device when
SYSOUT has not been specified in the JCL
statements.

The limit to the number of WTP messages
to be written to the message queue in a
given job (defined in the JOBQWTP= parame­
ter of the SCHEDULR macro instruction at
SYSGEN time) is resident in the nucleus.
The maximum is twenty messages; the default
value assigned when the parameter is
omitted is two. Each time WTP prepares to
process a new message, a check is made to
ensure that the limit has not been
exceeded. If it has not, WTP utilizes the
transient queue manager (SVC 90) to read
and write messages and to assign system
message blocks (SMBs).

The actual number of messages passed to
the queue may well be greater than the 5MB
count maintained by WTP. Message queue
record size is 176 bytes, of which 15 bytes
are reserved for control information,leav­
ing 161 bytes to contain message text.

Master scheduler 17

However, the maximum allowable ·text length
is 126 bytes. A full-length message would
therefore leave a number of unused bytes in
each record. To make maximum use of the
available storage, WTP will, within a given
job step, fit more than one message into a
queue record when possible. For example,
two 80-byte or three 53-byte messages can
be placed into a single message queue
record.

WTP Error Handling

During initiation of the first job step,
WTP reserves two independent 5MBs for its
use in the event of error. Possible errors
and the manner in which they are resolved
are shown here:

Messages Exceed Limit: WTP uses one of
its reserve 5MBs to write an explanatory
message on the system message class data
set. All processing program WTP messages
for the remainder of the job (including the
one which initiated the condition, if such
was the case) are ignored. From one to
three additional system messages, including
the possible error-initiating record, can
be sucessfully processed (depending on
length) through use of the reserved 5MBs.
Any in excess of the reserve storage capa­
city are lost.

Input/Output Erro:r;:: When the transient
queue manager is unsuccessful in a read or
write operation when attempting to place a
programmer message on the queue, WTP writes
an explanat:ory message, followed by the
unprocessed programmer message, on the con­
sole output device. Once this error has
occurred, subsequent WTP messages within
the j ob stE~P are suppressed.

No Available 5MBs: When the volume of
normal (as opposed to WTP) system messages
is so great that no more system message
blocks are available, even though WTP has
not used the full number assigned to its
programmer messages, an explanation is
written both to the message class data set
(through use of the reserve 5MBs) and to

18

th,= console. Again, from one to three sys­
tem messages can be processed after this
cO:rldi tion occurs. Problem program messages
enGountered thereafter are bypassed.

WT:P Control Transfer

Co:ntrol is transferred by WTP in the fol-
10'lling manner:

r-.----------T---------T------------------,
Iwrp enteredlWTP I I
I f.("om I completed I Control passed to I
~-.----------+---------+-------------------~
I WTO I Yes I Supervisor for I
I I I return to point I
I I I of interruption I
I WTO I No- I WTO I
I WTOR IYes or Nol WTOR I L ____________ J. _________ J. ___________________ J

If return from WTP is made to WTO
because of unsuccessful handling of the WTP
message, an EXCP macro instruction is used
to write the message on the console output
device, and control is passed to the super­
visor for return to the processing point
where the interruption occurred.

When it is WTOR which invoked WTP,
return is made to WTOR regardless of WTP
message completion. The message is written
to the console output device. The supervi­
sor then resumes control of processing. If
a WAIT macro instruction is now encoun­
tered, the system waits for the operator's
reply, places it in the storage area desig­
nated in the WTOR parameters, and posts the
event control block (ECB).

External Interrupt Routine
The external interrupt routine (Chart 13)
switches to an alternate console device
when the operator presses the INTERRUPT key
on the console. This routine resides in
the nucleus.

'fhe primary function of the int.erpreter
(Chart 14) is to read job control state­
ments, analyze their contents, and build
tables that are used during initiation and
execution of job steps.

Control is passed to the interpreter
following:

• The IPL procedure.

• Execution and termination of a job step
that was followed by data in the input
job stream.

• Bxecution and termination of the last
step of a job.

In each case, the interpreter begins read­
ing and processing control sta'tements.

The interpreter is a processing program
that operates in the problem program mode
with a protection key of zero. It is cap­
able of taking information from an input
s1:.ream and the procedure library, process­
ing it, and storing it for convenient
retrieval by other programs. It is used by
the operating system to t,ranslate job pro­
cessing information into convenient form
for processing by the ini.tiator/terminator.

Input Stream

Procedure
library

[

Sc;an
Dictionary

-......-------'

Control
Routine

Job, Exec"
DD
Statements

Command
Statements ~ '7

Command
Routine

ii: Parameter
m Codes

~ lJlj,7

Scan
Routine

Coded
Parameters ...

.....

Figure 7. Interpreter Data }i'low

Interpreter

The private procedure library (SYS1.
PROCLIB) is a partitioned data set. Each
member (called a cataloged procedure) is a
series of job control language (JCL) state­
ments describing frequently executed series
of job steps.

An input stream is a sequential data set
composed of JCL statements, operator com­
mand statements, system input data, and, if
desired, in-stream procedures (a series of
non-cataloged JCL statements that describe
frequently executed job steps). PROC and
PEND statements mark the beginning and end,
respectively, of an in-stream procedure.
For detailed information on preparing in­
stream procedure statements, see IBM
System/360 Operating system: Job Control
User's Guide, GC28-6703.

Figure 7 shows the data flow in the in­
terpreter. The interpreter is entered at
the initiali.zation routine, as a result of
a START RDR command; the initialization
routine stores the initializing parameters
and opens the input stream and procedure
library data sets, then passes control to
the control routine.

The control routine reads the input
stream and procedure library records. It
passes JCL statements to the JCL scan
routine.

Internal
Text

Job Stmt
Parameters

Exec Stmt
Parameters

DD Stmt
Parameters ...

....

Job Stmt
Processor

Exec Stmt
Processor

DD Stmt
Processor

Input
Queue

Interpreter 19

The scan routine converts JCL statements

I

into an internal text format. since a JCL
statement in the input stream may invoke
and modify cataloged or in-stream proce­
dures, the scan routine accumulates a com­
plete logical statement (which may include
several records from the input stream and
the procedure library) before further pro­
cessing is performed. When it has con­
verted the complete logical statement into
internal text, it passes the text to the
appropriate JCL statement processor
routine.

The processor routines build the tables
for the job and write them into the queue
data set. In addition, they create system
message blocks as required and write them
into the queue data set.

Initializing' the Interpreter
The interpreter is entered at the initiali­
zation routine, which consists of two
modules: the initialization module
CIEFVH1) and the open module (IEFVH2). At
entry, control passes to the initialization
module, which obtains main storage fOI' the
interpreter work area (IWA), and for the
local work area (LWA). The IWA contains
information that is shared by two or more
of the interpreter routines, while the LWA
is used individually by each major routine
and contains only information that need not
be preserved outside ,the routine. Through­
out the use of the interpreter, register 12
contains a pointer to the IWA; the IWA con­
tains a pointer to the LWA.

When the main storage for the work areas
has been obtained, the initialization rou­
tine obtains main storage for the input
stream DCB and the procedure library DCB,
then stores pointers to these areas in the
IWA.

The routine then issues a TTIMER macro
instruction and combines the time with the
reader number in the interpreter option
list to create the base for any unique set
names to be generated for this input
stream. Next, it examines the PARM field
of the code list. It extracts the option
fields, and sets the corresponding switches
and values in the IWA ..

The initialization module finally passes
control to t:he open module, which opens the
input stream and procedure library data
sets. The input stream data set is opened
for QSAMi the procedure library is opened
for BPAM.

20

Ill,put and Control Operations

When the initialization is complete, con­
trol is passed to the interpreter contrel
routine (Chart 16), which reads records
from the input stream and procedure
library, determines the record type and
processing required, and either performs
the processing or passes control to the
appropriate processing routine.

READING CON,!'ROL STATEMENTS

The interpreter control routine is
en"t.ered at the interpreter get routine
(module IEFVHA). 'Ihis routine uses the GET
and READ macro instructions to obtain rec­
ords from the input stream and procedure

I library , or the in-stream procedure buf­
fers, respectively. Only one input source
is read upon each entry to the routine,
except when a blocked procedure library is
spE~cified. In this case, a block is read
and a pointer is passed to the input source
statement. Switches set in the verb iden­
tification routine (module IEFVHCB) deter­
mine which data set is read.

When the record is in main storage, the
ge1: routine determines if it is a control
record (// in positions 1 and 2). If a
non-control record is encountered, control
is passed to module IEFVHB. This module
will cancel the jOb and print the message
INPUT STREAM DATA FLUSHED. Then return is
made to the get routine.

ENIl-OF-DATA AND NULL STATEMENTS

The physical end of an input stream is sig­
nalled by an end-of-data indication from
thE' computing system. A null statement is
the last statement in an input stream (or a
job description), and is also the last

I sta.tement in a cataloged procedure.

An end-of-data condition causes control
to be passed to the interpreter EODAD exit
rou.tine (module IEFVHAA), which determine::>
whether there is a job to be enqueued. If
not, it passes control to the interpreter
teImination routine; if so, it constructs a
null statement, and passes control to the
continuation statement routine.

The continuation check routine passes
control to the verb identification routine,
which determines that the statement is a
null statement, and passes control to the
null statement routine.

The null statement routine (module
IEFVHL) is given control by the verb iden­
tification routine whenever it encounters a
null statement. The null statement routine

e~!Camines the conditions under which it was
entered, and passes control as described
b~~low:

• If the statement is continued, control
is passed to the interpreter get rou­
tine, so that the condition may be
read.

• I f the null statement. represents the
end of a procedure, but there are addi­
tional input stream records to process,
control is passed to the v'erb identifi­
cation routine, to process the current
record from the input. stream.

• If there are no more records to be pro­
cessed in either the input stream or
the procedure, control is passed to the
job validity check routine, so that the
last job can be enqueued.

• If there are no more input stream rec­
ords to process, but there are addi­
tional records in the procedure, con­
trol is passed to the router routine.

When the last job has been enqueued,
control is passed to the interpreter ter­
mination routine.

PROCESSING CONTROL STATEMENTS

When a record containing the characters
"//" in the first two positions is read,
control is passed to the continuation check
routine (module IEFVHC). If the preceding
r4ecord from the same input sou.rce contained
a comma in its last non-blank position, the
current record is expected to be a con­
tinuation of the preceding statement. The
continuation routine inspects the current
r4ecord to determine whether it is blank in
position 3, and not blank star·ting any
place from position 4 through position 16,
inclusive. If so, control is passed to the
p;ce-scan preparation rout~inei if not, or if
no continuation was expected, control is
pa.ssed to the verb identificat.ion routine.

The verb identification rou.tine (module
IEFVHCB) identifies the t~ype of control
statement that has been encountered, and
processes it as follows:

• If a PROC statement from t.he input
stream is encountered, indicating the
neg inning of a set of in-stream proce­
dure statements, the verb identifica­
tion routine passes control to the in­
stream procedure rout.ines (see Chart
19). Upon initial entry, the syntax of
the PROC verb is checked and a 352-byte
work area is obtained. Of this, 176
bytes are used for compression and
expansion of the statements within pro­
cedures, and the remaining 176 bytes

for a procedure directory (see Figure
38). A directory entry, containing the
procedure's name and auxiliary storage
address, is created for each in-stream
procedure within a given job to a maxi­
mum of fifteen. Any in excess of this
limit causes the job to fail.

The next JCL statement is read and,
unless it is a JOB, PEND, DD *, or DD
DATA statement, it is compressed
(blanks are removed and a count field
added) and placed in a buffer. If the
job's message level parameter stipu­
lates the printing of statements, a job
queue 5MB is built. Printed listings
of statements from in-stream procedures
and those from cataloged procedures are
differentiated by identifications of
"++" rather than "XX" for JCL output
statements and "+/" rather than "X/"
for overridden parameters.

Another statement is then read and the
processing repeated. When the PEND
statement, signaling the end of a given
in-stream procedure, is read, its syn­
tax is checked and control is trans­
ferred to the get routine.

If a DD * or DD DATA statement is read
in the in-stream procedure routine, a
bit is set to flush the job, as data is
not allowed in such procedures. Con­
trol is passed to the get routine.

When a JOB statement is read within the
in-stream procedure routine, control is
immediately returned to the verb iden­
tification routine.

• If the statement identified by the verb
identification routine is EXEC PROC,
the in-stream procedure directory is
searched. If an entry for the named
procedure is found, the address of
SYS1.PROCLIB's access method is saved
in the IWA while a pseudo access method
is used to read the procedure from the
job queue and to expand it to its ori­
ginal form. Once expanded, the proce­
dure is processed by the reader/
interpreter as if it had originated in
SYS1.PROCLIB. Switches are set enabl­
ing the interpreter get routine to read
a statement from the procedure library
or the job queue, and control is passed
to the router routine.

• If the statement is a JOB, EXEC, or DD
statement, control is passed to the
router routine.

• If the statement is a null statement,
control is passed to the null statement
routine.

Interpreter 21

• If the statement appears to have a
valid format, yet does not have one of
the fiv'e valid JCL statement operators
(JOB, EXEC, PEND, PROC, and DO), and is
not a n.ull statement, control is passed
to the command routinE. The cornnand
routine verifies the verb and calls the
master command routine.

PROCESSING JOB, EXEC, AND DO STATEMENTS

When the verb identification routine deter­
mines that the statement is a JOB, EXEC, or
DD statement, it passes control to the
router routine (module IEFVHE), which de­
termines whether there are tables from a
previous step to be placed in the queue
before the current statement can be
processed.

If the router is entered with an EXEC
statement in the buffer, the tables
describing the previous step must be placed
in the job's queue entry; control is passed
to the job and step enqueue routine.

If the statement in the buffer is a JOB
statement, the previous step is the last
step of a job. The storage space used for
in-stream procedure work and job queue rec­
ord areas is freed. Control is passed to
the validity check routine.

If the statement in the buffer is a DO
statement, or if it is an EXEC statement
representing the first step in a job, or if
it is a JOB statement representing the
first job in the input stream, there are no
tables to be written into the queue, and
control is passed to the pre-scan prepara­
tion routine.

The pre-scan preparation routine (module
IEFVHEB) is entered when the statement to
be processed is a JOB, EXEC, or DD state­
ment. If the statement is a JOB statement,
it passes control to the queue manager
interface routine, which uses the queue
management assign and start routines to
start an input queue entry with an assign­
ment of five records.

On the return, the pre-scan preparation
routine starts the construction, in main
storage, of the JCT and the SCT for the
first step of the job, by inserting the
queue addresses of the first two records
assigned to the job's entry.

The routine then uses the message writ­
ing routine to copy the JOB statement into
an 5MB. If the JOB statement specifies
MSGLEVEL=1, the other JCL statements in the

22

jOj) are also placed in 5MBs. If the JOB
statement does not specify any of its
op"t:.ional parameters, the sysgen default
opi:ions, placed in the IWA when the inter­
preter is initialized, are used. The pre­
scan preparation routine finally passes
control to the JCL scan routine (module
IEFVFA), which converts statements to
in1:ernal text, and passes them to the
appropriate processor, so that the tables
can be constructed.

QUEUE ENTRY PROCESSING

Wh(:n the presence of a JOB or null state­
ment in the input stream indicates that the
input queue entry describing the previous
job is to be enqueued, the job validity
check routine is entered. 'J.'he routine de­
teJ:-mines whether the job to be enqueued has
any steps; if so, control is passed to the
job and step enqueue routine. If not, the
validity check routine constructs a dummy
SC~ and sets the job-failed bit on before
pansing control to the job and step enqueue
routine.

The job and step enqueue routine (module
IEFVHH) is entered from the router when the
presence of an BXEC statement indicates
that the tables representing the previous
stE~P are to be placed in the input queue,
and from the job validity check routine
(module IEFVHEC) when the presence of a JOB
or null statement indicates that the step
waH the last step of a job. The job and
step enqueue routine inspects switches in
thE! IWA to determine which tables are to be
placed in the queue, then passes control to
thE! queue manager interface routine to have
each table written to the queue by queue
management.

If the step whose tables are to be
placed in the queue is the last step in a
job, a switch in the IWA indicates that the
JC'l' is to be written. When the tables
describing the step have been placed in the
qUE~ue, the job and step enqueue routine
instructs the queue manager interface rou­
tine to have the JCT written by the queue
manager. An exit is then taken to the
int.erpreter-ini tiator interface rr.odule.

If the step whose tables are to be
pla,ced in the queue has a DD * statement,
thE~ same exit is taken to the interpreter­
initiator interface module.

Otherwise, control is passed to the pre­
scan preparation routine, and the statement
currently in the buffer is processed.

POST-PROCESSING ENTRY

'fhe control routine is r,eentelred at the
post-scan routine (modul,e IEFVHF) from the
JrCL scan routine if a continuation state­
ment is expected, if the stabement scanned
~ras an overriding statement, or if a JCL
E!rrOr was detected. It is enitered from a
statement processor routine when the pro­
cessing of a statement is completed. The
post-scan routine determines ithe conditions
umder which it was entered, then passes
control to the appropriate control routine
module:

• If a continuation statement is
expected, control is pass1ed to the in­
terpreter get routine to :read the
statement.

• If an overriding statemenit has been
processed by the JCL scan routine, the
overridden statement must be scanned

before the statement processor routine
is entered. The overridden statement
is in the buffer, and control is passed
to the pre-scan preparation routine.

• If a JCL error was encountered, the
job-failed bit has been set on. The
remaining statements in the job (except
for procedure library statements) will
be processed by the interpreter, so
that any other errors may be found; but
the job will not be run. Control is
passed to the interpreter get routine,
and processing continues.

• If the statement has been successfully
processed, control is passed to the in­
terpreter get routine.

• If the statement processed was a DD *
or DD DATA statement, control is passed
to the job and step enqueue routine.

Interpreter 23

Scanning the dOL Statement

'1 he job control language scanning routine (module IEFVFA) converts a JCL
record into a coded internal list (see Figure 8). When it has accumu­
lated a complete JCL statement, (including continuations and overrides)
it then passes the list to a statement processing routine. An example
showing the scanning and encoding of a DD statement follows this
section.

Each statement is scanned from left to right. The scan routine re­
cognizes keywords and positional parameters, and is able to identify the
existence of a name field and one level of subparameters following a
keyword.

r-----T---------T--------T--------------T--------~r---------T-----------,

I I I I Positional I f I Sub I
I Key I Number I Length I Parameter I Countj Length I Parameter I
~-----~---------~--------~--------------~--------~---------~-----------~
I
IKey is the one byte binary code that represents a keyword.
I
INumber is a one byte binary number that specifieB the number of posi-
Itional parameters in the entry. Its hiqh-order hit is always off.
I
ILength is a one byte number that specifies the length of the parameter
I that follow's it. Its hiqh-order bit is always off.
I
IPositional Parameter contains the positional parameter.
I
ICount is a one byte binary number that specifies the number of sub-
Iparameters in the entry. Its high-order bit is always on.
I
INote: The format of a list entry is variable, depending on the pre-
lsence and number of positional parameters and subparameters. L ______________ , ___ J

E'igure 8. Internal List Entry Format

As the statement is examined, the name field, keywords, and position­
al parameters are identified and looked up in the scan dictionary (see
Figure 9). For each keyword the scan dictionary entry contains the
corresponding one-byte binary "key", and lists the keys of any mutually
exclusive parameters (the DDNAME and DCB parameteJ:s, for example, are
mutually exclusive). The entry also lisi:s the keys of any minor key­
words associated with the keyword that the entry J:epresentsi SEP, for
example, is a minor keyword of the UNIT parameter ,I and is listed as a
minor keyword in the UNIT entry of the scan dictionary. The list of
mutually exclusive keys is used for error checkinq and the list of minor
keys for overriding major keywords in a cataloged procedure.

24

r------------T-------------T---------T---------------T-----------------,
I Length I I I Mutually I I
I of i Keyword I Key I Exclusive I Overridden I
I Entry I I I Key I Key I
~-----------,-~-------------~---------~---------------~-----------------~
I I
ILength of Entry is a one byte binary number that specifies the length, I
Jin bytes, of the scan dictionary entry (including the length of entry I
Ifield). I
I I
IKeyword contains the keyword specified in this entry. I
I I
IKey is a one byte binary code that represents the keyword specified in
Ithis entry.
I
IMutually Exclusive Key contains the key that represents a keyword that
Imay not be used in a statement that contains the keyword specified in
Ithis entry. The high-order bit in this field is always off for DD
I keywords. JPor other keywords, the condition of this bit is
I unpredictable.
I
loverridden J~ contains the key that represents a minor keyword of the
Ikeyword specified in this entry. The high order bit in this field is
lalways on.
I
INote: The format of a scan dictionary entry is variable, depending on
Ipresence and number of mutually exclusive and overridden keys. L ___________ • ___ J

Figure 9. Scan Dictionary Entry Format

When the correct scan dictionary entry has been found, the scan rou­
tine determines whether the parameter has been encountered previously,
or whether a mutually exclusive parameter has been encountered, by test­
ing the appropriate bits in the duplicate table.

The duplicate table is a 16-byte table that contains a bit for each
key. The position of the bit in the table corresponds to the key; the
eighth bit in the second byte corresponds to the key X'OE" (the DCB key­
word in a DD statement), the first bit in the fourth byte corresponds to
the key X'lSIl (the DDNAME keyword in a DD statement), etc.

When it makes an entry in the internal list, the scan routine turns
on the bit that corresponds to the key it is processl.ng. It also turns
on the bits 1:hat correspond to any mutually exclusive keys, as defined
in the Bcan dictionary entry. Thus, if a nit in the table is on, it
means that the key, or a mutually exclusive key, has been encountered
previously.

This condition is an error (and the scan routine turns on the job­
failure bit and exits) unless the scan routine is processing the proce­
dure library statement.. During a procedure merge, the condition means
that thf~ field being processed was overridden, and the scan routine pro­
ceeds to the next field.

When the scan is complete, control is passed to the appropriate JCL
statement processor routine.

Example::

The ~JCL scan routine encounters the following source statement.

//SYSUTl DD DSNAME=LINKEDIT.WORK,UNIT=190
SPACE=(TRK,(30,lO»,VOLUME=SER=111111

Interpreter 25

1. The name field (SYSUT1) is identified as such because of its posi­
tion, and encoded as follows:

r----T--------T--------T--------------------,
IKey I Number I Length I Parameter I
~----+--------+--------+--------------------~
16E I 01 I 06 I E2 E8 E2 E4 E3 Fl I L ____ ~ ________ ~ ________ ~ ____________________ J

2. The OSNAME= field is found in the scan dictic·nary entry shown
below:

r--------r----------------------T----T--------'--------,
I I I I Mutually I
ILength I Keyword I Key I Exclusive keys I
~-------+----------------------+----+--------'T-------~
I OB I C4 E2 05 C1 D4 C5 7E I 4A I 49 I 4B I L _______ ..L _____________________ ..L _____ .L ________ ,~ _______ J

3. It is encoded and placed in the list as shown below:

r----T--'------T--------T----------------------'------------------,
IKey I Number I Length I Parameter I
~----+--,------+---.-----+----------------------.------------------~
14A I 01 I 00 I 03 C9 D5 02 C5 C4 C9 E3 4B ~6 D6 09 D2 I L ____ .L ________ ~ ________ .L ______________________ . __________________ J

4. The UNI'T= field is found in the scan dictionclry entry shown below:

r-- ----T----------------T-----T-----------T---·---------T-----------,
I I 'I Mutually I I ,
I I 'I Exclusive 1 Overridden I overridden I
I Length I Keyword I Key I Key I Key , Key ,
~------+---------.-------+-----+-----------+---.---------+-----------~
1 OA I E4 05 C9 E3 7E I 41 I 49 , CO I CE , L ______ .L ________________ .L _____ .L ___________ .L ___ • _________ .L ___________ J

5. It is encoded and placed in the list as shown below':

r----T---------T--------T------------,
IKey 'Number I Length ,Parameter I
~----+---------+--------+------------~
141 I 01 1 03 'F1 F9 FO I L ____ ~ _________ ~ ________ .L ____________ J

6. The SPACE= field is found in the dictionary entry shown below:

r-------T-------------------T-----T----------------,
I I I I Mutually I
'Length 1 Keyword , Key I Exclusive Keys 1
~-------+-------------------+-----+-----T-----r-----~
1 OB I E2 D7 Cl C3 C5 7E ,47 1 48 ,4C I 49 , L _______ ..L ___________________ ~ _____ .L _____ .L ____ .L _____ J

7. It is encoded and placed in the list as shown below:

r---T----'--T------T---------T----~------T----·-----T------T---------,
IKeyINumberILengthIPararneterICountILengthIPar~neter'LengthlParameterl
~---+------+------+---------+.-----+------+----.-----+------+---------~
147, 02 I 03 IB3 D9 D2 I 82 I 02 1 F3 FO I 02 IF1 FO I l ___ .L ______ ~ ______ .L _________ .L _____ .L ______ .L _________ .L ______ .L _________ J

26

8. The VOLUME= field is found in the dictionary entry shown below:

r------T·--------------------T---T---------T----------T----------,
I I I I Ivlutually I I I
I I I IExclusivelOverriden IOverriden I
I Length I Keyword I Key I Keys I Key I Key I
~------+·--------------------+---+----T----+----------+----------~
I OD IE5 D6 D3 E4 D4 C5 7EI43 I 49 I 4B I CF I DO I L ______ .l.. ____________________ .L ___ .l. ____ .L ____ .L __________ .l. __________ J

9. It is encoded and placed in the list as shown below:

r-----T-·-------,
I Key I Number I
r-----+--------~
I 43 I 00 I L _____ .L_. _______ J

since there are no positional parameters associated with the VOLUME
keyword, the number fiela is 00, and it terminates the entry.

10. The serial number field (SER=) is found in the scan dictionary
entry shown below:

r--------T-------------T-----T---------------,
I I I I Mututally I
I Length I Keyword I Key I Exclusive Key I
t--------+-------------+-----+---------------~
I 07 I E2 C5 D9 7E I 4F I 50 I L ________ .L _____________ .l. _____ .l. _______________ J

11. It is encoded and placed in the list as shown below:

r-----T--------T--------T-------------------,
I Key I Number I Length I Parameter I
t--·---+--------+--------+-------------------~
I 4F I 01 I 06 I Fl F1 Pi F1 Fl Fl I L _____ .l. ________ .l. ________ .l. ___________________ J

12. Since the serial number field is the last field in the statement,
the list is closed with the entry:

r-----'
I Key I
t-----~
I F'E I L _____ J

The scan routine then passes control to DD statement processor rou­
tine (IEFVDA).

Interpreter 27

Processing tIeL Statements

When a statement has been scanned, and its
contents placed in an internal text buffer,
tables must be built from the internal
text. This function is performed by the
JOB statement processor routine (module
IEFVJA), the EXEC statement processor rou­
tine (module IEFVEA), and the DD statement
processor routine (module IEFVDA). These
three routines are similar in construction
(see chart 18); each processor consists of
a single control section containing a head­
er routine, a keyword routine for each key­
word in the statement, and a cleanup
routine.

When a statement processor routine is
first entered, the header routine performs
initializing functions, which include
clearing the storage area occupied by the
tables to be created by the routine (except
for fields filled in by previously executed
routines), and initializing the local work
area (LWA). It then uses a BALR instruc­
tion to pass control to the get parameter
routine, which performs basic error check­
ing of a parameter, then passes control to
the appropriate keyword routine.

Each keyword routine controls the pro­
cessing of the positional parameters and
subparameters associated with a given key­
word. The routine is entered initially
when the get parameter routine encounters
its keyword, and again as each positional
parameter and subparameter is found. In
some cases, the required processing is done
directly by t:he keyword routine; in most
cases, howevE~r, the keyword routine passes
control to the test and store routine,
which processes the parameter in accordance
with the description in the parameter
descriptor table (PDT) and returns control
to the keyword routine. Control is then
passed to the get parameter routine for the
next parameter.

When the last parameter in the statement
has been processed, or when the test and
store routine or get parameter routine
finds an error, control is passed to the
cleanup portion of the JCL statement
processor.

Each cleanup routine uses the message
routine to write any error messages to the
programmer. In addition, the cleanup rou­
tines perfornl the processing described
below:

28

• The JOB statement processor cleanup
routine checks for the presence of pro­
grammer name and account number, and
uses the queue manager interface rou­
tine to write out the job account con­
trol table (ACT).

If the EXEC statement specifies
npROC=" , the execute statement proces­
sor cleanup routine uses the queue man­
agement interface routine to write out
the last override table; if the state­
ment was in a procedure, the routine
reads the appropriate override table
into main storage, and stores overrid­
ing information in the SCT.

• The DD statement processor cleanup rou­
tine sets initializing values in the
JFCB, where no value has previously
been set. It marks the disposition
fields for implied dispositions, and
sets bits to indicate whether the data
set is public, private, temporary, or
shareable. If the DSNAME keyword was
omitted, or if its parameter is nt n ,
the routine generates a data set name.
It uses the queue manager interface
routine to assign records in the queue
for the SlOT and JFCB (unless the
DDNAME or SYSOUT keyword was used in
the statement), then writes the SlOT
and JFCB into the assigned records. If
the DDNAME keyword was used, the rec­
ords have previously been assigned, and
the JFCB and SlOT need only to be writ­
-ten out. If the SYSOUT keyword was
used, the routine passes control to the
interpreter system output routine.

JOB, EXEC and DD statement parameter
dispositions are shown in Figures 10, 11,
and 12.

IE the system includes Main Storage
Hierarchy Support, selective access is per­
mitted either to hierarchy 0 or to hierar­
chy 1 portions of main storage. The inter­
preb=r processes the HIARCHY subparameter
of the DD statement DCB parameter. If Nain
Stor.age Hierarchy Support is not included
in the system, requests for storage within
hier,archy 1 are treated exactly the same as
norm.:il requests for main storage.

W:o.en a cleanup routine has completed its
proc1=ssing , it passes control to the inter­
preter routine, at the post-scan routine.

Recoqnizing Checkpoint Restart

When a restart is to occur, the JOB state­
ment processor routine (IEFVJA) recognizes
the HESTART keyword. If the CHKID subpara­
mete:c is present, the restart is a check­
point restart, and CHKID is saved in the
JCT. If the CHRID subparameter is not
pres4~nt, the restart is a step restart.

During control statement processing,
module IEFVHCB tests for the CHKID parame­
ter in the JCT. When the parameter is
present (checkpoint restart), the pre-scan
routine (IEFVHEB) initializes job step
IEFDBDRP.

'l'he execute card scan routine (IEFVEA)
indicates which step will be the first to
be executed in a restarted job. In the
case of a checkpoint restart, IEFDSDRP will
be the first step to be executed. In the
case of a step restart, the step to be
restarted will be the first to be executed.

r--------------T-------T--------------------,
IJOB statement ITable I Table Item I
I Parameter I I I
~--------------+-------+------------------~
I jobname I JCT I ~Tobname I
~--------------+-------+------------------~
laccount numberlACT IAccount number, I
I I Ilength of account I
I I j nUffiber I
~.--------------+-------+------.------------~
I programmer's I ACT IProgrammer's name I
I name I I I
~.--------_------+-------J.------.------------~
I TYPRUN IIgnored in primary I
I Icontrol program I
~--------------+--------------------------~
IPRTY IIgnored in primary I
I Icontrol program I
~--------------+-------T------------------~
I COND I JCT I code, operator I
~--------------+-------+------------------~
I J:rlSGLEVEL I JCT I Messaqe level I
~-----_--__ ----+-------J.------------------~
Il~GCLASS I Ignored in primary I
I Icontrol program I
~---------------+---------.-----,------------~
I J:{EGION I Ignored in primary I
I Icontrol program I
~---.------------+--------------------------~
I CLASS I Unused I
~--------------+--------------------------~
I ROLL I Unused I L _______________ J. ______________________ ___ J

Figure 10.. JOB Statement. Parameter
Dispositions

r---------T-----T-------------------------,
I EXEC I I I
I statement I 'I'able I Table Item I
I Parameter I I I
~---------+-----+-------------------------~
Istepname ISCT Istepname I
~---------+-----+-------------------------~
IPGM ISCT Iprogramname I
~---------+-----J.-------------------------~
I I Cat,aloged control statements I
IPROC lare interpreted and merged with I
I linput statements. I
~---------+-------------------------------~
I TIME IIgnored in the primary control I
I I program I
~---------+-----T-------------------------~
ICOND ISCT ICode, operator, auxiliary I
I I Istorage address I
I I lof referenced SCT I
~---------+-----+-------------------------~
I PARM I SC'I' I Initializing parameter I
I I I values I
~---------+-----+-------------------------~
I ACCT I AC'!' I step accounting fields I
~---------+-----J.-------------------------~
I REGION IIgnored in primary I
I I control program I
~---------+-------------------------------~
I DPRTY I Unused I
~---------+-------------------------------~
I ROLL I Unused I L _________ J. _______________________________ J

Fiqure 11. EXEC statement Parameter
Dispositions

Interpreter 29

r------------------------------T-------------------T--------------------T----------------,
I DD statement I I Table I I
I Parameter I Table I Item I Bit(s) I
t--------------,----------------+-------------------t--------------------+----------------~
AFF= SlOT SCTCSADD I

SlOT SCTSBYT2 I 0
*, DATA SlOT SCTUTYPE I

SlOT SCTSBYT1 J 1
SlOT SCTSDISP 5
SlOT SCTSBYT3 7
SCT SCTSTYP£
JFCB JFCBTSDM 2
JFCB JFCBIND2 1
JFCB JFCBDSNM

COPIES= SlOT SIOTOUTC
DCB=

dsname SlOT SIO'I'DCB~
BFALN=D JFCB JF'CBFALN 6
BFALN=F JFCB JFCBFALN 7
BFTEK=A JFCB JFCBFTEK 1,2
BFTEK=B JFCB JFCBFTEK 0
BFTEK=D JFCB JFCBF'l'EK 4
BF'I'EK=E JFCB JF'CBFTEK 3
BFTEK=R JFCB JFCBFTEK 2
BFTEFC=S JFCB JFCBFTEK 1
BLKSIZE JFCB JFCBLKSI
BUFL JFCB JFCBUFL
BUFNO JFCB JFCBUFNO
BUF01~F JFCB JE'CBUFOF
BUFRQ JFCB JFCBUFRQ
CODE==A JFCB JE'CCODE 5
CODE=B JFCB JFCCODE 3
CODE==C JFCB JFCCODE 4
CODE=F JFCB JFCCODE 2
CODE==1 JFCB JFCCODE 1
CODE=N JFCB JFCCODE 0
CODE==T JFCB JFCCODE 6
CPRI=E JFCB JFCCPRI 6
CPRI=R JFCB JFCCPRI 5
CPRI=S JFCB JFCCPRI 7
CYLO~"L JFCB JF'CCYLOF
DBUFNO JFCB JFCDBUFN
DEN=O JFCB JFCDEN 6,7
DEN=1 JFCB JFCDEN 1,6,7
DEN=2 JFCB JFCDEN 1,3,6,7
DEN=3 JFCB JFCDEN 0,1,6,1
DSORG=CQ JFCB JF'CDSORG 4
DSORG=CX JFCB JFCDSORG 3
DSORG=DA JFCB JFCDSORG 2
DSORG=DAU JFCB JFCDSORG 2,1
DSORG=IS JFCB JFCDSORG 0
DSORG=ISU JFCB JFCDSORG 0,7
DSORG=MQ JFCB JFCDSORG 5
DSORG=PO JFCB JFCDSORG 6
DSORG=POU JFCB JFCDSORG 6,1
DSORG=PS JFCB JFCDSORG 1
DSORG=PSU JFCB JFCDSORG 1,7
EROPT=ABE JFCB JFCEROPT 2 I
ERop~r=ACC JFCB JFCEROPT 0 I
EROPT=CLE JFCB JFCEROPT 4 I
ERop~r=SKP JFCB JFCEROPT 1 I
GDSORG JFCB JGDSORG1 0 I
GNCP JCFB JFCBFTEK I
HIARCHY=O JFCB JFCBFTEK none I
HIARCHY=l JFCB JFCBFTEK 5 I
INTVL JFCB JFCINTVL I L __________ . ____________________ ~ __________________ ~ __ ---_______________ ~ ________________ J

Figure 12. DO Statement Parameter Dispositions (Part 1 of 4)

30

r-------------------------------T------------------T--------------------T----------------,
I DO statement I I Table I I
I Parameter I Table I Item I Bit (s) I
~-------------------------------+------------------t--------------------+-----------------t

DISP=

KEYLEN JFCB I JFCKEYLE
LIMCT JFCB I JFCLIMCT
LRECL JFCB I JFCLRECL
MODE=C JFCB I JFCMODE
MODE=E JFCB I JFCMODE
NCP JFCB I JFCNCP
NTfil JFCB I JFCNTM
OP'l'CD=A JFCB I JFCOPTCD
OPTCD=B JFCB I JFCOPTCD
OPTCD=C JFCB I JFCOPTCD
OPTCD=E JFCB JFCOPTCD
OPTCD=F JFCB JFCOP'l'CD
OPTCD=H JFCB JFCOPTCD
OPTCD=I JFCB JFCOPTCD
OPTCD=L JFCB .JFCOPTCD
OPTCD=M JFCB JFCOPTCD
OPTCD=O JFCB JFCOPTCD
OP'l'CD=P JFCB JFCOP'l'CD
OPTCD=Q JFCB JFCOPTCD
OPTCD=R JFCB JFCOPTCD
OPTCD=T JFCB JFCOPTCD
OPTCD=U JFCB JFCOPTCD
OPTCD=W JFCB JFCOPTCD
OPTCD=Y JFCB JFCOPTCD
OPTCD=Z JFCB JFCOPTCD
PRTSP=O JFCB JFCPRTSP
PRTSP=l JFCB JFCPRTSP
PRTSP=2 JFCB JFCPR'!,SP
PRTSP=3 JFCB JFCPRTSF
RECFM=A JFCB JFCRECFM
RECFM=B JFCB JFCRECFM
RECFM=D JFCB JFCRECFM
RECFM=F JFCB JFCRECFM
RECFM=G JFCB JFCRECFM
RECFM=K JFCB JFCRECFM
RECFM=l\} JFCB JFCRECFM
RECFM=R JFCB JFCRECFM
RECFM=S JFCB JFCRECFM
RECFM=T JFCB JFCRECFM
RECFM=U JFCB JFCRECFM
RECFM=V JFCB JF'CRECFM
RETPD DDWA DDETPD
RKP JFCB JFCRKP
SO~A JFCB JFCSOWA
STACK JFCB JFCSTACK
TR1'CH=C JFCB JFCTR'lCH
TR'I'CH=E JFCB JFCTRTCH
TR'I'CH=ET JFCB JFC'IR'IC.t:f
TRTCH=T JFCB JFCTRTCH
TR'l'CH=TE JFCB JFCTR'ICH

JFCB JFCBIND2

o
1

4
1
2
2
3
3
3
6
2
3
2
4
7
6
1
o
4
5
7
4,7
3,7
3,4,7
5
3
2
o
5
7
6
6
4
2
0,1
1

6,7
3,6,7
2,6,7
2,4,6,7
2,3,4,6,7
2,4,6,7

CATLG
DELETE
KEE.P
MOD

SlOT SCTSDISP 6
SlOT SC'ISDISP 5
SlOT SCTSDISP 4
JFCB JFCBIND2 0
SlOT SCTSBYT3 6

N.l:!:W JFCB JFCBIND2 0,1
SlOT SCTSBYT3 5

OLD JFCB J JFCBIND2 1
SlOT I SCTSBYT3 7

PASS SlOT I SCTSDISP 3
I SHR,SHARE JFCB I JFCBIND2 1,4 L ______________________________ ~ __________________ L ____________________ ~ ________________ J

Figure 12. DD statement Parameter Dispositions (Part 2 of 4)

Interpreter 31

r------------------------------T------------------T--------------------T----------------,
I DD Statement I I Table I I
I Parameter I TaDle I Item I Bit(s) I
t------------------------------+------------------t--------------------+----------------~

SLOT I SCTSBYT3 I 7
UNCA'rLG

(conditional
disposition)

CATLG
DELE'rl!:

SIal I SCTSDISP I 7

KEEP
UNCATLG

DSNAME, DSN=

LABEL=
AL

AUL

BLP

data set
sequence no.
EXPDT

IN

NL

NSL

OU'1'

PASSWORD
R1:;TPD

SL
SUL

OUTLIM=
PATTERN=
SEP=

SPACE=
ABSTR
ALX
average record
length

510'1
SLOT
SLOT
SLOT
SlOT
JFCB
JFCB
JFCB
JFCE
SLOT
JF(;B

JFCB
SLOT
JFCB
SLOT
JFCB
SIO'l'
JFCB

JFCb
JFCB
JFCB

JFCB
SLOT
JFCB
SIal'
JFCB

JFCB
JFCB
JFCB
DDWA
JFCB
JFCB
JFCB
SLOT
SLOT
SLOT

DDWA
JFCB
JFCB

I
I
I
I
I
I
I
I
J
I
I
I
I
I

SIOTALTD
SIO'!'ALTD
SIOTALTD
SIOTALTD
SCTSBYT4
JFCBDSNM
JFCBEfI,N.[vj
JFCBINDl
JFCBIND2
SCTSBYTl
JFCBDSNlVl

JFCBLTYP
SCTSBYT4
JFCBLTYP
SCTSBYT4
JFCBL'!'YP
SCTSBYT2
JFCBFLSQ

JFCBCRDT
JFCBXPDT
JFCBMASK
(byte 6)
JFCBLTYP
SCTSBYT~

JFCBLTYP
SCTSBYT2
JFCBMASK
(byte 6)
JFCBIND2
JFCBCRDT
JFCBXPDT
DDE'IPD
JFCBLTYP
JFCBLTYP
JFCOUTLI
SIOTOUTR
SCTCSADD
SCTSBYT2

ABSTRZ
JFCBCTRI
JFCBCTRI

JFCB JFCBDRLH
beginning address JFCB JFCBABST

6
5
4
7
o

6,7
7
o

6
3
6
3
3
4

o

7
4
5
5
1

2,3

6
4

1

7
6
1

CONTIG JFCB JFCBCTRI 4
CYL JFCB JFCBCTRI 0,1
directory quantity JFCB JFCBDQTi
MXIG JFCB JFCBCTRI 5
primary quantity JFCB JFCBPQTY
RLSE JFCB JFCBINDl 0,1
ROUND JFCB JFCBCTRI 7
secondary quantity JFCB JFCBSQTY
TRK JFCB JFCBCTRI 0

ISPLIT= SLOT SCTSBYTl 2,3
I average record JFCB JFCBCTRI 1 L ______________________________ ~ _________________ ._L ____________________ ~ _______________ _

Figure 12. DD Statement Parameter Dispositions It Part 3 of 4)

32

r-·-----------------------·-----·-T------------------T--------------------T----------------,
I DD statement I I Table I I
I Parameter I Table I Item I Bit(s) I
t-·-----------------------·-------+------------------+--------------------+----------------~

length
CYL
directory quantity
n
primary quantity
secondary quantity

SUBALLOC=
average record
length
CYL
ddname

directory quantity
primary quantity
secondary quantity
stepname.ddname
TRK

SYSOUT=

UCS=

UNIT=

classname
form number
prognaroe

FOLD
VERIFY

AFE'= (minor)

DEFER
n
name
p

POOL
poolname
SBP=(minor)

o
1

VOLUME=
PRIVATE
RETAIN
SER=

volume count
volume sequence no.
REF=

JFCB
JFCB
JFCB
JFCB
JFCB
SlOT
JFCB

JFCB
SlOT
SlOT
JFCB
JFCB
JFCB
SlOT
JFCB
JFCB
JFCB
JFCB
JFCB
SlOT
SlOT
SlOT
SlOT
SlOT

JFCB
JFCB

SlOT
SlOT
SlOT
SlOT
SlOT
SIO'!'
none
SlOT
SlOT
SlOT
SlOT
SlOT

I
I
I
I
I
I
I
I
I
I
J
I
I

JFCBCTRI
JFCBDQTY
JFCBSPTN
JFCBPQTY
JFCBSQTY
SCTSBYTl
JFCBCTRI

JFCBCTRI
SIOTVRSB
SCTSBYT3
JFCBDQTY
JFCBPQTY
JFCBSQTY
SIOTVRSB
JFCBCTRI
JFCBDSNM
JFCB'I'SDl\1
JFCBLTYP
JFCBVLCT
SCTSBYT3
SCTSBYTl
SCTOUTPN
SCTOUTNO
SCTOUTNN

JFCINTVL
JFCINTVL

SCTUSADD
SCTSBYTl
SCTSBYT2
SCTNMBU'l'
SCTUTYPE
SCTSBYTl

SCTSPOOL
SCTUSADD
SCTSBYT1
SCTNMBUT
SCTNMBUT

SIO'!' I SCTSDISP
SlOT I SCTSDISP
JFCB I JFCBNVOL
JFCB I JFCBEXAD
JFCB I JFCBVOLS
SCT I SCTVOLTB
SCT I SCTVOLTL
SlOT I SCTVOLCT
SlOT I SCTVLTPR
VOLT J INDMVOLT
JFCB I JFCBVLC'l'
JFCB I JFCBVLSQ
dsname I INDMDSNT
SCT I SCTADSTB
SCT I SCTLDSTB
SlOT I SCTVLPTR
SlOT I SCTVOLCT
SlOT I SIOTVRSB

0,1

4
1

0,1

3

o

2
6
7
4
o

1
3

6
6

5

7

2
1

SlOT I SCTSBYT2 2
SlOT I SCTSBYT3 0 L. ______________________________ ._..L __________________ .L ____________________ ..L ________________ J

Figure 12. DD Statement Parameter Dispositions (Part 4 of 4)

Interpreter 33

Auxiliary Routines

During the performance of the reading ta.sk,
the interpreter routines must frequently
perform functions common to several rou­
tines. These common functions are per­
formed by a set of auxiliary routines,
which are described below:

• The get parameter routine (module
IEFVGK) is used by the statement pro­
cessor routines. It searches for the
next parameter in a statement, perforws
basic error checking, and passes con­
trol to the proper keyword routine,
with a pointer to the parameter.

• The test and store routine (module
IEFVGT) is used by the statement pro­
cessor routines. It processes the par­
ameter as described in the parameter
descriptor table (PDT) and passes con­
trol back to the keyword routine.

• The dictionary entrance routine (module
IEFVGI) is used by the statement pro­
cessor routines. It makes entries for
the dictionary used in refer-back
processing.

• The dictionary search routine is used
by the statement processor routines.
It searches the refer-back dictionary
during refer-back processing.

• The message routine (module IEFVGM)
stores messages in system message
blocks (SMBs) for transmittal to the
programmer.

• The queue manager interface routine
(module IEFVHQ) is used by those inter­
preter routines that reserve space,
write records in, or read records from
the queues.

THE GET PARAMETER ROUTINE

The get parameter routine (module IEFVGK)
is an auxiliary routine used by the JCL
statement processor routines to find the
next parameter in a statement, perform
basic error checking of that parameter, and
find and pass control to the appropriate
keyword routine with pointers to the para­
meter and to the appropriate parameter
descriptor table (PO'!') entry.

When the get parameter routine is ini­
tially entered, the only non-zero portion
of the auxiliary work area (AWA) is the
address of the keyword branch table (KBT).
The KBT (Figure 13) is a table of offsets
that allows the get parameter routine to
determine the actual main storage address
of the appropriate keyword routine and PDT

34

en-try. Addi tional fields in the table
aLlow basic error checking to be done.

When the get parameter routine is
ent:ered to find the first parameter in a
neh1 statement, it extracts the base key
(the key number that represents JOB, EXEC,
or DO) from the text buffer and stores it.
The base key is the offset of the last
entry in the table from the first entry.
Whe:!never the routine is entered, it sub­
tracts the current key from the base key,
multiplies the result by 6 (the size of an
entry), and adds the product to the machine
address of the first entry in the table.
The result is the machine address of the
KB~r entry corresponding to the current
keyword.

r-----------------------T------------------,
I Max. Num. of Pararns I Subparam Check J
~-_---------------------.J.------------------~
I Offset to Keyword Routine I
~--~
I Offset to PDT Entry I L __ J

Fiqure 13. Keyword Branch Table Entry

The get parameter routine first finds
thc~ proper KBT entry, then determines
whc~ther the maximum number of parameters
fo]:- the keyword has been exceeded, and
stores the subparameter check byte in the
AW1\. Each bit in the subparameter check
by1:e corresponds to a positional parameter;
if the bit is on, it means that the corres­
ponding parameter may have subparameters
as::;ociated with it. For example, if the
fiJ:-st positional parameter associated with
a keyword were the only one that could con­
siBt of a subparameter list, the high-order
bi i: in the field would be on. If the
seventh and eighth positional parameters
could have subparameters, the two low-order
bi 1:8 would be on.

The two offset fields are used to com­
pUi:e the actual main storage address of the
appropriate keyword routine and of the
appropriate PDT entry; the positional para­
me1:er length, the parameter length byte
address (in the internal text buffer), and
thc~ PDT entry address are placed in general
reqisters, and control is passed to the
keyword routine.

On subsequent entries to the routine,
the:! pointers are updated so that they point
to the next operand (positional parameter
or subparameter), and control is returned
to the keyword routine at the instruction
af1·:er the branch to the get parameter rou­
tine. When the next keyword is encoun­
telced, however, the branch table is again
used, and control is passed to a new key­
wOled routine.

THE TEST AND STORE ROUTINE

The test and store routine (module IEFVGT)
is an auxiliary routine used by the JCL
routines to determine the processing
r4equired for a parameter (as described in
the PDT), and to perform that processing.
When processing of a keYlll70rg is complete,
control is returned to the appropriate key­
word routine.

The parameter descript:or ta.ble (Figure
14) included in each JCL procE~ssor
d4escribes the processing to be done for
ea.ch parameter that may be found in the
s·tatement. There is an entry for each key­
word, which begins with a field containing
the length of the keyword entry. The key­
word entry is made up of posit~ional parame­
ber entries describing the processing to be
done on the positional paramet~ers asso­
c:iated with the keyword.

[Keyword PDT Length 8 I (Precedes first param PDT for a keyword)

t
Parameter PDT Length 8

Ctl Fld Lgth 4 Compr. Lgth 4 . Information to be compared

Control Information (15 bytes max)

PDT for Required Format Parameters

Parameter PDT Length 81

Ctl Fld Lgth 41 Zero 41 Parameter Max Length ~
Control Information (15 bytes max)

PDT for Variable Format Parameters

Parameter PDT Length

Zero

PDT for No-Action Parameters

~
Parameter PDT Length

__ C_tl_F_ld_L_9t_h __ 4-L __ z_er_o __ ~ ____ z_er_o __ ~
Control Information (15 bytes max)

PDT for Unconditional Action Parameters

Offset within T'Jble

Bit Pattern or
Maximum Number ~
Function 41 Table 4

_ ________ ~ ____________ 81 Maximum Number Maximum Number ---.J
Control Information

Figure 14. Parameter Descript.or Table
(PDT)

V

Each parameter entry contains two kinds
of information. Length a.nd eJrror checking
information is followed by control informa­
tion, which describes the functions to be
performed on the parameber, and the loca­
tion in which the result is to be stored.

The first byte in each parameter entry
(the parameter PDT length field) contains
the length of the entry; the first half of
the second byte (the control field length
field) contains the length of the control
information. The format of the remainder
of the entry depends on the type of parame­
ter and on the functions to be performed.
There are four typES of parameters:

• A required-format parameteL is a known
string of characters. The first posi­
tional parameter following the DISP=
keyword, for example, must be either
"OLD", "NEW", "MOD", or "SHARE". In
this case, since there are four possi­
bilities, there are four parts to the
entry; the test and store routine com­
pares the parameter to the constant in
each of the four parts, and performs
the function specified in the control
information field of the part in which
it obtained an equal compare.

• A variable-for~at parameter may be any
string of characters up to a known
maximum length. The classname parame­
ter of the SYSOUT keyword is an
example; since there are 36 system out­
put class names permitted in the sys­
tem, a series of comparisons would be
unwieldy. The compare length byte in
such an entry is zero; the third byte
in the parameter entry specifies the
maximum number of digits allowed.

• A no-action parameter is one that
refers the system to bit configurations
established when the system is
generated. These bits specify a
default option that the system may use
without taking action to reset any
bits. For example, the applications
programmer may omit the COND keyword,
in which case the system uses the
default option and makes no return code
tests.

• An unconditional-action parameter indi­
cates that the presence of the parame­
ter requires that the same functions be
performed regardless of the form or
contents of the parameter. When the
SPACE keyword is encountered, for
example, certain switches must be set,
regardless of how much or what kind of
space has been requested.

The control information portion of a para­
meter PDT entry defines the operations to
be performed when the parameter is pro­
cessed, specifies the location in which the
results are to be stored, and may contain
data to be used in the operation. The con­
trol information portion may be up to 15
bytes in length; it consists of the follow­
inq fields:

Interpreter 35

36

• Function: The first four bits of a
control information field contain a
number from 0 to 7, which specifies one
of the following operations:

• OR (Code 0): A logical OR operation is
performed, using the bit pattern field
in the control information portion of
the entry, against the bit pattern at
the location specified by the table and
offset fields.

• CVB1 (Code 1): A convert to binary
operation is performed and a maximum
value check is made. The converted
information is stored (right justified)
in the one-byte field specified by the
table and offset fields, and compared
aqainst the maximum value, which is
right-justified in the third byte of
the control information part of this
entry.

• CVB2 (Code 2): This operation is Sl.ml.­
lar to eVE1, except that the result is
right-justified in a two-byte field,
and the maximum value is found right­
justified in the fourth byte of the
control information portion of the
entry.

• CVB3 (Code 3): This operation is simi­
lar to t:he CVB1 and CVB2 operations,
except that. the result is right­
justified in a three-byte field, and
the maximum value is fdund in the fifth
byte of the control information portion
of the entry.

• AND (Code 4): A logical AND operation
is perforffied, using the bit pattern
field in the control information por­
tion of the entry against the nit pat­
tern at the location specified by the
table and offset fields.

• t1VC (Code 5): A move characters opera­
tion is performed, using the parameter
length specification in the internal
text buffer. The parameter is moved to
the location specified in the table and
offset fields in the entry.

• First Character Alpha Check and MVC
(Code 6): This function is similar to
the MVC "function, except that the first
character of the parameter is inspected
to determine that it is alphabetic.

• ~lpha/Numeric Check (Code 7): A
character (usually a one character par­
ameter) in the text buffer is inspected
to determine that it is alphabetic.

• Table: The second four bits of the
control information portion of a para­
meter PDT entry contain a number
between 0 and 15 that specifies the

table in which the result of the opera­
tion is to be stored.

• Offset: The second byte of the control
information of an entry contains the
offset, from the beginning of the
table, of the field in which the
results of the operation are to be
stored.

• Bit-pattern/Maximum Number: The third
through fifth bytes of the control
information portion of the entry are
used for those operations that require
data for logical or comparison func­
tions. If the operation is AND or OR,
the third byte contains the bit pat­
tern. If the operation is a CVB opera­
tion, the third, fourth and fifth bytes
contain the binary representation of
the maximum value allowed for that
parameter.

THE DICTIONARY ENTRY ROUTINE

The dictionary entry routine (module
IEFVGI) is used by the EXEC statement pro­
cessor routine and the DD statement proces­
sor routines to place an entry in the
refer-back dictionary. The dictionary is
maintained in the lWAi if the number of
entries exceeds five, a copy of the dic­
tionary is written out to the queue, a new
dictionary is initialized in the IWA, and
the new dictionary is chained to the pre­
vious copy in the queue.

THE DICTIONARY SEARCH ROUTINE

The dictionary search routine (module
IEFVGS) is used by the EXEC and DD state­
ment processor routines to search the
refer-back dictionary for the address of a
previously defined SCT, SlOT, or JFCB. It
returns control to the calling routine with
a pointer to the required table.

THE INTERPRETER ~ffiSSAGE ROUTINE

The interpreter message routine (module
IEFVGM) is used by the interpreter control
routine and JCL statement processor rou­
tines when a JCL statement or diaqnostic
message must be placed in an 5MB,-and to
enqueue 5MBs for each job.

THE QUBUE ~ffiNAGER INTERFACE ROUTINE

The queue manager interface routine (module
IEFVHQ) is used by those interpreter rou­
tines that need to assign space, and to
read and write records in the queue. It
provides a queue manager parameter area,
and passes control to the queue manager to

perform the function specified by the call­
ing routi.ne. On the return f.rom the queue
manager, i.t resets the parameter area so
t;hat it specifies an assign and write 1
record operation, and returns control to
t:he caller.

Interpreter Termination
}!~t end-ai-data in the input stream, or when
t:he interpreter determines that a START RDR
command has been issued, control is passed
t:o the interpreter termination routine

(module lEFVHN). 'l'his routine obtains main
storage for the interpreter entrance list
(NEL), stores a pointer to the cororoand
scheduling control block <CSCB), and if the
input stream is an internal input strearr it
also stores a pointer to the queue manager
parameter area and the JCT. If the input
stream is on external storage, it closes
the input stream data set. In either case,
it closes the procedure library PDS, and
releases the main storage obtained for the
two DeBs, the IWA and the LWA. When pro­
cessing is complete, it returns control to
its caller.

Interpreter 37

Initiator /Termina tor

The initiator/terminator (Chart 14) ensures
that all I/O resources needed by a job step
are available before control is passed to
the step. The initiator/ terminator ana­
lyzes the I/O device requirements of job
steps and allocates devices to them. If
necessary, it issues mounting instructions
and verifies that volumes were mounted on
the correct units.

Control is passed to the initiator/
terminator from:

• 'l'he interpreter, when the interpreter
encounters a second JOB statement, a DD
*, DD DATA, or null statement, or an
EOF in the input job stream.

• The supervisor, following step
execut.ion.

The initiator/terminator passes control to:

• The job step, when all I/O devices
needed by the step have been assigned
and the step is ready for execution.

• The interpreter, when termination pro­
cedures have been completed for a step
or job.

Initiator/terminator routines are
arranged into four groupings:

• Initiator control
• Allocation and setup
• Step initiation
• Termination

Initiator control routines perform
housekeeping functions, analyze condition
codes specified by the programmer in the
EXEC statement, and update JFCBs and other
tables associated with the step.

Allocation and setup routines analyze a
step's I/O requirements (taking into con­
sideration, for example, requests for abso­
lute assignments and unit and volume
affinity). They then allocate devices and
issue messages instructing the operator to
mount required volumes.

38

~itep initiation routines open the job
library or step library dataset if the
JOBl.IB or STEPLIB DD statements are pres­
ent. Also, if the step being initiated
con~;ists of a program that was created by a
previous step (commonly known as "compile,
load, and go"), a step initiation routine
opens the data set containing the program.
Before passing control to the job step, a
step initiation routine takes several pre­
paratory steps. It loads control informa­
tion that followed the PARM keyword of the
EXEC statement into main storage. It also
use~; the table store subroutine to store
all tables associated with the job step,
thereby protecting them for use by the ter­
mincltion routines. It initializes the
writ~e-to-programmer control block (WTPCB)
(see Figure 46) for the processing program.
If t:he initiation is for the first step of
the job, two SYS1.SYSJOBQE 5MBs are
reserved for use in processing WTP error
conditions. If an automatic checkpoint
rest:art is in progress, the WTP messages
previously written to the message queue are
retrieved, using information from the step
cont.rol table (see Figure 43) to rebuild
the wTPCB. The information, gleaned from
the wTPCRSMB and WTPCRCNT fields of the
WTPCB, is stored in the SCT prior to ter­
mina.tion of the original job step.

'1'ermination routines are entered after
each job step is executed. They supervise
entl:'y to the user' s accounting routine (if
one exists) and, upon return, dispose of
data. sets referenced by the step during
execution and release devices allocated to
the step.

Information is passed between initiator/
terminator routines by means of the linkage
control table (LCT) (see Figure 15). The
LCT is built and initialized during IPL.
It is stored before processing program
execution and, following execution, is
retl:ieved by initiator/terminator termina­
tioIlI routines. The beginning address of
the LCT is maintained in general register
12 during execution of the initiator/
terminator.

Offset
Hex Dec

0 0

4- 4-

E: 8

c: 12

10 16

14 20

18 24

lC 28

20 32

24 36

28 40

2C 44

30 48

34 52

38 56

3C 60

Length of LCT

Address of I/o supervi sor UCB lookup table

Reserved

Address of TCB

Not used in the prim ary contr(,I program

Mai n Storage Address of JCT

Main Storage Address of SCT

Auxi liary Storag e Address of SCT

Not used in the prim ary contr 01 program

11

Error code

Param eter 1

Param eter 2

Param eter 3

Param eter 4

Address of regii ster save area

JFCB hsk
11 indicators

t Curren
step n o.

1\ Action
code

Address of current syste m messag e block (SMB)

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1

4

• Fi.gure 15. Linkage Control Table

1I1Litiator Control
Initiator control (Chart 22) performs cer­
tain housekeeping functions fOlC the
initiator/terminator, and also checks EXEC
st.atement condition codes (if any). Condi­
ti.on codes appearing in EXEC st.atements
determine whether or not .a job step is to
be executed.

Routines that comprise initiator control
are:

• system control routine, which is the
entry point for the initiator/termina­
tor. Control is passed to the initia­
tor/terminator when a step is ready for
initiation and also after one has been
executed and terminabed, if another
step is to be initiated. Housekeeping
is performed and control is passed to
the execute statement conditional
execution routine.

• Execute statement conditional execution
routine, which checks any dependencies
encountered in EXEC statements.

• JFCB housekeeping routines, which com­
plete portions of JFCBs and SlOTs that
describe the volumes to be used durinq
step execution. These routines also
construct a passed data set queue (PDQ)
to describe data sets being passed and
update the PDQ for data sets beinq
received by the step being processed.

SYSTEM CONTROL ROUTINE

The system control routine (Chart 23) is
entered from the interpreter when it com­
pletes the processing of a step that was
followed by data in the input job stream,
or when it reads the last step of a job.
It is also entered from the step termina­
tion routine if additional steps remain to
be initiated.

Upon entry, the system control routine
updates the step number in the LCT. Then,
if the step is the first step of the job,
its job name is placed into the selected
job queue. (See Figure 16.)

r--------------------T--------------------,
I Jobname I Cancel ECB I L ____________________ ~ ____________________ J

Figure 16. Selected Job Queue

If the step being processed is the first
step of the job, and if a DISPLAY JOBNAMES
command has been issued, the wTO macro
instruction is used to write the message:

IEF401I jobname STARTED

on the control output device. If the job
being processed is restarting, the system
control routine restores saved data from
the CVT and sets the restart switches.

In the case of a JCL error or an alloc­
ate error in the first step, the WTO macro
instruction is used to write the message:

IEF452I jobname JOB NOT RUN - JCL ERROR

on the console output device. Control is
then passed to the executed statement con­
dition code routine •

EXECUTE STATEMENT CONDITIONAL EXECUTION
ROUTINE

The execute statement conditional execution
routine (module IEFVKIMP) checks the key­
word COND parameter of the execute state­
ment to determine whether or not the cur­
rent step should be executed.

Initiator/Terminator 39

TO determine when and if it should pass
control to the JFCB housekeeping routines
for step execution, the execute statement
conditional execution routine (Chart 24)
first determines that no abnormal termina­
tions have occurred in the previous steps,
then sees if either of the following condi­
tions is also true:

• The step is the first step of the job
and the programmer did not specify the
COND=ONLY parameter.

• The programmer did not specify either
any return code tests or the COND=ONLY
parameter.

Otherwise the routine then tests for
abnormal terminations and for up to eight
return codes from previous steps before it
determines the proper disposition of the
step from the coding of its execute state­
ment and all the pertinent environmental
factors. Figure 17 summarizes the condi­
tions that can exist and, corresponding to
each condition, whether or not the step
will be executed.

2 3 4 5 678
-------------------.--- ---_. --

COND parameter omitted X X

COND = ONLY specified X X

--
COND = EVEN specified X X

COND parameter satisfied by return codes X

CON D parameter NOT satisfied by return codes X

Prior step abnormally terminated * X X I X

No previous abnormal terminations X X X

Step will execuh~ X X X X X
- --~-

Step will NOT execute X X

* A special case of a previous abnormal termination is that indicated by a
System 806 message code {problem program not found}.

Figure 17. Execute statement COND Parame­
ter Options

X

* A special case of a previous abnormal
termination is that indicated by a System
806 message code (problem program not
found).

The execute statement conditional execu­
tion routine first tests the job control
table's abnormal termination indicator
(JCTABEND bit in the JCT) to see whether
one or more prior steps have terminated
abnormally during execution of the problem

40

program. If none have, the routine tests
thE~ SCTONLY bit in the SCTABCND field of
the current SC'I' to see whether the pro­
grammer specified the COND=ONLY parameter.
If he did, the routine writes a message to
the system output device, and the job
scheduler bypasses the step. (See column 7
in the table.) However, if one or wore
abnormal terminations have occurred, the
routine tests the SCTONLY and SC'1'EVEN bits
of the SCTABCND field to see whether the
programmer specified either the COND=ONLY
or the COND=EVEN parameters. If neither
bi t: is on, the job scheduler bypasses the
stE!p. (See column 8. These circumstances
produce the default situation wherein a
step whose execute statement does not spe­
cify either the COND=ONLY or the COND=EVE.N
parameter is failed after one or more
abnormal terminations in the job.) If
eit:her bit is on, however, the routine
makes any return code tests specified in
the COND parameter. The routine passes
control directly to the JFCB housekeeping
routines when the COND parameter has been
omitted and no previous abnormal termina­
tions have occurred. (See column 1.)

When the programmer has specified return
code tests, the execute statement condi­
tional execution routine uses the queue
management read routine to read in the SCTs
of the specified steps. (For this read
opE~ration the queue manager uses T'I'Rs saved
in the current step at interpretation
time.) The first return code that satis­
fies a set of test conditions delineated by
the COND parameter causes: 1) the routine
to send a message to the system output
device; and 2) the job scheduler to bypass
thE~ current step. (See column 6.)

To cause the job scheduler to bypass
th:~s step (but not necessarily the succeed­
inq steps of the job), the execute state­
ment conditional execution routine places a
spf~cial error code into the LCTERROR field
of the LCT and passes control to the step
tel:-mination control routine.

JFCB HOUSEKEEPING ROUTINES

Thf~ JFCB housekeeping routines (Chart 25)
complete volume information within certain
tables, in preparation for their use by
allocation routines. This information is
generally the type that requires reference
to the catalog (use of the LOCATE and
OB~rAIN macro instructions) or to passed
data sets. Tables in which entries are
made include:

" Job file control block.
" Step input/output table.
" Step control table.
" Volume table.

If it is discovered as a re~sul t of a
r4~ference to the system catalog through the
LOCATE macro instruction that the required
control volume is not mounted, a new load
module, IEFMCVOL, will be brought into main
storage. This load module creates the
tables required by the allocation routines
to allocate a device for the required con­
tlC'ol volume, and requests the operator to
mount the volume before other requests for
the step are satisfied. If the allocation
for the control volume is successful, con­
tlC'ol returns to the JFCB house:keeping rou­
tine, where the LOCATE macro instruction is
reissued with the control volume mounted.

For passed data sets, a PDQ is con­
sit.ructed and entries are made for the first
occurrence of each data set being passed to
a subsequent step. The existing data set
queue entries are then updated. when a data
set is received from a previous step.

The JFCB housekeeping routines include
the following:

• JFCB housekeeping control routine.
• Allocate processing routine.
• Fetch DCB processing routine.
• GOG single processing routine.
• GOG all processing routine.
• Patterning DSCB procE!ssing routine.
• Error message processing routine.

~rCB Housekeeping Control Routine

The JFCB housekeeping control routine
(Chart 26) determines what processing (if
any) is required, and directs control to
the first appropriate processing routine.
Upon return of control, i.t redirects con­
tlC'ol to the next required processing rou­
tine. This routine places each SlOT for a
job step into a main storage \oJ'ork area,
examines it, and, depending on the type of
information required, passes control to the
plt:"ocessing routine which performs the
actions necessary to retrieve the required
information.

When all SlOTs for a job step have been
examined, the JFCB housekeeping control
routine passes control to the allocation
and setup function of the initiator/termi­
nator.

Allocate Processing Routi.ne

The allocate processing routine (Chart 28)
completes information about data sets which
r4?ference another data SE!t by data set name
(indicating a passed or cataloged data set)
or by ddname or stepname.ddname (indicating
a data set described in a previously pro­
cessed 00 statement).

When the data set reference is a data
set name, the passed data set queue is
examined and, if it contains an entry for
the referenced data set, the SlOT and JFCB
for that data set are placed into a main
storage work area and are used to complete
device and volume information for the sub­
ject data set.

If there is no entry for the referenced
data set in the POU, a LOCATE macro
instruction is issued to find that data set
in the catalog. Its volume control block
or data set pointer entry is then used to
complete the volume and device information
for the subject data set.

When the data set reference is by ddname
or stepname.ddname, a check is made to
determine if the DO statement appeared in
the step being processed. If so, the SlOT
and JFCB associated with the referenced 00
statement are placed into a main storage
work area. These are used to complete the
device and volume information of the sub­
ject data set.

If the 00 statement appeared in a pre­
vious step of the job being processed, the
SlOT and JFCBs constructed by the last step
to reference the data set are placed into a
main storage work area and are used to com­
plete the volume and device information of
the subject data set.

When a unit name is specified in the DO
statement, the unit name is converted to
unit type, through use of the device name

I table. This table is loaded from SYS1.
,LINKLIB and is deleted when unit name conv­
ersion is complete.

Fetch DCB Processing Routine

The fetch DCB processing routine (Chart 29)
completes volume and device information
when the data set referred to contains a
program that was created in a previous step
and is to be executed as the current step.

GDG Single Processing Routine

The GOG single processing routine(Chart 30)
obtains the data set name of a generation
data group (GOG) member and completes
volume and device information entries for
that member.

GOG All Processing Routine

The GDG all processing routine (Chart 31)
builds an SlOT, JFCB, volume table entry,
and PDQ entry for each GDG member when the
entire generation data group is specified
by the programmer.

Initiator/Terminator 41

Patternin~DSCB Processing Routine

The patterning DSCB processing routine
(Chart 32) completes control information in
a JFCB when a new data set is to be pat­
terned after a previously cataloged data
set. The volume control block or data set
pointer entry, which contains the volume
serial number of the volume that contains
the data set, is placed into a main storage
work area. Fields in the JFCB are checked
for zeros. If a field contains zeros, the
corresponding field from the DSCB is moved
into the JFCB.

Error Messa~Processing Routine

The error message processing routine (Chart
33) is ente.red and issues error messages
whenever an error condition is encountered
within a JFCB housekeeping routine.

Allocation and Setup
The allocation and setup function of the
initiator/terminator (Chart 34) allocates
I/O devices, issues any necessary mounting
instructions to the operator, and ensures
that enough I/O requirements have been
satisfied to begin execution of a job step.
The routines in the allocation and setup
function are:

42

• Allocation control routine, which per­
forms housekeeping for the allocation
and setup function by obtaining space
for tables used during allocation.

• Demand allocation routine, which con­
structs the allocate tables and begins
actual allocation by assigning devices
to any data sets for which the pro­
grammer requested specific devices.

• Automatic volume recognition routin~,
(optional) which can determine that
named volumes have been mounted on cer­
tain devices and which allocates those
devices to satisfy requests for the
volumes.

• Decision allocation routine, which per­
forms allocation when a choice of .de­
vices is to be made.

• TIOT construction routine, which builds
a task input/output table (TIOT) that
will be used by data management rou­
tines during step execution.

• External action routine, which issues
mounting instructions, verifies that
volumes are mounted on the correct
units, and unloads incorrectly mounted
volumes.

.' Space reguest routine, which obtains,
from the direct access device space
management (DADSM) routines, space on
direct access devices, and which satis­
fies requests for data set space.

.' TIOT compression routine, which compre­
sses the TIOT to its final size,
updates JFCBs with scratch information
whenever necessary, places the alloca­
tion messages in 5MBs, and exits to the
step initiation routine.

.' DADSM error recovery routine (module
IEFXT003), which determines what action
should be taken when the request for
space on a particular volume cannot be
satisfied.

.' Allocation error routines, which pro­
cess error conditions encountered dur­
ing allocation.

ALI,OCATION CONTROL ROUTINE

ThE! allocation control routine (Chart 35)
performs housekeeping operations for the
allocation and setup function of the
ini.tiator/terminator. It determines the
si2:e of certain tables to be constructed by
subsequent allocation routines, obtains
mai.n storage space for the tables, and
places the addresses of the portions of
storage reserved -for each table onto a
directory o-f tables called the allocate
control block.

Entry to the allocation control routine
is made from the JFCB housekeeping control
routine. Exit is to the demand allocation
routine.

Upon entry, the storage requirements of
thE~ tables needed by allocat'ion routines
arE: calculated (see Figure 18). First, all
requirements except those for the allocate
volume table and TIOT are determined. The
required amount of main storage space is
requested and the addresses of the areas
assiqned to each table are calculated.
(The first table is assigned the first
ava.ilable byte. Other addresses are deter­
mined by incrementing the last assigned
address by length of the the respective
table.) The relative position of each
table except the device mask table is shown
in Figure 19. The device mask table is
included with the coding and is not posi­
tioned relative to the tables shown. As
each address is determined, it is placed
int.o the allocate control block.

When storage areas have been assigned
for all but the allocate volume table (AVT)
and task input/output table (TIOT), all
s1tep input/output tables (SlOTs) are placed
into the area assigned tel them. The size
of the allocate volume table may then be
d~2!termined. The number of volumes required
by each data set (DO stat~ement) is obtained
from each SIO'1' and is used to calculate the
number of AVT entries (one per volume)
required. A second requE~st for main
sitorage space is issued and the address of
the assigned area is placed into the alloc­
ate control block.

The storaqe requirements for the TIOT
a:["e calculated by the TIOT construction
routine.

r----------------------T------------------,
DO number table*
Buffer

Allocate control block
Channe'l load table

.Allocate work table

Potential user on
device table

separation strikeout
pattern

Each SIo'r
Volume table

TIOT

Allocate volume table

I~I I
4 \4\ \
176 \

44
4 x t~he number
channels

1~1
(20 ... 8 1 321)

1~1
4 141

I~I
1321

68
6S

I
\

ofl
I
I

A I
I
\

I
I
I
\
\
I
I
I

Determined by thel
TIOT construction I
routine 1

8B
IlLl

I
I
I

Device mask table 4 + (8 + 1321> F 1
~----------------------..L-------------------~
I Legeng: I
I * Not used. 1
I II Next higher inteq-er if a fraction. I
I A Number of DO sta~temen1;::.s. 1
I B Number of volumes or devices I
I (whichever is greater). I
I D Number of entries in the I
I I/O supervisor UCB lookup table. I
I F Number of entries in device mask 1
1 table. I
1 S Number of volume serial numbers. 1 L. ____________________________ • _____________ J

Figure 18. Formulas for Determining Allo­
cation Table Sizes

If, after a request for space, the
required amount of main storage space is
not available, the job is canceled.

Figure 20 shows the completed allocate
control block. In addition to table
addresses, the allocate control block con­
tains other entries initialized by the
allocate control routine.

All allocation tables are described in
the descriptions of routines in which they
are completed. When the allocate control
block has been completed, control is passed.
to the demand allocation routine.

r-----------------,
ITIOT 1

r-----------------------+-----------------~
100 number table I 1
I (not used) 1 I
~-----------------------~Allocate volume 1
1 Buffer 1 table I
~-----------------------+-----------------i
IAllocate control block 1
~-----------------------i
IChannel load table I
~-----------------------i
IAllocate work table 1
~-----------------------i
IPotential user on 1
1 device table I
~-----------------------~
ISeparation strikeout I
1 pattern 1
~-----------------------i
I SlOT 1
~-----------------------i
IVolume table I L _______________________ ..L _________________ J

Fiqure 19. Relative Positions of Tables
Used for Allocation

Initiator/Terminator 43

Hex Dec

0 0
Channel Load Table Addre!s

4

4 4
Address of First Empty Slot in Allocate Volume Table

4

8 8
Potential-User-On-Device Table Address

4

-
C 12

Allocate Work Table (AWn Address
4

10 16
Allocate Volume Table Adclress

4

14 20
Volume Table Address

4

--
18 24

Separation Strikeout Patter', Address
4

1C 28

20 32

24 36

Number of Satisfied Reques
1

ts

Number of Bytes Per AWT Entr

Length of Bit Pattern
3

y

-

28 40

Not Used

Notes: (Entry length is shown in upper right corner of field.)

1 Set to zero initially and incremented by one each time a request is satisfied.

2 Initially set to the number of data sets to be allocated (the number of DD
statements in the step). This number is decremented by one each time a
request is satisfied.

Fiqure 20. Allocate Control Block

DEtilAND ALLOCATION ROU'I'INE.

The demand allocation routine (Chart 36)
constructs the allocate work table and the
allocate vo!uffie table. It also begins the
allocation process by assigning devices to
data sets that require specific devices. A
specific device may be required because (1)
the programmer specified it in a DD state­
ment, or (2) all device requirements for a
step could be met with only one combination
of devices. The demand allocation routine
performs the following eiqht functions:

• Allocate work table con3truction.
• Volume affinity resolution.
• Data set device requirement calculation.
• Channel load table construction.
• Allocation of resident aevices.
• Device ranqe reduction.
• System input device (SYSIN) allocation.
• Specific device allocation.

44

2

2

2

2

Number of Requests Not Satisfied 2

Number of Work Table Entries with Separation

Number of DD Statements in Job Step

5
Number of Devices in Configuration

3 The length (in words) of the pri mary bit pattern.

4 The number of DD statements to be processed.

4

5 The number of UCB addresses in the I/O supervisor UCB lookup table.

Al~ocate Work Table Construction

2

2

2

2

Two tables, the allocate volume table (see
Fiqure 21) and the allocate work table (see
Fiqure 22), are constructed by this func­
tion. The allocate work table contains
information that describes a data set and
certain other information that is used in
allocating a device (or devices) to it.
One entry, as shown in Figure 22, is built
for each DD statement. The allocate volume
table describes the volume on which the
data set resides or will reside. One entry
is made in the allocate volume table for
each volume required by a data set.

r-----------T------------T----------------,
IDD number I Status E IUeB address I
~-----------~------------+----------------~
IPointer to volume seriallVolume affinity I
InuffiDer in volume table I link I L _________________________ .L ________________ J

FiQure 21. Allocate Volume Table Entry

Hex Dec

Number of DEwices Avuilable 2 Pool/Split/ 1
Number of Devices Requested 1

(Primary Bit Pattern) Suba lIocate Link

o 0

Status A
1 1

Status C
1 1

Status B Status D
4 4

Number of Volumes
1

Number of Devices Allocated
1

Number of Devices Shared
1 1

Number of Devices Used
8 8

C 12
Unit Affinity Link

1
Reserved

1
Address of First Entry in Volume Table

2

Possible Number of Devices in 2 1 1

Secondary Bit Pattern
DD Number Reserved

10 16

14 20 4
Internal Device Type Code

18 24 N

~~ Primar y Bit Pattern --}-_. (Initially a duplicate of Secondary Bit Pattern)

N

1
Secondary Bit Pattern

J
Figure 22.. Allocate Work Table E.ntry

Most entrie$ made in the allocate work
table are obtained direct:ly from other
tables. The source of each sutch entry is
shown in Figure 23. 'Ihe device type is
obtained from the SlOT and pla.ced into the
device type field of the allocate work
table. It is then used as a search argu-

I m~ent and a search of the device mask table,
loaded from SYS1.LINKLIB, is made. The
d4evice mask table contains bit. patterns
th.at correspond to each group of units de­
scribed either by a generic na.me or by a
user's esoteric name. For devices that
fall into either of these categories, a
ma.tching device type found by the search
causes the corresponding bit pattern from
the device mask table to be placed into the
p;rimary and secondary bit: patt~ern fields of
the allocate work table. These bit pat­
terns indicate devices that are eligible
for allocation to a data set.

The demand allocation routine builds its
01Nn bit pattern for devices described by
specific unit namec. To build the bit pat­
tern, the demand allocation routine secures
the device type from the SlOT and uses it
as a search argument for a search of the
UCB lookup table, from which t~he bit pat­
tern can be extracted.

The demand allocation routi.ne moves the
private and nonshareable flag bits from the
step input/output table I: SlOT) to the
allocate work table (AWT). The demand
allocation routine also sets t~he nonshare­
able bit in the allocate work table entry
f()r a request if the request does not spe­
cify a direct access device, and sets the
private bit if the request is specifically

for a nondirect access device (unless re­
quest applies to passed data sets).

Data sets that have similar 1/0 device
requirements are then linked together.
Similar requirements are implied when the
programmer specifies the following in a DD
statement:

• SPLIT=, which indicates that two or
more data sets in the same job step are
to share a cylinder of a direct access
device.

• SUBALLOC=stepname.ddname or ddname,
which indicates that space for the data
set will be suballocated from the space
allocated to the data set described in
the DD statement named ddname.

Pointers are placed into the SPLIT/
SUBAILOC link field and unit affinity link
field of the allocate work table to link
all such groups together.

Volume Affinity Resolution

Volume affinity means that a certain volume
is requested for more than one data set.
Volume affinity may be requested explicitly
by use of the REF parameter of the VOLUME
field of the DD statement, or implicitly by
specifying the same volume serials in one
or more other DD statements. In either
case, the subject volumes are linked with
pointers placed into the volume link field
of the allocate volume table by the demand
allocation routine. All requests for the
same volume that appear in the volume

lnitiator/'l'erminator 45

affinity chain subsequently will be satis­
fied with allocation of the device that
bears the named volume.

r---------------·------T--------------------,
I Entry I Source I
~-------------------,-+-------------------~
Number of devices Device mask table
available

POOL/SPLIT/SUBALLOC
link

Number of devices
requested

Number of volumes

Status A

status B

Status C

status 0

Number of devices
allocated

Number of devices
shared

Number of devices
required

Unit affinity link

SlOT

SlOT

SlOT

SlOT

SlOT

SlOT

SlOT

Inserted as devices
are allocatE~d

Calculated

Calculated

SlOT

Address of first Calculated
entry in volume
table ,

IPossible number of Device mask table
Idevices in secondary
Ibit pattern I
I I
IDD number I SlOT
I ,
'Device type ISIOT
I I
IPrimary bit pattern 10evice mask table
I I
,secondary bit IDevice mask table
I pattern I L ____________________ ~ ____________________ J

Figure 23. Allocate Work Table Entry
Sources

Data Set Device Requirement Calculation

Information obtained from the allocate work
table is used to determine the number of
devices required by each data set. The
following calculations are used:

46

1.

2.

For a data set marked parallel mount
(the P subparameter of the UNIT key­
word was specified in the DO
statement):

OJ. = V2

For data sets not marked parallel
mount:
a. If Vj. V2 then OJ. = V2

b. If Vj. < V2 and
if Vj. < O2 then OJ.
if Vj. ~ O2 then Dj. =

D2 or
Vj. + 1

where:
Dj. Number of devices actually to be

used for the data set.
Number of devices requested for the
data set.

= Number of volumes to be shared by
two or more data sets.
Number of volumes on which the data
set exists.

The number of devices to be used (Dj.) is
placed into the number of devices required
field of the allocate work table.

Channel Load Assignments

Foz the purposes of allocation, a channel
is a discrete path from a device to the CPU
(oz main storage). The load on a channel
is the number of data sets accessible
thzough it. The channel load table (CLT)
fuznishes a place to record these channel
loads. After the allocation control rou­
tine (IEFXCSSS) builds the CLT in the
scheduler work area, the various allocation
routines use its information about channels
and their loads to manage the channel and
device resources efficiently.

Device allocation does not depend on
physical channel addresses. Instead, the
CL~ defines channels by means of pointers
to a list of device UCB addresses in the
scheduler lookup table (see Figure 24).
Each pointer defines a single channel, but
may point to a series, or block, of several
UC2 address entries in the table. Each
entry, in turn, is the address of a single
device, so that a single channel may pro­
vide access to a number of devices. This
proliferation of the data paths that a
channel provides is illustrated in Figure
24, which also shows how more than one
channel pointer frorr the CLT can ultimately
provide access to a single device. The
flexibility in device allocation that this
scteme provides is the flexibility, for
example, that the Model 2870 multiplexor
channel (with its subchannels) requires.

The scheduler lookup table makes this
flexibility possible by interposing one
level of addressing between the CLT and the
device UCBs. The allocation control rou-

tine builds the table in the scheduler work
area, constructing it in three sections of
halfword entries. The first section is a
copy of the device list portion of the I/O
supervisor lookup table. The entries in
this section contain the addresses of spe­
cific device UCBs. Addresses in the first
halfword of each fullword entry in the CLT
point to blocks of entries in the scheduler
lookup table to define the discrete chan­
nE~ls f.or the allocation routines.

For example, in Figures 24 and 25, P1
points to the first scheduler lookup table
entry for channel one. Channel one entries
include all the succeeding entries to the
point where the second pointer, P,2, desig­
nates the beginning of the block of E;:ntries
representing devices accessed through chan­
nel two. In' Figure 24, the pointers from
the CLT illustrate that channel one pro­
vides a data path to the 2311, the 2314,
and the 2400 devices, while channel two
pl~ovides a data path to the 2321 device.
Note, however, that channel two also pro­
vides a da.ta path to the 2311 device,
bE~cause the first table entry for that
channel also points to the UCB for that
device ..

The allocation routines can keep track
of all the data paths provided to a device
by using an allocation channel mask. This
mask is a bit configuration that subroutine
IEFXDPTH builds for use by the following
allocation routines;

• The device strikeout routine -­
IEFX300A;

• The separation strikeout routine -­
IEFXHOOO;

• The decision allocation routine -­
IEFX5000;

• The TrOT construction routine -­
rEFWCIMP.

When an allocation routine calls subrou­
tine IEFXDPTH, it passes to it a standard
parameter list that includes a pointer to a
UCB and a space for the channel bit pattern
used as the mask. The subroutine searches
the scheduler lookup table for UCB pointers
identical to the one passed, notes the
channel number associated with any such
pointer entry, and turns on the bit corres­
ponding to that channel in the mask space
provided by the parameter list. The sub­
routine then returns control to the calling
allocation routine, which now has channel
information at its disposal.

The second halfword of each CLT entry is
the number of data sets that constitutes
the load on the channel to which the first
hCillfword points. Hence, in Fi9ure 25, L1

and L,2 are the respective loads on channels
one and two. In the same figure, Pn points
to the last channel for which there is a
set of one or more scheduler lookup table
entries, and Ln is the load on that chan­
nel. Px points to the first field of hexa­
decimal Fs in the scheduler lookup table.
This field separates the first section,
which contains the UCB addresses, from the
second section. Allocation routines use
this boundary and its CLT pointer to faci­
litate rapid searching of the table.

The second section in the table contains
sets of ten pointers each for the sub-UCBs
associated with every main UCB controlling
a 2321 datacell drive. such a set exists
for every 2321 device that the operating
system is using. A second entry of hexade­
cimal Fs follows the last sub-UCB entry in
the section to delimit the entries from the
different type that follows. The Py
address in the CLT points out this quick­
reference delimiter.

The third section in the table contains
pointers to the first section. These poin­
ters relate each set of ten sub-UCBs to its
2321 device main UCB. For example, in
Figure 24, Qn is a pointer associated with
the set of sub-UCB pointers Pn ,10, and it
refers the set back to its proper main UCB
via the pointer in the first section.

Allocation of Resident Devices

The resident device allocation routine
allocates direct access devices containing
reserved and permanently resident volumes
to satisfy requests by serial number for
these volumes. The devices that contain
these volumes are known as resident
devices.

A volume is placed into the reserved
status either when the operator issues a
MOUNT command specifying the device on
which the volume is mounted or when the
volume is so listed in the PRESRES member
of the IPL/NIP parameter list data set
(SYS1.PARMLIB). This type of volume cannot
be dismounted unless its device is unloaded
by means of an UNLOAD command.

A permanently resident volume has at
least one of the following characteristics:

• The volume cannot be physically dis­
mounted from its device.

• The volume is a system residence volume
that contains the initial program load­
er (IPL) program.

• The volume contains the linkage library
(SYS1.LINKLIB) data set, procedure
library data set, or any part of the
job queue (SYS1.SYSJOBQE) data set.

Initiator/Terminator 47

• The volume is listed as permanently
resident in the PRESRES member of
SYS1 . .PARMLIB.

For more information about the PR,E:SRES data
set memoer, refer to JBM System/360 Operat­
i~_§ystem: System Programmer's Guide,
GC28-6550. For more information about
reserved and permanently resident volumes,

CLT

refer to IBM Systerr./360 Operating System:
Job Control Language Reference, GC28-6539.

The resident device routine determines
which direct access devices are resident
and then allocates them to satisfy any
requests for the volumes they contain.

2
110
___ --

First Section
Copy of I/o
Supervisor
Lookup Table

Second Section

Third Section

1

•
• •
•

FFFF

Reserved

Pl,l

•
•
•
•

P"io

• •
• •

Pn,l

P n,2

•
•

P n,IO

FFFF

0,

• • • •
On

FFFF

--
2

2

--
2

• I.

--~

2

2

2

2

Figure 24. scheduler Lookup Table

48

He~ Dec

o 0 2 2
PI

4 4 2 2
P2

8 8 2 2
P3

C 12 2 2
P 4

..
-I-

~-

variable 2 2

I
Pn Ln

2
Px 7FFF

2
Py 7FFF

2

2

:r'igure 25. Channel Load Table

From the device mask tanle (DtvlI', Figure
35), the resident device routine first
creates a special bit pattern that repre­
sents all direct access devices in the sys­
tem. It sets a bit in the pattern to one
for each direct access device. It then
sE~arches for unit control blocks represent­
ing direct access devices, using this bit
pattern to identify the unit control
blocks ..

The routine compares the volume serial
number in each request with the serial
number in each unit control block in which
the permanently resident bit or the
rE~served bit is one. If the serial numbers
match, the routine passes control to the
dE~vice strikeout routine to allocate the
device. (That is, it places the address of
the unit control block into the allocate
volume table entry, Figure 21, and
increases, by one, the count of allocated
devices in the allocate w'ork table entry
that represents the data set, F'igure 22.)

Device Range Reduction

The device range reduction routine reduces
the number of devices that can be allocated
to satisfy certain requests. In addition,
this routine allocates devices containing
reserved tape volumes.

The device range reduction routine pre­
vents allocation of devices that are
ineligible to satisfy cextain requests.
DE~vices are ineligible under the following
conditions:

• The device is the primary console.

• The device is offline or is being
changed to offline status.

• The device has either been allocated or
is resident, and the request is for an
unspecified private volume. (Each such
request requires an unused volume.)

• The device has either been allocated or
is resident; the device contains a
private volume; and the request is for
temporary data set space on a volume
that is neither specific nor private •

• The device is a resident, direct access
device, and the request is for a spe­
cific volume.

• The device is neither a direct access
device nor a tape device (unit record
or graphic equipment, for example) and
is allocated, unless one of the two
following conditions exists:

• The device is the system output
device, and the request is for a SYS­
OUT data set.

• The device is the system input
device, and the request is for a
SYSIN data set.

• The device does not contain a storage
volume, and the request has all of the
following characteristics:

• The request is not for temporary data
set space.

• The request is not for a specific
volume.

• The request is not for a private
volume.

A storage volume is a permanently resi­
dent or reserved volume that may be used to
keep any data set specified in a DD state­
ment in which KEEP has been specified.

To prevent allocation of these inelig­
ible devices, the device range reduction
routine alters primary bit patterns repre­
senting devices that are available for
allocation. In each bit pattern, ones
represent devices that can be allocated,
and zeros represent those that can not. A
primary bit pattern forms part of each
allocate work table (AWT) entry. (Each
entry stands for one request.) 'I'he device
range reduction routine eliminates each
device that is ineligible to satisfy a par­
ticular request by changing the bit corres­
ponding to the device from a one to a zero
in the bit pattern corresponding to the re­
quest. The final bit pattern thus repre­
sents only devices that can satisfy the
request.

Initiator/Terminator 49

As each ineligible device is disquali­
fied, a count of eligible devices in each
affected allocate work table entry is
reduced by one. If this count becomes less
than the number of devices needed to satis­
fy the request represented by the entry,
the device range reduction routine passes
control to the allocation error recovery
routine. If recovery is possible, this
routine provides a list of devices that can
satisfy the request. The operator may
either reply with a three-character device
name or cancel the job. (If allocation
error recovery is necessary, the entire
allocation procedure is repeated.)

If, during this processing, the device
range reduction routine finds a unit con­
trol block .representing a tape unit with a
reserved volume mounted on it, it allocates
the device if the volume was requested.

SYSIN Allocation

If the device range reduction routine
encounters a request for the device desig­
nated as the system input device, it allo­
cates that device.

Specific Device Allocation

Allocation is next made to requests for
specific devices or requests which, because
of range reduction or previous allocation,
can be satisfied only by a specific device.

Exits From Demand Allocation

When all processing is completed in the
demand allocation routine, all requests
within the step may have been satisfied.
If so, exit is made to the TIOT construc­
tion routine. If, however, some requests
remain outstanding, control is passed to
the automatic volume .recognition routine if
it was specified during system generation.
If additional requests remain, control is
passed to the decision allocation routine.
When allocation is complete, the "number of
unallocated entries" field in the allocate
control bl~:k (ACB) reaches zero. If the
number of devices required exceeds the
number of devices available, control is
passed to an allocation error routine.

I Before any exit is taken, the device mask
table is deleted.

AUTOMATIC VOLUME RECOGNITION

The automatic volume recognition (AVR) rou­
tine decreases the time required for job
step initiation by enabling the operator to
mount volumes needed for subsequent job
steps as soon as devices become available.

50

During subsequent job step initiation, the
AVH routine recognizes that volumes needed
for the current job step are rrounted, thus
saving the time that the system otherwise
would spend waiting for the operator to
find and mount them.

Before the next job step after a volume
has been mounted, the AVR routine reads the
volume label and associates the volume with
thE~ device containing it, using information
from the label. When the volume is needed
for a subsequent job step, the Ava routine
can then identify and allocate the device
on which it is mounted.

The AVR routine contains two modules,
IEFXV001 and IEE'XV002, as shown in Charts
37 and 38 respectively. Most of the AVR
routine's function is performed by
IEFXV001, the first module to receive con­
trol. The demand allocation routine passes
control to module IEFXV001 of the AVR rou­
tine. Then IEFXV001 uses a BALR instruc­
tion to branch and link to the VCON type
address of the second module, IEFXV002,
whose main function is primarily one of
reading volume serial numbers.

IEFXV002 reads the volume serial number
and verifies it. If the volurre serial
nurilier is valid, I£FXV002 then places it in
thE! unit control block (UCE) and returns
control to IEFXV001. However, if an I/O
error occurs, IhFXV002 sets an error return
code without altering the UCB. ~hen it
encounters nonstandard labels during the
the reading process, it branches to
IEl~XVNSL, the nonstandard label (NSL) pro­
ce~jsing routine. If IEFXVNSL returns no
error code, IEFXV002 places the volume
serial number into the ueE as though the
NSI, routine had never received control for
spE!cial processing, then returns control to
IEFXV001. Errors detected upon return from
the NSL routine, however, cause IEFXV002 to
bypass alterations 6f the UCB and instead
to return control directly to IEFXV001.
IEPXVNSL returns an error code if no user
written routine has replaced the IBM supp­
lied one, or for whatever reason the user
written routine specifies.

The AVR routine allocates devices to
sat:isfy requests that specify 2311 and 2314
direct access volumes, 7-track tape volumes
having a tape density specified during sys­
tem generation, and 9-track tape volumes.
ThE!se volumes must be specified by either a
serial number or a data set .narne that
implies a serial number. The AVR routine
first allocates devices containing mounted
volumes. If any of the volumes have been
mounted after the start of the last job
stE!P, and have consequently not had their
labels read, the AVR routine reads them at
this time.

When all devices containin9 mounted
vol umes which are needed for 1:he current
job step have been allocated, the AVR rou­
tine attempts to satisfy any l:emaining
requests for 2311 and 2314 dir~ct access
volumes and 9-track tape volumes. The AVR
routine determines whether thE~re are, suffi­
cient unused devices of ~~ach device type to
satisfy the outstanding requests for that
device type. If necessary, volumes not
needed for the job step are unloaded. If
the AVR routine can obtain enough devices,
it prints a list of the requested volume
serial numbers and allocates t~he devices as
the operator mounts the "701 umes • If enough
devices are not available or if all of the
needed volumes cannot be mount~ed, however,
the operator must cancel the :iob.

f:!;:~sin~eguests for I-10unted Volumes

The AVR routine first satisfies requests
fiQr volumes which are already mounted. The
AVR routine searches for such volumes by
examining all unit control blocks that
represent online, ready 2311 and 2314
direct access devices and 9-track and 7-
tape devices. If the serial number in the
unit control block is zero, it~ means that
the volume has been mount:ed since the start
of the last job step and has t.herefore
nlever had its label read. The AVR routine,
a"t the time it finds such a volume, reads
the volume label into main storage,
extracts the serial number from the label,
and records it in the unit control block
r1epresenting the device. (To extract the
s4erial number from a nonstandard label, the
AVR routine uses a volume serial number
routine, lEFXVNSL, which must be supplied
by the user. A routine l,Ari th t,he same name
is supplied by IBM to indicate an error if
the user has provided a nonstandard label
but has not substituted his own routine to
r4:!ad it.) I f the volume had been mounted
b4:!fore the start of the last job step, the
serial number has already Deen read.

The AVR routine next determines, for
each mounted volume, whet~her it is needed
for the current job step. To make this
determination, it search€!s in the volume
ta.ble (VOLT) for the serial number of the
mounted volume. (Each entry in this table
represents a volume that has been specific­
ally requested.) If the AVR routine
loca tes the serial numbez:', the volume is
needed Tor the job step. The AVR routine
then uses the device strikeout routine to
allocate the device to satisfy all requests
for the volume. If the serial number is
not in the volume table entries for this
job step, however, the volume is not pre-

sently needed. The AVR routine subsequent­
ly ignores the device and looks for another
previously mounted volume. If the device
has already'been allocated to a different
volume, or if the volume has been allocated
to a different device by the demand alloca­
tion procedure, the AVR routine notifies
the operator and unloads the volume using
the external action routine.

Processing Requests for Unmounted Volumes

The AVR routine finally attempts to satisfy
all remaining specific volume requests.
For these requests to be satisfied, enough
devices for all of the requests either must
be available or must be made available. If
enough devices become available, the AVR
routine provides the operator with a list
of volumes to mount and allocates the de­
vices as he mounts the volumes on them. If
sufficient devices for the job step cannot
be made available or if all of the required
volumes cannot be mounted, the operator
must cancel the job.

Obtaining Devices: Before the AVR routine
requests that the operator mount any
unmounted volumes, it determines whether
enough devices to contain them are avail­
able. If there are not enough devices
without mounted volumes to begin with, the
AVR routine determines whether it can
unload enough devices. The devices it con­
siders for unloading contain mounted
volumes not needed for the job step. If it
can, it unloads these devices so that the
operator can replace the mounted volumes
with volumes needed for the job step.
Otherwise, the AVR routine attempts to have
enough offline devices placed into online
status to satisfy the remaining specific
requests.

To determine whether there are enough
devices, the AVR routine compares, by
device type, a count of available devices
with a count of needed devices. Because
the need for each device type is filled
separately, a shortage of anyone type
means that not enough devices are available
for the job step.

The available devices comprise all
online 9-track tape units, 2311 disk units.
and 2314 disk units that have not been
allocated. Separate counts are made of de­
vices not in the ready status (which norm­
ally do not contain mounted volumes) and
devices that are ready (all of which have
mounted volumes).

Initiator/Terminator 51

To eliminate any unnecessary unloading
of devices, the AVR routine compares,
first, the number of devices needed with
the number of online devices not having
mounted volumes (that is, those that are
not in the ready status). If there are
enough such devices, none need be unloaded,
and the AVR routine can immediately print a
list of volumes to be mounted.

If ready devices must be unloaded, the
AVR routine determines the number of ready
devices still needed and whether enough can
be unloaded.

If the AVR routine has determined that
enough ready devices can be unloaded, it
stores the identities of a sufficient numb­
er of devices and then unloads them. To
fill the quota, it first tries to obtain
enough ready devices not containing
retained volumes or volumes with data sets.
If the AVrt routine cannot find enough de­
vices, it obtains the remainder needed from
among devices containing these kinds of
volumes. The AVR routine unloads the de­
vices with the external action routine,
which also prints a list of unit addresses
so that the operator' will know which de­
vices have volumes to be dismounted. The
AVR routine then provides the operator with
a list of the serial numbers of volumes to
mount.

In an attempt to make more devices
available, if it is apparent that enough
ready devices cannot be unloaded, the AVR
routine uses the allocation error recovery
routine (IEFXJIMP) to print a list of off­
line devices that can be made available.
The operator either may reply with a three­
character device name to place a device
into online status or cancel the job. (If
allocation error recovery is necessary, the
entire allocation procedure is repeated.)

Allocating Devices on whi~h Volum~s hav~
been Mounted: When the AVR routine has
determined that the required number of de­
vices is available for allocation, it pro­
vides the operator with a list of serial
numbers of the needed volumes. As the
operator mounts these volumes, the AVR rou­
tine allocates the corresponding devices to
satisfy requests for these volumes.

After printing the list, the AVR routine
waits for the operator to mount a volume.
A device-end I/O interruption releases the
AVR routine from its waiting status when
the operator mounts the first volume and
presses the START button on the device.

52

ThE AVR routine extracts the new serial
number from the volume label. , removes the
se:r'ial number from the list of required
volumes, and allocates the device. Then
thE! AVR routine waits for the operator
ei t.her to mount the next volume or to can­
cel the job. It repeats the procedure
unt.il either all specific volume requests
have been satisfied or the job is canceled.

When the devices have been allocated,
the AVR routine passes control to the TIOT
construction routine, unless there are more
volume requests. If there are, the AVR
routine passes control to the decision
allocation routine, which satisfies the
ren1aininq requests.

DECISION ALLOCATION ROUTINE

The decision allocation routine (Chart 40)
allocates devices to most data sets for
which devices have not yet been allocated
by either the demand allocation or the
aut~omatic volume recognition routine. This
includes all remaining requests except
requests for space on unspecified public or
ull!:::pecified storage volumes. The latter
requests are fulfilled by the space request
routine.

Upon entry to the decision allocation
routine, an attempt is roade to reduce the
nu~mer of devices that are candidates for
allocation. A request for unit or channel
separation from devices allocated by either
the demand allocation or autOInatic volume
recoqnition routines eliminates the units
or additional devices on the selected chan­
neJ~s from further consideration. If this
is the case, the separation strikeout sub­
routine is entered. This subroutine, by
changing corresponding bits in the primary
bi1: pattern, eliminates these devices from
consideration for allocation.

The number of data sets directed to each
channel is then determined and added to the
t01:als in the channel load table (see
Fiqure 24). This table is later used to
"spread the load" across the channels,
thereby:

It Obtaining maximum overlap of I/O
activity_

., Reducing the possibility of making a
channel ineligible because all of its
devices had been allocated too early.
(Some channel separation requests would
then be impossible to satisfy.)

The maximum number of data sets that
CQuid use each device is next determined
and placed into the potential user on
device table (see Figure 26). This table
is later used to determine the order in
which devices will be selected for data
sets. (Devices first selected are those
with the fewest potential users.)

r----------------T--
I No. of data I
I sets for firstl
I device I l ________________ L __

Figure 26. Potential

--"T----------------,
I No. of data I
I sets for nth I
I device I __ ~ ________________ J

User on Device Table

The remainder of the decision allocation
routine allocates devices. First, devices
are allocated to data set.s for which only
one device is eligible. Then all other
requests (except those for unspecified
public or unspecified storage volumes) are
p:r:ocessec. in the following manner. A data
slet is selected and then a device for the
data set is s~lected and allocated to it.
Another data set is then processed.

D~ta Set selection

Data sets are selected by considering the
number of devices eligible for allocation
to them. That is, the first dlata set
selected is the one for which the smallest
number of devices is eli9ible.

The decision allocation routine selects
two kinds of requests, both of which must
be satisfied with the allocation of devices
containing nons hare able volumE~s:

• Requests for nonsharE~able volumes.
(Each such request has a nonshareable
flag in its allocate work table entry,
shown in Figure 22.)

• Requests that may be satisfied with the
allocation of either a direct- or
sequential-access device, if
sequential-access devices are available
for them. (As each of thE~se requests
is satisfied, a nonshareable flag is
placed into its allocate lJmrk table
entry to mark the allocation of a
device containing a l10nshareable
volume.)

selection is performed by scanning the
allocate work table. If two or more data
sets have the same number of E~ligible de­
vices, they are selected in the following
order:

1. Data sets with separation requests.
2. Data sets with affinity requests.
3. Passed data sets.
4. All others.

Device selection

When a data set has been selected, a device
is selected and allocated for it. Devices
are considered in the following order:

1. If the possible devices for a data set
exist on more than one channel, the
channel with the greatest number of
free devices of the type requested is
chosen.

2. If two channels have the same number
of free devices of the requested type,
the channel with the lightest load is
chosen; the device which has the few­
est possible users is chosen.

3. To satisfy requests for public non­
specific (scratch) tape volumes, de­
vices with mounted tape volumes are
given preference. To satisfy requests
for direct access volumes and specific
tape volumes (including private
volumes and volumes which are used for
multi-volume public data sets), de­
vices without mounted volumes are
given preference.

4. If two devices have the same number of
possible users, the first one in the
I/O supervisor UCB lookup table is
chosen.

Device Allocation

As indicated previously, the decision allo­
cation routine selects a data set and an
eligible device, allocates the device, and
then selects another data set. To allocate
a device, the decision allocation routine
places the address of the unit control
block representing the device into the
allocate volume table entry (Figure 21)
representing the required volume and adds
one to the "number of devices allocated"
field of the allocate work table entry for
the data set (Figure 22).

While a request is being satisfied, the
same device is also allocated to satisfy
any other requests that specify the same
volume. Multiple allocations may be per­
formed in this case, because all requests
for the same volume appear in a volume
affinity chain, which is a series of linked
allocate volume table entries (Figure 21).

Initiator/Terminator 53

The decision allocation routine satisfies,
in the samE~ way, requests that specify unit
affinity or that have a split or suballoc­
ate relationship (Figure 22).

When a device is allocated, the decision
allocation routine alters bit patterns in
the allocate work table entries for certain
other requests. Each bit pattern specifies
the devices that are eligible to contain
the data set represented by the allocate
work table ent,ry.

If a private volume request was satis­
fied, the decision allocation routine
changes the bit representing the allocated
device to zero in all primary and secondary
bit patterns so that the device cannot be
selected to satisfy another request. Such
devices are exempted from further alloca­
tion because each private volume may not
contain other data sets and must be removed
after use.

If the request was satisfied with a
device containing a nonshareable volume,
the decision allocation routine changes the
bit representing the device to zero in the
primary and secondary bit patterns of the
allocate work table entries that represent
all other data sets that require nonshare­
able volumes. A device allocated to satis­
fy a request for a nonshareable volume thus
cannot satisfy additional requests of this
kind.

If all eligible devices are allocated
before all data sets for a step have been
selected for allocation, the decision allo­
cation routine passes control to an alloca­
tion error routine.

Upon successful completion of processing
by the decision allocation routine, exit is
made to the TIOT construction routine.

TIOT CONSTRUC'l'ION ROUTINE

The task input/output table (TIOT) con­
struction routine (Chart 41) obtains space
for and Duilds the processing program's
task input/output table. The primary func­
tion of the TIOT is to provide the data
management open, close, and end-oi-volume
(EOV) routines with pointers to JFCBs and
allocated devices.

Entry to the TIOT construction routine
is made when all requests for I/O devices

54

have been satisfied except requests for
unspecified public or unspecified storage
volumes. Therefore, entry may be from the
demand allocation routine, the automatic
volume recognition routine, or the decision
allocation routine. Exit is to the extern­
al action routine.

Upon entry, main storage space required
to build the TIOT is calculated using the
first formula shown in Figure 27, and space
is requested. The standard TIOT is shown
in Figure 28. TIOT entries are constructed
for each data set in a step. Entries are
al30 constructed when use of the job
liDrary is requested or when a program,
created in a previous step, is to be
executed as the current step. Figure 29
sh:>ws the sources of entries in the TIOT.

The TIOT construction routine deter­
mi:aes, for each request for an unspecified
storage or unspecified public volume, which
de7ices are eligible to be allocated by the
space request routine. It obtains this
information from the allocate work table
en-try (Figure 17) for the request, which
co:atains a primary bit pattern representing
the devices that are eligible to satisfy
tht: request.

The TIOT construction routine places
pointers to all unit control blocks repre­
senting eligible devices into the 'TIOT
entry for each such request. If more than
one device can satisfy a request, it
se,lects, first, the channel with the light­
es~ load, and, on this channel, the device
that has been allocated to satisfy the
smallest number of requests. When the
fi:rst device has been selected, it places
other devices in order, using the following
cr:Lteria:

1. Devices on the same channel as the
first device selected, but which do
not contain passed data sets.

2. Devices that do not contain passed
data sets and do not violate requests
for separation.

3. Devices that contain passed data sets
and do not violate separation
requests.

4,. Devices that do not contain passed
data sets and violate separation
requests.

50 All other devices eligible to receive
public volumes.

Should more than one device have similar
attributes, their pointers are arranged in
1:.he order in which the devices are repre­
sented in the primary bit pattern.

Ir---,
I, Space required to build TIOT = I
l 28 + 16N1 + 4N2 + 4(N3 x N4) I
li---~
I Space occupied by completed TIOT = I
128 + 16N1 + 4N2 I
.----------------------------,-------------~
Where:

N1. = Number of DD statements.

Number of devices allocated to
the step.

N3 Number of requests for public
volumes.

N4 = Number of devices available for
public volumes. L. ____________________________ . _____________ J

F'igure 27. Formulas for Determining Task
Input/Output Table Space
Requirements

r------------------------,
I Jobname I
~.-----------------------,-~
I Stepname I Control Portion
~,------------------------~
1 Name of step in which I
I procedure was requested I l ________________________ J

r-------T------T---------,
ILength IstatuslRelative I
I of I A Ilocation I
I entry I lof pool I
~-------~------~---------~
I Ddname I DD Entry
~-------------------T----~
I Address of ISta-1
I JFCB Itus I
I IC I
~-------T'------T----.L----~
IStatus I I Address I
I B I I of UCB* I L _______ ~ ______ ~ _________ J

*Address of sub- UCB if
device is 2321 Data Cell
drive

r----T------T----T-------,
I I Number I INumber I
I Islots I I devices I
I I . in I I in I
I I pool I I pool I
~----.L------.L----~------._~ Pool Entry
I Poolname I
~------------------------~
I slot for UCB I L _______________________ ~J

Figure 28. Task Input/Output Table

r-------------------T---------------------,
I Entry I Source I
~-------------------+---------------------~
Jobname JCT

Stepname SCT

Stepname of step SCT
in which procedure
was requested

Length of entry Calculated

Status A

Relative location
of pool

Ddname

Address of JFCB

Status C

Status B

Address of UCB

No. of slots in
pool

No. of devices in
pool

Pool name

Calculated

Calculated

SlOT

SlOT

Calculated

Calculated

I/O supervisor UCB
Lookup Table

Calculated

SlOT

SlOT

ISlot for UCB I/O supervisor UCB
I Lookup Table L ___________________ ~ ____________________ _

Figure 29. Task Input/Output ~able Entry
Sources

EXTERNAL ACTION ROUTINE

The external action routine (Chart 42)
issues mounting instructions, verifies that
the correct volumes have been mounted, and
unloads incorrectly mounted volumes.

Entry to the external action routine is
made from the TIOT construction routine.
Exit is made to the space request routine.

Upon entry, devices allocated to each
data set are checked and any required dis­
mounting is requested., (The operator is
notified of volume dispositions.) Messages
instructing the operator to mount the
required volumes are then issued, and
checks are made to ensure that volumes were
mounted on the correct units.

Initiator/Terminator 55

SPACE REQUEST ROUTINE

The space request routine (Chart 43) pro­
cesses requests for space on direct access
volumes. It determines whether a volume
has enough space for the data set specified
in a particular request, and, if so, it
obtains space on the volume for the data
set. If space is not available initially,
the space request routine attempts to loc­
ate another volume with sufficient space.

The space request routine, which
receives control from the external action
routine, searches among the task input/
output table (TIOT) entries for requests
for direct access volume space. It pro­
cesses these requests in two different
ways, depending on whether or not a device
was previously allocated to satisfy the
request.

Obtaining SpacQ If a Device Was Allocated

If a device has been allocated to satisfy
the request (because a specific device or
volume was named), the space request rou­
tine attempts to obtain space on the volume
that is mounted on the device. It passes
control to the direct access device space
management (DADSM) routines, which record
the limits of an extent on the volume into
a data set control block (OSCB) if space is
available. If the mounted volume does not
have space for the data set, and is not
being used to contain another data set for
the job step, the space request routine
passes control to the external action rou­
tine, which directs the operator to rr.ount
another volume on the allocated device.

Obtaining Space If a Device Was Not
Allocated

If a device has not been allocated to sat­
isfy the request, the space request routine
attempts to obtain space on an unspecified
public or unspecified storage volume,
depending on the type of request. (Either
unspecified public or unspecified storage
volumes can contain temporary data sets,
but only storage volumes are eligiole to
contain data sets that are to be kept.) If
the space r!equest routine determines that a
volume has space for a data set, it allo­
cates the device containing the volume.

The space request routine atteMpts to
obtain space for the data set on a volume
that is mounted on an eligible device.
(The devices that are eligible to satisfy a
particular request are indicated in the
task input/output table entry for the re­
quest. Each entry contains pointers to the
unit control blocks representing eligible
devices.) To determine whether space is
available, the space request routine passes
control to the direct access device space

56

management (DAOSM) routines. These rou­
tines attempt to specify an extent on the
volume. If space is not available, control
passes to the DAOSM error recovery routine,
to determine whether another. volume can be
mounted. If no volume can be mounted, exit
is taken to the external action routine,
which requests the operator to mount a
volume on an eligible device that does not
contain a volume.

When all requests for space have been
satisfied through the above procedure, or
when an unrecoverable error has been
detected (that is, when space cannot be
allocated), the space request routine exits
to the TIOT compression routine.

TICT COMPRESSION ROUTINh

The TIOT compression routine is entered
frem the space request routine when all
requests for space have been satisfied, or
when an unrecoverable error has been
detected.

In the case of a normal entry, the TIOT
coropression routine reduces the TIOT to its
final size, adds scratch information to
JFCBs where necessary, and adds allocation
messages to 5MBs when the allocation mes­
saqe level is one. This message level may
be either the system generation default
option or the result of a coded job control
lan:guage JOB statement parameter,
"MSGLEVEL=(x,l)". The routine exits to the
step initiation routine of the
initiator/terminator.

In the case of an error entry, the rou­
tine reduces the TIOT to its final size and
exits to the allocation error routine (see
below). The format of the TIOT is shown in
Fic1ure 28.

OADSM ERROR RECOVEHY ROUTINE

ThE' DADSM error recovery routine is entered
from the space request routine when space
is not available on a requested volume.
ThE: routine determines whether the
requested volume is unused and removable
(tbat is, not permanently resident and not
re::;erved). If the volume can be removed,
thE' I;ADSM error recovery routine returns to
thE! space request routine, which exits to
thE: external action routine to request that
thE! operator mount another volume on the
same device.

If the requested volume cannot be
removed, the DADSM error recovery routine
selects another device, then returns con­
trol to the space request routine; the
space request routine then attempts to
obt.ain space on a.nother mounted volume.

(If no other device is available, the re­
quest for space cannot be fulfilled.) If
1::.he failing request 'lias one of several non­
specific requests for space on the same
volume for the job step, and all users on
i:ha t vol ume are those as signed by the space
request routine, the allocated data sets
T.idll be unallocated and the volume may be
removed. when a new volume is mounted, the
space request routine will again attempt to
obtain space for the data sets.

ALLOCATION ERROR ROUTINES

Allocation error routines are entered when
E~rror conditions are encountered by alloca­
t:ion and setup routines. There are two
E~rror routines: the recovery routine and
the nonrecovery routine.

The recovery routine is entered if an
error condition is detected before a ~IOT
is built for the step. It may be entered
from the demand allocation, automatic
volume recognition, decision allocation, or
'rIOT construction routine. If allocation
requirements can be satisfied by changing
the status of a device from offline to
online (determined by checking the secon­
dary bit pattern), the recovery routine
issues a message to the operator requesting
him to place additional devices online. If
he does, allocation for the step is begun
amew by entry to the allocation control
routine. If the operator does not. or can­
not add devices to the configuration, the
recovery routine cancels the job.

The nonrecovery routine is entered when
an error condition is detected after the
,!'IOT has Deen built for the s 1tep. It
passes control to the st,ep termination por­
tion of the initiator/terminator.

Step Initiation
'I'he step initiation routine of the
initiator/terminator (Chart 46) makes pre­
parations for passing control to the pro­
cessing program. If a s'rEPLIB DD statement
is present in the step, the step library
data set is opened. If not, and if a JOB­
L,IB DD statement is included in the job,
the job library data set is opened. If the
program to be executed exists on a data set
created in a previous step, a DCB is
crea ted for that data seit and is opened.
A.lso, several tables are stored, releasing
to the processing program the space they
occupied. Step initiation passes control
to the processing program.

The step initiation routine is entered
from the space request routine. Upon
entry, control is passed to the pseudo-

sysout subroutine, which writes the con­
tents of system message blocks (SMBs) onto
the system output data set.

When control returns from the pseudo­
sysout subroutine, the step initiation rou­
tine scans the TIO'l' for entries indicating
SYSOUT processing. 'I'he UCB address for
these entries is zero. When such an entry
is found, the corresponding JFCB is read
into main storage. The device class
(placed in the JFCB by the interpreter) is
obtained, and the UCB address of the writer
currently active for that class is placed
in the TIOT entry. If a DSNAME parameter
was specified in the START command, the
step initiation routine places the DSNM:iE
in the JFCB. The LC'I' and JCT are then
stored and the space that they had occupied
is released.

Main storage space to be used by the
processing program is then obtained. A
portion of this area is reserved for the
following:

• One DCB for step or job library (if
any).

• Fetch DCB (if any).
• Macro-parameter list.
• TIOT.
• Processing program reqister save area.

First, the TIOT is moved from the
initiator/terminator work area to the area
of processing program storage assigned to
it. The TIOT is also stored, and the space
it occupied is released. The macro parame­
ter list (see Figure 30) is then built and
the programname entry and initializing par­
ameter values entry (PARM information) are
inserted. The seT is then stored, and the
space it occupied is released. If a step
or job library has been requested, the data
set is opened, and the address of its DCB
is placed into the TCB. If a fetch DCB is
required (PGM=*.stepname.ddname was speci­
fied in the EXEC statement) a DCB is
created and opened, and its address is
placed into the macro parameter list.

The cancel ECB in the selected job
queue~ is then set up for the processing
program: i.e., the low-order byte is
changed to the number 255. If a CANCEL
command was issued, the step initiation
routine issues the ABEND macro instruction.

~Just prior to passing control to the job
step, the low-order byte of the cancel ECB
in the selected job queue is changed to all
ones. This causes issuance of an ABEND or
ABTERM rather than a POST by the master
scheduler if the operator issues a CANCEL
cowmand for the job.

Initiator/'l'erminator 57

If a CANCEL command was not issued, an XCTL
macro instru.ction is used to pass control
to the processing program.

Offset
Hex Dec

o o

4 4

8 8

10 16

14 20

18 24

r-----.--------------------------------
4

Address of Programname Entry

1-------------------------
4

Address of Fetch DCB

1---------------------------_ .. _-
8

Programname (obtained from SCT)

t-------..---------------------

Hexadecimal
1 I Addre$s of II Initializing Parameter 3

80 Values II Length Field

1-----N-o-t-uJ~Se-d---IJLength of Initi~_ ;izing--- 2

Parameter Values Entry
. -------"-

40
ctialiZing Parameter Values (Obtained Fr~m SCT_) _~

Figure 30. Macro Parameter List

Termination
The termination function of the initiator/
terminator (Chart 47) performs post-step
and post-job housekeeping. It is normally
given control following step execution, out
i~ also given control when a job management
routine encounters an irrecoverable error
~hile processing a job step. Termination
routines:

• Release space occupied by tables.

• Free I/O devices.

• Dispose of data sets referred to or
created during execution.

Major components of termination are:

• The step termination routine, which
performs post-step housekeeping
functions.

• The job termination routine, which per­
forms post-job housekeeping functions.

The disposition and unallocation subroutine
is used by both the step and job termina­
tion routines. Basically, this subroutine
handles disposition of data sets and frees
devices allocated to a step. The disposi­
tion and unallocation subroutine is de­
scribed in Appendix A.

58

STEP TERMINATION

The step termination routines (Chart 48)
perl:orm cleanup operations for each job
step. They are entered from the supervisor
when a step has been terminated either
normally due to successful completion of
execution or abnormally due to an error
condition. They are also entered from job
management routines when an unrecoverable
error condition has been detected.

lNhen entry is from the supervisor, the
ste;;> termination entrance routines
(IE:~SDOll and IEFW42SD) perform initializa­
tion functions. These functions include:

• setting the cancel ECB in the selected
job queue to zero.

• Placing the LCT, JCT, SCT and problem
program TIOT into a main storage work
area •

• Constructing a parameter list contain­
ing the address of the above tables.

• Initializing an 5MB for use by step
termination routines. If write-to­
programmer messages were produced dur­
ing execution of the step, 5MBs con­
taining WTP messages will precede those
used to contain termination messages.

In the case of normal termination, the
entrance routines reset the restart infor­
mation in the JCT; in any case, the JCT is
stored in the job queue.

If the job step has terminated abnormal­
ly, control is passed to the indicative
dump routine (IEFIDUMP). After the dump
has been performed, control passes from the
indicative dump routine to the step ter­
mination control routine. If the job step
has terminated normally, the indicative
dump routine is bypassed.

The step termination control routine
(IEFYNIMP) is entered from the step ter­
mination entrance routines, from the indi­
cative dump routine, or from a job manage­
ment routine as a result of an unrecover­
able error. It uses these major
subroutines:

• Restart preparation routine (IEFRPREP).

• step termination data set driver rou­
tine (IEFYPJB3).

• Job statement condition code routine
(IEFVJIMP).

• DispOSition and unallocation subroutine
(IEFZGST1, IEFZGST2).

• User's accounting routine (IBFACTLK),
if included in the system.

The control routine places the problem
p.rogram TIOT address into the TCB, and the
task completion code into the SCT. In the
case of abnormal termina1::ion, the WTO macro
instruction is used to inform the operator
that the step has failed" and control is
then passed to the restart preparation
routine.

The restart preparation roultine (Chart
49) determines if a restart is possible.
If it is not, it sets the "no restart"
i:ndicators in the JCT (bit JC,!'NORST in byte
JCTRSW2 of the JCT). If a step restart is
to occur, the restart preparat.ion routine
slets bitS in byte JCTRSWl of the JCT: this
indicates to the terminat:ion routines that
all NEW data sets are to be deleted, and
O:LD data sets are to be kept. If a check­
pOint restart is to occur, thE! routine sets
bit 4 in JCTRSW1; this indicat.es that all
data sets are to be kept. Aft.er the
restart information has been placed in the
JeT, the restart preparat:ion routine
rlequests special disposi t:ion of data sets.
Control returns to the st:ep termination
control routine.

If no restart is possible, and if the
s·tep failed with either a user or a system
abnormal termination (bit: 0 of the TCBFLGS
field is on), the step termination control
routine sets the JCTABEND and the SCTABEND
bits. Setting these bits causes the job
scheduler to bypass all t:he following steps
unless either the COND=ONLY or the COND=
EVEN parameter specifies execution after
abnormal termination. If any other failure
has occurred, such as an allocation failure
Oll::' the issuing of a CANCE;L command, the
step termination control routine sets the
job failed bit (INCMS~'S) in the JeT, and
the job scheduler will not execute any
oi:her step of the job.

The step data set driver routine is then
entered. Whenever the problem program has
abnormally terminated, this routine tests
for an allocation message level of zero.
If the programmer did specify zero in the
JOB statement, the routine reconstructs the
allocation messages and places them in the
current system message block (SMB). After
this initial processing, the routine places
the SlOT for each data set into a main
st.orage work area and branches to the dis­
position and unallocation subroutine. The
loop through the data set. driver routine
and the disposition and unallocation sub­
routine is then repeated for each SlOT. If
the JOB statement specified an allocation
message level of one, or if an abnormal
termination occurred, the data set driver
routine places, in the current 5MB, ter-

mination data set disposition messages for
each data set in the step.

When all data sets have been processed
by the disposition and unallocation subrou­
tine, the problem program TIOT is released.
Control is then passed to the job statement
condition code routine, unless the job is
to restart; in this case, control is passed
to the user's accounting routine.

The job statement condition code routine
(Chart 50) processes condition codes speci­
fied in the JOB statement. If upon entry
it is found that there were no condition
codes specified, control is passed to the
,user's accounting routine. If there were
condition codes specified, the job state­
ment condition code routine compares each
condition code in the JCT with the step
completion code of the previous step, which
appears in the SCT. Up to eight conditions
for each step are checked: any additional
condition codes are ignored. If any of the
condition operators are satisfied by the
codes, the job-failed indicator in the JCT
is updated to indicate that the job failed;
the message subroutine is used to issue a
message to the programmer, and the WTO
macro instruction is used to issue a mes­
sage to the operator. Control is then
passed to the user's accounting routine.

From the user's accounting routine con­
trol passes to the step termination exit
routine (IEFW22SD). This routine stores
the SCT in the job queue, updates the LCT,
and writes the last terminate 5MB to the
job queue. It then exits to the
interpreter/initiator interface module
(IEFSD002) for return to the interpreter or
the initiator.

JOB TERMINATION ROUTINE

The job termination routine <Chart 51) per­
forms its functions when an entire job has
been executed and step termination for its
last step has been completed. It consists
of four major routines:

• Job termination control routine.
• Release job queue routine.
• Disposition and unallocation

subroutine.
• User's accounting routine (if included

in the configuration).

Control is passed to the job termination
control routine from the step termination
routine.

The job termination control routine de­
termines if a passed data set queue exists
and, if so, places each block into main
storage work area and tests for unreceived
data sets. (An unreceived data set is a

Initiator/Terminator 59

passed data set to which no reference is
made after PASS is specified.) When an
unreceived data set is found, entry is made
to the disposition and unallocation subrou­
tine. When all unreceived data sets have
been processed, or if no passed data set
queue exists, the job termination control
routine passes control to the accounting
routine, if there is one. As in step ter­
mination, if the allocation message level
is one (if the job statement parameter is
-MSGLEVEL=(x,l)-), or if an abnormal ter­
mination has occurred, final disposition
messages describing the data sets handled
by job termination are placed in the cur­
rent 5MB.

When the accounting routine returns, or
if there is none, the completed job's con­
trol tables are removed from the system by
the release job queue routine. This rou-

60

tine releases the auxiliary storage space
(or, if the resident job queue option was
selected during system generation, the main
storage space) occupied by all control
tables for the job. If the job notifica­
tion switch is on, the message

IEF404I jobname ENDED

is written on the console device. This
message is not issued in any case where the
job was terminated abnormally. If the job
was terminated because of a JCL error in
any but the first job step, the WTO macro
instruction is used to issue the message:

IEF452I jobname JOB FAILED - JCL ERROR

on the console. Control is then passed to
the interpreter control routine.

Tiable Store Subroutine

The table store subroutine stores records
into and retrieves records from the SYS1.
SYSJOBQE data set. This data set may be
ei ther completely on a r€!sident direct
access device, or partly in main storage
and partly on such a devi.ce, depending on
whether the resident job queue (RESJQ)
option was specified duri.ng system genera­
tion. The table store subroutine provides
the following services OD! request:

• Supplies the requester with an auxi­
liary storage address or addresses into
which records may lat.er be written.

• writes a record (or z:ecords) onto SYS1.
SYSJOBQE locations specified by the
requester.

• Reads a record (or records) from SYS1.
SYSJOBQE locations specified by the re­
quester •

The table store subroutine is used by job
management routines to temporarily store
tables and work areas that need to be com­
municated from one routine to another.

As part of the preparation for system
generation (initializing system data sets),
a specified number of tracks is assigned to
data set SYS1.SYSJOBQE. During IPL, this
extent is formatted for 176-byte records.
0\11 records handled by the table store
subroutine are 176-byte records.)

If the resident job queue option was
selected during system generation, a speci­
fied number of records, starting at the
bE~ginning of the data set, will occupy a
main storage area, thus saving time when
tables are to be stored or retrieved. If
there is room within this area of main
st:orage, the I/O supervisor causes the rec­
ol~ds to be moved in response to the table
st~ore subroutine's WRITE macro instruction;
if desired records are stored in this main
storage area, the I/O supervisor causes
them to be moved in response to a READ
macro instruction.

The calling routine may request one of
five functions. These are:

• Assign and start. The requested number
of track addresses are assigned, begin­
ning with the first assignable address
in the extent.

Appendix A: Major Subroutines

• Assign. The requested number of track
addresses are assigned, beginning with
the next available address in the
extent.

• Write and assign. The requested number
of records are written, and the
requested number of addresses are
assigned.

• Write. The requested number of records
are written.

• Reads The requested number of records
are read.

Before passing control to the table
store subroutine, calling routines must
construct a parameter area (see Figure 31)
and place its address into general register
1. Calling routines must also provide a
QMPCA-QMPEX list (see Figure 32). Figure
33 shows the parameters required when a
function is requested. The parameters are:

• QMPOP. A function code that indicates
the function to be performed.

• QMPCM. The number of records (maximum
of 15) for which addresses are to be
assigned.

• QMPNC. The number of records <maximum
of 15) to be stored into or retrieved
from SYS1.SYSJOBQE.

• QMPCL. The beginning address of the
QMPCA-QMPEX list.

• QMPCA. The main storage address from
which the record is to be read or into
which the record is to be written.

• QMPEX. The record address (in SYS­
JOBQE) into which the record is to be
written or from which the record is to
be read.

An entry in the QMPCA-QMPEX list is
required for each record when a read or
write function is requested. For assign
functions, the table store subroutine
returns the assigned track addresses in
these parameters. The first assigned rec­
ord address is placed into QMPCA1, the
second into QMPEX1, and the remaining rec­
ord addresses into ••• QMPCAn, QMPEXn.

Appendix A: Major Subroutines 61

Byter-------------------------------------,
o I I

~-------------------------------------~
4 I I

~-----------T-------------------------~
8 I QMPOP I I

~-----------~-------------------------~
12 I I

~-------.-------------------------------I
16 1 I

~-------.------------------------------~
20 I I

~-------------------------------------~
24 I I

~-------------------------------------~
28 I I

~-----T-----T------------------------__I
32 IQMPCMIQMPNCI QMPCL I L _____ ~ _____ ~ _________________________ J

Figure 31. Table store Subroutine Parame­
ter Area

Byte r----------------------------------·--,
o I QMPCA1 I

~------------------------------------~
4 I QMPEX1 I L _____________________________________ J

r-------------------------------------,
n I QMPCAn I

~------------------------------------~
n+ 41 QMPEXn I L _____________________________ . ________ J

Figure 32. QMPCA-QMPEX List

r----------------------·--,
I Input Parameters I
~----T---T---T---T---T---~
I Q I Q I Q I Q I Q I Q I
1M IMIMIMIMIMI
I PIP I PIP I PIP I
I 0 I C I N I C I C I E I
I P I M I C I L I A I X I
I I I I I I I

Assign and start I 00 ~ X I I X I X I X I
-----------------+----+---+---+---+---+--__1
Assign I 01 I X I I X I X I X I
-----------------+----+---+---+---+---+---~
Write and assign I 02 I X I X I X I X I X I
-----------------+----+---+---+---+---+--__1
Write I 03 I I X I X I X I X I
-----------.----.--+----+---+--+---+---+--~
Read I 04 I I X I X I X I X I ---______________ L ____ J.. ___ J. ___ J._. ____ J. ___ J.. ___ J

Figure 33. Table Store Subroutine Parame­
ter Requirements

62

Disposition and Unallocation
Sui»routine
The disposition and unallocation subroutine
is divided into two sections; disposition
processing, which performs data set dispo­
sitions specified in the DISP field of DD
sta·tements, and device availability pro­
ces::;ing, which rr.akes the associated devices
available for allocation to the next job
step. Control enters the disposition and
unallocation subroutine from the step ter­
mination routine and the job termination
rou-tine. In all cases, disposition pro­
ces:3ing is performed, followed by device
availability processing. A message con­
taining the data set name, its disposition,
and the serial numbers of the volume (or
volames) in which it is cont<;lined, is
alw,3.Ys issued to the programmer.

ENT.RY FROM THE STEP TERMINATION ROUTINE

When the step termination routine passes
control to the disposition and unallocation
subroutine (Chart 52), it provides pointers
to the TIOT and SlOT of a data set. The
disposition field of the SlOT indicates the
disposition to be performed.

Disposition Processing

Dispositions that may have been specified
in the DD statement are DELETE, KEEP, PASS,
CATLG, and UNCATLG.

If the disposition is DELETE and the
data set is cataloged, and if the JFCB
housekeeping routine obtained volume infor­
mation from the catalog, theUNCATALOG
macro instruction is issued. If the de­
vices containing the data set are not
direct access devices, no SCRATCH macro
instruction is issued. If the devices are
direct access devices, a check is made to
determine if the SCRATCH macro instruction
can be issued. It can be issued if one of
the following conditions exists:

• All VOlumes containing the data set are
mounted.

• All volumes containing the data set are
not mounted, but at least one dismount­
able volume is mounted.

If neither of these requirements is met, an
erzor message is issued.

If the disposition specified in the DD
s1:atement is KEE.f>, the disposition subrou­
tine issues a message to the operator and
passes control directly t.o device availa­
bility processing.

If the disposition is PASS, no message
is issued to the operator. Control is
passed to device availability processing.

If the disposition is CATLG, the dispo­
sition subroutine determines if the data
set is already cataloged. If not, the
Cl\TALOG macro-instruction is issued. If it
is cataloged, a further check is made to
determine whether its volume list was
altered during execution of the job step.
('I'he data management OPEN, CLOSE, or EOV
routines may have altered the volume list.)
If the volume list was altered, a Rl!.CATALOG
ma.cro instruction is issued. If the volume
list was not altered, control passes
directly to device availability processing.

An UNCATLG disposition causes an UNCATA­
LOG macro instruction to be issued.

If a disposition is not specified in the
DD statement, but if the SYSOUT keyword is
specified, control returns directly to the
s1:ep termination routine.

When neither a DISP nor a SYSOUT keyword
is specified in the DD st.atement a check is
ma.de to determine if an entry for the data
set exists in the passed data set queue
(PDQ) .. and if so, the status indicator in
that entry is checked. If the status is
old (the data set was created by a previous
s1:ep or job), a KEEP disposition is
assumed. If the status is new, a DELETE
disposition is assumed. If there is no
entry for the data set in the PDQ, the sta­
tus indicator in the step input/output
table is examined, and as. in the conditions
for a PDQ entry, either a. KEEP or DELETE
disposition is assumed.

If the job step has been abnormally ter­
minated, the conditional disposition (third
pa.rameter for DISP keyword) is honored
instead of the normal disposition (second
parameter). Possible conditional disposi­
tions are: DELETE .. KEEP .. CATLG, and
UNCATLG. If one of these specifications is
present, it is resolved in the same manner
as normal disposition. If there is no spe­
cification for the conditional disposition,
the normal disposition will be honored (as
above) •

Q~;;vice Availability Processing:

After the disposition of a data set is
determined and processed., the device avail­
ability portion of the disposition and
unallocation subroutine is entered. First,

a check is made to determine if the opera­
tor has issued a VARY or UNLOAD command.
If so, the status of the device is changed,
and a message indicating that the command
was processed is issued to the operator.

When there are no pending VARY or UNLOAD
commands or when these commands have been
processed, tests are made to determine if
any of the volumes containing the data set
can be dismounted. Dismount messages are
issued for any that can be dismounted. The
following volumes are not dismountable:

• Public volumes.

• Volumes on system residence or RESERVED
devices.

• Volumes on permanently resident
devices.

• Volumes whose status is RETAINED.

• Volumes on system input or system out­
put devices.

• Volumes containing data sets with PASS
dispositions.

The addresses of appropriate UCBs are
obtained from the TIOT, and the status of
the devices used is changed to ALLOCATABLE.
When device availability processing of a
data set is completed, the disposition and
unallocation subroutine returns control to
the step termination routine.

ENTRY ,'ROM THE JOB TERMINATION ROUTINE

When the job termination routine passes
control to the disposition and unallocation
subroutine (Chart 52), a test is made for
special disposition processing. If the
step is to be restarted, the disposition of
OLD data sets is changed to KEEP; the dis­
position of NEW data sets is changed to
KEEP for a checkpoint restart, to DELETE
for a step restart.

Only two types of data sets remain to be
processed:

• Data sets that were passed but were not
received.

• Data sets contained on volumes that
were retained but to which reference
was never made.

Each time the job termination routine
passes control to the disposition and unal­
location subroutine, it passes a pointer to
an entry in the PDQ describing a data set
that was passed but not received.

Appendix A: Major Subroutines 63

If the job has been abnormally ter­
minated (job failed bit is on), the condi­
tional disposition stated for this data set
must be honored. The SIO'l' for this data
set is read into main storage, and the con­
ditional disposition checked. The speci­
fied disposition is then processed in the
same manner as when entry is from the step
termination routine.

If no conditional dispositioIl was speci­
fied, only two dispositions are possible:
DELETE and KEEP. If the data set existed
before the first time it was passed in this
job, a KEEP disposition is assigned; other­
wise, a DELETE disposition is assigned.

64

ThE~se dispositions are processed in the
same manner as when entry is from the step
termination routine.

When the job termination routine has
scanned all PDQ entries for a job, it
enters the disposition and unallocation
subroutine, but provides no pointer to a
PDQ entry. The disposition and unalloca­
tion subroutine scans all UCBs and issues
difimount messages for any dismountable
volumes on devices whose UCB contains the
current job identification. Control is
then returned to the job terminaticn
routine. .

Appendix B: Tables and Work Areas

This appendix contains descrip,tions and
formats of major tables and wo:rk areas that
are used by job management routines and
that are not described in the body of this
publication. Most table entri,es are self­
eli:planatory. Those entries that require
further explanation are described with each
talble. Tables are shown here four or eight
bytes wide for convenience, but are not
nE!cessarily drawn to scale.

The length of each field of the tables is
gi.ven in bytes in the upper right corner of
the field, and each table is limited to a
176-byte length by convention. The tables
are presented in the following alphabetical
order:

Account control table
DE!vice mask table
Dsname table
Gemeration data group (GDG) bias count
ta.ble

I In-Stream procedure work area
Job control table

I Job file control block
Ne:w reader or writer table
Pa.ssed data set queue
Step control table
St.ep input/output table
System message block
Volume table

Auxiliary storage addresses appearing in
the tables are relative track addresses
('I'TRs), in relation to the beginning of the

Offset
He,(Dec

0 0 3

SYS1.SYSJOBQE dat~ set, whether the table
is stored into main storage or into auxi­
liary storage by the table store subroutine
and the I/O supervisor. All TTRs are three
bytes long and begin on a fullword boun­
dary. The format of all storage addresses
appearing in the following tables is:

r-------------T--------------T------------,
1 Relative 21 Relative 11 Table ID 11
1 track 1 record 1 or 1
I address I address 1 Not used I L _____________ i ______________ i ____________ J

Aooount Control Table
The account control table (ACT), shown in
Figure 34, contains accounting information
obtained from JOB and EXEC statements.
This information is made available to user
accounting routines. One or more ACTs are
created for each job. The job routine of
the reader/interpreter creates one ACT for
each JOB statement, and the execute routine
creates an ACT whenever the accounting
(ACCT) parameter with its subsequent infor­
mation is specified on an EXEC statement.
The "number of accounting fields" entry
contains the number of elements of account­
ing information specified in the ACCT para­
meter of the EXEC statement, or in the
first positional parameter of the JOB
statement (see IBM System/360 Operating
System: Job Control Language Reference).
ACTs are stored by the table store
subroutine.

4
Storage Address of ACT Table ID =01 Storage Address of Next ACT

8 8 20

1=
Pmgrammer's Name if JOB ACT; Blanks if Step (EXEC) ACT

1C 28

Time Required to run Job or Step

T Ol'her Accounting Fields (If any)

Figure 34. Account Control Table

3 No. of 1 Length of 11
Accounting First Accounting
Fields Field

Length of
Nth Accounting
Field

Variable

First Accounting Field

Nth Accounting Field
Variabl1

T

Appendix B: Tables and Work Areas 65

Device Ma.sk Table
The device mask table (DMT), shown in
Figure 35, is built at SYSGEN time, and
permits system access to the unique group
of I/O devices represented by one unit
name. This group may consist of any combi­
nation of device types or device numbers,
and will be unique for any user's system.
The user may determine specific device
assignment bit patterns for his system from
a symbolic listing taken after system
generation. There is one table entry for
each esoteric or generic name or for each
direct access device. Within each entry,
the bit pattern signifies the devices asso­
ciated with a particular device name. The
bit pattern within any entry is extended in
fullword increments when the number of de­
vices exceeds 32 or a multiple of 32. The
entry status byte, bit 0, if 1, signifies
that the group of devices is a homogeneous
group.

r-------------------T---------------------,
1 Numbers of 21 Pointer to mask 21
1 entries lof direct access I
1 1 devices I L ___________________ ~ _____________________ J

Entry (typical)
r---------T---------T---------------------,
I llDMT llNumber of 21
INot used lentry 1 possible 1
1 1 status 1 devices 1
~---------~---------~---------------------~
1 41
1 Device type 1
I I
~---~
1 41
I Bit pattern of I
I possiole devices I
I I L ___ J

Figure 35. Device Mask Table

At SYSGEN time, device type codes are
obt.ained from tables internal to the SYSGEN
program, or are generated, and placed in
thE~ device mask table. The .DMT is used as
a source of device-type codes for the
device name table (DNT) (see IBM System/360
Ope!rating System: System Control Blocks).
During device allocation, these codes are
USE!d as search keys to gain access to the
DM,]' for device groups or single devices.

DSNAME Table

ThE! dsname table, (see Figure 36), contains
thE! volume reference data set names for one
stE!P as found in the DD statement. The
table is created by the DD routine of the
int;erpreter for each job step. One entry
is made in the dsname table for each DD
statement containing the VOLUME=REF=dsname
parameter.

The step control table (SCT) points to
the dsname table, and also contains a count
of the total bytes occupied in the dsname
table by dsnames for the current step. The
SlOT for each data set also contains a
pOinter to the dsnarne table entry for this
SIOT before volurr.e resolution and a pointer
to the volume table (VOLT) after volume
information has been resolved.

The dsname table is used by the JFCB
housekeeping routine of the initiator/ter­
minator to retrieve volume information cen­
ce]~ning data sets referred to by data set
nane in the DD statement VOLUME=REF pararr·e­
ter. 'The dsname table is fragmented into
176-byte blocks before being stored, prier
to job step execution.

r---------------------------------T---------T----------------------------------T--------,
I 31 11 31 11
1 Storage address of I Table I INot I
1 dsnarne table IID=07 I Chain address 1 used 1
1 I I 1 I
~---------------------------------~---------~----------------------------------~--------~
I Variable I
1 Dsname 1 (l through 44-·nyte length) I
I I L ___ - _________________________________ J

r--,
I Variablel
I Dsname N I
I I L __ J

Figure 36. Dsname Table

66

(3eneration Data GroulP BisLs Count

'l:he generation data group (GOG) bias count
t~able, shown in Figure 37, makesGDG infor­
mation available to the data management
portion of the system, and allows the user
t.o refer to a particular GOG member by the
same number in different steps of the same
j,ob. The programmer refers to GDG members
serially from the start of a job, but data
management refers to GOG members serially
from the last-cataloged member. The last
member cataloged in a previous job, if any,
i.s referenced as member number zero. The
programmer will refer to the first new data
set in the present job as nUITtlDer + 1. This
table is used to convez:t a reference that
is relative to the start of the present
job, as specified by the progJrammer, to a
reference that is relative to the last­
cataloged member, as required by data
management.

An entry to the GDG bias count table is
created by the GDG single processing rou­
tine of JFCB housekeepinq when a single GDG
is requested by the user. When a step is
completed by JFCB housekeepinq, the JFCB
housekeeping control rou~tine 1:ransfers the
GOG work bias byte to the GOG bias byte
location if the value of the \>1ork byte is
greater than that of the bias byte. In
subsequent steps of the same :job, any
reference by the programmer to a GDG member

will be decremented by the value of the
bias count, which is contained in the GOG
bias byte, to obtain a corrected member
number for data management reference.

Offset
Hex Dec

0 0 3
Storage Address of This Table Not Used

4 4 3

Storage Address of Next Table Not Used

8 8
Number of Entries in This Table

1

1

4

C 12 36
~-

~

~r-' GDG Dsname

30 48 2

GDG Bias Byte GDG Work Bias Byte

34 52

5C 92 I
84 132 I

AC 172 1

Second Entry

Third Entry

Fourth Entry

Not Used

Figure 37. GDG Bias Count Table

Appendix B: Tables and Work Areas 67

In-.Stream Procedure Work Area

The 352-byte work area shown in Figure 38
functions as two 176-byte halves in pro­
cessing procedures found in the job stream.
The first half, the work buffer, is used in
compressing and expanding procedure state­
ments. The second balf, the directory, is
used to sto:re from one to fifteen entries,

Offset
Hex Dec

o o

8 8

WKTTR
Auxi liary Storage Address of next record in the compressed
procedure. Zero if no next record exists.

each containing the name of a procedure and
thE! auxiliary storage address of the first
job queue record of that procedure. Direc­
tOl~y entries are created as in-stream pro­
cedures are encountered in a job input
stl~earo and processed. storage for the area
is obtained when the first procedure is
processed, and is freed when the next JOB
statement is read.

4

WKRECORD

WKQMPAPT
Pointer to the Queue Manager Parameter Area
for in-stream procedure processing

4

168

Area for Compressio 1 and Expansion -....

so 176

S8 184

co 192

158

• ~"igure 3 8 •

68

WKPTRI
Auxi liary Storage Address (from Assign/Start) used to write
directory entry to job queue

4
WKCT

"!umber of
Directory Entries

WKPRO:Nl

WKPTR2
Auxi I iary Storage Address of next avai lable
job queue record

Name of the first in-stream procedure e lcountered, right-padded with blanks

WKTTRI :J3

Auxiliary Storage Address of first job queue
record of first in-stream procedure

Space for 14 more procedure names and addresses

3

8

154

--

I R""vod 3

~---
In-Stream Procedure Work Area

rJrob Control Table

The job control table (JeT), shown in
Figure 39, is created by the :job routine of
the reader/interpreter upon receipt of a
job statement. It contains information
taken from the job statement, and also
storage addresses of major tables. After
all steps within a job have been
interpreted, the JCT is stored by the in­
terpreter. The JCT is used by the
initiator/terminator in preparing a job
step for execution, and is stored by the
step initiation routine of the initiator/
terminator, before control is passed to the
job step.

The JCT includes the following entries:

Job Serial Number (JCTJSRNO): Always con­
tains 1 in the primary control program.

Job Status Indicators (JCTJSTAT):

Bit 0: The job library indicator contains
a 1 if a JOBLIB UD statement is
included with the job ..

Bit 1: is set to 1 if the job is flushed
because of an error condition.

Bit 2: is set to 1 if the job step is can­
celled by condition codes.

Bit 3: is set to 1 if the job step is
flushed because of an error
condition.

Bit 4: The ABEND indica-tor contains a 1 if
one or more steps hav4e been ter­
minated through the AJBEND routine.

Bit 5: The job-failed indicaitor contains a
1 if an error condition caused the
job to be terminated.

Bit 6: is set to lif the job includes a
cataloged procedure.

Bit 7: is set to 1 for a job which does
not require the mounting of
volumes; it contains 0 if volume
mounting is necessary.

I Message Level (JCTJMGLV-l/2 byte):

Bit 0 contains 0 if message level for allo­
cation is o.

Bit 0 contains 1 if message level for allo­
cation is 1.

Bits 2-3 contain 00 if message level for
JCL is o.

Bits 2-3 contain 01 if message level for
JCL is 1.

Bits 2-3 contain 10 if message level for
JCL is 2.

I The second half-byte, JCTJPRTY (Job priori­
ty) is not used in the primary control
program.

Restart Switches:

JCTRSW1:
Bit 1 contains a 1 when step termination

has begun.

Bit 3 contains a 1 if a checkpoint has been
taken for the step.

Bit 4 contains a 1 for a checkpoint/restart
to be done.

Bit 5 contains a 1 for a step restart to be
done.

Bits 6 and 7 must be zero.

JCTRSW2:
Bit 0 contains a 1 if a SYSCHK DD statement

is present.

Bit 1 contains a 1 if the RD parameter is
other than NC.

Bit 2 contains a 1 if the RD parameter is
NR.

Bit 3 contains a 1 if the RD parameter is
NC or RNC.

Bit 4 contains a 1 if the RD parameter is R
or RNC.

Bit 7 contains a 1 if module IEFDSDRP has
encountered an unrecoverable error.

Appendix B: Tables and ~ork Areas 69

Offset
Hex Dec

o o

8 8

10 16

18 24

20 32

28 40

30 48

38 56

50 80

58 88

60 96

68 104

70 112

80 128

AD 160

A8 168

-]-3

JCTDSKAD JC
Storage Address of Job Control Table _ Tabl

TlDE~:TJS'!"O I I I

~ JCTJSTAT
JCTJMGPO

Message Job

e ID =00 J"b Senal Job Status Level P' •
Indicators

Message Class nonty
Number

JCTJPRTY

JCTJNAME
obname (padded with blanks)

Not Used in the Prim'lry Control Program

JCTPDQDA
Storage Address of PDQ

JCTSDKAD
Storage Address of First Step Count T abl e

JCTACTAD
Storage Address of Job Account Control Table

-----------. ---

JCTDSBAD
Storage Address of Last Data Set SYSOUT Bloc

4

4

4

4

k

JCTBCTDA
Storage Address of GDG Bias Count Table

JCTSMBAD
Storage Address of First System Message Block

JCTDSSBA
Storage Address of First Data Set SYSOUT Block

2

JCTSMBID JCTJDPCD
Key of Track ID for 5MBs First Job Condition Code

JCTJDPOP ---21
First Job Condition ~erator J

Sev en Additional J ,b Codes and Operators

JCTRSWI/JCTRSW2
Restort Switches

Not U sed in the Prima y Control Program

JCTSTIOT
In Primary Control Program, Storage Address
of SCT for Step to be Restarted

JCTCKTTR No.

4

TRK I
of Tracks

--~- JCTN

Storage Address of JFCB for Checkpoint Data Set on SY
Used

SI.JOBQE
by Job

---------- -------
4

JCTSSTR
Storage Address of SCT for First Step to be Run

JCTCDEVT
Device Type of Checkpoint Dato Set

2 JCTVOLSQ I

JCTNRCKP Vol. Seq. Reserved
No. of Checkpoints No. of Chkpnt

Data Set

JCTSTAT2 I
JCTCKIDL

I
.Additional
Status Length of

8

8

4

4

4

2

28
--

2

8

4

I

16

-

}-­

t

Chkpt ID Indicators .----.-----,J
---_._ .. _----------------------'

Checkpoint ID (Left-Juslified, From 1-16 Bytes)

Not Used in Primary Control Program 9

Reservec

• Figure 39. Job Control Table

70

Job File Control Block
A job file control block (JFCB) is con­
structed and written on a.uxiliary storage
by the job management routines for each
ddname ~pecified in a job step. A JFCB is

brought into main storage when a DCB with
the corresponding ddname is opened. Infor­
mation in a JFCB may be modified during
OPEN. Figure 40 shows the format of the
JFCB. See Figure 12 for the fields used
for LD statement parameter dispositions.

L(2C)
~ -

52 (34) JFCBTSDM
Job Mgt - Data Mgt Interface

53(35)

~ ,

1,' __
DASD, MOD: Continued
~ ,

1
68 (44)

.72 (48)

Tape: JFCBFLSQ - File SequencE

lO(50)
Data

Continued

89 (59)
JFC!

92 (5C) JFCEROPT 93 (5D)

JFCBDSNM
Data Set Name

JFCBELNM
Element Name, Generation Number

JFCBSYSC
System Code

66 (42) JFCBLTYP
Labe'l Type

........... _____ ______ r __ • ___ • ____ ... 70 (46)

l No.

JFCBMASK
Data Management Mask

JFCBCRDT
Set Creation Date

86 (56) JFCBIND1
Indicator Byte 1

JFCBHIAR, 90 (5A)
IFTEK, JFCBFALN

94 (5E) JFCDEN
[

88 (58) JFCBUFNO, JFCBUFRQ
No. of Buffers

Error Option Dev 'ice Charac teri sties Tape Density

B_I?_.-:._~: __ s:.<?!:_t_i .. ~~.~~ ___ . ______________________________ .. ______ _

96 (60) MOD Data Set: PreviolJs Track B

100 (64)

104 (68)

JFCRECFM
Record Format

101 (65)

JFCLRECl.

............ ---- -_ , ... ~ - -_ y 98 (62)

alance

JFCOPTCD 102 (66)
Option Code

106 (6A) JFCNCP

67 (43) JFCBOTTR
Buffer Offset, Auto Step Restart

JFCBVLSQ
Volume Sequence Number

83 (53) JFCBXPDT
Expiration Date

87 (57) JFCBIND2
Indicator Byte 2

JFCBUFL
Buffer Length

95 (5F) JFCLlMCT
BDAM: Search Limit

JFCDSORG
Data Set Organization

JFCBLKSI
Maximum Block Size

107 (6B) JFCNTM
Logical Record Length No. of Channel Programs No. of Tracks

• Figure 40 u Job File Cont:rol Block (Part 1 of 2)

1 ---

I
'r-

-L...

T

Appendix B: Tables and Work Areas 71

Segments

108 (6C) JFCRKP 109 (6D) JFCCYLOF 110 (6F) JFCDBUFN
Relative Key Position No. of Tracks Reserved

112 (70) JFCINTVL
Seconds of Delay

UCS Segment

JFCUCSID
UCS Image NamE'

112 (70) JFCUCSOP
UCS Image Operation

',a _ ~. _ __ ___ __ __ ... __ __ ~ H ~ r ... '. '........... ... • _ .. _

113 (71) JFCCPRI 114 (i2) JFCSOWA
Send/Receive Priority Size of Work Area

116 (74) 117 (75) JFCBNVOL 118 (76)
Reserved No. of Serial Numbers

- JFCBVOLS -L..

-.... V IS' IN b o ume erla um e"s -,..

148 (94) JFCBEXTL 149 (95) JFCBEXAD
Reserved Relative Track Address for First JFCB Extension

152 (98) JFCBPQTY 155 (9B) JFCBCTRI
Primary Quantity of Direct-Access Storage Space Parameters

156 (9C) JFCBSQTY 159 (9F)
Secondary Quantity of Direct-Access Storage Reserved

160 (AO) JFCBDQTY 163 (A3) JFCBSPNM
Direct-Access Storage Required for Index Split Cyl: Address of JFCB

Continued 1'66 (1.6)
JFCBABST

Relative Address of First Track

1'68 (A8) JFCBSBNM 171 (AB) JFCBDRLH
Main Storage Address of JFCB - Suballocate Data Block Length

Continued 1'74 (I.E) JFCBVLCT 175 (AF) JFCBSPTN
Volume Count Split Cyl: No" of Tracks

• Figure 40. Job File Control Block (Part 2 of 2)

72

Master Scheduler Resident Data Area
The master scheduler resident data area is
a 196-byte portion of th.:! nucleus used as a
communications area betw.~en the master
scheduler and the rest of the operating
system. (See Figure 41.' ThE~ CVTMSLT
field of the communication vector table
contains its address. III the PCP confi­
guration of the operatinq syst:em, the first
136 bytes comprise a fOQle- bytE~ control pro­
gram header and a 132-by1c.e buffer into
which console commands alee read. The buf­
fer's first four bytes contain a V-type
header address, and the last t:wo bytes mark
the end of the buffer; console messages may
therefore occupy a maximum area of 126
bytes.

The rema~n~ng sixty bytes of the master
scheduler resident data area constitute a
system independent space known as the mas­
ter common area. The two message communi­
cation fields contained within it are each
used for passing indicators between two
messaqe modules. The command pointer
always points to the current console com­
mand; the command is initially read into
the remote command buffer at offset 8 in
Figure 41, but it is moved out: of the mas­
ter scheduler resident da.ta area into the
local buffer for processing.

Preceding the master common area's con­
trol blocks, addresses, a.nd pointers are
six bytes of switches and flags:

• Initialization switches
Bit Definition
-0- IPL switch -

1 Sysout IPL
2 Sysout Job Start

3-4 Reserved
5 34 security Bit
6 Queue Initialized
7 Procedure Catalog

Initialized

• fCP system Exc lusi ve Flag~~
Bit Definition
--0- Console Flag -

1 Cancel Flag for

2
3

4
5

6-7

ABENDT
Rollout Flag
spinoff Flag
(Cancel)
Display Dataset Name
Display Space
Reserved

Name
MSNIP

IvlSCURE34
MSQNIP
MSPNIP

Name
MSCONFLG
MSCANFLG

MSROLFLG
MSSO

MSSSDSN
NSSSPACE

II
Note: Bi ts 4 and 5 may be used by other
control programs.

• Pending Flags

Bit
o
1

DefinitiOl:!
IPL Date
Partition Busy

Name
NSDATE
lVlSPNB

2

3

4

5

6

7

• ECB
Bit
-0-

1
2
3

4
5
6

7

Command Move
Completed
Interpreter Command
Completed
System Input Control
Purge Request
System Output Con­
trol Purge Request
Blank start Pending
(REQ=l, START
BLANK=O)
Console Command
suppressed

Flags
Definition

External Interrupt
Write to Operator
Write to Log
Pending Console
Attention
System Input
System Output
Master Command
Routine
Summary Bit, Vary
UCB Scan Required

• Status Flags

Bit Definition
o Master Initializa­

tion Switch (IPL)

1 WTO Pending
2 Console Usage, Prin­

cipal or Alternate
3 Log Purge Request
4 Reader End of File

(or) start Reader

5 New Reader Pending
6 New Writer Pending

(or)

New Writer Pending
(MODIFY)

7 Job Notification
Flag (l=YES)

• Fetch Flags

Bit Definition
--0- Named Fetch

1 Defer Current Com­
mand Execution
Sequence

2 TCE Tree Trace Fetch
(LOCATE)

3 Auxiliary Fetch
Given

4 Reply Bit to Request
Attention

5 Pseudo-sysout Flag
6 Reserved
7 Queue Hold-Release

MSCMC

MSICR

MSSYN

MSSYT

lV1SBSP

MSCCS

Name
MSEXT
MSWTO
MSWTL
MSATTN

MSYSIN
MSYSOUT
MSMCR

MSSUM

Name
MSINLSW

(or)
MSSSSIPL
MSWRPEN
MSNUPSW

MSWRLOG
MSREOF

(or)
MSSRDR
lVlSNRP
MSNWP

(or)
MSYOUT

Name
MSNMF
MSCSD

MSTTT

MSFAX

MSREPLYB

~1SPSDT

MSQHR

Appendix B: Tables and Work Areas 73

Offset
Hex Dec
0 0

Control Program V- Type Huader

4 4
V-Type Buffer Header Region

8 8

Remote Command Buffer
-.

End-.)f Buffer Character
1

Second End of Buffer Mark
-~--

88 136
Initialization Switches 1 PCP Syste mE xclusive Flags 1 Pending Flags 1 ECB Flags

.~.~------

8C 140
Status Flags 1 F etc h Flags 1

.. -.--.-----
90 144

Command Verb

_. ______ J
98 152

ormal Message Communication Field N

_____ J== Error Message Communication Field

AO 160
Comrr IOnd Pointer - Always Points to Console Command

A4 164
Master Schedu ler ECE.

-"------
A8 168

Address of E CB" In Selected Job (;Neue Entry of Job Using Console

--.---- .. -------..
AC 172

ECB for Allocation Internal Use

BO 176
Pointer to Primary UCB

B4 180

Pointer to Alternate UCB
....

B8 184
V -Ty pe address of Pseudo - Disable Switch

BC 188
V -Ty pe address of Problem Progr<lm TCB

~.--.~ .. ---_.-
CO 192 V -Ty pe address of Highest Priority TCB

Figure 41. Master Scheduler Resident Data Area

74

4

4

126

~-

1

1

8

8

2

4

4

4

4

4

4

4

4

4

Master
Common
Area

~rew Reader or Writer Tablle

The new reader or writer table (NRWT),
shown in Figure 42, is a control block that
contains OPEN requiremen1:.s fOl: reader and
writer routines. At initial program load
time, the table is written ont:o auxiliary
storage. The table is read into main
storage from auxiliary storage and is used
by the interpreter and SYSOUT routines.
Each entry (except jobname) consists of an
active section and an inactivE~ section.
Whether the lower or higher order part of
the entry is active is indicated by a 1 in
bit 0 of the flag 1 byte in the active sec­
tion. When a NRWT entry is active, the
data set has been opened, and the device
indicated by the applicable ueB pointer is
active. The currently inactbte section of
the entry receives information from new
S'TART commands. The table is always avail­
able in the SYS1.SYSJOBQE data set.

The bits in location Flags 1 have the
following meanings:

Bit 0
Eit 1
Bit 2
Bit 3
Bit 4
Bits 5-7

I/O active/inactive
I/O jobname/no jobname
Pending start
Pending stop
Separator/no separator
Not used in primary control
program

The bits in location Flags 2 have the
meanings:

.8it 0
Bit 1

2-7

Local flag
I/O DSN~lE/no DSNAME in START
command
Not used in primary control
prograrr.

Start Reader Entry
r--------------------------------T----------T---------------------T---------------------,
1 31 11 21 21
1 Track address I Flags 1 1 Flags 2 I UCB pointer 1
1 1 1 (not used) 1 1
~.---------------------------------+----------+---------------------+---------------------~
I 31 11 21 21
I Track address 1 Flags 1 1 Flags 2 I ueB pointer 1
1 I I (not used) 1 1 L. _____________________________ . ___ .L __________ .L _____________________ .L _____________________ J

Jobname Entry

r---,
1 81
1 Jobname from START command 1
1 of operator 1 L ___ J

Start Writer Entry
(One entry for each possible active class-a maximum of eight)

r·-----·------------------------·---T----------~---------T----------T---------------------,

1 31 11 11 11 21
I Track address 1 Flags 1 1 Flags 2 1 Class 1 UCB pointer I
I I I I name I 1
~--------------------------------+----------+----------+----------+---------------------~
I 31 11 11 1 21
I Track address 1 Flags 1 I Flags 2 1 Class I UCB pointer 1
1 1 1 1 name I 1 L. ______________________________ . ___ .L __________ .L __________ .L __________ .L _____________________ J

Cataloged Procedures Entry

r·-----------------------------·---T----------T---------------------T---------------------,
1 31 11 21 21
1 Track address I Flags 1 1 Flags 2 1 UCB pointer 1
1 1 1 (not used) 1 1
~.-----------------------------.---+----------+---------------------+---------------------~
1 31 11 21 21
1 Track address 1 Flags 1 1 Flags 2 1 UCB pointer 1
1 1 1 (not used) 1 I L. _____________________________ . ___ .L __________ .L-____________________ .L _____________________ J

Figure 42. New Reader 01: Writ~er Table

Appendix B: Tables and Work Areas 75

Offset
Hex Dec

PDQ Directory Block
Hex Cec

Offset PDQ Block

0 0

2C 44

41
Dsname 1 ____ T
Dsname 2 ------41

l
}

o o
Current

1 1 1 Number of 1
Current Terminate UCB Ptrs

Step
DD Number Work Area Here and in

Number Overflow

3 1
Storage Address of Current

Not Used Job File Control Block

4 4

58 88 8 8 3 Current 1
Storage Address of Current

84 132

}-- D,name 3 .-~
Numbe~L----------3J C

Entrie, in Not Used
Block

-- ---_._------+ ---

-...
12

-r--

Step Input/Output Table

S a -p ce for ten 4 Byte Unit
Control Block Pointers

Step
Number

40
'"'.
-I""

A8

AC

o

AC

168

172

Storage Address of PDQ Blo=k
for These Three Dsnames

Stoiage Address of Next PDQ
Directory Blo=k (If Needed)

PDQ Overflow Block

Not Used

3

Not Used

or 171

t .
Sp'Jce for 43 Additional UCB Pointers j

172 --s:orage Ad:SS of Ne:---aJ Nat u::- I

Overflow Blo:k (If Needed)

-Figure 43. Passed Data Set Queue Tables

Passed Data Set Queue

The passed data set queue (PDQ), shown in
Figure 43, contains information regarding
previously processed data sets which have
been passed from executed steps of the job,
that may be referenced by subsequent steps
of the same job. Each PDQ contains a set
of tables, consisting of three types of
blocks: the PDQ directory block, the PDQ
block, and the PDQ overflow block (if
required). The PDQ directory block and the
PDQ block are created by the initiator/
terminator JFCB housekeeping routine. The
directory blocks are chained together with
pointers, and each PDQ directory block also
points to its respective PDQ block. If
more than ten additional UCB pointers are
needed for anyone PDQ entry, one or more
PDQ overflow blocks are added in a chain to
each such PDQ block entry by allocation
routines.

lnitiator/termina·tor routines use the
PDQ to obtain pointers to UCBs when allo­
cating devices to passed data sets. step
termination routines use the PDQ to obtain
UCB allocation pointers and disposition
information ..

76

34 :2

38 S6

Storage Address of First
Overflow Block (If Needed)

3

Not Used

112 r Space fo, two Addl';onal PDQ En"le, 1

l>Jhen control passes to the initiator/
terminator, the JFCB housekeeping routine
inspects the disposition field of the SlOT
for the disposition "PASS" to determine
whe-I::her a new entry may be required in the
P~. .

If a PASS disposition is found and the
dsn.ime is not in the PDQ directory because
i t '~as not placed into the directory by a
pri'Jr PASS, a fifty-six byte entry is made
in -the PDQ for this dsname. If the last
PDQ directory block and PDQ block already
con-tain the maximum number of three
ent:cies, auxiliary storage space is
assigned for a new PDQ directory block and
a new PDQ block, thereby providing space
for three more dsname entries.

'ilhen a passed data set is to be
referenced by a subsequent step in the same
job, the dsname is specified in the DO
statement. The JFCB housekeeping routine
che·cks for the dsname in the PDQ directory
to see if the data set was r~ceived (passed
from a previous step).

If the dsname is found in the PDQ direc­
tory, the existing PDQ entry for this
dsname is updated to identify the reference

as the latest reference "to this dsname and
the data set is marked as being received in
the PDQ entry. I f no entry i~3 found, the
data set must have been cataloged, so the
JFCB routine searches th(~ cata.log for this
dsname, assuming that this is an initial
reference for this job to a cataloged data
set.

Bits of the terminate work area byte of
the PDQ block have the following status
significance:

!!it
o
1
2

3
,~

Significance
Initial status
Current status
Pass satisfied

SYSIN specified
SYSOUT specified

Status
1 -- old
1 -- old
1 -- passed
o -- received
1 SYSIN
1 -- SYSOUT'

Step Control Table
The step control table (SCT), shown in
Figure 44, is used to pass control informa­
tion to the DD routine of the interpreter
an.d to the initiator/ terminat,or routines,
which also contribute informat,ion to the
table. This table is crE~ated and initia­
lized by the execute rout~ine of the inter­
plreter when an EXEC statement is read. One
seT is created for each step of a job, and
is stored by the interpreter control rou­
tine and the initiator/terminator step
initiation routine.

When the EXEC statement includes the
optional PARM field, the information is
placed in a specially created SCT extension
block, whose storage address is maintained
ill a four-byte field at offset 68 (44 hex)
of the SCT. Zeroes in this field indicate
that the EXEC statement provided no PARM
information, and hence that no SCT exten­
sion block was created.

If the step is part of a previously
cataloged procedure, the name of the step
that called the procedure, if any, is
entered. The following variable-content
and indicator fields are included in the
table:

1.. Internal step Status Indicators (off­
set 4 hex):
Bit ~ contains a 1 if RD := NR is spe­

cified on the JOB 0:[' EXEC
statement.

Bit 3 contains a 1 if RD RNC or RD
NC is specified on jthe JOB or
EXEC statement.

Bit 4 contains a 1 if RD := R or RD =
RNC is specifi,ed on the JOB or
EXEC statement.

Bit 7 contains a 1 if an (error condi­
tion caused the step to be
terminated.

I

I

2.

3.

4.

5.

FARM Count or step Status Code (offset
8 hex):
a. Interpreter: The number of char­

acters specified in the PARM para­
meter of the EXEC statement is
placed in this entry.

b. Initiator/Terminator: 'I'his table
entry contains the condition code
returned by the processing
program.

Step Type Indicators (offset 43 hex):
Bit 0 contains a one if the following

parameter definition appears in
the EXEC statement:

PGM=*.stepname.ddname
Bit 1 indicates SYSIN is specified

(DD *).
Bit 2 indicates SYSOUT is specified.
Bit 3 contains a 1 if JFCB housekeep­

ing is complete.
Bits 4, 5, and 6 are unused in PCP.

Bit 7 is reserved.

Extension of Internal Step Status
Indicators (offset 68 hex):
Bit 6 contains a 1 if the job has

ended.
Bit 7 contains a 1 if the GDG Bias

'I'able needs to be updated.

Execute Step after ABEND or Eighth
Condition Code (offset AO hex):

(Execute step after ABEND)
First byte (offset AO):
Bit 0 is not used.
Bit 1 is not used.
Bit 2 is "not used.
Bit 3 contains a 1 if the step is

bypassed because of one or more
prior ABEND macros.

Bit 4 contains a 1 if the step is
bypassed because COND=ONLY was
specified and no ABEND has
occurred.

Bit 5 contains a 1 if the step was
terminated by the ABEND routine
during problem program
execution.

Bit 6 contains a 1 if the interpreter
encountered the EVEN parameter
in the COND field of the EXEC
statement.

Bit 7 contains a 1 if the interpreter
encountered the ONLY parameter
in the COND field of the EXEC
statement. '

The remainder of the field (offset
Ai-AS) must contain zeros.

(Eighth condition code)
First two bytes (offset AO-Al) contain
the eighth step condition code, or
zeros.
Third byte (offset A2) contains the
eighth step condition operator, or
zeros.
Fourth through sixth bytes (offset
A3-A5) contain the storage address of
the eighth condition SCT, or zeros.

Appendix B: Tables and Work Areas 77

Offset
Hex Dec

o o

8 8

10 16

18 24

20 32

28 40

30 48

38 56

40 64

48 72

50 80

58 88

60 96

68 104

70 112

78 120

AO 160

Step Control Table
r-----'---------------------------

G~le ID =02

1 3
Storage address of step cOntro I table ----D--

PARM count or step status code
2 Length of a Ilocate work 2

area or num ber of SlOTs
----------- ----- --

3 1
Storage address of a I locate work area Not used

Storage address of first 5MB for next
step

Storage address of first ACT entry
for this step

3

--
3

--------------- --
Storage address of dsname table for
this step

Name of step that called procedure (cont'd)

Stepname (cont'eI)

in this step messages to allocate
--- ---- ----

1

3

--

[-No. <:fSlOls 1 N; of setuplliNo. o7J-FCBs 1

X'OO' Hierarchy 0 region ad dress

1
Not used

1
Not used

1
Not used

8

8

Step type 1

indicators

3

Count of WTP 1 Oueue address of first write-to-programme~
5MB for automatic checkpoint/restart use _~~

Hierarchy 0 regi:~~ier~:~hY_1

--1 Extension 1
of internal
step status
indications

First sterI1
condition
operator

Not used in PCP

Storage address of step

Programname (conj-'d)

Storage address of first cond

5MBs for step

2
region size

6

3

nOT

8

3

ition SCT

-

Ir ternal step 1 I
status i nd i cators

Maximum step running time

3
Storage address of first SlOT entry Not used

3
Storage address of next SCT Not used

Storage address of last 5MB for this 3
Not used

step

3
Storage address of volume table Not used

Name of step that called procedure (if any)

Stepname

Relative pointer to
21 Length of volume table

step entry in ACT

Storage 'address of SCT extensiQn block

X'Ol' 11 Hierarchy 1 region address

Reserved

Reserved 21 Not used in PCP

Queue address of SlOT for
PGM=* .STEPNAME .DDNAME

Programname

Length of dsname table in bytes 21 First step condition code

Second through seventh step condition entries.

Execute step after ABEND or eighth condition code Reserved

Hex
SCT Exension Block

Offset

o r-_--_~'~_-~-~~~~~T~T~R~O~f~t~h~is~_r-e~c.~o_r-d~~~~~~'-__ - __ -___ ~~~.-1-.--'I-D-=-X-'-0-C-,-..,
4

68

80

Parameter value

--- -------~
Reserved

• Figure 44. step Control Table and SCT £xtension Block

78

3

1

1

1

1

2

4

3

4

4

2

36

-

Step Input/Output TablE~

The step Input/Output Table (SlOT), shown
in Figure 45, makes DO statement informa­
tion available to the initiatol:/
terminator for use as a source of informa­
tion for the TIOT and for providing DO
information to allocation and disposition
routines.. When a DD statement is read, the
interpreter creates a new SlOT and places
the DD information into ii:. The individual
bi-ts of indicator bytes 56 through 59 and
byte 92 in the SlOT are set to one to ind­
icate the following conditions::

BYTE 55: Scheduler Data Set Diseosition
Switches (SCTSDISPt

Bit 0 Nonshareable volume
Bit 1 Retain volume
Bit 2 Pri vate volumE~
Bit 3 Pass data set
Bit 4 Keep data set
Bit 5 Delete data SE~t

Bit 6 Catalog data set
Bit 7 Uncatalog data set

BYTE 56: Status Byte 1 (SCTSBYT1)

Bit 0 ' Dummy data sei:
Bit 1 SYSIN data sei:
Bit 2 Split (primary)
Bit 3 Split (secondary)
Bit 4 Suballocate
Bit 5 Parallel moun-\: indicator
Bit 6 Unit affinity
Bi,t 7 Unit separation

BYTE 57: Status Byte 2 (SC~rSBYT2)

Bi-t 0 Channel affinity
Bit 1 Channel separation
Bit 2 Volume a:Efinii:y
Bit 3 JOBLIB DD stai:ement
Bit 4 Unlabeled

Bit 5
Bit 6
Bit 7

Nonstandard label
Defer mounting
Received data set

BYTE 58: Status Byte 3 (SCTSBYT3)

Bit 0
Bit 1

Bit 2

Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Volume reference is dsname
SYSIN expected
(procedures only)
No associated volume
serial in volume table
Intra-step suballocate
SYSOUT was specified
New data set
Modified data set
Old data set

BYTE 59: Status Byte 4 (SC'I'SBYT4)

Bit 0

Bit 1
Bit 2

Bit 4
Bit 5
Bit 6
Bit 7

Set by reader/interpreter
to indicate GDG single
SlOT created for GDG all
Volume serial was found
in passed data set queue
(PDQ)
Step processed
Intra-step volume affinity
Data set is in FDQ
1 = old or modified data
set
o = new data set

BYTE 92: Conditional Disposition
Status Byte (SIOTALTD)

Bits 0-2
Bit 3

Bit 4
Bit 5
Bit 6
Bit 7

Reserved
This bit is set at Restart
time to indicate that
this DD is not
private.
Keep data set
Delete data set
Catalog data set
Uncatalog data set

Appendix B: Tables and Work Areas 79

Offset
Hex Dec

0 0 I SIOTDSKA
31

SIOTTYPE 1
Auxi liary Storage Address of SlOT Table ID =3

4 4 SCTDDN4.M 8

DD Name

C 12
I---------------~ -

SCTCSADD 8
Internal DD Numbers of Channel Se:>aration and Affinity Requests

'-----------------~
14 20 SCTUSADD 8

Internal DD Numbers of Unit SepClration and Affinity Requests

lC 28
I---~

4 4 SCTPSIOT SCTPJFCB
Auxiliary Storage Address of Next SlOT in Chain Auxiliary Storage Address of JFCB

--
24 36 SIOTVRSB 4 SIOTSTDP 4

Auxiliary Storage Address of SlOT for VOLREF or SUBALLOC Auxiliary Storage Address of SlOT System Output/Dependency Block

2C 44
i----- --

3 1 1 1 2
SCTSPOOL SCTVOLCT SCTVLPTR

Reserved Not used in PCP I"umber of Pool Number of Relative Pointer to Volume
DDs Volumes in VOLT Table Entry

34 52 ---I --
SCTDDINO 1 SCTNMBUT 1 SIOTVLCT

1
SCTSDISP

1 1 1 11 1
SCTSBYTl SCTSBYT2 SCTSBYT3 SCTSBYT4

Number of Number of Units Value of Scheduler Data
I nterna I DDs for Data Set Specified Volume Set Disposition Indicator Bytes 1 through 4 (See Text)

-------- ~

Count -- Switches
3C 60 8

SCTUTYPE

Bytes 0 through 5 = Devi ce Type Bytes 6 and 7 =UCB address of Unit
Requested if there is a Va lid
Specific Unit Request

-. -
44 68 SCTOUTI-lM 8

System Output Pronram Name
--------------.-------------

4C 76 SCTOUTNO 4
~;CTOUTPN

1 SCTDDDUP 1 2

System Output DD Statement
Reserved System Output Form Number Class Name Duplicate

Number

54 84
------------.------~-.-

1 3 4
SIOTDPOP SIOTDSCT TTR of Next DSB -- Applicable Only if SYSOUT Bit is Set

DSB TTR Created at Step Termination if SYSOUT Bit is Set

5C 92 3

SIOTALTD SIOTPDQ
Conditional Dis- TTR of SlOT Being Passed Not Used in PCP
posi tion Byte

64 100

74 116

i------------'----- r- 19

Not Used in PCP :::
i-------~ Reserved

SCTANAME
Name from DS Name = ,
Dedicated Work Files

7C 124
i----------.---------

44 8
SCTANAME (cont.)

84 132
1---- ,~

SIOTDCBF:
DCB Reference Name -.....

L __ _
• Figure 45. step Input/Output Table

80

r--------------------------------'--T----------T--------------------------------T----------,
I 31 11 31 11
t storage addres,s of this 5MB 1 Table 1 Storage address of next 5MB, 1 Not I
1 1 ID=5 1 or zero if last 5MB in chain 1 used 1
~-.-----------------------------,--.L----------+---------------------T----------+----------i
1 41 Pointer to 11 llPart of 1
1 Not used 1 next available 1 Status , first ,
t 1 byte 1 byte Imessage 1
~-_----_-------------------o-----,------------.L---------------------.L----------+----------i
1 Variable, 11
1 First message 1 status 1
1 1 byte 1 L _______ . _________________________ , __ .L __________ J

r-------------------------------'--T----------,
1 Variable 1 1,
1 Last message I Zero after I
1 Ilast 1
1 1 message , L __________________________ o _____ , ___ .L __________ J

Fiqure 46. System MessagE~ Block

System Message Block

Th~e system message block I: 5MB), shown in
Fi~:Jure 46, temporarily stores alII control
statements, programmer messages, and dia<j­
nOlStic error messages before they are
printed via the system output ~'riter rou­
ti:ne. The interpreter control routine
crleates and initializes one or more 5MBs
for each job step. Initiator/t~erminator
rOliltines also may add messages to the 5MB.
The chain address of the next 5MB is given
in bytes 4 through 6 of each table but the
last, resulting in a chain of 5MBs for each
jolb. The status byte of each block con­
ce:l:'ns the following block" and contains the
message length, zero if there alre no more
messages, or all ones if a data set block
follows.

Vc)lume Table
The volume table (VOLT), shown in Figure
47, consists of a series of chained blocks,
and contains the list of volumE~ serial num­
bers to be used in a given step. Use of
the list reduces the number of times that
the SYS1.SYSJOBQE data set must be
referenced during allocation. The table is
built by the DD routine for each step, and
is modified by the JFCB housekeeping rou­
tine. The maximum extent of each block of
the table is 176 bytes, and thE~ maximum
number of volumes listed per block is 28.

r------------------------------T----------,
, 31 1,
I Storage address 1 Table 1
1 of this block 1 ID=Q ,
, 1 1
~------------------------------.L----------i
1 4,
, Storage address ,
1 of next block , , ,
~---.,
, 61
, First volume serial ,
, 1
1 1
1 r---------------------~
1 1 61
I 1 Second volume I
, 1 serial ,
1 1 I
~-------------------J I
I I
, 1
, 1
1 I
, 1 L ___ J

r---,
1 28th volume 61
I serial ,
, r---------------------J
1 1
1 I L ___________________ J

Fiqure 47. Volume Table

Appendix B: Tables and Work Areas 81

Write-to-Programmer Control Block

The write-to-programmer control block
(WTPCB) depicted in Figure 48 is a 16-byte
area containing the information required
for adding programmer messages to the pro­
cessing program's message class output data
set. This block is located through a
pointer contained in the Job Step Control
Block (JSCB) which, in turn, is located
through a pointer contained in the Task
Control Block (TCB). Conditions reflected
by the presence of 1 (switch on) in each
bit of the WTPFLGSA field are:

82

BI'r
o
1
2
3

4
5

6

7

CONDITION
Job Queue I/O problem.
"Limit exceeded" message issued.
step contains SYSOUT.
Return from WTP third load to
second load.
"No more 5MBs" message issued.
Last 5MB allowable for this job
has been used.
WTP has been invoked for this
step.
Routing code other than WTP
encountered.

Offset
Hex Dec

o 0 3 WTPFLGSA
WTPSMB Flags Indicating

TTR of SYS1.SYSJOBQE Record
Containing Current WTP Message (s)

Various System
Co~ditions

4 4 WTPBYTES 1
Remaining Bytes WTPQMPA
for Message Text Not Used in PCP
in Current 5MB

8
WTPCRSMB

3 WTPCRCNT

TTR of First WTP 5MB (For Number of

Automatic Checkpoint Restart) WTP 5MBs
Used in Step

8

C 12 WTPLIMIT 1
Number of WTPRSMBS
WTP 5MBs TTR of Reserved WTP 5MBs
Used in Job

.Fiaure 48. Write-To-Programmer Control
Block

1

3

1

3

Appendill= C: Load Modules and Assembly Modules

This appendix lists job management load
modules and indicates th€~ assembly modules
that are processed by the linkage editor
into each load module during system genera­
tion. Included is a separate list that
shows the load modules in which each
assembly module is contained.

Job management routines for sequential
scheduling systems are packaged in three
configurations: 18K, 44K, and lOOK (where
K is 1024 bytes of main storage). The num­
bers represent the maximum amount of main
storage occupied by job management routines
an.d work areas at any time. A.ll three job
management configurations function identic­
ally but differ in both the number of their
load modules and the number of assembly
modules within each load module. Job man­
agement routines occupy t.he dynamic portion
of main storage alternately with processing
programs, and therefore these size designa­
tions bear a direct relationship to the
main storage required for each
configuration.

Load Modules
In each configuration, all loa.d modules are
contained in three data sets:
SYS1.NUCLEUS, SYS1.SVCLIB, and SYS1.
LINKLIB. 'I'hese data sets also contain
other parts of the control program.· The
load modules in the first~ two data sets
remain the same for all t:hree job manage­
ment configurations, but the SYS1.LINKLIB
data set contains a different set of load
modules for each configuration, depending
on which one was selected at system genera­
tion time. In the 18K configuration, LINK­
LIB contains 56 load modules; in the 44K
configuration, it contains 42 load modules;
and in the lOOK configuration, 37 load
modules.

Charts 54 through 56 show t.he control
flow among load modules. The decision to
transfer control (XCTL) t:o a particular
succeeding load module is made in the pre­
vious load module. Each subsE!quent module
loaded in response to an XCTL macro
instruction is read into main storage
directly over the previous load mQdule.
such load modules are read int:o the low-
n umbered end of the dynamic., or problem­
program, area of main storage.

modules are shown on the control-flow
charts. Because storage is used in this
manner, the load module lists may be used
with Charts 54, 55 or 56 to determine the
approximate layout of main storage at dif­
ferent times during the execution of job
management routines. Other items present
in the problem program area at the same
time as the load modules are not shown on
the control flow charts because, although
these items are necessary, control is not
passed among them. They are, generally,
the tables and control blocks, work areas,
access methods, buffers, and register save
areas.

In the following load module lists,
entry points are shown if a load module
contains more than one assembly module. If
only one assembly module is named, the
entry point is the same as the assembly
module's control section (CSECT) name given
in the Assembly Modules and Control Sec­
tions table in this appendix.

LOAD MODULES CON'I'AINED IN THE SYS1.NUCLEUS
DATA SET

The load modules and assembly modules in
the following list are contained in the
SYS1.NUCLEUS data set, and are always pres­
ent in the nucleus, or fixed area of main
storage, regardless of the job management
configuration.

Load Module Name: IEANUCOl
Assembly Modules:
IEEBC1PE
IEECIR01
IEERSCOl

IEERSR01

,I

IEFDPOST
IEFKRESA

External interrupt routine.
Console interrupt routine.
Master scheduler buffers,
switches, input/output block
(lOB), event control block
(ECB), channel control word
(CCW), and data extent block
(DEB). This load module forms
master scheduler resident main
storage in the nucleus area when
the primary or alternate console
(1052) is used.
Master scheduler buffers,
switches, lOB, ECB, CCW, and
DEB. This load module forms
master scheduler resident main
storage in the nucleus area when
the composite console is used.
Unsolicited interrupt routine.
Table store subroutine work
area. Modules that are brought into storage

with LINK macro instructions and LOAD macro I IEFWTPOA
instructions occupy separate storage areas
wi thi n the problem program arE!a; such

Write-to-prograrnmer control
block (WTPCB) and job step con­
trol block (JSCB).

Appendix C: Load Modules and Assembly Modules 83

LOAD NODULES CONTAINED IN THE SYS1.SVCLIB
DATA SET

The load modules and assembly modules in
the following list are contained in the
SYS1.SVCLIB data set, and are called in
response to SVC instructions.

Load Module Name: IGC0003D
Assemoly Modules:
IEEMXC01 Master command EXCP routine

(Part 1) -- primary/alternate
console.

IEEMXROl Master command EXCP routine
(Part 1) -- composite console.

Load Module Name: IGC0003E
Assembly ~~odules:

IIEEWTCOO Write-to-operator (WTO) routine
-- primary/alternate console.

IEEWTROO Write-to-operator (WTO) routine
-- composite console.

Load Module Name: IGC0003F
Assembly Module:
IEEBH1PE Not used in sequential schedul­

ing system.

Load Module Name: IGC00090
Assembly t'lodule:
IEFXMPCP Transient queue manager I/O and

record assignment routine. Used
by WTP.

Load Module Name: IGCOI03D
Assembly Nodules: .-
IGC0103D Command processing routine for

'MOUNT, VARY ONLINE/OFFLINE, and
UNLOAD. This routine issues an
XC'IL to IGC0203D if command is
other than listed.'

IGC0203D Command processing routine for
'DISPLAY JOBNAMES, STOP JOB­
NAMES, CANCEL· (SHIFT command
not used primary control
program.)

Load Module Name: IGCOI03E
AS3erobly Modules:
IEEWTC01 Write-to-operator-with-reply

(WTOR) routine -- primary/
alternate console.

IEEWTROl Write-to-operator-with-reply
(WTOR) routine -- composite
console.

Load Module Name: IGC0203E
Assembly Module:
IEFWTPOO Write-to-programmer (WTP)

initialization.

Load Module Name: IGC0303E
AS3embly Module:
IEFWTPOl Write-to-programmer (WTP) mes­

sage processinq.

LO.3.d Module Name: IGCO 4 0 3E
Assembly Module:
I E.FW'!'P 0 2 Wri te-to-programmer (WTP) error

routine.

MODULES CONTAINED IN THE SYS1.LINKLIB DA'IA
SET

The load modules and assembly modules in
the following lists are contained in the
SYS1.LINKLIB data set. Separate lists are
pr,:)vided for each of the three Job Manage­
ment packaging configurations. The load
modules within each configuration and the
assembly modules within each load module
are listed in alpharoeric order.

Any load module which contains IEFACTLK,
IEEACTRT, and IEFWAD, may contain instead
IEFACTFK if the system generation option
for no accounting routine is specified.

18K CONFIGURA'rION

Load Module Name: DEVNAMET
Entry Point: DEVNAMET
Assembly Module:
IEFWMASl Device Name Table.

Load Module Name: DEVMASKT
Entry Point: DEV~ASKT
Assembly Module:
IEFWMSKA Device Mask Table.

Load Nodule Name: IEEFAULT
Alias :-iEEGK1~----'--
Assembly Module:
IhEGKIGM Fault routine, issues Master

Scheduler messages.

84

L03.d Module Name: IEEJFCB
Alias: IEEIC3JF
Assembly Module:
IEEIC3JF Contains preformatted JFCB for

one S'I'ART command.

LO.3.d Module Name: IEESET
Alias: IEEGES01
Assembly Module:
IEEGES01 Master Scheduler SET Command

routine.

Lo.ad Module Name: IEESJFCB
Alias: IEEIC2NQ
Entry Point: IEbIC2NQ

Assembly Module:
IEEIC2NQ Saves START command JFCBs.
IESQMSSS Table Store subrout:ine.

Load Module Name: IEESTART
Alias: IEEIC1PE
Entry Point: IEEIC1PE
Assembly Modules:
IEEREADER Start Reader routine.
IEESTART Process START and STOP WTR

commands.
IEEWRITER Start Writer routine.

Load Module Name: IEETIME
Alias: IEEQOTOO
Assembly Module:
IEEQOTOO Sets time and date ..

Load Module Name: IEFALOCl
Alias: IEFXA
Alias: IEFXJOOO
Entry Point: IEFXA
Assembly Modules:
IEFCVFAK Linkage to IEFMCVOI.
IEFQMSSS Table Store sllbrou1:.ine.
IEFWAFAK Linkage to IEFWAOOO (in IEFALOC2

load module).
IEFWCFAK Linkage to IEFWCI~? (in IEFALOC3

load module).
IEFXAMSG Contains Initiator/Terminator

IEFXCSSS
IEFXJIMP

IEFXJMSG

I Eli' YNFAK

IEFYSSMB

messages.
Allocation Control routine.
Allocation Erlr:or Recovery
routine.
Contains Initiator/Terminator
messages.
Linkage to IE:FYNIMP (in IEFSTERM
load module).
Message Enqueuing lr:outine.

Load Module Name: I EFALOC 2
A.lias: IEFWAOOO
Entry Point: IEFWAOOO
A.ssembly Modules:

I IEFDEVPT Device bit pa·ttern .•
IEFSCAN Bit pattern scan routine.
IEFSD006 Converts reco:rd number to logic­

IEFSGOPT

IEFV1SXL
IEFWAOOO
IEFWCFAK

IEFWMSKA
IEFWSWIN

IEFXJFAK

IEFXVFAK

IEFX300A
IEFX5FAK

al track address (TTR).
System generation option
indicators.
Allocation Er:ror routine.
Demand Alloca·tion :r:outine.
Linkage to IE.FWCIMlP (in IEFALOC3
load module).
Device mask t.able.
Passes control to Decision Allo­
cation or Automatic Volume Reco­
gnition (AVR) routine.
Linkage to IE.FXCSSS (in IEFALOCl
load module).
Linkage to IEFXVOOl (in IEFALOC4
load module).
Device Strikeout routine.
Linkage to IEFXSOOOL (in
IEFXSOOO load module).

Load Module Name: IEFALOC3
Alias: IEFWCOOO
Entry Point: IEFWCOOO
Assembly Modules:
IEFWCIMP TIOT construction routine.
IEFWDFAK Linkage to IEFWDOOO (in IEFALOC4

IEFXHOOO
IEFXJFAK

load module).
separation Strikeout routine.
Linkage to IEFXCSSS (in IEFALOCl
load module).

Load Module Name: IEFALOC4
Alias: IEFWDOOO
Alias: IEFXVOOl
Entry Point: IEFWDOOO
Assembly Modules:
IEFCVFAK Linkage to IEFMCVOL.

I IEFDEVPT Device bit pattern.
IEFQMSSS Table Store subroutine.

IIEFSCAN Bit pattern scan routine.
IEFSD006 converts record number to loaic­

IEFV15XL
IEFWDOOO
IEFWDOOl

IEFXKIMP

IEFXKMSG

IEFXTFAK

IEFVMSG

IEFXVNSL

IEFXVOOl

IEFXV002

IEFX1FAK

IEFX2FAK

IEFX3FAK

IEFX300A
IEFYNFAK

IEFYSSMB

al track address (TTR).
Allocation Error routine.
External Action routine.
Message directory for External
Action routine.
Allocation Error Non-recovery
routine.
Contains Initiator/Terminator
messages.
Linkage to IEFXTOOO (in IEFALCC5
load module).
Automatic Volume Recognition
(AVR) Message routine.
Automatic Volume Recognition
(AVR) Nonstandard Label routine.
Automatic Volume Recognition
(AVR) routine.

AVR Volume Serial Number Reading
routine.
Linkage to IEFXJIMP (in IEFALOCl
load module).
Linkage to IEFX5000 (in IEFALOC2
load module).
Linkage to IEFWCIMP (in IEFALCC3
load module).
Device Strikeout routine.
Linkage to IEFYNIMP (in IEFSTERM
load module).
Message Enqueuing routine.

Load Module Name: IEFALOC5
Alias: IEFXTOOO
Entry Point: IEFXTOOO
Assembly Modules:
IEFCVFAK Linkage to IEFMCVOL
IEFQMSSS Table Store subroutine.
IEFSD006 Converts record number to logic­

al track address (TTR).
IEFWDFAK Linkage to IEFWDOOO (in IEFALOC4

load module).
IEFW41SD Exit to IEK04FAK (in this load

module).
IEFXKIMP Allocation Error Non-recovery

routine.
IEFXKMSG contains Initiator/Terminator

messages.
IEFXTDMY Queue Overflow routine.

Appendix C: Load Modules and Assembly Modules 85

IEFXTMSG

IEFXTOOD
IEFXT002
IEFXT003
IEFYNFAK

IEFYSSMB
IEF04FAK

Contains Initiator/Terminator
messages.
Space Request routine.
TIOT Compression routine.
DASDM Error Recovery routine.
Linkage to IEFYNIMP (in IEFSTERM
load module).
Message Enqueuing routine.
Linkage to IEFSD004 (in IEFAC­
TACH load module).

Load Module Name: IEFATACH
Alias: IEFSD004
Entry Point: IEFSD004
Assembly Modules:
IEFQMSSS Table Store subroutine.
IEFSD004 Step Initiation routine, with

IEFSD006

IEFSD007
IEFSD010

exit to processing program.
Converts record number to logic­
al track address (TTR).
Call to Table Store subroutine.
Dequeues and writes out system
message blocks (SMBs).

Load Module Name: IEFBR1~
Assembly Module:
IEFBR14 Branch 14.

Load Module Name: IEFCNTRL
Alias: IEFVHA
Alias: IEFVHAA
Alias: IEFVHCB
Alias: IEFVHE
Alias: IEFVHEB
Entry Point: IEFVHEB
Assembly Modules:
IEFFAFAK :Linkage to IEFVFA (in IEFVHH

load module).
IEFHBFAK Linkage to IEFVHB (in IEFVHH

load module).
IEFHECFK .Linkage to IEFVHEC (in IEFVHH

load module).
IEFHHFAK ·Linkage to IEFVHH (in IEFVHH

load module).
IEFHLFAKLinkage to IEFVHL (in IEFVhH

load module).
IEFHHFAK Linkage to IEF7KPXX (in IE.F'COMMD

load module).
IhFQMSSS Table Store subroutine.
IEFVGMSS 3uilds Interpreter error syst.ern

message blocks (SMBs).
IEFVHA Performs input stream or proclib

1.10.
IEF'VHAA

Il!;FVHC

IEFVHCB

ILFVHE
IEFVHEB
IBFVHGSS
I.f!:FVHQ
IBFVHRSS

IIEFVIND

86

Sets reader end-of-file (,BOE')

conditions.
Checks input for valid
continuation.
Identifies control statement
verbs and performs procedure
modification.
Job Router routine.
Pre-scan routine.
DD* Error routine.
Table Store Interface routine.
Writes operator error mesaages.
In-stream procedures expansion
interface routine.

Load Module Name: IEFCOMMD
AI:;.as : IEFVHM
En1:ry Point: IEFVHM
ASBembly Modules:
IEECNDUN Prevents unresolved external

IEEILCDM

IEEMCR01
IElmAAFK

IEFHAFAK

IEJi'QMSSS
IE]i'SD006

IE]i'VGMSS

IEFVHQ
IEFVHRSS
IE]i'7KPXX

reference to IEEICN01.
Prevents unresolved IEEICCAN
symbol after initialization.
Master Command routine.
Linkage to IEFVHAA (in IEFCNTRL
load module).
Linkage to IEFVHA (in IEFCNTRL
load module).
Table Store subroutine.
converts record number to logic­
al track address (TTR).
Builds Interpreter error system
message blocks (SMBs).
Table Store Interface routine.
Writes operator error messages.
Input Stream Command routine.

Load Module Name: IEFCSA
Ent:ry Point: IEFCSA
Assembly Module:
IEFCSA Reads JCL from console.

Load Module Name: IEFDD
Alias: IEFVDA
Ent:ry Point: IEFVDA
Assembly Modules:
IEFGMFAK Saves messages codes from

IEFVDA.
IEFQMSSS Table Store subroutine.
IEI'SD006 converts record nUIPoer to logiC­

al track address (TTR).
IEI'SD012 DD* Statement routine.
IEFSD090 Assigns unit for system output

<S YSOU'l') •
IEI'VDA DD Card Scan routine.
IEI'VDDUM Prevents unresolved IEFVDBSD

.symbol.
IEI'VGI Interpreter Dictionary Entry

routine.
IEI'VGK Obtains parameter from internal

table built by IEFVFA.
IEFVGS Interpreter Dictionary Search

routine.
IEE'VGT Checks validity of control card

parameters.
IE:E'VHF E.ntry point to IEFGMFAK. Final

exit from IEFVDA. Linkage to
IEFVGf.'JEP (in IEFVGMSS load
module>.

IEE'VHQ Table Store Interface routine.
'IEFVHRSS Writes operator error messages.

Loa:d Module Name: IE-FERROR
Alias: Iefvm6ls
Ent.ry Point: IEFVl-~SGR
Assembly Modules:
IEE'QMSS3 Table Store subroutine.
IEFVMLS6 JFCB housekeeping, Error Message

routine.
IEE'VMLS7 Contains Initiator/Terminator

messages.

IEFYNFAK

IEFYSSMB

Linkage to IBFYNIlJ.iP (in IEFST£Rlvl
load module).
Message Enqueuing routine.

Load Module Name: IEFEXEC
Alias: IEFVEA
Entry Point: IEFVEA
Assembly Modules:
IEFHFFAK Linkage to IEE''VHF (in IEFVHH

IEFQMSSS
IEFVEA
IEFVGI

IJ!:FVGK

IEFVGMSS

IEFVGS

IEFVGT

I:E:FVHQ
IEFVHRSS

load module).
Table store subrout.ine.
EXEC Card Scan rout.ine.
Interpreter Dictionary Entr:y
routine.
Obtains parameter from internal
table built by IEFVFA.
Builds Interpreter error system
message blocks (SMBs).
Interpreter Dictionary Search
routine.
Checks validit:y of control card
parameters.
Table Store Interface routine.
Writes operator error messages.

Load Module Name: IEFIDUI~lP
Entry Point.: IEFIDUMP
Assembly Modules:
I.EFIDMPM Contains Initiator/Terminator

IEFIDUMP
I:EFQMSSS
IEFYNFAK

IEFYSSMB

messages.
Indicative Dump routine.
Table store subrout.ine.
Linkage to IEli'YNIMP (in IEFSTERM
load module).
Message Enqueuing routine.

Load Module Name: IEFINTFC
Alias: IEFKG
Alias: IEFSDOOl
Alias: IEFSD008
Entry Point: IEFSD008
Assembly Modules:
IEECNDUM Prevents unresolved external

I.EEILCDM

IEEMCROl
I.EFHAAFK

IEFHAFAK

IEFHCBFK

IEFQMSSS
IEFSDOOl

IEFSD006

IEFSD007
IBFSD008

reference to IEEICN01.
Prevents unresolved IEEICCAN
symbol after initiollization.
Ma ster Command rout~ine.
Linkage to IEl!'VHAA (in IEFCNTRL
load module).
Linkage to IEFVHA (in IEFCNTRL
load module).
Linkage to IEFVHCB (in IEFCNTRL
load module).
Table Store subrout:ine.
Interpreter entry t:o IEF09Ji'AK or
to IEF23FAK. In case of
restart, tests to determine if
restarting step has been inter­
preted; if not, ret:urns to
interpreter.
Converts record number to logic­
al track address (TTR).
Call to Table StorE~ subroutine.
Initiator/Terminatc)r to Inter­
preter interface. Enters inter-
preter to prepare for restart if
necessary.

IEFVHQ
IEFVHRSS
IEF09FAK

IEF23FAK

IEF7KGXX

Table store Interface routine.
Writes operator error messages.
Linkage to IEFSD009 (in IEFSELCT
load rr.odulel.
Linkage to IEFW23SD (in IEFJTRMl
load module).
Interpreter-Initiator interface.

Load Module Name: IEFJOB
Alias: IEFVJA
Entry Point: IEFVJA
Assembly Modules:
IEFHFFAK Linkage to IEFVHF (in IEFVHH

IEFQMSSS
IEFVGK

IEFVGMSS

IEFVGT

IEFVHQ
IEFVHRSS
IEFVJA

load module).
Table store subroutine.
Obtains parameter frorr internal
table built by IEFVFA.
Builds Interpreter error system
message blocks (SMBs).
Checks validity of control card
parameters.
Table Store Interface routine.
Writ~s operator error messages.
Job Card Scan routine.

Load Module Name: IEFJOBQE
Alias: IEFINTQS
Assembly Modules:
IEFINTQA Initializes SYS1.SYSJOBQE data

IEFSGOPT
set.
System generation option
indicators.

Load Module Name: IEFJTRMl
Alias: IEFW23SD
Alias: IEFZA
Entry Point: IbFZA
Assembly Modules:
IEFACTLK Linkage to user accounting

IEFACTRT

IEFQMSSS
IEFWAD

IEFW23SD

IEFW31FK

IEFYSSMB
IEFZAJB3
IEFZGJBl

IEFZGMSG

IEFZHFAK

IEFZHMSG

routine.
Dummy, to be replaced by user
accounting routine.
Table Store subroutine.
Writes accounting information to
SYS1.ACCT data set.
Initializes for job termination,
exits to IEFZAJB3 (in this load
module).
Linkage to IEFW31SD (in IEFJTRM2
load module).
Message Enqueuing routine.
Job 'l'ermination routine.
Disposition and Unallocation
subroutine.
Contains Initiator/Terminator
messages.
Call to ZPOQMGRl subroutine (in
IEFZGJBl assembly module of this
load module).
Contains Initiator/Terminator
messages.

Load Module Name: IEFJTRM2
Alias: IEFW31SD
Entry Point: IEFW31SD
Assembly Modules:
IEFQMSSS Table store subroutine.

Appendix C: Load Modules and Assembly Modules 87

IEFSD003

IEFSD006

IEFSD008

IEFSD010

IEFWTERM
IEFW31SD

IEF08FAK

IEF35DUM

Passes control to IEFSD010, then
to IEK08FAK (both in this load
module).
converts record number to logic­
al track address (TTR).
Call to Table store subroutine.
Enters interpreter to prepare
for restart if necessary.
Dequeues and writes out system
message blocks <SMBs).
Job Ended Message routine.
Exit to IEFSD003 (in this load
module).
Linkage to IEFSD008 (in IEFINTFC
load module>.
Prevents unresolved external
reference to IEFS0035.

Load Module Name: IEFMCVOL
Alias: IEFCVOLl
Alias: IEFCVOL2
Alias: IEFCVOL3
Entry Point: IEFCVOLl
Assembly Modules:
IEFMCVOL sets up tables for mounting con­

trol volume.
IEFQMSSS Queue Manager Table Store

subroutine.
IEFVMFAK Linkage to IEFVMCVL (in IEFVMLSl

assembly module).
IEFVMLS6 JFCB Housekeeping Error Message

Processing routine.
IEFVMLS7 Contains Initiator/Terminator

IEFVMMSl

IEFYNFAK
IEFYSSMB

messages.
Linkage to IEFVMl (in IEFVMLSl
assembly module).
Linkage to IEFYNIMP.
Message Enqueuing routine,
enqueues 5MBs.

Load Module Name: IEFPRES
Entry Point: IEFPRES
Assembly Modules:

I IEFDEVPT Device bit pattern.
IEFK1MSG IEFPRES messages.
IEFPRES Volume Attribute Initialization

routine.
I IEFSCAN Bit pattern scan routine.

Load Module Name: IEFPRINT
Alias :---I"EFPRT--------
Alias: SPRIN'!'ER
Assembly Module:
IEFPRTXX Tape SYSOUT to printer or punch.

Load Module Name: IEFSELCT
Alias: IEFSD009, IEFVM1, IEFVMCVL
Entry Point: IEFSD009
Assembly Modules:
IEFACTLK Linkage to user accounting

IEFACTRT

IEFCVFAK
IEFQMSSS
IhFSD006

88

routine.
Dummy, to be replaced by user
accounting routine.
Linkage to IEFMCVOL.
Table Store subroutine ..
Converts record number to logic­
al track address (TTR) ..

IEFSD009

IEFSD059

IE]~SD088

IE]rSD089

IE]i'SD094

IEJi'SD095

IE]i'SEPAR

IEJi'SGOPT

IEFVKIMP

I Eli'VKMSG

IE]i'VMLK5

IEli'VMLSl

I Eli'VM2LS

I Eli'VM3LS

IEFVM4LS

IEliVM5LS

IEl~VM76

IEFWAD

IEFWSTRT

IEFW21SD

IEl~XAFAK

IEl~YNFAK

IEFYSSMB

Initializes
Initiator/Terminator.
Checks that all SYSOUT classes
requested by a job step have
been made active. Passes con­
trol to Job Separator routines
if so indicated.
Contains transition routine for
SYSOUT Job Separator. sets con­
trol characters, etc.
Contains PUT for Job Separator
and error exit. .
Set up for Job Separator rou­
tine. Control is given for
classes A and B only.
Block Letter routine for Job
separator.
Dummy Job Separator routine to
be replaced by user separator
routine.
System generation option
indicators.
Execute Statement Condition Code
routine.
Contains Initiator/Terminator
messages.
Linkage to IEFVMLS6 (in IEFERROR
load module).
JFCB housekeeping, Control
routine.
JFCB housekeeping, Fetch DCB
routine.
JFCB housekeeping, Generation
Data Group (GDG) Single routine.
JFCB housekeeping, Generation
Data Group (GDG) All routine.
JFCB housekeeping, Pattern Data
Set Control Block (DSCB)
routine.
Processes passed, non-labeled
tape data sets.
writes accounting information to·
SYS1.ACCT data set.
Job started and job termination
message routine.
System Control routine. In case
of restart, restores TT pointers
from CVT and reads modified JCT
from old queue. In case of step
restart, moves tables from old
to new queue.
Linkage to IEFXCSSS (in IEFALOCl
load module).
Linkage to IEFYNIMP (in IEFSTERM
load module).
Message Enqueuing routine.

Load Module Name: IEFSTERM
Alias: GO
Alias: IEFVMCVL
Alias: IEFVMl
Alias: IEFYN
Entry Point: IEFSD011
AS8ernbly Modules:
IEI~ACTLK Linkage to user accounting

routine.
IEFACTRT Dummy, ~o be replaced by user

accounting routine.

IEFIDFAK

IEFQMSSS
IEFSD002

IEFSD006

IEFSD007
IEFSDOll

IEFSD017

IEFVJIMP

IEFVJMSG

IEFWAD

IEFW22SD

I:EFW42SD

IEFYNIMP
IEFYNMSG

IEFYPJB3
IEFYPMSG

IEFYSSMB
IEFZAFAK

IEFZGMSG

IEFZGSTl

IEFZGST2

IEFZHMSG

IEF08FAK

IEF09FAK

Linkage to IE.FIDUMP (in IEFIDUJvlP
load module).
Table store subroutine.
Exit to IEF08FAK 0:(' IEF09FAK
(both in this load module).
converts record number to logic­
al track address ('rTR).
Call to Table Store subroutine.
Entry to Job .Managt8ment from
supervisor.
Places logical track address
(TTR) of first system message
block (SMB) into job control
table (JCT).
Job Statement Condition Code
routine.
Contains Initiator/Terminator
messages.
Writes accounting information to
SYS1.ACCT data set.
Passes control to IEFYNIMP (in
this load module), then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFJTRMl load
module).
Passes control to IEFIDUMP. (in
IEFIDUMP load module) if neces­
sary, or to IEFYNIMP (in this
module).
step Termination routine.
Contains Initiator/Terminator
messages.
Step Data Sfot Driver routine.
Contains Initiator/Terminator
messages.
Message Enqueuing :coutine.
Linkage to IEFZAJB3 (in IEF'JTRMl
load module).
contains Initiator/Terminator
messages.
Disposition subrou·tine. Per­
forms special disposition pro­
cessing for step to be
restarted.
Unallocation subroutine. Per­
forms special unallocation pro­
cessing for step to be
restarted.
contains Initiator/Terminator
messages.
Linkage to IEFSDOOB (in IEFINTE'C
load module).
Linkage to IEFSD009 (in IEFSELCT
load module).

I,oad Module Name: IEFVGMSS
P..lias: IEFVGMEP
Entry Point: IEFVGMEP
Assembly Modules:
l:EFQMSSS Table store subrou·tine.
IEFVGMEP Calls IEFVGNSS to write messages

for IEFVDA.
IEFVGMSS Builds Interpreter error system

message blocks (SMBs).
IEFVHQ Table store Interface routine.
IEFVHRSS Writes operator error messages.

Load Module Name: IEFVGMl
Assembly Module:
IEFVGMl Contains Interpreter messages.

Load Module Name: IEFVGM2
Assembly Ivjodule:
IEFVGM2 Contains Interpreter messages.

Load Module Name: IEFVGM17
Assembly Module:
IEFVGM17 Contains Interpreter messages.

Load Module Name: IEFVGM18
Assembly Module:
IEFVGM18 Contains Interpreter messages.

Load Module Name: IEFVGM70
Assembly Module:
IEFVGM70 Contains Interpreter messages.

I Load Module Name: IEFVGM71
Assembly Module:
IEFVGM71 Contains Interpreter messages.

Load Module Name: IEFVGM78
Assembly Module:
IEFVGM78 Contains Interpreter messages.

Load Module Name: IEFVHH
Alias: IEFVFA
Alias: IEFVHB
Alias: IEFVHEC
Alias: IEFVHF
Alias: IEFVHL
Entry Point: IEFVHH
Assembly Modules:
IEFACT User exit at Interpreter time.
IEFDAFAK Linkage to IEFVDA (in IEFDD load

IEFEAFAK

IEFHAFAK

IEFHCBF'K

IEFHCFAK

IEFHEBFK

IEFHEFAK

IEFJAFAK

IEFKGDUJ.VJ

IEFQf.'lSSS
IEFVFA
IEFVFB
IEFVGMSS

IEFVHB

IEFVHEC
IEFVHF
IEFVHGSS

module).
Linkage to IEFVEA (in IEFEXEC
load module).
Linkage to IEFVHA (in IEFCN'I'RL
load module).
Linkage to IEFVHCB (in IEFCN'!RL
load module).
Linkage to IEFVHC (in IEFCN'I'RL
load module).
Linkage to IEFVHEB (in IEFCNTRL
load module).
Linkage toIEFVHE (in IEFCNTRL
load module).
Linkage to IEFVJA (in IEFJOB
load module).
Linkage to IEF7KGXX (in IEFINTFC
load module).
'Table Store subroutine.
Interpreter Scan routine.
Symbolic parameter processing.
Builds Interpreter error system
message blocks (SMBs).
Generates DD* statement for data
in the input stream.
Enqueues job requests.
Post-processing Control routine.
DD* Error routine.

Appendix C: Load Modules and Assembly Modules 89

IEFVHH

IEFVHHB

IEFVHL
IEFVHQ
IEFVHRSS

sets up table for queuing and
provides Initiator/Terminator
interface.
Job and step enqueue
housekeeping.
Null statement routine.
Table store Interface routine.
Writes operator error messages.

Load Module Name: IEFVHN
Entry Point: IEFVHN
Assembly Modules:
IEEICNOl Builds new Reader-Writer table

by insert.ing TTRs obtained by
conversion of record numbers.
~rhese are the TTRs of the SYSOUT
JFCBs in the preempted track
area.

IEEILCDM

IEEMCROl
IEFK1FAK

IEFQMSSS
IEFRAPCP
IEFSD006

IEFVHN
IEF7K3XX

Prevents unresolved IEEICCAN
symbol after initialization.
Master Command routine.
Linkage to IEF7K1XX (in IEFVHl
load module).
Table store subroutine.
Restart Activation routine.
Converts record number to logic­
al track address (TTR).
Interpreter Termination routine.
Interpreter Exit routine.

Load Module Name: IEFVHl
Alias: IEFINITL
Alias: IEFKl
Entry Point: IEFKl
Assembly Modules:
IEEICNOl Builds new Reader/Writer table

by inserting TTRs obtained by
conversion of record numbers.
These are the TTRs of the SYSOUT
~JFCns in the preempted track
area.

IEEILCOl
IEEMCROl
IEEVSMDM

IEFQMSSS
IEFSD006

IEFSD007
IEFSGOPT

IEFVHQ
IEFVHRSS

Automatic Command routine.
Master Command routine.
Prevents unresolved external
reference to IEEVSMSB.
Table Store subroutine.
Converts record number to logic­
al track address (TTR).
Call to Table Store subroutine.
System generation option
indicators.
Table Store Interface routine.
Writes error messages to
operator.

IEFVHl
IEF'VH2

IEF'WSDIP

IEF'7K1XX

IEF7K2XX

IEF'K3XX

Interpreter work area (IwA).
Opens input reader and procedure
libraries.
Linkage control table (LCT)
initialization.
Entry to Job Management from
Nucleus Initialization Program
(NIP).
PCP-dependent Interpreter
initialization.
Interpreter exit routine. Calls
IEFRAPCP if restart is to be
done.

Load Module Name: IEFVINA
Entry Point: IEF'VINA
Assembly Modules:
IEF'QMSSS
IEFVGMSS

IEFVHQ
IEE'VBRSS

IEFVINA
IEFVINB

IEFVINC

IEFVINE

IEZNCODE

Table store routine.
Builds interpreter message
blocks.
Table Store Interface routine.
Writes in-stream error messages
to the operator.
Processes in-stream procedures.
Searches directory for the TTR
of an in-stream procedure.
Builds a directory entry for an
in-stream procedure.
Checks syntax of the PROC and
PEND statements.
Compresses blanks from in-stream
procedure statements.

Load Module Name: IEFXSOOO
Entry Point: IEFXSOOO
Assembly Modules:
IEF'V1SXL Allocation Error routine.
IEF'WCFAK Linkage to IEFWCIMP (in IEFALOC3

IEFXHOOO
IEF'XJF'AK

IEF'X300A
IEF'XSOOO

load module).
separation Strikeout routine
Linkage to IEFXCSSS (in IEFALOCl
load module).
Device Strikeout routine.
Decision Allocation routine.

Load Module Name: IEZDCODE
Assembly Module:
IE2DCODE Expands in-stream procedures.

Load Module Name: IEZNCODE
Assembly Module:
IE2NCODE Compresses in-stream procedures.

44K CONFIGURATION

I
Load Module Name: DEVNAMET
Entry Point: DEVNAMET
Assembly Module:
IEFWMASl Device Name Table.

90

I
Load Module Name: DEVMASKT
Entry Point: DEVMASKT
Assembly Module:
IEFWMSKA Device Mask Table.

Load Module Name: IEEFAULT
Alias: IEEGK1GM
Assembly Module:
IE;EGK1GM Fault routine, issules Master

Scheduler messages.

.Load Module Name: IEEJFCB
Alias: IEEIC3JF
Assembly Module:
IEEIC3JF Cont'ains preformatbed JFCB for

one START command.

Load Module Name: IEESET
Alias: IEEGES01
Assembly Module:
I:EmGES01 Master Scheduler SEIT Command

routine.

Load Module Name: IEESJFCB
Alias: IEEIC2NQ
Entry Point: IEEIC2NQ
Assembly Module:
IEEIC2NQ Saves START command JFCBs.
IESQMSSS Table store subroutine.

Load Module Name: IEESTART
Alias: IEEIC1PE
Entry Point: IEEIC1PE
Assembly Modules:
IEEREADR start Reader routine.
IEESTART Process START and STOP WTR

commands.
IEEWRITR Start Writer routine.

Load Module Name: IEETIME
Alias: IBEQOTOO
Assembly Module:
IEEQOTOO sets time and date.

Load Module Name: IEFALOCl
A.lias: IEFXA
Entry Point: IEFXA
Assembly Modules:

I Il~FDEVPT Device bit pattern.
IEFQMSSS Table Store subroutine.

I IEFSCAN Bit pattern scan routine.
IEFSD006 Converts record number to logic­

Il!:FSGOPT

IEFSwIN

IEFV15XL

IEFWA.OOO
IEFWCFAK

IEFWDOOO
IEFWD001

I1!:FXAMSG

I]~FXCSSS

II!:FXJIMP

IE:FXJMSG

al track address (TTR).
System generat.ion option
indicators.
Passes control to Descision
Allocation or Automatic Volume
Recoanition (AVR) routine.
Prevents unresolved external
symbol for IEF'S15XL.
Demand Allocat.ion routine.
Linkage to IEFWCOOO (in IEFALOC2
<load module).
External Action routine.
Message directory for External
Action routine.
Contains Initiator/Terminator
messages.
Allocation control routine.
Allocation Error Recovery
routine.
Contains Initiator/Terminator
messages.

IEFXKIMP

IEFXKMSG

IEFXTFAK

IEFXVMSG

IEFXVNSL

IEFXV001

IEFXV002

IEFX300A
IEFX5FAK

IEFYNFAK

IEFYSSMB

Allocation Error Non-recovery
routine.
Contains Initiator/Terminator
messages.
Linkage to IEFXTCCD (in IEFALOC2
load module).
Automatic Volume Recognition
(AVR) Message routine.
Automatic Volume Recognition
(AVR) Nonstandard Label routine.
Automatic Volume Recognition
(AVR) routine.
AVR Volume Serial Number Reading
routine.
Device strikeout routine.
Linkage to IEFX5000 (in IEFALOC2
load module).
Linkage to IEFYNIMP (in IEFSTERM
load module).
Message Enqueuing routine.

Load Module Name: IEFALOC2
Alias: IEFWCOOO
Alias: IEFXSOOO
Entry Point: IEFX5000
Assembly Modules:
IEFQMSSS Table Store subroutine.
IEFSD004 Step Initiation routine with

IEFSD006

IEFSD007

IEFSD010

IEFV15XL

IEFWCIMP
IEFWDOOO
IEFWD001

IEFW41SD
IEFXAFAK

IEFXHOOO
IEFXJIMP

IEFXJMSG

IEFXKIMP

IEFXKMSG

IEFXTDMY
IEFXTMSG

IEFX'l'OOD
IEFX300A
IEFX5000
IEFYNFAK

IEFYSSMB

exit to processing program.
Converts record to logical track
address (TTR).
Call to Table Storage
subroutine.
Dequeues and writes out system
messaqe blocks (SMBs).
Prevents unresolved external
reference for IEFS15XL.
TIOT Construction routine.
External Action routine.
Message directory for External
Action routine.
Exit to step Initiation routine.
Linkage to IEFXCSSS (in IEFALOC1
load module).
separation Strikeout routine.
Allocation Error Recovery
routine.
Contains Initiator/Terminator
messages.
Aloocation Error Non-recovery
routine.
Contains Initiator/Terminator
messages.
Queue Overflow routine.
Contains Initiator/Terminator
messages.
Space Request routine.
Divide strikeout routine.
Decision Allocation routine.
Linkage to IEFYNIMP (in IEFSTERM
load module).
Message Enqueuing routine.

Load Module Name: IEFBR14
Assembly Module:
IEFBR14 Branch 14.

Appendix C: Load Modules and Assembly Modules 91

Load Module Na~e: IEFCNTRL
Alias: IEFKG
Alias: IEFSD008
Alias: IEFVrlA

I Alias: IEFVHAA
Alias: IE:FVHCB
Entry Point: IEFVHA
Assembly Modules:
IEEMCRFK Linkage to IEEi'1CREP (in IEFCONI>1D

load module).
I~FACT User exit at Interpreter time.
IEFHHB Job and step enqueue

housekeeping.
IEFHMFAK Linkage to IEF7KPXX (in IEFcm*-,D

load module).
IEFQMSSS Table Store subroutine.
IEFSDOOl Interpreter entry to IEFSD009 or

t.o IEFW23SD.

IEFSD006

IEFSD007
IEFSD008

IEFSD010

IEFSD012
IEFSD090

IEFVDA
IEFVDDUM

IEFVEA
IEFVFA
IEFVFB
IEFVGI

IEFVGK

IEFVGMSS

IEFVGS

IEFVGT

IEFVHA

IEFVHAA

IEFVHB

IEFVHC

IEFVHCB

IEFVHE
I EFVHEB
IEFVHEC
IEFVHF
IEFVHGSS
IEFVHH

92

In case of restart, tests to
determine if restarting step has
been interpreted; if not,
returns to interpreter.
Converts record number to logic-
al track address.
Call to Table Store subroutine.
Initiator/'l'erminator to Inter­
preter interface.
Enters interpreter to prepare
for restart if necessary.
Dequeues and writes out system
me~sage blocks (SMBs).
DD* Statement routine.
Assign unit for system output
(SYSOUT) •
DD Card Scan routine.
Prevents unresolved IEFVDBSD
symbol.
EXEC Card Scan routine.
Interpreter Scan routine.
Symbolic parameter processingo
Interpreter Dictionary Entry
routine.
Interpreter Get Parameter
routine.
Builds system message blocks
(SMBs).
Interpreter Dictionary Search
routine.
Interpreter Test and Store
z·outine.
Performs input stream or proclib
I/O.
Sets reader end-of-file (EOF)
conditions.
Generates DD* statement for data
in the input stream.
Checks input for valid
continuation.
Identifies control statement
verbs and performs procedure
modification.
Job Router routine.
Pre-scan routine.
Enqueues job request.
Post-processing Control routine.
DD* Error routine.
Sets up tables for queuing and
provides Initiator/Terminator

IEHVHL

IEYilHQ
IEFVHRSS

IIEF'VIND

IEFJJA
IEF09FAK

IEF23FAK

IEF7KGXX

interface.
Null statement Processing
routine.
Table Store Interface routine.
Writes error messages to
operator.
In-stream procedures expansion
interface routine.
JOB Card Scan routine.
Linkage to IEFSD009 (in IEFSTERN
load module).
Linkage to IEFW23SD (in IEFJTE~j
load module).
Output table for step.

Load Module Name: IEFCOMMD
Alias: IEFVHM
Ali,ls: IEEMCREP
Ent.cy Point: IEFKP
Ass'2mbly Modules:
IEECNDUM Prevents unresolved external

reference to IEEICN01.
IEEILCDIvl Prevents unresolved IEEICAN sym­

bol after initialization.
IEEMCREP Links to IEEMCROl and returns to

IEF7KGXX (in IEFCNTRL load
module).

IEE1VlCROl Master command routine.
IEF.:1AAFK l.inkage to IEFVHAA in IEFCN'I'RL

load module).
IEFdAFAK Linkage to IEFVHA (in IEFCNTRL

load module).
IEFQMSSS Table store subroutine.
IEFSD006 converts record number to logic­

al track address (TTR).
IEF'IGMSS Builds system message blocks

(SMBs).
IEF'IHQ Table store interface routine.
IEF'lKPXX Command in the input stream

routine.

Load Module Name: IEFCSA
Ent:cy Point: IEFCSA
Ass'~mbly Module:
IEFCSA Reads JCL from console.

Load Module Name: IEFERROR
Alias: IEFVM6LS
Ent:cy Point: IEFVlv'lSGR
Assc:!mbly Modules:
IEFQMSSS Table Store subroutine.
IEFilMLS6 JFCB housekeeping, Error Message

routine.
IEF1MLS7 Contains Initiator/Terminator

IEF:{NFAK

IEF~{SSMB

messages.
Linkage to IEFYNIMP (in IEFSTERM
load module).
Message Enqueuing routine.

Load Module Name: IEFIDUMP
Ent:cy Point: IEFIDUMP
Assc~mbly Modules:
IEFIDMPM Contains Initiator/Terminator

IEFIDUMP
IEFQMSSS

messages.
Indicative Dump routine.
Table Store subroutine.

IEFYNFAK

IEFYSSMB

Linkage to IEF'YNIMP (in IEFSTERM
load module).
Message Enqueuing routine.

Load Module Name: IEFJOB~
Alias: IEFINTQS
Assembly ruodules:
IEFINTQA Initializes SYS1.SYSJOBQE data

set.
IE:FSGOPT System generation option

indicators.

Load Module Name: IEFJTERM
Alias: IEFZA
Alias: IEFW23SD
Entry Point: IEFZA
Assembly Modules:
IEFACTLK Linkage to user's accounting

IEFACTRT

IEFQMSSS
I.E:FSD006

IEE'SD007
IEFSD010

IEFWAD

IEFWTERM
I~:Fw23SD

n~;FW31SD

IEFYSSMB

IEFZAJB3
IEFZGJBl

IE~FZGMSG

IEFZHFAK

IEFZHMSG

routine.
Dummy routine ·to be replaced by
user's account routine.
Table store subroutine.
converts record number to logic­
al tr~ck address {TTR}.
Call to Table Store subroutine.
Dequeues and writes out system
message blocks (SMBs).
Writes accounting information to
SYS1.ACCT data set.
Job ended message routine.
Initializes for job termination
and exits to IEFZAJB3 {this load
module}.
Job termination exi,t to
IEFSD003.
Message Enqueuing routine,
enqueues 5MBs.
Job Termination rou~tine.
Disposition and Unallocation
suoroutine.
Contains initiator/terminator
messages.
Call to ZPOQMGRl subroutine in
IhFZGSTl (in IEFSTERM load
module).
Contains Initiator/Terminator
messages.

Load Module Name: IEFMCVOL
Alias: IEFCVOLl
Alias: IEFCVOL2
Alias: IEFCVOL3
Entry Point: IEFCVOLl
Assembly Modules:
IBFMCVOL sets up tables for mounting con­

trol volume.
1:E~FQMSSS Queue manager table store

subroutine.
IEFVMFAK Linkage to IEFVMCVL (in IEFVMLSl

assembly module).
IEFVf.1LS6 JFCB housekeeping error message

processing routine.
IEFVMLS7 Contains Initiator/Terminator

I EFVMMS 1

IEFYNFAK

messages.
Linkage to IEFVMl (in IEFVMLSl
assembly module).
Linkage to IEFYNIMP.

IEFYSSMB Message Enqueuing routine,
enqueues 5MBs.

Load Module Name: IEFPRES
Entry Point: IEFPRES
Assembly Modules:
IEFK1MSG IEFPRES messages
IEFPRES Volume Attribute Initialization

routine.

Load Module Name: IEFPRIN'l'
Alias: IEFPRT
Alias: SPRINTER
Assembly Module:
IEFPRTXX Tape SYSOUT to printer or punch.

Load Module Name: IEFSTERM
Alias: GO
Alias: IEFSD009
Alias: IEFYN
Assembly Modules:
IEFACTLK

IEFACTRT

IEFIDFAK

IEFQMSSS
IEFSD002

IEFSD006

IEF'SD007
IEFSD009

IEFSDOll

IEFS017

IEFSD059

IEFSD088

IEFSD089

IEFSD094

IEFSD095

IEFSEPAR

IEFSGOPT

IEFVJIMP

IEFVJMSG

IEFVKIMP

Linkage to user accounting
routine.
Dummy, to be replaced by user
accounting routine.
Linkage to IEFIDUMP (in IEFIDUMP
load module).
Table store subroutine.
Exit to EIF08FAK or IFSDOO.
(both in this load module).
Converts record number to logic­
al track address (TTR).
Call to Table store subroutine.
Initializes Initiator/
Terminator, passes control to
IEFW21SD (in this load module).
Entry to Job Management from
supervisor.
Places logical track address
(TTR) of first system message
block (SMB) in job control table
(JCT).
Checks that all SYSOUT classes
requested by a job step have
been made active. Passes con­
trol to Job Separator routines
if so indicated.
Contains transition routine for
SYSOUT Job Separator. Sets con­
trol characters, etc.
Contains PUT for Job Separator
and error exit.
Set up for Job Separator rou­
tine. Control is given for
classes A and B only.
Block Letter routine for Job
separator.
Dummy Job Separator routine to
be replaced by user separator
routine.
System generation option
indicators.
Job Statement Condition Code
routine.
Contains Initiator/Terminator
messages.
Execute statement Condition Code
routine.

Appendix C: Load Modules and Assembly Modules 93

IEFVKMSG

I.t;FVMLK5

Il!;FVMSLl

IEFVM2LS

IEFVI>13LS

IBFVM4LS

IBFVl"15LS

IEFVM76

IEFWAD

IE:FWSTRT

IEFW21SD

IEFW22SD

IEFW42SD

IEFXAFAK

IEFYNIMP
IEFYNMSG

IEFYPJB3
IEFYPMSG

IEFYSSMB
IEFZAFAK

IEFZGMSG

IEF2GSTl

IEF2GST2

Il!:FZHMSG

IEF08FAK

Contains Initiator/Terminator
messages.
Linkage to IEFVMLS6 (in IEFERROR
load module).
JFCB housekeeping, Control
routine.
JFCB housekeeping, Fetch DCB
routine.
JFCB housekeeping, Generation
Data Group (GDG) Single routine.
JFCB housekeeping, Generation
Data Group (GDG) All routine.
JFCB housekeeping, Pattern Data
Set Control Block (DCB) routine.
Processes passed, non-labeled
data sets.
Writes accounting information to
SYS1.ACCT data set.
Job started and job termination
message routine.
System Control routine. In case
of restart f restores TT pointers
form CVT and reads modified JCT
from old queue. In case of step
restart, moves tables from old
1:0 new queue.
Passes control to UEFYNIMP (in
1:his load module), then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFJTERM load
module).
Passes control to IEFIDUMP (in
IEFIDUMP load module> if neces­
sary, or to IBFYNIlvlP (in this
load module>.
Linkage to IEFXCSSS (in IEFALOCl
load module>.
step Termination routine.
Contains Initiator/Terminator
messages.
Step Data Set Driver routine.
Contains Initiator/Terminator
messages.
Messages Enqueuing routine.
Linkage to IEFZAJB3 (in IEFJTERM
load module).
Contains Initiator/Terminator
messages.
Disposition subroutine. Per­
forms special disposition pro­
cessing for step to be
restarted.
Unallocation subroutine. Per­
forms special unallocation pro­
cessing for step to be
restarted.
Contains Initiator/Terminator
messages.
Linkage to IEFSD008 (in IEFCNTRL
load module>.

Load Module Name: IEFVGMl
Assembly Module:
IEFVGNl Contains Interpreter messages.

94

Load Module Name: IE.FVGM2
Assembly Module:
IEFVGM2 Contains Interpreter messages.

Load Module Name: IEFVGM17
Assembly Module:
IEFVGM17 Contains Interpreter messages.

Load Module Name: IEFVGM18
Assembly Module:
IEFVGM1, Contains Interpreter messages.

Load Module Name: IEFVGM70
Assembly Module:
IEFVGM70 Contains Interpreter messages.

I Load Module Name: IEFVGM71
Assembly lvlodule:
IEFVGM71 Contains Interpreter messages.

Load Module Name: IEFVGM78
Assembly Module:
IEFVGM78 Contains Interpreter messages.

Load Module Name: IEFVHl
Alias: IEFKl
Alias: IEFVHN
Alias: IEFINITL
Entry Point: IEFKl
Assembly Modules:
IEEICNOl Initialize new reader writer

table by inserting TTRs obtained
by conversion of record numbers.
These are the TTRs of the SYSOUT
JFCBs in the preempted track
area.

IEEILCOl
IEEMCROl
IEEVSMDM

IIEFDEVPT
IEFKIMSG

IEFQMSSS
IEFRAPCP

IIEFSCAN
IEFSD006

IEFSD007
IEFSGOPT

IEFVHN

IEFVHQ
IEFVHRSS

IEFVHl

IEFVH2

IEF7KIXX

Automatic command routine.
Master command routine.
Prevents unresolved external
symbol for IEEVSMSG.
Device bit pattern.
Reader/Interpreter message
routine.
Table store subroutine.
Prepares for restart.
Bit pattern scan routine.
Converts record number to logic­
al track address (TTR).
Call to table store subroutine.
System generation option
indicators.
Interpreter termination
routine.
Table store interface routine.
Writes error messages to
operator.
Interpreter work area (IWA)
initialization routine.
Opens input reader and procedure
libraries.
Entry to job management from
nucleus initialization program
(NIP).

IEF7K2XX

IEF7K3XX

PCP dependent interpreter
initialization.
Interpreter exit routine.
IEFRAPCP if restart. is to
done.

Load Module Name: IEFVINA
Entry Point: IEFVINA
Assembly Modules:
IEFQMSSS Table store s1.lbrout.ines.
IEFVGMSS Builds interpreter message

blocks.

Calls
be

IEFVHQ Table Store Interface routine.
IEFVHRSS Writes in-stream error messages

to the operator.
IEFVINA Processes in-stream procedures.

IEFVINB

IEFVINC

IEFVINE

IEZNCODE

Searches directory for the TTR
of an in-stream procedure.
Builds a directory entry for an
in-strearr..procedure.
Checks syntax of the PROC and
PEND statements.
Compresses blanks from in-stream
procedure statements.

Load ~odule Name: IEZDCODE
Assembly Module:
IEZDCODE Expands in-stream procedures.

Load Module Name: IEZNCODE
Assembly Module:
IEZNCODE Compresses in-stream procedures.

lOOK CONFIGURATION

Load Module Name: DEVNAMET
Entry Point: DEVNAMET
Assembly Module:
I EFWMAS 1 Device Name Table.

Load Module Name: DEVMASKT
Entry Point: DEVMASKT
Assembly 1'1Odule:
IEFWMSKA Device Mask Table.

L,oad Module Name: GO
A.lias: IEFVHA

I .A.lias: IEFVINA
A.lias: IEFVMCVL
A.lias: IEFVMl
Alias: IEFYN
A.lias: IEFZA

I A.lias: IEZDCODE
A.lias: IEZNCODE
E;ntry Point: IEFSDOll
Assembly Modules:
IEECNDUM Prevents unresolved. external

reference to IEEICN01.
IEEFZGJBl Disposition and unallocation

IEEILCDM

IEEMCROl
IEFACT
IEFACTLK

IEFACTRT

IEFCVFAK

I.EFIDFAK

IEFQMSSS
IEFRPREP
IEFSDOOl

subroutine.
Prevents unresolved. external
reference.
Master command rouitine.
User exit at interpreter time.
Linkage to user's a.ccounting
routine.
Dummy routine to ble replaced by
user's accounting :coutine.
Linkage to IEFMCVOL (in IEFMCVOL
load module).
Linkage to IE.FIDUMlI? (in IEFIDUMP
load module).
Table store subroultine.
Restart preparation.
Interpreter entry to IEFSD009 or
to IEFW23SD (both in this load
module). In case IOf restart,
tests to determine if restarting
step has been inte:cpreted; if
not, returns to interpreter.

IEFSD002

IEFSD003

IEFSD006

IEFSD007
IEFSD008

IEFSD009

IEFSD010

IEFSDOll

IEFSD012

IEFSD059

IEFSD088

IEFSD089

IEFSD090

IEFSD094

IEFSD095

IEFSEPAR

IEFSGOPT
IEFVDA
IEFVDDUN

IEFVEA

Exit to IEFSD008 or IEFSD009
(both in this load module).
Passes control to IEFSD010 and
then goes to lEFSD008 (both in
this load module).
Converts record number to logic­
al track address (TTR).
Call to table store subroutine.
Initiator to interpreter inter­
face. ~nters interpreter to
prepare for restart if
necessary.
Initiator/terminator initializa­
tion of output unit.
Dequeues and writes out system
message blocks (SMBs).
Entry to job management from
supervisor.
DD* statement routine. 5MB)
into job control table (JCT).
Checks that all SYSOUT classes
requested by a job step have
been made active. Passes con­
trol to Job separator routine if
so indicated.
Contains transition routine for
SYSOUT job separator. Sets con­
trol characters, etc.
Contains PUT for jon separator
and error exit.
Assigns unit for system output
(SYSOUT).
set up for job separator rou­
tine. Control is given for
classes A and B only.
Block letter routine for jOb
separator.
Dummy job separator routine to
be replaced by user separator
routine.
SYSGEN option flags.
DD Card Scan routine.
Prevents unresolved IEFVDBSD
symbol.
Exec Card Scan routine.

Appendix c: Load Ivjodules and Assembly l'o1odules 95

IEEVFA
IEFVFB
IEFVGI

IEFVGK

IEFVGMSS

IEFVGS

IEFVGT

IEFVHA

IEFVHAA

IEFVHB

IEFVHC

IEFVHCB

IEFVHE
IEFVHEB
IEFVHEC
IEFVHF
IEFVHGSS
IEFVHH

IEFVHHB

IEFVHL

IEFVHQ
IEFVHRSS

IEFVINA
IEFVINB

IEFVINC

IEFVIND

IEFVINE

IEFVJA
IEFVJIt-1P

IEFVJMSG

IEFVKIMP

IEFVKMSG

IEFVr.'lLSl

IEFVMLS6

IEFVMLS7

I EFVt-'12LS

IEFVM3LS

IBFVM4LS

96

Interpreter Scan routine.
Symbolic parameter processing.
Interpreter dictionary entry
l~outine.
Interpreter get parameter
routine.
Builds interpreter system mes­
sage blocks <SMBs).
Interpreter dictionary search
routine.
Interpreter test and store
routine.
Performs input stream or proclib
]:/0.
Sets reader end-of-file
conditions.
Generates DD. for data in the
input stream.
Checks input for valid
continuation.
Identifies control statement
verbs and performs procedure
modification.
Interpreter Router routine.
Pre-scan routine.
Enqueues job request.
Post-processing Control routine.
DD. Error routine.
sets up tables for queuing and
provides initiator/terminator
interface.
Job and step enqueuing
housekeeping.
Null statement processing
routine.
Table store interface routine.
Writes error messages to
operator.
Processes in-stream procedures.
Searches directory for the TTR
of an in-stream procedure.
Builds a directory entry for an
in-stream procedure.
In-stream procedures expansion
interface routine.
Checks syntax of the PROC and
PEND statements.
Job card scan routine.
JOB statement condition code
routine.
Contains initiator/terminator
messages.
EAEC statement conditional
execution routine.
Contains initiator/terminator
messages.
JE'CB housekeeping control
routine.
JFCB housekeeping error message
processing routine.
Contains initiator/terminator
messages.
JFCB housekeeping fetch DCB
routine.
JFCB housekeeping generation
data group single routine.
JFCB housekeeping generation
data group all routine.

IEFVM5LS

IEF\1M76

IEFWAD

IEFWSTRT

IEFWTERM
IEFW21SD

IEFW22SD

IEFW23SD

IEF"W31SD

IEF"iJ42SD

IEFXAFAK

IEFYNIMP
IEFiNMSG

IEFYPJB3
IEFYRCDS

IEFYSSMB
IEFZAJB3
IEF"ZGSTl

IEF:ZGST2

IEF~ZHMSG

IEF2GMSG

IEF7KGXX
IEF7KPXX

IIEZ])CODE
IEZNCODE

JFCB housekeeping patterning
data set control block (DSCB)
subroutine.
Processes passed, non-labeled
tape data sets.
Writes accounting information to
SYS1.ACCT data set.
Job started and job termination
message routine.
Job ended message routine.
System control routine. In case
of restart, restore TT pointers
from CVT and reads modified JCT
from old queue. In case of step
restart, moves tables from old
to new queue.
Passes control to IEFYNIMP
assenilily module, and then to
IEFSD002 or IEFZA~B3 <all in
this load module).
Initializes for job termination
and exits to IEFZAJB3 (in this
load module>.
Job termination exit to
IEFSD003.
Passes control to IEFIDUMP if
needed, or to IEFYNIMP.
Linkage to IEFXCESS (in IEFALLOC
load module>.
Step termination routine.
Contains initiator/terminator
messages.
Step data set driver routine.
Table of Abend codes eligible
for restart.
Message enqueuing routine.
Job termination routine.
Disposition subroutine. Per­
forms special disposition pro­
cessing for step to be
restarted.
Unallocation subroutine. Per­
forms special unallocation pro­
cessing for step to be
restarted.
Contains initiator/terminator
messages.
Contains initiator/terminator
messages.
Output tables for step.
Command in the input stream
routine.
Expands in-stream procedures.
Compresses in-stream procedures.

Load Nodule Name: IEEFAULT
Alias: IEEGK1GM
Assc~mbly Module:
IEEGK1GM Fault routine, issues Master

Scheduler messages.

Load Module Name: IEEJFCB
Alias: IEEIC3JF
Assembly Module:
IEEIC3JF Contains preformatted JF'CB for

one START command.

Load Module Name: IEESET
Alias: IhEGESOl
Assembly Module:
IEEGES01 Master Scheduler SE~r Command

routine.

Load Module Name: IEESJFCB
Alias: IEEIC2NQ
Entry Point: IEEIC2NQ
Assembly l"lodule:
IEEIC2NQ Saves START command JF'CBs.
IESQMSSS Table Store subroutine.

Load Module Name: IEESTART
Alias: IEEIC1PE
Entry Point: IEEIC1PE
Assembly Modules:
Il!:EREADR Start Reader routin.e.
IEESTART Process START and s~rop WTR

commands.
IEEWRITR Start Writer routin.e.

Load Module Name: IEETIME
Alias: lEEQOTOO
Assembly Module:
IEEQOTOO Sets time and date.

Load Module Name: IEFALLOC
Alias: IEFXA
Entry Point: IEFXA
Assembly I-1odules:
IEFCVFAK Linkage to IEF.MCVOL (in IEFMCVOL

IIEFDEVPT
IEFQMSSS

IIEFSCAN
IEFSD004

IE:FSD006

IEFSD007
IEFSD010

IEFSGOPT

IE:FVJMSG

IEFVKMSG

IEFV15XL

IEFWAOOO
IEFWCIMP

IEFWDOOO
IEFWD001

IEFWSWIN

I:E~FW41SD
IEFXAMSG

IEFXCSSS
IEFXHOOO
I:8FXJIMP

load module).
Device bit pattern.
Table store subroutine.
Bit pattern scan routine.
Step initiation routine, with
exit to processing program.
Converts record number to logic­
al track address (TTR).
Call to table store subroutine.
Dequeues and writes out system
message blocks (SMBs).
System generation option
indicators.
Contains initiator/terminator
messages.
Contains initiator/'terminator
messages.
Prevents unresolved external
symbol for IEFS15XL.
Demand allocation routine.
Task input/output table (TIOT)
construction routin'e.
External action routine.
Message directory for external
action routine.
Passes control to decision allo­
cation or AVR routine.
Exit to step initiation routine.
Contains initiator/terminator
messages.
Allocation control .routine.
separation strikeout routine.
Allocation error recovery
routine.

IEFXJMSG

IEFXKIMP

IEFXKMSG

IEFXTDMY
IEFXTMSG

IEFXTOOD
IEFXT002
IEFXTOOO
IEFXVMSG
IEFXVNSL
IEFXVOOl
IEFXV002

IEFX300A
IEFX5000
IEFYNFAK

IEFYSSMB

IEF35DUM

Contains initiator/terminator
messages.
Allocation error non-recovery
routine.
Contains initiator/terminator
messages.
Queue overflow routine.
Contains initiator/terminator
messages.
Space request routine.
TIOT compression routine.
DADSM error recovery routine.
AVR message routine.
AVR Nonstandard Label routine.
Automatic volume recognition.
AVR Volume Serial Number Reading
routine.
Device strikeout routine.
Decision allocation routine.
Linkage to IEFYNIMP (in GO load
module).
Message enqueuing routine,
enqueues 5MBs.
Prevents unresolved IEFSD035
symbol.

Load Module Name: I~FBR14
Assembly Module:
IEFBR14 Branch 14.

Load Module Name: IEFCSA
Entry Point: IEFCSA
Assembly Module:
IEFCSA Reads JCL from console.

Load Module Name: IEFIDUMP
IEFIDMPM Contains Initiator/Terminator

IEFIDUMP
IEFQMSSS
IEFYNFAK

IEFYSSMB

messages.
Indicative Dump routine.
Table Store subroutine.
Linkage to IEFYNIMP (in IEFSTERM
load module).
Message Enqueuing routine.

Load Module Name: IEFJOBQE
Alias: IEFINTQS
Assembly Modules:
IEFINTQA Initializes SYS1.SYSJOBQE data

IEFSGOPT
set.
System generation option
indicators.

Load Module Name: IEFMCVOL
Alias: IEFCVOLl
Alias: IEFCVOL2
Alias: IEFCVOL3
Entry point: IEFCVOLl
Assembly Modules:
IEFMCVOL sets up tables for mounting con­

trol volume.
IEFQMSSS Queue manager table store

subroutine.
IEFVMFAK Linkage to IEFVMCVL (in IEFVMLSl

assembly module).
IEFVMLS6 JFCB housekeeping error message

processing routine.
IEFVMLS7 Contains initiator/terminator

messages.

Appendix C: Load Modules and Assembly Modules 97

IEFVMMSl

IEFYNFAK
IEFYSSMB

Linkage to IEFVMl (in IEFVMLSl
assembly module).
Linkage to IEFYNIMP.
Message enqueuing routine,
enqueues 5MBs.

Load Module Name: IEFPRBS
Entry Point:: IEFPRES
Assembly Modules:
IEFK1MSG IEFPRES messages
IEFPRES Volume Attribute Initialization

routine.

Load Module Name: IEFPRINT
Alias: IEFPRT
Alias: SPRINTER
Assembly Module:
IEFPRTXX Tape SYSOUT to printer or punch.

Load Module Name: IEFVGMl
Assembly Module:
IEFVGMl Contains Interpreter messages.

Load Module Name: IEFVGM2
Assembly Module:
IEFVGM2 Contains Interpreter messages.

Load Module Name: IEFVGM17
Assembly Module:
IEFVGM17 Contains Interpreter messages.

Load Module Name: IEFVGM18
Assembly Module:
IEFVGN18 Contains Interpreter messages.

Load Module Name: IEFVGM70
Assembly Module:
IEFVGM70 Contains Interpreter messages.

I

Load Module Name: IEFVGM71
Assembly Module:
IEFVGM71 Contains interpreter messages.

98

Load Module Name: IEFVHl
Alias: IEFKl
Alias: IEFVHN
Alias: IEFINITL
Entry Point: I~FKl
Assembly Modules:
IEEICNOl Builds new reader writer table

by inserting TTRs obtained by
conversion of record numbers.
These are the TTRs of the SYSOUT
JFCBs in the preempted track
area.

IEEILCOl
IEEMCROl
IEEVSMDM

IIEE'DEVPT
IEE'HAFAK

IEE'K1MSG
IEE'QMSSS
IEE'RAPCP

IIEE'SCAN
IEE'SD006

IEE'SD007
IEFSGOPT

IEE'VHN
IEE'VHQ
IEf'VHRSS

IEI'VHl

IEl'VH2

IEFWSDIP

IE:E'7K1XX

IE:E'7K2XX

IE:E'7K3XX

Automatic command routine.
Master command routine.
Prevents unresolved external
reference for IEEFSMSG.
Device bit pattern.
Linkage to IEFVHA (in GO load
module).
Interpreter message routine.
Table Store subroutine.
Prepares for restart.
Bit pattern scan routine.
Converts record number to logic­
al track address (TTR).
Call to table store subroutine.
System generation option
indicators.
Interpreter termination routine.
Table store interface routine.
Writes error messages to
operator.
Interpreter Initialization
routine.
Opens input stream data set and
procedure library.
Linkage control t.able (LCT)
initialization.
Initial entry to job management
from nucleus initialization pro­
gram (NIP).
PCP interpreter system-dependent
initialization.
Interpreter exit routine. Calls
IEFRAPCP if restart i's to be
done.

Assembly Modules and
Control Sections
The following table shows in which load
modules each assembly module is used in the
three configurations of job management.
The first column lists the assembly module
names in alphameric order. Except as indi­
cated, all assembly modules ar'~ contained
in load modules in the SYS1.LINKLIB data
set. The third column lists the control
section names that correspond to the

assembly module names in the first column.
The next three columns of the table indic­
ate which load modules of each configura­
tion contain each assembly module. The two
riqht-hand columns refer to the CHARTS sec­
tion. If a control section is shown as a
subroutine block, the flowchart number is
listed in the nAppears As Subr. Blockn
column; if the flow within a control sec­
tion is given in a chart, the flowchart
number is listed in the nFlow is Defined n
column.

Assembly Modules and Control Sections (Part 1 of 7)
r-----------T------T------------T--------------------------------T----------------------,
I I I I Load Modules in Which I Chart Number I
I I I I Assembly Modules are Used ~------------T---------1
I Assembly I I Con·trol ~----------T----------T----------~ Appears As I Flow is I
IModule NamelNotes I Section Name I 18K I 44K I lOOK I Subr. Block I Defined I
t-·----------+------+-----------·--+----------+----------+----------+------------+---------~

IEECNDUM I IEEICNOl I IEFINTFC IEFCOMMD GO

IEEGESOl
lEEGK1GM
IEEICNOl
IEEIC2NQ
IEElC3JF
IEEILCDM

IEElLCOl
IEEMCREP
IEEMCRFK
lEEJ:v1CROl

lEEQO'I'OO
lEEREADR
IEERSCOl
lEERSROl
lEES TART
IEEVStl.DM
IEEWRITR
IEFAC'l
IEFAC'l'FK

IEFACTLK

lEFACTRT

IEFBR14
lEFCSA
IEFCVFAK

I I IEFCOMMD
I IEEGESTO I IEESET
I IEEGK1GM I IEEFAULT
I IEEICNOl I IEFVHN
I IEEIC2NQ I IEESJFCB

** I IEEIC3JF I IEEJFCB
I IEEICCAN I IEFVHN
I I IEFCOMMD

** I IEEICCAN I IEFVHl

*
*

I IEENCREP
IEESBl
IEEBBl

IEEQOTOO
IEEICRDR
lEEMSLT
lEEMSLT
IEEIC1PE
lEEVSMSG
IEECWTR
lEF.AC'l'
IEFACTFK

lEF'.ACTLK

lEF.ACTRT

lEFBR14
IEFCSA
IEFCVOLl

IEFINTFC
IEFCOMMD
IEFVHl
IEFVHN
lEETlME
IEESTART

IEESTART
IEFVHl
IEESTART
IEFVHH
IEF~TERM
IEl!'SELCT
IEFJTRMl
lEFSTERM
lEFSELCT
lEFJTRMl
lEFSTERM
lEFSELCT
lEFJTRMl
IEFBR14
lEFCSA
lEFSELCT
IEFALOCl
IEFALOC4
IEFALOC5
IEFVHH

IEESET
lEEFAUL'I'
IEFVHl
IEESJFCB
IEEJFCB

Il!.FCOMMD
IEFVHl
IEFCOMMD
IEFCOt-:MD

IEFVHl
IEFCOMMD

IEETI.ME
IEESTART

IEESTART
IEFVBl
IEESTART
IEFCNTRL
IERSTERM

IEFJTERM
lEFSTERM

IEFJTERM
IEFSTERM

lEFJTERM
IEFBR14
IEFCSA
IEFSTERM
IEFALOCl
IEFALOC2

lEESE'I'
IEEFAULT
lEFVHl
lE..ESJFCB
IEEJFCB

GO
lEFVHl

GO
IEFVHl

lEETiME
lEESTART

IEESTART
IEFVHl
IEESTART
GO
GO

GO

GO

IEFBR14
IEFCSA
GO
lEFALLOC

lEFDAFAK
lEFDEVP'r

lEFVDA
IEFDEVPT I EFALOC 2 IEFALOCl lEFALLOC

IEFALOC4 IEFVHl I lEFVHl
lEFPRES I

IEFDPOST * IEFDPOST I
lEFEAFAK IEFVEA lEFVHH I
lEFFAF'AK I IEFVFA IEFCNTRL I

05,23

05

02
02,53,54,55

53,54,55

46

47

05
05

48

L __________ . __ .L ______ .L __________ . __ .L __________ .L __________ .L __________ J. ____________ J. _________ J

Appendix C: Load Modules and Assembly Modules 99

Assembly Modules and Control ~ections (Part 2 of 7)
r------------T------T------------T--------------------------------T----------------------,
I I I I Load Modules in Which I Chart Number I
I I I I Assembly Modules are Used ~------------T---------~
I Assembly I I Control ~----------T----------T----------~ Appears As I Flow is I
IModule NamelNotes Isection Name I 18K I 44K I lOOK I Subr. Blockl Defined I
r-----------+------+------------+----------+----------+----------+------------+---------~

IEFGMFAK IEFVGM IEFDD I
IEFHAAFK IEFVHAA IEFCO~lD IEFCOMMD I

IEFHAFAK

IEFHBFAK
IEFHCFAK
IEFHCBFK

IEFHEFAK
IEFHEBFK
IEFHECFK
IEFHFFAK

IEFHHFAK
IEFHLFAK
IEFHMFAK
IEFIDFAK
IEFIDMPfoil
IEFIDUMP
IEFINTQA
IEFJAFAK
IEFKGDUM
IEFK1FAK
IEFMCVOL

IEFPRES
IEFPR'l'XX
IEFQMSSS

IEFINTFC I
IEFVHA IEFINTFC IEFCOMMD I

IEFCOMMD I
IEFVHH IEFVHl IEFVHl I

IEFVHB
IEFVHC
IEFVHCB

I EFCNT RL I
IEFVHH I
IEFINTFC I
IEFVHH I

IEFVHE
IEFVHEB
IEFVHEC
IEFVHF

IEFVHH I
IEFVHH I

i
I
I
I
I
I
I
I
I
I
I
I
I

IEFVHH
IEFVHL
IEFVHM
IEFIDUMP
IEFIDMPM
IEFIDUMP
IEFINTQS
IEFJA
IEFKG
IEFKl
IEFCVOLl
IEFCVOL2
IEFCVOL3
IEFPRES
SPRINTER
IEFQMSSS

IEFCNTRL
IEFEXEC
IEFJOB
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFSTERM
IEFIDUMP
IEFIDUMP
IEFJOBQE
IEFVHH
IEFVHH
IEFVHN
IEFMCVOL

IEFPRES
IEFPRINT
IEFSTERM
IEFSELCT
IEFALOCl
IEFALOC4
IEFALOC5
IEFATACH
IEFCNTRL
IEFDD
IEFINTFC
IEFEXEC
IEFJOB

I IEFCOMMD
I IEF£RROR
i IEFIDUMP
I IEESJFCE
I IEFVGMSS
I IEFVHH
I IEFVHN
I IEFVHl
I IEFVINA
I IEFJTRMl
I IEFJTRM2

IEFCNTRL
IEFSTERM
IEFIDUMP
IEFIDUMP
IEFJOBQE

IEFMCVOL

IEFPRES
IEFPRINT
IEFSTERM
IEF,ALOCl
IEFCNTRL
IEFALCC2

IEFERROR
IEFIDUMP
IEFVHl
IEESJFCB
IEFCOMMD
IEFJTERM
IEF,MCVOL

IEFvINA

GO
IEFIDUMP
IEFIDUMP
IEFJOBQE

IEFMCVOL

IEFPRES
Il.FPRINT
GO
IEFVHl

IEFIDUMP

IEFSJFCB
IEFALLOC
IEFMCVOL

J IEFMCVOL

I I IEFSCAN I IEFSCAN IEFALOC2
I IEFALOC4
I IEFPRES

IEFALOCl
IEFVHl

IEFALLOC
IEFVHl

I IEFSDOOl I IEFSDOOl IEFINTFC IEF(~NTRL GO
I IEFSD002 I IEFSD002 IEFSTERM IEFSTERM GO
I IEFSD003 I IEFSD003 IEFJTERM IEF,JTERM GO

46,53,54

16
14
25,53,54,55

53

24

27

L __________ ,_J. ______ ..L ____________ J. __________ ..L ____ . ______ ..L __________ ..L ____________ J. _________ J

100

1\,ssembly Modules and Control Sections (Part 3 of 7)
r---.... -------T------T----·-----·---T-------------------------------T----------------------,
I I J I Load Modules in Which I Chart Number I
I I I I Assembly Modules are Used ~------------T---------~
I Assembly I I Control ~----------T----------T----------~ Appears As I Flow is I
IModule NamelNotes ISection Name I 18K I 44K I lOOK I Subr. Blockl Defined I
.'----------+------+---_._---_._--+----------+----------+----------+------------+---------~

lEFSD004 lEFSDOO,q IEFATACH IEFALOC IEFALLOC 46
IEFSD006 IEFSD006 IEFSTERM IEFSTERM GO

IEFALOC2 IEFALOCl IEFVHl
IEFALOC4 IEFCNTRL

IEFSD007

lEFSD008
IEFSD009
IEFSD010

IEFSDOll
IEFSD012
IEFSD017
IEFSD059
IEFSD088
IEFSD089

IEFSD090
IEFSD094
IEFSD095
II!;FSEPAR
IEFSGOPT

IEFVDA
IEFVDDUM
IEFVEA
IEFVFA
IEFVFB
IEFVGI

lEFVGK

IEFVGMEP
lEFVGl-1SS

IEFVGIvil
lEFVGM2
IEFVGM3
I)!;FVG!V14

**

IEFSD007

IEFSD008
IEFSD009
IEFSD010

IEFSDOll
IEFSD012
IEF'SD017
IEFSD059
IEFSD088
IEFSD089
IEFSD89.M
IEFSD090
IEFSD094
IEFSD095
IEFSEPAR
IEFSGOPT

IEFVDA
IEFVDBSD
lEFVEA
lEFVFA
IEFVFB
IEFVGI

IEFVGK

IEFVGM
IEFVGM

IEFVGMl
IEFVGM2
IEFVGM3
lEFVGM4

IEFALOC5 IEFALOC2
IEFATACH
IEFSELCT
IEFDD
IEFINTFC
IEFJTERM
IEFVHN
IEFVHl
IEFS'l'ERM
IEFATACH
IEFINTFC
IEFJTERM
lEFVril
IEFlNTFC
IEFSELCT
IEFATACH
IEFJTRM2
IEFSTERM
IEFDD
IEFSTERM
IEFSELCT
IEFSELCT
IEFSELCT

IEFDD
IEFSELCT
IEFSELCT
IEFSELCT
IEFSELCT
IEFALOC2
lEFVH1
IEFJOBQE
lEFDD
IEFDD
IEFEXEC
IEFVHH
lEFVHH
lEFDD
IEFEXEC
lEFDD
IEFEXEC
IEFJOB
IEFVGMSS
IEFVHH
IEFVINA
IEFCOMMD
lEFVGMSS
IEFEXEC
lEFJOB
IEFVGMl
IEFVGM2
IEFVGM3
IEFVGM4

IEFVHl
IEFCOMMD
lEFJTERM

lEFSTERM
lEFALOC2
IEFCN'IRL
lEFVHl
lEFJTERM
lEFCNTRL
IEFSTERM
IEFALOC2
IEFJTERM
lEFSTERM
IEFCNTRL
lEFSTERM
lEFSTERM
IEFSTERM
IEFSTERM

IEFCNTRL
IEFSTERM
IEFSTERM
IEFSTERM
IEFSTERM
IEFALOCl
lEFVH1
lEFJOBQE
IEFCNTRL
IEFCNTRL
lEFCNTRL
IEFCNTRL
lEFCNTRL
IEFCNTRL

IEFCNTRL

IEFCNTRL
IEFVlNA
IEFCOMMD

lEFVGM1
IEFVGM2
lEFVGM3
IEFVGM4

IEFALLOC
GO

GO
IEFVH1

GO
GO
GO

GO
GO
GO
GO
GO
GO

GO
GO
GO
GO
GO
IEFVHl
IEFJOBQE

GO
GO
GO
GO
GO
GO

GO

GO

IEFCOMIvlD

lEFVGMl
IEFVGM2
IEFVGM3
IEFVGtv14

I
I
I
I
I
I
I
I

Ii • I

46

14

14
14

18

53

53,54,55
53,54,55
53,54,55
53,54,55

48

IL ___________ J. ______ .1. ____________ J. __________ J. __________ ..l __________ ..l ____________ J. _________ J

Appendix C: Load ~.iodules and Assembly LVlodules 101

Assembly Modules and Control sections (Part 4 of 7)
r-----------T------T------------T---------------------------------T----------------------,
I I I I Load Modules in Which I Chart Number I
i I I I Assembly Modules are Used ~------------T---------~
I Assembly I I Control ~--------·--T-----------T----------~ Appears As I Flow is I
I Module Name Ji.'lotes I Section Name I 18K I 44I(I lOOK I Subr. Block I Defined I
~-----------+------+------------+----------+-----------+----------+------------+---------1

IEFVGl¥118
IEFVGM70
IEFVGM71
IEFVGM78
IEFVGS

IEFVGT

IEFVHA
IEFVHAA
IEFVHB
IEFVHC
IEl''VHCB
IEFVHE
IEFVHEB
IEFVHEC
IEFVHl"
IEFVHGSS
IEFVHH
IEFVHHB
IEFVHL
IEFVHN
IEFVHQ

IEFVHR3S

IEFVHl
IEFVH2
IEFVINA
IEFVINB
IEFVINC
IEFVIND

IEFVINE
IEFVJA
IEFV15XL

I
I
I

IEFVGM18
IEFVGM70
IEFVGM71
IEFVGM78
IEFVGS

IEFVGT

IEE'VHA
IEFVHAA
IEFVHB
IEFVHC
IEFVHCB
IEFVHE
IEFVHEB
IEFVHEC
IEFVHF
IEFVHG
IEFVHH
IEFVHHB
IEFVHL
IEFVHN
IEFVHQ

IEFVHR

IEFVHl
IEFVH2
IEFVINA
IEFVINB
IEFVINC
IEFVIND

IEFVINE
IEFVJA
IEFV15XL

IEFVGM18
IEFVGM70
IEFVGM71
IEFVGM78
IEFEXEC
IEFDD
IEFDD
IEFEXEC
IEFJOB
IEFCNTRL
IEFCNTRL
IEFVHH
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFVHH
IEFV3H
IEFVHH
IEFVHH
IEFVHH
IEFVHH
IEFVHN
IEFCNTRL
IEFINTFC
IEFDD
IEFEXEC
IEFJOB
IEFCOMMD
IEFVHH
IEFVGMSS
IEFVHl
IEFVINA
IEFCNTRL
IEFDD
IEFEXEC
IEFINITFC
IEFVHl
IEFVINA
IEFCOMMD
IEFJOB
IEFVGMSS
IEFVHl
IEFVHl
IEFVINA
IEFVINA
IEFVINA
IEFCNTRL
IEFEXEC
IEFVINA
IEFJOB
IEFALOC2
IEFXSOOO
IEFALOC4

IEFVGM18
IEFVGM70
IEFVGM71
IEFVGM78
IEFCNTRL

IEFcn'rRL

IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCNTRL
IEFCHTRL
IEFVdl
IEFCNTRL

IEFCOMMD
IEFViU
IEFVINA

IEFCN'IRL
IEFVHl
IEFCOMMD

IEFVINA

IEFVHl
IEFVHl
IEFVINA
IEFVINA
IEFVINA
IEFCNTRL

IEFVINA
IEFCNTRL
IEFAJ:'OCl
IEFA]:'OC2

IEFVGM18
IEFVGM70
IEFVGM71
IEFVGM78
GO

GO

GO
GO
GO
GO
GO
GO
GO
GO
GO
GO
GO
GO
GO
IEFVlil
GO

Il!;FVHl

GO
IEFVHl

IEFVHl
IEFVHl
GO
GO
GO
GO

GO
GO
IEFALLOC

IEFVJIMP IEFVJ IEFSTERM IEFS~~ERM GO
IEFVJMSG IEFVJMSG IEFSTERM IEFS~rERM GO
IEFVKIMP IEFVK IEFSELCT IEFS~~ERM GO
IEFVKMSG IEFVKMSG IEFSELCT IEFs~rERM GO
IEFVMFAK IEFVMCVL IEFMCVOL IEFMGVOL IEFMCVOL

53,54,55
53,54,55

53,54,55

18

14,16
16
16
16
16
16
16
16
16
16
16,53

16
14,53

14,53,54,55
14

14

46,47

22

20

50

24

IEFVMLKS IEFVM6 IEFSELCT IEFs~rERM I I L ___________ ~ ______ ~ ____________ ~ __________ ~ ___________ ~ __________ ~ ____________ ~ _________ J

102

Assembly Modules and ContJrol sE~ctions (Part 5 of 7)
r-----------T------T-------------T--------------------------------T----------------------,
I I I I Load Modules in Which I Chart Number I
I I I I Assembly Modules are Used ~------------T---------~
I Assembly I I Control ~----------T----------T----------~ Appears As I Flow is I
lModule NamelNotes ISection Namel 18K I 44K I lOOK I Subr. Blockl Defined I
~-----------+------+-------------+----------+----------+----------+------------+---------1
I IEFVMLSl IEFVMl I IEFSELCT IEFSTE.RM GO 24,25 25
I IEFVMLS6 IEFVM6 I IEFERROR IEFERROR GO 25,26 33
I IEFVMLS7 IEFVM7 I IEFERROR IEFERROR GO
I IEFVMMSl IEFVMl I IEFMCVOL IEFMCVOL IEFMCVOL

IEFVM2LS IEFVM2 I IEFSELCT IEFSTE~l GO
IEFVM3LS IEFVM3 I IEFSELCT IEFSTERM GO
IEFVM4LS IEFVM4 I IEFSELCT IEFSTERM GO
IEFVM5LS IEFVM5 I IEFSELCT IEFSTERM GO
IEFVM76 IEFVM76 I IEFSELCT IEFSTERM GO
IEFWAFAK IEF~-lAOOO I IEFALOCl
IEFWAD **** IEFWAD J IEFSTE~l

I
I
I
I
I
I
I
I
I
I
I

IEFWAOOO
IEFWCFAK

IEFWCIIYiP

IEFWDFAK

IEFWDOOO

IEFWDOOl

I EFWMAS 1
IEFWMSKA
IEFWSDIP
IEFWS'I'RT
IEFWSWIN
IEFWTERM
IEFW21SD
Il!:FW22SD
IEFW23SD
IEFW31FK
IEFW31SD
IEFW41SD
IEFW42SD
IEFXAFAK

I IEFXAMSG
I IEFXCSSS
I
I Il!:FXHOOO
I
I IEFXJFAK
I
I
I IEFXJlfo!1..P
I
I IEFXJMSG
I

**
**

I IEFSELC'I'
I IEFJTRMl

IEFWA002 I
IEFWA7 I
IEFWCOOO I

I
I

IEFWCOOO I
IEF'v'lC002 I
IEFWDOOO

IEFWDOOO

IEFWDOOl

DEVNAMET
DEVMASKT
IEFWSDIP
IEF'WSTRT
IEFWSWIT
IEFWTERM
IEFW21SD
IEFW22SD
IEFW23SD
IEFW31SD
IE~"W31SD

IEFW41SD
IEFTrl42SD
IEFXA

IEFXAMSG
IEFXA
IEFXABOO
IEFXHOOO

IEFXJOOO

IEFXJOOO

IEFXJMSG

IEFALOC2
IEFALOCl
IEFX5000
IEFALOC2
IEFALOC3
IEFALOC3
IEFALOC3
IEFALOC5
IEFALOC4

IEFALOC4

DEVNAMET
DEWlASKT
IEFVHl
IEFSELC'I'
IEFALOC2
IEFJTRMl
IEFSELC'I'
IEFSTERM
IEFJTRMl
IEFJTRMl
IEFJTRM2
IEFALOC5
IEFSTERM
IEFSELCT

IEFALOCl
IEFALOCl

IEFX5000
IEFALOC3
IEFALOC2
IEFX5000
IEFALOC3
IEFALOCl

IEFALOCl

I IEFXKFAK IEFXKOOO
I IEFXKIMP IEFXKOOO IEFALOC4
I IEFALOC5
I IEFXKMSG IEFXKMSG IEFALOC4
I IEFALOC5
I IEFXTFAK IEFXTOOO IEFALOC4

IEFSTERM
IEFJTERM

IEFALOCl
IEFALOCl

IEFALOC2
IEFALOC2

IEFALOCl
IEFALOC2
IEFALOCl
IEFALOC2
DEVNAMET
DEV1ViASKT
IEFVdl
IEFSTERM
IEFALOCl
IEFJTERM
IEFSTERM
IEFSTERM
IEFJTERM

IEFJTERM
IEFALOC2
IEFSTERM
IEFSTERM
IEFALOC2
IEFALOCl
IEFALOCl

IEFALOC2

IEFALOCl
IEFALOC2
IEFALOCl
IEFALOC2

IEFALOCl
IEFALOC2
IEFALOCl
IEFALOC2

GO

IEFALLOC

IEFALLOC
IEFALLOC

IEFALLOC

IEFALLOC

DEVNAME'I'
DEVMASKT
IEFVHl
GO
GO
GO
GO
GO
GO

GO
IEFALLOC
GO
IEFALERR

IEFALLOC
IEFALLOC

IEFALLOC

IEFALLOC

IEFALLOC

IEFALLOC

IEFALLOC
IEFALLOC

IEFALERR

I IEFXTDl-'lY I IEFXTDMY IEFALOC5 IEFALOC 2 IEFALLOC

25,26
25,26
25,26
25,26

34

34

34,35,38

22
46
46

46

46

32,38

38

29
30
31
32

36

41

42

23

35

33

L ___________ .L ______ .L _____ . ________ .L __________ .L __________ .L __________ .L ____________ .L _________ J

Appendix C: Load Modules and Assembly Modules 103

Assembly Modules and Control Sections (Part 6 of 7)
r-----------T------T------------T--------------------------------T----------------------,
I I I I Load Modules in Which I Chart Number I
I I I I Assembly Modules are Used ~------------T---------1
J Assembly I I Control ~---------T----------T----------~ Appears As I Flow is I
IModule NamelNotes Isection Name I 18K I 44K I lOOK I Subr. Blockl Defined I
~----------.-+------+------------+----------+----------+----------+------------+---------~

IEFXTMSG I
IEFXTOOD I
IEFXT002 I
IEFXT003 I
IEFXVMSG I
IEFXVNSI ... 1*****
IEFXVOOl I
IEFXV002 I
IEFXVFAK I
IEFX1FAK I
IEFX2FAK
IEFX3FAK
IEFX300A

IEFX5FAK
IEFXSOOO
IEFYNE'AK

IEFYNn"lP
IE FYNIvlSG
I.E.FYPJB3
IEFYPMSG
IEFYSSlVlB

IEFZAFAK
IEFZAJB3
IEFZGJBl
IEFZGMSG

IEFZGST1
IEF2GST2
IEFZHFAK
IEFZHIvlSG

IEF04FAK
IEF08FAK

IEF09FAK

IEFXTl-1SG
IEFXTOOO
IEFXT002
IEFXT003
IEFXVMSG
IEFXVNSL
IEFXV001
IEFXV002
IEFXVOOl
IEFXJOOO
IEFXSOOO
IEFWCOOO
IEE'X3000

IEFXSOOO
IEFX5000
IEFYN

IEFYN
IEFYNMSG
IEFYP
IEFYPMSG
IEFYS

IEFZA
IEFZA
IEFZGJ
IEFZGMSG

IEFZG
IEF2G2
IEFZPOQM
IEFZH

IEFSD004
IEFSD008

IEFSD009

IEFALOCS
IEFALOCS
IEFALOCS
IEFALOCS
IBFALOC4
IEFALOC4
IBFALOC4
IEFALOC4
IEFALOC2
IEFALOC4
IEFALOC4
IEFALOC4
IEFALOC2
IEFX5000
IEFALOC4
IEFALOC2
IEFXSOOO
IEFSELCT
IEFALCOl
IEFALOC4
IEFALOC5
IEFERROR
IEFIDUMP
IEFMCVOL
IEFSTERfvi
IEFSTEffi.!
IEFSTERfvl
IEFSTERM
IEFSTERM
IEFSELC'I'
IEFALOC1
IEFALOC4
IEFALOC5
IEFJTRM1
IEFERROR
IEFIDUIvjP
IEFMCVOL
IEFSTERM
IEFJTRlVil
IEFJTRMl
IEFSTERM
IEFJTRM1
IEFSTERM
IEFSTERM
IEFJ'I'RM1
IEFSTERM
IEFJTRM1
IEFALOCS

IEFALOC2
IEFALOC2
IEFALOC2
IEFALOC2
IEFALOCl
IEFALOCl
IEFALOCl
IEFALOCl

IEFALOCl

IEFALOC2
IEFALQCl
IEFALOC2
IEFALOCl
IEFERROR
IEFIDUMP
IEFALOC2
IEFMCVOL

IEFSTERM
IEFSTERM
IEFSTERM
IEFSTERM
IEFSTERM
IEFALOCl
IEFALOC2
IEFERROR
IEFJTERM
IEFIDUMP
IEFMCVOL

IEFSTERN
IEFJTERM
IEFCNTRL
Il£FSTERM
IEFJTERM
IEFSTERM
IEFSTERM
IEFJTERIvJ
IEFSTERM
IEFJTERM

IEFSTERM IEFSTERM'
IEFINTFC I
IEFJTRM2 I
IEFSTE~l IEFCNTRL I
IEFINTFC I

IEF23FAK IEFW23SD IEFINTFC I

IEFALLOC
IEFALLOC
IEFALLOC
IEFALLOC
IEFALLOC
IEFALLOC
IEFALLOC
Il!.FALLOC

IEFALLOC

IEFALLOC

IEFALLOC

IEFMCVOL

GO
GO
GO
GO
GO
IEFIDUMP
IEF~LLOC

IEFMCVOL

GO
GO
GO

GO
GO

GO

IEF35DUM IEFJTERM IEFCNTRL I GO
IEF7KGXX IEFKG IEFINTFC IEFCNTRL I GO

34

34
37

34

34,53

46

45,47

46
47

46,50
46

46

IhF7KPXX IEFVHM IEFCOMMD IEFCOMMD I GO 16
IEF7K1XX IEFK1 IEFVH1 IEFVH1 I IEFVH1 14
IEF7K2XX IEFK2 IEFVH1 IEFVH1 I IEFVHl 14

I IEF7K3XX IEFK3 IEFVHN IEFVHl I IEFVHl 14

43
45
44

37
38

40

40

49

51
53

52

L ___________ ~ ______ L ____________ ~ __________ ~ __________ ~ __________ ~ ____________ ~ ________ _

104

Assembly Modules and Control Sections (Part 7 of 7)
r-----------T------T-------------T----------------------------~---T----------------------,
I I I I Load Modules in Which I Chart Numner I
I I I I Assembly Modules are Used ~------------T---------~
I Assembly I I Control ~----------T----------T----------~ Appears As I Flow is I
IModule NamelNotes Isection Name I 18K I 44K I lOOK I Subr. Blockl Defined I
~,-----------+------+-------------+----------+----------+----------+------------+---------~
I I I I I I I I I
I IEZDCODE I I IEZDCODE I IEZDCODE I IEZDCODE I GO I I I
I IEZNCODE I I IEZNCODE I IEFVINA I IEFVINA I GO I I I
I I I I IEZNCODE I IEZNCODE I I I I
~._----------.L------.L--------------.L----------.L-------___ .L __________ .L ___________ .L _________ ~
p~otes: I
I*Assembly modules in SYS1.NUCLEUS data set. I
1**Modules are assembled during system generation. I
1***Assembly modules in SYS1.SVCLIB data set. I
I ****IEFACTFK may replacE:! IEFl~CTLK, IEFACTRT, and IEFWAD during system qeneration. I
I*****IEFXVNSL is a simple exit and return subroutine that the user may replace with hisl
I own subroutine for processing nonstandard labels. I L. ___ J

Appendix C: Load Modules and Assembly Modules 105

Control Sections and Assembly Modules
The following list provides a cross-reference between job management control section
(CSECT) names, which appear in alphameric order, and the corresponding asseIDbly module
names. Control section names are also listed in the preceding assembly module to load
module cross reference table.

.QSECT NAME ASSEMBLY MODULE NAME; CSECT NAME ASSEl-'JBLY MODULE NAME
DEVMASKT lEFWMSKA lEFSD090 lEFSD090
DEVNAMET lEFWMASl lEFSD094 lEFSD094
lEEBBl lEEMCRFK lEFSD095 IEFSD095
IEEBBl I EElv1CR 0 1 lEFSD89M IEFSD089
IEEGESTO IEEGESOl lEFSEPAR IEFSEPAR
lEEGK1GM lEEGK1Gl-'J lEFSGOPT IEFSGOPT
lEEICCAN lEElLCDM lEFVDA lEFDAFAK
lEElCCAN lEElLCOl lEFVDA IEFVDA
IEEICNOl lEECNDUM IEFVDBSD lEFVDDUM
lEElCNOl lEElCNOl IEFVEA IEFEAFAK
lEElCRDR IEEREADR lEFVEA IEFVEA
lEElCWTR IEEWRlTR lEFVFA lEFVFA
lEElClPE lEES TART IEFVFA IEFFAFAK
IEElC2NQ lEElC2NQ IEFVFB lEFV:FB
lEElC3JF IEEIC3JF IEFVHB lEFVHB
IEEMCREP lEEMCREP lEFVGl IEFVGl
IEEQOTOO IEEQOTOO IEFVGK IEFVGK
lEEVSMSG I EEVSMDM IEFVGM IEFVGMSS
IEFACTLK lEFACTLK IEFVGM lEFVGMEP
IEFACTLK lEFACTFK lEFVGM IEFGl-'lFAK
IEFACTRT IEFACTRT IEFVGMl IEFVGMl
IEFBR14 IEFBR14 lEFVGM2 IEFVGM2
IEFCVOLl IEFMCVOL lEFVGM3 IEFVGM3
IEFCVOL2 IEFMCVOL IEFVGM4 IEFVGM4
IEFCVOL3 IEFMCVOL lEFVGM5 IEFVGM5
IEFDEVPT IEFDEVPT IEFVGM6 IEE'VGM6
IEFIDMPM IEFIDMPM IEFVGM7 IEF'VGM7
IEFIDUMP IEFIDFAK lEFVGM8 lEFVGM8
IEFIDUMP IEFIDUMP IEFVGM9 IEFVGM9
IEFINTQS lEFINTQA IEFVGMIO lEFVGMlO
IEFKG IEFKGDUM lEFVGMll IEFVGMll
IEFKG IEF7KGXX IEFVGM12 lEFVGM12
IEFKl IEF7KIXX IEFVGM13 IEFVGM13
IEFKl IEFKIAK IEFVGM14 IEFVGM14
IEFKIMSG IEFKIMSG IEFVGM15 IEFVGM15
IEFK2 IEF7K2XX IEFVGM16 IEFVGM16
IEFK3 IEF7K3XX IEFVGM17 lEFVGM17
IEFPRES IEFPRES IEFVGM18 IEFVGM18
IEFQMSSS IEFQMSSS I IEFVGM70 IEFVGM70
IEFSCAN lEFSCAN IEFVGM71 IEFVGM71
IEFSDOOl IEFSDOOl IEFVGM78 lEFVGM78
IEFSDOO2 IEFSDOO2 lEFVGS IEFVGS
IEFSDOO3 lEFSDOO3 IEFVGT IEFVGT
IEFSDOO4 IEFSDOO4 lEFVHA IEFHAFAK
lEFSDOO4 IEF04F.AK IEFVHA IEFVHA
IEFSDOO6 lEFSDOO6 IEFVHAA IEFHAAFK
lEFSDOO7 lEFSDOO7 lEFVHAA IEFVHAA
IEFSDOO8 IEFSDOO8 lEFVHB IEFVHB
IEFSDOO8 IEF08FAK IEFVHB IEFHBFAK
lEFSDOO9 lEFSDOO9 lEFVHC lEFVHC
IEFSD009 Il!:F09FAK lEFVHC lEFHCFAK
IEFSDOIO IEFSDOIO lEFVHCB lEFHCBFK
IhFSDOll IEFSDOll IEFVHCB IEFVHCB
lEFSD012 IEFSD012 IEFVHE lEFVHE
lEFSD017 IEFSD017 IEFVHE IEFHEFAK
IEFSD035 IEF35DUM IEFVHEB l:BFV.t:lEB
IEFSD059 IEFSD059 IEFVHhB IEF'HEBFK
IEFSD088 IEFSD088 IEFVHEC IEFVliEC
lEFSD089 IEE~SD089 IEFVHEC IEFHECFK

106

Q§.£!CT NAz.,i~ ASSEMBLY MODULE NAME CSECT NAt-:E ASSEl>JBLY I-10DULE NAME
IEFVHF IEFHFFAK IEFWSWIT IEFWSWIN
I.E;FVHF IBFVHF IEFW'IERM IEFWTERM
IEFVHG IEFVHGSS IEFW21SD IEFW;.::lSD
I.EFVHH IEFVHH IEFW22SD IbFW:i~SD

IEFVHtI IEFHHFAK IEFW23sD IEFW~3SD
IEFVHHB IbFVHHB IEFW23SD IEF23FAK
r:t:FVHL IEFVHL IEFW31SD IEFW31SD
IEFVHL IEFHLFAK IEF'w31SD IEFW31FK
IEFVHM IEFHMFAK IEFW41SD IbFW41SD
IEFVHM Il!;~'7KPXX IEFW42SD IBFW42SD
IEFVHN IEFVHN IEFXAMSG IEFXAMSG
IEFVHQ IEFVHQ IEFXA IEFXAFAK
IEFVHR IEFVHRSS IEFXA IEFXCSSS
IEFVHl IEFVH1 IEFXABOO IEFXCSSS
IEFVH2 IEF'VH2 IEFXHOOO IbFXAOOO
IEFVINA IEFVINA IEFXJMSG IBFXJMSG
IEFVINB IEFVINB IEFXJOOO IEFXJFAK
IEFVINC IEFVINC IEFXJOOO I.E.FXJlf.'JP
IEFVIND IEFVIND IEFXJOOO IEFX1FAK
IEFVINE IEFVINE IEFXKf.'iSG IEFXKMSG
IEFVJA IEFJAFAK IEFXKOOO IEFXKlf.'jP
IEFVJA IEFVJA IEFXTDMY IEFXTDMY
IEFVJMSG IEFVJMSG IEFX'I'MSG IEE'X'I'MSG
IEFVJ IEFVJIMP IEFXTOOO IEFXTOOD
IEFVJ JTERM030 IEFX'l'OO2 IEFXrl'OO2
IEF'VKt-1SG I:i:!;FVKNSG IEFXTOO3 IEFX'I'OO3
IEFVMCVL IEFVMLS1 IEFX'l'OOO IEFXTFAK
IEFVK IEFVKIMP IEFXVMSG IEFXVMSG
Il!;FVMQMI IEFVMLS1 IEFXVNSL IEFXVNSL
IEFVMPOQ IEFVNLS1 IEFXVOO1 IEFXVFAK
IEFVMl I EFVMLS 1 IEF'XV001 IEFXV001
IEFVM2 IEFVM2LS IEFXV002 IEFAV002
I Elo'VM3 IEF'VM3LS IEFX3000 IEFX300A
IEFVM4 IEFVM4LS IEFXSOOO I1.FX2FAK
IEFVM5 IEFVMSLS IEFXSOOO IEFXSFAK
IEFVM6 IEFVI'-lLKS IEFXSOOO IEF'XSFAK
ILF'VM6 IEFVMLS6 IEFYNIMP IEFYNIMP
IJ!:FVlVl76 IEFVM76 IEFYNMSG IEFYNMSG
IEFVM7 IEFVMLS7 IEFYN IEFYNFAK
IEFV1SXL Il!.FV1SXL IEFYN I£,FWTERM020
IEFWAD IEFWAD IEFYPMSG IEFYPMSG
IEFWAOOO IEFWAFAK IEFYP IEFYPJB3
IEFWAOOO IEFWAOOO IEFYS IEFYSSIVJE
IEFWA002 IEFWAOOO IEFZA IEFZAFAK
IEFWA7 IEFWAOOO IEFZA IEFZAJB3
IEFWCOOO IEFWCFAK IEFZGMSG IEF'ZGMSG
IEFWCOOO IEFWCIMP IEFZGJ IEFZGJB1
IEFWCOOO IEFX3FAK IEFZG IEFZGST1
Il~FWC002 IEF'WCIMP IEFZG2 IEFZGST2
IEFWDMSG IEFWDOOO IEFZH IEFZHMSG
IEFWDOOO IEFWDFAK IEFZPOQM IEFZHFAK
IHFWDOOO IEFWDOOO I IEZDCODE IEZDCODE
IEFWDOOl IEFWD001 IEZNCODE IEZNCODE
IEFWSDIP IEFWSDIP SPRINTER IEFPRTXX
IEFWSTRT IEFWSTRT

Appendix C: Load Modules and Assembly Modules 107

Appendix D: List of Acronyms

The following list contains the full name
associated with each acronym used in this
publication:

r--------T------.---------------------------,
IAcronym I Name I
~--------+------------------------.--------~
IACB Allocate control block I
I ACT Account control table I
I AVR l~utomatic volume recognition I
I AVT l1llocate volume table I
IAWA Auxiliary work area I
IAWT Allocate work table I
IBPAM Basic partitioned access method

CCW Channel control word
CLT Channel load table
CSCB Command scheduling control

block
CSECT
CVT
DADSM

Control section
communications vector table
Direct access device space
management

DCB Data control block
DEB Data extent block
DMT Device mask table
DNT Device name table
DSCB Data set control block
DSNAME Data set name
ECB Event control block
GDG Generation data group
I/O Input/output
IPL Initial program load
IRE Interrupt request block
IWA Interpreter work area
JCL Job control language

IJCT Job control table L ________ ~ _______________________________ _

108

r--·------T--------------------------------,
IAcronym I Name I
~--------+--------------------------------~
JFCB Job file control block
JSCB Job step control block
KBT Keyword branch table
LCT Linkage control table
LWA Local work area
NEL Interpreter entrance list
NIP Nucleus initialization program
NRWT New reader/writer table
NSL Non-standard label
PCP Primary control program
PDQ Passed data set queue
PDS Partitioned data set
PDT Parameter descriptor table
PUD Potential user on device
QSAM Queued sequential access method
SCT step control table
SlOT Step input/output table
5MB System message block
SYSGEN System generation
SYSIN System input device
SYSOUT System output device
TCE Task control block
TIOT Task input/output table

(TTR Auxiliary storage address on
I direct access device
IUCB Unit control block
IVCON variable constant
(VOLT Volume table
(WTO Write-to-operator
IW~OR Write-to-operator with reply
IW~P Write-to-programmer
IW~PCB Write-to-programmer control
I block L ________ ~ ___________________ ----_________ J

Chart 01. Job Mal~agement

Bl

EOF

EOF Routine

To Interpreter Tennination

Dl

IEFVHM

Command Statement
Routine

Possible

Command

New Reader
Pending

Bl

B2

IEFVHA

Interpreter Get
Routine

II
STMT C2

Continuaticm
Statement Routine

=r D2

IEFVHCB

Verb Identification
Routine

B3
Non-

IEFVHB Control
Statement

Set Job Failed
Switch

C3

IEFVGM

Interpreter Message
Processing Routine

Read Stmt

~ Or Proc. Pending

~5~M~T~E=2--------------~

IEFVHE

Router

IEFVHL

Null Statement
Routine

IEFKG

Interpreterl
Initiator
Interface

Job And Step
Enqueue
Housekeeping

E3

G3

Job

Failed

Statement To Scan

To Scan Routine

Charts

B4

IEFVHG IEFVHF

pcp/MFT 1 DD* Post Scan
Exit To Initiator DD* Routine

Charts 109

Chart 02.

110

Master Scheduler

Al

Bl

IEEBAl oj
Console
Interrupt
Routine

To Supervisor

__ ----.Dl

Entry)

From
Supervi~or

E1

IGC03D 04j

Moster Command
Excp Routine

..__-.....L- Fl

EXit)

To Supervisor

Gl

--E-n-tr-
y
-)

From
Supervisor

H1

A3

Entry)

From
Supervisor

.--__ .L.._..::E 3

IGC0103D J
Process The
Mount, Unload,
Vary Com mane

CI

Exit)

To Superv isor

D3

Entry)

....--__ L-__ :3

I GC0203D J
Display/Stop,
Job Names, and
Cancel Command

__ ---.:L...--...;..F3

Exit)

'---
To Supervisor

IEEBBl :}-5 H2

Most.er Command ----{ Entry _)
Routine _____ .

From Interpreter

'.H)
To Supervisor

IEEBC1PE 07

Externol
Interrupt
Routine

To Supervisor

Chart 03. Console Interl:upt Routine

IEEBAI A2

[

Pass IRB JE2
Pointer Tel
Exit Effector

J" (~~
To Supervisor
(Exit Effector)

Interrupt I(Er!Al Entry ~
Request ~
Block Routine From SupervisOr

H2

[Issue]
Svc :14

To Supervisor

83

Charts 111

Chart 04.

112

Master Command EXCP Routine

I GC03D

Yes

Processing Routine
(lGC0103D)

To Supervisor

Move command

D2

]
To Buffer

Note 1 - If primary or alternate console is in use,
entry is to IEEMXC01.

If composite console is in use,
entry is to IEEMXROl •

Note 2 - MCR = master command routinE. .

Chart 05.

Ves

~

Master Command Routine

IEEBBI Al

Obtain Any
Initialization
Commands

WTO Ready

IEEGKIGM

WTO Illegal
Command

IEEGKIGM

WTO Issue Set
Command

B4

E4

F4

luue SVC 34

No

No

No

Move Command
To Local Buffer

A5

G5
Link To Appr
Comd Execution
Routine
(IEEGESTO Or
IEEICIPE)

No

Ves

Charts 113

• Chart 06. Write-to-Operator Routine

IGCOO03E

A2

---En-t-r
y
-) Note 1

B3

to Indicote E2
Set Register }-G

>---~-~~~ Unsuccessful

j

[

TronsfeJ-Dl
Control -
to WTOR

- 0---
,..-------''---

Process
WTO

Yes

WTP Proc
'----

F3

Yes

Yes

No

F4

Transfer
Control
to WTP

&-~ To IGC0203E

G2

----E-iXi-it-)

To Supervisor

Note 1: If primary or alternate console is in use, entry is to IEEWTCOO.
If composite console is in use, entry is to IEEWTROO.

Note 2: WTP returns to WTO only if message processing was unsuccessful.

114

F4

• Chart 07. Write-to-operator with Reply Routine

IGC0103E

A2

~~Notel
~OmIGC0103
--1 B2

l pseUdO,]
DisablE:

~ C2

l Waitforl

Free BUfl~

~ D2

[

Move J Message
to Resident
Buffer

E2

Note 1: If primary or alternate console is in use, entry is to IEEWTC01
If composite console is in use, entry is to IEEWTR01.

Wait for
Channel
End

Wait for
Channel
End

Move Reply
to User's Area

Pseudo­
Enable

To Supervisor

Note also that this routine can ABEND to user if parameter list is invalid or
if reply area is out of bounds.

Charts 115

• Chart 08. Write-to-programmer Routines (Part 1 of 5)

116

IGC0203

IEFWTPOO

_---'--....;;[2

Exit)

To Supervisor

~
-1 :::,~TP C3]f--------------O (E." VI)

Indicator _ _

To IGC0003E

• Chart 09. Write-to-Programmer Routines (Part 2 of 5)

IGC0203E (Continued)

IEFWTPOO

B2

r--____ ----'PC-"'-'--P< T S >'-'-M-'---FT'-----____ -----,

[

G,. 224-By., Cl [~::. C2

1

Workorea Workarea
Get 256-Byte
Workarea

L--------~--D2-------~

[;;~;~;]
~ E2

[;:~T";]
~ F2

[~;S~IJ Length

~
To IGCO:I03E

C3

Charts 117

• Chart 10. Write-to-Programmer Routines (Part 3 of 5)

118

IGC0303E

IEFWTPOI

C Entry

Bl

Get WTP
5MB and
Chllin to Last
Allocate 5MB

Detupto. Process
Limit
Message

~-

Kl

YO'f,

®

Add WTP System
Message to 5MB
Containing "No
Record" Message

~Write JE21
3

5MB to

Job Q~oo ___ _

...-_____ H2

Set Last]
5MB Flag

L----..,--

*11B3
l1D2
l1G4
l1H4

Write "No
Record"
Message

Put Message
in 5MB
and Write

C3

E3

----r=F3

[

Free Workarea
ond Dequeue
on WTPCB

To Supervisor

SJ
*llB3

11C2
llD2
llJ4

Yl
®

To IGC0003E

-Chart 11. Write-to-Programmer Routines (Part 4 of 5)

L~B3

~
2

Last 5MB No
Used

Ye!s 10 .
E3

r "No Recor~d" No
Message

pr~oce~:~ 10

E3

10
F3

Set Up
to Use
Reserved
5MB

Dequeue
on WTPCB

G5

To IGC0403E

E5

Charts 119

-Chart 12. Write-to-Programmer Routines (Part 5 of 5)

IGC040JE

IEFWTP02

[Mi~' Reserved
5MB
Pointers

[""WTO for "No
Record"
Message

D"~SMB with "No
Record"
Message

Gl

C Exit

To IGC0303E

120

Dl

El

Fl

.--____ -.£2

Issue WTO
I/o Error
Message

Free
Workarea

(3

To IGC0103E

Set Return
from WTP
Indicator

Ta IGCOOO3E

C5

Chart 13. External Intez:'rupt Routine

,,-----.....

[

Mark UCB
Pointer Table
Adjust Primary
UCB

C2

IEEBC1PE A3

From
Supervisor

To Supervisor

,_----.. C4

Mark UC8
Pointer Table,
Adjust Alter
UCB

04

Charts 121

Chart 14.

122

Interpreter Control Flow

H2

IEFVJA ~2
Job Statement
Processor

- F3

Special PCP
Interpreter
Initialization

C3

r--,E-FV-H-l--'---J

Interpreter
Initialization

D3 ..---....L..--

J opl::~::der
And Procedure
Library

IEFK2

Link To Pres
Res

E3

IEFVEA 12

Exec Statement
Processor

F4

13 IEFK3

Wait For
Start RDR

F5

Chart 15. Interpreter Initialization

Store Input
Parameters

C3

GETMAIN For
Interpreter Work
Area

D3

GETMAIN For
Local Work Area

E3

Generate Unique
Name And
Process SYSG EN
Options

Charts 123

Chart 16. Interpreter Control Routine

B2 B3

L Console
Device

C2 C3

02 j- ~~ Moster
Scheduler Interpreter

03

14

Initiotor I
Terminotor

E3 E4

Job Step

C3

124

Chart 17. Interpreter Scan Routine

L....--

--.-----'Cl ~~ Expected
r- Continuation

Check

El

Error Routine

G2

EFV~
~

(Tol

'-

A3
From interpreter

Entry control routine

B3

Scan
Preparati on

Overriden
procedure

C3

Verb
Identification

El

D3 D4

Branch Routine Key Routine

E3

Error
Delimiter
Processing
Routine

,
F3

F4
Scan
Termination TolEFVHF

Exec • G3 DD G4

To IEFVEA To IEFVDA

To JCL statement processor

Nol'e - Exits to Interpreter cOfItrol
routine if continuation or
overridden procedure card
is expected, or if error is
detected on DD card.

D5

Text Routine

To interpreter
control routine

Charts 125

Chart 18. JCL Statement Processors

126

Note - This chart shows control flow in all three
statements processors. Each statement
processor is entered from the JCL scan
routine and posses control to the control
routine.

Each statement processor includes several
keyword processors, most of which use
IEFVGT and IEFV as subroutines.

IEFVGT

Test And Store

F2

C3

~)
H.~" 1

r E:l

IEFVGK

~ Get Parameter

~ F3 F4

IEFV

Keyword Processor Symbol Dictionary
Reference

@-i (;3 G4

] IEFVM

Cleanup Message Routine

I I

• H3

(Exit)

• Chart 19. In-Stream Procedure Routines

IEFVINA

Check
Syntclx

2 C2

< First Time >-N:..:o ___ ~
Throu{lh

Yes

IEFVGM B3

Error

IEFVINB C3

Search
Directory

J3

IEZNCODE J3

Compress

To IEFVHA

J5

J4
No Create 5MB

Charts 127

Chart 20. Interpreter Termination

C3

Entry)

1)3

r-r-:;-1-mA-an i~-~-:-c-al-J
Work Area

G3

IEFK3)

128

Chart 21. Initiator/Terminatoz:'

14

Initiator
Control

C3

27

Allocation
And Setup

D3

39

Step
Initiation

To Processing Program

Termination

To Interpreter Or
Initiator Control

Charts 129

Chart 22. Initiator Control

130

'0"' A3)
From nterpreter or
step t"rmination
routine

,...-__ __ 83

IEFW21SD J6
System Control
Routi ne Rtn.

~_---I~_C3

J
IEFVK

Execvte Stmnt
Conditional
Execvtion Rtn.

IEFVMl DjB
JFCB
H ovsekeep i n9
Routines

L...-__ ,.-__

E3

Exit)

To allocation
and setup

Entry is from the interpreter when a J08.
NULL, DD ., or DD DATA statement
is encountered in the input iob stream

Chart 23. System Control Routine

IEFW21SD A1

From interpreter
or step termination

Increment] B1

Step Number
By One

To exocute statement
condil'ional execution
routine IEFYK

C2

Place Job Name
Into SJQ

D2

Res tore Saved
TTR Data From
CVT, Set
Restart Switches

E2

Remove Job Name
From SJQ

To step
termination

Yes

Yes

C4

IEEGK1GM

WTO Job Name
Started

D4

Move Tables
For Restarting
Step From New
Queue To Old
Queue

Charts 131

Chart 24. Execute Statement Conditional Execution Routine

132

~
~

IEFVK Al

C Entry

Gl

Pierce Appr SCT
Into Storage
Area

Yes To JFCB

® Housekeeping Routines

25
A3

No

aJ
TO JFCB Housekeeping
Routines

25
A3

VK650

IEFQMSSS

Place First SCT
Into Storage
Area

F2

VK240 83

'--Co-m-pa-r.--'C"'O-nd-it-ic]

Code With Return
Code

No

To JFCB Housekeeping
Routines

C5

Issue Message

To Step Termination
Routine

Get Next
Cond Code

F5

Chart 25. JFCB Housekeeping Routines

Allocate
Processing
Routine

01

21

B2

IEFVM6 26

~
-

Error Me~sage
Processing
Routine

48 __ _
Al

To step
termination
routine

02

IEFV~ ~
Fetch OCB
~rocessing
Routine

XCTL

r--__ -I.._--=-B3:..., cn 84
IEFVMl 1914---..-tIEFMCVOL 20

JFCB
Housekeeping
Control Routine

To appropriate
processing
rautine

IEFVM3

GOG Single
Processing
Routine

IEFMCVOL

Mount Control
Volume Routine

03

23

20

XCTL

F3

Mount Control
Volume Routine

To allocation
control routine

IEFVM4

GOG All
Processing
Routine

04

24

05

IEFVM5 25

Patterning OSCB
Processing
Routine

XCTL

Charts 133

Chart 26. JFCB Housekeeping Control Routine

134

Err

IEFVMl Al

C~

Read In Next
SlOT

Yes

link

IEFVM2

Jl

22

Fetch DCB
Processing Routine

Error Error

'----------_._--'---

Note 1 Control is passed
to the JFCB housekeeping
ollocate processing routine

Obtain Vol Info
For JFCB And
SCT From VCB

H3

26

Error Message
Processing Routine

No
Read In JFCB If C4
Not In Storage,
Scan PDQ For
This DSNAME

Set Disp
To New

Set JFCB HSK
Indr In SCT To
Complete,
Release Storage

Set Action Code
Into LCT Table

To Allocation
Control Rtn

E5

G5

J5

K5

Chart 27. Mount Control Volume Routine

IEFMCVOL

Entry 1 Al ..,-----......

Create
Dummy
Volt

C2

(M':ErrOr){ EXit)

To JFCB hskp
error routine

Entry 2 A3 ------

Pointers To
Original LCT,
JCT, SCT,
SlOT JFCB

Update 5MB
Pointers In
LCT And SCT

F3

AS

Update Original
LCT With Error
Count And
Current 5MB
Address

Update Original
SCT With New
5MB Pointers
And Step Status
Indicators

Restore All
Pointers To
Original
Tables

C5

D5

To step termination

Charts 135

Chart 28. Allocate Processing Routine

136

01

~"JFC""" Storage If Not
There

lli>
Yes

No

Fl < ~,~.

HI

~
et Vol Info For Error

JFCB And SCT
From VCS

-4D

Into Storage
Area

B2

All Entrier/exits ore frony'to the JFCB housekeeping control routine

Error

Corresponding
PDQ Block

Cifferent
Step

1:3

]
1:3

PI,,. Rof'~""'J SlOT And JFCB
Into Storage
Area

<33

XCTL T, ~
IEFMCVOL To
Mount CVOL

1-13

Error Get Vol Info For Normal

dJ
JFCB And SCT
From JFCB

~; L---..J

Yes

Compare SlOT
Addr In P~Q
Entry With
Referenced SlOT

No

No

Yes

Set Intra Step
Suballoc Bit In
SlOT

Set Ref DO Into

B5

Current SlOT For
Allocate

Set Ref DO Into
Current SlOT For
Allocate

Chart 29. Fetch DCB Processing Routine

IEFVM2 A3

Initialize
SlOT
Fields

C3

Place JFCB And
Referenced SlOT
Tables Into
Storage Area

Update Volt
With New Vol
Ser, Store Volt

To JFCB housekeeping
control routine

To JFCB housekeeping
error message
processing routine

To JFCB housekeeping
error message
processing routine

Charts 137

Chart 30. GDG Single Processing Routine

IEFVM3 Al

0 ntry

From JFCB housekeeping
control routine

.--1. __ -., B I

Place GDG
Bias Count
Table Into
Storage Area

Assign Record,
Clear New TBL
Update, Write
Out Old TBL

G==
VM7158 JI

Insert GDG
DSNAME Into
Table And sa,

C2

Assign Record,
Clear Storage
For New TBL

Found

VM7160

Is
Name
Valid

Yes

VM7164

Setup Member
No. And New
Bias Count
Store GDG
Bias Count TBL

Issue Locate
Macro For
Data Set

Search PDQ
For DSNAME
Entry

Fill In JFCB
With ValiD'S
Build Volt

B3

"Jo

C3

~ H4

D3

Not
Successful

Error

Update Count To JFCB housekeepirg
control routine

138

Set Error
Message
Code

Set Up
For Error
Return

B4

H4

Chart 31 .. GDG All Proceissing Routine

Update 00
Number Count In
Work Area

Fl

Gl

Set Chain
Pointer, Store
Completed SlOT

Assign Storage
Space For New
SlOT And JFCS

HI

Error

IEFVM4 A2

5"";'~ JdB ho~.k •• p;",
control routine

VM7208 S2

Initialize~
GOG Indl~x
Set Up O~NAME
In .JFCS

VM7218

[
Move Vols
From Index
To VCS
Work Area

E2

VM7222 F2

Set Vol IDS
From VCS Into
JFCS

~Normal

Yes

Error

~ G2

[

Make POQ Entry
For GOG All
Member OS If
Pass Specified

INormal

VM~ H2

[

Update JFCB,
SlOT. Wril'e Out
JFCB

Error

Error

VMlYAO C3

Issue A Locate
Macro
Instruction

Successful

:~
1-4-_____ --'-Y..::es=-<.4y

~oK' A Successful Kl

Issue A Locate
Macro

Other

VM7240 K3

...... ___ y_es< There Another >-"-'-=. __
~dex

No
Set Chain
Pointer,
Store SlOT

Error

Other

Set Up Error
Message
Indication

J4

VM7250 K4
For Each SlOT
Read In, Update
Sep, AFF Fields, t--...L-~~
Chain And Store
SlOT

K5

To JFCB housekeeping
control routine

Charts 139

Chart 32.

140

Patterning DSCB Processing Routine

IEFVM5 A2

...-__ .J...... __ B2

Place JFCB]
Into Storage ~~
If Not - ~~
Already There

D2

...--__ .J...... __ E2

Merge DSCB J
With Overrides
In JFCB

VM7:;.3~40;;....--,_-:....;:

Return

To JFCB housekeeping
control routine

Chart 33. Error Message Processing Routine

29 C3
29 D3

Load Msg Addr I
Length. Set Up
To Print Msg

C3

Issue Error Message

D3

Release Storage

To step termination
routine

Charts 141

Chart 34. Allocation and Setup

142

(-E"~)

=r=rom initiator
control

83

r- -J IEFXA 28 -----
Allocation

C~''''c'C3

L
EFWA7 J9 --------

Demand
Allo~ation
Routine

Yes Automatic
Volume
Recogn i ti on

D4

30

~
EFXVOOI

,----,-------1

E3

L
~'-L--FX5~0_. J3

DecISion
Allocation
Routine

~--- LF3
~~F-~-I~-~-.tr-uc-ti-O-" ~
L Routine J

LG3
IEFWDOOO J5
External Action

Routine

=CH3
r::~;~equest ~
LRoutlne J
~

(_EX_it)

To step initiation

Chart 35. Allocation Control Routine

From JFCB
housekeeping
control routine

Get Storage
For Tables
Initialize
Pointers

XAAF03~O~ __ ~ __ ~D~4

Place VOLTS and
SlOTS Into
Storage Area

To demand
allocation
routine

To TlOT
construction
routine

Charts 14,3

Chart 36. Demanj Allocation Routine

144

IEFWA7 A3

Entry)

From (,lIocation
control routine

XBFllO 113

Build]
Work Table

XBL.F3_00 __ ~e_i_l~rI7_t~_es_]
XCF100)3

Calculate Data]
Set Device
Requirements

XCF200 :3

Construct]
Channel Load
Table

XCF300 :3

Allocate]
Resident Direct
Access Devices
Requested By
Vol Serial

XCFSOO G3

Perform Devi ce J
Range Reductiol

XCF890

Allocate Sysin]
And Reserved
Tope Devices

XDF100 J3

~~~~~t;aIIY ] 
Requested 
Devices 

K3 

--) 

Exits are to the decision allocation routine 
(or AVR when included in configuration) 
if allocation is incomplete. 

The TIOT construction routine if allocation 
is complete. 



Chart 37. Automatic Volume R€!cognition (IEFXV001) 

HI 

External Action 

Notify Operator 
And Unload 
Device 

Is This < Device. Jt Yes 

l 
Device Strikout 

Allocate Dllvice 
To Satisfy Any 
Req For Vol 

E3 

IEFXV002 31 

Read The Serial 

H3 

External Action 

No 
Unload The Device 

J2 

A4 

Obtain Devices 

Point To First UCB 

No 

Request Volumes 
From Operator 

AS 

B5 

Yes Wait For Device­
End I/O Interrupt 

Charts 145 



Chart 38. 

146 

Automatic Volume Recoqnition (IEFAV002) 

B2 

~;~~;~·'O~] 
(2 

Issue Channel -_J 
Command 

D2 

-:itForl:l 

comPletiO~J 

G2 

Set Volume -~o 
Serial Into 
UCB 

~
-~-:--~ 

H2 

Return 

El 

Set Error }--C 
Return Code . 

F 1 

IEFXVNSL J 
Nonstandard 
Label Routine 

> 

E4 

Return ) 



Chart 39. Obtain Devices 

Al 

( Entry :>- Count 
Available 
Devices 

A2 

B2 

Count Devices 
Needed For 
Specific Vol 
Requests 

Allocati,on Error 
Recovery 

Yes 

Yes Identify 
Devices To Be 
Unloaded 

D3 D4 
External Action 

Unload 
Necessary Ready 
Devices 

Charts 147 



Chart 40. 

148 

Decision Allocation Routine 

">-,y,-,ec:..J __ -...x,-G_G_:_r_:~...,mr-__ 1I~3 B~ F3 
Separation 
Strikeout 

Comp 

Normal 

Perform Device 
Strikeout 

XGGG-40 F2 

Perform 
Separation 
Strikeout 

To TlOT 
construction 
routine 

No 

Normal 

X55AOOO D3 

~::::iq". ~ 
Allocation J 

Normal 

XKKB30 1'3 

".". E,,« ] 

To ste) 

Allocation 
complete 

Yes 

terminetion 

XGGG5A E4 

Restore 
Primary Bit 
Pattern 



Chart 41. TIOT Construct:ion Routine 

35 B3 
40 F2 

From allocation control routine, 
demand allocation routine, 
decision allocation routine, or 
automatic volume recognition routine 

XLMOOI 

Get Storage 
For TIOT 

XLM020 

Initialize Loop 
To Build TlOT 

B2 

C2 

X'r=LM.:.:.;..14.:.:0~ __ .....::.D.;3 Note 1 

Yes Process Public 
Volume Request 

Bui Id DD Entry 
For TlOT 

To External 
Action Routine 

Note 1 - Outstanding public volume 
requests are resolved here. 

Charts 149 



Chart 42. External Action Routine 

From TlOT 
construction routine, 
space request routine, 
automatic volume 
recognition routine, or 
DADSM error recovery routine 

XPS09;-;O:-..----L-.:...;N~otJe 1 B2 

Issue 
Dismount 
Messoges 

'------..---

XPS28r5~ __ ~ __ ~C~2 

Issue 
Mount 
Messages 

XPS63i"'0....-__ ~~....;N:..=;01:.::·e...;2 
D2 

Perform 
Verificotions 

XPS75-,O_..i-.-;.N"ote 4 

150 

Note 1 Includes a scan to determine 
if the required volumes are 
mounted on unallocated devices. 

Note 2 Unload commands from master 
scheduler are honored. UCB'S are 
updated if required. 

Note 3 The step is complete when all 
setup messages have been issued 
and verification has been performed. 
Counts in the sa control this 
mechanism. 

Note 4 Either of two events is waited upon. 
Issuance of a cancel command or 
a device being made ready. 

Yes 

To space 
request 
routine 



Chart 43. Space Request Routine 

Request on and 
Allocate Direct 
Access Device 

Normal 

XUUAOO D3 

Update 
JFCB, TIOT 
and PDQ 

No Space 
Available 

Charts 151 



Chart 44. DADSM Error Recovery Routine 

A3 

Entry ) 

XUUI,.J_OO __ F_:v"T=r_:e __ 'J 

152 



Chart 45. TrOT Compression Routine 

XTTMBO 

43 B3 
43 E3 

Compress 
TIOT 

Update 
Scratch Vol 
Information 
In JFCB 

XTTPOO 

Write 
Messages 
On Sysout 

To Step 
Initiation 

Non-recoverable 
Error 

To Step 
Termination 
Routine 

Charts 153 



Chart 46. Step Initiation 

154 

f45

J ~3 

IEFsDOO4 A2 

C~try _) 

sD4000 B2 

Write Out ] 
Scheduler 
Messages 
For Step 

sD4~OO I C2 

U
etuP UCB J Pointer For All 

Data Sets Going 
To sysout 

sD4~20 1 D2 

~
tore LCT'JCT'] 

Release Storage 
They Occupied 

SD4~ E2 

[

Compute, Get 
pip Storage 
Needed By 
The System 

[

sD:::e TlOT To ]F2 

Upper Storage, 
Store TlOT 

...--__ ..I. ___ G2 

Set Up XCTL ] 
Parameters 
And Parm Info, 
Store sCT 

sD4~ H2 

[~!}~~~~:CBJ 
If Presel1t 

Canceled By 

cs 
To Processing Pragram 

Note 1 

Note 1 - During step execution, processing 
pragram (PiP) storage is needed for 

- A steplib or joblib DCB, if present 
- A fetch DCB, if present 
- An XCTL parameter list 
- Parm field information 
- A step TlOT 
- A PIP register save area 

Yes 

K3 

< 



Chart 47 .. Termination 

Abnormal 
Termination 

IEFRPREP Dl 

Restart Preparation 

Abnormal Te 
Or Restart 

m1ination ~ 

El 

Sl'ep Termination 

Job Termination 

IEFACTLK 

User's Accounting 
Routine 

From Interpreter 

HI 
IEFW23SD 

Job Termination 
Entrance 

IEFACTLK 

User's Accounting 
Routine 

Gl 

Step Tem,ination 
Entrance 

From Supervsior 

Abnormal 
Termination 

IEFW42SD C2 
C3 

IEFIDUMP 

Step Termination 
InitializC!tion 

Indicative Dump 

Normal 
Termination 

D2 
"-

IEFY~~ 

D3 

IEFYPJB3 

Step Termination 

~ 
Step Termination 

Control Routine 

E2 

IEFVJIMP ------
Job Statement 
Condition Code 
Routine .-

~F2 
l 

IEFW22SD 

Step Termination 
Exit 

G2 

(~~ 

B H2 
~ IEFZAJ 
-
nation Job Termi 

Control Ro otine 

'-=r J2 

[ 

IEFW31SD 

Job Termination 
Exit 

Data Set Driver 

Restart Or Abnormal 
Termination With More 
Steps 

F3 

From step termination 
control routine when there is 
no restart and there are 
no more steps 

IEFZGJBl 
H3 

Disposition And 
Unol1ocation 
Routine 

D4 D5 

IEFZGSTl IEFZGST2 

~ Disposition Una Ilocation 
Subroutine Subroutine 

E5 

IEFZHMSG 

Message Subroutine 

To Initiator Or Interpreter 

H4 

IEFZHMSG 

- Message 
Subroutine 

To Interpreter 

Charts 155 



Chart 48. 

156 

Step Termination Routine 

23 E2 
24 C5 
25 B2 
26 K3 
33 E3 
40 F3 
45 B3 

IEFSDOll Al 

YN0200 

EntrY~ 
From supervisor 
after pip completion 
or an Inii/Term routine 
when an error condition exits 

Yes 

] 
rY~Z0210 C2 

Move Return 
Yes .. _-. Code From 

TCB To SCT 

YN0205 Dl 

saveD;l 

ErrorC~ 

IEFYP 42 

Disposition And 
Unallocation 
Processing 

Write 
Out SCT 

---_._----

IEFACTLK 
YN0049 

< 

L
NFACTRT 

User's 
Accounting 
Routine 

C3 

< Find Job Or 

'NU~IIS::~t. 

51 
Al 

To job 
termination 
routine 

J3 

--{ 

Store SCT, 
If In 
Storage 
Work Area 

No 

Y~~0340 K3 

IIJVH 43 

Process Job 
Cond Codes 

No 

User's 
Accounting 
Routine 

W22SD E4 

Reinitialize 
Main Storage 

To initiator/ 
terminator' 
system control 

(More steps 
had been 

interpreted) 

To interpreter 
control routine 



Chart 49. Restart Preparation Routine 

Restclrt 

A2 

Save Queue 
Indicators 

G2 

(Step termination) 

E3 

Set No Restart 

H3 

Yes 

Update 
Displacement 
Status: 

Update 
Displacement 
Status: New To 
Delete, Old To 
Keep 

J2 

K2 

Update Step 
Number In PDQ 
Set Pass Bit 

All To Keep 

Set Return 
Code X '08' 
In LCT 

To IEFYNIMP 

J3 

Charts 157 



Chart 50. 

158 

Job statement Condition Code Routine 

IEFVJ 

( Entry 

C
"--L--)F2 
, Return 

To step 
termination 
routine 

C4 

Issue Message 



Chart 51. Job Terminatio:n Rou1:.ine 

Al 

) ---..---

> 

Dl 

...--Re-a-d-I: .... ;-:-A--] 

Directory Block 

ZAA3150 El 

Read 1:::A
Entry 

~ 
Block J 

IEFZG JHl 

Job Terminate 
Srt Cleanup 

Bl 

J3 

IEFACTRT 

>-:"::':'---JOo-j User's Accounting 

To interpreter control 
routine at IEFSDOO8 

Routine 

To interpreter control 
routine at IEFSDOO8 

Set Up LCT 
Parameters 

Perform Disp And 
Unallocation 

Increment Data 
Set Pointer 

G4 

Charts 159 



Chart 52. 

160 

Disposition and Unallocation Subroutine -- Entry .From Step Termination Routine 

IEFZG Al 

Process Delete 
Disposition 

Jl 

Kl 

IEFIHMSG 

Write Disposition 
Message 

Note I 

B2 

Get Next U~~ 
Pointer J------------+< 

Process Pass 
Disposition 

D2 

-E 

F2 

G2 

To Step Terminotion 
Routine 

~ F2 

~ 

~ 

ZKOEI 

Process Pending 
Commands 

ZJOBI 

Perform 

D4 

E4 

Unollocation 

Note 1- The unallocate switch is set 
once for each step, by the 
data set driver routine. 
This occurs after disposition 
processing has been performed 
for every data set in the step. 



Chart 53. Disposition and Unallocation Subroutine -- Entry From Job Termination Routine 

IEFZGJ Al 

Examine Last PDQ 
Entry 

Note 1 

Yes 

Yes 

Yes 

'---I-EF...JZL...H-M-SG---' G 1 

Write Disposition 
Message 

To Job Termination 
Routine 

Note 1 - T he una II ocate 
switch is set when 
all PDQ entries have 
been examined. 

ZNOB26 D2 

Read Data Set's 
SlOT Into Main 
Storage 

Process Catalog 
Disp 

Process Uncatlog 
Disp 

Get Next UCB 
Pointer 

Process Pending 
Commands 

ZJ0B50 

B4 

G4 

Charts 161 



Chart 54. 18K Configuration Load Module Control Flow 

162 

___ ~A2 

Entry From N~ 
XCTL 

82 

IEFVHl --
B3 B4 

IEFIDUMP 
XCTL 

Entry From 
Supervisor 

A5 

) 
~XCTL 
\::.,J - ~ B5 

IEFSTERM 

En-::-:-r-~:~"":'X':"C~:":'T=-L--t'" 
Terminatian 

Interpreter Link 

Initialization 
Routine ---l 

"'---IE-FP-R-ES--j 

XCTL 
Volume Mounting Indicative Dump ~ Step Termination 

Routine Routine I F Routine 

t-
Cl 

XCTL 

XCTL 

XCTL 

-1 C2 XCTL 
L-___ -..\ ~...---C-3------X-C-TL-.• ---C-4-...J xcr! r xen C5 

G
IEFCOMMD 

Scan Command 
Routine 

Delete 

IEFCNTRL --
Interpreter 
Control Routine 

XCTL 

IEFINTFC IEFJTERM 
XCTL 

r--fI'" Int/lnit Interfac., Job Termination 
Routine Routine 

XCTL 1, I XCTL Ix: LoodAndjr-

Note 2 Dl ...-__ -'-__ ~D;;;;,2 

E
EFVGM1_16 --. 

.XCTL ~ ~ + XCTL I D4 

,....--IE~F-J..LTR-M-2-·'-"'i IEFVHH 
,....---+-----------

Messages ~ Past Processing r---­
Control 

Job Termination 

El 

EIEFJOO 
Job Routine r---

Fl 

-~----~ 

Note E2 E3 Load And 
...-;;';";"-j e-E-M-C-R-O-I -';;;~--=-Li:.:.:n:..:..k --+-I"'---I-EE-S-T-A-RT-';";" Delete 

Master Scheduler 
Start Command 
Routine 

lXCTL 
If Erro' 

F3 

IEFSELCT 

System Control 
Routine 

XCTL I _ ~ 
~ 

IEEFJCB 

JFCB'S For Start 
Command Routine 

F4 

IEFEXEC ~"'--I-EE-F..LA-U-LT-J ~r-_I_EE_S_JF_C_B_~ 

Execute Routine +---

'-------

Gl 

IEFDD 

DD Scan Routine ~-

1 HI 

IEFVGMSS 
XCTL 

f----
Messages 

Note 1- The assembly module IEEMCROI 

~- Fault Routine 

Exit 

r
XCTL 
If ErrOl 

Link 

,---

G3 

Interface With 
Table Store 
Subroutine 

~_I_E_ES_E_T ___ ~~ IEFJOBQE 

Set Command 
Routine 

lXCTL 

,....-__ ..L-__ H3 

IEETlME ~ 
Svc Exit 

~--------1 

~~:~~;;ne J 

Oueue 
Link (At IPL) Initialization 

Routine 

IEFMCVOL 

Mount Cvol 
Routine 

IEFATACH 

G4 

H4 

E4 

J4 

XCTL 

IEFERROR 

JFCB Housekeeping 
Error Routines 

XCTL i 
D5 

IEFALOCI 

Allocation 
~ Control Routine 

XCTL 

1 IXC!b 
XCTL~ 

IEFALOC2 

Demand Allocation 
Routine 

lXCTL 

F5 

IEFX5000 

Decision Allocation 
Routine 

lXCTL 

G5 
IEFALOC3 

TlOT 
Construction 
Routine 

!XCTL 

H5 

IEFALOC4 

External Action 
Routine 

l XCTL 

IEFALOC5 

J5 

is included in lood modules IEFVHI, 
IEFCOMMD, and IEFINTFC. 

r-------I XCTL 

Note 2- The message modules IEFVGMI through 
IEFVGMI6 can be loaded and deleted 
by any of the following modules: 
IEFCNTRL, IEFJOB, IEFEXEC, 
IEFVGMSS, and IEFCOMMD. 

Step Initiation 
Routine 

I XCTL 

• K4 

Processing 
Program 

Return Or 
Abend 

Space Request 
Routine 

IXCTb 

~ 
K5 

Exit 
To Supervisor 

-

E5 

XCTL -



Chart 55. 44K Configurat.ion ]~oad Module Control Flm"l 

A2 

~ From NIP 

XCTL B2 

IEFVHl ------
I nterpret'er 
Initiolization 
For Routine 

Note 2 C1 

!XCTl 
C2 

IEFVGMl-16 IEFCNTRL __ 

Load XCTL 
Interpreter I nterpreter And 
Error Messages And Job Terminate 

Delete 

i ~ D2 

Load And IEFCOMM~ Delete 
Processes 
Comm,)nd 

Note 1 E2 ------ Link 
IEEMCR01 ------

Moster ~ 
Scheduler 

r-

~ 

'----

SVC 
exit 

Link 

SVC Exit 

Note 1 - The assembly module IEEMCRO 1 is 
included in laad modules IEFVH1 and I Er:COMMD . 

Note 2 - The message modules can be loaded and 
deleted by IEFCNTRL and IEFCOMMD. 

63 

IEFPRES 

Volume Mounting 
Routine 

XCTL 

C3 

IEFJTERM 

Job Termination 

E3 Load And 

IEESTART 
Delete 

Start Command 
Routine Link 

f---1 XCTL if error 

F3 

IEEFAULT --Fault Routine 

rCTLif 
error 

G3 

IEESET f----
Link 

Set Command 
Routine 

Link rTl (at IPL) 

H3 

IEETlME 

Supervisor Time 
Routine 

A5 

Entry From 
Supervisor 

64 

IEFIDUMP -
Indicotive Dump 
Routine 

XCTL C5 
~ IEFSTERM 

XCTL I nterface And 
I---Step 

~ Termination 

XCTL 

D4 D5 

IEFERROR - IEFALOC1 

JFCB 
Housekeeping First Load Of f---+ 
Error Routines 

Allocation 

XXCTL 

E4 E5 

IEEJFCB IEFALOC2 

JFCB'S For Second Load -Start Command 
Routine 

Of Allocation 

XCTL 

F4 F5 

IEESJFCB 

Interface With Processing 
Table Store Program 
Subroutine 

Return or 
abend 

G4 

IEFJOBQE G5 

Queue Exit 

Initi.alization To Supervisor 

Routine 

H5 

IEFMCVOl 

Mount CVOL 
Routine 

Charts 163 



Chart 56. lOOK Configuration Load Module Control Flow 

164 

Note 2 Cl 
Load 

IEFVGMl-16 And 

Interpreter 
Delete 

Messages 

----.. -

Note 1 - The assembly madule 
IEEMCROI is included in 
load madules IEFVHl and 
IEFCOMMD_ 

Note 2 - The messoge madules 
can be loaded and deleted 
by IEFCNTRL and IEFCOMMD. 

A2 A3 

Entry From NIP -C Entry From ) Supervisor 

xaL 1 82 XaL B3 

IE'VHl J IEFiDUMP J 
Interpreter Indicative Dump 
Initialization Routine 
+- EOF RTN ~ 

tcn X 

C2 
C 
T 

GO foot- L IEFALLOC 

Interpreter And r--- Allocation And 
Initiator Allocation 
Terminator 

XaL Error Routine 

XaL _~ 
----------

Processing 
Program 

02 Note 1 

IEEMCROI 

Master 

C3 

03 

XaL 

Link 

Scheduler 
I Link 

Return 
or abend 

1'2 
--EX-it..J;T-O-) 

Supervisor 

~ 

Link 

SVC 
exit 

C4 

IEFMCVOL 

Mount CVOL 
Routine 

04 Load And 05 
Delete 

IEESTART IEEJFCB 

Start Command JFCB'S For 
Routine Start Command 

~ Routine 

fTlH error 

E4 E5 

IEEFAULT L--+ IEESJFCB 

Interface With 
Fault Routine Table Store 

~ 
Subroutine 

r xen H error 

F4 F5 

IEESET I--- IEFJOBQE 

Set Command Link Queue 
Routine Link Intialization 

Routine 

1 G4 

IEETlME 

Superv isor Ti me 
Routine 



ABEND macro instruction 57 
Abnormal termination 59-60,63'-64 
ACB (see allocate control block) 
Account control table (ACT) 

construction of 9,28 
description of 65 

Accounting routine 10,38 
Acronyms, list of 108 
ACT (see account control table) 
Affinity 

unit 
link field 45 
requests for 38,54 

volume 
requests for 38 
resolution 45-46 

Allocate chain 53 
Allocate control block (ACB) 42-44,50 
Allocate p:r:ocessing routine 41 
Allocate volume table (AV'I) 

construction of 44-45,53 
storage requirements of 42-43 

Allocate work table (AWT) 
construction of 44-45 
entry sources 45 
in decision allocation 53-54 
storage requirements of 43 

Allocation and setup 38,42-57 
Allocation channel mask 47 
Allocation control routine 42-44 
Allocation error routines 42,52,57 
Allocation of resident devices 47 
Allocation, storage requirements of 42-43 
Assembly modules, list of 83-98,99-107 
Asynchronous exit queue 14 
Attention interruption 1.2,14,16 
Automatic checkpoint rest.art 38 
Automatic volume recognit:ion (AVR) 

1.2,50-52 
Auxiliary routines 34-31 
Auxiliary work area (AWA) 34 
AVT (see allocate volume table-) 
AVR (see automatic volume recognition) 
AWT (see allocate work table) 

C~~NCEL command 14,16 
in step initiaLion 51-58 

Cancel ECB (event control block) 
in step initiation 51 
in termination 58 

Cjr\TLG disposition 62 
Cataloged data sets 62 
Cataloged procedures 20 
Cnannel load assignments 46-5.0 
Channel load table (CLT) 46-510,52 

storage requirements of 43 
Channels, logical 46-50 
Checkpoint restart 

automatic 38 
in restart preparation 59 
recognizing 28 

CLT (s~e channel load table) 
Command-pending switch 10,16-17 
Command pointer 73 
Command routine 22 

Index 

Command 3cheduling control block (CSCB) 37 
Commands 

CANCEL 14,16,57-58 
DISPLAY 14,16,39 
initialization 10,17 
MOUNT 14,16,47 
processing of 12 
REPLY 17 
REQ 10,14,16 
SET 10,16,17 
START (blank) 10,14,16 
START RDR 16-17,19,37 
START WTR 10,16-17 
STOP 14,16 
STOP WTR 16-17 
UNLOAD 14,16,47,63 
VARY 14,16,63 

Communications vector table (CVT) 73 
Condition codes 

EXEC statement 38 
JOB statement 59 

Condition operators 
EXEC statement 39 
JOB statement 59 

Conditional disposition 64 
Console flag switch 15 
Console interrupt routine 14-16 
Continuation check routine 20-21 
Continuation statement 23 
Control routine 19 
Control sections (CSECTs), list of 99-107 
Control statement 

DD 10,21,28,41 
DD, parameter dispositions 30-33 
DD, JOBLIB 57 
DD, STEPLIB 57 
EXEC 21-22,28-29,35,77 
EXEC PROC 21 
JOB 21-22,28-29,38 
NULL 10,20-22,38 
PEND 19,21-22 
PRoe 19,21-22 
processing of 21-33 
reading 20 

CSCB (see command scheduling control block) 
CSECT (see control sections) 
CVT (see communications vector table) 

DADSM error recovery routine 42,56 
(see also direct access device space 
management routines) 

Data control block (DCB) 20,57 
Data set control block (DSCB) 56 
Data set name (DSNAME) table 

construction of 9 
description of 66 

Index 165 



Data sets 
device requirements of 43-44,46 
disposition of 9,62 
selection of 53 

DCB (see data control block) 
DD statement cleanup routine 28 
DD statement, JOBLIB 57 
DD statement parameter dispositions 30-33 
DD statement processing 21 
DD statement processor routine 28,36 
DD statement scanning and encoding 24-27 
DD statement, STEPLIB 57 
Decision allocation routine 42,52-54 
DELE'I'E disposition 62-63 
Demand allocation routine 42,44-50 
Device allocation 50,53 
Device availability processing 63 
Device mask table (DMT) 

deletion of 50 
description of 66 
functions of 45,49 
storage requirements of 42-43 

41,66 Device name table (DNT) 
Device range reduction 
Device strikeout routine 
Dictionary entry routine 
Dictionary search routine 
Direct access device space 

(DADSM) routines 56 
Dismount messages 64 

49 

Display command 14,16,39 

51 
34,36 
34,36 
management 

Disposition and unallocation 58,60 
Disposition, data set 

CATLG 62 
conditional 64 
DELETl!; 62-63 
KEEP 62-63 
PASS 62-63 
UNCATLG 62-63 

DMT (see device mask table) 
DNT (see aevice name table) 
DSCB (see data set control block) 
DSNAME taole (see data set name table) 

ECB (see event control block) 
End-of-data condition 10,16,20 
Entry, post-processing 23 
Error message processing routine 42 
Event control block (ECH) 18 

cancel 57-58 
EXCP macro instruction 14,16-18 
EXEC statement 21-22,28-29,35,77 
EXEC PROC statement 21 
Execute card scan routine 29 
Execute statement cleanup routine 28 
Execute statement condition codes 38 
Execute statement condition operators 39 
Execute statement conditional execution 
routine 39-40 

Execute statement processor routine 28 
External action routine 42,51-52,55-56 
External interrupt routine 14,16-17 

Fetch DCB 57-58 
Fetch DCB processing routine 41 
Flags, in master scheduler resident data 
area 73 

166 

GOG (generation data group) 
all processing routine 41 
single processing routine 41,67 
bias count table, description of 67 

GE~~ macro instruction 20 
Gei: parameter routine 34 

I/O supervisor 14,16 
I/O supervisor UCB lookup table 53 
In-·stream procedure 

definition of 19 
directory 21 
invoking 20 
routine 22 
work area, description of 68 

Indicative dump routine 58 
Initial program loading (IPL) 10,16,19,38 
Initialization 

commands 10,17 
functions 58 
routines 17,19 
switches 73 

Initiator control routines 38-39 
Initiator/terminator 

functions of 9-10 
routines 38-60 

Input queue entry 22 
Input stream, definition of 19 
Int.erpreter 

control routine 36,81 
DD routine 66,77,81 
entrance list (NEL) 37 
EOOAD exit routine 20 
functions 9-10,14,16-17 
get routine 20-21,23 
message routine 36 
processing 19-37 
system output routine 28 
termination routine 20-21,37 
work area (IWA) 21 

Interpreter/initiator interface 22,59 
Interrupt key 9-10,13,15,17 
Interruption 

attention 12,14-16 
external 12,15 
I/O 14,52 
SVC 14,17 

Interruption queue element 14,16 
Interruption request block (IRB) 14,16 
Interruption request block routine 14,16 
IPI (see initial program loading) 
IPI/NIP parameter list. data set, PRESRES 

member of 47-48 
IPI pending switch 17 
IRB (see interruption request block) 
IWA (see interpreter work area) 

JCL get parameter routine 28 
JCL header routine 28 
JCL keyword entry 35 
JCL keyword routine 28-34 
JCL keywords 24 
JCL scan dictionary 24 
JCL scanning routine 24-27 
JCL statement 

processing 28-37 
scanning 24-27 



Jc~r (see job control table) 
JFCB (see job file control block) 
Job and step enqueue routine 22-23 
Job control language (see JCL) 
Job control table (JCT) 

construction of 9 
description of 69-70 
in initiation 57 
in interpreter processing 22,37 
in restart 28 
in termination 58-59 

Job file control block (JFCB) 
construction of 9 
description of 71-72 
in auxiliary routines 36 
in interpreter processing 28 
in step initiation 57 
housekeeping control routine 41 
housekeeping routines 40-42,66-67,76,81 
pointer 54 
scratch information 56 

Job library data set 38,54,57-58 
Job management 

components of 9,10 
entry to 10 
functions of 9 
routines 70 

Job processing 10 
Job queue, selected 39 
Job scheduler, functions of 9 
JOB statement 10,21-22,28-29,38 
Job statement condition code routine 58-59 
Job statement processor routine 28,34-36 
Job termination routine :lO, 59-·60 
Job validity check routine 21 
JOBLIB DD statement 57 

KBT (see keyword branch table) 
KEEP disposition 62-63 
Keyword branch table (KBT) 34 

LeT (see linkage control ·table) 
Library 

job 38,57 
linkage 13 
procedure 19-20 
step 57 
SVC 13,16 

Linkage control table (LCT) 38-40,57-59 
Linkage library 13 
Load, channel 47 
Load modules, list of 83-98 
Local work area (Lt~A) 20,28,37 
LOCATE macro instruction 41 
Logical channels 46-48 
L'V1A (see local work area) 

Macro instruction 
EXCP 14,16-17 
GET 20 
LOCATE 41 
OBTAIN 40 
READ 20 
SCHEDULR 17 
TTIMER 20 

Macro instruction (continued) 
WTO 9-10,13-14,17 
WTOR 9-10,13-14,17 

Macro parameter list 
construction of 9-10,14 
format of 58 

Main storage hierarchy support 28 
Master command EXCP routine 13-14,16-17 
Master command routine 14-17,22 
Master common area 73 
Master scheduler 

functions of 9-10,14 
control flow 14 
resident data area 73-74 

Message routine 22,34 
Message routine codes 17 
Messages 

dismount 64 
programmer 10,12,17-18,38,58 

MOUNT command 14,16 
Mounted volumes, processing requests for 

51 
Mutually exclusive parameters 24 

NEL (see interpreter entrance list) 
New reader or writer table, description of 

75 
New reader pending switch 17 
New writer pending switch 17 
Non-standard label (NSL) processing 50 
Nucleus transient area 16 
NULL statement 10,20-22,38 

OBTAIN macro instruction 40 
Operator commands 9-10,12-14 
Operator-system communication 10-12 

Parameter 
mutually exclusive 24 
no-action 35 
positional 24,34-35 
required-format 35 
unconditional-action 35 
variable-format 35 

Parameter descriptor table (PDT) 35-36 
PASS disposition 62-63 
Passed data set queue (PDQ) 

construction of 39-41 
description of 76-77 
disposition 63-64 
termination 59-60 

Patterning DSCB routine 42 
PDQ (see passed data set queue) 
PDQ block 76 
PDQ directory block 76 
PDQ overflow block 76 
PDT (see parameter descriptor table) 
PEND statement 19,21-22 
Permanently resident volume 47 
positional parameters 24,34-35 
Post-scan routine 23 
Potential user on device (PUD) table 43,53 
Pre-scan preparation routine 21-23,28 
PRESRES member of IPL/NIP parameter list 
data set 47-48 

Index 167 



Primary console switching, functions of 
13-15 

PROC statement 19,21-22 
Procedure library 19-20 
Proceed light 14 
Programmer messages 10,12,17-18,38,58 
Pseudo SYSOU'!' routine 57 
PUD table (see potential user on device 
table) 

Queue entry processing 22 
Queue management assign and start routines 

22 
Queue management read routine 40 
Queue manager interface routine 

22,34,36-37 
Queue manager parameter area 36-37 

READ macro instruction 20 
Reader/interpreter job routine 69 
Refer-back dictionary 36 
Release job queue routine 59 
RBPLY corr@and 17 
REQ command 10,14,16 
Request block queue 10 
Request key 10,13-14 
Resident devices, allocation of 47 
Resident job queue option (RESJQ) 60-61 
Restart,checkpoint 28-29,38,59 
Restart preparation routine 58-59 
Restart, step 28-29,59 
Router routine 21-22 

scheduler lookup table 46-48 
SCHEDULR macro instruction 17 
SCT (see step control table) 
SCT extension block 79 
separation, channel 52 
separation strikeout pattern, storage 
requirements of 43 

Separation strikeout routine 52 
separation, unit 52 
SET command 10,16-17 
SlOT (see step input/output table) 
5MB (see system message block) 
Space request routine 42,52,56 
START command 

(blank) 10,14,16 
RDR 10,14,16,37 
WTR 10,14,16 

Statement, continuation 23 
Statement processing routine 23-24 
Statement, overriding 23 
Step control table (SC'!') 22-23,38,40 

construction of 9 
description of 77-78 
disposition 58 
DSNAME table pointer in 66 
in initiation 38 
in JCL proces$ing 22,36 
in JFCB housekeeping 40 
in termination 59 
storage 57 

Step initiation routines 10,38,57-58,69,77 

168 

Step input/output table (SlOT) 
construction of 9 
description of 79-80 
disposition field 62 
DSNAME table pointer in 66 
in JCL processing 28,36 
in JFCB processing 40-41 
in termination 59 
storage requirements of 43 

Step library data set 57 
Step restart 28-29,59 
Step termination 10,58~59 

control routine 58-59 
data set driver routine 58-59 
exit routine 59 

STEPLlB DD statement 57 
STOP command 14,16 
STOP WTR command 16-17 
St.:>rage volume, definition of 49 
Suoervisor 10,14-18 
SU'oervisor call (SVC) 

interruption 14 
library 12,16 
transient area 14,16-17 
34 instruction 16-17 
35 instruction 14 
90 instruction (see transient queue 
manager) 

SY;3GEN (see system generation) 
SYSlN, allocation of 50 
SY:30UT 

data set 17 
routine 75 

SYBtem generation (SYSGEN) 17 
System message block (SMB) 9,17-18,21-22 

allocation messages 56-57 
construction of 9,20 
description of 81 
in termination 58-60 

SY:31.LlNKLlB (linkage library data set) 
1:2,41,45 

SYS1.PARMLlB (parameter library data set) 
4"-48 

SYS1.PROCLlB (procedure library data set) 
2') 

SYB1.SVCLlB (supervisor call library data 
set) 12,16 

SYB1.SYSJOBQE (job queue data set) 
17,61,75,81 

Table store subroutine, functions of 61-62 
Tank control block (TCB) 16,59,82 
Task input/output table (TlOT) 

compression routine 42,56 
construction routine 42,52,54-55 
disposition 58-59,62 
in step termination 57 
storage requirements of 42-43 

Termination 10,38,58-60 
TeHt and store routine 28,34-36 
TCll (see task control block) 
TlOT (see task input/output table) 
Transient queue manager (SVC 90) 17-18 
TTIMER macro instruction 20 

UCB (see unit control block) 
UNCATLG disposition 62-63 
Unit affinity 38,45~54 



Unit control block (UeB) 
44-47,49-51,53,56-57,64 

UNLOAD command 14,16,47,63 
Unmounted volumes, requests for 
Unreceived data sets 60 
Unspecified volumes, allocation 

VARY command 14,16,63 
Verb identification routine 21 
VOL'l' (see volume table) 
Volume affinity 38,45,53 
Volume control block 41,51 
Volume list 62 
Volume serial numbers 

list of 81 
processing 50-52 

51 

of 52-54 

Volume table (VOLT) 
construction of 
description of 

40,43,66 
9 

81 

Write-to-operator (WTO> 
macro instruction 9-10,12,14,17,39 
routine 14,17-18 

Write-to-operator-with-reply (WTOR) 
macro instruction 9-10,12,14,17 
routine 17-18 

Write-to-progcammer (WTP) 10,12,17-18,38 
Wri te-to-programmer control block (W'l'PCE) 

38,82 

Index 169 



READER'S COMMENT FORM 

IBM System/360 Operating System 
Job Management 
Program Logic Manual 

Order No. GY28-6613-5 

• Is the material: Yes No 
Easy to read? ............ ........................................................................ D D 
Well organized? . . .. . . .. . . . ..... ..................................... D D 
Complete? ........................................................................................... D D 
Well illustrated? ....... .... .......... ................ D D 
Accurate? ......................... ...................... ................ D D 
Suitable for its intended audience? . ...... ...... ................... D D 

• How did you use this publication? 
D As an introduction to the subject 
D For additional knowledge 

Other. 

• Please check the items that describe your position: 
[J Customer personnel D Operator 
[J IBM personnel D Programmer 
[J Manager D Customer Engineer 
[J Systems Analyst D Instructor 

D Sales Representative 
D Systems Engineer 
D Trainee 
Other. 

• Please check specific criticism ( s ), give page number ( s ), and explain below: 
D Clarification on page ( s ) D Deletion on page (s ) 
D Addition on page ( s ) ... ....... . D Error on page ( s ) 

Explanation: 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GY28-6613-5 

YOUR COMMENTS, PLEASE ••• 

This manual is part of a library that serves as a reference sourcn for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or f.or assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

Fold 

IBUSINESS REPLY MAIL 

~~STAGE STAMP NEC_ESSARY IF MAILED IN T'-IE UNITED STATES 

Attention: Programming Systems Publications 
Department 058 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

Intern·ati'onal Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
IUSA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
/International) 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N.Y. 

Fold 
:E 
a 
(1) 
0.. 

:;' 
c 
i.n 
»,~ . ' 



GY28-6613-5 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.106Ot 
/USAOnlyJ 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International J 

Vl 
W 
0-
o 
I 

W 
~ 

G) 

-< 
I'V 
00 

6-
0-

W 
I 

<.n 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	replyA
	replyB
	xBack

