File No. S360-36 (0S)
GY28-6613-5

Program Logic

IBM System/360 Operating System:
Job Management,

Program Logic Manual,
Program Number 360S-CI-505

This publication describes the internal logic
within the job management portion of the IBM
System/360 Operating System Primary Control
Program. Job management prepares jobs for
execution, and directs the disposition of data
sets created during job execution. It also
handles all communication between the operator
and the primary control program. Included in
the publication are descriptions of tables and
work areas used by the job management routines
and a directory of names and purposes of con-
trol sections, assembly modules, and load
modules.

The information contained in this publication
applies only to the primary control program.

This manual is intended for persons involved in
program maintenance, and system programmers who
are altering the program design. Program logic
information is not necessary for use and operation
of the program.

Sixth Edition (June, 1970)

This is a major revision of, and obsoletes, GY28-6613-4., 1In
addition to incorporating information previously 1eleased,
this edition also describes the changes made to primary con-
trol program job management in Release 19 of the operating
system. These changes include:

¢ The Write-To-Programmer (WTP) facility of the Write-To-
Operator and Write-To-Operator-wWith-Reply macro
instructions

e Description of and figure for the Write-To-Programmer
Control Block (WTPCB)

¢ The In-Stream Procedure job control feature
Description of and figure for the In-Stream Work Area

s Explanation of the loading and deletion of the Device
Name and Device Mask Tables

e New Key Values for the JCL Scan Routine

Changes to Job Management Tables

¢ Additional assembly modules in the SYS1.NUCLEUS, SYS1.
SVCL1B, and SYS1.LINKLIB data sets

Other changes to text, and small changes to illustration, are
indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol e to
the left of the caption.

This edition applies to Release 19 of IBM System/360
Operating System, and to all subsequent releases until other-
wise indicated in new editions oxr Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the opera-
tion of I8M Systems, consult the latest IBM System/360 SRL
Newsletter, Order No. GN20-0360, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica-
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

© Copyright International Business Machines Corporation 1966, 1967, 1968, 1969,

1970

This publication describes the structure of
the sequential scheduler configuration of
job management, its functions, and the con-
trol flow between its major routines. It
is divided into an introduction in which
job management is briefly described and
three major sections, master scheduler,
terpreter, and initiator/terminator, in
which the corresponding components are de-
scribed in greater detail. Included are
four appendixes. Appendix A describes two
subroutines used frequently by job manage-
ment routines. Appendix B shows job man-
agement tables and work areas that are not
described in the body of the publication.
Appendix C lists job management load
modules and the assembly modules that each
contains. Appendix D lists the acronyms
used in this publication and the meaning of
each. Further information on job manage-
ment may be obtained from the program
listings.

in-

Preface

Readers should have a thorough under-
standing of IBM System/360 programming and
should be familiar with the following
publications:

IBM System/360 Operating System:

Introduction, GC28-6534

Concepts _and Facilities, GC28-6535

Operator's Reference, GC28-6691

Job Control Language Reference,
GC28-6539

Introduction to Control Proqram Logic,
Program Logic Manual, GY28-6605

System Control Blocks, GC28-6628

INTRODUCTION o« v 4 o « = = = o o o =
Job Scheduler Functions . . . « « .
Master Scheduler Functions
Job Processing & .o & o . .
Entry to Job Management Follow1ng
Initial Program Loading
Entry to Job Management Following
Step Execution . . . « « « « o .
Control Statement Processing .
Step Initiation .« +« . « .+ <« .
Job and Step Termination . . .
Operator-System Communication
Processing . .« o o o o« o o o
Command Processing - « « « « « &
WTO/WTOR Macro Instruction
Processing . o« « « o o o o o o
External Interruption Processing
Load Modules .+ o 4 o o « o o o o «

MASTER SCHEDULER 4 « o o o « o
Master Scheduler Control Flow
Console Interrupt Routine . .
Master Command EXCP Routine .
Master Command Routine
Write-To-Operator Routine . .

WTP Error Handling

WTP Control Transfer . . .
External Interrupt Routine . .

s s s s
.
s s 3 s

INTERPRETER .« « o o o« o o -
Initializing the Interpreter .
Input And Control Operations .
Reading Control Statements . .
End-of-Data and Null Statements
Processing Control Statements .
Processing JOB, EXEC, and DD
Statements . « « ¢ ¢ o o o o o .
Queue Entry Processing . . . o .
Post-Processing Entry
Scanning the JCL Statement
Processing JCL Statements
Recognizing Checkpoint Restart

Auxiliary Routines . . « - « « &«
The Get Parameter Routine . .
The Test and Store Routine . .
The Dictionary Entry Routine .
The Dictionary Search Routine
The Interpreter Message Routine .
The Queue Manager Interface Routine

Interpreter Termination

INITIATOR/TERMINATOR o « + o « o « «
Initiator Control . . « « o « o « «
System Control Routine
Execute Statement Conditional
Execution Routine
JFCB Housekeeping Routines
JFCB Housekeeping Control Routlne
Allocate Processing Routine . .
Fetch DCB Processing Routine .
GDG Ssingle Processing Routine
GDG All Processing Routine . .

.
-
.
-
-
-
-
-
-
-
-
-

. s 8 8 & 3 & 3 s & 3

Contents

Patterning DSCB Processing Routine .
Error Message Processing Routine . .
Allocation and Setup « « « « « « & . o
Allocation Control Routine
Demand Allocation Routine
Allocate Work Table Construction . .
Volume Affinity Resolution
Data Set Device Requirement
Calculation . . & o o o o o o 2 o «
Channel Load Assignments
Allocation of Resident Devices .
Device Range Reduction
SYSIN Allocation « o« « « « & o+ &
Specific Device Allocation . . .
Exits From Demand Allocation
Automatic Volume Recognition
Processing Requests for Mounted
Volumes .« « « « o« & © % e o e o @
Processing Requests for Unmounted
VOlUMES &+ « o o o o a o = o o =
Decision Allocation Routine .
Data Set Selection
Device Selection
Device Allocation . « . . .
TIOT Construction Routine
External Action Routine
Space Request Routine . « « + « .+ . .
Obtaining Space If a Device Was
Allocated . . o« 4 2 o o o o o s o »
Obtaining Space If a Device Was Not
Allocated .« ¢ 4 o « o o o o o o o @
TIOT Compression Routine . . .
DADSM Error Recovery Routine .
Allocation Error Routines . .
Step Initiation . ¢« « « « « . .
Termination . . . ¢ v o o & o « o o o &
Step Termination . . « « « ¢ ¢ ¢ « o .
Job Termination Routine

LI I)
s & s
.

APPENDIX A: MAJOR SUBROUTINES
Table Store Subroutine . . . « « « « . .
Disposition and Unallocation Subroutine
Entry From the Step Termination
Routine . ¢ v o o o o o o o o o« = « &
Disposition Processing . . . « . . .
Device Availability Processing . . .
Entry From the Job Termination
Routine . . o o o o o o o o o o a o @

APPENDIX B: TABLES AND WORK AREAS . .
Account Control Table . . ¢« « « « « &
Device Mask Table . . « « o« o « o o« =«
DSNAME Table « o o o« ¢ o « o« o o o o =
Generation Data Group Bias Count Table
In-Stream Procedure Work Area . . .
Job. Control Table . . « « ¢ v o « &
Job File Control Block . « « « o o «
Master Scheduler Resident Data Area.
New Reader or Writer Table . . .
Passed Data Set Queue . . « . .

Step Control Table . . « . . « « . .
Step Input/Output Table

s s ¢ & » 2
* o ¢ s 3 8 s s

System Message Block . .
Volume Table « « « « .« .
| write-To-Programmer Cont

APPENDIX C:
MODULES e o ® ® o w e =
Load Modules « « « o o o«

Load Modules Contained in the

SYS1.NUCLEUS Data Set

Load Modules Contained in th

SYS1.SVCLIB Data Set .

1)

rol Block

LOAD MODULES AND ASSEMBLY

81
81
82

83
83
83

84

Modules Contained in the
$5¥S1.LINKLIB Data Set
Assembly Modules and Control Sections
Control Sections and Assembly Modules

| aPPENDIX D:

CHARTS .

INDEX

LIST OF ACRONYMS

. 84
< 99
.106
-.108
.109

.165

Figures

Figure 1. Job Management Control
Flow e 2 s e o s e @ 8 s e e s = o
Figure 2. Attention Interruption
Processing F1OW .« 2 o o o o o« o o o
Figure 3. WTO/WIOR Macro Instruction
Processing F1OW .« 4 o o o o o o o o @
Figure 4. kxternal Interruption

Processing FLOW .« « +v o « o o o o o @
Figure 5. Master Scheduler - Command
Processing Network e e e s s e e e e
Figure 6. Master Scheduler

Interruption Queue Element e e e e

Figure 7. Interpreter Data Flow . .
Figure 8. 1nternal List Entry Format
Figure 9. S8can Dictionary Entry

Format @ s e e & e & @ @ e e 8 s e
Figure 10. JOB Statement. Parameter -
Dispositions © e s s e a s a 2 s o =
Figure 11. EXEC Statement Parameter
Dispositions ¢ o o e % 4 o e 8w = o @
Figure 12. DD Statement Parameter
Dispositions (Part 1 of 4)

Figure 13. Keyword Branch Table Entry
Figure 1l4. Parameter Descriptor Table
(PDT) @ o o s e e e s & e e @ & e o
Figure 15. Linkage Control Table . .
Figure 16. Selected Job Queue « o e
Figure 17. Execute Statement COND

Parameter Options . . « « &« &« & « < .
Figure 18. Formulas for Determining
Allocation Table Sizes “ e ¢ & s o o

Figure 19. Relative Positions of
Tables Used for Allocation . - . e
Figure 20. Allocate Control Block .- .
Figure 21. Allocate Volume Table

Entry e e o e o o o s e e o & @ o @
Figure 22. Allocate Work Table Entry
Figure 23. Allocate Work Table Entry -
SOULXCES « o o o« o 2 s o o o o o« o o

11
12

12

29
29

30
34

35
39
4o
43
43
Ly
45
46

24,
25,
26.

Figure
Figure
Fiqure
Table

Figqure 27.

Illustrations

Scheduler Lookup Table .
Channel Load Table « o e s
Potential Usexr on Device

Formulas for Determining

Task Input/Output Table Space

Reguirements

Figure 28.
Figure 29.

Task Inputs/Output Table . .
Task Input/Output Table

Entry SOUXCES =« ¢« o o o o o ¢ o« o = o o

Figure 30.
Fiqure 31.

Macro Parameter List « e e
Table Store Subroutine

Parameter Area « o - « e e o = e o
Fiqure 32. QMPCA- QMPEX Llst « o o & @
Fiqure 33. Table Store Subroutine
Parameter Requirements e e e e a & o =
Figure 34. Account Control Table . . .
Fiqure 35. Device Mask Table
Fiqure 36. Dsname Table e e s e o o e
Figure 37. GDG Bias Count Table e o o
Figure 38. In-Stream Procedure Work
Area e« 4 e o o & s o & e 8 e 8 a » = e
Figure 39. Job Control Table
Figure 40. Job File Control Block

(Part 1 of 2) . . . « o o
Figure 40. Job File Control Block

(Part 2 Of 2) & 4 ¢ ¢ o o o e a o « o »
Figure 41. Master Scheduler Resident
Data AY€a « « o o o« o o o 2 o = s o o =
Figure 42. New Reader or Writer Table
Fiqure 43. Passed Data Set Queue
Tables e o % c @ a s @ ® o e a a a & a
Figure 44. Step Control Table and SCT
Extension Block . . . e« o & & o o e @
Fiqure 45. Step Input/Output Table . .
Figure 46. System Message Block « . .
Fiqure 47. Volume Table e o e o o @ @
Figure 48. Write-To-~-Programmer Control -
BloCK ¢ &v o ¢ o o o o o o s s o a a o =

48
49

53

82

Chanrts

Chart 0l1. Job Management . « « . + . .109
Chart 02. Master Scheduler110
Chart 03. Console Interrupt Routine <111
Chart O4. Master Command EXCP Routine 112
Chart 05. Master Command Routine . . .113
Chart 06. Write-to-Operator Routine .114
Chart 07. Write-to-Operator

With Reply Routine115
Chart 08. Write-to-Programmer

Routines (Part 1 of 5) e s = e o « o <116
Chart 09. Write-to-Programmer

Routines (Part 2 of 5) e e e s e e = <117
Chart 10. Write-to-Programmer

Routines (Part 3 of 5) e« s s « o » <118
Chart 11. Write-to-Programmer

Routines (Part 4 of 5) e e e « o o » @119
Chart 12. Write-to-Programmer

Routines (Part 5 of 5) e o e o « o « <120
Chart 13. External Interrupt Routine .121
Chart 14, Interpreter Control Flow . .122
Chart 15. Interpreter Initialization .123
Chart 16. Interpreter Control Routine 124
Chart 17. Interpreter Scan Routine . .125
Chart 18. JCL Statement Processors .126
Chart 19. In-Stream Procedure Routines 127
Chart 20. Interpreter Termination . . .128
Chart 21. Initiator/Terminator129
Chart 22. Initiator Control130
Chart 23. System Control Routine . . .131
Chart 24. Execute Statement

Conditional Execution Routine13Z
Chart 25. JFCB Housekeeping Routines .133
Chart 26. JFCB Housekeeping Control
ROULINE .+ & o ¢ o o ¢ o = o « » = = » 2134
Chart 27. Mount Control Volume Routine 135
Chart 28. Allocate Processing Routine 136
Chart 29. Fetch DCB Processing

ROUtIinNe « v ¢ ¢« o o o o o o « 4 = « = 4137

Chait 30. GDG Single Processing

ROUTINE « o o o o o o o o o's o o o« » 2138
Chart 31. GDG All Processing Routine .139
Chaxct 32. Patterning DSCB Processing
ROULINE & 4 4 4 o o o« o o 2 .o = « » « <140
Chart 33. Error Message Processing

RoOutine .« ¢ o +v o o o o o u.s « =« « o« 141
Chart 34. Allocation and Setup142
Chart 35. Allocation Control Routine .143
Chart 36. Demand Allocation Routine <d44
Chart 37. Automatic Volume

Recognition (IEFXV001)145
Chart 38. Automatic Volume

Recognition (IEFXV002) . . . « « « « « J1U46
Chart 39. Obtain Devices . . . « . . 147
Chart 40. Decision Allocation Routine 148
Chart 41. TIOT Construction, K Routine .149
Chart 42. External Action Routine . <150
Chart 43. Space Request Routine151
Chart 44. DADSM Error Recovery Routine 152
Chart 45. TIOT Compression Routine . .153
Chart 46. Step Initiation e+« & . <154
Chart 47. Termination e e o = o o« o <155
Chart 48. Step Termination Routine . .156
Chart 49. Restart Preparation Routine .157
Chart 50. Job Statement Condition

Code Routine e e o s s e o a s = s« o <158
Chart 51. Job Termination Routine . <159
Chart 52. Disposition and

Unallocation Subroutine -- Entry From

Step Termination Routine e s s s « « «160
Chart 53. Disposition and

Unallocation Subroutine -- Entry From

Job Termination Routine161
Chart 54. 18K Configuration Load

Module Control FlOW .« « o« 2 2 s « « « 4162
Chart 55. 44K configuration Load

Module Control FlOW .« « « « « = o « » 2163

Chart 56. 100K Configuration Load

Module Control FI1OW =« « « « « « « « » o164

Summary of Major Changes--Release

19

Item

Description

Areas Affected

Write-to-Programmer
(WTP)

A facility added to WTO and
WIOR macro instruction
processing, allowing
programmer messages to be
written to SYSPRINT

Charts, pages 114-120

Initiator-terminator,
pages 38, 58

Job processing, page 12

Load and assembly modules,
pages 83-84

Master scheduler, pages
14, 17-18

Tables and work areas,
page 82

In-Stream Procedure

An added job control feature
that allows procedures to be
placed in the job stream
rather than in a procedure
library.

Assembly modules and
control sections,
pages 100-102, 105
Charts, page 127
Interpreter, pages 19-22
Load and assembly modules.
pages 86, 89-90, 92,
94-95, 98
Tables and work areas,
page 68

Device name table,
Device mask table

Discussion of the separate
loading and deletion of
these tables has been added

Assembly modules and
control sections,
pages 99-100, 103

Initiator/terminator,
pages 41, 50

Load and assembly modules,
pages 84-85, 88, 90-91,
94, 96-98

Tables and work areas,
page 66

JCL Processing

New key values have been
assigned in scan processing;
and the DD statement
parameter disposition list
has been updated.

Interpreter, pages 25-27,
30-33

Summary of Major Changes - Release 19 7

Job management (Chart 1) is the first and
last portion of the control program that a
job encounters. Its primary function is to
prepare job steps for execution and, when
they have been executed, to direct the dis-
position of data sets used during execu-
tion. Prior to step execution, job
management:

e Reads control statements from the input
job stream.

e Places information contained in the
statements into a series of tables.

e Analyzes input/output (I/0)
requirements.

¢ Assigns I/0 devices.
e Passes control to the job step.

Following step execution, job management:
¢ Releases main storage space occupied by
the tables.

® Frees I/0O devices assigned to the step.

e Disposes of data sets referred to or
created during execution.

Job management also performs all pro-
cessing required for communication between
the operator and the control program.
Major components of job management are the
job scheduler, which introduces each job
step to Systemvs/360, and the master schedu-
ler, which handles all operator-system-
operator communication.

Job Scheduler Functions

The job scheduler includes two programs:
the reader/interpreter and the initiator/
terminator. The interpreter is given con-
trol whenever a job step is to be obtained
from the input job stream and processed.
It directs the reading of control state-
ments and from them constructs:

e A job control table (JCT) to describe
the job.

e A step control table (SCT) to describe
the job step.

e An account control table (ACT) to de-
scribe accounting information related
to the job.

Introduction

e Job file control blocks (JFCB) (one for
each DD statement) to describe the data
sets to be used by the job.

s Step input/output tables (SIOT) (one
for each DD statement) to describe the
I/0 requirements of the job step.

e Volume tables (VOLT) (one for each
step) with an entry for each DD state-
ment containing serial numbers of
volumes to be used by the job step.

e Data set name (DSNAME) tables (one for
each step, with an entry for each DD
statement) containing names of pre-
viously defined data sets to be used by
the job step.

In addition to the above, the interpreter
creates system message blocks, in which
diagnostic messages to the programmer are
stored before they are written onto the
system output data set.

After all control statements for a job
have been processed, or when data is
encountered in the input job stream, the
interpreter gives control to the initiator/
terminator. The latter analyzes the I/0
requirements of the job step and, upon con-
sidering such factors as requests for spe-
cific units, volumes, and channels and
their current employment, it assigns de-
vices in such a way as to achieve maximum
overlap of I/0 activity during step
execution.

When all devices requested for the step
have been assigned, the initiator/termina-
tor issues mounting messages (if any are
required) and verifies for direct access
requests that the operator has mounted
volumes on the correct units. Control is
then passed to the job step. When the step
has been executed, control is given to the
initiator/terminator, which performs data
set dispositions and releases I1/0
resources.

Master Scheduler Functions

The routines of the master scheduler pro-
cess any communication between the operator
and the system. The master scheduler
processes:

e Operator commands, whether they are

issued through the console or through
the input job stream.

Introduction 9

e Write-to-operator (WTO) and write-to-
operator with reply (WTOR) macro
instructions, either of which may
involve write-to-programmer (WTP).

e Interruptions caused when the INTERRUPT
key is pressed.

Jdob Processing

Figure 1 shows the major components of job
management and illustrates the general fiow
of control.

Ccontrol is passed to job management
whenever the supervisor finds that there
are no program request blocks in the re-
quest block queue. This can occur for two
reasons: either the initial program load-
ing (IPL) procedure has just been completed
or a job step has just been executed.

ENTRY TO JOB MANAGEMENT FOLLOWING INITIAL
PROGRAM LOADING

Following IPL, certain actions must be
taken by the operator before job processing
can begin. Therefore, control passes to
the master scheduler, which issues a mes-
sage to the operator instructing him to
enter commands. These "initialization"
commands include a SET command, a start
writer (START WTR) command, and a start
reader (START RDR) command. The last
initialization command to be issued is a
START command with no parameters; when this
command is issued, control passes to the
interpreter for control statement
processing.

ENTRY TO JOB MANAGEMENT FOLLOWING STEP
EXECUTION

Following step execution, control is routed
to the step termination routine of the
initiator/terminator. If the job had been
completed, control is also passed to the
job termination routine of the initiator/
terminator. Both routines are described
under "Job and Step Termination."

CONTROL STATEMENT PROCESSING

After completion of the processing that

immediately follows IPL, or after termina-
tion of a job or of a step containing data
in the input job stream, control is passed
to the interpreter. The interpreter reads
and processes control statements until one
of the following conditions is encountered:

e A DD * or DD DATA statement.
e Another JOB statement.

10

* A null statement.
e An end-of-data set (EOF) on the system
input device.

Meanwhile, if the operator has pressed
the REQUEST key and has entered a request
(REQ) command during execution of the job
step or any of the above processing, the
master scheduler sets a command-pending
indicator in the nucleus during the ensuing
interruption. The indicator is now checked
and, if found to be on, control is passed
to the master scheduler, which issues a
message instructing the operator to enter
commands, and then processes the commands.

STEP INITIATION

Conizrol next passes to the initiator/
terminator, which examines I/O0 device
requirements, assigns (allocates) 1/0 de-
vices to the job step, issues mounting
instructions, and verifies that direct
access volumes have been mounted on the
correct units. Finally, the initiator/
terminator passes control to the job step.

JOB AND STEP TERMINATION

When processing program execution is com-
pleted, the supervisor, finding no program
request blocks in its request block queue,
passes control to the job management rou-
tines. kntry is first made to the step
termination routine.

The step termination routine performs
end--of-step housekeeping and passes control
to the user's accounting routine, if one
was provided. When the accounting routine
has been executed, the supervisor returns
cont:rol to the step termination routine.
Coni:rol is then passed to the job termina-
tion routine if there are no more steps in
the job; to the interpreter if the next
step of this job has not been read yet
(i.e., the step just terminated had data in
the input stream); or to the step initia-
tion routine if the next step of this job
has been read.

"he job termination routine performs
end--of-job housekeeping. It exits to the
user's accounting routine, if one was pro-
vided. After the accounting routine is
executed, the supervisor returns control to
the job termination routine, which passes
contrcl to the interpreter.

OPERATOR-SYSTEM COMMUNICATION PROCESSING

The routines that handle operator-system
comnunication are contained in the master
scheduler. Communication may take one of
two forms: commands, which allow the

MASTER READER/ INITIATOR /
SCHEDULER INTERPRETER TERMINATOR
83 B4
‘ Entry ’ ‘ Entry ,
From NIP From Supervisor
(After IPL) (After Step
Execution)
C2 C3 C4
Do Post-Step
Process Initialize Housekeeping,
Initialization Main Execute User's
Commands Storage Accounting
Routine
D3
Open
> System
Devices
Do Post-Job
Housekeeping,
< Execute User's
Accounting
Routine
F3
Read And Process
Job Control
Statements
G2
Request And Yes Command
Process Pending
Commands

H4

Initialize Tables
For Step, Allocate
1/0 Devices

pJ4

Exit

To Processing
Program

Figure

1. Job Management Control Flow

Introduction

11

operator to change the status of the system
or of a job or job step; and the WTO or
WTOR macro instructions, which allow pro-
cessing programs or system components to
issue messages to the operator through the
console output device, or to the programmer
through the system message class output
device when the write-to-programmer facili-
ty is invoked. The master scheduler also
switches functions from the primary console
device to an alternate console device when
the INTERRUPT key is depressed.

Command Processing

Commands may be issued by the operator in
two ways: he may insert command statements
between job steps in the input job stream,
or he may issue commands through the con-
sole input device. Commands encountered in
the input job stream cause control to be
passed to the master scheduler, which pro-
cesses them. Before entering commands
through the console, however, the operator
must press the REQUEST key to cause an
attention interruption. Figure 2 shows the
actions taken after the key is pressed.

System Component or Processing Program

Supervisor
Operator Presses
REQUEST Key ‘dTen“f";S
Master Scheduler ype of
Interruption
Requests
Asynchronous
Exit Processing Dispatches
the
Request
Issues Message
Requesting
a Command
Operator Enters Processes Retumns (;°““'°|
C d to Point
Command ommen of Interruption
Figure 2. Attention Interruption Process-

ing Flow

WTO/WTOR Macro Instruction Processing

Whenever the WTO or WTOR macro instruction
is issued, an SVC interruption occurs.
(See Figure 3.)

SUPERVISOR

Identifies type of

issues WTO/WTOR macro instruction Interruption
MASTER SCHED JLER
|
WTO | WTOR
|
|
Coded Coded Coded [Coded Coded
WTO or WTP WTP/ | WTP Only or WTOR or
Uncoded y Only \ WTO WTP/WTOR ¢ Uncoded
Writes Message to Writes Message to Writes Message to Writes Message to Writes Message to
Console Output System Message Console Qutput System Message Consale, Waits for
Device Class Data Set Device Class Data Set Reply.
\ /
Writes Message to Writes Message to
System Message Console, Waits for
Class Data Set Reply
Y 3 A
Routing Code for WIP is 11; any other SUPERVISOR

cade denotes WTO/WTOR

Returns Control to

® Figure 3.

12

Lo Point of Interrup-
tion

WTO/WTOR Macro Instruction Processing Flow

External Interruption Processing

When the operator presses the INTERRUPT
key, an external interruption occurs, fol-
lowing which the master scheduler switches
functions from the primary to the alternate
console I/0 device. (See Figure 4.)

Supervisor

Operator Presses

INTERRUPT Key

|dentifies

Type of
Interruption,

Posts to

M/S ECB

Master Scheduler

Switches from
Primary to
Alternate Console

Returns Control
to Point
of Interruption

External Interruption Process-
ing Flow

Figure 4.

LOAD MODULES

Most job management routines exist as a
series of load modules that reside in the
link lipbrary (SYS1.LINKLIB). The excep-
tions are the interruption-handling rou-
tines of the master scheduler, which reside
in the nucleus, and the master command EXCP
routine which is in the SVC library (sysil.
SVCLIB). Appendix C contains a list of the
routines that make up each job management
load module.

Introduction 13

Master Scheduler

The master scheduler (Chart 2) processes
all operator commands and messages directed
to the operator through use of the WTO and
WIOR macro instructions. It also performs
console switching when the secondary con-
sole is to be used in place of the primary
console.

The five major routines of the master
scheduler are:

e Console interrupt routine, which pro-
vides the supervisor with the informa-
tion necessary to queue a request for
processing an attention interruption.

e Master command EXCP routine, which
reads commands from the console input
device and processes all commands
except SET, START RDR, and START WTR.

e Master command routine, which analyzes
command verbs and routes control to
appropriate command execution routines.

e Write~to-operator routine, which pro-
cesses messages to the operator and/or
the programmer, and all operator
replies to these messages.

e External interrupt routine, which
switches to the alternate console
device when an external interruption
occurs.

Master Scheduler Control Flow

Commands are issued through either the con-
sole 1I/0 device or the input reader. (See
Figure 5.) Before entering commands
through the console 1I/0 device, the opera-
tor must cause an I/0 interruption by
pressing the REQUEST key. When he does,
control is given to the supervisor. The
supervisor determines that an 1I/0C interrup-
tion has occurred and passes control to the
170 supervisor. The 1/0 supervisor deter-
mines that an attention interruption has
occurred and passes control to the master
scheduler console interrupt routine.

The console interrupt routine resides in
the nucleus. It passes to the supervisor
the address of an interruption queue ele-
ment to be added to an asynchronous exit
queue. The interruption queue element con-
tains the address of an interruption re-
quest block that points to the master
scheduler interrupt request block routine.

14

Control is passed to the interrupt request
block routine when the request is honored
by the supervisor. A description of the
asynchronous exit queue and the manner in
which it is used is contained in the publi-
cation IBM System/360 Operating System:
Fixed-Task Supervisor, Program Logic Manu-
al, GY28-6612. The format of the master
schaduler interruption queue element is
given in the section entitled "Console
Interrupt Routine."”

The interrupt request block routine
causes the master command EXCP routine to
be orought into the supervisor call (SVC)
transient area of the nucleus, where con-
trol is passed to it.

The master command EXCP routine uses an
EXCP macro instruction to read the command.
(The PROCEED light on the 1052 Printer-
Keyboard is turned on at this time.) Light
commands, the REy, START (blank), CANCEL,
DISPLAY, MOUNT, STOP, UNLOAD, and VARY com-
manis, are always accepted anéd processed.
All other commands are ignored (control is
returned to the supervisor) if issued at
any time other than in response to a mes-
sage issued by the master command routine.
If the command is acceptable, it is moved
from the buffer into which it was read to a
local buffer, and control is passed to the
master command routine.

The master command routine analyzes com-
mands and routes control to appropriate
command execution routines. If a command
is issued through the input job stream,
control is passed directly to the masterx
command routine by the interpreter. When
all commands have been entered and pro-
cessed, control returns to the interpreter.

The write-to-operator routine is entered
from the SVC handler when a WTO or WTOR
macro instruction is issued.. When either
macro instruction is issued, an SVC inter-
ruption occurs and the write-to-operator
routine is broucght into the SVC transient
area of the nucleus. Basically, the write-
to-operator routine uses an EXCP macro
instruction to write the message on the
console output device and, if a reply is
expected, to read the reply, which is
placed into an area designated by the re-
quester. Either WTO or WTOR may contain
parameters which will result in the message
being written to the programmer on the sys-
ten message class data set, with or without
a write to the console, depending upon the
coding. (See Figure 3.) Control is
returned to the supervisor.

The external interrupt routine assigns
the functions performed by the primary con-
sole device to the alternate console
When the operator presses the
INTERRUPT key on the console, an external
interruption occurs and control is given to
the supervisor, which identifies the inter-
ruption and passes control to the external

device.

Attention

Interruption

Figure

5.

interrupt routine.

The external interrupt

routine then switches consoles and returns

control to the supervisor.

Console func-

tions may later be reassigned to the pri-
mary console device if the operator causes

another external interruption (the external
interrupt routine will again switch

functions).

I/ O Supervisor

Console Interrupt
Routine

Interrupt Request
Block Routine

Supervisor
-
|
e R B
-t — — r———"
| S <« — | Reader/ Interpreter
II | Control Routine
| bl
| b A I
R S 1 y
i o —
I O < D 1
I —_ — — - — = — — — — — > Master Command
4+ - - <_-_| | — > Routine
>t : []
I | |
| | ‘I* :
1]
I
: Program Fetch : : | | A
! | | | Commands
| Nucleus | | |
| Transient Area | I |
L Je— — — — — — - SET
l l START RDR
I START WTR
Master Command | |
EXCP Routine L T ;
| : | Y
Commands ‘l I__’_ Fault Subroutine
CANCEL |
DISPLAY |
MOUNT
REQ '
START (blank) L- — — (Message Processor)
STOP
UNLOAD
VARY

Write-to-Operator
Routine, REPLY
Command

Master Scheduler - Command Processing Network

Master Scheduler

15

Console Interrupt Routine

The console interrupt routine (Chart 3)
provides the supervisor with the address of
the routine to be given control when the
supervisor processes an attention interrup-
tion. The console interrupt routine is
part of the nucleus and is entered from the
I/0 supervisor each time an attention
interruption occurs.

Upon entry to the console interrupt rou-
tine, the console flag switch is checked.
If this switch is on, either the master
command routine or the console interrupt
routine is processing a prior request, and
a RETURN is made to the I/0O supervisor.

When an interruption is not being pro-
cessed by either routine, the console flag
switch is turned on, the address of the
master scheduler interruption gqueue element
is placed into general register 1, and con-
trol is passed to the supervisor. The
interruption queue element is shown in
Figure 6.

<--4 Bytes—->

| IRB address|

o]
| TCB address|
N —— 1

Legend

Link

used by the supervisor to link mem-
bers of the queue.

Parameter
contains the address of the interrupt
request block routine.

IRB address
address of the interruption request
block.

TCB address
address of the task control block.

o e . o . T e . . S . S . S e S e . . .t o . M G, G i e S
ki e e - G — . SE— — — ——— — I —— — — — — — — — — — — — o t—

Figure 6. Master Scheduler Interruption

Queue Element

The interruption request block contains
the address of the interrupt request block
(IRB) routine to which control is passed by
the supervisor when it dispatches the re-
quest. The IRB routine uses an SVC 34
instruction to cause the master command
EXCP routine to be brought into the tran-
sient area of the nucleus.

16

Master Command EXCP Routine

The master command EXCP routine (Chart 4)
processes the CANCEL, DISPLAY, MOUNT, REQ,
START (blank), STOP, UNLOAD, and VARY com-
mands. It resides in SY¥S1.SVCLIB, and is
brought into the transient area of the nuc-
leus by the supervisor when an SVC 34
instruction is issued by the master schedu-
ler interrupt request block routine or the
master command routine.

If entry to this routine was from the
interrupt request block routine, an EXCP
macro instruction is used to read the com-
mand from the console and place it into the
command buffer. If the command is one of
the eight previously mentioned commands, it
is processed.

SET, START RDR, START WIR, and STOP WIR
commands are ignored unless they were
issued in response to a message from the
master command routine. If so, control is
passed to the master command routine, which
processes them.

Following return from the master command
routine, or after execution of the REQ or
START (blank) commands, the console flag
switch is turned off to indicate to the
console interrupt routine that another
attention interruption can be processed.

If entry to the master command EXCP rcu-
tire was from the master command routine,
the command is available in a buffer
(placed there by the master command rou-
tine). The command is processed.

The master command EXCP routine returns
cortrol to the supervisor.

Measter Command Routine

The master command routine (Chart 5) ana-
lyzes command verbs and routes control to
appropriate command execution routines. It
also issues a message to the operator,
informing him that commands will be
accepted from the console. The master com-
mand routine is brought into main storage
and entered when:

¢ The interpreter encounters a command in
the input job stream.

e The interpreter is performing the
initialization procedures that follow
IPL.

e The interpreter finds the command pend-
ing switch on. (The command pending
switch is turned on by the routine that
processes the REQ command.)

e The interpreter encounters an end-of-
data set condition in the input job
stream, indicating the end of a job
step or job. Control is passed to the
master command routine after the job
step has been processed.

Upon entry, general register 0 is
examined. If it contains zexos, entry was
made because the interpreter encountered a
command in the input job stream. The com-
mand is moved to the master command routine
buffer and is written out on the console
output device for the operator's records.
The command verb is then analyzed, and if
it 'is a SET, START RDR, START WTR, or STOP
WIR command, control is passed to an appro-
priate command execution routine. Other-
wise, an SVC 34 instruction is used to pass
control to the master command EXCP routine.

If general register 0 does not comntain
zeros upon entry to the master command rou-
tine, the IPL pending, new reader pending,
and new writer pending switches are
checked. If any of these switches are on,
the command pending switch is turned on and
a message is issued requesting the operator
to enter commands. .Control is then passed
to the initialization command routine,
which provides certain commands, specified
by the installation during system genera-
tion (SYSGEN), to relieve the operator of
entering initialization commands. Each of
these commands, if there are any, is moved
to the master command routine buffer, writ-
ten on the console output device for the
operator's records, and executed.

If general register 0 does not contain
zeros and none of the previously mentioned
pending switches are on, entry to this rou-
tine was made because the interpreter found
the command pending switch on, or encoun-
tered an end-of-data set condition in the
input job stream. A message is issued
requesting commands from the operator.
After the operator has issued commands and
they have been processed, control is
returned to the interpreter.

Write-To-Operator Routine

When a WTO or WTOR macro instruction is
issued, the write-to-operator routine
(Chart 6) gains control by means of an SVC
35 interruption. The routine searches for
routing codes specified as values of the
ROUTCDE= parameter of WTO/WTOR. If routing
code 11, assigned to write-to-programmer
messages, is present, the message will be
written on the system message class data
set: in SYS1.SYSJOBQE. I1If, for a WTO macro
instruction, it is desired that the message
also be written to the console output
device, an additional routing code (any

other than 11) must be present. For a WTOR
macro instruction, the message goes to the
console whether or not an additional rout-
ing code is found.

If the message does not carry the
assigned WTP routing code, either form of
the macro instruction writes the message to
the console device and immediately returns
control to the supervisor. Processing is
resumed at the point of interruption (with
a WAIT macro instruction if an operator's
reply is to be entered).

If the WTP code is present in the mes-
sage, however, control is transferred to
write-to-programmer processing under the
following conditions:

e A WTO macro instruction containing both
WTO and WTP routing codes will write
the message to the console before
transferring control to WTP.

e A WTO macro instruction containing only
the WTP routing code will transfer con-
trol to WTP but will not write the mes-
sage to the console.

e A WIOR macr¢ instruction, regardless of
routing code content, transfers control
to WTP before writing the message to
the console.

WIP messages may originate both in sys-
tem components and in processing programs.
The operating system uses WIP to provide
the programmer with dynamic descriptions in
the event of abnormal occurrences during
execution of a processing program. The
facility is used by processing programs to
write a limited number of messages to the
system message class output device when
SYSOUT has not been specified in the JCL
statements.

The limit to the number of WI'P messages
to be written to the message queue in a
given job (defined in the JOBQWTP= parame-
ter of the SCHEDULR macro instruction at
SYSGEN time) is resident in the nucleus.
The maximum is twenty messages; the default
value assigned when the parameter is
omitted is two. Each time WIP prepares to
process a new message, a check is made to
ensure that the limit has not been
exceeded. If it has not, WTP utilizes the
transient queue manager (SVC 90) to read
and write messages and to assign system
message blocks (SMBs).

The actual number of messages passed to
the queue may well be greater than the SMB
count maintained by WTP. Message queue
record size is 176 bytes, of which 15 bytes
are reserved for control information, leav-
ing 161 bytes to contain message text.

Master Scheduler 17

However, the maximum allowable text length
is 126 bytes. A full-length message would
therefore leave a number of unused bytes in
each record. To make maximum use of the
available storage, WTP will, within a given
job step, fit more than one message into a
queue record when possible. For example,
two 80-byte or three 53-byte messages can
be placed into a single message queue
record.

WTP Error Handling

During initiation of the first job step,
WTP reserves two independent SMBs for its
use in the event of error. Possible errors
and the manner in which they are resolved
are shown here:

Messages Exceed Limit: WTP uses one of
its reserve SMBs to write an explanatory
message on the system message class data
set. All processing program WTP messages
for the remainder of the job (including the
one which initiated the condition, if such
was the case) are ignored. From one to
three additional system messages, including
the possible error-initiating record, can
be sucessfully processed (depending on
length) through use of the reserved SMBs.
Any in excess of the reserve storage capa-
city are lost.

Input/Output Error: When the transient
queue manager is unsuccessful in a read or
write operation when attempting to place a
programmer message on the queue, WTP writes
an explanatory message, followed by the
unprocessed programmer message, on the con-
sole output device. Once this error has
occurred, subsequent WTP messages within
the job step are suppressed.

No Available SMBs: When the volume of
normal (as opposed to WTP) system messages
is so great that no more system mnessage
blocks are available, even though WTP has
not used the full number assigned to its
programmer messages, an explanation is
written both to the message class data set
(through use of the reserve SMBs) and to

18

the console. Again, from one to three sys-
tem messages can be processed after this
condition occurs. Problem program messages
encountered thereafter are bypassed.

WTP Control Transfer

Control is transferred by WTP in the fol-
lowing manner:

r T T q
| WI'P entered|WTP | |
| £rom | completed| Control passed to |
L .y 4 (]
r 1 13 1
WTO	Yes	Supervisor for
		return to point
		of interruption
WTO	No.	WTO
WTOR	Yfes or No	WTOR
L iy 1 J

If return from WTP is made to WTO
because of unsuccessful handling of the WTP
message, an EXCP macro instruction is used
to write the message on the console output
device, and control is passed to the super-
visor for return to the processing point
where the interruption occurred.

When it is WTOR which invoked WTP,
return is made to WTOR regardless of WTP
message completion. The message is written
to the console output device. The supervi-
sor then resumes control of processing. If
a WAIT macro instruction is now encoun-
tered, the system waits for the operator's
reply, places it in the storage area desig-
nated in the WITOR parameters, and posts the
event control block (ECB).

External Interrupt Routine

The external interrupt routine (Chart 1i3)
switches to an alternate console device
when the operator presses the INTERRUPT key
on the console. This routihe resides in
the nucleus.

The primary function of the interpreter
(Chart 14) is to read job control state-
ments, analyze their contents, and build
tables that are used during initiation and
execution of job steps.

Control is passed to the interpreter
following:

¢ The IPL procedure.

e Execution and termination of a job step
that was followed by data in the input
job stream.

e Lxecution and termination of the last
step of a job.

In each case, the interpreter begins read-
ing and processing control statements.

The interpreter is a processing program
that operates in the problem program mode
with a protection key of zero. It is cap-
able of taking information from an input
stream and the procedure library, process-
ing it, and storing it for convenient
retrieval by other programs. It is used by
the operating system to translate job pro-
cessing information into convenient form
for processing by the initiator/terminator.

Scan
Dictionary

Input Stream

Job, Exec,
DD Coded

Statements S Parameters
can #wmmwmm@b
Routine

Control
Routine

Procedure

Library

Command
Statements

Commond
Routine

Figure 7. Interpreter Data Flow

Interpreter

The private procedure library (S¥Ysl.
PROCLIB) is a partitioned data set. Each
member (called a cataloged procedure) is a
series of job control language (JCL) state-
ments describing frequently executed series
of job steps.

An input stream is a sequential data set
composed of JCL statements, operator com-
mand statements, system input data, and, if
desired, in-stream procedures (a series of
non-cataloged JCL statements that describe
frequently executed job steps). PROC and
PEND statements mark the beginning and end,
respectively, of an in-stream procedure.
For detailed information on preparing in-
stream procedure statements, see IBM
System/360 Operating System: Job Control

Internal
Text

Usexr's Guide, GC28-6703.

Figure 7 shows the data flow in the in-
terpreter. The interpreter is entered at
the initialization routine, as a result of
a START RDR command; the initialization
routine stores the initializing parameters
and opens the input stream and procedure
library data sets, then passes control to
the control routine.

The control routine reads the input
stream and procedure library records. It
passes JCL statements to the JCL scan
routine.

Job Stmt
Parameters

Job Stmt
Processor

Exec Stmt
Parameters
TR R

Input
Queue

Exec Stmt
Processor

DD Simt
Parameters

DD Stmt
Processor

Interpreter 19

The scan routine converts JCL statements
into an internal text format. Since a JCL
statement in the input stream may invoke
and modify cataloged or in-stream proce-
dures, the scan routine accumulates a com—-
plete logical statement (which may include
several records from the input stream and
the procedure library) before further pro-
cessing is performed. When it has con-
verted the complete logical statement into
internal text, it passes the text to the
appropriate JCL statement processor
routine.

The processor routines build the tables
for the job and write them into the queue
data set. In addition, they create system
message blocks as required and write them
into the queue data set.

Initializing the Interpreter

The interpreter is entered at the initiali-
zation routine, which consists of two
modules: the initialization module
(IEFVH1) and the open module (IEFVH2). At
entry, control passes to the initialization
module, which obtains main storage for the
interpreter work area (IWA), and for the
local work area (LWA). The IWA contains
information that is shared by two or more
of the interpreter routines, while the LWA
is used individually by each major routine
and contains only information that need not
be preserved outside the routine. Through-
out the use of the interpreter, register 12
contains a pointer to the IWA; the IWA con-
tains a pointer to the LWA.

When the main storage for the work areas
has been obtained, the initialization rou-
tine obtains main storage for the input
stream DCB and the procedure library DCB,
then stores pointers to these areas in the
IWA.

The routine then issues a TTIMER macro
instruction and combines the time with the
reader number in the interpreter option
list to create the base for any unique set
names to be generated for this input
stream. Next, it examines the PARM field
of the code list. It extracts the option
fields, and sets the corresponding switches
and values in the IWA.

The initialization module finally passes
control to the open module, which opens the
input stream and procedure library data
sets. The input stream data set is opened
for QSAM; the procedure library is opened
for BPAM.

20

Input and Control Operations

When the initialization is complete, con-
trol is passed to the interpreter contrcl
routine (Chart 16), which reads records
from the input stream and procedure
library, determines the record type and
processing required, and either performs
the processing or passes control to the
appropriate processing routine.

READING CONTROL STATEMENTS

The interpreter control routine is
entered at the interpreter get routine
(module IEFVHA). This routine uses the GET
and READ macro instructions to obtain rec-
ords from the input stream and procedure
library, or the in-stream procedure buf-
fers, respectively. Only one input source
is read upon each entry to the routine,
except when a blocked procedure library is
specified. 1In this case, a ‘block is read
and a pointer is passed to the input source
statement. Switches set in the verb iden-
tification routine (wodule IEFVHCB) deter-
mine which data set is read.

When the record is in main storage, the
get: routine determines if it is a control
record (// in positions 1 and 2). If a
non-contxrol record is encountered, control
is passed to module IEFVHB. This module
will cancel the job and print the message
INPUT STREAM DATA FLUSHED. Then return is
macle to the get routine.

END-OF-DATA AND NULL STATEMENTS

The: physical end of an input stream is sig-
nalled by an end-of-data indication from
the computing system. A null statement is
the last statement in an input stream (or a
jokr description), and is also the last
statement in a cataloged procedure.

An end-of-data condition causes control
to be passed to the interpreter EODAD exit
routine (module 1EFVHAA), which determines
whether there is a job to be enqueued. If
not, it passes control to the interpreter
termination routine; if so, it constructs a
null statement, and passes control to the
continuation statement routine.

The continuation check routine passes
control to the verb identification routine,
which determines that the statement is a
null statement, and passes control to the
null statement routine.

The null statement routine (module
IEFVHL) is given control by the verp iden-
tification routine whenever it encounters a
null statement. The null statement routine

examines the conditions under which it was
entered, and passes control as described
below:

e If the statement is continued, control
is passed to the interpreter get rou-
tine, so that the condition may be
read.

e If the null statement represents the
end of a procedure, but there are addi-
tional input stream records to process,
control is passed to the verb identifi-
cation routine, to process the current
record from the input stream.

o If there are no more records to be pro-
cessed in either the input stream or
the procedure, control is passed to the
job validity check routine, so that the
last job can be enqueued.

e If there are no more input stream rec-
ords to process, but there are addi-
tional records in the procedure, con-
trol is passed to the router routine.

When the last job has been enqueued,
control is passed to the interpreter ter-
mination routine.

PROCESSING CONTROL STATEMENTS

When a record containing the characters
"s//" in the first two positions is read,
control is passed to the continuation check
routine (module IEFVHC). If the preceding
record from the same input source contained
a comma in its last non-blank position, the
current record is expected to be a con-
tinuation of the preceding statement. The
continuation routine inspects the current
record to determine whether it is blank in
position 3, and not blank starting any
place from position 4 through position 16,
inclusive. If so, control is passed to the
pre-scan preparation routine; if not, or if
no continuation was expected, control is
passed to the verb identification routine.

The verb identification routine (module
IEFVHCB) identifies the type of control
statement that has been encountered, and
processes it as follows:

e If a PROC statement from the input
stream is encountered, indicating the
beginning of a set of in-stream proce-
dure statements, the verb identifica-
tion routine passes control to the in-
stream procedure routines (see Chart
19). Upon initial entry, the syntax of
the PROC verb is checked and a 352-byte
work area is obtained. Of this, 176
bytes are used for compression and
expansion of the statements within pro-
cedures, and the remaining 176 bytes

for a procedure directory (see Figure
38). A directory entry, containing the
procedure's name and auxiliary storage
address, is created for each in-stream
procedure within a given job to a maxi-
mum of fifteen. Any in excess of this
limit causes the job to fail.

The next JCL statement is read and,
unless it is a JOB, PEND, DD *, or DD
DATA statement, it is compressed
(blanks are removed and a count field
added) and placed in a buffer. If the
job's message level parameter stipu-
lates the printing of statements, a job
queue SMB is built. Printed listings
of statements from in-stream procedures
and those from cataloged procedures are
differentiated by identifications of
"++" rather than "XX" for JCL output
statements and "+/" rather than "X/"
for overridden parameters.

Another statement is then read and the
processing repeated. When the PEND
statement, signaling the end of a given
in-stream procedure, is read, its syn-
tax is checked and control is trans-
ferred to the get routine.

If a DD * or DD DATA statement is read
in the in-stream procedure routine, a
bit is set to flush the job, as data is
not allowed in such procedures. Con-
trol is passed to the get routine.

When a JOB statement is read within the
in-stream procedure routine, control is
immediately returned to the verb iden-

tification routine.

If the statement identified by the verb
identification routine is EXEC PROC,
the in-stream procedure directory is
searched. If an entry for the named
procedure is found, the address of
SYS1.PROCLIB's access method is saved
in the IWA while a pseudo access method
is used to read the procedure from the
job queue and to expand it to its ori-
ginal form. Once expanded, the proce-
dure is processed by the reader/
interpreter as if it had originated in
SYS1.PROCLIB. Switches are set enabl-
ing the interpreter get routine to read
a statement from the procedure library
or the job queue, and control is passed
to the router routine.

If the statement is a JOB, EXEC, or DD
statement, control is passed to the
router routine.

If the statement is a null statement,

control is passed to the null statement
routine.

Interpreter 21

e If the statement appears to have a
valid format, yet does not have one of
the five valid JCL statement operators
(JOoB, EXEC, PEND, PROC, and DD), and is
not a null statement, control is passed
to the command routine. The command
routine verifies the verb and calls the
master command routine.

PROCESSING JOB, EXEC, AND DD STATEMENTS

when the verb identification routine deter-
mines that the statement is a JOB, EXEC, or
DD statement, it passes control to the
router routine (module IEFVHE), which de-
termines whether there are tables from a
previous step to be placed in the queue
before the current statement can be
processed.

I1f the router is entered with an EXEC
statement in the buffer, the tables
describing the previous step must be placed
in the job's queue entry; control is passed
to the job and step enqueue routine.

If the statement in the buffer is a JOB
statement, the previous step is the last
step of a job. The storage space used for
in-stream procedure work and job queue rec-
ord areas is freed. Control is passed to
the validity check routine.

If the statement in the buffer is a DD
statement, or if it is an EXEC statement
representing the first step in a job, or if
it is a JOB statement representing the
first job in the input stream, there are no
tables to be written into the queue, and
control is passed to the pre-scan prepara-
tion routine.

The pre-scan preparation routine (module
IEFVHEB) is entered when the statement to
be processed is a JOB, EXEC, or DD state-
ment. If the statement is a JOB statement,
it passes control to the gueue manager
interface routine, which uses the queue
management assign and start routines to
start an input queue entry with an assign-
ment of five records.

On the return, the pre-scan preparation
routine starts the construction, in main
storage, of the JCT and the SCT for the
first step of the job, by inserting the
queue addresses of the first two records
assigned to the job's entry.

The routine then uses the message writ-
ing routine to copy the JOB statement into
an SMB. If the JOB statement specifies
MSGLEVEL=1, the other JCL statements in the

22

job are also placed in SMBs. If the JOB
statement does not specify any of its
optional parameters, the sysgen default
opi:ions, placed in the IWA when the inter-
preter is initialized, are used. The pre-
scan preparation routine finally passes
control to the JCL scan routine (module
IEFVFA), which converts statements to
internal text, and passes them to the
appropriate processor, so that the tables
can be constructed.

QUEUE ENTRY PROCESSING

When the presence of a JOB or null state-
ment in the input stream indicates that the
input queue entry describing the previous
job is to be enqueued, the job validity
check routine is entered. The routine de-
termines whether the job to be enqueued has
any steps; if so, control is passed to the
job and step enqueue routine. If not, the
validity check routine constructs a dummy
SCT7 and sets the job-failed bit on before
passing control to the job and step enqueue
routine.

The job and step enqueue routine (module
IEFVHH) is entered from the router when the
presence of an EXEC statement indicates
that the tables representing the previous
step are to be placed in the input queue,
and from the job validity check routine
(module IEFVHEC) when the presence of a JOB
or null statement indicates that the step
wasi the last step of a job. The job and
step enqueue routine inspects switches in
the IWA to determine which tables are to be
placed in the queue, then passes control to
the gueue manager interface routine to have
each table written to the queue by queue
management.

If the step whose tables are to be
placed in the gqueue is the last step in a
job, a switch in the IWA indicates that the
JCT is to be written. When the tables
desicribing the step have been placed in the
queue, the job and step enqueue routine
insitructs the queue manager interface rou-
tine to have the JCT written by the queue
manager. An exit is then taken to the
interpreter-initiator interface module.

If the step whose tables are to be
placed in the queue has a DD * statement,
the same exit is taken to the interpreter-
initiator interface module.

Otherwise, control is passed to the pre-
scan preparation routine, and the statement
currently in the buffer is processed.

POST-PROCESSING ENTRY

The control routine is reentered at the
post-scan routine (module IEFVHF) from the
JCL scan routine if a continuation state-
ment is expected, if the statement scanned
was an overriding statement, or if a JCL
error was detected. It is entered from a
statement processor routine when the pro-
cessing of a statement is completed. The
post-scan routine determines the conditions
under which it was entered, then passes
control to the appropriate control routine
module:

e If a continuation statement is
expected, control is passed to the in-
terpreter get routine to read the
statement.

e If an overriding statement has been
processed by the JCL scan routine, the
overridden statement must be scanned

before the statement processor routine
is entered. The overridden statement
is in the buffer, and control is passed
to the pre-scan preparation routine.

If a JCL error was encountered, the
job-failed bit has been set on. The
remaining statements in the job (except
for procedure library statements) will
be processed by the interpreter, so
that any other errors may be found; but
the job will not be run. Control is
passed to the interpreter get routine,
and processing continues.

If the statement has been successfully
processed, control is passed to the in-
terpreter get routine.

If the statement processed was a DD #*

or DD DATA statement, control is passed
to the job and step enqueue routine.

Interpreter 23

Scanning the JCL Statement

The job control language scanning routine (module IEFVFA) converts a JCL
recoxrd into a coded internal list (see Figure 8). When it has accumu-
lated a complete JCL statement, (including continuations and overrides)
it then passes the list to a statement processing routine. An example
showing the scanning and encoding of a DD statement follows this
section.

Each statement is scanned from left to right. The scan routine re-
cognizes keywords and positional parameters, and is able to identify the
existence of a name field and one level of subparameters following a
keyword.

Sub
Number Parameter Parameter

Key Length

b —
pr — —

Ll
Positional |
I
i

- —

Key is the one byte binary code that represents a keyword.

e e e g S . o=y

| Number is a one byte binary number that specifies the number of posi-
|tional parameters in the entry. Its high-order bit is always off.

|

|Length is a one byte number that specifies the length of the parameter
jthat follows it. Its high-order bit is always oiff.

|

|Positional Parameter contains the positional parameter.

|

|Count is a one byte binary number that specifies the number of sub-
| parameters in the entry. Its high-order bit is always on.

|

|Note: The format of a list entry is variable, depending on the pre-
| sence and number of positional parameters and subparameters.

L

b o e e s — — — — ———— —— —— ol ——— o]

Figure 8. Internal List Entry Format

As the statement is examined, the name field, keywords, and position-
al parameters are identified and looked up in the scan dictionary (see
Fiqure 9). For each keyword the scan dictionary entry contains the
corresponding one-byte binary "key", and lists the keys of any mutually
exclusive parameters (the UDNAME and DCB parameters, for example, are
mutually exclusive). The entry also lists the keys of any minor key-
words associated with the keyword that the entry represents; SEP, for
example, is a minor keyword of the UNIT parameter, and is listed as a
minor keyword in the UNIT entry of the scan dictionary. The list of
mutually exclusive keys is used for error checking and the list of minor
keys for overriding major keywords in a cataloged procedure.

24

¥ v T 1) L

| Length | | | Mutually |

| of | Keyword | Key | Exclusive | Overridden
i Entry | | | Key | Key

L L [] L L

[

|Length of Entry is a one byte binary number that specifies the length,
|in bytes, of the scan dictionary entry (including the length of entry
| field).

| Keyword contains the keyword specified in this entry.
|

|Key is a one byte binary code that represents the keyword specified in
j this entry.

|Mutually Exclusive Key contains the key that represents a keyword that
jmay not be used in a statement that contains the keyword specified in
|this entry. The high-order bit in this field is always off for DD
|keywords. For other keywords, the condition of this bit is
junpredictable.

|

joverridden Key contains the key that represents a minor keyword of the
|keyword specified in this entry. The high order bit in this field is
|always on.

|

|Note: The format of a scan dictionary entry is variable, depending on
| presence and number of mutually exclusive and overridden keys.

L ——

Figure 9. Scan Dictionary Entry Format

e e S e o — G— ———— — —— ——— ———— ——— — ———— — ——

When the correct scan dictionary entry has been found, the scan rou-
tine determines whether the parameter has been encountered previously,
or whether a mutually exclusive parameter has been encountered, by test-
ing the appropriate bits in the duplicate table.

The duplicate table is a 16-byte table that contains a bit for each
key. The position of the bit in the table corresponds to the key; the
eighth bit in the second byte corresponds to the key X'0F' (the DCB key-
word in a DD statement), the first bit in the fourth byte corresponds to
the key X'18" (the DDNAME keyword in a DD statement), etc.

When it makes an entry in the internal list, the scan routine turns
on the bit that corresponds to the key it is processing. It also turns
on the bits that correspond to any mutually exclusive keys, as defined
in the scan dictionary entry. Thus, if a pit in the table is on, it
means that the key, or a mutually exclusive key, has been encountered
previously.

This condition is an error (and the scan routine turns on the job-
failure bit and exits) unless the scan routine is processing the proce-
dure library statement. During a procedure merge, the condition means
that the field being processed was overridden, and the scan routine pro-
ceeds to the next field.

When the scan is complete, control is passed to the appropriate JCL
statement processor routine.

Example:

The JCL scan routine encounters the following source statement.

//3YSUT1 DD DSNAME=LINKEDIT.WORK,UNIT=190
SPACE=(TRK, (30,10)),VOLUME=SER=111111

Interpreter 25

1. The name field (SYSUT1) is identified as such because of its posi-
tion, and encoded as follows:

Length Parameter

06 E2 E8 E2 E4 E3 F1

p o e o
o e e o
e v . e

2. The DSNAME= field is found in the scan dicticnary entry shown

below:

r 1 K} T [}
| | | | Mutually |
| Length | Keyword | Key | Exclusive keys |
b % $———1 T {
| OB | C4 E2 D5 C1 D4 C5 7E | UA | 49 | 4B |
1 (] 1 L 1 J

3. It is encoded and placed in the list as shown below:

Number Length Parameter

01 0D D3 C9 D5 D2 C5 C4 C9 E3 4B k6 D6 D9 D2

pr o = —
— - —
b — o —
e b — o

4, The UNIT= field is found in the scan dictionary entry shown below:

|
1

r T T T T H 1
			Mutually		
]		Exclusive	Overridden	Overridden	
Length]	Keyword	Key	Key	Key	Key
b + —— ¢ t {					
OA	E4 D5 C9 E3 7E	41	49	CD	CE
L 4 1 A L 1 J

5. It is encoded and placed in the list as shown below:

Number Length Parameter

01 03 F1 F9 FO

e —
- — - —
pr o g -
T S

6. The SPACE= field is found in the dictionary entry shown below:

r T T T 1
| [| | Mutually |
| Length | Keyword | Key | Exclusive Keys |
k t + : T 1
| 0B | E2 D7 C1 C3 C5 7E | 47 | u8 |(4Cc | 49 |
| EO— L L L 1 L J

7. It is encoded and placed in the list as shown below:

T T T T 1 L] 1)
Key |Number | Length|Parameter|Count|Length| Parameter | Length| Parameter
4 4 + 4 1 1

02 F3 FO

—+
b s vk e

1 T
03 |E3 D9 D2 | 82
1 L

o e

L] L]
| 0z |F1 FO
1 L

= —— =

8. The VOLUME= field is found in the dictionary entry shown below:

r 1 T T L T)|
			Mutually		
			Exclusive	Overriden	Overriden
Length]	Keyword	Key	Keys	Rey	Key
b=t S B S + {					
OD	E5 D6 D3 E4 D4 C5 7E	43	49	4B	CF
i L L (| L (| 1 Jd

9. 1t is encoded and placed in the list as shown below:

Key Number

43 60

o e —
b e e o
O el

Since there are no positional parameters associated with the VOLUME
keyword, the number field is 00, and it terminates the entry.

10. The serial number field (SER=) is found in the scan dictionary
entry shown below:

r T T T 1
| | | | Mututally |
| Length | Keyword | XKey | Exclusive Key |
L 4 i L §
r] L] v i}
| 07 | E2C5D9 7E | 4F | 50 |
L L L L J

1i. It is encoded and placed in the list as shown below:

Rey Number Length Parameter

4qF 01 06 F1 F1 F1 F1 F1 F1

- — = —-
po - — o
R Sp——
P — ot —
S S

12. Since the serial number field is the last field in the statement,
the list is closed with the entry:

re==== h}
| Rey |
=
| FE |
| WP— |

The scan routine then passes control to DD statement processor rou-
tine (IEFVDA).

Intexpreter 27

Processing JCL Statements

When a statement has been scanned, and its
contents placed in an internal text buffer,
tables must be built from the internal
text. This function is performed by the
JOB statement processoxr routine (module
IEFVJA), the EXEC statement processor rou-
tine (module IEFVEA), and the DD statement
processor routine (module IEFVDA). These
three routines are similar in construction
(see chart 18); each processor consists of
a single control section containing a head-
er routine, a keyword routine for each key-
word in the statement, and a cleanup
routine.

When a statement processor routine is
first entered, the header routine performs
initializing functions, which include
clearing the storage area occupied by the
tables to be created by the routine (except
for fields filled in by previously executed
routines), and initializing the local work
area (LWA). It then uses a BALR instruc-
tion to pass control to the get parameter
routine, which perforwms basic erroxr check-
ing of a parameter, then passes control to
the appropriate keyword routine.

Each keyword routine controls the pro-
cessing of the positional parameters and
subparameters associated with a given key-
word. The routine is entered initially
when the get parameter routine encounters
its keyword, and again as each positional
parameter and subparameter is found. In
some cases, the required processing is done
directly by the keyword routine; in most
cases, however, the keyword routine passes
control to the test and store routine,
which processes the parameter in accordance
with the description in the parameter
descriptor table (PDT) and returns control
to the keyword routine. Control is then
passed to the get parameter routine for the
next parameter.

When the last parameter in the statement
has been processed, or when the test and
store routine or get parameter routine
finds an error, control is passed to the
cleanup portion of the JCL statement
processor.

Each cleanup routine uses the message
routine to write any error messages to the
programmer. In addition, the cleanup rou-
tines perform the processing described
below:

e The JOB statement processor cleanup
routine checks for the presence of pro-
grammer name and account number, and
uses the gueue manager interface rou-
tine to write out the job account con-
trol table (ACT).

28

If the EXEC statement specifies
"PROC=", the execute statement proces-
sor cleanup routine uses the queue man-
agement interface routine to write out
the last override table; if the state-
ment was in a procedure, the routine
reads the appropriate override table
into main storage, and stores overrid-
ing information in the SCT.

e The DD statement processor cleanup rou-
tine sets initializing values in the
JFCB, where no value has previously
been set. It marks the disposition
fields for implied dispositions, and
sets bits to indicate whether the data
set is public, private, temporary, or
shareable. If the DSNAME keyword was
omitted, or if its parameter is "&",
the routine generates a data set name.
It uses the queue manager interface
routine to assign records in the queue
for the SIOT and JFCB (unless the
DDNAME or SYSOUT keyword was used in
the statement), then writes the SIOT
and JFCB into the assigned records. If
the DDNAME keyword was used, the rec-
ords have previously been assigned, and
the JFCB and SIOT need only to be writ-
ten out. If the SYSOUT keyword was
used, the routine passes control to the
interpreter system output routine.

JOB, EXEC and DD statement parameter
dispositions are shown in Figures 10, 11,
and 12.

If the system includes Main Storage
Hierarchy Support, selective access is per-
mitted either to hierarchy 0 or to hierar-
chy 1 portions of main storage. The inter-
preter processes the HIARCHY subparameter
of the DD statement DCB parameter. If Main
Storage Hierarchy Support is not included
in the system, requests for storage within
hierarchy 1 are treated exactly the same as
normal requests for main storage.

Wnen a cleanup routine has completed its
processing, it passes control to the inter-
preter routine, at the post-scan routine.

Recognizing Checkpoint Restart

When a restart is to occur, the JOB state-
ment processor routine (IEFVJA) recognizes
the RESTART keyword. If the CHKID subpara-
meter is present, the restart is a check-
point restart, and CHKID is saved in the
JCT. If the CHKID subparameter is not
present, the restart is a step restart.

During control statement processing,
module IEFVHCB tests for the CHKID parame-
ter in the JCT. When the parameter is
present (checkpoint restart), the pre-scan
routine (IEFVHEB) initializes job step
IEFDSDRP.

The execute card scan routine (IEFVEA)

f T T 1
indicates which step will be the first to | EXEC |] |
be executed in a restarted job. In the | statement | Table| Table Item |
case of a checkpoint restart, IEFDSDRP will | Parameter| | |
be the first step to be executed. In the k +——=—1 9
case of a step restart, the step to be | stepname |SCT |Stepname |
restarted will be the first to be executed. b + + 4

| PGM | SCT |Programname |
r T T 1 {' % L "=
{JOB Statement |Table | Table Item | | |Cataloged control statements |
| Parameter | | | | PROC |are interpreted and merged with|
p———- + + 4 | |input statements. |
| jobname |JCcT | Jobname | b } 4
3 + + 4 | TIME |Ignored in the primary control |
|account number|ACT | Account number, | | | porogram |
| | | Length of account | F } 1 !
| | | nunber | | COND |sCT |Code, operator, auxiliary|
b + }+ 1 | | |storage address |
| programmer's |ACT | Programmer 's name | | | |of referenced SCT |
| name i | | S + t 4
X + L { | PARM |sCT |Initializing parameter |
| TYPRUN |Ignored in primary | | | | values |
| |control program | [+ + 1
b + 4 | ACCT |ACT |Step accounting fields |
| PRTY | Ignored in primary | } i 9
| |control program | | REGION | Ignored in primary |
b + T 4 | | control program |
| COND |JgcT | Code, operator | b + 4
F + + 4 | DPRTY { Unused |
| MSGLEVEL |JcT | Message level | b + 4
b—— + i 4 | ROLL | Unused |
| MSGCLASS | Ignored in primary | L- L 4
| |contxrol program | Figure 11. EXEC Statement Parameter
b + 4 Dispositions
| REGION | Ignored in primary |
| |control program |
b ; 1
| CLASS | Unused |
b— + i
J ROLL | Unused |
L L J
Figure 10. JOB Statement Parameter

Dispositions
Interpreter 29

r L) hl b} h
| DD Statement | | Table | |
| Parameter | Table | Itemnm | Bit(s) |
L 1 L 4 4
1) T T 1})
| AFF= i SIOT | SCTCSADD i |

SI0T	SCTSBYT2	0	
*, DATA	SIOT	SCTUTYPE	
(SIOT i SCTSBYT1	1		
	sIOT	SCTSDISP	5
i i SIOT	SCTSBYT3	7 [
	scT	SCTSTYPE	
i	JFCB i JFCBTSDM	2	
	JFCB i JFCBINDZ	1	
	JFCB	JFCBDSNM	
COP1ES=	SIOT	SIOTOUTC	
DCB=	[
dsname	SIOT	SIOTLCBR	
BFALN=D	JFCB	JFCBFALN	6
BFALN=F	JFCB	JFCBFALN	7
BFTEK=A	JFCB	JFCBFTEK	1,2
BFTEK=B	JFCR (JFCBFTEK	0	
(BFTEK=D	JFCB i JFCBFTEK	4	
BFTEK=E	JFCB i JFCBFTEK	3	
BFTEK=R	JFCB	JFCBFTEK	2
BFTEK=S	JFCB	JFCBFTEK	1
BLKSIZE	JFCB	JFCBLKSI	
BUFL	JFCB	JFCBUFL]
BUFNO	JFCB	JFCBUFNO	
BUFOFF	JFCB	JFCBUFOF	
BUFRQ	JFCB	JFCBUFRQ	
CODE=A	JFCB i JFCCODE	5	
CODE=	JFCB (JFCCODE	3	
i CODE=C	JFCB	JFCCODE	4
CODE=F	JFCB i JFCCODE i 2		
CODE=1	JFCB	JFCCODE	1
] CODE=N	JFCB l JFCCODE	0	
CODE=T	JFCB	JFCCODE	6
CPRI=E	JFCB	JFCCPRI	6
CPRI=R	JFCB	JFCCPRI	5
CPRI=S	JFCB	JFCCPRI	7
CYLOFL	JFCB { JFCCYLOF		
DBUFNO	JFCB	JFCDBUFN	
DEN=0	JFCB	JFCDEN	6,7
] DEN=1	JFCB i JFCDEN	1,6,7	
i DEN=2	JFCB	JFCDEN	1,3,6,7
DEN=3	JFCB	JFCDEN	0,1,6,7
DSORG=CQ	JFCB	JFCDSORG I y [
DSORG=CX i JFCB	JFCDSCRG	3 [
DSORG=DA	JFCB	JFCDSORG	2
DSORG=DAU	JFCE	JFCDSORG	2,7
DSORG=IS	JFCB	JFCDSORG]
DSORG=1SU	JFCB	JFCDSORG i 0,7	
I DSORG=MQ	JFCB	JFCDSORG	5 i
i DSORG=PO	JFCB	JFCDSORG i 6	
DSORG=POU	JFCB	JFCDSORG	6,7 i
DSORG=PS	JFCB	JFCDSORG	1
DSORG=PSU	JFCB	JFCDSORG	1,7
EROPT=ABE	JFCB	JFCEROPT	2
EROPT=ACC	JFCB	JFCEROPT	0
EROPT=CLE	JFCE (JFCEROPT	y	
EROPT=SKP	JFCB	JFCEROPT	1
GDSORG	JFCB	JGDSORG1	0
GNCP	JCFB	JFCBFTEK	
HIARCHY=0	JFCB	JFCBFTEK	none
HIARCHY=1	JFCB	JFCBFTEK	5
INTVL	JFCB	JFCINTVL	
L 1 1 L J
Figure 12. DD Statement Parameter Dispositions (Part 1 of 4)

30

r k] 1) v A
|DD Statement | | Table | |
| Parameter | Table | Item | Bit(s) I
b + t + {
KEYLEN	JFCB	JFCKEYLE	
LIMCT	JFCB	JFCLINCT	
LRECL	JFCB	JFCLRECL	
i MODE=C	JFCB i JFCMODE	0	
MODE=E	JFCB	JFCMODE	1
NCP	JFCB	JFCNCP	
NTM	JFCB	JFCNTM	
OPTCD=A	JFCB	JFCOPTCD	4
OPTCD=B	JFCB	JFCOPTCD	1
OPTCD=C	JFCB	JFCOPTCD	2
i OPTCD=E	JFCB	JFCOPTCD	2
OPTCD=F	JFCB	JFCOPICD	3
I OPTCD=H	JFCB	JFCOPTCD	3
OPTCD=1	JFCB	JFCOPTCD	3
i OPTCD=L	JFCB	JFCOPTCD	6
OPTCD=M	JFCB	JFCOPTCD	2
OPTCD=0	JFCB	JFCOPTCD	3
OPTCD=P	JFCB	JFCOPTCD	2
OPTCD=Q	JFCB	JFCOPTCD	4
OPTCD=R	JFCB	JFCOPTCD	7
OPTCD=T	JFCB i JFCOPTCD	6	
OPTCD=U	JFCB	JFCOPTCD	1
OPTCD=W	JFCB	JFCOPTCD	0
OPTCD=Y	JFCB i JFCOPTCD	N	
OPTCD=%	JFCB	JFCOPTCD	5
PRTSP=0	JFCB	JFCPRTSP	7
PRTSP=1	JFCB	JFCPRTSP	4,7
PRTSP=2	JFCB	JFCPRTSP	3,7
PRTSP=3	JFCB	JFCPRTSP	3,4,7
RECFM=A	JFCB	JFCRECFM	5
RECFM=E	JFCEB	JFCRECFM	3
RECFM=D	JFCB	JFCRECFM	2
RECFM=F	JFCB	JFCRECFM (0	
RECFM=G	JFCB	JFCRECFM	5
RECFM=K	JFCB	JFCRECFM	7
RECFM=M	JFCB	JFCRECFN	6
RECFM=R	JFCB	JFCRECFM i 6	
RECFM=S	JFCB	JFCRECFM I N	
RECFM=T	JFCB	JFCRECFM	2
RECFM=U	JFCB	JFCRECFN	0,1
RECFM=V	JFCB	JFCRECFM	1
RETPD i DDWA	DDETPD		
RKP	JFCB	JFCRKP	
SOWA	JFCB i JFCSOWA		
STACK	JFCB	JFCSTACK	6,7
TRTCH=C	JFCR	JFCTRICH	3,6,7
TRTCH=E	JFCB i JFCTRTICH	2,6,7	
TRTCH=ET	JFCB i JFCTRTCH	2,4,6,7	
TRTCH=T	JFCB	JFCTRTCH	2,3,4,6,7
TRTCH=TE	JFCB	JFCTRICH	2,4,6,7 i
DIsp=	JFCB	JFCBIND2	i
CATLG i sIoT i SCTSDISP	6		
DELETE (SIOT	SCTSDISP	5 i	
KEEP	SIOT	SCTSDISP [4 i	
MOD	JFCB	JFCBINDZ	0
i SIOT i SCTSBYT3	6		
i NEW i JFCB	JFCBIND2	0,1	
	sIoT	SCTSBYT3	5
i OLD	JFCB	JFCBINDZ	1
	sIoT i SCTSBYT3	7	
PASS i SIOT	SCTSDISP	3	
I SHR, SHARE I JFCB	JFCBIND2 i 1,4		
[L 1]			

Figure 1z. LD Statement Parameter Dispositions (Part 2 of #)

Interpreter 31

r 1 T T 1
| DD Statement | | Table | |
| Parameter i Taple | Item | Bit(s) |
b + ¢ 4 1
i | sSIOT | SCTSBYT3 { 7 |
UNCATLG	SIOT	SCTSDISP	7
(conditional			
disposition)			
CATLG	SIOT	SIOTALTD	6
DELETE i SIOT i SIOTALTD	5		
KEEP	SIOT i SIOTALTD	4 i	
UNCATLG	sIoT i SIOTALTD i 7		
DSNAME, DSN=	S10T	SCTSBYT4	0
	JFCB	JFCBDSNM	
I	JFCB	JFCBELNM] I	
	JFCB	JFCBIND1	6,7
	JFCB	JFCBINDZ	7
DUMMY, DDNAME=	SIOT i SCTSBYT1	0 i	
I i JFCB	JFCBDSNM		
LABEL=		I	
AL	JFCB	JFCBLTYP	6
	SIOT	SCTSBYTU4	3
AUL	JFCB	JFCBLTYP	6
[i SIOT	SCTSBYTU	3	
BLP	JFCB	JFCBLTYP	3 [
	sioT	SCTSBYT2	4
data set	JFCB (JFCBFLS(
seguence no.			
{ EXPDT i JFCBH	JFCBCRDT		
	JFCB	JFCBXPDT	
N	JFCB	JFCBMASK	o
i		(byte 6)	
NL	JFCB	JFCBLTYP	7
I I SI0T	SCTSBYTZ	4	
NSL	JFCB	JFCBLTYP	5
	S10T	SCTSBYTZ i 5	
] ouT	JFCB	JFCBMASK	1
I		(byte 6)	
PASSWORD ! JFCE I JFCBIND2	2,3		
RETPD { JFCB	JFCBCRDT		
	JFCE	JFCBXPDT	
	DDWA	DDETPD	
SL	JFCB	JFCBLTYP	6
SUL	JFCB I JFCBLTYP	4	
OUTLIM=	JFCB	JFCOUTLI	I
PATTERN=	SIOT	SIOTOUTR	
SEP=	SIOT I SCTCSADD		
	SIOT	SCTSBYTZ	1
SPACE=		[
i ABSTR I DDWA	ABSTRZ 7		
ALX	JFCB I JFCBCTRI	6	
average record	JFCB	JFCBCTRI	1
length			
	JFCB i JFCBDRLH		
beginning address { JFCB	JFCBABST		
CONTIG	JFCB	JFCBCTRI	4]
CYL I JFCB i JFCBCTRI	0,1		
directory quantity	JFCB	JFCBDGTY i	
MXIG i JFCB	JFCBCTRI	5	
primary quantity	JFCB	JFCBPQTY	
RLSE I JFCB	JFCBIND1	0,1	
ROUND	JFCB	JFCBCTRI	7
i secondary quantity	JFCB	JFCBSQTY	
TRK	JFCB I JFCBCTRI	0	
SPLIT=	SIOT I SCTSBYT1	2,3]	
average record	JFCB	JFCBCTRI	1
L L L L J

Figure 12. DD Statement Parameter Dispositions

32

{Part 3 of 4)

r T v T |
| DD Statement] , | Table | i
| Parameter | Table | Item | Bit(s) |
b + + + 1
length			
CYL	JFCE	JFCBCTRI	0,1
directory gquantity	JFCB	JFCBDQTY	
n	JFCB	JFCBSPTN	i
primary quantity	JFCB	JFCBPQTY	
secondary quantity	JFCB	JFCBSQTY	
SUBALLOC=	SI0T	SCTSBYT1	4
average record	JFCB	JFCBCIRI	1
length [
i CYL	JFCB	JFCBCTRI	0,1
ddname	SIoT	SIOTVRSB	
	SIOT	SCTSBYT3	3
directory quantity	JFCB	JFCBDQTY	
primary quantity	JFCB	JFCBPQTY	
secondary quantity	JFCB	JFCBSQTY	
stepname.ddname i SIOT	SIOTVRSB		
TRK	JFCB	JFCBCTRI	0
sYsSoUT=	JFCB	JFCBDSNM	
	JFCB	JFCBTSDM	2
	JFCB	JFCBLTYP	6
i	JFCB i JFCBVLCT	7	
I i SIOT i SCTSBYT3	4		
	SIOT	SCTSEYT1	0
classname	SIOT	SCTOUTPN	
form number	SIOT	SCTOUTNO	
progname	SIOT	SCTOUTNM	
ucs=			
FOLD	JFCB	JFCINTVL	1
I VERIFY	JFCB	JFCINTVL	3
UNIT=			
AFF=(minor)	SIOT	SCTUSADD	
	SIOT	SCTSBYT1 i 6	
DEFER	SIOT	SCTSBYTZ	6 i
i n	SIOT	SCTNMBUT	
name [SIOT	SCTUTYPE [
i P	SIOT	SCTSBYT1 i 5 i	
POOL	none		
poolname	SIOT	SCTSPOOL	
StP=(minor)	SIOT	SCTUSADD	
i SIOT	SCTSBYT1 I 7		
0	SIOT	SCTNMBUT	i
1	SIOT	SCTNMBUT	I
VOLUME= i			
PRIVATE	SI0T	SCTSDISP	2 (
RETAIN	SIOoT	SCTSDISP [1	
SER= i JFCB	JFCBNVOL		
	JFCB	JFCBEXAD	
	JFCB	JFCBVOLS	
	SCT	SCTVOLTB	
	SCT	SCTVOLTL (
	sIOT	SCTVOLCT	i
i	SIOT	SCTVLTPR	
	VOLT i INDMVOLT		
volume count	JFCB	JFCBVLCT	
volume sequence no.	JFCB	JFCBVLSQ	
REF=	dsname	INDMDSNT	
	SCT	SCTADSTB	
	SCT	SCTLDSTB	(
	SIOT i SCTVLPTR		
	SIOT i SCTVOLCT		
	SIOT	SIOTVRSBE	
	SIOT	SCTSBYT2	2
i | SIOT | SCTSBYT3 | 0 |
L L i L J
Figure 12. DD Statement Parameter Dispositions (Part 4 of 4)

Interpreter 33

Auxiliary Routines

During the performance of the reading task,
the interpreter routines must frequently
perform functions common to several rou-
tines. These common functions are per-
formed by a set of auxiliary routines,
which are described below:

e The get parameter routine (module
IEFVGK) is used by the statement pro-
cessor routines. It searches for the
next parameter in a statement, performs
basic error checking, and passes con-
trol to the proper keyword routine,
with a pointer to the parameter.

¢ The test and store routine (module
IEFVGT) is used by the statement pro-
cessor routines. It processes the par-
ameter as described in the parameter
descriptor table (PDT) and passes con-
trol back to the keyword routine.

e The dictionary entrance routine (module
IEFVGI) is used by the statement pro-
cessor routines. It makes entries for
the dictionary used in refer-back
processing.

s The dictionary search routine is used
by the statement processor routines.
1t searches the refer-back dictiomary
during refer-back processing.

s The message routine (module IEFVGM)
stores messages in system message
blocks (SMBs) for transmittal to the
programmer.

e The queue manager interface routine
(module IEFVHQ) is used by those inter-
preter routines that reserve space,
write records in, or read records from
the queues.

THE GET PARAMETER ROUTINE

The get parameter routine (module IEFVGK)
is an auxiliary routine used by the JCL
statement processor routines to find the
next parameter in a statement, perform
basic error checking of that parameter, and
find and pass control to the appropriate
keyword routine with pointers to the para-
meter and to the appropriate parameter
descriptor table (PDT) entry.

When the get parameter routine is ini-
tially entered, the only non-zero portion
of the auxiliary work area (AWA) is the
address of the keyword branch table (KBT).
The KBT (Figure 13) is a table of offsets
that allows the get parameter routine to
determine the actual main storage address
of the appropriate keyword routine and PDT

34

entry. Additional fields in the table
allow basic error checking to be done.

When the get parameter routine is
entered to find the first parameter in a
new statement, it extracts the base key
(the key number that represents JOB, EXEC,
or DD) from the text buffer and stores it.
The base key is the offset of the last
entry in the table from the first entry.
Whenever the routine is entered, it sub-
tracts the current key from the base key,
multiplies the result by 6 (the size of an
entry), and adds the product to the machine
address of the first entry in the table.
The result is the machine address of the
KBT entry corresponding to the current
keyword.

r T
| Max. Num. of Params |
’....-- 1

| Offset to Keyword Routine

Subparam Check

e e e e e e

L
3
| Offset to PDT Entry
L

Figure 13. ZKeyword Branch Table Entry

The get parameter routine first finds
the proper KBT entry, then determines
whether the maximum number of parameters
forr the keyword has been exceeded, and
stores the subparameter check byte in the
AWA. Each bit in the subparameter check
byte corresponds to a positional parameter;
if the bit is on, it means that the corres-
ponding parameter may have subparameters
associated with it. For example, if the
first positional parameter associated with
a keyword were the only one that could con-
sist of a subparameter list, the high-order
bit in the field would be on. If the
seventh and eighth positional parameters
conld have subparameters, the two low-order
bits would be on.

The two offset fields are used to com-
pute the actual main storage address of the
appropriate keyword routine and of the
appropriate PDT entry; the positional para-
meter length, the parameter length byte
address (in the internal text buffer), and
the PDT entry address are placed in general
registers, and control is passed to the
keyword routine.

On subsequent entries to the routine,
the pointers are updated so that they point
to the next operand (positional parameter
or subparameter), and control is returned
to the keyword routine at the instruction
after the branch to the get parameter rou-
tine. When the next keyword is encoun-
tered, however, the branch table is again
used, and control is passed to a new key-
word routine.

THE TEST AND STORE ROUTINE

The test and store routine (mcdule IEFVGT)
is an auxiliary routine used by the JCL
routines to determine the processing
required for a parameter (as described in
the PDT), and to perform that processing.
When processing of a keyword is complete,
control is returned to the appropriate key-
word routine.

The parameter descriptor table (Figure
14) included in each JCL processor
describes the processing to be done for
each parameter that may be found in the
statement. There is an entry for each key-
word, which begins with a field containing
the length of the keyword entry. The key-
word entry is made up of positional parame-
ter entries describing the processing to be
done on the positional parameters asso-
ciated with the keyword.

Keyword PDT Length (Precedes first param PDT for a keyword)

Parameter PDT Length 8

Ctl Fld Lgth 4 Compr. Lgth 4 Information to be compared

Control Information (15 bytes max)

PDT for Required Format Parameters
8

Parameter PDT Length

4 4
Ctl Fid Lgth Zero Parameter Max Length

Control Information (15 bytes max)

PDT for Variable Format Parameters

Parameter PDT length
Zero R 8

PDT for No-Action Parameters

Parameter PDT Length

4 8
Ctl Fld Lgth Zero Zero I

Control Information (15 bytes max)

PDT for Unconditional Action Parameters

.4
Function

4 8
Table Offset within Table
Bit Pattern or 8

Maximum Number
8 Maximum Number 8 |

Maximum Number

Control Information

Figure 14. Parameter Descriptor Table

(PDT)

Each parameter entry contains two kinds
of information. Length and error checking
information is followed by control informa-
tion, which describes the functions to be
performed on the parameter, and the loca-
tion in which the result is to be stored.

The first byte in each parameter entry
(the parameter PDT length field) contains
the length of the entry; the first half of
the second byte (the control field length
field) contains the length of the control
information. The format of the remainderx
of the entry depends on the type of parame-
ter and on the functions to be pertformed.
There are four types of parameters:

e A required-format parameter is a known
string of characters. The first posi-
tional parameter following the DISP=
keyword, for example, must be either
"OLD", "NEW", "MOD", or "“SHARE". 1In
this case, since there are four possi-
bilities, there are four parts to the
entry; the test and store routine com-
pares the parameter to the constant in
each of the four parts, and performs
the function specified in the control
information field of the part in which
it obtained an equal compare.

* A variable-format parameter may be any
string of characters up to a known
maximum length. The classname parame-
ter of the SYSOUT keyword is an
example; since there are 36 system out-
put class names permitted in the sys-
tem, a series of comparisons would ke
unwieldy. The compare length byte in
such an entry is zero; the third byte
in the parameter entry specifies the
maximum number of digits allowed.

e A no-action parameter is one that
refers the system to bit configurations
established when the system is
generated. These bits specify a
default option that the system may use
without taking action to reset any
bits. For example, the applications
programmer may omit the COND keyword,
in which case the system uses the
default option and makes no return code
tests.

¢ An unconditional-action parameter indi-
cates that the presence of the parame-
ter requires that the same functions be
performed regardless of the form or
contents of the parameter. When the
SPACE keyword is encountered, for
example, cexrtain switches must be set,
regardless of how much or what kind of
space has been requested.

The control information portion of a para-
metexr PDT entry defines the operations to
be performed when the parameter is pro-
cessed, specifies the location in which the
results are to be stored, and may contain
data to be used in the operation. The con-
trol information portion may be up to 15
bytes in length; it consists of the follcw-
ing fields:

Interpreter 35

36

Function: The first four bits of a
control information field contain a
number from 0 to 7, which specifies one
of the following operations:

OR (Code 0): A logical OR operation is
performed, using the bit pattern field
in the control information portion of
the entry, against the bit pattern at
the location specified by the table and
offset fields.

CVB1 (Code 1): A convert to binary
operation is performed and a maximum
value check is made. The converted
information is stored (right justified)
in the one-byte field specified by the
table and offset fields, and compared
against the maximum value, which is
right-justified in the third byte of
the control information part of this
entry.

CVB2 (Code 2): This operation is simi-
lar to CVB1l, except that the result is
right-justified in a two-byte field,
and the maximum value is found right-
justified in the fourth byte of the
control information portion of the
entry.

CVB3 (Code 3): This operation is simi-
lar to the CVB1 and CVB2 operations,
except that the result is right-
justified in a three-byte field, and
the maximum value is fdund in the fifth
byte of the control information portion
of the entry.

AND (Code 4): A logical AND operation
is performed, using the bit pattern
field in the control information por-
tion of the entry against the pit pat-
tern at the location specified by the
table and offset fields.

MVC (Code 5): A move characters opera-
tion is performed, using the parameter
length specification in the internal
text buffer. The parameter is moved to
the location specified in the table and
offset fields in the entry.

First Character Alpha Check and MVC
(Code 6): This function is similar to
the MVC function, except that the first
character of the parameter is inspected
to determine that it is alphabetic.

Alpha/Numeric Check (Code 7): A
character (usually a one character par-
ameter) in the text buffer is inspected
to determine that it is alphabetic.

Table: The second four bits of the
control information portion of a para-
meter PDT entry contain a number
between (0 and 15 that specifies the

table in which the result of the opera-
tion is to be stored.

e Offset: The second byte of the control
information of an entry contains the
offset, from the beginning of the
table, of the field in which the
results of the operation are to be
stored.

e Bit-pattern/Maximum Number: The third
through fifth bytes of the control
information portion of the entry are
used for those operations that require
data for logical or comparison func-
tions. If the operation is AND or OR,
the third byte contains the bit pat-
tern. If the operation is a CVB opera-
tion, the third, fourth and fifth bytes
contain the binary representation of
the maximum value allowed for that
parameter.

THE DICTIONARY ENTRY ROUTINE

The dictionary entry routine (module
IEFVGI) is used by the EXEC statement pro-
cessor routine and the DD statement proces-
sor routines to place an entry in the
refer-back dictionary. The dictionary is
maintained in the 1WA; if the number of
entries exceeds five, a copy of the dic-
tionary is written out to the queue, a new
dictionary is initialized in the IWA, and
the new dictionary is chained to the pre-
vious copy in the gueue.

THE DICTIONARY SEARCH ROUTINE

The dictionary search routine (module
IEFVGS) is used by the EXEC and DD state-
ment processor routines to search the
refer-back dictionary for the address of a
previously defined SCT, SI1OT, oxr JFCB. It
returns control to the calling routine with
a pointer to the required table.

THE INTERPRETER MESSAGE ROUTINE

The interpreter message routine (module
IEFVGM) is used by the interpreter control
routine and JCL statement processor rou-
tines when a JCL statement or diagnostic
message must be placed in an SMB, and to
enqueue SMBs for each job.

THE QUEUE MANAGER INTERFACE ROUTINE

The gqueue manager interface routine (module
IEFVHQ) is used by those interpreter rou-
tines that need to assign space, and to
read and write records in the queue. It
provides a queue manager parameter area,
and passes contxol to the gueue manager to

perform the function specified by the call-
ing routine. On the return from the queue
manager, it resets the parameter area so
that it specifies an assign and write 1
record operation, and returns control to
the caller.

Interpreter Termination

At end-of-data in the input stream, or when
the interpreter determines that a START RDR
command has been issued, control is passed
to the interpreter termination routine

(module 1EFVHN). This routine obtains main
storage for the interpreter entrance list
(NEL), stores a pointer to the command
scheduling control block (CSCB), and if the
input stream is an internal input stream it
also stores a pointer to the queue manager
parameter area and the JCT. If the input
stream is on external storage, it closes
the input stream data set. In either case,
it closes the procedure library PDS, and
releases the main storage obtained for the
two DCBs, the IWA and the LWA. When pro-
cessing is complete, it returns control to
its caller.

Interpreter 37

Initiator/Terminator

The initiator/terminator (Chart 14) ensures
that all I/0 resources needed by a job step
are available before control is passed to
the step. The initiator/ terminator ana-
lyzes the 1/0 device requirements of job
steps and allocates devices to them. If
necessary, it issues mounting instructions
and verifies that volumes were mounted on
the correct units.

Control is passed to the initiator/
terminator from:

e The interpreter, when the interpreter
encounters a second JOB statement, a DD
*, DD DATA, or null statement, or an
EOF in the input job stream.

e The supervisor,
execution.

following step

The initiator/terminator passes control to:

e The job step, when all I/0 devices
needed by the step have been assigned
and the step is ready for execution.

* The interpreter, when termination pro-
cedures have been completed for a step
or job.

Initiators/terminator routines are
arranged into four groupings:

Initiator control
Allocation and setup
Step initiation
Termination

Initiator control routines perform
housekeeping functions, analyze condition
codes specified by the programmer in the
EXEC statement, and update JFCBs and other
tables associated with the step.

Allocation and setup routines analyze a
step's I/0 requirements (taking into con-
sideration, for example, requests for abso-
lute assignments and unit and volume
affinity). They then allocate devices and
issue messages instructing the operator to
mount required volumes.

38

Step initiation routines open the job
library or step library data set if the
JOBLIB ox STEPLIB DD statements are pres-
ent. Also, if the step being initiated
consists of a program that was created by a
previous step (commonly known as "compile,
load, and go"), a step initiation routine
opens the data set containing the program.
Before passing control to the job step, a
step initiation routine takes several pre-
paratory steps. It loads control informa-
tion that followed the PARM keyword of the
EXEC statement into main storage. It also
usesi the table store subroutine to store
all tables associated with the job step,
thereby protecting them for use by the ter-
mination routines. It initializes the
write-to-programmer control block (WTPCB)
(see Figure 46) for the processing program.
If the initiation is for the first step of
the job, two SYS1.SYSJOBQE SMBs are
reserved for use in processing WTP error
condlitions. If an automatic checkpoint
restart is in progress, the WTP messages
previously written to the message queue are
retrieved, using information from the step
control table (see Figure 43) to rebuild
the WIPCB. The information, gleaned from
the WTPCRSMB and WTPCRCNT fields of the
WTPCB, is stored in the SCT prior to ter-
mination of the original job step.

Termination routines are entered after
eacl. job step is executed. They supervise
entry to the user's accounting routine (if
one exists) and, upon return, dispose of
data sets referenced by the step during
execution and release devices allocated to
the step.

Information is passed between initiator/
terminator routines by means of the linkage
control table (LCT) (see Figure 15). The
LCT is built and initialized during IPL.

It is stored before processing program
execution and, following execution, is
retrieved by initiator/terminator termina-
tion routines. The beginning address of
the LCT is maintained in general register
12 during execution of the initiators/
terminator.

Offset

o Execute statement conditional execution

Hex Dec routine, which checks any dependencies
] 0 4 encountered in EXEC statements.
Length of LCT
4 4 2 e JFCB housekeeping routines, which com=-
Address of 1/O supervisor UCB lookup table plete portions of JFCBs and SIOTs that
8 8 7 describe the volumes to be used during
Address of TCB step execution. These routines also
" " construct a passed data set queue (PLQ)
¢ Not used in the primary control program to i describe data sets being pa S§ed and
update the PLQ for data sets being
10 16 i ; X .
Main Storage Address of JCT 4 received by the step being processed
14 20 4
Main Storage Address of SCT SYSTEM CONTROIL ROUTINE
18 2 Auxiliary Storage Address of SCT 4 The system control routine (Chart 23) is
entered from the interpreter when it com-
1¢ 28 . 4 letes the processing of a step that was
Not used in th trol 1% N - . p
of vsed In fhe primary coniiof program followed by data in the input job stream,
20 32 E g 4 or when it reads the last step of a job.
‘ rror code It is also entered from the step termina-
24 38 7 tion routine if additional steps remain to
Parameter 1 be initiated.
%% Parameter 2 4 Upon entry, the system control routine
updates the step number in the LCT. Then,
2C¢ 44 Parameter 3 4 if the step is the first step of the job,
its job name is placed into the selected
30 48 4 job quene. (See Figure 16.)
Parameter 4
34 52 K 4 r T N H
Address of register save area | Jobname | Cancel ECB |
L 1 J
¥ 56 JFcBhsk 1| curent 1| Action ! Figure 16. Selected Job Queue
Reserved T
indicators step no. code
3C 60 4
Address of current system message block (SMB) If the step being processed is the first

e Figure 15. Linkage Control Table

Initiator Control

Initiator control (Chart 22) performs cer-
tain housekeeping functions for the
initiator/terminator, and also checks EXEC
statement condition codes (if any). Condi-
tion codes appearing in EXEC statements
determine whether or not a job step is to
be executed.

Routines that comprise initiator control
are:

» System control routine, which is the
entry point for the initiator/termina-
tor. Control is passed to the initia-
tor/terminator when a step is ready for
initiation and also after one has been
executed and terminated, if another
step is to be initiated. Housekeeping
is performed and control is passed to
the execute statement conditional
execution routine.

step of the job, and if a DISPLAY JOBNAMES
command has been issued, the WTO macro
instruction is used to write the message:

IEF4011 jobname STARTED

on the control output device. If the job
being processed is restarting, the system
control routine restores saved data from
the CVT and sets the restart switches.

In the case of a JCL error or an alloc-
ate error in the first step, the WTO macro
instruction is used to write the message:

IEF4521I jobname JOB NOT RUN - JCL ERROR

on the console output device. Control is
then passed to the executed statement con-
dition code routine.

EXECUTE STATEMENT CONDITIONAL EXECUTION
ROUTINE

The execute statement conditional execution
routine (module IEFVKIMP) checks the key-
word COND parameter of the execute state-
ment to determine whether or not the cur-
rent step should be executed.

Initiator/Terminator 39

To determine when and if it should pass
control to the JFCB housekeeping routines
for step execution, the execute statement
conditional execution routine (Chart 24)
first determines that no abnormal termina-
tions have occurred in the previous steps,
then sees if either of the following condi-
tions is also true:

¢ The step is the first step of the job
and the programmer did not specify the
COND=ONLY parameter.

e The programmer did not specify either
any return code tests or the COND=ONLY
parameter.

Otherwise the routine then tests for
abnormal terminations and for up to eight
return codes from previous steps before it
determines the proper disposition of the
step from the coding of its execute state-
ment and all the pertinent environmental
factors. Figure 17 summarizes the condi-
tions that can exist and, corresponding to
each condition, whether or not the step
will be executed.

1 2 3 45 67 8

COND parameter omitted X X

COND = ONLY specified X X

COND = EVEN specified X X

COND parameter satisfied by return codes X

COND parameter NOT satisfied by return codes X

Prior step abnormally terminated * XX X

No previous abnormal terminations X X X

Step will execute XX | XXX

Step will NOT execute XXX

* A special case of a previous abnormal termination is that indicated by a
System 806 message code (problem program not found).

Execute Statement COND Parame-
ter Options

Figure 17.

* A special case of a previous abnormal
termination is that indicated by a System
806 message code (problem program not
found).

The execute statement conditional execu-
tion routine first tests the job control
table's abnormal termination indicator
(JCTABEND bit in the JCT) to see whether
one or more prior steps have terminated
abnormally during execution of the problem

40

program. If none have, the routine tests
the SCTONLY bit in the SCTABCND field of
the current SCT to see whether the pro-
grammer specified the COND=ONLY parameter.
If he did, the routine writes a message to
the system output device, and the job
scheduler bypasses the step. (See column 7
in the table.) Lowever, if one or more
abnormal terminations have occurred, the
routine tests the SCTONLY and SCTEVEN bits
of the SCTABCND field to see whether the
programmer specified either the COND=ONLY
or the COND=EVEN parameters. 1f neither
bit. is on, the job scheduler bypasses the
step. (See column 8. These circumstances
produce the default situation wherein a
step whose execute statement does not spe-
cify either the COND=ONLY or the COND=EVEN
parameter is failed after one or more
abnormal terminations in the job.) If
either bit is on, however, the routine
makes any return code tests specified in
the COND parameter. The routine passes
control directly to the JFCB housekeeping
routines when the COND parameter has been
omitted and no previous abnormal termina-
tions have occurred. (See column 1.)

When the programmer has specified return
code tests, the execute statement condi-
tional execution routine uses the queue
management read routine to read in the SCTs
of the specified steps. (For this read
operation the queue manager uses TTRs saved
in the current step at interpretation
time.) The first return code that satis-
fies a set of test conditions delineated by
the COND parameter causes: 1) the routine
to send a message to the system output
device; and 2) the job scheduler to bypass
the current step. (See column 6.)

To cause the job scheduler to bypass
this step (but not necessarily the succeed-
ing steps of the job), the execute state-
ment conditional execution routine places a
special error code into the LCTERRCR field
of the LCT and passes control to the step
termination control routine.

JFCB HOUSEKEEPING ROUTINES

The JFCB housekeeping routines (Chart 25)
complete volume information within certain
tables, in preparation for their use by
allocation routines. This information is
generally the type that requires reference
to the catalog (use of the LOCATE and
OBTAIN macro instructions) or to passed
dat:a sets. Tables in which entries are
made include:

» Job file control block.
» Step input/output table.
» Step control table.

» Volume table.

If it is discovered as a result of a
reference to the system catalcg through the
LOCATE macro instruction that the required
control volume is not mounted, a new load
module, IEFMCVOL, will be brought into main
storage. This load module creates the
tables required by the allocation routines
to allocate a device for the required con-
trol volume, and requests the operator to
mount the volume before other requests for
the step are satisfied. If the allocation
for the control volume is successful, con-
trol returns to the JFCB housekeeping rou-
tine, where the LOCATE macro instruction is
reissued with the control wvolume mounted.

For passed data sets, a PDQ is con-
structed and entries are made for the first
occurrence of each data set being passed to
a subsequent step. The existing data set
queue entries are then updated when a data
set is received from a previous step.

The JFCB housekeeping routines include
the following:

JFCB housekeeping control routine.
Allocate processing routine.

Fetch DCB processing routine.

GDG single processing routine.

GDG all processing routine.
Patterning DSCB processing routine.
Error message processing routine.

JFCB Housekeeping Control Routine

The JFCB housekeeping control routine
(Chart 26) determines what processing (if
any) is required, and directs control to
the first appropriate processing routine.
Upon return of control, it redirects con-
trol to the next required processing rou-
tine. This routine places each SIOT for a
job step into a main storage work area,
examines it, and, depending on the type of
information required, passes control to the
processing routine which performs the
actions necessary to retrieve the required
information.

When all SIOTs for a job step have been
examined, the JFCB housekeeping control
routine passes control to the allocation
and setup function of the initiator/termi-
nator.

Allocate Processing Routine

The allocate processing routine (Chart 28)
completes information about data sets which
reference another data set by data set name
(indicating a passed or catalcged data set)
or by ddname or stepname.ddname (indicating
a data set described in a previously pro-
cessed DD statement).

When the data set reference is a data
set name, the passed data set queue is
examined and, if it contains an entry for
the referenced data set, the SIOT and JFCB
for that data set are placed into a main
storage work area and are used to complete
device and volume information for the sub-
ject data set.

If there is no entry for the referenced
data set in the PDQ, a LOCATE macro
instruction is issued to find that data set
in the catalog. Its volume control block
or data set pointer entry is then used to
complete the volume and device information
for the subject data set.

When the data set reference is by ddname
or stepname.ddname, a check is made to
determine if the DD statement appeared in
the step being processed. If so, the SIOT
and JFCB associated with the referenced DD
statement are placed into a main storage
work area. These are used to complete the
device and volume information of the sub-
ject data set.

If the DD statement appeared in a pre-
vious step of the job being processed, the
SIOT and JFCBs constructed by the last step
to reference the data set are placed into a
main storage work area and are used to com-
plete the volume and device information of
the subject data set.

When a unit name is specified in the DD
statement, the unit name is converted to
unit type, through use of the device name
table. This table is loaded from S¥YSl.

| LINKLIB and is deleted when unit name conv-

ersion is complete.

Fetch DCB Processing Routine

The fetch DCB processing routine (Chart 29)
completes volume and device information
when the data set referred to contains a
program that was created in a previous step
and is to be executed as the current step.

GDG Single Processing Routine

The GDG single processing routine (Chart 30)
obtains the data set name of a generation
data group (GDG) member and completes
volume and device information entries for
that member.

GDG All Processing Routine

The GDG all processing routine (Chart 31)

builds an SIOT, JFCB, volume table entry,

and PDQ entry for each GDG member when the
entire generation data group is specified

by the programmer.

Initiator/Terminator 41

Patterning DSCB Processing Routine

The patterning DSCB processing routine
(Chart 32) completes control information in
a JFCB when a new data set is to be pat-
terned after a previously cataloged data
set. The volume control block or data set
pointer entry, which contains the volume
serial number of the volume that contains
the data set, is placed into a main storage
work area. Fields in the JFCB are checked
for zeros. If a field contains zeros, the
corresponding field from the DSCB is moved
into the JFCS.

Error Message Processing Routine

The error message processing routine (Chart
33) is entered and issues error messages
whenever an error condition is encountered
within a JFCB housekeeping routine.

Allocation and Setup

The allocation and setup function of the
initiators/terminator (Chart 34) allocates
1/0 devices, issues any necessary mounting
instructions to the operator, and ensures
that enough I/0 requirements have been
satisfied to begin execution of a job step.
The routines in the allocation and setup
function are:

e Allocation control routine, which per-
forms housekeeping for the allocation
and setup function by obtaining space
for tables used during allocation.

e Demand allocation routine, which con-
structs the allocate tables and begins
actual allocation by assigning devices
to any data sets for which the pro-
grammer requested specific devices.

e Automatic volume recognition routine,
(optional) which can determine that
named volumes have been mounted on cer-—
tain devices and which allocates those
devices to satisfy requests for the
volumes.

e Decision allocation routine, which per-
forms allocation when a choice of de-
vices is to be made.

s TIOT construction routine, which builds
a task input/output table (TIOT) that
will be used by data management rou-
tines during step execution.

e External action routine, which issues
mounting instructions, verifies that
volumes are mounted on the correct
units, and unloads incorrectly mounted
volumes.

42

¢ Space request routine, which obtains,
from the direct access device space
management (DADSM) routines, space on
direct access devices, and which satis-
fies requests for data set space.

¢« TIOT compression routine, which compre-
sses the TIOT to its final size,
updates JFCBs with scratch information
whenever necessary, places the alloca-
tion messages in SMBs, and exits to the
step initiation routine.

« DADSM error recovery routine (module
IEFXT003), which determines what action
should be taken when the request for
space on a particular volume cannot be
satisfied.

¢ Allocation error routines, which pro-
cess error conditions encountered dur-
ing allocation.

ALI.OCATION CONTROL ROUTINE

The: allocation control routine (Chart 35)
performs housekeeping operations for the
allocation and setup function of the
initiator/terminator. It determines the
size of certain tables to be constructed by
subsequent allocation routines, obtains
main storage space for the tables, and
places the addresses of the portions of
storage reserved for each table onto a
directory of tables called the allocate
control block.

Entry to the allocation control routine
is made from the JFCB housekeeping control
routine. Exit is to the demand allocation
routine.

Upon entry, the storage requirements of
the: tables needed by allocation routines
are calculated (see Figure 18). First, all
recuirements except those for the allocate
volume table and TIOT are determined. The
recuired amount of main storage space is
recuested and the addresses of the areas
assigned to each table are calculated.

(The first table is assigned the first
aveilable byte. Other addresses are deter-
mined by incrementing the last assigned
addlress by length of the the respective
table.) The relative position of each
table except the device mask table is shown
in Figure 19. The device mask table is
included with the coding and is not posi-
tioned relative to the tables shown. As
each address is determined, it is placed
into the allocate control block.

When storage areas have been assigned
for all but the allocate volume table (AVT)
and task input/output table (TIOT), all
step input/output tables (SIOTs) are placed
into the area assigned to them. The size
of the allocate volume table may then be
determined. The number of volumes required
by each data set (DD statement) is obtained
from each SIOT and is used to calculate the
number of AVT entries (one per volume)
required. A second request for main
storage space is issued and the address of
the assigned area is placed into the alloc-
ate control block.

The storage requirements for the TIOT
are calculated by the TIOT construction
routine.

T T 1
_	IA	
DD number table*	4	4}
Buffer	176	

| |
Allocate control block	44	
Channel load table	4 x the number of	
	channels	
,	ID_	
Allocate work table	(20 + 8	32{) A

| |
| Potential user on | | D| |
| device table | 4 4] |
| | [
| separation strikeout | |D_| |
| pattern | 132] |
I | I
| Bach SIOT | 68 |
| volume table | 6s |
| | I
| TIOT | Determined by the|
| | TIOT construction]
	routine	
Allocate volume table	8B	
	1D_	
Device mask table	4 + (8 +	32]) F
o . '.		
Legend:		
* = Not used.		
	l = Next higher integer if a fraction.	
A = Number of DD statements. I		
B = Number of volumes or devices		
(whichever is greater).		
D = Number of entries in the		
170 supervisor UCB lookup table.		
F = Number of entries in device mask		
table.		
S = Number of volume serial numbers.		
L]
Figure 18. Formulas for Determining Allo-

cation Table Sizes

1f, after a request for space, the
required amount of main storage space is
not available, the job is canceled.

Figure 20 shows the completed allocate
control block. In addition to table
addresses, the allocate control block con-
tains other entries initialized by the
allocate control routine.

All allocation tables are described in
the descriptions of routines in which they
are completed. When the allocate control
block has been completed, control is passed
to the demand allocation routine.

3
=
Q
=]

DD number table
(not used)
Allocate volume

1
table

Buffer

Allocate control block

Channel load table

Allocate work table
P

otential user on
device table

Separation strikeout
pattexrn

SIOT

s el E e i s ae
o e i e el e s s s e e e e s s e e e i —— . — -

e e e e T — —— . —— —— — . St o . . e . e, s}

| Volume table
L

Figure 19. Relative Positions of Tables
Used for Allocation

Initiator/Terminator 43

Hex Dec

0 0
Channel Load Table Address 4

4 4 4
Address of First Empty Slot in Allocate Volume Table

8 8 4
Potential-User-On-Device Table Address

C 12 4
Allocate Work Table (AWT) Address

10 1 4

6 Allocate Volume Table Adclress

1420 Volume Table Address 4

18 24
Separation Strikeout Pattern Address 4

1 1 2

c = Number of Satisfied Requests 2 Number of Requests Not Satisfied 2
20 32 2 2
Number of Bytes Per AWT Entry Number of Work Table Entries with Separation

4

2 3 Length of Bit Pattern” 2 Number of DD Statements in Job Sfep‘ 2

28 40 2 5 2

Not Used Number of Devices in Configuration
Notes: (Entry length is shown in upper right corner of field.)

! Set to zero initially and incremented by one each time a request is satisfied.

2 Initially set to the number of data sets to be allocated (the number of DD
statements in the step). This number is decremented by one each time a
request is satisfied.

Fiqure 20. Allocate Control Block

DEMAND ALLOCATION ROUTINE

The demand allocation routine (Chart 36)
constructs the allocate work table and the
allocate volume table. It also begins the
allocation process by assigning devices to
data sets that require specific devices. A
specific device may be required because (1)
the programmer specified it in a DD state-
ment, or (2} all device requirements for a
step could be met with only one combination
of devices. The demand allocation routine
performs the following eight functions:

Allocate work table construction.
Volume affinity resolution.

Data set device requirement calculation.
Channel load table construction.
Allocation of resident devices.

Device range reduction.

System input device (SYSIN) allocation.
Specific device allocation.

4y

3The length (in words) of the primary bit pattern.
*The number of DD statements fo be processed .

®The number of UCB addresses in the |/O supervisor UCB lookup table,

Allocate Work Table Construction

Two tables, the allocate volume table (see
Figure 21) and the allocate work table (see
Figure 22), are constructed by this func-
tion. The allocate work table contains
information that describes a data set and
certain other information that is used in
allocating a device (or devices) to it.

One entry, as shown in Figqure 22, is built
for each DD statement. The allocate volume
table describes the volume on which the
data set resides or will reside. One entry
is made in the allocate volume table for
each volume required by a data set.

r——- T
| DD number |
b 1 t
| Pointer to volume serial|Volume affinity
| numoer in volume table |link

L 1

Figure Z21.

T
Status E | UCB address
4

e o g

Allocate Volume Table Entry

Hex Dec

0 0

Number of Devices Available Pool/Split/ 1 .]
(Primary Bit Pattern) Suballocate Link Number of Devices Requested
4 4 1 1 1
Status A Status B Status C Status D
8 8 1
Number of Volumes Number of Devices Allocated Number of Devices Shared Number of Devices Used
C 12 . S 1 . . 2
Unit Affinity Link Reserved Address of First Entry in Volume Table
1016 Possible Number of Devices in DD Number 1 R d 1
Secondary Bit Pattern : umbe eserve
14 20 4
Internal Device Type Code
18 24 N
L Primary Bit Patfern =
'T' (Initially a duplicate of Secondary Bit Pattern)
N
;: Secondary Bit Pattern :_J:
Figure 22. Allocate Work Table Entry

Most entries made in the allocate work
table are obtained directly from other
tables. The source of each such entry is
shown in Figure 23. The device type is
obtained from the SIOT and placed into the
device type field of the allocate work
table. It is then used as a search argu-
ment and a search of the device mask table,
loaded from SYS1.LINKLIB, is made. The
device mask table contains bit patterns
that correspond to each group of units de-
scribed either by a generic name or by a
user's esoteric name. For devices that
fall into either of these categories, a
matching device type found by the search
causes the corresponding bit pattern from
the device mask table to be placed into the
primary and secondary bit pattern fields of
the allocate work table. These bit pat-
terns indicate devices that are eligible
for allocation to a data set.

The demand allocation routine builds its
own bit pattern for devices described by
specific unit names. To build the bit pat-
tern, the demand allocation routine secures
the device type from the SIOT and uses it
as a search argument for a search of the
UCB lookup table, from which the bit pat-
tern can be extracted.

The demand allocation routine moves the
private and nonshareable flag bits from the
step input/output table (SIOT) to the
allocate work table (AWT). The demand
allocation routine also sets the nonshare-
able bit in the allocate work table entry
for a request if the request does not spe-
cify a direct access device, and sets the
private bit if the request is specifically

for a nondirect access device (unless re-
quest applies to passed data sets).

Data sets that have similar 1/0 device
requirements are then linked together.
Similar requirements are implied when the
programmer specifies the following in a DD
statement:

¢ SPLIT=, which indicates that two or
more data sets in the same job step are
to share a cylinder of a direct access
device.

¢ SUBALLOC=stepname.ddname ox ddname,
which indicates that space for the data
set will be suballocated from the space
allocated to the data set described in
the DD statement named ddname.

Pointers are placed into the SPLIT/
SUBALLOC link field and unit affinity link
field of the allocate work table to 1link
all such groups together.

Volume Affinity Resolution

Volume affinity means that a certain volume
is requested for more than one data set.
vVolume affinity may be requested explicitly
by use of the REF parameter of the VOLUME
field of the DD statement, or implicitly by
specifying the same volume serials in one
or more other DD statements. 1In either
case, the subject volumes are linked with
pointers placed into the volume link field
of the allocate volume table by the demand
allocation routine. BAll requests for the
same volume that appear in the volume

Initiator/Terminator 45

affinity chain subsequently will be satis-
fied with allocation of the device that
bears the named volume.

r) 1
| Entry | source |
L [[
LB] 1
| Number of devices | Device mask table |
|available | |

| |
| POOL/SPLIT/SUBALLOC |SIOT |
| 1ink | |

| I
Number of devices	sIO0T
requested	
Number of volumes	sIoT
Status &	s1oT
status B	sIOoT
Status C	sTOT
status D	sTO0T
Number of devices	Inserted as devices
allocated jare allocated	
i	
Number of devices	Calculated
shared	

| |
| Number of devices |Calculated |
| required | |
| I I
|Unit affinity link |SIOT |
| | I
|Address of first] Calculated |
entry in volume	
table	
Possible number of	Device mask table
devices in secondary	
bit pattern	
I	
DD number	s1IoT
Device type	s1oT
I	
Primary bit pattern	Device mask table
Secondary bit	Device mask table
pattern	
L L 1

Figure 23. Allocate Work Table Entry

sSources

Data Set Device Requirement Calculation

Informaticn obtained from the allocate work
table is used to determine the number of
devices required by each data set. The
following calculations are used:

46

1. For a data set marked parallel mount
(the P subparameter of the UNIT key-
word was specified in the DD
statement) :

Dy = Vo

2. For data sets not marked parallel
mount :
de If V1 = Va then Dy, = Vo

b. If V4 < V, and
if Vy < Dy then Dy = D, or
if Va4 2 Dy then Dy =V + 1

where:

Dy = Number of devices actually to be
used for the data set.

Dy = Number of devices requested for the
data set.

Vs = Number of volumes to be shared by
two or more data sets.

Va2 = Number of volumes on which the data

set exists.
The number of devices to be used (D;) is
placed into the number of devices required
field of the allocate work table.

Channel Load Assignments

For the purposes of allocation, a channel
is a discrete path from a device to the CPU
(or main storage). The load on a channel
is the number of data sets accessible
through it. The channel load table (CLT)
furnishes a place to record these channel
loads. BAfter the allocation control rou-
tine (IEFXCSSS) builds the CLT in the
sckeduler work area, the various allocation
rouvtines use its information about channels
and their loads to manage the channel and
device resources efficiently.

Device allocation does not depend on
physical channel addresses. Instead, the
CLT defines channels by means of pointers
to a list of device UCB addresses in the
scheduler lookup table (see Figure 24).
Each pointer defines a single channel, but
may point to a series, or block, of several
UCE address entries in the table. Each
entry, in turn, is the address of a single
device, so that a single channel may pro-
vide access to a number of devices. This
prcliferation of the data paths that a
channel provides is illustrated in Figure
24, which also shows how more than one
channel pointer from the CLT can ultimately
prcvide access to a single device. The
flexibility in device allocation that this
sckeme provides is the flexibility, for
example, that the Model 2870 multiplexor
channel (with its subchannels) requires.

The scheduler lookup table makes this
flexibility possible by interposing one
level of addressing between the CLT and the
device UCBs. The allocation control rou-

tine builds the table in the scheduler work
area, constructing it in three sections of
halfword entries. The first section is a
copy of the device list portion of the I/0
supervisor lockup table. The entries in
this section contain the addresses of spe-
cific device UCBs. Addresses in the first
halfword of each fullword entry in the CLT
point to biocks of entries in the scheduler
lookup table to define the discrete chan-
nels for the allocation routines.

For example, in Figures 24 and 25, P,
points to the first scheduler lookup table
entry for channel one. Channel one entries
include all the succeeding entries to the
point where the second pointer, P,, desig-
nates the beginning of the block of entries
representing devices accessed through chan-
nel two. In Figure 24, the pointers from
the CLT illustrate that channel one pro-
vides a data path to the 2311, the 2314,
and the 2400 devices, while channel two
provides a data path to the 2321 device.
Note, however, that channel two also pro-
vides a data path to the 2311 device,
because the first table entry for that
channel also points to the UCB for that
device.

The allocation routines can keep track
of all the data paths provided to a device
by using an allocation channel mask. This
mask is a bit configuration that subroutine
IEFXDPTH builds for use by the following
allocation routines;

¢ The device strikeout routine --
IEFX3004;

e The separation strikeout routine --
IEFXH0O00;

s The decision allocation routine --
IEFX5000;

e The TIOT construction routine --
IEFWCIMP.

When an allocation routine calls subrou-
tine IEFXDPTH, it passes to it a standard
parameter list that includes a pointer to a
UCB and a space for the channel bit pattern
used as the mask. The subroutine searches
the scheduler lookup table for UCB pointers
identical to the one passed, notes the
channel number associated with any such
pointer entry, and turns on the bit corres-
ponding to that channel in the mask space
provided by the parameter list. The sub-
routine then returns control to the calling
allocation routine, which now has channel
information at its disposal.

The second halfword of each CLT entry is
the number of data sets that constitutes
the load on the channel to which the first
halfword points. Hence, in Figure 25, Ly

and L, are the respective loads on channels
one and two. In the same figure, Pp points
to the last channel for which there is a
set of one or more scheduler lookup table
entries, and L, is the load on that chan-
nel. Py points to the first field of hexa-
decimal Fs in the scheduler lookup table.
This field separates the first section,
which contains the UCB addresses, from the
second section. Allocation routines use
this boundary and its CLT pointer to faci-
litate rapid searching of the table.

The second section in the table contains
sets of ten pointers each for the sub-UCBs
associated with every main UCB controlling
a 2321 datacell drive. Such a set exists
for every 2321 device that the operating
system is using. A second entry of hexade-
cimal Fs follows the last sub-UCB entry in
the section to delimit the entries from the
different type that follows. The Py
address in the CLT points out this quick-
reference delimiter.

The third section in the table contains
pointers to the first section. These poin-
ters relate each set of ten sub-UCBs to its
2321 device main UCB. For example, in
Figure 24, Qn is a pointer associated with
the set of sub-UCB pointers Pp,19, and it
refers the set back to its proper main UCB
via the pointer in the first section.

Allocation of Resident Devices

The resident device allocation routine
allocates direct access devices containing
reserved and permanently resident volumes
to satisfy requests by serial number for
these volumes. The devices that contain
these volumes are known as resident
devices.

A volume is placed into the reserved
status either when the operator issues a
MOUNT command specifying the device on
which the volume is mounted or when the
volume is so listed in the PRESRES member
of the IPL/NIP parameter list data set
(SYS1.PARMLIB). This type of volume cannot
be dismounted unless its device is unloaded
by means of an UNLOAD command.

A permanently resident volume has at
least one of the following characteristics:

e The volume cannot be physically dis-
mounted from its device.

¢ The volume is a system residence volume
that contains the initial program load-
exr (IPL) program.

¢ The volume contains the linkage library
(SYS1.LINKLIB) data set, procedure
library data set, or any part of the
job queue (SYS1.SYSJOBQE) data set.

Initiator/Ternrinator 47

e The volume is listed as permanently
resident in the PRESRES member of
SYS1.PARMLIB.

For more information about the PRESRES data
set memver, refer to IBM System/360 Operat-

ing System: System Programmer's Guide,
GC28-6550. For more information about
reserved and permanently resident volumes,

Allocation
Routines

CLT

First Section
Copy of I/O
Supervisor

Lookup Table r}

\ FFFF 2

f -

2

W/ N

—)
A
L N N
;
—

Reserved

Iy
y & mv——

Second Section L

—
—_—

Third Section

O | aoee
3
N 3

Figure 24. sScheduler Lookup Table

ug

refer to IBM System/360 Operating System:
Job Control Language Reference, GC28-6539.

The resident device routine determines
which direct access devices are resident
and then allocates them to satisfy any
requests for the volumes they contain.

Main
ucs

for
2321

2321

I
D
X
o
(23
o

°
|
N
N

P1 L1

4 4 2 2
P2 L,

8 8 2 2
Ps Ly

C 12 2 2
Py Ly

variable 2 2
Pn Ln
2 2
Py 7FFF
2 2
Py 7FFF
Y

Figure 25. Channel Load Table

From the device mask table (DMT, Figure
35), the resident device routine first
creates a special bit pattern that repre-
sents all direct access devices in the sys-
tem. It sets a bit in the pattern to one
for each direct access device. It then
searches for unit control blocks represent-
ing direct access devices, using this bit
pattern to identify the unit control
blocks.

The routine compares the volume serial
number in each request with the serial
number in each unit control block in which
the permanently resident bit or the
reserved bit is one. If the serial numbers
match, the routine passes control to the
device strikeout routine to allocate the
device. (That is, it places the address of
the unit control block into the allocate
volume table entry, Figure 21, and
increases, by one, the count of allocated
devices in the allocate work table entry
that represents the data set, Figure 22.)

Device Range Reduction

The device range reduction routine reduces
the number of devices that can be allocated
to satisfy certain requests. In addition,
this routine allocates devices containing
reserved tape volumes.

The device range reduction routine pre-
vents allocation of devices that are
ineligible to satisfy certain requests.
Devices are ineligible under the following
conditions:

e The device is the primary console.

e The device is offline or is being
changed to offline status.

s The device has either been allocated or
is resident, and the request is for an
unspecified private volume. (Each such
request requires an unused volume.)

e The device has either been allocated or
is resident; the device contains a
private volume; and the request is for
temporary data set space on a volume
that is neither specific nor private.

¢ The device is a resident, direct access
device, and the request is for a spe-
cific volume.

e The device is neither a direct access
device nor a tape device (unit record
or graphic equipment, for example) and
is allocated, unless one of the two
following conditions exists:

¢ The device is the system output
cevice, and the request is for a SYS-
OUT data set.

e The device is the system input
device, and the request is for a
SYSIN data set.

¢ The device does not contain a storage
volume, and the request has all of the
following characteristics:

e The request is not for temporary data
set space.

» The request is not for a specific
volune.

e The request is not for a private
volume.

A storage volume is a permanently resi-
dent or reserved volume that may be used to
keep any data set specified in a DD state-
ment in which KEEP has been specified.

To prevent allocation of these inelig-
ible devices, the device range reduction
routine alters primary bit patterns repre-
senting devices that are available for
allocation. 1In each bit pattern, ones
represent devices that can be allocated,
and zeros represent those that can not. A
primary bit pattern forms part of each
allocate work table (AWT) entry. (Each
entry stands for one request.) The device
range reduction routine eliminates each
device that is ineligible to satisfy a par-
ticular request by changing the bit corres-
ponding to the device from a one to a zero
in the bit pattern corresponding to the re-
quest. The final bit pattern thus repre-
sents only devices that can satisfy the
request.

Initiator/Terminator 49

As each ineligible device is disquali-
fied, a count of eligible devices in each
affected allocate work table entry is
reduced by one. If this count becomes less
than the number of devices needed to satis-
fy the request represented by the entry,
the device range reduction routine passes
control to the allocation error recovery
routine. If recovery is possible, this
routine provides a list of devices that can
satisfy the request. The operator may
either reply with a three-character device
name or cancel the job. (If allocation
error recovery is necessary, the entire
allocation procedure is repeated.)

If, during this processing, the device
range reduction routine finds a unit con-
trol block representing a tape unit with a
reserved volume mounted on it, it allocates
the device if the volume was requested.

SYSIN Allocation

If the device range reduction routine
encounters a request for the device desig-
nated as the system input device, it allo-
cates that device.

Specific Device Allocation

Allocation is next made to requests for
specific devices or requests which, because
of range reduction or previous allocation,
can be satisfied only by a specific device.

Exits From Demand Allocation

When all processing is completed in the
demand allocation routine, all requests
within the step may have been satisfied.

If so, exit is made to the TIOT construc-
tion routine. If, however, some requests
remain outstanding, control is passed to
the automatic volume recognition routine if
it was specified during system generation.
If additional requests remain, control is
passed to the decision allocation routine.
When allocation is complete, the "number of
unallocated entries®" field in the allocate
control block (ACB) reaches zero. If the
number of devices required exceeds the
number of devices available, control is
passed to an allocation error routine.
Before any exit is taken, the device mask
table is deleted.

AUTOMATIC VOLUME RECOGNITION

The automatic volume recognition (AVR) rou-
tine decreases the time required for job
step initiation by enabling the operator to
mount volumes needed for subsequent job
steps as soon as devices become available.

50

During subsequent job step initiation, the
AVR routine recognizes that volumes needed
for the current job step are mounted, thus
saving the time that the system otherwise
would spend waiting for the operator to
find and mount themn.

Before the next job step after a volume
hass been mounted, the AVR routine reads the
volume label and associates the volume with
the device containing it, using information
from the label. When the volume is needed
for a subsequent job step, the AVR routine
can then identify and allocate the device
on which it is mounted.

The AVR routine contains two modules,
IEFXv001 and IEFXV002, as shown in Charts
37 and 38 respectively. Most of the AVR
routine's function is performed by
IEFXV001, the first module to receive con-
trol. The demand allocation routine passes
control to module IEFXV001l of the AVR rou-
tine. Then IEFXV001l uses a BALR instruc-
tion to branch and link to the VCON type
address of the second module, IEFXV002,
whose main function is primarily one of
reading volume serial numbers.

IEFXV002 reads the volume serial number
and verifies it. If the volumre serial
nunber is valid, IEFXV002 then places it in
the unit control block (UCB) and returns
control to IEFXV00l1i. However, if an 1/0
error occurs, IRFXV002 sets an error return
code without altering the UCB. Wwhen it
encounters nonstandard labels during the
the reading process, it branches to
IEFXVNSL, the nonstandard label (NSL) pro-
cessing routine. 1f IEFXVNSL returns no
error code, IEFXV002 places the volume
serial number into the UCB as though the
NSI, routine had never received control for
special processing, then returns control to
IEFXV00l1l. Errors detected upon return from
the NSL routine, however, cause IEFXV002 to
bypass alterations of the UCB and instead
to return control directly to IEFXV001.
IEFPXVNSL returns an error code if no user
written routine has replaced the IBM supp-
lied one, or for whatever reason the user
written routine specifies.

The AVR routine allocates devices to
satisfy requests that specify 2311 and 2314
direct access volumes, 7-track tape volumes
having a tape density specified during sys-
tem generation, and 9-track tape volunes.
These volumes must be specified by either a
serial number or a data set name that
implies a serial number. The AVR routine
first allocates devices containing mounted
volumes. If any of the volumes have been
mounted after the start of the last job
step, and have consequently not had their
labels read, the AVR routine reads them at
this time.

When all devices containing mounted
volumes which are needed for the current
job step have been allocated, the AVR rou-
tine attempts to satisfy any remaining
requests for 2311 and 2314 direct access
volumes and 9-track tape volumes. The AVR
routine determines whether there are suffi-
cient unused devices of each device type to
satisfy the outstanding requests for that
device type. If necessary, volumes not
needed for the job step are unloaded. If
the AVR routine can obtain enough devices,
it prints a list of the requested volume
serial numbers and allocates the devices as
the operator mounts the volumes. If enough
devices are not available or if all of the
needed volumes cannot be mounted, however,
the operator must cancel the job.

Processing Requests for Mounted Volumes

The AVR routine first satisfies requests
for volumes which are already mounted. The
AVR routine searches for such volumes by
examining all unit control blocks that
represent online, ready 2311 and 2314
direct access devices and 9-track and 7-
tape devices. If the serial number in the
unit control block is zero, it means that
the volume has been mounted since the start
of the last job step and has therefore
never had its label read. The AVR routine,
at the time it finds such a volume, reads
the volume label into main storage,
extracts the serial number from the label,
and records it in the unit control block
representing the device. (To extract the
serial number from a nonstandard label, the
AVR routine uses a volume serial number
routine, 1EFXVNSL, which must be supplied
by the user. A routine with the same name
is supplied by IBM to indicate an error if
the user has provided a nonstandard label
but has not substituted his own routine to
read it.) If the volume had been mounted
before the start of the last job step, the
serial number has already peen read.

The AVR routine next determines, for
each mounted volume, whether it is needed
for the current job step. To make this
determination, it searches in the volume
table (VOLT) for the serial number of the
mounted volume. (Each entry in this table
represents a volume that has been specific-
ally requested.) If the AVR routine
locates the serial number, the volume is
needed for the job step. The AVR routine
then uses the device strikeout routine to
allocate the device to satisfy all requests
for the volume. If the serial number is
not in the volume table entries for this
job step, however, the voclume is not pre-

sently needed. The AVR routine subsequent-
ly ignores the device and looks for another
previously mounted volume. If the device
has already been allocated to a different
volume, or if the volume has been allocated
to a different device by the demand alloca-
tion procedure, the AVR routine notifies
the operator and unloads the volume using
the external action routine.

Processing Requests for Unmounted Volumes

The AVR routine finally attempts to satisfy
all remaining specific volume requests.

For these requests to be satisfied, enough
devices for all of the requests either must
be available or must be made available. If
enocugh devices become available, the AVR
routine provides the operator with a list
of volumes to mount and allocates the de-
vices as he mounts the volumes on them. If
sufficient devices for the job step cannot
be made available or if all of the reguired
volumes cannot be mounted, the operator
must cancel the job.

Obtaining Devices: Before the AVR routine

requests that the coperator mount any
unmounted volumes, it determines whether
enough devices to contain them are avail-
able. If there are not enough devices
without mounted volumes to begin with, the
AVR routine determines whether it can
unload enough devices. The devices it con-
siders for unloading contain mounted
volumes not needed for the job step. If it
can, it unloads these devices so that the
operator can replace the mounted volumes
with volumes needed for the job step.
Otherwise, the AVR routine attempts to have
enough offline devices placed into online
status to satisfy the remaining specific
requests.

To determine whether there are enough
devices, the AVR routine compares, by
device type, a count of available devices
with a count of needed devices. Because
the need for each device type is filled
separately, a shortage of any one type
means that not enough devices are available
for the job step.

The available devices comprise all
online 9-track tape units, 2311 disk units,
and 2314 disk units that have not been
allocated. Separate counts are made of de-
vices not in the ready status (which norm-
ally do not contain mounted volumes) and
devices that are ready (all of which have
mounted volumes).

Initiator/Terminator 51

To eliminate any unnecessary unloading
of devices, the AVR routine compares,
first, the number of devices needed with
the number of online devices not having
mounted volumes (that is, those that are
not in the ready status). If there are
enough such devices, none need be unloaded,
and the AVR routine can immediately print a
list of volumes to be mounted.

If ready devices must be unloaded, the
AVR routine determines the number of ready
devices still needed and whether enough can
be unloaded.

If the AVR routine has determined that
enough ready devices can be unloaded, it
stores the identities of a sufficient numb-
er of devices and then unloads them. To
fill the gquota, it first tries to obtain
enough ready devices not containing
retained volumes or volumes with data sets.
If the AVR routine cannot find enough de-
vices, it obtains the remainder needed from
among devices containing these kinds of
volumes. The AVR routine unloads the de-
vices with the external action routine,
which also prints a list of unit addresses
so that the operator will know which de-
vices have volumes to be dismounted. The
AVR routine then provides the operator with
a list of the serial numbers of volumes to
mount .

In an attempt to make more devices
available, if it is apparent that enough
ready devices cannot be unloaded, the AVR
routine uses the allocation error recovery
routine (IEFXJIMP) to print a list of off-
line devices that can be made available.
The operator either may reply with a three-
character device name to place a device
into online status or cancel the job. (If
allocation error recovery is necessary, the
entire allocation procedure is repeated.)

Allocating Devices on which Volumes have
been Mounted: When the AVR routine has
determined that the required number of de-
vices is available for allocation, it pro-
vides the operator with a list of serial
numbers of the needed volumes . As the
operator mounts these volumes, the AVR rou-
tine allocates the corresponding devices to
satisfy requests for these volumes.

After printing the list, the AVR routine
waits for the operator to wount a volume.
A device-end I/0 interruption releases the
AVR routine from its waiting status when
the operator mounts the first volume and
presses the START button on the device.

The AVR routine extracts the new serial
number from the volume label , removes the
serial number from the list of required
volumes, and allocates the device. Then
the AVR routine waits for the operator
either to mount the next wvolume or to can-
cel the job. It repeats the procedure
until either all specific volume requests
have been satisfied or the job is canceled.

When the devices have been allocated,
the AVR routine passes control to the TIOT
construction routine, unless there are more
volume requests. If there are, the AVR
routine passes control to the decision
allocation routine, which satisfies the
remaining requests.

DECISION ALLOCATION ROUTINE

The decision allocation routine (Chart 40)
allocates devices to most data sets for
which devices have not yet been allocated
by either the demand allocation or the
automatic volume recognition routine.
includes all remaining requests except
requests for space on unspecified public or
unspecified storage volures. The latter
recuests are fulfilled by the space request
routine.

This

Upon entry to the decisicn allocation
routine, an attempt is made to reduce the
nunber of devices that are candidates for
allocation. A request for unit or channel
separation from devices allocated by either
the demand allocation or automatic volume
recognition routines eliminates the units
or additional devices on the selected chan-
nels from further consideration. If this
is the case, the separation strikeout sub-
routine is entered. This subroutine, by
changing corresponding bits in the primary
bit pattern, eliminates these devices from
consideration for allocation.

The number of data sets directed to each
channel is then determined and added to the
tot.als in the channel load table (see
Figure 24). This table is later used to
"spread the load" across the channels,
thereby:

» Obtaining maximum overlap of I/0
activity.

» Reducing the possibility of making a
channel ineligible because all of its
devices had been allocated too early.
(some channel separation requests would
then be impossible to satisfy.)

The maximum number of data sets that
could use each device is next determined
and placed into the potential user on
device table (see Figure 26). This table
is later used to determine the order in
which devices will be selected for data
sets. (Devices first selected are those
with the fewest potential users.)

r) T 1
No. of data		No. of data
sets for firstj		sets for nth
device		device
L L L i
Figure 26. Potential User on Device Table

The remainder of the decision allocation
routine allocates devices. First, devices
are allocated to data sets for which only
one device is eligible. Then all other
requests (except those for unspecified
public or unspecified storage volumes) are
processed in the following manner. A data
set 1s selected and then a device for the
data set is selected and allocated to it.
Another data set is then processed.

Data Set Selection

Data sets are selected by considering the
number of devices eligible for allocation
to them. That is, the first data set
selected is the one for which the smallest
number of devices is eligible.

The decision allocation routine selects
two kinds of requests, both of which must
be satisfied with the allocation of devices
containing nonshareable volumes:

s Requests for nonshareable volumes.
(Each such request has a nonshareable
flag in its allocate work table entry,
shown in Figure 22.)

e Requests that may be satisfied with the
allocation of either a direct- or
sequential~access device, if
sequential-access devices are available
for them. (As each of these requests
is satisfied, a nonshareable flag is
placed into its allocate work table
entry to mark the allocation of a
device containing a nonshareable
volume.)

Selection is performed by scanning the
allocate work table. If two or more data
sets have the same number of eligible de-
vices, they are selected in the following
order:

1. Data sets with separation requests.
2. Data sets with affinity requests.
3. Passed data sets.

4. All others.

Device Selection

When a data set has been selected, a device
is selected and allocated for it. Devices
are considered in the following order:

1. If the possible devices for a data set
exist on more than one channel, the
channel with the greatest number of
free devices of the type requested is
chosen.

2. If two channels have the same number
of free devices of the requested type,
the channel with the lightest load is
chosen; the device which has the few-
est possible users is chosen.

3. To satisfy requests for public non-
specific (scratch) tape volumes, de-
vices with mounted tape volumes are
given preference. To satisfy requests
for direct access volumes and specific
tape volumes (including private
volumes and volumes which are used for
multi-volume public data sets), de-
vices without mounted volumes are
given preference.

4. If two devices have the same number of
possible users, the first one in the
I/0 supervisoxr UCB lookup table is
chosen.

Device Allocation

As indicated previously, the decision allo-
cation routine selects a data set and an
eligible device, allocates the device, and
then selects another data set. To allocate
a device, the decision allocation routine
places the address of the unit control
block representing the dewvice into the
allocate volume table entry (Figure 21)
representing the required volume and adds
one to the "number of devices allocated"
field of the allocate work table entry for
the data set (Figure 22).

While a request is being satisfied, the
same device is also allocated to satisfy
any other requests that specify the same
volume. Multiple allocations may be per-
formed in this case, because all requests
for the same volume appear in a volume
affinity chain, which is a series of linked
allocate volume table entries (Figure 21).

Initiator/Terminator 53

The decision allocation routine satisfies,

in the same way, requests that specify unit
affinity or that have a split or suballoc-

ate relationship (Figure 22).

When a device is allocated, the decision
allocation routine alters bit patterns in
the allocate work table entries for certain
other requests. Each bit pattern specifies
the devices that are eligible to contain
the data set represented by the allocate
work table entry.

If a private volume request was satis-
fied, the decision allocation routine
changes the bit representing the allocated
device to zero in all primary and secondary
bit patterns so that the device cannot be
selected to satisfy another request. Such
devices are exempted from further alloca-
tion because each private volume may not
contain other data sets and must be removed
after use.

If the request was satisfied with a
device containing a nonshareable volume,
the decision allocation routine changes the
bit representing the device to zero in the
primary and secondary bit patterns of the
allocate work table entries that represent
all other data sets that require nonshare-
able volumes. A device allocated to satis-
fy a request for a nonshareable volume thus
cannot satisfy additional requests of this
kind.

If all eligible devices are allocated
before all data sets for a step have been
selected for allocation, the decision allo-
cation routine passes control to an alloca-
tion error routine.

Upon successful completion of processing
by the decision allocation routine, exit is
made to the TIOT construction routine.

TIOT CONSTRUCTION ROUTINE

The task input/output table (TIOT) con-
struction routine (Chart #41) obtains space
for and ouilds the processing program's
task input/output table. The primary func-
tion of the TIOT is to provide the data
management open, close, and end-of-volume
(EOV) routines with pointers to JFCBs and
allocated devices.

Entry to the TIOT construction routine
is made when all requests for I/0 devices

54

have been satisfied except requests for
unspecified public or unspecified storacge
volumes. Therefore, entry may be from the
demand allocation routine, the automatic
volume recognition routine, or the decision
allocation routine. Exit is to the extern-
al action routine.

Upon entry, main storage space required
to build the TIOT is calculated using the
first formula shown in Figure 27, and space
is requested. The standard TIOT is shown
in Figure 28. TIOT entries are constructed
for each data set in a step. Entries are
also constructed when use of the job
liorary is requested or when a program,
cre2ated in a previous step, is to be
exacuted as the current step. Figure 29
shows the sources of entries in the TIOT.

The TIOT construction routine deter-
mianes, for each request for an unspecified
storage or unspecified public volume, which
devices are eligible to be allocated by the
space request routine. It obtains this
information from the allocate work table
entry (Figure 17) for the request, which
contains a primary bit pattern representing
the devices that are eligible to satisfy
the request.

The TIOT construction routine places
pointers to all unit control blocks repre-
senting eligible devices into the TIOT
entry for each such request. If more than
one device can satisfy a request, it
selects, first, the channel with the light-
est load, and, on this channel, the device
that has been allocated to satisfy the
smallest number of requests. When the
first device has been selected, it places
other devices in order, using the following
criteria:

1. Devices on the same channel as the
first device selected, but which do
not contain passed data sets.

2., Devices that do not contain passed
data sets and do not violate requests
for separation.

3. Devices that contain passed data sets
and do not violate separation
requests.

4., Devices that do not contain passed
data sets and violate separation
requests.

5. All other devices eligible to receive
public volumes.

Should more than one device have similar
attributes, their pointers are arranged in

the order in which the devices are repre-

sented in the primary bit pattern.

[

| Space required to build TIOT =
| 28 + 16N, + 4N, + U4(N; x Ng)

Space occupied by completed TIOT =

N

8 + 16Ny + 4N,

Ny = Number of DD statements.

the step.

Na = Number of requests for public

volumes.

N4 = Number of devices available for

public volumes.

[
|
I
|
|
{
| N, = Number of devices allocated to
|
|
|
|
|
I
[
L

e e e S — — — — —— ——— . —— i — —)

Figure 27.

Formulas for Determining Task

Input/Output Table Space

Requirements

Jobname

Name of step in which

1
|
}
1
Stepname |
i
I
procedure was requested|

[]

= o e o e e 2y

r L) T A
Length	Status	Relative
of	&	location
entry		of pool
L L i _..1
r

| Ddname |
! i
| Address of | sta—-|
| JFCB |tus |
| ic |
L R 1
T L) a
|status | Address |
| B | of UCB#* |
i L J

*pAddress of sub- UCB if
device is 2321 Data Cell
drive

T L) T T 1
	Number		Number
{slots		devices	
[in		in	
	pool		pool
}_ L L 4 J			
Poolname			
b {
{ Slot for UCB |
L]

Figure 28.

control Portion

DD Entry

Pool Entry

Task InputsOutput Table

r Ll]
] Entry | Source |
b 4 {
Jobname	gcT
Stepname	sCT
Stepname of step	sCcT
in which procedure	
was requested	

| |
| Length of entry |Ccalculated |
| I |
status A	Calculated
Relative location	[Calculated
jof pool	
I	
Ddname	S10T
I I	
Address of JFCB	s1OT
Status C	Ccalculated
	I
status B	Calculated
'	
Address of UCB	I/C supervisor UCB
	Lookup Table
I I	
No. of slots in	Calculated
pool : l	
No. of devices in	SIOT
Poolname	sSIOT
Slot for UCB	I70 supervisor UCB
	Lookup Table
L L Jd

Figure 29. Task Input/Output Table Entry

sSources

EXTERNAL ACTION ROUTINE

The external action routine (Chart 42)
issues mounting instructions, verifies that
the correct volumes have been mounted, and
unloads incorrectly mounted volumes.

Entry to the external action routine is
made from the TIOT construction routine.
Exit is made to the space request routine.

Upon entry, devices allocated to each
data set are checked and any required dis-
mounting is requested. (The operator is
notified of volume dispositions.) Messages
instructing the operator to mount the
required volumes are then issued, and
checks are made to ensure that volumes were
mounted on the correct units.

Initiator/Terninator 55

SPACE REQUEST ROUTINE

The space request routine (Chart 43) pro-
cesses requests for space on direct access
volumes. It determines whether a volume
has enough space for the data set specified
in a particular request, and, if so, it
obtains space on the volume for the data
set. If space is not available initially,
the space request routine attempts to loc-
ate another volume with sufficient space.

The space request routine, which
receives control from the external action
routine, searches among the task input/
output table (TIOT) entries for requests
for direct access volume space. It pro-
cesses these requests in two different
ways, depending on whether or not a device
was previously allocated to satisfy the
request.

Obtaining Space If a Device Was Allocated

If a device has been allocated to satisfy
the request (because a specific device or
volume was named), the space request rou-
tine attempts to obtain space on the volume
that is mounted on the device. It passes
control to the direct access device space
management (DADSM) routines, which record
the limits of an extent on the volume into
a data set control block (DSCB) if space is
available. If the mounted volume does not
have space for the data set, and is not
being used to contain another data set for
the job step, the space request routine
passes control to the external action rou-
tine, which directs the operator to mount
another volume on the allocated device.

Obtaining Space If a Device Was Not
Allocated

If a device has not been allocated to sat-
isfy the request, the space request routine
attempts to obtain space on an unspecified
public or uanspecified storage volume,
depending on the type of request. (Either
unspecified public or unspecified storage
volumes can contain temporary data sets,
but only storage volumes are eligiple to
contain data sets that are to be kept.) If
the space request routine determines that a
volume has space for a data set, it allo-
cates the device containing the volume.

The space request routine attempts to
obtain space for the data set on a volume
that is mounted on an eligible device.

(The devices that are eligible to satisfy a
particular request are indicated in the
task input/output table entry for the re-
quest. Each entry contains pointers to the
unit control blocks representing eligible
devices.) To determine whether space is
available, the space request routine passes
control to the direct access device space

56

management (DADSM) routines. These rou-
tines attempt to specify an extent on the
volume. If space is not available, control
passes to the DADSM error recovery routine,
to determine whether another volume can be
mounted. If no volume can be mounted, exit
is taken to the external action routine,
which requests the operator to mount a
volume on an eligible device that does not
contain a volume.

When all requests for space have been
satisfied through the above procedure, or
when an unrecoverable error has been
detected (that is, when space cannot be
allocated), the space request routine exits
to the TIOT compression routine.

TICT COMPRESSION ROUTINE

The TIOT compression routine is entered
frcm the space request routine when all
requests for space have been satisfied, ox
when an unrecoverable error has been
detected.

In the case of a normal entry, the TIOT
compression routine reduces the TIOT to its
final size, adds scratch information to
JFCBs where necessary, and adds allocaticn
messages to SMBs when the allocation mes-
sace level is one. This message level may
be either the system generation default
opticn or the result of a coded job control
language JOB statement parameter,
"MSGLEVEL=(x,1)". The routine exits to the
step initiation routine of the
initiator/terminator.

In the case of an error entry, the rou-
tine reduces the TIOT to its final size and
exits to the allocation error routine (see
below). The format of the TIOT is shown in
Ficure 28.

DALSM ERROR RECOVERY ROUTINE

The DADSM error recovery routine is entered
from the space request routine when space
is not available on a requested volume.

The: routine determines whether the
recuested volume is unused and remcvable
(that is, not permanently resident and not
reserved). If the volume can be removed,
the LADSM error recovery routine returns to
the space request routine, which exits to
the external action routine to request that
the operator mount another volume on the
same device.

If the requested volume cannot be
removed, the DADSM error recovery routine
selects another device, then returns con-
trol to the space request routine; the
space request routine then attempts to
obtain space on another mounted volume.

(If no other device is available, the re-
quest for space cannot be fulfilled.) If
the failing request was one of several non-
specific requests for space on the same
volume for the job step, and all users on
that volume are those assigned by the space
request routine, the allocated data sets
will be unallocated and the volume may be
removed. When a new volume is mounted, the
space request routine will again attempt to
obtain space for the data sets.

ALLCCATION ERROR ROUTINES

Allocation error routines are entered when
error conditions are encountered by alloca-
tion and setup routines. There are two
error routines: the recovery routine and
the nonrecovery routine.

The recovery routine is entered if an
error condition is detected before a TIOT
is built for the step. It may be entered
from the demand allocation, automatic
volume recognition, decision allocation, or
TIOT construction routine. If allocation
requirements can be satisfied by changing
the status of a device from offline to
online (determined by checking the secon-
dary bit pattermn), the recovery routine
issues a message to the operator requesting
him to place additional devices online. If
he does, allocation for the step is begun
anew by entry to the allocation control
routine. If the operator does not or can-
not add devices to the configuration, the
recovery routine cancels the job.

The nonrecovery routine is entered when
an error condition is detected after the
TIOT has peen built for the step. It
passes control to the step termination por-
tion of the initiator/terminator.

Step Initiation

The step initiation routine of the
initiator/terminator (Chart 46) makes pre-
parations for passing control to the pro-
cessing program. If a STEPLIB DD statement
is present in the step, the step library
data set is opened. If not, and if a JOB-
LIB DD statement is included in the job,
the job library data set is opened. If the
program to be executed exists on a data set
created in a previous step, a DCB is
created for that data set and is opened.
Also, several tables are stored, releasing
to the processing program the space they
occupied. Step initiation passes control
to the processing program.

The step initiation routine is entered
from the space request routine. Upon
entry, control is passed to the pseudo-

sysout subroutine, which writes the con-
tents of system message blocks (SMBs) onto
the system output data set.

When control returns from the pseudo-
sysout subroutine, the step initiation rou-
tine scans the TIO1 for entries indicating
SYSOUT processing. The UCB address for
these entries is zero. When such an entry
is found, the corresponding JFCB is read
into main storage. The device class
(placed in the JFCB by the interpreter) is
obtained, and the UCB address of the writer
currently active for that class is placed
in the TIOT entry. If a DSNAME parametexr
was specified in the START command, the
step initiation routine places the DSNAME
in the JFCB. The ILCT and JCT are then
stored and the space that they had occupied
is released.

Main storage space to be used by the
processing program is then obtained. A
portion of this area is reserved for the
following:

e One DCB for step or job library (if
any) .

Fetch DCB (if any).

Macro-parameter list.

TIOT.

Processing program register save area.

First, the TIOT is moved from the
initiator/terminator work area to the area
of processing program storage assigned tc
it. The TIOT is also stored, and the space
it occupied is released. The macro parame-
ter list (see Figure 30) is then built and
the programname entry and initializing par-
ameter values entry (PARM information) are
inserted. The SCT is then stored, and the
space it occupied is released. If a step
or job library has been requested, the data
set is opened, and the address of its DCB
is placed into the TCB. If a fetch DCB is
required (PGM=#*.stepname.ddname was speci-
fied in the EXEC statement) a DCB is
created and opened, and its address is
placed into the macro parameter list.

The cancel ECB in the selected job
queuel is then set up for the processing
program: i.e., the low-order byte is
changed to the number 255. If a CANCEL
command was issued, the step initiation
routine issues the ABEND macro instruction.

1Just prior to passing control to the job
step, the low-order byte of the cancel ECB
in the selected job queue is changed to all
ones. This causes issuance of an ABEND or
ABTERM rather than a POST by the master
scheduler if the operator issues a CANCEL
command for the job.

Initiator/Terminator 57

If a CANCEL command was not issued, an XCTL
macro instruction is used to pass control
to the processing program.

Offset

Hex Dec
0 0 4
Address of Programname Entry
4 4 4
Address of Fetch DCB
8 8 8
Programname (obtained from SCT)
10 16
Hexadecimal Address of " Initializing Parameter 3
80 Values " Length Field
1420 Not Used Length of Initializing 2
Parameter Values Entry
18 24 A 40
—]i Initializing Parameter Values (Obtained From SCT) -I:

Fiqgure 30. Macro Parameter List

Termination

The termination function of the initiator/
terminator (Chart 47) performs post-step
and post-job housekeeping. It is normally
given control following step execution, but
is also given control when a job management
routine encounters an irrecoverable erxor
while processing a job step. Termination
routines:

e Release space occupied by tables.
e Free 1/0 devices.

e Dispose of data sets referred to or
created during execution.

Major components of termination are:

e The step termination routine, which
performs post-step housekeeping
functions.

e The job termination routine, which per-
forms post-job housekeeping functions.

The disposition and unallocation subroutine
is used by both the step and job termina-
tion routines. Basically, this subroutine
handles disposition of data sets and frees
devices allocated to a step. The disposi-
tion and unallocation subroutine is de-
scribed in Appendix A.

58

STEP TERMINATION

The step termination routines (Chart 48)
perZorm cleanup operations for each job
step. They are entered from the supervisor
when a step has been terminated either
normally due to successful completion of
execution or abnormally due to an error
condition. They are also entered from job
management routines when an unrecoverable
error condition has been detected.

When entry is from the supervisor, the
step termination entrance routines
(IEFSD011 and IEFW42SD) perform initializa-
tioa functions. These functions include:

¢ Setting the cancel ECB in the selected
job queue to zero.

e Placing the LCT, JCT, SCT and problem
program TIOT into a main storage work
area.

e Constructing a parameter list contain-
ing the address of the above tables.

e Initializing an SMB for use by step
termination routines. If write-to-
programmer messages were produced dur-
ing execution of the step, SMBs con-
taining WTP messages will precede those
used to contain termination messages.

In the case of normal termination, the
entrance routines reset the restart infor-
mation in the JCT; in any case, the JCT is
stored in the job queue.

If the job step has terminated abnormal-
ly, control is passed to the indicative
dump routine (IEFIDUMP). After the dump
has been performed, control passes from the
indicative dump routine to the step ter-
mination control routine. 1If the job step
has terminated normally, the indicative
dump routine is bypassed.

The step termination control routine
(IEFYNIMP) is entered from the step ter-
mination entrance routines, from the indi-
cative dump routine, or from a job manage-
ment routine as a result of an unrecover-
able error. It uses these major
subroutines:

e Restart preparation routine (IEFRPREP).

¢ Step termination data set driver rou-
tine (IEFYPJB3).

e Job statement condition code routine
(IEFVJIMP).

e Disposition and unallocation subroutine
(IEFZ2GST1, IEF%ZGST2).

e User's accounting routine (IEFACTLK),
if included in the system.

The control routine places the problem
program TIOT address into the TCB, and the
task completion code into the SCT. 1In the
case of abnormal termination, the WTO macro
instruction is used to inform the operator
that the step has failed, and control is
then passed to the restart preparation
routine.

The restart preparation routine (Chart
49) determines if a restart is possible.
If it is not, it sets the "no restart"
indicators in the JCT (bit JCTNORST in byte
JCTRSW2 of the JCT). 1I1f a step restart is
to occur, the restart preparation routine
sets bit 5 in byte JCTRSW1l of the JCT; this
indicates to the termination routines that
all NEW data sets are to be deleted, and
OLD data sets are to be kept. If a check-
point restart is to occur, the routine sets
bit 4 in JCTRSW1l; this indicates that all
data sets are to be kept. After the
restart information has been placed in the
JCT, the restart preparation routine
requests special disposition of data sets.
Control returns to the step termination
control routine.

If no restart is possible, and if the
step failed with either a user or a system
abnormal termination (bit 0 of the TCBFLGS
field is on), the step termination control
routine sets the JCTABEND and the SCTABEND
bits. Setting these bits causes the job
scheduler to bypass all the following steps
unless either the COND=OMNLY or the COND=
EVEN parameter specifies execution after
abnormal termination. If any other failure
has occurred, such as an allocation failure
oxr the issuing of a CANCEL command, the
step termination control routine sets the
job failed bit (INCMSTS) in the JCT, and
the job scheduler will not execute any
other step of the job.

The step data set driver routine is then
entered. Whenever the problem program has
abnormally terminated, this routine tests
for an allocation message level of zero.

If the programmer did specify zero in the
JOB statement, the routine reconstructs the
allocation messages and places them in the
current system message block (SMB). After
this initial processing, the routine places
the SIOT for each data set into a main
storage work area and branches to the dis-
position and unallocation subroutine. The
loop through the data set driver routine
and the disposition and unallocation sub-
routine is then repeated for each sSIiIoT. If
the JOB statement specified an allocation
message level of one, or if an abnormal
termination occurred, the data set driver
routine places, in the current SMB, ter-

user's accounting routine.

mination data set disposition messages for
each data set in the step.

When all data sets have been processed
by the disposition and unallocation subrou-
tine, the problem program TIOT is released.
Control is then passed to the job statement
condition code routine, unless the job is
to restart; in this case, control is passed
to the user's accounting routine.

The job statement condition code routine
(Chart 50) processes condition codes speci-
fied in the JOB statement. If upon entry
it is found that there were no condition
codes specified, control is passed to the
If there were
condition codes specified, the job state-
ment condition code routine compares each
condition code in the JCT with the step
corpletion code of the previous step, which
appears in the SCT. Up to eight conditions
for each step are checked; any additional
condition codes are ignored. If any of the
condition operators are satisfied by the
codes, the job-failed indicator in the JCT
is updated to indicate that the job failed;
the message subroutine is used to issue a
message to the programmer, and the WTO
macro instruction is used to issue a mes-
sage to the operator. Control is then
passed to the user's accounting routine.

From the user's accounting routine con-
trol passes to the step termination exit
routine (IEFW22SD). This routine stores
the SCT in the job queue, updates the LCT,
and writes the last terminate SMB to the
job gueue. It then exits to the
interpreter/initiator interface module
(IEFSD002) for return to the interpreter or
the initiator.

JOB TERMINATION ROUTINE

The job termination routine (Chart 51) per-
forms its functions when an entire job has
been executed and step termination for its
last step has been completed. It consists
of four major routines:

Job termination control routine.

s Release job queue routine.

e Disposition and unallocation
subroutine.

e User's accounting routine (if included
in the configuration).

Control is passed to the job termination
control routine from the step termination
routine.

The job termination control routine de-
termines if a passed data set queue exists
and, if so, places each block into main
storage work area and tests for unreceived
data sets. (An unreceived data set is a

Initiator/Terminator 59

passed data set to which no reference is
made after PASS is speéecified.) When an
unreceived data set is found, entry is made
to the disposition and unallocation subrou-
tine. When all unreceived data sets have
been processed, or if no passed data set
queue exists, the job termination control
routine passes control to the accounting
routine, if there is one. BAs in step ter-
mination, if the allocation message level
is one (if the job statement parameter is
"MSGLEVEL=(x,1)"), or if an abnormal ter-
mination has occurred, final disposition
messages describing the data sets handled
by job termination are placed in the cur-
rent SMB.

When the accounting routine returns, or
if there is none, the completed job's con-
trol tables are removed from the system by
the release job gqueue routine. This rou-

60

tine releases the auxiliary storage space
(or, if the resident job gueue option was
selected during system generation, the main
storage space) occupied by all control
tables for the job. If the job notifica-
tion switch is on, the message

IEF404T jobname ENDED

is written on the console device. This
message is not issued in any case where the
job was terminated abnormally. If the job
was terminated because of a JCL error in
any but the first job step, the WITO macro
instruction is used to issue: the message:

IEF4521 jobname JOB FAILED - JCL ERROR

on the console. Control is then passed to
the interpreter control routine.

Table Store Subroutine

The table store subroutine stcres records
into and retrieves records from the SYSl.
SYSJOBQE data set. This data set may be
either completely on a resident direct
access device, or partly in main storage
and partly on such a device, depending on
whether the resident job queue (RESJQ)
option was specified during system genera-
tion. The table store subroutine provides
the following services on request:

e sSupplies the requester with an auxi-
liary storage address or addresses into
which records may later be written.

e Writes a record (or records) onto SYsSl.
SYSJOBQE locations specified by the
requester.

s Reads a record (or records) from S¥Sl.
SYSJOBQE locations specified by the re-
quester .

The table store subroutine is used by job
management routines to temporarily store
tables and work areas that need to be com-
municated from one routine to another.

As part of the preparation for system
generation (initializing system data sets),
a specified number of tracks is assigned to
data set SYS1.SYSJOBQE. During IPL, this
extent is formatted for 176-byte records.
(A1l records handled by the table store
subroutine are 176-byte records.)

If the resident job queue option was
selected during system generation, a speci-
fied number of records, starting at the
beginning of the data set, will occupy a
main storage area, thus saving time when
tables are to be stored or retrieved. If
there is room within this area of main
storage, the I/0 supervisor causes the rec-
ords to be moved in response to the table
store subroutine's WKRITE macro instruction;
if desired records are stored in this main
storage area, the I/0 supervisor causes
them to be moved in response to a READ
macro instruction.

The calling routine
five functions. These

may request one of
are:

e Assign and start. The requested number
of track addresses are assigned, begin-
ning with the first assignable address
in the extent.

Appendix A: Major Subroutines

* Assign. The requested number of track
addresses are assigned, beginning with
the next available address in the
extent.

e Write and assign. The requested number
of records are written, and the
requested number of addresses are
assigned.

* Write. The requested number of records
are written.

e Read. The requested number of records
are read.

Before passing control to the table
store subroutine, calling routines must
construct a parameter area (see Figure 31)
and place its address into general registerx
1. Calling routines must also provide a
QMPCA-QMPEX list (see Figure 32). Figure
33 shows the parameters required when a
function is requested. The parameters are:

e OMPOP. A function code that indicates
the function to be performed.

e OMPCM. The number of records (maximum
of 15) for which addresses are to be
assigned.

e OMPNC. The number of records (maxinum

of 15) to be stored into or retrieved
from SYS1.SYSJOBQE.

e OMPCL. The beginning address of the
OMPCA-QMPEX list.

e OMPCA. The main storage address from
which the record is to be read or into
which the record is to be written.

e OMPEX. The record address (in SYS-
JOBQE) into which the record is to be
written or from which the record is to
be read.

An entry in the QMPCA~QMPEX list is
required for each record when a read or
write function is requested. For assign
functions, the table store subroutine
returns the assigned track addresses in
these parameters. The first assigned rec-
ord address is placed into gQMPCAl, the
second into ¢MPEX1l, and the remaining rec-
ord addresses into ...QMPCAn, 9QMPEXn.

Appendix A: Major Subroutines 61

Byte

r 1
0 | |
L 3

LB 1

4| |

L 4

r T 1

8 | QMPOP | |

L L i]

r 1

12 |
L i]

T 1

16 | i
! 1

20 | |
L "

r 1

24 | |
t 3

r 1

28 | |
i 4

r T T 1

32 | QMPCM| QMPNC | OMPCL |
L 1 L 4
Figure 31. Table Store Subroutine Parame-

ter Area

Byter 1
0 | QMPCA1 |

b 1

4 | QMPEX1 |

L]

r Al

n | OMPCAn I

L J

r L
n+t) QMPEXn |
L J

Figure 32. QMPCA-QMPEX List

I |

| Input Parameters |

lI_ h) T R} T T '=

lo telolol el Ql

I M | M| M| M| M|M]

P | P P|P|P|P|

o |cinN|]cCc|Cc|E]|

P | M|C|L|A]ZX]

| | | | | | |

Assign and start | 00 | X | | X | X | X}
4 4 1 4 i 1 i |

1 T T L} T] L

Assign | 01 | X | | X1 X | X |
4 4 1 L L 4 }

. .) Ll) T T 1 1
Write and assign | 02 | X | X | X | X | X |
1 1 iy [l i 4]

R] a) L} L) T 1 1
Write | 03 | | X | X | X | X |}
4 4 1] 1 4 []

1) L} T T)]

Read | o4 | | X | X | X | X |
L L i L L L]

Figure 33.

62

Table Store Subroutine Parame-

ter Requirements

Disposition and Unallocation

Subroutine

The disposition and unallocation subroutine
is divided into two sectionsi disposition
processing, which performs data set dispo-
sitions specified in the DISP field of LD
statements, and device availability pro-
cessing, which makes the associated devices
available for allocation to the next job
step. Control enters the disposition and
unallocation subroutine from the step ter-
mination routine and the job termination
routine. 1In all cases, disposition pro-
cessing is performed, followed by device
availability processing. A message con-
taining the data set name, its disposition,
and the serial numbers of the volume (or
volumes) in which it is contained, is
always issued to the programmer.

ENTRY FROM THE STEP TERMINATION ROUTINE

When the step termination routine passes
control to the disposition and unallocation
subroutine (Chart 52), it provides pointers
to the TIOT and SICT of a data set. The
disposition field of the SIOT indicates the
disposition to be performed.

Disposition Processing

Dispositions that may have been specified
in the DD statement are DELETE, KEEP, PASS,
CATLG, and UNCATLG.

If the disposition is DELETE and the
data set is cataloged, and if the JFCB
housekeeping routine obtained volume infor-
mation from the catalog, the. UNCATALOG
macro instruction is issued. If the de-
vices containing the data set are not
direct access devices, no SCRATCH macro
instruction is issued. If the devices are
direct access devices, a check is made to
determine if the SCRATCH macro instruction
can be issued. It can be issued if one of
the following conditions exists:

e All volumes containing the data set are
mounted.

e All volumes containing the data set are
not mounted, but at least one dismount-
able volume is mounted.

If neither of these requirements is met, an
error message is issued.

If the disposition specified in the DD
statement is KEEP, the disposition subrou-
tine issues a message to the operator and
passes control directly to device availa-
bility processing.

If the disposition is PASS, no message
is issued to the operator. Control is
passed to device availability processing.

If the disposition is CATLG, the dispo-
sition subroutine determines if the data
set is already cataloged. If not, the
CATALOG macro-instruction is issued. If it
is cataloged, a further check is made to
determine whether its volume list was
altered during execution of the job step.
(The data management OPEN, CLOSE, or EOV
routines may have altered the volume list.)
If the volume list was altered, a RiCATALOG
macro instruction is issued. If the volumwe
list was not altered, control passes
directly to device availability processing.

An UNCATLG disposition causes an UNCATA-
LOG macro instruction to be issued.

If a disposition is not specified in the
DD statement, but if the SYSOUT keyword is
specified, control returns directly to the
step termination routine.

When neither a DISP nor a SYSOUT keyword
is specified in the DD statement a check is
made to determine if an entry for the data
set exists in the passed data set queue
(PDQ), and if so, the status indicator in
that entry is checked. 1If the status is
old (the data set was created by a previous
step or job), a KEEP disposition is
assumed. If the status is new, a DELETE
disposition is assumed. If there is no
entry for the data set in the PDg, the sta-
tus indicator in the step input/output
table is examined, and as in the conditions
for a PDQ entry, either a KEEP or DELETE
disposition is assumed.

If the job step has been abnormally ter-
minated, the conditional disposition (third
parameter for DISP keyword) is honored
instead of the normal disposition (second
parameter}). Possible conditional disposi-
tions are: DELETE, KEEP, CATLG, and
UNCATLG. If one of these specifications is
present, it is resolved in the same manner
as normal disposition. If there is no spe-
cification for the conditional disposition,
the normal disposition will be honored (as
above) .

Device Availability Processing

After the disposition of a data set is
determined and processed, the device avail-
ability portion of the disposition and
unallocation subroutine is entered. First,

a check is made to determine if the opera-
tor has issued a VARY or UNLOAD command.

If so, the status of the device is changed,
and a wmessage indicating that the command
was processed is issued to the operator.

When there are no pending VARY or UNLOAD
commands or when these commands have been
processed, tests are made to determine if
any of the volumes containing the data set
can be dismounted. Dismount messages are
issued for any that can be dismounted. The
following volumes are not dismountable:

e Public volumes.

e Volumes on system residence or RESERVED
devices.

e Volumes on permanently resident
devices.

e Volumes whose status is RETAINED.

e Volumes on system input or system out-
put devices.

e Volumes containing data sets with PASS
dispositions.

The addresses of appropriate UCBs are
obtained from the TIOT, and the status of
the devices used is changed to ALLOCATAEBLE.
When device availability processing of a
data set is completed, the disposition and
unallocation subroutine returns control to
the step termination routine.

ENTRY FROM THE JOB TERMINATION ROUTINE

When the job termination routine passes
control to the disposition and unallocation
subroutine (Chart 52), a test is made for
special disposition processing. If the
step is to be restarted, the disposition of
OLD data sets is changed to KEEP; the dis-
position of NEW data sets is changed to
KEEP for a checkpoint restart, to DELETE
for a step restart.

Only two types of data sets remain to be
processed:

e Data sets that were passed but were not
received.

e Data sets contained on volumes that
were retained but to which reference
was never made.

Each time the job termination routine
passes control to the disposition and unal-
location subroutine, it passes a pointer to
an entry in the PDQ describing a data set
that was passed but not received.

Appendix A: Major Subroutines 63

If the job has been abnormally ter-
minated (job failed bit is on), the condi-
tional disposition stated for this data set
must be honored. The SIOT for this data
set is read into main storage, and the con-
ditional disposition checked. The speci-
fied disposition is then processed in the
same manner as when entry is from the step
termination routine.

If no conditional disposition was speci-
fied, only two dispositions are possible:
DELETE and KEEP. If the data set existed
before the first time it was passed in this
job, a KEEP disposition is assigned; other-
wise, a DELETE disposition is assigned.

64

These dispositions are processed in the
sanie manner as when entry is from the step
termination routine.

When the job termination routine has
scanned all PDQ entries for a job, it
enters the disposition and unallocation
subroutine, but provides no pointer to a
PDQ entry. The disposition and unalloca-
tion subroutine scans all UCBs and issues
dismount messages for any dismountable
volumes on devices whose UCHB contains the
current job identification. Control is
then returned to the job terminaticn
routine.

Appendix B: Tables and Work Areas

This appendix contains descriptions and
formats of major tables and work areas that
are used by job management routines and
that are not described in the body of this
publication. Most table entries are self-
explanatory. Those entries that require
further explanation are described with each
table. Tables are shown here four or eight
bytes wide for convenience, but are not
necessarily drawn to scale.

The length of each field of the tables is
given in bytes in the upper right corner of
the field, and each table is limited to a
176-byte length by convention. The tables
are presented in the following alphabetical
order:

Account control table
Device mask table
Dsname table
Generation data group (GDG) bias count
table

| In-Stream procedure work area
Job control table

| Job file control block
New reader or writer table
Passed data set queue
Step control table
Step input/output table
System message block
Volume table

Auxiliary storage addresses appearing in
the tables are relative track addresses
(TTRs), in relation to the beginning of the

Offset

SYS1.SYSJOBQE data set, whether the table
is stored into main storage or into auxi-
liary storage by the table store subroutine
and the I/0O supervisor. All TTRs are three
bytes long and begin on a fullword boun-
dary. The format of all storage addresses
appearing in the following tables is:

r T T 1
Relative 2	Relative 1	Table ID 1
track	record	or
address	address	Not used
L i 1 J
Account Control Table

The account control table (ACT), shown in

Fiqure 34, contains accounting informaticn
obtained from JOB and EXEC statements.

This information is made available to user
accounting routines. One or more ACTs are
created for each job. The job routine of
the reader/interpreter creates one ACT for
each JOB statement, and the execute routine
creates an ACT whenever the accounting
(ACCT) parameter with its subsequent infor-
mation is specified on an EXEC statement.
The "number of accounting fields" entry
contains the number of elements of account-
ing information specified in the ACCT para-
meter of the EXEC statement, or in the
first positional parametexr of the JOB
statement (see IBM System/360 Operating
System: Job Contrcl Language Reference).
ACTs are stored by the table store
subroutine.

Hex Dec
o 0 3 1 4
Storage Address of ACT Table ID =01 Storage Address of Next ACT
8 8 20
T Programmer's Name if JOB ACT ; Blanks if Step (EXEC) ACT :I:
1c 28 31 No, of 1| Length of 1 Varioble‘L
Time Required to run Job or Step Accounting First Accounting First Accounting Field
Fields Field T
Length of 1 eriablel
- Other Accounting Fields (If any) Nth Accounting Nth Accounting Field
T Field j
Figure 34. Account Control Table

Appendix B: Tables and Work Areas 65

Device Mask Table

The device mask table (DMT), shown in
Figure 35, is built at SYSGEN time, and
permits system access to the unigque group
of I/0 devices represented by one unit
name. This group may consist of any combi-
nation of device types or device numbers,
and will be unique for any user's system.
The user may determine specific device
assignment bit patterns for his system from
a symbolic listing taken after system
generation. There is one table entry for
each esoteric or generic name or for each
direct access device. Within each entry,
the bit pattern signifies the devices asso-
ciated with a particular device name. The
bit pattern within any entry is extended in
fullword increments when the number of de-
vices exceeds 32 or a multiple of 32. The
entry status byte, bit 0, if 1, signifies
that the group of devices is a homogeneous
group.

At SYSGEN time, device type codes are
obtained from tables internal to the SYSGEN
program, or are generated, and placed in
the device mask table. The DMT is used as
a source of device-type codes for the
device name table (DNT) (see IBM System/360
Operating System: System Control Blocks).
During device allocation, these codes are
used as search keys to gain access to the
DMT for device groups or single devices.

DSNAME Table

The: dsname table, (see Figure 36), contains
the volume reference data set names for one
step as found in the DD statement. The
table is created by the DD routine of the
interpreter for each job step. One entry
is made in the dsname table for each DD
statement containing the VOLUME=REF=dsname
parameter.

r T]

| Numbers of 2}Pointer to mask 2|

| entries |of direct access | The step control table (SCT) points to

| |devices | the dsname table, and also contains a count

L i J of the total bytes occupied in the dsname
Entry (typical) table by dsnames for the current step. The

r T . 1 SIOT for each data set also contains a

| 1| DMT 1| Number of 2] pointer to the dsname table entry for this

| Not used |entry | possible | SIOT before volure resolution and a pointer

| | status | devices | to the volume table (VOLT) after volume

b L . i information has been resolved.

| 4

| Device type |

| | The dsname table is used by the JFCB

- i housekeeping routine of the initiator/ter-

| b minator to retrieve volume information ccn-

| Bit pattern of | cerning data sets referred to by data set

| possiple devices | nane in the DD statement VOLUME=REF parame-

| | ter. The dsname table is fragmented into

L i 176-byte blocks before being stored, prior

Figure 35. Device Mask Table to job step execution.

| I - T T T 1

] 3| I 31 1|

| Storage address of | Table | | Not |

| dsname table | ID=07 | Chain address |used |

| | | | |

{_ 1 L i {

| Variable|

| Dsname 1 (i through u4b4--byte length) |

| I

L J

3 1

| Variablej

| Dsname N |

| |

L J

Figure 36. Dsname Table

66

Generation Data Group Bias Count

The generation data group (GDG) bias count
table, shown in Figure 37, makes GDG infor-
mation available to the data management
portion of the system, and allows the user
to refer to a particular GDG member by the
same number in different steps of the same
job. The programmer refers to GDG members
serially from the start of a job, but data
management refers to GDG members serially
from the last-cataloged member. The last
member cataloged in a previous job, if any,
is referenced as member number zero. The
programmer will refer to the first new data
set in the present job as number +1. This
table is used to convert a reference that
is relative to the start of the present
job, as specified by the programmer, to a
reference that is relative to the last-
cataloged member, as required by data
management.

An entry to the GDG bias count table is
created by the GDG single processing rou-
tine of JFCB housekeepina when a single GDG
is requested by the user. When a step is
completed by JFCB housekeeping, the JFCB
housekeeping control routine transfers the
GDG work bias byte to the GDG bias byte
location if the value of the work byte is
greater than that of the bias byte. 1In
subsequent steps of the same job, any
reference by the programmer to a GDG member

will be decremented by the value of the
bias count, which is contained in the GDG
bias byte, to obtain a corrected member
number for data management reference.

Offset
Hex Dec
0 0
4 4
8 8
c 12
30 48
34 52
5C 92
84 132
AC 172

Figure 37.

Storage Address of This Table Not Used

Storage Address of Next Table Not Used

Number of Entries in This Table

) X

-+~ GDG Dsname -~
2 2
GDG Bias Byte GDG Work Bias Byte
4],
= Second Entry —T
]
:I: Third Entry ~
L 40
Fourth Entry T:
4
_ Not Used
GDG Bias Count Table
Appendix B: Tables and Work Areas 67

In-Stream Procedure Work Area

The 352-pyte work area shown in Figure 38
functions as two 176-byte halves in pro-
cessing procedures found in the job stream.
The first half, the work buffer, is used in
compressing and expanding procedure state-
ments. The second half, the directory, is
used to store from one to fifteen entries,

each containing the name of a procedure and
the: auxiliary storage address of the first
job queue record of that procedure. Direc-
tory entries are created as in-stream pro-
ceclures are encountered in a job input
stream and processed. Storage for the area
is obtained when the first procedure is
processed, and is freed when the next JOB
statement is read.

Offset
Hex Dec
0 0 4 4
WKTTR WKQMPAPT
Auxiliary Storage Address of next record in the compressed Pointer to the Queue Manager Parameter Area
procedure, Zero if no next record exists, for in=stream procedure processing
8 8 168 L
.JL WKRECQORD -~
T Area for Compressio1 and Expansion T
BO 176 4 1 3
WKPTR1 WKCT WKPTR2
Auxiliary Storage Address (from Assign/Start) used to write Number of Auxiliary Storage Address of next available
directory entry to job queue Directory Entries job queuve record
B8 184 8
WKPROZNI
Name of the first in=stream procedure eacountered, right-padded with blanks
Cco 192 3 154
WKTTR1
Auxiliary Storage Address of first job queue
record of first in=stream procedure
Space for 14 more procedure names and addresses
158 344 3
Reserved

eFigure 38. In-Stream Procedure Work Area

68

Job Control Table

The job control table (JCT), shown in
Figure 39, is created by the job routine of
the reader/interpreter upon receipt of a
job statement. It contains information
taken from the job statement, and also
storage addresses of major tables.
all steps within a job have been
interpreted, the JCT is stored by the in-
terpreter. The JCT is used by the
initiator/terminator in prepaxing a job
step for execution, and is stored by the
step initiation routine of the initiator/
terminator, before control is passed to the
job step.

After

The JCT includes the following entries:

Job Serial Number (JCTJSRNQ): Always con-
tains 1 in the primary control program.

Job Status Indicators (JCTJISTAT) :

Bit 0: The job library indicator contains
a 1 if a JOBLIB DD statement is
included with the job.

Bit 1: is set to 1 if the job is flushed
because of an error condition.
Bit 2: is set to 1 if the job step is can-
celled by condition codes.

Bit 3: 1is set to 1 if the job step is
flushed because of an error
condition. .

Bit 4: The ABEND indicator contains a 1 if
one or more steps have been ter-
minated through the ABEND routine.
Bit 5: The job-failed indicator contains a
1 if an error condition caused the
job to be terminated.

Bit 6: is set to 1 if the job includes a
cataloged procedure.

Bit 7: is set to 1 for a job which does
not require the mounting of
volumes; it contains 0 if volume
mounting is necessary.

| Message Level (JCTIMGLV-1/2 byte):

Bit 0 contains 0 if message level for allo-

cation is 0.
Bit 0 contains 1 if
cation is 1.

message level for allo-

Bits 2-3 contain 00
JCL is 0.

if message level for

Bits 2-3 contain 01
JCL is 1.

if message level for

Bits 2-3 contain 10
JCL is 2.

if message level for

The second half-byte, JCTIPRTY (Job priori-
ty) is not used in the primary control
program.

Restart Switches:

JCTRSW1:
Bit 1 contains a 1 when step termination
has begun.

Bit 3 contains a 1 if a checkpoint has been
taken for the step.

Bit 4 contains a 1 for a checkpoint/restart
to be done.

Bit 5 contains a 1 for a step restart to be
done.

Bits 6 and 7 must be zero.

JCTRSW2:

Bit 0 contains a 1 if a SYSCHK DD statement
is present.

Bit 1 contains a 1 if the RD parameter is

other than NC.

Bit 2 contains a 1 if the RD parameter is

NR.

Bit 3 contains a 1 if the RD parameter is

NC or RNC.

Bit 4 contains a 1 if the RD parameter is R

or RNC.

contains a 1 if module IEFDSDRP has
encountered an unrecoverable errox.

Bit 7

Appendix B: Tables and Work Areas 69

Offset

Hex Dec
0 0
8 8

10 16
18 24

20 32

28 40

30 48

38 56

50 80

58

60

68

70

80

AD

A8

e Figure 39.

70

88

96

104

12

128

160

168

3 1 1 1 1| JCTIMGLY
- M
JCTDSKAD JCTIDENT JTISRNO JCTISTAT JCTIMGPO 0 Job
Job Serial Job Status Level —
Storage Address of Job Control Table Table ID =00 Numb Indicators Message Class Priority
er feate JCTIPRTY
8
JCTINAIME
Jobname (padded with blanks)
8
Not Used in the Primary Control Program
4 4
JCTPDQDA JCTBCTDA
Storage Address of PDQ Storage Address of GDG Bias Count Table
4 4
JCTSDKAD JCTSMBAD
Storage Address of First Step Count Table Storage Address of First System Message Block
4 4
JCTACTAD JCTDSSBA
Storage Address of Job Account Control Table Storage Address of First Data Set SYSOUT Block
4 2 2
JCTDSBAD JCTSMBID JCTJDPCD
Storage Address of Last Data Set SYSOUT Block Key of Track ID for SMBs First Job Condition Code
2 28
JCTIDPOP L
First Job Condition Operator -
Seven Additional Job Codes and Operators 5
L JCTRSW1/JCTRSW2
Restart Switches
8
Not Used in the Prima<y Control Program
JcTsTioT 4 4
In Primary Control Program, Storage Address . JCTCDEVT X
of SCT for Step to be Restarted Device Type of Checkpoint Data Set
3| JCTNTRK 1 2| jervotsQ !
JCTCKTTR No. of Tracks JCTNRCKP Vol. Seq. Reserved
Storage Address of JFCB for Checkpoint Data Set | on SYS1.JOBQE No. of Checkpoints No. of Chkpnt
Used by Job Data Set
~
41 JCTSTAT2 T erekpL ! 16
JCTSSTR dditional Length of
Storage Address of SCT for First Step to be Run Status Chkpt ID B
Indicators P I
- Checkpoint ID (Left-Jusiified, From 1=16 Bytes) 33
2
= Not Used in Primary Control Program 9
Reservec

Job Control Table

Job File Control Block

A job file control block (JFCB) is con-
structed and written on auxiliary storage
by the job management routines for each

brought into main storage when a DCB with
the corresponding ddname is opened. Infor-
mation in a JFCB may be modified during
OPEN. Figure 40 shows the format of the
JFCB. See Figure 12 for the fields used

ddname cpecified in a job step. A JFCB is for LD statement parameter dispositions.
J\:O () JFCBDSNM x
= Data Set Name -~
AL.44 (2C) JFCBELNM 4
T Element Name, Generation Number T
52 (34) JFCBTSDM 53(35)
Job Mgt — Data Mgt Interface
A JFCBSYSC L
T System Code T
66 (42) JFCBLTYP 67 (43) JFCBOTTR
Label Type Buffer Offset, Auto Step Restart
DASD, MOD: Continued e 70 (46) JFCBVLSQ
68 (44) Tape: JECBFLSQ - File Sequence No. Volume Sequence Number
.72 (48) JFCBMASK A
T Data Managenient Mask T
80 (50) JFCBCRDT 83 (53) JFCBXPDT
Data Set Creation Date Expiration Date
Continved 86 (56) JFCBIND1 87 (57) JFCBIND2
ontinue Indicator Byte 1 Indicator Byte 2
88 (58) JFCBUFNO, JFCBUFRQ 89 (59) JFCBHIAR, 90 (5A) JFCBUFL
No. of Buffers JFCBFTEK, JFCBFALN Buffer Length
92 (5C) JFCEROPT 93 (5D) 94 (5E) JFCDEN 95 (5F) JECLIMCT
Error Option Device Characteristics Tape Density BDAM: Search Limit
BDAM: CoNtINUed | | et et 98 (62) JFCDSORG
96 (60) MOD Data Set: Previous Track Balance Data Set Organization
100 (64) JFCRECFM 101 (65) JFCOPTCD 102 (66) JFCBLKSI
Record Format Option Code Maximum Block Size
104 (68) JFCLRECL 106 (6A) JFCNCP 107 (6B) JFCNTM
Logical Record Length No. of Channel Programs No. of Tracks

e Figure 40.

Job File Contrxol Block (Part 1 of 2)

Appendix B: Tables and Work Areas 71

Segments

Normal 108 Segment

Volume Count

Split Cyl: No. of Tracks

: 108 (6C) JECRKP 109 (¢D) JFCCYLOF 110 (6F) JFCDBUFN
: Relative Key Position No. of Tracks Reserved :’

112 (70) JFCINTVL

Seconds of Delay
UCS Segment
: 108 (6C) JFCUCSID
: UCS Image Name:
i |n2(70) Jrcucsop !
: UCS Image Operation ;
113 (71) JFCCPRI 114 (72) JFCSOWA
Send/Receive Priority Size of Work Area
116 (74) 117 (75) JFCBNVOL 118 (76)
Reserved No. of Serial Numbers
L JFCBVOLS
:\f Volume Serial Numbe-s >
148 (94) JFCBEXTL 149 (95) JFCBEXAD
Reserved Relative Track Address for First JFCB Extension
152 (98) JFCBPQTY 155 (98B) JFCBCTRI
Primary Quantity of Direct-Access Storage Space Parameters
156 (9C) JECBSQTY 159 (9F)
Secondary Quantity of Direct-Access Storage Reserved
160 (A0) JECBDQTY 163 (A3) JFCBSPNM
Direct-Access Storage Required for Index Split Cyl: Address of JFCB

. 166 (A6) JFCBABST
Continued Relative Address of First Track
168 (A8) JFCBSBNM 171 (AB) JFCBDRLH

Main Storage Address of JFCB - Suballocate Data Block Length

. 174 (AE) JFCBVLCT 175 (AF) JFCBSPTN

Continued

® Figure 40.

Job File Control Block (Part 2 of 2)

Master Scheduler Resident Data Area

The master scheduler resident data area is
a 196-byte portion of the nucleus used as a
communications area between the master
scheduler and the rest of the operating
system. (See Figure 41.) The CVTMSLT
field of the communication vector table
contains its address. In the PCP confi-
guration of the operating system, the first
136 bytes comprise a four-byte control pro-
gram header and a 132-byte buffer into
which console commands axe read. The buf-
fer's first four bytes contain a V-type
header address, and the last two bytes mark
the end of the buffer; console messages may
therefore occupy a maximum area of 126
bytes.

The remaining sixty bytes of the master
scheduler resident data area constitute a
system independent space known as the mas-
ter common area. The two message communi-
cation fields contained within it are each
used for passing indicators between two
message modules. The command pointer
always points to the current console com-
mand; the command is initially read into
the remote command buffer at offset 8 in
Fiqure 41, but it is moved out of the mas-
ter scheduler resident data area into the
local buffer for processing.

Preceding the master common area's con-
trol blocks, addresses, and pointers are
six bytes of switches and flags:

e Initialization Switches

Bit Definition Name
0 IPL Switch MSNIP
1 Sysout IPL
2 Sysout Job Start
3-4 Reserved
5 34 Security Bit MSCURE34
6 Queue Initialized MSQNIP
7 Procedure Catalog MSPNIP
Initialized
e PCP System Exclusive Flags
Bit Definition Name
0 Console Flag MSCONFLG
1 Cancel Flag for MSCANFLG
ABENDT
2 Rollout Flag MSROLFLG
3 Spinoff Flag MSSO
(Cancel)
4 Display Dataset Name MSSSDSN
5 Display Space MSSSPACE

6-7 Reserved

Note: Bits 4 and 5 may be used by other
control programs.

e Pending Fflags

Bit Definition Name
0 IPL Date MSDATE
1 Partition Busy MSPNB

(=2 NN *) B — N 7S B V)

Command Move
Completed
Interpreter Cormand
Completed

System Input Control
Purge Request
System Output Con-
trol Purge Request
Blank Start Pending
(REQ=1, START
BLANK=0)

Console Command
Suppressed

e ECB Flags

Bit

~ oaonsE wwl—\ol

Definition
External Interrupt
Write to Operator
Write to Log
Pending Console
Attention
System Input
System Output
Master Command
Routine
Summary Bit, Vary
UCB Scan Required

¢ Status Flags

Bit
0

s w N

[N %]

Definition
Master Initializa-
tion Switch (IPL)

WTO Pending

Console Usage, Prin-
cipal or Alternate
Log Purge Request
Reader End of File
(or) start Reader

New Reader Pending
New Writer Pending
(or)

New Writer Pending
(MODIFY)

Job Notification
Flag (1=YES)

s Fetch Flags

Bit
0
1

%}

&

SN oo

Appendix B:

Definition
Named Fetch
Defer Current Com-
mand Execution
Sequence
TCB Tree Trace Fetch
(LOCATE)
Auxiliary Fetch
Given
Reply Bit to Request
Attention
Pseudo-Sysout Flag
Reserved
Queue Hold-Release

MSCMC
MSICR
MSSYN
MSSYT

MSBSP

MsCCs

Name
MSEXT
MSWTO
MSWTL
MSATTN

MSYSIN
MSYSOUT
MSMCR

MSSUM

Name
MSINLSW

(ox)
MSSSSIPL
MSWRPEN
MSNUPSW

MSWRLOG
MSREOF

(orx)
MSSRDR
MSNRP
MSNWP

(ox)
MSYOUT

VMSJNF

Name
MSNMF
MSCSD

MSTTT
MSFAX
MSREPLYB
MSPSDT

MSQHR

Tables and Work Areas

Offset

Hex Dec
0]
4 4
8 8

88

8C

90

98

AO

A4

A8

AC

BO

B8

BC

Cco

Figure 41.

74

136

140

144

152

160

164

168

172

176

180

184

188

192

Control Program V-Type Header

V-Type Buffer Header Region

Remote Command Buffer

End-of Buffer Character

Second End of Buffer Mark:

Initialization Switches

PCP System Exclusive Flags

Pending Flags

ECB Flags

Status Flags

Fetch Flags

Command Verb

Normal Message Communication Field

Error Message Communication Field

Command Pointer = Always Points to Console Command

Master
Common

Master Scheduler ECE

4] Area

Address of ECB in Selected Job Queue Entry of Job Using Console

ECB for Allocation Internal Use

Pointer to Primary UCB

Pointer to Alternate UCB

V-Type address of Pseudo - Disable Switch

V-Type address of Problem Program TCB

V-Type address of Highest Priority TCB

Master Scheduler Resident Data Area

New Reader or Writer Table

The new reader or writer table (NRWT),
shown in Figure 42, is a control block that
contains OPEN requirements for reader and
writer routines. At initial program load
time, the table is written onto auxiliary
storage. The table is read into main
storage from auxiliary storage and is used
by the interpreter and SYSOUT routines.
Each entry (except jobname) consists of an
active section and an inactive section.
Whether the lower or higher order part of
the entry is active is indicated by a 1 in
bit 0 of the flag 1 byte in the active sec-

The bits in location Flags 1 have the
following meanings:

Bit 0 I/0 activesinactive

Bit 1 I/0 jobname/no jobname

Bit 2 Pending start

Bit 3 Pending stop

Bit 4 Separator/no separator

Bits 5-7 Not used in primary control

program

The pits in location Flags 2 have the
meanings:

tion. When a NRWT entry is active, the
data set has been opened, and the device Bit 0 Local flag
indicated by the applicable UCB pointer is Bit 1 1/0 DSNAME/no DSNAME in START
active. The currently inactive section of command
the entry receives information from new 2-7 Not used in primary control
START commands. The table is always avail- program
able in the SY51.3SYSJOBQE data set.
Start Reader Entry

r T T =T 1
| 3] 1 2] _ 2]
| Track address | Flags 1 | Flags 2 | UCB pointer |
|] | (not used) I
t 1 kN 4
r T)] .
| 3] 1 2 . 2]
| Track address | ¥lags 1 | Flags 2 | UCB pointer |
| | | (not used) | |
L 1 L 1]
. Jobname Entry .
r]
| 8|
| Jobname from START command |
I of operator |
L J
. Start Writer Entry .
. (One entry for each possible active class-a maximum of eight) .
r T T T T -1
[3| 1| 1] 1 , 2
| Track address | Flags 1 | Flags 2 | Class | UCB pointer |
| | | | name | |
L L 4. } 4]
r T L)]] 1
34 1} 1		, 2		
Track address	Flags 1	Flags 2	Class	UCB pointer
	I	name		
L L L L L]				
. Cataloged Procedures Entry .				
r T T + 1				
3 1] 2	. 2			
Track address	Flags 1	Flags 2	UCB pointer	
		(not used)		
i 41 i i]				
r 1 1 ¥ 1				
3	1] 2 , 2			
Track address	Flags 1	Flags 2	UCB pointer	
		(not used)		
L L A 1]
Figure 42. New Reader or Writer Table

Appendix B: Tables and Work Areas 75

ot PDQ Directory Block

Hex Dec

0 0 A[41[
Iy Dsname 1 -
2C 44 44
:L_' Dsname 2 il
58 88 44 L
Pt Dsname 3 =~
84 132 1
Number of 3i
Entries in Not Used —
Block
A8 168 3 1
Storage Address of PDQ Block
for These Three Dsnames Not Used
AC 172 3 1
Storage Address of Next PDQ
Directory Block (If Needed) Not Used

PDQ Overflow Block

o o0 l‘ l?l

T Space for 43 Additional UCB Pointers -

AC 172 3 1

Storage Address of Next
Overflow Block (If Needed) Not Used

s Figure 43. Passed Data Set Queue Tables

Passed Data Set Queue

The passed data set queue (PDQ), shown in
Figure 43, contains information regarding
previously processed data sets which have
been passed from executed steps of the job,
that may be referenced by subsequent steps
of the same job. Each PDQ contains a set
of tables, consisting of three types of
blocks: the PDQ directory block, the PDQ
block, and the PDQ overflow block (if
required). The PDQ directory block and the
PDQ block are created by the initiatox/
terminator JFCB housekeeping routine. The
directory blocks are chained together with
pointers, and each PDQ directory block also
points to its respective PDQ block. If
more than ten additional UCB pointers are
needed for any one PDQ entry, one or more
PDQ overflow blocks are added in a chain to
each such PDQ block entry by allocation
routines.

Initiator/terminator routines use the
PDQ to obtain pointers to UCBs when allo-
cating devices to passed data sets. Step
termination routines use the PDQ to obtain
UCB allocation pointers and disposition
information.

76

ofset PDQ Block

Hex Cec .
0 0 c 1 i 1| Number of 1
s:”em Current Terminate UCB Ptrs
Nep b DD Number Work Area Here and in
umber Overflow
4 4 3 1
Storage Address of Current
Job File Control Block Not Used
8 8 3! Current [
Storage Address of Current Ste
Step Input/Output Tabl P
ep Inpu utput Table Number
C 12 L 40
-~ Space for ten 4-Byte Unit s
Control Block Pointers I
34 £2 3 1
Storage Address of First
Overflow Block (If Needed) Not Used
38 b6 L 112
= Space for two Additional PDQ Entries =
B2 1,8 8
Not Used

When control passes to the initiator/
terminator, the JFCB housekeeping routine
inspects the disposition field of the SIOT
for the disposition "PASS" to determine
whether a new entry may be required in the
PDQ.

If a PASS disposition is found and the
dsname is not in the PDQ directory because
it was not placed into the directory by a
prior PASS, a fifty-six byte entry is made
in the PDQ for this dsname. 'If the last
PDQ directory block and PDQ block already
contain the maximum number of three
entries, auxiliary storage space is
assigned for a new PDQ directory block and
a new PDQ block, thereby providing space
for three more dsname entries.

When a passed data set is to be
referenced by a subsequent step in the same
job, the dsname is specified in the DD
statement. The JFCB housekeeping routine
checks for the dsname in the PDQ directory
to see if the data set was received (passed
from a previous step).

If the dsname is found in the PDQ direc-
tory, the existing PDQ entry for this
dsname is updated to identify the reference

as the latest reference to this dsname and 2.
the data set is marked as being received in

the PDQ entry. If no entry is found, the

data set must have been cataloged, so the

JFCB routine searches the catalog for this
dsname, assuming that this is an initial
reference for this job to a cataloged data

set.

Bits of the terminate work area byte of

the PDQ block have the following status 3.
significance:
Bit significance Status

0 Initial status 1 = old

1 Current status 1 = old

2 Pass satisfied 1 = passed

0 = received

3 SYSIN specified 1 = SYSIN

4 SYSOUT specified 1 = SYSOUT” l
Step Control Table 4.

The step control table (SCT), shown in
Fiqure 44, is used to pass control informa-
tion to the DD routine of the interpreter
and to the initiator/ terminator routines,
which also contribute information to the
table. This table is created and initia- 5.
lized by the execute routine of the inter-
preter when an EXEC statement is read. One
SCT is created for each step of a job, and
is stored by the interpreter control rou-
tine and the initiator/terminator step
initiation routine.

When the EXEC statement includes the
optional PARM field, the information is
placed in a specially created SCT extension
block, whose storage address is maintained
in a four-byte field at offset 68 (44 hex)
of the SCT. Zeroes in this field indicate
that the EXEC statement provided no PARM
information, and hence that no SCT exten-
sion block was created.

If the step is part of a previously
cataloged procedure, the name of the step
that called the procedure, if any, is
entered. The following variable-content
and indicator fields are included in the
table:

1. Internal Step Status Indicators (off-
set 4 hex):

Bit 2z contains a 1 if RD = NR is spe-
cified on the JOB or EXEC
statement.

Bit 3 contains a 1 if RD = RNC or RD =
NC is specified on the JOB or
EXEC statement.

Bit 4 contains a 1 if RD = R or RD =
RNC is specified on the JOB or
EXEC statement.

Bit 7 contains a 1 if an error condi-
tion caused the step to be
terminated.

PARM Count or Step Status Code (offset

8 hex):

a. Interpreter: The number of char-
acters specified in the PARM para-
meter of the EXEC statement is
placed in this entry.

b. Initiator/Terminator: This table
entry contains the condition code
returned by the processing
program.

Step Type Indicators (offset 43 hex):

Bit 0 contains a one if the following

parameter definition appears in
the EXEC statement:

PGM=#*,stepname .ddname

Bit 1 indicates SYSIN is specified

(DD *).

Bit 2 indicates SYSOUT is specified.

Bit 3 contains a 1 if JFCB housekeep-

ing is complete.

Bits 4, 5, and 6 are unused in PCP.

Bit 7 is reserved.

Extension of Internal Step Status

Indicators (offset 68 hex):

Bit 6 contains a 1 if the job has
ended.

Bit 7 contains a 1 if the GDG Bias
Table needs to be updated.

Execute Step after ABEND ox Eighth

Condition Code (offset A0 hex):
(Execute step after ABEND)

First byte (offset AQ):

Bit 0 is not used.
Bit 1 is not used.
Bit 2 is not used.
Bit 3 contains a 1 if the step is

bypassed because of one or more
prior ABEND macros.

Bit 4 contains a 1 if the step is
bypassed because COND=ONLY was
specified and no ABEND has
occurred.

Bit 5 contains a 1 if the step was
terminated by the ABEND routine
during problem program
execution.

Bit 6 contains a 1 if the interpreter
encountered the EVEN parameter
in the COND field of the EXEC
statement.

Bit 7 contains a 1 if the interpreter
encountered the ONLY parameter
in the COND field of the EXEC
statement. :

The remainder of the field (offset

Al-A5) must contain zeros.

(Eighth condition code)

First two bytes (offset A0-Al) contain

the eighth step condition code, or

Zeros.

Third byte (offset A2) contains the

eighth step condition operator, or

Zeros.

Fourth through sixth bytes (offset

A3-A5) contain the storage address of

the eighth condition SCT, or zeros.

Appendix B: Tables and Work Areas 77

Offset
Hex Dec
0 0
8 8
10 16
18 24
20 32
28 40
30 48
38 56
40 64
48 72
50 80
58 88
60 96
68 104
70 112
78 120
AQ 160
Hex Offset

0

4

68

80

® Figure 44,

78

Step Control Table

1 3
Storage address of step control table Table 1D =02 lrfernc.:l srep Maximum step running time
status indicators
2 Length of allocate work 2 X 3 1
PARM count or step status code area or number of SIOTs Storage address of first SIOT entry Not used
3 1 3 1
Storage address of allocate work area Not used Storage address of next SCT Not used
Storage address of first SMB for next 3 Not used 1 Storage address of last SMB for this 3 Not used 1
step step
St d f first ACT ent 3 1 3 1
orage a dress of first enfry Not used Storage address of volume table Not used
for this step
f 3 1
Sr?mge address of dsname table for Not used Name of step that called procedure (if any)
this step
Name of step that called procedure (cont'd) 8 Stepname
8 Relati inter t 2 2
Stepname (cont'd) s;: ;::;Oi'nn:éTo Lengfh of volume table
1 i 1 1 4
E\lo. ,OF SIOTs No. of setup No. of JFCBs _srefj fype Storage ‘address of SCT extension block
in this step messages to allocate indicators
3 3
X'00* Hierarchy O region address X'o1' Hierarchy 1 region address
Queve address of first write~to-programmer Count of WTP | Reserved 4
SMB for aqutomatic checkpoint/restart use SMBs for step
2 2 2 .
Hierarchy 0O region size Hierarchy 1 region size Reserved Not used in PCP
6 Queue address of SIOT for 4
in PCP
Not used in PGM=*_STEPNAME .DDNAME
Extension ! 3 ‘
of internal
f
step status Storage address of step TIOT Programname
indications
8 2 2
Programname (cont'd) Length of dsname table in bytes First:step condition code
First step ! 3 36
condition Storage address of first condition SCT Second through seventh step condition entries , , . . . A
operator

Execute step after ABEND or eighth condition code

Reserved

SCT Exension Block

TR of this record

ID = X'0C*

Parameter value

Reserved

Step Control Table and SCT gxtension Block

Step Input/Output Table

The Step Inputs/Output Table (S10T), shown
in Figure 45, makes DD statement informa-
tion available to the initiator/
terminator for use as a source of informa-
tion for the TIOT and for providing DD
information to allocation and disposition
routines. When a DD statement is read, the
interpreter creates a new SIOT and places
the DD information into it. The individual
bits of indicator bytes 56 through 59 and
byte 92 in the SIOT are set to one to ind-
icate the following conditions:

BYTE 55: Scheduler Data Set Disposition

Switches (SCTSDISP)

Bit 0 Nonshareable volume

Bit 1 Retain volume

Bit 2 Private volume

Bit 3 Pass data set

Bit 4 Keep data set

Bit 5 Delete data set

Bit 6 Catalog data set

Bit 7 Uncatalog data set
BYTE 56: Status Byte I (SCTSBYT1)

Bit 0 . Dummy data set

Bit 1 SYSIN data set

Bit 2 Split (primary)

Bit 3 Split (secondary)

Bit 4 Suballocate

Bit 5 Parallel mount indicator

Bit 6 Unit affinity

Bit 7 Unit separation
BYTE 57: Status Byte 2 (SCTSBYT2)

Bit 0 Channel affinity

Bit 1 Channel separation

Bit 2 Volume affinity

Bit 3 JOBLIB DD statement

Bit 4 Unlabeled

Bit 5
Bit 6
Bit 7

BYTE 58:

Nonstandard label
Defer mounting
Received data set

Status Byte 3 (SCTISBYT3)

=2}
[
o+
N RO

o]

[

ct
NovEw

Bit

BYTE 59:

Volume reference is dsname
SYSIN expected

(procedures only)

No associated volume
serial in volume table
Intra-step suballocate
SYSOUT was specified

New data set

Modified data set

01id data set

Status Byte 4 (SCTSBYTU4)

Bit 0

Bit
Bit

[SR

Bit
Bit
Bit
Bit

SNo O &

BYTE 92

Set by reader/interpreter
to indicate GDG single
SI0T created for GDG all
Volume serial was found

in passed data set queue
(PDY)

Step processed

Intra-step volume affinity
Data set is in PDQ

1 = 0ld or modified data
set

0 = new data set

conditional Disposition

Status Byte (SIOTALTD)

Bits 0-2 Reserved

Bit 3

Bit 4
Bit 5
Bit 6
Bit 7

Appendix B:

This bit is set at Restart
time to indicate that

this DD is not

private.

Keep data set

Delete data set

Catalog data set

Uncatalog data set

Tables and Work Areas 79

Offset

Hex Dec
0 0 SIOTDSKA 3] siottyee !
Auxiliary Storage Address of SIOT Table ID =3
4 4 SCTDDNAM 8
DD Nanie
¢ 12 SCTCSADD 8
Internal DD Numbers of Channel Searation and Affinity Requests
420 SCTUSADD 8
Internal DD Numbers of Unit Separation and Affinity Requests
S 28 SCTPSIOT 4 SCTPJFCB 4
Auxiliary Storage Address of Next SIOT in Chain Auxiliary Storage Address of JFCB
24 36 SIOTVRSB 4 SIOTSTDP ‘ 4
Auxiliary Storage Address of SIOT for VOLREF or SUBALLOC Auxiliary Storage Address of SIOT System Output/Dependency Block
2C 44 3 1 1 1 2
SCTSPOOL SCTVOLCT SCTVLPTR
Reserved Not used in PCP | Number of Pool |Number of Relative Pointer to Volume
DDs Volumes in VOLT Table Entry
34 52 i 1 1 1 1 1] 1
SCTDDINO SCTNMBUT SIOTVLCT SCTSDISP SCTSBYT1 SCTSBYT2 SCTSBYT3 SCTSBYT4
Number of Number of Units |Value of Scheduler Data
Internal DDs | for Data Set Specified Volume| Set Disposition Indicator Bytes 1 through 4 (See Text)
Count Switches
3C 60 8
SCTUTYPE
Bytes O through 5 = Device Type Bytes 6 and 7 =UCB address of Unit
Requested if there is a Valid
Specific Unit Request
“ 68 SCTOUTINM 8
System Cutput Program Name
ac 78 SCTOUTNO 4| scroureN | sctoopup ! 2
System Output DD Statement
System Output Form Number Class Name Duplicate Reserved
Number
54 84 1 3 4
SIOTDPOP SIOTDSCT . . -
TR of N SB --
DSB TTR Created at Step Termination if SYSOUT Bit is Set TTR of Next DS -~ Applicable Only if SYSOUT Bit is Set
5C 92 3
SIOTALTD SIOTPDQ
Conditional Dis= TTR of SIOT Being Passed Not Used in PCP
position Byte
64 100 5 o
Not Used in PCP 1
Reserved
74 M6 SCTANAME
Name from DS Name =,
Dedicated Work Files
7C 124 8 py;
SCTANAME (cont,)
A
84 132 -
SIOTDCBF:
] DCB Reference Name
Figure 45. Step Input/Output Table

80

1(

able
=5

Storage address of this SMB

o e e e o
[alx)

[

3

-

Not
used

Storage address of next SMB,
or zexo if last SMB in chain

Not used

F~3
e o e e e e e e o

next available

Pointer to 1 1|Part of

Status

byte message

o o e e of

byte

First message

fom e e e e e e . S e e

[

Variable
Status

T

|

I

|

4

]

| Pa

| first
I

4

+

|

|

| byte
L

e e e e i s S e i e G S 2

1
1

Last message

o o o —— 8 3

T -
Variable| 1]
| Zexro after|
| Last }
| message |
]]

Figure 46. System Message Block

System Message Block

The system message block (SMB), shown in
Figure 46, temporarily stores all control
statements, programmer messages, and diad-
nostic error messages before they are
printed via the system output writer rou-
tine. The interpreter control routine
creates and initializes one or more SMBs
for each job step. Initiator/terminator
routines also may add messages to the SMB.
The chain address of the next SMB is given
in bytes 4 through 6 of each table but the
last, resulting in a chain of SMBs for each
job. The status byte of each block con-
cerns the following block, and contains the
message length, zero if there are no more
messages, or all ones if a data set block
follows.

Volume Table

The volume table (VOLT),
47, consists of a series
and contains the list of volume serial num-
bers to be used in a given step. Use of
the list reduces the number of times that
the SYS1.SYSJOBQE data sef must be
referenced during allocation. The table is
built by the DD routine for each step, and
is modified by the JFCB housekeeping rou-
tine. The maximum extent of each block of
the table is 176 bytes, and the maximum
number of volumes listed per block is 28.

shown in Figure
of chained blocks,

able
D=0

address
block

Storage
of this

o = — —
HH

address
block

Storage
of next

First volume serial

Second volume
serial

b e e e ey

[— — . e . e . B e . . s S e . —)
e e e e . S — e S e, vt . . S e . it e e s e e e

28th volume
serial

=)}
e — s

o v e 8§ 8

-

Figure 47. Volume Table

Appendix B: Tables and Work Areas 81

Write-to-Programmer Control Block

The write-to-programmer control block
(WIPCB) depicted in Figure 48 is a 16-byte
area containing the information required
for adding programmer messages to the pro-
cessing program's message class output data
set. This block is located through a
pointer contained in the Job Step Control
Block (JsCB) which, in turn, is located
through a pointer contained in the Task
control Block (TCB). Conditions reflected
by the presence of 1 (switch on) in each
bit of the WTPFLGSA field are:

BIT CONDITION

0 Job Queue I/O problem.

1 "Limit exceeded"” message issued.

2 Step contains SYSOUT.

3 Return from WTP third load to
second load.

y "No more SMBs" message issued.

5 Last SMB allowable for this job
has been used.

6 WTP has been invoked for this
step.

7 Routing code other than WTP
encountered.

82

Offset

Hex

0

Dec

0

e Ficure 48.

WTI

TTR of SYS1.SYSJOBQE Record
Containing Current WTP Message (s)

PSMB

3| WTPFLGSA
Flags Indicating
Various System
Corditions

1

WTPBYTES
Remaining Bytes
for Message Text

1

WTPQMPA
Not Used in PCP

in Current SMB
WTPCRSMB s ‘ﬁTPiRC'\? !
TTR of First WTP SMB (For W;’P" sen;\g
Automatic Checkpoint Restart) >VIDS
Used in Step

WTPLIMIT 1 3
Number of WTPRSMBS
WTP SMBs TTR of Reserved WTP SMBs
Used in Job

Block

Write-To-Programmer Control

Appendix C: Load Modules and Assembly Modules

This appendix lists job management load
modules and indicates the assembly modules
that are processed by the linkage editor
into each load module during system genera-
tion. 1Included is a separate list that
shows the load modules in which each
assembly module is contained.

Job management routines for sequential
scheduling systems are packaged in three
confiqgurations: 18K, 44K, and 100K (where
K is 1024 bytes of wmain storage). The num-
bers represent the maximum amount of main
storage occupied by job management routines
and work areas at any time. All three job
management configurations function identic~-
ally but differ in both the number of their
load modules and the number of assembly
modules within each load module. Job man-
agement routines occupy the dynamic portion
of main storage alternately with processing
programs, and therefore these size designa-
tions bear a direct relationship to the
main storage required for each
configuration.

Load Modules

In each configuration, all load modules are
contained in three data sets:

SYS1l.NUCLEUS, SYS1.SVCLIB, and SYSi.
LINKLIB. These data sets alsc contain
other parts of the control program. The
load modules in the first two data sets
remain the same for all three job manage-
ment configurations, but the SYS1.LINKLIB
data set contains a different set of load
modules for each configuration, depending
on which one was selected at system genera-
tion time. 1In the 18K configquration, LINK-
LIB contains 56 load modules; in the 44K
configuration, it contains 42 load modules;
and in the 100K configuration, 37 load
modules.

Charts 54 through 56 show the control
flow among load modules. The decision to
transfer control (XCTL) to a particular
succeeding load module is made in the pre-
vious load module. Each subsequent module
loaded in response to an XCTL macro
instruction is read into main storage
directly over the previous load module.
such load modules are read into the low-
numbered end of the dynamic, or problem-
program, area of main storage.

Modules that are brought into storage
with LINK macro instructions and LOAD macro
instructions occupy separate storage areas
within the problem program area; such

Appendix C:

modules are shown on the control-flow
charts. Because storage is used in this
manner, the load module lists may be used
with Charts 54, 55 or 56 to determine the
approximate layout of main storage at dif-
ferent times during the execution of job
management routines. Other items present
in the problem program area at the same
time as the load modules arxe not shown on
the control flow charts because, although
these items are necessary, control is not
passed among them. They are, generally,
the tables and control blocks, work areas,
access methods, buffers, and register save
areas.

In the following load module 1lists,
entry points are shown if a load module
contains more than one assembly module. If
only one assembly module is named, the
entry point is the same as the assembly
module's control section (CSECT) name given
in the Assembly Modules and Control Sec-

tions table in this appendix.

LOAD MODULES CONTAINED IN THE SYS1.NUCLEUS
DATA SET

The load modules and assembly modules in
the following list are contained in the
SYS1.NUCLEUS data set, and are always pres-
ent in the nucleus, or fixed area of main
storage, regardless of the job management
configuration.

Load Module Name: IEANUCO1

Assenbly Modules:

IEEBC1PE External interrupt routine.
IEECIRO01 Console interrupt routine.
IEERSCO1 Master scheduler buffers,
switches, input/output block
(IOB), event control block
(ECB), channel control word
(CCW), and data extent block
(DEB). This load module forms
master scheduler resident main
storage in the nucleus area when
the primary or alternate console
(1052) is used.

Master scheduler buffers,
switches, I0B, ECB, CCW, and
DEB. This load module forms

. master scheduler resident main
storage in the nucleus area when
the composite console is used.
Unsolicited interrupt routine.
Table store subroutine work
area.

Write-to-programmer control
block (WTPCB) and job step con-
trol block (JSCB).

IEERSRO1

IEFDPOST
IEFKRESA

IEFWTPOA

Load Modules and Assembly Modules 83

LOAD MODULES CONTAINED IN THE SYS1.SVCLIB
DATA SET

The load modules and assembly modules in
the following list are contained in the
SY¥S1.SVCLIB data set, and are called in
response to SVC instructions.

Load Module Name: IGC0003D
Assembly Modules:

IEEMXCO1 Master command EXCP routine
(Part 1) -- primary/alternate
console.

IEEMXRO1 Master command EXCP routine
(Part 1) -- composite console.

Load Module Name: IGCO00Q03E

Assembly Modules:

IEEWTCO0O Write-to-operator (WTO) routine
-- primary/alternate console.
IEEWTROO Write-to-operator (WTO) routine

-- composite console.
Load Module Name: IGCO003F
Assembly Module:
IEEBH1PE Not used in sequential schedul-
ing systemn.

Load Module Name: IGC00090

Assembly Module:

IEFXMPCP Transient queue manager I1I/0 and
record assignment routine. Used

by WTP.

Load Module Name: IGC0103D

Assembly Modules:

IaC0103D Command processing routine for
' MOUNT, VARY ONLINE/OFFLINE, and
UNLOAD. This routine issues an
XCTL to IGC0203D if command is
other than listed.’

Command processing routine for
'*DISPLAY JOBNAMES, STOP JOB-
NAMES, CANCEL' (SHIFT command
not used primary control
program.)

IGC0203D

Load Module Name: IGCO103E

Asserbly Modules:

IEEWTCO01 Write-to-operator-with-reply
(WTOR) routine -- primary/
alternate console.
Write-to-operator-with-reply
(WTOR) routine -- composite
console.

IEEWTRO1

Load Module Name: IGC0203E

Assembly Module: ,
IEFWTPOO Write-to-programmer (WTP)
initialization.

Load Module Name: IGCO303E’

Assembly Module:
IEFWTPOL1 Write-to-programmer (WTP) mes-
sage processing.

Load Module Name:

Assembly Module:

IEFWTP02 Write-to-programmer (WTP) error
routine.

IGCO403E

MODULES CONTAINED IN THE SYS1.LINKLIB DATA
SET

The load modules and assembly modules in
the following 1lists are contained in the
SYS1.LINKLIB data set. Separate lists are
provided for each of the three Job Manage-
ment packaging configurations. The load
modules within each configuration and the
assembly modules within each load module
are listed in alphameric order.

Any load module which contains IEFACTLK,
IEFACTRT, and IEFWAD, may contain instead
IEFACTFK if the system generation option
for no accounting routine is specified.

18K CONFIGURATICN

Load Module Name: DEVNAMET
Entry Point: DEVNAMET
Assembly Module:

IEFWMAS1 Device Name Table.

Load Module Name: DEVMASKT
Entry Point: DEVMASKT
Assembly Module:

IEFWMSKA Device Mask Table.

Load Module Name: IEEFAULT

Alias: IEEGK1GM

Assembly Module:

IEEGK1GM Fault routine, issues Master

Scheduler messages.

8u

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Module:

IEEIC3JF Contains preformatted JFCB for
one START command.

Load Module Name: IEESET

Alias: IEEGESO1

Assembly Module:

IEEGESO1 Master Scheduler SET Command
routine.

Load Module Name: IEESJFCB

Alias: IEEIC2NQ

Entry Point: IERIC2NQ

Assembly Module:
IEEIC2NQ Saves START command JFCBs.
IESQMSSS Table Store subroutine.

Load Module Name: IEESTART

Alias: IEEIC1PE

Entry Point: IEEIC1PE

Assembly Modules:

IEEREADER Start Reader routine.

IEESTART Process START and STOP WTR
commands.

IEEWRITER Start Writer routine.

Load Module Name: IEETIME
Alias: IEEQOTO00
Assembly Module:

IEEQOTO0 Sets time and date.

Load Module Name: IEFALOC1l
Alias: IEFXA

Alias: 1EFXJO000

Entry Point: IEFXA

Assembly Modules:

IEFCVFAK Linkage to IEFMCVOL

IEFQMSSS Table Store subroutine.

IEFWAFAK Linkage to IEFWA000 (in IEFALOC2
load module).

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).

IEFXAMSG Contains Initiator/Terminatox
messages.

IEFXCSSS Allocation Control routine.

IEFXJIMP Allocation Error Recovery
routine.

IEFXJIMSG Contains Initiator/Terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module) .

IEFYSSMB Message Enqueuing routine.

Load Module Name: IEFALOC2
Alias: IEFWAQ00
Entry Point: IEFWAO000

Assembly Modules:

IEFDEVPT Device bit pattern.

IEFSCAN Bit pattern scan routine.

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFSGOPT System generation option
indicators.

IEFV15XL Allocation Exrror routine.

IEFWAQ00 Demand Allocation routine.

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).

IEFWMSKA Device mask table.

IEFWSWIN Passes control to Decision Allo-
cation or Automatic Volume Reco-
gnition (AVR) routine.

IEFXJFAK Linkage to IEFXCSSS (in IEFALOC1
load module).

IEFXVFAK Linkage to IEFXV001 (in IEFALOCH
load module).

IEFX300A Device Strikeout routine.

IEFX5FAK Linkage to IEFX5000L (in

IEFX5000 load module).

Appendix C:

Load Module Name: IEFALOC3
Alias: IEFWCO000
Entry Point: IEFWCO000

Assembly Modules:

IEFWCIMP TIOT Construction routine.

IEFWDFAK Linkage to IEFWD000 (in IEFALCCY
load module).

IEFXHO000 Separation Strikeout routine.

IEFXJFAK Linkage to IEFXCSSS (in IEFALOC1
lcad module).

Load Module Name: IEFALOCH

Alias: IEFWDO00O

Alias: IEFXV001

Entry Point: IEFWDOOO

Assembly Modules:

IEFCVFAKRK Linkage to IEFMCVOL.

IEFDEVPT Device bit pattern.

IEFQMSSS Table Store subroutine.

IEFSCAN Bit pattern scan routine.

IEFSD00O6 Converts record number to loaic-
al track address (TTR).

IEFV15XL Allocation Error routine.

IEFWD00O0 External Action routine.

IEFWDOO1 Message directory for External
Action routine.

IEFXKIMP Allocation Errorx Non-recovery
routine.

IEFXKMSG Contains Initiator/Terminator
messages.

IEFXTFAK Linkage to IEFXT000 (in IEFALCCS

‘ load module).

IEFVMSG Automatic Volume Recognition
(AVR) Message routine.

IEFXVNSL Automatic Volume Recognition
(AVR) Nonstandard Label routine.

IEFXVO001 Automatic Volume Recognition
(AVR) routine.

IEFXV002 AVR Volume Serial Number Reading
routine.

IEFX1FAK Linkage to IEFXJIMP (in IEFALOC1
load module).

IEFX2FAK Linkage to IEFX5000 (in IEFALOC2
load module).

IEFX3FAK Linkage to IEFWCIMP (in IEFALCC3
load module).

IEFX3002 Device Strikeout routine.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFYSSMB Message Enqueuing routine.

Load Module Names: IEFALOCS

Alias: IEFXTO000

Entry Point: IEFXT000

Assembly Modules:

IEFCVFAK Linkage to IEFMCVOL

IEFQMSSS Table Store subroutine.

IEFSDO006 Converts record number to logic-
al track address (1TR).

IEFWDFAR Linkage to IEFWD000 (in IEFALOCY4
load module).

IEFW41SD Exit to IEKO4FAK (in this load
module).

IEFXKIMP Allocation Error Non-recovery
routine.

IEFXKMSG Contains Initiator/Terminator
messages.

IEFXTDMY Queue Overflow routine.

Load Modules and Assembly Modules 85

IEFXTMSG Contains Initiator/Terminator
messages.

IEFXTOOD Space Request routine.

IEFXT002 TIOT Compression routine.

IEFXT003 DASDM Error Recovery routine.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFYSSMB Message Enqueuing routine.

IEFO4FAK Linkage to IEFSDOO4 (in IEFAC-

TACH load module).

Load Mcodule Name: IEFATACH
Alias: IEFSDOO4 »
Entry Point: IEFSDOO4

Assembly Modules:

IEFQMSSS Table Store subroutine.

IEFSDOOY Step Initiation routine, with
exit to processing program.

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFSDO007 Call to Table Store subroutine.

IEFSD010 Dequeues and writes out system
message blocks (SMBs).

Load Module Name: IEFBR1A4

Assembly Module:

IEFBR1Y4 Branch-14.

Load Module Name: IEFCNTRL

Alias: IEFVHA

Alias: IEFVHAA

Alias: IEFVHC3

Alias: IEFVHE

Alias: IEFVHEB

Entry Point: IEFVHEB

Assembly Modules:

IEFFAFAK Linkage to IEFVFA (in IEFVHH
load module).

IEFHBFAK Linkage to IEFVHB (in IEFVHH
load module).

IEFHECFK Linkage to IEFVHEC (in 1EFVHH
load module).

IEFHHFAK Linkage to IEFVHH (in IEFVHH
load module).

IEFHLFAK Linkage to IEFVHL (in IEFVhH
load module).

IEFHMFAK Linkage to IEF7KPXX (in IEFCOMMD
load module).

I®FQMSSS Table Store subroutine.

IEFVGMSS Builds Interpreter error system
message blocks (SMBs).

IEFVHA Performs input stream or proclib
I/0.

1EFVHAA Sets reader end-of-file (ECOF)
conditions.

IEFVHC Checks input for wvalid
continuation.

IEFVHACB Identifies control statement
verbs and performs procedure
modification.

ILFVHE Job Router routine.

IEFVHEB Pre-scan routine.

IEFVHGSS DD* Error routine.

I&FVHQ Table Store Interface routine.

IEFVHRSS Writes operator error messages.

IEFVIND In-stream procedures expansion

interface routine.

86

Load Module Name: IEFCOMMD
Alias: IEFVHM
Ent:xry Point: IEFVHM

Assembly Modules:

IEECNDUN Prevents unresolved external
reference to IEEICNO1l.

IEEILCDM Prevents unresolved IEEICCAN
symbol after initialization.

IEEMCRO1 Master Command routine.

IEFHAAFK Linkage to IEFVHAA (in IEFCNTRL
load module).

IEFHAFAK Linkage to IEFVHA (in IEFCNTRL
load module).

IEFQMSSS Table Store subroutine.

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFVGMSS Builds Interpreter error system
message blocks (SMBs).

IEFVHQ Table Stoxe Interface routine.

IE¥VHRSS Writes operator error messages.

IEF7KPXX Input Stream Command routine.

Load Module Name: IEFCSA

Ent.ry Point: IEFCSA

Assiembly Module:
IEFCSA Reads JCL from console.

Load Module Name: IEFDD

Alias: IEFVDA
Entry Point: IEFVDA
Assembly Modules:

IEFGMFAK Saves messages codes from
IEFVDA.

IEFQMSSS Table Store subroutine.

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFsDO012 DD* Statement xroutine.

IEFsSD090 Assigns unit for system output
(SYSouT) .

IEF'VDA DD Card Scan routine.

IEFVDDUM Prevents unresolved IEFVDBSD
symbol.

IEFVGI Interpreter Dictionary Entry
routine.

IEFVGK Obtains parameter from internal
table built by IEFVFA.

IEFVGS Interpreter Dictionary Search
routine.

IEFVGT Checks validity of control card
parameters.

IEFVHF Ekntry point to IEFGMFAK. Final
exit from IEFVDA. Linkage to
IEFVGMEP (in IEFVGMSS load
module) .

IEFVHy Table Store Interface routine.

'IEFVHRSS Writes operator error messages.

Lozd Module Name: IEFERROR

Alias: Iefvméls

Entry Point: IEFVNMSGR

Assembly Modules:

IEFQNSSS Table Store subroutine.

IEFVMLS6 JFCB housekeeping, Error Message
routine.

IEFVMLS?7 Contains Initiator/Terminator

messadges.

TEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFYSSMB' Message Enqueuing routine.

Load Module Name: IEFEXEC
Alias: IEFVEA

Entry Point: IEFVEA
Assembly Modules:

IEFHFFAR Linkage to IEFVHF (in IEFVHH
load module).

IEFQMSSS Table Store subroutine.

IEFVEA EXEC Card Scan routine.

IEFVGI Interpreter Dictionary Entry
routine.

IEFVGK Obtains parameter from internal
table built by IEFVFA.

IEFVGMSS Builds Interpreter error system
message blocks (SMBs).

IEFVGS Interpreter Dictionary Search
routine.

IEFVGT Checks validity of control card
parameters.

IEFVHQ Table Store Interface routine.

IEFVHRSS Writes operator error messages.

Load Module Name: IEFIDUMP

Entry Point: IEFIDUMP

Assembly Modules:

IEFIDMPM Contains Initiator/Terminator
messages.

Indicative Dump routine.

Table Store subroutine.

Linkage to IEFYNIMP (in IEFSTERM
load module).

Message Enqueuing routine.

IEFIDUMP
IEFQMSSS
IEFYNFAK
IEFYSSMB
Load Module Name: IEFINTFC
Alias: IEFKG

Alias: IEFsSDO0O1

Alias: IEFSD008

Entry Point: IEFSDO0O0S8
Assembly Modules:

IEECNDUM Prevents unresolved external
reference to XEEICNO1.

IEEILCDM Prevents unresolved IEEICCAN
symbol after initialization.

IEEMCRO1 Master Command routine.

IEFHAAFK Linkage to IEFVHAA (in IEFCNTRL
load module).

IEFHAFAK Linkage to IEFVHA (in IEFCNTRL
load module).

IEFHCBFK Linkage to IEFVHCB (in IEFCNTRL
load module).

IEFQMSSS Table Store subroutine.

IEFSD001 Interpreter entry to IEFO0SFAK or
to IEF23FAK. In case of
restart, tests to determine if
restarting step has been inter-
preted; if not, returns to
interpreter.

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFSDO07 Call to Table Store subroutine.

IEFSD008 Initiator/Terminator to Inter-

preter interface. Enters inter-
preter to prepare for restart if
necessary.

Appendix C:

IEFVHC Table Store Interface routine.

IEFVHRSS Writes operator error messages.

IEFO9FAK Linkage to IEFSD009 (in IEFSELCT
load module).

IEFZ3FAK Linkage to IEFW23SD (in IEFJTRM1
load module).

IEF7KGXX Interpreter-Initiator interface.

Load Module Name: IEFJOB

Alias: IEFVJA

Entry Point: IEFVJA

Assembly Nodules:

IEFHFFAK Linkage to IEFVHF (in IEFVHH
load module). .

IEFQMSSS Table Store subroutine.

IEFVGK Obtains parameter fror internal
table built by IEFVFA.

IEFVGMSS Builds Interpreter error system
message blocks (SMBs).

IEFVGT Checks validity of control card
parameters.

IEFVHQ Table Store Interface routine.

IEFVHRSS Writes operator error messages.

IEFVJA Job Card Scan routine.

Load Module Name: IEFJOBQE

Alias: IEFINTQS

Assembly Modules:

IEFINTQA Initializes SYS1.SYSJOBCE data
set.

IEFSGOPT System generation option
indicators.

Load Module Name: IEFJTRM1

Alias: IEFW23SD

Alias: IEFZA

Entry Point: IERFZA

Assembly Modules:

IEFACTLK Linkage to user accounting
routine.

IEFACTRT Dummy, to be replaced by user
accounting routine.

IEFQMSSS Table Store subroutine.

IEFWAD Writes accounting information to
SYS1.ACCT data set.

IEFW23SD Initializes for job termination,
exits to IEFZAJB3 (in this load
module).

IEFW31FK Linkage to IEFW31SD (in IEFJTRM2
load module).

IEFYSSMB Message Engueuing routine.

IEFZAJB3 Job Termination routine.

IEFZGJB1 Disposition and Unallocation
subroutine.

IEFZGMSG Contains Initiator/Terminator
nessages.

IEFZHFAK Call to ZPOQMGR1 subroutine (in
IEFZGJB1 assembly module of this
load module).

IEFZHMSG Contains Initiator/Terminator

messages.

Load Module Name: 1EFJTRM2

Alias: IEFW31sD

Entry Point: IEFW31SD

Assembly Modules:

IEFQMSSS Table Store subroutine.

Load Modules and Assembly Modules 87

ILFSD003 Passes control to IEFSD010, then
to IEKO8FAK (both in this load
module).

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFSD00S Call to Table Store subroutine.
Enters interpreter to prepare
for restart if necessary.

IEFSDO010 Dequeues and writes out system
message blocks (SMBs).

IEFWTERM Job Ended Message routine.

IEFW31sD Exit to IEFSD003 (in this load
module).

IEF08FAK Linkage to IEFSD008 (in IEFINTFC
load module).

IEF35DUM Prevents unresolved external
reference to IEFS0035.

Load Module Name: IEFMCVOL

Alias: IEFCVOL1

Alias: IEFCVOL2

Alias: IEFCVOL3

Entry Point: IEFCVOL1L

Assembly Modules:

IEFMCVOL Sets up tables for mounting con-
trol volume.

IEFQMSSS Queue Manager Table Store
subroutine.

IEFVMFAK Linkage to IEFVMCVL (in IEFVMLS1
assembly module).

IEFVMLS6 JFCB Housekeeping Error Message
Processing routine.

IEFVMLS7 Contains Initiator/Terminator
messages.

IEFVMMS1 Linkage to IEFVM1 (in IEFVMLS1
assembly module).

IEFYNFAK Linkage to IEFYNIMP.

IEFYSSMB Message Enqueuing routine,
enqueues SMBs.

Load Module Name: IEFPRES

Entry Point: IEFPRES

Assembly Modules:

IEFDEVPT Device bit pattern.

IEFK1MSG IEFPRES messages.

IEFPRES Volume Attribute Initialization
routine.

IEFSCAN Bit pattern scan routine.

Load Module Name: IEFPRINT

Alias: IEFPRT

Alias: SPRINTER

Assembly Module:

IEFPRTXX Tape SYSOUT to printer or punch.

Load Module Name: IEFSELCT

Alias: IEFSD009, IEFVM1, IEFVMCVL
Entry Point: IEFSD009

Assembly Modules:

IEFACTLK Linkage to user accounting
routine.

IEFACTRT Dummy, to be replaced by user
accounting routine.

IEFCVFAK Linkage to IEFMCVOL.

IEFQMSSS Table Store subroutine.

ILFSD006 Cconverts record number to logic-

al track address (TTR).

88

IEFSD009 Initializes

Initiator/Terminator.

IEFSD059 Checks that all SYSOUT classes
requested by a job step have
been made active. Passes con-
trol to Job Separator routines
if so indicated.

IEFSD08S Contains transition routine for
SYSOUT Job Separator. Sets con-
trol characters, etc.

IEFSD089 Contains PUT for Job Separator
and error exit. '

IEIFSD09%%4 Set up for Job Separator rou-
tine. Control is given for
classes A and B only.

IESD095 Block Letter routine for Job
Separator.

IEVFSEPAR Dummy Job Separator routine to
be replaced by user separator
routine.

IEFSGOPT System generation option
indicators.

IEFVKIMP Execute Statement Condition Code
routine.

IEFVKMSG Contains Initiator/Terminator
messages.

IEFVMLKS Linkage to IEFVMLS6 (in IEFERROR
load module).

IEFVMLS1 JFCB housekeeping, Control
routine.

IEFVM2LS JFCB housekeeping, Fetch DCB
routine.

IEFVM3LS JFCB housekeeping, Generation
Data Group (GDG) Single routine.

IEFVMULS JFCB housekeeping, Generation
Data Group (GDG) All routine.

IEFVMSLS JFCB housekeeping, Pattern Data
Set Control Block (DSCB)
routine. :

IEFVM76 Processes passed, non-labeled
tape data sets.

IEFWAD Writes accounting information to’
SYS1.ACCT data set.

IEFWSTRT Job started and job termination
message xroutine.

IEFW21SD System Control routine. 1In case
of restart, restores TT pointers
from CVT and reads modified JCT
from o0ld gqueue. 1In case of step
restart, moves tables from old
to new queue.

IEFFXAFAK Linkage to IEFXCSSS (in IEFALOC1
load module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFYSSMB Message Enqueuing routine.

Load Module Name: IEFSTERM

Alias: GO

Alias: IEFVMCVL

Aljas: IEFVM1

Aljas: IEFYN

Entry Point: IEFSDO11

Assiembly Modules:

IEFACTLK Linkage to user accounting
routine.
IEFACTRT Dummy, to be replaced by user

accounting routine.

IEFIDFAK

IEFOMSSS
IEFSD002

IEFSDO006

IEFSD007
IEFSDO11

IEFSDO017

I1EFVJIMP
IEFVJIMSG
IEFWAD

IEFW22SD

IEFW42SD

IEFYNIMP
IEFYNMSG

IEFYPJB3
IEFYPMSG

IEFYSSMB
IEFZAFAK

1EFZGMSG

IEFZGST1

IEFZGST2

IEFZHMSG

IEFO8FAK

IEFO09FAK

Linkage to IEFIDUMP (in IEFIDUMP
load module).

Table Store subroutine.

Exit to IEFO08FAK or IEF09FAK
(both in this load module).
Converts record number to logic-
al track address (TTR).

Call to Table Store subroutine.
Entry to Job Management from
Supervisor.

Places logical track address
(TTR) of first system message
block (SMB) into job control
table (JCT).

Job Statement Condition Code
routine.

Contains Imitiator/Terminator
messages.

Writes accounting information to
SYS1.ACCT data set.

Passes control to IEFYNIMP (in
this load module), then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFJTRM1 load
module).

Passes control to IEFIDUMP (in
IEFIDUMP load module) if neces-
sary, or to IEFYNIMP (in this
module) .

Step Termination routine.
Contains Initiators/Terminator
messages.

Step Data Set Driver routine.
Contains Initiator/Terminator
messages .

Message Enqueuing routine.
Linkage to IEFZAJB3 (in IEFJTRM1
load module).

Contains Initiator/Terminator
messages.

Disposition subroutine. Per-
forms special disposition pro-
cessing for step to be
restarted.

Unallocation subroutine. Per-
forms special unallocation pro-
cessing for step to be
restarted.

Contains Initiator/Terminator
messages.

Linkage to IEFSD008 (in IEFINTEC
load module).

Linkage to IEFSD009 (in IEFSELCT
load module).

Load Module Name: IEFVGMSS
Alias: IEFVGMEP
Entry Point: I1EFVGMEP

Assembly Modules:

IEFQMSSS
IEFVGMEP

1EFVGMSS

IEFVHQ
LEFVHRSS

Table Store subroutine.

Calls IEFVGMSS to write messages
for IEFVDA.

Builds Interpreter error system
message blocks (SMBs).

Table store Interface routine.
Writes operator error messages.

Appendix C:

Load Module Name: IEFVGM1
Assembly Module:

IEFVGM1 Contains Interpreter messages.

Load Module Name: IEFVGM2
Assembly Module:
IEFVGM2 Contains Interpreter messages.

Load Module Name: I1EFVGM17

Assembly Module:
IEFVGM17 Contains Interpreter messages.

Load Module Name: IEFVGM18

Assembly Module:
IEFVGM18 Contains Interpreter messages.

Load Module Name: IEFVGM70

Assembly Module:

IEFVGM70 Contains Interpreter messages.
Load Module Name: IEFVGM71

Assembly Module:

IEFVGM71 Contains Interpreter messages.

Load Mcdule Name: IEFVGM78

Assembly Module:

IEFVGM78 Contains Interpreter messages.
Load Module Name: IEFVHH

Alias: I1EFVFA

Alias: IEFVHB

Alias: IEFVHEC

Alias: IEFVHF

Alias: IEFVHL

Entry Point: IEFVHH

Assembly Modules:

IEFACT User exit at Interpreter time,

IEFDAFAK Linkage to IEFVDA (in IEFDD load
module) .

IEFEAFAK Linkage to IEFVEA (in IEFEXEC
load module).

IEFHAFAK Linkage to IEFVHA (in IEFCNIRL
load module).

IEFHCBFK Linkage to IEFVHCB (in IEFCNTRL
load module).

IEFHCFAK Linkage to IEFVHC (in IEFCNIRL
load module).

IEFHEBFK Linkage to IEFVHEB (in IEFCNTRL
load module).

IEFHEFAK Linkage to IEFVHE (in IEFCNTRL
load module).

IEFJAFAK Linkage to IEFVJA (in IEFJOB
load module).

IEFKGDUM Linkage to IEF7KGXX (in IEFINTFC
load module).

IEFQMSSS Table Store subroutine.

IEFVFA ‘Interpreter Scan routine.

IEFVFB Symbolic parameter processing.

IEFVGMSS Builds Interpreter error system
message blocks (SMBs).

IEFVHB Generates DD* statement for data
in the input stream.

IEFVHEC Enqueues job requests.

IEFVHF Post-processing Control routine.

IEFVHGSS DD#* Error routine.

Load Modules and Assembly Modules 89

IEFVHH Sets up table for gueuing and
provides Initiator/Terminator
interface.

1EFVHHB Job and step enqueue
housekeeping.

IEFVHL Null Statement routine.

IEFVHQ Table Store Interface routine.

IEFVHRSS Writes operator error messages.

Load Module Name: IEFVHN

Entry Point: IEFVHN

Assembly Modules:

IEEICNO1 Builds new Reader-Writer table
by inserting TTRs obtained by
conversion of record numbers.
These are the TTRs of the SYSOUT
JFCBs in the preempted track
area.

IEEILCDM Prevents unresolved 1IEEICCAN
symbol after initialization.

IEEMCRO1 Master Command routine.

IEFK1FAK Linkage to IEF7K1XX (in IEFVH1
load module).

IEFQMSSS Table Store subroutine.

IEFRAPCP Restart Activation routine.

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFVHN Interpreter Termination routine.

IEF7K3XX Interpreter Exit routine.

Load Module Name: IEFVH1

Alias: IEFINITL

Alias: IEFK1

Entry Point: IEFK1l

Assembly Modules:

IEEICNO1

IEEILCO1
IEEMCRO1
IEEVSMDM

IEFQOMSSS

IEFSD006

IEFSDO007
IEFSGOPT

IEFVHQ
IEFVHRSS

Builds new Reader/Writer table
by inserting TTRs obtained by
conversion of record numbers.
These are the TTRs of the SYSOUT
JFCBs in the preempted track
area.

Automatic Command routine.
Master Command routine.

Prevents unresolved external
reference to IEEVSMSB.

Table Store subroutine.

Converts record number to logic-
al track address (TTR).

Call to Table Store subroutine.
System geéncration option
indicators.

Table Store Interface routine.
Writes error messages to
operator.

IEFVH1 Interpreter work area (IWA).

IEFVH2 Opens input reader and procedure
libraries.

IEFWSDIP Linkage control table (LCT)
initialization.

IEF7K1XX Entry to Job Management from
Nucleus Initialization Program
(NIP).

IEF7TK2XX PCP-dependent Interpreter
initialization.

IEFK3XX Interpreter exit routine. Calls

IEFRAPCP if restart is to be
done.

Load Module Name: IEFVINA
Entry Point: IEFVINA
Assembly Modules:

IEFQMSSS Table Store routine.

IEFVGMSS Builds interpreter message
blocks.

IEFVHQ Table Store Interface routine.

IEFVHRSS Writes in-stream error messages
to the operator.

IEFVINA Processes in-stream procedures.

IEFVINB Searches directory for the TTR
of an in-stream procedure.

IEFVINC Builds a directory entry for an
in-stream procedure.

IEFVINE Checks syntax of the PROC and
PEND statements.

IEZNCODE Compresses blanks from in-stream

procedure statements.

Load Module Name: IEFX5000

Entry Point: IEFX5000
Assembly Modules:

IEFV15XL Allocation Error routine.

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).

IEFXHO000 Separation Strikeout routine

IEFXJFAK Linkage to IEFXCSSS (in IEFALOC1
lcad module).

IEFX300A Device Strikeout routine.

IEFX5000 Decision Allocation routine.

Load Module Name: IEZDCODE
Assembly Module:
IEZDCODE Expands in-stream procedures.

Load Module Name: IEZNCODE
Assembly Module:
IEZNCODE Compresses in-stream procedures.

Load Module Name:

4UR CONFIGURATION

DEVNAMET

Entry Point:

DEVNAMET

| Assembly Module:

IEFWMAS]

90

Device Name Table.

Load Module Name: DEVMASKT

Entry Point: DEVMASKT
Assembly Module:
IEFWMSKA Device Mask Table.

Load Module Name: IEEFAULT

Alias: IEEGK1GM

Assembly Module:

IEEGK1GM Fault routine, issues Master
Scheduler messages.

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Module:

IEEIC3JF Contains preformatted JFCB for
one START command.

Load Module Name: IEESET

Alias: I1IEEGESO1

Assembly Module:

IEEGESO1 Master Scheduler SET Command
routine.

Load Module Name: IEESJFCB

Alias: IEEIC2NQ

Entry Point: IEEIC2NQ

Assembly Module:

IEEIC2NQ Saves START command JFCBs.
IESQMSSS Table Store subroutine.
Load Module Name: IEESTART
Alias: IEEIC1PE

Entry Point: IEEIC1PE
Assembly Modules:

IEEREADR Start Reader routine.

IEESTART Process START and STOP WTR
commands.

IEEWRITR Start Writer routine.

Load Module Name: IEETIME

Alias: IEEQOTO00

Assembly Module:

IBEQOTO0 Sets time and date.

Load Module Name: IEFALOC1

Alias: 1EFXA

Entry Point: IEFXA

Assembly Modules:

| IEFDEVPT Device bit pattern.
IEFQMSSS Table Store subroutine.
| 1EFSCAN Bit pattern scan routine.

IEFSDO006 Converts record number to logic-
al track address (TTR).

IEFSGOPT System generation option
indicators.

IEFSWIN Passes control to Descision
Allocation or Automatic Volume
Recognition (AVR) routine.

IEFV15XL Prevents unresolved external
symbol for IEFS15XL.

IEFWAO000 Demand Allocation routine.

IEFWCFAK Linkage to IEFWC000 (in IEFALOC2
load module).

IEFWD00O External Acticn routine.

IEFWDOO1 Message directory for External
Action routine.

IEFXAMSG Contains Initiator/Terminator
messages.

IEFXCSSS Allocation Control routine.

IEFXJIMP Allocation Error Recovery
routine.

IEFXIMSG Contains Initiator/Terminator
messages.

Appendix C:

IEFXKIMP Allocation Error Non-recovery
routine.

IEFXKMSG Contains Initiator/Terminator
messages.

IEFXTFAK Linkage to IEFXTCCD (in IEFALOC2
load module).

IEFXVMSG Automatic Volume Recognition
(AVR) Message routine.

IEFXVNSL Automatic Volume Recognition
(AVR) Nonstandard label routine.

IEFXVO001 Automatic Volume Recognition
(AVR) routine.

IEFXV002 AVR Volume Serial Number Reading
routine.

IEFX300A Device Strikeout routine.

IEFX5FAK Linkage to IEFX5000 (in IEFALOC2
load module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFYSSMB Message Enqueuing routine.

Load Module Name: IEFALOC2

Alias: IEFWCO000

Alias: IEFX5000

Entry Point: IEFX5000

Assembly Modules:

IEFQMSSS Table Store subroutine.

IEFSDOO4 Step Initiation routine with
exit to processing program.

IEFSD006 Converts record to logical track
address (TTR).

IEFSDO0O07 Call to Table Storage
subroutine.

IEFSDO10 Dequeues and writes out system
message blocks (SMBs).

IEFV15XL Prevents unresolved external
reference for IEFS15XL.

IEFWCIMP TIOT Construction routine.

IEFWD0OO External Action routine.

IEFWDO00O1 Message directory for External
Action routine.

IEFW41SD Exit to Step Initiation routine.

IEFXAFAK Linkage to IEFXCSSS (in IEFALOCL
load module).

IEFXHO000 Separation Strikeout routine.

IEFXJIMP Allocation Exrrxor Recovery
routine.

IEFXJMSG Contains Initiator/Terminator
messages.

IEFXKIMP Aloocation Error Non-recovery
routine.

IEFXKMSG Contains Initiator/Terminator
messages.

IEFXTDMY Queue Overflow routine.

IEFXTMSG Contains Initiator/Terminator
messages.

IEFXTO00D Space Request routine.

IEFX300A Divide Strikeout routine.

IEFX5000 Decision Allocation routine.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFYSSMB Message Enqueuing routine.

Load Module Name: IEFBR14
Assembly Module:
IEFBR14 Branch 14.

Load Modules and Assembly Modules 91

Load Module Name: IEFCNTRL

Alias: IEFKG

Alias: IEFSD008

Alias: IEFVdA

Alias: IEFVHAR

Alias: IEFVHCB

Entry Point: IEFVHA

Assembly Modules:

IEEMCRFK Linkage to IEEMCREP (in IEFCOMMD
load module).

IEFACT User exit at Interpreter time.

IEFHHB Job and step enqueue
housekeeping.

IEFHMFAK Linkage to IEF7KPXX (in IEFCOMMD
load module).

IEFQMSSS Table Store subroutine.

IEFSDO01 Interpreter entry to IEFSD009 or
to IEFW23SD.

In case of restart, tests to
determine if restarting step has
been interpreted; if not,
returns to interpreter.

IEFSD006 Converts record number to logic-
al track address.

IEFSD007 Call to Table Store subroutine.

IEFSD008 Initiator/7Terminator to Inter-
preter interface.

Enters interpretexr to prepare
for restart if necessary.

IEFSDO10 Dequeues and writes out system
message blocks (SMBs).

IEFSDO12 DD#* Statement routine.

IEFSDO090 Assign unit for system output
(sYsouT).

IEFVDA DD Card Scan routine.

IEFVDDUM Prevents unresolved IEFVDBSD
symbol.

IEFVEA EXEC Card Scan routine.

IEFVFA Interpreter Scan routine.

IEFVFB Symbolic parameter processing.

IEFVGI Interpreter Dictionary Entry
routine.

IEFVGK Interpreter Get Parameter
routine.

IEFVGMSS Builds system message blocks
(SMBs) .

IEFVGS Interpreter Dictionary Search
routine.

IEFVGT Interpreter Test and Store
routine.

IEFVHA Performs input stream or proclib
I/0.

IEFVHAA Sets reader end-of-file (EOF)
conditions.

IEFVHB Generates DD* statement for data
in the input stream.

IEFVHC Checks input for valid
continuation.

IEFVHCB Identifies control statement
verbs and pexforms procedure
modification.

IEFVHE Job Router routine.

IEFVHEB Pre-scan routine.

IEFVHEC Enqueues job request.

IEFVHF Post-processing Control routine.

IEFVHGSS DD* Exror routine.

IEFVHH Sets up tables for gueuing and

92

provides Initiator/Terminator

interface.

IERVAL Null Statement Processing
routine.

IEFVHQ Table Store 1Interface routine.

IEFVHRSS Writes error messages to
operator.

IEFVIND In-stream procedures expansion
interface routine.

IEFVJA JOB Card Scan routine.

IEF09FAK Linkage to IEFSD009 (in IEFSTERM
1oad module).

IEF23FAK Linkage to IEFWZ23SD (in IEFJTERM
load module).

IEF7KGXX Cutput table for step.

Load Module Name: IEFCOMMD

Alias: IEFVHM

Alias: IEEMCREP

Entty Point: IEFKP

Assembly Modules:

IEECNDUM Prevents unresolved external
reference to IEEICNO1.

IEEILCDM Prevents unresolved IEEICAN sym-
Lol after initialization.

IEEMCREP Links to IEEMCRO1 and returns to
IEF7KGXX (in IEFCNTRL 1load
module).

IEEMCRO1 Master command routine.

IEF.IAAFK Linkage to IEFVHAA in IEFCNTRL
load module).

IEFIAFAK Linkage to IEFVHA (in IEFCNTRL
load module).

IEFQMSSS Table store subroutine.

IEFi3D006 converts record number to logic-
al track address (TIR).

IEFVGMSS Builds system message blocks
(SMBs) .

IEFVHQ Table store interface routine.

IEF7KPXX Command in the input stream
routine.

Load Module Name: IEFCSA

Entcry Point: IEFCSA

Assembly Module:
IEF(CSA Reads JCL from console.

Load Module Name: IEFERROR

Alias: IEFVM6LS
Entry Point: IEFVMSGR
Assembly Modules:

IEFQMSSS Table Store subroutine.

IEFVMLS6 JFCB housekeeping, Error Message
routine.

IEFVMLS7 Contains Initiator/Terminator
messages. :

IEFINFAR Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFiISSMB Message Enqueuing routine.

Load Module Name: IEFIDUMP

Entxy Point: IEFIDUMP

Assembly Modules:

IEFIDMPM Contains Initiator/Terminator
messages.

IEFIDUMP Indicative Dump routine.

IEFQMSSS Table Store subroutine.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFYSSMB Message Enqueuing routine.

Load Module Name:
Alias: IEFINTQS
Assembly Modules:
IEFINTQA Initializes SYS1.SYSJOBQE data
set.

System generation option
indicators.

IEFJOBQE

IEFSGOPT

Load Module Name: IEFJTERM
Alias: IEFZA

Alias: IEFW23SD

Entry Point: IEFZA

Assembly Modules:

IEFACTLK Linkage to user's accounting
routine.

IEFACTRT Dummy routine to be replaced by
user's account routine.

IEFQMSSS Table Store subroutine.

IEFSD006 Converts record number to logic-
al track address (TTR).

1IEFSD0OQ7 Call to Table Store subroutine.

IEFSDO010 Dequeues and writes out system
message blocks (SMBs).

IEFWAD Writes accounting information to
SYS1.ACCT data set.

IEFWTERM Job ended message routine.

IEFW23SD Initializes for job termination
and exits to IEFZAJB3 (this load
module) .

ISFW31sD Job termination exit to
IEFSD003.

IEFYSSMB Message Enqueuing routine,
enqueues SMBs.

IEFZAJB3 Job Termination routine.

IEFZGJB1 Disposition and Unallocation
subroutine.

1EFZGMSG Contains initiator/terminator
messages.

IEFZHFAK Call to ZPOQMGR1l subroutine in
IEFZGST1 (in IEFSTERM load
module).

IEFZHMSG Contains Initiator/Terminator
messages.

Load Module Name: IEFMCVOL

Alias: IEFCVOL1

Alias: IEFCVOL2

Alias: IEFCVOL3

Entry Point: IEFCVOL1

Assembly Modules:

IEFMCVOL Sets up tables for mounting con-
trol volume.

IEFQMSSS Queue manager table store
subroutine.

IEFVMFAK Linkage to IEFVMCVL (in IEFVMLS1
assembly module).

IEFVMLS6 JFCB housekeeping error message
processing routine.

IEFVMLS?7 Contains Initiator/Terminator
messages.

IEFVMMS1 Linkage to IEFVMl1l (in IEFVMLS1
assembly module).

IEFYNFAK Linkage to IEFYNIMP.

Appendix C:

IEFYSSMB Message Enqueuing routine,

enqueues SMBs.

Load Module Name: IEFPRES

Entry Point: IEFPRES
Assembly Modules:

IEFK1MSG IEFPRES messages

IEFPRES Volume Attribute Initialization
routine.

Load Module Name: IEFPRINT

Alias: IEFPRT

Alias: SPRINTER

Assembly Module:

IEFPRTXX Tape SYSOUT to printer or punch.

Load Module Name: IEFSTERM

Alias: GO

Alias: IEFSD009

Alias: IEFYN

Assembly Modules:

IEFACTLK Linkage to user accounting
routine.

IEFACTRT Dummy, to be replaced by user
accounting routine.

IEFIDFAK Linkage to IEFIDUMP (in IEFIDUMP
load module).

IEFQMSSS Table Store subroutine.

IEFSD002 Exit to EIF08FAK oxr IFsSDOO.
(both in this load module).

IEFSD006 converts record number to logic-
al track address (TTR).

IEFSDO07 Call to Table Store subroutine.

IEFSD009 Initializes Initiator/
Terminator, passes control to
IEFW21SD (in this load module).

IEFSD011 Entry to Job Management from
Supervisor.

IEFS017 Places logical track address
(TTR) of first system message
block (SMB) in job control table
(JCT) .

IEFSD059 Checks that all SYSOUT classes
requested by a job step have
been made active. Passes con-
trol to Job Separator routines
if so indicated.

IEFSD088 Contains transition routine for
SYSOUT Job Separator. Sets con-
trol characters, etc.

IEFSD089 Contains PUT for Job Separatorxr
and error exit.

IEFSDO94L Set up for Job Separator rou-
tine. Control is given for
classes A and B only.

IEFSD095 Block Letter routine for Job
Separator.

IEFSEPAR Dummy Job Separator routine to
be replaced by user separator
routine.

IEFSGOPT System generation option
indicators.

IEFVJIMP Job Statement Condition Code
routine.

IEFVJIMSG Contains Initiator/Terminator
messages.

IEFVKIMP Execute Statement Condition Code

routine.

Load Modules and Assembly Modules 93

Contains Initiator/Terminator
messages.

Linkage to IEFVMLS6 (in IEFERROR
load module).

JFCB housekeeping, Control
routine.

JFCB housekeeping, Fetch DCB
routine.

JFCB housekeeping, Generation
Data Group (GDG) Single routine.
JFCB housekeeping, Generation
Data Group (GDG) All routine.
JFCB housekeeping, Pattern Data
Set Control Block (DCB) routine.
Processes passed, non-labeled
data sets.

Writes accounting information to
SYS1.ACCT data set.

Job started and job termination
message routine.

System Control routine. In case
of restart, restores TT pointers
form CVT and reads modified JCT
from old queue. 1In case of step
restart, moves tables from old
to new queue.

Passes control to UEFYNIMP (in
this load module), then to
IEFSD002 (in this load module)
or to 1EFZAJB3 (in IEFJTERM load
module).

Passes control to IEFIDUMP (in
IEFIDUMP load module) if neces-
sary, or to IEFYNIMP (in this
load module).

Linkage to IEFXCSSS (in IEFALOC1
load module).

Step Termination routine.
Contains Initiator/Terminator
messages.

Step Data Set Driver routine.
Contains Initiator/Terminator
messages.

Messages Enqueuing routine.
Linkage to IEFZAJB3 (in IEFJTERM
load module).

Contains Initiator/Terminator
nessages.

Disposition subroutine. Per-
forms special disposition pro-
cessing for step to be
restarted.

Unallocation subroutine. Per-
forms special unallocation pro-
cessing for step to be
restarted.

Contains Initiator/Terminator
messages.

Linkage to IEFSD008 (in IEFCNTRL
load module).

1EFVKMSG
IEFVMLKS
IBFVMSL1
IEFVM2LS
IEFVM3LS
IEFVMA4LS
IEFVMSLS
IEFVM76
I1EFWAD
IEFWSTRT

IEFW21SD

IEFW22SD

IEFW42SD

IEFXAFAK

IEFYNIMP
IEFYNMSG

IEFYPJE3
IEFYPMSG

IEFYSSMB
IEFZAFAK

IEFZGMSG

IEF2GST1

IEF2GST2

IEFZHMSG

IEFO08FAK

Load Module Name: IEFVGM1
Assembly Module:

IEFVGM1 Contains Interpreter messages.

924

Load Module Name:; IEFVGMZ
Assembly Module:
IEFVGM2 Contains Interpreter

messages.

Load Module Name: IEFVGM17
Assembly Module:
IEFVGM17 Contains Interpreter

messages.
Load Module Name: IEFVGM18
Assembly Module:

IEFVGM1, Contains Interpreter

messages.

Load Module Name: IEFVGM70
Assembly Module:

IEFVGM70 Contains Interpreter

ressages.
Load Module Name: IEFVGM71
Assembly Module:

IEFVGM71 Contains Interpreter

messages.
Load Module Name: IEFVGM78
Assembly Module:

IEFVGM78 Contains Interpreter

messages.

Load Module Name: IEFVH1

Alias: IEFK1
Alias: IEFVHN
Alias: IEFINITL
Entry Point: IEFK1
Assembly Modules:

IEEICNOL Initialize new reader writer
table by inserting TTRs obtained
by conversion of record numbers.
These are the TTRs of the SYSOUT
JFCBs in the preempted track
area.

IEEILCO1 Automatic command routine.

IEEMCRO1 Master command routine.

IEEVSMDM Prevents unresolved external
symbol for IEEVSMSG.

| IEFDEVPT Device bit pattern.

IEFK1MSG Reader/Interpreter message
routine.

IEFQMSSS Table store subroutine.

IEFRAPCP Prepares for restart.

| 1EFSCAN Bit pattern scan routine.

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFSD007 Call to table store subroutine.

IEFSGOPT System generation option
indicators.

IEFVHN Interpreter termination
routine.

IEFVHQ Table store interface routine.

IEFVHRSS Writes error messages to
operator.

IEFVH1 Interpreter work area (IWA)
initialization routine.

IEFVH2 Opens input reader and procedure
libraries.

IEF7K1XX Entry to job management from

nucleus initialization program
(NIP).

IEF7K2XX

IEF7K3XX

Load Module Name:

PCP dependent interpreter
initialization.

Interpreter exit routine. Calls
IEFRAPCP if restart is to be
done.

IEFVINA

Entry Point:

IEFVINA

Assembly Modules:

IEFQMSSS
IEFVGMSS

IEFVHQ
IEFVHRSS

IEFVINA

Table Store subroutines.

Builds interpreter message
blocks.

Table Store Interface routine.
Writes in-stream error messages
to the operator.

Processes in-stream procedures.

IEFVINB

IEFVINC

IEFVINE

IEZNCODE

Load Module Name:

Searches directory for the TTIR
of an in-stream procedure.
Builds a directory entry for an
in-stream procedure.

Checks syntax of the PROC and
PEND statements.

Compresses blanks from in-stream
procedure statements.

IEZDCODE

Assembly Module:

IEZDCODE

Load Module Name:

Expands in-stream procedures.

1EZNCODE

Assembly Module:

IEZNCOLE

Compresses in-stream procedures.

Load Module Name:

100K CONFIGURATION

DEVNAMET

Entry Point:

DEVNAMET

Assembly Module:

IEFWMAS1

Load Module Name:

Device Name Table.

DEVMASKT

Entry Point:

DEVMASKT

Assembly Module:

IEFWMSKA

Device Mask Table.

Load Module Name: GO

Alias:
Alias:
Alias:
Alias:
Alias:
Alias:
Alias:
Alias:

Entry Point:

IEFVHA
IEFVINA
IEFVMCVL
IEFVM1
IEFYN
IEFZA
IEZDCODE
IEZNCODE

IEFSDO11

Assembly Modules:

IEECNDUM
IEEFZGJB1
IEEILCDM
IEEMCRO1
IEFACT
IEFACTLK
IEFACTRT
I1EFCVFAK
IEFIDFAK
IEFQMSSS

IEFRPREP
IEFSD0O01

Prevents unresolved external
reference to IEEICNO1l.
Disposition and unallocation
subroutine.

Prevents unresolved external
reference.

Master command routine.

User exit at interpreter time.
Linkage to user's accounting
routine.

Dummy routine to be replaced by
user's accounting routine.
Linkage to IEFMCVOL (in IEFMCVOL
load module).

Linkage to IEFIDUMP (in IEFIDUMP
load module).

Table Store subroutine.

Restart preparation.

Interpreter entry to IEFSD009 or
to IEFW23sSD (both in this load
module). In case of restart,
tests to determine if restarting
step has been interpreted; if
not, returns to interpreter.

Appendix C:

IEFSD002

IEFSD003

IEFSD006

IEFSD007
IEFSDO00S

IEFSD009
IEFSDO10
IEFSDO11
IEFSDO012

IEFSD059

IEFSD088

IEF3D089
IEFSD090

IEFSDO94

IEFSD095
IEFSEPAR
IEFSGOPT
IEFVDA

IEFVDDUM

IEFVEA

Exit to IEFSD008 or IEFSD009
(both in this load module).
Passes control to IEFSD010 and
then goes to 1EFSD008 (both in
this load module).

Converts record number to logic-
al track address (TTR).

Call to table store subroutine.
Initiator to interpreter inter-
face. knters interpreter to
prepare for restart if
necessary.

Initiator/terminator initializa-
tion of output unit.

Dequeues and writes out system
message blocks (SMBs).

Entry to job management from
supervisor.

DD* statement routine. SMB)
into job control table (JCT).
Checks that all SYSOUT classes
requested by a job step have
been made active. Passes con-
trol to Job Separator xoutine if
so indicated.

Contains transition routine for
SYSOUT job separator. Sets con-
trol characters, etc.

Contains PUT for job separator
and error exit.

Assigns unit for system output
(SYsouT) .

Sset up for job separator rou-
tine. Control is given for
classes A and B only.

Block letter routine for job
separator.

Dummy job separator routine to
be replaced by user separator
routine.

SYSGEN option flags.

DD Card Scan routine.

Prevents unresolved IEFVDBSD
symbol.

Exec Card Scan routine.

Load lModules and Assembly Modules 95

IEEVFA
IEFVFB
IEFVGI
IEFVGK
IEFVGMSS
IEFVGS
IEFVGT
IEFVHA
IEFVHAA
1EFVHB
IEFVHC
IEFVHCB
IEFVHE
IEFVHEB
IEFVHEC
IEFVHF
IEFVHGSS
IEFVHH
IEFVHHB
IEFVHL

IEFVHQ
IEFVHRSS

IEFVINA
IEFVINB

IEFVINC
IEFVIND
IEFVINE

IEFVJA
IEFVJINMP

IEFVJIMSG
IEFVKIMP
IEFVKMSG
IEFVMLS1
IEFVMLS6
IEFVMLS7
IEFVM2LS
IEFVM3LS

IEFVMU4LS

96

Interpreter Scan routine.
Symbolic parameter processing.
Interpreter dictionary entry
routine.

Interpreter get parameter
routine.

Builds interpreter system mes-
sage blocks (SMBs).
Interpreter dictionary search
routine.

Interpreter test and store
routine.

Performs input stream or proclib
1/70.

Sets reader end-of-file
conditions.

Generates DD* for data in the
input stream.

Checks input for valid
continuation.

Identifies control statement
verbs and performs procedure
modification.

Interpreter Router routine.
Pre-scan routine.

Enqueues job request.
Post-processing Control routine.
DD* Error routine.

Sets up tables for queuing and
provides initiator/terminator
interface.

Job and step engueuing
housekeeping.

Null statement processing
routine.

Table store interface routine.
Writes error messages to
operator.

Processes in-stream procedures.
Searches directory for the TTR
of an in-stream procedure.
Builds a directory entry for an
in-stream procedure.

In-stream procedures expansion
interface routine.

Checks syntax of the PROC and
PEND statements.

Job card scan routine.

JOB statement condition code
routine.

Contains initiator/terminator
messages.

EXEC statement conditional
execution routine.

Contains initiator/terminator
messages.

JFCB housekeeping control
routine.

JFCB housekeeping error message
processing routine.

Contains initiator/terminator
messages.

JFCB housekeeping fetch DCB
routine.

JFCB housekeeping generation
data group single routine.
JFCB housekeeping generation
data group all routine.

IEFVM5LS

IEFVM76
IEFWAD
IEFWSTRT

IEFWTERM
IEFW21SD

IEFA22SD

IEFW23SD

IEFAW31sDh
IEFAU2SD
IEFXAFAK

IEFYNIMP
IEFYNMSG

IEFYPJIB3
IEFYRCDS

IEFYSSMB

IEFZAJB3
IEFZGST1

IEFIGST2

IEFZHMSG
IEF2GMSG

IEFTRGXX
IEF7RPXX

IEZDCODE
IEZNCODE

Load Module Name:

JFCB housekeeping patterning
data set control block (DSCB)
subroutine.

Processes passed, non-labeled
tape data sets.

Writes accounting information to
SYS1.ACCT data set.

Job started and job termination
message routine.

Job ended message routine.
System control routine. In case
of restart, restore TT pointers
from CVT and reads modified JCT
from old queue. In case of step
restart, moves tables from old
to new gueue.

Passes control to IEFYNIMP
assembly module, and then to
IEFSD002 or IEFZAJB3 (all in
this load module).

Initializes for job termination
and exits to IEFZAJB3 (in this
load module).

Job termination exit to
IEFSD003.

Passes control to IEFIDUMP if
needed, or to IEFYNIMP.

Linkage to IEFXCESS (in IEFALLOC
load module).

Step termination routine.
Contains initiator/terminator
messages.

Step data set driver routine.
Table of Abend codes eligible
for restart.

Message engueuing routine.

Job termination routine.
Disposition subroutine. Per-
forms special disposition pro-
cessing for step to be
restarted.

Unallocation subroutine. Per-
forms special unallocation pro-
cessing for step to be
restarted.

Contains initiatoxr/terminator
messages.

Contains initiator/terminator
messages.

Output tables for step.

Command in the input stream
routine.

Expands in-stream procedures.
Compresses in-stream procedures.

IEEFAULT

Alias:

IFEGK1GM

Assembly Module:

IEEGK1GM

Load Module Name:

Fault routine, issues Master
Scheduler messages.

IEEJFCB

Alias:

IEEIC3JF

Assembly Module:

IEEIC3JF

Contains preformatted JFCB for
one START command.

Load Module Name:

IEESET
" Alias: IEREGESO1
Assembly Module:
IEEGESO1 Master Scheduler SET Command

routine.

Load Module Name: IEESJFCB
Alias: IEEIC2NQ
Entry Point: IEEIC2NQ

Assembly Module:

IEEICZNQ saves START command JFCBs.
IESQMSSS Table Store subroutine.
Load Module Name: IEESTART
Alias: IEEIC1PE

Entry Point: IEEIC1PE
Assembly NModules:

IEEREADR Start Reader routine.

IBEESTART Process START and STOP WTR
commands.

IEEWRITR Start Writer routine.

Load Module Name: IEETIME

Alias: 1EEQOTO00

Assembly Module:

IEEQOTO00 Sets time and date.

Load Module Names:s IEFALLOC

Alias: IEFXA

Entry Point: IEFXA

Assembly Modules:

IEFCVFAK Linkage to IEFMCVOL (in IEFMCVOL

load module).
| IEFDEVPT Device bit pattern.
IEFQMSSS Table store subroutine.
| IEFSCAN Bit pattern scan routine.

IEFSDOO4 Step initiation routine, with
exit to processing program.

IEFSD006 Converts record number to logic-
al track address (TTR).

IEFSDO07 Call to table store subroutine.

IEFsSDO010 Dequeues and writes out system
message blocks (SMBs).

IEFSGOPT System generation option
indicators.

IEFVJMSG Contains initiator/terminator
messages.

IEFVKMSG Contains initiators/terminator
messages.

IEFV15XL Prevents unresolved external
symbol for IEFS15XL.

IEFWAQ000 Demand allocation routine.

IEFWCIMP Task input/output table (TIOT)
construction routine.

IEFWDO00O External action routine.

IEFWDOO1 Message directory for external
action routine.

IEFWSWIN Passes control to decision allo-
cation or AVR routine.

IEFW41SD Exit to step initiation routine.

IEFXAMSG Contains initiator/terminator
nessages.

IEFXCSSS Allocation control routine.

IEFXHO000 Separation strikeout routine.

IEFXJIMP Allocation error recovery

routine.

Appendix C:

IEFXJIMSG Contains initiator/terminator
messages.

IEFXKIMP Allocation error non-recovery
routine.

IEFXKMSG Contains initiator/terminator
nessages.

IEFXTDMY Queue overflow routine.

IEFXTMSG Contains initiator/terminator
messages.

IEFXTOOD Space request routine.

IEFXTO002 TIOT compression routine.

IEFXTO0O DADSM error recovery routine.

IEFXVMSG AVR message routine.

IEFXVNSL AVR Nonstandard Label routine.

IEFXVO001 Automatic volume recognition.

IEFXV002 AVR Volumwe Serial Number Reading
routine.

IEFX300A Device strikeout routine.

IEFX5000 Decision allocation routine.

IEFYNFAK Linkage to IEFYNIMP (in GO load
module) .

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEF35DUM Prevents unresolved IEFSD035
symbol.

Load Module Name: ILEFBR14

Assembly Module:

IEFBR14 Branch 14.

Load Module Name: IEFCSA

Entry Point: IEFCSA

Assembly Module:
IEFCSA Reads JCL from console.

Load Module Name: IEFIDUMP

IEFIDMPM Contains Initiator/Terminator
messages.

IEFIDUMP Indicative Dump routine.

IEFQMSSS Table Store subroutine.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFYSSMB Message Enqueuing routine.

Load Module Name: IEFJOBQE

Alias: IEFINTQS

Assembly Modules:

IEFINTQA Initializes SYS1.SYSJOBCE data
set.

IEFSGOPT System generation option
indicators.

Load Module Name: IEFMCVOL

Aljas: IEFCVOL1

Alias: IEFCVOL2

Alias: IEFCVOL3

Entry point: IEFCVOL1

Assembly Modules:

IEFMCVOL Sets up tables for mounting con-
trol volume.

IEFQMSSS Queue manager table store
subroutine.

IEFVMFAK Linkage to IEFVMCVL (in IEFVMLS1
assembly module).

IEFVMLS6 JFCB housekeeping error message
processing routine.

IEFVMLS7 Contains initiator/terminator

messages.

Load Modules and Assembly Modules 97

IEFVMMS1 Linkage to IEFVM1 (in IEFVMLS1
assembly module).

IEFYNFAK Linkage to IEFYNIMP.

IEFYSSMB Message engueuing routine,
enqueues SMBs.

Load Module Name: IEFPRES

Entry Point: IEFPRES

Assembly Modules:

IEFK1MSG IEFPRES messages

IEFPRES Volume Attribute Initialization
routine.

Load Module Name: IEFPRINT

Alias: IEFPRT

Alias: SPRINTER

Assembly Module:

IEFPRTXX Tape SYSOUT to printer or punch.

Load Module Name: IEFVGM1
Assembly Module:

IEFVGM1 Contains Interpreter messages.

Load Module Name: IEFVGM2
Assembly Module:
IEFVGM2 Contains Interpreter messages.

Load Module Name: IEFVGM17
Assembly Module:

IEFVGM17 Contains Interpreter messages.

Load Module Name: IEFVGM18
Assembly Module:

IEFVGM18 Contains Interpreter messages.

Load Module Name: IEFVGM70
Assembly Module:

IEFVGM70 Contains Interpreter messages.

Load Module Name: IEFVGM71
Assembly Module:

IEFVGM71 Contains interpreter messages.

98

Load Module Name:

IEFVH1

Alias:
Alias:
Alias:

IEFK1
IEFVHN
IEFINITL
Entry Point:

IEFK1

Assembly Modules:

IEEICNO1

IEEILCO1
IEEMCRO1
IEEVSMDM

| 1EFDEVPT
IEFHAFAK

IEFK1MSG
IEFQMSSS
IEFRAPCP
| 1EFSCAN

IEFSD006

IE¥FsDO007
IEFSGOPT

IEFVHN
IEFVHQ
IEFVHRSS
IEFVH1
IEFVH2
IEFWSDIP

IEF7K1XX

IEF7K2XX

IEP7K3XX

Builds new reader writer table
by inserting TTRs obtained by
conversion of record numbers.
These are the TTRs of the SYSOUT
JFCBs in the preempted track
area.

Automatic command routine.
Master command routine.

Prevents unresolved external
reference for IEEFSMSG.

Device bit pattern.

Linkage to IEFVHA (in GO load
module) .

Interpreter message routine.
Table Store subroutine.

Prepares for restart.

Bit pattern scan routine.
Converts record number to logic-
al track address (TTR).

Call to table store subroutine.
System generation option
indicators.

Interpreter termination routine.
Table store interface routine.
Writes error messages to
operator.

Interpreter Initialization
routine.

Opens input stream data set and
procedure library.

Linkage control table (LCT)
initialization.

Initial entry to job management
from nucleus initialization pro-
gram (NIP).

PCP interpreter system-dependent
initialization.

Interpreter exit routine. Calls
IEFRAPCP if restart is to be
done.

Assembly Modules and
Control Sections

The following table shows in which load
modules each assembly module is used in the
three configurations of job management.

The first column lists the assembly module
names in alphameric order. Except as indi-~
cated, all assembly modules are contained
in load modules in the SYS1.LINKLIB data
set. The third column lists the control
section names that correspond o the

assembly module names in the first column.
The next three columns of the table indic-
ate which load modules of each configura-
tion contain each assembly module. The two
right-hand columns refer to the CHARTS sec-
tion. If a control section is shown as a
subroutine block, the flowchart number is
listed in the "Appears As Subr. Block"®
column; if the flow within a control sec-
tion is given in a chart, the flowchart
number is listed in the "Flow is Defined"
column.

Assembly Modules and Control Sections (Part 1 of 7)

r L) k] T T
| | | | Load Modules in Which | Chart Number]
| | | | Assembly Modules are Used k T {
| Assembly | | Control t T T { Appears As | Flow is |
| Module Name|Notes |Section Name| 18K | 44K | 100K | Subr. Block| Defined |
L 1] +] 4+ (] . 4
r [} [} 1 T T T 1 |
| IEECNDUM | | IEEICNO1 | IEFINTFC | IEFCOMMD | GO i | |
] | | | IEFCOMMD | | |] |
| IEEGESO1 | | IEEGESTO | IEESET | IEESET | IEESET | i I
IEEGKIGM		IEEGK1GM	IEEFAULT	IEEFAULT	IEEFAULT	05,23	
IEEICNO1		IEEICNO1	IEFVEN	IEFVHL	IEFVH1		
IEEIC2NQ		IEEIC2NQ	IEESJFCB	IEESJFCB	IEESJFCB		
IEEIC3JF	#**	IEEIC3JF	IEEJFCB	IEEJFCB	IEEJFCB		
IEEILCDM		IEEICCAN	IEFVHN			05 I	
I N	IEFCOMMD	IEFCOMMD	GO				
IEEILCOL	#**	IEEICCAN	IEFVHL	IEFVH1	IEFVH1L		
IEEMCREP		IBEMCREP		IEFCOMMD			
IEEMCRFK		IEEBB1		IEFCOMMD		02	05
IEEMCRO1		IEEBB1	IEFINTFC		co	02,53,54,55	05
			IEFCOMMD	IEFVH1	IEFVH1L		
(IEFVHL	IEFCOMMD		i	
[l	IEFVEN		o			
IEEQOTO00		IEEQOT00	IEETIME	IEETIME	IEETIME	i	
IEEREADR		IEEICRDR	IEESTART	IEESTART	IEESTART		
IEERSCO1	*	IEEMSLT]		
IEERSRO1	*	IEEMSLT	I				
IEESTART		IEEICIPE	IEESTART	IEESTART	IEESTART	53,54,55	[
IEEVSMDM		IEEVSMSG	IEFVH1	IEFVH1	IEFVH1L		
IEEWRITR		IEECWTR	IEESTART	IEESTART	IEESTART		
IEFACT		IEFACT	IEFVHH	IEFCNTRL	GO]
IEFACTFK	*#%*%*	IEFACTFK	IEFSTERM	IERSTERM	GO i i		
			IEFSELCT				
I		IEFJTRM1	IEFJTERM				
IEFACTLK	*%%*	IEFACTLK	IEFSTERM	IEFSTERM	GO	46	48
I I I	IEFSELCT						
i i		IEFJTRM1	IEFJTERM				
{ IEFACTRT	*%%*	IEFACIRT	IEFSTERM	IEFSTERM	GO	47 i	
			IEFSELCT	I			
			IEFJTRM1	IEFJTERM			
IEFBR14		IEFBR14	IEFBR14	IEFBRi4	IEFBR14]	
IEFCcsA	{ IEFCSA	IEFCsa	IEFCSA	IEFCSA			
IEFCVFAK		IEFCVOL1	IEFSELCT	IEFSTERM	GO		
			IEFALOC1	IEFALOC1	IEFALLOC		
			IEFALOCY4	IEFALOC2			
I i		IEFALOCS	i				
IEFDAFAK		IEFVDA	IEFVHH				
{ IEFDEVPT	{ IEFDEVPT	IEFALOC2	IEFALOCL	IEFALLOC			
			IEFALOCY4	IEFVH1	IEFVH1L		
]		IEFPRES	I		I		
IEFDPOST	*	IEFDPOST					
IEFEAFAK		1IEFVEA	IEFVHH				
IEFFAFAK		IEFVFA { IEFCNTRL					
L L] L L L N L J
Appendix C: Load Modules and Assembly Modules 99

Assembly Modules and Control sections (Part 2 of 7)

r T T L v 1
| | | | Load Modules in Which | Chart Number |
| | | | Assembly Modules are Used 3 T 1
| Assembly | | Control 3 T - T { Appears As | Flow is |
| Module Name|Notes |Section Name| 18K | 44K | 100K | Subr. Block| Defined |
F + : + i t + 1
IEFGMFAK		IEFVGM	IEFDD				
IEFHAAFK		IEFVHAA	IEFCOMMD	IEFCOMMD			
i		IEFINTFC					
IEFHAFAK		IEFVHA { IEFINTFC	IEFCOMMD				
			IEFCOMMD				
			IEFVHEH	IEFVH1	IEFVH1		
IEFHBFAK		IEFVHB { IEFCNTRL	i				
IEFHCFAK		IEFVHC	IEFVEH			I	
IEFHCBFK		IEFVHCB	1IEFINTFC				
I I I	IEFVHH				I		
IEFHEFAK		IEFVHE	IEFVHH { i				
IEFHEBFK		IEFVHEB	IEFVHH				
IEFHECFK		IEFVHEC	IEFCNTRL			i	
IEFHFFAK		IEFVHF	IEFEXEC				i
I			IEFJOB		I		
IEFHHFAK		IEFVHH	IEFCNTRL				
IEFHLFAK		IEFVHL	IEFCNTRL				
IEFHMFAK		IEFVHM	IEFCNTRL	IEFCNTRL			
IEFIDFAK		IEFIDUMP	IEFSTERM	IEFSTERM	GO		
IEFIDMPM		IEFIDMPM	IEFIDUMP	IEFIDUMP	IEFIDUMP		
IEFIDUMP		IEFIDUMP	IEFIDUMP	IEFIDUMP	IEFIDUMP	46,53,54	
IEFINTQA		IEFINTQS	1IEFJOBQE	IEFJOBQE	IEFJOBQE		
IEFJAFAK		IEFJA	IEFVHH				
IEFKGDUM		IEFKG { IEFVHH			16		
IEFK1FAK		IEFK1	IEFVEN			14	
IEFMCVOL		IEFCVOL1	IEFMCVOL	IEFMCVOL	IEFMCVOL	25,53,54,55	27
		IEFCVOL2		I I			
		IEFCVOL3			I	I	
IEFPRES		IEFPRES	IEFPRES	IEFPRES	IEFPRES	53	
IEFPRTXX		SPRINTER	IEFPRINT	IEFPRINT	IRFPRINT		
IEFQMSSS		IEFQMSSS	IEFSTERM	IEFSTERM	GO	24	
]		IEFSELCT	IEFALOC1	IEFVH1	I		
			IEFALOC1	IEFCNTRL			
			IEFALOC4	IEFALCCZ	IEFIDUMP		i
			IEFALOCS				I
			IEFATACH		IEFSJFCB		
	i	IEFCNTRL		IEFALLOC	i		
			IEFDD	IEFERROR	IEFMCVCL		
			IEFINTFC	IEFIDUMP			
			IEFEXEC	IEFVH1L			
			IEFJOB	IEESJFCB			
				IEFCOMMD			
			IEFCOMMD	IEFJTERM			
			IEFERROR	IEFMCVOL			
			IEFIDUMP				
			IEESJFCB				
			IEFVGMSS]	
			IEFVEE		[
			IEFVAN	i		i	
			IEFVHL				
			IEFVINA	IEFVINA			
			IEFJTRM1				
			IEFJTRM2				
			IEFMCVOL				
IEFSCAN	{ IEFSCAN	IEFALOC2	IEFALOCL	IEFALLOC			
			IEFALOC4	IEFVHLI	IEFVH1L		
			IEFPRES				
IEFSD001		IEFSD001	IEFINTFC	IEFCNTRL	GO		
IEFSD002	{ IEFSD002	IEFSTERM	IEFSTERM	GO			
IEFSD003		IEFSD003	IEFJTERM	IEFJTERM	GO		
L i L L L [] iR L J

100

Assembly Modules and Control Sections (Part 3 of 7)

L) Ll

L) T 1
| | | Load Modules in Which Chart Number |
| | | i Assembly Modules are Used T]
| Assembly | | Control b T {4 Appears As | Flow is |
| Module Name|Notes |Section Name| 18K | 44K | 100K |} Subr. Block| Defined |
L [KN 4 Il i L Il 1
] L) Ll v] T) L}
IEFSDOO4		IEFSDOO4	IEFATACH	IEFALOC	IEFALLOC		46
IEFSD006		1IEFSD006	IEFSTERM	IEFSTERM	GO		
			IEFALOC2	IEFALOCL	IEFVHL		
			IEFALOC4	IEFCNTRL			
			IEFALOCS	IEFALOC2	IEFALLOC	(
			IEFATACH		Go		
	[IEFSELCT	[[
			IEFDD	IEFVH1			
			IEFINTFC	IEFCOMMD			
]	IEFJTERM	IEFJTERM	i]		
			IEFVHEN				
[IEFVHL					
IEFSD007		IEFSD007	IEFSTERM	IEFSTERM	GO		i
i			IEFATACH	IEFALOCZ2	IEFVH1		
			IEFINTFC	IEFCNIRL			
			IEFJTERM	IEFVH1			
]	IEFVH1	IEFJTERM				
IEFSD0O0S		IEFSD008	IEFINTFC	IEFCNTRL	GO]		
IEFSD009		IEFSD009	IEFSELCT	IEFSTERM	GO i		
IEFSD010		IEFSD010	IEFATACH	IEFALOC2	GO i		
			IEFJTRM2	IEFJTERM			
IEFSDO11		IEFSD011	IEFSTERM	IEFSTERM	GO	ue	48
IEFsDO12		IEFSDOi12	IEFDD	IEFCNTRL	GO		{
IEFSDO17		IEFSD017	IEFSTERM	IEFSTERM	GO		
IEFSD059		IEFSD059	IEFSELCT	IEFSTERM	GO		{
IEFSD088		IEFsD088	IEFSELCT	IEFSTERM	GO		
IEFSD089		IEFSD089	IEFSELCT	IEFSTERM	GO]
		IEFSD89M				i	
IEFSD0O90		IEFSD090	IEFDD	IEFCNTRL	GO		
IEFSD0O94		IEFSD094%	IEFSELCT	IEFSTERM	GO		
IEFSD095		IEFSD095	IEFSELCT	IEFSTERM	GO		
IEFSEPAR		IEFSEPAR	IEFSELCT	IEFSTERM	GO		
IEFSGOPT	**	IEFSGOPT	IEFSELCT	IEFSTERM	GO		
]	IEFALOCZ2	IEFALOCLl	IEFVH1			
			IEFVHL	IEFVH1L	IEFJOBQE		
i			IEFJOBQE	IEFJOBQE			
IEFVDA	{ IEFVDA	IEFDD	IEFCNTRL	GO	14 i I		
IEFVDDUM		IEFVDBSD	IEFDD	IEFCNTRL	GO		
IEFVEA		IEFVEA	IEFEXEC	IEFCNTRL	GO	14	(
IEFVFA		IEFVFA	IEFVHH	IEFCNTRL	GO	14	
IEFVFB		IEFVFB	IEFVHH	IEFCNTRL	GO		(
IEFVGI		IEFVGI	IEFDD	IEFCNTRL	GO		
[[LEFEXEC		[I I			
IEFVGK		IEFVGK { IEFDD	IEFCNTRL	GO	18	[
			IEFEXEC				
			IEFJOB				
IEFVGMEP		IEFVGM	IEFVGMSS				
IEFVGMSS		IEFVGM	IEFVHH	IEFCNTRL	GO	53	
I			IEFVINA	IEFVINA		i i	
I	i	IEFCOMMD	IEFCOMMD	IEFCOMMD			
			IEFVGMSS				
			IEFEXEC				
I	!	IEFJOB					
IEFVGM1		IEFVGM1	IEFVGM1	IEFVGM1	IEFVGM1	53,54,55	i
IEFVGMZ		1EFVeMZ	IEFVGM2	IEFVGM2	IEFVGM2	53,54,55	
IEFVGM3		IEFVGM3	IEFVGM3	IEFVGM3	IEFVGM3	53,54,55	
IKFVeM4		IEFVGMUY4	IEFVGM4	IEFVGM4	IEFVGM4	53,54,55	
I -							
-							
<							
L 4 L 1 L] L 1 (]

Appendix C: Load Modules and Assembly Modules 101

Assembly Modules and Control Sections (Part 4 of)

r T T T T A
| | | | Load Modules in Which | Chart Number |
| | | | Assembly Modules are Used 3 T 4
| Assembly | | Control t T T { Appears ‘As | Flow is |
| Module Narme|Wotes |Section Name| 18K | 44K | 100K | subr. Block| Defined |
b t t + } + t ¥ -
IEFVGM1S8		IEFVGM18	IEFVGM18	IEFVGM18	IEFVGM18	53,54,55	
IEFVGM70		IEFVGM70	IEFVGM70	IEFVGM70	IEFVGM70	53,54,55	
IEFVGMTL		IEFVGM71	IEFVGM71	IEFVGM71	1EFVGM71		
IEFVGM78		IEFVGM78	IEFVGM78	IEFVGM78	IEFVGM78	53,54,55	
IEFVGS		IEFVGS	IEFEXEC	IEFCNTRL	GO		
[IEFDD			[
IEFVGT		IEFVGT	IEFDD { IEFCNTRL	GO	18		
	I	IEFEXEC		I			
[[IEFJOB	[[I				
IEFVHA		IEFVHA	IEFCNTRL	IEFCNTRL	GO	14,16	
IEFVHAA		IEFVHAA	IEFCNTRL	IEFCNTRL	GO	16	
IEFVHB		IEFVHB	IEFVAH	IEFCNTRL	GO	16	
IEFVHC		IEFVHC	IEFCNTRL	IEFCHTRL	GO i 16		
IEFVHCB		IEFVHCB	IEFCNTRL	IEFCNTRL	GO	16	
IEFVHE		IEFVHE	IEFCNTRL	IEFCNTRL	GO	16 i	
IEFVHEB		IEFVHEB	IEFCNTRL	IEFCNTRL	GO	16	
IEFVHEC		IEFVHEC	IEFVAH	IEFCNTRL	GO	16	i
IEFVHF		IEFVHF	IEFVAH	IEFCNTRL	GO	16	
IEFVHGSS		IEFVHG	IEFVHH	IEFCNTRL	GO	16	
IEFVHR		IEFVHH	IEFVHH	IEFCNTRL	GO	16,53	
{ IEFVHHB		IEFVHHB	IEFVHH	IEFCNTRL	GO I		
IEFVHL		IEFVHL	IEFVAH	IEFCNTRL	GO	16	
IEFVHN		IEFVHN	IEFVHN	IEFViH1	IEFVH1	14,53	20
IEFVHY		IEFVHQ	IEFCNTRL	IEFCNTRL	GO I i		
			IEFINTFC		I		
	[IEFDD	IEFCOMMD	IEFVH1			
			IEFEXEC	IEFVill I [
			IEFJOB	IEFVINA			
1		IEFCOMMD			[[
			IEFVHH	I I			
			IEFVGM3S				
			IEFVHAL	I I			
I			IEFVINA		I I		
IEFVHRSS		IEFVHR	IEFCNTRL	IEFCNTIRL	GO]
			IEFDD	IEFVH1	IEFVH1		
			IEFEXEC	IEFCOMMD			
i			IEFINITFC				
			IEFVHL				
			IEFVINA	IEFVINA			
			IEFCOMMD				I
			IEFJOB				
	[IEFVGMSS	i I	[
IEFVHL		IEFVH1	IEFVA1	IEFVH1	IEFVHL	14,53,54,55] I	
IEFVHZ		IEFVH2	IEFVHL	IEFVH1	IEFVH1I	14	
IEFVINA	{ IEFVINA	IEFVINA	IEFVINA	GO			
IEFVINB		IEFVINB	IEFVINA	IEFVINA	GO		
IEFVINC		IEFVINC	IEFVINA	IEFVINA	GO		
IEFVIND		IEFVIND	I1EFCNTRL	IEFCNTRL	GO		
			IEFEXEC				
IEFVINE		IEFVINE	IEFVINA	IEFVINA	GO	I	
IEFVJA		IEFVJA	IEFJOB	IEFCHTRL	GO	14	
IEFV1SXL		IEFVA5XL	IEFALOC2	IEFALOCLl	IEFALLOC		
			IEFX5000	IEFALOC2		i	
			IEFALOCH				
IEFVJIMP		IEFVJI	IEFSTERM	IEFSTERM	GO	46,47	50
IEFVJIMSG	{ IEFVIMSG	IEFSTERM	IEFSTERM	GO i			
IEFVRIMP		IEFVK	IEFSELCT	IEFSTERM	GO	22	24
IEFVEMSG		IEFVKMSG	IEFSELCT	IEFSTERM	GO		
IEFVMFAK		IEFVMCVL	IEFMCVOL	IEFMCVOL	IEFMCVOL		
IEFVMLKS		IEFVM6	IEFSELCT	IEFSTERM			
L L 4 L A 1 4 1 J

102

Assembly Modules and Control Sections (Part 5 of 7)

r T Ll v T 1
| | | | Load Modules in Which | Chart Number
| | | | Assembly Modules are Used F T 4
| Assembly | | Control t T ———T { Appears As | Flow is |
| Module Name|Notes |Section Name| 18K | 4ux | 100K | subr. Block| Defined |
b $ } ¢ + : + + -
| IEFVMLS1 | | IEFVM1 | IEFSELCT | IEFSTERM | GO | 24,25 | 25]
| IEFVMLS6 | | IEFVM6 | IEFERROR | IEFERROR | GO | 25,26 | 33 |
| IEFVMLS7 | | IEFVM7 | IEFERROR | IEFERROR | GO i | |
| IEFVMMS1 | | IeFVML | IEFNCVOL | IEFMCVOL | IEFMCVOL | i I
IEFVM2LS		IEFVM2	IEFSELCT	IEFSTERM	GO	25,26	29
IEFVM3LS		IEFVM3	IEFSELCT	IEFSTERM	GO	25,26	30
IEFVMULS		IEFVM4	IEFSELCT	IEFSTERM	GO	25,26 I 31	
IEFVM5LS		IEFVMS	IEFSELCT	IEFSTERM	GO	25,26	32
IEFVM76		IEFVM76	IEFSELCT	IEFSTERM	GO		
IEFWAFAK		IEFWA000	IEFALOC1				
IEFWAD	#**%%	IEFWAD	IEFSTERM	IEFSTERM	GO	[
]	IEFSELCT	IEFJTERM				
			IEFJTRML				
		IEFWA002			I		
IEFWA000		IEFWA7	IEFALOC2	IEFALOCLl	IEFALLOC	34	36
IEFWCFRK		IEFWC000	IEFALOCL1	IEFALOC1		I	
			IEFX5000				
]		LEFALOC2					
IEFWCIMP		IEFWC000	IEFALOC3	IEFALOC2	IEFALLOC	34	#
I		IEFWC002	IEFALOC3	IEFALOCZ2	IEFALLOC		
IEFWDF&K		IEFWD000	IEFALOC3				
			IEFALOCS				
IEFWD000		IEFWD000	IEFALOC4	IEFALOCL	IEFALLOC	34,35,38	42
				IEFALOCZ			I
IEFWDOOL1	{ IEFWD001	IEFALOC4	IEFALOC1	IEFALLOC		i	
				IEFALOC2			
IEFWMASL	#*%	DEVNAMET	DEVNAMET	DEVNAMET	DEVNAMET		
IEFWMSKA	#*#*	DEVMASKT	DEVMASKT	DEVMASKT	DEVMASKT		
IEFWSDIP		IEFWSDIP	IEFVH1	IEFVAL	IEFVH1L		
IEFWSTRT		IEFWSTRT	IEFSELCT	IEFSTERM	GO		
IEFWSWIN		IEFWSWIT	IEFALOC2	IEFALOC1	GO		
IEFWTERM		IEFWTERM	IEFJTRM1	IEFJTERM	GO		
IEFW21SD		IEFW21SD	IEFSELCT	IEFSTERM	GO	22	23
IEFW22SD		IEFW22SD	IEFSTERM	IEFSTERM	GO	ué	
IEFW23SD		1IEFW23SD	IEFJTRM1	IEFJTERM	GO	u6	
IEFW31FK		IEFW31sD	IEFJTRM1L			i	
IEFW31SD		IEFW31sSD	IEFJTRM2	IEFJTERM	GO	u6	
IEFW41SD		IEFW41SD	IEFALOCS	IEFALOC2	IEFALLOC		
IEFW42sD		IEFW42SD	IEFSTERM	IEFSTERM	GO	46	
IEFXAFAK		IEFXA	IEFSELCT	IEFSTERM	IEFALERR		35
I				IEFALOC2	I		
IEFXAMSG		IEFXAMSG	IEFALOC1	IEFALOCl1l	IEFALLOC		
IEFXCSSS		1IEFXA	IEFALOC1	IEFALOCL1	IEFALLOC	32,38	33
		IEFXABOO					
IEFXHO000		IEFXHO000	IEFX5000	IEFALOC2	IEFALLOC		
			IEFALOC3				I
IEFXJFAK		IEFXJ000	IEFALOC2		IEFALLOC		
]			IEFX5000				
1 I]	IEFALOC3						
IEFXJIMP		IEFXJ000	IEFALOC1	IEFALOC1	IEFALLOC	38] [
[[IEFALOC2				
IEFXJMSG		IEFXJMSG	IEFALOC1	IEFALOC1l	IEFALLOC	I	
[[IEFALOC2	[
IEFXKFAK		IEFXK000 .			IEFALLOC		[
IEFXKIMP		IEFXK000	IEFALOCW4	IEFALOC1	IEFALLOC		
			IEFALOCS	IEFALOC2			
IEFXKMSCG		IEFXKMSG	IEFALOC4	IEFALOC1	IEFALERR		
			IEFALOC5	IEFALOC2			
IEFXTFAK		IEFXT000	IEFALOCH				
IEFXTDMY		IEFXTDMY	IEFALOCS	IEFALOC2	IEFALLOC		
L L L L L L L L 4
Appendix C: Load Modules and Assembly Modules 103

Assembly Modules and Control Sections (Part 6 of 7)

F T T T T q
| | | | Load Modules in Which | Chart Number |
| | | | Assembly Modules are Used b T 1
| Assembly | | Control } T T {1 Appears As | Flow is |
|Module Name|Notes |Section Name| 18K | L4K | 100K | subr. Block| Defined |
L [L i 4+ 1 i (| 4
[) T T T LB T T v h)
IEFXTMSG		IEFXTMSG	IEFALOC5	IEFALOC2	IEFALLOC]	
IEFXTOOD		IEFXT000	IEFALOCS	IEFALOC2	IEFALLOC	34 j 43	
IEFXT002		IEFXT002	IEFALOCS	IEFALOC2	IEFALLOC		45
IEFXTO003		IEFXT003	IEFALOC5	IEFALOC2	IEFALLOC	L [
IEFXVMSG		IEFXVMSG	IEFALOCH	IEFALOC1	IEFALLOC		
IEFXVNSL	**#*%	IEFXVNSL	IEFALOC4	IEFALOC1	IEFALLOC	i	
IEFXVO001		IEFXV001	IEFALOC4	IEFALOCL	IEFALLOC	34	37
IEFXV002	{ IEFXV002	IEFALOCY4	IEFALOC1	IERFALLOC	37	38	
IEFXVFAK		IEFXV001	IEFALOC2	(
IEFX1FAK		IEFXJ000	IEFALOCH				
I1IEFX2FAK		IEFX5000	IEFALOCH]		
IEFX3FAK		IEFWC000	IEFALOCH			34	40
IEFX300Aa		IEFX3000	IEFALOC2	IEFALOC1	IEFALLOC		
			IEFX5000				
I		IEFALOC4	IEFALOC2				
IEFXSFAK	{ IEFX5000	IEFALOC2	IEFALQC1L	i	i		
IEFX5000		IEFX5000	IEFX5000	IEFALOCZ2	IEFALLCC	34,53	u0
IEFYNFAK		IEFYN	IEFSELCT	IEFALOC1			
]	IEFALCO1	IEFERROR	IEFALLOC			
			IEFALOC4	IEFIDUMP			
			IEFALOC5	IEFALOCZ	IEFMCVOL		
			IEFERROR	IEFMCVOL		i	
I			IEFIDUMP				
			IEFMCVOL]	
IEFYNIMP		IEFYN	IEFSTERM	IEFSTERM	GO	ue	
IEFYNMSG		IEFYNMSG	IEFSTERM	IEFSTERM	GC		
IEFYPJB3		IEFYP	IEFSTERM	IEFSTERM	GO	45,47	49
IEFYPMSG		IEFYPMSG	IEFSTERM	IEFSTERM	GO		
IEFYSSMB		IEFYS	IEFSTERM	IEFSTERM	GO	i	
			IEFSELCT	IEFALOC1	IEFIDUMP		
			IEFALOC1	IEFALOC2	IEFALLOC		
I			IEFALOCUG	IEFERROR			
			IEFALOCS	IEFJTERM	IEFMCVOL		
			IEFJTRM1	IEFIDUMP			
i i		IEFERROR	IEFMCVOL	i			
			IEFIDUNP	I	I		
I		IEFMCVOL					
{ IEFZAFAK		IEFZA	IEFSTERM	IEFSTERM]
IEFZAJB3		1IEFZA	IEFJTRM1	IEFJTERM	GO	46	51
IEF2GJB1		1IEFZGJ	IEFJTRM1	IEFCNTRL	GO	47	53

| IEFZGMSG | | IEFZGMSG | IEFSTERM | IEFSTERM | GO | | i
i | | | IEFJTRM1 | IEFJTERM | | | |
IEFZGST1		IEF2G	IEFSTERM	IEFSTERM	GO	46,50	52
IEF2GsT2		I1IEF2G2	IEFSTERM	IEFSTERM	GO	46	
IEFZHFAK	{ IEFZPOQM	IEFJTRM1L	IEFJTERN				
I1EFZHMSG		1EFZH	IEFSTERM	IEFSTERM	GO	46	
			IEFJTRM1	IEFJTERM			
IEFO4FAK		IEFSDOO4	IEFALOCS				
IEFO08FAK		I1EFsSD008	IEFSTERM	IEFSTERM			
[IEFINTFC		l			
I			IEFJTRM2	i			
IEFO9FAK		IEFSD009	IEFSTERM	IEFCNTRL			
			IEFINTFC				
IEF23FAK		IEFW23SD	IEFINTFC	i]	
IEF3SDUM			IEFJTERM	IEFCNTRL	GO		
IEF7KGXX		IEFKG	IEFINTFC	IEFCNTRL	GO		
IEFTKPXX		IEFVHM	IEFCOMMD	IEFCOMMD	GO i 16		
IEF7K1XX		IEFK1	IEFVH1	IEFVH1	IEFVH1	14	
IEF7TK2XX		IEFK2	IEFVH1 { LEFVHL	IEFVHL	14		
IEF7K3XX		IEFK3 { IEFVHN	IEFVil	IEFVH1	14		
L L L 4 i L L 1]

104

Assembly Modules and Control Sections (Part 7 of 7)

| ¥Assembly modules in SYS1.NUCLEUS data set.

| ¥*Modules are assembled during system generation.

| ¥**Assembly modules in S$YS1.SVCLIB data set.

| ¥***IEFACTFK may replace IEFACTLK, IEFACTRT, and IEFWAD during system generation.

| *****IEFXVNSL is a simple exit and return subroutine that the user may replace with his

| own subroutine for processing nonstandard labels.
L

r T L) 1 1 bl
| | | i Load Modules in Which | Chart Numpver |
| | | | Assembly Modules are Used b T {
| Assembly | | Control F T T { Appears As | Flow is |
| Module Name|Notes |Section Name| 18K | 44x | 100K | Subr. Block| Defined |
F 1 t 1 + ¥ ¥ t 4
]			
IEZDCODE		IEZDCODE	IEZDCODE	IEZDCODE	GO		
IEZNCODE		IEZNCODE	IEFVINA	IEFVINA	GO		
			IEZNCODE	IEZNCODE			
% L A [l IR L 1 L _=							
Notes:							
I							
I							
I							
J

Appendix C: Load Modules and Assembly Modules 105

Control Sections and Assembly Modules

The following list provides a cross-reference between job management control section
(CSECT) names, which appear in alphameric order, and the corresponding assewbly module
names. Control section names are also listed in the preceding assembly module to load
module cross reference table.

CSECT NAME ASSEMBLY MODULE NAME CSECT NAME ASSEMBLY MODULE NAME
DEVMASKT IEFWMSKA IEFSD090 IEFSDO090
DEVNAMET IEFWMAS1 IEFSDO9%4 IEFSDO%%Y
IEEBB1 IEEMCRFK IEFSD095 IEFSD095
IEEBB1 IEEMCRO1 IEFSD89M IEFSD089
IEEGESTO IEEGESO1 IEFSEPAR IEFSEPAR
IEEGK1GM IEEGK1GM IEFSGOPT IEFSGOPT
IEEICCAN IEEILCDM IEFVDA IEFDAFAK
IEEICCAN IEETLCO1 IEFVDA IEFVDA
IEEICNO1 IEECNDUM IEFVEBSD IEFVDDUM
IEEICNO1 IEEICNO1 IEFVEA IEFEAFAK
IEEICRDR IEEREADR IEFVEA IEFVEA
IEEICWTR IEEWRITR IEFVFA IEFVFA
IEEIC1PE IESSTART IEFVFA IEFFAFAK
IEEIC2NQ IEEIC2NQ IEFVFB IEFVFB
IEEIC3JF IEEIC3JF IEFVHB IEFVHB
IEEMCREP IEEMCREP IEFVGI IEFVGI
IEEQOTOO IEEQOT00 IEFVGK IEFVGK
IEEVSMSG IEEVSMDM IEFVGM IEFVGMSS
IEFACTLK IEFACTLK IEFVGM IEFVGMEP
IEFACTLK IEFACTFK IEFVGM IEFGMFAK
IEFACTRT IEFACTRT IEFVGM1 IEFVGM1
IEFBR14 IEFBR1Y4 IEFVGM2 IEFVGM2
IEFCVOL1 IEFMCVOL IEFVGM3 IEFVGM3
IEFCVOL2 IEFMCVOL IEFVGM4 IEFVGMY
IEFCVOL3 IEFMCVOL IEFVGMS IEFVGMS
IEFDEVPT IEFDEVPT IEFVGM6 IEFVGM6
IEFIDMPM IEFIDMPM IEFVGM7 IEFVGM7
IEFIDUMP IEFIDFAK IEFVGMS IEFVGMS8
IEFIDUMP IEFIDUMP IEFVGM9 IEFVGM9
IEFINTQS IEFINTGA IEFVGM10 IEFVGM10
IEFKG IEFKGDUM IEFVGM11 IEFVGM11
IEFKG IEF7KGXX IEFVGM12 IEFVGM12
IEFK1 IEF7K1XX IEFVGM13 IEFVGM13
IEFK1 IEFK1AK IEFVGM14 IEFVGM14
IEFK1MSG IEFK1MSG IEFVGM15 IEFVGM15
IEFK2 IEF7K2XX IEFVGM16 IEFVGM16
IEFK3 IEF7K3XX IEFVGM17 IEFVGM17
IEFPRES IEFPRES IEFVGM18 IEFVGM18
IEFOMSSS IEFOMSSS 'IEFVGM?O IEFVGM70
IEFSCAN IEFSCAN IEFVGM71 IEFVGM71
IEFSDOO1 IEFSDO01 IEFVGM78 IEFVGM78
IEFSD002 IEFSD002 IEFVGS IEFVGS
IEFSD003 IEFSD003 IEFVGT IEFVGT
IEFSDO0O4 IEFSDOO4 IEFVHA IEFHAFAK
IEFSDOO4 IEFO4FAK IEFVHA IEFVHA
IEFSD006 IEFSDO0O6 IEFVHAA IEFHAAFK
IEFSD007 IEFSD007 IEFVHAA IEFVHAA
IEFSD008 IEFSDO008 IEFVHB IEFVHB
IEFSD00S8 IEFO08FAK IEFVHB IEFHBFAK
IEFSD009 IEFSD009 IEFVHC IEFVHC
IEFSD009 IEFO09FAK IEFVHC IEFHCFAK
IEFSDO010 IEFSDO010 IEFVHCB IEFHCBFK
IEFSDO11 IEFSDO11 IEFVHCB IEFVHCB
IEFSDO012 IEFSDO012 IEFVHE IEFVHE
IEFSD017 IEFSD017 IEFVHE IEFHEFAK
IEFSD035 IEF35DUM IEFVHEB IEFVHEB
IEFSD059 IEFSDO059 IEFVHEB IEFHEBFK
IEFSD088 IEFsSDO088 IEFVHEC IEFVHEC
IEFSD089 IEFSDO089 IEFVHEC IEFHECFK

106

CSECT NAME ASSEMBLY MODULE NAME CSECT NAME ASSEMBLY MODULE NAME

IEFVHF IEFHFFAK IEFWSWIT IEFWSWIN
IEFVHF IEFVHF IEFWTERM IEFWTERM
IEFVHG IEFVHGSS IEFW215D IEFW21SD
IEFVHH IEFVHH IEFW22SD ILFWL28D
IEFVHA IEFHHFAK IEFW23s8D IEFWZ3SD
IELFVHHB IEFVHAB IEFWZ35D IEF23FAK
ISFVHL IEFVHL IEFW31sD IEFW31SD
IEFVHL IEFHLFAK IEFW31SD IEFW31FK
1EFVAM IEFHMFAK IEFW41SD IEFWU41SD
IEFVHM IsFTRPXX IEFW42SD IEFW42SD
IEFVHN 1EFVHN IEFXAMSG IEFXANSG
IEFVHQ IEFVHQ IEFXaA IEFXAFRK
IEFVHR IEFVHRSS IEFXA IEFXCSSss
IEFVHL IEFVH1 IEFXABCO IEFXCSSS
IEFVH2 IEFVH2 IEFXHO000 IEFX:A000
IEFVINA 1EFVINA IEFXJIMSG IEFXJIMSG
IEFVINSB IEFVINB IEFXJ000 IEFXJFAK
IEFVINC IEFVINC IEFXJ000 IEFXJINMP
IEFVIND IEFVIND IEFXJ000 IEFX1FAK
IEFVINE IEFVING IEFXRNSG IEFXKMSG
IEFVJA IEFJAFAK IEFXK000 IEFXKINP
IEFVJA IEFVJA IEFXTDMY IEFXTDMY
IEFVIMSG IEFVJIMSG IEFXTMSG IEFXTMSG
IEFVI IEFVJIIMP IEFXTO000 IEFXTOO0D
IEFVJ JTERMO30 IEFXT002 IEFX57002
IEFVKMSG IBFVRMSG IEFXTO003 IEFXTO003
IEFVMCVL IEFVMLS1 IEFXT000 IEFXTFAK
IEFVK IEFVKIMP IEFXVMSG IEFXVMSG
IEFVMQOMI IEFVMLS1 IEFXVNSL IEFXVNSL
IEFVMPOQ IEFVMLS1 IEFXVO001 IEFXVFAK
IEFVM1 IEFVMLS1 IEFXV001 IEFXV001
IEFVM2 IEFVM2LS IEFXV002 IEFAV002
IEFVM3 IEFVM3LS IEFX3000 IEFX300A
IEFVMY IEFVMLLS IEFX5000 ILFX2FAK
IEFVMS IEFVMSLS IEFX5000 IEFX5FAK
IEFVM6 IEFVMLKS IEFX5000 TEFX5FAK
ILFVM6 IEFVMLS6 IEFYNIMP IEFYNIMP
IEFVMT6 IEFVM76 IEFYNMSG IEFYNMSG
IEFVM7 IEFVMLS7 IEFYN IEFYNFAK
IEFV15XL IEFV15XL IEFYN IEFWTERMO20
IEFWAD IEFWAD IEFYPMSG IEFYPMSG
IEFWAO000 IEFWAFAK IEFYP IEFYPJB3
IEFWAQ00 IEFWA000 1EFYS IEFYSSMB
IEFWAO002 IEFWAOQ0O0 IEFZA IEFZAFAK
IEFWA7 IEFWAOOO IEFZA IEFZAJB3
IEFWCO000 IEFWCFAK IEFZGMSG IEFZGMSG
IEFWCO000 IEFWCIMP IEFZGJ IEFZGJB1
IEFWCO000 IEFX3FAK IEFZG IEFZGST1
IEFWCO002 IEFWCIMP IEFZ2G2 IEFZGST2
IEFWDMSG IEFWDO0OO0O 1EFZH IEFZHMSG
IEFWDOO0O IEFWDFAK IEFZPOQM IEFZHFAK
IEFWDO0O0O I1EFWDOO0O IEZDCODE IEZDCODE
IEFWD0OO1 IEFWDOO1 IEZNCODE IEZNCODE
IEFWSDIP IEFWSDIP SPRINTER IEFPRTXX
IEFWSTRT IEFWSTRT

Appendix C: Load Modules and Assembly Modules 107

Appendix D: List of Acronyms

The following list contains the full name
associated with each acronym used in this
publication:

r T 1
|Acronym | Name |
L i]
¥ L] 1
ACB	Allocate control block
acT	Account control table
AVR	Automatic volume recognition
AVT	Allocate volume table
AWA	Auxiliary work area
AWT	Allocate work table
BPAM	Basic partitioned access method
cCW	Channel control word
CLT	Channel load table
CscB	Command scheduling control
	block
CSECT	Control section
cvT	Communications vector table
DADSM	Direct access device space
	management
DCB	Data control block
DEB	Data extent block
DMT	Device mask table
DNT	Device name table
DSCB	Data set control block
DSNAME	Data set name i
ECB	Event control block
GDG	Generation data group
I/70	Input/output
IPL	Initial program load
IRB	Interrupt request block
IWA	Interpreter work area
ICL	Job control language
JCT	Job control table
L i []

108

r T 1
|Acronym | Name |

- + :
| JFCB | Job file control block |
| JSCB | Job step control block |
| KRBT | Keyword branch table |
|LCT | Linkage control table |
| LWA | Local work area |
| NEL | Interpreter entrance list |
| NIP | Nucleus initialization program |
| NRWT | New reader/writer tabie |
| NSL | Non-standard label |
| PCP | Primary control program |
| PDQ | Passed data set queue |
| PDS | Partitioned data set |
| PDT | Parameter descriptor table |
| PUD | Potential user on. device |
| 9saM | Queued sequential access method|
| scT | Step control table |
|s1ioT | Step input/output table |
| SMB | System message block |
| SYSGEN | System generation |
| SYSIN | System input device |
| SYSOUT | System output device |
| TCB | Task control block |
| TIOT | Task input/output table i
| TTR | Auxiliary storage address on |
| | direct access device |
| UCB | Unit control block |
| VCON | variable constant |
| VOLT | Volume table |
| WTO | Write-to-operator |
| WIOR | Write-to—-operator with reply |
| WIP | Write-to-programmer |
| WIPCB | Write-to-programmer control |
| | block |
| I L 1

Chanrts

Chart 01l. Job Management

A5

A2
L. From initialization Entry From Scan
° (tnitial Entry)roufine . ((Chart 11))
&
Bl B2 b B4 Y &S

Non-
IEFVHAA EOF IEFVHA | control IEFVHB (EFVHG IEFVHF
| Ger [Ll ot sob Failed [PCP/MET 1 DD* | Post §
. nterpreter Get et Job Faile: il N - ost Scan
EOF Routine Routine Switch Failed Exit To Initiator DD* Routine
Enqueue Pending //
'STMT c2 Cc3
y Cl IEFVHC |IEFVGM
Exit Continuation »| Interpreter Message @
Statement Routine Processing Routine
To Interpreter Temmination
D1 y D2
IEFVHM IEFVHCB Read Stmt
_ Possible
C d$S HY ¢ < |Verb Identification @
Routine Routine
Or Proc. Pending
S{MT
New Reader £2 L £
@ Pending IEFVHE IEFVHL
@* R < Null Statement >@
outer Routine
F2
[EFVHEC
Job Validity
Check
G2 3
[Job Stmt,
IEFVHH DD*, or IEFKG
EOF
Job And Step Inferpreter/
Enqueue Initiator
Interface
No Job To Enqueue
Y H2 H3
|EFVHEB {EFVHHB
Pre-Scan é::u::j Step
Preparation Housekeeping
@ Statement To Scon
J2

-

To Scan Routine

Charts 109

Chart 02.

110

Master Scheduler

Al

‘ Entry ’

Supervisor
B1
IEEBA1 03

Console
Interrupt
Routine

y A

>

To Supervisor

D1

1 Entry ’

From
Supervisor

El
1GC03D 04

Master Command
Excp Routine

¢

&5

To Supervisor

G1

D

From
Supervisor

H1
|EEBB1T 05

y

-

To Supervisor

From Input/Output

A3

-

From
Supervisor

4 E3
1GCO103D 06

Process The
Mount, Unload,
Vary Commanc

4 C3

)

To Supervisor

D3
‘ Entry)

Y 3
1GC0203D

Display/Stop,
Job Names, and
Cancel Command

y F3
Exit >

To Supervisor

HZ
Master Command [~~~ Entry >
Routine

From Interpreter

A5
‘ Entry ’

From
Supervisor
B5
IEEBCIPE 07
External
Interrupt
Routine
C5
Exit

To Supervisor

Chart 03. Console Interrupt Routine

IEEBAT A2

——
(Entry ’

From Input/
Qutput Supervisor B3

Turn Off
WTOR
Switch

is Console
Flog Switch
On

To Input/Output
No Supervisor

Turn On
Console
Flag
Switch

E2

Pass IRB
Pointer To
Exit Effector

e T

C=)

o ——
To Supervisor
(Exit Effector)

IEEBAY G2
——e

Interrupt (Entry

Request -
Block Routine From Supervisor

H2

Issue
Sve 34

LJ2

)

To Supervisor

Charts

111

Chart O4. Master Command EXCP Routine

1GCO3D Note 1 Note 1 - If primary or alternate console is in use,
Al entry is to [EEMXCO1,

If composite console is in use,
entry is to [EEMXRO1.

Note 2 - MCR = master command routine .

From
Supervisor

Did
Operator
Cause An Atti
Intrpt

Routine
Called By
MCR

Yes
Read Console >
y D2
| Move Commond
< To Buffer
E2

Turn On

v B
- Pending Switch

Post Master
Scheduler ECB

Set Command

Turn Off

Start Command

Yes

» {Blank) .
Pending
Command Switch
No
XCTL To Command
Processing Routine
(1GCO103D)
J1
Exit

To Supervisor

112

Chart 05. Master Command Routine

|EEBBI Al
Entry

From supervisor or
interpreter

Y B1

Turn On
Console
Flag

Switch

Cmmd |ssud
From Input
Stream

Turn On
Command
Pending

Switch

Did Entry
Follow IPL

Was Start
Wrtr. Command
{ssved

Condition In
Reoder

K2

Return ’

To supervisor

Turn Off
Console Flag
Switch

(%)

A3

{EEICCAN

Obtain Any
Initialization
Commands

Any
Initialization
Command

C3

Is Ready
Message To Be
Issued

D3

|EEGKIGM

WTO Ready

B4

A5

Move Command
To Local Buffer

IEEGKIGM

WTO lllegel
Command

E3

Turn Off
Console
Flag
Switch

Turn On
Master
Command
Routine
Switch

G3

Wait For
Attention
Interruption

H3

J3

Turn Off
Master
Command
Routine
Switch

E4

|IEEGKIGM

WTO lssue Set

Command

F4

Issue SVC 34

Did Entry
Follow IPL

Has
The Date Been
Set

Is This A
Set Command

G5

Link To Appr

Comd Execution
Routine
(IEEGESTO Or
|EEIC1PE)

Command
Issued From
Console

Charts 113

114

e Chart 06. Write-to-Operator Routine

1GCO003E

A2

Note 1

From Supervisor

83

Set Register

o to Indicate _,@
Unsuccessful

WTP Proc
s

Back from
WTP

Note 2

WTP Only

3 Yes

D1
Transfer Yes
Control [>
to WTOR
®
E2
Process
WTO GD
F4
F2
Transfer
WTP Control
to WTP
@74..”1_ . To IGCO203E
G2
Exit

To Supervisor

Note 1: If primary or alternate console is in use, entry is to IEEWTCO00.
If composite console is in use, entry is to [EEWTROO.

Note 2: WTP returns to WTO only if message processing was unsuccessful .

e Chart 07.

Write-to-Operator with Reply Routine

IGCO103E

‘ Entry

A2

~————

From IGC0103

B2

Pseudo-
Disable

C2

Wait for
Free Buffer

D2

Move
Message

to Resident
Buffer

y E2

Write
Message on
Console

Turn on
WTOR
Switch

Note 1

B4

Wait for
Channel
End

Read Reply
from Console

D4

Wait for
Channel
End

Move Reply
to User's Area

Pseudo-
Enable

J4

Exit

To Supervisor

Note 1: If primary or alternate console is in use, entry is to IEEWTCO1
If composite console is in use, entry is to [EEWTROT.

Note also that this routine can ABEND to user if parameter list is invaiid or
if reply area is out of bounds.,

Issue
“Invalid
Reply"

Message

Charts

115

e Chart 08.

116

1GC0203

IEFWTPOO
B1

&

From 1GCOQ03E

Set Up
Message
Pointer

El

Set Up

Return
Indicator

Any
WTP 1/0
Errors on Job
Queue

Limit
Message

Write-to-Programmer Routines

(Part 1 of 5)

c3

Exit)

To IGCOT03E

or Route cd
Other than

Set WTP
Return
Indicator

cd 11 Going to
Console

H2

‘ Exit

To Supervisor

C4

To 1GCO003E

® Chart

09.

Write-to-Programmexr Routines (Part 2 of 5)

1GC0203E (Continued)

IEFWTPOO

C1

Get 224-Byte
Workarea

o kepg

Type System

MVT

C2

C3

Get 192-Byte
Workarea

Get 256-Byte
Workarea

L

Y D2

Save Size
of Workarea

E2

Enqueuve
on WTPCB

F2

Set Up
Message
Length

Exit ’

To IGCO303E

Charts

117

e Chart 10.

{GCO0303E
IEFWTPO1

From
IGC0403E

WTP
Invoked for
Step

Get WTP
SM8 and
Chain to Last
Allocate SMB

WTP Limit
Reached

System Task
in Control

Limit
Message
Processed

Set Up to
Process
Limit
Message

118

System
in Control

D2

Add WTP System

No

e e)

Write-to-Programmer Routines (Part 3 of 5)

C3
Write “No
Record" ——»@
Message

Yes

=

Message to SMB * | *11B3
Containing “No 11D2 *11B3
Record" Message 1G4 @ 11C2
11H4 11D2
P 114
E2 E3
Write Put Message Transient
SMB to in SMB Queue Mgr Yes
Job Queue and Write 1/0 Error
— &)
Free Workarea
and Dequeve
on WTPCB
or Route cd
Other than
n
H2
Route
Set Last cd 11 Going to
SMB Flag

Console

To IGCO103E

J5
J3
Set WTP
Exit Return
Indicator
To Supervisor
K5
Exit
To IGCO003E

e Chart 11.

Write-to-Programmer Routines (Part 4 of 5)

IGCO303E (Continved)
IEFWTPO1

LQNBS

r "No Record" _ No
Message

Processed

Yes $
Last SMB No w

Used

System
in Control

< New SMB
Needed

No
E5
@ Dequeue
on WTPCB
o N4 No
Record" Messag
Processed
G5
System (.)
in Control Exit
To IGCO403E

Any
Reserved
SMBs

J4

< s
wo

Set Up
to Use

Reserved
SMB

Charts

e Chart 12.

120

Write-to-Programmexr Routines (Part 5 of 5)

1GCO403E
IEFWTPO2

B1

From 1GCO303E

Cc2

<3

C1

1/O Error

Type Error

Issue WTO
1/O Error
Messoge

Free
Workarea PCP

No SMB Available
D1

Adjust
Reserved
SMB

Pointers

El

Issue WTO
for “Neo
Record"
Message

Fl

Set Up SMB
with "No
Record"
Message

Gl

«»

To IGCO303E

To IGCOTO03E

)

Set Return
from WTP
Indicator

D5

Exit ’

To IGCO003E

Chart 13. External Interrupt Routine

IEEBCIPE A3

. Entry

From
Supervisor

2 C4

Turn Off
Alternate
Console
Switch

Turn On
Alternate
Console
Switch

Switch On

D2 D4
Mork UCB Mark UCB
Pointer Table _ Pointer Table,
Adjust Primary Adijust Altrer
ucCB ucs

Turn On
External
Interrupt
Switch

) __G3

‘ Return ’

To Supervisor

Charts 121

Chart 14.

122

Interpreter control Flow

A3

‘ Entry)
I B3

IEFK1

Special PCP
Interpreter
Initialization

C3

{EFVHI 9

Interpreter
Initialization

D3

IEFVH2

Open Reader
And Procedure

Library
E3
IEFK2
Link To Pres
Res
F3
|EFVH 10

Control Routine

F4

F5

IEFVHN 13

IEFK3

G3

»| Interpreter

Termination

Wait For
Start RDR

1EFVFA n
JCL Scan
Routine
l H2 H3
1EFVIA 12 IEFVEA 12

Job Statement
Processor

Exec Statement
Processor

1w

IEFVDA 12

DD Statement
Processor

®)

Chart 15. Interpreter Initialization

A3
Entry

Store Input
Parameters

C3

GETMAIN For
Interpreter Work
Area

GETMAIN For
Local Work Area

R E3

Generate Unique
Name And
Process SYSGEN
Options

F3
Open Input
Stream

G3
Open PROCLIB
PDS

H3

Exit

Charts 123

Chart 16. Interpreter Control Routine

B2
Console
Device
2 c3
02 08
Master ‘_@
Scheduler Interpreter

D3 D4

System

Initiater / Qutput
Terminator Device
E3 E4
Job
St
Job Step O:fpur
Device

124

Chart 17.

Interpreter Scan Routine

A3
From interpreter
Entry control routine
B3
Scan
Preparation
Overriden
procedure
Cl C3
Expected Verb
Continuation Identification
Check)
D D4 D5
®—> 4 Branch Routine Key Routine Text Routine
4 El E3
Error Delimiter
Error Routine - Processing
Routine -
F3
F4
Scan To interpreter
Termination To IEFVHF control routine
Job l G2
< To IEFVJA To IEFVEA To IEFVDA
——

To JCL statement processor

Note - Exits to Interpreter control
routine if continuation or
overridden procedure cord
is expected, or if error is
detected on DD card.

Charts 125

Chart 18. JCL Statement Processors

Note - This chart shows control flow in all three
s pr . Each stat t
processor is entered from the JCL scan

routine and passes control to the control

routine .

Each statement processor includes several
keyword processors, most of which use
IEFVGT and IEFV as subroutines.

C3
‘ Entry)
—
Y D&
Header
£3
IEFVGK
Get Parameter (: :)
F2 F3 F4
IEFVGT |EFV
Test And Store Keyword Processor %1 Symbol Dictionary
Reference
O
G3 G4
|IEFVM
Cleanup Message Routine
H3

-«

126

e Chart 19.

In-Stream Procedure Routines

IEFVINA

A2

‘ Entry

From {EFVHCB

p ()

Yes e

IEFVINE B2 IEFVGM
B4
Check Error Exit
Syntax
To {EFVHA
IEFVINB C3
c2 C4
< First Time No Search
ngh Directory
ve
Yes No
|[EFVINC D2
Build
Directory
Entry
(:}M~ J £2
Get JCL
Statement
F2
) ' -
To IEFVHCB
No
G2
PEND Yes @
IEZNCODE J3
J4
Compress
Yes Yes
K2
Set Job
Flush Bit

No

J5

Create SMB

Charts

127

Chart 20.

128

Interpreter Termination

Cc3

=

3

Freemain For
IWA And Local
Work Area

Close Input
Stream

|EFK3

J

J

Close Proclib
PDS

e

w

3

:

Chart 21. Initiator/Terminator

A3

Entry

Do
e

From Interpreter

[83
14
Initiator
Control
C3
27
Allocation
And Setup
y D3
39
Step
Initiation
E3
Exit

To Processing Program

F3

Entry

0

From Supervisor Or An
Init/Term Routine

y G3
40

Termination

y H3

Exit

To Interpreter Or
Initiator Control

Charts 129

Chart 22.

130

Initiator Control

routine

B3
IEFW215D 16

System Control
Routine Rtn.

C3
IEFVK 17

Execute Stmnt
Conditional
Execution Rtn.

D3

IEFVYM1 18
JFCB
Housekeeping
Routines

E3

€D

To alfocation
and setup

From nterprefer or
step tormination

Entry is from the interpreter when a JOB,
NULL, DD *, or DD DATA statement
is encountered in the input job stream

Chart 23.

System Control Routine

IEFW215D

Al

Entry

e—rd
From interpreter

or step termination
81

Increment
Step Number
By One

First Step Of

C2 C4
. " o IEEGKIGM
s s s Jol
—] :’lfceSJJcc;b Nome Notification WTO Job Name
e Switch Started
On
No
D2 D4
Restore Saved Move Tables
TTR Data From Is Step For Restarting
CVT, Set Restart Switch Step From New
Restart Switches On Queve To Old
Queve

To execute statement
conditional execution
routine IEFVK

E2

Remove Job Name
From SJQ

Charts

131

Chart 24.

Al

From System

Bl

The First Step of
The Job

Was Only
Specified

Control Routine

To JFCB

Housekeeping Routines

Execute Statement Conditional Execution Routine

VK240 B3

Compare Conditicn
Code With Return

Cade

c4

5

et Step Status
Field Of SCT
To Cancel

With Cond Oper
s

Issue Message

No

All Steps To
Be Tested

IEFQMSSS

Place Appr SCT
Into Storage
Area

132

¥

To JFCB Housekeeping
Routines

VK650

w
All Steps To

Be Tested

F2

IEFQMSSS

48
Al

To Step Termination

Place First SCT
{nto Storage
Area

Routine
F5
Get Next
Cond Code

To JFCB Housekeeping
Routines

Chart 25. JFCB Housekeeping Routines

*
24 A3
24 E1
24 F3
24 F4

D_
<

A3

From execute stmnt
contitional execution

routine
B2 B3 aL B4
|EFVMé 26 IEFVM) 19 IEFMCVOL 20
Error M JFCB Mount Control
Processing Housekeeping Volume Routine
Routine Control Routine
48
& To appropriate
To step processing

P routine
termination .

. To allocation
routine

control routine

D1 D2 D3 D4 L D5

21 IEFVM2 22 IEFVM3 23 IEFVM4 24 IEFVMS5 25
Allocate Fetch DCB GDG Single GDG All Patterning DSCB
Processing Processing Processing Processing Processing
Routine Routine Routine Routine Routine

XCTL 83 @ XCTL @ @ XCTL

IEFMCVOL 20

F3

Mount Control
Volume Routine

Charts

133

Chart 26.

JFCB Housekeeping Control Routine

IEFVM1 Al

Bl

Indr Set To
Complete

Any SIOT
Tables To Be
Processed

Storage For
Work Area

El

Read In Next
SIOT

Is This
The First SIOT
OF Step

ts Fetch DCB
Specified

[EFVM2 22

Is JFCB HSK Yes

From Execute
Stmt Conditional
Execution Routine

82

Single GDG
Specified

Is Disp
Of Data Set
New

Error BJ

IEFVM3 23

Yes Link
—]

GDG Single
Processing
Routine

Fetch DCB
Processing Routine

Error

Error

Dy

2882 8 G2
28 F3 28 H1
28 H3

Error

K3

IEFVM 26

Note 1 Control is passed
to the JFCB housekeeping
allocate processing routine

134

Error Message
Processing Routine

48
Al

)

To Step Termination

Rtn

1s-Vol Info
Found Via
PDQ Entry

Is Disp Of
Data Set
New

: Error

Read In JFCB If

C4

Are All
Not In Storage, SIOT/JFCBS
Scan PDQ For Processed

This DSNAME

{EFVM5 25 s An D5
s Any
No I Patterning DSCB ﬁ’gg’ T'“bl Update Req For >0
Processing avle Tbl
Routine
Read Next GDG
Volume Y RI5=0 E Bias Table Block,
Affinity ad Successful Tror Update Bias
Specified Count If
Required
F2
RI5 =4 Was F5
Suballocate Unmounted Update
Specified VoL Required
G5
ctl To IEFVYM4 24
IEFMCVOL To Error Reenqueue Bias
Mount CVOL) @'* oDG Al P Table Block
From VCB ne
l H3
5
Obtain Vol Info Any More
——————-———— For JFCB And Bias Table
SCT From VCB Blocks
*
[:>>_. 28CI| «
28 J3
’ J3 J5
Make PDQ Table Set JFCB HSK
Entry 1D Required Indr In SCT To
Reenqueve JFCB Reenqueve SIOT Complete,

Refease Storage

()

Set Action Code
Into LCT Table

K5

Set Disp
To New

To Allocation
Control Rtn

Chart 27. DMount Control Volume Routine

IEFMCVOL
Entry 1 Al

‘ IEFCVOLI :’

3 B1

Getmain
For
Work Area

Enough
Main
Storage

D
Assign Records
On JCB Queue
And Create Dummy
LCT, JCT, DCB,
SIOT
El
Create
Dummy
JFCB
Fi
Create
Dummy
Volt
G1

XCTL To
IEFVM1 For

'Dummy’

Exit

No
(MCV Error)

To JFCB hskp
error routine

Entry 2 A3

(IEFCVOL2)

Freemain
Occupied By
Scheduler
Look-up
Table

c3

Freemain
Occupied By
TIOT Built
For Control
Volume

D3

Freemain
Occupied By
Dummy
Volt

y E3
Restore All
Pointers To
Original LCT,
JCT, sCT1,

SIOT JFCB

y F3

Update SMB
Pointers In
LCT And SCT

Freemain For
Work Area (By
IEFCVOLT)

XCTL To
IEFVMCVM In

Entry 3 A5

< IEFCVOL3)

BS

Update Original
LCT With Error

Count And
Current SMB
Address

C5

Update Original
SCT With New
SMB Pointers
And Step Status
Indicator:

D5

Restore All
Pointers To
Original
Tables

Freemain
For ‘Work
Area (By
IEFCVOLT)

reemain
For Storage

Obtained By
IEFVM]1 Befor

G5

Exit

To step termination

Charts

135

Chart 28. Allocate Processing Routine

28
Bl 82

81 82 B5
D.A, Of Vol Place Referenced Intrastep 7 suball B4 Set Intra Step
Ref/Suballoc of SIOT And JFCB Suballoc Or Shocifies Suballoc Bit In
Fid In SIOT l‘:\fo Storage Vol Aff pecifie sioT
rea

Cifferent
Step

B

Vol Ser
Available

Pointer
Is To Volt

D1
Read JFCB Into Compare SIOT Set Ref DD Into
Storage If Not * Addr In PDQ Current SIOT For
Tho 9 ° 2% B5 Entry With Allocate
e 2% b4 Referenced SIOT o
B,
El
Entry Is Yes Read In N, Have
PDQ For This C pondi i Laftesf ngurce
DSNAME PDQ Block Of Vol Sers
1°3
Place Referencec!
SIOT And JFCB
Into Storage
Area
33
RI5=0 XCTL To 1s Volume Set Ref DD Into
Successful IEFMCVOL To On Tape Current SIOT For
Mount CVOL Allocate
H3
i
Get Vol Info For { Error E Get Vol Info For | |
JFCB And SCT "] JFCB And SCT S
From VCB From JFCB

All Entries/exits are from/to the JFCB housekeeping control routine

136

Chart 29. Fetch DCB Processing Routine

IEFVM2 A3

Entry

From JFCB housekeeping
control routine

83
Initialize
SIoT
Fields

C3

Place JFCB And
Referenced SIOT
Tables Into
Storage Area

To JFCB housekeeping
error message
processing routine

D3
Update Volt
With New Vol To JFCB housekeeping
Ser, Store Volt error message
6 processing routine
VMI27 y E3
Return

To JFCB housekeeping
control routine

Charts 137

Chart 30. GDG Single Processing Routine

(EFVM3 Al

Entry

" TFrom JECB housekeeping
control routine

Bl VM7160 83 B4

Place

JFCB Into |Error te No Set Error

Storage Name =

A Valid Code

rea
Yes
C2 VM7164 C3 @
Setup Member
Assign Record, No. And New ;
—] Clear Storage Bias Count _
For New TBL Store GDG
Bias Count TBL
VM7150C D1 D3 D5
Place GDG
! Not B XCTL To
Bias Count Error Issue Locate Successful R15=4 IEFMCYOL
Table Into Macro For - Unmounted
To Mount

Storage Area Data Set CvoL cvoL

Successful

VM7180 E3

Search PDQ
—Fownd | osNamE -'
Entry
Not Found
VM7182 G3

Ve

138

VM7184 H3 VYM7188 l H4
Assign Record, .
Clear New TBL Fn!l In JFCB' Error Set Up
. With Vol ID'S For Error
Update, Write Build Volt Ret
Out Old TBL utie Yo etumn
g]
VM7158 [31 VM7186 J3
insert GDG Ret
DSNAME Into erum
Table And SCT,
Update Count To JFCB housekeepirg

control routine

Chart 31.

GDG All Processing Routine

IEFVYM4 A2
Entry

[From JFCB housekeeping
control routine

VM7208 B2
Initialize
GDG Index

Set Up DSNAME
In JFCB

F1

Update DD
Number Count In
Work Area

3

Gl

Set Chain
Pointer, Store
Completed SIOT

Error

VM7YAO

3

Is AVCB

Required Macro

Issue A Locate

Instruction

Other

Is This A
Valid GDG
index

Yes

VM7218 E2

Move Vols
From Index
To VCB

Work Area

ViM7222 F2

Set Vol IDS

From VCB Into Error

Successful

JFCB

Normal

G

Make PDQ Entry

For GDG All Error

HI

Assign Storage
Space For New
SIOT And JFCB

Error

Member DS If
Pass Specified

Normal

VM7226 H2

Update JFCB, Error

Successful K1

Issue A Locate
Macro

[Other

SIOT. Write Out
JFCB

MNormal

M7240

K3

Is

Yes .~ There Another No

Pointer,

Set Chain

Store SIOT

J4

Set Up Error
M

9
{ndication

M7250 K4

\Szifw

jError

For Each SIOT
Read In, Update

Sep, AFF Fields,
Chain And Store
SIOT

Error

J4

K5
Return

To JFCB housekeeping
control routine

Charts

139

Chart 32.

140

Patterning DSCB Processing Routine

|EFVM5 A2

Entry

From JFCB housekeeping
control routine

B2

Place JFCB

Into Storage Error @
1f Not

Already There

VM7316 Cc2
53 XCTL
Issue Locate Unsuccessful U To IEFMCVOL
o nmounted
Macro VoL To Mount
CvoL
D2 VM7344 D3
. Set Up
;:‘sue Obtain Error Error Message
acre Displacement
Successful
E2
Merge DSCB
With Overrides
In JFCB
VM7340 F2

‘ Return >

To JFCB housekeeping

control routine

Chart 33. Error Message Processing Routine

29C3
29 D3

|EFVMé A3

Entry

From another JFCB
housekeeping routine

83

Load Msg Addr,
Length. Set Up
To Print Msg

c3

Issue Error Message

, D3

Release Storage

Error Code
In Let

To step termination
routine

Charts 141

Chart 34.

142

Allocation and Setup

A3

()

control
4 B3
IEFXA 28

Allocation
Control Routine

C3
{EFWA7 29)
Demond
Allocation
Routine

From initiator

IEFWD 000 35

External Action

Routine
H3
IEFXT000 36
Space Request
Routine
¥ 13

=D

To step initiatian

D4
IEFXV001 30
Configuration Yes i
Automatic
Include AVR Volume
Recognition
No
E3
IEFX5000 33
Decision
Atlocation
Routine
F3
tEFWCO000 34
TIoT
Construction
Routine
G3

Chart 35.

Allocation

Ccontrol Routine

From JFCB
housekeeping
control routine

B3

Any DD
Stmnts In
This Step

To TIOT
construction
XAAO21 routine
Get Storage
For Tables
Initialize
Pointers
XAA030 y D4

Place VOLTS and
SIOTS Into
Storage Area

To demand
allocation
routine

Charts

143

Chart 36. Demand Allocation Routine

35
D4
{EFWA7 A3

Entry >

From cllocation
control routine

XBF110 Y B3
Build
Work Table
XBF300 23
Resolve
Volume
Affinities
XCF100 y 3

Coleulate Data
Set Device
Requirements

XCF200 H

Construct
Channel Load
Toble

XCF300 23

Allocate
Resident Direct
Access Devices
Requested By
Vol Serial

XCF500 (33

Perform Device
Range Reduction

XCF890 F3

Allocate Sysin
And Reserved
Tope Devices

XDF100 J3

Allocate

Specificaily

Requested

Devices
Exits are to the decision allocation routine

y K3 {or AVR when included in configuration)
if allocation is incomplete.
Exit

The TIOT construction routine if allocation

is complete .

144

Chart 37.

A2

J—
Q)emund Allocation '

< Was Last UCB

Examined

Get Next UCB

D2

Is It An AVR
Device Type

Has The
Serial Been
Read

Has AVR
Requesteu
Volumes

External Action

Te This 12

Automatic Volume Recognition (IEFXV001)

Ad

Obtain Devices

*
39C2
39 D4

A5

Request Volumes

Are More
Specific Vol
Needed

There More
Requests in the

Has AVR
Requested
Volumes
Yet

Decision
Allocation

TIOT Construction

Point To First UCB

E3
IEFXV002 Ell

Read The Serial

External Action

Notify Operator < Device
And Unload Acceptable
Device -

© Yo

J2

Device Strikout

Allocate Device
To Satisfy Any
Req For Vol

Unload The Device

(®

Error Return
Code

From Operator

B5

Wait For Device-
End 1/O Interrupt

Cc5
Did Operator
Cancel Job

1EF XJIMP
Cancel Job

Charts

145

Chart 38.

146

Automatic
Volume
Recognition

Initialize
DEB And 10B

Issue Channel
Command

Automatic Volume Recognition (IEFxV002)

D2

Wait For |/O
Completion

Standard
Label

E3

Set Error
Return Code

F3

E4

f‘m

IEFXVNSL

Nenstandard
Label Routine

Set Volume

Error
Return

Code

Serial Into
ucCB
|t
H2
Return

Chart 39.

Obtain Devices

A2

Al

@—_—

Count
Available
Devices

B2

Count Devices
Needed For
Specific Vol
Requests

Cc2

Are
Enough

Devices In Not,
Ready Status

Can Enough
Ready Devices Be
Unloaded

E2

IEFXJIMP

Allocation Error
Recovery

|EFXCSSS F2

Allocation
Control

Yes

D3

D4

Identify
Devices To Be
Unloaded

External Action

Unload —

Necessary Ready
Devices

Charts

iu7

Chart 40.

©

Normal

148

XGGC29

X11830

Decision Allocation Routine

IEFX5000 A2

Allocated By

&

Calc Potential
Users Per
Device

From demand allocation routine
or automatic volume
recognition routine

XGGC25 13

Perform
Separation
Strikeout

()

S V_____j Normal

XGGG5A

E4

Restore
Primary Bit
Pattern

000 Allocation
X55A C
X11C30 D2 3 complete
Any
Uniqueness — Perform
Non-unique
Allocation
Jee — - Normal
XGGG30 E2
Perform Device
Strikeout
XGGG40 F2 XKKB30 3
Perform Error o B
Separation rocess Error
Strikeout
Complete
41 48
A2 a
ToTIOT To ste>
construction termination
foutine routing

Chart 41.

TIOT Construction Routine

35 B3
40 F2

IEFWC000 A2

Entry

XLMO0O1 4 B2

Get Storage
For TIOT

XLM020 Cc2

Initialize Loop
To Build TIOT

XLM032 D2

Request
For A Public
Volume

Build DD Entry
For TIOT

XLM140

From allocation control routine,
demand allocation routine,

decision allocation routine, or
automatic volume recognition routine

Process Public
Volume Request

All Done

42
A2

To External
Action Routine

D3 Note 1

Note 1 - Outstanding public volume

requests are resolved here.

Charts

149

Chart 42. External Action Routine

41 F2

From TIOT

construction routine,

space request routine,
automatic volume

recognition routine, or
DADSM error recovery routine

XPS090 Note 1
B2
Issue
Dismount
Messages
XP$285 C2
lssue
Mount
Messages
XPS630 Note 2
D2
Perform
Verifications
XP5750
XPS620 Note 3

Step

Complete No

Note 1 Includes a scan to determine
if the required volumes are
mounted on unallocated devices.

Note 2 Unload commands from master
scheduler are honored. UCB'S are
updated if required.

Note 3 The step is complete when all
setup messages have been issued
and verification has been performed.
Counts in the SCT control this
mechanism .

Note 4 Either of two events is waited upon.
Issuance of a cancel command or
a device being made ready .

150

Is This An
Allocation

Note 4

Wait

XCTL To
IEFMCVOL

To space
request
routine

Chart 43.

Space Request Routine

@

IEFXT000

A3

Entry

XTTBEQ

Any
DADSM Alloc
Pending

From external
action Routine

B3

Request on and
Allocate Direct
Access Device

No Space
Available

Non
Specific Device
Request

XUUA00

Normal

D3

Update

JFCB, TIOT
and PDQ

There More
Entries to be
Processed,

Charts

151

Chart 44,

152

DADSM Errxor Recovery Routine

IEFXT003 A3

Xui

~—”

B4

,ompress

Unrecover- Yes Compres
TIoT

able Error s
Routine

Can Volume
Be Removed,

C4
Yes Space Request
Routine

Select
Next
Device

Chart 45.

TIOT Compression Routine

43 B3
43 E3

1EFXT002 A3

Entry

XTTROO B3

Non-recoverable

Error
Compress

TIOT

XTIMBO c3 &l

Update
Secratch Vol
Information
In JFCB

To Step
Termination
Routine

XTTPOO D3

Write
Messages
On Sysout

To Step
Initiation

Charts

153

Chart 46.

154

Step Initiation

SD4350

45
D3

IEFSD 004 Y A2

=)

SD4000 B2

Write Out
Scheduler
Messages
For Step

SD4100 c2

Set Up UCB
Pointer For All
Data Sets Going
To Sysout

D4120 ¥ D2

Store LCT,JCT,
Release Storage
They Occupied

5D 4200 E2

Compute, Get
P/P Storage
Needed By
The System

5D4240 F2

Move TIOT To
Upper Storage,
Store TIOT

G2

Set Up XCTL
Parameters
And Parm Info,
Store SCT

SD4300 H2

Open Joblib
Or Steplib

And Fetch DCB
If Present

Canceled By
The Operator

No
K2

XCTL

To Processing Program

Note 1

sm%&J

Abend

K3

Note 1 - During step execution, processing
program (P/P) storage is needed for
- A steplib or joblib DCB, if present
- A fetch DCB, if present
- An XCTL parameter list
- Parm field information
- Astep TIOT
- A P/P register save area

Chart 47.

Termination

Abnormal
Termination

|EFRPREP D1

A2

82

IEFSDO

Step Termination
Entrance

IEFW425D

From Supervsior
Entry

Abnormal
Temination Cc3

€2 |EFIDUMP

Step Termination
Initialization

Indicative Dump

D5

Restart Preparation

Abnormal Termination

Or Restart

IEFACTLK

|EFZGST2

Normal
Temination
D2 D3 D4
IEFYNIMP 1EFYPJB3 IEFZGSTI
Step Termination Step Termination [* hadl Disposition
Control Routine Data Set Driver Subroutine

| o

Unallocation
Subroutine

Restart Or Abnomal

) E2

IEFVIIMP

User's Accounting [

Routine

Step Termination

Job Statement
Condition Code
Routine

Termination With More
Steps

F2

IEFW225D

F3

E5

IEFZHMSG

Step Termination ——b- To Initiator Or Interpreter
Exit

Message Subroutine

Job Termination

Gl
Entry

From Interpreter

H

|EFW23SD

H2

IEFZAJB3

Job Termination
Entrance

{ N

[EFACTLK

User's Accounting
Routine

From step termination
control routine when there is
no restart and there are

no more steps

H3

H4

IEFZGJBY

IEFZHMSG

Job Termination
Control Routine

J2

Disposition And |
Unaltocation
Routine

Message
Subroutine

IEFW31SD

J3

Job Termination
Exit

* To Interpreter

Charts

155

Chart 48.

23 £2
24C5
2582
26 K3
33 E3
40 F3
4583

IEFSDO11

YNO0200

Waos
Step
Executed

YN0203 Cl

Had

Yes

From supervisor

ofter P/P completion

or an Inii/Term routine

when an error condition exits

Step Termination Routine

YZ0210 C2

Move Return

TIOT Been

Save Dummy

Error Code

Code From
TCB To SCT

YN0224 El

Normal
Termination

Yes

Did Step
Abend

Set Abend
indicator In
Job Status

Field Of JCT

IEFACTLK
YNQO49

INFACTRT

User's
Accounting
Routine

Di

Find
SNull

To job
termination
routine

F3

Set Error
Indicator
{Non-abend
Error)

YNO0240
No

Yes
H1
IEFYP 42

Disposition And
Unallocation
Processing

YN0260

Did
Any Error
Occeur

156

YNO0405 J2

Set Job-
Failed
Indicator On

Interpreter
Find job Or
Null Stmnt?

J3

Store SCT,
Ifin
Storage
Work Area

YMO0340 K3
IEFVH 43

Process Job
Cond Codes

®

®

IEFACTLK
YNO0409

is

There A

User's Accoun
Routine

{EFACTRT

User's
Accounting
Routine

W225D E4

Reinitialize
Main Storage

F4

Interpreter Yes
ind DD*Or DR

Dgta Stmnt.

To interpreter
control routine

To initiator/
terminator
system control

(More steps
had been
interpreted)

Chart 49. Restart Preparation Routine

A2

From
IEFYNIMP
(Step termination)

Checl
Restart
Request Indr
{(nJCT

No restart

Restart

Were
Checkpoints
Taken

Eligible
Abend Code

E3
\'::2(3:'1'0 Set No Restart
oat Indicators In
t
g‘}'ﬂ'ﬁ&‘,;ﬁ" JCT And LCT
Restart
F3
Exit
To IEFYNIMP
Save Queuve
Indicators
H3
H2 Update
Check- Displacement
point Within Status:
Step All To Keep
J2 l J3
Update
Disptacement Set Return
Status: New To » Code X '08'
Delete, Old To In LCT
Keep
K2
K3
Update Step
Number In PDQ Exit
Set Pass Bit
To IEFYNIMP

Chart 50.

158

Job Statement Condition Code Routine

Set Job
Status Field
Of JCT To

Cancel

VvJ240

Have Eigh: Yes
Codes Been
Tested

C4

Issue M

N

’__L__FZ

)

To step
termination
routine

Chart 51.

Job Termination Routine

Al

Entry }

From interpreter control

routine or step termination
routine

Y

Is There A
PDQ

Yes

ZAA300 D1
IEFZA

Read PDQ
Directory Block

ZAA3150 El
\EFZA

Read PDQ Entry
Block

Last PDQ Ent
Block

Last PDQ Dir
Block

H

IEFZG

Job Terminate
Srt Cleanup

ZA,

Is Data Set
Received

ZAA400

Set Up LCT

Parameters

Is Data
Set On D.A,
Device

Turn On D.A.
Switch

ZAA420 y F4
{EFZG 45

Perform Disp And
Unallocation

ZAA330 G4

Increment Data
Set Pointer

J3

0y N
IEFACTLK J2

{EFACTRT

s There A
FREEMAIN User's Acct

Routine

User's Accounting

Routine

To interpreter control
routine at IEFSD008

To interpreter control
routine at IEFSD008

Charts

159

Chart 52.

IEFZG Al

G

From step
termination

Switch On

(=)

B2

Get Next UCB

Pointer

Is Thel

Is Disp =
Catalog

Is Disp =
Uncatalog

1s Disp Keep

Is Disp =
Delete

———t

D2

Process Pass

Disposition

Process Catalog

Disposition

O .

Process Uncatalog

Disposition

& .

Process Keep

Disposition

Is Status
Old Or

J
ZHOBI10 N

Process Delete
Disposition

K1

IEFIHMSG

Write Disposition
Message

160

K2

Return For Next
SIOT Pir

To Step Termination
Routine

Pending
For The

ZKOE1

Last UCB
Pointer For Step

Disposition and Unallocation Subrocutine -- Entry From Step Termination Routine

Routine

C4

re A
Commd
Deve.

No

Yes

D4

Is Cond Disp

Comman:

Process Pending

ds

ZJOBI

E4

Is Cond Disp Perform

= Uncatalog

Unallocation

Note 1-

The unallocate switch is set
once for each step, by the
data set driver routine.
This-occurs after disposition
processing has been performed
for every data set in the step.

To Step Termination

Chart 53.

|EFZGJ Al

From Job
Termination Routine

Disposition and Unallocation

©

B4

Bl Note 1
Is Unallocate \ Yes
Switch On
No
Q1

Examine Last PDQ
Entry

Has
Job Abnormally
Terminated

ZNOB26

D2

Read Data Set's
SIOT Into Main
Storage

F2

Set Exist Before ———
The Job
(r2)—+
ZHOB10 F1 ZIOB2
Process Delete Process Keep
Disposition Disposition
1EFzimsG1©!

Write Disposition
Message

H1

Return For Nxt
PDQ Entry Ptr

To Job Termination
Routine

Note 1- The unallocate
switch is set when
all PDQ entries have
been examined .

Is Cond Disp
= Keep

Is Cond Disp
= Delete

Is Cond Disp
= Catlg

ZIOC15 G3

Process Catalog
Disp

Get Next UCB
Pointer

Last
UCB Pointer In
System

fn UCB (Is It
Left In Retain

Is There A
Pending No
Commd For

This Device

Yes
ZKOE1 F4

Process Pending
Commands

ZJOB50 G4

Perform
Unallocation
(Dismount If
Possible)

H3

Is Cond Disp
Uncatalog

Process Uncatlog
Disp

To Job Termination
Routine

Charts

Subroutine -- Entry From Job Termination Routine

le6l

Chart 54.

18K Configuration Load Module Control Flow

A2

(Entry From NIP '

A5

Entry From
Supervisor

XCTL . XCTL
B} B2 83 B85
XCTL
IEFVHN |EFVH1 - IEFPRES IEFIDUMP IEFSTERM
Interp XCTL Inte‘rpr.e'er' Link Volume Mounting Indicative Dump Xcr, Step Termination [
Termination Initialization Routine Routine XCTL Routine
Routine
{ XCTL XCTL
— . XCTL
cl .‘ c2 XCTL ‘ l c3 XCTL c4 XCTL 5
XCTL
IEFCOMMD IEFCNTRL IEFINTFC IEFJTERM IEFERROR
XCTL
Scan Command Interpreter Int/Init Interface Job Termination JFCB Housekeeping
Routine Control Routine Routine Routine Error Routines
Load And XcTL [xcrL | xeri e
Delete XcrL xcrL l lXCTL
Note 2)] D2 ;D? D4 D5
IEFVGMI-16 |la— 1EFVHH IEFJTRM2 IEFSELCT IEFALOCI
Post- P System Control xen Allocati X,
M ost- P] s ystem Control ocation
essages Control Job Termination Routine XCTL Control Routine
—
XCTL XCT
XCTL @
El Note E2 E3 Load And
IEFJOB IEEMCROI Link I IgesTaRT | JDelete IEEFIcE | B4 ieFaLoC2 | B8
U
Job Routine Master Scheduler ink Srq". Command JFCB'S For Start Demand Allocation
Routine Link Command Routine Routine
XCTL XCTL
If Erro-
Fi F3 F4 F5
1EFEXEC IEEFAULT IEESJFCB EFX5000
o e o Fel e e Vi
Exit Subroutine
XCTL XCTL
if Error
=1 Link ¢ G4 G5
IEFDD IEESET Link IEFJOBQE {EFALOC3
in
. Set Command Queve TIOT
DD Sean Routine Routine Link (At IPL)| Initialization Construction
Routine Routine
XCTL @ XCTL
H1 H3 l l H4 H5
{EFVGMSS 1EETIME {EFMCVOL IEFALOC4
XCTL Svc Exit XCTL XCTL
Messages Supervisor Mount Cvol External Action
Time Routine Routine Routine
XCTL
1- Th bl le IEEMCROY ! 2
Note 1- The assembly module IEEM \EFATACH 4 IEFALOCS
is included in load modules IEFVHI, O
IEFCOMMD, and IEFINTFC. Sten Initiafl XCTL XCTL
tep fnitiation Space Request
Note 2- The message modules |IEFVGM! through Routine Routine
IEFVGM16 can be loaded and deleted
by any of the following modules: XcTL xcr
IEFCNTRL, IEFJOB, |EFEXEC, K4 @
IEFVGMSS, and IEFCOMMD. K5
Return Or
Abend
Processing
Program To Supervisor

162

Chart 55. 44K Configuration Load Module Control Flow

A2 A5
Entry Entry From
From MIP Supervisor -
XCTL B2 B3 B4
1EFVHI |EFPRES |EFIDUMP
Infe.rpr‘ai'er. Volume Mounting Indicative Dump
Initialization . .
. Routine Routine
For Routine
XCTL
XCTL
Note 2 Cl C2 C3 XCTL C5
(EFVGMI1-16 IEFCNTRL |EFJTERM |EFSTERM
Load XCTL
Interpreter e Interpreter And »! Job Termination |« XCTL > Isnterfuce And
And i tep
Error Messages Job Terminate XCTL | Terminati
Delete s ermination
1 xcrL XcrL
> D2 D4 D5
Load And | IEFCOMMD |EFERROR - IEFALOC!
Delete FCB
Processes :hmekeeping First Lo?d Of
Command s Allocation
Error Routines
XXCTL
Note 1 E2 ik E3 lt-)o?d And E4 Y E5
1EEMCROI Tl IEESTART olete \EEJFCB IEFALOC2
Link '
Master o Start Command JFCBS For Second Load
. tart Command .
Scheduler Routine . . Of Allocation
Link Routine
XCTL if error XCTL
F3 F4 F5
|EEFAULT 1 IEESJFCB
Interface With Processin
SVC Fault Routine Table Store Progrom 9
exit Subroutine °g
AXCTL if Return or
error obend
ok G3 G4
biok o[\eeser - IEFJOBQE G5
Link Exit
Set Command Queua -
: Initialization To Supervisor
Routine Routi
outine
Link
XCTL (at IPL)
SVC Exit Ha Hs
< IEETIME IEFMCVOL
Supervisor Time Mount CVOL
Routine Routine

Note 1 - The assembly module IEEMCRO 1 is
included in foad modules IEFVH1 and IEFCOMMD .

Note 2 - The message modules can be loaded and
deleted by |EFCNTRL and |EFCOMMD.

Charts

163

Chart 56. 100K Configuration Load Module Control Flow
A2 A3
Entry From NIP gntry F.rom)
() upervisor
XCTL B2 XCTL B3
|EFVH] {EFIDUMP
Interpreter L.
Initialization :{:"ﬁurve Dump
+ EOF RTN "
XCTL X
Note 2 C1 Lood C2 $ C3 C4
IEFVGM1-16 o GO o L |ieFALLOC IEFMCVOL
Delete Interpreter And Allocation And XCTL
Interpreter Initiator Allocation Mouzﬂ cvoL
Messages . XCTL . Routine
Terminator »{ Error Routine
XCTL
l D2 Note 1 DI . D4 Load And D5
Link Delete
IEEMCRO1 |EESTART IEEJFCB
::oces:ng Master Start Command JFCB'S For
ogra Scheduler Link Routine Start Command
il .
Routine
Return XCTL if
or abend error
E4 £5
£2 IEEFAULT IEESJFCB
Exit To Interface With
Supervisor Fault Routine Table Store
»| Subroutine
Link
XCTL if
error
F4 F5
Note 1 - The assembly module Link
IEEMCROI is included in IEESET i IEFJOBQE
load modules IEFVH1 and Set C d Link Queve
IEFCOMMD. Routine Link Intialization
Note 2 - The message modules Routine
can be loaded and deleted
by IEFCNTRL and IEFCOMMD.
G4
IEETIME
Supervisor Time
SV'C Routine
exit

ie64

ABEND macro instruction 57
Abnormal termination 59-60,63-64
ACB (see allocate control block)
Account control table (ACT)
construction of 9,28
description of 65
Accounting routine 10,38
Acronyms, list of 108
ACT (see account control table)
Affinity
unit
link field 45
requests for 38,54
volume
requests for 38
resolution u45-46
Allocate chain 53
Allocate control block (ACB) 42-44,50
Allocate processing routine 41
Allocate volume table (AVT)
construction of 44-45,53
storage requirements of 42-43
Allocate work table (AWT)
construction of 44-45
entry sources 45
in decision allocation 53-54
storage requirements of 43
Allocation and setup 38,42-57
Allocation channel mask 47
Allocation control routine U42-44
Allocation error routines 42,52,57
Allocation of resident devices 47

Allocation, storage requirements of 42-43

Assembly modules, list of 83-98,99-107

Asynchronous exit queue 14

Attention interruption 12,14,16

Automatic checkpoint restart 38

Automatic volume recognition (AVR)
42,50-52

Auxiliary routines 34-37

Auxiliary work area (AWA) 34

AVT (see allocate volume table)

AVR (see automatic volume recognition)

AWT (see allocate work table)

CANCEL command 14,16
in step initiation 57-58
Cancel ECB (event control block)
in step initiation 57
in termination 58
CATLG disposition 62
Cataloged data sets 62
Cataloged procedures 20
Channel load assignments 46-50
Channel load table (CLT) 46-50,52
storage requirements of 43
Channels, logical 46-50
Checkpoint restart
automatic 38
in restart preparation 59
recognizing 28

Index

CLT (see channel load table)
Command-pending switch 10,16-17
Command pointer 73
Command routine 22
Command scheduling control block (CSCB)
Commands
CANCEL 14,16,57-58
DISPLAY 14,16,39
initialization 10,17
MOUNT 14,16,47
processing of 12
REPLY 17
REQ 10,14,16
SET 10,16,17
START (blank) 10,14,16
START RDR 16-17,19,37
START WIR 10,16-17
STOP 14,16
STOP WTR 16-17
UNLOAD 14,16,47,63
VARY 14,16,63
Communications vector table (CVT) 73
Condition codes
EXEC statement 38
JOB statement 59
Condition operators
EXEC statement 39
JOB statement 59
Conditional disposition 64
Console flag switch 15
Console interrupt routine 14-16
Continuation check routine 20-21
Continuation statement 23
Ccontrol routine 19
control sections (CSECTs), list of
Control statement
DD 10,21,28,41
DD, parameter dispositions 30-33
DD, JOBLIB 57
DD, STEPLIB 57
EXEC 21-22,28-29,35,77
EXEC PROC 21
JOB 21-22,28-29,38
NULL 10,20-22,38
PEND 19,21-22
PROC 19,21-22
processing of
reading 20

21-33

37

99-107

CSCB (see command scheduling control block)

CSECT (see control sections)
CVT (see communications vector table)

DADSM error recovery routine 42,56
(see also direct access device space
management routines)

Data control block (DCB) 20,57

Data set control block (DSCB) 56

Data set name (DSNAME) table
construction of 9
description of 66

Index 165

Data sets
device requirements of 43-44,46
disposition of 9,62
selection of 53
DCB (see data control block)
DD statement cleanup routine 28
DD statement, JOBLIB 57)
DD statement parameter dispositions
DD statement processing 21
DD statement processor routine 28,36
DD statement scanning and encoding 24-27
DD statement, STEPLIB 57

30-33

Decision allocation routine 42,52-54
DELETE disposition 62-63
Demand allocation routine 42,44-50

Device allocation 50,53
Device availability processing 63
Device mask table (DMT)

deletion of 50

description of 66

functions of 45,49

storage requirements of 42-43
Device name table (DNT) 41,66
Device range reduction 49
Device strikeout routine 51
Dictionary entry routine 34,36
Dictionary search routine 34,36
Direct access device space management

(DADSM) routines 56

Dismount messages 64
Display command 14,16,39
Disposition and unallocation 58,60
Disposition, data set

CATLG 62

conditional 64

DELETE 62-63

KEEP 62-63

PASS 62-63

UNCATLG 62-63
DMT (see device mask table)
DNT (see device name table)
DSCB (see data set control block)
DSNAME tapole (see data set name table)

ECB (see event control block)
knd-of-data condition 10,16,20

Entry, post-processing 23

Error message processing routine 42
Event control block (ECB) 18

cancel 57-58

EXCP macro instruction 14,16-18

EXEC statement 21-22,28-29,35,77

EXEC PROC statement 21

Execute card scan routine 29

Execute statement cleanup routine 28
Execute statement condition codes 38
Execute statement condition operators 39
Execute statement conditional execution

routine 39-40

Execute statement processor routine 28
External action routine 42,51-52,55-56
External interrupt routine 14,16-17

Fetch DCB 57-58

Fetch DCB processing rxroutine 41

Flags, in master scheduler resident data
area 73

166

GDG (generation data group)
all processing routine 41
single processing routine 41,67
pias count table, description of 67
GET macro instruction 20
Get. parameter routine 34

I/0 supervisor 14,16
I/0 supervisor UCB lookup table 53
In--stream procedure

definition of 19

directory 21

invoking 20

routine 22

work area, description of 68
Indicative dump routine 58
Injtial program loading (IPL)
Initialization

commands 10,17

functions 58

routines 17,19

switches 73
Initiator control routines
Initiator/terminator

functions of 9-10

routines 38-60
Inprut queue entry 22
Input stream, definition of 19
Interpreter

control routine 36,81

DD routine 66,77,81

entrance list (NEL) 37

EODAD exit routine 20

functions 9-10,14,16-17

get routine 20-21,23

message routine 36

processing 19-37

system output routine 28

termination routine 20-21,37

work area (IWA) 21
Interpreter/initiator interface
Interrupt key 9-10,13,15,17
Interxruption

attention 12,14-16

external 12,15

I/70 14,52

svc 14,17
Interruption queue element 14,16
Interruption request block (IRB)
Interruption request block routine
IPI (see initial program loading)
IPL/NIP parameter list data set, PRESRES
member of 47-48
IPL pending switch 17
IRB (see interruption request block)
IWA (see interpreter work area)

10,16,19,38

38-39

22,59

14,16
14,16

JCL get parameter routine 28
JCL header routine 28
JCL keyword entry 35
JCL keyword routine
JCL keywords 24
JCL scan dictionary 24
JCL scanning routine 24-27
JCL statement
processing 28-37
scanning 24-27

28-34

JCT (see job control table)

JFCB (see job file control block)

Job and step enqueue routine 22-23

Job control langquage (see JCL)

Job control table (JCT)
construction of 9
description of 69-70
in initiation 57
in interpreter processing 22,37
in restart 28
in termination 58-59

Job file control block (JFCB)
construction of 9
description of 71-72
in auxiliary routines 36
in intexpreter processing
in step initiation 57
housekeeping control routine 41
housekeeping routines 40-42,66-67,76,81
pointer 54
scratch information 56

Job library data set 38,54,57-58

Job management

28

components of 9,10
entry to 10
functions of 9
routines 70

Job processing 10

Job queue, selected 39
Job scheduler, functions of 9
JOB statement 10,21-22,28-29,38

Job
Job

statement condition code routine 58-59
statement processor routine 28,34-36
Job termination routine 10,59-60

Job validity check routine 21

JOBLIB DD statement 57

KBT (see keyword branch table)
KEEP disposition 62-63

Keyword branch table (KBT) 34

LCT (see linkage control table)
Library

job 38,57

linkage 13

procedure 19-20

step 57

svc 13,16
Linkage control table (LCT)
Linkage library 13

38-40,57-59

Load, channel 47
Load modules, list of 83-98
Local work area (LWA) 20,28,37

LOCATE macro instruction 41
Logical channels 46-48

LWA (see local work area)

Macro instruction
EXCP 14,16-17
GET 20
LOCATE 41
OBTAIN 40
READ 20
SCHEDULR 17
TTIMER 20

Macro instruction (continued)
WT0 9-10,13-14,17
WIOR 9-10,13-14,17
Macro parameter list
construction of 9-10,14
format of 58
Main storage hierarchy support 28
Master command EXCP routine 13-1i4,16~17
Master command routine 14-17,22
Master common area 73
Master scheduler
functions of 9-10,14
control flow 14
resident data area
Message routine 22,34
Message routine codes
Messages
dismount 6u4
programmer 10,12,17-18,38,58
MOUNT command 14,16
Mounted volumes, processing requests for
51
Mutually exclusive parameters

73-74

17

24

NEL

New
75
New reader pendinrg switch 17

New writer pending switch 17
Non-standard label (NSL) processing

Nucleus transient area 16

NULL statement 10,20-22,38

(see interpreter entrance list)
reader or writer table, description

50

OBTAIN macro instruction 40
Operator commands 9-10,12-14

Operator-system communication 10-12

Parameter
mutually exclusive
no-action 35
positional 2Z4,34-35
required-format 35
unconditional-action
variable-format 35

Parameter descriptor table (PDT)

PASS disposition 62-63

Passed data set queue (PDQ)
construction of 39-41
description of 76-77
disposition 63-64
termination 59-60

Patterning DSCB routine 42

PDQ (see passed data set queue)

PDQ block 76

PDQ directory block 76

PDQ overflow block 76

PDT (see parameter descriptor table)

PEND statement 19,21-22

Permanently resident volume 47

Positional parameters 24,34-35

Post-scan routine 23

Potential user on device (PUD) table

Pre-scan preparation routine 21-23,28

PRESRES member of IPL/NIP parameter list

data set U47-48

24

35

35-36

43

Index

of

+53

167

Primary console switching, functions of
13-15

PROC statement 19,21-22

Procedure library 19-20

Proceed light 14

Programmer messages 10,12,17-18,38,58
Pseudo SYSOUT routine 57

PUD table (see potential user on device
table)

Queue entry processing 22

Queue management assign and start routines
22

Queue management read routine 40

Queue manager interface routine
22,34,36-37

gueue manager parameter area 36-37

READ macro instruction 20
Readersinterpreter job routine 69
Refer-back dictionary 36

Release job queue routine 59
REPLY command 17

REQ command 10,14,16

Request block queue 10

Request key 10,13-14

Resident devices, allocation of 47
Resident job gueue option (RESJQ)
Restart,checkpoint 28-29,38,59
Restart preparation routine 58-59
Restart, step 28-29,59

Router routine 21-22

60-61

Scheduler lookup table U46-48
SCHEDULR macro instruction 17
SCT (see step control table)
SCT extension block 79
Separation, channel 52
Separation strikeout pattern, storage
requirements of 43
Separation strikeout routine 52
Separation, unit 52
SET command 10,16-17
SIOT (see step input/output table)
SMB (see system message block)
Space request routine 42,52,56
START command
(blank) 10,14,16
RDR 10,14,16,37
WIR 10,14,16
Statement, continuation 23
Statement processing routine 23-24
Statement, overriding 23
Step control table (SCT)
construction of 9
description of 77-78
disposition 58
DSNAME table pointer in 66
in initiation 38
in JCL processing 22,36
in JFCB housekeeping 40
in termination 59
storage 57
Step initiation routines

22-23,38,40

10,38,57-58,69,77

168

Step inputs/output table (SIOT)
construction of 9
description of 79-80
disposition field 62
DSNAME table pointer in 66
in JCL processing 28,36
in JFCB processing 40-41
in termination 59
storage requirements of 43

Step library data set 57

Step restart 28-29,59

Step termination 10,58-59
control routine 58-59
data set driver routine
exit routine 59

STEPLIB DD statement 57

STOP command 14,16

STOP WIR command 16-17

Storage volume, definition of 49

Supervisor 10,14-18

Supervisor call (sSVC)
interruption 14
library 12,16
transient area 14,16-17
34 instruction 16-17
35 instruction 14
90 instruction (see transient queue

manager)

SY3GEN (see system generation)

SY$3IN, allocation of 50

SY:50UT
data set 17
routine 75

System generation (SYSGEN) 17 .

System message block (SMB) 9,17-18,21-22
allocation messages 56-57
construction of 9,20
description of 81
in termination 58-60

SY51.LINKLIB (linkage library data set)

12,41,45

SYS51.PARMLIB (parameter library data set)
47-48

SY31.PROCLIB (procedure library data set)
22

SY$51.SVCLIB (supervisor call library data
set) 12,16 ,

SY$1.SYSJOBQE (job queue data set)

17,61,75,81

58-59

Table store subroutine, functions of 61-62
Tassk control block (TCB) 16,59,82
Task input/output table (TIOT)
compression routine 42,56
construction routine 42,52,54-55
disposition 58-59,62
in step termination 57
storage requirements of
Termination 10,38,58-60
Tesit and store routine 28,34-36
TCE (see task control block)
TIOT (see task input/output table)
Transient queue manager (SVC 90)
TTIMER macro instruction 20

42-43

17-18

UCH (see unit control block)
UNCATLG disposition 62-63
Unit affinity 38,45,54

Unit control block (UCB)
44-47,49-51,53,56-57,64

UNLOAD command 14,16,47,63

Unmounted volumes, requests for

Unreceived data sets 60

Unspecified volumes,

VARY command 14,16,63
Verb identification routine 21
VOLT (see volume table)
vVolume affinity 38,45,53
Volume control block 41,51
Volume list 62
Volume serial numbers

list of 81

processing 50-52

51

allocation of

52-54

Volume table (VOLT)
construction of 9
description of 81

40,43,66

(WTO0)
9-10,12,14,17,39

Write-to-operator
macro instruction
routine 14,17-18

Write-to-operator-with-reply (WTOR)
macro instruction 9-10,12,14,17
routine 17-18

Write-to-programmer (WTP) 10,12,17-18,38

Write-to-programmexr control block (WTPCE)

38, 82

Index 169

READER’S COMMENT FORM

IBM System/360 Operating System
Job Management Order No., GY28-6613-5
Program Logic Manual

® Is the material: Yes No
Easy toread? ...l 0O 0O
Well organized? O O
Completel O O
Well illustrated? ... O O
Accurate? ..l O O
Suitable for its intended audience? 0O O
e How did you use this publication?
[J As an introduction to the subject Other
] For additional knowledge
e Please check the items that describe your position:
[Customer personnel [J Operator [J Sales Representative
[] IBM personnel 1 Programmer O Systems Engineer
[0 Manager O Customer Engineer [Trainee
[J Systems Analyst] Instructor Other
® Please check specific criticism (s), give page number(s), and explain below:
] Clarification on page(s) [0 Deletion on page(s)
[J Addition on page(s) ...] Error on page(s) ...
Explanation:

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GY28-6613-5

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
_programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for

your use. Each reply will be carefully reviewed by the persons rasponsible for writing
and publishing this material. All comments and suggestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your

IBM system, to your IBM representative or to the IBM branch office serving your locality.

—— —— —— — — — —— — — — — — — — — — — — — — — — —— — ——" —— —————— — . (et e it bt e et

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

— e e e e e e e e e e e e e e o . e e e e e e e s e) e S — — — — — — — — — — —— — — — — — —

IS

®

International Business Machines Corporation
Data Processing Division ’

112 East Post Road, White Plains, N.Y. 10601
[USA Only)}

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International|

aupq Buojy 40D

(9£-09¢S) tuswabouoyy qof s_‘aﬂua;s,(g

"Y°STN ul pajuig

G-€199-8ZAD

GY28-6613-5

T8I

International Business Machines Corporation
Data Pracessing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

‘i/meﬁz(s

(9£-09¢5) tuswabounyy qor g«

"VSTN Ul pajulid

G-€L99-8ZAD

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	replyA
	replyB
	xBack

