File No.

Program

IBM System/360 Operating System
Control Program With MFT

Program Logic Manual

Program Number 360S-CI-505

This publication describes the intermnal logic of
the IBM System/360 Operating System Control Pro-
gram with MFT. The publication provides an intro-
duction to control program logic and describes the
components of the program. It also describes the
initialization of the operating system, the func-
tions of the supervisor that differ from those of
the PCP and MVT supervisors and the functions of
job management that differ from those of PCP and
MVT job management.

The appendix contains a description of all rou-
tines, major tables, and work areas used by MFT,
and flowcharts of the routines of MFT that differ
from those of either of the other control
programs.

Program Logic Manuals are intended for use by
IBM customer engineers involved in program main-
tenance, and by system programmers involved in
altering the program design. Program logic infor-
mation is not necessary for program operation and
use; therefore, distribution of this manual is
limited to persons with program maintenance or
modification responsibilities.

Restricted Distribution

S360-36

Form Y27-7128-4

Logic

RESTRICTED DISTRIBUTION: This publication is intended pri-
marily for use by IBM personnel involved in program design
and maintenance. It may not be made available to others
without the approval of local IBM management.

Fifth Edition (June, 1969)

This is a major revision of, and obsoletes, ¥27-7128-3 and
Technical Newsletters Y28-2349 and Y28-2376. The text and
illustrations have been changed to reflect the following:

e Multiple console support.

e The damage assessement routines of ABEND/ABTERM support.

o The resident reenterable routines facility. The facility
allows the user to include both access method routine and
other reenterable routines in the resident access method
(RAM) area.

¢ The checkpoint/restart facility.

e The DISPLAY DSNAME and the MODE commands.

In addition the following are included; a revised descrip-
tion of the DEFINE processing routines; updated description
of tables and work areas in Appendix A; revised module
descriptions in Appendix B; and revised flowcharts in Appen-
dix C.

The section of manual formerly titled Nucleus Initializa-
tion Program has been changed to delete the material now
covered in the IPL and NIP Program Logic Manual, Form Y28-
6661. The section is now titled Initialization of the
Operating System and describes only the operation of the
master scheduler after completion of the nucleus
initialization.

Other changes to the text, and small changes to illustra-
tions, are indicated by a vertical line to the left of the
change; changed or added illustrations are denoted Ly the
symbol e to the left of the caption.

This edition applies to release 18 of the IBM System/360
Operating System, and to all subsequent releases until other-
wise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein;
before using this publication in connection with the opera-
tion of IBM systems, consult the latest IBM System/360 SRL
Newsletter, Form N20-0360, for the editions that are appli-
cable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica-
tions, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

© Copyright International Business Machines Corroration 1967, 1968,

1969

This publication describes the differences
in internal logic of the control program
that result from the inclusion of multipro-
gramming with a fixed number of tasks
(MFT). It is assumed that the reader of
this publication is thoroughly familiar
with the basic operation of the control
program. Only areas of difference are dis-
cussed in this publication.

The manual is divided into four major
sections. The Introduction describes con-
trol program functions, control program and
main storage organization, and control pro-
gram processing flow. The Initialization
of the Cperating System section describes
differences introduced by MFT into system
initialization. The Supervisor section
describes supervisor functions including an
explanation of task dispatching in MFT.

The Job Management section contains the
changes to the job management components
made by MFT. Job management is divided
into three major components: readexr/
interpreter, initiator/terminator, and out-
put writer. Also described are the Queue
Manager which is used by all three major
job management components, the Communica-
tions Task which handles operator-system
communication, and the Master Scheduler
Task which processes operator commands.

Appendix A contains descriptions of
major takles and work areas used by MFT.
Appendix B contains descriptions of modules
used by MFT. Appendix C contains MFT
flowcharts.

PREREQUISITE PUBLICATIONS

Knowledge of the information in the fol-
lowing publications is required for a full
understanding of this manual.

Preface

IBM System/360 Operating System:

Principles of Operation, Form A22-6821

Introduction to Control Program Logic,
Program Logic Manual, Form ¥Y28-6605

Fixed-Task Supervisor, Program Logic
Manual, Form Y28-6612

MVI Job Management, Program Logic Manu-
al, Form Y28-6660

Initial Program Loader and Nucleus
Initialization Program, Form Y28-6661

Planning for Multiprogramming With a
Fixed Number of Tasks (MFT), Form
C27-6939

The following publications may be useful
for reference although they are not prere-
quisites for this publication.

IBM System/360 Operating System:

Cconcepts and Facilities, Form C28-6535

Linkage Editor, Form C28-6538

System Programmer 's Guide, Form C28-6550

System Generation, Form C28-6554

MVTI Control Program Logic Summary, Form
C28-6658

Input/Output Supervisor, Program Logic
Manual, Form ¥Y28-6616

INTRCDUCTICN « ¢ o o o o o e o o o « o =
Functions of the Control Program
MET o o o @ o o o o o o o s o o o « o =
Job Management . ¢ ¢ o ¢ ¢ ¢ ¢ o o o .
Task Management <« . . .
Data Management . . <« « « « ¢ « <« <« =«
control Program Organization . « o e
Resident Portion of the Control
Program . . . o o e o a o e o o o
Nonresident Portlon of the Control
PrOgrall « o« « o o o o o o o o o o o
Main Storage Crganization
Fixed BArea . « « o o o o o o« o o « « =
DynamiC Ar€a . « « « « o « « o « « «
Theory of Operation

INITIALIZATICN OF THE OPERATING SYSTEM .
Main Storage Preparation

SUPERVISOR « « o o o © o o o o o« @« o o @
Interruption Supervision
The Dispatcher (Macro IERRPS)
STAE Service Routine « o+ o« «
ABEND and Damage Assessment Service
Routine . <« ¢ ¢ ¢ ¢ o o« o o « « o « «
Damage Assessment Routines
Task Supervision - .« o .
The Attach Routine (Macro IEAAAT) .« .
The Wait Routine (Macro IEAAWT) . . .
The Post Routine (Macro IEAAPT) . . .
The ENC/DEQ Routine (IEAGENQ1)
Contents Supervision - .
LINK Service Routine (Macro IEAATC) .
ATTACH Service Routine (Macro IEARAT)
LOAD Service Routine (Macro IEAATC) .
XCTL Service Routine (Macro IEAATC) .
IDENTIFY Service Routine (IEAAIDOO) .
DELETE Service Routine (IEAADLOO,
IEABDIOO) e« o o e . o o o e e o
SYNCH Service Routlne (IEAASYOO) .« . .
Main Storage Supervision
Timer Supervision . . ¢ « ¢ ¢ o o o « =
Timing Procedure . . . « . « . « o o
Timer Pseudo Clock Routine (IEATPC) .
Comparison of PCP, MFT, and MVT Timer
Sugervision
Overlay Supervision . . « . « « « « «
MFT Recording/Recovery Routines
Machine-Check Routines
Channel-Check Routine
Systems Without Recording/Recovery
Routines « o« o o o o o« o o o o « o « «
Entry to Recording/Recovery Routines .
Checkpoint/Restart Routines

JOB MANAGEMENT &« 2« o« o o 2 o o o a « s o
Job Scheduler Functions «
Communications Task Functions
Master Scheduler Task Functions . . .
Job Management Control Flow

Command Processing . « . « « =« o « o o @

communications Task =« « « « ¢« « « « « «

Contents

WIO/WTOR Macro Instruction Processing
External Interruption Processing . . .
Communications Task Modules
Console Attention Interruption
Routine (IEECVCRA) . ¢ o o o o o o« o «
Communications Task Wait Routine
(IEECVCTW) . . . « .
Communications Task Router (IEECVCTR)
Console Device Processor Routines
(IEECVPMX, IEECVPMC, IEECVPMP)
Write-to-Operator Routines (IEECVWTO
and IEEVWTOR) e e o @ o @ o o o e o @
External Interruption Routine
(IEECVCRX) . o o o o o o o = o o o o
Communications Task With Multlple
console SUPPOXt .« « o o o o o « o o o =
Master Scheduler Task .« « o « « « « « «
Multiple Console Support Requirements
SVC 34 FUNCtionsS « « o« o o o « « o o« «
System Initialization < . .
Partition Definition by the Master
Scheduler . ¢ ¢ ¢ ¢ @ ¢ @ o = o « o
JCD Processing . « « o o o o o o o » o »
Queue Manager <« « « o« o « o o« o a o o
WOXK QUEUES =+ v o o o o o o o o o o =
Queue Management . . e« o ® © e o o
Job Queue In1t1allzat10n e e o o o o o
Queue Manager Modules . « « « « « .« .
Reader/Interpreter . « « ¢ « o« ¢ « « « =
Resident Readers . « <« o« o o o o o o «
Transient Reade€rs . « « « o o « o « «
Reader Control Flow . c o o o
Initiator/Terminator (Scheduler) « o o o
Job Selection (IEFSD510)
Small Partition Scheduvling . . « . . .
Initiator/Terminator Control Flow . .
System Output Writers . . . « « « <« . .
Resident Write€rs « « « o« « o o o o o «
Non-Resident Writers . . « « « « .« o .
System Output Writer NModules
System Task Control . . . « « «
Initiating System Tasks . . « « . .« .
System Restart « « o« o o o o« o o o o o« &

APPENDIX A: TABLES AND WCRK AREAS . . .
Command Scheduling Control Block
(CSCB) v« o o 2 2 o 2 a o o a« o @ o o =
Data Set Enqueue Table (DSENQ)
Interpreter Work Area (IWA)
Job Control Table (JCT) . . . « o e
Job File Control Block (JFCB) and
Extension (JFCBX) =« o« « o o o o o« o «
Life-of-Task (LOT) Block . .« « . « . .
Linkage Control Table (ICT)
Master Scheduler Resident Data Area .
Partition Information Block
Small Partition Information List
(SPIL) e o o o o
Step Control Table (SCT) e e o o o
Step Input/Output Table (SICT)
Task Input/Cutput Table (TICT) . .

Module Descriptions . . « <« « <« « « . .106
APPENDIX B: MFT MODULES « . . 100
Unique MFT Modules . . « « « « « « « « 100 APPENDIX C: FLOWCHARTS . « « « « « « « .156
Major Component Modules101

INDEX < o o o o o o o o o« o = « « « « 2189

Figures

Figure 1. Main Storage Organization
in MFT e o o o o o o o o o s e @ = &

Figure 2. Division of Main Storage
Figure 3. MFT Theory of Operation
(Part 1 of 4) . ¢ o ¢ ¢ ¢ o ¢« o o o &
Figure 4. Main Storage During

Execution of NIP e e e e e e e e e
Figure 5. Main Storage at
Termination of Master Scheduler
Initialization © o a e s 2 o s e o o
Figure 6. MFT Supervisor c e e e .
Figure 7. TCB QueU€ . . « « « o« « &
Figure 8. Dispatching Communications
and Master Scheduler Tasks e o o o o
Figure 9. Task Switching . - o o
Figure 10. System Control Elock
Relationship e o o o o o e o o o o
Figure 11. Recording/Recovery Routines
Figure 12. Job Management Data Flow
Figure 13. Command Processing Flow .
Figure 14. WTO/WTOR Macro Instructicn
Processing FIOW . « « o« o o o o o « .
Figure 15. External Interruption
Processing FIOW .« o & o o o o o o o« «
Figure 16. START Command Processing

Flow e o e o o o o o e. 8 = s o e o @
Figure 17. DEFINE Command Processing
Flow e o 4 o o e o s s o e o o a e @

Figure 18.
(Master CCR) Format . . « ¢« o 2 o « «
Figure 19. Job Queue Control Record
(QCR) e e o e o o e e o e o e e e e o
Figure 20. Logical Track Header (LTH)
Record Format « ¢ & o < .
Figure 21. Sample Job Queue
(SYS1.SYSJCBCE) Format After
Initialization e o o o o o o o o o
Figure 22. Input and Output Queue
Entries . ¢ ¢ v o o 4« ¢ 4 e 4 4 e a

Tables
Table 1. Responders to Commands
After Initial Processing

Takle 2. MFT Modules . . v o o o « «
Table 3. ARBREND Modules . . o o o o .
Takle 4. Communication Task Modules
Table 5. Initiator Modules
Table 6. I/0 Device Allocation

MOAULES « 2o o o o o o o o o o o o o

Master Queue Control Record

. 40
-100
-102
-102
.102

.102

Illustrations

Figure 23. Table Breakup Parameter

List e e e e 2 o e o e o e = « o o« « o 60
Figure 24. Scheduling a Problem

Program in a Large Partition e « « < o 604
Figure 25. Scheduling a Problem

Program in a Small Partition e« « « « 65
Figure 26. Scheduling a Writer in a

Small Partition 66
Figure 27. Allocate/Terminate

Parameter List e e o e e e e o o s . - 69
Figure 28. User's Parameter List . . . 70
Figure 29. Scheduling a Writer in a

Large Partition -« -« . 73
Figure 30. START Descriptor Table

(SDT) v 4 v 4 4 e o o o o o o o o« o « o 14
Figure 31. Command Scheduling Control
Block (CsCB) (Part 1 of 2) « e e e e o 17
Figure 32. Data Set Enqueue Table

(DSENQ) ¢ ¢ & 2 o ¢ o o o o o o o o« « « 19
Figure 33. Interpreter Work Area

(IWA) (Part 1 of 3) 81
Figure 34. Job Control Table (JCT) - . 85
Figure 35. Job File Control Block

(JFCB) and Extension (JFCBX) .- . . . 86
Figure 36. Life-of-Task (LCT) Block . 88
Figure 37. Linkage Control Table

(LCT) ¢ 4« o v o o o o o o o o o« & « « « 89
Figure 38. Master Scheduler Resident

Data Area (Part 1 of 2) e e e e e . < 91
Figure 39. Partition Information

B¥ock (PIB) . o o ¢ o o o« o « « = « « « 93
Figure 40. Small Partition

Information List (SPIL) . . . < - 94
Figure 41. Step Control Table (SCT) . 96
Figure 42. Step Input/Cutput Table

(SI0T) e e o o o o o o s o s o o o = o« 98
Figure 43. Task Input/Cutput Table

(1I07T) e e e e o e o o o o o e s o o < 99
Table 7. Interpreter Modules103
Table 8. Master Scheduler Nodules . .103
Table 9. Queue Management NModules . .103
Table 10. svVC 34 Modules -104
Table 11. System Output Writer Modules 104
Table 12. System Restart Modules . . .104
Table 13. System Task Control Modules .104
Table 14. Termination Modules105

Charts

Chart 01.

Task Dispatcher (Without

Time Slicing) . . ¢« ¢ ¢ ¢ ¢ ¢ « « «

Chart 02.

Slicing) .
Chart 03.

(Part
Chart
(Part
Chart
(Part
Chart
(Part
Chart
(Part
Chart
(Part
Chart
Chart 10.

Chart 11.

Routine .
Chart 12.

04.
05.
06.
07.
08.

09.

1 of
2 of
1 of
2 of
3 of

4 of

Task Dispatcher (With Time
AEEND and DAR Comtrol Flew
ZDEND and DAR Gonteol Tl
Zaali Pastition mowtine '
smali Pastition Rowtine '
Saall Partition Rowtine '
Snali Pactition Routine '
Master Scheduler Task o &
Queue Search

Queue Manager Table Breakup

Master Scheduler Resident

Command PXOCESSOY =« « « o o o o « =

Chart
(Part
Chart
(Part
Chart
(Part

13.
14.

15.

SVC 34 Command Processing

1 of 3) .« ¢ o ¢ ¢ o a o o o @

SVC 34 Command Processing

20f 3) . 4 i i e 4 e e e e

SVC 34 cCommand Processing

3 0f3) .. e

.156
.157
.158
.159
.160
.161
-162
.163
.le4
.165
.166
-167
.168
.169

-170

Chart 16.
Chart 17.
Recovery Routine
Chart 18.

Communications Task

IEFSD518 - Partition

Initiator Control Flow .

We Ne =

.171

.172
.173

174
.175
.176
<177
.178
.179
.180

.181

Chart 19. Job Selection Routine

(Sheet 1 0f 5) . <« ¢ 2 o o o o « o

Chart 20. Job Selection Routine

(Sheet 2 0f 5) . o 2@ o ¢ o o o o o @

Chart 21. Job Selection Routine

(Sheet 3 0f 5) . o ¢ o « o o o o o @

Chart 22. Job Selection Routine

(Sheet 4 O0f 5) o o ¢ o o o o o o o

Chart 23. Job Selection Routine

(Sheet 5 0f 5) ¢ v ¢ @ o o o o o o =«

Chart 24. Reader/Interpreter (Sheet

Of 3) & ¢ 4 ¢ o o e a a o o o o o =

Chart 25. Reader/Interpreter (Sheet

Of 3) & ¢ o o o e o @ o o o = = = =

Chart 26. Reader Interpreter (Sheet

Of 3) & ¢ o o o o o o o o o o o o =

Chart 27. JCL Statement Processor . . .182
Chart 28. Job and Step Enqueue Routine 183
Chart 29. Transient Reader Suspend

Routine . . ¢ ¢ & o o « « « &
Chart 30.
Routine . . ¢ ¢ & ¢ o o o « &
Chart 31.
Control F1lOow « « « « o o &« o &«
Chart 32. System Cutput Write
Chart 33. System Task Control

Transient Reader Restore

e e o

System Output Writer

.184
.185
.186

.187
.188

In a single task environment, main storage
is divided into two areas: the fixed area,
and the dynamic area. In multiprogramrming
with a fixed number of tasks (MFT), the
dynamic area is divided further into as
many as fifty-two discrete areas called
partitions. Figure 1 shows the division of
main storage.

| The fixed area, located in the lower
portion of main storage, contains the resi-
dent portion of the control program, and
control klocks and tables used by the sys-

| tem. The size of the fixed area depends on
the numkber of partitions established by the
user, and the control program optiocns
selected at system generation.

Partitions are defined within the dynam-
ic area, located in the upper portion of
main storage, at system generation. The
number of partitions may be varied within
the number specified at system generation,
and the sizes and job classes of partitions
may ke redefined at system initialization
or during operation. (See IEM System/360
Operating System: Planning for Multipro-
gramming with a Fixed Number of Tasks
(MFT), Form C27-6939.) Each partition may
be occupied by a processing program, Or by
control program routines that prepare job
steps for execution (job management rou-
tines), or handle data for a processing
program (access method routines).

Provided the total number of partitions
does not exceed 52 and enough computing

Low Address

i

Introduction

‘system resources are available, MFT pro-

vides for the concurrent execution of as
many as 15 problem programs, 3 input
readers, and 36 output writers, each in its
own fixed partition of main storage. The
MFT system provides for task switching
among the tasks operating in the parti-
tions, and between those tasks and the com-
munications task and master scheduler task
in the system area.

Task dispatching in MFT differs from the
primary control program (PCP) primarily in
that task switching is required, and that
certain system functions such as abnormal
termination must be carried out so that
other, unrelated, tasks are not affected.
The dispatching priority of a task is
determined by the relative position of the
partition used to process the task. The
highest-priority partition (P0) is at the
highest address in storage. Successively
lower partitions (P1 - P51) have correspon-
dingly lower priorities. Control of the
CPU is given to the program in the highest-
priority partition that is ready.

The integrity of programs operating
under MFT is preserved if the storage pro-
tection feature is included. MFT uses the
16 protection keys to prevent a user job
from modifying the control program or
another job; it uses the two operating
states of the CPU to restrict the use of
ccntrol and I/0 instructions.

Partition "
Partition O
(n-1)
. . N , High Addr&ss}
Fixed Area Dynamic Area
Legend: Required Portion of the Fixed Area
Optional Features
n Number of Partitions Generated
eFigure 1. Main Storage Organization in MFT

Introduction 9

Because many components of MFT are simi-
lar to those of PCP and multiprogramming
with a variable number of tasks (MVT), many
of the modules for a given MFT component
are the same for the comparable compocnent
in either PCP or MVT. Therefore, this pub-
lication describes differences between MFT
and the other configurations. The corres-
ponding PCP and MVT routines are described
in the following IBM System/360 Operating
System program logic manuals and are
referenced where applicable:

Fixed Task Supervisor, Form Y28-6612

MVT Supervisor, Form Y28-6659

MVT Job Management, Form ¥28-6660

Information on modified or new routines for
MFT is contained in the three sections that
follow this introduction.

The Initialization of the Operating Sys-
tem section describes how the dynamic area
of main storage is prepared by the master
scheduler task after completion of the Nuc-
leus Initialization Program.

The Supervisor section describes the
task management modifications made to the
supervisor for MFT. The major area of
change has been in the initialization of
main storage.

The Jok Management section describes
modifications and additions to the routines
for processing communications with the pro-
grammer and the operator. The major
changes are in the master scheduler task,
and the MFT initiator. Other modifications
have been made to the gueue manager, the
reader/interpreter, system output writer,
and system task control routines.

Functions of the Control
Program with MFT

As in PCP and MVT, the control program rou-
tines of MFT have three major functions:
job management, task management, and data
management.

JOB MANAGEMENT

Job management is the processing of com-
munications from the programmer and opera-
tor to the control program. There are two
types of communications: operator com-
mands, which start, stop, and modify the
processing of jobs in the system, and job
control statements, which define work being
entered into the system. Processing of
these commands and statements is referred
to as command processing and job proces-
sing, respectively.

10

TASK MANAGEMENT

Task management routines monitor and con-
trol the entire operating system, and are
used throughout the operation of both the
control and processing programs. Task man-
agement has six major functions:

Interruption supervision.
Task supervision.

Main Storage supervision.
Contents supervision.
Overlay supervision.
Timer supervision.

The task management routines are collec-
tively referred to as the "supervisor."

DATA MANAGEMENT

Data management routines control all opera-
tions associated with input/output devices:
allocating space on volumes, channel sched-
uling, storing, naming, and cataloging data
sets, moving data between main and auxili-
ary storage, and handling errors that occur
during input/output operations. Data man-
agement routines are used by processing
programs and control program routines that
require data movement. Processing programs
use data management routines primarily to
read and write required data, and also to
locate input data sets and to reserve aux-
iliary storage space for output data sets
of the processing program.

Data management routines are of five
categories:

e Input/Output (I/0) supervisor, which
supervises input/output requests and
interruptions.

e Access methods, which communicate with
the I/0 supervisor.

e Catalog management, which maintains the
catalog and locates data sets on auxil-
iary storage.

e Direct-access device space management
(DADSM), which allocates auxiliary
storage space.

e Open/Close/End-of-vVolume, which per-
forms required initialization for I/C
operations and handles end-of-volume
conditions.

The operation of these routines is identic-
al with MVT and is described in the follow-
ing IBM System/360 Operating System program
logic manuals:

Input/Qutput Supervisor, Form Y28-6616

Sequential Access Methods, Form Y28-6604

Indexed Sequential Access Methods, Form
Y28-6618

Basic Direct Access Method, Form

Y28-6617

Graphics Access bdethod, Form ¥Y27-7113

Catalog Management, Form Y28-6606

Direct Access Device Space Management,
Form Y28-6607

Input/Qutput Support (OPEN/CLOSE/EOV),
Form ¥28-6609

Control Program Organization

The control program is on auxiliary storage
in three partitioned data sets created when
the system is generated. These data sets
are:

e The NUCLEUS partitioned data set (SY¥Si.
NUCLEUS), which contains the Nucleus
Initialization Program (NIP) and the
resident portion of the control
program.

¢ The SVCLIB partitioned data set (SY¥Ysil.
SVCLIB), which contains nonresident SVC
routines, nonresident error-handling
routines, and the access methods
routines.

e The LINKLIB partitioned data set (S¥YSl.
LINKLIB), which contains other nocnresi-
dent control program routines and IBM-
supplied processing programs.

RESIDENT PORTION OF THE CONTROL PROGRAM

The resident portion (nucleus) of the con-
trol program is in SYS1.NUCLEUS. It is
made up of those routines, control blocks,
and takles that are brought into main
storage at initial program loading (IPL)
and are never overlaid by another part of
the operating system. The nucleus is
loaded into the fixed area of main storage.

The resident task management routines
include all of the routines that perform:

e Interruption supervision.
e Main storage supervision.
e Timer supervision.

They also include portions of the routines
that perform:

e Task supervision.
e Contents supervision.
e Cverlay supervision.

These routines are described in the Super-
visor section of this publication, and in
the program logic manual IBM System/360
Operating System: Fixed Task Supervisor,
Form Y28-6612.

The resident job management routines are
those routines of the communications task
that receive commands from the operator.
The MFT communications task is described in
this publication.

The resident data management routines
are the input/output supervisor and,
optionally, the BLDL routines of the parti-
tioned access method. These routines are
described in the following IBM System/360
Operating System program logic manuals:

Input/Output Supervisor, Form Y28-6616

Sequential Access Method, Form ¥Y28-660U4

The user may also select resident reen-
terable routines, which are access method
routines from SY¥S1.SVCIIB, and other reen-
terable routines from SYS1.LINKLIB. At
system generation, the user specifies that
he wants such routines resident in main
storage. At IPL, he identifies the specif-
ic routines desired in the RAM=entry. The
selected routines are loaded during system
initialization and reside adjacent to the
higher end of the system queue area unless
the BLDL table is also resident (see Figure
1).

Normally-transient SVC routines (i.e.,
types 3 and 4 SVC routines) can be made
resident through the RSVC option, specified
by the user. NIP loads these routines
adjacent to the higher end of the resident
reenterable routines. If there is no resi-
dent BLDL table or resident reenterable
routines, the routines are loaded adjacent
to the higher end of the system queue area.
(See Figure 1.)

NONRESIDENT PORTION OF THE CCNTROL PRCGRAM

The nonresident portion of the control pro-
gram comprises routines that are loaded
into main storage as they are needed, and
which can be overlaid after their comple-
tion. The nonresident routines operate
from the partitions and from two sections
of the nucleus called transient areas
(described below).

Main Storage Organization

Main storage in MFT is organized similarly
to main storage in MVT, except that the
ortional resident areas are adjacent to the
nucleus.

Introduction 11

Main storage may be expanded by includ-
ing IBM 2361 Core Storage (core storage)
units in the system. Main Storage Hierar-
chy Support for IBM 2361 Models 1 and 2
permits access to either processor storage
(hierarchy 0) or core storage (hierarchy
1). Each partition established during sys-
tem generation is described by a boundary
box. The first half of the boundary box
describes the processor storage partition
segment and the second half describes the
core storage partition segment. Any parti-
tion segment not assigned main storage in
the system has the applicable boundary box
pointers set to zero. If a partition is
estaklished entirely within hierarchy 1,
the processor storage pointers in the first
half of the partition's boundary box are
set to zero. If a partition segment is not
generated in core storage, the core storage
pointers in the second half of the parti-
tion's boundary box are set to zero. If
core storage has been included in the sys-
tem, but is offline, the second half of the
boundary box will contain zeros. If core
storage is excluded from the system, the
second half of the boundary box is not
generated.

FIXED AREA

In MFT (as in PCP and MVT) the fixed area
is that part of main storage into which the
nucleus is loaded at IPL. The storage pro-
tection key of the fixed area is zero so
that its contents can be modified by the
control program only. The fixed area also
contains two transient areas into which
certain nonresident routines are loaded
when needed: the SVC transient area (1024
bytes) and the I/0 supervisor transient
area (1024 kytes). These areas are used by
nonresident SVC routines and nonresident
I/0 error-handling routines, respectively,
which are read from SYS1.SVCLIB.

Each transient area contains only one
routine at a time. When a nonresident SVC
or error-handling routine is required, it
is read into the appropriate transient
area. The transient area routines orerate
with a protection key of zero, as do other
routines in the fixed area.

12

System Queue Area

The system queue area (SQA) is established
by NIP adjacent to the fixed area and pro-
vides the main storage space required for
tables and queues built by the control pro-
gram. The SQA must be at least 1600 bytes
for a minimum two-partition system. Its
storage protection key is zero so that it
can be modified by control program routines
only. Data in the system queue area indi-
cates the status of all tasks.

DYNAMIC AREA

Figure 2 shows how the contents of each
partition in the dynamic area are organized
and how they are related to the rest of
main storage. Routines are brought into
the high or low portion of an MFT partition
similarly to the way routines are brought
into the entire dynamic area of PCP. Job
management routines, processing programs,
and routines brought into storage via a
LINK, ATIACH, or XCTL macro instruction,
are loaded at the lowest available address.
The highest portion of the partition is
occupied by the user parameter area and
user save area. The next portion of the
partition is occupied by the task input/
output table (TIOT) which is built by a job
management routine (I/C Device Allocation
routine). This table is used by data man-
agement routines and contains information
about DD statements.

Each partition may be used for a problem
rrogram as well as for system tasks
(readers, initiators, and writers). When
the control program requires main storage
to build control blocks or work areas, it
obtains this space from the partition of
the processing program that requested the
space. Access method routines and routines
brought into storage via a LCAD macro
instruction are placed in the highest
available locations below the task input/
output table.

Working storage and data areas are
assigned from the highest available storage
in a partition.

Resident Portion of the Control Program

Non-Resident SVC Routines

1/O Error Handling Routines

Processing
Program

or
Job
Management
Routine

Non-Resident Access
Control Program Method
Routines or Routines
Processing Program
Routines Access TIOT User User
Brought Method Parameter Save
In Via Routines, Area Area
LINK, and
ATTACH, Routines
and Brought
XCTL In
Macro Via
Instructions} LOAD
Macro-
Instruction

Partition
(Typical for Each)

/
/
/
/

High Address

10s
Transient
Area (Lowest (Highest
Priority Priority
Partition) Partition)
svC
Transient
Area
Low Address P(n-1) P1 PO
C _J J
Y Y
Fixed Area Dynamic Area
n = number of partitions generated
Figure 2. Division of Main Storage
Introduction 13

Theory of Operation

Figure 3 describes the overall processing flow through each job cycle. These paragraphs

describe the processing performed by various components of the control program as it
loads the nucleus, reads control statements, initiates the job step, causes processing to
begin or end in other partitions, and terminates the job step.

[e e S S e e S e s i S et S S . . ot . S i, e S S M o S S . . S s i S e, B s, e S B, S St . . e S S et S, S S, S, T, S

< 'LOAD' >

Load
PL
Program

IPL

Load Nucleus

NIP

Initialize Nucleus

MASTER SCHEDULER

Initialize System

COMMUNICATIONS
TASK

Partition

Yes

Definition Routine

Changes?

Initialize
Work
Quevues

Interpret
Commands

Make
Requested
Changes

C

START Reader
START Writer
START INIT
SET

To load the nucleus, the operator sets
the LOAD UNIT switches to the device on
which the system residence volume is
mounted, and presses the LOAD button on the
operator control panel. This causes an IPL
record to ke read and to be given control.
This record causes the second IPL record to
be read, which in turn, enables the rest of
the IPL program to be read into main
storage.

The IPL program searches the volume
label of the system residence volume to
locate the volume table of contents (VTQC).
The VTIOC is then searched for the address
of the nucleus data set (SYS1.NUCLEUS).

The nucleus is brought into the system
area, and NIP is brought into the dynamic
area. NIP receives control from the IPL
program. It performs both required and
optional initialization for control program
operation including initializing the Com-
munication Vector Table (CVT), and general
system initialization, such as determining
user options. After completing its proces-
sing, NIP passes control to the master
scheduler task (MST) which initializes main
storage.

Partitions are established by the master
scheduler at system initialization accord-
ing to the sizes and job class(es) estab-
lished at system generation by the PARTITNS
macro instruction. The MST also places a
copy of the Initiator/Terminator into each
scheduler-size partition; a copy of the
small partition module is placed in each
small partition. The communications task
receives control from the MST and communi-
cates with the operator to request any par-
tition changes. After the requested
changes, if any, have been made by the
definition routines, the work queues are
initialized. The automatic commands are
displayed, and the READY message is issued.

e oo e < e i e o — — 1 — s S . SN Sn—S S ‘—n — —— — ——— S—{———— ——_ St S s, . ot st S S S . i, S, St . i S S— o— S——{— —— — ——— S———. o s, s]

Figure 3.

14

MFT Theory of Operation (Part 1 of 4)

SUPERVISOR

Bring Writer
Into lts
Assigned
Partition
(See Part 4 of 4)

Bring Reader
Into lts
Assigned
Partition

Y

READER

Read and
Interpret
Control Statements

Build Tables and
Enter Job on
Appropriate Input
Work Queue

Write Data in
Input Stream
onto Direct~Access
Storage Device

EXEC
JOB

SUPERVISOR

Bring
Initiator/
Terminator
Into
Partition

o . S —— ———— S———— — V——— —— {— T——— —— —— ——— —— —— — — — — — — — — — ——— —— —— ——— — — — —— — ———— —— — — ——

r

&

-

Work

Queues
-

Sets

npuf

Input
Data

when the required SET command is
entered, the communications task calls the
master scheduler command scheduling routine
to have the command executed. An automatic
START reader command or a subsequent opera-
tor entered START reader command causes a
copy of the Reader/Interpreter (reader) to
be brought into its appropriate partition.
If a START writer command is entered, a
copy of a writer is also brought into the
specified partition(s).

when the reader gets control, it reads
control statements and data from the input
job stream. Information from the JCE,
EXEC, and DD statements controls the execu-
tion of each job step. This information is
rlaced in the following tables:

e Job control table (JCT) for the job
being read.

e Step control table (SCT) for the step
being read.

e Data set enqueue table (DSENQ) for the
jobk being read.

e Job file control block (JFCB) and step
input/output table (SICT) for each data
set being used or created by the job
step.

e Volume table (VOLT) containing each
volume serial number to be used by the
jok.

Information from these tables and control
blocks is updated with information in the
data control block (DCB) and data set con-
trol block (DSCB) or volume label when a
data set is opened during step execution.

The reader then places these updated
control blocks into the input work queue
corresponding to the CILASS parameter on the
JOB statement. Data sets in the input
stream are written onto a direct-access
storage device for later use by the problem
Frogram.

After the reader has completed proces-
sing all input for a job and has entered
the job on an input work queue, all initia-
tors that are waiting for that job class
are posted. If the job is for a small par-
tition, the small partition module is also
posted.

[p— |

bt e e e s o ——— ————— — — — —— — T — —— — —~ — —— — —— — — — — ——— —— S— — — ——— c— — —— — — ——" U — — — — — ———

Figure

3. MFT Theory of Operation (Part 2 of #)

Introduction 15

[e e e . e S S e, o . S, e S . . S e e e . . S, e e e s S, S, e e, S . . S, S e S S, . e e e e . S, . . e, S, ., e, S e e e, e e

INITIATOR/TERMINATOR

Determine Step to
Be Initiated

Locate Input
Data Sets

Assign
|npuf/O utput
Devices to Data
Sets

Allocate
Auxiliary
Storage Space

Write Tables
and
Control Blocks

SUPERVISOR

Bring Problem
Program Into
Partition

©

After receiving control, the initiator/
terminator prepares to initiate the highest
priority job in its primary input work
queue. Using information which the reader
extracted from the DD statement, the
initiator/terminator processes the user
accounting routine, in addition to the
following:

Locates Input Data Sets: The Allocation
routine, running as a subroutine of the
initiator/terminator, determines the volume
containing a given input data set by
examining the JFCB, or by searching the
catalog. This search is performed by a
catalog management routine entered from
allocation. (A description of the routines
that maintain and search the catalog is
given in IBM System/360 Cperating System:
Catalog Management, Program lLogic Manual,
Form Y28-6606.)

Allocates I/0 Devices: A job step cannot
be initiated unless there are enough 1I/C
devices to fill its needs. Allocation
determines whether the required devices are
availakle, and makes specific assignments.
If necessary, messages are issued to the
operator to request the mounting of
volumes.

Allocates Auxiliary Storage Space: Direct
access volume space required for output
data sets of a job step is acquired by the
allocation routine, which uses the Direct
Access Device Space Management (DADSNM) rou-
tines. (A description of the operation of
the DADSM routines is given in the publica-
tion IBM System/360 Operating System:
Direct Access Device Space Management, Pro-
gram Logic Manual, Form Y¥28-6607.)

The JFCB, which contains information
concerning the data sets to be used during
step execution, is written on auxiliary
storage. This information is used when a
data step is opened, and when it is closed,
the job step is terminated.

The initiator causes itself to be
replaced by the problem program it is
initiating (if for a large partition), ox
initiates the job in a small partition.

The problem program can be an IBM-
supplied processor (e.g., COBCL, linkage
editor), or a user-written program. The
Froklem program uses control program ser-
vices for operations such as loading other
programs and performing I/C operations.

— e el

Figure 3.

16

MFT Theory of Operation (Part 3 of 4)

e S G S S G S S S—— {—— ——— — — — — — {— — —— S— ——— — — — —{— — — — — — — — — — ——— — — —— —— —— — t—

Y

Allow Highest
Priority Ready
Task to
Execute

Input

SUPERVISOR

Data
Sets

Output

OPEN/CLOSE/
EOV

Set Up for Dump,
if Required

Load
Initiator/
Terminator

INITIATOR/TERMINATOR

User
Accounting
Routine

Dispose of
Data Sets,
Write Messages

Enqueve Work
for Output
Writer on
Output Work
Queve

SYSTEM OUTPUT WRITER

Data
Sets

Output
Work
Queves

Dequeue Entry From
Appropriate Sysout
Queve

Write Data and

Messages onto

User-Specified
Device

Delete Entry
From the Queue

Dequeve the Next
Entry From the
Queve

Punch

Printer l

The problem program processes until it
terminates either normally or abnormally,
though it may not retain exclusive control
of the CPU. Control always is received by
the highest priority task that is ready to
execute.

when the problem program terminates, the
supervisor receives control. The supervi-
sor uses the OPEN/CLOSE/ECV routines to
close any open data control blocks. (These
routines are described in IBM System/360
Operating System: Input/Cutput Support
(OPEN/CLOSE/EQV) , Program logic Manual,
Form Y28-6609.)

Under abnormal termination conditions,
the supervisor may also provide special
termination procedures, such as a storage
dump. The supervisor passes control to the
initiator/terminator, which is either
brought into the partition in which ter-
mination is to occur, or is brought into
the large partition to terminate a small
partition.

The initiator/terminator releases the
I/0 devices, and disposes of data sets used
and/or created during the job step by read-
ing tables prepared during initiation (JCT,
SCTI, TIOT, etc.). These tables include
information such as disposition of data
sets. It then executes an installation
accounting routine if one is provided.

At job termination, an entry is made on
the user specified output work queue; later
the problem program output data can be
written by a system output writer from a
system direct-access storage device to a
user-specified device. The initiatox/
terminator then initiates the next job
ster.

An output writer operates concurrently
with readers, problem programs, and other
writers. Wwhen the START command is issued
for a writer, the writer dequeuves the first
entry in the specified output (SYSOUT)
queuve. If no requests have been enqueued
in that output queue from the problem pro-
grams, the writer is placed in a wait con-
dition until a job is terminated that has
system messages or output data sets. After
the entry is dequeued from the output
queue, the writer transmits the data sets
to the specified card punch, magnetic tape
unit, or printer. When the last recoxd has
been processed, the writer deletes the
queue entry before dequeuing the next
entry.

——— —— ————— — — — ——— =}

e e e e s e e —

Figure 3.

MFT Theory of Operation (Part 4 of 4)

Introduction 17

IInitialization of the Operating System

When the system is loaded, routines perform
required and optional initialization of
functions needed for control program opera-
tion. (These routines are described in IBM
System/360 Operating System: Initial Pro-
gram Loader and Nucleus Initialization Pro-
gram, Program Logic Manual, Form Y28-6661.)
When the Nucleus Initialization Program
(NIP) has defined the fixed area, it then
assigns the rest of main storage to the
master scheduler task to be prepared as the
dynamic area for control program operation.

Main Storage Preparation

When NIP completes its functions it con-
structs a request block (RB) and an XCTL
macro instruction (specifying master sched-
uler initialization routine IEFSD569) at
the low address of the temporary master
scheduler area. NIP places the address of
this RB in master scheduler task TCB field
TCBRBP. (The original contents of TCEBRBP
are saved and passed to IEFSD569 in a pa-
rameter list along with the original master
scheduler task boundary box contents.) NIP
sets master scheduler task TCB field
TCBFLGS to make the master scheduler task
dispatchakle, and then branches to the
dispatcher.

The dispatcher gives control to the
master scheduler task causing execution of
the XCTL instruction which NIP placed in
the temporary master scheduler area. The
master scheduler initialization routine is
brought into the temporary master scheduler
area and begins executing. Figure 4,
excluding the medium shaded area, illus-
trates main storage at completion of NIP
before branching to the dispatcher. Figure
4, excluding the light shaded area, illus-
trates main storage when the master sched-
uler initialization routine receives con-
trol from the dispatcher.

For a description of the master schedul-
er initialization routine see "Master

18

Scheduler Task"™ in the Job Management sec-
tion. Figure 5 illustrates main storage
(four partition example) at completion of
master scheduler initialization. When the
initialization routine completes proces-
sing, it branches to the dispatcher.

Initializing the Partitions

During master scheduler initialization the
operator must accept automatic START com-
mands or enter START commands manually.
When a START command is processed, the par-
tition number specified in the command is
determined, and a CSCB is built. The CSCB
(see Appendix A) is used for communication
between the command scheduling routines
(sVC 34) and the command execution rou-
tines. The address of the CSCB is placed
in the partition information block (PIB) of
the specified partition, and the partition
is posted. The PIB for each partition con-
tains information used by command proces-
sing and scheduler routines. (See Appendix
A for a description of the PIB, and
"Initiator/Terminator"™ in Job Management
for a discussion of its use.)

After the initialization routine com-
pletes processing, the dispatcher gives
control to the master scheduler router rou-
tine. When this routine completes proces-
sing, it returns to the dispatcher which
begins searching the TCB queue. The high-
est priority task posted through START com-
mand processing receives control. The XCTL
macro instruction addressed by the parti-
tion's RB is executed and the Job Select
module (IEFSD510) or Small Partition module
(IEFSD599) is brought into the partition.
when an interruption occurs and the parti-
tion can no longer retain control, the dis-
patcher gives control to the next posted
partition. This process continues, enabl-
ing all posted partitions to receive con-
trol and to execute the XCTL instruction
placed in them by the initialization
routine. '

Partition
0 3

Partition

1

Partition

2

Partition
3 <

BLDL

RSVC
Resident
Reenterable
Routines

System
Queuve
Area

Nucleus <

eFigure

High Address

N
RB ! XCTL IEFSD510 0000 FQE
RB XCTL IEFSD510 | 0000 FQE Do
ynamic
(Small Partition) [Area
RB XCTL IEFSD599 0000 FQE
(RB ' | XCTLIEFSD510 0000 FQE
<
0000 FQE |
Communications Task Master Scheduler
P_/I:ixed
| MSTCB /
" ToaReP 1—+{RE__ 7
[Tcawiss |
| S0A BBOX | _Ms BBOX
| HL -
LO)
Low Address
4. Main Storage During Execution of NIP

Initialization of the Cperating System 19

Temporary
Master
Scheduler
Area
. [Rr_ ' | XCTLIEFSD569 0000 FQE
BLDL
RSVC
Resident <
Reenterable
Routines
System
Queue Area
¥ 0000 FQE
Communications Task Master Scheduler
MS TCB
\F TCBRBP
’— — e — e}
Nucleus :'F_—(;BIW.E_-S—
SQA BBOX | WS BBOX |
| _H -
L Lo .

High Address

Low Address

/

eFigure 5.

20

Legend:

Main Storage

Contents of the Dynamic Area During IPL and NIP.

Contents of the Dynamic Area After The Master Scheduler Task
Receives Control on Completion of NIP.

- Optional Features

at Termination of Master Scheduler Initialization

-

Dynamic
Area

Fixed
r Area

The MFT Supervisor manages the operation of
the control program and processing pro-
grams. Job management selects jobs for
execution, allocates devices and storage to
the step to be executed, and gives control
to the program that represents the step.
After receiving control, a program is known
as a task and becomes the responsibility of
the Supervisor. As many as 15 job-step
tasks may operate in the system concurrent-
ly with system tasks. Each task must be
isolated so it does not interfere with any
other task. To do this, each job-step task
operates in its own partition in main
storage. If the system has the optional
storage protection feature, each partition
is assigned a unique protection key (1-15).
The resident portion of the control pro-
gram, including some supervisor routines,
occupies a fixed area of main storage and
operates under a protection key of zero.

To maintain control of the computing
system, the supervisor must perform many
services. Routines within the supervisor
are grouped into general categories depend-
ing upon the services which they perform.
These categories are:

Interruption Supervision: All supervisor
activity begins with an interruption. The
five types of interruptions are: supervi-
sor call, timer/external, input/output,
program, and machine. When an interruption
occurs, the interruption handling routine
for the type of interruption that occurred
gains control. The interruption handling
routine then passes control to those parts
of the control program that perform the
services required as a result of the inter-
ruption. Many of the services which must
be performed are included in other general
categories of the supervisor.

Task Supervision: The supervisor mwaintains
control information including the current
status of program and interruption request
blocks, task control blocks, and event con-
trol blocks.

Contents Supervision: The supervisor keeps
records of the status and characteristics
of all programs in each partition of main
storage, initiates program fetch for the
dynamic loading of programs, and maintains
the active request block queue.

Main Storage Supervision: Within each par-
tition, the supervisor allocates and
releases main storage space for a task on
request, and maintains a record of all free
storage space within each partition.

Supervisor

Timer Supervision: The supervisor sets and
maintains a clock, and honors requests for
time intervals and exact time.

Overlay Supervision: The supervisor mon-
itors the flow of control between segments
of a program operating in an overlay struc-
ture established by the user through the
linkage editor.

Interruption Supervision

With the exception of the dispatcher and
the ABEND routines which are described
below, the interruption supervisor of MFT
functions as described in IBM System/360
Operating System: Fixed-Task Supervisor,
Program Logic Manual, Form Y28-6612.

When an interruption occurs and is ser-
viced, the task which had been executing
may relinquish control of the CPU. Control
must always be given to the highest priori-
ty ready task. The transfer of control
from one task to another is called task
switching and is accomplished by the task
dispatcher. When an interruption handling
routine completes processing an interrup-
tion, it branches to the task dispatcher
rather than returning control to the inter-
rupted program. Type 1 EXIT is the only
interruption handling routine which may
return control directly to the interrupted
program. Figure 6 illustrates how the task
dispatcher receives control after an inter-
ruption has been serviced.

THE DISPATCHER (MACRO IEAAPS)

The dispatcher gives control to the highest
priority task ready to execute. It uses
information located by communication vector
table (CVT) fields CVTHEAD and CVITCBP, and
if the time-slicing feature is in the sys-
tem, field CVTTSCE.

Field CVTHEAD addresses a queue of task
control blocks (ICBs). This TCB queue is
arranged in dispatching priority order
beginning with the highest priority task.
The highest priority TCB is the optional
log task TCB, followed by the communication
task TCB, the master scheduler task TCB,
and one TCB for each of the partitions
generated in the system (in ascending order
by partition number). Figure 7 illustrates
the TCB queue.

Supervisor 21

INTERRUPTIONS

Machine

sve Program Timer/ Input/
Check Check External Qutput
—_—
r ¥ Y
i Time lonpuf/
P utput
: WAIT T3 Supervision Supervisor
boo
Y |
Recovery Transient Area Mark
Management Handler for Non Task for
(Optional) Resident SVCs ABEND
|
l
E SVC User's
[Service Routine
l
|
| Type 1 No
! Routine
I
1
|
l Y
es
|
I
' ,
I Return to
| Caller EXIT
l
l
- - -

Task Dispatcher

Highest Priority
Ready Task

Figure 6. MFT Supervisor

Any number of partitions (up to 52) may
be specified during system generation.
Partitions must be numbered consecutively
beginning with zero. Note that in Figure 7
there is a TCB for partition 1, but parti-
tion 1 is assigned no storage space. This
illustrates a partition which was specified
at system generation but which has been
made inactive. If a partition is not spe-
cified during system generation, no TCB is
constructed. If, for example, only 3 par-
titions (0 through 2) are specified at sys-
tem generation, then only three TCBs are
constructed and partitions 3 through 51 do
not exist.

22

All of the TCBs in the system are
chained together through TCB field TCBTCB.
In each TCB, this field contains the
address of the next TCB on the queue. The
TCBTCB field of the last TCB on the queue
contains zero.

CVT field CVTITCBP addresses two full
words called NEW and OILD. The first word
(NEW) contains either zero or the TCB
address for the task to be given control.
The second word (OLD) contains the TCB
address for the task currently in control.
NEW can be set by any of the supervisory

routines associated with task switching
(WAIT, POST, ENQ/DEQ, Manual Purge). When
a supervisory routine determines that the
task currently in control can no longer
retain control, it sets NEW to zero. When
a supervisory routine determines the new
task to ke given control, it inserts the
TCB address for that task in NEW.

CVT field CVTTSCE contains the address
of the time-slice control element (TSCE).
This field is used by the dispatcher in
determining the next time-slice task to
receive control, providing time-slicing was
specified as a system generation option.
The format of a TSCE is explained later in
this section.

When the interval timer is in use and a
user accounting routine is supplied, the

Main Storage

Low Address

(Not to Scale)

* \
. Log Task Wait Routine (Optional)
Fixed \

Area

\
Comm T\ask Wait Routine

Master Scheduler Router Routine

Partition 2

Partition O S

High Address

Dynamic
Area

eFigure 7. TCB Queue

dispatcher accumulates the total amount of
time used to execute a job step. Each time
a new job step is dispatched, the dispatch-
er stores the time from the hardware timer
in the PTIMER field of IEATPC (pseudo clock
area). When control is returned to the
dispatcher, it calculates the elapsed time
by subtracting the stored value from the
current value of the hardware timer. The
dispatcher adds the result to the TCBTCT
field in the task's TCB. Time is not cal-
culated for the job step if it is dis-
ratched in a wait state.

Dispatching a Task

when the dispatcher receives control, it
first schedules any requests for system
asynchronous exit routines. Then it deter-
mines if NEW equals OLD (see Chart 01). If

TCBTCB

Partition FQE Low Address g

High Address,

Supervisor 23

so, no task switch is indicated. If neces-
sary, the dispatcher enqueues timer ele-
ments for the task. It then returns to the
task currently in control.

If NEW does not equal OLD, a task switch
is indicated. If job/step CPU timing is
included in the system, the dispatcher cal-
culates the job step time for OLD, and
increments the job time accumulator in the
TCB. If necessary, the dispatcher dequeues
timer elements associated with the task
currently in control. Then it determines
if NEW equals zero.

If NEW does not equal zero, it contains
the TCB address for the task to be given
control. The dispatcher sets OLD equal to
NEW, and enqueues timer elements if neces-
sary. Additionally, if job/step CPU timing
is included in the system, the dispatcher
stores the interval timer value in the
pseudo timer field of IEATPC. Control then
passes to the new task.

If NEW equals zero, the dispatcher must
examine the TCB queue to determine which
task should ke given control. This
examination begins with the TCB addressed
by CLD. (For a task of higher priority
than OLD to receive control, the address of
its TCB must be inserted in NEW by a super-
visory routine.)

When examining a TCB to determine if its
associated task should be given control,
the dispatcher first determines if the re-
quest block (RB) of the program executing
under the TCB is waiting. This is done by
examining field XRBWT in the RB addressed
by TCB field TCBRBP. If the RB is not
waiting, the dispatcher examines TCB field
TCBFLGS to determine if the task is dis-
patchakle. If so, the dispatcher sets NEW
and OLD to the address of the TCB and
enqueues timer elements (if necessary).
Additionally, if job/step CPU timing is
included in the system, the dispatcher
stores the interval timer value in the
pseudo timer field of IEATPC. Control then
passes to the new task.

In one case, the dispatcher does not
pass control directly to the new task. If
TCB field TCBRBP for the task to be given
control addresses an SVRB for a transient
SVC routine, a check is made to determine
the contents of the double word XCNTCC (in
IEAATA00) which contains the name of the
routine presently in the SVC transient
area. If the routine names in XCNTCC and
the SVRB are identical, the dispatcher
passes control to the new task. If they
are not identical, the Transient SVC
Refresh routine (IEAARF00) brings the
required routine into the SVC transient

24

area and then returns to the dispatcher.
Since NEW and OLD have already been set
equal, the dispatcher need only enqueue
timer elements if necessary and pass con-
trol to the new task.

If the RB for a task is waiting or the
task is nondispatchable, the task is not
ready to receive control. The dispatcher
examines TCB field TCBTCB to obtain the
address of the next TCB on the queue. The
dispatcher then examines this TCB to iden-
tify whether it is ready to receive con-
trol. This process continues until a ready
task is found or until the end of the queue
is reached (indicated by a zero in TCBTCB).

If no task is able to receive control,
the dispatcher sets the resume PSW wait bit
of the TCB addressed by OLD. This PSW is
then loaded, placing the CPU in a wait con-
dition. The resume PSW is located in field
XRBPSW of the RB addressed by TCB field
TCBRBP.

Figures 8 and 9 illustrate how control
is switched assuming a three partition sys-
tem in which P1 is inactive (see Figure 7).
All tasks are dispatchable except task Pl.
Initially, only the communications task and
master scheduler task are waiting. Because
task PO is the highest priority task which
is dispatchable and not waiting, it is
given control. Task PO has already
enqueued and received exclusive control of
a resource which task P2 will later enqueue
(see Figure 9).

Dispatching the Communications Task and
Master Scheduler Task

Figure 8 illustrates how control passes to
the communications task and master schedul-
er task through the dispatcher. 1In the
example illustrated, the communications
task receives control in order to read a
DEFINE command from the operator console.

Initially, the task in PO has received
control from the dispatcher and is execut-
ing. The operator presses the RECUEST key
to indicate that he wishes to enter a com-
mand from the console. An I/C interruption
is generated and control passes to the 1/0
supervisor which identifies the interrup-
tion as an attention signal. The I/C
supervisor then passes control to the con-
sole interruption routine which issues a
POST macro instruction. The PCST routine
posts the attention ECB and sets the com-
munications task RB to a non-wait condi-
tion. Because the communications task is
of higher priority than the task in parti-
tion 0, the POST routine places the address
of the communications task TCB in location
NEW. Control then passes to the
dispatcher.

NEW OoLDb

|t PO TCB |T PO TCB l

T T

1]

Dispatcher

Operator Console

Enter
DEFINE

Partition 0 Task

Int
1/0 Supervisor
Console Interrupt Routine
POST
Int
Post Routine
e — Post Communications Task
[t crras [POTCB] L
L_ T
I Dispatcher
‘ Communications Task
] toerres [e) Tnt SVC 34
l SVC 34
Command Processing
‘ ‘ POST
‘ i Int
‘ | Post Routine
‘ l Post Master Scheduler
L,_L___— —_—] Dispatcher
Communications Task
Int WAIT
- Wait Routine
I 0 _I t crres]
I |
e Dispatcher
Search
¢ * TCB Queve Master Scheduler Task
[t msTce |1 mstes | Tnt WAIT
e S Wait Routine
[o |} msrce l l
e Dispatcher
_ Search
i TCB Queve Partition 0 Task

[t porcs |1 porce]

Figure 8. Dispatching Communications and Master Scheduler Tasks

Supervisor

25

Dispatcher
Partition 0 Task
Int | WAIT
l____._._——— Wait Routine
I 0 41 TPOTCBI
L L ’
— —_————— Dispatcher
] Search TCB Queue Partition 2 Task
i Int ENQ
{ teorcs | te2rce |
[____ U Enqueue Routine
+ Resource Unavailable
I 0 1 1n7cﬁ1
[_ - _|_ -] Dispatcher
Search TCB Queue
No Task Can Execute
Machine Wait
Int
'_______——_———— Post Routine
+ Post PO
l 4 po TCB I } P2 1CB [
l____J___.__.__ Dispatcher
-
— Partition 0 Task
Int DEQ

Dequeue Routine

Dispatcher

Figure 9. Task Switching

26

Partition O Task

- A

I\

> C

>~ D

The dispatcher gives control to the com-
munications task which passes control to
resident device-support routines or issues
SVC 72 for transient device-support
routines. The device-support routines read
the console's commana and then 1ssue SVC 34
to process the command. SVC 34 processes
some commands completely but must pass con-
trol to the master scheduler resident com-
mand processor routine to complete proces-
sing the DEFINE command. (See "Command
Processing"™ in the Job Management section
for a complete description of SVC 34 and
the master scheduler task.) SVC 34 issues
a POST macro instruction to post the master
scheduler task. The POST routine sets the
master scheduler RB to a non-wait condition
and gives control to the dispatcher.
Because the master scheduler task is of
lower priority than the communications
task, locations NEW and OLD remain
unchanged and the dispatcher returns con-
trol to the communications task.

The communications task issues a WAIT
macro instruction and waits on an ECB. The
WAIT routine sets the communications task
RB in a wait state and sets location NEW to
zero. The dispatcher then receives control
and searches the TCB queue. Since the
master scheduler task is the next ready
task on the TCB queue, the address of the
master scheduler TCB is placed in locations
NEW and OLD, and the dispatcher passes con-
trol to the master scheduler.

The master scheduler completes proces-
sing the DEFINE command and then issues
WAIT. The WAIT routine sets location NEW
to zero and passes control to the dispatch-
er which searches the TCB queue until it
finds a task ready to receive control. 1In
Figure 8, control returns to the task which
was executing before the operator entered
the DEFINE command.

Dispatching Tasks by Partition Priority

Figure 9 illustrates task switching among
tasks executing in partitions.

A. The task in partition PO (task PO0) is
the highest-priority ready task and is
given control by the dispatcher. Wwhen
task PO issues a WAIT on an ECB, an
interruption occurs and control passes
to the WAIT routine.

B. The WAIT routine places the RB for
partition 0 in a wait condition and
sets location NEW to zero. It then
passes control to the dispatcher which
searches the TCB queue beginning with
the TCB for partition 0. Since task
PO is waiting and task P1 is non-
dispatchable, the dispatcher passes
control to task P2, the highest

priority task ready to execute. When

task P2 attempts to enqueue a resource
through use of the ENQ macro instruc-
tion, an interruption occurs and con-
trol passes to the ENQ routine.

C. The resource is unavailable because
task PO has already enqueued it.
Therefore, task P2 cannot continue
executing. The enqueue routine places
zero in location NEW and then passes
control to the dispatcher which
searches the TCB queue. Since task P2
is the last task on the queue, the
dispatcher sets the wait bit in the
resume PSW of task P2. The dispatcher
passes control to task P2, placing the
CPU in a machine wait condition.

D. Wwhile the CPU is waiting, an interrup-
tion occurs signifying the completion
of the event for which task PO was
waiting. The POST routine receives
control and posts the ECB for task PO
which is now able to resume control.
The POST routine places the TCB
address for task PO in location NEW
and gives control to the dispatcher.
The dispatcher sets OLD equal to NEW
and gives control to task P0. Task PO
executes and when finished using the
resource it has enqueued, it issues a
DEQ macro instruction.

E. An interruption occurs and the DEQ
routine receives control. The queue
element for task PO is removed from
the resource queue. The next element
on the resource queue is for task P2.
The resource is assigned to task P2
and its RB is placed in a non-wait
condition. The DEQ routine then com-
pares the priority of the task which
has been in control with the priority
of the task which is now ready.
Because task PO has a higher priority
than task P2, location NEW remains
unchanged. The DEQ routine passes
control to the dispatcher which
returns control to task PO.

Dispatching a Task (with Time Slicing)

If time slicing was selected as a system
generation option, the user can select a
number of contiguous partitions to be a
time-slice group. The tasks executing in
time-sliced partitions have equal priority.
Each ready task in the time-slice group
executes for a selected amount of time, the
time-slice length, and then loses control
to the next ready task in the time-slice
group. The time-slice group is supervised
through use of a time-slice control element
(TSCE) shown following.

Supervisor 27

FIRST - Address of the fist time-slice TCB on the TCB queue

LAST - Address of the last time=slice TCB on the TCB queue

NEXT - Address of the next time=slice TCB to be dispatched

LENGTH - Time=slice length (in milliseconds)

When time-slicing is selected, the dis-
patcher performs functions in addition to
those explained in the preceding para-
graphs. The following text describes the
additional dispatcher functions, and paral-
lels the flow of data shown in Chart 02.

NEW EQUALS OLD: The dispatcher first
determines if NEW equals OLD. If it does,
the dispatcher further determines if the
task represented by OLD is a time-slice
task.

OLD a Time-Slice Task: If OLD is a time-
slice task, the dispatcher determines if
the time-slice interval has expired; i.e.,
if the time-slice queue element (TQE) has
been removed from the timer queue.

If the interval has expired, the next
ready time-slice task must be dispatched.
The dispatcher searches the time-slice
group beginning with the TCE addressed by
TSCE NEXT (see preceding explanation of
TSCE fields). When the TCB addressed by
TSCE LAST is reached, the dispatcher checks
the TCB addressed by TSCE FIRST, until a
ready task is found or until all time-slice
TCBs have keen checked.

When a ready task is found, TSCE NEXT is
updated, the time-slice TQE is enqueued,
and the ready task is dispatched. If no
time-slice tasks are ready, the dispatcher
searches the TCB queue for the highest-
priority ready task.

If the interval has not expired, i.e.,
the time-slice TQE has not been dequeued,
control is returned to the interrupted
task.

OLD Not a Time-Slice Task: If OLD is not a
time-slice task, control is returned to the
interrupted task.

NEW NOT ECUAL TO OLD: If NEW does not
equal OLD, the dispatcher determines if OLD
is a time-slice task.

28

OLD Time-Slice Task -- NEW Equal Zero: If
CLD is a time-slice task and NEW equals
zero, the time-slice TCE is dequeued for
the current task. The dispatcher then
searches (using the TSCE) for the next
ready ICB in the time-slice group. If no
time-slice TCBs are ready, the dispatcher
searches the TCB queue for the highest-
priority ready task.

OLD Time-Slice Task -- NEW Not Equal to
Zero: If OLD is a time-slice task and NEW
does not equal zero, the dispatcher deter-
mines if NEW is a time-slice task.

If NEW is a time-slice task, the task
represented by OLD, if ready, is redis-
patched. (The time-slice TCE remains on
the queue.) If the task represented by OLD
is not ready, the time-slice T(E is
dequeued, and the dispatcher searches
(using the TSCE) for the next ready time-
slice task. If no time-slice tasks are
ready, the dispatcher searches the TCB
queue for the highest-priority ready task.

If NEW is not a time-slice task, the
time-slice TQE is dequeued and the NEW task
is dispatched.

OLD Not a Time-Slice Task: If OLD is not a
time-slice task, the dispatcher finds the
next highest-priority ready task. It does
this by either obtaining the TCB address
from NEW oxr, if NEW is zero, by scanning
the TCB queue. If the highest-priority
ready task is not a time-slice task, it is
dispatched. If the highest-priority ready
task is a time-slice task, the dispatcher
finds (using the TSCE) the next ready task
in the time-slice group. The time-slice
TCE is enqueued, and the task is
dispatched.

STAE SERVICE ROUTINE

The STAE service routine is a type 3 SvVC
routine which prepares the task to inter-
cept scheduled abnormal termination (ABEND)
processing. When the STAE macro instruc-
tion (resulting in an SVC 60) is issued,
the STAE service routine is invoked. The
STAE service routine creates a 16-byte STAE
control block (SCB), which contains the
addresses of a user-written STAE exit rou-
tine and parameter list. When the task
becomes scheduled for abnormal termination,
the ABEND/STAE interface routine (ASIR) is
given control by the ABEND routine. ASIR
returns control to the user at the STAE
exit routine address. After the STAE exit
routine has been executed, control is
returned to ASIR. ABEND processing con-
tinues for the task as previously scheduled
unless the STAE exit routine has requested
that a STAE retry routine be scheduled. If
a STAE retry routine is provided by the

user, ASIR reestablishes the task scheduled
for ABEND processing and exits, giving con-
trol to the dispatcher so that the STAE
retry routine is executed next. See IBM
System/360 Cperating System: System Pro-

IEAGTM06, and DAR modules IEAGTM08 and
IEAGTM09 exist only in MFT and are
described below. The remaining modules are
also used in PCP and are explained in I1IBM
System/360 Operating System: Fixed Task

grammer's Guide, Form C28-6550, for further
explanation of the STAE macro instruction.

The five modules which perform the func-
tions of the STAE macro instruction are the
STAE service routine (IGC00060) and the
four ABEND/STAE interface modules
(IGCOBO1C, IGCOCO01C, IGCODO1C, and IGC-
0E01C). These modules perform the same
functions as in MVT, (see IBM System/360
Operating System: MVT Supervisor, Form
¥28-6659) with the exception both IGC0C01C
and IGCOEO1C pass control via the XCTL
macro instruction to the ABEND module IEAG-
TMOA to purge the WTOR queue before giving
control to the next ASIR module (IGCODO01C).

ABEND AND DAMAGE ASSESSMENT SERVICE ROUTINE

ABEND is a type 4 SVC routine that is used
for koth normal and abnormal task termina-
tion. ABEND terminates the task under
which it is running, resets the partition,
and passes control to the job management
routines for continued processing.

ABEND can be entered directly from the
problem program or system task via an ABEND
macro instruction, or indirectly through
the ABTERM service routine. (ABTERM sched-
ules the execution of ABEND for system rou-
tines that detect an error but cannot issue
an ABEND macro instruction.) The SVC SLIH
(second level interruption handler) fetches
the first load module of AEEND and passes
control to it. Control is passed from one
ABEND load module to the next via an XCTL
instruction (SVC 7). The flow of control
between modules for normal and abnormal
termination is shown in Charts 03 and 04.

The Damage Assessment Routines (DAR)
process, and attempt to recover from the
following failures:

e System tasks (log, communication, or
master scheduler).

e Tasks in "must complete®™ status.

e Tasks experiencing invalid AREND
recursion.

A record of the failures is provided in a
core image dump. A primary DAR recursion
results when a failure occurs while writing
the main storage image dump. A secondary
DAR recursion results when a failure occurs
during partition recovery.

The ABEND and DAR functions provided for
MFT are similar to those provided for PCP.
ABEND modules IEAGTMOA, IEAGTM00, IEAGTMOS,

Supervisor, Form Y28-6612. (For a brief
description of all ABEND modules used in
MFI, see "MODULE DESCRIPTICNS," IN Appendix
B of this publication.)

ABEND STAE Test Routine (TEAGTMOA)

IEAGTMOA first sets a bit to prohibit asyn-
chronous exits for this task and tests the
TCB for evidence of invalid recursion. If
a primary DAR recursion or an invalid ABEND
recursion is found, control is passed to
DAR module IEAGTM08. If a secondary DAR
recursion is found, control is passed to
DAR module IEAGTMO9.

The routine then tests for normal end of
task. If this is a normal end, the normal
completion code is stored in the TCB, and
control passes to ABEND module IEAGTMOO.

If the task is abnormally terminating, IEA-
GIMOA determines if STAE (specify task
asynchronous exit) processing is indicated
for this task (via a user-issued STAE macro
instruction).

If a STAE was issued, i.e., TCB field
TICBNSTAE does not equal zero, IEAGTMOA
checks for a valid STAE and performs as
follows:

e If the ABEND was issued by the Purge
routine during STAE processing, i.e.,
the purge bit in TCB field TCBNSTAE
equals one, the resume PSW of the Purge
RB routine is set to the address of an
EXIT instruction (SVC 3). IEAGTMOA
then issues an EXIT instruction.

Note: If ABEND was not entered from
the Purge routine, i.e., the purge bit
in TCB field TCBNSTAE equals zero, IEA-
GTIMOA stores the abnormal completion
code in the 1ICB.

e If the Task is being abnormally texr-
minated because of a timer expiration
or an operator cancel, STAE processing
is bypassed and IEAGTMOA exits to ABEND
module IEAGTM0O. (Since task timing
and cancelations from the console are
directly controlled by the user, the
ABEND was intentional and should not be
handled by the STAE routines.)

e If STAE processing is already in pro-
gress, reqular ABEND processing con-
tinues, since the STAE routine can pro-
cess only once per STAE issued. IEAGT-
MOA thus exits to ABEND module
IEAGTIMOO.

Supervisor 29

e If this is a valid request for STAE
processing, i.e., none of the abcve
conditions are true, IEAGTMOA tests 'ICB
field TCBPIE for zero. If it is not
zexro, IEAGTMOA frees the PIE and zeros
TCBFIE. Thus, subsequent program
checks will not be handled by a user
routine which may not be designed for
such a program check. IEAGTMOA then
exits to STAE module IEAATMOB.

If a STAE has not been issued, or if all
STAEs have been processed, i.e., TCB field
TCBNSTAE equals zero, IEAGTMOA determines
if this is a graphics or an ABEND recursion
and if this is a graphics job with a Graph-
ics Abend Exit routine.

e If this is a recursion, or if the task
abnormally terminating is not a graph-
ics jok, IEAGTMOA exits to ABEND module
IEAGTMO0O.

e If this is a graphics job, IEAGTMOA
passes control to the Graphics Abend
routine. At the completion of this
routine, control is returned either to
the caller via an SVC 3 (if the task is
resumable, i.e., the AREND was issued
ky a user program or caused by a pro-
gram check in a user routine, and if he
wishes to resume processing) or tc IEA-
GTMOA, which exits to ABEND module
IEAGTMO0O .

ABEND Initialization Routine (IEAGTMO0O0)

This routine prepares for AREND processing
of a task ky canceling the task timer ele-
ment and by dequeuing all interruption
queue elements (ICEs) belonging to the
task. If the routine was entered from
STAE, it also purges the WTOR queue ele-
ments for the task and passes control to
IEAATMOD. If the routine was entered as
the result of a normal end of task, it
passes control to IEAGTMO5. If it was
entered as the result of an abnormal end of
task, it passes control to IEAGTMO6.

ABEND Input/Cutput Purge Routine (IEAGTMO06)

IEAGTMO06 purges I/0 requests and 1I/0 opera-
tions via a macro instruction version of
the SVC Purge Routine, which is assembled
within this module. (See "SVC PURGE ROU-
TINE" in Input/Output Supervisor, Form Y28-
6616.) This prevents errors that can cause
recursion to the ABEND routine. (Since
ABEND frees main storage, an I/0 operation
that is not halted can cause information to
be read into, or an ECB to be posted in
main storage that may have been relocated,
thus destroying data or programs.) RQEs
(request queue elements) removed from the
request queue are returned to a list of
available RQEs for reuse by the I/0
supervisor.

30

IEAGIMO06 also dequeues, from the SIRB
(system interruption request block), ICEs
(interruption queue elements) representing
requests for the use of I/C error handling
routines. The routine passes control to
DAR module IEAGTM08 when Recovery Manage-
ment Support is not the caller, and the
failing task is a task in "Must Complete”™
status or if the failing task is a system
task. Otherwise IEAGTMO6 passes control to
ABEND module IEAATMO1l.

ABEND Termination Routine (IEAGTMO05)

ABEND termination routine IEAGTMO05 is the
final ABEND module for both normal and
abnormal termination. For normal termina-
tion it is entered from IEAGTMO6. On
abnormal termination it may have been
entered from any of the previous modules of
ABEND except initialization routine
IEAGTMOO.

If a dump message is required, i.e., if
ABDUMP has been initiated but has failed to
complete, IEAGTMO5 causes message IEA002I,
"ABEND/ABDUMP ERROR" to be printed.
IFAGTMO5 issues a CLOSE macro instruction
for any open data sets. The timer queue
and the main storage supervisor gqueue are
rurged, and fields in the TCB are reset so
that a new task may be initiated. If an
indicative dump is provided by IERATMO3, it
is moved to the upper boundary of the
partition.

IEAGTMO05 does not directly transfer con-
trol to a job management routine. In the
first 72 bytes of the problem program par-
tition, IEAGTMO0S5 establishes a dummy PRB,
an XCIL parameter list, and a set of
instructions including an XCTL to a step
deletion routine. The XRBLNK field of the
dummy PRB contains a pointer to the TCB.
The dummy PRB therefore becomes the only RB
queued for this task.

The dummy PRB is then placed at the
beginning of the RB queue. This ensures
that the XCTL instruction will be the next
operation executed for this task after
IEAGTMO5 has completed. For scheduler-size
partitions, step deletion routine IEFSD515
gains control, at entry point GO. For
small partitions, control is passed to
entry point SMALLGO in small partition rou-
tine IEFSD599.

DAMAGE ASSESSMENT ROUTINES

The damage assessment routines are used to
eliminate wait states due to system fail-
ures. When a system failure occurs, the
damage assessment routines provide an image
of main storage at the time of failure and

reinitialize the failing task. The rou-
tines also advise the operator of the fail-
ure and suksequent reinstatement of the
task.

There are two routines that are unique
to MFT: Damage assessment core image dump
routine IEAGTM08, and damage assessment
task reinstatement routine IEAGTMO9Y.

DAR Core Image Dump Routine (IEAGTMO0S)

The DAR core image dump routine IEAGTMO08
writes on the SYS1.DUMP data set an image
of main storage at the time of failure.
When entered, the routine sets all tasks
except the failing task and the communica-
tions task nondispatchable. The routine
then writes the image of main storage and
passes control to the DAR task reinstate-
ment routine IEAGTMO09.

If the SYS1.DUMP data set has not been
allocated, the routine informs the orerator
via a WTO. If the routine is entered as a
result of a primary DAR recursion, which is
caused by a failure to write the image of
main storage, the routine does not try to
rewrite but informs the operator of the
failure via a WTO. In both cases the rou-
tine passes control to IEAGTMO09.

If the communications task is the fail-
ing task, messages are queued pending rein-
statement of the communications task by
IEAGTMO9.

DAR Task Reinstatement Routine (IEAGTMO09)

If the DAR task reinstatement routine
IEAGTM09 is entered as a result of a fail-
ing system task, the routine attempts to
reinstate the task. It points the resume
PSWs of all kut the highest level RB of the
task's TCB to an SVC 3 instruction in the
CVT. It points the highest level RB to
entry point IEECIR50 for the Master Sched-
uler task, entry point IEECIR4S5 for the
Communications task, or entry point IEEVLIN
for the lLog task. The routine then passes
control to the dispatcher via a branch
instruction.

If the routine is entered as a result of
a secondary DAR recursion, which is caused

by a failure to reinstate the failing task, .

the routine informs the operator via a WIO,
sets all tasks dispatchable except the
failing task, and passes control to the
dispatcher via a branch instruction.

If the failing task is in "Must Com-
rlete" status, the task reinstatement rou-
tine issues a message to the operator list-
ing the major and minor names of the
enqueued resources that have caused the
"Must Complete®™ condition and asking the
operator to reply whether the resources are

critical. If the reply indicates the
resources are critical, processing is
identical to the processing of a secondary
DAR recursion described above. If the re-
ply indicates the resources are not critic-
al, the "Must Complete" status is removed,
and the resources are designated as share-
akle. The task is processed as a failing
non-system task as described below.

If the routine is entered as a result of
a failing non-system task, it sets indica-
tors showing that a dump has been taken by
DAR and issues a message to the operator
indicating that the system has been rein-
stated. The routine then sets all tasks
dispatchable and passes control to
IEAGTMOS.

Task Supervision

The task supervisor maintains the status of
tasks within the system. Task supervision
service routines:

e Maintain task control blocks.

e Enter tasks into the wait state.

e Post completed events in the event con-
trol block (ECB).

e Maintain control levels indicated by
request blocks.

The routines which accomplish these
functions are WAIT, POST, ENC, and DEC.

Each task within the operating system
has an associated task control block (TCB).
The TCB contains task-related information
and pointers to additional control blocks
containing task-related information. The
control blocks used by MFT are the same as
those used by PCP except for the addition
of the partition information block (PIB)
which is described in Appendix A. The last
three bytes of the word at displacement 124
(decimal) of each partition TCB contain the
address of the associated PIB. Figure 10
shows the major control blocks maintained
by the supervisor and their relationship to
the TCB.

Task supervision is described in IBM
System/360 Operating System: Fixed-Task
Supervisor, Program logic Manual, Form Y28-
6612. Additional information applicable to
MFT is presented in the following
paragraphs.

THE ATTACH ROUTINE (MACRC IEARAAT)

In MFT, the ATTACH and LINK macro instruc-
tions are handled identically. 2An RB is

created for the requested program, the pro-
gram is brought into the requesting task's
partition, and its RB is chained to the RB

Supervisor 31

———>| PIE |-—-| PICAI

Active RB Queue
RB

RB

RB

Loaded Program List

(oo oo om0 |
I FQE I‘—| FQE I‘_ soundary
Box
Task
Control
Save Area Block h
TIOT
JOBLIB DCB
Partition
| CSCB IL Information
Block
CSCB
T
|
——1 —_
| SPIL |
—— e

Figure 10.

queue for that partition. See IBM System/
360 Operating System: Supervisor and Data
Management Services, Form C28-6646 for
further explanation of the ATTACH macro
instruction with MFT.

THE WAIT RCUTINE (MACRO IEAAWT)

The WAIT routine is not
described in Fixed-Task Supervisor, Program

changed from that

RB RB RB

System Control Rlock Relationship

ECB

ECB

Because of point 2, it is not possible for
one partition to WAIT on an ECB within
another partition.

THE POST ROUTINE (MACRC IEAAPT)

The POST routine, like the WAIT routine, is
unchanged from that described in Fixed-
Task Supervisor, Program Logic Manual.

Logic Manual. However, the user should
remember the effect the optional validity
checking feature has on WAIT. If validity
check is included in the system and the
program issuing the WAIT macro instruction
is not in supervisor mode, the WAIT routine
checks that:

1. The toundary alignment of the ECBs is
correct.

2. The storage protection key of the ECBs
is that of the issuing program.

3. The addresses specified do not exceed

main storage boundaries of the
machine.

32

Validity checking applies to PCST in the
same way it applies to WAIT.

THE ENQ/DEQ ROUTINE (IEAGENC1)

The ENQ/DEQ routine provides a means of
controlling serially reusable resources.
This is done by assigning unique names con-
sisting of a Qname and an Rname to each
serially reusable resource. The ENC/DEC
routine controls access to resources by
building resource queues consisting of a
queue control block (QCB) for each Cname
and Rname specified in an ENC macro
instruction and a queue element (QEI) to
represent each actual request. ENC/DEC is

fully descriked in IBM System/360 Operating
System: MVT Supervisor, Program Logic

Manual, Form Y28-6659. ENQ/DEQ for MET is
identical to MVT except as described below.

In MFT, resource gqueues are located in
the system queue area (subpool 255). Loca-
tion IEACCCBO in the ENQ/DEQ routine con-
tains the address of the first queue con-
trol block in the queue. There is only one
TCB for each job step in MFT. Therefore,
the "must complete®™ function of ENQ/DEQ
applies only to the system, not to job
steps. If "system must complete™ is speci-
fied by a task, all other tasks in the sys-
tem are set non-dispatchable until the task
which specified "system must complete" com-
pletes its processing.

Contents Supervision

Contents supervision routines determine the
location of requested programs and fetch
them into main storage if necessary. They
also maintain records of all programs in
main storage. Programs requested via LINK
or XCTL macro instructions are scheduled
for use by placing a request block (RB) for
each program on the requesting task's
active request block queue.

Programs requested via LOAD macro
instructions are represented by RBs on the
loaded program list.

There are six types of request blccks in
MFT:

e Program Request Block (PRB) -- repre-
sents a nonsupervisory routine that
must be executed in the performance of
a task. PRBs are created by the con-
tents supervision routines that perform
the LINK or XCTL functions.

e Supervisor Request Block (SVRB) --
represents a supervisory routine.
SVRBs are created by the SVC interrup-
tion handling routines.

e Interruption Request Block (IRB) --
controls a routine that must be
executed in the event of an asynch-
ronous interruption. IRBs are created
in advance of an interruption by the
CIRB routine at the user's request, but
not placed on an RB queue until an
interruption actually occurs.

e System Interruption Request Block
(SIRB) -- used only for the system 1/0
error task. There is only one SIRB in
the system.

e Loaded Program Request Block (LPRBR) --
controls programs brought in by a LOAD
macro instruction. LPRBs also control
sections of programs that are specified
by the IDENTIFY macro instruction.
LPRBs are created by the contents
supervision routines that perform the
LOAD function.

e Loaded Request Block (LRB) -- a shor-
tened form of LPRB and controls load
modules that have the "load only" at-
tribute. It is invalid to issue
ATTACH, LINK, or XCTIL macro instruc-
tions to these load modules. LRBs are
created by the routines that perform
the LOAD function.

Contents supervision routines alter the
active RB queue and the loaded program
list, and bring nonresident programs into
the problem program partitions in response
to LINK, ATTACH, LOAD, and XCTIL macro
instructions. Additional contents supervi-
sion services are provided by the use of
IDENTIFY, DELETE, and SYNCH macro instruc-
tions. IDENTIFY and DELETE alter the
loaded program list. SYNCH alters the
active request block queue. The routines
that service these macro instructions are
described below.

LINK SERVICE ROUTINE (MACRC IEAATC)

The LINK service routine determines if the
RB of the requested routine is on the
loaded program list. If it is and is inac-
tive, LINK places the RB on the active RB
queue. If the requested RB is not on the
loaded program list (or if it is on the
list, but is active), and the resident re-
enterable routine option was selected at
system generation, the routine searches the
resident area. If the module is found in
the area, a load list element for the
module is placed on the loaded program
list, and processing continues as if the
module were originally found on the load
list. If the module is not found, the LINK
routine constructs an RB for the requested
routine, places the RB on the active RB
queue, and fetches the requested routine
into main storage.

ATTACH SERVICE ROUTINE (MACRC IEAAAT)

The ATTACH macro instruction is handled as
a LINK macro instruction. For a complete
explanation, see "The ATTACH Macro Instruc-
tion" under the topic Task Supervision.
LOAD SERVICE RCUTINE (MACRC IEAATC)

The LOAD service routine first determines

if the requested routine is in the resident

Supervisor 33

reenterakle routine area (if the resident
lroutine option was specified at system
generation). If so, the entry point of the
routine is passed to the requesting routine
in register zero. If the routine is not
resident, LOAD searches the loaded program
list for the RB of the requested routine.
If it is found, the LOAD routine increments
the RB use count by one and returns the
entry point of the requested routine in
register zero.

If the requested routine is not found on
the loaded program list, the LOAD routine
kranches to the FINCH routine to load the
requested routine into storage. On return
from the FINCH routine, the LOAD routine
initializes the requested routine's RB and
places it on the loaded program list, sets
the RBs use count to one and branches to
the LINK routine to issue the SVC EXIT
instruction.

XCTL SERVICE RCUTINE (MACRC IEAATC)

The XCTL service routine first determines
if XCTL was issued by a transient SVC rou-
tine. It then determines if the resident
SVC (RSVC) option was chosen at system
generation and determines if the requested
SVC routine is an RSVC routine. If it is,
the routine need not be brought into main
storage. If the requested routine is not
an RSVC, the XCTL routine branches to the
FINCH routine to locate the routine on the
SVC library and to bring it into the SVC
transient area. The XCTL routine initia-
lizes the routine's RB and executes an SVC
EXIT instruction.

If the XCTL macro instruction was not
issued by a transient SVC routine, the XCTL
routine dequeues the primary RB and each
minor RB of the issuer from the active RB
queue. The routine which issued the XCTL
macro instruction and its RB are remcved
from storage unless the routine was brought
in via a LCAD macro instruction. If the
requested routine is on the loaded program
list and is inactive, the XCTL routine
kranches to the LINK routine to place the
RB on the active queue and to issue an SVC
EXIT instruction.

If the XCTL routine determines that the
scheduler has issued an XCTL macro instruc-
tion to branch to the problem program, the
XCTL routine zeros out the TCBTCT field of
the TCB so that the optional Job/Step CPU
Timing entry can be made.

If the RB of the requested routine was
not found inactive on the loaded program
list, and the resident reenterable module
option was selected at system generation,
the routine searches the resident area. If
the module is found in the area, a lcad

34

list element for the module is placed on
the loaded program list, and processing
continues as if the module were originally
found on the load list. If the module is
not found, the XCTL routine branches to the
FINCH routine to bring in the routine. On
return from the FINCH routine, the XCTL
routine branches to the LINK routine to
rlace the RB on the active queue and issue
an SVC EXIT instruction.

IDENTIFY SERVICE RCUTINE (IEAAIDOO)

The IDENTIFY service routine builds and
initializes a minor request block to
describe a routine specified in the parame-
ters of the IDENTIFY macro instruction.

The IDENTIFY routine chains this minor RB
to the loaded program list and to the RB of
the routine which contains the identified
routine. The IDENTIFY routine returns to
the issuer by issuing an SVC EXIT
instruction.

DELETE SERVICE ROUTINE (IEAADLOO, IEABDLOO)

The DELETE service routine determines if
the routine specified in the DELETE macro
instruction is resident. If it is, the
DELETE routine exits immediately. If the
routine is not resident, the DELETE routine
finds the routine's RB on the loaded pro-
gram list and decrements the use count in
the RB by one. If the use count reaches
zero, the DELETE routine dequeues the rou-
tine from the loaded program list and
issues a FREEMAIN macro instruction to
release the storage occupied by the speci-
fied routine and its RB. OCn return from
the FREEMAIN routine, the DELETE routine
repeats the deleting process for each minor
RB belonging to the specified routine. The
DELETE routine returns by branching to the
type 1 SVC exit.

SYNCH SERVICE ROUTINE (IEAASYO00)

The SYNCH service routine uses GETNMAIN to
obtain 32 bytes of main storage from the
lower end of the partition for the creation
of a program request block (FRB). The ESW
in the PRB is initialized by the SYNCH rou-
tine to address the location specified in
register 15 by the issuer of the macro
instruction. The SYNCH routine sets the
PSW completely enabled in problem rprogram
mode, with the protection key recorded in
the task control block. After the PRB is
created and initialized, the SYNCH routine
gueues it on the active request block gqueue
below the SVRB for SYNCH, and returns by
issuing an SVC EXIT instruction.

Additional information describing PCP
and MFT Contents Supervision can be found
in Fixed-Task Supervisor, PFrogram lLogic
Manual.

Main Storage Supervision

In MFT, the main storage supervisor:

1. Allocates space via the GETMAIN SVC.

2. Deallocates space via the FREEMAIN
SvcC.

3. Allocates space in the system queue
area.

4. Checks validity of requests that are
to be serviced.

5. Maintains the pointers and control
blocks necessary to supervise main
storage.

Each jok is assigned to a partition in
which it must operate. Each partition has
an associated TCB which contains a pointer
(TCBNMSS field) to the main storage boundary
box for that partition. The main storage
supervisor, in response to GETMAIN macro
instructions, obtains storage from either
the problem program partition or the system
queue area. Obtaining storage space from
the system queue area is the basic dif-
ference in main storage supervision between
MFT and PCP. In MFT, a system task can
issue a GETMAIN macro instruction specify-
ing subpool 255 and the required storage
will be allocated from the system queue
area. The system queue area is used to
obtain space for system control blocks
which might be destroyed by problem rro-
grams if they were placed in problem pro-
gram partitions. The system tasks which
request storage space from subpool 255 are:

e The CSCB creation module of svC 34, for
CSCBs.

e The ENC/DEQ processing routines of task
supervision, for all control blocks
associated with ENQ/DEQC.

e The communications task, for write-to-
operator (WTO) buffers if all WTO buff-
er storage space specified during sys-
tem generation is unavailable.

Note: Although subpools are not created in
MFT (as in PCP and MVT), problem programs
and system tasks may specify subpools in
the GETMAIN macro instruction. However,
all main storage requests from problem pro-
grams are allocated from the highest avail-
able main storage in the partition which
issued the GETMAIN.

The boundary box for the system queue
area is located in master scheduler resi-
dent data area IEESD568 (see Appendix A).
The master scheduler resident data area is
addressed by the CVTMSER field in the Com-
munications Vector Table.

when problem programs issue GETMNAIN
macro instructions specifying a subpool
from 0 through 127, storage is allocated
from the high-address portion of the parti-
tion in which the GETMAIN macro instruction
was issued. When problem programs attempt
to issue a GETMAIN macro instruction speci-
fying a subpool from 128 through 255, the
program is abnormally terminated.

When system tasks issue a GETMAIN macro
instruction specifying a subpool from 0
through 127, storage is allocated from the
lcow-address portion of the partition; when
specifying a subpool from 128 through 254,
storage is allocated from the high-address
portion of the partition. Subpool 255 is
handled as a special case as described in
preceding paragraphs.

For a complete description of main
storage supervisor functions, see Fixed-
Task Supervisor, Program logic Manual.

TIMER_ SUPERVISICN

Timer supervision routines are an optional
feature of MFT. If selected, the user may
request timer services through the TIME,
STIMER, and TTIMER macro instructions. The
TIME service routine (IEAORTO00) determines
the date and time of day. The STIMER ser-
vice routine (IEAO0ST00) sets a user speci-
fied interval, and the TTIMER service rou-
tine (IEAO0STO00) determines the amount of
time remaining in a previously specified
interval. Whenever a timer interval is
requested in an STIMER macro instruction, a
timer queue element (TCE) ‘is constructed.
These elements are chained together in a
timer queue. The queue is ordered so that
the TQE representing the next interval to
expire is always at the top of the queue.
when a requested interval expires, a timer
interruption occurs and the Supervisor
Timer Interruption Handling Routine (IEAO-
TI00) takes appropriate action, depending
on the type of interval which has expired.
If job/step CPU timing is included in the
system, IEAOTIOO0 adjusts the pseudo timer
field in IEATPC in the same manner it
adjusts the hardware timer.

Timer Supervision

The System/360 interval timer is a 32 bit
word in lower main storage which continual-
ly decrements as long as the system is run-
ning and the interval timer switch is on.
The timer supervision routines use this
hardware timer to accomplish their func-
tions. The timer supervision routines can
set the hardware timer to any interval
between zero and six hours. An interrup-
tion occurs when the hardware timer decre-

Supervisor 35

ments to zero. Since the hardware timer
never exceeds six hours, four values are
needed to maintain elapsed time for a full
day. These values are:

Hardware timer.

Six Hour Pseudo Clock (SHPC).
Twenty-four Hour Pseudo Clock (T4PC).
Local Time Pseudo Clock (LTPC).

The SHPC is used to time intervals up to
six hours; the T4PC is used to time inter-
vals up to twenty-four hours. The LTPC
contains the local time of day entered by
the operator during system initialization.

When an STIMER macro instruction is
issued, the STIMER supervisory routine
adjusts the time interval requested rela-
tive to the intervals in the hardware
timers and pseudo clocks. This enables the
supervisory routines to place the newly
requested timer element in the correct
place on the timer queue.

TIMER PSEUDC CLOCK ROUTINE (IEATPC)

The timer pseudo clock routine (IEATPC)
contains all variable information that
would normally be included in the resident
timer routines. This information includes:

e Pseudo clocks.

e Work space used for incrementing CVT
date.

e Accumulator for the job/step CPU timing
feature.

COMPARISCN OF PCP, MFT, AND MVT TIMER
SUPERVISICN

Requests for timer services in PCP, MFT,
and MVT are made using the same macro
instructions. Timer requests are enqueued
on the timer queue in the same way in all
three systems. There is one difference
between PCP and MFT timer supervision.
Because there is only one partiticn in PCP,
the timer completion exit routine receives
control as soon as a requested task time
interval expires. When a timer interval
expires in MFT, the timer completion exit
routine does not receive control until the
task which requested the timer interval is
the highest priority ready task in the sys-
tem. In MVT, the maximum amount of time
permitted to complete a job step or cata-
loged procedure may be specified on the
EXEC card. This facility is not provided
in MFT.

For a complete description of timer
supervisor, see Fixed-Task Supervisor, Pro-

gram Logic Manual, and MVT Supervisor Pro-
gram Logic Manual.

36

Overlay Supervision

The routines which supervise loading of
overlay program segments and assist flow of
control ketween segments of the overlay
program are identical in operation for PCP
and MFT. A complete description of PCP and
MFT overlay supervision can be found in
Fixed-Task Supervisor, Program Logic
Manual.

MFT Recording/Recovery Routines

Operating System Recording/Recovery rou-
tines are optional control program routines
which may be selected during system genera-
tion. They handle two types of equipment
malfunctions:

e Malfunctions of the central processing
unit (CPU), which cause machine-check
interruptions.

e Malfunctions in a channel, which cause
input/output interruptions.

Orerating System Recording/Recovery rou-
tines are divided into two groups: System
Environment Recording and Recovery
Management.

System Environment Recording includes:

e System Environment Recording O (SERO,
described in IBM System/360 Operating
System: Fixed-Task Supervisor, Frogram
Logic Manual, Form Y28-6612.

e System Environment Recording 1 (SER1),
also described in the Fixed-Task Super-
visor PLM.

Recovery Management includes:

e Machine-Check Handler (MCH), described
in IBM System/360 Cperating Svystem:
Machine-Check Handler for IBM System/
360 Model 65, Program lLogic Manual,
Form Y¥Y27-7155.

e Channel-Check Handler (CCH), described
in IBM System/360 Cperating System:
Input/output Supervisor, Program logic
Manual, Form Y28-6616.

MACHINE-CHECK ROUTINES
There are three machine-check routines.
The recording routines:

SERO, which records information about

the error and then places the sys-
tem in a wait state.

SER1, which records information about
the error and attempts to associ-
ate the error with a task. If it
can do this, it abnormally ter-
minates the task and allows the
system to continue operation.

The recovery routine:

which records information about
the error and attempts complete
recovery from it, including retry
of the instruction that caused the
error.

MCH,

For the Model 65, any one of these three
routines may ke selected during system
generation. For the Model 40, 50, 75, and
91, either SERO or SER1 may be selected.

If no routine is selected, either SERO or
SER1 is used by default. The version used
by default depends on the model (or models)
specified, and on the size of the system
(see 1IBN System/360 Operating System: Sys-

tem Generation, Form C28-6554).

CHANNEL-CHECK ROUTINE
There is only one channel-check routine:

CCH, which aids recovery from channel
errors Lky:

e Providing channel error information to
IBM-supplied device dependent error
recovery procedures (ERP).

e Building a record entry which is later
written on SYS1.LOGREC by the statisti-
cal data recorder of the I/0
supervisor.

This routine may be selected during system
generation for the Model 65, 75, and 91
only.

SYSTEMS WITHCUT RECORDING/RECOVERY ROUTINES

A machine check or I/0 interruption caused
by an equipment malfunction places in a
wait state those IBM Systems/360 models that
do not have Recording/Recovery routines
(See Figure 11). A message is issued on
the console telling the operator to load
the System Environment Recording, Editing,
and Printing (SEREP) program. SEREP is a
model-dependent, stand-alone diagnostic
program. Its use is described in IBM

System/360 Operating System:
Guide, Form C28-6540.

Cperator's

ENTRY TO RECORDING/RECCVERY RCUTINES

when a machine-check interruption occurs,
the machine-check new PSW is loaded. This
causes control to pass directly to the
Recording/Recovery routine which was
selected during system generation (see
Figure 11).

When an I/0 interruption occurs because
of a channel error, the I/0 new PSW is
lcaded. This causes control to pass to the
I/0 FLIH and then to the I/C Supervisor.

If the Channel-Check Handler option was
not selected during system generation, the
1/0 Supervisor enters the SER Interface
subroutine (SERRO4) within the I/0 Supervi-
sor. This routine loads the machine-check
new PSW (See Figure 11).

If the Channel-Check Handler was
selected during system generation, the I/0
Supervisor enters the Channel-Check Handler
Interface (SERRO4) within the I/O Supervi-
sor (see Figure 11).

|Checkpoint/Restart Routines

The checkpoint/restart routines used by MFT
allow a job to restart after an abnormal
termination. The checkpoint routine (SVC
63) is used by the programmer to create a
record of the job's main storage region at
selected points during the execution of a
job step. The routine is identical with
the PCP checkpoint routine described in IBM
System/360 Operating System: Fixed-Task
Supervisor, Program Logic Manual, Form
¥28-6612.

The restart routine (SVC 52) allows jobs
to restart at a checkpoint. If the restart
is automatic, it will occur at the last
valid checkpoint taken by the job before it
aknormally terminated. If the restart is
deferred, it will occur at the checkpoint
specified by the job statement. Processing
of the restarting job is discussed in the
Job Processing section of this manual. The
restart routine is described in IBM System/
360 Operating System: Fixed Task Supervi-
sor, Program Logic Manual, Form Y28-6612.

Supervisor 37

o

r
i)
2
T

£

The primary job management function is to
prepare job steps for execution and, when
they have been executed, to direct the dis-
position of data sets created during execu-
tion. Prior to step execution, job
management:

e Reads control statements from the input
job stream

e Places information contained in the
statements into a series of tables.

e Analyzes input/output requirements.
e Assigns input/output devices.
e Passes control to the job step.

Following step execution, job management:
e Releases main storage space occuried by
the tables.

e Frees inputs/output devices assigned to
the step.

e Disposes of data sets referred to or
created during execution.

Job management also performs all proces-
sing required for communication between an
operator and the control program. Major
components of job management are the job
scheduler, which introduces each job stegp
to the system (job processing), and the
cormunications and master scheduler tasks,
which handle all operator-system communica-
tion (command processing).

JOB SCHEDULER FUNCTIONS

The job scheduler includes three programs:
the reader/interpreter, the initiators/
terminator, and the system output writer.
The functions of the reader/interpreter are
similar to the MVT reader; additional
information can be found in IBM System/360
Operating System: MVT Job Management, Pro-

gram Logic Manual, Form Y28-6660.

After all control statements for a job
have been processed, all initiators that
are waiting for that job class are posted
and the initiator residing in the highest
priority partition is given control. The
MFT initiator is described in the Job Man-
agement section of this publication; for
information on allocation and termination,
refer to IBM System/360 Operating System:

Job Management

MVT Job Management, Program lLogic Manual,
Form Y28-6660.

When the job step has been executed,
control is returned to the initiators/
terminator which performs data set disposi-
tions and releases input/output (I/Q)
resources. If the entire job is to be ter-
minated, the terminator enqueues all data
sets on the appropriate system output (SYS-
OUT) queues.

when the system output writer receives
centrol, it dequeues a job from an output
queue, and transcribes the data sets to the
user-specified output device. (See IBM
System/360 Operating System: MVT Job Man-
agement, Program Logic Manuval, Form ¥Y28-
6660, for further information on the system
output writer.)

COMMUNICATIONS TASK FUNCTIONS

The routines of the communications task
process the following types of communica-
tion between the operator and the system:

e Operator commands, entered through a
console.

e Write-to-operator (WIC) and write-to-
operator with reply (WTOR) macro in-
structions.

e Interruptions caused when the INTERRUPT
key is pressed, to switch functions
from the primary console/master console
to its alternate console.

e If the system has Multiple Console Sup-
port, the communications task processes
the delete operator message (DCM) macro
instruction and provides buffer manage-
ment for all console devices.

MASTER SCHEDULER TASK FUNCTICNS

The master scheduler task consists of SVC
34 and the master scheduler resident com-
mand processor routines. The SVC 34 com-
mand scheduler routines process all com-
mands initially. The job gqueue manipula-
tion and partition definiticns, which are
not fully processed by SVC 34, are passed
to the master scheduler resident command
processor. Table 1 lists the commands used
in MFT and indicates the routine which
responds to the commands after initial
processing.

Job Management 39

Table 1. Responders to Commands After Initial Processing
T 1
Command | Responder
CANCEL (active jobs) Initiator

CANCEL (job in queue)

Master Scheduler

DEFINE

Master Scheduler

DISPLAY STATUS, JOENAMES, DSNAME

Initiator

DISPLAY A,C,N,jobname, CONSOLES

Master Scheduler

DISPLAY R

Master Scheduler

DISPLAY SPACE

I/0 Device Allocation

I
4
a
|
, , , 1
DISPLAY T Timer Maintenance Routine * |
4
h
HALT Statistics Update Routine * |
i
HCLD Master Scheduler |
9
LOG System Log |
b |
|
MODE Master Scheduler |
4
B
MODIFY Writer |
4
a
MOUNT Master Scheduler |
3
|
RELEASE Master Scheduler |
J
1
REPLY Master Scheduler |
4

RESET Master Scheduler
i |
A
SET CLCCK, DATE Timer Maintenance Routine * |
1

SET PRCC, ¢, AUTO

Master Scheduler

s el s S S A e

START/STCP Reader Reader/Interpreter

START/STOP Writer Writer }
UNLOCAD Initiator]
VARY Initiator }
WRITELCG System Log¥*

* See the publication IBM System/360 Operating System:

MVT Supervisor, Program

Logic Manual, Form Y28-6659.

[e e Gy . g . S S B S S . Y S o S e e SN S W S B . G S B e = . e e W . G S G S S T G e Y e S . e e Y Ty e s

JOB MANAGEMENT CONTROL FLOW

Fiqure 12 shows the major components of job
management and the general flow of control.

Control is passed to job management
}whenever the supervisor finds that there
are no program reqguest blocks in the re-
quest block queue. This can occur for two
reasons: either the initial program load-
ing (IPL) procedure has just been com-

40

pleted, or a job step has just been
executed.

Entry to Job Management Following Initial
Program lLoading

Fcllowing IPL, certain actions must be
taken by the operator before job processing
can begin. Therefore, control passes to
the communications task which issues a mes-
sage to the operator instructing him to

OPERATOR'S
CONSOLE SVC 34
Ie d COMMAND RETURN TO
COMMUNICATIONS | “ommands | COMMAND L | pyeeyrion CALLER OF | COMMAND PROCESSING
TASK SCHEDULING ROUTINES SVC 34
ROUTINES
OPERATOR'S }—
CONSOLE L T
WTOs and WTORs
Indicating Errors
SVC 34 Commands See
Table 1.
WORK
Input Job QUEUES System Output Job Description
D ipti
eseriprion JOB PROCESSING
PRINTER
INITIATING
TASKS
JCL, Commands,
and Data _J
-
READING Initi WRITING
TAPE TASKS nitiate TASKS
]]
PROCESSING | Terminate
PROGRAM
CARD CARD
READER PUNCH
PROCEDURE
LIBRARY System Input
Data Sets DATA System Output Data Sets
QUEUES

*Figure 12. Job Management Data Flow

enter commands, or to redefine the system.
If he chooses to redefine the system, con-
trol passes to the master scheduler task to
handle the redefinitions. If the system is
not to be redefined, the initialization
commands (a SET command, a START reader
command, a START writer command, and a
START INIT command) are issued (either
automatically by the master scheduler task
or by the operator performing the IPL), and
job processing begins.

Entry to Job Management Following Step
Execution

Following step execution, control is passed
to the step termination routine of the
initiator/terminator. If no further job
steps are to be processed, control is also

passed to the job termination routine of
the initiator/terminator. Both routines
are described in the topic
"Initiator/Terminator.”

MFT job management is similar in many
respects to MVT job management. However,
certain major differences in logic exist.
These differences are described in two
major topics. "Command Processing"
includes the communications task and master
scheduler task. "Job Processing"™ includes:

Queue Management.
Reader/Interpreter.
Initiator/Terminator.
System output writer.
System task control.
System restart.

Job Management 41

References to IBM System/360 Operating
System: MVT Job Management, Program Logic
Manual, Form Y28-6660 are made in the
topics where the logic is the same as in
MVT.

Tables and work areas used by MFT, MFT
module descriptions, and MFT flowcharts are
included in the appendixes.

Command Processing

Operator commands control system operation
and modify system tasks. Command proces-
sing in MFT is handled by the communica-
tions task and the master scheduler task.
With the exception of DEFINE, and HALT,
commands can be entered into the system
through the console or the input job
stream. The DEFINE and HALT commands
be entered only through the console. Com-
mands entered through the console are read
by the communications task and routed to
the master scheduler (see Figqure 13). The
communications task also communicates
between the system and the operator; it
handles WTO/WTOR macro instructions,
assigns message identifiers (including par-
tition numbers), and maintains reply queue
elements. It also deletes messages from
the CRT display of the Model 85 operator
conscle via the DOM macro instruction.

P

Console

can

Communication Task

Reads Request
from the Console

Master Scheduler Task

Command is
Processed

Start No
Reader or Writer

Comny

Appropriate Action is
Taken. Messages are issued
if the Command is Rejected.

System
Task

If DISPLAY JOBNAMES
Control

Command has been Entered,
Returns a Message to the
Operator Stating that |

Initiates the

Reader or Writer > the Reader or Writer
has been Started.
Figure 13. Command Processing Flow

42

wWhen a command is encountered in the
input stream, the reader/interpreter passes
control to SVC 34 to process the command.
SVC 34 processes most commands completely
and returns control to the interrupted
Iroutine.

The commands accepted and processed by
MFTI are the following:

CANCEL
DEFINE
DISPLAY
HALT
HOLD
LOG
MODE
MODIFY
MOUNT
RELEASE
REPLY
RESET
SET
START
STOP
UNLCAD
VARY

| WRITELOG

The format and syntax of these commands
can be found in IBM System/360 Operating
System: Operator's Guide, Form C28-6540.

Communications Task

The routines that handle operator-system
communication are contained in the communi-
cations task. Communication may take
either of two forms: commands, which allow
the operator to change the status of the
system or of a job or job step, and WTO or
WIOR macro instructions, which allow prob-
lem programs or system components to issue
messages to the operator. The communica-
tions task routines also switch functions
from the primary console device to an
alternate console device when the INTERRUPT
key is pressed.

WIO/WIOR MACRO INSTRUCTICN PRCCESSING

whenever a WTO or WTOR macro instruction is
issued, a supervisor call (SVC) interrup-
tion occurs. The supervisor identifies the
type of interruption and passes control to
the communications task to issue messages
and/or to read replies. (See Figure 14.)

EXTERNAL INTERRUPTION PRCCESSING

When the operator presses the INTERRUPT
key, an external interruption occurs. The
communications task then switches from the
rrimary console/master console to its
alternate device. (See Figure 15.)

Program Issues

WTO/WTOR Macro Instruction

Supervisor

Identifies Type

Communication Task of Interruption

Writes Message
(Generates Reply
Quevue Element

if WTOR)

- Returns Control
to Point of
Interruption

A. Message Processing

Operator presses Supervisor

REQUEST KEY

Communication Task

Identifies Type
of Interruption

Reads Reply

Places Reply in Buffer;
POSTS ECB Specified
in the WTOR

Returns Control
to Point of
Interruption

B. Reply Processing

WTO/WTOR Macro Instruction Pro-
cessing Flow

Figure 14.

Supervisor
Operator Presses
INTERRUPT Key

Identifies Type of
Interruption, Posts
Communication Task
ECB

Communication Task

Switches Between
Primary and Alternate
Console

Returns Control to
Point of Interruption

Figure 15. External Interruption Proces-

sing Flow

Communications Task Modules

The communications task (Chart 16) receives
control through interruptions which occur
when commands are entered or messages are
written. The following paragraphs describe
the seven major routines of the communica-
tions task.

Console interruption routine (IEECVCRA):
notifies the communications task wait rou-
tine that a console read has been
requested.

Communications task wait routine (IEE-
CVCTW) : waits for all WTC/WTCR requests
and console interrupts and calls the com-
munications task router routine.

Communications task router routine (IEE-

CVCTR) : determines the type of request or
interruption that occurred and passes con-
trol to the appropriate processing routine.

Console device processor routines (IEE-
CVPM) : performs console read and write
operations and error checking.

Write-to-operator routine (IEECVWTC) :
ages WIO buffers.

man-

Write-to-operator with reply routine (IEE-
VWIOR) : manages WIOR buffers.

External interruption routine (IEECVCRX) :
switches to the alternate console device
when an external interruption occuxs.

commands are issued through the console
device or the input reader. Before enter-
ing commands through the console device,
the operator must cause an I/0 interruption
by pressing the RECUEST key. When he does,
control is given to the supervisor, which
recognizes the interruption and passes con-
trol to the I/0 supervisor. The I/0O super-
visor determines that the interruption is
an attention signal and passes control to
the communications task console interrup-
tion routine in the nucleus. The console
interruption routine posts the attention
event control block (ECB) in the unit con-
trol module (UCM) and sets the attention
flag in the UCM list entry corresponding to
the device from which the interruption
came. Posting of the attention ECR causes
the communications task wait routine to be
dispatched.

The communications task wait routine
waits on all communication ECBs associated
with WIO/WIOR. The wait routine issues a
multiple WAIT macro instruction on a list
of ECBs contained in the UCM. When one of
the ECBs is posted, as by attention or
external interruptions, the wait is satis-
fied and the communications task thus
becomes ready. When it becomes the active
task, it issues SVC 72. This SVC includes
the console communication service routines
and the router.

The communications task serves a number
of purposes. The first segment of svc 72,
called the router, distinguishes among
these purposes and establishes the order of
response. When a posted ECB is found by
the router, the router passes control to
the specified processor routine via an XCTL
macro instruction.

Job Management 43

The console-device processor routines
read and write using the EXCP macro
instruction. The processor routines con-
sist of a routine to service external
interruptions and three device-oriented
routines: 1052 Printer-Keyboard routine,
card reader routine, and printer routine.
Each of the three console input/output pro-
cessor routines is associated with an OPEN/
CLOSE support routine, which provides data
management and input/output supervisor con-
trol blocks. The specified processor rou-
tine reads the input message into a buffer
area and calls the master scheduler task
via an SVC 34.

The write-to-operator routine moves the
text from the requesting program's area to
a buffer area within the nucleus and posts
the communication ECB for write-to-
operator.

The write-to-operator with reply routine
generates a message ID, .including a parti-
tion identifier, and creates a reply queue
element (RPQE) to handle the operator's
reply.

The external interruption routine,
residing in the nucleus, switches to an
alternate console device when the operator
presses the INTERRUPT key on the console.

CONSCLE ATTENTION INTERRUPTION ROUTINE
(IEECVCRA)

The console attention interruption routine
(IEECVCRA), operating in privileged mode,
posts the communications task attention ECB
to request reading of the console. Input/
output interruptions are disabled without
destroying register contents, and without
macro access to supervisor services. Using
the address of the UCB (found in register
7), the UCB address is matched to a UCM
entry. The attention flag for the entry is
turned on. Control then passes to the POST
routine, indicating the attention ECB in
the UCM. The address in register 14 is
used tor return to the input/output super-
visor (ICS).

COMMUNICATIONS TASK WAIT ROUTINE (IEECVCTIW)

Upon entry from the dispatcher, the com-
munications task wait routine (IEECVCTW)
issues a WAIT (with a count of one) speci-
fying the 1list of ECBs whose address is
contained in the Event Indication List
(EIL). Thus the communications task can
respond to a variety of events since the
posting of any one ECB satisfies the wait.
The FOST macro instruction issued in the
console attention interruption routine
satisfies the wait, causing the TCE to be
placed on the ready queue. When next dis-

44

patched, the wait routine issues an SVC 72
which results in creation of a supervisor
request klock (SVRB), and fetching of the
first segment of the console processor rou-
tines into the system transient area.

COMMUNICATIONS TASK ROUTER (IEECVCTR)

The communications task router (IEECVCTR)
is the first segment of SVC 72 brought into
the transient area. Because the communica-
tions task serves a number of purposes, and
many service requests may be pending, the
router establishes the order of response.
The order is: external interruption,
input/output list completion, attention
(console interruption), and WTC/WTCR. Mul-
tiple attentions are treated in order of
arpearance in the UCM. Multiple input/
output completions are treated in order of
first use of the device. The router
responds to an attention by building a pa-
rameter list in the SVRB extended save
area. The parameter list consists of a
remote XCTL parameter list, the address of
the appropriate UCM entry, and the address
of (contents of CVICUCB) the UCM. The
router then passes control to a processor
routine by issuing an XCTL macro instruc-
tion to the remote parameter list, using
the name obtained from the unit control
block (UCB) entry. The flag signifying the
request to be serviced by the processor
routine is turned off by the routine. Con-
sequently, processor routines return con-
trol to the router by issuing an XCTL macro
instruction to allow the router to schedule
service for other requests. If no requests
are pending, the router exits to the wait
routine using the address in register 14.

In addition to distinguishing the output
request from other requests, the router
selects the device to which the message is
to be sent. The router establishes the
output device by checking UCB entry attrib-
ute indicators. The appropriate entry is
the first active UCB entry that supports
WIO. As before, the router builds a remote
interface for, and passes control to, a
processor routine via an XCTIL macroc
instruction.

CONSOLE DEVICE PROCESSCR ROUTINES
(IEECVPMX, IEECVPMC, IEECVPMF)

Ccntrol flow in a processor routine is
determined by the setting of flags in the
router-selected UCM entry. The close flag
is tested first. If this flag is on, any
pending input/output activity is suspended
by issuing a WAIT macro instruction. Con-
trol is then passed to an associated CPEN/
CLOSE support routine via an XCTL macro
instruction for release of various control
blocks. If the close flag is off, the busy

flag is tested to determine input/output
status. If there is outstanding input/
output activity, error checking and buffer
disposition occur if the activity has been
posted complete. Otherwise, any attention
request is temporarily abandoned(as are
output requests), and control returns to
the router via an XCTL macro instruction.
If the busy flag is off, the attenticn flag
is tested; if it is on, the status of the
device is examined. If the device has not
been opened, control passes to an asso-
ciated OPEN/CLOSE support routine via an
XCTL macro instruction to obtain storage
for a DCB and access-method dependent con-
trol blocks, and for execution of the OPEN
macro instruction.

When return is made from the OPEN/CLOSE
support routine, a response to the atten-
tion flag is prepared. A fixed buffer in
the UCB is reserved and an access-method
dependent interface is constructed. Input/
output activity is initiated by issuing an
EXCP macro instruction for a 1052, and by
issuing a READ macro instruction for a unit
record device. In no case does the proces-
sor routine await completion of this activ-
ity. Control immediately returmns to the
router via an XCTL macro instruction.

Control flow within the processor rou-
tine is as described previously up to the
point at which the output request flag is
tested. If the flag is on, the processor
routine obtains the address of an output
buffer from the UCM. The element is not
removed from the queue at this time; this
occurs only on successful completion of
input/output activity. This preserves a
means of retrying the message if an extern-
al interruption intervenes before the mes-
sage is successfully presented to the cur-
rent device. Since output buffers are
always selected from the top of the queue,
the initiation of output to an alternate
device is unaffected by previous attempts
to present the message to the primary
device.

Having selected a buffer, the processor
routine estaklishes data management and
input/output supervisor (IOS) control block
linkages. The routine then issues an EXCP
macro instruction for a 1052, or a WRITE
macro instruction for a printer. Without
awaiting completion of the input/output,
the processor routine returns to the router
via an XCTL macro instruction.

WRITE-TO-OPERATOR ROUTINES (IEECVWTO AND
IEEVWTOR)

The write-to-operator routine (SVC 35)
writes operator messages on the console
when a WTO or WTOR macro instruction is

issued by system component programs or
problem programs. Messages and replies are
buffered; the period of time between issu-
ing the message and receiving the reply is
available for processing. Issuance of
either macro instruction causes an SVC
interruption. When the SVC interruption is
handled, the supervisor causes the write-
to-operator routine to be loaded into the
transient area of the nucleus and passes
control to it.

There are two console queues. the buff-
er queue and the reply queue. The extent
of both queues is defined by specifying the
number of buffers at system generation. An
attempt to exceed this value results in the
requesting task being placed on a queue to
wait for service; i.e., the task is placed
in a wait condition. Each WTO and WTOR
macro instruction results in the addition
of a WIO Queue Element (WQE) to the buffer
queue; each WTOR results in the addition of
a Reply Queue Element (RPCE) to the reply
qgueue. SVC 35 (IEECVWTC) sets up the prob-
lem program message. If it is a WTOR, the
write-to-operator-with-reply routine (IEEV-
WIOR) inserts the message identification
(ID) in addition to a partition identifier.
The same message ID (which the operator
must use for his reply) is placed in the
RPQE with other information to insure pas-
sing the reply, when received, to the prop-
er area. WTO messages are always written;
a WTOR message may be purged (removed from
the queue) if the issuing task terminates
while the message is on the buffer queue.
Therefore, an RPQE differs from a WCE in
that it contains the address of the issuing
task's TCB. The buffer queue is accessed
through the entry UCMWTCQ in the UCM.

The reply queue contains RPCEs for
operator replies to WICR. Like WTCR ele-
ments in the buffer queue, RPQES contain a
ICB address to permit their being purged
from the queue if the issuing task is
abnormally terminated.

For a REPLY (to WICR), the processor
issues SVC 34 (see "Master Scheduler
Task™). The SVC routine determines that
the incoming command is a REFLY, processes
the reply, posts the user's ECB and
branches back to the processor.

EXTERNAL INTERRUPTION ROUTINE (IEECVCRX)

The external interruption routine assigns
functions performed by the primary comnsole
device to an alternate console device.

When the operator presses the INTERRUPT key
on the console, an external interrupticn
occurs and control passes to the supervi-
sor. The supervisor identifies the inter-
ruption and passes control to the external

Job Management 45

interruption routine which switches con-
soles and returns control to the supervi-
sor. Console functions may later be reas-
signed to the primary console device, if
the operator causes another external
interruption.

Communications Task with
Multiple Console Support

The MFT communications task with Multiple
Console Support (MCS) is similar tc the MVT
communications task except that MFT does
not cbktain buffers dynamically. The MCS
communications task receives control as a
result of an external interruption, an
operator console attention, an 1I/0 inter-
ruption for a console, or a WTO (R) or DOM
macro instruction. The following para-
graphs descrike the communications task
routines with MCS (for a detailed descrip-
tion of these modules see IBM System/360
Operating System: MVT Supervisor, Form
¥28-6659):

Communications Task Router Routine (IFEC—
MAWR): waits for the posting of an extern-
al, attention, I/0, WTO(R), or DOM ECB.
Control is passed to the appropriate rou-
tine to handle the posted ECR, to provide
console switching, or to provide buffer
management.

Communications Task Device Interface Rou-
tine (IEECMDSV): passes control to the
device support routine for the device on
which I/C is to be performed, or consoli-
dates system and console output queues.

Communications Task Console Switch Routine
(IEECMCSHW): performs console switching as
a result of an external interruption, an
unrecoverable I/C error, or a VARY command.
It also switches the hard copy log to the
master console when both log data sets are
full.

Communications Task WTO(R) Routine
(IEECMWSV): marks WTO queue elements to
appropriate console output queues.

Communications Task DOM Routine (IEECMDOM) :
marks WIC queue elements on the system out-
put queue to ke purged.

Console Device Support Routines: provide
read and write functions for the associated
console devices.

The following modules remain unchanged with
MCs:

Write-to-operator (IEECVWTO)
Write-to-operator with reply (IEEVWTOR)
External Interrupt (IEECVCRX)
Console Interrupt (IEECVCRA)

46

Note: The routines that support the Model
85 integrated operator's console with CRT
display are identical with those used with
MVI. For a complete description of these
routines, see IBM System/360 Cperating Sys-
tem: MVT Supervisor, Program Logic Manual,
Form Y28-6659.

Master Scheduler Task

The MFT master scheduler task (MST) pro-
cesses all commands, and initializes main
storage at system initialization. It is
composed of the SVC 34 routines and the
master scheduler resident command processor
routines. SVC 34 processes all commands
directly except HOLD, RELEASE, RESET, CAN-
CEL (inactive jobs), DISPLAY (A,C,N,
jobname), WRITELOG, and DEFINE. SVC 34
calls the resident command processor to
complete the processing of all but the WRI-
TELOG command. When a WRITELCG command is
found, SVC 34 stores it and posts the Sys-
tem Log task ECB.

The master scheduler resides in the nuc-
leus and operates under control of its own
TCB. The master scheduler TCB is always
dispatchable and is of higher priority on
the TCB queue than the TCBs for the parti-
tioned area (the problem program area) of
storage. Therefore, when a command is
issued, the master scheduler always gains
ccntrol of the CPU after the communications
task for processing the command.

When processing commands, interruptions
are disabled so that command processing may
be completed before any other interruptions
are serviced. Although commands are pro-
cessed when issued, the command may not
take effect immediately. An example of
this is the STOP writer command. The mast-
er scheduler marks a command scheduling
centrol block (CSCB) which is checked by
the writer between jobs. The command does
not take effect until the writer completes
the job it was processing when the command
was issued.

MULTIPLE CONSOLE SUPPORT RECUIREMENTS

In systems that include Multiple Console
Support (MCS), a hard copy of all operator
and system messages is required when there
is an active graphic console or more than
one active non-graphic console. Because of
this requirement, a system log function is
provided which may be specified as the hard
copy log. 1In MFT, the System Log operates
under its own ICB created at system genera-
tion. The System Log task is the highest
priority task in the operating system. The
master scheduler routine IEFSD569 calls the
log initialization routine IEEVLIN which
initializes control blocks and obtains

storage for the Log Control Area and the
log kuffer. The Log Support routines in an
MFT environment function similarly to those
in an MVT environment. For a further
description of the system log and the Log
Support routines with MCS, see IBM Systemn/
360 Operating System: MVT Supervisor, Form
Y¥28-6659.

SVC 34 FUNCTIONS

SVC 34 (Charts 13, 14, and 15) is called to
process all commands. As previously noted,
it processes some of these commands com-
pletely and calls the resident command pro-
cessor to process the remaining commands.
The commands processed completely by SVC 34
are:

START

STOP

MODE

MODIFY

CANCEL (active jobs only)
HALT

MOUNT

VARY

UNLCAD

REFLY

DISPLAY (JOBNAMES, R, SPACE, DSNAME,
T, or STATUS)

For CANCEL (inactive jobs), HOLD,
RELEASE, RESET, DISPLAY (2, Q, N, jobname),
and DEFINE commands, SVC 34 does preli-
minary processing before passing control to
the resident command processor. If the
resident command processor is processing a
DEFINE command, SVC 34 will queue all com-
mands until the DEFINE command has been
completely processed.

For the log command, SVC 34 issues a WIL
(SVC 36) to have the LOG command processed
in manner similar to a Write-to-log macroc
instruction issued from a problem program.

The same routines are used in the MFT
Command Processor as are used in the MVT
Ccommand Processor with two exceptions.
DEFINE, MOUNT, and CANCEL command proces-
sing is performed in module IEESD571, and
STOP INIT and START command processing is
performed in module IEESD561. In addition,
the Validity Check Command routine
(IEEO403D) passes control to the MFT rou-
tines rather than their MVT counterparts
when operating in an MFT system. The fol-
lowing paragraphs describe the two MFT rou-
tines within SVC 34.

DEFINE, MOUNT, and CANCEL Routine
(IEESD571)

This routine processes the DEFINE comrmand
by setting the necessary indicators in the

master scheduler resident data area. It
then posts the ECB for the resident command
processor IEECIR50. This routine also pro-
cesses the CANCEL command (for active
jobs), and the MOUNT command.

MOUNT processing parallels that of PCP
by building a parameter list for, and issu-
ing an XCTL macro instruction to the ECP
master command EXCP routine (IGC0103D).

Canceling of an active job is handled by
scanning the CSCBs for a jobname compare.
If the compare is equal and the CSCB is
marked cancelable, IEESD571 issues a BALR
to ABTERM with the job's TCB address and
proper completion code dump indication. If
the CSCB is not marked cancelable, the CSCB
is marked canceled and is posted. If the
job is not found, IEESD571 passes control
to the CSCB creation routine (IEE0803D) via
an XCIL macro instruction, to CANCEL the
jobname on the job queue. (See IBM System/
360 Operating System: MVT Job Management,
Program Logic Manual, Form ¥Y28-6660, for a
description of IEE0803D.)

STOP INIT and START Commands Routine
(IEESD561)

This routine processes all the START com-
mands and the STOP INIT command. (The STOP
commands that deal with console displays of
job names, data set names, and space avail-
able are processed by IGC0703D.) When pro-
cessing a START command, the routine first
examines the command parameters. If any-
thing other than a system reader or writer
is to be started, the routine determines
the number and status of the partition.

The routine then builds and chains a CSCB,
passes the address of the CSCB to the par-
tition"s PIB, and posts the partition. If
a system reader is to be started, the rou-
tine searches for a scheduler-size problem
partition which is inactive; if a system
writer is to be started, the routine
searches for any inactive problem parti-
tion. If a partition is located, the rou-
tine kuilds and processes a CSCB as stated
akove. If a partition cannot be found, the
routine issues a message to the operator
stating that the command has failed.

To process a STOP INIT command the rou-
tine determines which partition contains
the initiator to be stopped, verifies that
the partition contains an initiator, and
sets the STOP INIT indicator in the parti-
tion"s PIB. If the routine cannot process
the command, it will issue a message to the
operator stating that the command has
failed.

Job Management 47

START Command
in Input
Stream

START Command
at Console

SVC 34

Check
Communication [(SVC 34) Command Route
Task Processing and
Authority

(SVC 34)] Reader/

Interpreter

Build and
Chain CSCB

Put CSCB
in PIB, Post
"No Work" ECB

‘ Return to I0S ’

eFigure 16. START Command Processing Flow

Machine Status Control Routines (IGF2603D
and IGF2703D)

These routines process the MODE command
which is valid only for the Model 85. The
operator obtains a display of machine sta-
tus ky issuing the MODE command with the
parameter STATUS. This parameter is pro-
cessed by machine status control routine
IGF2603D. If the parameter is other than
STATUS, machine status control routine
IGF2703D processes the parameter to allow
the operator to control the mode of record-
ing soft machine checks, to reactivate pre-
viously deleted buffer sectors or the high
speed multiply circuitry, and to restore
‘machine status to the system reset condi-
tion. Exit from either routine is wvia an
SvVC 3.

The Machine Status Control modules are
part of the Master Scheduler but are stored
with modules relating to RMS/85 and given
the RMS/85 identification of IGF rather
than the Master Scheduler identification of
IEE.

For a more detailed description of the
MCDE command, see IBM System/360 Operator's

Guide, Form C28-6540. For a more detailed
description of the Machine Status Control
modules, see IBM System/360 Machine Check
Handler for Model 85, Form ¥Y27-7128.

48

SYSTEM INITIALIZATION

The master scheduler task (Chart 09) per-
forms the function of initializing main
storage. In MVT this is done by NIP. In
MFT it is done by the master scheduler to
facilitate redefinition of main storage.
The following paragraphs describe the
action of the master scheduler in defining
main storage at system initialization.

The master scheduler task is loaded with
the nucleus. 1Its task control block (TCB)
points to the master scheduler request
block (RB) in the nucleus. NIP saves the
RB address and the contents of the boundary
box describing the normal master scheduler
task partition, for later use by the master
scheduler initialization routine IEFSD569.
(Note: IEFSD569 is brought into main
storage by the macro instruction SGIEEOVV
generated during system generation.)

The boundary box (BBX)-is then changed
by NIP to describe a partition including
all of storage except the nucleus. The
address of an RB at the low address of this
partition is placed in the master scheduler
TCB. NIP then creates the RB. The RB
points to an XCTL to IEFSD569. NIF then
sets the master scheduler task dispatchable
and branches to the dispatcher.

The master scheduler initialization rou-
tine is given control to perform scheduler
initialization. First it passes control to
the communications task initialization rou-
tine (IEECVCTI) via a LINK macro instruc-
tion. After the communications task is
initialized, the master scheduler initiali-
zation routine passes control to the
definition routine, IEEDFIN1, via a LINK
macro instruction. IEEDFIN1 communicates
with the operator, or prepares the parti-
tion as it was described at system genera-
tion. IEFSD569 then issues the READY mes-
sage, and if the system log was requested,
passes control to IEEVIIN to initialize the
system log. It then types the automatic
commands, and issues a WAIT macro instruc-
tion.

When the operator presses the RECUEST
key, control is given to the supervisor
which recognizes the interruption and
passes control to the input/output supervi-
sor. The input/output supervisor deter-
mines that the interruption is an attention
signal and passes control to communications
task console attention interrupt routine
(described above). The interrupt routine

. posts the communications task attention ECB

to request reading of the console. The
operator enters a SET command. SVC 34

posts the WAIT and places the parameters of
the SET command in the master scheduler
resident data area. The master scheduler
initialization routine then regains control
to continue processing. Control blocks for
the jok queue and procedure library are
created. To format the job queue, the rou-
tine passes control to queue initialization
routine IEFSD055 via a LINK macro instruc-
tion which places a queue control record
(QCR) in the nucleus after the DCB and DEB.
Control then passes to queue manager for-
matting routine IEFORMAT which formats the
job queue and returns control to the queue
initialization routine. (For a discussion
of these two modules, see the topic "Queue
Manager".) After return from the queue
manager initialization routine, the master
scheduler initialization module displays
and processes any automatic commands.

The master scheduler initialization rou-
tine then establishes partitions based on
information in the TCBs. It constructs an
RB in each partition, with an XCTL macro
instruction addressing job selection module
IEFSD510 (for large partitions), or small
partition module IEFSD599 (for small parti-
tions). The master scheduler initializa-
tion routine then readjusts the pointers to
the master scheduler area, and returns to
the dispatcher. The dispatcher returns
control to the mas2er scheduler task, but
the TCB now points to master scheduler
router routine IEECIR50, in the nucleus.

Master Scheduler Router Routine (IFECIRS50)

Resident master scheduler router routine
IEECIR50 waits on an ECB which is posted by
SVC 34 when a command has been scheduled
for processing. This router (Chart 12)
scans the CSCB chain for any outstanding
commands to ke processed. If a command is
found, the CSCB is removed from the chain.
The router routine then passes control to
syntax check routine IEESD562 via a LINK
macro instruction, passing the address of
the CSCB.

After all commands are processed, or if
none are found, the router routine deter-
mines if a DEFINE command has been entered.
If so, the router routine passes control to
IEEDFIN1, the first module of the defini-
tion routines, via a LINK macro instruc-
tion. If no DEFINE command has been
issued, the router routine returmns tc wait
on its ECB. No test is made for DEFINE
command scheduling until all other commands
have been processed.

Syntax Check Routine (IEESD562)

Syntax check routine IEESD562 checks the
syntax of the command parameter in the CSCB
(Chart 10). If a search of the input work

queues (SYS1.SYSJOBQE) is required for pro-
cessing the command, the syntax check rou-
tine sets internal codes for the queue
search, issues a GETMAIN to obtain storage,
and constructs an event control block (ECB)
and an input/output block (ICB). Control
is then passed to queue search setup rou-
tine IEESD563. If the command was a DIS-
PLAY A command, control is passed to DIS-
PLAY A routine IEESD566. If it was a DIS-
PILAY CONSOLES command, control is passed to
DISPLAY CONSOLES routine IEEXEDNA.

Queue Search Setup Routine (IEESD563)

Queue search setup routine IEESD563 deter-
mines which of the queues is to be searched
and reads the queue control record (CCR)
for that queue. If the queue must be
searched, the queue search setup routine
establishes parameters for the search. The
queue search setup routine then passes con-
trol to queue search routine IEESD564 via
an XCTL macro instruction. When the queue
search setup routine regains control, the
CCR is scanned and if any information in
the record has been changed, the updated
information is rewritten on SYS1.SYSJCBCE.
The queue search setup routine then estab-
lishes a parameter list and passes control
to service routine IEFSD565 via an XCTL
macro instruction.

Queue Search Routine (IEESD564)

Queue search routine IEESD564 reads the
entries of a queue based on the parameter
information passed by setup routine
IEESD563. If the command processing
requires changes in the chaining informa-
tion in a queue entry or control record,
the updated information is written on the
queue. Action indicators are passed as pa-
rameters when control returns to setup rou-
tine IEESD563.

Service Routine (IEESD565)

Based on the information passed by the cal-
ling routine, service routine IEESD565 per-
forms the following:

1. Passes control to queue manager
enqueue routine IEFCMNCC via a LINK
macro instruction to enqueuve an entry
or QCR.

2. Issues a FREEMAIN macro instruction to
free the ECB/ICB which was used to
read SYS1.SYSJOBQE.

3. Passes control to the master scheduler

message module (IEE0503D) via a LINK
macro instruction to write a message.

Job Management 49

4. If another queue needs to be searched,
it passes control to queue search set
up routine IEESD563 via an XCTL macro
instruction.

After the requested processing has been
performed, the service routine transfers
control to router routine IEECIR50.

DISPLAY A Routine (IEESD566)

DISPIAY A routine IEESD566 receives control
from syntax check routine IEESD562 when the
DISPLAY A (active) command is entered.

This routine constructs WTO messages con-
taining the active job and stepnames. The
DISPLAY A routine returns control to the
router routine.

DISPIAY CCNSCLES Routine (IEEXEDNA)

DISPIAY CCNSCLES routine IEEXELNA receives
control from the Syntax Check routine
IEESD562 when the DISPLAY CONSOLES command
is entered. This routine issues a header
message that describes the status message.
It then constructs and issues a message
describing the status of the hard copy log
(if one exists) and each console in the
system, both active and inactive. When the
message is issued, it returns to the Master
Scheduler Router routine IEECIRS50.

PARTITICN DEFINITICN BY THE MASTER
SCHEDULER

The master scheduler uses the DEFINE com-
mand processing routines (shown in Figure
17) to initialize or change partition
definitions in MFT. These routines handle:

e Commands from the operator via a con-
sole, issued after nucleus initializa-
tion, to change the size and descrip-
tion of any partition while processing
continues in unaffected partitions.

e Commands from the system at IPL time to
rrepare the partition as it was
descriked at system generation.

All transfers of control among the proces-
sing routines are accomplished via an XCTIL
macro instruction.

DEFINE Command Initialization Routine
(IEEDFIN1)

The master scheduler passes control to
DEFINE command initialization routine IEED-
FIN1 whenever a DEFINE command is entered

50

by the operator. The routine also receives
control from the master scheduler during
system initialization, after the nucleus
initialization program (NIP) completes its
rreparation of the system. In either case
the routine builds the DEFINE data area
containing the size and description (job
classes A-0, or R or W) of each partition
If Main Storage Hierarchy Support is
included in the system, the data area con-
tains the size of the partitions in terms
of hierarchies. Hierarchy 0 represents
processor storage and hierarchy 1 repre-
sents 2361 Core Storage.

If the time-slicing feature is included
in the system, the data area also contains
a doukleword of time-slicing information,
including the first and last partition num-
bers in the time-slicing group and the time
interval (in milliseconds) assigned to the
group of partitions. This data is used at
completion of DEFINE processing to define
the partitioning of main storage.

If the DEFINE command initialization
rcutine was entered as the result of a
DEFINE command, the routine issues a DEFINE
COMMAND BEING PROCESSED message to all
active consoles. It then determines wheth-
er LIST was specified and if so, passes
ccntrol to listing routine IEEDFIN4. If
not, the routine passes control to message
routine IEEDFINS for issuance of an ENTER
DEFINITION message.

If the DEFINE command initialization
routine was entered during the system
initialization, the routine also issues a
DEFINE COMMAND BEING PRCCESSED message to
all active consoles. It then determines
whether partition redefinition or LIST was
specified by the operator, and if not,
passes control to validity check routine
IEEDFIN3. If either LIST or partition
redefinition was specified, the routine
continues processing as if a DEFINE command
had been entered by the operator.

Syntax Check Routine (IEEDFIN2)

wWhen syntax check routine IEEDFIN2 receives
control at primary entry point IEEDFIN2, it
translates the statements entered by the
operator to upper case. When the routine
receives control at secondary entry point
IEEDPART, this operation is bypassed.

The statement is scanned and each entry
in the statement -- a partition definition,
a time-slicing change, or a keyword -- is
rrocessed separately.

IEEDFIN3

IEEDFINS

Wait For
Affected Partitions
to Quiesce

Set Key to Zero
if Protected
System

Build Request
Blocks, Set up
Boundary Box,
Update PIB

IEEDFIN9

Update TCBs for
Time Slicing if
Specified

Free Work area for
IEEDFIN3 and
get message
code in register

*Figure 17.

Entry

From NIP or DEFINE Command

IEEDFINI1

Protect

active consoles

Build Data Area

NIP N
Changes or
List

|EEDFIN4

List Partition
Information

IEEDFINS

Issue Proper
Message

Processing
Complete

|EEDFINé

Update
Permanent Table
with Time Slicing
Information

DEFINE Command Processing Flow

IEEDFIN2

Get Next Line

Translate it to
Upper Case

Beyond

Buffer

Request
Full Partition
Change

Time
Slicing
Change,

From Console and

End of Input

Update Permanent |
Tables With
Partition

Information

Get Next Entry

|EEDFIN7

Get Next Entry

Update Permanent
Table With

Keyword
Indicator

Keyword Error

Get Next Entry

Job Management 51

If the entry is a partition definition,
the routine checks the entry for syntax
errors. If a syntax error is found, the
routine passes control to message routine
IEEDFINS5 for issuance of the appropriate
syntax error message. The erroneous entry
and all following entries are ignored. If
the syntax is correct, IEEDFIN2 updates the
DEFINE data area with the partition infor-
mation and gets the next entry for
processing.

If the entry is a time-slicing change,
the routine passes control to time-slice
check routine IEEDFIN6.

If the entry is neither a partition
definition, nor a time-slicing change, the
routine assumes that it is a keyword and
passes control to keyword scan routine
IEEDFIN7.

Validity Check Routine (IEEDFIN3)

Validity check routine IEEDFIN3 makes final
checks to determine that the information
entered ky the operator is correct (e.g.,
that the definition changes which have been
requested are within legal bounds or that
the time-slicing specification is valid).
If an error is detected, the routine passes
control to IEEREXIT, a secondary entry
point in command final processor routine
IEEDFIN9. If the information is valid, the
routine determines the partitions affected
by the DEFINE command and constructs a 1list
of PIB pointers (one for each affected
active partition).

If Main Storage Hierarchy Support is
included in the system, IEEDFIN3 determines
if a partition has been defined in two seg-
ments. If both HO and H1 size have been
reduced to zero, the routine marks the par-
tition inactive in the DEFINE data area.

It also checks to determine if a partition
has keen specified for excess bytes result-
ing from a redefinition in either HO or H1
of an adjacent partition. If no partition
has keen specified, the routine passes con-
trol to secondary entry point IEEREXIT in
command final processor routine IFEDFIN9Y.
Ctherwise, it sets up a message indicating
the numker of excess bytes, the partition,
and the hierarchy to which they have been
added. It then passes control to IEEREXIT.

If the information is wvalid, IEEDFIN3
passes control to system reinitialization
routine IEEDFINS.

Listing Routine (IEEDFIN4)

Listing routine IEEDFIN4 lists partition

definitions and job classes. If the time-
slicing feature is in the system, it also
lists the time-slicing attributes. After
rexrforming the listing function, the rou-

52

tine determines whether an END keyword has
been read from the console, and if so,
passes control to validity check routine
IEEDFIN3. If not, it passes control to
message routine IEEDFINS.

Message Routine (IEEDFIN5)

Message routine IEEDFIN5 handles the mes-
sages required by the DEFINE command pro-
cessing routines. These messages, which
are written to the operator, are concerned
with:

e Entering and continuing the definition
of partitions.

e Syntax, parameter, and time-slicing
errors.

e Tllegal number of partitions or over-
size partitions.

e Completing the definition of
partitions.

After issuing the appropriate message, the
routine determines whether processing is
complete and if so, issues a DEFINITICN
COMPLETED message to all active consoles.
It then determines if a DEFINITION CAN-
CELLED message has previously been issued
and if so, tests to see if the system is
being initialized. If the message has been
issued and it is IPL time, IEEDFIN5 passes
control to command initialization routine
IEEDFIN1 to repeat the DEFINE command pro-
cessing. If the DEFINITION CANCELLED mes-
sage has not been issued, or if it has been
issued at other than IPL time, the routine
returns control to the caller.

If processing is not complete, IEEDFIN5
passes control to syntax check routine
IEEDFINZ.

Time-Slice Syntax Check Routine (IEEDFIN6)

Time-slice syntax check routine IEEDFIN6
checks the time-slicing entry for syntax
errors. If a syntax error is found. the
routine passes control to message routine
IEEDFINS5 for issuance of a PARAMETER ERRCR
message. It ignores the erroneous entry
and all following entries. If there are no
syntax errors, the routine updates the
DEFINE data area with the time-slicing
information, gets the next entry in the
statement being processed, and passes con-
trol to secondary entry point IEEDEART in
syntax check routine IEEDFIN2.

Keyword Scan Routine (IEEDFIN7)

Keyword scan routine IEEDFIN7 determines
whether the entry being processed is a
valid keyword. If it is not a valid key-
word, the routine passes control to message

routine IEEDFINS5 for issuance of a PARAME-
TER ERRCR message. It ignores the
erroneous entry and all following entries.
If a valid keyword is found, the routine
sets the appropriate keyword indicator in
the DEFINE data area.

If there are more entries to be pro-
cessed, the routine gets the next entry and
passeé control to secondary entry point
IEEDPART in syntax check routine IEFEDFIN2.

If there are no more entries to be pro-
cessed (end of input), the routine deter-
nines whether a LIST keyword has been
entered and if so, passes control to list-
ing routine IEEDFIN4. If LIST was nct spe-
cified, a check for the END keyword is
made. If an END entry is found, the rou-
tine passes control to validity check rou-
tine IEEDFIN3. If an END entry is not
found, the routine passes control to mes-
sage routine IEEDFIN5 for issuance of a
CONTINUE DEFINITION message.

System Reinitalization Routine (IEEDFINS)

System reinitialization routine IEEDFINS
prlaces the ECB that must be posted by the
affected partition in the PIB of the parti-
tion. If a partition has been marked inac-
tive (i.e., no HO or Hl1l size is contained
in the DEFINE data area), IEEDFIN8 sets the
partition's TCB nondispatchable. If any
partition being redefined contains a system
writer, the routine posts the STOP ECB in
the Start Parameter List to stop the writer
as if a "Stop Writer" command had been
issued from the console. Therefore the
operator must issue a "Start Writer" com-
mand for any writer partition involved in
the redefinition.

The routine then issues the WAIT macro
instruction for the posting of the ECB
list. When the ECB list is posted, IEED-
FIN8 sets the protection key to zero if the
system is protected. It makes one final
check to determine that no more than 15
problem program partitions have been
defined. If an error is found, the routine
passes control to secondary entry point
IEEREXIT in command final processor routine
IEEDFINO.

If no error is found, IEEDFIN8 uses the
information in the DEFINE data area to
build request blocks and boundary boxes for
the defined partition. The routine then
passes control to IEEDFIN9 at its primary
entry point, IEEDFIN9.

Command Final Processor Routine (IEELCFIN9)

Command final processor routine IEEDFIN9Y
updates the time-slice control element and
the task control blocks affected by time-
slicing if this feature is specified. The

routine then passes control to message rou-
tine IEEDFIN5 for issuance of the DEFINI-
TION COMPLETED message.

If the routine receives control from
validity check routine IEEDFIN3, it frees
the work area obtained by its caller. It
passes control to IEEDFIN5 for issuance of
the appropriate error message specified by
its caller (IEEDFIN3 or IEEDFINS8).

Job Processing

Job processing is accomplished by three
types of tasks:

e Reading tasks, which control the read-
ing of input job streams and the inter-
preting of control statements in these
input streams.

e Initiating tasks, which control the
initiating of job steps whose control
statements have been read and inter-
preted. (Terminating procedures are
also part of initiating tasks.)

e Writing tasks, which control the
transferring of system messages and
user data sets from direct-access
volumes on which they were written ini-
tially to some other external storage
medium.

These tasks are created in response to
START commands entered for readers, initia-
tors, and writers. Whenever a START reader
or writer command is entered, the resulting
command processing brings a reader or writ-
er into the associated partition. Initia-
tors are brought into all scheduler-size
partitions at system initialization, and
after a START INIT command has been issued
following partition redefinition. An
initiator is also brought into a partition
that is specified in a STOP INIT command to
terminate the initiator.

There may be more than one of each of
the job processing tasks so long as the
total does not exceed 52. Input job
streams may be read simultaneously from
three input devices by issuing a START
reader command for each input stream. Sys-
tem messages or data sets may be written to
as many as 36 output devices by issuing a
START command for each device. Up to 15
initiating tasks can exist concurrently.
Each initiating task is created in response
to a START INIT command issued for a spe-
cific partition, or a START INIT.ALL com-
mand. (See IBM System/360 Cperating Sys-
tem: Operator's Guide, Form C28-6540.)

Job Management 53

This section is divided into six topics,
including the three major tasks discussed
above, and three other areas associated
with the major tasks: (ueue Manager, Sys-
tem Task Control, and System Restart.

QUEUE MANAGER

MFT uses the MVT Cueue Manager. Hcwever,
to reduce possikle interlocks due to
unavailakility of requested tracks, the
assign routine (IEFQASGQ) has been modi-
fied, and a new module (IEFSD572) has been
added. A takle breakup routine (IEFSD514)
has also been added to subdivide variable
size tables located in main storage into
176-kyte data records on disk. Descrip-
tions of some MVT modules have also been
included to provide a more complete
explanation of the relationship of these
modules to the entire system.

WORK QUEUES

An MFT system contains 54 work queues which
form the job queue data set (S¥Ysl.
SYSJOBCE). These 54 work queues are:

Automatic SYSIN blocking queue.
HOLD queue.

Remote job entry (RJE) queue.
36 output class queues.

15 input job class queues.

The job entries are enqueued in priority
order within each job class on the appro-
priate jok class queue. Jobs are selected
for processing according to the job class
designation of the partition requesting
work.

Queue Manager

Queue Manager is a general term describing
a group of routines used by various system
components, such as the reader/intergreter,
initiator/terminator, and output writer.
The gqueue manager performs some common
functions for all system components. It
performs all input/output for accessing the
job queue data set and keeps track of all
space on this gqueue. The queue manager
assigns space on the job queue in logical
track increments for control blocks,
tables, and system messages built by the
scheduler. When the control blocks and
tables have been created, the reader/
interpreter enqueues (ENQs) the job using
the queue manager. After the job is
enqueued, the initiator dequeues (DEQs) the
jok for execution when a partition that is
assigned to service that job class becomes

54

availakble for work. The terminator places
control information needed by the system
output writer on the job queue. At job
termination, the terminator enqueues the
output work description. The writer then
dequeues the output work according to out-
put class and priority within the class,
and transcribes it to the appropriate
device, specified by the user.

At system generation, the space for the
job queue data set is allocated. The
device upon which the job queue resides is
considered a non-demountable system resi-
dence volume.

JOB QUEUE INITIALIZATICN

At system initialization, queue initializa-
tion routine IEFSD055 receives control from
the SET command processor to construct a
data control block (DCB) in the nucleus,
and to issue an OPEN macro instruction
which causes a data event block (DEB) to be
built for accessing SYS1.SYSJCBQE. It also
places a queue manager master queue control
record (master QCR) in the nucleus after
the DCB and DEB. (See Figure 18 for the
format of the master QCR.) Control then
rasses to queue formatting routine
IEFORMAT.

0(0) . 8

8 byte disk address of the Master QCR

MBBCCHHR
8 (8 1 2 1
Displacement of first track
Reserved of the free queue Reserved
12 (C) 2 2

Number of logical tracks in
the job queue data set

Number of logical tracks in
the free-track queue

16 (10) 2 2
Number of tracks reserved

for cancelling of job steps
when queue full

20 (14) 2
Displacement of last

available logical track

Number of tracks reserved
for any initiator

Displacement of first track
containing only job queue
records

24 (18) 2 2
Number of QCRs per Number of job queue records
physical track per physical track

28 (1C) 2
Number of records per
logical track

Number of logical tracks
for each Problem Program

partition
32 (20
(20) Number of QCR th 2 Address of first record on
umoer o son the first track containing only
mixed track .
job queue records
36 (24)

®Figure 18. Master Queue Control Record

(Master QCR) Format

The queue formatting routine divides the
job queue data set into a control record
area and a logical track area. The control
record area contains a copy of the master
QCR, a control record for the automatic
SYSIN batching (ASB) queue, a control reco-
rd for the HCLD queue, a control record for
the Remote Jok Entry (RJE) queue, a control
record for each of the 36 SYSOUT writer
classes, and a control record for each of
the 15 input work queues. (See Figure 19
for the format of an input queue control
record.)

Note: The first position of the job queue
control record (job QCR) contains zeros if
no work exists. The job QCR contains a
minimum of two entries if work exists for
at least one priority.

The jok class specified by the user (on
the JOB statement or in a START command) is
converted by the system to match the
system-assigned job class identifiers. The
user-assigned job class and corresponding
system job class identifiers are:

System-assigned
identifier
(hexadecinal)

User-assigned
jok class

28
29
2A

tw

ozZRHARUHEOREBEON
w
o

The logical track area length is vari-
able. Logical tracks are used instead of
physical tracks so that the job queue can
reside on different device types. Each
logical track contains a 20-byte header
recoxd (LTH) (as shown in Figure 20) which
includes a pointer to the next track. The
header record is used to chain all tracks
of a jok together. When the job is
enqueued, the header record is used to
chain joks first-in/first-out (FIFO)
according to priority. 211 jobs of the
same job class are chained together. Fol-
lowing the header record are a variable
number of 176-byte data records. The num—
ber of records per logical track is detexr-

fmined at system generation and may range

from 10 to 255 records. The number may be
modified within this range at IPL. All
tables, control blocks, and system messages
are in 176-byte increments.

At system initialization, all tracks are
memkers of the free track queuve. The free
track queue is a list of logical tracks
available for assignment to work queues.

As tracks are needed, they are taken from
the free track queue. When the system is
finished with tracks, they are returned to
the free track queue. After systerm initia-
lization, SYS1.SYSJCBQE appears as shown in
Figure 21. Figure 22 illustrates typical
input and output work queues. Each input
and output QCR contains the address of the
last entry in each priority queue.

QUEUE MANAGER MODULES

As jobks are read into the system, they are
placed into each job class queue according
tc priority (established by the PRTY param-
eter on the JOB statement). When the
reader/interpreter reads a job or estab-
lishes a new queue for an output class, it
establishes a queue entry. This is done by
Assign/Start Routine IEFQASGT.

Assign/Start Routine (IEFQAGST)

The Assign/Start routine takes the first
track from the available track pool and
estaklishes it as the first track for a
job. The queue manager parameter area
(CMPRA) is updated accordingly. (See IBM
System/360 Operating System: MVT Job Man-
agement, Program Logic Manual, Form Y28-
6660, for a description of ¢MPA.) BAn ICB
and an ECB are created for subsequent
input/output operations. The actual
reserving of tracks is done by the assign
routine, IEFQASGQ.

Note: MFT does not support the track-
stacking facility of MVT.

Assign Routine (IEFQASGC)

The assign routine assigns record space on
the job queue, and determines whether the
requested blocks can be assigned to the
current track. If so, the record addresses
are placed in the external parameter 1list
of the QMPA, and the records-available
field of the QMPA is decremented to reflect
this assignment. If additional logical
tracks must be assigned, this routine
issues an ENQ macro instruction on the
master QCR to prevent concurrent access by
other tasks. The master QCR is read into
main storage.

Job Management 55

0 (0) 2 2
‘ Address of last LTH of highest priority entry on queue. 14
44 2 2
13 12
8(8) 2 2
11 10
12 (C) 2 2
¢ 8 Addresses of last
LTH of latest
16 (10) 2 2 entry having
7 6 indicated priority,
20 (14) 2 2
5 4
24 (18) 2 2
3 2
28 (1C) 2 2
1 0
32 (20) ; 3
Highest
gouljue : P:'igorei:y Address of ECB for first task requesting work
|
Figure 19. Jok Cueue Control Record (QCR)

00 -
Reserved
4) "
Reserved
8 (8) 1 2 1
Reserved First logical track of the job Reserved
12.(C) 2] 1
Next logical track of the job Number of Type*
tracks assigned
16 (10) 2
Reserved Jobﬁluss of Last logical track of the
the job next job
20 (14)
| Type :
1 = HOLD queue
| 2 = ASB queue
3-38 = Output class queues
| 39 = RJE queue
40-54 = Input work queues
eFigure 20. Logical Track Header (LTH)

Record Format

The primary user of this assign routine
is the readers/interpreter, although the
initiator/terminator also uses it. To pre-
vent the possibility of the reader/

56

interpreter taking all the space and making
it impossible for jobs to be initiated or
terminated, two limit values have been
added: the number of tracks reserved for
initiating a job, and the number of tracks
reserved for terminating a job.

If logical tracks are available, the
requested tracks are acquired. The address
of the first available logical track is
updated and the newly assigned tracks are
chained to the tracks assigned to the job.
The master QCR is written to the control
record area of the job queue data set. A
DEQ macro instruction is issued to make the
master QCR available to the next user.

If there are no available logical
tracks, and the requesting routine is a
reader/interpreter, the assign routine
passes control to queue manager/interpreter
interlock routine IEFSD572. If the reader/
interpreter is resident, control returns to
the assign routine to wait for tracks to
become available. If the readers/
interpreter is transient, IEFSD572 issues a
message to the operator requesting him to
reply "WAIT" or "CANCEI". If the reply is
WAIT, control returns to the assign rou-
tine, otherwise control is passed to the
ABEND routines to cancel the
reader/interpreter.

36 36 36 1296
R Master QCR Hold QCR ASB QCR
T
1 36 Output QCRs
[‘ (Classes A - Z and 0 - 9) 36 Control
RJE QCR Record
520 | Area
L 15 Input QCRs T
T (Classes A - O) 756
L
L Reserved i
T (21 Unused QCRs)
176
LTH First 176 - byte record
\
First
Logical
Track I Additional 176 - byte records
V4 176 Logical
LTH \ Track
} 176 - byte records Area
L /'
T | -
rA LTH }
Last
Logical 176 - byte records
Track

eFigure 21.

If there are no available logical tracks
and the requesting routine is an initiator/
terminator, the assign routine issues a
message to the operator stating that queue
space has been exceeded and passes control
back to the initiator/terminator to cancel
the jok.

When the requesting routine is assigned
the record TTRs, it can read and write
records on the job queue. The master QCR
is written, and a DEQ macro instruction is
issued to make the master QCR available to
the next user. The record addresses in
storage and TTR pointers are contained in
the external parameter list of the QMPA.
When available space on the job queue
becomes critical, a warning is sent to the
requesting task. Logical tracks are
removed from the pool of available tracks
and assigned to the job.

If the reply is CANCEL, the interlock
routine deletes all queue space assigned to
the job, cancels the job, and returns con-
trol to the assign routine. Normal initia-
tor operation recovers the partiticon for
further use.

Sample Job Queue (SYS1.SYSJOBQE) Format After Initialization

Interpreter/Queue Manager Interlock Routine
(IEFSD572)

When the reader/interpreter requests tracks
for the job it is processing, and no space
is available, IEFQASGQ passes control to
interlock routine IEFSD572 to identify
whether an interlock can occur. If the
reader is transient, the possibility exists
that space needed by the reader/interpreter
can be provided only by the termination
routines, which must operate in the parti-
tion that the reader occupies. Because the
requested space is not available, the rou-
tine issues a message to the operator re-
questing a reply of "WAIT' or "CANCEL'. If
the reply is WAIT, this routine returns to
the assign routine to wait for available
space. (If the reader requesting space is
a resident reader, no message is issued,
and a reply of WAIT is assumed.)

If the reply is CANCEL, control passes
to delete routine IEFCDELQ to delete all
queue space assigned to the job being pro-
cessed (if any space had already been
assigned). When control returns, the
interlock routine abnormally terminates the
job with a job-canceled code of 222. Norm-
al initiator operation recovers the parti-
tion for further use.

Job Management 57

Only Priority 6
Entry Enqueued

Highest Priority |

First Logical Track

Ll LTlH |

Last Priority 2
Entry Enqueued

I First Priority 2
Entry Enqueued

First Priority 10
Entry Enqueuved

J Last Priority 10
Entry Enqueued

| Last Priority 6 \ tH | Second Logical Track]
| Last Priority 2 5 LTH | Last Logical Track ' I
| | |
| Logical I 176-byte data records |
Output Work QCR / I Track | (Number of data records per logical :
| Header | track is specified at SYSGEN) i
| | |
) | . !
Kr LTH I First Logical Track —l
> LH | Last Logical Track]
(o] |
JOB QUEUE l
— [T]
w -
, / \\ [] |
/ \\

/

Input Work QCR

Highest Priority

Last Priority 10

First Priority 6
Entry Enqueued

kS

LtH |

Last Priority 6

Last Priority 2

v

LTH |

I Last Priority 6
Entry Enqueued

L
[l

(2

[L |

Only Priority 2
] Entry Enqueved

:

|

Figure 22. Input and Output Queue Entries

58

Queue Manager Engqueue Routine (IEFQMNQOQO)

After all control blocks for a job have
been written, the job is eligible for
selection by an Initiator. Declaring a job
ready for selection (enqueuing) is done by
Queue Manager Enqueue routine IEFQMNQQ.

When an interpreter has completed the
processing of a job, (all records generated
by the interpreter have been written on the
queue), it uses this routine to enqueue the
job, in priority order, on the approrriate
job class input work queue. When a job
completes processing, the terminator uses
this routine to enqueue output data sets,
in priority order, on the appropriate out-
put work queues.

To prevent concurrent updates, this rou-
tine issues an ENC macro instruction for
the queue control record (QCR) of the prop-
er queue. When the CCR becomes available,
it is read into main storage. The enqueue
routine then places the new queue entry
after the last entry with the same priority
as shown in Figure 22. The address of the
new entry is then placed in the track head-
er of the prior entry (maintaining a
chain), and in the QCR position for that
priority. The job control table (JCT) is
written. The updated QCR is written on the
job queue. A DEC macro instruction is
issued making the CCR available. Control
is then returned to the calling routine.

Dequeue Routine (IEFQMDCQ)

In addition to dequeuing a job from the
input queue for an initiator, the dequeue
routine (IEFCMDQC) removes the output data
from an output queue for processing by a
system output writer.

The routine issues an ENQ macro instruc-
tion on the CCR of the selected queue.
When the CCR kecomes available, the dequeue
routine reads it into main storage. The
QCR is examined for a job belonging to the
same job class as the partition. Upon
finding a jok, this routine adjusts the
chain. If none is found, the requesting
task tries the next job class. If nc work
is found on any of the selected queues (up
to three), the requester places itself in a
wait state. 1In the case of an output writ-
er, a pointer to the "no work" ECB is
placed in the QCR. If a pointer already
exists, the ECB is chained to the last ECB
waiting for that output class. Then the
updated QCR is written and a DEQ macro
instruction is issued making the QCR
availakble.

Once a job has completed processing, or
the output writer has written all records
for a jok, the tracks are returned to the
system. This is known as deleting a job

and is handled by the queuve manager delete
routine IEFQDELQ.

Delete Routine (IEFQDEIC)

The Delete routine first issues an ENC
macro instruction on the master CCR of the
free chain of tracks. After control is
returned, the record is updated to reflect
the new available tracks. The prior last
track of free storage is updated to point
toc the new set of free tracks. After the
master QCR is updated, it is written and a
DEQ macro instruction is issuved against it.
The ECB indicating wait-for-space is
posted.

Table Breakup Routine (IEFSD514)

When a reader must be suspended, the job
scheduler must prevent the destruction of
variakle size tables in main storage. To
do this, it calls the queue manager table
breakup routine, IEFDS514, (Chart 10) which
subdivides tables in main storage and
writes them on disk as 176-byte data reco-
rds. The data records are written in a
queue entry related to the caller. The job
scheduler calls IEFSD514 to retrieve the
176-byte data records and to reconstruct
the tables in main storage. Whether read-
ing or writing tables, the caller must
build a parameter list (see Figure 23) and
place the address of the list in general
register 1 before calling the TBR.

When the tables are written initially,
the TBR parameter list must contain the
address of a QMPA specifying the queue
entry into which the tables are to be writ-
ten. The function code field (QMPCP) of
OMPA must specify a write operation. The
TBR parameter list must also contain the
address, subpool, and size of each table to
be written. The last word of the TBR pa-
rameter list must be zero. The TBR returns
a Head TIR address which locates the begin-
ning of the tables on disk. This TTR must
be saved for subsequent retrieval of the
tables.

The initial write establishes disk data
records for the tables for the duration of
the associated queue entry (i.e., until the
entry is deleted). Therefore, further
write requests must specify the Head TTR in
the TBR parameter list. Before issuing a
write request, the caller must retrieve any
previously written tables to prevent their
being overlaid by the new write request.

If the request is for output of tables,
(transferring from main storage to direct-
access device), the Head TTR (passed in the
parameter list) is used to read the first
table queue control record (TCCR). If the
Head TTIR is zero, the assign routine, IEF-
QASGQ, is called to assign space for a new

Job Management 59

TQCR. The TCCR is a 176-byte record con-
taining a 4-byte forward-chain pointer and
space for 43 TTRs. These spaces are filled
in as the tables are written, using the
assign routine to assign the TTRs, and the
Read/Write routine, IEFQMRAW, to write the
tables in 176-byte segments. If more than
43 records are required to hold the tables,
a new TQCR is chained to the first, and
processing continues. The low-order byte
of the last TTR used in writing the tables
is set to 'FF' (hexadecimal) to indicate
end-of-takles. After these TTRs are
assigned, they are used each time the table
kreakup routine is called to write tables,
as long as the Head TTR is preserved by the
caller.

0 (0) 4
Address of QMPA
4(4) P
Address of First Record (Head TTR)
8 (8)
2
Address of Table 1
12 (C) 1 3
Table 1 .
Subpool Size of Table 1
16 (10) 1
Address of Table 2
20 (14) 1 3
Table 2 .
Subpool Size of Table 2
24 (1
(8) A' L
P~ ~
7
Address of Table n
1 3
Table n Size of Table n
Subpool
P
Zeros
Figure 23. Table Breakup Parameter List

Once a queue entry has been deleted, a
caller must issue another initial write re-
quest (Head TTR is zero in the table brea-
kup routine parameter list) to establish a
new string of table data records. IEFSD514
does not free takle storage areas.

In retrieving tables, the TBR parameter
list must contain the address of an asso-
ciated ¢gMPA. The function code (QMPOP)
field must specify a read operation. The
TBR parameter list must also contain the
Head TTR address. Sufficient space must be
allowed for the TBR to return the new main

60

storage address of each table, and the sub-
rool and size of each table as specified
when they were written by the TBR.

If the request is for input (reading
into storage) of tables, the first TCCR is
read into storage using the Head TTR passed
in the parameter list. The first record of
the first table is read, using the first
record in the TCCR. This record contains
the size of the table and the number of the
desired subpool. IEFSD514 issues a GETMAIN
specifying the subpool and the amount of
storage required for the table. The
remainder of the table is then read into
the storage obtained, using read/write rou-
tine IEFQMRAW. Each table specified in the
parameter list is processed in this manner
until °'FF'" (hexadecimal), indicating end-
of-tables, is found. As each table is read
into main storage, the parameter 1list is
urpdated with the main storage address of
that table. When all tables have been
read, control is returned to the caller.
The address of the updated parameter 1list
is returned in register 1. Tables are
always written in the same sequence that
they appear in the TBR parameter list,
beginning with the Head TTR. They are
retrieved, totally, in the same sequence;
they cannot be read selectively.

Reader/Interpreter

MFT uses the MVT reader/interpreter (read-
er). However, because of job class, poss-
ikle MFT interlocks, and the capability of
using transient readers, some modificationms
have been made to the MVT modules, and six
new modules have been added. These modifi-
cations and additions are described below.

MFT allows as many as three input
readers to execute concurrently with prob-
lem programs and writers. Resident readers
orerate in previously defined reader parti-
tions, and transient readers operate in
rroblem program partitions large enough to
accommodate them. Input stream data for
the step being read is transcribed onto
direct-access storage where it is held
until execution of the associated job
begins. Problem programs retrieve this
data directly from the storage device.

In MFT there are three types of system
input readers:

e Resident reader.
e User-assigned transient reader.
e System-assigned transient reader.

Resident and transient readers may operate
in the same system, provided no more than
one system-assigned reader is specified,
and the total number of readers does not

exceed three. The primary difference
between the user-assigned and system-
assigned transient readers is the manner in
which the transient reader resumes opera-
tion after it is suspended.

RESIDENT READERS

A resident reader operates in a partition
designated as such at system generation (by
replacing the job class identifier with R),
or during system initialization or parti-
tion definition (by specifying RDR for the
job class identifier). A resident reader
reads its input stream, enqueuing jobs
until the input stream reaches end-of-file
or until it is terminated by a STOP command
entered for that partition.

Note: The STCP command does not take
effect until the current job is completely
read.

TRANSIENT READERS

A transient reader operates in a problem
program partition large enough to accommod-
ate it. A transient reader can be ter-
minated by issuing a STOP command or by
reaching end-of-file, as can the resident
reader. In addition, a transient reader is
suspended when a job is enqueued either for
the partition occupied by the reader, or
for a small partition. (Note that this is
rossible only when a reader completes read-
ing an entire job.)

If a transient reader is started in a
specific partition by including the rparti-
tion assignment in the START command, it
always resumes operation in that same par-
tition, and only when that partition be-
comes free. This type of transient reader
is referred to as user-assigned. If 'S' is
substituted for the partition number in the
START command, the system assigns the read-
er to any available large problem program
partition. This type of transient readex
is called system—assigned.

READER CCNTRCL FLOW

After a START command is entered to activ-
ate a reader, master scheduler routine IEE-
CIR50 determines if the size of the
requested partition is large enough, and
posts the partition. Job selection routine
IEFSD510 determines that a START command
has been entered, and passes control to
system task control (STC) syntax check rou-
tine IEEVSTAR. The syntax check routine
validates the syntax of the START command,
builds job control language tables, and
retrieves the reader cataloged procedure

specified in the START command. Each read-
er is assigned to an input device specified
in the START command. Control is then
passed to interface routine IEFSD533 which
sets up an interpreter entrance list (NEL)
for a reader. It also allocates job queue
space for a transient reader by issuing a
dummy WRITE macro instruction. Control is
j then passed to linkage routine IEFSD537
which issues a LINK macro instruction to
reader initialization routine IEFVH1 to
begin reading the input job stream (Chart
24-26).

wWhen reader initialization routine
IEFVH1 receives control, it reads its input
stream using QSAM, and translates job pro-
cessing information into convenient form
fcr subsequent processing by an initiator
and system output writer. Each job read in
by the readers is converted into tables
that are placed in the approprriate job
class input work queue specified by the
CLASS parameter on the JCB statement.
input work queue exists for each of the
fifteen problem program job classes (A
through 0).

Cne

For systems that include Multiple Con-
sole Support (MCS), the PARM field on an
EXEC statement includes a command authority
code. This code is included in the option
list created by interface routine IEFSD533,
and placed in the interpreter work area
(IWA) by reader initialization routine
IEFVH1. This code is passed by the reader
when it issues an SVC 34 due to a command
read in the input stream.

After the reader has completed reading a
job, control passes to gqueue manager
enqueue routine IEFQMNCQ which enqueues the
job on the appropriate input work queue
according to the PRTY parameter on the JOB
statement (see "Queue Management®™ in this
section).

Note: If the reader is being used as a
subroutine by a problem program, it does
nct enqueue the job on the input work
queue, but returns control to the problem
rrogram passing the addresses of the JCT
constructed for that job, and the CMFA
associated with that input queue entry.

If data is encountered in the input
stream, control is passed to interpreter
CPO routine IEFVHG to transcribe the data
onto direct-access storage for later re-
trieval by the problem program. If there
is no space for the data, control passes to
interpreter operator message routine
IEFSD536 to issue a DISPIAY active command
and a WTOR message. The operator replies
with either 'WAIT' or "CANCEL'. If 'WAIT'
is specified, the reader waits for space to
become available. If °'CANCEL' is speci-
fied, the reader is canceled and a READER

Job Management 61

CLCSED message is issued. IEFSD536 then
sets indicators which cause cleanup of the
current job, and control to be passed to
interpreter termination routine IEFVHN to
terminate the reader.

After a reader enqueues each job, con-
trol passes to transient-reader suspend
tests routine IEFSD532. This routine
decides whether to 1) terminate the reader,
2) suspend the reader, or 3) have the read-
er continue reading the job stream. (The
decision to suspend the reader would never
be made if the reader is resident.) If the
reader is to ke terminated, control passes
to termination routine IEFVHN. If the
reader is to be suspended, control passes
to transient reader suspend routine
IEFSD530. Otherwise, control returns to
job and step enqueue routine IEFVHH to con-
tinue reading the job stream.

Transient Reader Suspend Routine (IEFSD530)

When a transient reader is suspended, tran-
sient reader suspend routine IEESD530
(Chart 29) writes the tables and work areas
used by the reader onto the work queue data
set (SYS1.SYSJCBCE).

The routine closes the reader and proce-
dure likrary. Data needed to restore the
reader is temporarily saved in the inter-
preter work area (IWA). The IWA is then
written to the work queue data set. When a
user-assigned transient reader is sus-
pended, the address of the reader space on
the work queue is placed in the partition
information block (PIB). When a system-
assigned transient reader is suspended, the
address of the IWA is placed in the master
scheduler resident data area (IEFSD568).
(See Appendix A for the format of
IEFSD568.) The work queue data set is
later used by transient reader restore rou-
tine IEESD531 to restore the reader when
the assigned partition becomes available
after jok termination. "No work"™ ECBs for
proklem program partitions are posted (see
"Job Selection"), and suspend routine
IEESD530 returns control to system task
control.

Transient Reader Restore Routine (IEFSD531)

Once a partition is again free for the
reader, transient reader restore routine
IEFSD531 (Chart 30) receives control and
issues a GETMAIN for the IWA, Local Work
Area (LWA), reader DCR, and procedure
likbrary DCB. The direct-access device
address of the IWA is retrieved from the
PIB if a user-assigned reader is to be
restored, or from the master scheduler
resident data area, if a system-assigned
reader is to be restored. The IWA is then
read in from the job queue. The TIOT is
read into storage and the TCR pointer is

62

updated; other tables and work areas neces-
sary to restore the reader are reset from
the information saved in the IWA. The
reader and procedure library DCBs are
orened and the reader resumes operation to
start reading at the point in the job
stream where it was suspended. Control is
then passed to interpreter routine IEFVHCB
to continue reading the job stream.

Initiator/Terminator (Scheduler)

To provide independent scheduling, schedu-
lers operate in any problem program parti-
tion of sufficient size. A partition large
enough to accommodate the scheduler is
referred to as a "large partition." A par-
tition not large enough to accommodate the
scheduler is referred to as a "small parti-
tion". Within a given large partition, a
scheduler operates independently of schedu-
lers in other large partitions. Because
small partitions cannot atccommodate the
scheduler, they rely on large partitions to
perform their initiation, allocation, and
termination operations. Scheduling for
small partitions is described in "Small
Partition Scheduling" in this section.

An MFT initiator (Chart 18) dequeues a
job (entry) for its partition based on a
job class designated for the partition.
Once dequeued, the job is scheduled accord-
ing to the information contained in the
entry.

During allocation and termination of
each job step, the allocation and termina-
tion routines place messages and output
data set pointer blocks in a specified out-
rut queue. The queue entry is created by
the readers/interpreter. (The output queue
entry becomes input to an output writer
when the job is completed.)

An initiator functions as a control pro-
gram for the scheduling process, using the
allocation and termination functions as
closed subroutines. The MFT initiator is
composed of the following routines:

Job Selection

Small Partition

Jok Initiation

Data Set Integrity

Step Initiation

Problem Program Interface
Step Deletion

ENQ/DEQ Purge Routine
Alternate Step Deletion
Job Deletion

JOB SELECTION (IEFSD510)

The job selection routine (Charts 19-23)
acts as the control routine for the MFT
initiator. The routine is brought into all
large problem program partitions by the
master scheduler at system initialization,
by the jobk deletion routine when a job has
terminated, or by system task control when
a writer has been scheduled for a small
partition or a reader has been suspended.

Jop selection first waits on a "nc work"
ECB in the PIB. This ECB is posted com-
plete by the command processing routines,
the jok deletion routine, system task con-
trol, or the small partition module when a
small partition needs scheduler services.

When the "no work" ECB has been posted
complete, the job selection routine checks
the PIB to determine if a life-of-task
(LOT) block exists (see Appendix A for a
description of the LOT block). If not, it
creates one for the task.

Job selection then checks the PIB for a
small partition information list (SPIL)
pointer (see Appendix A for a description
of SPIL). If one exists, scheduling is
perxformed for the small partition by pas-
sing control to IEFSD599. If no SPIL
pointer exists, the PIB is checked to
determine if the partition is involved in
partition redefinition; if the partition is
to be changed, the PIBR is checked further.
If a jok is queued on the checkpoint/
restart internal queue it is processed; if
a restart reader is pending, it is started.
If neither exists, no further scheduling is
allowed in the partition and the partition
can ke redefined. (See "Master Scheduler
Task".)

If the partition in which the initiator
is operating is not part of a partition
redefinition, a test is made for a pending
Restart Reader command. If no command is
pending, a test is made to determine if a
system-task reader or writer is to be
started. If a restart reader or a system-
task reader or writer is to be started,
control passes to system task control which
initiates readers and writers. If a
restart reader is being started, and a
user-assigned reader had been rolled out of
the partition, the PIB is marked
accordingly.

If no small partition is requesting ser-
vice, no reader or writer is to be started,
and the partition is not part of a rede-
finition operation, a final check is made
to determine if a START INIT command has

been issued; if so, job selection attempts
to dequeue work from the input work queue
(see Figure 24). If a STCOP INIT command
has been issued, the attempt to dequeue a
job is bypassed.

A threshold check is then made to deter-
mine if enough logical tracks are available
on SYS1.SYSJOBQE to start the initiator.

If not, message IEF427I CCMD REJECTED FCR
INITIATOR '"ident" - INSUFFICIENT QUEUE
SPACE is sent to the operator and job
selection again waits on the "no work"™ ECB.

The job selection routine obtains
storage for the job control table (JCT) and
checks to determine if a job is queued on
the checkpoint/restart internal queuve. If
a job exists, dequeue by jobname routine
(IEFLOCDQ) is used to remove it from the
hold queue for processing. If no job is on
the internal queue, the routine then uses
the queue manager dequeue routine
(IEFQMDQQ) to obtain work from one of the
input job queues according to the job class
assignment of the partition. If work is
found, IEFQMDQQ constructs a CSCB for the
job and an IOB to be used when reading or
writing the input queue. The CSCB is con-
structed in the system queue area and the
address of the CSCB is placed in the ICT.
The address of the IOB is placed in CMGR1
when a user accounting routine is supplied,
the job selection routine sets the LCT
fields LCITMWRK and ICTTMWRK+4 to zero.
These fields are used in calculating the
execution time of a job step. Job selec-
tion then branches to job initiation rou-
tine IEFSD511.

If the search for work for the partition
is unsuccessful (i.e., no work has been
enqueued for any of the job classes
assigned to the partition) tests are made
to determine if a transient reader is to be
restored in the partition or if a START
command has been entered for a system-
assigned transient reader. If so, system
task control is called. If a reader is to
be restored in the partition, job selection
passes control to special entry point
IEE534SD in system task control.

Command Processing Services

In response to system commands entered in
the input stream or from a console, the
command processing routines request a ser-
vice by storing information in the FIB of
the affected partition or in the master
scheduler resident data area for START and
ST0P commands issued for system-assigned
transient readers and writers. The job
selection routine recognizes these requests
and takes one of the following actions:

Job Management 63

e Inhikits further job scheduling for the
partition in preparation for the pro-
cessing of a DEFINE command. (The
DEFINE command can be entered only from
a console.)

e Prevents execution of problem programs
in large partitions in response to a
STOP INIT command.

e Passes control to system task control
in response to a START reader or START
writer command.

e Schedules problem program execution in
response to a START INIT command.

START
INIT

4

JOB
SELECTION

ALLOCATION
ALLOCATION/
PROBLEM
PROGRAM
INTERFACE

Allocation Error

—

CANCEL

TIOT
PROBLEM LOoT
PROGRAM

TERMINATION
DELETE

Step Deletion

Job Deletion

Figure 24.

Scheduling a Problem Program in
a Large Partition

SMALL PARTITICN SCHEDULING

A partition is defined as "small"™ when its
size is at least 8K bytes but less than the
jok scheduler generated for the system.
Small partition scheduling is performed by
an initiator in a scheduler-size partition
at the request of small: partition module
IEFSD599 (IEFSD599 is described later in
the topic "Small Partition Module"). The
small partition is therefore temporarily

64

dependent on a large partition while sched-
uler services are being performed. Sched-
uling for a small partition is independent
of scheduling for other small partitions in
the system.

The small partition module interfaces
with job selection module IEFSD510 to sche-
dule a problem program, or with system task
ccntrol to schedule a writer in a small
partition. Communication between the small
partition module and job selection or sys-
tem task control is maintained through a
small partition information list (SPIL).
(The format of a SPIL is shown in Appendix
AJ)

Small partition module IEFSD599 requests
the scheduling function by placing the
address of a SPIL in the partition informa-
tion block (PIB) of each scheduler-size
partition in the system. Each time job
selection is entered between jobs, the PIB
is checked for a non-zero SPIL address. If
the PIB contains a valid address, the SPIL
is analyzed, the job class queues for small
partitions are searched for work, and con-
trol is passed to one of the following:

e Jok Initiation (IEFSD511), if work has
been found for a small partition.

e Step Deletion (IEFSD515), if a small
partition is waiting for termination.

e System Task Control (IEEVSTAR), if a
writer is to be started in the small
partition.

These routines perform the requested
service in the large partition and use the
SPIL to indicate their action to IEFSD599.
When the requested service has been per-
formed, these routines return to IEFSD510.

Initiating a Problem Program

As shown in Figure 25, initiation of a
problem program in a small partition is
pexformed by a large partition. If a small
partition is waiting for work, job selec-
tion module IEFSD510 dequeues a job from an
input work queue that the small partition
is assigned to service. The large parti-
tion posts a completion code in field ECBA
of the SPIL when initiation services have
been performed.

A completion code of one indicates that
no work was found for the small partition.
The small partition then waits on the ECB
list in the SPIL. The posting of any of
the listed ECBs causes the small partition
to request initiation services.

A completion code of zero indicates that
initiation services have been performed and
the problem program job step is ready to be
executed. The small partition, using the
allocate parameter list (APL), moves the

OPERATOR'S

CONSOLE

SMALL
PARTITION
START INIT
Allocation Error
PROBLEM
PROGRAM
SMALL PARTITION
MO?ULE CANCEL
J ABEND
I)
JOB SELECT LARGE
MODULE PARTITION

INITIATION/ I
ALLOCATION

—_ —]

TERMINATION

Figure 25.

task input/output table (TIOT) and life-of-
task (LOT) klock from the large partition,
opens required DCBs, and establishes prob-
lem program mode. (If the system has the
storage protection feature, the protection
key is set.) If the job has not been can-
celed, control passes to the problem pro-
gram, thus freeing the large partiticn to
continue processing.

Initiating a Writer

As shown in Figure 26, if a writer is to be
started in the small partition, small par-
tition module IEFSD599 requests initiation
of the writer by system task control. A
large partition responds to the request by
bringing system task control routine IEEVS-
TAR into the large partition. IEEVSTAR
initiates the small partition to the point
of calling in the writer. IEEVSTAR then
posts ECBA in the SPIL with a completion
code of zero to indicate to IEFSD599 that
initiation services have been performed,
and the writer is ready to be executed.
Small partition module IEFSD599, using the
link parameter list (LPL), moves the TIOT

Scheduling a Problem Program in a Small Partition

from the large partition to the small par-
tition. ECBC in the SPIL is posted, thus
freeing the large partition to continue
normal processing. Problem program mode is
estaklished, the SPIL is freed, and control
passes to the writer via an XCTIL macro
instruction.

Terminating the Small Partition

when the job step is completed, or a writer
is stopped, small partition module IEFSD599
is brought back into the partition and
entered at special entry point SMALLGC. A
check is made to determine whether a sched-
uler ABEND occurred. If it did, a message
is issued to the operator with a completion
code, and all CSCBs associated with that
job are removed from the CSCB chain. Con-
trol then passes to the normal entry point
of IEFSD599. If no scheduler ABEND
occurred, the SPIL is created, and a status
bit is set indicating that termination ser-
vices are requested. The small partition
module then begins a search for a large
partition to perform the job termination
services or writer end-of-job processing.

Job Management 65

OPERATOR'S

CONSOLE SMALL
PARTITION
START Writer
Allocation Error
OUTPUT
y WRITER
|
SMALL PARTITION
Mo%uw
I ABEND
4
B s
y
JOB SELECT
MODULE LARGE
J PARTITION
]
SYSTEM - I
TASK TERMINATION
CONTROL
Figure 26. Scheduling a Writer in a Small Partition

After an initiator in a large partition
has performed the termination services,
ECBA in the SPIL is posted with a comple-
tion code of two to indicate that job ter-
mination has taken place. A check is made
to determine if the small partition is
involved in a redefinition operation. If
it is, the small partition is made quies-
cent. If the small partition is not asso-
ciated with a redefinition operation, it
requests additional services from an
initiator in a large partition.

Note: If the initiator in a large parti-
tion performs step termination instead of
job termination, the next step of the job
in the small partition is scheduled before
the initiator schedules a job into its par-
tition, or before it performs scheduling
sexrvices for another small partition.

Small Partition Module (IEFSD599)

Small partition module IEFSD599 (Charts
05-08) is entered from the redefinition
routines at system initialization or when a
DEFINE command is issued or from the master

66

scheduler. The module is entered at spe-
cial entry point SMALLGC from the ABEND
routines when a step has completed execu-
tion. IEFSD599 first waits on a "no work"
ECB located in the partition's PIB. When
this ECB is posted complete, the PIB is
checked to determine if a SPIL has been
created. If not, one is created and an
indicator is set in the PIB. The FIB is
checked to determine if the partition is
involved in a redefinition operation. If a
redefinition is pending, the internal job
queue of checkpoint/restart jobs is checked
and any jobs on the queue are processed
before the partition redefinition. If
there is nothing on the internal job gqueue
and redefinition is pending, assigned
tracks are deleted, the SPIL is freed, and
pending CSCBs are freed. The "DEFINE' ECE
in the PIB is posted to indicate that the
partition has been made quiescent, and a
return is made to wait on the "no work"
ECB.

If no redefinition operation is pending,
the PIB is checked to determine if a writer
is to be started in the partition. If so,
an indicator is set in the SFIL, assigned

tracks -are deleted, and a request for
scheduling is made to a large partition
(descriked below). If a writer is not to
be started, the STOP INIT bit in the PIB is
checked. If this bit is on, assigned
tracks are deleted, the SPIL is freed, and
a return is made to wait on the 'no work'
ECB. If the STOP INIT bit is not on, the
PIB is checked for track assignment. If
needed, tracks are assigned and indicated
in the PIB. The SPIL is updated to indi-
cate a request for initiation of a problem
program.

A request is made for a large partition
to service the small partition based on the
contents of the SPIL. First, an exclusive
ENQ macro instruction is issued to prevent
concurrent service requests by small parti-
tions. Interruptions are disabled to pre-
vent interference with the address of the
SPIL in the large partition's PIB.

IEFSD599 then searches for a scheduler-size
partition. The TCBs are tested for problem
program status; when a scheduler-size par-

tition is found, a determination is made of
whether the small partition is involved in

a DEFINE operation.

If the small partition is involved in a
DEFINE operation, the test for the large
partition involved in a DEFINE operation is
bypassed. If the small partition is not
involved in a DEFINE operation, the large
partition is tested to determine if it is
involved in a DEFINE operation. If so, the
large partition is bypassed and the TCB
search is continued.

The address of the SPIL is stored in the
PIB of the large partition, thus constitut-
ing a request. BAn indication is made when
storing occurs. If a large partitionm is
waiting on its 'no work®' ECB (in its PIB),
the large partition is posted and the large
partition routine clears the SPIL addresses
in the other large partition PIBs. When a
large partition is posted, or all apgli-
cable TCBs are checked, interruptions are
enakled.

If no SPIL pointers were stored during
the search, a DEQ macro instruction is
issued (to allow other small partitions to
make requests), and a WAIT macro instruc-
tion is issued on a ‘dormant' ECB in the
small partition's PIB. (When later rosted
by the command processing routines, the
small partition module will repeat its
search). If at least one SPIL pointer was
stored, a WAIT macro instruction is issued
on ECBB in the SPIL. This allows a large
partition, immediately upon recognition of
the request, to post the ECB complete. The
small partition module may then issue a DEQ
macro instruction to release the SPIL
pointer field so other small partitions may
make requests.

Next, a WAIT macro instruction is issued
on ECBA (in the SPIL) to delay the small
partition until the requested service has
been performed. When ECBA is posted com-
rlete by the large partition, the comple-
tion code is tested to determine the action
which occurred. If the completion code is
two, job termination occurred and return is
made to the point of determining the DEFINE
status of the small partition. If the com-
pletion code is one, 'no work' was found
for the small partition and a return is
made to WAIT on the ECB list in the SPIL.
If the completion code is zero, the large
partition is at the point of calling either
the problem program or a writer. The large
partition is waiting on ECBC (in the SPIL)
to allow transfer of information into the
small partition by the small partition
module.

If a problem program is to be initiated,
IEFSD599 uses the allocate parameter list
(APL) to move the TIOT and user parameter
area into the small partition. It then
posts ECBC (freeing the large partition),
and opens Fetch and/or JCBLIB DCBs if
required. The partition is established in
problem program protection mode. The SPIL
is freed. If the program to be initiated
is the DSDR processing step of a checkpoint
restart, IEFSD599 uses the APL to move the
TIOT and user parameter area into the small
partition, and posts ECBC. The routine
moves the job QMPA and the SYSCUT CMPA from
the LOT to the CSCB, and bypasses opening
the JOBLIB and FETCH DCBs. The routine
also kypasses setting the storage protec-
tion key but frees the SPIL.

A check is made to determine if the job
has been canceled. If so, an ABEND macro
instruction is issued. If the job has not
been canceled, an XCTL macro instruction is
issued to call the problem program into the
small partition (the problem program passes
cecntrol to ABEND at completion of its
execution).

ABEND recalls small partition module and
enters at special entry point SMALLGC. The
small partition protection key is changed
to zero and a SPIL is created. A termina-
tion request is indicated in the SFIL, and
IEFSD599 begins the search for a large par-
tition to service the request.

If a writer is to be initiated, the con-
trol flow is the same as described above in
"Initiating a Writer".

INITIATOR/TERMINATOR CCNTRCL FLOW
There are no terminator routines that are

unique to MFT; the modules used in MFT task
termination are described in IBM System/360

Job Management 67

Operating System: MVT Job Management, Pro-

gram Logic Manual, Form Y28-6660.

In addition to IEFSD510 and IEFSD599,
several other initiator routines are unique
to MFT. These are described in the follow-
ing paragraphs. Descriptions of the MVT
allocation and step initiation routines
that have not been modified by MFT can be
found in IBM System/360 Operating System:
MVT Job Management, Program Logic Manual,

Form ¥28-6660.

Job Initiation Routine (IEFSD511)

Job initiation routine IEFSD511 issues a
GETMAIN specifying subpool 0 to obtain
space for the system output class directory
(scD). The SCD is then read into the area
and the contents of the SCD are used to
initialize CMGR2 in the LOT block. (QMGR2
is the queue manager parameter area which
is used for referencing the output data
set.) After CMGR2 has been initialized,
the storage obtained for the SCD is freed.
A GETMAIN is then issued to obtain storage
for IOB2, the IOB used in conjunction with
QOMGR2. A GETMAIN is issued (specifying
subpool 253) to obtain space for the step
control table (SCT). The SCT is read into
the area thus obtained. Job initiation
then branches to data set integrity routine
IEFSD541.

Data Set Integrity Routine (IEFSD541)

The data set integrity routine is entered
only once per job, from job initiaticn rou-
tine IEFSD511. It first determines whether
data set integrity processing is required.

If the JCT indicates a "failed' job or
if there are no explicit data sets (DSNAME
parameter in a DD statement) for the job,
rrocessing is bypassed and exit is made to
step initiation routine IEFSD512. If data
set integrity processing is required, the
DSENQ takle records are read from the job's
entry in the input job queue (SYS1.
SYSJCBQE). Duplicate DSNAMEs are elimi-
nated from the tabkle and each unique DSNAME
is placed in a minor name list. The most
restrictive attribute (exclusive or share)
is chosen for each DSNAME placed in the
minor name list. After this processing is
complete, an ENQ supervisor list is con-
structed which contains an entry for each
DSNAME in the minor name list. Each entry
is initialized with the following:

e RET=TEST option of ENQ.

e SYSTEM option of ENQ.

e Attribute (E/S) of the corresponding
DSNAME.

68

e Address of the common major name
*SYSDSN'.

e Address of the corresponding DSNAME
(considered the minor name) in the
minor name list.

The DSNAME (minor name) length is contained
in the first byte of each DSNAME field in
the minor name list.

When the ENQ supervisor list is con-
structed, the system is disabled and an ENQ
supervisor call is issued against the list
to test the availability of the DSNAMEs.

If the DSNAMEs are available, the ENC
supervisor list is updated so that each
entry reflects the RET=NCNE option of ENQ.
A second ENQ supervisor call is issued
against the list to reserve DSNAMEs for the
job. The system is enabled and exit is
made to step initiation routine IEFSD512.

If the DSNAMEs are unavailable for the
job (already reserved with conflicting
attributes by other task(s) in the system),
the operator is notified of the condition.
In notifying the operator, the return code
field of each entry in the ENQ supervisor
list is tested for a non-zero setting. If
the setting is non-zero, the associated
DSNAME (minor name) is identified to the
orerator as unavailable. The operator is
given the following reply options:

e RETRY, in case the resources have been
freed by the other task(s) (processing
is delayed until the operator replies).

e CANCEL the job.

If RETRY is entered by the operator, pro-
cessing continues at the initial ENQ super-
visor call to again test the availability
of the DSNAMEs. The operator is again
notified, and he can reply either RETRY or
CANCEL. If the job is canceled by the
operator, the *'job fail' bit in the JCT is
set and exit is made to step initiation
routine IEFSD512.

Step Initiation Routine (IEFSD512)

Step initiation routine IEFSD512 first
issues a GETMAIN specifying subpool 253 to
obtain storage for an allocate register
save area (ARSA) and an allocate parameter
list (APL). The APL (Figure 27) is ini-
tialized containing addresses of the LOT,
JCT, and SCT, and two words of zeros.

The step initiation routine checks the
current step to determine if it is either
the checkpoint/restart data set descriptor
record (DSDR) processing step or the
restart step. If the step is a DSDR pro-
cessing step being scheduled for a smaill

partition containing less than 12K bytes,
the PIB of the partition containing the
step initiation routine will be tagged to
indicate that the DSDR step is to execute
in that partition. The step initiation
routine will place the address of its TCB
and PIB in the LOT and pass control to
allocation via a LINK macro instructicn.
If the DSDR step is to be processed in a
large partition, normal processing is
continued.

Address of the LCT

Address of the JCT

Address of the SCT

12 (C) 2
Address of the TIOT List

16 (10) 7
Zeros

20 (14)

Figure 27. BAllocate/Terminate Parameter

List

If the step is the restart step, the
step initiation routine will pass control
to partition recovery routine IEFSD518 via
a LINK macro instruction. If the return
code from IEFSD518 is a zero, normal pro-
cessing is continued; if the return code
from IEFSD518 is a four, the address of the
LOT is placed in register 1 and control is
passed to jok selection IEFSD510 via an
XCTL macro instruction.

The step initiation routine then passes
control to allocation via a LINK macro
instruction. Allocation returns the
addresses of a task input/output table
(TIOT) list (which points to the TIOT) in
the first word of zeros in the APL. On
return from allocation, the return code is
tested to determine if allocation was suc-
cessful. If not, step initiation branches
to alternate step deletion routine IEFSD516
via an XCTL macro instruction. If alloca-
tion was successful, the ARSA is freed, and
the "step started" bit in the SCT is turned
on. The address of the job's CSCB is
stored in the APL (in the last word of the
list).

Step initiation then uses queue manager
read/write routine IEFQMRAW to write the
JCT and SCT back on the input queue. The
disk addresses of the JCT and SCT are saved
in the LCT. A GETMAIN specifying subpool
253 is issued for the table breakup routine

(IBR) parameter list and register save
area. The TBR parameter list is initial-
ized with the address, size, and subpool
specifications for the TIOT and LOT block.
The TIOT and LOT are then written into the
job's entry in the job queue, and the Head
TIR is saved in the JCT. The storage
obtained for the TBR parameter list and
register save area, IOBl1, and IOB2 is
freed. The JCT is then written out. Step
initiation then passes control to problem
program interface routine IEFSD513 via an
XCIL macro instruction.

Problem Program Interface Routine
(IEFSD513)

The problem program interface routine pre-
pares the partition for execution of the
job step. A test is made to determine if
scheduling was performed for a small parti-
tion. If so, this routine tests its parti-
tion's PIB to determine whether a
checkpoint/restart data set descriptor
record (DSDR) is to be processed. If the
DEDR step is to be processed, the SFIL
pointer in the LCT is ignored; otherwise
the address of the APL is placed in the
SPIL, ECBA in the SPIL is posted to indi-
cate that scheduling is complete, and a
WAIT is issued on ECBC. This WAIT allows
the small partition module to copy tables
and work areas into the small partition.
when the tables have been copied, ECBC is
posted complete, and the interface routine
frees all storage obtained for tables and
work areas except for the LCT block, which
is retained. The address of the LCT block
is placed in register 1 and this routine
passes control to job selection, IEFSD510,
via an XCTL macro instruction.

If scheduling was not performed for a
small partition, a test is made to deter-
mine if the job has been canceled. If so,
exit is made by issuing an ABEND macro
instruction.

If the job has not been canceled, the
LOT klock is freed, the TICT is moved to
the lowest possible location (subpool 0) in
the partition, and a GETMAIN macro instruc-
tion specifying subpool 253 is issued for
the user's parameter list (UPL). The UPL
(Figure 28) is initialized from the SCT.
Another GETMAIN macro instruction (subpool
253) is issued to create a register save
area for the user's problem program. If
STEPLIB, JOBLIB, and/or FETCH have been
specified, their DCBs are created (but not
orened) in subpool 253. The JCT, SCT, and
APL are now freed, the STEPLIB or JORLIB
and FETCH DCBs are opened, and the TIOT is
then moved to subpool 253. A single DCE is
used for STEPLIB or JOBLIB, with STEPLIB
overriding JOBLIB if both are present.

Job Management 69

If the job being started in the parti-
tion is a checkpoint/restart data set
descriptor record (DSDR) processing job,
the routine moves the DSDR step QMPAs to
the CSCB. The routine bypasses opening the
STEPLIB, JCBLIB, and FETCH DCBs and also
bypasses setting the storage protection
key.

0

Reserved Address of length field

Length of PARM values

PARM values
(from EXEC statement)

))
A4
J)
W

(Maximum length = 40 bytes)

Figure 28. User's Parameter List

Note: The use of subpools, and the order
in which control blocks and tables are
created, moved, or deleted, follows a par-
ticular sequence even though this handling
occurs within different modules. This is
done to prevent fragmenting main storage
within the partition.

After the TIOT has been moved to the
highest available position within the par-
tition, the task control block (TCB) is
updated and the problem program's protec-
tion key is set (if the system has storage
protection). The problem program interface
routine then passes control to the problem
program via an XCTL macro instruction.

Step Deletion Routine (IEFSD515)

Step deletion routine IEFSD515 is entered
at the end of step execution to prepare the
partition for continued execution of the
job, to interface with the termination sub-
routine, to prepare for the initiaticn of
the next step, or to branch to job deletion
if there are no more steps in the current
job. When step deletion is entered, a
check is made to determine whether the rou-
tine was entered due to an AREND with the
scheduler in control. If so, a message is
issued to the operator and all CSCBs are
removed from the CSCEB chain. Control
passes to IEFSD510.

If an ABEND did not occur, the step
deletion routine branches to ENQ/DEQ purge
routine IEFSD598 via a BALR instruction to
remove any control blocks which were

70

enqueued, but not dequeued, by the problem
program step.

Step deletion then issues a series of
GEIMAIN requests to obtain storage for
queue manager IOBs (IOB1 and ICB2), a tem-
pocrary QMPA, and a register save area and
parameter list for the table breakup rou-
tine. These blocks and tables are initial-
ized and step deletion branches to queue
manager table breakup routine IEFSD514, to
read in the TIOT and LCT blocks for the job
step. The addresses in these blocks are
restored and the storage obtained for the
temporary work areas is freed.

A GETMAIN (subpool 253) is issued to
oktain storage for the SCT and JCT. The
SCT is read into storage from the job
queue, the JCT from its temporary area.

The JCT is updated with the address of the
next SCT and written back on the job queue.
Storage is obtained for a terminate regis-
ter save area and a terminate parameter
list. The terminate parameter list is ini-
tialized with addresses of control blocks
(LOT, JCT, SCT, and TICT list) and the step
deletion routine branches to the termina-
tion subroutine via a BALR instruction.
wWhen termination returns control, step
deletion frees the terminate register save
area and terminate parameter list and then
checks the return code. If the partition
was executing the DSDR step for a small
partition, step deletion places the
addresses of the small partition's TCB and
PIB in the LOT.

If the return code indicates that the
job is to be suspended, step deletion
passes the address of the LOT block in reg-
ister one to job suspension module IEFSD168
via a BAIR instruction. If the return code
indicates that job termination was entered,
step deletion branches to job deletion rou-
tine IEFSD517. If job termination was not
entered, the SCT for the next step of the
job is read from the job queue, and step
deletion passes control to IEFSD512 via an
XCTIL macro instruction.

Note: If a small partition is requesting
termination, entry to the step deletion
routine is made at special entry point SMA-
LTERM. Entry at this point causes pointers
to the SPIL and the small partition's TCB
tc be established before the step deletion
rcutine invokes ENQ/DE¢ Purge routine
IEFSD598.

ENQ/DEQ Purge Routine (IEFSD598)

At job termination, this routine purges all
ENQ/DEQ control blocks associated with the
ICB address passed in Register 4 by the
caller. If step termination was completed
instead, this routine purges all ENC/DEQ

control klocks except the data set integri-
ty klocks associated with the major name
SYSDSN.

When a given resource is dequeued for
the subject TCB, a task switch may occur
for a higher priority requestor whose wait
count kecomes zero, due to availability of
the resource. (This purge routine orerates
in a disakled state to prevent concurrent
updating of the ENQ/DEQ control blocks.)

Alternate Step Deletion Routine (IEFSD516)

Alternate step deletion routine IEFSD516 is
entered from step initiation routine
IEFSD512 when allocation for a step has not
been successful. Using the APL and ARSA
(created by the step initiation routine) as
the terminate parameter list and terminate
register save area, this routine branches
to termination subroutine IEFSD22Q via a
BALR macro instruction. When control is
returned from termination, the storage used
for the parameter list and register save
area is freed and a test is made to deter-
mine if job termination was entered. If
so, this routine branches to job deletion
routine IEFSD517. If job termination was
not entered, the SCT for the next job step
is read from the job gqueue and this routine
branches to step initiation routine
IEFSD512.

Job Deletion Routine (IEFSD517)

The job deletion routine is called at job
termination to delete the job from the
input queue and to prepare the partition
for initiation of the next job. The rou-
tine sets the high-order byte of the
LCTTCBAD field of the LCT to '80" (hexade-
cimal) to indicate to the ENQ/DEQ purge
routine that it is job termination instead
of step termination. The routine then
branches to ENC/DEC purge routine IEFSD598
to purge the control blocks. On return
from the purge routine, the high-order byte
is reset to '00'.

The jor deletion routine then deletes
the jok from the input queue, using queue
manager delete routine IEFQDELQ. All areas
of storage in the partition which were used
for the job (except the LOT block) are
freed, and the job's CSCR is freed by issu-
ing an SVC 34. The PIB fields used for the
disk address of the TIOT and the LOT block
are set to zero. If termination was for a
small partition, ECBA in the SPIL is posted
with a code of two (indicating job termina-
tion for the small partition). If termina-
tion was for a large partition (or after
ECBA has been posted) the "no work" ECB in
the PIB is posted and the job deletion rou-
tine branches to job selection routine
IEFSD510.

Partition Recovery Routine (IEFSD518)

Partition recovery routine IEFSD518 deter-
mines the location of main storage required
for a checkpoint restart. If the partition
being scheduled for the job to be restarted
contains the required main storage, the
routine returns to the step initiation rou-
tine for normal processing. If the nucleus
has expanded past the lower boundary of the
partition containing the required main
storage, the routine sets the job fail bit
in the JCT, issues a message stating that
main storage is not available for the job,
and returns to the step initiation routine
IEFSD512 with a return code of zero.

If the partition being scheduled does
not contain the required main storage, the
routine places the job on the hold queue,
updates the SCD and places the SCD back on
the jok queue. The job's CSCB is unchained
and the space containing the CSCB and the
ECB/IOBs is freed. The routine then
branches to ENQ/DEQ purge routine IEFSD598.

Upon return from ENC/DEC purge routine,
if a problem program partition exists that
contains the required main storage, this
rcutine will create an internal queue ele-
nent and chain it to the partition's FIB.
The partition's "no work" ECB will be post-
ed and a message will be issued stating
that the job will start in the partition.
If an existing partition contains the
required main storage and is defined as a
reader or writer partition, this routine
issues a message indicating that the parti-
tion must be redefined to accept the
desired jobclass. If no partition contains
the required main storage or the partition
that contains the required main storage is
about to be redefined, this routine issues
a message stating the length and displace-
ment of the required main storage. If the
partition being scheduled was a large par-
tition its no-work ECB is posted; if it was
a small partition, the SPIL is posted indi-
cating job termination. The partition
recovery routine frees the JCT and SCT
areas of the partition and returns control
to step initiation routine IEFSD512 with a
return code of four.

Dequeue by Jobname Interface Routine
(IEFSD519)

Dequeue by jobname interface routine
(IEFSD519) builds a parameter list used by
dequeue by jobname routine IEFLOCDC to loc-
ate a jok named on the checkpoint/restart
internal job queue. When a checkpoint/
restart job is indicated by an entry in the

'internal job queue pointer in the FIB being

processed by job selection routine
IEFSD510, job selection branches to
IEFSD519 which builds the seven-word param-
eter list required by IEFLCCDC. When the

Job Management 71

job is dequeued,
to IEFSD519.

IEFLOCDQ returns control

The interface routine marks the job as
ready and returns to job selection with a
code of zero in register 15, indicating
that the job has been found, and a pointer
to the LCT in register 1. If the job is
not found by IEFLOCDQ, a return code of
four is returned in register 15 to job
selection. (A description of IEFLOCDQ is
in IBM System/360 Operating System: MVT
Job Management, Program Logic Manual, Form
¥28-6660.)

System Output Writers

MFT uses the MVT system output writer
(Charts 31-32) with minor changes to five
of the modules. As in MVT, the user may
have up to 36 system output writers operat-
ing concurrently in the system. EFEach out-
put writer can handle eight output classes;
output classes may be shared by writers.
However, in MFT, system output writers are
classified as either resident or non-
resident. A resident writer operates in
its own partition. A non-resident writerx
operates in any problem program partition
large enough to accommodate it.

RESIDENT WRITERS

Resident output writer partitions are des-
ignated in the TCB by a setting of '10"' in
the first two bits of the pointer to the
partition information block (PIB). This
designation is made at system generation by
assigning W to the partition in place of
the job class or by redefining a partition
and assigning WTR to it.

A resident writer is activated by issu-
ing a START command specifying a partition
designated previously as a writer parti-
tion. A resident writer can be terminated
only by issuing a STOP command specifying
the device assigned to that writer.

NON-RESIDENT WRITERS

A non-resident system output writer may be
started in a problem program partition
large enough to hold the writer by issuing
a START command specifying either that par-
tition or by replacing the partition number
with an 'S" to specify a system-assigned
non-resident writer. This causes a "“com-
mand pending®™ flag to be set in the parti-
tion"'s PIB.

When the writer has started, it executes
in the same way as a resident writer and
must be terminated by a STOP command to
allow processing of problem programs to be
resumed in the partition.

72

SYSTEM OUTPUT WRITER MODULES

The following five MVT system output writer
modules are modified for MFT.

e IEFSD070 - Data Set Writer Linkage
Routine.

e IEFSD079 - Linkage to Queue Manager
Delete Routine.

e IEFSD084 - Wait Routine.

e IEFSD085 - Data Set Block (DSB) Handler
Routine.

e IEFSD087 - Standard Writer Routine.

Descriptions of all other system output
writer modules can be found in IBM System/
360 Operating System: MVT Job Management,
Program Logic Manual, Form ¥Y28-6660.

Data Set Writer Linkage Routine (IEFSD070)

This routine passes control to the appro-
priate writer routine via a LINK macro
instruction. The normal linkage is to the
standard writer, IEFSD087. If a special
user-written output writer routine is
requested, this routine passes control to
that writer. Upon return from either writ-
er, the routine passes control to data set
delete routine IEFSD171 via an XCTI macro
instruction which deletes the output data
sets from the output queue.

Linkage to Queue Manager Delete Routine
(IEFSD079)

Uron completion of a job, linkage module
IEFSD079 passes control to queue manager
delete routine IEFQDELC via an XCTL macro
instruction to delete all control blocks
and SMBs associated with the output job
from the job queue. Following deletion,
the routine then posts all reader ECBs that
are waiting for space to indicate that
srace is now available. (The reader ECB
chain address is obtained from the master
scheduler resident data area.) When all
ECBs have been posted, control is returned
to main logic routine IEFSDO082.

Wait Routine (IEFSD084)

This routine serves as a multiple WAIT when
there is no work in any of the output
classes associated with the writer. It
issues a WAIT macro instruction on the ECB
list created by class name setup routine
IEFSD081. When the system output writer
enters a wait state, the wait routine
issues a message informing the operator
that the writer is waiting for work. Any
posting (such as a command, or work for the
writer) causes control to be given to
IEFSD082.

DSB Handler Routine (IEFSD085)

DSB handler routine IEFSLC085 is the setup
module for printing data sets. It issues a
GETMAIN macro instruction for the input DCB
if it was not obtained before, and con-
structs a new TIOT containing an entry for
the input data set. It also sets up any
user-written output writer program. A
check is then made to determine if a pause
is required Letween data sets or only at
forms change. If a special form is to be
used, the routine writes a message to the
orerator telling him what form to put in
the ocutput device. The form change only
occurs if the output device is unit record.
This routine then passes control to linkage
routine IEFSD070 via an XCTL macro instruc-
tion.

Standard Writer Routine (IEFSD087)

This routine first issues an OPEN macro
instruction to open the output data set.

If the data set was not opened by the prob-
lem program, no attempt is made to process
the data set. After OPEN, a test is made
to check for machine control characters. A
switch is set that is interrogated by PUT
routine IEFSD089. The writer then passes
control to transition routine IEFSD088
which creates header and trailer records.
Upon return from IEFSD088, the writer rou-
tine checks the CANCEL ECE in the CSCB to
determine if a CANCEL command has been
issued for this writer. If the CANCEL ECB
has keen posted complete, control passes to
transition routine IEFSD088 to create a
trailer record. When control is returned
from IEFSD088, the writer is closed. Con-
trol is then returned to linkage routine
IEFSD078 via a RETURN macro instruction.

If the writer is not to be canceled, the
writer routine issues a GET macro instruc-
tion to read a record and checks for a con-
trol character. If no control character
exists, the writer puts one in which causes
the printer to skip one line or the punch
to feed into the normal pocket. If the
printer has overflowed, a skip is made to
the next page.

The writer then adjusts the pointer to
the record so that it points to the first
data character (instead of control charact-
er) and passes control to transition rou-
tine IEFSD088 for trailer records. It then
issues a CLOSE macro instruction to close
the input data set, a FREEPOOL macro
instruction to free the buffers, and
returns control to linkage module IEFSD078
via a RETURN macro instruction.

System Task Control

System task control (STC) (Chart 33)
initiates all tasks except the initiator
(START INIT). When the master scheduler
determines that a START command with an
identifier operand has been issued, it
checks the validity of the partition speci-
fied in the command, builds and chains a
CsCB, places a pointer to the CSCB in the
partition's PIB, and posts the partition.

Note: If the procedure being started is
for a system-assigned reader or writer, the
CSCB pointer is placed in the master sched-
uler resident data area. (See Appendix A
for the format of the master scheduler
resident data area).

As shown in Figure 29, job selection
module IEESD510 responds when the partition
is posted, and calls STC when a START com-
mand for a reader or writer is recognized.
If a reader or system output writer is to
be started, STC must process a job descrip-
tion similar to a user's job description.

START
Reader/Writer

JOB
SELECTION

SYSTEM
TASK Allocation Error

CONTROL

INPUT
READER
OR
OUTPUT
WRITER

TERMINATION b

Figure 29. Scheduling a Writer in a large

Partition

The job description information for a
reader or writer comes from three sources:
the procedure library, Job Control Ian-
guage (JCL) statements, and the operator.
The procedure library contains standard
descriptions of a reader and writer. JCL

Job Management 73

statements (corresponding to input stream
JCL) are stored internally; these state-
ments invoke and modify the reader or writ-
er procedure. The operator furnishes addi-
tional information in the operand of the
START command; this information is edited
into the internally stored JCL statements
before they are used to invoke and modify
the procedure.

INITIATING SYSTEM TASKS

When initiator job selection routine
IEESD510 determines that a START commrand
for a reader or writer has been entered, it
passes control to START syntax check rou-
tine IEEVSTAR via an XCTL macro
instruction.

START Syntax Check Routine (IEEVSTAR)

The START syntax check routine gets main
storage for, and kuilds, the start descrip-
tor table (SDT) (see Figure 30). Seven
entries are provided in the SDT: the first
contains the JOB statement, the second con-
tains the EXEC statement that calls the
procedure specified in the START command,
the remaining entries are provided for a DD
statement and continuations of the EXEC and
DD statements. Each entry contains a one-
byte identification flags field, whose
bits, when set to one, have the following
meanings:

Bit 0
Bit 1

indicates a JOB statement.
indicates an EXEC statement.
Bit 2 indicates a DD statement.
Bit 3 indicates a DD statement
continuation.
Bit 4 indicates
continuation.

e Bits 5 through 7 are reserved.

an EXEC statement

The routine generates the JOB, EXEC, and
DD statements that are placed in the SDT.
The keyword parameters in the START command
are compared with a list of keyword fparame-
ters that are allowable in a DC statement;
they are not compared with DD subparame-
ters. If the keyword corresponds to a
member of the list, the routine stcres it
in the DD statement in the SDT. This DD
statement overrides the IEFRDER DD state-
ment in the procedure specified in the
START command. If the keyword does not
correspond to a member of the list, it is
assumed to ke a symbolic parameter keyword
and is placed in the EXEC statement in the
SDT.

Finally, the Syntax Check routine passes
control to the JCL Edit routine (module
IEEVJCL), which builds the job ccntrol lan-
guage set (JCLS). Using the information in
the SDT, the JCL Edit routine puts the JCL

74

in the form appropriate for the interpret-
er. Each statement is built in an 88-
character buffer (obtained with a GETMAIN
macro instruction). A pointer to the first
buffer is placed in the CSCB associated
with the START command. Each buffer con-
tains a pointer to the next buffer, U4 bytes
of reserved space, and a "card image" of
the statement in the last 80 bytes.

0 0) -
SDT SIZE Ident Flags Reserved
4 (4) 72
ﬁ:‘ JCL Statement i~
76 (4C) 1 1 72
Ident Flags Reserved
P~
JCL Statement
-]
Ident Flags Reserved
152 (98) 72
ﬁ: JCL Statement -~
224 (EQ) 1 1 72
Ident Flags Reserved
-~
JCL Statement
~
T 1 1
Ident Flags Reserved
300 (12C) 72
- JCL Statement I~
372 (174) 1] 72
Ident Flags Reserved L
I~
JCL Statement
L
Ident Flags Reserved
448 (ICOI 72

519 (207)T

(sDT)

T JCL Statement

START Descriptor Table

eFigure 30.

Reader Control Routine (IEEVRCTL)

Reader control routine IEEVRCTL then
receives control and builds the interpreter
entrance list (NEL), option list, and exit
list. The interpreter entrance list con-
tains the address of the JCLS in its third
word. The reader control routine passes
control to the reader via a LINK macro
instruction.

The reader, used as a closed subroutine,
is the same routine that performs the read-
ing task. The non-zero value of the third
word of the entrance list indicates that
the input stream is an internal data set.
Since the input stream is internal, the
reader issues a pseudo CPEN macro instruc-
tion to bring a special access method (a

modified CSAM) into storage and places a
pointer to the access method in the input
DCB. This special access method reads the
JCLS; it is entered from the expansion of
the standard GET macro instruction.

The internally-stored job control lan-
guage statements, and the statements from
the procedure library are analyzed and com—
bined. The standard job descripticn tables
are kuilt, and an input queue entry is con-
structed; however, because bit 7 of the
option switches field of the option list is
off, the entry is not enqueued, and the
reader or writer "job" cannot be selected
by an initiator. If errors are detected
during reader processing, appropriate mes-
sages are placed in system message blocks,
which are enqueued in the message class
queue. When processing is complete, the
reader places the main storage address of
the job control table (JCT) in the NEL and
returns control to the reader control rou-
tine with a code that indicates whether
processing was successful. The reader con-
trol routine then passes control to alloca-
tion interface control routine IEEVACTL.

Allocation Interface Control Routine
(IEEVACTL)

The reader control routine passes control
to allocation interface control routine
IEEVACTL, with an indication of whether the
reader had encountered errors. The alloca-
tion interface control routine uses error
message routine IEEVMSGl to issue the WTO
macro instruction to inform the operator of
any errors that have been found. The rou-
tine then constructs the required allocate
parameter list, and passes control to the
170 device allocation routine via a LINK
macro instruction.

I/0 device allocation routine IEFSD21Q
uses the JCT to find the appropriate tables
in the input queue, allocates the necessary
devices to the reader or writer, and issues
any necessary mounting messages. The allo-
cation recovery routines issue WTO macro
instructions to inform the operator of any
errors found during allocation. When allo-
cation is complete, or if allocation cannot
be performed, control is returned to the
allocation control interface routine.

Allocation control interface routine
IEEVACTL determines if the routine to be
given control is an authorized routine and
then transfers control to Write TIOT rou-
tine IEESD590.

Note: A list of "authorized"™ routines is
contained in a table in link-table routine
IEEVLKNT.

wWrite TIOT on Disk Routine (IEESD590)

Write TIOT on disk routine IEESD590 checks
that a reader has not been started in a
small partition, writes the TIOT which is
used for job selection, and checks for a
small partition writer. If a writer is to
be started in a small partition, this
module issues a POST macro instruction and
a WAIT macro instruction for the SPIL and
then passes control to job selection rou-
tine IEFSD510 via an EXIT macro instruc-
tion. If it is not for a small partition
writer, control is transferred to linkor
routine IEESDS591.

Linkor Routine (IEESD591)

The linkor routine passes control to the
requested routine via a LINK macro instruc-
tion. When the reader or writer stops, it
returns control to the linkor routine,
which checks for a small partition writer.
If a small partition writer returned con-
trol to the linkor routine, control then
passes to IEFSD510. If a resident reader
or large partition writer returned control,
termination interface routine IEEVTCTL is
given control via an XCTIL macro instruc-
tion. If a transient reader was suspended,
IEFSD591 returns to job selection routine
IEFSD510.

POST Routine (IEESD592)

POST routine IEESD592 checks the CSCB to
determine if it has been freed; if not, it
is freed. It also checks for a small par-
tition. The valid condition is posted in
the SPIL or the PIB. The post routine then
passes control to IEFSD510 via an EXIT
macro instruction.

System Restart

The system restart functions may be
requested at any time that a system restart
becomes necessary; e.g., end-of-day, end-
of-shift, system malfunction, power fail-
ure. This feature provides a means whereby
a maximum amount of information concerning
input work queues, output work queues, and
jobs in interpretation, initiation, execu-
tion, or termination can be preserved.
System restart permits reinitialization,
rather than a complete reformatting, of the
job queue data set (SYS1.SYSJCBQE).

MFTI uses the MVT system restart modules.
For a complete description of these
modules, and how they function, see IBM
System/360 Operating System: MVT Job Man-
agement, Program Logic Manual, Form ¥Y28-

6660.

Job Management 75

Appendix A: Tables and Work Areas

This appendix contains descriptions and format diagrams of the major tables and work
areas that are used by MFT job management. The tables and work areas are in alphabetical
order, as shown kelow:

Command Scheduling Control Block (CSCB)
Data Set Enqueue (DSENQ) Table
Interpreter Work Area (IWA)

Jok Control Takle (JCT)

Jok File Control Block (JFCRB)

Jokb File Control Block Extension (JFCBX)
Life-of-Task Block (LOT)

Linkage Control Table (LCT)

Master Scheduler Resident Data Area
Partition Information Block (PIB)

Small Partition Information List (SPIL)
Step Control Table (SCT)

Step Input/Cutput Table (SIOT)

Task Input/Output Table (TIOT)

Tables and work areas are shown four or eight bytes wide for convenience, but are not
necessarily drawn to scale. Tables that are stored in work queue entries are limited, by
convention, to a length of 176 bytes.

The names of most fields are sufficient to describe the fields; those that require
further explanation are described in the text accompanying the table. Where a macro
instruction may be used to include a DSECT of a takle in routines using the table, the
name of the mapping macro instruction is also given. The displacement of each field is
shown to the left of each table; the values in parentheses show the hexadecimal
displacement.

COMMAND SCHEDULING CONTROL BLOCK (CSCB)

Description: A command scheduling control block (CSCB) (Figure 31) is an area for
communications between the command scheduling rcutine (SVC 34) and the command execution
routines. Input CSCBs are created by several system routines. When an input CSCB is
created, it is placed in a chain of CSCBs by the command scheduling routine. It remains
in the chain until it is deleted from the chain by the command scheduling routine, which
may also free the main storage occupied by the CSCB. An input CSCB is created under the
following circumstances:

e A CSCB is created by the command scheduling routine each time a task-creating command
is encountered. If the task is a reading or writing task, the CSCB is deleted from
the chain, and its main storage released, when the task terminates.

e A CSCB is created by the queue management dequeue routine each time the initiator
dequeues a job. This CSCB is deleted from the chain, and its main storage released,
when the last step of the job has terminated.

e A CSCB is created by a system output writer each time it encounters a DSB that was
not preceded by another DSB in the current queue entry. The CSCB serves as a
communication area, allowing the cancelation (by operator command) of the subtasks
estaklished by the writer. The CSCB is deleted from the chain, and its main storage
released, when the writer encounters an SMB (or the last block in the current queue

" entry).

A control CSCB is updated (and changed to the control format if necessary) by the
command scheduling routine when a CANCEL jobname (job selected), CANCEL writer device,
MODIFY, or STCP command is encountered.

Although most of the fields are self-explanatory, the following require further
description:

76

e Status Flags: This byte indicates the status (pending/not pending) of the CSCB, and
the action to be taken by the command scheduling routine. In addition to cormand
processing, the command scheduling routine may ke entered to add the CSCB to the

chain, delete it, free its main storage, or to kranch to the abnormal termination
routine.

e Type Flags: This byte indicates the type of activity with which the CSCB is
associated.

e Communication Flags: This byte indicates the function to be performed by the command
processing routine.

Mapping Macro Instruction: IEECHAIN

0 © 4 Verb ! Si f] Stat I T]
. . er| ize 0 atus ype
Address of the Next CSCB in the Chain Code CSCB Flags Flags

Header
8 @®) 4 1 3
Communications ECB Comm. Address of TCB
Flags
16 (10) 124

Command Operand

2 2
Initiator Storage Key Interpreter Counter
144 (90) 28
Reserved
uecm ! 3
Entry Reserved
Indicator

Input CSCB
sFigure 31. Command Scheduling Control Block (CSCB) (Part 1 of 2)

Appendix A: Tables and Work Areas 77

16

24

32

88

128

144

152

160

eFigure 31.

78

© 4 Verb ! S f S ! T !
. . erl ize o tatus ype
Address of the Next CSCB in the Chain Code CSCB Flags Flags
Head
@) 4 1 3 eader
Communications ECB Comm. Address of TCB
Flags
(10) 8
Task Name, Unit Name, or Procedure NAME, or CANCEL Jobname (Initiator)
(18) 8
CANCEL ECB (First 4 Bytes) or Procedure Name (8 Bytes)
(20) 4 4
Address of JCL or JCT Reserved
@) 4 2 E] DPMOD
rror
SDT Address or TIOT Length Reserved Code Parameter
(30) 1 3 36
Error Address of Allocation Parameter List or
Flags Address of ABTERM TCB
Queue Manager Parameter Area L
(Input Queue) T
(58) 36
L Queue Manager Parameter Area
T (Output Queue) 4
Address of START Parameter List
(80) 12
Reserved
1 3
ABTERM Address of
CODE Small Partition List
(90) 4 4
Address of Procedure EXEC .
Statement PARM Field Address of Communications ECB
(98) 4 4
Address of
Address of Command Input Buffer (CIB) UCM Entry Indicator
(100) 12
Reserved
1 1 2
UCM Entry CIB Count
Indicator Field Reserved

Control CSCB

Command Scheduling Contrcl Block (CsCB) (Part 2 of 2)

DATA SET ENQUEUE TABLE (DSENQ)

Description: The data set enqueue table (DSENQ) (Figure 32) is built by the DD statement
processor routine of the interpreter, and is used by the initiator to construct an ENQ
macro instruction parameter list to prevent routines performing different tasks from
using the same exclusive data sets ccncurrently. The table contains an entry for each
data set (except temporary data sets) required for a job.

0 (0) 3 1
Queue Address of This DSENQ Table Table ID
4(4) 3 1
Queue Address of Last DSENQ Table Zeros
8 (8) 4
Name of Characters in all DSNAME Entries to Date
12 (C) 2
Number of DSNAME Entries
to Date
16 (10)

First DSNAME Entry ¥
_— ~— ‘/w‘/\'\/\

Last DSNAME Entry ¥

Zeros - %%
End of DSENQ

e | ooawe DotaSet §) Name

%% If the last entry uses the last available space in the tables but no overflow occurs,
the zero bytes are omitted.

Figure 32. Data Set Enqueue Table (DSENQ)

INTERPRETER WCRK AREA (IWA)

|Description: The 2044-byte interpreter work area (IWA) (Figure 33) is obtained from

subpool zero by a GETMAIN macro instruction in the interpreter initialization module
(IEFVH1). The IWA contains information used by the interpreter routines; it is the area
in which job description tables are built before they are placed in the work queues.

Although most of the fields in the interpreter work area are self-explanatory, the
following require further description:

e Default Parameters: The PARM field of the EXEC statement in the reader procedure
contains parameters to be used when no explicit specification is made. These
parameters specify whether the installaticn requires a programmer's name or account
numker on each JOB statement, the priority to be assigned to a job if no priority has
keen specified, whether commands in the input stream should be processed (or

ignored), and the device, primary quantity, and secondary quantity to be allocated to
system output data sets.

e Switches A-J: These fields contain internal switches used for communicating status
information among the interpreter routines.

Appendix A: Tables and Work Areas 79

‘Switch K: This field contains the Priority Change Value for the CHAP macro

instruction.

Switch L: This field contains the Default Allocation level in MSGLEVEL.

Switch M: This field contains the Default JCL level in MSGLEVEL.

Switch N: This field contains the length of the fixed part of the message for
symkolic parameter substitution.

Switch X1: This field is set to X'"80' for a search of the DDNAME reference table or
to X'40' for SYSOUT.

Checkpoint/Restart Switch: This field contains switches that communicate
checkpoint/restart status information to the interpreter routines.

System Input Allocation Table: This area contains a list of pointers to the UCBs

corresponding to units available for allocation to system input data sets.

cueue Address Table: This area contains the addresses (in TTR form) of the next two
records assigned to the job's input queue entry, and the addresses (in TTR form) of
the first joblib SIOT, the first scan dictionary record, and the DD override table.

Input Stream Parameter List: This area describes the statement last encountered in

the input stream, and contains a pointer to the field currently being processed.

Procedure Library Parameter List: This area describes the statement last read from
the procedure library, and contains a pointer to the field currently being processed.

Procedure Library Merge Control Data: This area contains information used in merging
statements from the input stream with statements from the procedure library. The
information includes the statement names, the step names, and the names of the
previous and next procedure steps.

Mapping Macro Instruction: IEFVMIWA.

80

0)

®)

(10)

24 (18)

56 (38)

80 (50)

88 (58)

120 (78)

184 (88)

192 (CO)
200 (C8)
208

(DO)

216 (D8)

e Figure

Appendix A: Tables and Work Areas

4 4 A
IWA Length IWA Identifier
1 3 4
Exit Switches Entry Point of FIND NEL Address
4 4
Input Stream DCB Address Procedure Library DCB Address
L Default Parameters 28::
~ 24
Unique Data Set Name Qualifier =
2 1 1
£ . . Maximum Default
~ Unique Name Serial Number Jobclass Msgclass
4 1 1 1 1
Queue Manager Entry Point Switch A Switch B Switch C Switch D
Task
Information
1 1 26 (Also S
Switch E Switch F Pai? 3)ee
-~
Offsets to Table Areas
.J.: 68
T
-~ System Input Allocation Table
8
Unit Type For CPO Step 1/O Table
4 4
Master Scheduler Register Save Area Address Spool DCB Address
) 4
Exit List Accounting Entry Address Blocked PROCLIB Buffer Address
N 2 N f Blocked 2
o. of Blocke
Job Management Record Address Reserved PROCLIB Records
Y
! Checkpoint ! !
Switch G Switch H Restart Switch J
Switch (continued)
33. Interpreter Work Area (IWA) (Part 1 of 3)

81

(continued) 220 (DC) 36
224 (EO
(€0) .".L_, Queue Manager Parameter Area (QMPA)
256 (100)
Queue Address Table 28:.
—T_
Input Stream Parameter List
288 (120) 8
Input Stream Parameter List (continued) Procedure Library Statement Parameter List
296 (128) 8 48
Procedure Library Statement Parameter List (continued)
it
304 (130
(130 Procedure Library Merge Control Data
:E 4
Address of QMPA
352 (160) 7 7
Reserved Address of PROC Referback Dictionary
Job
360 (168) 4 4 Information
Address of PGM Referback Dictionary Address of DSENQ Table
368 (170) 176
’:[" Referback Dictionary (Input) :[:
544 220) [78],
T Referback Dictionary (Search) T
720 200) [78]
+ Job Control Table (JCT) ~
896 (380
(380) Y e of Job | Rollin Checkpoint | 4
No. of SCTs e Rollout Restart Symbolic Parameter Address
Lib SIOTs A
Parameter Switches
904 (388) 8
Calling Stepname for Checkpoint/Restart
912 (390) 8
Procedure Stepname for Checkpoint/Restart
920 (398) 4 v 4
SYSCHK DD Statement Address Job Statement Region Size
928 (3A0) 4 3 1
Reserved Queue Address of VOLT VOLT Length
936 (3A8) 1 2
VOLT Length Dedicated R d
(continued) Work Files eserve
(continued)
Figure 33. Interpreter Work Area (IWA) (Part 2 of 3)

82°

944 (380)

1024 (400)

1200 (480)
1376 (560)

1552 (610)

1728 (6C0)

1736 (6C8)

1768 (6E8)

1776 (6F0)

1792 (700)

1968 (7B0)

1976 (788)

1984 (7C0)

1992 (7C8)
2000

(700)

2008 (7D8)

2024 (7E8)

2032 (7F0)

2040 (7F8)

e Figure

(continued) 940 (3AC) | 2 78 A
DD Interna .
Nomber Switch Xl
DD Name Reference Table
:; 4
Reserved for Double Word Alignment
=~ Step Control Table (SCT) ‘7":]:
L 176J__ Step
T System Message Block (SMB) T Information
L Data Set Name Table (DSNAME) 1761
T T
l 174 J_
~ Volume Serial Table (VOLT) ~
4 4
Saved Verb Statement Address Track Stack Work Space
32
a‘: Reserved = v
1 Control and ! 2 20 A
Scan Switches | Scan Joint Return Codes Reserved
Switches
- ~
176
= ntermediate Text Buffer =
aL I d Text Buff ‘J’
4 4
Text Begin Address Text Key Address
4 4
Text Number Address Text Length Address
Statement
4 2 2 Information
Text End Address Current Level Last Level
4 4
Current Register Save Area Control Routine Work Area
4 4
Address of DCB Reserved
4 12
SYSIN Address during Rollout
1’
.-F Reserved
Y
8 A
Reserved
2 1 1 1 1 2
Task
Reserved Switch K Switch L Switch M Switch N MCS Command Authority | e
7 2
MCS Pointer to Console 1D Reserved
33. Interpreter Work Area (IWA) (Part 3 of 3)

Appendix A: Tables and Work Areas

83

JOB CCNTRCL TABLE (JCT)

Description: The job control table (JCT) (Figure 34) is created in the interpreter work
area by the job statement processor routine of the interpreter. It contains information
from the JCB statement, job status information, and pointers to other tables in the job's
input queue entry. When the interpreter has processed all steps of a job, the JCT is
written into the appropriate input queue according to priority; it is read back into main
storage by the initiator job selection and job delete routines.

Although most of the fields in the job control table are self-explanatory, the
following require further description:

e Job Status Indicators: The sixth byte of the JCT indicates the status of the job as
shown below:

Bit Setting Meaning
A JOBLIB DD statement is included with the job
Job flush
Job step canceled by condition codes
Step flush
JCT ABEND
Job failed
Job includes a cataloged procedure
Job is a "no setup" job

0
1
2
3
4
5
6
7

N

e Checkpoint/Rescart Indicators: This two byte field indicates the checkpoint/restart
status as shown below:

Byte 1
Bit Setting Meaning
0 1 Warm start
1 Not used by MFT
2 Not used
3 1 Checkpoint taken for this step
4 1 Intra-step checkpoints/restart to be done
5 1 Step restart to be done
6-7 0 Must be set to zero
Byte 2
Bit Setting Meaning
0 1 SYSCHK DD statement is included with the job
1 1 RD keyword parameter is not NC
2 1 No restart is to be done
3 1 No checkpoints are to be taken
4 1 Do restart if necessary
5-6 Not used
7 1 DSDR processing has not successfully ended

e SYSOUT Classes: The first 36 bits of the five-byte field are used to indicate the
system output classes that contain data. The four remaining bits are reserved.

Mapping Macro Instruction: IEFAJCTB

84

0@ 3 Internal 1| Job ! Message ! Message
Address in Queue of JCT Table ID = 00{ Job Serial | Status Class Level and
Number Indicators Job Priority
8(8) 8
Job Name
16 (10) 8
Teleprocessing Terminal Name
24 (18) 3 1 1
Address in Queue of GDG
Address in Queue of PDQ Reserved Bias Count Table Reserved
32 (20) 3 1 3 1
Address in Queue of First SCT Reserved Address in Queue of First SMB Reserved
40 (28) 3 1 3 1
Address in Queue of Job ACT Reserved Address in Queue of First DSB Reserved
48 (30) 3 1 2 2
Address in Queue of Last DSB Reserved Key of SMB Track First Job Condition Code
56 (3
) First job ! ! 28
Condition Reserved
Operator ﬁ:
Reserved for Seven Additional Job Condition Codes and Operators
~L
T Checkpoint/
Restart
Indicators
88 (58) 3] "
: Queuve
TTR of DSENQ Table Zeros Region Parameter Ident. No. of
(MVT Only) (MVT Only) (MVT Only) Steps
96 (60) 3| No. of Job 1 4
TTR of Compressed TIOT Tracks on Ch : :
(MVT Only) SYS1.JOBQE eckpoint Data Set Device Type
(MVT only)
104 (68
@ TTR of JFCB f ?] Number of 2lvel. of |]
o or umber o Checkpoint | R ed |.
Checkpoint Data Set Zeros Checkpoints Dat: s;:::m esery
112 (70
7 TR of SCT § ¢ Y tength ¢
T, R of SCT for Reserved of Check-
First Step to Run .
point ID
Checkpoint ldentification
17
136 (88)
Reserved
1
SYSOUT
Classes
152 (98) y)

SYSOUT Classes (Continued)

eFigure 34.

Job Control Table (JCT)

Appendix A: Tables and Work Areas

85

0(0) v,
Data Set Name J:
~ T
P
Element Name or Relative Generation Number
48 (30) 8 1 3
Element Name or Relative J/M +D/M
Generation Number (continued) Interface
56 (38)
Reserved
1 1 2 2
Label Type | Reserved File Sequence Number |Volume Sequence Number
72 (48) 8
Data Management Mask
80 (50) 3 3 1 1
Data Set Creation Date Data Set Expiration Date Indicator Indicator
Byte 1 Byte 2
88 (58) Number 1 Bufferi 1 2 £ Device ! 1
of TU h r{ng Buffer Length Orrox: Character- I-;ope' Reserved
Buffers echnique ptions istics ensity
96 (60) 2 2 1 1 2
Reserved Data Set Organization Record Option Maximum Block Size
Format Codes
104 (68) 1 1 2 2
. Number of | Number of Relative Location
Logical Record Length | Channel Master of Key in Logical RCD Reserved
Programs Index Tracks
112 (70)
Number of' Number of] 30
Reserved Overflow Volume
Tracks Serials ﬁ:
First Five Volume Serials
= ! 3
.Iile:rC.ngXh of Queue Address of First JFCBX
152 (98) 3 3 1
S .
Primary Quantity Ti;:e Secondary Quantity Indicator
Requested Byte 3
160 (AQ) 3 . 3 Relative Address 2
Directory Quantit Main Storage Address of of First Track
irectory Quantity . .
Split Cylinder JFCB to be Allocated
168 (A8) 3 3 1 ;
Main Storage Address A Data Record Lenath Volume Num:er of
of SUBALLOC JFCB verage Bata Record Leng Count | Tracks per
Cylinder
176 (BO)
Job File Control Block
0 3 1 9ﬂ'
Queue Address of Next JFCBX Reserved T
82
=4 15 Additional Volume Serials
AL
L od
96 (60)
[~ Reserved
176 (80)

Figure 35.

86

Job File Control Block Extension

Jok File Control Block (JFCB) and Extension (JFCBX)

JOB FILE CCNTROL BLOCK (JFCB) AND EXTENSION (JFCBX)

Description: A job file control block (JFCB) (Figure 35) is constructed in subpool zero
(from information in a DD statement) by the interpreter DD statement processor routine.
The JFCB is written into the job's input queue entry, and retrieved when a DCB with the
corresponding name is opened. The information in the JFCB, which describes the
characteristics of a data set, may be modified by the open routine.

A JFCB contains enough space to record five volume serials. If more than five volume
serials are specified, enough job file control block extensions (JFCBXs) to contain the
additional volume serials are constructed; each JFCBX can contain up to fifteen
additional volume serials.

Additional information on the contents of the JFCB and JFCBX may be found in the
publication, IBM System/360 Operating System: System Control Blocks, Form C28-6628.

Mapping Macro Instruction: IEFJFCBN

LIFE-OF-TASK (LOT) BLOCK

Description: The 348-byte life-of-task (LOT) block (Figure 36) is built in a main
storage area obtained from subpool 253. It stores information for scheduling functions,
and is used by system task control and initiators. It is created by the Job Select
module for initiating problem programs, and by system task control for initiating readers
and writers.

The LOT block contains the linkage control table (LCT), a two-level register save area
(REGSAVE), an input queue manager parameter area (QMGR1l), an output queue manager
rparameter area (QMGR2), the address of the ECB list, the address of the PIB, and the
address of the SPIL.

LINKAGE CONTROL TABLE (LCT)
Description: The linkage control table (LCT) (Figure 37) is built in a main storage area
obtained from subpool 253 by the initiator initialization routine. It is a
communications area used by the routines of the initiator.

Most of the fields in the LCT are self-explanatory; it should be noted, however, that
the job termination status bit is the low-order bit of the one-byte device features

field.

Mapping Macro Instruction: IEFALLCT

MASTER SCHEDULER RESIDENT DATA AREA

Description: The master scheduler resident data area (Figure 38), which is in the
nucleus area of main storage, contains information used by the queue initialization,
command scheduling, initiator, and I/0 device allocation routines. 1Its location is
stored in the CVTMSER field of the communication vector table.

Most of the fields in the master scheduler resident data area are self-explanatory;
those fields that require further exrlanation are described below:

e Cueue Formatting Switch: If the high-order bit of this field is on, it indicates
that the queue data set must be formatted.

e Transient Reader TTR: This field is used by the transient reader suspend routine to
store the address of the work queue data set where the reader information was placed
when the reader was suspended.

e DEFINE Control Information: If the high-order bit of this field is on, it is a
DEFINE operation; if off, it is IPL time. The second bit indicates that a list of
the partitions' sizes and job class(es) has been requested; the third bit indicates
that there is an adjacent partition check; the fourth bit is set when initialization
is complete to allow DEFINE commands to be accepted; the fifth bit is set on when the

Appendix A: Tables and Work Areas 87

operator has requested partition changes at IPL; the sixth bit indicates that a small
partition cannot terminate because of the DEFINE operation; the seventh bit indicates
that a DEFINE command has been issued during operatlon, the eighth bit indicates that
the system has storage protection.

e Status Flags: When set on, status flags indicate:
Bit Meaning
0 System Initialization in progress
1 DISPLAY JOBNAMES
2 Reserved
3 VARY/UNLOAD summary
4 Queue hold-release
5 DISPLAY ACTIVE processing
6-7 Reserved
0(0)
:]I: Linkage Control Table IOiL
104 (68) l 72
Register Save Area |
T T
176 (80) [721
po~ Register Save Area 2 T
248 (F8) 36
Input Queue Manager Parameter Area
36
284 (11C)
Qutput Queue Manager Parameter Area
320 (140) 8
Reserved
328 (148) 4 4
Address of ECB List Address of PIB
336 (150) 4
Address of SPIL

Fiqure 36. Life-of-Task (LOT) Block

88

0 (0) 1 3 4
Reserved Address of Job Step CSCB Address of 1/O Supervisor UCB Lookup Table
8(8) 4 1 3
TCB Address Device Linkor's Register Save Area Address
Features
16 (10) 4 4
JCT Address SCT Address
24 (18) y 7
Queue Address of SCT Allocate/IEFVPOST Communication Block Address
32 (20) 4 16
Error Code
Communciations Area
Address of 4
Register Save Area
and QMPA
56 (38) N ece 1 1 4
C t St .
Reserved HOLfsekeeping Ntijr:b';r €P| Action Code Address of Current SMB
Indicators
64 (40) 4 4
Counter for Assigning Unique Volume d
Serials to Passed Data Set Volumes Address of Messoge Class QMPA
72 (48) 4 2
Return Address to System Task Control Routine Address of Initiator CSCB
16
Timer Work Area
96 (60) 4 4
JOBLIB DCB Address Allocate/Terminate Parameter List Address

sFigure 37. Linkage Control Table (LCT)

e Iog Status Flags:

Bit Meaning
0 Log Data Set Sysout Scheduling
1 Log Threshold Reached

e MFT Switches: When set on, flags indicate:

Bit Meaning

Transient Reader Active

Transient Reader in Core

Pending START cormand for transient reader
MFT Environment switch

System Assigned Reader is Running

Core storage is in System

U’I-DUJN'—‘OI

Appendix A: Tables and Work Areas

89

e Initialization Switches: When set on, flags indicate:

o
[
o+

Meaning
IPL switch

SYSOUT IPL

SYSOUT job start

Reserved

34 Security

Queue initialized

Procedure catalog initialized

w
I N=O
=~

~Nou;

e Pending Flags: When set on, flags indicate:

Bit Meaning

0 IPL Date

1 Region busy

2 Command move completed

3 Interpreter command return

4 System Input control purge request

5 System output control purge request

6 Blank start pending (REQ=1, START BLANK=0)

7 Console command suppressed by WIO/WIOR Exit Routine

e ECB Flags: When set on, flags indicate:

B

t+

Meaning

External interrupt

WTO or WTOR

WTL

Console Attention key hit

System Input

System Output

Master command routine

Summary bit, Vary UCB scan required

NOUEWNRO|N

e Resident Switches: When set on, switches indicated:

Bit Meaning
0 IPL has been completed
1 WTO or WTOR pending
2 Console usage, Primary or alternate
3 Log purge request
4 Reader has reached end of file, or Start reader
5 New reader pending
6 New writer pending
New writer pending (Modify)
7 Job notification (1=yes)

e Fetch Flags: When set on, flags indicate.

Bit Meaning

Named Fetch

Defer current command execution sequence
TCB Tree Trace Fetch (Locate)

Auxiliary FETCH given

Reply bit to Request attention
Pseudo-SYSOUT flag

DISPLAY STATUS

Queue hold-release

qmwcwnﬂ-\o'

e Mapping Macro Instruction: IEEBASEB.

920

o O 4 Group Queve P)
. roup Queue Pointer
Address of CSCB Chain (MVT only)
8 @®) 4 4
Master Scheduler ECB Communications Task IPL ECB
16 (10) 4 4
Address of Job Queue UCB Address of PROCLIB UCB
24 18 1 3 4
(8 FQueuet. Address of Set Auto Add fs Log C I Tabl
or.mot ing Command Parameter List ress of System Log Control Table
Switch
32 (20) 1 Number 1 2 2 2
Status of Tracks | c Initiator Minimum Initiator
Flags in Initiator nterprefer Counter Protection Key Mask Partition Size
Stack
40 (28) . 2 1 1 4
Minimum Problem Log Status Re d
Program Partition Size Flags serve System Log ECB
48 (30) 46,J
Reserved it
ID of console] !
that entered Reserved
DEFINE
96 (60) 4 Subpool 255 Boundary Box 4
Core Storage Low Boundary _—— e e e e e - - - — —1
First FQE Pointer 4
104 (68) 4 2
Low Boundary Pointer High Boundary Pointer
112 (70) 4 MET 1 3
Transient Reader, Pending CSCB Pointer Switches Transient Reader CSCB Pointer MFT
Area
120 (78) 4 4
Transient Reader TTR DEFINE Control Information
128 (80) 4 2
Size of Scheduler Address of ECB Chain for Readers
eFigure 38. Master Scheduler Resident Data Area (Part 1 of 2)

Appendix A: Tables and Work Areas

91

136 (88 1 1 1 1 . 1 b
(®8) Initialization gCP Pending ECB Ees.xdehnf Fetch Command
Switch ystem Flags Flags witches Flags Verb
Switches Status Flags
144 (90) 8 Variable
Command Verb (cont.) Communication
Field
152 (98) 8 Msg.
Variable Communication Field (cont.) Generation
Control
160 (A0) Point Charact 4
ointer to Character C
Before List Master ECB Al?er::
168 (A8) 4
Pomfer. to ECB in SJQ Entry of ECB for Allocation
Job Using Console
176 (BO) 4
Pointer to Pointer to
Primary UCB Alternate UCB
184 (88) 4
Pointer to Pointer to Second Highest
Pseudo-Disable Switch Priority Problem Program TCB (MFT)
192 (C0) 4
Pointer to Highest Priority
Problem Program TCB (MFT)
Figure 38. Master Scheduler Resident Data Area (Part 2 of 2)

PARTITION INFORMATION BLOCK

field at displacement 124 (decimal) of the task control block (TCB).

the following require further description:

92

ECB Address:
partition is made quiescent for partition redefinition.

"No Work"™

ECB for the Initiator:

Its location is stored in the TCBPIB

Contains the address of ECB to be posted by job selection when the

The 40-kyte partition information block (PIB) (Figure 39) contains information used by
the command processing and schéduler routines.

Although most of the fields in the partition information block are self-explanatory,

This ECB is posted by small partitions requesting

service, the queue manager when a job has been enqueued, and by the DEFINE and START
command routines.

Status A Information:

Bit

0
1
2
3
n
5
6
7

Setting Meaning

Stop initiator
START INIT issued
Partition active
Pending command

control

RRR RRRPRRO

Transient reader operating
Partition is to be terminated by IEFSD599 when it next gets

Partition is involved in redefinition
System—-assigned transient reader operating in this partition
Problem program is running

e Status B Information:

0
1
2
3
4

e SPIL Address:

Setting Meaning
1 Logical tracks added for initiator
1 LOT block exits
1 SPIL has been created
1 Reserved
1 Unending task present in partition

The small partition information list (SPIL) is applicable to large

partitions only.

e Job Class Codes: Contains one to three codes for the partition, arranged in

descending numerical order, i.e., GRP3 is in the second byte of the field, followed
ky GRP2 and GRP1. The first byte contains the protection key for the partition, if
the system has the storage protection feature.

e Internal Queue Status Bits:

Bit Setting Meaning
0 1 A large partition in which the DSDR processing step for a
small partition (less than 12K) is to be executed
1 1 A restart reader has been started in place of a user
assigned reader
2 1 A DEFINE command has been received and the partition is
processing jobs on its internal queue.
3-7 Reserved
0 (0) 4
CSCB Address of Pending Command
4(4) 4
ECB Address
8 (8) 1
"No Work" ECB for the Initiator
12 (C) 1 3
Status Bits = A Address of Current Job Step CSCB
16 (10) 1 3
Status Bits - B SPIL Address
20 (14) 4
CSCB Address of Current Task in Partition
24 (18) 1 3
Protection Key Job Class Codes
28 (1C) 7
CSCB Address of Suspended Reader
32 (20) 4
Reserved
36 (24) 1 3
Isnfernal.Queue Address of Internal Queue of Job Names to be Restarted
tatus Bits

Figure 39. Partition Information Block (PIB)

Appendix A: Tables and Work Areas 93

SMALL PARTITION INFORMATION LIST (SPIL)

Description: The 32-byte small partition information list (SPIL) (Figure 40) is a
storage area for information pertaining to small partition scheduling. It is built in
main storage obtained from subpool 0. The address of the ECBs provides for information
to be passed between the small partition and the large partition that is performing
initiation, allocation, or termination functions for the small partition.

Most of the fields in the small partition information block are self explanatory,
however, the status bits field is described below.

Bits 0 and 1 contain ones if a START writer command has been entered.
Bit 2 contains a one if a SPIL pointer has been stored in the PIB.
Bit 3 contains a one if a problem program has requested termination.

Bits 0-7 contain zeros if a START INIT command was entered.

0 (0) 4
(ECBA)
Event Control Block

4(4) 4
(ECBB)
Event Control Block

8 (8) 4
(ECBC)
Event Control Block

12 (C) 7
Address of Small Partition TCB

16 (10) ; 3

Status Bits Reserved

20 (14) 7
Address of Allocate Parameter List (In Large Partition) if a Problem Program;
TIOT, if a Reader or Writer

24 (18) 4
Address of CSCB for Writer

28 (1C) 2
Address of ECB List for Dequeue

Figure 40. Small Partition Information List (SPIL)

STEP CONTRCL TABLE (SCT)

Description: The step control table (SCT) (Figure 41), is used to pass control
information to the DD routine of the interpreter and to the initiator routines, which
also contribute information to the table. This table is created and initialized by the
execute statement processor routine of the interpreter when an EXEC statement is read.
One SCT is created for each step of a job.

If the step is part of a previously cataloged procedure, the name of the step that
called the procedure, if any, is entered. The following variable-content and indicator
fields are included in the table:

BYTE 4: Internal Step Status Indicators:

Bit Setting Meaning
0 1 Step can be rolled out
1 1 Roll step out if necessary
2 1 Do not restart stegp
3 1 Do not take a checkpoint

94

Restart if necessary
Graphics - alter protect key
Graphics - ABEND exit

Step failed

SNomE
(R

PARM Count or Step Status Code:

a. Interpreter: The number of characters specified in the PARM parameter of the
EXEC statement is placed in this entry.

b. Initiator: This table entry contains the condition code returned by the
processing program.

BYTE 67: Step Type Indicators:

Bit Setting Meaning
0 1 EXEC statement contains PGM=*.stepname.ddname
1 1 SYSIN is specified as DD¥
2 1 SYSOUT is specified
3 1 JFCB housekeeping is complete

4-7 Resexrved

BYTE 104: Step Status

Bit Setting Meaning

0-1 Reserved
2 1 SCTMCVOL
3 " Reserved
u 1 SCTSTPLB
5-7 Reserved

Mapping Macro Instruction: IEFASCTB

STEP INPUT/OUTPUT TABLE (SIOT)

Description: The Step Input/Output Table (SIOT) (Figure 42), makes DD statement
available to the initiator for use as a source of information for the TIOT and for
providing DD information to allocation and disposition routines. When a DD statement is
read, the interpreter creates a new SIOT and places the DD information into it. The
individual bits of the disposition byte and of indicator bytes 56 through 59 in the SIOT
are set to one to indicate the following conditions:

BYTE 55: Scheduler Disposition

to

it Meaning

Reserved

Retain volume
Private volume
Pass data set
Keep data set
Delete data set
Catalog data set
Uncatalog data set

NIO\Lﬂ:wNHOI

BYTE 56: Indicator Byte Number 1

o
e
(a4

Meaning
Dummy data set

SYSIN data set
Split (primary)
Split (secondary)
Suballocate
Parallel mount
Unit affinity
Unit separation

\)O\U\le\)l—‘ol

Appendix A: Tables and Work Areas 95

0 (0)
8 (8)
16 (10)
24 (18)
32 (20)
40 (28)
4 (30)
56 (38)
64 (40)
72 (48)
80 (50)
88 (58)
96 (60)
104 (68)
112 (70)
120 (78)
160 (A0)
168 (A8)
176 (BO)
sFigure

96

Table ID ! Internal ! 3
Queue Address of SCT ©2) Step Status Maximum Step Running Time
Indicators
PARM C S S z L h of All Work z 8 !
ount or Step Status ength o ocate Worl .
Code at Termination Area, or Number of S1OTs Queue Address of First SIOT Entry Reserved
3 1 , 3 1
Queue Address of Allocate Work Area Reserved Queue Address of Next SCT Reserved
3 1 1
Queue Address of First SMB Reserved Queue Address of Last SMB R J
for Next Step eserve for This Step eserve
Q Add f First ACT Ent 8] 3]
veve ress of First niry Reserved Queve Address of VOLT Reserved
for This Step
3 1
Add f D Tabl
fQo;J?rquis Scfie;;ess of Dsname Table Reserved Name of Step That Called Procedure
8
Name of Step That Called Procedure (Continued) Step Name
8 2 2
Relative Poi
Step Name (Continued) sighﬁﬁrﬁ: f:rctro Length of VOLT
Number of | Number of ! Number of ! Step Type ! 4
SIOTs in Setup JFCBs to Indicators Queue Address of SCTX
This Step Messages Allocate
1 3 1 N 1 3
Hierarchy 0 ierarchy
X100' Region Address X'y Region Address
8
Reserved
2 2 2 . H 2
Hierarchy 0 . Hierarchy 1 R g IS)f.ep .?IsPGtChmg
Region Size Region Size eserve ority
(MVT only)
4 Qi Add f PGM = * 4
veue ress o =%,
Step SYSIN count for SMF stepname, ddname SIOT
Extension 1 3 4
of Internal Queue Address of
Step Status the Step TIOT Program Name
Indicators
Length (in B f z
th (i t
Program Name (Continued) Des:gme(ll'r;bl);efgrc;his Step First Step Condition Code
First Step 3 36
Condition Queue Address of First Condition SCT
Operator -

))

Second Through Seventh Step Condition Entries

(

2 Eich 1 3 2
ighth Step
Eighth Step Condition Code Condition Queue Address of Eighth Condition SCT Reserved
Operator
3| Number of 1 1 ' . 3
Queue Address of the First Message Step Queue Address of
DSB in Message Class Class DSBs Status Last Legitimate SMB

for this Step

41.

Step Control Table (SCT)

BYTE 57: Indicator Byte Number 2

o]
..h
ct

Meaning
Channel affinity

Channel separation
Volume affinity
JOBLIB DD statement
Unlabeled (no labels)
Pool DD statement
Defer mounting
Received data set

\lO‘U’IRwNHOI

BYTE 58: Indicator Byte Number 3

o

\)OU#UNHO:

Meaning

Volume reference

SYSIN expected (procedures only)

Allocate work table volume block indicator
Volume reference in step

SYSOUT was specified

NEW data set

MOD data set

OLD or SHR data set

BYTE 59: Indicator Byte Number 4

Meaning

Set by reader to indicate GDG single

Step processed

Intra-step volume affinity

Data set is in passed data set queue (PDQ)
1 = old or modified data set

0 = new data set

w
N oW & Ol
ct

BYTE 92: Conditional Disposition

Bit Meaning

0-3 Reserved

Keep data set
Delete data set
Catalog data set
Uncatalog data set

~SNoomE

Mapping Macro Instruction: IEFASIOT

TASK INPUT/CUTPUT TABLE (TIOT)

Description: The Task Input/Output Table (TIOT) (Figure 43) provides data management
routines with the addresses of the JFCBs and devices allocated to the data sets in a job
step or system task. It is constructed by the I/0 device allocation routine in main
storage obtained from subpool zero. The allocation routine also places a copy of the
TIOT on the appropriate job class queue with the other tables for the job step. After
the step completes processing, the TIOT is brought in from the job queue and placed in
the upper portion of the partition. The ster is then terminated, and the TIOT is
deleted.

For further information on the TIOT, see IBM System/360 Operating System: System
Control Blocks, Form C28-6628.

Appendix A: Tables and Work Areas 97

0 (0)

3 1
Queue Address of SIOT Table ID
4(4) g
DD Name
12 (C) 3
Channel Separation and Affinity
20 (14) 8
Unit Separation and Affinity
28 (1C) 3 1 3 1
Queue Address of Next SIOT Reserved Queue Address of JFCB Reserved
36 (24) 3 1 1
Queve Address of SIOT R Queue Address of SIQT System d
for VOLREF or SUBALLOC eserved Output/Dependency Block Reserve
44 (2C) 3 " 2] 2
\l;lulmber cff Relative Painter to
Queue Address of DD Name Table Reserved v((n)tr.lr_\es in Volume Table Entry
52 (34) 1 1 1 ' 1 4
Internal Nu'mber of Volume Dispositi Indicator Byt
DD Number |Units for Count isposition ndicator Bytes
This Data Set
60 (3C) 8
Unit Type
68 (44) 8
System Qutput Program Name
76 (4C) 4l e | 1 2
ystem DD Stat #
System Output Form Number Qutput DUP“:aznen Reserved
Class Number
84 (54) 4 4
Queue Address of DSB for this Data Set Queue Address of Next DSB
92 (5C) 1 3 26
Conditional TTF of SIOT
Disposition being passed L
i d
o~ Reserved
& NAME from DSNAME =
for Dedicated Work Files
124 (7€) 8)
& NAME from DSNAME = for Dedicated Work Files
(Continued)
132 (84) o~
DCB Reference Name
L
ﬂv

eFigure 42.

98

Step Input/Output Table (SIOT)

24 (18)

32 (20)

40 (28)

8
Job Name
8
Step Name
8
Name of Step Calling Procedure, or Zeros
1 1 2 4
Entry Status Allocation
Length Bits Data DD Name
4 Add inQ ; 3 Stat 1 First
. ress in Queuve o atus
DD
DD Name (continyed) JFCB or SIOT Bits Entry
1 3 1 3 [}
Status Address of UCB Status Address of UCB Device
Bits or Link Value Bits or Link Value Entries
MW

Zeros ~ End of TIOT

Figure 43.

Task Input/Output Table (TIOT)

Appendix A: Tables and Work Areas

29

Appendix B: MFT Modules

This appendix contains a table of unique MFT modules, a group of tables showing the
modules of each major component, a list matching entry point and control section names
with source module names, and a brief description of each of the modules used by MFT. If
you are looking for a specific module and know cnly the major component and routine name,
use Tables 3-14 which give a cross-reference to the source module. The source modules
are in turn listed alphanumerically for easy access. If you know the source module name,
go directly to the module descriptions.

Unique MFT Modules

Table 2 lists all modules that are unique to MFI. This table is organized alphabetically
by major component.

Table 2. MFT Modules

) h
I |
| ABEND: I/0 Device Allocation: Queue .Management: |
I |
| IEAGTMOS IEFSD551 IEFSD514 |
| IEAGTMO6 IEFSD552 IEFSD572 |
| IEAGTMOS8 IEFSD557 |
| IEAGTMO09 |
| |
| Communications Task: Master Scheduler Task: |
| |
| IEECIR4S IEECIRS50 |
| IEEVWTOR IEEDFIN1 |
I IEEDFIN2 I
| Initiator: IEEDFIN3 Reader/Interpreter: |
| IEEDFING4 |
| IEFSD510 IEEDFINS IEFSD530 |
| IEFSD511 IEEDFING IEFSD531 |
| IEFSD512 IEEDFIN7 IEFSD532 |
| IEFSD513 IEEDFINS IEFSD533 |
| IEFSD515 IEEDFINY9 IEFSD536 |
| IEFSD516 IEESD561 IEFSD537 |
| IEFSD517 IEESD562 |
| IEFSD518 IEESD563 System Task Control: |
| IEFSD519 IEESD564 |
I IEFSD540 IEESD565 IEESD590 |
| IEFSD541 IEESD566 IEESD591 |
| IEFSD553 IEESD571 IEESD592 |
| IEFSD554 IEFSD569 IEFSD534 |
| IEFSD555 IEFSD535 |
| IEFSD556 Nucleus: IEFSD587 |
| IEFSD558 IEFSD588 |
| IEFSD559 IEESD568 |
| IEFSD589 IEFSD567 |
| IEFSD598 |
| IEFSD599 |
| |
L J

100

Major Component Modules

Tables 3 through 14 list all MFT modules according to major component. The tables appear
in alphabetical order by component name. Within each component, routine names are listed
alphabetically with a cross-reference to the module name.

Appendix B: MFT Modules 101

Table 3. ABEND Modules Table 6. I/0 Device Allocation Modules

r T 1 r T
Source | | | Source
Routine Module | | Routine Module
— + i -
| ABDUMP | IEAATMO4 | | Allocation Control IEFXCSSS
Indicative Dump IEAATMO03 | || Allocation Entry IEFSD21¢Q
Initialization IEAGTMOO | | Allocation Exit. IEFSDU41Q
Input/Output Purge | IEAGTIMO6 | | Allocation Recovery Messages IEFSJIMSG
| Linkage IEAATMO1 | | Allocation Recovery IEFXJIMP
| Main Storage Allocation IEAATMO2 | | Automatic Volume Recognition | IEFXVO001
Termination IEAGTMO5 | | Automatic Volume Recognition |
DAR Core Image Dump | IEAGTMOS8 | | Messages | IEFVMSG
DAR Task Reinstatement | IEAGTMO9 | | Automatic Volume Recognition
L L 4 | Non-standard Label Routine IEFXVNSL
| DADSM Error Recovery IEFXT003
| Decision Allocation | IEFS5000
| Demand Allocation | IEFWA000
Table 4. Communication Task Modules | Device Strikeout | IEFX300A
r T 1 | EXEC Statement Condition
Console Device Processor | IEECVPM | | Code Processor IEFVKIMP
Console Interrupt | IEECVCRA | | EXEC Statement Condition |
| External Interrupt | IEECVCRX | | Code Processor Messages | IEFVRMSG
| Initialization Routine | IEECVCTI | | External Action Messages IEFWD0O1
| Purge RQE | IEECVED2 | | External Action TEFWD00O
Router | IEECVCTIR | | Interface IEFSD557
Wait | IEECVCTW | | JFCB Housekeeping Control |
Write-to-Operator | IEECVWTO | | and Allocate Processing | IEFVMLS1
Write-to-Operator-wWith-Reply IEEVWIOR | | JFCB Housekeeping Error Mes- |
EXCP OPEN/CLOSE IEECVOC | | sage Processing IEFVNLS6
MCS Comm Task Router IEECMAWR | | JFCB Housekeeping Error
MCS Console Switch | IEECMCSW | | Messages IEFVMLS7
| MCS Device Interface IEECMDSV | | JFCB Housekeeping Fetch DCB
| MCS 1052 Device Support IEECMPMX | | Processing IEFVM2LS
| MCS 140371443 Device Support IEECMPMP | | JFCB Housekeeping GDG All |
| MCS 2540 Device Support IEECMPMC | | Processing | IEFVM4LS
| MCS 2740 Device Support IEEC2740 | | JFCB Housekeeping GDG Single |
| MCsS Delete Cperator Message | IEECMDOM | | Processing | IEFVM3LS
| MCS WTC/WTICR Processor (SVC | | JFCB Housekeeping Patterning |
| 35 IEECMWSV | | DscB | IEFVM5LS
| WLFCR Purge (End of Job) IEAGTMO7 | | JFCB Housekeeping Unique |
L 1 4 | Volume ID | IEFVM76
| Mount Control-Volume Routine | IEFMCVCL
| Linkage Module | IEFWCFAK
Table 5. Initiator Modules | Linkage Module | IEFWDFA
r T 1 | Linkage Module | IEFWSWIN
| Alternate Step Deletion | IEFSD516 | | Linkage Module | TEFXJFAK
| Data Set Integrity | IEFSD541 | | Linkage to JFCB Housekeeping | IEFVMMS1
| Dequeue by Jobname Interface | IEFSD519 | | Linkage to JFCB Housekeeping | IEFVMFAK
| ENQ/DEC Purge | IEFSD598 | | Linkage to IEFXJIMP | IEFSD551
| Job Deletion | IEFSD517 | | Linkage to IEFXJIMP | TEFSD552
| Job Initiation | IEFSD511 | | Linkage to IEFXV001 | IEFAVFAK
| Jok Selection | IEFSD510 | | Linkage to Mount Control |
| Jok Suspension | IEFSD168 | | Volume | IEFCVFAK
| Linkage to IEFSD510 | IEFSD555 | | Message Module | IEFWSTRT
| Linkage to IEFSD511 | IEFSD558 | | Message Module | IEFXAMSG
| Linkage to IEFSD512 | IEFSD553 | | Non-Recovery Error | IEFXKIMP
| Linkage to IEFSD515 | IEFSD559 | | Non-Recovery Error Messages | IEFXKMSG
| Linkage to IEFSD516 | IEFSD554 | | Separation Strikeout | IEFXHO000
| Linkage to IEFSD534 | IEFSD589 | | Space Request | IEFXTOOD
| Linkage to IEFSD541 | IEFSD540 | | VARY Interface and TICT |
| Partition Recovery | IEFSD518 | | Compression | IEFXT002
| Problem Program Interface | IEFSD513 | | TIOT Construction | IEFWCIMP
| Set Problem Program State | IEFSD556 | | Unsolicited Device Interrupt |
| small Partition Module | IEFSD599 | | Handler | IEFVECST
| Step Deletion | IEFSD515 | | wait for Space Decision | IEFSD097
| Step Initiation | IEFSD512 | | wait for Unallocation | IEFSD195
L L J L 1

b e

102

Table 7. Interpreter Modules Table 8. Master Scheduler Modules
[T 1 r T 1
| | Source | | | Source
| Routine | Module | | Routine | Module
F + i k + 1
| Command Statement | IEFVEM | | DEFINE Command Final |
| CPO Allocation Subroutine | IEFVSD12 | | Processor | IEEDFIN9 |
| CPC | IEFVHG | | DEFINE Final Processor | IEEDFIN3
| Continuation Statement | IEFVBC | | DEFINE Initialization | IEEDFIN1
| DD* Statement Generator | IEFVHB | | DEFINE Keyword Scan | IEEDFIN7
DD Statement Processor	IEEFVDA		DEFINE Listing	IEEDFIN4
Data Set Name Table			DEFINE Message	IEEDFINS
Construction	IEFVDBSD		DEFINE Syntax Check and	
Dictionary Entry	IEFVGI		Router	IEEDFIN2
Dictionary Search	IEFVGS		DEFINE System	
End-of-File	IEFVHAA		Reinitialization	IEEDFIN8
EXEC Statement Processor	IEFVEA		DEFINE Time-Slice Syntax	
Get Parameter	IEFVGK		Check	IEEDFIN6
Get	IEFVEA		DISPLAY A	IEESD566
Housekeeping	IEFVHHB		Look-up Routine	IEEVRFRX
Initialization	IEFVH1		Queue Search	IEESD564
Initialization	IEFVH2		Queue Search Setup	IEESD563
Interface	IEFSD533		Service	IEESD565
Jok and Step Enqueue	IEFVHH		Syntax Check	IEESD562
Jok Statement Processor	IEFVHA		Time-Slice Syntax Check	IEEDFIN6
Jok Vvalidity Check	IEFVHEC		wWait/Router	IEECIR50
Linkage Module	IEFSD537		Resident Volume	
Message Module	IEFVGM1		Initialization	IEFPRES
Message Module	IEFVeM2		Message Module	IEFK1MSG
Message Module	IEFVEM3		System Log Initialization	IEEVLIN
Message Module	IEFVaM4		System Log Open Initializer	IEEVLIN2
Message Module	IEFVGMS		System Log Output Writer	IEEVLOUT
Message Module	IEFVGM6		System Log Dispatcher	IEEVIDSP
Message Module	IEFVGM7		System Log Wait Routine	IEEIWAIT
Message Module	IEFVGMS		System Log svC (svC 36)	IEEO0303F
Message Module	IEFVGM9		System Log SVC (SVC 36 -	
Message Module	IEFVGM10		second load)	TEEO403F
Message Module	IEFvGM11		DISPLAY CONSOLES	IEEXEDNA
Message Module	IEFVGM12		Master Scheduler Resident	
Message Module	IEFVGM13		Data Area	IEESD568
Message Module	IEFVeM14		Master Scheduler	
Message Module	IEFVGM15		Initialization	IEESD569
Message Module	IEFVGM1loe		User Dummy WIO/WTOR Exit	IEECVCTE
Message Module	IEFVGM17		Console Initialization	IEECVCTI
Message Module	IEFVGM18	L 1 4		
Message Module	IEFVGM70			
Message Module	IEFVGM78	Table 9. Queue Management Modules		
Message Processing	IEFVGM	r v 1		
Null Statement	IEFVHL		Assign	IEFCASGC
Operator Message	IEFSD536		Assign/Start	IEFQAGST
Post-Scan	IEFVHF		Branch	IEFCMLK1
Pre-Scan Preparation	IEFVHEB		Control	IEFCBVMS
Queue Management Interface	IEFVHQ		Delete	IEFCDELQ
Router	IEFVHE		Dequeue	IEFCMDQQC
Scan	IEFVFA		Dequeue by Jobname	IEFLCCDQ
SCD Construction	IEFVSD13		Dummy	IEFCMDUM
Symbolic Parameter			Enqueue	IEFCMNQQ
Processing	IEFVEFB		Interpreter/Queue Manager	
Termination	IEFVEN		Interlock	IEFSD572
Test and Store	IEFVGT		Message Module	IEFSD311
Transient Reader Restore	IEFSD531		Queue Formatting	IEFORMAT
Transient Reader Suspend	IEFSD530		Queue Initialization	IEFSD055
Transient Reader Suspend			Queue Manager Table Breakup	IEFSD514
Tests	IEFSD532		Read/Write	IEFCMRAW
Vary Identification	IEFVHCB		Resident Main Storage	
L 1 4	Reservation	IEFPRESD		
Unchain	IEFCMUNC			
L 1 . 1
Appendix B: MFT Modules 103

Takle 10. SVC 34 Modules Table 12. System Restart Modules

T T 1 I T 1

| | Source | | | Source |

| Routine | Module | | Routine | Module |

L i 4 L (] J

r T j 1 r T 1

| CSCB Creation | IEEO0803D | | Delete | IEFSD303 |

| CSCB Marking | IEE0703D | | Initialization | IEFSD300 |

| DEFINE, MOUNT, CANCEL | IEESD571 | | Jobnames Table | IEFSD302 |

| HALT | IEE1403D | | Linkage Module | IEF300SD |

| Message Assemkly | IEE0503D | | Linkage Module | IEF304SD |

| Message Assembly | IEE2103D | | Message Module | IEFSD312 |

| Reply Processor | IEE1203D | | Purge Queue Construction | IEFSD301 |

| Router | IEEQO403D | | Scratch Data Sets | IEFSD304 |

| SET Command Handler | IEE0903D | | Scratch Data Sets | IEFSD308 |

| SET Command | IEE0603D | | TTR and NN to MBBCCHHR | |

| START and STOP INIT | IEESDS61 | | Conversion | IEFSD310 |

| Translator/Chain Manipulator | IEE0303D | L 4 4

| VARY and UNLCAD | IEE1103D |

| MCS Reply Processor | IEE1AQ03D |

| MCS Reply Messages | IEE1BO3D |

| RJE Commands | IEE1503D |

| LOG and WRITELOG Routine | IEE1603D |

| VARY ONGFX/CFFGFX Handler | IEE1703D | Table 13. System Task Control Modules

| System Management Facilities | IEE2303D | r T 1

| MODE Command Handler | IEE2603D | | Allocation Interface | IEEVACTL |

| DISPLAY R Handler | IEE2903D | | Internal JCL Reader | IEEVICLR |

| VARY and UNLOAD Processor II | IEE3103D | | Interpreter Control | IEEVRCTL |

| HARDCPY Message routine | IEE4103D | | JCL Edit | IEEVJCL |

| VARY Scan and Router | IEE4203D | | Linkage to IEFSD535 | IEFSD587 |

| VARY MSTCONS Handler | IEE4303D | | Linkage to IEE534SD | IEFSD588 |

| VARY Keyword Scan | IEE4403D | | Linker | IEESD591 |

| STCP Command Handler | IEE4503D | | Link-Table | IEEVLNKT |

| VARY CN/CFFLINE of Consoles | | | LPSW | IEFSD534 |

| and Message Handler | IEE4603D | | Message Writer | IEEVMSGL |

| VARY HARDCPY Handler | IEE4703D | | Message Writer | IEEVSMSG |

| VARY CCNSOLE Message routine | IEE4803D | | Message Writing | IEEVOMSG |

| VARY CONSOLE Handler | IEE4903D | | posT | IEESD592 |

L L 4 | Problem Program Mode | IEFSD535 |
| OMPA Builder | IEEVSMRA |
| START Syntax Check | IEEVSTAR |

Table 11. System Output Writer Modules | Termination Interface | IEEVTCTL |

r T . | write TIOT on Disk | IEESD590 |

| Class Name Setup | IEFSD081 | L L 4

| Command Processing | IEFSDO083 |

| Data Set Delete | IEFSD171 |

| Data Set Writer Interface | IEFSD070 |

| DSB Handler | IEFSDO085 |

| Initialization | IEFSD080 |

| Jok Separator | IEFSD094 |

| Linkage Module | IEF078sSD |

| Linkage Module | IEF079SD |

| Linkage Module | IEF082SD |

| Linkage Module | IEF083sD |

| Linker | IEFSD078 |

| Linkage to Cueue Manager | |

| Delete | IEFSD079 |

| Main Logic | IEFSD082 |

| Message Module | IEESD096 |

| Print Line | IEFSD095 |

| Put | IEFSD089 |

| SMB Handler | IEFSD086 |

| standard Writer | IEFSDO087 |

| Transition | IEFSD088 |

| wait | IEFSDO84 |

L i J

104

Table 14. Termination Modules

r

|
|
|
|
|
I
|
|
|
|
I
|
|
I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
(.

L 1
| Source |
Routine | Module |
4 4
T 1
Dlsp051t10n and Unallocation | |
Messages | IEFZGMSG |
VARY Interface and Disposi- | |
tion and Unallocation |
Messages IEFZHMSG |
Disposition and Unallocation | IEFZGJB1 |
Disposition and Unallocation IEFZGST1 |
DSB Processing IEFYTVMS
Job Statement Condition Code
Processor | IEFVJIIMP |
Jok Statement Condition Code | |
Processor Messages | IEFVIMSG |
Jok Termination Control IEFZAJB3
Jok Termination Exit IEFSD31Q
Message Blocking IEFYSVMS |
Message Module | IEFWTIERM
Message | IEFIDMPM
Restart Preparation | IEFRPREP |
Step Termination Control | TEFYNIMP |
Step Termination Control | |
Routine Messages | IEFYNMSG |
Step Termination Data Set | |
Driver | IEFYPJB3 |
Step Terminate Exit | IEFSD22Q |
Step Termination Messages | IEFYPMSG |
System Output Interface | IEFSDO017 |
Termination Entry | IEFSDu42Q |
User Accounting Routine | |
Linkage | IEFACTLK |
User Dummy Accounting | IEFACTFK |
1 J

Appendix B:

MFT Modules

105

Module Descriptions

This section contains a brief description of each of the modules used by MFT. An alpham-
eric list of the entry point and control section names, together with the name of the
module that contains them, is provided to allow cross-referencing between modules.
Modules are listed alphamerically by module name; associated with each module is a
descriptive name, which indicates the major component of the system to which the module
kelongs. Each module contains a brief statement of the purpose of the module. Where ap-
plicable, the description includes the names of the module's entry points, the names of
the modules to which it passes control, the major takles and work areas to which it
refers, its attributes, the names of the control sections it contains, and a page
reference to the detailed writeup in the Job Management section.

F T] I T 1
| Entry Point or | Module Name | | Entry Point or | |
| Control Section | | | control Section | Module Name |
[Name | L Name | |
e } i } 1
| GO] IEFSD515 | | IEESD592 | IEESD592 |
| IEAGENQ1 | IEAGENQ1 | | IEEVACTL | IEEVACTL

| IEAGENG2 | IEAGENQ2 | | IEEVICLR | IEEVICLR

| IEAQCT00 | IEE0903D | | IEEVJCL | IEEVJCL

| IEAOTIOL | IEAOTIOL | | IEEVLIN | IEEVLIN [
| IEEBAl | IEECVCRA | | IEEVLDSP | IEEVLDSF |
| IEEBC1PE IEECVCRX | IEEVLNKT | IEEVLNKT

! |

| IEECIR4S IEECVCTW | IEEVLOUT | IEEVLOUT

| IEECIR50 IEECIR50 IEEVMSG1 | IEEVMSG1

| IEECMDCM IEECMDOM IEEVOMSG | IEEVOMSG

| IEECNMDSV IEECMDSV IEEVRCIL | IEEVRCTL

| IEECMWRT IEECMAWR IEEVRFRX | IEEVRFRX

IEECMWSV IEECMWSV IEEVSMBA	IEEVSMBA		
IEECMWTL IEECMWTL IEEVSMSG	IEEVSMSG		
IEECVCTI IEECVCTI IEEVSTRT	IEEVSTAR		

| IEECVCTR IEECVCTR IEEVICTL | IEEVTCTL

| IEECVCTW IEECMAWR | | IEEXEDNA | IEEXEDNA

| IEECVPM | IEECVPM | IEE0303D | IEE0303D

| IEECVPRG | IEECVED2 IEE0303F | IEE0303F |
| IEECVXIT | IEECVCTE | IEEO403D | IEEO403D

| IEEDFIN1 | IEEFIN1 | IEEO403F | IEEO403F

I I | |

| IEEDFIN2 | IEEDFIN2 | IEEQ0503D | IEEO0503D

| IEEDFIN3 | IEEDFIN3 | IEE0603D | IEE0603D

IEEDFIN4	IEEDFINY	IEE0703D	IEEQO703D
IEEDFINS	IEEDFINS	IEE0803D	IEE0803D
IEEDFIN6	IEEDFING6	IEE1103D	IEE1103D
IEEDFIN7	IEEDFIN7 IEE1203D	IEE1203D	
IEEDFINS	IEEDFINS IEE1403D	IEE1403D	
I			I
IEEDFIN9	IEEDFIN9 IEE1603D	IEE1603D	
IEEDEART	IEEDFIN2 IEE1703D	IEE1703D	
IEELCGO2	IEELOGO2 IEE1A03D i IEE1A03D		
IEELWAIT	IEELWAIT IEE1B03D	IEE1B03D	
IEENMSER	IEESD568 IEE2103D	IEE2103D	
IEEPDISC	IEEPDISC IEE2303D	IEE2303D	
IEESD562	IEESD562 IEE2603D	IEE2603D	
I I			
IEESD563	IEESD563	IEE2903D	IEE2903D
IEESD564	IEESD564		IEE3103D
IEESD565	IEESD565		IEE4103D
IEESD566	IEESD566 IEE4203D	IEE4203D	
IEESD567	IEESD567 IEE4303D	IEE4303D	
IEESD590	IEESD590 IEE4403D	IEE4403D	
IEESD591	IEESD591		IEE4503D
L L J L 1 4

106

r T i r Rl

| Entry Point or | | Entry Point or |

| Control Section | Module Name | Control Section | Module Name
| Name | | | Name |

- 1 1 r +

| IEE4603D | IEE4603D | IEFSD082 | IEFSD082
| IEE4703D | IEE4703D | IEFSD083 | IEFSD083
| IEE4803D | IEE4803D | IEFSD083 | IEF083SD
| IEE4903D | IEE4903D | IEFSD084 | IEFSDO8UY
| | | IEFSD085 | IEFSD085
| IEE591SD | IEESD591 | | |

| IEFACTLK | IEFACTFK | | IEFSDO086 | IEFSD086
| IEFACTLK | IEFACTLK | | IEFSD087 | IEFSD087
| IEFACTRT | IEFACTRT | | IEFSD088 | IEFSD088
| IEFCVCI1 | IEFCVFAK | | IEFSDO089 | IEFSD089
| IEFCVCL1 | IEFMCVOL | | IEFSDO090 | IEFVSD13
| | | | |

| IEFCVCL2 | IEFCVFAK | | IEFSDO9Y | IEFSDO0O94
| IEFCVCL2 | IEFMCVOL | | IEFSD095 | IEFSD095
| IEFCVCL3 | IEFCVFAK | | IEFSD095 | IEFSD195
| IEFCVCL3 | IEFMCVOL | | IEFSD096 | IEFSD096
| IEFDPCST | IEFVPOST | | IEFSDO097 | IEFSD097
| | | | |

| IEFDSDRP | IEFDSDRP | | IEFSD300 | IEF300SD
| IEFICR | IEEVICIR | | IEFsD300 | IEFSD300
| IEFIDMEM IEFIDMPM | | IEFSD301 | IEFSD301
| IEFIRC IEFSD533 | | IEFSD302 | IEFSD302
| IEFJCB IEFQRESD | | IEFSD303 | IEFSD303
| | | |

| IEFKG | IEFSD532 | | IEFSD304 | IEFSD304
| IEFORMAT | IEFORMAT | | IEFSD304 | IEF304SD
| IEFFH2 IEFSD531 | | IEFSD305 | IEFSD305
| IEFCAGST IEFQAGST | | IEFSD308 | IEFSD308
| IEFCASGN | IEFQASGQ i | IEFsSD310 | IEFSD310
| | | | |

| IEFCASNM | IEFQASGQ | | IEFSD311 | IEFSD311
| IEFCDELE | IEFQDELQ | | IEFSD312 | IEFSD312
| IEFCMDQ2 | IEFQMDQQ | | IEFSD510 | IEFSD510
| IEFQMDUM | IEFQMDUM | | IEFSD511 | IEFSD511
| IEFQMNQ2 | IEFQMNQQ | | IEFSD512 | 1EFSD512
| | | | |

| IEFCMSSS | IEFQBVMS | | IEFSD512 | IEFSD553
| IEFgMsSS | IEFQMDUM | | IEFSD513 i IEFSD513
| IEFCMSSS | IEFOMLK1 | | IEFSD514 | IEFSD514
| IEFCMRAW | IEFOMRAW | | 1IEFsSD515 | IEFSD515
| IEFQMUNC | IEFQMUNQ | | IEFSD516 | IEFSD516
| | | | |

| IEFRCLN1 | IEFRCLN1 | | IEFSD517 | IEFSD517
| IEFRCLN2 | IEFRCLN2 | | IEFSD518 | IEFSD518
| IEFRPREP | IEFRPREP | | IEFSD519 | IEFSD519
| IEFRSTRT | IEFRSTRT | | IEFSDS530 | IEFSD530
| IEFSD012 | IEFVSD12 | | IEFSD531 | IEFSD531
| | | | |

| IEFSDO017 | IEFSD017 | | IEFSD534 | IEFSD534
| IEFSDO055 | IEFSD055 | | IEFSD535 | IEFSD535
| IEFSD068 | IEFSD168 | | IEFSD537 | IEFSD537
| IEFSD070 | IEFSDO70 | | IEFsSD540 | IEFSD540
| IEFSD071 | IEFSD171 | | IEFSD541 | IEFSD541
| | | | |

| IEFSD078 | IEFSDO078 | | IEFSD554 | IEFSDS554
| IEFSD078 | IEF078SD | | IEFSD555 | IEFSD555
| IEFSD079 | IEFSD079 | | IEFSD556 | IEFSD556
| IEFSDO079 | IEF079SD | | IEFSD557 | IEFSD557
| IEFSD080 | IEFSD080 | | IEFSD558 | IEFSD558
| | | | |

| IEFSD081 | IEFSD081 | | IEFSD559 | IEFSD559
| IEFSD082 | IEF082SD | | IEFSD567 | IEFSD567
L L J % L

Appendix B:

MFT Modules

— i e e e =

e e e e e e e o e e S —— ————————— — —— ——— ——— — — — ——— ———— —— {— —— ———— — ——— — — ——

107

I
: ggtiy Point or T| |
ntrol Secti
|L ors ction | Module Name % oY et o T
' 1 ' Control Section
l .. ' i o Module Name
| IEFSD572 I Teroneys }
IEFSD573 Teronors rzEvac
IEFSD587 Teroposs | rervie o
IEFSD588 Teronoas TsFuae e
IEFSD588 TEFVHEG szrvas
| IEFSD589 - e
| IEFSD597 Teronag corvr
| IEFSD598 ' et | rzrvc
IEFSD599 l Teronaes ! | rFs e
IEFSD71M Teropi71 | ssrvam | o
I IEFSD171 l IEEVHL i rzrvan
IEFSD83M | o .
IEFSDE3N IEFSD083 I l -
IEFSDESM IEFSD085 l I paabiing
! IEFSDSON IEFSD086 ! TEFvEO T
| IEFSD897 ! TEPoDOsS | zsrvan o
I | IEFSD089 I TerviL szrens
| i i ! IEF VAR IEFSD536
| IEFUCBL ' TEFWR000 i | o
I IEFVAWAT ' Terenios | e |
| IEFVDA | IEFSD195 | IEFVS | roruoz
| IEFVDBSD l TEFVDD | zsruan e
! | IEFVDBSD l iy rzrvan
l s | ! IEEVI IEFVJIMSG
l o | e I ‘ IEFVKIME
| Ixrvin ! LEFVEA | IEFVEKMJ1
| IEFVGI l TERver | e e
| IEFVGK ! Terver | TeEw o
| [IEFVGI | IEFVMCVL TEFVMEAR
| e | | IEFVMCVL l TBFVMIST
| e e ! i IEFVMLS1
| iErvan IEFVQM | IEFVMQMI I
| tErvans ! LEFVG] | IEFVMSGR TErvMISS
| IEFVGMY4 Tervana | | serwis i
| tErvns ! IEFML IEFVMLS1
| i I IEFUNL IEFVMMS1
| rice e ! IEFVM2LS
| IEFVGM7 TErvay | sernd
| e rErvaue ! I IEFUM3 IEFVM3LS
| e tErvain ! ! IEFUML IEFVM4LS
I tErvans ! IEFUMS | IEFVM5SLS
| IEFVGML0 | o I i
| IEFVGM11 Tervait | i cervre
| IEFVGM12 ' Tervamis i | zsruRe
| IEFVGM13 ! TERva1s | rsFusRe e
| IEFVGM14 I rvemia | TsFuRscs oo
| tErvant I IEFVRRCA IEFVRRC
i IEFVGM15 i o e
| IEFVGM16 Tervaic i l cerv
| IEFVGM17 TErveMIn | TorvRes l
| IEFVGM18 Tervomis i Tarvan s
| IEFVGM19 Tervais | TEFveDID e
| tErvanns I IEFVSDRA IEFVSDRA
| IEFVGM70 i iy .
| IEFVGM78 l Trrvamre | -
| rErvan ! IEFVGMTO | IEFV15XL
| ne | rErvon ! IEFVLSKL IEFXJIME
| e | fEmcs ! ! IEFV1SKL IEFSD551
| ! IEFVGT |] IEFVR3AE ! TEFVRIS
| e ! | | IEFWA000 ! TRFWAGO
| o | — I ! | IEFWA000
| 1 IEFVEA | | IEFWA002
j [IEFWAQ IEFWAOO0
IEFWA000

108

T
; ggtiy Point or 1 i '
ntrol S i
Nameectlon) Module Name = l Y 7 |
l | | control Section l
b i i |L or s | Module Name |
IEFWC000 l TEFWCIMP 1 | 1 |
IEFWC002 I TEPWOIMP | | 1er09 T |
IEFWD000 | IEFWCIMP | | Ieroseso | sercons]
IEFWD000 | IEFWDFAK | | Ierasos | rezsvon: |
| LEmuoEnx ! | IEmaiee | IEFSD086 |
| IEFWD001 ' | T I — |
| IEFWDMSG l TERIDO00 i i I i '
| IEFWLISD I TErenatg | | zacmo | |
IEFWSTRT | IEFSD21Q || Iecmors | rezcncen |
IEFWSWIT | IEFWSTRT I | Tocxnors | sescrcs: |
| | LEreotie I | I | IEECMCSW |
R | | | o | IEECMCSW |
e | m— ! | | IEECMCSW |
IEFW1FAK | IEFSD41Q | Tocooo3s | |
e | rErooug Tecogoic IEAGTMOA |
IEFW2FAK ‘ TFalERs 1600060 s |
I | TErobito 1600058 IEFVSMBR |
| IEFW21SD ' rconon s |
| IEFW21SD | IEFSD21Q I eotons |
IEFW22SD TEPon330 | | 1co0n I
T rerensss 16c0103D IGC0103D |
| IEFW41SD Teropais 1cc001c s l
I tersosis Iecoliic | IEAATMOA |
| ! | Jocose o IEAATMO2 |
| IEFW42SD TEFSD 20 | | " | i |
| e IEFSDU42Q Tocoaa1e |
| IEFXAMSG TEFXAMSe 1cc0u01c s |
| IEFXHO000 TEFEH000 | sccous s |
! IEFXH000 1 Iccous 1acinol |
| IEFXJMSG T — |
IEFXJX5A	IEFXJMSG l l B		
IEFXJX5A	TEFRsIND		zecoeotc
IEFXJ000	IEFXJ IMP I 16C0701C	rEncrvoe	
IEFXJ000	IEFXJFAK l 16c0801C	rEacmncs	
	sErom l	Jecoroi	IEAGTMOO
R !	Tecosne	IEAGTMOS8 I	
IEFXK000 TEFXKIMD		(oo	
IEFXT000 TEFATOOD	1ccamoic		
IEFXT002 TEFX1005	1ccacolc	o	
IEFXT003 TEFXT003 16cam01c	i		
I tErimo0s Iecocolc	IEAATMOC		
A	Jeconoic	IEAATMOD	
IEFXVNSL TEFXVNGE		i	
IEFXV001 TEFAVERR	xacisom		
B rEre: 16c1803D	IEESD571		
IEFXvV002 I TERIV002 16270	Lo		
I IEFXV001	IGF2703D I ToEaToaD		
IEFX3000 I i LOC	—		
IEFX5000	IEFX300A I l	arrocac	
e	IEFX5000 TocDQ.		
IEFYNMSG IEFYNMSG msoe: l i			
= rermy !	Locno IEFLOCDC		
TEruss	Meorr IEFXJMSG		
IEFYPMSG T	i		
—	s ' IEFXJMSG		
' IEFYPMSG	sD304MG1 !		
&= Ervoms I	Spaoue IEFSD312		
&5 Erirme !	SDa0uma2 IEFSD312		
	rEriaes	D30 IEFSD312	
B	sposmsel IEFSD311		
e e !	IEFSD311		
IEFZGMSG	Shariee		
spooms	IEFSD311		
	IEFSD599 '		
! !

Appendix B:

MFT Modules 109

- —

F - T 1 r 7 T

| Entry Point or | | | Entry Point or |

| control Section | Module Name | | Control Section | Module Name
| Name | | | Name |

b + i F + ~

| SMALTERM | IEFSD515 | | vmM7900 | IEFVMLS1
| SMALTERM | IEFSD559 | | vM7950 | IEFVMLS1
| STRMSGO1 | IEFYNMSG | | XIIB32 | IEFX5000
| VM7000 | IEFVMLS1 | | XTIEAO | IEFXT002
| VM7055 | IEFVMLS1 | | XTTEA1 | IEFXT002
I | | | |

| VM7055AA | IEFVMLS1 | XTTEB3 | IEFXT002
| VM7060 | IEFVMLS1 | XTTPOO | IEFXTOOD
| VM7065 | IEFVMLS1 | | XTTRDJ IEFXTQ02
| VM7070 | IEFVMLS1 | XUUBOO IEFXTO003
| VM7090 | IEFVMLS1 | XUUHO6 | IEFXT003
| | |

| VvM7100 | IEFVM2LS | | X33B42 IEFX300A
| vM7130 | IFFVMLS1 | X55C86 IEFX5000
| VM7150 | IEFVM3LS | X55D3G IEFX5000
| VM7200 | IEFVMULS | YPPMSG1 IEFYPMSG
| vM7300 | IEFVM5LS | | YPPMSG2 IEFYPMSG
| | | | |

| VM7370 | IEFVMLS1 | | XPS631 IEFZHMSG
| VM7600 | IEFVM76 | | ZGOE60 IEFZHNMSG
| VM7700 | IEFVMLS1 | | ZKO0D1 | IEFZHMSG
| VM7742 | IEFJMLS1 | | ZKOE1 IEFZHMSG
| VM7750 | IEFVMLS1 | | ZPOQM IEFZGJB1
| VM7850 | IEFVMLS1] | ZPOQMGR1 IEFZGST1
L i J L

—— ——— ——— ——— ————— i m———)

110

L S y—

Module Descriptions

Appendix B: MFT Modules 111

IEAASTOO:
Routine

Supervisor - STAE Service

This routine is entered when the STAE macro
instruction (SVC 60) is issued. It
creates, cancels, or overlays a STAE con-
trol block according to the options speci-
fied. It prepares the task to intercept
the scheduled abnormal termination (ABEND)
processing.

e Entry: IGC00060

e Attributes: Non-resident, reentrant

e Control Section: IGC00060
IEAATMOA: Supervisor =-- ABEND Linkage
Routine

This routine checks for valid and invalid
recursions. For an invalid recursion, con-
trol is passed to the Damage Assessment
Routine. For a valid recursion, a bit is
set in the TCBFLGS field of the TCB to pre-
vent an ABDUMP from being attempted. IEAA-
TMOA determines the amount of main storage
required by ABEND, and transfers control to
the appropriate ABEND load module.

e Entry: IGC011l1ilcC
e Exits: XCTL to IEAATMO2 if main

storage must be
*stolen'

to IEAATMO3 if main
storage is available
and an indicative dump
is requested

to IEAATMO4 if main
storage is available
and ABDUMP is requested

to IEAATMO5 if main
storage is available
and no dump is
requested

to IEAGTMO8 if the sched-
uler is failing and no
ABDUMP is requested

e Attrikutes: Reentrant, disabled for
external and I/0 interruptions,
privileged

e Control Section: IGC011iC

IEAATMOB: Supervisor - AEBEND/STAE
Intexface Routine

This routine is the first ABEND/STAE Inter-
face load module to receive control from
the ABEND routine when abnormal termination
has keen scheduled for a task operating in
a STAE environment.

e Entry: IGCOBO1C

112

e Attributes: Non-resident, reentrant

e Control Section: IGCOBO1C

IEAATMOC: Supervisor - ABEND/STAE
Interface Routine

e Entry: IGCOCOQ1C

e Attributes: Non-resident, reentrant

e Control Section: IGCO0CO01C

IEAATMOD: Supervisor - ABEND/STAE
Interface Routine

e Entry: IGCODO1C

e Attributes: Non-resident, reentrant

e Control Section: IGCODO1C

IEAATMOE: Supervisor - ABEND/STAE
Interface Routine

e Entry: IGCOEO1C

e Attributes: Non-resident, reentrant

e Control Section: IGCOEO1lC

IEAATMO01l: Supervisor -- ABEND Validity
Check Routine

This routine performs validity checking of
the MSS (main storage supervisor) queue,
the load list, the active RB list, and the
DEB queue. It dequeues invalid control
blocks, or terminates the queue at the
point of error, and sets bits in the ABEND
arpendage to the boundary box to indicate
invalid control blocks found on one or more
lists.

e Entry: 1IGC0101C
e Exit: XCTL to IEAATMOA

e Attributes: Reentrant, disabled for
external and I/0 interruptions,
privileged

e Control Section: IGC0101C

IEAATM02: Supervisor -- ABEND Steal LRB
Main Storage Routine

This routine 'steals' main storage needed
for ABEND functions that cannot be obtained
via a GETMAIN macro instruction. The main
storage is stolen from programs represented
by LRBs on the loaded program list.

e Entry: 1IGC0201C
e Exits: XCTL to IEAATM2A if there is no

loaded program list or
if enough main storage
is not available from
the LRBs

to IEAATM2E if IEAATMO2
has acquired the neces-
sary main storage

e Attributes: Reentrant, disabled for
external and I/O interruptionms,

privileged
e Control Section: IGC0201C
IEAATM03: Supervisor -- ABEND Indicative

Dump Routine

This routine accumulates the information
for an indicative dump and stores it in
main storage.

e Entry: IGC0301C
e Exit: XCTL to IEAGTMOS

e Attributes: Reentrant, disabled for
external and I/0O interruptions,

privileged
e Control Section: IGC0301C
IEAATMO4: Supervisor -- ABEND/ABDUMP
Routine

This routine determines if the user wants a
full or partial ABDUMP, initiates the
ABDUMP output, and calls an SVC 51
(ABDUMP) .

e Entry: IGCO401C
e Exits: XCTL to IEAATMO3 for an indica-

tive dump if the DCB
has failed to open

to IEAGTMOS for initiali-
zation of the next task

e Attrikutes: Reentrant, disabled for
external and I/0 interruptions,

privileged
e Control Section: IGCO401C
IEAATM2A: Supervisor —-- ABEND Steal

Proklem Program Main Storage Routine

This routine 'steals' main storage needed
for ABEND functions from the lower end of
the partition when it cannot be acquired
either by a GETMAIN macro instruction or by
the steal routine provided by IEAATMO2.

e Entry: IGC0211C

XCTL to IEAATMO03 if indicative

dump is requested

to IEAATMO4 if ABDUMP is
requested

to IEAGTMO5 if no dump is
requested or if a dump
was previously
attempted and failed

e Exits:

e Attributes: Reentrant, disabled for
external and I/O interruptions,
privileged

e Control Section: IGCO0211cC

IEAATM2B:
Routine

Supervisor -- ABEND LRB Stack

This routine moves the LRBs whose main
storage was stolen by IEAATM02 to conti-
guous locations in the low end of the freed
area and resets the chain pointers in the
LRBs.

e Entry: 1IGC0221C
e Exits: XCTL to IEAATMO03 if indicative

dump is requested

to IEAATMO4 if ABDUMP is
requested

to IEAGTMO5 if no dump is
requested or if a dump
was previously
attempted and failed

e Attributes: Reentrant, disabled for
external and I/0 interruptions,

privileged
e Control Section: IGC0221C
IEAGENQl: Supervisor -- Enqueue Service
Routine

This routine constructs and processes con-
trol klocks to serialize the use of
resources in a multiprogramming environ-
ment.
e Entry: IEAGENC1
e Exit: EXIT routine or to the
dispatcher

e Tables/Work Areas:
QCB, Queue element

Minor (CCB, Major

e Attributes: Reenterable

e Control Sections: IGCO48 and IEG056

IEAGENQ2: Supervisor -- Shared DASD
Enqueue Service Routine

This routine is the enqueue service routine
for systems that include the Shared DASD
option. It is identical to IEAGEN(C1 except
that additional processing is performed

Appendix B: MFT Modules 113

when a shared direct-access device is
requested through the RESERVE macro
instruction.

e Entry: IEAGENC2
e Exits: EXIT routine or to the
dispatcher

e Tables/Work Areas:
CCB, Queue element

Minor QCB, Major

e Attributes: Reenterable

e Control Sections: IGCO48 and IEGO056

IEAGTMOA:
Routine

Supervisor -- ABEND STAE Test

This routine prevents asynchronous exits
and stores the completion code (if nct pre-
viously stored). It determines if control
should be returned to STAE after a purge
error, if the Graphics Abend Exit routine
should be entered, and if a valid STAE is
in effect.

e Entry: IGC0001C
e Exits: XCTL to IEAGTM0O to continue

ABEND processing

to IEAATMOB if a valid STAE
is in effect

to IEAGTMO8 if an invalid
ABEND recursion or a
primary DAR recursion
has occurred

to IEAGTMO09 if a secondary
DAR recursion has
occurred

to IEAATMOB if an ABEND was
issued by the Purge rou-
tine during STAE
processing

EXIT to caller if graphics

program

e Attributes: Reentrant, disabled,

privileged
e Control Section: IGC0001C
IEAGTM0O: Supervisor -- ABEND

Initialization Routine

This routine provides purging for IQEs and
WTOR requests, and cancels the task timer

element.
e Entry: IGC0701C
e Exit: XCTL to IEAATMOD if IEAGTMOO was

entered from STAE

to IEAGTMO5 if this is a
normal end

to IEAGTMO6 if this is an
abnormal end

114

e Attributes: Reentrant, disabled for
SVC interruptions, privileged

e Control Section: IGC0701C
IEAGTMO05: Supervisor -- ABEND Termination
Routine

This routine closes all data sets, purges
the timer queue, resets the TCB fields,
frees main storage, and transfers control
to the job scheduler.

e Entry: IGC0501C
e Exits: XCTL to IEFSD51K for scheduler-

size partitions
to IEFSD599 for small
partitions

e Attributes: Reentrant, disabled for
external and I/0 interruptions,

privileged
e Control Section: IGC0501C
IFEAGTM06: Supervisor -- ABEND Input/Cutput

Purge Routine

This routine purges I/O operations in pro-
cess and outstanding I/O requests.

e Entry: IGCO0601C
e Exit: XCTL to IEAATMO1 for normal exit

to IEAGTMO09 if a system
task or "must complete”
task

e Attributes: Reentrant, disabled for
I/0 and external interruptions,

privileged
e Control Section: IGC0601C
IEAGTM08: Supervisor -- DAR Core Image

Dump Routine

This routine attempts to write a core image
dump to a preallocated data set. It also
processes primary DAR recursions.

e Entry: IGC0801C

e Exits:

XCTL to IEAGTMO05 if called for
a dump only
to IEAGTM09 to continue
DAR processing

Attributes:
privileged

Refreshable, disabled,

Control Section: IGCO0801C

IEAGTM09: Supervisor -- LCAR Task
Reinstatement Routine

This routine attempts reinstatement of
failing system tasks. It also processes
secondary DAR recursions and failing tasks
which are in "Must Complete" status.

e Entry: IGC0901C
e Exits: XCTL to IEAGTMO5 for non-system

task with or without
non-critical resources
Branch to dispatcher for secon-
dary DAR recursion,
critical resources, or
system task failure.

e Attributes: Refreshable, disabled,

privileged
e Control Section: IGC0901C
IEAQOTIOl: Supervisor -- Timer Second Level

Interruption Handler

This routine maintains the timer queue when
the timer option is not specified during
system generation. It handles only the
normal six hour interruptions.

e Entry: IEAOTIOL
e Exit: To Timer/External FLIH

e Tables/Work Areas: SHPC, T4PC, LTPC

e Attributes: Reenterable, disabled for
system interruptions, resident, super-
visor mode

e Control Section: IEAOTIO1
IEECIR50: Master Scheduler -- Wait/Router
Routine

This routine waits until a command is
issued, analyzes the command and passes
control to the appropriate processing
module.

e Entry: IEECIR50
e Exits: IEESD562, IEEDFIN1

e Attrikbutes: Read-only, reenterable,
resident in nucleus.

e Control Section: IEECIR50

e Page Reference: 49

IEECMAWR:
Module

Communications Task -- Router

This module waits for the posting of a com-
munications task ECB, determines the type
of interruption service required (external,

attention, I/O0, WTO, or DCM), and passes
control to other communications task
modules for further processing.

e Entry: IEECMWRT
e Exit: IEECMCSW, IEECMDSV, IEECMWSV,

IEECMWIL, IEECMDOM, Dispatcher

Tables/Work Areas: CVT, EIL, UCM, WQE

e Attributes: Reentrant, refreshable
e Control Section: IEECVCTW
IEECMCSW: Communications Task -- Console

Switch Module

This routine provides console switching as
a result of an unrecoverable I/0 error on a
ccnsole device, as a result of an external
interruption, or as a result of a VARY com-
mand, and provides hard copy switching from
a console device of SYSLCG.

e Entry: IGCXLO7B
e Exit: IEECMAWR, IEECMDSV

e Tables/Work Areas:
UCM, WQE

CVT, CXSA, RCE,

e Attributes: Reentrant, refreshable

e Control Sections:
IGCXNO7B, IGCXCO07B

IGCXL0O7B, IGCXMO7B,

IEECMDOM: Communications Task -- DOM
Service Module

This module marks for deletion specified
WQEs on the system output queue.
e Entry: IEECMDOM

e Exit: IEECMAWR, IEECVDT1

Tables/Work Areas: CVT, DCM, UCM, WCE

e Attributes: Reentrant, refreshable
e Control Section: IEECNMDCM
IEECMDSV: Communications Task -- Device

Service Module

This module provides the interface with
device support processors and provides con-
sole and system output queue management.

e Entry: IEECMDSV
e Exit: IEECMAWR, IEECMWSV, IEECMCSW,

Device Support Processors

e Tables/Work Areas:
UCM, WQE

IEEBASEB, CVT, EIL,

Appendix B: MFT Modules 115

e Attributes: Reentrant, refreshable

e Control Section: IEECMDSV

IEECMWSV: Communications Task =-- WTO(R)
Sexrvice Module

This module puts unprocessed WQES on appro-
priate console output queues

e Entry: IEECMWSV
e Exit: IEECMDSV, IEECMAWR

e Tables/Work Areas: UCM, WQE

e Attributes: Reentrant, refreshable

e Control Section: IEECMWSV

IEECMWTL: Communications Task -- NIP
Message Buffer Writer Module

This module issues SVC 36 to write NIP mes-
sages to SYSLCG. If SYSLOG has not been
initialized or not specified as the hard

copy log, it issues SVC 35 to write the NIP
messages to the operator.

e Entry: IEECMWTL

e Exit: Return to caller

e Control Section: IGC0907B
IEECVCRA: Communications Task -- Console

Interruption Routine

This routine notifies the wait routine that
a console read has been requested.

e Entry: IEEBAl
e Exit: Return to IOS

e Tables/Work Areas: ECB, UCM, UCR

e Attrikutes: Reenterable

e Control Section: IEERA1

e Page Reference: U4

IEECVCRX: Communications Task -—- External
Interxruption Routine

This routine switches control from the pri-
mary console device to an alternate console
device when an external interruption
occurs.

e Entry: IEEBC1PE
e Exit: Return to IOS

116

Tables/Work Areas: UCM

Attributes: Reenterable

Control Section: IEEBC1PE

Page Reference: 45

/

IEECVCTE: Communications Task -- User
Dummy WTO/WTOR Exit Routine

This routine takes the place of the user's
WIO/WIOR exit routine when an exit routine
was specified at system generation, but
none was supplied.

e Entry: IEECVXIT, from IEECMWSV
e Exit: Return to caller

e Control Section: IEECVXIT

IEECVCTI: Console Initialization Routine

This routine prints out the NIF message
buffer in systems with the MCS option, and
initializes the console configuration.

e Entry: IEECVCTI, from IEESD569
e Exit: To IEESD569

Tables/Work Areas: CVT, EIL, UCB, and

ucM
e Attributes:
e Control Section: IEECVCTI
IEECVCIR: Communications Task -- Routerx
Routine

This routine determines the type of request
or interruption that occurred, and passes
control to the appropriate processing
routine.

e Entry: IEECVCTR
e Exits: XCTL to IEECVPMX (IGCO107B),

IEECVPMC (IGC1107B), or IEECVPNF
(IGC2107B)

e Tables/Work Areas: UCM, SVRB, UCB

e Attributes: Reenterable

e Control Section: IEECVCTR

e Page Reference: 4u

IEECVCTW:
Routine

Communications Task -- Wait

This routine waits on all communications
task ECBs associated with WTC/WTOR macro
instructions.

e Entry: IEECIRUS

e Exit: None

e Takles/Work Areas: TCB, ECB, UCM

e Attributes: Reenterable

e Control Section: IEECIRU4S

e Page Reference: 44

IEECVED2: Communications Task -- Purge RQE

Routine

This routine scans and purges all outstand-
ing request queue elements (RQEs) pertain-
ing to the terminating task.

IEECVPRG

e Entry

e Exits: End-of-task, and ABEND

e Tables/Work Areas: RQE, WQE, JCM, CVT

e Attrikutes: Reenterable

e Control Section: IEECVPRG

IEECVPM: cCommunications Task -- Console
Device Processor Routine

This routine performs console read and
write operations and checks for errors.

e Entry: IEECVPM

e Exit: XCTL to IEECVCTR (IGC0007B)

e Tables/Work Areas: DCEB, UCB, UCM

e Attributes: Reenterable

e Control Section: IEECVPM

e Page Reference: 44

IEECVWTO: Communications Task --
Write-to-Cperator Routine

This routine processes all WTO macro
instructions.

e Entry: IGCOOOQ3E

e Exit: Return to calling program

e Tables/Work Areas: WQE, UCM, CVTI, RQE

e Attrikutes: Reenterable

e Control Section: IGCO0003E

e Fage Reference: 45

IFEDFIN1: Master Scheduler -- DEFINE
Command Initialization Routine

This routine sets up data areas for parti-
tion definition, issues a DEFINE CCMMAND

BEING PROCESSED message to all active con-
soles, and passes control to the appropri-

ate processing module.
e Entry: IEEDFIN1
e Exits: IEEDFIN3, IEEDFIN4, IEEDFINS

e Attributes: Read-only, reenterable

e Control Section: IEEDFIN1

e Page Reference: 50

IEEDFIN2: Master Scheduler -- DEFINE
command Syntax Check and Router Routine

This routine checks the syntax of DEFINE
command statements. If a syntax error is
discovered, the statement is ignored and an
error message is issued. If the syntax is
correct, the information is stored and con-
trol is passed to the appropriate routine.

e Entry: IEEDFIN2, IEEDPART
e Exits: IEEDFIN5, IEEDFIN6, IEEDFIN7

e Attributes: Read-only, reenterable

e Control Section: IEEDFIN2

e Page Reference: 50

IEEDFIN3: Master Scheduler -- DEFINE
Command Validity Check Routine

This routine determines that all informa-
tion for the partition redefinition is
correct, and passes control to the appro-
priate processing routine.

e Entry: IEEDFIN3
e Exits: IEEDFIN8, IEEREXIT

e Attributes: Read-only, reenterable

e Control Section: IEEDFIN3

e Page Reference: 52

IEEDFIN4: Master Scheduler -- DEFINE
Command Listing Routine

This routine lists partition definitionms.

e Entry: IEEDFINY4
e Exits: IEEDFIN3, IEEDFIN5

e Attributes: Read-only, reenterable

Appendix B: MFT Modules 117

e Control Section: IEEDFINY

e Page Reference: 52

IEEDFINS5: Master Scheduler -- DEFINE
Command Message Routine

This routine contains texts for operator
messages required for DEFINE command pro-
cessing. The message is constructed
according to a code passed by the calling
routine. IEEDFIN5 issues the requested
message and passes control to IEEDFIN2 or
the disgpatcher.

e Entry: IEEDFINS
e Exits: IEEDFIN1, IEEDFIN2 or return to

calling program
e Attrikutes: Read-only, reenterable

e Control Section: IEEDFINS

e Fage Reference: 52

IEEDFIN6: Master Scheduler
Syntax Check Routine

-- Time-Slice

This routine checks the TMSL subparameters
for proper syntax.

e Entry: IEEDFIN6
e Exits: IEEDFIN2, IEEDFIN5, IEEDPART

e Attributes: Read-only, reenterable

e Control Section: IEEDFIN6

e Page Reference: 52

IEEDFIN7: Master Scheduler -- Keyword Scan

Routine

This routine checks keyword parameters for
syntax errors. If a syntax error is disco-
vered, the erroneous entry and all follow-
ing entries are ignored, and an error mes-
sage is generated. If the syntax is
correct, the information is stored.

e Entry: IEEDFIN7
e Exits: IEEDFIN2, IEEDFIN3, IEEDFIN4,

IEEDFINS5, IEEDPART
e Attributes: Read-only, reenterable

e Control Section: IEEDFIN7

e Page Reference: 52

118

IEEDFIN8: Master Scheduler -- System
Reinitialization Routine

This routine checks the redefinition infor-
mation to assure that the request is valid.
If no error is found, this routine con-
structs a list of ECBs (one for each of the
affected partitions) to be posted when the
jobs in the partitions have terminated. It
enqueues on the partition boundary boxes,
updates system control blocks and the
affected boundary boxes, and then dequeues.

e Entry: IEEDFINS
e Exits: IEEDFIN9, IEEREXIT

e Attributes: Read-only, reenterable

e Control Section: IEEDFINS

e Page Reference: 53

IFEDFIN9: Master Scheduler -- Command
Final Processor Routine

This routine issues a message to all active
consoles that processing is complete and
updates the task control blocks affected by
time-slicing if time-slicing is specified.

e Entry: IEEDFIN9
e Exits: IEEDFINS
e Attributes: Read-only, reenterable

Control Section: IEEDFIN9

Page Reference: 53

IEELOG02: Master Scheduler -- Log Open
Initialization Module

This routine opens the system log at IPL
time.

e Entry: IEELOGO02
e Exit: IEESD569

e Tables/Work Areas: CVT, UCB, UCM,
TIOT, M/S resident data area, JFCB,
IEELCA, DCB.

e Attributes: Refreshable

e Control Section: IEELOCGO2

IFELWAIT: Master Scheduler -- lLog Wait and
Writer Module

This module writes data from the log buffer
to the system log.

. e Entry: IEELWAIT

e Exit: To Dispatcher

Tables/Work Areas: CVT, LCA, MRC

Attrikutes: Resident

e Control Section: IEELWAIT

IEEPDISC:
Routine

Display Consoles Get Region

This routine obtains a region of main
storage, and sets up an environment for the
execution of the DISPLAY CONSOLES command,
and then frees the region when contrcl is
returned.

e Entry: IEEPDISC, from IEEVATT1
e Exit: To IEEXEDNA, Return to Master

Task (svcC 3)

e Attrikutes:
resident

Read-only, reentrant,

e Ccontrol Sections: IEEPDISC

IEESDS61:
Routine

SVC 34 -- START and STOP_ INIT

This routine processes the START and STOP
INIT commands.

e Entry: IGC1903D
e Exit: Return to caller, or to IEE0503D

for an error message

e Tables/Work Areas: CSCB, PIB, M/S
resident data area, CVT, XSA

e Attributes:
read- only

Reenterable, Transient

e Control Section: IGC1903D

e Page Reference: 47

IEESD562:
Routine

Master Scheduler -- Syntax Check

This routine checks syntax of the command
and sets internal codes for queue search,
if required.

e Entry: IEESD562
e Exits: XCTL to IEESD563 for queue

search, to IEESD566 for DISPLAY active,
or to IEEXEDNA for DISPLAY CONSOLES
e Attributes: Read-only, reenterable

e External References: None

e Control Section: IEESD562

e Page Reference: 49

IFEESDS563: Master Scheduler -- Queue Search
Setup Routine

This routine determines which queue is to
be searched, reads and scans the queue con-
trol record, establishes parameters for the
search, and transfers control to the queue
search module. IEESD563 will write out
updated queue control records.

e Entry: IEESD563
e Exits: XCTL to IEESD564 to search

queue; XCTL to IEESD565 at completion

e Tables/Work Areas:
CSCB

QCR, CMPA, CVT,

e Attributes: Read-only, reenterable

e Control Section: IEESD563

e Page Reference: 49

1EESD564:
Module

Master Scheduler -- Queue Search

This routine searches the work queuves for
the execution of the queue manipulation
commands.

e Entry: IEESD56U4
e Exit: XCTL to IEESD563

e Tables/Work Areas:
QOMPA, XSA

CCR, CSCB, CVT,

e Attributes: Read-only, reenterable

e Control Section: IEESD564

e Page Reference: 49

IEESD565:
Rcoutine

Master Scheduler -- Service

This routine frees storage obtained by
IEESD563, links to the queue manager to
engueue an entry or queue control record on
SYS1.SYSJOBQE, or links to write a message.

e Entry: IEESD565
e Exit: Return to caller

Tables/Work Areas:
CVT

CMPA, CSCB, CCR,

Attributes: Read-only, reenterable

Appendix B: MFT Modules 119

e External References: IEFQMNQ2,
IEE0503D
e Control Section: IEESDS565

e Page Reference: 49

IEESDS566 :
Routine

Master Scheduler -- DISPLAY A

This routine builds a table and constructs
operator messages according to the proces-
sing required by a DISPLAY A command.

e Entry: IEESD566

e Exit: Return to caller (IEECIRS50)

e Tables/Work Areas:
QCR, CVT

QMPA, CSCB, XSA,

e Attributes: Read-only, reenterable

e Control Section: IEESD566

e Page Reference: 50

IEESD568: Nucleus -- Master Scheduler
Resident Data Area

This routine contains the master scheduler
resident data area.
e Entry: IEEMSER

e Exit: None

Attributes: Not reusable

Control Section: IEEMSER

Page Reference: 87

IEESD571:
Routine

SVC 34 -- DEFINE, MOUNT, CANCEL

This routine schedules the execution of the
DEFINE, MOUNT, and CANCEL (for active jobs
only) commands.

e Entry: IGC1803D
e Exits:
MOUNT - XCTL to IGCO0103D

DEFINE - Return to caller
CANCEL - Active and cancelable --
Enter ABTERM to force
cancel
Active and not cancelable --
POST and mark CSCB inac-
tive; XCTL to IEE0803D
XCTL to IEE0503D and IEE2103D due to
error.

e Tables/Work Areas: CSCB, PIB, M/S
resident data area, CVT

120

e Attributes: Reenterable

e Control Section: IGC1803D

e Page Reference: 47

IEESD590: System Task Control -- Write
TIOT on Disk

This routine writes the TIOT which is used
by Job Selection (IEESD510) and checks for
a small partition writer.

e Entry: IEESD590
e Exits: XCTL to IEFSD510 (small parti-

tion writer) or XCTL to IEFSD591

e Tables/Work Areas: TIOT, SPIL

e Attributes: Reenterable

e Control Section: IEESD590

e Page Reference: 75

IEESD591:
Routine

System Task Control -- Linker

This routine transfers control between sys-
tem task control and an interpreter or sys-
tem output writer.

e Entry: IEESD591, IEE591SD
e Exit: XCTL to IEEVTCTL

e Tables/Work Areas:
IWA, QMPA

CSCB, CVT, PIB,

e Attributes: Reenterable

e Control Section: IEESD591

e Page Reference: 75

IEESD592: System Task Control -- POST

Routine

This routine checks for an error indication
in the CSCB. It posts the error condition
or a valid condition.

e Entry: IEESD592

e Exit: XCTL to IEFSD510

e Tables/Work Areas: None

e Attributes: Reenterable

e Control Section: IEESD592

e Page Reference: 75

IEEVACTL: System Task Control --
Allocation Interface Routine

This routine sets up the interface between
system task control and the 1I/0 device
allocation routine.

e Entry: IEEVACTL
e Exits: To IEFSD21¢, IEEVMSG1,

IEEVSMSG, IEEVTCTL, or IEEVRWTC

Attributes: Reenterable

Control Section: IEEVACTL

e Page Reference: 75

IEEVICLR:
JCL Reader

System Task Control -- Internal

This routine reads the internal job control
language used in starting a reader or
writer.

e Entry: IEEVICLR, IEFICR
e Exit: Return to caller

e Tables/Work Areas: DCBD

e Attrikutes: Read-only, reenterable

e Attributes: Reentrant

e Control Section: IEEVIDSFP

IEEVLIN: Master Scheduler -- Log
Initialization Routine

This routine initializes the system log.

e Entry: IEEVLIN
e Exit: IEESD569, IEEVLIIN2

Tables/Work Areas: UCM, CVT, UCB,
TIOT, M/S resident data area, IEELCA.

Attributes: Refreshable

e Control Section: IEEVLIN

IEEVLNKT: System Task Control --
Link-Table Module

This routine contains the table of routines
that is scanned by IEEVACTL as a validity
check for program linking.

e Entry: IEEVLNKT

e Attributes: Non-executable

e Control Section: IEEVLNKT

e Control Section: IEEVICLR
IEEVLOUT: Tog Data Set Reinitialization
IEEVJCL: System Task Control -- JCL Edit Routine
Routine

This routine constructs the internal job
control language used in the START reader
and START writer command execution
routines.

e Entry: IEEVJCL, from IEEVSTRT

e Exit: XCTL to IEERCTL

e Tables/Work Areas: SDT, CSCD

s Attributes: Reenterable

e Control Section: IEEVJCL

IEEVIDSP: Master Scheduler -- Log
Dispatcher Routine

This routine puts the log data set on the
system output queue.

e Entry: IEEVLDSP
e Exit: Master Scheduler

e Tables/Work Areas:
CA, UCB, JFCB.

IEEBASEA, CT, IEEL-

This routine opens and closes the log data
set to reinitialize the DS1LSTAR and
DES1TRBAL fields of the DSCB associated with
the log data set.

e Entry: IEEVLOUT, from IEFSD171
e Exit: IEFSD171

L]

Tables/Work Areas:
Resident Data Area

cvTt, DSCB, ICA, M/S

Attributes: Reenterable

e Control Section: IEEVLOUT

IEEVMSGl: System Task Control -- NMessage
Writer Routine

This routine writes messages to the opera-
tor as required by system task control.

e Entry: from IEEVRCTL, IEEVACTL, or
IEEVICTL
e Exit: Return to caller

e Control Section: IEEVMSG1

Appendix B: MFT Modules 121

IEEVOMSG: System Task Control -—- Message
Writing Routine

This routine assembles and writes messages
to the operator.

e Entry: IEEVOMSG
e Exit: Return to caller

e Control Section: IEEVOMSG

IEEVRCTL: System Task Control --
Interpreter Control Routine

This routine provides an interface between
system task control and an interpreter.

e Entry: IEEVRCTL

e Exits: To IEFVH1 and IFEVACTL

e Tables/Work Areas: CVT, CSCB

e Control Section: IEEVRCTL

e Page Reference: 74

IEEVRFRX: Master Scheduler -- Table Lookup

e Tables/Work Areas: QMPA, LCT, SMB, IOR

e Control Section: IEEVSMBA

IEEVSMSG: System Task Control -- Message
writer Routine

This routine writes messages to the opera-
tor as required by the master scheduling
task and system task control.

e Entry: IEEVSMSG, from IEEVMSG1,
IEFSD533, IEFUH1, or IEEVACTL

e Exit: Return to caller
e Control Section: IEEVSMSG
IEEVSTAR: System Task Control -- Start

Command Syntax Check Routine

Routine

This routine can ke used to obtain the fol-
lowing information; the CVT address, .the
contents of a CVT entry, or the contents at
the CVT pointer address, a pointer to the
TCB or the RB, the TIOT pointer, the TIOT
entry, the TIOT TTR, or the TIOT UCB point-
er. The routine can also be used to insert
a TIOT pointer, a TIOT TTR, or a TIOT UCB
pointer in the CVT.

e Entry: IEEVRFRX
e Exit: Return to calling program

e Tables/Work Areas:
UCB

cvt, TCB, RB, TIOT,

e Attributes: Reenterable

e Control Section: IEEVRFRX

IEEVSMBA:
Builder

System Task Control -- OMPA

This routine constructs a queue manager pa-
rameter area (QMPA) referring to the mes-
sage class queue for the use of the I/0
Device Allocation routine.

e Entry: IEEVSMBA
e Exit: To IEEVACTL

122

This routine checks the syntax of a START
command, and builds a start descriptor
table (SDT) containing the parameters of
the command.

e Entry: IEEVSTRT
e Exits: To IEEVJCL, IEFSD533, or
IEE0503D

e Tables/Work Areas: SDT, M/S Resident
Data Area, CVT, M/S TIOT, UCB XSA, and
CSCB.

e Attributes: Reenterable

e Control Section: IEEVSTRT

e Page Reference: 74

IEEVICTL: System Task Control --
Termination Interface Routine

This routine initializes the necessary
tables for terminating a task that was
established via a START or MCUNT command.

e Entry: IEEVICTL, from IEEVWILK, IEE-
VACTL or IEFW31SD

e Exit: To IEFW42SD or IEEVOMSG,
return to supervisor

, then

e Tables/Work Areas:
and CSCB

TCB, JCT, SCT, LCT,

e Attributes: Reenterable. Character

Dependence Type C

e Control Section: IEEVTCTL

IEEVWTOR: Communications Task --—
Write-to-Operator With Reply Routine

This routine processes all WIOR macro
instructions.

e Entry: IGCO103E

e Exit: Return to calling program

e Tables/Work Areas: WQE, RQE, UCM, CVT

e Attributes: Reenterable

e control Section: IGCO103E

e FPage Reference: 45

IEEXEDNA: DISPLAY CONSOLES Processor

This routine processes the DISPLAY command
with the CCNSCLES operand and displays the
system console configuration on the re-
questing console.

e Entry: IEEXEDNA to IEESD562

e Exit: To IEECIR50
e Attributes: Reentrant

e Control Sections: IFEXEDNA

IEE0303D:
Manipulator

SVC 34 -- Translator/Chain

This routine translates lowercase letters
into uppercase, and manipulates the CSCB
chain as requested by the caller of SVC 34.

e Entry: IEE0303D
e Exit: To IEEO403D, or return to caller

e Takles/Work Areas:
data area, CSCB, XSA

CVT, M/S resident

e Control Section: IEE0303D

IEEO0303F: SVC 36 -- WRITE-TO-LOG

This module copies text records from an
input area to the log buffer and posts the
log ECB when the buffer is full.

e Entry: IEEO303F

e Exit: Returns to Master Scheduler,
IEEO403F.

e Tables/Woxrk Areas:
CVT

IEEBASEA, IEELCA,

e Attrikutes:

| e Control Section: IEEO0303F

IEEO403D: SVC 34 -- Router Routines

This routine identifies the command verb,
lensures that the console has authority to
enter the command, and passes control to

the appropriate routine.
e Entry: IEEJ403D
e Exit: Depending on command verb, via

XCTIL to another SVC 34 module

e Tables/Work Areas: M/S resident data

area, XSA, CSCB

e Control Section: IEEOQO403D

e Page Reference: 47

IEEQ403F: SvC 36 (Load 2)
Management Module

-- Log Buffer

This module opens, closes, and switches
system log buffers.

e Entry: IEEO4O3F
e Exit: IEEO0303F

e Tables/Work Areas:
UCB,

IEEBASEA,
JFCB, DCB, CVT, TICT.

IEELCA,

e Attributes: Reentrant

e Control Section: IEEOQO403F

IEE0503D:
Routine

SVC34 -- Message Assembly

This routine assembles and edits messages
for the command scheduling routine, and
writes the messages to the operator.

e Entry: IEEO0503D
e Exit: Branch on register 14

I e Attributes: Reenterable, read-only

e Control Section: IEEO0503D

IEE0603D: SVC 34 -- SET Command Routine

This routine processes the SET command.

e Entry: IEE0603D
e Exits: To IEE0903D, IEE0503D, or
return to caller

Appendix B: MFT Modules 123

e Tables/Work Areas:
dent data area

Xsa, CVT, M/S resi-

' e Attributes: Reenterable, self-
relocating, read only transient

e Control Section: IEE0603D

IEEQ0703D: SVC 34 -- CSCRBR Marking Routine

This routine schedules the execution of the
STOF and NMCDIFY commands by finding and
updating the appropriate CSCB and by issu-
ing a POST macro instruction to the master
scheduling task.

e Entry: IEE0703D
e Exits: Branch on register 14, or XCTL
] to IEE0803D, IEE0503D or IEE2103D.

e Tables/Work Areas: M/S Resident Data
| Area, XSa, CVT, CSCB, SPL

e Attrikutes: Reenterable, self-
relocating, read-only, transient

e Control Section: IEE0703D

IEE0803D: SVC34 —- CSCB Creation Routine

This routine schedules the execution of
commands that cannot be completely pro-
cessed by the command scheduling routines.
It performs this function by adding a CSCB
to the CSCB chain and issuing a POST macro
instruction to the master scheduling task.
It also processes the DISPLAY T command.

e Entry: IEE0803D
e Exit: IEE0503D, IEE2103D, IEE2903D, or

return to caller

I e Tables/Work Areas: XSA, M/S resident
data area, CVT, CSCB, and UCM

e Attrikutes: Reenterable, transient,
partially disabled.

e Control Section: IEE0803D

IEEQ903D: SET Command Handlerxr

This routine processes the date and time
operands of the SET command.

e Entry: IEAQOTO00
e Exit: SvVC 3

e Tables/Work Areas: CVT

124

e Attributes: Reenterable, supervisor
state, disabled for system interrupts,
transient

e Control Section: IEAQCTO0

IEE1103D: SVC 34 -- VARY and UNLOAD Scan
and Router Routine

This routine examines the command and its
operand and routes the command to the
arpropriate processing module.

e Entry: IEE1103D
e Exit: IEE2303D for VARY CNLINE, CNGFX,

and CONSOLES operands when SMF is pre-
sent, to IEE3103D for all other VARY
operands and UNLOAD, and to IEE0503D
for errors.

e Tables/Work Areas: XSA, CVT, M/S resi-
dent data area, and UCM.

e Attributes: Reenterable, self-
relocating, read-only, and transient.

e Control Sections: IEE1103D

IEE1203D: SVC 34 -- Reply Processor

This routine checks the validity of the
operator's reply command, and moves the
orerator's reply (if valid) to the buffer
of the user that issued the respective
WIOR.

e Entry: IEE1203D
e Exit: Return to caller

Takles/Work Areas:
CXSA

CVT, UCM, WCE, RCE,

Attributes: Reenterable

e Control Section: IEE1203D

IEE1403D: SVC 34 -- HALT Routine

This routine schedules the execution of the
HALT command by adding a CSCB to the CSCB
chain and by issuing a PCST macro instruc-
tion to the master scheduling task.

e Entry: IEE1403D
e Exit: IFBSTAT

e Tables/Work Areas: XSA, M/S resident
data area, CVT, and CSCB

e Attributes: Reenterable

e Control Section: IEE1403D

IEE1603D: SVC 34 -- Log and Writelog
Processor Routine

This routine issues a WTL macro instruction
when a LCG command is issued, and stores
the WRITELCG command and posts the Log ECB,
for WRITELCG processing.

e Entry: IEE1603D, from IEEQOU403D
e Exit: IEE0503D for errors, and return

to caller of svC 34.

e Tables/Work Areas: XSA, CVT, LCA, and
M/S resident data area.

e Attrikutes: Reentrant, self-
relocating, read-only, and transient.

e Control Sections: IEE1603D

IEE1703D: SVC 34 -- VARY ONGFX/OFFGFX

This routine processes the GVARY command.
It checks the parameters for validity and
if an error is found, it passes control to
IEE0503D via an XCTL macro instruction. If
the parameters are valid, the routine sets
appropriate bits in the Overall Control
Table (CCT) of the GFX reader task. It
then issues a POST macro instruction on the
ECB in the COCT for each graphics device
(2250) placed in the online status.

e Entry: IEE1703D
e Exit: IEEO0503D, return to issuer of
SVC 34

e Takles/Work Areas: CVT, OCT, XSA

e Attrikutes: Reenterable, read-only,
self-relocating

e Control Section: IEE1703D
IEE1A03D: SVC 34 -- MCS Reply Processor
Routine

The purpose of this routine is to process
valid operator replies to WTOR macro
instructions.

e Entry: IEE1A03D
e Exit: To IEE1BO3D to issue error mes-
sages or return to the caller of SVC
34.
e Control Sections: IEE1A03D
IEE1B03D: SVC 34 -- MCS Reply Message
Routine

This routine assembles, edits, and broad-
casts the accepted reply to a WTOR macro
instruction for the MCS Reply Processor

routine (module IEE1A03D) of the Command
Scheduling routine, and to write error mes-
sages to the operator whose command is in
error.

e Entry: IEE1B03D, from IEE1A03D
e Exit: Return to the caller of svC 34
e Control Sections: IEE1B03D
IEE2103D: SVC 34 -- Message Assembly
Routine

This routine assembles and edits messages
for the command scheduling routine, and
writes the messages to the operator.

e Entry: IEE2103D
e Exit: Branch on register 14

e Attributes: Reenterable, self-
relocatory, read-only, transient

e Control Section: IEE2103D

IEE2303D: SVC 34 -- SMF Processor

This routine initially processes the
ONLINE, ONGFX and CONSCLES operand of the
VARY command when the system has the SMF
option. It builds and issues an SMF record
for each device placed in online status.

e Entry: IEE2303D
e Exit: IEE3103D

e Tables/Work Areas: CVT, SMCA, XSA

e Attributes: Reentrant, read-only,
self-relocating

e Control Sections: IEE2303D
IFE2903D: SvC 34 -- Display Requests
Routine

This routine displays to the requesting
orerator the ID of all outstanding WTCRs,
the unit name of each device for outstand-
ing MOUNT messages, and an indication as to
whether any AVR mount messages are pending.

e Entry: IEE2903D, from IEE0803D
e Exit: Return to caller of SvC 34

e Tables/Work Areas: Message wWork area

e Attributes:
transient

Reentrant, Refreshable,

e Control Sections: IEE2903D

Appendix B: MFT Modules 125

IEE3103D: SVC 34 -- Vary and Unload
Processor Routine

This routine processes the UNLOAD command,
all VARY command operands in a system
without the MCS option, and VARY ONLINE and
OFFLINE operands for non-console devices in
a system with the MCS option. In addition,
it passes control to the appropriate MCS
processors for processing of comsole
devices.

e Entry: IEE3103D, initially from
IEE1103D or IEE2303D and returns from
IEE4203D and IEE4603D.

e Exit: IEE1703D for VARY ONGFX/OFFGFX,
IEE4203D for VARY ONLINE/OFFLINE/
CONSCLES with no keywords after CON-
SOLES, IEE4303D for VARY MSTCONS,
IEE4UU403D for VARY HARDCPY/CONSOLES with
keywords, IEE4703D for VARY HARDCPY
without keywords, IEE0503D for errors,
Return to Caller of SVC 34 for UNLOAD.

e Tables/Work Areas: XSA, UCM, CVT, M/S
resident data area, and UCB.

e Attrikutes: Reentrant, self-
relocating, read-only, transient.

e Control Sections: IEE3103D

IEE4103D: SVC 34 -- Hardcopy Message
Issuing Routine

This routine issues messages concerning the
status of the hard copy log and frees
storage obtained for those messages.

e Entry: IEE4103D, from IEE4703C and
IEE4803D
e Exit: IEE4203D if multiple units spe-

cified in VARY command and units remain
to ke processed, IEE0503D for errors,
or return to caller of SVC 34 if all
units have been processed

e Tables/Work Areas: XSA, message area,
UCB, CVT, XSA, and UCM

e Attributes: Reentrant, transient

control Sections: IEE4103D

IEE4203D: -'SVC 34 -- Vary Unit Field Scan
and Router Routine

This module performs authority and operand
validity checking, and passes control to
the routine that will process the command.

126

e Entry: IEE4203D, from IEE3103D,
IEE4103D, IEE4403D, and IEE8603D

e Exit: To IEE3103D for processing VARY
ONLINE/OFFLINE of non-console units, to
IEE4603D for processing of VARY CNLINE/
OFFLINE CONSOLES of console units, and
for processing when errors in syntax
are found or when multiple units were
specified and units remain to be pro-
cessed, IEE4903D for processing of VARY
CONSOLES, and to IEE0503D and IEE2103D
when other errors occur.

e Tables/Work Areas:
UCB.

XSA, CVT, UCM, and

e Attributes: Reentrant, self-
relocating, read-only, transient

e Control Sections: IEE4203D

IEE4303D: SvVC 34 -- VARY MSTCCNS Routine

This routine processes the VARY MSTCCNS
command.

e Entry: IEE4303D, from IEE3103D
e Exit: To IEE0503D or IEE2103D on

errors, SVC 72 to Console Switch Rou-
tine (module IEECMCSW) and upon return
to caller of svC 34

) Tableslwbrk Areas:
UucM

ucB, CVT, XSA, and

e Attributes: Reentrant, self-
relocating, read-only, transient

e Control Sections: IEE4303D
IEE4403D: SVC 34 -- vVary Keyword Scan
Routine

This routine determines the validity of
VARY CONSOLE-HARDCPY keywords, and to set
appropriate bits in the XSA.

e Entry: IEE4403D, from IEE3103D
e Exit: To IEE4203D if VARY CONSCLES, to

IEE4703D if VARY HARDCPY, to IEEQ0503D
if errors.

e Tables/Work Areas:
UCB

XSA, UCM, CVT, and

e Attributes: Reentrant, transient

e Control Sections: IEE4403D

IFE4503D: SVC 34 -- Periodic STOP Command
Handler Routine

This routine processes the commands STCOP

JOBNAMES/STATUS/SPACE/DSNANE .

e Entry: IEE4503D, from IEEO403D
e Exit: IEE0503D for errors, and return

to caller of sSvC 34

e Tables/Work Areas: XSA, M/S resident
data area, CVT, and UCM

e Attributes: Reentrant, self-
relocating, read-only, transient

e Control Section: IEF4503D

IEE4603D: SVC 34 -- VARY ONLINE/OFFLINE of
Cconsoles and Message Routing Routine

This routine processes VARY ONLINE/OFFLINE
for all MCS consoles and dispatches error
messages for syntax errors.

e Entry: IEE4603D, from IEE4203D to pro-
cess VARY CNLINE/OFFLINE or to dispatch
WTOs, IEE4903D to dispatch WTOs.

e Exit: IEE3103D when multiple units
specified and only non-console units
remain to be processed, IEE4203D if
unit field indicates more consocle (and
possible non-console) units remain to
ke processed, IEE0503D and IEE2103D for
errors, return to caller of SVC 34 if
all units have been processed.

e Tables/Work Areas: XSA, CVT, UCB, UCM,
and M/S resident data area.

e Attributes: Reentrant, self-
relocating, read-only, transient

e Control Sections: IEEU4603D
IEE4703D: SVC 34 -— VARY HARDCPY Processor
Routine

This routine processes VARY HARDCPY
commands .

e Entry: IEE4703D, from IEE3103D if com—
mand has no keyword operands, IEE4203D
if command has keyword operands.

e Exit: To IEE4103D to issue a hardcopy
message, IEE0503D or IEE2103D on
errors.

e Tables/Work Areas: XSA, UCM, M/S resi-
dent data area, CVT and UCB.

e Attrikutes: Reentrant, transient

e Control Sections: IEE4703D

IEE4803D: SVC 34 -- VARY CCNSOLE
Information Message Routine

This routine constructs a message which
shows the current status of the varied
console.

e Entry: IEE4803D, from IEE4903D
e Exit: To IEE4103D to issue the mes-

sage, IEE0503D for errors

e Tables/Work Areas:
UCB, CVT, and UCM

XSA, message area,

e Attrikutes: Reentrant, transient

e Control Sections: IEE4803D
IEE4903D: SVC 34 -- VARY CCNSCLE Frocessor
Routine

This module processes the VARY CCNSCLE
command.

e Entry: IEE4903D, from IEE4203D
e Exit: To IEE4803D to construct console

message, IEE4603D to dispatch error
messages

e Table/Work Areas:
ucM

Xsa, CcvT, UCB, and

e Attributes: Reentrant, self-
relocating, read-only, transient

e Control Sections: IEE4903D

IEFACTFK: Termination -- User Dummy
Accounting Routine

This routine takes the place of the user's
accounting routine when a user accounting
routine was specified at system generation,
but none was supplied.

e Entry: IEFACTLK

e Exit: Return to caller

e Control Section: IEFACTLK

IEFACTLK: Termination =-- User Accounting
Routine Linkage Routine

This routine provides linkage between the
termination routine and the user's account-
ing routine. It also sets up the required
parameter list -- including the execution
time of the job step -- and reads the first
record of the account control table.

e Entry: IEFACTLK

Appendix B: MFT Modules 127

e Exits: To user's accounting routine,
return to caller.

e Tables/Work Areas:
JACT, SACT, CMPA

LCT, JCT, SCT,

e Control Section: IEFACTLK
IEFACTRT: Termination =-- Dummy Accounting
Routine

This routine takes the place of the user-
suprlied accounting routine.

e Entry: IEFACTRT
e Exit: Return tb caller
e Control Section: IEFACTRT
IEFAVFAK: I/C Device Allocation -- Linkage

to IEFXV001

This routine passes control to the AVR rou-
tine (IEFXV001l) via and XCTL macro
instruction.

e Entry: IEFXV001

e Exit: XCTL to IEFXV001

e Control Section: IEFXV001

IEFCVFAK: I/C Device Allocation -- Linkage

to IEFMCVCL

This routine passes control to Mount
Control-Volume Routine IEFMCVOL via an XCTL
macro instruction to one of three entry
rpoints, IEFCVCL1l, IEFCVOL2, or IEFCVOL3.
e Entries: IEFCVOL1l, IEFCVOL2, IEFCVOL3
e Exits:
IEFCVCL3

XCTL to IEFCVOL1l, IEFCVOL2,

e Control Section: IEFCVOL1

IEFDSDRP: Data Set Descriptor Record
Processing Routine

This routine processes the job queue infor-
mation in the DSDR record to make a
restarting job's queue entry reflect the
environment when the checkpoint was taken.

e Entry Point: IEFDSDRP

e Exit: Return to caller

e Table/Work Areas: JCT, SCT, SIOT,
JFCB, TIiICT, UCB, CVT, VOLT, TCB, QMPA,
CsCB, DCBD, DCB, JFCBX, SCTX, LCT

e Attributes: Reenterable

e Control Section: IEFDSDRP

128

IEFIDMPM: Termination -- Message Module

This routine contains the messages used by
the Indicative Dump routine.

e Entry: IEFIDMPM

e Attributes: Non-executable

e Control Section: IEFIDMEM

IEFLOCDQ: OQueue Management -- Dequeue by
Jobname Routine

This routine searches a queue for a named
job or list of named jobs, and can return
information, or dequeue or cancel the job.

e Entry: LOCDQ, LOCCAN, LCC
e Exit: Return to caller

Tables/Work Areas:

QCCR, LTH

Attributes: Reenterable

e External References:
IEFRDWRT

IEFCNVRT,

e Page Reference: 71

IEFMCVOL: I/O Device Allocation -- Mount
control-vVolume Routine

This routine will have a control volume
mounted when a data set called for in a job
step cannot be located on any currently
mounted control volume.

e Entries: IEFCVOL1l, IEFCVCL2, IEFCVOL3

e Exits: IEFVM1, IEFVMCVL, IEFVM6, IEFYN
(IEFW41SD)

e Tables/Work Areas: ICT, JCT, SCT,
S10T, JFCB, VOLT, QMPA, UCB

e Attributes: Reusable

e Control Sections:
IEFCVOL3

IEFCVCL1, IEFCVCL2,

IEFORMAT: OQueue Management -- Queue
Formatting Routine

This routine places the work queue data set
in the format required by the MFT queue
management routines.

e Entry: IEFORMAT, from IEFSD055

e Exit: Return to IEFSD055

e Tables/Work Areas: DCB, DEB

e Attributes: Reusable

e Control Section: IEFORMAT

e Page Reference: 49

IEFQAGST:
Routine

Queue Management -- Assign/Start

This routine sets up an ECB/IOB and pre-
pares the queue manager parameter area for
the assign routine.

e Entry: IEFQAGST
e Exit: Return to caller

e Tables/Work Areas:
area, CMPA, CVT

/M resident data

e Attrikutes: Reenterable

e Control Section: IEFQAGST

e Page Reference: 55

IEFQASGQ:
Routine

Queue Management -- Assign

This routine assigns records to a queue
entry and assigns logical tracks as
required.

e Entry: IEFQASGN
e Exit: Return to caller

e Tables/Work Areas:
area, QMPRA, CVT

Q/M resident data

e Attributes: Reenterable

e Control Sections: IEFQASGN, IEFQASNM

e Page Reference: 55

IEFQBVMS:
Routine

Queue Management -- Control

This routine inspects the function code in
the queue manager parameter area and, on
the kasis of this code, branches to the
appropriate queue management routines.

e Entry: IEFQMSSS
e Exits: To IEFQAGST, IEFQMRAW,

IEFQMNCQ, or IEFQASGQ, return to caller

e Tables/Work Areas: QMPA

e Attributes: Reenterable

e Control Section: IEFQMSSS

IEFQDELQ:
Routine

Queue Management -- Delete

This routine makes those logical tracks
assigned to a queue entry available for
assignment to other queue entries.

e Entry: IEFQDELE
e Exit: Return to caller

e Tables/Work Areas: 1ITH, CMPA, CCR, Q/M
resident data area, CVT

e Attributes: Reenterable

e Control Section: IEFCDELE

e Page Reference: 59

IEFOMDQO 2
Routine

Queue Management -- Dequeue

This routine removes the highest priority
entry from an input queue or a system out-
Fut gqueue.

e Entry: IEFQMDG2
e Exit: Return to caller

e Tables/Work Areas:
data area, QCR, LTH

CVT, ¢/M resident

e Attributes: Reenterable

e Control Section: IEFQMDC2

e Page Reference: 59

IEFQMDUM: Queue Management -- Dumry Module

This routine prevents the occurrence of an
unresolved external reference to module
IEFQMSSS during system generation.

e Entry: IEFQMDUM

e Attributes: Non-Executable

e Control Section: IEFQMSSS

IEFOMLK1:
Routine

Queue Management -- Branch

This routine branches to the appropriate
queue management routine on the basis of an
assign or read/write function code issued
by an initiator.

e Entry: IEFQMSSS
e Exits: To IEFQASGC or IEFCMRAW

Appendix B: MFT Modules 129

e Tables/Work Areas: QMPA

e Attrikutes: Reenterable

e Control Section: IEFQMSSS

IEFCMNQQC:
Routine

Queue Management -- Enqueue

This routine places an entry in an input
queue or an output queue at the requested
priority.

e Entry: IEFCMNC2
e Exit: Return to caller

e Tables/Work Areas: CVT, Q/M resident
data area, QMPA, QCR, LTH

orened DCB/DEB and the master queue control
record at nucleus initialization time.
e Attributes: Non-executable

e Control Section: IEFJOB

IEFRCLN1: Restart Reader Linkage

This routine receives control from IEFVRRC
and LINKS to interpreter initialization
routine IEFVH1.

e Entry: IEFRCLN1

e Exit: XCTL to IEFVRRC at entry
IEFVRRCA

e Attributes: Reenterable
e Attributes: Reenterable
) e Control Section: IEFRCLN1
e Control Section: IEFQMNQ2
IEFCMRAW: Queue Management -- Read/Write IEFRCLN2: Restart Reader Linkage
Routine

This routine performs the conversion of a
TTR into a MBBCCHHR and reads or writes up
to 15 records of the work queue data set.

e Entry: IEFQMRAW
e Exit: Return to caller

e Tables/Work Areas: Q/M resident data
area, CMPA, CVT, IOB/ECE

e Attributes: Reenterable

e Control Section: IEFQMRAW

IEFQMUNC:
Routine

Queue Management -- Unchain

This routine removes a task from the queue
management no-work chain.
e Entry: IEFCMUNC

e Exit: Return to caller

Tables/Work Areas:
data area, CCR

CVT, Q/M resident

Attributes: Reenterable

Control Section: IEFQMUNC

IEFQRESD: (Cueue Management -- Resident
Main Storage Reservation Module

This routine reserves 140 bytes of resident
main storage for the queue-management- -

130

This routine receives control from IEFVRRC
and LINKS to interpreter initialization
routine IEFVH1.

e Entry: IEFRCLN2

e Exit: XCTL to IEFVRRC at entry
IEFVRRCB
e Attributes: Reenterable

e Control Section: IEFRCLN2

IEFRPREP: Termination -- Restart
Preparation Routing

This routine determines whether a job step
that has been abnormally terminated can be
restarted.

e Entry: IEFRPREP from IEFYNIMP

e Exit: Return to caller

Attributes: Reenterable

Tables/Work Areas:
QMPA

IcT, JCr, ScCr, PDQ,

control Section: IEFRPREP

IEFRSTRT: Restart SVC Issuing Routine

This routine issues the Restart SVC. When
called by its alias, IEFSMR, it issues the
Restart SVC and then returns to the caller.

e Entry: IEFRSTRT, IEFSMR

e Exit:
caller

SVC 52 (RESTART), return to

e Attrikutes: Reenterable

e Control Sections: IEFRSTRT

IEFSD017: Termination -- System Output
Intexface Routine

This routine provides an interface between
the termination entry routine and system
output processing.

e Entry: IEFSD017

e Exit: To IEFSD42Q

e Control Section: IEFSD017

IEFSD055: Queue Management -- Queue
Initialization Routine

This routine constructs a resident DEB/DCB,
passes control to the queue formatting rou-
tine or the first phase of system restart,
initializes the queue manager resident data
area, and (if required) passes control to
the second phase of the system restart
routine.

e Entry: IEFSD055, from IEFQINTZ
e Exits: To IEFORMAT, IEF300SD, or
IEF304SD

e Attributes: Reusable

e Control Section: IEFSD055

e Page Reference: 54

IEFSD070: System Output Writer —-—- Data Set

Writer Interface Routine

This routine passes control to the standard
data set writer or to the user-supplied
data set writer routine.

e Entry: IEFSD070
e Exits: To IEFSD087 or user-supplied

routine via LINK, or to IEFSD171 via
XCTL
e Attributes: Reenterable

e Control Section: IEFSD070

e Page Reference: 72

IEFSD078:
Routine

System OQutput Writer -- Linker

This routine determines whether the record
obtained from the output queue entry is a
DSB or SMB, and passes control, according-
ly, to the DSB or SMB processor.

e Entry: IEFSD078
e Exits: To IEFSD085, IEFSD086, or
IEFSD079
e Attributes: Reenterable
e control Section: IEFSD078
IEFSD079: System Qutput Writer -- Iink to

Queue Manager Delete Routine

This routine passes control to the delete
routine to delete the current output queue
entry.

e Entry: IEFSDO079

e Exits: To IEFQDELC and IEFSD082

Tables/Work Areas: QMPA

Attributes: Reenterable

Control Section: IEFSDO079

e Page Reference: 79

IEFSD080: System Output Writer --
Initialization Routine

This routine initializes the system output
writer by obtaining main storage for a pa-
rameter list and the output DCB, and open-
ing the output DCB.

e Entry: IEFSDO080
e Exit: To IEFSDO081

e Tables/Work Areas:
JFCB

pcB, CsCB, TIOT,

e Attributes: Reenterable

e Control Section: IEFSDO080

IEFSD081: System Cutput Writer -- Class
Name Setup Routine

This routine obtains main storage for, and
initializes, a list of ECB pointers, ECBs,
and queue management communication ele-
ments, depending on the system output
classes specified for the writer.

e Entry: IEFSDO081

e Exit: To IEFSDO082

e Tables/Work Areas: CSCB, ECB
e Attributes: Reenterable

e Control Section: IEFSD081

Appendix B: MFT Modules 131

IEFSD082: System Qutput Writer -- Main
Logic Routine

This routine obtains main storage for QMPAs
and internal work areas, dequeues output
queue entries, checks for operator com-
mands, and passes control to the appropri-
ate routine.

e Entry: IEFSD082
e Exits: IEFSD083, IEFSD084, IEFSDO78
e Tables/Work Areas: CSCB, ECB
e Attributes: Reenterable
e Control Section: IEFSD082
IEFSD083: System OQutput Writer -- Command

Processing Routine

This routine processes MODIFY and STOP com—
mands that apply to the writer.

e Entry: IEFSDO083
e Exits: To IEFSD081 or IEEVTCTL

e Takles/Work Areas:
ECB

CSCB, DCB, QMPA,

Attributes: Reenterable

Control Sections: IEFSD083; IEFSD83M

IEFSDO84: System Cutput Writer -- Wait
Routine

This routine waits for an entry to be
enqueued in an output queue corresponding
to a class available to the writer.

e Entry: IEFSDO8U4
e Exit: To IEFSD082

Reenterable

Attrikutes:

e Control Section: IEFSDO84

e Fage Reference: 72

IEFSD085: System Output Writer -- DSB
Handler Routine

This routine initializes for data set pro-
cessing, and informs the operator of the
pause option in effect.

e Entry: IEFSD085, IEF085SD, or IEF850SD
e Exit: To IEFSD171

e Attributes: Reenterable

132

e control Sections: IEFSD085, IEFSD85M

e Page Reference: 73

IEFSD086:
Handlerx

System Cutput Writer -- SMB

This routine initializes for message pro-
cessing, and extracts each message from the
current SMB.

e Entry: IEFSD086, IEF086SD
e Exits: To IEFSD088, IEFSD089,

IEFQMNQQ, IEFQMRAW, IEFSD085, IEFSDO078

e Tables/Work Areas:
TIOT, CSCB, 1TICB

SMB, UCB, CMPA,

e Attributes: Reenterable

e control Sections: IEFSD086, IEFSD86M

IEFSD087: System Qutput Writer -- Standard
Writer Routine

This routine gets records from a data set.

e Entry: IEFSDO087

e Exits: To IEFSD088, IEFSD089, IEFSDO078

Tables/Work Areas: DCB

Attributes: Reenterable

e Control Sections: IEFSD087, IEFSD87M

e Page Reference: 73

IEFSD088: System Qutput Writer --
Transition Routine

This routine handles the transition between
messages and data sets, and between data
sets.

e Entry: IEFSDO088

e Exit: To IEFSD089

e Tables/Work Areas: DCB

e Attributes: Reenterable

e Control Section: IEFSD088
IEFSD089: System OQutput Writer -- Put
Routine

This routine formats records as required
and issues PUT macro instructions to write
them on the output unit.

e Entry: IEFSDO089
e Exit: To IEFSDO088

e Tables/Work Areas: DCB

e Attributes: Reenterable

e Control Sections: IEFSD089, IEFSD89M

IEFSD094: System Output Writer -- Job
Separator Routine

This routine prints or punches a job name
and system output class designation on the
writer's output device.

e Entry: IEFSDO94
e Exits: To IEFSD088, IEFSD089,

IEFSD095, IEFSD078
e Attributes: Reenterable

e Control Section: IEFSD094

IEFSD095: System Output Writer -- Print
Line Routine

This routine constructs the block letters
used to separate jobs processed by a system
output writer when the output data set is
to be printed.

e Entry: IEFSD095

e Exit: Return to caller

e Attrikutes: Reenterable

e Control Section: IEFSD095
IEFSD096: System Output Writer -- Message
Module

This routine contains message headers and
texts for messages to the operator.

e Entry: IEFSD096
e Attributes: Non-executable

e Control Section: IEFSD096

IEFSD097: I/0 Device Allocation -- Wait
for Space Decision Routine

This routine makes the decision whether to
wait for direct access space, and provides
an interface with the I/0 device allocation
space request routine so that retry and
additional recovery passes may be made.

e Entry: IEFSD097

e Exit: Branch on register 14

e Tables/Work Areas: LCT, TIOT, UCB

e Attributes: Read-only, reenterable

e Control Section: IEFSD097

IEFSD168: Initiator -- Job Suspension

This routine causes a terminated job to be
reenqueued so that the job can be
reactivated.

e Entry: IEFSDO068
e Exit: Branch to IEFSD598 to purge

resources, branch to IEFSD510 to rein-
itiate job

e Tables/Work Areas:
SCD, SCT

QMPA, ICT, JCT,

e Attributes: Reenterable

e Control Section: IEFSD068

e External Reference:
IEFQMNQ2, IEFVSDRA

IEFCMRAW,

IEFSD171: System Output Writer -- Data Set
Delete Routine

This routine obtains records from an output
queue entry, and deletes system output data
sets.

e Entry: IEFSD071
e Exits: To IEEVLOUT, IEFCMNQ2,

IEF850sD, IEF086SD, IEFSD078, ox
IEFQMRAW

e Tables/Work Areas: DCB, SMB, UCB, CVT,
QMPA, TIOT, CSCB, TCB

e Attributes: Reenterable

e Control Sections: IEFSD071, IEFSD71M

IEFSD195: I/0 Device BAllocation -- Wait
for Deallocation Routine

This routine provides the I/C device allo-

cation routine with the ability to wait for
deallocation to occur during the execution

of another task, when allocation cannot be

completed because of current allocations.

e Entry: IEFVAWAT
e Exit: Return to caller

e Tables/Work Areas:
ICT, ECG, CSCB

JcT, scTr, sicT,

e Attributes: Read-only, reenterable

e Control Section: IEFSD095

Appendix B: MFT Modules 133

IEFSD21¢: I/C Device Allocation --
Allocation Entry Routine

This routine provides an interface for
entry to the I/O device allocation routine
operating in a multiprogramming environ-
ment.

e Entry: IEFW21SD
e Exits: To IEFVK, IEFVM or IEFWDO0OO

e Takbles/Work Areas:
CMPA, CVT

Jcr, LCT, SCT, SMB,

e Attributes: Read-only, reenterable

e Control Section: IEFWLISD

IEFSD22¢: Termination Routine -- Step
Terminate Exit Routine

This routine provides an interface between
the termination routine and the step delete
or alternate step delete routine when a
step has keen terminated.

e Entry: IEFW22SD
e Exit: Return to caller of termination
routine

e Tables/Woxrk Areas:
CMPA, ECB

JcT, SCT, SMB, LCT,

e Attributes: Read-only, reenterable

e Control Section: IEFW22SD

e Page Reference: 71

IEFSD300:
Routine

System Restart -- Initialization

This routine reads all QCRs and logical
track header records into main storage,
builds takles A, B, and C, and removes from
Table A all the LTH entries corresponding
to logical tracks in the free-track queue
or in one of the other queues.

e Entry: IEFSD300
e Exit: To IEFSD301

e Tables/Work Areas: System restart work
area, Table A, Table B, Table C

e Attributes: Reenterable

e Control Section: IEFSD300

IEFSD301: System Restart -- Purge Queue
Construction Routine

This routine searches Table A for the last
LTH corresponding to each queue entry,

134

determines the type of entry, and con-
structs the purge queue.

e Entry: IEFSD301
e Exit: To IEFSD302

e Tables/Work Areas: System restart work
area, Table A, Table C purge queue,
interpreter jobnames table

e Attributes: Reenterable

e Control Section: IEFSD301

IEFSD302:
Routine

System Restart -- Jobnames Table

This routine removes from Table A all log-
ical tracks assigned to dequeued input or
RJE queue entries, and builds a table of
jobnames for incomplete input and RJE queue
entries and dequeued input queue entries.

e Entry: IEFSD302
e Exit: To IEFSD303

e Tables/Work Areas: System restart work
area, Table A, Table C, and the
interpreter/initiator jobnames table

e Attributes: Reenterable

Control Section: IEFSD302

IEFSD303: System Restart -- Delete Routine

This routine creates a queue entry of the
remaining logical tracks and deletes that
entry, thus assigning those tracks to the
free-track queue.

e Entry: IEFSD303
e Exit: Return to caller

o Tables/Work Areas:
area, QMPA, Table A

System restart work

e Attributes: Reenterable

Control Section: IEFSD303

IEFSD304: System Restart -- Scratch Data
Sets_Routine

This routine informs the operator of the
names of jobs being processed by an inter-
preter, and scratches temporary data sets
generated for incomplete input queue
entries.

e Entry: IEFSD304
e Exits: To IEFSD055, IEFSD308

e Tables/Work Areas:
look-up takle

CVT, UCB address

e Attributes: Reenterable

e Control Section: IEFSD304

IEFSD305:
Routine

System Restart -- Reenqueue

This routine dequeues the entries in the
purge queue and reengueues them in the
appropriate input or output queue and
informs the operator of the names of jobs
in the process of initiation.

e Entry: IEFSD305
e Exit: IEFSD304

e Tables/Work Areas: System restart work
area, purge queue, JCT, SCT, JFCB, DSB,
SCD, SIOT.

e Attrikutes: Reenterable

e Control Section: IEFSD305

IEFSD308: System Restart -- Scratch Data
Sets Routine

This routine scratches the temporary data
sets generated for incomplete input queue
entries.

e Entry: IEFSD308

e Exit: Return to caller

e Tables/Work Areas:
CVT, VTOC, DER

DsCB, DCB, UCB,

e Attributes: Reenterable

e Control Section: IEFSD308

IEFSD31¢C: Termination Routine -- Job
Texrmination Exit Routine

This routine provides an interface between
the termination routine and the step delete
or alternate step delete routine when the
last step of a job has been terminated.

e Entry: IEFW31SD
e Exit: Return to caller of terwination
routine

e Tables/Work Areas: JCT, SCT, SMB,
CMPA, ECB, CVT, M/S resident data area

e Attributes: Read-only, reenterable

e Control Section: IEFW31SD

IEFSD310: System Restart -- TTR and NN to
MEBCCHHR Conversion Routine

This routine converts a relative record
address (NN) or a relative track and record
address (TTR) to an actual disk address
(MBBCCHHR) .

e Entry: IEFSD310
e Exit: Return to caller

e Tables/Work Areas: CVT

e Attributes: Reenterable

e Control Section: IEFSD310

IEFSD311:
Module

Queue Management -- Message

This routine contains the messages required
by the queue initialization routine
(IEFSD055).

e Entry: IEFSD311, SD55MsGl, SD55MsG2,

SD55MSG3
e Attributes: Non-executable

e Control Section: IEFSD311

IEFSD312: System Restart -—- Message Module

This routine contains the messages required
by the system restart routines.

e Entry: IEFSD312, SD304MG1l, SD304MG2,

SD305MG1
e Attributes: Non-executable

e Control Section: IEFSD312

IEFSDU41Q: I/0 Device Allocation --
Allocation Exit Routine

This routine provides an interface for exit
from the I/0 device allocation routine
operating in a multiprogramming environ-
ment.

e Entry: IEFW41SD, IEFW1FAK, IEFW2FAK
e Exits: To IEFVM, or return to caller

e Tables/Work Areas:
QOMPA

Jcr, ICT, SCT, SMB,

e Attributes: Read-only, reenterable

e Control Section: IEFW41SD

IEFSDU42Q: Termination Routine --
Termination Entry Routine

This routine provides an interface for
entry to the termination routine orerating

Appendix B: MFT Modules 135

in a multiprogramming environment. it also
provides an interface for entry to the LOG
function if a LCG data set is scheduled to
be added to the SYSOUT queue.

e Entry: IEFW42SD
e Exit: To IEFYN

e Tables/Work Areas:
TIOT

JCT, SCT, SMB, LCT,

e Attrikutes: Read-only, reenterable

e Control Section: IEFW42SD
IEFSD510: Initiator -- Job Selection
Routine

This routine selects a system or problem
program job. This module executes only in
a large (scheduler-size) partition.

e Entry: IEFSD510
e Exits: Branch to IEFSD511 or IEFSD515,

LINK to IEFSD519, XCTL to IEFSD589,
SMALTERM, or IEEVSTAR

e Tables/Work Areas:
SPIL, CVT, TCB, PIR

LOT block, CSCB,

e Attributes: Read-only, reenterable

e Control Section: IEFSD510
e External References: IEFQOMDQQ,
IEFCMUNC
e Page Reference: 63
IEFSD511: Initiator -- Job Initiation
Routine

This routine initializes informaticn per-
taining to a job.

e Entry: IEFSD511
e Exit: Branch to IEFSD541

e Tables/Work Areas: Life-of-Task Block,
CSCB, JCT, SCT, SCD, PIB, IOB2

e Attributes: Read-only, Reenterable

e Control Section: IEFSD511

e External References: IEFQMRAW

e Fage Reference: 68

136

IEFSD512:
Routine

Initiator -- Step Initiation

This routine passes control to allocation
as a closed subroutine via a LINK macro
instruction. If an allocation error
occurs, it passes control to the Alternate
Step Deletion routine. Ctherwise, it con-
tinues normally and schedules a job step.

e Entry: IEFSD512
e Exits: Branch to IEFSD513, IEFSD516,

or IEFSD518, XCTL to IEFSD510

e Tables/Work Areas: I1OT Block, JCT,
SsCT, APL, TICT, CSCB, ICBl1, ICB2

e Attributes: Read-only, reenterable

e Control Section: IEFSD512
e External References: IEFCMRAW,
IEFSD556, IEFSD514
e Page Reference: 68
IEFSD513: Initiator -- Problem Program
Interface

This routine prepares the partition for
problem program execution by moving the
TIOT to the highest available storage area.

The routine also opens JOBLIB and FETCH
DCBs, if required. A final check is made
to determine if a CANCEL command has been
received for the job before the problem
program is brought into the partition and
given control. If scheduling was performed
for a small partition, IEFSD513 commruni-
cates with the small partition.

e Entry: IEFSD513
e Exits: XCTL to problem program, ABEND,
or to IEFSD510

e Tables/Work Areas: IOT Block, Transfer
Parameter List, TICT, User's Parameter
List, TCB, CVT, PIB, CSCB, SPIl, APL,
JCT, SCT, DCB

e Attributes: Read-only, reenterable

e Control Section: IEFSD513

e Page Reference: 69

IEFSD514: Queue Management -- Table
Breakup Routine

This routine reads and writes tables which
may be required by the job scheduler. The
routine breaks the tables into 176-byte
records, writes the records on disk, and

retrieves the records from disk to recon-
struct the takles in main storage.

e Entry: IEFSD514
e Exit: Return to caller

e Tables/Work Areas:
List

QMPA, TBR Parameter

e Attributes: Read-only, reenterable

e Control Section: IEFSD514
e External References: IEFQASGN,
IEFCMRAW
e Page Reference: 59
IEFSD515: Initiator -- Step Deletion
Routine

This routine retrieves the TIOT and Life-
of-Task Block from disk, reads in the JCT
and SCT, and kranches to termination, which
is used as a closed subroutine. It also
reads in the SCT for the next step to be

scheduled, if required.
e Entry: IEFSD515, SMALTERM, or GO
e Exits: XCTL to IEFSD512 or Branch to

IEFSD517 or IEFSD510

e Tables/Work Areas: Life-of-Task Block,
Terminate Parameter List, CVT, TCB,
PIB, ICB, CSCB, DCB, JCT, SCT, SPIL

e Attributes: Read-only, reenterable

e Control Section: IEFSD515

e External References: IEFQMRAW,
IEFSD514, IEFSD42Q, IEFSD598

e Page Reference: 70

IEFSD516: Initiator -- Alternate Step
Deletion Routine

This routine provides an interface with
termination when an allocation error occurs
during step initiation. Termination is
used as a closed subroutine. If required,
this routine reads the SCT of the next step
to support job flushing.

e Entry: IEFSD516
e Exits: Branch to IEFSD512 or IEFSD517

e Tables/Work Areas: Life-of-Task block,
CSCB, Terminate Parameter List, SCT

e Attributes: Read-only, reenterable

e Control Section: IEFSD516

e External References: IEFCMRAW,
IEFSDU42Q
e Page Reference: 71
IEFSD517: Initiator -- Job Deletion
Routine

This routine deletes the disk queue entry
fcr a terminated job and unchains and
deletes the CSCB for the job.

e Entry: IEFSD517
e Exit: Branch to IEFSD510

e Tables/Work Areas:
klock, SPIL

CSCB, Life-of-Task

e Attributes: Read-only, reenterable

e Ccontrol Section: IEFSD517
e External References: IEFQDELE,
IEFSD598
e Page Reference: 71
IFFSD518: Initiator -- Partition Recovery
Routine

This routine determines the status of main
storage required for a checkpoint/restart.

e Entry: IEFSD518
e Exits: Return to IEFSD512

e Tables/Work Areas: SPIL, CVT, TCB,
JCT, PIB, LOT, CMPA, CSCB

e Attributes: Reenterable

e Control Section: IEFSD518

e External Reference:
IEFQMNQ2, IEFSD598

IEFCMRAW,

e Page Reference: 71

IEFSD519: oQueue Management -- Dequeue by
Jobname Interface Routine

This routine builds a seven-word parameter
list used by IEFLOCDC to locate a job by
jobname on the checkpoint/restart internal
queue.

e Entry: IEFSD519

e Exit: Return to 1IEFSD510

e Tables/Work Areas: ICT, PIB

Appendix B: MFT Modules 137

s Attributes: Reenterable

e Control Section: IEFSD519

e External Reference:

e Page Reference: 71

IEFSD530: Interpreter -- Transient Reader

IEFLOCDQ, IEFOMRAW

Suspend Routine

This routine closes the reader input data
set and procedure library, and saves data
required to restore the reader.

e Entry: IEFSD530
e Exit: Return to caller

e Tables/Work Areas: IWA, TIOT, LWA,
CMPA, CVT, UCB, MSRC, PIEB, CSCB

e Attrikutes: Read-only, reenterable

e Control Section: IEFSD530

e External References: IEFSD514, IEF-
CMRAW, IEFCASNM, IEFQASGN

e Page Reference: 62

IEFSD531: Interpreter -- Transient Reader
Restore Routine

This routine restores the information
required to "restart"™ a transient reader
after it has been suspended. It reogpens
the reader input data set and procedure
library.

e Entry: IEFSD531
e Exit: XCTL to IEFVHCE

e Tables/Work Areas: IWA, TIOT, QMPA,
CVT, UCB, MSRC, PIB, CSCR

e Attributes: Read-only, reenterable

e Control Sections: IEFSD531, IEFPH2

e External References: IEFSD514, IEF-
OMRAW, IEFQASNM, IEFQASGN

e Page Reference: 62

IEFSD532: Interpreter -- Transient Reader
Suspend Tests

This routine determines the status of a
transient reader. IEFSD532 receives con-
trol from IEFVHH after a job has been
enqueued.

' e Entry: IEFKG

138

e Exits: XCTL to IEFVHN or IEFSD530, or
kranch to IEFVHHB

e Tables/Work Areas:
PIB, CVT

IWA, LWA, CMPA,

e Attributes: Read-only, reenterable

e Control Section: IEFKG

e Page Reference: 62

IEFSD533: Interpreter -- Interface Routine

This routine provides an interface between
the reader/interpreter and system task
control.

e Entry: IEFIRC
e Exits: XCTIL to IEFSD537. RETURN to

S1C if error.

e Tables/Work Areas: CSCB, CVT, CMPA

e Attributes: Reenterable, read-only

e Control Section: IEFIRC
IEFSD534: System Task Control -- LPSW
Routine

This routine places system task control in
problem program mode by loading a ESW.

e Entry: IEFSD534
e Exit: IEFVSTRT

Tables/Work Areas: None

Attributes: Reenterable

Control Section: IEFSD534

IEFSD535: System Task Control -- FProblem
Program Mode Routine

This routine puts system task control in
problem program mode for ABEND.

e Entry: IEFSD535
e Exit: IEEVICTL

Tables/Work Areas: None

Attributes: Reenterable

e Control Section: IEFSD535

IEFSD536:
Routine

Interpreter -- Operator Message

This routine writes a message to the opera-
tor when an I/0 error or CPC full condition

has occurred. The routine also sets proper
indicators to cause a cleanup of the cur-
rent jok.

e Entry: IEFVHR
e Exits: Return to caller, XCTL to

IEFVHN, or LINK to IEFSD308

e Tables/Work Areas: IWA, JCT, LWA, UCB,
CVT, PIB, CSCB, Master Scheduler resi-
dent data area

e Attributes: Read-only, reenterable

e Control Section: IEFVHR

e Page Reference: 61

IEFSD537: Interpreter -- Linkage Module

This routine provides an interface between
system task control and a reader. It also
frees the interpreter entrance list (NEL)
and associated areas if a reader is being
terminated or suspended.

e Entry: IEFSD537
e Exits: LINK to IEFVH1, or IEFSD531, or

Return to system task control

e Tables/Work Areas: NEL

e Attributes: Read-only, reenterable

e Control Section: IEFSD537

IEFSD540: Initiator -- Linkage to IEFSD541

This routine provides an interface linkage
to IEFSD541 via an XCTL macro instruction.

e Entry: IEFSD540
e Exit: XCTL to IEFSD541

Tables/Work Areas: Same as caller

e Attributes: Read-only, reenterable
e Control Section: IEFSD540
IEFSD541: Initiator -- Data Set Integrity

This routine enqueues on explicit data sets
and thus prevents concurrent, and impair-
ing, access ketween tasks.

e Entry: IEFSD5u41

e Exit: Branch to IEFSD512

e Tables/Work Areas: LOT Rlock, IOB1,
I0oB2, JCT, SCT, CSCB, SPIL, DSENQ
Table, Minor Name List, ENQ supervisor
list.

Attributes: Read-only

Control Section: IEFSD541

External References: IEFCMRAW

Page Reference: 68

IEFSD551:
to_ IEFXJIMP

I/0 Device Allocation -- Linkage

This routine provides an interface linkage
to IEFXJIMP via an XCTL macro instruction
in the 30K design package.

e Entry: IEFV15XL
e Exit: XCTL to IEFXJIMP

e Tables/Work Areas: Same as caller

e Attributes: Read-only, reenterable

e Control Section: IEFV15XL

IEFSD552:
to IEFXJIMP

I/0 Device Allocation -- Linkage

This routine provides an interface linkage
to IEFXJIMP via an XCTL macro instruction
in the 30K design package.

e Entry: IEFXJX5A
e Exit: XCTL to IEFXJIMP

o Tables/Work Areas: Same as caller

e Attributes: Read-only, reenterable

e Control Section: IEFXJX5A

IEFSD553: Initiator -- Linkage to IEFSD512

This routine provides a linkage to IEFSD512
via an XCTL macro instruction.

e Entry: IEFSD512
e Exit: XCTL to IEFSD512

Tables/Work Areas: Same as caller

e Attributes: Read-only, reenterable

e Control Section: IEFSD512

IEFSDS554: Initiator -- Linkage to IEFSD516

This routine provides a linkage to IEFSD516
via an XCTL macro instruction.

e Entry: IEFSD554
e Exit: XCTL to IEFSD516

e Tables/Work Areas: Same as caller

Appendix B: MFT Modules 139

e Attributes: Read-only, reenterable

e Control Section: IEFSD554

IEFSD555: Initiator -- Linkage to IFFSD510

This routine provides linkage to IEFSD510
via an XCTL macro instruction.

e Entry: IEFSD555
e Exit: XCTL to IEFSD510

e Tables/Work Areas: Same as caller.

e Attributes: Read-only, reenterable

e Control Section: IEFSD555

IEFSD556: Initiator -- Set Problem Program
State Return

This routine establishes the allocation
routine in a problem program state, upon
entry.

e Entry: IEFSD556
e Exit: LESW to IEFW21SD

e Tables/Work Areas: Same as caller.

e Attrikutes: Read-only, reenterahle

e Control Section: IEFSD556

IEFSD557: 1I/C Device Allocation --
Intexrface Routine

This routine provides an interface between
system task control and allocation.

e Entry: IEFW21SD
e Exit: IEFWSD21
e Tables/Work Areas: ECE, IOB
e Attrikutes: Reenterable
e Control Section: IEFSD557
IEFSD558: Initiator -- Linkage to IEFSD511

This routine provides a linkage to IEFSD511
via an XCTL macro instruction.

e Entry: IEFSD558
e Exit: IEFSD511

e Attributes: Read-only, reenterable

e Control Section: IEFSD558

140

IEFSD559: Initiator -- ILinkage to IEFSD515

This routine provides a linkage to IEFSD515
via an XCTL macro instruction.

e Entry: SMALTERM
e Exit: IEFSD515

e Attributes: Read-only, reenterable

e Control Section: IEFSD559

IEFSD567: Nucleus -- Device-End Interrupt
Handler Routine

This routine handles unsolicited device-end
interrupts from a disk storage unit.

e Entry: IEFSD567

e Exit: Return to caller

e Tables/Work Areas: None

e Attributes: Reenterable

e Ccontrol Section: IEFSD567

e External Reference: Communications

Task 1TICB

IEFSD569: Master Scheduler --
Initialization Routine

This routine initializes the communications
task and the system log. It issues the
READY message and formats the job queue, as
well as typing out the automatic comrmands
and invoking processing of the automatic
commands. This routine establishes parti-
tioning of main storage at system initiali-
zation and readies the partitions for the
START command. This routine is callea out
at system generation by the macro,
SGIEEQVV.

e Entry: IEFSD569
e Exit: IEEO0503D, Branch to dispatcher

e Attributes: Read-only, non-reenterable

Control Section: IEFSD569

e Page Reference: 48

IEFSD572: Queue Management -- Interpreter/
Queue Manager Interlock Routine

This routine determines if a possible
interlock condition exists between the
queue manager and the reader. The routine
issues a message requesting the operator to
reply with either WAIT, to wait for space
to be freed, or CANCEL, to cancel the job.

e Entry: IEFSD572
e Exits: ABEND, or return to caller

e Attrikbutes: Read-only, reenterable

e Control Section: IEFSD572, IEFSD573

e Entry: IEFSD597
e Exit: Return to caller

e Tables/Work Areas: Major QCB, Minor
QCB, QEL, TCB, SVRB, CVT, ABTERM

e Attributes: Read-only, reenterable,

e External Reference: IEFQDELQ disabled

e Page Reference: 57 e Control Section: IEFSD597
IEFSD587: System Task Control -- Linkage IEFSD598: Initiator -- ENQ/DEC Purge
to IEFSD535 Routine

This routine provides a linkage to IEFSD535
via a LINK macro instruction.

e Entry: IEFSD587
e Exit: IEFSD535

e Attributes: Read-only, reenterable

e Control Section: IEFSD587

IEFSD588:
to IEE534SD

System Task Control -- Linkage

This routine links to IEE534SD to bring the
suspended reader into the assigned parti-
tion so that upon return, the initiator
will be in supervisor state.

e Entry: IEFSD588

e Exit: LINK to IEE534SD

e Tables/Work Areas: Same as caller

e Attributes: Read-only, reenterable

e Control Section: IEFSD588

IEFSD589: Initiator -- Linkage to IEESD534

This routine links to system task control
so that upon return, the initiator will be
in supervisor state.

e Entry: IEFSD589
e Exit: LINK to IEFSD534

e Tables/Work Areas: Same as caller

e Attributes: Read-only, reenterable

e Control Section: IEFSD589

IEFSD597: Initiator -- Shared DASD ENQ/DEQ

Purge Routine

This routine is the purge routine for sys-
tems that include the shared DASD feature.
In addition to purging all resources
enqueued by a job step, but not dequeued,
IEFSD597 also releases reserved devices.

This routine purges all resources enqueued
by a job step, but not dequeued.

e Entry: IEFSD598
e Exit: Return to caller

e Tables/Work Areas: Major CCB, Minor
QCB, QEL, TICB, SVRB, CVT, ABTERM

e Attributes:
disabled

Read-only, Reenterable,

e Control Section: IEFSD598

e Page Reference: 70

IEFSD599:
Module

Initiator -- Small Partition

This routine provides an interface with the
scheduler in a large partition to initiate
and terminate small partitions.

e Entry: IEFSD599,SMALLGC
e Exits: ABEND, or XCTL to problem pro-

gram or writer

e Tables/Work Areas:
rameter list (APL)

SPIL, allocate pa-

e Attributes: Read-only, reenterable

e Control Section: IEFSD599

e External Reference: IEFCMUNC

e Page Reference: 66

IEFVDA:
Processor

Interpreter -- DD Statement

This routine constructs and adds entries to
a JFCB and SIOT from the complete logical
DD statement in the internal text buffer.

e Entry: IEFVDA
e Exit: To IEFVHF

e Takbles/Work Areas:
JFCB, JCB, SCT

IwA, 1WA, SIOT,

Appendix B: MFT Modules 141

e Attributes: Read-only, reenterable

e Control Section: IEFVDA

IEFVDBSD: Interpreter -- Data Set Name
Takle Construction Routine

This routine creates a data set name table.

e Entry: IEFVDBSD

e Exit: To IEFVDA

e Attributes: Reenterable

e Control Section: IEFVDBSD
IEFVEA: Interpreter -- EXEC Statement
Processor

This routine constructs or updates an SCT,
and, if necessary, a joblib JFCB and SIOT
from the complete logical EXEC statement in
the internal text buffer.

e Entry: IEFVEA, from IEFVFA
e Exit: To IEFVHF

e Tables/Work Areas: IWA, EXEC work
area, interpreter key table, JCT, SCT,
SIOT, ¢CMPA, procedure override table.

e Attributes: Read-only, reenterable

e Control Section: IEFVEA

IEFVFA: Interpreter -- Scan Routine

This routine scans the card image of a JOB,
EXEC, or DD statement, performs error
checking of JCL syntax, builds internal
text, and, when a complete logical state-
ment (including continuations and cver-
rides) has been scanned, passes control to
the appropriate statement processor.

e Entry: IEFVFA
e Exits: To IEFVGM, IEFVHC, IEFVHF, IEF-
VJA, IEFVDA, I1IEFVEA

e Tables/Work Areas: IWA, scan routine
work area, interpreter key table, QMPA,
internal text buffer, scan dictionary.

e Attributes: Read-only, reenterable

e Control Section: IEFVFA

IEFVFB: Interpreter -- Symbolic Parameter
Processing Routine

This routine processes symbolic parameters

by creating symbolic parameter table buffer
entries to assign values to symbolic param-
eters, and extracts those values and places

142

them in the intermediate text buffer when a
symbolic parameter is used.

e Entry: IEFVFB
e Exit: Return to caller

e Tables/Work Areas: IWA, 1WA SYMBUF,
Intermediate Text Buffer, ¢MPA

e Attributes: Read-only, reenterable

e Control Section: IEFVFB
IEFVGI: Interpreter -- Dictionary Entry
Rcutine

This routine constructs entries for the
refer-back dictionary.

e Entry: IEFVGI
e Exit: Return to caller

e Tables/Work Areas: Refer-back dic-
tionary, auxiliary work area, IWA, COMPA

e Control Section: IEFVGI
IEFVGK: Interpreter -- Get Farameter
Routine

This routine searches the internal text
buffer for the next parameter, performs
basic error checking, and passes control to
the appropriate keyword routine.

e Entry: IEFVGK
e Exit: Return to caller

e Tables/Work Areas: ILocal work area,
IWA, internal text buffer, KBT, PFDT.

e Control Section: IEFVGK
IEFVGM: Interpreter -- Message Processing
Routine

This routine constructs SMBs containing
interpreter error messages and JCL state-
ment images, assigns space for these SMBs
in the message class output queue entry,
and writes the SMBs into the entry.

e Entry: IEFVGM
e Exit: Return to caller

e Tables/Work Areas:
IWA, JCT

CMPA, SMB, SCD,

e Attributes: Reenterable, character
dependence type C

e Control Section: IEFVGM

IEFVGMl: Interpreter -- Message Module

This routine contains interpreter messages
01-07.
e Attributes: Non-executable

e Control Section: IEFVGM1

IEFVGM2: Interpreter -- Message Module

This routine contains interpreter messages
08-0F.
e Attributes: Non-executable

e Control Section: IEFVGM2

IEFVGM3: Interpreter -- Message Module

This routine contains interpreter messages
10-17.
e Attrikutes: Non-executable

e Control Section: IEFVGM3

IEFVGM4: Interpreter -- Message Module

This routine contains interpreter messages
18-1F.
e Attributes: Non-executable

e Control Section: IEFVGM4

IEFVGMS5: Interpreter -- Message Module

This routine contains interpreter messages
20-27.
e Attrikutes: Non-executable

e Control Section: IEFVGMS

IEFVGM6: Interpreter -- Message Module

This routine contains interpreter messages
28-2F.
e Attributes: Non-executable

e Control Section: IEFVGM6

IEFVGM7: Interpreter -- Message Module

This routine contains interpreter messages
30-37.
e Attributes: Non-executable

e Control Section: IEFVGM7

IEFVGM8: Interpreter -- Message Module

This routine contains interpreter messages
50-57.
e Attributes: Non-executable

e Control Section: IEFVGMS8

IEFVGM9: Interpreter -- Message Module

This routine contains interpreter messages
58-5F.
e Attributes: Non-executable

e Control Section: IEFVGM9

IEFVGM10: Interpreter -- Message Module

This routine contains interpreter messages
60-67.
e Attributes: Non-executable

e Control Section: IEFVGM10

IEFVGM1l1l: Interpreter -- Message Module

This routine contains interpreter messages
68-6F.
e Attributes: Non-executable

e Control Section: IEFVGNM11

IEFVGM12: Interpreter -- Message Module

This routine contains interpreter messages
70-77.
e Attributes: Non-executable

e Control Section: IEFVGM12

IEFVGM13: Interpreter -- Message Module

This routine contains interpreter messages
78-7F.
e Attributes: Non-executable

e Control Section: IEFVGM13

IEFVGMl4: Interpreter -- Message NModule

This routine contains interpreter messages
88-8F.
e Attributes: Non-executable

e Control Section: IEFVGM1l4

IEFVGM15: Interpreter Message -- Module

This routine contains interpreter messages
90-97.

Appendix B: MFT Modules 143

e Attrikutes: Non-executable

e Control Section: IEFVGM15

IEFVGM16: Interpreter -- Message Module

This routine contains interpreter messages
AQ-A7.
e Attributes: Non-executable

e Control Section: IEFVGM16

IEFVGM17: Interpreter -- Message Module

This routine contains interpreter messages
56-5D.
e Attributes: Non-executable

e Control Section: IEFVGM17

IEFVGM18: Interpreter -- Message Module

This routine contains interpreter messages
80-87.
e Attributes: Non-executable

e Control Section: IEFVGM18

IEFVGM19: Interpreter -- Message Module

This routine contains interpreter messages
3E-45.
e Attributes: Non-executable

e Control Section: IEFVGM19

IEFVGM70: Interpreter -- Message Module

This routine contains interpreter messages
38-3F.
e Attributes: Non-executable

e Control Section: IEFVGM70

IEFVGM78: Interpreter -- Message Module

This routine contains interpreter messages
08-0D.

e Exit: Return to caller

e Tables/Work Areas: Auxiliary work
area, IWA, OMPA, refer-back dicticnary

e Control Section: IEFVGS
IEFVGT: Interpreter -- Test and Store
Routine

This routine performs operations on a pa-
rameter as indicated in the appropriate pa-
rameter descriptor table entry.

e Entry: IEFVGT
e Exit: Return to keyword routine

e Tables/Work Areas: Internal text buff-
er, PDT, local work area, IWA

e Control Section: IEFVGT

IEFVHA: Interpreter -- Get Routine

This routine reads statements from the
input stream and the procedure library.

e Entry: IEFVHA
e Exits: IEFVHC, IEFVHB, IEFVHAA,

IEFSD536, IEFVGM

e Tables/Work Areas: IWA, JCT, DCB

e Attributes: Read-only, reenterable

e Control Section: IEFVHA
IEFVHAA: Interpreter -- End-of-File
Routine

This routine determines the conditions
under which an end-of-file condition has
occurred, and sets switches and passes con-
trol accordingly.

e Entry: IEFVHAA
e Exits: IEFVHC or IEFVHN

e Tables/Work Areas: IWA, JCT

e Attributes: Non-executable e Attributes: Read-only, reenterable
e Control Section: IEFVGM78 e Control Section: IEFVHAA
IEFVGS: Interpreter -- Dictionary Search IEFVHB: Interpreter -- DD * Statement
Routine Generator Routine

This routine searches the refer-back dic-
tionary for the address of a previously-
defined SCT, SIQT, or JFCE.

e Entry: IEFVGS

144

This routine generates a "SYSIN DD *" sta-
tement for data in the input stream, when
no such statement was included.

e Entry: IEFVHB

e Exits: To IEFVHC, IEFVHA, IEFVGM

Tables/Work Areas: IWA, JCT

e Attrikutes: Read-only, reenterable
e Control Section: IEFVHE
IEFVHC: Interpreter -- Continuation

Statement Routine

This routine determines whether the current
statement should be a continuation, and, if
so, determines whether it is a valid con-
tinuation statement.

e Entry: IEFVHC
e Exits: To IEFVHEB, IEFVHCB, IEFVGM

e Tables/Work Areas: IWA, JCT

e Attributes: Read-only, reenterable

e Control Section: IEFVHC

IEFVHCB: Interpretexr -- Verb
Identification Routine

This routine identifies the verb in a con-
trol statement.

e Entry: IEFVHCB
e Exits: To IEFVHE, IEFVHM, IEFVHA,

IEFVGM, IEFVHL

e Tables/Work Areas: IWA, JCT

e Attrikutes: Read-only, reenterable

e Control Section: IEFVHCE

IEFVHE: Interpreter -- Router

This routine determines the conditions
under which it was entered, and passes con-
trol to the appropriate routine.

e Entry: IEFVHE
e Exits: To IEFVHEB, IEFVHH, IEFVHEC

Tables/Work Areas: IWA

e Attrikutes: Read-only, reenterable

e Control Section: IEFVHE

IEFVHEB: Interpreter -- Pre-Scan
Preparation Routine

This routine determines whether a message

is required or additional work queue space
is required kefore a statement is scanned.
If so, it causes the message to be written
or the work queue space to be assigned.

e Entry: IEFVHEB
e Exits: To I1IEFVHC, IEFVGM, IEFVHG,
IEFVFA

e Tables/Work Areas: IWA, JCT, SCT, CMPA

e Attributes: Read-only, reenterable

e Control Section: IEFVHEB
IEFVHEC: Interpreter -- Job Validity Check
Routine

This routine determines whether an SCT has
been kuilt for the current job; if not, the
routine constructs an SCT.

e Entry: IEFVHEC
e Exits: To IEFVGM, IEFVHH

Tables/Work Areas: IWA, JCT, SCT

e Attributes: Read-only, reenterable
e Control Section: IEFVHEC
IEFVHF: Interpreter -- Post-Scan Routine

This routine determines the conditions
under which it was entered, and passes con-
trol accordingly.

e Entry: IEFVHF
e Exits: To IEFVHG, IEFVHEB, IEFVHCB,
IEFVHA

e Tables/wWork Areas: IWA, CWA

e Attributes: Read-only, reenterable

e Control Section: IEFVHF

IEFVHG: Interpreter -- CPC Routine

This routine writes system input data sets
on a direct-access device. If IEFVHG is
unable to obtain enough space to complete
writing a data set, control passes to
IEFVHR. If the input reaches end-of-file,
control passes to IEFVHARA. If a /* is
found following DD DATA, control passes to
IEFVHA to read the next record. If a // is
found, control passes to IEFVHC to identify
the verb.

e Entry: IEFVHG
e Exits: To IEFSD536, IEFVGM, IEFVHQ,

IEFVHAA, IEFVHA, IEFVHC, or IEFVHB

e Tables/Work Areas: IWA, JCT, SICT,
VOLT, TIOT, LWA, sSCT, JFCB, UCB, CMPA,
CWA

Appendix B: MFT Modules 145

e Attributes: Read-only, reenterable

e Control Section: IEFVHG

e Page Reference: 61

IEFVHH: Interpreter -- Job and Step
Enqueue Routine

This routine places the SCT, DSNT, VOLT,
and JCT in the job's queue entry, and
determines whether the interpreter is to
enqueue jobs.

e Entry: IEFVHH
e Exits: To IEFKG, IEFVHQ, IEFSD532,
IEFVHHB, IEFVEN
e Takles/Work Areas: 1IWA, JCT, SCT,
CMPA, NEL
e Attributes: Read-only, reenterable
e Control Section: IEFVHH
IEFVHHB: Interpreter -- Housekeeping
Routine

This routine initializes for merging a
cataloged procedure.

e Entry: IEFVHHB
e Exits: IEFVHA, IEFVHERB

e Takles/Woxk Areas: IWA

e Attributes: Read-only, reenterable

e Control Section: IEFVHHB
IEFVHL: Interpreter -- Null Statement
Routine

This routine determines the conditions
under which the null statement was encoun-

tered, and passes control to the proper
routine.
e Entry: IEFVHL
e Exits: To IEFVHCB, IEFHEC, IEFVHE,
IEFVHA

e Tables/Woxk Areas: IWA, JCT

e Attrikutes: Read-only, reenterable

e Control Section: IEFVHL
IEFVHM: Interpreter -- Command Statement
Routine

This routine tests for valid command verbs,
and, if the verb is valid, issues SVC 34 to
schedule execution of the command.

146

e Entry: IEFVHM
e Exits: To IEFVHA, IEFVGM

e Tables/Work Areas: IWA, JCT

e Attributes: Read-only, reenterable

e Control Section: IEFVHM

IEFVHN: Interpreter -- Termination Routine

This routine closes the input stream and
procedure library data sets, frees main
storage used by the interpreter, and builds
the interpreter exit list.

e Entry: IEFVHN
e Exit: Return to caller

e Tables/Work Areas:
OMPA

Iwa, JCT, CSCB,

e Attributes: Read-only, reenterable

e Control Section: IEFVHN

e Page Reference: 62

IEFVHQO: Interpreter -- Queue Management
Interface Routine

This routine is a common interface between
the queue management routines and the
interpreter. If an I/C error occurs,
IEFVHR receives control. ¢ueue management
may be unable to allocate space for a job's
input data. If, in this case, the operator
replies CANCEL to the message which is
issued, IEFVHG receives control.

e Entry: IEFVHQ
e Exits: Return to caller, IEFSD536, or
IEFVHG

e Tables/Work Areas:
CSCB

IWA, JCT, CMPA,

e Attributes: Read-only, reenterable

e Control Section: IEFVH(Q
IEFVH1: Interpreter -- Initialization
Routine

This routine initializes the intergreter;
it obtains main storage for and initializes
the IWA, local work areas, and DCBs.

e Entry: IEFVH1
e Exit: To IEFVH2

e Tables/Work Areas:
DCB, local work area

UCB, CSCB, IWA,

e Attributes: Not reusable

e Control Section: IEFVH1
IEFVH2: Interpreter -- Initialization
Routine

This routine opens the input stream data
set and the procedure library data set, and
obtains main storage for a buffer for pro-
cedure library records.

e Entry: IEFVH2
e Exit: To IEFVHA

e Tables/Work Areas: IWA, UCB, TIOT

e Control Section: IEFVH2

e Attributes: Not reusable

IEFVJA:
Processor

Interpreter -- Job Statement

This routine initializes a JCT and job ACT
from the complete logical job statement in
the internal text buffer.

e Entry: IEFVJA
e Exit: To IEFVHF

e Tables/Work Areas: IWA, job work area,
interpreter key table, JCT, ACT, QMPA

e Attributes: Read-only, reenterable

e Control Section: IEFVJA

IEFVJIMP: Termination -- JOB Statement
Condition Code Processor

This routine tests the condition codes spe-
cified in the JOB statement to determine
whether the remaining steps in the job are
to be run.

e Entry: IEFVJ
e Exits: To IEFVK or I1IEFZA

e Tables/Work Areas: LCT, JCT, SCT

e Control Section: IEFVJ

IEFVJMSG: Termination -- JOB Statement
Condition Code Processor Messages

This routine contains the messages issued
to the programmer by the JOB statement con-
dition code processor.

e Entry: IEFVIMSG

e Attributes: Non-executable

e Control Section: IEFVJIMSG

IEFVKIMP: I/0 Device Allocation -- EXEC
Statement Condition Code Processor

This routine tests the condition codes spe-
cified in the EXEC statement to determine
whether the next step of the job is to be
run.

e Entry: IEFVK
e Exits: IEFVS, IEFLB

e Tables/Work Areas: JCT, LCT, SCT

e Control Section: IEFVK

IEFVKMSG: I/0 Device Allocation -- EXEC
Statement Condition Code Processor Messages

This routine contains the messages issued

to the programmer by the EXEC -- statement
condition -- code processor.
e Entry: IEFVKMJ1

e Attributes: Non-executable

e Ccontrol Section: IEFVKMSG
IEFVMFAK: I/0 Device Allocation -- Linkage
to IEFVMLS1

This routine passes control to entry point
IEFVMCVL of the JFCB housekeeping module
IEFVMLS1 via the XCTL macro instruction.

e Entry: IEFVMCVL
e Exit: To IEFVMCVL

e Control Section: IEFVMCVL

IEFVMLS1: I/0 Device Allocation =-- JFCB
Housekeeping Control Routine and Allocate
Processing Routines

The control routine obtains the required
SI0Ts, determines the processing required
for each, and passes control to the appro-
priate routine. The allocate processing
routine performs the processing required in
certain refer-back situations, when the
data set is cataloged or passed, and when
unit name is specified.

e Entry: IEFVM, IEFVMCVL, IEFVMQMI,
vM7000, VM7055, MV7055AA, VM7060,
MV7070, MV7090, MV7130, VM7370, MV7700,
MV7742, MV7750, MV7850, VM7900, MV7950

e Exits: To IEFVM2LS, IEFVM3Ls,
IEFVM4ULS, IEFVMS5LS, IEFVM6LS, and
IEFXCSSS

e Tables/Work Areas:
S10T, JFCB, QMPA

Lcr, Jcr, PDQ,

Appendix B: MFT Modules 147

e Control Section: IEFVM1

IEFVMLS6: I1/0 Device Allocation -- JFCB
Housekeeping Error Message Processing
Routine

This routine prepares error messages for
the JFCB housekeeping routines.

e Entry: IEFVMSGR
e Exit: Return to caller
e Tables/Work Areas: JCT, LCT
e Control Section: IEFVM6
IEFVMLS7: 1I/0 Device Allocation -- JFCB

Housekeeping Error Messages

This routine contains the messages issued
by the JFCB housekeeping routines.

e Entry: IEFVM7

e Attributes: Non-executable

e Control Section: IEFVM7

IEFVMMS1: I/0 Device Allocation -- Linkage

to JFCB Housekeeping

This routine provides a linkage to the JFCB
housekeeping routines for the step flush
function.

e Entry: IEFVM1
e Exit: XCTL to IEFVMLS1

e Attributes: Read-only, reenterable

e Control Section: IEFVM1

IEFVPOST: I/0 Device Allocation --
Unsolicited Device Interrupt Handlerx

This routine handles the posting of unsoli-
cited device interruptions for I/70 device
allocation operating in a multiprogramming
environment.

e Entry: IEFDPOST
e Exits: To IEAOPTO01l or Return to caller

e Tables/Work Areas: CSCB, ECB, TCB

e Attributes: Read-only, reenterable,
disabled, resident

e Control Section: IEFDPOST

148

IEFVM21S: 1/0 Device Allocation -- JFCB
Housekeeping Fetch DCB Processing Routine

This routine updates the SIOT, SCT, JFCB
and VOLT with information required for the
allocation of devices for the fetch DCB.

e Entry: VM7100
e Exit: To IEFVMLS1

e Tables/Work Areas: LCT, SCT, SIOT,

JFCB, VOLT
e Control Section: IEFVM2
IEFVM3LS: I/O Device Allocation -- JFCB

Housekeeping GDG Single Processing Routine

This routine obtains the fully qualified
name of a member of a generation data group
(GDG), and completes the required informa-
tion in the JFCB, VOLT, and SIOT for that
member.

e Entry: VM7150
e Exit: To IEFVMLS1

e Tables/Work Areas:
Count table, JFCB

LCT, SIOT, GDG Bias

e Control Section: IEFVM3

IEFVM4LS: I/O Device Allocation -- JFCB
Housekeeping GDG All Processing Routine

This routine builds an SIOT, JFCB, and
VOLT, and PDQ entries for each member of
the GDG.

e Entry: VM7200
e Exit: To IEFVMLS1

e Tables/Work Areas:
PDQ, SIOT, JFCB

Lcr, scr, VOLT,

e Ccontrol Section: IEFVM4

IEFVMS5LS: I/O Device Allocation -- JFCB
Housekeeping Patterning DSCB Routine

This routine establishes DCB control infor-
mation within a JFCB.

e Entry: VM7300
e Exit: To IEFVMLS1

e Tables/Work Areas:
DSCB, JFCB

cr, scr, sIoT,

e Control Section: IEFVM5

IEFVM76:

I/C Device Allocation -- JFCB

Housekeeping Unique Volume ID Routine

This routine creates unique volume serials
for unlakeled tape data sets, when the dis-

position is "PASS".

e Entry: VM7600
e Exit: Return to caller

Tables/Work Areas:

e Control Section:

IEFVRRC:

SIOT, JFCB, JFCBX

IEFVM76

Reinterpretation Control Routine

This routine passes control among the rou-
tines that modify the queue entry of a
restart step so that they appear as they
were prior to the initiation of the step.

IEFVRRCB

e Entry: IEFVRRC, IEFVRRCA,
e Exit: Return to caller

e Attrikutes:

e Tables/Work Areas:
SI0T, JFCB, JFCBX,
SCD, DSB, QMPA

e Control Section:

IEFVRR1:

Read-only reenterable

NEL, JCT,
VOLT, SMB,

SCT,
DSENQ,

IEFVRRC

Dequeue Interface Routine

This routine interfaces with queue manage-
ment to cause a specific job to be dequeued
and the JCT for that job to be read into

main storage.
e Entry: IEFVRR1

e Exit:

Tables/Work Areas:

Attrikutes:

Control Section:

IEFVRR2:

Return to caller

CMPA, JCT

Read-only, reenterable

IEFVRR1

Takle Merge Routine

This routine merges the reinterpreted queue
entry takles of a restart step with the
original queue takles for that step.

e Entry: IEFVRR2, IEFVR2AE
e Exit: Return to caller

o Tables/Work Areas:
SMB, SCT, SIOT,
JFCBX, NEL

QMPA, JCT, ACT,
JFCB, DSENQ, VCLIT,

e Attributes: Reenterable

e Control Section: IEFVRR2

IEFVRR3:
Routine

Reinterpretation Delete/Enqueue

This routine deletes the reinterpreted
input and output queue entries of a restart
step, constructs the internal JCL necessary
for processing a checkpoint restart, and
reenqueues the job's queue entry.

e Entry: IEFVRR3, IEFVR3AE

e Exit: Return to caller

Tables/Work Areas:
SI0T, JFCB

QMPA, JCT, SCT,

Attributes: Reenterable

Control Section: IEFVRR3

IEFVSDRA: Restart Activation Routine

This routine issues a START Restart Reader
command for one or more jobnames. This
routine is entered from IEFSD168 during a
problem program restart or IEFSD305 during
a warm start.

e Entry: IEFVSDRA
e Exit: Return to caller

Tables/Work Areas:

csCB, CVT, TCB

Attributes: Reenterable

Control Section: IEFVSDRA

IEFVSDRD: Restart Determination Routine

This routine initiates automatic restarts.

e Entry: IEFVSDRD

e Exit: To IEFSD305

e Tables/Work Areas:
CVT, TIOT, LCT

JcT, SCT, CMPA,

e Attributes: Reenterable

e Control Section: IEFVSDRD

Appendix B: MFT Modules 149

IEFVSD12:
Subroutine

Interpreter -- CPO Allocation

This routine sets up a JFCB and allocates
space on a direct-access device for a sys-

tem input data set.
e Entry: IEFSD012
e Exit: Return to caller
e Attributes: Reenterable
e Tables/Work Areas: IWA, QMPA, LWA,
sI10T, TIOT, UCB, JFCB, JCT, CSCB

e Control Section: IEFSD012

e External References: IEFVHQ

IEFVSD13:
Routine

Interpreter -- SCD Construction

This routine constructs an SCD entry for
each system output class defined for a job,
and assigns space for all DSBs that will be
required.

e Entry: IEFSD090

e Exit: Return to caller

e Tables/Work Areas:
area, SCD, SCT,

IWA, QMPA,
sIoT, JCT, JFCB

DD work

e Control Section: IEFSD090

IEFVSMBR: SMB Reader Routine

This routine reads the SMBs associated with
a restarting job and converts the JCL sta-
tements to their original format.
e Entry: IGCO005B
e Exits: If called during restart reader
processing, return to caller; if called

during restart, XCTL to the first load
of restart housekeeping.

e Tables/Work Areas: QMPA, DCB, JCT,
SMB, RRCWKAR, SCT
e Attributes: Reenterable
e Control Section: IEFVSMBR
IEFWAQ0O0: I/O Device Allocation -- Demand

Allocation Routine

This routine establishes data set device
requirements, and allocates in response to
specific unit requests.

IEFWAQ000,

e Entry: IEFUCBL

150

e Exits: To IEFWD000O, IEFX3000, IEFX5000

e Tables/Work Areas: UCB Address List,
DMT, UCB, LCT, SCT, SIOT, VOLT, AWT

e Ccontrol Sections: IEFWA7, IEFWAQ02

IEFWCFAK:
Module

I/0 Device Allocation -- Linkage

This routine passes control to the TIOT
construction routine.

| e Entry: IEFWC000, IEFWC002
e Exit: To IEFWCIMP

| e control section: IEFWC000, IEFWC002

IEFWCIMP: I/0 Device Allocation =-- TIOT
Construction Routine

This routine calculates the main storage
required for the TIOT, builds the TIOT, and
processes requests for direct-access space.

e Entry: IEFWC000
e Exits: To IEFXJIMP, IEFWDIMP
e Tables/Work Areas: JCT, SCT, LCT,

SI0T, VOLT, AWT, TIOT

e Control Section: IEFWC000
IEFWDFAK: I/0 Device Allocation -- Linkage
Module

This routine passes control to the external
action routine.

e Entry: IEFWD0O0O
e Exit: To IEFWDO0OO

e Control Section: IEFWD00O

IEFWD000: I/0O Device Allocation --
External Action Routine

This routine causes the correct volumes for
the step to be mounted on the appropriate
units.

| e Entry: IEFWD000, IEFWDMSG
e Exits: To IEFXT000, IEFW41SD, IEFXKO000
e Tables/Work Areas: SCT, LCT, TIOT, UCB

| e control section: IEFWD000, IEFWDMSG

IEFWD001l: I/O Device Allocation =--
External Action Messages

This routine contains a directory and the
messages used in the external action
routine.

e Entry: IEFWDOO1

e Attrikutes: Non-executable

e Control Section: IEFWD0O1
IEFWSTRT: I1/C Device Allocation -- Message
Module

This routine contains the message issued to
the operator when a job is started and the
messages issued to the operator when a job
is terminated due to ABEND, condition
codes, or JCL errors.

e Entry: IEFWSTRT

e Attributes: Non-executable

e Control Section: IEFWSTRT
IEFWSWIN: I/C Device Allocation -- Linkage
Module

This routine passes control to the decision
allocation routine.

e Entry: IEFWSWIT
e Exit: To IEFX5000
e Control Section: IEFWSWIT
IEFWTERM: Termination -- Message Module

This routine contains the message issued to
the operator when a job is terminated norm-
ally, or when it is terminated because of a
JCL error found in the interpreter or
initiator.

e Entry: IEFWTERM

e Attrikutes: Non-executable

e Control Section: IEFWTERM
IEFXAMSG: 1I/0C Device Allocation —-- Message
Module

This routine contains the messages issued
by the allocation control routine.

e Entry: IEFXAMSG

e Attributes: Non-executable

e Control Section: IEFXAMSG

IEFXCSSS: 1I/C Device Allocation —--
Allocation Control Routine

This routine calculates table space
requirements and obtains the main storage
for the tables used or built during
allocation.

e Entry: IEFXA
e Exits: To IEFXJ, IEFWA, IEFWC

Takles/Work Areas:
SIOT, VOLT, AWI

JCcT, SCT, LCT, UCB,

e Control Section: IEFXA

IEFXH000: I/O Device Allocation --
Separation Strikeout Routine

This routine strikes from AWT entries, the
bits corresponding to devices that would
violate separation or affinity requests.

e Entry: IEFXHO000
e Exit: Return to caller

e Tables/Work Areas: ICT, AWT, AVT, UCB

e Control Section: IEFXHO000
IFFXJFAK: I/0 Device Allocation =-- Linkage
Module

This routine passes control to the alloca-
tion recovery routine.

e Entry: IEFXJO00O
e Exit: To IEFXJIMP

e Control Section: IEFXJO00O

IEFXJIMP: I/0 Device Allocation --
Allocation Recovery Routine

This routine informs the operator of the
allocation recovery options available, and
passes control to the proper routine to
comply with his request.

e Entry: IEFXJ000, IEFV15XL, IEFXJX5A
e Exits: To IEFXCSSS, IEFSD095, IEFW41SD

e Tables/Work Areas:
ucB, SCT, SIOT

ICT, AWT, JCT, CVT,

e Control Section: IEFXJO00O

IEFXJMSG: I/0 Device Allocation =--
Allocation Recovery Messages

This routine contains the messages used by
the allocation recovery routine.

e Entry: MSRCV, MSSYS, MSCFF

e Attributes: Non-executable

e Control Section: IEFXJMSG

Appendix B: MFT Modules 151

IEFXKIMP: I/C Device Allocation --
Non-Recovery Error Routine

This routine cancels the step when a lack
of available devices has been discovered
after the TICT is constructed.

e Entry: IEFXKO000

e Exit: To IEFWA41SD

e Tables/Work Areas: LCT, SCT, UCB, TIOT

e Control Section: IEFXK000

IEFXKMSG: I/C Device Allocation --
Non-Recovery Error Routine Messages

This routine contains the messages used by
the non-recovery error routine.

e Entry: IEFXKMSG

e Attributes: Non-executable

e Control Section: IEFXKMSG

IEFXTOOD: I/C Device Allocation -- Space
Request Routine

This routine obtains space on direct-access
devices for requesting data sets.

e Entry: IEFXT000
e Exits: To IEFW41SD, IEFXK000, IEFWDO0OOO

e Tables/Work Areas:
JCcT, SIOT, JFCB, PDQ

LCT, TIOT, UCB,

e Control Section: XTTP00, IEFXTO000

IEFXT002: I/0 Device Allocation -- VARY
Ccommand Interface TIOT Compression Routine

This routine reduces the TIOT to its final
size and provides an interface with the
VARY command.

e Entry: IEFXT002, XTTRDJ, XTTEB3,
XTTE2l, XTTEAO
e Exits: to IEFXKIMP, IEFXT003, IEF41FAK

e Tables/Work Areas:
JCT, SIOT, JFCE

LCT, TIOT, UCB,

e Control Section: IEFXT002

IEFXT003: I/C Device Allocation -- DADSM
Exrror Recovery Routine

This routine determines what action should
be taken when the request for space c¢n a
particular volume fails.

152

e Entry: IEFXT003, XUUHO6, XUUBOO
e Exits: To IEFXTO00D, IEFXTO002

Takles/Work Areas:
JCT, SIOT, JFCB

IcTt, TICT, UCB,

Control Section: IEFXTO003

IEFXVMSG: I/O Device Allocation =--
Automatic Volume Recognition Messages

This routine contains the messages used by
the automatic volume recognition (AVR)
routine.

e Entry: IEFXVMSG

e Attributes: Non-executable

e Ccontrol Section: IEFXVMSG

IEFXVNSL: I/0 Device Allocation --
Automatic Volume Recognition --
Non-Standard Label Routine

This routine processes non-standard labels
for the AVR routine.

e Entry: IEFXVNSL
e Exit: Return to caller

e Control Section: IEFXVNSL

IEFXV001l: I/0 Device Allocation --
Automatic Volume Recognition Routine

This routine finds and allocates volumes
pre-mounted by the operator.

e Entry: IEFXV001
e Exits: IEFWC000, IEFX5000, IEFXJ00O

e Takles/Work Areas:
VOLT, SIOT, ILCT, UCB

JCT, SCT, AWT, AVT,

e Control Section: IEFXVO001

IEFXV002: I/O Device Allocation --
Automatic Volume Recognition, label

Processin

This routine reads the label of a newly
mounted volume, extracts the serial number,
and places it into the UCB for the corres-
ponding device.

e Entry: IEFXV002
e Exits: To IEFXVNSL via CALL, return to
caller.

e Tables/Work Areas:
IOB

LT, UCB, CVT, DEB,

e Attrikutes: Reusable

e Control Section: IEFXV002

IEFX300A: I/0 Device Allocation —-- Device
Strikeout Routine

This routine modifies the primary and
secondary bit patterns in AWT entries to
complete the allocation to a data set.

e Entry: IEFX3000, X33B42
e Exit: Return to caller

e Tables/Work Areas: AWT, AVT, UCEB, LCT

e Control Section: IEFX3000

IEFX5000: I/C Device BAllocation --
Decision Allocation Routine

This routine selects devices for data sets
with multiple unit possibilities.

e Entry: IEFX5000, XIIB32, X55C86,
X55D3G
e Exits: To IEFWC000, IEFXJO000

Tables/Work Areas: LCT, AWT, AVT, UCB

Control Section: IEFX5000

IEFYNIMP: Termination -- Step Termination
Control Routine

This routine passes control among the
modules of the step termination routine
and, when required, passes control to the
job termination routine.

e Entry: IEFYN
e Exits: To IEFW22sD, IEFYPJB3, IEF-

VJIMP, IEFZAJB3, IEFRPREP

Tables/Work Areas: JCT, SCT, LCT

e Control Section: IEFYN

IEFYNMSG: Termination -- Step Termination
Control Routine Messages

This routine contains the messages required
for the step termination control routine.

e Entry: IEFYNMSG, STRMSGO1
e Attributes: Non-executable

e Control Section: IEFYNMSG

IEFYPJB3: Termination -- Step Termination

Data Set Driver Routine

This routine obtains SICTs and to pass con-
trol to the disposition and unallocation
routine.

e Entry: IEFYP
e Exits: To IEFZG, IEFYNIMP

e Tables/Work Areas: ICT, TIOT, UCE,

QOMPA, SIOT, 'TICB
e Control Section: IEFYP
IFEFYPMSG: Termination -- Step Termination
Messages

This routine contains the messages required
by the step termination routine.

e Entry: IEFYPMSG, YPPMSG1l, YPPMSG2

e Attributes: Non-executable

e Control Section: IEFYPNMSG
IEFYSVMS: Termination -- Message Blocking
Routine

This routine blocks system messages into
SMBs, and places SMBs into the message
class queue entry.

e Entry: IEFYS
e Exit: Return to caller

Tables/Work Areas: ICT, SCT, SMB

Attributes: Reenterable

Control Section: IEFYS

IEFYTVMS:
Routine

Termination -- DSB Processing

This routine places data set blocks in the
srace reserved for them in the output gqueue
entries.

e Entry: IEFYT
e Exit: Return to caller

e Takles/Work Areas: JCT, SCT, TICT,
SI0T, QMPA, DSCB, ICT, CVT, JFCB

e Attributes: Reenterable

e Control Section: IEFYT

Appendix B: MFT Modules 153

IEFZAJB3: Termination -- Job Termination
Control Routine

This routine provides entry to the job ter-
mination routine, obtains PDQ blocks, and
passes control to the disposition and unal-
location routine.

e Entry: IEFZA
e Exits: To IEFZGJ, IEFW31SD

e Tables/Work Areas: LCT, JCT, PDQ, UCB,

OMPA
e Control Section: IEFZA
IEFZGIJBl: Termination -- Disposition and

Deallocation Routine

This routine directs the disposition and
deallocation of those data sets that remain
to be processed at job termination: passed
data sets that were not received, and
retained data sets that were not referred
to.

e Entry: IEFZGJ, ZPOQM
e Exit: Return to caller

e Tables/Work Areas: LCT, PDQ, SIOT,
TIOT, UCB, JFCB, QMPA

e Control Section: IEFZG

IEFZHMSG: Termination -- VARY Command
Interface and Disposition and Deallocation
Message Routine

This routine prepares messages to the pro-
grammer and to the operator for the dispo-
sition and allocation routines. It also
provides an interface with the VARY
command .

e Entry: IEFZH, ZGOE60, ZKO0D1l, ZKOE1,
XPS631
e Exit: Return to caller

e Tables/Work Areas: LCT, QMPA, SMB

e Control Section: IEFZH

IEF078SD:
Module

System Output Writer -- Linkage

This routine transfers control to module
IEFSD078.

e Entry: IEFSDO078
e Tables/Work Areas: JCT, PDQ, JFCB,
LCT, QMPA, UCB e Exit: To IEFSD078
e Control Section: IEFZGJ e Attributes: Reenterable
IEFZGMSG: Termination -- Disposition and IEF079SD: System Output Writer -- Linkage
Deallocation Messages Module

This routine contains the messages required
for the disposition and deallocation rou-
tine (IEFZGJB1l).

e Entry: IEFZGMSG

e Attributes: Non-executable

e Control Section: IEFZGMSG

IEFZGST1l: Termination -- Disposition and
Deallocation Routine

This routine directs the disposition of
data sets as specified in the DISP field of
the DD statement, and makes the associated
units available for allocation to other
data sets.

e Entry: IEFZG, ZPOQMGR1
e Exit: Return to caller

154

This routine transfers control to IEFSD079.

e Entry: IEFSD079

e Exit: To IEFSD079

e Attributes: Reenterable
IEF082SD: System Output Writer -- Linkage
Module

This routine passes control to the system
output writer main processing routine.

e Entry: IEFSD082
e Exit: To IEFSD082

e Control Section: IEFSD082

IEF083SD:
Module

System Output Writer -- Linkage

This routine passes control to the system
output writer command processing routine.

e Entry: IEFSD083
e Exit: IEFSD083
e Control Section: IEFSDO083
IEF300SD: System Restart -- Linkage Module

This routine provides a linkage to the sys-
tem restart initialization routine.

e Entry: IEFSD300
e Exits: To IEFSD300, IEFSDO055

e Attributes: Reenterable

IEF304SD: System Restart -- Linkage Module

This routine provides a linkage to the sys-
tem restart scratch data sets routine.

e Entry: IEFSD304

e Exits: To IEFSD304, IEFSDO055

e Attributes: Reenterable

e Control Section: IEFSD304
IEF41FAK: I/0 Device Allocation -- Linkage
Module

This routine provides a linkage to the
allocation exit routine duriny step flush.

e Entry: IEFW41SD, IEFW1FAK, IEFW2FAK
e Exit: To IEFW41SD

e Attributes: Read-only, reenterable

e Control Section: IEFW41SD

1 IGC0103D: SVC -- Master Command EXCP
Routine

This routine processes the MOUNT Command.

e Entry: IGC0103D

e Attributes: Reenterable, transient

e Control Section: IGC0103D.

e Page Reference:
IGF2603D: SVC 34 -- Machine Status Control
Routine

This routine is available only for the
model 85. It processes the status parame-
ter of the MODE command.

e Entry: IGF2603D
e Exit: IGF2703D

e Tables/Work Areas: CVT, XSA

e Attributes: Reenterable, read-omnly,
self-relocating

e Control Section: IGF2603D

IGF2703D:
Routine

SVC34 - Machine Status Control

This routine is available only for the
model 85. It processes all parameters of
the MODE command but the status parameter.

e Entry: IGF2703D
e Exit: Return to issuer of SVC 34

e Tables/Work Areas: CVT, XSA

e Attributes: Reenterable, read-only,
self-relocating

e Control Sections: IGF2703D

Appendix B: MFT Modules 155

Appendix C: Flowcharts

This appendix includes the MFT flowcharts tem restart, see IBM System/360 Cperating
that are different from MVT. For the flow- System: MVT Job Management, Frogram Logic
charts on allocation, termination, and sys- Manual, Form Y28-6660.

Chart 0l1. Task Dispatcher (Without Time Slicing)

Note - 'Old" Is the TCB Address
of the Task Currently
in Control. 'New' Is the
TCB Address of the
Task to be Given Control,

A2

B3
System Schedule
Asynchronous Asynchronous
Exits Exit Routines
C4
Cc3
Must
No Timer ::’s ° t b Yes Dequeue Timer
Dequeued, Element
o
D3
Timer Element (Oldr =1 .
be Enqueued Old" ="New
E2 E3
Enqueve Timer 'New' = TCB to Examine 'Old'
Element Be Dispatched TCB
. es
F2 F3 IS4
Load 'Old' PSW Is TCB No equest Bloc
to Return Dispatchable for TCB
Waitin,
No Yes
G4
Find Next TCB
on Queve
Place 'Old’
Tesk in Wait
State

156

Chart 02. Task Dispatcher (With Time Slicing)

A3
Al A2 Ad A
System Schedule Is)
Asynchronous Asynchronous New = Old Yes Ol‘{ a Time
Exits Exit Routines Slicing
Task
No
DSPA1 B4
Is Is B3 TMSLI B5
Nevf e Time Old a Time Save Registers Old Time Yes
Slicine Slicing 2-9 Slice TQE
Task Task
C4
c3
Dequeuve Time .Suve))
Slice Timer loating Point Save Floating New = 0

Registers Point Registers

1

Queue Element

D2 D4

D5

Dequeve Task
Timer Queuve
Element

Restore
Floating Point
Registers

New Task

Set Old Equal
TCB Dispatch,

to New

E4 ES
Set New Equal . Restore
New a Time Restore . .
to Old Slicing Task Registers 0-9 Flouhng. Point
Registers
™MSL4 ! F2 TMSL5 E3
DSPE F1 Get TCB from Is F5
. 'Next' Field of New = Next Time
N T t RB
ow o Time Time Slice Slice TCB to be urent K8
Control Element Checked ient Areg
(TSCE)

TMSLY G2

Update 'Next'

Field of Time

Slice Control
Element (TSCE)

H2

H4 Use Transient
Area Refresh
Routine to Load
Correct SVC
Routine

Enqueve Time
Slice Timer
Queue Element

New Task
TCB Dispatch
able

Time Slice
TCBs Checke

No
DSPD 14
5N E Task J5
- nqueve Tasl
New —oNexf Tch Timer Queue Timer Element
on Hueve Element
K2 K3 DSPW
End of TCB Set 'Wait' Bit ‘Restore Restore
Queve Old PSW Registers 2-9 Registers 10-1

Appendix C: Flowcharts 157

Chart 03. ABEND and DAR Control Flow (Part 1 of 2)

A3
< : From System,
Entry Problem Program,
or ABTERM
1GC0001C
To IEAATMOB, Via XCTL

f B2 IEAGTMOA 83 B4
Exit or Graphics If a Valid STAE is in Effect,
Attempt Error P Test for Valid Exit or Via SVC 3 If ABEND Issued
STAE and By Purge During STAE Processing

Recovery
| Graphics ABEND

Via SVCS to Caller If
Task is Resumable and
Caller Wishes to Resume
C3
Primary DAR or Invalid Test for Secondary DAR Recursion
ABEND Recursion Recursion
1GC0701C

From D2 IEAGTMO0
JEAATMOC To IEAAMOD Via XCTL
o Entry | Purge IQEs and Exit :f IEASG;MOO Entered
IEAATMOE WTOR Requests rom STAE
Abnormal End To IGCOITIC If
of Task 1GC0601C Normal End of Task

IEAGTMO6 E3

Purge 1/O
Operations and

1/O Requests B

YiGCo10C F4 £
IEAATMO! F2 System Task ABEND or [[cAGTMO8 (EAGTMOS
"Must Complete’ Task Normal DAR

Validity Check DAR Code Image | Processing DAR Task

Systems Queues Dump Routine Reinstatement
Dump Non-System
Only Task or Re~

sources Non=
B Critical
To IGCO111C
To IGCO51C

Exit

Via Branch to Dispatcher

158

Chart O4. ABEND and DAR Control Flow (Part 2 of 2)

04
B3

1GCO111C B4
IEAATMOA B3
Main Storage Available - No Dump Requested Determine Main Invalic.l Sch;‘du:;r ABEND
S, Recursion o Dump
orage Requested
Requirements
a Main Storage Available -
Indicative Dump Requested Main Storage Available - ABDUMP Requested
Main Storage
1GC0301C 1GC0211C Required 1GC0201C 1GC0221C 1GC0401C
IEAATMO3 a IEAATM2A c2 IEAATMO02 3 IEAATM2B ce IEAATMO4 s
Indicative Not Enough - Enough ABDUMP
Domp Steal from Low | Stolen Steal Main Siolen ™ Move LRB's to
,F°":"°' End of Storage from Low End of Call ABDUMP
Indicative Dump Partition LRB's Partition
No Dump or No Dump or
Previous Dump Previous Dump
Failed Failed
ABDUMP Indicative DEB Failed
From IGC0701C Dump to Open
03/D3
1GC0501C
IEAGTMOS B
ABEND
Termination
Scheduler-Size Partition [Small Partition
F2 F4
o)
Via XCTL to Via XCTL to
Step Deletion Step Deletion
Routine IEFSD515 Routine IEFSD599

Appendix C: Flowcharts 159

Chart 05. Small Partition Routine (Part 1 of 4)

Note -

At Entry,
Small Partition
Has Zero
Protection

in TCB, PSW
and Hardware.

Also, PSW is
Supervisor Entry
State,
05
DBZ B2
Wait on 'No

Work' ECB in
PIB

Job on
Internal
Queve

If Asgn'd, Free

Tracks for
Small Part.

SPIL Created

Mod.
B2 E4
Cre?f.e Small If Created,
Partition Info Free SPIL
List
F2 F4
Indicate (in If Free
PIB) that SPIL o e
) thet S Pending CSCB
| o
Post 'Define’
ECB in PIB

160

Chart 06. Small Partition Routine (Part 2 of 4)

Indicate (in
SPIL) System
Task Cont.

B,

B4
B3
Indicate (in
Track:
Assigned to NyYes SPIL) Prob.
this SPM . .Prtfg.
Initiation
No
If Asgn'd Free
Tracks for
Small Part Mod
D D3
Not Enough
Assign Tracks Tracks Available
If Created g /
FreereSCl;lL ! for this Small | for Assignment
Part. Mod.
B E4
Indicated (in , .
B PIB) Tracks are WTRO' S:‘G:’ Init
Assigned. ejecte
: F4
If Created,
Free SPIL

)

Appendix C:

Flowcharts

161

Chart 07.

162

Small Partition Routine (Part 3 of #)

i)

B1
Eng (EXCL.) on
Maijor
'SYSIEFSD'
Minor 'SP
Cl
Disable /0 and
External
Interrupts

D1

Point to First
TCB

El
Scheduler

B3

Small Part.
in Define

Store SPIL Addr.
in Sched. Part.
PIB

E3

Partition

Indicate SPIL
Address Stored

No

Point to Next
TCB

F3
Sched.
Part. Waiting
for Work

G3

Post 'No Work'
ECB in Sched.
Part. Bit

©)

B5

Enable 1/O and
External
Interrupts

Cs5

Yes Any SPIL
Pirs. Stored

Deq Off Major
'SYSIEFSD'
Minor 'SP*

E5

Wait on Dormant
ECB in PIB

1 H5
Wait on 'ECBB’
in SPIL
J5

Deq Off Major
SYSIEFSD
Minor 'SP

—

Chart 08. Small Partition

08
Bl
Bl

Wait on 'ECBA'
in SPIL

Yes

D1
Post Code =
1

Post Code =0,
Means Step has
Been Scheduled by Scheduler

Is
Job DSDR
Step

Post Code=2
Means Job
Terminated
in Scheduler
Partition

Post Code=1
Means

‘No Work'
Found by
Scheduler
Partition

Routine

(Part 4 of 4)

Conceled

Post 'ECBC' in
SPIL

Allows
Large
Partition

to Continue

3 £3

Problem
Program or
|EESD595

Return
C4

Abend

XCTL
Small
mallgo

Set Zero P.K.,
in TCB and
Hardware

E4

Create SPIL

F4

Indicate (in
PIB) that SPIL
Created

Indicate (in
SPIL)
Termination

Partition Move Tables
into Small
: ’: Partition
F1 F3
Move Tables Post ECBC in
into Small SPIL
Partition
G G2 G3
Post 'ECBC' in If any, Open Move QMPAS to
Spil JOBLIE DCB csCh
H2 H3
If any, Open
Fetch DCB Free SPIL
XCTL

J2

Set Prob, Prog.
P.K, in TCB and
Hardware

K2

Free SPIL

[xcm

)

_..

Appendix C:

Flowcharts

163

Chart 09.

lel

Master Scheduler Task

E4

A3
‘ Entry from Nip '
1EFSD569 B3 |EECVCTI B4
Scheduler Communications
Initialization Task
Initialization
Cc3
IEEDFINT
Establish
Partition
Format
D3
Display
Automatic
Commands Issue
'Ready’
IEEVLIN
System Log

Initialization

Wait for Set
Command

Post
G3

|EFSQINT

Job Queve
Format or
System Restart

H3

Enter Automatic
Commands to
System, if Any

J3

Establish
Partitions

K3

Exit to
Dispatcher

Chart 10.

Queue Search

IEESD562 XCTL |EESD566 B4
B2
Link from XCTL Display Active
|EECIR50 Syntax Check i
XCTL
1EESD563 C —l C4
Sets Up Queue |EEXEDNA
Reads Queue -
Control Record Display
- on Retum Conssﬂas
Tests Results Routine
1EESD565 D3 |EESD564 D4
Job ENG Link
Message Link Queve ?ecrch
and Clean Up Routine

Ret

urn

Appendix C: Flowcharts 165

D5

Chart 11. Queue Manager Table Breakup Routine

Al

IEFSD514

B2 B3
| EFQMRAW |EFGMRAW
Read in First Read in First
TQCR Part of Table
C2 c3
IEFQASGN - Get Storage for
‘ Table and Move
Assign HTTR Buffer in
IEFQMRAW D3 D4
Yes Any More
Bring in End of Table TZblﬁ No Return
Existing TQCR
Yes
E2 E4
B IEFQMRAW IEFQMRAW
Any More
Tables Write Out
Updated TQCR Get Next TQCR

F3

F2
|EFQMRAW

Rett
eturn Read in Next
Part of Table

L]

IEFQASGN

End of Table

Assign New TQCR

H3
|EFQMRAW |EFQMRAW
Write Out Old .
TQCR Read in Write Ont o
New TQCR
J2
d IEFGASGN
TTR in Next No
Position Assign New TTR
Yes J
K1
|EF QMRAW

Write Out Part
of Table

166

Chart 12. Master Scheduler Resident Command Processor

IEECIR50 B2

Note - The Resident
Command Processor
Never Terminates

Wait for
Command

Post
] 3
AN |EESD562
Job Queve Yes
Commands to Job Queve

Link Search Routines

D3

|EEDFINT

Command
Define Routines

Appendix C: Flowcharts 167

Chart 13. SVC 34 Command Processing (Part 1 of 3)
Al
‘ Entry ’
Bl c . B2 B4
1EE0303D Processing | IEE0403D
Translator/ Error
Chain Router Message Module
Manipulator
;\:Ahai'n ot Normal Error Stop Jobnames
anipulation c3 Status
1EE4503D ppace
Stop Normal sname
Periodic Stop
(Ex?ep' Stop Command Handler
Init)
Non-Periodic Stop
D3
D1 Buffer Exceeded
No C d |EE0703D Stop
Return _ No Operation Modify Modify
CSCB Marking
E4
Ergor @
Message Module
Error
F4 F5
Display |EE0803D Display |EE2903D
Hold R Displa
CSCB Creation & P ay
Release Disolay T Only Requests
Reset piay Processor
G3
Log
Writelog IEE1603D
Log and
Writelog
Processor
Error
H4
Message Module
Error
J3
1EE0603D
Set
Set Command
Processor
K4 ()
Set Date IEE0903D
Set Clock
Timer Return

168

Maintenance

Chart 14. SVC 34 Command Processing (Part 2 of 3)

._

A3 . Ad
IEESD561
Start Start & Stop Error
Stop Init Init Command Message Routine
Routine
B3
1EE1203D
Reply
(Non-MCS)
C3 C4
1EETA03D IEE1BO3D
Reply
(MCS) MCS Reply Reply Message
Processor Routine
D3 D4
Brdest
Cenout 1EE1503D
MSG Error
Show RJE Processor Message Routine
Userid
E3 E4
IEE1403D
Halt Eror
EOD Routine Message Routine
F3 F4
|GF2603D IGF2703D
Mode
Machine Status Machine Status
Control Routine Control Routine
G3 G4
Vary IEE1103D &3
Unload Error Return
Message Routine
Define
Mount
Cancel
H2
Cancel & Job 1EESD571
Still in Job Define Mount
Queve Cancel Routine

J1 i Vary Online Error J4

1GC0103D Vary ONGFX 1EE2303D
Mount Vary Console
PCP Master
Command EXCP (with SMF) SMF Processor
Routine Defi
efine
Cancel (Job All Other

Found) Vary Situations 15
K2 Al
(Return) To IEE3103D

Appendix C: Flowcharts 169

Chart 15. SVC 34 Command Processing (Part 3 of 3)

B :

Dispatch WTOS and Error Messages

A1 Non-Console A2 A5
to be :
IEE3103D Pr 4 |IEE4603D
WTO Dispatch ' Error
and Vary Online Message Routine
& Offline Proc,
Vary Unit Field If All Units Processed
Online ::un S':ows B3 Construct B4
. ore an |
Offline One Unit IEE4903D wonsole ieessosp
(Non- Errors ~
Consoles)
in Syntax
to 4103
If More ©
Units in Vary Consol Error
Vary Online {UniFField c4
Offline |EE4203D C2
Console Other Errors
(No Keyword Unit Field Scan) Message Routine
Parameters
After Console) Vary Console
D2
Vary Hardepy |EE4403D
Console Error
(with
Keyword ltio!
Parameters) Vary Hardepy lljn':':: ;::::ifie d
E2
Issue
|EF4703D Hardepy 1EE4103D
Vary Hardcpy Message Error
(No Keyword
Parameters)
Error All Units
F2
ﬁ F5
Return
Message Routine \
Error
Vary ONGFX 1EE1703D 62
QFFGEX
! H2 | H4
|EE4303D IEECMCSW
Vary MSTCONS SVC72
Console Switch
Error
J2
Errors Processing
Finished
Message Routine
K2

Unload
Return

170

Chart 16.

Communications Task

A3
Entry from
Dispatcher
IEECVCTW B3
Wait Module
SVC72 C3 IEECVCTX C4
|EECVCTR
External
Interrupt
Router Handler
SVC34 D2 IEECVPM D3
1GC0003D
Detail on Processor
Separate Chart
|EECVOC E3
|EECVPM and |IEECVOC Are Csects of Device
Dependent Modules. The Console Devices s)
Open/Close Will Determine Which Modules are Used.
Communications Task with MCS F3
Entry from
Dispatcher
Normal Processing
IEECVCRA G |EECMAWR G3 1EECVCRX G5
Post Attention . Post External
ECB Wait on ECBS ECB
IEECMCSW__§ H1 IEECMDSV_§ H2 IEECMWSY H3 IEECMDOMy§ H4 IEECMWTL § H5
1GCXL078 ‘
] Device %ervice WTO/WTOR Delete Operator Nip Message
Console Switch Routine Service Routine Message Routine Buffer Writer
Routine
J2
Device Support
Routines for
Each Device
Initialization IEECVINT K2 -
Console Note: IEECVINT is Entered Via
Initialization Link Only Once by
Routine 1EFSD569 and Returns
Control to 1EFSD569

Appendix C:

Flowcharts 171

Chart 17.

172

IEFSD518 - Partition Recovery Routine

A3

Does
this Part Con-
tain Core Need
ed for

C2

Issue MSG,
IEF209! and Set No,
Job Fail Bit in

JcT

Nucleus in
Required
Core

No
C : E3

Unchain and
Free CSCB

Balr

F3

|EFSD598
Enq/Deq Purge

Routine

G3

Update SCD
Enqueue Job on
Hold Queue

H1 H3

Eng on

Issue Message __.‘ Partition
IEF1821 @ Boundaries

J1 J2

Put Job on
Required Part. |$:::]M4SIG,
Internal Queue 8

K3

Does
any Part.
Contain Req.
Core

Required
Part. Being
Defined,

Required
Part. a RDR
or WTR

HO Core

Return Ret.
Code=0

Did

HO Core been
Added

®

D5
Deq. on
Partition
Boundaries
E5

chedulin
for Small
Part,

Yes

F5

Post 'ECBA' (in
Spil) with Term
Code of One.

G5

Post 'No Work
ECB" in Current
Partition

Return (Re