
File No. S360-36
Form Y27-7128-4

Program Logic

IBM System/360 Operating System

Control Program With MFT

Program Logic Manual

Program Number 360S-CI-505

This publication describes the internal logic of
the IBM System/360 Operating System Control Pro­
gram with MFT. The publication provides an intro­
duction to control program logic and describes the
components of the program. It also describes the
initialization of the operating system, the func­
tions of the supervisor that differ from those of
the PCP and MVT supervisors and the functions of
job management that differ from those of PCP and
MVT job management.

The appendix contains a description of all rou­
tines, major tables, and work areas used by MF~,
and flowcharts of the routines of MFT that differ
from those of either of the other control
programs.

Program Logic Manuals are intended for use by
IBM customer engineers involved in program main­
tenance, and by system programmers involved in
altering the program design. Program logic infor­
mation is not necessary for program operation and
use; therefore, distribution of this manual is
limited to persons with program maintenance or
modification responsibilities.

Restricted Distribution

RESTRICTED DISTRIBUTION: This publication is intended pri­
marily for use by IBM personnel involved in program design
and maintenan.ce. It may not be made available to others
without the approval of local IBM management.

Fifth Edition (June, 1969)

This is a major reVl.Sl.on of, and obsoletes" Y27-7128-3 and
Technical Newsletters Y2B-2349 and Y28-2376. ~he text and
illustrations have been changed to reflect the following:

• Multiple console support.
• The damage assessement routines of ABEND/AE~ERM support.
• The resident reenterable routines facility. The facility

allows the user to include both access method routine and
other reenterable routines in the resident access method
(RAM) area.

• The checkpoint/restart facility.
• The DISPLAY DSNAME and the MODE commands.

In addition the following are included; a revised descrip­
tion of the DEFINE processing routines; updated description
of tables and work areas in Appendix A; revised module
descriptions in Appendix E; and revised flowcharts in Appen­
dix C.

The_section of manual formerly titled Nucleus Initializa­
~ Program has been changed to delete the material now
covered in the IPL and NIP Program'Logic Manual, Form Y28-
6661. The section is now titled Initialization of the.
Operating System and describes only the operation of the
master scheduler after completion of the nucleus
init.ialization.

Other changes to the text, and small changes to illustra­
tions, are indicated by a vertical line to the left of the
change; changed or added illustrations are denoted by the
symbol -to the left of the caption.

r This edition applies to release 18 of the IEM, System/360
Operating System, and,to all subsequent releases until other­
wise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein;
before using this publication in connection with the opera­
tion of IBM systems, consult the latest IBM System/360 SRL
Newsletter, Form N20-0360, for the editions that are appli­
cable and current.

Requests for copies of IBM publications should be. made to
your IBM representative or to the IBM branch 'office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, programming Systems Publica­
tions, DepartmentD58, PO Eox 390, Poughkeepsie, N. Y. 12602

C Copyright International Business Machines Coq:oration 1967, 1968, 1969

This publication describes the differences
in internal logic of the control program
that result from the inclusion of multipro­
gramming with a fixed number of tasks
(MFT). It is assumed that the reader of
this publication is thoroughly familiar
with the basic operation of the control
program. Only areas of difference are dis­
cussed in this publication.

The manual is divided into four major
sections. The Introduction describes con­
trol program functions, control program and
main storage organization, and control pro-

I gram processing flow. The Initialization
of the Cperating system section describes
differences introduced by MFT into system
initialization. The supervisor section
describes supervisor functions including an
explanation of task dispatching in MFT.

The Job Management section contains the
changes to the job management components
made by MFT. Job management is divided
into three major components: reader/
interpreter, initiator/terminator, and out­
put writer. Also described are the Queue
Manager which is used by all three major
job management components, the Communica­
tions Task which handles operator-system
communication, and the Master Scheduler
Task which processes operator commands.

Appendix A contains descriptions of
major tables and work areas used by MFT.
Appendix B contains descriptions of modules
used by MFT. Appendix C contains MFT
flowcharts.

PREREQUISITE PUBLICATIONS

Knowledge of the information in the fol­
lowing publications is required for a full
understanding of this manual.

Preface

IBM System/360 Operating System:

principles of Operation, Form A22-6821

Introduction to Control Program Logic,
Program Logic Manual, Form Y28-6605

Fixed-Task Supervisor, Program Logic
Manual, Form Y28-6612

MV~ Job Management, Program Logic Manu­
al, Form Y28-6660

Initial Program Loader and Nucleus
Initialization Program, Form Y28-6661

Planning for Multiprogramming With a
Fixed Number of Tasks (MFT), Form
C27-6939

The following publications may be useful
for reference although they are not prere­
quisites for this publication.

IBM System/360 operating system:

Concepts and Facilities, Form C28-6535

Linkage Editor, Form C28-6538

system programmer's Guide, Form C28-6550

system Generation, Form C28-6554

MV~ Control Program Logic Summary" Form
C28-6658

Input/output Supervisor, Program Logic
Manual, Form Y28-6616

INTRODUCTION 9
Functions of the Control Program With
MFT • • • • • • 10

Job Management • • • 10
Task Management • • • • • • 10
Data Management • • • • • • • • • 10

Control Program Organization • 11
Resident Portion of the Control
Program • • • • • •• •• • •
Nonresident Portion of the Control
Program ••••••••

Main Storage Organization
Fixed Area • • • • •
Dynamic Area • • • • • •

Theory of Operation

• • 11

• • 11
• • 11
• • 12
• • 12
• • 14

INITIALIZATICN OF THE OPERATING SYSTEM • 18
Main Storage Preparation • • • 18

SUPERVISOR • • • • • • • •
Interruption Supervision •

The Dispatcher (Macro IEAAPS)
STAE Service Routine • • • • • • •

• • 21
• • 21

21
28

ABEND and Damage Assessment Service
Routine • • • • • • • • • • • • 29
Damage Assessment Routines • • • • • • 30

Task Supervision • • • • • • • • • • • • 31
The Attach Routine (Macro IEAAAT) •• 31
The Wait Routine (Macro IEAAWT) ••• 32
The Post Routine (Macro IEAAPT) 32
The ENC/DEC Routine <IEAGENQ1) • • 32

Contents Supervision • • • • • • • • • • 33
LINK Service Routine (Macro IEAATC) • 33
ATTACH Service Routine (Macro IEAAAT) 33
LOAD Service Routine (Macro IEAATC) • 33
XCTL Service Routine (Macro IEAATC) • 34
IDENTIFY Service Routine (IEAAIDOO) • 34
DELETE Service Routine (IEAADLOO,
IEABDLOO) ••••••••••••
SYNCH service Routine (IEAASYOO)

• • 34
• 34

Main Storage Supervision • • • • • •
Timer Supervision •• • • • • • • •

Timing Procedure • • • • • • • • •
Timer Pseudo Clock Routine (IEATPC)
Comparison of PCP, MFT, and MVT Timer

• • 35
• • 35
• • 35

• 36

Supervision •••• • • • • • • • 36
OVerlay supervision • • • • •• • • 36
MFT Recording/Recovery Routines • • 36

Machine-Check Routines • • • • • • 36
Channel-Check Routine •••••••• 37
Systems Without Recording/Recovery
Routines • • • • • • • • • . • •• 37
Entry to Recording/Recovery Routines • 37

Checkpoint/Restart Routines • • 37

JOB ~~NAGEMENT • • • • • • • •
Job Scheduler Functions
Communications Task Functions
Master Scheduler Task Functions
Job Management Control Flow

Corr~and Processing • • • • • •
Communications Task • • • •

39
• • 39
• • 39

• • • 39
• • 40
• • 42
• • 42

Contents

W'IO/WTOR Macro Instruction Processing 42
External Interruption Processing • • • 42

Communications Task Modules • 43
Console Attention Interruption
Routine (IEECVCRA) • • • • • • • • • • 44
Communications Task Wait Routine
<IEECVCTW) • • •• • • • • • • • • • • 44
Communications Task Router (IEECVCTR) 44
Console Device Processor Routines
<IEECVPMX, IEECVPMC, IEECVPMP). • • • 44
Write-to-Operator Routines (IEECVWTO
and IEEVWTOR) ••••••••• • 45
External Interruption Routine
(IEECVCRX) • • • • • • •• • .• • • • • 45

Communications Task With Multiple
Console Support • • • • • • • • • • • • 46
Master Scheduler Task • • • • • • • 46

Multiple Console Support Requirements 46
SVC 34 Functions •• • • • • • • • • • 47
System Initialization •••••••• 48
partition Definition by the Master
Scheduler ••••••• • 50

Job Processing •
Queue Manager • • • •

Work Queues • • • •
Queue Management • • •• .•
Job Queue Initialization •
Queue Manager Modules

Reader/Interpreter. •
Resident Readers • • • • • • • •
Transient Readers • • ••
Reader Control Flow • • • •

Initiator/T·erminator (Scheduler) •
Job Selection (IEFSD510) • •
small partition Scheduling •
Initiator/Terminator Control Flow

System Output Writers
Resident Writers ••••••
Non-Resident writers • • • •
System Output Writer Modules

system Task Control
Initiating System Tasks ••••

System Restart • • • • • • • • • •

APPENDIX A: TABLES AND WORK AREAS
Command Scheduling Control Block

• 53
• 54

• • • 54
• 54
• 54
• 55
• 60
• 61
• 61

• • • 61
• 62

• • • 63
• 64

• • 67
• 72

• • • 72
• 72

• .• • 72
• • • 73

74
• 75

• 76

(CSCB) • • • • • • • • • • • • • • • • 76
Data Set Enqueue Table (DSENC) • • • • 79
Interpreter Work Area (IWA) • 79
Job Control 'Iable (JCT) •••• 84

• • • 87
Job File Control Block (JFCB) and
Extension (JFCBX) •••••
Life-of-Task (LOn Block • • •
Linkage Control Table (LCT) ••••
Master Scheduler Resident Data Area
Partition Information Block ••••
small Partition Information List
(SPIL) • • • . • • • • • • • • •
Step Control Table (SCT) • • • •
step Input/Output Table (SlOT) •
Task Input/output Table (TIOT) •

• 87
• 87
• 87
• 92

94
• 94
• 95

• • • 97

APPENDIX B: MFT MODULES
Unique MFT Modules • • •
Major Component Modules

• .100
• .100
• .101

Module Descriptions •• 106

APPENDIX C: FLOWCHARTS • .156

INDEX .189

Figures

Figure
in MFT

1. Main Storage Organization

Figure 2. Division of Main Storage
Figure 3. MFT Theory of Operation

9

• 13

(Part 1 of 4) ••••••••••••• 14
Figure 4. Main Storage During
Execution of NIP ••••••••• 19
Figure 5. Main Storage at
Termination of Master Scheduler
Initialization ••••••• • • 20
Figure 6. MFT supervisor •••••• 22
Figure 7. TCB Queue ••••••• 23
Figure 8. Dispatching communications
and Master Scheduler Tasks •••••• 25
Figure 9. Task Switching •••••• 26
Figure 10. System Control Block
Relationship •••••• • • 32
Figure 11. Recording/Recovery Routines 38
Figure 12. Job Management Data Flow • 41
Figure 13. Command Processing Flow •• 42
Figure 14. WTO/WTOR Macro Instruction
Processing Flow • • • • • • • • • • 43
Figure 15. External Interruption
Processing Flow • • • • • • • • • • 43
Figure 16. START Command Processing
Flow • • • • • • • • • • • • • • • 48
Figure 17. DEFINE Command Processing
Flow • • • • • • • • • • • • 51
Figure 18. Master Queue Control Record -
{Master QCR} Format • • • • • • • • • • 54
Figure 19. Job Queue Control Record
(QCR) ••••••••••••• • • 56
Figure 20. Logical Track Header (LTH)
Record Format ••••
Figure 21. sample Job Queue
(SYS1.SYSJCBQE) Format After

• 56

Initialization •••••••••••• 57
~igure 22. Input and Output Queue
Entries • • • • • • • • • • • • • • • • 58

Tables

Table 1. Responders to Commands
After Initial Processing · · · 40
Table 2. MFT Modules . · · · · . . · .100
Table 3. ABEND lVlodules · · · · . . · .102
Table 4. Communication Task Modules .102
Table 5. Initiator Modules · · · .102
Table 6. I/O Device Allocation
Modules · · · · · .102

Illustrations

Figure 23. Table Breakup Parameter
List • • • • • • • • • • • • 60
Figure 24. Scheduling a Problem
Program in a Large partition • 64
Figure 25. Scheduling a Problem
Program in a Small Partition • • • 65
Figure 26. Scheduling a Writer in a
Small Partition •••••••••••• 66
Figure 27. Allocate/Terminate
Parameter List ••••••• 69
Figure 28. User's Parameter List ••• 70
Figure 29. Scheduling a writer in a
Large Partition ••• • • • • 73
Figure 30. S~ART Descriptor Table
(SD~') •••••••••••• • 74
Figure 31. Command Scheduling Control
Block (CSCB) (Part 1 of 2) • 77
Figure 32. Data set Enqueue Table
(DSENQ) •••••••••• • 79
Figure 33. Interpreter Work Area
(IWA) (Part 1 of 3) •••• • 81
Figure 34. Job Control Table (JCT) •• 85
Figure 35. Job File Control Block
(JFCB) and Extension (JFCBX) •••• 86
Figure 36. Life-of-Task {LeT} Block • 88
Figure 37. Linkage Control Table
(LCT) • • • • • • •• • • •• • • • 89
Figure 38. Master Scheduler Resident
Data Area (Part 1 of 2) •••• • 91
Figure 39. Partition Information
Block (PIB) ••••••••• • 93
Figure 40. Small partition
Information List {SPILl • 94
Figure 41. Step Control Table (SCT) • 96
Figure 42. Step Input/Output Table
(SlOT) •••••••••••••••• 98
Figure 43. Task Input/Cutput Table
(TIO~) •••••••••••••••• 99

~able 7. Interpreter Modules · · · · .103
~able 8. Master Scheduler Modules · .103
~able 9. Queue Management Modules · .103
'I able 10. SVC 34 Modules . . · · · · .104
Table 11. System Output Writer Modules 104
'Iable 12. system Restart Modules .104
'I able 13. System Task Control Modules .104
'I able 14. Termination Modules · · · · .105

Charts

Chart 01. Task Dispatcher (Without
Time Slicing) ••••••
Chart 02. Task Dispatcher (With
Slicing) • • • • •
Chart 03. ABEND and DAR Control
(Part 1 of 2) ••••
Chart 04. ABEND and DAR Control
(Part 2 of 2) ••••
Chart 05. Small Partition Routine

Time

Flow

Flow

. .156

.157

.158

. .159

(Part 1 of 4) ••••••••••••• 160
Chart 06. Small Partition Routine
(Part 2 of 4) ••••••••••••• 161
Chart 07. Small Partition Routine
(Part 3 of 4) ••••••••••••• 162
Chart 08. Small Partition Routine
(Part 4 of 4) •••••• • .163
Chart 09. Master Scheduler Task •••• 164
Chart 10. Queue Search •• 165
Chart 11. Queue Manager Table Breakup
Routine •••••••••••••••• 166
Chart 12. Master scheduler Resident
Command Processor • • • • • • • • • • .167
Chart 13. SVC 34 Command processing
(Part 1 of 3) ••••••••••••• 168
Chart 14. SVC 34 Command processing
(part 2 of 3) ••••••••••••• 169
Chart 15. SVC 34 Command Processing
(Part 3 of 3) ••••••••••••• 170

Chart 16. Communications Task ••••• 171
Chart 17. IEFSD518 - Partition
Recovery Routine • • • • • • • • •
Chart 18. Initiator Control Flow
Chart 19. Job Selection Routine

.172

.173

(£beet 1 of 5) ••••••••••••• 174
Chart 20. Job Selection Routine
(Sheet 2 of 5) ••.••••••••••• 175
Chart 21. Job Selection Routine
(£beet 3 of 5) ••••••••••
Chart 22. Job Selection Routine
(£beet 4 of 5) • • • • • • • • • .•
Chart 23. Job Selection Routine

.176

.177

(Eheet 5 of 5) •••••••••.•••• 178
Chart 24. Reader/Interpreter (Sheet 1
of 3) ••••••••••••••• 179
Chart 25. Reader/Interpreter (Sheet 2
of 3) ••••••••• _ •• _ •• 180
Chart 26. Reader Interpreter (Sheet 3
of 3) • _ • _ • __ •••••• 181
Chart 27. JCL statement Processor ••• 182
Chart 28. Job and Step Enqueue Routine 183
Chart 29. Transient Reader suspend
Routine • • • • '. • _ • • • • • • • • .184
Chart 30. Transient Reader Restore
Routine • • • • .•• •• ••
Chart 31. system Output Writer
Control Flow • •• • _ • • • • • •
Chart 32. System Output Writer
Chart 33. system Task Control • •

.185

.186
•• 187

••• 188

In a single task environment, main storage
is divided into two areas: the fixed area,
and the dynamic area. In multiprograrrming
with a fixed number of tasks (MF'T), the
dynamic area is divided further into as
many as fifty-two discrete areas called
partitions. Figure 1 shows the division of
main storage.

I The fixed area, located in the lower
portion of main storage, contains the resi­
dent portion of the control program, and
control blocks and tables used by the sys-

Item. The size of the fixed area depends on
the number of partitions established by the
user, and the control program options
selected at system generation.

Partitions are defined within the dynam­
ic area, located in the upper portion of
main storage, at system generation. The
number of partitions may be varied within
the number specified at system generation,
and the sizes and job classes of partitions
may be redefined at system initialization
Q!: during operation. (See IEM System/360
Operating system: Planning for Multipro­
gramming with a Fixed Number of Tasks
(MFT). Form C27-6939.) Each partition may
be occupied by a processing program, or by
control program routines that prepare job
steps for execution (job management rou­
tines). or handle data for a processing
program (access method routines).

I Provided the total number of partitions
does not exceed 52 and enough computing

Low Address

Legend:

,
Fixed Area

Required Portion of the Fixed Area

Optional Features

n Number of Partitions Generated

eFigure 1. Main Storage Organization in MFT

Introduction

system resources are available, MFT pro­
vides for the concurrent execution of as
many as 15 problem programs. 3 input
readers. and 36 output writers, each in its
own fixed partition of main storage. The
MF'I system provides for task switching
among the tasks operating in the parti­
tions, and between those tasks and the coro­
munications task and master scheduler task
in the system area.

Task dispatching in MFT differs from the
primary control program (PCP) primarily in
that task switching is required, and that
certain system functions such as abnormal
termination must be carried out so that
other. unrelated, tasks are not affected.
The dispatching priority of a task is
determined by the relative position of the
partition used to process the task. The
highest-priority partition (PO) is at the
highest address in storage. successively
lower partitions (Pi - P51) have correspon­
dingly lower priorities. Control of the
CPU is given to the program in the highest­
priority partition that is ready.

'The integrity of programs operating
under MF'I is preserved if the storage pro­
tection feature is included. MFT uses the
16 protection keys to prevent a user job
from modifying the control program or
another job; it uses the two operating
states of the CPU to restrict the use of
control and I/O instructions.

Partition
(n-I) Partition 0

,
Dynamic Area

High Address I

Introduction 9

Because many components of MFT are simi­
lar to those of PCP and multiprogramming
with a variable number of tasks (MVT), many
of the modules for a given MFT component
are the same for the comparable component
in either PCP or MVT. Therefore, this pub­
lication describes differences between MFT
and the other configurations. The corres­
ponding PCP and MVT routines are described
in the following IBM System/360 operating
System program logic manuals and are
referenced where applicable:

Fixed Task Supervisor, Form Y28-6612

MVT supervisor, Form Y28-6659

MVT Job Management, Form Y28-6660

Information on modified or new routines for
~WT is contained in the three sections that
follow this introduction.

The Initialization of the Operating Sys­
tem section describes how the dynamic area
of main storage is prepared by the master
scheduler task after completion of the Nuc­
leus Initialization Program.

The Supervisor section describes the
task management modifications made to the
supervisor for MFT. The major area of
change has been in the initialization of
main storage.

The Job Management section describes
modifications and additions to the routines
for processing communications with the pro­
grammer and the operator. The major
changes are in the master scheduler task,
and the MFT initiator. Other modifications
have been made to the queue manager, the
reader/interpreter, system output writer,
and system task control routines.

Functions of the Control
Program with MFT
As in PCP and MVT, the control program rou­
tines of MFT have three major functions:
job management, task management, and data
management.

JOB ~ANAGEMENT

Job management is the processing of com­
munications from the programmer and opera­
tor to the control program. There are two
types of communications: operator com­
mands, which start, stop, and modify the
processing of jobs in the system, and job
control statements, which define work being
entered into the system. Processing of
these commands and statements is referred
to as command processing and job proces­
sing, respectively.

10

TASK MANAGEMENT

Task management routines monitor and con­
trol the entire operating system, and are
used throughout the operation of both the
control and processing programs. Task man­
agement has six major functions:

• Interruption supervision.
• Task supervision.
• Main Storage supervision.
• Contents supervision.
• Overlay supervision.
• Timer supervision.

The task management routines are collec­
tively referred to as the "supervisor."

DATA MANAGEMENT'

Data management routines control all opera­
tions associated with input/output devices:
allocating space on volumes, channel sched­
uling, storing, naming, and cataloging data
sets, moving data between main and auxili­
ary storage, and handling errors that occur
during input/output operations. Data man­
agement routines are used by processing
programs and control program routines that
require data movement. Processing programs
use data management routines primarily to
read and write required data, and also to
locate input data sets and to reserve aux­
iliary storage space for output data sets
of the processing program.

Data management routines are of five
categories:

• Input/Output (I/O) supervisor, which
supervises input/output requests and
interruptions.

• Access methods, which communicate with
the I/O supervisor.

• Catalog management, which maintains the
catalog and locates data sets on auxil­
iary storage.

• Direct-access device space management
(DADSM), which allocates auxiliary
storage space.

• Open/Close/End-of-Volume, which per­
forms required initialization for I/O
operations and handles end-of-volume
condi tions.

The operation of these routines is identic­
al with MVT and is described in the follow­
ing IBM System/360 Operating System program
logic manuals:

Input/Output Supervisor, Form Y28-6616

Seguential Access Methods, Form Y28-6604

Indexed Sequential Access Methods, Form
Y28-6618

Basic Direct Access Method, Form
Y28-6617

Graphics Access Method, Form Y27-7113

Cataloq Management, Form Y28-6606

Direct Access Device Space Manaqement,
Form Y28-6607

Input/Output Support (OPEN/CLOSE/EOV),
Form Y28-6609

Control Program Organization

The control program is on auxiliary storage
in three partitioned data sets created when
the system is generated. These data sets
are:

• The ~~CLEUS partitioned data set (SYS1.
NUCLEUS), which contains the Nucleus
Initialization Program (NIP) and the
resident portion of the control
frogram.

• The SVCLIB partitioned data set (SYS1.
SVCLIB), which contains nonresident SVC
routines, nonresident error-handling
routines, and the access methods
routines.

• The LINRLIB partitioned data set (SYS1.
LINRLIB), which contains other nonresi­
dent control program routines and IBM­
supplied processing programs.

RESIDENT PORTION OF THE CONTROL PROGRAM

The resident portion (nucleus) of the con­
trol program is in SYS1.NUCLEUS. It is
made up of those routines, control blocks,
and tables that are brought into main
storage at initial program loading (IPL)
and are never overlaid by another part of
the operating system. The nucleus is
loaded into the fixed area of main storage.

The resident task management routines
include all of the routines that perform:

• Interruption supervision.
• Main storage supervision.
• Timer supervision.

They also include portions of the routines
that perform:

• Task supervision.
• Contents supervision.
• OVerlay supervision.

I !hese routines are described in the Super­
yisor section of this publication, and in
the program logic manual IBM System/360
Operating system: Fixed Task supervisor,
Form Y28-6612.

The resident job management routines are
those routines of the communications task
that receive commands from the operator.
!he MFT communications task is described in
this publication.

The resident data management routines
are the input/output supervisor and,
optionally, the BLDL routines of the parti­
tioned access method. These routines are
described in the following IBM System/360
Oferating System program logic manuals:

Input/Output Supervisor, Form Y28-6616

sequential Access Method, Form Y28-6604

The user may also select resident reen­
terable routines, which are access rrethod
routines from SYS1.SVCLIB, and other reen­
terable routines from SYS1.LINRLIB. At
system generation, the user specifies that
he wants such routines resident in main
storage. At IPL, he identifies the specif­
ic routines desired in the RAM=entry. The
selected routines are loaded during system
initialization and reside adjacent to the
higher end of the system queue area unless
the BLDL table is also resident (see Figure
1>.

Normally-transient SVC routines (Le.,
types 3 and 4 SVC routines) can be made
resident through the RSVC option, specified
by the user. NIP loads these routines
adjacent to the higher end of the resident
reenterable routines. If there is no resi­
dent BLDL table or resident reenterable
routines, the routines are loaded adjacent
to the higher end of the system queue area.
(see Figure 1.)

NONRESIDENT PORTION OF THE CONTROL PROGRAM

~e nonresident portion of the control pro­
gram compriseS routines that are loaded
into main storage as they are needed, and
which can be overlaid after their comple­
tion. The nonresident routines operate
from the partitions and from two sections
of the nucleus called transient areas
(described below).

Main Storage Organization

Main storage in MFT is organized similarly I to main storage in MVT, except that the
optional resident areas are adjacent to the
nucleus.

Introduction 11

Main storage may be expanded by includ­
ing IBM 2361 Core storage (core storage)
units in the system. Main Storage Hierar­
chy Support for IEM 2361 Models 1 and 2
permits access to either processor storage
(hierarchy 0) or core storage (hierarchy
1). Each partition esta"blished during sys­
tem generation is described by a boundary
box. The first half of the boundary box
describes the processor storage partition
segment and the second half describes the
core storage partition segment. Any parti­
tion segment not assigned main storage in
the system has the applicable boundary box
pointers set to zero. If a partition is
estatlished entirely within hierarchy 1,
the processor storage pointers in the first
half of the partition's boundary box are
set to zero. If a partition segment is not
generated in core storage, the core storage
pointers in the second half of the parti­
tion'S boundary box are set to zero. If
core storage has been included in the sys­
tem, but is offline, the second half of the
boundary box will contain zeros. If core
storage is excluded from the system, the
second half of the boundary box is not
generated.

FIXED AREA

In MFT (as in PCP and MVT) the fixed area
is that part of main storage into which the
nucleus is loaded at IPL. The storage pro­
tection key of the fixed area is zero so
that its contents can be modified by the
control program only. The fixed area also
contains two transient areas into which
certain nonresident routines are loaded
when needed: the SVC transi~nt area (1024
bytes) and the I/O supervisor transient
area (1024 tytes). These areas are used by
nonresident SVC routines and nonresident
I/O error-handling routines, respectively.,
which are read from SYS1.SVCLIB.

Each transient area contains only one
routine at a time. When a nonresident SVC
or error-handling routine is required, it
is read into the appropriate transient
area. The transient area routines o~erate
with a protection key of zero, as do other
routines in the fixed area.

12

System Queue Area

~he system queue area (SQA) is established
by NIP adjacent to the fixed area and pro­
vides the main storage space required for
tables and queues built by the control pro­
gram. The SQA must be at least 1600 bytes
for a minimum two-partition system. Its
storage protection key is zero so that it
can be modified by control program routines
only. Data in the system queue area indi­
cates the status of all tasks.

DYNAMIC AREA

Figure 2 shows how the contents of each
partition in the dynamic area are organized
and how they are related to the rest of
main storage. Routines are brought into
the high or low portion of an MFT partition
similarly to the way routines are brought
into the entire dynamic area of PCP. Job
management routines, processing programs,
and routines brought into storage via a
LINK, A~~CH, or XCTL macro instruction,
are loaded at the lowest available address.
~he highest portion of the partition is
occupied by the user parameter area and
user save area. The next portion of the
partition is occupied by the task input/
output table (nOT) which is built by a job
management routine (I/O Device Allocation
routine). This table is used by data man­
agement routines and contains information
about DD statements.

Each partition may be used for a problem
program as well as for system tasks
(readers, initiators, and writers). When
the control program requires main storage
to build control blocks or work areas, it
obtains this space from the partition of
the processing program that requested the
space. Access method routines and routines
brought into storage via a LeAD macro
instruction are placed in the highest
available locations below the task input/
output table.

Working storage and data areas are
assigned from the highest available storage
in a partition.

Processing
Program

or
Job
Management
Routine

Non-Resident
Control Program
Routines or
Processing Program

Routines

Brought
In Via
LINK,
ATTACH,

and
XCTL
Macro
Instructi

Partition

Access
Method

Access
Method
Routines

nOT

Routines,
and

Routines
Brought
In
Via
LOAD
Macro-
I nstructi on

User User
P~rameter Save
Area Area

(Typical for Each) /
/

/

SVC
Transient
Area

Low Address

lOS
Transient
Area (Lowest

Priority
Partition)

P(n-l)

/

Pl

High Address

(Highest
Priority
Partition)

PO

~--------~y~-----------)'~------------------------------·------------------yr--~
Fixed Area Dynamic Area

n = number of partitions generated

Figure 2. Division of Main Storage

Introduction 13

Theory of Operation

Figure 3 describes the overall processing flow through each job cycle. These paragraphs
describe the processing performed by various components of the control program as it
loads the nucleus, reads control: statements, initiates the job step, causes processing to
begin or end in other partitions, and terminates the job step.

r---,
I I
I I
I I
I ~o load the nucleus, the operator sets I
I the LOAD UNI~ switches to the device on I
I which the system residence volume is I
J mounted, and presses the LOAD button on the I
I operator control panel •. This causes an IPL I
I record to be read and to be given control. I
I ~his record causes the second IPL record to I
I be read, which in turn, enables the rest of I
I IPL the IPL program to be read into main I

Load Nucleus

NIP

Initialize Nucleus

MASTER SCHEDULER

Initialize System

COMMUNICATIONS
TASK

Initialize
Work

Queues

Interpret
Commands

Yes

Definition Routine

Make
Requested
Changes

START Reader
START Writer
START INIT
SET

~or~e. I

~e IPL program searches the volume
label of the system residence volume to
locate the volume table of contents (VTOC).
~he VTOC is then searched for the address
of the nucleus data set (SYS1.NUCLEUS).
~he nucleus is brought into the system
area, and NIP is brought into the dynamic
area. NIP receives control from the IPL
program. It performs both required and
optional initial:ization for control program
operation including initializing the Com­
munication Vector Tabl:e (CVT), and general:
system initialization, such as determining
user options. After completing its proces­
sing, NIP passes control to the master
scheduler task (MS~) which initializes main
storage.

Partitions are established by the master
scheduler at system initialization accord~
ing to the sizes and job class(es) estab­
l:ished at system generation by the PARTITNS
macro instruction. The MST also places a
copy of the Initiator/Terminator into each
scheduler-size partition; a copy of the
small partition module is placed in each
small partition. ~he communications task
receives control from the MST and communi­
cates with the operator to request any par­
tition changes. After the requested
changes, if any, have been made by the
definition routines, the work queues are
initialized. The automaticcornmands are
displayed, and the READY message is issued.

I
I
I
I
I
I
I
I
I
I
I
I
I
I ,
I
I
I
I ,
I
I
I
I
I
I
I
I ,
I ,
I
I
I
I
t
I
I
I

I I l ____________________________________ ~ __ J

Figure 3. MFl' Theory of Operation (Part 1 of 4)

14

r---,

cp
SUPERVISOR

Bring Writer
Into Its

Assigned
Partition

(See Part 4 of 4)

Bring Reader
Into Its
Assigned
Partition

1
READER

Read and
Interpret

Control Statements

Build Tobles and
Enter Job on

Appropriate Input
Wark Queue

Write Data in
Input Stream

onto Direct-Access
Storage Device

1
SUPERVISOR

Bring
Initiator/

Terminator
Into

Partition

d;

(Data

(DD

(EXEC

JOB

I -

('"
Input
Work

..... Queues

r-..
Input
Data
Sets

I-

I-

Wlen the required SET command is
entered, the communications task calls the
master scheduler command scheduling routine
to have the command executed. An automatic
S~~ reader command or a subsequent opera­
tor entered STAR~ reader command causes a
copy of the Reader/Interpreter (reader) to
be brought into its appropriate partition.
If a START writer command is entered, a
copy of a writer is also brought into the
specified partition(s).

Wlen the reader gets control, it reads
control statements and data from the input
job stream. Information from the JOE,
EXEC, and DO statements controls the execu­
tion of each job step. This information is
placed in the following tables:

• Job control table (JCT) for the job
being read.

• step control table (SCT) for the step
being read.

• Data set enqueue table (OSENQ) for the
job being read.

• Job file control block (JFCB) and step
input/output table (SlOT) for each data
set being used or created by the job
step.

• Volume table (VOLT) containing each
volume serial number to be used by the
job.

Information from these tables and control
blocks is updated with information in the
data control block (OCB) and data set con­
trol block (OSCB) or volume label when a
data set is opened during step execution.

~e reader then places these updated
control blocks into the input work queue
corresponding to the CLASS parameter on the
JOB statement. Data sets in the input
stream are written onto a direct-access
storage device for later use by the problem
program.

After the reader has completed proces­
sing all input for a job and has entered
the job on an input work queue, all initia­
tors that are waiting for that job class
are posted. If the job is for a small par­
tition, the small partition module is also
posted.

I
I
I
I
I
I

t I L ________ --------------~---___ J

Figure 3. MFT Theory of Operation (Part 2 of 4)

Introduction 15

r---,
I I
I I
I After receiving control, the initiator/ I
I terminator prepares to initiate the highest I
I priority job in its primary input work I
I queue. Using information which the reader I
I extracted from the DD statement, the I
I initiator/terminator processes the user I
I accounting routine, in addition to the
I following: y I
I Locates Input Data sets: The Allocation

INITIA TOR/TERMINATOR

Determine Step to
Be Initiated

Locate Input
Data Sets

Assign
Input/Output

Devi ces to Data
Sets

Allocate
Auxiliary
Storage Space

Write Tables
and

Control Blocks

1
SUPERVISOR

Bring Problem
Program Into

Partition

cb

.....
......

Input
Work
Queues

routine, running as a subroutine of the
initiator/terminator, determines the volume
containing a given input data set by
examining the JFCB, or by searching the
catalog. 'Ihis search is performed by a
catalog management routine entered from
allocation. (A description of the routines
that maintain and search the catalog is
given in IBM System/360 Cperating System:
catalog Management, Program Logic Manual,
Form Y28-6606.)

Allocates I/O Devices: A job step cannot
be initiated unless there are enough I/O
devices to fill its needs. Allocation
determines whether the required devices are
available, and makes specific assignments.
If necessary, messages are issued to the
operator to request the mounting of
volumes.

Allocates Auxiliary Storage Space: Direct
access volume space required for output
data sets of a job step is acquired by the
allocation routine, which uses the Direct
Access Device Space Management (DADSM) rou­
tines. (A description of the operation of
the DADSM routines is given in the pUblica­
tion IBM System/360 Operating system:
Direct Access Device Space Management, Pro­
gram Logic Manual, Form Y28-6607.)

'Ihe JFCB, which contains information
concerning the data sets to be used during
step execution, is written on auxiliary
storage. 'Ihis information is used when a
data step is opened, and when it is closed,
the job step is terminated.

'Ihe initiator causes itself to be
replaced by the problem program it is
initiating (if for a large partition), or
initiates the job in a small partition.

'Ihe problem program can be an IBM­
supplied processor (e.g., COBOL, linkage
editor), or a user-written program. The
problem program uses control program ser­
vices for operations such as loading other
programs and performing I/O operations.

Figure 3. MFT Theory of Operation (Part 3 of 4)

16

r---,

qJ
Allow Highest
Priority Ready

Tosk to
Execute

!
SUPERVISOR

OPEN/CLOSE/
EOV

Set Up for Dump,
if Required

Load
Initiotor/

Terminator

!
INITIATOR/TERMINATOR

User
Accounting

Routine

Dispose of
Data Sets,

Write Messages

Enqueue Work
for Output
Writer on
Output Work
Queue

cb
SYSTEM OUTPUT WRITER

Dequeue Entry From
Appropriate Sysout

Queue

Write Data and
Messages onto

User-Specified
Device

Delete Entry
From the Queue

Dequeue the Next
Entry From the
Queue

Input
Data
Sets

Output
Data
Sets

Output
Work
Queues

Output
Data
Sets

1
Punch

/ I
~ l .- Tape

L:::-J

lbe problem program processes until it
terminates either normally or abnormally,
though it may not retain exclusive control
of the cpu. Control always is received by
the highest priority task that is ready to
execute.

Kben the problem program terminates, the
supervisor receives control. The supervi­
sor uses the OPEN/CLOSE/ECV routines to
close any open data control blocks. (These
routines are described in IBM System/360
Operating System: Input/Output Support
(OPEN/CLOSE/EOV), Program Logic ~anual,
Form Y28-6609.)

Under abnormal termination conditions,
the supervisor may also provide special
termination procedures, such as a storage
dump. ~e supervisor passes control to the
initiator/terminator, which is either
brought into the partition in which ter­
mination is to occur, or is brought into
the large partition to terminate a s«all
partition.

~e initiator/terminator releases the
I/O'devices, and disposes of data sets used
and/or created during the job step by read­
ing tables prepared during initiation (JCT,
SC'l, TIO'l, etc.). These tables include
information such as disposition of data
sets. It then executes an installation
accounting routine if one is provided.

At job termination, an entry is made on
the user specified output work queue; later
the problem program output data can be
written by a system output writer from a
system direct-access storage device to a
user-specified device. The initiator/
terminator then initiates the next job
step.

An output writer operates concurrently
with readers, problem programs, and other
wri ters. iihen the START command is issued
for a writer, the writer dequeues the first
entry in the specified output (SYSOUT)
queue. If no requests have been enqueued
in that output queue from the problem pro­
grams, the writer is placed in a wait con­
dition until a job is terminated that has
system messages or output data sets. After
the entry is dequeued from the output
queue, the writer transmits the data sets
to the specified card punch, magnetic tape
unit, Or printer. When the last record has
been processed, the writer deletes the
queue entry before dequeuing the next
entry.

___ J

Figure 3. MFT Theory of Operation (Part 4 of 4)

Introduction 17

I Initialization of the OperatingSystexn

When the system is loaded, routines perform
required and optional initialization of
functions needed for control program opera­
tion. (These routines are described in IBM
System/360 Operating System: Initial prO=­
gram Loader and Nucleus Initialization Pro­
gram, Program Logic Manual, Form Y28-6661.)
When the Nucleus Initialization Program
(NIP) has defined the fixed area, it then
assigns the rest of main storage to the
master scheduler task to be prepared as the
dynamic area for control program operation.

Main Storage Preparation

When NIP completes its functions it con­
structs a request block (RB) and an XCTL
macro instruction (specifying master sched­
uler initialization routine IEFSD569) at
the low address of the temporary master
scheduler area. NIP placlas theaddre.ss of
this RB in master scheduler task TCB field
TCBRBP. (The original contents of TCBRBP
are saved and passed to IEFSD569 in a pa­
rameter list along with the original master
scheduler task boundary box contents.) NIP
sets master scheduler task TCB field
TCBFLGS to make the master scheduler task
dispatchable, and then branches to the
dispatcher.

The dispatcher gives control to the
master scheduler task causing execution of
the XCTL instruction which NIP placed in
the temporary master. scheduler area. The
master scheduler initialization routine is
brought into the temporary master scheduler
area and begins executing. Figure 4,
excluding the medium shaded area, illus­
trates main storage at completion of NIP
before branching to the dispatcher. Figure
4, excluding the light shaded area, illus­
trates main storage when the master sched­
uler initialization routine receives con­
trol from the dispatcher.

For a description of the master schedul­
er initialization routine see "Master

18

Scheduler ~ask- in the Job Management sec­
tion. Figure 5 illustrates main storage
(four partition example) at completion of
master scheduler initialization. When the
initialization routine completes proces­
sing, it branches to the dispatcher.

Initializing the Partitions

During master scheduler initialization the
operator must accept automatic START com­
mands or enter S'IART commands manually.
when a S'IART command is processed, the par­
tition number specified in the command is
determined, and a CSCB is built. The CSCB
(see Appendix A) is used for communication
between the command scheduling routines
(SVC 34) and the command execution rou­
tines. The address of the CSCB is placed
in the partition information block (PIB) of
the specified partition, and the partition
is posted. The PIB for each partition con­
tains information used by command proces­
sing and scheduler routines. (See Appendix
A for a description of the PIB, and
-Initiator/Terminator" in Job ~anagement
for a discussion of its use.)

After the initialization routine com­
pletes processing, the dispatcher gives
control to the master scheduler router rou­
tine. When this routine completes proces­
sing, it returns to the dispatcher which
begins searching the TCB queue. The high­
est priority task posted through START com­
mand processing receives control. The XCTL
macro instruction addressed by the parti­
tion's RB is executed and the Job Select
module UEFSD510) or Small Partition module
(IEFSD599) is brought into the partition.
when an interruption occurs and the parti­
tion can no longer retain control, the dis­
patcher gives control to the next posted
parti tion. This process continues, enabl­
ing all posted partitions to receive con­
trol and to execute the XCTL instruction
placed in them by the initialization
routine.

Partition
0

Partition
1

Partition
2

Partition
3

BLDL
RSVC
Resident
Reenterable
Routines

System
Queue
Area

Nucleus

RB

RB

RB

MSTCB ---
TCBRBP 4--~ RB

SQA BBOX MS BBOX --- ---
HI
LO

Low Address

XCTLIEFSD510

XCTL IEFSD510

(Small Partition)

XCTLIEFSD599

High Address

0000 FQE

0000 FQE

0000 FQE

Master Scheduler

Dynamic
Area

Fixed
Area

"Figure 4. Main Storage During Execution of NIP

Initialization of the Operating System 19

Temporary
Master
Scheduler
Area

BLDL
RSVC
Resident
Reenterable
Routines

Queue Area
System {

Nucleus

High Address

0000 FQE

Communications Task Master Scheduler

MSTCB

TCBRBP

TCBMSS

SQA BBOX

Legend:

RB

MS BBOX
HI
LO

Contents of the Dynami c Area During IPL and NIP.

Contents of the Dynamic Area After The Master Scheduler Task
Receives Control on Completion of NIP.

Optional Features

-Figure 5. Main Storage at Termination of Master Scheduler Initialization

20

l
Dynamic
Area

Fixed
Area

The MFT supervisor manages the operation of
the control program and processing pro­
grams. .Job management selects jobs for
execution, allocates devices and storage to
the step to be executed, and gives control
to the program that represents the step.
After receiving control, a program is known
as a task and becomes the responsibility of
the supervisor. As many as 15 job-step
tasks may operate in the system concurrent­
ly with system tasks. Each task must be
isolated so it does not interfere with any
other task. To do this, each job-step task
operates in its own partition in main
storage. If the system has the optional
storage protection feature, each partition
is assigned a unique protection key (1-15).
The resident portion of the control pro­
gram, including some supervisor routines,
occupies a fixed area of main storage and
operates under a protection key of zero.

To maintain control of the computing
system, the supervisor must perform «any
services. Routines within the supervisor
are grouped into general categories depend­
ing upon the services which they perform.
These categories are:

Interruption Supervision: All supervisor
activity begins with an interruption. The
five types of interruptions are: supervi­
sor call, timer/external, input/output,
program, and machine. When an interruption
occurs, the interruption handling routine
for the type of interruption that occurred
gains control. The interruption handling
routine then passes control to those parts
of the control program that perform the
services required as a result of the inter­
ruption. Many of the services which must
be performed are included in other general
categories of the supervisor.

Task supervision: The supervisor maintains
control information including the current
status of program and interruption request
blocks, task control blocks, and event con­
trol blocks.

contents Supervision: The supervisor keeps
records of the status and characteristics
of all programs in each partition of main
storage, initiates program fetch for the
dynamic loading of programs, and maintains
the active request block queue.

Main Storage supervision: Within each par­
tition, the supervisor allocates and
releases main storage space for a task on
request, and maintains a record of all free
storage space within each partition.

Supervisor

~imer Supervision: The supervisor sets and
maintains a clock, and honors requests for
time intervals and exact time.

Overlay Supervision: The supervisor mon­
itors the flow of control between segments
of a program operating in an overlay struc­
ture established by the user through the
linkage editor.

Interruption Supervision

with the exception of the dispatcher and
the ABEND routines which are described
below, the interruption supervisor of MFT
functions as described in IBM system/360
Operating System: Fixed-Task supervisor.,
Program Logic Manual, Form Y28-6612.

When an interruption occurs and is ser­
viced, the task which had been executing
may relinquish control of the CPU. Control
must always be given to the highest priori­
ty ready task. The transfer of control
from one task to another is called task
switching and is accomplished by the task
dispatcher. When an interruption handling
routine completes processing an interrup­
tion, it branches to the task dispatcher
rather than returning control to the inter­
rupted program. Type 1 EXIT is the only
interruption handling routine which may
return control directly to the interrupted
program. Figure 6 illustrates how the task
dispatcher receives control after an inter­
ruption has been serviced.

~BE DISPATCHER (MACRO IEAAPS)

~he dispatcher gives control to the highest
priority task ready to execute. It uses
information located by communication vector
table (CVT) fields CVTHEAD and ·CVTTCBP, and
if the time-Slicing feature is in the sys­
tem, field CVT'ISCE.

Field CVTHEAD addresses a queue of task
control blocks ('ICBs). This TCB queue is
arranged in dispatching priority order
beginning with the highest priority task.
The highest priority TCB is the optional
log task 'ICB, followed by the communication
task 'ICB, the master scheduler task TCB.,
and one 'ICB for each of the partitions
generated in the system (in ascending order
by partition number). Figure 7 illustrates
the 'ICB queue.

Supervisor 21

iNTERRUPTIONS

Recovery
Management
(Optional)

i
I
I
[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Tran.ient Area
Handler for Non
Resident SVC.

SVC
Service

No

Yes

Mark
Task for
ABEND

EXIT

User's
Routine

Time
SuperVrSFOn

Input/
Output
Supervisor

L---------_______ f+--------'

Figure o. MFT Supervisor

Any number of partitions (up to 52) may
be specified during system generation.
Partitions must be numbered consecutively
beginning with zero. Note that in Figure 7
there is a TCB for partition 1, but parti­
tion 1 is aSSigned no storage space. This
illustrates a partition which was specified
at system generation but which bas been
made inactive. If a partition is not spe­
cifiedduring system generation, no TCB is
constructed. If, for example, only 3 par­
titions (0 through 2) are specified at sys­
temgeneration, then only three ~CBs are
constructed and partitions 3 through 51 do
n¢ exist.

22

Task Dispatcher

All of the TCBs in the system are
chained together through TCB field TCBTCB.
In each ~CB, this field contains the
address of the next TCB on the queue. The
~CBTCB field of the last TCB on the queue
contains zero.

CV~ field CV~~BP addresses two full
words called NEW and OLD. The first word
(NEW) contains either zero or the TeB
address for the task to be given control.
~e second word (OLD) contains the TeB
address for the task currently in control.
NEw can be set .by any of the supervisory

routines associated with task switching
(WAIT, POST, ENQ/DEQ, Manual Purge). When
a supervisory routine determines that the
task currently in control can no longer
retain control, it sets NEW to zero. When
a supervisory routine determines the new
task to be given control, it inserts the
TCB address for that task in NEW.

CVT field CVTTSCE contains the address
of tbe time-slice control element (TSCE).
This field is used by the dispatcher in
determining the next time-slice task to
receive control, providing time-slicing was
specified as a system generation option.
The format of a TSCE is explained later in
this section.

When the interval timer is in use and a
user accounting routine is supplied, the

Main Storage

Low Address (Not to

dispatcher accumulates the total amount of
time used to execute a job step. Each time
a new job step is dispatched, the dispatch­
er stores the time from the hardware timer
in the PTlMER field of IEATPC (pseudo clock
area). When control is returned to the
dispatcher, it calculates the elapsed time
by subtracting the stored value from the
current value of the hardware timer. The
dispatcher adds the result to the TCBTCT
field in the task's TCB. Time is not cal­
culated for the job step if it is dis­
patched in a wait state.

Dispatchinq a Task

~hen the dispatcher receives
first schedules any requests
asynchronous exit routines.
mines if NEW equals OLD (see

control, it
for system
Then it deter­
Chart 01). If

Fixed
Area

Cam~Task Wait Routine
\

Master Schedut~r Router Routine

Partition 2

Partition 0

• Figure 7 • TCB Queue

Supervisor 23

so, no task switch is indicated. If neces­
sary, the dispatcher enqueues timer ele­
ments for the task. It then returns to the
task currently in control.

If NEW does not equal OLD, a task switch
is indicated. If job/step CPU timing is
included in the system, the dispatcher cal­
culates the job step time for OLD, and
increments the job time accumulator in the
TCB. If necessary, the dispatcher dequeues
timer elements associated with the task
currently in control. Then it determines
if NEW equals zero.

If NEW does not equal zero, it contains
the TCB address for the task to be given
control. The dispatcher sets OLD equal to
NEW, and enqueues timer elements if neces­
sary. Additionally, if job/step CPU timing
is included in the system, the dispatcher
stores the interval timer value in the
pseudo timer field of IEATPC. Control then
passes to the new task.

If NEW equals zero, the dispatcher must
examine the TCB queue to determine which
task should be given control. This
examination begins with the TCB addressed
by OLD. (For a task of higher priority
than OLD to receive control, the address of
its TCB must be inserted in NEW by a super­
visory routine.)

When examining a TCB to determine if its
associated task should be given control,
the dispatcher first determines if the re­
quest block (RE) of the program executing
under the TCB is waiting. This is done by
examining field XRBWT in the RB addressed
by TCB field TCBRBP. If the RB is not
waiting, the dispatcher examines TCB field
TCBFLGS to determine if the task is dis­
patchable. If so, the dispatcher sets NEW
and OLD to the address of the TCB and
enqueues timer elements (if necessary).
Additionally. if job/step CPU timing is
included in the system, the dispatcher
stores the interval timer value in the
pseudo timer field of IEATPC. Control then
passes to the new task.

In one case, the dispatcher does not
pass control directly to the new task. II
TCB field TCBRBP for the task to be given
control addresses an SVRB for a transient
SVC routine, a check is made to determine
the contents of the double word XCNTCC (in
IEAATAOO) which contains the name of the
routine presently in the SVC transient
area. If the routine names in XCNTCC and
the SVRB are identical. the dispatcher
passes control to the new task. If they
are not identical, the Transient SVC
Refresh routine (IEAARFOO) brings the
required routine into the SVC transient

24

area and then returns to the dispatcher.
Since NEW and OLD have already been set
equal, the dispatcher need only enqueue
timer elements if necessary and pass con­
trol to the new task.

If the RB for a task is waiting or the
task is nondispatchable, the task is not
ready to receive control. The dispatcher
examines ~CB field TCBTCB to obtain the
address of the next TCB on the queue. The
dispatcher then examines this TCB to iden­
tify whether it is ready to receive con­
trol. This process continues until a ready
task is found or until the end of the queue
is reached (indicated by a zero in TCBTCB).

If no task is able to receive control.
the dispatcher sets the resume PSW wait bit
of the TCB addressed by OLD. This PSW is
then loaded, placing the CPU in a wait con­
dition. ~he resume PSW is located in field
XRBPSW of the RB addressed by TCB field
~CBRBP.

Figures 8 and 9 illustrate how control
is switched assuming a three partition sys­
tem in which PI is inactive (see Figure 7).
All tasks are dispatchable except task Pl.
Initially, only the communications task and
master scheduler task are waiting. Because
task PO is the highest priority task which
is dispatchable and not waiting, it is
given control. ~ask PO has already
enqueued and received exclusive control of
a resource which task P2 will later enqueue
(see Figure 9).

Dispatching the Communications Task and
Master Scheduler Task

Figure 8 illustrates how control passes to
the communications task and master schedul­
er task through the dispatcher. In the
example illustrated, the communications
task receives control in order to read a
DEFINE command from the operator console.

Initially, the task in PO has received
control from the dispatcher and is execut­
ing. ~he operator presses the REQUEST key
to indicate that he wishes to enter a com­
mand from the console. An I/O interruption
is generated and control passes to the I/O
supervisor which identifies the interrup­
tion as an attention signal. The I/O
supervisor then passes control to the con­
sole interruption routine which issues a
POST macro instruction. The POST routine
posts the attention ECB and sets the com­
munications task RE to a non-wait condi­
tion. Because the communications task is
of higher priority than the task in parti­
tion 0, the POST routine places the address
of the communications task TCB in location
NEW. Control then passes to the
dispatcher.

I t
NEW OLD

PO TCB II PO TCB 1

I I L-_--L- ____ _

,-------

1

I
1

1

I i
L_l ____ .

r-I~'~ -1-----
L--_~ __ _

,--- -- ,----- --

* * II MS TCB I t MS TCB I
,...-------

; It MISTCBI

L-_L-_____ _

I t
r'- -,-- ----
t t

POTCB Ii POTCB I

Dispatcher

Int

Int

Int

Int

Search
TeB Queue

Enter
DEFINE

'-________ .1 Command

Partition 0 Task

Communications Task

SVC 34

Communications Task

WAIT

Mester Scheduler Task

WAIT

Partition 0 Task

Figure 8. Dispatching Communications and Master Scheduler Tasks

supervisor 25

NEW OLD

t PO TCB f PO TCB

t I L_..l ____ _ - Dispatcher
A

Portition 0 Task

Int }-- WAIT

1---_·_---- Wait Routine

; f PO TCB

B

- Dispatcher

1--1------.- Search TCB Queue
Partition 2 Task

* f t P2 rCB f t P2 TCB
Int r- ENQ

-- Enqueue Routine

Resource· Unavailable

C

L __ I _____ _
-~ Dispatcher

Search TCB Queue

No Task Can Execute

Machine Wait

J Int)---

r--------- - Post RouHne

Post PO

D

- Dispatcher

1-------
Partition 0 Task

tnt)-- DEQ

Dequeue RouHne

!
--- Dispatcher

Partition 0 Task

Figure 9. Task switching

26

The dispatcher gives control to the com­
munications task which passes control to
resident device-support routines or issues
SVC 72 for transient device-support
routines. The device-support routines read
the console"s commana and then ~ssue SVC 34
to process the command. SVC 34 processes
some commands completely but must pass con­
trol to the master scheduler resident com­
mand processor routine to complete proces­
sing the DEFINE command. (See "Command
processing" in the Job Management section
for a complete description of SVC 34 and
the master scheduler task.) SVC 34 issues
a POST macro instruction to post the master
scheduler task. The POST routine sets the
master scheduler RB to a non-wait condition
and gives control to the dispatcher.
Because the master scheduler task is of
lower priority than the communications
task, locations NEW and OLD remain
unchanged and the dispatcher returns con­
trol to the communications task.

The communications task issues a WAIT
macro instruction and waits on an ECB. 'I'he
WAIT routine sets the communications task
RB in a wait state and sets location NEW to
zero. The dispatcher then receives control
and searches the TCB queue. Since the
master scheduler task is the next ready
task on the TCB queue, the address of the
master scheduler TCB is placed in locations
NEW and OLD, and the dispatcher passes con­
trol to the master scheduler.

The master scheduler completes proces­
sing the DEFINE command and then issues
WAIT. The WAIT routine sets location NEW
to zero and passes control to the dispatch­
er which searches the TCE queue until it
finds a task ready to receive control. In
Figure 8, control returns to the task which
was executing before the operator entered
the DEFINE command.

Dispatching Tasks by Partition Priority

Figure 9 illustrates task switching among
tasks executing in partitions.

A. The task in partition PO (task PO) is
the highest-priority ready task and is
given control by the dispatcher. When
task PO issues a WAIT on an ECB, an
interruption occurs and control passes
to the WAIT routine.

B. The WAIT routine places the RB for
partition 0 in a wait condition and
sets location NEW to zero. It then
passes control to the dispatcher which
searches the TCB queue beginning with
the TCB for partition o. Since task
PO is waiting and task Pl is non­
dispatchable, the dispatcher passes
control to task P2, the highest
priority task ready to execute. When

task P2 attempts to enqueue a resource
through use of the ENQ macro instruc­
tion, an interruption occurs and con­
trol passes to the ENQ routine.

C. The resource is unavailable because
task PO has already enqueued it.
Therefore, task P2 cannot continue
executing. The enqueue routine places
zero in location NEW and then passes
control to the dispatcher which
searches the TCB queue. Since task P2
is the last task on the queue, the
dispatcher sets the wait bit in the
resume PSW of task P2. The dispatcher
passes control to task P2, placing the
CPU in a machine wait condition.

D. ~hile the CPU is waiting, an interrup­
tion occurs signifying the completion
of the event for which task PO was
waiting. The POST routine receives
control and posts the ECB for task PO
which is now able to' resume control.
The POST routine places the TCB
address for task PO in location NEW
and gives control to the dispatcher.
The dispatcher sets OLD equal to NEW
and gives control to task PO. Task PO
executes and when finished using the
resource it has enqueued, it issues a
DEQ macro instruction.

E. An interruption occurs and the DEQ
routine receives control. The queue
element for task PO is removed from
the resource queue. The next element
on the resource queue is for task P2.
The resource is assigned to task P2
and its RB is placed in a non-wait
condition. The DEQ routine then com­
pares the priority of the task which
has been in control with the priority
of the task which is now ready.
Because task PO has a higher priority
than task P2, location NEW remains
unchanged. The DEQ routine passes
control to the dispatcher which
returns control to task PO.

Dispatching a Task (with Time Slicing)

If time slicing was selected as a system
generation option, the user can select a
number of contiguous partitions to be a
time-slice group. The tasks executing in
time-sliced partitions have equal priority.
Each ready task in the time-slice group
executes for a selected amount of time, the
time-slice length, and then loses control
to the next ready task in the time-slice
group. The time-slice group is supervised
throuqh use of a time-slice control element
(TSCE) shown following.

supervisor 27

4
FIRST - Address of the fist time-slice TeB on the TeB queue

4

LAST - Address of the last time-slice TeB on the TeB queue

4

NEXT - Address of the next time-slice TeB to be dispatched

4

LENGTH - Time-slice length (in milliseconds)

When time-Slicing is selected, the dis­
patcher performs functions in addition to
those explained in the preceding para­
graphs. The following text describes the
additional dispatcher functions, and paral­
lels the flow of data shown in Chart 02.

NEW EQUALS OLD: The dispatcher first
determines if NEW equals OLD. If it does,
the dispatcher further determines if the
task represented by OLD is a time-slice
task.

OLD a Time-Slice Task: If OLD is a time­
slice task, the dispatcher determines if
the time-slice interval has expired; i.e.,
if the time-slice queue element (TQE) has
been removed from the timer queue.

If the interval has expired, the next
ready time-slice task must be dispatched.
The dispatcher searches the time-slice
group .beginning with the TCE addressed by
TSCE NEXT (see preceding explanation of
TSCE fields). When the TCE addressed by
TSCE LAST is reached, the dispatcher checks
the TCB addressed by TSCE FIRST, until a
ready task is found or until all time-slice
TCBs have been checked.

When a ready task is found, TSCE NEXT is
updated, the time-slice TQE is enqueued,
and the ready task is dispatched. If no
time-slice tasks are ready, the dispatcher
searches the TCB queue for the highest­
priority ready task.

If the interval has not expired, i.e.,
the time-slice TQE has not been dequeued,
control is returned to the interrupted
task.

OLD Not a Time-Slice Task: If OLD is not a
time-slice task, control is returned to the
interrupted task.

NEW Nor EQUAL TO OLD: If NEW does not
equal OLD, the dispatcher determines if OLD
is a time-slice task.

28

OLD Time-Slice Task -- NEW Equal Zero: If
OLD is a time-slice task and NEW equals
zero, the time-slice TQE is dequeued for
the current task. The dispatcher then
searches (using the TSCE) for the next
ready TCB in the time-slice group. If no
time-slice TeBs are ready, the dispatcher
searches the TeB queue for the highest­
priority ready task.

OLD Time-Slice 1ask -- NEW Not Equal to
Zero: If OLD is a time-slice task and NEW
does not equal zero, the dispatcher deter­
mines if NEW is a time-slice task.

If NEW is a time-slice task, the task
represented by OLD, if ready, is redis­
patched. (The time-slice TQE remains on
the queue.) If the task represented by OLD
is not ready, the time~slice TQE is
dequeued, and the dispatcher searches
(using the TSCE) for the next ready time­
slice task. If no time-slice tasks are
ready, the dispatcher searches the TCE
queue for the highest-priority ready task.

If NEW is not a time-slice task, the
time-slice TQE is dequeued and the NEW task
is dispatched.

OLD Not a Time-Slice Task: If OLD is not a
time-slice task, the dispatcher finds the
next highest-priority ready task. It does
this by either obtaining the TCB address
from NEW or, if NEW is zero, by scanning
the TeB queue. If the highest-priority
ready task is not a time-slice task, it is
dispatched. If the highest-priority ready
task is a time-slice task, the dispatcher
finds (using the TSCE) the next ready task
in the time-slice group. The time-slice
TQE is enqueued, and the task is
dispatched.

S~E SERVICE ROUTINE

The STAE service routine is a type 3 SVC
routine which prepares the task to inter­
cept scheduled abnormal termination (ABEND)
processing. When the STAE macro instruc­
tion (resulting in an SVC 60) is issued,
the STAE service routine is invoked. The
STAE service routine creates a 16-byte STAE
control block (SCB), which contains the
addresses of a user-written STAE exit rou­
tine and parameter list. When the task
becomes scheduled for abnormal ter~ination,
the ABEND/STAE interface routine (ASIR) is
given control by the ABEND routine. ASIR
returns control to the user at the STAE
exit routine address. After the STAE exit
routine has been executed, control is
returned to ASIR. ABEND processing con­
tinues for the task as previously scheduled
unless the STAE exit routine has requested
that a STAE retry routine be scheduled. If
a STAE retry routine is provided by the

user, ASIR reestablishes the task scheduled
for ABEND processing and exits, giving con­
trol to the dispatcher so that the STAE
retry routine is executed next. See IBM
System/360 operating system: System Pro­
grammer's Guide, Form C28-6550, for further
explanation of the STAE macro instruction.

The five modules which perform the func­
tions of tne STAE macro instruction are the
STAE service routine (IGC00060) and the
four ABEND/STAE interface modules
(IGCOBOlC, IGCOCOIC, IGCODOlC, and IGC­
OEOlC). These modules perform the same
functions as in MVT, (see IBM System/360
operating System: MVT Supervisor, Form
Y28-6659) with the exception both IGCOCOlC
and IGCOEOlC pass control via the XC'lL
macro instruction to the ABEND module IEAG­
TMOA to purge the WTOR queue before giving
control to the next ASIR module (IGCODOlC).

ABEND AND DAMAGE ASSESSMENT SERVICE ROUTINE

ABEND is a type 4 SVC routine that is used
for toth normal and abnormal task termina­
tion. ABEND terminates the task under
which it is running., resets the partition,
and passes control to the job management
routines for continued processing.

ABEND can be entered directly from the
problem program or system task via an ABEND
macro instruction, or indirectly through
the ABTERM service routine. (ABTERM sched­
ules the execution of ABEND for system rou­
tines that detect an error but cannot issue
an ABEND macro instruction.) The SVC SLIH
(second level interruption handler) fetches
the first load module of ABEND and passes
control to it. Control is passed from one
ABEND load module to the next via an XCTL
instruction (SVC 7). The flow of control
between modules for normal and abnormal
termination is shown in Charts 03 and 04.

The Damage Assessment Routines (DAR)
process, and attempt to recover from the
following failures:

• System tasks (log, communication, or
master scheduler).

• Tasks in "must complete" status.
• Tasks experiencing invalid ABEND

recursion.

A record of the failures is provided in a
core image dump. A primary DAR recursion
results when a failure occurs while writing
the main storage image dump. A secondary
DAR recursion results when a failure occurs
during partition recovery.

The ABEND and DAR functions provided for
MFT are similar to those provided for PCP.
ABEND modules IEAGTMOA, IEAGTMOO, IEAGTM05,

I IEAGT~06, and DAR modules IEAGTM08 and
IEAGTM09 exist only in MFT and are
described below. 'Ihe remaining modules are
also used in PCP and are explained in IBM
System/360 Operating System: Fixed Ta~
cupervisor, Form Y28-6612. (For a brief
description of all ABEND modules used in
MF'I, see "MODULE DESCRIPTIONS," IN Appendix
B of this publication.)

ABEND STAE Test Routine (IEAGTMOA)

IEAGTMOA first sets a bit to prohibit asyn­
chronous exits for this task/and tests the
'ICB for evidence of invalid recursion. If
a primary DAR recursion or an invalid ABEND
recursion is found, control is passed to
DAR module IEAGTM08. If a secondary DAR
recursion is found, control is passed to
DAR module IEAG'IM09.

The routine then tests for normal end of
task. If this is a normal end, the normal
completion code is stored in the TCB, and
control passes to ABEND module IEAGTMOO.
If the task is abnormally terminating, IEA­
G'IMOA determines if STAE (specify task
asynchronous exit) processing is indicated
for this task (via a user-issued STAE macro
instruction).

If a S'IAE was issued, i.e., TCB field
'ICBNS'IAE does not equal zero, IEAGTMOA
checks for a valid STAE and perform$ as
follows:

• If the ABEND was issued by the Purge
routine during STAE processing, Le.,
the purge bit in TCB field TCBNSTAE
equals one, the resume PSW of the Purge
RB routine is set to the address of an
EXIT instruction (SVC 3). IEAGTMOA
then issues an EXIT instruction.

Note: If ABEND was not entered from
the Purge routine, i.e., the purge bit
in TeB field TCBNSTAE equals zero, IEA­
G'IMOA stores the abnormal completion
code in the 'ICB.

• If the Task is being abnormally ter­
minated because of a timer expiration
or an operator cancel, STAE processing
is bypassed and IEAGTMOA exits to ABEND
module IEAG'IMOO. (Since task timing
and cancelations from the console are
directly controlled by the user, the
ABEND was intentional and should not be
handled by the STAE routines.)

• If S'IAE processing is already in pro­
gress, regular ABEND processing con­
tinues, since the STAE routine can pro­
cess only once per STAE issued. IEAGT­
MOA thus exits to ABEND module
IEAG'IMOO.

Supervisor 29

• If this isa valid reguestfor STAB
proces.sing, i.e., none ·of the above
conditions are true, IEAGTMOA tests TCB
field TCEPIE for zero~ If it is not
zero, IEAGTMOA frees the PIE and zeros
TCBFIE. Thus, subsequent program
checks will not be handled by a user
routine which may not be designed for
such a program check. IEAGTMOA then
exits to STAE module IEAATMOB.

If a STAE has not been issued, or if all
STAEs have been processed, i.e., TCB field
TCBNSTAE equals zero, IEAGTMOA determines
if this is a graphics or an ABEND recursion
and if this is a graphics job with a Graph­
ics Abend Exit routine.

• If this is a recursion, or if the task
abnormally terminating is not a graph­
ics joc, IEAGTMOA exits to ABEND module
IEAGTMOO.

• If this is a graphics job, IEAGTMOA
passes control to the Graphics Abend
routine. At the completion of this
routine, control is returned either to
the caller via an SVC 3 (if the task is
resumable, i.e., the ABENDIwas issued
by a user program or caused bya pro­
gram check in a user routine, and if he
wishes to resume processing) or to IEA­
GTMOA, which exits to ABEND module
IEAGTMOO.

ABEND Initialization Routine (IEAGTMOO)

This routine prepares for ABEND processing
of a task by canceling the task timer ele­
ment and by dequeuing all interruption
queue elements (IQEs) belonging to the
task. If the routine was entered from
STAE, it also purges the WTOR queue ele­
ments for the task and passes control to
IEAATMOD. If the routine was entered as
the result of a normal end of task, it
pa$ses control to IEAGTM05. If it was
entered as the result of an abnormal end of
task, it passes control to lEAGTM06.

ABEND Input/Output Purge Routine (IEAGTM06)

IEAGTM06 purges I/O requests and I/O opera­
tions via a macro instruction version of
the SVC Purge Routine, which is assembled
within this module. (See "SVC PURGE ROU­
TINE"in Input/Output Supervisor, Form Y28-
6616.) This prevents errors that can cause
recursion to the ABEND routine. (Since
ABEND frees main storage, an I/O operation
that is not halted can cause information to
be read into, or an ECB to be posted in
main storage that may have been relocated,
thus destroying data or programs.) RQEs
(request queue elements) removed from the
request queue are returned to a list of
available RQEs for reuse by the 1/0
supervisor.

30

IEAGTM06 a1so dequeues,. from the SIRE
(system interruption request block), IQEs
(interruption queue elements) representing
requests for the use of I/O error handling
routines. The routine passes contro1 to
DAR module lEAGTM08 when Recovery ~anage­
ment Support is not the caller, and the
fai1ing task is a task in "Must complete"
status or if the failing task is a system
task. Otherwise lEAGT~06 passes control to
AEEND module IEAATM01.

ABEND Termination Routine (IEAGTM05)

ABEND termination routine IEAGTM05 is the
final ABEND module for both normal and
abnormal termination. For normal termina­
tion it is entered from IEAGTM06. On
abnormal termination it may have been
entered from any of the previous modules of
ABEND except initia1ization routine
lEAG'IMOO.

If a dump message is required, i.e., if
AEDUMP has been initiated but has failed to
complete, IEAGTM05 causes message IEA002I,
"AEEND/ABDUMP ERROR" to be printed.
lEAGTM05 issues a CLOSE macro instruction
for any open data sets. The timer queue
and the main storage supervisor queue are
purged, and fields in the TCB are reset so
that a new task may be initiated. If an
indicative dump is provided by IEAATM03, it
is moved to the upper boundary of the
partition.

lEAG'I'M05 does not directly. transfer con­
tro1 to a job management routine. In the
first 72 bytes of the prob1em program par­
tition, IEAGTM05 establishes a dummy PRB,
an XC'IL parameter list, and a set of
instructions including an XC'lL to a step
deletion routine. The XRBLNR field of the
dummy PRE contains a pointer to the TCB.
The dummy PRB therefore becomes the only RB
queued for this task.

The dummy PRE is then p1aced at the
beginning of the RE queue. This ensures
that the XC'lL instruction will be the next
operation executed for this task after
lEAG'I~05 has completed. For scheduler-size
partitions, step deletion routine IEFSD515
gains control, at entry point GO. For
small partitions, control is passed to
entry point SMALLGO in sma11 partition rou­
tine IEFSD599.

DAMAGE ASSESSMENT ROUTINES

The damage assessment routines are uS,ed to
eliminate wait states due to system fai1-
ures. When a system failure occurs, the
damage assessment routines provide all, image
of main storage at the time of failure and

reinitialize the failing task. The rou­
tines also advise the operator of the fail­
ure and su~sequent reinstatement of the
task.

There are two routines that are unique
to MFT: Damage assessment core image dump
routine IEAGTM08, and damage assessment
task reinstatement routine IEAGTM09.

DAR Core Image Dump Routine (IEAGTM08)

The DAR core image dump routine IEAG'IM08
writes on the SYS1.DUMP data set an image
of main storage at the time of failure.
When entered, the routine sets all tasks
except the failing task and the communica­
tions task nondispatchable. The routine
then writes the image of main storage and
passes control to the DAR task reinstate­
ment routine IEAGTM09.

If the SYS1.DUMP data set has not been
allocated, the routine informs the operator
via a WTO. If the routine is entered as a
result of a primary DAR recursion, which is
caused by a failure to write the image of
main storage, the routine does not try to
rewrite but informs the operator of the
failure via a WTO. In both cases the rou­
tine passes control to IEAGTM09.

If the communications task is the fail­
ing task, messages are queued pending rein­
statement of the communications task by
IEAGTM09.

DAR Task Reinstatement Routine <IEAG'IM09)

If the DAR task reinstatement routine
IEAGTM09 is entered as a result of a fail­
ing system task, the routine attempts to
reinstate the task. It points the resume
PSWs of all ~ut the highest level RB of the
task's TCB to an SVC 3 instruction in the
CVT. It points the highest level RB to
entry point IEECIR50 for the Master Sched­
uler task, entry point IEECIR45 for the
Communications task, or entry point IEEVLIN
for the Log task. The routine then passes
control to the dispatcher via a branch
instruction.

If the routine is entered as a result of
a secondary DAR recursion, which is caused
by a failure to reinstate the failing task,
the routine informs the operator via a W'IO,
sets all tasks dispatchable except the
failing task, and passes control to the
dispatcher via a branch instruction.

If the failing task is in "Must Com­
plete" status, the task reinstatement rou­
tine issues a message to the operator list­
ing the major and minor names of the
enqueued resources that have caused the
-Must Complete" condition and asking the
operator to reply whether the resources are

critical. If the reply indicates the
resources are critical, processing is
identical to the processing of a secondary
DAR recursion described above. If the re­
ply indicates the resources are not critic­
al, the "Must Complete" status is removed,
and the resources are designated as share­
a~le. 'Ihe task is processed as a failing
non-system task as described below.

If the routine is entered as a result of
a failing non-system task, it sets indica­
tors showing that a dump has been taken by
DAR and issues a message to the operator
indicating that the system has been rein­
stated. The routine then sets all tasks
dispatchable and passes control to
IEAGTM05.

Task Supervision

The task supervisor maintains the status of
tasks within the system. Task supervision
service routines:

• Maintain task control blocks.
• Enter tasks into the wait state.
• Post completed events in the event con­

trol block (ECB).
• Maintain control levels indicated by

request blocks.

The routines which accomplish these
functions are WAIT, POST, ENQ, and DEQ.

Each task within the operating system
has an associated task control block (TCB).
The TCB contains task-related information
and pointers to additional control blocks
containing task-related information. The
control blocks used by MFT are the same as
those used by PCP except for the addition
of the partition information block (PIB)
which is described in Appendix A. The last
three bytes of the word at displacement 124
(decimal) of each partition TCB contain the
address of the associated PIB. Figure 10
shows the major control blocks maintained
by the supervisor and their relationship to
the 'ICB.

Task supervision is described in IBM
System/360 Operating System: .F'ixed-Task
supervisor, Program Logic Manual, Form Y28-
6612. Additional information applicable to
MFT is presented in the following
paragraphs.

'IHE A'I'IACH ROU'I'INE (MACRO IEAAAT)

In MF'I, the ATTACH and LINK macro instruc­
tions are handled identically. An RE is
created for the requested program, the pro­
gram is brought into the requesting task's
partition, and its RB is chained to the RB

Supervisor 31

Save Area

TlOT

JOBUB DCB

Task
Control
Block

Partition
Information
Block

I
r--..L_--,
I SPIL I
L-___ ---I

Figure 10. System Control Elock Relationship

queue for that partition. See IBM System/
360 Operating System: supervisor and Data
Management Services, Form C28-6646 for
further explanation of the ATTACH macro
instruction with MFT.

THE WAIT ROUTINE (MACRO IEAAWT)

The WAIT routine is not changed from that
described in Fixed-Task supervisor, Proqram
Logic Manual. However, the user should
remember the effect the optional validity
checking feature has on WAIT. If validity
check is included in the system and the
program issuing the WAIT macro instruction
is not in supervisor mode, the WAIT routine
checks that:

1. The boundary alignment of the ECEs is
correct.

2. The storage protection key of the ECBs
is that of the issuing program.

3. The addresses specified do not exceed
main storage boundaries of the
machine.

32

Active RB Queue

RB

RB

RB

Loaded Program List

RB

Because of point 2, it is not possible for
one partition to WAIT on an ECB within
another partition.

~HE POST ROUTINE (~ACRe IEAAFT)

~he POS~ routine, like the WAIT routine, is
unchanged from that described in Fixed­
~ask Supervisor, Program Logic Manual.
validity checking applies to FeST in the
same way it applies to WAIT.

'IHE ENQ/DEQ ROUTINE <IEAGENQ1)

'Ihe ENQ/DEQ routine provides a means of
controlling serially reusable resources.
~his is done by assigning unique names con­
sisting of a Qname and an Rname to each
serially reusable resource. The E~Q/DEQ
routine controls access to resources by
building resource queues consisting of a
queue control block (QCB) for each Qname
and Rname specified in an ENQ macro
instruction and a queue element (QEL) to
represent each actual request. ENQ/DEQ is

fully descrited in IBM System/360 Operating
system: MVT supervisor, Program Logic
Manual, Form Y28-6659. ENQ/DEQ for MFT is
identical to MVT except as described below.

In MFT, resource queues are located in
the system queue area (subpool 255). Loca­
tion IEACQCBO in the ENQ/DEQ routine con­
tains the address of the first queue con­
trol block in the queue. There is only one
TCB for each job step in MFT. Therefore,
the "must complete" function of BNQ/DEQ
applies only to the system, not to job
steps. If "system must complete" is speci­
fied by a task, all other tasks in the sys­
tem are set non-dispatchable until the task
which specified "system must complete" com­
pletes its processing.

Contents Supervision

contents supervision routines determine the
location of requested programs and fetch
them into main storage if necessary. They
also maintain records of all programs in
main storage. Programs requested via LINK
or XCTL macro instructions are scheduled
for use by placing a request block (RB) for
each program on the requesting task's
active request block queue.

Programs requested via LOAD macro
instructions are represented by RBs on the
loaded program list.

There are six types of request blocks in
MFT:

• Program Request Block (PRB) -- repre­
sents a nonsupervisory routine that
must be executed in the performance of
a task. PRBs are created bY the con­
tents supervision routines that perform
the LINK or XCTL functions.

• supervisor Request Block (SVRB)
represents a supervisory routine.
SVRBs are created by the SVC interrup­
tion handling routines.

• Interruption Request Elock (IRB) -­
controls a routine that must be
executed in the event of an asynch­
ronous interrUption. IREs are created
in advance of an interruption by the
CIRB routine at the user's request, but
not placed on an RB queue until an
interruption actually occurs.

• System Interruption Request Block
(SIRB) -- used only for the system I/O
error task. There is only one SIRB in
the system.

• Loaded Program Request Block (LPRB) -­
controls programs brought in by a LOAD
macro instruction. LPRBs also control
sections of programs that are specified
by the IDENTIFY macro instruction.
LPRBs are created by the contents
supervision routines that perform the
LOAD function.

• Loaded Request Block (LRB) -- a shor­
tened form of LPRB and controls load
modules that have the "load only" at­
tribute. It is invalid to issue
A~TACH, LINK, or XCTL macro instruc­
tions to these load modules. LRBs are
created by the routines that perform
the LOAD function.

contents supervision routines alter the
active RB queue and the loaded program
list, and bring nonresident programs into
the problem program partitions in response
to LINK, A~TACH, LOAD, and XCTL macro
instructions. Additional contents supervi­
sion services are provided by the use of
IDENTIFY, DELETE, and SYNCH macro instruc­
tions. IDENTIFY and DELETE alter the
loaded program list. SYNCH alters the
active request block queue. The routines
that service these macro instructions are
described below.

LINK SERVICE ROUTINE (MACRO IEAATC)

~he LINK service routine determines if the
RB of the requested routine is on the
loaded program list. If it is and is inac­
tive, LINK places the RB on the active RB
queue. If the requested RB is not on the
loaded program list (or if it is on the
list, but is active), and the resident re­
enterable routine option was selected at
system generation, the routine searches the
resident area. If the module is found in
the area, a load list element for the
module is placed on the loaded program
list, and processing continues as if the
module were originally found on the load
list. If the module is not found, the LINK
routine constructs an RB for the requested
routine, places the RB on the active RB
queue, and fetches the requested routine
into main storage .•

A~~CH SERVICE ROUTINE (MACRC IEAAAT)

~he ATTACH macro instruction is handled as
a LINK macro instruction. For a complete
explanation, see "The ATTACH Macro Instruc­
tion" under the topic Task supervision.

LOAD SERVICE ROUTINE (~ACRC IEAATC)

I ~he LOAD service routine first determines
if the requested routine is in the resident

Supervisor 33

I reenterable ro. utine area (if the re~ident
routine option was specified at system
generation). If so, the entry point of the
routine is passed to the requesting routine

l in register zero. If the routine is not
resident, LOAD searches the loaded program
list for the RB of the requested routine.
If it is found, the LOAD routine increments
the RB use count by one and returns the
entry point of the requested routine in
register .zero.

If the requested routine is not found on
the loaded program list, the LOAD routine
branches to the FINCH routine to load the
requested routine into storage. On return
from the FINCH routine, the LOAD routine
initializes the requested routine's RB and
places it on the loaded program list, sets
the RBs use count to one and branches to
the LINK routine to issue the SVC EXIT
instru«tion.

XCTL SERVICE ROUTINE (MACRO IEAATC)

The XCTL service routine first determines
if XCTL was issued by a transient SVC rou­
tine. It then determines if the resident
SVC (RSVC) option was chosen at system
generation and determines if the requested
SVC routine is an RSVC routine. If it is,
the routine need not be brought into main
storage. If the requested routine is not
an RSVC, the XCTL routine branches to the
FINCH routine to locate the routine on the
SVC library and to bring it into the SVC
transient area. The XCTL routine initia­
lizes the routine's RE and executes an SVC
EXIT instruction.

I f the XCTL macro instruction was not
issued by a transient SVC routine, the XCTL
routine dequeues the primary RB and each
minor RE of the issuer from the active RB
queue. The routine which issued the XCTL
macro instruction and its RE are removed
from storage unless the routine was brought
in via a LOAD macro instruction. If the
requested routine is on the loaded program
list and is inactive, the XCTL routine
branches to the LINK routine to place the
RB on the active queue and to issue an SVC
EXIT instruction.

If the XCTL routine determines that the
scheduler has issued an XCTL macro instruc­
tion to branch to the problem program, the
XCTL routine zeros out the TCETCT field of
theTCB so that the optional Job/Step CPU
Timing entry can be made.

If the RB of the requested routine was
not found inactive on the loaded program
list, and the resident reenter able module
option was selected at system generation,
the routine searches the resident area. If
the module is found in the area, a load

34

list element for the. module is placed on
the loaded program list, and processing
continues as if. the module were originally
fOllIld on the load list. If the module is
notxound, the XCTL routine branches to the
FINCH routine to bring in the routine. On
return from the FINCH routine, the XCTL
routine branches to the LINK routine to
place the RB on the active queue and issue
an SVC EXIT instruction.

IDEN'IIFY SERVICE ROUTINE (IEAAIDOO>

~he IDEN~IFY service routine builds and
initializes a minor request block to
describe a routine specified in the parame­
ters of the IDENTIFY macro instruction.
~he IDEN~IFY routine chains this minor RB
to the loaded program list and to the RE of
the routine which contains the identified
routine. The IDENTIFY routine returns to
the issuer by issuing an SVC EXIT
instruction.

DELETE SERVICE ROUTINE (IEAADLOO, IEAEDLOO)

~he DELETE service routine determines if
the routine specified in the DELETE macro
instruction is resident. If it is, the
DELETE routine exits immediately. If the
routine is not resident, the DELETE routine
finds the routine'sRB on the loaded pro­
gram list and decrements the use count in
the RB by one. If the use count reaches
zero, the DELETE routine dequeues the rou­
tine from the loaded program list and
issues a FREEMAIN macro instruction to
release the storage occupied by the speci­
fied routine and its RE. On return from
the FREEMAIN routine, the DELETE routine
repeats the deleting process for each minor
RE belonging to the specified routine. The
DELETE routine returns by branching to the
type 1 SVC exit.

SYNCH SERVICE ROUTINE (IEAASYOO)

The SYNCH service routine uses GET~.AIN to
obtain 32 bytes of main storage from the
lower end of the partition for the creation
of a program request block (PRB). The PSW
in the PRE is initialized by the SYNCH rou­
tine to address the location specified in
register 15 by the issuer of the macro
instruction. The SYNCH routine sets the
PEw completely enabled in problem program
mode, with the protection key recorded in
the task control block. After the PRE is
created and initialized, the SYNCH routine
queues it on the active request block queue
below the SVRB for SYNCH, and returns by
issuing an SVC EXIT instruction.

Additional information describing PCP
and MFT Contents Supervision can be found
in Fixed-Task Supervisor, Program Logic
~anual.

Main Storage Supervision

In MFT. the main storage supervisor:

1. Allocates space via the GETMAIN SVC.
2. Deallocates space via the FREEMAIN

SVC.
3. Allocates space in the system queue

area.
4. Checks validity of requests that are

to be serviced.
5. Maintains the pointers and control

blocks necessary to supervise main
storage.

Each job is assigned to a partition in
which it must operate. Each partition has
an associated TCB which contains a pointer
(TCBMSS field) to the main storage boundary
box for that partition. The main storage
supervisor. in response to GETMAIN macro
instructions. obtains storage from. either
the problem program partition or the system
queue area. Obtaining storage space from
the system queue area is the basic dif­
ference in main storage supervision between
MFT and PCP. In MFT. a system task can
issue a GETMAIN macro instruction specify­
ing subpool 255 and the required storage
will be allocated from the system queue
area. The system queue area is used to
obtain space for system control blocks
which might be destroyed by problem pro­
grams if they were placed in problem pro­
gram partitions. The system tasks which
request storage space from subpool 255 are:

• The CSCB creation module of SVC 34. for
CSCBs.

• The ENQ/DEQ processing routines of task
supervision, for all control blocks
associated with ENQ/DEQ.

• The communications task. for write-to­
operator (WTO) buffers if all WTO buff­
er storage space specified during sys­
tem generation is unavailable.

Note: Although subpools are not created in
MFT (as in PCP and MVT). problem programs
and system tasks may specify subpools in
the GETMAIN macro instruction. However.
all main storage requests from problem pro­
grams are allocated from the highest avail­
able main storage in the partition which
issued the GETMAIN.

The boundary box for the system queue
area is located in master scheduler resi­
dent data area IEESD568 (see Appendix A).
The master scheduler resident data area is
addressed by the CVTMSER field in the Com­
munications Vector Table.

When problem programs issue GET~AIN
macro instructions specifying a subpool
from 0 through 127. storage is allocated
from the high-address portion of the parti­
tion in which the GETMAIN macro instruction
was issued. When problem programs attempt
to issue a GETMAIN macro instruction speci­
fying a subpool from 128 through 255. the
program is abnormally terminated.

When system tasks issue a GETMAIN macro
instruction specifying a subpool from 0
through 127. storage is allocated from the
low-address portion of the partition~ when
specifying a subpool from 128 through 254.
storage is allocated from the high-address
portion of the partition. Subpool 255 is
handled as a special case as described in
preceding paragraphs.

For a complete description of main
storage supervisor functions. see Fixed­
lask supervisor. Program Logic Manual.

lIMER SUPERVISION

limer supervision routines are an optional
feature of MFT. If selected. the user may
request timer services through the TIME.
SlIMER. and llIMER macro instructions. The
lIME service routine (IEAORTOO) determines
the date and time of day. The STIMER ser­
vice routine (IEAOSTOO) sets a user speci­
fied interval. and the TTIMER service rou­
tine (IEAOSTOO) determines the amount of
time remaining in a previously specified
interval. Whenever a timer interval is
requested in an STI~ER macro instruction. a
timer queue element (TQE) is constructed.
lhese elements are chained together in a
timer queue. l'he queue is ordered so that
the TQE representing the next interval to
expire is always at the top of the queue.
when a requested interval expires. a timer
interruption occurs and the supervisor
limer Interruption Handling Routine (IEAO­
lIOO) takes appropriate action. depending
on the type of interval which has expired.
If job/step CPU timing is included in the
system. IEAOTIOO adjusts the pseudo timer
field in IEATPC in the same manner it
adjusts the hardware timer.

Timer Supervision

lhe System/360 interval timer is a 32 bit
word in lower main storage which continual­
ly decrements as long as the system is run­
ning and the interval timer switch is on.
lhe timer supervision routines use this
hardware timer to accomplish their func­
tions. lhe timer supervision routines can
set the hardware timer to any interval
between zero and six hours. An interrup­
tion occurs when the hardware timer decre-

Supervisor 35

ments to zero. Since the hardware timer
never exceeds six hours, four values are
needed to maintain elapsed time for a full
day. These values are:

• Hardware timer.
• six Hour Pseudo Clock (SHPC).
• Twenty-four Hour Pseudo Clock (T4PC).
• Local Time Pseudo Clock (LTPC).

The SHPC is used to time intervals up to
six hours; the T4PC is used to time inter­
vals up to twenty-four hours. The LTPC
contains the local time of day entered by
the operator during system initialization.

When an STIMER macro instruction is
issued, the STIMER supervisory routine
adjusts the time interval requested rela­
tive to the intervals in the hardware
timers and pseudo clocks. This enables ,the
supervisory routines to place the newly
requested timer element in the correct
place on the timer queue.

TIMER PSEUDO CLOCK ROUTINE (IEATPC)

The timer pseudo clock routine (IEATPC)
contains all variable information that
would normally be included in the resident
timer routines. This information includes:

• Pseudo clocks.
• Work space used for incrementing CVT

date.
• Accumulator for the job/step CPU timing

feature.

COMPARISON OF l?CP. MFT, AND MVT TIMER
SUPERVISION

Requests for timer services in PCP, MFT,
and MVT are made using the same macro
instructions. Timer requests are enqueued
on the timer queue in the same way in all
three systems. There is one difference
between PCP and MFT timer supervision.
Because there is only one partition in PCP"
the timer completion exit routine receives
control as soon as a requested task time
interval expires. When a timer interval
expires in MFT, the timer completion exit
routine does not receive control until the
task which requested the timer interval is
the highest priority ready task in the sys­
tem. In MVT, the maximum amount of time
permitted to complete a job step or cata~
loged procedure may be specified on the
EXEC card. This facility is not provided
in MFT.

For a complete description of timer
supervisor, see Fixed-Task Supervisor, Pro­
gram Logic Manual, and MVT Supervisor Pro­
qram Logic Manual.

36

Overlay Supervision

The routines which supervise loading of
overlay program segments and assist flow of
control between segments of the overlay
program are identical in operation for PCP
and MFT. A complete description of PCP and
MFT overlay supervision can be found in
Fixed-Task Supervisor, Program Logic
~anual.

MFT Recording/Recovery Routines
Operating System Recording/Recovery rou­
tines are optional control program routines
which may be selected during system genera­
tion. They handle two types of equipment
malfunctions:

• Malfunctions of the central processing
unit (CPU), which cause machine-check
interruptions.

• Malfunctions in a channel, which cause
input/output interruptions.

Operating System Recording/Recovery rou­
tines are divided into two groups: System
Environment Recording and Recovery
Management.

System Environment Recording includes:

• system Environment Recording 0 (SERO,
described in IBM System/360 Operating
System: Fixed-Task Supervisor, Program
Logic Manual, Form Y28-6612.

• System Environment Recording 1 (SERl),
also described in the Fixed-Task super­
visor PLM.

Recovery Management includes:

• Machine-Check Handler (MCH), described
in IBM System/360 Operating system:
Machine-Check Handler for IBM System/
360 Model 65, Program Logic Manual,
Form Y27-7155.

• Channel-Check Handler (CCH), described
in IBM System/360 Cperating System:
Input/output supervisor, Program Logic
Manual, Form Y28-6616.

MACHINE-CHECK ROUTINES

There are three machine-check routines.

The recording routines:

SERO, which records information about
the error and then places the sys­
tem in a wait state.

SER1, which records information about
the error and attempts to associ­
ate the error with a task. If it
can do this, it abnormally ter­
minates the task and allows the
system to continue operation.

The recovery routine:

MCH, which records information about
the error and attempts complete
recovery from it, inclUding retry
of the instruction that caused the
error.

For the Model 65, anyone of these three
routines may be selected during system
generation. For the Model 40, 50, 75, and
91, either SERO or SER1 may be selected.
If no routine is selected, either SERO or
SER1 is used by default. The version used
by default depends on the model (or models)
specified, and on the size of the system
(see IBM System/360 Operating System: Sys­
tem Generation, Form C28-6554).

CHANNEL-CHECK ROUTINE

There is only one channel-check routine:

CCH, which aids recovery from channel
errors by:

• providing channel error information to
IBM-supplied device dependent error
recovery procedures (ERP).

• Building a record entry which is later
written on SYS1.LOGREC by the statisti­
cal data recorder of the I/O
supervisor.

This routine may be selected during system
generation for the Model 65, 75, and 91
only.

SYSTEMS WITHOUT RECORDING/RECOVERY ROUTINES

A machine check or I/O interruption caused
by an equipment malfunction places in a
wait state those IBM System/360 models that
do not have Recording/Recovery routines
(See Figure 11). A message is issued on
the console telling the operator to load
the System Environment Recording, Editing,
and printing (SEREP) program. SEREP is a
model-dependent, stand-alone diagnostic
program. Its use is described in IBM

Isystem/360 Operating system: Operator's
§uide, Form C28-6540.

EN'IRY '10 RECORDING/RECOVERY ROUTINES

~hen a machine-check interruption occurs,
the machine-check new PSW is loaded. This
causes control to pass directly to the
Recording/Recovery routine which was
selected during system generation (see
Figure 11>.

When an I/O interruption occurs because
of a channel error, the I/O new PSW is
loaded. This causes control to pass to the
I/O FLIH and then to the I/O supervisor.

If the Channel-Check Handler option was
not selected during system generation, the
I/O Supervisor enters the SER Interface
subroutine (SERR04) within the I/O Supervi­
sor. This routine loads the machine-check
new PSw (See Figure 11). .

If the Channel-Check Handler was
selected during system generation, the I/O
supervisor enters the Channel-Check Handler
Interface (SERR04) within the I/O supervi­
sor (see Figure 11).

Checkpoint/Restart Routines
The checkpoint/restart routines used by MFT
allow a job to restart after an abnormal
termination. The checkpoint routine (SVC
63) is used by the programmer to create a
record of the job's main storage region at
selected points during the execution of a
job step. The routine is identical with
the PCP checkpoint routine described in IBM
System/360 Operating system: Fixed-Task
supervisor, Program Logic Manual, Form
Y28-6612.

The restart routine (SVC 52) allows jobs
to restart at a checkpoint. If the restart
is automatic, it will occur at the last
valid checkpoint taken by the job before it
abnormally terminated. If the restart is
deferred, it will occur at the checkpoint
specified by the job statement. Processing
of the restarting job is discussed in the
Job processing section of this manual. The
restart routine is described in IBM System/
360 Operating system: Fixed Task Supervi­
sor, Program Logic Manual, Form Y28-6612.

Supervisor 37

1. Wait State

2. SERO Routine

3. SERI Routine

4. Machi ne-Check
Handler

A CPU ·Malfunction caoses a
Machine Check Interwption

Load Machine
Check New PSW

System
Generation
Option
(1,2,3, or 4)

Figure 11. Recording/Recovery Routines

38

A Channel Malfunction causes an
Input/Outpu·t Interruption

In

I/O

System
Generation
Option
(lor 2)

1. SER/MCH
Interface

Channel-Check
Handler

The primary job management :function is to
prepare job steps for execution and, when
they have been executed, to direct the dis­
position of data sets created during execu­
tion. Prior to step execution, job
management:

• Reads control statements from the input
job stream

• Places information contained in the
statements into a series of tables.

• Analyzes input/output requirements.

• Assigns input/output devices.

• Passes control to the job step.

Following step execution, job management:

• Releases main storage space occupied by
the tables.

• Frees input/output devices assigned to
the step.

• Disposes of data sets referred to or
created during execution.

Job management also performs all proces­
sing required for communication between an
operator and the control program. Major
components of job management are the job
scheduler, which introduces each job step
to the system (job processing), and the
communications and master scheduler tasks,
which handle all operator-system communica­
tion (command processing).

JOB SCHEDULER FUNCTIONS

The job scheduler includes three programs:
the reader/interpreter, the initiator/
terminator, and the system output writer.
The functions of the reader/interpreter are
similar to the MVT reader; additional
information can be found in IBM System/360
Operating System: MVT Job Management, Pro­
gram Logic Manual, Form Y28-6660.

After all control statements for a job
have been processed, all initiators that
are waiting for that job class are posted
and the initiator residing in the highest
priority partition is given control. The
MFT initiator is described in the Job Man­
agement section of this publication; for
information on allocation and termination,
refer to IBM System/360 Operating System:

Job Management

MVT Job Management, Program Logic Manual,
Form Y28-6660.

When the job step has been executed,
control is returned to the initiator/
terminator which performs data set disposi­
tions and releases input/output (I/O)
resources. If the entire job is to be ter­
minated, the terminator enqueues all data
sets on the appropriate system output (SYS­
OUT) queues.

When the system output writer receives
control, it dequeues a job from an output
queue, and transcribes the data sets to the
user-specified output device. (see IBM
System/360 Operating System: MVT Job Man­
agement, Program LOgic Manual, Form Y28-
6660, for further information on the system
output writer.)

COMMUNICATIONS TASK FUNCTIONS

The routines of the communications task
process the following types of communica­
tion between the operator and the system:

• Operator commands, entered through a
console.

• Write-to-operator (WTO> and write-to­
operator with reply (WTOR) macro in­
structions.

• Interruptions caused when the INTERRUPT
key is pressed, to switch functions
from the primary console/master console
to its alternate console.

• If the system has ~ultiple Console Sup­
port, the communications task processes
the delete operator message (DCM) macro
instruction and provides buffer manage­
ment for all console devices.

MASTER SCHEDULER TASK FUNCTICNS

The master scheduler task consists of SVC
34 and the master scheduler resident com­
mand processor routines. The SVC 34 com­
mand scheduler routines process all com­
mands initially. The job queue manipula­
tion and partition definitions, which are
not fully processed by SVC 34, are passed
to the master scheduler resident command
processor. Table 1 lists the commands used
in MFT and indicates the routine which
responds to the commands after initial
processing.

Job Management 39

Table 1. Responders to Commands After Initial Processing
r---T---,
I Command I Responder I

r--------~~---------------------------------+---------------------------------~---------~
I CANCEL (active jobs) I Ini tiator I

r---+---~
I CANCEL (job in queue) I Master scheduler I

r---+---~
I DEFINE I Master Scheduler I

r---+---~

1f-----~i~;~;-~~;~:;~;;;:':~N~~------t--------~~~~~;-------------------l
r---+---~
I DISPLAY R I Master Scheduler I

r---+---------~---------------------------------~ II DISPLAY SPACE I I/O Device Allocation I
r---+---~
I DISPLAY T I Timer Maintenance Routine * I

r---+---~ I HALT I Statistics Update Routine * I
r---+---~ I HOLD I Master Scheduler I
r---+---~ I t-----;~~;----------------------------------t--------~;;~~-~~;d~i;;-------------------1
r---+---~
I MODIFY I ~riter I

r---+---~
I MOUNT I Master scheduler I

r---+---~
I RELEASE I Master Scheduler I

r---+---~
I REPLY I Master Scheduler I

r---+---~ I RESET I Master scheduler I
r---+---~ I SET CLOCK, DATE I Timer Maintenance Routine * I
r---+---~
I SET PRCC, Q, AUTO I Master Scheduler I

r---+---~ I START/STOP Reader I Reader/Interpreter I
r---+---~ I START/STOP Writer I Wri ter I
r---+---~ I UNLOAD I Initiator I
r---+---~ I f-----;~~;~--------------~--------------t--------~;~~~;;____--------------------l
r---~---~ I * See the publication IEM System/360 Operating system: MV'I supervisor« Program I
I Logic Manual, Form Y28-6659. I l ___ J

JOB MANAGEMENT CONTROL FLOW

Figure 12 shows the major components of job
management and the general flow of control.

Control is passed to job management
Iwhenever the supervisor finds that there
are no program request blocks in the re­
quest block queue. This can occur for two
reasons: either the initial program load­
ing (IPL) procedure has just been com-

40

pleted, or a job step has just been
executed.

Entry to Job Management Following Initial
Program Loading

Following IPL" certain actions must be
taken by the operator before job processing
can begin. Therefore, control passes to
the communications task which issues a mes­
sage to the operator instructing him to

~r-l ~g:s~~;'~
i---- COMMUNICATIONS Commands

SVC 34
COMMAND COMMAND
SCHEDULING ----- EXECUTION --

RETURN TO
CALLER OF
SVC 34

COMMAND PROCESSI NG

~r-r----
TASK

ROUTI NES ROUTI NES

I ~g:s~~;'~ ~-----lr-----~
wros and WTORs
Indicating Errars I

SVC 34 Cammands

WORK

i

See
Table 1.

Input Job QUEUES System Output Job Description

DISK
I--

"-. ---
JCL, Commands,
and Data

r-
TAPE

READING
TASKS

r-

Description

r
INITIATING
TASKS

1 Initiate
WRITING
TASKS

JOB PROCESSING

c-> PRlN~
-

TAPE

I--

r ~
PROCESSING
PROGRAM

Terminate

L(CARD I CARD
READER r -..., PUNCH

'- ---'

PROCEDURE 1
L-----.I

LIBRARY System Input r-...~ __ ~
System Output Data Sets Data Sets DA TA

......... ./ QUEUES
"-.

.Figure 12. Job Management Data Flow

enter commands, or to redefine the system.
If he chooses to redefine the system, con­
trol passes to the master scheduler task to
handle the redefinitions. If the system is
not to be redefined, the initialization
commands (a SET command, a START reader
command, a START writer command, and a
START INIT command) are issued (either
automatically by the master scheduler task
or by the operator performing the IPL), and
job processing begins.

Entry to Job Management FOllowing Step
Execution

Following step execution, control is passed
to the step termination routine of the
initiator/terminator. If no further job
steps are to be processed, control is also

passed to the job termination routine of
the initiator /termina tor. Both routines
are described in the topic
·Initiator/~erminator."

MF'I job management is similar in many
respects to MVT job management. However,
certain major differences in logic exist.
~hese differences are described in two
major topics. nCommand Processing"
includes the communications task and master
scheduler task. "Job Processing" includes:

• Queue Management.
• Reader/Interpreter.
• Initiator/Terminator.
• system output writer.
• System task control.
• System restart.

Job Management 41

References to IEM System/360 Operating
System: MVT Job Management, Program Logic
Manual, Form Y28-6660 are made in the
topics where the logic is the same as in
MVT.

Tables and work areas used by MFT, MFT
module descriptions, and MFT flowcharts are
included in the appendixes.

Command Processing

Operator commands control system operation
and modify system tasks. Command proces­
sing in MFT is handled by the communica­
tions task and the master scheduler task.

I
W.ith the exception of DEFINE, a. nd HALT,
commands can be entered into the ~ystem
through the console or the input job
stream. The DEFINE and HALT commands can
be entered only through the console. Com-
mands entered through the console are read
by the communications task and routed to
the master scheduler (see Figure 13). The
communications task also communicates
between the system and the operator; it
handles WTO/WTOR macro instructions,
assigns message identifiers (including par­
tition numbers), and maintains reply queue

I.elements. It also deletes messages from
the .CRT display of the Model 85 operator
console via the DOM macro instruction.

Moster Scheduler Task

Command is
Processed

Start No

-

Reader or Writer>-+---_~
Command

System
Task
Control

Yes

Initiates the
Reader or Writer

Communication Task

Reads Req uest
from the Console

Appropriate Action is
Taken. Messages are issued
if the Command is Re jected.

If DISPLAY JOBNAMES
Command has been Entered,
Returns a Message to the
Operator Stating that
the Reader or Wri ter
has been Started.

Figure 13. Command Processing Flow

42

I--

When a command is encountered in the
input stream, the reader/interpreter passes
control to SVC 34 to process the command.
SVC 34 processes most commands completely

I and :eturns control to the interrupted
rout~ne .•

The commands accepted and processed by
MF'I are the following:

CANCEL
DEFINE
DISPLAY
HAL'I
HOLD
LOG
MODE
MODIFY
MOUNT
RELEASE
REPLY
RESET
SET
S'IART
S'IOP
UNLOAD
VARY
WRI'IELOG

The format and syntax of these commands
can be found in IEM System/360 Operating
System: operator·s Guide, Form C28-6540.

Communications Task

'Ihe routines that handle operator-system
communication are contained in the communi­
cations task. Communication may take
either of two forms: commands, which allow
the operator to change the status of the
system or of a job or job step, and WTO or
w'IOR macro instructions, which allow prob­
lem programs or system components to issue
messages to the operator. The communica­
tions task routines also switch functions
from the primary console device to an
alternate console device when the INTERRUPT
key is pressed.

w'IO/w'IOR MACRO INSTRUCTION PROCESSING

whenever a WTO or wTOR macro instruction is
issued, a supervisor call (SVC> interrup­
tion occurs. The supervisor identifies the
type of interruption and passes control to
the communications task to issue messages
and/or to read replies. (See Figure 14.)

E~'IERNAL INTERRUPTION PROCESSING

when the operator presses the INTERRUPT
key, an external interruption occurs. The
communications task then switches from the
primary console/master console to its
alternate device. (See Figure 15.)

Program Issues Supervisor
WTO/WTOR Macro Instruction

Communication Task
Identifies Type
of Interruption

Writes Message
(Generates Reply
Queue Element
if WTOR)

Returns Control
to Point of
Interruption

A. Message Processing

Operator presses Supervisor
REQUEST KEY

Communication Task
Identifies Type
of Interruption

Reads Reply

Places Reply in Buffer;
POSTS ECB Specified Returns Control
in the WTOR to Point of

Interruption

B. Reply Processing

Figure 14. WTO/WTOR Macro Instruction Pre­
cessing Flow

Supervisor
Operator Presses
INTERRUPT Key

Identifies Type of

Commun i cati on Task
Interrupti on, Posts
Communication Task
ECB

Switches Between
Primary and Alternate
Console

Returns Control to
Point of Interruption

Figure 15. External Interruption Proces­
sing Flow

Communications Task Modules

The communications task (Chart 16) receives
control through interruptions which occur
when commands are entered or messages are
written. The following paragraphs describe
the seven major routines of the communica~
tions task.

Console interruption routine (IEECVCRA):
notifies the communications task wait rou­
tine that a console read has been
requested.

Communications task wait routine (IEE­
£VCTW): waits for all WTC/WTCR requests
and console interrupts and calls the com­
munications task router routine.

Communications task router routine (IEE­
£VCTR): determines the type of request or
interruption that occurred and passes con­
trol to the appropriate processing routine.

Console device processor routines (IEE­
£v"PM) : performs console read and write
o~erations and error checking.

write-to-operator routine (IEECVWTC): man­
ages wTO buffers.

~rite-to-operator with reply routine (IEE­
y~'IOR): ~anages W'IOR buffers.

External interruption routine (IEECVCRX):
switches to the alternate console device
when an external interruption occurs.

Commands are issued through the console
device or the input reader. Before enter­
ing commands through the console device.
the operator must cause an I/O interruption
by pressing the REQUEST key. When he does.
control is given to the supervisor. which
recognizes the interruption and passes con­
trol to the I/O supervisor. The I/O super­
visor determines that the interruption is
an attention signal and passes control to
the communications task console interrup­
tion routine in the nucleus. The console
interruption routine posts the attention
event control block (ECB) in the unit con­
trol module (UCM) and sets the attention
flag in the UCM list entry corresponding to
the device from which the interruption
came. posting of the attention ECE causes
the communications task wait routine to be
dispatched.

The communications task wait routine
waits on all communication ECBs associated
with ~'I"O/w'I"OR. The wait routine issues a
multiple WAIT macro instruction on a list
of ECBs contained in the UCM. When one of
the ECBs is posted, as by attention or
external interruptions, the wait is satis­
fied and the communications task thus
becomes ready. When it becomes the active
task, it issues SVC 72. This SVC includes
the console communication service routines
and the router.

Th.e communications task serves a number
of purposes. The first segment of SVC 72,
called the router, distinguishes among
these purposes and establishes the order of
response. When a posted ECB is found by
the router., the router passes control to
the specified processor routine via an XCTL
macro instruction.

Job Management 43

The console-device processor routines
read and write using the EXCP macro
instruction. The processor routines con­
sist of a routine to service external
interruptions and three device-oriented
routines: 1052 Printer-Keyboard routine,
card reader routine, and printer routine.
Each of the three console input/output pro­
cessor routines is associated with an OPEN/
CLOSE support routine, which provides data
management and input/output supervisor con­
trol blocks. The specified processor rou­
tine reads the input message into a buffer
area and calls the master scheduler task
via an SVC 34.

The write-to-operator routine moves the
text from the requesting program's area to
a buffer area within the nucleus and posts
the communication ECB for write-to­
operator.

The write-to-operator with reply routine
generates a message ID, ,including a parti­
tion identifier, and creates a reply queue
element (RPQE) to handle the operator's
reply.

The external interruption routine,
residing in the nucleus, switches to an
alternate console device when the operator
presses the INTERRUPT key on the console.

CONSOLE ATTENTION INTERRUPTION ROU'lINE
(IEECVCRA)

The console attention interruption routine
(IEECVCRA), operating in privileged mode,
posts the communications task attention ECB
to request reading of the console. Input/
output interruptions are disabled without
destroying register contents, and without
macro access to supervisor services. using
the address of the UCB (found in register
7), the UCB address is matched to a UCM
entry. The attention flag for the entry is
turned on. Control then passes to the POST
routine, indicating the attention ECB in
the UCM. The address in register 14 is
used tor return to the input/output super­
visor erOS).

COMMUNICATIONS TASK WAIT ROUTINE (IEECVC~W)

Upon entry from the dispatcher, the com­
munications task wait routine (IEECVCTW)
issues a WAIT (with a count of one) speci­
fying the list of ECBs whose address is
contained in the Event Indication List
(ElL). Thus the communications task can
respond to a variety of events since the
posting of anyone ECB satisfies the wait.
The POST macro instruction issued in the
console attention interruption routine
satisfies the wait, causing the TCB to be
placed on the ready queue. When next dis-

44

patched, the wait routine issues an SVC 72
which results in creation of a supervisor
request block (SVRB), and fetching of the
first segment of the console processor rou­
tines into the system transient area.

COMMUNICAUONS TASK ROUTER (IEECVCTR)

~he communications task router (IEECVCTR)
is the first segment of SVC 72 brought into
the transient area. Because the communica­
tions task serves a number of purposes, and
many service requests may be pending, the
router establishes the order of response.
~he order is: external interruption,
input/output list completion, attention
(console interruption), and WTO/WTOR. Mul­
tiple attentions are treated in order of
appearance in the UCM. Multiple input/
output completions are treated in order of
first use of the device. The router
responds to an attention by building a pa­
rameter list in the SVRB extended save
area. The parameter list consists of a
remote XCTL parameter list, the address of
the appropriate UCM entry, and the address
of (contents of CV~CUCB) the UCM. The
router then passes control to a processor
routine by issuing an XCTL macro instruc­
tion to the remote parameter list, using
the name obtained from the unit control
block (UCB) entry. The flag signifying the
request to be serviced by the processor
routine is turned off by the routine. Con­
sequently, processor routines return con­
trol to the router by issuing an XCTL macro
instruction to allow the router to schedule
service for other requests. If no requests
are pending, the router exits to the wait
routine using the address in register 14.

In addition to distinguishing the output
request from other requests, the router
selects the device to which the message is
to be sent. The router establishes the
output device by checking UCB entry attrib­
ute indicators. The appropriate entry is
the first active UCB entry that supports
~~O. As before, the router builds a remote
interface for, and passes control to, a
processor routine via an XCTL macro
instruction.

CONSOLE DEVICE PROCESSOR ROUTINES
(IEECVPMX, IEECVPMC, IEECVPMP)

Control flow in a processor routine is
determined by the setting of flags in the
router-selected UCM entry. The close flag
is tested first. If this flag is on, any
pending input/output activity is suspended
by issuing a WAIT macro instruction. Con­
trol is then passed to an associated OPEN/
CLOSE support routine via an XCTL macro
instruction for release of various control
blocks. If the close flag is off, the busy

flaq is tested to determine input/output
status. If there is outstandinq input/
output activity, error checking and buffer
disposition occur if the activity has been
posted complete. otherwise, any attention
request is temporarily abandoned(as are
output requests), and control returns to
the router via an XCTL macro instruction.
If the busy flag is off, the attention flag
is tested; if it is on, the status of the
device is examined. If the device has not
been opened, control passes to an asso­
ciated OPEN/CLOSE support routine via an
XCTL macro instruction to obtain storage
for a DCB and access-method dependent con­
trol blocks, and for execution of the OPEN
macro instruction.

When return is made from the OPEN/CLOSE
support routine, a response to the atten­
tion flag is prepared. A fixed buffer in
the UCB is reserved and an access-method
dependent interface is constructed. Input/
output activity is initiated by issuing an
EXCP macro instruction for a 1052, and by
issuing a READ macro instruction for a unit
record device. In no case does the proces­
sor routine await completion of this activ­
ity. Control immediately returns to the
router via an XCTL macro instruction.

Control flow within the processor rou­
tine is as described previously up to the
point at which the output request flag is
tested. If the flag is on, the processor
routine obtains the address of an output
buffer from the UCM. The element is not
removed from the queue at this time; this
occurs only on successful completion of
input/output activity. This preserves a
means of retrying the message if an extern­
al interruption intervenes before the mes­
sage is successfully presented to the cur­
rent device. since output buffers are
always selected from the top of the queue,
the initiation of output to an alternate
device is unaffected by previous attempts
to present the message to the primary
device.

Having selected a buffer, the processor
routine establishes data management and
input/output supervisor (IOS) control block
linkages. The routine then issues an EXCP
macro instruction for a 1052, or a WRITE
macro instruction for a printer. without
awaiting completion of the input/output,
the processor routine returns to the router
via an XCTL macro instruction.

WRITE-To-OPERATOR ROUTINES (IEECVWTO AND
IEEVWTOR)

The write-to-operator routine (SVC 35)
writes operator messages on the console
when a WTO or WTOR macro instruction is

issued by system component programs or
problem programs. Messages and replies are
buffered; the period of time between issu­
ing the message and receiving the reply is
available for processing. Issuance of
either macro instruction causes an SVC
interruption. When the SVC interruption is
handled, the supervisor causes the write­
to-operator routine to be loaded into the
transient area of the nucleus and passes
control .to it.

There are two console queues~ the buff­
er queue and the reply queue. The extent
of both queues is defined by specifying the
number of buffers at system generation. An
attempt to exceed this value results in the
requesting task being placed on a queue to
wait for service; i.e., the task is placed
in a wait condition. Each WTO and WTOR
macro instruction results in the addition
of a ~~o Queue Element (WQE) to the buffer
queue; each WTOR results in the addition of
a Reply Queue Element (RPQE) to the reply
queue. SVC 35 (IEECVWTO) sets up the prob­
lem program message. If it is a WTOR, the
write-to-operator-with-reply routine (IEEV­
W~OR) inserts the message identification
(ID) in addition to a partition identifier.
~he same message ID (which the operator
must use for his reply) is placed in the
RPQE with other information to insure pas­
sing the reply, when received, to the prop­
er area. WTO messages are always written;
a W~OR message may be purged (removed from
the queue) if the issuing task terminates
while the message is on the buffer queue.
~herefore, an RPQE differs from a WQE in
that it contains the address of the issuing
task's ~CB. The buffer-queue is accessed
through the entry UCMWTCQ in the UCM.

The reply queue contains RPQEs for
operator replies to WTCR. Like WTCR ele­
ments in the buffer queue, RPQES contain a
~CB address to permit their being purged
from the queue if the issuing task is
abnormally terminated.

For a REPLY (to WTCR), the processor
issues SVC 34 (see "Master Scheduler
~ask·) . ~he SVC routine determines that
the incoming command is a REFLY, processes
the reply. posts the user's ECB and
branches back to the processor.

E:XTERNAL INTERRUPTION ROUTINE (IEECVCRX)

~he external interruption routine assigns
functions performed by the primary console
device to an alternate console device.
When the operator presses the INTERRUPT key
on the console, an external interruption
occurs and control passes to the supervi­
sor. The supervisor identifies the inter­
ruption and passes control to the external

Job Management 45

interruption routine which s.witches con­
soles and returns control to the supervi­
sor. Console functions may later be reas­
signed to the primary console device, if
the operator causes another external
interruption.

Communications Task with
Multiple Console Support

The MFT communications task with Multiple
Console Support (MCS) is similar to the MVT
communications task except that MFT does
not obtain buffers dynamically. The MCS
communications task receives control as a
result of an external interruption, an
operator console attention, an I/O inter­
ruption for a console, or a WTO (R) or DOM
macro instruction. The following para­
graphs describe the communications task
routines with MCS (for a detailed descrip­
tion of these modules see IBM system/360
Operating System: MVT supervisor, Form
Y28-6659) :

Communications Task Router Routine (IEEC­
MAWR): waits for the posting of an extern­
al, attention, I/O, WTO(R), or DOM ECB.
Control is passed to the appropriate rou­
tine to handle the posted ECB, to provide
console switching, or to provide buffer
management.

communications Task Device Interface Rou­
tine (IEEC~~SV): passes control to the
device support routine for the device on
which I/C is to be performed, or consoli­
dates system and console output queues.

communications Task Console SWitch Routine
(IEECMCSW): performs console switching as
a result of an external interruption, an
unrecoverable I/O error, or a VARY command.
It also switches the hard copy log to the
master console when both log data sets are
full.

communications Task WTO(R) Routine
(IEECMWSV): marks WTO queue elements to
appropriate console output queues.

communications Task DOM Routine (IEECMDOM):
marks WTO queue elements on the system out­
put queue to be purged.

Console Device Support Routines: provide
read and write functions for the associated
console devices.

The following modules remain unchanged with
MCS:

Write-to-operator (IEECVWTO)
Write-to-:operator with reply (IEEVWTOR)
External Interrupt (IEECVCRX)
Console Interrupt UEECVCRA)

46

~: The routines that support the Model
85 integrated operator's console with CRT
display are identical with those used with
MVT. For a complete description of· these
routines, see IBM System/360 Operating Sys­
tem: MV'I Supervisor, Program Logic Manual,
Form Y28-6659.

Master Scheduler Task
The MFT master scheduler task (MST) pro­
cesses all commands, and initializes main
storage at system initialization. It is
composed of the SVC 34 routines and the
master scheduler resident command processor
routines. SVC 34 processes all commands
directly except HOLD., RELEASE, RESET., CAN­
CEL (inactive jobs), DISPLAY (A,Q,N,
jobname), w~ITELOG, and DEFINE. SVC 34
calls the resident command processor to
complete the processing of all but the WRI­
TELOG command. when a WRITELOG command is
found, SVC 34 stores it and posts the Sys­
tem Log task ECB.

The master scheduler resides in the nuc­
leus and operates under control of its own
'ICE. The master scheduler TCB is always
dispatchable and is of higher priority on
the TCB queue than the TCBs for the parti­
tioned area (the problem program area) of
storage. Therefore, when a command is
issued, the master scheduler always gains
control of the CPU after the communications
task for processing the command.

When processing commands, interruptions
are disabled so that command processing may
be completed before any other interruptions
are serviced. Although coITtmands are pro­
cessed when issued" the command may not
take effect immediately. An example of
this is the STOP writer command. The mast­
er scheduler marks a command scheduling
control block (CSCB) which is checked by
the writer between jobs. The command does
not take effect until the writer completes
the job it was processing when the command
was issued.

MULTIPLE CONSOLE SUPPORT REQUIREMENTS

In systems that include Multiple Console
Support (MeS), a hard copy of all operator
and system messages is required when there
is an active graphic console or more than
one active non-graphic console. Because of
this requirement, a system log function is
provided which may be specified as the hard
copy log. In MFT, the system Log operates
under its own TCB created at system genera­
tion. The System Log task is the highest
priority task in the operating system. The
master scheduler routine IEFSD569 calls the
log initialization routine IEEVLIN which .
initializes control blocks and obtains

storage for the Log Control Area and the
log buffer. The Log support routines in an
MFT environment function similarly to those
in an !NT environment. For a further
description of the system log and the Log
Support routines with MCS, see IBM System/
360 Operating system: MVT Supervisor, Form
Y28-6659.

SVC 34" FUNCTIONS

SVC 34 (Charts 13, 14, and 15) is called to
process all commands. As previously noted.
it processes some of these commands com­
pletely and calls the resident command pro­
cessor to process the remaining commands.
The commands processed completely by SVC 34
are:

START
STOP
MODE
MODIFY
CANCEL (active jobs only)
HALT
MOUNT
VARY
UNLCAD
REPLY
DISPLAY (JOBNAMES, R, SPACE, DSNAME,
T, or STATUS)

For CANCEL (inactive jobs), HOLD,
RELEASE, RESET, DISPLAY (A, Q, N, jobname),
and DEFINE commands, SVC 34 does preli­
minary processing before passing control to
the resident command processor. If the
resident command processor is processing a
DEFINE command, SVC 34 will queue all com­
mands until the DEFINE command has been
completely processed.

For the log command, SVC 34 issues a "WTL
(SVC 36) to have the LOG command processed
in manner similar to a Write-to-log ll'.acro
instruction issued from a problem program.

The same routines are used in the MFT
Command Processor as are used in the MVT
Command Processor with two exceptions.
DEFINE, MOUNT, and CANCEL commandproces­
sing is performed in module IEESD571, and
STOP INIT and START command processing is
performed in module IEESD561. In addition,
the validity Check COmmand routine
(IEE0403D) passes control to the MFT rou­
tines rather than their MVT counterparts
when operating in an MFT system. The fol­
lowing paragraphs describe the two MF'T rou­
tines within SVC 34.

DEFINE, MOUNT, and CANCEL Routine
UEESD571>

This routine processes the DEFINE command
by setting the necessary indicators in the

master scheduler resident data area. It
then posts the ECB for the resident command
processor IEECIR50. This routine also pro­
cesses the CANCEL command (for active
jobs), and the MOUNT command.

MOUNT processing parallels that of PCP
by building a parameter list for, and issu­
ing an XCTL macro instruction to the PCP
master command EXCP routine (IGC0103D).

canceling of an active job is handled by
scanning the CSCBs for a jobname compare.
If the compare is equal and the CSCB is
marked cancelable, IEESD571 issues a BALR
to ABTERM with the job's TCB address and
proper completion code dump indication. If
the CSCB is not marked cancelable, the CSCB
is marked canceled and is posted. If the
job is not found, IEESD571 passes control
to the CSCB creation routine (IEE0803D) via
an XCTL macro instruction, to CANCEL the
jobname on the job queue. (See IBM System/
360 Operating System: MVT Job Management,
Program Logic Manual, Form Y28-6660, for a
description of IEE0803D.)

STOP INIT and START Commands Routine
(IEESD561)

This routine processes all the START com­
mands and the STOP INIT command. (The STOP
commands that deal with console displays of
job names, data set names, and space avail­
able are processed by IGC0703D.) "When pro­
cessing a START command, the routine first
examines the command parameters. If any­
thing other than a system reader or writer
is to be started, the routine determines
the number and status of the partition.
The routine then builds and chains a CSCB,
passes the address of the CSCB to the par­
tition'S PIB, and posts the partition. If
a system reader is to be started" the rou­
tine searches for a scheduler-size problem
partition which is inactive~ if a system
writer is to be started, the routine
searches for any inactive problem parti­
tion. If a partition is located, the rou­
tine builds and processes a CSCB as stated
above. If a partition cannot be found, the
routine issues a message to the operator
stating that the command has failed.

To process a STOP INIT command the rou­
tine determines which partition contains
the initiator to be stopped, verifies that
the partition contains an initiator, and
sets the STOP INIT indicator in the parti­
tion's PIB. If the routine cannot process
the command, it will issue a message to the
operator stating that the command has
failed.

Job Management 47

\START comma1d
\ at Console

Communicotion (SVC 34)
Task

SVC 34

Check

\

TART comman,!
in Input
Stream

Command Route (SVC 34) Reader/
Processing and Interpreter
Authority

Build and
Chain CSCB

Put CSCB
in PIB, Post
"No Work" ECB

Return to lOS

-Figure 16. START Command processing Flow

Machine Status Control Routines (IGF2603D
and IGF2703D)

These routines process the MODE command
which is valid only for the Model 85. The
operator obtains a display of machine sta­
tus by issuing the MODE command with the
parameter STATUS. This parameter is pro­
cessed by machine status control routine
IGF2603D. If the parameter is other than
STATUS, machine status control routine
IGF2703D processes the parameter to allow
the operator to control the mode of record­
ing soft machine checks, to reactivate pre­
viously deleted buffer sectors or the high
speed multiply circuitry, and to restore
machine status to the system reset condi­
tion. Exit from either routine is via an
SVC 3.

The Machine Status Control modules are
part of the Master Scheduler but.are stored
with modules relating to RMS/85 and given
the RMS/85 identification of IGF rather
than the Master Scheduler identification of
lEE.

For a more detailed description of the
MODE command, see IBM System/360 Operator's
Guide, Form C28-6540. For a more detailed
description of the Machine Status Control
modules, see IBM System/360 Machine Check
Handler for Model 85, Form Y27-7128.

48

SYSTEM INITIALIZATION

~he master scheduler task (Chart 09) per­
forms the function of initializing main
storage. In MVT this is done by NIP. In
MF~ it is done by the master scheduler to
facilitate redefinition- of main storage.
~he following paragraphs describe the
action of the master scheduler in defining
main storage at system initialization.

The master scheduler task is loaded with
the nucleus. Its task control block (TCB)
points to the master scheduler request
block (RE) in the nucleus. NIP saves the
RB address and the contents of the boundary
box describing the normal master scheduler
task partition, for later use by the master
scheduler initialization routine IEFSD569.
(Note: IEFSD569 is brought into main
storage by the macro instruction SGIEEOVV
generated during system generation.)

The boundary box (BBX)· is then changed
by NIP to describe a partition including
all of storage except the nucleus. The
address of an RB at the low address of this
partition is placed in the master scheduler
~CB. NIP then creates the RB. The RB
points to an XC~L to IEFSD569. NIP then
sets the master scheduler task dispatchable
and branches to the dispatcher.

The master scheduler initialization rou­
tine is given control to perform scheduler
initialization. First it passes control to
the communications task initialization rou­
tine (IEECVCTI) via a LINK macro instruc-I tion. After the communications task is
initialized, the master scheduler initiali­
zation routine passes control to the
definition routine, IEEDFIN1, via a LINK
macro instruction. IEEDFIN1 communicates
with the operator, or prepares the parti­
tion as it was described at system genera­
tion. IEFS0569 then issues the READY mes-I sage, and if the system log was requested,
passes control to IEEVLIN to initialize the
system log. It then types the automatic
commands, and issues a WAIT macro instruc­
tion.

When the operator presses the REQUEST
key, control is given to the supervisor
which recognizes the interruption and
passes control to the input/output supervi­
sor. ~he input/output supervisor deter­
mines that the interruption is an attention
signal and passes control to communications
task console attention interrupt routine
(described above). The interrupt routine
posts the communications task attention ECB
to request reading of the console. The
operator enters a SET command. SVC 34

posts the WAIT and places the parameters of
the SET command in the master scheduler
resident data area. The master scheduler
initialization routine then regains control
to continue processing. Control blocks for
the job queue and procedure library are
created. To format the job queue, the rou­
tine passes control to queue initialization
routine IEFSD055 via a LINK macro instruc­
tion which places a queue control record
(QCR) in the nucleus after the DCB and DEB.
Control then passes to queue manager for­
matting routine IEFORMAT which formats the
job queue and returns control to the queue
initialization routine. (For a discussion
of these two modules, see the topic "Queue
Manager".) After return from the queue
manager initialization routine, the master
scheduler initialization module displays
and processes any automatic commands.

The master scheduler initialization rou­
tine then establishes partitions based on
information in the TCBs. It constructs an
RB in each partition, with an XCTL macro
instruction addressing job selection module
IEFSD510 (for large partitions), or small
partition module IEFSD599 (for small parti­
tions). The master scheduler initializa­
tion routine then readjusts the pointers to
the master scheduler area, and returns to
the dispatcher. The dispatcher returns
control to the mas~er scheduler task, but
the TCB now points to master scheduler
router routine IEECIR50, in the nucleus.

Master Scheduler Router Routine <IEECIR50)

Resident master scheduler router routine
IEECIR50 waits on an ECE which is posted by
SVC 34 when a command has been scheduled
for processing. This router (Chart 12)
scans the CSCB chain for any outstanding
commands to be processed. If a command is
found, the CSCB is removed from the chain.
The router routine then passes control to
syntax check routine IEESD562 via a LINK
macro instruction, passing the address of
the CSCB.

After all commands are processed, or if
none are found, the router routine deter­
mines if a DEFINE command has been entered.
If so, the router routine passes control to
IEEDFIN1, the first module of the defini­
tion routines, via a LINK macro instruc­
tion. If no DEFINE command has been
issued, the router routine returns to wait
on its ECB. No test is made for DEFINE
command scheduling .. until all other commands
have been processed. ---

Syntax Check Routine (IEESD562)

Syntax check routine IEESD562 checks the
syntax of the command parameter in the CSCB
(Chart 10). If a search of the input work

queues (SYS1.SYSJOBQE) is required for pro­
cessing the command, the syntax check rou­
tine sets internal codes for the queue
search, issues a GET~AIN to obtain storage,
and constructs an event control block (ECB>
and an input/output block (ICB). Control
is then passed to queue search setup rou­
tine IEESD563. If the command was a DIS­
PLAY A command, control is passed to DIS-I PLAY A routine IEESD566. If it was a DIS­
PLAY CONSOLES command, control is passed to
DISPLAY CONSOLES routine IEEXEDNA.

Queue Search Setup Routine (IEESD563)

Queue search setup routine IEESD563 deter­
mines which of the queues is to be searched
and reads the queue control record (eCR)
for that queue. If the queue must be
searched, the queue search setup routine
establishes parameters for the search. The
queue search setup routine then passes con­
trol to queue search routine IEESD564 via
an XC'I'L macro instruction. When the queue
search setup routine regains control, the
QCR is scanned and if any information in
the record has been changed, the updated
information is rewritten on SYS1.SYSJOBQE.
~he queue search setup routine then estab­
lishes a parameter list and passes control
to service routine IEFSD565 via an XCTL
macro instruction.

Queue Search Routine (IEESD564)

Queue search routine IEESD564 reads the
entries of a queue based on the parameter
information passed by setup routine
IEESD563. If the command processing
requires changes in the chaining informa­
tion in a queue entry or control record,
the updated information is written on the
queue. Action indicators are passed as pa­
rameters when control returns to setup rou­
tine IEESD563.

Service Routine (IEESD565)

Based on the information passed by the cal­
ling routine, service routine IEESD565 per­
forms the following:

1. Passes control to queue manager
enqueue routine IEFQMNQQ via a LINK
macro instruction to enqueue an entry
or QCR.

2. Issues a FREEMAIN macro instruction to
free the ECB/IOB which was used to
read SYS1.SYSJOBQE.

3. Passes control to the master scheduler
message module (IEE0503D) via a LINK
macro instruction to write a message.

Job Management 49

4. If another queue needs to be searched,
it passes control to queue search set
up routine IEESD563 via an XCTL macro
instruction.

After the requested processing has been
~erformed, the service routine transfers
control to router routine IEECIR50.

DISPLAY A Routine (IEESD566)

DISPLAY A routine IEESDS66 receives control
from syntax check routine IEESD562 when the
DISPLAY A (active) command is entered.
This routine constructs WTO messages con­
taining the active job and stepnames. The
DISPLAY A routine returns control to the
router routine.

DISPLAY CONSOLES Routine (IEEXEDNA)

DISPLAY CONSOLES routine IEEXEDNA receives
control from the Syntax Check routine
IEESD562 when the DISPLAY CONSOLES command
is entered. This routine issues a header
message that describes the status message.
It then constructs and issues a message
describing the status of the hard co~y log'
(if one exists) .and each console in the
system, both active and inactive. When the
message is issued, it returns to the Master
Scheduler Router routine IEECIR50.

PARTITION DEFINITION EY THE MASTER
SCHEDULER

The master scheduler uses the DEF'INE com­
mand processing routines (shown in Figure
17) to initialize or change partition
definitions in MFT. These routines handle:

• Commands from the operator via a con­
sole, issued after nucleus initializa­
tion, to change the size and descrip­
tion of any partition while processing
continues in unaffected partitions.

• Commands from the system at IPL time to
prepare the partition as it was
described at system generation.

All transfers of control among the proces­
sing routines are accomplished via an XC'IL
macro instruction.

DEFINE Corr~and Initialization Routine
(IEEDFIN1)

The master scheduler passes control to
DEFINE command initialization routine IEED­
FIN1 whenever a DEFINE command is entered

50

by the operator. The routine also receives
control from the master scheduler during
system initialization, after the nucleus
initialization program (NIP) completes its
preparation of the system. In either case
the routine builds the DEFINE data area
containing the size and description (job
classes A-O, or R or W) of each partition
If Main Storage Hierarchy Support is
included in the system, the data area con­
tains the size of the partitions in terms
of hierarchies. Hierarchy 0 represents
processor storage and hierarchy 1 repre­
sents 2361 Core Storage.

If the time-slicing feature is included
in the system, the data area also contains
a doubleword of time-slicing inforrr.ation,
including the first and last partition num­
bers in the time-slicing group and the time
interval (in milliseconds) assigned to the
group of partitions. This data is used at
completion of DEFINE processing to define
the partitioning of main storage,.

If the DEFINE command initialization
routine was entered as the result of a
DEFINE command, the routine issues a DEFINE
COMMAND BEI~G PROCESSED message to all
active consoles. It then determines wheth­
er LIST was specified and if so, passes
control to listing routine IEEDFIN4. If
not, the routine passes control to message
routine IEEDFIN5 for issuance of an E~~ER
DEFINITION message.

If the DEFINE command initialization
routine was entered during the system
initialization, the routine also issues a
DEFINE COMMAND BEING PROCESSED message to
all active consoles. It then determines
whether partition redefinition or LIST was
specified by the operator, and if not,
passes control to validity check routine
IEEDFIN3. If either LIST or partition
redefinition was specified, the routine
continues processing as if a DEFINE corr.mand
had been entered by the operator.

Syntax Check Routine (IEEDFIN2)

When syntax check routine IEEDFIN2 receives
control at primary entry point IEEDFIN2, it
translates the statements entered by the
o~erator to upper case. When the routine
receives control at secondary entry point
IEEDPART, this operation is bypassed.

The statement is scanned and each entry
in the statement -- a partition definition,
a time-slicing change, or a keyword -- is
processed separately.

From NIP or DEFI NE Command

-Figure 17. DEFINE Command Processing Flow

Job Management 51

If the entry is a partition definition,
the routine checks the entry for syntax
errors. If a syntax error is found, the
routine passes control to message routine
IEEDFINS for issuance of the appropriate
syntax error message. The erroneous entry
and all following entries are ignored. If
the syntax is correct, IEEDFIN2 updates the
DEFINE data area with the partition infor­
mation and gets the next entry for
processing.

If the entry is a time-slicing change,
the routine passes control to time-slice
check routine IEEDFIN6.

If the entry is neither a partition
definition, nor a time-slicing change, the
routine assumes that it is a keyword and
passes control to keyword scan routine
IEEDFIN7.

Validity Check Routine (IEEDFIN3)

Validity check routine IEEDFIN3 makes final
checks to determine that the information
entered by the operator is correct (e.g.,
that the definition changes which have been
requested are within legal bounds or that
the time-slicing specification is valid).
If an error is detected, the routine passes
control to IEEREXIT, a secondary entry
point in command final processor routine
IEEDFIN9. If the information is valid, the
routine determines the partitions affected
by the DEFINE command and constructs a list
of PIB pointers (one for each affected
active partition).

If Main storage Hierarchy Support is
included in the system, IEEDFIN3 determines
if a partition has been defined in two seg­
ments. If both HO and Hl size have been
reduced to zero, the routine marks the par­
tition inactive in the DEFINE data area.
It also checks to determine if a partition
has been specified for excess bytes result­
ing from a redefinition in either HO or Hl
of an adjacent partition. If no partition
has been specified, the routine passes con­
trol to secondary entry point IEEREXIT in
command final processor routine IEEDFIN9.
otherwise, it sets up a message indicating
the number of excess bytes, the partition,
and the hierarchy to which they have been
added. It then passes control to IEEREXIT.

If the information is valid, IEEDFIN3
passes control to system reinitialization
routine IEEDFIN8.

Listing Routine (IEEDFIN4)

Listing routine IEEDFIN4 lists partition
definitions and job classes. If the time­
slicing feature is in the system, it also
lists the time-slicing attributes. After
performing the listing function, the rou-

52

tine determines whether an END keyword has
been read from the console, and if so,
passes control to validity check routine
IEEDFIN3. If not, it passes control to
message routine IEEDFINS.

Message Routine (IEEDFINS)

Message routine IEEDFINS handles the mes­
sages required by the DEFINE command pro­
cessing routines. These messages, which
are written to the operator, are concerned
with:

• Entering and continuing the definition
of partitions.

• Syntax, parameter, and time-slicing
errors.

• Illegal number of partitions or over­
size partitions.

• Completing the definition of
partitions.

After issuing the appropriate message, the
routine determines whether processing is
complete and if so, issues a DEFINITION
COMPLE'IED message to all active consoles.
It then determines if a DEFINITION CAN­
CELLED message has previously been issued
and if so, tests to see if the system is
being initialized. If the message has been
issued and it is IPL time, IEEDFIN5 passes
control to command initialization routine
IEEDFINl to repeat the DEFINE command pro­
cessing. If the DEFINITION CANCELLEDmes­
sage has not been issued, or if it has been
issued at other than IP! time, the routine
returns control to the caller.

If processing is not complete, IEEDFIN5
passes control to syntax check routine
IEEDFIN2.

'lime-Slice Syntax Check Routine CIEEDFIN6)

'lime-slice syntax check routine IEEDFIN6
checks the time-slicing entry for syntax
errors. If a syntax error is found. the
routine passes control to message routine
IEEDFIN5 for issuance of a PARAMETER ERROR
message. It ignores the erroneous entry
and all following entries. If there are no
syntax errors, the routine updates the
DEFINE data area with the time-slicing
information, gets the next entry in the
statement being processed, and passes con­
trol to secondary entry point IEEDFART in
syntax check routine IEEDFIN2.

Keyword Scan Routine (IEEDFIN7)

Keyword scan routine IEEDFIN7 determines
whether the entry being processed is a
valid keyword. If it is not a valid key­
word, the routine passes control to message

routine IEEDFINS for issuance of a PARAME­
TER ERROR message. It ignores the
erroneous entry and all following entries.
If a valid keyword is found, the routine
sets the appropriate keyword indicator in
the DEFINE data area.

If there are more entries to be pro­
cessed, the routine gets the next entry and
passes control to secondary entry point
IEEDPART in syntax check routine IEEDFIN2.

If there are no more entries to be pro­
cessed (end of input), the routine deter­
mines whether a LIST keyword has been
entered and if so, passes control to list­
ing routine IEEDFIN4. If LIST was not spe­
cified, a check for the END keyword is
made. If an END entry is found, the rou­
tine passes control to validity check rou­
tine IEEDFIN3. If an END entry is not
found, the routine passes control to mes­
sage routine IEEDFINS for issuance of a
CONTINUE DEFINITION message.

System Reinitalization Routine (IEEDFINS)

System reinitialization routine IEEDFINS
places the ECB that must be posted by the
affected partition in the PIE of the parti­
tion. If a partition has been marked inac­
tive (i.e., no HO or Hi size is contained
in the DEFINE data area), IEEDFINS sets the
partition's TCE nondispatchable. If any
partition being redefined contains a system
writer, the routine posts the STOP ECE in
the Start Parameter List to stop the writer
as if a "stop Writer" command had been
issued from the console. Therefore the
operator must issue a "Start writer" com­
mand for any writer partition involved in
the redefinition.

The routine then issues the WAIT macro
instruction for the posting of the ECE
list. When the ECE list is posted, IEED­
FINS sets the protection key to zero if the
system is protected. It makes one final
check to determine that no more than 15
problem program partitions have been
defined. If an error is found, the routine
passes control to secondary entry point
IEEREXIT in command final processor routine
IEEDFIN9.

If no error is found, IEEDFINS uses the
information in the DEFINE data area to
build request blocks and boundary boxes for
the defined partition. The routine then
passes control to IEEDFIN9 at its primary
entry point, IEEDFIN9.

Command Final Processor Routine (IEEDFIN9)

Command final processor routine IEEDFIN9
updates the time-slice control element and
the task control blocks affected by time­
slicing if this feature is specified. The

routine then passes control to message rou­
tine IEEDFINS for issuance of the DEFINI­
~ION COMPLETED message.

If the routine receives control from
validity check routine IEEDFIN3, it frees
the work area obtained by its caller. It
passes control to IEEDFIN5 for issuance of
the appropriate error message specified by
its caller (IEEDFIN3 or IEEDFINS).

Job Processing

Job processing is accomplished by three
types of tasks:

• Reading tasks, which control the read­
ing of· input job streams and the inter­
preting of control statements in these
input streams.

• Initiating tasks, ~hich control the
initiating of job steps whose control
statements have been read and inter­
preted. (Terminating procedures are
also part of initiating tasks.)

• writing tasks, which control the
transferring of system messages and
user data sets from direct-access
volumes on which they were written ini­
tially to some other external storage
medium.

~hese tasks are created in response to
S~T commands entered for readers, initia­
tors, and writers. Whenever a START reader
or writer command is entered, the resulting
command processing brings a reader or writ­
er into the associated partition. Initia­
tors are brought into all scheduler-size
partitions at system initialization, and
after a S~T INIT command has been issued
following partition redefinition. An
initiator is also brought into a partition
that is specified in a STOP INIT corrmand to
terminate the initiator.

I ~here may be more than one of each of
the job processing tasks so long as the
total does not exceed 52. Input job
streams may be read simultaneously from
three input devices by issuing a START
reader command for each input stream. Sys­
tem messages or data sets may be written to
as many as 36 output devices by issuing a
S~~ command for each device. Up to 15
initiating tasks can exist concurrently.
Each initiating task is created in response
to a S'lART INIT command issued for a spe­
cific partition, or a START INIT.ALL com­
mand. (See IBM system/360 operatinqSys­
!em: Operator's Guide, Form C2S-6540.)

Job Management 53

This section is divided into six topics,
including the three major tasks discussed
above, and three other areas associated
with the major tasks: Queue Manager, Sys­
tem Task control, and System Restart.

QUEUE MANAGER

MFT uses the MVT Queue Manager. However,
to reduce possible interlocks due to
unavailability of requested tracks, the
assign routine (IEFQASGQ) h~s been modi­
fied, and a new module (IEF~D572) has been
added. A table breakup routine (IEFSD514)
has also been added to subdivide variable
size tables located in main storage into
176-tyte data records on disk. Descrip­
tions of some MVT modules have also been
included to provide a more complete
explanation of the relationship of these
modules to the entire system.

WORK QUEUES

An MFT system contains 54 work queues which
form the job queue data set (SYS1.
SYSJOBQE). These 54 work queues are:

• Automatic SYSIN blocking queue.
• HOLD queue.
• Remote job entry (RJE) queue.
• 36 output class queues.
• 15 input job class queues.

The job entries are enqueued in priority
order within each job class on the appro­
priate job class queue. Jobs are selected
for processing according to the job class
designation of the partition requesting
work.

Queue Manager

Queue Manager is a general term describing
a group of routines used by various system
components, such as the reader/interpreter.,
initiator/terminator, and output writer.
The queue manager performs some common
functions for all system components. It
performs all input/output for accessing the
job queue data set and keeps track of all
space on this queue. The queue manager
assigns space on the job queue in logical
track increments for control blocks,
tables, and system messages built by the
scheduler. When the control blocks and
tables have been created, the reader/
interpreter enqueues (ENQS) the job using
the queue manager. After the job is
enqueued, the initiator dequeues (DEQs) the
job for execution when a partition that is
assigned to service that job class becomes

54

available for work. The terminator places
control information needed by the system
output writer on the job queue. At job
termination, the terminator enqueues the
output work description. The writer then
dequeues the output work according to out­
put class and priority within the class,
and transcribes it to the appropriate
device, specified by the user.

At system generation, the space for the
job queue data set is allocated. The
device upon which the job queue resides is
considered a non-demountable system resi­
dence volume.

JOB QUEUE INIiIALIZATICN

At system initialization, queue initializa­
tion routine IEFSD055 receives control from
the SE~ command processor to construct a
data control block (DCB) in the nucleus,
and to issue an OPEN macro instruction
which causes a data event block (DEB) to be
built for accessing SYS1.5YSJCBQE. It also
places a queue manager master queue control
record (master QCR) in the nucleus after
the DCB and DEB. (See Figure 18 for the
format of the master QCR.) Control then
passes to queue formatting routine
IEFORMAT.

0(0) .

8 byte disk address of the Master OCR

MBBCCHHR

8 (8) 1 2

Reserved
Displacement of first track

Reserved of the free queue

12 (C) 2
Number of logical tracks in Number of logicaf tracks in
the job queue data set the free-track queue

16 (10) 2
Number of tracks reserved Number of tracks reserved
for cancelling of job steps for any initiator
when queue full

20 (14) 2
Displacement of first track Displacement of last

available logical track containing only job queue
records

24 (18) 2
Number of OCRs per Number of job queue records
physical track per physi co I track

28 (lC) 2
Number of logical tracks Number of records per

logical track for each Problem Program
partition

32 (20) 2 Address of first record on
Number of OCRs on the first track containing only
mixed track job queue records

36 (24)

-Figure 18. Master Queue Control Record
(Master QCR) Format

8

1

2

2

2

2

2

2

The queue formatting routine divides the
job queue data set into a control record
area and a logical track area. The control
record area contains a copy of the master

IQCR, a control record for the automatic
SYSIN batching (ASE) queue, a control reco­
rd for the HCLD queue. a control record for
the Remote Job Entry (RJE) queue. a control
record for each of the 36 SYSOUT writer
classes, and a control record for each of
the 15 input work queues. (See Figure 19
for the format of an input queue control
record.)

Note: The first position of the job queue
control record (job QCR) contains zeros if
no work exists. The job QCR contains a
minimum of two entries if work exists for
at least one priority.

The job class specified by the user (on
the JOB statement or in a START command) is
converted by the system to match the
system-assigned job class identifiers. The
user-assigned job class and corresponding
system job class identifiers are:

User- assigned
job class

A
E
C
D
E
F
G
H
I
J
K
L
~

N
C

system-assigned
identifier

(hexadecimal>

28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36

The logical track area length is vari­
able. Logical tracks are used instead of
physical tracks,so that the job queue can
reside on different device types. Each IIOgiCal track contains a 20-byte header
record (LTH) (as shown in Figure 20) which
includes a pointer to the next track. The
header record is used to chain all tracks
of a job together. When the job is
enqueued, the header record is used to
chain jobs first-in/first-out (FIFO)
according to priority. All jobs of the
same job class are chained together. Fol­
lowing the header record are a variable
number of 176-byte data records. The num­
ber of records per logical track is deter-

,mined at system generation and may range

I from 10 to 255 records. The number may be
modified within this range at IPL. All
tables. control blocks. and system messages
are in 176-byte increments.

At system initialization. all tracks are
members of the free track queue. The free
track queue is a list of logical tracks
available for assignment to work queues.
As tracks are needed. they are taken from
the free track queue. When the system is
finished with tracks. they are returned to
the free track queue. After system initia­
lization, SYS1.SYSJCEQE appears as shown in
Figure 21. Figure 22 illustrates typical
input and output work queues. Each input
and output QCR contains the address of the
last entry in each priority queue.

QtEUE MANAGER MODULES

As jobs are read into the system_ they are
placed into each job class queue according
tc priority (established by the PRTY param­
eter on the JOB statement). When the
reader/interpreter reads a job or estab­
lishes a new queue for an output class. it
establishes a queue entry. This is done by
Assign/start Routine IEFQASGT.

Assign/start Routine (IEFQAGST)

The Assign/start routine takes the first
track from the available track pool and
establishes it as the first track for a
job. The queue manager parameter area
(QMPA) is updated accordingly. (See IBM
System/360 Operating system: MVT Job Man­
agement. Program Logic Manual, Form Y28-
6660, for a description of QMPA.) An ICE
and an ECB are created f0r subsequent
input/output operations. The actual
reserving of tracks is done by the assign
routine, IEFQASGQ.

~: MFT does not support the track­
staCking facility of MVT.

Assign Routine (IEFQASGQ)

The assign routine assigns record space on
the job queue, and determines whether the
requested blocks can be assigned to the
current track. If so, the record addresses
are placed in the external parameter list
of the QMPA, and the records-available
field of the QMPA is decremented to reflect
this assignment. If additional logical
tracks must be assigned, this routine
issues an ENQ macro instruction on the
master QCR to prevent concurrent access by
other tasks. The master QCR is read into
main storage.

Job Management 55

0(0)

Address of last LTH of highest priority entry on queue.

4 (4)

13

8 (8)

11

12 (C)

9

16 (10)

7

20 (14)

5

24 (18)

3

28 (1C)

1

32 (20) : 1

2

14

2

12

2

10

2

8

2

6

2

4

2

2

2

0

2

2

2

2

2

2

2

2

3

Addresses of last
L TH of latest
entry having
indicated priority.

Hold Highest
Queue

I Priority Address of ECB for first task requesting work

:
Figure 19. Job Queue Control Record <QCR)

0(0)

4 (4)

8 (8)

12 (C)

16 (10)

20 (14)

Type:

Reserved

Reserved

1 2

Reserved First logical track of the job Reserved

2 1

Next logical track of the job
Number of

Type*
tracks assigned

1 I

Reserved Jobclass of Last logical track of the
the job

1 = HOLD queue
2 = ASB queue

3-38 = Output class queues
39 = RJ E queue

40-54 = Input work queues

next job

-Figure 20. Logical Track Header (LTH)
Record Format

4

4

1

1

2

The primary user of this assign routine
is the reader/interpreter, although the
initiator/terminator also uses it. To pre­
vent the possibility of the reader/

56

interpreter taking all the space and making
it impossible for jobs to be initiated or
terminated, two limit values have been
added: the number of tracks reserved for
initiating a job, and the number of tracks
reserved for terminating a job.

If logical tracks are available, the
requested tracks are acquired. The address
of the first available logical track is
updated and the newly assigned tracks are
chained to the tracks assigned to the job.
~he master QCR is written to the control
record area of the job queue data set. A
DEQ macro instruction is issued to make the
master QCR available to the next user.

If there are no available logical
tracks, and the requesting routine is a
reader/interpreter, the assign routine
passes control to queue manager/interpreter
interlock routine IEFSD572. If the reader/
interpreter is resident, control returns to
the assign routine to wait for tracks to
become available. If the reader/
interpreter is transient, IEFSD572 issues a
message to the operator requesting him to
reply "WAI~" or "CANCEL". If the reply is
wAIT, control returns to the assign rou­
tine, otherwise. control is passed to the
ABEND routines to cancel the
reader/interpreter.

r- Master OCR 36
1

Hold QCR 36
1

36 Output OCRs
(Classes A - Z and 0 - 9)

,15 Input OCRs
(Classes A - 0)

ASB OCR 36
1

I RJE OCR

I

1296 1

36

540

7~ I
Control
Record
Area

1 Reserved
(21 Unused OCRs)

176
f-

___ LTH
Fi rst 176 - byte record

First
Logical
Track J Additional 176 - byte records

'- , 176
LTH

\ 176 - byte records

Logical
Track
Area

I'" ~
r

LTH
Last
Logical 176 - byte records

Track

eF'igure 21. Sample Job Queue (SYS1.SYSJOBQE) Foz:mat After Initialization

If there are no available logical tracks
and the requesting routine is an initiator/
terminator, the assign routine issues a
message to the operator stating that queue
space has been exceeded and passes control
back to the initiator/terminator to cancel
the job.

When the requesting routine is assigned
the record TTRs, it can read and write
records on the job queue. The master QCR
is wz:itten, and a DEQ macro instruction is
issued to make the master QCR available to
the next user. The record addresses in
storage and TTR pointers are contained in
the external parameter list of the QMPA.
When available space on the job queue
becomes critical, a warning is sent to the
requesting task. Logical tracks are
removed from the pool of available tracks
and assigned to the job.

If the reply is CANCEL, the interlock
routine deletes all queue space assigned to
the job, cancels the job, and returns con­
tz:ol to the assign routine. Normal initia­
tor operation reoovers the partition for
further use.

Interpreter/Queue Manager Interlock Routine
(IEFSD572)

when the reader/interpreter requests tracks
for the job it is processing, and no space
is available, IEFQASGQ passes control to
interlock routine IEFSD572 to identify
whether an interlock can occur. If the
reader is transient, the possibility exists
that space needed by the reader/interpretez:
can be provided only by the termination
routines, which must operate in the parti­
tion that the reader occupies. Because the
requested space is not available, the rou­
tine issues a message to the operator re­
questing a reply of 'wAIT' or 'CANCEL'. If
the reply is WAIT, this routine returns to
the assign routine to wait for available
space. (If the reader requesting space is
a resident reader, no message is issued,
and a reply of WAIT is assumed.)

If the reply is CANCEL, control passes
to delete routine IEFQDELQ to delete all
queue space assigned to the job being pro­
cessed (if any space had already been
assigned). When control returns, the
interlock routine abnormallY terminates the
job with a job-canceled code of 222. Norm­
al initiator operation recovers the parti­
tion for further use.

Job Management 57

\

\
\
\

Highest Priority

I Last Priority 6

I Last Priority 2

Output Work QCR /

/
/

/
/

/7
N--.- / .-/

t:=T
JOB QUEUE

[
.L/

:1
/ \

/ \
/ \

/ \
Input Work QCR

Highest Priority

I Last Priority I 0

I Last Priority 6

I Last Priority 2

~
LTH

!
LTH

!
LTH

I

~
LTH

j
LTH

I

(LTH

!

~
LTH

l
-'" LTH

Logical
Track
Header

~I LTH

j
LTH

I

~I LTH

!
l LTH

!
:s- LTH

J

~I LTH

~
LTH

1
LTH

I

~
LTH

1

~
LTH

~
LTH

Figure 22. Input and Output Queue Entries

58

I

I

I

I

I I

I First Logical Track

I Second Logical Track

I Last Logical Track I
I
I 176-byte data records
I (Number of data records per logical I
I track is specified at SYSGEN)

I

I First Logical Track

1 Last Logical Track I

I

1

I I

I

I

J

I

I

I I

I

J

I

I

I

I

I

I
i
I
I
I
I

I

I

I

J

I

I

I

I

I

I

I

Only Priority 6
Entry Enqueued

}
First Priority 2
Entry Enqueued

Last Priority 2
Entry Enqueued

}
First Priority 10
Entry Enqueued

Last Priority 10
Entry Enqueued

}
First Priority 6
Entry Enqueued

Last Priority 6
Entry Enqueued

Only Priority 2
Entry Enq ueued

Queue Manager Enqueue Routine (IEFQMNQQ)

After all control blocks for a job have
been written, the job is eligible for
selection by an Initiator. Declaring a job
ready for selection (enqueuing) is done by
Queue Manager Enqueue routine IEFQMNQQ.

When an interpreter has completed the
processing of a job, (all records generated
by the interpreter have been written on the
queue), it uses this routine to enqueue the
job, in priority order, on the appropriate
job class input work queue. When a job
completes processing, the terminator uses
this routine to enqueue output data sets,
in priority order, on the appropriate out­
put work queues.

To prevent concurrent updates, this rou­
tine issues an ENQ macro instruction for
the queue control record (QCR) of the prop­
er queue. When the QCR becomes available,
it is read into main storage. The enqueue
routine then places the new queue entry
after the last entry with the same priority
as shown in Figure 22. The address of the
new entry is then placed in the track head­
er of the prior entry (maintaining a
chain), and in the QCR position for that
priority. The job control table (JCT) is
written. The updated QCR is written on the
job queue. A DEQ macro instruction is
issued making the CCR available. Control
is then returned to the calling routine.

Dequeue Routine (IEFQMDQQ)

In addition to dequeuing a job from the
input queue for an initiator, the dequeue
routine (IEFQMDQQ) removes the output data
from an output queue for processing by a
system output writer.

The routine issues an ENQ macro instruc­
tion on the QCR of the selected queue.
When the QCR becomes available, the dequeue
routine reads it into main storage. The
QCR is examined for a job belonging to the
same job class as the partition. Upon
finding a job, this routine adjusts the
chain. If none is found, the requesting
task tries the next job class. If nc work
is found on any of the selected queues (up
to three), the requester places itself in a
wait state. In the caSe of an output writ­
er, a pointer to the "no work" ECB is
placed in the QCR. If a pointer already
exists, the ECB is chained to the last ECB
waiting for that output class. Then the
updated QCR is written and a DEQ macro
instruction is issued making the QCR
available.

Once a job has completed processing, or
the output writer has written all records
for a jot, the tracks are returned to the
system. This is known as deleting a job

and is handled by the queue manager delete
routine IEFQDELQ.

Delete Routine (IEFQDELQ)

~he Delete routine first issues an ENQ
macro instruction on the master QCR of the
free chain of tracks. After control is
returned, the record is updated to reflect
the new available tracks. The prior last
track of free storage is updated to point
to the new set of free tracks. After the
master QCR is updated, it is written and a
DEQ macro instruction is issued against it.
~heECB indicating wait-for-space is
posted.

~able Breakup Routine (IEFSD514)

when a reader must be suspended, the job
scheduler must prevent the destruction of
variable size tables in main storage. To
do this, it calls the queue manager table
breakup routine, IEFDS514, (Chart 10) which
subdivides tables in main storage and
writes them on disk as 176-byte data reco­
rds. Tlhe data records are written in a
queue entry related to the caller. The job
scheduler calls IEFSD514 to retrieve the
176-byte data records and to reconstruct
the tables in main storage. Whether read­
ing or writing tables, the caller must
build a parameter list (see Figure 23) and
place the address of the list in general
register 1 before calling the TBR.

When the tables are written initially,
the TBR parameter list must contain the
address of a QMPA specifying the queue
entry into which the tables are to be writ­
ten. The function code field (QMPCP) of
QMPA must specify a write operation. The
~ER parameter list must also contain the
address, subpool, and size of each table to
be written. The last word of the TBRpa­
rameter list must be zero. The TBR returns
a Head T~R address which locates the begin­
ning of the tables on disk. This TTR must
be saved for subsequent retrieval of the
tables.

The initial write establishes disk data
records for the tables for the duration of
the associated queue entry (i.e., until the
entry is deleted). Therefore, further
write requests must specify the Head TTR in
the TER parameter list. Before issuing a
write request, the caller must retrieve any
previously written tables to prevent their
being overlaid by the new write request.

If the request is for output of tables,
(transferring from main storage to direct­
access device), the Head TTR (passed in the
parameter list) is used to read the first
table queue control record (TQCR). If the
Head TTR is zero, the assign routine, IEF­
QASGQ, is called to assign space for a new

JOb Management 59

TQCR. TheTQCR is a 176-byte record con­
taining a 4-byte forward-chain pointer and
space for 43 TTRs. These spaces are filled
in as the tables are written, using the
assign routine to assign the TTRs, and the
Read/Write routine, IEFQMRAW, to write the
tables in 176-byte segments. If more than
43 records are required to hold the tables,
a new TQCR is chained to the first, and
processing continues. The low-order byte
of the last TTR used in writing the tables
is set to 'FF' (hexadecimal) to indicate
end-of-tables. After these TTRs are
assigned, they are used each time the table
breakup routine is called to write tables,
as long as the Head TTR is preserved by the
caller.

0(0)

4 (4)

8 (8)

12 (e)

16 (10)

20 (14)

24 (18)
:,

Table 1
Subpool

Table 2
Subpool

Table n
Subpool

Address of QMPA

Address of First Record (Head TTR)

Address of Table 1

1

Size of Table 1

Address of Table 2

1

Size of Table 2

Address of Table n

Size of Table n

Zeros

Figure 23. Table Breakup Parameter List

4

4

4

3

4

3

,

4

3

4

Once a queue entry has been deleted, a
caller must issue another initial write re­
quest (Head TTR is zero in the table brea­
kup routine parameter list) to establish a
new string of table data records. IEFSD514
does not free table storage areas.

In retrieving tables, the TBR parameter
list must contain the address of an asso­
c;=iated QMPA. The function code (QMPOP)
field must specify a read operation. The
TBR parameter list must also contain the
Head TTR address. sufficient space must be
allowed for the TBRto return the new main

60

storage address of each table, and the sub­
pool and size of each table as specified
when they were written by the TBR.

If the request is for input (reading
into storage) of tables, the first T~CR is
read into storage using the Head TTR passed
in the parameter list. The first record of
the first table is read, using the first
record in the TQCR. This record contains
the size of the table and the number of the
desired subpool. IEFSD514 issues a GETMAIN
specifying the subpool and the amount of
storage required for the table. The
remainder of the table is then read into
the storage obtained, using read/write rou­
tine IEFQMRAW. Each table specified in the
parameter list is processed in this IT,anner
until 'FF' (hexadecimal), indicating end­
of-tables, is found. As each table is read
into main storage, the parameter list is
updated with the main storage address of
that table. When all tables have been
read, control is returned to the caller.
~he address of the updated parameter list
is returned in register 1. Tables are
always written in the same sequence that
they appear in the TBR parameter list,
beginning with the Head TTR. They are
retrieved, totally, in the same sequence;
they cannot be read selectively.

Reader/Interpreter

MET uses the MVT reader/interpreter (read­
er). However, because of job class, poss­
ible MF~ interlocks, and the capability of
using transient readers, some modifications
have been made to the MVT modules, and six
new modules have been added. These modifi­
cations and additions are described below.

MF~ allows as many as three input
readers to execute concurrently with prob­
lem programs and writers. Resident readers
operate in previously defined reader parti­
tions, and transient readers operate in
problem program partitions large enough to
accommodate them. Input stream data for
the step being read is transcribed onto
direct-access storage where it is held
until execution of the associated job
begins. Problem programs retrieve this
data directly from the storage device.

In MF~' there are three types of system
input readers:

• Resident reader.
• user-assigned transient reader.
• System-assigned transient reader.

Resident and transient readers may operate
in the same system ,provided no more than
one system-assigned reader is specified,
and the total number of readers does not

exceed three. The primary difference
between the user-assigned and system­
assigned transient readers is the manner in
which the transient reader resumes opera­
tion after it is suspended.

RESIDENT READERS

A resident reader operates in a partition
designated as such at system generation (by
replacing the job class identifier with R),
or during system initialization or parti­
tion definition (by specifying RDR for the
job class identifier). A resident reader
reads its input stream, enqueuing jobs
until the input stream reaches end-of-file
or until it is terminated by a STOP command
entered for that partition.

Note: The STOP command does not take
effect until the current job is completely
read.

TRANSIENT READERS

A transient reader operates in a problem
program partition large enough to accommod­
ate it. A transient reader can be ter­
minated by issuing a STOP command or by
reaching end-of-file, as can the resident
reader. In addition, a transient reader is
suspended when a job is enqueued either for
the partition occupied by the reader, or
for a small partition. (Note that this is
possible only when a reader completes read­
ing an entire job.)

If a transient reader is started in a
specific partition by including the parti­
tion assignment in the START command, it
always resumes operation in that same par­
tition, and only when that partition be­
comes free. This type of transient reader
is referred to as user-assigned. If'S' is
substituted for the partition number in the
START command, the system assigns the read­
er to any available large problem program
partition. This type of transient reader
is called system-assigned.

READER CONTROL FLOW

After a START command is entered to activ­
ate a reader, master scheduler routine IEE­
CIR50 determines if the size of the
requested partition is large enough, and
posts the partition. Job selection routine
IEFSD510 determines that a START command
bas been entered, and passes control to
system task control (STC) syntax check rou­
tine IEEVSTAR. The syntax check routine
validates the syntax of the START command,
builds job control language tables., and
retrieves the reader cataloged procedure

I specified in the START command. Each read­
er is assigned to an input device specified
in the S'IART command. Control is then
passed to interface routine IEFSD533 which
sets up an interpreter entrance list (NEL)
for a reader. It also allocates job queue
space for a transient reader by issuing a
dummy WRITE macro instruction. Control is

I then passed to linkage routine IEFSD537
which issues a LINR macro instruction to
reader initialization routine IEFVHl to
begin reading the 'input job stream (Chart
24-26) •

I When reader initialization routine
IEFVHl receives control, it reads its input
stream using QSAM, and translates job pro-
cessing information into convenient form
fer subsequent processing by an initiator
and system output writer. Each job read in
by the readers is converted into tables
that are placed in the appropriate job
class input work queue specified by the
CLASS parameter on the JOB statement. One
input work queue exists for each of the
fifteen problem program job classes (A
through 0).

For systems that include Multiple Con­
sole Support (MCS), the PARM field on an
EXEC statement includes a command authority
code. This code is included in the option
list created by interface routine IEFSD533,
and placed in the interpreter work area
(IWA) by reader initialization routine
IEFVH1. This code is passed by the reader
when it issues an SVC 34 due to a command
read in the input stream.

After the reader has completed reading a
job, control passes to queue manager
enqueue routine IEFQMNQQ which enqueues the
job on the appropriate input work queue
according to the PRTY parameter on the JOB
statement (see RQueue ManagementR in this
section).

Note: If the reader is being used as a
subroutine by a problem program, it does
not enqueue the job on the input work
queue, but returns control to the problem
program passing the addresses of the JCT
constructed for that job, and the QMPA
associated with that input queue entry.

If data is encountered in the input
stream, control is passed to interpreter
CPO routine IEFVHG to transcribe the data
onto direct-access storage for later re­
trieval by the problem program. If there
is no space for the data, control passes to
interpreter operator message routine
IEFSD536 to issue a DISPLAY active cORmand
and a WTOR message. The operator replies
with either 'WAIT' or 'CANCEL'. If 'WAIT"
is specified, the reader waits for space to
become available. If 'CANCEL' is speci­
fied, the reader is canceled and a READER

Job Management 61

CLCSED message is issued. IEFSD536 then
sets indicators which cause cleanup of the
current job, and control to be passed to
interpreter termination routine IEFVHN to
terminate the reader.

After a reader enqueues each job, con­
trol passes to transient-reader suspend
tests routine IEFSD532.' This routine
decides whether to 1) terminate the reader,
2) suspend the reader, or 3) have the read­
er continue reading the job stream. (The
decision to suspend the reader would never
be made if the reader is resident.) If the
reader is to be terminated, control passes
to termination routine IEFVHN. If the
reader is to be suspended, control passes
to transient reader suspend routine
IEFSD530. Otherwise, control returns to
job and step enqueue routine IEFVHH to con­
tinue reading the job stream.

Transient Reader suspend Routine (IEFSD530)

When a transient reader is suspended, tran­
sient reader suspend routine IEESD530
(Chart 29) writes the tables and work areas
used by the reader onto the work queue data
set (SYS1.SYSJOBQE).

The routine closes the reader and proce­
dure library. Data needed to restore the
reader is temporarily saved in the inter­
preter work area (IWA). The IWA is then
written to the work queue data set. When a
user-assigned transient reader is sus­
pended, the address of the reader space on
the work queue is placed in the partition
information block (PIB). When a system­
assigned transient reader is suspended, the
address of the IWA is placed in the master
scheduler resident data area (IEFSD568).
(See Appendix A for the format of
IEFSD568.) The work queue data set is
later used by transient reader restore rou­
tine IEESD531 to restore the reader when
the assigned partition becomes available
after job termination. ·No work- BCBs for
problem program partitions are posted (see
"Job Selection-), and suspend routine
IEESD530 returns control to system task
control.

Transient Reader Restore Routine (IEFSD531)

Once a partition is again free for the
reader, transient reader restore routine
IEFSD531 (Chart 30) receives control and
issues a GETMAIN for the IWA, Local Work
Area (LWA), reader DCB, and procedure
library DCB. The direct-access device
address of the IWA is retrieved from the
PIB if a user-assigned reader is to be
restored, or from the master scheduler
resident data area, if a system-assigned
reader is to be restored. The IWA is then
read in from the job queue. The TIOT is
read into storage and the TCB pointer is

62

ufdated; other tables and work areas neces­
sary to restore the reader are reset from
the information saved in the IWA. The
reader and procedure library DCBs are
ofened and the reader resumes operation to
start reading at the point in the job
stream where it was suspended. Control is
then passed to interpreter routine IEFVBCB
to continue reading the job stream.

Initiator/Terminator (Scheduler)

~o provide independent scheduling, schedu­
lers operate in any problem program parti­
tion of sufficient size. A partition large
enough to accommodate the scheduler is
referred to as a "large partition.- A par­
tition not large enough to accommodate the
scheduler is referred to as a -small parti­
tion". Within a given large partition, a
scheduler operates independently of schedu­
lers in other large partitions. Because
small partitions cannot accommodate the
scheduler, they rely on large partitions to
perform their initiation, allocation, and
termination operations. Scheduling for
small partitions is described in ·Small
parti tion scheduling" in this section,.

An MF~ initiator (Chart 18) dequeues a
job (entry) for its partition based on a
job class designated for the partition.
Once dequeued" the job is scheduled accord­
ing to the information contained in the
entry.

During allocation and termination of
each job step, the allocation and termina­
tion routines place messages and output
data set pointer blocks in a specified out­
put queue. The queue entry is created by
the reader/interpreter. (The output queue
entry becomes input to an output writer
when the job is completed.)

An initiator functions as a control pro­
gram for the scheduling process, using the
allocation and termination functions as
closed subroutines. The ~~T initiator is
composed of the following routines:

• Job Selection
• Small Partition
• Job Initiation
• Data Set Integrity
• Step Initiation
• Problem Program Interface
• Step Deletion ,
• ENQ/DEQ Purge Routine
• Alternate Step Deletion
• Job Deletion

JOB SELECTION (IEFSD510)

The job selection routine (Charts 19-23)
acts as the control routine for the MFT
initiator. The routine is brought into all
large problem program pa~titions by the
master scheduler at system initialization,
b¥ the job deletion routine when a job has
terminated, or by system task control when
a writer has been scheduled for a small
partition or a reader has been suspended.

JOD selection first waits on a "nc work"
ECB in the PIB. This ECB is posted com­
plete by the command processing routines,
the job deletion routine, system task con­
trol, or the small partition module when a
small partition needs scheduler services.

When the "no work" ECB has been posted
complete, the job selection routine checks
the PIB to determine if a life-of-task
(LOT) block exists (see Appendix A for a
description of the LOT block). If not., it
creates one for the task.

Job selection then checks the PIB for a
small partition information list (SPIL)
pointer (see Appendix A for a description
of SPILl. If one exists, scheduling is
performed for the small partition by pas­
sing control to IEFSD599. If no SPIL
pointer exists, the PIB is checked to
determine if the partition is involved in
partition redefinition; if the partition is
to be changed, the PIE is checked further.
If a job is queued on the checkpoint/
restart internal queue it is processed; if
a restart reader is pending, it is started.
If neither exists, no further scheduling is
allowed in the partition and the partition
can be redefined. (See "Master Scheduler
Task".)

If the partition in which the initiator
is operating is not part of a partition
redefinition, a test is made for a pending
Restart Reader command. If no command is
pending, a test is made to determine if a
system-task reader or writer is to be
started. If a restart reader or a system­
task reader or writer is to be started,
control passes to system task control which
initiates readers and writers. If a
restart reader is being started, and a
user-assigned reader had been rolled out of
the partition, the PIB is marked
accordingly.

If no small partition is requesting ser­
vice, no reader or writer is to be started,
and the partition is not part of a rede­
finition operation, a final check is made
to determine if a START INIT co~mand has

been issued; if so, job selection attempts
to dequeue work from the input work queue
(see Figure 24). If a STOP INIT command
has been issued, the attempt to dequeue a
job is bypassed.

A threshold check is then made to deter­
mine if enough logical tracks are available
on SYS1.SYSJOBQE to start the initiator.
If not, message IEF4271 COMO REJECTED FeR
INITIATOR "ident" - INSUFFICIENT QUEUE
SPACE is sent to the operator and job
selection again waits on the "no work" ECB.

The job selection routine obtains
storage for the job control table (JCT) and
checks to determine if a job is queued on
the checkpoint/restart internal queue. If
a job exists, dequeue by jobname routine
(IEFLOCDQ) is used to remove it from the
hold queue for processing. If no job is on
the internal queue, the routine then uses
the queue manager dequeue routine
(IEFQMDQQ) to obtain work from one of the
input job queues according to the job class
assignment of the partition. If work is
found" IEFQMDQQ constructs a CSCB for the
job and an lOB to be used when reading or
writing the input queue. The CSCB is con­
structed in the system queue area and the
address of the CSCB is placed in the LCT.
The address of the lOB is placed in Q~GRl
when a user accounting routine is supplied,
the job selection routine sets the LCT
fields LCTTMWRK and LCTTMWRK+4 to zero.
These fields are used in calculating the
execution time of a job step. Job selec­
tion then branches to job initiation rou­
tine IEFSD511.

If the search for work for the partition
is unsuccessful (i.e., no work has been
enqueued for any of the job classes
assigned to the partition) tests are made
to determine if a transient reader is to be
restored in the partition or if a START
command has been entered for a system­
assigned transient reader. If so" system
task control is called. If a reader is to
be restored in the partition, job selection
passes control to special entry point
IEE534SD in system task control.

Command Processing services

In response to system commands entered in
the input stream or from a console, the
command processing routines request a ser­
vice by storing information in the PIE of
the affected partition or in the master
scheduler resident data area for START and
STOP commands issued for system-assigned
transient readers and writers. The job
selection routine recognizes these requests
and takes one of the following actions:

Job Management 63

• Inhi:tits further job scheduling for the
partition in preparation for the pro­
cessing of a DEFINE command. (The
DEFINE command can be entered only from
a console.)

• Prevents execution of problem programs
in large partitions in response to a
STOP INIT command.

• Passes control to system task control
in response to a START reader or START
writer command.

• Schedules problem program execution in
response to a START INIT command.

...
START
INIT

" JOB -9
SELECTION

CANCEL

-9
ALLOCATION

ALLOCATION/ .. PROBLEM
PROGRAM
INTERFACE

----l
~nError I

I

1 I
I

@J PROBLEM LOT
PROGRAM

I

1 I

1
-9 -9 STEP/

ABEND JOB TERMINATION
DELETE ..

Step Deletion

Job Deletion

Figure 24. scheduling a Problem Program in
a Large Partition

SMALL PARTITION SCHEDULING

A partition is defined as "small" when its
size is at least 8K bytes but less than the

I jo:t scheduler generated for the system.
Small partition scheduling is performed by
an initiator in a scheduler-size partition
at the request of small partition modUle
IEFSD599 (IEFSD599 is described later in
the topic "Small Partition Module"). The
small partition is therefore temporarily

64

dependent on a large partition while sched­
uler services are being performed. Sched­
uling for a Small partition is independent
of scheduling for other small partitions in
the system.

The small partition module interfaces
with job selection module IEFSD510 to sche­
dule a problem program. or with system task
centrol to schedule a writer in a small
partition. Communication between the small
partition module and job selection or sys­
tem task control is maintained through a
small partition information list <SPILl.
(~e format of a SPIL is shown in Appendix
A.)

small partition module IEFSD599 requests
the scheduling function by placing the
address of a SPIL in the partition informa­
tion block (PIB) of each scheduler-size
partition in the system. Each time job
selection is entered between jobs. the PIB
is checked for a non-zero SPIL address. If
the PIB contains a valid address. the SPIL
is analyzed. the job class queues for small
partitions are searched for work. and con­
trol is passed to one of the following:

• Job Initiation (IEFSD511). if work has
been found for a small partition.

• Step Deletion (IEFSD515). if a small
partition is waiting for termination.

• System Task Control (IEEVSTAR). if a
writer is to be started in the small
partition.

These routines perform the requested
service in the large partition and use the
SPIL to indicate their action to IEFSD599.
when the requested service has been per­
formed. these routines return to IEFSD510.

Initiating a Problem Program

As shown in Figure 25. initiation of a
problem program in a small partition is
performed by a large partition. If a small
partition is waiting for work. job selec­
tion module IEFSD510 dequeues a job from an
input work queue that the small partition
is assigned to service. The large parti­
tion posts a completion code in field ECBA
of the SPIL when initiation services have
been performed.

A completion code of one indicates that
no work was found ·for the small partition.
'Ihe small partition then waits on the ECB
list in the SPIL. The posting of any of
the listed ECBs causes the small partition
to request initiation services.

A completion code of zero indicates that
initiation services have been performed and
the problem program job step is ready to be
executed. The small partition. using the
allocate parameter list (APL). moves the

~ I CO"NsOLE' "

START INIT
Allocation Error

l
SMALL PARTITION

MODULE

I

I

SMALL
PARTITION

CANCEL

PROBLEM
PROGRAM

~
ABEND

-1--- -----f--------------- ----------

JOB)ELECT
MODULE

I

LARGE
PARTITION

INITIATION/
ALLOCATION

___ 8 __ _
~

TERMINATION

Figure 25. Scheduling a Problem Program in a Small partition

task input/output table (TIOT) and life-of­
task (LOT) block from the large partition,
opens required DCBs, and establishes prob­
lem ~rogram mode. (If the system has the
storage protection feature, the protection
key is set.) If the job has not been can­
celed, control passes to the problem pro­
gram, thus freeing the large partition to
continue processing.

Initiating a writer

As shown in Figure 26, if a writer is to be
started in the small partition, small par­
tition module IEFSD599 requests initiation
of the writer by system task control. A
large partition responds to the request by
bringing system task control routine IEEVS­
TAR into the large partition. IEEVS~AR
initiates the small partition to the point
of calling in the writer. IEEVSTAR then
~osts ECEA in the SPIL with a completion
code of zero to indicate to IEFSD599 that
initiation services have been performed,
and the writer is ready to be executed.
Small partition module IEFSD599, using the
link parameter list (LPL), moves the TIO~

from the large partition to the small par­
tition. ECBC in the SPIL is posted, thus
freeing the large partition to continue
normal processing. Problem program mode is
established, the SPIL is freed, and control
passes to the writer via an XCTL macro
instruction.

~erminating the small partition

~hen the job step is completed, or a writer
is stopped, small partition module IEFSD599
is brought back into the partition and
entered at special entry point SMALLGC. A
check is made to determine whether a sched­
uler ABEND occurred. If it did, a message
is issued to the operator with a completion
code, and all CSCBs associated with that
job are removed from the CSCB chain. Con­
trol then passes to the normal entry point
of IEFSD599. It no scheduler ABEND
occurred, the SPIL is created, and a status
bit is set indicating that termination ser­
vices are requested. The small partition
module then begins a search for a large
partition to perform the job termination
services or writer end-ot-job processing.

Job Management 65

~ I ~;~~~~'
START Writer

Allocation Error

I
I

SMALL PARTITION
MODULE

I

1
I

SMALL
PARTITION

OUTPUT
WRITER

ABEND

--- -------------1------ -- ----------

JOB SIELECT
MODULE

I

1----8 ---

LARGE
PARTITION

SYSTEM
TASK
CONTROL ~ TERMINATION

Figure 26. scheduling a writer in a Small Partition

After an initiator in a large partition
has performed the termination services,
ECBA in the SPIL is posted with a comple­
tion code of two to indicate that job ter­
mination has taken place. A check is made
to determine if the small partition is
involved in a redefinition operation. If
it is, the small partition is made quies­
cent. If the small partition is not asso­
ciated with a redefinition operation, it
requests additional services from an
initiator in a large partition.

Note: If the initiator in a large parti­
tion performs step termination instead of
job termination. the next step of the job
in the small partition is scheduled before
the initiator schedules a job into its par­
tition, or before it performs scheduling
services for another small partition.

Small Partition Module (IEFSDS99)

Small partition module IEFSDS99 (Charts
05-08) is entered from the redefinition
routines at system initialization or when a
DEFINE command is issued or from the master

66

scheduler. The module is entered at spe­
cial entry point SMALLGC from the ABEND
routines when a step has completed execu­
tion. IEFSDS99 first waits on a "no work"
ECB located in the partition's PIB. When
this ECB is posted complete, the PIB is
checked to determine if a SPIL has been
created. If not, one is created and an
indicator is set in the PIB. The PIB is
checked to determine if the partition is
involved in a redefinition. operation. If a
redefinition is pending, the internal job
queue of checkpoint/restart jobs is checked
and any jobs on the queue are processed
before the partition redefinition. If
there is nothing on the internal job queue
and redefinition is pending, assigned
tracks are deleted, the SPIL is freed, and
pending CSCBs are freed. The 'DEFINE' ECE
in the PIB is posted to indicate that the
partition .has been made quiescent. and a
return is made to wait on the "no work"
ECB.

If no redefinition operation is pending,
the PIB is checked to determine if a writer
is to be started in the partition. If so.
an indicator is set in the SPIL, assigned

tracks are deleted, and a request for
scheduling is made to a large partition
(described below). If a writer is not to
be started, the STOP INIT bit in the PIB is
checked. If this bit is on, assigned
tracks are deleted, the SPIL is freed, and
a return is made to wait on the 'no work'
ECB. If the STOP INIT bit is not on, the
PIB is checked for track assignment. If
needed, tracks are assigned and indicated
in the PIB. The SPILis updated to indi­
cate a request for initiation of a problem
program.

A request is made for a large partition
to service the small partition based on the
contents of the SPIL. First, an exclusive
ENQ macro instruction is issued to prevent
concurrent service requests by small parti­
tions. Interruptions are disabled to pre­
vent interference with the address of the
SPIL in the large partition's PIB.
IEFSD599 then searches for a scheduler-size
partition. The TCBs are tested for problem
program status; when a scheduler-size par­
tition is found, a determination is reade of
whether the small partition is involved in
a DEFINE operation.

If the small partition is involved in a
DEFINE operation, the test for the large
partition involved in a DEFINE operation is
bypassed. If the small partition is not
involved in a DEFINE operation, the large
partition is tested to determine if it is
involved in a DEFINE operation. If so, the
large partition is bypassed and the TeB
search is continued.

The address of the SPIL is stored in the
PIB of the large partition, thus constitut­
ing a request. An indication is made when
storing occurs. If a large partition is
waiting on its 'no work' ECB (in its PIB),
the large partition is posted and the large
partition routine clears the SPIL addresses
in the other large partition PIBs. When a
large partition is posted, or all appli­
cable TCBs are checked, interruptions are
enabled.

If no SPIL pointers were stored during
the search, a DEQ macro instruction is
issued (to allow otber small partitions to
make requests), and a WAIT macro instruc­
tion is issued on a 'dormant' ECB in the
small partition's PIB. (When later posted
by the command processing routines., the
small partition module will repeat its
search). If at least one SPIL pointer was
stored, a WAIT macro instruction is issued
on ECBB in the SPIL. This allows a large
partition, immediately upon recognition of
the request, to post the ECB complete. The
small partition module may then issue a DEQ
macro instruction to release the SPIL
pointer field so other small partitions may
make requests.

Next, a WAIT macro instruction is issued
on ECBA (in the SPILl to delay the small
partition until the requested service has
been performed. When ECBA is posted com­
plete by the large partition, the comple­
tion code is tested to determine the action
which occurred. If the completion code is
two, job termination occurred and return is
made to the point of determining the DEFINE
status of the small partition. If the com­
pletion code is one, 'no work' was found
for the small partition and a return is
made to WAIT on the ECB list in the SPIL.
If the completion code is zero, the large
partition is at the point of calling either
the problem program or a writer. The large
partition is waiting on ECBC (in the SPILl
to allow transfer of information into the
small partition by the small partition
module.

If a problem program is to be initiated,
IEFSD599 uses the allocate parameter list
(APL) to move the TIOT and user parameter
area into the small partition. It then
posts ECBC (freeing the large partition),
and opens Fetch and/or JCBLIB DCBs if
required. The partition is established in
problem program protection mode. The SPIL
is freed. If the program to be initiated
is the DSDR processing step of a checkpoint
restart, IEFSD599 uses the APL to move the
TIOT and user parameter area into the small
partition., and posts ECBC. The routine
moves the job QMPA and the SYSCUT CMPA from
the LOT to the CSCB, and bypasses opening
the JOB LIB and FETCH DCBs. The routine
also bypasses setting the storage protec­
tion key but frees the SPIL.

A check is made to determine if the job
has been canceled. If so, an ABEND macro
instruction is issued. If the job has not
been canceled, an XCTL macro instruction is
issued to call the problem program into the
sreall partition (the problem program passes
control to ABEND at completion of its
execution).

ABEND recalls small partition module and
enters at special entry point SMALLGC. The
small partition protection key is changed
to zero and a SPIL is created. A termina­
tion request is indicated in the SPIL, and
IEFSD599 begins the search for a large par­
tition to service the request.

If a writer is to be initiated, the con­
trol flow is the same as described above in
"Initiating a writer",.

INITIATOR/TERMINATOR CONTROL FLOW

I There are no terminator routines that are
unique to MFT; the modules used in MFT task
termination are described in IBM System/360

Job Management 67

I Operating System: MVT Job Management, Pro­
gram Logic Manual, Form Y28-66.60.

In addition to IEFSD510 and IEFSD599,
several other initiator routines are unique
to MFT. These are described in the follow-ling paragraphs. Descriptions of the MVT
allocation and step initiation routines
that have not been modified by MFT can be
found in IBM System/360 Operating system:
MVT Job Management, Program Logic Manual,
Form Y28-6660.

Job Initiation Routine (IEFSD511)

Job initiation routine IEFSD511 issues a
GETMAIN specifying subpool 0 to obtain
space for the system output class directory
(SCD). The SCD is then read into the area
and the contents of the SCD are used to
initialize QMGR2 in the LOT block. (QMGR2
is the queue manager parameter area which
is used for referencing the output data
set.) After QMGR2 has been initialized"
the storage obtained for the SCD is freed.
A GETMAIN is then issued to obtain storage
for IOB2, the lOB used in conjunction with
QMGR2. A GETMAIN is issued (specifying
subpool 253) to obtain space for the step
control table (SCT). The SCT is read into
the area thus obtained. Job initiation
then branches to data set integrity routine
IEFSD541.

Data Set Integrity Routine (IEFSD541)

The data set integrity routine is entered
only once per job, from job initiation rou­
tine IEFSD511. It first determines whether
data set integrity processing is required.

If the JCT indicates a 'failed' job or
if there are no explicit data sets (DSNAME
parameter in a DD statement) for the job,
processing is bypassed and exit is made to
step initiation routine IEFSD512. If data
set integrity processing is required, the
DSENQ table records are read from the job's
entry in the input job queue (SYS1.
SYSJOBQE). Duplicate DSNAMEs are elimi­
nated from the table and each unique DSNAME
is placed in a minor name list. The most
restrictive attribute (exclusive or share)
is chosen for each DSNAME placed in the
minor name list. After this processing is
complete, an ENQ supervisor list is con­
structed which contains an entry for each.
DSNAME in the minor name list. Each entry
is initialized with the following:

68

• RET=TEST option of ENQ.

• SYSTEM option of ENQ.

• Attribute (E/S) of the corresponding
DSNAME.

• Address of the common major name
'SYSDSN' •

• Address of the corresponding DSNAME
(considered the minor name) in the
minor name list.

The DSNAME (minor name) length is contained
in the first byte of each DSNAME field in
the minor name list.

When the ENQ supervisor list is con­
structed, the system is disabled and an ENQ
supervisor call is issued against the list
to test the availability of the DSNAMEs.
If the DSNAMEs are available, the ENQ
supervisor list is updated so that each
entry reflects the RET=NONE option of ENQ.
A second ENQ supervisor call is issued
against the list to reserve DSNAMES for the
job. The system is enabled and exit is
made to step initiation routine IEFSD512.

If the DSNAMEs are unavailable for the
jon (already reserved with conflicting
attributes by other task(s) in the system),
the operator is notified of the condition.
In notifying the operator, the return code
field of each entry in the ENQ supervisor
list is tested for a non-zero setting. If
the setting is non-zero, the associated

IDSNAME (minor name) is identified to the
operator as unavailable. The operator is
given the following reply options:

• RETRY, in case the resources have been
freed by the other task(s) (processing
is delayed until the operator replies).

• CANCEL the job.

If RETRY is entered by the operator, pro­
cessing continues at the initial ENQ super­
visor call to again test the availability
of the DSNAMEs. The operator is again
notified, and he can reply either RETRY or
CANCEL. If the job is canceled by the
operator., the 'job fail' bit in the JCT is
set and exit is made to step initiation
routine IEFSD512.

Step Initiation Routine (IEFSD512)

Step initiation routine IEFSD512 first
issues a GETMAIN specifying subpool 253 to
obtain storage for an allocate register
save area (ARSA) and an allocate parameter
list (APL). The APL (Figure 27) is ini­
tialized containing addresses of the LOT,
JCT, and SCT, and two words of zeros.

The step initiation routine checks the
current step to determine if it is either
the checkpoint/restart data set descriptor
record (DSDR) processing step or the
restart step. If the step is a DSDR pro­
cessing step being scheduled for a small

partition containing less than 12K bytes,
the PIB of the partition containing the
step initiation routine will be tagged to
indicate that the DSDR step is to execute
in that partition. The step initiation
routine will place the address of its TCB
and PIB in the LOT and pass control to
allocation via a LINK macro instruction.
If the DSDR step is to be processed in a
large partition, normal processing is
continued.

0(0) 4

Address of the LCT

4 (4)

Address of the JCT

8 (8)

Address of the SCT

12 (C)

Address of the TlOT List

16 (10)

Zeros

20 (14)

Figure 27. Allocate/Terminate Parameter
List

4

4

4

4

If the step is the restart step, the
step initiation routine will pass control
to partition recovery routine IEFSD5l8 via
a LINK macro instruction. If the return
code from IEFSD5l8 is a zero, normal pro­
cessing is continued; if the return code
from IEFSD5l8 is a four" the address of the
LOT is placed in register 1 and control is
passed to job selection IEFSD5l0 via an
XCTL macro instruction.

The step initiation routine then passes
control to allocation via a LINK macro
instruction. Allocation returns the
addresses of a task input/output table
(TIOT) list (which points to the TIOT) in
the first word of zeros in the APL. On
return from allocation, the return code is
tested to determine if allocation was suc­
cessful. If not, step initiation branches
to alternate step deletion routine IEFSD516
via an XCTL macro instruction. If alloca­
tion was successful, th~ ARSA is freed, and
the Wstep startedW bit in the SCT is turned
on. The address of the job's CSCB is
stored in the APL (in the last word of the
list) •

step initiation then uses queue manager
read/write routine IEFQMRAW to write the
JCT and SCT back on the input queue. The
disk addresses of the JCT and SCT are saved
in the LCT. A GETMAIN specifying sub pool
253 is issued for the table breakup routine

(~BR) parameter list and register save
area. The TER parameter list is initial­
ized with the address, size, and subpool
specifications for the TIOT and LOT block.
~he TIOT and LOT are then written into the
job's entry in the job queue, and the Head
~~ is saved in the JCT. The storage
obtained for the TBR parameter list and
register save area, IOB1, and IOB2 is
freed. ~he JCT is then written out. step
initiation then passes control to problem
program interface routine IEFSD5l3 via an
XC~L macro instruction.

Problem Program Interface Routine
UEFSD513)

~he problem program interface routine pre­
pares the partition for execution of the
job step. A test is made to determine if
scheduling was performed for a small parti­
tion. If so, this routine tests its parti­
tion'S PIB to determine whether a
checkpoint/restart data set descriptor
record (DSDR) is to be processed. If the
DSDR step is to be processed, the SFIL
pointer in the LOT is ignored; otherwise
the address of the APL is placed in the
SPIL, ECBA in the SPIL is posted to indi­
cate that scheduling is complete, and a
~AIT is issued on ECBC. This WAIT allows
the small partition module to copy tables
and work areas into the small partition.
when the tables have been copied, ECBC is
posted complete, and the interface routine
frees all storage obtained for tables and
work areas except for the LOT block, which
is retained. The address of the LOT block
is placed in register 1 and this routine
passes control to job selection, IEFSD510,
via an XCTL macro instruction.

If scheduling was not performed for a
small partition, a test is made to deter­
mine it the job has been canceled. If so,
exit is made by issuing an ABEND macro
instruction.

If the job has not been canceled, the
LO~ block is freed, the TIOT is moved to
the lowest possible location (subpool 0) in
the partition, and a GET~AIN macro instruc­
tion specifying subpool 253 is issued for
the user's parameter listWFL). The UPL
(Figure 28) is initialized from the SCT.
Another GETMAIN macro instruction (subpool
253) is issued to create a register save
area for the user's problem program. If
S~PLIB, JOBLIB" and/or FETCH have been
spec:lfied" their DCBs are created (but not
opened) in subpool 253. The JCT, SCT, and
APL are now freed, the STEPLIB or JOELIB
and FETCH DCBs are opened" and the TIOT is
then moved to subpool 253. A single DCE is
used for STEPLIB or JOBLIB, with STEPLIB
overriding JOBLIB if both are present.

Job Management 69

If the job being started in the parti­
tion is a checkpoint/restart data set
descriptor record (DSDR) processing job,
the routine moves the DSDR step QMPAs to
the CSCB. The routine bypasses opening the
STEPLIB, JOBLIB, and FETCH DCBs and also
bypasses setting the storage protection
key.

o II
Reserved I Address of length fi eld

3

4
Length of PARM values

8

PARM values
:: (from EXEC statement)

(Maximum length = 40 bytes)

I
Figure 28. User's Parameter List

Note: The use of subpools, and the order
in which control blocks and tables are
created, moved, or deleted, follows a par­
ticular sequence even though this handling
occurs within different modules. This is
done to prevent fragmenting main storage
within the partition.

After the TIOT has been moved to the
highest available position within the par­
tition, the task control block (TCB) is
updated and the problem program's protec­
tion key is set (if the system has storage
protec~ion). The problem program interface
routine then passes control to the problem
program via an XCTL macro instruction.

step Deletion Routine (IEFSD5l5)

step deletion routine IEFSD5l5 is entered
at the end of step execution to prepare the
partition for continued execution of the
job, to interface with the termination sub­
routine, to prepare for the initiation of
the next step, or to branch to job deletion
if there are no more steps in the current
job. When step deletion is entered, a
check is made to determine whether the rou­
tine was entered due to an AEEND with the
scheduler in control. If so, a message is
issued to the operator and all CSCBS are
removed from the CSCB chain. control
passes to IEFSD5l0.

If an ABEND did not occur, the step
deletion routine branches to ENQ/DEQ purge
routine IEFSD598 via a BALR instruction to
remove any control blocks which were

70

enqueued" but not dequeued, by the problem
program step.

Step deletion then issues a series of
GETMAIN requests to obtain storage for
queue manager lOBS (IOBl and ICB2), a tem­
porary QMPA, and a register save area and
parameter list for the table breakup rou­
tine. These blocks and tables are initial­
ized and step deletion branches to queue
manager table breakup routine IEFSD5l4, to
read in the TIOT and LOT blocks for the job
step. The addresses in these blocks are
restored and the storage obtained for the
temporary work areas is freed.

A GETMAIN (subpool 253) is issued to
obtain storage for the SCT and JCT. The
SCT is read into storage from the job
queue, the JCT from its temporary area.

I The JCT, is updated with the address of the
next seT and written back on the job queue.
storage is obtained for a terminate regis-
ter save area and a terminate parameter
list. The terminate parameter list is ini­
tialized with addresses of control blocks
(LOT, JCT, seT, and TICT list) and the step
deletion routine branches to the termina­
tion subroutine via a BALR instruction.
When termination returns control, step
deletion frees the terminate register save
area and terminate parameter list and then
checks the return code. If the partition
was executing the DSDR step for a small
partition, step deletion places the
addresses of the small partition's TCB and
PIB in the LOT.

If the return code indicates that the
job is to be suspended, step deletion
passes the address of the LOT block in reg­
ister one to job suspension module IEFSD168
via a BALR instruction. If the return code
indicates that job termination was entered,
step deletion branches to job deletion rou­
tine IEFSD5l7. If job termination was not
entered, the seT for the next step of the
job is read from the job queue, and step
deletion passes control to IEFSD5l2 via an
XC'lL macro instruction.

Note: If a small partition is requesting
termination, entry to the step deletion
routine is made at special entry point SMA­
L'IERM. Entry at this point causes pointers
to the SPIL and the small partition's TCB
to be established before the step deletion
routine invokes ENQ/DEQ Purge routine
IEFSD598.

ENQ/DEQ Purge Routine (IEFSD598)

At job termination, this routine purges all
ENQ/DEQ control blocks associated with the
'ICB address passed in Register 4 by the
caller. If step termination was completed
instead, this routine purges all ENQ/DEQ

control blocks except the data set integri­
ty blocks associated with the major name
SYSDSN.

When a given resource is dequeued for
the subject TCB. a task switch may occur
for a higher priority requestor whose wait
count becomes zero. due to availability of
the resource. (This purge routine operates
in a disabled state to prevent concurrent
updating of the ENQ/DEQ control blocks.)

Alternate step Deletion Routine (IEFSD516)

Alternate step deletion routine IEFSD516 is
entered from step initiation routine
IEFSD512 when allocation for a step has not
been successful. Using the lIPL and ARSA
(created by the step initiation routine) as
the terminate parameter list and terminate
register save area, this routine branches
to termination subroutine IEFSD22Q via a
BALR macro instruction. When control is
returned from termination, the storage used
for the parameter list and register save
area is freed and a test is made to deter­
mine if job termination was entered. If
so, this routine branches to job deletion
routine IEFSD517. If job termination was
not entered. the SCT for the next job step
is read from the job queue and this routine
branches to step initiation routine
IEFSD512.

Job Deletion Routine (IEFSD517)

The job deletion routine is called at job
termination to delete the job from the
input queue and to prepare the partition
for initiation of the next job. The rou­
tine sets the high-order byte of the
LCTTCBAD field of the LCT to '80' (hexade­
cimal) to indicate to the ENQ/DEQ purge
routine that it is job termination instead
of step termination. The routine then
branches to ENQ/DEQ purge routine IEFSD598
to purge the control blocks. On return
from the purge routine, the high-order byte
is reset to '00'.

The job deletion routine then deletes
the job from the input queue. using queue
manager delete routine IEFQDELQ. All areas
of storage in the partition which were used
for the job (except the LOT block) are
freed, and the job's CSCE is freed by issu­
ing an SVC 34. The PIB fields used for the
disk address of the TIOT and the LOT block
are set to zero. If termination was for a
small partition, ECBA in the SPIL is posted
with a code of two (indicating job termina­
tion for the small partition). If termina­
tion was for a large partition (or after
ECBA has been posted) the "no work" ICB in
the PIB is posted and the job deletion rou­
tine branches to job selection routine
IEFSD510.

partition Recovery Routine (IEFSD518)

partition recovery routine IEFSD518 deter­
mines the location of main storage required
for a checkpoint restart. If the partition
being scheduled for the job to be restarted
contains the required main storage, the
routine returns to the step initiation rou­
tine for normal processing. If the nucleus
has expanded past the lower boundary of the
partition containing the required main
storage, the routine sets the job fail bit
in the JCT, issues a message stating that
main storage is not available for the job,
and returns to the step initiation routine
IEFSD512 with a return code of zero.

If the partition being scheduled does
not contain the required main storage, the
routine places the job on the hold queue,
updates the SCD and places the SCD back on
the job queue. The job's CSCB is unchained
and the space containing the CSCB and the
ECB/IOBs is freed. The routine then
branches to ENQ/DEQ purge routine IEFSD598.

Upon return from ENQ/DEQ purge routine,
if a problem program partition exists that
contains the required main storage, this
routine will create an internal queue ele­
ment and chain it to the partition's FIB.
The partition's "no work" ECB will be post­
ed and a message will be issued stating
that the job will start in the partition.
If an existing partition contains the
required main storage and is defined as a
reader or writer partition, this routine
issues a message indicating that the parti­
tion must be redefined to accept the
desired jobclass. If no partition contains
the required main storage or the partition
that contains the required main storage is
about to be redefined, this routine issues
a message stating the length and displace­
ment of the required main storage. If the
partition being scheduled was a large par­
tition its no-work ECB is posted; if it was
a small partition, the SPIL is posted indi­
cating job termination. The partition
recovery routine frees the JCT and SCT
areas of the partition and returns control
to step initiation routine IEFSD512 with a
return code of four.

Dequeue by Jobname Interface Routine
(IEFSD519)

Dequeue by jobname interface routine
(IEFSD519) builds a parameter list used by
dequeue by jobname routine IEFLOCDQ to loc­
ate a job named on the checkpoint/restart
internal job queue. When a checkpoint/
restart job is indicated by an entry in the
internal job queue pointer in the FIB being
processed by job selection routine
IEFSD510, job selection branches to
IEFSD519 which builds the seven-word param­
eter list required by IEFLCCDQ. When the

Job Management 71

job is deq\feued, IEFLOCDQ returns cc;mtrol
to IEFSD519.

The interface routine marks the job as
ready and returns to job selection with a
code of zero in register 15, indicating
that the job has been found, and a pointer
to the LOT in register 1. If the job is
not found by IEFLOCDQ, a return code of
four is returned in register 15 to job
selection. (A description of IEFLOCDQ is
in IBM System/360 Operating system: MVT
Job Management, Program LOgic Manual, Form
Y28-6660.)

System Output Writers

MFT uses the MVT system output writer
(Charts 31-32) with minor changes to five
of the modules. As in MVT, the user may
have up to 36 system output writers operat­
ing concurrently in the system. Each out­
put writer can handle eight output classes;
output classes may be shared by writers.
However, in MFT, system output writers are
classified as either resident or non­
resident. A resident writer operates in
its own partition. A non-resident writer
operates in any problem program partition
large enough to accommodate it.

RESIDENT WRITERS

I
Resident output writer partitions are des­
ignated in the TCB by a setting of '10' in
the first two bits of the pointer to the
partition information block (PIB). This
designation is made at system generation by
assigning W to the partition in place of
the job class or by redefining a partition
and assigning WTR to it.

A resident writer is activated by issu­
ing a START command specifying a partition
designated previously as a writer parti­
tion. A resident writer can be terminated
oniy by issuing a STOP command specifying
the device assigned to that writer.

NON-RESIDENT WRITERS

A non-resident system output writer may be
started in a problem program partition
large enough to bold the writer by issuing
a START command specifying either that par­
tition or by replacing the partition number
with an'S' to specify a system-assigned
non-resident writer. This causes a ·com­
mand pending· flag to be set in the parti­
tion"s PIB.

When the writer has started. it executes
in the same way as a resident writer and
must be terminated by a STOP cOJllJlland to
allow processing of problem programs to be
resumed in the partition.

72

SYSTEM OU'IPUT WRITER MODULES

'Ihe following five MVT system output writer
modules are modified for MFT.

e IEFSD070 - Data set Writer Linkage
Routine.

eIEFSD079 - Linkage to Queue Manager
Delete Routine.

e IEFSD084 - wait Routine.

e IEFSD085 - Data Set Block (DSB) Handler
Routine.

e IEFSD087 - Standard writer Routine.

Descriptions of all other system output
writer modules can be found in IBM system/
360 Operating system: MVT Job Management,
Program Logic Manual, Form Y28-6660.

Data Se.t Writer Linkage Routine (IEFSD070)

'Ihis routine passes control to the appro­
priate writer routine via a LINK macro
instruction. The normal linkage is to the
standard writer, IEFSD087,. If a special
user-written output writer routine is
requested, this routine passes control to
that writer. Upon return from either writ­
er, the routine passes control to data set
delete routine IEFSD171 via an XCTL macro
instruction which deletes the output data
sets from the output queue.

Linkage to Queue Manager Delete Routine
UEFSD079)

Upon completion of a job., linkage module
IEFSD079 passes control to queue manager
delete routine IEFQDELQ via an XCTL macro
instruction to delete all control blocks
and 5MBs associated with the output job
from the job queue. Following deletion,
the routine then posts all reader ECBs that
are waiting for space to indicate that
space is now available. (The reader ECB
chain address is obtained from the master
scheduler resident data area .•) When all
ECBs have been posted, control is returned
to main logic routine IEFSD082.

wait Routine (IEFSD084)

'Ihis routine serves as a multiple WAIT when
there is no work in any of the output
classes associated with the writer. It
issues a WAIT macro instruction on the ECB
list created by class name setup routine
IEFSD081. When the system output writer
enters a wait state, the wait routine
issues a message informing the operator
that the writer is waiting for work. Any
posting (such as a command, or work for the
writer) causes control to be given to
IEFSD082.

DSB Handler Routine (IEFSD085)

DSB handler routine IEFSC085 is the setup
module for printing data sets. It issues a
GETMAIN macro instruction for the input DCB
if it was not obtained before, and con­
structs a new TIOT containing an entry for
the input data set. It also sets up any
user-written output writer program. A
check is then made to determine if a pause
is required between data sets or only at
forms change. If a special form is to be
used, the routine writes a message to the
operator telling him what form to put in
the output device. The form change only
occurs if the output device is unit record.
This routine then passes control to linkage
routine IEFSD070 via an XCTL macro instruc­
tion.

Standard Writer Routine (IEFSD087)

This routine first issues an OPEN macro
instruction to open the output data set.
If the data set was not opened by the prob­
lem program, no attempt is made to process
the data set. After OPEN, a test is made
to check for machine control characters. A
switch is set that is interrogated by PUT
routine IEFSD089. The writer then passes
control to transition routine IEFSD088
which creates header and trailer records.
Upon return from IEFSD088, the writer rou­
tine checks the CANCEL ECE in the CSCB to
determine if a CANCEL command has been
issued for this writer. If the CANCEL ECB
has been posted complete, control passes to
transition routine IEFSD088 to create a
trailer record. When control is returned
from IEFSD088, the writer is closed. Con­
trol is then returned to linkage routine
IEFSD078 via a RETURN macro instruction.

If the writer is not to be canceled, the
writer routine issues a GET macro instruc­
tion to read a record and checks for a con­
trol character. If no control character
exists, the writer puts one in which causes
the printer to skip one line or the punch
to feed into the normal pocket. If the
printer has overflowed, a skip is made to
the next page.

The writer then adjusts the pointer to
the record so that it points to the first
data character (instead of control charact­
er) and passes control to transition rou­
tine IEFSD088 for trailer records. It then
issues a CLOSE macro instruction to close
the input data set, a FREEPOOL macro
instruction to free the buffers, and
returns control to linkage module IEFSD078
via a RETURN macro instruction.

System Task Control

System task control (STC) (chart 33)
initiates all tasks except the initiator
(E'IAR'I INI'I). when the master scheduler
determines that a START command with an
identifier operand has been issued, it
checks the validity of the partition speci­
fied in the command, builds and chains a
CSCB, places a pointer to the CSCB in the
partition's PIB, and posts the partition.

~ote: If the procedure being started is
for a system-assigned reader or writer, the
CECB pointer is placed in the master sched­
uler resident data area. (See Appendix A
for the format of the master scheduler
resident data area).

As shown in Figure 29, job selection
module IEESD510 responds when the partition
is posted" and calls S'IC when a START com­
mand for a reader or writer is recognized.
If a reader or system output writer is to
be started, S'IC must process a job descrip­
tion similar to a user's job description.

START
Reader/Writer

I
JOB
SELECTION

"
SYSTEM
TASK
CONTROL

INPUT
READER
OR
OUTPUT
WRITER

"

J ABEND J L
Allocation Error

f------i

$
•

TERMINATION

Figure 29. Scheduling a writer in a Large
Partition

The job description information for a
reader or writer comes from three sources:
the procedure library, Job Control Lan­
guage (JCL) statements, and the operator.
'Ihe procedure library contains standard
descriptions of a reader and writer. JCL

Job Management 73

statements (corresponding to input stream
.:rCL) are stored internally: these state­
ments invoke and modify the reader or writ­
er procedure. The operator furnishes addi­
tional information in the operand of the
START command; this information is edited
into the internally stored .:rCL statements
before they are used to invoke and modify
the procedure.

INITIATING SYSTEM TASKS

When initiator job selection routine
IEESD510 determines that a START command
for a reader or writer has been entered, it
passes control to START syntax check rou­
tine IEEVSTAR via an XCTL macro
instruction.

START Syntax Check Routine (IEEVSTAR)

The START syntax check routine gets main
storage for, and builds, the start descrip­
tor table (SDT) (see Figure 30). Seven
entries are provided in the SDT: the first
contains the .:rOB statement, the second con­
tains the EXEC statement that calls the
procedure specified in the START command,
the remaining entries are provided for a DD
statement and continuations of the EXEC and
DD statements. Each entry contains a one­
byte identification flags field, whose
bits, when set to one, have the following
meanings:

• Bit 0 indicates a .:rOB statement.
• Bit 1 indicates an EXEC statement.
• Bit 2 indicates a DD statement.
• Bit 3 indicates a DD statement

continuation.
• Bit 4 indicates an EXEC statement

continuation.
• Bits 5 through 7 are reserved.

The routine generates the .:rOB, EXEC, and
DD statements that are placed in the SDT.
The keyword parameters in the START command
are compared with a list of keyword parame­
ters that are allowable in a DC statement:
they are not compared with DD subparame­
terse If the keyword corresponds to a
member of the list, the routine stores it
in the DD statement in the SDT. This DD
statement overrides the IEFRDER DD state­
ment in the procedure specified in the
START command. If the keyword does not
correspond to a member of the list, it is
assumed to be a symbolic parameter keyword
and is placed in the EXEC statement in the
SDT.

Finally, the Syntax Check routine passes
control to the .:reL Edit routine (module
IEEV.:rCL) I which builds the job control lan­
guage set (.:rCLS). Using the information in
the SDT, the .:rCL Edit routine puts the .:rCL

74

in the form appropriate for the interpret­
er. Each statement is built in an 88-
character buffer (obtained with a GETMAIN
macro instruction). A pointer to the first
buffer is placed in the CSCB associated
with the S'IART command. Each buffer con­
tains a pointer to the next buffer, 4 bytes
of reserved space, and a "card image" of
the statement in the last 80 bytes.

0(0)
SOT SIZE

4 (4)

11 ldent Flags
76 (4C)

152 (98)

224 (EO)

372 (174)
Ident Flags

T

211dent Flogs 11

JCL Statement

Reserved 1/

JC L Statement

I Ident Flags 11

JCL Statement

JCL Statement

JC L Statement

JC L Statement

Reserved

72
r~ .

72

~;.

Reserved

72

"

Reserved

72

519 (207) T
eFigure 30. START Descriptor Table (SDT)

Reader Control Routine (IEEVRCTL)

Reader control routine IEEVRCTL then
receives control and builds the interpreter
entrance list (NEL), option list, and exit
list. The interpreter entrance list con­
tains the address of the .:rCLS in its third
word. The reader control routine passes
control to the reader via a LINK macro
instruction.

The reader, used as a closed subroutine,
is the same routine that performs the read­
ing task. The non-zero value of the third
word of the entrance list indicates that
the input stream is an internal data set.
Since the input stream is internall the
reader issues a pseudo OPEN macro instruc­
tion to bring a special access method {a

modified CS~) into storage and places a
pointer to the access method in the input
DCB. This special access method reads the
JCLS; it is entered from the expansion of
the standard GET macro instruction.

The internally-stored job control lan­
guage statements. and the statements from
the procedure library are analyzed and com­
bined. The standard job description tables
are tuilt, and an input queue entry is con­
structed; however, because bit 7 of the
option switches field of the option list is
off, the entry is not enqueued, and the
reader or writer "job" cannot be selected
by an initiator. If errors are detected
during reader processing, appropriate mes­
sages are placed in system message blocks.
which are enqueued in the message class
queue. When processing is complete, the
reader places the main storage address of
the job control table (JCT) in the NEL and
returns control to the reader control rou­
tine with a code that indicates whether
processing was successful. The reader con­
trol routine then passes control to alloca­
tion interface control routine IEEVACTL.

Allocation Interface Control Routine
(IEEVACTL)

The reader control routine passes control
to allocation interface control routine
I EEVACTL, with an indication of whether the
reader had encountered errors. The alloca­
tion interface control routine uses error
message routine IEEVMSGl to issue the WTO
macro instruction to inform the operator of
any errors that have been found. The rou­
tine then constructs the required allocate
parameter list, and passes control to the
I/O device allocation routine via a LINK
macro instruction.

I/O device allocation routine IEFSD21Q
uses the JCT to find the appropriate tables
in the input queue, allocates the necessary
devices to the reader or writer, and issues
any necessary mounting messages. The allo­
cation recovery routines issue WTO macro
instructions to inform the operator of any
errors found during allocation. When allo­
cation is complete, or if allocation cannot
be performed, control is returned to the
allocation control interface routine.

Allocation control interface routine
IEEVACTL determines if the routine to be
given control is an authorized routine and
then transfers control to Write TIOT rou­
tine IEESD590.

Note: A list of "authorized" routines is
contained in a table in link-table routine
IEEVIKNT.

write TIO~ on Disk Routine (IEESD590)

write ~IO~ on disk routine IEESD590 checks
that a reader has not been started in a
small partition, writes the TIOT which is
used for job selection, and checks for a
small partition writer. If a writer is to
be started in a small partition, this
module issues a POST macro instruction and
a WAI~ macro instruction for the SPIL and
then passes control to job selection rou­
tine IEFSD510 via an EXIT macro instruc­
tion. If it is not for a small partition
writer, control is transferred to linkor
routine IEESD591.

Linkor Routine (IEESD591)

~he linkor routine passes control to the
requested routine via a LINK macro instruc­
tion. When the reader or writer stops, it
returns control to the linkor routine,
which checks for a small partition writer.
If a small partition writer returned con­
trol to the linkor routine, control then
passes to IEFSD510. If a resident reader
or large partition writer returned control,
termination interface routine IEEVTCTL is
given control via an XCTL macro instruc­
tion. If a transient reader was suspended,
IEFSD591 returns to job selection routine
IEFSD510.

POST Routine (IEESD592)

POST routine IEESD592 checks the CSCB to
determine if it has been freed; if not, it
is freed. It also checks for a small par­
tition. The valid condition is posted in
the SPIL or the PIB. The post routine then
passes control to IEFSD510 via an EXIT
macro instruction.

System Restart

~he system restart functions may be
requested at any time that a system restart
becomes necessary; e.g., end-of-day, end­
of-shift, system malfunction, power fail­
ure. ~his feature provides a means whereby
a maximum amount of information concerning
input work queues, output work queues, and
jobs in interpretation, initiation, execu­
tion, or termination can be preserved.
System restart permits reinitialization,
rather than a complete reformatting, of the
job queue data set (SYS1.SYSJCBQE).

MF~ uses the MVT system restart modules.
For a complete description of these
modules, and how they function, see IBM
System/360 Operatinq System: MVT Job Man­
agemen~, Program Loqic Manual, Form Y28-
6660.

Job Management 75

Appendix A: Tables and Work Areas

This appendix contains descriptions and format diagrams of the major tables and work
areas that are used by MFT job management. lhe tables and work areas are in alphabetical
order, as shown below:

• Command scheduling Control Block (CSCB)
• Data Set Enqueue (DSENQ) Table
• Interpreter Work Area (IWA)
• Job Control Table (JCT)
• Job File Control Block (JFCB)
• Job File Control Block Extension (JFCBX)
• Life-of-Task Block (LOT)
• Linkage Control Table (LCT)
• Master Scheduler Resident Data Area
• Partition Information Block (PIB)
• Small Partition Information List (SPIL)
• Step Control Table (SCT)
• Step Input/Output Table (SlOT)
• Task Input/Output Table (TIOT)

Tables and work areas are shown four or eight bytes wide for convenience, but are not
necessarily drawn to scale. Tables that are stored in work queue entries are limited, by
convention, to a length of 176 bytes.

The names of most fields are sufficient to describe the fields; those that require
further explanation are described in the text accompanying the table. Where a macro
instruction may be used to include a DSECT of a table in routines using the table, the
name of the mapping macro instruction is also given. lhe displacement of each field is
shown to the left of each table; the values in parentheses show the hexadecimal
displacement.

COMMAND SCHEDULING CONTROL BLOCK (CSCB)

Description: A command scheduling control block (CSCB) (Figure 31) is an area for
communications between the command scheduling routine (SVC 34) and the command execution

I routines. Input CSCBs are created by several system routines. when an input CSCB is
created, it is placed in a chain of CSCBs by the command scheduling routine. It remains
in the chain until it is deleted from the chain by the command scheduling routine, which
may also free the main storage occupied by the CSCB. An input CSCB is created under the
following circumstances:

• A CSCB is created by the command scheduling routine each time a task~creating command
is encountered. If the task is a reading or writing task, the CSCB is deleted from
the chain, and its main storage released, when the task terminates.

• A CSCB is created by the queue management dequeue routine each time the initiator
dequeues a job. This CSCB is deleted from the chain, and its main storage released,
when the last step of the job has terminated.

• A CSCB is created by a system output writer each time it encounters a DSB that was
not preceded by another DSB in the current queue entry. The CSCB serves as a
communication area, allowing the cancelation (by operator command) of the subtasks
estal:l ished by the writer. The CSCB is deleted from the cha in, and its xrain storage
released, when the writer encounters an 8MB (or the last block in the current queue
entry) •

A control CSCB is updated (and changed to the control format if necessary) by the
command scheduling routine when a CANCEL jobnaroe (job selected), CANCEL writer device,
MODIFY, or STep command is encountered.

Although roost of the fields are self-explanatory, the following require further
description:

76

- Status Flags: This byte indicates the status (pending/not pending) of the CSCB, and
the action to be taken by the command scheduling routine. In addition to con:mand
processing, the command scheduling routine may be entered to add the CSCB to the
chain, delete it, free its main storage, or to tranch to the abnormal termination
routine.

- Type Flags: This byte indicates the type of activity with which the CSCB is
associated.

- Communication Flags: This byte indicates the function to be performed by the command
processing routine.

Mapping Macro Instruction: IEECHAIN

0 (0) 4 I Address of the Next CSCB in the Chain Verb Size of Status Type
Code CSCB Flags Flags

Header
8 (8) 4 3

~ Communications ECB Comm.
Address of TCB

Flags

16 (10) 124

C omman dO peran d

L.

2 2

Initiator Storage Key Interpreter Counter

144 (90) 28

Reserved

UCM 1 3

Entry Reserved
Indicator

Input CSCB

-Figure 31. Command Scheduling Control Block (CSCB) (Part 1 of 2)

Appendix A: Tables and Work Areas 77

o (0) 4 I 1 1 I

Address af the Next CSCB in the Chain
Verb Size af Status Type
Code CSCB Flags Flags

8 4 1 3
Communications ECB

Comm, Address af TCB
Flags

(8)
Header

16 (10) 8

Task Name" Unit Name, ar Pracedure NAME, ar CANCEL Jabname (Initiator)

24 (18) 8

CANCEL ECB (First 4 Bytes) ~ Procedure Name (8 Bytes)

32 (20) 4 4
Address of JCL or JCT Reserved

40 (28) 4 2 1 1

SDT Address or TlOT Length Reserved
Error DPMOD
Cade Parameter

48 (30) 1 3 36
Error Address of Allocation Parameter List or
Flags Address of AB TERM T CB

Queue Manager Parameter Area
~ (I nput Queue)

88 (58) 36

Queue Manager Parameter Area
(Output Queue) 4

Address of START Parameter List

128 (80) 12

Reserved

1 3
ABTERM Ad,dress of
CODE Small Partition List

144 (90) 4 4
Address of Procedure EXEC

Address of Communications ECB
Statement PARM Field

152 (98) 4 4

Address of Command Input Buffer (CIB)
Address of
UCM Entry Indicator

160 (100) 12

Reserved

1 1 2
UCM Entry CIB Count Reserved
Indicator Field

Control CSCB

-Figure 31. Command Scheduling Control Block (CSCB) (part 2 of 2)

78

DATA SET ENQUEUE TABLE (DSENQ)

Description: The data set enqueue table (DSENQ) (Figure 32) is built by the DD statement
processor routine of the interpreter, and is used by the initiator to construct an ENQ
macro instruction parameter list to prevent routines performing different tasks from
using the same exclusive data sets concurrently. The table contains an entry for each
data set (except temporary data sets) required for a job.

0(0) 3 1

Queue Address of This DSENQ Table Table 10

4 (4) 3 1

Queue Address of Last DSENQ Table Zeros

8 (8) 4

Name of Characters in all DSNAME Entries to Date

12 (C) 2
Number of DSNAME Entries
to Date

16 (10)

*

--. -

Exclusive/ Length of
Shored DSNAME

First DSNAME Entry*

-- -
Last DSNAME Entry*

Data Set
~
~

-

Zeros - **
End of DSENQ

** If the last entry uses the last available space in the tables but no overflow occurs,
the zero bytes are omitted.

....

Figure 32. Data Set Enqueue Table (DSENQ)

INTERPRETER WORK AREA (IWA)

I Description: The 2044-byte interpreter work area (IWA) (Figure 33) is obtained from
subpool zero by a GETMAIN macro instruction in the interpreter initialization module
(IEFVH1). The IWA contains information used by the interpreter routines~ it is the area
in which job description tables are built before they are placed in the work queues.

Although most of the fields in the interpreter work area are self-explanatory, the
following require further description:

• Default Parameters: The PARM field of the EXEC statement in the reader procedure
contains parameters to be used when no explicit specification is made. These
parameters specify whether the installation requires a programmer's name or account
number on each JOB statement, the priority to be assigned to a job if no priority has
been specified, whether commands in the input stream should be processed (or
ignored), and the device, primary quantity, and secondary quantity to be allocated to
system output data sets •

• switches A-J: These fields contain internal switches used for communicating status
information among the interpreter routines.

Appendix A: Tables and Work Areas 19

• 'Switch R: This field contains the priority Change Value for the CHAP macro
instruction.

• Switch L: This field contains the Default Allocation lev~l in MSGLEVEL.

• Switch M: This field contains the Default JCL level in MSGLEVEL.

• Switch N: This field contains the length of the fixed part of the message for
symbolic parameter substitution.

• switch Xl: This field is set to X'SO' .for a search of the DDNAME reference table or
to X"40' for SYSOUT.

• Checkpoint/Restart Switch: This field contains switches that communicate
checkpoint/restart status information to the interpreter routines.

• System Input Allocation Table: This area contains a list of pointers to the UCBs
corresponding to units available for allocation to system input data sets.

• Queue Address Table: This area contains the addresses (in TTR form) of the next two
records assigned to the job's input queue entry, and the addresses (in TTR form) of
the first joblib SlOT, the first scan dictionary record, and the DD override table.

• Input Stream Parameter List: This area describes the statement last encountered in
the input stream, and contains a pointer to the field currently being processed.

• Procedure Library Parameter List: This area describes the statement last read from
the procedure library, and contains a pOinter to the field currently being processed.

• Procedure Library Merge Control Data: This area contains information used in merging
statements from the input stream with statements from the procedure library. The
information includes the statement names, the step names, and the names of the
previous and next procedure steps .•

Mapping Macro Instruction: . IEFVMIWA

so

o (0)

8 (8)

16 (10)

24 (18)

56 (38)

r-

80 (50)

88 (58)

120 (78)

-r-

184 (B8)

192 (CO)

200 (C8)

208 (DO)

216 (D8)

,-
4 4

IWA Length IW A Identifier

1 3 4

Exit Switches Entry Point of FI N D NEL Address

4 4

I npu t Stream DCB Address Procedure Library DCB Address

Defau I t Parameters
28,

"I
Unique Data Set Name Qualifier

241

-
2 1 1

Unique Name Serio I Number
Maximum Default
Jobclass Msgclass

4 1 1 1 1

Q ueue Mana er Ent 9 ry Point Switch A S w itch B Switch C S w itch D

Switch E Switch F

Offsets to Table Areas

System Input Allocation Table

Unit Type For CPO Step I/o Table

4

Master Scheduler Register Save Area Address Spoo I DCB Address

4

Exit List Accounting Entry Address Blocked PROCLIB Buffer Address

4 2

Job Management Record Address Reserved
No. of Blocked
PROCLIB Records

I 1 Checkpoint 1 1

Switch G Switch H Restart Switch J
Switch

(continued)

26

68

8

4

4

2

Task
Information

(Also See
Part 3)

,-

.Figure 33. Interpreter Work Area (IWA) (Part 1 of 3)

Appendix A: Tables and Work Areas 81

224 (EO)

(continued) 220 (DC)

I
31-

-
f Queue Manager Parameter Area (QMPA)

256 (100)
Queue Address Tab I e 2!!, -

-
Input Stream Parameter list

288 (120) 8

Input Stream Parameter list (continued) Procedure Library Statement Parameter List

296 (128) 8 48

Procedure library Statement Parameter List (continued)

:
304 (130)

Procedure library Merge Cantrol Data

: 4

Address of QMPA

352 (160) 4 4

Reserved Address of PROC Referback Dictionary ,

Job
360 (168) 4 4 Informatian

Add ress 0 f PGM R f b k D· . e er oc Ictlonary Add ress 0 f DSENQ T bl a e

368 (170)

544 (220)

720 (200)

I
Referback Dictionary (Input)

176.,

17J
Referback Dictionary (Search),

I 1761
Jab Control Tab Ie (J Cn -

896 (380) 1 1
Rollin

1
Checkpoint

1 4
No. of Job No. of SCTs
lib SlOTs

Rollout Restart Symboli c Parameter Address
Parameter Switches

904 (388) 8

Calling Stepname for Checkpoint/Restart

912 (390) 8

Procedure Stepname far Check poi nt/Restart

920 (398) 4 4

SYSCHK DD Statement Address Job Statement Region Size

928 (3AO) 4 3 1

Reserved Queue' Address of VOLT' VOLT Length

936 (3A8) 1 1
-

2
VOLT Length Dedicated Reserved
(conti nued) Work Files

(continued)

Figure 33. Interpreter Work Area (IWA) (Part 2 of 3)

(continued)

944 (3BO)

~
1024 (400) -

940 (3AC)
DD Internal
Number

DD Name Reference Table

2

Switch XI

,

4

Reserved for Dauble Word AI ignment

176
Step Control Table (SCT)

~BO) Jtr---,1~7~6J[
I System Messoge Block (SMB)

1200

(560) ..(1--=-1=-76,--1T
Data Set Name Table (DSNAME) J.

~10) J[1---~1~7-44J[
Volume Serial Table (VOLT)

1376

1552

1728 (6CO) 4 4

Saved Verb Statement Address Track Stack Work Space

1736 (6C8)
Reserved

32

1768 (6E8) Control and 2 20

Scan Switches Scan Joint Return Codes Reserved
Switches

1776 (6FO)

1792 (700) I I t d" t T t B ff
~

n erme 10 e ex u er

1968 (7BO) 4 4

Text Begin Address Text Key Address

1976 (7B8) 4 4

Text Number Address Text Length Address

1984 (7CO) 4 2 2

Text End Address Current Leve I Last Level

1992 (7C8) 4 4

Current Register Save Area Control Routine Work Area

2000 (7DO) 4 4

Address of DCB Reserved

2008 (7D8) 4 12

SYSI N Address during Rollout

,L.

,I..
Reserved

2024 (7E8) 8

Reserved

2032 (7FO) 2 2

Reserved Switch K Switch L Switch M Switch N MCS Command Authority

Step
Infonmation

Statement
Information

Task
I nformati on

2040 (7F8)
4

MCS Pointer to Console ID Reserved

4 J
• Figure 33. Interpreter Work Area (IWA) (Part 3 of 3)

Appendix A: Tables and Work Areas 83

JOB CONTROL TABLE (JCT)

Description: The job control table (JCT) (Figure 34) is created in the interpreter work
area by the job statement processor routine of the interpreter .•. It contains information
from the JOB statement., job status information, and pointers to other tables in the job's
input queue entry. When the interpreter has processed all steps of a job, the JCT is
written into the appropriate input queue according to priority~ it is read back into main
storage by the initiator job selection and job delete routines.

Although most of the fields in the job control table are self-explanatory" the
following require further description:

• Job status Indicators: The sixth byte of the JCT indicates the status of the job as
shown below:

Bit o
1
2
3
4
5
6
7

setting
1
1
1
1
1
1
1
1

Meaning
A JOBLIE DO statement is included with the job
Job flush
Job step canceled by condition codes
step flush
JCT ABEND
Job failed
Job includes a cataloged procedure
Job is a "no setup" job

• CheckpoinURes·.:art Indicators: This two byte field indicates the checkpoint/restart
status as shown below:

Byte 1
Bit o

1
2
3
4
5
6-7

Byte 2
Bit
0-

1
2
3
4
5-6
7

setting
1

1
1
1
o

setting
1
1
1
1
1

1

Meaning
Warm start
Not used by MFT
Not used
Checkpoint taken for this step
Intra-step checkpoint/restart to be done
step restart to be done
Must be set to zero

Meaning
SYSCHK 00 statement is included with the job
RD keyword parameter is not NC
No restart is to be done
No checkpoints are to be taken
Do restart if necessary
Not used
DSDR processing has not successfully ended

• SYSOUT Classes: The first 36 bits of the five-byte field are used to indicate the
system output classes that contain data. 'lhe four remaining bits are reserved,.

Mapping Macro Instruction: IEFAJCTB

84

0(0) 3 Internal 1 Jab Message Message
Address in Queue of JCT Table lD = 00 Job Serial Status Class Level and

Number Indicators Job Priority

8 (8) 8

Job Name

16 (10) 8

Teleprocessing Terminal Name

24 (18) 3 3

Address in Queue of PDQ Reserved
Address in Queue of GOG
Bias Count Table Reserved

32 (20) 3 3

Address in Queue of First SCT Reserved Address in Queue of First 5MB Reserved

40 (28) 3 3

Address in Queue of Job ACT Reserved Address in Queue of First DSB Reserved

48 (30) 3 2 2

Address in Queue of Last DSB Reserved Key of 5MB Track First Job Condition Code

56 (38)
First iob 1 28

Condition Reserved
Operator ,

Reserved for Seven Additional Job Condition Codes and Operators

:: Checkpoi ntl
2

Restart
Indicators

3 1 2
Queue

1 1
TTR of DSENQ Table Zeros Region Parameter Ident.

No. of
(MVT Only) (MVT Only) (MVT Only)

Steps

88 (58)

96 (60) 3 No. of Job 1 4
TTR of Compressed TIOT Tracks on Checkpoint Data Set Device Type
(MVT Only) SYS1.JOBOE

(MVT only)
) 3 1 2 Vol. of 1 1

TTR of JFCB for
Zeros Number of Checkpoint Reserved .

Checkpoi nt Data Set Checkpoi nts Data Set

104 (68

) 4 1 Length 1 16
TTR of SCT for Reserved of Check-
First Step to Run point I D

112 (70

Checkpoi nt I denti fi cation
17

136 (88)

Reserved
1

SYSOUT
Classes

152 (98) 4

SYSOUT Classes (Continued)

-Figure 34. Job Control Table (JCT)

Appendix A: Tables and Work Areas 85

0(0) 1
j:.

48 (30)

56 (38)

72 (48)

80 (50)

88 (58)

96 (60)

104 (68)

112 (70)

~

152 (98)

160 (AO)

168 (A8)

176 (BO)

a (0)

~j:o

Data Set Name

I

Element Name or Relative Generation Number

8 J J3

Element Name or Relative JIM + DIM
Generation Number (continued) Interface

Reserved

J J 2 2

Label Type Reserved File Sequence Number Volume Sequence Number

8

Data Management Mask

3 3 J J

Data Set Creation Date Data Set Expiration Date Indicator Indicator
Byte J Byte 2

Number J I 2 J
Device

J J J

of
Buffering

Buffer Length Error
Character- Tape Reserved

Buffers
Technique Options

istics
Density

2 2 J J 2

Reserved Data Set Organization Record Option
Maximum Block Size

Format Codes

2 J J 2 2
Number of Number of Relative Location

Logical Record Length Channel Master of Key in Logical RCD Reserved

Programs 1 ndex Tracks

4
Number ofJ Number of J 30

Reserved Overflow Volume
Tracks Serials

First Five Volume Serials

3
Length of
JFCBX

Queue Address of First JFCBX

Primary Quantity

Directory Quantity

Main Storage Address
of S UBA LLOC JFCB

Job File Control Block

3

3

3

3

Space
Type
Requested

Secondary Quantity

3
Main Storage Address of
Split Cylinder JFCB

3

Average Data Record Length

J

3
Indicator
Byte 3

Relative Address 2
of First Track
to be A II ocated

Volume
Count

Number of J
Tracks per
Cyl inder

90

~

Queue Address of Next J FCBX Reserved ~

82

J5 Additional Volume Serials
L.. I

%~l T t Reserved _
176 (BO) 1..-_______________________________ --1

Job File Control Block Extension

Figure 35. Jot File Control Block (JFCB) and Extension (JFCBX)

86

JOB FILE CONTROL BLOCK (JFCB) AND EXTENSION (JFCBX)

Description: A job file control block (JFCB) (Figure 35) is constructed in subpool zero
(from information in a DD statement) by the interpreter DD statement processor routine.
The JFCB is written into the job's input queue entry, and retrieved when a DCB with the
corresponding name is opened. The information in the JFCB, which describes the
characteristics of a data set, may be modified by the open routine.

A JFCB contains enough space to record five volume serials. If more than five volume
serials are specified, enough job file control block extensions (JFCBXS) to contain the
additional volume serials are constructed; each JFCBXcan contain up to fifteen
additional volume serials.

Additional information on the contents of the JFCB and JFCBX may be found in the
publication, IBM System/360 Operating System: system Control Blocks, Form C28-6628.

Mapping Macro Instruction: IEFJFCBN

LIFE-OF-TASK (LOT) BLOCK

Description: The 348-byte life-of-task (LOT) block (Figure 36) is built in a main
storage area obtained from subpool 253. It stores information for scheduling functions,
and is used by system task control and initiators. It is created by the Job select
module for initiating problem programs, and by system task control for initiating readers
and writers.

The LOT block contains the linkage control table (LCT), a two-level register save area
(REGSAVE), an input queue manager parameter area (QMGR1), an output queue manager
parameter area (QMGR2), the address of the ECB list, the address of the PIB, and the
address of the SPIL.

LINKAGE CONTROL TABLE (LCT)

Description: The linkage control table (LCT) (Figure 37) is built in a main storage area
obtained from subpool 253 by the initiator initialization routine. It is a
communications area used by the routines of the initiator.

Most of the fields in the LCT are self-explanatory; it should be noted, however, that
the job termination status bit is the low-order bit of the one-byte device features
field.

Mapping Macro Instruction: IEFALLCT

MASTER SCHEDULER RESIDENT DATA AREA

Description: The master scheduler resident data area (Figure 38)" which is in the
nucleus area of main storage, contains information used by the queue initialization,
command scheduling, initiator, and I/O device allocation routines. Its location is
stored in the CVTMSER field of the communication vector table.

Most of the fields in the master scheduler resident data area are self-explanatory;
those fields that require further explanation are described below:

• Queue Formatting Switch: If the high-order bit of this field is on, it indicates
that the queue data set must be formatted.

• Transient Reader TTR: This field is used by the transien~ reader suspend routine to
store the address of the work queue data set where the reader information was placed
when the reader was suspended.

• DEFINE Control Information: If the high-order bit of this field is on, it is a
DEFINE operation; if off, it is IPL time. 'Ihe second bit indicates that a list of
the partitions' sizes and job class(es) has been requested; the third bit indicates
that there is an adjacent partition check; the fourth bit is set when initialization
is complete to allow DEFINE commands to be accepted; the fifth bit is set on when the

Appendix A: Tables and Work Areas 87

operator has requested partition changes at IPL; the sixth bit indicates that a small
partition cannot terminate because of the DEFINE operation; the seventh bit indicates
that a DEFINE command has been issued during operation; the eighth bit indicates that
the system has storage protection.

• status Flags:

Bit
-0-

1
2
3
4
5

6-7

When set on, status flags indicate:

Meaning
System Initialization in progress
DISPLAY JOBNAMES
Reserved
VARY/UNLOAD summary
Queue hold-release
DISPLAY ACTIVE processing
Reserved

0(0) .L 1041
linkage Control Table .;.J...

104 (68) 11--------------------------~-------7"..,-11
Register Save Area 1

176 (BO) 11-----------------------------------:7:-=-lJ
Register Save Area 2 ~

248 (F8) 36

Input Queue Manager Parameter Area

36

284 (lie)

Output Queue Manager Parameter Area

320 (140) 8

Reserved

328(148) 4 4

Address of ECB list Address of PIB

336(150) 4

Address of SPIL

Figure 36. Life-of-Task (LOT) Block

88

I

I

0(0) I 3

Reserved Address of Job Step CSCB Address of IIO Supervisor UCB Lookup Table

8 (8) 4 I

TCB Address
Device

Linkor's Register Save Area Address
Features

16 (10) 4

JCT Address SCT Address

24 (IS) 4

Queue Address of SCT Allocate/IEFVPOST Communication Block Address

32 (20) 4

Error Code

Commune i ations Area

Address of
Register Save Area
and QMPA

I I I I
JFCB Current Step

Reserved Housekeepi ng Number
Action Code Address of Current 5MB

Indicators

56 (38)

64 (40) 4
Counter for Assigning Unique Vol ume Address of Message Class QMPA
Serials to Passed Data Set Volumes

72 (4S) 4

Return Address to System Task Control Routine Address of Initiator CSCB

Timer Work Area

96 (60) 4

JOBLIB DCB Address Allocate/Terminate Parameter List Address

eFigure 37. Linkage Control Table (LCT)

• Log Status Flags:

Bit
-0-

1

• MFT switches:

Meaning
Log Data set Sysout Scheduling
Log Threshold Reached

When set on, flags indicate:

Bit Meaning
--0- Transient Reader Active

1 Transient Reader in Core
2 pending START cororoand for transient reader
3 MFT Environment switch
4 system Assigned Reader is Running
5 Core storage is in System

4

3

4

4

16

4

4

4

4

16

4

Appendix A: Tables and Work Areas 89

• Initialization Switcbes: When set on, flags indicate:

Bit Meaning o IPL switcb
1 SYSOUT IPL
2 SYSOUT job start

3-4 Reserved
5 34 Security
6 Queue initialized
7 Procedure catalog initialized

• Pending Flags: Wben set on, flags indicate:

Bit Meaning
-0- IPL Date

1 Region busy
2 Command move completed
3 Interpreter command return
4 system Input control purge request
5 System output control purge request
6 Blank start pending (REQ=1, S'IART BLANl{=O)
7 Console command suppressed by WTO/W70R Exit Routine

• ECB Flags:

Bit
0-

1
2
3
4
5
6
7

Wben set on, flags indicate:

Meaning
External interrupt
WTO or WTOR
WTL
Console Attention key bit
System Input
system Output
Master command routine
Summary bit, Vary UCB scan required

• Resident Switcbes: Wben set on, switcbes indicated:

90

Bit
-0-

1
2
3
4
5
6

7

• Fetcb Flags:

Meaning
IPL bas been completed
WTO or WTOR pending
Console usage., Primary or alternate
Log purge request
Reader bas reacbed end of file, or Start reader
New reader pending
New writer pending
New writer pending (Modify)
Job notification (1=yes)

Wben set on, flags indicate.

Bit Meaning
-0- Named Fetch

1 Defer current command execution sequence
2 TCB Tree Trace Fetcb (Locate)
3 Auxiliary FETCH given
4 Reply bit to Request attention
5 Pseudo-SYSOUT flag
6 DISPLAY STATUS
7 Queue bold-release

• Mapping Macro Instruction: IEEBASEB.

0 (0) 4 4

Address of CSC B Chai n
Group Queue Poi nter

(MVT only)

8 (8) 4 4

Master Schedu ler ECB Communications Task IPL ECB

16 (10) 4 4

Address of Job Queue UCB Address of PROCLI B UCB

24 {I 8) Queue 3 4
Address of Set Auto

Formatting Command Parameter List Address of System Log Control Table
Switch

32 (20) Number 2 2 2
Status of Tracks Initiator Minimum Initiator
Flags in Initiator I nterpreter Counter Protecti on Key Mask Partition Size

Stack
40 (28) 2 4

Minimum Problem Log Status
Reserved System Log ECB Program Partition Size Flags

48 (30) 46

R d eserve

ID of console I 1

that entered Reserved
DEFINE

96 (60) 4 Sub pool 255 Boundary Box 4

Core Storage Low Boundory r- - -- - ----- - --- --
First FQE Pointer 4

104 (68) 4 4
Low Boundary Pointer High Boundary Pointer

4 I 3

Transient Reader, Pending CSCB Pointer
MFT

Transient Reader CSCB Pointer Switches MFT

112 (70)

Are a

120 (78) 4 4

T ransi ent Reader TTR DEFI NE Control Information

128 (80) 4 4

Size of Schedu ler Address of ECB Choin for Readers

.-

eFigure 38. Master Scheduler Resident Data Area (part 1 of 2)

Appendix A: ~ables and Work Areas 91

136 (88) 1 PCP 1 1 1 Resident 1 1
Initialization Pending ECB Fetch Command
Switch System Flags Flags Switches Flags Verb

Switches Status Flags

144 (90) 8 Variable
Command Verb (cont.) Communication

Field

152 (98) 8 Msg. 2

Variable Communication Field (cant.) G-eneration
Control

160 (AO) 4 4
Pointer to Character

Master ECB Comm
Before List Area

on

168 (A8) 4 4
Pointer to ECB in SJQ Entry of

ECB for Allocation
Job Using Console

176 (BO) 4 4
Pointer to Pointer to
Primary UCB Alternate UCB

184 (B8) 4 4
Poi nter to Pointer to Second Highest
Pseudo-Disable Switch Priority Problem Program TCB (MFT)

,-
192 (CO) 4

Pointer to Highest Priority
Problem Program TCB (MFT)

-Figure 38. Master Scheduler Resident Data Area (Part 2 of 2)

PARTITION INFORMATION ELOCK

The 40-byte partition information block (PIE) (Figure 39) contains information used by
the command processing and scheduler routines. Its location is stored in the TCEPIE
field at displacement 124 (decimal> of the task control block (TCE) '.

Although most of the fields in the partition information block are self-explanatory,
the following require further description:

92

- ECE Address: Contains the address of ECE to be posted by job selection when the
partition is made quiescent for partition redefinition.

- "No Work" ECB for the Initiator: This ECE is posted by small partitions requesting
service, the queue manager when a job has been enqueued, and by the DEFINE and START
command routines.

- Status A Information:

Eit
o

1
2
3
4

5
6
7

setting
o
1
1
1
1
1

1
1
1

Meaning
stop initiator
START INIT issued
Partition active
pending command
Transient reader operating
Partition is to be terminated by IEFSD599 when it next gets
control
Partition is involved in redefinition
system-assigned transient reader operating in this partition
Problem program is running

• Status B Information:

Bit setting Meaning
-0- 1 Logical tracks added for initiator

1 1 LOT block exits
2 1 SPIL has been created
3 1 Reserved
4 1 Unending task present in partition

• SPIL Address: The small partition information list {SPILl is applicable to large
partitions only.

• ,Job Class Codes: Contains one to three codes for the partition., arranged in
descending numerical order, i.e., GRP3 is in the second byte of the field, followed
by GRP2 and GRP1. The first byte contains the protection key for the partition, if
the system has the storage protection feature.

• Internal Queue status Bits:

0(0)

4 (4)

8 (8)

12 (C)

16 (10)

20 (14)

24 (18)

28 (IC)

32 (20)

I ""4)

Bit
o

1

2

3-7

Status Bits - A

Status Bits - B

Protection Key

Internal Queue
Status Bits

Setting
1

1

1

I

I

Meaning
A large partition in which the DSDR processing step for a
small partition (less than 12K) is to be executed
A restart reader has been started in place of a user
assigned reader
A DEFINE command has been received and the partition is
processing jobs on its internal queue.
Reserved

4

CSCB Address of Pending Command

4

ECB Address

4

liND Work I) ECB for the Initiator

3

Address of Current Job Step CSCB

3

SPIL Address

4

CSCB Address of Current Task in Partition

I 3

Jab C lass Codes

4

CSeB Address of Suspended Reader

4

Reserved

I 3

Address of Internal Queue of Job Names to be Restarted

Figure 39. Partition Information Block (PIB)

Appendix A: 'Tables and Work Areas 93

SMALL PARTITION INFORMATION LIST (SPIL)

Description: The 32-byte small partition in£ormation list (SPIL) (Figure 40) is a
storage area for information pertaining to small partition scheduling. It is built in
main storage obtained from subpool O. The address of the ECBs provides for information
to be passed between the small partition and the large partition that is performing
initiation. allocation. or termination functions for the small partition.

Most of the fields in the small partition information block are self explanatory;
however. the status bits field is described below.

Bits 0 and 1 contain ones if a START writer command has been entered.

Bit 2 contains a one if a SPIL pointer has been stored in the PIB.

Bit 3 contains a one if a problem program has requested termination.

Bits 0-7 contain zeros if a START INI~ command was entered.

0(0) 4
(ECBA)

Event Control Block

4 (4) 4
(ECBB)

Event Control Block

8 (8) 4
(ECBC)

Event Control Block

12 (C) 4

Address of Sma" Parti tion TC B

16 (10) 1 3

Status Bits Reserved

20 (14) 4
Address of Allocate Parameter List (In Large Partition) if a Problem Program;

TIOT, if a Reader or Writer

24 (18) 4

Address of CSCB for Writer

28 (1C) 4
Address of ECB List for Dequeue

Figure 40. Small Partition Information List (SPIL)

STEP CONTROL TABLE (SCT)

Description: The step control table (SCT) (Figure 41),. is used to pass control
information to the DD routine of the interpreter and to the initiator routines. ~hich
also contribute information to the table. This table is created and initialized by the
execute statement processor routine of the interpreter when an EXEC statement is read.
One SCT is created for each step of a job.

If the step is part of a previously cataloged procedure. the name of the step that
called the procedure. if any, is entered. The following variable-content and indicator
fields are included in the table:

94

BYTE 4: Internal Step Status Indicators:

Bit
-0-

1
2
3

setting
1
1
1
1

Meaning
step can be rolled out
Roll step out if necessary
Do not restart step
Do not take a checkpoint

I 4
5
6
7

1
1
1
1

Restart if necessary
Graphics - alter protect key
Graphics - ABEND exit
Step failed

PARM count or Step Status Code:

a. Interpreter: The number of characters specified in the PARM parameter of the
EXEC statement is placed in this entry.

b. Initiator: This table entry contains the condition code returned by the
processing program.

BYTE 67: step Type Indicators:

Meaning Bit
-0-

1
2
3

setting
1
1

.EXEC statement contains PGM=*.stepname.ddname
SYSIN is specified as DD*

1 SYSOUT is specified
1

4-7
JFCB housekeeping is complete
Reserved

BYTE 104: Step status

Bit
0-1

2
3
4

5-7

Setting

1

1

Meaning
Reserved
SCTMCVOL
Reserved
SCTSTPLB
Reserved

Mapping Macro Instruction: IEFASCTB

STEP INPUT/OUTPUT TABLE (SlOT)

Description: The step Input/Output Table (SIO'!) (Figure 42), makes DD statement
available to the initiator for use as a source of information for the TIOT and for
providing DD information to allocation and disposition routines. When a DD statement is
read, the interpreter creates a new SlOT and places the DD information into it. The
individual bits of the disposition byte and of indicator bytes 56 through 59 in the SlOT
are set to one to indicate the following conditions:

BYTE 55: Scheduler Disposition

Bit Meaning
-0- Reserved

1 Retain volume
2 Private volume
3 Pass data set
4 Keep data set
5 Delete data set
6 catalog data set
7 Uncatalog data set

BYTE 56: Indicator Byte Nu«her 1

Bit Meaning
-0- Dummy data set

1 SYSIN data set
2 Split (primary)
3 Split (secondary)
4 Suballocate
5 Parallel mount
6 Unit affinity
7 Unit separation

Appendix A: Tables and Work Areas 95

0 (0)

8 (8)

16 {I 0)

24 (l8)

32 (20)

40 (28)

48 (30)

56 (38)

64 (40)

72 (48)

8a (50)

88 (58)

96 (60)

104 (68)

112 (70)

120 (78)

L.

160 (AO)

168 (A8)

176 (BO)

3 1 I'nterhal 1
Table ID

Queue Address of SCT (02) Step Status Maximum Step Running Time
Indicators

2 2 3
PARM Count Or Step Status Length of Allocate Work

Queue Address of First SlOT Entry Reserved Code at Termination Area, or Number of SlOTs

3 1 3

Queue Address of A I locate Work Area Reserved Queue Address of Next SCT Reserved

3 1 3
Queue Address of Fi rst 5MB

Reserved
Queue Address of Last 5MB

Reserved
for Next Step for Thi s Step

3 1 3
Queue Address of First ACT Entry

Reserved Queue Address of VOLT Reserved for This Step

3 1
Queue Address of Dsname Tab Ie

Reserved Name of Step That Called Procedure for This Step

8

Name of Step That Called Procedure (Continued) Step Name

8 2

Step Name (Conti nued)
Relative Pointer to

Length of VOLT Step Entry in ACT

Number of 1 Number of 1 Number of 1 1
Step Type

SlOTs in Setup JFCBs to Indicators Queue Address af SCTX
This Step Messages Allocate

1 3 1

X'OO'
Hierarchy 0

X'OI'
Hierarchy 1

Region Address Regi on Address

Reserved

2 2 2 Step Dispatching
Hierarchy 0 Hierarchy 1 Reserved Priority
Region Size Region Size (MVT only)

4
Step SYSI N count for SMF Queue Address of PGM = *,

stepname, ddname SlOT

Extension 1 3
of Internal Queue Address of

Program Name Step Status the Step TlOT
Indicators

8 2

Program Name (Continued)
Length (i n Bytes) of

First Step Condition Code Dsnome Table for This Step

First Step 1 3

Condition Queue Address of First Condition SCT
Operator

.. Second Through Seventh Step Cond,t,on Entroes

2

Eighth Step Condition Code
Eighth Step
Condition
Operator

Queue Address of the Fi rst
DSB in Message Class

Queue Address of Ei ghth Condi ti on SeT

3 Number of 1
Message
Class DSBs
for this Step

Step
Status

3

Reserved

Queue Address of
Last Legitimate 5MB

~'Figure 41. Step Control Table (SCT)

96

3

1

1

1

1

2

4

3

8

2

4

4

2

36

2

3

BYTE 57: Indicator Byte Number 2

Bit Meaning
--0- Channel affinity

1 Channel separation
2 Volume affinity
3 JOBLIB DD statement
4 Unlabeled (no labels)
5 pool DD statement
6 Defer mounting
7 Received data set

BYTE 58: Indicator Byte Number 3

Bit Meaning
--0- Volume reference

1 SYSIN expected (procedures only)
2 Allocate work table volume block indicator
3 Volume reference in step
4 SYSOUT was specified
5 NEW data set
6 MOD data set
7 OLD or SHR data set

BYTE 59: Indicator Byte Number 4

Bit Meaning
-0- set by reader to indicate GOG single

4 step processed
5 Intra-step volume affinity
6 Data set is in passed data set queue (PDQ)
7 1 = old or modified data set

o = new data set

BYTE 92: conditional Disposition

Bit Meaning
0-3 Reserved

4 Reep data set
5 Delete data set
6 Catalog data set
7 Uncatalog data set

Mapping Macro Instruction: IEFASIOT

TASR INPUT/OUTPUT TABLE (TIOT)

Description: The Task Input/output Table (TIO~) (Figure 43) provides data management
routines with the addresses of the JFCBs and devices allocated to the data sets in a job
step or system task. It is constructed by the I/O device allocation routine in main
storage obtained from subpool zero. The allocation routine also places a copy of the
TIOT on the appropriate job class queue with the other tables for the job step. After
the step completes processing, the TIOT is brought in from the job queue and placed in
the upper portion of the partition. The step is then terminated, and the TIOT is
deleted.

For further information on the TIOT, see IBM System/360 operating System: System
Control Blocks, Form C28-6628.

Appendix A: Tables and Work Areas 97

4 (4)

12 (C)

20 (14)

28 (1e)

36 (24)

44 (2C)

52 (34)

60 (3C)

) 68 (44

76 (4C

84 (54)

92 (5C)

~

o (O) 3 " ! "

Qveue Address of SlOT Tgbl", 10

8

00 N<:Ime

8

Che;mnel Separotion and Affinity

8

Unit Sepofotion and Affinity

3 1 3 1

Queu", Addre~$ of Next SlOT Reserved Queue Address of JFCB Reserved

3 1 3 1
Queve Address of SlOT

Reserved
QUeue Address of SlOT System

Reserved for VOlREF or SUaAlLOe Output!DependenGY Black

3 2 Number of 1 2
Relotive Pointer to

Queue Address of DO Nome Table R",erved Volum"s in Volume Table Entry
VOLT

1 Number of
I I I 4

Internol Volume
DO Number Units for Count Disposition Indicator Bytes

Th i s Data Set

8

Unit Type

8

System Output Pragrom Nome

4 System
System Output Farm Number Output

Class

4

Queue Address of DSB for this Doto Set

I 3

Condition'll TTR of SlOT

Disposition bei n9 P'lssed

Reserved

I 1 2
DO Statement
Duplicate Reserved

Number
4

Queue Address of Next D5a

26

;.;:

& NAME from OS NAME"
for Dedicated Work Fi les

1~ ~C)~--~8~------------44~
Il. NAME from DSNAME ; for Dedicated Work Files

(Conti nued)

132 (84)~-----------------------_-..J

DeB Reference Name

-Figure 42. step Input/Output Table (SIOT)

98

0(0) 8

Job Name

8 (8) 8

Step Name

16 (10) 8

Name of Step Calling Procedure, or Zeros

I I 2 4

I Entry Status Allocation
Length Bits Data DD Name

4 3 I Fir

DD Name (continued)
Address in Queue of Status DD
JFCB or SlOT Bits Ent ry

24 (18)

32 (20) st

40 (28) I 3 I 3 t
Status Address of UCB Status Address of UCB Device

Bits or Link Value Bits or Link Va lue Ent~ies

---, -
Last

T DD

~1--___ ----"'-41 ___ --I----rEttry l Zeros - End of nOT .

Figure 43. Task Input/Output Table (TIO'I')

Appendix A: 'Tables and Work Areas 99

Appendix B: MFT Modules

This appendix contains a table of unique MFT modules, a group of tables showing the
modules of each major component, a list matching entry point and control section names
with source module names, and a brief description of each of the modules used by MFT. If
you are looking for a specific module and know only the major component and routine name,
use Tables 3-14 which give a cross-reference to the source module. The source modules
are in turn listed alphanumerically for easy access. If you know the source module name,
go directly to the module descriptions.

Unique MFT Modules
Table 2 lists all modules that are unique to MF'I. 'Ihis table is organized alphabetically
by major component.

Table 2. MFT Modules
r---,

IEAGTM05
IEAGTM06
IEAGTM08
IEAGTM09

Communications Task:

IEECIR45
IEEVWTOR

Initiator:

IEFSD510
IEFSD511
IEFSD512
IEFSD513
IEFSD515
IEFSD516
IEFSD517
IEFSD518
IEFSD519
IEFSD540
IEFSD541
IEFSD553
IEFSD554
IEFSD555
IEFSD556
IEFSD558
IEFSD559
IEFSD589
IEFSD598
IEFSD599

I/O Device Allocation:

IEFSD551
IEFSD552
IEFSD557

Master Scheduler 'Iask:

IEECIR50
IEEDFIN1
IEEDFIN2
IEEDFIN3
IEEDFIN4
IEEDFIN5
IEEDFIN6
IEEDFIN7
IEEDFIN8
IEEDFIN9
IEESD561
IEESD562
IEESD563
IEESD564
IEESD565
IEESD566
IEESD571
IEFSD569

Nucleus:

IEESD568
IEFSD567

Queue .Management:

IEFSD514
IEFSD572

Reader/Interpreter:

IEFSD530
IEFSD531
IEFSD532
IEFSD533
IEFSD536
IEFSD537

System Task Control:

IEESD590
IEESD591
IEESD592
IEFSD534
IEFSD535
IEFSD587
IEFSD588

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I I L ___ J

100

Major Component Modules

Tables 3 through 14 list all MFT modules according to major component. The tables appear
in alphabetical order by component name. wi thin each component, routine names are listed
alphabetically with a cross-reference to the module name.

Appendix B: MFT Modules 101

Table 3. ABEND Modules

r---~-------------------------~------~---, I I Source I
I Routine I Module I
~-----------------------------+----------i I ABDUMP I IEAATM04 I
I Indicative Dump I IEAATM03 I
I lnitiali~ation I IEAGTMOO I
I Input/output purge I IEAGTM06 I
I Linkage. I IEAATMOl I
I Main Storage Allocation I IEAATM02 I II Termination I IEAGTM05 I
I DAR Core Image Dump I IEAGTM08 I
I DAR Task Reinstatement I IEAGTM09 I L ______________________________ ~ _________ J

Table 4. communication Task Modules

r------------------------------r----------, I Console Device Processor IEECVPM
I Console Interrupt IEECVCRA
I External Interrupt IEECVCRX
I Initialization Routine IEECVCTI
I Purge RQE IEECVED2

Router IEECVCTR
Wait I EECVCT'W
Write-to-Operator IEECVWTO
write-to-Operator-Witb-Reply IEEVWTOR
EXCP OPEN/CLOSE IEECVOC
MCS Corom Task Router IEECMAWR
MeS Console Switcb IEECMCS'W
MCS Device Interface IEECMDSV
MCS 1052 Device support IEECMPMX
MCS 1403/1443 Device support IEECMPMP
MCS 2540 Device Support IEECMPMC
MCS 2740 Device Support IEEC2740
MCS Delete Operator Message IEECMDOM
MCS WTO/WTCR Processor (SVC

35) IEECMwSV
WTOR Purge (End of Job) IEAGTM07 ______________________________ ~ __________ J

Table 5. Initiator Modules

r------------------------------r----------, I Alternate step Deletion IEFso516

I I Data set Integrity IEFSD541
I Dequeue by Jobname Interface IEFS0519

ENQ/DEQ Purge IEFSD598
Job Deletion IEFSD517
Job Initiation IEFSD511
Job selection IEFSD510
Job Suspension IEFSD168
Linkage to IEFSD510 IEFSD555
Linkage to IEFSD511 IEFSD558
Linkage to IEFSD512 IEFSD553
Linkage to IEFSD515 IEFSD559
Linkage to IEFSD516 IEFSD554
Linkage to IEFSD534 IEFSD589
Linkage to IEFSD541 IEFSD540
Partition Recovery IEFSD518
Problem Program Interface IEFSD513
Set Problem Program State IEFSo556
small Partition Module IEFSD599
Step Deletion IEFSD515

I Step Initiation I IEFSD512 I ~ _______________ ~ ______________ ~ _________ J

102

!rable 6. I/O D.evic:e ~llocation Modules
r---~--.... -----.. ---------... ----.----------, I I Source I
I R.outine I Module I
~------------------------------+----------~ Allocation Control IEFXCSSS I

I Allocation Entry IEFSD21Q I
Allocation Exit. IEFSDijlQ
Allocation Recovery Messages IEFSJMSG
Allocation Recovery IEFXJIMP
Automatic Volume Recognition IEFXV001
Automatic Volume Recognition

Messages
Automatic Volume Recognition

Non-standard Label Routine
DADSM Error Recovery
DeciSion Allocation
Demand Allocation
Device Strikeout
EXEC Statement condition

Code Processor
EXEC statement Condition

Code Processor Messages
External Action Messages
External Action
Interface
JFCB Housekeeping Control

and Allocate ProceSSing
JFCB Housekeeping Error Mes­

sage processing
JFCB Housekeeping Error

Messages
JFCB Housekeeping Fetcb DCB

Processing
JFCB Housekeeping GDG All

proceSSing
JFCB Housekeeping GDG Single

ProceSSing
JFCB Housekeeping Patterning

DSCB
JFCB Housekeeping Unique

IEFVMSG

IErXVNSL
IEFXT003
IEFS5000
IEFWAOOO
IEFX300A

IE FVKI MP

IEFVRMSG
IEFWDOOl
'IEFWDOOO
IEFSD557

IEFVltltsl

IEFV~LS6

IE FVMLS 7

IEFVM2I.S

IEFVN4LS

IEFVM3LS

IEFVHSLS

Vol ume ID IEFVM76
Mount Control-Volume Routine IEFMCVOL
Linkage Module IEFWCFAK
Linkage Module IEFWDFA I
Linkage Module IEFWSWIN I
Linkage Module IEFXJFAI< I
Linkage to JFCB Housekeeping IEFV~~l I
Linkage to JFCB Housekeeping IEFVMFAK I
Linkage to IEFXJIMP IEFSDS51 I
Linkage to IEFXJIMP IEFSDS52 I
Linkage to IEFXV001 IEFAVFAK I
Linkage to Mount Control I

volume IEFCVFAK I
Message Module IEFWSTRT I
Message Module IEFXAMSG I
Non-Recovery Error IEFXKIMP I
Non-Recovery Error Messages IEFXKMSG I
separation strikeout IEFXHOOO I
space Request IEFXTOOD I
VARY Interface and TICT I

compression IEFXT002 I
TIO'I Construction IEFWcnlP I
Unsolicited Device Interrupt I

Handler IEFVPOST I
Wait for space Decision IEFSD091 I
wai t for Un allocation IEFSD195 I L ______________________________ i-__ • ______ J

Table 7. Interpreter Modules
r------------------------------r----------,
I I Source I
I Routine I Module I
~------------------------------+----------~

Command Statement IEFVHM
CPO Allocation Subroutine IEFVSD12
CPC IEFVHG
Continuation Statement IEFVBC
DD* Statement Generator IEFVHB
DD Statement Processor IEEFVDA
Data set Name Table

Construction
Dictionary Entry
Dictionary Search
End-ot-File
EXEC Statement Processor
Get Parameter
Get
Housekeeping
Initialization
Initialization
Interface
Job and Step Enqueue
Job statement Processor
Job Validity Check
Linkage Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Module
Message Modul e
Message Module
Message Module
Message Module
Message Module
Message Module
Message Processing
Null Statement
Operator Message
Post-Scan
Pre-Scan preparation
Queue Management Interface
Router
Scan
SCD Construction
Symbolic Parameter

Processing
Termination
Test and Store
Transient Reader
Transient Reader
Transient Reader

Restore
suspend
suspend

IEFVDBSD
IEFVGI
IEFVGS
IEFVHAA
IEFVEA
IEFVGK
IEFVHA
IEFVHHB
IEFVH1
IEFVH2
IEFSD533
IEFVHH
IEFVHA
IEFVHEC
IEFSD537
IEFVGM1
IEFVGM2
IEF'VGM3
IEFVGM4
IEFVGlVI5
IEFVGM6
IEFVGM7
IEFVGM8
IEFVGM9
IEFVGM10
IEFVGMll
IEFVGM12
IEFVGM13
IEFVGM14
IEFVGM15
IEFVGM16
IEFVGM17
IEFVGM18
IEFVGM70
IEFVGM78
IEFVGM
IEFVHL
IEFSD536
IEFVBF
IEFVBEB
IEFVBQ
IEFVHE
IEFVFA
IEFVSD13

IEFVFB
IEFVBN
IEFVGT
IEFSD531
IEFSD530

I
I
I
I
I
I
I
I
I
I
I
I

Tests IEFSD532 I
Vary Identification I IEFVHCB I L ______________________________ ~ _________ J

~able 8. Master Scheduler Modules
r------------------------------T----------,
I I Source I
I Routine I Module I
~------------------------------t----------~
I DEFINE Command Final
I Processor
I DEFINE Final Processor
I DEFINE Initialization
I DEFINE Keyword Scan
I DEFINE Listing

DEFINE Message
DEFINE Syntax Check and

Router
DEFINE System

Reinitialization
DEFINE ~'ime-Slice Syntax

Check
DISPLAY A
Look-up Routine
Queue Search
Queue Search setup
Service
Syntax Check
~ime-Slice Syntax Check
wait/Router
Resident volume

Initialization
Message Module
System Log Initialization
System Log Open Initializer
System Log Output Writer
system Log Dispatcher
System Log wait Routine
System Log SVC (SVC 36)
System Log svc (SVC 36 -

second load)
DISPLAY CONSOLES
Master Scheduler Resident

Data Area
Master Scheduler

IEEDFIN9
IEEDFIN3
IEEDFIN1
IEEDFIN7
IEEDFIN4
IEEDFIN5

IEEDFIN2

IEEDFIN8

IEEDFIN6
IEESD566
IEEVRFRX
IEESD564
IEESD563
IEESD565
IEESD562
IEEDFIN6
IEECIR50

IEFPRES
IEFK1lYJSG
IEEVLIN
IEEVLIN2
IEEVLOUT
IEEVLDSP
IEELWAIT
IEE0303F

IEE0403F
IEEXEDNA

IEESD568

Initialization IEESD569
User Dummy W~O/WTOR Exit IEECVCTE

I Console Initialization IEECVCTI I L ______________________________ ~ _________ J

~able 9. Queue Management Modules
r-----------------------------~----------,
I ASSign I IEFQASGQ
I Assign/Start I IEFQAGST
I Branch I IEFQMLK1
I Control I IEFQBVMS
I Delete I IEFQDELQ
I Dequeue I IEFQMDQQ
I Dequeue by Jobname I IEFLOCDQ
I Dummy I IEFQMDUM
I Enqueue IEFQMNQQ
I Interpreter/Queue Manager
I Interlock
I Message Module
I Queue Formatting

J
II Queue Initialization

Queue Manager ~'able Breakup
I Read/Write
I Resident Main Storage

IEFSD572
IEFSD311
IEFORMAT
IEFSD055
IEFSD514
IEFQMRAW

I ReserVation IEFPRESD
I Unchain IEFQMUNQ L ______________________________ ~ _______ __

Appendix B: MFT Modules 103

Table 10. SVC 34 Modules
r------------------------------r----------,
I I Source I
I Routine I Module I
r------------------------------+---~------i

CSCB Creation IEE0803D I
CSCB Marking IEE0703D I
DEFINE, MOUNT, CANCEL IEESD571 I
HALT IEE1403D I
Message Assembly IEE0503D I
Message Assembly IEE2103D I
Reply Processor IEE1203D I
Router IEE0403D J
SET Command Handler IEE0903D
SET Command IEE0603D
START and STOP INIT IEESD561
Translator/Chain Manipulator IEE0303D
VARY and UNLOAD IEE1103D
MCS Reply Processor IEEIA03D
MCS Reply Messages IEE1B03D
RJE Commands IEE1503D
LOG and WRITELOG Routine IEE1603D
VARY ONGFX/OFFGFX Handler IEE1703D
System Management Facilities IEE2303D
MODE Command Handler IEE2603D
DISPLAY R Handler IEE2903D
VARY and UNLOAD Processor II IEE3103b
HARDCPY Message routine IEE4103D I
VARY Scan and Router IEE4203D I
VARY MSTCONS Handler IEE4303D I
VARY Keyword Scan IEE4403D I
STOP Command Handler IEE4503D I
VARY ON/OFFLINE of Consoles I

and Message Handler IEE4603D I
VARY HARDCPY Handler IEE4703D I
VARY CONSOLE Message routine IEE4803D I
VARY CONSOLE Handler I IEE4903D I ______________________________ ~ __________ J

Table 11. System Output Writer Modules
r------------------------------r----------,
I Class Name setup IEFSD08l I
I Command processing IEFSD083 I
I Data Set Delete IEFSD171 I
I Data Set Writer Interface IEFSD070 I
I DSB Handler IEFSD085 I
I Initialization IEFSD080 I
I Job separator IEFSD094 I

Linkage Module IEF078SD I
Linkage Module IEF079SD I
Linkage Module IEF082SD I
Linkage Module IEF083SD I
Linker IEFSD078 I
Linkage to Queue Manager I

Delete IEFSD079 I
Main Logic IEFSD082 I
Message Module IEFSD096 I
Print Line IEFSD095 I
Put IEFSD089 I
5MB Handler IEFSD086 I
Standard Writer IEFSD087 I
Transition IEFSD088 I
Wait IEFSD084 I L ______________________________ ~ __________ J

104

Table 12. System Restart Modules
r------------------------------T----------,
I I Source I
I Routine I Module I
~------------------------------+----------~ I Delete I IEFSD303
I Initialization I IEFSD300
I Jobnames Table I IEFSD302
I Linkage Module I IEF300SD
I Linkage Module I IEF304SD
I Message Module I IEFSD312
I Purge Queue Construction I IEFSD301
I Scratch Data sets I IEFSD304
I Scratch Data Sets I IEFSD308
I TTR and NN to MBBCCHHR I
I Conversion I IEFSD310 L ______________________________ ~ _______ __

Table 13. System Task Control Modules
r------------------------------T----------, I Allocation Interface IEEVACTL I
I Internal JCL Reader IEEVICLR I
I Interpreter Control IEEVRCTL I
I JCL Edit IEEVJCL I
I Linkage to IEFSD535 IEFSD587
I Linkage to IEE534SD IEFSD588
I Linker IEESD591
I Link-Table IEEVLNKT
I LPS" IEFSD534
I Message Writer IEEVMSGl
I Message Writer IEEVSMSG
I Message Writing IEEVOMSG
I POST IEESD592
I Problem Program Mode IEFSD535
I QMPA Builder IEEVSMRA
I START Syntax Check IEEVSTAR
I Termination Interface IEEVTCTL
I "rite '1IGT on Disk IEESD590 L ______________________________ ~ _______ __

Table 14. Termination Modules
r------------------------------r----------,
I I Source I
I Routine I Module I
~------------------------------+----------i

Disposition and Unallocation
Messages

VARY Interface and Disposi­
tion and Una1location
Messages

Disposition and Unallocation
Disposition and Unallocation
DSB processing
Job statement Condition Code

Processor
Jot statement Condition Code

Processor Messages
Jot Termination Control
Jot Termination Exit
Message Blocking
Message MOdule
Message
Restart Preparation
Step Termination Control
Step Termination Control

Routine Messages
Step Termination Data Set

Driver
Step Terminate Exit
Step Termination Messages
System Output Interface
Termination Entry
User Accounting Routine

IEFZHMSG
IEFZGJBl
IEFZGSTl
IEFYTVMS

IEFVJIMP

IEFVJMSG
IEFZAJB3
IEFSD31Q
IEFYSVMS
IEFW'IERM
IEFIDMPM
IEFRPREP
I'EFYNIMP

IEFYNMSG

IEFYFJB3
IEFSD22Q
IEFYPMSG
IEFSD017
IEFSD42Q

Linkage IEFACTLK
User Dummy Accounting IEFACTFK L ______________________________ ~ __________ J

Appendix B: MFT Modules 105

Module Descriptions

I This section contains a brief description of each of the modules used by ZtlFT. An alpham­
eric list of the entry point and control section names, together with the name of the
module that contains them, is provided to allow cross-referencing between modules.
Modules are listed alphamerically by module name; associated with each module is a
descriptive name, which indicates the major component of the system to which the module
belongs. Each module contains a brief statement of the purpose of the module. Where ap­
plicable, the description includes the names of the module's entry pOints, the names of
the modules to which it passes control, the major tables and work areas to which it
refers, its attributes, the names of the control sections it contains, and a page
reference to the detailed writeup in the Job Management section.

r---------------------~-------------------1 r---------------------~-------------------, I Entry point or I Module Name I I Entry Point or I I
I Control section I I I Control Section I Module Name I
I r:;lame I I I Name I I
~---------------------+-------------------i ~---------------------+-------------------i I GO I IEFSD5l5 I IEESD592 I IEESD592 I
I IEAGENQl I lEAGENQl I IEEVACTL I IEEVACTL I
I IEAGENQ2 I lEAGENQ2 I IEEVICLR I IEEVICLR I
I IEAQC'l'OO I IEE0903D I IEEVJCL I IEEVJCL I
I IEAOTIOl I lEAOTIOl I IEEVLIN I IEEVLIN I
I IEEBAl I IEECVCRA I IEEVLDSP I IEEVLDSF I
I IEEBC1PE IEECVCRX I IEEVLNKT I IEEVLNKT I
I I I I
I IEECIR45 IEECVC'l'W I IEEVLOUT I IEEVLOUT I
I IEECIR50 IEECIR50 I IEEVMSGl I IEEVMSGl I
I IEEC~DCM IEECMDOM I IEEVOMSG IEEVOMSG I
I IEECMDSV IEECMDSV I IEEVRCTL IEEVRCTL I

IEECMWRT IEECMAWR I IEEVRFRX IEEVRFRX I
IEECMWSV IEECMWSV I IEEVSMBA IEEVSMBA I
IEECMWTL IEECMWTL I IEEVSMSG IEEVSMSG I

I
IEECVCTI IEECVCTI IEEVSTRT IEEVSTAR I
IEECVCTR IEECVCTR IEEV'ICTL IEEVTCTL I
IEECVCTW IEECMAWR IEEXEDNA I EEXEDNA I
IEECVPM IEECVPM IEE0303D IEE0303D I
IEECVPRG IEECVED2 IEE0303F IEE0303F I
IEECVXIT IEECVCTE IEE0403D IEE0403D
IEEDFlr:;ll IEEFINl IEE0403F IEE0403F

IEEDFIN2 IEEDFIN2 IEE0503D IEE0503D
IEEDFIN3 IEEDFIN3 IEE0603D IEE0603D
IEEDFIN4 IEEDFlN4 IEE0703D IEE0703D
IEEDFIN5 IEEDFlN5 I IEE0803D IEE0803D
IEEDFIN6 IEEDFlN6 I IEE 110 3D IEEll03D
IEEDFIN7 IEEDFlN7 I IEE1203D IEE1203D
IEEDFIN8 IEEDFIN8 I IEE1403D IEE1403D

IEEDFIN9
I

IEEDFIN9 I IEE1603D IEE1603D
IEED1?ART IEEDFIN2 I IEE1703D IEE1703D
IEELCG02 IEELOG02 I IEElA03D IEE1A03D
IEELWAIT IEELWAIT I IEElE03D IEE1B03D
IEEMSER IEESD568 I IEE2103D IEE2103D
IEEPDISC IEEPDISC I lEE2303D IEE2303D
IEESD562 IEESD562 I lEE2603D IEE2603D

I
IEESD563 IEESD563 I IEE2903D IEE2903D
IEESD564 IEESD564 I IEE3l03D IEE3l03D
IEESD565 IEESD565 I IEE4103D IEE4103D
IEESD566 IEESD566 I IEE4203D IEE4203D
IEESD567 IEESD567 I lEE43030 IEE4303D
IEESD590 IEESD590 I IEE4403D IEE44030
IEESD591 I IEESD591 I IEE4503D IEE4503D _____________________ ~ ___________________ J

---------------------~-------------------j

106

r---------------------T-------------------, 1 Entry point or 1 1
1 Control Section 1 Module Name 1
I N~e 1 1
~---------------------+-------------------~ IEE4603D IEE4603D

IEE4703D IEE4703D
IEE4803D IEE4803D
IEE4903D IEE4903D

IEE591SD
IEFACTLK
IEFACTLK
IEFACTRT
IEFCVCLl
IEFCVOLl

IEFCVCL2
IEFCVOL2
IEFCVCL3
IEFCVOL3
IEFDPOST

IEFDSDRP
IEFICR
IEFIDMPM
IEFIRC
IEFJOB

IEFRG
IEFORMAT
IEFPH2
IEFQAGST
IEFQASGN

IEFQASNM
IEFQDELE
IEFQMDQ2
IEFQMDUM
IEFQMNQ2

IEFQMSSS
IEFQMSSS
IEFQMSSS
IEFQMRAW
IEFQMUNC

IEFRCLNl
IEFRCLN2
IEFRPREP
IEFRSTRT
IEFSD012

IEFSD017
IEFSD055
IEFSD068
IEFSD070
IEFSD011

IEFSD018
IEFSD078
IEFSD019
IEFSD079
IEFSDOaO

1
I
I
1
1
I
I
1
I
I
I
1
I
I

IEESD591
IEFACTFK
IEFACTLK
IEFACTRT
IEFCVFAK
IEFMCVOL

IEFCVFAK
IEFMCVOL
IEFCVFAK
IEFMCVOL
IEFVPOST

IEFDSDRP
IEEVICIR
IEFIDMPM
IEFSD533
IEFQRESD

IEFSD532
IEFORMAT
IEFSD531
IEFQAGST
IEFQASGQ

IEFQASGQ
IEFQDELQ
IEFQMDQQ
IEFQMDUM
IEFQMNQQ

IEFQBVMS
IEFQMDUM
IEFQMLKl
IEFQMRAW
IEFQMUNQ

IEFRCLNl
IEFRCLN2
IEFRPREP
IEFRSTRT
IEFVSD12

IEFSD017
IEFSD055
IEFSD168
IEFSD070
IEFSD1.11.

IEFSD078
IEF018SD
IEFSD079
IEF079SD
IEFSD080

IEFSD081 1 IEFSD081
IEFSD082 I IEF082SD 1 _____________________ L ___________________ J

r---------------------T-------------------, 1 Entry Point or I 1
1 Control section 1 Module Name 1
1 N~e 1 1
~--------------------+-------------------~

1
I
1
1
1
1
1
1
1
I

.1
I
1
1
I
I
1
1
1
1
I
1
I

I
1
I

IEFSD082 I IEFSD082
IEFSD083 1 IEFSD083
IEFSD083 1 IEF083SD
IEFSD084 1 IEFSD084
IEFSD085 1 IEFSD085

IEFSD086
IEFSD087
IEFSD088
IEFSD089
IEFSD090

IEFSD094
IEFSD095
IEFSD095
IEFSD096
IEFSD097

IEFSD300
IEFSD300
IEFSD301
IEFSD302
IEFSD303

IEFSD304
IEFSD304
IEFSD305
IEFSD308
IEFSD310

IEFSD311
IEFSD312
IEFSD510
IEFSD511
IEFSD512

IEFSD512
IEFSD513
IEFSD514
IEFSD515
IEFSD516

IEFSD517
IEFSD518
IEFSD519
IEFSD530
IEFSD531

IEFSD534
IEFSD535
IEFSD531
IEFS0540
IEFSD541

IEFSD554
IEFSD555
IEFSD556
IEFSD551
IEFSD558

1
1
1
I

IEFSDOB6
IEFSD087
IEFSD088
IEFSD089
IEFVSD13

IEFSD094
IEFSD095
IEFSD195
IEFSD096
IEFSD097

IEF300SD
IEFSD300
IEFSD301
IEFSD302
IEFSD303

IEFSD304
IEF304SD
IEFSD305
IEFSD308
IEFSD310

IEFSD311
IEFSD312
IEFSD510
IEFSD511
IEFSD512

IEFSD553
IEFSD513
IEFSD514
IEFSD515
IEFSD516

IEFSD517
IEFSD518
IEFSD519
IEFSD530
IEFSD531

IEFSD534
IEFSD535
IEFSD537
IEFSD540
IEFSD541

IEFSD554
IEFSD555
IEFSD556
IEFSD557
IEFSD558

1 IEFS0559 IEFSD559
1 IEFSD561 IEFSD561 L _____________________ L ___________________ J

Appendix B: ~~T Modules 101

r---------------------T-------------------, I Entry point or I I
I Control Section I Module Name I
I Name I I
~---------------------+-------------------i

I
I
I
I
I
I
I
I

IEFSD569 IEFSD569
IEFSD572 IEFSD572
IEFSD573 IEFSD572
IEFSD587 IEFSD587
IEFSD588 IEFSD588

IEFSD589
IEFSD597
IEFSD598
IEFSD599
IEFSD71M

IEFSD83M
IEFSD85M
IEFSD86M
IEFSD871
IEFSD897

IEFSMR
IEFUCBL
IEFVAWAT
IEFVDA
IEFVDBSD

IEFVEA
IEFVFA
IEFVFB
IEFVGI
IEFVGR

IEFVGM
IEFVGMl
IEFVGM2
IEFVGM3
IEFVGM4

IEFVGM5
IEFVGM6
IEFVGM7
IEFVGM8
IEFVGM9

IEFVGMIO
IEFVGM11
IEFVG~..1.2
IEFVGM13
IEFVGM14

IEFVGM15
IEFVGM16
IEFVGM17
IEFVGM18
IEFVGM19

IEFVGM70
IEFVGM78
IEFVGS
IEFVGT
IEFVHA

IEFSD589
IEFSD597
IEFSD598
IEFSD599
IEFSD171

IEFSD083
IEFSD085
IEFSD086
IEFSD087
IEFSD089

IEFRSTRT
IEFWAOOO
IEFSD195
IEFVDA
IEFVDBSD

IEFVEA
IEFVFA
IEFVFB
IEFVGI
IEFVGR

IEFVGM
IEFVGMl
IEFVGM2
IEFVGM3
IEFVGM4

IEFVGM5
IEFVGM6
IEFVGM7
IEFVGM8
IEFVGM9

IEFVGMIO
IEFVGMll
IEFVGM12
IEFVGM13
IEFVGM14

IEFVGM15
IEFVGM16
IEFVGMlM
IEFVGM18
IEFVGM19

IEFVGM70
IEFVGM78
IEFVGS
IEFVGT
IEFVHA

I IEFVHAA IEFVHAA
I IEFVHB IEFVHB L _____________________ ~ ___________________ J

108

r---------------------T-------------------, I Entry Point or I I
I Control Section I Module Name I
I Name I I
~---------------------+----------------- .. I IEFVHC IEFVHC
I IEFVHCB IEFVHCB
I IEFVHE IEFVHE
I IEFVHEB IEFVHEB
I IEFVHEC IEFVHEC
I
I
I
I
I
I
I
I
I

IEFVHF
IEFVHG
IEFVHH
IEFVHHB
IEFVHL

IEFVHM
IEFVHN
IEFVHQ
IEFVHR
IEFVHl

IEFVH2
IEFVJ
IEFVJA
IEFVJMSG
IEFVR

IEFVRMJl
IEFVRMSG
IEFVM
IEFVMCVL
IEFVMCVL

IEFVMQMI
IEFVMSGR
IEFVMl
IEFVMl
IEFVM2

IEFVM3
IEFVM4
IEFVM5
IEFVM6
IEFVM7

IEFVM76
IEFVRRC
IEFVRRCA
IEFVRRCB
IEFVRRl

IEFVRR2
IEFVRR3
IEFVSDRA
IEFVSDlID
IEFVSMBR

IEFV15XL
IEFV15XL
IEFVR2AE
IEFVR3AE
IEFWAOOO

IEFWAOO2
IEFWA7

IEFVHF
IEFVHG
IEFVHH
IEFVHHB
IEFVHL

IEFVHM
IEFVHN
IEFVHQ
IEFSD536
IEFVHl

IEFVH2
IEFVJIMF
IEFVJA
IEFVJMSG
IEFVRIMF

IEFVRMSG
IEFVRMSG
IEFVMISl
IEFVMFAR
IEFVMLSl

I EFVMIS 1
IEFVML'36
IEFVMISl
IEFVMMSl
IEFVM2LS

IEFVM3LS
IEFVM4LS
IEFVM5LS
IEFVMIS6
IEFVMLS7

IEFVM76
IEFVRRC
IEFVRRC
IEFVRRC
IEFVRRl

IEFVRR2
IEFVRR3
IEFVSDRA
IEFVSDRD
IEFVSMBR

IEFXJIMF
IEFSD551
IEFVRR2
IEFVRR3
IEFWAOOO

IEFWAOOO
IEFWAOOO

---------------------~-------------------

r---------------------T----~--------------,
I Entry Point or I I
I Control Section I Module Nanie I
I N~e I I
r---------------------f-------------------i

IEFWCOOO IEFWCFAK
IEFWCOOO IEFWCIMP
IEFWC002 IEFWCIMP
IEFWDOOO IEFWDFAK
IEFWDOOO IEFWDOOO

IEFWDOOl IEFWDOOl
IEFWDMSG IEFWDOOO
IEFWIISD IEFSD21Q
IEFWSTRT IEFWSTRT
IEFWSWIT IEFWSWIN

IEFWTERM IEFWTERM
IEFW1FAK IEFSD41Q
IEFW1FAR IEFUFAK
IEFW2FAK IEFSD41Q
IEFW2FAK IEF41FAK

IEFW21SD IEFSD21Q
IEFW21SD IEFSD557
IEFW22SD IEFSD22Q
IEFW31SD IEFSD31Q
IEFW41SD IEFSD41Q

IEFW41SD IEF41FAK
IEFW42SD IEFSD42Q
IEFXA IEFXCSSS
IEFXA~.sG IEFXAMSG
IEFXHOOO IEFXHOOO

IEFXJ~SG IEFXJMSG
IEFXJX5A IEFSD552
IEFXJX5A IEFXJIMP
IEFXJOOO IEFXJFAK
IEFXJOOO IEFXJIMP

IEFXKMSG IEFXKMSG
IEFXKOOO IEFXKIMP
IEFXTOOO IEFXTOOD
IEFXTOO2 IEFXTOO2
IEFXTOO3 IEFXTOO3

IEFXVMSG IEFXVMSG
IEFXVNSL IEFXVNSL
IEFXVOOl IEFAVFAK
IEFXVOOl IEFXVOOl
IEFXVOO2 IEFXV002

IEFX3000 IEFX300A
IEFX5000 IEFX5000
IEFYN IEFYNIMP
IEFYNl'!SG IEFYNMSG
IEFYP IEFYPJE3

IEFYPl'!SG IEFYPMSG
IEFYS IEFYSVMS
IEFYT IEFYTVMS
IEFZA IEFZAJB3
IEFZG IEFZGSTl

IEFZGJ IEFZGJBl
IEFZGl'!SG IEFZGMSG L _____________________ L ___________________

r---------------------T-------------------,
I Entry Point or I I
I Control Section I Module Name I
I Name I I
~---------------------f-------------------~

IEFZH IEFZHMSG
IEF085SD IEFSD085
IEF086SD IEFSD086
IEF850SD IEFSD085
IEG056 IEAGENQl

IEG056 IEAGENQ2
IGCXL07B IEECMCSW
IGCXM07B IEECMCSW
IGCXN07B IEECMCSW
IGCXOO7B IEECMCSW

IGCOOO1C IEAGTMOA
IGCOOO3E IEECVWTC
IGCOOO5B IEFVSMBR
IGCOOO60 IEAASTOO
IGC0101C IEAATMOl

IGC0103D IGC0103D
IGC0103E I EEVWT OR
IGCOll1C IEAATMOA
IGC0201C IEAATM02
IGC0211C IEAATM2A

IGC0221C: IEAATM2E
IGC0301C IEAATM03
IGC0401C IEAATM04
IGC048 IEAGENQl
IGC048 IEAGENQ2

IGC0501C IEAGTM05
IGC0601C IEAGTM06
IGC0701C IEAGTMOO
IGC0801C IEAGTM08
IGC0901C IEAGTM09

IGC0907B IEECMWTl
IGCOB01C IEAATMOE
IGCOC01C IEAATMOC
IGCOD01C IEAATMOD
IGCOE01C IEAATMOE

IGC1803D IEESD571
IGC1903D IEESD561
IGF2603D IGF2603D
IGF2703D IGF2703D
LOC IEFLOCDC

LOCCAN IEFLOCDC
LOCDQ IEFLOCDC
MSOFF IEFXJMSG
MSRCV IEFXJMSG
MSSYS IEFXJMSG

SD304MGl I IEFSD312
SD304MG2 I IEFSD312
SD305MGl I IEFSD312
SD55MSGl I IEFSD311
SD55MSG2 I IEFSD311

I
SD55MSG3 I IEFSD311
SMALLGO I IEFSD599 _____________________ L ___________________

Appendix B: MFT Modules 109

r--------------~------T-------------------, I Entry Point or I I r---------------------T-------------------, I Entry Point or I I
I ControlSeGtion I Mod.ule Name· I I Control Section I Module l'lallle I
I !:'lame I I I Name I I
~---------------------t------------·------i f---------------------t-------------------i I SMALTEBM IEFSDS15 I VM7900 I UFVMLSl
1 SMALTERM IEFSD559 I VM7950 I EFVMLS 1

STR~SGOl IEFYNMSG I XIIB32 IEFXSOOO
VM7000 IEFVMLSl I X7T.EAO IEFXT002
VM7055 IEFVY~Sl X77EAl IEFXT002

VM7055AA IEFVMLSl X'ITEB3 IEFXTOO2
VM7060 IEFVMLSl X'I'IPOO IEFXTOOD
VM7065 IEFVMLSl X'I'IRDJ IEFXT002
VM7070 IEFVMLSl XUUBOO IEFXT003
VM7090 IEFVMLSl XUUB06 IEFXTOO3

VM7100 IEFVM2LS X33B42 IEFX300A
VM713 0 IEFVMLSl X55C86 IEFXSOOO
VM715 0 IEFVM3LS X55D3G IEFX5000
VM7200 IEFVM4LS YPPMSGl IEFYPMSG
VM73 00 IEFVM5LS YPPMSG2 IEFYPMSG

VM7370 IEFVMLSl XPS631 IEFZBMSG
VM7600 IEFVM76 ZGOE60 IEFZBMSG
VM7700 IEFVMLSl Z~ODl IEFZHMSG
VM7742 IEFJMLSl Z~OEl IEFZSMSG
VM7750 IEFVMLSl ZPOQM IEFZGJBl
VM7850 IEFVMLSl ZPOQMGRl IEFZGSTl I _____________________ 4 __________________ _ _____ ~ _______________ ~ ___________________ J

110

Module Descriptions

Appendix B: MFT Modules 111

IEAASTOO: Supervisor - STAE Service
Routine

This routine is entered when the STAE macro
instruction (SVC 60) is issued. It
creates, cancels, or overlays a STAE con­
trol block according to the options speci­
fied. It prepares the task to intercept
the scheduled abnormal termination (ABEND)
processing.

• Entry: IGC00060

• Attributes: Non-resident, reentrant

• Control Section: IGC00060

IEAATMOA: Supervisor -- ABEND Linkage
Routine

This routine checks for valid and invalid
recursions. For an invalid recursion, con­
trol is passed to the Damage Assessment
Routine. For a valid recursion, a bit is
set in the TCBFLGS field of the TCB to pre­
vent an ABDUMP from being attempted. IEAA­
TMOA determines the amount of main storage
required by ABEND, and transfers control to
the appropriate ABEND load module.

• Entry: IGCOlllC

• Exits: XCTL to IEAATM02 if main
storage must be
• stolen'

to IEAATM03 if main
storage is available
and an indicative dump
is requested

to IEAATM04 if main
storage is available
and ABDUMP is requested

to IEAATM05 if main
storage is available
and no dump is
requested

to IEAGTM08 if the sched­
uler is failing and no
ABDUMP is requested

• Attributes: Reentrant, disabled for
external and I/O interruptions,
privileged

• Control Section: IGCOlllC

IEAATMOB: Supervisor - ABEND/STAE
Interface Routine

This routine is the first ABEND/STAE Inter­
face load module to receive control from
the ABEND routine when abnormal termination
has been scheduled for a task operating in
a STAB environment.

• Entry: IGCOB01C

112

• Attributes: Non-resident, reentrant

• Control Section: IGCOB01C

IEAATMOC: Supervisor - ABEND/STAB
Interface Routine

• Entry: IGCOC01C

• Attributes: Non-resident, reentrant

• Control section: IGCOC01C

IEAATMOD: Supervisor - ABEND/STAB
Interface Routine

• Entry: IGCOD01C

• Attributes: Non-resident, reentrant

• Control section: IGCOD01C

IEAATMOE: supervisor - ABEND/STAE
Interface Routine

• Entry: IGCOE01C

• Attributes: Non-resident, reentrant

• Control section: IGCOE01C

IEAATM01: Supervisor -- ABEND Validity
Check Routine

~his routine performs validity checking of
the MSS (main storage supervisor) queue,
the load list, the active RB list, and the
DEB queue. It dequeues invalid control
blocks, or terminates the queue at the
point of error, and sets bits in the ABEND
appendage to the boundary box to indicate
invalid control blocks found on one or more
lists.

• Entry: IGC0101C

• Exit: XCTL to IEAATMOA

• Attributes: Reentrant, disabled for
external and I/O interruptions,
privileged

• Control section: IGC0101C

IEAATM02: Supervisor -- ABEND Steal LRB
Main Storage Routine

~his routine 'steals' main storage needed
for ABEND functions that cannot be obtained
via a GETMAIN macro instruction. The main
storage is stolen from programs represented
by LRBs on the loaded program list.

• Entry: IGC0201C

• Exits: XCTL to IEAATM2A if there is no
loaded program list or
if enough main storage
is not available from
the LRBs

to IEAATM2E if IEAA'IM02
has acquired the neces­
sary main storage

• Attributes: Reentrant, disabled for
external and I/O interruptions,
privileged

• Control Section: IGC0201C

IEAATM03: Supervisor -- ABEND Indicative
Dump Routine

This routine accumulates the information
for an indicative dump and stores it in
main storage.

• Entry: IGC0301C

• Exit: XCTL to IEAGTMOS

• Attributes: Reentrant, disabled for
external and I/O interruptions"
privileged

• Control Section: IGC0301C

IEAATM04: supervisor -~ ABEND/ABDUMP
Routine

This routine determines if the user wants a
full or partial ABDUMP, initiates the
ABDUMP output, and calls an SVC 51
(ABDUMP).

• Entry: IGC0401C

• Exits: XCTL to IEAATM03 for an indica­
tive dump if the DCB
has failed to open

to IEAGTM05 for initiali­
zation of the next task

• Attributes: Reentrant, disabled for
external and I/O interruptions"
privileged

• Control Section: IGC0401C

IEAATM2A: supervisor -- AEEND Steal
Problem Program Main Storage Routine

This routine 'steals' main storage needed
for ABEND functions from the lower end of
the partition when it cannot be acquired
either by a GETMAINmacro instruction or by
the steal routine provided by IEAATM02.

• Entry: IGC0211C

• Exits: XCTL to IEAATM03 if indicative
dump is requested

to IEAATM04 if ABDUMP is
requested

to IEAGTM05 if no dump is
requested or if a dump
was previously
attempted and failed

• Attributes: Reentrant, disabled for
external and I/O interruptions,
privileged

• Control section: IGC0211C

IEAA'IM2B: supervisor -- ABEND LRB Stack
Routine

'Ihis routine moves the LRBs whose main
storage was stolen by IEAATM02 to conti­
guous locations in the low end of the freed
area and resets the chain pointers in the
LRBs.

• Entry: IGC0221C

• Exits: XCTL to IEAATM03 if indicative
dump is requested

to IEAATM04 if ABDUMP is
requested

to IEAGTM05 if no dump is
requested or if a dump
was previously
attempted and failed

• Attributes: Reentrant, disabled for
external and I/O interruptions,
privileged

• Control Section: IGC0221C

IEAGENQ1: Supervisor Enqueue Service
Routine

'Ihis routine constructs and processes con­
trol blocks to serialize the use of
resources in a multiprogramming environ­
ment.

• Entry: IEAGENQ1

• Exit: EXI'I' routine or to the
dispatcher

• 'Iables/Work Areas: Minor QCB, Major
QCB, Queue element

• Attributes: Reenterable

• Control Sections: IGC048 and IEG056

IEAGENQ2: Supervisor Shared DASD
Enqueue Service Routine

'Ihis routine is the enqueue service routine
for systems that include the Shared DASD
option. It is identical to IEAGENQ1 except
that additional processing is performed

Appendix B: MFT Modules 113

when a shared direct-access device is
requested through the RESERVE macro
instruction.

• Entry: IEAGENQ2

• Exits: EXIT routine or to the
dispatcher

• Tables/Work Areas: Minor QCB, Major
QCB, Queue element

• Attributes: Reenterable

• Control sections: IGC04B and IEG056

IEAGTMOA: Supervisor -- ABEND STAE Test
Routine

This routine prevents asynchronous exits
and stores the completion code Cif net pre­
viously stored). It determines if control
should be returned to STAE after a purge
error, if the Graphics Abend Exit routine
should be entered, and if a valid STAE is
in effect.

• Entry: IGC0001C

• Exits: XCTL to IEAGTMOO to continue
ABEND processing

to IEAATMOB if a valid S~AE
is in effect

to IEAGTMOB if an invalid
ABEND recursion or a
primary DAR recursion
has occurred

to IEAGTM09 if a secondary
DAR recursion has
occurred

to IEAATMOB if an ABEND was
issued by the Purge rou­
tine during STAE
processing

EXIT to caller if graphics
program

• Attributes: Reentrant, disabled,
privileged

• Control Section: IGC0001C

IEAGTMOO: Supervisor ABEND
Initialization Routine

This routine provides purging for IQES and
WTOR requests, and cancels the task timer
element.

• Entry: IGC0701C

• Exit: XCTL to IEAATMOD if IEAGTMOO was
entered from STAE

114

to IEAGTM05 if this is a
normal end

to IEAGTM06 if this is an
abnormal end

• Attributes: Reentrant, disabled for
SVC interruptions, privileged

• Control section: IGC0701C

!EAGTM05: supervisor -- ABEND Termination
Routine

~his routine closes all data sets, purges
the timer queue, resets the TCB fields,
frees main storage, and transfers control
to the job scheduler.

• Entry: IGC0501C

• Exits: XCTL to IEFSD51K for scheduler­
size partitions

to IEFSD599 for small
partitions

• Attributes: Reentrant, disabled for
external and I/O interruptions,
privileged

• control section: IGC0501C

!EAGTM06: supervisor -- ABEND Input/Output
Purge Routine

~his routine purges I/O operations in pro­
cess and outstanding I/O requests.

• Entry: IGC0601C

• Exit: XCTL to IEAATMOl for normal exit
to IEAGTM09 if a system

task or "must complete"
task

• Attributes: Reentrant, disabled for
I/O and external interruptions,
privileged

• Control section: IGC0601C

!EAGTMOB: supervisor -- DAR Core Image
Dump Routine

~his routine attempts to write a core image
dump to a preallocated data set. It also
processes primary DAR recursions.

• Entry: IGCOB01C

• Exits: XCTL to IEAGTM05 if called for
a dump only

to IEAGTM09 to continue
DAR processing

• Attributes: Refreshable, disabled,
privileged

• Control Section: IGCOB01C

IEAGTM09: Supervisor -- BAR Task
Reinstatement Routine

This routine attempts reinstatement of
failing system tasks. It also processes
secondary DAR recursions and failing tasks
which are in "Must Complete" status.

• Entry: IGC0901C

• Exits: XCTL to IEAGTM05 for non-system
task with or without
non-critical resources

Branch to dispatcher for secon­
dary DAR recursion,
critical resources, or
system task failure.

• Attributes: Refreshable, disabled,
privileged

• Control section: IGC0901C

IEAOTI01: supervisor -- Timer Second Level
Interruption Handler

This routine maintains the timer queue when
the timer option is not specified during
system generation. It handles only the
normal six hour interruptions.

• Entry: IEAOTI01

• Exit: To Timer/External FLIH

• Tables/Work Areas: SHPC, T4PC, LTPC

• Attributes: Reenterable, disabled for
system interruptions, resident., super­
visor mode

• Control Section: IEAOTI01

IEECIR50: Master Scheduler -- Wait/Router
Routine

This routine waits until a command is
issued, analyzes the command and passes
control to the appropriate processing
module.

• Entry: IEECIR50

• Exits: IEESD562, IEEDFIN1

• Attributes: Read-only, reenterable,
resident in nucleus.

• Control Section: IEECIR50

• Page Reference: 49

IEECMAWR: Communications Task -- Router
Module

This module waits for the posting of a com­
munications task ECB, determines the type
of interruption service required (external,

attention, I/O, WTO, or DCM), and passes
control to other communications task
modules for further processing.

• Entry: IEECMWRT

• Exit: IEECMCSW, IEECMDSV, IEECMWSV,
IEECMW'IL, IEECMDOM, Dispatcher

• 'Iables/Work Areas: CVT, ElL, UCM, WQE

• Attributes: Reentrant, refreshable

• Control Section: IEECVCTW

IEECMCSW: communications Task -- Console
s1Nitch Module

'Ihis routine provides console switching as
a result of an unrecoverable I/O error on a
console device, as a result of an external
interruption, or as a result of a VARY com­
mand, and provides hard copy s1Nitching from
a console device of SYSLOG.

• Entry: IGCXL07B

• Exit: IEECMAWR, IEECMDSV

• 'Iables/Work Areas: CVT, CXSA, RQE,
UCM, WQE

• Attributes: Reentrant, refreshable

• Control sections: IGCXL07B, IGCXM07B,
IGCXN07B, IGCXC07B

IEECMDOM: Communications Task -- DOM
Service Module

'Ihis module marks for deletion specified
WQES on the system output queue.

• Entry: IEECMDOM

• Exit: IEECMAWR, IEECVDT1

• 'Iables/Work Areas: CVT, DCM, UCM, WQE

• Attributes: Reentrant, refreshable

• Control Section: IEEC~~CM

IEECMDSV: Communications Task -- Device
Service Module

'Ihis module provides the interface with
device support processors and provides con­
sole and system output queue management.

• Entry: IEECMDSV

• Exit: IEECMAWR, IEECMWSV, IEECMCSW,
Device Support Processors

• 'Iables/Work Areas: IEEBASEB, CVT., ElL,
UCM, WQE

Appendix B: MFT Modules 115

• Attributes: Reentrant, refreshable

• Control section: IEECMDSV

IEECMWSV: Communications Task -- WTO(R}
Service Module

This module puts unprocessed WQEs on appro­
priate console output queues

• Entry: IEECMWSV

• Exit: IEECMDSV, IEECMAWR

• Tables/Work Areas: UCM, WQE

• Attributes: Reentrant, refreshable

• Control section: IEEcMwSV

IEECMWTL: Communications Task -- NIP
Message Buffer Writer Module

This module issues SVC 36 to write NIP mes­
sages to SYSLCG. If SYSLOG has not been
initialized or not specified as the hard
copy log, it issues SVC 35 to write the NIP
messages to the operator.

• Entry: IEECMWTL

• Exit: Return to caller

• Control Section: IGC0907B

IEECVCRA: Communications Task -- Console
Interruption Routine

This routine notifies the wait routine that
a console read has been requested.

• Entry: IEEBAl

• Exit: Return to lOS

• Tables/Work Areas: ECE, UCM, UCE

• Attributes: Reenterable

• Control Section: IEEEAl

• Page Reference: 44

IEECVCRX: Communications Task -- External
Interruption Routine

This routine switches control from the pri­
mary console device to an alternate console
device when an external interruption
occurs.

• Entry: IEEEC1PE

• Exit: Return to lOS

116

• ~ables/Work Areas: UCM

• Attributes: Reenterable

• Control Section: IEEBC1PE

• Page Reference: 45

IEECVCTE: Communications Task -- User
Qummy WTO/WTOR Exit Routine

~his routine takes the place of the user"s
WlO/W~OR exit routine when an exit routine
was specified at system generation, but
none was supplied.

• Entry: IEECVXIT, from IEECMWSV

• Exit: Return to caller

• Control section: IEECVXIT

!EECVC~I: Console Initialization Routine

lhis routine prints out the NIP message
buffer in systems with the MCS option, and
initializes the console configuration.

• Entry: IEECVCTI, from IEESD569

• Exit: To IEESD569

• Tables/Work Areas: CVT, ELL, UCB, and
UCM

• Attributes:

• Control section: IEECVCTI

IEECVC~R: communications ~ask -- Router
Routine

This .routine determines the type of request
or interruption that occurred, and passes
control to the appropriate processing
routine.

• Entry: IEECVCTR

• Exits: XCTL to IEECVPMX (IGC0107B),
IEECVPMC (IGCl107B), or IEECVPMP
(IGC2107B)

• Tables/Work Areas: UCM, SVRB, UCB

• Attributes: Reenterable

• Control Section: IEECVCTR

• Page Reference: 44

IEECVCTW: Communications Task -- Wait
Routine

This routine waits on all communications
task ECBs associated with WTC/WTOR macro
instructions.

• Entry: IEECIR45

• Exit: None

• Tables/Work Areas: TCB, ECB, UCM

• Attributes: Reenterable

• Control section: IEECIR45

• Page Reference: 44

IEECVED2: Communications Task -- Purge RQE
Routine

This routine scans and purges all outstand­
ing request queue elements (RQEs) pertain­
ing to the terminating task.

• Entry: IEECVPRG

• Exits: End-of-task, and ABEND

• Tables/Work Areas: RQE, WQE, JCM, CVT

• Attributes: Reenterable

• control section: IEECVPRG

IEECVPM: Communications Task -- Console
Device Processor Routine

This routine performs console read and
write operations and checks for errors.

• Entry: IEECVPM

• Exit: XCTL to IEECVCTR (IGC0007B)

• Tables/Work Areas: DCB, UCB, UCM

• Attributes: Reenterable

• Control Section: IEECVPM

• Page Reference: 44

IEECVWTO: Communications Task -­
Write-to-Cperator Routine

This routine processes all WTO macro
instructions.

• Entry: IGC0003E

• Exit: Return to calling program

• Tables/Work Areas: WQE, UCM, CVT, RQE

• Attributes: Reenterable

• Control Section: IGC0003E

• Page Reference: 45

IEEDFIN1: Master Scheduler -- DEFINE
Command Initialization Routine

This routine sets up data areas for parti­
tion definition, issues a DEFINE CC~~~ND
BEING PROCESSED message to all active con­
soles, and passes control to the appropri­
ate processing module.

• Entry: IEEDFINl

• Exits: IEEDFIN3, IEEDFIN4, IEEDFIN5

• Attributes: Read-only, reenterable

• Control Section: IEEDFIN1

• Page Reference: 50

IEEDFIN2: Master Scheduler -- DEFINE
Command Syntax Check and Router Routine

This routine checks the syntax of DEFINE
command statements. If a syntax error is
discovered, the statement is ignored and an
error message is issued. If the syntax is
correct, the information is stored and con­
tz:ol is passed to the appropriate routine.

• Entry: IEEDFIN2, IEEDPART

• Exits: IEEDFIN5, IEEDFIN6, IEEDFIN7

• Attributes: Read-only, reenterable

• Control Section: IEEDFIN2

• Page Reference: 50

IEEDFIN3: Master Scheduler DEFINE
Command Validity Check Routine

This routine determines that all informa-Ition for the partition redefinition is
correct, arid passes control to the appro­
priate processing routine.

• Entry: IEEDFIN3

• Exits: IEEDFIN8, IEEREXIT

• Attributes: Read-only, reenterable

• Control section: IEEDFIN3

• Page Reference: 52

IEEDFIN4: Master Scheduler -- DEFINE
Command Listing Routine

This routine lists partition definitions.

• Entry: IEEDFIN4

• Exits: IEEDFIN3, IEEDFIN5

• Attributes: Read-only, reenterable

Appendix B: MFT Modules 117

• Control Section: IEEDFIN4

• Page Reference: 52

IEEDFIN5: Master Scheduler -- DEFINE
Command Message Routine

This routine contains texts for operator
messages required for DEFINE command pro­
cessing. The message is constructed
according to a code passed by the calling
routine. IEEDFIN5 issues the requested
message and passes control to IEEDFIN2 or
the dispatcher.

• Entry: IEEDFIN5

• Exits: IEEDFIN1, IEEDFIN2 or return to
calling program

• Attributes: Read-only, reenterable

• Control section: IEEDFIN5

• Page Reference: 52

IEEDFIN6: Master Scheduler -- Time-Slice
syntax Check Routine

This routine checks the TMSL subparameters
for proper syntax.

• Entry: IEEDFIN6

• Exits: IEEDFIN2, IEEDFIN5, IEEDPART

• Attributes: Read-only, reenterable

• Control Section: IEEDFIN6

• Page Reference: 52

IEEDFIN7: Master Scheduler -- Keyword Scan
Routine

This routine checks keyword parameters for Isyntax errors. If a syntax error is disco­
vered, the erroneous entry and all follow­
ing entries are ignored, and an error mes­
sage is generated. If the syntax is
correct, the information is stored.

• Entry: IEEDFIN7

• Exits: IEEDFIN2, IEEDFIN3, IEEDFIN4,
IEEDFIN5, IEEDPART

• Attributes: Read-only, reenterable

• Control Section: IEEDFIN7

• Page Reference: 52

118

IEEDFIN8: Master Scheduler system
Reinitialization Routine

1his routine checks the redefinition infor­
mation to assure that the request is valid.
If no error is found, this routine con­
structs a list of ECBs (one for each of the
affected partitions) to be posted 'When the
jobs in the partitions have terminated. It
enqueues on the partition boundary boxes,
updates system control blocks and the
affected boundary boxes, and then dequeues.

• Entry: IEEDFIN8

• Exits: IEEDFIN9, IEEREXIT

• Attributes: Read-only, reenterable

• Control section: IEEDFIN8

• page Reference: 53

IEEDFIN9: Master Scheduler -- Command
Final Processor Routine

~his routine issues a message to all active
consoles that processing is complete and
updates the task control blocks affected by
time-Slicing if time-slicing is specified.

• Entry: IEEDFIN9

• Exits: IEEDFIN5

• Attributes: Read-only, reenterable

• Control Section: IEEDFIN9

• Page Reference: 53

IEELOG02: Master scheduler Log Open
Initialization Module

~his routine opens the system log at IPL
time.

• Entry: IEELOG02

• Exit: IEESD569

• ~ables/WOrk Areas: CVT, UCB, UCM,
~IOT, M/S resident data area, JFCB,
IEELCA, DCB.

• Attributes: Refreshable

• Control section: IEELOG02

IEELWAIT: Master scheduler -- Log Wait and
writer Module

~his module writes data from the log buffer
to the system log.

• Entry: IEELWAIT

• Exit: To Dispatcher

• Tables/Work Areas: CVT, LCA, MRC

• Attributes: Resident

• Control Section: IEELWAIT

IEEPDISC: Display Consoles Get Region
Rouotine

This routine obtains a region of main
storage, and sets up an environment for the
execution of the DISPLAY CONSOLES command,
and then frees the region when control is
returned.

• Entry: IEEPDISC, from IEEVATT1

• Exit: To IEEXEDNA, Return to Master
Task (SVC 3)

• Attributes: Read-only, reentrant,
resident

• Control Sections: IEEPDISC

IEESD561: SVC 34 -- START and STOP INIT
Routine

This routine processes the START and STOP
INIT commands.

• Entry: IGC1903D

• Exit: Return to caller, or to IEE0503D
for an error message

• Tables/Work Areas: CSCB, PIB, M/S
resident data area, CVT, XSA

• Attributes: Reenterable, Transient
read- only

• Control Section: IGC1903D

• Page Reference: 47

IEESD562: Master Scheduler -- Syntax Check
Routine

This routine checks syntax of the command
and sets internal codes for queue search,
if required.

• Entry: IEESD562

• Exits: XCTL to IEESD563 for queue
search, to IEESD566 for DISPLAY active,
or to IEEXEDNA for DISPLAY CONSOLES

• Attributes: Read-only, reenterable

• External References: None

• Control section: IEESD562

• page Reference: 49

IEESD563: Master Scheduler -- Queue Search
setup Routine

~his routine determines which queue is to
be searched, reads and scans the queue con­
trol record, establishes parameters for the
search, and transfers control to the queue
search module. IEESD563 will write out
updated queue control records.

• Eritry: IEESD563

• Exits: XCTL to IEESD564 to search
queue; XCTL to IEESD565 at completion

• Tables/Work Areas: QCR, QMPA, CVT,
CSCB

• Attributes: Read-only, reenterable

• Control Section: IEESD563

• Page Reference: 49

IEESD564: Master Scheduler -- Queue Search
!1odule

~his routine searches the work queues for
the execution of the queue manipulation
commands.

• Entry: IEESD564

• Exit: XCTL to IEESD563

• ~'ables/Work Areas: QCR, CSCB, CVT,
QMPA, XSA

• Attributes: Read-only, reenterable

• Control Section: IEESD564

• page Reference: 49

IEESD565: Master Scheduler -- Service
Routine

~his routine frees storage obtained by
IEESD563, links to the queue manager to
enqueue an entry or queue control record on
SYS1.SYSJOBQE, or links to write a message.

• Entry: IEESD565

• Exit: Return to caller

• ~ables/WOrk Areas: QMPA, CSCB, QCR,
CV~

• Attributes: Read-only, reenterable

Appendix B: MFT Modules 119

• External References: IEF~MNQ2,
IEE0503D

• Control Section: IEESD565

• Page Reference: 49

IEESD566: Master Scheduler -- DISPLAY A
Routine

rhis routine builds a table and constructs
operator messages according to the proces­
sing required by a DISPLAY A command.

• Entry: IEESD566

• Exit: Return to caller (IEECIR50)

• Tables/Work Areas: QMPA" CSCB., XSA,
QCR, CVT

• Attributes: Read-only, reenterable

• Control Section: IEESD566

• Page Reference: 50

IEESD568: Nucleus -- Master scheduler
Resident Data Area

This routine contains the master scheduler
resident data area.

• Entry: IEEMSER

• Exit: None

• Attributes: Not reusable

• Control Section: IEEMSER

• Page Reference: 87

IEESD571: SVC 34 -- DEFINE, MOUNT, CANCEL
Routine

rhis routine schedules the execution of the
DEFINE, MOUNT, and CANCEL (for active jobs
only) commands.

• Entry: IGC1803D

• Exits:
MOUNT - XCTL to IGC0103D
DEFINE - Return to caller
CANCEL - Active and cancelable

Enter ABTERM to force
cancel

Active and not cancelable
POST and mark CSCB inac­
tive; XCTL to IEE0803D

XCTL to IEE0503D and IEE2103D due to
error.

• Tables/Work Areas: CSCB, PIB, M/S
resident data area, CVT

120

• Attributes: Reenterable

• Control Section: IGC1803D

• Page Reference: 47

IEESD590: System Task control -- write
TIOT on Disk

This routine writes the TIOT which is used
by Job Selection (IEESD510) and checks for
a small partition writer.

• Entry: IEESD590

• Exits: XCTL to IEFSD510 (small parti­
tion writer) or XCTL to IEFSD591

• Tables/Work Areas: TIOT, SPIL

• Attributes: Reenterable

• Control Section: IEESD590

• Page Reference: 75

IEESD591: System Task Control -- Linker
Routine

This routine transfers control between sys­
tem task control and an interpreter or sys­
tem output writer.

• Entry: IEESD591, IEE591SD

• Exit: XCTL to IEEVTCTL

• Tables/Work Areas: CSCB, CVT, PIB,
IWA, QMPA

• Attributes: Reenterable

• Control Section: IEESD591

• Page Reference: 75

IEESD592: System Task Control -- POST
Routine

This routine checks for an error indication
in the CSCB. It posts the error condition
or a valid condition.

• Entry: IEESD592

• Exit: XCTL to IEFSD510

• Tables/Work Areas: None

• Attributes: Reenterable

• Control Section: IEESD592

• page Reference: 75

IEEVACTL: System Task Control
Allocation Interface Routine

This routine sets up the interface between
system task control and the I/O device
allocation routine.

• Entry: IEEVACTL

• Exits: To IEFSD21Q, IEEVMSG1,
IEEVSMSG, IEEVTCTL, or IEEVRWTC

• Attributes: Reenterable

• Control Section: IEEVACTL

• Page Reference: 75

IEEVICLR: System Task Control -- Internal
JCL Reader

This routine reads the internal job control
language used in starting a reader or
writer.

• Entry: IEEVICLR, IEFICR

• Exit: Return to caller

• Tables/Work Areas: DCED

• Attributes: Read-only, reenterable

• Control section: IEEVICLR

IEEVJCL: system Task Control -- JCL Edit
Routine

This routine constructs the internal job
control language used in the START reader
and START writer command execution
routines.

• Entry: IEEVJCL, from IEEVSTRT

• Exit: XCTL to IEERCTL

• Tables/Work Areas: SDT, CSCD

• Attributes: Reenterable

• Control Section: IEEVJCL

IEEVLDSP: Master Scheduler Log
Dispatcher Routine

This routine puts the log data set on the
system output queue.

• Entry: IEEVLDSP

• Exit: Master Scheduler

• Tables/Work Areas: IEEEASEA, CT, IEEL­
CA, UCE, JFCE.

• Attributes: Reentrant

• Control section: IEEVLDSP

IEEVLIN: Master Scheduler Log
Initialization Routine

lhis routine initializes the system log.

• Entry: IEEVLIN

• Exit: IEESD569, IEEVLIN2

• 'Iables/Work Areas: UCM, CVT, UCE,
TIOT, M/S resident data area, IEELCA.

• Attributes: Refreshable

• Control section: IEEVLIN

IEEVLNKT: System Task Control -­
Link-'Iable Module

lhis routine contains the table of routines
that is scanned by IEEVACTL as a validity
check for program linking.

• Entry: IEEVLNKT

• Attributes: Non-executable

• Control section: IEEVLNKT

IEEVLOUT: Log Data Set Reinitialization
Routine

'Ihis routine opens and closes the log data
set to reinitialize the DS1LSTAR and
DS1TREAL fields of the DSCE associated with
the log data set.

• Entry: IEEVLOUT, from IEFSD171

• Exit: IEFSD171

• 'Iables/Work Areas: CVT, DSCB, LCA, M/S
Resident Data Area

• Attributes: Reenterable

• Control Section: IEEVLOUT

IEEVMSG1: system 'Iask Control -- Message
writer Routine

'Ihis routine writes messages to the opera­
tor as required by system task control.

• Entry: from IEEVRCTL, IEEVACTL, or
IEEV'ICTL

• Exit: Return to caller

• Control section: IEEVMSG1

Appendix E: MFT Modules 121

IEEVOMSG: System Task Control -- Message
Writing Routine

This routine assembles and writes messages
to the operator.

• Entry: IEEVOMSG

• Exit: Return to caller

• Control Section: IEEVOMSG

IEEVRCTL: system Task Control
Interpreter Control Routine

This routine provides an interface between
system task control and an interpreter.

• Entry: IEEVRCTL

• Exits: To IEFVHl and IEEVACTL

• Tables/Work Areas: CVT, CSCB

• Control Section: IEEVRCTL

• Page Reference: 74

IEEVRFRX: Master Scheduler -- Table Lookup

• Tables/work Areas: QMPA. LCT. 5MB. IOE

• .Control Section: IEEVSMBA

IEEVSMSG: system 'Iask Control -- Message
~riter Routine

lhis routine writes messages to the opera­
tor as required by the master scheduling
task and system task control.

• Entry: IEEVSMSG. from IEEVMSG1.
IEFSDS33. IEFUH1. or IEEVACTL

• Exit: Return to caller

• Control Section: IEEVSMSG

IEEVSlAR: System lask Control -- Start
Command syntax Check Routine

lhis routine checks the syntax of a START
command. and builds a start descriptor
table (SDn containing the parameters of
the command.

• Entry: IEEVSTRT

Routine • Exits: To IEEVJCL. IEFSDS33. or

This routine can be used to obtain the fol­
lowing information; the CVT address. ,the
contents of a CVT entry. or the contents at
the CVT pointer address. a pointer to the
TCB or the RB, the TIOT pointer I the TIO'I'
entry. the TIOT TTR. or the TIOT UCB point­
er. The routine can also be used to insert
a TIOT pointer. a TIOT TTR. or a TIOT UCB
pointer in the CVT.

• Entry: IEEVRFRX

• Exit: Return to calling program

• Tables/Work Areas: CVT , TCB. RB. TIOT.
UCB

• Attributes: Reenterable

• Control Section: IEEVRFRX

IEEVSMBA: System Task Control -- QMPA
Builder

This routine constructs a queue manager pa­
rameter area (QMPA) referring to the mes­
sage class queue for the use of the I/O
Device Allocation routine.

• Entry: IEEVSMBA

• Exit: To IEEVACTL

122

IEEOS03D

• lables/Work Areas: SDT, M/S Resident
Data Area. CVT, M/S TIOT, UCB XSA. and
CSCB.

• Attributes: Reenterable

• Control Section: IEEVSTRT

• Page Reference: 74

IEEV'ICTL: System Task Control
lermination Interface Routine

lhis routine initializes the necessary
tables for terminating a task that was
established via a S'IART or MCUNT command.

• Entry: IEEVlCTL, from IEEVWILR, IEE­
VACTL or IEFw31SD

• Exit: To IEFW42SD or IEEVOMSG. , then
return to supervisor

• Tables/Work Areas: TCB, JCT. SCT. LCT,
and CSCB

• Attributes: Reenterable. Character
Dependence Type C

• Control Section: IEEVTCTL

IEEVWTOR: communications Task -­
Write-to-Operator With Reply Routine

This routine processes all WTOR rracro
instructions.

• Entry: IGC0103E

• Exit: Return to calling program

• Tables/Work Areas: WQE, RQE, UCM, CVT

• Attributes: Reenterable

• Control Section: IGC0103E

• Page Reference: 45

IEEXEDNA: DISPLAY CONSOLES Processor

This routine processes the DISPLAY command
with the CONSOLES operand and displays the
system console configuration on the re­
questing console.

• Entry: IEEXEDNA to IEESDS62

• Exit: To IEECIRSO

• Attributes: Reentrant

• Control Sections: IEEXEDNA

IEE0303D: SVC 34 -- Translator/Chain
Manipulator

This routine translates lowercase letters
into uppercase, and manipulates the CSCB
chain as requested by the caller of SVC 34.

• Entry: IEE0303D

• Exit: To IEE0403D, or return to caller

• Tables/Work Areas: CVT, M/S resident
data area, CSCB, XSA

• Control Section: IEE0303D

IEE0303F: SVC 36 -- WRITE-TO-LOG

This module copies text records from an
input area to the log buffer and posts the
log ECB when the buffer is full.

• Entry: IEE0303F

• Exit: Returns to Master scheduler,
IEE0403F.

• Tables/Work Areas: IEEBASEA, IEELCA,
CVT

• Attributes:

• control Section: IEE0303F

IEE0403D: SVC 34 -- Router Routines

~his routine identifies the command verb,

I ensures that the console has authority to
enter the command, and passes control to
the appropriate routine.

• Entry: IEE~403D

• Exit: Depending on command verb, via
XC~L to another SVC 34 module

• ~ables/Work Areas: M/S resident data
area, XSA, CSCB

• Control section: IEE0403D

• Page Reference: 47

IEE0403F: SVC 36 (Load 2) -- Log Euffer
Management Module

lhis module opens, closes, and switches
system log buffers.

• Entry: IEE0403F

• Exit: IEE0303F

• Tables/Work Areas: IEEBASEA, IEELCA,
DCB, JFCB " DCB, CVT, TI OT •

• Attributes: Reentrant

• Control section: IEE0403F

IEE0503D: SVC34 -- Message Assembly
Routine

~his routine assembles and edits messages
for the command scheduling routine, and
writes the messages to the operator.

• Entry: IEEOS03D

• Exit: Branch on register 14

• Attributes: Reenterable, read-only

• Control section: IEE0503D

IEE0603D: SVC 34 -- SET Corr,mand Routine

~his routine processes the SET comrr,and.

• Entry: IEE0603D

• Exits: To IEE0903D, IEEOS03D, or
return to caller

Appendix B: MFT Modules 123

• Tables/Work Areas: XSA, CVT, M/S resi­
dent data area

• Attributes: Reenterable, self­
relocating, read only transient

• Control Section: IEE0603D

IEE0703D: SVC 34 -- CSCE Marking Routine

This routine schedules the execution of the
STOP and MODIFY commands by finding and
updating the appropriate CSCE and by issu­
ing a POST macro instruction to the master
scheduling task.

• Entry: IEE0703D

• Exits: Branch on register 14, or XCTL
to IEE0803D, IEE0503D or IEE2103D.

• Tables/Work Areas: M/S Resident Data
Area, XSA, CVT, CSCE, SPL

• Attributes: Reenterable, self­
relocating, read-only, transient

• Control Section: IEE0703D

IEE0803D: SVC34 -- CSCB Creation Routine

This routine schedules the execution of
commands that cannot be completely pro­
cessed by the command scheduling routines.
It performs this function by adding a CSCB
to the CSCB chain and issuing a POST macro
instruction to the master scheduling task.
It also processes the DISPLAY T command.

• Entry: IEE0803D

• Exit: IEE0503D, IEE2103D, IEE2903D, or
return to caller

• Tables/Work Areas: XSA, M/S resident
data area, CVT, CSCB, and UCM

• Attributes: Reenterable, transient,
partially disabled.

• Control Section: IEE0803D

IEE0903D: SET Command Handler

This routine processes the date and time
operands of the SET command.

• Entry: IEAQOTOO

• Exit: SVC 3

• Tables/Work Areas: CVT

124

• Attributes: Reenterable, supervisor
state, disabled for system interrupts,
transient

• Control section: IEAQOTOO

IEE1103D: SVC 34 -- VARY and UNLOAD Scan
and Router Routine

~his routine examines the command and its
operand and routes the command to the
appropriate processing module.

• Entry: IEE1103D

• Exit: IEE2303D for VARY ONLINE, CNGFX,
and CONSOLES operands when SMF is pre­
sent, to IEE3103D for all other VARY
operands and UNLOAD, and to IEE0503D
for errors.

• ~'ables/Work Areas: XSA, CVT, rus resi­
dent data area, and UCM.

• Attributes: Reenterable., self­
relocating, read-only, and transient.

• Control Sections: IEE1103D

IEE1203D: SVC 34 -- Reply Processor

~his routine checks the validity of the
operator's reply command, and moves the
operator's reply (if valid> to the buffer
of the user that issued the respective
Wi~OR.

• Entry: IEE1203D

• Exit: Return to caller

• ~'ables/Work Areas: CVT, UCM, WQE, RQE,
CXSA

• Attributes: Reenterable

• Control section: IEE1203D

IEE1403D: SVC 34 -- HALT Routine

~his routine schedules the execution of the
HALT command ~y a~ding a CSCB to the CSCB
chain and by 1ssu1ng a POST macro instruc­
tion to the master scheduling task.

• Entry: IEE1403D

• Exit: IFBSTAT

• ~ables/Work Areas: XSA, M/S resident
data area" CVT, and CSCB

• Attributes: Reenterable

• Control Section: IEE1403D

IEE1603D: SVC 34 Log and Writelog
Processor Routine

This routine issues a WTL macro instruction
when a LOG command is issued, and stores
the WRITELOG command and posts the Log ECB,
for WRITELOG processing.

• Entry: IEE1603D, from IEE0403D

• Exit: IEE0503D for errors, and return
to caller of SVC 34.

• Tables/Work Areas: XSA, CVT, LCA, and
M/S resident data area.

• Attributes: Reentrant, self­
relocating, read-only, and transient.

• Control sections: IEE1603D

IEE1703D: SVC 34 -- VARY ONGFx/OFFGFX

This routine processes the GVARY command.
It checks the parameters for validity and
if an error is found, it passes control to
IEE0503D via an XCTL macro instruction. If
the parameters are valid, the routine sets
appropriate bits in the Overall Control
Table (OCT) of the GFX reader task. It
then issues a POST macro instruction on the
ECB in the OCT for each graphics device
(2250) placed in the online status.

• Entry: IEE1703D

• Exit: IEE0503D, return to issuer of
SVC 34

• Tables/Work Areas: CVT, OCT, XSA

• Attributes: Reenterable, read-only,
self-relocating

• Control Section: IEE1703D

IEE1A03D: SVC 34 -- MCS Reply Processor
Routine

The purpose of this routine is to process
valid operator replies to WTOR macro
instructions.

• Entry: IEE1A03D

• Exit: To IEE1B03D to issue error mes­
sages or return to the caller of SVC
34.

• Control Sections: IEE1A03D

IEE1B03D: SVC 34 -- MCS Reply Messaqe
Routine

This routine assembles, edits, and broad­
casts the accepted reply to a WTOR macro
instruction for the MCS Reply Processor

routine (module IEE1A03D) of the Command
Scheduling routine, and to write error mes­
sages to the operator ~hose command is in
error.

• Entry: IEE1B03D, from IEE1A03D

• Exit: Return to the caller of SVC 34

• Control sections: IEE1B03D

IEE2103D: SVC 34 -- Message Assembly
Routine

~his routine assembles and edits messages
for the command scheduling routine, and
writes the messages to the operator.

• Entry: IEE2103D

• Exit: Branch on register 14

• Attributes: Reenterable, self­
relocatory, read-only, transient

• Control section: IEE2103D

IEE2303D: SVC 34 -- SMF Processor

~his routine initially processes the
ONLINE, ONGFX and CONSOLES operand of the
VARY command when the system has the SMF
option. It builds and issues an S~F record
for each device placed in online status.

• Entry: IEE2303D

• Exit: IEE3103D

• ~ables/Work Areas: CVT, SMCA, XSA

• Attributes: Reentrant, read-only,
self-relocating

• Control sections: IEE2303D

IEE2903D: SVC 34 -- Display Requests
Routine

~his routine displays to the requesting
operator the ID of all outstanding WTCRs,
the unit name of each device for outstand­
ing MOUN~ messages, and an indication as to
whether any AVR mount messages are pending.

• Entry: IEE2903D, from IEE0803D

• Exit: Return to caller of SVC 34

• ~ables/Work Areas: Message work area

• Attributes: Reentrant, Refreshable,
transient

• Control Sections: IEE2903D

Appendix B: MFT Modules 125

IEE3103D: SVC34 vary and Unload
Processor Rou~ine

This routine processes the UNLOAD command,
all VARY command operands in a system
without the ~CS option, and VARY ONLINE and
OFFLINE operands for non-console devices in
a system with the ~Cs option. In addition,
it passes control to the appropriate MCS
processors for processing of console
devices.

• Entry: IEE3103D, initially from
IEE1103D or IEE2303D and returns from
IEE4203D and IEE4603D.

• Exit: IEE1703D for VARY ONGFX/OFFGFX,
IEE4203D for VARY ONLINE/OFFLINE/
CONSCLES with no keywords after CON­
SOLES, IEE4303D for VARY MSTCONS,
IEE4403D for VARY HARDCPY/CONSOLES with
keywords, IEE4103D for VARY HARDCPY
without keywords, IEE0503D for errors,
Return to Caller of SVC 34 for UNLOAD.

• Tables/Work Areas: XSA, UCM, CVT, M/S
resident data area, and UCB.

• Attributes: Reentrant, self­
relocating, read-only, transient.

• Control Sections: IEE3103D

IEE4103D: SVC 34 Hardcopy Message
Issuing Routine

This routine issues messages concerning the
status of the hard copy log and frees
storage obtained for those messages.

• Entry: IEE4103D, from IEE4703D and
IEE4803D

• Exit: IEE4203D if multiple units spe­
cified in VARY command and units .remain
to be processed, IEE0503D for errors,
or return to caller of SVC 34 if all
units have been processed

• Tables/Work Areas: XSA,. message area"
UCB, CVT, XSA, and UCM

• Attributes: Reentrant, transient

• Control Sections: IEE4103D

IEE4203D: Vary Unit Field Scan

This module performs authority and operand
validity checking, and passes control to
the routine that will process the command.

126

• Entry:IEE4203D, from IEE3103D,
IEE41Q3D, IEE4403D, and IEE4603D

• Exit: ToIEE3103D for processing VARY
ONLINE/OFFLINE of non-console units, to
IEE4603D for processing of VARY CNLlNE/
OFFLINE CONSOLES of console units, and
for processing when errors in syntax
are found or when multiple units were
specified and units remain to be pro­
cessed, IEE4903D for processing of VARY
CONSOLES, and to IEE0503D and IEE2103D
when other errors occur.

• Tables/Work Areas: XSA, CVT, UCM, and
UCB.

• Attributes: Reentrant, self­
relocating, read-only, transient

• Control sections: IEE4203D

IEE4303D: SVC 34 -- VARY MSTCCNS Routine

~his routine processes the VARY MSTCONS
command.

• Entry: IEE4303D, from IEE3103D

• Exit: To IEE0503D or IEE2103D on
errors, svc 72 to Console Switch Rou­
tine (module IEECMCSW) and upon return
to caller of SVC 34

• Tables/Work Areas: UCB, CVT, XSA, and
UCM

• Attributes: Reentrant, self­
relocating" read-only, transient

• Control sections: IEE4303D

IEE4403D: SVC 34 -- Vary Keyword Scan
Routine

~his routine determines the validity of
VARY CONSOLE-HARDCPY keywords, and to set
appropriate bits in the XSA.

• Entry: IEE4403D, from IEE3103D

• Exit: To IEE4203D if VARY CONSOLES, to
IEE4703D if VARY HARDCPY, to IEE0503D
if errors.

• TableS/Work Areas: XSA, UCM, CVT, and
UCB

• Attributes: Reentrant, transient

• Control sections: IEE4403D

IEE4503D: SVC 34 -- period¥ STOP COmmand
~andler Routine

~his routine processes the commands STOP
JOBNAMES/S~TUS/SPACE/DSNAME.

• Entry: IEE4503D, from IEE0403D

• Exit: IEE0503D for errors, and return
to caller of SVC 34

• Tables/Work Areas: XSA, M/S resident
data area, CVT, and UCM

• Attributes: Reentrant, self­
relocating, read-only, transient

• Control section: IEE4503D

IEE4603D: SVC 34 -- VARY ONLINE/OFFLINE of
Consoles and Message Routing Routine

This routine processes VARY ONLINE/OFFLINE
for all MCS consoles and dispatches error
messages for syntax errors.

• Entry: IEE4603D, from IEE4203D to pro­
cess VARY ONLINE/OFFLINE or to dispatch
WTOs, IEE4903D to dispatch WTOs.

• Exit: IEE3103D when multiple units
specified and only non-console units
remain to be processed, IEE4203D if
unit field indicates more console (and
possible non-console) units remain to
be processed, IEE0503D and IEE2103D for
errors, return to caller of SVC 34 if
all units have been processed.

• Tables/Work Areas: XSA, CVT, UCE, UCM,
and M/S resident data area.

• Attributes: Reentrant, self­
relocating, read-only, transient

• Control sections: IEE4603D

IEE4703D: SVC 34 -- VARY HARDCPY Processor
Routine

This routine processes VARY HARDCPY
commands.

• Entry: IEE4703D, from IEE3103D if com­
mand has no keyword operands, IEE4203D
if command has keyword operands.

• Exit: To IEE4103D to issue a hardcopy
message, IEE0503D or IEE2103D on
errors.

• Tables/Work Areas: XSA, UCM. M/S resi­
dent data area, CVT and UCE.

• Attributes: Reentrant, transient

• Control Sections: IEE4703D

IEE4803D: SVC 34 -- VARY CCNSOLE
Information Message Routine

~his routine constructs a message which
shows the current status of the varied
console.

• Entry: IEE4803D, from IEE4903D

• Exit: To IEE4103D to issue the mes­
sage. IEE0503D for errors

• ~'ables/Work Areas: XSA, message area,
UCE, CVT, and UCM

• Attributes: Reentrant, transient

• Control Sections: IEE4803D

IEE4903D: SVC 34 -- VARY CCNSOLE Processor
Routine

~his module processes the VARY CCNSCLE
command.

• Entry: IEE4903D, from IEE4203D

• Exit: To IEE4803D to construct console
message, IEE4603D to dispatch error
messages

• ~able/Work Areas: XSA, CVT, UCE, and
UCM

• Attributes: Reentrant, self­
relocating, read-only, transient

• Control Sections: IEE4903D

IEFAC~FK: Termination -- User Dummy
Accounting Routine

~his routine takes the place of the user's
accounting routine when a user accounting
routine was specified at system generation,
but none was supplied.

• Entry: IEFACTLK

• Exit: Return to caller

• Control Section: IEFACTLK

IEFAC'ILK: ~ermination -- User Accounting
Routine Linkage Routine

~his routine provides linkage between the
termination routine and the user's account­
ing routine. It also sets up the required
parameter list -- including the execution
time of the job step -- and reads the first
record of the account control table.

• Entry: IEFACTLK

Appendix E: MFT Modules 127

• Exits: To user's accounting routine,
return to caller.

• Tables/Work Areas: LCT, JCT, SC'I',
JACT, SACT, QMPA

• Control Section: IEFACTLK

IEFACTRT: Termination -- Dummy Accounting
Routine

This routine takes the place of the user­
supplied accounting routine.

• Entry: IEFACTRT

• Exit: Return to caller

• Control Section: IEFACTRT

IEFAVFAK: I/O Device Allocation Linkage
to IEFXV001

This routine passes control to the AVR rou­
tine (IEFXV001) via and XCTL macro
instruction.

• Entry: IEFXV001

• Exit: XCTL to IEFXV001

• Con~rol section: IEFXV001

IEFCVFAK: I/C Device Allocation Linkage
to IEFMCVCL

This routine passes control to Mount
Control-Volume Routine IEFMCVOL via an XCTL
macro instruction to one of three entry
points, IEFCVCL1, IEFCVOL2, or IEFCVOL3.

• Entries: IEFCVOL1, IEFCVOL2, IEFCVOL3

• Exits: XCTL to IEFCVOL1, IEFCVOL2,
IEFCVCL3

• Control Section: IEFCVOL1

IEFDSDRP: Data Set Descriptor Record
Processing Routine

This routine processes the job queue infor­
mation in the DSDR record to make a
restarting job's queue entry reflect the
environment when the checkpoint was taken.

• Entry Point: IEFDSDRP

• Exit: RetUrn to caller

• Table/Work Areas: JCT, SCT, SlOT,
JFCB, TIOT, UCB, CVT, VOLT, TCB, QMPA,
CSCB, DCBD, DCB, JFCBX, SCTX, LC'I

• Attributes: Reenterable

• Control Section: IEFDSDRP

128

IEFIDMPM: Termination -- Message ~odule

'Ihis routine contains the messages used by
the Indicative Dump routine.

• Entry: IEFIDMPM

• Attributes: Non-executable

• Control Section: IEFIDMFM

IEFLOCDQ: Queue Management
Jobname Routine

Degueue by

'Ihis routine searches a queue for a named
job or list of named jobs, and can return
information, or dequeue or cancel the job.

• Entry: LOCDQ, LOCCAN, LCC

• Exit: Return to caller

• Tables/Work Areas: QCR, LTH

• Attributes: Reenterable

• External References: IEFCNVRT,
IEFRDWRT

• Page Reference: 71

IEFMCVOL: I/O Device Allocation -- Mount
Control-Volume Routine

'Ihis routine will have a control volume
mounted when a data set called for in a job
step cannot be located on any currently
mounted control volume.

• Entries: IEFCVOL1, IEFCVCL2, IEFCVOL3

• Exits: IEFVM1, IEFVMCVL, IEFV~6, IEFYN
(IEFw41SD)

• 'Iables/Work Areas: L.cT, JCT, SCT,
SlOT, JFCB, VOLT, QMPA, UCB

• Attributes: Reusable

• Control sections: IEFCVCL1, IEFCVCL2,
IEFCVOL3

IEFORMAT: Queue Management Queue
Formatting Routine

'Ihis routine places the work queue data set
in the format required by the MFT queue
management routines.

• Entry: IEFORMAT, from IEFSD055

• Exit: Return to IEFSD055

• Tables/Work Areas: DCB, DEB

• Attributes: Reusable

• control section: IEFORMAT

• Page Reference: 49

IEFQAGST: Queue Management Assign/Start
Routine

This routine sets up an ECB/IOB and pre­
pares the queue manager parameter area for
the assign routine.

• Entry: IEFQAGST

• Exit: Return to caller

• Tables/Work Areas: Q/M resident data
area, QMPA, CVT

• Attributes: Reenterable

• Control Section: IEFQAGST

• Page Reference: 55

IEFQASGQ: Queue Management -- Assign
Routine

This routine assigns records to a queue
entry and assigns logical tracks as
required.

• Entry: IEFQASGN

• Exit: Return to caller

• Tables/Work Areas: Q/M resident data
area, QMPA, CVT

• Attributes: Reenterable

• Control Sections: IEFQASGN, IEFQASNM

• Page Reference: 55

IEFQBVMS : Queue Management -- control
Routine

This routine inspects the function code in
the queue manager parameter area and, on
the tasis of this code, branches to the
appropriate queue management routines.

• Entry: IEFQMSSS

• Exits: To IEFQAGST, IEFQMRAW,
IEFQMNQQ, or IEFQASGQ, return to caller

• Tables/Work Areas: QMPA

• Attributes: Reenterable

• Control Section: IEFQMSSS

IEFQDELQ: Queue Management -- Delete
Routine

~his routine makes those logical tracks
assigned to a queue entry available for
assignment to other queue entries.

• Entry: IEFQDELE

• Exit: Return to caller

• ~ables/WOrk,Areas: LTH, QMPA, QCR, Q/M
resident data area, CVT

• Attributes: Reenterable

• Control Section: IEFQDELE

• Page Reference: 59

IEFQMDQQ: Queue Management Degueue
Routine

~his routine removes the highest priority
entry from an input queue or a system out­
put queue.

• Entry: IEFQMDQ2

• Exit: Return to caller

• ~ables/WOrk Areas: CVT, Q/M resident
data area" QCR, LTH

• Attributes: Reenterable

• Control section: IEFQMDQ2

• Page Reference: 59

IEFQMDUM: Queue Management~- Dum~y Module

~his routine prevents the occurrence of an
unresolved external reference to module
IEFQMSSS during system generation.

• Entry: IEFQMDUM

• Attributes: Non-Executable

• Control Section: IEFQMSSS

IEFQMLK1: Queue Management -- Branch
Routine

~bis routine branches to the appropriate
queue management routine on the basis of an
assign or read/write function code issued
by an initiator.

• Entry: IEFQMSSS

• Exits: ~o IEFQASGQ or IEFQMRAW

Appendix B: ~~T Modules 129

• Tables/Work Areas: QMPA

• Attributes: Reenterable

• Control section: IEFQMSSS

IEFQMNQQ: Queue Management Engueue
Routine

This routine places an entry in an input
queue or an output queue at the requested
priority.

• Entry: IEFQMNQ2

• Exit: Return to caller

• Tables/Work Areas: CVT, Q/M resident
data area, QMPA, QCR, LTB

• Attributes: Reenterable

• Control Section: IEFQMNQ2

IEFQMRAW: Queue Management -- Read/Write
Routine

This routine performs the conversion of a
TTR into a MBBCCBBR and reads or writes up
to 15 records of the work queue data set.

• Entry: IEFQMRAW

• Exit: Return to caller

• T.ables/Work Areas: Q/M resident data
area, QMPA, CVT" IOB/ECB

• Attributes: Reenterable

• Control Section: IEFQMRAW

IEFQMUNQ: Queue Management -- Unchain
Routine

This routine removes a task from the queue
management no-work chain.

• Entry: IEFQMUNC

• Exit: Return to caller

• Tables/Work Areas: CVT, Q/M resident
data area, QCR

• Attributes: Reenterable

• Control Section: IEFQMUNC

IEFQRESD: Queue Management --'. Resident
Main Storage Reservation Module

This routine reserves 140 bytes of resident
main storage for thequeue-management-

130

opened DCB/DEB and the master queue control
record at nucleus initialization time.

• Attributes: Non-executable

• Control Section: IEFJOB

IEFRCLN1: Restart Reader Linkage

~his routine receives control from IEFVRRC
and LINKS to interpreter initialization
routine IEFVH1.

• Entry: IEFRCLNl

• Exit: XCTL to IEFVRRC at entry
IEFVRRCA

• Attributes: Reenterable

• Control Section: IEFRCLNl

IEFRCLN2: Restart Reader Linkage

~his routine receives control from IEFVRRC
and LINKS to interpreter initialization
routine IEFVH1.

• Entry: IEFRCLN2

• Exit: XCTL to IEFVRRC at entry
IEFVRRCB

• Attributes: Reenterable

• Control Section: IEFRCLN2

IEFRPREP: Termination -- Restart
preparation Routing

~his routine determines whether a job step
that has been abnormally terminated can be
restarted.

• Entry: IEFRPREP from IEFYNIMP

• Exit: Return to caller

• Attributes: Reenterable

• Tables/WOrk Areas: LeT, JCT, SCT, PDQ,
QMPA

• Control section: IEFRPREP

IEFRS~T: Restart SVC Issuing Routine

'Ihis routine issues the Restart SVC,. When
called by its alias, IEFSMR, it issues the
Restart sve and then returns to the caller.

• Entry: IEFRSTRT, IEFSMR

• Exit: SVC 52 (RESTART), return to
caller

• Attributes: Reenterable

• Control S.ections: IEFRSTRT

IEFSD017: Termination System Output
Interface Routine

This routine provides an interface between
the termination entry routine and system
output processing.

• Entry: IEFSD017

• Exit: To IEFSD42Q

• Control Section: IEFSD017

IEFSD055: Queue Management Queue
Initialization Routine

This routine constructs a resident DEB/DCB,
passes control to the queue formatting rou­
tine or the first phase of system restart,
initializes the queue manager resident data
area, and (if required) passes control to
the second phase of the system restart
routine.

• Entry: IEFSD055, from IEFQINTZ

• Exits: To IEFORMAT, IEF300SD, or
IEF304SD

• Attributes: Reusable

• Control section: IEFSD055

• Page Reference: 54

IEFSD070: System Output Writer -- Data Set
Writer Interface Routine

This routine passes control to the standard
data set writer or to the user-supplied
data set writer routine.

• Entry: IEFSD070

• Exits: To IEFSD087 or user-supplied
routine via LINK, or to IEFSD171 via
XCTL

• Attributes: Reenterable

• Control Section: IEFSD070

• Page Reference: 72

IEFSD078: system Output Writer -- Linker
Routine

This routine determines whether the record
obtained from the output queue entry is a
DSB or 5MB, and passes control, according­
ly, to the DSB or 5MB processor.

• Entry: IEFSD078

• Exits: To IEFSD085, IEFSD086, or
IEFSD079

• Attributes: Reenterable

• Control section: IEFSD078

IEFSD079: system output Writer -- Link to
Queue Manager Delete Routine

~his routine passes control to the delete
routine to delete the current output queue
entry.

• Entry: IEFSD079

• Exits: To IEFQDELQ and IEFSD082

• Tables/Work Areas: QMPA

• Attributes: Reenterable

• Control section: IEFSD079

• page Reference: 79

IEFSD080: system Output Writer -­
Initialization Routine

~his routine initializes the system output
writer by obtaining main storage for a pa­
rameter list and the output DCB, and open­
ing the output DCB.

• Entry: IEFSD080

• Exit: To IEFSD081

• ~'ables/Work Areas: DCB .• CSCB, TIOT,
JFCB

• Attributes: Reenterable

• control section: IEFSD080

IEFSD081: system Output Writer -- Class
Name setup Routine

~his routine obtains main storage for, and
initializes, a list of ECB pointers, ECBs,
and queue management communication ele­
ments, depending on the system output
classes specified for the writer.

• Entry: IEFSD081

• Exit: To IEFSD082

• Tables/Work Areas: CSCB, ECB

• Attributes: Reenterable

• Control section: IEFSD081

Appendix B: MFT Modules 131

IEFSD082: System Output writer -- Main
Logic Routine

This routine obtains main storage for QMPAs
and internal work areas, dequeues output
queue entries, checks for operator com­
mands, and passes control to the appropri­
ate routine.

• Entry: IEFSD082

• Exits: IEFSD083, IEFSD084, IEFSD078

• Tables/Work Areas: CSCB, ECB

• Attributes: Reenterable

• Control Section: IEFSD082

IEFSD083: System output Writer -- Command
processing Routine

This routine processes MODIFY and STOP com­
mands that apply to the writer.

• Entry: IEFSD083

• Exits: To IEFSD081 or IEEVTCTL

• Tables/Work Areas: CSCB, DCB., QMPA,
ECB

• Attributes: Reenterable

• Control sections: IEFSD083, IEFSD83M

IEFSD084: System output Writer -- Wait
Routine

This routine waits for an entry to be
enqueued in an output queue corresponding
to a class available to the writer.

• Entry: IEFSD084

• Exit: ToIEFSD082

• Attributes: Reenterable

• Control Section: IEFSD084

• Page Reference: 72

IEFSD085: System Output writer -- DSB
Handler Routine

This routine initializes for data set pro­
cessing, and informs the operator of the
pause option in effect.

• Entry: IEFSD085, IEF085SD, or IEF850SD

• Exit: To IEFSD171

• Attributes: Reenterable

132

• Control Sections: IEFSD085, IEFSD85M

• page Reference: 73

IEFSD086: system output writer -- 5MB
Handler

~his routine initializes for message pro~
cessing, and extracts each message from the
current 5MB.

• Entry: IEFSD086, IEF086SD

• Exits: To IEFSD088, IEFSD089,
IEFQMNQQ, IEFQMRAW, IEFSD085, IEFSD078

• Tables/WOrk Areas: 5MB, UCB, CMPA,
TIOT. CSCB, ~CB

• Attributes: Reenterable

• Control Sections: IEFSD086, IEFSD86M

IEFSD087: system output writer -- Standard
writer Routine

'Ihis routine gets records from a data set,.

• Entry: IEFSD087

• Exits: To IEFSD088, IEFSD089, IEFSD078

• TableS/Work Areas: DCB

• Attributes: Reenterable

• Control Sections: IEFSD087. IEFSD87M

• page Reference: 73

IEFSD088: system Output writer -­
~ransition Routine

~his routine handles the transition between
messages and data sets, and between data
sets.

• Entry: IEFSD088

• Exit: To IEFSD089

• TableS/WOrk Areas: DCB

• Attributes: Reenterable

• Control Section: IEFSD088

IEFSD089: system Output writer -- Put
Routine

~his routine formats records as required
and issues PUT macro instructions to write
them on the output unit.

• Entry: IEFSD089

• Exit: To IEFSD088

• Tables/Work Areas: DeB

• Attributes: Reenterable

• Control Sections: IEFSD089, IEFSD89M

IEFSD094: System Output writer -- Job
Separator Routine

This routine prints or punches a job name
and system output class designation on the
writer'S output device.

• Entry: IEFSD094

• Exits: To IEFSD088, IEFSD089,
IEFSD095, IEFSD078

• Attributes: Reenterable

• Control Section: IEFSD094

IEFSD095: System Output Writer -- print
Line Routine

This routine constructs the block letters
used to separate jobs processed by a system
output writer when the output data set is
to be printed.

• Entry: IEFSD095

• Exit: Return to caller

• Attributes: Reenterable

• Control Section: IEFSD095

IEFSD096: system Output writer -- Message
Module

This routine contains message headers and
texts for messages to the operator.

• Entry: IEFSD096

• Attributes: Non-executable

• Control Section: IEFSD096

IEFSD097: I/O Device Allocation -- Wait
for Space Decision Routine

This routine makes the decision whether to
wait for direct access space, and provides
an interface with the I/O device allocation
space request routine so that retry and
additional recovery passes may be made.

• Entry: IEFSD097

• Exit: Branch on register 14

• Tables/Work Areas: LCT, TIOT,·UCB

• Attributes: Read-only, reenterable

• Control Section: IEFSD097

IEFSD168: Initiator -- Job Suspension

~his routine causes a terminated job to be
reenqueued so that the job can be
reactivated.

• Entry: IEFSD068

• Exit: Branch to IEFSD598 to purge
resources, branch to IEFSD510 to rein­
itiate job

• Tables/WOrk Areas: QMPA, LCT, JCT,
SCD, SCT

• Attributes: Reenterable

• Control Section: IEFSD068

• External Reference: IEFQMRAW,
IEFQMNQ2, IEFVSDRA

IEFSD171: system output Writer -- Data set
Delete Routine

~his routine obtains records from an output
queue entry, and deletes system output data
sets.

• Entry: IEFSD071

• Exits: To lEEVLOUT, IEFQMNQ2,
IEF850SD" IEF086SD, IEFSD078, or
IEFQMRAW

• ~'ables/WOrk Areas: DCB, 5MB, UCB, CVT,
QMPA, TIOT, CSCB, TCB

• Attributes: Reenterable

• Control Sections: IEFSD071, IEFSD71M

IEFSD195: I/O Device Allocation -- Wait
tor Deallocation Routine

~his routine provides the I/C device allo­
cation routine with the ability to wait for
dea1location to occur during the execution
of another task, when allocation cannot be
completed because of current allocations.

• Entry: IEFVAWAT

• Exit: Return to caller

• Tables/WOrk Areas: JCT, SCT, SICT,
LCT, ECG, CSCB

• Attributes: Read-only, reenterable

• Control section: IEFSD095

Appendix B: MFT Modules 133

IEFSD21Q: I/C Device Allocation
Allocation Ent~y Routine

This routine provides an interface for
entry to the I/O device allocation routine
operating in a multiprogramming environ­
ment.

• Entry: IEFW21SD

• Exits: To IEFVK, IEFVM or IEFWDOOO

• Tables/Work Areas: JCT, LeT, SCT, 8MB,
QMPA, CVT

• Attributes: Read-only, reenterable

• Control section: IEFWLISD

IEFSD22Q: Termination Routine -- step
Terminate Exit Routine

This routine provides an interface between
the termination routine and the step delete
or alternate step delete routine when a
step has been terminated.

• Entry: IEFW22SD

• Exit: Return to caller of termination
routine

• Tables/Work Areas: JCT, SCT, 8MB, LCT,
QMPA, ECB

• Attributes: Read-only, reenterable

• Control Section: IEFW22SD

• Page Reference: 71

IEFSD300: system Restart -- Initialization
Routine

This routine reads all QCRs and logical
track header records into main storage,
builds tables A, B, and C, and removes from
Table A all the LTH entries corresponding
to logical tracks in the free-track queue
or in one of the other queues.

• Entry: IEFSD300

• Exit: To IEFSD301

• Tables/Work Areas: system restart work
area, Table A, Table B, Table C

• Attributes: Reenterable

• Control Section: IEFSD300

IEFSD301: System Restart Purge Queue
Construction Routine

This routine searches Table A for the last
LTH corresponding to each queue entry,

134

determines the type of entry, and con­
structs the purge queue.

• Entry: IEFSD301

• Exit: TO IEFSD302

• Tables/Work Areas: System restart work
area, Table A, Table C purge queue,
interpreter jobnames table

• Attributes: Reenterable

• Control section: IEFSD301

IEFSD302: system Restart -- Jobnames Table
Routine

This routine removes from Table A all log­
ical tracks assigned to dequeued input or
RJE queue entries, and builds a table of
jobnames for incomplete input and RJE queue
entries and dequeued input queue entries.

• Entry: IEFSD302

• Exit: To IEFSD303

• Tables/Work Areas: System restart work
area, Table A, Table C, and the
interpreter/initiator jobnames table

• Attributes: Reenterable

• Control Section: IEFSD302

IEFSD303: System Restart -- Delete Routine

This routine creates a queue entry of the
remaining logical tracks and deletes that
entry, thus assigning those tracks to the
free-track queue.

• Entry: IEFSD303

• Exit: Return to caller

• Tables/Work Areas: system restart work
area, QMPA, Table A

• Attributes: Reenterable

• Control Section: IEFSD303

IEFSD304: system Restart -- Scratch Data
Sets Routine

'Ibis routine informs the operator of the
names of jobs being processed by an inter­
preter, and scratches temporary data sets
generated for incomplete input queue
entries.

• Entry: IEFSD304

.~: To IEFSD055, IEFSD308

• Tables/Work Areas: CVT, UCB address
look-up table

• Attributes: Reenterable

• Control Section: IEFSD304

IEFSD305: system Restart -- Reengueue
Routine

This routine dequeues the entries in the
purge queue and reenqueues them in the
appropriate input or output queue and
informs the operator of the names of jobs
in the process of initiation.

• Entry: IEFSD305

• Exit: IEFSD304

• Tables/Work Areas: System restart work
area, purge queue, JCT, SCT, JFCE, DSB,
SCD, SlOT.

• Attritutes: Reenterable

• control Section: IEFSD305

IEFSD308: System Restart -- Scratch Data
Sets Routine

This routine scratches the temporary data
sets generated for incomplete input queue
entries.

• Entry: IEFSD308

• Exit: Return to caller

• Tables/Work Areas: DSCB. DCB. UCB,
CVT, VTOC. DEE

• Attributes: Reenterable

• Control Section: IEFSD308

IEFSD31Q: Termination Routine -- Job
Termination Exit Routine

This routine provides an interface between
the termination routine and the step delete
or alternate step delete routine when the
last step of a job has been terminated.

• Entry: IEFW31SD

• Exit: Return to caller of termination
routine

• Tables/Work Areas: JCT. SCT" 5MB.
QMPA, ECB, CVT, M/S resident data area

• Attributes: Read-only, reenterable

• Control Section: IEFW31SD

IEFSD310: System Restart -- TTR and NN to
MBBCCHHR Conversion Routine

~his routine converts a relative record
address (NN) or a relative track and record
address ('ITR) to an actual disk address
(MBBCCHHR).

• Entry: IEFSD310

• Exit: Return to caller

• Tables/Work Areas: CVT

• Attributes: Reenterable

• Control Section: IEFSD310

IEFSD311: Queue Management
Module

Message

~his routine contains the messages required
by the queue initialization routine
<IEFSD055) •

• Entry: IEFSD311, SD55MSG1, SD55MSG2,
SD55MSG3

• Attributes: Non-executable

• Control section: IEFSD311

IEFSD312: system Restart -- Message Module

~his routine contains the messages required
by the system restart routines.

• Entry: IEFSD312. SD304MG1, SD304MG2,
SD305MGl

• Attributes: Non-executable

• Control Section: IEFSD312

IEFSD41Q: I/O Device Allocation
Allocation Exit Routine

~his routine provides an interface for exit
from the I/O device allocation routine
operating in a multiprogramming environ­
ment.

• Entry: IEFW41SD. IEFWlFAR, IEFW2FAR

• Exits: To IEFVM., or return to caller

• Tables/WOrk Areas: JCT, LCT, SCT. 5MB,
QMPA

• Attributes: Read-only, reenterable

• Control section: IEFW41SD

IEFSD42Q: Termination Routine
~ermination Entry Routine

~his routine provides an interface for
entry to the termination routine operating

Appendix B: MFT Modules 135

in a multiprogramming environment. it also
provides an interface for entry to the LOG
function if a LOG data set is scheduled to
be added to the SYSOUT queue.

• Entry: IEFW42SD

• Exit: To IEFYN

• Tables/Work Areas: JCT, SCT, 5MB, LCT,
TIOT

• Attributes: Read-only, reenterable

• Control section: IEFW42SD

IEFSD510: Initiator -- Job Selection
Routine

This routine selects a system or problem
program job. This module executes only in
a large (scheduler-size) partition.

• Entry: IEFSD510

• Exits: Branch to IEFSD511 or IEFSD515,
LINK to IEFSD519, XCTL to IEFSD589,
SMALTERM, or IEEVSTAR

• Tables/Work Areas: LOT block, CSCB,
SPIL, CVT, TCB, PIB

• Attributes: Read-only, reenterable

• Control Section: IEFSD510

• External References: IEFQMDQQ,
IEFCMUNC

• Page Reference: 63

IEFSD511: Initiator -- Job Initiation
Routine

This routine initializes inforKation per­
taining to a job.

• Entry: IEFSD511

• Exit: Branch to IEFSD541

• Tables/Work Areas: Life-of-Task Block,
CSCB, JCT, SCT, SCD" PIB, IOB2

• Attributes: Read-only, Reenterable

• Control Section: IEFSD511

• External References: IEFQMRAW

• Page Reference: 68

136

IEFSD512: Initiator -- step Initiation
Routine

~his routine passes control to allocation
as a closed subroutine via a LINK macro
instruction. If an allocation error
occurs, it passes control to the Alternate
Step Deletion routine. Otherwise, it con­
tinues normally and schedules a job step.

• Entry: IEFSD512

• Exits: Branch to IEFSD513, IEFSD516,
or IEFSD518, XCTL to IEFSD510

• Tables/Work Areas: LOT Block, JCT,
SCT, APL, TIOT, CSCB, IOB1, IOB2

• Attributes: Read-only, reenterable

• Control section: IEFSD512

• External References: IEFQMRAW,
IEFSD556, IEFSD514

• Page Reference: 68

IEFSD513: Initiator -- Problem Program
Interface

This routine prepares the partition for
problem program execution by moving the
'IIOT to the highest available storage area.

The routine also opens JOB LIB and FETCH
DCBs, if required. A final check is made
to determine if a CANCEL command has been
received for the job before the problem
program is brought into the partition and
given control. If scheduling was performed
for a small partition, IEFSD513 communi­
cates with the small partition.

• Entry: IEFSD513

• Exits: XCT'L to problem program, ABEND,
or to IEFSD510

• Tables/Work Areas: LOT Block, Transfer
Parameter List, TIOT, User's Parameter
List, TCB, CVT, PIB, CSCB, SPIL, APL,
JCT, SCT, DCB

• Attributes: Read-only, reenterable

• Control Section: IEFSD513

• Page Reference: 69

IEFSD514: Queue Management -- Table
Breakup Routine

This routine reads and writes tables which
may be required by the job scheduler. The
routine breaks the tables into 176-byte
records, writes the records on disk, and

retrieves the records from disk to recon­
struct the tables in main storage.

• Entry: IEFSD514

• Exit: Return to caller

• Tables/Work Areas: QMPA, TER Parameter
List

• Attributes: Read-only, reenterable

• Control Section: IEFSD514

• External References: IEFQASGN,
IEFC;MRAW

• Page Reference: 59

IEFSD515: Initiator -- step Deletion
Routine

This routine retrieves the TIOT and Life­
of-Task Block from disk, reads in the JCT
and SCT, and branches to termination, which
is used as a closed subroutine. It also
reads in the SCT for the next step to be
scheduled, if required.

• Entry: IEFSD515, SMALTERM, or GO

• Exits: XCTL to IEFSD512 or Branch to
IEFSD517 or IEFSD510

• Tables/Work Areas: Life-of-Task Block,
Terminate Parameter List, CVT, TCB,
PIB, lOB, CSCB, DCE, JCT, SCT. SPIL

• Attributes: Read-only, reenterable

• Control Section: IEFSD515

• External References: IEFQMRAW,
IEFSD514. IEFSD42Q, IEFSD598

• Page Reference: 70

IEFSD516: Initiator -- Alternate Step
Deletion Routine

This routine provides an interface with
termination when an allocation error occurs
during step initiation. Tecmination is
used as a closed subroutine. If required,
this routine reads the SCT of the next step
to support job flushing.

• Entry: IEFSD516

• Exits: Branch to IEFSD512 or IEFSD517

• Tables/Work Areas: Life-of-Task block,
CSCB, Terminate Parameter List, SCT

• Attributes: Read-only, reenterable

• Control section: IEFSD516

• External References: IEFC;MRAW,
IEFSD42Q

• Page Reference: 71

IEFSD517: Initiator -- Job Deletion
Routine

~his routine deletes the disk queue entry
fer a terminated job and unchains and
deletes the CSCB for the job.

• Entry: IEFSD517

• Exit: Branch to IEFSD510

• Tables/Work Areas: CSCB, Life-of-Task
block, SPIL

• Attributes: Read-only, reenterable

• Control Section: IEFSD517

• External References: IEFQDELE,
IEFSD598

• Page Reference: 71

IEFSD518: Initiator -- Partition Recovery
Routine

'Ihis routine determines the status of main
storage required for a checkpoint/restart.

• Entry: IEFSD518

• Exits: Return to IEFSD512

• Tables/Work Areas: SPIL, CVT, TCE,
JC~, PIB, LOT, QMPA, CSCB

• Attributes: Reenterable

• Control section: IEFSD518

• External Reference: IEFQMRAW,
IEFQMNQ2, IEFSD598

• Page Reference: 71

IEF SD 519 : Queue:~M==a::.n:::a::.;g"-,e:;:,m,,,-e=nc.::t,--_...:D::..:e:::.:g,,-u.::.e=u::::e:.....:::b:.L.y
Jobname Interface Routine ----------------------
'Ihis routine builds a seven-word parameter
list used by IEFLOCDQ to locate a job by
jobname on the checkpoint/restart internal
queue.

• Entry: IEFSD519

• Exit: Return to IEFSD510

• Tables/Work Areas: LOT, PIB

Appendix B: MFT Modules 137

• Attributes: Reenterable

• Control Section: IEFSD519

• External Reference: IEFLOCDQ, IEFQMRAW

• Page Reference: 71

IEFSD530: Interpreter -- Transient Reader
Suspend Routine

This routine closes the reader input data
set and procedure library, and saves data
required to restore the reader.

• Entry: IEFSD530

• Exit: Return to caller

• Tables/Work Areas: IWA, TIOT, LWA,
QMPA, CVT, UCB, MSRC, PIE, CSCB

• Attributes: Read-only, reenterable

• Control Section: IEFSD530

• External References: IEFSD514, IEF­
QMRAW, IEFQASNM, IEFQASGN

• Page Reference: 62

IEFSD531: Interpreter -- Transient Reader
Restore Routine

This routine restores the information
required to nrestart" a transient reader
after it has been suspended. It reopens
the reader input data set and procedure
library.

• Entry: IEFSD531

• Exit: XCTL to IEFVHCE

• Tables/Work Areas: IWA, TIOT. QMPA.
CVT, UCB, MSRC, PIB, CSCE

• Attributes: Read-only. reenterable

• Control sections: IEFSD531, IEFPH2

• External References: IEFSD514, IEF­
QMRAW, IEFQASNM, IEFQASGN

• page Reference: 62

IEFSD532: Interpreter -- Transient Reader
Suspend Tests

This routine determines the status of a
transient reader. IEFSD532 receives con­
trol from IEFVHH after a job has been
enqueued.

• Entry: IEFKG

138

• Exits: XC'lL to IEFVHN or IEFSD530, or
branch to IEFVHHB

• Tables/Work Areas: IWA, LWA, QMPA,
PIB, CVT'

• Attributes: Read-only. reenterable

• Control section: IEFKG

• page Reference: 62

IEFSD533: Interpreter -- Interface Routine

This routine provides an interface between
the reader/interpreter and system task
control.

• Entry: IEFIRC

• Exits: XC'lL to IEFSD537. RETURN to
STC if error.

• T'ables/Work Areas: CSCB, CVT" QMPA

• Attributes: Reenterable, read-only

• Control section: IEFIRC

IEFSD534: System Task Control -- LPSW
Routine

This routine places system task control in
problem program mode by loading a FSW.

• Entry: IEFSD534

• Exit: IEFVSTRT

• Tables/Work Areas.: None

• Attributes: Reenterable

• Control section: IEFSD534

IEFSD535: System Task Control -- Problem
Program Mode Routine

This routine puts system task control in
problem program mode for ABEND.

• Entry: IEFSD535

• Exit: IEEVTCTL

• Tables/Work Areas: None

• Attributes: Reenterable

• Control Section: IEFSD535

IEFSD536: Interpreter
Routine

Operator Message

This routine writes a message to the opera­
tor when an I/O error or CPO full condition

has occurred. The routine also sets proper
indicators to cause a cleanup of the cur­
rent job.

• Entry: IEFVHR

• Exits: Return to caller, XCTL to
IEFVHN, or LINK to IEFSD308

• Tables/Work Areas: IWA, JCT, LWA, UCB,
CVT, PIB, CSCB, Master Scheduler resi­
dent data area

• Attributes: Read-only, reenterable

• Control Section: IEFVHR

• Page Reference: 61

IEFSD537: Interpreter -- Linkage Module

This routine provides an interface between
system task control and a reader. It also
frees the interpreter entrance list (NEL)
and associated areas if a reader is being
terminated or suspended.

• Entry: IEFSD537

• Exits: LINK to IEFVH1, or IEFSD531, or
Return to system task control

• Tables/Work Areas: NEL

• Attributes: Read-only, reenterable

• Control Section: IEFSD537

IEFSD540: Initiator -- Linkage to IEFSD541

This routine provides an interface linkage
to IEFSD541 via an XCTL macro instruction.

• Entry: IEFSD540

• Exit: XCTL to IEFSD541

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: IEFSD540

IEFSD541: Initiator -- Data Set Integrity

This routine enqueues on explicit data sets
and thus prevents concurrent, and impair­
ing, access between tasks.

• Entry: IEFSD541

• Exit: Branch to IEFSD512

• Tables/Work Areas: LOT Block, IOB1,
IOB2, JCT" SCT, CSCB, SPIL, DSENQ
Table, Minor Name List, ENQ supervisor
list.

~ Attributes: Read-only

• Control Section: IEFSD541

• External References: IEFQMRAW

• page Reference: 68

IEFSD55l: I/O Device Allocation -- Linkage
to IEFXJIMP

~his routine provides an interface linkage
to IEFXJIMP via an XCTL macro instruction
in the 30K design package.

• Entry: IEFV15XL

• Exit: XCTL to IEFXJIMP

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: IEF,V15XL

IEFSD552: I/O Device Allocation -- Linkage
to IEFXJIMP

~his routine provides an interface linkage
to IEFXJIMP via an XCTL macro instruction
in the 30K design package.

• Entry: IEFXJX5A

• Exit: XCTL to IEFXJIMP

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control section: IEFXJX5A

IEFSD553: Initiator -- Linkage to IEFSD5l2

~his routine provides a linkage to IEFSD512
via an XCTL macro instruction.

• Entry: IEFSD5l2

• Exit: XCTL to IEFSD512

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: IEFSD5l2

IEFSD554: Initiator Linkage to IEFSD516

~his routine provides a linkage to IEFSD5l6
via an XCTL macro instruction.

• Entry: IEFSD554

.~: XCTL to IEFSD516

• ~ables/Work Areas: Same as caller

Appendix B: MFT Modules 139

• Attributes: Read-only, reenterable

• Control Section: IEFSD554

IEFSD555: Initiator -- Linkage to IEFSD51-o

This routine provides linkage to IEFSD510
via an XCTL macro instruction.

• Entry: IEFSD555

• Exit: XCTL to IEFSD510

• Tables/Work Areas: Same as caller.

• Attributes: Read-only, reenterable

• control Section: IEFSD555

IEFSD556: Initiator -- Set Problem Program
state Return

This routine establishes the allocation
routine in a problem program state, upon
entry.

• Entry: IEFSD556

• Exit: LFSW to IEFW21SD

• Tables/Work Areas: Same as caller.

• Attritutes: Read-only, reenterable

• Control section: IEFSD556

IEFSD557: I/O Device Allocation
Interface Routine

This routine provides an interface between
system task control and allocation.

• Entry: IEFW21SD

• Exit: IEFWSD21

• Tables/Work Areas: ECE, IOE

• Attritutes: Reenterable

• Control Section: IEFSD557

IEFSD558: Initiator Linkage to IEFSD511

This routine provides a linkage to IEFSD511
via an XCTL macro instruction.

• Entry: IEFSD558

• Exit: IEFSD511

• Attritutes: Read-only, reenterable

• Control Section: IEFSD558

140

IEFSD559: Initiator -- Linkage to IEFSD515

~his routine provides a linkage to IEFSD515
via an XC~L macro instruction.

• Entry: SMALTERM

• Exit: IEFSD515

• Attributes: Read-only, reenterable

• Control Section: IEFSD559

IEFSD567: Nucleus -- Device-End Interrupt
Handler Routine

~his routine handles unsolicited device-end
interrupts from a disk storage unit.

• Entry: IEFSD567

• Exit: Return to caller

• Tables/Work Areas: None

• Attributes: Reenterable

• Control Section: IEFSD567

• External Reference: Communications
'Iask ~CB

IEFSD569: Master Scheduler
Initialization Routine

~his routine initializes the communications
task and the system log. It issues the
READY message and formats the job queue, as
well as typing out the automatic commands
and invoking processing of the automatic
commands. This routine establishes parti­
tioning of main storage at system initiali­
zation and readies the partitions for the
S'IAR~ command. This routine is callea out
at system generation by the macro,
~GIEEOVV.

• Entry: IEFSD569

• Exit: IEE0503D, Branch to dispatcher

• Attributes: Read-only, non-reenterable

• Control Section: IEFSD569

• page Reference: 48

IEFSD572: Queue Manaqement -- Interpreter/
Queue Manager Interlock Routine

'Ihis routine determines if a possible
interlock condition exists between the
queue manager and the reader. The routine
issues a message requesting the operator to
reply with either WAIT, to wait for space
to be freed, or CANCEL, to cancel the job.

• Entry: IEFSD572

• Exits: ABEND, or return to caller

• Attributes: Read-only, reenterable

• Control Section: IEFSD572, IEF'SD573

• External Reference: IEFQDELQ

• Page Reference: 57

IEFSD587: System Task Control Linkage
to IEFSD535

This routine provides a linkage to IEFSD535
via a LINK macro instruction.

• Entry: IEFSD587

• Exit: IEFSD535

• Attributes: Read-only, reenterable

• Control Section: IEFSD587

IEFSD588: System Task Control Linkage
to IEE534SD

This routine links to IEE534SD to bring the
suspended reader into the assigned parti­
tion so that upon return, the initiator
will be in supervisor state.

• Entry: IEFSD588

• Exit: LINK to IEE534SD

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: IEFSD588

IEFSD589: Initiator -- Linkage to IEESD534

This routine links to system task control
so that upon return, the initiator will be
in supervisor state.

• Entry: IEFSD589

• Exit: LINK to IEFSD534

• Tables/Work Areas: Same as caller

• Attributes: Read-only, reenterable

• Control Section: IEFSD589

IEFSD597: Initiator -- Shared DASD ENQ/DEQ
Purge Routine

This routine is the purge routine for sys­
tems that include the shared DASD feature.
In addition to purging all resources
enqueued by a job step, but not dequeued,
IEFSD597 also releases reserved devices.

• Entry: IEFSD597

• ~xit: Return to caller

• Tables/Work Areas: Major QCB, Minor
QCB, QEL, 'ICB, SVRB, CVT, ABTERM

• Attributes: Read-only, reenterable,
disabled

• Control Section: IEFSD597

IEFSD598: Initiator ENQ/DEC Purge
Routine

'Ihis routine purges all resources enqueued
by a job step, but not dequeued.

• Entry: IEFSD598

• Exit: Return to caller

• 'Iables/Work Areas: Major QCB, Minor
QCB, QEL., 'ICB, SVRB, CVT, ABTERM

• Attributes: Read-only, Reenterable,
disabled

• Control section: IEFSD598

• Page Reference: 70

IEFSD599: Initiator Small Partition
Module

'Ihis routine provides an interface with the
scheduler in a large partition to initiate
and terminate small partitions.

• Entry: IEFSD599,SMALLGC

• Exits: ABEND, or XCTL to problem pro­
gram or writer

• 'Iables/Work Areas: SPII, allocate pa­
rameter list (APL)

• Attributes: Read-only, reenterable

• Control Section: IEFSD599

• External Reference: IEFQMUNC

• Page Reference: 66

IEFVDA: Interpreter DD Sta tement
Processor

'Ihis routine constructs and adds entries to
a JFCB and SIC'I from the complete logical
DD statement in the internal text buffer.

• Entry: IEFVDA

• Exit: To IEFVHF

• 'I'ables/Work Areas: IWA, LWA, SIar,
JFCB" JCB, SCT

Appendix B: MFT Modules 141

• Attributes: Read-only, reenterable

• control section: IEFVDA

IEFVDBSD: Interpreter -- Data Set Name
Table Construction Routine

This routine creates a data set name table.

• Entry: IEFVDBSD

• Exit: To IEEVDA

• Attributes: Reenterable

• Control Section: IEEVDBSD

IEFVEA: Interpreter -- EXEC Statereent
Processor

This routine constructs or updates an SCT,
and, if necessary, a joblib JFCB and SlOT
from the complete logical EXEC statement in
the internal text buffer.

• Entry: IEFVEA, from IEFVFA

• Exit: To IEEVHF

• Tables/Work Areas: IWA, EXEC work
area, interpreter key table, JCT, SCT,
SlOT, QMPA, procedure override table.

• Attributes: Read-only, reenterable

• Control Section: IEFVEA

IEFVFA: Interpreter -- Scan Routine

This routine scans the card image of a JOB,
EXEC, or DD statement, performs error
checking of JCL syntax, builds internal
text, and, when a complete logical state­
ment (including continuations and cver­
rides) has been scanned, passes control to
the appropriate statement processor.

• Entry: IEFVFA

• Exits: To IEEVGM, IEEVHQ, IEFVHF., IEF­
VJA, IEFVDA, IEEVEA

• Tables/Work Areas: IWA, scan routine
work area, interpreter key table, QMPA,
internal text buffer, scan dictionary.

• Attributes: Read-only, reenterable

• Control Section: IEFVFA

IEFVFB: Interpreter -- symbolic Parameter
Processing Routine

This routine processes symbolic parameters
by creating symbolic parameter table buffer
entries to assign values to symbolic param­
eters, and extracts those values and places

14~

them in the intermediate text buffer when a
symbolic parameter is used.

• Entry: IEFVFB

• Exit: Return to caller

• Tables/WOrk Areas: IWA, LWA SYMBUF,
Intermediate Text Buffer, QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFVFB

IEFVGI: Interpreter Dictionary Entry
Routine

~his routine constructs entries for the
refer-back dictionary.

• Entry: IEFVGI

• Exit: Return to caller

• TableS/Work Areas: Refer-back dic­
tionary, auxiliary work area, IWA, QMPA

• Control Section: IEFVGI

IEFVGK: Interpreter -- Get Parameter
Routine

~his routine searches the internal text
buffer for the next parameter, performs
basic error checking, and passes control to
the appropriate keyword routine.

• Entry: IEFVGK

• Exit: Return to caller

• Tables/Work Areas: Local work area,
lWA, internal text buffer, KBT, PDT.

• Control Section: IEFVGK

IEFVGM: Interpreter
Routine

Message processing

~his routine constructs 5MBs containing
interpreter error messages and JCL state­
ment images, assigns space for these 5MBs
in the message class output queue entry,
and writes the 5MBs into the entry.

• Entry: IEFVGM

• Exit: Return to caller

• Tables/Work Areas: QMPA, 5MB" SCD,
IWA, JCT

• Attributes: Reenterable, character
dependence type C

• Control section: IEFVGM

IEFVGM1: Interpreter -- Message Module

This routine contains interpreter messages
01-07.

• Attributes: Non-executable

• Control Section: IEFVGMl

IEFVGM2: Interpreter -- MesSage Module

This routine contains interpreter messages
08-0F.

• Attributes: Non-executable

• Control Section: IEFVGM2

IEFVGM3: Interpreter -- MeSSage Module

This routine contains interpreter messages
10-17.

• Attributes: Non-executable

• control Section: IEFVGM3

IEFVGM4: Interpreter -- Message Module

This routine contains interpreter messages
18-1F.

• Attributes: Non-executable

• Control Section: IEFVGM4

IEFVGM5: Interpreter -- MeSsage Module

This routine contains interpreter messages
20-27.

• Attributes: Non-executable

• Control Section: IEFVGM5

IEFVGM6: Interpreter -- Message Module

This routine contains interpreter messages
28-2F.

• Attributes: Non-executable

• Control Section: IEFVGM6

IEFVGM7: Interpreter -- Message Module

This routine contains interpreter messages
30-37.

• Attributes: Non-executable

• Control Section: IEFVGM7

IEFVGM8: Interpreter -- Message Module

~his routine contains interpreter messages
50-57.

• Attributes: Non-executable

• Control section: IEFVGM8

IEFVGM9: Interpreter -- Message Module

~his routine contains interpreter messages
58-SF.

• Attributes: Non-executable

• Control Section: IEFVGM9

IEFVGM10: Interpreter -- Message Module

~his routine contains interpreter messages
60-67.

• Attributes: Non-executable

• Control Section: IEFVGM10

IEFVGMll: Interpreter -- Message Module

~his routine contains interpreter messages
68-6F.

• Attributes: Non-executable

• Control Section: IEFVGMll

IEFVGM12: Interpreter -- Message Module

~his routine contains interpreter messages
70-77.

• Attributes: Non-executable

• Control Section: IEFVGM12

IEFVGM13: Interpreter -- Messaqe Module

~his routine contains interpreter messages
78-7F.

• Attributes: Non-executable

• Cogtrol Section: IEFVGM13

IEFVGM14: Interpreter -- MessaqeModule

~his routine contains interpreter messages
88-8F.

• Attributes: Non-executable

• Control section: IEFVGM14

IEFVGM15: Interpreter Message Module

~his routine contain.s interpreter messages
90-97.

Appendix B: MFT Modules 143

• Attri~utes: Non-executable

• control Section: IEFVGM15

IEFVGM16: Interpreter -- Message Module

This routine contains interpreter messages
AO-A7.

• Attributes: Non-executable

• Control Section: IEFVGM16

IEFVGM17: Interpreter -- Message Module

This routine contains interpreter messages
56-50.

• Attri~utes: Non-executable

• Control Section: IEFVGM17

IEFVGM18: Interpreter -- Message Module

This routine contains interpreter messages
80-87.

• Attributes: Non-executable

• Control Section: IEFVGM18

IEFVGM19: Interpreter -- Message Module

This routine contains interpreter messages
3E-45.

• Attri~utes: Non-executable

• Control Section: IEFVGM19

IEFVGM70: Interpreter -- Message Module

This routine contains interpreter messages
38-3F.

• Attributes: Non-executable

• Control Section: IEFVGM70

IEFVGM78: Interpreter -- Message Module

This routine contains interpreter messages
08-00.

• Attributes: Non-executable

• Control Section: IEFVGM78

IEFVGS: Interpreter Dictionary Search
Routine

This routine searches the refer-back dic­
tionary tor the address ot a previously­
defined SCT, SlOT., or JFCE.

• Entry: IEFVGS

144

• Exit: Return to caller

• 'Iables/work Areas: Auxiliary work
area, lWA, QMPA, refer-back dictionary

• Control Section: IEFVGS

IEFVGT: Interpreter -- Test and Store
Routine

'Ihis routine performs operations on a pa­
rameter as indicated in the appropriate pa­
rameter descriptor table entry.

• Entry: IEFVGT

• Exit: Return to keyword routine

• 'Iables/Work Areas: Internal text buff­
er, PD'I, local work area, IWA

• Control Section: IEFVGT

IEFVHA: Interpreter -- Get Routine

'Ihis routine reads statements from the
input stream and the procedure library.

• Entry: IEFVHA

• Exits: IEFVHC, IEFVHB, IEFVHAA,
IEFSD536, IEFVGM

• Tables/Work Areas: IWA, JCT, DCB

• Attributes: Read-only, reenterable

• Control section: IEFVHA

IEFVHAA: Interpreter -- End-of-File
Routine

'Ihis routine determines the conditions
under which an end-at-file condition has
occurred, and sets switches and passes con­
trol accordingly.

• Entry: IEFVHAA

• Exits: IEFVHC or IEFVHN

• 'Iables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHAA

IEFVHB: Interpreter -- DO * Statement
Generator Routine

'Ihis routine generates a "SYSIN DO *" sta­
tement tor data in the input stream, when
no such statement was included.

• Entry: IEFVHB

• Exits: To IEFVHC, IEFVHA, IEFVGM

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHB

IEFVHC: Interpreter -- continuation
statement Routine

This routine determines whether the current
statement should be a continuation, and., if
so, determines whether it is a valid con­
tinuation statement.

• Entry: IEFVHC

• Exits: To IEFVHEB, IEFVHCB, IEFVGM

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control section: IEFVHC

IEFVHCB: Interpreter Verb
Identification Routine

This routine identifies the verb in a con­
trol statement.

• Entry: IEFVHCB

• Exits: To IEFVHE, IEFVHM, IEFVHA,
IEFVGM, IEFVHL

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control section: IEFVHCB

IEFVHE: Interpreter Router

This routine determines the conditions
under which it was entered, and passes con­
trol to the appropriate routine.

• Entry: IEFVHE

• Exits: To IEFVHEB, IEPVHH, IEFVHEC

• Tables/Work Areas: IWA

• Attributes: Read-only, reenterable

• Control Section: IEFVHE

IEFVHEB: Interpreter -- Pre-Scan
preparation Routine

This routine determines whether a message
is required or additional work queue space
is required before a statement is scanned.
If so, it causes the message to be written
or the work queue space to be assigned.

• Entry: IEFVHEB

• Exits: To IEFVHQ, IEFVG~, IEFVHG,
IEFVFA

• ~ables/Work Areas: IWA, JCT, SCT, QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFVHEB

IEFVHEC: Interpreter -- Job Validity Check
Routine

lhis routine determines whether an SCT has
been built for the current job; if not, the
routine constructs an SCT.

• Entry: IEFVHEC

• Exits: To IEFVGM, IEFVHH

• ~ables/Work Areas: IWA, JCT, SCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHEC

IEFVHF: Interpreter -- Post-scan Routine

lhis routine determines the conditions
under which it was entered, and passes con­
trol accordingly.

• Entry: IEFVHF

• Exits: To IEFVHG, IEFVHEB, IEFVHCB,
IEFVHA

• Tables/work Areas: IWA, CWA

• Attributes: Read-only, reenterable

• Control Section: IEFVHF

IEF'VHG: Interpreter -- CPC Routine

lhis routine writes system input data sets
on a direct-access device. If IEFVHG is
unable to obtain enough space to complete
writing a data set, control passes to
IEFVHR. If the input reaches end-of-file,
control passes to IEFVHAA. If a /* is
found following DD DATA, control passes to
IEFVHA to read the next record. If a // is
found, control passes to IEFVHC to identify
the verb.

• Entry: IEFVHG

• Exits: To IEFSD536, IEFVGM, IEFVHQ,
IEFVHAA, IEFVHA, IEFVHC, or IEFVHB

• Tables/Work Areas: IWA, JCT, SlOT,
VOLT, 'IIOT, LWA, SCT, JFCB., UCB, QMPA,
CWA

Appendix B: MFT Modules 145

• Attributes: Read-only, reenterable

• Control Section: IEFVBG

• Page Reference: 61

IEFVHH: Interpreter -- Job and step
Engueue Routine

This routine places the SCT, DSNT, VOLT,
and JCT in the job's queue entry, and
determines whether the interpreter is to
enqueue jobs.

• Entry: IEFVBH

• Exits: To IEFKG, IEFVHQ, IEFSD532,
IEFVBHB, IEFVHN

• Tables/Work Areas: IWA, JCT, SCT,
QMPA, NEL

• Attributes: Read-only, reenterable

• Control Section: IEFVHH

IEFVHHB: Interpreter Housekeeping
Routine

This routine initializes for merging a
cataloged procedure.

• Entry: IEFVHHB

• Exits: IEFVHA, IEFVHEB

• Tables/Work Areas: IWA

• Attributes: Read-only, reenterable

• Control Section: IEFVHHB

IEFVHL: Interpreter -- Null statement
Routine

This routine determines the conditions
under which the null statement was encoun­
tered, and passes control to the proper
routine.

• Entry: IEFVHL

• Exits: To IEFVHCB, IEFHEC, IEFVHE,
IEFVHA

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHL

IEFVHM: Interpreter -- Command statement
Routine

This routine tests for valid command verbs"
and, if the verb is valid, issues SVC 34 to
schedule execution of the command.

146

• Entry: IEFVHM

• Exits: To IEFVHA, IEFVGM

• Tables/Work Areas: IWA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVHM

IEFVHN: Interpreter -- Termination Routine

'Ihis routine closes the input stream and
procedure library data sets, frees main
storage used by the interpreter, and builds
the interpreter exit list.

• Entry: IEFVHN

• Exit: Return to caller

• 'I'ables/Work Areas: IWA, JCT, CSCB,
QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFVHN

• Page Reference: 62

IEFVHQ: Interpreter Queue Management
Interface Routine

'Ihis routine is a common interface between
the queue management routines and the
interpreter. If an I/C error occurs,
IEFVHR receives control. Queue management
may be unable to allocate space for a job's
input data. If, in this case, the operator
replies CANCEL to the message which is
issued, IEFVHG receives control.

• Entry: IEFVHQ

• Exits: Return to caller, IEFSD536, or
IEFVHG

• Tables/Work Areas: IWA, JCT, QMPA,
CSCB

• Attributes: Read-only, reenterable

• Control Section: IEFVHQ

IEFVH1: Interpreter -- Initialization
Routine

This routine initializes the interpreter;
it obtains main storage for and initializes
the IWA, local work areas, and DCBs.

• Entry: IEFVH1

• Exit: To IEFVH2

• Tables/Work Areas: UCB, CSCB, IWA,
DCB, local work area

• Attributes: Not reusable

• Control Section: IEFVH1

IEFVH2: Interpreter -- Initialization
Routine

This routine opens the input stream data
set and the procedure library data set, and
obtains main storage for a buffer for pro­
cedure library records.

• Entry: IEFVH2

• Exit: To IEFVHA

• Tables/Work Areas: lWA, UCB, TIOT

• control section: IEFVH2

• Attributes: Not reusable

IEFVJA: Interpreter -- Job statement
Processor

This routine initializes a JCT and job ACT
from the complete logical job statement in
the internal text buffer.

• Entry: IEFVJA

• Exit: To IEFVHF

• Tables/Work Areas: IWA" job work area"
interpreter key table, JCT, ACT" QMPA

• Attributes: Read-only, reenterable

• Control Section: IEFVJA

IEFVJIMP: Termination -- JOB statement
Condition Code Processor

This routine tests the condition codes spe­
cified in the JOB statement to determine
whether the remaining steps in the job are
to be run.

• Entry: IEFVJ

• Exits: To IEFVK or IEFZA

• Tables/Work Areas: LCT, JCT, SCT

• Control Section: IEFVJ

IEFVJMSG: Termination -- JOB Statement
condition Code Processor Messages

This routine contains the messages issued
to the programmer by the JOB statement con­
dition code processor.

• Entry: IEFVJMSG

• Attributes: Non-executable

• Control section: IEFVJMSG

IEFVKIMP: I/O Device Allocation -- EXEC
Statement Condition Code Processor

This routine tests the condition codes spe­
cified in the EXEC statement to determine
whether the next ste~ of the job is to be
run.

• Entry: IEFVK

• Exits: IEFVS, IEFLB

• Tables/Work Areas: JCT, LCT, SCT

• Control section: IEFVK

IEFVKMSG: I/O Device Allocation -- EXEC
Statement Condition Code Processor Messaqes

This routine contains the messages issued
to the programmer by the EXEC -- statement
condition -- code processor.

• Entry: IEFVKMJ1

• Attributes: Non-executable

• Control Section: IEFVKMSG

IEFVMFAK: I/O Device Allocation Linkage
to IEFVMLS1

This routine passes control to entry point
IEFVMCVL of the JFCB housekeeping module
IEFVMLS1 via the XCTL macro instruction.

• Entry: IEFVMCVL

• Exit: To IEFVMCVL

• Control section: IEFVMCVL

IEFVMLS1: I/O Device Allocation -- JFCB
Housekeepinq Control Routine and Allocate
Processing Routines

The control routine obtains the required
SlOTs, determines the processing required
for each, and passes control to the appro­
priate routine. The allocate processing
routine performs the processing required in
certain refer-back situations, when the
data set is cataloged or passed, and when
uni t name is specified,.

• Entry:
VM7000.
MV7070,
MV7742,

IEFVM" IEFVMCVL" IEFVMQMI.
VM7055, MV7055AA, VM7060,
MV7090, MV7130, VM7370, MV7700,
MV7750, MV7850, VM7900, MV7950

• Exits: To IEFVM2LS, IEFVM3LS,
IEFVM4LS, IEFVM5LS, IEFVM6LS, and
IEFXCSSS

• Tables/Work Areas: LCT. JCT, PDQ.
SlOT, JFCB" QMPA

Appendix B: MFT Modules 147

• COntrol Section: IEFVM1

IEFVMLs6: I/O Device Allocation -- JFCB
Housekeeping Error Message processing
Routine

This routine prepares error messages for
the JFCB housekeeping routines.

• Entry: IEFVMSGR

.~: Return to caller

• TableS/Work Areas: JCT, LCT

• COntrol Section: -IEFVM6

IEFVMLS7: I/O Device Allocation -- JFCB
Housekeeping Error Messages

This routine contains the messages issued
by the JFCB housekeeping routines.

• Entry: IEFVM7

• Attributes: Non-executable

• COntrol section: IEFVM7

IEFVMMS1: I/O Device Allocation -- Linkage
to JFCB Housekeeping

This'routine provides a linkage to the JFCB
housekeeping routines for the step flush
function.

• Entry: IEFVM1

• Exit: XCTL to IEFVMLS1

• Attributes: Read-only, reenterable

• COntrol Section: IEFVM1

IEFVPOST: I/O Device Allocation -­
Unsolicited Device Interrupt Handler

This routine handles the posting of unsoli­
cited device interruptions for I/O device
allocation operating in a multiprogramming
environment.

• Entry: IEFDPOsT

• Exits: To lEAOPT01 or Return to caller

• TableS/Work Areas: CSCB" ECB,TCB

• Attributes: Read-only, reenterable,
disabled, resident

• COntrol Section: IEFOPOST

148

IEFVM2LS: I/O Device Allocation -- JFCB
Housekeeping Fetch DCB Processing Routine

This routine updates the SlOT, SCT, JFCB
and VOLT with information required for the
allocation of devices for the fetch DCB.

• Entry: VM7100

• Exit: To IEFVMLS1

• Tables/Work Areas: LCT, SCT" SlOT,
JFCB, VOLT

• Control Section: IEFVM2

IEFVM3LS: I/O Device Allocation -- JFCB
Housekeeping GDG Single Processing Routine

This routine obtains the fully qualified
name of a member of a generation data group
(GDG), and completes the required informa­
tion in the JFCB, VOLT, and SlOT for that
member.

• Entry: VM715 0

• Exit: To IEFVMLS1

• Tables/Work Areas: LCT, SlOT, GDG Bias
Count table, JFCB

• Control section: IEFVM3

IEFVM4LS: I/O Device Allocation -- JFCB
Housekeeping GDG All Processinq Routine

This routine builds an SlOT, JFCB, and
VOLT, and PDQ entries for each member of
the GDG.

• Entry: VM7200

• Exit: To IEFVMLS1

• Tables/Work Areas: LCT, SCT, VOLT,
PDQ, SlOT, JFCB

• Control Section: IEFVM4

IEFVM5LS: I/O Device Allocation -- JFCB
Housekeeping patterninq DSCB Routine

This routine establishes DCB control infor­
mation within a JFCB.

• Entry: VM7300

• Exit: To IEFVMLS1

• Tables/Work Areas: LCT, SCT, SlOT,
DSCB, JFCB

• Control Section: IEFVM5

IEFVM76: I/O Device Allocation -- JFCB
Housekeeping Unique Volume ID Routine

This routine creates unique volume serials
for unlabeled tape data sets, when the dis­
position is ·PASS·.

• Entry: VM7600

• Exit: Return to caller

• Tables/Work Areas: SlOT, JFCB, JFCBX

• Control Section: lEFVM76

lEFVRRC: Reinterpretation Control Routine

This routine passes control among the rou­
tines that modify the queue entry of a
restart step so that they appear as they
were prior to the initiation of the step.

• Entry: IEFVRRC, IEFVRRCA, IEFVRRCB

• Exit: Return to caller

• Attributes: Read-only reenterable

• Tables/Work Areas: NEL, JCT, SCT,
SlOT, JFCB, JFCBX, VOLT, 5MB, DSENQ,
SCD, DSB, QMPA

• Control Section: IEFVRRC

IEFVRR1: Dequeue Interface Routine

This routine interfaces with queue manage­
ment to cause a specific job to be dequeued
and the JCT for that job to be read into
main storage.

• Entry: IEFVRR1

• Exit: Return to caller

• Tables/Work Areas: QMPA, JCT

• Attributes: Read-only, reenterable

• Control Section: IEFVRR1

lEFVRR2: Table Merqe Routine

This routine merges the reinterpreted queue
entry tables of a restart step with the
original queue tables for that step.

• Entry: lEFVRR2, lEFVR2AE

• Exit: Return to caller

• Tables/Work Areas: QMPA, JCT" ACT,
5MB, SCT" SlOT" JFCB, DSENQ, VOLT,
JFCBX, NEL

• Attributes: Reenterable

• Control section: IEFVRR2

lEFVRR3: Reinterpretation Delete/Enqueue
Routine

~his routine deletes the reinterpreted
input and output queue entries of a restart
step" constructs the internal JCL necessary
for processing a checkpoint restart, and
reenqueues the job's queue entry.

• Entry: IEFVRR3, IEFVR3AE

• Exit: Return to caller

• ~'ables/Work Areas: QMPA, JCT, SCT,
SlOT, JFCB

• Attributes: Reenterable

• Control Section: lEFVRR3

lEFVSDRA: Restart Activation Routine

~his routine issues a START Restart Reader
command for one or more jobnames. This
routine is entered from lEFSD168 during a
problem program restart or lEFSD305 during
a warm start.

• Entry: IEFVSDRA

• Exit: Return to caller

• Tables/Work Areas: CSCB, CVT, TCB

• Attributes: Reenterable

• Control section: IEFVSDRA

IEFVSDRD: Restart Determination Routine

'Ihis routine initiates automatic restarts.

• Entry: lEFVSDRD

• Exit: To IEFSD305

• 'Tables/Work Areas: JCT, SCT, CMPA,
CV~, TIOT, LCT

• Attributes: Reenterable

• Control Section: IEFVSDRD

Appendix B: MFT Modules 149

IEFVSD12: Interpreter -- CPO Allocation
Subroutine

This routine sets up a JFCB and allocates
space on a direct-access device for a sys­
tem input data set.

• Entry: IEFSD012

• Exit: Return to caller

• Attributes: Reenterable

• Tables/~ork Areas: IWA, QMPA, LWA,
SIOT, TIOT, UCB, JFCB, JCT, CSCB

• Control section: IEFSD012

• External References: IEFVBQ

IEFVSD13: Interpreter -- SCD Construction
Routine

This routine constructs an SCD entry for
each system output class defined for a job,
and assigns space for all DSBs that will be
required.

• Entry: IEFSD090

• Exit: Return to caller

• Tables/~ork Areas: IWA, QMPA, DO work
area, SCD, SCT, SIOT, JCT, JFCB

• Control Section: IEFSD090

IEFVSMBR: 5MB Reader Routine

This routine reads the 5MBs associated with
a restarting job and converts the JCL sta­
tements to their original format.

• Entry: IGC0005B

• Exits: If called during restart reader
processing, return to caller; if called
during restart, XCTL to the first load
of restart housekeeping.

• Tables/~ork Areas: QMPA, DCB, JCT,
5MB, RRCWKAR, SCT

• Attributes: Reenterable

• Control Section: IEFVSMBR

IEFWAOOO: I/O Device Allocation -- Demand
Allocation Routine

This routine establishes data set device
requirements., and allocates in response to
specific unit requests.

• Entry: IEFWAOOO, IEFUCBL

150

• Exits: To IEFWDOOO, IEFX3000,IEFX5000

• TableS/Work Areas: UCB Address List,
DMT, UCB.,LeT., SCT, SIOT , VOLT, AWT

• Control sections: IEFWA7, IEFWA002

IEFWCFAK: I/O Device Allocation -- Linkage
Module

This routine passes control to the TIOT
construction routine.

• Entry: IEFWCOOO, IEFWC002

• Exit: To IEFWCIMP

• Control Section: IEFWCOOO, IEFWC002

IEFWCIMP: I/O Device Allocation -- TIOT
Construction Routine

This routine calculates the main storage
required for the TIOT., builds the TIOT, and
processes requests for direct-access space.

• Entry: IEFWCOOO

• Exits: To IEFXJIMP, IEFWDIMP

• Tables/Work Areas: JCT, SCT, LCT,
SIOT, VOLT" AWT, TIOT

• Control Section: IEFWCOOO

IEFWDFAK: I/O Device Allocation Linkage
Module

This routine passes control to the external
action routine.

• Entry: IEFWDOOO

• Exit: To IEFWDOOO

• Control Section: IEFWDOOO

IEFWDOOO: I/O Device Allocatiori
External Action Routine

This routine causes the correct volumes for
the step to be mounted on the appropriate
units.

• Entry: IEFWDOOO, IEFWDMSG

• Exits: To IEFXTOOO, IEFW41SD, IEFXKOOO

• Tables/~ork Areas: SCT, LCT, TIOT, UCB

• Control Section: IEFWDOOO, IEFWDMSG

IEFWD001: I/O Device Allocation
External Action Messages

This routine contains a directory and the
messages used in the external action
routine.

• Entry: IEFWD001

• Attributes: Non-executable

• Control Section: IEFWD001

IEFWSTRT: I/O Device Allocation -- Message
Module

This routine contains the message issued to
the operator when a job is started and the
messages issued to the operator when a job
is terminated due to ABEND, condition
codes, or JCL errors.

• Entry: IEFWSTRT

• Attributes: Non-executable

• Control section: IEFWSTRT

IEFWSWIN: I/O Device Allocation -- Linkage
Module

This routine passes control to the decision
allocation routine.

• Entry: IEFWSWIT

• Exit: To IEFX5000

• Control section: IEFWSWIT

IEFWTERM: Termination -- Message Module

This routine contains the message issued to
the operator when a job is terminated norm­
ally, or when it is terminated because of a
JCL error £ound in the interpreter or
initiator.

• Entry: IEFWTERM

• Attributes: Non-executable

• Control Section: IEFWTERM

IEFXAMSG: I/O Device Allocation -- Message
Module

This routine contains the messages issued
by the allocation control routine.

• Entry: IEFXAMSG

• Attributes: Non-executable

• Control section: IEFXAMSG

IEFXCSSS: I/C Device Allocation
Allocation Control Routine

This routine calculates table space
requirements and obtains the main storage
for the tables used or built during
allocation.

• Entry: IEFXA

• Exits: To IEFXJ, IEFWA, IEFWC

• Tables/Work Areas: JCT., SCT, LCT, UCB,
SlOT, VOLT, AW'I

• Control Section: IEFXA

IEFXHOOO: I/O Device Allocation
Separation Strikeout Routine

This routine strikes from AWT entries, the
bits corresponding to devices that would
violate separation or a£finity requests.

• Entry: IEFXHOOO

• Exit: Return to caller

• Tables/Work Areas: LCT., AWT, AVT, UCB

• Control Section: IEFXHOOO

IEFXJFAK: I/O Device Allocation -- Linkage
~~

This routine passes control to the alloca­
tion recovery routine.

• Entry: IEFXJOOO

• Exit: To IEFXJIMP

• Control Section: IEFXJOOO

IEFXJIMP: I/O Device Allocation
Allocation Recovery Routine

This routine in£orms the operator of the
allocation recovery options available, and
passes control to the proper routine to
comply with his request.

• Entry: IEFXJOOO, IEFV15XL, IEFXJX5A

• Exits: To IEFXCSSS, IEFSD095, IEFW41SD

• Tables/Work Areas: LCT, AWT, .JCT, CVT,
UCB, SCT, SlOT

• Control Section: IEFX.JOOO

IEFXJMSG: I/O Device Allocation
Allocation Recovery Messages

This routine contains the messages used by
the allocation recovery routine.

• Entry: MSRCV, MSSYS, MSCFF

• Attributes: Non-executable

• Control Section: IEFXJMSG

Appendix B: MFT Modules 151

IEFXKIMP: I/O Device Allocation
Non-Recovery Error Routine

This routine cancels the step when a lack
of available devices has been discovered
after the TIOT is constructed.

• Entry: IEFXKOOO

• Exit: To IEFW41SD

• Tables/Work Areas: LCT, SCT, UCB, TIOT

• Control section: IEFXKOOO

IEFXKMSG: I/O Device Allocation -­
Non-Recovery Error Routine Messaqes

This routine contains the messages used by
the non-recovery error routine.

• Entry: IEFXKMSG

• Attributes: Non-executable

• Control Section: IEFXKMSG

IEFXTOOD: I/O Device Allocation -- Space
Request Routine

This routine obtains space on direct-access
devices for requesting data sets.

• Entry: IEFXTOOO

• Exits: To IEFW41SD, IEFXKOOO, IEFWDOOO

• Tables/Work Areas: LCT, TIOT, UCB,
JCT, SlOT, JFCB, PDQ

• Control section: XTTPOO, IEFXTOOO

I IEFXT002: I/O Device Allocation -- VARY
Command Interface TIOT Compression Routine

This routine reduces the TIOT to its final
size and provides an interface with the
VARY command.

• Entry: IEFXT002, XTTRDJ, XTTEB3,
XTTEA1, XTTEAO

• Exits: to IEFXKIMP, IEFXT003, IEF41FAK

• Tables/Work Areas: LCT, TIOT, UCB,
JCT, SlOT, JFCE

• Control Section: IEFXT002

IEFXT003: I/O Device Allocation -- DADSM
Error Recovery Routine

This routine determines what action should
be taken when the request for space on a
particular volume fails.

152

• Entry: IEFX'l003, XUUH06, XUUEOO

• Exits: To IEFXTOOD, IEFXT002

• 'Iables/Work .Areas: LeT, TIOT, UCE,
JC'l, SlOT, JFCB

• Control section: IEFXT003

IEFXVMSG: I/O Device Allocation -­
Automatic Volume Recoqnition Messaqes

'Ibis routine contains the messages used by
the automatic volume recognition (AVR)
routine.

• Entry: IEFXVMSG

• Attributes: Non-executable

• Control section: IEFXVMSG

IEFXVNSL: I/O Device Allocation
Automatic Volume Recoqnition
Non-Standard Label Routine

'Ihis routine processes non-standard labels
for the AVR routine,.

• Entry: IEFXVNSL

• Exit: Return to caller

• Control Section: IEFXVNSL

lEFXV001: I/O Device Allocation
Automatic Volume Recognition Routine

'Ihis routine finds and allocates volumes
pre-mounted by the operator.

• Entry: IEFXV001

• Exits: IEFWCOOO, IEFX5000, IEFXJOOO

• 'Iables/work Areas: JCT, SCT, AWT, AVT,
VOLT, SlOT, LC'I, UCB

• Control section: IEFXV001

IEFXV002: I/O Device Allocation
Automatic Volume Recognition, Label
processing

'Ihis routine reads the label of a newly
mounted volume, extracts the serial number,
and places it into the UCB for the corres­
ponding device.

• Entry: IEFXV002

• Exits: To IEFXVNSL via CALL, return to
caller.

• Tables/Work Areas: LUT, UCB, CVT, DEB,
lOB

• Attributes: Reusable

• control section: IEFXV002

IEFX300A: I/O Device Allocation -- Device
Strikeout Routine

This routine modifies the primary and
secondary bit patterns in AWT entries to
complete the allocation to a data set.

• Entry: IEFX3000, X33E42

• Exit: Return to caller

• Tables/Work Areas: AWT, AVT, UCB, LCT

• Control section: IEFX3000

IEFX5000: I/O Device Allocation
Decision Allocation Routine

This routine selects devices for data sets
with multiple unit possibilities.

• Entry: IEFX5000, XIIE32, XS5C86,
X55D3G

• Exits: To IEF'WCOOO, IEFXJOOO

• Tables/Work Areas: LCT, AWT, AVT, UCB

• control Section: IEFX5000

IEFYNIMP: Termination step Termination
Control Routine

This routine passes control among the
modules of the step termination routine
and, when required, passes control to the
job termination routine.

• Entry: IEFYN

• Exits: To IEFW22SD~ IEFYPJB3, IEF­
VJIMP, IEFZAJB3, IEFRPREP

• Tables/Work Areas: JCT, SCT, LC~

• Control Section: IEFYN

IEFYNMSG: Termination -- step Termination
Control Routine Messages

This routine contains the messages required
for the step termination control routine.

• Entry: IEFYNMSG, STRMSG01

• Attributes: Non-executable

• Control section: IEFYNMSG

IEFYPJB3: ~ermination -- step Terroination
Data set Driver Routine

~his routine obtains SlOTs and to pass con­
trol to the disposition and unallocation
routine.

• ~ntry: IEFYP

• Exits: To IEFZG, IEFYNIMP

• Tables/Work Areas: LCT, TIOT, UCB,
QMPA, SlOT, ~CB

• Control section: IEFYP

IEFYPMSG: Termination -- Step Terroination
Messages

This routine contains the messages required
by the step termination routine.

• Entry: IEFYPMSG, YPPMSG1, YPPMSG2

• Attributes: Non-executable

• Control section: IEFYPMSG

IEFYSVMS: Termination -- Message Blocking
Routine

This routine blocks system messages into
5MBs, and places S~~s into the message
class queue entry.

• Entry: IEFYS

• Exit: Return to caller

• ~ables/Work Areas: LCT, SCT, 5MB

• Attributes: Reenterable

• Control Section: IEFYS

IEFY~'VMS: Termination -- DSB processing
Routine

This routine places data set blocks in the
space reserved for them in the output queue
entries.

• Entry: IEFYT

• Exit: Return to caller

• Tables/Work Areas: JCT, SCT, TICT,
SlOT, QMPA, DSCB, LCT, CVT, JFCB

• Attributes: Reenterable

• Control section: IEFYT

Appendix B: MFT Modules 153

IEFZAJB3: Termination -- Job Termination
Control Routine

This routine provides entry to the job ter­
mination routine, obtains PDQ blocks, and
passes control to the disposition and unal­
location routine.

• Entry: IEFZA

• Exits: To IEFZGJ, IEFW31SD

• Tables/Work Areas: LCT, JCT, PDQ, UCB,
QMPA

• COntrol Section: IEFZA

IEFZGJB1: Termination
Deallocation Routine

Disposition and

This routine directs the disposition and
deallocation of those data sets that remain
to be processed at job termination: passed
data sets that ~ere not received, and
retained data sets that were not referred
to.

• Entry: IEFZGJ, ZPOQM

• Exit: Return to caller

• Tables/Work Areas: JCT., PDQ, JFCB,
LCT. QMPA,. UCB

• Control Section: IEFZGJ

IEFZGMSG: Termination Disposition and
Deallocation Messages

This routine contains the messages required
for the disposition and deallocation rou­
tine (IEFZGJBl).

• Entry: IEFZGMSG

• Attributes: Non-executable

• Control Section: IEFZGMSG

IEFZGST1: Termination -- Disposition and
Deallocation Routine

This routine directs the disposition of
data sets as specified in the DISP field of
the DO statement, and makes the associated
units available for allocation to other
d.ata sets.

• Entry: IEFZG, ZPOQMGRl

• Exit: Return to caller

154

• Tables/Work Areas: LCT, PDQ, SlOT.
TIOT., UCB, JFCB. QMPA

• Control Section: IEFZG

IEFZHMSG: Termination -- VARY Command
Interface and Disposition and Deallocation
Message Routine

This routine prepares messages to the pro­
grammer and to the operator for the dispo­
sition and allocation routines. It also
provides an interface with the VARY
command.

• Entry: IEFZH. ZGOE60, ZKOD1, ZKOEl,
XPS631

• Exit: Return to caller

• Tables/Work Areas: LCT, QMPA. 5MB

• Control Section: IEFZH

IEF078SD: system Output Writer -- Linkage
Module

This routine transfers control to module
IEFSD078.

• Entry: IEFSD078

• Exit: To IEFSD078

• Attributes: Reenterable

IEF079SD: System output Writer -- Linkage
Module

This routine transfers control to IEFSD079.

• Entry: IEFSD079

• Exit: To IEFSD079

• Attributes: Reenterable

IEF082SD: System output Writer Linkage
Module

This routine passes control to the system
output writer main processing routine.

• Entry: IEFSD082

• Exit: To IEFSD082

• Control section: IEFSD082

IEF083SD: System output writer Linkage
Module

This routine passes control to th~ system
output writer command processing routine.

• Entry: IEFSD083

• Exit: IEFSD083

• Control section: IEFSD083

IEF300SD: System Restart -- Linkage Module

This routine provides a linkage to the sys­
tem restart initialization routine.

• Entry: IEFSD300

• Exits: To IEFSD300" IEFSD055

• Attributes: Reenterable

IEF304SD: system Restart -- Linkage Module

This routine provides a linkage to the sys­
tem restart scratch data sets routine.

• Entry: IEFSD304

• Exits: To IEFSD304, IEFSD055

• Attributes: Reenterable

• Control Section: IEFSD304

IEF41FAK: I/O Device Allocation -- Linkage
Module

This routine provides a linkage to the
allocation exit routine during step flush.

• Entry: IEFW41SD, IEFW1FAK, IEFW2FAK

• Exit: To IEFW41SD

• Attributes: Read-only, reenterable

• Control Section: IEFW41SD

IGC0103D: SVC -- Master Command EXCP
Routine

This routine processes the MOUNT Command.

• Entry: IGC0103D

• Attributes: Reenterable, transient

• Control Section: IGC0103D.

• page Reference:

IGF2603D: SVC 34 -- Machine status Control
Routine

This routine is available only for the
model 85. It processes the status parame­
ter of the MODE command.

• Entry: IGF2603D

• Exit: IGF2703D

• Tables/Work Areas: CVT, XSA

• Attributes: Reenterable, read-only,
self-relocating

• Control section: IGF2603D

IGF2703D: SVC34 - Machine Status Control
Routine

This routine is available only for the
model 85. It processes all parameters of
the MODE command but the status parameter.

• Entry: IGF2703D

• Exit: Return to issuer of SVC 34

• TableS/Work Areas: CVT, XSA

• Attributes: Reenterable, read-only,
self-relocating

• Control Sections: IGF2703D

Appendix B: MFT Modules 155

Appendix C: Flowcharts

This appendix includes the MFl' flowcharts
that are different from MVT. For the flow­
charts on allocation, termination, and sys-

tern restart, see IBM system/360 Operating
System: MVT Job Management, Program Logic
Manual" Form Y28-6660.

Chart 01.

156

Task Dispatcher (Without ~ime Slicing>

Enqueue Timer
Element

Note - 'Old' Is the TCB Addr ...
of the Task Currently
in Control. 'New' Is the
TC B Address of the
Task to be Given Control .•

'New' = leB to
Be Dispatched

Place 'Old'
Task in Wait

State

Yes

H3

No

Ye.

C4

Dequeue Timer
Element

Examine 'Old'
TCB

Find Next TCB
on Queue

Chart 02. Task Dispatcher (with Time Slicing)

A3

Ye,
Schedule

Asynchronous
Exit Routines

B4

Save Registers
2-9

TMSl3 C2 C4 C5

Ye, Save Floating New= 0
Queue Element Point ·Registers

02 OSPE 04

Set Old Equal
to New

E4

Set New Equal Restore
Restore

to Old Registers 0-9
Floating Point

Registers

F2 F3
Get TCB from

'Next' Field of New = Next Time
Time Slice Slice TCB to be

Control Element Checked
TSCE

TMSl9 G2

Update 'Next'
Field of Time
Slice Control

EI ement (TSC E)

H2 H5

Use T ransi ent
Enqueue Time Area Refresh
Slice Timer Routine to Load

Queue Element Correct SVC

J1

New = Next TCB
Enqueue Task Y ..
Timer Queue

on Oueue Element

K2 K3 OSPW K

Yes Set 'Wait' Bit Restore Restore

Old PSW Registers 2-9 Reg isters 10- 1

Appendix c: Flowcharts 157

Chart 03. ABEND and DAR Control Flow (Part 1 of 2)

158

Task is Resumable and
Caller Wishes to Resume

From
IEAATMOC
or
IEAATMOE

Primary DAR or Invalid
ABEND Recursion

IGCOIOC

IEAATMOI

Validity Check
Systems Q,eues

Abnormal End
of Task

F2

To IGCOlilC

Test for
Recursion

A3

C3

IGC0701C

Ftom System,
Problem Program,
or ABTERM

To IEAATMOB, Via XCTL
If a Valid STAE is j·n Effect,
or Via SVC 3 If ABEND Issued
By Purge Durihg STAE Processing

Secondar DAR Recursi on

IEAGTMOO 03 04

Purge IQEs and
WTOR Requests

IEAGTM06

Purge I/O
Operations and
I/O Requests

To IEAAMOD Via XCTL
If IEAGTMOO Entered

'-_____ , from STAE

To IGCOlilC If
Normal End of Task

F4

System Task ABEND or IEAGTM08
'Mus. Complete' Task !-":......:==----!Normal DAR

IEAGTM09

DAR Code Image Processi n9
Dump Routine

Dump
Only

Non-System
Task or Re­
sources Non ...
Critical

To IGC051C

DAR Task
Reinstatement

F5

Via Branch to Dispatcher

Chart 04. ABEND and DAR Control Flow (Part 2 of 2)

~ B3 IGCOlllC ~ B4

IEAATMOA
B3

Main Storage Available - No Dump Requested Invalid Scheduler ABEND
Determine !VIaln

Storage Recursion No Dump

Requirements
Requested

lVIain Storage Available -~ Indicative Dump Requested I I iVIoin Storage Available -ABDUMP Requested

IGC0301C

IEAATM03
Cl

Indicative

Format Dump

Indicative Dump

tv\ain Storage
IGC0211C Required IGC0201C IGC0221C

IEAATM2A
C2

IEAATM02
C3

IEAATM2B
Not Enough Enough

Stea I from Low Stolen Steal tv\ain Stolen Move LRB's to
End of Storage from Low End of

Partition LRB's Partition

~
No Dump or No Dump or

~
Previous Dump Previous Dump
Failed Failed

ABDUMP Indicative J;>-r ,""moe Dump
E3 03/D3

IGC0501C

Scheduler-Size Partition

~ F2

Exit)
V;a XCTL to
Step Deletion
RouHne IEFSD515

IEAGTM05

ABEND
Termination

I

E3

I Small Partition

! F4

Exit

Via XCTl to
Step Deletion
Routine IEFSD599

C4

ABDUMP

~

~IGC0401C
IEAATM04

C5

Call ABDUMP

~.
DEB Fa; led

to Open

Appendix c: Flowcharts 159

Chart 05.

Note -
At Entry,
Small Partition
Has Zero
Protection
in TCB, PSW
and Hardware.
Also, PSW is
Supervisor
State.

160

Small Partition Routine (Part 1 of 4)

Wait on 'No
Work' ECB in

PIB

No

Create Small
Partition Info

List

Indicate (in
PI B) thaI SPIL

Created

E2

F2

If Asgn'd, Free
Tracks for
Small Part.

Mod.

E4

If Created,
Free SPIL

F4

If any, Free
Pending CSCB

G4

Post 'Define'
ECB in PIB

Chart 06. Small Partition Routine (Part 2 of 4)

Indicate (in
SPll) Syotem

Task Cont.

If Asgn'd Fre.
Tracks For

Small Part Mad

If Created,
Fre. SPll

02

Assign Tracks
for this Small

Part. Mad.

Ves

03

E3

Indicated (in
PIS) Tracks are

Assigned.

Indicate (in
SPll) Prob.

Prog.
Initiation

Not Enough
Tracks Available
f Assi nm t

B4

E4

WTO 'Start Init
Rejected'

If Created,
Free SPll

F4

Appendix c: Flowcharts 161

Chart 07.

162

Small Partition Routine (part 3 of· 4)

B1

Eng (EXCL.) on
Maior

'SYSIEFSD'
Minor 'SP'

C1

Disoble I/O ond
External

Interrupts

Point to First
TCB

Point to Next
TCB

01

No

Indicate SPIL
Address Stored

Post 'No Work'
EC B in Sched.

Par't. Bit

E3

BS

Enoble I/O ond
External
Interrupts

Dog Off Mojor
'SYSIEFSD'
Minor 'SP'

ES

Wait on Dormant
ECB in PIB

H5

Wait on I ECBB'
in SPIL

J5

Deg Off Mojor
'SYSIEFSD'
Minor 'SP'

Chart 08. Small Partition Routine (Part 4 of 4)

No

Wait on 1 ECBA'
in SPIL

Post Code := 0,
Means Step has

Bl

Been Scheduled by Scheduler
Partition

Move Tables
into Small
Partition

Post 'ECBC in
Spil

Fl

Post Code=2
fv'.eans Job
Terminated
in SchecLler
Partition

Post Code=1
tvi.eans
'No Work'
Found by
Scheduler
Partition

G2

If any, Open
JOBUB DCB

If any, Open
Fetch DCB

H2

J2

Set Prob, Prog.
P.K. in reB and

Hardware

K2

Free SPIL

XCTL

No

Post I ECBC' in
SPIL

Allows
Large
Partition
to Continue

E3

Move Tables
into Small
Partition

Post EeBC in
SPIL

Move QMPAS to
CSCB

Free SPIL

F3

G3

H3

XCTL

Set Zero P.K.
in reB and
Hardware

E4

Create SPll

F4

Indicate (in
PIB) thotSPIL

Created

G4

Indicate (in

SPIL)
Termination

Appendix c: Flowcharts 163

Chart 09. Master Scheduler Task

164

Scheduler
Init.ialization

IEEOFINI

Establish
Partition

Format

Oispl~y
Automatic

Commands Issue
'Ready'

Job Queue
Format or

System Restart

C3

03

H3

Enter Automatic
Commands to

System, if Any

Estcblish
Partitions

J3

IEECVfC""TC!.I __ ~---::B;:,,4

Communications
Task

Initialization

r-__ --'Ic:;.EE::.;Vc.::L.,IN E4

System Log
Initialization

Chart 10. Queue Search

IEESD562 I XCTL IEESD566 1 B4
82 B3

Link from Syntax Check 1
Display Active

IEECIRSO Routine

1 XCTL

IEESD563 C3 ! C4

Sen Up Queue IEEXEDNA
Reads Queue

Display Control Record --- on Retum Consoles

Tests Results Routine

I EESD565 1 03 IEESD564 04
05

Job ENG link
Queue Search (Message link L..-.. Return

and Clean Up Routine

I

Appendix c: Flowcharts 165

Chart 11.

166

Queue Manager Table Breakup Routine

Bring in
Existing TQCR

Write Out Part
01 Table

No

No

B2

IEFQMRAW

Read in First
TQCR

C2

IEFGASGN

A .. ign HTTR

E2

IEFGMRAW

Write Out
Updated mCR

H2

IEFQMRAW

Write Out Old
TQCR Read in

New TQCR

J2

IEFQASGN

AMign New TTR

B3

IEFQMRAW

Read in First
Part 01 Tabl.

.C3

. Get Storage for
Table and Move

Buffer in

IEFGMRAW

Read in Next
Part 01 Table

G3

IEFQASGN
No

Assign New TQCR

H3

IEFQMRAW

Write Out Old
TQCR

Chart 12. Master Scheduler Resident Command Processor

Any (2

Job Queue
Commands to

D2

No

Yes

Link

Yes

link

Note - The Resident
Command Processor
Never Terminates

I EESD562

Job Queue
Search Routines

IEEDFINl

(3

D3

Define Routines

Appendix c: Flowcharts 167

~hart 13. SVC 34 Command processing (Part 1 of 3)

Al

Entry

81 82 B4
Commond-

IEE0303D Processing IEE0403D

Translator/
Error

I--
Chain Router Message Modu I e

Manipulator

Chain Normal
Error Stop Jobnames

Manipulation C3 Status

IEE4503D Space

Stop Normal
Dsname

(Except Stop Periodic Stop

In;t) Command Handler

Non-Periodic Stop

D3

DI
Buffer Exceeded
No Command I EE0703D Stop

(Return
No Operation Mod;fy Mod;fy

CSC8 Ma,k;ng

E4

lErro,
K5

Message Module

~
Error

F4 F5

Display IEE0803D Display I EE2903D
Hold R

Display ~
CSCB Creation &

Release D;splay T
Only Requests

Reset Processor

G3
Log

IEEI603D
Writelog

Log and
Write log

Processor

Error
H4

Message Modu I e

Error
J3

IEE0603D
Set

Set Command
Processor

K4 Gr-
Set Date IEE0903D n

LID Set Clock

A2 Timer Return

Maintenance

168

Chart 14. SVC 34 Command processing (Part 2 of 3)

~ A2

A3 A4

IEESD561

Start Start & Stop Error

Stop Init Init Command
Routine

Message Routine

B3

1 I EE1203D
Reply

(Non-MCS)

C3 C4

I EEl A03D IEE1B03D
Reply

(MCS)
MCS Reply Reply Message
Processor Routine

D3 D4
Brdcst
Cenout IEE1503D

MSG Error

Show RJE Processor Message Routine
Userid

E3 E4

1 IEE1403D
Holt ETTor

EOD Routine Message Routine

F3 F4

1 IGF2603D IGF2703D
Mode

Machine Status Machine Status
Control Routine Control Routine

G3 G4

Vary IEEll03D G5

Unload Error
Return

Define
Message Routine

Mount
Cancel

H2

Cancel & Job
lEESD571

";,, ;"o~ Define Mount
Queue Cancel Routine

1104
Jl Vary Online Error J4

IGC0103D
Vory ONGFX

I EE2303D
Mount V ory Conso 1 e

PCP Moster
Command EXCP (with SMF) SMF Processor

Routine Define
Cancel (Job All Other
Found) Vary Situations 15

K2 Al

Return To IEE3103D

Appendix C: Flowcharts 169

Chart 15. SVC 34 Command processing (Part 3 of 3)

~ AT Dispatch WTOS and Error Messages

A1 Non-Console A2 AS
to be

IEE3103D Processed IEE4603D

WTO Dispatcher
Error

I--
and Vt;Jry Onl.ine Message Routine

& Orfl i ne Proc.

Vary Unit Field II All Units Processed

Online Scan Shows B3 Construct B4
Offline More than Console

One Unit IEE4903D IEE4803D
(Non- Errors

tv\essage

--00 Consoles)

,~,.-~
in Syntax

to 4103
II Mar.

~ error

Vary Online
Unit ie C4

Offline IEE4203D C2
Console Other 'Errors

(No Keyword Unit Field Scan Message Routine

Parameters
After Console) t Vary Console

02

Vary Hardcpy I EE4403 0
Console error

(with
Keyword II Multiple
Parameters) Vary Hardcpy Units Specified

E2
Issue

E3

IEF4703D Hardcpy IEE4103D
Vary Hardcpy Message Error

(No Keyword

~ Parameters)

Error All Unit.
F2

F5

Return
Message Routi ne

Error

IEE1703D
G2

~~?'r.~~GFX

t H2 I H4

IEE4303D IEECMCSW
Vary MSTCONS SVC72

Console Switch

Error

J2

Errors Processing
Finished

Me~age Routine

L

K2

Unload
-\ Return

110

chart 16. communications Task

SV C34 02

IGCOOO30

Detail on
Separate Chart

Cammu . nlCatlons T k . h MCS os w,t

Norma I Processing

lEE CVCRA GI

Post Attention
ECB

IEEC MCSW , HI IEECMOSV , H2

IGCXL07B
Device Service

Console Switch Routine

Routine

1 J2

Device Support
Routi nes for
Each Device

Initialization

IEECVINT K2

Console
Initialization

Routine

A3

(Entry From
D-ispatcher

IEECVCTW J B3

Wait Module

SVC72 1 C3

IEECVCTR

Router

IEECVPM I 03

Processor

IEECVOC I E3

Open/Close

F3

Entry from
Dispatcher

IEECMAWR 1 G3

Wait on ECBS

,
IEECMWSV , H3

WTO/WTOR
Service Routine

Note: IEECVINT is Entered Via
Link Only Once by
1 EFSD569 and Returns
Control to I EFS0569

IEECVCTX C4

External
Interrupt
Handler

IEECVPM ond lEE
Dependent Modul

cvoe Are Csects of Device
es. The Console Devices (5)
hich Modules are Used. Will Determine W

IEECVCRX

Post External
ECB

IEECMOOM, H4 IEECMWTL ,

Delete Operator Nip Message
Message Routine Buffer Writer

G5

H5

Appendix c: Flowcharts 171

Chart 17.

172

IEFSD518 - Partition Recovery Routine

Issue Message
IEFI821

JI

Put Job on
Required Part.
Internal Queue

No

C2

Issue MSG.
I EF2091 and Set
Job Fail Bit in

JeT

Issue MSG.
IEF1841

Required
Part. 0 RDR

orWT

J2

Yes

Unchain and
Free CSCB

Balr
F3

IEFSD598

Enq/Deq Purge
Routine

G3

Updote SCD
Enqueue Job on

Hold Queue

Enq on
Partition

Boundaries

Has J3

HO Core been
Added

K3

H3

Yes

No

Issue MSG.
I EF189E

Issue MSG.
IEF183E

J4

K4

No

No

D5

Deq. on
Partition

Boundaries

Post 1 ECBA' (in
Spi I) with Term
Code of One.

Post I No Work
EeB' in Current

Partition

G5

Chart 18. Initiator Control Flow

Initial

r Start AS

A3
RDR/WTR

I EFSD589

Entry .-- System Task
Control

B3 I

~
~. B3

Link Ret
B4

~
IEFSD510 IEFSD519

H2 Term Job Selection Dequeue Job on

Routine fl Internal Queue Terminate

RD RiWTR After

l~
Suspending

C4
RDRiWTR

Cl C2 C3 C5

IEFSD541 IEFSD540 IEFSD511 IEFSD553 IEFSD588

Data Set
XCTL Br r L-.. f---Linkage to Job Initiatior. linkage to System Task

Integrity IEFSD541 Routine IEFSD512 Control
Routine

or
~ D3Chkpt Restart

XCTL

dv D4
link Ret

IEFSD512 IEFSD518

XCTL Partition
Step Initiation ~ ~~ Restore Transient Routine cr, Routine RDR or Terminate

Link 3r B3 Error Code RDRor WRT.

XCTL El E2 I ~ ~. "'''''' E4

I EFSD555 SP
Job

IEFSD566 Alloe. IEFSD513 Cancel IEFSD554
Initiation

Problem Program I- Error
Linkage to Allocation linkage to
IEFSD510 Br Interrace

Routine
Routine IEFsD516

XCTL XCTL

F2 F4 F5

~
IEFsD516 IEFsD42Q

Problem C4 ste ~ Balr
Program Alternate Step

Termination
Deletion Routine
Routine

Return
G2

.~ G2 G3

)- r- IEFSD598

~
Abend Enq/D eq Purge

Routine

Automatic . I XCTL
Restart H2

HI ~ l 'Go' H2 H4

IEFsD168 IEFsD515 Ir,- IEFsD517

~ ~ Job Suspension Step Deletion Job Deletion

Routine Routine
Br Routine

1 1 BALR e Mo .. steps ~~'. Jl J2 J3

IEFVsDRA IEFsD42Q IEFsD587

~
Restart Termination linkage to

Activation Routine IEEVTCTL

Kl ~ IEFsD598

'----- Enq/Deq Purge
Routine

Appendix C: Flowcharts 173

Chart 19.

114

JohSelection Routine (Sheet 1 of 5)

Note .. At ·Entry Partition Has
Zero Protection in
TCB, PSW, and Hard­
ware. Also PSW is
Supervisor State

Wait on INo
Wark! ECB in

PIB

Create
LOT

Block

Indicate (in

F2

PI B) That LOT
Block Created

H2

Disable I/O and
External
Interrupts

Point to, Small
Partitions PIB

G3

Retain Pointer
to SPIL

Zero SPIL
Pointer in All

large Partitions

04

E4

Enable I/O and
External
Interrupts

Yes

Post 'ECBB'
in 'ECBB'

SPIL

F4

Request for Initiation
for Fi rst Step of a
Job in Small Partidon

B5

No
Enable I/O and

External
Interrupts

Allows Small Partition io

o EQ Off $PIL Poi n'.r as
an Exclusive Resource

Writer in Small Par~ition

Request for Terminc::llion tor
Current Step and I If A~y ,
InitioHon for Next Step
in Small Par'ition

If' Created,
Free LOT Block

J5

Chart 20. Job Selection Routine (Sheet 2 of 5)

Yes
Fl

Post 'ECBA' (in
SPIL) w;th 'No
Work I Code of 1

Coded in
I EFS0513

Jl
Wo;t 'ECBC' (;n

SPI L) for Move
of Tables By
Small Part.

Coded in
I EFS0513

Kl
Post' ECBA' (in
SPIL) w;th

'XCTL/ Cancel I
Code of Zero

No

link to
IEFS0519 to

IEFS0168

C3

Dequeue Job Job Suspend

Request Work
for Jobclass

V;o O-MGR

Job Initiation

I EFS0513

K2

Problem Program
Interface

BALR L;:BA=LR'-__ --,

Return ,-.1-____ 0"-':.:,

No

IEFS0598

E NO /0 EO Purge
Routine

F3

IEFVSORA

Restart
Activation Return

G3

Step Initiation

Ye

B4

Step Deletion

Auto
C4

Restart to be

04

Job Deletion

More
Ste s

Coded in

,-__ ..L..:.;I E::.F.:.SO=.5::.;17E4

Post 'ECBA' (in
SPIL) wHh 'Job

T erm' Code of
Two

Coded in
I EFS0512

H4

Coded in
I EFS0512

link to
IEFS0518

.-_____ ;...K..,4 Another

IEFS0516 Step
I-------l

A lternate Step
Delete

End of
Job

Run DSD R Step in
Large Partition

Appendix c: Flowcharts 175

Chart 21.

176

Job Selection Routine (Sheet 3 of 5)

link to
IEFS0519 to
Dequeue Job

If Assgn'd
Free Trocks for
this Initiator

El

HI

Jl

If Created,
Free LOT Block

If Any, Free
Pending CSCB

Kl

Post I Defi nel
ECB in PIB

K2

this Initiator

If Created,
Free lot Block

C3

03

, __ ...L. __ ..:C:.;4 Not Enough

Initiator

Indicate (in
PIB) Tracks or.

Assigned

Link to
IEFS0519 to
Dequeue Job

04

Tracks Available
for Assignment

WTO 'Start Init
Rejected'

05

E5

If Created,
Fre. LOT Block

Chart 22. Job Selection Routine (Sheet 4 of 5)

Request Work
for Jobc lass

Via QMGR.

IEFSD512

B1

Step Initiation

IEFVSDRA

Restart

Activation

No

Yes

D5

Another
Ste r-~----i

.---~

Yes Link to
IEFSD518

E3

Successful

Yes

F5

XCTL~IE~F~SD~5~1~3----~
~--------------------~~~ Problem Program

Interface

DSDR
Executed
for Small
Portition I'I.::;EFc.;S:.::D:.::5c:.15::.... __ --l

J2

IEFSD168

BALR

rl-EF-S-D-59-8-----L~RE~~RN

Enq/Deq Purge
Routine

Step Deletion

Appendix c:

Job
Cancel

Flowcharts 177

Chart 23. Job Selection Routine (Sheet 5 of 5)

178

Load GRI with
CSC B Address in

PIB

CI

DI

Zero CSCB
Address in PI a

If Created,
Free .LOT Block

Indicate (in
PIB) System
Task Control

Routine

EI

FI

Allows System Task Control Routine
to Initially Start One of the Following

1. Resident Reader

Disable I/O and
Extemal

Interrupts

2. Transient Reader, User-Assigned Partition
3.. Transient Reader, System-Assigned Partition
4. Writer, This Partition
5. Writer, Small Partition

B2

Load GRI with
CSCBAddr. in
M.S. Res. Data

Area

D3

Zero CSC B Addr.
in Mast. Sched.
Res. Data Area

Enable I/O and
External

Interrupts

E3

No
Enabl e I/O and

External
Interrupts

B4

C4

Waiton ECBLlST If Created,
Free LOT Block

Indicate (in
PI B) Restore

Reader

D5

To Restore One of the Following
I. Transient Reader,

User-Assigned Partition
2. Transient Reader,

System-Assigned Partition

Chart 24. Reader/Interpreter (Sheet 1 of 3)

Linkage Module
to Free NEL and

NEL Lisl. Upon
Return

C

IEFS0531 30A2
Transient

Reader Re&tore
Routine

I EFP..,H=..2 _---''-_-''0..,1

Reader Restore,
Open Reader I
Open Proclib

First Pass

Interpreter
Initialization
Build IWA Input

OCBS
From:
25B2
2505
25E4
25G2
26Gl
28C4

IEFVH2 C3

IEFVGM 02

5MB Message Link
Blocking

IEFVp.H,,-B ____ -'E,,2

Create / / Sy.in
00 •

No

Return

Open Reader for
QSAM, Open
Proclib for

BPAM

XCTL

03
Interpreter
Control Read
Input from
Problib or

Input Stream

Continuation
Check

5MB Message
Blocking

Ves

I EFS0537

link

Ves

Linkage Module
to Free NEL and
NEL lists Upon

Return

Set EOF Flag
and Build Null

Statement

F4

A5

I EFS0533

XCTL
Set Up NEL and

NEL lists.
Assign Queue

Space for
Transient RDR

B5

Appendix c: Flowcharts 179

Chart 25.

180

Reader/Interpreter (Sheet 2 of 3)

B2

Set Switch in Yes
lWA

1 EFV,.:.H:,:;L ____ .::;0:,2

Null Statement
Processor

Ves

From:
2401
24H3
24K3
26F4
30K5

Verb
Identification
and PROCLlB

Merge

Job Control
Router Modu I e

If New Job
Assign/Start

and Get 5
Records

A3

H3

No

Ves

Ves

I EFVrH:!M:....-___ .:::.C:;4

Scan Command
Table for Valid

Command

Check
Authorization
and Issue SVC

34

IEfVHEC

Job Enqueue
Val idity Check

Module

IEFVHH G4

Job and Stop
Enqueue Routine

To Enqueue

No

IEFVGM 05

5MB Message
Blocking

A Block for IEFVHH
is Shown Here for
Module F low Clarity.
Chart 26 Depicts
IEFVHH in More Oetail

Chart 26. Reader Interpreter (Sheet 3 of 3)

r""_---'L-_.:..A,1 A3 AS

Interpreter CPO
Routine

Bl

Perform Card to
Disk Function

Indicate Job
Fai I and Close

Reader

Wait

Wait for Writer
or Termination
to Free Space

or Termination
to Free Space

C2

S~~~n C~r~ti;:d Ves f.!1,:;,EF:..V:..:J:.:A::...._--=2~7A::;3::.t
Route

Processing
Accordin 1

IEFS00l2

Allocate CPO
Space

C3

F3

Indicate·Faii
Job and Close

Reader

Ves

Job Cord
Processor

B5

lEFVEA 27A3

Exec Card
Processor

lEFVOBSO CS

Processor

IEFVHF 04

Post Processor

Appendix c:

Build OS Nome
Table

Flowcharts 181

Chart 27.

182

JCL statement Processor

JCL Processing Modules
IEFPJA, IEFVEA and IEFVOA
Function by Driving
Subroutines. Their
General Flow is Described
on this Chart

Initialization

IEFVGK C3

IEFVHQ H2

Queue Manager Yes
Interface

Get Parameter

Keyword
Processor

Store I nfe in
Par. Descripter

Table

Cleanup

03

Ye,

Ye,

Link

IEFVGI

Maintain
Backward
Reference

Dictionary

IEFVGS

Backward Ref.
Dictionary

Search

IEFVGM

ereat 5MBS for
SYSOUT

Return

E4

F4

J4

Link

IEFS0091 J5

Return

5MB Job Queue
Space

Assignment

Chart 28. Job and Step Enqueue Routine

From:
25G4

Job and Step
Enqueue Module

Cleon Up and
Close Reader

IEFSD537

Free NEL and
NEL Lists

82

Yes

IEFVHQ

Reader
Interpreter

Queue Manager
Interface

B3

IEFODELE D3

Yes Delete Job Q
Tracks

E3

No

Yes

No Yes

XCTL XCTL

J2

Transient
Reader Suspend

Routine

No

Appendix c: Flowcharts 183

Chart 29. Transient Reader Suspend Routine

A4
A2 IEFS0514

Entry from
IEFKG Write Tiot and

IWA on Jobqueue

1 XCTL

B2 B4

Save Fixed Free IWA,
Length Data Exitlist, and
Necessary for ECB/IOB

Restore in IWA

1 C2 C5

~ Turn Off

Free Option this a User No
Floating Reader

List Assgnd Transient Operating

RDR Switch
(SD33STAT)

1 Yes

1 D2 05

Set Bit to Turn Transient
Prevent Rewind RDR SW Off
if Tope SYSIN (BASFL2)

1 E2 E5

Is E4
C lose and Free ere a Car

-RDR DCB Yes

-Proclib DCB
Buf. from Prevo Free It

Rest.

1
No I

F2 r F4

Delete
O-Manager Free LWA
IEFQMSSS

1 G2 G4

Set Up 514 Porm Post Non-System

List in LWA No Work ECB's

H3 H4

~ there a Yes Set Return

P .I.E. Free It Code to 1 in

Addr. R15

No J
r J2 J4

Sove CSCB
Pointer in

Restore

SD33TTR in PI B Registers

Zero SD33HTTR

T K2 IEFS0537 K4

K5

Free N El Free N EL and Return to 5 TC
N EL Lists \. (I EESD59l)

I

184

Chart 30. Transient Reader Restore Routine

A2

(Entry from
IEFSD537

lunk

B2

Save Registers,
Chain Save

Areas

C3 JEFSD537 C4

Is
C2

Redefine y •• Restore Free NEL and
Command Pend- Registen NEL Lists

ing

No 1 To STC
02

04

Getmain for (Return to STC)
Loco I Work Area (JEE59ISD)

1 E2

Set Up OMPA and
514 Porm list

for Restore in
LWA

1 F2

Set Up ECB/IOB

1 G2

JEFDS514

Return IWA and
Tiot and N EL EX
List from JOBO

1 ... ,
Get Storoge·for

N EL and Related
Areas

1 J2

Restore
Pointers TlOT
Addr to TCB

1 K2 K3 K4 K5

Pre-Suspend Set' Up Reader load Queue Open Reader I
I nput Card from and Proe:! ib Manager Open Proclib,

IWA to Gotten DCB's IEEOMSSS Complete Reader
Buffer Restore

to Start

I
XCTL

Processing 25
A3

Appendix c: Flowcharts 185

Chart 31. system output writer Control Flow

C3 From System Task

Entry from
Control Routine

IEESD591
(Chart 33)

1 Link

03

IEFSD080

Writer
Initialization

I
~. E3

IEFSD081

Clossname Setup MODIFY
Command

I
F2 -~ F3

IEFSD084 IEFSD082 IEFSD083 F4
C~!~:ncl

F5

.------ No Command
Main logic Return

Wait Routine Work ECB Command Routine or I/O
Control Routine

Posted Error

G2
1 Entry Dequeued

G3

IEFSD079 IEFSD078 32B1

~
Entry Link

Job Delete
Finished

Data Set
Return

Routine Processor

H2
1 Link

Return r3 H4

IEFSD085 32A4 IEFSD086 32B2
Optiona~ User Link Link

Routine Data Set
Return

Processor
Return 5MB Processor

Chart 32. system Output Writer

A2

No

I EFSD086 B2

5MB Get Routine
Use IEFQMRAW to

Read

Yes

I EFSD088 Cl

Create Header
of Trailer

Records

Yes

Decision is
;0 I EFSD086

C2
First or

Last Record

No

D2

Control
Character

T Tonsl ati on and
Pllt

E2

Yo;

I EFSD079 G2

No

Delete Space on
Job Queue

H2

Last Item

I EFSD085 A4

Set Up for Doto
Set Change

Forms

IEFSD070
User

Sysout
Program

First or

B4

D4

Last Record

No

Yes

Yes

I EFSD089 E4

No

Control
Character

T Tans late and
Put

F4

EOF loput

Yes

I EFSD071

Scratch Data
Set if Purge

Data Allows

G4

User Program

The User Program
Must Incorporate
the Logic Found

B5

in Modules IEFSD087,
IEFSD088, ood I EFSD089.

I EFSD088 D5

Create Header
or Trailer

Records

Decision is
;0 I EFSD087

Appendix c: Flowcharts 187

Chart 33.

188

system Task Control

Return

DI

IEFSD534
XCTL

lPSW Getmain

~

HI
Small
Partition

Exit to Writer
I EFSD599 j Error

0---

A2 A3

Interface to
Maintain I/T
in Supv State

link
I EFSD588

1'-''-'-,-1 n-'t-'-e""rfa-c-e-t"'o--I Li nk

XCTL

Supervisor State

Maintain liT
in Supv State

Problem Program State
D3

IEEVSTAR
D2

IEEVJCL
Branch

Start Syntax
JCL Bui Id Check

>on ~ 1 XCTL
Error E3

J4 IEEVRCTL

Reader Control
Interface

r XCTL
F3

IEEVACTL

~ Allocate
Error Control

Interface

1 XCTL

G3
G2 IEESD590

Exit to
IEFSD515

Error Write Tiot I Large
~~:~~tion ~I J ~. H3

IEESD591
Reader or Link

Writer
Return Link or Routine

J2 0-1 J3

IEFSD535 IEEVTCTL

Terminate
LPSW

Control

Link

Return

link

Return

~

If Small
Partition
Writer

XCTL

~

Interface to
Maintain I/T
in $upv State

XCTL

E4

Reader/
Interpreter

F4

I/O Device
Allocation

If Small
Partition
Writer

H4

Abend

Gi J4

Note

Enter at
Point A2 to
Use Large
Partition to
Terminate Writer

(From IEFSD599)

Link I
In1tiotio
Writer

n of

H5

Exit to
IEFSD599

Return to I EESD592

~
Calling

Post Small
Routine

Partition at 62, 83,
or 84.

Indexes to program logic manuals are
consolidated in the publication IBM
System/360 Operating system: Program Logic
Manual Master Index, Form Y28-6717. For
additional information about any subject
listed below, refer to other publications
listed for the same subject in the Master
Index.

Where more than one page reference is
given, the major reference is first.

ABDUMP ••••••••••••••••••••••••••••••••• 30
ABEND service routine ••••••••••••••• 29-30
ABEND/STAE interface routine •••••••• 28-29
Abnormal termination processing ••••• 28-31
ABTERM ••••••••••••••••••••••••••••••••• 29
Access methods •••••••••••••••••••••• 10-11
Accounting routine ••••••••••••••••••••• 63
Active request block queue ••••••••••••• 33
Allocate parameter list (APL) •••• 68-69,71
Allocate register save area (ARSA) 68-69,71
Alternate console ••••••••••••••••••• 42-43
APL (see allocate parameter list)
ARSA (see allocate register save area>
ASB (see automatic SYSIN batching)
ASIR (see ABEND/STAE interface routine)
Assign/start routines ••••••••••••••• 55-57
ATTACH macro instruction •••••••••••• 31,33
Automatic commands ••••••••••••••• 18,40-41
Automatic SYSIN batching ••••••••••••••• 55

BBX (see boundary box)
BLDL routines •••••••••••••••••••••••••• 11
Boundary box (BBX) ••••••••••••••••••••• 35

CANCEL command ••••••••••••••••••• 47,56-57
Catalog management •••••••••••••••••• 10,16
CCH (see Channel-check routine>
Channel-check routine •••••••••••••••••• 37
Checkpoint/Restart ••••••••••••••••••••• 37
Command processing ••••••••• 39-40,42,47-48
Command scheduling control block

(CSCB) •••••••••••••••••••••••••• 76-77,63
chain ••••••••••••••••••••••••••••••• 49
creation routine •••••••••••••• 47,35,18

Communication task •••••••••••• 42-46,35,39
control flow •••••••••••••••••••••••• 45
dispatching •••••••••••••••••••••• 24-27
SVC 72 ••••••••••••••••••••••••••• 43- 44

Communication vector table (CVT) • 21-23,14
Contents supervision •••••••••••••••• 33-34
Control program functions ••••••••••• 10-11

(also see data management, job
management, and task management)

Control program organization ••••••••••• 11
non-resident portion •••••••••••••••• 11
resident portion •••••••••••••••••••• 11

Core storage
(see main storage hierarchy support)

Index

CSCB (see command scheduling control block)
CV! (see communication vector table)

DADSM (see direct access device space
management)

Damage Assessment routine •••••••• 29,30-31
DAR (see Damage Assessment routine)
Data control block (DCB) •••••••••••• 15,54
Data event block (DEB) ••••••••••••••••• 54
Data set •••••••••••••••••••••••••••• 15-16
Data set block (DSB) •••••••••••••••• 72-73
Data set control block (DSCB) •••••••••• 15
Data set descriptor record (DSDR) •••••• 68

(also see checkpoint/restart)
Data set enqueue table (DSENC) •••••• 68,79
Data set input stream •••••••••••••••••• 15
Data set integrity ••• ' •••••••••••••••••• 68
DCB (see data control block)
DEB (see data event block)
DEFINE command processing •••••••• 47,50-53
Defining control program areas ••••••••• 18
Definition routines ••••••••••••••••• 50-53
DELETE macro instruction ••••••••••••••• 34
Delete operator-messag£ (DaM) macro
instruction ••••••••••••••••••••• 39,42,46

DEQ macro instruction •••••• _ ••••• 32-33,59
Dequeue

queue manager dequeue routine •••• 54,59
supervisory routine •••••••••••••• 32-33

Device allocation •••••••••••••••••••••• 16
Direct access device space management

(DADSM) •••••••••••••••••••••••••••• 10,16
Dispatcher ••••••••••• '. • •• • • • • • •.• • • •• 21-30

with time-slicing •••••••••••••••• 27 -30
wi thout time- slicing 21-27
(also see communication vector table,
task control block, and task
dispatching)

Dispatching priority ••••••••••••••••••• 21
DISPLAY command ••••••••••••••••••••• 47,50

(also see command processing)
DaM macro instruction (see delete

operator-message macro instruction)
DEB (see data set block)
DSCB (see data set control block)
DSDR (see data set descriptor record)
DSENQ (see data set enqueue table)
DSNAME parameter ••••••••••••••••••••••• 68
Dynamic area ••••••••.•••••••••••••••••• 12,9

partition organization ••••••••••••••• 9

ECB (see event control block)
ECB/IOB ••••••••••••• ' ". 49

(also see event control block and
input/output block)

ElL (see event indication list)
End-of-volume

(see open/close/end-of-volume)
ENQ macro instruction ••••••••••••••• 32-33
ENQ/DEQ Purge routine ••••••••••••••• 70-71

Index 189

ENQ/DEQ .routine ••••••••••••••••••••• 32- 33
Enqueue

queue manager enqueue routine ••••••• 59
supervisory routine ••••••••••••••••• 68

Entering commands •••••••••••••••••••••• 43
Entry to job management

. ,-after IPL· •• ' ••••••• e· ••••• • ' ••••••••••• 40"
following step execution •••••••••••• 41

EOV (end-of-volume)
(see open/close/end-of-volume)

Error handling •••••••••••••••••••••• 36-37
Event control block (ECE) •••••••• 31,32,43
Event indication list (ElL) ••• ~ •••••••• 44
Extended save area (XSA)

FINCH routine ••••••••••••••••••••••••••. 34
Fixed area ••••••••••.•••••••••••••••• 9,13

(also see input/output error handling,
SVC transient area, SVCLIB partitioned
data set, and system queue area)

Free track queue •••••••••••••.•••••••••• 55·
FREEMAIN macro instruction ••••••••••••• 35

GDG (see generation data group)
General system initialization •••• 18,48-49
Generation data group (GDG) ••••••••••• 148
GETMAIN macro in'struction •••••••••••••• 35
Graphic console •••••••••••••••••••••••• 46

HALT command ••••••••••••••••••••• 39-40,47
Hierarchy support

(see main storage hierarchy support)
HOLD command •••••••••••••••••••••••• 39-40
HO (see main storage hierarchy support)
Hl (see main storage hierarchy support)

I/O supervisor
(see input/output supervisor)

IDENTIFY macro instruction ••••••••••••• 34
Inactive partition ••••••••••••••••••••• 22
Initial program loading CIPL) 11, 12, 13
Initiating system tasks

(see system task control)
Initiator/Terminator •••••••••••••••• 62-72

(also see data set integrity, ENQ/DEQ
purge routines, job deletion, job
initiation, job selection, small
partition scheduling, and step
deletion)

Input jo£ queue •••••••••••••••••• 55~56,63
Input stream

data sets ••••••••••••••••••••••••••• 15
Input/output

device allocation ••••••••••••••••••• 16
error handling ••••••••••••••••••• 36-37
supervisor •.• • • • • • • • • •• 10-11

Integrated operator's console •••••••••• 46
Interlocks, system ••••••••••••••••••••• 57

(also see queue manager)
Interpreter entrance list (NEL) ... 61,7.4-,75
Interpreter work area (IWA) •••••• 79-83,62
Interruption queue, element ••••• ;......... 30

190

(also see task dispatching and task.
switching)

Interruption supervision ••••.••••• 21,45-46
lOS (see input/output supervisor)
IPL (see initial program loading)
IQE (see interruption queue element)
lWA (see interpreter work area)

JCL (see job control language)
JCLS (see job control language set)
JC~ (see job control table)
JFCB (see job file control block)
JFCBX

(see job file control block extension)
Job class•••.•...•.... _,_ ... e' •• 54-55
Job control language (JCU •••••.•.••••••• 73
Job control language set (JCLS) •••••••• 74
Job control table (JCT) ••••••• 84-85,15,59
Job deletion ••••••••••••••••••••• 71,67-68
Job file control block (JFCB) •••• 86-87,15
Job file control block extension

(JFCBX) •••••••••••••••.•••••• ' •• '.' •••• 86-87
Job initiation ••••••••••••••••••••••.••• 68

(also see step control table>
Job management ••••••••••••.•••• '...... 39,15

control flow., ••••••• ' ••••••••• , •••• 40-42
job scheduler function •••••••••••••• 39
(also see command processing,
communication task" and master
scheduler)

Job processing ••••••••• ' •••••••• '.. • • • • •• 53
(also see initiator/terminator, input
stream, reader/interpreter, START, and
system output writers)

Job queue •••••••••••••••••••••••• 54-59,49
initialization ••.••••••••••••• ' ••• '. 54.-55
(also see queue control record)

Job scheduler .•••..•....• :............... 39
Job selection ••••••••••••••••••••••• 63,49

(also see command processing, life of
task block, and partition information
block)

Job step timer ..•..••.. '• '. . . . • ••• 28
Job stream (see input stream)
Job termination (see job deletion)

Large partition ••••••••••••••••• '. • ••• •• 62
LCS (see main storage hierarchy support)
LC'I (see linkage control table)
Life of task block (LOT) •••••••••••• 87,88
Link library option

(see resident reenterable routine area)
LINK macro instruction ••••••••••••••••• 33

(also see A~TACH macro instruction)
Link pack area (LPA)

(see resident reenterable routine area)
Link parameter list (LPL) ••••• ;,........ 65
Linkage control table (L~T) •••••• 87,89,71
LINKLIB partitioned data set ••••••••••• 11
LOAD macro instruction •••••••••••••• 33-34
Loaded program list ••••••••• , •••••••••• ;, 33
Loaded program request block (LPRB) •••• 33
Loaded request block (LRB) '. •• 33
Local work area (LWA) •••••••••••••••••• 62
Log task••••.••.••••••••• '. 21,46 -47
Logi cal track ••••••••••••••• ••.• •• 54,55 -60
Logical track header .(LTH) 55
LO'I (see life of task block)

LPA (link pack area)
(see resident reenterable routine area)

LPL (see link parameter list)
L?RB (see loaded program request block)
~~B (see loaded request block)
LTH (see logical track header)
LWA (see local work area)

M/S resident data area
(see master scheduler resident data area)

Machine check handler (MCH) •••••••••••• 36
Main storage hierarchy support ••••••••• 12
Main storage initialization ••• 11-12,48-49

(also see job queue initialization,
master scheduler initialization,
nucleus initialization program, and
READY message)

Main storage organization ••••••••••• 11-12
Main storage supervision •••••••••••• 21,35
Master scheduler task (MST) •••••• 46-53,35

dispatching ••••••••••••••••••• 21,24-25
initialization •••••••••••••••• 14,48-49
resident data area ••••••••••••••• 87-92
(also see SVC 34 and task control block)

MCH (see machine check handler)
MCS (see multipleoonsole support)
MODE command •••••••••••••••••••••••• 47,40
MOUNT command ••••••••••••••••••••••• 47,40
MST (see master scheduler task)
MSTCCN (master console) (see VARY command)
Multiple console support (MCS) ••••••••• 46
Must complete •••••••••••••••••••••••••• 33

NEL (see interpreter entrance list)
NIP (see nucleus initialization program)
No work ECE •••••••••••••••••••••••••••• 59
Nondispatchable tasks •••••••••••••••••• 24
Nonresident

readers (see transient reader)
SVC routines (see SVC transient area)
writers (see system output writers)

Nucleus ••••••••••••••••••••••••••••• 11,18
Nucleus initialization program (NIP) ••• 18

(also see general system initialization)

CNGFX/OFFGFX (see VARY command)
ONLINE/OFFLINE (see VARY command)
OPEN macro instruction •••••••••••••• 73-74
Open/close/end-of-volume •••••••••••• 10-11
output work queue •••••••••••••••• 54,7.2-73
output writer ••••••••••••••••••••••• 72-73
OVerlay supervisor •••••••••••••••••• 36,21

partition •••••••••••••••••••••••••••• 9,35
definition ••••••••••••••••••••••• 50~53
organization ••••••••••••••••••••• 12-13
recovery •••••••••••••••••••••••••••• 71
task control block ••••••••••••••• 21-23

partition information block
(PIE) •••••••••••••••••••••••• 92-93,18,63

location ••••.•..•••..••••••••••••••. 31
Passed data set queue (PDQ) •••••••••••• 97
PDQ (see passed data set queue)
PIB (see partition information block)

POS'I macro instruction ••••••••••••••••• 32
PRE (see program request block)
priority

dispatching •••••••••••••••••••• 9,21-27
job •••••••••••••••••••••••••••••• 54-55

Program request block (PRE) •••••••••••• 33
Program status word (PSW) •••••••••••••• 37
Protection keys, storage •••••••••• 9,12,21
PSw (see program status word)
Purge routine ••••••••••••••••••••••• 70-71

QCE (see queue control block)
QCR (see queue control record)
QEL (see queue element)
QMPA (see queue manager parameter area)
Qname ••••••••••••••• ' •••••••• '. • • • • • • • • •• 32
Queue control block (QCE) •••••••••••••• 32
Queue control record (QCR) ••••••• 49,54-60
Queue element (QEL) •••••••••••••••••••• 32
Queue manager •••••••••••••••••••••• '. 54-60

functions '. 54
job queue initialization •••••••••••• 55
parameter area (QMPA) ••••••••••••••• 55
(also see input work queue and output
work queue)

Queues
(see free track queue, input work queue,
job queue, output work queue, and task
control block)

~l (see resident access method)
RB (see request block)
Reader/Interpreter ••••••••••• , ••••••• 60-62

resident reader ••••••••••••••••••••• 61
transient reader ••••••••••••• '. • • • • •• 61
(also see input stream, input work
queue, and system task control)

READY message •••••••••• '... • • • •• • • • • • • • •• 48
Recording/Recovery routines ••••••••• 36-37

(also see Damage Recovery routines)
RELEASE command ' ••••••••••••.••••• '. • ••• •• 46
Remote job entry (RJE) ••••••••••••••••• 45
Reply queu.: element (RPQE) ••••••• '. •• • •• 44
Request block (RB) •••••• ' ••••••• '. • • • • • •• 33
Request queue element (RQE) •••••••••••• 30
RESET command •••••••••••••••• ' ••• '. • •• • •• 46
Resident access method (RAM) ••••••••••• 11
ReSident reenterable load module option 11
Resident reenterable routines •••••••••• 11
Resident SVC (RSVC) area •••••••••••• 11,34
Restart reader ••••••••••••••••••••••••• 63
RJE (see remote job entry)
RMS/85 ••••••••••.••• ' ••••• ' ••••.•••••••• '. •• 48
Rnatne •••••••••••••••••••••••••••••••••• 32
RPQE (see reply queue element)
RQE (see request queue element)
RSVC (see resident SVC)

SCD (see system output class directory)
Scheduler (see initiator/terminator)
SC'I (see step control table)
SO'I (see start descriptor table)
SER (see system environment recording)
SEREP (see system environment recording)
SE'I command ••••••••• '. • • • • • • • • • • • • • •• 15,41
SlOT (see step input/output table)

Index 191

SIRB
(see system interruption request block)

Small partition
information list (SPIL) •••••.•••• 94,63
modul e •••••••••••••••••••••• . • • •• 66 - 6 7
scheduling ••••••••••••••••••••••• 64-67

SPIL (see small partition information list)
SQA (see system queue area)
STAE (specify task asynchronous exit).
service routine •••••••••••••••••••• 28-29

START •••••••••••••••••••••• 14.,18,40-41,47
Start descriptor table (SOT) ••••••••••• 74
STC (see system task control)
step control table (SCT) •••••• 94-95,96,68
step deletion •••••••••••••••••••••••••• 70
step initiation ••••••••••••••••.••••• 66-67
Step input/output table (SlOT) ••• 95.98,15
step termination (see step deletion)
STlMER macro instruction ••••••••••••••• 35
STOP command ••••••••••••••••••••••••••• 47
Storage protection (see protection keys)
subpools ••••••••••••••••••••••••••••••• 35
supervisor request block (SVRB) •••••••• 33
SVC transient area (see transient area)
SVC 34 ••••• ~ •• 47, 27
SVC 35 ••••••••••••••••••••••••••••••••• 45
SVC 72 •••••••••••••••••••••••••••••• 43,27
SVCLIB partitioned data set •••••••••••• 11
SVRB (see supervisor request block)
SYNCH macro instruction •••••••••••••••• 34
Syntax check

DEFINE command ••••••••••••••••••• 50-52
master scheduler •••••••••••••••••••• 49

System area (see fixed area)
System environment recording ••••••••••• 37
System initialization •••••••••••• 18,48-49
System input readers

(see reader/interpreter)
System interruption request block (SIRB) 30
System output class directory (SCD) •••• 68
System output writers ••••••••••••••• 72-73

nonresident ••••••••••••••••••••••••• 72
resident "................ 12

System queue area (SQA) ••••••••••••• 35,12
boundary box ••••••••••• •.•• • • •• • • • ••• 35

System restart ••••••••••••••••••••••••• 75
System task control (STC) •••••••••••••• 73

Table Breakup routine (TER) •••••••••••• 59
Table queue control record (TQ~l ••• 59-60
Task control block (TCE) •••••••••••• 31,35

TCBqueue ••••••••••••••••••••• 18,21~22
TCBBRP field •••••••••••••••••••••••• 18
TCBFLGS field ••••••••••••••••••••••• 18
TCBTCE field •••••••••••••••••••••••• 22

Task creation •••••••••••••••••••••••••• 53
Task dispatching •••••••••••••••••••• 21-22
Task input/output table (TIOT) •••••• 97-99
Task management •••••••••••••••••••••••• 10

192

(also see contents supervision,
interruption supervision, main storage
supervision, overlay supervision,. task
supervision, and timer supervision)

'Iask supervi sion •••••••.••• .,... • • •• • • •• 31
'I ask switching ' '. ~ .. , e'. • • • ... 24
'IER (see Table Ereakup routine)
'ICE (see task control blo<;:k}
'Ierminator routines •.•••••••••••••• •..• • • ..67

(also see initiator/terminator)
'lIME macro instruction ••••••••••.••••••• 35
'lime slice control element (TSCE) 27-28,23
'lime-slicing •••••••••••••• •.•• •••• • •• 50,23

CV'I'I'SCE field of CVT ••••••••• '".' •• • •• 23
dispatcher ••••••••••••••• '" ••••••• 27-28

'Iimer supervision ••••••••••••••••••• 35-36
timer pseudo clock •••••••••••••••••• 36
timer queue element (TQE} ••••••••••• 35

'IIOT (see task input/output table}
'IQCR (see table queue control· record}
'IQE (see timer supervision timer queue
element)

'Irack stacking•. ' .. '. 55
'Iransient area

input/output ••••.•••••••••••••••••••• 12
svc ••••••.•••••••••••..•••••• ' •••• 12,44

'Iransient reader ••••••••••••••••••••••• 61
system assigned •••••• ' ••••••••••• ,. • •• 61
user assigned .•••.••••••••••••••• '. • • •• 61

'I~CE (see time slice control element}
'I'IIMER macro instruction ••••••••••••••• 35

UCB (see unit control block}
UCM (see unit control module)
Unit control block (UCB) •••••••••••• 43-44
unit control module (UCM) ••••••••••• 43-44
UNLOAD command 47
UPL (see user's parameter list)
User options •••• '. • • • • • • • • • • • • • • •• • • • • •• 11

(also see BLDL list., resident access
method, resident SVC, and system queue
area)

User's parameter list (UPL) •••••••••••• 69

validity check ••• ' ••••••••••••••••••• 47,52
Volume table (VOLT) •••••••••••••••••••• 15
Volume table of contents (VTCC) •••••••• 14
V'IOC (see volume table of contents)

wAIT macro instruction •••••• •.•• • • • ••• •• 32
wQE (see wTO queue element)
write-to-operator (WTO)

macro instruction •••••••••••••••• 42-45
queue element (WQE) ••••••••••• ~ ~. • •• 45
reply queue element (WTCR) •••••••••• 42

writer (see system output writers}
W'IO (see write-to-operator)
w'IOR

(see write-to-operator reply queue
element)

XC'lL macro instruction ••••••••••••••••• 34
XEA (see extended save area)

Indexes to program logic manuals are consolidated
in the publication IBM System/360 Operating
System: Program Logic Manual Master Index, Form
Y28-6717. For additional information about any
subject listed above, refer to other publications
listed for the same subject in the Master Index.

Index 193

READER'S COMMENT FORM

mM System/360 Operating System
Control Program With MFT
Program Logic Manual

• Is the material:
Easy to read? .
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

• How did you use this publication?
o As an introduction to the subject
o For additional knowledge

Other.

• Please check the items that describe your position:
o Customer personnel 0 Operator
o IBM personnel 0 Programmer
o Manager 0 Customer Engineer
o Systems Analyst 0 Instructor

Form Y27-7128-4

Yes No
o 0
o 0
o 0
o 0
o 0
o 0

o Sales Representative
o Systems Engineer
o Trainee
Other

• Please check specific criticism (s), give page number (s), and explain below:
o Clarification on page (s) 0 Deletion on page (s)
o Addition on page (s) 0 Error on page (s)

Explanation:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y27-7128-4

YOUR COMMENTS, PLEASE • • •

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of mM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of mM.

Note: Please direct any requests for copies of publications, or for assistance in using your
mM system, to yourmM representative or to the mM branch office serving your locality. '

o
S.

I

I
I
I
I
I
I
I

~ ~ I
----~--------------------------~---------------I

BUSINESS REPLY MAl L
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications
Department 058

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N. Y •

Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10GOl
IUSA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
Iinternational]

Fold

I
I
I
I
I
I
I

:l

c

Y27-7128-4

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.lOS01
(USA Only]

IBM World Trade C.orporation
821 United Nations Plaza, New York, New York 10017
(International]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	replyA
	replyB
	xBack

