Type Il

GH20-0859-0

Class A Program

Control Program-67/Cambridge Monitor System
(CP-67/CMS) Version 3

Program Number 360D-05.2.005

User’s Guide

CP-67/CMS is a general purpose time-sharing system
developed for the IBM System/360. This guide
describes the facilities of CP-67/CMS and pro-

vides detailed information about the user
commands available and their usage.

First Edition (October 1970)

This Type III Program performs functions that may be fundamental to the operation and maintenance
of a system.

It has not been subjected to formal test by IBM.

Until the program is reclassified, IBM will provide for it: (a) Central Programming Service, including
design error correction and automatic distribution of corrections; and (b) FE Programming Service,
including design error verification, APAR documentation and submission, and application of Program
Temporary Fixes or development of an emergency bypass when required. IBM does not guarantee
service results or represent or warrant that all errors will be corrected.

You are expected to make the final evaluation as to the usefulness of this program in your own
environment.

THE FOREGOING IS IN LIEU OF ALL WARRANTIES EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

This edition applies to Version 3, Modification Level 0, of Controt Program-67/Cambridge Monitor
System (360D-05.2.005) and to all subsequent versions and modifications until otherwise indicated in
new editions or Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtained through IBM branch offices.
A form has been provided at the back of this publication for readers’ comments. If this form

has been removed, address comments to: IBM Corporation, Technical Publications Department,
1133 Westchester Avenue, White Plains, New York 10604.

PREFACE

The following documents are referenced in the CP-67/CMS
User's Guide.

Fortran - 0S/360 Fortran IV Language
GC28-6515

- Syster/360 Basic Fortran IV Language
GC28-6629

- System/360 Fortran IV Library Subprograms
GC28-6596

- 0S/360 Fortran IV (G and H) Programmer's Guide
GC28-6817

Scientific Subroutine Package

Scientific Subroutine Package - Version II
Programmer's Manual
GH20-0205

PL/I - 0S/360 PL/I (F) Programmer's Guide
GC28-6594

- 0S/360 PL/I Subroutine library Computational
Subroutines -~ GC28-6590

- A PL/I Primer - GC28-6808
Assembler- 057360 Assembler Language
GC28-6514

- 0S/7360 Assembler (F) Programmer's Guide
GC26-3756

CP-67/CMS Documents - CP-67 Operator's Guide GH20-0856

- CP-67 Program Logic Manual GY20-0590
- CMS Program Logic Manual GY20-0591
- CP-67/CMS Installation Guide GH20-0857

- CMS SCRIPT User's Manual GH20-0860

SNOBOL -

BRUIN -

Miscellaneous-

CMS SNOBOL User's Manual, Type III
Documentation, Program 360D-03.2.016, 1IBM
Corporation, DP Program Information
Department, 40 Saw Mill River Road,
Hawthorne, New York, October, 1970.

CMS BRUIN User's Manual, Type IIT
Documentation, Program 360D-03.3.013, IBM
Corporation, DP Program Information
Department, ao Saw Mill River Road,
Hawthorne, New York, October, 1970.

System/360 Principles of Operation
GA22-6821

2740/2741 Communications Terminal
Operator's Guide

GA27-3001

0S/360-Supervisor & Data Management
Macro-Instructions - GC28-6647

ii

CONTENTS

CP-67/CMS User's Guide

Introduction
Components of the System
System Environment
The Control Program, CP-67
Cambridge Monitor System

CMS Batch Monitor

CP-67/CMS Sample Terminal Session

CP-67 Terminal Usage

2741
2741
1050
1050
Type
Type

CP-67/CMS

Characteristics

Initiation Procedures
Characterisitcs

Initiation Procedures

33 Teletype Characteristics
35 Teletype Characteristics

Conventions

Logging Procedures

CP Login
CMS Initialization
CP Logout

Dialing a Multiaccess System

Dialing
Disconnecting

General Typing Conventions
Attention Interrupt
CMS File Conventions

Disk Facilities
File Identifiers
File Sizes

Disk Considerations

Environment Conventions

CP-67/CMS Environment, Commands, and Requests

CMS Commands

File

Creation, Maintenance, and Manipulation
ALTER
CEDIT
CLOSIO
COMBINE
EDIT
Operation of the Context Editor
Line Pointer
Saving Intermediate Results
Input Environment
Edit Environment
Edit Request
File (Record) Formats
Memo Files

iii

SCRIPT Files
Record Lengths
Tab Settings
Serialization of Records
Special Characters
Logical Tab Character
Logical Backspace Character
BACKSPACE Request
BILANK Request
BOTTOM Request
BRIEF Request
CHANGE Request
DELETE Request
FILE Request
FIND Request
INPUT Request
INSERT Request
LOCATE Request
NEXT Request
OVERLAY Request
PRINT Request
QUIT Request
REPEAT Request
RETYPE Request
SAVE Reguest
SERIAL Regunest
TABDEF Request
TABSET Request
TOP Request
UP Request
VERIFY Request
X and Y Reqguest
ZONE Request

ERASE
FILEDEF
FINIS
LISTF
OFFLINE
PRINTF
SCRIPT

Script Control Words
APPEND Control
BOTTOM MARGIN Control
BREAK Control
CENTER Control
COMMENT Control
CONCATENATE Control
CONDITIONAL PAGE Control
DOUBLE SPACE Control
FORMAT Control
HEADING Control
HEADING MARGIN Control
IMBED Control

iv

63
63
64
65
65
65
66
69
71
72
73
74
76
77
79
81
82
84
86
87
89
90
921
92
93
94
96
97
929
100
101
102
103
105
107
112
114
118
124
127
131
132
133
134
135
136
137
138
139
140
141
142
143

INDENT Control 144

JUSTIFY Control 145

LINE LENGTH Control 146

NO CONCATENATE Control 147

NO FORMAT Control 148

NO JUSTIFY Control 149

CFFSET Control 150

PAGE Control 151

PAGE LENGTH Control 152

PAGE NUMBER Control 153

READ Control 154

SPACE Control 155

SINGLE SPACE Control 156

TAB SETTING Control 157

TOP MARGIN Control 158

UNDENT Control 159

SPLIT 164
STATE 167
UPDATE 168
Execution Control 173
EXEC 175
Special Features of EXEC 179
Labels : 179

EXEC Words (&words) 179

Numeric Variables 180

Keyword Variables 180

Exec-Set Keywords 180

User-Specified Keywords 181

Exec Control Words 181

Profile EXEC 188

GENMOD 189
GILOBAL 192
LOAD 196
LOADMOD 202
REUSE 204
START 206
USE 208
$ 210
Debugging Facilities 212
CLROVER 214
DERUG 218
BREAK 221

CAW 227

CSW 228

DEF 229
DUMP 232

GO 235

GPR 238

IPL 240

KX 241
ORIGIN 242

PSW 244
RESTART 246

RETURN 2u7

SET 248
STORE 251
TIN 254
X 255
SETERR 258
SETOVER 261
Language Processors 267
ASSEMBLE 268
Assembler Language Programming 273
Program Naming 273
Program Entry 273
Program Exit 273
Linkage to CMS Commands and Routines 274

CMS Macros 276
CKEOF Macro 278
CMSREG Macro 279
CMSYSREF Macro 280
ERASE Macro 281

FCB Macro 282
FINIS Macro 283
RDBUF Macro 284
SETUP Macro 286
STATE Macro 287

TYPE Macro 288
TYPIN Macro 290
WRBUF Macro 292

OS Macros 294
CMS Routines (Functions) 297
ATTN Function 299
CARDIO Function 300
CONWAIT Function 301
CPFUNCTN Function 302
ERASE Function 303
FINIS Function 304
HNDINT Function 305
BNDSVC Function 307
POINT Function 308
PRINTR Function 309
RDBUF Function 310
STATE Function 311
TAPEIO Function 312

TRAP Function 315

TYPE Function 316

WAIT Function 317
WAITRD Function 318
WRBUF Function 319
FORTRAN 321
FORTRAN Programming 328
Sequential I/0 328
Direct Access I1I/0 333
Terminal Output 334
Fortran Files 335

vi

I/0 Format Conversion 336

PLI 338
PL/I Programming 342
Compilation Notes 342

PL/I Library 342

Loading of PL/I Procgram 342

Executing a PL/I Program 342

Terminal I/0 343

Passing Parameter to a PL/I Program 343

I/0 Via Files 345

Error Recovery 346

Other Limitations 347
SYSIN/SYSPRINT to User's Terminal 347

PL/1I Subroutines 349
IHECMS--PL/I Initialization Routine 350

IHECLOK--PL/I Clock Routine 351

IHEFILE--PL/I File Access Routine 352

SNOBOL 355
SNOBOL Programming 359
Subroutines 359
Input/Output 359
Subroutine Generation 360

Linkages 361

Debugging Aids 361

BRUIN 363
Utilities 364
CNVT26 365
COMPARE 366
CVTFV 368
DISK 370
DUMPD 373
DUMPF 374
DUMPREST 375
ECHO 377
FORMAT 379
MAPPRT 383
MODMAP 386
OSTAPE 387
SORT 389
STAT 392
TAPE 394
TAPEIO 399
TAPRINT 401
TPCOPY 402
WRTAPE 404
Control Commands 406
BLIP 407
CHARDEF 408
CPFUNCTN 410
IPL 411
KO 412
KT 414
KX 415

vii

LINEND 416

LOGIN 418

LOGOUT 421

RELEASE 423

RT 425

SYN 426

Libraries 429

MACLIB 430

TXTLIB 435

Text Libraries 440

SYSLIB TXTLIB 441

BLIP Subroutine 442

NLSTON/NILSTOF Subroutines 443

CPNMON/CPNMOF Subroutines uy3

DEFINE Subroutine 4u5

DSDSET Subroutine 448

ERASE Subroutine 450

GETPAR Subroutine 451

LOGDSK Subroutine 452

RENAME Subroutine 453

REREAD Subroutine 454

TAPSET Subroutine 455

TRAP Subroutine 458

CMSLIB (Non-Error-Message FORTRAN Library) 459
PLILIB--PL/I Library 160

SSPLIB--FORTRAN Scientific Subroutine Library 461

Macro lLibraries 462

SYSLIB--System Macro Library 462

OSMACRO--0S MACRO Library 462

CP-67 CONSOLE FUNCTIONS 463

Console Function Descriptions 464

console Functions 465

BEGIN 467

CLOSE 468

DETACH 470

DISCONN 472

DISPLAY 473

DUMP 478

EXTERNAL 480

IPL 481

IPLSAVE 483

LINK 48y

L.OGOUT 487

MSG 488

PURGE 489

QUERY 490

READY 493

RESET 49y

SET 495

SLEEP 498

SPOOL 499

STORE 502

viii

XFER

Console Function Applications

CP-67 Messages

Operating Considerations
Offline Procedures
Tape Procedures
Library Usage

Macro Libraries
Text Libraries

Recovery Procedures

Errors During CMS Login

Error Specified by the E(xxxxx) Message
Recovering's From the System Going Down
Reinitializing CMS

File Space Full

General Recovery Procedures

Changing Object Programs

Set Location Counter (SLC) Card
Include Control Section (ICS) Card
Replace (REP) Card

Entry Card

Library Card

CMS Batch Monitor
Sample Batch Jobs
CMS Batch Control Cards

// ASSEMBLE
/7 COMMAND
/7 CP

// DATASET
/7 FORTRAN
/77 GO

/7 PRINT

/7 PUNCH

/7 TEXT

Running the CMS Batch Monitor

GLOSSARY

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

Setup
Using CMS Batch

A: Control Program Console Functions
B: CMS Commands

C: Debug Requests

D: Edit Requests

E: Script Control Words

F: CMS Functions

Format of Commands, Requests, and Console Functions
H: CP-67 Machine Configuration
I: Devices Supported by CMS

ix

506
508

510

511
511
512
513
513
514
516
516
516
516
517
517
518
519
520
522
523
524
525

526
526
528
530
532
533
534
535
538
540
541
542
543
543
543

545

550
552
557
559
561
564
566
584
588

FIGURES
1

2

10

11

12

13

14

15

16

17

18

19

IBM 2741 Keyboard (PTTC/EBCD Configuration)

IBM 2741 Keyboard (Standard Selectric
Configuration)

IBM 1052 Switch Panel

IBM 1052 Keyboard

Filetype implication and characteristics
Output form the LISTF command

Creation and printing of a CMS EXEC file

Two examples of PRINTF commands which
type out an entire file

A PRINTF command which types out a MACRO
definition

A PRINTF command which types out the bottom
of a FORTRAN listing file

Contents of a SCRIPT file
SCRIPT output

Exanmrle of an EXEC file to compile, load,
and execute a FORTRAN program

The file FORT EXEC is created, the file CMS
EXEC is typed out, and then an implied EXEC
is issued to nest EXEC'Ss

Sample offline printout of trace information

recorded by the SETOVER command
Sample procedure for setting breakpoints

Sample output created by a FORTRAN command
in which the LIST and SOURCE options were
specified

Examples of the SET request, using other
requests as appropriate to inspect
contents both before and after SET is
issued

Sample DUMP output from the offline printer

22

22
23
23
39
115

116

125

125

126
160

162

177

178

217

226

225

250

234

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Examples of the GPR request

Examples of the STORE request, using the
X request to inspect the contents both
before and after storing

Examples of the X request

Sample offline printout of trace information
recorded by the SETERR command

Offline printout showing trace information
recorded by the SETOVER command with the
options GPRSB, FPRSA, and NOPARM specified
Offline printout showing trace information
recorded by the SETOVER command with the
options SAMELAST, PARM1, and WAIT2
specified (SAMELAST in this example refers
to the options as set in Figure 24)
Example of CMS Macros

RDBUF error return codes

WRBUF return codes

FORTRAN compilation with errors
INTENTIONALLY OMITTED

FORTRAN compilation with options

Multiple FORTRAN compilations

Summary of record formats and I/0 statements
for sequential FORTRAN files

Files referenced by sequential FORTRAN I/0
statements

File referenced by direct access FORTRAN I/0
statements

Samples of the three types of nucleus map
files created by MAPPRT. Only the first few
entries of each are shown

Example of MACLIB LIST command

Printout of the CMSTYPE macro definition
using PRINTF

x1i

239

253

257

260

265

266

2717

285

293

324

325

326

330

332

334

384

432

433

39

40

41

42

43

4y

45

46

47

48

49

Example of the TXTLIB LIST command
Examrple of a normal NAMELIST function
Example of a freeform NAMELIST function
Output from DUMP console function
Format of an SLC card

Format of an ICS card

Format of a REP card

Format of an ENTRY card

Format of the LIBRARY card

Sample CMS batch stream

CMS batch control cards

xii

437

boy

quy

479

521

522

523

524

525

527

529

INTRODUCTION

COMPONENTS OF THE SYSTEM

The CP-67/CM¥S time-sharing system consists of two
independent components: the Control Program (CP-67, or CP
for short) and the Cambridge Monitor System (CMS). The
Control Program creates the time-sharing part of the system
to allow many users to access the computer simultaneously.
The Cambridge Monitor System provides the conversational
part of the system to allow a user to monitor his work from
a remote terminal.

Both components are independent of each other. CP-67 can be
used on an appropriate configuration without CMS, and CMS
can be run on a properly configured System/360 as a
single-user system without CP-67. If CP-67 is used without
CMS, an operating system (or systems) must be chosen to
provide the conversational or production aspect of the
system, as CP provides only the time-sharing capability.

CP-67 1is carable of running many System/360 operating
systems concurrently (including CP-67, 0S/360, DOS, RAX, and
APL/360) as 1long as they do not include any timing
dependencies or dynamically-modified channel programs.
Dynamically-modified channel programs are those which are
changed between the time the Start Input/Output (SIO)
instruction is issued and the end of the I/0 operation (that
is, changed by the channel program or the CPU). However,
certain types of self-modifying channel programs can be
translated, including those generated by the 0S/360 Indexed
Sequential Access Method (ISAM).

Cr-67 1is also capable of running System/360 operating
systems along with CMS in a multiprogramming mode concurrent
with its usual time-shared, multiaccess operation. If the
Systen/360 operating system contains telecommunication
facilities or remote job entry/remote job output support, CP
allows that system to control the lines of the 2701, 2702,
or 2703 transmission control unit and allows the user to
dial into that system from a remote terminal.

SYSTEM ENVIRONMENT

The environment of CP-67 is one of "virtual machines". A
virtual machine is a functional simulation of a real
computer and its associated 1I/0 devices.

CP-67 builds and maintains for each user a virtual
System/360 machine from a predescribed configuration. The
virtual 360 is indistinquishable to the user and his
programs from a real System/360, but it is really one of
many that CP-67 is managing. CP allocates the resources of

INTRODUCTION 1

the real machine to each virtual machine in turn for a short
"slice" of time, then moves on to the next virtual
machine-~-thus time-sharing.

Since the virtual machines are simulated, their
configurations may differ from each other and from the real
machine. For instance, the real machine may have 512K and
eight disk drives, and the virtual machine can have 768K and
two disk drives. One virtual machine may have a virtual
2702 and run an 0S teleprocessing system, and another
virtual wachine that does not have a virtual 2702 may run
CMS. One virtual machine may have a remote printer and a
remote card punch, while another virtual 360 may have a
dedicated printer and 2250. Regardless of the
configuration, each user controls his virtual wachine from
his remote terminal, which 1is, in effect, his operator's
console.

Like real machines, wvirtual machines operate most
efficiently under an operating system. The Cambridge
Monitor System (CMS) is designed to allow full wuse of a
System/360 through a simple command language entered at the
console (in the case of a CP-67 virtual machine, at the
remote terminal). CMS gives the wuser a full range of
capabilities--creating and managing files, compiling and
executing problem programs, and debugging--using only his
remote terminal. Since each user has his own virtual
machine with his own copy of CMS residing "in it", nothing
he does should affect any other user; if he destroys the CMS
nucleus or abends the CMS system, he can reIPL his virtual
machine and continue without disturbing other users. In
addition, since users cannot get "outside"™ their virtual
machines, CP-67 is protected from any user error.

CMS also provides a batch version intended primarily for
"compile, load, and go®™ type jobs coming from tape or cards.
The batch monitor can be run from a virtual machine as a
background system with conversational CMS wusers on other
virtual machines.

THE CCNTROL PROGRAM, CP-67

Before a user is authorized to use CP, he must be assigned a
USERID, which identifies him to the system, and a password,
which is checked when he ®"logs in". Associated with each
USERID is information concerning accounting, privilege
class, options desired, and a table describing the virtual
machine assigned to that user. Whenever he logs in, CP sets
up this virtual 360 machine for him. Although all the
virtual machines may be different, most are set up with the
configuration expected by CMS, the most commonly used
operating system. They include at least 256K of virtual
core storage, a minirum of two disk drives, a console (the

2 INTRODUCTION

terminal), a card read punch unit, and a printer. The real
syster usually has a larger number of disk drives, a drum,
tape drives, and perhaps more core storage.

Because there is not room in real core for all users'
virtual core, a technique called "paging” 1is used by the
system. Virtual core is divided into 4096-byte Dblocks of
storage called "pages™. All but currently active pages are
kept by the system on direct access secondary storage; this
direct access space is allocated only on a demand basis; as
active and inactive pages change status they are "paged" in
and out of real core on demand. While the paging operation
is being performed for one virtual machine, another can be
operating. The paging operaticn, and resultant allocation
of real core to a given user's pages, is transparent to the
user. Special hardware is provided on the System/360 Model
67 that translates, at execution time, the user's (or user
progran's) addresses into the current real addresses of the
relocated pages. This 1is called "dynamic address
translation®™ and is transparent to the user.

All virtual machine I/0 operations are handled by CP, which
must translate them into real wachine I/0 operations. This
requires two translations, accomplished as follows: (o4
intercepts all user I/0 when Start I/0 (SIO) is issued. It
translates virtual device addresses into real device
addresses, translates virtual core storage addresses into
real core storage addresses, ensures that all necessary
pages are 1in real core storage, builds a channel command
word (CCW) string for the user, and issues SIO when the
channel is free. The virtual machine is not given control
from the time it issues an SIO until CP issues the real SIO
and delivers the resulting condition code to the virtual
machine. In the meantime, other virtual machines may be
executing. When CP receives an interrupt indicating 1I/O
completion, it sets an interrupt pending flag in the user's
virtual machine status table; when control is returned to
the virtual machine, the proper I/0 interrupt is simulated.

Virtual machine wunit record 1I/0 is normally spooled onto
disk by CP. Thus, any card deck to be "read"™ by a virtual
machine would, in the normal case, have been read by CP
before the user®'s call for it on his virtual machine, or
transferred to that user from another user's files via the
XFER console function in CP; the physical deck must have
been preceded by a card containing the USERID, so that CP
can know who will read the card-image file. Later, when the
virtual machine has read the card deck, a card reader end of
file 1is simulated. Card and printer output, similarly
spooled, 1is not queued for physical output until CP is
notified of end of file in one of three ways: the user logs
off the systen (end of file is assumed); the CLOSF console
function specifies the (virtual) address of the device to be

INTRODUCTION 3

closed; or CP detects an invalid CCW addressed to the device
(end of file 1is assumed). Further output for a closed
device is assumed to start a new file. So that the system
operator can separate physical output, CP precedes all
printed and punched output files with a record containing
the USERID.

The CP console functions allow the user to control his
virtual wachine fromr the terminal much as an operator
controls a real machine. To perform an IPL, for instance,
the user types IPL and a device address or the name of a
"named" operating system, such as CMS. The user can stop
his virtual wachine at any time by hitting the ATTN key and
can request display of any portion of his storage and
registers. He can wodify the contents, if desired, and
restart his machine. CP also recognizes a few special
purpose commands, such as the XFER function mentioned above,
the QUFRY function tc obtain the number of users on the
system and their USERID's, as well as the number of current
spooled files, the MSG function to communicate with other
users, the DIAL function to connect the terminal to a
multiaccess system, and the ATTACH and DETACH functions to
add or remove I/0 devices from a virtual machine
configuration (ATTACH can only be issued by the Operator).

CAMBRIDGE MONITOR SYSTEM

The Cambridge Monitor System (CMS) 1is a single-user,
conversational operating system capable of running on a real
machine as well as on a virtual machine. It interprets a
simple command language typed in at the operator's console
(under CP-67, at the user's remote termwinal).

When running on a real machine, CMS operates in the
supervisor state. When running under CP-67, CMS operates in
the pseudo-supervisor state; that 1is, CMS "thinks" it is
running in the supervisor state, but CP is actually
intercepting and translating supervisor interrupts.

Whether running on a real machine (see note Lelow) or a

virtual machine, CV¥S expects the following machine
configuration:

4 INTRODUCTION

Device Virtual Symbolic

Number Address Name Device Type

1052 009 CON1 console

2311,2314 190 DSK1 system disk (read-only)
2311,2314 191%*% DSK2 permanent disk (user files)
2311,2314 192#%% DSK3 temporary disk (workspace)
2311,23143 O000%%* DSKUu A disk (user files)
2311,2314 000+ DSKS B disk (user files)
*2311,2314 19C** DSK6 C disk (user files)

1403 00E PRN1 line printer

2540 0ocC RDR1 .card reader

2540 00D PCH1 caxrd punch

*2400 180 TAP1 tape drive
*2400 181 TAP2 tape drive

at least 256K bytes of core storage, 360/40 and up
*Optional devices not included in the minimum configuration

**This virtual address may be changed at any time by the
CMS LOGIN command.

Note: For use on a real machine not having this I/O
configuration, the device addresses can be redefined at
load time.

Under CP, of course, these devices are simulated and mapped
to different addresses and/or different devices. For
instance, CMS expects a 1052 Printer-Keyboard operator's
console, but most remote terminals are 27U41s; CP handles all
channel program modificaticns necessary for this simulation.

CMS allows the user to add his own programs for I/0 devices
not supported by the standard system. CMS also provides for
dynamic specification of SVC routines,

CMS Batch Monitor

As well as being a conversational monitor, CMS provides a
batch facility for running CMS jobs. The CMS batch monitor
accepts a job stream from a tape unit or the card reader and
writes the output on tapes, on the printer, or on the card
punch. The job streamr can consist of a System/360 Operating
System SYSIN job stream with FORTRAN (G) and ASSEMBLER (F)
compile, 1load, and go jobs calling certain cataloged
procedures; or it can consist of CMS commands, along with
control cards and card decks for compile, load, and go jobs
for all the CMS-supported compilers.

Like the conversational CMS, the batch monitor can run
either from a virtual machine or from a real machine. Under
CP, it can be used as a background monitor along with other
conversational CMS users.

INTRODUCTION 5

To eliminate the possibility of one job modifying the CMS
batch monitor's nucleus in such a way as to affect the next
job, CMS is reIPlL'ed before each job begins. Files can also
be written onto the batch monitor's permanent disk and then
punched or printed (such as files written by TFORTRAN
programs); these files should be of 1limited size and
considered temporary, as they are erased at the completion
of each job.

CP-67/CMS SANMPLE TERMINAL SESSION

A sample terminal session is described and illustrated
below. User input is in 1lowercase; typeout from the system
appears in uppercase.

After logging in to CP-67 and initializing CMS, the user,
CSC1l, issues a LISTF command to obtain a list of all files
stored on his read-write disks. To allow multiple commands
to be entered on one line, there is a 1line-end character.
The LINEND command is issued to define the 1line-end
character as the exclamation point (!) and to allow the
pound sign (#) to be used as the logical tab character in
FDIT. The file MAIN FORTRAN is then created and filed on the
user's permanent disk. Compilation of the file is terminated
due to program errors (indicated by a $ symbol below the
error encountered). The file is then mwodified and edited to
correct the line in error, and the new source file stored on
disk. Again an error is encountered and the file reedited.

After a successful cowpilation, the § command 1is called to
load the file into core and execute it. LOAD and START
perform the same function as § (as shown). Specifying the
XEQ option with the LOAD command also causes execution to
begin after the file is loaded.

LISTF and ERASE cormmands are used to selectively 1list and
erase files, and the PRINTF command is used to print all,
and then part, of the contents of a file. KT causes typeout
to be discontinued if entered after the ATTN key is hit
twice.

The OFFLINE command punches or prints the specified file on
offline devices. The ALTER command changes the identifier of
a file. KX, entered after hitting ATTN twice, stops
execution of the current program, reloads a new copy of CMS,
and returns control to CMS.

An EXEC file (consisting of CMS commands) is created and
filed. The file is then executed by issuing the EXEC
command, which causes each of the commands contained in the
file to be executed individually. Operand substitution is
illustrated by wodifying and reexecuting the file wusing

6 INTRODUCTION

ampersand (&) arguments.

Hitting ATTN once transfers control to the Control Program,
where the QUFRY console function is issued to determine the
number of users on the system, their names, and the message
of the day from the operator. The BEGIN console function

then returns control to CMS and the user logs out from both
CMS and CP-67.

The sample terminal session follows.

INTRODUCTION 7

#

cp-67 online *d.65 gsyosu
login cscl L=—=m———= The user's id is specified upon logging in.
ENTER PASSWORD::

< e - - The protected password does
CP WILL BE UP 24 HOURS A DAY not print when entered.
READY AT 09.14.49 on 11/27/69
cp
ipl cws

CMS...VERSION nn LEVEL wm

listf

FILENAME FILETYPE MODE NO.REC. DATE
INDIAN LISTING Pl 003 8/18
DUMPREST SYSIN Pl 009 8720
SUPERSCR SYSIN P1 070 8722
MY FORTRAN Pl 001 8/26
INDIAN TEXT P1 002 8/29
FORTCLG EXEC Pl 001 8/29
LOAD MAP PS 003 8/30
FIN SCRIPT P1 001 8730
TUES SCRIPT P1 001 8/31
FRST SCRIPT Pl 001 8731
DUMPREST LISTING P1 007 9/01
AGENDA SCRIPT Pl 001 9/01
INDIAN FORTRAN Pl 001 9/01

R; T=0.06/0.21 09.16.12

linend !
R; T=0.01/0.02 09.16.20

edit main fortran

NEW FILE.

INPUT:

¢ main program Nov. 27, 1969
write (6,10)

10#format (' a = *) <~==-eee- The # is a logical tab character that
#read (5,20) a inserts blanks and places the following
20#format (8.3) characters typed on the line into column
#write (6,25) a,x 7 of the card image in a FORTRAN file.
#call exit
#end

mmm———— Carriage return with no data entered
EDIT: on line (that is, a null line) takes
file user out of Input mode into Edit mode
R; T=0.08/0.57 09.18.31 of the EDIT command.

INTRODUCTION

fortran main

0004 20 F

01) IEY013I
25

E(00008); T=0.29/0.92 09.18.

edit wain fortran
EDIT:
print 20

C MAIN PRCGRAM NCV.
WRITE (6,10)

27, 19

10 FORMAT (* A = ")
READ (5,20) 2

20 FORVMAT (8.3)
WRITE (6,25) A,X
CALL EXIT
END

EOF:

locate /format/

10 FORMAT (* A = ")

locate /format/
20 FORMAT (2.3)
change /8/f8/

20 FORMAT (Fg.3)
up 2
10 FORNMAT (* 2 = ')
change / '/ 2%/
10 FORMAT (* A = 2%)
find 20
20 FORMAT (F8.3)
insert #x = a#*%*?2
<
EDIT:
print
X = A*#%2
top
print 20
C MAIN PROGRAWN NOV. 27, 19
WRITE (6,10)
10 FORMAT (" A = 2°7)
READ
20 FORMAT (F8.3)
X = B*¥%*2
WRITE (6,25) R,X
CALL EXIT
END
EOF:
file

INT

CRMAT (8.3)
$
SYNTRX
IEY0221 UNDEFINED LABEL
L2
69

Carriage return hit to confirm
environment the user is in.

69

RODUCTION

R; T=0.16/1.08 09.21.34

fortran main
IEY0221 UNDEFINED LABEL
25
E(00008); T=0.30/0.94 09.21.43

edit mwain fortran
EDIT:
locate /25/
WRITE (6,25) A,X
insert 25#format (* a = "£8.3,' x = 20.3)

print

25 FORMAT (* A = 'F8.3,*' X = 20.3)
change 720/ £20/

25 FORMAT (* A = *F8.3," X = ' F20.3)
file

R; T=0.12/0.64 09.23.16

fortran main (list source)

R; T=0.31/70.97 09.23.35

$ main

EXECUTION BEGINS...

A =72

2.5

A = 2.500 X = 6.250

R; T=0.28/0.94 09.24.01

load main

R; T=0.23/70.78 09.24.14

start

EXECUTION BEGINS...

A=7

3.1

A = 3.100 X = 9.610

R; T=0.04/0.18 09.2u4.29

load main (xeq)

EXECUTION BEGINS...

A =7

3.2

A = 3.200 X = 10.240

R; T=0.26/0.93 09.24.50

load maint!start e The ! allows multiple

R; T=0.23/0.74 09.25.0u commands per line.

EFXECUTION BEGINS...

A=2?

2.5

A = 2.500 X = 6.250

10 INTRODUCTION

R; T=0.04/0.13 09.25.15

listf main *

FILENAME FILETYPE MODE NC.REC. DATE

MAIN LISTING P1
MAIN FORTRAN Pl
MAIN TEXT Pl

R; T=0.0270.07 09.25.23

listf * listing

003 11727
001 11727
002 11727

FILENAME FILETYPE MODE NO.REC. DATE

INDIAN LISTING P1
MAIN LISTING Pl
DUMPREST LISTING Pl
R; T=0.02/70.07 09.26.08

erase * listing
R; T=0.03/0.10 09.26.30

listf * listing
FILE NOT FOUND

E(00002); T=0.01/0.04 OO9.

printf main fortran

C MAIN PROGRAM Nov. 27,

WRITE (6,10)
10 FORMAT (* A =2 ")
READ (5,20) A
20 FORMAT (F8.3)
X = A*%*2
WRITE (6,25) A,X

003 8/18

003 11727

007 8720
27.05

1969

25 FORMAT (* A = *'F8.3,' X = ' F20.3)

CRLL EXIT
END

R; T=0.03/70.09 09.27.23

printf rain fortran * 3 25

C MAIN PROGRAM NOV. 27
WRITE (6,10)

10 FORMAT (* A = 2 ')

R; T=0.02/0.08 09.30.47

printf main fortran

C MAIN PROGRAM NOV. 27,

WRITE (6,10)

1969

————— ATTN was hit once to enter CP
-=-—=ATTN was hit a second time

INTRODUCTION

11

kt <—- -—to kill typeout
R; T=0.03/70.09 09.31.02

offline punch main textadaafortran <--The four @ characters delete
R; T=0.03/0.14 09.31.32 the previous four characters.

offline print main fortran
R; T=0.03/0.10 09.31.40

offline print main listing
FILE NOT FOUND
E(00002); T=0.01/0.05 09.31.53

listf

FILENAME FILETYPE MODE NO.REC. DATE
DUMPREST SYSIN Pl 009 8720
SUPERSCR SYSIN P1 070 8/22
MY FORTRAN Pl 001 8/26
FORTCLG EXEC Pl 001 8/27
LOAD MAP PS 003 8/30
MAIN FORTRAN Pl 001 11727
FIN SCRIPT Pl 001 8730
TUES SCRIPT Pl 001 8731
FRST SCRIPT Pl 001 8/31
AGENDA SCRIPT P1 001 9/1
MAIN TEXT Pl 002 11727
INDIAN FORTRAN Pl 001 9/1

R; T=0.05/70.14 09.33.05

alter main fortran * mainone * *
R; T=0.02/70.12 09.33.28

listf wain fortran
FILE NOT FOUND
E(00002); T=0.02/70.05 09.33.35

listf * fortran
FILENAME FILETYPE MODE NO.REC. DATE

MY FORTRAN P1 001 8727

MAINONE FORTRAN Pl 001 11727

INDIAN FORTRAN Pl 001 9/71

R; T=0.01/70.01 09.33.45

$ main

CcP G e ATTN was hit once to enter CP
< - - ATTN was hit a second time

kX Lewmwmrmrmmm e to kill execution

CMS. VERSION n LEVEL m
listf mainonnde * <—==—— The 3 deletes one character.

FILENAME FILETYPE MODE NO.REC. DATE
MAINONE FORTRAN Pl 002 11727

12 INTRODUCTION

R; T=0.03/70.17 09.34.25

edit fortclgo exec
NEW FILE.

INPUT:

fortran waincne
$@load mainone (xeq)

EDIT:
file
R; T=0.07/0.43 09.35.02

printf fortclgo exec

FORTRAN MAINONE
LOAD MAINONE (XEQ)

R; T=0.0270.06 09.35.11

exec fortclgo
09.35.23 FORTRAN MAINONE

09.35.27 LOAD MAINONE (XFEQ)
EXECUTION BEGINS...

A =2

3.4

A = 3.400 X = 11.560
R; T=0.60/1.94 09.35.40

edit fortclgo exec

EDIT:

change /mainone/ &1/ * G
FORTRAN &1

LOAD &1 (XEQ)

EOF:

file

R; T=0.10/0.60 09.36.17

exec fortclgo mainone
09.36.53 FORTRAN MAINOMNE

09.36.59 LOAD MAINONE (XEC)
EXECUTION BEGINS...

A =72

5.1

A = 5.100 X = 26.010

R; T=0.62/2.00 09.37.10

edit fortclgo exec
EDIT:

insert §&set err exit
print 9

6SET ERR EXIT
FORTRAN §1

LOAD &1 (XEQ)

INTRODUCTION

13

EOF:
file
R; T=0.10/0.57 09.37.39

edit mainone fortran
EDIT:
print u

C MAIN PROGRAM NOV. 27, 1969
WRITE (6,10)

10 FORMAT (* A = 2°')

blank aa
FORMAT (" A = 7

|
Y
-
4

next
READ (5,20) A
change /read/red/
RED (5,20) A
file badone
R; T=0.13/0.71 09.40.15

listf * fortran
FILENAME FILETYPE MODE NO.REC. DATE

MY FORTRAN Pl 001 8/27
MAINONE FORTRAN Pl 001 11727
INDIAN FORTRAN P1 001 971
BADONE FORTRAN Pl 001 11727
R; T=0.0370.17 09.41.23
exec fortclgo badone
09.41.36 FORTRAN BADCNE
0002 FORMAT (* A = 2')
01) IEY(002Y LABEL
0003 RED (5,20) A
$ 3
01) IEY001I ILLEGAL TYPE
IEY0221

10
t1Y E(00008) 1ttt
R; T=0.36/1.02 09.42.03

edit fortclgo exec
EDIT:
change /81/81 §2 &3 &4 &5/ * g

FORTRAN &1 &2 €3 &4 g5
LOAD €1 &2 &3 &4 &S (¥EQ)
EOF:

file

R; T=0.11/0.65 09.43.00

14 INTRODUCTION

02) TEYO013I SYNTAX
UNDEFINED LABEL

exec fortclgo mainone

09.43.19 FORTRAN MAINONE
09.43.28 LOAD MAINONE (XEQ)
EXECUTICN BEGINS...

A =72

1.9

A= 1.900 X = 3.610
R; T=0.64/2.27 09.44.10

CP G T ATTN was hit once to enter CP.
query user
14 USERS, 00 DIALED

query user names

LOVE - O44,SEYMOUR-02R,OPERATOR-009,MEYER =045,
ROSATO - 024,NEWSON -040,LFVEY -027,BOYD -028,
DJIL - 056,BURR —-062,SHIFLDS -057,SCHUPP -055,
EDNA - 043,CSC1 -026

query logmsg
CP WILL BE UP 24 HOURS A DRY

begin {=-mmmmmm BEGIN returns contrcl to CMS.

CMS

logout

T=5.49/20.53 10.24.,42

CP ENTERED, REQUEST, PLEASE.
cp

logout

CONNECT= 02.50.77 VIRTCPU= 000.05.49 TOTCPU=000.20.54

LOGOFF AT 10.25.06 ON 11/27/69

INTRODUCTION

15

CP-67 TERMINAL USAGE

The conversational input/output device used to access the
CP-67/CMS system is referred +to as a “terminal®™ and is
operated by a "user” who types information that 1is

transmitted either by telephone line or by
permanently-connected wiring to a computer, where the
information is received and processed by the system. In

addition to receiving and processing information, the system
may cause information to be typed out at the terminal.
Information typed from the terminal keyboard by the user is
called "input®; that typed out at the terminal by the system
or by a user program is called "output”.

Any one of four terminals may be wused to access the
CP-67/CMS syster. These are the IBM 2741 Communication
Terminal, the IBM 1050 Data Communications System Terminal,
the Type 33 Teletype Terminal, and the Type 35 Teletype
Terminal. Any of these terminals may be connected to the
computer by direct wiring or by telephone 1line. If the
terminal is not directly wired to the computer, a data-phone
is placed near the terminal keyboard, and must be wused to
dial an installation-specified numwber in order to establish
a connection with the computer. The procedure for using a
data-phone is described under "CP Login"™ in the "Terminal
Usage-Logging Procedures™ section.

Terminals which are eguivalent to those explicitly supported
ray also function satisfactorily. The customer is
responsible for establishing equivalency. IBM assumes no
responsibility for the impact that any changes to the
IBM-supplied products oY prograns may have on such
terminals.

16 Terminal Usage

2741 CHARACTERISTICS

The IBM 2741 Communication Terminal consists of an IBM
Selectric typewriter mounted on a typewriter stand. The
stand includes the electronic controls needed for
communications, a cabinet for mounting a data-phone, a rack
for mounting a roll of paper, and a working surface. For
use with the CP/CMS system, the 2741 should be equipped with
the Transmit Interrupt and the Receive Interrupt features.

The 2741 has two modes of operation: communicate mode and
local mode. The mode of the terminal is controlled by the
terminal mode switch, which is located on the 1left side of
the typewriter stand. When in local mode, the terminal is
disconnected from the computer. It then functions as a
typewriter only, and no information 1is transmitted or
received. When in communicate mode, the terminal may be
connected to the communications line to the computer. The
power switch on the right side of the keyboard must be set
to ON before the terminal can operate in either communicate
or local wmwode. The procedure for establishing connections
with the computer and the terminal switch settings which
should be used are discussed below under "2741 Initiation
Procedures".

Either of two 2741 keyboard configurations may be wused in
accessing the CP/CMS systenmn. These are the PTTC/EBCD
configurations (shown in Figure 1) and the standard
Selectric configuration (shown in Fiqure 2). On either
keyboard, the alphameric and special character keys, the
space bar, power switch, the SHIFT, LOCK, TAB, tab CLR SET,
and MAR REL keys all operate in the same way as standard
Selectric typewriter keys.

On most 2741 terminals, the space bar, backspace, and
hyphen/underline keys have the typamatic feature. If one of
these keys is operated normally, the corresponding function
occurs only once. If the key is pressed and held, the
function is repeated until the key is released. The RETURN
and ATTN keys have special significance on the 2741
keyboard.

The RETURN key is hit to signal the termination of each
input line. When RETURN is hit, control is transferred
to the system, and the keyboard is locked until the
system is ready to accept another input line.

The ATTIN key is used to generate an attention
interrupt. It may be hit at any time (since it is never
locked cut) and causes the keyboard to be unlocked to
accept an input line. Refer to "Attention Interrupt”
for a discussion of the transfer between environments
that occurs when an attention interrupt is generated.

Terminal Characteristics 17

The 2741 paper controls (such as the paper release lever,
line-space 1lever, impression control lever, etc.) are
identical to the corresponding controls on an IBM Selectric
typewriter and operate accordingly.

Any invalid output character (one which cannot be typed by
the terminal and for which no keyboard function, such as tab
or carriage return, exists) appears in terminal output as a
space. For a further discussion of 2741 characteristics,
refer to the 2741 component description manual (GA24-3415).

2741 INITIATION PROCEDURES

The steps for preparing the 2741 for use are described
below. After these steps have been performed, log in.

1. Set the terminal mode switch located on the left side of
the typewriter stand to LCL. This ensures that the terminal
is disconnected from the computer.

2. After making sure that the terminal is plugged in, turn
the power on by pressing the ON portion of the terminal
power switch at the right side of the keyboard.

3. Check to see that the wmargin stops, which are located on
the typing guide just above the keyboard, are set at the
desired positions (normally O and 130). If so, proceed to
step 4. To reset a margin stop, push it in, move it to the
desired position, and release it.

4. Check that the tabs are set at the desired intervals by
tabbing an entire 1line using the TAB key. If the settings
are satisfactory, proceed to step 5. Note that these tab
settings do not govern the internal positioning of input
characters. For a discussion of internal tab settings,
refer to EDIT. If the tabs are to be reset, position the
typing element to the right margin, press and hold the CLR
portion of the tab control key, and hit the RETURN key.
This clears all previous tab settings. New settings may be
made by spacing the typing element to the desired locations
and pressing the SET portion of the tab control key. After
tab stops have been set for the entire line, hit RETURN to
position the typing element at the left margin.

5. Set the terminal mode switch on the left side of the
typewriter stand to COM. The terminal is now ready for use.

1050 CHARACTERISTICS
The IBM 1050 terminal is composed of the 1051 Control Unit

and a 1052 Printer-Keyboard. The 1051 Control Unit includes
the power supplies, printer code translator, data channel,

18 Terminal Characteristics

and control circuitry needed for 1050 operation. To be used
with the CP/CMS system, the 1051 should be equipped with the
Time-Out Suppression and the Transmit Interrupt and Receive
Interrupt special features. The 1052 keyboard is similar in
appearance to the standard IBM typewriter keyboard. Figures
3 and 4 illustrate the 1050 switch panel and keyboard. The
alphameric and special character keys, the space bar, LOCK,
SHIFT, and TAB keys, and the paper controls operate in the
same way as those on a standard IBM typewriter. The
following keys are of special significance on the 1052
keyboard:

RETURN. If the Automatic EOB special feature is included on
the terminal being used, and if the EOB switch on the switch
panel 1is set to AUTO, the RETURN key may be used to
terminate an input line. Otherwise, (if the Automatic EOB
special feature is not available on the terminal being used,
or if EOB on the switch panel is set to MANUAL) the
character transmitted when RETURN is hit is considered part
of the input 1line.

ALTN CODING. This key, when pressed and held while one of
the other keys is hit, originates a single character code
such as restore, bypass, reader stop, end of block (EOB),
end of address (EOA), prefix, end of transaction (EOT), or
cancel. Note that input 1lines from 1050 terminals not
equipped with the automatic EOB special feature must be
terminated by pressing the ALTN CODING key and holding it
down while hitting the S key. This procedure causes a
carriage return at the terminal.

RESET LINE. Hitting this key (at the left side of the
keyboard) causes an attention interrupt (provided the
terminal is equipped with the Transmit Interrupt special
feature). The RESET LINE key may be hit at any time, since
it 1is never 1locked out, and causes the keyboard to be
unlocked to accept an input 1line. Refer to "Attention
Interrupt™ for a discussion of the transfer between
environments which occurs when an attention interrupt is
generated.

RESEND. This key and its associated light (both located on
the right of the keyboard) are used during block checking.
The light comes cn when an end-of-block character is sent by
the terminal; it is turned off when receipt is acknowledged
by the system. If the light remains on, indicating an
error, RESEND may be hit to turn off the light, and the
previous input line may then be reentered. While the light
is on, no input is accepted from the keyboard.

LINE FEED. This key causes the paper to move up one or two

lines, according to the setting of the line space lever,
without moving the typing element.

Terminal Characteristics 19

DATA CHECK. This key should be hit to turn off the
associated light (to its left), which comes on whenever a
longitudinal or vertical redundancy checking error occurs,
or when power is turned on at the terminal.

Any invalid output character (one which cannot be typed by
the terminal and for which no keyboard function, such as tab
or carriage return, exists) appears in terminal output as a
space. For <further information on the characteristics and
handling of the 1050 terminal, refer to the 1050 reference
digest (GA24-3020).

1050 INITIATICN PROCEDURES

The procedure for preparing the 1050 for use are described
below. When these steps have been performed, log in.

1. After making sure that the terminal is plugged in, set
the panel switches (shown in Figure 3) as follows:

Switch Setting
SYSTEM ATTEND
MASTER OFF
PRINTER1 SEND REC
PRINTER?2 REC
KEYBOARD SEND
READER1 OFF
READER2 OFF
PUNCH1 OFF
PUNCH?2 OFF
STOP CODE OFF
AUTO FILL OFF
PUNCH NORMAL
SYSTEM PROGRAM
EOB see below
SYSTEM (up)
TEST OFF
SINGLE CY OFF

RDR STOP OFF

If an EOB switch appears on the terminal, it may be set to
either AUTO or MANUAL. If it is set to AUTO, the RETURN key
may be used to terminate an input line. If the EOB switch
is set to MANUAL, or if it does not appear on the terminal,
all input 1lines must be terminated by hitting the 5 key
while the ALTN CODING key is pressed and held down.

2, Check to see that the wmwargin stops--the two blue
indicators invisible in the transparent strip just below the
switch panel--are set as desired (normally at 0 and 130).
If so, proceed to step 3. To change margin settings, set

20 Terminal Characteristics

the PRINTER]1 and XE¥BORRD switches to HOME. Turn power on
at the terminal by setting the mainline switch to POWER ON.
Move the typing element to the center of the line by spacing
or tabbing. Turn power off at the terminal. Lift the top
cover of the 1052 and tilt down the hinged portion of the
front panel. Press the blue margin indicators toward the
back of the 1052 and slide ther to the new locations.
Return the hinged panel to its original position and close
the top cover.

3. Check the tabk settings by setting PRINTER1 and KEYBOARD
switches to HOME, turning power on at the terminal,
positioning the typing element at the left wmargin, and
hitting the TAB key repeatedly. If the tab settings are
satisfactory, proceed to step 4. Note that terminal tab
settings do not govern internal positioning of input
characters. For a discussion of internal tak settings,
refer to EDIT. If the tabs are to be reset, position the
typing elewrent to the right margin. Lift the tab setting
switch, labeled CLR/SET, and hold it while hitting the
RETURN key. This clears all previous tab settings. New
settings may be made by spacing the typing element to the
desired locations and then pressing dJdown on the tab setting
switch. After tab stops have been set for the entire line,
hit the RETURN key to position the typing element at the
left margin. Turn off power at the terminal.

L. Reset the PRINTFR1 switch to SEND REC and the KEYBOARD
switch to SENL.

5. Turn the wainline switch to POWER ON and continue with
the Login procedure.

Terminal Characteristics 21

< ; M % ! > * () - + BACK
Y | 2 1] 3 4 5 6 7 8 9 0 - & ||space| |ATTN
[«
T Y U I oll »p :
CLR TAS-—I |) ¥ @ ON
RETURN
1 n
LOCK] A S o ||l F ol nil K L s || #
N | SHIFT
- SHIFT z x{l clfv B (| N|[| M ! i y OFF

SPACE BAR

Figure 1. IBM 2741 Keyboard (PTTC/EBCD Configuration)

MAR t i # $ % ¢ & * () _ BACK | | 11N
REL 1 2 3 {4 || s 6 7 s || 9 || 0 - £ |{lspacel [ATT
-]
TAB afilwl|e R T Y U I ol » !
CLR RETURN ON
LOCK A S D F G H J K L ; '
2?2
SET SHIFT z x|} c|lv B |l N M ; 7 SHIFT OFF
SPACE BAR

When this keyboard and associated print elements are specified the mechanical changes in the keyboard mechanism
determine the line code assignments of the graphic characters. These arrangements are not compatible with the
assignments provided by the use of the PTTC/BCD and PTTC/EBCD keyboards and associated print elements (see Code

Chart, Figure 6).

Figure 2. IBM 2741 Keyboard (Standard Selectric
Configuration)

Note:

22 Terminal Characteristics

SYSTEM MASTER PRINTER | PRINTER 2 | KEYBOARD| READER 1 READER 2 PUNCH 1 PUNCH 2 {STOP CODE| AUTO FILL PUNCH SYSTEM EOB SYSTEM TEST SINGLE CY| RDR STOP
SRS - pEC REC e SEn SEND BEC REC SENSE an | wORmMAL PROGRAM venoa ~ E e
St SEni s o ot s g Pt o
REC REC -
NATTEr o it mmE g “CmE nomE o g o o BRSP <.e “ N e pran PESET
| omte
Bl baalooddon Tndvo b bno o dsodealialinddoo o bind e ol v Bl .
PR 5 e s om o e
tam
Figure 3. IBM 1052 Switch Panel
ROR
BYPASS RESTORE EDA EOB EOT PREFIX CANCEL STOP
ALTN BACK LINE
CODING| 1 SPACE | | FEED [:]
r TAB‘—J
| RETURN DATA
i CHECK
{ LOCK
. -
LIN
RESET SHIFT SHIFT D RESEND

[SPACE BAR 1

Figure 4. IBM 1052 Keyboard

Terwrinal Characteristics

23

TYPE 33 TELETYPE CHARACTERISTICS

The KSR (Keyboard Send/Receive) model of the Teletype Type
33 terminal is supported by CP-67. The Type 33 KSR includes
a typewriter keyboard, a control panel, a data-phone,
control circuitry for the teletype, and roll paper. The
Type 33 KSR keyboard contains all standard characters in the
conventional arrangewment, as well as a number of special
symbols. All alphabetic characters are capitals. The SHIFT
key is used only for typing the “"uppershift™ special
characters. The CTRL key (Control key) is used in
conjunction with other keys to perform special functions.
Neither the SHIFT nor CTRL key is self-locking; each must be
depressed when used.

In addition to the standard keys, the keyboard contains
several non-printing keys with special functions. These
function keys are as follows:

LINE FEED generates a line-feed character and moves the
paper up one 1line without mwoving the printing
mechanism. When the terminal is used offline, the LINE
FEED key should be depressed after each line of typing
to avoid overprinting of the next line.

RETURN is the carriage return key and signifies the
physical end of the input line.

REPT repeats the action of any key depressed.

BREAK generates an attention interrupt and interrupts

program executionmn. Aftexr breaking program execution,
the BRK-RLS button must be depressed to unlcck the
keyboard.

CNTRL is used in conjunction with other keys to perform
special functions. The tab character (Control-I) acts
like the tat key on the 2741. Control-H acts like the
backspace key on the 27u41. Control-Q and Control-E
produce an attention interrupt 1like BRFAK if the
teletype 1is in input mode. Control-s (X-OFF) and
Control-M act as RETURN. Control-D (EOT) should not be
used as it mway disconnect the terminal. control-G
(bell), Control-R (tape), Control-T (tape), and all
other Control characters are legitimate characters even
though they have no equivalent on the 2741,

HERE IS and RUBOUT are ignored by CP-67.

ESC (ALT MODE on sore units) is not used by CP-67, but
generates a legal character.

24 Terminal Characteristics

The control panel to the right of the keyboard contains six
buttons below the telephone dial, and two lights, a button,
and the NORMAL-REFSTORF knob above the dial. The buttons and
lights are as follows:

ORIG (CRIGINATE). This button obtains a dial tone
before dialing. The volume control on the loudspeaker
(under the keytoard shelf to the right) should be
turned up such that the dial tone is audible. After
connection with the computer has been made, the wvolume
can be lowered.

CLR (CLEAR). This button, when depressed, turns off
the typewriter.

ANS (Answer). This button is not used by CP-67.

TST (TEST). This button is used for testing purposes
only.

ICL (Local). This button turns on the typewriter for
local or offline use.

BUZ-RLS (Buzzer-Release). This button turns off the
buzzer that warns of a low paper supply. The light in
the BUZ-RLS button remains on until the paper has been
replenished.

ERK-RLS (Break—-Release). This button unlocks the
keyboard after oprogram execution has been interrupted
by the BREAK key.

REST. This light is not used by CP-67.

NORMAL-RESTORE. This knob is set to NORMAL, except to
change the ritbon, in which case the knob is twisted to
the OUT-OF-SERV light. The knob 1is then set to RESTORE
and returned to NORMAL when the operation has been
completed.

OUT-OF-SERV (Out of Service). This light goes on when
the NORMAL-RESTORE knob is pointed to it for ribbon
changing.

Most teletype units have a 1loudspeaker and a volume control
knob (VOL) 1located under the keyboard shelf. The knob is
turned clockwise to increase the volume.

TYPE 35 TELETYPE CHARACTERISTICS

The KSR (Keyboard Send/Receive) model of the Teletype Type

35 terminal 1is supported by CP-67. The Type 35 KSR, 1like
the Type 33 KSR, includes a typewriter keyboard, a control

Terminal Characteristics 25

panel, a data-phone, control circuitry, as well as roll
paper. The Type 35 has basically the same features as the
Type 33. The additional features of a Type 35 are the
following:

LOC-LF (Locals/Line Feed). This button operates as the
LIND FEED button without generating a 1line-feed
character. It is used along with the LOC-CR.

LOC-CR (LocalsCarriage Return). This button returns
the carrier &as RETURN does without generating an
end-of-line character. LOC-CR is normally used only to
continue a line of input to the next line.

LOC-BSP (Logical/Backspace). This button generates a
character but it has no meaning with the KSR model.

BREAK. This button generates an attention interrupt
and interrupts program execution. After execution has
been interrupted, BRXK-RLS, and then the K buttons must
be depressed to unlock the keyboard.

K (KReyboard). This button unlocks the keyboard and
sets the terminal for page copy only.

Most Type 35 terminals have a volume control knob (SPKR VOL)
for the 1loudspeaker located to the right of the keyboard.
Turning the knob clockwise increases the volume.

A column 1indicator at the wupper right of the keyboard
indicates the column that has just been printed. When the
LOC-CR key is used, no end of 1line is recorded and the
column indicator does not reset.

A red light to the right of the column indicator warns the
user that the carrier is approaching the right margin.

26 Terminal Characteristics

CP-67/CMS CONVENTIONS

LOGGING PROCEDURES

This section describes the procedures which mast be
performed at the terminal to begin and to terminate use of
the CP-67/CMS system. For the procedures of connecting a
user to a multiaccess system such as RAX or APL, refer to
"Dialing a Multiaccess Systenm™. Before the facilities of
the CP-67/CMS syster are made available to a wuser, he must
identify himself to the Control Program by giving his userid
and his password (two identifiers which are assigned to him
at the time he is authorized to use the system). This
identification procedure is referred to as CP Login. When
CP Login is completed, a console function may be issued to
initialize CMS, as described below.

Note. During the TLOGIN procedure CP-67 uses the 1line
time-out feature when reading the userid and password. If
the user fails to type any character for 28 seconds, the
line will time-out and be disabled.

When the user has comwpleted his use of the system, he
signals this fact by issuing a "logout"™ to the Control
Program. The period between CP Login and CP Logout is
referred to as a terminal session.

CP_Login

After the terminal has been prepared for use (as described
under "Terminal Characteristics") the procedure Jdescribed
below must be performed in order to gain access to the
CP-67/CMS system. (Note that input may be entered in either
uppercase or lowercase. Uppercase is used below to indicate
words which must be tyvped as they are shown; 1lowercase
indicates fields whose contents way vary.)

1. A communications 1line to the computer mast be
established. If the terminal is directly wired to the
computer this is automatic, and you may proceed to step 2.
If the terminal is a Teletype 33 or 35, depress the ORIG
button, mrake sure the dial tone is audible, and then dial
the installation-specified number and proceed to step 2; the
ORIG button is lighted at this point--if the light goes out
during the terminal session, this CP Login procedure must be
repeated. Ctherwise, a data-phone 1is placed near the
terminal and should be used to establish a communication
line with the computer as follows: After making sure that
the plug from the data-phone is connected to the walljack,
press the button 1labeled TALK, 1lift the receiver, and dial
the installation-specified number. When a continuous tone
is heard, press the button 1labeled DATA and replace the
receiver. The DATA button should now be 1lighted, and

Logging 27

remains lighted as long as the terminal remains connected to
the computer. If this light qoes out at any point during
the terminal session, the CP Login procedure must be
repeated.

2. The system acknowledges that a communication 1line has
been established by typing one of the following messages:

CP-67 ONLINE XXXXXXXXXKXX
XXXXKRXXXXXXX CP-67 ONLINE
CP-67 ONLINE
The first message is typed if the terminal is a 1052 or 2741

equipped with an EBCD character set. If the second message
is typed, the 2741 has a standard Selectric or

correspond:2nce character set. In either case, the
XXXXXXXXXXxXx portion of the message consists of meaningless
characters and should be ignored. If the terminal is a

Teletype Type 33 or 35, the third message is typed.

3. At this point the system must be notified that someone
wishes to use the terminal. To do this, hit ATTN once. On
the Teletype 33 or 35, hit BREAK and then BRK-RLS.

4. The system responds by unlocking the keyboard on a 2741
or 1052 or waiting for input on the Teletype 33 or 35.

5. Identify yourself to the system by typing LOGIN userid,
followed by a carriage return, where userid is your user
identification.

Note. The LOGIN and userid cannot Dbe edited wusing
character-delete or line-delete symbols.

6. The system responds with one of the following messages:

ENTER PASSWORD:
This message indicates that your user identification has
been accepted. Proceed to step 7.

RESTART
If this message is typed, the word LOGIN has been entered
incorrectly. Return to step 5 and retype the input line.

LOGGED IN CN DEV XXX

RESTART
This message indicates ‘that another user with the same
userid is 1logged on at the terminal whose address 1is xxx.
You will not be :able to log in with the same wuserid until
the other user has lcgged off.

28 Logging

USER NOT IN DIRECTORY.

RESTART
If this mwessage 1is typed, an invalid userid has been
specified. Return to step 5 and log in again.

MAX NO. OF USERS EXCEEDED

LOGGED OUT AT xX.XX.XX ON xXxX/xxX/xx ***¥ BY OPERATOR***
If the keyboard unlocks or CP-67 waits for input, return to
step 5. If the message is typed, the system is already
servicing the maxiwum number of users and the login
procedure is terminated. In this case wait for a few
minutes, and then try again by returning to step 1.

UPDATING DIRECTORY

RESTART
The CP-67 system directory is being updated. In this case,
wait a few minutes, and then try again by returning to step
5.

7. Type your password, followed by a carriage return; the
passwoxrd may be edited. If the 2741 terminal 1is equipped
with the Print Inhibit feature, the password is not typed at
the terminal as the keys are hit. The Print Inhibit feature
applies only to the typing of a password. If the terminal is
a Teletype 33 or 35, three 1lines of characters are
overprinted before you are allowed to enter your password.

8. At this time, if there are any cards in the virtual card

reader or output for the printer or punch, the message
FILES:- xx RDR, xx PRT, xx PUN

is typed. If the CP operator has set any 1log messages for

the day, they are typed also.

9. The system responds with one of the following messages:

READY AT XX.XX.XX ON xXxX/XX/XX

where xx.xX.xx is the time of day and xx/xx/xx is the date.
This message indicates that the password has been accepted
and the CP 1log 1in procedure 1is completed. The Control
Program environment has been entered, and any console
function may be issued. To initialize CMS, proceed to step
11. To 1initialize any other operating system proceed to
step 10.

PASSWORD INCORRECT.

RESTART
If this message 1is typed, an invalid password has been
specified and the 1log in procedure is repeated. Return to
step 5.

Logging 29

10.. Any operating system can now be loaded into the virtual
machine. To load in CMS, go to step 11. To load in another
operating system, issue the IPL console function to CP-67,
specifying the device from which the system is to loaded.
For example, 1IPL 293 or IPL 00c. If the device that is
IPL'ed contains an operating system (such as 0S/360), your
terminal becomes the operator's console. For information on
running OS under CP-67, see "0S/360 in a CP-67 Virtual
Machine", by C. I. Johnson, IBM Cambridge Scientific Center
Report 320-2035, cambridge, Massachusetts, March 1969.

CMS Initialization
11. To initialize CMS, issue the console function

IPL 190
or
IPL CMS

followed by a carriage return. This causes a copy of the
CMS nucleus to be brought into core from disk.

12. The message
CMS...VERSION nn LEVEL mm

where nn 1is the version level and mm is the modification
level, 1is typed, and the keyboard 1is unlocked. The CMS
Command environment has control at this point, and any CMS
command may be issued.

cPp Logout

When the wuser has finished using the system and wishes to
end his termwminal session, he should do so by 1logging out
from the Control Program. If the user is not already in the
Control Program environment at the time he wishes to log
out, he may enter this environment by hitting ATTN once.
The keyboard is unlocked and the user types LOGOUT, followed
by a carriage return. The systemr responds with

CONNECT=hh.mm.ss VIRTCPU=mmm.Ss.hs TOTCPU=mmm.ss.hs
LOGOUT AT XX.XX.XX ON xXX/XX/XX

and the connection to the computer is lost. The connect time
is in hours, minutes, and seconds; the virtual CPU, and
total CPU times are in minutes, seconds, and hundredths of a
second. The logout procedure is then completed, and the
user may turn power off at the terminal.

If the user desires to end his terminal session, but not

lose the connection with the computer so that another user
may log in from the terminal, the user types LOGOUT

30 Logging

anything, focllowed by a carriage return. The “anything”
must be at 1least one character or any combination of
characters. The connection with the computer is not lost
and the CP-67 ONLINE message is typed out for the next user
to log in, as in step 2.

L,0ogging 31

DIALING A MULTIACCESS SYSTEM

This section describes the procedures which must be
performed to connect a user to a system that provides
multiterminal facilities, such as APL or RAX. The process
of placing a user into a multiaccess system is referred to
as "dialing". The system to be dialed into must be logged
onto CP-67 (as in the 1logging procedures writeup) with some
2702 or 2703 1lines available and enabled before the
connection can be made. When the connection is made, dialing
has been completed, and the terminal is under the control of
the system dialed into; consequently, the user is not known
to CP-67 as a regular logged in user but as a dialed user.

When the user has completed his wuse of the multiaccess
system, he should log out of that system in the appropriate
manner; when that wmwultiaccess system issues a "disable"
command for that terminal, the terminal will be free for
another user to login to CP-67/CMS or to dial a multiaccess
system.

Dialing

After the terminal has been readied for use (as described in
“"Terminal Characteristics®™), the procedure described below-
must be performed to gain access to a multiaccess system.
(Note that input may be entered in either uppercase or
lowercase. Uppercase is used below to indicate words which
must be typed as they are shown; lowercase indicates fields
whose contents may vary.)

1-4. These steps are, as for "CP Login", described several
pages earlier.

5. Specify the multiaccess system to which you wish to gain
access by typing

DIAL system

followed by a carriage return, where "system™ is the userid
of the multiaccess systemn.

Note. DIAL and system cannot be edited using
character-delete or line-delete symbols.

6. The systemr then responds with one of the following
messages

...connected...
This message indicates a connection has been made between
the terminal and the multiaccess systemr, and the terminal is
now under control of that system. Further responses will be
those of the mwultiaccess system, as the user cannot get to

32 Dialing

CP-67 to issue console functions.

system ALL IINES BUSY

RESTART
There are no 2702 cor 2703 1lines available on system. The
lines wmay not be available for any one of the three
following reasons: 2702 or 2703 lines are not defined in the
virtual mwachine, the virtual lines are not enabled by
system, or all of the lines are in use.

system NOT AVAILABLE
RESTART
The system being dialed is not logged in to CP-67.

system LINES NOT READY

RESTART
The system has not issued an enable for the 2702 or 2703
lines.

system NO DIAIL LINES

RESTART
The system has no 2702 or 2703 lines in its virtual machine
description.

Cisconnecting

The dialed terminal remains connected to system until one of
the three following events occur:

(1) system issues a disable for that terminal. This is
usually brought about by logging out of system in the
correct manner.

(2) system issues the CP console function DETACH,
specifying the terminal address.

(3) system logs out of CP-67.

When the terminal is disconnected from system, the following
message is typed out:

CP-67 LOGOUT

The terminal can now be used to 1log in to CP-67, or to dial
into a multiaccess system again.

Dialing 33

GENERAL TYPING CONVENTIONS

The typing conventions described below should be observed
when entering input to the CP-67/CMS system from a 2741,
1050, or a Teletype 33 or 35 terminal.

Input may be entered in either uppercase or lowercase.

When the keyboard is unlocked on the 2741 or 1050, the
terminal is ready to accept input. The keyboard ra2amains
unlocked on the teletype, therefore a > (greater than sign)
is typed at the left margin when the teletype is ready to
accept input. If the user types too soon on the teletype,
an interrupt may occur which will probably cause the user to
go back to CP; if this happens, type BEGIN to return to
where you were previously.

The character—-delete symbol (a) may be used to delete the
preceding character in the input 1line. n character-delete
symbols delete the preceding n characters in the input 1line
and themselves. Exception: This feature does not apply with
the K-level conmands or the RT command. The
character-delete symbol can be redefined by the CHARDEF
command for use in CMS; it can never be redefined for CP.

The line-delete symbol, which 1is the ¢ on the 2741 or
1050, and the shift K (left bracket) on the teletype, may be
used to delete all characters in the current input line and
itself. A 1line-delete symbol (¢) cannot be deleted by a
character-delete symbol (d). Exception: This feature does
not apply with the K-level commands or the RT command. The
line-delete symbol can be redefined by the CHARDEF command
for use in CMS; it can never be redefined for CP.

An input line may be a maximum of 130 characters in length.
Any 1line 1longer than 130 characters--including delete
symbols, blanks, and the tab character--is truncated to 130
characters. On the teletype 33, an input 1line can only
contain a maximum of 72 characters.

An input 1line from the 2741 or teletype is terminated by
hitting RETURN. To terminate an input line from the 1050,
hit the 5 key while holding down the ALTN CODING key, unless
the 1050 is equipped with the Automatic EOB special feature,
If this special feature 1is available and the EOB panel
switch is set to AUTO, input 1lines may be terminated by
hitting RETURN.

Input lines, can contain a number of logical input lines
which are separated by the line-end character (#). Each
call to read a 1line from the terminal returns a logical
input 1line. Subsequent calls to read a line from the
terminal return the logical input 1line which was typed

34 Typing Conventions

following the previous logical input line. For examrple, the
single input line

FORTRAN ABLE # § ABLE
causes the file ABLE FORTRAN to be compiled, 1loaded, and
executed. The single input line to the EDIT environment

T # L. /BUFT/ # C /FT/FFER/
causes the characters BUFT to be located and changed to
BUFFER. The line-end character can be changed with the
LINEND command for use in CMS; it cannot be redefined for
CP.

An output line on the 2741 and 1050 can be a maximum of 130
characters. Any line 1longer than 130 characters causes
overprinting at the right margin. On the teletypes, lines
longer than 72 characters 1in length are printed as two
lines; the first line cuts off after the 71st character, and
an up arrow 1is printed at the end of the line +to indicate
continuation.

Illegal output characters appear 1in terminal typeout as
spaces. An illegal output character is one which cannot be
typed and for which no keyboard function, such as a carriage
return or a tab, can be generated.

On the Teletype 33 or 35 terminal, the arrow translates to
underscore (), the backslash translates to a not sign (-),
and the uparrow to a vertical bar (]).

One or more blanks are used to delimit the fields of an
input line to the CMS command environment.

Typing Conventions 35

ATTENTION INTERRUPT

After a phone connection with the computer has been made and
the message “CP-67 Online™ has been printed, pressing the
attention key causes the CP login procedure to begin, or the
dialing of a multiaccess system to begin.

The user's machine may be interrupted (stopped) and the
terminal readied for input at any time by pressing the
attention key (marked ATTN) on a 2741, hitting the RESET
button on a 1050, or the BREAK key on the Teletype 33 or 35.
This causes control to pass to CP provided that the Control
Program was not already in control., CP console functions
can then be issued.

After a previous attention (pressing ATTN) causes control to
pass from CMS ¢to CP, a subsequent attention passes control
back to CMS. If CMS previously had control and was reading
a line from the terminal (that is, the keyboard was
unlocked), the CMS program is restarted and the keyboard is
unlocked again. If CMS previously had control and was not
reading a line from the terminal (that is, the keyboard was
locked), the interruption permits a single line of input to
be entered and stacked. Stacked lines of input are used on
successive calls to read a 1line from the terminal until
there are no more stacked 1lines. Input is then taken
directly from the terminal. After a line to be stacked is
entered, CMS continues from the environment which was last
interrupted. Any number of lines may be input and stacked
in this way.

When entering two attentions to the system to stack input,
ATTN should mnot be pressed the second time until the
keyboard has been unlocked 1in response to the first
attention. If the second attention 1is entered before the
keyboard is unlocked, it is ignored.

36 Bttention Interrupt

CMS FILE CONVENTIONS

One of the purposes of CMS is to provide the user with
various file-handling facilities. Files to be used under
CMS may be stored on disk, cards, or magnetic tape.
However, most CMS cormands assume that files are stored on
disk. This reans that files stored on wedia other than disk
rust be transferred to disk before many of the CMS commands
can be issued for ther. The commands which deal with
transferring files between disk and other media are
discussed under "File Creation, Maintenance, and
Manipulation™.

Conventions given in this section apply to disk files only.

Disk Facilities

Disk areas are available to each CMS user for storing
information. A user may have up to five read/write disks and
one reads/only (that is, the system) disk attached to his CMS
virtual wachine at any one time. These areas are referred to
as the wuser's disks although the size of each area seldom
constitutes an entire physical disk. The sizes of a user's
"mini" disks are assigned by the system administrator at the
time he establishes that person as an authorized user of the
CP-67/CVMS system. These assigned sizes are based on the
amount of disk space available and the amount which the user
is likely to require. 2ssigned disk sizes may vary among
users.

The logical names of the disks a user may have are P, T, A,
B, S, and C. This crder is normally the standard order of
search for CMS files. All users normally have a P (191) and
an S (190) disk. The P disk contains user files retained
between terminal sessions until the user erases them either
collectively or singly. The S disk (that 1is, system disk)
contains the CMS nucleus of which each user receives a copy,
and the disk resident portion of CMS which is normally
shared by &all wusers. The system disk 1is read-only--any
attempt to write on it is denied and causes an error message
to be typed to the user.

The T (192) disk contains information that is retained only
from the time it is created until the user terminates his
terminal session. The A, B, and C disks contain information
that is retained between terminal sessions as does the P
disk.

Before a user can access the P, T, A, B, or C disk for the
first time, he must format each one by issuing the FORMAT
command in CMS. If the disks are not properly formatted,
I/0 errors occur.

File Conventions 37

Information stored on disk is organized into files. Files
on the system disk are referred to as system files.

File Identifiers

Each file must have a unique identifier, which is composed
of a filename, a filetype, and a filemode. This identifier
(or a portion of it) is used by the various CMS cormands to
access user and system files. If a new file is created with
an identifier identical to that of an existing wuser file,
the original file is erased.

The filename may be any combination of from one to eight
nonblank EBCDIC characters, provided the first character is
not a zero or an asterisk. With system files, the filename
is the name which 1is issued by the user in calling a
specific command, and it 1is also the nawme of the program
whose code constitutes that command. Permanent and
temporary files way be assigned any filename the user
wishes, since filenames in themselves do not have any
special implications in CMS.

Filetype may be any combination of from one to eight
nonblank EBCDIC characters, provided the first character is
not a zero or an asterisk. Certain filetypes imply specific
file characteristics to CMS. Filetypes which have specific
implications for user files are given in Figure 5. The user
may assign any of the filetypes in this figure to any file
he wishes, but he should note that the commands which use
these filetypes are not successfully executed 1if the
contents of the file are in any form cther than that which
the assigned filetype implies.

38 File Conventions

SUOT3IU3AUOD I3TTH

6t

o
'—l.

gure 5.

Record Format|Created by For Use by

Filetypes and Length These Commands These Commands* Usage

AED F 80 EDIT, OFFLINE - AED source code

ALPHABET F 80 MAPPRT - Alpha listing of nucleus load map

ALPHANUM F 80 MAPPRT - Alpha and numeric listing of nucleus load map

ASP360 F 80 OFFLINE, EDIT MACLIB Assembler language macros

AS1130 F 80 OFFLINE, EDIT - 1130 Assembler source code

BRUIN F 80 BRUIN - Bruin source code

COBOL F 80 OFFLINE, EDIT - Cobol source code

COPY F 80 EDIT, OFFLINE MACLIB Assembler source code

CVTUT1 CVTFV - Utility file created by CVTFV

DATA F 80 EDIT, OFFLINE - User data files

DAXX F FORTRAN - Direct access Fortran files

DIAG F 132 |ASSEMBLE Assembler diagnostics

EXEC F 80 EDIT, OFFLINE, LISTF EXEC, § CMS and/or EXEC commands

FILE VorPF EDIT, CEDIT, OFFLINE - User data files or utility file created
by EDIT and CEDIT

(FILE) Vor F COMBINE, DISK, TAPE - Utility file created by either COMBINE, DISK
or TAPE

FLOW F 80 EDIT, OFFLINE - Flowchart input data

FTOLlFO001 F 80 FORTRAN - Fortran input/output file

FTO2F001 F 80 FORTRAN ~ Fortran input/output file

FTO3F001 F 80 FORTRAN - Fortran input/output file

FT04F001 F 80 FORTRAN - Fortran input/output file

FTO5F001 F 80 FORTRAN - Fortran output file

FTO7F00L F 80 FORTRAN - Fortran input/output file

FTO8FO0L1 F 133 FORTRAN - Fortran input/output file

FTO9FQ01 F 140 FORTRAN - Fortran input/output file

FT10F001 F 80 FORTRAN - Fortran input/output file

FORTRAN F 80 EDIT, OFFLINE FORTRAN Fortran source code

INTER F 80 UPDATE - Utility file created by UPDATE

LISTING F 121 ASSEMBLE, FORTRAN, PLI|PRINTF, EDIT, OFFLINE Assembler or compiler output containing source
statements and machine code

MACLIB F 80 MACLIB ASSEMBLE, GLOBAL Assembler language macro definition library

MAP F 72 LOAD, USE, REUSE, §$ - Map of locations of loaded programs
(Filename is LOAD)

MAP F 132 MACLIB, TXTLIB - Map of library file

MEMO F 80 EDIT, OFFLINE - Memorandum file - contains upper and lower
case data

MODULE V max:65K |GENMOD LOADMOD, § Non-relocatable object code

NUMERIC F 80 MAPPRT - Numeric listing of nucleus load map

PLI F 80 EDIT, OFFLINE PLI PL/I source code

PRINTER F 132 EDIT, OFFLINE PRINTF Printer output and listing files read onto disk

REPS F 80 EDIT, OFFLINE - Replace cards for modifying TEXT files

SCRIPT V max:132 |EDIT, SCRIPT SCRIPT Script input and/or output

SNOBOL F 80 EDIT, OFFLINE SNOBOL SNOBOL source code

SPLI F 80 SNOBOL SNOBOL SNOBOL object code

SYSIN F 80 EDIT,OFFLINE ASSEMBLE, UPDATE Assembler language source code

SYN F 80 EDIT SYN Synonyms or abbreviations

SYSUTL v ASSEMBLE, PLI - Utility file created by Assembler or PL/I

SYSUT2 v ASSEMBLE, PLI - Utility file created by Assembler or PL/I

SYSUT3 v ASSEMBLE, PLI - Utility file created by Assembler or PL/I

TEMPFILE SNOBOL - Utility file created by SNOBOL

TEXT F 80 ASSEMBLE, PLI, FORTRAN|LOAD, USE, REUSE, §$ Relocatable object code

TXTLIB F 80 TXTLIB GLOBAL,LOAD,USE, Library of relocatable object code

REUSE, $

..TYPE.. F 80 OFFLINE - Utility file created by OFFLINE

UPDATE F 80 EDIT, OFFLINE UPDATE Update control and replacement cards

UPDLOG F 80 UPDATE - Log of applied updates

UTILITY CNVTFV - Utility file created by CNVTFV

* Other commands may use these filetypes; these are only the pertinent commands.

Filetype implication and characteristics

Several of the

files.

CMS commands create files for
and assign specific filename-filetype

their own use
combinations to these

filename-filetype combinations are 1listed
below, and should not be assigned by the user

filename filetype creating command
. TEMP BRUIN BRUIN

CMS EXEC LISTF

(INPUT1) FILE EDIT, CEDIT
(INPUT2) FILE CEDIT

(TEMP) (FILE) COMBINE

L.OAD MAP LOAD, $,USE,REUSE
SNOBOL TEMPFILE SNOBOLlL, SPL1

- DUMMY TXTLIB TXTLIB

(DISK) (TFILE) DISK, TAPE

- -NAME. . ««TYPE.. OFFLINE

BCDEBC UTILITY CNVT26

In addition to the above, note that if a wuser file is
created whose filename and filetype are identical to those
of a file on the disk-resident portions of CMS, the standard
order of search may access one user's file in place of the
system file. Reasons for this are described in "CMS
Commands"”™.

The third portion of the identifier, filemode, consists of
two characters. The first character is a letter indicating
the disk area on which the file resides: S for system disk,
P for perranent disk, and T for temporary disk, etc. For
system files, the second character is always Y. For user
files, the second character is a numbker from one to six.
These numbers have the following meanings, although the
restrictions they imply may not currently be implemented in
all cases:

1 or 5--file may be written or read.
2 or 6--file is read-only.

3--file may be written or read, but is erased when the
file is closed.

4--file is read-only, and is erased when the file is
closed.

Files are matched on the three identifiers. I1f, however,
both filename and filetype are explicitly given, the mode
letter only is checked (that is, the mrode number is ignored
on the match). However, if either the filename or filemode
is implied with a *, the mode number is matched together
with the mode letter.

40 File Conventions

File Sizes

Files stored on disk are formatted into records 829 bytes
long. This formatting is handled internally by CMS, and is
not controlled by the user. The maximum CMS file size
(assuring that the user's assigned disk area can accommodate
it), is 24.358 million bytes, or 65,533 records. If a file
consists of a source language program, a size limitation may
be imposed by the language in which that program is written,
and this size may be swmaller than the 24.358 million bytes
allowed by CMS. The maximur disk file for user disks is 203
cylinders each. Although there is no inherent limitation to
the number of files a user may create, he 1is 1limited
practically by the sizes of his disk areas. When a user has
filled either of these areas, a message to this effect is
typed at his terminal. Refer to "Recovery Procedures®" for
steps to be taken in this case.

A file is “"accessed™ when any portion of it is read or
written. Whenever a file is accessed for the first time by
a CMS command or function, the file is automatically opened.
Opening in this case consists of making an entry into the
user's active file table. All open files are closed by CMS
after the successful execution of any CMS command. The user
does not need to be concerned with opening and closing
files.

Disk Considerations:

Read-only disks. There are several ways a user can force a
normally read-write disk (that is, Pp,T,A,B,C) to be
read-only.

If the user LINKs to a disk that is read-only in the CP
directory, then he has read-only access to that disk.

A disk may be logged into CMS as a read-only extension of
the P disk (for example, LOGIN 196 B,P). This forces the
disk to a read-only status, and concatenates the B disk to
the P disk in the standard order of search.

A disk may be logged into CMS as a forced read-only disk by
making it an extension of itself (for example, LOGIN 195
A,A). A user may thereby protect certain files by forcing
them to be read-only.

On read-only disks it is possible to login a portion of the
files on that disk. See the IOGIN command for details on
how this done.

T-Disk. The T-disk is automatically logged in when the

user IPL's CMS 1if 192 is attached and ready, and the label
on that disk is readable and is CMS=T-DISK. If the label is

File Conventions 41

readable but not CMS=T-DISK, the disk is not logged in. If
the label is not readable, an automatic FORMAT T (NOTYPE) is
issued.

C-LCISK. The C disk's (19C) special usage lies in its ability
to be a read-only extension of the system disk by means of a
modification to the system at installation time. Thus, if
the S disk is full and additional routines are needed as
part of the system, they way be placed on the C disk. For
example, the C disk could contain an old version of the CMS
system disk. Thus it's routines would be used only if they
were not present on the more recent system disk.

Formatting disks. The very first time a user logs in to CMS,
he should issue a FORMAT command to format his disk areas
into the CMsS format. For details on FORMAT, see the CMS
FORMAT comrmand.

42 File Conventions

ENVIRONMENT CONVENTIONS

Each input line which is typed at the terminal by a user is
transmitted to the CP/CMS system, where it is processed
(examined, and accepted or rejected) by a given routine.
The particular routine by which input is processed is
determined by which portion of the system has control at the
time the input line is entered. Each portion of the system
to which input may be entered constitutes a unique
environment, and only a subset of all possible input is
acceptable to any given environment. The following are the
environments of the CP/CMS system:

Control Program environment
CMS Command environment
Debug environment

Edit environment

Input environment

Echo environment

In addition to these six specific environments, input may be
entered to any other executing program which expects
terminal input. These other input-processing programs are
grouped into a seventh, Program environment, in which the
acceptability of an input 1line is determined by the
executing program.

With the exception of the Program environment, the
input-processing routines fall into three main categories:
input is received by either the Control Program (CP
environment), a central CMS service routine (CMS Command
environment), or a particular CMS command (Debug, Edit,
Input, and Echo environments). Input 1lines which are
acceptable to the CP environment are referred to as "console
functions®”, since for the most part they simulate functions
that can be performed at a System/360 console. Input to the
CMS Command environment may be any CMS command. Note that CP
console functions can also be issued from the CMS command
environment (see CPFUNCTN command).

A certain number of the CMS commands cause environments of
their own to be entered. These are the DEBUG, EDIT, and
ECHO commands. Lines acceptable to the environments of
these commands are referred to as “"requests®, or merely
"input", depending on the particular environment which is
entered when the command is issued. The EDIT command causes
either one of two environments to be entered. If it is
issued for a file which already exists, the editing
environment is entered, allowing the contents of the
existing file to be examined and wodified. If an EDIT
command is issuved for a file which does not currently exist,
the input environment is entered, allowing the file to be
created. The Input environment accepts any input typed at

Environment Conventions 43

the terminal, and this input becomes a part of the file
being created. The Echo environment also accepts any input
line, but repeats that line as output in order to test
terminal transmisssion. Because no check 1is made +to
determine the acceptability of input to these two
environments, lines which are acceptable are termed merely
input. The Debug and Edit environments, on the other hand,
accept only specific input lines, which are referred to as
requests.

To verify at any time which environment the user is in,
RETURN can be hit.

Various actions by the user cause control to pass from one
environment to another. These actions are specified in
detail throughout this guide. Note that ATTN can always be
used to transfer control to the CP environment from any of
the other environments. Hitting ATTN while in the CP
environment causes the keyboard to be unlocked, permitting
one line of input to be entered. If the line entered is a
K-type CMS command (KT, KX, KO) or the RT command, it is
executed immediately and control returns to the environment
from which CP was entered. If the 1line entered is not a
K-type CMS command or the RT command, the line is stacked to
be wused as terminal input and control returns to the
environment from which CP was entered. As many lines as
desired may be stacked in this way to be used in place of
successive lines of terminal input.

44 Environment Conventions

CP-67/CMS

Environments, Commands, and Requests

These are

CP CMS EDIT INPUT DEBUG
LOGIN
Q USERS
IPL 190-> LISTF
(file does not exist)
EDIT—-—————~ ————— =D
(file exists)
EDIT--—~——- >
PRINT
NEXT
FIND
LOCATE
DELETE
CHANGE
INPUT-~——- > XXXX
XXXX
TOP <—=—-—- (null 1line)
RETYPE
FORTRAN<K---FILE
PRINTF
LOAD
START
ERASE
DEBUG-——--+--=-—m e c v - > x
store
dump
CPFUNCTNC—=~—==— restart
ECHO-—=—+ === m e s
SCRIPTCK— == r e - =~
OFFLINE
MSG <----(press ATTN key)
BEGIN--->
LOGOUT

illustrated below.

Fnvironment Conventions

ECHO

return

45

CMS COMMANDS

The CMS commands provide user facilties for file maintenance
and rmanipulation, execution control, debugging, language
processing, and various utility and control operations, and
are described below in alphabetical order under these
general headings.

These commands may be issued from the terminal or called
from user programrs. Each command consists of a command name
and its operands, if anye. Abbreviations have been
established which allow the wuser to specify only as many
characters of each command name as uniquely identify that
command. In the case of commands with the same 1leading
characters, the more commonly used command has been assigned
the shorter abbreviation. For example, A is the
abbreviation for the ASSEMBLE command, and AL for ALTER.
Any number of additional characters beyond the minimum may
be specified in the comwrand nawme. For this reason, AL, ALT,
ALTE, and ALTER all identify the ALTFR command.

The following is a list of the minimur number of characters
required to invoke CMS commands:

System Shortest
Commands Form
ASSEMBLE .Y
ALTER AL
CLOSIO CL
CPFUNCTN CP
DEBUG DE
EDIT E
FORTRAN F
GENMOD G
LISTF L
OFFLINE 0
PRINTF P
SCRIPT scC
STAT S
TAPE T
UPDATE U

If the user wants to change the abbreviations or to use
synonyms, the SYN command can be used to create the command
names, (see SYN).

The command name and each of 1its operands must be separated
by one or more blanks. The operands which are valid for each
command are discussed under "Format"™ in each command
description, and alsoc in Appendix B. Each command must be
specified in a single line of input. The carriage return
signals the end of a typical input line. To stack multiple

46 CMS Comrmands

CMS commands on one 1line of input, use the 1line-end
character, which is defined as # . The line-end character
can be redefined via the LINEND command. CMS commands cannot
be continued onto additional lines.

Each CMS command has a corresponding command program which
resides in the nucleus, in a transient area, or in the
disk-resident portion of CMS. This program is identified by
the command word or its abbreviation, which is issued as the
leftmost input on the comrand 1line.

When a command is issued from the terminal, the user's
directories and the system directory are searched in the
standard order for a file with the specified filenawe and a
filetype of EXEC. The first file found which meets these
requirements has control transferred to it as if "EXEC
filename™ had been issued. If the EXEC file is not found, a
check is made for akbreviations by checking for user-defined
synonyms (see SYN) and then standard abbreviations; if a
match is found for a synonym or abbreviation, the typed
command is expanded to the original CMS command name and the
above searching sequence is repeated.

If the EXEC file search is not satisfied from above, the
tables of the transient area commands and then the
nucleus-resident commands are searched for the corresponding
command program. If the program is 1located in one of the
tables, it 1is assuwred to be in core, and control is
transferred to it directly by a BALR instruction. If not, a
LOADMOD is issued to bring the command program into core. In
attempting to 1locate this program on disk, the wuser's
directories and the system directory are searched for a file
with the specified filename (command name) and a filetype of
MODULE, indicating that the file is in core-image form. The
first file found which meets these requirements is loaded
into core and control is transferred to it. If the MODULE
file is not found, a check is made first for abbreviations
by checking for user-defined synonyms (see SYN), and then
for standard system abbreviations; if a match is found for a
synonym or abbreviation, the typed command is internally
expanded to the original CMS command name, and the above
searching sequence is repeated.

This means that the user 1is able to substitute his own
programs for disk-resident commands by creating a core-image
file of the program and assigning it a filename identical to
that of the command it is to replace. This also means that
any user file in core-image form may be called directly as a
command, by issuing the filename (and any operands or
parameters expected by the program) as an input line to the
CMS Command environment.

CMS Commands 47

A brief description of each CMS command is given in Appendix
A. Any invalid command, that 1is, one whose command program
does not reside in the CMS nucleus or transient-area and for
which an EXEC file or a core-image module cannot be located,
is ignored, and the message INVALID CMS COMMAND is typed at
the terminal. Operand processing 1is handled by the
individual command programs, and these programs provide all
messages dealing with command format.

The format and usage of each of the CMS commands are
described in detail in the following sections. The general
format for CMS commands follows.

| operation | < operands > |

- - - o o —— . —— e . — — — - . D ——— — — —— " Y - —— > W e > OO - — — - —

| command name | one or more operands delimited by spaces |
|] field may be blank |

—— s s . e . o s T i s . . A —— — — — - —— —— . o ———— " T~ ——— — ———— -~ —— — —— ——— . — ——— -

The symbols used to represent command formats in this
document are described below.

UPPERCASE information given in capitals must be
typed exactly as shown, although it may
be entered in either uppercase oOr
lowercase.

lowercase lowercase information designates the
contents of a field, and does not in
itself constitute meaningful input.

) parentheses must be typed as shown when
any of the information appearing within
them is specified.

. a period designates the beginning of a
Script control word, and must be typed
as shown.

- a hyphen must be typed where shown, and
must not be offset by blanks.

/ a slash denotes any string delimiter,
other than blank, which does not appear
in the string.

* an asterisk, specified where shown,
indicates the universality of an item or
items.

The following are logical symbols only, and should not be
typed:

48 CMS Commands

< > brackets indicate information which may
be omwmitted.

< > > successive brackets enclose items which,
if specified, may appear in any order.

<L >> nested brackets indicate items which, if
specified, must appear in the order

shown.
cee an ellipsis indicates that the preceding

item(s) may be repeated more than once
in succession.

2 W =

these suffixes indicate first, second,
third, and Nth items respectively.

underlining indicates the value which is
assured if none is specified. When no
underlined item appears in bracketed < >
information, the default value is none.

Stacked items not enclosed in anything
indicate that only one item may be
specified.

All parameters for CMS commands are positional unless
otherwise stated in the individual command description.

Examples of command usage and each response and error
message which may be issued are also given. A response is
any message typed at the terminal to indicate the cause of
an error return code in register 15, which terminates
cormand execution.

CMS Commands 49

FILE CREATION, MAINTENANCE, and MANIPULATION

File Creaticn. Facilities are available in CMS for the
handling of disk, card, and tape files. Most of the CMS
commands, however, require that the files they access be
stored on disk. This means that card and tape files must be
transferred to disk before many of the commands can be
issued for them.

Disk files can be created from terminal, card, or magnetic
tape input, or from other disk files. 1Issuing the EDIT
command for a disk file which does not currently exist
allows the specified file to be created from terminal input.
To create a disk file from card input, the OFFLINE READ
command can be used. OFFLINE READ accepts card input in any
format.

Card files are created in CMS by requesting that the
contents of disk files be punched. The OFFLINE PUNCH
command punches out any disk file whose records are 80
characters or less in length.

File Maintenance. Several commands provide facilities for
maintaining disk files. UPDATE and EDIT allow any portion of
an existing file to be changed, deleted, or added to.
UPDATE processes the existing file against an wupdate file,
also stored on disk. EDIT allows the contents of an existing
disk file +to be changed from the terminal. To change the
identifier of a disk file without changing its contents, the
ALTER command may be used. A file or group of files can be
deleted from disk by issuina the ERASE command. CLOSIO is
used to signal the completion of output to the card punch or
printer from a user program.

File Manipulation. CdMS file manipulation consists of
copying, combining, woving, sprlitting, and 1listing disk
files. To copy a disk file, the EDIT or COMBINE commands
can be used. COMBINE also creates a new disk file from the
contents of two or more existing disk files and may be used
to transfer a file between the disk areas. The SPLIT
command creates a new disk file composed of the specified
portions of an existing disk file or files.

LISTF and PRINTF cause file information to be tyved at the
console. The LISTF command types the identifiers and sizes
of any or all files stored on the user and syster disk
areas. PRINTF types out all or the specified part of a disk
file.

To print the contents of a disk file on the offline printer,
the OFFLINE PRINT, OFFLINE PRINTCC, or OFFLINE PRINTUPC
commands can be issued. OFFLINE PRINT prints the file with
single spacing and CMS headings, the PRINTCC version uses

50 File Creation,Maintenance,Manipulation

the first character of each record as a vprinter carriage
control character, and the PRINTUPC version prints the file
in uppercase (for MEMO or SCRIPT files when the PN train is

on the printer).

File Creation,Maintenance,Manipulation 51

ALTER

Purpose:

The ALTER command changes the name, type, or wmode of the
specified filel(s).

Format:

| ALTER | ofn oft ofm nfn nft nfm |
*

ofn oft ofm are the original filename, filetype, and
filemode, respectively.

nfn nft nfrn are the new filename, filetype, and filemode,
respectively.

* An asterisk for ofn means all files with that
narve, for oft means all files with that type,
and for ofm means any read-write disk. An
asterisk for nfn, nft, or nfm means no change.

= means the same as before, no change.

Usage:

The name, type, or mode number of files on a wuser's
read-write disk may be changed with the ALTER command. All
fields of the command must be specified.

Notes:

a. ALTER does not move files between disks. The mode
letter, may not be changed (see the COMBINE command).

b. ALTER way not be used for files on a read-only disk
such as the sytem (SY) disk.

Responses:

ALTER gives no response except the Ready message, or an
error message and code.

Examples:

a. ALTER BEN SYSIN P5 PROG3 SYSIN P2
The file formerly called BEN 1is now referenced by the
filename PROG3 and is read-only instead of read-write.

52 ALTER

b. ALTER JBS LISTING * JLEVEL3 = =
The LISTING file from an assembly of JBS 1is now referenced
by the filename JLEVEL3.

C. ALTER #* LISTING P5 = = P2
All files with LISTING type and mode of P5 are changed to
mode P2.

Error Messages:

E(0CO001) OLD SPECIFIED FILE CANROT EE FOUND
The file to be redesignated is not in the file directory.
Check whether it was specified correctly.

F(00002) NEW SPECIFIED FILE ALREARDY EXISTS
A file with the new name, type, and mode already exists.
Change one of the fields of the new designation. If

concatenaticn with ar existing file 1is wanted, nuse the
COMBINE command.

E(00003) CID MODE IS ILLEGAL FOR A CHANGE

The original wode specified is invalid--it may be for a
read-only disk, or it may not end with a number from one to
Six.

E(00004) NO CHANGES WERE MADE AT ALL
The new designation specified is the same as the original
designation.

E(00005) CHANGE~CF-MODE IS ILLEGAL
An attempt was made to change the mode 1letter. ALTER does
not move files between disks (see the COMBINE command).

E(00006) NEW MODE IS JTLLEGAL
The new mode specified is not a valid one or the mode number
is not between one and six.

E(00007) INCORRECT "ALTER™ PARAMETFR~LIST
Name, type, and mode were not specified for both files.

F(00008) SPECIFIED FILE IS IN "ACTIVE" FILE TABLE
A file may nct be changed while it is active.

ALTER 53

CEDIT
Purpose:
CEDIT creates and makes changes to card image files only.

Format:

- ————————— — ——— — ———— — —— — — — ———v—

- —— —————————— —— —— —— ——— — — ——————

filename is the name of the file to be created or modified

filetype is the type of file keing created or modified

Usage:
CEDIT works only with card-image files (fixed-length
80-character records). If CEDIT 1is issued for larger

records (for example, LISTING files), each record is
truncated to 80 characters. If CFDIT 1is issued for
variable-length records (for example, SCRIPT files), they
are made fixed-length.

CEDIT should only be issued for files too large for EDIT,
and then only for card-image files, as EDIT is faster.
CEDIT uses work files during editing, whereas EDIT 1is an
in-core editor.

The same requests used for EDIT are used for CEDIT, with the
exception of X, Y, and ZONE. The responses are also
basically the same. (See the EDIT command for all requests,
responses, and error mwmessages).

CEDIT searches all disks for the specified file. If the
file is found its mode is saved and CEDIT writes the
modified file back to the same disk. If the file is not
found, the P disk is assumed.

54 CEDIT

CLOSIO

PUIEOSG:

CLOSIO notifies the syster that I/0 operations to an offline
unit recoxrd device are complete, or that output to an
offline device is to be collected before it is actually
output to the physical device.

Format:

| | READER l
I CLOSIO l OFF l
I | PRINTER ON i
| [OFF I
| | PUNCH ON 1

- — o — —— i . —————— — - —— i ———

OFF collects files output to the specified device, but does
not output the files to the physical device.

ON notifies the system that I/0 operations to the soecified
device are complete and output should begin on the
physical device. ON is the default.

Usage:

CLOSIO is normally used as a supervisor-supplied function
within programs written in assembly language. However, it
may be used as a command 1in cases where user-written
programs that include unit record 1I/0 routines terminate
abnormally, cr do not include a call to CLOSIO, or where
concatenation of spooled output is wanted.

CLOSIO either notifies the system of an end-of-file
condition for the devices specified or collects output to
offline devices. Any combination of the three devices may be
specified with the command. Undefined devices are ignored.
When CP-67 detects the end-of-file condition, the disk
spooling area assigned to the wuser for the specified device
is closed. Printer and card-punch files are queued for
actual output. Card-reader input files are erased.

If it is desired to collect output of punch or printer files
into one spooled output file per device preceded by only one
header record, the CLOSIO command can be issued to the
PRINTER or PUNCH with OFF specified. All succeeding output
to the OFF device is collected until ON is specified with
CLOSIO for that device, at which time the collected files
are queued for the physical device.

CLOSIO 55

Notes:
a. CILOSIO is not used after CMS I/0 commands.

b. All wunit record devices are closed by CP-67 when the
user logs out.

c. CP-67 interprets any invalid CCW as a CLOSIO for the
device to which it is addressed.

d. If READER, PRINTER, or PUNCH is not specified, all
three devices are closed as if ON were specified.

e. If the 'OFF' option has been specified, the device must
be explicitely turned 'ON' to be reactivated.

Responses:

None.

Examples:

a. CLOSIC PRINTER READER

Spooling areas assigned to the user for the printer and card
reader are closed. The reader area is erased. The printer
file is queued for actual output.

b. CLOSIC PRINTER OFF
All further output to the printer is collected and no
end-of-file condition is generated.

C. CLOSIO PRINTER ON

An end-of-file condition for the printer is generated; thus
the spooling areas assigned to the wuser for the printer are
closed. The printer file is queued for actual output.

Error Messages:

None.

56 CLOSIO

COMBINE

PUEEOSG:

The COMBINE command joins two or more disk files into a
single file, moves files between disks, and changes file
designations.

Format:

T — - —————— — - — — — — — — —— " D T - - —— G - ——— - . e W > - —— i -~ —— e~ —— - g > -

| COMBINE | nfn nft nfm ofnl oftl ofml ... ofnN oftN ofmN |

- - o - - - e e . s e . e s — —————

nfn fnt nfm are the filename, filetype, and filemode of the
file to be created.

ofn oft ofm are the filename, filetype, and filemode of
existing file(s) to be included in the new file.

Usage:

The file to be created and each of the included files must
be specified by filename, filetype, and filemode. Input
files must have the same record format (fixed or
variable-length). Input files of fixed-length records must
have the same record length. Any number of input files can
be included in the new file, in the order named, but the
command must not exceed a single input line.

The output file is created on the specified disk, according
to the mode letter of the new file. Input files may be on
any disk.

If the new filename, filetype, and filemode are those of an
existing file, the o0ld file will be erased when the new file
is created. The old file may be among the input files.

Notes:
a. Files may not be copied to the system (SY) disk.

b. As the input files are processed, a temporary work file
is created with the identifiers (TEMP) (FILE) mm, where mm
is the specified mode of the output file. When processing
is completed, this file is given the designation specified
for the output file. If an error occurs such that input
files are destroyed, records can be retrieved from this work
file.

Resgonses:

None.

COMBINE 57

Examples:

a. COMBINE FILE DAO1 P3 TST1 FILE P5 TST2 FILE PS

The file FILE DAO1 P3 is created on the P-disk. It contdins
all the records of TST1, followed by the records of TST2.
TST1 and TST2 are not changed.

b. COMBINE JOBS EXEC T5 JOBS EXEC P5
A copy of the P-disk file JOBS is made on the T-disk.

C. COMBINE JOBA FORTRAN P5 JOBA FORTRAN P5 SUBR1 FORTRAN P5
The file SUBR1 1is appended to a copy of JOBA, and the new
file replaces the original JOBA.

Error Messages:

E(00001) FILE “"filename filetype filemode"™ NOT FOUND.
The file specified in the message was not found. Files
remain as they were before the command.

E(00002) DISK ERROR WHILE READING.
An I/0 error occurred, or there is insufficient core space
for buffers.

E(00003) DISK ERROR WHILE WRITING.
An 1I/0 error occurred, or the wuser's allotted disk space is
filled.

E(00005) ERRCR IN NAME, TYPE, OR MODE OF OUTPUT FILE.
Correct the designation of the output file.

E(00010) INCORRECT PARAMETER LIST
The command format was incorrect. Files were not changed.

E(00011) MODE SPECIFIED FOR OUTPUT FILE IS ILLEGAL.
Correct the mode specification of the output file. If the
first input file had mode number 3 or 4, it has been erased.

E(00012) ATTEMPT TO WRITE OUTPUT FILE ON READ-ONLY DISK.
Files may not be written on READ-ONLY disks. Change the mode
of the output file.

E(00013) ATTEMPT TO COMBINE FIXED AND VARIABLE LENGTH

FILES.
The input files must all have the same record format.

58 COMBINE

EDIT

Purpose:

EDIT has three purposes: (1) to create card image and SCRIPT
files, (2) to make changes to existing files, and (3) to
allow context-directed, online perusal of files.

Format:

| EDIT | <filename> filetype |

— - — i . o o > — -

filename specifies the filename of the file to be edited or
created

filetype specifies the filetype of the file to be edited or
created

Usage:

If a file with the specified filename and filetype does not
exist, EDIT assumes that the file is being created, the
Input environment is entered, and information typed by the
user thereafter becomes input to that file. If such a file
does exist, the Edit environment is entered, enabling the
user to issue EDIT requests and to modify the specified
file.

EDIT searches all disks for the file. If the file is found,
its mode is saved and EDIT writes the new file back to that
disk. If the file is not found, the newly created file is
put on the P disk.

EDIT 59

OPERATION OF THE CONTEXT EDITOR

The Editor is a program designed to provide facilities for
the creation and modification of card-image and SCRIPT files
from an online terminal. Editing 1is performed upon a
main-storage-resident copy of the file. This approach
provides for rapid movement both forward and backward
through the file. It does, however, limit files which may
be edited to those which may be wholly contained within the
available main storage. It is possible to perform edit
operations upon larger files by using the CEDIT command,
(but the wmwovement within the file may be slower, as CEDIT
works with disk files and not a core copy of the file) or by
issuing SPLIT for the file, to break it up into smaller
files that can be handled by EDIT.

LINE POINTER

Associated with each file is a pointer which refers to a
line in the file considered to be the current 1line. The
current line is defined as the line that is being created or
edited in the file.

Various Edit requests are provided for moving the current
line pointer. This pointer may be wmwoved (1) to a specific
record (indicated by its record number), (2) to a record
specified by its relative displacement (in number of
records) forward or backward from the current position of
the pointer, or (3) to a record containing a specified
string of «characters or having a specified 1label. The
ability to search for strings allows the user to concern
himself only with +the textual context of the desired
movement, relieving him of the concern of keeping track of
record numbers and counts of inserted and deleted records.

- Many of the record modification requests also reposition the
current line pointer (for example, LOCATE, FIND, DELETE, or
CHANGE) . When a FIND, LOCATE, or CHANGE request is issued,
if the pointer is positioned at the end of file, the pointer
is automatically moved to the TOP of the file before
executing the command.

When the environment 1is changed from Input to Edit, the
pointer is positioned to the 1last line entered from the
terminal. When it changes from Edit to Input,the pointer is
positioned such that the lines being entered follow the last
line edited.

When the EDIT command begins in the Edit environment, the
pointer is positioned before the first 1line in the file.
During the Edit a null line is automatically placed in front
of the first line of the file to permit the insertion of
lines at the beginning of the file. When EDIT begins in the
Edit environment or when a TOP request, or possibly the UP
request, is issued, the pointer is positioned at this null
line. The null line never gets written onto disk, nor is it

60 EDIT

ever printed by the terminal. When the pointer is positioned
at the null line, a PRINT request types a blank line.

If a null line is entered in the Input environment, the Edit
environment is entered. If a null 1line is entered in the
Edit environmrent, the confirming mwessage "EDIT:" 1is typed
out. To enter the 1Input environment from the Fd4dit
environment, issue the INPUT (I) request.

SAVING INTERMFDIATE RESULTS

If extensive input and/or changes are being made to a file,
it is a good time-sharincg practice to wake a few additions
and/or changes at a timre, issue the SAVE reguest, and then
continue making additions or changes to the file. The
process should be reveated until &all additions and/orx
changes are made. The final copy of a file being edited, or
the first copy of a newly-created file, will not be
permanently written onto disk until the FILE or SAVF request
is issued. This procedure will ensure that a minimum of work
would be recdone in the case of a system failure or a gross
user editing error.

A file wmust consist of at least one line to be written
permanently on disk. A file consisting of only a null line
may not be saved.

INPUT ENVIRONMENT

The Input environment is indicated by the message "INPUT:",
a carriage return, and the unlocking of the keyboard. The
user may then type successive lines of input to the file as
fast as he wishes. One card 1image is created from each
input line. To insert a blank line 1in a file, type at least
one space and hit carriage return. A null line (that is, a
carriage return with no prior blanks or characters) entered
from Input mode does not add a blank line to the file.

Entering the Edit Environment The Edit environment is
entered fror the Input environment by typing a null line
(that 1is, a carriage return with no prior input on the
line).

EDIT ENVIRONMENT

The Edit envircnment is indicated by the message "EDIT:", a
carriaqe return, and the nunlocking of the keyboard. The
user may then type requests to the EDIT command. All
changes to the file become effective immediately 1in core,
thus allowing recursive modifications to be made to a file.
Changes are written out on disk with the FILE and SAVE
commands; QUIT keeps the original file as it existed before
any changes were made.

Response Modes. There are two response modes in which the
Fdit environment may operate: "verify"™ mode and “"brief"”

EDIT 61

mode. Verify 1is the normal mode and causes an automatic
typeout of each 1line that has been changed or found as the
result of a request. The brief mode does not respond by
retyping the specified lines, and thus the user must issue a
PRINT request to get the typeout if it is wanted.

The messages "EDIT", "INPUT", "EOF:", and "TRUNCATED", are
always printed even 1if the user has selected the brief
message mode.

End of File. If the end of file 1is reached by an Edit
request, an "FOF:" rmessage is typed, and the pointer is
positioned after the last line of the file.

Entering the Input Environment. The Input environment may be
entered by typing the INPUT request, and a carriage return.

EDIT REQUESTS

Requests are issued to the EDIT command only when the user
is in the Edit environment. These requests allow the user
to manipulate and edit files. TIf requests are issued during
the Input envircnwent, they become lines of input to the
file.

Request Forrats. Fach request is separated from its operand
by one or more spaces unless otherwise specified. These
spaces can be inserted by using the space bar, the tab key,
or the logical tab character, which 1is discussed in a later
section. If the tab key or the 1logical tab character is
used and the request has "line" as the operand, the "line"
is placed in the card image as if the tab key or logical tab
character were the first character in "line".

The tab settings discussed are 1internal or 1logical tab
settings, not the external or rhysical tab settings on the
terminal. Detailed information concerning record formrats,
serialization, and special character conventions follows.

String Arquments. Several o¢f the Edit requests reguire
arguments called string arguments. These arguments either
are matched against strings in the text, or revlace a string
in the text. A string argqument begins with a 3elimiter and
continues as a sequence of any legal characters until the
initial character {that 1is, the delimiter) is again
encountered. Neither delimiter character 1is involved in the
actuval watching or replacement operation. Although, by
convention, the slash (/) is used in the followinag reguest
descriptions to denote the string delimiter, any 1legal
character may be used as the delimiter. The delimiter
character is redefined in each new request by its appearance
at the head of a string. If two strings exist in omne
request, the same delimriter character must be wused in each
string. Only one delimiter may be used to separate two
adjacent string arguments 1in a request (for examrple, as in
the CHANGE request).

62 EDIT

FILE (RECORD) FORMATS

In general, the editor 1is used for the preparation of
fixed-length (logical) records of 20-character card images
with vuppercase characters. The exceptions are defined
below.

All input to the file being edited 1is converted from
lowercase to uppercase unless a filetype of MEMO or SCRIPT
has been sgpecified. If a filetype c¢f SCRIPT has been
specified, the file consists of variable-length (logical)
records. If a filetype of MFMO 1is specified, the file
consists of 80-character card images.

MEMO Files

A filetype of MENO is used to input 80-character card images
containing both uppercase and lowercase letters.

SCRIPT Files

The EDIT cormand allows processing of SCRIPT files in a form
compatible with the SCRIPT command. If the filetyve is
SCRIPT, all input lines introduced 1in the Input environment
and strings introduced 1in the Edit environment through use
of CHANGE, OVERLAY, RETYPE, and INSERT are interpreted
without converting 1lowercase characters to uppercase. The
character-delete and 1line-delete symbols have the usual
effect; all other characters are stored without
modification, including the tab key.

For SCRIPT files, the file format is set to v
(variable-length records) so that the SCRIPT command can be
used to edit or print files created by the EDIT command.

Input lines containing a backspace character are converted
into canonical form, such that only one backspace follows
any character and only one backsvace precedes the character
that overprints the character preceding the backspace.

Record Lengths

The truncation colurns used for EDIT requests are as
follows:

INPUT and REPLACE: colurn 71 for SYSIN, ASP360, UPDATE, COPY
column 72 for FORTRAN, COBOL, and PLI
files
column 132 for SCRIPT, LISTING,
PRINTFR files
colurn 80 for other files

FIND, OVERLAY, and BLANK: column 80

LOCATE and CHANGE: end ZONE column

EDIT 63

PRINT: column 72, if serialization is defaulted on, or if
VERIFY columrn is set after serialization is turned
on; otherwise all 80 columns are printed.

VERIFY: column 72, unless set otherwise.

(See the ZONE command.)

Tab Settings

Internal or logical tab settings indicate a column position
that defines the beginning of a field within a record. The
logical tab settings are automatically assumed according to
the filetype specified. These intermnal tab settings have no
relation to the external tab settings on the terminal. The
assumed internal tab settings are given Dbelow, where the
first of these numbers indicates the column of the record in
which input is to begin.

Filetype Specified
in EDIT Command

————— - —— —————— — - ——

Rssumed Tab Settings

AED 1,10,15,20,25,30,35,40,45
ASP360 1,10,16,31,36,41,46,51,56,72
AS1130 1,21,27,32,35,45,50,55,60
COBOL 1,7,10,15,20,25,30

CcoPY same as ASP360

DATA default

EXEC 1,5.,8,17,.27,31

FLOW same as ASP360

FORTRAN 1,7,10,15,20, 25,30

LISTING d2fault

MEMO default

PLI 2,10,15,20,25,30,35,40,45,50,55,60
PRINTER dr2cfault

REPS 7,17,31,36

SNOBOL i,10,20,25,30,35,40,45,50,55,60
SPL1 1,7.,17,30,40,50,60

SYSIN siame as ASP360

UPDATE same as ASP360

default 1,5,10,15,20,25,30,35,40,45,50

If the specified filetype is not one of those 1listed, the
default setting of every five spaces 1is assumed. The
assumed tab settings can be redefined by the TABSET request
from the Edit environment.

UPDATE files have the same tab settings as SYSIN files but
are not sequenced.

If a filetype of REPS is EDITed, tab settings are assumed

and a 12-2-9 character is 1inserted into column 1 if it
appears blank.

6l EDIT

Note. COBOL as a filetype is included to allow COBOL source
decks to be entered under CMS. Note that the COBOL compiler
is not included under CMS.

Serialization of Records

If serialization is assumed for the filetype being edited,
or if it 1is specified by the SERIAL request, an identifier
is placed in columns 73-80 of each record. The identifier
consists of a three-character identification followed by a
five-digit sequence number. The identification is taken
from the first three characters of the filename, or from the
first parameter of the SERIAL request. The sequence number
begins at 00010 and is incremented by 10. The 1line
identifier in columns 73-80 can be changed by issuing the
SERIAL request when in the Edit environment.

Serialization is suppressed unless requested by the SERIAL
request, for all filetypes except FORTRAN, COBOL, PLI,
SYSIN, UPDATE, SPL1, COPY, SNOBOL, AED, FLOW, AS1130, and
REPS. If serialization is selected for other filetypes, and
neither ZONE 1 71 nor SERIAL id is issued during subsequent
Edits of the file, serialization characters may be
inadvertently shifted into column 72, or columns 73-80 may
be overwritten.

The placing of the identifier in columns 73-80 can be
eliminated by specifying no serialization in the SERIAL
request; this causes the truncation of input lines at column
80 and no identifier to be assigned to each record. A file
whose filetype is MEMO, SCRIPT, PRINTER, LISTING, or EXEC
should not be serialized.

SPECIAL CHARACTERS

Logical Tab Character

There is a character, called the logical tab character, used
in conjunction with the logical tab settings. This character
causes blanks to be inserted into the record from the column
position at which this character is input, until the first
column position of the next field defined by the logical tab
settings. The next character from the input line after the
logical tab character is inserted as the first character of
the next field. This blank insertion is done for all
filetypes except SCRIPT; for blank insertions in SCRIPT
files, refer to the SCRIPT command.

The standard 1logical tab character is the pound sign (#).
The logical tab character can be redefined by the TABDEF
request in the Edit environment, or by the CHARDEF command
in the CMS environment to allow the pound sign to be used
as a normal input character. The physical tab key on the
terminal can also be used for blank insertions, as it is
interpreted in the same manner as the logical tab character.
The only difference between the tab key and the logical tab

EDIT 65

character is that the tab key moves the typing element to
the next physical tab stop and does not print, while the
logical tab character prints when the character is depressed
and the typing element does not move to the next physical
tab stop.

Note that the logical line-end character is also defined as
the # and it takes precedence over the 1logical tab
character.

Logical Backspace

There 1is also a character, called the logical backspace
which is wused to backspace one column position in the
record. For n logical backspace characters, n column
positions are backspaced in the recoxrd, and the n backspaced
positions are overlaid with the n characters which follow
the n logical backspace characters. If no character is
given after a logical backspace character, the previously
entered character 1is not overlaid. The backspacing is
performed for the column positions of a record, and not for
the characters of an input line.

The standard logical backspace character is the % character.
It may be redefined by the BACKSPACE request in the Edit
environment or the CHARDEF command in the CMS environment to
allow the % sign to be used as a normal input character.
The logical backspace character has the same effect as the
physical backspace key on the terminal for all filetypes
except SCRIPT. With SCRIPT files, the physical backspace key
moves the typing element back omne position, and generates a
valid input character that takes up one column in the record
for each time the key is depressed; the backspace key does
not print when entered on the terminal, nor does it print on
the offline printer, but it backspaces the typing element
one position per character when the record is printed out at
the terminal. Thus, the backspace key allows underscoring
and overprinting at the terminal for SCRIPT files. The
logical backspace character prints only when entered and
does not take up a column in the record; it 1logically
backspaces one column in the record for all filetypes.

The logical tab character and the logical backspace
character can be used in the following requests in the Edit
environment to insert blanks, and to backspace in the record
respectively: BLANK, FIND, INSERT, OVERLAY, and RETYPE.
The logical tab character and the logical backspace
character can be used as normal input characters in the
string operands of the CHANGE, LOCATE, and DELETE requests.

Responses:

NEW FILE.

The specified file does not exist, thus the Input
environment is entered. 2All subsequent input lines will be
accepted as input to the file.

66 EDIT

INPUT:

The Input environment is entered. The logical tab settings
may be either those defined by the user or those assumed
from the filetype. All subsequent input 1lines will be
accepted as input to the file.

INVALID REQUEST: XXX...XXX
The invalid request xxX...xXxXx was issued to EDIT.

DEFAULT TABS SET

The filetype specified 1is not recognized by the EDIT
command; thus, the default settings are taken for the
logical tab settings.

EDIT:

The Edit environwent is entered. The logical tab settings
may be either those defined by the user or those assumed
from the filetype. An edit request may now be issued.

NO PRIMARY NAME SPECIFIED
The EDIT command was issued specifying only the filetype.
When the file request is issued, a name must be specified.

TRUNCATED

The input 1line was too long. If the filetype was FORTRAN,
PLI, SPLl1, AED, FLOW, EXEC, ASM1130, or REPS, then the input
line was truncated after 72 columns. If the filetype was
ASP360, SYSIN, COPY, or UPDATE, then it was truncated after
column 71. If the filetype was SCRIPT or LISTING, then it
was truncated after 132 columns. Otherwise, it was
truncated after column 80. Continue typing more input.

EOF:

The end of the file has been reached during an EDIT request.
The request has been terminated and the pointer is
positioned after the last line of the file. Another EDIT
request may be issued.

EDIT WORK FILE " (INPUT1) FILE P1"™ EXISTS:

IF GOOD, ALTER IT TO APPROPRIATE FILENAME § FILETYPE;
OTHERWISE, ERASE IT.

The EDIT command was issued but the EDIT environment was not
entered since the EDIT workfile, (INPUT1) FILE, exists. The
workfile contains whatever file the user had been editing
during a previous EDIT command that had not terminated (that
is, if CP has crashed while the user was editing a file and
the READY message had not appeared yet, this file may
contain the updated file). If the contents are good, alter
its identifiers; otherwise, erase it and then reissue EDIT.

Error Message

E(00002) FILE EMPTY - EXIT TAKEN
The user has attempted to save an empty file. The file is
not written on the disk and the EDIT command is terminated.

EDIT 67

SUMMARY OF EDIT REQUESTS
The requests are listed below by functional group

Environment Selection

INPUT (See also SAVE)
(null line) returns to EDIT mode
QUIT (See alsoc FILE)

Message Mode Selection
VERIFY
BRIEF

Pointer Movement
BOTTOM

FIND

LOCATE

NEXT

TOP

op

* Requests marked with #* in the rest of this 1list may move
the pointer under certain conditions.

Modification of Records
BLANK

CHANGE (*)

DELETE (*)

INSERT (¥*)

OVERLAY

REPEAT (*)

RETYPE (%)

File Handling
FILE
SAVE

Information Requests
PRINT (%)

Special Characters and Forwnat Conventions
BACKSPACE

SERIAL

TABDEF

TABSET

ZONE

Miscellaneous
REPEAT (%)

X (®)

Y (%)

68 EDIT

BACKSPACE Request

Format:

| BACKSPACE | <character> |
i BACK i |

character is any valid character. The default character is %
or the character specified by the CMS CHARDEF
conmand.

Usage:

The BACKSPACE request defines the character to be used as
the 1logical backspace character. If the request is not
issued, the default character is assumed. The 1logical
backspace character causes one column to be backspaced in
the card image for each logical character in the input line.

The backspace character must be redefined to allow the %
character to be used as a normal input character.

If BACKSPACE is issued without specifying a character, the
logical backspace character 1is reset +to the character
specified by the CMS command CHARDEF, which defaults to the
% character.

The backspace character is very useful for defining
continuation cards in FORTRAN files. If the first logical
tab setting is set to column 7, the tab key or logical tab
character followed by a logical backspace character may be
used to enter a character in column 6 instead of counting
forward the appropriate number of spaces. An example of the
use of the logical backspace character follows:

column

1 6
input line: i #%5'page’)
card image in file: 5*PAGE"')

This places "5'PAGE')" beginning in column 6 of the card
image, assuming the first logical tab setting is set to
column 7.

Note:

If the logical backspace character is redefined in the Edit
environment, the BACKSPACE request must be issued each time
a file 1is edited if it is necessary to use the same
redefined 1logical backspace character. If the 1logical
backspace character is redefined by the CMS CHARDEF command,
that character is rewembered from one EAit command +to the
next.

EDIT - BACKSPACE 69

Responses:
The keyboard is unlocked.

Example:

BACK $

The character § 1is defined as the 1logical backspace
character. The % character can now be used as a normal input
character.

70 EDIT ~ BACKSPACE

BLANK Request

Format:

The BLANK request places blanks in the current line wherever
nonblank characters occur in "line".

Either the tab key or the 1logical tab character can be used
to generate blanks in the card image.

The "line" is separated from the request by only one blank.
All other blanks are considered part of "line".

Responses:

Verify Mode: The changed line is printed out.
The keyboard is unlocked.

Any mode: EOF:

The end of file was reached by the request. For BLANK to
reach the end of file, the repeat request had to be issued
before BLANK.

Example:
BLANK AAAARAA A
column
1 6
line before request: ABCDFJMNOP
request: blank aaaaaa a
line after request: M OP

Blanks are placed in columns 1-6, and 8, of the current line
in the file.

EDIT - BLANK 71

BOTTOM Request

Format:
| BOTTOM |
| BO |
Usage:

BOTTOM positions the pointer at the last line of the file.

Example:

BO
The pointer is positioned at the bottom of the file.

72 EDIT - BOTTOM

BRIEF Request

Format:
| BRIEF |
| BR |
Usage:

The BRIEF request deselects the verify message mode (see the
VERIFY request), and selects the brief message mode in the
Edit environment. In the brief mode, lines that are changed
in the file are not typed out automatically. The requests
that are affected by BRIEF are BLANK, CHANGE, FIND, LOCATE,
NEXT, OVERLAY, and UP. If INSERT or REPLACE was issued and
the line was truncated, the line is not verified in the
brief mode.

Example:

BR
This request selects the brief mwode.

EDIT - BRIEF 73

CHANGE Request

Format:
n |
| CHANGE | /stringl/string2/ < * < G >> |
| C | 1+ |
e s g S > S > > e o — P - > - - - e i e o > > e — -
/ is any unique delimiting character that does not

appear in stringl or string2.
stringl is the group of characters to be replaced
string2 1is the group of characters to replace stringl

n specifies the number of 1lines to be searched for
stringl. The default is one line.

G signifies that the change is to be applied to every
occurrence of stringl in the lines.

* is used to wean "to EOF" or "GLOBAL" (G), or both,
in a change request as follows:
C /a’/b/ * *

Usage:

The CHANGE request replaces the occurrence of stringl in n
lines by string2. If G or * is specified, every occurrence
of stringl inn or * 1lines is changed; if G is not
specified, only the first occurrence of stringl is changed.
If neither n nor * is specified, only the current 1line is
searched for stringl.

If the occurrence of stringl is not found, the 1line(s) is
(are) not altered. The pointer remains positioned at the
last line searched for the occurrence of stringl.

Stringl and string2 can be of different lengths. Each of
the n or * lines is expanded or compressed accordingly.

If an end-of-file condition immediately preceded the CHANGE,
an automatic TOP request is performed before CHANGE begins.

Notes:

a. The n or * is required if G is to be specified.

b. If n is greater than the number of lines to the end of
the file, every occurrence of stringl from the current line
to the end is changed.

c. That part of each record which is scanned for the

occurrence of stringl is the part defined by the ZONE

T4 EDIT - CHANGE

request, or it defaults to those columns defined earlier
under "File Record Formats®.

Responses:

Verify Mode: The changed line(s) is (are) printed out and
the keyboard is unlocked.

Brief Mode: The keyboard is unlocked.

Any mode: EOF:

The end of file was reached by the request. To position the
pointer at the top of the file, a TOP request must be
issued. When a CHANGE request is issued after the occurrence
of an end-of-file condition, a TOP request is automatically
issued before the request begins.

Examples:
a. C J/ALPHA/DELTA/

Column

1 7
line before request: ALPHA=ALPHA - BETA
request: c /alpha/delta/
line after request: DELTA=ALPHA - BETA

The first occurrence of ALPHA in the one line is changed to
DELTA.

The above, lowercase, example works for files where
automatic ~capitalization is standard. For other files, such
as SCRIPT or MEMO, where capitalization is not automatic,
characters must be typed as they were input.

b. C *ALPHA*DELTA* 1 G

Column
1 7
line before request: ALPHA=ALPHA - BETA
request: c *alpha*delta* 1 g
line after request: DELTA=DELTA -~ BETA

Every occurrence of ALPHA in the one line is changed to
DELTA.

c. C .card-image.card-image. * *

Every occurrence of card-image from the current line to the
end of file is changed to itself.

In verify mode, every line containing the string

"card-image™ is printed, although this example does not
effectively change the contents of those lines.

EDIT - CHANGE 75

DELETE Request

Formats:
| | n l
| DELETE | < 1 > |
1 D } /string/ |
n specifies the number of lines to be deleted. The

default is 1.

/string/ specifies the string which, when matched,
terminates the delete operation.

Usage:

If /string/ is specified, all 1lines, starting with the
current line and up to (but not including) the first line in
which /string/ is matched, are deleted.

If n is specified, the DELETE request removes n lines from
the file, starting with the line at which the pointer is
currently positioned. Upon completion of this request, the
pointer is positioned after the last deleted line. If n is
0, the current line is deleted.

If n or /string/ is not specified, only the current line is
deleted.

Responses:

EOF':

The end of file was reached by the request. To position the
pointer at the top of the file, a TOP request must be
issued.

Examglés:

a. DS

The current 1line, plus the next four lines, are deleted.
The current 1line pointer is then positioned at the fourth
line from the original current line.

b. D —/%-

All lines, starting with the current line and up to (but not
including) the first record containing a /* sequence, are
deleted.

76 EDIT - DELETE

FILE Request

Format:

{ FILE | <filename> |

filenare specifies the name to be used as the filename.

Usage:

The FILE request terminates the editing of a file. A
permanent copy of the file is written onto the disk as it
existed after the 1last pass through the file. If the file
is being permanently stored for the first time, it is
written onto the disk. If the file already exists on the
disk, it is written on the same disk in the same mode as it
previously existed. This latest copy replaces any existing
copy of the file on the disk, and the file directory is
updated.

If "filename"™ 1is specified, it is used as the filename of
the file. If "filename"™ is not specified, the filename used
at the time of the invocation of the EDIT command is used.

After the file has been written onto disk, control is
returned to CMS. A file must consist of at least one line to
be permanently written on disk. A file consisting of a null
line only may not be filed.

Note:

If it is desired to move a partially-edited file to disk as
a precaution against system or user failure, use the SAVE
request. It does not terminate the EDIT session.

Responses:

The EDIT command is terminated and an entry for the file is
made in the appropriate file directory.

FILE EMPTY - EXIT TAKEN

The FILE request was issued for an empty file. No file is
saved on the disk and its entry is removed from the file
directory. The error E(00002) is generated, and the EDIT
command terminated.

NO PRIMARY NAME SPECIFIED - RETRY

When EDIT was issued, only the filetype was specified.
Therefore, a filename must be given with the file request.

EDIT - FILE 77

Examples:

a. FILE
request: file
response: R; xXX.Xx/xx.¥xx hh.mm.ss

This request writes the latest copy of the file onto disk.
b. FILE RECALC

request: file recalc
response: R; XX.xXX/xX.Xx hh.mm.ss

This request writes the latest copy of the file onto disk,
and RECALC is its filename.

78 EDIT - FILE

FIND Request

Format:
| FIND | line |
| F | I
line is any valid input line. It may contain blanks and
the logical tab character and/or tab-key.
Usage:

The FIND request compares the nonblank characters in "line"
with each line in the file. The compare begins on the next
line from where the pointer is currently positioned and
continues down the file until a match occurs or until the
end-of-file is reached. If an end-of-file condition
imwediately preceded the FIND request, an automatic TOP
request is performed before FIND begins. If "line" is found,
the pointer is positioned to the record in which "line" is
contained. If "line" is not found, the pointer is
positioned after the last line of the file. The compare is
column-dependent, as the only columns compared in each
record are the ones specified by nonblank characters in
"line". For example, if "line" contains A C, the search
will be for an A in column 1 and a C in column 3.

"Line" is separated from the request by only one blank. All
other blanks are considered part of "line".

FIND can be used to search for a specific line identifier in
columns 73-80. One technique is to issue FIND, followed by
the appropriate number of tabs to position the specified
identifier to column 73.

Responses:

Verify Mode: The record is typed and the keyboard
is unlocked.

Brief Mode: The keyboard is unlocked.

Any MODE: EOF

The end-of-file was reached by the request. To position the
pointer at the top of the file, a TOP request must be
issued. When a FIND, LOCATE, or CHANGE request is issued
after the occurrence of an end-of-file condition, a TOP
request is automatically issued before the request bagins.

EDIT - FIND 79

Examples:
a. FIND 90

Column
1 7
request: £ 90
line found: 20 FORMAT (516)

The FIND request searched for 90 in columns 1 and 2.
first line found is typed out in the verify mode.

b. FIND $$SUMX
If § selected as
logical tab char.

Column

1 10 16
request: f $§Ssumx
line found: LOOP A SUMX, X

The

Assuming that the logical tab settings are set in 1, 10, 16,
the request searches for SUMX in colurns 16-19. The first

line found is typed out in the verify rode.

80 EDIT - FIND

INPUT Request

Format:
| INPUT I
| I I
Usage H

This request causes the Input environment to be entered from
the Edit environment. All subsequent input lines--including
Edit request--are treated as input to the file, and are
placed after the 1line at which the pointer is currently
positioned. If the INPUT request is given at the top of the
file, the lines appear before the first line of the file.

If no lines were entered while in the Input environment and
return is made to the Edit environment, the pointer is
positioned to the line pointed to Dbefore the Input
environment was entered. The line after the pointer is the
same line before and after the Input environment was
entered.

To insert a blank 1line, type at least one space and hit
carriage return. If a null line 1is entered, a return to the
Edit environment occurs.

Responses:

INPUT:
The Input environment is entered.

EDIT - INPUT 81

INSERT Request

Format:
| INSERT | line |
| I | |
line is the exact input line to be inserted into the
file. It can contain blanks and tabs (logical tab
character and/or tab key).
Usage:
This request inserts the "line" into the file without
entering the Input environment. The 1line 1is inserted

following the 1line at which the pointer 1is currently
positioned, and the pointer 1is advanced to point to this
inserted line. The line is separated from the request by
only one blank; all other blanks are considered part of
"line".

The conventions of the Input environment hold true during
the INSERT request.

A blank 1line can be inserted in the file by using one or
more spaces for "line®"., If "line" is omitted from the INSERT

request, it is interpreted as the INPUT request and the
Input environment is entered.

Responses:
The keyboard is unlocked. Examples:

a. IbAELEbbbbbSbbbbbSUM, X

Column
1 10 12 16 18
request: i able S sum, X
line after request: ABLE S SUM, X

The input line ABLEbbbbbSbbbbbsSUM,X is inserted in the file.
The letter b is used here to indicate a single space.

b. I §$DO 10 1=1,25

Column
1 7
request: i $do 10 1i=1,25
(assuming § is the logical tab)
line after request: DO 10 I=1,25

Assuming that the logical tab settings are in 1, 7, 10, and
15, this request inserts the FORTRAN statement DO 10 I=1,25
in columns 7-18.

82 EDIT - INSERT

c. INSERT

request: insert
responses: INPUT:
The Input environment 1is entered, as "line"™ was not

specified with the INSERT request.

EDIT - INSERT 83

LOCATE Request

Format:
| LOCATE | /string/ |
| L | |
/ is any unique delimiting character that is not
contained in the string
string is any group of characters to be searched for in
the file
Usage:

LOCATE scans the characters of each record (as defined by
the ZONE request) for the string specified between the two
delimiters. The scan begins on the next line from which the
pointer is currently positioned and continues until the
string is found or until the end-of-file is reached. TIf an
end of file condition immediately preceded the TLOCATE, an
automatic TOP request is performed before LOCATE begins. If
string is located, the pointer is positioned at the line
that contains it. If string is not located, the pointer is
positioned after the last line of the file.

The request is not column-dependent, because all characters
are scanned, as specified by the ZONE request. The logical
tab character and the 1logical backspace character can be
used as normal input characters in string.

LOCATE can be used tc scan for a line identifier in columns
73-80.

Resgonses :

Verify Mode: The located line is typed and the
keyboard is unlocked.
Brief Mode: The keyboard is unlocked.

Any Mode: EOF

The end of file was reached by the request. To position the
pointer at the top of the file, a TOP request must be
issued. When a FIND or LOCATE request is issued after the
occurrence of an end-of-file condition, a TOP request is
automatically issued before the request begins.

84 EDIT - LOCATE

Examples:
Q. L /FORMAT/

Column
1 7
request: 1 /format/
line located: 55 FORMAT (*DAILY AUDIT')

LOCATE searches all characters of each line for FORMAT . In
the verify mode the first line found is typed out.

b. L $613

Column

1 5 9

request: B 61
line located: 12316XXX61987654321

LOCATE searches for 61 in all columns of each line. In the
verify mode the first line found is typed out.

EDIT - LOCATE 85

NEXT Request

Format:
| NEXT | < n > |
| N 1 |
n is an integer indicating the number of 1lines by which

the pointer should be advanced. The default is 1.

Usage:

This request advances the pointer in the file by n lines. If
n is 0 or unspecified, a value of 1 is assumed and the
pointer is advanced to the next 1line in the file. If the
end of file is reached before the pointer 1is advanced n
lines, the pointer 1is positioned after the last 1line.
Specifying a value of n that is greater than the number of
lines to the end of file is omne method of reaching the
bottom of the file.

Responses:

Verify Mode: Line typed and keyboard unlocked.

Brief Mode: Keyboard unlocked.

Any Mode: EOF

The end of file was reached by the request. To position the

pointer at the top of the file, a TOP request must be
issued.

Examples:

a. N S
This request advances the pointer five lines.

b. N
This request advances the pointer one line.

86 EDIT - NEXT

OVERLAY Request

Format:

- —————— — . ——— > —— —— ~ —— —— —— — ——

- — ———— ——— — — —— — — ——— — —— — ———

line is an 1input line that replaces parts of the current
line.

Usage:

This request takes the nonblank characters from "line" and
places them in the corresponding position of the current
line. Blank characters in "line" do not replace
corresponding positions in the current line. If there is
more than one space after the request, these spaces are
considered as part of "line". The logical tab character,
the tab key, and the logical backspace character can be used
in specifying "line".

Note. The line typed as a result of this command does not
print directly below the corresponding characters resulting
from commands NEXT, PRINT, etc., as the characters O or
OVERLAY precede the 1line entered. Thus, the characters
appear in the column which is n+1 characters to the right of
the character being overlaid, where n 1is the number of
characters typed 1in the request's name. (See examples
below.)

Resgonses H

Verify Mode: The changed 1line is typed out and the
keyboard is unlocked.

Brief Mode: The keyboard is unlocked.

Any Mode: EOF
The end of file was reached by the request. For OVERLAY to
reach the end of file, the REPEAT request had to be issued
before the OVERLAY.

Examples:
a. ObbbbbbbbbING Column
1 9
line before request: PROGRAMMER
request: o ing
line after request: PROGRAMMING

Columns 9-11 in the current line are replaced by the
nonblank characters in "line". The letter b is used here to
indicate a single space.

EDIT - OVERLAY 87

b. Ob5b33b9 Column

13 6
line before request: ABCDMNOCP
request: o5 33 9
line after request: 5B33Mo0P

Columns 1,3,4, and 6 in the current line are revlaced by the
nonblank characters in the "line"™. The letter b is used
here to indicate a single space.

c. Ob#%c Column
1 7 13
line before request: F10.5,I10)
request: o #%C
line after request: CF10.5,1I10)

Assuming that a logical tab setting 1is set to column 7, the
logical tab character (#) followed by the logical backspace
character (%) places the next character from the input line
into column 6. The C overlays the blank in column 6 of the
current line. The 1letter b 1is used here to indicate a
single space.

88 EDIT - OVERLAY

PRINT Request

Format:
| PRINT | < n < LINENO > |
| P | 1 L |
n is an integer specifying the number of 1lines to be

typed out. The default is 1.

L signifies that the 1line identifiers should be typed
out L]

Usage:

PRINT types out n 1lines from the file, starting with the
current line. Upon completion of this request, the pointer
is positioned at the last line printed unless an end-of-file
condition occurred, in which case the pointer is positioned
after the last 1line printed. If n is 0 or unspecified, it
is assumed to be 1 and the current line is typed.

If L or LINENO is specified, the line identifier in columns
73-80 is typed out with each line. If L or LINENO is not
specified, only the nonblank characters in column 1-72 of
each line are typed.

The n is required if L or LINENO is to be specified.

Resgonses:

The 1line(s) is (are) printed out and the keyboard is
unlocked.

EOQOF:

The end of file was reached by the request. To position the
pointer at the top of the file, a TOP request must be
issued.

Example:
PS5
request: p 5
lines printed: WRITE (6,30)
30 FORMAT (' HERE I AM')
CALL SUB1

WRITE (6,10)
10 FORMAT (* BACK AGAIN')

This request types five lines. The line identifier is not
included. The pointer is positioned at the last line typed.

EDIT - PRINT 89

QUIT Request

Format:
! CUIT l
i Q |
Usage:

QUIT terminates the EDIT command and returns to the CMS
environment without causing a file to be written on the
~disk, or making permanent updates to an existing file.

Respoense:

The EDIT command is terminated and the file 1is not written
out or permanently updated.

Example:
Q
request: q
response: R; XX.XX/XX.XX hh.mm.ss

EDIT is terminated and the file is not written on the disk.

20 EDIT - QUIT

REPEAT Request

Format:
| REPEAT | < n > |
| N S
n is an integer specifying the number of times to repeat
the following BLANK or OVERLAY request. The default is
1.
Usage:

This request executes the following BLANK or OVERLAY request
n times. If n is 0 or unspecified, it is assumed to be 1.
If n is greater than the number of lines between the current
line and the end of file, REPEAT is in effect until the end
of the file. Thus, the REPEAT request can provide global
BLANK and OVERLAY requests.

Response:
The keyboard is unlocked.

Example:

REPEAT 25
The following BLANK or OVERLAY request is executed 25 times.

EDIT - REPEAT 21

RETYPE Request

Format:

e —— T — ———— — —— ——————— > — =

line is an input line that replaces the current line.

Usage:

This request replaces the current line with "line". The
logical tab character, the tab key, and the 1logical
backspace character can be used in ™line". "line"™ is
separated from the request by only one blank; any other
blanks are considered part of "line". If no 1line 1is
specified, the current 1line is deleted and the TINPUT
environment is entered.

The pointer is not advanced by this request unless the INPUT
environment is entered.

Responses:
The keyboard is unlocked.
INPUT:

No line was specified, The current line is deleted, and the
INPUT environment is entered with the keyboard unlocked.

Example:
RD#IREG = J + K#**%*2
Colurns
1 7 14
line before request: IRES555 = 1 - K
request: r #ireg = J + k**2
line after request: IREG = J + K*=*2

The "line" specified with the request replaces the current
line. Assuming that the logical tabs are set for a FORTRAN
filetype, the statement IREG = J + K#**2 begins in column 7.

92 EDIT — RETYPE

SAVE Request

Format:

- ——————————— —— —— ——— — — > = o=

filename is the name to be given to the file, as the
latest copy is permanently written on disk.

Usage:

The SAVE request writes the latest copy of the file onto the
appropriate disk and returns to the Input environment with
the pointer positioned at the same current line as before
the SAVE was issued. If the file already exists on the
disk, it is written onto the same disk in the same mode as
it previously existed. This latest copy replaces any
existing copy of the file on the disk. The file directory
is updated.

If "filename®™ 1is specified, it is wused as the filename of
the file. If "filenawe™ is not specified, the filename used
at the time of the invocation of the EDIT command is used.
If "filename"™ is not specified at any time, a message is
typed out.

Resgonses H

INPUT:

The latest copy of the file has been saved on disk and the
Input environment has been entered. The pointer is
positioned at the same current line as before the SAVE was
issued.

FILE EMPTY - EXIT TAKEN
The SAVE request was issued for an empty file. The file is
not written on disk and the Input environment is entered.

NO PRIMARY FILE NAME SPECIFIED - RETRY
When EDIT was issued, only a filetype was given. To save the
file, a filename must be specified with SAVE.

Example:

SAVE MY
request: save my
response: INPUT:

SAVE MY was issued to write the latest copy of the file on
disk and to give it the filename of MY. The Input
environment of EDIT is then entered. The current 1line
pointer is repositioned as in the INPUT request. If a null
line is entered, EDIT environment is entered and the pointer
is positioned as it was when the SAVE request was issued.

EDIT - SAVE 93

SERIAL Request

Format:

—— e - ——— - — — - - ——

n
| SER | (NO) 10

- — . —————— —— — —— — — — g —— ———— — — — —— ——

id specifies the three-character identification to be used
in columns 73-75.

(NO) specifies no serialization or identifier 1is to be
placed in columns 73-80.

n specifies the increment for the 1line number in columns
76-80. This number also becomes the first 1line
number. The default value is 10,

Usage:

This request allows the user to specify the three
jdentification characters and the increment of line numbers
to be used as the identifier in columns 73-80 of each card
image. If the SERIAL request is not issued, the standard
identifier is used. The standard identifier is formed from
the first three characters of the filename; the increment
and beginning sequence number is 00010.

If columns 73-80 are to be used for data or if no identifier
is desired, the SERIAL (NO) request should be issued. If a
file is being created, the SERIRL (NO) request should be
issued before any input 1lines are typed. When the EDIT
command for a new file is issued, the Input environment is
entered. Before any lines are typed 1in, the user should
immediately enter the Edit environment by typing a null
line, issue the SERIAL (NO) reguest, and then return to the
Input environment by issuing the INPUT request to enter
lines of input. Eighty character input lines can then be
entered.

If a file already exists with no identifiers, the SERIAL
(NO) request mwust be given each time the EDIT command is
issued to maintain the data that currently exists in columns
73-80 of the file. If a file already exists with no
identifiers and the SERIAL (NO) request is not issued, the
standard identifier is placed in columns 73-80,

If a file already exists and the SERIAL request 1is issued
with an id and/or increment, the new identifier replaces the
contents of columns 73-80; the replacement does not occur
until a FILE or SAVE request 1is issued. The entire file is
then resequenced with the new identifier.

If a file already exists with identifiers, or if input lines
have been entered which were serialized, the SERIAL (NO)

94 EDIT - SERIAL

request has no effect and the identifiers are not changed.
Once serialization has begun, it cannot be nullified.

Note:

For a filetype of MEMO, SCRIPT, LISTING, or EXEC, the
default option for serialization is SERIAL (NO). That is,
if serialization is wanted, it must be explicitly stated.
(See “"Serialization of Records"™ under "File (Record)
Formats™.)

Response:
The keyboard is unlocked.

Examples:

a. SERIAL REP 20

The request causes REP to be placed in columns 73-75 of each
card image, the first input line to be numbered 00020, and
the line numbers to be incremented by 20.

b. SERIAL (NO)

If the file is being created, this request allows the user
to create 80-character card images from each input line, as
no identifier is placed in columns 73-80. If the file
already exists without identifiers, the data in columns
73-80 is maintained. If a file already exists with
identifiers, or if input lines have been entered which were
serialized, the SERIAL (NO) request has no effect until the
current pointer is positioned at the top of the file, after
which no new serialization takes place.

EDIT - SERIAL 95

TABDEF Request

Format:

—— - - — - —

| TABDEF | <« character > |
| TABD | |

s ———— —— —— — ——— " —— — —— i ————

character is any valid character to be used as the logical
tab character. The default character is the #
or the character specified 1in the CMS CHARDEF
command.

Usage:

TABDEF respecifies the character to be recognized as the
logical tab character. If TABDEF is not issued, the default
character is assumed. Note that the # is also defined as
the logical 1line-end character. To use the # as the tab
character, the CMS LINEND command must be issued.

If the # character is to be used as a valid input character,
the logical tab character and the line-end character must be
redefined.

IF TABDEF is issued without specifying any character, the
logical tab character is reset to the # character or the
character specified by the CHARDEF comrand.

If the logical tab character is redefined in EDIT, the
TABDEF request must be issued each time the EDIT command is
issued, if the user desires to use the same redefined
logical tab character. 1If the 1logical tab character is
redefined by the CMS CHARDEF command, that character is
remembered from EDIT to EDIT.

Response:
The keyboard is unlocked.

Examples:

a. TABD $
This frees the # as a valid input character and defines the
$ as the logical tab character.

b. An example of the use of the logical tab character in a
FORTRAN filetype is shown below

Column
1 7
input line: #x = a + b
record in file: X=DA2A+B

If the 1logical tab setting is set in column 7, the
expression X=A+B begins in coluwn 7 of the record.

96 EDIT - TABDEF

TABSET Request

Format:
| TABSET { <nl...nN> |
{ TABS | |
nl is the column in the record at which the line is

to begin.

n2...nN are column positions for logical tab settings. If
omitted, the default tab settings are used.

Usage:

This request enables the user to establish his own internal
or logical tab settings for a record. The tab settings
determine the number of spaces to be inserted in the line
when either the logical tab character or the tab key is
used.

The TABSET request is followed by from one to eleven numbers
that do not exceed the value of 80. The first number
indicates the column in which the record begins, and the
following ten numbers specify the logical tab settings.

If more than eleven numbers are specified, only the first
eleven are used. Input lines are truncated to 71 or 72
characters, when tabbing indicates a column position above
71, and when serialization is in effect. Otherwise input
lines are truncated to 80 characters, even if a number
greater than 80 is specified.

If the first number, specifying the column in which the
record begins, is not equal to 1, all input to the file will
start at the specified column in the record and all previous
columns are set to blanks. The EDIT requests BLANK, FIND,
and OVERLAY consider each record to begin in column 1,
regardless of the first specified tab value. The EDIT
requests INSERT and RETYPE interpret the beginning column
position and process the specified line in the same manner
as input to the Input environment.

The TABSET request overrides the assumed 1logical tab
settings, such as for FORTRAN, PLI, and SYSIN filetypes.

The user-defined tab settings apply only to the file during
the current EDIT command. If EDIT is issued again for the
same file, the assumed logical tab settings are in effect
until TABSET is reissued.

If TABSET is issued without specifying any values, the

logical tab settings are reset to the default settings for
the filetype of the file being edited.

EDIT - TABSET 97

Logical tab settings, which are redefined by the user for a
file, must be redefined each time the EDIT command is
issued, if the same logical tab settings are desired.

Response:

The keyboard is unlocked.

Examples:

a. TABS 1 7 13 19 25 60
This request sets the logical tab settings in columns 7, 13,
19, 25, and 60, and input starts in column 1.

b. TABS 2 5 10

This request would be used to prevent entry of data into
column 1, and to set the tabs at columns 5 and 10.

98 EDIT - TABSET

TOP Request

Format:

This request repositions the pointer to the top of the file
(that is, to the null line in front of the user's first line
in the file). An aptomatic TOP is performed by the FIND,
LOCATE, and CHANGE requests if an end-of-file file condition
immediately preceded the FIND, LOCATE, or CHANGE request.

Response:

The keyboard is unlocked.

Example:

T
The pointer is positioned at the top of the file.

EDIT - TOP 929

UP Request

Format:
| OGP | < n> |
I v 1 |
n is an integer indicating the number of 1lines by which

the pointer should be moved back. The default is 1.

Usage:

The UP request repositions the pointer n lines before the
current line, If n 1is 0 or wunspecified, a value of 1 is
assumed, and the pointer is moved up to the previous line in
the file. If n is greater than the number of lines between
the top of the file and the current 1line, the request
functions as a TOP request.

Responses:

Verify mode: The line at which the pointer is repositioned
is printed, and the keyboard is unlocked.

Brief mode: The keyboard is unlocked.

Example:

u 9
This request repositions the pointer nine lines before the

current line.

100 EDIT - UP

VERIFY Request

Format:

nn specifies the number of columns to verify in each card
image. The default is all columns for MEMO and SCRIPT,
72 columns for all others.

Usage:

This request terminates the brief wmwode (see the BRIEF
request), and selects the verify mode, causing the automatic
typeout of lines changed or searched for by other EDIT
requests. If nn is specified, nn columns are verified. If
nn is not specified, 72 columns are verified; this is the
normal mode of operation in the Edit environment. If a MEMO
or SCRIPT file is being edited, all columns are
automatically verified.

The requests which are affected by VERIFY are BLANK, CHANGE,
FIND, LOCATE, NEXT, OVERLAY, and UP.

Response:
The keyboard is unlocked.

Example:

VERIFY 50
The first 50 columns are verified in each card image.

EDIT - VERIFY 101

X and Y Request

Format:

| X | <request> |
| Y n |
| | 1 L

request is any edit request

n is the number of times the saved request is to be
executed. Default is 1.

Usage:

X and Y allow the user to save a request for later execution
and temporarily name it X or Y. (Thus two requests may be
in a saved status at one time.) This is done with the X
request formw.

The X n form allows the user to direct that the request
currently named X be executed n times, or until end of file.
If the form X with no parameter is used, the command
currently named X is executed once.

Examples:

a. Y CHANGE /ABCDE FG//

The change request 1is saved as Y, allowing the user to
delete the string ABCDE FG each time he types the request,
Y.

The saved request (as in the above, saved, CHANGE request)
executes 3 times.

102 EDIT - X and Y

ZONE Request

Format:

- - g

] ZONE i nl n2 |
| Z | 1 truncol |

- - -

nl specifies the initial column of the zone of each record
which is to be scanned. The default value is column 1.

n2 specifies the terminal column of <the zone of each
record which is to be scanned. If serialization is in
effect, the default wvalue is 71 for SYSIN, ASP360,
COPY, and UPDATE files and 72 for FORTRAN, PLI, SNOBOL,
AED, FLOW, MAD, AS1130, and REPS files. If
serialization is suppressed, the default value is 132
for all SCRIPT and LISTING files, and 80 for all
others, including MEMO, DATA, and EXEC.

Usage:

This request causes subsequent LOCATE and CHANGE requests to
apply only to the zone of the records specified by the
integer values for starting and ending columns.

The initial zone column, nl, must be strictly less than the
final zone column, n2, and n2 must be less than or equal to
the truncation column.

If serialization is requested by use of SERIAL and the
current zone overlaps columns 73-80, the ending zone column
is reset to 72.

Notes.

a. If serialization is in effect for SYSIN, ASP360, COPY,
or UPDATE files, the default value of truncol (n2) is 71,
but the ZONE ending column can be set to column 72 to insert
a continuation character in a record.

b. In addition to its obvious uses in searching and
modifying fixed-format card files, the ZONE request has
utility in source program editing for adding comment fields,
adding continuation characters, and searching on the
serialization field, columns 73-80.

c. To change the limits for fixed-column requests, such as
FIND, BLANK, and OVERLAY, the TABSET request should be used.
For 2xample, to overlay starting in column 52 of each card,
the request TABSET 1 52 should be used.

EDIT - ZONE 103

Response:

END ZONE RESET TO 72 FOR SERIALIZATION

If serialization is in effect, and the ZONE request
specifies a terminal column (n2) of 73 or greater, the
terminal column is set to 72.

Example:

ZONE 1 72
The initial ZONE column is set to 1 and the terminal ZONE
column is set to 72, independent of whether serialization is
in effect.

104 EDIT - ZONE

ERASE
Purpose:

The ERASE command deletes a file or a related group of files
from a user's read-write disks.

Format:

{ ERASE | filename filetype < filemode > |
| | * * *
l l

filename filetype filemode specify the file that is to be
erased.

* specifies all filenames, all filetypes and/or all
filemodes.

Usage:

Filename and filetype must be specified in the ERASE
command, either by name or with an asterisk. If the
filemode is omitted, the P-disk is assumed. If the filemode
is specified with an asterisk, all read-write disks are
searched.

Those parts of the file identifier not specified by
asterisks are used to search the file directories. Entries
for all files matching the specified identifiers are deleted
from the appropriate directory(s), and disk space occupied
by these files is made available for new files.

Note.

ERASE deletes read-only files.

Response:

ERASE gives no response except the Ready message or an error
code.

Examgles:

a. ERASE DLFAC MODULE PS5
The file specified is deleted from the file directory, and
its space on the P-disk is freed.

b. ERASE * LISTING
All files with the type LISTING are deleted from the P-disk.

C. ERASE * * %

All user files on read-=write disks are deleted, and the
directory is cleared.

ERASE 105

Error Messages:

E(00001) INVALID PARAMETER-LIST
The filename or type was omitted, or the filemode was
incorrect. Correct the command.

E(00002) FILE SPECIFIED DOES NOT EXIST
The file specified was not found in the wuser's file
directory.

E(00003)

An I/0 error occurred. Processing may not have been
completed. It may be necessary to initialize the disk
again. See FORMAT.

106 ERASE

FILEDEF

Purpose:

The FILEDEF command allows the user to specify the
Input/Output devices as well as certain file characteristics
which will be used by a program at execution time; FILEDEF
is also used to modify, delete, and list current file
definitions. FILEDEF is not currently used by any of the
languages in CMS.

Format:

- —— ———— - - - s < > o e . ——— - -

| DDNAME device |
| FILEDEF |< DSRN CLEAR <defl...defnN>> |
| | * DUMMY |

e . > s e —— ——— — ——— — —— —— — —— A ———— — — —— — - —— —— — —— — e e w - ——

DDNAME is the DDNAME of a file in the user's program. The
first letter cannot be numeric or an *.

DSRN is the data set reference number as referred to in the
user's program. The DSRN can be a one or two digit
number. A DDNAME is created of the form FTxxF001,
where xx is the DSRN (right justified).

* this parameter along with CLEAR deletes all assignments
previously made by the FILEDEF command.

DEVICE is omne of the following which specifies the device
for input and/or output of the file being defined.

RDR Card reader

PCH Card punch

PTR Printer

CON User's terminal (see note 3 below)

DSK Disk

CRT Cathode ray tube (not yet
implemented)

TAPx Magnetic tape

X is blank or 1-5
(see note on TAP below).

CLEAR deletes the assignments of I/0 devices, etc.
associated with the €first parameter as previously
defined by the FILEDEF command. An * in the first
parameter erases all assignments made by previous
FILEDEF commands.

DUMMY sets up a dummy I/0 device. No actuwal I/0 is
accomplished during execution. This can be used for

program testing or at other +times when no I/0 is
wanted.

defl...defN are file characteristics for disk or tape files.

FILEDEF 107

Usage:

Note that FILEDEF is not currently used by any of the CMS
languages.

The FILEDEF command allows the user to specify the 1I/0
devices to be used at program execution time. It is similar
to the DD (Data Definition) card in 0S/360. Certain file
characteristics, such as logical record size, block size,
and record format can be specified for disk files, as well
as seven-track tape characteristics for tape files.

If no parameters are specified with the FILEDEF command, a
list of all DDNAMES and the devices assigned to them by
previous FILEDEF commands are typed at the console (See
note 1 below). File definitions previously created by
FILEDEF can be deleted, either individually, or for all file
definitions. A file previously defined by FILEDEF can have
its definition modified by specifying the same DDNAME or
DSRN with new options.

If RDR, PCH, PTR, CON, DUMMY, or CLEAR has been specified,
then defl...defN cannot be specified. RDR, PCH, and CON
input default to fixed unblocked, 1logical record length 80,
and blocksize 80. CON output d2faults to fixed unblocked,
logical record length 130, and blocksize 130. PTR defaults
to fixed unblocked 1logical record length 133 and blocksize
133.

If DSK has been specified, then defl must specify DSNAME,
and def2 must specify DSTYPE. These become the filename and
filetype of the file on disk. Filemode defaults to Pl at
this time. ‘

The rest of the parameters (definitions) after DSNAME and
DSTYPE are in pairs. These pairs may appear in any order or
may be ormitted, in which case the default value is assigned
for the parameters which are not included. These values are
used only when they have not been defined during compilation
or assembly.

The pairs of parameters are the following:

RECFM F, FB, V, VB, or U specifies the record format for the
file

The formats are the following:

Fixed unblocked F the default value
Fixed blocked FB

Variable unblocked
Variable blocked
Undefined

C:§'<

LRECL number specifies the logical record length in bytes.

108 FILEDEF

The default is 80 bytes.

BLKSIZ number specifies the block size in bytes. The default
is 80 bytes.

If a tape device is being specified, then the above three
pairs of parameters (RECFM, LRECL and BLKSIZ) may be
specified. Note that DSNAME, DSTYPE, and DSMODE may not be
specified. The following pair of parameters may also be
specified when seven-track tapes are being used:

MODE number where number is a number from 0 to 15.
The following takle shows the number to use for desired

tape characteristics. Note that 1-5 are for 800 BPI, 6-10
are for 556 BPI,and 11-15 are for 200 BPI.

800 556 200
BPI BPI BPI PARITY CONVERTER TRANSLATOR
M|~ 1 | 6 | 11 f obb | oN | OFF |
o | l I | l l |
D| 2 | 7 | 12 | opp | OFF | ON I
E | | | | | | |
| 3 | 8 | 13 | obp | OFF | OFF |
N | | | | | | |
U| % | 9 | 18 | EVEN | OFF | ON 1
M | | | | | | |
B| 5 | 10 | 15 | EVEN | OFF | OFF l
E | 1 | | l ! |
R | I | | I | |
Notes.

a. File definitions are already set up for the console. The
DDNAMES of these are FTOS5F001 and FTO6F001. These names
appear in the 1list of files whenever FILEDEF is issued
without parameters.

b. TAP, with no number following, defaults to TAP1. TAP1
and TAP2 are the only legitimate devices at this time. TAP3
through TAPS5 are provided for future expansion.

c. Console input is always uppercase translation with
editing and blank filling. Console output is always
uppercase.

Examples:

a. FILEDEF
A 1list of all DDNAMEs and devices previously defined by
FILEDEF is printed at the user"s console.

b. FILEDEF INFILE RDR

A file definition is created with a DDNAME of INFILE and a
Device Type of Card Reader.

FILEDEF 109

C. FILEDEF OUTFILE PTR
A file definition is created with a DDNAME of OUTFILE and a
device type of PRINTER.

d. FILEDEF 12 PCH
A file definition is created with a DDNAME of FT12F001 and a
device type of PUNCH.

e. FITLEDEF TOM CON
A file definition is created with DDNAME of TOM and a device
type of console.

f. FILEDEF SYS004 DSK GEORGE DATA RECFM FB BLKSIZ 800

A file description is created with DDNAME of SYS004 and a
device type of disk. The filename of the disk file is
GEORGE and the filetype is DATA. Record format 1is fixed
blocked, and block size is 800. Logical record 1length is
defaulted to 80.

g. FILEDEF JOANNE TAP MODE 1

A file description is created with a DDNAME of JOANNE and
device type TAP1 (defaulted). Mode is 800 BPI, ODD PARITY,
CONVERTER-ON, TRANSLATOR-OFF,

h. FILEDEF INFILE CLEAR

This deletes the file definition which has a DDNAME of
INFILE. This file definition must already have been
defined.

i. FILEDEF #* CLEAR
This deletes all file definitions which have been created by
the user. FT05F001 and FT06F001 are not deleted.

Exrror Messages:

E(00001) 1st PARAMETER INVALID
The first parameter is something other than an ¥, a one or
two-digit number, or a DDNAME.

E(00002) BAD RTN CODE FROM INVOKED PROGRAM

The FILEDEF command got a bad return code from its call to
SVCFREE or SVCFRET. This is a system problem not
correctable by the user. Try the command again.

E(00003) PARAMETERS MISSING AFTER OPERAND XXXXXXXX

A parameter required by the FILEDEF command has been left
out of the option list by the user. Retype the command with
the proper options.

E(0004) SUPERFLUOUS OR INVALID PARAMETERS AFTER XXXXXXXX
One or more parameters after xxxxxxxx 1is superfluous or
invalid. Retype the command with the proper option list.

E (00005) LRECL OR BLKSIZ VALUES INVALID
One of the following conditions exists:

110 FILEDEF

w % jue exceeded the maximum allowable size (61,439
#«vimal). This is the maxiwmum positive half-word
wr kg,

« sr¢l, or BLKSIZ values contained nonnumerics.

T T T————— $1.1LFGAL xXxxXx REQUEST
o, # =4 her DUMMY or CLEAR.
w 4w AN REQUEST 1is generated when a CLEAR request is
#. tile definition not created by the user. ILLEGAL
4@ T |s generated when a DUMMY request is made for
4-uN which has already been defined by FILEDEF.

W 11 \NAME AND DSTYPE MUST BE SPECIFIED
¢ » weww = ore required when DSK is specified. Retype the

. «mwand vith the proper parameters.

T tINN\ME NOT SPECIFIED AFTER FILEDEF

i w.au left out an ¥, DDNAME or DSRN as his first
o tetype the FILEDEF command with the proper
T £

FILEDEF 111

FINIS

Purpose:

FINIS closes one or more files that ar e -« «(w

Format:

- -—— —-—— —— v — ———

| FINIS | filename filetype < fi m - o
*

I I * []
filename is the name of the file to be T R R B e e e
* means all filenames.

flletype is the type of file to be clo = = e,
means all filetypes.

fi lemode is the m0de Of the file to be LN ;l LR R ORI s o = e AR ORI
* means all filemodes P,T, and <% .
Usage:

FINIS closes one or more specified ¥ % lew

Closing a file consists of writing owm % tiw

that file on the disk, updating ¢ e

directory, and removing the entry forx L T —
user's active file table. If the fil e ™wwumules

(delete upon reading), the file is erew muet,

be wused for the filename, filetype, YIRS | wiis 12
denote the closing of all opened files=: wi v . ™
filenames, filetypes, and/or filemodes . 1 : L
not given, the first file found with t W:i¢ =« mmﬂmmmmﬂ
type 1is closed. The order of searc- Wi & ‘
file(s) is (are) the standard order of =sear«-

The specified file must already be - g
closed. If it is not, an error code- {0}
FINIS command.

Note.

FINIS should be issued by the user wher» LR

close the files wused during the execut # ¢
Files accessed by CMS commands are CLlOTi @ = 1 a b s

Resgonses :

None.

Examples:

a. FINIS DATAQOUT CARDS PS
The file whose identifier is DATAOUT CA K ric, 4+

112 FINIS

Value exceeded the maximum allowable size (61,439
decimal). This is the maxiwum positive half-word
size.

LRECL or BLKSIZ values contained nonnumerics.

E(00006) ILLEGAL xxXxxX REQUEST

XXxxX is either DUMMY or CLEAR.

ILLEGAL CLEAR REQUEST 1is generated when a CLEAR request is
made for a file definition not created by the user. ILLEGAL
DUMMY REQUEST is generated when a DUMMY request is made for
DDNAME or DSRN which has already been defined by FILEDEF.

E(00007) DSNAME AND DSTYPE MUST BE SPECIFIED
These items are required when DSK is specified. Retype the
FILEDEF command with the proper parameters.

E(00008) DDNAME NOT SPECIFIED AFTER FILEDEF

The user has left out an ¥, DDNAME or DSRN as his first
parameter. Retype the FILEDEF command with the proper
parameters.

FILEDEF 111

FINIS

Purpose:

FINIS closes one or more files that are currently open.

Format:

- —— — ————————— —— — —— — — — —— —— — ——— — — - — —— —-— ——— — — v~ —

"filename is the name of the file to be closed.
* means all filenames.

flletype is the type of file to be closed.
means all filetypes.

filemode is the mode of the file to be closed.
* means all filemodes P,T, and S.

Usage:

FINIS closes one or more specified files that are open.
Closing a file consists of writing out the last record of
that file on the disk, updating the appropriate file
directory, and removing the entry for that file from the
user's active file table. If the filemode number is 3 or 4
(delete upon reading), the file is erased. An asterisk may
be used for the filename, filetype, and/or filemode to
denote the closing of all opened files with the appropriate
filenames, filetypes, and/or filemodes. If the filemode is
not given, the first file found with the specified name and
type is closed. The order of search for the specified
file(s) is (are) the standard order of search.

The specified file must already be open in order to be
closed. If it is not, an error code 1is returned by the
FINIS command.

Note.

FINIS should be issued by the user when his program does not

close the files wused during the execution of that program.
Files accessed by CMS commands are closed automatically.

Responses:

None.

Examples:

a. FINIS DATAOUT CARDS PS5
The file whose identifier is DATAOUT CARDS PS is closed.

112 FINIS

b. FINIS DATAOUT CARDS

The first file found with a filename filetype of DATAOUT
CARDS is closed. The permanent disk, the temporary disk, and
the system disk are searched in that order for the file.

c. FINIS * FILEl *
All files that are open and have a filetype of FILEl are
closed.

d. FINIS * * =%
All files that are open are closed.

Error Messages:

E(00001)
The specified filenawe 1is invalid. It contains 1leading
zeros. The file is not closed.

E(00003)
An error occurred while reading or writing the disk. The
command has terminated.

E(00004)
The first character of the mode is illegal.

E(00006)

The specified file 1is not open and therefore cannot be
closed. The command has terminated.

FINIS 113

LISTF
Purpose:

LISTF has two purposes: (1) to type at the terminal the
name, type, mode, size, date-last-updated, and
time-last-updated of specified files or (2) to create a file
on the permanent disk containing information similar to that
typed at the terminal.

Format:

- o ——— —— . ————— — ——————— —— —— —— — —— — —— — e ————— ——

name is the name of the files to be listed.
* denotes all filenames and is the default value.

type is the type of file to be listed.
* denotes all filetypes and is the default value.

mode is the mode of the files to be listed. If omitted, all
read-write disks are searched.
* means all disks.

Note. An asterisk, (#), preceded by any number of
characters for name or type searches for the specified
characters as the leading characters for that identifier.

For example, LISTF ABC* FORTRAN prints the identifiers for
all FORTRAN files with filenames beginning ABC.

Options:

EXEC (E) creates a file on the permanent disk containing a
list of the specified files.

SORT (S) sorts, or groups together, all similar filetypes.

ITEM (I) types the number of 1logical items instead of the
number of 800-byte physical records.

NAME (N) produces a list of filenames only.

TYPE (TY) causes the 1list to contain only filename and
filetype.

MODE (M) truncates the typed line after filemode.

REC (R) prints filename, filetype, filemode, and number of
records.

DATE (D) causes the list to contain name, type, mode, size,

and date the file was last written (mm/dd). This is
the default line.

114 LISTF

YEAR (Y) causes the date to include the year (mm/dd/yy).

TIME (T) causes the time that the file was last updated
(hh/mm) to be added to the defaulted 1line.

Usage:

LISTF either types out the specified files or creates a file
containing the information. All operands are optional. If
no operand 1is specified, a complete 1list of all the files
that exist on the user's read-write disks is typed out. The
list consists of the name, type, mode, number of records,
and date each specified file was last written. The number of
records is the number of 800-byte records occupied by the
file. The date is typed as month--date (mm/dd). See Figure

6.

listf

FILENAME FILETYPE MODE NO.REC DATE
FORTCLG EXEC P1 1 8729
W LISTING Pl 2 7716
uccl MODULE Pl 17 9/08
TRY TXTLIB P1 3 8730
LOAD MAP Pl 11 8/13
W TEXT Pl 5 7717
UPDATE MODULE P1 3 8730
TEST1 FORTRAN Pl 10 9/03
SUBS FORTRAN P1 5 9/02
SUBS TEXT Pl 6 9/02

R; T=0.05/0.14 15.15.04
Figure 6. Output from the LISTF command

If a filename, filetype, and/or filemode other than #* is
specified, only the file with that identifier 1is typed out
along with its size.

If the filemode 1is not specified, only the read-write disk
directories are examined by LISTF. If a filemode of # is
specified, all disks are used. Therefore, in order to have
LISTF search read-only disks, a filemode must be specified.

If the (EXEC) parameter is specified, a card-image file is
created on the user's permanent disk and assigned the
identifier CMS EXEC P1l. If a file with the identifier CMS
EXEC P1 already exists, it is erased, and a new file is
created. This file contains a card image for each of the
specified files and the format of each card image is as
follows:

LISTF 115

Columns contents

2-3 &1
5-6 §2
8-15 filename
17-24 filetype
27-28 filemode
31-34 number of records
36-40 date
42-48 time

All other columns are blank. For an example of a CMS EXEC
file, see Figure 7, in which the PRINTF command has been
used to typeout the contents of the EXEC file.

listf * fortran (exec)
R; T=0.20/0.31 15.15.15

printf cms exec

€1 €2 W FORTRAN P1 3 8/12
&1 &§2 SUB2 FORTRAN P1 12 8714
§1 &2 EXAMPLE FORTRAN Pl 5 7729
€1 &2 DRGB FORTRAN Pl 11 8730
§1 §2 GBB FORTREN Pl 10 8/30
&1 &2 SSNSS FORTRAN Pl 7 8731

R; T=0.23/0.34 15.18.42
Figure 7. Creation and printing of a CMS EXEC file

The CMS EXEC file is like any other user file. It can be
printed offline, edited, added to, changed, and so on, but
its main purpose is to be used with the EXEC or § commands.
Refer to the EXEC writeup for a description of the usage of
a CMS EXEC file.

Responses:

If the (EXEC) option 1is specified, the file CMS EXEC is
generated on the user's permanent disk, and no response is
typed at the terminal.

If the (EXEC) option 1is not given, the list of specified
files is typed at the terminal.

As can be seen in the description of the options, only
certain quantities of each specified file can be typed by
LISTF. Each option has a truncating effect on all options
of lower priority.

Examples:

a. LISTF
The nawme, type, mode, size and date of each file on the
read-write disks are typed. See Figure 6.

116 LISTF

b. LISTF ABC* FORTRAN (N)

The name of each file that has a filename beginning with the
characters ABC, has a filetype of FORTRAN, and exists on the
read-write disks is typed.

C. LISTF FILE * * (T)
The name, type, mode, size, date, and time of each file that
has a filename of FILF and exists on any disk is typed.

d. LISTF (EXEC)

The file with the identifier CMS EXEC P1 is created on the
permanent disk. This file contains the same 1list of files
that was typed in the first example above, but each entry in
the 1list has &1 and §2 placed in front of it.

e. LISTF * FORTRAN (EXEC)

The file with the identifier CMS EXEC P1 1is created. This
file contains the same list of files that was typed on the
terminal in the second example above, but each entry in the
list has &1 §2 placed in front of it. See Figure 7.

Erroxr Messages:

E(00001) ERROR IN PARAMETER LIST.
An incorrect form of the command was issued. Check to see
if all parameters are wvalid.

E(00002) NO FILE FOUND.
The specified file does not exist on the disk.

E(00003) * 7 (CCU) NOT LOGGED IN **

LISTF was issued with Z as the specified mode, but there is
no Z-disk logged in. Either the wrong mode was specified,
or LOGIN Z should be issued.

E(00003) NO R/W DISK LOGGED IN

LISTF was issued with no mode specified. The default is all
read-write disks, and none are logged in.

LISTF 117

OFFLINE

PUI‘QOSG :

The OFFLINE command controls the unit record input/output
devices. Input files may be entered through the card reader.
Output files may be printed, with or without automatic
carriage control, or punched.

Format:

- ——— o — —— . —— — ———— > T~ — —— — —— i —— - ——— — — " — ——— -

| OFFLINE | command filename filetype <filemode> |

| | (+) |
where command is as follows:
READ specifies a deck is to be read from the card
reader.
PRINT causes the specified file to be printed on the

system printer with automatic single spacing.

PRINTCC causes the specified file to be printed with the
first character of each record interpreted as a
carriage control character.

PRINTUPC translates to uppercase, and then prints the
records of the named file.

PRINTVLR causes the specified, variable-length file produced
by an 0S/360 language processor to be printed.

PUNCH causes the specified file to be punched onto the
system card punch.

PUNCHCC causes an OFFLINE READ filename filetype control
card to be inserted as the first card before
punching the specified file.

PUNCHDT causes an CFFLINE READ filename filetyped filemode
data-last-written time--last-written control card
to be inserted as the first card before punching
the specified file.

filename filetype <filemode> identify the file to be
transferred. If filemode is omitted for a READ, P1
is assumed.

* specifies that filename, filetype, and filemode
are found 1in OFFLINE READ control cards in the
input card stream. (Valid only when command =
READ)

118 OFFLINE

Usage:
Input

If filename and filetype are specified with the OFFLINE READ
command, only one file is read in. Input records of up to
132 characters are accepted. A file that was transferred
with the XFER E TO userid command should be read in with the
filetype PRINTER. A previously existing file with the same
identifiers is erased. If filemode is omitted, Pl is
assumed.

If the file designations are to be entered in the card
stream, a single asterisk must be specified with the OFFLINE
READ command instead of filename and filetype. The deck
entered through the card reader may contain any number of
files, each immediately preceded by a card containing an
OFFLINE READ control card specifying the filename, filetype,
and optiomnally, filemode. The command must start in the
first card column. These control cards are typed out at the
terminal as they are encountered, and are interpreted by the
system just as 1if they had been entered from the terminal.
Any existing file with the same identifiers as those
specified on one of the OFFLINE READ cards is erased. Each
command card ends the file preceding it, and the last file
is ended by the end of the card deck.

If an CFFLINE READ * command is issued, and the first card
of the input stream is not of the form OFFLINE READ filename
filetype, a file identified as ..NAME.. ..TYPE.. Pl is
created containing all cards read in until another OFFLINE
READ control card or an end of file is encountered. This
temporary file may now be altered to the desired filename
and filetype.

When operation is on a virtual machine, user card decks must
be read in by CP before an OFFLINE READ command can be
issuved. The user need not be 1logged in at the time the
decks are read in. Each deck must be entered separately,
and each must be preceded by an identification card with
CP67USERID punched in the first ten columns, and the user's
identification starting in the 13th column, or the
characters ID punched in columns 1 and 2 and the userid
starting in column 10. CP saves the deck until the user
logs in and requests it with an OFFLINE READ command. If
more than one deck has been read by CP, they are processed
by successive OFFLINE READ commands in the order in which
they were entered.

Output

For the OFFLINE PRINT, PRINTCC, PRINTUPC, PRINTVLR, PUNCH,
PUNCHDT, and PUNCHCC commands, filename and filetype must be
specified. If the filemode field is blank, the P disk is
assumed. Asterisks are not permitted in the filename or
filetype fields.

OFFLINE 119

The OFFLINE PRINT command prints the specified file with
single spacing and CMS page headings containing the file
identifiers and a page number. Up to 55 lines are printed on
a page. If the file being printed has a filetype of
LISTING, it is printed as if PRINTCC were issued.

The OFFLINE PRINTCC command uses the first character of each

line in the file as a carriage control code. The maximum
line size, including the control character, is 133
characters. A blank (hex'40') in the control position

causes the 1line to be followed by a single space. A zero
(hex "F0') causes a single space before, and after, the
printed line. A one (hex 'F1') causes a skip to the top of
the next page before the line is printed, and a single space
after the 1line. Another value in the control byte is
assumed to be a valid channel command code, and is filled
into a CCW. No headings or page numbers are supplied and no
automatic skip is performed at the end of the page.

OFFLINE PRINTUPC performs uppercase translation on all
records of the specified file. For example, if a file of
type SCRIPT or MEMO 1is to be printed, and the correct
printer character chain is not available, PRINTUPC prints
the file in uppercase, eliminating all print checks and
garbled characters.

OFFLINE PRINTVIR prints variable-length records produced by
an 0OS access method. The printable data of the record is
preceded by a four-byte control field which contains the
length of the record. This field 1is discarded, and the
record printed under the PRINTCC format.

The OFFLINE PUNCH command accepts records up to 80
characters in length. Shorter records are padded to 80
characters with blanks at the right.

OFFLINE PUNCHCC inserts as the first card of the specified
file to be punched, an OFFLINE READ... control card. The
punched deck can now be read by means of an OFFLINE READ *
command.

OFFLINE PUNCHDT inserts a card with the same information as
OFFLINE PUNCHC, but also includes the filemode and date and
time last written.

Notes:

a. Files handled by the OFFLINE command must have
fixed-length records, except for OFFLINE PRINTVLR, which
handles variable-length records.

b. Only the first card of any input deck is checked for

CP67USERID or ID. CP processes as a single file all cards
following it until a physical end of file is reached.

120 OFFLINE

c. Under CP, printer output is preceded by a single line
containing a USERID. PUNCH output is preceded by a card
containing a USERID.

d. OFFLINE READ accepts input records up to 132 characters
in length, such that LISTING files may be XFER'ed from OS to
CMS. The file should be read in with a filetype of PRINTER.

e. If OFFLINE READ was issued, and the file being read in
is 132-byte records, CMS types at the finish of the read,
RECORD LENGTH = 132 BYTES.

Responses:

a. OFFLINE READ filename filetype filemode
After the command OFFLINE READ * control cards encountered
in the input card stream are typed at the terminal.

b. READER EMPTY OR NOT READY.

This response and the Ready message follow an OFFLINE READ
command if no card deck has been entered for the user's
USERID.

c. R; T=XX.XX/XX.XX XX « XX o« XX

The Ready message indicates the command has completed
without error. It does not mean that physical output has
completed. The output file is held by CP until other users
free the output device.

d. "OFFLINE READ..." CONTROL CARD IS MISSING.

THE FOLLOWING ASSUMED:
This response and the assumed control card arxre typed
whenever an OFFLINE READ * command is issued, and whenever
the first card of the input stream is not an OFFLINE READ
filename filetype <filemode> control card.

e. {NULL FILE)
Attempt to read a file containing no records was made.

f. SYSTEM I/0 ERROR

CP ENTERED, REQUEST PLEASE
This message indicates that an unrecoverable I/0 error has
occurred on a spooled direct-access device. ReIPL CMS, and
issue the OFFLINE comrmand again.

Examples:

a. OFFLINE READ SEC23 SYSIN

Any previous file with the filename and filetype SEC23 SYSIN
is erased. All cards following the CP67 identification card
are placed 1in a file on the permanent disk identified as
SEC23 SYSIN Pl.

b. OFFLINE READ *
Assume the following deck has been entered by the operator:

OFFLINE 121

/ /|
/ /
/data cards

|
/OFFLINE READ FILE DAO2 P5 |
_ 1
/ /
/ /
/source cards |

/OFFLINE READ SORTJ FORTRAN 1

/CP67TUSERID JAYBEE i
I |

Any previous files with the identifiers SORTJ FORTRAN or
FILE DAO2 are erased. The card records are placed in files
on the permanent disk wunder the identifications SORTJ
FORTRAN Pl and FILE DAO2 P5. The following response is
typed:

OFFLINE READ SORTJ FORTRAN
OFFLINE READ FILE DAO2 P5

C. OFFLINE PRINT FILE DAO2

A search is wmwade for FILE DA0O2, on all three disks, if
necessary. When it 1is 1located, it 1is printed out with
single spacing and CMS-supplied page headings. The first
page of the printout contains only the USERID. The second
page starts with the following heading:

FILE:FILE DRAO2 P5 CAMBRIDGE MONITOR SYSTEM PAGE(QO1
The heading is followed by a blank 1line and 55 lines of the
file. The heading of the second and subsequent pages is the

same, except for the page number.

Error Messages:

E(00001) INVALID OFFLINE FUNCTION OR PARAMETER LIST
There are three possible causes of this message:
a. The operation specified with the command was
invalid; it must be one of these: READ, PRINT, PRINTCC,
PRINTUPC, PRINTVLR, PUNCH, or PUNCHCC.
b. A filename (or * under the special READ mode) was
not specified.

c. Filetype was specified as an #*, which is not
permitted.
E(00002) FILE NOT FOUND.

The file specified for output does not exist. Check
spelling of the filename and filetype.

E (00005)
An attempt has been made to read a variable length file. See

122 OFFLINE

the DISK command to be able to read and punch wvariable
length files.

E(00006) PRINT (max=133) or PUNCH (max=80) RECORD
EXCEEDS MAXIMUM LENGTH

The record 1length of an output file is greater than 132

characters for PRINT, or 133 characters for PRINTCC. This

is longer than a printer line. The OFFLINE PUNCH command

accepts records of 80 characters or less.

E(00007) PRINT or PUNCH ERROR
System hardware failure has occurred. Retry the operation
on the specific unit record device.

E(00008) READ or WRITE DISK ERROR

A disk I/0 error has occurred. If reading disk, an illegal
mode may have been specified, an attempt may have been made
to output an empty file, or there may not be enough core
space for the output buffers. If writing disk, the
specified mode on the READ command might be illegal, or no
more disk space is available.

OFFLINE 123

PRINTF

Purpose:

The PRINTF command types all, or part, of a specified file
at the terminal.

Format:

- — —————— ———————— — —— ——— — — —— —— — ——— ———— —— ——— —— —

| PRINTF| filename filetype < nl n2 < n3 > |
I I * * |

. — ———— ————— —— ——— — ———— ——————— —— —— —— — ———— v ———

filenarre filetype specify the file to be typed.
nl is the line number of the first line to be typed.
n2 is the line number of the last line to be typed.

n3 is the maximum number of characters to be typed on a
line, if the records are to be truncated.

Usage:

The filenare and filetype must be specified. If the first
line nuwmber and 1last line number are omitted, or specified
with asterisks, +the entire file is typed. An asterisk in
the first line or end 1line fields specifies the beginning or
the end of the file, respectively.

Typed lines are truncated to the specified limit, if any, or
to 113 characters for LISTING files, 120 for SCRIPT files,
80 for MFMO files, or to 72 for all other filetypes. If a
limit is specified, the first 1line number and last 1line
number fields must be filled, either explicitly, or with
asterisks.

The standard order of search is used to find the file. In
the case of files with duplicate filename and filetype, only
the first file found is tyved.

Notes:

a. The first line number and last line number must be less
than 9999, and may not contain imbedded commas.

b. The first character of each 1line in a LISTING file is
not typed. This is a printer carriage-control character.

c. The KT command overrides any specified last line number
or line length.

Examples:

These are given in Fiqures 8, 9, and 10.

124 PRINTF

printf go exec

LOAD 61
START

R; T=0.27/0.53 10.40.16
printf go exec * * 80

LOAD &1 GO 00010
START GO 00020

R; T=0.27/0.55 10.46.32

Figure 8. Two examples of PRINTF commands that type out an entire file

printf syslib maclib 157 171 72

MACRO

ELABEL MADDPL §COMM=%* , ENAME=%, § TYPE=% , §MODE=P1, §ITNC=0,

, §BUFF=%* _,E£STIX ZE=80,E6FV=F,§NOIT=1

§LABEL DS 0D

E§LABEL.COMM DC CLB'&ECOMM* COMMAND

ELABEL.NAME DC CL8'ENAME® FILE-NAME

E§LABEL.TYPE DC CL8*'§TYPE® FILE-TYPE

§LABEL.MODE DC CL2°‘EMODE. FILE-MODE

ELABEL.ITNO DC H®*&ITNO® ITEM NUMBER

E§LABEL.BUFF DC A (§BUFF) BUFFER AREA

E§LABEL.SIZE DC A(ESIZE) BUFFER SIZE

§LABEL.FV DC CL2"EFV" FIXED/VARIABLE FLAG

ELABEL.NOIT DC H"ENOIT® NUMBER OF ITEMS

ELABEL.NORD DC F'0°* NUMBER OF BYTES ACTUALLY READ
MEND

R; T=0.50/0.72 10.56.18

Figure 9. A PRINTF command that types out a macro definition

PRINTF 125

printf fortj listing 33 * 72
FORMAT STATEMENT MAP
SYMBOL. LOCATION SYMBOL LOCATION SYMBOL LOCATION
S 38C 20 392 8 398
TOTAL MEMORY REQUIREMENTS O0057E BYTES
R; T=0.33/0.47 10.59.42

Figure 10. A PRINTF command that types out the bottom
of a FORTRAN LISTING file

Error Messages:

E(00001) CORRECT FORM IS: 'PRINTF' FILENAME

FILETYPE STARTLINE ENDLINE LINE-LIMIT,

WHERE ‘'STARTLINE®', °*ENDLINE', AND

'LINE-LIMIT®' ARE OPTIONAL.
The filename or filetype was omitted, or one of the optional
fields was not valid.

E(00002) DISK ERROR.
An I/0 error occurred. It may be necessary +to initialize
the disk again (see FORVMAT).

E(00003) FILE NCT FOUND.
No file with the specified filename and filetype exists.

126 PRINTF

SCRIPT

Purpose:

The SCRIPT command outputs to a printer, file, or terminal a
file of variable-length records 1in a format specified by
included control words.

Format:

T — . - — —— ——————— — - — — — . S~ —— ———— ——— - ——— . —— —— ——— ——

| SCRIPT | filename (optionl...optionN) |

- ——— —— ————— e —— — —— ——— ——— — — — — — —— > - -

filename specifies a file with a filetype of SCRIPT.

Options:

CENTER (CE) causes offline output to be centered on the
printer paper.

FILE (FI) prints the edited and formatted output of SCRIPT
into a file named ".filename®”, instead of at the
terminal or offline printer.

NOWAIT (NO) starts SCRIPT output immediately without waiting
for the first page to be adjusted.

NUMBER (NU) prints in the 1left margin the SCRIPT filename
and 1line number corresponding to each 1line of
printed output.

OFFLINE (OF) prints the edited and formatted output of
SCRIPT on the offline printer, instead of at the
terminal.

PAGExxx causes printout to start at page xxx.

SINGLE (SI) terminates printing after one page, usually used
in conjunction with the PAGExxx option.

STOP (ST) causes a pause at the bottom of each page during
SCRIPT.

TRANSLATE (TR) translates lowercase 1letters to uppercase in
printout.

UNFORMATTED (UN) prints the inputted SCRIPT file along with

the control words; the control words being ignored
with no formatting of the output.

Usage:

Filename must be specified with the SCRIPT command. The
filetype SCRIPT is assumed.

SCRIPT 127

When the SCRIPT command is issued, the specified SCRIPT file
is typed either at the user's terminal, on the offline
printer, or into a file. Execution is controlled by format
control words included in the specified SCRIPT file. When
the file is located, and typing is ready to begin, a
response is typed, and execution pauses until a carriage
return 1is entered at the terminal, wunless the NOWAIT,
OFFLINE, or FILE option has been specified. This pause
allows the user to position the output paper at the top of a
page. If STOP 1is specified with the command, the pause is
repeated at the bottom of each page, allowing the user to
change paper if noncontinuous forms are being used. If STOP
is used, the paper should be positioned to the first line to
be printed (the heading) rather than to the physical top of
the page. Typing resumes when a carriage return is typed.

The TRANSLATE option is needed if output is to be directed
to an offline printer that 1is not equipped with the
uppercase and lowercase letters (TN-chain). In conjunction
with the UNFORMATTED option, TRANSLATE provides a means of
printing the original SCRIPT file on a printer that does not
have the TN-chain (this can also be done by the CMS command
OFFLINE PRINTUPC).

The PAGExxxX option, in conjunction with the SINGLE option,
provides a means for selectively formatting and printing
portions of a manuscript. The xxx represents a three-digit
page number and must include leading zeros (for example,
prage 12 only should be requested by SINGLE PAGEO12). Another
means of selectively manipulating a formatted manuscript is
to use the FILE option to generate the entire or relevant
portion of a manuscript into a file and then use the CMS
facilities of EDIT and/or PRINTF to process it.

The FILE option produces an output file in either typewriter
format (backspace characters and carriage return characters
are used) or printer format (printer control codes are
used). The default format is typewriter. The printer format
can be specified by the combination of both the FILE and
OFFLINE options. A printer format file may be later printed
by the CMS command OFFLINE PRINTCC.

Each line read from the disk file by SCRIPT is inspected for
a first character of ".", which identifies a format control
word. Format control words are not typed, but are
interpreted to specify changes in the output format.
Control words may be entered in uppercase or lowercase and
should be separated from their operands (if any) by one or
more blanks.

Control words may appear at the beginning of any line in the
file, with changes effective below the points at which they
occur. No input data should be included on lines containing
control words, since this data could, in some cases, be lost
or interpreted as an operand of the control word.

128 SCRIPT

Note.

The TAB key generates an acceptable character in a SCRIPT
file, and 1is transmitted by SCRIPT. The number of spaces
actually skipped on print output is dependent on the logical
tab setting specified by the .TB command. For indentations,
the .IN or .OF control words should be used instead of the
TAB key.

References:

For more detailed information on SCRIPT, Ssee CMS
SCRIPT User's Manual.

Resgonse:

LOAD PAPER; HIT RETURN

This response is given whenever the SCRIPT command is
issued without specifying the NOWAIT option. The carriage
return must be hit in order for SCRIPT processing to
continue. The paper should be adjusted first.

Example:

An example of SCRIPT input and output is given in Figures 11
and 12, which follow the descriptions of SCRIPT control
words.

Error Messages:

E(00004) INCORRECT PARAMETER LIST

An invalid parameter has been specified for a SCRIPT
control word, or a required parameter has been omitted. The
SCRIPT commrand has been terminated.

E(00008) FILE xxxxxxxx NOT FOUND.
No SCRIPT version of filename xxxxxxxx was found. The
SCRIPT command has been terminated.

E(00012) DISK ERROR WHILE READING

A disk error was incurred by SCRIPT. The SCRIPT command
has been terminated, and the disk file being printed remains
unchanged.

E(00016) ILLEGAL CONTROL CARD ENCOUNTERED.

An unrecognizable control word was encountered while
printing a SCRIPT file. The SCRIPT command has been
terminated.

For all of the error messages from SCRIPT, the following
message is printed:

ERROR OCCURRED AFTER READING XXXX LINES.
This usually assists in finding the error in the SCRIPT
file.

SCRIPT 129

E(00000) **%* A TERMINAL ERROR HAS OCCURRED WHILE
PROCESSING ON OR AROUND LINE XXXXXXXX
¥% _, ETC.
This message indicates a system error. The appropriate
personnel should be informed of the circumstances. Usually
this condition can be bypassed by diagnosing the cause of
the error and changing the SCRIPT file.

130 SCRIPT

SCRIPT cCcontrocl Words

SCRIPT control words are interpreted by the SCRIPT command
to govern format control as the file is being printed out.

The SCRIPT control words are listed below.

Control Word Meaning
.AP Append
-BM Bottom margin
+«BR Break
-.CE Center
.CM Comment
.CO Concatenate mode
.CP Conditional page
.DS Double space mode
.FI Format (o0ld form)
.FO Format mode
-HE Heading
-HM Heading margin
- IM Imbed
- IN Indent
-JU Justification mode
.LL Line length
.NC No concatenate mode
«NJ No justification mode
«OF Offset
.PA Page eject
.PL Page length
.PN Page numbering mode
-RD Read from terminal
.SP Space lines
.SS Single space mode
.TB Tab settings
<™ Top margin
<UN Undent

SCRIPT 131

APPEND Control

Purpose:

The APPEND control word allows an additional SCRIPT file to
be appended to the file just printed.

Format:

filename specifies the name of the SCRIPT file to be
appended to the file which has just been printed.

Usage:

When the .AP control word is encountered, the current file
is closed, and the specified SCRIPT file 1is printed as a
continuation of the SCRIPT output from the previous file.

Note.

The .AP control word only allows files to be appended to the
end of the current file. If it is desired to 1insert file
contents into the printout of the current file, use the .IM
control word.

Example:

AP ABC
The contents of SCRIPT file ABC are typed immediately
following the last 1line of the current file which precedes
the .AP request.

132 SCRIPT -.AP

BOTTOM MARGIN Control

Purpose:

The BOTTOM MARGIN control word specifies the number of lines
to be skipped at the bottom of output pages, overriding the
standard value of three.

Format:

- o ——————

n specifies the number of 1lines to be skipped at the
bottom of output pages. If omitted, 3 is assumed.

Usage:

This control overrides the standard bottom margin size of
three lines, and need not be included in the file if that
value is satisfactory. It may be included anywhere in the
file, and the most recent value set applies on any page.

Note.
The BOTTOM MARGIN control word also acts as a BREAK.

Example:

.BM 10
Ten lines are 1left blank at the bottom of the current page
(if possible), and on all subsequent pages.

SCRIPT - .BM _ 133

BREAK Control

PUIEOSQ:

When CONCATENATE is in effect, BREAK causes the previous
line to be typed without filling in words from the next
line.

Format:

- — s > ——— v ——

Usage:

BREAK is used to prevent concatenation of lines, such as
paragraph headings or the last 1line of a paragraph. It
causes the preceding line to be typed as a short line, if it
is shorter than the current line length.

Notes:

a. Many of the other control words have the effect of a
BREAK. No BREAK is necessary when one of these is present.

b. A leading blank or tab on a line has the effect of a
BREAK.

Fxample:

Heading:

.br

First line of paragraph . . .
This part of a file is printed by SCRIPT as

Heading:
First line of the paragraph . . .

If the BREAK control word were not included, it would be
typed

Heading: First line of the paragraph . . .

134 SCRIPT - .BR

CENTER Controi

Purgose :

The 1line following the CENTER control word is centered
between the margins.

Format:

- - ———

Usage:

The line to be centered is entered on the line following the
CENTER control word. It starts at the 1left margin, and
leading or trailing blanks are considered part of its
length.

Notes:

a. The CENTER control acts as a BREAK.

b. If the line to be centered exceeds the current 1line
length value, it is truncated.

Example:

.CE
Other Methods

When this 1line of the file is typed, the characters "Other
Methods" are centered between the margins.

SCRIPT - .CE 135

COMMENT Control
Purpose:

The COMMENT control word causes the rerainder of the line to
be ignored, allowing comments to be stored within the SCRIPT
file.

Format:

Usage:

The .CM control word allows comments to be stored in the
SCRIPT file for future reference. These comments can be
seen when editing the file, or printing the file under
UNFORMAT mode.

The comments may also be used to store unique
identificaticns that can be useful when attempting to locate
a specific region of the file during editing.

Example:

.CM Remember to change the date.
The line above is seen when examining an unformatted listing
of the SCRIPT file, and it reminds the user to update the
date used in the text.

136 SCRIPT - .CM

CONCATENATE Control

PUIEOSG:

CONCATENATE cancels a previous NO CONCATENATE control word,
causing output 1lines to be formed by concatenating input
lines and truncating at the nearest word to the specified
line length.

Format:

——— e ——— ———

- i - —

Usage:

The CONCATENATE control specifies that output lines are to
be formed by shifting words to or from the next input line.
The resulting line is as close to the specified line length
as possible without exceeding it or splitting a word; this
resembles normal typist output or the MT/ST. This is the
normal mode of operation for the SCRIPT command, CONCATENATE
is only included to cancel a previous NO CONCATENATE control
word.

Note:
This control acts as a BREAK.

Example:

.CO
Output from this point on in the file is formed to approach
the right margin without exceeding it.

SCRIPT - .CO 137

CONDITIONAL PAGE Control

i

PUI‘EOSQ:

The CONDITIONAL PAGE control word causes a page eject to
occur, if less than the specified number of lines remain on
the current page.

Format:

- ————— ————— — — . —— > ——

- —— — ——— e —— — ———— — ——

n specifies the number of lines that must remain on the
current page for additional lines to be printed on it.

Usage:

The .CP control word causes a page eject to occur if n lines
do not remain on the current page. This request is
especially meaningful (1) before an .SP control word to
guarantee that sufficient space remains on the current page
for the number of spaces requested along with any titles,
and (2) preceding a section heading to eliminate the
possibility of a heading occurring as the 1last line of a

page.
Note:

If no operand is specified with the .CP request, the request
is ignored.

Example:

.CP 10
If less than ten lines remain on the current page, an eject
is issued before printout continues. If ten oOr more lines
remain, printout continues on the current page.

138 SCRIPT - .CP

DOUBLE SPACE Control

PUIEOSG:

The DOUBLE SPACE control word causes a line to be skipped
between each line of typed output.

Format:

—— — . . ——

Usage:

DOUBLE SPACE may be included anywhere in the file to force
double spaced output.

Note:
This control word has the effect of a BREAK.

Example:

.DS
Blank lines are inserted between output 1lines below this
point in the file.

SCRIPT - .DS 139

FORMAT Control

Purpose:

The FORMAT control word cancels a previous NO FORMAT control
word (or NO CONCATENATE and/or NO JUSTIFY control word),
causing concatenation and right Jjustification of output
lines to resume.

Format:

—— - o o —— = —

Usage:

The FORMAT control word is a shorthand way to specify the
two control words: CONCATENATE and JUSTIFY. This control
specifies that lines are to be formed by shifting words to
or from the next line (concatenate) and padded with extra
blanks to produce an even right margin (justify). Since
this is the normal mode of operation for the SCRIPT command,
FORMAT is only included to cancel a previous NO FORMAT
control word.

Notes:
a. This control acts as a BREAK.

b. If a line without any blanks exceeds the current line
length, it is truncated.

C. The .FI form of the control word is provided for
compatibility with old SCRIPT file and should not be used in
new files.

Example:

.FO
Output from this point on in the file is padded to produce
an even right margin on the output page.

140 SCRIPT - .FI/.FO

HEADING Control

Purgose:

The HEADING control word specifies a heading 1line to be
typed at the top of subsequent output pages.

Format:

| .BE | 1line |

line specifies the heading to be printed at the top of
subsequent pages.

Usage:

All of the line following the first blank after the HEADING
control word is printed at the top of pages starting after
the control word is encountered. No heading is typed on the
first page of an output file. The heading is typed at the
left margin. Its length must be at least ten less than the
output line length, to allow for a page number at the right
margin. Leading blanks may be used to center the heading.
The heading is typed in the 1line specified by the heading
margin and top margin control words. Additional .HE control
words may be included at any point in the file to change the
heading on subsequent pages.

Note:
If a new heading is to be placed on a page forced with the

PAGE control word, the HEADING control must precede the PAGE
control.

Examples:

a. .HE CAMBRIDGE MONITOR SYSTEM

The characters CAMBRIDGE MONITOR SYSTEM are typed at the
left in the second-last line of the top margin on all pages
started after this point in the file:

CAMBRIDGE MONITOR SYSTEM PAGE 7
b. .he CMsS
The leading blanks are considered part of the heading, so
the characters CMS are centered in the heading line

CMS PAGE 8

SCRIPT - .HE 141

HEADING MARGIN Control

P\IIEOSG :

The HEADING MARGIN control word specifies the number of
lines to be skipped between the heading and the first line
of text excluding forced space (TOP MARGIN), overriding the
standard value of 1.

Format:

n specifies the number of lines to be skipped after the
heading line.

Usage:

The heading line is placed a specified number of lines above
the top margin. If no HEADING MARGIN control word is
included in the file, the default value is 1.

The HEADING MARGIN specified must always be less than the
current TOP MARGIN.

Note:

This control word acts as a BREAK.

Examples:

a. <HM 3

Three lines are left between the heading line and the first
line of text. If default top margin of 5 is in effect, the
heading occurs one 1line from the top of paper, followed by
three more blank lines (the heading margin), and then the
text.

b. -HM 1
The standard heading margin of 1 is set.

142 SCRIPT -~ .HM

IMBED Control

Purgose:

The IMBED contrcl word is used to insert the contents of a
specified file into the printout of another SCRIPT file.

Format:

- - - - s o

| IM | filename |

filename specifies the file to be currently formatted into
the printout. A filetype of SCRIPT is assumed.

Usage:

The .IM and .AP control words perform similar functions, but
.IM allows the contents of a second file to be inserted into
the printout of an existing file, rather than appended to
the end of it. Imbedding may be us2d to insert standard sets
of control words at desired spots in a file, as well as for
many other purposes.

Example:

.IM CHAPY4
The contents of the SCRIPT file whose filename is CHAPY4 are
inserted in the printout of the current SCRIPT file; when
the end of the CHAPY file is reached, printout of the
current file resumes.

SCRIPT - .IM 143

INDENT Control

Purpose:

The INDENT control word allows the left side of the SCRIPT
printout to be indented.

Format:

n specifies the nurber of spaces to be indented. If
omitted, indentation reverts to the original margin.

Usage :

The .IN control word causes SCRIPT printout to be indented n
spaces from the current left margin setting. This
indentation remains in effect for all following 1lines
(including new paragraph and pages), until another .IN
control word is encountered. ".IN 0" cancels the
indentation, and printout continues at the original 1left
margin setting.

Notes:
a. The .IN request acts as a BREAK.

b. The .IN request resets the effective 1left margin,
causing any .OF setting to be cleared. The .OF request may
be used alone, or in conjunction with .IN. When the latter
is the case, .IN settings take precedence.

Examples:

a. .INS
All 1lines printed after +this request are indented five
spaces from the current left margin setting. This
indentation continues until another .IN control word is
encountered.

b. .IN O

The effect of any current indentation is canceled, and
printout continues at the original left margin setting.

144 SCRIPT - .IN

JUSTIFY Control

Purpose:

The JUSTIFY control word cancels a previous NO JUSTIFY
control word (or part of a NO FORMAT control word), causing
right justification of output lines to resume.

Formats:

——— - —— ——

— > i ——

Usage:

This control word specifies that lines are to be justified
by padding with extra blanks. If concatenate mode is in
effect, the concatenation process occurs before
justification. Since this is the normal mode of operation
for the SCRIPT command, JUSTIFY is only included to cancel a
previous NO JUSTIFY control word, or the NO JUSTIFY part of
a NO FORMAT control word.

Notes:
a. This control acts as a BREAK.

b. If a 1line exceeds the current 1line 1length, and
CONCATENATE mode is not in effect, the line is printed as
is.

c. This control word 1is seldom used without CONCATENATE
mode, therefore, FORMAT should be used to enter JUSTIFY and
CONCATENATE mode.

Example:

.JU
output from this point on in the file is padded to produce
an even right margin on the output page, as long as the
input lines do not exceed the line length.

SCRIPT - .JU 145

LINE LENGTH Control

Purpose:

The LINE LENGTH control word specifies a line length that is
to override the standard line length of 60 characters.

Format:

——— e —— i . —————

n specifies output 1line 1length not greater than 120
characters.

Usage:

The LINE LENGTH control sets the 1length for output lines
until the next LINE LENGTH control word is encountered. If
no LINE LENGTH control is included in a file, the standard
line length of 60 characters is used.

In the JUSTIFY/NO CONCATENATE mode, 1lines shorter than line
length are justified to length by blank padding.

In the CONCATENATE mode, lines longer than 1line length are
spilled into the following 1line; lines shorter get words
from previous, or following lines, to approach line length.
Note:

This control acts as a BRERAK.

Example:

.LL 50
Succeeding lines are no more than 50 characters in length.

146 SCRIPT - .LL

NO CONCATENATE Control

Purpose:

The NO CONCATENATE control stops words from shifting to or
from the next line.

Format:
| -NC |
Usage:
The NO CONCATENATE control word stops words from shifting to
and from the next line. There is a one-to-one

correspondence between the words on the input and output
lines. This control word is useful for sections of files
containing tabular information, or other special formats.

Note:
This control acts as a BREAK.

Example:

<NC
Concatenation is completed for the preceding line or lines,
but following 1lines are typed without moving words to and
from lines.

SCRIPT -~ .NC 147

NO FORMAT Control

Purpose:

The NO FORMAT control stops the CONCATENATE and JUSTIFY
mode, causing lines to be typed just as they appear in the
file.

Format:

Usage:

The NO FORMAT control is a shorthand way to specify the two
control words: NO CONCATENATE and WO JUSTIFY. This stops
line Jjustification and concatenation until a FORMAT,
JUSTIFY, or CONCATENATE control word is encountered. This
control is useful for sections of files containing tabular
information or other special formats.

Note:
This control acts as a BRFEAK.

Example:

.NF
Justification and concatenation are completed for the
preceding line or 1lines, but following lines typed exactly
as they appear in the file.

148 SCRIPT - .NF

NO JUSTIFY Control

Purpose:

The NO JUSTIFY control stops padding lines to cause right
justification of output lines.

Format:

Usage:

The NO JUSTIFY control word stops the padding of lines with
additional blanks. If CONCATENATE mode is in effect, lines
are formed that approach the current line length but are not
forced to the exact length. The resulting 1lines resemble
the output usually produced by a typist or an MT/ST
(Magnetic Tape/Selectric Typewriter).

Note:
This control acts as a BREAK.

Example:

«NJ
Justification is completed for the preceding line or lines,
but following 1lines are typed without inserting additional
blanks to pad the line.

SCRIPT - .NJ » 149

OFFSET Control

Purpose:

The OFFSET control word provides a technique for indenting
all but the first line of a section.

Format:

| -OF | n |

n specifies the number of spaces to be indented after the
next line is printed. If omitted, indentation reverts to
the original margin setting.

Usage:

The .OF control word may be used to indent the left side of
the printout. Its effect does not take place until after
the next 1line is printed, and the indentation remains in
effect until an indent or another offset control word is
encountered.

The .OF control may be used within a section which is also
indented with the .IN control. Note that .IN settings take
precedence over ,OF, however, and any .IN request causes a
previous offset to be cleared.

If it is desired to start a new section with the same offset
as the previous section, it is necessary to repeat the .OF n
request.

Notes:
a. This control acts as a BREAK.

b. Two OFFSET control words without an intervening text
line constitute an error condition.

Examples:

a. .OF 10

The 1line immediately following the .OF control word is
printed at the current left margin. All 1lines thereafter
(until the next indent or offset request) are indented ten
spaces from the current margin setting.

b. .OF

The effect of any previous .OF request is canceled, and all
printout after the next line continues at the current left
margin setting.

150 SCRIPT - ,OF

PAGE Control

Purpose:
PAGE causes the output form to be advanced to the next page.

Format:

n specifies the page number of the next page. If n is not
specified, sequential page numbering is assumed.

Usage:

Whenever a PAGE control word is encountered, the rest of the
current page is skipped. The paper is advanced to the next
page, the heading and page number are typed, and output
resumes with the 1line following the PAGE control word. 1If
STOP was specified with the SCRIPT command, a carriage
return must be entered when the bottom of the page is
reached.

Notes:
a. This control acts as a BREAK.

b. If the heading, line 1length, or other format parameters
are to be different on the new page, the appropriate control
words must appear before the PAGE control word.

Examples:

a. .PA

The rest of the current page is skipped. The heading and
page number are typed in the top margin of the next page,
and output resumes.

b. .PA S5

Regardless of the number of the current page, the rest of
that page is skipped, the heading and page number 5 are
typed in the top margin of the next page, and output
resumes.

SCRIPT - .PA 151

PAGE LENGTH Control

Pu se:

The PAGE LENGTH control word specifies the length of output
pages in lines. The value specified overrides the standard
page length of 66 lines.

Format:

{ .PL | n |

n specifies the length of output pages in lines.

Usage:

The PAGE LENGTH control word allows varying paper sizes to
be used for output. If no PAGE LENGTH control word is
included in a file, 66 is the default value. This 1is the
correct size of standard typewriter paper for terminals
typing eight 1lines per inch. Page 1length may be changed
anywhere in a file, with the change effective on the first
page started after the control word is encountered.

Note:
This control word acts as a BREAK.

Example:

.PL 51
Page length 1is set to 51 1lines. This is the correct size
for a terminal typing six lines per inch.

152 SCRIPT - .PL

PAGE NUMBER Control

PUEEOSQ:

The PAGE NUMBER control word allows the user to control both
external and internal page numbering of the file being
printed.

Format:
| | OFF |
| .PN | OFFNO]
I | ON I

OFF suppresses external page numbering, although internal
page numbering continues.

OFFNO suppresses both external and internal page numbering.

ON causes external page numbering to be resumed.

Usage:

.PN is used to control the page-numbering feature of the
system. If the OFF operand is specified, page numbering is
discontinued on the printout, although the page numbers
continue to be incremented internally. The OFFNO operand
discontinues page nurbering on the printout and stops the
internal incrementation of page numbers. When the ON operand
is specified, page numbering resumes from the last internal
page number.

Examples:

a. .pn off

No further page numbers will appear on SCRIPT output,
although the internmal page count continues to be incremented
for each page printed.

b. - PN OFFNO

No page numbers will appear on SCRIPT output, and the
internal page count remains at its current setting without
further incrementation.

C. .PN ON

Page numbering on SCRIPT output resumes using the current
internal page count; this count is incremented for each page
printed.

SCRIPT - .PN 153

READ Control

P\IIEOSG:

The READ Control word allows the user to enter a line from
the terminal during SCRIPT output.

Format:

———— g~ —— — — — > > ——

- —— . > o

n specifies the number of lines to be read at the terminal.
If omitted, 1 is assumed.

Usage:

When the .RD control word 1is encountered during SCRIPT
output to the terminal, it acts as a BREAK, spins the type
head several times, and unlocks the keyboard for a line of
input. The 1line entered is ignored by the program, and no
formatting occurs on it. This facility is useful for adding
headings to form letters, etc.

As many .RD's may be used as wanted; each results in a
separate line accepted at the terminal.

Note:
This control word acts as a BREAK.

Example:

«RD
When this control word is encountered during SCRIPT output,
the type head rotates and the keyboard is unlocked to allow
one line to be typed at the terminal.

154 SCRIPT - .RD

SPACE Control

Purpose:

The SPACE control word generates a specified number of blank
lines before the next typed line.

Format:

- ——— ——— —— — > = > ——

n specifies the number of blank lines to be inserted in the
output. If omitted, 1 is assumed.

Usage:

The SPACE control word may be used anywhere in the file to
generate blank lines. If page end is reached during a SPACE
operation, remaining blank 1lines are inserted after the
heading on the following page. If DOUBLE SPACE is in
effect, twice as many blank lines are generated as
specified.

Note:

This control acts as a BRERK.

Examples:

a. .SP 3
Three blank lines are inserted in the output before the next
typed line.

b. .sp
A single blank line is inserted in the output.

SCRIPT - .SP 155

SINGLE SPACE Control
Purpose:

The SINGLE SPACE control word cancels a previous DOUBLE
SPACE control word, and causes output to be singlespaced.

Format:

———— - ———

Output following the SINGLE SPACE control word is
singlespaced. Since this is the normal output format, SINGLE
SPACE is included in a file only to cancel a previous DOUBLE
SPACE control word.

Note:
This control word acts as a BREAK.

Example:

«SS
Singlespacing resumes below this point in the file.

156 SCRIPT - .SS

TAB SETTING Control

Pu se:

The TAB SETTING control word specifies the tab stops to be
assumed for the following lines when converting the TAB
character generated by the TAB key into the appropriate
number of spaces.

Format:

| .TB | n(1) n(2) n(3) n(4) n(5) |

——— - - — ———— - —— — ————— —— — —— - — ————— —

n(i) specifies the column location of the (i)th tab stop;
the sequence must consist of increasing positive
values separated by one or more spaces.

Usage:

TAB characters generated by the TAB key entered into the
file during EDIT file creation are expanded by SCRIPT into
one or more blanks to siwulate the effect of a logical tab
stop. The TAB SETTING control word specifies the locations
of the 1logical tab stops, this overrides the default tab
stops of 5, 10, 15, 20, 25, 30, 35, 40, u5, 50, 55, 60, 65,
70, 75.

A TAB SETTING control word without any tab stops specified,
results in reversion to the default tab settings. This
control word is useful for indenting the beginning of a
paragraph (remember a TAB causes a paragraph BREAK), or for
tabular information and diagrams.

Notes:
a. This control word acts as a BREAK.
b. The tab settings must be monotonically increasing. Tab

settings that are not so ordered result in unpredictable
behavior.

Examples:

a. .TB 10 20 30 40
Tab stops are interpreted as columns 10, 20, and 30.

b. .TB
Tab stops revert to default values of 5, 10, 15, etc.

SCRIPT - .TB 157

TOP MARGIN ¢
Purpose:

The TOP MAR(
be skipped
standard val

Format:

n specifies
output pc

Usage:

The specifi
succeeding ¢
page number
margin., If
file, the de
always be g

Note:
This control

Example:

.TM 3
Three lines
current page
second line

158

.tm 10

.ce

SCRIPT Example
.Sp 2

.ds

This example will demonstrate some of the capabilitie
of the SCRIPT command. This file was created by
issuing:

.br

EDIT EXAMPLE SCRIPT

.br

Since the file did not previously exist, the terminal
was placed directly into the input environment. This
paragraph was double-spaced with the .DS control.
.SS

.Sp
No BREAK was needed here, since the .SS (SINGLE-

SPACE) control acts as a break. Although this is
in FORMAT mode, tabular information can be included:

SPACE .SP .sp
SINGLE SPACE -SS «SS
DOUBLE SPACE -DS .ds
- sp
The leading blanks caused each line to be handled
separately.

.Sp
Use of the LINE LENGTH control allows space

to be left within a page for figures or drawings.
Naturally, it may take some experimentation for
finding how many paragraphs will fit next to a
figure.

.11 30

.sp
The new line length must take affect

at a paragraph, since it acts as a BREAK. The
switch back to standard line length, usually 60,
also is a BREAK, and must end a paragraph. This
works only in FORMAT mode.

.11 60

.nf

By switching out of FORMAT mode CAPTION
and doing some justification

by eye, fancier effects can be obtained. This also
takes some practice and experimentation.

.Fi

.cp 5

Figure 11. Contents of a SCRIPT file

160 SCRIPT

PARAGRAPHS:

.br

If no space follows a paragraph heading, and if the

paragraphs are not indented, a BREAK is necessary in

FORMAT mode, to keep the heading line from being justified.
A few leading blanks are the easiest way to force

a BREAK and separate paragraphs. A line with only a blank

will also force a BREAK and a blank line, if the following

line also begins with a blank, as follows:

The CENTER control is handy for small figures
included in the text. A .CE in front of each line of
the figure is necessary, and note that leading or trailing
blanks count for figuring the length to be centered:

Isp

.ce

Figure EX.A

.Sp

To offset the caption it would be necessary to leave
trailing or leading blanks, which are counted as part
of its length:

.Sp

- er e e an e s @ e e e wn

.ce

Figure EX.A

.Sp

The above caption has 14 trailing blanks, which move

it to the left. Leading blanks would move it to the right.

Figure 11 (cont.) Contents of a SCRIPT file..

SCRIPT 161

SCRIPT Example

This example will demonstrate some of the capabilities of
the SCRIPT command. This file was created by issuing:

EDIT EXAMPLE SCRIPT

Since the file did not previously exist, the terminal was
placed directly into the input environment. This paragraph
was double-spaced with the .DS control.

No BREAK was needed here, since the .SS (SINGLE- SPACE)

control acts as a break. Although this is in FORMAT mode,
tabular information can be included:

SPACE .SP .Sp
SINGLE SPACE .SS .Ss
DOUBLE SPACE .DS .ds

The leading blanks caused each line to be handled
separately.

Use of the LINE LENGTH control allows space to be left
within a page for figures or drawings. Naturally, it may
take some experimentation for finding how many paragraphs
will fit next to a figure.

The new line 1length must take

affect at a paragraph, since

it acts as a BREAK. The

switch back to standard 1line

length, usually 60, also is a

BREAK, and must end a

paragraph. This works only in

FORMAT wmode.

By switching out of FORMAT mode CAPTION
and doing some justification

by eye, fancier effects can be obtained. This also
takes some practice and experimentation.

Figure 12. SCRIPT output

162 SCRIPT

PARAGRAPHS:
If no space follows a paragraph heading, and if the
paragraphs are not indented, a BREAK is necessary in FORMAT
mode, to keep the heading line from being justified.

A few leading blanks are the easiest way to force a
BREAK and separate paragraphs. A line with only a blank
will also force a BREAK and a blank line, if the following
line also begins with a blank, as follows:

The CENTER control is handy for small figures
included in the text. A .CE in front of each line of the

figure is necessary, and note that leading or trailing
blanks count for figuring the length to be centered:

- e emn ar A wn a@ wn wn s W s wm -

Figure EX.A
To offset the caption it would be necessary to leave
trailing or leading blanks, which are counted as part of its
length:

Figure EX.A

The above caption has 14 trailing blanks, which move it to
the left. Leading blanks would move it to the right.

Figure 12 (cont.) SCRIPT output

SCRIPT 163

SPLIT

Purpose:

The SPLIT command copies a specified portion of a given file
and appends it to a second file or creates a new file.

Format:

i | labell 1label?2 |
| SPLIT | fnamel ftypel fname2 ftype2 nl < n2 > |
1 | eof |

D S S . A D > T ——— —— —— ———— — - —— - s s ————— - ———— W ——— —

fnamel ftypel specifies the file from which a portion is

copied

fname2 ftype2 specifies the name of the file to which filel
is added

labell an eight-byte alphameric 1label with the first

character nonnumeric, specifying the first
record to be copied

label2 an eight-byte alphameric 1label with the first
character nonnumeric, specifying the item
after the last item to be copied

nil a decimal number specifying the item number of
the first item to be copied

n2 a decimal number specifying the number of
items to be copied

Usage:

The SPLIT command enables the user to copy a portion of
filel and to append it to file2. Filel and file2 cannot be
the same file. If file2 does not exist, it is created. The
files may have fixed-length or variable-length 1length
records. If file2 exists, and is a fixed-length record file,
filel must also be a fixed-length record file.

Copying begins at either the first record containing the
alphameric string (labell), in the first eight bytes of a
record (label field), or at the specified item number if the
parameter consists oI all numeric characters.

If the last parameter is not provided, copying continues to
the end of file. If the 1last parameter is specified as an
alphameric 1label, copying, once initiated, terminates
immediately before the first item bhaving the alphameric
string, label2, in the label field of a record. The extent
of copying may alternatively be specified by an integer
count of the number of items to be copied.

164 SPLIT

No copying is done if (1) labels are used for both starting
and stopping the copying and these two labels are identical,
(2) the initial label or item number cannot be found, or
(3) the number of items is specified as zero.

SPLIT searches all disks for the file. The new file is
placed on the same disk as the original file.

Responses:

WRONG NUMBER OF PARAMETERS
The specified number of parameters given is not five or six.

INVALID LIMIT

One of the 1limit fields 1is specified with the first
character numeric, and one of the other characters
nonnumeric.

EOF REACHED
The end of filel has been reached with or without copying
being initiated.

FILE NOT CHANGED
The command has been completed without any writing of files.

FILE MODIFIED
The command has been successfully completed, and at least
one item has been copied.

Any error encountered in the reading of filel terminates the
command after printing one of the following responses:

TYPE NOT FOUND

DISK ERROR

ILLEGAL MODE

NONSTANDARD FILE

OPEN FOR WRITING

OPEN FILE LIMIT

Any error encountered in the writing of file2 terminates the
command after printing one of the following responses:

BAD OUTPUT TYPE

ERROR ON DISK

OPEN FOR READ

TOO MANY FILES

DISK FULL

READ ONLY

FILE TYPES INCOMPATIBLE...FILES NOT CHANGED

Examples:

a. SPLIT FILE DATA F1 DATA 45 12

The twelve items beginning with the 45th item are extracted
from the FILE DATA file. If the F1 DATA file exists, they
are appended to it. If the F1 DATA file does not exist, it
is created and they become its contents.

SPLIT 165

b. SPLIT ABLE SYSIN ABLE1l SYSIN BEG 20

The 20 items beginning with the item which has a label field
containing BEG are extracted from the file ABLE SYSIN and
appended to the file ABLE1l SYSIN if it exists, or become the
contents of the file ABLE1l SYSIN if it doesn't exist and
must be created.

c. SPLIT PROG SYSIN PROGEND SYSIN END

If PROGEND SYSIN does not exist, items beginning with the
item with END in the label until the end of file PROG SYSIN
are used to create a new file called PROGEND SYSIN; if
PROGEND SYSIN does exist, those items are appended to it.

Error Messages:

The SPLIT command diagnoses all errors which occur and
prints a response wmwessage indicating the nature of the
error. All returns from SPLIT are with general register 15
equal 0, indicating no error.

166 SPLIT

STATE
Purpose:
The STATE command tests whether a file exists.

Format:

e ——— —— v — ——— - - ————

| STATE | filenawe filetype <filemode>|

Usage:

When STATE 1is issued for a file which exists, the command
returns with a code of zero. If the file does not exist, a
nonzero error code is returned.

Exrror Codes:

E(00001)
File specified does not exist.

E(00004)
First character of filemode illegal.

STATE 167

UPDATE

Purpose:

The UPDATE command makes changes 1in a specified file
according to control cards in a second file.

Format:

e e o e o > o e i . - - ———— —— —— — —— o

|UPDATE| filenamel <filetypel <filename2 <filetype2>>> <(options)>|

- - — ——— s > —— s ——— ————— —————————— —— —— - — - —— — ——————— ——————

filenamel 1is the name of the file to be changed.

filetypel is the +type of the file to be changed. If
omitted, SYSIN is assumed.

filename2 1is the filename of the file containing the UPDATE
control cards. If omitted, filenamel is assuwed.

filetype2 1is the filetype of the file containing the UPDATE
control cards. If omitted, UPDATE is assumed.

Options:

P specifies that the file incorporating the changes
is to replace the original file. If omitted, the
0ld file is retained unchanged, and the new file
receives a filename consisting of a period (.),
followed by the first seven characters of the
original filename.

SEQS8 specifies that sequencing is to be done on all
eight characters in columns 73 to 80.

INC specifies that the sequence numbers in columns 73
tc 80 of the UPDATE deck are to be placed in the
new SYSIN deck.

Control Cards:

Changes are made in the original file according to the
UPDATE control cards in the UPDATE file. The format of
these cards is shown below:

—— -t o —— — - - -

|/ S segnol increment label |

- — e - ———— ——— ————— —— —— — — —— ——— —— —— ot

S specifies that the new file is to be sequenced in
columns 76-80. If this card is included in the
UPDATE file, it must be the first card.

segnol specifies the starting sequence number.

168 UPDATE

increment specifies the increment to be added ¢to the
sequence number for each item.

label is a three-character label to be placed in
columns 73-75.

| ./ D segnol segno2 |

D specifies that cards are to be deleted from the
original file.

segnol is the (original) sequence number of the first
card to be deleted.

segno2 is the sequence number of the 1last card to be
deleted. If omitted, only one card is deleted.

- —— - —— e . e —

I specifies that cards are to be inserted in the
original file. The inserted cards must follow
this ./ I card immediately in the UPDATE file.
All cards, until the next control card, are
inserted.

segnol specifies the sequence number of the item after
which the cards are to be inserted.

| ./ R segnol segno2 |

- e s - -

R specifies that cards are to be inserted in the
original file in place of cards now there.

segnol specifies the first card to be replaced.

segno2 specifies the last card to be replaced. The cards
to be inserted in place of those deleted (not
necessarily the same number) must follow the ./ R
card immediately in the UPDATE file.

Usage:

UPDATE modifies the specified file according to control
cards in a second file. The filetype SYSIN 1is assumed for
the file to be modified, if no other 1is specified. The
control-card file normally has the same name as the file to
be modified, and has the filetype UPDATE. It is referred to
as the UPDATE file, with the understanding that both a
different filenawme and filetype may be specified with the
UPDATE command. Note that if different identifiers are

UPDATE 169

specified, the filetype of the file to be modified must also
be included. The options must always be the last arguments
specified if they are to be included.

UPDATE generates two files during execution: “filename
UPDLOG P5" and "filename INTER P5" where filename is that of
the original file in both cases. The UPDLOG file contains a
record of the control cards in the UPDATE file, items added
to and deleted from the original file, and error messages.
A new UPDLOG file is generated on each execution, replacing
any existing UPDLOG file with the same filename.

The INTER file receives the records of the original file as
changes are made. At the end of execution, the identifiers
of the INTER file are changed to one of two formats. If (P)
is specified, the original file is erased, and the INTER
file receives its filename and filetype. If (P) is not
specified, the original file remains unchanged on the
permanent disk. new file receives the same filetype and
filemode, and a filename composed of a period (.) plus the
first seven characters of the original filename.

The control cards of the UPDATE file always refer to the
items of the original file by the sequence numbers existing
before any changes in columns 76-80. If no sequence numbers
exist, issue a preliminary UPDATE command with only the ./ S
control card in the UPDATE file. If the SEQ8 option is
specified, the sequence numbers referred to are in columns
73 to 80. Sequence numbers will be assigned. The control
cards must always be identified by a ./ in columns 1 and 2,
but any number of blanks may separate the other fields.
Sequence numbers may be expressed with up to five digits,
unless SEQ8 is specified. Leading =zeros are not necessary.
Any sequence numbers in cards to be inserted in the file are
ignored unless INC is specified, in which case this number
is placed in the new SYSIN. If the ./ S control card is
omitted from the UPDATE file, and INC 1is not specified,
asterisks are placed in columns 73-80 of all cards in the
new file which were added or replaced, to indicate where
changes were made.

Changes are wade in order in a single pass through the file.
If control cards specify changes that are not in order, an
error is recorded, and no changes are made.

Responses:

INTERMEDIATE FILE EXISTS.

The file "filename INTER P5" already exists for the filename
specified. ERASE or ALTER this file, and issue the UPDATE
command again.

FATAL ERROR 1

A control card was detected in the UPDATE file whose second
field was not the character R, I, D, or S.

170 UPDATE

FATAL ERROR 2
The file to be changed is not on the permanent disk.

READ ERROR or WRITE ERROR
An error occurred while reading or writing to the permanent
disk. '

PARAMETER ERRCR
No parameters were entered with the command.

filename filetype NOT FOUND
The file identified in the response was not found in the
user's file directory.

ERRORS ENCOUNTERED. SYSIN REMAINS UNCHANGED.

This response 1is issued for all of the above error
conditions. It indicates control is about to return to the
CMS command environment, and that no changes have been made
to the files.

Example:

UPDATE RET

Assume that the file RET SYSIN P5 contains these items:

RET CSECT RET00010

BALR 12,0 RET00020
USING *,12 RET00030
SR 15,15 RETO00040
END RETO00050

Assume that the file RET UPDATE P5 contains

«/ S 100 25 RTN

./ I 10
ENTRY RETCODE

./ R 40
L 15,RETCODE
BR 14

RETCODE DS F

As the command is executed, the file RET INTER P5 is
created. As items are placed into it, RTN is placed in
columns 73-75, and sequence numbers, beginning with 00100
and incrementing by 25, are placed in columns 76-80. On
completion, the file becomes .RET SYSIN P5, and contains

RET CSECT RTNO00100
ENTRY RETCODE RTNO00125
BALR 12,0 RTNOO150
USING *,12 RTNOO175
L 15,RETCODE RTN00200
BR 14 RTN00225
RETCODE Ds F RTN00250
END RTNO00275

UPDATE in

RET UPDLOG PS5 is also created, containing the control cards,
and all items added or deleted.

Exrror Messages:

E(00002) FATAL ERRCR 3
An error occurred while attempting to change the
identification of the INTER file. Enter the command

ALTER fnl INTER * fnl filetype *
where fnl is the filenare of the file changed, and filetype

is the desired filetype. If another error occurs, reenter
the UPDATE command.

172 UPDATE

EXECUTION CONTROL

Several commands are available to the user for execution
control (that is, the loading and running of programs).
Files (or programs) which are to be loaded and run under CMS
must reside on disk and must be either in relocatable object
code form or in core-image form. A program in relocatable
object code form is one whose address references can be
modified to compensate for the relocation occurring when the
program is loaded into core. A program in core-image form is
one which represents a copy of the contents of core which
would be executable. All of its address references have
been resolved and it can no longer be relocated.

output from the assembler and all compilers supported under
CMS is relocatable object code. Unless an option to the
contrary is specified by the user, this output is created as
a file on the user's permanent disk and assigned a filetype
of TEXT. All files, whose filetype is TEXT, are assumed to
consist of relocatable object code and are processed
accordingly. To load such files into core, either the LOAD,
USE, or REUSE commands may be used. The LOAD command reads
the specified file(s) from disk and loads them into core,
relocating the programs and establishing the proper linkages
between program segments. Several options may be specified
in the LOAD command, which allow the user to specify text
libraries to be searched for missing subroutines, to request
that execution of the loaded program(s) begin, etc. USE
and/or REUSE should be issued only after a LOAD command has
been issued. The purpose of the USE command is to load the
specified TEXT file(s) into core, and to establish linkages
between these programs and previously loaded programs. The
REUSE command performs the same function as the USE command,
but has the additional effect of changing the default entry
point of these programs to that of the first filename
specified in the REUSE command.

A core-image copy of any information currently residing in
core may be created by issuing the GENMOD command. This
command creates a file on the user's permanent disk that is
a copy of the contents of core between the specified
locations, and assigns a filetype of MODULE to this file.
All files whose filetype is MODULE are assumed to be in
core-image form, and are processed accordingly. To load
such files into core, the LOADMOD command is used. Since
address references do not have to be resolved, the LOADMOD
process is faster than the LOAD process for a given program.

After files have been 1locaded into core by the LOAD, USE,
REUSE, or LOADMOD commands, execution may be begun by
issuing the START command. Execution may also be initiated
by specifying the XEQ option with LOAD.

The § command is used to 1load and start a specified file,

depending on its filetype, as follows: (1) if a filetype of
EXEC is found, the file is assumed to consist of one or more

Execution Control 173

CMS commands, and the EXEC command is called to execute
these commands; (2) if a filetype of MODULE is found, the
LOADMOD command is called to load the file into core, and
then the START command is called +to begin execution; or (3)
if a TEXT filetype is found, the file is loaded into core by
a LOAD command, and START is called to begin execution.

The function of the GLOBAL command is to specify two types
of libraries: libraries containing TEXT files which are to
be searched by the LOAD, USE, or REUSE commands for missing
subroutines and undefined names; and libraries containing
macro definitions, which are to be searched by the assembler
for resolving wundefined macros. If the GLOBAL command is
used, it should be issued before the LOAD, USE, REUSE, or
ASSEMBLE commands to which it refers.

174 Execution Control

EXEC

Purpose:

EXEC executes one or more CMS commands contained in a
specified file, allowing a sequence of commands to be
executed by issuing a single command.

Format:

- ——— ————— — — ———— " > " —— — ——— . — — — — " -

| EXEC | filename <argl...argN>|

filename specifies the filename of a file containing one or
more CMS command to be executed. The filetype must
be EXEC.

argl...argN are the argumwents to replace the numeric
variables in the file "filename EXEC".

Usage:

EXEC executes the sequence of commands that are specified in
the file "filename EXEC". This file must be in card-image
form, and must consist of one CMS command per card image in
the same format as the command is entered at the terminal.
The filetype for the specified file must be EXEC. EXEC
files can be created by the EDIT or LISTF commands, or by a
user's program.

Each CMS command in the EXEC file can have from one to
thirty numeric variables. A numeric variable is made up of
an ampersand (&) followed by an integer ranging from one to
thirty, (that 1is, §&182...§30). Before the command is
executed, each variable is temporarily replaced by an
argument specified when the EXFC command was issued. For
example, each time an &1 appears as a variable in an EXEC
line, the first argument specified with the EXEC command
temporarily replaces the §1, the second argument specified
with the EXEC command replaces §2, and so on, to argument N
of the EXEC command.

If the double gquotation mark (") is used in place of an
argument, the corresponding variable (&N) 1is ignored in all
the commands which reference that variable. If the
specified EXEC file contains more variables than arguments
given with the EXEC command, the higher numbered variables
are assumed to be missing, and are ignored when the commands
are executed.

Arguments can be concatenated to the right side of any word
in an EXEC line. For example, the EXEC line LISTF ABCé&1
FORTRAN§2 would result in LISTF ABCXYZ FORTRAN, if argl is
XYZ and arg2 is unspecified. Use of the double quote (")
for argl would cause the variable to be ignored 1leaving

EXEC 175

LISTF ABC FORTRAN. If the single quotation mark (') is used
in place of an argument, the entire concatenated form is
deleted. For example, in the above EXEC 1line if arqgl is
specified with a double quote ("), and arg2 1is specified
with a single quote ('), the line would be just LISTF ABC.

The EXEC command 1is completely recursive (that is, an EXEC
file can contain other EXEC commands in its sequence of
commands). The recursiveness is 1limited by core size--each
level of recursion requiring about 1200 bytes of free
storage for data. This 1limits the depth of recursion to
approximately 16.

Notes:

a. Errors resulting from issued commands are not fatal and
do not cause the sequence of commands to be terminated.
This behavior may be modified by the EXEC control word
EERROR (see "Special Features of EXEC" below).

b. Each EXEC file may contain a maximum of 4095 EXEC lines.

c. This version of the EXEC command is completely
compatible with EXEC files created for use with the previous
version of the EXEC command, except that in this version
only one comwand is allowed per line. This compatibility
may be removed in a later version to save space in the CMS
nucleus.

d. If the EXEC command is issued from an EXEC file, EXEC
must be specified explicitly, as the search for commands
does not include the EXEC filetype.

ResEonse:

As each CMS command in the EXEC file is processed, it is
typed at the terminal along with the time, unless the
E§TYPEOUT OFF control word has been specified (see "Special
Features of EXEC" below).

Examples:

a. In Figure 13, the command EXEC FORTCLG LLHS is issued.
LLHS is a file whose filetype is FORTRAN, and LLHS replaces
the &1 in all CMS commands in the EXEC file. The file LLHS
FORTRAN is compiled, and the file LLHS TEXT is 1loaded and
executed. Note that each CMS command is typed before it is
executed.

176 EXEC

printf fortclg exec

FORTRAN §1 &2
LOAD &1 &2 (XEQ)

R; T=0.45/1.23 01.24.45

fortclg llhs

01.29.50 FORTRAN LLHS

01.29.55 LOAD LLHS (XEQ)

EXECUTION BEGINS.

APRIL 1968 DATA 5.320 1.920 5.600
R; T=0.55/1.44 01.30.45

Figure 13. Example of an EXEC file to compile, 1load, and
execute a FORTRAN program

b. In Figure 14, the FORT EXEC 1is created by EDIT. The
only command plac2d in the file is FORTRAN &1 (PRINT). The
file CMS EXEC was created earlier with the LISTF command
(see LISTF), and contains the sequence of FORTRAN files to
be compiled. The file CMS EXEC is typed by issuing the
PRINTF command. The EXEC command is issued specifying the
filename CMS and the two argquments EXEC and FORT. Fach file
identifier in @MS EXEC 1is preceded by two symbolic
arguments, 61 and §&2. The &1 1is replaced by the first
argument specified with the EXEC command, which is EXEC, and
the 62 is replaced by the second argument specified, which
is FORT. The sequence of CMS commands generated in core by
EXEC from the file CMS EXEC are then executed, the first of
which is

EXEC FORT W FORTRAN PS5 001.

This command executes the sequence of commands in the file
FORT EXEC, and temporarily replaces the numeric variable &1
from FORT EXEC with the argument W. The arguments FORTRAN,
P5, and 001 are ignored because there are no variables &2,
€3, and &4 for them to replace. As soon as the sequence of
commands in FORT EXEC are completed, the next command in the
file CMS EXEC is executed. This sequence continues until
all commands are executed in the CMS EXEC file.

EXEC 177

edit fort exec
INPUT:
fortran &1 (print)

EDIT:
file
R; T=0.55/1.43 01.30.50

listf * fortran (exec)
R; T=0.40/0.50 01.31.00

printf cms exec

§1 &2 W FORTRAN PS5 001

€1 €2 SUB2 FORTRAN P5 001

§1 €2 A FORTRAN PS5 001

&1 &§2 SUBB FORTRAN PS 001
R; T=0.55/3.21 01.32.15
cms exec fort

01.32.58 EXEC FORT W FORTRAN P5 001
01.33.00 FORTRAN W (PRINT)

01.33.10 EXEC FORT SUB2 FORTRAN P5 001
01.33.12 FORTRAN SUB2 (PRINT)

01.33.15 EXEC FORT y: FORTRAN P5 001
01.33.17 FORTRAN a (PRINT)

01.33.19 EXEC FORT SUBB FORTRAN P5 001
01.33.23 FORTRAN SUBB (PRINT)

R; T=1.50/1.80 01.33.27

Figure 14. The file FORT EXEC is created, the file CMS EX™C
is typed out, and then an implied EXEC is issued to nest EXECs

178 EXEC

Error Messages:

£(00001) FILE DOES NOT EXIST

The EXEC file does not exist. The EXEC command has
terminated. Check to see if the filename specified has a
filetype of EXEC.

E(00003) FILE HAS WRONG RECORD SIZE
The specified EXEC file does not contain 80-character
records. The command is terminated.

E(00006) WAITRD OR RDBUF ERR

This error would result if an EXEC file was erased after the
EXEC command had been successfully begqun. For Example, with
the procedure shown below the file ABCD EXEC would be
erased, and the attempt to read the EXEC 1line containing
PRINTF would result in the error. The EXEC command is
terminated.

printf abcd exec
ERASE ABCD EXEC
PRINTF XYZ§&2
R=0,02/70.13 03.45.14

exec abcd

ERASE ABCD EXEC

WAITRD OR RDBUF ERR

E(00006) T=0.05/0.08 03.46.10

11l Edxxxxx) |||

The error code xxxxx was generated by the CMS command issued
from the EXEC file. If E(-0003) occurs, the issued command
was invalid.

SPECIAL FEATURES OF EXEC

A line of an EXEC file is either a CMS command or an EXEC
control line. EXEC control 1lines control the sequence of
commands to be executed, specify what is to be typed on the
console during the execution of the EXEC command, Or provide
input to other command programs, or to the EXEC command
itself.

LABELS

EXEC 1lines, containing either a CMS command or an EXEC
control, may be identified with a 1label. All EXEC labels
have a dash as the first character. If the first word of an
EXEC line begins with a dash (-~) that word is assumed to be
a label. Labels are used to control the sequence of EXEC
lines executed (see "EXEC Control Words"™, &GOTO and §LOOP).
EXEC WORDS (§WORDS)

EXEC lines may contain words which begin with an ampersand

EXEC 179

(). A word beginning with an ampersand may be a numeric
variable, a keyword (that is, a symbolic variable), or a
control word. A numeric variable consists of an ampersand
followed by an integer or an asterisk (#%). A keyword word
consists of an ampersand followed by a string of not more
than seven characters, at least one of which 1is not an
integer. Control words have the same form as keywords and
are defined under "EXEC Control Words". Numeric variables
and keywords are substituted before the EXEC 1line is
interpreted.

Numeric Variables

Numeric variables are substituted for any arguments which
are to be specified when the EXEC command is issued. The
numeric variable §0 1is replaced by the filename of the
current EXEC file. The numeric variable &n is ignored when
n is negative or greater thatn 30, or when n is greater than
the number of arguments supplied when the EXEC command is
issued. The variable §&* is interpreted to mean all
arguments specified. When it is included in a CMS command,
the command 1is executed once for each argument specified.
For example, the command 1line ERASE &* #* would cause the
erasing of all files whose filename is the same as one of
the specified arguments. The variable &* may also be used
in an EIF or ELOOP condition (see "EXEC Control Words").

Keyword Variables

The value substituted for a keyword may be one of two types:
specified in an EXEC line by the user, or implied if the
keyword is a special keyword.

EXEC-Set Keywords

A number of keywords have been defined +to have special
meaning and have their values set in a special way. These
words and their values are described below.

E§LINENUM has the value of the current EXEC line number plus
one.

§INDEX1...§8§INDEX9 are used as indices and initially have the
value +1. 1Indices 1-9 may be reset or incremented
by an EXEC line. These indices may be set to an
integer value in the same way as the value of any
keyword is set. An index may be incremented or
decremented by specifying the index and the
increment in an EXEC line. For example:

EINDEX5 = 30975 sets EINDEX5 to 30975.
EINDEX7 -50 adds -50 to the value of S§INDEX7.

Indices are local to the current level of
recursion.

180 EXEC

E§INDEX0 has as its value the return code number in register
15 from the previous CMS command.

§INDEX has as its value the number of arguments given when
the EXEC command was issued.

EGLOBALO...55GLOBALY9 are used for communication between
levels of EXEC recursion and are set and
incremented in the same way as §INDEX1l... §INDEX9.

EGLOBAL has as its value the level of recursion.

User-Specified Keywords

The value of a keyword may be specified by an EXEC line of
the form

S§KEYWORD = VALUE
§ABLE = 12345

which defines the keyword &§KEYWORD to have the value VALUE
and EABLE to have the wvalue 12345.

Keywords can be redefined as often as desired.

EXEC Control Words

The EXEC control words described below can be used to
provide a versatile and flexible facility for controlling
the execution of commands and for defining a user-oriented
command environment. EXEC control words appear in EXEC
lines, which can be interspersed with CMS commands.

-

| EERROR | action |
I | ECONTINUE |

- s - - - -

where action 1is any EXEC line without a statement label.
Action is executed immediately upon an error return from a
subsequent CMS command. If action is not given, ECONTINUE
(see below) is assumed. An error in execution of action, if
action is a CMS command, results in an exit from this level
of EXEC with error code of 11.

EXEC 181

| 8IF | condition action i

where condition consists of the three parameters shown below

§* EC E*
£S5 NE €5
anything GT anything
a LT
GE
LE

and where action is any EXEC line without a 1label. If the
condition is satisfied, the action 1is executed. The
comparison specified by the second argument of condition is
made between the first and third arguments. §§ 1is
interpreted as "any of the symbolic arguments”. Thus, the
EXEC line

&IF €S EQ XYZ EPRINT HI
would cause ®"HI" to be typed if at least one of the
arguments specified when the EXEC cormand was issued was
XYZ. Similarly, &*¥ is interpreted as "all of the supplied
arguments®”. (See below for a description of EPRINT.)

A numerical comparison is made only if both the operands are
numeric. For example, the EXEC line

€IF 017 EQ 17 EPRINT HI

would cause the typing of "HI". Otherwise, the comparison
in a condition is a logical comparison.

An §IF can have another §IF as its action; these may be
nested to level 3.

| SEXIT | n |

E§EXIT causes an EXIT to the next lower level of recursion
with an error code of n. If n is not given, a normal exit
with a code of 0 results. If n is negative and if EXEC was
called from the CMS command level, the absolute value of n
is returned. If this EXEC command was called from a
previous EXEC command, a negative value of n is returned as
the error code in register 15.

182 EXEC

EQUIT n is similar to EEXIT n, except that §QUIT n returns
to level 0, the CMS command level, regardless of the level
of recursion of EXEC commands.

EQUIT ON sets the return 1level for a subsequent §QUIT
control to a level of recursion one higher. Thus, if EQUIT
ON is issued twice and if the current level of recursion is
5, an EQUIT n would cause a return to level 2 with an error
code of n.

EQUIT OFF resets -he return level to level 0, the CMsS
command level.

| §SKIP | 1 |
| i n |

ESKIP causes n lines in the file to be skipped. If n<0, the
next EXEC 1ine to be executed will be n lines before the
current line. If n>0, the next EXEC 1line to be executed
will be n+1 lines after the current line.

| | ToP |
| €GoTO | 1label{
I | EXIT |

§GOTO controls the point from which execution will continue.
EGOTO TOP causes sequential execution of EXEC lines to be
continued at the beginning of the EXEC file.

£GOTO EXIT is identical to EEXIT O and causes a return from
the current level of EXEC.

EGOTO 1label searches the EXEC file, starting from the
present EXEC line to the end of the file, then going to the
beginning of the file, and finally going back to the present
line location, 1looking for the first EXEC line beginning
with the specified 1label. (See 1label description under
"Special Features of EXEC".)

] &§LOOP | label condition {
| | nl n2 {

ELOOP causes looping either +to and including the 1labeled

EXEC 183

line, or through the number of 1lines specified by nil,
beginning with the next line.

Looping continues either until the condition is satisfied
or for n2 times. Condition is specified the same way as
with the §IF control word and is tested before looping.

Loops may be nested to a depth of 4. The numbers nl and n2
must be less than 4096.

| ECONTINUE |

ECONTINUE as an EXEC line is ignored. It may be useful with
§GOTO or 6LOCP and is the default action for EERROR.

| ETYPEOUT | ALL TIME PACK |
I | oON NOTIME NOPACK |
I | ERROR I
| { OFF {
i | NOEXEC i

- -

where:
ALL types all CMS command lines and EXEC control lines.

ON types all CMS command lines but suppresses the typing of
EXEC control lines.

ERROR types only CMS command lines which result in an error;
EXEC control lines are not typed.

OFF suppresses the typing of all EXEC lines.

NOEXEC is the same as OFF and is included for compatibility
with EXEC files created with the previous version of
the EXEC command.

TIME causes time of day to precede each CMS command line
typed.

NOTIME suppresses the typing of the time of day with each
CMS command line.

PACK removes excess blanks from typed lines.

NOPACK suppresses the removal of excess blanks from typed
lines.

184 EXEC

§TIME | TYPE |
| oNn |
| OFFE |

ETIME TYPE types the time since the previously typed time.

ETIME ON types the time message after typing each CMS
command.

§TIME OFF suppresses the typing of the time after each CMS
command.

{ 6SPACE | 1 |
l i n {

ESPACE types n carriage returns at the console.

| EPRINT | line |

EPRINT prints line on the typewriter console. All keywords,
symbolic arguments, etc., are substituted into the line. Any
word or words that exceed eight (8) characters are left
justified and truncated on the right.

{ ECOMMENT | line |

ECOMMENT is used to annotate the EXEC file. It is ignored
during execution.

| 8ARGS {<argl...argh> |

EARGS is used to redefine the numeric variables §l...&n with
the values specified by argl...argN. §&INDEX is redefined
with the value of the current number of arguments.

EREAD causes a read to the typewriter console.
If n is specified, the next n EXEC lines are read from the

console and executed immediately. These 1lines must be
entered as commands as 1if they were included in the EXEC

EXEC 185

file, since they are executed in the same way. Reading
stops and the next EXEC line is obtained from the EXEC file
either when n lines have been read, or when §&GOTO, §&SKIP,
§LOOP, EEXIT, or §&QUIT are typed. Reading may be reset by
entering &EREAD.

If ARGS is specified, one line is read from the console.
This line will be scanned and used to redefine the numeric
variables. §INDEX is redefined to the number of arguments
read. This is the only way to read without entering a
command.

Only the first 72 characters on a line are read.

| §STACK | FI line i

I | 1IFO !

€STACK stacks 1line in the input buffer, substituting for
keywords and variables. Subsequent EREAD obtains lines which
were stacked in this way.

ESTACK can be used to specify input or EDIT requests to
EDIT, or DEBUG requests to the Debug environment when it is
entered on purpose (that is, by a breakpoint or the DEBUG
command). ESTACK with a blank line is executed as a null
line.

FIFO specifies that the lines are stacked in
First-In-First-Out order. LIFO specifies that the lines are
stacked in a Last-In-First-Out order.

| EBEGSTACK | FIFO |

line 1
line 2
line N
EEND STACK

EBEGSTACK stacks 1line 1 through 1line N, 1literally without
truncation and without substituting for numeric variables or
keywords.

This sequence may also be used to specify input or EDIT
requests to the EXEC command, where a line of "#file" causes
the Edit environment of EDIT to be entered from the Input
environment and writes the file on disk. THis sequence may
also be used to specify DEBUG requests to the DEBUG
environment when that environment has been entered on
purpose (that is, via a breakpoint or the DEBUG command).

186 EXEC

FIFO and LIFC are as explained under &§STACK.

| ESET |action]

ESET has been included for compatibility with o0ld EXEC files
that used the control words ERR and TYPEOUT or actions.
§SET may later be removed as an EXEC control word.

Notes on EXEC Control Words

a. All numeric variables, keywords, EXEC control settings,
and limitations (for example, maximum depth of loop nesting)
are local to the current level of EXEC, unless otherwise
noted.

b. Any EXEC control word may be abbreviated by a sufficient
number of characters to distinguish it from other control
words. The following precedence order is observed: ERROR,
EXIT, SKIP, SPACE, STACK, SET, TYPEOUT, TIME, other control
words, otho2r keywords. ¥Keywords cannot be abbreviated.

C. An error from a CMS command does not cause an exit from
the level of EXEC.

d. When EXEC is entered, the assumed state of the controls
are EERROR, &CONTINUE, ETIME OFF, and ETYPEOUT ON TIME PACK.

e. If an EXEC 1line specifies an invalid CMS command, an
error code of E(-0003) is returned. The EXEC command is not
terminated.

Errors from EXEC Control Words

E(00001) File does not exist.

E(00002) E§SKIP or &§GOTO error.

E(00003) File has wrong record size.

E(00004) Keyword or argument error.

E (00005) Exceeded wmaximum depth of loop nesting.

E(00006) Waitrd or Rdbuf error.

E(00008) Illegal form of condition.

E(00010) Error in EGLOBAL or &§INDEX usage.

E(00011) Error occurred in attempt to execute §&ERROR'S
action.

EXEC 187

PROFILE EXEC

The PROFILE EXEC feature allows a user to set up his own
operating environment within CMS. When CMS is 1IPL'ed and
the first CMS command is entered, an automatic search is
made for a file with a filename and filetype of PROFILE
EXEC. If such a file exists, it is automatically executed
before the first CMS command entered is executed--thereby
saving the user from entering any repetitious commands he
may be entering each time he uses CMS.

PROFILE EXEC is a standard EXEC file as described in the
preceding sections and, as such, may contain any valid
EXEC-type statements. Its only difference is in 1its name,
which has a special meaning that causes this automatic
execution.

Examples

a. A PL/I user would have to use the GLOBAL T PLILIB
statement each time he was on the system so that the PL/I
library would be used rather than the FORTRAN 1libraries.
This PROFILE might be created as follows:

edit profile exec
NEW FILE.

INPUT:

global t plilib

EDIT:
file

b. A user who wanted to redefine his LINEND and BLIP
characters: each time might set up the following PROFILE
EXEC:

edit profile exec
NEW FILE.

INPUT:

§typeout off
linend !

blip *

EDIT<
file

Note. This automatic execution mway be avoided by issuing

LOGIN NOPROF as the very first CMS command (see LOGIN under
"Control Commands®).

188 EXEC

GENMOD

Purpese:

The GENMOD command is used to generate non-relocatable
core-image files.

Format:

- - - - - - -

| GENMOD | entryl <entry2> (optionl...optionN)|]

- - - > et - " - . A S > A > i > -

entryl specifies an entry point or a control section name
indicating the starting core 1location from which the
core-image copy 1is to be generated. It is also the
filename assigned to the newly generated file.

entry2 specifies an entry point or a control section name
indicating the ending core 1location from which the
core-image copy is to be generated.

Options:

NOMAP specifies that a load map 1is not to be contained in
the core-image file.

P2 specifies that the MODULE file is to have a mode of P2.

Usage:

The GENMOD command causes a file to be created which is a
copy of the contents of a specified portion of core. The
LOAD, USE, or REUSE commands will have been issued prior to
the GENMOD command to load into core the file or files of
which a non-relocatable core-image copy is to be created.
The newly created file 1is placed on the user's permanent
disk and is assigned a filename of the first operand
specified in the GENMOD command, a filetype of MODULE, and a
filemode of P1 unless the option P2 was specified, in which
case the filemode is P2,

This file is in core-image form and 1is a copy of the
contents of core from the first entry point to the second
entry point specified in the GENMOD command. If only one
entry point is specified, the core-image file consists of a
copy of the contents of core from the first entry point
specified to the next available load location. (The next
available load location is indicated by a pointer which is
~updated after each ILOAD, LOADMOD, USE, or REUSE command is
issued.)

Before the core-image file is written, undefined symbols are
defined to location =zero and common is initialized. The
undefined symbols are not retained in the MODULE file as
being unresolved; therefore, once the MODULE is generated,

GENMOD 189

those references can not be resolved.
Notes:

a. Any files existing on the permanent disk with a
filetype of MODULE and the same filename as that specified
in the GENMOD command will be erased before the new file is
created.

b. To load into core any files which have been created by
the GENMOD command, the LOADMOD command should be used. If
the MODULE file is to be loaded into core and executed and
that MODULE file was generated with the (NOMAP) option,
LOADMOD can not be used; instead, the MODULE's filename must
be issued as a command.

c. The MODULE file contains a load wap of the core-image
unless (NOMAP) is specified.

d. A MODULE file without a load map requires less disk
space.

Responses:

None.

Examples:

a. GENMOD FIRST

Assuming that a file which containing an entry point FIRST
has been loaded into core prior to issuing this command, the
above example causes a core-image file to be created on the
user's permanent disk. This file consists of the contents of
core from entry point FIRST to the next available 1load
location and a load map. It has an identifier of FIRST
MODULE P1.

b. GENMOD ABC DEF (NOMAP)

This example creates a file on the user's permanent disk
with a filename of ABC, a filetype of MODULE, and a filemode
of P1. The file is a copy of the contents of core from entry
point ABC to entry point DEF. A load map is not included in
the MODULE file.

Error Messages:

E(00001) NO “"entryl®" MODULE

This message indicates that the entry point(s) specified
cannot be 1located in core. Check to see that these entry
points exist and reissue the command.

E(00002) DISK ERROR

An address has been generated outside the bounds of core
storage assigned to the user. Reissue the command.

190 GENMOD

E(00003) DISK ERROR

A disk malfunction has occurred. Reissue the GENMOD
command. If the message persists, there is probably a disk
hardware problem.

E(00004) DISX ERROR

An attempt to close the file after writing it out has not
been successful. Issue FINIS and then reissue the GENMOD
command.

E(00005) DISK ERROR
An illegal second character has been encountered for
filemode. Reissue the GENMOD command.

E(00006) DISK ERROR
The system has attempted to close the file prior to opening
it. Reissue the GENMOD command.

E(00013) DISK ERROR

The user's disk 1is full, and the core-image file cannot be
created. Erase one or more of the unneeded files and
reissue the GENMOD command.

- GENMOD 191

GLOBAL

Purpose:

GLOBAL specifies either macro definition 1libraries to be
searched during the ASSEMBLE command, or text 1libraries to
be searched when loading files containing relocatable object
code.

Format:
	ASSEMBLER MACLIB
	M
GLOBAL	' <libnamel...libnameN>
	LOADER TXTLIB
	T {
	PRINT i

ASSEMBLER MACLIB specifies the library files that

M are to be searched for macro
definitions during subsequent
assemblies.

LOADER TXTLIB specifies the library files that
T are to be searched for missing sub-

routines during subsequent LOAD,
USE, or REUSE operations.

libnamel...libnameN specifies the library files whose
filetype is either MACLIB or
TXTLIB.

PRINT specifies that a list of libraries
currently in use is to be typed at
the terminal.

Usage:

GLOBAL has three forms--the ASSEMBLER form, the LOADER form,
and the PRINT form.

ASSEMBLER Form. The ASSEMBLER form of the GLOBAL command
allows the user to specify the macro libraries that are to
be used during the execution of the ASSEMBLE command. One
to five macro 1libraries may be specified. These macro
libraries are searched for macro definitions in the order in
which they are named. If the CMS macro library SYSLIB
MACLIB and the OS macro library OSMACRO MACLIB are to be
searched along with the user®'s macro libraries, SYSLIB and
OSMACRO must be specified as two of the five libraries.

Each macro library specified must have a filetype of MACLIB.
For a description of MACLIB files and how to generate them,
see the MACLIB command under “"Libraries".

192 GLOBAL

If no previous GLOBAL command has been issued, the ASSEMBLE
command searches the two macro libraries SYSLIB MACLIB and
OSMACRO MACLIB in that order. Both files reside on the CMS
system disk; SYSLIB MACLIB contains all of the CMS macros,
and OSMACRO MACLIB contains the 0OS macros. If the user has
created a file named SYSLIB MACLIB or OSMACRO MACLIB that
resides on a disk which precedes the system disk in the
standard order of search, it is used in place of the system
file. To terminate the searching of all macro 1libraries,
including SYSLIB MACLIB and OSMACRO MACLIB, the GLOBAL
ASSEMBLER command can be issued with no libnames specified.

Once the ASSEMBLER form of the GLOBAL command has been
issued, the specified macro libraries are searched for macro
definitions during each assembly until either a GLOBAL
ASSEMBLER command is reissued, the CMS nucleus is
reinitialized, or the user logs out from CP.

For a further discussion of macro libraries, refer to
Library Usage under "Operating Considerations".

PRINT Forme. The PRINT form of the GLOBAL command types at
the terminal a list of the current macro and text libraries
that are being searched for that user.

LOADER Form. The LOADER form of the GLOBAL command allows
the user to specify text 1libraries to be searched for
missing subroutines and filenames whenever the LOAD, USE, or
REUSE commands are issued. One to eight text libraries may
be specified. These text libraries are searched in the
order in which they are named. If the system text libraries
SYSLIB TXTLIB and CMSLIB TXTLIB are to be searched along
with the user®s text libraries, SYSLIB and CMSLIB must be
specified as two of the eight libraries.

Each text library specified must have a filetype of TXTLIB.
For a description of TXTLIB files and how to generate them,
see the TXTLIB command under "Libraries".

If no GLOBAL has been issued, the LOAD, USE, and REUSE
commands search the text library SYSLIB TXTLIB. This file
resides on the CMS system disk; SYSLIB TXTLIB contains the
Fortran library. If the user has created a file with the
identifier SYSLIB TXTLIB that resides on a disk that
precedes the system disk in the standard order of search, it
is used in place of the system file.

If the GLOBAL LOADER command has been issued and the user
wishes to eliminate the searching of the previously
specified text libraries, GLOBAL LOADER TXTLIB can be issued
specifying no libnames. This terminates all library
searching for missing ‘subroutines when files are 1loaded by
LOAD, USE, or REUSE.

Once the LOADER form of the GLOBAL command has been issued,

GLOBAL 193

the specified TXTLIB files are automatically searched for
missing subroutines or filenames not found during each LOAD,
USE, or REUSE until either a GLOBAL LOADER command is
reissued, the option LIBE or SLIBE is specified with LOAD
which overrides the GLOBAL LOADER command for the duration
of that LOAD and any USE or REUSE commands which follow that
LOAD, the CMS nucleus is reinitialized, or the user logs out
of CP.

For further discussion on text libraries, refer to Library
Usage under "Operating Considerations".

Notes:

a. If the GLOBAL ASSEMBLER command is issued, one to five
macro libraries may be specified and each must have a
filetype of MACLIB.

b. If the GLOBAL LOADER command is issued, one to eight
text 1libraries may be specified and each must have a
filetype of TXTLIB.

C. GLOBAL will verify the existence of the libraries. If
a library does not exist, an error message is generated.

da. ASSEMBLER MACLIB and LOADER TXTLIB may be abbreviated
by M and T, respectively.

Responses:

THE CURRENT MACRO LIBRARIES (MACLIB) ARE:

XXXXXXXX XXXXXXXX

THE CURRENT TEXT LIBRARIES (TXTLIB) ARE:

YYYYYYYY YYYYYYYY

This is typed in response to the GLOBAL PRINT command where
xxxxxxxx and yyyyyyyy are the names of the libraries.

Examples:
a. GLOBAL ASSEMBLER MACLIB NEWLIB MYMAC

The libraries NEWLIB MACLIB and MYMAC MACLIB are searched
for macro definitions during the ASSEMBLE command. The
order of search for macro definitions is NEWLIB MACLIB, then
MYMAC MACLIB. The CMS macro library SYSLIB MACLIB and the
O0S macro library OSMACRO MACLIB are not searched.

b. GLOBAL ASSEMBLER MACLIB

This example cancels the effect of any previously issued
ASSEMBLER form of the GLOBAL command and causes no libraries
to be searched for macro definitions during execution of the
ASSEMBLE command.

Ce. GLOBAL LOADER TXTLIB SCOOP OPS SYSLIB

The 1libraries SCOOP TXTLIB, OPS TXTLIB are searched for
missing subroutines during the 1LOAD, USE, and REUSE
commands. The order of search for missing subroutines is

194 GLOBAL

SCOOP TXTLIB, OPS TXTLIB, and SYSLIB TXTLIB.

d. GLOBAL LOADER TXTLIB

This example cancels the effect of any previously issued
GLOBAL LOADER command and causes no libraries to be searched
for missing subroutines or undefined filenames by subsequent
LOAD, USE, or REUSE commands.

Error Messages:

E(00001)
An invalid form of the GLOBAL command has been issued.
Reissue the command in its correct format.

E(00002) TOO MANY TXTLIBS (MAX=8) OR MACLIBS (MAX=5)
SPECIFIED

Reissue the GLOBAL command reducing the number of libraries

specified.

E(00003) ®"libname® LIBRARY DOES NOT EXIST

Existence of "libname®™ MACLIB or “libname"™ TXTLIB has not
been verified; "libname™ has been omitted from the active
list of libraries.

GLOBAL 195

L.OAD
Purpose:

LOAD reads from disk one or more TEXT files containing
relocatable object code and 1loads them into core,
eéstablishing the proper 1linkages between the files. If the
specified TEXT files are not found, the appropriate TXTLIB'
files are searched. Corrections or additions can be made at
load time and the user can specify libraries to be searched
for missing subroutines. The user can also specify that
execution should begin upon successful completion of
loading.

Format:

- - - - - - - - - - - A >

jLoAD| fnamel...fnameN <(optl...optN)<libnamel...libnameN>> |

- - s s > D s A e A > - —— - — — -

fnamel...fnameN specify the names of TEXT files
to be loaded into core.

optl...optN specify the options to be in
effect during loading.

libnamel...libnameN specify the names of up to 8 TXTLIB
files to be searched for missing
subroutines during loading.

Optiomns:

CLEAR zero the load area before loading

NOCLEAR do not zero the load area before loading

SLCXXXXX begin loading the program at hexadecimal
location xxxxx

SLC12000 begin loading the program at hexadecimal
location 12000

NOMAP do not create the file LOAD MAP

MAP create the file LOAD MAP

TYPE type the LOAD MAP file online

NOTYPE do not type the LOAD MAP file online

SINV suppress the printing of invalid card
images in the LOAD MAP file

PINV print invalid card images in the
LOAD MAP file

SREP suppress the print of Replace card
images in the LOAD MAP file

PREP print Replace card images in the

LOAD MAP file

196 LOAD

LIBE search only the specified TXTLIB files
for missing subroutines

SLIBE do not search any TXTLIB files for un-
resolved references

SAUTO suppress automatic searching for TEXT files
AUTO search the P, T, and S disks for TEXT files
to resolve undefined references
(AUTO is the default and can not be specified
as an option)

XEQ execute the loaded files
NOXEQ do not execute the loaded files
Usage:

The TEXT files specified in the LOAD command must consist of
relocatable object code, such as that produced by the
ASSEMBLE, FORTRAN, or PLI commands. When LOAD, USE, or REUSE
is issued, the standard order of search is used to locate
the specified TEXT files. Then, if any unresolved references
exist, the search is used again to 1locate TEXT files
corresponding to the unresolved names. If there are still
unresolved references, the appropriate TXTLIB files are
searched. To suppress the automatic searching of TEXT files
for undefined names, specify the SAUTO option. To suppress
the library search for unresolved references, specify the
SLIBE option.

LOAD assumes the NOCLEAR option as a default, therefore the
files that are being loaded are not placed 1in zeroed core.
To zero core before the files are loaded, the option CLEAR
must be specified.

LOAD automatically begins loading the specified files into
core at hexadecimal location 12000. This load point may be
changed by specifying the option SLCxxxxx, where xxxxx is
the hexadecimal location at which 1loading is to begin. The
SLCxxxxXX option may not appear as the first option in a
string unless it is preceded by one or more blanks.

Unless the NOMAP option is specified, a load map is created
on the permanent disk each time the LOAD command is issued.
A load map is a file that contains the 1location of control
sections and entry points of files loaded into core. It may
also contain certain messages and card images of any invalid
cards or Replace cards that exist in the loaded files. This
load map is normally created as a file with the identifier
LOAD MAP P5. Only one such file may exist on the permanent
disk. Each time LOAD is issued, a new LOAD MAP replaces any
previous LOAD MAP file. To prevent a LOAD MAP file from
being created, the option NOMAP must be specified.

Since LOAD assumes a default of NOTYPE, the LOAD>MAP file is

not automatically typed. To type this, the option TYPE is
specified. The LOAD MAP file may also be printed by PRINTF

LOAD 197

or OFFLINE PRINT.

If invalid card images exist in the file or files that are
being loaded, they are listed with the message INVALID CARD
in the LOAD MAP file. To suppress this listing in the LOAD
MAP the SINV option must be specified.

load w (type)
W AT 12000
W AT 12000
THCFCOMH AT 12148
SAVAREA AT 1314C
IBCOM AT 12148
FDIOCS AT 12204
IBCFCVTH AT 13198
ADCON AT 13198
FCVEO AT 13BBA
FCVLO AT 13412
FCVIO AT 13720
FCVCO AT 13DB4
FCVAO AT 1338A
FCVZO AT 132E4
IHCFIOSH AT 14188
FIOCS AT 14188
IHCUATBL AT 14D70
THE FOLLOWING NAMES ARE UNDEFINED:
SUB1
E(00004) ; T=0.05/0.20 14.21.33

Typeout of the LOAD MAP file during the LOAD command.

If Replace (REP) card images exist in the files being
loaded, they are included in the LOAD MAP. To suppress this
listing of REP card images the SREP option must be
specified. For an explanation of REP card images see
Changing Object Programs under “"Operating Considerations".

Unless the GLOBAL IOADER command has been issued, LOAD
searches only the system text 1library SYSLIB TXTLIB for
subroutines that are missing from the files being loaded.
Using GLOBAL, the user can specify from one to eight text
libraries to be searched. See the description of GLOBAL for
specific details.

If a file exists on a disk preceding the system disk in the
standard order of search with the identifier SYSLIB TXTLIB,
it is used in place of the system text library.

To prevent LOAD from searching the system text library and
the files specified by GLOBAL, the LIBE or SLIBE option can
be specified. LIBE terminates the searching of all text
libraries except those specified with the LOAD command. If
SYSLIB TXTLIB is to be searched along with the specified
libnames, SYSLIB must be included as one of the libnames.

198 LOAD

The order of search of the specified libnames is the order
in which they are named. The maximum number of libraries
that can be searched 1is eight. If LIBE is issued and no
TXTLIB files are specified, none are searched for missing
subroutines. If SLIBE 1is specified with LOAD, no TXTLIB
files are searched. For a discussion of text library usage,
refer to Library Usage under "Operating Considerations".

LOAD assumes NOXEQ as a default option, therefore, LOAD does
not normally begin execution of the loaded files. To begin
execution immediately upon successful completion of loading,
XEQ can be specified. LOAD then transfers control to the
default entry point in the program. The default entry point
is either the address specified in the operand field of the
first END card containing a non-blank operand field or the
beginning of the first file loaded if all END card images in
the TEXT files contain blank operand fields. In the case of
TEXT files that are created by FORTRAN, control is passed to
the first main program 1loaded. If XEQ is not specified,
START command must be issued to begin program execution.

Duplicate CSECT's (Control Sections) are bypassed by the
loader. Only the first CSECT encountered is physically
loaded. The duplicates are not loaded and a warning message
is included in the LOAD MAP.

LOAD allows the user to include the following card images in
the TEXT files along with the relocatable object code: the
Set Location Counter (SLC) card image, the Replace (REP)
card image, the Include Control Section (ICS) card image,
and the Entry and Library statements. SIC specifies the
hexadecimal location at which files are to be 1loaded. REP
specifies corrections to be made to the relocatable object
code. ICS specifies additions to be wmade to the TEXT file.
The Entry statement specifies entry points and the Library
statement specifies the never-call function. For a
description of these card images and their use and placement
in a TEXT file, refer to Changing Object Programs under
"Operating Cconsiderations".

Notes:

a. To terminate the searching of all text 1libraries,
including SYSLIB, specify LIBE with no libnames, or specifty
SLIBE.

b. If TEXT files do not exist for the names specified with
LOAD, either the specified or default TXTLIB files are
searched for the missing TEXT file.

C. If unresolved names occur, the standard order of search

is used to locate the TEXT files; if the names are still
unresolved, the appropriate TXTLIB files are searched.

LOAD 199

Responses:

EXECUTION BEGINS...

XEQ has been specified with LOAD and the loaded program has
begun execution. Any further responses are from the
program.

INVALID CARD = XXX...XXX

PINV has been specified with LOAD and an invalid card has
been found. The message and the contents of the invalid card
(xXX...xXxx) are 1listed in the file LOAD MAP. The invalid
card is ignored and loading continues.

.} loader or library-search control card has been
encountered, (that is, ENTRY or LIBRARY).

If TYPE is spec¢ified with LOAD, the LOAD MAP file is typed.

Examples:

Q. LOAD MATIN SQ3 CALCU

The files MAIN TEXT, SQ3 TEXT, and CALCU TEXT are loaded
into core and the linkages resolved. If any subroutines are
missing, the loader searches for the corresponding TEXT
file. If any references are still unresolved, and neither
the SLIBE option nor the GLOBAL LOADER command has been
previously issued, the file SYSLIB TXTLIB is searched. If
the GLOBAL LOADER command has been previously issued, the
libnames specified in that command are searched. The
following default options are set: NOCLEAR, NOTYPE,
S1.c12000, PINV, PREP, MAP, AUTO, and NOXEQ.

b. LOAD MPS67 HOOK (XEQ TYPE CLEAR)

The files MPS67 TEXT and HOOK TEXT are loaded into core and
the linkages resolved. Core is zeroed before 1locading takes
place. The LOAD MAP file 1is tyved. Upon successfully
loading MPS67 and HOOK, execution begins.

C. LOAD MASS WHATZIT (LIBE) SSP MYLIB SYSLIB

The files MASS TEXT and WHATZIT TEXT are loaded into core
and the linkages resolved. If any subroutines are missing,
the following libnames will be searched in the order in
which they are specified: SSP TXTLIB, MYLIB TXTLIB, and
SYSLIB TXTLIB. The remaining options are set to default.

d. LOAD MASSPEC (LIBE)

The file MASSPEC TEXT is loaded into core and the linkages
resolved. Since LIBE has been specified without any
libnames, no text 1libraries are searched for missing
subroutines. If there are any missing subroutines, an error
code is returned.

200 LOAD

Error Messages:

E(00001) DEFINED MORE THAN ONCE-XXXXXXXX
The name xxxxxxxx has been defined more than once. Check
the files that have been 1loaded for duplicate entry point
names or duplicate control section mnames. Loading has been
completed. Duplicate names are not loaded.

E(00002) OVERLAY ERROR

The files being loaded have run out of core. Specify fewer
files or reduce the size of the files. Loading has been
completed.

E(00003) REFERENCE TABLE OVERFLOW

There are tco many entries for entry points or control
section names in the reference table built during loading.
Loading has been completed. Reduce the number of entry
points and/or control sections in the files.

E(00004) THE FOLLOWING NAMES ARE UNDEFINED-XXXXXXXX

The names xXxXXxXXXxxX are referenced in a file and are never
defined. If the names are defined in a file with a
different name, issue USE for that file. Loading has been
completed.

Dynamic Loading

During program execution, another relocatable object deck
may be brought into core, external references resolved, and
control given to it--that is, dynamic loading. The desired
routine must exist on the user's files with a filetype of
TEXT, Or exist in one of the designated libraries with
filetype TXTLIB. The routine may cause other TEXT or
library routines to be loaded into core.

The following CMS/0S macros support dynamic loading:

LOAD (SvcC 8) causes the object deck containing the
specified entry point to be brought into
core and the entry point address to be
returned in register zero (0).

LINK (SvC 6) calls in and transfers control +to the
specified entry point.

XCTL (svC 7) deletes the calling routine, then brings
the specified routine in and gives control
to it.

RETURN (SVC 3) deletes the called routine and gives
control back to the caller.

LOAD 201

LOADMOD

Purpose:

LOADMOD loads into core any single file in nonrelocatable
core image form.

Format:

| LOADMOD | filename <filemode> |

- — - - e

filenawme 1is the name of the file to be loaded into core.
The filetype must be MODULE.

filemode 1is the mode of the MODULE file to be loaded.

Usage:

LOADMOD is used to load a file which has been created by the
GENMOD comrmand. The filename of the file to be 1loaded is
specified as the operand of the LOADMOD command, and its
filetype must be MODULE. If the MODULE file was generated
without a load map and the MODULE file is to be read into
core and executed, LOADMOD can not be issued; instead, the
MODULE's filename must be issued as if it were a command.

When LOADMOD is issued without specifying a filemode, the
standard order of search is used to locate a file with the
specified filename and a filetype of MODULE. If a filemode
is given, only that disk is searched for the MODULE file.
If such a file is found, it is assumed to be in
non-relocatable core-image form, and is loaded into core.

Responses:

None.

Example:

LOADMOD FILE1l

The file FILE1 MODULE is loaded into core. If no such file
exists, an error message is returned, and the 1loading
process does not take place.

Error Messages:

E(00001) FILE DOES NOT EXIST

DISK ERROR
Either of the above messages indicates that a file with the
specified filename and a filetype of MODULE cannot be
located. Check to see that such a file exists and that the
filenawme specified in the LOADMOD command is identical to
the filename of the file to be loaded.

202 LOADMOD

E(00002) DISK ERROR
An address has been generated outside the bounds of core
storage assigned to the user. Reissue the command.

E(00003) DISK ERROR

A disk malfunction has occurred. Reissue the LOADMOD
command. If the message persists, a disk hardware problem
has probably been encountered.

E(00004) FILE DOES NOT EXIST

DISK ERROR
Either of the above messages indicates that the filemode of
the specified file is invalid. Change the filemode to a
valid one and reissue the command.

E(00006) DISK ERROR

Core space assigned to the user is not 1large enough for
loading the specified file or the system has attempted to
close the file prior to opening it. Reissue the LOADMOD
command .

E(00007) DISK ERROR

The specified file cannot be read from disk. Reissue the
LOADMOD command. If this message persists, the file should
be recreated using the GENMOD command.

E(00009) DISK ERROR

The specified file is open for writing and cannot be read.
Reissue the LOADMOD command.

LOADMOD 203

REUSE
Purpose:

REUSE reads from disk one or more TEXT files containing
relocatable object code and loads them into core,
establishing 1linkages with previously loaded files, and
changing the default entry point of these files to that of
the first file specified in the REUSE command. If the TEXT
files do not exist, the appropriate TXTLIB files are
searched.

Format:

- —— - - L O S o A D Dy A A D > S A A > A A . S > > D U A

JREUSE |fnamel...fnameN (optl...optN)<libnamel...libnameN>|

- - s e > A A > D D LD A D i U D A D > - —

fnamel...fnameN specify the names of TEXT files to be
loaded into core.

optl...optN specify the options to be in effect
during loading.

libnamel...libnameN specify the names of up to 8 TXTLIB
files to be searched for missing
routines during loading.

Options:

The options that may be specified with REUSE are the same as
those with LOAD.

Usage:

REUSE does not overlay any file that has been previously
loaded by a LOAD, USE, or REUSE command. It loads the
specified files into higher core from the point at which the
previous LOAD, USE, or REUSE command terminated 1loading.
REUSE performs the same function as USE except that REUSE
changes the default entry point to that of the first file
specified with the REUSE command.

The specified files must have filetypes of TEXT and contain
relocatable object code.

If options have been specified with the previous LOAD, USE,
or REUSE command, these options remain set unless
respecified. The LOAD MAP file is automatically updated to
reflect the files loaded by REUSE. Refer to LOAD for a
description of the LOAD options, the ILOAD MAP file, and how
LOAD operates.

204 REUSE

Resgonses H

INVALID CARD — XXXe..eXXX

PINV has been specified and an invalid card has been found.
The message and the contents of the invalid card (xxxX...xxx)
are listed in the file LOAD MAP. The invalid card is ignored
and loading continues.

CONTROL CARD
A loader or library-search control card has been
encountered. Normal loading resumes.

If TYPE has been specified with REUSE or has not been reset
from the previous LOAD, USE, or REUSE command, the updated
portion of the LOAD MAP file is typed prior to the
completion of the REUSE command.

Example:

REUSE READIT GAMMA

The TEXT files READIT and GAMMA are loaded into core,
linkages resolved with the files previously loaded, and the
default entry point is changed to the first entry point in
READIT.

Error Messages:

E(00001) DEFINED MORE THAN ONCE - XXXXXXXX

The name xxxxxxxx has been defined more than once. Check
the files that have been 1loaded for duplicate entry point
names or duplicate control section names. Loading has been
completed. Duplicate names are not loaded.

E(00002) OVERLAY ERROR

The files being loaded have run out of core. Specify fewer
files or reduce the size of the files. Loading has been
completed.

E(00003) REFERENCE TABLE OVERLAY

There are too many entries for entry points or control
section names in the reference table built during loading.
Loading has been completed. Reduce the number of entry
points or control sections in the files.

E(00004) THE FOLLOWING NAMES ARE UNDEFINED - XXXXXXXX

The names xxxxxxxx are referenced in a file and are never
defined. If the names are defined in another file, issue
the USE command for that file. Loading has been completed.

E(00005) NAME IS UNDEFINED - XXXXXXXX

The name xxxxxxxx specified as an entry point does not
exist. Loading has been completed. Check the name and see
if an entry point or a control section exists by that name
in the loaded files.

REUSE 205

START

Purpose:

START begins execution of programs previously loaded and
passes the address of a string of user arguments to that
program.

Format:

| START {[<entry <argumentl...argumentN>>|
| i * |

- - - — - -

entry specifies the name of a control
section or entry point to which
control is passed at execution time.

* specifies that control is to be
passed to the default entry point.

argumentl...argumentN specify information to be passed to
the started program.

Usage:

START begins execution at one of two entry points. If the
entry operand is specified, execution begins at that point
in the program. If * or nothing is specified execution
begins at the default entry point. The default entry point
is either the address specified in the operand field of the
first END card containing a non-blank operand field or the
beginning of the first file loaded if all END cards in the
TEXT files contain blank operand fields. The default entry
point can be changed by issuing the REUSE command to
continue loading additional files.

Any undefined names or references specified in the files
loaded into core are defined to 1location zero. Thus, if
there is a call or branch to a subroutine from a main
program and the subroutine has never been 1loaded, the call
or branch transfers control to 1location zero at execution
time.

If arguments are specified with START, they are passed to
the program via general-purpose register 1. The entry
operand and any arguments are set up as a string of words,
one argqument per double word, and the address of the
parameter is placed in general-purpose register 1. The
arguments are accessed with displacements of 8, 16, 24,
etc., from the address contained in register 1 when
execution of the specified program begins.

206 START

Notes:

a. Entry must be a control section name or an entry point
name. It may be a filename only if the filename is identical
to a control section name or an entry point name.

b. If user arguments are specified, entry or * must be
specified; otherwise, the first arqument is taken as the
entry point.

Responses:

EXECUTION BEGINS...
The program previously loaded into core has begun execution.
Further responses are from the executing program.

Examples:

a. START INITIL
The program already loaded into core begins execution at
entry point INITIL.

b. START MEGOP 13 ALL 109439

The program already loaded into core begins execution at
entry point MEGOP. The three arguments may be accessed in
the program by displacements of 8, 16, and 24 from the
address in general-purpose register 1.

Error Messages:

E(00004)

The contents at STADDR in NUCON are either 0 or a location
that does not contain executable code. Issue LOADMOD and
START again.

E(00005) NAME IS UNDEFINED - XXXXXXXX

The name xxxxxxxx specified as the point at which execution
is to begin does not exist as an entry point name or a
control section name. Execution has not begun. Check the
name xxxxxxxxXx and make sure it is a valid entry point or
control section name.

START 207

USE

Purpose:

USE reads one or more TEXT files containing relocatable
object code from disk and loads them into core, establishing
linkages with previously loaded files. If the TEXT files do
not exist, the appropriate TXTLIB files are searched.

Format:

- - e v - - ——

| USE| fnamel...fnameN <(optl...optN)<libnamel...libnameN>> |

fnamel...fnameN specify the names of TEXT files to be
loaded into core.

- optl...optN specify the options to be in effect
during loading.

libnamel...libnameN specify the names of up to eight TXTLIB
files to be searched for missing routines
during loading.

Optiomns:

The options that may be specified with USE are the sawme as
those that may be specified for LOAD.

Usage:

USE does not overlay any file previously loaded by a LOAD,
USE, or REUSE command. It 1loads the specified file(s) into
higher core from the point at which the previous LOAD, USE,
or REUSE command terminated 1loading. The files specified
with USE have filetypes of TEXT and contain relocatable
object code.

USE should be preceded by LOAD; it is 1issued to resolve
undefined names when LOAD gives the following error message:
E(00004) - THE FOLLOWING NAMES ARE UNDEFINED: XXXXXXXX.

USE may be issued repeatedly to resolve 1linkages and to
continue loading more TEXT files. It does not change the
default entry point established in a previous LOAD command.

If options are specified with the previous LOAD, USE, or
REUSE command, the options remain set unless respecified
when USE is issued. The LOAD MAP file is automatically
updated to reflect the files loaded by USE. Refer to LOAD
for a description of the LOAD options, the LOAD MAP file,
and the operation of LOAD.

208 USE

Responses:

INVALID CARD ~ XXXoooXXX

PINV has been specified with the previous LOAD command and
an invalid card has been found. The message and the
contents of the invalid card (xxx...xxx) are 1listed in the
file LOAD MAP. The invalid card is ignored and loading
continues.

If TYPE has been specified with USE or has not been reset
from the previous LOAD, USE, or REUSE command, the updated
portion of the LOAD MAP file 1is typed prior +to the
completion of the USE command.

Example:

USE MYTEXT1 CALCA WRITE6

MYTEXT1 TEXT, CALCA TEXT, and WRITE6 TEXT are loaded into
core. Linkages are resolved between these three files and
the file previously loaded into core.

Error Messages:

E(00001) DEFINED MORE THAN ONCE - XXXXXXXX

The name xxxxxxxxXx has been defined more than once. Check
the files that have been 1loaded for duplicate entry point
names or duplicate control section names. Loading has been
completed. The duplicates are loaded.

E(00002) OVERLAY ERROR

The files being loaded have run out of core. Specify fewer
files or reduce the size of the files. Loading has been
completed.

E(00003) REFERENCE TABLE OVERFLOW

There are toco many entries for entry points or control
section names in the reference table built during loading.
Loading has been completed. Reduce the number of entry
points or control sections in the files.

E(00004) THE FOLLOWING NAMES ARE UNDEFINED -~ XXXXXXXX
The names xxxxxxxx are referenced in a file and are never
defined. If the names are defined in another file, issue the
USE command for that file. Loading has been completed.

USE 209

$

PUI‘EOSG:

$ loads and starts the specified file, provided its filetype
is EXEC, MODULE, or TEXT.

Format:

] $ | filename <argl...argh> i

filename is the name of a file whose filetype is EXEC,
MODULE, or TEXT.

argl...argh are one Or more uUser arguments.

Usage:

The § command is used to 1load and start a program. The
program exists as a file on one of the user's disks, and its
filename must be specified as the first operand of the $
command. The standard order of search 1is used to locate a
file with the specified filename and a filetype of EXEC,
MODULE, or TEXT, in that order.

If an EXEC filetype is found for the filename, the file is
assumed to contain one or more CMS commands, and EXEC is
called to execute this file. If no EXEC filetype exists,
but a filetype of MODULE is found, LOADMOD is called by $§ to
load the program into core and START is called to begin
execution of the program. When only a TEXT filetype exists
LOAD is called followed by START.

The user may specify as many arguments in the $§ command as
he wishes, provided they all fit on the same input line.
The arquments are set up as a string of double words, one
argument per double word. The address of this string is
passed to the specified file. Each argument is
left-justified, and any argument more than eight characters
in length is truncated on the right. With an EXEC file, any
arguments specified in the § ~command replace the
corresponding &n operands in the individual commands of the
EXEC file (see EXEC under "Execution Control" for a full
explanation of this operand-substitution technique).

With a file whose filetype is MODULE or TEXT, the arguments
are placed in a string as described above. The address of
the string wmay be obtained by adding 8 to the address
contained in general-purpose register 1 at the time
execution of the specified program begins. Additional
arguments may be referenced by displacements of 16, 24, 32,
etc., from the address thus obtained.

210 $

Note:

When a file with a filetype of MODULE or TEXT is used; there
must be an entry point in the file that is identical to the
filename specified in the § command. After the file has
been loaded, execution begins at +this entry point. Such an
entry point is created by the Fortran compiler using the
filename specified in the FORTRAN comrmand. With Assembler
language files, the user should create as an entry point or
assign as the name of a control section, the filename by
which he wishes +to reference the TEXT or MODULE version of
that file.

Responses:

For files with filetype EXEC, each command in the EXEC file
is typed at the user's terminal prior to its execution
unless the ETYPE option is used to suppress the printout.

EXECUTION BEGINS... .

This message is typed when a file of filetype MODULE or TEXT
has been loaded into core and is about to be started. Output
appearing after this message is from the user's program or
from a part of CMS called by that program.

DEFINED MORE THAN ONCE - XXXXXXXX

This message is generated by LOAD and indicates that
duplicate entry points or control section names (XXXXXXXX)
have been found in the TEXT file being loaded. § is
terminated with an error code of 3.

OVERLAY ERROR

There is not enough room in core to hold the TEXT file for
which a LOAD has been issued. § is terminated with an error
code of 3.

REFERENCE TABLE OVERFLOW

There are too many entry points or control section names in
the TEXT file being loaded. § is terminated with an error
code of 3. ‘

THE FOLLOWING NAMES ARE UNDEFINED - XXXXXXXX
The specified names referenced in the TEXT file being loaded
are never defined. $§ is terminated with an error code of 3.

DISK ERROR

An error has occurred while reading or closing a file with
filetype MODULE. This message is generated by LOADMOD, and
terminates with an error code of 3.

Examples:

a. $ MYFILE

The standard order of search is used to locate a file with a
filename of MYFILE and a filetype of EXEC, MODULE, or TEXT.
If a file