
Systems Reference Library

Fortran IV Language Specifications,

File No. GENL-25
Form C24-3322-2

Program Specifications, and Operating Procedures
IBM 1401, 1440, and 1460

Programs: 1401-FO-051 (Disk Resident System)
1401-FO-052 (Tape Resident System)

This reference publication contains the language specifications,
program specifications, and operating procedures for the Fortran
IV Programming System.

The language specifications describe the Fortran IV language
that is processed by the Fortran system. The language closely
resembles the language of mathematics, and includes varioU!
types of arithmetic, control, input/output, and specification
statements.

The program specifications describe the two programs, System
Control and Fortran Processor, that make up the Fortran
system. Logical files defined and used by the system, control
cards, and results of processing operations are also included.

The operating procedures are divided into two parts. The
first part describes compiling and executing object programs,
changing logical-file assignments, and maintaining a Fortran
library of subprograms. The second part describes building and
updating a Fortran system.

A summary of processor jobs, control-card formats, phase
descriptions, and a listing of a sample program make up the
appendix of this publication. Also includedjn the appendix is a
description of the procedures to be followed in building a system
that contains both Fortran and Autocoder.

For a list of other publications and abstracts, see the mM 1401
and 1460 Bibliography, Form A24-1495, and the mM 1440
Bibliography, Form A24-3005.

Major Revision (April 1966)

ThIs publication~ C24-3322-2, is a major reVISIOn of, and
obsoletes the previous publication, C24-3322-1, and its asso­
ciated Technical Newsletter N21-0050. Changes have been
made throughout this publication.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the content of this publication to:
IBM, Programming Publications Department, Rochester, Minn. 55901.

© 1964 by International Business Machines Corporation

Contents

Fortran IV 5 Format Specifications ... 20

Related Information 5
Definition of Key Terms .. 5
Machine Requirements 5

Numeric Fields .. 20
Logical Fields 20
Alphameric Fields .. 20
Blank Fields - X-Conversion .. 21
Repetition of Field Format .. 21
Repetition of Groups .. 21

Language Specifications 7 Scale Factors - P-Conversion .. 21
Multiple-Record FORMAT Statements 22

Constants, Variables, Subscripts, and Expressions ... 7
Carriage Control 22
FORMAT Statements Read In at Object Time 23

Constants ... 7 Edited Input Data ... 23
Integer Constants 7
Real Constants .. 7 Unedited Data ... 23
Logical Constants 8

Variables .. 8
Variable Names .. 8

General Input/Output Statements 23
The READ Statement 24
The WRITE Statement 24

Variable Types 8

Subscripts ... 9
Form of Subscripts .. 9
Subscripted Variables 9
Arrangement of Arrays in Core Storage 9

Manipulative Input/Output Statements 25
The FIND Statement 25
The END FILE Statement 25
The REWIND Statement 26
The BACKSPACE Statement .. 26

Input/Output Specification Statement 26
Expressions 9
Arithmetic Expressions 9

The DEFINE FILE Statement 26

Logical Expressions 11 Logical Files Used for Input/Output 27

The Arithmetic Statement ... 12 Subprograms - Function and Subroutine
Statements 27

The Control Statements 12
The Unconditional GO TO Statement .. 12
The Computed GO TO Statement .. 12

Naming Subprograms ... 27

The Logical IF Statement .. 13
The Arithmetic IF Statement .. 13
The DO Statement 13
The CONTINUE Statement .. 14

Predefined Subprograms 28
Library Functions 28
Library Subroutines 28

The PAUSE Statement .. 14
The STOP Statement 14 Defining Subprograms .. 28
The END Statement .. 14 The FUNCTION Statement 28

The SUBROUTINE Statement 30
The RETURN Statement ... , 31

The Specification Statements ... 15
The DIMENSION Statement 15

Subprogram Names as Arguments .. 31

The COMMON Statement .. 15
The EQUIVALENCE Statement .. 16

i~: !~~ ~::::::~:s .. ~~:::::::::::::::::::::~:: ~ ~
Using Subprograms 31
Using Functions ... 31
Using Subroutines - The CALL Statement 31

Input/Output Statements .. 18
Segmenting Programs ... 32

List Specifications _... 18
Fortran Source Program .. 32

Reading or Writing Entire Arrays .. 19
Source Program Statements and Sequencing 32

The FORMAT Statement .. 19 Writing the Source Program ... 33

Checking the Source Program 34

Punching the Source Program 34

Table of Source Program Characters 35

Program Specifications ... 36

The Fortran System .. 36

System Control Program ... 36

~oO:~~I~!io~i~~~~.:::::::::::::::: .. :::::::: .. :: ~~
Execution Time 38

Control Cards , 38
RUN Cards 39
INIT Card 39
ASGN Cards 39
UPDAT Card 39
NOTE Card 39
PAUSE Card .. 39
OOpy Card '" 40
HALT Card .. 40

Fortran Processor Program 40

~~!.~if~ ~~~~!!~~ .. :: !~
Fortran Compiler Output .. 41
Relocatable Punched Card Deck 41
Fortran Compiler Diagnostics .. 41

Fortran Loader .. 42
Fortran Loader Output .. 43
Fortran Loader Diagnostics .. 43
Object Time Diagnostics .. 44

Fortran Library .. 45
Object Programs .. 45

Operating Procedures ... 50

Jobs .. 50

Preparing Processor Jobs ... 50
FORTRAN RUN •..•....•.....•...........•...•...•.•.•.....•........••.....•..•....•...•••. 51
LOADER RUN .• •..•....•....•.... .•.. ..•. ..••.•.•.... ••..••.•..••.. ••• .•.••.... •... .•...... 52
PRODUCTION RUN •....• ... •.... ..•••• ..•...•..... •.•• ..•..... ...••....••. 55

Preparing U ser-U pdate Jobs 56

Preparing Library J obs .. 57
Library Build 58
Library Listing .. 58
Library Change 59
Library Copy........ 60

Changing File Assignments 60
Preparing ASGN Cards 60
Using ASGN Cards ,. 61

Performing Jobs .. 65

Preparing a Stack 65

Running a Stack 65

Halts and Messages 67

Building and Updating a Fortran System 73

Tape Resident System, Deck
Description and Preparation ... 73

Building a Fortran Tape Resident System 73

Disk Resident System, Deck
Description and Preparation ... 74
Marking Program .. 76
Write File-Protected Addresses .. 76
System Control Card Build 76
Card Boot 77
Fortran Update .. 77
Fortran Sample Program .. 77

Building a Fortran Disk Resident System 77
Write File-Protected Addresses .. 78
System Control Card Build 80
Fortran Update .. 80
Fortran Sample Program .. 81

Updating a Fortran System ... 82

Duplicating the System Tape 82

Appendix I .. 83

Appendix II ... 89

System Control Program - Disk Resident 89
System Control Program - Tape Resident 89
Fortran Processor Program .. 90

Appendix III ... g,3

Building a System that Contains Fortran and
Autocoder .. 93
File Considerations 93
Building a Combined System 94
Testing the Autocoder System .. 94

Appendix IV - Sample Program 95

Index .. 98

This publication contains the language specifications,
program specifications, and operating procedures for
the Fortran IV programming system for IBM 1401,
1440, and 1460. In this publication, the term Fortran
system refers to 1401/1440/1460 Fortran IV, program
numbers 1401-FO-051 (Disk Resident System) or 1401-
FO-052 (Tape Resident System).

This publication is divided into three major sections,
language specifications, program specifications, and
operating procedures.

The language specifications section describes the
coding of a Fortran program. The content of this sec­
tion is presented with the assumption that the pro­
grammer is familiar with the information in the Fortran
General Information Manual, Form F2S-8074.

The program specifications section describes the
Fortran system. Included in the section are such topics
as a description of the System Control Program (the
controlling element of the Fortran system), a descrip­
tion of the Fortran Processor Program, and a detailed
description of the results of system operations. Al­
though this section is directed primarily to the pro­
grammer, the machine operator should review the
section for an understanding of the system.

The third section, operating procedures, contains
such topics as preparing processor jobs, changing file
assignments for processor jobs, and running processor
jobs. The last part of the section outlines the proce­
dures to follow in building a Fortran system. For the
convenience of both programmer and machine op­
erator, all control cards are summarized in Appendix I.

While the third section is directed primarily to the
machine operator, it is recommended that the pro­
grammer review the content of the complete section.
The programmer should particularly note the parts of
the section dealing with preparing processor jobs and
changing file assignments.

Related Information

The following Systems Reference Library publica­
tions contain additional information relating to the use
of the Fortran system. It is recommended that these
publications be available to the user for reference
purposes.

Fortran General Information Manual, Form F2S­
S074.

Fortran IV

Disk Utility Programs Specifications for IBM 1401,
1440, and 1460 (with 1301 and 1311), Form C24-1484.

Disk Utility Programs Operating Procedures f01
IBM 1401 and 1460 (with 1301 and 1311), Form C24-
3105, or Disk Utility Programs Operating Procedures
for IBM 1440 (with 1301 and 1311), Form C24-3121.

Definitions of Key Terms

In order to clarify the meaning of special terms when
used in this publication, the following definitions are
given. Standard terms are defined in Glossary of In­
formation Processing, Form C20-8089.

Card Boot. A card deck, supplied as part of the Fortran
system program deck, that is used to start system
operations.

Compiler. The program that translates Fortran sym­
bolic statements directly into relocatable machine
language. This process is called a compilation.

Job. An operation or sequence of operations that are
to be performed by the Fortran system.

Logical Files. Input/output devices and/or areas that
are used by the Fortran system.

Object-time. A term describing those elements or proc­
esses related to the execution of a machine-language
object program.

Operation. A basic unit of work to be performed by
one of the components of the system.

Stack. A set of one or more jobs that is to be proc­
essed during the same machine run.

System. The set of programs made up of the elements
required for compiling and/or executing user-pro­
grams.

[] Brackets contain an option that may be chosen.
Braces contain options, one of which must be
chosen.

Machine Requirements

To process a Fortran source program, the following
minimum machine configurations are specified.
An ruM 1401 system with:

12,000 positions of core storage

Advanced-Programming feature

5

High-Low-Equal-Compare feature
One IBM 1311 Disk Storage Drive, or four IBM 729

Magnetic Tape Units, or four IBM 7330 Magnetic
Tape Units, or a combination of four IBM 729
Magnetic Tape Units and IBM 7330 Magnetic
Tape Units

One IBM 1402 Card Read-Punch
One IBM 1403 Printer, Model 2

An IBM 1440 system with:
12,000 positions of core storage
Indexing-and -Store-Address-Register feature
One IBM 1301 Disk Storage, or one IBM 1311 Disk

Storage Drive
One IBM 1442 Card Reader

One IBM 1443 Printer

An IBM 1460 system with:
12,000 positions of core storage
Indexing -and-Store-Address-Register feature

One IBM 1301 Disk Storage, or one IBM 1311 Disk
Storage Drive, or four IBM 729 Magnetic Tape
Units, or four IBM 7330 Magnetic Tape Units, or a
combination of four IBM 729 Magnetic Tape Units
and IBM 7330 Magnetic Tape Units

One IBM 1402 Card Read-Punch
One IBM 1403 Printer, Model 2

To load and execute object programs generated by
the Fortran system, the following minimum machine
requirements are specified.

An IBM 1401 system with:
12,000 positions of core storage (or more if required

by the object program)
Advanced-Programming feature
High-Low-Equal-Compare feature
One IBM 1311 Disk Storage Drive, or one IBM 729

Magnetic Tape Unit, or one IBM 7330 Magnetic
Tape Unit (for residence of the Fortran system,
including the library of the relocatable subpro­
grams)

One IBM 1402 Card Read-Punch
One IBM 1403 Printer, Model 2
Sense switches, if required by the object program
A program loading device, which could be an IBM

1402 Card Read-Punch (the same as previously
required), an IBM 1311 Disk Storage Drive (may
be the same as that required for system reSidence),
an IBM 729 J\1agnetic Tape Unit (must not be the
same unit as that required for system residence),
or an IBM 7330 Magnetic Tape Unit (must not be

6 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

the same unit as that required for system resi­
dence)

Additional input! output devices as required by the
object program

An IBM 1440 system with:

12,000 positions of core storage (or more if required
by the object program)

Indexing-and -Store-Address-Register feature
One IBM 1301 Disk Storage, or one IBM 1311 Disk

Storage Drive (for residence of the Fortran sys­
tem, including the library of the relocatable sub­
programs)

One IBM 1442 Card Reader
One IBM 1443 Printer

Sense switches, if reqUIred by the object program
A program loading device, which could be an IBM

1442 Card Reader (the same as previously re­
quired), an IBM 1301 Disk Storage or an IBM 1311
Disk Storage Drive (may be the same as that re­
quired for system residence)

Additional input! output devices as required by the
object program

An IBM 1460 system with:

12,000 positions of core storage (or more if required
by the object program)

Indexing-and -Store-Address-Register feature
One IBM 1301 Disk Storage, or one IBM 1311 Disk

Storage Drive, or one IBM 729 Magnetic Tape
Unit, or one IBM 7330 Magnetic Tape Unit (for
residence of the Fortran system, including the li­
brary of the relocatable subprograms)

One IBM 1402 Card Read-Punch
One IBM 1403 Printer, Model 2
Sense switches, if required by the object program
A program loading device, which could be an IBM

1402 Card Read-Punch (the same as previously re­
quired), or an IBM 1301 Disk Storage or an IBM

1311 Disk Storage Drive (may be the same as that
required for system residence), or an IBM 729 Mag­
netic Tape Unit (must not be the same unit as that
required for system residence), or an IBM 7330
Magnetic Tape Unit (must not be the same unit
as that required for system residence)

Additional input! output devices as required by the
object program

The Fortran system can use the following devices,
if available.

IBM 1444 Card Punch

IBM 1447 Console without a buffer feature

The 1401,1440, and 1460 Fortran Programming System
consists of a language and its associated processor pro­
gram. The Fortran language enables the programmer
to code programs that deal with problems that are pri­
marily mathematical in nature. Problems containing
formulas and variables can be dealt with easily by us­
ing the Fortran language. A facility is included with
the disk resident Fortran system to process informa­
tion from randomly accessible records.

In addition to the main program, the user can code
and use subprograms. These subprograms can be called
for and used by the main program and/or other sub­
programs.

The Fortran language comprises five general cate­
gories of statements.

Arithmetic Statements. The arithmetic statements de­
fine the value of a variable to be the result of a nu­
merical or logical calculation.

Control Statements. The control statements govern the
flow of control in the program.

Input/Output Statements. Input/output statements
specify the transfer of information between the pro­
gram environment, the main-computer storage, and
the extra-program environment, input/output de­
vices, such as a card reader, a card punch, a printer,
a console printer, a magnetic tape unit, or a disk unit.

Subprogram Statements. Subprogram statements per­
mit the programmer to define subprograms for sub­
sequent use.

Specification Statements. Specification statements de­
clare properties of names used in the program and
permit the user to exert some control over the alloca­
tion of core storage for program variables.

Any of these statements can be assigned a statement
number. To permit reference within one statement to
another statement, the latter statement must be as­
signed a statement number. Superfluous statement
numbers will adversely aHect compiling time.

The Fortran processor translates (compiles) the pro­
grams written in the Fortran language into machine­
language object programs in the relocatable format.
Object programs are then executed under control of
the Fortran system.

Language Specifications

Constants, Variables,
Subscripts, and Expressions
This section describes constants, variables, and sub­
scripts used to express 1-, 2-, and 3-dimensional arrays
of variables. Also included in this section is a discus­
sion of expressions, the combinations of constants, vari­
ables, and function references.

Constants

Three types of constants are permitted in a Fortran
source program: integer (fixed point), real (floating
point), and logical.

Integer Constants

General Form. An integer constant consists of n deci­
mal digits, where 1 L n L k, written without a deci­
mal point.

Examples.

Value of k

1
2
524267

The value of k (precision) can be indicated to the
Fortran compiler through control information supplied
by the user. If k is specified by the user, the value of k
must be 1 .c"':::: k L 20. If k is not specified by the user,
the compiler uses k equal to five digits. No more than
k digits can be written.

The absolute value of an integer constant must be
between 0 and (10k - 1).

Real Constants

General Form. A real constant consists of n decimal
digits, where 1 L n L f, written with a decimal
point. A real constant can be followed by a deci­
mal exponent written as the letter E followed by a
(signed or unsigned) 1- or 2-digit integer constant.

7

Examples.

Value of f

17.
5.0
.0003

5.0E3
5.0E+3
5.0E-3

i.e., 5.0 X 103

i.e., 5.0 X 10+3

i.e., 5.0 X 10-3

The value of f (precision) can be indicated to the
Fortran compiler through control information supplied
by the user. If f is specified by the user, the value of f
must be 2 L. f L. 20. If f is not specified by the user,
the compiler uses f equal to eight digits. No more than
f digits can be written.

The absolute value of a real constant must be be­
tween the limits 10-100 and (1 - 10-f) X 1099, or be
zero.

Within core storage, a real constant is stored in an
exponential form occupying n + 2 digits (n + 2 core
storage positions), where n L. f. The first n digits con­
tain the mantissa (the fraction part of the constant). A
decimal point is understood to precede the high-order
digit position. The last two positions contain the char­
acteristic (exponent). For example, if f is defined as 18,
a number in the source program having 18 or less sig­
nificant digits results in a 20-digit real number, 18 for
the mantissa and 2 for the characteristic.

Logical Constants

General Form. A logical constant can take either of the
following forms.

. TRUE .

. FALSE.

Within core storage, a logical constant of . FALSE.

is represented by the character zero (0). A logical con­
stant of . TRUE. is represented by the character one (1).

Variables

A variable quantity is represented by a symbolic name,
and is specified by its name and its type. The type of
variable (integer, real, or logical) corresponds to the
type (integer, real, or logical) of values that the vari­
able assumes.

The initial value of a variable must be predefined
before its use in a Fortran statement, including all

8 Fortran IV Specs & Op. Froc. -1401, 1440,1460

arguments in a CALL statement. A variable can be
defined by a READ statement, an arithmetic statement,
or a DATA statement.

Variable Names

General Form. A variable name consists of one to six
alphameric characters, the first of which must be
alphabetic. Subroutines and functions are named in
the same way as variables (see Naming Subpro­
grams). Within the same program, a unique name
must be used to represent a variable, a subroutine,
and/ or a function.

Examples.

Variable Types

L5
JOBI
BETATS
COST
K

The type of variable, real or integer, can be specified
explicitly by a type statement or implicitly by name.
Logical variables must have their type specified by a
type statement.

Explicit Type Specification

Explicit type specification of a real or integer variable
is made by the type statements, INTEGER, REAL, LOGICAL,

and EXTERNAL. See Type Statements .

Implicit Type Specification

Implicit type specification of a real or integer variable
is made in the following manner.

l. If the first character of the variable name is I, J, K,
L, M, or N, it is an integer variable. For example,
MAX, JOB, IDIST, and LESL are integer variables.

2. If the first character of the variable name is not I, J,
K, L, M, or N, it is a real variable. For example,
ALPHA, BMAX, Q, and WHIT are real variables.

Explicit type specification overrides implicit type spec­
ification. For example, if a variable name is JOB and a
type statement specifies that this variable be real, the
variable is treated as a real variable even though it im­
plicitly has the form of an integer variable.

Subscripts

A variable can be made to represent any element of a
1-, 2-, or 3-dimensional array of quantities by append­
ing one, two, or three subscripts, respectively, to the
variable name. The variable is then called a sub­
scripted variable. The subscripts are expressions of a
special form whose value determines the element of
the array to which reference is made.

Form of Subscripts

General Form. A subscript can take only one of the
following forms:

V
C
V+C
V-C
c*v
c*v+c'
C * V - C'

where V represents any unsigned nonsubscripted in­
teger variable, C and C' represent any unsigned
integer constant, and + denotes addition, - denotes
subtraction, and * denotes multiplication.

A variable in a subscript cannot be subscripted.

Examples.

J
3
1+3
K-l
4*L
2*M+5
3*M-4

Subscripted Variables

General Form. A subscripted variable consists of a
variable name followed by parentheses enclosing
one, two, or three subscripts separated by commas.

Examples.

A (I)
K(3)
BETA (8 * J + 2, K - 2, L)
MAX (I, J, K)

Subscripted variables must conform to the following.

1. Each variable that appears in subscripted form must
have the size of the array specified preceding the
first appearance of the subscripted variable in an
executable statement or DATA statement. Array sizes
are specified by using a DIMENSION statement or a
COMMON statement.

2. The order and number of the subscript expressions
must correspond to the order and number of the de­
clared dimensions.

3. During execution, variable subscripts are evaluated
so that the subscripted variable refers to a SP~9ific
member of the array.

NOTE: A variable subscript reference of the fonn
A(Cl*V1 ± Cl',C2*V2 ± C2',Ca*Va ± Ca'), where A is defined
in a DIMENSION or COMMON statement as A(dl,d2,da), must
confonn to the following inequality:

(f + 2) (C1Vl + dlGN2 + dld2CsVs) < 16,000

where f is the real size and CI, V I, and dl are zero if they
are not applicable. The VI'S are the largest value expected
in the subscripted variable reference.

Arrangement of Arrays in Core Storage

Arrays are placed in core storage in column order, in
order of decreasing core-storage addresses.

One-dimensional arrays are stored sequentially.

Two-dimensional arrays are stored sequentially by
column.

Three-dimensional arrays are stored sequentially by
column from plane to plane. (The first subscript is
cycled most rapidly, and the last least rapidly.)

For example, the array whose last element is A(3,5)
appears in core storage as:

A(3,5),A(2,5),A(1,5),A(3,4), ... , A(3,1),A(2,1),A(1,1)

Note that A(l,l) is in the high core-storage position,
and A(3,5) is in the low core-storage position.

Expressions

The Fortran language includes two kinds of expres­
sions, arithmetic expressions and logical expressions.

Arithmetic Expressions

An arithmetic expression consists of sequences of con­
stants, subscripted or nonsubscripted variables, and
arithmetic function references, separated by arithmetic
symbols, commas, and parentheses. The arithmetic op­
eration symbols and their meaning follow.

Symbol Meaning

+ Addition
Subtraction

* Multiplication
/ Division
** Exponentiation

9

+, - * I Real Integer Logical , ,

Real Valid Invalid Invalid

Integer Invalid Valid Invalid

Logical Invalid Invalid Invalid

Figure 1. Arithmetic Operators

The following rules must be followed in constructing
arithmetic expressions.

1. Figures 1 and 2 indicate which constants, variables,
and functions can be combined by the arithmetic
operators to form arithmetic expressions. Figure 1
gives the valid combinations with respect to the
arithmetic operators +, -, *, and I. Figure 2 gives
the valid combinations with respect to the arith­
metic operator * * .

2. Parentheses can be used, as in algebra, to group ex­
pressions, indicate the order of operations, and
make interpretation easier for the user.

3. Expressions can be connected by arithmetic opera­
tion symbols to form other expressions, provided
that:

a. No two operators appear in sequence, and

b. No operation symbol is assumed to be present.
Parentheses are not assumed to be present. Mul­
tiplication cannot be implied. For example, the
expression A * *B * *C is not permitted. It must be
written as either A**(B**C) or (A**B)**C,
whichever is intended.

Examples. In the following examples, implicit type
specification is assumed.

A+B
A+2

A+2.
A+2.0
I*J
I * A

A*B

A * 1

A ** 2.0

A ** 2
1** 2.0

1 ** 2

(Valid)
(Invalid - an integer constant cannot be added to
a real variable)
(Valid)
(Valid)
(Valid)
(Invalid - a real variable cannot be multiplied by
an integer variable)
(Valid)

(Invalid - an integer variable cannot be multiplied
by a real variable)
(Valid)
(Valid)
(Invalid - an integer variable cannot be raised to
a real constant power)
(Valid)

Preceding an expression by a + or - sign does not
affect the type of the expression.

10 Fortran IV Specs & Op. Proc. -1401,1440,1460

Exponent

**
Real Integer Logical

Base Real Valid Valid Invalid

Integer Invalid Valid Invalid

Logical Invalid Invalid Invalid

Figure 2. Exponentiation

Exponentiation is defined as follows:

1. Given: A * *1, where A is an integer variable or a
real variable and I is an integer variable.

If I > 0, then A**I = A*A* ... *A, (I factors). Re­
sult is the same type variable as A.

If 1=0 and if A # 0, then A **1 = 1. Result is the
same type variable as A.

If 1=0 and if A = 0, then A **1 = undefined.

If I < ° and if A =F 0, A * *1 =

1
A*A* ... *A, (III factors)

Result is a real variable.

If I < ° and if A = 0, then A **1 = undefined.

2. Given: A**R, where A is a real variable and R is a
real variable.

If A > 0, then A**R = EXP(R*ALOG(A)). Result
is a real variable.

If A = ° and if R > 0, then A**R = 0. Result is a
real variable.

If A = ° and if R ~ 0, then A * *R = undefined.
If A < 0, then A * * R = undefined.

Order of Operations

Parentheses can be used, as in algebra, in expressions
to specify the order in which the expression is to be
evaluated. Expressions are evaluated from left to right.
Where parentheses are omitted, the order of computa­
tion is as follows.

1. Function computation and substitution.
2. Exponentiation

3. Multiplication and division.

4. Addition and subtraction.

For example, the expression A + B/C -D**E*F - G
will be interpreted A + (B/C) - (DE * F) - G and
will be evaluated in order from left to right.

The expression -I**N, -A**B, and -A**N will
be interpreted as (-I)**N, (-A)**B, and (-A)**N
if preceded by a left parenthesis or an equal (replace­
ment) sign.

Logical Expressions

A logical expression consists of certain sequences of
logical constants, logical variables, references to logical
functions, and arithmetic expressions separated by
logical operators or relational operators. A logical ex­
pression always has the value .TRUE. or .FALSE •.

The logical operators (where a and b are logical
expressions) are:

Operator Definition
.NOT.a This has the value .TRUE. only if a is .FALSE.;

it has the value .FALSE. only if a is .TRUE ..
a.AND.b This has the value .TRUE. only if a and bare

both .TRUE. ; it has the value .FALSE. if either
a or b is .FALSE ..

a.oR.b (Inclusive OR) This has the value .TRUE. if either
a or b is .TRUE.; it has the value .FALSE. only
if both a and bare .F ALSE ..

The logical operators .NOT. , .AND. , and .OR. must al­
ways include the preceding and following periods.

Examples.
Z .OR. X
X . AND .. NOT. Y

The relational operators are:

Operator Definition
. GT. Greater than (»
. GE. Greater than or equal to (»
.LT. Less than «)
. LE. Less than or equal to «)
. EQ. Equal to (=)
. NE. Not equal to (#)

The relational operators must always include the
preceding and following periods.

Examples.
.NOT. C .EQ. Z
A.GT.B.OR.C.LE.B

The following are the rules for constructing logical
expressions:

1. Figure 3 indicates which constants, variables, and
functions can be combined by the relational opera-

tors to form a valid logical expression. The logical
expression will have the value .TRUE. if the condition
expressed by the relational operator is met. Other­
wise, the logical expression will have the value
.FALSE. .

2. A logical expression may also consist of a single
logical constant, a logical variable, or a reference to
a logical function.

3. The logical operator .NOT. must be followed by a
logical expression, and the logical operators .AND.

and .OR. must be preceded and followed by logical
expressions to form more complex logical expres­
sions.

4. Parentheses may not be used in logical expressions.

Order of Operations

In logical expressions, the order of operations is under­
stood to be as follows:

1. Function computation and substitution.
2. Exponentiation.

3. Multiplication and division .

4. Addition and subtraction .

5 .. LT. ,.LE. ,.EQ., .NE., .CT., .CE .

6 .. NOT .

7 .. AND .

8 .. OR.

.GT 'f .GE' f .LT 'f
Real .LE'f .EQ., . NE.

Real Valid

Integer Invalid

Logical Invalid

Figure 3. Relational Operators

Integer

Invalid

Valid

Invalid

Logical

Invalid

Invalid

Invalid

11

The Arithmetic Statement

The arithmetic statement defines a numerical or logical
calculation. A Fortran arithmetic statement closely re­
sembles a conventional arithmetic or algebraic for­
mula, except that the equal sign specifies replacement
rather than equality.

General Form. a = b

a is a real, integer, or logical variable that may be
subscripted.

b is an expression.

Examples.

A = B + (C - 3. 0) *D
A (I) = B (I) + SIN (C (I))
V = .TRUE.
E = C.CT.D.AND.F.LE.C

Figure 4 indicates the types of expressions and vari­
ables that can be equated to result in valid arithmetic
statements.

In the following examples of arithmetic statements,
I is an integer variable, A and B are real variables, and
C, D, and E are logical variables.

Statement

I = 1+1
A=3 * B

C = .TRUE.

D = .NOT. C

D = I.GE.A

Definition

Replace A by the current value of B.
Truncate B to an integer, convert it to
an integer constant, and store it in 1.
Convert I to a real variable and store
it in A.
Add 1 to I, and store it in I.
Not permitted. The expression is mixed
for multiplication; that is, it contains
both a real variable and an integer
constant.
Store the logical constant .TRUE. in C.
If C is .TRUE. , store the value .FALSE.

in D. If C is .FALSE. , store the value
• TRUE. in D.

Not permitted. An integer and a real
variable may not be joined by a rela­
tional operator.

Right Side of Equal Sign

I~ Left Variable Real Integer Logical
Side
of Real Valid Valid
Equal
Sign Integer Valid Valid

Logical Invalid Invalid

Figure 4. Valid Combinations of Variables and
Expressions

Invalid

Invalid

Valid

12 Fortran IV Specs & Gp. Proc. -1401,1440,1460

C = D.OR. .NOT.E D E "'E Dv"""E
T T F T
T F T T
F T F F
F F T T

where: '" implies .NOT. , and V implies .OR .•

C = 3 .. GT.B C is .TRUE. if 3. is greater than B; C is
.FALSE. otherwise.

The last two examples illustrate the following rules:

1. Two logical operators can appear in sequence only
if the second logical operator is .NOT ..

2. Two periods may appear in succession as in c =
D.OR .. NOT.E or when one belongs to a constant and
the other to a relational operator.

The Control Statements

The nine control statements enable the programmer to
control and terminate the flow of his program. Transfer
of control must be to an executable statement.

The Unconditional GO TO Statement

General Form. GO TO n

n is a statement number of an executable statement.

This statement causes control to be transferred to
the statement numbered n.

Example.

CO TO 25

This statement causes control to be transferred to
statement numbered 25 .

The Computed GO TO Statement

General Form. GO TO (n1,n2, . .. ,nm),i

nI, n2, ... , nm are statement numbers of executable state­
ments.

The limits of the value mare 1 < m :::;. 9.

i is a nonsubscripted integer variable.

The limits of the value i are 1 < i < 9.

This statement causes control to be transferred to
the statement numbered nl,nZ,"" nm depending on
whether the value of i is 1,2, ... , m, respectively, at the
time of execution.

Example.

GO TO (30, 45, 50, 9), K

In the example, if K is equal to 3 at the time of exe­
cution, the program will transfer control to the third
statement in the list, statement 50.

The Logical IF Statement

General Form. IF (t) s

t is a logical expression.

s is any executable statement except DO, an arithmetic IF,

or another logical IF.

If the logical expression t is true, statement s is exe­
cuted. Control then transfers to the next sequential
executable statement, unless s is a GO TO statement, in
which case control is transferred as indicated.

If t is false, control transfers to the next sequential
statement.

If t is true and s is a CALL statement, control transfers
to the next sequential executable statement on return
from the subprogram called.

Examples.

IF (A .AND. B) F = SIN (R)
IF (16 .GT. L) GO TO 24
IF (D .OR. X .LE. Y) GO TO (18, 20), I
IF (Q) CALL SUB (Q)

The Arithmetic IF Statement

General Form. IF(a) nl, nil, nJ

a is an arithmetic expression, type integer or type real.

nl, nt, n3 are statement numbers of executable statements.

The arithmetic IF statement is used to transfer con-
trol to one of three specified statements depending on
the value of an arithmetic expression. The arithmetic
statement a is tested. If a is less than zero, control
transfers to statement nl' If a is equal to zero, (plus or
minus), control transfers to statement nj!. If a is greater
than zero, control transfers to n3'

Examples.

IF (A(J, K) - B) 10, 4, 30
IF (D*E + BRN) 9, 9, 15

The DO Statement

General Form. DO n i = ml,mS,m3

n is a statement number of an executable statement.

i is a nonsubscripted integer variable.

ml,m!~m3 are either unsigned integer constants greater than
zero or unsigned nonsubscripted integer variables whose

value is greater than zero. The number of digits in the
integer size (k) must be at least one greater than the greatest
number of digits used for ml,m2, or rna. In the example below,
k must be greater than or equal to 3.

m3 is optional. If ms is not stated, its value is assumed to
be 1. If it is omitted, the preceding comma must also be
omitted.

Examples.
DO 30 I = 1, M, 2
DO 24 1=1, 10

The 00 statement is an instruction to execute re­
peatedly the statements that follow, up to and in­
cluding the statement numbered n. The first time the
statements are executed, i has the value ml and each
succeeding time i is increased by the value of m3' After
the statements have been executed with i equal to the
highest value that does not exceed mil, control passes
to the executable statement following statement num­
ber n. This is called the normal exit from the DO state­
ment.

The Range of the DO Statement. The range of the DO

statement is that set of statements that will be exe­
cuted repeatedly. That is, it is the sequence of state­
ments immediately following the DO statement, up to
and including the statement numbered n. After the
last execution in the range, the DO is said to be satisfied.

The Index of the DO Statement. The index of the DO

statement is the integer variable i. Throughout the
range of the DO, the index is available for computation,
either as an ordinary integer or as the variable of a sub­
script. After a normal exit from a DO, the index i must
be redefined before it is used in computation. After
exiting from a DO by transferring out of the range of
the DO, the index i is available for computation and is
equal to the last value it attained.

DO's Within DO's. A DO statement can be contained
within another DO statement. This is called a nest of
DO'S. If the range of a 00 contains another DO, then all
statements in the range of the enclosed DO must be
within the range of the enclosing DO. The maximum
depth of nesting, not including implied DO'S in I/O
lists, is twelve. That is, a DO can contain a second DO,

the second can contain a third, the third can contain
a fourth, and so on up to twelve statements.

Transfer of Control. Control cannot be transferred
into the range of a DO from outside its range. However,
control can be transferred out of a DO range. In this
case, the value of the index remains available for use.
H the eyjt is transferred out of the range of a set of
nested 00' s, then the index of each 00 is available.

13

DO

DO:=Jl 4

.. 2

... 5

~3 6

Figure 5. Nest of DO'S

Figure 5 illustrates the possible transfers in an out of
the range of a DO. In the figure, 1, 2, and 3 are per­
mitted, but 4, 5, and 6 are not permitted.

Restrictions on Statements in the Range of a DO.
Any statement that redefines the index or any of the
indexing parameters (m's) is not permitted in the range
of a DO.

The range of a DO cannot end with a GO TO type
statement or another DO. The range of a DO can end
with a logical IF, in which case control is handled in
the following manner. If the logical expression t is
false, the DO is repeated. If the logical expression t is
true, statement s is executed and then the DO is re­
peated. If t is true and s is a transfer type statement,
control is transferred as indicated by s.

When a reference to a subprogram is made in the
range of a DO, care must be taken that the called sub­
program does not alter the index or any of the indexing
parameters.

The CONTINUE Statement

General Form. CONTINUE

CONTINUE is a dummy statement that does not pro­
duce any executable instructions. It is most frequently

14 Fortran IV Specs & Op. Proc. -1401,1440,1460

used as the last statement in the range of a DO to pro­
duce a branch address for GO TO statements that are in­
tended to begin another repetition of the DO range.

Example.

DO 20 1=2, N
IF (BIGA .L T. A (I))BIGA = A (I)

20 CONTINUE

The PAUSE Statement

General Form. PAUSE or PAUSE n

n is an unsigned integer constant of one to three digi~

The statement causes the machine to halt. The in­
teger constant n is in the B-address register. If n is not
specified, it is assumed to be zero. When the machine is
restarted by pressing the start key, the next Fortran
statement is executed.

The STOP Statement

General Form. STOP

The STOP statement terminates execution of the pro­
gram. When the STOP statement is executed, control
returns to the System Control Program. The program
can have any number of STOP statements. The STOP

statement must consist entirely of alphabetic char­
acters.

The END Statement

General Form. END

The END statement defines the end of a program or a
subprogram. Physically, it must be the last statement
of each program or subprogram. As the END statement
is not executable, it must not be encountered in the
flow of the program.

The Specification Statements
The specifications statements provide information
about storage allocation and the variables and con­
stants used in the program.

The DIMENSION Statement

General Form. DIMENSION Vl (i1), V2 (i 2), ••. , Vn (in)

VI, VI, ... ,vn are the names of arrays.

iI, i2, ... , in are each composed of 1, 2, or 3 unsigned in­
teger constants and/or integer variables separated by
commas. Each integer specifies the maximum value of
the subscript. i can be an integer variable only when
the DIMENSION statement appears in a subprogram.

Examples.

DIMENSION A(lO), B(5, 15), C(L, M)
DIMENSION S(10), K(5,5,5), G(100)

The DIMENSION statement provides the information
necessary to allocate storage for arrays in the object
program. It defines the dimensionality and the maxi­
mum size of each array listed.

Each variable that appears in subscripted form in
the source program must appear in a DIMENSION state­
ment contained in the source program. However, if the
dimension information for a variable is included in a
COMMON statement in the source program, it must not
be included in a DIMENSION statement.

A single DIMENSION statement can specify the dimen­
sions of any number of arrays. The DIMENSION state­
ment that specifies the array size must precede the first
appearance of each subscripted variable in an execut­
able or DATA statement. (See Figure 6).

Dimensions specified in a COMMON statement are
subject to all the rules for the DIMENSION statement,
except that adjustable dimensions are not permitted.

DIMENSION A(5, 10)

CALL MAY MY (••• ,A, •••)

SUBROUTINE MAYMY (••• ,R, •••)

DIMENSION ••• , R(5, 10), •••

• Figure 6. Passing Array Names

The COMMON Statement

General Form. COMMON a, b, c, ...

a, b, c, ... are variable or array names that can be di­
mensioned

Example.

COMMON A, B, C (5, 10)

The COMMON statement refers to a common area in
core storage. Variables or arrays that appear in main
programs and subprograms can be made to share the
same storage locations by using the COMMON state­
ment. For example, if one program has the ~tatement
COMMON A and a second program has the statement
COMMON B, the variables (or arrays) of A and B will
occupy the same storage locations in the COMMON area.
These variables (or arrays) appearing in COMMON state­
ments are assigned locations relative to the beginning
of the COMMON area.

Within a specific program or subprogram, variables
and arrays are assigned core storage locations from the
high core-storage addresses to lower core-storage ad­
dresses in the sequence in which their names appear
in the COMMON statement. Subsequent sequential stor­
age assignments within the same program or subpro­
gram are made with additional COMMON statements.

For example, if the main program contains the state­
ment

COMMON A, B, C

and a subprogram contains the statement

COMMON L, M, N

then A, B, and C are assigned sequential locations, as
are L, M, and N. Further, A and L will occupy the same
location, Band M will occupy the same location, and C

and N will occupy the same location.

Variables declared in COMMON must agree, respec­
tively, in type. In the preceding example, A and L are
type real, as are Band M, and C and N. (L, M, and N

must be declared as real in the subprogram.)

A dummy variable can be used in a COMMON state­
ment to establish shared locations of variables that
would otherwise occupy different locations. For exam­
ple, the variable x can be assigned to the same location
as the variable C of the previous example by using the
following statement.

COMMON R, S, X

where Rand s are dummy names that are not used else­
where in the program .

15

Redundant entries are not permitted in a COMMON

statement. For example, the following statement is in­
valid.

COMMON F, G, H, F

Variables brought into COMMON through EQUIVA­

LENCE statements may increase the size of COMMON

(see The EQUIVALENCE Statement).
Two variables in COMMON cannot be made equiva­

lent to each other, either directly or indirectly.

The EQUIVALENCE Statement

General Form. EQUIVALENCE (a, b, c, .. .), (d, e,
f, ...), ...
a, b, c, d, e, f, ... , are variables which may be subscripted.

Subscripted variables can have single or multiple sub­
scripts. These subscripts must be integer constants.

Example.
EQUIVALENCE (A, B(l), C(5)), (D(17), E(3))

The EQUIVALENCE statement controls the allocation
of core storage by causing two or more variables to
share the same core storage location.

An EQUIVALENCE statement can be placed anywhere
in the source program. Each pair of parentheses in the
statement list encloses the names of two or more vari­
ables that are to be stored in the same location during
execution of the object program. Any number of equiv­
alences (sets of parentheses) can be given.

In an EQUIVALENCE statement, C(p) is defined as the
location of the pthelement in the array C. Thus, in the
preceding example, the EQUIVALENCE statement indi­
cates that A, and the Band C arrays are to be as­
signed storage locations so that the elements A, B(l),
and C(5) are to occupy the same location. In addition,
it specifies that D(17) and E(3) are to occupy the same
location. This implies that D(15) and E(l) occupy the
same location.

All variables that are to occupy the same location as
a result of an EQUIVALENCE statement must be of the
same type and must not be inconsistent in relative core­
storage locations. For example, the statement

EQUIVALENCE (A(4), C(2), D(l)), (A(2), D(2))

is invalid. The equivalencing of A(4), C(2), and D(l)
sets up an equivalence among elements of each row
below.

A(l)
A(2)
A(3)
A(4)
A(5)

C(l)
C(2)
C(3)

D(l)
D(2)

16 Fortran IV Specs & Op. Proc. -1401,1440,1460

Thus, D(2) must not be equivalenced to A(2). EQUIVA­

LENCE (A(3), A(4» is also invalid.

Variables or arrays not mentioned in an EQUIVALENCE

statement will be assigned unique locations. Locations
can be shared only among variables, not among con­
stants.

The sharing of storage locations requires a knowl­
edge of which Fortran statements cause a new value
to be stored in a location. There are four such state­
ments.

1. Execution of an arithmetic statement stores a new
value in the variable to the left of the equal sign.

2. Execution of a DO statement, the terminal statement
of a DO, or an implied DO in an I/O list stores a new
indexing value.

3. Execution of a READ statement stores new values at
the locations specified by variable names in the in­
put list.

4. Execution of a subroutine or function may store a
new value in any of its actual arguments or any
variables in COMMON.

Variables brought into COMMON through EQUIVA­

LENCE statements can increase the size indicated by the
COMMON statements, as in the following example.

COMMON A, B, C

DIMENSION D(3)

EQUIVALENCE (B, D(l))

The layout of core storage indicated by this example
(extending from the lowest location of COMMON to the
highest location of COMMON) is:

A
B D(l)
C D(2)

D(3)

A variable cannot be made equivalent to an element
of an array in such a way as to cause the array to ex­
tend beyond the beginning of COMMON. For example,
the following coding is invalid.

COMMON A, B, C

DIMENSION D(3)

EQUIVALENCE (B, D(3))

This would force D(1) to precede A, as follows.

D(l)
A D(2)
B D(3)
C

The Type Statements

General Forms.

INTEGER a, b, c, ...
REAL a, b, c, ...
LOGICAL a, b, c, .. .
EXTERNAL x, y, z, .. .

a, b, c, ... are variable or function names appearing within
the program.

x, y, z, ... are function or subroutine names appearing as
actual arguments within the program.

Examples.
INTEGER BIXF, X, QF, LSL

REAL IMIN, LOG, GRN, KLW

LOGICAL F, G, LWG
EXTERNAL SIN, MATMPY, INVTRY

The variable or function names following the type
(INTEGER, REAL, LOGICAL, or EXTERNAL) in the type state­
ment are defined to be of that type, and remain that
type throughout the program. The type cannot be
changed.

In the examples, note that LSL and GRN need not ap­
pear in their respective type statements, for their type
is implied by their first characters.

The type statement must precede the first use of a
name in any executable statement or DATA statement in
the program. The appearance of a name in any type
statement except EXTERNAL overrides the implicit type
assignment. A name can appear in two type statements
only if one of them is EXTERNAL. A name declared to be
of a given type can assume only values of the same
type.

Subprogram names that are actual arguments of
other subprograms must appear in EXTERNAL type
statements. Dummy arguments in a SUBROUTINE or
FUNCTION statement must also appear in an external
statement if they are dummy subroutine names that are
actual arguments of other subprograms. For example,
assume both SOMEF and OTHER are subprograms. If
A = SOMEF (OTHER, B, C) + B appears in a program, the
type statement EXTERNAL OTHER is required in the pro­
gram.

The DATA Statement

General Form. DATA listld1, d th ••• , dnl, listld1, di!,
k*d3, ••• , dml, ... ,listldx, d , ... ,d I
list contains the names of the variables being defined.
dt is the information literal.
k is an integer constant.

Examples.

DATA R, QIl4.2, 3HENDI,B(2)/0./
DATA (B(I), C(I), I = 1,40,2) 12.0,3.0,38*100.01

The DATA statement is used to compile data into the
object program, initializing the values of the specified
values prior to execution. For example, the result of
the first DATA statement would be:

Variable

R

Q

B(2)

Initialized Value

14.2

END (right justified)

O.

The list can contain nonsubscripted variables, sub­
s~ripted variables, or array names that imply the en­
tIre array is initialized. Subscripted variables must
have constant subscripts or subscripts whose variables
are under control of Do-implying parentheses and asso­
ciated parameters. The Do-defining parameters must
be integer constants.

A k appearing before a d-literal indicates that the
field is to be repeated k times. The k must be a one to
tlrree digit integer. It must be separated from the field
to be repeated by a times sign (*).

The d-literals can take anyone of the following
forms.

1. Integer constants and real constants.

2. Alphameric characters. (The variable name as­
sociated with the H -Conversion must conform to
the normal rules for naming Fortran variables and
must be type real.) The alphameric field is written
nH followed by n alphameric characters. n should
be less than or equal to f + 2. Each group of f + 2
characters forms a word. If n < f + 2, the char­
acters are right-justified in the field and the word
is filled out with blanks. If n > f + 2, only the left­
most f + 2 characters are stored in the word and
the remaining characters are lost. Blanks are signi­
ficant in alphameric fields. The variable can be re­
ferred to by the appropriate name in an I/O list or
as an actual subprogram argument. It cannot be
used in arithmetic or logical operations.

3. Logical constants. The logical constants can be
. TRUE. , T, .FALSE. , or F.

4. Variable names appearing in DATA statements can­
not appear in COMMON statements.

There must be a one-to-one correspondence be­
tween the list items and the data literals. For example,
if it is desired to define 16 alphameric characters (say
8HDATAbTOb,8HBEbREADb) as a variable (say G)
and if f is 6, then G must be dimensioned to contain at
least two elements.

When DATA-defined literals are redefined during exe­
cution, these variables will assume their new values
regardless of the DATA statement.

17

Input/Output Statements
The input/output (I/O) statements control the trans­
mission of data between the computer and input/
output devices, such as card readers, card punches,
printers, magnetic tape units, and disk units. The I/O
statements fall into one of the following general cate­
gories.

FORMAT Statements. FORMAT statements are non­
executable statements that specify the external ar­
rangement of the edited information to be trans­
ferred and the editing transformation between
internal (core storage) and external forms of the in­
formation. FORMAT statements are used in conjunc­
tion with the general I/O statements.

General I/O Statements. The general I/O statements
READ and WRITE cause the transmission of informa­
tion between core storage and the logical me that is
assigned to an input/output device. (For a descrip­
tion of logical files, see Logical Files.)

If these statements refer to FORMAT specification
statements, then the information is edited and the
I/O statements are called edited 1/0 statements.
Otherwise, the I/O statements are called unedited
I/O statements.

Manipulative I/O Statements. The statements END

FILE, REWIND, FIND, and BACKSPACE manipulate the
input/output device to which a specific logical file is
assigned.

I/O Specification Statement. The DEFINE FILE state­
ment defines the size and characteristics of logical
files that are assigned to disk units to be accessed
randomly.

List Specifications

The general I/O statements cause the transmission of
data.

An I/O list is a series of list items that are separated
by commas. A single list item can be a subscripted or
non-subscripted variable. An I/O list is read from left
to right.

An I/O list is ordered. The order must be the same
as the order in which the input exists in the input
medium, or in which the output is to exist in the output
medium.

An I/O list can contain implied DO'S. All items to be
included in the range of the implied DO and the in­
dexing information must be set off by parentheses.

18 Fortran IV Specs & Op. Proc. -1401,1440,1460

Implied DO'S can be nested to a nesting depth of three
by placing matching parentheses around the first and
last items of each successive inner DO range. Redundant
parentheses are not allowed.

Consider this I/O list.

M, (Q(I), 1 = 1, 10)

This implies that the information in the external in­
put and/or output medium is arranged in the following
order.

M, Q(I), Q(2), ... , Q(lO)

Consider this I/O list.
A, B(3), (C(I), D(I, K), 1 = 1, 10),
((E(I, J), 1 = 1, 10, 2), F (J, 3), J = 1, K)

This implies that the information in the external in­
put and/or output medium is arranged in the following
order.

A, B(3), C(1), D(I, K), C(2), D(2, K),
... ,C(10), D(1O, K),

E(I, 1), E(3, 1), ... , E(9, 1), F(I, 3),
E(I, 2), E(3, 2), ... ,E(9, 2), F(2, 3),

E(I, K), E(3, K), ... , E(9, K), F(K, 3)

An I/O list containing parentheses is executed in a
manner similar to the execution of a DO loop. The left
parenthesis (except subscripting parentheses) is treated
as though it were a DO statement, with the indexing in­
formation given immediately before the matching right
parenthesis. The rules for specifying i = mI,m2,m3
are the same as those for the DO statement. The DO

range extends up to the indexing information. The
order of the I/O list shown in the first example can
be considered equivalent to the following steps.

M

DO 1 1=1, 10

1 Q (I)

The order of the I/O list shown in the second ex­
ample can be considered equivalent to the following
steps.

A

B (3)

DO 5 1 = 1,10 }
C (I) (C(I), D(I, K), 1 = 1, 10)

5 D (I, K)

D09J= I,K l
DO 8 1 = 1, 10, 2

8 ()
(E (I, J), 1 = 1, 10,2), F 0, 3), J = 1, K)

E I,J
9 F (J, 3)

In the preceding paragraph, the list item (C(I),
D(I,K),I = 1, 10) is an implied DO. It is evaluated as

shown. The range of an implied DO must be clearly
defined by parentheses.

For a list in the form K, A(K) or K,(A(I),I = 1,K),
where the definition of an index or an indexing parame­
ter appears in the list of an input statement earlier than
the use of the index or indexing parameter, the index­
ing will be carried out with the newly read-in value.

Any number of items can appear in a single list. If
the list is in an edited statement, the format of each
data value must be the same as specified in a corre­
sponding FORMAT statement. Essentially, the I/O list
controls the number of the data values read or written.
If the corresponding FORMAT statement indicates more
data values are to be transmitted than there are items
on the list, only the number of data values indicated
on the list are transmitted. All remaining data values
are ignored. If a list contains more items than there are
data values on one edited input record, additional rec­
ords are read. When a read operation is performed, a
list must not contain more items than data values in
one unedited input record.

A list can include no items only if the data to be
transferred is entirely specified in a FORMAT statement.

Reading or Writing Entire Arrays

vVhen the reading or writing of an entire array is re­
quired, an abbreviated notation can be used in the list
of the input/output statement. Only the name of the
array need be given, and subscripts can be omitted.

If A has previously been listed in a DIMENSION or
COMMON (with dimensions) statement, either the state­
ment

READ (5, 10) A or READ (3) A

is sufficient to cause all the elements of array A to be
read in the implied order of elements. If A is a 2 X 3
array, the elements are read into core storage in the
following order.

A(1,1),A(2,1),A(1,2),A(2,2),A(1,3),A(2,3)

The FORMAT Statement

General Form. FORMAT (S1, 52"", Sn/S'1, S'2,""
S' n/ . ..) Each field, Si, is a format specification.

Example.

FORMAT (I2/(E12.4,F10.2))

The edited input/output statements require, in addi­
tion to a list of items to be transmitted, reference to a

FORMAT statement that describes the edited data rec­
ord and the type of conversion to be performed be­
tween the internal representation and the external
representation for each item in the list.

FORMAT statements are not executed. They need not
appear in any special place within the program. Each
FORMAT statement must be given a statement number.

The FORMAT statement indicates the maximum size
of each edited record to be transmitted. Except when
a FORMAT statement consists entirely of H- or X-con­
version fields, it is used in conjunction with the list of
some particular input/output statement. Conb'ol in the
object program switches back and forth between the
list (which specifies whether data remains to be trans­
mitted) and the FORMAT statement (which gives the
specifications for transmission of that data).

Edited data records must consist of one of the fol­
lowing:

1. On tape, 200-character records are written. The
data records, specified by a FORMAT statement, be­
gin in character position one. All unused characters
are left blank. On disk, either one or two sectors
is used, depending on whether the record is defined
to be greater or less than 100 characters.

2. A punched card record with a maximum of eighty
characters.

3. A line to be printed with a maximum of 120 or 132
print positions, depending on the printer being used.

The first left parenthesis begins a record. In a read
operation, the record is read. In a write operation, the
output record is begun, but not written.

A slash ends the current record and begins a new
record. In a read operation a slash means that no more
information is obtained from the last record that was
read. In a write operation, the output that has been
developed is written, even though the output record is
blank, as when two slashes are adjacent.

The final right parenthesis of the FORMAT statement
terminates the current record in the same manner as a
slash. If list items remain to be processed, it also begins
a new record and repeats. A repeat starts with the last
repetitive group including the repeater, if there is one.
Otherwise it starts with the specification following the
first parenthesis of the FORMAT statement.

During input/output operations, the object program
scans the FORMAT statement to which a specific input/
output statement refers. When a specification for a
numerical, logical, or alphameric field is found and list
items remain to be transmitted, editing takes place ac­
cording to the specification, and scanning of the FOR­

MAT statement resumes. If no list items remain when

19

one of the preceding specifications or the final right
parenthesis is processed, the current record and the
execution of that particular input/output statement are
ended.

Format Specifications

Numeric Fields

Three types of specifications are available for numeric
data.

Internal

Real
Real
Integer

Conversion Code

E

External

Real with E exponent
Real without exponent
Integer

F
I

These types of conversion are specified in the fol-
lowing forms.

Ew.d
Fw.d
Iw
E, F, and I specify the type of conversion.

w is an unsigned integer constant specifying the field width
of the data, including signs and the exponent part, if
appropriate. This field width can be greater than that
required for the actual digits to provide spacing pre­
ceding the number.

d is an unsigned integer constant or zero that represents
the number of numerics in the field that appear to the
right of the decimal point. d is ignored for input when
a decimal point actually appears. The exponent part for
E-conversion is not included in this number.

For example, the statement FORMAT (lH1, 13,
E12.4, F10A) causes the following line to print after a
skip to channell (when given in conjunction with a
WRITE statement).

Stored data
Field specifications
Printed line

+ -+
00027 9320963102 7634352602
13 E12.4, FlOA
b27b-0.9321Eb02bbb-0.0076

where b indicates a blank.

Specifications for successive fields are separated by
commas. Specification of more characters than are per­
mitted for the appropriate input/output record cannot
be given. Thus, a format for a record to be printed
should not provide for more characters (including
blanks) than can be handled by the printer.

Information to be transmitted with E- and F -conver­
sion must be of type real. Information to be transmitted
with I-conversion must be of type integer.

The field width w for I -conversion output must in­
dude a space for the sign.

The field width w for F -conversion output must in­
clude a space for the sign, a space for the decimal point

20 Fortran IV Specs & Op. Proc, -1401,1440,1460

(optional for input), and a space for a possible zero
that precedes the decimal if the absolute value of the
number is less than one. Thus, w ::::::". d + 3.

The field width w for E-conversion output must in­
clude a space for the sign, a space for the decimal point
(optional for input), and a space for a possible zero
that precedes the decimal if the absolute value of the
number is less than one, and four spaces for the E, ex­
ponent sign, and exponent. Thus, w::::::". d + 7.

The exponent that can be used with E-conversion is
the power of 10 by which the number must be multi­
plied to get its true value. The exponent is written with
an E followed by a minus sign if the exponent is nega­
tive, or a plus sign or a blank if the exponent is positive,
and then followed by the exponent. The exponent can
be one of two numbers. For example, the value .002
can be written as .2E-02.

If a number converted by 1-, E-, and F-conversion
on output requires more spaces than are allowed by
the field width w, an X is inserted in the low-order
(rightmost) position. If the number requires less than
w spaces, the high-order spaces are filled with blanks.
A space preceding a number output under 1-, E-, or
F -conversion indicates a positive value. The plus sign
is not included, but w must be sufficiently large to in­
clude the blank or a minus sign.

Logical Fields

The specification Lw is used to transfer logical vari­
ables. w is an unsigned integer constant that specifies
the field width on the external medium.

For input fields, T or F as the leftmost nonblank
character in the field results in a value of . TRUE. or
.F ALSE. for the logical variable. A blank field results in
a value of .F ALSE .•

For output fields, T or F will appear right-justified in
the field when the logical variable is . TRUE. or .FALSE. ,

respectively.

Alphameric Fields

Fortran provides two ways by which alphameric in­
formation can be transmitted. The internal representa­
tion is the same for both specifications.

The specification Aw causes w characters to be read
into or written from a core-storage location designated
by a variable or an array name.

The specification nH specifies that alphabetic in­
formation is contained in a FORMAT statement.

The basic difference between A- and H-conversion
is that alphameric information handled by A-conver­
sion is given a variable name or an array name. Thus,
it can be referred to by the appropriate name in an I/O

list, a data-name list, an actual subprogram argument,
or a dummy subprogram argument. The associated
I/O statement therefore requires a list when A-conver­
sion is specified by the FORMAT statement.

Information handled by H-conversion is not labeled.
It is a constant field and cannot be referred to or ma­
nipulated in core storage in any way.

A-Conversion

The variable name to be converted by A -conversion
must conform to the normal rules for naming Fortran
variables. The variable name must be of type real.

For input, nAw is interpreted to mean that the next
n successive fields of w characters each are to be trans­
mitted to core storage without conversion. If w is
greater than f + 2 (f is the assigned real size), only the
f + 2 leftmost characters are significant. If w is less
than f + 2, the characters are right justified and the
high-order positions are filled with blanks.

For output, nAw is interpreted to mean that the next
n successive fields of w characters each are to be the
result of transmission from core storage without con­
version. If w is greater than f + 2 in each of the n
fields, only f + 2 characters of output are transmitted,
followed by w - (f + 2) blanks. If w is less than f + 2,
the w rightmost characters of the field are transmitted.

H-Conversion

The specification nH is followed by n alphameric char­
acters in a FORMAT statement. A comma separates suc­
cessive specifications, including the H-conversion, used
in the FORMAT statement. The separating comma ap­
pears after the last alphameric character, which can be
a blank. For example,

... , 32HbTHISbISbALPHAMERICbINFORMA TIONb, ...

Note that blanks are considered alphameric characters
and must be included as part of the count n.

The effect of nH depends on whether it is used with
input or output. For input, n characters are extracted
from the input record and replace the n characters of
the appropriate source program statement.

For output, the n characters following the specifica­
tion, or the characters that replaced them, are written
as part of the output record.

Figure 7 shows an example of A- and H-conversion
in a FORMAT statement. The statement FORMAT
(4HbXY = ,F8.3,A8) could produce the lines shown in
the figure. b indicates a blank character.

Blank Fields - X-Conversion

For input, nX causes n characters in the input record
to be skipped, regardless of what they actually are.

For output, nX causes n blank characters to be intro­
duced into the output record.

Repetition of Field Format

It may be desirable to transfer n successive fields
within the same record with the same format specifica­
tion. This is specified by placing a number n, an un­
signed integer constant, before E, F, I, L, or A. Thus,
the field specification 3E12.4 is the same as E12.4,
E12.4, E12.4.

Repetition of Groups

A repetitive group is an integer constant of not more
than three digits followed by a left parenthesis, a
specification list, and a right parenthesis. Thus, the
specification FORMAT (2(FIO.6,EIO.2),I4) has the
same effect as FORMAT (FIO.6,EIO.2,FIO.6,EIO.2,I4).

Scale Factors - P-Conversion

To permit general use of E- and F -conversion, a scale
factor s followed by the letter P can precede the speci­
fication.

The scale factor is defined for F -conversion input as
follows:

10-s x external quantity = internal quantity

The scale factor is defined for E- and F -conversion
output as follows.

external quantity = internal quantity X lOs

For input, scale factors have effect only on F -con­
version. For example, if input data is in the form
XX.XXXX and it is desired to use it internally in the
form .XXXXXX, the FORMAT specification to make this
change is 2PF7.4.

XY = b-93.21Obbbbbbbb

XY = 9999.999bbSNSSWl

XY = bb28.768bbbbbbbb

Figure 7. Example of A- and H-Conversion

21

For output, scale factors can be used with both E­
and F -conversion. For example, the statement FOR­
MAT (13,3Fll.3) would give the following record.

b27bbbb-93.210bbbbb-D.OOBbbbbbbO.554

Using the same data and the statement FORMAT
(I3,lP3Fl1.3) would give the following record.

b27bbb-932.096bbbbb-O.O'76bbbbbb5.536

Whereas, using the same data and the statement FOR­
MAT (13,-lP3Fl1.3) would give the following record.

b27bbbbb-9.32Ibbbbb-O'.O'OIbbbbbbO.O'55

A positive scale factor used for output with E-con­
version increases the base and decreases the exponent.
A negative scale factor used for output with E-conver­
sion decreases the base and increases the exponent.
Thus, using the same data and the statement FORMAT
(13,lP3E12.4) would give the following record.

b27b-9.3210EbO'Ib-7.6344E-03bb5.5536E-O'I

Whereas, using the same data and the statement FOR­
MAT (13,-lP3E12.4) would give the following record.

b27b-O.0932Eb03b-O.O'763E-OIbbO.0555EbOI

The scale factor is assumed to be zero if no value is
given. However, once a value has been given, it holds
for all E- and F -conversions following the scale factor
within the same FORMAT statement. This applies to
both single-record formats and multiple-record formats
(see Multiple-Record FORMAT Specifications). Thus,
the specification

IPE lO.4,E 12.5,FB.3

is equivalent to

IPE IDA, IPE 12.5, IPFB.3

Once the scale factor is given, a subsequent scale factor
of zero in the same FORMAT statement must be speci­
fied by OP. Thus, if it is desired that only the first item
in a specification be affected by P-conversion, the spec­
ification should be written

IPEI OA,OPE 12.5,FB.3

Scale factors have no effect on 1-, A-, and L-conver­
sion.

Multiple-Record FORMAT Statements

To deal with many output records, a single FORMAT

statement can have several single-record format speci­
fications separated by a slash (I) to indicate the begin­
ning of a new record. For example,

FORMAT(3F9.2,2FlO.3IBEI1.4)

transfers the first, third, fifth, ... , records with the
specification 3F9.2,2FIO.3; and the second, fourth,
sixth, ... ,records with the specification BEll.4.

22 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

Two consecutive slashes (1/) indicate a blank record.
For example,

FORMAT(3F9.2,2FIO.3/ !I2/ /)

transfers the first, sixth, eleventh, ... , records with the
specification 3F9.2,2FIO.3; the second, seventh, twelfth,
. .. ,records are blank; the third, eighth, thirteenth,
... ,records with the specification 12; the fourth, ninth,
fourteenth, ... , records are blank; and the fifth, tenth,
fifteenth, ... ,records are blank.

On input, the same format descriptions apply. How­
ever, on input two slashes (1/) indicate a record to be
ignor~d. (The record is read, but not processed.)

If a single multiple-record FORMAT statement is re­
quired in which, for example, the first two records are
unique and all remaining records are to be transferred
to the same specification, the specification of the re­
maining records should be defined as a repetitive
group by enclosing it in parentheses. For example,

FORMAT(I2,3EI2A/2FIO'.3,3F9A/(IOFI2.4»

would transfer the first record with the specification
12,3E12.4, the second record with the specification
2FIO.3,3F9.4, and all remaining records with the speci­
fication lOF12.4. The repetition starts at the last left
parenthesis, including a repeater, if present.

If data items remain to be transferred after the for­
mat specification has been completely interpreted, the
specification repeats after the last left parenthesis.
Group repetition applies again if it is present. Consider
this example.

FORMAT(3EI0.3,2(I2,2FI2A,F2B.17))

If more items are to be transferred after this format
specification has been completely used, the specifica­
tion repeats with 12 after the last left parenthesis. The 2
preceding the parenthesis, indicating group repetition,
applies again.

Carriage Control

Carriage control characters must appear in the first po­
sition of the output record if the record is to be printed.
The control character does not appear in the printed
record. The valid characters used to achieve the de­
sired results follow.

Character

blank

0'

1-9

Result

No space before printing, that is, single space
printing
One space before printing, that is, double
space printing
Skip to channel 1-9 before printing as in­
dicated

FORMAT Statements Read In at Obiect Time

A FORMAT may be specified for an I/O list at object
time. In order that this be accomplished, two factors
must be taken into account.

First, the name of the variable which will contain the
FORMAT specification must appear in a DIMENSION state­
ment, even if the array size is only l.

Second, the format read in at object time under
A-conversion must take the same form as a source pro­
gram FORMAT statement, except that the word FORMAT
is omitted. The variable format begins with a left pa­
renthesis and ends with a right parenthesis.

Consider this example. A, B, and array C are con­
verted and stored according to the FORMAT specifica­
tions that are read into the array FMT at object time.

DIMENSION FMT (12)

1 FORMAT (BAlO)

READ (1, 1) (FMT (I), I = 1, B)

READ (1, FMT) A, B, (C (I), 1= 1,5)

Assume that the first data card containing the FORMAT
statement is of the form

(b2F10.B/b(E10.2))bb ...

This implies that (b2F10.8/b will be stored in FMT(l)
and (E10.2))bb will be stored in FMT(2), assuming
f + 2 = 10. The remaining characters will be stored in
FMT(3) This further implies that A and B will be
read according to the F10.8 FORMAT specification and
C(l), ... ,C(5) will be read according to the E10.2
FORMAT specification.

Edited Input Data

Edited input data to an object program is contained in
records that conform to the following specifications:

1. The data must correspond in order, type, and field
width to the field specifications in the FORMAT state­
ment. Reading of data starts with the first character
position.

2. Plus signs are indicated by a blank or a preceding +
(12-zone punch). Minus signs are indicated by a
preceding - (II-zone punch).

3. Blanks in numeric fields are regarded as zeros.

4. Numbers for E- and F-conversion can contain any
number of digits, but only the high-order f digits
will be retained. The number is rounded to f digits
of accuracy. The absolute value of the number must
be between the limits 10-100 and (1 - 10-f) X 1099,

or be zero. Numbers for I-conversion must be right
justified (trailing blanks are regarded as zeros).

5. Numbers for E-conversion need not have four col­
umns devoted to the exponent field. The start of the
exponent field must be marked by an E, or if the E
is omitted, by a + or - (not a blank). Valid forms
for the exponent field are:

E+02, Eb02, Eb2, E+2, E2, +02, +2, E-22, E-2, -2.

6. Numbers for E- and F-conversion need not have the
decimal point punched. The format specification
will supply the required decimal point. For exam­
ple, the number -09321+2 with the specification
E12.4 will be treated as though the decimal point
had been punched between the 0 and the 9. If a
decimal point is punched, its position overrides the
position indicated in the FORMAT specification.

7. A 7-8 punch in column one indicates an immediate
return to the System Control Program.

Unedited Data

Unedited data may be stored on a disk unit or on mag­
netic tape. The length of each complete unedited rec­
ord is defined by the number of items in the I/O list.
Unedited records that are read from either a disk unit
or magnetic tape must have been written by a Fortran
WRITE statement. That is, the lists for the READ and
WRITE statements must be of the same length; Further,
the types of the list items must be in a one-to-one cor­
respondence. For example, if the list of the WRITE state­
ment is in the form

A,B,C

and the list of the READ statement is in the form

X,Y,Z

the types of A and X must match, the types of Band
Y must match, and the types of C and Z must match.

The information is read or written using the internal
representation of data values with no conversion.

The Fortran object-time routines may physically seg­
ment complete records into partial records.

General Input/Output Statements

The input/output devices available on the object ma­
chine are the only devices that can be referenced in
an I/O statement. In particular, a disk unit must be
available in order to use the DEFINE FILE, FIND: and the
random form of the READ and WRITE statements. The se­
quential READ and WRITE, ENDFILE, BACKSPACE and RE­

WIND statements can reference a disk unit area only if
the area has not been referenced in a DEFINE FILE state­
ment. Sequential operations on disk and tape are effec­
tively the same.

23

The READ Statement

The READ statement designates input. This statement
is used to transfer data from input devices to the com­
puter.

General Farms.

READ (i, n) list
READ (i) list
READ (i ' e, n) list
READ (f' e) list

is an unsigned one digit integer constant or an integer
variable that specifies a specific logical file to be used for
data input.

n is the statement number of a FORMAT statement or a real
array name that describes the data to be transferred.

list is an input list.

i is an unsigned one digit integer constant or an integer
variable that specifies a specific logical file on a disk unit
whose data input is to be accessed randomly.

, is a 4-8 punch (equivalent to the @ symbol).

e is an unsigned integer constant, integer variable, or integer
expression that specifies a specific record within logical
file j.

Examples.
READ (5, 10) A, B, (D (J), J = 1, 10)
READ (N, 10) K, D (J)
READ (3) (Am, J = 1, 10)
READ (N) (A(J), J = 1, 10)
READ (6 ' 55, 15)
READ (I ' J, 22)
READ (I ' J + 5) X, Y, Z

The READ (i,n) list statement is used when the logical
file contains edited information and is assigned to a
card reader, or to a console printer, or to a tape unit,
or to a disk unit whose records are to be selected se­
quentiaIly. The statement causes the edited informa­
tion to be read from the logical file i according to
FORMAT statement n. Successive records are read in ac­
cordance with the FORMAT statement n until all the
data items in the I/O list have been read, converted,
and stored in the location specified by the I/O list.

The READ (i) list statement is used when the logical
file contains unedited information and is assigned to a
tape unit or to a disk unit whose records are to be proc­
essed sequentiaIly. The statement causes the unedited
information to be read from the logical file i starting
with the record at the current position of the device to
which logical file i is assigned. Only one record is read.
The record is read completely only if the list specmes
as many variables as the number of values in the rec­
ord. Unedited records that are to be read in by a For­
tran program should have been written by a Fortran
program that used the same degrees of precision; that
is, the values of k are the same for both programs, and
the values of f are the same for both programs. An un-

24 Fortran IV Specs & Ope Proc. -1401,1440,1460

edited record to be read can be divided into several
parts by a Fortran I/O routine.

The READ (j' e,n) list statement is used when the
logical file contains edited information and is assigned
to a disk unit whose records may be processed ran­
domly. The statement causes the edited information to
be read according to FORMAT statement n starting with
record e within logical file j. Successive records are
read in accordance with the FORMAT statement n until
all the data items in the I/O list have been read, con­
verted, and stored in the location specified by the I/O
list. Each record should have no more characters than
the maximum specified in the DEFINE FILE statement
for the logical file j.

The READ (j , e) list statement is used when the logi­
cal file contains unedited information and is assigned to
a disk unit whose records may be processed randomly.
The statement causes the unedited information to be
read from record e within logical file j. Only one record
is read. The record is read completely only if the list
specifies as many variables as the number of values in
the record. Unedited records that are to be read in by a
Fortran program should have been written by a For­
tran program that used the same degrees of precision;
that is, the values of k are the same for both programs,
and the values of f are the same for both programs. To
contain all of the list data, the record to be read can
be divided into several parts by a Fortran I/O routine,
consistent with the description of logical file j in a DE­

FINE FILE statement. Each record should have no more
data values than the maximum specified in the DEFINE

FILE statement for the logical file j.

The WRITE Statement

The WRITE statement designates output. This statement
is used to transfer data from the computer to output
devices.

General Farms.

WRITE (i,n) list
WRITE (i) list
WRITE (i' e, n) list
WRITE (j , e) list

i is an unsigned one digit integer constant or an integer
variable that specifies a specific logical file to be used for
data output.

n is the statement number of a FORMAT statement or a real
array name that describes the data to be transferred.

list is an output list.

i is an unsigned one digit integer constant or an integer
variable that specifies a specific logical file on a disk unit
that is to be accessed randomly for data output.

I is a 4-8 punch (equivalent to the @ symbol).

e is an unsigned integer constant, integer variable, or integeI
expression that specifies a specific record within logical
file j.

Examples.

WRITE (6, 10)A, B, (C(J), J = 1, 10)
WRITE (N, 11) K, D (J)
WRITE (2) (A(J), J = 1, 10)
WRITE (M) A, B, C
WRITE (9 ' 55, 15)
WRITE (I' J, 22)
WRITE (I ' J + 5)

The WRITE (i,n) list statement is used when the logi­
cal file is to contain edited information and is assigned
to a card punch, or to a console printer, or to a tape
unit, or to a disk unit on which records are to be writ­
ten sequentially. The statement causes the edited in­
formation to be output on logical file i according to
FORMAT statement n. Successive records are output in
accordance with the FORMAT statement n until all the
data items in the I/O list have been converted and
output.

The WRITE (i) list statement is used when the logical
file is to contain unedited information and is assigned
to a tape unit or to a disk unit on which records are to
be written sequentially. The statement causes the un­
edited information to be written on logical file i start­
ing with the record at the current position of the device
to which logical file i is assigned. Only one record is
written. The record is written completely only if the
list specifies as many variables as the number of values
in the record. The record to be written can be divided
into several parts by a Fortran I/O routine.

The WRITE (j' e,n) list statement is used when the
logical file is to contain edited information and is as­
signed to a disk unit on which records are to be written
randomly. The statement causes the edited information
to be written according to FORMAT statement n starting
with record e within logical file j. Successive records
are written in accordance with the FORMAT statement
n until all the data items in the I/O list have been con­
verted and written. Each record should have no more
characters than the maximum specified in the DEFINE

FILE statement for the logical file j.

The WRITE (j , e) list statement is used when the logi­
cal file is to contain unedited information and is as­
signed to a disk unit on which records are to be written
randomly. The statement causes the unedited informa­
tion to be written starting with record e within logical
£Ie j. Only one record is written. The record is written
completely only if the list specifies as many variables as
the number of values in the record. To contain all of
the list data, the record to be written can be divided
into several parts by a Fortran I/O routine, consistent
with the description of logical file i in a DEFINE FILE

statement. Each record should have no more data val­
ues than the maximum specified in the DEFINE FILE

statement for £Ie i.

Manipulative Input/Output Statements

The FIND, END FILE, REWIND, and BACKSPACE statements
manipulate the logical files that are used by the object
program. The END FILE, REWIND, and BACKSPACE state­
ments must not be used to reference logical files that
are referenced in a DEFINE FILE statement, or logical
files that are assigned to a card reader, a card punch,
or a printer.

The FIND Statement

The FIND statement is used to initiate the positioning of
the access mechanism when the logical file is assigned
to a disk unit and has been described in a DEFINE FILE

statement.

General Form. FIND (i ' e)

i is an unsigned one digit integer constant or an integer
variable that specifies a specific logical file on a disk unit
that contains data input or output to be selected ran­
domly.

, is a 4-8 punch (equivalent to the @ symbol).

e is an unsigned integer constant, integer variable, or inte­
ger expression that specifies a specific record within logi­
cal file j.

The purpose of the FIND statement is to enable the
programmer to increase the speed at which the object
program is executed. The FIND statement may substan­
tially reduce the seek time required by the next READ or
WRITE statement, provided that it references the same
record e within logical file j. When the statement is
used, it starts positioning the access mechanism to lo­
cate the record e within logical file i while permitting
computation to proceed concurrently. The greater the
separation between the FIND statement and the follow­
ing READ or WRITE statement, the greater the concurrent
processing time.

The END FILE Statement

General Form. END FILE i

i is an unsigned integer constant or an integer variable that
refers to a specific logical file.

Examples.

END FILE 3
END FILE N

25

The END FILE i statement causes an end-oF-file indi­
cation to be written on the logical file i. If the logical
file is assigned to a tape unit, a tape mark is ,,,ritten. If
the logical file is assigned to a disk unit, an end-of-file
record, 1bEOF, is written. Either indication is recog­
nized as an end-of-file condition when sensed by a READ

statement, and can be tested by using the standard
subprogram EOF.

The REWIND Statement

General Form. REWIND i

i is an unsigned integer constant or an integer variable
that refers to a specific logical file.

Examples.

REWIND 3
REWINDN

The REWIND i statement causes logical file i to be
initialized to its starting point. If the logical file is as­
signed to a tape unit, the tape will be rewound. If the
logical file is assigned to a disk unit, the START address
of the disk area is obtained.

The BACKSPACE Statement

General Form. BACKSPACE i

i is an unsigned integer constant or an integer variable that
refers to a specific logical file.

Example.

BACKSPACE 3

The BACKSPACE i statement causes logical file i to
"backspace" one complete record. If the logical file
contains edited records, one record is a complete rec­
ord. If the logical file contains unedited records, there
can be more than one partial record making up a com­
plete record.

If the logical file is assigned to a tape unit, the tape is
physically backspaced. If the logical file is assigned to
a disk unit, a disk-address is appropriately decreased.

Input / Output Specification Statement

The DEFINE FILE Statement

The DEFINE FILE statement is used for logical files that
are assigned to disk units such that records may be
accessed randomly. The tape resident Fortran system
cannot use a disk unit. Specifically, the DEFINE FILE

26 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

statement must be used when any of the following
input/output statements are used in the program.

READ (j' e,n) list
READ (j , e) list
WRITE (i' e,n) list
WRITE (j' e) list
FIND (i' e)

General Form. DEFINE FILE 11 (m 1, l1, 11, V 1), 12 (m 2 , l2'
12, V 2), ••• , ii (mi, li, h Vi)

i I is an integer constant that refers to a specific logical file
located on a disk unit and can be 1 through 9. This is
the file name that is referenced in a corresponding READ

or WRITE statement.

m, is an integer constant that defines the maximum number
of records in the logical file i I.

I, is an integer constant that defines the maximum length
of each record in logical file il. If the records are edited
(fl is E), the length II is the maximum number of char­
acters in each record, and can be equal to or less than
200. If the records are unedited (fl is U), the length I, is
the maximum number of data values in each record. The
data values can be type real, type integer, and type
logical.

II is either E or U. E indicates that the data in logical file
il is edited. When the data is edited, the data must be
read or written with statements in the form READ (j'e,n)
list or WRITE (j'e,n) list. U indicates that the data in logical
file i, is unedited. When the data is unedited, the data
must be read or written with statements in the form READ

(j'e) list or WRITE (j'e) list.

VI is a nonsubscripted integer variable name. This variable
is set at the end of each READ or WRITE statement that
references logical file il. The value of the variable is set
to the value of the next available record following those
records read or written in logical file i,. During the exe­
cution of a FIND statement, the value of the variable VI

is set equal to the value of the expression specifying the
record number in the FIND statement. It must appear in
COMMON or be passed as a subprogram parameter if it
is to be referenced by a subprogram at object time.

Example.

DEFINE FILE 4(100,120, E, INDEX4), 5(50, 10, U, INDEX5),
6(300, 150, U, INDEX6)

In the example, logical file 4 will consist of not more
than 100 records, each of which is not more than 120
characters in length. Any information within the file
is to be edited according to some FORMAT statement(s)
when read or written. Further, INDEX4 (type integer)
will be assigned a value reHecting the record number
following the last processed after each READ or WRITE

statement.

Note that two sectors of disk storage will be required
for each record, implying that 100 X 2 = 200 sectors
must be available to be assigned to this logical file. If
each record had been not more than 100 characters in
length, only one sector of disk storage would have been
required for each record.

Logical file 5 will consist of not more than 50 rec­
ords, each of which contains not more than 10 data
values of type real, type integer, or type logical. The
information within the logical file must be read or
written with the unedited form of READ and WRITE
statements. Further, INDEX5 (type integer) will be as­
signed a value reflecting the record number following
the last processed after each READ or WRITE statement.

Note that two, or some higher integral multiple of
two, sectors of disk storage will be used for each rec­
ord. Within each 2-sector partial record, 190 data char­
acters are available. Therefore, the number of data
values that can be contained within each 2-sector par­
tial record is the highest integer which, when multi­
plied by the maximum of f + 2 and k, will be not
greater than 190. For logical file 5, assuming that
f + 2 = 10 and k = 5, the ten data values of a record
will be contained within two sectors, implying that
50 X 2 = 100 sectors must be available to be assigned
to this logical file.

Logical file 6 will consist of not more than 300 rec­
ords, each of which contains not more than 150 data
values. Assuming that f + 2 = 10 and k = 5, it follows
that 19 data values can be contained within each two­
sector partial record, and eight partial records consti­
tute a complete record. Thus, 300 X 8 X 2 = 4800 sec­
tors must be available to be assigned to this logical file.

DEFINE FILE statements can appear anywhere in the
program. They are used in conjunction with the FIND
and the random form of READ and WRITE statements.
For example, with DEFINE FILE 4(100,120,E,IN­
DEX4), the following statements might be coded to
cause every eleventh record to be read.

DEFINE FILE 4(100, 120, E, INDEX4)

IVAR = INDEX4 + 10

READ (4' IVAR, n) list

When programs are to be executed together, all nec­
essary DEFINE FILE statements must appear in the main
program. These files that are defined can be referenced
by file name in READ, WRITE, or FIND statements in the
subprograms. DEFINE FILE statements that appear in
subprograms are ignored; however, they can be in­
cluded for documentary purposes.

A complete record can contain an integral multiple
of partial records. The complete record begins with the
first partial record. If the complete record does not use
all the partial records, all unused parts are ignored.

Logical files Used lor Input/Output
A set of 14 logical files has been defined by the For­
tran system. Ten of these logical files have been as­
signed a unique single-digit integer and are available
to the Fortran programmer. It is by referencing these
numbers that the Fortran input/output operations are
accomplished. The correspondence between the logical
file reference and the actual physical input/output unit
is established by the Fortran system just prior to exe­
cuting the object program.

A complete description of the logical files that are
defined by the Fortran system is contained in the pro­
gram specifications section of this publication.

Subprograms - Function and
Subroutine Statements

The Fortran language defines four general types of sub­
programs: library functions, FUNCTION subprograms,
library subroutines, and SUBROUTINE subprograms. Li­
brary functions and subroutines are predefined subpro­
grams that are a part of the Fortran library. FUNCTION
subprograms are functions defined by a FUNCTION
statement and its associated subprogram. SUBROUTINE
subprograms are sub~:outines defined by a SUBROUTINE
statement and its associated subprogram.

Functions differ from subroutines in that functions
always return a single result that is the value of the
function to the calling program, whereas subroutines
may return any number of values to the calling pro­
gram, and do not have an actual value of their own.

Advantages of Subprograms

One of the advantages of using subprograms is that the
main program and its several associ.ated subprograms
can be compiled separately. Thus, a program can con­
sist of a short main program and any number of sub­
programs. Changes or error correction can then be
made by recompiling only the affected program.

Other advantages are that any subprogram can be
placed in the Fortran library for use with other pro­
grams. Subprograms also permit more than one pro­
grammer to be simultaneously writing a large program.

Naming Subprograms
A subprogram name consists of one to six alphameric
characters. No special characters can appear in the
name. The first character must be alphabetic.

27

The rules for specifying the type of the function
value are the same as those for naming variables.

The type (real or integer) of a predefined library
function is already specified (Figure 8) and need not be
defined by the user.

The type of a FUNCfION subprogram can be indi­
cated implicitly (real or integer) by the initial character
of the name or explicitly (real, integer, or logical) by a
type statement. In the latter case, the implicit type is
overridden by the explicit specification.

The type of a SUBROUTINE subprogram is not defined
since there is no actual value associated with a sub­
routine.

Predefined Subprograms

This section describes the predefined functions and
subroutines that are incorporated within the Fortran
library.

Library Functions

Incorporated within the Fortran library is a set of pre­
defined functions. These functions are shown in Figure
8. Note that the type (real or integer) of each function
and argument is predefined and cannot be changed by
the user.

Library Subroutines

Incorporated within the Fortran library is a set of pre­
defined subroutines. These subroutines are given in the
following list. Included in the list are the machine in­
dicator test subroutines. i is an integer expression, i is
an integer variable, m is a logical variable, and r is a
real variable. sense light refers to symbolic switches
with the values off and on.

These subroutines are referenced by CALL state­
ments.

General Form

SLITE (i)

SLITET (i, j)

SSWTCH (i, j)

Function

If i = 0, all sense lights are turned off.
If i = 1, 2, 3, or 4, the corresponding
light is turned on.

Sense light i (1, 2, 3, or 4) is tested
and turned off. The variable i is set
to 1 if i was on or i is set to 2 if i
was off.

Sense switch i is tested. The variable
i is set to 1 if i is off or i is set to 2
if i is on. The sense switch feature is
required on the system for execution.
i = 1-6 corresponds to sense switches
B-G.

28 Fortran IV Specs & Op. Proc. -1401,1440,1460

General Form

LINK (3Hphase-name)

or

LINK (r)

EOF (m)

Function

phase-name stands for a three-char­
acter phase-name that indicates the
presence of a program in the absolute
format stored as a phase on the SYS­

TEM file of the Fortran system. The
phase (program) is loaded and execu­
tion of the program begins. r, a real
variable, has an alphameric value
whose rightmost three characters are
used as the phase-name.

m, a logical variable, is assigned a
value of .TRUE. if the most recently
executed READ statement sensed an
end-of-file condition; otherwise, m is
.FALSE.. An end-of-file condition is
indicated by lEOFb, a tape mark, or
an empty card reader. If a READ state­
ment is issued after the last-card con­
dition, no halt occurs; rather, blank
input is interpreted. The end-of-file
condition must be tested before the
next 110 statement is executed.

Defining Subprograms

This section describes the FUNCfION statement that is
used to name FUNCTION subprograms, and the SUBROU­

TINE statement that is used to name SUBROUTINE sub­
programs.

The FUNCTION Statement

The FUNCfION statement is used to name FUNCTION

subprograms and must be the first statement of a FUNC­

TION subprogram. It cannot appear anywhere else in
the subprogram nor can it appear in a main program.

General Forms.

FUNCTION name (aI, a2, ... , an)
REAL FUNCTION name (aI, a2, ... , an)
INTEGER FUNCTION name (aI, a2, ... , an)
LOGICAL FUNCTION name (aI, a!, . .. , an)

name is the symbolic name of the single-valued function
subprogram.

aI, a2, ... , an are the dummy arguments of the function and
can be nonsubscripted variable names, or array names,
or the dummy names of SUBROUTINE, or other FUNCTION

subprograms. There must be at least one argument in
a FUNCTION subprogram.

The type of function can be explicitly stated by the
inclusion of the word REAL, INTEGER, or LOGICAL before
the word FUNCTION, as shown in the preceding formats.

Examples.

FUNCTION ARCSIN (RADIAN)
REAL FUNCTION ROOT (A, B, D)
INTEGER FUNCTION CONST (lNG, SG)
LOGICAL FUNCTION IFTRU (D, E, F)

Function Definition
Number of Type of
Arguments Name Argument

Exponential eArg 1 EXP Real

Natural loge (Arg) 1 ALOG Real
logarithm

Common loglO(Arg) 1 ALOG10 Real
logarithm

Arctangent arctan (Arg) 1 ATAN Real

Trigonometric sin (Arg) 1 SIN Real
sine

Trigonometric cos (Arg) 1 COS Real
cosine

Square root (Arg) 1/2 1 SORT Real

Absolute va lue IArgl 1 ABS Real
lABS Integer

Truncation Sign of Arg 1 AINT Real
applied to largest
integer~IArgl

INT Real

Remaindering Arg 1 (mod Arg2) 2 AMOD Real
(see note below) MOD Integer

Choosing largest Max (Arg1, ~2 AMAXO Integer
algebraic value Arg21 •••) AMAX1 Real

MAXO Integer
MAX 1 Real

Choosing smallest Min (Argl l ~2 AMINO Integer
algebraic value Arg2 / " .) AMINl Real

MINO Integer
MINl Real

Float Conversion from 1 FLOAT Integer
integer to real

Fix Conversion from 1 IFIX Real
rea I to integer

Transfer Sign of Arg2 2 SIGN Real
of sign applied to IArg11 ISIGN Integer

Positive Arg1-Min 2 DIM Real
difference (Arg 1 I Arg2) 101M Integer

Note: The function MOD (Arg11 Arg2) is defined as Argr~rg1/Arg~ Arg2 where GJ is the integral part of x.

Figure 8. Predefined Library Functions

Type of
Function

Real

Real

Real

Real

Real

Real

Real

Real
Integer

Real
Integer

Real
Integer

Real
Real
Integer
Integer

Real
Real
Integer
Integer

Real

Integer

Real
Integer

Real
Integer

29

The FUNCTION subprogram can contain any Fortran
statement except a SUBROUTINE statement or another
FUNCTION statement.

The name of the function must appear at least once
as a variable on the left side of an arithmetic statement,
or as an element of an input list.

Consider the following example.

FUNCTION CALC (A, B)

CALC=Z+B

RETURN

END

In this example, the value of CALC is computed and its
value is returned to the calling statement.

The FUNCTION subprograms are logically terminated
during execution by a RETURN statement. They are
physically terminated during compilation by an END

statement.
The arguments in a FUNcrION statement can be con­

sidered as dummy variable names that are replaced at
the time of execution by the actual arguments supplied
in the function reference in the calling program. The
actual arguments must correspond in number, order,
and type with the dummy arguments, and can be con­
stants, nonsubscripted variables, subscripted variables,
expressions, array names, or other subprogram names.

If the value of a dummy argument is changed by the
subprogram, then the actual argument in the calling
program is also changed. In this case, the actual argu­
ment must be a nonsubscripted variable, a subSCripted
variable, or an array name. The actual argument can­
not be a constant, an expression, or a subprogram
name.

Dummy arguments cannot appear in an EQUIVA­

LENCE statement in the FUNCTION subprogram.

Dummy arguments can be subprogram names. The
corresponding actual arguments in the calling pro­
gram must be names that have appeared in an EXTER­

NAL statement in the calling program. The dummy ar­
guments can also appear in an EXTERNAL statement.
In this way, a subprogram name used as an actual
argument in a calling program can be passed to a
subprogram, which in turn can pass it on to another
subprogram.

If a dummy argument is an array name, a DIMENSION

statement or a COMMON (with dimensions) statement
for that array must appear in the FUNCTION subpro-

30 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

gram. Further, the corresponding actual argument
must be a dimensioned array name.

If a dummy array name appears in a COMMON state­
ment, then the actual argument in the calling program
must be an array name that appears in the identical
place in the COMMON statement.

If a dummy variable name appears in a COMMON

statement, then the value of the actual argument in the
calling program replaces the value of the dummy name
in COMMON immediately upon entry to the FUNcrION

subprogram.

The SUBROUTINE Statement

The SUBROUTINE statement is used to name SUBROUTINE

subprograms and must be the first statement of a SUB­

ROUTINE subprogram. It cannot appear anywhere else
in the subprogram nor can it appear in a main program.

General Form. SUBROUTINE name (at, az, ... ,an)

name is the name of the subprogram.

a1 a2, ... , an are the dummy arguments, and can be non­
subscripted variable names, or array names, or th('!
dummy name of another SUBROUTINE or FUNCTION

subprogram. There must be at least one argument in a
SUBROUTINE subprogram.

Examples.

SUBROUTINE MATMPY (A, N, M, B, L, J)
SUBROUTINE QDRTIC (B, A, C, ROOTl, ROOT2)

The SUBROUTINE subprogram can contain any For­
tran statement except a FUNCTION statement or another
SUBROUTINE statement.

The SUBROUTINE subprograms are logically termi­
nated during execution by a RETURN statement. They
are physically terminated during compilation by an
END statement.

The arguments in a SUBROUTINE statement can be
considered as dummy variable names that are replaced
at the time of execution by the actual arguments sup­
plied in the CALL statement. The actual arguments
must correspond in number, order, and type with the
dummy arguments, and can be constants, nonsub­
scripted variables, subscripted variables, expressions,
array names, other subprogram names or an alpha­
meric field. An actual argument that is an alphameric
field must correspond to a dummy argument that is a
real variable.

If the value of a dummy argument is changed by the
subprogram, then the actual argument in the calling
program is also changed. In this case, the actual argu­
ment must be a nonsubscripted variable, a subscripted
variable, or an array name. The actual argument can­
not be a constant, an expression, a subprogram name,
or an alphameric field.

Dummy arguments cannot appear in an EQUIVALENCE

LENCE statement in the SUBROUTINE subprogram. When
a dummy argument appears in a SUBROUTINE state­
ment, it cannot also appear in a COMMON statement.

Dummy arguments can be subprogram names. The
corresponding actual arguments in the calling program
must be names that have appeared in an EXTERNAL

statement in the calling program. The dummy argu­
ments can also appear in an EXTERNAL statement. In
this way, a subprogram name used as an actual argu­
ment in a calling program can be passed to a subpro­
gram, which in turn can pass it on to another subpro­
gram.

If a dummy argument is an array name, a DIMENSION

statement or a COMMON (with dimensions) statement
for that array must appear in the SUBROUTINE subpro­
gram. Further, the corresponding actual argument
must be a dimensioned array name.

If a dummy array name appears in the COMMON

statement, then the actual argument in the calling pro­
gram must be an array name that appears in the identi­
cal place in the COMMON statement.

If a dummy variable name appears in a COMMON

statement, then the value of the actual argument in the
calling program replaces the value of the dummy name
in COMMON immediately upon entry to the SUBROUTINE

subprogram.

The RETURN Statement

General Form. RETURN

This is the exit from any subprogram. It returns con­
trol to the calling program. The RETURN statement is
the logical end of the subprogram. There can be one
or more RETURN statements in the subprogram.

Subprogram Names as Arguments

FUNCTION and SUBROUTINE subprogram names can be
used as the actual arguments in the calling program. In
order to distinguish these subprogram names from or­
dinary variables when they appear in an argument list,
their names must appear in an EXTERNAL statement,
even if they are also used in actual references within
the same program (see The Type Statements).

Examples.

EXTERNAL SIN
CALL SUBR (A, SIN, B)

Using Subprograms
This section describes the method for referencing func­
tions and subroutines.

Using Functions

A function is referenced (or called) by using its name
followed by its actual arguments in parentheses as an
operand in an expression.

General Form. Name (a1' aSh' .. ,an)

Name is the name of the function. The predefined function
names are shown in Figure 8.

aI, a2, ... ,all are the actual arguments of the function. The
arguments can be arithmetic or logical expressions,
constants, nonsubscripted variables, subscripted vari­
ables, array names, or other subprogram names. The
number of arguments required for predefined functions
is shown in Figure 8.

A program which references a logical function must
have the name of that function in a logical type state­
ment.

Each actual argument must have been assigned a
value before the function reference.

Examples.

Z = SIN (X) + COS(Y)*ZI
T = 5. * ARBFNC (55.2/SQRT (IO.3*R), ABS (3. +5))

In Figure 8 note that the type (real or integer) of
each built-in function is predefined and cannot be
changed by the user. Note also that the type of each
argument is predefined.

Using Subroutines - The CALL Statement

The CALL statement is used only to call a SUBROUTINE

subprogram.

General Form. CALL name (a 1, aih ••• , an)

name is the symbolic name of a SUBROUTINE subprogram.

aI, a2, .. . ,an are the actual arguments that are being sup­
plied to the SUBROUTINE subprogram.

Each actual argument must have been assigned a
value before the reference to the subroutine.

Examples.

CALL MATMPY (X, 5,10, Y, 7, 2)
CALL QDRTIC (9. 732, Q/4. 536, R-S**2.0, Xl, X2)

The CALL statement transfers control to the SUBROU­

TINE subprogram and replaces the dummy variables
with the actual arguments that appear in the CALL

statement.

The actual arguments in a CALL statement can be any
one of the following.

1. Any type of constant.

2. Any type of subscripted or nonsubscripted variable.

31

3. An arithmetic or logical expression.

4. Any array name.

5. The name of a FUNCTION or SUBROUTINE subpro­
gram. The name must also appear in an EXTERNAL
type statement.

6. Alphameric characters (allowed only for subrou­
tines). Such arguments must be preceded by nH,
where n is the number of characters included in the
argument and must be less than or equal to f + 2.
When n < f + 2, the characters are right justified.
For example, 9HENDbPOINT. Blank spaces and
special characters are considered in the character
count when used in alphameric fields.

The actual arguments in a CALL statement must
agree in number, order, type, and array size (except as
explained in The DI~fENSION Statement) with the
corresponding arguments in the FUNCTION or SUBROU­
TINE statement of the called subprogram.

Segmenting Programs

Large programs can be segmented into several phases,
or overlays. Each phase must consist of a main pro­
gram and any required subprograms.

Each phase is given a unique three-character phase
name by using a compiler option control card when
the main program is compiled. The phase is called by
using a CALL LINK (3Hphase-name) or CALL LINK (1')
statement in the calling program.

Data values can be passed between phases by using
logical files or the COMMON area. Therefore, the COM­
MoN area used for passing data values between phases
must be the same. The longest phase must not overlap
this COMMON area.

In order to use the segmenting capability of the For­
tran system, perform the following operations.

1. Compile each main program, specifying its unique
program name. Use a compiler option control card
to specify the unique program name. If appropriate,
compile any required subprograms. See FORTRAN
RUN.

2. Specify that an absolute deck be punched as a re­
suIt of the LOADER RUN that loads the main program
and any subprograms. Use a loader output option
control card to get an absolute deck. See LOADER
RUN.

3. Perform a user-update job to place the program on
the SYSTEM file. Once the program is stored as a
phase on the SYSTEM file, the phase can be called at

32 Fortran IV Specs & Op. Proc. -1401,1440,1460

any time. See User-Update Jobs and PRODUC­
TION RUN.

4. Use the CALL LINK (3Hphase-name) or CALL LINK (1')
statement to call the phase.

vVhen the phase is called, it is read into core storage
beginning at address 950. It extends upward in core
storage to include the entire phase. The CO~IMON area
defined in the program or a subprogram is not in­
cluded as a part of the phase.

The same phase can be called more than one time.
The sequence of phase calling does not necessarily
have to correspond to the order in which the phases
are placed on the SYSTE~f file. However, on a tape sys­
tem, having the phases placed on the SYSTEM file in the
same order in which they are to be called will optimize
phase-call time.

Fortran Source Program

Source Program Statements and Sequencing

The order in which the source program statements of
a Fortran program are executed follows these rules:

1. Control originates at the first executable statement.
The specification statements and the FORMAT, FUNC­
TION, SUBROUTINE, DEFINE FILE, and END statements
are nonexecutable. In questions of sequencing, they
can be ignored.

2. If control was with statement S, then control will
pass to the statement indicated by the normal se­
quencing properties of S. If, however, S is the last
statement in the range of one or more DO'S that are
not yet satisfied, then the normal sequencing of S is
ignored and Do-sequencing occurs.

The normal sequencing properties of each Fortran
statement follows:

Statement

a=b

BACKSPACE

CALL
COMMON

CONTINUE
DATA

DEFINE FILE
DIMENSION

DO

END

Normal Sequencing

N ext executable statement

Next executable statement

First statement of called subprogram

Nonexecutable

Next executable statement

Nonexecutable

Nonexecutable

Nonexecutable

DO-sequencing, then the next ex­
ecutable statement

Terminates source program

FORTRAN CODING FORM

TITLE
;,

PROJECT NL'MBER ANALYST I' NO, OF CARDS
SHEET ___ . OF ___

" NUMBER FORTRAN STATEMENT IDENTIF"ICA,TION
0

I 2 3 4 5 6 7 ., 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4445 46 47 48 49 50 51 52 53 54 55 56 51 S8 59 60 61 62 63 6465 66 67 68 69 70 71 72 73 74 75 1677 787960

I C PR 06 IRAM FOR FI ND IN6 THE 1.A R6 ESl VA LUE
2 C AT TA IN EO 8'1' A SET Of NU 1MB eRS
3 1>1 ME NS ION A (36)

· RE At> (1 ,1) N) (A (I)) I =1 .I N)

· 1 fo RN AT (1 3/ (1 2F 6. 2»)

· 8. 6A :A (1)
T DO 20 1= 2,N

· IF (8 IG A. LT . A (/)) 81 GA = A(I)

· 20 CO NT I~ IJE
10 , .. R tTE (3) 2)N)8 IGA
" 2 FO RM AT (2 1H 1T HE LA RG EST OF TH ES E) 13) 1 lH NU M8 ERS IS) F 'I- 2)
12 ST OP .. END
"

"
I.

17

" ..
20

21

2 • ..
2.

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 t5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4445 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 6465 66 67 66 69 70 71 72 737475 7677 767960

Figure 9. Fortran Source Program

Statement
END FILE

EQUIVALENCE

EXTERNAL

FIND

FORMAT

FUNCTION

GOTOn

GO TO (nl,
n2, ... , nm), i

IF (t) s

INTEGER

LOGICAL

PAUSE

READ

REAL
RETURN

REWIND

STOP
SUBROUTINE

WRITE

Normal Sequencing
N ext executable statement

Nonexecutable

Nonexecutable

Next executable statement

Nonexecutable

Nonexecutable

Statement n

Statement n,

Statement s or next executable state­
ment if t is true or false, respectively
Nonexecutable

Nonexecutable

N ext executable statement

Next executable statement

Nonexecutable

The first statement or part of a
statement, following the reference
to this program
N ext executable statement

Terminates object program

Nonexecutable

Next executable statement

Writing the Source Program

The statements of a Fortran source program are usu­
ally written on a standard Fortran Coding Form, Fonn

--- -

624-7999. A sample Fortran source program, coded on
the standard coding form, is shown in Figure 9. This
program selects the largest value from an array of
numbers, identified by the variable name A.

Columns 1-5 of the first line of a statement may con­
tain a statement number that identifies the statement.
This number must be an unsigned integer constant less
than 100,000. Blanks and leading zeros are ignored in
these columns. For example, bbb50 is the same as
b5bbO and 5bbbO. A statement must not be num­
bered zero. All statement numbers must be unique.
These statement numbers do not have to be in any
sequence or order. For example, the first statement of
a program may be given statement number 100 and
the 50th statement in a source program may be given
statement number 1. These statement numbers are
used, for example, in DO loops to indicate the range of
the DO loop, in the GO TO statement, and to refer to
FORMAT statements. Superfluous statement numbers
should be kept to a minimum.

A statement can be continued on as many as nine
additional lines. Any line with a non-blank, non-zero
column 6, is considered to be a continuation of the pre­
ceding line. The actual character used in column 6
does not have any significance. The first continuation
card could have a 9 in column 6, the second card an A,
the third a 2, and so on.

33

Columns 7-72 contain the actual Fortran statements.
Blanks are ignored except in an H-field of a FORMAT

statement, ;l DATA statement, or a CALL statement.
Statements with a C in column 1 are not processed

by the Fortran compiler, but the statements appear in
the source program listing as comments. If there is a
C in column 1, columns 2-72 can be used for com­
ments. Comment cards cannot appear between contin­
uation cards of a statement. Comment cards cannot
immediately precede the FUNCTION or SUBROUTINE

statements.
Columns 73-80 are not processed and can be used

for identification.
The order of execution of the source program state­

ments is governed by the sequencing described in the
preceding section.

Check.ing the Source Program

An early successful compilation of a Fortran source
program is more likely if the coding is checked against
the following list of commonly-made errors.

Item to Check

A-conversion

Arithmetic expressions

DO parameters

FORMA T statements

C '-CO:~:NT ~

Coding Error

Field width, w, exceeds the word
size, f + 2.

Real and integer numbers, both con­
stants and variables, mixed in in­
valid combinations. Often, a real
constant is written without a de­
cimal point.

Subscripted integer variable or ex­
pression used as a parameter.

FORMAT specifications and 110 list
not compatible.

Item to Check

Fortran language

H-conversion

Program flow

Statement numbers

Subprograms

Subprogram names

SUBROUTINE state­
ment arguments

Subscripted variables

Variables

Coding Error

Misspelled Fortran-language word
such as EQUIVALENT instead of
EQUIVALENCE.

Incorrect count for n of nH.

Statement transfers into the range
of a DO.

Un referenced statement after a GO

TO, RETURN OR STOP. END statement
encountered in program flow.

Use of same statement number more
than one time.
Absence of a referenced statement
number.

FUNCTION or SUBROUTINE statement
missing at beginning of a sub­
program; RETURN statement missing;
END statement missing.

Name is same as a variable name
used in the program.

Dummy arguments that are sub­
scripted or equivalenced variables.

Each subscripted variable, including
those in lists, does not appear in a
DIMENSION statement.

Variables must be defined in a read
I/O list, on the left-hand side of an
arithmetic statement, or in a DATA
statement before being used on the
right-hand side of an arithmetic
statement, in a CALL statement, or in
a WRITE 110 list.

Punching the Source Program
The Fortran statements, prepared as described in
\V riting the Source Program, are normally punched
into the standard Fortran card, Form 888157, shown
in Figure 10.

STATEMENT ~ FORTRAN STATEMENT IDENTIFICATION

NUMBER ~

~ooo00000000000000000000000000
11 2 3 4 5 & 1 • 9 10 11 12 13 14 15 16 1118 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 41 41 49 50 51 52 53 54 55 56 51 58 59 60 &1 62 &3 &4 65 66 67 68 69 70 71 72 13 74 75 76 71 78 19 80

111111111 1111111111111 111111 1111 11111111111111111111111 11111 111111111111111111 11 1
I

212 2 2 2 222 22 £ 2 2 2 2 2 2 2 2 2 2 22 22 22

313

4:44 444444444444444444444444444

515 ~ 5

616
I

717

8
1
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 & 8

I

919 9.9
1 I 2 3 4 5 6 1 • • 10 11 12 13 14 15 1& 1118 19 20 21 22 23 24 25 26 21 21 29 30 31 32 33 34 35 36 37 38 39 • 41 42 43 44 45 .. 47 48 49 50 51 52 53 54 55 56 51 sa ~9 60 61 62 63 &4 &5 ~ 61 68 69 7U 11 12173 74 75 1& 71 71 71 80

1 •• 888157

Figure 10. Fortran Source Card

34 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

Table of Source Program Characters Set H
(Fortran Characters) Set A Card Punches

The following table indicates the list of characters in
character Set H that can be used in a Fortran source J J 11-1

program. The equivalent characters in character Set A K K 11-2
L L 11-3

are also given. The characters are shown in collating M M 11-4
sequence. N N 11-5

0 0 11-6
Set H p P 11-7

(Fortran Characters) Set A Card Punches Q Q 11-8
R R 11-9

Blank Blank Blank S S 0-2
12-3-8 T T 0-3

) 0 12-4-8 U U 0-4
+ & 12 V V 0-5
$ $ 11-3-8 W W 0-6
* * 11-4-8 X X 0-7

11 Y Y 0-8
/ / 0-1 Z Z 0-9

0-3-8 0 0 0
% 0-4-8 1 1 1

= # 3-8 2 2 2
@ 4-8 3 3 3

A A 12-1 4 4 4
B B 12-2 5 5 5
C C 12-3 6 6 6
D D 12-4 7 7 7
E E 12-5 8 8 8
F F 12-6 9 9 9
G G 12-7
H H 12-8 Note: The character $ can be used in Fortran only in an H-
I I 12-9 conversion field.

35

Program Specifications

The Fortran Processor Program is a language process­
ing system that operates entirely under control of the
System Control Program. Together, the Fortran Proc­
essor Program and the System Control Program make
up the Fortran system.

The Fortran system translates source program state­
ments written in the Fortran language into machine­
language instructions. Object-program execution is also
under control of the Fortran system. In addition to
these translation and execution functions, the Fortran
system provides these additional features.

Expanding the Fortran Library. A Fortran library is
defined by the system that contains commonly used
subroutines and functions, such as sine, cosine, and
logarithms. The Fortran system provides the capa­
bility of expanding the library to include additional
user-supplied subroutines. In addition, if the system
is disk-oriented, the user can relocate the library to
an area of his choice in disk storage.

Changing Input/Output Devices. The Fortran system
provides the user with the option of changing the
form of input to and output from specific jobs. In
order that the Fortran system operate at a machine­
independent level, a set of logical files that are used
for input/output operations has been defined. Al­
though these logical files are assumed by the System
Control Program to be assigned to a defined set of
input/output devices, the user can change these as­
signments according to his particular needs.

Stacking of Jobs. Under control of the System Control
Program, it is possible to process a sequence of jobs
without regard to the type of processing that is being
performed. For example, source programs can be
compiled and object programs can be executed, all
in one stack. However, stacking may only be accom­
plished on the card reader, card punch, or printer.

Building Object-Program Libraries in Mass Storage.
By using a particular logical file (SYSTEM) defined by
the Fortran system, it is possible to build an object­
program library in mass storage (disk storage or
magnetic tape). Because each of these object pro­
grams is identified by a unique three-character name,
the user has immediate access to any of the pro­
grams. Object programs can be inserted or deleted
from the library at the discretion of the user. If a pro-

36 Fortran IV Specs & Gp. Froc. -1401,1440,1460

gram is to be used frequently, using the object-pro­
gram library substantially reduces program load time
(as opposed to loading from cards) and eliminates
excessive handling of punched-card object decks.
The use of the object-program library at execution
time allows the user to segment a large program into
sections or overlays.

The Fortran System

The Fortran system built by the user contains the Sys­
tem Control Program and the Fortran Processor Pro­
gram.

System Control Program. The System Control Pro­
gram is the controlling element of the system. Its
main functions are to analyze control card informa­
tion, transfer control to the appropriate portion of
the system, and to perform actual input/output op­
erations when a logical file is referenced, either dur­
ing compilation or execution.

Fortran Processor Program. The Fortran Processor
Program translates source programs, written in the
Fortran language, into machine language object pro­
grams. Object programs are executed under control
of the Fortran system.

System Control Program

System operations can be started by a deck of cards
supplied by IBM. This deck, called the card boot, pre­
par~s core storage and reads in the first portion of the
System Control Program from mass storage (disk or
tape). Subsequently, the entire resident portion of the
System Control Program is read into lower core
storage.

System operations may also be initiated on the tape
system by pressing TAPE LOAD and then START on the
computer console when the SYSTEM file resides on tape
unit 1.

All control functions for the system are accom­
plished by the System Control Program. These func­
tions include:

Assigning Input/Output Devices. Each logical file is
assigned to a corresponding user-specified physical
input/ output device.

Controlling Input/Output Devices. Physical manipu­
lation of the corresponding input/output device oc­
curs when the currently active program references a
logical file.

Updating the System. Updating the system to the lat­
est modification level or version is performed by the
System Control Program.

Selecting Appropriate Processor Runs. From control
cards supplied by the user, the System Control Pro­
gram is able to determine the operations necessary
for the completion of a job. For example, a source
program is coded in the Fortran language and the
user specifies the end result of processing to be a
machine-language object program in relocatable for­
mat. This would require that processing be per­
formed only by the Fortran compiler. The control
card says in effect that the phases of the Fortran
compiler are to be called by the System Control
Program. The System Control Program reads the
control card and calls the Fortran compiler. Proc­
essing takes place, and at completion, control reverts
to the System Control Program which reads the con­
trol card for the next job.

The remainder of this section describes the logical
files that are defined by the system, and the control
cards required for system operations.

Log;cal files

In order that input/output functions operate at a
machine-independent level, a set of logical files has
been defined by the Fortran system. These logical files
are used for input/output operations. Each file has a
specific function and is assigned by the System Control
Program to a particular input/output device. The user
can alter the file-assignments temporarily by using
ASGN (assign) control cards.

The use of the logical files during compilation and
execution times is described in this section.

Compilation Time

During compilation, the logical files can be thought of
as falling into one of four categories. These categories
are:

Residence File
Operation Files
External Files
Internal Files

The functions of the logical files and the devices to
which they can be assigned are as follows.

Residence File

SYSTEi\1 File. The SYSTEM file contains the System
Control Program, the Fortran compiler, the Fortran
loader, and the user's object-program library. It is
assigned to a fixed area in a 1311 or 1301 disk unit,
or to magnetic tape.

Operation Files

CONTROL File. The CONTROL file may be assigned to
the card reader or to the console printer. When
assigned to the card reader, the CONTROL file con­
tains cards that send information to the System Con­
trol program or the Fortran loader. When assigned
to the console printer, 80 character records must be
used to send information to the System Control
Program and 100 character records to send informa­
tion to the Fortran loader.

MESSAGE File. The MESSAGE file contains informa­
tion of primary interest to the machine operator.
These messages are usually diagnostics relating to
the operating procedures and/or instructions to the
machine operator. It can be assigned to the printer,
or to the console printer.

External Files

LIST File. The LIST file, generally associated with
high-volume printed listings, contains information
directed primarily toward the source programmer.
It can be assigned to the printer, or to disk storage,
or to magnetic tape, or it can be omitted. If the LIST

file is assigned to a disk unit, the information is
stored two sectors per printed line in the move mode.

INPUT File. The INPUT file contains source informa­
tion to the compiler. It can be assigned to the card
reader, or to any available area in disk storage, or to
magnetic tape. If the file is assigned to a disk unit,
the card images must be stored one card per sector
in the move mode.

37

OUTPUT File. The OUTPUT file may contain the re­
sults of the operation specified in the RUN card. It
can be assigned to the card punch, or to disk stor­
age, or to magnetic tape, or it can be omitted. If the
file is assigned to a disk unit, any card images will
be stored one per sector in the move mode.

LIBRARY File. The LIBRARY file is a mass-storage file
that supports the Fortran subprogram facility. The
file contains standard Fortran functions and subrou­
tines such as the sine and cosine functions. It is
maintained by the Fortran librarian and used by the
Fortran loader. The LIBRARY file can be assigned to
any available area in disk storage, or to magnetic
tape.

LOADER File. The LOADER file contains machine-lan­
guage object programs in a relocatable format. It is
built by the Fortran compiler, and used by the For­
tran loader. The LOADER file can be assigned to any
available area in disk storage, or to magnetic tape.

Internal Files

WORKl and WORK2 Files. worud and WORK2 are re­
quired files. They are used by the Fortran compiler
for the GETEX and PUTEX functions that perform the
large volume of data handling during compilation.
They can be assigned to any available area in disk
storage, or to magnetic tape.

WORK3 File. WORK3 is a required file. It can be as­
signed to any available area in disk storage, or to
magnetic tape. The WORK3 file is used as an out-of­
line file (PLACE) that bypasses data around major
portions of the compiler.

WORK4, WORK5, and WORK6 Files. WORK4, WORK5,

and WORK6 are not used by the Fortran compiler.
They are defined for the user's input/output re­
quirements during the execution of the object pro­
gram produced by the compiler.

Execution Time

At execution time, the logical files may be thought of
as falling into one of two categories. These categories
are:

1. Files that are reserved for use by the Fortran sys­
tem.

2. Files that are free to be used by the user's program.

The first category consists of four logical files. They
are the SYSTEM, CONTROL, LIBRARY, and LOADER files.
The function of these files is essentially the same dur­
ing execution time as it was during compilation.

38 Fortran IV Specs & Op. Proc.-1401, 1440, 1460

Fortran Numerical File Name System Control Program File Name

0 MESSAGE

1 INPUT

2 OUTPUT

3 LIST

4 WORK]

5 WORK2

6 WORK3

7 WORK4

8 WORK5

9 WORK6

Figure 11. Correspondence between Fortran Numerical File
N ames and System Control Program File Names

The second category consists of the remaining ten
logical files. The function of each of these files during
execution time is determined by the user's program.
These logical files have each been assigned a Fortran
numerical file name. The correspondence between For­
tran numerical file names and the System Control Pro­
gram logical file names is shown in Figure 11.

The Fortran numerical files can be assigned to the
same devices as the corresponding logical files. For
example, the INPUT file can be assigned to the card
reader, or to any available area in disk storage, or to
magnetic tape. Likewise, numerical file 1 can be as­
signed to the card reader, or to any available area in
disk storage, or to magnetic tape. Numerical files are
assigned by using the corresponding logical file name.

Control Cards

The System Control Program recognizes eight types of
control cards. They are:

RUN

INIT

ASGN

UPDAT

NOTE

PAUSE

COpy

HALT

Each type is punched in the Autocoder format. Ap­
pendix I contains a summary of all specific control
cards that the System Control Program recognizes. In­
cluded in Appendix I is a detailed descriptiOn of the
manner of punching each specific control card and

valid entries for each of the general formats as dis­
cussed in the following sections. All control cards are
printed on the MESSAGE file.

RUN Cards

The RUN card indicates the portion of the Fortran sys­
tem that is to be selected by the System Control Pro­
gram. A RUN card is required for four jobs to be per­
formed. The four types of RUN cards are;

FORTRAN RUN
LOADER RUN
PRODUCTION RUN three-character phase name
LIBRARY RUN

See Preparing lobs for the specific RUN card format
required for each job.

INIT Card

The INIT card is used to initialize the system. When
the INIT card is sensed, the assumed logical file assign­
ments become effective, and the LOADER file is initial­
ized to accept a new batch of compiler output.

The general format of the INIT card is:

FORTRAN INIT [any message and/or comment]

ASGN Cards

An ASGN card indicates to the System Control Program
that a logical file is to be assigned to a specific input/
output device or area. An ASG'\; card is used when the
user wants a logical file assigned to an input/output
device or area other than the assumed assignment of
the System Control Program, or when the user wants to
change an assignment that he has previously made.

The general format for an ASGN card is:

file-name ASGN {~{;}
The file-name is the specific logical file; device is the
input/output unit to which the logical file is to be as­
signed. Two examples for using an ASGN card follow.

The logical file, INPUT, is to be changed from the
assumed device assignment (READER 1) of the System
Control Program to an area in disk storage. This area
is to be on 1311 unit 3, beginning at address 000600
and extending to (not through) 000900. Note that the
END address to be punched is one more than the area
actually used by the INPUT file. The ASGN card for this
example is punched:

INPUT ASGN 1311 UNIT 3, START 000600, END 000900

The second example is when a logical file is to be
omitted. (This option is valid only in specific cases.)

If the OUTPUT file is to be omitted, the ASGN card is
punched:

OUTPUT ASGN OMIT

Blanks must be left between items in the operand
field where indicated in the specific formats. For ex­
ample, if the operand is READER 2, there must be a
blank between READER and 2. Also, entries must be left­
justified in the label, operation, and operand fields.

During a single stack of jobs, an assignment made
by the user for a single logical file remains in effect
until another ASGN card is sensed for that particular
file, or until an IKIT card is sensed, or until a HALT card
is sensed. For example, an ASGN card that specifies the
INPUT file to be assigned to READER 2 causes the as­
sumed assignment, READER 1, to be altered. The System
Control Program will select READER 2 during a single
stack until another ASGN card for the INPUT file is en­
countered, or until an INIT card is sensed.

UPDAT Card

The UPDAT card is included in a package supplied by
IBM, or supplied by the user for the purpose of amend­
ing the user's Fortran system. UPDAT cards supplied by
IBM are prepunched in the following format:

{
processor-name} UPDA T phase-name,
SYSTEM {

DELETE}
INSERT

This card (excluding DELETE) will be followed by the
appropriate data cards.

NOTE Card

The NOTE card contains messages and/or instructions
from the programmer to the machine operator. There
is no interruption of processing when this control card
is sensed by the System Control Program. The content
of the NOTE card is printed on the MESSAGE file. The
general format of the NOTE card is:

NOTE any message and/or instruction

One application of the use of a NOTE card might be
in the case where the programmer wants the program
listing to include the date on which a particular job
was compiled. The message that could be used for this
purpose is:

NOTE JOB NUMBER FOUR COMPILED 3/2/66

PAUSE Card

The PAUSE card contains messages and/or instructions
from the programmer to the machine operator. When
the PAUSE card is sensed, the content of the PAUSE card
is printed on the MESSAGE file. Then, the System Con-

39

trol Program temporarily halts the system. Processing
is resumed by pressing the start key. The general for­
mat for the PAUSE card is:

PAUSE any message andlor instruction

One application of the use of a PAUSE card might be
in the case where the INPUT file for a job is located on
disk unit 2. The programmer can inform the machine
operator of this fact by using a PAUSE card, telling him
to ready the drive. The message would be:

PAUSE READY THE PACK ON DISK DRIVE 2.

COpy Card

The copy card is applicable only to tape-resident sys­
tems. It is used when the user wants to duplicate the
system tape. The copy option permits the user to du­
plicate the SYSTEM file, including the LIBRARY file if it
resides on the same tape, on another tape (WORKI). The
general format for the COpy card is:

COpy [any message andlor identification]

HALT Card

The HALT card indicates to the System Control Pro­
gram that processing has been completed. It is the last
card of a stack. The content of the HALT card is printed
on the MESSAGE file. The general format for the HALT

card is:

HALT [any message andlor identification]

Fortran Processor Program

The Fortran Processor Program is made up of the fol­
lowing:

Fortran compiler
Fortran loader
Fortran library

The following sections contain a description of the
various components of the Fortran Processor Program,
a description of the output from the components, and
a description of any diagnostic messages that the user
may receive as a result of processing operations.

Fortran Compiler
The Fortran compiler is the processing element of the
processor program. It operates under control of the
System Control Program. The compiler translates
source program statements written in the Fortran lan­
guage into machine-language and interpretative in­
structions in a relocatable format. These instructions
are then acceptable to the Fortran loader.

40 Fortran IV Specs & Op. Froc. -1401, 1440, 1460

Instructions in the relocatable format contain sym­
bolic and relative addresses. These addresses are rela­
tive to a base address of 00. These symbolic and rela­
tive addresses are converted to actual addresses by the
Fortran loader. The result of this conversion is an ob­
ject program in the absolute format.

Relocatable formats permit inclusion of several re­
locatable programs at load time. Inter-program com­
munication is accomplished by the use of symbolic
names, whose corresponding addresses are substituted
at load time by the Fortran loader.

Compiling Variables

Five compiling variables are available in the compiler.
These variables include:

1. Integer size (the number of significant digits) to be
used at object time.

2. Real size to be used at object time.
3. Object machine size.
4. Availability of the multiply/divide feature.
5. Main program name.

These variables can be specified by using compiler op­
tion control cards. A description of each of these vari­
ables follow.

Integer Size. The assumed integer size is 5. Preceding
a compilation, the object-time integer size, k, can be
specified to be any value from 1 through 20.

Real Size. The assumed real size is 8. Preceding a
compilation, the object-time real size, f, can be speci­
fied to be any value from 2 through 20, where f is the
mantissa length. The compiler will reserve f + 2 po­
sitions for each real variable to allow for a 2-digit
exponent.

Obiect Machine Size. The assumed objeot machine
size is 11999. If the object machine is greater than
the assumed value, the highest core storage address
available at object-time must be specified if maxi­
mum core storage usage is to be attained.

Multiply/Divide Feature. The multiply/divide feature
is assumed to be available in the object machine. If
the feature is not available, this fact can be specified
by using a compiler control card.

Main Program Name. The main program (phase) name
is assumed to be / / /. By using a compiler control
card, the user can specify a main program (phase)
name that is three alphameric characters in length.
At least one character of the three-alphameric
character name must be alphabetic. The name ap ..
pears on the first card, disk, Or tape record of the

relocatable output generated by the compiler. If an
absolute deck is specified to the loader, the three
characters are included in the first card of the abso­
lute deck. These three characters are used to identify
the program if it is stored as a phase on the SYSTEM

file.
If the program (phase) is to be stored on the SYS­

TEM file as a phase that can be called for execution
at any time, the user must make sure that the three
characters of the program (phase) name are not the
same as the name of one of the phases of the System
Control Program and/or the Fortran processor. The
names of phases of the Fortran processor are in
the form nnF, where n is numeric. The names of the
phases of the System Control Program are in the
form xxy, where x is alphabetic and y is alphameric.
Appendix II contains the three-character names of
the phases of both the System Control Program and
the Fortran Processor Program. Consult the appen­
dix to ascertain that there is no duplication of phase
names.

Fortran Compiler Output

The output from the Fortran compiler is on the de­
vices as specified in the ASGN cards. The LIST file out­
put, with an assumed assignment to be the printer, is
composed of a source program listing, a name diction­
ary, and a sequence number dictionary. Any or all of
these types of output can be omitted by using an out­
put option control card.

Source Program Listing. A listing of the Fortran source
program is output by the Fortran compiler. The list­
ing is made up of input card images and a compiler­
generated sequence number. A sequence number
appears in front of each card except for a comment
card. An example of a source program listing is
shown in the sample program included as Appendix
IV.

Name Dictionary. A name dictionary is made up of
the names of simple variables and/or arrays that are
included in the source program. Associated with
each variable and/or array is the corresponding
object-time relocatable address. These addresses are
relative to a base address of 001. An array-name ad­
dress corresponds to the first element of the array.
An example of a name dictionary is shown in the
sample program included as Appendix IV.

Sequence Number Dictionary. The sequence number
dictionary is made up of the compiler generated se­
quence numbers and the corresponding object-time
relocatable addresses. These addresses are relative
to a base address of 001. The address indicates the

position of the first character of the transformed
statement.

Sequence numbers do not necessarily appear in
order in the dictionary. Further, a sequence number
may appear twice in the dictionary. (This could oc­
cur in the case of a READ/WRITE statement. A se­
quence number would represent the actual input/
output subroutine call; the same sequence number
would represent the transformed I/O list.) Specifica­
tion statement sequence number addresses appear
in the dictionary with the addresses equivalent to
another sequence number address.

Relocatable Punched Card Deck

In addition to output on the LIST file, the user can
specify, by way of an OUTPUT ASGN card, that a
punched-card deck in the relocatable format be pro­
duced by the compiler. This card deck is the same
object program that is located on the LOADER file in
mass storage. When a punched-card deck is specified,
the user has the option of specifying that the relo­
catable object program on the LOADER file be omitted.
(This is accomplished by using an ASGN OMIT card.)
Although it is possible to have the object program in
the relocatable format on both the LOADER file and the
OUTPUT file, generally only one form of output is
chosen.

Fortran Compiler Diagnostics

Diagnostic information is produced pertaining to the
intelligibility and consistency of the source program as
defined by the language specifications section of this
publication. If an error is detected by the compiler, a
message is printed on the LIST file informing the user
of his error. The message printed on the LIST file can
have a maximum of three parts.

The first part of the message is a Hag that indicates
the severity of the error. A single asterisk (*) indicates
a diagnostic of a warning type. A single asterisk allows
compilation to continue and relocatable output is pro­
duced.

Three asterisks (***) indicate a severe error, and
compilation is suspended. When this type of error oc­
curs, the message

*** COMPILATION SUSPENDED ***
is printed on the LIST file. In these instances, control
is returned to the System Control Program, and a con­
trol card for the next job is read.

The second part of the message is the sequence num­
ber of the statement in error. In certain cases, the
sequence number is not included as a part of the mes­
sage. For example, if the name table is being searched
and an error occurs, no sequence number is included
in the message.

41

FORTRAN RUN

001
002
003
004
005
006
007

c SAMPLE PROGRAM TO DEMONSTRATE TYPES OF COMPILER DIAGNOSTICS.
DIMENSION AfS)

SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
$,IH1P L E

1= 1
1 READ (5,2) AfI)
2 FORMAT (10X~2Fl0.3)

WRITE f3,3) I
3 FORMAT (lX,14HRUN NUMBER IS 13,1117HOBEGIN PROCESSING 1111)

E « I) = S QR T (A (I))

008
009
010

c ADDITIONAL STATEMENTS FOR PROCESSING.
PAUSE

SAMPLE
SAMPLE
SAMPLE
SAMPLE

GO TO
END

[

NAME DICTIONARY
00056 A 00061 I]

*** DIAGNOSTICS ***

FLAG SEQ MESSAGE

*

007 ARITHMETIC STATEMENT,ARRAY NOT DIMENSIONED (8)
006 FORMAT STATEMENT,IMPROPER ELEMENT SEQUENCING (,)

***COMPILATION SUSPENDED.**

Figure 12. Erroneous Coding and Resulting Diagnostics

The third part of the message is the diagnostic itself.
The diagnostic can include the type of statement in
error and in some cases the portion of the statement
being processed when the error occurred. The portion
of the statement being processed is enclosed within
parentheses.

Figure 12 is an example of erroneous coding and
the diagnostic messages that result. The first error is
the three-asterisks type that causes compilation to be
suspended. In sequence number 007, array B, (en­
closed within parentheses in the last part of the diag­
nostic), was not dimensioned in the source program.

The second error is the one-asterisk type that allows
compilation to proceed. These are merely warnings to
the programmer. In sequence number 006, a· comma,
(enclosed within parentheses in the last part of the
diagnostic), incorrectly appeared in a FORMAT state­
ment. In statement 006, the second comma must pre­
cede 13 rather than follow 13. Further, a comma should
not separate the 13 and the / in a FORMAT specification.

An additional diagnostic message can appear in the
sequence number dictionary. The diagnostic message

UNDEF STMT NO

will appear in the sequence number dictionary follow­
ing the sequence number whose associated source

42 Fortran IV Specs & Op. Froc. -1401,1440,1460

statement contains a reference to an undefined state­
ment number.

If an error is made when punching a compiler option
control card, the content of the card is output on the
LIST file beginning in position one, and the message

BAD CONTROL CARD

appears in positions 61-80.

Fortran Loader

The Fortran loader operates on the relocatable object
programs that are produced by the Fortran compiler.
It operates under control of the System Control Pro­
gram. The function of the Fortran loader is to load ob­
ject programs in the relocatable format into core stor­
age. It relocates addresses and provides linkage among
the programs, when appropriate. Optionally, the loader
produces the relocated object program on the OUTPUT

file in absolute format, or on the LIST file as a storage
print, or starts the execution of the program.

Under normal operations, the relocatable object pro­
grams are present on the LOADER file in mass storage
(disk or tape). Therefore, during a LOADER RUN, the
LOADER file is always referenced by the Fortran loader.

When the LOADER file is assigned to mass storage, the
relocatable programs are read into core storage when

a control card designating execution or no execution
is sensed. At this point, the entire content of the LOADER

file is read into core storage. Subprograms from the
LIBRARY file are then included, if appropriate.

If the user has specified a punched-card deck as a
result of the Fortran compiler processing, the LOADER

file must then be assigned by the user to the card
reader to which the CONTROL file is assigned. (All card
input for the Fortran loader must be from the same
device.)

When the LOADER file is assigned to a card reader,
the relocatable programs. must be read into core stor­
age before the execution or no execution card is sensed.
(The execution or no execution card is the last control
card of the input for loader processing.) For this rea­
son, an additional card, an INCLUDE card, is required
preceding the relocatable programs to signal the For­
tran loader that additional programs from the LOADER

file (card reader) need not be included when the last
control card is encountered. Instead, inclusion of re­
quired library routines takes place.

If additional programs are to be present during
loader processing, the user can specify the location of
these programs in mass storage by way of ASGN cards.
These areas would be referred to as the logical files
INPUT and WORK files. The user would have to supply
an INCLUDE card for each of the logical files that is as­
signed. With the INCLUDE card, the user could specify
the entire file be read into core storage along with the
main program from the LOADER file. Further, if the
entire file is not required, the user could specify by
name a specific program to be read into core storage
along with the main program. Subprograms from the
LIBRARY file are then included.

If more than one set of relocatable programs is on
the LOADER file, i.e., the programs are batched, the user
normally would want to process all the programs at
one time. If this is the case, the loader relocates and
loads all programs encountered until the end of the file
is sensed. If the file is a disk unit, a record with 1EOFb
as the first five characters signifies the end of the file.
A tape mark signifies the end of the file for tape files.
The last card in a deck signifies the end of the file for
card files. When batching is performed by the compiler
on the LOADER file, an end-of-file is always defined.

When a program is to be executed after loader proc­
essing, the loader prepares core storage for execution.
The loader overlays itself with a standard overlay
package. This overlay package consists of an arithmetic
interpreter and various input/output routines. The
user's program is then executed.

If a program is not to be executed after loader proc­
essing, control returns to the System Control Program,
which reads the next card in the CONTROL file.

Fortran Loader Output

The Fortran loader can produce three types of output.
Unless specified to the contrary by an output option
control card, a name map is output on the LIST file. By
way of an output option control card, the user can
specify that an absolute deck be produced on the OUT­

PUT file and a storage print be produced on the LIST file.

N arne AI ap. Unless the user specifies otherwise, a
name map is produced on the LIST file. The name
map is a table that includes all external names as­
signed during the loading process. Each name is as­
sociated with its absolute address. The user can then
determine all entry points for the subprograms
within the object program.

Absolute Deck. By using an output option control
card, the user can specify that an absolute deck be
produced on the OUTPUT file. The absolute deck is
made up of the entire relocated program, including
the loader overlay package for the processor ma­
chine being used for the LOADER RUN. This deck can
then be stored as a phase on the SYSTEM file for sub­
sequent runs on the same processor machine used
during the LOADER RUN. When this is done, the phase
(absolute deck) can be selected from the SYSTEM file
by using a three-character phase name. The three­
character phase name is the three-character main
program name specified to the compiler. The three­
character phase name appears in columns 78-80 of
each card of the absolute deck. It also appears in
columns 21-23 of the first card of the absolute deck
which is an UPDAT INSERT card. The deck is se~
quenced in columns 73-75, beginning with 001.

Storage Print. By using an output option control card,
the user can specify that a storage print be produced
on the LIST file. The storage print shows the absolute
locations of the programs that were loaded and relo­
cated. The storage print does not include the overlay
package.

Fortran Loader Diagnostics

Incorporated within the Fortran loader is the capabil­
ity for recognizing error conditions that may occur dur­
ing the loading process. These error conditions may
prevent the successful completion of the user's pro­
gram. The conditions are diagnosed by the loader, and
an error indicator is output on the LIST file and a halt
occurs. The error indicator, ERROR n, is in character
positions 14 through 20.

Figure 13 shows the error conditions that may arise,
and the action that is taken if the system is restarted.

Message Meaning Action if Restarted by Pressing START on the Console

ERROR 0 Two main programs have been encountered. A storage print and a name map are output on the LIST
file. Execution is suppressed, and control returns to

ERROR 1 COMMON area of the program being loaded does not the System Control Program, which reads the next card
match a previously encountered COMMON area. in the CONTROL file. Adjustment of the INPUT file

may be necessary before pressing START.
ERROR 2 Integer size and/or real size is inconsistent.

ERROR 3 Core storage is exceeded.

ERROR 4 Loader control card was not recognized.

ERROR 5 The subprogram whose name appears on the LIST file along
with ERROR5 was not found in the library.

ERROR 6 The name that appears on the LIST fi Ie along with ERROR
6 was multiply defined.

ERROR 7 Main program not included.

ERROR 8 Name table overflow.

ERROR 9 Library header record not present where the library is
assigned .

• Figure 13. Fortran Loader Diagnostic Messages

Obiect Time Diagnostics

Conditions may arise during the execution of the ob­
ject program that the system recognizes as being er­
roneous. A message is printed unconditionally on the
printer, starting at print position one. Messages are in
the form

xxx yyy

where xx.x is the error code for arithmetic errors and
input/output routines, and yyy is the address of the lo­
cation following the branch to the read/write subrou­
tine or the interpreter. The remainder of the printed­
line contains the current contents of a work area. The
system does not halt when these errors occur.

Codes (xxx) for arithmetic errors, the meaning of
the codes, and the values that are used by the object
program follow.

xxx Code

NOF

DZE

EOF

LNZ

seL

Meaning

Exponent overflow dur­
ing normalization

Attempt to divide by
zero

Exponential greater
than 1099

Logarithm of zero

Sine or cosine argument
too large

Value used in
Object Program

±.99 ... E99

±.99 ... E99

±.99 ... E99

±.99 ... E99

zero

44 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

Value used in
xxx Code Meaning Object Program

SSE Subscript error-index A hard halt with
greater than 15999 2002 in the A-ad-

dress register.
LNN Logarithm of negative In I arg I

number
ZTZ Zero raised to zero one

power
SQN Square root of negative vi arg I

arguement

Codes (xxx) for input/output routine errors, the
meaning of the codes, and the action that is taken in
the object program as a result of the error follow.

xxx Code

E01

E02

E03

E04

E05

E06

Meaning

~D/VVRITE statement
with no list or FORMAT

statement.

List exceeds the logi­
cal record on an un­
edited READ.

Variable type and con­
version specification do
not match.

Edited record is too
long.

End of format de­
tected twice with the
same list element.

Edited record was ex­
ceeded while process­
ing H -conversion field.

Result

The next statement
is processed.

The next statement
is processed.

The next statement
is processed.

The next statement
is processed.

The next statement
is processed.

The next statement
is processed.

xxx Code

E07

E08

E09

EIO

Ell

E12

E13

E14

E15

E16

E17

E18

E19

E20

E21

E22

E23

E24

EO}

Meaning

Unrecognizable char­
acter in E-, F -, or 1-
conversion input.

Too many signs in E-,
F -, or I-conversion in­
put.

Too many decimal
points in E- or F­
conversion input.

Exponent is more than
two positions in E­
conversion input.

No exponent after "E"
in E-conversion input.

Exponent specified in
F -conversion input.

Exponent overflow in
E- or F -conversion
input.

Decimal point or ex­
ponent with I-conver­
sion input.

Input data field is
longer than variable.

L input, and first non­
blank character not
"T" or "F".

BACKSPACE references
file not previously ref­
erenced.

END FILE references
device other than a
mass-storage device.

FIND references disk
unit with inoperative
access mechanism.

Illegal variable file
specification.

Illegal characters in
object-time FORMAT.

Disk area exceeded,
or end-of-file was
sensed during WRITE

operation.

Parenthesis mismatch
in object-time
FORMAT.

H-conversion field ex­
tended beyond the end
of the record in ob­
ject-time FORMAT.

A 7-8 punch in col­
umn 1 was detected
during a READ opera­
tion.

Fortran Library

Result

Assumed value is
zero.

Assumed value is
zero.

Assumed value is
zero.

Rightmost position(s)
are lost.

Assumed value is
zero.

Treated as E-con­
version input.

Assumed value is
zero.

Assumed value is
zero.

Assumed value is
zero.

Assumed value is
. FALSE ..

The next statement
is processed.

The next statement
is processed.

Press START on the
console to retry the
disk 110 operation.

The next statement
is processed.

The next statement
is processed.

The next statement
is processed.

The next statement
is processed.

The next statement
is processed.

Control is returned
to the System Con­
trol Program, which
reads the next con­
trol card.

'The Fortran library is made up of standard Fortran
functions and subroutines. Collectively, the functions

and subroutines are referred to as subprograms. These
subprograms are included in the user's program at load
time, just before execution.

The Fortran library is built and maintained by the
librarian. The expansion capability of the system per­
mits the user to code subroutines and place them in
the library. The method for adding (or deleting) sub­
routines from the library is described in Preparing Li­
brary Jobs.

The standard subprograms supplied by IBM are de­
fined in the language specifications section of this pub­
lication.

Object Programs
This section contains a description of the way object
programs are contained in core storage at the time they
are executed. Topics discussed in this section include
storage allocation, the standard loader overlay, sub­
programs, statement expansions, and an explanation of
the core-storage allocation for the sample program
contained as Appendix N .

Storage Allocation

In general, a Fortran source program is translated into
interpretive strings representing arithmetic expressions
or input/output lists, sequences of tests for logical
expressions, and subroutine calls with necessary pa­
rameters.

Each Fortran main program or subprogram is rela­
tive to a relocatable base address of 001, and is ordered
in the following manner.

1. Constants common to every program and subpro-
gram

2. Arrays

3. Simple variables and constants

4. Executable statement expansions

5. FORMAT statement and input/output list expansions
6. Subprogram prologue and epilogue.

Each real variable requires f + 2 positions of core
storage. Each integer variable requires k positions of
core storage. Each logical variable requires one posi­
tion of core storage.

The number of core-storage positions required for an
array is determined by multiplying the array dimen­
sions together and multiplying that product by the ap­
propriate word size according to type (real, integer, or
logical).

45

Integer constants appear in core storage with a
length as written, but leading zeroes are dropped. A
maximum of k positions is permitted; however, fewer
may be used. Real constants always require a length
of f + 2 positions in core storage. Logical constants
require one position of core storage.

Arrays and simple variables in COMMON are assigned
absolute (i.e., non-relocatable) addresses beginning
with the high core-storage address and proceeding
with decreasing addresses. No relocatable load cards
are generated.

The Fortran loader normally loads a main program
and possibly several subprograms in the relocatable
format from the LOADER file. The first program read
from the LOADER file is loaded into core storage begin­
ning at address 5701. Subsequent loading follows the
preceding program. Any required standard subpro­
gram will then be relocated and loaded following the
user-programs. A communication and system-constant
area is prepared from core-storage address 950 to 1010.

When loading is complete, the loader prepares for
object-program execution by calling a set of standard
subprograms, called the standard loader overlay, al­
ways required by the object program. Execution then
takes place.

Standard Loader Overlay

The standard-loader-overlay package occupies core­
storage positions 1010 through 5700 during object­
program execution. The overlay package includes rou­
tines such as the arithmetic interpreter, object-time
error messages, and the general READ/WRITE service
routines for initialization, file opening, end-of-file de­
tection, buffer clearing, and unit record (card reader,
card punch, printer, and console printer) input/output
processing. Also included are the input/ output list
routine, and several formatting routines to handle FOR­
MAT initialization, FORMAT-list interaction, the slash
(record delimiter) element, and I, E, and F input and
output conversions. Additional selectively included
subroutines are normally required when using a FOR­
MAT statement, as described with character counts in
the following section.

Selectively Included Standard Subprograms

A list of standard subprograms that exist on the LI­

BRARY file in the relocatable format follows. Each is
relocated and loaded by the loader, if required by the
user-program(s). Note that some standard subprograms
require other standard subprograms. The use of cer­
tain capabilities of the Fortran language as well as ex­
plicit subprogram references require the inclusion of

46 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

standard subprograms. The external names that arE
associated with the subprograms appear in the name
map when the corresponding subprogram is loaded.

Subprogram

FORMA T left parenthesis

FORMA T internal right parentheses

FORMAT scale factor

FORMAT H-specification

FORMAT L-specification, requires P.

FORMAT A-specification, requires P.

FORMAT A-, L-, 1-, F-, or

E-specification

External
Name

G.

H.

L.

M.

N.

O.

P.

FORMAT final right parenthesis Q.

Random file processing for FIND or A.

random READ/WRITE (disk-resident) B.

system only) C.
D.

E.
F.

Character
Count

143

39

18

153

135

191

230

98

217

Each logical file control word for file *i 21
i, where 0 ~ i ~ 9

Unedited READ/WRITE

BACKSPACE

END FILE

REWIND

FIND (disk-resident system only)

Variable file name search

Address vector for random file

definition vectors, requires V.

Address vector for sequential file

control words, requires V.

Object-time FORMAT, requires G.,

H., L., M., N., 0., P., and Q.

Tape I/O with disk-resident system

Subscripting

Multiply/divide subroutine

I.} J.
K.

R.

S.

T.

u.
V.
X.

Y.

w.

Z.

)A

)B

U)

V)

Y)
Z)

)C}
)D
)E

{
373 (disk)
369 (disk)

{
241 (disk)
171 (tape)

{
153 (disk)

90 (tape)

{
78 (disk)

47 (tape)

181

106

33

33

1061

171

283

471

Subprogram

DO, or implied DO in I/O list

Sense light

Sense light test, requires SSLITE

Sense switch test

End-of-file test

Phase linkage (also required by STOP

statement)

External

Name
Character

Count

~~} 173
)H

SSLITE}
W) 59

X)
SLITET 82

SSWTCH 83

EOF

LINK

{
44 (disk)

44 (tape)

{
22 (disk)

22 (tape)

Other uses of the Fortran language, as well as ex­
plicit references to standard Fortran functions, cause
the loading of an 8-character BeE instruction for each
function, plus the coding for the function itself. The
external name associated with the BeE instruction is
of the form ,c, where c represents the alphameric char­
acter unique to each standard function. The complete
set of required BeE instructions for a particular pro­
gram exists together in core storage after the pro­
gram(s) have been loaded by the Fortran loader. The
external name ,9 appears at the beginning of the BeE
instructions.

Subprogram

QUIT - leave interpretive coding for

executable coding

Relational expression testing, includ­

ing arithmetic IF

Absolute value - ABS

-lABS

Positive difference - DIM

-IDIM

External Character

Name Count

,0

,0

,1
,2

,3

,4
,5
(0

(1

(2

(3

(4
(5

,A

,B

(A

,D
,V

(D

8

8

8
8
8

8

8

134

8
8

11
8

8

64

External Character
Subprogram Name Count

Extreme value - AMAXO, requires ,R ,E

and (R

-AMAXI ,F

-MAXO ,G

- MAXI, requires,I ,H

and (I

- AMINO, requires,R ,J

and (R

-AMINI ,K

- MINI, requires ,I ,0

and (I

-MIND ,Y

Truncation - IFIX

Float - FLOAT

Remaindering - MOD

(E

(F

(G
(H
(J

(K

(0

(Y

,I
(I

,R

(R

,M

(M

8

8
8
8

8

8
8

8

248

8
129
8
67

8

88
- AMOD, requires ,R ,P 8

and (R and ,I and (I (P 208

Transfer of sign - ISIGN

-SIGN

,U

,W
8

8
(W 69

Truncation to real- AINT, requires (I

and (R

Complement compression, required by

a subprogram with adjustable di­

mensions - CMCM, requires sub­
scripting

Integer exponentiation

,Z

(Z

,8

(8

,7
(7

Power - logarithmic part of real ex- ,6

ponentiation, requires A) and (L

Cosine - COS, requires A) and (S ,C

Sine - SIN, requires A) ,S

(c}
(S

Common logarithm - ALOG 10, re- ,L
quires A) (L

Natural logarithm - ALOe, requires ,N
A) and (L

8

99

8
18

8
319

8

8

8

441

8
370

8

47

Subprogram External Character

Name Count

Square root - SQRT, requires A) ,Q 8

(Q 228

Arctangent - AT AN, requires A) ,T 8

(T 503

Exponential - EXP, requires A) ,X 8

(X 262

Power series subroutine required by A)

various transcendental functions B)
C)

D)
E)

F)

G)

H)
291

I)

J)
K)

L)
M)
N)
0)
P)

Statement Expansions

The COMMON, EQUIVALENCE, and type statements do
not generate object-time characters. These statements
serve only as information to the compiler.

The DATA statement information literals, converted
to internal notation, appear in the space allocated for
their respective variables or array elements. Either
f + 2, k, or one position is used.

An arithmetic statement defining a numerical value
is translated into a character string consisting primarily
of one-character operators and three-character (ad­
dress) operands. References to standard functions re­
quire one character of core storage, plus the inclusion
of a BCE for the function and the function itself. Sub­
scripted variable references normally require five char­
acters plus six for each dimension and the inclusion of
the subscript subroutine.

An arithmetic statement defining a logical value is
normally translated into a sequence of eight character
tests on the various logical variables. Arithmetic
strings, as described in the preceding paragraph, fol­
lowed by a four-character relational test (one-character
function reference plus a three-character parameter)
represent a relation.

A GO TO statement results in a four-character branch
instruction. A computed GO TO results in as many eight­
character branch instructions as there are statement
numbers in the computed GO TO.

48 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

A logical or arithmetic If<' results in very nearly the
same object expansion as an arithmetic statement, and
can be approximated in essentially the same fashion.

The DO statement generates 23 characters, and causes
the inclusion of the DO subroutine. Four characters are
required after the final executable statement in the
range of the DO.

The CONTIl\'"UE statement generates no object char­
acters.

The PAUSE statement generates either one character
or five characters, depending upon the absence or pres­
ence of the optional integer constant.

A STOP statement generates ten object-time char­
acters and causes the inclusion of the LINK subroutine.

The END statement generates ten object-time char­
acters.

Input/ output lists are translated into a sequence of
subroutine calls and interpretive strings. The sample
program shown in Appendix IV gives an example of
input/output lists.

A FORMAT statement is translated into a sequence of
subroutine calls with parameters corresponding to the
FORMAT elements used. Additional selectively included
standard subprograms are normally required.

A READ or WRITE statement, or one of the manipula­
tive input/output statements is translated to a sub­
routine call with required parameters. Corresponding
lengths are:

READ/WRITE 19
FIND 10
END FILE 7
REWIND 7
BACKSPACE 7

A standard subprogram is required for each type of
manipulative input/output statement used. An expres­
sion consisting of something more complex than a
single non-subscripted variable or constant in a FIND

statement, or in the random form of a READ or WRITE

statement, causes the generation of additional charac­
ters, similar to the arithmetic statement. If a variable
file name is used, ten additional characters are required
for each reference, as well as two or three standard
subprograms.

The DEFINE FILE statement causes the generation of
seventeen characters for each file defined. The external
names $i, where 0 L. i L 9, are also generated by the
DEFINE FILE statement.

The FUNCTION and SUBROUTINE statements cause gen­
eration of a prologue for the evaluation of parameters
and array dimension calculations, if required, and an
epilogue to reset any values required and return con­
trol to the proper place.

The RETURN statement generates four characters.

The CALL statement generates four characters, plus
three characters for each actual argument. If the actual
arguments consist of more complicated expressions
than a single non-subscripted variable, constant, or
alphameric field, then an expression-evaluation string
for either arithmetic or logical expressions is also
generated.

It was found that twenty-three typical programs had
statement expansions averaging approximately thirty
characters per statement. A program containing nu­
merous long FORMAT statements had a significantly
higher average, whereas a program almost entirely
composed of simple arithmetic statements had a some­
what lower average. In all cases, additional storage was
required for arrays, variables and constants, and re­
quired subprograms. Thus, the total core-storage re­
quirement above the base loading point of 5700 varied
considerably, ranging from about 500 characters to
about 10,000 characters.

Core-Storage Allocation for the Sample Program

The discussion in this section refers directly to the
sample program that is shown as Appendix IV. Core
storage has been allocated for the object program in
the following manner.

Area

0-949
950-1009
1010-5700
5701-6205

5701-5850

Content

Resident System Control Program functions
Communication area, system constants
Standard loader overlay
Main program, relocated
Constants, arrays, variables

Area

5851-5991
5992-6205

6206-8045
6206-6227
6228-6510
6511-6981
6982-7154
7155-7206

7207-7340
7341-7483
7484-7522
7523-7675
7676-7905
7906-8003
8004-8024
8025-8045

Content

Executable and END statements
FORMAT'S, input! output lists
Selectively included standard subprograms
LINK subroutine, required by STOP statement
Subscripting subroutine
Multiply / divide subroutine
DO subroutine
Function branches for relational functions, re­
quired by logical IF statement
Relational expression testing
FORMAT left parenthesis
FORMAT internal right parenthesis
FO"3MAT H-specification
FORMAT A-, L-, 1-, F-, or E-specification
FORMAT final right parenthesis
File control word for logical file 1
File control word for logical file 3

This accounts for all external names appearing in the
name map, recognizing that the main program name
is the assumed value / / /.

The statement expansion area occupies 355 charac­
ters, averaging approximately 35 characters per state­
ment. This average includes the END statement, but
excludes the DIMENSION statement. Note that the FOR­

MAT expansion required considerably more than the
average number of characters, whereas the arithmetic
statement, sequence number 004, required less.

The location and length of each statement expansion
can be determined by adding the program base loading
point to the relative addresses shown in the sequence
number dictionary. The program base loading point for
the first program that is loaded is 5700. Subsequent
programs are loaded immediately following the first
program. Consequently, their base loading points are
higher than 5700.

49

Operating Procedures

Jobs

The Fortran system performs two major operations.

1. Translates source programs into object programs.

2. Starts the execution of object programs.

Because these operations are performed by the Fortran
processor part of the system, the operations are called
processor jobs.

Two other operations, maintaining the Fortran sub­
program library and updating the Fortran system, are
also considered jobs. Maintaining the Fortran subpro­
gram library is called a library job. Updating the For­
tran system is called an update job. Update jobs are
described in Updating a Fortran System.

Under control of the System Control Program, it is
possible to perform one or more jobs without operator
intervention. This process is called stack processing. If
the system resides on disk, or if the system resides on
tape unit 2, 3, 4, 5, or 6, a stack is always made up of
the card-boot deck, a SYSTEM ASGN card, the particular
job(s) to be performed, and a HALT card. If the system
resides on tape unit 1, a stack is made up of the par­
ticular job(s) to be performed and a HALT card. (Press­
ing the tape load key serves the same function as the
card boot and the SYSTEM ASGN card when the system
tape is on unit 1.)

In performing a job, the following factors must be
taken into consideration.

1. The kind of input for the job.

2. The use of the logical files.

3. The machine-operator procedures to be followed.

The kinds of input for processor jobs and library jobs
are discussed in the following sections (Preparing Proc­
essor Jobs and Preparing Library Jobs).

The general use of logical files is discussed in Logi­
cal Files.

In most cases, the user does not need to be con­
cerned about the logical files because the Fortran sys­
tem defines the files and assigns them to specific input/
output devices. In the description of preparing proc­
essor jobs that follows, any file assignment that the user
must make is explained.

The machine-operator procedures to be followed are
described in Performing Jobs.

50 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

Preparing Processor Jobs

This section describes each processor job. They are:

FORTRAN RUN

LOADER RUN

PRODUCTION RUN

Each processor job description includes:-

1. Assumed input device. This entry refers to the de­
vice on which the input is assumed to be located.
For the 1402, READER 1 means that the cards are
selected into stacker 1. For the 1442, READER 1
means unit 1.

2. Input. This entry refers to the type of input for the
job.

3. Assumed output devices. This entry refers to the de­
vice(s) on which the output is assumed to be lo­
cated. For the 1403, PRINTER 2 means that 132 print
positions are available. For the 1443, PRINTER 2
means that 144 print positions are available. For the
1402, PUNCH 4 means that the cards are selected into
stacker 4. For the 1442, PUNCH 1 means unit l.

4. Output. This entry refers to the type of output that
the user always gets as a result of the job, unless
specified otherwise.

5. Output options available. This entry refers to the
type of output the user can get by using output
option cards.

6. Required user assignments. This entry describes any
additional logical file assignments that the user must
make to perform the job.

7. Control cards. This entry describes the method of
punching any required control cards and output op­
tion cards.

8. Arrangement. This entry references a figure that
shows the manner of arranging card input for the
job.

NOTES.

1. Any logical file assumed assignment can be changed. If the
user wishes, he can change the assignment by using an
ASGN card.

2. NOTE and PAUSE cards can be placed between, but not
within, job decks.

FORTRAN RUN

This is the type of run that translates a source program
written in the Fortran language into an object program
in the relocatable format. The output for this run is
then ready for processing by the Fortran loader.

Assumed Input Device. INPUT file on READER 1.

Input. Source program.

Assumed Output Devices. MESSAGE file on PRINTER 2;
LIST file on PRINTER 2; LOADER file on 1311 or 1301
UNIT 0, START 010400, END 012000 or TAPE UNIT 3.

Output.

1. Source-statement diagnostics on the LIST file, if
errors are sensed.

2. Source program listing on the LIST file, unless an
output option control card specifies that the listing
be omitted.

3. Name dictionary on the LIST file, unless an output
option control card specifies that the name diction­
ary be omitted.

4. Sequence number dictionary on the LIST file, un­
less an output option control card specifies that the
sequence number dictionary be omitted.

5. Object program in the relocatable format on the
LOADER file, unless the LOADER file has been omitted.

Output Options Available. Object program in the re­
locatable format on the OUTPUT file.

Required User Assignments. If the object program is
to be written on the LOADER file, no file assignments
are required. If the user wants the object program
on the OUTPUT file, an OUTPUT ASGN card is required.

Control Cards.

1. The RUN card is the only required control card.
Punch the RUN card in the following manner.

Columns
6-12

16-18

Contents
FORTRAN

RUN

2. If the object program is to be on the OUTPUT file,
an OUTPUT ASGN card is required. This card must pre­
cede the RUN card. Generally, the only time that the
user would want to use the OUTPUT file is when a
punched card deck in the relocatable format is de­
sired. If this is the case, punch the OUTPUT ASGN card
in the following manner:

Columns Contents
6-11 OUTPUT

16-19 ASGN

21-27 PUNCH n

If the OUTPUT file is assigned to PUNCH n, n can be
0, 4, or 8 for 1402, 1 or 2 for 1442, 3 for 1444.

If the OUTPUT file is assigned, the user may wish
to omit the LOADER file. If this be the case, a LOADER

ASGN card is required and must precede the RUN

card. Punch the LOADER ASGN card in the following
manner.

Columns
6-11

16-19
21-24

Contents
LOADER

ASGN

OMIT

3. The following cards are output option control
cards and compiler option control cards. They are
used when any of the options are desired. The op­
tion cards immediately precede the Fortran source
program in the INPUT file and can be in any order.
Option control cards are output on the LIST file.

a. If the integer size is to differ from the assumed value of 5,
punch the following card. Note: 01 < nn < 20.

Columns Contents

1-8 $INTEGER

10-13 SIZE

15
17-18 nn

b. If the real size is to differ from the assumed value of 8,
punch the following card. Note: 02 < nn < 20. - -

Columns Contents

1-5 $REAL

7-10 SIZE

12
14-15 nn

c. If the object machine differs from the assumed value of
07999, punch the following card.

Columns Contents

1-7 $OB]ECT

9-15 MACHINE

17-20 SIZE

22
24-28 15999

d. If the multiply/divide feature is not present in the ob­
ject machine, punch the following card. (The multiply/
divide feature is assumed by the Fortran compiler to be
available.)

Columns

1-3
5-12

14-19

Contents

$NO

MULTIPLY

DIVIDE

51

e. If the main program (phase)name differs from / / /,
punch the following card. Note: name is three alpha­
meric characters in length. At least one character of the
three alphameric character name must be alphabetic. If
the program is to be stored as a phase on the SYSTKM

file, the arrangement of the three characters must be
unique, i.e., the arrangement must differ from:

1. Any phase name of the System Control Program
2. Any phase name of the Fortran Processor Program
3. Any phase name that the user previously may have
added to the SYSTEM file.

Columns Contents

1-6 $PHASE

8-11 NAME

13
15-17 name

f. If no source program listing is desired, punch the fol­
lowing card.

Columns

1-3
5-8

Contents

$NO

LIST

g. If no name dictionary listing is desired, punch the fol­
lowing card.

Columns
1-3
5-8

10-19

Contents

$NO

NAME

DICTIONARY

h. If no sequence number dictionary i! desired, punch
the following card.

Columns Contents

1-3 $NO

5-12 SEQUENCE

14-19 NUMBER

21-30 DICTIONARY

i. If neither the name dictionary nor the sequence number
dictionary is desired, punch the following card.

Columns
1-3
5-14

Contents

$NO

DICTIONARY

Arrangement. The arrangement of input cards for a
FORTRAN RUN is shown in Figures 14 and 15. The out­
put option cards must be in the INPUT file and can be
in any order.

LOADER RUN

This is the type of run that changes object programs in
the relocatable format into object programs in the
absolute format, establishing interprogram communica­
tion and including required subprograms from the sub­
program library. These object programs can be exe­
cuted at the completion of the LOADER RUN, or at a later
time, depending on the wishes of the user.

Assumed Input Device. LOADER file on 1311 or 1301
UNIT 0, START 010400, END 012000 or TAPE UNIT 3.

52 Fortran IV Specs & Op. Proc. -1401,1440,1460

ASGN Cards
(if required)

Figure 14. FORTRAN RUN with CONTROL and INPUT Files As­
signed to the Same Device

Input. Object program(s) in the relocatable format.

Assumed Output Devices. LIST file on PRINTER 2, OUT­

PUT file on PUNCH 4 (1401 or 1460 systems) or PUNCH

1 (1440 systems).

Output.

1. Loader diagnostic messages on the LIST file. if
errors are sensed.

2. Name map on the LIST file, unless an output option
control card specifies that the name map be omitted.

Output Options Available.

1. Storage print on the LIST file, if an output option
card is included that specifies a storage print.

Figure 15. FORTRAN RUN with CONTROL and INPUT Files As­
signed to Different Devices

2. Object program card deck in the absolute format
on the OUTPUT file, if an output option card is in­
cluded that specifies an absolute deck.

Additional Results. At the completion of a LOADER

RUN, the program is ready for execution.

Required User Assignments. If the object program in
relocatable format is on the LOADER file, no user-as­
signment is required. If the object program in relo­
eatable format is on any other file (INPUT, WORKl­

WORK6), an ASGN card is required designating this
£Ie. In this case, an associated output option card is
required.

Control Cards.

The first card of a LOADER RUN job must be the
LOADER RUN control card which is punched in the
following manner:

Columns

6-11
16-18

Contents

LOADER
RUN

The last card of a LOADER RUN job must either be
a $EXECUTION control card or a $NO EXECUTION con­
trol card.

a. If execution is desired, punch the following card:

Columns

1-10

Contents

$EXECUTION

b. If execution is not desired, punch the following card:

Columns

1-3
5-13

Contents

$NO
EXECUTION

Depending on the user's requirements, any or all
of the following Loader control cards may be present
between the LOADER RUN card and the $EXECUTION

or $NO EXECUTION card. They may appear in any
order.

a. The $INCLUDE card is punched in the following manner:

Columns

1-8
16-18

21-23

or
21-26

Contents

$INCLUDE
three-character
file name
three-character
main program name
or
six-character
subprogram name

File Name Three-Character File Name

LOADER LDR

MESSAGE MSG

INPUT INP

OUTPUT OUT

LIST LST

WORKl WKl

WORK2 WK2

WORK3 WK3

WORK4 WK4

WORK5 WK5

WORK6 WK6

• Figure 16. Equivalence Between Logical File Names and
Three-Character File Names

This card causes the Fortran Loader to search the file
specified in columns 16-18 for the relocatable main program
specified in columns 21-23, or the relocatable subprogram
specified in columns 21-26. When the relocatable program
is found, it is loaded into core storage and the next control
card is read. When columns 21-26 are blank, the entire file
of relocatable programs is loaded. The valid file names which
may appear in columns 16-18 are; LDR, INP, wKl, wK2, WK3,
WK4, wK5, and WK6. The correspondence between the three­
character file names and the actual file names is shown in
Figure 16.

b. If an absolute deck is desired, punch the following card.
(Unless otherwise specified in columns 21-23, the deck
will be on the OUTPUT file.)

Columns

1-9
11-14
21-23

Contents

$ABSOLUTE
DECK
three-character
file name

c. If a storage print is desired, punch the following card.
(Unless otherwise specified in columns 21-23, the storage
print will be on the LIST file.)

Columns

1-8
10-14
21-23

Contents

$STORAGE
PRINT
three-character
file name

d. If no name map is desired, punch the following card:

Columns Contents

1-3
5-8

10-12

$NO
NAME
MAP

53

(if required for execution)

Figure 17. LOADER RUN with CONTROL and LOADER Files As­
signed to the Same Device

Arrangement. The arrangement of input cards for a
LOADER RUN is shown in Figures 17 and 18. The out­
put option cards must be in the CONTROL file and can
be in any order.

NOTE: If execution is to follow immediately after the
LOADER RUN, indicated by a $EXECUTION card, the user must
make sure that any Fortran numerical files referenced in the
program have been assigned to the correct input/output
devices. If ASGN cards are required to change file assign­
ments, the cards precede the LOADER RUN card. Further, the
user must make sure that the files referenced during a
LOADER RUN do not conflict with files referenced in the object
program.

ASGN Cards
(if required)

Figure 18. LOADER RUN with CONTROL and LOADER Files As­
signed to Different Devices

54 Fortran IV Specs & Op. Proc. -1401,1440,1460

Fortran Loader Operation

The Fortran LOADER is called by the System Control
Program when the LOADER RUN card is read from the
CONTROL file. All cards after the LOADER RUN card (up
to and including the $EXECUTION or $NO EXECUTION

card) on the CONTROL file are read by the Fortran
LOADER. Relocatable programs may be loaded through
the use of $INCLUDE cards as previously described. In
addition, the entire LOADER file, which is developed by
one or more Fortran runs, is loaded when the $EXECU­

TION or $NO EXECUTION card is read. The user should
be aware that the LOADER file is not referenced if it
has been referred to in a $INCLUDE card in the same
LOADER run, or if it has been omitted with an ASGN card.

The LIBRARY file is always referenced and is the last
file referenced in a LOADER run. Any subprograms,
either supplied by IBM or entered on the LIBRARY file
by the user, which are needed by the main program
and/or subprograms already loaded, are extracted from
the LIBRARY file.

Following are three possible executions of the LOADER

RUN job:

1. If the user has written a main program and an
associated subprogram and wishes to compile and
execute them, the card deck sequence of Figure 19
could be used.

The two Fortran run jobs will place their re­
spective relocatable decks on the LOADER file. Since
there is no $INCLUDE card, at LOADER run time the
entire LOADER file will be loaded when the $EXECU­

TION card is sensed.

1'7 FORTRAN SOURCE DECK
"f (Subprogram)

• Figure 19. Fortran runs followed by LOADER RUN

"7 MAIN PROGRAM AAA
'J or

SUBPROGRAM AAA

• Figure 20. Main Program with Subprogram in
Relocatable Card Form

2. If the user wishes to compile a Fortran program
and then execute this program along with another
program in relocatable card form, he may use the
card deck sequence shown in Figure 20. One of the
programs must be a main program and the other
a subprogram. A program in the relocatable card
form may be obtained from a Fortran run by assign­
ing the OUTPUT file to the card punch.

The Fortran run will place a relocatable deck on
the LOADER file. When the $INCLUDE INP AAA card is
read at LOADER RUN time, the Fortran loader loads
program AAA from the INPUT file. Since this example
uses the assumed logical file assignments, the INPUT

file is on the same card reader as the CONTROL file.
Therefore, the relocatable program AAA must im­
mediately follow the $INCLUDE card.

When the $EXECUTION card is read, the LOADER

file, containing the program just compiled, will be
loaded.

3. If the user wishes to load and execute one or more
programs all of which are in the relocatable card
form, he may use the card deck sequence shown in
Figure 21.

One of the three relocatable programs must be a
main program, and the other two, subprograms.

In this example, the CONTROL file, the INPUT file,
and the LOADER file are an assigned to the same card
reader. When each $INCLUDE card is read, the For­
tran loader loads the specified relocatable deck from
the LOADER file. When the $EXECUTION card is
sensed, the Fortran loader will not reference the
LOADER file again since it was referenced previously
in a $INCLUDE card.

PRODUCTION RUN

This is the type of run that executes an object program
in the absolute format. In order to perform a PRODUC­

TION RUN, the object program must be in the SYSTEM

file, stored as a phase of the Fortran system. The
method for placing the object program in the SYSTEM

file is described in the following section, Preparing
User-Update Jobs.

Assumed Input Device. For 1301, the SYSTEM file is on
UNIT O. For 1311, and for tape, the unit is user­
assigned.

Input. Object program in the absolute format, stored
as a phase of the Fortran system.

Assumed Output Devices. Not applicable.

Output. Not applicable.

Required User Assignments. The unit(s) referenced by
the source program .

Control Cards. The required RUN card is punched in
the following manner.

Contents
PRODUCTION

RUN

Columns
6-15

16-18
21-23 three-character phase name

The three-character phase name is the three-charac­
ter name assigned to the program before it was
compiled. It is the same three-character name that
appeared in columns 21-23 of the first card of the

• Figure 21. Main Program with Two Subprograms in
Relocatable Card Form

55

Figure 22. PRODUCTION RUN with CONTROL and INPUT (Equiv­
alent to Fortran File 1) Files Assigned to the Same
Device

absolute deck that was used to insert the program as
a phase on the SYSTEM file.

Arrangement. The arrangement of input cards for a
PRODUCTION RUN is shown in Figures 22 and 23.

Preparing User-Update Jobs

In order to perform a PRODUCTION RUN job, it is neces­
sary that the object program in the absolute format be
present in the SYSTEM file. This object program deck is
output by a LOADER RUN, when specified by the user.
Object programs can be inserted on or deleted from
the SYSTEM file according to the needs of the user. If
the system resides on a disk unit, these user-inserted
phases (object programs in the absolute format) reside
within the fIle-protected limits of the SYSTEM file.

On a tape-oriented system, the WORKl file is used
in conjunction with the SYSTEM file when a user-update
job is performed. After a new phase is inserted (or de­
leted), the new SYSTEM file is present on WORK!. If the
LmRARY file followed the old SYSTEM file, it is copied
following the new SYSTEM file on WORKl. According to
the needs of the user, the WORKI file can be transferred
back to the master tape by performing a system-tape
copy job. See Duplicating the System Tape. Since a
system-tape copy job copies from the SYSTEM file to the
WORKl file, the user must make sure that the SYSTEM

and WORKl file assignments used for the user-update
job are interchanged for the system-tape copy job. (In­
serting a PAUSE card immediately after the user-update
job and immediately preceding the system-tape copy
job provides a temporary halt in the system that allows
the user to interchange the two file assignments.)

The tape user is advised that when performing an
UPDAT INSERT job, the phase after which the new phase
is to be inserted must be present on the original SYSTEM

file. The order of insertions (or deletions) must be the
same as on the SYSTEM file.

56 Fortran IV Specs & Op. Proc. -1401,1440,1460

(PRODUCTIO N RU N ~

(INPUT ASGN

ASGN Cards
(if required)

Figure 23. PRODUCTION RUN with CONTROL and INPUT (Equiv­
alent to Fortran File 1) Files Assigned to Different
Devices

Assumed Input Device. CONTROL file on READER l.

Input. Object deck in the absolute format. This deck is
obtained by selecting the absolute deck option in a
LOADER RUN.

Assumed Output Devices. Not applicable.

Output. Not applicable.

Required User Assignments. None.

Control Cards.
1. If a phase is to be inserted on the SYSTEM file, the
required UPDAT control card is generated by the For­
tran loader. It is the first card of the absolute deck
when the user specifies that an absolute deck be
punched as a result of a LOADER RUN.

NOTE. If the SYSTEM file resides on tape, the user must
specify that the phase be inserted after a particular phase
on the SYSTEM file. In order that this be accomplished, punch
the three-character phase name after which the phase is to
be inserted in columns 21-23 of the UPDAT control card, the
first card of the absolute deck. (Columns 21-23 of the UPDAT

card punched by the LOADER contains the name of the phase
that is to be inserted and must be changed.) 79F is the name
of the last phase of the Fortran system. When deleting a
phase and inserting another phase in its place, it is recom­
mended that these two user-update jobs be performed in two
separate stacks.

2. If a phase is to be deleted from the SYSTEM file,
punch ,the following card.

Columns

6-15

16-20

21-23

24

25-30

Contents

[any user comments]

UPDAT

three-character phase name

comma

DELETE

UPDAT ~ INSERT

Figure 24. User-Update Job

In the control card, three-character phase name
refers to the three-character main program name.

Arrangement. The arrangement of input cards for a
user-update job is shown in Figure 24.

NOTE TO DISK USERS: Attempts to add a phase to the sys­
tem may result in a halt (A-Address Reg.-088) indicating
that the phase has not been inserted due to a lack of space
in the system area. The following message will be printed
before the halt occurs: SYSTEM AREA MUST BE OPTIMIZED
BEFORE PHASE name CAN BE INSERTED. PRESS START TO OP­
TIMIZE. Pressing START will cause the system area to be
scanned for all unused sectors. If unused sectors are found
(resulting from prior deletions), the system area will be re­
arranged so that all unused sectors become available for
phase insertion. Upon completion of this compression, an­
other attempt will be made by the system to insert the phase.
If the phase will not fit after compression, a hard halt will
occur (A-Address Reg.-099). The following message will be
printed before the halt occurs: NO ROOM IN SYSTEM AREA FOR
PHASE name-number MORE SECTORS REQUIRED. Phases on the
system that are no longer used may be deleted in order to
make room for the phase to be inserted. A table containing
the name and disk address of every phase in the system area
is located in the file-protected area. A list of this table may
be obtained by printing sectors 262583 through 262615 using
a seek address of 002583 through 002615 (Load mode).

Preparing Library Jobs
Library jobs are associated with the maintenance of
the Fortran library. The Fortran library is a mass­
storage file that supports the Fortran loader. The file
contains a library table (disk-resident systems only)
and subprograms, such as standard Fortran functions
and subroutines.

The three standard library jobs are:

l. Library build that enables the user to define a LI­

BRARY file. A library-build job, performed when a
disk-resident Fortran system is built, defines a LI­

BRARY file on the same disk unit as the SYSTEM file.
The limits of this LIBRARY file are 012000 through
013899. Thus, the assumed assignment is 1311 or
1301 UNIT 0, START 012000, END 013900.

After the library-build job has been performed,
the LIBRARY file contains the library table. The li-

brary table is thirty seClors in length. The user can
enlarge the name table according to his needs.

If the system is tape resident, the library can be
built on the same tape unit with the SYSTEM file, or
on another tape unit, if specified by a LIBRARY ASGN

card. As a result, the tape user need only be con­
cerned with library changes and library listings.

2. Library listing that enables the user to get a list of
the library subprograms and/or the names of the
subprograms that are in the LIBRARY file.

3. Library change that enables the user to modify the
content of a LIBRARY file. A library-change job, first
performed when the disk-resident system is built,
transfers the subprograms to the LIBRARY file after
the file has been defined.

A library job begins with a LIBRARY RUN card and
terminates upon encountering the El';"D card. Only four
types of control cards can appear between the LIBRARY

RUN and the EKD card. They are BUILD, LIST, INSER, and
DELET.

At the completion of a library job (LIBRARY RUN) on
a disk-oriented system, three messages are printed on
the LIST file. The messages are:

END OF LIBRARY RUN
LIBRARY ASSIGNED nnnnnn TO nnnnnn
REMAINING SECTORS nnnnnn TO nnnnnn

In the message, nnnnnn is a disk address. From these
messages, the user is able to determine the size of the
present library, and the number of sectors available
for any additional subprograms that may be added.

Any subprogram is stored in disk storage one card
per sector in the move mode. As the input for a LI­

BRARY RUN must be in card form, the user can deter­
mine whether a subprogram will fit in the library by
merely counting the cards in the deck output from a
FORTRAN RUN.

If the LIBRARY file is full and the user wants to add a
new subprogram, one of two steps can be followed.

1. The user can define and build a new LIBRARY.

2. The user can delete an existing subprogram from
the LIBRARY file and insert the new subprogram.
This can be done if the new subprogram will occupy
the same number or fewer sectors than the old sub­
prog,ram.

For tape-oriented systems, at the completion of a
LIBRARY RUN, the message,

END OF LIBRARY RUN

is printed on the LIST file.

57

Library Build

Library-build jobs apply only to disk-resident systems.
Each library-build job defines a LIBRARY file that COll-­

tains a name table 30 sectors in length. If a table of
more (or less) than 30 sectors is required, specify the
sector number desired in the control card.

The control cards required for a library-build job
are:

l. A LIBRARY ASGN card is required if the assignment
of the LIBRARY file differs from that assumed by the
System Control Program. Punch the ASGN card in
the following manner:

Columns
6-12

16-19
21-57

Contents
LIBRARY

ASGN

1311 UNIT n, START nnnnnn, END nnnnnn
or
1301 UNIT n, START nnnnnn, END nnnnnn

For disk, the value n indicates the number of the disk unit,
and can be 0, 1, 2, 3, or 4; nnnnnn represents a disk ad­
dress. The limits of the library must be supplied.

2. Punch the required RUN card in the following man­
ner:

Columns
6-12

16-18

Contents
LIBRARY

RUN

3. Punch the library-build card in the following man­
ner:

Columns
16-20
21-23

Contents
BUILD

[nnn]

The value nnn is used only when the name table is to differ
from 030 sectors.

4. The END card must be the last card of a library­
build job. Punch the END card in the following man­
ner:

Columns
16-18

Contents
END

The arrangement of control cards for a library build
job is shown in Figure 25. The cards are read from the
CONTROL file.

Figure 25. Library Build

58 Fortran IV Specs & Op. Proc. -1401,1440,1460

library Listing

The user can request three types of library listings.

1. A listing of the names or headers of all the subpro­
grams in the Fortran library.

2. A listing of the entries in a specific subprogram.

3. A listing of the entries in every subprogram.

The control cards required for a library-listing job are:

1. A LIBRARY ASGN card is required if the assignment
of the library file differs from that assumed by the
System Control Program. See Library Build for the
format of the ASGN card.

2. The required RUN card is punched in the following
manner.

Columns
6-12

16-18

Contents
LIBRARY

RUN

3. One of the following three cards are required for
the library-listing job. The one that is selected de­
pends upon the type of listing that is required.

a. If a listing of the headers of all the tape subpro­
grams is required, punch the following card. If a
listing of the names and disk addresses of all the
disk subprograms is required, punch the follow­
ing card. The listing is output on the LIST file.

Columns
16-19
21-27

Contents
LIST

HEADERS

b. If a listing of the entries in a specific subprogram
is required, punch the following card. The listing
is output on the LIST file.

Columns
6-11

16-19

Contents
name
LIST

name is the six-character name of the specific subprogram
entries that are required.

c. If a listing of the entries in every subprogram is
required, punch the following card. The listing is
output on the LIST file.

Columns
16-19

Contents
LIST

4. The END card must be the last card of a library­
listing job. Punch the END card in the following
manner.

Columns
16-18

Contents
END

(END

(LIST

(name LIST t--

{LIST HEADERS f---

(LIBRARY RUN -

/UBRARY ASGN f-----/

(if required)
t--

Figure 26. Library Listing

The arrangement of control cards for a library-list­
ing job is shown in Figure 26. The cards are read from
the CONTROL file.

Library Change

Fortran subprograms, supplied by ffiM or developed
by the user, can be added, modified, or deleted.

IBM provides a change deck whenever ffiM-supplied
standard subprograms should be modified. The change
deck includes a LffiRARY RUN card, INSER and/or DELET
cards, an END card, and cards containing the changes
to be made.

Programs already in the library, if being replaced,
should be deleted before new programs are inserted.
In addition, all deletions should be performed before
the first insertion. This becomes more significant from
an efficiency standpoint as the number of programs
being replaced increases.

User-change cards must be in the relocatable for­
mat, the result of processing by a FORTRAN RUN. In ad­
dition to the change cards, the following control cards
are required for a library change.

1. A LIBRARY ASGN is required if the assignment of the
LIBRARY file differs from that assumed by the System
Control Program. See Library Build for the format
of the ASGN card.

2. The required RUN card is punched in the following
manner.

Columns
6-12

16-18

Contents
LIBRARY

RUN

3. If a subprogram is to be inserted, punch the follow­
ing card.

Columns
6-11
16-20

Contents
name

INSER

The INSER card must immediately precede the re­
locatable deck. Each card of a relocatable deck is
identified in column 72. The first card of this deck
must contain an <CH" in column 72 and the last card
must contain a <c." in column 72. The insertion of
the program begins after reading of the «H" card
and terminates after reading of the <c." card. Ter­
mination of an insertion procedure by any other
means, such as detecting the last card in the reader,
must be avoided. Cards appearing between the first
and the last card must have one of the characters
«C", "K", «E", «R", or «0" in column 72.

When the LffiRARY file resides on disk, the new
subprogram is inserted after the last subprogram in
the LIBRARY file. When the LIBRARY file resides on
tape, the new subprogram is inserted before the
first subprogram.

If a subprogram by the same name already exists
in the LffiRARY file, it is deleted before the new su b­
program is inserted.

When the system is tape-oriented, the WORKI file
is used in conjunction with the LIBRARY file only
when the library is to be changed. Whenever a
subprogram is inserted, replaced or deleted, the new
library will appear on the WORKI file. The original
library will not be changed. Perform a library-copy
job to transfer the library from the WORK 1 file to
the LIBRARY file. See Library Copy.

4. If a subprogram is to be deleted, punch the follow­
ing card.

Columns

6-11

16-20

Contents

name

DELET

name is the six-character name of the subprogram to be
deleted.

All DELET cards must precede all INSER cards.
When the system is tape oriented, the worud file is
used in conjunction with the LIBRARY file when a
subprogram is deleted. Perform a library-copy job
to transfer the library from the WORKI file to the
LIBRARY file. See Library Copy.

5. The END card must be the last card of a library­
change job. Punch the END card in the following
manner.

Columns

16-18

Contents

END

59

II BRARY ASGN
(if required)

• Figure 27. Library Change

J One card is required

The arrangement of the control cards and the in­
put for a library change is shown in Figure 27. The
control cards and the input cards are read from the
CONTROL file.

If the input for a library-change job contains a
card that is not recognized by the system, a halt oc­
curs. The message

CARD NOT RECOGNIZED-BYPASS-CONTINUE
INSERTION

is printed on the LIST file. In order to continue proc­
essing, press START.

Library Copy

The library-copy job is applicable only when the LI­

BRARY file resides on tape. This job is normally per­
formed immediately after a LIBRARY RUN.

When a subprogram is inserted in place of a subpro­
gram having the same name on the LIBRARY file, or
when a subprogram is deleted from the existing li­
brary, the worud file is used in conjunction with the
LIBRARY file. At the completion of the insertion or dele­
tion, the new or revised library is present on the WORK!

file.

To transfer the library to the LIBRARY file from
WORK1, perform a library-copy job.

The following cards are required for a library-copy
job.

1. A LIBRARY ASGN card is required if the assignment of
the LIBRARY file differs from that assumed by the
System Control Program. See Library Build for the
format of the ASGN card.

2. The required RUN card is punched in the following
manner.

Columns
6-12

16-18

Contents
LmRARY

RUN

60 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

(END

(COpy

(LIBRARY RUN

LI BRARY ASGN
(if required)

Figure 28. Library Copy

3. The required copy card is punched in the following
manner.

Columns
16-19

Contents
COpy

4. The END card must be the last card of a library-copy
job. Punch the END card in the following manner.

Columns Contents
16-18 END

The arrangement of the control cards is shown in
Figure 28. The cards are read from the CONTROL file.

Changing File Assignments

Each logical file defined by the Fortran system, with
the exception of the SYSTEM file, is assigned to a spe­
cific input/output device by the System Control Pro­
gram. One set of logical file assignments applies to
compilation (FORTRAN RUN). A second set of logical file
assignments applies to execution (LOADER RUN and PRO­

DUCTION RUN). These assignments can be temporarily
changed by using ASGN cards.

Any assignment made by the user remains in eHect
until:

1. An ASGN card is sensed for the particular logical file,
or

2. An INIT (initialize System Control Program assign­
ments) card is sensed, or

3. A HALT card is sensed, signifying the end of a stack.

Preparing ASGN Cards

ASGN cards enable the user to change file assignments
for one or more jobs in a stack. The general format for
an ASGN card is:

file-name ASGN {~~}
The file-name is the specific logical file; device is the
input/output unit and/or area to which the logical file
is assigned.

The assumed file assignments and ASGN card formats
relating to specific files are shown in Figure 29. Valid
device entries are shown in Figure 30.

ASGN cards are coded in the Autocoder format.
When coding ASGN cards, the user must:

1. Leave blanks between items in the operand field as
shown in Figure 29. If, for example, the OUTPUT file
is to be assigned to disk area 004000 through 004799

on 1301 unit 1, the user would code the ASGN card
for punching as shown in Figure 31. The END ad­
dress that is coded is the address of the next avail­
able sector, not the address of the last sector to be
used.

2. Left-justify entries in the label, operation, and op­
erand fields, as shown in Figure 31.

File Considerations

SYSTEM File. If the SYSTEM file resides on 1311, drive
o should be on-line because the System Control Pro­
gram's assumed assignments are on drive O. If drive
o is not on-line, the user must use ASGN cards to
change the assumed assignments for the LIBRARY,

LOADER, WORK1, WORK2, and WORK3 files.

CONTROL and INPUT Files. If both the CONTROL

and INPUT files are assigned to a reader, the assign­
ments must be identical. For example, if the system
is a 1440 and the CONTROL file is assigned to READER

1, the INPUT file must also be assigned to READER 1.

~fESSAGE and LIST Files. If both the MESSAGE and
LIST files are assigned to a printer, the assignment
must be identical. For example, if the system is a
1401 and the MESSAGE file is assigned to PRINTER 2,

the LIST file must also be assigned to PRINTER 2.

WORKl, WORK2, and WORK3 Disk Files. With disk
systems, seek time is the most important factor af­
fecting input/output operations. Therefore, it would
be expedient for the user with a multi-unit system
to distribute the Fortran files to all of the units, thus
making a significant reduction in seek time.

Because the WORK1, woRK2, and WORK3 files han­
dle large amounts of data, inefficient use of the files
results in an increase in Fortran time requirements.
For the benefit of the single disk unit user, WORK1,

WORK2, and WORK3 are handled in a special way. The
special way is to assign them to the same area of the
disk unit as shown in Figure 32. When this is done,
the System Control Program "splits" each cylinder,
causing WORK1 to occupy the upper half of each cyl­
inder and woRK2 to occupy the lower half of each
cylinder. WORK3 initially occupies the upper half,

then is eHectively <Cflipped" back and forth as the
compilation progresses. A programmed false cylin­
der overflow is forced as each half cylinder is oper­
ated upon and the next upper or lower cylinder is
used.

WORKl, WORK2, and WORK3 Tape Files. As with
disk files, it would be to the user's advantage to
distribute the WORK files to separate tape units. How­
ever, if the system contains only the minimum num­
ber of units, it is possible to assign WORK 1 and WORK3

to the same unit, thus saving the fourth unit for
other purposes, such as a LOADER file for batched
output from the compiler.

Use of Logical Files at Obfect-time. At object-time,
the user is free to use any of the logical files for
input/output operations except the SYSTEM, CON­

TROL, LIBRARY, and LOADER files. In addition, the LIST

file is used by the Fortran loader for diagnostic mes­
sages and the LIST and OUTPUT files are normally
used for the output options that are specified by
the user. Therefore, if the LIST file (Fortran numeri­
cal file name 3) is used, it would normally be as­
signed to the printer so as to be aware of diagnostics,
should any occur.

If the Fortran system resides on 1311 or 1301, tape
input and/or output is permitted during object-time
(LOADER RUN or PRODUCTION RUN). Care must be exer­
cised that no logical file referenced by the disk
loader be assigned to tape.

NOTE. If a single IBM 1442 Card Read-Punch is being
used for punch and read operations, the user is advised that
if a punch operation follows a read operation, the last card
that was read will be punched.

Using ASGN Cards

At the beginning of stack processing, the System Con­
trol Program causes assumed assignments from the
SYSTEM file to become effective. Each assumed assign­
ment remains in eHect until an ASGN card for that file
is sensed. Any changed file assignment remains in ef­
fect until the next ASGN card for that file, or until an
!NIT card, or until a HALT card is sensed. (An INIT card
causes all assumed assignments to become eHective.)

If a file-assignment change is applicable for an en­
tire stack, place the ASGN card immediately ahead of
the first RUN card.

If a file-assignment change is applicable only to a
specific job, place the ASGN card immediately ahead of
the RUN card for that job. To change the single file
assignment back to the assumed assignment or to a

61

I

I

I

I

Label Field
(Columns
6-15)

SYSTEM

Operation
Field
(Columns
16-20)

ASGN

CONTROL ASGN

MESSAGE ASGN

LIST ASGN

INPUT ASGN

OUTPUT ASGN

LIBRARY ASGN

ASGN Card Formats Assumed Assignment

Operand Field (Columns 21-72)

\1311 UNIT '2. ~
) 1301 UNIT °
~ TAPE UNIT n

{
READER n }
CO NSOLE PRI NTER

{
PRI NTER n }
CONSOLE PRINTER

Campi lotion
(FORTRAN RUN)

1311 unit: user-assigned
1301 unit: must be assigned to UNIT °
Tape unit: user-assigned

READER 1

PRINTER 2

l
PRI NTER n l PRI NTER 2
131 I UNiT '2.' START nnnnnn, E ND ~ ~
1301 UNIT '2.' START nnnnnn, END ~ ~
TAPE UNIT n

\ OMIT -

I. READER n)

,11311 UNIT '2.' START~, END ~ (READER 1
l 1301 UNIT '2.' START~, END ~ (
(TAPE UNIT n ,

1
~~I~~HNTT '2., START~, END ~ \
1301 UNIT n, START nnnnnn, END nnnnnn OMIT
TAPE UNIT-;; -- --
OMIT -

Execution
(LOADER RUN or PRODUCTION RUN)

1311 unit: user-assigned
1301 unit: must be assigned to UNIT °
Tape unit: user-assigned

READER 1

PRINTER 2

PRINTER 2

READER 1

PUNCH 4 (1401 and 1460 systems)
PUNCH 1 (1440 systems)

Remarks

If the system residence is 1311 or 1301,
the SYSTEM ASGN card is the only re­
quired ASGN card. It must follow the
Card Boot in a stack of jobs. Any
other SYSTEM ASGN cards in the
stack are flogged and bypassed. If
the user desires that the Fortran system
use less than the number of core
storage positions available in the pro­
cessor machine, punch a comma in
column 32,and 12K or 16K beginning
in column 34. If the system residence
is tope and the tape unit is I, neither

the Card Boot nor the SYSTEM ASGN
card is required. (Pressing the TAPE
LOAD key achieves the same purpose as
the Card Boot and the SYSTEM ASGN
card.) If the unit is 2,3,4, 5, or 6,
both the Card Boot and the SYSTEM
ASGN card are required to start
systems operations.

If the CONTROL file and the INPUT
file are assigned to the card reader,
the assignment must be ta the some
card reader.

When the MESSAGE file is assigned to
the CONSOLE PRINTER, carriage
control characters used with the 1403 or
1443 printer may appear in the message.
If the MESSAGE file and the LIST file
are assigned to the printer, the assign­
ment must be to the same printer. The
MESSAGE file is equivalent to Fortran
file 0.

If the LIST file and the MESSAGE file
are assigned to the printer, the assign­
ment must be to the same printer. The
LI ST file is equivalent to Fortran
file 3.

If the I NPUT file and the CONTROL
fi Ie are assigned to the reader, the
assignment must be to the same reader.
The INPUT file is equivalent to
Fortran fi leI.

The OUTPUT file is equivalent to
Fortran file 2.

1301 UNIT n, START nnnnnn, END nnnnnn 1301 UNIT 0, START 012000, END 013900 1301 UNIT 0, START 012000, END 013900 is assigned to 1311. 1301 is assumed
TAPE UNIT-;; -- -- TAPE UNIT 1 TAPE UNIT 1 if the SYSTEM file is assigned to 1301. l1311 UNIT '2.' START~, ENDnnnnnn ',} 1311 UNIT 0, START 012000, END 013900 1311 UNIT 0, START 012000, END 013900 1311 is assumed if the SYSTEM file

1-----+----1--,----------------,-+-------------+--------------1 Tape is assumed if the SYSTEM file

~
1311 UNIT n, START nnnnnn, END nnnnnn l is assigned to tape.
1301 UNIT~, START nnnnnn, END nnnnnn 1311 UNIT 0, START 010400, END 012000 1311 UNIT 0, START 010400, END 012000 At execution time (LOADER RUN),
TAPE UNIT n 1301 UNIT 0, START 010400, END 012000 1301 UNIT 0, START 010400, END 012000 the LOADER file can be assigned to
READER n - TAPE UNIT 3 TAPE UNIT 3 READER n.

LOADER ASGN

OMIT - If the MESSAGE, LIST, and WORK5
1-----+----1-.2.-------------4-------------+--------------1 files are assigned to a printer, the

l1311 UNIT '2.' START~, END ~ } 1311 UNIT 0, START 007200, END 010400 1311 UNIT 0, START 007200, END 007800 assignment must be to the same printer.
WORKI ASGN 1301 UNIT n, START nnnnnn, END nnnnnn 1301 UNIT 0, START 007200, END 010400 1301 UNIT 0, START 007200, END 007800 The WORKI file is equivalent to

TAPE UNIT;;- -- -- TAPE UNIT 4 TAPE UNIT 4 Fortran file 4.
1----4----1-.2.------==----------7+-------------+-------------- The WORK2 file is equivalent to

{

1311 UNIT '2.' START nnnnnn, END ~ /1311 UNIT 0, START 007200, END 010400 1311 UNIT 0, START 007800, END 008400 Fortran file 5.
WORK2 ASGN 1301 UNIT '2.' START~, END ~ l 1301 UNIT 0, START 007200, END 010400 1301 UNIT 0, START 007800, END 008400 The WORK3 file is equivalent to

TAPE UNIT n) TAPE UNIT 5 TAPE UNIT 5 Fortran file 6.
1-----+----1-.;..----=------:------4-------------+--------------1 The WORK4 file is equivalent to

{

1311 UNIT '2.' START n~nnnn, END ~} 1311 UNIT 0, START 007200, END 010400 1311 UNIT 0, START 008400, END 008900 Fortran file 7.
1301 UNIT n, START nnnnnn, END nnnnnn 1301 UNIT 0, START 007200, END 010400 1301 UNIT 0, START 008400, END 008900 The WORK5 file is equivalent to
TAPE UNIT-;; -- -- TAPE UNIT 4 TAPE UNIT 6 Fortran file 8.

WORK3 ASGN

1-----+----I---------------+-------------t---------------1 The WORK6 file is equivalent to
1.1311 UNIT '2.' START~, END~J

WORK4 ASGN

WORK5 ASGN

WORK6 ASGN

11301 UNIT n, START nnnnnn, END nnnnnn f OMIT
'}TAPEUNIT~ -- --(
(OMIT ,

1
'1311 UNIT~, START~, END~l

1301 UNIT n, START nnnnnn, END nnnnnn
TAPE UNIT-;; -- -- OMIT
PRINTER n -
OMIT -

l1311 UNIT n, START nnnnnn, END nnnnnn J
) 1301 UNIT~, START nnnnnn, END nnnnnn f, OMIT
lTAPEUNIT'2. (
(OMIT ,

1311 UNIT 0, START 008900, END 009400
1301 UNIT 0, START 008900, END 009400
OMIT for tape systems

1311 UNIT 0, START 009400, END 009900
1301 UNIT 0, START 009400, END 009900
OMIT for tape systems

1311 UNIT 0, START 009900, END 010400
1301 UNIT 0, START 009900, END 010400
OMIT for tape systems

Fortran file 9.

• Figure 29. ASGN Card Formats and Assumed Assignments

62 Fortran IV Specs & Op. Froc. -1401,1440,1460

Device Entry and Values of nand nnnnnn

{
1311} 1301 UNIT!:!, START nnnnnn, END nnnnnn

.!l is the number of the disk unit, and can be 0, 1,
2, 3, or 4.
nnnnnn is a disk address.

TAPE UNIT .!2
!l is the number of the tape unit, and can be 1, 2,
3, 4, 5, or 6.

READER !l
For 1402, .!l can be 0, 1, or 2.
For 1442,.!l can be 1 or 2.

PUNCH .!l
For 1402, .!l can be 0, 4, or 8.
For 1442,.!2 can be 1 or 2.
For 1444, .!2 must be 3.

PRINTER.!l
.!l can be 1 or 2.

CONSOLE PRINTER

OMIT

• Figure 30. Valid Device Entries

Remarks

The END address is the address of the next available sector.
The values of nnnnnn must adhere to the following rules:
1. WORKl and WORK2 files. If the disk unit is a 1311, the START

address must be a multiple of 200. If the disk unit is a 1301, the
START address must be a multiple of 800. The END address (1311 and
1301) must be a multiple of 40.

2. WORK3, WORK4, WORK5, and WORK6 files. The START address
(1311 and 1301) must be a multiple of 100. The END address of each
file must be a multiple of 10. In addition, WORK3 must be at least
300 sectors long.

3. LIBRARY File. For both 1311 and 1301, the START and END addresses
must be multiples of 20.

If these rules are violated, the system automatically narrows in the disk
area to an area that does adhere to these rules.

For 1402, !l represents the pocket into which the cards are stacked. For
1442 or 1444, !l represents the number of the unit.

n represents the number of print positions available on the 1403 or 1443.
For 1403, a 1 indicates 100 positions and a 2 indicates 132 positions .
For 1443, a 1 indicates 120 positions and a 2 indicates 144 positions.

The console printer must be an IBM 1447 without a buffer feature.

Select this option when the file is not to be used by the Fortran system.
The LIST, OUTPUT, LOADER, WORK4, WORK5, and WORK6 fi les can
be omitted •

different assignment, place the ASGN card immediately
ahead of the RUN card for the next job that requires the
effective file assignment to be changed. If all effective
file assignments are to be changed back to the original
assumptions of the system, place an !NIT card after the
last job that is to use the effective assignments.

2. The stack is to be processed on an IBM 1401 system
with IBM 1311 Disk Storage Drives.

3. The SYSTEM and LIBRARY files are located on drive o.
4. Drive 1, drive 2, drive 3, and drive 4 are on-line.
5. ASGN card A specifies SYSTEM ASGN 1311 UNIT O. A

SYSTEM ASGN card is required for each stack of jobs
when the system resides on a disk unit.

Example. Figure 33 is an illustration that shows the
use of ASGN cards. Assume that:

1. The stack consists of compiling and executing Job 1.

o 2

o 3

Figure 31. Coding for an OUTPUT ASGN Card

6. ASGN card B specifies WORKI ASGN 1311 UNIT 1, START

007200, END 010400. ASGN card C sp~cifies WORK2

ASGN 1311 UNIT 2, START 007200, END 010400. ASGN

60

o

63

<
WORKl

WORK3

WORK2

Figure 32. WORKl, WORK2, and WORK3 Assigned to the Same
Disk Area

Figure 33. Using ASGN Cards

64 Fortran IV Specs & Op. Proc. -1401,1440,1460

card D specifies WORK3 ASGN 1311 UNIT 3, START

007200, END 010400. ASGN card E specifies LOADER

ASGN 1311 UNIT 4, START 010400, END 012000. Assign­

ing disk files to separate disk units can make a sub­

stantial reduction in seek time.

7. ASGN card F specifies WORK5 ASGN PRINTER 2. WORK5

is equivalent to the Fortran numerical file name 8,

which is to contain the results from Job 1.

Performing Jobs
Under control of the System Control Program, it is pos­
sible to process one or more jobs without operator in­
tervention. In order that this stack processing be ac­
complished, each separate job must be called for by
the necessary control cards. A list of the operations that
can be performed in a stack follows.

Logical File Assignments. Assign decks are made up of
one or more ASGN control cards specifying input!
output devices that differ from the effective devices
of the System Control Program. With the exception
of the SYSTEM ASGN card, logical-file ASGN control
cards can appear as frequently within the stack as
the user wishes. If the SYSTEM file resides on disk, or
on any tape unit other than unit 1, the SYSTEM ASGN

card appears once in a stack and immediately follows
the card-boot deck. The user is reminded that no file
assignment is reinstated to the original assumption
unless specifically called for by an ASGN card, or un­
til an INIT card is sensed.

When an INIT card is sensed, all logical file assign­
ments revert to the assumed assignments of the Sys­
tem Control Program. At this time, the LOADER file is
initialized for a new FORTRAN RUN job. Thus, by us­
ing an INIT card, the user can guarantee that his
sequence of jobs will operate independently from
any preceding jobs in the stack.

Library Maintenance. The composition of a library
deck depends upon the nature of the library job.
However, a LIBRARY RUN card and an END card are
always required.

System Updating. Update decks as supplied by IBM or
the user are read by the System Control Program
and must be available to the system on the device to
which the CONTROL file is assigned. An update deck
consists of one or more control cards, followed by
any appropriate data cards.

Processor Runs. Runs are dependent upon a RUN card
and the input to the processors. If the INPUT file is
assigned to the same device as the CONTROL file, i.e.,
the card reader, each source deck must be placed
behind its respective RUN control card. If the input
to the processor or programs is written in disk stor­
age or on magnetic tape, an INPUT ASGN card is re­
quired designating the location of the source ma­
terial.

Communicating with the Operator. NOTE control cards
and PAUSE control cards can appear anywhere in a
stack between jobs. A HALT card must be the last
card of a stack.

Preparing a Stack

For a disk-resident system, the card-boot deck, a SyS­

TEM ASGN card, and a HALT card are always required.
For a tape-resident system, the card-boot deck and the
SYSTEM ASGN card are optional; the HALT card is re­
quired. The formats of the SYSTEM ASGN and HALT

cards are shown in Appendix I.

The input cards for a stack are arranged in this
order.

1. The 1402 or 1442 card-boot deck, which is optional
if the tape-resident system is on unit 1.

2. The SYSTEM ASG~ card, which is optional if the tape­
resident system is on unit 1.

3. Job decks, to include assign card(s), library deck(s),
update deck(s), and processor deck(s). Job decks
can be in any order.

4. The HALT card.

This stack is placed in the card reader, and is read by
the System Control Program from the CONTROL file.

Figure 34 shows a stack with CONTROL and INPUT

files assigned to the same device.

Running a Stack

To perform a stack run when the system resides on
1311:

1. Place the system pack on the disk drive referred to
in the SYSTEM ASGN control card and ready the drive.
(This card immediately follows the 1402 or 1442
card-boot deck.)

2. Ready all the input/output devices to which the sys­
tem logical files and/or the devices to which the
Fortran numerical files are assigned. These are the
assumed devices of the System Control Program
and/or the devices defined by the ASGN cards. The
assumed devices are: disk drive 0, the card reader,
the card punch, and the printer.

3. Ready the console:

a. Set the I/O check-stop switch off.

b. Set the check-stop switch and disk-write switch
on.

c. Set the mode switch to RUN.

d. Press CHECK RESET and START RESET.

4. Load the program.

a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

65

Job 2

Figure 34. Stack with CONTROL and INPUT Files Assigned to the Same Device

66 Fortran IV Specs & Op. Proc. -1401,1440,1460

5. When the system attempts to read the last card:

a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the card
reader.

To perform a stack run when the system resides on
1301:

1. Ready all the input/output devices to which the sys­
tem logical files and/or the devices to which the
Fortran numerical files are assigned. These are the
assumed devices of the System Control Program
and/or the devices referred to in the ASGN cards.
The assumed devices are: disk unit 0, the card
reader, the card punch, and the printer.

2. Ready the console:
a. Set the I/O check-stop switch off.
b. Set the check-stop switch and disk-write switch

on.
c. Set the mode switch to RUN.

d. Press CHECK RESET and START RESET.

3. Load the program:
a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

4. When the system attempts to read the last card:

a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the card
reader.

To perform a stack run when the system resides on
magnetic tape, and the card-boot deck and the SYSTEM

ASGN card are not to be used.

1. Mount the system tape on unit 1.

2. Ready all the input/output devices to which the sys­
tem logical files and/or the devices to which the
Fortran numerical files are assigned. These are the
assumed devices of the System Control Program
and/ or the devices defined by the ASGN cards. The
assumed devices are: tape units 1, 3, 4, and 5 (FOR­

TRAN RUN) or tape units 1 and 3 (LOADER RUN) or
tape units 4, 5, and 6 (PRODUCTION RUN), and the
card reader, the card punch, and the printer.

3. Ready the console:
a. Set the I/O check-stop switch off.
b. Set the check-stop switch on.
c. Set the mode switch to RUN.

d. Press CHECK RESET and START RESET.

4. Press TAPE LOAD.

5. When the system attempts to read the last card,
press START.

To perform a stack run when the system resides on
magnetic tape, and the card boot and the SYSTEM ASGN

card are to be used:

1. Mount the system tape on the tape unit referred to
in the SYSTEM ASGN control card, and ready the tape
unit. (This card immediately follows the 1402 card­
boot deck.)

2. Ready all the input/output devices to which the sys­
tem logical files and/or the devices to which the
Fortran numerical files are assigned. These are the
assumed devices of the System Control Program
and/ or the devices defined by the ASGN cards. The
assumed devices are: tape units 1, 3, 4, and 5 (FOR­

TRAN RUN) or tape units 1 and 3 (LOADER RUN) or
tape units 4, 5, and 6 (PRODUCTION RUN), and the
card reader, the card punch, and the printer.

3. Ready the console:

a. Set the I/O check-stop switch off.
b. Set the check-stop switch on.

c. Set the mode switch to RUN.

d. Press CHECK RESET and START RESET.

4. Press LOAD.

5. When the system attempts to read the last card,
press START.

Halts and Messages

The halts and messages shown in Figure 35 can appear
during a stack run. To display the halt numbers, press
the A-address register key. Messages are printed on the
MESSAGE file.

Conditions may arise that the system recognizes as
being instrumental in causing a failure. In these in­
stances, the system automatically calls in a storage­
and file-print program and continues by accepting a
new job.

If the system is disk resident, the user can call in the
storage- and file-print program by a manual branch to
address 900. If the system is tape resident, the user can
call in the storage- and file-print program by a manual
branch to address 540. In both cases, a new stack can
then be run.

WORK files are printed out successively beginning
with WORKl. If an end-of-file indicator (a tape mark for
tape files or a lEOFb for disk files) is not present in a
WORK file when the file-print program has control, the
user can get a printout of the next WORK file by a man­
ual branch to address 603 for disk-resident systems, or
472 for tape-resident systems.

67

Halt Number
(A- Address
Register

001

002

003

MESSAGE and/or Meaning

WRONG SYSTEM.
The message appears unconditionally on the printer.

TEN RD TRIES PRESS STRT FOR 10MORE.
The message appears unconditionally on the printer.
It indicates any disk error wh ile attempting to read
the system file.

SYSTEM ASGN NOT SENSED.
The SYSTEM ASG N card did not immediately follow

. Restart Procedure

1. Nonprocess run - out the cards in the reader.

2. Correct the SYSTEM ASGN card, or

3. Place the correct pack or tape on the unit indicated in
the SYSTEM ASG N card.

4. Restart the stack.

Press START for ten disk- read or tape- read retries.

1. Nonprocess run- out the cards in the reader.

the card boot. 2. Place the SYSTEM ASG N card and the remainder of

004

005

006

007

008

009

Parity check, wrong - length record, or no - address­
compare error sensed 10 successive times during a
disk 0 r tape bootstrap ope rat ion.

End- of- file sensed in SYSTEM file during disk or
tape bootstrap operation.

HALT card image.
Indicates the end of the stack.

Card - punch errar.

Card - read error.

Printer error.

• Figure 35. Halts and Messages (Part 1)

68 Fortran IV Specs & Op. Proc. -1401,1440,1460

the stack in the read hopper.

3. If the reader is 1402, press START.

4. If the reader is 1442, press START on the reader and
START on the console.

Press START for 10 disk- read or tape- read retries.

Nonprocess run- out the cards in the reader and restart
the stack.

Hard halt.

1. 1402 card punch and 1444 card punch: nonprocess
run- out the cards in the punch. Discard the last
three cards (two nonprocessed cards and the card in
error) in the stacker. Press START.

2. 1442 card punch: nonprocess run- out the cards in the
punch. Discard the last two cards (the card in error
and a blank card). Press START on the punch and
START on the console.

1. 1402 card reader: nonprocess run - out the cards in the
reader. Place the last three cards (two nonprocessed
cards and the card in error) in the hopper. Press START.

2. 1442 card reader: nonprocess run - out the cards in the
reader. Place the two nonprocessed cards in the hopper.
Press START on the reader and START on the console.

1. 1403 pri nte r: press START.

2. 1443 printer: press START on the printer and START on
the console •

Halt Number
(A- Address
Register

010

011

012

013

030

031

MESSAGE and/or Meaning

Non - blank card at the punch station in the 1442
co rd read - punch.

PAUSE card image.

Console - printer error.

* * * ASGN card image.
The halt indicates that the ASGN card is incorrectly
punched.

The object machine size has been assigned as 8K
in the SYSTEM ASG N card.

In attempting to execute a COpy option during a
library run (tape system only), the new or revised
library tape was not found on WORKl file.

032 In the tape system, when inserting a new subprogram
in the library file, a card was found which could
not be recognized.

033

034

CARD NOT RECOGNIZED- BYPASS- CONTINUE
INSERTION. REMOVE NECESSARY CARDS FROM
READER. REPLACE REMAINING CHANGE CARDS
AND END CARD. PRESS START.

In the tape system, when performing an UPDAT job,
the phase name specified in the UPDAT card was
not found on the SYSTEM file.

phase name NOT FOUND

In the tape system, when replacing a subprogram in
the library file, a card was found which could not
be recognized. CARD NOT RECOGNIZED­
BYPASS- CONTINUE INSERTION •

• Figure 35. Halts and Messages (Part 2)

Restart Procedure

Nonprocess run- out the cards in the 1442. Place blank
cards before the nonprocessed cards. Press START on the
1442 and START on the console.

Press START.

Press START for one retry of the read or write operation.

1. 1402 card reader: the card in the stacker is the in­
correct ASGN card. Correct the ASGN card. Non­
process run- out the cards in the reader. Place the
corrected ASG N card and the two nonprocessed cards
in the hopper. Press START.

2. 1442 card reader: nonprocess run - out the cards in the
reader. The first nonprocessed card is the incorrect
ASGN card. Correct the ASGN card. Place the
corrected ASG N card and the second nonprocessed
card in the hopper. Press START on the reader and
START on the console.

3. If the user wishes, he can ignore the two steps outlined
above, and press START. The system wi II then use the
effective device assignment for that particular file.

Change the object machine size declaration in the SYSTEM
ASGN card to 12K or 16K. Use Card Boot to restart.

Place library tape to be copied on tape unit assigned to
WORK 1 fi Ie. Press START.

Nonprocess run - out cards in the reader. Remove cards
as required. Press START.

Nonprocess run - out the cards in the reader. Remove cards
as required. Pressing START will cause a return of control
to the System Control Program.

Nonprocess run - out the cards in the reader. Correct card
and begin library run over from the beginning by pressing
START.

69

Halt Number
(A- Address MESSAGE and/or Meaning Restart Procedure
Register)

035 All work files must be assigned to either a 1301 Change ass ignments and restart the stack with the Card
or 1311. Boot.

040 The logical file has been assigned to an area that Hard halt. Change the assignment and restart the stack
overlaps a previously defined file label (1311 only). with the Card Boot.

041 An end-of- file condition was encountered while Restart the stack with the Card Boot.
reading from the INPUT file.

042 An end - of- file condition was encountered while Restart the stack with the Card Boot.
writing on the LIST file.

043 An end-of- file condition was encountered while Restart the stack with the Card Boot.
writing on the LOADER file.

044 An end - of- file condition was encountered while Restart the stack with the Card Boot.
writing on the OUTPUT file.

045 An end - of- fi Ie condition was encountered wh i Ie Restart the stack with the Card Boot.
writing on a work file.

046 An end-of- file condition was encountered while Restart the stack with the Card Boot.
reading the library file (Disk system only).

047 An end - of- file condition was encountered wh ile Restart the stack with the Card Boot.
writing oh the file assigned for the name map.

048 An end-of- file condition was encountered while Restart the stack with the Card Boot.
writing on the file assigned for the Storage Print
option.

049 An end-of- file co~dition was encountered while Restart the stack with the Card Boot.
writing on the file assigned for the Absolute Deck
option.

050 When producing an absolute deck, the arithmetic Rebui Id the Fortran library before processing the remainder
interpreter was not found in the library. of the stacked input.

062 INVALID CONTROL CARD ASSUMED END OF Upon pressing START, control will return to SYSTEM
LIBRARY RUN CORRECT AND RELOAD STACK CONTROL. The control file should be adjusted accord-
PRESS START. ingly.

Invalid control card appearing between LIBRARY
RUN and END card. An END card condition will
be simulated.

CARD NOT RECOGNIZED ASSUMED END OF Upon pressing START, control will return to SYSTEM
LIBRARY RUN CORRECT AND RELOAD STACK CONTROL. The control file should be adjusted accord-
PRESS START. ingly.

During an insertion. procedure, an invalid card was
encountered before reading of the"." card. A
" • II card wi II be generated I and an END card con-
dition will be submitted •

• Figure 35. Halts and Messages (Part 3)

70 Fortran IV Specs & Ope Proc. -1401.1440.1460

Halt Number
(A- Address MESSAGE and/or Meaning
Reg ister)

066 NOT INSERTED- - TABLE

088

099

AREA EXHAUSTED
USE BUILD OPTION TO INCREASE NO. OF
SECTORS

This message will be printed when performing an
INSER option and the library name table area has
been exhausted.

NOT I NSERTED- - LIBRARY
AREA EXHAUSTED

Th is message wi II be printed when performing an
INSER option and the library file has been
exhausted.

SYSTEM AREA MUST BE OPTIMIZED BEFORE PHASE
name CAN BE INSERTED.
PRESS START TO OPTIMIZE. (Disk users only)

In attempting to add a phase to the system, the phase
has not been inserted due to a lack of space in the
system area.

NO ROOM IN SYSTEM AREA FOR PHASE name­
number
MORE SECTORS REQUIRED. (Disk users only)

After compression of the system area, there is still
not enough space for a phase insert ion.

Restart Procedure

Rebuild library before making any further library runs on
th is system.

Rebuild library before making any further library runs on
th is system.

Press START to cause the system area to be scanned for a II
unused sectors.

Hard halt.

168 Phase not found in phase table whi Ie in supervisory
call for phase (disk- resident systems only).

A part of the system must be rebuilt. Use the parts of the
system deck labeled CARD BUILD, SYSTEM CONTROL,
and FORTRAN COMPILER- LOADER- LIBRARIAN. Follow
the procedures as described in Building a Fortran System.

371 Tape transmission error. Press START for 10 tape- read or disk-write retries.

500 Disk not ready. Ready the disk unit and press START.

629 Parity check, wrong-length record, or no-address- Press START for 10 disk- read or disk-write retries.
compare error sensed 10 successive times during a
disk- read or write operation.

900 An EN D statement has been encountered during Press START for printout of storage. Otherwise use Card
execution of user's program. Boot to restart.

998 Tape subroutine for disk. Thirty attempts have been Press START for another retry.
made to write a tape record.

999 Tape subroutine for disk. Ten attempts have been Press START for another retry.
made to read a tape record .

• Figure 35. Halts and Messages (Part 4)

71

Halt Number
(A- Address
Reg ister

MESSAGE and/or Meaning

NOTE card image.

* * * card image.
All cards not recognized by the System Control
Program are flagged (***), written on the MESSAGE
fi Ie, and bypassed by the system.

Card image
INVALID UPDAT TYPE
Update card with invalid update mode designated.

END CARD OMITTED
ASSUMED END OF LIBRARY RUN
The last card has been detected in the reader either
during an insertion procedure or when attempting to
read a cont ro I ca rd.

END OF LIBRARY RUN
LIBRARY ASSIGNED
REMAINING SECTORS

TO
TO

Printed at the completion of a library job.

NOT FOUND IN LIBRARY
Printed when performing a DELET or LIST option and
the program was not found in the library.

EXISTING LIBRARY DELETED
This message will be printed when rebuilding the
library file.

NO LIBRARY FOUND ON DISK
This message will be printed when performing a
LIST or DELET option and the library fi Ie has not
been built.

PHASE XXX ALREADY ON SYSTEM. WI LL DROP
TH IS SET OF CARDS

PHASE XXX NOT FOUND

HEADER CARD ERROR
All header cards for disk must have 24232 in columns
1 through 5.

All header cards for tape must have 24235 in columns
1 through 5.

Card image
PHASE AREA EXCEEDED

****PROCESSOR UNKNOWN****

{
LST }
OUT
INP

{
STARTS} {1311}

FI LE ENDS ON 1301 UNIT ~ AT

ADDRESS

• Figure 35. Halts and Messages (Part 5)

72 Fortran IV Specs & Gp. Proc. -1401,1440,1460

Restart Procedure

If a message is printed and no halt occurs, the next control
card is processed.

If this message is received, the library should be carefully
examined. If the error occurred during an insertion pro­
cedure, the library should be rebuilt.

Control is returned to SYSTEM CONTROL.

The next library contro I card is read.

A new library file will be defined and built.

The next I ibrary control card is read.

If a message is printed and no halt occurs, the next control
card is processed,.

Halt Number
(A- Address MESSAGE and/or Meaning Restart Procedure
Register)

ROUTINE IN LlBRARY- DELETED AND INSERTED
A program will be inserted which previously existed
in the library file.

HEADER CARD MISSING - - BYPASS ROUTINE All cards on the input file will be printed until the next
The first card read after the INSER card did not library control card is read.
contain an "H" in column 72.

ASSUMED SUI LD OPTION
This message will be printed when performing an
INSER option and a library file has not been pre-
viously defined.

Halt Number
(1- Address MESSAGE and/or Meaning Restart Procedure
Reg ister

1042 Tape system only. An end-of- file condition was Restart the stack with the Card Boot.
encountered while writing on a work file.

1124 Disk system on Iy. An end - of - fi Ie condition was Restart the stack with the Card Boot.
encountered wh ile writing on a work fi Ie.

2728 ERROR

• Figure 35. Halts and Messages (Part 6)

Building and Updating a
Fortran System

Tape Residence System, Deck Description
And Preparotion
The tape supplied to the 1401 or 1460 user who wants
a tape resident system contains a Fortran sample pro­
gram, the card boot (used to start system operations),
the Fortran system, a relocatable loader, and the For­
tran Library. This tape is in card image form. These
cards must first be punched from the tape, then used
to create the tape resident system.

The card deck which can be used to start system
operations consists of 13 cards, and is called the card
boot. The first 6 cards are the 1402 load cards. They
are numbered consecutively 1 through 6 in column 80,
and identified by a 0-4-8 punch (% symbol) in column
79. The remainder of the cards are numbered con­
secutively 000 through 007 in columns 73-75, and iden­
tified by the code 51 T02 punched in columns 76-80.

Building a fortran Tape Resident System
The tape supplied to the 1401 or 1460 user is in card
image form. Cards must first be punched from the
tape, then used to build a tape resident system.

See Figure 13.

Punch the cards from the tape in the following
manner:

1. Ready the card image tape on tape unit 1.
2. Ready the card punch.
3. Set the I/O Check Stop switch off.
4. Press CHECK RESET, START RESET, then TAPE LOAD.

A halt will occur and the following message will be
printed on the printer.

A HALT WILL OCCUR AT EACH DECK SEGMENT.

MARK DECK AS PUNCHED, PRESS START TO CONTINUE.

The following B-register halts are applicable:

Halt Number
(B-register) Meaning

120 Printer error

121 Initial halt

122 Tape READ ERROR

123 Halt after each deck segment has been
punched

999 End of Job halt

Four separate decks of cards will be punched. The
first deck of cards is the Fortran sample program. The
second deck of cards is the card boot. The third deck
of cards contains the System Control program, the
Fortran compiler and the Fortran relocatable loader.

73

The last deck of cards punched is the Fortran library
of subroutines. The Fortran library is separated from
the remainder of the Fortran system deck to enable
the user to insert a Library ASGN card if he wishes the
library to be placed on a tape separate from the system
tape.

Build the Fortran tape resident system as follows:

1. Ready the tape that will become the System Tape
on tape unit 4.

2. Ready a work tape on tape unit 1.
3. Place the deck marked System Control, Fortran

compiler, Relocatable loader followed by the deck
marked Fortran library in the card dreader.

4. Set the I/O check stop switch off.
5. Press START RESET and CHECK RESET.

6. Press LOAD on the Card Read Punch. A short pro­
gram is written on tape unit 1, a message EOJ is
printed and the system halts.

7. Press START RESET, TAPE LOAD, and START. The For­
tran system will now be written on tape unit 4. A
message PAUSE*****CI-IANGE TAPE UNITS*****, is
printed.

8. Change tape unit 1 to 0; then change tape unit 4
to 1.

9. Press START RESET, TAPE LOAD, and START. The tape
is read until the library portion is found, then the
remaining cards are loaded on tape unit 1.

10. Press START to read last card. A message, PAUSE

SYSTEM TAPE COMPLETED, is printed. File protect
the tape on tape unit 1 and create a copy to be
used for FORTRAN compilations. (Refer to Dupli­
cating the System Tape.)

11. A halt with A-address register 519 during the
building indicates a tape error. Press START for
ten retries.

Disk Resident System, Deck Description
And Preparation

The card deck supplied to the user who wants a disk
resident system contains six sections as shown in Fig­
ure 36. One section, marking program, is used to sepa­
rate the sections for ease in labeling the various com­
ponents of the complete deck. Three sections, write
file-protected addresses, system control card build, and
Fortran update are used to build the system. A fifth
section, the card boot, is used to operate the system. A
sixth section, sample program, is used to test the sys­
tem built by the user. The individual sections are sepa­
rated by the marking-program control cards. In the
instances where more than one set of cards comprises

74 Fortran IV Specs & Op. Proc. -1401,1440,1460

a section, a marking-program control card separates
the sets.

To facilitate building and maintenance operations,
mark the sections as indicated by the marking-program
messages.

All cards in the system deck, except the four 1402
load-card sets and the four 1442 load-card sets, contain
a sequence number in columns 73-75. The cards are
numbered consecutively, beginning with 001. The first
1,000 cards have no zone punches above the sequence
numbers. The second 1,000 have a 12-punch in column
75. The third 1,000 have a 12-punch in column 74. The
fourth 1,000 have a 12-punch in column 73. The re­
maining cards have an II-punch in column 75.

All load cards contain a sequence number in column
80. The 1402 load cards are numbered consecutively
from 1 through 6 in column 80 and are identified by a
0-4-8 punch (% symbol) in column 79. The 1442 load
cards are numbered consecutively from 1 through 7 in
column 80 and are identified by a 3-8 punch (# sym­
bol) in column 79.

If it should be necessary to resequence the system
deck, the user should sort the cards in the following
manner:

1. Sort on column 79 (0-4-8 punch) to select the 1402
load cards.

2. Sort the 1402 load cards on column 80 to sequence
the cards.

3. Assemble the four sets of 1402 load cards.

4. Sort on column 79 (3-8 punch) to select the 1442
load cards.

5. Sort the 1442 load cards on column 80 to sequence
the cards.

6. Assemble the four sets of 1442 load cards.

7. Sort the remaining cards into four groups corre­
sponding to:

a. No zone punch in any of the columns 73-75.

b. 12-punch in column 75.

c. 12-punch in column 74.

d. 12-punch in column 73.

e. II-punch in column 75.

Sort each of these groups on columns 75, 74, and 73.

8. An appropriate set of load cards makes up the first
six cards (1402) or seven cards (1442) of the marking
programs, file-protect programs, card-build pro­
grams, and card boots. Insert a 1402 or 1442 load
card set preceding each of these programs accord­
ing to the system (1401/1460 or 1440).

1402 --I SAMPLE

\ PROGRAM

1-----1442 --,

1----1402 ---! CARD BOOT

r--------1442-----

SYSTEM CONTROL CARD BUILD

'!_CARD_I
BUILD

r-----1442-----

{ WRITE FILE PROTECTED ADDRESSES

~----1442-----

-- Blank Card

~----1442----

Figure 36. Fortran System Program Deck

MARKING
PROGRAM

75

Marking Program

The marking-program deck is made up of two sets. The
set for the 1442 consists of 13 cards and, except for the
load cards, has identification code 50ZYI punched in
columns 76-80. The set for the 1402 consists of 11 cards
and, except for the load cards, has the identification
code 50ZZ1 punched in columns 76-80. A blank card
follows each set.

The marking program separates the various sections
and sets that make up the system deck. When a control
card is sensed, a halt occurs and a message is printed.

If the reader is 1442, the initial message is:

HALT AT EACH DECK SEGMENT. DISCARD
FIRST CARD, MARK DECK AS PRINTED,
PRESS START TO CONTINUE.

If the reader is 1402, the initial message is:

HALT AT EACH DECK SEGMENT. MARK
DECK AS PRINTED, PRESS START TO CON­
TINUE.

Subsequent messages contain the name of the sec­
tion to be marked.

To use the decks:

1. Set sense switch A on. Set all other sense switches
off.

2. Set the I/O check stop switch off.

3. Press CHECK RESET and START RESET.

4. Select the marking-program deck that is appropriate
for the system and remove the other deck.

5. Remove the blank card following the marking-pro­
gram and place the program in the card reader, fol­
lowed by the remainder of the Fortran system deck.

6. Load the program.
a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

7. Halt 003 procedure.
a. IBM 1402 Card Read-Punch: Press START. The

marking program is in the NR stacker.
b. IBM 1442 Card Reader: Remove the marking pro­

gram from stacker 1 and press START on the con­
sole.

8. Halt 001 procedure.
a. IBM 1402 Card Read-Punch: Remove the cards

from stacker 1 and press START. Mark the deck
section as indicated in the message. The marking­
program control card is in the NR stacker.

b. IBM 1442 Card Reader: Remove the cards from
stacker 1 and press START on the console. Discard
the first card (marking-program control card) and
mark the section as indicated in the message.

76 Fortran IV Specs & Op. Proc. -1401,1440,1460

NOTE: The marking-program control cards are identified
by # # # # # in columns 1-5. These cards are only for the
use of the marking program and should be discarded after
the deck is marked.

9. When the system attempts to read the last card.
a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the reader.
The last card is a marking-program contro~ card
and should be discarded.

The following halts can occur when using the mark­
ing program. To display the halt number, press the
A-address register key.

Halt Number
(A-Address Register)

001

002

003

008

009

Meaning

The deck section in stacker 1
should be marked.

End of job.

The initial message has been
printed.

Card-read error. To retry the op­
eration:
For the 1402: Nonprocess run-out
the cards. Remove the last three
cards in the stacker and place them
in the hopper. Press START.
For the 1442: Nonprocess run­
out the cards. Place the two non­
processed cards in the read hop­
per. Press START on the reader and
START on the console.

Printer error. To retry the opera­
tion,
a. IBM 1403 Printer: Press START.
b. IBM 1443 Printer: Press START

on the printer and START on the
console.

Write File-Protected Addresses

The write file-protected addresses section is punched
in the Autocoder condensed-loader format. The deck
consists of approximately 120 cards.

The set of cards for the 1442 has, except for the load
cards, the identification code 50FSI punched in col­
umns 76-80. The set of cards for the 1402 has, except
for the load cards, the identification code 50FP1
punched in columns 76-80.

This section writes disk addresses whose values are
equal to the normal addresses plus 260,000. It is by use
of these false addresses that the :file-protected area is
created.

System Control Card Build

This section contains control cards and cards punched
in the Autocoder condensed-loader format. It includes
both the 1402 and the 1442 card-build programs and

the System Control Program. All necessary control
cards are incorporated within the section, which con­
sists of approximately 1000 cards.

The card-build set for the 1442 has, except for the
load cards, the identification code 50X41 punched in
columns 76-80. The card-build set for the 1402 has, ex­
cept for the load cards, the identification code 50X01
punched in columns 76-80.

The System Control Program section is identified by
the code 50Sx1 punched in columns 76-80, where x is
alphameric. The section loads the System Control Pro­
gram in disk storage.

Card Boot

The 1402 card-boot set, consisting of 17 cards, and the
1442 card-boot set, consisting of 19 cards, are punched
in the Autocoder condensed-loader format. The 1442
card-boot set has, except for the load cards, the identi­
fication code 50SZ1 punched in columns 76-80. The
1402 card-boot set has, except for the load cards, the
identification code 50PZ1 punched in columns 76-80.

Because the card boot is required for each stack of
jobs to be performed by the system, the card boot must
be removed and saved for future system operations.

Fortran Update

The Fortran-update section is made up of the Fortran
compiler-loader-librarian set and the Fortran standard
subprograms set.

The Fortran compiler-loader-librarian set is punched
in the Autocoder condensed-loader format, Fortran re­
locatable format, and the UPDAT control card format.
The set consists of approximately 3,000 cards and con­
tains the phases of the Fortran compiler, the Fortran
loader, and the library-build routine for the Fortran
standard subprograms. The UPDAT cards are identified
by the code UPFIV punched in columns 76-80. The
Fortran compiler, loader, and librarian phases are iden­
tified by the code nnFIV punched in columns 76-80,
where n is numeric.

The function of the deck is to load the Fortran proc­
essor phases on the disk unit, thus permitting a FOR­

TRAN RUN or LOADER RUN, and to load librarian phases
that control the building and maintaining of the For­
tran library of standard and user-supplied subpro­
grams.

The Fortran standard subprograms set is punched
in the Fortran relocatable card format and the library
control card format, and contains approximately 1,000
cards. The set has the identification code SSFIV

punched in columns 76-80. This set places the Fortran
standard subprograms on the LIBRARY file. Fortran
requires that these subprograms be present during a
LOADER RUN.

The last two cards of the set are a NOTE card and
a HALT card which will cause the following comments
to be printed on the MESSAGE file:

NOTE SYSTEM BUILD COMPLETE
HALT PREPARE SAMPLE PROGRAM
TO TEST SYSTEM

Fortran Sample Program

The Fortran Sample Program consists of approximately
150 cards. The sample program for the 1442 has the
identification code S2FIV punched in columns 76-80.
The sample program for the 1402 has the identification
code SlFIV punched in columns 76-80. This source
deck, written in the Fortran language, is used to test
the effectiveness of the system built by the user.

Building A Fortran Disk Resident System

After all sets of cards have been labeled and those sets
of cards not applicable to the user's system have been
removed, the user is ready to use the prepared system
deck to build the Fortran system.

Figure 37 is a block diagram showing the building
of a disk-resident system.

The system unit must be prepared for writing the
complete system from cards. The user must clear disk
unit 0 in the move mode from 000000 to 000199, in the
load mode from 000200 to 000259, in the move mode
from 000260 to 000299, in the load mode from 000300
to 007199, and in the move mode from 007200 to
019979. The Clear Disk Storage Utility program ap­
plicable to the user's system can be used for this opera­
tion. As header labels are to be deleted, the write­
address mode switch will initially be set off.

Figure 38 shows the disk storage allocation on the
system unit.

The control cards for the utility program must be
punched in the following manner.

For 1311,

Columns
1-15

21-35
41-55

Columns
1-15

21-35

Contents
M00000000019900
L00020000025900
M00026000029900

Contents
L00030000719900
M00720001997900

77

1311

1311

Clear Disk

Write
Fi Ie-Protected
Addresses

System Control
Card Build

Prepare
Fortran Update
and
Fortran Subprogram

Update
System

Run
Sample
Program

Figure 37. Building a Fortran System

1301

1301

78 Fortran IV Specs & Op. Proc. -1401,1440,1460

For 1301,

Columns
1-15

21-35
41-55

Columns
1-15

21-35

Contents
~OOOOOOOOOI99=F=F

L000200000259=F=F
~000260000299=F=F

Contents
LOOO300007199
~007200019979

The time required to clear the disk unit in the speci­
fied modes is approximately five minutes.

Write File-Protected Addresses

The last card in the section labeled WRITE FILE PROTECT

is a control card that is partially prepunched. It is by
the use of this control card that the limits of the file­
protected area reserved for the SYSTEM file in the disk­
storage unit are supplied. The user must indicate in
the control card whether the system is to reside on a
1301 or 1311 disk unit. For both the 1301 and 1311, the
system must be built on unit O. In the case of the 1311,
the system pack can be used on any drive once the
system has been built. The control card is punched as
follows:

Columns
1-15

17-20
22
24-42
44-49
51-52
54-59

Contents
FILE-PROTECT ON (prepunched)
1301 or 1311
o (prepunched)
FROM NORMAL ADDRESS (prepunched)
002500 (prepunched)
TO (prepunched)
007200 (prepunched)

After columns 17-20 have been punched by the user,
the card must be replaced as the last card of the
section.

To use the section when the system is to reside on
1311:

1. Ready the pack on disk drive O.

2. Set the write-address mode switch on.

3. Set the write-disk switch on.

4. Set the I/O check stop switch on.

5. Press CHECK RESET and START RESET.

6. Place the write file-protected addresses section in
the card reader.

7. Load the program.
a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

8. When the system attempts to read the last card,
a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the reader.

File

SYSTEM File

Not used

System Control Program
Fortran Processor Program
Not used
System Control Program
Fortran Processor Program }
Area for User's Fortran Object Program Library

WORK Files

LOADER File

LIBRARY File

• Figure 38. Disk Storage Allocation

9. At the end of the job, set the write-address mode
switch off.

To use the deck when the system is to reside on 1301:

1. Set the write-address mode switch on.

2. Set the write-disk switch on.

3. Set the I/O check stop switch on.

4. Press CHECK RESET and START RESET.

5. Place the write file-protected addresses section in
the card reader.

6. Load the program.
a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

7. When the system attempts to read the last card,
a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the reader.

8. At the end of the job, set the write-address mode
switch off.

The time required to perform this job is approxi­
mately 1 minute. The following halts can occur when
writing file-protected addresses.

Halt Number
(A-Address Register)

020

Meaning

Last card condition was sensed be­
fore the control card. The control
card containing the initial and ter­
minal addresses of the area to be
file-protected must be the last card
of the deck. When the system is re­
started by pressing START, a read
operation is performed.

Mode Fi Ie - Protected Sector Range

Move No 000000 - 0001 99
Load No 000200 - 000259
Move No 000260- 000299
Load No 000300 - 002499
Load Yes 002500- 002904
Load Yes 002905- 002979
Load Yes 002980 - 002999
Load Yes 003000- 003175

Load Yes 003176- 007199

Move No 007200- 010399

Move No 010400- 011999

Move No 012000- 013899

Halt Number
(A-Address Register) "AI eaning

021 An invalid disk type is specified in
the control card. 1301 or 1311 are
the only valid entries for columns
17 -20 of the control card. When
the system is restarted by pressing
START, a read operation is per­
formed.

022 An invalid disk unit is specified in
the control card. The only valid
entry for column 22 of the control
card is O. \Vhen the system is re­
started by pressing START, a read
operation is performed.

023 An invalid start address (columns
44-49) is specified in the control
card. The start address must be
002500. When the system is re­
started by pressing START, a read
operation is performed.

024 An invalid end address (columns
54-59) is specified in the control
card. The end address must be
007200. When the system is re­
started by pressing START, a read
operation is performed.

025 Disk unit 0 is not ready. When the
system is restarted by pressing
START, the disk I/O operation is
retried.

026

027

The area specified in the control
card is already file-protected (all
or in part). If the system is re­
started by press.ing START, the en­
tire specified area will be file-pro­
tected and cleared.

The area specified in the control
card has neither the "normal" disk
addresses (OOOOOO-?) nor file-pro­
tected addresses. This is a hard
halt.

79

Halt Number
(A-Address Register)

028

029

030

Meaning
Parity check or wrong-length rec­
ord error occurred on the disk unit
while writing addresses. When the
system is restarted by pressing
START, the disk I/O operation is
retried.

Parity check or wrong-length rec­
ord error occurred on the disk unit
while determining the existing ad­
dressing scheme. This is a hard
halt.

End of the job.

System Control Card Build

The last card in the section labeled CARD BUILD is a con­
trol card that is partially prepunched. It is by the use
of this control card that disk residence is determined.

The user must indicate in the control card whether
the system is to reside on a 1301 or 1311 disk unit. The
assumed disk unit number is O.

The control card is punched as follows:

Columns
6-11

16-20
21-24

Contents
SYSTEM (prepunched)
BUILD (prepunched)
1301 or 1311

After columns 21-24 have been punched by the user,
the card must be replaced as the last card of the CARD

BUILD deck.

The system-control card build consists of the card
sections labeled CARD BUILD and SYSTEM CONTROL.

To use the system-control card build when the sys­
tem is to reside on 1311:

1. Ready the pack on disk drive O.

2. Set the write-address mode switch off.

3. Set the write-disk switch on.

4. Set the I/O check stop switch off.

5. Press CHECK RESET and START RESET.

6. Place the system-control card build section in the
card reader.

7. Load the program.

a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

8. When the system attempts to read the last card,

a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the reader.

80 Fortran IV Specs & Op. Froc. -1401,1440,1460

To use the system-control card build when the system
is to reside on 1301:

1. Set the write-disk switch on.

2. Set write-address mode switch off.

3. Set the I/O check stop switch off.

4. Press CHECK RESET and START RESET.

5. Place the system-control card build section in the
card reader.

6. Load the program.

a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

7. When the system attempts to read the last card,

a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the reader.

The time required to perform this job is approximately
5 minutes. The following halts can occur while using
the system-control card build deck.

Halt Number
(A-Address Register)

008

050

051

549

554

Fortran Update

Meaning
Card-read error: To retry the op­
eration:

For the 1402: Nonprocess run-out
the cards. Remove the last three
cards in the stacker and place them
in the hopper. Press START.

For the 1442: Nonprocess run-out
the cards. Place the two nonproc­
essed cards in the read hopper.
Press START on the reader and
START on the console.

The SYSTEM BUILD control card is
missing from the deck or the user
entry is incorrectly punched.

End of job.

Disk unit 0 is not ready. When the
system is restarted by pressing
START, the disk 110 operation is
retried.

A disk-write error occurred ten
times. When the system is restarted
by pressing START, the disk 110
operation is retried.

To build the Fortran processor, the Fortran update
section, made up of the sets of cards labeled FORTRAN

COMPILER-LOADER-LIBRARIAN and FORTRAN STANDARD

SUBPROGRAMS are used. Input for this building process
is as follows:

1. IBM 1402 or 1442 card boot, followed by the

2. SYSTEM ASGN card, which must be punched by the
user, followed by the

3. Fortran update section, followed by the

4. HALT card, which is the last card of the STANDARD

SUBPROGRAMS.

To build the system when it is to reside on 1311:

1. Ready the pack on disk drive O.

2. Set the I/O check-stop switch off.

3. Set the check-stop switch and disk-write switch on.

4. Set the mode switch to RUN.

5. Press CHECK RESET and START RESET.

6. Load the program.
a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

7. When the system attempts to read the last card,

a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the reader.

To build the system when it is to reside on 1301:

1. Set the I/O check-stop switch off.

2. Set the check-stop switch and disk-write switch on.

3. Set the mode switch to RUN.

4. Press CHECK RESET and START RESET.

S. Load the program.

a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

6. When the system attempts to read the last card,

a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the reader.

The time required to perform this job is approximately
20 to 30 minutes. The halts that can occur when using
the Fortran update deck are shown in Figure 35:

Fortran Sample Program

The Fortran Sample Program is used to test the effec­
tiveness of the system built by the user. A listing of the
Sample Program is shown in Appendix IV. To prepare
and run the Sample Program, see Preparing a Stack
and Running a Stack. Figure 39 shows the input cards
required to test the system by using the Sample Pro­
gram.

The Sample Program consists of five separate jobs.
The first job is a FORTRAN RUN. As a result of this job,
a source program listing, a name dictionary, and a se­
quence number dictionary will be printed on the LIST

file. Further, the object program in the relocatable for­
mat will be present on the LOADER file.

HALT

UPDAT DELETE
PAUSE

Absolute Deck

UPDAT INSERT

PAUSE

Data

$EXECUTION

$STORAGE PRINT

LOADER RUN
END

Fortran Source Statements
FORTRAN RUN

SYSTEM ASGN

{
1402 } 1442 Card Boot

--Supplied by the User

Figure 39. Fortran Sample Program

81

The second job is a LOADER RUN. As a result of this
job, a storage print and a name map will be printed on
the LIST file. Further, at the completion of processing,
the object program will be executed. All necessary
data cards are included.

Following the completion of execution, a temporary
halt will occur, and the message

PAUSE PRESS START TO UPDATE SYSTEM
WITH PHASE

will be printed on the MESSAGE file. When START is
pressed, the third job will be performed.

The third job is a user-update job. The punched­
card object program (phase) in the absolute format is
placed on the SYSTEM file. This punched-card deck is
identical to the punched-card deck that would have
been produced if a loader-output-option control card
($ABSOLUTE DECK) had preceded the LOADER RUN that
was previously performed.

The fcurth job is a PRODUCTION RUN. As a result of
this job, the phase stored on the SYSTEM file is executed.
The data cards supplied are identical to the data cards
used in the LOADER RUN job.

Following the completion of execution, a temporary
halt will occur, and the message

PAUSE PRESS START TO DELETE SAMPLE PROGRAM
FROM SYSTEM

will be printed on the MESSAGE file. When START is
pressed, the fifth job will be performed.

The fifth job is a user-update. As a result of this
job, the sample program (phase) is deleted from the
SYSTEM file.

82

Updating a Fortran System

System updating is accomplished by the use of pre­
punched card decks supplied by IBM. All necessary
control cards and data cards are included in the deck.

An update job is performed as described in Prepar­
ing a Stack and Running a Stack.

Duplicating the System Tape

T a make a copy of the SYSTEM file when it resiles on
a tape unit, use the COpy option of the System Control
Program. The content of the SYSTEM file, including the
LIBRARY file if it resides on the same unit, is read into
WORK 1.

The required control cards for duplicating the sys­
tem tape are:

1. The WORK1 file must be assigned if it differs from
the assumed assignment (TAPE UNIT 4) of the System
Control Program. Punch the WORK1 ASGN card in
the following manner.

Columns
6-10

16-19
21-31

Contents
WORld
ASGN

TAPE UNIT n

The n represents the number of the tape unit, and
can be 1, 2, 3, 4, 5, or 6.

2. The required copy control card is punched in the
following manner.

Columns
16-19

Contents
COpy

For a system-tape copy job, the ASGN card (if required)
precedes the COpy card.

This section contains a summary of the processor jobs
and a summary of the formats of all control cards that
are recognized by the System Control Program. Also
included are the compiler option control cards and
output option control cards.

Each control card recognized by the System Control
Program is punched in the Autocoder format, i.e., the
label field is in columns 6-15, the operation field is in
columns 16-20, and the operand field is in columns
21-72. The user is again reminded that blanks must ap­
pear in columns 21-72 where indicated in the indi­
vidual formats. Further, entries in the label, operation,
and operand fields must be left-justified in the respec­
tive fields.

Each entry in compiler option control cards and out­
put option control cards begins in column 1. Blanks
must appear where indicated in the individual formats.

Figure 40 shows a summary of a normal FORTRAN

RUN lob.

Appendix I

Figure 41 shows a summary of a normal LOADER RUN

job.

Figure 42 shows a summary of a normal user-update
job.

Figure 43 shows a summary of a normal PRODUCTION

RUN job.

Figure 44, shows the formats of ASGN cards and the
assumed assignments for the logical files. Figure 45
shows the valid device entries for the ASGN cards.

Figure 46 shows the formats of the remaining con­
trol cards recognized by the System Control Program.

Figure 47 shows the formats of the compiler option
control cards, the compiler output option control cards,
and the loader output option control cards.

NOTE: Update cards supplied by IBM are prepunched, and
are included in card decks used for updating the user's system.

Input Source program statements on the INPUT file

Output 1. Messages to the machine operator on the MESSAGE file.
2. Source - statement diagnostics on the LIST file.
3. Source program listing on the LIST fi Ie.
4. Name dictionary on the LIST fi Ie.
5. Sequence number dictionary on the LIST file.
6. Object program in the relocatable format on the LOADER file.

Optional Output Object program in the relocatable format on the OUTPUT file. To get this option, use an
OUTPUT ASGN card.

Required User None
Assignments

Required System FORTRAN RUN
Control Program
Control Card

Compi ler Option $INTEGER SIZE = ~
Control Cards $REAL SIZE = nn

$OBJECT MACHINE SIZE = ~
$NO MULTIPLY DIVIDE
$PHASE NAME = ~

Compi ler Output $NO LIST
Option Control $NO NAME DICTIONARY
Cards $NO SEQUENCE NUMBER DICTIONARY

$NO DICTIONARY

Figure 40. Summary of a Normal FORTRAN RUN Job

83

Input Object program in the relocatable format on the LOADER file

Output 1. Messages to the machine operator on the MESSAGE file.
2. Loader diagnostic messages on the LIST fi Ie.
3. Name map on the LIST fi Ie.

Optional Output 1 • Storage print on the LIST file.
2. Punched-card object program in the absolute format on the OUTPUT file.

Required User None
Assignments

Required System LOADER RUN
Control Program
Control Card

Required Loader $EXECUTION
Control Card $NO EXECUTION

Loader Output $ABSOLUTE DECK [three-character file nam~
Option Control $STORAGE PRINT [}hree-character file name]
Cards $NO NAME MAP

Figure 41. Summary of a Normal LOADER RUN Job

Input Punched-card object program in the absolute format on the CONTROL file, or object program
in the absolute format on the SYSTEM file.

System Control [user-commentS] UPDAT three-character phase name, INSERT
Program Control .Q[

Card [user comments] UPDAT three-character phase name, DELETE

Note: When the UPDAT INSERT card is used in a tape system, three-character phase name
is the name of the phase after which the new phase is to be added.

Figure 42. Summary of a Normal User-Update Job

Input Object program in the absolute format on the SYSTEM file

Required User The unit{s} referenced by the object program
Assignments

Required System PRODUCTION RUN three-character phase name
Control Program
Control Card

Figure 43. Summary of a Normal PRODUCTION RUN Job

84 Fortran IV Specs & Op. Proc. - 1401, 1440, 1460

Label Field
(Columns
6-15)

SYSTEM

Operation
Field
(Columns
16-20)

ASGN

CONTROL· ASGN

MESSAGE ASGN

LIST ASGN

INPUT ASGN

ASG N Card Formats Assumed Assignment

Operand Field (Columns 21-72)

{

1311 UNIT~ ~
1301UNITO
TAPE UNIT ~

{
READER n }
CONSOLE PRINTER

{
PRINTER n }
CO NSOLE PRI NTER

Compilation
(FORTRAN RUN)

1311 unit: user-assigned
1301 unit: must be assigned to UNIT °
Tape unit: user-essig"ned

READER 1

PRINTER 2

l PRI NTER n J PRI NTER 2
,1311 UNiT~, START~, END~~

1
1301 UNIT~, START nnnnnn, END ~ \
TAPE UNIT n
OMIT -

\ READER n (
11311 UNIT~! START~, END ~ . READER I
l 1301 UNIT~, START nnnnnn, END ~ l.
(TAPE UNIT n 1

Execution

(LOADER RUN or PRODUCTION RUN)

1311 unit: user-assigned
1301 unit: must be assigned to UNIT °
Tape unit: user-assigned

READER 1

PRINTER 2

PRINTER 2

READER I

Remarks

If the system residence is 1311 or 1301,
the SYSTEM ASGN card is the only re­
quired ASGN card. It must follow the
Card Boot in a stack of jobs. Any
other SYSTEM ASGN cards in the
stack are flagged and bypassed. If
the user desires that the Fortran system
use less than the number of core
storage positions available in the pro­
cessor machine, punch a comma in

column 32.and 12K or 16K beginning
in column 34. If the system residence
is tape and the tape unit is I, neither
the Card Boot nor the SYSTEM ASGN
card is required. (Pressing the TAPE
LOAD key achieves the same purpose as
the Card Boot and the SYSTEM ASGN
card.) If the unit is 2, 3, 4,5, or 6,
both the Card Boot and the SYSTEM
ASGN card are required to start
systems operations.

If the CONTROL fjle and the INPUT
file are assigned to the card reader,
the assignment must be to the same
card reader.

When the MESSAGE file is assigned to
the CONSOLE PRINTER, carriage
control characters used with the 1403 or
1443 printer may appear in the message.
If the MESSAGE file and the LIST file
are assigned to the printer, the assign­
ment must be to the same printer. The
MESSAGE file is equivalent to Fortran
file 0.

If the LIST file and the MESSAGE file
are assigned to the printer I the assign­
ment must be to the same printer. The
LI ST file is equivalent to Fortran
file 3.

If the I NPUT file and the CONTROL
file are assigned to the reader, the
assignment must be to the same reader.

The INPUT fi Ie is equivalent to
Fortran file I. 1------+-----+-,-----------.----------1----.-.-.---.--.-.. --. -.... - .. - .----.---+---... --.-...... --.. -.---------t-------'-'---------j

l' ;~1~CUHNTT n, START nnnnnn, END nnnnnn l
OUTPUT ASGN

LIBRARY ASGN

1301 UNIT~, START nnnnnn, END nnnnnn OMIT
TAPEUNITn
OMIT -

PUNCH 4 (1401 and 1460 systems)
PUNCH I (1440 systems)

The OUTPUT file is equivalent to
Fortran file 2.

1301 UNIT n, START nnnnnn, END nnnnnn 1301 UNIT 0, START 012000, END 013900 1301 UNIT 0, START 012000, END 013900 is assigned to 1311. 1301 is assumed
TAPE UNIT~ -- -- TAPE UNIT 1 TAPE UNIT 1 if the SYSTEM fjle is assigned to 1301. t
131 I UNIT ~, START ~, END ~ 't' 1311 UNIT 0, START 012000, END 013900 1311 UNIT 0, START 012000, END 013900 1311 is assumed if the SYSTEM file

I-----+---+,---------------:+-------------t--------------i Tape is assumed if the SYSTEM file

l
' 1311 UNIT n, START nnnnnn, END nnnnnn 1 is assigned to tape.

1301 UNIT~, START nnnnnn, END nnnnnn 1311 UNIT 0, START 010400, END 012000 1311 UNIT 0, START 010400, END 012000 At execution time (LOADER RUN),
TAPE UNIT n 1301 UNIT 0, START 010400, END 012000 1301 UNIT 0, START 010400, END 012000 the LOADER file can be assigned to I LOADER ASGN

I

I

I

I

I

READER n - TAPE UNIT 3 TAPE UNIT 3 READER n.
OMIT -, If the MESSAGE, LIST, and WORK5

I------+---+;.--------------+t-------------t---------------j files are assigned to a printer, the
~ 1311 UNIT~, START nnnnnn, END ~ (1311 UNIT 0, START 007200, END 010400 1311 UNIT 0, START 007200, END 007800 assignment must be to the same printer.

WORK1 ASGN (~!~~ ~~II~~' START~, END ~) ~!~~ ~~I~ ~ START 007200, END 010400 ~!~~ ~~II~ ~ START 007200, END 007800 ~:~:~f~~1 :~Ie is equivalent fo

1-----+---+~----==-----------4-------------t--------------i The WORK2 file is equivalent to

1
"1311 UNIT~, START~, END nnnnnn '} 1311 UNIT 0, START 007200, END 010400 1311 UNIT 0, START 007800, END 008400 Fortran file 5.

WORK2 ASGN 1301 UNIT n, START nnnnnn, END nnnnnn 1301 UNIT 0, START 007200, END 010400 1301 UNIT 0, START 007800, END 008400 The WORK3 file is equivalent to
TAPE UNIT~ -- -- TAPE UNIT 5 TAPE UNIT 5 Fortran file 6.

I-----+---+=-------==------------:+-------------t--------------i The WORK4 file is equivalent to
~ 1311 UNIT n, START nnnnnn, END nnnnnn (1311 UNIT 0, START 007200, END 010400 1311 UNIT 0, START 008400, END 008900 Fortran file 7.

WORK3 ASGN Ii!~~ ~~I~~ START nnnnnn, END nnnnnn) ~!~~ ~~I~ ~ START 007200, END 010400 ~!~~ ~~II~ ~ START 008400, END 008900 ~:~:~f~~5 ;~Ie is equivalent to

1------+---+--------------+-------------\---------------1 The WORK6 file is equivalent to
\1311 UNIT~, START~, END ~ l 1311 UNIT 0, START 008900, END 009400 Fortran file 9.

WORK4 ASGN

WORKS ASGN

WORK6 ASGN

11301 UNIT n, START nnnnnn, END nnnnnn (OMIT 1301 UNIT 0, START 008900, END 009400
lTAPE UNIT~ -- -- (OMIT for tape systems
(OMIT ,

\

'1311 UNIT~, START~, END~'l
1301 UNIT n, START nnnnnn, END nnnnnn
TAPE UNIT-;; -- -- OMIT
PRINTER n -
OMIT -

(1311 UNIT n, START nnnnnn, END nnnnnn J
11301 U NIT ~, START nnnnnn, END nnnnnn (. OMIT
lTAPEUNIT~ l
(OMIT ,

1311 UNIT 0, START 009400, END 009900
1301 UNIT 0, START 009400, END 009900
OMIT for tape systems

1311 UNIT 0, START 009900, END 010400
1301 UNIT 0, START 009900, END 010400
OMIT for tape systems

• Figure 44. ASGN Card Fonnats and Assumed Assignments

85

Device Entry and Values of nand nnnnnn

{
1311} 1301 UNIT!!, START ~, END nnnnnn

.!l is the number of the disk unit, and can be 0, 1,
2, 3, or 4.

.!!!!.!lQ!!!!.. is a disk address.

TAPE UNIT .!l
.!l is the number of the tape unit, and can be 1, 2,
3, 4, 5, or 6.

READER.!l
For 1402, .!2 can be 0, 1, or 2.
For 1442,-.!l can be 1 or 2.

PUNCH .!l
For 1402, .!2 can be 0, 4, or 8.
For 1442, .!!. can be 1 or 2.
For 1444, ..!!. must be 3.

PRINTER.!!.
..!!. can be 1 or 2.

CONSOLE PRINTER

OMIT

• Figure 45. Valid Device Entries

86 Fortran IV Specs & Op. Proc. -1401,1440,1460

Remarks

The END address is the address of the next available sector.
The values of nnnnnn must adhere to the following rules:
1. WORKl and WORK2 files. If the disk unit is a 1311, the START

address must be a multiple of 200. If the disk unit is a 1301, the
START address must be a mu Itiple of 800. The EN D address (1311 and
1301) must be a multiple of 40.

2. WORK3, WORK4, WORKS, and WORK6 files. The START address
(1311 and 1301) must be a multiple of 100. The END address of each
file must be a multiple of 10. In addition, WORK3 must be at least
300 sectors long.

3. LIBRARY File. For both 1311 and 1301, the START and END addresses
must be multiples of 20.

If these rules are violated, the system automatically narrows in the disk
area to an area that does adhere to these rules.

For 1402, !!. represents the pocket into which the cards are stacked. For
1442 or 1444, !!. represents the number of the unit.

n represents the number of print positions available on the 1403 or 1443.
For 1403, a 1 indicates 100 positions and a 2 indicates 132 positions •
For 1443, a 1 indicates 120 positions and a 2 indicates 144 positions.

The console printer must be an IBM 1447 without a buffer feature.

Select this option when the file is not to be used by the Fortran system.
The LIST, OUTPUT, LOADER, WORK4, WORKS, and WORK6 files can
be omitted •

Name of Card Label Field Operation Field (Columns 16-20) Operand Field (Columns 21-72)
(Columns 6-15)

Copy (Tape) COpy [Any message and/or identificatio~

Halt HALT [Any message and/or identificati0ri]

Initialize FORTRAN INIT [Any message and/or commenf]

Note NOTE Any message and/or instruction

Pause PAUSE Any message and/or instruction

Run FORTRAN RUN

LOADER RUN

PRODUCTION RUN Three-character phase name

LIBRARY RUN

Update oj< [User commentil UPDAT Three-character phase name, INSERT

[User comment~ UPDAT Three-character phase name, DELETE

Cards associated LIBRARY RUN

with ** BUILD nnn, where ~specifies a name-table length that differs from 030.

LIBRARY RUN

cards LIST HEADERS

*** name LIST --
LIST

*** name INSER --
*** name DE LET --

**** COpy

END

* When the UPDAT INSERT card is used in a tape system, three-character phase name is the name of the phase after which the new phase is to be added.

** This option applies only to libraries that reside on disk.

*** ~ is the six-character name of a subprogram.

**** This option applies only to libraries that reside on tape.

Figure 46. System Control Cards

87

Type of Control Card Format - Columns 1 - ? Remarks

Compiler option control cards $INTEGER SIZE = ~ 01~ ~ ~ 20; assumed size is 05.

$REAL SIZE = ~ 02~ ~ ~ 20; assumed size is 08.

$OBJECT MACHINE SIZE = ~ 11999 ~ ~ L 15999; assumed size is 11999.

$MULTIPLY DIVIDE Multiply/divide feature assumed to be present on
object machine.

$NO MULTIPLY DIVIDE

$PHASE NAME = ~ ~ is 3 alphameric characters; assumed name
is II I.

Compiler output option control cards $L1ST Source program listing is assumed.

$NO LIST

$NAME DICTIONARY Name dictionary is assumed.

$NO NAME DICTIONARY

$SEQUENCE NUMBER DICTIONARY Sequence number dictionary is assumed.

$NO SEQUENCE NUMBER DICTIONARY

$DICTIONARY Both the name and sequence number dictionaries
are assumed.

$NO DICTIONARY

Loader output option control cards * $ABSOLUTE DECK ~hree-character file name J No absolute deck is assumed. If an absolute deck
is specified, OUTPUT file is assumed.

$NO ABSOLUTE DECK

* $STORAGE PRINT ~hree-character file nam~ No storage print is assumed. If a storage print is
specified, LIST file is assumed. The storage print
uses a print line of 120 positions.

$NO STORAGE PRINT

* $ NAME MAP ~hree-character fi Ie nam~ Name map is assumed output on the LIST fi Ie.

$NO NAME MAP

$INCLUDE LDR ~r~e-character main program nam~ l~i ~6
or six-character subprogram name The $I NCLUDE card is punched as follows.

Columns Contents

$INCLUDE INP ~r~e-character main program na~ 1-8 $INCLUDE
or six-character subprogram name 16-18 LDR or INP or WKi -21-23 main program name

$INCLUDE WKi ~hr~e-character main program nam~ ..Q! Q!:
- or six-character subprogram name 21-26 subprogram name

$EXECUTION One of these cards must be supplied by the user as
the last card of a LOADER RUN.

$NO EXECUTION

* When used, IThree-character file nam~ appears in columns 21-23 of the Loader output option control card.

Figure 47. Fortran Option Control Cards

88 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

The name, identification, and function of each phase
in the Fortran system are given in the following sec­
tions.

System Control Program - Disk Resident

This section describes the phases that make up the
System Control Program for disk-resident systems.

Phase Name

SYB

FHW

lOP

SUO
SUI
SU2
SU3
SU4
SU5
SU6

OP1
OP2

DET

PIT

IV

50S01

50S11

50S21

50S31
50S41
50S51
50S61
50S71
50S81
50S91

50SAl}
50SBI

50SCI

50SDI

Function

1. Determines machine size.
2. Initializes switches according

to the type of reader, punch,
and printer (serial or parallel).

3. Reads in the I/O package.
4. Calls the determiner.

Contains the assumed assign­
ments for the logical files.

1. Reads or writes disk in the
move or load mode. The mode
depends on the processor
operation.

2. Determines whether the user
has exceeded specified file
limits.

3. Branches to the processor
phase, or branches to the
end-of-file routine if the
end-of-file has been sensed.

Reads in the specified phase
from disk storage and branches
to the specified phase.

Initializes the specified area with
a twenty-character control word.
This control word is obtained
from the temporary file-hardware
table.

Reads the CONTROL file until a
control card (HALT, PAUSE, NOTE,

INIT, UPDAT, RUN, or ASGN) is
sensed. When a control card is
sensed, the determiner causes a
halt or pauses, prints out a note,
calls the update determiner, calls
the selector, or calls the con­
figurator, depending upon the
type of card.

Contains the locations of the
phases in the system.

Phase Name
CFG

SEL

UPD

UIN

UHD

UDL

UPT

DMP
DM2

F/P
F/2
F/3

UPK

MNE
2XB
4XB
6XB
8XB

IV
50SE1

50SF1

50SG1

50SH1

50SI1

50SJl

50SKI

50SL1 }
50SMI

50SN1 ~
50S01
50SPI

50SQl

AUMNE
EX2XB
EX4XB
EX6XB
EX8XB

Appendix II

Function
Updates the temporary file­
hardware table as specified by
the ASGN card{s).

Initializes the files used by the
processor being called, and
calls the first phase of that
processor.

Determines the type of update
operation being performed, and
calls in that particular updater.

Places a new phase on the
SYSTEM file in any available
location.

Updates the header of a phase
that is in the SYSTEM file, as
specified by a header card.

Deletes a phase from the
SYSTEM file.

Patches a part of a phase on
the SYSTEM file.

Prints storage on the LIST file.

Prints all WORK files on the LIST

file.

Compresses phases within the
system area so that all unused
sectors are made available.

These phases are used by the
Autocoder Assembler Program.

System Control Program - Tape Resident

This section describes the phases that make up the Sys­
tem Control Program for tape-resident systems.

Phase Name
SYB

lOP

IV
50S01

51T05

Function
1. Determines machine size.
2. Initializes switches according

to the type of reader, punch,
and printer (serial or parallel).

3. Reads in the I/O package.
4. Calls the determiner.

1. Contains the assumed assign­
ments for the logical files.

2. Reads or writes tape in the
move or load mode. The mode
depends on the processor
operation.

89

Phase Name

DET

UPD

DMP
DM2

FIP

ID

5IT06

50SHI

50SLI
50SMI

5ITIO

Function

3. Branches to the processor
phase, or branches to the
end-of-file routine if the
end-of-file has been sensed.

4. Reads in the specified phase
from the system tape and
branches to the specified
phase.

5. Initializes the specified area
with a twenty-character
control word. This control
word is obtained from
assumed assignments for
logical files.

1. Reads the CONTROL file until a
control card (HALT, PAUSE,

COPY, NOTE, INIT, UPDAT, RUN,

or ASGN) is sensed. When a
control card is sensed, the
determiner causes a halt, or
pauses, or prints out a note.

2. Updates assumed file assign­
ments as specified by the ASGN

card(s).

3. Initializes the files used by the
processor being called, and
calls the first phase of that
processor.

4. Determines the type of update
operation being performed,
and calls the updater.

1. Places a new phase on the
SYSTEM file in any available
location.

2. Updates the header of a
phase that is in the SYSTEM

file, as specified by a header
card.

3. Deletes a phase from the
SYSTEM file.

4. Patches a part of a phase on
the SYSTEM file.

Prints storage on the LIST file.

Prints all WORK files on the LIST

file.

Fortran Processor Program

This section describes the phases that make up the
Fortran Processor Program.

Phase Name

OOF

ID

OOFIV

Function

1. Reads compiler option control
cards, if any, from the INPUT

file and outputs them on the
LIST file.

2. Initializes deblocking routines
(GETEX and PUTEX).

90 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

Phase Name ID

10F lOFIV

20F 20FIV

2IF 2IFIV

Function

3. Sets up an area in upper core
storage for GETEX and PUTEX

buffers.

4. Passes the first source-program
statement to phase IOF.

1. Reads source statements from
INPUT file until the END card
is sensed.

2. Assigns sequence numbers to
all source statements except
comments statements.

3. Outputs the source program
listing on the LIST file, if the
option is exercised.

4. Replaces key words (COMMON,

DIMENSION, GO TO, etc.) with
internal three-character
symbols. Replaces remaining
portion of each statement with
internal symbols.

5. Replaces unrecognizable
statements with diagnostic
codes.

6. Outputs nonexecutable and
I/O name lists on WORK2

and executable statements on
WORKl.

7. Calls phase 20F, 25F, or 30F,
depending on type of source
statements.

1. Extracts DIMENSION, COMMON,

EQUIVALENCE, FUNCTION,

SUBROUTINE, EXTERNAL, and
type statements from WORK2.

2. Builds a name-attribute table
in upper core storage.

l. Uses name-attribute table
built by phase 20F and allo­
cates object-time storage for
COMMON variables and appli­
cable EQUIVALENCE definitions.

2. Allocates storage for normal
variables with EQUIVALENCE or
DIMENSION definitions, and
adds this information to the
name-attribute table. No
storage is allocated unless the
complete set of variable
attributes has been
determined.

3. Compresses the name­
attribute table, deleting
information no longer
required.

4. Outputs a macro reflecting
ordering or various variable
types within COMMON on the
PUTEX file.

5. Calls phase 25F, if required.
Otherwise, phase 30F is called.

Phase Name ID

25F 25FIV

30F 30FIV

33F 33FIV

34F 34FIV

35F 35FIV

Function

1. Extracts FORMAT, DATA, and
DEFINE FILE statements and
I/O name lists from WORK2.

2. Replaces names in DATA or
I/O name lists and source or
generated constants from I/O
name lists with object-time
addresses.

3. Generates sequence of macros
with associated parameters on
the PUTEX file for each state­
ment. An increased object-time
character count is included
with each sequence number
or label assignment macro
reflecting the total number of
object-time characters since
the last sequence number or
label assignment macro.

4. Begins label table for FORMAT
statement numbers.

5. Continues building name­
attribute table and continues
allocating storage as required.

l. Extracts executable statements
from the GETEX file, which can
contain macros from phase
25F.

2. Continues building name­
attribute table and label
table, with allocation accom­
plished when required. An
address is substituted for a
name and an internal repre­
sentation is substituted for a
label.

3. Generates macros with appro­
priate parameters for all exe­
cutable statements, except for
expressions that are passed to
phase 40F. Subscripted vari­
ables are processed as in phase
25F, generating macros even
when they are part of an
expression. The object-time
incremental character count is
included with sequence num­
ber or label assignment
macros.

4. If source label and name table
overflows, subsequent source
labels andlor names are
passed in expanded form for
replacement by phase 34F.

Processes subscripted variables.

Phase 34F is an optional phase.
When required, it completes the
storage allocation for normal
variables. It replaces names with
addresses, and source labels with
internal label notation.

I. Outputs a name dictionary on
the LIST file, if requested.

Phase Name ID

36F 36FIV

40F 40FIV

45F 45FIV

53F 53FIV

Function

2. Outputs constants as macros
in the name table on the
PUTEX file.

3. Allocates storage in upper core
storage for a source label
table and a generated label
table which will eventually
contain actual addresses.

4. Calls phase 36F if compiling
a subprogram.

When a subprogram is being
compiled, macros are generated
on the PUTEX file to represent the
necessary processing when the
subprogram is called. A "pro­
logue" is generated; also, an
"epilogue" is generated which
represents any necessary resetting
of values before returning control
to the calling program. If
variable dimensions have been
used, a pass on the GETEX file is
required when building the
prologue name to indicate addi­
tional object-time calculations.

1. Extracts expressions from the
GETEX file that were partially
processed by phase 30F. The
expressions are reordered ac­
cording to implied operator
precedence and parentheses,
and macros are generated on
the PUTEX file.

2. Extracts label assignments and
sequence number macros
from the GETEX file. For a
sequence number, the incre­
mental character count is
replaced with an actual
accumulative character count,
and the macro is passed.
Label assignment macros are
not passed further. Actual
addresses for source labels
and generated labels are en­
tered into the label table and
generated label table.

3. Passes control to phase 45F if
a DATA statement is sensed.

1. Extracts DATA name list
macro sequences from the
GETEX file. The macros are
expanded into object code
in a phase work area. The
code references some included
subroutines. DATA literal list
macros are matched with
object-time addresses and
passed as regular literal
macros.

2. Continues label assignments
and sequence number proc­
essing as in phase 40F.

1. This phase is called only if
diagnostic codes were output
by a previous phase. The

91

Phase Name ID

70F 70FIV

Function

codes are extracted and
translated into diagnostic
messages that are output on
the LIST file. These errors can
be warnings, or severe errors
that would prevent a success­
ful compilation.

2. If the messages were merely
warnings, phase 70F is called.

3. If the messages indicated er­
rors that would prevent a
successful compilation, the
system halts, then control
reverts to the DET (determiner)
phase of the System Control
Program, which will read a
control card from the CONTROL

file.

Generates object code in the re­
locatable format from internal
macros and associated param­
eters. Addresses are substituted
for label references. A header
card image is always generated
first, and a trailer card image is
always generated as the last card.
Between these two card images
will be relocatable and external
name cards to indicate object
characters to be loaded and inter­
program references. Card images
appear on the LOADER and! or
OUTPUT files, depending on actual
device assignments. Control is
returned to the DET (determiner)
phase of the System Control
Program.

92 Fortran IV Specs & Op. Proc. - 1401, 1440, 1460

Phase Name

78F

79F

80F

81F

82F

90F

91F

ID

78FIV

79FIV

80FIV

81FIV

82FIV

90FIV

91FIV

Function

Builds, updates, or lists the
Fortran relocatable subprogram
library.

1. Reads loader control cards
from the CONTROL file.

2. Relocates and loads a main
program and required sub­
programs, possibly from the
subprogram library.

3. Establishes interprogram com­
munication by replacing ex­
ternal references by actual
addresses.

Produces an external name map
on the LIST file, if requested.

Produces storage print of the
loaded program on the LIST file,
if requested. The storage print
does not include the standard
overlay package.

Produces an absolute deck on the
OUTPUT file, if requested.

Standard overlay package for
1401 or 1460, including arith­
metic interpreter and standard
I/O routines.

Standard overlay package for
1440, including arithmetic inter­
preter and standard I/O routines.

Building a System that Contains
Fortran and Autocoder

In this section, the Autocoder system refers to 1401/
1440/1460 Autocoder (on Disk), program number 1401-
AU -008. The specifications and operating procedures
for this program are contained in the Systems Refer­
ence Library publications, Autocoder (on Disk) Lan­
guage Specifications for IBM 1401, 1440, and 1460,
Form C24-3258 and Autocoder (on Disk) Program
Specifications and Operating Procedures for IBM 1401,
1440, and 1460, Form C24-3259.

File Considerations

Because the System Control Program is the controlling
element of the Autocoder system as well as the Fortran
system, it is possible to build a SYSTEM file that con­
tains both the Fortran Processor Program and the Au­
tocoder Assembler Program.

Figure 48 shows the disk-storage allocation on the
system unit when both Fortran and Autocoder are
present.

The user should consult the referenced Autocoder
publications for a description of the Autoooder system.

File

SYSTEM File

Autocoder Preprocessor Work Area
Autocoder Preprocessor
Autocoder Preprocessor
Autocoder Preprocessor
Autocoder Preprocessor
Not Used
System Control Program
Fortran Processor Program
Not Used
System Control Program
Fortran Processor Program
Autocoder Assembler Program }
Area for User's Fortran Ob ject Program Library

WORK Files

Appendix III

Two differences exist when the Autocoder system re­
sides alone on a disk unit as opposed to when it resides
on a disk unit that also contains the Fortran system.
These differences are:

l. The assumed assignment of the Autocoder LIBRARY

file.

2. The assumed assignments of the Autocoder WORK

files.

Figure 49 gives the assumed assignments of the Auto­
coder LIBRARY file and the Autocoder WORK files when
Autocoder and Fortran reside on the same SYSTEM file.
Do not consider the assumed assignments for these
files as given in the Autocoder operating procedures
publication.

Note also that Autocoder uses a maximum of three
WORK files, whereas six WORK files are defined for For­
tran. Further, the user should note that Autocoder de­
fines a CORELOAD file (not applicable to Fortran), and
Fortran defines a LOADER file (not applicable to Auto­
coder). The assumed assignments for the remaining
logical files (CONTROL, MESSAGE, LIST, INPUT, and OUT­

PUT) are the same for both the Autocoder and the For­
tran systems.

Mode Fi Ie - Protected Sector Range

Move No 000000- 000089
Move No 000090- 000199
Load No 000200- 000259
Move No 000260 - 000299
Load No 000300 - 000899
Loadq No 000900- 002499
Load Yes 002500- 002904
Load Yes 002905 - 002979
Load Yes 002980 - 002999
Load Yes 003000 - 003175

Load Yes 003176- 007199

Move No 007200- 010399

LOADER File (Fortran only. This area is used by Autocoder as a continuation Move No 010400- 011999
of the WORK fi les .)

LIBRARY File (Fortran) Move No 012000- 013899

LIBRARY File (Autocoder) Move No 013900- 019979

• Figure 48. Disk Storage Allocation

93

File

LIBRARY

WORK1

WORK2

WORK3

• Figure 49.

Assumed Assignment

1311 UNIT 0, START 013900, END 019980
1301 UNIT 0, START 013900, END 019980

1311 UNIT 0, START 007200, END 010400
1301 UNIT 0, START 007206, END 010400

1311 UNIT 0, START 01 0400, END 011600
1301 UNIT 0, START 01 0400, END 011600

1311 UNIT 0, START 011600, END 012000
1301 UNIT 0, START 011600, END 012000

Assumed Assignments of Autocoder LIBRARY and
WORK Files

Building a Combined System

To build a system comprising Fortran and Autocoder,
first build a Fortran system as described in this publi­
cation.

After the Fortran system has been built, use the
Autocoder marking program to separate the various
components of the Autocoder program deck as de­
scribed in Autocoder (on Disk) Program Specifications
and Operating Procedures for IBM 1401, 1440, and
1460, Form C24-3259. Use only the Autocoder-update
section of the Autocoder program deck to build the
Autocoder system. This section is made up of the sets
of cards labeled AUTOCODER PROCESSOR, AUTOCODER PRE­

PROCESSOR, and AUTOCODER MACROS. After the system
has been built, use the appropriate SAMPLE PROGRAM

to test the system.

Perform a user-update job to add the Autocoder As­
sembler Program to the SYSTEM file. Input for this job
is as follows.

1. The 1402 or 1442 card boot, followed by

2. The SYSTEM ASGN card, which must be punched by
the user, followed by

3. The Autocoder update section, made up of the sets
of cards labeled AUTOCODER PROCESSOR, AUTOCODER

PREPROCESSOR, and AUTOCODER MACROS, followed by

4. The HALT card, which must be punched by the user.

To build the system when it is to reside on 1311:

1. Ready the Fortran system pack on disk drive O.

2. Set the I/O check-stop switch off.

3. Set the check-stop switch and the disk-write switch
on.

4. Set the mode switch to RUN.

5. Press CHECK RESET and START RESET.

94 Fortran IV Specs & Op. Proc. - 1401, 1440, 1460

6. Load the program.

a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader
and PROGRAM LOAD on the console. '

7. vVhen the system attempts to read the last card,

a. IBM 1402 Card Read-Punch: Press START.

b. IB:r..r 1442 Card Reader: Press START on the reader.

To build the system when it is to reside on 1301:

1. Set the I/O check-stop switch off.

2. Set the check-stop switch and disk-write switch on.

3. Set the mode switch to RUN.

4. Press CHECK RESET and START RESET.

5. Load the program.

a. IBM 1402 Card Read-Punch: Press LOAD.

b. IBM 1442 Card Reader: Press START on the reader,
and PROGRAM LOAD on the console.

6. \\-Then the system attempts to read the last card,

a. IBM 1402 Card Read-Punch: Press START.

b. IBM 1442 Card Reader: Press START on the reader.

The halts that can occur when using the Autocoder­
update section are shown in Figure 35.

Testing the Autocoder System

The appropriate SAMPLE PROGRAM deck, which is used
to test the effectiveness of the system built by the user,
calculates and lists a table of salaries. A listing of the
sample program is shown in an appendix of the Auto­
coder operating procedures publication.

The first card in the sample program is a partially
prepunched control card used for assigning the CORE­

LOAD file. This partially prepunched control card can­
not be used when the Autocoder and Fortran systems
reside on the same unit because the assignment of the
CORELOAD file designated in the control card is within
the area defined for the Fortran LIBRARY file. Discard
this control card and replace it with a new control card
punched in the following format.

Columns

6-13

16-19

21-24

26-57

Contents

CORELOAD

ASGN

1311 or 1301

UNIT 0, START 000040, END 000090

To prepare and run the sample program, see Preparing
a Stack and Running a Stack.

Appendix IV - Sample Program
-------------------------~---

FORTRAN RUN
SNO MULTIPLY DIVIDE

C SAMPLE PROGRAM TO TEST SYSTEM
C

C PROGRAM FOR FINDING THE LARGEST VALUE
C ATTAINED BY A SET OF NUMBERS

001 DIMENSION AX12n
002 READ X1.1nN.XAXln.INl.Nn
003 1 FORMAT XI3/XI2F6.2nn
004 BIGA*AX1D

006 IF XBIGA.LT.AXInn BIGA N AXIn
007 20 CONTINUE
008 WRITE X3.2nN.BIGA
009 2 FORMAT X21H1THE LARGEST OF THESE.13.11H NUMBERS IS.F9.2n
010 STOP
011 END

NAME OICTIONARY
00126 A 00131 N

SE~UENCE NUMBER DICTIONARY

002-00151 004-00170

011-00282 001-00292

00136 I 00149 BIGA

005-00182 006-00205 007-00249 000-00249

002-00292 003-00355 008-00408 009-00423

77KTSTOO
77L

77M SAMP
77N SAMP
770 SAMP
77P SAMP
770
77R SAMP
781 SAMP
78J SAMP
78K SAMP
78L SAMP
78M SAMP
78N SAMP
780 SAMP
78P SAMP
780 SAMP

008-00253 010-00272

011-00506

~--

LOADER RUN 78R SAMP

SSTORAGE PRINT 791

*** NAME MAP ***

05851 /// 06515 nC 06978 nO 06228 nA 06415 lIB 07155 .9
08004 *1 06982 nF 07050 I:JG 08025 *3 06206 LINK 07102 nH
07405 G. 07676 P. 07906 a. 07484 H. 07523 M. 06511 nE
07155 .0 06441 znl 06320 Zn 06482 yn 06375 un 06416 vn
07207 XO 07219 XI 07271 %2 07291 X3 07251 X4 07231 X5
07377 G.3 07404 G.I 07341 G.2

*** END OF NAME MAP ***

~--~
• Figure 50. Sample Program (Part 1 of 3)

95

*** STORAGE PRINT ***
05700 XO* 01??0?

1111
OSSOO YO* 1 ?A

1 1
2BL2900MIM XO*0ISVZ9S B*4SY2W>Y4 Z*BRBSB?S* Y3WYS*Y3/X
11 1 11 1 11 1 1 1 1 11 1 1 1 1 1

OS900 ZO* OSZSTB*4SY 4Z-$Y3WY3Y $Y3WSZ4Z*B *4S$Y3WY3Y $Y3W>Y4Z*B Y8WBL2902N 2MXO*OJ2TJ OYBKOWZS/D ETBKOWZ9/D ETBR7SYC/%'
1 1 1 111 1 11 1 11 11 1 11 1 11 1 1 111 11 1 1 1 1 1 1 1 1 1 1

06000 10* BI2UBR7S$Y 3WY3Y$YTW% BAOSBRSSB? S*Y3WY3ZY3 /XOSIS/BIO UB?93BDOVO 01BF7WOOI0 03IBIOW/BD OVOOIBF7WO 12006F002B
1 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 11 1 1 1 1 11 1

06100 JO* D8UBIOW BR 7SYC/YUZ%B ?93BDOVOOI BE2T0211TH E LARGEST OF THESEBF 7WOOI003IB E2TOli NUM BERS ISBF7 WOOI009FOO
1 11 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11

06200 KO* 2BIOW H089 MO*2K2*MK2 T83SB746SM SSMOl6KSWM OI3K4Z?000 M8ZLOOOM9U BNl/9601@M 8ZNO*ANO*M 8SCM7ZM8UB MSZTBLITOI
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

06300 LO* 7$H094016B K3SHL7VL7W SNOVM8SBL3 SZANOXM7ZB L3SZYM7YM8 S?MA*090YL XYM8*MM8S0 S9BOOOHOJO 089YOl9088 H094017BMI
1 11 1 11 11 1 1 1 11 1 1 1

06400 MO* W014.H0940 14BOOOMOl7 M2ZM089000 H/02014BX4 7MOl7MSUHO 89000BM3*B Y76SSENI02 .MSZ2SKB 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

06S00 NO* 160009F HR7YHR4/0 ?OHN8/HR4Y OIOHRSVO*O MR7Y099.0? 10?4MO?3N8 YMO?6N9VDO ?10?4H0990 OOHOOSOOOH OOZOOOH089
1 1 11 11 1 1 1 1 1 1 1 1 1 1

06600 00* 000H094000 MR7Y099HRS ZO?7?0*OR8 *YR7Z0*OBP 6WO?0%CO*0 010H099.0? OQ099S010D 0?IHP6/010 ?0?ORS/YR7 ZOIOYR7Z0?
1 1 1 1 1 1 1 111111 1 1 1

06700 PO* OBP2XO?00A 0*0010SR7Z 0?OB09UVPS VO?OIDOIOQ 094DO?OQ09 9B09UH0940 OOBRO/DOIO Q099CO?00* OQ094.011V QIVO?12?0?
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

06S00 QO* lRS/YR7Z0? I.QSZSO*OO ?IVQ4/0?IK AR7Z0IOBQl VAO*OO?IYR 7Z0?IBQ8WN H0990?IH09 4011D010.0 11BP8ZDQSZ YR8/0?IDOI
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

06900 RO* IVR6*R8*KV R6YR8/K?01 OYRSWRIXYR 8*0*OH0990 00H094000H 089000BOOO VRIXR8/KIR lXBRIX 1 H094H094 014H?4/0?0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1

07000 ?O* M956099MOI S?IX?OOOAC UMO!2?3ULA CUOOOH0990 OO.AO/B?SY H094DAO/MO 12AOYMOJIM 018AlSMOl2 AIZMOJ4A2W HA3UO~SBOJ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

07100 AO* SNAOOOOOO? OOOASUSOOO ASUVOOOASU KBOOO BBOXO 140BBIZ0!4 IBB7/0!42B B9/0143BBS /0144BB3/0
11 1 1 1 1 1 1 1 1 1 1 1

07200 BO* 14S.900BCl /222 BC2SB C2S222 BCl /BCl/222 V Cl/2G9BBC2 SBCl/222 V Cl/2G9KBC2 SBC2S222 V Cl/2G9BBC2 SBC25222 V
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

07300 CO* Cl/2G9KBC2 SMOl7094BO IOBOI90!8* H/020!4BU6 3HD8S000HD 7Z000MD8SD 7WMMMMHK90 bODBOS9MDS YK90MDSVK9 6PDSZDSTBB
1 1 1 1 1 1 1 1 1 11111 1 1 1 1 1

07400 00* IS MD7WD 8SMMMMMK90 DSYMK96MO! 6K90H09401 7HK96HDOUB B18 *H094HK 20K90CK03K
1 1 11111 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1

07S00 EO* 90BC7XSBBI 8TMK96094B B18MOl6K81 .F3SM089K8 4HK20K81AK 81K84CL02K S4BF4*UH09 4017AK8108 9HK81094BF OXL161MOI0
III 11 11 1 1 1 11 1 1 1 1

07600 FO* IT2BFIUMIT 20IOH09401 IH0890*IBB 18K24*BOOO ML02K84S0S 9K84MK84K8 IBQ18E06DF 3SBE6XBOOO K99HMO~OLI 2.042045MO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

07700 GO* J3047MOI90 44HK740?OH K710IOVG4V L281MOl6K6 2.L28M0440 94A089094H K20094CL02 094BH9ZUHK 68011HK6S0 IODK17001Y
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

07800 HO* K98001YK3S H4THH9YC41 BHS/LI2LBH 6ZLI2IBH8* 001 BQ06EO 3YK34H4THH 9Y003BH3WY K36H4TBH3W YK17K98BOO 3L12ABH9YB
1 1 1 1 1 111 1 11 11 1 11

07900 10* Q06E04BI4Z 014/BI3XK9 9HVI4VK751 BQI8EOS.K7 SBOOODK75H 003I6UV003 LI7SBI9*OI 4/MDOUL24H 00LL24BC4/ HL240!5B05
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

08000 001 9I9CIINP
1 11

3LST
11

*** END OF STORAGE PRINT ***

~--

$EXECUTION

r--

THE LARGEST OF THESE 12 NUMBERS IS 9876.54

------- ---- ---

l~~~J
• Figure 50. Sample Program (Part 2 of 3)

96 Fortran IV Specs & Op. Proc. -1401, 1440, 1460

PAUSE PRESS START TO UPDATE SYSTEM WITH PHASE

-
~---------------------- -

UPDATI/I,INSER 001 III

PRODUCTIONRUN III

THE LARGEST OF THESE 12 NUMBERS IS 9816.54
PAUSE PRESS START TO DELETE SA~PLE PROGRAM FROM SYSTEM

.-------

FORTRAN UPDAT III.DELETE
HALT SAMPLE PROGRAM COMPLETE. ALL SYSTEMS ARE GO.

Figure 50. Sample Program (Part 3 of 3)

97

Index

Absolute Deck 43, 53 DIMENSION Statement .. 15
A-Conversion .. 21 Disk Storage Allocation .. 77
Advantages of Subprograms 27 DO Statement .. 13
Alphameric Fields ., , 20 DO'S Within DO'S .. 13
Appendix I ~~

~~~:;~~ ~~.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~~ 
Arithmetic Expressions ............................ .................................. 9 
Arithmetic IF Statement .......................... .................................. 13 
Arithmetic Statement .......................................................... 7, 12 
Arrangement of Arrays in Core Storage ......... ,. ........ ..... .... ...... 9 
ASGN Cards ................................................ , ......... ...... ...... .......... 39 

Preparing .................... ............................................................ 60 
Using ...................................................................................... 61 

Assigning Input/Output Devices ............................................ 37 
Assignments, Logical File ............ .......... ............ ........ ....... ....... 37 

Duplicating the System Tape .... ........................... ................... 82 

;:~t:~L~n~~!t~~;~t··:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~~ 
END Statement .......................................................................... 14 
EQUIVALENCE Statement ............................................................ 16 
Execution Time . ..... ..... ..................... .......... ...................... ........ 38 
Expanding the Fortran Library.... ........ ...... ...................... ........ 36 
Explicit Type Specification ...... ..................... ........................... 8 
Exponentiation, Definition of .................................................. 10 
Expressions 

Arithmetic .............................................................................. 9 

Ex~~~~alFii~~··:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~i 
BACKSPACE Statement ........ ........................................................ 26 External Names ........... ...................... ............. ........ .................. 92 
Blank Fields - X-Conversion .................................................. 21 
Building a Combined System .... ............. ........ .... ............ ... 93, 94 Fields 
Building a Fortran System ........................................................ 73 
Building Object-Program Libraries in Mass Storage .............. 36 ~~:r~~~ .. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~g 

Numeric .................................................................................. 20 

CALL Statement .......................................................................... 31 
Card Boot ........ ......... .......... ........ .............. ..... .... ... ..... ...... .......... 77 
Carriage Control................................ ........................................ 22 
Changing File Assignments ...................................................... 60 
Changing Input/Output Devices ............................................ 36 
Characters, Table of Source Program ...................................... 35 
Checking the Source Program ... ... ..... ..... .... ........ ......... .... ......... 34 
Combined System, Building a .. ...... ..... ... ... ... .... ........ ........ 93, 94 
Combined System, File Considerations ... ...... ..... ..... ....... ...... .... 93 
COMMON Statement .................................. , .................... ,. ..... .... 15 
Communicating with the Operator '" ....... ........ ........... ..... ........ 65 
Compilation Time ......... ........... ........ .......... ...... ... .......... ... ........ 37 
Compiler, Definition of ..... ..... .... ................ ... ....... ....... ............. 45 

g~:~~~~g \?:r~:~l~·~·::::::·.:::::::·.:::·.::::·:.:· ... :::::::::::::::'.:::::':.::::::::::'.':.:: 4g 
Computed GO TO Statement ........................ '" ........... '" ..... ........ 12 
Constants ........... ......................................................................... 7 

Integer .................................................................................... 7 
Logical .................................................................................. 8 
Real ........................................................................................ 7 

CONTINUE Statement .................................................................. 14 
Control Cards ............................................................................ 38 
Control Cards, Fortran Option ................ ................................ 83 
Control Cards Summary of ........ .............. .................. .............. 83 
CONTROL File' ...................................................................... 37, 61 
Control Statements ................ ................ ........ ...................... 7, 12 
Controlling Input/Output Devices .......................................... 37 
COpy Card .......... .......... ........ ............... ................. ...... ................ 40 

File Considerations ............ ................ ........ .............. .................. 61 
File Considerations, Combined Systems ...... .......................... 93 
FIND Statement .......................................................................... 25 
Form of Subscripts .................................................................... 9 
Format Specifications ................................................................ 20 
FORMAT Statement ............................................................ 18, 19 
FORMAT Statements, Multiple-Record .................................... 22 
FORMAT Statements Read In at Object Time ........................ 23 
Fortran Compiler ...................................................................... 40 

FO~;;r::~;:;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~: !~ 
Fortran Library, Expanding the .............................................. 36 
Fortran Loader ............................................................ 40, 42, 54 

g~~~~~s~.~~~ ...... :::::::: .... :::: .... :::: .. : ... :: ...... :: .... :::: ...... :: .. ::: .. : .. :: .................. ::::::::::::::: !~ 
Fortran Option Control Cards ................................................ 83 
Fortran Processor Program ........................................ 36, 40, 90 
FORTRAN RUN ............................................................................ 51 
Fortran Sample Program ............................................ 77, 81, 95 
Fortran Source Program ............................................................ 32 
Fortran System .......................................................................... 36 

Deck Description and Preparation, Tape .......................... 73 
Deck Description and Preparation, Disk ............................ 74 
Building a Tape Resident System ........................................ 73 
Building a Disk Resident System ...... ...... .............. ...... ........ 77 

Fo~;::t~d:t~··::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::"77: ~~ 
FUNCTION Statement .......................... .............. ......... ......... 27, 28 
Functions, Library .......... .............. ...... .................. ....... ........ ..... 28 

DATA Statement ........................................................................ 17 Functions, Using ........................................................................ 31 
Deck Absolute .................................................................. 43, 53 
Deck'Description Fortran System .................................... 73, 74 
DEFINE FILE Stat~ment ............................................................ 26 

General Input/Output Statements .................................... 18, 23 

Defining Subprograms .... ....................... ...... ......... ............ ........ 28 
Definitions .................................................................................. 5 
Diagnostics 

Fortran Compiler .................................................................. 41 

HALT Card .................................................................................. 40 
Halts and Messages ............................................................ 67-71 
H-Conversion ............................................................................ 21 

Fortran Loader ...................................................................... 43 
Object-Time ........ ........ ............. ................... .......................... 44 Implicit Type Specification .. .................................................... 8 

Dictionary, Name .................................................................... 41 Index of the DO Statement ....................................... ............... 13 
Dictionary, Sequence Number ................................................ 41 INIT Card .................................................................................... 39 

98 



INPUT File ....................................... ................................... 37, 61 Object Time Diagnostics .......................................................... 44 
I/O Specification Statement .............................................. 18, 26 Operating Procedures ................................................................ 50 
Input/Output Statements .................................................... 7, 18 Operation, Definition of ................... '" ........ ..... ........ ..... ..... ....... 5 
Integer Constants ...................................................................... 7 Operation Files .. ........ .................................. ..... ....... .... .............. 37 
Integer Size ... ..... .... ......... ..... ...... ...... ............ ..... ......... ............ .... 40 Operations, Order of .... ................ ........ .......... .................... 10, 11 
Internal Files ............................................................................ 38 Operators, Logical ............................................................. '" .... 11 
Introduction .............................................................................. 5 Operators Relational .................................................................. 11 

Order of Operations ...................... ....................... ............... 10, 11 
Jobs ............................................................................................ 50 

Definition of .... .......... ........ .... .... ......... .............. ... ....... ... ........ 5 
Library .................................................................................. 58 
Performing ............................................................................ 65 

OUTPUT File ................................................................................ 38 
Output 

Fortran Compiler .................................................................. 41 
Fortran Loader ...................................................................... 43 

Preparing Processor .............................................................. 50 
Stacking of ........ ........ ........ .... ...... ....... .... ............... .... .... .... .... 36 
Summary of Processor ...... .... ...... ........ .............. .......... .......... 83 
User-Update .......................................................................... 56 

PAUSE Card ................................................................................ 39 
PAUSE Statement ........................................................................ 14 
P-Conversion .............................................................................. 21 
Performing Jobs ........................................................................ 65 

Language Specifications ..... ... ... ........... ............. ....... .......... .... .... 7 Phase Descriptions .................................................................... 89 
Library Build .................. , ..... .... ............ ......... ..... ...... .... ............ 58 Predefined Subprograms .......................................................... 28 
Library Change .................... ...................... ..... ......................... 59 Preparing a Stack .. , ...... ....... ..... ....... ............... .... ....... ........ ........ 65 
Library Copy ............................. ............................................... 60 Preparing ASGN Cards .............................................................. 60 
LIBRARY File ..... .... ........ ....... ....... ..... .... ... ..... ........ .... .......... ........ 38 Preparing Library Jobs ............................................................ 57 
Library, Fortran ................................................................ 40, 45 Preparing Processor Jobs .......................................................... 50 
Library Functions ...................................................................... 28 Preparing User-Update Jobs .................................................... 56 
Library Listing .......................................................................... 58 Print, Storage ............................................................................ 43 
Library Maintenance ... ............ ...... ..... .... ....... ......... ...... ............ 65 Processor Jobs, Summary of . ........... ........ ... ..... .......................... 83 
Library Subroutines ........ .... ..... ............... ....... .......... ................. 28 Processor Runs .......................................................................... 65 
LIST File .............................................................................. 37, 61 PRODUCTION RUN ............ ......... ..•..•........ ...... ........... ........ .... .......• 55 
List Specifications ...................................................................... 18 Program Specifications ............................................................ ,. 36 
Listing, Source Program ............................................................ 41 Programs, Segmenting ....................................... '" .................... 32 
LOADER File ............................................................................ .... 38 Punching the Source Program . ....................... ................. ......... 34 
Loader, Fortran .................................................................. 40, 42 
LOADER RUN •.. ..... ..... ... ..••.. ..•.......... .•...•... ..•....• .......... .....•............ 52 
Logical Constants .............................................................. '" ..... 8 
Logical Expressions " ... ............ ....... ........ ........ .... ..... .......... ....... 11 
Logical Fields ............................................................................ 20 
Logical Files ...... '" ................ .... ..... ........... ... .................. ....... ..... 37 

Assignments .................................................... ................ 61, 65 
Changing Assignments ..... ........... ................ ... ......... .............. 60 
Compilation Time ................... ..... ... ........... ..... .... ..... ..... ......... 37 
Definition of .......................................................................... 5 
Execution Time .......... ... ....... .... .... ............ ..... ....... .... ............ 38 
External .................................................................................. 37 
Function of .. ........ ..... ............. .... ..... ........ ..... ....... ......... .......... 37 
Internal .................................................................................. 38 
Operation .... ....... ..... ....... ....... .... .... ... ......... .............. ..... .... ..... 37 
Residence ................................... ........................................... 37 
Use at Object-Time ........................................................ 37, 60 
Used for Input/Output ........................................................ 27 

Logical IF Statement ................................................................ 13 

Range of the DO Statement ........................................................ 13 
READ Statement ........................................................................ 24 
Reading or Writing Entire Arrays ............................................ 19 
Real Constants .......................................................................... 7 
Real Size ...... ......... ....... ........ ..... ......... .............. ... ..... .......... ..... ... 40 
Related Information .... ........ .............. .................. ......... ... ..... ..... 5 
Relational Operators .... ............. ...... ................................. ..... ..... 11 
Relocatable Punched Card Deck .............................................. 41 
Repetition of Field Format ...................................................... 21 
Repetition of Groups ................................................................ 21 
Residence File .... ..... ........ ... .... ....... ... ........... ..... .......... .... .......... 37 
Restrictions on Statements in the Range of a DO ....... ......... •••• 14 
RETURN Statement .................................................................... 31 
REWIND Statement ...................................................................... 26 
RUN Cards '" ........ ................. .... ............ ... ......................... .... ...... 39 
Running a Stack ........... , ........................................... '" .... .......... 65 
Runs, Processor .......................................................................... 65 

Logical Operators .................................................................... 11 
Sample Program, Allocation for..... .... ....... ..... ... .... ...... .... .......... 49 

Machine Requirements .. ..... ...... ..... ............... ........ ....... .......... 5, 6 
Main Program Name ................................................... '" .......... 40 
Manipulative I/O Statements ............................................ 18, 25 
Map, Name ................................................................................ 43 
Marking Program ...................................................................... 76 
MESSAGE File ...................................................................... 37, 61 
Multiple-Record FORMAT Statements ...................................... 22 
Multiply IDivide Feature .......................................................... 40 

Sample Program, Fortran ........................................................ 95 
Scale Factors - P-Conversion .................................................. 21 
Segmenting Programs ...... '" ..... .... ........ ...... ........ ....... .... ....... ...... 32 
Selecting Processor Runs .......................................................... 37 
Selectively Included Standard Subprograms .... ........... ........... 46 
Sequence Number Dictionary .................................................. 41 
Size, Integer .... .... ......... .... ....... .... ........ ..... ...... ............. ..... .... ..... 40 
Size, Object Machine ................................................................ 40 
Size, Real .................................................................................. 40 

Name Dictionary ...................................................................... 41 
Name, Main Program ................................................................ 40 
Name Map ................................................................................ 43 
Names, Variable ........................................................................ 8 
Naming Subprograms ................................................................ 27 
NOTE Card ... .... ........ ........ .... ..... .... .......... ....... ......... ...... ........ ...... 39 
Numeric Fields .............. , .......... ..... ........ .................. ..... .... ... ...... 20 

Source Program ........................................................................ 32 
Checking the ..................................... '" ..... ... ..... .... .... ....... .... 34 
Punching the ........................................................................ 34 
Statements and Sequencing ...... ............................... ............. 32 
Writing the ............................................................................ 33 

Source Program Characters ...................................................... 35 
Source Program Listing ............................................................ 41 
Specification Statements ...................................................... 7, 15 
Stack 

Object Machine Size .......... ....... ... ........ ..................... ......... ...... 40 Definition of .......................................................................... 5 
Object Programs .......... ..... ...... ...... ....... ...... ..... ... ....... .... ... .......... 45 Preparing a ............................................................................ 65 
Object-time, Definition of ........................................................ 5 Running a .................................. '" ..................... ,.. ....... .... ...... 65 

99 



Stacking of Jobs ........................................................................ 36 Type Specification, Implicit .... ......... ................. ..... ..... ............ 8 
Standard Loader Overlay ........................................................ 46 Type Statements .... .... ................ ..... ............... ........... ..... ..... ... .... 17 
Statement Expansions ..... ..... ......... ..... ........ ... ..... ........... ..... ...... 48 Types, Variable ........................................................................ 8 
STOP Statement .... .... ......... ........... ... ..... ........ ... ..... ..... .... ........ ..... 14 
Storage Allocation .... ........ ..... ..... .... ............. .... ..... .... ..... ....... .... 45 
Storage Print ............................................................................ 43 
Subprogram Names as Arguments .......................................... 31 
Subprogram Statements ...................................................... 7, 27 
Subprograms ... ............... .............. ..... ..... ..... ...... ... ........ .............. 27 

Adantages of ........ ............ .......... ...... ..... ....... .... ....... ............. 27 
Defining .................................................................................. 28 
Function and Subroutine Statements .................... 27, 28, 30 
Naming .................................................................................. 27 
Predefined ...................................................................... 27, 28 
Using ...................................................................................... 31 

Unconditional GO TO Statement ................................................ 12 
Unedited Data .............. .... .... .......................... .......................... 23 
UPDA T Card ........... ............ .......... ......... ............ .... ..... ..... ............ 39 
Updating a Fortran System ................................ 37, 65, 73, 82 
Use of Logical Files at Object-Time ........................................ 6'1 
User Update .............................................................................. 56 
Using ASGN Cards ...................................................................... 61 
Using Functions ........................................................................ 31 
Using Subprograms .................................................................. 31 
Using Subroutines - The CALL Statement .............................. 31 

SUBROUTINE Statement .............................................................. 30 
Subroutines, Library................ .................. .............................. 28 
Subroutines, Using .................................................................... 31 
Subscripted Variables .............................................................. 9 
Subscripts .................................................................................. 9 
Subscripts, Form of .................................................................. 9 
System Control Card Build . ... .......... ........ ............. ..... ........ 76, 80 
System Control Cards ........ ............... ............... ..... ...... ... ..... .... ... 83 

Value of f .................................................................................. 8 
Value of k ................................................................................ 7 
Variable Names .......................................................................... 8 
Variable Types .......................................................................... 8 
Variables .................................................................................... 8 

Compiling .......... .......... ..... ............................................... ...... 40 
Subscripted ..................................... ............... ... ..................... 9 

System Control Program ....... ........... ......... ....... .......... .... .......... 36 
Disk Resident .. , .......... ... ......... ...... ..... .......... ........... ... ..... .... ... 89 WORK1 File .......................................................................... 38, 61 
Tape Resident .... .... .......... ... .......... ........ .... ................... ...... .... 89 WORK2 File .......................................................................... 38, 61 

System, Definition of ... ................... ..... ................. .......... .......... 5 'VORK3 File .......................................................................... 38, 61 
SYSTEM File ........................................................................ 37, 60 WORK4 File .......................................................................... 38, 61 
System Tape, Duplicating the .................................................. 82 WORK5 File .......................................................................... 38, 61 
System Updating ...................................................................... 65 WORK6 File .......................................................................... 38, 61 

Write File-Protected Addresses ........................................ 76, 78 

Table of Source Program Characters ...................................... 35 
Testing the Autocoder System ................................................ 94 

WRITE Statement ................... ..................................................... 24 
Writing the Source Program .... ............ ................... ................. 33 

Transfer of Control.................................................................. 13 
Type Specification, Explicit ........... ............ ............... ........... ... 8 X-Conversion ...................... ...................................................... 21 

100 



READER'S COMMENT FORM 

Fortran IV Language Specifications, 
Programming Specifications and 
Operating Procedures 1401/1440/1460 

C24-3322-2 

• Your comments, accompanied by answers to the following questions, help us produce better 
publications for your use. If your answer to a question is "No" or requires qualification, 
please explain in the space provided below. All comments will be handled on a non-confi­
dential basis. Copies of this and other IBM publications can be obtained through IBM 
Branch Offices. 

• Does this publication meet your needs? 
• Did you find the material: 

Easy to read and understand? 
Organized for convenient use? 
Complete? 
Well illustrated? 
Written for your technical level? 

Yes 
c::J 

No 
c:::J 

c::J 
CJ 
CJ 
c:J 
c:J 

• What is your occupation? ___________________________ _ 

• How do you use this publication? 
As an introduction to the subject? c::J As an instructor in a class? c::J 
For advanced knowledge of the subject? c::J As a student in a class? c::J 
For information about operating procedures? c::::J As a reference manual? c::J 

Other ___________________________________ __ 

• Please give speCific page and line references with your comments when appropriate. 
If you wish a reply, be sure to include your name and address. 

COMMENTS: 

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A. 



C24-3322-2 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAlLEI) IN THE UNITED STATES 

POSTAGE WILL BE PAID BY _ •• 

IBM Corporation 

Systems Development Division 

Development Laboratory 

Rochester, Minn. 55901 

Attention: Programming Publications, Dept. 286 

Staple 

FIRST CLASS 
PERMIT NO. 387 

ROCHESTER, MINN. 

Fold 

---------~---------------------------------------------------
Fold Fold 

ltrn~ • 
International Business Machines CorporatioD 

Data Processing Division 

112 East Past Road, White Plains, N. Y.I060t 
:quammo3 I~uO!l!PPV 

• c 
~ 

-; 
u 



C24-3322-2 

llrnlliI .. 
International Business Machines CorporatioD 

Data Processing Division 

112 East Post Road, White Plains, N. Y. 10&01 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	replyA
	replyB
	xBack

