General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

St X-711-71-286
MSATHY, &S 622

A LIST PROCESSING SUBROUTINE
PACKAGE FOR THE IBM 1800/1130

GERALD A. MUCKEL

JULY 1971

— GODDARD SPACE FLIGHT CENTER ———
GREENBELT MARYLAND

% 3 RSN N 6 C (THRU)
= L] S
¢ © T ipacEks) (CODE)
1 - ¥
- INX S L2 _ o8
9 | ASA CROR THMX OR AD NUMBER) (CATEGORY:
Y =

X-711-71-286

A LIST PROCESSING SUBROQ'/ .''E PACKAGE FOR THE IBM 1800/1130

Gerald A. Muckel
Computer Systems Analysis Section
Data Techniques Branch
Electronics Division

July 1971

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

BRI AN 920§ "o

PRiICEDING PAGE BLANK NOT FILMED

A LIST PROCESSING SUBROUTINE PACKAGE FOR THE IBM 1800/1130
Gerald A. Muckel

Data Techniques Branch
Electronics Division

ABSTRACT

The computer user is constwatly using and manipulating data structures under

software control and most programming problems are problems of dealing with
these data structures. Many of the methods used to manipulzie d-ia structures
not easily handled by standard algorithms can be processed with list processing

techniques.

This paper presents some of the fundamentals of list processing techniques. In
addition to this introduction to list processing, this paper will present a set of
subroutines written for the IBM 1800/1130 that provide a base upon which the
user can build a list processing capability. A demonstration of an information
storage and retrieval system which shows a typical use of these subroutines in

a list processing environment is also included.

Some of the functions that this subroutine package provide are:
(1) The creation of a work space used in setting up individual cells;
(2) Upon user request, the allocation of a cell structured to fit his data
structure;

(3) Return by user action, a cell no longer needed to be reused; and

iii

(4) Character and symbol manipulation support.

While not intending to deal exhaustively with the subject of list processing, this
paper nevertheless will attempt to provide the laymen with an understanding of

the basic concepts underlying this powerful programming technique.

iv

CONTENTS

ABSTRACT
INTRODUCTION .

LIST PROCESSING FUNDAMENTALS .
THE SUBROUTINES AND THEIR USE .
A SAMPLE APPLICATION: AN IS & R SYSTEM . .
BIBLIOGRAPHY . . .

APPENDICES

A The Source Language Listings of the Subroutine .

B A Typical Run of the IS & R System

C Summ- y of the Routines Presently Available . .

Page

iii

12

17

19

21

43

ORI e

e . A E TRt SRR A Y

R et hen

A LIST-PROCESSING SUBROUTINE PACKAGE FOR THE IBM 1800/1130

INTRODUCTION

In "The Art of Computer Programming, ' Volume 1, Chapter 2, Page 229,
Donald Knuth states: '"Although List-processing systems are useful in a large
number of situations, they impose constraints on the programmer that are often
unnecessary; it is usually better to use the methods of this chapter directly in
one's own programs tailoring the data format and the processing algorithms to
the particular application. Too many people unfortunately still feel that List-
processing techniques are quite complicated (so that it is necessary to use some-
one else's carefully written interpretive system or set of subroutines), and that
List-processing must be done only in a certain fixed way. We will see that there
is nothing magic, mysterious, or difficult about the methods for dealing with
complex structures; these techniques are an important part of every program-
mer's repertoire, and he can use them easily whether he is writing a program

in assembly language or in a compiler language like FORTRAN or ALGOL. "

It is in the vein of indicating that ''. . . there is nothing magic, mysterious,
or difficult. . .'" about dealing with complex data structures in FORTRAN,

that this paper is presented.

List-processing techniques are applicable in a surprising number of program-
ming situations and computer programmers and analysts will find that their

knowledge of these techniques is a valuable asset.

LIST-PROCESSING FUNDAMENTALS
Before discussing the use of the subroutines to be presented, some basic list-
processing concepts and terminology must be understood. This section is in-

tended to give this needed background.

A "list" is generally defined as a sequence of elements, each of which may also
be a list. In less formal terms this means that although data items are norm-
ally stored sequentially in core; if they were stcred as a list, each item would

contain not only the data item but the location of the next data item in sequence.

A familiar example of a list is the English word "boy.'" This word contains a
sequence of the letters '"b'', "o'" and "y". Thus this sequence of three letters

forms a list.

We could take additional letter lists, ""The, ' "eats' and "food, " and put these
four letter-lists into a more complicated sequence of elements and form the

list ""The - boy - eats - food". This is now a sentence composed of words, each
of which is composed of letters. Thus the elements of this list are themselves

lists.

We could continue to build the previous example into paragraphs which are lists
of sentences, then perhaps into chapters which are lists of paragraphs, and so

on.

The above example of paragraph structure is also an example of a "list structure"

which is defined as any implicit or explicit organization of lists.

In parsing or diagramming sentences, a restructuring and manipulating of lists
would take place. And in writing a story the creation of lists of words would be
composed into sentences. Also we would most likely change sentences by de-

leting words and adding others in their places.
The creation, manipulation, and erasure of lists is called "List-processing."

In the list of words, "The boy eats food, ' each of the individual words which
make up the sentence are also lists of letters and are thus called "sublists' of
the larger list structure. More formally, list B is called a sublist of list A if

list B is treated as if it were a single element of list A.

We shall now look at lists in context of their computer representation. The
basic element of a list is called a ''cell" which is defined as one or more con-
tiguous words of memory which is treated as an individual entity. The informa-
tion contained in these words defines the "cell structure." The cell structure

is defined in units of '"fields' which are one or more bits of information within

a cell. Thus cells are made up of fields and lists are made up of cells.

The individual cells of a list need not occupy contiguous areas of core, thus we
use within a cell a ""pointer' to the next cell or cells within the structure. This

pointer is a field whose contents is the "name" of the next cell in core. The

"name of a cell"” is the absolute core address of the first word of the cell. Thus
a pointer has as its value a core address and provides linkage between parts of
a data structure. This function of a pointer gives rise to the synonym 'link."
(Sor.e authors distinguish a pointer as being a whole word field which contains

a cell name and a link as being a field of less than a word in length which con-

tains a cell name.)

The information contained within a cell which is non-linkage fields, is the data

which the list structure is being built to enable the user to manipulate.

In addition to naming the cellular elements within a list, we also name lists.
The ""name of a list" is the name of the first cell within the list. Thus a list
also has as its name a core address. Generally any identifier whose value is a
list name is called an "alias' of that list. A list only has one name but may

have many aliases.

In a high level language like FORTRAN we usually deal with identifiers whose
numerical value is treated in a mathematical sense only. But if we use a
FORTRAN identifier whose value is treated as a pointer into a list structure it

is called a "fixed reference pointer."

In a paper and pencil representation of lists we also follow certain conventions.
Such as representing a cell as below where each horizontal line demonstrates
a computer word, the whole rectangle represents a cell, and each sukdivision

of the cell is the fields within the cell:

0O

The above is an example of a three word cell with four fields.

If this cell were part of a structure that had only one link per cell - say field

"C'" - then a portion of the structure might be represented as below:

=N = =N

Where the arrows indicate the linkage direction. The explicit cell names are
left out because this information is a function of the location of the individual
cells and not a function of the list structure itself. This is not to say that this
information is not important, only that the relative value of the pointers does

not change the relative makeup of the structure.

The example given above is a ''linear list'" in which each cell has a single link
to the succeeding cell of the structure. A more complex example of a linear
list and one which brings together many of the concepts introduced so far is the

following:
A .

T T s <] %

»mw - el

R s

This is an example of a linear list (or linear linked list) of four cells whose list
name is tu.e value of the alias 'A'. Note that if A were an identifier within a

program then it would be a fixed reference pointer also.

At some point a finite list must end. The end of the sequence of cell pointers is
indicated by the symbol "@" and is called the 'null pointer." Any symbol can be
used on paper but the actual value put into the link field of a cell represented
within a computer must be some value that cannot possibly be construed as be-
ing a valid pointer. Since pointers have as their value a number between zero
and core size of the particular computer, a good choice of a null value would

be any nonpositive number. And this is what is usually done.

In a linear list we can easily advance thru a structure only in one direction -
that indicated by the linkage direction. Thus we have no ""back-up' facility with
this type of structure. This problem is partly alleviated by replacing the null
pointer in the last cell with the name of the first cell in the list. Thus our list

looks like this:

— S TS =S T=

This type of structure is called a "circularly-linked list" (or a circular list) and
has the advantage that any part of the structure can be reached from any other

part of the structure.

Another type of iist structure that gives this abi.ity but in a more direct fashion

is the use of links both forward and backward in each cell. This type of structure

is called a ‘'doubly-linked list'' and is represented as follows:

A

a\

P

>\

AN

N

<

AN

This representation of a data structure has the added advantage of ease of refer-
ence to any cell from any other cell, but has the obvious disadvantage of taking

up one extra word per cell as the backward pointer.

We can combine the features of the circular list and the doubly-linked list to
obtain a structure called a '"circular doubly-linked list."' This structure is simi-
lar to the doubly-linked list except that the null pointers at the end of each se-
quence of backward and forward pointers is replaced by a pointer to the begin-

ning of the sequence. Thus it has the appearance:

— ~
2 e s o

The structures presented so far have all been "linear list structures' and form
an important class of data structures. The most important type of non-linear
list structure is the '"tree.'" The structure is well named for it has a branching

structure much like that of a real tree.

The cells of a tree are also called '"nodes' and contain pointer and data like the
cells of a linear structure. The difference is that unlike a linear structure
where each cell has a unique successor or 'descendant,' the nodes of a tree

may have many descendants.* Thus a tree structure may look like this:

: — -— —I¢ -
%)
- =T
@ &
b
b

The above example of a'binary tree' because each node can have as many as two
descendents. In general an '"n-ary tree'' is defined as a tree structure that has
n link fields in each cell. Note that as usual, any link field that contains the null

value in the tree structure is indicated by the presence of the symbol "g".

*In mathematical graph theory, the definition of tree used here is normally referred to as a rooted tree and
a more general definition of tree is presented. The interested reader should see: Ore, Oy:tein ‘Graphs and !
Their Use’ Yale University, 1963, Random House, Mathematical Series. o

The creation, manipulation and erasure of list has as basic functions the inser-
tion and deletion of cells of a list structure. There are many sources of pub-
lished algorithms for performing insertions and deletion in a list structure (see

particularly Knuth Volume 1, Chapter 2).

Assume cells are to be inserted into the following list:

— ——— -t ¢
D A D A DA
T1 T 2 T3

An insertion of a cell between the cells containing 'DAT2' and 'DAT3' can be
done easily by changing only one pointer within the list. The list after insertion

would look like the following:

—t ———b — ¢
D A D A D A
T1 T2 T3

This is of course of very simple list structure and the insertion and deletion

process becomes more involved.

Although insertion and deletion of cells of a list structure are basic to list ma-

nipulation, two basic problems of computer implementation have been glossed

B .
o e

over: (1) Where do we get the cells that we are to insert into the structure, and
(2) What do we do with the cell once it is deleted? The procedure normally
followed in a system that is to be generally applicable is to allow the user to
create a workspace in which he can build cells, and to which he can return cells
when they are no longer needed. In a FORTRAN embedded system a declared
array is uéed for the cell workspace. This array is organized into cells and is
termed the 'list of available space' (LAVS) or '"pool" of available storage. A
routine to keep track of the structure in the LAVS is needed. This routine will
keep track of which cells are available for use and which are being used. Then
when a new cell is needed for the building of a structure, this routine is called
upon to deliver the address of a cell that is available. Likewise it is necessary

to have a method of returning unneeded cells to the LLAVS,

So far we have developed a need for three subroutines to establish and keep
track of the pool of cells. It is also convenient to have the ability to erase a
whole list at once., Without a routine to erase a list (i.e., return all cells of
the list to LAVS), it would be necessary to repeatedly cal’ the routine that re-
turns individual cells until all are in LAVS8, So a fourth routine is added to our

repertoire.

So far four routines have been mentioned: one to establish the workspace into
cells structured to the users needs; one to deliver cells upon request; one to

return cells to LAVS; and one to erase a whole list or sublist in a structure.

10

: SR

S TEAL AR o S e N

O T

It is generally agreed that the existence of these four routines are sufficient to

give a FORTRAN user a complete list processing capability.

11

THE SUBROUTINES AND THEIR USE

When a computer user decides to implement a list processing system on his
machine, he has two alternate ways of accomplishing this. First, he can obtain
a source level deck of one of the commercially available list processing language
packages like SLIP, LISP, or COMIT and convert it to run on his machine.

This of course involves a great deal of reprogramming since most of these
languages were written for larger machines (like the Univac 1108) and take ad-
vantage of capabilities of that machine that the 1300 user does not have. Fér
example, SLIP is a FORTRAN embedded language and uses such features as
named COMMON, variable dimensionality of arrays, and a 36 bit word into

which two '"'full core' addresses can be stored as pointers.

Another disadvantage of doing a conversion is that most of these packages have
a fixed data structure and a user is stuck with this structure even if it does not
fit into his problem context. Again using SLIP as an example: SLIP uses cir-
cular doubly-linked lists at all times and the user of SLIP must be satisfied

with this, Admittedly it can usually be tolerated, but may not be the most effi-

cient method for the user's application.

The second alternative in achieving a list processing capability is to write a set
a subroutines that give the user a 'general' list processing capability. By
'general', I mean that the routines provide basic list processing capability but
do not limit the user to a particular data structure. Rather they allow him to

build any type of structure that fits into his problem context.

12

”ﬂ-«.;;’ e e

T T R

This second method is the one we adopted at our installation and this paper is
intended as documentation for the subroutines that have been written to provide
this list processing capability. As our applications become more complex it is
expected that this basic system will be expanded by adding routines to provide

the needed support.

This subroutine package is intended as a base upon which to build in order to

give an 1800 user a list processing and symbol manipulation capability.

In a list processing environment it is necessary to create, manipulate, and

erzse lists at the users option. In fact, that is the definition of '"list processing. "
The four subroutines MPOOL, GIVME, TAKIT, and ERASE serve the functions

of creating and erasing whole or parts of a list structure. The method of manip-
ulation of a list structure is user dependent but the routine INSTO, STORE, LOC
and ICONT are tools that make the manipulation of the structure much easier in

FORTRAN,

The routines that provide a symbol manipulation capability are INSTO, LOC
and ICONT mentioned above and the routines that give half word manipulation

capability: IRHLF, ILHLF, SETL, SETR, STOL, and STOR,

The following is a list of the routines now available along with an example of

how each might be used.

13

b 2adid

LOC (A) returns the absolute core address of the FORTRAN variable
'A'. If A were stored at location /702F, then the value of LOC (A)
would be /702F,
ICONT (AD) returns the contents of the absolute core address whose
value is the value of the FORTRAN variable 'AD', If AD = 102, then
ICONT (AD) = ICONT (102) = beginning address of VCORE in TSX,
Note that this serves the same function as the LD function in the TSX
and MPX systems. Also note that ICONT (LOC (A)) = A.
ILHLF (A)
IRHLF (A)
These routines return the left half or right half of the FORTRAN vari-
able 'A', The returned value is right justified in the accumulator. I
location 1000 contained /7F02, then the following coding:

J = ILHLF (ICONT (1000))

K = IRHLF (ICONT (1000))
would cause J and K to have the values /007F and /0002 respectively.
Note that the following coding would cause J and K to have the same
values as above,

DATA M/Z7F02/

J = ILHLF (M)
K = IRHLF (M)

14

4.

SETL (FV, VAL)

SETR (FV, VAL)

These routines change the left or right half of the FORTRAN variable
FV to the value of the variable VAL. If VAL is greater than half word
precision of 255, then it is truncated to 8 bits,

The coding:

V1 = 258
V2 = 193
V3 = 194

CALL SETL (A, V1)
CALL SETR (A, V2)
C = V2

CALL SETL (C, V3)

would cause the variable A to have in its left half the value 2 (because

- of truncation) and the value 193 in its right half. Since 193 = /C1 =

'A'and 194 = /C2 = 'B!', the variable C has the EBCDIC characters
'BA' as its contents,

STOL (AD, VAL)

STOR (AD, VAL)

These routines function in a manner similar to SETL and SETR except
that the FORTRAN variable 'AD! is not altered but instead is intepreted

as the absolute core address of the word whose left or right half is to

15

gy e e i e o e

be changed. That is, STOLand STOR are indirect SETL and SETR, Thus
STOL (LOC (A), VAL)
is equivalent to
SETL (A, VAL)
INSTO (AD, VAL)
This routine stores the value of the FORTRAN variable 'VAL' into the
core location whose address is the value of the FORTRAN variable
'AD'., Thus
CALL INSTO (7000, 169)
would set the contents of location 7000 to the value of 16Y.
It might be interesting for the reader to verify that if A is a one-word
integer FORTRAN array then
A@M =K
is equivalent to

CALL INSTO (LOC (A) - I + 1, K)

16

o

RO PP eSS IR Y SR N 5 o RN

A SAMPLE APPLICATION: AN IS & R SYSTEM

A typical use of these routines in a list processing environment can be demon-
strated by an information storage and retrieval program. In this program,
data items are entered into a structure under a known key. The user can then
ask the program to find all data entered under a key he is interested in and all

related data items will be typed out on the 1053 typewriter.

The method used to enter a data item under a given key is hash coding using a
hash table with direct chaining. That is, the key is treated as numeric data and
reduced to a number between 1 and the declared size of an array to be used as
a hash table (i.e., the key is hashed). Then this array entry is used as a fixed
reference pointer to a list (chain) of cells containing keys and their data and

links to succeeding cells.

It is the nature of hash coding that several unique keys could be hashed to the
same number. Therefore it is necessary to store the key in the cell for com-

parison before retrieval of the data.

When searching for a key, the entry process is repeated to locate the proper
chain, Then the chain is searched using its link field to walk down the list,
The key in each cell is compared to the key being searched for. If a match is
found, the data item is retrieved and the search continues until the end of the

chain is reached. If no matches are found in the chain, it is known that no data

17

o eelper s - WNEE S YWNL | TRMAT S T GRR B s i b

5 R Lo S oMk . 54

was ever entered under that key. This is true because the hash function is al-

ways chosen tu be repeatable.

The commands recognized by the program are the following:

(1) STORE KKKK DDDDDD
This stores the data item 'DDDDDD' into the structure under the key
'KKKK?'.

(2) FIND KKKK
The structure is searched for the occurrences of the key 'KKKK' and
all related data items are retrieved.

(3) STOP

The program executes a 'CALL EXIT!'.

NOTE: The support routines use one word of COMMON as a pointer to the top

of the list being used as LAVS.

18

BIBLIOGRAPHY

If anyone is interested in pursuing list processing technirues or list processing
languages farther, he may find the following books and articles very useful.
Some of these were used in preparing this paper and all are valuable reading

material.

ABRAHAMS, P. W,, "List-Processing Languages'' in '"Digital Computer Hand-
book, ' Klerer and Korn (eds.), 1967, McGraw Hill, Inc.

BOBROW, D. G. and RAPHAEL, B., "A Comparison of List Processing
Languages,' Communications of ACM, Vol. 7, April 1964,

FOSTER, J. M., "List-Processing,' 1967, MacDonald Computer Monograph
American Distributor, American Elseview Publishing Company, Inc.
GELERNTER, H.; HAUSEN, J. R.; GERBENCH, C. L., "A FORTRAN-
Compiled List-Processing Language,' Communications of the ACM, September
1959.

KNOWLTON, K. C., "A Programmer's Description of LS, " Communications
of the ACM, Vol, 9, August 1966.

KNUTH, Donald E., '"The Art of Computer Programming,' Vol. 1, "Funda-
mental Algorithms,' 1969, Addison-Wesley Publishing Company.

LAURANCE, N., "A Compiler Language for Data Struci:res,'" Proceedings of
1968 National Conference of ACM.

LEEBERMAN, R. N. and PFALTZ, J. L., "SLIP-A FORTRAN List-Processor,"

University of Maryland Report #TR-66-33, September 1966.

19

ROSEN, Saul, (ed.), '"Programming Systems and Languages,' 1967, McGraw
Hill Book Company.

SAMMET, J. E., "Programming Languages: History and Fundamentals, ' 1969,
Prentice-Hall, Inc,

WEGNER, Peter, "Programming Languages, Information Structure and
Machine Organization,' 1968, McGraw Hill Book Company.

WEIZENBAUM, J., "Symmetric List-Processor,' Communications of the ACM,

Vol. 6, September 1963.

20

B i

et g s o

PRSP RIRTOE

APPENDIX A

THE SOURCE LANGUAGE LISTINGS OF THE SUBROUTINE

This appendix contains a source language level listing and compilation of the

demonstrative information storage and retrieval program and all the subroutine

in the list processing package.

21

o1 01 09
(Viva4A3n) 33¥0LS 1VI &

11 00 *«3¥01S:s SVM (I

[SXS NS

01 01 09
(A3%) OGNI4 1VD &

11 00 * «ONIds SVM LI

(SN

E4TT4E ((2)d0LS—-(2)ANWOD
€464¢ ((T)40LS-(T)ANWOD
€¢L%% ((£)01S~-(€)ANWDD
84948 ((2)01S-(2)QANWDD
84648 ((T)01S~-(T)ANWOD
€404€ ((Z2)ONAL~(2)ANKROD
14241 ((T)GNA3-(TIOGNWOD

- -
(VN7
Lo
NN OO

ONVWWOD 3HL A4I1IN3QI

VLW

(CvesxXTéevesx1tivieve) LvWyod 001
ViVA*AINANWOD ¢ 001°9) GV

153nd3y v av3d

[(SRE RS

AZ8AL1 1Vv) 01

(ZST1334ZSAVI*SAVY) 100dW 1TV
TINN=(I)LHSVH 61

ZI1S1H*1=1 S1 0a

A
N

S173) 334 40 1G04 3HL dN §13S ONV
¢ 7NN 01 SIiYINI 1TV INIL1LIS AS 378VLI HSVH 3HL 3IZITVLINI

VLWL

/1-/TINN /700G /ZSAVTI*/0G6/21ISLH*/9/2S13) Vviva
74d00 44 1Sa/d01S% /e 02 08014 01Se/01S%74ONa*s130/70NAS VIVA
LHSYH NOWWO)

10101 NOWWOD

(000G)SAVTI*(0G)LHSVYH ZISLH4ZST13D ¥3931INI
(2)AING(2)d0LS*(EI0LS*(2IANAS*(EIVIVA* (EIONWOD ¥3II3INI

(3Y0LS ¥0d4) viva YO/ANVY (ONIJ ¥O4) AIN Vv A8
G3M07704 ONIde YO «3¥0LSs 40 GNOWWOD Vv SI1 LINdNI 3IML

W3ILSAS TVAII¥LIY
ONV 39VY¥0LS NOILVWIOINI 3TdWIS V ¥0d INIINIVW 3HL ST SIHL

LLLLLVLL

(Q¥VI*YIUINIUd €9%1)SI01»
(¥ILIYM3dAL4AQYVOBAIND SO =
SY3IO3IUINI GIYOM 3INO=

1V 1S1=

WYYO0¥d SSIIOUINON=

¥S1 ¥04 //

NOIL1VII4W0D 40 ON3

oo~. WYY90Yyd 226 S3718VI¥VA O NOWHOD TMNSNI 2§ NOWNOD

NQuY) 139493 NiNYd 9370 N3IdAL Jsans IvVOIwW dWOIW 1UMW UER. X01S1 3¥01S

8veo= 11 <¢Zveo= €
gezo= 6 6820= 8 9QL20= 9 €L20= S 8920= 1 1920= 2 Vv%20= 01 €€20= st

¥S1 Y04 SIN3IWIYINDIY 3I¥0D

8020=9 v02o=1
SINVASNOD ¥393iNI

anNiJ AZ9A1 I00dM
SHYY90ud48NS a311VI

$J01

SY3931INI QuUOM 3ND
SS3IJ0Y4NON
a319044NS SUNivIY

2620= L L620= ¥
9120= €01 2J020= 001
SNOILVIOTIV LN3N3LVLS

L020=(1)ZSAW 9020=(1)1 NN

S020=t 1)1 1100-%020=(1)SAV 0100=(I)ZISLH 4000=([)ZS17132 GOCO-3000=(I)A3IN

8000-2000=(1)d0i1S

8000-v000=(1)01S 9000-2000=(I)AGNAJ €000-5000=(I)ViVQ 0000-2000=(I)GNWO? GJ344-3444=(D1) LHSVH 4344=(21) 1010l

SNOI LVIOTTIV 379VINVA
anN3
1IX3 1Ivd U1
01 01 09

€ /7 « 39VNINVI TVAITYL3IY JHL NI GNVWWOD HINS ON «) L1VWYO4 €OT

V937 10N GNVNHO)D

20 39vd

(€0T¢1) 311uM €

[SE-NS)

23

ISR
DUP FUNCTION COMPLETED
// FOR STORE
SNONPROCESS PROGRAM
SLIST ALL
SONE WORD INVEGERS
SUBROUTINE STORE (KEY,DATA)
COHSSERESEIRSSSEA SRS RSR S EENB RN AR R UN LR SER R BREESREH BB ERUUBS SRR E

THE SUBROUTINE *STORE' STORES THE ELEMENT INTO THE SYSTEM USING
A 'OIRECT CHAINING® METHOD WITH A HASH TABLE ENTERED bY USE
OF THE HASH FUNCTION °*HASHF',

(s XaKsXaNaNal

SESSBESHIIBEBELESEHE BRI RBB RSN SEBIS AR NS SRS SRR RS S SRR UB ARSI RSUB SRV U NG
INTEGER DATA(3),KEY(2)¢HASHT(50) 4yHTSIZ
COMMON 10107
COMMON HASHY
DATA HTSI12/50/
6 1 = IHASHIKEY HTSIZ)

c
C SAVE THE CURRENT VALUE OF THE HASH TABLE ENTRY TU BE USED
C AND SET THE HASH TABLE TO ADDR OF CELL TO BE USED FOR STORE
C
NEXT = HASHT(])
CALL GIVME (HASHT(1))
c
C PUT INTO THE CELL THE °*KEY' o THE 'DATA' , AND THE ADOUR OF THE
C NEXT CELL (OR NULL ON THE FIRST ENTRY) IN THE CHAIN
c
CALL INSTO (HASHT(1),NEXT)
CALL INSTO (HASHT(1)=1,KEY(1l))
CALL INSTO (HASHT(1)=24,KEY(2))
CALI. INSTO (HASHT(1)=3,DATA(3))
CALL INSTO (HASHT(])=4,DATA(2))
CALL INSTO (HASHT(1)-5,DATA(1))
C
C NOTE * THIS METHOD PUTS THE MOST RECENTLY ENTERED ELEMENT AT
c THE *TOP' OF THE CHAINy SO IF TWO ELEMENTS HAVE THE bSAaME
C *KEY®y THE MOST RECENT ONE STORED WILL BE RETRIEVED
C FROM *FINDIT?,
C
RETURN
END
VARIABLE ALLOCATIONS
IDIOT(IC)=FFFF HASHT(IC)=FFFE=-FFCD HTSIZ(1 1=0002 1(1 ¥=0003 NEXT (I 1=0004

STATEMENT ALLOCATIONS
6 =001D

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
IHASH GIVME INSTO SuBsSC SUBIN

INTEGER CONSTANTS
1=0008 2=0009 3=000A 4=0008 5=000C

CORE REQUIREMENTS FOR STORE
COMMON 52 INSKEL COMMON 0 VARIABLES 8 PROGRAM 176

END OF COMPILATION

24

R S5 M v e e,

S e T TR TR 0 T TR T e e Ty

(7 2v€*, SI ViVO Q31VIJOSSY 3HL +) LvWdOd 101
vivao (TO0T*1) 34I¥M L
9741 ¢t 842) OL 09

(€-1X3N JINDII = (€)V1VAOD
(9=1X3N JLNOJI = (2)V1V0O0
(S=I1X3N JINOII = (T)ViVGO 1
3
(S-1X3IN)INOD NY¥HL (E-1XINIINOI LV SI +VIVG: 03LVIIOSSV 3L 3
* 1X3N AG 01 QIINIOA 113D 3IHL NI +AINe IHL ONNOH 3AVH 3N .
]
2 o1 09
. (1X3N)INODI = 1X3N €
.
NIVHD 3H1 2
NI 3ND 1X3N JHL IV %007 ¢ 173D LVHL NI WV3ddV LeNQIG AIN 3HL 2
6]
S4T4S ((ZVAIN-(Z-1XINIANDII) 41 9
$4945 ((TIAIN-(T=1XINIINOII) 41 &
94€4% (TINN-LX3IN) 41 2
)
*¥0¥¥3 NV SiI]
{ 379v1v3dIY¥ ST NOILINNG HSVH WL IINIS) NIHL ¢ NIVHD 3HL 40 2
INIWIII NV SV 4A3N. 3HL GNNDJ LiNIAVH 3M ONV 1IN ST AX3N 4T p)
3
(1 JIHSVH = 1X3N
(ZISIHAINIHSVHI = |
~
*¥IIN3 01 INIOD 3uV)
3M 37AV1 HSWH 3HL 40 NTVA INIWIND 3HL 3AVS ONV sA3X: IHL HSVH 2
1 = 9141
3
IVWH04 INd1ND 3HL STOYINGD 9141,)
6]

/0S/Z1SLH*/T~/ 1NN viva
AHSVH NOWWO)D
10101 NOWWDD
T2IAMMMEIVIVAD *ZISIH (0S)LHSYVH ¥3IIILNI
RSV R ERRAETERAREBXIE L XX XN RS SRS KPP E VLB XXX A EERER XL R LR RRERE BB %K%)

u

*A3% LVHL ¥3OGNN ANNO-! 2

(IvH3IAIS 39 Aww JYUIHL) SW3L] VIVG IHL SINIYd ONV LI OL N3AI9 2

A3 3HL ¥O4 SNIVHD 378VLI HSYH 3HL SIHIYVIS +ONId INILNOY¥ENS 3HL J

2

FEEEREEEXRELLBELRRRAAREL TR S E XX CA RN R XL RR LR EXF S XEEXRES SRR RBBB L SR 2%)
{ A3%) ONIZ4 3N1LNO¥ENS

WYY¥90¥d SSIIVUINON=

1V 15117

SYIOIANT Q¥OM 3INDs

anid wod //

03137dW0I NOI1LINNG dNO

3Y0LS

25

NO1iV1IdW0D 30 ON3

961 WYYI0Ud »1 S318VI¥VA O NOWWOD TINSNI 25 NOWNOD
GNId ¥O4 SINIWIVIADIY I¥0D

2100=¢ 1100=% 0100=S 4000=2¢ 3000=1
SAINVLSNOD ¥3931INI

NIGNnsS a59nsS IVOIW dWOM 1YUMH X01SI g9M0I 1NODI HSVHI
SWY 3903¥d8NS G31TVI

SY¥I9ILNI GYON 3INO
SS3J0U4NON
031 ¥044NS SIUNLVYIS

0G00= 01 3JJ00= 6 9300= €
a|ao00= 8 0800= L €800= T 72000= S Q900= 9 3600= % 8S00= Z 8200= 001 %200= 201 ¢€100= 101
SNOILVIOTIV AIN3IWILVLS Mw

6000=(I)1INN 8000=(1)1X3IN

4000=(1)1} 9000=(1)9741 €000-5000=(1)VivaO 2000=(I)ZIS1H QJ44-3dd44=(IIILHSVH 34444=(21)i0101
SNOILVIOTTIV 3TGVIYVA

aN3
N3N13Y O1

t /77 « HNVE ViVQ3 3HL NI INIW3T3 HINS ON s) LVWYGS 001
(00141) 311YM 6
941 ¢ 0T%6) 01 09 €

YOUU3 W03 WIIHD ¢ INIO4 LIX3

VWO

s 01 09
(2vesXxy2) LVWYOd 201
ViVAO (201°1) 3114k 8
S 01 09
2 = 9141

20 39vd

NOILVIIdWOD 40 AaN3

2t WYYS50¥d 9 SITQVIYVA O NOWWOD T13XSNI O NOWWOD
HSVHI ¥0d4 SLIN3IW3IVINO3Y 3¥0I

9000=1
SANVASNOD ¥3931INI

NIans aow
SWYY90UdENS a311vI

SY3IIOILINI QYOM 3INO
SS3J0¥dNON
3313¥0ddNS S3yNnivad

€000=(I)HSVHI
SNOI LVI07V 379VIYVA
aN3
N3Nni13d
T+0 ZIS(ZADIF(TIAIN) QOW = HSVHI

(Z)A3N43ZIS ¥3I9ILINI
EEEEXIREAF TR R R kR Rk ok ok ook e fooleokokode @ o ko oo oo e ok ool ek ok ookl ol e sl e ko ok ok)

o)

®s3ZISe AGNV 1 J

N33MLI3Q Y3IOIUINI NV 01 «A3Me JHE SIINAIY NOILINNG HSVH SIHL J

o)

EXXRXRREXKKI XX RRETRRER XS AR AR ER R PR BB RN AR KRR ER Xk R XkF Rk Rk SRR RKEkERREE)
(IZISCAINIHSVHI NOILINNS ®¥I9IUNI

SY3931INI QYOM 3INOx%x

TV 1S17x%

WVY90dd SS3II0UINON=

(FZIS4AIMNISHSVH ¥O4 7/

G3137dW0D NOILINNI dNA

aONId

27

P

00W NYHL 11IX3
INIOd A¥IN3I 31vadn
13X 3301S3Y

JV 01 ¥IAANIVW3IY

N A8 30IAlQ

0 = (JV)

OW OL W

IV 01 (W)

14X 01 (W)¥aav

TIX 3AVS

QoW

2 *00NW
t g
91

1

91

91

o

oW
T+TYX
0

aow

N °37° 39 ISNW W °N OINAOW W

JINAWOI 0L WVYOOUdENS NOILIINNY V - (N*W)IAOW

39vd

11
tl

GN3
JS8
Xaw
Xajl
1Is
a
vis
1¥S
al
Xa1
X1S
20
IN3

TuX

aow

* % %

2100

000008J3% 10 4000
000020%2 10 Q00O
00000059 00 89000
0601 0O V00O
100008V 00 8000
0181 0 1000
0681 0 9000
00000852 00 %000
00000859 10 2000
v0o69 O T000
0000 O 0000
000%86%H1 0000

OWTIA NOILINNY QOW

3719V1L T109WAS INI¥d=%
1SI%
QOW WSV //
03137dW0J2 NOILINNI dNA
HSVHI

28

aN3
N3¥N13Y
€ +°39NLINYLS TVAIYINON V Q1IN

1

A LONNVD NOA +4/7%¢°STT3D OYOM « *21%s Y04 100dW ISN AHM o) LVWH04 201

SJ (201%t) 311uM S

1I1X3 1v)
(sSAVY dN 13S LONNVI
$/744Q31VI0TTIY 3IVdS *39° 371S 113D) LVWYOS
(0014€) 3I11uNM
N3N13Y
(1INN*d) OLSNI T1IVI
0=4d
{ AVINI*1-d) O1SN] 1IV)
(0%d) O1SNI T1V)
1dMeS) - d = D
STIN‘T =1 1 00
d = VIVAY
(32vdS)I201 = d
T = SI/WIGN = STI3DN
€4€4Z (WION - SI) 41
494G (2-SI) 41
/1/14R viva
/141-/AVINI®* 1NN viva
TIVAV NOWWOD
D4d*I1dH*TIVAVESI*3IVdS ¥39IINI

°300d 3IHL NI 17132 378VIIVAV IX3N 3HL
01 ¥3INIOd ¥ SV 143X 36 1VIM JVIVAV. ITGVINVA NOWWOD 3HL

SONOT SGQUOM +SJe ST

ONINVH WIGNs NUHL T SQYOM INISN +3IVdSe AVYYV QINCISNIWIA ¥3ISN

JHL NI ST113) 379VIIVAV 40 1004 3HL dN 23S T1IM 3NILNOY SIHL

{SI*WIGN*3IIVdAS) 100dW INILNOYSENS

1

0ot
€

QUWUWLUWOLUVLRWLOLUWY

SY3934N1 QYOM 3INOs

1V 1SIx

HVYO0dd SS3I0UINONe
100dW ¥04 7/
03137dW0D NOILINNG dNQ
aow

*ATIAW3SSY 3A09VY NI SHOYWY3 ON

8000 Tux 0000 aow

379v1 Y10OMAS

29

NOIAVTIIdHBD 30 aNI

281 WV3O0ud O1 SIATAVIYVA O NOJIWOD IINSNT 2
100dW 403 mhzw:wuﬁaamx mx u

3000=¢ 8000=% ¥o00=2
SINVASNGD ¥393INI

NIenS 101N dHWOM LMW v49s Jv4sS 01SNI
SWvY90Y4ans Q3

S¥39
a31 4044

4900= S 14800= € 3600= T 4900= Z 6900= % 9200= 201 Q000= O
SNBTLVIONTY INIWIL m

8000=(I)IIAN L000=([)AVINI

9000=(1)1 S000=(1)SV1IAIN %000=(110 €000=(1)d 2000={ T)1ldMm d9d44=4(IL)
mzauhqueaad wami-¢§>

20 39vd

MPOOL

OUP FUNCTION COMPLETED

// FOR GIVME

SLIST ALL

*NONPROCESS PRIGRAM

S0ONE WORD INTEGERS
SUBROUTINE GIVME(])

THIS ROUTINE WILL DELIVER 1IN
AVAILABLE CELL FROM THE POOL.

OONOO

INTEGER AVAIL,NULL
COMMON AVAIL
DATA NULL, INUSE/-1,0/
IF (AVAIL=-NULL) 1,241
1 I=AVAIL
AVAIL =ICONT(AVAIL)
CALL INSTO(IoNULL)
CALL INSTO(I-1,INUSE)
RETURN
2 WRITE (3,100)
100 FORMAT (* LAVS EXHAUSTED.'//)
CALL EXIT
END
VARIABLE ALLOCATIONS
AVAILCUIC)=FFFF NULL(T)=0002
STATEMENT ALLOCATIONS
100 =0006 1 =001lF 2 =0038
FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS

ICONT INSTO MWRT MCOMP SUBIN

INTEGER CONSTANTS

1=0004 3=0005

CORE REQUIREMENTS FOR GIVHME
COMMON 2 INSKEL COMMON

END OF COMPILATION

31

O VARIABLES

'I1* THE NAME OF THE NEXT

INUSE(1)=0003

4 PROGRAM

58

VO S

Iy

gt
B WS

-

GIVME

OUP FUNCTION COMPLETED

// FOR TAKIT

sLIST ALL

*NOKPROCESS PROGRAM

$ONE WORD INTEGERS
SUBROUTINE TAKIT(CELL)

THE POOL.

(3N sXaNaN gl

INTEGER AVAIL,CELL
COMMON AVAIL
DATA INLAV/1/
IF (ICONT(CELL=1)-INLAV) 2,1,2
1 WRITE (3,100)
100 FORMAT(* CELL ALREADY IN LAVS ')
RETURN
2 CALL INSTO (CELL,AVAIL)
AVAIL=CELL
CALL INSTO(CELL-1,INLAV)
RETURN
END
VARIABLE ALLOCATIONS
AVAIL(IC)=FFFF INLAV{])=0002

STATEMENT ALLOCATIONS
100 =0006 1 =0028 2 =002E

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
ICONT INSTO MWRT MC OMP SUBIN

INTEGER CONSTANTS
1=0004 3=0005

CORE REQUIREMENTS FOR TAKIT

COMMON 2 INSKEL COMMON 0 VARIABLES

END OF COMPILATION

32

THIS ROUTINE WILL RETURN THE CELL WHOSE ALIAS IS ‘CELL® 7O

4 PROGRAM

R .

4T T ke o il S e g Y

T TR A R R bt s e

TAKITY

OUP FUNCTION COMPLETED
// FOR ERASE
*NONPROCESS PROGRAM
*LIST ALL

#*ONE WORD INTEGERS

SUBROUTINE ERASE (LISToLWDyNULLP)

INTEGER P,yQ

FREE STORE USED BY 'TAKITS®,

OO OON

P=LIST
IF (P=NULLP) 1,21
Q=P
P = ICONT(Q+LWD-1)
CALL TAKIT(Q)
GO T0 3
2 LIST = NULLP
RETURN
END
VARTABLE ALLOCATIONS
P(I)=0002 Q(l)=0003

~ W

STATEMENT ALLOCATIONS
3 =0014 1 =001A 2 =0030

FEATURES SUPPORTED
NONPROCESS
ONE WORD INTEGERS

CALLED SUBPROGRAMS
ICONT TAKIT SUBIN

INTEGER CONSTANTS
1=0004

CORE REQUIREMENTS FOR ERASE
COMMON 0O INSKEL COMMON 0

END OF COMPILATION

33

VARIABLES

THIS SUBROUTINE WILL RETURN THE WHOLE LIST *LIST' TO THE

NOTE THE LIST IS ASSUMED TO BE A LINEAR LINKED LIST ,
NOT A TREE OR OTHER MULTI-LINKED STRUCTURE

LIST = POINTER TO TOP OF THE LIST TO BE ERASED
LWD = LINK WORC LOCATION IN THE CELLS OF THE LIST
NULLP = NULL POINTER SYMBOL USED IN THE LIST BEING ERASED

4 PROGRAM

50

" PR T S A s i

- - ¥
- o R LR R St | i g

an3 8100

4IHII I Ds8 2000082% 10 9100

T+447HYL 1 XaW 7200010%L 10 100

8 11S 8801 O €100

91 v1s 0101 0 2100

8 198 8881 O 1100

o1l al 00000852 00 4000

4L T1 XGC 70000859 10 Q000

e 20 471HYI 0000 O 2000

4MHII 1 IS8 0000082% 10 V000

T+43IHI1 1 XOW 000010%. 10 8000

8 118 8801 0O L000

91 Vs 0101 0 9000

91 1¥S 0681 0 S$000

o111 al 00000859 00 €000

4IHII 11 XQ 00000869 10 1000

e 20 41H1I 0000 0 0000

4TH I IN3 93584960 2000

411 iN3 93989%60 0000 &

*
*INIWNOYV A3SSVd 3IHL 40 AI13AILI34SIY *
1HOTY GNV 1437 3HL ¥0LVINWNIIV JHL NI NiN13Y *
«dTHYI . OGNV +J7HII« SINILNOY OML 3S3IHL *
*
*

1 39vd

379vL T09WAS iNIYd=*
1SI=%
SAd WSv //
G3137dW0D NOILINNS dNA
3Ssvy3

ILHLF 0000

IRHLF 000C

NO ERRORS IN ABOVE ASSEMBLY.
TLHLF IRHLF

DUP FUNCTION COMPLETED

// ASM STOS

sLIST

sPRINT SYMBOL TABLE

0000
001A
000F
002A
0035

0000
0001
0013
0005
0006
0008
0009
0008
000D

00OF
0010
0012
00l4
0016
0017
0019

Q0laA
ools
001D

o1
00

00
00

ol
01

01
00

00

o1
00

001F 0

0020

00

0022 0

0023
0024
0026
0Qz2¢

00
01
01

221634C0
22163640
228D64CO
22806640
09562806

0000
65800000
C5800000
1888
C5€800001
1088
05800000
74020000
4C800000

0000
6580000F
60000000
€C5800000
D001
C4000000
70E8

0000
6580001A
C5800001
1888
€5800000
1808
1088
05800000
7402001A
4C80001A

*

SET

SYMBOL TABLE

SETL
SETR
STOL
STOR
INSTO

LEFT

x5
SETL

0
8

1

8

% =i
SETL'§2
SETL

¥ INDIRECTY SET LEFTY

*

sSTot oOC
LDX
STX
LD
STO
LD
MD X

*

* DIRECT

&

SETR DC
LDX
LD

SHARR SRT
LD
SRA
SLT
STO
MD X
BSC

SET

Il
Il

11

-

%%
STOL
SETL
0

x+]
B
SHARL

RIGHT

-
SETR

wowo 0=

SETRy +2
SETR

35

LOC(LOC(A)) TO XR1

PAGE

1

PAGE 2

»
F % INDIRECT SETV RIGHT
®
002A 0 0000 STOR DC L]
0028 01 6580002A LDOX 11 STOR
0020 01 6D00001A STX L1 SETR
002F 00 C5800000 LD 11 0
0031 0 DOOl STO *+]
0032 00 C4000000 Lo L *=%
0034 0 70EA MDX SHARR

»®

hd INDIRECT WHOLE WORD STORE
*

0035 0 0000 INSTO DC *=x%

0036 01 65800035 LDX 11 INSTO
0038 00 C5800000 LD 11 0

003A 0 DOO3 STO *+3

0038 00 C5800001 LD Il

0030 00 D4000000 STO L =*-»

003F 01 74020035 MDX L INSTO,+2
0041 01 4C800035 BSC I INSTO
0044 END

36

1

39vd

4100 YAYVHS

S000 TIVHS

INOD1
1+41NODI
A=

T1+2

aN3
I 3JS¢
T XaW

0o1s

0 11 ai
INOJI 11 Xxa1

*=%
1NOJI

vVioo ¥i3S

379V1 T08WAS

30 INOII
IN3

0000082% 10
006010%2. 10
000000%D 00
100G O
000008SJ 00
00000869 10
0000 O
€9590060

J000

V000

8C00
9000

5000

€000
1000
0000
0000

379vi TOOWAS INIdd=*
ST %
INOD WSV /7
031374dW0D NOILINAYS dNA
OASNI ¥OLS 104S M¥Mi3S T13S

*AT8W3SSVY 3A08V NI SHO¥H3 ON

vZ¢o0 ¥OiS
0000 113S

4000 101S
S€00 01SNI

a7

1

39vd

GN3 vo0oo

VT 1 2Js4 000008J% 10 L000
1+4307 71 XOW 000010%2 10 S000
0 11 al 00000052 00 €000

307 11 X0 000008s9 10 1000
=% 20 201 0000 O 0000
207 N3 000e8sET 0000

379VL TOSWAS INI¥dx*
1SI 7=
307 WSVY //
G3137dW0D NOILINNG dNA
INOJI
*ATEW3SSY 3A08V NI SY0¥Y¥3 ON

0000 LNOJI

3789VL T0GWAS

38

LoC

Loc

NO ERRORS IN ABOVE ASSEMBLY.

0000

DUP FUNCTION COMPLETED

// XEQ
*CCEND

cL8,

CORE
TYPE

*CDW
*[87T
*F 10
*ETV
VTV
*PNT
MAIN
PNT

LIBF
LIBF
LIBF
LIBF
CALL
CALL
LIBF
LIBF
LIBF
CALL
CALL
LIBF
CALL
LIBF
LIBF
CALL
LIBF
LIBF
CALL
LIBF
LIBF
CALL
CALL
CALL
LIBF
LIBF
CALL
CALL
LIBF
CALL
LIBF
CALL
CORE
COMM

CLB,y

ISR

8UILD

LOAD
NAME

TABLE
TABLE
TABLE
TABRLE
TABLE
TABLE
ISR
ISR
EBPRT
HOLEB
susscC
ISTOX
MPOOL
TYBZY
MRED
MIOAI
MCOMP
FIND
STORE
MWRT
PRT
ADRCK
SUBIN
LoC
STFAC
SBFAC
INSTO
MIO01I
1ou
I0FIX
BT1BT
SAVE
FLOAT
IFIX
IHASH
ICONT
COMGO
GIVME
NORM
MOD

ISR

L

I15R

MAP
ARG

1A9C
1AA8
1AB6
1AC6
1AD2
1808
1038
180A
10B6
1E56
1F78
1FA4
2019
2084
2213
2304
2288
271C
2780
2226
2868
2882
2916
2950
2970
2974
2980
22E3
29CC
2A66
2A96
2A02
2AFA
2814
2B4D
286C
2878
2BDE
2C0A
2C36
2C4A
7FCC

LD XQ

ARG2

000C
000E
0010
000C
0036
0004

1AD2
1ADS
1AD8
1ADB

1ADE
1AE1
1AE4
1AE7

1AEA
1 AED

1AFO
1AF3

1AF6
1 AF9

1AFC
1AFF
1802
1805

5382
0034

39

SYMBOL TABLE

LW, S

I LI TP

T T

PRECEDING PAGE BLANK NOT FILMED

APPENDIX B

A TYPICAL RUN OF THE IS & R SYSTEM

This appendix contains the console typewriter print-out of a session with the

information storage and retrival system showing the input and output of a dem-

onstration run.

41

STORE
OTORE
oTORE
STORE
STOR~
FIND

DEMO
BOYD
BOYD A 24

BOYD v 180
BOYD H 6-1
DEMO

DATA
I=J.K,

THE ASSUCIATED DATA 1S DATA

FIND BOYD

THE ASSUCIATED DATA IS H 6-1

STORE DEMOU PUT OF
STORE DEIM0 SE OUT
STORE DEMO REVER-

FIND DEMO

THE ASSUCIATED DATA 16

STIRE BAD INPUT
NO SUCH COMMANKD

FOND BAD

I

W 160
A <8
'-JoKo

REVER=-
SE OUT

PUT OF
DATA

THE RETRIEVAL LANGUAGLE

NO SUCH CUMMAKD IN THE RETRIEVAL &Ak - K

«TOP
NO4 READY READER

42

APPENDIX C

SUMMARY OF THE ROUTINES PRESENTLY AVAILABLE

The following is a summary of the routines which are presently implemented in

the list processing subroutine package:

MPOOL (ARAY, NWRDS, CELSZ)

ARAY =

NWRDS

CELSZ

GIVME (CELAD)
CELAD =
TAKIT (CELAD)

CELAD =

User provided array name in which the LAVS will be built
Number words in the array ""ARAY" to be used for LAVS

Number words per cell to be set up in LAVS

Address of cell delivered from LAVS

Address of the cell in the users environment which is being

returned to LAVS

ERASE (LIST, LPW, NULL)

LIST =

LPW =

NULL =

Fixed referznce pointer whose value is the address of the list
whose cells should cells shotild be returned to LAVS

Relative word location in the cell which contains the link
pointer

The users null value. Cells will be returned until the liuik

word = 'NULL!

43

STOL(ADDR, VALUE;

ADDR = Fortran variable whose value is the address of core word
whose left half is to be altered.
VALUE = Value to be put into left half of '"WORD'.

STOR (ADDR, VALUE)

Similar to 'STOL' except alters right half of word.
SETL (V/ORD, VALUE)

WORD = The variable whose left half will be altered.

VALUE As in 'STOL!

NOTE: SETL (LOC (A), V) = STOL (A,V)

FUNCTION TYPES:
I.OC (VARBL)
* Returns the absolute core location of the argument 'VARBL'.
ICONT (ADDR)
Returns the contents of the absolute address 'ADDR'. The 'LD' function
is equivalent.
ILHLF (ADJR)
IRHLF (ADDR)
Delivers the left field (or right field) of the contents of "ADDR'. i.e.,
'ADDR' is absolute core address.
INSTO (CELNM, VAL)
CELNM = Fort Van whose value = cell address

VAL

Value to be place there

44

	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A01_.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001E01.pdf

