
ARTICLES
UJ:'t: 1Q~? lfll " • _ ___,_

CIS 1928

ISSUE NUMBER 22

~·' 1'

p~ HEWLETT
___ PACKARD

COMMUNICATOR

Table of Contents

Edi tor's Note .

Introducing the New HP 3000 Series 30 .
To Upgrade or Not 'Ib Upgrade .
Add-On Memory Price Reductions .
The Secret of Up-to-Date Ibcumentation ••••••aeeaeeooo~ooooc••

STARS -- New Software Problem Reporting System

Removal of the SHUTQ and OPENQ Spooler Parameters

Restoring From Floppies
A Word on Delimiters in DEVICE Byte Strings
Use of STACK= and MAXDATA=
Minimizing Head Content ion
Tips on :QUANTUM .

CIS/3000 Software Update, Date Code 1928 .
MFG/3000 Software

EDC/30 0 0 ••
IOS/3000 ••••
MRP I 30 0 0 ••••
SPC/ 30 0 0 •••••

Update,
.

1

1932
.

3

4

7

9

11

15

22

23

23

24

27

29

31

36
36
37
40
43

IMAGE Database Schema Survey
IMAGE Address Calculation; QUERY Reporting Techniques

Using HP VIEW/3000 VGETtype

HP VIEW/3000 User Education

Intrinsics
.

44

45

51

53

Analysis of RPG Run-Time Error Aborts •••••••••••••••••••••••• 54

Iterative cperations with EDIT/3000 •••••••••••••••••••••••••• 57

PARM=Values When Running a Compiler Program•••••••••••••••••• 62

Corrections to Issue 21 . 64

2

Editor's Note

We won't go as far as handing out cigars, but we are very
proud of the latest addition to the family of HP 3000 computer
systems. Named the Series 30, this new product is completely
compatible with its elder and larger siblings, the Series III
and the Series 30, yet it has the capability for standalone
applications. You'll find an article discussing the Series 30
on page 4.

The 19 articles in this issue cover a wide variety of topics.
We hope that all of the articles will interest you, but we
do want to point out three articles in particular. "The
Secret of Up-to-Date Documentation" (page 11) tells you exactly
how to get the documentation service that's best for you.
"STARS-- New Software Reporting System" (page 15) specifies a
new procedure for bug reporting. And your participation is
invited in "IMAGE Database Schema Survey" (page 44).

In addition to articles, this issue of COMMUNICATOR 3000 contains
the College Information Systems (CIS) note files, date code 1928,
and the MFG note files, date code 1932.

The next issue of COMMUNICATOR 3000, which will be published
soon, will contain the latest Catalog of Customer Publications.

Edi tor
COMMUNICATOR 3000
HP General Systems Division
19447 Pruneridge Avenue
Cupertino, CA 95014

3

Introducing the New HP 3000 Series 30

"The Series 30 is fully software compatible with the larger
members of the HP 30 00 family."

by Chosen Cheng, General Systems Division

Hewlett-Packard Company has announced a new computer system as
the third member of its HP 3000 family of business computers.
Named the Series 30, this new system offers the same features and
capability as its predecessors, the Series 33 and Series III.

Priced at $49,750, the Series 30 complements the mid-range Series
33 and top of the line Series III. Availability of the Series 30
is 14 weeks.

The Series 30 is an entry-level HP 3000 system for standalone
business data processing applications. But its compact size,
ease of installation, HP 3000 Distributed Systems Network soft­
ware and remote console capabilities make it especially suited as
an economical HP 30 00 station in a network of HP 3000 systems.

The HP 3000 Series 30 is packaged within a small cabinet
measuring only 24" by 36" by 18". The cabinet is accompanied by a
separately packaged system/maintenance console and system disc.
The system runs on single phase 110V-120V, 60Hz power (200V-240V,
50Hz power internationally). The small size and low power
requirements of the system are made possible by use of HP's
proprietary Silicon-on-Sapphire (SOS) technology.

While the Series 30 must be installed according to Hewlett­
Packard guidelines for site preparation, the system will
typically require no special air conditioning. The standard
system configuration with console and 20 Mb disc generates only
one 4650 BTU/hour, about the same as a medium sized copier.
The Series 30 does not require the classic raised-floor,
air-conditioned data center, and has been designed to operate
over a broad range of customer environments.

The Series 30 is fully software compatible with the larger
members of the HP 3000 family, the Series 33 and Series III. All
HP 3000s use the MPE III operating system, and applications
written on any of these HP 3000 systems can be run on any other
without reprogramming, recompiling or relinking.

4

The HP 30 0 0 Series 30 Computer Sy stem.
Shown here are a system processor unit, a

system/maintenance console and a system disc drive.

The Series 30 incorporates a system self-test feature and remote
system verification program (R.S.V.P.) to enable Hewlett-Packard
service personnel to provide a high level of service and support
at the customer site and from remote locations= The capability to
allow control of the system from a remote system console by
simply initiating the RSVP facility over a dial-up phone line is
particularly important i~ a distributed data processing
environment with many remote stations.

Hewlett-Packard's RJE/3000 communications product is also avail­
able on the Series 30 and Series 33, extending HP DSN capa­
bilities to IBM mainframes as well.

5

All communications are handled by the new Intelligent Network
Processor (!NP) , Hewlett-Packard's front-end communications
orocessor. which also emolovs HP's SOS technoloav. ~hP TNP is a .a.. .. --- ----.a..- ..1.- -- - --- -~--------J.,J.- ---- --·- --

computer in its own right, providing the capability of off­
loading communications control from the CPU. This enables high
performance levels of local transaction processing during con­
current data communications to other systems.

A minimum system configuration for the Series 30 includes 256 Kb
error-correcting semiconductor memory, CPU, 1 Mb flexible disc,
four asynchronous terminal ports, system/maintenance console, 20
Mb system disc, and eight I/O expansion slots. A maximum
configuration would contain 1024Kb memory, 960Mb high-speed disc
storage, up to 32 terminal ports, with 4 magnetic tape drives,
and 2 line printers. Up to 2 communication lines can be added,
with each line replacing 4 terminal ports.

With the introduction of the Series 30, the HP 3000 family of
compatible business systems for distributed data processing sets
a new standard for the 1980's.

6

To Upgrade or Not to Upgrade

It" s more -than just a -question of -add-±tiona-1- capacity .. -

by Dave Butt, General Systems Division

When considering whether to upgrade your current system or
not, performance is often used as the measure in determining the
necessity of upgrading. Questions such as "Would a larger system
help me get my jobs completed faster?", or "Have my applications
outgrown my capacity?", while addressing important issues, do
not take into consideration all of the benefits of upgrading.

One of the other possible reasons for upgrading could be to
take ad vantage of the latest technology. Using the HP 30 0 0
Series I as an example, when upgraded to a Series III the main
memory changes from error detecting core memory to error
correcting semiconductor memory. In this way, technological
advances have made the system more reliable.

A second example of technological advancement is in the
area of communications. The ability to have system to system
communications is only available on the more recent HP 3000
computer systems. Thus, the owner of an early member of the HP
3000 family might want to upgrade to a Series III to take
advantage of this capability.

Expanding capability is a another reason for upgrading. As
technology develops, peripherals as well as new systems will be
produced using the most current technology. These peripherals
will offer new capabilities for the user. But to take advantage
of these capabilities, some peripherals maybe have to be designed
in ways that allow them only to be offered only on the newer
systems (due to MPE enhancements, interface standards, or other
considerations). Peripherals such as the 2621A/P low cost
terminals and the 2619A 1000 line per minute printer are two
examples of peripherals which are not offered on earlier systems.

At the same time that hardware advances allow the user
access to additional capabilities, software advances give the
user additional flexibility and better people productivity.
Improved diagnostics, more system management facilities, logging,
and other aids that make the system easier to use are all
examples of software advances which have been developed on the
newer systems.

7

Thus it can be seen that the decision to upgrade is not
simply a question of additional capacity. Higher reliability,
expanded capabilities, access to new peripherals, and improved
ease of use are all reasons for upgrading to another system. The
user must take all of these factors into account before the true
value of upgrading can be understood.

8

Add-On Memory Price Reductions

The price per megabyte of memory on the HP 3000 continues to drop.

by Rich Edwards, General Systems Division

Random Access Memory (RAM) add-on memory prices for the
HP 3000 Series III, Series 33 and Series 30 systems have been
been reduced as of August 1, 1979.

Product/Description

30078A (128 kb for Series 30/33)
30008B (256kb for Series III)

Was

$4,000
$8,000

8/ 1/79

$ 2 ,50 0
$3,750

% Reduced

37.5%
53.1%

This represents $15,000 per megabyte for the Series III, and
$20,000 per megabyte for the Series 33.

The price of a megabyte of memory on the HP 3000 has been lowered
significantly over the past five years from $320,000 for
core-based memory in 1975 to today's $15,000 for 16K RAM semi­
conductor memory.

The configuring of larger memory systems is one cost-effective
way of growing your HP 3000 system as your needs grow since the
addition of incremental memory can result in shortened response
time and throughput improvements. Contact your Hewlett-Packard
sales representative to discuss specific application and memory
needs.

The Costs of Adding Incremental Memory

Only additional memory boards are needed to expand both the
Series III and Series 33 systems up to one megabyte; no addi­
tional controller boards or power supplies are necessary.

For field expansion beyond one megabyte in the Series III, you
should order the 30418A Memory Expansion Kit which contains two
memory boards (512kb total) plus a memory controller board. The
nrif"~ {)f +-hie:. Jlnrrr;:::int=o kit- h;::,.c:. ht=ot=>n Yt=>nllr"t=>n r{) rt=oflt=of"t- +-h~ n~\A] J:""---- -- -· .. -- -J::'J-"""'-- ,-- .&. .. ""4, _ -""" -- ___ _,_ ____ ,..

$15,000 per megabyte memory price:

Product ;Description Was 8/1/79

30418A (1536kb Memory Expansion Kit) $17,000 $9,000

9

For customers ordering additional memory beyond the standard
256kb in a Series III (32435A), the system options have been
adjusted:

Product/Des er ipt ion Was 8/1/79

')')A'"')l:'."1\ option ... ,.., ... expands memory to 512 kb $8 '0 00 $ 3 '7 50 JL.'tJJt-'l :JU :J

32435A option 506 expands memory to 768 kb $16,000 $7 '50 0
32435A option 50 7 expands memory to 10 24 kb $24,000 $11,250
32435A option 509 expands memory to 1536 kb $41,500 $20,250
32435A option 511 expands memory to 2 048 kb $57 ,500 $ 2 7 '7 50

Thus, a two megabyte Series III now cos ts $132 , 7 50 , down %18
fr om $ 16 2 , 5 0 0 prior to August 1st.

10

The Secret of Up-To-Date Documentation

Three different subscription plans are explained.

by Mary Eicher, General Systems Division

An accurate, up-to-date documentation library is a valuable com­
ponent of any efficient computer system. The responsibility for
keeping your HP 3000 documentation current is one that you, the
HP 3000 user, share with Hewlett-Packard. The better we under­
stand our respective roles, the more successful we will be in
assuring that your documentation is as accurate and up-to-date as
possible.

HP "'s Role

It~s HP~s task to generate documentation and, once a manual
exists, to see to it that you know about the manual. We do this
in two ways. First, if the manual is related to a new product and
you buy that product, we automatically send you a copy of the
manual. Second, if the manual (like USING FILES, for example)
doesn't deal specifically with a new product, we announce the new
manual in the HP 3000 Communicator.

It is also HP's responsibility to keep the information in the
manual accurate. This is why from time to time we update a man­
ual. Here again, we use the HP 3000 Communicator to notify you
when a manual has been updated. Seeing to it that you receive
the updated information is a task that falls under your area of
responsibility.

Your Role

When it comes to maintaining your documentation library, you have
three options. You can: ~

1) Subscribe to either of HP's support services: Customer
Support Service (CSS) or Software Subscription Service
(SSS). You automatically receive a complete set of manuals
and one copy of every update and new edition issued for as
long as you retain the service.

11

2) Subscribe to HP' s Software Not if i cat ion Service (SNS) • You
receive the Software Status Bulletin (twice monthly) and
the HP 3000 Communicator (quarterly). Manuals and updates
are listed in the Communicator so that you can check for
new documentation and order the manuals you need.

3) Subscribe to HP 's Manual Update Service (MUS). For a
monthly fee based on the manuals you choose to maintain,
you automatically receive updates and applicable new man­
uals as they are issued.

With the increasing amount of HP 3000 documenation, the above
options allow you to get the documentation service that's
best for you. The following table and paragraphs summarize
the benefits provided in these plans.

+------------------------------+
I
I CSS/SSS MUS SNS

+---------------------+------------------------------
' Manual I
I Updates I X X

1--
1 Manual I

I New Ed it ions I X X

1--
1 Software I

I Status Bulletin I X X
1--
1 HP 3000 I

I Communicator I X X
1--
1 Additional I

I Support Services I X
+--+

Support Services

Subscription to one of the HP support services entitles you to a
wealth of services besides assistance with documentation mainten­
ance. These services include: Phone-in Consultation Service
(PICS), Systems Engineering assistance, and software and firmware
updates. Your HP Sales Representative can help you select the
support service product best suited to your requirements.

Notification Service is included as part of both CSS and SSS.
Note also that MUS can be used to maintain additional sets of
manuals at your facility, as CSS and SSS each provide maintenance
for only one set of documenation.

12

Software Notification Service

The Software Notification Service provides you with two p-eri-Odi­
cal publications: the Software Status Bulletin and the HP 3000
Communicator. Issued twice monthly, the Software Status Bulletin
lists software bugs and explains temporary work-around solutions.

An HP 3000 Communicator issue is published with each periodic
release of the Installation Tape. (There may also be issues
of the Communicator published between IT Tape releases.) The
Communicator contains articles of interest, "unofficial"
note files in the case of a corresponding IT Tape, and a
catalog of available documentation. This catalog identifies
all user manuals relating to the HP 3000 products and the date
each was printed and last updated.

You can use the documentation catalog in the Communicator to
identify manuals which have changed. Then you can order these
manuals by using the special order form provided in the Communi­
cator. (Note - It is not possible to order only updated informa­
tion; the entire manual must be ordered.)

Manual Update Service

The Manual Update Service lets you select the documentation, in
manual sets, which you wish to maintain. Update information and
new editions relative to the manuals you select are autanatically
mailed to you as they become available.

MUS is recommended for additional sets of documentation at your
facility not covered by either CSS or SSS. The follo.-ving table
shows MUS manual sets and the monthly fees for each. MUS must be
ordered for a minimum of one year.

13

HP 30 0 0 Manual Update Service
+---+
I Manual Sets I Monthly Fee I
+---+
I HP 3000 Manuals: I $40.00 I
I Overview (4 manuals) I I
I MPE (11 manuals) I I
i Utilities (4 manuals)
I Data Management (7 manuals)
+---+

Programmer Manuals: 16. 0 0 I
MPE Pocket Guide I
EDIT/30 00 manual I
Using Files I
MPE I ntr ins ics I
Compiler Library I
SORT-MERGE /30 00 manual I
Segmente r manual I
Debug manual I
MPE Commands I
FCOPY/3000 I
Error Messages I

+---+
I Data Management Manuals: I I
I DBMS/3000 (2 manuals) I 4.00 I
I KSAM/ 30 0 0 I 2. 0 0 I
I VIEW/3000 (4 manuals) I 5.00 I
+---+
I Language Manuals: I I
I COBOL/ 30 0 0 (2 man ua 1 s) I 4 • 0 0 I
I SPL/3000 (3 manuals) I 7.00 I
I RPG/3000 (2 manuals) I 3.00 I
I BASIC/3000 (4 manuals) I 5.00 I
I FORTRAN/3000 (2 manuals) I 3.00 I
I APL\3000 (2 manuals) I 5.00 I
+---+
I Data Communications: I I
I DS/3000 (2 manuals) I 4.00 I
I RJE/3000 I 2.00 I
I MRJ E/ 30 0 0 I 2 • 0 0 I
I MTS I 30 0 0 I 2. 0 0 I
+---+
I Manufacturing: I I
I EDC/3000 (2 manuals) I 4.00 I
I IOS/3000 (2 manuals) I 4.00 I
I MRP/3000 I 2.00 I
I SPC/3000 I 2.00 I
+---+
I Miscellaneous: I I
I Scientific Library I 2.00 I
I SIS/3000 (4 manuals) I 7.00 I
I C I SI 3 0 0 0 (2 man ua 1 s) I 4 • 0 0 I
+---+

14

STARS - New Software Problem Reporting System

New, streamlined procedures for reporting software problems.

by Babs Brownyard, General Systems Division

July 1 marked the first day of General Systems Division's new
problem reporting service - the Software Tracking and Reporting
System (STARS). This system is the result of months of effort
aimed at providing you with more responsive service. This new
IMAGE/3000 based system will enhance our ablility to monitor
software bugs, enhancement requests, and documentation errors.

Features

• Problems resolved faster by moving the source of resolution
closer to you. Your local HP office is now the focal point
for solution.

• A streamlined reporting mechanism which ensures that problems
which impact your operation receive the correct level of
priority within HP.

• Workarounds and known problems communicated more effectively
through a new, easy to use format of the Software Status
Bu 11 e tin (S SB) •

Software Status Bulletin

The Software Status Bulletin (SSB) is published in complete form
once each calendar quarter. Between quarterly issues, updates
will be published twice a month. The update will be cumulative
and will contain all new problems and any existing problems on
which the status has changed since the quarterly issue •

.
To help you locate a problem in the SSB, a keyword index with a
brief one-line summary of the problem has been added. By
identifying the symptoms of your problem you can scan the SSB
and locate problems similar to yours.

15

Problem Resolution

The following is a summary of steps that System Managers
should take in resolving a software problem.

1. Assist the user to isolate and identify the problem.

2. Check the SSB to see if the problem has been reported
and if there is a workaround.

3. If you have trouble isolating the problem, or cannot find
the problem or workaround in the SSB, the next step will
depend upon the type of support to which you subscribe.

a. If you have purchased Customer Support Service, call
your local Phone-In Consulting Service (PICS) for the
latest information, advice and debug help. The PICS
SE will help you determine whether on-site assistance
is needed. Installations with Additional Site coverage
should work through the central site where the System
Manager should reproduce the bug and then proceed with
the problem resolution.

b. If you have Software Subscription Service (SSS), you
should decide if on-site assistance is needed. You may
purchase on-site consultation on a time and materials
basis.

4. If the problem still appears to be an unreported bug in
HP software, fill out a Service Request (SR) form.

5. Gather all supportive documentation.

6. Send the SR and documentation to the SR Monitor at your
local HP sales office.

Remember, the speed with which a problem can be resolved is
directly dependent on how well the problem is isolated and
how reproducible it is, the accuracy of the SR, and the
quality of the accompanying documentation.

STARS Procedure

Upon receipt of your SR, the local field support team reviews and
verifies the problem. They attempt to reproduce the problem,
check locally and with GSD for existing information on the pro­
blem, and then try to resolve it or arrive at a workaround. If
the problem is the result of user misunderstanding or a known
problem with a workaround, the SE will contact you with the
solution.

16

If the problem is a new software problem, a documentation error
or enhancement request, the SE completes a verification form and
forwards it to General Systems Division for resolution. The SE
will then work with you to find a workaround. This is an impor­
tant step, as permanent fixes are not released until they can be
incorporated into an Installation Tape.

When your SR is received by the GSD support organization, it is
immediately assigned a unique reference number. The number is
included in a short acknowledgement letter sent to you with a
copy to your SE. All correspondence and inquiries regarding the
SR must reference this number.

Your SE will be notified as to the classification (new problem,
duplicate report, hardware, etc.) and disposition of the problem,
and will contact you within five days of hearing from GSD.

When the problem is fixed by HP General Systems Division, and
after this fix has successfully passed the normal testing and
Quality Assurance procedures, then this fix will be distributed
on an Installation Tape. This information will also be reflected
in the SSB.

Service Request Form

The accompanying figure (p.21) is an example of a completed
The following is a brief explanation of this form.

C!D
lo...l.L'\..

19 8909 Ref9 # - This space is used by the local HP office
verifying the problem to assign an identifier for tracking
and filing purposes.

2. SR # - This space is for the number assigned to the SR by
the SR Monitor.

3. Customer Report # - This space is provided for your System
Manager to assign an identifier of his own to the SR for
tracking and filing purposes.

4 • S ub m it te d by - name of s ub m it te r (user) •

5. Firm name - name of company.

6. Division - name of company division.

7. Date - date of problem occurrence.

8. Company address.

9. Specific location of system in customer's facility.

10. System Model - 3000 Series I, II, or III, 30, 33.

17

11. Operating System - version of operating system on
which problem occurred.

12. Product Name - name and version of specific product in
which the problem occurred - e.g., COBOL C/02/00.

13. Problem Description - Put a detailed description of the
problem in this space. Use the other side of the form if
you need more space.

14. Supportive Documentation - list of additional
documentation describing or duplicating problem.
See next section for recommended documentation tools.

Three sources of Service Request forms are available to you.

1. SR forms may be printed on your system with the FORMGEN
program in the PUB group of your SYS account.

2. Each issue of the Software Status Bulletin contains two
copies of an SR form which you can duplicate for
additional copies.

3. Tablets of pre-printed forms are available from your
account Systems Engineer upon request.

Supportive Documentation

Additional documentation needed to duplicate the problem
should accompany the Service Request (SR).. Complete and
accurate documentation is critical for GSD to respond
quickly to the SR. Incomplete documentation will generally
result in a "cannot duplicate" response from the SE.

Suggested and required supportive documentation are as follows:

• Any short programs or routines that demonstrate the
failure.

• A compiled listing of the program(s) with a compilation
and preparation map (PMAP). (REQUIRED when user program
is involved.)

• A listing of the actual execution showing the indicated
problem (REQUIRED).

• A STREAM file that will reproduce the problem, or a menu
of commands and input/output for reproducing the problem.
(REQUIRED when user program is involved.)

18

• A tape or diskette with the STREAM file, program source,
USL, RL, SL, or program files and any dat~ files needed
to reprcXluce the problem. The originator s name and
mailing address must be put on the tape to insure its
return. (REQUIRED when programs larger than 50 1 ines
of code are needed to isolate the problem.)

• If the problem was a system failure, and no isolation is
possible, then a complete memory dump (cold dump) is
required.

Documentation Tools

Documentation tools for submitting Service Requests are provided
by two files in the PUB group of the SYS account. The
first is a STREAM job file to help you give the information
Hewlett-Packard needs to help with MPE problems. The
second tool is a program file which will reproduce Service
Request forms for reporting problems, documentation errors,
and enhancement requests.

1. DUMP JOB. PUB. SYS

The first file (STREAM job) called !!DUMPJOBH will:

a) Generate a Service Request form.

b) Obtain a copy of the loadmap from the file LOADMAP in the
PUB group of the SYS account. This is an absolute MUST
item for the Operating System Specialist to attempt to
analyze a cold dump listing.

c) Obtain a copy of your system I/O configuration by doing a
SYSDUMP to a null device ($NULL). This particular pro­
gram will then ABORT after obtaining the I/O listing.
Note that this section of the program will abort as part
of its normal operation.

d) You must also run DPAN2.PUB.SYS to obtain a listing
of the cold dump of the problem on the HP3000
Ser ie s I I I (DP AN for pre-Se r ie s I I) •

CAUTION: If the cold dump to be taken using this STREAM
file was not physically taken on the host machine,
the LOAnMAP and I/O configuration generated will be
incorrect. Proper administrative measures must be
taken to assure that the LOAD~..AP and I/O configu­
ration are the correct ones for the cold dump in
question.

19

This STREAMed job logs onto the account SYS using the MANAGER
user. Passwords must be removed from this account/user or
the STREAM file DUMPJOB must be modified using the EDITOR
sub sys tern.

2. Generating SR's from FORMGEN.PUB.SYS

Tne second ru.e (program file) is called FORMGEN. Tnis pro­
gram generates twenty copies of the Service Request form for
reporting software problems, documentation errors, and
enhancement requests. The program output is automatically
directed to a line printer in the device class LP. The out­
put can be directed to another list device by using the
formal file designator LIST. Example:

:FILE LIST;DEV=$STDLIST

The above example would direct output to the session/job
output device, which should be a hardcopy terminal.

Enhancement Requests

Enhancement requests are submitted in the same manner as problem
reports (on an SR form). HP continually enhances its products
and considers all the suggestions submitted by its customers.
While every effort is made to comply with suitable suggestions,
HP is under no obligation to implement a request. Enhancement
requests do not appear in the Software Status Bulletin.

20

Ff/OW HEWLETT
a.!ea PACKARD

S.O. Ref. :;:t. __ 54 __ 8_1
__

HP service request form

SR# ______ 0_2_(HPonly)

l

,~.

Customer report no. ____ 1 _____ _ Date 3-10-79 _!__)

Submitted by ___ J_o_h_n_D_o_e _____ _

Division __ F_o_o_d_P_r_o_d_u_c_ts_D_iv_. _________ 0 Firm name ____ X_Y_Z_C_o_m--=p'-an---=-y-----?ooiE--

Street ______ l_O_O_M_ru_·n_S_t_. ----~-...o_ System Mgr. John Manager

City, State, Zip Newport Beach, CA 92660 Phone no. (714) __ 6_4_0_-_30_0_0 ____ ext. 25 f9\ -
Specific~cationof~~em~p~nt __ B_ld_g~._5_0 ____ ~~--------------------

System model __ 3_0_0_0_S_e_n_· e_s_I_II ______ @~i_o_ Operating System __ B_.O_O_.O_O ___________ @
(e.g., 3000/III) (e.g., AMIGO A.OJ.OJ) ~

System Serial No. __ 1_2_3_4_5_6_________ Product Name COBOL . _.2(02/~Q___ 0
(e.g., BASIC A.00.05) v uu ff

Problem description (include environment, symptoms, what you were trying lo do, what went wrong and any other information

that might be helpful).

@ Run a COBOL program which does an "ADD 1" to a field defined as PIC S99V9
---------'=-~-----------------------------~

comp value 12. The result of the add was -11 instead of +13.

Supportive documentation included with report.

MEDIA DESCRIPTION

1600 bpi magtape COBOL program @

Rev date: 2/20/79 5955-1727

Example of a completed HP Service Request Form.

21

Removal of the SHUTQ and OPENQ Spooler Parameters

by Steve Zink, General Systems Division

In order to make a simpler and friendlier operator interface, all
of the spooling commands were rewritten for the 1918 Installation
Tape. Among the changes was the removal of the SHUTQ and OPENQ
parameters. There were several reasons for this change:

1. When all spool space has been exhausted, an automatic
SHUTQ occurs on all spaced devices and device classes.

2. When the :STOPSPOOL command is used, a SHUTQ is
performed on the ldev or deviceclass named.

3. Because device classes can now be
of devices by ldev, queues can be
specific ldev is spooled or not.

: STARTS POOL LP
:STOPSPOOL 6

spooled independently
opened whether a
For example,

now results in an OPENQ for all DEV-LP references.

4. SPOOK can be used to purge spoolfiles while it
outputs them to tape to be retrieved later when the
system is as active. The following sequence will
answer all user needs:

:RUN SPOOK.PUB.SYS
>FILE T; DEV=TAPE
>OUTPUT @.@;*T;PURGE
>EXIT
:STOPSPOOL 6
: JOB FENCE 14
:OUTFENCE 14

The user can now drain the system of rema1n1ng jobs
and then co,ldstart or warmstart the system. After
bringing the system up, the user can run SPOOK to
recover his output files:

:RUN SPOOK.PUB.SYS
>FILE T;DEV=TAPE
.>INPUT @. @; *T
>EXIT

SPOOK can be used while the system is running,
thereby eliminating the need to drain the system.

On the a future Installation Tape, the operator commands will be
extended with the ability to alter active spoolfiles by ldev
number or by devicefileids.

22

A Word on Delimiters in DEVICE Byte Strings

by Steve Zink, General Systems Division

Currently, any non alpha-numeric character except the slash
(/) , period (.) , asterisk (*) or pound sign (#) can be used
as a valid terminator for a DEVICE string in relation to the
FOPEN intrinsic. However, in order to extend the capabilities
of the file system, and so as to impact as few existing
programs as possible, the semi-colon (:) as a delimier will be
redefined in the future to mean that more parameters will
follow. ANY EXISTING PROGRAMS USING ":" AS A DELIMITER IN
THE DEVICE BYTE STRING IN FOPEN SHOULD BE CHANGED TO SOME OTHER
VALID DELIMITER. It is suggested that blanks, carriage
return or n ul 1 0 ' s be us ed •

Restoring from Floppies

by Dean Kelley, Neely Cupertino

Series 30 and Series 33 customers who use flexible discs
(floppies) should be aware of an important difference in
the SYSDUMP and RESTORE procedures.

When SYSDUMP writes to floppies, the first two floppies
contain MPE and related files. SYSDUMP always starts with
a new floppy to write user files, usually the third floppy.

A problem can occur on a restore when the customer is restoring
from floppies containing a SYSDUMP. If the customer starts
with the first floppy, then the mes sage "not a store format"
will be generated because MPE is not in a STORE/RESTORE format.
The customer should either go directly to the third floppy,
or, if not sure how many floppies were used for MPE, start
with the first, then second, etc., until the error messagae
is not received.

23

Use of STACK= and MAXDATA=

"Let the system expand the stack as necessary."

by Mark Cousins, Neely Cupertino

One of the major causes of poor system performance is misuse of
the STACK= and MAXDP .. TA= parameters on the :PREP, :PREPRUN, and
:RUN commands. We will describe the stack in detail and then
present methods you can use to prevent trouble.

When a process is initiated, the stack is set up as follows:

PCBX ********************
*
*
*

PROCESS
INFORMATION

*
*
*

DL ********************
* USER-MANAGED *
* AREA *

DB ********************

Q

s

z

* *
* GLOBAL STORAGE *
* *

* LOCAL STORAGE *

*
*
*

AVAILABLE
*
*
*

* STACK OVERFLOW *
* AREA *

The PCBX (Process Control Block Extension) contains information
about the process which needs to be present in memory when the
process is running. This information includes directory pointers,
the DSTs for any allocated extra data segments, and file control
blocks (FCBs). This area of the stack is inaccessible by the
normal user, and is initially about 1200 words long. As more
files are opened, the system may attempt to expand this area. The
area from DL to DB is a user-managed global storage area and is
not accessed by MPE. The compilers use the 20 words from DB-1 to
DB-20, and VIEW stores its screen buffers and control information
here also. BASIC uses the DL area for file buffer allocation and
parameter passing.

24

The area above Z is reserved for the system so that a stack
overflow can be properly processed if it occurs in critical
system code, such as FOPEN. The extra area will be granted, the
FOPEN will be allowed to complete, and at that point the process
will be aborted. This is to guarantee that a stack overflow will
not occur while a process is SETCRITICAL, which would otherwise
ca use a sys tern failure.

Rules and limitations:

A. Since a stack is really just a data segment, and since the
maximun size of a data segment on the 3000 is 32,764 words
(caused by byte addressing limitations), the area from the
start of the PCBX to the end of the stack overflow area
cannot exceed 32,764 words. This implies that the user's area
will be somewhat smaller; in fact, the maximum size of the
a r ea fr om D L to z is 31 , 2 3 2 word s.

B. The user can limit the maximum size of DL to Z with the
MAXDATA= parameter on the :PREP, :PREPRUN, and :RUN commands.
Note that this is not the initial size of the stack, but the
limit to which it can grow. At least MAXDATA words of storage
are set adide in virtual memory, and the user is guaranteed
to be able to expand the stack to this limit. Exceeding it
causes a stack overflow interrupt and abort.

c. The size of the area from Q (initial) to Z is controlled by
the language compiler, the STANDARD STACK SIZE parameter in
SYSDUMP, or the STACK= parameter in :PREP, :PREPRUN, and :RUN
commands. Generally, the size calculated by the language
compiler is sufficient, and then STACK= parameter can be left
off the command. If you specify STACK=, STACK words of
storage are reserved immediately (IN ADDITION to DL to Q
(initial)) at run-time).

D. The area available to the system for the PCBX is calculated
by subtracting MA.XDATA from 32,764, and then subtracting 128
(the size of the overflow area) from the result. Since MPE
promises you that you can get MAXDATA words of storage, it
must use this number as its limiting factor in calculating
PCBX size. Recall that the file system uses the PCBX for file
control blocks and that, if many files are to be opened con­
currently, the area may need to be expanded to accommodate
more FCBs. If the expansion cannot occur because MAXDATA+new
PCBX size+l28 would e~ceed 32,764, file system error 71 (too
many files open) is returned to the calling program and the
FOPEN fails. You can force the control blocks out of your
stack and into an extra data segment with the ;NOCB parameter
on the :~JN command, but this will force the file system (and
hence IMAGE and KSAM) to operate more slowly. A better solu­
tion would be to reduce MAXDATA, if this is possible. This
is usually the case since many customers set MAXDATA to its
1 im i t v a 1 u e as a mat te r of co ur se •

25

E. Many users believe that setting MAXDATA arbitrarily high does
not "cost" anything. As shown above, it can ca use problems
with the file system. Additionally, the virtual memory area
for a stack is determined from the MAXDATA parameter.
Changing the virtual memory size can only be done during a
RELOAD, and while running out of virtual memory may not cause
a system failure, it could cause the application to abort and
therefore be just as frustrating as if the system had
crashed.

F. Setting STACK too high can really cause performance problems,
in that the process may be consuming far more memory for its
stack that it is actually using.

In summary, do not use the STACK= parameter; instead, let the
system expand the stack as necessary. You will need to include
the MAXDATA= parameter whenever your program (or an intrinsic
called by your program) will be dynamically adusting the DL or Z
registers. This includes all programs that use VIEW, as well as
any BASIC-compiled programs that use IMAGE or MPE files. Unfor­
tunately, there is no sure-fire way to estimate what MAXDATA
should be, but through experimentation and experience you will
find an appropriate value for each program. VIEW generally
requires about 3,000-6,000 words more than the program's data
area. Most application programs will run with a MAXDATA of about
10, 000 words, al though SORT performance can be improved by
raising MAXDATA to about 25,000 words.

26

Minimizing Head Contention

Some basic guidelines on disc space utilization.

by Mark Cousins, Neely Santa Clara

Good disc management includes optimization of free space areas
and elimination or reduction of head contention. Head contention
can be defined as excessive seeking caused by alternately
accessing different areas (files) on one disc. In this situation,
each physical read or write will cause the disc heads to trans­
verse the disc surface, and since this can take up to 45 milli­
seconds (worst case, vs. virtually instantaneous transfer if no
head movement is involved), performance begins to fall off
dramatically.

Head con tent ion can be ca used by user requests for tr ans fer s fr om
or to disjoint areas on the disc, or by MPE interleaving its disc
requests with user requests. It is usually not possible to
combine files such that no contention will occur, so the next
best solution is to place files that will be accessed "together"
on separate devices. This also holds true for ~2E's disc
requirements.

Therefore, the user should attempt to place directory files on
devices separate from the data files that they relate to., Addi­
tionally, a dedicated system disc will yield great benefits in
that memory management requests will be satisfied more quickly
and such requests will not interfere with user file access.
Archival files can be stored on the inner cylinders of the system
disc with no loss in performance, and this will result in better
space utilization on the user discs.

These functions can be controled with the :STORE and :RESTORE
commands, or with the contributed program MOVE. Additionally,
once the file placement is defined and set, system reloads should
be accomplished via RELOAD, option ACCOUNTS, followed by :RESTORE
@.@.@. RELOAD will recover all free space into one contiguous
block, and :RESTORE can b€ forced to place files back on the same
devices on which they were created.

Device class management is also important. A system disc is of
little use if it is also a spool device~ As a general guideline,
place directory files and active program files on the fastest
discs, while spoolfiles, source, and sequential files should be
allocated to the slower devices. This can be guaranteed by
establishing device classes for the various types of devices and
then using these classes in the build statements for the various
files.

27

It can be argued that, in a multiuser transaction processing
environment, disc management of the sort that has been described
is to little avail, because of the randomness and unpredicta­
bility of disc requests. While this may be true for certain
periods of activity, not managing the disc guarantees that you
have the problems of head contention.

28

Tips on :GU ANTU M

Setting the timeshare quantum.

by Mark Cousins, Neely Cupertino

The :QUANTUM command is one of the commands that the System
Supervisor can use to help "tune" the HP 3000 on-line. Proper use
of the command can add greatly to system performance; on the
other hand, misuse of the command can cause the system to behave
e r r a ti ca 11 y •

The :QUANTUM command serves two functions: one, to set the
maximum time that a process in a circular queue will have control
of the central processor before the Dispatcher re-examines the
ready list, and two, to set the minimum priority levels for the
circular queues. In this article, we will discuss how to set the
timeshare quantum.

Normally, processes on the HP 3000 compete with one another for
use of the CPU. This "competition" is controlled by a system
function known as the Dispatcher, whose mission in life is to run
the highest priority process that is ready to run. This process
is constantly changing - and the change is also controlled by the
Dispatcher. This is done to ensure that no one process monopo­
lizes the CPU. However, the System Supervisor can control how
long any one process can use the CPU before the Dispatcher
switches to some other process; this time is known as the
"quantum".

How does one determine what the correct quantum is? That depends
on the system load, the amount of memory installed, and the
nature of the processes that are executing. There are some rough
guidelines:

- The less memory available, the longer the quantum should be.
The reason for this is that switching processes will likely
involve some swapping on small memory systems, so the less
often the Dispatcher switches processes, the less swapping
there will be (to a certain extent).

- "Characterize" the overall use of the system. Is it a transac­
t ion processor, or a number er un che r, or some of both (i .e. ,
development)? The quantum for each type will be different. For
the dedicated transaction processing system, with a high degree
of I/O activity, most processes will use the CPU for a longer
period to perform a calculation. In this case, the quantum
should be set relatively long (600 - 800); most of the time,
processes will consume only a small fraction of this before

29

they voluntarily give up the CPU to read from the terminal, but
the time is available for the few instances when they need more
CPU. Number crunchers, on the other hand, tend to use their
full quantum each time they get control of the processor.
Quanta on these systems should be set somewhat shorter (300 -
500) so that short transaction processes are not unnecessarily
penalized by highly calculation-bound processes. Development
sy~tems tend to be a mix of both types and should have the
quantum set somewhere in the middle, about 400 - 600.

A note on quantum setting: don't expect to see a change in per­
formance if you change the quantum by ten milliseconds. It turns
out that the quantum used by the Dispatcher is always an even
multiple of 100, calculated as:

True quantum: =INTEGER (input quantum/100 + 2) * 100

So that if you set the quantum to 400, the Dispatcher will
actually use 600; also, there will be no difference between a
quantum of 400 and one of 499. The values recommended above take
this into account; use these values in the :QUANTUM command.

The kind of effect the quantum can have was demonstrated to me
not long ago. I was on-site analyzing performance and noticed the
ready list (from :SHOWQ) was quite long - about seven processes.
I then noticed that the quantum was set at 250, which is very low
for a transaction processing mix. I raised it to 700 and the
ready list cleared immediately; the processes were no longer
waiting for the CPU and response time improved. Another time I
was ccpying a tape and noticed it seemed to be going very slowly.
By setting the quantum to 100 my copy process got dispatched much
more often and because I never consumed my full quantum, the copy
speeded up instantly. Of course, this was probably at the cost of
the other users on the system.

Don't be afraid to change the quantum dynamically based on what
is running in the system. It may be more advantageous to set the
quantum longer during the day for the online users, and shorter
at night when batch is running. It can really make a difference.

30

CIS/3000 Software Update

CIS/3000_ HP32902A.00.02
Date Code 1928, NOON902A.HP32902.SUPPORT

A. ENHANCEMENTS~

1. CISREG has been enhanced to print negative image codes
on abnormal conditions.

2. Working-Storage in CISBAR has been enhanced to include
Copylib members SCH-MSTR, STU-DET, CRS-MSTR, and
CRS-SEC.

B. CORRECTIVE SOFTWARE CHANGES.

All of the following known problems have been corrected
in CIS/3000.

1. SR #5440 - The SCHOOL-ID field was truncated to two
characters when format number 93 was processed by
CISBAT, this is corrected.

2. SR #4537 - In CISREG the incorrect error message
"STUDENT NOT ON FILE" was changed to "STUDENT NOT
IN SCHOOL."

3. SR #4539 - The word "character" was misspelled in the
instruction list at the start of CISREG. The problem
has been corrected.

4. SR #5859 - CISREG did not list all classes for
students enrolled in courses without meeting day or
time specified. Problem corrected.

5. SR #4538 - CISREG did not differentiate between
normal and maximum seat size when issuing message
for filled classes. Problem corrected.

6. SR #5865 - CISBAR rejected only the first class
when student registers in classes offered by a
school in which he/she is not enrolled~ All sub­
sequent classes in that school were accepted.
This problem has been corrected.

31

7. SR #5860 - CISRPTl terminated without any error
message but did not produce a class list when default
values were specified for individual sections, card 3
was omitted, and the desired value for the day/night
flag was entered in column 22 of card 2. This problem
has been corrected.

8. SR #5187 - CGRADE was updating variable units
field in log file when units were actually not
variable. This problem has been corrected.

9. SR #5146 - CISBAT was not updating enrollment field
in Course-Section data set when registration records
were recovered from transaction log file. This problem
has been corrected.

10. SR #4546 - CGRADE - Problem of CIS/3000 allowing
students enrolled in one school to register in
classes of another school but not allowing their
grades to be reported was corrected by the correction
of SMR #5440 in which a truncation problem with
the SCHOOL-ID field was fixed in CISBAT.

11. SR # 4545 - When a student enrolled for classes
in a future term, CIS updated L-Term fields to
indicate this future term was the last one in
which the student was registered. Most users
wanted the L-Term fields to reflect the last term
in which a student actually attended classes.
The L-Term fields were thus inaccurate and have
therefore been disabled.

The fields L-Term-Grd-Gpa, L-Term-Grd-U-Att,
L-Term=Grd-U-Comp, L-Term-Reg, L-Term-Reg-Units,
L-Term-U-Grd, L-Term-Grd-Pt, and L-Term-Graded have
been disabled and are no longer updated automatically
by CIS/3000. Manual upda~ is still possible using
CISBAT (card 58) or CISDET (format 26). Also disabled
is the Academ-Stat-Stud field based on L-Term-U-Comp-Stud
and L-Term-Grd-Gpa-Stud fields in CGRADE, CISGRD, and
CISBAT.

12. SR #5863 - CISBAR registers the first course for a stu­
dent, all olthers on that card are truncated. This was
found to be a documentation error in the manual and has
been corrected. On page 7-5 of the CIS Reference Manual,
figure 7-4, an extra column was added to the Course
Information to allow for a pass/no pass option. Thus the
Course Information extends from column 11 to 29 for the
first course entered and from columns 30 to 48 for the
second. A third course would begin in column
49. Similar changes were made to pages 7-6 and
7-7 of the manual, figures 7-5, 7-6, and 7-7. An extra
column, column 29, has been added to allow for a pass/no
pass option.

32

13. SR #6917 - CISRPT2 printed incorrect class levels for
students. This problem has been corrected.

14. SR #5858 - CISRPT2 - Courses which have no meeting days
and no times specified in course section detail are
omitted when producing class schedules using CISRPT2.
The total units are correct for these students. This
problem has been corrected.

15. SR #9581 - The item list of DBGET specifies all items
(@) rather than individual items. This was corrected
in the COPYL IB.

c. Known Problems.

1. SR #4544 - In Format 20, an invalid status code
results in a non-meaningful error message and no
opportunity to correct the error.

2. SR #4547 - After changing edit information with
Format 08, CISSCH will not allow user to specify
and Sor A Transaction Code.

3. SR #5263 - CISSCH FORMAT08 will not allow a user to
change multiple edit in a table without enter­
ing a different transaction using a different
format and table.

4. SR #5264 - CISCRS on FORMATS 33 and 39 the cursor does
not return to the home position, and a second change
for the same ID# w i 11 not work. If an add is done
after the change for the same ID#, the add works as
a change.

5. SR J5265 - CISCRS produces error messages that contain
a portion of a previous error message.

6. SR #5266 - A user must have access to all Formats
to update s, C, A, or Don Formats 07 and 08.

7. SR #5267 - Two and three deigit phone extensions
do not pass ~i...~ numeric edits. L.UC

8. SR #6009 - A student schedule prints the number of
units for a variable unit class from the course
master rather than from the student's record.

9. SR #6256 - CISGRD aborts and reports a positive
image error number rather than a negative number,
when the password given has insufficient capability
for grading.

33

10. SR #6010 - Second page of a student's schedule is
printed unnecessarily when the number of classes
at tempted is suf fi cie nt to f i 11 a single s ched ui e
exactly.

11. SR #6965 - CISGRD will not accept grades for
courses with zero credits.

12. SR #7022 - In CISGRD final grades cannot be
entered if midterm grades have already been
posted.

13. SR #7842 - User unable to change student
status using CISBAT, card format 61. He
supplied valid student ID and school ID but
got invalid dept and major !D's in error
message.

14. SR #7692 - When user only has access to
Format 19, CISDET displays error message
"Invalid Format Request for Cisdet" when
Formatl9 requested.

15. SR #7250 - Section Fee field presently allows
for only three digits. It should allow for four.

16. SMR #7136 - CISRPT2 failed to print student
ID cards of schedules for 2 students registered
for current term. CIS failed to change their
status frcm "P" to "A" despite their being
reg is te red •

17. SR #7138 - In CISRPT2 a class which had been
dr~ped was printed on a student schedule.

D. Miscellaneous.

1. The following types of files appear on the MAT:

a. SxxAnnnF
SxxSnnnF

b. MxxAnnnF
MxxMnnnF

c. JxxJnnnF
JxxAnnnF

d. UxxUnnnF
UxxAnnnF

e. BxxBnnnF

BxxBnnnF --

source files for on-line maintenance
source files for all other programs
maintenance files for on-1 ine
maintenance files for all other programs
job files to compile CIS programs
job files to compile CIS on-line
maintenance programs

USL files
USL files for on-line maintenance

programs
linkage file used in preparing
when two or more files must be
1 inked together
linkage file for on-line
maintenance programs

34

f. PxxPnnnF -- program files

where

xx = file identification number
nnn = last three digits of product number
F = product versi~n level

New JCL has been written to compile all programs in
CIS/3000:

CISBAT -- J05J902A-J51J902A, J60J902A
1 ink f i 1 e -- B 0 2B 9 0 2A

CISDET -- J01A902A-J48A902A, J58J902A
1 in k f i 1 e -- B 0 3A 9 0 2A

CISCRS -- J49A902A-J61A902A, J58J902A
link file -- B04A902A

CISSCH -- J62A902a-J69A902A, J58J902A
link file -- B 05A90 2A

CISREG -- J52J902A, J56J902A, and J57J902A
link file -- B 06B 90 2A

CISBAR -- J53J902A
1 ink f i 1 e -- B 0 7B 9 0 2A

CISGRD -- J54J902A
1 ; ,...., ~ -F; 1 ,.... -- n non an ")7\
..L..LLL.r\. J.....L..L..:; .LJVV.LJJVL..c-:\

CGRADE -- J55J902A, J58J902A, and J59J902A
1 i n k f i 1 e -- B 0 9B 9 0 2A

CISRPTl -- J59J902A, J61J902A, and J64J902A
1 ink f i 1 e -- B 1 OB 9 0 2A

CISRPT2 -- J59J902A, J62J902A, and J64J902A
1 i n k f i 1 e -- B l IB 9 0 2A

CISRPT3 -- J59J902A, J63J902A, and J64J902A
link file -- B 12B 90 2A

2. L-Term fields have been disabled to correct SMR
4545 and are no longer updated automatically
by CIS/ 30 00. Manual update is st ill possible
using CISBAT (card 58) or CISDET (format 26).

3. Log file UOOU902A's Support account name has
been changed to U77U902A and its source (S77S902A)
and its maintenance file (M77M902A) have been
included.

35

MFG/3000 Software Update

EDC/3000 HP32380A.Ol.Ol
DATE CODE ., r\"""\ ""\ '-"Tr'\r'\'a.'T"'"'\t"\l"\'7\ TTT"\. """II"\ "'"'\01"'\ ,..,TTT"'\T"'\r"\.a....m

.L '::J..) L. , 1-...i u ui-...i ,j o u tt • n.I:' ,j L. ,j o u • ;:, u .I:' .l:'U .tu.

A. ENHANCEMENTS

None.

B. CORRECTIVE SOFTWARE CHANGES

The following problems have been corrected in EDC.

1. SR #7264 - The indented bill of material only picked
up the first engineering change on parts with multiple
engineering changes. This problem has been fixed in
EDC2100P .EDCPGM.

2. SR #9074 - When a blank text field was entered as a
remark for a parent-part,~ unpredictable text appeared
in the EDC on-line retrieval of a single-level bill
with remarks {for the parent-part). This problem has
been fixed by modifying the severity code of the text
field in TBLIN580.EDCWJRK.

3. SR #9314 - EDC3000 did not perform a value-check for
CUR-OVH-RATE although the value-check flag was set to
"Y" in the edit tables. Th is problem has be en fixed in
subprogram EDCVAL called by EDCOlOOP, and EDC0800P.

4. SR #9611 - WCTR-ID was not updated in the ROUTING data
set, after a valid transaction was entered on the
EDCFMT40 screen, "CHANGE DESCRIPTIVE DATA". This problem
has been fixed in EDC0590P.

5. SR #9869 - TBLOlOO aborted with a bounds violation after
having written out a new edit file. The outputted edit
file contains all changes. This problem has been fixed
by recompiling the program.

6. SR #10101 - The default values of CUR-TL-SETUP-HR,
CUR-TL-RUN-HR, CUR-LL-SETUP-HR, and CUR-LL-RUN-HR were
initialized to -.0001. These fields should have been
initialized to zero. This problem has been fixed in
EDC03 70P .EDCPGM.

C. KNOWN PROBLEMS

1. SR #5715 - TBLOlOO does not recognize MPE III command
intrinsic errors.

36

D. MISCELLANEOUS

1. SL code segments were combined to reduce the maximum
number of entries loaded in the Code Segment Table
from 9 to 2.

IOS/30 00 HP 32 384A. 01. 01
DATE CODE 1932, NOON384A.HP32384.SUPPORT

A. ENHANCEMENTS

1. SR# 9109, SR# 9702 - The Extra Usage Report was enhanced
by the inclusion of part descriptions and configuration
codes. This enhancement has been added to IOS/3000 by
modifying IOS1800P.IOSPGM and IOS1850P.IOSPGM.

2.· SR# 9695 - The Shortage/Pre-shortage Report was enhanced
by the inclusion of part descriptions. This enhancement
has been added to IOS/3000 by modifying IOS0900P.IOSPGM
and IOS0950P.IOSPGM.

3. SR# 9703 - The Material Requisition was enhanced by the
inclusion of parent-part descriptions. This enhancement
has been added to IOS/3000 by modifying IOS06JOP .IOSPGM,
IOS0620P.IOSPGM, and IOS0630P.IOSPGM.

4. SR# 9704 - The IOS0400J/IOS0450J jobstream was enhanced
by the inclusion of part descriptions for updated parts.
This enhancement has been added to IOS/3000 by modifying
I OS04 SOP .I OSPGM.

B. CORRECTIVE SOFTWARE CHANGES

All of the following known problems have been corrected in
!OS.

1. SR# 5239 - The Inventory Report did not show a total
inventory value for all controllers. This problem has
been fixed in program files, IOS1400P.IOSPGM and
I OS14 50 P .I OSPGM.

2. SR# 5241 - The Inventory Value Report should be sorted
by controller, six month requirement, and then by part
number. This problem has been fixed in JCL file,
IOS14 SOJ. I OSJCL.

3. SR# 5244 - The Purchase Committment Ieport truncated the
report total after $9;999;999:99= This problem has been
fixed in program file IOS1650P.IOSPGM.

4. SR# 5276 - IOS screen ORDFMT19 incorrectly infers that
released orders can be deleted. This problem has been
fixed by changing the forms file for that screen in
ORDFORMS.IOSWORK, used by ORDOlOOP.IOSPGM.

37

5. SR# 5714 - IOS0720P aborted when the shop calendar was
used and the pull date was outside the range of the shop
calendar. This problem has been fixed.

6. SR# 5721 - The routine to partially fill backorders
locped through the backorder chain only once rather than
continuing to fill with partial quantities until all
backorders were filled or until the quantity received was
exhausted. This problem was fixed in the program file
INVOlOOP.IOSPGM.

7. SR# 5952 - When the material requisition limit feature
of the Material Requisition jobstream was used, IOS0610P
did not continue to activate allocations after having
reached this limit. This problem has been fixed in
IOS0610P .IOSPGM.

8. SR# 7893 - IOS0720 created allocations for phantom parts
with a status of inactive, allowing the same phantom
parts to be allocated multiple times. This problem was
fixed in the subprogram INVDB called by IOS0200P,
IOS0610P, and IOS0720P.

9. SR# 9115 - When SHOP-CAL-INDEX was outside of the index
table, GET-CAL-DATE would re turn an error-code of "00",
indicating that all data was valid. This problem has
been fixed in subprogram CAL1200 which is called by
IOS0720P.IOSPGM.

10. SR# 9612 - Planned ("PL") and Pla.nned Firm ("PF") orders
did not appear on the Scheduled Receipts and Issues
screen (INVRETOl) • This pr ob lem has been fixed in the
subprogram INVRTRV, called by INVOlOOP.IOSPGM.

11. SR# 9769 - IOS0720 aborted with an error message of
"too many phantoms" when more than ten parts existed
in a structure chain, although the maximum is 50.
This problem has been fixed in IOS0720P.IOSPGM.

12. SR# 9770 - IOS0710 aborted with a bounds violation
whenever a work-order had more than ten phantom parts
in a structure chain. This problem has been fixed in
IOS0710P.IOSPGM and the called subprogram IOS0715.

C. KNOWN PROBLEMS

1. SR #5258 - The Inventory Control portion of IOS allows
a user without ADD/DELETE capability to add and delete
allocations.

38

2. SR #5274 - It is possible to create multiple backorder
records for a single extra usage order number.

3. SR # 5651 - When originator 95 is deleted, the error
message displayed in the Allocation Maintenance Jobstream
refers to originator 99.

4 • SR # 5 718 - En te r i ng a i 1 9 "s in an Ad :f ll st On Hand
transaction results in the inventory balance being
adjusted by a "-1".

5. SR #6209 - When IOS0200 aborts there is no information
to indiate how many records have been processed.

6. SR # 8408 - Specifying "ND" as the Is sue-Method for an
extra-usage allocation results in that allocation
appearing on a material requisition and pick list.

D. DOCUMENTATION CHANGES

Certain pages in the !OS/User's Reference Manual will be
modified to include changes made by adding part descrip­
tions to certain IOS/3000 reports. The following pages
are affected:

Page 4=53: This page will show a sample of the
newly modified Ex tr a -Usage report.

Page 4-65: Figure 4-18 will present a modified
Shortage/Pre-shortage report.

Page 4 -91: Figure 4-2 3 wil 1 present a modified
Material Requisition.

In addition, pages 4-26 and 4-27 will be modified to
include changes to the IOS inventory retrieval screen,
INVRETOl.

Page 4-26: Figure 4-7 will show how a planned order
is indicated on the retrieval screen.

Page 4-27: The text will be modified to include the
planned order indicator.

E. MISCELLANEOUS

1. SL code segments were combined to reduce the maximum
number of entries loaded in the Code Segment Table
fr om 9 to 2.

39

MRP/3000 HP32388A.Ol.Ol
DATE CODE 1932, NOON388A.HP32388.SUPPORT

A. ENHANCEMENTS

1. SR #9259 - Part number pegging has been added to the
MRP Action Report. The MRP/3000 programs,
MRPlOOOP.MRPPGM through MRP3000P.MRPPGM, have been modi­
fied to include part number pegging. The change includes
modifications to the independent supply and requirement
file MRP1055D. See the documentation section below for
more information.

B. CORRECTIVE SOFTWARE CHANGES

1. SR #6338 - MRP planning did not suggest an order number
for a phantom part under a set of specific conditions.
This problem has been fixed in programs MRPlOOOP,
MRP2000P, and the called module, MRP2020.

2. SR #7068 - In some cases, MRP2020 did not correctly
calculate the order quantity for the order point order
policy when it suggested the first order. This problem
has been fixed in the called module, MRP2020.

3. SR #7142 - When the order point order policy is used,
MRP did not suggest an order when the quantity avail­
able was equal to the order point. This problem has
been fixed in the called module, MRP2020.

4. SR #9115 - When SHOP-CAL-INDEX was outside of the index
table, the called module, GET-CAL-DATE would not return
an error code, rather it indicated that all data was
valid. This problem has been fixed in subprogram
CAL1200U.UTILITY called by MRPlOOOP, MRP1050P, MRP2100P,
MRP 250 OP, and MRP 300 OP.

5. SR #10366 - The JCL file, MRP2007J.MRPJCL of the MRP
planning job stream, had an incorrect file equation. The
file equation, !FILE RQMT = RQMT07.MRPWORK,OLD should
have read, !FILE RQMT = RQMT.MRPWORK,OLD. This
problem has been fixed in MRP2007J.MRPJCL.

C. KNOWN PROBLEMS

None.

40

D. DOCUMENTATION CHANGES

Certain pages in ~ne MRP/3000 User/Administrator's ~~nual
will be modified to include changes made from the addition
of part-number peggin to MRP/3000. The following pages are
affected.

Pages vi, v11, 1-1, and 1-2: These pages will include
SPC/3000 as one of the MFG/3000 products.

Pages 2-14, 2-15, and 3-4: These pages will include
samples of the newly modified Action Report.

Page 3-8: The text will be modified to include
RQMT-PART-NUMBER, (the part-number which triggered the
order) •

Pages 8-2 and 8-3: These pages will display the new
file layouts for the input file MRP1055D, which are:

01 INDEPENDENT-SUPPLY •

05 CTLR PIC 9 (0 2) •
0-5 PART-NUMBER PIC x (18) •
05 INDX-DATE-DUE PIC S9(04) COMP.
05 RECORD-TYPE PIC x I I"\,\

\ U.LJ •

88 SUPPLY-RECORD
II ')II

" .
05 ORDER-NUMBER PIC x (0 8) •
05 ITEM-NU MB ER PIC x (0 2) •
05 MRP-ACTION PIC x (01) •

88 SUPPLY-DATE-UNCHANGED
II 011 •
88 SUPPLY-FIRM
II 111 •
88 SUPPLY-PUSHED-OUT
II 2" •
88 SUPPLY-PULLED-UP
II 3 II •

88 SUP PLY-CANCEL ED
II 411 •
88 SUPPLY-WI-WINDOW
"5".

0 5 MRP-ACTION-9

0 5 SUPPLY-TYPE
8 8 RUN-SUPPLY
II 0 II •

88 WORK-ORDER-SUPPLY
"l".

REDEFINES MRP-ACTION
PIC 9 (01) •
PIC X(Ol).

88 PURCHASE-ORDER-SUPPLY
"2" •

0 5 SUPPLY-STATUS P IC X (01) •
8 8 OPENED-ORDER
"l" •

41

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

88 PLANNED-ORDER VALUE
"2" •
88 SUGGESTED-ORDER VALUE
"3" •

05 SUPPLY-STATUS-9 REDEFINES SUPPLY-STATUS
PIC 9(01) ..

0 5 SUPPLY~TY PIC S9{07) COMP-3.
05 PREV-INDX-DATE-DUE PIC 59(04). COMP.
05 VENDOR PIC X(08).
05 GEN-COMPONENT-RQMT-FLAG PIC X(Ol).

88 GENERATE-RQMT-FOR COMPONENT VALUE
"Y" •
88 DO-NOT-GEN-RQMT-FOR-COMP

05 SCHEDULING-EXCEPTION-FLAG
8 8 NORMAL-SCHEDULING

PIC X(Ol).

"O II •

88 FIRM-ORDER-EXCEPTION
II l" •
8 8 IMPACTED-BY-FI RM-ORD ER
If 2 II •

05 FILLER PIC X(06).

01 INDEPENDENT-RQMT.

05 CTLR
0 5 PART-NUMBER
0 5 I NDX-DATE-DU E
0 5 RECORD-TYPE

PIC 9(02).
PIC X(l8).
PIC S9(04)
PIC X(Ol).

88 RQMT-RECORD
"l" •

0 5 ORDER-NUMBER PIC
05 ITEM-NUM3ER PIC
05 RQMT-STATUS PIC

8 8 RQMT-DATE-UNCHANGED
110 II •

88 PARENTS-SUP-FIRM
111 n •

88 PARENTS-SUP-PUSHED-OUT
112" •
88 PARENTS-SUP-PULLED-UP
"3" •
88 PARENTS-SUP-CANCELED
II 4 If •

88 PARENTS-SUP-WI-WINDOW
115" •

x (08) •
x (0 2) •
X-(01) •

COMP.

05 RQMT-STATUS-9 REDEFINES RQMT-STATUS
PIC 9(01).

0 5 RQMT-TYP E PIC X (01) •
8 8 ALLOCATION -RQMT
"2" •
8 8 BACKORDER-RQMT
"3" •
88 EXTRA-USAGE-RQMT
II 4 II •

42

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

8 8 EXPLODED-RQMT
115 II•

0 5 RQMT-TYP E-9

05 FILLER
0 5 RQMT-QTY
0 5 RQMT-PART-NUMBER

E~ MISCELLANEOUS

T"\T:1T"'\ r.i T":1 T ').."TT:l rt T"'\r"\'1.6m m "tm ri
L'\.C..LJ .C.. .[' J. 1\J .C.. u .t\\,dlvlT-T .Lt' .C..

PIC 9(01).
PIC X(Ol).
PIC S9 (07) COMP-3.
PIC X(l8).

VALUE

1. SL code segments were combined to reduce the maximum
number of entries loaded in the Code Segment Table
fr om 9 to 2.

SPC/3000 HP32392A.OO.Ol
DATE CODE 1932, NOON392A.HP32392.SUPPORT

A. ENHANCEMENTS

None.

B. CORRECTIVE SOFTWARE CHANGES

The following problems have been corrected in SPC.

1. SR# 9073 - The selection of a workcenter range in
on-line SPC/3000 resulted in an empty file of parts
to be selected for cost roll-up. This problem has
been fixed in SPC2000P.SPCPGM.

C. KNOWN PROBLEMS

None.

D. MISCELLANEOUS

1. SL code segments were combined to reduce the maximum
number of entries loaded in the Code Segment Table
fr om 9 to 2.

43

IMAGE Database Schema Survey

A survey of how customers design their IMAGE databases.

By John Page, General Systems Division

Here in the Database Management part of the GSD lab, we have a
need for some data relating to the ways customers are designing
their IMAGE databases. To help us make certain design decisions
in our future products, we need to know things like:

(a) How many datasets in a typical database?
(b) How big are the datasets?
(c) What is the record length size distribution?
(d) Which are the most popular data types?

etc.

Your help in this effort would be appreciated. What we need is a
mag tape with your schemas stored on it. We will then analyze all
the schemas we receive and compile the statistics we need.

If you would like to contribute to this survey, here's what to
do:

(a) Make a :STORE tape containing all your schemas in source
form. Any density will do (1600 preferred) and you can use
any account/group/creator since we will use the RESTORE
program to retrieve the files.

(b) Mail the tape to:

Mike Huey Bldg. 48N
Hewlett-Packard Co.
General Systems Division
194 4 7 Pruner idge Ave.
Cupertino CA 95014

We would like only schemas for databases that are actually in
operational use, since experimental and test databases are often
unrealistically small and this would pollute our dataset size
statistics.

If you are interested in the results, make a note on the tape and
if there is sufficient interest, I will publish them in the Users
Group Journal.

I hope you can help us. The data we receive will help us build
better systems for you in the future.

44

IMAGE: Address Calculation;
QUERY: 'Reporting Techniques

This article contains a brief discussion of IMAGE's address
calculation algorithms followed by notes on generating reports
in QUERY by using REGISTER statements and nested XEQ files.

by Tony Lemberger, General Systems Division

IMAGE: A Word on Address Calculation Algorithms and Efficiency

There are two address calculations -- one for byte data (IMAGE
type X,U, or Z) and one for word data (IMAGE type I,U, or R). As
usual, there are benefits and costs associated with each.

Byte Data -- A hashing algorithm is applied to the byte data
yielding a double integer, then modulo arithmetic
is used to produce a relative record address.

Word Data Modulo arithmetic is used to produce a relative
record address.

The choice of data type can affect performance. Unless the user
is doing his own randanizing of key values, byte data types are
best. While the initial overhead is slightly higher for byte data
(the hashing algorithm), a vast improvement in response time is
achieved due to the even spread of data in the data base files.
If user keys are sequential or grouped, use byte data types!

QUERY: Notes on Register Arithmetic

Some things to remember when writing QUERY REPORT Procedures that
use re gis te r arithmetic:

1) All register statements are done before any detail
statements.

2) All register statements are executed for each record
processed by a report procedure.

3) Register statements are executed in the order they appear
in the FEPORI' Procedure, regardless of any intervening
statements.

45

Two examples should illustrate these points. First, this report

REPORr
Rl I LOAD I "1000"
Dl, Rl, 10
Rl I LOAD, II 2000"
Dl, Rl, 2 o
END

generates "2000 2000", not "1000 2000". Because all register
statements are executed before any detail statements, the above
report loads register one with "1000", then again with "2000"
(replacing the "1000"), and then uses the detail statements to
produce a line of output.

As a second example, consider these two reports -- both written
to find the cumulative difference between "scheduled hours" and
"actual hours" for each Job-ID. The totals generated do not
always match; the one on the left is sometimes too large.

REPORT
Sl I JOB-ID
Rl, ADD, SCHED-REG-HRS
Rl, ADD, SCHED-OT-HRS
R2, ADD, REAL-REG-HRS
R2, ADD, REAL-OT-HRS
Tl, Rl, 10
Tl, R2, 20
R3 I ADD I Rl
R3 I SUBTRACT I R2
Tl, R3, 30
Tl, Rl; Tl, R2; Tl, R3
END

REPORT
Sl I JOB-ID
Rl, ADD, SCHED-REG-HRS
Rl, ADD, SCHED-OT-HRS
R2, ADD, REAL-REG-HRS
R2, ADD, REAL-OT-HRS
T 1, Rl I 10
Tl, R2, 20
R3, LOAD, Rl
R3, SUBTRACT, R2
Tl, R3, 30
Tl, Rl; Tl, R2; Tl, R3
END

The reason the totals do not match is that all register
statements are executed for every record processed. Note that on
the left, register one is always added to register three before
register two is subtracted. But register three already contains
the difference of any records for that Job-ID (if any records
have been previously processed). For 5 records processed, the
difference for the first record is included in register three
5 times!

Generating Reports from Multiple Data-Sets in QUERY

QUERY does not allow Report Procedures that reference more than
one data-set. However, by using nested XEQ files, it is possible
to produce reports with data from multiple data-sets.

46

The most straight-forward data-set combinations to work with are
either two Masters or one Master with a related Detail. The
basic technique is

1) A user written Report procedure is formatted so that it
creates an XEQ file containing data from the first
data-set that information was drawn from, as well as a
FIND statement that will select data from the next
data- set.

2) The XEQ file created in step one is then executed= If
only two data-sets are being used, the output it creates
is the desired report. If more than two data-sets are
being used, then the output is formatted as an XEQ file.
The process can be nested indefinitely (because XEQ files
can be nested indefinitely), but the last XEQ file to be
executed produces the desired report.

The two examples that follow are based on the STORE data base as
des er ibed in the IMAGE Re fe re nee Manual.

For ease of presentation, the first example will begin with the
desired report and work backward. (This is also the safest way to
design this kind of XEQ file!) The first report to be produced
is--

NAME FROM MASTER
SCHL ILLIGAt~
SCHLILLIGAN

DATE FROM DETAIL
JUN 76
MAY 78

(Simple maybe -- but a more complicated one follows.)

An XEQ file capable of producing such a report might appear as
follows.

FIND SALES.ACCOUNT=
REPORT
Hl, "NAME FROM MASTER", 16
Hl,"DATE FROM DETAIL",40
Dl,"SCHLILLIGAN ",18
Dl ,PURCH-DATE, 3 5
END

1 <---note the extra spaces

<---this is the LAST-NAME field
fr om the CUSTOMER data- set!

Note that some of the data (specifically the LAST-NAME) appears
as a literal. Note also those extra spaces in the ACCOUNT value
and the LAST-NAME literal -- these lines were built by an XEQ
file, and room had to be left for the largest possible data-item
value. These literals are being used to pass variable data from
XEQ file to XEQ file. In each XEQ file; a new data-set is being
referenced, and the information garnered from each must be kept
in literals until it is output in a report.

47

Such an XEQ file can be generated by the following XEQ file.

FIND CUSTOMER.ACCOUNT=l
REPORT NOPAGE LP
Hl, "FIND SALES.ACCOUNT="
Hl, ACCOUNT
H2, "REPORT"

H4,
Dl,
Dl,
Dl,
D2,
D3,
END

nu1 n ll'f\17\ 11..n:;i L'T"lf'"\11.11 11.117\ C"mT:lnll n i c n
J.J...J.., nn1•1u 1: L\.v1•1 L•ittu.l .C...£\. , .LO

"Hl ,""DATE FROM DETAIL"" ,40"
"Dl," ""
LAST-NAME
11

II
11 '18 II

"Dl ,FURCH-DATE, 3 5"
"END"

, 19
,26
,6
,24
,24
,4
, 2 0
,24
,16
,3

There are several things to note in this XEQ file. First,
remember that in QUERY double quotes inside of quotes mean one
quote embedded in a character string. Next note how the two
Header One statements build the one FIND statement in the
"output" listed above. And how the three Detail One statements
build the Detail statement above that contains the literal. Also
be aware of just how "messy" a simple report like this one
became.

This second XEQ file would be the one the user would write. It,
in turn, would create the first XEQ file, which would produce the
desired report. If in the user-written XEQ file, the first line
was FIND ALL CUSTOMER.ACCOUNT, then a much larger XEQ file would
have been produced by it. In that "second-generation" XEQ file
there would be a FIND and REPORI' statement for each ACCOUNT in
the CUSTOMER data-set. That series of FIND-REPORT, FIND-REPORT
statements would produce a series of small related reports
similar to the one we started with. By specifying NOPAGE when the
report is produced, the user can avoid getting separate pages for
each of these pieces of the total report.

Before the next example (which shows some more bells and
whistles), the actual production of the above report is outlined.

After creating the initial XEQ in the EDITOR, the standard output
file for QUERY must be directed to a disc file.

:BUILD HOLD;REC=-80,16,F,ASCII
:FILE QSLIST=HOLD,OLD;DEV=DISC

Then get into QUERY and execute your EDITOR file. (For XEQ files
that are nested more than one deep, make the last statement of
all but the last XEQ file be "XEQ HOLD", and, like daninoes, each
piece will start the next piece!) When the final XEQ file has
been built--the one that will produce your report--the file
equation for QSLIST must be RESET. (This will direct your final
output to the line-printer instead of a disc-file.) Then XEQ HOLD
for the last time, and your multi-data-set report will appear on
the 1 ine-pr inter.

48

This technique can be expanded to include entire applications.
Data entry (with audit trails), report generation, and impromptu
inquiry--all available, with QUERY. However, simple report
generation can become quite complicated when QUERY is the base of
the application.

However, nested XEQ files can be used to produce those occasional
reports that are always needed which had to be prcxiuced with a
quick and dirty program. The development time for nested XEQ
files can be substantially lower than that for a program, once
you get the hang of it.

Just a word more about other combinations of data-sets. When the
user cannot predict how many records will be found, it is hard to
nest XEQ files from that data-set to another. So combining
several Details, or selecting data from a Master based on
something other than the Key value is not as straight-forward.
One possible implementation is to construct multi-level Detail
statements on the run. Write a "D", followed by a register
(incremented for every record processed--01,02,etc), followed by
the data to be printed. This allows up to nine records to be
processed. There is nothing to prevent a user from constructing
group and total statements in the same manner, although the logic
becomes even more complex.

EXAMPLE 2

If you are interested in learning more about this technique, the
following example is more challenging. It shows a more
complicated (and realistic) report. The user-written XEQ file is
listed first, with its associated REPORT Procedure. Then the XEQ
file it creates; and last the report that is generated.

FIND ALL CUSTOMER.ACCOUNT
REPORT SUMMARY

PROCEDURE: SUMMARY

REPORT NOPAGE LP
Hl,
Dl,
Dl,
D2,
D3,
D3,
D3,
D4,
D4 f

D4,
D4,
D4,
D4,
D4,
D5,

"LP"
"FIND SALES .ACCOUNT="
ACCOUNT
"REPORT NOPAGE II

!!Hl, !! "ACCOUNT" II, 10, SP ACE B 3 11

II ; H 1 , II II NAME II II , 16 "
";Hl, II "CREDIT-RATING" II, 58 II
"H2' II 11 II

ACCOUNT
111111 ,10;H2, """
LAST-NAME
II II II , 28 ; H 2, II II, II II, 2 9; H 2, "II II

FIRSI'-NAME
11 11

II I 40 11

II H 2 ," II II , 4 ; D 5 , c RED IT-RATING

49

,2
, 19
,26
,13
,2 4
, 37
, 5 9
,4
, 10
,19
, 35
, 5 4
, 6 4
,6 8
,14

D 5, " "", 5 5, SPACE A 2" , 2 7
D5, ";H3, ""SALES HISTORY STOCK#"" ,5 4" ,60
D6, "H3, '"'QUANTITY PRICE PURCH-DATE DELIV-DATE"" ,100" ,52
D 7 , "Dl , STOCK# , 5 4; D 1, QUANTITY, 6 4; D l , TOTAL, 7 5" , 3 9
D8, "Dl ,PURCH-DATE, 8 6; Dl ,DEL IV-DATE, 98" , 3 3
D9, "S2,PURCH-DATE; Sl,STOCK#;END" , 27
TF, "TERM" ; 4

END

LP
FIND SALES.ACCOUNT= l
REPORT NOPAGE
Hl, "ACCOUNT", l 0, SPACE B 3; Hl, "NAME", 16; Bl, "CREDIT-RATING" , 58
H 2 , " l" , l 0 ; H 2 , " J 0 NE S " , 2 8 ; H 2 , " , " , 2 9 ; H 2 , "MI KE " , 4 0
H2," 9.87700" ,55,SPACE A2;H3,"SALES HISTORY STOCK#" ,54
H3, "QUANTITY PRICE PURCH-DATE DEL IV-DATE" ,100
Dl,STOCK#,54;Dl,QUANTITY,64;Dl,TOTAL,75
Dl,PURCH-DATE,86;Dl,DELIV-DATE,98
82,PURCH-DATE;Sl,STOCK#;END
FIND SALES.ACCOUNT= 0
REPORT NOPAGE
Hl, "ACCOUNT", l 0, SPACE B 3; Hl, "NAME:', 16; Hl, "CREDIT-RATING" , 58
H2," 0",10;H2,"SMITH ",28;H2,", ",29;H2,"FRED ",40
H2," 6.55556",55,SPACE A2;H3,"SALES HISTORY STOCK#",54
H3, "QUANTITY PRICE PURCH-DATE DEL IV-DATE" ,100
Dl,STOCK#,54;Dl,QUANTITY,64;Dl,TOTAL,75
Dl, PURCH-DATE, 8 6; Dl ,DEL IV-DATE, 98
S2,PURCH-DATE;Sl,STOCK#;END
TERM

ACCOUNT NAME
l JONES

ACCOUNT NAME
0 SMITH

CREDIT-RATING
9.87700 ,MIKE

SALES
HISTORY STOCK#

444444
11111111

QUANTITY
l

37

CREDIT-RATING
6.55556 ,FRED

SALES
HISTORY STOCK#

11111111
33333333
22222222

QUANTITY
7
l

100

PRICE
150 0

2 0965

PRICE
900
920

150 0

PURCH­
DATE
JUN 76
MAY 78

PURCH­
DATE
OCT 78
OCT 78
SEP 77

DELIV­
DATE
JUL 76
AUG 78

DELIV­
DATE
JAN 79
OCT 78
DEC 78

* Editor's Note: PURCH-DATE and DELIV-DATE should be on *
* one line; this section is compressed due to the *
* page-size limit of this magazine. *

50

Using HP VIEW/3000 VGETtype Intrinsics

Correlating HP VIEW/3000 data types, VGETtype intrinsics,
and programming language data types.

by Carla Klein, General Systems Division

When using HP VIEW/3000 for data entry, all data is read from
the unprotected fields on the screen as ASCII characters and
concatenated to form a data buffer. The VGETBUFFER intrinsic
will transfer. the entire buffer to an application program or
VGETFIELD can be used to obtain the contents of an individual
field. However, neither of these intrinsics performs any
conversion of the data values. Therefore, a field defined as
DIG in FORMSPEC and containing the value 123 would be transferred
as the string of characters "123". The VGETtype intrinsics,
VGETINT, VGETDINT, VGETREAL, and VGETLONG, have been provided
to perform conversion from ASCII to the four indicated data
types. The following chart and notes will help you correlate
VIEW/3000 data types, VGETtype intrinsics, and programming
language data types.

LANGUAGE I Intrinsic

FORTRAN

BASIC

SPL

COBOL

VGETINT
VGETDINT
VGETREAL
VGETLONG

I VGETINT
I VGETREAL
I VGETLONG

VGETINT
VGETDINT
VGETREAL
VGETLONG

I VGETINT
I VGETDINT

51

Data 'fype

INTEGER
INTEGER*4
REAL
DOUBLE PRECISION

INTEGER
REAL
LONG

INTEGER
DOUBLE INTEGER
REAL
LONG

S 9-S 9 (4) COMP
S9(5)-S9(9) COMP

***** ADDITIONAL NOTES *****

1. If errors occur during conversion, the status word in the
communications area is set to an error value.

2. If the requested field has been flagged as having an error
(perhaps by VFIELDEDITS or VSETERROR), the conversion is
performed, but the status word is also set to an error
value.

3. An attempt to convert a number larger than 32767 using
VGETINT will return an error value (504) in the status word
and will leave the receiving value unchanged.

4. All commas are stripped before conversion is performed.

5. Fields of type CHAR may be converted as long as they
contain numeric characters (including " • , - + ")
Otherwise an error value will be returned in the status
word.

6. VGETINT and VGETDINT will only convert the integer portion
of a given field. The fractional portion is truncated
before conversion. Remember that in a field of type IMPn,
the rightmost "n" characters will be treated as a fraction.

7. If VGETFIELD is used to pass a field containing a decimal
point to a COBOL program, the decimal point will also be
passed and no arithmetic may be performed on the field.

8. Negative numbers can be zoned correctly for COBOL only
by using the VGETINT and VGETDINT intrinsics. VGETBUFFER
and VGETFIELD will transfer the negative sign, but COBOL
will treat the value as positive, ignoring the sign
character. An EXAMINE statement using TALLY can determine
that the negative sign is present and then the program can
treat the value accordingly.

9. Normal rules of truncation in COBOL are followed. For
example, conversion of 12345 using VGETINT with a
receiving field of 89(4) will truncate the value to 2345.

10. VGETINT may be used to convert positive integers to
type LOGICAL in SPL.

52

HP VIEW/3000 User Education

by Babs Brownyard, General Systems Div is ion

The HP VIEW/3000 user course is currently available at HP
tr a in ing f ac il i ties (HP 228 30A) or as on-site instruct ion
(HP22830X). The class is scheduled for four days. The first two
days focus on screen design and the use of FORMSPEC, ENTRY, and
the reformatting capability. This portion of the course does not
require programming knowledge on the part of the student.

The second segment is devoted to programmatic use of HP
VIEW/3000; that is, the use of the HP VIEW procedures. Lecture
material concentrates on the interaction of the procedures, while
labs guide the students in the actual use of application pro­
grams. The entire course is heavily lab-oriented, emphasizing
hands- on use of the product.

HP VIEW features such as menu selection and extensive documen­
tation enable most users to design basic screens without instruc­
tion. The course enables the user to move beyond the fundamen=
tals of the product and to employ its many advanced capabilities.
Students are in a much better position to use it effectively and
efficiently in their programs.

Contact your HP Sales Representative for more information on the
HP VIEW/3000 User Course, or for information on instructional
materials for your own in-house training program.

53

Analysis of RPG Run-time Error Aborts

A procedure to relate RPG run-time error aborts, caused by user
program code, to a source code line number.

by Geoff Wa 1 ker
HP-Paramus, New Jersey

I. RPG Feature

The RPG compiler loads and stores the line number for each
statement it executes, so that when a run-time error appears
RPG can inform the user where the error occurred. If this
feature is not needed in a program the user can save up to
30% of code space (resulting in faster execution, especially
of large programs) by entering an N in column 20 of the
header record.

I I • Pr oce d ur e

1. Assume you get a run-time bounds violation such as the
following:

ABORT :PROGRAM.GROUP.ACCOUNT.%1. %3044
PROGRAM ERROR #24 :BOUNDS VIOLATION
*** ABORT STACK ANALYSIS ***

S=011341
Q=01134S
Q=011336
Q=011331
Q=011312
Q=011306

DL=l 77602
P=00304 4 LCST=
P=004747 LCST=
P=002270 LCST=
P=000022 LCST=
P=l 77777 LCST=

Z=014162
001 STAT=U,1,1IL,0 I 0 I CCG
001 STAT=U,l,l,L,O,O,CCG

Sl37 STAT=U,1,1,L,O,O,CCL
000 STAT=U,1,1,~0,0,CCG

sass STAT=P,l,O,L,O,O,CCG

X=OOOOOO
X=OOOOOl
X=000034
X=OOOOOO
X=OOOOOO

NOTE: The "ABORT STACK ANALYSIS" information is produced
by entering the MPE command ":SETDUMP" and running the
program in question.

2. From the above information, the RPG program is aborting
in segment (LCST) #1, at P-location 003044. The absence
of an "S" in front of the code segment number indicates
the abort is occurring in user code, not system SL code
(as is sometimes the case).

S4

3. The first step is to run "DECOMP" on the program file,
specifying the number of the segment you want to
decompile (#1 in this case). This will produce a listing
of the machine instructions for the segment.

4. Find the abort P-location in the left hand column of the
DECOMP lj.$ting (304 4_ in th.is case) _ _._ __

5. Read backwards from that point (up the page) until you
find the following combination of instructions:

LOAD
STOR

OR •••

P+/- ###
DB+064

LDI ###
STOR DB+064

(### > 255)

(### < 256)

6. Location DB+64 is used to store the number of the cur­
rent source code line being executed. For source line
numbers above 255, "###" is a displacement in the code
pointing to the storage location containing the line
number • For source 1 in e n umb e rs be 1 ow 2 56 , "# # #" it se 1 f
is the source line number (in octal). For example, sup­
pose the load instruction is at location 3030 (the
number in the left-hand column) and it reads "load
P-41". You must subtract 41 from 3030 (in octal), givi.ng
2767, the location containing the current source line
number.

7. Now look up location 2767 in the left-hand column of the
DECOMP listing. The value in the second colmn is the
current source code line number *IN OCTAL*. Note that
DECOMP will incorrectly interpret this value as one or
two machine instructions instead of a constant.
Translate the value from octal to decimal, and you're
done! !

FOOTNOTES:

1. The "calculator" mode of DEBUG can be used to
simplify the above octal arithmetic and conver­
sions. An example is as follows (see the DEBUG
manual for further information):

: EDITOR
/DEBUG
?=3030-41
=2767
?=1263,I
=+691
?E
END OF SUBSYSTEM

55

2. In the above abort example, the actual abort
location was in a subroutine entered from several
different places in the program. The stack trace­
back can be used to tell where the subroutine was
called from: following the above procedure for
location 4747 in the same code segment (from the
second line of the abort stack analysis) will
produce the line number from which the subroutine
was called.

3. If you're not sure you've done the above procedure
correctly, try it again, this time going backwards
to the load/store pair before the one you just
examined. Chances are this pair will point to the
previous source code line number.

4. Note that the above procedure cannot be used if the
line number suppression feature (an "N" in column
20 of the control card) has been invoked.

56

Iterative Operations with EDIT/3000

Use of the FLAG in WHILE loops.

By Jerry Schwartz, HP - Rockville, Maryland

One of the most powerful facilities of EDIT/3000 is the WHILE
command, which allows repetitive operations. In order to use it
to the utmost, especially in situations where conditional exe­
cution of certain commands is necessary, understanding of a
little-known facility called the FLAG is invaluable.

The FLAG reflects the success or failure of an EDITOR command,
and is most useful in WHILE loops, where it may be referenced
explicitly or implicitly.

To understand the use of the FLAG, it must -be remembered that the
execution of a WHILE command has the structure:

WHILE <condition> do <operation>

Where <operation> is an EDITOR command (or block of commands) and
<condition> has one of the values "yes" or "no", corresponding to
the success or failure of the immediately preceding EDITOR com­
mand, respectively. In its simplest form; <condition> will be the
FLAG. For example,

/WHILE FLAG
I LIST "FRED"

will list all lines containing the string "FRED" from the current
pointer position to the end of file (subject to the iteration
limit set by the SET TIMES = command). This, by the way, is about
the fastest way of listing all occurrences of a string.

The command LIST <string> will behave as follows:

1. Search forward from the current pointer position for an
occurrence of <string>. If not found, set FLAG to "no" and
stop with a message.

2~ List the line found.

3= Advance the pointer to the start of the next line; or (if the
line just listed was the last) leave it at the end of the
last line.

57

The LIST command is executed repeatedly until FLAG is set to "no"
by failure of (1) above. Because LIST advances the pointer to the
next line (3), a line will never be listed more than once.
Compare this with

/WHILE FLAG
I FIND "FRED"

Unlike the LIST command, FIND leaves the pointer at the beginning
of the string. This loop would display the same line until the
number of iterations exceeded TIMES.

The examples described above are pure in the sense that FLAG is
used as the <condition>. FLAG has no side effects. Often,
however, a canmand (or block of commands) is used as the
<condition>. Most commands have side effects; they change the
text or move the pointer in addition to having a resulting value
of "yes" or "no". This makes it imperative that close attention
by paid to where each command leaves the pointer. For example,

/WHILE
I LIST "FRED"
I DELETE *

will list each 1 ine containing the string "FRED" and the.n delete
the line immediately following. The similar-looking construct

/WHILE
I FI ND "FRED II
/ DELETE *

will delete the lines containing "FRED", as would the more
straightforward

/WHILE FLAG
I DELETE "FRED"

The WHILE command always evaluates the <condition> regardless of
the value of the FLAG. In other words, if the <condition> con­
sists of one or more commands then at least the first will be
executed.

Multiple commands may be used in either <condition> or
<operation> if they are bracketed by BEGIN-END pairs. In the
<condition>, this has the effect of logically ANDing the commands
together. Since if the first of two or more logical values being
ANDed together is "no" (true) the others need not be evaluated,
once the FLAG is set to "no", then subsequent commands in
<condition> are ignored. Similarly, if multiple commands are
blocked together in <operation>, once the FLAG is set to "no",
then subsequent commands are ignored. Consider the following
construction:

58

/WHILE
/ BEGIN
/ FIND n LUMPYn
I FIND * (FIRST)
I FIND "ROTTEN" I * (LAST)
I END
I CHANGE "POTATOES" . TO II SPUDS" IN *

Three FIND commands are needed to locate all lines in which both
"LUMPY" and "ROTTEN" occur, regardless of the order in which they
appear. The first FIND locates a line containing "LUMPY"; the
second (which can never fail) repositions the pointer to the
beginning of that 1 ine; and the third locates the string "ROTTEN"
if it occurs before the end of the line. If any FIND fails, FLAG
is set to "no", the remainder of the <condition> block is
skipped, and the WHILE terminates. Similarly, consider

/WHILE
I FIND. "LUMPY"
/ BEGIN
I DELETE * (+5) I * (LAST)
I FIND * (FIRST)
I FIND "ROTTEN" I * (LAST)
/ CHANGE "LUMPY" TO "" IN *
I END

This will locate an occurrence of "LUMPY", then delete everything
after "LUMPY" to the end of the line. The pointer is then moved
to the beginning of the line, and a search made for "ROTTEN" on
that same line. If "ROTTEN" is found, "LUMPY" is changed to a
null string; if "ROTTEN" is not found, the CHANGE command is
ignored. The loop continues with evaluation of the <condition>
(FIND "LUMPY") in either case. Unfortunately, the above sample
contains an error: if "ROTTEN" is not found, the pointer is left
at the beginning of the line, and the next iteration of the loop
will find the same occurrence of "LUMPY". In fact, the previous
example contains a similar bug: if the string "POTATOES" precedes
"LUMPY" on the same line, the pointer will never advance to the
next line, and the EDITOR will loop until the iteration limit is
reached.

The EDITOR gives us some commands to perform additional logical
operations: NOT, OR, and YES. These commands will always be
executed when encountered, regardless of the value of the FLAG.
To fix our last example, we need to use the OR command, which
performs an inclusive OR operation with a side effect: since a
"yes" (true) result from the first of two conditins being ORed
together obviates the need to evaluate the second, the command
i mm A rl i ;::i r A 1 'i.7 F (""\ 1 1 f""'lta7 ; n n ;::i n n 'R f""' f""'lm m ::i n ~ ; C! 0 v 0 f""' 11 i-o ~ (0 '1:7 ::::. l 11::::. i- 0 ~ ' ,...,. n l '1:7
.._.1.1.1..&.l.L'-'"""..,""""'"-'-...._1 .--_......,. 'J '-4,.ol..a. '-'•'- '-'""'.LLl..lLL&."'""" .&......., '-~~'-'"""\.4'-'-""" \'-V~._'-"'-4.\.._.'"-.A/ '-'.1..1.~:t

if the FLAG is "no" (false) when the OR is encountered. Returning
to our example,

59

/WHILE
I FIND "LUMPY"
/ BEGIN
I DELETE * (+5) I * (LAST)
I FIND * (FIRST)
I FIND "ROTTEN" I * (LAST)
I CHANGE "LUMPY" TO II" IN *
I OR
I FIND * +l
I END

The addition of the OR and FIND* +l has this effect: if the FIND
"ROTTEN" I* (LAST) succeeds, the CHANGE command is executed, but
the FIND * +l is not; or, if the FIND "ROTTEN" / * (LAST) fails
(setting the FLAG to "no"), then the CHANGE command is skipped,
the OR sets the FLAG to "yes", and the FIND * +l is executed.
Bea~ in mind that if the statement following an OR is executed
but fails (sets the FLAG to "no"), the FLAG remains set to "no".
Use of an OR does not guarantee the value of the FLAG; it is a
means for conditionally executing a single command or command
block.

The other two logical operators, NOT and YES, are also useful.
YES will simply set the FLAG to ,,.yes" whenever it is encountered.
For example,

/WHILE
I FIND "LUMPY"
/ BEGIN
I FIND II MATTRESS" I * (LAST)
I LIST * -1
I YES
I LIST *
I END

will find each occurrence of "LUMPY" and, if the string
"MATTRESS" follows it on the same line, the line before is
listed; in any event, the line originally found is listed.
(Remember what the LIST command does to the pointer.)

Last but not least, the NOT command reverses the sense of the
following command.

/WHILE
I FIND "LUMPY"
/ BEGIN
I NOT
I FIND II MATTRESS" I * (LAST)
I LIST *
I END

This WHILE loop will list all lines,on which "LUMPY" is found but
is not followed by "MATTRESS".

60

Two final notes are in order. Normally, the EDITOR lists each
command in a locp as it is encountered; if the command was
skipped, a dash ("-") appears to the left. This is useful for
debugging but messy for general use. The SET SHORT command will
suppress this listing. Judicious use of the Q suffix (e.g.,
FINDQ) will improve the appearance of listings still further.

Finally, the FLAG is also usable in command files invoked with
the USE command. The same rules apply as would apply to the
<operation> part of a WHILE locp. No locping occurs unless
another USE command with no parameters will return to the pre­
vious canmand file, and may be used with a FLAG and OR, NOT, and
YES commands to conditionally execute parts of a command file.

As an example, consider the following USE file:

Q "What is the name of your file?" z : : =
TEXT Z: :
OR
USE
FINDQ II $CONTROL" I FIRST (LAST)
FIND *+ +l
YES
FIND "IDENTIFICATION DIVISION."
OR
BEGIN

<<Return if TEXT failed>>
<<Start with $CONTROL?>>
< < If yes , skip 1 in e > >
<<In either case, continue>>
I * (LAST)
<<If not found, step>>

Q "File does not begin with IDENTIFICATION DIVISION"
USE
END

// """ ' '""""'' '-'-.LC 1-U.L lV /

This command file performs a certain amount of checking before
continuing with whatever work it has to do. A file must be suc­
cessfully TEXTed; and it must begin with II IDENTIFICATION
DIVISION", or with "$CONTROL" immediately followed by
"IDENTIFICATION DIVISION". If these conditions are not met, it
stops executing and returns control to the user.

61

PARM=Values When Running a Compiler Program

This article defines the range of values which may be used with
the PARM= parameter when HP 3000 Compilers are invoked via the
MP E RUN command.

By John Pavone, General Systems Division

The HP 3000 MPE Operating System allows the user to invoke
compiler s ubsys terns in two ways.

Method 1 is via the MP E command : Compiler- name fol lowed by the
optional parameter list which declares the ACTUAL FILE
DESIGNATORS that the compiler is to use for the Text, Usl, List,
Master & New files.

Method 2 is via the MPE command :RUN Progfile and passing a
Equated-files-value via the PARM= parameter. The
Equated-files-value informs the compiler which of the ACTUAL FILE
DESIGNATORS have been equated to the compilers FORMAL FILE
DESIGNATORS via File Equations.

The following tables identify the FORMAL FILE DESIGNATORS for
each canpiler subsystem and the range of valid PARM= values and
their associated File Equation declaration combinations.

Table-1
Compiler Formal Fi le Designators
-------- -----------------------
SPL SPLTEXT SPLUSL SPLLIST SPLMAST SPLNEW
FOR!' RAN FTNTEXT FTNUSL FTNL IST FTNMAST FTNNEW
COBOL COB TEXT COBUSL COB LIST COB MAST COB NEW
RPG RP GT EXT RPGUSL RPGLIST RPGMAST RPGNEW
BASIC BSCTEXT BSCUSL BSCLIST N/A N/A

62

Table-2
PARM=Value Textf ile Listf ile Uslf ile Mas te rfile Newf ile
------------ ==-======~ -~------ ------- ---------- -------

0
1 x
2 x
3 x x
4 x
5 x x
6 x x
7 x x x
8 x
9 x x

10 x x
11 x x x
12 x x
13 x x x
14 x x x
15 x x x x
16 x
17 x x
18 x x
19 x x x
20 x x
21 x x x
,.., ,.., v v x L. L. .C>. .n.

23 x x x x
'111 x x L. '":E

25 x x x
26 x x x
27 x x x x
28 x x x
29 x x x x
30 x x x x
31 x x x x x

63

Corrections to Issue 21 of COMMUNICATOR 3000

1. page 37 The version level of IMAGE/3000 was incorrectly
stated to be B.02.02. The correct version level
is B.02. 01.

2. page 39 Module 77-- formerly STKDUMP-- was incorrectly
stated to be part of the MPE III Series II/III
Software Update, date code 1918. As of the
B.01.00 (1918) version of MPE, Module 77 no
longer exists. STKDUMP is now combined with
.ABORTRAP into Module 58, ABORTDUMP.

3. page 99 The version level of IMAGE/3000 was incorrectly
stated to be B.02.02. The correct version level
is B.02.01.

4. page 107 The version levels of Basic Compiler, RPG, KSAM
and IMAGE were incorrectly stated. The correct
version levels are:

BASICOMP /3000
RPG
KSAM/30 00
IMAGE/3000

B.00.11
B.04.04
A.03.00
B.02.01

We apologize for any inconvenience these mistakes may have
ca us ed.

64

Although every effort is made to insure the accuracy of the
data presented in the Communicator, Hewlett-Packard can­
not assume liability for the information contained herein.

Printed in U.S.A. 12/79

Part No. 5951-6113

Prices quoted apply only in U.S.A. If outside the U.S., con­
tact your local sales and service office for prices in your
country.

F//89 HEWLETT
~~PACKARD

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	xBack

