HEWLETT ‘h“ PACKARD

HP 3000 Computer Systems

MPE Intrinsics
reference manual

HP 3000 Computer Systems

MPE Intrinsics

Reference Manual

/A crcicaro

19447 PRUNERIDGE AVE,, CUPERTINO, CA 95014

Part No. 30000-90010 '
Product No. 32002B ‘ ‘ Printed in U.S_A. 4/78 -

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors

contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1980 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a
prior update.

SecondEdition....................... Apr 1978
Changed Pages Effective Date Changed Pages Effective Date
3 Jan 1980 280 . Mar 1980
Hi-v... oo i e Mar 1980 280ab.......... Mar 1980
. S Jan 1980 2-81......... N Mar 1980
x-xiii, Jan 1980 28lab......... ... Mar 1980
. Jul 1979 282 e e Jul 1979
O Jan 1980 283 . e Mar 1980
16 . . e Jul 1979 285 e dJan 1980
17 Jul 1979 2-86 . . e e Jan 1980
3 Mar 1980 296 . .. Mar 1980
114 Jul 1979 298 . e Mar 1980
212 . e, Jun 1980 200 Mar 1980
S L Mar 1980 2-101 .. e Mar 1980
216a e Jan 1980 2-102 e e e e e Mar 1980
21T dJan 1980 2103 ... Jul 1979
218 . .. e Mar 1980 2:104 .. e Jul 1979
224 . e e Mar 1980 2105 ... e Jul 1979
228 . e dJan 1980 b Mar 1980
2:30 . . e Jul 1979 2109 ... e Mar 1980
244 . e Mar 1980 2-111 . e Mar 1980
245 e e Mar 1980 2113 L Jul 1979
24T . e Mar 1980 2114 .. e Jul 1979
249 . e e Mar 1980 D 5 e Jul 1979
250 . .. e Mar 1980 2117 L e Jul 1979
b Mar 1980 2-127 e Jul 1979
15 dJan 1980 2128 . e Mar 1980
256 . .. e Mar 1980 2-129 .. e Jul 1979
2566ab Mar 1980 2135ab e Mar 1980
D Jul 1979 2138 .. e Mar 1980
258 . e dJan 1980 2-140a. e dJan 1980
259 . e Jan 1980 2-147 . e Mar 1980
260 e Jan 1980 2150 .. . e Jul 1979
b dJan 1980 21564 ... e Jul 1979
262 . . e Mar 1980 2-170 e e e e e e Mar 1980
264 . . e dan 1980 2077 e e Mar 1980
26D . L e e dJan 1980 2179 . e e Jul 1979
270, e e e dJan 1980 2181 . Jan 1980
3 dJul 1979 2:181a. . . e e Jul 1979
212 e Mar 1980 2182 . e e Mar 1980
2T e Mar 1980 32 e Mar 1980
2T . e e dJan 1980 2 Mar 1980
2T e e Mar 1980 34 . e dJan 1980
276 ettt e e e, Mar 1980 358 .. e dJan 1980
2T e e Mar 1980 3T....... e e e e e Jan 1980
28 e e Mar 1980 328 . e Jul 1979
2T e Mar 1980 330 ... Mar 1980

ii

|LIST OF EFFECTIVE PAGES (continued)

Changed Pages Effective Date
3302, e Mar 1980
344 .. e e e Jan 1980
2 Mar 1980
348 . e e Mar 1980
348ab e e Mar 1980
785 Mar 1980
2R Y Z Mar 1980
I3 S Jan 1980
B B Mar 1980
b YO Mar 1980
281 S Mar 1980
391 .. e e Mar 1980
392 . e e Jul 1979
393 L e e Mar 1980
394 -96. e e Jul 1979
I N Mar 1980
R - Mar 1980
I Mar 1980
I Mar 1980
T O Jul 1979
7R 2 Jul 1979
S Mar 1980
S Jul 1979
TR Jul 1979
5 Jul 1979
BeBa vttt i e e e et e Jul 1979
575 1 Mar 1980

iiia

Changed Pages Effective Date
514 . e Jul 1979
575 Mar 1980
Be2D L e e e e Mar 1980
2 Mar 1980
B3 . it e e e e Mar 1980
X Mar 1980
6-10 ... e e e Mar 1980
1 Mar 1980
£ 5 g Jul 1979
I, Jul 1979
102 . i e e e Jul 1979
106 . .. e e Jul 1979
10T o e e e e e Jul 1979
09 . e e e e Jan 1980
10-10 ..ot e e e Jan 1980
10-11 L. e Mar 1980
10-14 .. e e e Jul 1979
10-14a. . .t e e e e Jul 1979
1 1 Y Jul 1979
05 Mar 1980
10-18 . e e e i e e Mar 1980
L Mar 1980
D2, e e e e Jul 1979
12 Jul 1979
5 Mar 1980
Mar 1980

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the -
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change. ‘

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates. |

FirstEdition. Jun1976.............. 32002A.00

Update Package #1 Oct1976.............. 32002A.00

Update Package #2 Jan 1977 32002A.00

Update Package #2 Incorporated Feb 1977. 32002A.00

Update Package #3 Apr1977.............. 32002A.01

Second Edition Apr1978 32002B.00

Update Package #1 July 1979 32002B.01.00

Update Package #2 Jan 1980 32002B.01.00

Update Package #3 Mar1980............ 32002B.01.01, 32033B.01.01
Update Package #3cc0uvunn... Incorporated Jun 1980 . .. 32002B.01.01, 32033B.01.01

PREFACE

This manual is one of the set of manuals that document the Multiprogramming Executive Operating
System (MPE-III). The manual plan on the next page indicates the position of this manual (shaded
block) in the overall set.

This manual describes the set of intrinsics available with the MPE Operating System and tells you how
to communicate with MPE programmatically. In addition, capabilities available to users with special
capability-class attributes are described.

An introduction to MPE intrinsics is presented in Section I. The specifications for all intrinsics, in
alphabetical order, are contained in Section II. Functional descriptions of the intrinsics, including
those intrinsics for which special capabilities are required, are presented in the remaining sections,
as follows:

Section III Accessing and Altering Files.

Section IV Utility Functions of MPE Intrinsics.
Section V Device Characteristics.

Section VI Resource Management.

Section VII Process-Handling Capability.

Section VIII Data Segment Management Capability.
Section IX Privileged Mode Capability.

Section X MPE Diagnostic Messages.

MANUAL PLAN

ELEMENTARY ELEMENTARY
CONCEPTS USAGE USAGE
General Using Usin
INTRODUCTORY Information the Filesg
LEVEL - Manual HP 3000 30000-90102
30000-90008 03000-90121)
COMMAND
USAGE UTILITY UTILITY INDEX
Commands Segmenter Svstem Index to MPE
Reference Reference Utilities Reference
Manual Manual Manual Documents
30000-90009 30000-90011 30000-90044 30000-90045
STANDARD USER
LEVEL
4 \ 4
Debug/Stack Dump Error
Reference . Messages and | |
Manual Recovery Manual
30000-90012 30000-90015
UTILITY DIAGNOSTIC
Y AID
SYSTEM SYSTEM MODIFICATION
MONITORING ¥ ACCOUNT MANAGING
S%ries Illllll Series 33 System
onsole Console Manager/Supervisor
ADM':‘_LSVTET_ATWE Operator’s Operator's Manual
Guide Guide
30000-90013 30070-90025 30000-90014
Software
. Pocket
SUMMARY LEVEL Guide
30000-90049
SYNTAX AND ERROR MESSAGES

JULY, 1979

CONVENTIONS USED IN THIS MANUAL

CONVENTIONS USED IN THIS MANUAL PAGE:

The normal conventions (braces, brackets, etc.) used for MPE Commands do not apply for MPE
intrinsic calls.

See page 2-1 for a description of the conventions used in this manual.

vii

CONTENTS

Section I Page
INTRODUCTION TO MPE INTRINSICS
Purposes and Uses of MPE Intrinsics 1-1
IntrinsicCalls. 1-2
Calling Intrinsies from SPL 1-2
Calling Intrinsics from Other Languages. 1-11
IntrinsicCallErrors 1-11
Optional Capabilities 1-13
Section II
INTRINSIC DESCRIPTIONS
ACCEPT e e e e 2-4
ACTIVATE i, 2-5
ADJUSTUSLF 2-7
ALTDSEG. ii it e, 2-9
ARITRAP i 2-11
ASCIT. . .. e 2-12
ot “BINARY........... 214
CALENDAR i, 2-15
CAUSEBREAK, 2-16
CLEANUSLot e 2-16a
CLOCK ...t it e e 2-16b
CLOSELOGttt iiiie i, 2-17
COMMAND ... ittt e, 2-18
s CREATE 0oL . . 2-19
e B TRANSLATE, L 2-24
DASCII. 2-26
DATELINE 2-28
DBINARY e, 2-29
DEBUG.t e, 2-30
DLSIZE. 2-31
DMOVIN. e e, 2-33
DMOVOUT 2-35
teg TEXPANDUSLF., 2-37
FATHER. i, 2-39
FCARD. 2-40
FCHECK. 2-44
FCLOSE e i . 2-49
FCONTROL 0ot 2-52
m,',ﬂ*‘DELETE 2-55a
v FCONTROLot ... 2-52
FERRMSG 2-56
FFILEINFOo, 2-56a
FGETINFOciiiiiaan i, 2-57
FINDICW 2-65
FLOCK. 2-66
9 “FMTCALENDAR 2-68
FMTCLOCK. i, 2-69
FMTDATE. 2-70
FOPEN. 2-711
FPOINT i, 2-83
FREAD. i, 2-84
ald” W FREADDIR. 2-86
W FREADLABEL. 2-88
FREADSEEK. 2-89
FREEDSEG., 2-90
FREELOCRIN. 291
FRELATE. 2-92

viii

FRENAMEoiiiiiiinnnnnnn... 2-94
FSETMODE.ovtetee et 2-96
12) 7 \o) 2.98
FUNLOCK. ...\ttt 2-99
FUPDATE. ..ot e et e 2-100
FWRITE . ..ot et ee e 2-101
FWRITEDIRounennnnnnannn... 2-106
FWRITELABEL0oouuurnnn.... 2-108
GENMESSAGE.ouvveinnnnnnn... 2-109
GET . .ottt et e 2.112
GETDSEG.it ettt 2-113
GETICW . ..ot 2.115
GETLOCRINeie e, 2-116
GETORIGINoouueennnnnnannn... 2117
GETPRIORITYouvurnnnnnnn... 2-118
GETPRIVMODE.oouuunnnn... 2-120
GETPROCIDooiennnnnnn... 2-121
GETPROCINFOo, 2.122
GETUSERMODEcoounernnn... 2-124
INITUSLFttt 2-125
IODONTWAITottt 2-126
1001172 & AR 2-128
1241) P 2-130
LOADPROC.ot 2-131
LOCKGLORINcovueinrnaanannnn. .. 2-132
LOCKLOCRINoooviiiaeianannnnn... 2-134
LOCKRINOWNERoooooiin... 2-135a
MAIL ..o e e 2-136
MYCOMMANDovueeeaaannnnn, 2-138
OPENLOGoouieeeaeneeaain, 2-140a
PAUSE ...ttt 2141
PCHECKcooiiiinennainanninn, 2-142
PCLOSE, 2.143
PCONTROL. .. . oeee e 2-144
POPENttt 2-145
PREAD., 2-146
PRINTt 2-147
PRINTFILEINFO, 2-148
PRINTOP, 2-149
PRINTOPREPLY00ouvun... 2-150
PROCTIMEovveeean e, 2-152
PTAPE, 2-153
PUTICW . . oo e et 2-154
PWRITEoieienan .. 2-155
QUIT ..ot 2-156
QUITPROG oove e 2-157
READ. ...ttt e 2-158
READX. .. oottt 2-159
RECEIVEMAILouuiunnnn.. .. 2-160
REJECTot 2-162
RESETCONTROL.o voeeeeee .. 2-163
RESETDUMP.00uoenennnnn.. 2-164
SEARCH.t 2-165
SENDMAILot 2-166
SETDUMP.ottt 2-168
SETICW ..ottt 2-169
STACKDUMP.oiueinanennn.. 2-170
SUSPEND o'ttt 2172

CONTENTS (continued)

Page
SWITCHDB i i, 2-173
TERMINATE. 2-174
TIMER e 2-175
UNLOADPROC 2-176
UNLOCKGLORIN 2-177
UNLOCKLOCRIN i 2-178
WHO ... e 2-179 -
WRITELOG i, 2-181a
XARITRAP . . . i 2-182
XCONTRAP ... i i 2-184
XLIBTRAP i 2-185
XSYSTRAP i e 2-186
ZSIZE. e e 2-187
Section III
ACCESSING AND ALTERING FILES
File Management System 31
File Characteristicsccivuiin.n. 3-2
Record Formats cviu... 3-3
Relative I/O Block Format 3-5a
File Device Relationships 3-6
Non-Sharable Device Access 3-6
FileDomains..........ooiueiiniannennennsn 3-6
FileLabelcciiiiiiinininennnennnnnn 3-7
File Accessingcoiieiiireinnnnnnneenns 3-7
Relative I/O ... ittt iiiiieennn. 3-7
System-Defined Files 3-Ta
User Pre-Defined (Back Referenced) Files 3-8
NewFiles. 3-8
OldFiles i, 39
Input/Output Sets. 39
Accessing Files AlreadyinUse. 3-10
Files on Non-Sharable Devices. 3-13
Special Considerations for Shared Files 3-14
Private Volumes Subsystem. 3-14
HowtoUse Files. 3-15
Internal Operations for File Accessing. 3-15
Opening Files. 3-25
OpeningaNew Disc File. 3-25
Openingan Old Disc File 3-28
Foreign Disc Facility 3-30, 3-47, 3-48, 3-50,3-56
Opening a File on a Device other than Disc. 3-30a
Issuing FREAD and FWRITE Intrinsic Calls for
$STDINand $STDLIST 3-33
Opening 8STDIN., 3-33
Opening $STDLIST. 3-35
Closing Files. e 3-36
Closing a New File as a Temporary File 3-37
Closing a New File as a Permanent File 3-39
RenamingaFile 3-41
Writing a File System Error-Check Procedure. 3-44
Reading a File in Sequential Order 3-44
Writing Records into a File in a Sequential Order. 3-47
Reading a File in Direct-Access Mode 3-48
Optimizing Direct-Access File Reading 3-50
Writing Records into a File in Direct-Access Mode. . . .3-50
Locking and Unlocking Files 3-53
Updatinga File. P . =
Using the IOWAIT Intrinsic. 3-58
: ix

MAR 1980

Writing and Reading User file Labels. 3-60
Writing a User File Label on a Disc File 3-61
Reading a User File Label on a Disc File 3-62

Obtaining File Access Information 3-65

Using FGETINFO 3-65

Using FFILEINFO 3-67

Using FERRMSG, 3-67

Obtaining File-Error Information 3-67

Magnetic Tape Considerations 3-67a
FWRITE 3-69
FREAD. 3-69
FSPACE i 3-69
FCONTROL (Write EOF). 3-69
FCONTROL (Forward Space to File Mark) 3-69
FCONTROL (Backward Space to File Mark) 3-69
End-of-File Marks on Magnetic Tape 3-70
Spacing FileMarks. 3-710
Using the FCLOSE Intrinsic with Magnetic Tape . . .3-71
MPE Tape Labels. 3-73
Updating Magnetic Tape Files 3-73
Reading and Writing an Unlabeled Magnetic
Tape File. 3-75
Opening a Labeled Magnetic Tape File. 3-79
Writinga Tape Label 3-82
Reading a Labeled Magnetic Tape File. 3-85
Writing to a Labeled Magnetic Tape File 3-86
Writing a User-Defined File Label on a Labeled
TapeFile. e 3-86
Reading a User-Defined File Label on a Labeled
TapeFile. i 3-87

Spacing on Disc or Tape Files 3-87

Directing File control Operations 3-88

Resetting the Logical Record Pointer 3-89

Declaring Access-Mode Options3-89

Determining Interactive and Duplicative File Pairs ... 3-90

UserLogging iiiiiininennnnn. 3-91
How User Logging Works. 3-91
Effective Use of User Logging 3-96
Suggested Log FileUses. 3-98

Section IV

UTILITY FUNCTIONS OF MPE INTRINSICS
Dynamic Loading and Unloading of Library Procedures 4-2

Dynamic Loading 4-2
Dynamic Unloading. 4-3
Searching Arrays. ui i ennnn. 4-3
Formatting Command Parameters. 4-4
Executing MPE Commands Programmatically 49

Determininé the User’s Access Mode and Attributes. . .4-10
Converting Numbers from Binary Code to

ASCIIStringso v ittt i eeee e 4-10
Converting Numbers from an ASCII Numeric String to
aBinary Coded Value. 4-13
Translating Characters with the CTRANSLATE
Intrinsic. e e 4-13
Transmitting Program Input/Output from Job/session
Input/Output Devices. 4-16
Reading Input from the Job/Session Input Device . .4-16
Writing Output to the Job/Session List Device4-18
Writing Output to the Operator’s Console 4-18

CONTENTS (continued)

Writing Qutput to the Operator’s Console and

RequestingaReply 4-18
Suspending the Calling Process. 4-19
Requesting a Process Break 4-19
TerminatingaProcess. 4-20
AbortingaProcess. 4-20
AbortingaProgram 4-20
Changing Stack Sizes 4-22

Changing the DL to DB Area Size. 4-22

Changing the Z to DB AreaSize. 4-27
Enabling and Disabling Traps. 4-29

ArithmeticTraps. 4-30

Standard Traps 4-31

Extended Precision Floating-Point Traps. 4-31

Commercial Instruction Traps 4-32

Library Trap.o i v ettt it i i 4-34

System Trap. - . o v v oot e 4-35

Control-Y Traps. oo ittt iiiie e e en 4-38
Time and Date Intrinsies. 4-42

Obtaining System Timer Information R 4-42

Obtaining the Current Time. 444

Obtaining the Calendar Date e 4-44

Obtaining Process Run Time (Use of the Central

Processor)y 4-44

Formatting Calendar Date and Time Information . .4-45
Interprocess Communication. 4-46
User-Defined Job ControlWords 4-47
MPE Message Systemot nevennen 4-48

Message Catalog 4-48

MAKECAT Program0.o... 4-49

Using the GENMESSAGE Intrinsic. 4-50
Section V
DEVICE CHARACTERISTICS
Device Characteristics. 5-1

Paper Tape Reader. 5-1

BinaryMode. o 5-1
ASCIIMode. i 5-1
Paper TapePunch 5-3
BinaryMode. 5-3
ASCIIMode. ii i 5-3

CardReader., 5-3

LinePrinter 5-3

MagneticTape 5-4

Printing Reader/Punch 5-4

Line Printer and Terminal Carriage-Control Codes. . 5-6

End-of-File Indication. 5-6

Terminals. e e 5-8

Terminal Types., 5-8

Special Keys. 5-8

Changing Terminal Characteristics 5-10
Changing Terminal Speed 5-10
Changing Input Echo Facility 5-11
Enabling and Disabling System Break
Funetion........... 5-13
Enabling and Disabling Subsystem Break
Function..................., 5-14
Enabling and Disabling Parity Checking. 5-14

Enabling and Disabling Tape-Mode Option. . .5-15

Enabling and Disabling the Terminal Input

Timer, 5-16
Reading the Terminal Input Timer 5-19
Defining Line-Termination Characters for

TerminalInput 5-20

Enabling and Disabling Binary Transfers5-21
Enabling and Disabling User Block Transfers. .5-22
Enabling and Disabling Line Deletion Echo

Suppression 5-23
Setting Parity 5-23
Allocatinga Terminal. 5-24
Setting Terminal Type 5-25
Obtaining Terminal Type Information. 5-25
Obtaining Terminal Output Speed 5-26
Setting Unedited Terminal Mode 5-26

Reading Paper Tapes without X-OFF Control.5-27
Using the FCARD Intrinsic to Operate the
HP 7260A Optical Mark Reader. 5-28
ASCII and Column Image Reading Formats . .5-29

Section VI

RESOURCE MANAGEMENT

Inter-Job Level (Global) RIN’s 6-2
Acquiring Global RIN’s 6-2
Releasing Global RIN’s. 6-3
Locking and Unlocking Global RIN’s 6-3

Inter-Process (Local) Level RIN’s 6-6
Acquiring Local RIN’s 6-8
Locking and Unlocking Local RIN’s 6-8
Identifying Local RIN Owners 6-9
FreeingLocal RIN’sccvininn.. 6-10

Section VII
PROCESS-HANDLING CAPABILITY

Processes 7-1
Organization of User Processes. 7-2
Process Substates., 7-2
Process to Process Communication. " 7-2

Creating and Activating Processes. 7-3

Suspending Processes 7-8

Deleting Processescuvuu... 7-8

Interprocess Communication. 7-10
Testing Mailbox Status. 7-10
SendingMail. 7-11
Receiving (Collecting) Mail 7-12

Avoiding Deadlocks. 7-13

Rescheduling Processes. 7-13

Determining Source of Activation. 7-14

Determining Father Process. 7-14

Determining Son Processes 7-15

Determining Process Priority and State 7-15

Section VIII Page

DATA SEGMENT CAPABILITY

Creating an Extra Data Segment. 8-2

Deleting an Extra Data Segment. 8-15

Transferring Data from an Extra Data Segment

totheStack.................. 8-15

CONTENTS (continued)

Page User Messages. o oo i it i it 10-15
Transferring Data from the Stack to an Extra Data Operator Messages.o iv i nnn 10-15
Segment e 8-15 System Messages 10-15
Changing the Size of an Extra Data Segment. 8-15 File Information Display. 10-17
Section IX Appendix A
PRIVILEGED MODE CAPABILITY ASCII Character Set
Permanently Privileged Programs 9-1
Temporarily Privileged Programs 9-2 Appendix B
Entering Privileged Mode 9-3 DISC File Labels
Entering Non-Privileged Mode 9-5
Moving Fhe DBPointer. 9-5 Appendix C
Scheduling Processes 9-5 END-OF-FILE Indication
Section X
MPE DIAGNOSTIC MESSAGES Appendix D
Run-Time Messages. 10-2 Magnetic Tape Labels

ILLUSTRATIONS
Title Page User Logging Facility 3-92
Using the MYCOMMAND Intrinsic. 4-5

Calling the PRINTOP Intrinsic from SPL.. 1-10 Using the WHO Intrinsic. 4-11
Using Numeric Values as Parameters in an Intrinsic Cail1-10 Using the ASCII Intrinsic 4-12
Condition Code Checks 1-12 Using the DASCII Intrinsic 4-14
Foptions Bit Summary 2-58 Using the BINARY Intrinsic 4-15
Aoptions Bit Summary. 2-60 Using the PRINT and READ Intrinsics 4-17
Carriage-Control Directives. 2-103 Using the QUIT Intrinsic. 4-21
Carriage-Control Summary 2-105 Expanding and Contracting the DL to DB Area. 4-23
Actions Resulting from Multiple Access of Files 3-11 Using the DLSIZE Intrinsic. 4-25
File Access Interface for New Disc Files. 3-16 Changing the DL to DB Area Size. 4-28
File Name and Sector Address Storage. 3-19 Using the XARITRAP Intrinsic 4-33
File Access Interface for Old Disc Files 3-20 Using the XCONTRAP Intrinsic. 441
Device Allocation Flowchart 3-24 Using the TIMER Intrinsic 443
OpeningaNewdisc File. 3-26 FMTCALENDAR, FMTCLOCK, and FMTDATE
Opendingan Old Disc File. 3-29 Intrinsies Example. L. 4-45
Opening a File on a Device other than Disc. 3-31 GENMESSAGE Intrinsic Example 4-51
Opening $STDIN and $STDLIST 3-34 Echo Facility vs DuplexMode 5-12
Closing a New File as a Temporary File 3-38 Using the FCONTROL Intrinsic to Enable and Read
Closing a New File as a Permanent File 3-40 the Terminal Input Timer 5-18
FRENAME Intrinsic Example 342 FCARD Intrinsic Example 5-30
Error-Check Procedure Example 3-45 Using the LOCKGLORIN and UNLOCKGLORIN
FREAD and FWRITE Intrinsics Example. 3-46 Intrinsies,.. 064
FREADDIR and FREADSEEK Intrinsics Example . . .3-49 Using the CREATE and ACTIVATE Intrinsics 7-4
FWRITEDIR Intrinsic Example 3-52 Process Deletion 79
FLOCK and FUNLOCK Intrinsics Example 3-54 Using the GETDSEG and DMOVOUT Intrinsics (Program
FUPDATE Intrinsic Example. 3-57 DSINIT) . . . e e e e e e 8-3
Using the IOWAIT Intrinsie. 3-59 Creating and Activating Two Son Processes (Program
FWRITELABLE Intrinsic Example (Disc File) 3-63 DSBOSS). e 8-4
FREADLABEL Intrinsic Example (Disc File). 3-64 Using the GETDSEG and DMOVIN Intrinsics (Program
FGETINFO Intrinsic Example. 3-66 DSACCS). . . . e 8-5
FCHECK Intrinsic Example. 368 Array CALENDAR i 8-8
Using the FCLOSE Intrinsic with Unlabeled Magnetic Using the GETPRIVMODE and GETUSERMODE
Tape. ... oo e 3-72 Intrinsies 94
Unlabeled Magnetic Tape Example 3-76 MPE Master Queue Structure. 9-6
Opening a Labeled Magnetic Tape File. 3-80 MPE Tape Labels (Conforming to ANSI-Standard D-2
WritingaTape Label 3-83

B

TABLES

Title Page
Summary of MPE Intrinsies. 1-3
Device-Dependent Restrictions 3-22
Classificationof Devices 3-23
Line Printer Differences 5-4
Carriage-Control Directives. 5-7
Terminals Supported by MPE 59
Program Errors. 10-5
IntrinsicErrors i .. 10-6
Run-Time Errors.00t innnnn. 10-7
File System Errors. e e e e 10-8

Xii

LoaderErrors.co v, 10-11
CREATE Intrinsic Errors 10-12
ACTIVATE Intrinsic Errors. 10-12
SUSPEND IntrinsicError 10-12
MYCOMMAND Intrinsic Error. 10-12
LOCKGLORIN Intrinsic Exrors e 10-12
Private Volumes Messages 10-13
User Logging Error Messages 10-14
CLEANUSL Error Messagesccvoveunn. 10-14a
System Messagescciiiiuiineinnens 10-16

Format of Tape Labels Written by MPE (ANSI
Standard)

INTRODUCTION TO MPE INTRINSICS

In the MPE Operating System, individual programming operations are handled by sets of tode
known as procedures. These procedures are coded in SPL (Systems Programming Language for the
MPE III Operating System) and are defined by a procedure declaration consisting of

® A procedure head, containing the procedure name and type, parameter definitions, and
other information about the procedure.

® A procedure body, containing executable statements and data declarations local to this
procedure.

As part of their function, several procedures also return values to the processes that invoke them.
NOTE

A process is the basic executable entity in MPE. A process is
not a program itself, but the unique execution of a program
by a particular user at a particular time.

Each procedure is invoked by a corresponding procedure call. When a procedure call is encountered
in a program, control is transferred to the procedure. The procedure runs until an exit is
encountered, at which time control returns to the statement following the procedure call.

In addition to the procedures provided by the operating system, MPE allows the user to write
special-purpose procedures in SPL. To distinguish MPE system procedures (which are always
available to the user, either directly or indirectly) from any other procedures, the term intrinsic is
applied to MPE system procedures. Similarly, the term intrinsic call is used to denote the procedure
call that references an MPE system procedure.

PURPOSES AND USES OF MPE INTRINSICS
With MPE intrinsics, it is possible to

® Access and alter files. Files can be opened, read, written on, updated, and otherwise
manipulated using intrinsics.

® Request various utility operations, such as:

Listing date, time, and accounting information.
Determining job status.

Determining device status.

Obtaining devicefile information.

Transmitting messages.

Inserting comments in command stream.

Requesting ASCII/binary number conversion.

Reading input from job/session input device.

Writing output to job/session list device.

Obtaining system timer information.

Determining the user’s access mode and attributes.

Searching arrays and formatting parameters.

Executing MPE commands programmatically.

Enabling and disabling error traps.

Requesting program break, termination, or abort.

Changing the lengths of the user-managed area (DL to DB) and stack area (Z to DL) and
altering DL to DB and Z to DL register offsets.

Managing interprocess communication through the job control word.
Changing terminal speed and echo mode.

® Access and manage a system resource such as an input/output device, file, program,
subroutine, procedure, code segment, or the data stack such that no other program may
use the resource simultaneously.

® In addition, users with certain optional capabilities (see OPTIONAL CAPABILITIES,
page 1-12) may use intrinsics to

Create and delete processes.

Activate and suspend processes.

Send information (mail) between processes.
Change the scheduling of processes.

Obtain information about existing processes.
Create and access extra data segments.

Lock as many resources as desired simultaneously.

To help you determine what you can accomplish with MPE intrinsics, a summary is presented in
table 1-1. Table 1-1 lists each intrinsic, and the capability necessary to use it.

INTRINSIC CALLS

Intrinsic calls invoke MPE system procedures which are requested programmatically (that is, from
within a user program). In SPL programs (see CALLING INTRINSINCS FROM SPL, below), you
write the intrinsic calls explicitly. In FORTRAN, COBOL, BASIC, and RPG programs, for most
general applications, the compiler for that language generates any necessary intrinsic calls
automatically — they are invisible to you. It is possible, however, to call intrinsics directly from
these languages (see CALLING INTRINSICS FROM OTHER LANGUAGES, page 1-10).

All MPE intrinsics are treated as external procedures by user programs. External linkages from user
programs to intrinsics are satisfied when the user programs are segmented (at PREPARATION time)
and allocated residence in virtual memory (at RUN time). See the MPE Segmenter Reference
Manual for a discussion of segments, segmentation, and allocation.

CALLING INTRINSICS FROM SPL

Before an intrinsic can be called from an SPL program, it must be declared at the beginning of the
program, following all data declarations, like any other SPL procedure. This could be done by

1-2

Table 1-1. Summary of MPE Intrinsics

lN;ﬁ:\l:ESIC PURPOSE CAPABILITY REQUIRED
ACCEPT Accepts (and completes) a request received by the Standard
preceding GET intrinsic call. {Used only with DS/3000.)
ACTIVATE Activates a process. Process Handling
ADJUSTUSLF Adjusts directory space in a USL file. Standard
ALTDSEG Alters the size of an extra data segment. Data Segment Management
ARITRAP Enables or disables internal interrupt signals from all Standard
hardware arithmetic traps.
ASCII Converts a number from binary to ASCH code. Standard
BINARY Converts a number from ASCII to binary code. Standard
CALENDAR Returns the calendar date. Standard
CAUSEBREAK Requests a session break. Standard
CLEANUSL Deletes inactive entries from USL file. Standard
CLOCK Returns the actual time. Standard
CLOSELOG Closes access to the logging facility. LG Capability
COMMAND Executes an MPE command programmatically. Standard
CREATE Creates a process. Process Handling
CTRANSLATE Converts a string of characters from EBCDIC to ASCI| Standard
or from ASCII to EBCDIC.
DASCII Converts a value from double-word binary to ASCIl code. Standard
DATELINE Returns date and time information. Standard
DBINARY Converts a number from ASCII code to a doubie-word Standard
binary value.
DEBUG Calls the DEBUG facility. Standard
DLSIZE Changes size of DL to DB area. Standard
DMOVIN Copies block from data segment to stack. Data Segment Management
DMOVOUT Copies block from stack to data segment. Data Segment Management
EXPANDUSLF Changes length of a USL file. Standard
FATHER Requests Process Identification Number (PIN}) of Process Handling
father process. '

JULY, 1979

Table 1-1. Summary of MPE Intrinsics (Continued)

m;?\:\'::'c - PURPOSE CAPABILITY REQUIRED
FCARD Drives the HP 7260A Optical Mark Reader. Standard
FCHECK Requests details about file input/output errors. Standard
FCLOSE Closes a file. Standard
FCONTROL Performs control operations on a file or terminal device. Standard
FDELETE Deactivates a R10 record. Standard
FERRMSG Returns message corresponding to FCHECK error Standard

number.
FEILEINFO' Provides access to file information. Standard
FGETINFO Requests access and status information about a file. Standard
FINDJCW Searches Job Control Word (JEW) table for specified Standard
' JCw.
FLOCK Dynamically locks a file. Standard
FMTCALENDAR Formats calendar date. Standard
FMTCLOCK Formats time of day. Standard
FMTDATE Formats calendar date and time of day. Standard
FOPEN Opens a file. Standard
FPOINT Resets the logical record pointer for a sequential disc Standard
_ file.
FREAD Reads a logical record from a sequential file {on any Standard
device) to the user’s data stack.
FREADDIR Reads a logical record from a direct access file to the Standard
user’s data stack.
FREADLABEL Reads a user file label. Standard
FREADSEEK Prepares, in advance, for reading from a direct-access Standard
file. :
FREEDSEG Releases an extra data segment. Data Segment Management
FREELOCRIN Frees all local Resource Identification Numbers (RIN’s) Standard
from allocation to a job. :
FRELATE Determines if a file pair is interactive or duplicative. Standard
FRENAME Renames a disc file. Standard
14 ‘JAN 1980

Table 1-1. Summary of MPE Intrinsics (Continued)

'N;RA:\"I\'ENC PURPOSE CAPABILITY REQUIRED
FSETMODE Activates or de-activates file-access modes. Standard
FSPACE Spaces forward or backward on a file. Standard
FUNLOCK Dynamically unlocks a file. ' Standard
FUPDATE Updates a logical record residing in a disc file. Standard
FWRITE Writes a logical record from the user’s stack to a sequen- Standard
tial file (on any device).
FWRITEDIR Writes a logical record from the user’s stack to a direct- Standard
access disc file.
FWRITELABEL Writes a user file label. Standard
GENMESSAGE Accesses MPE message system. Standard
GET Receives the next request from a remote master program. Standard
(Used only with DS/3000.)
GETDSEG Creates an extra déta segment. Data Segment Management
GETJCW Fetches contents of system job control word (JCW). Standard
GETLOCRIN Acquires local RIN's. Standard
GETORIGIN Determines source of process activation call. Process Handling
GETPRIORITY Changes the priority of a process. Process Handling

GETPRIVMODE

Dynamically enters privileged mode.

Privileged Mode

GETPROCID

Requests PIN of a son process.

Process Handling

GETPROCINFO

Requests status information about a father or son
process.

Process Handling

GETUSERMODE Dynamically returns to non-privileged mode. Privileged Mode
INITUSLF Initializes a USL file to the empty state. Standard
IODONTWAIT Initiates completion operations for an 1/0 request. Privileged Mode
IOWAIT Initiates completion operations for-an 1/0 request. Privileged Mode
KILL Deletes a process. Pocess Handlihg
LOADPROC Dynamically loads a library procedure. Standard

JULY, 1979

1-5

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC

NAME PURPOSE CAPABILITY REQUIRED
LOCKGLORIN Locks a global RIN. Standard
LOCKLOCRIN Locks a local RIN. Standard
LOCRINOWNER Identifies process locking a local RIN. Standard

MAIL Tests mailbox status. Process Handling

MYCOMMAND Parses (delineates and defines parameters) for user- Standard
supplied command image.

OPENLOG Provides access to a logging facility. LG Capability

PAUSE Suspends calling process for a specified number of Standard
seconds.

PCHECK Returns an integer code specifying the completion status Standard
of the most recently executed DS/3000. (Used only with
DS/3000.)

PCLOSE Terminates program-to-program communication with a Standard
remote slave program. (Used only with DS/3000.)

PCONTROL Exchanges tag fields with a remote slave program. (Used Standard
only with DS/3000.)

POPEN Initiates program-to-program communication with a Standard
remote slave program. (Used only with DS/3000.)

PREAD Requests a block of data from a remote slave program. Standard
(Used only with DS/3000.)

PRINT Prints character string on job/session list device. Standard

PRINTFILEINFO Prints file information display. Standard

PRINTOP Prints a character string on the Operator’s Console. Standard

PRINTOPREPLY Prints a character string on the Operator’s Console and Standard
solicits a reply. '

PROCTIME Returns a process’ accumulated central processor time. Standard

PTAPE Accepts input from paper tapes which do not contain Standard
X-OFF control characters.

PUTJCW Puts value of a given JCW in JCW table. Standard

PWRITE Sends a block of data to a remote slave program. Standard

QuUIT Standard

Aborts a process.

1-6

JULY, 1979

Table 1-1. Summary of MPE Intrinsics (Continued)

lN;ﬁn’:m PURPOSE CAPABILITY REQUIRED
QUITPROG Aborts the user process structure. Standard
READ Reads an ASCII string from the job/session input device Standard
($STDIN).
READX Reads an ASCII string from the job/session input device Standard
($STDINX).
RECEIVEMAIL Receives mail from another process. Process Handling
REJECT Rejects the request received by the preceding GET Standard
intrinsic call. (Used only with DS/3000.)
RESETCONTROL Resets terminal to accept CONTROL Y signal. Standard
RESETDUMP Disables the abort stack analysis facility. Standard
SEARCH Searches an array for a specified entry or name. Standard
SENDMAIL Sends mail to another process. Process Handling
SETDUMP Enables the abort stack analysis facility. Standard
SETJCW Sets the value of the system job control word {JCW). Standard
STACKDUMP Dumps selected parts of stat;k to file. Standard
SUSPEND Suspends a process. Process Handling
SWITCHDB Switches DB register pointer. Privileged Mode
TERMINATE Terminates a process. Standard
TIMER | Returns job or session timer bit count. Standard
UNLOADPROC Dynamically unloads a library procedure. Standard
UNLOADGLORIN Unlocks a global RIN. Standard
UNLOCKLOCRIN Unlocks a local RIN. Standard
WHO Returns user attributes. Standard
WRITELOG Writes a record to a logging file. LG Capability
XARITRAP Arms or disarms the software arithmetic trap. Standard |
XCONTRAP Arms or disarms the CONTROL-Y trap. Standard
XLIBTRAP Arms or disarms the library trap. Standard
XSYSTRAP Arms or disarms the system trap. Standard
ZSIZE Changes size of Z to DB area. Standard

JULY, 1979

writing the entire intrinsic declaration but, because some intrinsic declarations are rather long, you
can save time by declaring intrinsics with the INTRINSIC declaration statement.

The format of the INTRINSIC declaration statement is
INTRINSIC intrinsicname, intrinsicname, . . . ,intrinsicname;

In the intrinsicname list, you name all intrinsics that you intend to call within your program. When
more than one intrinsic is named, the names must be separated by commas. For example, to use the
INTRINSIC declaration statement to declare the FOPEN, FREAD, FWRITE, and FCLOSE
intrinsics, you could write

INTRINSIC FOPEN,FREAD,FWRITE,FCLOSE;

Regardless of whether you declare an intrinsic as a procedure or in an INTRINSIC declaration
statement, you must know the number and type of parameters which the intrinsic uses in order to
call it correctly. Parameters can be passed to a procedure (intrinsic) either by value or by reference.
When a parameter is passed by reference (the default case), its address in the caller’s data area is
made available to the called procedure. If the variable is changed by the called procedure, the
storage in the caller’s data area is updated. When a parameter is passed by value, the called
procedure receives a local (private) copy of the actual data value. If the called procedure changes
this private copy, the corresponding variable in the calling routine remains unchanged.

You call an intrinsic in your program exactly as you would any SPL procedure: that is, you write
the intrinsic name, followed by a parameter list enclosed in parentheses. These parameters must
follow the positional format shown in each intrinsic description (Section II). Parameters must be
separated from each other by commas. For example, a call to the FREAD intrinsic could be written
as

FREAD(FN,TAR,TC),

where the filenum, target, and tcount parameters (see Section II, page 2-82) are represented by FN,
TAR, and TC, respectively. If numeric values are to be specified for the filenum and tcount
parameters (which are VALUE parameters), the following call could be used:

FREAD(3,TAR,-80);

If the OPTION VARIABLE notation appears in the intrinsic description shown in Section II, some
of the intrinsic parameters are optional. Since all intrinsic parameters are positional, however, you
must indicate a missing parameter within a parameter list by omitting the parameter itself but
retaining the preceding and following commas. For example, if the second parameter is missing

FOPEN(FILENAME,,3);
If the first parameter is omitted from a list, this is indicated by following the left parenthesis with a

comma. If one or more parameters are omitted from the end of a list, however, this is indicated by
simply writing the terminating right parenthesis after the last parameter included.

NOTE

In some intrinsic calls, input parameters are passed to the
intrinsic as words whose individual bits or fields of bits
signify certain functions or options. In cases where some of
the bits within a word are described in this manual as
“reserved for MPE”, you are advised to set such bits to zero.
This will help insure the compatibility of your current
program with future releases of MPE,

In cases where output parameters are passed by an intrinsic
to words referenced by a calling program, bits within such
words that are described as “reserved for MPE” are set to
zero unless otherwise noted in the discussion of the particular
parameter.

To call an intrinsic from an SPL program, follow the steps listed below:

1. Refer to the intrinsic description in Section II to determine the parameter types and their
positions in the parameter list.

2. Declare the variables or array names to be passed as parameters by type at the beginning
of the program.

3. Include the name of the intrinsic in an INTRINSIC declaration statement.
4. Issue the intrinsic call at the appropriate place in your program.

For example, refer to Section II, page 2-147 for a description of the PRINTOP intrinsic. This
intrinsic is shown as

A v v
PRINTOP(message,length,control);

The bold face italics shown for message, length, and control signify that these are required
parameters. (Optional parameters are signified by regular italics.)

The superscripts A, IV, and IV over message, length, and control denote logical array, integer by
value, and integer by value, respectively.

The array name to be used as the message parameter must be declared as an array at the beginning
of the program. If variable names are used for the length and control parameters, they must be
declared as type integer at the beginning of the program.

Figure 1-1 shows the intrinsic PRINTOP being called from an SPL program after being declared
with the INTRINSIC declaration statement. Note that MESSAGE is declared as an array and the
variables LENGTH and CONTROL are declared as type integer.

Figure 1-2 shows the same intrinsic being called with numeric values, instead of symbolic identifiers,
being specified for the parameters length and control.

MAR 1980 1-9

PAGE 60021 HP32100A.06.8 (C> COPYRIGHT HEWLETT-PACKARD COMPANY 1976

02001008 Q0000
20002000 00000
22003080 00008
00004008 00000
09005000 @000
02006006 00000
A2007088 00012
22008000 00B12
00209008 06012
92010060 00012
20011000 00002
22012000 00804
20013000 00210
00314008 0GOGO10

$CONTROL USLINIT
<< USING THE INTRINSIC DECLARATION STATEMENT >>
BEGIN

ARRAY MESSAGE(@:9):="MESSAGE TO OPERATOR ";
INTEGER LENGTH, CONTROL;

LENGTH:=16;

CONTROL

s bt bt bt e et e e 4 NN

END.

PRIMARY DB STORAGE=2%003; SECONDARY DB STORAGE=2060612
NO. ERRORS=0003 NO. WARNINGS=0080

PROCESSOR TIME=0:00:00; ELAPSED TIME=@:01:23

\

Figure 1-1. Calling the PRINTOP Intrinsic from SPL

PAGE 0001 HP32100A.36.8 (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1976

00001000 00000
00002000 00000
00003000 00000

2 $CONTROL USLINIT

2

@
00004080 00000 O

]

1

1

1

1

1

<< USING NUMERIC VALUES AS PARAMETERS >>

30905068 00000
00006000 00000
00070286 00012
00008000 0QA12
. 00009008 00012
20810000 00004

BEGIN .
ARRAY MESSAGE(@:9):="MESSAGE TO OPERATOR ";

20011008 000084 1 END.

PRIMARY DB STORAGE=2081; SECONDARY DB STORAGE=280812
NO. ERRORS=0083; NO. WARNINGS=020

PROCESSOR TIME=0:00:00; ELAPSED TIME=0:08:53

Figure 1-2. Using Numeric Values as Parameters in an Intrinsic Call
1-10 |

CALLING INTRINSICS FROM OTHER LANGUAGES

For most applications in FORTRAN, COBOL, BASIC, and RPG programs, the compiler for the
specific language generates any necessary intrinsic calls automatically. It is possible, however, to call
intrinsics, or other library procedures, from these languages. The procedures for calling intrinsics
from these languages are described in the applicable language reference manuals.

INTRINSIC CALL ERRORS

Some intrinsics alter the condition code returned to FORTRAN and SPL programs through two
bits (6 and 7) in the Status register. These two bits have four states which are defined as follows:

00 Defined as CCG, or condition code greater than.
01 Defined as CCL, or condition code less than.

10 Defined as CCE, or condition code equal.

11 Undefined.

Since bits 6 and 7 of the Status register are affected by many instructions, you should check for
condition codes immediately upon return from an intrinsic (see figure 1-3). A condition code is
always CCG, CCL, or CCE, and has the general meaning indicated below. The specific meaning, of
course, depends upon the intrinsic called and these meanings are described in Section II.

Condition Code State General Meaning
CCE Condition code equal. This generally indicates that the request
was granted.
CCG Condition code greater. A special condition occurred but may

not have affected the execution of the request. (For example,
the request was executed, but default values were assumed as
intrinsic call parameters.)

CCL Condition code less. The request was not granted, but the error
condition may be recoverable. Beyond this condition code,
some intrinsics return further error information in the program
through their return values.

Two types of errors may occur when an intrinsic is executed. The first, denoted by the CCG or CCL
condition codes, is generally recoverable (control returns to the calling program) and is known as a
condition code error. The second type is an abort error, which occurs when a calling program passes
illegal parameters to an intrinsic, or does not have the capability demanded by the intrinsic.
Intrinsic (system) traps are handled by a special procedure designed for that purpose. Normally, if
an intrinsic causes the trap to be invoked, the system trap handler aborts the user program. You
may, however, specify a procedure to be used instead of the default system trap handler and try to
recover from such errors. If the program is aborted in a batch job, MPE removes the job from the
system (unless a :CONTINUE command, defined in the MPE Commands Reference Manual,
precedes the error). If the program is aborted in an interactive session, MPE returns control to the
terminal. Abort-error messages are described in Section X.

1-11

PAGE 000! HP32100A.06.8 (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1976

20001000 00008
20002000 00000
0000300¢ @B000
20004000 00000
00005000 0000
20036000 Q0000
20067008 00012
0008000 00012
000090008 008211

o $CONTROL USLINIT
]
o
@
]
1
1
1
1
00010008 Q0011 1
1
1
1
1
1
1
1
1
1
1
1
1
1

<< CONDITION CODE CHECKS >>

BEGIN
ARRAY MESSAGE(@:9):="MESSAGE TO OPERATOR "3
ARRAY OKBUF(@:9):="MESSAGE TRANSMITTED "3
ARRAY ERRBUF(@:8):="1/0 ERROR OCCURRED";
INTRINSIC PRINTOP,PRINT:

20011009 00011
00012000 00004
20013000 @0804
02014000 0GOS
800150008 00BC6
20016006 00006
20017098 0OG06
200180008 006012
@3 19000 00813
20020000 00013
00021009 00013
20022009 66017

PRINTOP(MESSAGE, 10, 2608)

OK
PRINT(OKBUF, 19, 2608)
GOTO STOP;

ERR:
PRINT(ERRBUF, 9, 260)3

00023000 06017 STOP:

200240008 ©0017 1 END.

PRIMARY DB STORAGE=2063; SECONDARY DB STORAGE=28@035
NO. ERRORS=000: NO. WARNINGS=000

PROCESSOR TIME=0@:00:01; ELAPSED TIME=@:01:55

Figure 1-3. Condition Code Checks

NOTE

Whenever an intrinsic is invoked by a process and the DB
register is pointing to the DB area in the user’s stack, a
bounds check takes place to insure that all parameters in the
intrinsic call reference addresses that lie between the DL and
S addresses in the stack (prior to the intrinsic call). If an
address outside of these boundaries is referenced, an abort
erTor occurs.

When an intrinsic is invoked by a process running in the
privileged mode, and the DB register points to a data segment
other than the user’s stack segment (split stack), the results
depend on the particular intrinsic. Most intrinsics abort
immediately in this case. Others, indicated in Section II, are

1-12

allowed to execute following a bounds check that insures
that all parameters in the intrinsic call reference addresses
that lie within the data segment. Any boundary violation
results in an abort error. Any additional special actions taken
by a particular intrinsic are described in the discussion of that
intrinsic in Section II.

Figure 1-3 illustrates the use of condition code checks in a program. If the condition code is CCE
(meaning that the request was granted), the program displays “MESSAGE TRANSMITTED”. For a
CCL condition code, the message “I/O ERROR OCCURRED” is displayed and the program
terminates normally.

OPTIONAL CAPABILITIES

Users with the Standard MPE Capability can perform most functions available through the
operating system. There are some functions, however, which can only be performed by users with
certain optional capabilities assigned to them when the Accounts, Groups, and Users are created by
the System Manager.

The Process-Handling Optional Capability allows you to programmatically

Create and delete processes.

Activate and suspend processes.

Send mail between processes.

Change the scheduling of processes.

Obtain information about existing processes.

The Process-Handling Optional Capability is described in Section VII.

The Data-Segment Management Optional Capability allows you to create and access extra data
segments from processes during a job or session. This capability is described in Section VIII.

Multiple Resource Identification Number Optional Capability. Users having standard MPE
capability can lock only one global or local Resource Identification Number (RIN) at a time. The
Multiple Resource Identification Number Optional Capability, however, allows you to lock as many
RIN’s as desired simultaneously, without checking by the operating system. The Multiple RIN
Optional Capability is described in Section VI.

The Privileged Mode Optional Capability allows you to access all areas of the system and use all
features of the hardware. This capability allows you to access all system tables and invoke all system
instructions, including those in the privileged central processor unit instruction set. In short, this
capability allows you to use the computer on the same terms as the operating system itself. The
Privileged Mode Optional Capability is described in Section IX.

1-13

- IMPORTANT NOTE

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible
for a privileged mode program to destroy file integrity, includ-
ing the MPE operating system software itself. Hewlett-Packard
will investigate and attempt to resolve problems resulting
from the use of privileged mode code. This service, which is
not provided under the standard Service Contract, is available
on a time and materials billing basis. However, Hewlett-
Packard will not support, correct, or attend to any modifica-
tion of the MPE operating system software.

The User Logging Optional Capability provides a flexible transaction logging capability which
enables you to journalize additions and modifications to your data bases and subsystem files. User
logging permits you to journalize on two mediums: tape and disc. If the data base is lost, the logging
tape or disc file can be used to recover the lost transactions.

114

JULY, 1979

INTRINSIC DESCRIPTIONS

This section contains descriptions of all intrinsics, arranged alphabetlcally Each intrinsic description
includes the folicwing mfo‘ 1ation:

The intrinsic name, a brief summary of its function, and the number of the intrinsic. (The
number is only significant for error diagnosis. See the Error Messages and Recovery
Manual.)

The complete intrinsic call description highlighted by being enclosed in a shaded box. The
intrinsic call descriptions are in the format shown below for the ACTIVATE intrinsic:

Required parameters, such as pin, are shown in bold face italics; optional parameters
(susp) are shown in regular italics. Superscripts are used to describe the types of
parameters and whether they must be passed by value, instead of by reference (the
default case). See Section I, page 1-8 for a discussion of passing parameters by value and
by reference. The superscripts have the following meanings:

BA Byte array
BP Byte pointer
D Double

DA Double array
DV Double by value
I Integer

IA Integer array

IV Integer by value
L. Logical

LA Logical array
LV Logical by value
O-P Option privileged
O-V Option variable
R Real

In addition to the superscripts shown over the parameters, the superscript O-V is shown
for some intrinsics to denote option variable. Option variable means that the intrinsic
contains optional parameters. Additionally, O-P is shown for those intrinsics which can be
called only when running in privileged mode. The ACTIVATE intrinsic shown, for ex-
ample, contains two parameters: pin, which is a required integer parameter that must be
passed by value; and susp, an optional logical parameter that, if included in the intrinsic
call, must be passed by value. Additionally, the intrinsic is option variable, meaning that
some parameters are optional.

2-1

FUNCTIONAL RETURN: For those intrinsics which return a value to the calling
program (type procedures), the return is described. If the intrinsic is not a type
procedure, this portion of the description is omitted. The intrinsic call description format
for type intrinsics is as shown below for the READ intrinsic:

The READ intrinsic returns the positive length of the input actually read. This value is
returned to an integer variable. In the intrinsic call description, a word, representing what
is returned, is shown in italics (as is length, ahove) to denote that the intrinsic is a type
procedure. The type (integer, double, etc.) is signified by a superscript above the
descriptive word. Thus,

is an integer pr'ocedure, message is a required logical array, and expéctedl is a required
integer parameter which must be passed by value.

NOTE
= means ““is éssigned” or ‘““is replaced by.”

PARAMETERS: All parameters are described. In the intrinsic call description, required
parameters are shown in bold face italics and optional parameters are shown in regular
italics. Elsewhere in this manual, this distinction is not shown for required and optional
parameters and all parameters are shown in regular italics.

CONDITION CODES: Condition codes are included for each intrinsic.

SPECIAL CONSIDERATION:

Required Capability. When you run a program file, the program file’s capability
(established at PREPARATION time) is checked against the capability of the group
in which the file resides. If the file’s capability does not exceed the capability of the
group, the program executes. Additional capability checking, however, is done if the
program calls an intrinsic. Some intrinsics require that the program file have
sufficient capability to call them. If an intrinsic requires a special capability, it will
be noted in the discussion of that intrinsic.

NOTE

The optional capabilities are discussed in Section I, page 1-13.

Split Stack Operations. During normal operation, the DB register points to the user
process’ stack. Some operations with extra data segments require that DB be set to
the base of the extra data segment while DL and all other data registers remain
associated with the stack. When a process is operating in this mode it is said to have
a split stack. Several of the MPE intrinsics deal with DB in this manner and you
need not be concerned with the mechanics of the operation because while the stack
is “split” only system code is executing. It is possible, however, if you are a privileged
user, to force your process to operate in split-stack mode explicitly by calling the
SWITCHDB intrinsie.

IMPORTANT NOTE

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible
for a privileged mode program to destroy file integrity, includ-
ing the MPE operating system software itself. Hewlett-Packard
will investigate and attempt to resolve problems resulting
from the use of privileged mode code. This service, which is
not provided under the standard Service Contract, is available
on a time and materials billing basis. However, Hewlett-
Packard will not support, correct, or attend to any modifica-
tion of the MPE operating system software.

If you do this, you must recognize that some of the normal callable intrinsics may
not be called when DB does not point to the stack. Such intrinsics, if called by a
privileged process in split stack mode, can result in system failures. If you are a
normal user, you need not concern yourself with this restriction and you may assume
in all the intrinsics described in this section that unless it is otherwise stated, an
intrinsic will not operate in split stack mode.

The SPECIAL CONSIDERATIONS portion of the description is omitted unless the
intrinsic operates in split stack mode, a special optional capability is required, or the
intrinsic requires a privileged call. Therefore, unless otherwise stated:

- The intrinsic does not operate in split stack mode.
The intrinsic requires only standard capabilities.
The intrinsic does not require a privileged call.

TEXT DISCUSSION: This references the page in this manual where usage of the intrinsic
is discussed.

ACCEPT

Accepts (and completes) a request received by
the preceding GET intrinsic call and returns
an optional tag field back to a remote master

program.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

2-4

ACTIVATE

Activates a process. INTRINSIC NUMBER 104

After a process has been created, it must be activated in order to run. Once activated, the process
runs until it is suspended or deleted. A newly-created process can only be activated by its father. A
process that has been suspended (with the SUSPEND intrinsic, see page 2-172) can be reactivated by
its father or any of its sons, as specified in the susp parameter of the ACTIVATE and SUSPEND
intrinsics.

The operating system guarantees that there will be no process switching (to some other process)
between activation of the called process and suspension of the calling process.

The ACTIVATE intrinsic aborts the calling process (and possibly the entire job/session) if:

1. The log-on group does not have the Process-Handling Capability and the program was not
prepared with Process-Handling Capability.

2. The required parameter pin is omitted.

3. Arequest to activate the father would result in activation of a job or session main process
or a system process.

PARAMETERS

pin integer by value (required)
Process Identification Number (PIN). An integer specifying the PIN for
the son or father process to be activated. The PIN number to activate a
father process is always zero. The called process must always be
expecting an activation from the caller as noted in the discussion of the
SUSPEND (see page 2-172) and CREATE (see page 2-19) intrinsics.

susp logical by value (optional)
A word that specifies:
The calling process is to be suspended while the called process is
activated and commences execution.

or

The called process is activated by the operating system but does not
commence execution immediately. Instead, control is returned to the
calling process which will continue execution.

When susp is omitted or is zero, the calling process remains active.
When susp is specified, the calling process is suspended. The 14th and
15th bits of susp specify the anticipated source of the call that later will
reactivate the calling process. ‘

Bit (15:1) — If on, the process expects to be activated by its father.
Bit (14:1) — If on, the process expects to be activated by one of its
sons.

If both bits are on, the suspended process can be activated by either the
father or sons.

2-5

ACTIVATE

Bits (0:14) — Reserved for MPE. Should be set to zero.
Default: Calling process remains active.

CONDITION CODES

N

CCE Request granted. Called process is activated. The calling process is
suspended if susp was specified.

CCG ‘ The called process already is active. The calling process is suspended if
susp was specified. '

CCL ’ Request denied, because the called process was not expecting activation

by this calling process; an illegal pin parameter was specified; or the
susp parameter was specified improperly.

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Process-Handling Capability required.

TEXT DISCUSSION

Page 8-10.

Adjusts directory space in a USL file. INTRINSIC NUMBER 83

The ADJUSTUSLF intrinsic moves the start of the information block forward or backward on a
user subprogram library (USL) file, thereby increasing or decreasing, respectively, the space
available for the file directory block. Note that this does not change the overall length of the file.
This intrinsic is intended for programmers writing compilers. See the MPE Segmenter Reference
Manual for a discussion of USL’s, the ADJUSTUSLF intrinsic, information blocks, and directory
blocks.

FUNCTIONAL RETURN

This intrinsic returns an error number if an error occurs. If no error occurs, no value is returned.

PARAMETERS

uslfnum integer by value (required) ,
A word supplying the file number of the USL file (as returned by
FOPEN).

records integer by value (required)
A word supplying a signed record count. If records is greater than zero,
the information block is moved toward the end-of-file in the USL file,
increasing the space available for the directory block and decreasing the
space available for the information block. If records is less than zero,
the information block is moved toward the start of the USL file,
decreasing the directory-block space and increasing the information-
block space.

CONDITION CODES"

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied. One of the following error numbers is returned.
Error Number Meaning

0 The file specified by uslfnum was empty,

or an unexpected end-of-file was encoun-
tered when reading the old usifnum, or an
unexpected end-of-file was encountered
when writing on the new uslfnum.

2-7

ADJUSTUSLF

Exrror Number

1

TEXT DISCUSSION

MPE Segmenter Reference Manual.

Meaning

Unexpected input/output error occurred.
This can occur on the old usifnrum or the
new uslfnum to which the intrinsic is
copying the information.

Your request attempted to exceed the
maximum file directory size (32,768
words).

Insufficient space was available in the USL
file information block.

Alters the size of an extra data segment.

ALTDSEG

INTRINSIC NUMBER 134

The ALTDSEG intrinsic alters the current size of an extra data segment. ALTDSEG can be used to
reduce the storage required by the segment when it is moved into main memory, then used again to
expand storage as required, thus allowing more efficient use of memory.

Expansion and contraction is accomplished in even multiples of 4, which are rounded up. For

example,

Present Segment Size (Words) Change Value (Words) New Segment Size (Words)

128
128
128
128
128

-3
-4
+1
+3
+4

NOTE

Sufficient virtual space is allocated by the system when a
data segment is created through GETDSEG to accommodate
the original length of the data segment. This virtual space is
allocated in increments of pages where the number of words
per page is set when the system is configured (typically 512
words/page). For example, creation of a data segment with a
length of 600 words would result in two virtual pages being
allocated for the data segment (space for 1024 words).

In no case may ALTDSEG increase the size of a data segment
to exceed the virtual space originally allocated through
GETDSEG.

PARAMETERS

index

inc

size

logical by value (required)

128
124
132
132
132

A word containing the logical index of the extra data segment, obtained

from the GETDSEG call.

integer by value (required)

The value, in words, by which the data segment is to be changed. A
positive integer value requests an increase, and a negative integer value

requests a decrease.

integer (required)
A word to which is returned the new size of the
incrementing or decrementing occurs.

data segment after

29

ALTDSEG

CONDITION CODES
CCE

CCG

CCL

Request granted.

Request not fully granted. An illegal decrement, requesting a new total
segment size of zero or less, or an illegal increment, requesting a new
size greater than the virtual space originally assigned by GETDSEG,
was attempted. In the first case, the current size remains in effect. In
the second case, the size of the virtual space is granted and this size is
returned through the size parameter.

Request denied because an illegal index parameter was specified.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-16

2-10

ARITRAP

Enables or disables all hardware arithmetic traps. INTRINSIC NUMBER 51

The interrupts listed below are collectively called the arithmetic user traps.

When a user process begins execution, all internal arithmetic user traps are enabled. That is, if an
arithmetic error occurs in the user process, it is aborted in the trap mechanism. The various
interrupts which can occur are:

Integer overflow.

Floating point overflow.
Floating point underflow.
Integer divide by zero.
Floating point divide by zero.
Double precision overflow.
Double precision underflow.
Double precision divide by zero.
Decimal overflow.

Invalid ASCII digit.

Invalid decimal digit.

Invalid source word count.
Invalid decimal operand length.
Decimal divide by zero.

The traps may be collectively enabled/disabled with the ARITRAP intrinsic call.

The ARITRAP intrinsic always clears the overflow indicator located in the caller’s status word.

PARAMETERS

state logical by value (required)
A word specifying whether all traps are to be enabled or disabled.
If state is TRUE (bit 15 = 1), all traps are enabled. .
If state is FALSE (bit 15 = 0), all traps are disabled.
Bits 0 through 14 are reserved for MPE and should be set to zero.

CONDITION CODES

CCE Request granted. The arithmetic traps were originally disabled.
CCG Request granted. The arithmetic traps were originally enabled.
CCL Not returned by this intrinsic.

TEXT DISCUSSION

Page 4-30.

2-11

ASCII

INTRINSIC NUMBER 63

Converts a one-word binary number to a numeric ASCII string.

Any 16-bit binary number can be converted to a different base and represented as a numeric
character ASCII string by using the ASCII intrinsic call.

FUNCTIONAL RETURN

This intrinsic returns the number of characters in the resulting string.

PARAMETERS

word

base

string

2-12

integer by value (required)
The number to be converted to an ASCII string.

integer by value (required)

An integer indicating octal or decimal conversion.

8 = octal

10 = decimal (left justified)

-10 = decimal (right justified)

If any other number is entered in this parameter, the intrinsic causes
the user process to abort.

byte array (required)

A byte array into which the converted value is placed. This array must
be long enough to contain the result. No result, however, exceeds six
characters. For octal conversion (base = 8), six characters, including
leading zeros, are always returned in string, showing the octal
representation of word. In octal conversions, the length returned by
ASCII is the number of significant (right-justified) characters in string
(excluding leading zeros). If word = 0, the length (numchar) returned
by ASCIH is 1.

For decimal conversions, word is considered as a 16-bit, 2’s comple-
ment integer ranging from —32768 to +32767. If the value of word is
negative, the first byte of string contains a minus sign. If word = 0, only
one zero character is returned in string. The length (numchar) returned
by ASCII is the total number of characters in string (including the
sign). If word = 0, the length returned by ASCII is 1.

For decimal left-justified conversions (base =10), leading zeros are
removed and the numeric ASCII result is left justified in string.

For decimal right-justified conversions (base = ~10), the result is right
justified in string.

JAN 1980

ASCII

Note that for right-justified conversions, the byte array into which the converted value is to

be placed must specify the last byte in the array. For example, if STRING is a 10-byte array
declared as:

BYTE ARRAY STRING(0:9);
then it must be specified in the ASCII intrinsic call as follows (for right justification):
NUMCHAR: = ASCII(WORD, -10, STRING(9));

The result will be right justifed in STRING with the right most digit of the result contained
in the last (right most) byte of string.

CONDITION CODES
The condition code remains unchanged.

TEXT DISCUSSION

Page 4-10.

2-13

BINARY

INTRINSIC NUMBER 62

Converts a number from an ASCII string to a binary word.

FUNCTIONAL RETURN

This intrinsic returns the binary equivalent of the numeric string.

PARAMETERS

string

length

CONDITION CODES

CCE
ccG
CCL

TEXT DISCUSSION
Page 4-13.

2-14

byte array (required)

Contains the octal or signed decimal number (ASCII characters) to be
converted. If the character string in this array begins with a percent sign
(%), it is treated as an octal value. If the string begins with a plus sign,
minus sign, or a number, it is treated as a decimal value.

NOTE

String cannot contain blanks.

integer by value (required)

An integer representing the length (number of bytes) in the byte array
containing the ASCII-coded value. If the value of length is O, the
intrinsic returns 0 to the calling process. If the value of length is less
than 0, the intrinsic causes the user process to abort.

Successful conversion. A one-word binary value is returned to the user’s
process.

A word overflow, possibly resulting from too many characters (string
number too large), occurred in the word (binequ) returned.

An illegal character was encountered in the byte array specified by
string. For example, the digits 8 or 9 specified in an octal value.

MAR 1980

Returns the calendar date.

FUNCTIONAL RETURN

This intrinsic returns the calendar date in the format

Bits

0

15

Year of Century

Day of Year

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 4-44.

CALENDAR

INTRINSIC NUMBER 43

2-15

CAUSEBREAK

INTRINSIC NUMBER 56 Places a session in break mode.

Using the CAUSEBREAK intrinsic is the programmatic equivalent to using the BREAK key in a
session. Execution of the process can be resumed where the interruption occurred by entering the
command

:RESUME

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because the intrinsic was not called from an interactive
session.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION
Page 4-19.

2-16

CLEANUSL

Deletes inactive entries from USL file

FUNCTIONAL RETURN

CLEANUSL deletes all inactive entries from currently managed USL files and returns the new file
number. If an error occurs, the error number is returned instead of the new file number. (See Table
10-13, CLEANUSL Error Messages) The condition code, therefore, must be tested immediately on
return from the intrinsic. Unpredictable results occur if an error number is used as a file number.

NOTE

CLEANUSL requires at least 3000 words of available stack
space to execute.

PARAMETERS
uslfnum integer by value (required)

A word identifier which supplies the file number of the file.
filename byte array (required)

The name to be given to the cleaned file. The array must end with a
blank, but it can be all blanks. If its all blanks it purges the inactive
entries.

CONDITION CODES

CCE Request granted. The new file number is returned.
CCG Not returned by this intrinsic.
CCL Request denied. (See Table 10-13, CLEANUSL Error Messages)

TEXT DISCUSSION

None

JAN 1980 2-16a

CLOCK

INTRINSIC NUMBER 44

FUNCTIONAL RETURN

Returns the time of day.

This intrinsic returns the actual time (wall time), as monitored by the system timer, as a double
word. The first word contains the hour of the day and the minute of the hour, the second word
contains seconds and tenths of seconds as follows:

Bits O 7

15

Hour of Day

Minute of Hour

Seconds

Tenths of Seconds

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION
Page 4-44.

2-16b

Word 1

Word 2

JULY, 1979

CLOSELOG

Closes access to the logging facility. INTRINSIC NUMBER 212

The CLOSELOG intrinsic closes access to the logging facility.

PARAMETERS

index double (required)
The parameter returned from OPENLOG that identifies your access to
the logging facility.

mode integer (required)
An integer which you use to indicate whether or not your process
should be suspended if your request for service cannot be completed
immediately. Enter a zero if you want to wait for service; enter a one if
you do not want to wait. '

status integer (required)
An integer which indicates logging system errors to you. (See table
10-12, User Logging Error Messages.)

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION
Page 3-91.

JAN 1980 2-17

COMMAND

INTRINSIC NUMBER 68 Executes an MPE command programmatically.

NOTE

User-defined commands may not be used.

PARAMETERS

comimage byte array (required)

Contains an ASCII string consisting of a command and parameters ter-
minated by a carriage return. The carriage return character must be the
last character of the command string. No prompt character, however,
should be included in this string. The comimage array may be altered
by the COMMAND intrinsic (for example, characters in it may be shift-
ed from lowercase to uppercase), but will be returned in a form that
can be resubmitted to this intrinsic without adjustment.

error c1 S0 fu integer (required) .
A word to which any error code set by the command is returned. This
is the same error code that would appear on a job/session list device if
the command was part of an input stream, i.e., command interpreter
error code not file system error code. If no error occurs, error returns
Zero.

parm integer (required)
A word to which the number (index) of the erroneous parameter is
returned. If no parameters are in error, parm returns zero. If there are
errors, parm may be zero or some positive integer. In the case where an
error refers to a file system problem, parm is the file system error code.

CONDITION CODES

CCE Request granted.

CCG An executor-dependent error, such as an erroneous parameter, pre-
vented execution of the command. The error parameter contains the

numeric error code.

CCL Request denied. The command was an undefined command.

TEXT DISCUSSION

Page 4-9

2-18 | MAR 1980

CREATE

Creates a process. INTRINSIC NUMBER 100

Any running process, if it has the Process-Handling Capability, can request the creation of a son
process by issuing the CREATE intrinsic call. The CREATE intrinsic loads the program to be run by
the new process into virtual memory, creates the new process as the son of the calling process,
initializes its data stack, schedules the process, and returns the new Process Identification Number
(PIN) to the requesting process.

The creating process is aborted if:

1. Request was rejected because of illegal parameters; a PIN of zero is returned. Specifically,

this occurs:

L] If progname is illegal.

® [If entryname is illegal.

® If stacksize is less than 512 (decimal) and is not ~1. (Note that if —1 is specified, the
default value is taken.)

® If disize is less than O and is not —1.

® If maxdata is less than or equal to 0, and is not ~1.

® If (disize + globsize + stacksize + 128) exceeds maxdata. Note that disize may have
been modified to satisfy condition 2 under CCG. The globsize value is the sum of
the primary DB plus the secondary DB values (the total DB given at program
preparation time by the program map (PMAP)).

® If (disize + globsize + stacksize + 128) exceeds the maximum stacksize defined
during system configuration. Note that disize may have been modified to satisfy
condition 2 under CCG.

® If (maxdata + 90) exceeds 32768, where maxdata is either the value passed as a

parameter or a value re-computed by the Loader under condition 1 of CCG.

2. The program file does not have the Process-Handling Optional Capability.

3. An illegal value (a non-existent subqueue) was specified for the priorityclass parameter.

4. A required parameter (progname or pin) is omitted.

5. Areference parameter was not within the required range.

2-19

CREATE

PARAMETERS

progname

entryname

pin

param

flags

2-20

byte array (required)

Contains a string, terminated by a blank, specifying the name, and
optionally, the account and group (filereference format, see Section III,
page 3-8) of the file containing the program to be run.

byte array (optional)

Contains a string, terminated by a blank, specifying the entry point
(label) in the program where execution is to begin when the process is
activated. The primary entry point in the program can be specified by
setting the array equal to a blank character alone.

Default: The primary entry point is used.

integer (required)

A word in which the PIN of the new process is returned to the
requesting process. This PIN is used in other intrinsics to reference the
new process. The PIN can range from 1 to 255. If an error is detected, a
PIN of zero is returned to the requesting process.

integer by value (optional)

A word used to transfer control information to the new process. Any
instruction in the outer block of code in the new process can access this
information in location Q-4.

Default: Word is filled with zeros.

logical by value (optional)
A word whose bits, if on, specify the loading options:

NOTE

Bit groups are denoted using the standard SPL notation. Thus
bit (15:1) indicates bit 15, bits (10:3) indicates bits 10, 11,
and 12.

Bit (15:1) —ACTIVE bit. If on, MPE reactivates the calling process
(father) when the new process terminates. If off, the

calling process is not activated at that time.
Default: Off.

Bit (14:1) —LOADMAP bit. If on, a listing of the allocated (loaded)
program is produced on the job/session list device. This
map shows the Code.Segment Table (CST) entries used by
the new process. If off, no map is produced.

Default: Off.

Bit (13:1) —DEBUG bit. If on, a call to DEBUG is made at the first
executable instruction of the new process. If off, the
breakpoint is not set. This bit is ignored if the user is
non-privileged and the new process requires privileged

CREATE

mode. It also is ignored if the user does not have read/write
access to the program file of the new process.
Default: Off.

Bit (12:1) —NOPRIV bit. If on, the program is loaded in non-privileged
mode. If this bit is off, the program is loaded in the mode
specified when the program file was prepared.

Default: Off.

Bits (10:2) —LIBSEARCH bits. These bits denote the order in which
libraries are to be searched for the program:

00 — System Library.

01 — Account Public Library, followed by System Library.

10 — Group Library, followed by Account Public Library,
followed by System Library.

Default: 00.

Bit (9:1) —NOCB bit. If on, file system control blocks are established
in an extra data segment. If off, control blocks may be
established in the Process Control Block Extension (PCBX)
area.

Default: Off.

NOTE
This bit should be set on if you are using a large stack.
Bits (7:2) — Reserved for MPE. Should be set to zero.

Bits (5:2) — STACKDUMP bits. These bits control the enabling/
disabling of the mechanism by which the stack is dumped
in the event of an abort:

00 — Enables only if enabled at father level.

01 — Enables unconditionally.

10 — Same as 00.

11 — Disables unconditionally for new process.
Default: 00.

Bit (4:1) — Reserved for MPE. Should be set to zero.
NOTE

The following bits (0:4) are used only when the bit pair (5:2)
is 01. Otherwise, these bits are ignored.

Bit (3:1) — DL to QI bit. If on, the portion of the stack from DL to
QI is dumped. If off, this portion of the stack is not
dumped.

Default: Off.

2-21

CREATE

stacksize
disize

maxdata

priorityclass

rank

2-22

Bit (2:1) — QI to S bit. If on, the portion of the stack from QI to Sis
dumped. If off, this portion of the stack is not dumped.
Default: Off.

Bit (1:1) —Q-63 to S bit. If on, the portion of the stack from Q-63 to
S is dumped. If off, this portion of the stack is not
dumped.

Default: Off.

Bit (0:1) — ASCII DUMP bit. If on, the dump is interpreted in ASCII,
in addition to the octal dump. If off, ASCII interpreting is
not given.

Default: Off.
Default: Default values as noted are taken.

integer by value (optional)

An integer (Z — Q) denoting the number of words assigned to the local
stack area bounded by the initial Q and Z registers.

Default: The same as that specified in the program file.

integer by value (optional)

An integer (DB — DL) denoting the number of words in the
user-managed stack area bounded by the DL and DB registers.

Default: The same as that specified in the program file.

integer by value (optional)

The maximum size allowed for the process’ stack (Z — DL) area in
words. When specified, this value overrides the one established at
program-preparation time.

Default: If not specified, and not specified in program file either, MPE
assumes stack will remain same size.

logical by value (optional)

A string of two ASCII characters describing the priority class in which
the new process is scheduled. This may be all, as discussed under
Rescheduling Processes (see Section VII, page 7-13) for users with
Process-Handling Capability, or CS, DS, and ES for users without the
Process-Handling Capability.

Default: The same as the priority of the calling process.

integer by value (optional)
This parameter is used only for compatibility with previous versions of
the MPE Operating system. It is ignored for all users.

NOTE
For the stacksize, dlsize, and maxdata parameters, a value of

-1 indicates that the MPE Segmenter is to assign default
values. Specifying -1 is equivalent to omitting the parameter.

CREATE

CONDITION CODES

CCE Request granted. The new process is created.

CCG Request granted. The maxdata and/or dlsize parameters given were
illegal, but other values were used, as follows:

1. If the maxdata specified exceeds that maximum Z — DL allowed by
the configuration, the configuration maximum value is assigned.

2. If (disize + 100) modulo 128 is not zero, then disize is rounded
upward so that (dlsize + 100) modulo 128 = 0.

CCL Request denied because the progname or entryname specified does not
exist.

SPECIAL CONSIDERATIONS

Process-Handling Capability required.

TEXT DISCUSSION
Page 7-3.

2-23

CIKANSLAILE

INTRINSIC NUMBER 61 Converts a string of characters from EBCDIC to
ASCII, ASCII to EBCDIC, EBCDIK to JIS (katakana),
or JIS to EBCDIK.

The CTRANSLATE intrinsic is used for character code translating, whether between the standard
computer character codes or with a user defined code. It permits you to obtain character code con-
versions within programs of your own design. In the code parameter of CTRANSLATE, the follow-
ing values specify the translation table to be used:

PARAMETERS
code integer by value (required)
An integer identifying a specific translation to be used as follows:
0 = The user supplied table specified in the parameter, table.
1 = EBCDIC to ASCII.
2 = ASCII to EBCDIC.
3 = Reserved for future use.
4 = Reserved for future use.
5 = EBCDIK to JIS (katakana data).
6 = JIS to EBCDIK.
instring byte array (required)
The string of characters to be translated.
outstring byte array (optional)
A byte array to which is returned the translated character string. If
outstring is not specified, all translation will occur within instring.
The parameters instring and outstring may specify the same array.
stringlength integer by value (required) ‘
A positive integer specifying the length (in bytes) of instring.
table byte array (required when code = 0)

A byte array to be used as the translation table. The contents of table,
and the order of these contents, define the translation process. The
length of table may be as large as 256 bytes, but it needs to be only as
large as the largest numeric value of any source byte in instring. The
table is constructed such that each byte in the table corresponds to a
byte value in the source string to be translated; for example, the fifth
byte in the table gives the code to be substituted for source bytes
whose value is 4.

2-24 MAR 1980

CTRANSLATE

CONDITION CODES

CCE Request granted. Translation performed successfully.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

TEXT DISCUSSION

Page 4-13

2-25

DASCII

INTRINSIC NUMBER 75

Converts a two-word binary number (double word)
to a numeric ASCII string.

A 32-bit double-word binary number can be converted to a different base and represented as a
numeric character ASCII string by issuing the DASCII intrinsic call.

FUNCTIONAL RETURN

This intrinsic returns the number of characters in the resulting string.

PARAMETERS

dword

base

string

2-26

double by value (required)
A double-word value indicating the number to be converted to ASCII
code.

integer by value (required)

An integer indicating octal or decimal conversion.

8 = octal

10 = decimal (left justified)

If any other number is entered in this parameter, the intrinsic causes
the user process to abort.

byte array (required)

The byte array into which the converted value is placed. This array
must be long enough to contain the result. No result, however, exceeds
11 characters. ‘

For octal conversion (base = 8), 11 characters, including leading zeros,
are always returned in string, showing the octal representation of
dword. The length (numchar) returned by DASCII is the number of
significant (right justified) characters in string, excluding leading zeros.
If dword = 0, the length returned by DASCII is 1.

For decimal conversions (base = 10), dword is considered as a 32-bit,
2’s complement integer ranging from -2,147,483,648 to
+2,147,483,647. Leading zeros are removed and the numeric DASCII
result is left justified in string. If the value of dword is negative, the
first byte of the string returned contains a minus sign. If dword = 0,
only one zero character is returned to string. String can contain up to
11 characters, including the sign. If dword = 0, the length returned by
DASCII is 1. '

DASCII

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-13.

2-27

DATE’LINE

Returns date and time information.

PARAMETERS

datebuf byte array (required)
A 27 character byte array to which the date and time information is
returned.

bytestring Fr i ,
byteindex 1 2 8 4 5
1 1 11

25, 1979, 4)12:06 PM
L

ay
7 8 9 101112131415161718192021 2223 24 25 26 27 28
| I T NN TN NN N TN NS TR O U A WS N N M O N N A |

k<
5,
|

M
6
1

o

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

None

2-28 JAN 1980

DBINARY

Converts anumber from an ASCII string to a double-word binary value. INTRINSIC NUMBER 74

The DBINARY intrinsic performs double-integer ASCII to binary conversion.

FUNCTIONAL RETURN

This intrinsic returns the converted double-word binary value to dval.

PARAMETERS

string

length

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-13.

byte array (required)

Contains the octal or signed decimal number (in ASCII characters) to
be converted. If the character string in this array begins with a percent
sign (%), it is treated as an octal representation. If the string begins with
a plus sign, minus sign, or number, it is treated as a decimal
representation.

integer by value (required)

An integer representing the length (number of bytes) in the string
containing the ASCII-coded value. If the value of length is 0, the
intrinsic returns O to the calling process. If the value of length is less
than 0, the intrinsic causes the user process to abort.

Successful conversion. A double-word binary value is returned to the
program.

A word overflow, possibly resulting from too many characters (string
number too large), occurred in the word returned.

An illegal character was encountered in string. For example, the digits 8
or 9 specified in an octal value.

2-29

DEBUG

INTRINSIC NUMBER 99 Invokes the DEBUG facility.

DEBUG;

PARAMETERS

None.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

MPE DEBUG/Stack Dump Reference Manual.

2-30 _ JULY, 1979

DLSIZE

Expands or contracts the area between DL and DB INTRINSIC NUMBER 135
in multiples of 128 words.

This intrinsic causes the area between DL and DB to be expanded or contracted within the stack
segment. All current information within the area is saved on expansion. If contracting, data in the
area which is to be contracted is lost. A request for contraction less than the initial DL size of the
area causes the initial DL size to be granted and an error condition (CCL) to be returned. If the size
requested causes the stack to exceed the maximum size permitted by the stack area (Z — DL), only
this maximum is granted.

All addressing within the DL to DB area is DB relative negative indexing. Therefore, SPL is the only
language, at present, which can access this area for you. If you wish to access this area in SPL,
please note that the original data is not moved relative to DB on expansion or contraction of the
area. For example, if a variable is located at DB — 10 before an expansion, it will be at DB — 10 after
the expansion.

FUNCTIONAL RETURN

This intrinsic returns the size actually granted. This value is a negative quantity except on error
condition CCL when it is possible to have a positive value returned.

PARAMETERS

size integer by value (required)
A negative integer. A size of 0 is permitted and resets the DL to DB
area to the original value assigned when the process was created (initial
DL). The size granted will be an absolute value which is rounded up so
that the distance between the beginning of the segment to DB is a
multiple of 128 words.

CONDITION CODES

CCE Request granted. The value returned is at least as large as the value
requested.
CCG Requested size exceeded maximum limit allowed. The maximum limit

allowable is granted and its size is returned.

CCL 1. An illegal size parameter was specified. The size parameter was a
positive integer or the negative size requested was smaller than the
original DL to DB area. The original area size assigned when the
stack segment was created is granted and this size is returned as a
negative value.

2-31

DLSIZE

2. The data segment is a FROZEN stack segment which cannot be
changed until the system UNFREEZES it. The area remains
unchanged. The value returned is a positive integer size of the area
and denotes this special error conditions.

TEXT DISCUSSION

Page 4-22.

2-32

DMOVIN

Copies data from data segment to stack. INTRINSIC NUMBER 132

A process can copy data from an extra data segment into the stack by issuing the DMOVIN intrinsic
call. A bounds check is performed by the intrinsic on both the extra data segment and the stack to
insure that the data is taken from within the data segment boundaries and moved to an area within
the stack boundaries. For example, in the diagram shown below, if you wish to move 4 words from
locations 422 through 425 of the data segment whose index is 21 to DB + 40 through DB + 43 of
your stack, the intrinsic call would be

The index is 21 (from GETDSEG, see page 2-111); displacement (disp) within the data segment is
422; the number of words to move into the stack is 4; and the DB relative location to begin
transferring the data is the address of ARA(10). If ARA(10) is at DB + 40, the end result will be the
4 words moved to DB + 40 through DB + 43 within the stack, as shown below.

STACK

DATA SEGMENT
DL (GETDSEG INDEX = 21)
0
DB
ARA(0)
ARA(1)
. 422 042503
ARA(10)DB+40 042503 423 045501
a1 045501 424 047113
42 047113 425 040522
43 040522
12000
Z

2-33

DMOVIN

PARAMETERS

index

disp

number

location

CONDITION CODES
CCE
CCG

CCL

logical by value (required)
A word containing the logical index of the extra data segment, obtained
from a GETDSEG intrinsic call.

integer by value (required) :

The displacement of the first word in the string to be transferred, from
the first word in the data segment. This must be an integer value greater
than or equal to zero.

integer by value (required)

The size of the data string to be transferred, in words. This must be an

integer value greater than or equal to zero.

logical array (required)
The array (buffer) in the stack where the data string is to be moved.

Request granted.
Request denied because of bounds-check failure.

Request denied because of illegal index or number parameter.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-15.

2-34

DMOVOUT

Copies data from stack to extra data segment. INTRINSIC NUMBER 133

The DMOVOUT intrinsic copies data from the stack to an extra data segment. A bounds check is
initiated to insure that the data is taken from an area within the stack boundaries and moved to an
area with the extra data segment boundaries.

In the example shown below, if you wish to move 4 words from DB + 20 within your stack to the
data segment whose index is 2 (from a GETDSEG call, see page 2-111), starting at location 201
within the segment, the intrinsic call could be

The index is 2; the displacement (disp) within the data segment is 201; the number of words to be
moved to the data segment is 4; and the location of the data within the stack is the address of
ARA(10). If ARA(10) is at DB + 20, the end result is that the 4 words within the stack will be
moved to words 201 through 204 of the data segment, as shown below.

STACK DATA SEGMENT
(GETDSEG INDEX = 2)
DL
0
DB
ARA(0)
ARA(1)
ARA (10) DB+20 054517
21 052522 201 054517
22 047101 202 052522
23 046505 203 047101
204 046505
Q
S 4096
z

2-35

DMOVOUT

PARAMETERS

index logical by value (required)
A word containing the logical index of the extra data segment, obtained
through a GETDSEG call.

disp integer by value (required)
The displacement, in the extra data segment, of the first word of the
receiving buffer from the first word in the data segment. This value
must be an integer greater than or equal to zero.

number integér by value (required)
The size of the data string to be transferred, in words. This must be an
integer value greater than or equal to zero.

location logical array (required)

The array (buffer) in the stack containing the data to be moved.

CONDITION CODES

CCE ‘ Request granted.
CCG Request denied because of bounds-check failure.
CCL Request denied because of illegal index or number parameter.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-15.

2-36

EXPANDUSLF

Changes length of a USL file. ‘ INTRINSIC NUMBER 84

You can increase or decrease the length of a USL file by calling the EXPANDUSLF intrinsic.

When this intrinsic is executed, a new USL file is created whose length is records longer or shorter
than the USL file specified by uslfnum. The old USL file is copied to the new file with the same file
name, and the old USL file then is deleted.

FUNCTIONAL RETURN

This intrinsic returns the new file number. If an error occurs, the error number is returned instead
of the new file number. The condition code therefore must be tested immediately on return from
this intrinsic. If an error number were to be used as a file number, unpredictable results would
occur.

PARAMETERS
uslfnum integer by value (required)

A word identifier supplying the file number of the file.
records integer by value (required)

A signed integer specifying the number of records by which the length
of the USL file is to be changed. If records is positive, the new USL file
is longer than the old USL. If records is negative, the new USL file is
shorter than the old USL.

CONDITION CODES

CCE Request granted. The new file number is returned.
CCG Not returned by this intrinsic.
CCL Request denied. One of the following error numbers is returned.
Error Number Meaning
0 The file specified by uslfnum was empty,

or an unexpected end-of-file was encoun-
tered when reading the old uslfnum, or an
unexpected end-of-file was encountered
when writing on the new uslfnum.

1 Unexpected input/output error occurred.
This can occur on the old usifnum or the
new uslfnum to which the intrinsic is
copying the information.

2-37

EXPANDUSLF

Error Number

10

11

TEXT DISCUSSION

MPE Segmenter Reference Manual.

2-38

Meaning

The intrinsic was unable to open the new
USL file.

The intrinsic was unable to close (purge)
the old USL file.

The intrinsic was unable to close (save) the
new USL file.

The intrinsic was unable to close
$NEWPASS.

The intrinsic was wunable to open
$OLDPASS.

FATHER

Requests PIN of father process. INTRINSIC NUMBER 109

A process can determine the Process Identification Number (PIN) of its father by issuing the
FATHER intrinsic call.

FUNCTIONAL RETURN

This intrinsic returns the PIN of the process’ father.

CONDITION CODES

CCE Request granted. The father is a user process.
CCG Request granted. The father is a job or session main process.
CCL Request granted. The father is a system process.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 7-14.

- 2-39

FCARD

Drives the HP 7260A Optical Mark Reader (OMR)

The FCARD intrinsic allows you to control the operation of the 7260A OMR programmatically.
This is achieved through passing a parameter (recode), corresponding to the function of FCARD
desired, from your program to FCARD. FCARD returns to the program parameter values which
indicate the success or the cause of failure of execution, the status of the 7260A, the file number
of the 7260A /terminal file for which the function has been performed and the number of columns
read at the completion of a read request.

PARAMETERS

recode

2-40

integer (required) ‘

A positive integer represented as an input or output parameter. As an
input parameter, recode requests one of the following twelve options
(functions):

0 = Open the reader and the terminal as a file and return to the

program the filenum through SPL/3000 conventions.

1 = Read a single card whether in ASCII or in column image format.

See Section V for descriptions of ASCII and column image read-
ing formats.

2 = Select the previously read card by routing the card into the select

output hopper (providing option 002 of the 7260A is installed).

3 = Retransmit data from the previously read card. This transmission

may be performed in ASCII or column image reading formats,
depending on latest issued FCARD call specifying recode equal to
11 or12.

4 = Temporarily suspend the program awaiting an operator action

(depress the 7260A “READY” switch). This particular call to
FCARD will maintain control and will not be completed until the
operator presses the 7260A “READY” switch.

10 = Cause the 7260A motor to come to a stop and de-activate MUTE

for the associated terminal, if muted. When MUTE is activated and
the 7260A is in its “READY” state, data transmission from the
computer and from the 7260A to the terminal is disabled.

11 = Cause the output format of the subsequent read (recode=1) and

retransmit (recode=3) requests to be performed in the image read-
ing format.

In image mode reading, count is returned to the program with the
number of columns which have been transmitted.

FCARD

12 = Cause the output format of the subsequent read (recode=1) and
retransmit (recode=3) requests to be performed in the ASCII read-
ing format.

In ASCII mode reading, count is returned to the program with the
number of characters (columns) transmitted.

13 = Cause the 7260A optional bell to ring (providing option 004 is
installed).

17 = Enable the “‘echo-on” function of the computer.
18 = Disable the ‘“‘echo-on” function of the computer.

20 = Close the reader/terminal file opened with recode=0. This effec-
tively completes the. program. ‘

As an output parameter, recode indicates to the program whether a
call to FCARD has been properly executed. The indication given by
the value of recode is as described below:

0 = Indicates that the request, i.e., the call to FCARD, has been suc-
cessfully performed. For the following conditions, when output
recode=0, the specified parameters are significant to the program:

a. If the request was to open a file (recode=0), then filenum is
significant.

b. If the request was either to read (recode=1) or to retransmit
(recode=3), then bufadr (the first byte may contain status infor-
mation identical to that contained in the parameter status),
count, filenum and status are significant.

c. If the request was to select the previously read card (recode=2),
then status is significant.

d. If the request was to perform a temporary suspension of the
program (recode=4), then status is significant.

e. For all other requests (recode=10,11,12,17,18 and 20), none of
the other parameters are significant.

1 = Indicates that recode specified in the request was not one of the
following legal values: 0,1,2,3,4,10,11,12,13,17,18 or 20.

2 = Indicates that FCARD was unable to open the 7260A /terminal
pair as a file. This error is not recoverable, thus the program
should indicate an error and terminate itself.

4 = Indicates that FCARD has encountered a file read or write error
while accessing the 7260A. This error is not recoverable, thus the
program should indicate an error and terminate itself.

5 = Indicates that FCARD was unable to close the 7260A /terminal
file. This error is not recoverable, thus the program should indi-
cate an error and proceed to a normal termination.

2-41

FCARD

filenum

bufadr

count

status

" 942

6 = Indicates that a logical end-of-data (:JOB, :EQJ, :EOD and
:DATA) was encountered while reading data in response to either
a read or retransmit request.

7 = Indicates that FCARD has encountered a file error on requests for
either enabling or disabling the echo function.

8 = Indicates that FCARD has detected a data dropout condition
while the 7260A was transmitting. You should request a retrans-
mission of the data or status (see recode=3).

integer (required)

A word identifier supplying the file number of the file associated with
the reader/terminal file. This file number is returned to the program
from FCARD with output recode=0. It must be provided to FCARD
on all requests.

integer array (required) :
The array to which the record is to be transferred. This parameter
should be set to 120 words.

integer (required)

A positive integer which is returned to the program upon completion of
aread (recode=1) or a retransmit (recode=3) request indicating the num-
ber of columns which have been transferred from the 7260A OMR.

integer (required)

An integer indicating whether the OMR has successfully performed or
responded to the read, select, retransmit, or temporary suspend request.
If status is equal to zero, then the request has been successfully
performed. If status is not equal to zero, then it contains an octal value
specifying the OMR condition. The options are:

OCTAL 22 READY status. Indicates that the OMR READY
push button has been pressed (recode=4). Would
also indicate that the OMR is ready but there is no
data to be retransmitted (recode=3).

OCTAL 07 Input hopper empty or hopper full status. Can
either be returned upon a read request (recode=1)
or upon a retransmit request, if there is no data to
retransmit (recode=3).

OCTAL 11 Pick fail status. Can either be returned upon a read
request (recode=1) or upon a retransmit request, if
there is no data to retransmit (recode=3).

FCARD

OCTAL 317 Not ready status. Can either be returned upon a
read request (recode=1) or upon a retransmit re-
quest (recode=3). This status is provided by the
OMR if the operator has pushed the OMR STOP
push button or if a lamp has burned out in the
OMR read head.

OCTAL 14 Select successful status. Indicates that the OMR
has successfully selected the card upon the select
request (recode=2).

OCTAL 13 Select hopper full status. Indicates that the OMR’s
select hopper was full when the select request
(recode=2) was issued.
FCARD derives the parameter status by assigning the contents of the
first byte of bufadr to status, if this byte equals one of the values of
status given above after a read (recode=1), select (recode=2) or retrans-

mit (recode=3) request, or if this byte equals octal 22 after a request
for a temporary suspension of the program (recode=4).

For more details on the OMR statué, refer to the HP 7260A Operating
and Service Manual (HP Part No. 07260-90001).

CONDITION CODE

The condition code remains unchanged.

TEXT DISCUSSION

Page 5-28.

2-43

FCHECK

INTRINSIC NUMBER 10 Requests details about file input/output errors.

When a file intrinsic returns a condition code indicating a physical input/output error, additional
details may be obtained by using the FCHECK intrinsic call. This intrinsic applies to files on any
device. '

FCHECK accepts zero as a legal filenum parameter value. When zero is specified, the information
returned in errorcode reflects the status of the last call to FOPEN. When an FOPEN fails, there is
obviously no file number which can be referenced in filenum. Therefore, when an FOPEN fails, a
filenum of zero can be used in the FCHECK intrinsic call to obtain the errorcode only. If the tlog,
bl\knum, or numrecs parameters are specified, a zero value will be returned to these parameters. If a
filenum of zero is used for a file which has been previously FOPENed, but not yet FCLOSed, the
returned errorcode will be meaningless.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file for which error
information is to be returned.

errorcode integer (optional)
A word to which is returned a 16-bit code, specifying the type of error
that occurred. If the previous operation was successful, or an EOF is
encountered, all 16 bits are set to zero.
Default: The error code is not returned.

tlog integer (optional)
A word to which is returned the transmission log value recorded when
an erroneous data transfer occurs. This word specifies the number of
words read or written as the result of the input/output error.
Default: The transmission log value is not returned.

blknum : ' double (optional)
A double word to which is returned the relative number of the block
involved in the error.
Default: The block number is not returned.

numrecs integer (optional)
A word to which is returned the number of logical records in the bad
block (blocking factor).
Default: The number of logical records is not returned.

2-44 MAR 1980

FCHECK

In the 16 bits returned to the word specified by the errorcode parameter, the low-order eight bits
contain the error-type code that shows what kind of error occurred.

rle rubs V)f?/]/“/

The following codes are returned in errorcode by FCHECK: /) JO-17
Code
(Decimal) Meaning
0 End of file.
1 Illegal DB register setting (typically, a request in split-stack mode when
it is illegal).
2 1llegal capability
8 Illegal parameter value.
20 Invalid operation.
21 Data parity error.
22 Software time-out.
23 End of tape.
24 Unit not ready.
25 No write ring on tape.
26 Transmission error (No defective track table entry is made on foreign
discs).
27 Input/output time-out.
28 Timing error or data overrun.
29 Start input/output (SIO) failure.
30 Unit failure.
31 End of line (special character terminator).
32 Software abort of input/output operation.
33 Data lost.
34 Unit not on line.
35 Data set not ready.
36 Invalid disc address.
37 Invalid memory address.
38 Tape parity error.
39 Recovered tape error.
40 Operation inconsistent with access type.
41 Operation inconsistent with record type.
42 Operation inconsistent with device type.
43 The tcount parameter value exceeded the recsize parameter, but the
multirecord access aoption was not specified when the file was opened.
44 The FUPDATE intrinsic was called, but the file was positioned at
record zero. (FUPDATE must reference the last record read, but no
previous record was read.)
45 Privileged file violation.
46 File space on all discs in the device class specified is insufficient to
satisfy this request.
47 Input/output error on a file label.
48 Invalid operation due to multiple file access.
49 Unimplemented function.
50 The account referenced does not exist.
51 The group referenced does not exist.
52 The referenced file does not exist in the system (permanent) file
domain.
MAR 1980 2-45

FCHECK

Code
(Decimal)

53
54
55
56
57
58

59
60
61
62
63
64
66
67
68
69
71

72
73
77
78
79
80

81
82
83
84

85

86
87
88
89
90

91
92
93
94
95
96

97

2-46

Meaning

The referenced file does not exist in the job temporary file domain.

The file reference is invalid.

The referenced device is not available.

The device specification is invalid or undefined.

Virtual memory is not sufficient for the file specified.

The file was not passed (typically, a request for SOLDPASS when there
is no $OLDPASS).

Standard label violation.

Global RIN not available.

Group disc file space exceeded.

Account disc file space exceeded.

Non-sharable device (ND) capability required but not assigned.

Multiple RIN (MR) capability required but not assigned.

Plotter limit switch reached.

Paper tape error.

System internal error.

Miscellaneous (ATTACHIO) input/output error.

Process file access information area exhausted. (Try preparing with
NOCB.)

Invalid file number.

Bounds check violation.

NO-WAIT input/output operation is pending.

There is no NO-WAIT input/output for any file.

There is no NO-WAIT input/output for file specified.

Configured maximum number of spoolfile sectors would be exceeded
by this output request.

No SPOOL class defined in system.

Insufficient space in SPOOL class to honor this input/output request.
Extent size exceeds maximum allowable.

The next extent in this spoolfile resides on a device which is unavailable
to the system (i.e., the device is =DOWN).

Operation inconsistent with spooling, e.g., attempt to read hardware
status.

Spool process internal error.

Offset to data is greater than 255 sectors.

Spooling error.

Power failure.

The calling process requested exclusive access to a file to which another
process has access.

The calling process requested access to a file to which another process
has exclusive access.

Lockword violation.

Security violation.

Creator conflict in use of FRENAME intrinsic (user is not the creator).
“BROKEN” terminal read.

Miscellaneous disc input/output error (device may require HP Customer
Engineer attention).

CONTROL Y processing requested but no CONTROL Y PIN exists.

Code
(Decimal)

98
929

100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
123
139
148
149
150
170

171
172
173
174
175
176
177
178
179

180

181

182

183

184

185
MAR 1980

FCHECK

Meaning

Input/output read time has overflowed.
Magnetic tape error. Beginning of tape (BOT) found while requesting a
backspace record (BSR) or a backspace file (BSF).
Duplicate file name in the system file directory.
Duplicate file name in the job temporary file directory.
Directory input/output error.
System directory overflow.
Job temporary directory overflow.
Illegal variable block structure.
Extent size exceeds maximum allowable.
Offset to data greater than 255 sectors.
Inaccessible file due to a bad file label.
Illegal carriage-control option.
The intrinsic attempted to save a system file in the job temporary file
directory.
User lacks save files (SF) capability.
User lacks private volumes (UV) capability.
Volume set not mounted — mount problem.
Volume set not dismounted — dismount problem.
Attempted rename across volume sets.
Invalid tape label FOPEN parameters.
Attempted to write on an unexpired tape file.
Invalid header or trailer tape label.
Input/output error positioning tape for tape labels.
Attempted to write IBM standard tape label. (ANSI only type allowed.
Tape label lockword violation.
End of tape volume set.
Deleted sectors on IBM diskette.
Inactive R10 record accessed.
Missing item number or return variable.
Invalid item number.
The record is marked deleted. FPOINT positioned pointer to a
record that was marked for deletion.
Duplicate key value (KSAM error).
No such key (KSAM error).
Tcount parameter larger than record size (KSAM error).
Cannot get extra data segment (KSAM error).
Internal KSAM error.
Illegal extra data segment (KSAM error).
Too many extra data segments for this process (KSAM error).
Extra data segment too small (KSAM error).
File must be locked before issuing this intrinsic (KSAM error).
The KSAM file must be rebuilt because this version of KSAM
does not handle the file built by previous version.
Invalid key starting position (KSAM error).
File is empty (KSAM error).
Record does not contain all keys (KSAM error).
Invalid record number (KSAM FFINDN intrinsic error).
Sequence error in primary key (KSAM error).
2-47

it

FCHECK

Code
(Decimal)

186
187
188
189
190
191

192

201
202

JAN 1980

Meaning

Invalid key length — numeric display or packed decimal (KSAM error).
Invalid key specification (KSAM error).

Invalid device specification (KSAM error).

Invalid record format (KSAM error).

Invalid key blocking factor value (KSAM error).

Record does not contain search key for deletion. Specified key value points
to record which does not contain that value.

System failure occurred while KSAM file was opened.

Invalid ID sequence (CS error).

Invalid telephone number (CS error).

2-47a

FCHECK

Code
{Decimal)

203
204
205
212
214

216
2117
221
240
241
- 242
243
244
245
246
2417
248
249
250
251

252
253

254
255

Meaning

No telephone list specified (CS error).

Unable to allocate an extra data segment for DS/3000.

Unable to expand the DS/3000 extra data segment.

File number returned from IOWAIT is not a DS line number.

The requested DS line has not been opened with a USER:DSLINE
command.

Message rejected by remote computer (DS error).

Insufficient amount of user stack available (DS error).

Invalid DS message format. (Internal DS error.)

Local communication line not opened by operator (DS error).

DS line in use exclusively or by another subsystem.

Internal DS software malfunction.

Remote computer not responding (DS error).

Communications interface error. Remote computer reset the line.
Communications interface error. Receive timeout. '
Communications interface error. Remote computer has disconnected.
Communications interface error. Local timeout.

Communications interface error. Connect timeout.

Communications interface error. Remote computer rejected connection.
Communications interface error. Carrier lost.

Communications interface error. The local data set for the DS line went
not ready.

Communications interface error. Hardware failure.

Communications interface error. Negative response to the dial request
by the operator.

Communications interface error. Invalid input/output configuration.
Communications interface error. Unanticipated error condition.

CONDITION CODES

CCE

CCG

CCL

Request granted.
Not returned by this intrinsic.

Request denied because filenum was invalid or a bounds violation
occurred while processing this request and errorcode is 73.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 3-67

2-48

FCLOSE

Closes a file. INTRINSIC NUMBER 9

The FCLOSE intrinsic terminates access to a file. This intrinsic applies to files on all devices.
FCLOSE deletes the buffers and control blocks through which the user process accessed the file. It
also deallocates the device on which the file resides and it may change the disposition of the file. If
you do not issue FCLOSE calls for all files opened by your process, such calls are issued automati-
cally by MPE when the process terminates. All magnetic tape files are left offline after an FCLOSE
to indicate to the console operator that they may be removed.

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled tape file
that is part of a volume set. If you close the file with a disposition code of 3, the tape does not
rewind, but remains positioned at the next file. If you close the file with a disposition code of 2, the
tape rewinds to the beginning of the file but is not unloaded. A subsequent request to open the file
does not reposition the tape if the sequence (seq) subparameter is NEXT, or default 1). A
disposition code of 1 (rewind and unload) implies the close of an entire volume set.

When the logical end-of-data is encountered during reading, the CCG condition code is returned to
the user process. On magnetic tape, the end-of-data can be denoted by a physical indicator such as a
tape mark. When a file is read that spans more than one volume of labeled magnetic tape, the user
.program is suspended until the operator has completed mounting the next tape. CCG is not returned
when end-of-tape is encountered. On disc, the end-of-data occurs when the last logical record of the
file is passed. In this case, the CCG condition code is returned and no record is read. If the file is
embedded in an input source containing MPE commands, the end-of-data is indicated when an
:EOD command is encountered, but the :EOD command itself is not returned to the user. The
end-of-data is indicated by a hardware end-of-file), including :EOF':, or on $STDIN by any record
beginning with a colon, or on $STDINX by :EOD. In addition, on the standard input device for a
job, as opposed to a session, :JOB, :EQJ, or :DATA indicate end-of-data.

PARAMETERS
filenum integer by value (required)

A word identifier supplying the file number of the file to be closed.
disposition integer by value (required)

Indicates the disposition of the file, significant only for files on disc and
magnetic tape (ignored by Foreign Disc Facility). This disposition can
be overridden by a corresponding parameter in a :FILE command
entered prior to program execution. The disposition options are defined
by two-bit fields, as follows:

#. 77 (13:3) Domain Disposition
NOTE

Bit groups are denoted using the standard SPL notation.
Thus, bits (13:3) indicates bits 13, 14, and 15.

MAR 1980 249

2-50

0 - No change. The disposition code remains as it was before the file
was opened. Thus, if the file is new, it is deleted by FCLOSE; otherwise,
the file is assigned to the domain to which it belonged previously.

UV ilagiled Teefe — e wovid J

sthafe|ed tepe ~ Tewound [it loded s

1 - Permanent file. If a disc file, it is saved in the system file domain. If
the file is a new or old temporary file on disc, an entry is created for it
in the system file directory. An error code is returned if a file of the
same name already exists in the directory. If the file is an old permanent
file on disc, this disposition value has no effect. If the file is stored on
magnetic tape, that tape is rewound and unioaded and no directory
changes are made.

2 - Temporary job file (rewound). The file is retained in the user’s
temporary (job/session) file domain and can thus be requested by any
process within the job/session. The uniqueness of the file name is
checked. If a file of the same name exists already, an error code is
returned. If the file resides on unlabeled magnetic tape, the tape is
rewound and unloaded. If the file resides on labeled magnetic tape, the
tape is rewound but not unloaded.

3 = Temporary job file (not rewound). This option has the same effect
as disposition code 2, except that tape files are not rewound.

4 = Released file. The file is deleted from the system.
NOTE

Although the basic functions covering magnetic tape files are
covered above in dispositions 0 through 4, it is recommended
that you read the discussion of magnetic tape files in Section
III for special considerations not here.

Default value for this field is code 0 (no change).
(12:1) Disc Space Disposition.

1= Returns to the system any disc space allocated beyond the
end-of-file indicator.

0=Does not return any disc space allocated beyond the end-of-file
indicator.

The default value for this field is code 0 (no return).

When a file is opened by the FOPEN intrinsic, a file count (maintained
by the system) is incremented by one. When the file is FCLOSEJ, the
file count is decremented by one. If more than one FOPEN is in effect
for a particular file, its disposition is saved but not affected by the
FCLOSE call until the file count is decremented to zero. Then the
effective (saved) disposition is the smallest non-zero disposition

MAR 1980

FCLOSE

parameter specified among all FCLOSE calls issued against the file. For
example, a file XYZ is opened three successive times by a process. The
first FCLOSE disposition is 1, the second FCLOSE disposition is %14,
and the third (and last) FCLOSE disposition is %12. The final
disposition on the file XYZ will be disposition 1 (permanent file and no
return of disc space).

Bits (0:12) are reserved for MPE and should be set to zero.

seccode integer by value (required)
Denotes the type of security initially applied to the file, significant only
for new permanent files (ignored by Foreign Disc Facility). The options
are:
0 — Unrestricted access — the.file can be accessed by any user, unless
prohibited by current MPE provisions.

1 — Private file creator security — the file can be accessed only by its
creator.

The default value is 0.

CONDITION CODES

CCE The file was closed successfully.
- CCG Not returned by this intrinsic.
CCL The file was not closed, perhaps because an incorrect filenum was

specified, or because another file with the same name and disposition
exists in the system. Additionally, an illegal disposition, 5, 6, or 7, was
specified. This can be detected by FCHECK returning an error 49.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 3-36.

MAR 1980 2-51

FCONTROL

INTRINSIC NUMBER 13 Performs control operations on a file or device.

The FCONTROL intrinsic performs various control operations on a file or on the device on which
the file resides.

These operations include:

® Supplying a printer or terminal carriage-control directive.

® Verifying input/output.

® Reading the hardware status word pertaining to the device on which the file resides.
® Setting a terminal’s time-out interval.

® Rewinding a file.

® Writing an end-of-file indicator.

® Skipping forward or backward to a tape mark.

The FCONTROL intrinsic applies to files on disc, tape, terminal, or line printer. Note the special
conditions that exist when FCONTROL is used with files on labeled magnetic tape. Some FCON-
TROL functions cannot be used with labeled tapes, and other functions may produce unexpected
results. (Refer to controlcodes 5, 6, 7, 8, and 9.)

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file for which the
control operation is to be performed.

controlcode integer by value (required)

An integer specifying the operation to be performed:

0 - General Device Control. The param parameter is transmitted to the
appropriate device driver, and the value returned is transmitted to the
user through the param parameter.

1 - Line Control. A request to send the value specified in the param
parameter to the terminal or line printer driver as a carriage-control
directive. Use line controls provided by FWRITE when directing to a
disc or a spooled file.

2 - Complete Input/Output. This insures that requested input/output
has been physically completed. Valid only for buffered files. Posts the
block being written whether full or not.

2-52

FCONTROL

3 - Read Hardware Status Word. This operation will return in param
the status word from the device on which the file resides. The returned
value is the status of the device from the previous input/output opera-
tion, including FOPEN of the file.

4 - Set Time-Out Interval. This code indicates that a time-out interval is
to be applied to input from the terminal. If input is requested from the
terminal but is not received in this interval, the FREAD request termi-
nates prematurely with condition code CCL. The interval itself is speci-
fied, in seconds, in a word on the user’s stack, indicated by param. If
this interval is zéro, any previously established interval is cancelled, and
no time out occurs. Controlcode 4 is ignored if the addressed file is not
being read from the terminal. Note that this only affects the next read.

5 - Rewind File. This repositions the file at its beginning, so that the
next record read or written is the first record in the file. This code is
valid only for files on disc or magnetic tape. Note that on a labeled
magnetic tape file, the tape is positioned to the beginning of the opened
file, and not necessarily to the beginning of the volume.

6 - Write End-of-File. This operation is used to denote the end of a file
on disc or magnetic tape, and is effective only for those devices. If
applied to a disc file, the operation writes a logical end-of-data indicator
at the point where the file was last accessed. The disc file label also is
updated and written to disc. If the file is an unlabeled magnetic tape
file, a tape mark is written at the current position of the tape. This
controlcode is not allowed for labeled magnetic tape files.

T - Space Forward to Tape Mark. This moves a magnetic tape forward
‘until a tape mark is encountered. Not applicable for labeled magnetic
tapes. If used on labeled magnetic tapes, the tape is positioned to the
beginning of user trailer labels, if any.

8 - Space Backward to Tape Mark. This moves a magnetic tape back
ward until a tape mark is encountered. Not applicable for labeled tapes.
If used on labeled tapes, the tape is positioned to the beginning of user
header labels, if any.

9 - Rewind and Unload Tape. This repositions a magnetic tape file at
its beginning and places the tape offline. Not allowed for labeled tapes.

NOTE

Control codes 0 and 3 will be rejected for spooled devicefiles.
Control codes 5 through 9 (magnetic tape control) will be
rejected for spooled :DATA tapes. Control codes 6 and 9 will
be rejected for labeled magnetic tape files.

Although the basic functions covering magnetic tape files are
covered above, it is recommended that you read the discus-
sion of magnetic tape files in Section III for special considera-
tions not covered here.

2-53

FCONTROL

The following values for controlcode are used for changing terminal characteristics. See Section V.

10 = Change terminal input speed.

11 = Change terminal output speed.

12 = Turn echo facility on.

13 = Turn echo facility off.

14 = Disable the system break function.
15 = Enable the system break function.

16 = Disable the subsystem break function.
17 = Enable the subsystem break function.
18 = Disable tape mode option.

19 = Enable tape mode option.

20 = Disable the terminal input timer.

21 = Enable the terminal input timer.

» 22 = Read the terminal input timer.
@4s 2 ‘9“4“4/4 rsable

23 = Disable parity checking.
lfeuded (wu;f

24 = Enable parity checking.
25 = Define line-termination characters for terminal input.
46 = T 26 = Disable binary transfers.

Yewd g wribers 1 D 27 = Enable binary transfers.

28 = Disable user block mode transfers.

492 Monderdrctre Pl 29 = Enable user block mode transfers.
34 = Disable line deletion echo suppression.
35 = Enable line deletion echo suppression.
36 = Set parity.
37 = Allocate a terminal.
38 = Set terminal type.
39 = Obtain terminal type information.
40 = Obtain terminal output speed.
41 = Set unedited terminal mode.
43 = Aborts pending NO-WAIT I/O request.

param logical (required)
If controlcode is 1, param denotes a word containing the value to be
transmitted to the terminal or line printer driver as a carriage control or
mode control directive. The carriage control directive is selected from
figure 2-3, following FWRITE.

The mode control determines whether any carriage control directive
transmitted through the FWRITE intrinsic takes effect before printing
(pre-space movement) or after printing (post-space movement). The
mode control directive is selected from the octal codes %400 or %401
in figure 2-3.

2-54

'AFCONTROL

If param contains a mode control directive, then a value is returned to
param that shows the mode setting of the device as it was before the
call to FCONTROL, as follows:

Value Meaning
0 Post-spacing
1 Pre-spacing

If controlcode is 4, param denotes a word in the user’s stack that
contains the time-out interval, in seconds, to be applied to input from
the terminal.

If controlcode is 2, 5, 6, 7i 8, or 9, param is any variable or word
identifier. This parameter is needed by FCONTROL to satisfy the
internal requirements of the intrinsic. It serves no other purpose,
however, and is not modified by the intrinsic.

See Section V for param requirements when controlcode is 10 or greater.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Pages 3-77 and 5-1.

2-56

FDELETE

Deactivates a R10 record

FDELETE deactivates a specified logical record. If no record is specified (or the recnum is
negative), the next random access logical record becomes inactive. If the selected record has already
been deactivated a CCE condition code is returned. The condition can be detected by calling the
FCHECK intrinsic. The “inactive record” error indicates that the record selected for this FDELETE
was already inactive.

PARAMETERS

filenum integer by value (required)
A word identifier supplying the file number of the file to be de-
activated.

recnum double by value (optional)
A positive double integer representing the relative logical record to be
modified.

CONDITION CODES

CCE Request granted. No error (although inactive record may have been
encountered).

CCG Request denied. End of file.

CCL Request denied. Access error.

TEXT DISCUSSION
page 3-7.

JAN 1980 2-55a

FERRMSG

INTRINSIC NUMBER 307

Returns message corresponding to FCHECK error number.

The FERRMSG intrinsic causes a message to be returned to msgbuf that corresponds to an
FCHECK error number. This makes it possible to display an error message from your program. The
message describes the error associated with the error number provided in the errorcode parameter.

PARAMETERS

errorcode

msgbuf

msglgth

integer (required)
A word identifier containing the error code for which a message is to be
returned. It should contain an error number returned by FCHECK.

logical array (required)

A logical array to which the message associated with errorcode is
returned by FERRMSG. In order to contain the message string, msgbuf
must be a maximum of 72 characters long.

integer (required)
A word identifier to which is returned the length of the msgbuf string.
The length is returned as a positive byte count.

CONDITION CODES

CCE

CCL

CCG

TEXT DISCUSSION

Page 3-67.

2-56

Request granted.

Request not granted because no error message exists for this errorcode
or because of a message system error.

Request not granted. msgbuf address may be out of bounds, msgbuf
may not be large enough, or msgigth address is out of bounds.

MAR 1980

FFILEINFO

Provides access to file information.

NOTE

Itemnum/itemvalue parameters must appear in pairs. Up to five
items of information can be retrieved by specifying one or more
itemnum /itemvalue pairs.

FFILEINFO provides access to file information. It is designed to be extensible so that new file
information can be defined and accessed.

PARAMETERS
filenum integer (required)
MPE file number returned by FOPEN
itemnum integer (optional)
Cardinal number of the item desired; this specifies which item value is
to be returned. N
(See item #, Figure 2-1a)
itemvalue byte array (optional)

Value of the item specified by the corresponding itemnum; the data
type of the item value depends on the item itself. ‘
(See item, Figure 2-1a)

CONDITION CODES

CCE No error
CCG Not used
CCL Access or calling sequence error

TEXT DISCUSSION

Page 3-65, 3-67

MAR 1980 ‘ 2-56a

ITEM# TYPE ITEM UNITS
1 BA filename (see FGETINFO)
2 L foptions (see FGETINFO)
3 L aoptions (see FGETINFO)
4 | recsize (see FGETINFO) words/bytes
5 | devtype (see FGETINFO)
6 L ldnum Les ev wo (see FGETINFO)
7 L hdaddr (see FGETINFO)
8 I filecode (see FGETINFO)
9 D recpt (see FGETINFO)
10 D eof (see FGETINFO)
11 D flimit (see FGETINFO) records
12 D logcount (see FGETINFO) records
13 D physcount (see FGETINFO) records
14 | blksize (see FGETINFO) words/bytes
15 L extsize (see FGETINFO) sectors
16 1 numextents (see FGETINFO)
17 | userlabels (see FGETINFO)
18 BA creatorid (see FGETINFO)
19 D labaddr — |abdl adeve ¥ (see FGETINFO)
20 | blocking factor (see FOPEN)
21 | physical block size words
22 } data block size words
23 ! offset to data in blocks words
24 | offset to Active Record Table within the block {RIO files) words
25 | size of Active Record Table words
26 BA vol. ID (label tape) (see Label Tapes)
27 BA vol. set ID (label tape) (see Label Tapes)
28 | expiration date (Julian format) (see Label Tapes)
29 | file sequence number (see Label Tapes)
30 i reel number (see Label Tapes)
31 | sequence type (see Label Tapes)
32 i creation date (Julian format) (see Label Tapes)
33 | label type (see Label Tapes)
34 l RESERVED
35
36 L File Allocation Date (CALENDAR format)
37 D File Allocation Time (CLOCK format)
38 L SPOOFLE Device file number (#0 or #1 (see File Code)
number)
40 D disc or diskette device status
41 1 device type
42 | device subtype
Figure 2-1a. Item Values Returned by FFILEINFO
2-56b MAR 1980

FGETINFO

Requests access and status information about a file. INTRINSIC NUMBER 11

Al

Once a file is opened on any device, the FGETINFO intrinsic can be used to request access and
status information about that file.

PARAMETERS

filenum

filename

foptions

JULY, 1979

integer by value (required)
A word identifier supplying the file number of the file about which

" information is requested.

byte array (optional)

A byte array to which is returned the actual designator of the file being
referenced, in this format:

f.g.a '

where

f = the local file name.

g = the group name (supplied or implicit).

a = the account name (supplied or implicit).

The byte array must be 28 bytes long. When the actual designator is
returned, unused bytes in the array are filled with blanks on the right.
A nameless file will return an empty string.

Default: The actual designator is not returned.

logical (optional)

The foptions parameter returns seven different file characteristics by
setting corresponding bit groupings in a 16-bit word. Correspondence is
from right to left. The file characteristics returned are as follows. The
bit settings are summarized in figure 2-1.

NOTE

Bit groups are denoted using the standard SPL notation. Thus
bits (14:2) indicates bits 14 and 15; bits (10:3) indicates bits
10,11, and 12.

Bits (14:2) — Domain Foption.
The file domain that was searched by MPE to locate the file, indicated

by these bit settings: ‘
00 - The file is a new file.

2-57

892

0861 NV

BITS (0:3) (3:1) (4:1) (5:1) (6:1) (7:1) (8:2) (10:3) (13:1) (14:2)
RELATIVE KSAM DISALLOW MPE TAPE CARRIAGE RECORD DEFAULT ASCII/
FIELD | (RESERVED) 1/0 FILE :FILE LABELS CONTROL FORMAT DESIGNATOR || BINARY DOMAIN
MEANING 0 = Non- O0=Notanew |1=No:FILE | 1=LABELED || 0=NOCCTL | 00 = Fixed 000 = filename 0= Binary | 00 = New file
RIO file KSAM file TAPE
(default)
1=RIOfile | 1=New KSAM | 0=:FILE 0= NON- 1=CCTL 01 = Variable 001 = $STDLIST || 1=ASCIl | 01=0Id System
file or LABELED File
existing TAPE
KSAM file
opened as
an MPE
file
10 = Undefined || 010 = SNEWPASS 10 = Temporary
File
011 = $OLDPASS 11 = Oid User
File
100 = $STDIN
101 = $STDINX
110 = $NULL
Figure 2-1. Foptions Bit Summary
NOTE: Double lines indicate octal digit boundaries.

O4NI1394

JAN 1980

FGETINFO

01 = The file is an old permanent file.
10 = The file is an old temporary file.
11 = The file is an old file.

Bit (13:1) — ASCII/Binary Foption.
For ASCII this bit is 1. For binary, it is 0.

Bits (10:3) — Default File Designator Foption.

The bit settings are:

000 = The actual file designator is the same as the formal file
designator.

001 = The actual file designator is $STDLIST.

010 = The actual file designator is SNEWPASS.

011 = The actual file designator is $OLDPASS.

100 = The actual file designator is $STDIN.

101 = The actual file designator is $STDINX.

110 = The actual file designator is $NULL.

Bits (8:2) — Record Format Foption.

The format in which the records in the file are recorded, indicated by
these bit settings:

00 = Fixed-length records.

01 = Variable-length records.

10 = Undefined-length records.

Bit (7:1) — Carriage Control Foption.
0 = No carriage-control character expected.
1 = Carriage-control character expected.

Bit (6:1) — MPE Tape Label Foption.
0 = Non-labeled tape.
1 = Labeled tape.

Bit (5:1) — Disallow File Equation Foption.

This option ignores any corresponding :FILE command, so that the

specifications in the FOPEN call take effect (unless overridden by those

in the file label). For disallowing :FILE, this bit is set to 1; for allowing
:FILE, the bit is 0.

Bits (4:1) — KSAM file Foption
0 = Not a new KSAM file (default)
1 = New KSAM file or existing file opened as an MPE file.

Bits (3:1) — Relative I/O Foption

0 = Non-RIO file will be created. (default)
1 = RIO file will be created.

2-69

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>