
INTEREX

~~t-+-t-IX

, l+-+-+-+-+-+--1 3
· ll-----+------I~ H

tlti~~~ltlttil. i
+--+-+-+-+--+--ii N
~ 1

HP BUSINESS USERS
CONFERENCE PROCEEDINGS

VOLUME2

LAS VEGAS
SEPTEMBER 20-25, 1987

INTEREX
the International Association of

Hewlett-Packard Computer Users

Proceedings

of the

1987 North American Conference
Of Hewlett-Packard Business

Computer Users

at
Las Vegas, Nevada

September 20-25, 1987

VOLUME2

I
I,
I

What If ... You Didn't Wait For Spectrum?

-or-

Squeezing the Last Bit Out Of Your HP 3000

By Michael Shumko, Robert Green, and David Greer

Robe/le Consulting Ltd.
8648 Armstrong Rd. R.R. No. 6

Langley, B.C. Canada V3A 4P9
Telephone: (604) 888-3666

Telex: 04-352848

Copyright Ro belle Consulting Ltd. 1987.

Permission is granted to reprint this document (but nQ1 for
profit), provided that copyright notice is given.

What If ... You Didn't Wait For Spectrum?

-or-

Squeezing the Last Bit Out Of Your HP 3000

By Michael Shumko, Robert Green, and David Greer

The problem. Nightly batch jobs are still running the next morning. Users are
complaining that on-line response is terrible. In short, your HP 3000 is over-worked,
underpaid, and about to collapse from exhaustion.

The solution. Order a Spectrum: a Series 930 or 950.

The problem with this solution. Neither machine exists yet. (Okay. In the lab. But if
it's not on the showroom floor, it can't be bought.) What to do?

The solution to the solution. We have done an informal survey of large HP shops to
find out how the successful ones avoid topping out the HP 3000 line. What we found
was not some "secret" formula, but rather a mundane, continuous, attention to the details
of system performance. The successful sites still apply the long-touted answers for
boosting performance, such as balancing use of disc drives. Just look in your magazines,
newspapers and conference proceedings for all sorts of ways to improve performance.

Here are some of the ideas these users mentioned for how to 'squeeze the last bit from
your HP 3000'.

I. pay attention to the details.
2. use one cpu per problem (distributed processing).
3. distribute an integrated solution over several CPUs.
4. put heavy cpu work on PCs (word processing, graphics).
5. upgrade to faster hardware (Series 70, LAN, forms cache).
6. review batch processing.
7. use NOBUF tools and optimum block sizes.
8. compile your fourth-generation applications.
9. get OMNIDEX for fast on-line database searching.

Not all of these solutions will apply to everyone. Many of these ideas are "old hat", but
they work. A few of these ideas are novel - you may not have heard of them before.
Some are not cheap (then again, neither is a Spectrum). If you're strapped for
horsepower now, then these timely suggestions may give you the breathing room you
need. Until Spectrum, of course.

What if ... you didn't wait for Spectrum? Robelle Consulting Ltd.

Attention to Detail Tip #1

Good system managers never stop thinking of new ideas to improve system performance.
Successful sites are constantly monitoring their machines. Here are some of the tools
they use.

Response Time.

Most shops we surveyed had OPT, but most were not using it regularly. Users complain
that OPT is difficult to understand (even with all of the training). Joe Ballman at
Textron Marine Systems thinks that OPT consumes so much CPU time that it affects its
own measurements. David Lustig of BOSE uses a simple method to measure response
time. When a user complains that the computer is slow, he goes to the users terminal
and uses a stop watch to time the actual response time. Other sites were using SUE or
SURVEYOR from the contributed library.

HPTREND.

Most sites are using HPTREND to provide accurate information about machine usage.
In many cases, the HPTREND reports confirm the system manager's intuition and
provides concrete evidence for upper management. Sites we contacted are planning their
machine resources at least a year into the future. Jim Bird at Turbo Resources is trying
SYSPLAN from Carolian Systems. This product is similar to HPTREND, but the trend
analysis is done on your own machine.

Database Performance.

Turbo Resources uses HowMessy to indentify the inefficient datasets in their application
(HowMessy is run once a week). Turbo uses DETPACK from Adager to repack one
critical dataset every day. HowMessy was used to obtain the "before" and "after"
pictures of the dataset packing.

Disc Cache Optimizer.

Markku Suni, an SE in Finland, has written an unsupported program which manages disc
caching parameters dynamically. It varies the sequential and random fetch quantums
depending on the current job mix, 1/0 queue lengths, etc. It will even disable caching
on a drive if it decides that throughput would increase without it. DCO does not work
well when the machine load is extremely dynamic (e.g., on a development machine).
You can obtain a copy from your SE.

These are a small sample of the ideas that help monitor and improve system performance.
No one knows all of the details that will keep your machine running; you must strive to
find them.

What if ... you didn't wait for Spectrum? 2 Robelle Consulting Ltd. - Tip #l

Use One CPU Per Problem Tip #2

Problem.

How do you add CPU power to a 3000 when you already have a Series 70?

Solution.

Use one CPU per problem, or application, or department. Don't try to crowd everything
onto one computer. Instead, use a separate CPU for each major application, or give
each department its own machine. That way, you make each application independent of
the problems in other applications. If the Payroll application is a hog, there's no reason
for the Accounting users to suffer. Using separate machines also allows you to tune
each machine for its own application. 'Distributed processing' was the strategy most
frequently mentioned in our survey of successful sites. Most give programmers their
own machine.

Examples.

At Boeing, one of the large manufacturing systems has an 'update' machine and an
'inquiry' machine. The 'update' machine has 150 users who are updating the database.
No uncontrolled inquiries or reports are allowed on this CPU. The 'inquiry' CPU has a
copy of last night's database from the 'update' CPU; on this machine they allow people
to make inquiries and to run QUIZ.

HealthPlus of Michigan provides heath care services using a Series 70 with 52 sessions
for all data entry and a Series 68 with 30 sessions for all on-line inquiries and reports.
They use Silhouette to keep the inquiry database current and a Series 48 is reserved for
all program development. Word processing is done on two stand-alone Series 37
machines.

Longs Drugs, a large west-coast chain of drug stores, has 200 HP 3000s. An extreme
example? Not really. True to the distributed processing ideal, each store has its own
Series 37. These handle the main pharmacy application, keeping track of prescription
stock, filling orders, and checking for dangerous drug interactions. When required, the
Series 37s use dial-up DS to exchange information with the head office Series 70s.
Otherwise, they're stand-alone machines. Every machine has a Console Engine to let the
head office know when problems occur. (In fact, the Console Engine was initially
developed for Longs Drugs.) At the head office, Longs puts separate applications on
separate machines. For instance, all the Personnel applications are on one Series 70, the
Accounting applications on another. Development is done on a separate machine again.

Consider another example, a company that sells supplies. They have 18 HP 3000s spread
all over the world. Before the MIS manager went to work there, his philosophy was
always 'get a bigger machine'. Then he went there, and they have a philosophy of
'getting the data down to the users'. So they have 3000s everywhere; every warehouse
has its own small HP 3000. They were having a problem with F A/3000: they gave it its
own Series 58. They don't even have a Series 70, and aren't budgeting for one until
fiscal '88.

What if ... you didn't wait for Spectrum? 3 Robelle Consulting Ltd. - Tip #2

Tools.

If you go this route you'll want to make sure that you have the proper ~ to manage
the network of machines properly. One type of tool is used to route spool files from
one machine to another conveniently.

Unispool from Holland House is one example of this. This allows you to have an
expensive peripheral like a laser printer connected to one machine, and have more than
one computer send output to it.

RSPOOL, from the contributed library, will duplicate spoolfles across a DS line.
RSPOOL creates a remote session, runs a remote program to generate the remote
spoolfle, and purges the original spoolfle. The price is cheap, but Joe Ballman of
Textron Marine warns that RSPOOL eats up the LAN and consumes over 3% of the cpu.

$Stdlist Management software (now called Job Rescue) from NSD can also help; it
checks spool files for error messages. This lets the computer look for problems itself,
allowing the users to get on with their own work instead of baby-sitting the computer.

If you setup a machine in a user department for unattended operation, you'll still have
console messages to contend with. The Console Engine from Telamon attaches to the
console and looks for specific conditions such as system failure messages, error
conditions, and that sort of thing. If it sees that the system has run into some trouble it
can either take action on its own (a 'pseudo operator') or it can dial the head office and
notify the system manager.

Resist getting a bigger machine.

You can always have that in reserve if you get in trouble. Get another machine instead.
Dexter Shoes manages one million open items, one million inventory items, six shoe
factories, over 50 retail outlets, and numerous wholesale clients with a network of six
Series 40s. 'The key advantage that system managers see to the "one cpu per problem"
philosophy, in addition to never 'topping out', is that you can push the machines into the
user environment. You don't have to have a giant MIS. And when the machine is slow,
it's because the users are running QUIZ reports. There are only a dozen users, so they
can observe and figure it out, whereas on a Series 70 with 180 users, even the system
manager doesn't know what's causing the problem. So you break it into smaller
problems. Each machine is less complicated, and we would guess, has fewer problems.
You will pay a little more for maintenance and raw horsepower, but you should be
easily repaid in better user service.

What if ... you didn't wait for Spectrum? 4 Robelle Consulting Ltd. - Tip #2

Distribute An Integrated Solution Over Several CPUs Tip #3

Okay, I accept the idea that I should have one application per CPU, but my application
is an integrated solution. All of the modules access common databases and I don't have
time to rewrite it (or I bought the package and I don't have the source code).

Problem.

You can't split a single integrated application over two machines.

Solution.

Yes you can, if you are clever.

AutoNet.

Karl Smith of Softsmith has developed an ingenious, simple method of distributing an
integrated application over several HP 3000s. Compaq Computers started in business a
few years ago. To manage their manufacturing work, they used ASK's MANMAN
system over dialup lines to a time-shared Series 42. Within weeks they had their own
machine, then two, and so on. Their growth has been so dramatic that they have never
had the time to customize ASK's programs -- they use them "as is". Compaq now runs
its entire company on a network of 900 PCs and seven HP 3000s (no IBM mainframe).
When their processing needs for MANMAN exceeded the power of a single Series 70,
Tom Callaghan hired Karl to program a solution.

Tom wanted to be able to spread the databases and files of the integrated MANMAN
application over more than one HP 3000. Karl wrote an SL routine to intercept all calls
to the FOPEN intrinsic. His routine, called Global FOPEN, checks the user's desired
filename against a table of remote file-set names. If it doesn't find a match, Global
FOPEN calls the real FOPEN. If it does find a table entry for the filename, Global
FOPEN automatically gets the user a remote session with the same logon as his local
session (unless he already has one), and calls FOPEN for the remote file. With this
method, Compaq can easily distribute the ASK MANMAN package across several
machines, with no changes to the application. Karl advises that there be a logical split in
the application, where files may be moved. In the case of MANMAN, the three major
components are purchasing, manufacturing and physical inventory. Users logon to the
machine which contains the component they are interested in. This ensures that most of
the database access is local, with only occasional access to files on the other systems.
For more details, contact Karl at (713) 332-3846 and ask about "AutoNet".

The Inside Details.

The software is not terribly tricky after all. The normal FOPEN is renamed to be
HP'FOPEN, and the Softsmith FOPEN routine is added to the system SL. When FOPEN
is called, this routine determines which system the requested file resides on. If it's on
another system, it just inserts the DS machine name into the device parameter, then calls
HP'FOPEN. Nothing to it. If necessary, it opens a DSLINE and does a remote hello
onto the other machine. In UB-Delta-1 the remote logon can be done automatically by
NS as part of the DSLINE command, making Karl's routine even more vanilla. There
will still be a remote CI process. All that is saved is the trouble of having to do the

What if ... you didn't wait for Spectrum? 5 Robelle Consulting Ltd. - Tip #3

remote hello and remote bye. Another advantage is that this new feature takes one less
NS socket.

Reflecting Mirror Images.

Miles Gilbert was designing a new Accounts Receivable system in Transact for Dexter
Shoes. Unfortunately, the people responsible for names and addresses were in Boston
and the people responsible for transactions were in Maine. How could Miles put the
data near the responsible users when both groups needed access to all of the data?

First, Miles split the database in two: names/address versus transaction. Then he put a
Series 40 in each location, with h21b. databases on .l2Q!h machines. The users in Boston
maintain the name/address database and have read access to a copy of the transaction
database. In Maine the users maintain the transaction database and have read access to a
copy of Boston database. Each site has a mirror copy of the other's database.

To keep the mirror databases in sync, Miles runs Silhouette in both directions betweeen
the sites. Silhouette transmits name/address changes from Boston to Maine, where it
applies them to a mirror copy of the database. This keeps Maine updated to within a
few minutes of real-time. Silhouette also transmits transaction changes from Maine back
to Boston, where they are updated to another mirror database. Each site has all the
current information, has control of its own data, and provides emergency backup for the
other site.

What if ... you didn't wait for Spectrum? 6 Robelle Consulting Ltd. - Tip #3

I'

Put Heavy CPU Work On PCs Tip #4

Applications such as spreadsheets, graphics and word processing are notorious consumers
of CPU time. These benefit from being on their own dedicated computers. PCs are a
good choice, as a dedicated PC often performs better than a busy Series 70 on
CPU-intensive applications.

Word processing is another application which definitely should be on a PC. If you're
running HPWORD or some other word processing package on your HP 3000, you're
paying dearly for it. You should not allow any word processing on your HP 3000 unless
it's dedicated to word processing. HP has been advocating this approach for a few
years, and the development thrust of their software has been in this direction, with more
PC-based software, and access software to upload and download the data. You don't
necessarily need the latest and greatest integrated software for uploading and
downloading. Reflection from Walker Richer & Quinn will do the job well.

Integrating PCs and 3000s.

Rolf Schleicher in Hamburg controls a network of over 200 PCs from his HP 3000, using
Reflection and a few other tools. The 3000 automatically logs onto the PCs at night and
backs up the hard disks for the users. He also updates the DBASE files on the PCs
nightly with the latest information extracted from corporate IMAGE databases. He
often uses his larger PCs as attached processors to expand the power of his 3000 (think
of how many MIPS there are lying around unused at night!). For example, if Rolf has a
large statistical analysis to do, he may download the data to a PC, start the analysis
running and upload a single number later as the result. He finds that many system
management tasks are easier to program in LOTUS than in COBOL. For example,
managing disc space and file usage by doing :LISTF and :REPORT into a LOTUS
spreadsheet for analysis.

A Company That Is Heavily Invested in PCs.

Compaq Computers has some 900 PCs in their company. Instead of downloading raw
data files from the HP 3000, they have summary files lying around which they download
using Reflection, feeding them into Lotus or graphics or whatever. They do all their
graphics on the PCs except for one giant run of 85 graphs in DSG, which comes at
month-end on the laser printer. It ties up an entire Series 70 until it's over. They don't
attempt to do anything else on that machine until the graphs are printed. But all of
their other graphics, what-if graphics, presentation graphics, is done on the PCs. This
keeps the graphics hogs off the HP 3000s.

What if ... you didn't wait for Spectrum? 7 Robelle Consulting Ltd. - Tip #4

Upgrade to Faster Hardware Tip #5

The Series 70 is a winner.

People we talk to say that their Series 70s are terrific, especially when they're loaded up
with eight or nine megabytes of memory. They have a lot more horsepower than a
Series 68. If you're on a Series 68 or smaller, you might consider going to a 70 instead
of a 930 or 950. The Series 70 is so much more powerful than a 68 that we have heard
that it is impacting the market for the Series 930.

When Longs Drugs upgraded one of their Series 68s to a Series 70, they went to U-MIT,
Turbo IMAGE, and converted from Desk III to Desk IV all at the same time. At first
they didn't see any difference in performance. But then they discovered that Desk IV
ran 40% slower than Desk III! When they fell back to Desk III the system really took
off! The extra power of the Series 70 masked the poor performance of Desk IV. Now
that's horsepower, to be able to swallow up application problems as easily as that. When
Boeing upgraded their TMS manufacturing machine from a 68 to a 70, they noticed a
tremendous improvement in performance. Their 2-day backlog of batch jobs
disappeared!

Use LAN/3000 instead of DS.

A LAN will not reduce your system load, but users report that it offers much higher
throughput than DS with just about the same overhead. You have to replace an INP
with a LANIC, and string coaxial cable instead of regular wires. Bill Gates at Longs
Drugs says that for the small price of 3% more cpu, a job which was taking 50 minutes
over a 56 kb line using DS now takes eight minutes over the LAN. When Northern
Telecom in Lachine went from DS to LAN, they got more communication throughput
without noticeable increase of cpu overhead. They have three Series 70s, a Series 52,
and two Series 9000s connected together in the same room. Besides being faster than DS
it costs less, because they require only one LANIC per machine instead of many INPs.
Using a 'vampire tap' they can add another machine to an active communications wire
without affecting any other machines.

7933XP drives with hardware cache seldom help and can actually hurt performance. A
few sites have reported improved performance using 7933XP drives in place of MPE
caching, but many more have not. Perhaps the Eagle XP drives will work better. They
have 2 megabytes of cache space, are 20% faster, and have reduced the "pep" overhead
to one millisecond per access (from 6 or IO ms.). The new Falcon drives from EMC2
also show promise; they have 4 megabytes of cache, incorporate faster drives than the
Eagles, provide caching for requests of up to 32K bytes (instead of 4K bytes), and claim
to have a smarter cache algorithm.

More memory can help, unless you already have 3 megs for caching.

New CRTs with Forms Cache (2394) can improve response time.

What if ... you didn't wait for Spectrum? 8 Robelle Consulting Ltd. - Tip #5

New 9600-Baud Modems can make remote users smile. The Micocom AX/9624c
modems understand HP's Enq/ Ack protocol and have worked well on our Series 37 at
Robelle. Remember, response time is perceived by the user, and a large part of that
perception is not the processing efficiency of the programs, but the speed of the
datacomm gear.

What if ..• you didn't wait for Spectrum? 9 Robelle Consulting Ltd. - Tip #5

Review Batch Processing Tip #6

Successful Sites Discourage On-line Reports.

If you allow users unlimited access to run reports on the production machine, then why
should we feel sorry for you? You are getting the slow response that you asked for.
Reports should run in batch, because that is where you can control the total number at
any one time.

Concurrent Batch Jobs.

On a Series 70, there is enough extra power to allow concurrent batch jobs. Some sites
allow six or eight executing batch jobs at the same time. BOSE and Turbo Resources
both restrict concurrent batch jobs to di/ ferent user.accounts. See MBQ in the
contributed library for ideas on how to control this.

The Night Time is the Right Time.

To ensure good response for on-line users, most of the successful sites we contacted had
a policy of controlling the number of concurrent batch tasks allowed during the day.
The 3000 will run just fine all night long, without anyone watching it. Many shops are
shifting work from prime shift to graveyard.

What To Do When Overnight Jobs Don't Finish?

'Unfinished nightly jobs' is now a common complaint at HP shops, especially at month
end (perhaps because people listened to advice to shift work to the evening hours). In
our survey, we heard several methods for improving batch throughput: upgrade to a
Series 70, get a separate CPU for reports, require department-head approval on job
requests, reduce backup time, increase block sizes and, the most successful strategy,
apply MR NOBUF tools wherever possible (as an HP SE said, "I have seen incredible
speed improvement from front-ending QUIZ with SUPRTOOL. Software solutions to
performance problems often show gains of IO or 20 times. Hardware solutions, with no
improvment in the efficiency of the underlying software, usually show gains of less than
1 or 2 times.")

Backup Taking Too Long.

Many people are spending 2 to 4 hours per night on backup. If you run out of night,
there are ways to reduce backup time. Get high-speed tape drives. Look at BackPack
from Tymlabs. HP's Copycat program and the FCOPY-FAST option of MPEX will do a
high-speed disc-to-disc backup, after which you can let the users and jobs on again and
do disc-to-tape backup at your leisure. Elbert Silbaugh at Boeing uses this method and
keeps his system available 23.5 hours a day. Another Boeing site in our survey wrote a
privileged program to copy the database disc-to-disc while the users are still accessing it
in read-only mode. Their system is available 24 hours a day. (Adager can also copy a
database while it is open for read-only.)

What if ... you didn't wait for Spectrum? IO Robelle Consulting Ltd. - Tip #6

Use MR NOBUF Tools and Optimum Block Sizes Tip #7

Problem. One of the most common destroyers of system performance is the notorious
serial scan. When you copy an enormous file, or reorganize a KSAM file, or select 100
records to report with QUIZ by reading every entry in a million-record dataset, you are
bogging down the computer. The default methods of doing a serial scan are extremely
inefficient on the HP 3000.

Solution. One of the most impressive ways to speed up serial 1/0 is to use MR NOBUF
(multi-record non-buffered, not Mister Nobuff). You can write your own code to take
advantage of MR NOBUF access if you're careful, but you don't need to - you can
purchase tools that do it for you. Popular tools which use MR NOBUF access are HP's
DSCOPY (you can use DSCOPY for copying files to the same system), HP's COPYCAT
for file copying and backup, MPEX's FCOPY /FAST and Tymlabs' CO PYRITE for file
copying and duplication (powerful for KSAM users). Robelle's SUPRTOOL does MR
NOBUF serial file access for IMAGE datasets (and any other file type) and
Running-Mate replaces serial dataset reads in applications.

The Power of MR NOBUF.

We got a call a while ago from a fellow who didn't even know he had SUPRTOOL on
his system, because it came bundled with another package he had bought. He found it,
and the documentation, on his system so he started using it. He had a QUIZ job which
normally took two hours to run, cruising through a huge database. A total novice, using
the instructions in the manual he used SUPRTOOL to front-end his QUIZ report. The
total time for this daily job went from two hours down to 15 minutes.

One of the shops we interviewed still uses a service bureau for some big accounting
merges in IBM batch. They're considering that if the Spectrum is big enough, they
might use it for that. They used to have four service bureaus. Now they're down to
one. They brought things in-house by giving them their own machines, finding
packages like mailing-list software front-ended by SUPRTOOL.

Turbo Resources uses their HP 3000 to bill their credit card customers. At month-end,
they had a batch program that generated l,000,000 disc I/Os reading a 90 record control
file. Sixty of the records were unnecessary and after reblocking the file, they were able
to read it in one disc 1/0. They now keep the control information in a table in memory,
reducing one million disc I/Os to one.

Block Sizes.

The default blocking factors (number of records per physical disc block) is usually
wrong. For big batch disc files, the maximum block size is now about l4K words
(REC=l4336), while the default is still the smallest block that will fit. The bigger the
block, the faster the programs will run. For IMAGE databases the default block size is
512 words, as it has been since 1974. Many people we contacted in our survey were
using 1024 words or more.

What if ... you didn't wait for Spectrum? 11 Robelle Consulting Ltd. - Tip #7

Compile Your Fourth-Generation Applications Tip #8

Problem. Interpreted Transact, and other 4GLs, consume too much CPU time.

Solution. Compile Transact source using the Fastran compiler.

When Cathy Vanderburgh was at Macmillan Blodel, she wrote up her experiences with
Fastran as Riding Herd on a CPU Hog: "We recently developed a Transact system which
included a large (15,000 lines) and complex (IO screens) data-entry program. After
installation, the response times for the program varied from slow when the machine (an I .
HP3000/64 with MPE IV) was lightly loaded to abysmal when the machine was heavily
in use. Yet none of the other users on the system were experiencing similar problems at
any time. We ran OPT /3000 to observe the execution of the program. The CPU time
needed to interpret the IP code plus the complexity of the program was causing the MPE
scheduler to class the process as a 'CPU hog' and to penalize it by dropping its execution
priority. The only way to improve the response time would be to reduce the excessive
CPU usage. Fortunately, this story has a happy ending. We discovered a piece of
software called Fastran, a product of Performance Software Group, · that compiles
Transact source code into an executable program. On evaluation, we found that a
Fastran version of the program used 1/4 to 1/3 of the CPU of the original Transact
program, enough of a drop to bring the response back to an acceptable level. The user
now enjoys(?) the same response patterns as everyone else on the machine. And the
moral of the story? Without Fastran, of course, the author of the original program
would now be busily re-writing it in COBOL. Plenty of programmers have discovered
the hard way the functional limits of tools like Transact."

At CNR, where a large on-line application is written in Transact, compiling the
application with Fastran led to a CPU reduction of over 60%, and a stack size reduction
of 25%. Single-user elapsed run times did not improve much, but as more users were
added, the reduced CPU requirements produced shorter elapsed run times. These
numbers are for an I/0 bound application where most of the time is spent in the
database intrinsics and the file system; on CPU-intensive tasks the reduction can be
considerably greater.

At Kitsap County they use Fastran over Transact wherever possible because the
programs run faster. However, they have found a few cases that Fastran cannot handle.
If a program needs extensive table handling, they choose COBOL over Transact.

Dexter Shoes was described earlier as running large manufacturing and distribution
operation on a network of six Series 40s. Their entire application was coded from
scratch in Transact. They report that this gives them the ability to respond to user
suggestions in days instead of months. The reason they can get away with only Series
40s, instead of Series 68s or 70s, is that they compile the programs with Fastran.

Larry Kemp of HP Bellevue has found Fastran about 25% slower than COBOL and 50 to
98% faster than Transact (an 8 hour job reduced to 8 minutes was the best he ever saw!).
An alternative 4GL that he found to give excellent performance is Protos; it generates a
COBOL program for execution. And, finally, no one says you can't rewrite your most
frequently used program in COBOL (use system logging to find out which program it is).

What if ... you didn't wait for Spectrum? 12 Robelle Consulting Ltd. - Tip #8

Get OMNIDEX For Fast On-line Database Searching Tip #9

IMAGE provides calculated read, chained read, and serial read. OMNIDEX adds record
selection across multiple fields, generic retrieval and sorted sequential access, multiple
keys in masters, and keyword retrieval on text data. It does this by adding another
structure to IMAGE's: the binary tree. Traversing this tree is fast, fast, fast.

HP uses OMNIDEX in the Response Center to index bug reports. That is how they can
find out instantly who else has had a system failure 916 on Series 37 under T-MIT with
a full moon. OMNIDEX indexes every word, not just the manually-assigned "keywords"
as in the old SSB system. Doug Iles of HP says, "We could enter partial values and/or
full values from several different fields and find 5 qualifying records out of 50,000 in
seconds."

The people at D.I.S.C. (the suppliers of OMNIDEX) distinguish between "informational"
data - data that you want on the system for doing inquiries, and "operational" data -
data generated by the transactions of the organization. For example, in an order
processing system, active orders are operational; customer and vendor master records are
informational. Operational data is volatile and lightly indexed. Informational data is
static and can afford to be highly indexed for fast, low-cost retrieval. In a general
ledger system, the transaction dataset is operational. You do data entry and editing with
it. When the transaction is completed, you post it to the ledger dataset, where it
becomes informational data. You no longer modify it (much), but you need to ask
numerous complex questions about it. OMNIDEX gives you the ability to index
everything in your information data. You can use batch time to update the indeces,
instead of on-line time.

Users also apply OMNIDEX to replace KSAM. The index-sequential part of OMNIDEX
(called IMSAM) will reindex about 1 million keys per hour on a Series 70 (versus 20 to
30 hours with KSAM).

Example:

Kim Everingham at Consolidated Capital reports that they use OMNIDEX extensively in
their tracking system for investors and investments. The power of OMNIDEX indexing
allows their offical IMAGE structure to be very simple: masters for entities and details
for transactions. They have 4.5 million sectors of data, 250 QUICK screens, 12-15
databases, and 35-40 users on a Series 70. Without OMNIDEX the application would
require an IBM mainframe. Within l or 2 seconds they can identify an investor and the
investments he is involved with, even if the investor only gives a vague or partial
description of himself (e.g., trust company, Ralph, Minneapolis). They do all updates
on-line, including updates of the OMNIDEX indeces; the only exception is the entry of
new investments -- that is done in a nightly batch job due to the serious impact on
response. They have plenty of horsepower with the Series 70; the only bottleneck is that
QUICK consumes about 60% of the CPU time, but this hasn't impacted response time
yet. They also use SUPRTOOL for ad-hoc extracts and as a QUIZ front-end.

What if ... you didn't wait for Spectrum? 13 Robelle Consulting Ltd. - Tip #9

Kitsap county Government is an HP site that gets a lot of work done without hitting the
limits of the HP 3000 line. Jim Kellam, the. manager, started with a Series 48,
overloaded it, then added a Series 68 and left the 48 for development. He reports that
QMNIDEX inquiries are unbelievably fast ('find all the voters named Smith' instantly
replies '1200 entries. found'), but can be abused, just like any toot For example, one of
their programs opens all eight databases at the start, in case you might need them.
Installing QMNIDEX implies an extr:a open and another extra data segment, the
equivalent of 16 DBOPENs per user. The users sometimes get in and out of the
application to access other software, so they pay this startup overhead more than once
per day~ The IMSAM part of OMNIDEX allows you to define concatenated keys with
pieces from 3 different datasets. Jim feels that they may have overused these features,
because he observes slow response with some of these. bizarre keys.

What if ... you didn't wait for Spectrum? 14 Robelle Consulting Ltd. - Tip #9

Computer Insecticide

The Art of Debugging

By David J. Greer

Robe/le Consulting Ltd.
8648 Armstrong Rd. R.R. No. 6

Langley, B.C. Canada V3A 4P9
Telephone: (604) 888-3666

Telex: 04-352848

Copyright Ro belle Consulting Ltd. 1987.

Permission is granted to reprint this document (but not for
profit), provided that copyright notice is given.

, ,
I ~

I·

Computer Insecticide

The Art of Debugging

By David J. Greer

If you asked me for the primary difference between a programmer right out of college
and one with five years' experience, I would say "the ability to debug programs".
Debugging is still an art, not a science; but there are some techniques that can help.
This paper provides guidelines and suggestions for finding and solving bugs. Every
reader should find at least one new debugging idea.

Personal Background

I am responsible for all of the programming and documentation of two of Robelle's four
products: SUPRTOOL and XPRESS. Both are large programs written in SPL.
SUPRTOOL is a batch optimizing tool and most of the code is technical in nature.
XPRESS is an electronic mail package that uses an IMAGE database for its data
structures. The XPRESS code is more application oriented. I also work on Prose, our
text formatter, which is written in Pascal, and have done a great deal of application
programming in COBOL. I haven't done much work with Fourth Generation Languages.

Computers Have Always Had Bugs

As long as there have been computers, there have been bugs. You have probably heard
the story, attributed to Grace Hopper, of the first "bug". According to the story, the
programmers on one of the first digital computers were having great difficulty getting a
program to work. One time it would fail -- the next time it would succeed. After
numerous fruitless revisions to the program, someone happened to look inside the
cabinet. An insect had gotten into the vacuum tubes and relays and been zapped. It
was acting as an intermittent connector, changing the wiring of the computer from time
to time. They removed the bug and the program worked. If only all bugs were so easy
to find and remove.

Organization of this Paper

We will present our ideas on debugging in five steps:

l. An Example: debugging is easier to show than it is to discuss.

2. Search Techniques: where in all those thousands of lines of code is the bug.

Computer Insecticide Introduction

3. Testing Techniques: there are· several areaS where you should concentrate your
efforts.

4. Development Environment: tools and techniques that help programmers write, test,
and debug faster.

S. A Final Example: another example of how debugging principles were used on a
real-life bug.

Introduction 2 Computer Insecticide

!'

I•

An Example

If something can go wrong,
it will.

Murphy's Law

A user reported the following problem in our SUPRTOOL product. When you exitted
from SUPR TOOL, the following error message was displayed:

Warning: Using DBGET for the input records

IMAGE ERROR AT %001142: CONDITION WORD = -11
DBCLOSE, MODE 3, ON #2 OF <NULL>
BAD DATA BASE REFERENCE (FIRST 2 CHARACTERS)

ERROR: Unable to rewind dataset with DBCLOSE

Search Techniques

To solve this problem, we need to know the sequence of events that led to this message.
Before this error message appeared, these commands were entered into SUPRTOOL:

>BASE TEST,3
>GET OLINE
>BASE
>EXIT

Isolating The Problem

{Open the database in mode-3}
{Request input from the dataset DLINE}
{Close the database}
{Exit from SUPRTOOL}

There are approximately 35,000 lines of code in SUPRTOOL. There is only one place
where DBCLOSE-Mode 3 is called. We discovered this by searching for the string
"DBCLOSE" in all of the SUPRTOOL source files. SUPRTOOL is written in small and
modular pieces and there are only three places where DBCLOSE is called. Only one of
these uses mode-3. Given the sequence of SUPRTOOL commands, the procedure where
the DBCLOSE-Mode 3 call is located should never be called.

This piece of code should never have been executed, but the evidence says that it was.
Reading the code reveals the following if statement:

if in'filenum <> O then
call code where DBCLOSE-Mode 3 fails

At this point, the sequence of SUPRTOOL commands guarantees that in'filenum must be
zero. The SUPRTOOL command:

>BASE

Computer Insecticide 3 An Example

is supposed to guarantee that the database is closed and in'filenum is set to zero. Close
examination of the code showed that for the special case where the database was open in
mode-3, the in'filenum was not being reset to zero. We have found the bug.

Software Engineering

While isolating the code, we had two "guarantees". They were:

I. The call to DBCLOSE-Mode 3 should never have been executed for the command
sequence entered.

2. Given the command sequence, the in'filenum variable had to be zero.

These "guarantees" are called assertions. An assertion is something that must be true in a
given circumstance. SUPRTOOL is writtences. This makes it
easier to find and verify the assertions.

Conclusion

This example shows the three main points that we want to make about debugging:

We used search techniques to isolate the problem. When we were first presented with
this problem, we did not have all of the command sequence.

We used testing techniques to check our assertions (e.g., we first opened the database
in mode-I which worked fine).

Using the tools in our development environment, it was possible to isolate this problem
to one line of code out of 30,000.

An Example 4 Computer Insecticide

'"
I

Search Techniques

When you have eliminated the impossible,
whatever remains, however improbable,

must be the truth.

Sherlock Holmes in The Sign of Four

Before fixing software problems, we need to find them. In this section, we will suggest
techniques for reviewing both code and data to find the one piece of code or data where
the problem occurred.

Reproducing The Problem

Start by getting the exact input if you can. Try reproducing the problem in your test
environment with as little data as possible. Ask about all of the conditions present when
the problem occurred (e.g., other users, file equations, batch jobs, etc.).

Sequential Search

The simpliest way to find the problem is to start at the beginning and read to the end.
You start with the first line of code in your program and you follow the logic one line
at a time. Study your database by listing it sequentially. With small programs and small
amounts of data this is effective.

The Game of Clue and Code

Parker Brothers produces a popular game called Clue. The objective of Clue is to
deduce the solution to a crime by a process of elimination. A game might end with,
"Colonel Mustard did it in the bedroom with the wrench". With programs, you can do
the same thing by doing numerous, carefully selected test runs, each of which changes
only one factor. From the differences in the results, you can often deduce exactly
which module the error is in and even which data structure is involved. The
SUPRTOOL example used the "clue" method.

Let your program execution give you clues to the problem areas. As early as possible
eliminate as much code as possible. Try to find the assertions, these usually provide the
best clues. Check boundary conditions. Many problems arise around boundary
conditions. Look for "boundary" clues. For example, in our DBAUDIT program had a
bug in it recently that was a classic case of a boundary condition. A detail dataset with
9 or more critical fields would cause DBAUDIT to produce unpredicatable results.

Computer Insecticide 5 Search Techniques

The Game of Clue and Data

A typical problem with production application systems is that something goes wrong
with the data, but you only find out long after the problem occurred. Playing Clue in
these cases involves eliminating as much data as possible.

Even if you know that one of 300 records is wrong, it is usually impossible to examine
all 300 records. Nor is it possible to trace your program execution through all 300
records. Use all of your information to reduce the amount of data.

Use IMAGE paths to isolate a subset of your dataset. If you have a transaction file with
a million records, try to reduce the data to a specific period. For example, start with
the data for one month, then one week, and finally one day. It is easier to debug if you
can reproduce the problem with one record from your database.

Data Assertions

Assertions about your data are just as important as assertions about your code. Clues
often appear with inconsistent data. Is there a transaction with an amount less than zero
(when you know that all transactions must have an amount greater than zero)? Do you
have date fields? Write a program that checks whether all date fields contain a valid
date. If a record has an invalid date, it may contain other invalid information.

Tracing Execution

When looking for clues, it is often difficult to answer the question "did statement-x get
executed". Typically, we resort to inserting tracing code in our programs, or use
TOOLSET to do it for us. Many programmers add a display statement for every
SECTION in their COBOL program. This is usually the slowest way to trace code
because there is too much output.

Assertions are the best way to trace your code. Add DISPLAY statements to check your
assertions. Often, a half -dozen display statements will give you enough clues to find the
bug.

Use assertions to choose which variables to display. In the SUPRTOOL example it was
not necessary to add tracing code because we knew that the problem was caused by
in'filenum not being zero. If we had further difficulty in isolating the code, we would
have added tracing code to print the value of in'filenum in selected procedures. Note
that we would not have printed all 200 SUPRTOOL global variables.

Problem Classification

The causes of programming bugs vary in their size and complexity. We would classify
problems into three general categories:

Search Techniques 6 Computer Insecticide

1. One-line problems. This is where a few lines of code are incorrect. One of the most
common one-line problems is a boundary condition (less than instead of less than or
equal). Many of these problems can be discovered early if you watch for off-by-one
errors and if you test programs at their boundary values.

2. Invalid data structure: you have chosen the wrong data structure. Problems with the
current record in IMAGE are one example of this class. Fixing these problems is
usually more difficult than fixing one-line problems. Common data structure errors
include using too small a variable to hold a total value. If you are totalling a PIC
S9(4) COMP variable, you should use PIC S9(9) COMP for the total variable.

3. Incorrect algorithms: the algorithm does not solve the problem (you only thought that
it did). For example, erasing a master dataset.

With IMAGE, a change in a data structure often requires changes in the algorithm that
accesses the data structure. For example, you currently use a master dataset, but you
need to change it to a detail dataset and add an automatic master to provide access by
two key values. This requires a change to the data structure (changing the master
dataset to a detail) and a change to every program that accesses the master dataset
(changing a DBGET-Mode 7 to a DBFIND and DBGET-Mode 5).

Examine All of the EYidence

This includes the input data, output data, the source code, any library routines, and
anything else that might help (even the documentation). Are there any file equations in
effect (use :LISTEQ)? Are there any temporary files (use :LISTFTEMP)? Check your
premises before you invest too many hours.

Check that you are using the right SL file (use LMAP for this) and that the subroutines
in the SL file are correct. See if you are linked to an old SPL subroutine that you didn't
know about. Check the obvious: is your program using the correct database?

Keep An Open Mind

If you think you've identified the section of the program that contains the bug, but
there appears to be nothing wrong with it, look somewhere else. Showing the code to
another person can highlight the problems with those pieces of code "that couldn't have
a bug". If you have a really bad bug, leave it overnight. Often, the answer will be
sitting there in the morning.

If you cannot reproduce the bug, examine the source code for problems. Often you will
discover incorrect code, but sometimes this is not the code that caused the original bug.
Don't stop, you will usually find the problem.

Computer Insecticide 7 Search Techniques

Summary

Searching is a process of elimination.
Check data assertions.
Trace execution with DISPLAY statements or TOOLSET.
Three types of bugs: one-line, bad data, and bad algorithm.
Examine all the evidence.
Keep an open mind.

Search Techniques 8

l·t1

Computer Insecticide

Testing Techniques

Keep it as simple as possible,
but no simpler.

Albert Einstein

We assume that you would like to find the bugs be/ ore they happen. Our current
knowledge of software engineering does not guarantee that bugs will be absent from
computer programs. Our only solution is to test our software for the absence of bugs.

Keep It Simple Stupid - KISS

Writing complicated software is an open invitation for Murphy to descend. Writing and
debugging code is already difficult; don't make it worse by inventing tricky data
structures or fancy algorithms. Use the simplest idea that will work. Optimize later,
only when you know that the optimization is necessary.

Boundary Conditions

Errors are most frequent on boundary conditions. For example, beginning of file, end
of file, empty file, full file, beginning of loop, end of loop, entry to module, exit from
module, value less than limit (instead of less than or equal), table overflow, or table
empty. When verifying code, check that the boundary conditions are what you expect.

Test Assertions

Check each assertion. You should take some time to create errors in your program to
test error conditions. How do you know that your fatal IMAGE processing is correct if
you have never tested it?

Write and Test Small Pieces

We typically write code in 50-100 line increments. This means that every 50-100 lines
of code are compiled, run, and tested. We verify that each small piece of code is
working before proceeding to the next piece of code. Later, we only have to test the
interfaces between each small procedure.

Test each module (a module is 1000-2000 lines of code) as it is completed. To complete
testing, check that the various modules interact with each other. In the typical
COBOL/IMAGE environment, procedures become SECTIONS (they should be less than
100 lines of code) and modules become programs or subprograms.

Computer Insecticide 9 Testing Techniques

System Testing

This testing involves a methodical approach to the data and careful testing of different
modules. You should choose a small, but representative group of data. This data should
cover all of the common cases. Include test data for exceptional conditions that you
expect in your application.

The less manual testing, the better. Automate your test environment using job streams.
At Robelle, we test SUPRTOOL with over 300 tests organized into 35 job streams.

Have good control over your test environment. Store a copy of your test data. Assume
that programs you will be testing will destroy your test data.

The SUPRTOOL Test Environment

The SUPRTOOL test jobs are organized into 35 job streams. We carefully selected a
few data files for use in these job streams. We also wrote a set of programs to help in
verifying the execution of SUPRTOOL. Here is an example of an actual SUPRTOOL
test

!job jtest02,bob.green,suprtest;outclass=lp,3,1;inpri=7
!comment
!comment setup: 12 May87 by David Greer

The next test checks that when suprtool is :RUN
with PARM=16, the file INPUT is copied to the
file OUTPUT.

!comment
!comment
!comment
!comment
!comment
!purge filelx
!file input=filel
!file output=filelx
!run sttest.pubnew.robelle;parm=16
!run compare
filel
filelx
!purge filelx
!comment
!comment End of JTEST02.
!comment
!run result;parm=2;info="PARM="
!set stdlist=delete
!eoj

SUPRTOOL Test Description

To reduce the information from these job streams we use the following techniques:

Testing Techniques 10 Computer Insecticide

1. The $STDLIST listing uses a low outclass priority (3). We almost never print the test
job $STDLIST listings.

2. If anything goes wrong in the job stream, it is aborted by setting the fatal JCW.

3. The COMPARE program compares two files and sets the fatal JCW if they are not
identical.

4. The RESULT program sends a :TELL message describing which job has completed.
It also appends a record to the file RESULTD.SUPRTEST. A listing of this file show
which jobs completed.

5. If the job stream completes successfully, the $STDLIST listing is deleted.

If a test fails, the job stream listing is not deleted. This lets us examine the listing to
see where the error occurred. After the tests have completed we have to only list the
result file to see our test results.

Once a test-bed environment has been set up, it becomes easier to add new tests. Every
time we find a bug in SUPRTOOL, we attempt to devise a test that will discover the
bug if it every shows up again. It is common for a bug to reappear in later versions of
a program.

Scaffolding

In the Mythical Man-Month,Hscaffolding as "the programs and
data that are used for debugging, but which never appear in the final application".
Brooks also suggests that "it is not unreasonable for there to be half as much code in
scaffolding as there is in the product". The COMPARE and RESULT programs from
the SUPRTOOL test job are examples of scaffolding. A test database is another
example. If you intend to build reliable software, be prepared to invest resources in
building the scaffolding.

Pascal Validation Suite

The Pascal Validation Suite is a set of programs to test a Pascal environment (compiler,
linker, loader, and run-time environment). This suite of programs has been used to test
many Pascal compilers, including HP's and our own, for compliance with the
international standard for the language. The suite designers distinguished between two
classes of tests: conformance and deviation.

Conformance

A conformance test attempts to verify that a program will execute in a given set of
circumstances. For example, you may accept a transaction amount from $0.00 to $9,999.
A conformance test would insure that the program accepted any amount in the specified
range. The SUPR TOOL test above is a conformance test.

Computer Insecticide 11 Testing Techniques

Deviation

A deviation test attempts to make a program fail in a given set of circumstances. Note
that a deviation test discovers a bug if the program executes without an error. For the
transaction amounts above, deviation tests would verify that the program produced an
error for amounts less than zero, greater than $9,999, or if three decimal points were
entered.

The Pascal Validation Suite contains many deviation tests. The following one should be
understandable, even to non-Pascal programmers:

{TEST 6.1.5-4, CLASS=DEVIANCE}

{The number productions specified in the Pascal standard
clearly state that a decimal point must be followed by a
digit sequence. The (Pascal] processor deviates if the
program is acceptable, in which case it will print
'deviates'. The processor conforms if the program is
rejected.

}

program t6plp5d4(output);
var

i : real;
begin

i := 0123.;
writeln(' The value of I is', i);
writeln(' Deviates ••• 6.1.5-4, number syntax')

end.

The compiler should produce an error when it compiles this test program. If it compiles
and runs the program, then the deviation test has failed.

Note that like the SUPRTOOL test, the Pascal test is self-identifying. The test suite is
organized around the ISO standard document for Pascal (e.g., 6.1.5-4 is the fourth test of
section 6.1.5 of the Pascal standard).

In general, it is easier to perform conformance tests. When automating deviation tests,
care must be taken to verify that the program stopped execution because of the
deviation error and not for some other reason.

Summmary

Keep your software simple.
Explicitly test for boundary conditions.
Write code to check assertions.
Write and test code in small pieces.
Use automatic testing wherever possible.
Invest in scaffolding to assist debugging and testing.

Testing Techniques 12 Computer Insecticide

!<

Development Environment

It's the little things that count.

Greer's Law

Excellent carpenters use the best tools. Good programmers should also be given the best
tools. Program development follows this algorithm:

while not problem-solved do
while bugs-still-exist do
begin

write code
compile code
test code
verify results

end

Do your tools help each statement of this process?

Writing Code - The Programmer Environment

An editor is the programmer's most important tool. If you accept the algorithm
presented above, you will expect your text editor to provide facilities for writing code,
compiling, prepping, and running programs. Every time you must exit from your
editor, you lose at least ten seconds (ignorning the time for /Text and /Keep). Worse,
it's a thorn in the side of each of your programmers.

QEDIT provides all of the facilities for creating, compiling, prepping, and testing code.
It is optimized to make the most common operation, writing code, as fast as possible. If
you can't afford QEDIT, try QUAD from the contributed library.

Verifying Program Execution

QUERY has added immensely to the power of IMAGE. With QUERY it is possible to
verify execution of a program which modifies an IMAGE database. If you use MPE
files or KSAM files in your application, you must write a program for every file which
prints out the contents in a readable way. Using the FCOPY or SUPRTOOL
OCT AL, CHAR listing on MPE or KSAM files is asking for trouble.

QUERY has two potential problems. QUERY is very slow at sequentially reading a
large dataset. You cannot hold QUERY as a son process from your editing environment.
Using process suspension, you should be able to switch between your editing
environment and your verifying environment in under a second.

SUPRTOOL solves both of these problems. First, it is very fast at sequentially reading
an entire dataset. SUPRTOOL includes a database editing package especially designed

Computer Insecticide 13 Development Environment

for programmers verifying program execution. Finally, SUPRTOOL can be held as a
son process with the database open. Switching context between editing and verifying is
almost instantaneous.

If you have MPEX from VESOFT, you can also have fast context switching. You can
hold QUAD as a son process and do your compiling, prepping, and running from within
MPEX. You can also use MPEX to quickly examine MPE and KSAM files.

DBAUDIT and Program Verification

Transaction logging is an optional feature of IMAGE that transcribes all database
changes to a logfile on disc or tape. DBAUDIT will play back IMAGE logfiles, showing
you what values were added, deleted, and modified.

Logging and DBAUDIT give you another perspective on your applications. You can
verify program execution by using logging what programs are actually doing to the
database. If the programmer who created the program has left, this may be the fastest
way to find out what the program is trying to do. If you don't have any money in your
budget for DBAUDIT, start by trying LOGLIST from the contributed library.

Suppose you have acquired an Accounts Payable package from an outside software
vendor and some functions of it are not working properly. How do you report your
problems to the vendor with enough information to ensure that he will be able to correct
the bugs?

One way is to turn IMAGE logging on and then print out the database transactions that
you suspect may not be working properly. This record of what the programs actually
did to the database may contain just the hard facts that the vendor will need to fix the
errors.

MPE Accounting Structure

Take time to implement your MPE accounting structure. A poor choice hinders
development and is difficult to change after the fact. A void moving users or
programmers around from account to account or group to group. All of those :HELLO
commands will start slowing your machine down. Here is one suggestion for an MPE
accounting structure.

Have three different accounts. One for development (e.g., DEV), one for testing (e.g.,
TEST), and one for production (e.g., PROD). The group structure within each account
should be identical. Some group suggestions might be:

COMPILE

This group contains should contain one file per program. Each file should be an MPE
:STREAM file which will recompile the program the program with the name of the file
in the group. You may wish to only create job streams for programs that consist of
more than one source file, otherwise use MPEX from VESOFT.

Development Environment 14 Computer Insecticide

I·
!

DATA

Put all IMAGE databases, all KSAM files, and all MPE files in this group. You should
include the schemas that created the database, but be sure to remove the passwords first.

PUB

This group should contain only program files and one SL file.

SOURCE

The source code for each program. The file-naming scheme you use should be flexible
enough so that programs which consist of multiple source files will have similar
filenames.

Program Identification and Version Control

Every program should have a name and a version number. Reporting programs should
show the program name and the version number as part of the heading line. Find room
on your V /PLUS forms for the program name and the version number.

Whenever you make any changes to a program, increment the version number. Keep the
version number up-to-date on all related documentation. Use the version number to
control installation of new versions of software into production.

Moving Programs

Programs should be modified in the DEV account. When a program is released for
programming, the following steps should be taken:

1. Move the source code to the TEST account.

2. Move the COMPILE job stream to the TEST account.

3. Purge the program file from the PUB group of the DEV account.

4. Use the COMPILE job stream to recompile the program in the TEST account.

5. Test program execution against the test data.

6. If there are no problems, move all files from the TEST account to the PROD account.

If any bugs are found, do not allow changes to be made in the TEST account. Copy the
source code back to the DEV account, where it is repaired and tested by the
programmer. Then repeat the steps to move the program back to the TEST account.

Computer Insecticide 15 Development Environment

Naming Conventions

Just as naming conventions are important for programs and databases, they are also
important for the files in your applications. The MPE file system makes it difficult to
choose meaningful filenames. One solution is to pick arbitrary filenames and keep an
index of what every name means (e.g., MISOOI). Another solution is to use added group
names (e.g., BUDGETOI.REPORTS.ACCTING).

Files that logically belong to the same program should have the same filename in each of
the different groups: BUDGETOI.DOC, BUDGETOI.SOURCE, BUDGETOI.PUB,
BUDGETO I .COMPILE.

Summary

Get a powerful text editor.
Verify program execution with QUERY or SUPRTOOL.
Use transaction logging to monitor execution.
Build a rich MPE accounts structure.
Enforce version controls and naming standards.

Development Environment 16 Computer Insecticide

A Final Example

Inside every large program is a small
program struggling to get out.

Hoare's Law of Large Programs

Every command-driven Robelle product (QEDIT, SUPRTOOL, and DBAUDIT) has a
calculator command. This command is implemented by calling a standard calculator
subroutine. This is a good example of modular program development. All three
products have a calculator, but there are only ten to fifteen lines of code in each
product to implement the calculator. One problem with this approach is that a bug in
the calculator routine shows up as a bug in all three products. The following is a
description of one bug that showed up in three different ways.

The Original Problem

The calculator takes an expression, evaluates it, and prints the result. Typical
expressions would be:

=20+15
Result= 35.0
=20*15
Result= 300.0
=le50*1e50

{add two numbers together}

{multiply the same numbers}

{computation overflow}

ERROR: Overflow of your calculation, result is invalid

Result= .o

Care was taken to insure that any calculation overflow, underflow, or division by zero
was correctly reported. We wanted to be sure that the calculator routine would not abort
if one of these exceptional conditions occurred. A trap routine was written in SPL to
catch and report these errors.

procedure calc'aritrap(long'result,trap'type);
value trap'type;
integer trap'type;
long long' result;
option internal;

begin

if trap'type.(10:1) = 1 then <<floating overflow>>
begin

p "Overflow of your calculation, result is invalid"err;
long'result .- O.OLO;

end' if
else
if trap'type.(9:1) 1 then <<floating underflow>>

Computer Insecticide 17 A Final Example

begin
p"Underflow of your calculation, result is invalid"err;
long'result := O.OLO;

end' if
else
if trap'type.(8:1) = 1 then <<floating divide by zero>>
begin

p "Division by zero attempted, result is invalid"err;
long'result := O.OLO;

end' if;

end'proc; <<calc'aritrap>>

The calculator will display the result in three different formats. The default is to print
the result as a real number. The other three formats are Octal, Double, and Bit. To
produce each of these results, the long-real result is converted to a double integer (PIC
S9(9) COMP). For example:

=10, b (the 16-bits in the number IO}
Result= %(2)00000000 00001010

A Wrong Assertion

If you examine the code for the calc'aritrap routine you will find a simple assertion.
The arithmetic errors that can occur are floating overflow, underflow, and divide by
zero. What happens if you convert a huge long-real number to a double-integer? In all
of our products you were aborted with an integer overflow error:

=leSO,b (convert a l~ge number to double}

ABORT :SUPRTOOL.PUB.ROBELLE.%0.%1230
PROGRAM ERROR #1 :INTEGER OVERFLOW

Our first attempt to fix this problem was to isolate all of the code that converted
long-real values to double-integer into one subroutine. We would check for overflow in
this subroutine.

double subroutine longtodouble(long'value);
value long'value;
long long'value;

begin
longtodouble := fixr(real(long'value));
if overflow then
begin

p"Overflow of your calculation, result is invalid"err;
longtodouble := Od;

end' if;
end'subr; <<lonqtodouble>>

A Final Example 18 Computer Insecticide

1~

i•
I

Our Second Assertion

There is a very subtle assertion in this subroutine. It assumes that the 'if overflow then'
statement will be executed. Because traps are enabled, this assertion is false. Before the
if statement is executed the calculator has aborted with an integer overflow.

Even worse, we never tested this piece of code. It was so obvious that we knew it must
work. Of course, we were wrong and the calculator would still abort with integer
overflow.

One More Solution

Another problem with this solution is that it assumes that the next person to enhance the
code would remember to do all long-real to double-integer conversions by calling the
subroutine. The chances are that future enhancements would not use the subroutine and
new integer overflow bugs would be introduced.

We already have a mechanism for detecting integer overflow errors. We have our
original calc'aritrap routine. It seemed to make more sense to modify it to process
integer overflow routines. Our existing calc'aritrap routine only handled long-real
problems. Now it must handle both long-real and double-integer problems. Many
COBOL programmers may find this code difficult to understand, but it shows our
attempt at catching overflow errors.

procedure calc'aritrap(trap'type);
value trap'type;
integer trap'type;
option internal;

begin
long pointer long'result
double dbl'result

q-5;
q-6;

if trap'type.(11:1) = 1 then <<integer overflow>>
begin

p "Overflow of your calculation, result is invalid"err;
dbl'result .- Od;

end' if
else
if trap'type.(10:1) = 1 then <<floating overflow>>
begin

p "Overflow of your calculation, result is invalid"err;
long'result := O.OLO;

end' if
else
if trap'type.(9:1) = 1 then <<floating underflow>>
begin

p"Underflow of your calculation, result is invalid"err;
long'result := O.OLO;

end'if
else
if trap'type.(8:1) 1 then <<floating divide by zero>>
begin

Computer Insecticide 19 A Final Example

p "Division by zero attempted, result is invalid"err;
long'result := O.OLO;

end' if;

end'proc; <<calc'aritrap>>

This time we did test the calculator for integer overflow. Everything worked great so
we installed this version of the calculator in all of our products. After about a year, we
received a telex with the following example:

=le50*le50 {computation overflow}

ERROR: Overflow of your calculation, result is invalid

ABORT :SUPRTOOL.PUB.ROBELLE.%0.%3347
PROGRAM ERROR #24 :BOUNDS VIOI.ATION

Unbelievable, but after changing the calc'aritrap routine we forgot to test for long-real
overflow. Our single biggest problem was that we did not have any well-established
tests for the calculator. We have now solved the problem with the following job stream:

job jtest01,bob.green,suprtest;outclass=lp,3,l;inpri=7
comment

12 May87 by David Greer comment setup:
comment purpose:
comment
comment

This job stream tests basic command
invocation within suprtool (including
the calculator).

comment
comment
comment test calculator
comment
purge filelx

!run sttest.pubnew.robelle
=10+32
=10-32
=10*32
=10/32
=10**32
=10+32,b
=10+32,d
=10+32,o
=%10
=%10,o
=%10,b
=%10,d
=%10 %10
=%10 %10,o
=%10 %10,b
=%10 %10,d
=-1 -1,o
=-1 -1,b
=-1 -1,d

A Final Example 20 Computer Insecticide

I

1~

!'
I

=le50*1e50
=le-50*1e-50
=10/0.0
=le50,d
in filel
out filelx
exit
!run compare.suprtest
filel
filelx
!purge filelx
!run result;parm=l;info="Calculator"
!set stdlist=delete
!eoj

Note that we do not check the results of the calculator. We have never had a bug with
the actual results of the calculator, but we have had no end of problems with overflows.
Note that the trap routine is a boundary condition. It is never invoked unless the
calculator is stretched to its limits.

What about our final calc'aritrap routine? Most of you will never need an arithmetic
trap routine, but this one works for double-integer overflow and long-real overflow,
underflow, and divide by zero. Of course, it still has a bug or two: it won't handle
single-integer overflow.

procedure calc'aritrap(trap'type);
value trap'type;
integer trap'type;
option internal;

begin
long pointer long'result
double dbl'result

q-5;
q-6;

if trap'type.(11:1) = 1 then <<integer overflow>>
begin

p "Overflow of your calculation, result is invalid"err;
dbl'result := Od;
return 1;

end'if
else
if trap'type.(10:1) = 1 then <<floating overflow>>
begin

p "Overflow of your calculation, result is invalid"err;
long'result := O.OLO;
return 2;

end' if
else
if trap'type.(9:1) = 1 then <<floating underflow>>
begin

p"Underflow of your calculation, result is invalid"err;
long'result := O.OLO;
return 2;

Computer Insecticide 21 A Final Example

end' if
else
if trap'type.(8:1) = 1 then <<floating divide by zero>>
begin

p "Division by zero attempted, result is invalid" err;
long'result := O.OLO;
return 2;

end' if;

end'proc; <<calc'aritrap>>

Conclusion

Our current knowledge of software development does not allow us to completely
eliminate bugs from our code. This paper tries to show areas where we, as software
developers, commonly leave gaps for bugs to creep through. Good luck with your
software and may you never have to search for bugs.

Debugging Checklist

Search Techniques
Sequential and binary search are weak methods.
Clue: a process of logical eliminiation.
Checking assertions and tracing execution.
Examine all of the evidence and keep an open mind.

Testing Techniques
Test boundary conditions and assertions.
Write and test small chunks of code.
Automate the testing of your final system.

Development Environment
Use an editor that compiles, preps, and runs.
Verify execution with QUERY/SUPRTOOL, DBAUDIT/LOGLIST.
Take advantage of MPE's account structure.
Enforce version control and naming standards.

A Final Example 22 Computer Insecticide

ABSTRACT

Overview of HP' s New Neiwork Products

Bernard Guidon, Hewlett-Packard Company

In this presentation the new HP networking solutions and products introduced since the Detroit
lnterex conference will be discussed. Included in this overview will be HP's Private X.25 Network,
StarLAN, and Network Management products. Guidon will focus on the key features that HP offers in
its network product line, including: Conformance to emerging international standards; Multivendor
connectivity; Flexibility to grow and change to meet customers' needs and; A variety of WAN and LAN
network solutions.

A schedule highlighting the network presentations at lnterex will be available at this talk.

I;
i
i.
I'

EFFECTIVE INFORMATION NE'IWORKS

COMBINE FLEXIBILITY WITH SECURITY

by Howard Gunn

Vice President of Marketing

Gandalf Technologies Inc.

The development of distributed information networks is a growing trend in

all areas of business, industry, education and government. The evolution

is driven by the major benefits of such networks. For simplicity, we can

assume that the primary benefits are greater productivity and a sharper

competitive edge through timely transmittal of time-sensitive information.

However, the proliferation of distributed information networks also

increases the possibility of sensitive data files being used incorrectly,

being fraudulently manipulated or even maliciously damaged and destroyed.

Network managers nrust take a series of precautionary steps to provide the

best possible protection against unautho1:ized network penetration. This

paper examines the trade-offs between speed, timeliness and flexibility on

one hand and security problems on the other. It concludes that network

managers must take specific actions to insure that physical and logical

security is achieved and that other precautionary actions may be necessary.

Furthermore, the protection strategy may even impact the communication

architectures being deployed in the networks that are being protected.

Why Information Networks

The personal computer (PC) is perhaps the symbol of the modern office;

it, the minicomputer and shared user micro have had a profound effect on

data processing operations. The growing popularity of these computers,

coupled with the availability of powerful software tools, has resulted in

an explosion of stand-alone data processing units in many different

departments of organizations throughout the world.

But the computers iri these separate department or business units normally

function only as individual entities. Data generated by staff using the

I~

" !'

computers often remains within their personal orbit and is not readily

available for profitable use by other personnel in the same department,

much less in other departments.

This restriction on the availability of data or information (processed

data) can have substantial negative impact on the effective operation of an

organization. At best, it leads to unnecessary and costly work

duplication; at worst, important work never gets carried through to a

fruitful conclusion. For example, marketing data may be continually

rekeyed, regenerated or reformatted by different departments by people who

are unaware of or unable to access associated data in other locations. Or,

business unit staffs may not even launch productive projects, if they are

unaware that the data required for implementation is available in some

other department.

Impediments such as these are now being solved through the development of

information networks. These networks promote information exchange by

interconnecting PCs, departmental minis, and shared user micros with other

corporate computers, databases and their associated terminals, printers and

other devices.

Ideally, the result can be one cohesive network in which authorized staff

can speedily and efficiently access computers, other system resources and

application software from any terminal device, regardless of whether they

are sitting in the same room, building, city or even country as the host

computer. But, in developing this total information network flexibility,

it is necessary to seriously consider how data network security is

implemented and how it should be enhanced to insure information protection

in a distributed network.

The Security Problem

Protection of data and information from unauthorized access or use is the

basic security problem for the MIS manager. Although the unauthorized use

of information was a problem before computers were invented, their advent

has certainly not slowed mankind's desire to gain an unfair advantage from

Ii.
I

I'

i ;I

timely information. And, in some ways, computers, databases and

application software have made it easier.

As information networks grow in size, the security problems expands.

Information networks bring into play a growing number of computers,

terminals and other devices with perhaps thousands of access points with

potential for unauthorized entry. In addition, the networks are oftentimes

designed to permit public network access over phone lines. These public

accesses have often used low level security procedures because individuals

using the public network wanted fast access to information without

resorting to complicated sign-on routines.

Computer hackers are perhaps the most well known example of an outsider

gaining unauthorized access to computers. The movie "War Games" was a

chilling example of their impact. Normally lacking criminal intent, these

amateur computer buffs simply want to prove that they can "crack" a system.

However, in the process, they can cause significant damage to or even

destruction of valuable computer files. And there is no way of telling how

much real-time is consumed just defending against the hacker.

Another type of outsider is the person who attempts to gain unauthorized

access to a computer for fraudulent purposes. These purposes might include

manipulating computer files to credit bank accounts, creating false

payments or tapping proprietary data, such as sales results or customer

lists, for resale to competitors. Embezzlement by phone could one day be

the easiest crime to conunit.

These external threats are significant sources of security problems. But,

internal threats in the form of dishonest or disgruntled employees who seek

unauthorized access to sensitive and restricted information are even more

important.

Dishonest employees, for example, may try to obtain customer lists or other

computer files for their own advantage. Disgruntled employees have been

known to gain entry to computers to delete or even destroy information

vital to the existence of the organization.
;·:,

I know of an example where a fired programmer inserted an internal loop in

a Materials Requirement Planning (MRP) application that took his

replacement seven weeks to correct. During that interval, the automated

procurement processes tripled the inventory of raw goods for the company.

Consequently, there is a strong need to achieve effective protection

against unauthorized access to computer files in an expanding network

environment. This need can be better met if the management of an

organization recognizes the gravity of the situation and develops a basic

understanding of how to solve network security problems.

Addressing Network Security Issues

The most effective way to solve network security issues is to build in

protection against unauthorized access so that it is an integral part of

the network process and operation. This kind of security can best be

achieved by establishing a number of protective barriers or security levels

between computers, data files, application software and users. But, to

understand how these network security levels function, it is first

necessary to discuss security measures in a general context.

For practical purposes, there are five general levels of security necessary

to deal with the complexity of a distributed network system. They are:

1. Physical

2. Logical

3. Computer

4. Application

5. Access

Physical security deals with the relationship of a physical terminal

location in the environment and how it is secured. Logical security deals

with the terminal's ability and functionality specified by the network

manager to the terminal location when attached to the computer. Computer

security itself deals with the ability of the user to input adequate

information to pass a software-oriented sign-on test, established in the

computer software, given the terminal had an acceptable physical and

logical configuration. Application security deals with the ability of a

user who has passed physical, logical and computer tests to pass further

software-oriented tests to allow the user to run an application program.

Access security is the terminal-to-network transport connection security

that requires a terminal location to pass physical and logical tests while

the user passes access and application tests before being interconnected to

a processing computer or application. This fifth level of security is just

evolving as a need in distributed processing networks, where physical and

logical screening tests may no longer be relevant. Gandalf and others

provide this access security by physically divorcing terminals,

workstations and PCs from hosts and building "switched" connections that

are "authorized" by software tables. Figure 1 illustrates the traditional

connection and Figure 2 illustrates the access network connection concept.

In a traditional sense, physical security is based on where you put the

terminal and how you protect against unauthorized access to the site.

Logical security is typified by IBM's hierarchical SNA structure.

Terminals can only perform specified functions that are related to their

physical and logical attachments parameters that are spelled out in

software tools. Such terminals traditionally had to also pass computer and

l;i:
' application screening software, assuming every physical/logical

relationship was predefined. ASCII/ANSI type computer systems used this

same basic philosophy, even though user locations were not physically

defined, nor logically addressed within the computer tables. This

inability to physically or logically define a user led to a series of

additional computer and application screening programs that were intended

to thwart security penetration. As with SNA, the internal

software-oriented testing assumed the terminal was physically secure at

RS-232/RS-422 distances (50 to 5000 feet), on-premise.

The proliferation of physical and logical configurations that now include

public network access (dial-in and/or X.25) presupposes that traditional

computer and application security software would be an adequate means to

insure information protection from an unsecured source. In fact, public

access created the opportunity for the hacker to match wits with the

security provisions of the computer and the application software. Although

we have no proof, general wisdom implies the hacker always wins, unless a

new level of security (access) is added to the network.

A second physical configuration that increases the risk of security

breaches are those associated with the development of non-addressed local

area networks (LANs). Typical LANs, using carrier sense multiple access

with collision detection (CSMA-CD) schemes, presuppose that the attachment

to such a network is tantamount to unrestricted use of the computing

resources, transmission resources and application software on the LAN.

Ethernet is a typical application of this "party line" strategy. The

LAN owner and the network manager must assume that basic computer and

application security, plus physical location protection on-premise can

thwart any unauthorized usage or unwanted peeking at authorized

information. Much like the conventional wisdom that implies the hacker

wins whenever public access is allowed, conventional wisdom says the

unauthorized user wins against computer and software security measures when

users are connected to a party line bus structure.

The physical and logical shortfalls of the ASCII computer and non-addressed

LANs coupled with the wide scale introduction of public access connectivity

have led to the deployment of switched security systems, such as Gandalf's

Private Automatic Computer Exchange Network (PACXNET). As mentioned, these

access security units divorce the user and the public network ports from

the computer and allow the network manager to create physical and logical

address and screening levels for each terminal, user and access port,

independent of where the computer application security resides.

This form of switched access security allows the network manager to revert

to the very basics of security provisioning. A specific port or terminal

can be given software-defined functionality based on all four levels of

security (physical, logical, computer and application). Access security

simply relates all four levels simultaneously, before allowing the user to

be connected to a computer for sign-on. This additional layer of security

makes penetration of computer and application software extremely difficult,

I

I

while still supporting public network access and CSMA-CD transactions on a

CPU-to-CPU basis. In fact, on the most sophisticated security systems,

such as PACXNET, the same user from a different terminal may dynamically

redefine form, fit and function of the terminal, but only to the extent

authorized by the security software of the network controller.

Computer security may still be breached internally, if an employee somehow

finds out the access procedure of another. This kind of breach may allow

an unauthorized user to gain access not only to the computer but to

specific computer files for which she/he may not be authorized.

Sophisticated access security systems, such as PACXNET, protect against

this eventually by allowing a computer user to dynamically change their own

passwords and by allowing multiple user names and passwords from the same

terminal, based on the application requested.

Sophisticated Security

Switched network controllers provide a level of sophisticated security by

acting, in effect, as a "doorway" or "guard" for the computers which they

serve. The network units perform this security function by being able to

restrict terminals to accessing some computer services or databases but not

others.

I
I

This kind of destination security requires the network unit to query the
I"

terminal user to establish which computer service to access. The terminal

user simply indicates the service desired. The network control device

determines if the terminal is permitted to access the computer that

provides the service. If the answer is positive, the network requests

entry of a password associated with the application service. After this

password is correctly entered, the network unit determines if the terminal

and the desired service and the user are authorized to access specific data

files stored in the computer. If the network determines that the terminal

is not permitted to access this computer or the application, the connection

request is terminated immediately. If the total request package is

authorized, the network unit builds a path to the computer and application.

This path building is commonly called dynamic switching. In some cases,

the network actually signs-on to the computer and the application (i.e.,

user does not have to know computer or application sign-on).

This sophisticated network control of computer access and application

security by terminal location, destination requested, user name and

password convention provides a very effective form of access security,

without reducing the flexibility and user-friendliness of network

operations. But, each user device is only allowed to access computers and

applications authorized to the physical, logical and user names specified

by the network manager.

For example, assume an accounting department operates a PC, which is also

used to access the computer running an organization's payroll system. For

security reasons, no other terminal or PC is permitted to access this same

computer and application. But, the president's terminal and the president

himself are permitted to access all computers, applications and files on

the organization's network. These incompatible requirements are typically

handled through dynamic reconfigurations that can be built into the access

control database.

When the president is in the sales office, for example, and wants to use a

local terminal to access the restricted computer containing the payroll

data, he can invoke the dynamic user/terminal reconfiguration capability.

I~
This user-enabled reconfiguration allows access security to be dynamically

modified for a user by defining specific hierarchical password and user

codes that enable the terminal to perform any function authorized by the

network manager. This kind of sophistication is actually an advanced form

of access security that is only available on a "networked" device.

Advanced Network Security

The most advanced approach to network security and flexibility incorporates

this dynamic ability to reconfigure security operation by user name and

passwords. This advanced network security level causes the network, rather

than, or in addition to, the destination computer, to decide if a

particular user is permitted to access specific computers only from his own

terminal or from a terminal group or from all locations. It is based on

network coded user names which have been approved by the network manager

and passwords which can be changed by users themselves, at any time, but

are otherwise "locked-in" by the network.

Under this approach, a user can access computers in a network from any

pre-designated physical or logical location. At the request of the

network, the user first enters his/her coded user name. After a network

check, the user enters his/her password in response to a message. In this

way the security configruation allocated to the user can follow the user

around an organization. It also provides for billback and security flags

at every location.

Based on the user name, password entries and the physical and logical

parameters of the access point, the network determines which computers can

be accessed by the user from that access location. This eliminates the

need to restrict computer access on the basis of which terminal is being

used. The user then proceeds to pass through the same basic or first level

of security as before, by identifying the computer service she/he wants to

access and entering its associated password. Once connected to the

computer, the user also follows the normal access procedure. This variable

user/terminal security is an excellent enhancement to all networks. It is

particularly valuable for sites using dial-in access arrangements or for

nrultiple locations that share computers through networking.

In practice, the network determines "who" is calling in and implements

security accordingly. Additionally, the advanced network security may also

require that a requester be cutoff after the calling sequence has been

used. The caller is then called back by the network at a specific phone

n'l.llllber or terminal address from which a specific user is authorized to

operate or which has been pre-arranged by the network manager. This

"dial-back" enhancement can also be used to minimize transport expenses by

reversing the calling pattern to the central hub where large trunk groups

or bulk tariff services apply.

Advanced Security Benefits

The more critical the information, the more advanced the network security

needs to be in terms of achieving maximum network flexibility as well as

protection against unauthorized computer access.

In PACXNET, for example, maximum user flexibility is achieved by allowing a

user to access any computers from any point in the network. This means

controlled computer access can be attained via dial-up phone or X.25

connections from anywhere in the country or even the world without fear of

security breaches. In addition, users can even be electronically messaged

by name at whatever terminal they sign-on to the network.

Total network security is also improved by divorcing user connections from

the computer port. This can prevent unauthorized users from getting into

the network, much less accessing a computer file. For example, in

direct-attach networks, such as Ethernet, SNA and most LANs, an

unauthorized user can get into the computer by simply gaining physical

access to a terminal. But, under the advanced security levels of PACXNET,

an authorized terminal cannot gain access to the network or to computers

unless the user knows both a network manager-defined computer/application

name and a user-specified password. And, if extreme security is needed,

PACXNET can even allow the user to change passwords and have specific

passwords for specific applications. These features are designed to

successfully prevent penetration through expansion of the permutations

needed to gain access.

Use of this advanced security level also makes it possible to produce an

audit trail of network usage showing which users signed on from which

terminals, to which computers, for which applications, on what day and for

what time period. Another side benefit of advanced security is that user

authorizations can be quickly and efficiently rescinded from the network.

By making only one entry, an MIS manager can revoke a user name from the

centralized control system, immediately eliminating the access capability

from all sites. Hence, there is little danger of penetration by

disgruntled employees.

Capability Affected By Security

Information is the lifeblood of an organization. The purpose of networking

computers and users is to circulate this lifeblood to all parts of an

organization in a timely and flexible manner. Security measures, on the

other hand, are used to make sure none of the lifeblood is leaking out.

Basic--and even some sophisticated--security measures can sometimes hamper

network flexibility while failing to completely close the door against

unauthorized access and information loss. The most sophisticated systems,

such as Gandalf's PACXNET, divorce terminals, users and computers and

build authorized connections that have passed advanced screening tests

before allowing a user-to-computer transaction. If the lifeblood is

important to the company, it behooves network managers to consider these

most advanced levels of security, even if it changes the network

connnunications architecture, expecially if the change also produces more

user-friendliness and flexibility.

-end-

FIGURE 1

Traditional Local Connection

Physical
Desk A

Computer A ._.
1---------1Port A

Logical
Authorization

Based On
Physical

Connection

Program

Sign-on __ Application __
Procedure Request

Software Password ~
Screening Screening

earallalfM.

FIGURE 2

Physical
Desk A
~

Evolving Access Network Connection

Access Security

Network
Connection
Controller

Porte Sign-on __ Service
Procedure Request

Computer A ._.
PortX

To Program
Protection

1 Port A Additional
Computer

And
Application

Authorization
-----------------' Testing

Logical
Authorization

Based On
Physical

Connection

Build Path To
PortBAfter
Sign-on And

Service Tests

Software
Screening

Password
Screening

Logical
Authorization

Sign-on Application~
Procedure-- Request

Program
Software Password

Screening Screening

daRi\aifM

ABSTRACT

Improve User Productivity with
Menu Handlers

Larry Hatti, Systems Resources

In our profession, "Productivity Improvement" usually refers to creating software faster/cheaper/
better. By improving the user/machine interface it is possible to show productivity improvement
throughout an entire organization instead of one department. A menu handler utility can be a very
powerful, inexpensive tool for improving that interface. This paper will discuss the evolution, current
state and uses for menu handlers on the HP 3000. Emphasis will be on increasing end user
understanding of and ease of use of system by employing dynamic menus.

THE ROLE OF FOURTH GENERATION LANGUAGES
-IN THELIVES OF 3GL PROGRAMMERS ---

by
Suzanne M. Harmon

AH Computer Services, Inc.
8210 Terrace Drive

El Cerrito, CA USA 94530-3059

THE ROLE OF FOURTH GENERATION LANGUAGES
IN THE LIVES OF 3GL PROGRAMMERS

In my early years of programming, we did everything in
assembler language. With assembler language, one nmeumonic
equated to one machine instruction and was accompanied by
one or more operands such as a register number or memory
address. You knew the octal or hexidecimal (base 16-IBM)
representation of each instruction and could read a memory
dump as easily as you would the Sunday funnies. It was
wonderful. It was simple, It was straightforward. The
programmer had complete control. When you compiled your
source program the machine punched your compiled object out
onto a nice little deck of 80-column cards, and if you
needed to make just a minor change you could fix the object
code card and reinsert it into the deck.

After many years of this secure world, somewhere in the
early 70's, the then current boss declared that we were to
become a COBOL shop. The reasons, he claimed, were simple:

COBOL was the way of the future
COBOL programs could be developed faster than
assembler language programs could
COBOL programswould be far easier to maint3in than
assembler language programs
COBOLrequired a much shorter learning curve than
assembler language
Long-range, COBOL programmers would be more plentiful
and less expensive,

The bottom line - the company would save huge amounts of
money on software which was rapidly approaching 33% of the
average data processing budget. An additional benefit would
be shorter development cycles.

As programmers, our reaction was instantaneous and unanimous
yuck! COBOL was verbose, slow, a memory hog (we had just

upgraded to a 32K memory machine -- virtual memory was still
a twinkle in someone's eye), and took away control from the
programmer to the point that you would never know what the
machine was doing. The only consolation was that we could
still get memory dumps, which enabled us to figure out
exactly what machine code each COBOL instruction was
generating. We were appalled, of course, by its
inefficiency.

4GL Devel -1-

I had somewhat forgotten this whole experience, now some
fifteen years past, until recently. I was discussing with a
client the difficulty many 3GL programmers have
transitioning into the 4GL world, and he reminded me of our
experiences transitioning to 3GL's (though we didn't really
use fancy names like 3GL then). It was that discussion
which inspired my interest in attempting this paper.

I started working with fourth generation languages about six
years ago. I will not say that there have been no
frustrations, but I would now refuse to develop a system in
a 3GL. I would consider it a waste of my time and the
client's money. However, developing with a 4GL is a very
different way of approaching application solutions than
programming with a 3GL. Therein lies the key -- to be
successful with 4GL's we must transition from the role of a
programmer to the role of a developer.

In a traditional 3GL development environment, the
development cycle proceeds something like this: 0 Conceptual design/

functional spec ODetail design/
~ programming spec O Programming/

~ unit testing

~ ~osyste• testing

When the detail design is accomplished, the system is broken
into definable program pieces before programming begins.
There is good reason to have solid specifications before
-coding begins, because making programming changes and
repeating test cycles can be extremely time consuming and
costly.

4GL Devel -2-

In a traditional 4GL development environment (if there
exists such a thing), the development cycle proceeds
something like this: 0 Conceptual design/

functional specification

Development of prototype
system & user review

~ Refinement of prototype

~::::h::l::•:e:mplementation
There is no detail design phase producing programming
specifications. Program pieces are not predefined. For one
thing, very few 4GL's, and certainly not the more widely
used 4GL's, give you a clearly defined "program" concept.
These products are all oriented towards

- a screen
- a report
- a process

The "steps" that a developer must use to accomplish these
depends on the 4GL and the task at hand. Keeping this basic
difference in mind, let's proceed to the "hurdles" a 3GL
programmer faces in becoming a 4GL developer.

Hurdles:

1. Beginning the development .£.Y..£1~ without knowing your
product (4GL). This is by far the most common problem.
There is a new $250,000 project that is behind schedule and
critical to someone's career. Management buys a 4GL to
"save the day." They expect the MIS staff to wholeheartedly
embrace the new product and immediately realize the kind of
productivity gains promised by the vendor.

Result: Resentment and/or hatred of the product by most, if
not all, the staff. Failure of the project, or at the very
least a very bad rep.

Other possible side effects: Trashing the 4GL and returning
to a 3GL. Blame placed on 4Gl vendor for misrepresenting
product.

4GL Devel -3-

Suggestions: Don't use a new 4GL
major new development project.
enhancements to existing systems
systems.

for the first time on a
Use it initially for

or extremely small new

Get proper training. If there are more than a couple of
people who will need to know and use the product, get custom
training in-house. In the end it will cost you less because
your time will be used more effectively.

If you have no choice but to use the product for the first
time on major new development, bring in people who really
know the 4GL and how to work with it. Let them direct the
project and listen to them.

2. Specing the project~ .Y...2..!:!. wou.1..Q. for 3GL development,
then trying .!..2_ ~Y~l.2...P. it with ~ 4GL. This is a real
killer, and what I otherwise refer to as trying to fit a
round peg into a square hole.

Result: Most frequently, the programmer will claim that the
4GL lacks functionality and sophistication enough to do the
task and will resort to their 3GL of choice to accomplish
the task at hand.

Other possible side effects: Those programs which were
written in the 4GL will be incredibly inefficient and may
"look" out of place.

Suggestions: Design "into" your 4GL.. Each 4GL has its own
unique "style." It is critical in developing an attractive,
effective, and efficient system that you design for that
style. This includes data base design, screen design,
report design, user interface, even test plan. In fact,
this style is so critical to the way your finished systems
will look and act that you should learn as much as you can
about it before you even choose a 4GL. This is facilitated
by translating the functional spec directly to a prototype,
and working the prototype into a finished system.

4GL Devel -4-

3. Assuming that 1..Q.!! will have the kind of logical control
.Y..2J! had with ~ 3GL. I have found that typically 3GL
programmers feel most comfortable with COBOL generators
which claim to be 4GLs or 4GLs which are entirely
procedural, and are thus as close to being a 3GL as
possible. These products will help somewhat with the cost
of initial development, but long term productivity gains due
to ease of maintainability and shortened development cycles
as familiarity with the product increases, will be lost.

Result: What most frequently happens when a 3GL programmer
is reluctant to relinquish control to the 4GL is that they
take every opportunity to use whatever procedure code is
available with the 4GL they have. This usually results in
lengthy code to do what could have been done automatically
with default or design statements, thus defeating the entire
purpose of the 4GL.

Other possible side effects: The programmer feels the 4GL
is cumbersome, lacks functionality, and it would have been
easier to use a 3GL in the first place. His boss is
beginning to agree.

Suggestions: With a 4GL, not only are you not going to have
the control you had with a 3GL, but a lot of what you do
will be guesswork or trial and error. There will be times,
many at first, fewer later, when you could do it much faster
in a 3GL than it will take to figure out how to do it with a
4GL. Build yourself a support group. Join your local users
group and exchange cards with people who seem eager and
willing to share what they've learned. Frequently 3GL
"techy's" egos are so big that they are embarrassed to reach
out for help with a 4GL. As a co-worker of mine said the
other day: "The only stupid question is the one you didn't
ask!"

4. Performance is unsatisfactory! If a prospective 4GL
user asks me three questions, one of the three will always
be: "What about performance?" The answer: "4GL programs
are not as fast as 3GL programs." This can be compounded
tremendously by the first three hurdles discussed above.
Inadequate knowledge about the product, inefficient use of
the product, and system designs which "conflict" with the
product can all contribute to additional degradation in
performance.

4GL Devel -5-

Result: The product may only be used where performance is
irrelevant, or may not be used at all.

Suggestions: First, review the three hurdles above. To
optimize performance you must know your product, get proper
training, make enough of a commitment to become experienced
with it, be willing to use trial and error, and get support
from others who have experience with the product. I have a
terrible habit~ I build the system first and worry about
performance second. However, the advantage is that usually
for a period of two to four weeks, I turn my attention
totally, or as close to totally as I can, to tuning the
system. Many tools are available to help, depending on what
the problems are. Supertool, MPEX and Omnidex, as well as
many other products, offer tremendous performance
enhancements to the average system.

There is, however, another issue where performance is
concerned. Unless there is a serious problem with system
resources, performance should be in the eyes of the user,
not the eyes of the MIS person. Sometimes MIS people feel
they must put "performance standards" on systems in order to
maintain control, i.e., all screens must have 3-second
response time. In fact, if the system has functionality
that greatly enhances the user's productivity with 8-second
response time, and the user is ecstatic, then it becomes
questionable whether there are performance problems.

Conclusion

The 3GL programmer who is transitioning to 4GL developer
will need to work on altering their mindset and their entire
approach to system development.

The following is a list of ten commandments to help you
through the ordeal:

1. I will read a section in my 4GL manual every day.

2. I will try at least one new function or feature of my
4GL every day.

3. I will not say it cannot be done in my 4GL until my
4GL vendor tells me so.

4GL Devel -6-

4. I will never resort to procedural statements until I
have made absolutely sure I can't do it with design
statements.

5. I will go to every meeting of my local users group.

6. If there is no local users group, I will talk to my
vendor about helping me form one.

7. Instead of abandoning my 4GL, I will try to rethink
problems to take advantage of my 4GL's functionality
and features.

8. I will not swear and have a tantrum when I can't find
anything in the manuals which relates to my question
or problems.

9. I will try at least ten ways to do something new which
I don't know how to do and can't find reference to
(reduce this by two every six months).

10. If I can't follow these commandments, I will find
another job.

4GL Devel -7-

Implementing a System using
Enhanced Data Search Capabilities

by
Suzanne M. Harmon

AH Computer Services, Inc.
8210 Terrace Drive

El Cerrito, California
USA 94530-3059

As users gain sophistication and technology pressures us
towards a paperless society, improved techniques for complex
searches of data base information are becoming a necessity.

Omnidex is a powerful enhancement to the Image/3000 data
base management system. Using sophisticated inverted files
and binary trees, Omnidex allows rapid retrieval of data
records using any Image field identified for Keywording. It
also allows retrieval based on any combination of words or
values contained within key-worded data fields.

The implementation of a large on-line application system
(data sets of 250,000 to 1,500,000) using this produ~t will
be discussed. Though development of the application was
well underway when the product came to the attention of the
project team and the user, the decision was made to retrofit
the system to take advantage of Omnidex.

The focus will be on:
- Why the decision was made

- The anticipated and real costs of the decision

- Where Omnidex was used and where it was not and why

- What the data base and application design
considerations were

- Discoveries made along the way

- How users perceive the system and the functionality
Omnidex provides

Performance benefits and prices

Enhanced Search 1

The Environment

An Investor Services System for a large Real Estate
Investment firm.

- Large Data Bases
- 60,000 Salesmen
- 500,000 Investors
- Many data sets over 1,000,000 entries

- Hi volume of on-line inquiries and changes
- Dynamic organization with frequent system changes

to support marketing driven business

The Problems

Problem No. 1 ---
Logical Data Base Structure multi-level hierarchical

10

100

1000

20,000

60,000

relationship of the sales "organization"

Optional

Need name lookup

Need name lookup

Need name lookup

Need name lookup
Need status lookup

Salesman may be temporarily "unassigned"

Enhanced Search 2

The first problem was a multi-level hierarchical data
structure representing the sales "organization."

In addition to the need to search for data based on higher
levels of the hierarchy (i.e., need to be able to search for
branches by region, territory and firm), name lookups were
required on most sets.

Image Data Base

I I
I

I I I
I I

(

I I

KSAM KSAM KSAM KSAM
Sales Firm Branch Sales
Terr Name City man
Name Name

Disadvantages:
- Up to six paths per detail
- Not an "all image" solution
- Generic name (city) search only
- No multi-keyed access

Enhanced Search 3

Problem No. l

Logical Data Base Structure -- Investors & their Investments
versus Investments & their Investors

500,000 300,000

An investor can own or have a "relationship" with an
unlimited number of investments.

An investment can be owned by or have a "relationship" with
an unlimited number of investors.

When an Investor calls, we must be able to look at all
investments he/she is related to.

On Investors we must also have a minimum of:
- name lookup
- SS no. lookup
- address lookup

On Investments we must also have a minimum of:
- (Fed tax id no. lookup)
- Input batch/seq no. (from Order Processing) lookup
- Deposit batch no. (from Order Processing) lookup
- (Fund lookup)
- Firm lookup
- Branch lookup
- Salesman lookup
- Institutional Acct no. lookup
- Date of purchase lookup
- (Legal Registration lookup)

Enhanced Search 4

Image Data Base

SAM
nvesto
ame

Disadvantages:

KSAM
Investo
addr?

Investments

- Twelve paths needed to the most important set
Not an "all image" solution
Generic name/address search only
No capability for legal registration search
Fed tax id and fund chains too long for image, in some
cases Investor no. chains too long for image
Cannot find ~ll investments in any way related to a
single investor with one search

- No multi-Keyed access

Enhanced Search 5

About six weeks into development, we were given a demo of
Omnidex, a then very young product. It was clear twenty
minutes into the demo that the enhanced data search capabil­
ities offered by the product met our needs perfectly in
several areas:

Works within image
- Provides keyed access without image keys
- No limit to number of "keywords"

Allows for generic search, Keyword in context search,
boolean searching (i.e. , and, or, not, etc) 1~

- Keywords may be "grouped"
- "Chains" may be of unlimited length
- Repetitive, non-meaningful words may be excluded from

"keyword list" (i.e. Street, and, or, the, etc)
- Can search on more than one Keyword at a time
- Extremely fast searches on large volumes of data

What it means to our design:

Problem No. l

- Logical masters become physical masters
- Name and address searches are completely flexible

New Data Base Design:

~ \)

Not
Omnidex

~ rv'-

Keyworded:
Name

Enhanced Search

Keyworded:
Name
Address

6

Keyworded:
Region
Territory
Firm
Address

Keyworded:
Region
Territory
Firm
Branch
Status
Name

I'

What it means to our design:

Problem No. l

- Logical masters become physical masters
- Name and address searches are completely flexible
- Items whose chains were too long for Image can now be

Keyworded
- Complete Keyword in context available for legal

registration
- Can find the exact investment sought by searching for more

than one Keyword at a time i.e., legal reg: Suzanne Harmon
Purchase date: 041586

- Can find all investments "related" to an investor

New Data Base Design:

Keyworded:
name
address
ssn

Keyworded:
Investor No.

(grouped)

What we did not Omnidex:
Sales History Data Base

Enhanced Search

Keyworded:
Grouped: Ungrouped:
Investor no. Fund
Trustee (Inv) Firm
Mail to (Inv) Branch
Check to (Inv) Salesman
Kl to (Inv) Inst. Acct

Keyworded:
Legal registration

lines

7

Date of Purchase
Fed tax ID No
Input Batch/seq
Deposit Batch

Why?
- Accessed on-line infrequently, and then only by Key
- Used primarily for a plethora of batch produced sales

reports

Order Processing ·Data Base

Why?
Heavy input, very little inquiry, and then almost
always by Batch number

- Orders rarely of interest for more than 24 hours

Design Consideration:

An Omnidex "domain"

- Make "logical masters" image masters. A logical master
usually represents a person, place or thing that has a
"life" of its own, i.e., Customers, Orders, Parts, Vendors
Employees, etc.

- Put occurrence, transaction and optional information in
image details, i.e., order lines, comments, payments, job
assignments

Enhanced Search 8

I

I.
!

1 ••
I

- Keyword all fields which
or provide "extracts" for
than 50% of the data base

will enhance on-line inquiry
reporting on subsets of less

- Don't expect to get it perfect the first time around;
changes are relatively easy

- Exclude "words" which are obviously unnecessary

Discoveries along the way:

1. Could not do record-specific finds on keyworded details
i.e., alternative design

A search on Keyworded item in Branch, i.e., City = San
Francisco, would return all the firm no.'s of firms with
qualifying Branches, would have to read down the chain to
find the specific branch.
Solution: Stick to design considerations discussed above.
Note: Record-specific finds have now been added with the
newest release of the product.

2. Excluded Keywords do make a difference.
For example, during-conversion had 250,000 records with
Fed-tax-id = O's. This, in effect, was a 250,000 record
chain. Changing and deleting records became relatively
high overhead. In this case, O's should have been
excluded.

;Enhanced Search 9

3. Single Set Reloads
Each Omnidex domain creates three additional Image data
sets at Omnidex install time, one master and two details.
The two details should be reloaded frequently, depending
on volatility of data, for maximum performance. This is
a very easy task using DBMGR by DISC which has a Single
Set Reload facility, or any number of other utilities
available.

4. Initially, all Omnidex masters had to have J2 Key. J2
Keys, in fact, are very efficient because the Key value
is effectively the record location. This is fine, unless ll
the highest value of your J2 Keys minus the lowest value
ever exceeds the capacity of the data set.

S. Initially, you could not do a find where more than
13,000 records qualified. Since many of our "chains" had
more than 13,000 entries, our reporting capabilities were
significantly impacted, and we had to switch to Supertool
extracts in some situations. The find is now unlimited
except for generic finds, ranges, and "multifinds".

6. Because of the size of our data base, re-indexing (i.e.,
due to adding or deleting Keyworded entries, etc.)
originally would have taken a week. DISC responded
immediately by improving the Buildfast utility so it now
takes 12 hours.

7. Stack-Size Considerations
Because the system is designed for user-friendliness,
i.e •..

Menu

j_

l l l
Firms Branches Salesman

e~ f> _/>
Branch Salesman Investment

etc

Jr
lookup lookl.!..£.. lookup

And is written in a 4GL, we experienced stack overflow
problems along the way. DISC responded by making certain
stack efficiency enhancements, and helped us identify

Enhanced Search 10
! h

changes to the way we were doing things which cut stack
somewhat! Stack still remained a problem in certain
"multi-depth" screen situations.

Solution: Used certain "user-transparent"
reduce the depth of screens.

tricks to

8. Learning Curve
Took one week to convert the Firm/Branch/Salesman system
from traditional Image to Omnidex.

Performance and Overhead

OMNIDEX

One Key find

Multi Key find

Generic, Keyword in
Context, ranges, etc

Put new record-
must set-up Keywording

Change record (no Keys
affected)-simple update

Change record (Keys
affected)- update with
Keywording changes

Omnidex data sets
added to Image DB

Enhanced Search 11

IMAGE

One Key find

One Key find then
read serially to find
add'l keys

No Equivalent

Put new record­
must set-up paths

Change record (no Keys
affected)-simple update

Change record (Keys
affected)- delete
record, add record,
with all path adjust­
ments done twice

Auto Masters +
path overhead/record

User Satisfaction and General Comments

Users love the system
- Fast inquiry without having to know numbers and codes

Much more service oriented for customer
Avoids duplication of information
Alleviates need for hardcopy listings
Expanded system capabilities

- Easy to Support and Use
- DISC an outstanding "support" vendor
- New releases are frequent and address installed base

needs
- Easy to learn and use
- Interfaces with almost all 3GL's and 4GL's
- Superior documentation

Enhanced Search 12

ABSTRACT

4GL - The Controversy Rages On

Karen Heater, lnfocentre Corporation

The HP 3000 community is buzzing about application development and fourth generation
Languages. This paper will review the definition and direction of fourth generation Software Tools
relative to their third and fifth generation counterparts, their associated benefits and the pitfalls which
must be avoided in order to ensure successful implementation.

The definition of 4GL's requires a discussion of industry trends and emerging directions. Once
having defined and categorized the technology and the variety of product types which fall into this
category the paper will discuss that the impact implementation of a fourth generatioin strategy will
have on both the existing DP personnel and the users.

Without proper evaluation criteria and expectation settingthe implementation of the 4GL can
become unnecessarily time-consuming and costly.

The goal of the paper is to assist the HP 3000 community in assessing, selecting and successfully
implementing the fourth generation software. As such, each of the stages from evaluation through to
implementation will be addressed through a discussion of the appropriate goals, criteria,
expectations and approaches which will take the organization through this cycle smoothly and
successfully.

ABSTRACT

4GL and The Changing Role of
the Programmer

Karen Heater, lnfocentre Corporation
Application development using fourth generation Programming Languages is now a reality. The

existing data processing professionals are competent, educated and comfortable in the use of
traditional third generation programming tools and methodologies.

With fourth generation Software, the task of implementing application software systems becomes
one of telling the HP 3000 what to do but, not necessarily, how to do it. The job entails the intricate
involvement of the various end users.

This paper will focus on the changing role and expectations of the programmer in HP 3000 data
processing environment as a result of the implementation of fourth and higher generation
programming tools. It will address the changes in the required skill set and the considerations
necessary to ensure the smooth transition to programming of the future for today's existing data
processing professionals.

ABSTRACT

Networking the Mini and the Miro -
Distributed Application Processing and

How To Use It

Karen Heater, lnfocentre Corporation

As fourth generation software and data communications technology becomes more prevalent
throughout the HP 3000 community, the opportunities available for networking the mini with our
micros grows significantly.

With many organizations reaching and exceeding the computing capacity of their HP 3000, the
concept of redistributing the load and moving some of the application processing to the micro
computer becomes very attractive.

Distributed processing is a reality today, but for many shops it represents a new frontier that should
be approached with caution, in a premeditated way. This paper will take a close look at Distributed
Application Processing, involving the networking of the HP 3000 with micro computers. We will first
introduce some of the concepts at work, then describe the various data communication topoligies
that can be implemented. Having set the foundation for the discussion, we can move on to application
design possibilities, investigating how new applications might be designed in order to capitalize on
the system resources made available through the networked configuration. Along the way, we will be
providing some guidelines for effective use of this "Distributed Application Processing" concept
based on the capabilities, strengths, and weaknesses of the various system components (both
hardware and software) within the network.

Never Take the Default

b) Jeff Hecker

Apogee
4632 W. Frankfort Drive

Rockville, MD 20853

Ask. some of the many users of HP3000 computer systems why they prefer it to the competi­
tion, or to their old system. The typical response will be because it's "friendly" or because it's
"easy to use". The term "user friendly" generally refers to the ip•rractive nature of the
operating system. The alternative to the interactive system is the "batch" system, which is
not very easy to use at all. Un-ambigious, non-cryptic commands and clear, understandable
error messages are also "user friendly". But "user friendly" also refers to default values for
optional parameters.

To appreciate just how much default values contribute to ease of use, just consider the MPE
: FI LE command. Imagine the effort required to merely list all of the parameters, not to
mention choosing appropriate values for each. Now consider some of the other MPE com­
mands with nearly as many options -- :BUILD, :RUfll .. HELLO, :JOB. Without the
defaults for these commands, how friendly would s•1ch a system be?

To new users of HP3000 computer systems, (programmers, managers, and ordinary folk alike)
the usefulness of default values becomes immediately obvious. Often, defaults are brought to
light on day one, when an HP system engineer installs the computer. While explaining a
command, a frequently used phrase is "Oh ... dr•;" worry about that. The system will take
the default."

While this is clearly one of the advantages of having purchased an HP3000, it sets an un­
desirable precedent. Most people are lazy. The "don't worrv a.bout it" philosophy encourages
laziness. Or at least does nothing to discourage 1· Explaining options to new users of the

Never Take the Default

system is confusing. But once a user is familiar with the system, only laziness prevents more
sophisticated and more efficient use of MPE

Quite often it will turn out that the system default on a given parameter is in fact the best
choice. But equally as often, choosing a more appropriate value can improve system perfor­
mance across the board. From system configuration and system resources, to CPU efficiency
and user response time.

There are many kinds of defaulb i he obvious ones are the default values in the various sys­
tem commands already mentioned. But ~here are others. There are "default" ways of doing
things. There are "default" algorithms used by programmers. There are "default" system con­
figurations. There are "default" names given to things. Obviously, some of these are more
"style" or "procedure" than default, but the idea is the same.

Throughout the remainder of this paper, examples are given to illustrate a point. Sometimes
the example is frivolous or contrived, but the idea is to consider the options and to make a
conscious, intelligent decision. Not to just take the default because it's the default.

The prevention of unauthorized access to computer systems is a very popular topic ot discus­
sion these days. And not only in the HP3000 community. It's not that there has been a rash
of reported break-ins at HP3000 installations, but there has been so much publicity recently
about this aspect of system security. There are other, less spectacular, but more realistic
aspects of system security, such as -- data integrity, system backups and backup tape
management.

Ask an HP3000 system manager what the biggest threat to the system's security is, and he
might say "unauthorized access via dial-up telephone lines". He would be wrong. Ask him to
list all of the causes of lost data from the system and he will reply with some of these:

1) MPE System Failure
2) Hardware failure
3) Accidental purge of a file
4) operator :RESTORED files instead of :STOREing them
S) Tape 1/0 errors on backup or DBUNLOAD tapes

Actually, very few HP3000 computer systems have ever been broken into as the result of
random microcomputer searching for modem answer back tones. Even then, most attempted
break-ins are from ex- or current system users. After all, they already know the phone
numbers. Certainly no one is not going to try breaking-in from the terminal in their office.
The console error messages would give them away. The anonymity of the public switched
telephone network is much more assured.

Even so, the proper system configuration and selection of configuration options can help
prevent many of the weak links. Starting at the top, every system manager dreads coming in
to work in the morning and seeing this on the system console:

Never Take the Default

02:10/IS289/102/INVALID PASS FOR "MANAGER SVS,PUB" ON LDEV 142
02:10/IS289/102/INVALID PASS FOR "MANAGER.SYS.PUB" ON LDEV 142
02:11/IS289/102/INVALID PASS FOR "MANAGER.SYS.PUB" ON LDEV 142
02:11/IS290/119/INVALID PASS FOR "MANAGER.SYS,PUB" ON LDEV 142
02:11/IS290/119/INVALID PASS FOR "MANAGER SYS.PUB" ON LDEV 1142
02:11/IS290/119/INVALID PASS FOR "Mf~AGER SYS.PUB" ON LDEV #42
02:11/IS291/105/INVALID PASS FOR "MANAGER.SYS.PUB" ON LDEV 142
02:11/IS291/105/LOGON FOR: MANAGER.SYS,PUB ON LDEV #42

05:22/#S291/105/LOGOFF ON LDEV #42

This is what most people think of when system security is mentioned. But this is easily
prevented. Nearly every user in the HP3000 community knows about MANAGER. SYS.
Certainly every user who would attempt to break mto an HP30lJLJ computer system knows
who MANAGER .SYS is. A potential evil-doer does not even have to guess at a logon ID.

How is this easily prevented? Ever changing cryptic passwords?? Sophisticated logon
verification programs??? Around the clock system operators??"? Dial back modems?????

No. The most effective solution is the most obvious one. It's a shame that you can't just
remove MANAGER. SYS from the system. MPE itself "runs" as MANAGER ·:vs. However, logon
access can be taken away from MANAGER. SYS by removmg IA (Interactive Access)
capability.[i) In the same vein, remove MGR. SYS and OPERATOR . SYS as well. These user IDs
are merely the default system manager and system operator logon IDs. There is no reason to
necessarily leave them on the system. Why give someone a head start on breaking into the
system just for knowing a little bit about HP3000s? Instead of MANAGER. SYS, use something
like "11006SSG. SYS''. Even system users who see the entry in a : SHOWJOB listing will not
know that it is the system manager or system operator.

There is no requirement that the system operator even be logged on in the SYS account. Just
because MPE does the operator a favor by automatically submitting : HELLO OPERATOR. SYS,
there is no reason to leave it that way. Not every HP3000 in the world needs identical logon
IDs. This only gives a break-in attempt a head start.

At the same time, and for the same reason, eliminate FIELD SUPPORT, MGR. HPOFFICE,
MGR. HPPL85 and MGR. TELESUP. These accounts and user logon IDs are provided by
Hewlett-Packard with the same capabilities, passwords and lockwords on every HP3000 in
the world.

In general, when creating new users, there is another factor to consider when selecting
options to the :NEWUSER command. The ;HOME= opt·,111 assigns a default file group at logon

Never Take the Default

time. For some users it might be desirable to force the user to enter a file group at logon
time. Consider MANAGER. SYS or MANAGER ACCOUNTING or some other user with special
capabilities. To keep random, unauthorized access attempts from succeeding, force the group
name to be supplied.

When no home group is assigned to a user, and the group has a password, MPE will require
the group password to be entered also. Fven if the user is an accoullt or system manager.
When assigning new gro.!pS with the : NEWGROUP command, the default for ; PASS= is no
password The theoretical microcomputer random letter generator would take thousands of
times longer when required to supply the group name and a group password. If passwords
are the only obstacles to access a system and it's data, then be sure to actually use the
capability provided by MPE.

One of the dilemmas faced by the designers of "user friendly" systems is the conflict between
user friendliness, and system security.[ii] How much help should the system offer when an er­
ror is encountered? When MPE was designed, there was not nearly the concern in the DP in­
dustry over security as there is today. The MPE designers chose for the user.

Suppose a sequential number dialing microcomputer finds an HP3000 dial-up line. When
some random text is entered, MPE kindly responds with:

EXPECTED HELLO, :JOB, :DATA OR (CMD) AS LOGON. (CIERR 1402)

System managers who fear random break-in attempts, should realize that MPE actually leads
the way into their system. Explicit, clear, easy to understand error messages are given right
along the way. After ":HELLO" is correctly entered, MPE then proclaims that it would like
a user name, then an account name, then a password, etc ... etc.

Fortunately for concerned system managers, this is merely the MPF default. All of the
warnings and error messages are stored in a disk resident file. Instead of the helpful message
above, a security conscious system manager can change it to something of little use to a
break-in attempt. Something which still conveys the general idea that an error has occurred.
Something like:

NOPE.
WRONG.
SORRY.

There are quite a few different helpful messages of this nature which could be replaced.
Messages explaining everything from "NAMES MUST BEGIN WITH AN ALPHABETIC
CHARACTER" to "NAME GREATER THAN EIGHT CHARACTERS LONG" and "UNEXPECTED SPECIAL
CHARACTER". The messages are stored in the file "CATALOG. PUB. SYS". The MPE System
Manager/ System Supervisor reference manual contains information on how to modify or
replace any message in the file.

Never Take the Default

l .. 'j
I

More likely, and theu:·fore more t reatening than a brt·. m, is accidental corruption of
data. It can happen so easily by running the wrong program, submitting the wrong job, or
purging the wrong file. A break-in attempt succeeds once in a blue moon. Purging the
wrong file or data item happens every day of the week. When creating new users and new
groups, there are ways to help prPvent these sorts uf a .. i;1den• By assigning combinations of
;CAP= with :NEWUSFR and ;ACCt..-.S= with :NEWACCT and :NE.WGROUP commands, some acci­
dents can be prevented. The simplest case is the accidental :PURGl.mg of a data file or
program. By having users logon into one group, and having important files in another group,
the ; ACCESS= parameters can be used to deny SAVE access to non-group users. Similarly, by
granting READ and EXCECUTE access, there should never be a need to :RELEASE anything.
Another default of the : NEWUSER command, SF l'iave F. ., can be removed from users who
have no need to .;rPate or delete disk files.

Similarly, there are often programs and job files which are run daily or weekly or monthly
or whenever, which update data bases or running reports. Programs which make these
changes are most often run from jobs. Accidentally running one of these programs out of se­
quence can cause duplicated data in a data base or other corruption. Programs of this nature
can be kept from being run accidentally by taking away IA '.Interactive Access) from the
program file. They can still be run from jobs by leavmg BA (Batch Access) intact.

IA and BA combinations are assigned with the :NEWUSER :NEWGROUP and :PREP commands.
Programs which are only to be run from a job, only need BA. Users who do not stream jobs
only need IA.

Another all too frequent cause of lost data is re-recording over backup tapes, or
: RESTOREing a group of files instead of : STOREing them. Both of these accidents can be
prevented by using labeled magoPtic tapes instead of the default unlabeled tapes, for offline
storage. Labeled tapes incorporate an expiration date in the header records. When mounting
a labeled tape, MPE attempts to read the header records assuming that it is a labeled tape. If
an invalid header is read, the tape is mounted as an unlabeled volume. If it is a labeled tape,
and the expiration date hasn't passed, then the system will write protect the tape volume.
When reading or writing a labeled tape, the file name given in the : FILE command must
match the volume name on the tape. This makes mistaking one tape for another much more
unlikely.

There has been much ado about MPE's ability to correctly read and write labeled magnetic
tapes (either IBM or ANSI standard). Years ago, this was true tnough. But recently, HP has
finally been able to handle labeled tapes in latter day revisions of MPE.

Probably the single most tangible system resource is free disk space. Utilities exist to monitor
the amount of free disk space, re-block and copy disk files. Surprisingly, given the
obviousness of disk space usage, optimization is rarely attempted, and even then, never on a

Never Take the Default

large scale. HP3000 system managers seem to perceive disk space as an entity beyond their
control. They simply wait until there is no more free space left, and then call their HP sales
representative t.~ buy more. While there may seem to be no alternative, and certainly no
self-respecting salesman will turn away a customer, a little bit of knowledge goes a long way
in saving disk space.

Every HP3000 system has hundreds, or even thousands of text files which are taking up sig­
nificantly more disk space than necessary. This is due to the "card image" nature of the MPE
file system. An 80 column text file with only a few words per line, or even blank lines, still
contains all 80 characters. The trailing spaces are really there. If the file is a numbered
EDIT/3000 file then the line numbers add another 10'/. to the disk space used. j~

Thi~ is merely the MPE default. Fixed length records are only required if the data file is to
be randomly accessed (IMAGE/3000 data base files or editor "K" files for example). If
sequential access is sufficient, then variable length record text files take up only as much
disk space as necessary. EDIT/3000 (:EDITOR) provides an option (SET VARIABLE) which
will keep text files in variable record length format. Variable length record files are com­
patible with most MPE subsystems, most third party software, and with the language com­
pilers. One notable exception is TDP/3000; it cannot handle variable record length files.

There is nothing magical, mysterious, or deficient about variable record length files, but some
people and some installations refuse to acknowledge their utility or even their existence.
This is probably a hangover from the card reader days when every input card had precisely
eighty data characters. No more. No less. The MPE manuals still refer to the first line in a
job file as the "job card".

Even so, for people who absolutely, positively must have fixed length records, there is no need
to subsist soley on editor 80 byte numbered files. Both EDIT/3000 and TDP/3000 have SET
LENGTH commands. these commands set the record width of the text file. There is no need
for eighty column files for thirty column data. Imagine a mailing address file. Imagine
hundreds or thousands of names. Imagine similar files all over the system, in dozens of dif­
ferent accounts. Now imagine all of the other text files which have only have a few words
on each line. All of these files can be kept using much less disk space than they use by
default. Some less than half as much.

Record length and record format are merely two of the many options to the FOPEN system
intrinsic. (and similarly the : BUILD and : FILE MPE commands) The second most effective
disk space saving option is the blocking factor. Unfortunately, blocking factor is probably
perceived as the most confusing and complicated option of all, and therefore most often left
to default. Depending on the file size, type, and record size, judicious selection of blocking
factor can save almost 50% of the disk space used by a file. (Fortunately, the MPE default
blocking factor algorithm will never waste over 50% of a file's disk space)

Understanding blocking factors and being able to choose an appropriate value requires a
slight knowledge of the MPE physical 1/0 system. Data is stored in 128 word entities called
sectors. A sector is the only physical unit of storage. All sectors are alike and precisely the

Never Take the Default

'

same size. The record ••1e (the "logical" record si.1.el of the file is superimposed onto these
sectors by the MPE filt .. ;,stem. If a file's logical record size is half the size of a sector, then
the file system can fit two records into a single sector. This is a blocking factor of two.
Even smaller records can have even higher blocking factors. The highest possible blocking
factor is 128. (a one word record is the smallest poss1ble record, and 128 will fit into one
sector)

A different default mechanism is used when the logical record size of the file is larger than a
sector. In this case, the default blocking factor is always one, and as many physical sectors as
needed are used for the bloc.k. These disk sectors a1'e stored in contiguous locations on the
disk device. If a record is 129 words wide, it will use two full sectors of disk space by default
(admittedly a contrived example, but it is the MPE worst case -- 48.6% wasted disk space). It
is possible, unfortunately, to choose a blocking factor which is .1gnificantly worse than the
MPI:. default. Consider a one word wide file. The MPE default blocking factor would be
128, which is the best possible. If the blocking factor is anything else, then disk space is
wasted (The absolute worst case disk file, which cannot be created by default is a one byte
wide file with a blocking factor of one, the human's worst case -- 99.6% wasted disk space).
IMAGE/3000 attempts to improve the blocking efficiency for datto base files, but manual
selection can still improve disk space utilization.

Improving disk utilization using the blocking factor involves forcing MPE to put more logi­
cal records into each block. This reduces (and most often can eliminate entirely) the wasted
disk space used by a file. Take a file with 192 word records. Using the default, two disk sec­
tors will be required. This will leave 25% ((256-192)/256) of the disk space wasted. By forc­
ing MPE to use a blocking factor of two, enough disk sectors are used to hold 3 84 words, or
three disk sectors, with no wasted space.

The same principal can be used for large record width files and small record width files alike.
A blocking factor value can be found which reduces or eliminates the wasted disk space used
by fixed record length files. A forty word wide file will have a default blocking factor of
three (128/40 • 3). This leaves 8 words per sector unused, 6.25% wasted. A better choice is
16 records per block using five sectors and no wasted space. Blocking factors are are
specified in the FOPEN system intrinsic call or in the ; REC" parameter of the : BUILD and
:FILE system commands. Blocking factors for IMAGE/3000 data base files are set with the
$CONTROL BLOCK• control statement.

Unfortunately there is no such thing as a free lunch. When incre .. smg "ilock sizes to very
large values, 1/0 system performance must be considered as well. More on performance
later.

Hewlett-Packard provides utility programs with MPE to display the current state of the disk
free space. These are frequently run by system managers and b~ ordinary users as well. This
is particularly true when a program is to be run which creates a large output file or uses a
large temporary scratch file. After running FREE2 or similar program and verifying that
there is plenty of free disk space, it is still possible to encounter a File System Error number
46 -- Out of Disk Space. This error message is somewhat misleading, since there clearly is

Never Take the Default

plenty of free disk space. The root cause of this error message is the MPE file system's
partitioning of the disk space known as "extents''.

Extents are portions of the file which reside on contiguous sectors of the disk drive. The en­
tire file does not have to fit into a single area on the disk. The entire file does not even have
to fit on a single disk drive. Files (and parts of files) are dynamically assigned disk space by
MPE when they are created. There are two philosophies of disk space allocation. One is ex­
emplified by IBM DOS. DOS allocates the entll'e disk file ••n a single drive and on contiguous
sectors of the drive. If there isn't a single free area big enough to hold the entire file, then
the operation fails. The second method, exemplified by the UNIX operating system and any
number of micro operating systems, is to only allocate file space when it is actually needed,
one sector at a time. With this method, all free spaces are identical size sectors. A file opera­
tion will not fail until there is absolutely no more free space left on the disk drive.

The advantage of the first method is performance. Once a file is located in the disk direc­
tory, there is very little head movement since the entire file is stored in one place. The dis­
advantage is that disk space fragmentation will eventually produce smaller and smaller free
spaces until there is effectively no more disk free space. (actually there are no more free
disk spaces big enough)

The advantage of the second method is that there is never a problem allocating disk space
until it is all gone. The disadvantage is in the overhead of keeping track of all of the little
pieces of the file. Directory entries take up a significant portion of the file's· disk space. Also
performance suffers because of the additional head movement from one part of the file to
another.

MPE uses extents as a compromise between the two methods. Extents are the individual
pieces of a disk file. Each extent of a file is allocated on contiguous sectors of disk, but the
extents themselves are not stored on contiguous sectors. MPE limits the number of extents to
32. This limits the amount of directory overhead required to store the pointers to each por­
tion of the file. When necessary however, the number of extents can be forced to one, caus­
ing MPE to store the entire file on contiguous sectors of disk. The MPE memory manage­
ment system requires program files to be stored this way, for fast access during segment
swapping.

The default for the MPE FOPEN system intrinsic (and the : BUILD and : FILE system com­
mands) is eight extents. Extents are allocated only when actually needed. When allocating
disk space for a file with eight extents, MPE will need one eighth of the total file size for
each extent. Since each extent is stored on contiguous sectors of disk, if there is not a single
area large enough to store it, the operation fails with a File System error 46, out of disk
space. The same disk file created with sixteen or thirty-two extents would require cor­
respondingly smaller and smaller contiguous disk spaces for each extent.

Since the HP3000 is a multi-user, multi-tasking computer system, it is likely that more than
one person or program is running at any given moment. Each of these users is accessing disk
files, either explicitly or implicitly via the memory manager swapping segments around.
With these considerations, it is unlikely that having a fewer number of extents actually
improves performance since other users are contending for the same disk heads. Therefore

Never Take the Default

I,
I

increasing the number of extents will not significamiy degrade performance and will lessen
the likelihood of an "Out of disk space" error, by reducing the extent size.

One frequent cause of system hangs and system failures is SPOOLer shutdowns. MPE uses
the same file system for users' files and for SPOOLed riles destined for the line printer.
Hence MPE has the same problems creating files. If there is not enough free disk space to al­
locate another extent of a spool filt:, then the system can slowly grind to a halt. MPE creates
all SPOOLed files alike, regardless of the parameters in the FOPEN call. The SPOOL file size
and extent size are fixed at system initialization, either when booting, or performing a
: SYSDUMP. Unfortunately, if a given system is used to run extremely long reports (in the
thousands of pages), then SPOOL file size must be set ar.;cordingly high. But if only short
reports are run, or program listings and the like, then SPOOL file extents can be set relative­
ly small. Remember, every job, every running report, and every open list file to the line
printer, are creating SPOOL files whose extents may be far larger than necessary. If the
large free areas of disk space seem to be swallowed up very quickly after system initializa­
tion, look to reducing the SPOOL file extent size to save some disk space.

The second most recognizable system resource on most HP3000 systems is main memory.
More main memory is one of those oft heard cure-alls for whatever ails a system. Sometimes
this is true enough. But it doesn't mean that more memory need be purchased. Again,
buying more memory can be considered the default solution. By judicious allocation of
memory in programs as they are written, memory space (as well as MPE's memory manage­
ment performance) can be improved. All HP3000 computer systems have a limited amount
of memory (although some are more limited than others). The MPE operating system com­
pensates for this hardware limitation, to an extent, with Virtual Memory (VM) for program
read-only code. VM is the process of placing data not currently being used into secondary
storage (usually disk) so that some other data can be moved into main memory. The MPE
memory manager works very well, and insight into how it w01ks can improve program and
system performance even further.

When a program references data which is not currently in main memory (either a program
code segment, or an extra data segment), MPE's memory manager is invoked to retrieve the
data form disk. The first task is to make room in main memory for the data segment being
fetched. There are two distinct types of data segments. Read-only, program code segments,
and read-write data segments (including process stacks, extra data segments, file system buf­
fers and disk cache buffers). Nearly every time a segment is fetched, it must take the place
of some other segment(s).

MPE will always attempt to overlay program code segments first. There is no need to write a
code segment to disk because it is read-only. There is already a copy on disk. If enough
space can be found in main memory for the new segment, then it is loaded from disk.

If there is not enough main memory sp.tce available bv overlaymg program code segments,
then read-write data segments must be written to disk. This effectively doubles the memory

Never Take the Default

manager overhead. First, the old data segment(s) must be copieci •)ut to disk. Second, the new
segment is loaded into memory.

There are several ways to take advantage of the MPE swapping method. By keeping seg­
ments small, fewer loaded segments are overlaid or swapped out. With MPE-V, disk caching
uses all of the main memory not otherwise allocated to data segments. Since these are read­
write segments, they must be posted to their respective disk drives before being overlaid.

Keep isolated code modules in isolated segments. If the program initialization code is in the
main segment, then it must be loaded into memory every time the segment gets swapped.
Such code should reside in its own segment. Once it executes and is swapped out, it will
never be swapped in again, relieving the memory manager of the additional work.

Every open file used by a program is allocated file system buffers by MPE. These buffers are
large enough areas in main memory to hold one block of records. There are two ways to
eliminate excess buffers when they are really not needed. The first is the most obvious.
Close disk and tape files when they are no longer accessed. All too often, programmers get
lazy and assume that MPE will clean up after a program finishes. This is usually true, but
these files are using system resources in the interim.

The second method is to use NOBUF file access whenever possible. When accessing a file in
NOBUF mode, the file system does not allocate any file buffers, rather the data is transferred
directly from the process's stack to the file. A side effect of NOBUF files is decreased file sys­
tem overhead. For files with a blocking factor of 1, there is absolutely no difference in
program coding to access the files by blocks rather than by records.

The HP3000 computer system, and the MPE operating system in particular, were designed
for general purpose business data processing. The IMAGE/3000 data base management sys­
tem, DEL/3000 and V /3000 were all developed to support business transactions. Data
entry, online inquiries, and batch processing are not considered to be "real time" operations.
And MPE is not considered to be a "real time" operating system. There is no "real" require­
ment to have a transaction completed in a given time, other than the inherent efficiency of
being able to do more work in less time.

In the HP3000 world, system performance is often measured in response time, the time the
system takes to process an average user request. There are various ways estimating how long
a transaction will take, but in a multi-tasking environment such estimates are often less
than accurate. Instead a stopwatch is used, or better yet, the system itself can measure the
program's execution time. These measurements take two forms, actual time (wall clock time),
and processor time (CPU time). The bottom line is wall clock time, but the two are closely
related.

Over the years, the HP3000 computer system has grown from a few users with very small
programs, to hundreds of users with extremely large applications. Often, these applications

Never Take the Default

havt out grown the original computer systems purchased to support them in one of two ways.
First, as more and more terminals are added to the system, the average response time drops
accordingly. Eventually the response time drops below some arbitrary intolerable point, and
the system has become too slow. Second, rather than adding more terminals to the system,
more functionality is added to the application, causing it to take longer to execute. The
result is the same. Eventually the system becomes too slow.

There are three solutions. Ftl st, do not add any users or any new features to the system.
This is usually out of the question. The second, and perhaps too frequent solution is to pur­
chase a bigger, faster HP3000 from Hewlett-Packard. This could be considered the default
solution because it will always work (that is if HP manufactures a bigger, faster HP3000).
The third solution is to improve the performance of the existing system .rnd application
programs.

In all fairness to the second solution mentioned above, it is very possible that simply buying a
faster machine is more cost effective. Programmer's salaries, and program maintenance costs
in general are the single biggest cost items in some DP shop's budgets. For a large, stable sys­
tem, introducing changes can cause more harm than good.

But there is always the "ext programming project a rtd the next ~ystem. The remainder of
this article deals with improving system performance by improving application program
performance.

Modern day digital computers, including the HP3000, are very fast. They can execute
hundreds of thousands, or even millions of operations ear.h second. To the u•1enlightened, the
delay of tens of seconds seems outrageous. What could the computer be doing with all of
those millions and millions of instructions? The answer, of course, is "overhead". Time shar­
ing, system intrinsics, COBOL, error checking, formatting, disk accesses, etc... Most of these
are out of the control of the applications program, but some of them can be considered in the
design of new programs.

The single most obvious contributor to a program's performance (good or bad) is its algo­
rithm. Given any operation to be done, there will always be more than one way in which to
to it. Considering the alternative methods, rather than just choosing the first method which
comes to mind, can make a major difference.

Consider sorting a set of data. There may be no other specific concept in computer
programming which gets more attention in programming texts. Yet all too often, a simple
bubble sort is used because other methods are unknown, or are too ambitious for the ordinary
staff programmer. The bubble sort could be considered the default sorting technique. There
are dozens of different algorithms, from selection sorts to quicksorts. Depending on the ap­
plication, one of them could be orders of magnitude more efficient than another.

The same can be said for any operation, not just sorting. The solution to performance
problems need not be to simply buy a faster processor. An Ap;,!t: II programmed efficiently
can run rings around a Cray-XMP programmed by a neophyte.

Never Take the Default

When Hewlett-Packard introduces a new high end HP3000, it usually includes a much faster
processor, perhaps twice as fast as the previous high end processor. Yet when an application
is moved to the newer and faster processor, CPU time drops, but the wall clock time remains
unchanged. The reason is disk overhead. The CPU may twice as fast, but the secondary
storage systems are not. In a typical business transaction, many many disk accesses may be
required. The processor can handle the data twice as fast, but must wait just as long for disk
accesses. The "hurry up and wait" situation is exaggerated even further.

Disk overhead delays are inherent in the mechanical nature of disk drives. The data is stored
on rotating magnetic media which passes beneath a set of movable heads. The heads move
back and forth across the surface of the disks from the outside edge toward the center of the
disks. Each actual head position is known as a track. Modern systems have hundreds of
tracks on each disk surface. The disk heads take a finite amount of time to step from track
to track. This is known as seek time. A typical seek time for today's disk drives is about five
thousandths of a second per track. In addition to the seek time, once the heads are positioned
on the desired track, the computer must wait for the requested sector to pass under the
heads. This delay is known as latency. Together, these two different delays make up the
disk's access time. Once the requested disk sector is passing under the heads, the data transfer
takes place in about three ten -thousandths of a second. No matter how fast the computer is,
if it's waiting for the disks, then it's waiting for the disks.

With the delivery of MPE-V /P & /E, HP has incorporated system wide global disk caching.
Disk caching has been in use for years to increase disk 1/0 performance. Even the little
"E-disks" (E for electronic) used with the HP desktop computers are a form of disk caching.
While the MPE implementation does not help when writing to a disk file, it is safe to say
that disk data files are read much more often than they are written to.

For applications which use IMAGE/3000, there is little to be said or done about reducing
the number disk accesses. Most users could not modify IMAGE/3000 even if they wanted
to, and the rest probably would not want to even if they could. But all is not lost.
"Ordinary" disk data files, scratch files and tape files are used every day. These files and
their access modes are under control of the application program, and their use can be made
more efficient.

As mentioned earlier, a disk file's blocking factor can affect performance as well as storage
efficiency. MPE always transfers data to and from secondary storage in blocks. If every
block contains more records, then fewer block transfers would be required. Remember that
the wait for disk time is disk access time, not data transfer time. Transferring a large block
takes (effectively) no more time than transferring a smaller block. By doubling the blocking
factor, only half as many disk accesses will be required. Likewise by increasing the blocking
factor by ten times, only one tenth as many disk accesses will be required.

There are two negative effects of large blocking factors. First, the MPE file system must al­
locate buffers in main memory for each file opened. If the file blocks are large then the file
buffers will be large as well. This could cause memory management problems in extreme

Never Take the Default

cases. Second, for randomly accessed files, the extra records in the block are not used, and are
therefore just wasting main memory.

There are ways to improve performance using random access files as well. As shown above,
increasing the blocking factor will not help reduce the number of random accesses to a disk
file. However, increasing the number of buffers can. When MPE opens a disk file, it allo­
cates main memory buffers to temporarily store the data between the disk and the user
program. Each buffer is large enough to store one block from the disk file. The number of
buffers allocated by MPE can be set by specified by using the number of buffers parameter
in the FOPEN intrinsic call (and also by specifying the ; BUF= parameter in the : FILE system
command). The default number of buffers allocated by MPE is two, which allows MPE to
"double buffer" sequential disk accesses. Allocating more buffers for random access files in­
creases the possibility that the requested block will already be in main memory. This is espe­
cially true if the same records in the file are being accessed over and over again. Depending
on the record size and the blocking factor of the file, up to sixteen buffers can be allocated.

Increasing the number of buffers for a file is still effective under the new MPE-V operating
systems with disk caching. Disk caching is precisely the same concept as multiple memory
buffers, but on a system wide basis. By locally maintaining file buffers, the system may not
have to go looking through the thousands of system buffers.

Another method of increasing the performance of programs which randomly access disk files,
is to open the same file more than once. This is particularly useful when part of the file is a
header, or directory to the remaining parts of the file. Many of the files used by MPE are
of this nature. Program files, SL, RL and USL files, DSG graph and figure files to name a
few, all contain directories to the data stored in the file.

In nearly every discussion of program performance, program segmentation is mentioned. The
HP3000 hardware addressing limitation forces programmers to divide large programs into
enough pieces such that the individual pieces can fit into memory. These pieces are called
segments.

As a program branches from segment to segment, additional system overhead is incurred,
especially if the new segment is not in main memory. In this case, MPE Memory Manager
activity is required, including a disk access. Memory manager disk accesses are unlike ordi­
nary disk accesses in that they fetch entire program segments, up to 32 Kbytes at a time.

If the new segment is already in memory, then memory manager action is not required, but
there is still additional overhead in inter-segment transfers. Eliminating inter-segment
transfers requires placing all program modules in the same segment. This is impossible for
large programs.

There are several segmentation strategies advocated, and most, or all of them are valid for
various conditions. One of the more amusing approaches to segmentation is usually taken by
programmers unaware of what segmentation is. It usually involves placing the first N
modules into segment 1, the next N modules into segment 2, etc ... As programs get larger,

Never Take the Default

and the programmers become more experienced with MPE, this method usually disappears
rapidly.

There is one element of program segmentation overlooked by most discussions of segmenta­
tion strategy. Program externals (intrinsics, image, 1/0 libraries etc.) necessarily reside in ex­
ternal segments. Every time one of these is called, an inter-segment transfer is required.

Some programmers go through great pains to reduce the number of inter-segment transfers,
either by re-segmenting their programs, or by modifying the program's algorithm. But only
transfers between segments of the program. Transfers to system segments doesn't seem to
count. Granted, calls to intrinsics and image libraries usually can't be avoided. But a sig­
nificant number of calls to system formatting routines could be avoided if the equivalent
routines were coded directly into the program. This again raises the question of which is
more important: Development time or execution efficiency?

One of the great mystiques surrounding the HP3000 is the use of privileged mode program­
ming (PM). Referring to the MPE manuals, warnings against the use of PM appear almost
everywhere. HP warns that the user's program, the operating system, even the boot copy of
MPE on the system disk could be destroyed. True enough, but it would take a conscious ef­
fort to destroy anything other than the program's own data, even with PM.

Once the HP inspired fear diminishes, it becomes clear that there are numerous advantages to
PM programs. PM allows a program to create and access privileged files, including
IMAGE/3000 files. Nearly all of the IMAGE database tools (SUPERTOOL, ADAGER etc.)
are privileged programs. By bypassing the IMAGE overhead these programs are able to func­
tion far faster than an equivalent program forced to use the IMAGE library.

IMAGE data base files are privileged because of the intricate inter-relationships of the
various files and pointers in the files. If they were not stored as privileged files, there would
be a tendency for users to access them without the IMAGE library. They could be copied,
stored and restored individually, rather than as a set. As privileged files, there is no danger
of any of these occurring. Privileged files may be created by anyone who would restrict ac­
cess to a file (or set of files) to use of specific utilities.

Another privileged function, which will almost surely not bring the world to an end, is
NO-WAIT 1/0. In many applications, once some data has been written to an output file, it
would be more efficient for the program to go on to the next operation, rather than wait for
an 1/0 operation. A PM program can do just that. For serial types of applications, overlaid
1/0 and CPU operations can significantly reduce the wall clock time taken by a program.

Another use of NO-WAIT 1/0 is to control multiple terminals concurrently. Ordinarily, when
a read is executed to a terminal, the process waits until the read completes. Using NO-WAIT,
reads may be requested to many terminals at once. When data is received from one of them,
the process executes the required function, displays the results and executes another NO-WAIT

Never Take the Default

read. If another read from another terminal completes, the process performs another
function.

Using this method, only one process is executing, rather than many identical processes. When
accessing IMAGE data bases, concurrent access is not required. Sophisticated locking
methods (and their associated overhead) are not required.

One final advantage of PM code. When using extra data segments for temporary storage,
using PM code to move the data back and forth is much faster than using the DMOVIN and
DMOVOUT intrinsics. The purpose of using an extra data segment in the first place is for
faster access than an external data file. Rather than calling an intrinsic (which checks to see
if you have DS capability every time, checks for bounds violations, and then transfers the
data), a simple EXCHANGEDB and move instruction are all that is necessary.

Most system managers, for many diverse reasons, avoid PM like the plague. To be sure, there
are some malicious people who would forsake all else for the ability to go wandering through
the systetl1, doing as they please. But there aren't many of them. Most programmers are
relatively professional about their work, and see MPE's privileged mode as a way to write
more efficient and/or effective applications.

There is more than one way to skin a cat. Similarly, there is more than one way to imple­
ment a program on the HP3000 computer system. For many "ordinary" or "one-shot"
programs, taking the shortcuts provided by MPE defaults is justifiable.

For more sophisticated, production programs, the easy way out may not be prudent in the
long run. The prevailing software design methods suggest a very large percentage of
development time be spent on the design of the software. This design should not necessarily
be constrained to the MPE default way of doing things, merely because it is the default.

Whether it's allocating a scratch file, setting up an IMAGE database, or designing an entire
system; knowing the various options involved at each step and choosing the best one, rather
than simply using the default, can make the difference between an ordinary product and a
superior product.

[i] It has been pointed out that it may be impossible to purge the user "MANAGER. SYS" since
MPE may trap that particular name. If true on a specific release/version/patch, using
DEBUG, the actual directory entries may be patched. Consult your HP SE for more
information.

[ii] The dichotomy between system security and user friendliness was well illustrated by
Steve Johnson in Do You Want to Pl!!! a Game?, an article originally published in the
Stack (the Baltimor;-/ washington HP Users' Group Newsletter) and later reprinted in

Never Take the Default

the SuperGroup Magazine. Steve also described several methods for system managers to
reduce the risk of break-ins, specifically referring to modifications to the system catalog
file CATALOG. PUB. SYS.

Never Take the Default

IS'8638; 1012715
IS'8638; 1012715
IS'8638; 1012715

#S'8638; #012715
#S'8638; 1012715
#S'8638; 1012715

#S'8638; #012715
#S'8638; #012715
#S'8638; #012715

MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK

TUE, MAY 12, 1987,
TUE, MAY 12, 1987,
TUE, MAY 12, 1987,

MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK

TUE, MAY 12, 1987,
TUE, MAY 12, 1987,
TUE, MAY 12, 1987,

9: 19 PM
9: 19 PM
9:19 PM

IS'8638; 1012715
IS'8638; 1012715
IS'8638; 1012715

.
• •

MS4337, MANAGER.SYS, MARK
MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK

TUE, MAY 12, 1987,
TUE, MAY 12, 1987,
TUE, MAY 12, 1987,

9: 19 PM
9: 19 PM
9:19 PM

MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK

TUE, MAY 12, 1987,
TUE, MAY 12, 1987,
TUE, MAY 12, 1987,

9:19 PM
9: 19 PM
9: 19 PM

9: 19 PM
9: 19 PM
9: 19 PM

IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,
IS'8639; 1012716 * MS4337, MANAGER.SYS: MARK * TUE, MAY 12, 1987,
IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,

9:19 PM
9:19 PM
9:19 PM

IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,
IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,
IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,

9:19 PM
9:19 PM
9:19 PM

IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,
IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,
IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,

9:19 PM
9:19 PM
9:19 PM

IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,
IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,
IS'8639; 1012716 * MS4337, MANAGER.SYS; MARK * TUE, MAY 12, 1987,

9:19 PM
9:19 PM
9:19 PM

Programming the New Generation

of Hewlett-Packard Digital Computers ...

A R.l.S.C. Tutorial

Second Edition

by Jeff Hecker

Apogee
4632 W. Frankfort Drive

Rockville, MD 20853

Preface to the Second F:dition

This paper began in 1985, when non-ignorable rumors concerning Hewlett-Packard's new
"Spectrum" series of computers began in earnest. At the time, being from a hardware
background, I was asked by some, what all of the fuss was about In February 1986, after
HP's formal announcement of the HP3000 series 900 computers, the first edition of this
paper was written and submitted to the 1986 INTEREX conference. During the intervening
time, much has been learned about the new systems. Between the time this paper is written
and the time it is read, it is likely that HP will have shipped series 900 HP3000s. With this in
mind, much of the speculation of the first edition has heen deleted, since it won't be specula­
tion at the conference.

A R.I.S.C. Tutorial

Programming the new Generation

of Hewlett-Packard Digital Computers ...

A R.l.S.C. Tutorial

by Jeff Hecker
Apogee

After all of the gossip, rumors, guesses and second guesses, Hewlett-Packard has announced
the first products to come from the Spectrum project. Despite all of the claims of com­
patibility, many people remain unconvinced. How can a completely new machine really be
compatible? How can a completely new machine with a completely new instruction set be
able to execute old programs? How can programmers take advantage of the new instruction
set for highest possible performance?

The new HP computers follow a recent trend in the computer industry towards what are
known as Reduced Instruction Set Computers (RISC). RISC computers in one sense, might be
considered to be a throwback to the very first days of programmable computers. Then, there
were only a very ', w instructions such as load, store, add and compliment. Not even a sub­
tract instruction! To subtract two numbers, the programmer would fetch the first operand;
then fetch the second operand; compliment the second operand; add it to the first operand;
and finally store the result back into memory.

In this case, a simple operation took twice as many instructions as it would first seem to
require. Also these were the days of machine level and later, symbolic assembler program­
ming. There was no such thing as a FOR TRAN or COBOL compiler. It became clear to
computer designers that it would be much more efficient if the computer could perform
more complex operations. This way, the number of instructions coded by the programmer
could be reduced. Fewer instructions to be coded translates directly to lower costs and to
higher software reliability. (Sound familiar?) The current generation of Complex Instruction
Set Computers (CISC) was born.

These were the days of slow, expensive memory. Anything that could reduce the size and/or
the speed requirements of the memory system was implemented. CPUs were expensive, but
there was only one CPU. There were thousands, or tens of thousands of memory circuits. As
instructions became more sophisticated, fewer and fewer were required, reducing memory
costs dramatically.

Over the years, instruction sets continued to expand. Not only could computers subtract, but
they could multiply and divide too. Sophisticated operations such as memory to memory
copy, floating point math, iterative loop instructions, and even memory block checksum cal­
culations were incorporated into the computer's instruction set. When microprocessors were
introduced in the early l 970's, one measure of sophistication was the number of different in­
structions they could execute.

Over those same years though, software technology was improving as well as hardware
technology. FORTRAN followed by COBOL, PL/I, Pascal, C, Ada and others have been

A R.I.S.C. Tutorial

developed to further improve the efficiency of tl>.- programming task. Programmers no
longer had to worry about which particular mach1•" instruction was being used. In fact,
today's programmers are so thoroughly insulated trom the actual computer which executes
their programs, that one actually thought that a FORTRAN formatted WRITE statement
was carried out by hardware.

High level languages have caused two sweeping change& .l• the computer industry. First is
program portability. Since a programmer (and therefore his program) are no longer concern­
ed with the actual computer instructions, he can t>1ke his program to a completely different
computer with (in theory) no changes.

The second change was much more subtle. With the use of high level language compilers, a
very few people decid1 which of the computer's imtructions actually are ever used. When a
C1;lllj.11ler is writ•en for a particular computer's instruction set, it must translate the language
source statements into the appropriate sequence of machine instructions which will ac­
complish the needed function. Once the compiler is written, only those instruction sequences
generated by the compiler will ever be executed.

Over the years, compiler writing has advanced as well. Compiler writers no longer just ar­
bitrarily chose instructions from the CPU's instruction set. Execution speed is also being con­
sidered. The classic example is the case of the VAX loop instructions. They are expansions
on the standard "Decrement and branch on not zero" instructions found in many CPUs. But
they executed so slowly, that compiler writers issued more traditional sequences of simple in­
structions which executed faster. This instruction (and others like it on many different com­
puters) are the excess baggage that CISC computers must carry around with them when a
new processor is designed. Many of a CPU's instructions may be rarely, if ever, executed.
This is particularly true when one group designs the hardware, and an independent group
develops the software and compilers.

This phenomenon has not gone unnoticed by the computer designers. Beginning in the late
1970s, several researchers began to independently measure which instructions were actually
being executed by CISC machines. Their results were another variation of the 80-20 rule.
80 percent of the time, computers were executing the same 20 percent of their instructions.

At the same time, another phenomenon was beginning in the computer industry: the UNIX
operating system. UNIX and its native programming language "C", were appearing on more
and more computer systems every day. Since all of these UNIX systems came from one
source, they all used precisely the same C compilers. Suddenly there were hundreds of
machines executing the same 20% of their instructions 80% of the time.

These developments triggered two reactions from computer designers. One was the
C-machine. The C-machine was designed specifically to execute C programs. Its instruction
set was taken from those actual instructions generated by the UNIX C compiler.

Secondly, academic researchers considered the idea of eliminating the rarely used instructions
from the computer. Taking the results from their measurements, they determined which in­
structions were actually useful, and which were not. Many of the instructions which were

A R.l.S.C. Tutorial

relatively unused are also the same complex instructions which have been added over the
years. RISC machines were born.

RISC machines offered great potential benefits to computer circuit designers. Eliminating
some (or all) of the more complex instructions allowed circuit designers to build a faster sys­
tem for an equivalent cost. Fewer different instructions also require fewer different CPU
components. Fewer CPU components require fewer transistors to implement them. Fewer
transistors require less silicon per chip produced. Less silicon per chip results in a higher
yield. Fewer transistors also require less power. Lower power increases reliability. There is
almost no fundamental reason not to implement a RISC CPU.

Recently, several computer manufacturers have introduced RISC CPU based systems to the
market. The Bolt, Berenek & Newman (BBN) C-70 is a C-machine, designed specifically to
run the UNIX operating system. Pyramid's 9X systems are VAX-class minis designed for the
general market. Several other RISC machines have also been announced and delivered.

In Hewlett-Packard's case, simply implementing a new RISC based computer system would
have alienated a large potential customer base. Not only must the new generation of HP
RISC based systems have more power than the current HP 1000/3000/9000 systems, but
they must be compatible with these systems as well.

There are several different approaches to compatibility. The simplest is to require each ap­
plication program to be re-compiled on the new system. Another method is to actually in­
clude parts of the old machine in the new machine. The third approach is to emulate the old
machine with the new machine.

The first method is in common practice in the UNIX community. Compatibility is defined
at the source code level. It is not unusual to require the complete re-compilation of all
programs even when an O.S. update is installed. This is particularly likely on some UNIX
look-alike systems such as Microsoft XENIX. Fortunately, UNIX provides many more
flexible and automatic program generation tools than any other operating system, making
complete re-compilation of any program very simple.

The second approach was used by Digital Equipment Corp. when their new 32-bit computer
system, the "VAX" was first developed in 197 8. At the time, the PDP-11 was widely instal­
led, and DEC had the same problem which HP has had to face. DEC's solution was to include
a PDP-11 processor as part of the VAX processor. DEC customers could run their existing
PDP-11 programs on the VAX unchanged, until the programs were converted.

The approach chosen by HP is to emulate the HP3000 instructions in software. A program
will examine each HP3000 instruction, and branch to the appropriate subroutine for
execution.

Of the three possibilities, the first seems least expensive, fastest to implement, achieves the
highest performance, but requires the most effort by customers making a conversion. Also,
each customer must have the source code for each of their programs. This is not possible
when customers buy their software from companies such as HP. The software developer 'is,

A R.I.S.C. Tutorial

I I

therefore, required to convert all of the software before the system can be delivered, yielding
a false economy.

Including an HP3000 processor in the new machines would be contrary to the entire RISC
philosophy. The cost of the additional circuitry, and additional power consumption would be
passed along in each unit, even after conversion to the new system. However, this method is
most reliable in the sense that there are no new ,,.H.1pilers or inte1preters which might not
function properly in every instance. This is why DEC chose this path.

An interpreter is HP's compromise between the hardware integrity and having to convert the
entire HP applications software catalog. An interpreter can also execute a program for
which the source code has been lost, or a program which has been patched for a particular
configuration. The other side of the coin is the severe performance penalty of interpreted
operation.

How do instruction set emulators work? How can one machine execute another machine's
instructions? Why is there a performance penalty, and how severe is it?

The new HP3000 models from the Spectrum project will be able to execute existing HP3000
programs in "compatibility mode" Since the new computer system uses a new instruction set,
the CPU itself will not be able to execute the instructions. A system utility will be invoked
transparently to the user in order to execute the program in HP3000 compatibility mode.
This utility is the emulator or interpreter.

The interpreter is a Spectrum native mode program which uses the HP3000 program as in­
put data. Consider the BASIC/3000 interpreter currently available. BASIC is an HP3000
"native mode" program which uses a BASIC program as input data for execution. The prin­
ciple is precisely the same. The HP3000 interpreter is a Spectrum native mode program
which will examine each HP3000 instruction to be executed, and then execute it.

Interpreters, by their very nature, incur a tremendous amount of overhead. But how much?
Consider the steps which must be carried out by any interpreter for each emulated HP3000
instruction:

1) Check that the instruction pointer does not point beyond the current code segment limits.
(In practice, by properly aligning and filling HP3000 segments into HPPA pages, this step
might be performed by hardware during the following step.)

2) Fetch the instruction to be emulated from memory.

3) Increment the program instruction pointer so that the next instruction can be fetched
from the correct memory location.

4) Determine which instruction this one is, either by look-up table (a 65000 item table); or
by examining the individual bit fields within the instruction word, which might take
several steps.

A R.I.S.C. Tutorial

5) Branch to the appropriate emulation subroutine to execute this instruction.

6) Execute whatever sequence of native instructions is required to achieve the same result as
the emulated instruction.

7) Branch to (l) to fetch the next instruction.

These are the very same operations which every HP3000 computt:r must use to execute a
program. When implemented in hardware (such as an HP3000 CPU or a Spectrum CPU)
several of these steps can occur simultaneously in different parts of the CPU. When emu­
lated in software by a single processor CPU, each of these operations must occur sequentially
one after another. A rule of thumb is that the interpreter overhead will cause an order of 1' ~
magnitude performance difference.

Consider the HP3001) NOP (No OPeration) instruction Typically, a computer ca!' execute a
NOP as fast or faster than any other instruction. In the emulator example above, the
emulator will have to execute 6 native mode instructions to emulate a NOP. We'll assume
that the emulated NOP (step 6) is skipped. This yields a best case expected performance of
about I/6th of an equivalent native mode program.

Of more concern is the expected performance of real instructions, not NOPs. Most of the in -
structions in an HP3000 program are LOAD and STOR. These instructions typically
reference either the DB or Q registers. To emulate a rather complex LOAD Q+5,I,X instruc­
tion, some relatively sophisticated code is required. Remember that the +5 is embedded in
the instruction word, not in a separate variable.

5.1) Extract the offset (+5) from the instruction into a scratch register.

5.2) Add the value of the Q register pointer to the offset in the scratch register.

5.3) Is this an indirect access (,I)? If not then branch to (5.6~

5.4) Check for a bounds violation. This actually involves two steps. Is the referenced loca­
tion greater than or equal to the TOS pointer register? Is the referenced location less
than or equal to the DL pointer register? If so, then trap to a bounds violation routine.

5.5) Fetch the data from the referenced memory location into the scratch register.

5.6) Is this an indexed access (,X)? If not, then branch to (5.8).

5. 7) Add the value of the X register to the scratch register.

5.8) Check for a bounds violation.

5.9) Double the value of the scratch register because this is a word fetch, not a byte fetch.

5.10) Fetch the data pointed to by the scratch register into the scratch register.

A R.I.S.C. Tutorial

5.11) Check that adding 2 to the top-of-stack (TOS' 1•ointer will not cause an HP3000 stack
overflow.

5.12) Add 2 to the TOS pointer register to make space for the LOADed data.

5.13) Store the data in the scratch register to the location pointed to by the TOS register.

5.14) Return to the main emulator loop.

This code sequence could be typical for emulating an HP3000 instruction. There are Jess
sophisticated instructions. For example the stack operations such as ADD, SUB, DUP and
DEL are not nearly as difficult to emulate as LOAD and STOR.

There are also more complex instructions which are executed fri~quently such as conditional
branches, MOVE, SCAN and PCAL. PCAL (!'.rocedure CALL) is particularly difficult. It has
been stated several times that a program will be able to execute in compatibility mode and
native mode and be able to switch back and forth. It has also been stated that several MPE
intrinsics will not be rewritten in native mode unti' ''uture releases of MPE-XL. When the
HP3000 emulator encounters a PCAL instruction, 'lot only will it have to route through the
internal and external STTs, it must also determine if the called routine is in native mode or
not. If it is, it must actually call it, otherwise it must continue emulating the HP3000
instructions.

MOVE and SCAN must actually execute as a loop in the emulator. These instructions will incur
the usual loop overhead plus bounds violation checking during each loop iteration. In some
cases, an optimized emulation can test for bounds violations for the first and last locations
accessed, rather than once per memory access. The exception is the HP3000 SCAN WHILE and
MOVE WHILE instructions. The emulator has no way to determine how many locations will be
accessed, and has no alternative to checking for bounds violations on each access.

Overall, using a software emulation approach to compatibility provides the capability to ex­
ecute any HP'.\000 program on the Spectrum class machines. No re-compilation is necessary.
The interpretation penalty is partially compensated for by the maeased processor speed of
the Spectrum machine.

The software emulation approach offers many other potential capabilities as well. The
HP3000 instruction set contains no particular magic which makes it simple or efficient to
emulate. Virtually any instruction set may be emulated in much the same fashion. The pos­
sibilities are numerous; An Intel 8086 emulator for MS-DOS programs; An IBM System/370
and/or XA emulator; or a DEC VAX emulator able to run the VMS operating system. All of
these have been alluded to by various people associated with HP's Spectrum project.

The actual expected performance will depend on the ratio of compatibility mode code vs. na­
tive mode code. A typical HP3000 application is based on IMAGE data bases. Most of the
time spent in such a program is spent executing IM.A. GE system intrinsics. There are not
many instructions between calls to DBFIND, DBGET, and DBPUT. If the IMAGE intrinsics
have been rewritten in native mode, then a program which spends most of it's time in
IMAGE code will execute nearly entirely in native mode. A good analogy would be a

A R.I.S.C. Tutorial

BASIC/3000 program which accesses an IMAGE data base. Using the BASIC compiler does
not affect execution time very much because most of the time is spent in the IMAGE
intrinsics.

Emulation or compatibility mode is only used until programs are converted into native mode.
This is the case for MPE-XL code, intrinsics, HP system and applications programs, and for
users' programs. Once everything is converted into native mode, compatibility mode will be
obsolete.

The main argument against RISC computers has always been that they require many more
instructions to accomplish a given task. Without improved compiler technology, this is true.
Since each instruction gets less work done, more instructions are needed. Even though each
instruction executes faster, there could be many more instructions to execute. More instruc­
tions also occupy more main memory. The success of a RISC based CPU depends on it's com­
pilers. Incompetent compilers will doom any RISC based system to failure.

The compiler should be able to generate an efficient sequence of instructions, rather than
just any old sequence. Often the compiler will make another pass (or passes) over the code in
order to eliminate redundant instructions and other inefficiencies. This process is known as
optimization. The current HP3000 compilers have no optimization pass, and in fact generate
pretty sloppy code. The goal of an optimizing compiler is to generate efficient code. For
now, "efficient" can be defined as compact, fast, and of course correct.

No one has seen HP's optimizing compilers yet, so there is no way to estimate how well they
do the job. Most compiler optimizations have been well known and understood for quite a
few years now. There's no reason to believe that the HP compilers will not do a good job op­
timizing program code.

But how can a programmer get the maximum possible performance from HP's new Spectrum
computers? As always, programming in assembly language yields the best possible code, based
on size and speed. The penalty for programming in assembly is severe. Programmer produc­
tivity is very low, and the chance of errors going un-detected is much higher than with a
modern language such as PASCAL. Still, there are a few things to consider when program­
ming in a high level language.

The HP3000 was based on a stack architecture with very few usable registers. HP's
Spectrum computer systems are register based. Every time a variable is referenced, it must
be brought into a register before it can be operated upon. If a program uses a large number
of variables, they must be constantly moved back and forth from memory into CPU registers.
Re-using variables for more than one section of code will allow the compiler optimizer to
keep those variables in registers longer. Consider the following PASCAL examples:

A R.I.S.C. Tutorial

{ swap some arrays }
for i :• LOW to HIGH begin

templ :• a[i];
a[i] :• b[i];
b [i J : • temp 1;
temp2 :• x[i];
x[i] := y[i];
y [i J : = t emp 2 ;
end;

In this example, the compiler needs the variables I, LOW, HIGH, TEMPI, TEMP2, and point­
ers to the arrays A, B, X, and Y. These will require 9 registers. This is a trivial example, and
in fact all of these variables could be loaded into the registers of the Spectrum machines.
But it shouldn't be too hard to imagine a more realistic case where the compiler is forced to
move variables in and out of registers too often. An optimizer can't easily tell which vari­
ables are important and which are scratchable, so it must save them all. (In fact, depending
on the effort expended by HP, it is possible for the compilers to look far enough ahead in a
program to determine if a variable can be scratched, but it is a non-trivial procedure.)

Rewriting the same loop to use fewer different variables can reduce the register require­
ments of a program segment. Consider this rewrite of the previous loop:

{ swap some arrays }
for i := LOW to HIGH begin

temp 1 : = a [i l ;
a[i] . - b[i];
b [i] : = temp 1;
end;

for i := LOW to HIGH begin
templ : = x[i];
x[i] := y[i];
y [i] · = temp 1;
end;

Now only I, LOW, HIGH, TEMPI, pointers for A and B are needed at one time. This is a
reduction from 9 registers to only 6. It is possible that in some situations, the duplicated loop
overhead is less than the register load/unload overhead. If a block of code requires more
registers than are available in the machine, then the compiler must swap the variables out to
memory when not in use. Although the HP Spectrum machines have thirty-two registers,
they are not all available for use within a program. Some are reserved for milli-code opera­
tions, some are reserved for the HP3000 emulator, some are reserved for procedure parame­
ter passing, and some are reserved for CPU overhead such as stack pointers and program
pointers.

Register allocation has never been a concern on HP3000 computers before because there
were no registers to allocate. Every local variable is just as accessible as every other variable.
In HP3000 promotional literature, this was touted as an advantage of the stack architecture.

A R.l.S.C. Tutorial

Each local variable could be accessed directly. But each variable access requires an indexed
memory operation (ie Q+ S). Register to register access is much faster.

Another feature incorporated into the Spectrum architecture is pipelined instruction execu­
tion. It is possible to begin an instruction before the previous instruction has finished execut­
ing. This may not seem to make any difference (and it doesn't when programming in a high
level language), but it must be considered when programming in assembly language, or when
writing language compilers.

Consider the actual operations of fetching an instruction from memory, decoding it, and ex­
ecuting it. These three steps require three sets of hardware.

T+O) Generate the memory address of the next instruction, and read the contents of memory
into a CPU register.

T+ 1) Decode the instruction by routing the appropriate bits into gating and latching circuits.

T+2) Those circuits which were activated now actually execute the instruction operation,
perhaps requiring access to main memory.

T+3) Main memory access for those instructions which require it. Otherwise begin a new
instruction.

In non-pipelined machines such as the HP3000, each step would execute sequentially to
process an instruction, and then repeat. In more recent CPU designs, including the HP
Spectrum computers, pipelining attempts to reduce or eliminates each component's idle time.
In this example, each CPU stage is idle for 2 out of 3 time cycles. By beginning the next in -
struction before the current instruction has completed, this idle time is eliminated, and
throughput is increased. Consider the pipelined system in the figure below. The boxes
represent the work being done by each processor stage during a given time period. Time is
represented by T+n where n increases. The instructions are indicated by the memory loca­
tion they are fetched from; M+n where n increases.

A R.I.S.C. Tutorial

Non-Pipelined Pipelined
CPU CPU

-----+-------+--------+---------+ +-------+--------+---------
Time I Fetch I Decode I Execute I ! Fetch I Decode I Execute
-----+-------+--------+---------+ +-------+--------+---------
T+O M+O M+O
-----+-------+--------+---------+ +-------+--------+---------
T+l M+O M+l M+O
-----+-------+--------+---------+ +-------+--------+---------
T+2 M+O M+2 M+l M+O
-----+-------+--------+---------+ +-------+--------+---------
T+3 M+l M+3 M+2 M+l
-----+-------+--------+---------+ +-------+--------+---------
T+4 M+l M+4 M+3 M+2
-----+-------+--------+---------+ +-------+--------+---------
T+S M+l M+S M+4 M+3
-----+-------+--------+---------+ +-------+--------+---------
T+6 M+2 M+6 M+S M+4
-----+-------+--------+---------+ +-------+--------+---------
T+7 M+2 M+7 M+6 M+S
-----+-------+--------+---------+ +-------+--------+---------
T+S M+2 M+8 M+7 M+6
-----+-------+--------+---------+ +-------+--------+---------
T+9 M+3 M+9 M+S M+7
-----+-------+--------+---------+ +-------+--------+---------

Of course pipelining is not quite as simple as this graph would imply, but it does give the
right idea. In the non-pipelined system, the entire CPU must wait for the completion of
each instruction. In the pipelined system, more of the CPU is kept busy more of the time.
The pipelined processor in this graph is not faster than the non-pipelined processor, but at
the end of a given period of time, it has executed more instructions. If each time period in
the graph were one microsecond, how would each processor be rated for speed? The non­
pipelined processor executes 1/3 MIPS (Million Instructions Per Second). Rating the
pipelined processor is much more difficult. There is no correct rating. Any of 1/3 MIPS, 1.0
MIPS, or "up to" 1.0 MIPS might be used. It will depend on the method chosen by the
manufacturer.

The real world is also a bit more complicated than pictured here. Also, this example of
pipelining shows no provision for interrupts. Where does the processor restart after the
interrupt? After the instruction which has most recently been fetched? Or after the in­
struction which has finished execution? What if some stages perform partial instruction
execution? Some pipeline implementations have 5 or 6 stages, not just the three shown here.
The additional stages are used for indexed memory accesses and for faster memory manage­
ment. In this example there is no mechanism for accessing main memory during the instruc­
tion execution phase. If the execution stage requires access to main memory, then the in­
struction fetch will be forced to wait.

A R.I.S.C. Tutorial

This is another advantage of the register based CPU. As the ratio of register to register
instructions increases, so does the pipeline efficiency. The more often the processor must
access memory, the more often the pipeline will be kept waiting.

All in all, time will tell how successful the new HP3000 high end computers will be. Many
of the new architectural features of the Spectrum processors are clearly included so that HP
need never again say it's sorry (particularly the 32 bit plus 32 bit address capability). The
HP3000 64 Kbyte data address limit has not been winning many latter-day followers in the
light of competitive minicomputers.

Hewlett-Packard has not leap-frogged anybody with their new computer systems. But with
new high performance, pipelined processors, large memory capacity, optimizing compilers,
relational databases, true virtual memory (VM), symbolic debuggers, and HP3000 family
compatibility, HP is finally keeping up with the Jones's.

There are two very good books available which describe the trials and tribulations of design­
ing a new computer system. They can provide a view of the world from the other side of the
fence. New computer systems don't grow on trees. Designing, building and programming
them is a monumental task. One of the books is Th£...My!_hical_Ma!!_Month (Fred Brooks).
Fred Brooks was the project manager of the IBM OS/360 project. The book describes some
of the things which happened during that project, and the lessons learned. Th..!<_Soul of_!. new
Machine (Tracey Kidder) chronicles the group of engineers who designed the Data General
Eclipse computer systems. Both books are very good reading for a project manager, or for
someone who has had to put up with project managers. Both are commonly available at
public libraries and bookstores.

Jeff Hecker has been involved with the HP3000 and the MPE operating system for the past
eight years. He has been responsible for moving, debugging and optimizing several applica­
tions from the HP3000 to other computers and operating systems, and back again. Prior to
working with the HP3000, Jeff was a digital hardware design engineer for a Maryland based
telecommunications company.

A Rl.S.C. Tutorial

I·

1,.

IS'8639; 1012716
IS'8639; 1012716
IS'8639: 1012716

IS'8639; 1012716
#S'8639; 1012716
IS'8639; 1012716

#S'8639; #012716
#S'8639; #012716
#S'8639; #012716

MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK

TUE, MAY 12, 1987,
TUE, MAY 12, 1987,
TUE, MAY 12, 1987,

MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK

TUE, MAY 12, 1987,
TUE, MAY 12, 1987,
TUE, MAY 12, 1987,

9:20 PM
9:20 PM
9:20 PM

IS'8639; 1012716
IS'8639; 1012716
IS'8639; 1012716

MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK

TUE, MAY 12, 1987,
TUE, MAY 12, 1987,
TUE, MAY 12, 1987,

9:20 PM
9:20 PM
9:20 PM

MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK
MS4337, MANAGER.SYS; MARK

TUE, MAY 12, 1987,
TUE, MAY 12, 1987,
TUE, MAY 12, 1987,

9: 20 PM
9: 20 PM
9:20 PM

9:20 PM
9:20 PM
9:20 PM

ABSTRACT

When the Systems Tables Manual
is not Enough: Bit Picking in

Application Data Files

Jeff Hecker

For many years Hewlett-Packard provided only enough HP 3000 software to allow users to write
and compile their own applications. This was (and is) the Fundamental Operating Software (FOS).
Along with FOS, customers could obtain the System Tables manual which descibed the memory and
disk file formats used by FOS.

In recent years, HP has ventured into the end user application software market, with products such
as manufacturing, accounting, communications, office automation, and graphics. But there is no
equivalent to th~ tables manual for these products. There are times when, for whatever reason, the
information in these files is needed in a way not provided by the HP product.

This article describes the general methods used to decode various files, and the results obtained in
one case study of HP figure Files. The material contained is on a relatively technical level, but may be
useful to those with only a casual interest in knowing how to look into these files.

Abstract

A Mechanic's View of Turbo

Dennis Heidner
Boeing Aerospace Company

HP released TurboIMAGE in 1986, and the general public has since
had the opportunity to read the product specifications and market­
ing literature. Finally we have another view, this time not from
the vehicle's designers but from the mechanic next door. This
paper reviews some of the practical guidelines that have been
developed for IMAGE/3000 applications and how they have changed
with TurboIMAGE. I present techniques that were used to dismantle
the database engine, see what makes it run and discover what clogs
it up.

Introduction

My co-workers (and family) described me as "a little boy waiting to
open up his Christmas presents". I felt a more appropriate de­
scription was a Car and Driver test driver waiting for the new
model year's cars to arrive. In any case, it had been several
years since the TurboIMAGE product had been "announced", and now I
had my chance to test drive it!

Visual Inspection

My visual inspection of the new engine revealed that, for all prac­
tical purpo~es, the appearance had not changed. That was pretty
important since I was concerned about how it would work with the
rest of my vehicle (application software). The owner's manual was
rewritten to reflect the new powerplant. However, a number of
small errors crept into the manual. (Some of those errors later
would prove to be fatal to some!) A new accessory called DBCONV
was provided. This accessory made the installation of the engine

1

quite easy. The controls for the engine were the same, with a few
new additions. For example, DBUTIL now included the following new
commands: (l]

Command

Enable x for AUTODEFER

Enable x for ROLLBACK

MOVE

SHOW x DEVICE

Function

Automatically use DBCONTROL mode 1
AND allow multiuser access!

Turn on greatly-enhanced transaction
recovery

Move a specific dataset (use filename)
to a specific disc drive

Show on which devices the datasets are

The TurboIMAGE program DBRECOV had also been modified to support
the new recovery rollback options and support MPE user logging
enhancements.

A Closer Look

I had a pretty good idea what to expect even before the TurboIMAGE
specifications "leaked out". You see, HP had previously introduced
a version of IMAGE for the scientific HP9000 series 500 computer.
While HP was telling the world about their great new scientific
computer, they were also selling their concept of a factory net­
work. It was reasonable to assume that the same capabilities of
the 9000 would make it into the "top-of-the-line" HP business
computer!

I am sure that some of my local HP SE's thought that I had some in­
ternal spy network in order to get the changes before they were an­
nounced to the general public. Well, my secret is out. I read my
SSB's, Communicators and HP product announcements for similar
product lines.

In case you have missed them, the specs are: [2] [3]

2

Data items per database
Data items per data entry
Data sets per database
Detail sets per master
Master sets per detail
Maximum entry size
Entries per data set
Entries per chain

IMAGE/3000 TurboIMAGE

255
127
99
16
16
4094
8,388,607
65,535

1023
255
199
16
16
4094
2,147,483,647
2,147,483,647

(The 2,147,483,647 entry limit may never be reached on the current
hardware and version of MPE because of hard-coded file system
limitations).

Out on the Test Track

Since I want to uphold my Car and Driver image, let me describe the
test track that I had set up and the performance I saw with the new
engine. Then I will cover the engine tear-down, what I found, my
likes and dislikes.

The equivalent of test tracks for computers are benchmarks. There
is a small problem though: benchmarks should be considered a four
letter word. No two benchmarks are alike, and seldom do they match
reality. Trying to use the results of a benchmark to predict per­
formance of a computer is similar to using the EPA estimate for gas
mileage for a new car: lots of luck! After considering my options,
I decided to stay with a benchmark that I had designed seven years
earlier to test transaction logging. This battery of tests is not
the greatest, but it is the only set of tests that I knew of which
had been used on every version of IMAGE since the early release of
IMAGE-B.

The test consisted of a stream job and several programs which would
make DBPUTS, DBDELETES, DBFINDS, DBGETS and DBBEGIN/DBEND transac­
tions on a small database. The stream job was written so the same
transactions were repeated with all TurboIMAGE database recovery
options and AUTODEFER. The same stream job (minus the test for
AUTODEFER and Rollback) was used on IMAGE-B.

The results were apparent in a matter of hours. You see, the test
would take about one hour when run with IMAGE-B, but when we ran
the same test on a TurboIMAGE installation, the test never com­
pleted. Not too bad for a faster engine! It turned out that the
problem was not a slower engine or some obscure bug but that Turbo
was working just the way it should. My benchmark, which worked
fine for IMAGE-B, was dependent on a slow, serially-threaded IMAGE,

3

but with those restrictions removed, the portion of the benchmark
which said it was time to stop never reached its limit condition!

Okay, I know that's a bit confusing, so let me explain further.
The benchmark had a master process which would make the timing
measurements, while several son processes were trying to make
hundreds of DBUPDATEs against the database. The idea was to simu­
late a transaction-intensive environment. Logfile analysis showed
the problem was that IMAGE-B did not honor MPE priority scheduling.
Instead, the processes ended up in a round-robin-type of priority,
regardless of the CPU time each used. This was contrary to the MPE
scheduling philosophy, which is to penalize heavy resource users in I"
favour of short easy-to-handle transactions. With TurboIMAGE, the
cheating stopped. The result, on Turbo, was that my main process,
which happened to consume a lot of CPU time and other critical
resources, was dropped in priority, while the "loading processes"
were always allowed to run because they required very little CPU
time. The main process was coded to determine when the test was
complete, but it was never completing because it had a low
priority. This may sound like there were no transactions being
made on the database, but the opposite was true. With IMAGE-B,
several thousand transactions would have been written to the log­
file. With TurboIMAGE, after allowing for the longer run time, the
number was in the tens of thousands! In the end, I modified the
benchmark in order to run the test on TurboIMAGE. The results are
shown in A-1, at first glance not very impressive. However the
test compare the best case of IMAGE/3000 against the worst case for
TurboIMAGE! (Remember IMAGE/3000 was serially threaded, in effect
tuned for a single user, while TurboIMAGE flies when there are con­
current users.) Chart A-2 is a comparison between DBPUTs with ILR
and logging (The TurboIMAGE logging test are with AUTODEFER).

Tools for Dismantling the Engine

Now that we've taken the change for a test drive, no mechanic could
resist the chance to kick a few tires and get out the old toolbox
to see how the new thing works.

Memory Dumps

Some of my more exciting nights were spent reading memory dumps. I
am sure my wife and Marguerite Russell thought that the strain of
it all had gotten to me - there was a grown man laughing and cheer­
ing at a bunch of octal numbers. I assure you, I really am quite
normal, but I could not restrain the excitement generated when I
saw that HP had corrected, enhanced or implemented many of the
major complaints or wishes. The memory dumps were useful in

4

determining how TurboIMAGE was handling its extra data segments
(XDS's). For instance, how is the database system control block
(DBS) used? It was through the reading of memory dumps that I came
to believe the purpose of the DBS had changed from what HP had
previously documented. [4] You see, they claimed that all access to
the database would be coordinated through the DBS. If that was
true, the DBS should always be present because of the frequency at
which it is accessed. What I had observed is that the DBS appeared
to be always absent. The memory dump was the first place I was
able to confirm the use and operation of the GLOBAL AFT. Finally,
with a little bit of luck, I was to duplicate some of the system
failures that were reportedly caused by TurboIMAGE. Then by match­
ing up the failure with the known problem report in the SSB or
patch summary, I obtained a better understanding of what was occur­
ing internally in TurboIMAGE.

I-dump Files

One of the (hopefully) seldom-used features of IMAGE implemented in
all versions is a feature called the IMAGE INTERNAL INCONSISTENCY
ABORT. Whenever IMAGE or TurboIMAGE detects something that looks
strange, (besides my designs), it creates an optional snapshot file
and aborts the offending program. Generally, this abort only oc­
curs if a broken chain or damage to the database is encountered.
The function of the snapshot (I-file) is to aid the IMAGE lab at HP
locate and correct bugs. These I-files are also useful to a
mechanic trying to figure out how an engine works.

Unlike the memory dump, the I-file contains the user's stack and
all Turbo control blocks that the process needed. These are typi­
cally the stack, database global block (DBG), database buffer con­
trol block (DBB), database user local control block (DBU) and the
intrinsic level recovery control block (ILCB).

SOOT/ADPAN

one of the fancier toolsets in my mechanic's box is a pair of
programs called SOOT and ADPAN. SOOT is a program, written by Ben
Norton of Boeing Computer Services, which allows a user to capture
the program stack for any process. [5] ADPAN allows a user to
analyze this "captured stack" (dump file) and look at the stack
markers, files which were open, data values and program global
data. [6]

Using these tools, several interesting points were immediately
visible. The first was that HP has created a number of new inter­
nal procedures which implement TurboIMAGE's new buffer management
algorithms. (See A-3,4,5 & A-8,9.) The second was that FOPEN's

5

for individual datasets are no longer recorded in the process stack
(this may not be news now, but it was in 1986). (See A-6,7)
Finally, the meaning of the BASEID, the first word in the base pa­
rameter of a DBOPEN call, had changed. Previously, with IMAGE-B,
this word had two meanings. The upper six bits contained an acces­
sor count and the lower ten bits contained the DST number of the
DBCB. The increased table sizes allowed by MPE V forced this to
change. The problem was that in ten bits the largest number you
may have is 1024, but MPE V now supported 4096 XDSs. The HP
literature stated that the BASEID would be used as an index into
the DBS, which in turn pointed to a new index for the DBCB or DBG.
That does not seem like a very efficient process; in real life, HP I'
has done some fine tuning. The BASEID is now the DST number for
the DBU. The DBU, not the DBCB, has become the starting point for
all Turbo intrinsics!

Debug/Decomp

Debug and Decomp were tools of last resort. They are similar to a
mechanic's modifier and eliminator (also known by the generic terms
"hammer" and "blow torch"). The use of DEBUG/3000 was risky, since
I had to be running in privileged mode. It did allow me to single­
step my way through some sections I was perplexed by; in other
cases, I was able to single-step my way to unintentional system
failures! Decomp allowed me to view the only "source code" avail­
able, the run-time library. Several interesting observations were
made with the use of Decomp, including new states for the rootfile
(these were later explained by Doris Chen's rootfile paper[7]).
Decomp and Debug were the only real tools available when trying to
figure out how the new buffer management algorithms work.

Trace Files

HP responded to the frequent user requests for a database perfor­
mance monitoring tool by developing the database PROFILER. This
package must be bought (like OPT and APS). In theory, it will al­
low the Database Administrator to monitor the frequency of accesses
to various databases, how the databases are being accessed, how ef­
ficently the internal buffers are being used and whether or not the
database needs restructuring. When IMAGE-B was rewritten into
TurboIMAGE, many of the internal procedures were instrumented.
This means that special hooks were added to collect information
about how, when, where, and what called the procedure. This infor­
mation is collected in a XDS or written to a file. The PROFILER
"Turbo Data Analysis" routine is later used to replay the informa­
tion which was collected and generate the profiles for your
databases. While tinkering with the system, I discovered that it
was possible to turn on the collection mechanism without having the

6

profiling package installed. The resulting Turbo trace file was a
important in understanding how Turbo now works. (See A-8,9.)

What's Under the Hood

Rootfile Changes

Understanding the rootfile turned out to be a tedious task. Even
with my previous knowledge of the IMAGE-B rootfile, decompiling and
understanding the new regions consumed several weeks. In the end, I
was quite proud of myself. I had done it! Then, two weeks later,
I received my copy of the Madrid conference proceedings with Doris
Chen's article about the rootfile. Her paper included a copy of
the rootfile layout as an appendix! [8][9] (Oh well, so much for my
summer tan •••)

Since I spent so much time figuring out how to decode the rootfile,
I might as well write one paragraph on how to do it. Here we go!
The first step is to choose a simple database, (I chose the SAMPLE
database from The IMAGE/3000 Handbook). Then you must compile it
with DBSCHEMA on an IMAGE-B system. You may dump the rootfile in
its entirety using DBDUMP. The next step is to create the database
using DBUTIL, then (you guessed it) dump the rootfile and as­
sociated sets using DBDUMP. After you have a view which shows the
locations of items/sets with IMAGE-B, you repeat the process for
TurboIMAGE.

Control blocks

The most significant enhancements made were the restructuring of
the database control blocks. With IMAGE-B, the two main players
were the DBCB and the ULCB. In effect, whenever an IMAGE intrinsic
was called, the user's program obtained exclusive control of the
DBCB, copied in user-specific information from the user's stack
then modified the DBCB (by copying in information from the ULCB).
The assembling of buffers and user logging information was perform­
ed in a trailer area at the end of the DBCB. The net effect was
that only one process could access the database at a time (the ac­
cess time was typically in thousandths of a second) .

TurboIMAGE addresses this problem by splitting the DBCB into two
new control blocks, the database buffer (DBB) and the database
global (DBG) blocks. Most of the processing performed previously
on the DBCB was moved over to the ULCB, which was renamed the
database user (DBU) block. With TurboIMAGE, as much of the
preprocessing and assembling of information as possible is done in
the user-specific control block. This means that the DBG is only

7

required when the database is opened, a lock is acquired or
released (DBLOCK/DBUNLOCK) or global information is requested. The
DBB is now only needed when we are trying to move information from
the the physical media (disc drive) to our user-specific DBU. Even
then, TurboIMAGE has been enhanced so that it tries to eliminate as
much contention as possible. This was accomplished by allowing
TurboIMAGE to place a "hold" on single buffers, not the whole DBCB.

The function
before. The
changed. From
the DBS is now

of the RDBCB and ILCB remain basically the same as
function of the SDBCB (now the DBS) appears to have
what I was able to glean from the tear-down was that
used primarily to coordinate PROFILER operations.

TUrbo also introduced several new control blocks. These are the
database extension (DBX) block, used to hold the overflow from the
DBG; the database trace (DBT) block, which appears to be used to
collect and coordinate Profiler activity on a database level; and
lastly, I saw references (via DECOMP) to another control block
which I will call the database mystery (DBM). As you may have
noticed, all the control blocks have three-character acronyms;
that's not necessarily HP's convention, but rather an author's
privilege I've taken. [10]

The dividing of the functions of the control blocks means that we
now have more area for locks, more and larger buffers and increased
numbers of items and sets. The flip side of the issue is that we
now will have more, larger DSTs. Larger, of course, means we will
consume more resources than before.

Locking

Recently, how to lock has been a rather controversial issue. There
appear to be as many "right ways" to lock as there are files in
PUB.SYS. one thing is sure though, the increased concurrency that
is now allowed with TurboIMAGE spells BIG trouble if you have a
weak (or nonexistent) locking plan. HP also has recognized this
and increased the region available for locks from 6k words to Bk
words. [11][12] If you wish to take advantage of the new recovery
tools available, or if you wish eventually to migrate to "ALLBASE"
then you must consider implementing the HP-suggested method of
strong locking. [13] Strong locking is intolerable if you use
database level locking (some third party vendors still do!).
However, there is really no need to resort to database locking, be­
cause HP has provided us with a predicate locking capability. By
using predicate locking, you may acquire locks on specific item
values, many different datasets (including masters) or the entire
database. The use of dummy datasets, extra databases and some of

8

the other gimmicks will probably cause you more pain than it will
actually be worth in the end.

Split databases

In years gone by, many installations encountered the old limita­
tions of 99 sets or 255 items. In order to accomodate the applica­
tions they had designed, the solution was simple: split the
database into two or more databases. A similar solution was often
used if an installation felt that it was being hurt by the single­
threading issue. Those constraints have now been removed, and
another interesting problem has replaced them. Those applications
which have split database may now consume much more resources than
they save (because of the extra DBU's). If you have such a ap­
plication you may want to try merging the databases back together.
Here's how:

l. Choose one database as the primary database
2. Use DBUNLOAD to unload the primary database
3. Add the data elements from the secondary bases to the

primary database. Be careful to add the secondary sets and
items to the end of the item lists and set lists.

4. Recompile and DBLOAD the primary database
5. Use DB2DISK from the CSL to unload the secondary

database set by set [14]
6. Use DISK2DB to load the information back into the

primary database [15]
7. Establish an account-wide (or system-wide) user defined

command which redirects programs from the old secondary
database to the new database

EXAMPLE:

Buffer sizes

DB
OPTION LOGON
FILE DB2=DBPRIME
FILE DB3=DBPRIME
FILE DB4=DBPRIME

After you have determined the minimum number of buffers, you may
determine the optimal buffer size. The space available for buffers
is now equal to the maximum size XDS allowed (approximately 32K
words) • The DBB requires about 4000 words for overhead space,
leaving 28K words for buffers. The buffer space used by TurboIMAGE
is equal to the maximum blocksize allowed plus thirteen words of
overhead. That is:

9

28K words
buffer_plus_OH

buff er count

BLOCKMAX = buffer_plus_OH - 17 round up to even number

Block Factor

Great! Now we know what size buffer we want, but guess what? Just
specifying a large block size in the schema does not automatically
mean that TurboIMAGE will use it! Always check the summary
generated at the end of a DBSCHEMA compile. If the value of
BLOCKMAX minus the BLK LGTH is greater than MED REC, you are wast­
ing space. You may -force the SCHEMA compiler to use the extra
space by changing the blocking factor (BLK_FAC). For example:

Name: TEST-SET, Automatic
Entry: KEY-VALUE(l):
Capacity:311 (BLK_FAC);

WARNING: Choosing to enlarge the buffers in order to increase the
blocking factor, without first calculating the minimum
number of buffers is wrong! I have a friend who did not
calculate the minimum number of buffers but instead in­
creased the blocksize to 4K words. The result was sig­
nificantly slower performance. Choosing buffer size and
count using the old IMAGE-B rules WILL HURT YOUR
PERFORMANCE.

TurboIMAGE and the File System

The improvements HP made did not stop with the restructuring of the
control blocks, buffer management algorithms or the obvious visual
changes. The interface between IMAGE and the file system has been
also tuned up. This is significant. A major enhancement made to
MPE V several years ago is called the GLOBAL AFT. Until
TurboIMAGE, very little use was made of GLOBAL AFTs. The purpose
is to allow a process to request that a file-open (FOPEN) be made
globally. Once the file has been opened, any program can read or
write to the file without opening it.

Seems straight forward, right? Well it is, sort of ••• You see,
what can now occur is that a program which accesses the database
first can open up all the datasets, place them in a globally-opened
file list, do its work then close the database. If another program
starts to access the database while the first one is running, the

10

I ~
I
I

datasets opened by the original program are left open. The second
program is responsible for closing the files! What's gained by all
of this? Lots! File open and close operations are some of the
most resource-consuming operations available on the HP3000. The
number that must be performed has now been significantly reduced.
A second, equally important, feature of global AFTs is that the
file open information is no longer stored in every program's stack
but in a special XDS reserved for it. This eliminates the file
system error 74 (INSUFFICIENT STACK SPACE) abort [16] which oc­
casionally occurred, leaving the database in a corrupted state!
The third use of the global AFT is that HP can now implement a
faster I/O algorithm using NO-WAIT I/O.

Are there drawbacks? Yes. With IMAGE-B, a DBCLOSE mode 2 would
release the resources associated with the dataset, including clos­
~ng the file. This no longer occurs! The most significant impact
is that if a modify program opens the database first, then several
read-only programs open the database, when the modify program ends,
the database will still have the files opened for read/write access
until the last program (read-only included) has closed the
database. ~~

NOWAIT I/O

NOWAIT I/O is not a new feature of MPE, although it is new for HP
to use it with IMAGE! NOWAIT I/O is a function of both the
hardware and the MPE operating system. Perhaps an analogy would
explain it best. Let's presume that we have a Very Important
Person (VIP) who will arrive at the local airport and wants to
visit the mayor. The trip requires that we travel through a mini­
mum of 20 intersections. The standard WAIT I/O scheme would have
several escort cars block each intersection when the light changes,
then let the VIP through. Once the VIP is on the other side of the
intersection, he waits for the escort cars to get back in front of
him so they can block the next intersection. Although this method
has the least impact on the local community, it takes considerably
more time to travel the distance.

On the other hand, had the method been NOWAIT I/O, the path would
have been mapped out ahead of time, with several escort cars at
each intersection. Each escort driver knows the approximate time
the VIP will arrive at his intersection and automatically closes
off the intersection just prior to the VIP's arrival. The result:
the car carrying the VIP need never slow down. The NOWAIT I/O
scheme requires more resources (in the case of TurboIMAGE, CPU and
extra disc controllers).

11

The use of NOWAIT I/O has another side benefit. Since the route is
planned ahead of time and takes less time to travel, there is less
time for a terrorist attack (system failure).

If AUTODEFER is not turned on, then TurboIMAGE will ensure that all
buffers have been posted before returning to the user. (A
read/write to cache is considered complete!) NOWAIT I/O is used
only for DBDELETE and DBPUT. These are two intrinsics where multi-
ple I/O's are .routine. once the last I/O has been requested, 111

TurboIMAGE then enters a loop where it will wait until the I/O has
been completed (MPE will set a flag as each I/O completes). When
the last I/O is done, the DBB is released. I''
With AUTODEFER, the buffers are not automatically posted. Instead,
we retain the changed buffers in the DBB for as long as possible
with the hope that more changes can be made to the current set of
blocks before we need to start the I/O. When we need to write a
buffer, the I/O is started; however, we do not need to wait to see
if it has completed. Instead, since we have global AFTs, we will
let the next process that requests a buffer perform that check. If
the I/O is still pending, this other process must wait!

The non-AUTODEFER I/O should still be as reliable as it was in
IMAGE-B; however, as you may have already guessed, AUTODEFER sounds
more complicated and risky. It can be especially hazardous to your
health if you do not use some form of transaction logging and rol­
lforward recovery. The performance gains, though, are phenomenal
and well worth considering!

RECOVERY OPTIONS

The old standby recovery method, ROLLFORWARD, is still in
TurboIMAGE. What HP did was improve ILR and add the much-desired
ROLLBACK recovery. With ROLLBACK, you no longer purge the
database, mount the log tape and then reenact the transactions.
Instead, the log tape is mounted and scanned for "recovery blocks".
Any incomplete transaction in the recovery block is "backed out".
The result is that you may be up and running in minutes instead of
hours or days! There is a major disadvantage, though. In order to
ensure that all the transaction log records make it to the logfile,
user logging uses the serial write queue and does not buffer the
transactions in its internal memory buffer. This means that there
is at least one additional I/O for every DBUPDATE, DBPUT, DBDELETE,
DBBEGIN or DBEND. Furthermore, ILR must also be enabled. The
TurboIMAGE manual contains a reasonably complete writeup about the
features; be sure to read it. In addition, Peter Kane of HP has
written a paper [17) which you should also read.

12

Caution should be exercised with the new :CHANGELOG feature of MPE.
I have received a number of calls from users of a Contributed
Library program that I wrote, LOGLIST [18). It appears that what
has happened at several sites is that rather than stopping the log­
ging cycle when backups were done, a :CHANGELOG command was used
instead. Then, after the backup was completed, the old logfile was
purged and transaction logging was resumed. Later, the users want­
ed to look at the logfile, and LOGLIST asked for a file that exist­
ed months ago, but had long since been purged. The moral of this
story: :CHANGELOG SHOULD NOT BE USED TO START/STOP A LOGGING
CYCLE! :CHANGELOG IS A TOOL TO BE USED WHILE THE LOGGING CYCLE IS
IN PROGRESS. All those files are part of a "log set", which is
required to RECOVER or AUDIT the database! [19)

Fair weather database management with Turbo

When is safe safe enough? Next to designing the database, probably
the most difficult job for the database administrator is assuring
that the information contained therein is correct, logical and syn­
tactically correct (no broken chains). One method to meet the
desired goal is to use the full rollback option. This ensures
database structure integrity, while also providing the audit trail
required to locate and correct semantic errors. If your system is
already heavily loaded, this may be unacceptable. The other solu­
tion is to use AUTODEFER with rollforward recovery. This ensures
database integrity and provides an audit trail, while also provid­
ing a boost in performance. The drawback to this is that when a
system interruption (sustained power loss, system failure or dead
lock) occurs, a slow rollforward recovery must be performed. The
"fair weather database management" method says we will resort to
enabling rollback recovery at times when we are at a higher risk
(thunderstorms, the day after PMs, etc.) and switch to the
AUTODEFER/LOGGING option when the sun is out.

Mechanic's notes

one of the enhancements included in TurboIMAGE was a major change
in the way that ILR performs its duty. With the previous version
of ILR, there was an assurance of a minimum of three I/O's (more if
there were an insufficient number of internal buffers allocated).
Turbo's version of ILR has reduced this to two I/O's. This was ac­
complished by simplifying the method of marking a transaction in
progress. In the ideal case, the required buffers are modified and
moved over to the ILCB. A copy of the transaction logging informa­
tion to be sent to the user logging interface (via WRITELOG) is
placed in the ILCB. This log record is renamed to "Action log" and
is used to ensure that the transaction log and ILR file are in
sync, so that a rollback recovery can be made. A start timestamp

13

is added, then the whole ILCB is written out in one I/O (this
assumes best case). After the ILR file has been written, the
individual buffers are posted to the appropriate datasets. The
last step is to signal the transaction complete by writing a new
end timestamp in the trailer area of the ILR file.

If there is a system failure, the ending timestamp will be less
than the start timestamp. A crash is detected by DBOPEN. Special
"hooks" placed in DBOPEN allow it to bring the buffers back into
the DBS and post the buffers back to the datasets. The final ILR
step is to repeat the command as recorded in the "action log".

One of the interesting observations I made was that the ILR file
always appeared to be zeroed out when nobody was accessing the
database. Apparently DBCLOSE now cleans up the ILR file, which in
turn, makes the process of opening up the database easier.

Finally, here's one other tip. Each record in the ILR file is
large enough to hold just one buffer. TurboIMAGE apparently calcu­
lates the minimum number of records required to hold the worst case
DBPUT or DBDELETE. It then adds additional space so it can hold
some global information, the "action log" and the trailer (ending
timestamp is here) • What all this means is we now have a simple
method to find out the minimum number of buffers that should be
specified to DBUTIL. Here's how:

1. Turn on ILR
2. :LISTF dbname00,2
3. use the number of records under "EOF" is approximately

equal to the minimum number of buffers you should have
4. Use DBUTIL to change buffspecs

:RUN DBUTIL.PUB.SYS
>SET dbname BUFFSPECS=eof(l/yourchoice)

5. Optionally Turn off ILR

My wish list

Anytime a do-it-yourself mechanic gets around a new car, there are
a lots of OOOOHs and AAAHs. There are also a lot of "what ifs",
and "If I had made the car" or "If I had designed the widget!"
Well, I have a couple of pet peeves that I wish were fixed. The
first is the ability to update critical search items. This one
feature would actually increase the versatility of TurboIMAGE and
provide added performance benefits to most HP3000 users. The
second is a way to "break" database deadlocks without having to
resort to a system shutdown and restart. Ideally, this "break"
routine would let the Database Administrator (OBA) force the
deadlock free without shutting down the database several times.

14

One simple method would be to simply let the OBA use OBUTIL to mark
the OBG or OBB as being corrupted. This would, of course, require
that the deadlocked database be recovered, either with OBRECOV or
OBUNLOAO/OBLOAO. The advantage would be that only one database
would be involved and in a more controlled manner than a system
shutdown/restart. (Remember that, with a shutdown, you would have
had to recover anyway!) The third wish list item is additional
OBINFO calls. I would like to see HP do the same thing for the OBA
and TurboIMAGE as they did for the MPE command user. Every piece
of information that is available from the OBUTIL SHOW command or
from the PROFILER hooks should be available through OBINFO calls.
Imagine the tools that could be written, OBOO (like soo but for
databases), monitoring tools that automatically warn you when you
need to tune the database, tools that recommend and correct im­
proper buffspecs, etc. Oh well, I always thought the Edsel was a
neat car ••••

What's the bottom line? Would I recommend that you "buy into"
TurboIMAGE? Yes! TurboIMAGE will have been in the field at least
two years by the time this paper has been published. Most of the
little bugs that invariably show up with new products should be
fixed. The new features are very worth asking for. It's true that
TurboIMAGE can be a resource hog. However, if you're willing to
play by the new rules that TurboIMAGE brings with it, most, if not
all, of the performance problems can be minimized or eliminated.

The old rules of thumb for IMAGE/3000 are not necessarily the cor­
rect rules of thumb for TurboIMAGE. Unfortunately, the old rules
of thumb were the result of many man-years of experience by the es­
tablished HP3000 community. It may be several more years before
the new rules of thumb for TurboIMAGE are well known. You can
help! Let's see some papers written about how well PROFILER/3000
works and compares to the standard CSL tools like OBLOAONG and
OBSTAT2 for finding problems. More user-developed benchmarks (as
evil as they are) would be useful. We need some users to push
TurboIMAGE to its limits. What really happens when you specify
1023 items and 199 sets? See all you mechanics next year!

15

TurbolMAGE
no options

"'''''''''"

TurbolMAGE vs IMAGE/3000
Klllam/Heldner

1 t;1~~~{it~~o l~~i~
V//A I I

2 7/86 (Slnale Batch Process at CS

1

0 I 'OQ'¥'" < I

UPDATE PUT(1)

A-1 Benchmark IMAGETST from CSL

IIW>81rts~ -

..
\
\

JI \
\
\

...I \
..

(/)
0 \
E \
0 \

s:S
..

\ --~ I- \ ... 1
0

(/) \ ~ ..
(./)

I-
\ i

1- w l t:=
'.:) CJ \ ~ a. s co Ill(

\ ~ 2
Cl 2 !

\ i=

~:8 ~
~ \

,., ..
a.~ .. ~

_s~ Cl \
E \ \ .c
() \ \ c

\ \ CD m \ \ ...
:8

C\I \ \ I
s~ Ill(\\ -. \\ ~

\\
- ~ "I ~ "l ~ ~ '4 :!{ "'I ~ "'t ~ "I ~ "t ~

...,
~ ~

ADPAN - Rev 2.10-86195 (C) 1985 The Boeinq Co SAT, JUL 19, 1986, 9:46 PM
DUMP: Dl861859.PUB.GOODIDEA PROGRAM: QUERY.PUB.SYS

2 L SEGMENT NAME PROCEDURE NAME P'REL STATUS

---52575 S $CACHESEG CDT 1 ATTACHIO
52560 S $HARDRES ATTACHIO
52526 S .$FILESYS1A •·· 1'> IOMOVE
52333 S $FILESYS1A _.., FREADDIR
52213 S $USER ~Cir l HIDDEN 1 PT 1 001
52202 S $USER ,_. HIDDEN 1 PT 1 020
52142 S $USER HIDDEN 1 PT'Ol2
50625 G USER GENMESSAGE
50373 G ITIMAGEll TRACEMSG
50212 G ITIMAGEll TRACEBLOCI<REF
50115 G ITIMAGE02 ,,A (ACTIVATEBLOCK
50070 G ITIMAGE02 .A cl~ GETBLOCK
50051 G ITIMAGE07~~· DBDELETE
47577 SEG' 'f" UPDATE
27475 QS08 DBIF
27220 QS08 SEARCH
272~4 G $MORGUE'ABORT . TERMINATE'

A-3 (Turbo)

00267 PM,XIN,L,CCE
00247 PM,XIN,L,CCG
00654 PM,XIN,L,CCL
00232 PM,XIN,L,CCG
00034 PM,XIN,L,CCG
77653 PM,XIN,L,CCE
00050 PM,XIN,L,CCE
00077 PM XIN L CCE
00376 PM,XIN,L,CARRY,CCE
00071 PM,XIN,L,CARRY,CCG
00467 PM,XIN,L,CCL
00046 PM,XIN,L,CCL
74467 PM,XIN,L,CCL
06700 UM,XIN,TRAPS,L,CCG
01143 UM,XIN,TRAPS,L,CARRY,CCG
00140 UM,XIN,TRAPS,L,CCE

PM,XIN,L,CCG

ADPAN - Rev 2.10-86195 (C) 1985 The Boeinq Co SAT, JUL 19, 1986, 9:51 PM
DUMP: Dl861860.PUB.GOODIDEA PROGRAM: QUERY.PUB.SYS

Q L SEGMENT NAME PROCEDURE NAME P 1REL STATUS

52613 S $CACHESEG 1"~ {CDT'ATTACHIO
52576 S $HARDRES . ~,\.t. · ATTACHIO
52544 S $FILESYS1A ~<,, IOMOVE
52351 S $FILESYS1A FREADDIR
52231 S $USER 4 HIDDEN'PT'OOl
52220 S $USER ~rl-~ HIDDEN 1 PT 1 020
52160 S $USER ~ ~ HIDDEN 1 PT 1 012
50672 G $USER GENMESSAGE
50440 G ITIMAGEll [TRACEWRITE
50310 G ITIMAGEll TRACEBEGIN

50117 G ITIMAGE02 1.\j. LOG'BLOCK'TO'DI
50144 G ITIMAGE02 { FLUSH'ILR'XDS

50100 G ITIMAGE02 ILR 1 FLUSH
50061 G ITIMAGE02 ,..+REQUESTWRITE
50037 G ITIMAGE07 / DBDELETE
47577 SEG 1 UPDATE
27475 QSOS ~.i,ce. DBIF

A-4 (Turbo)

00267 PM,XIN,L,CCE
00247 PM,XIN,L;CCG
00654 PM,XIN,L,CCL
00232 PM,XIN,L,CCG
00034 PM,XIN,L,CARRY,CCG
77653 PM,XIN,L,CARRY,CCE
00050 PM,XIN,L,CCE
00077 PM XIN L CCE
00321 PM,XIN,L,CCE
00313 PM,XIN,L,CCG
00021 PM,XIN,L,CARRY,CCG
00020 PM,XIN,L,CARRY,CCL.
00041 PM,XIN,L,CARRY,CCL
00470 PM,XIN,L,CCL
75273 PM,XIN,L,CCL
06700 UM,XIN,TRAPS,L,CCG
01143 UM,XIN,TRAPS,L,CARRY,CCG

I ~

..
~

lo,..

'
lo;.._..'.

.....

.....

~·1'

.....

· ..

t'··.· ., ..
I ,·

1·
r.

ADPAH - Rev 2.0t-05252 CC> 1985 The Boeing Co "TUE, MAR tB, 1986, 6145 PM ;
DUMf'.L D0_7_L! ~1~ . .:!J~.t4_lA_._· PRO_GRAM 1 DAL VT ST. PROG,

---~--~=---=~:~~~:-~~~~~!~~~~~=~~~~~,~~~~~~~~.:~~~~~!·~~~:~J~-~:~-~~~~~~-~~~~~~~~--~~~1 · . : .
12355 s $KERNELc-··------~1,.IAIT- . ·~· 00:324-F>l'i;L:ccE . ·-··
t 234 0 S :tHARDRES " . WA IT FOR I 0 .·.>'T 00271 PM, L, CCE
12317 _S ... $CACHESEG_ CDT 'ATTACH IO :·l'~ QO~FLP!'l_,JH_H_,_~,_~~g _____ ...,..... __ ~
12300 s $HARDRES 1 .. : ;f;~:'.~!: ATTACH I O)'.~~~.~r~·tjt"002471iPM, XIH IL, CCG·c;;: :~·~. . . -•. {:!; -·~.:::i
1 2246 s $FI LESVS 1 A '. .'/fr' .. ::; IO MOVE ·--:.-~·:3~r::·:j~lri 0 0654 : PM;)(IHI LI CCL~;·;.;~;~; .. . ~~,\s. ' .. i. ~{:<;·
12053. S $FILES'r'SJA_ '. .· .. :::f{jf F ... R. EADQ_J .. R. '';T:.·;. i~\C 90. 23 .. JjPM,J<Iti,.~, CCG _:~----- , ,,;~. · ,,,;·'(::.
11733 S !IMAGE04 ·· DBGET · ~.- ~;.~.·76542 PM,XIH,L,CCG
11606 DATABASECALLS DBUSER '~ .. ·_~_:_0336 O~Ut-1. XI H, TRAPS, L, CCC

10550 MAIN ~ ~~r.,;·.;DALVMTEC··;.· ;~~·::,;oo4,11::UM,XIH,TRAPS,L,CCG --~·; ,:~:.. .
11 23 t ·- ____ MA rn __ TADDMTECMODEL 91 i'.?.:?_J.ll'!.L.X I. H..L. TRA~S...i.l-....1. CCG

01243 S $MORGUE .·. ::· ;: '. TERMIHATE~ . ~~.:!~ 1\i:,':1:<.f':.PM~X~H,L,CCG:;::::'::, ::;·.'f";" \':t'tl .. :_:
"' ~.:__ ... ~.~i .. ~':·..'.~"··.·~::·)-:-.~:;:-_, ,•.·".~:·.·· ·, ... ~~ .. ,~ -~<~.

i
I

'
-- ·-----·-···
~~\e, ~ . - .-... -~···T.····T7:T~~-

_3) \?,\. ~~ -~--- - -- _:_· -,\;,''.:·'.' {>)< '. . ;.: - ~-·~:::::· :':\{.
,.;.,-- " ... C(' ~' - .,.. ~· \I. ' ---~·-· -- ··-----~ . ~;-i .
. v \ ,_ ~ y \'"\'!-~ ... -- ____ ____;_.J;

- - c <>d ~ ---·- •.. . . ; d'~} 'i' t·¥; <~. ~ k . ·.~" ,> I 1 ·.:· : :~

. -----·---- ---~..,.---- .-------.:::--~·.;.;. : , ' ~ ,·);

·------·- .;:·1 A-5 (IMAGE/3000) ·.·:-..:·
! t'

'.

ADPAN - Rev 2.10-S6195 (C) 19S5 The Boeing Co SAT, JUL 19, 19S6, 9:46 PM
DUMP: DlS61S59.PUB.GOODIDEA · PROGRAM: QUERY.PUB.SYS

F# FILENAME
1 $STDIN
2 $STDLIST
3 QSOUT
4 QSIN
6 QSKIB
7 QSMSGCAT
S TRACEOUT
9 IMAGECAT

10 SAMPLE - "-~~'''
11 QSSELECT

~() "!>A1\\Stt T1l..£S

FOPT% AOPT% RECSIZE RECPT LOGCOUNT
002244 001700 -so -1 -1
002614 001701 -Sl -1 -1
000614 001401 -Sl -1 -1
000254 001400 -so -1 -~
002004 000524 -256 0 0
000005 000420 -so 20S 4S
000005 002303 -so -1 -1
000005 000420 -so 192 66976
000001 000764 -256· 6 7
002600 000524 -256 1 6

A-6 (Turbo)

i.
'I

6145P11i\ ADPAH - Rev 2.01-85252. (C) 1985 The Boeing Co TUE, MAR 18, 1986,
!:

DUMf>.:. Don! 84J.~f)Jl18,, _ - . ·--·-·· ----~---ffil)_GRAM I DAL YTST. PRO~_,__ .

Fii . FILEHAME >\ .· · FOPT?. ·~ A~P;/\RECSIZE ~ECPT LOGCOUIH : . • ~.~fj'
I $STOIH" ,. · '::i. · . .- · 000305; OOIJOD ·'.-I 024" .. ·-1 · . -!._'.-"-.·-'-· _. ~·."_'·~:_

--2._!STDLIST ·--------------------.. 000705-·ooi'301~i 024----=1--· -- -i-

3 :SSTDIHX 000305 001300 -I 024 -I -I
4 .. :SSTDLISL __ .-·----.-•. ::-c-:---,--.--ooo(o5,0.9!.3(!1~,!.~2~-. -. __ :-:!_ __ . -1~-z,:
5 CATALOG ,\~·\ -;.·,:o> ... ·' '000005,000420.,":'. so,,'.,. 256 :. 144,, ,, .. :···.•:.;.~;:

~ ~~ .. ':3~-~~-~---~~]t~~--~L__. __ ~~~~~:l~~~~~::H:·:;~:/ ·. ;jt~:< __ 4~;~·~l-:~· .. ·~rf
9 TE :109 . 002001· 000704 · -1018 87 I

I (I TE. :I 05 002001 000704 -754 82 13
II TE. 136 002001 000704 -974 1406 590,167_·-~--
12 -TE. 110 . Ai'i\ $El},$. }',002001:000704 ,_~;, ::76°f;;T-:~9f::~ 2171 ,.:;;... :}-
13 TE , 133 - -~.. ·;. -002ooi; 000704 .. 1-1012.:1~· :· 31 . ', ·> 5 -~·-':': ·_· A~·.::~·:i
14 TE ·'104 __ ._. ·--'---··· 002001_:000~042_:_1012..:.'.:._ ___ ~8--~- 11 _
15 TE.' 131 002001 000704 -930 0 O
16 TE' I 01 002001 000704 -926 9706 3
17 _JE 128 ... _______ .. ~020jll 000704 -I 012 0 0. ____ _

A-7 (IMAGE/3000)

*46 SAT, NOV 22, 1986, 2:54 PM QUERY.PUB.SYS 312859586

~---·---·----·---------------·-----·-------------·-------------·---------------· * * * * * • Logical • Physical • Time *
*Pin•Dst•Nest• Procedure .•Retrn•-------------•-------------•---------------•
* f * f,•Levl* Name/Number' •Code •Reads •Writes•Reads •Writes• CPU •Wall • ·---·---•--,.-·---------------·-----·-------------.•-------------·---------------·
>46
<46
546
P46
>46
<46
546
P46
P46
>46
>46
<46
>46
<46
>46
<46
>46
<46
>46
>46
<46
<46
<46
546
P46
P46
>46
<46
546
P46
P46
>46
<46
546
P46
P46
>46
<46
546
P46
P46
>46
>46
<46
<46
546
P46
P46
>46
<46
546
P46
P46
>46

l ARMTRACE
l ARMTRACE

Stack space used • 535
Trace word • %100037 Trace Flags • %000037

l DBOPEN
l DBOPEN 24894

.. 1823
Mode: O Base Name:

Stack.space used
Data Base ID: O

Open Cnt: o Available Buffers: O
l DBOPEN

270 2 DBNewSize
270 2 DBNewSize 2
412 2 DBNewsize
412 2 DBNewSize 2
362 2 DBNewSize
362 2 DBNewsize 2
270 2 SetBufferCount
270 2 SetBufferCount
270 2 SetBuffercount
270 3 DBNewsize
270 3 DBNewSize 2
270 2 SetBufferCount -l

l DBOPEN 30 l
1758 Stack space used =

Data Base ID: 242
Open Cnt: l

Mode: l Base Name: TE"
Available Buffers: 34

l DBINFO
l DB INFO

Stack space used = 1704
Data Base ID: 242 Mode: 501
Qualifier: o Buffer Length Returned: 1

1 DB INFO
1 DBINFO

Stack space used • 1704
Data Base ID: 242 Mode: 203
Qualifier: O Buffer Length Returned: 60

l DB INFO
l DB INFO

Stack space used = 1704
Data Base ID: 242 .Mode: 901
Qualifier: o Buffer Length Returned: l

1 DBINFO
270 2 DBOpenDset
270 2 DBOpenDset

1 DBINFO l
Stack space used = 1803
Data Base ID: 242 Mode: 202
Qualifier: l Buffer Length Returned: 17

1 DB INFO
1 DBINFO

Stack· space used = 1704
Data Base ID: 242 Mode: 104
Qualifier: 1 Buffer Length Returned: 2

1 DBCLOSE

[.

30 l

[DATA

l

A-8 (Trace file)

.]

312859828
2 l

312859885
10 11

312864580
312865610

312865788

312866343

312866530

312866703
312866788

1611 2516

312867494
2 2

312870988
5 4

312871479
2 2

312871977
312872101

328 387

312872838
4 4

312873291

<146 l DBINFO
Sl46 Stack space used • 1704
Pl46 Data Base ID: 130 Mode: 102
Pl46 .Qualifier: l Buffer Length Returned: 13
>146 l. DBINFO
<146 l DBINFO
8146 stack space used • 1704
Pl46 Data Base ID: 130 Mode: 102
Pl46 Qualifier: 2 Buffer Length Returned: 13
>146 1 DBINFO
<146 1 DBINFO
Sl46 Stack space used • 1704
Pl46 Data Base ID: 130 Mode: 102
Pl46 Qualifier: 3 Buffer Length Returned: 13
>146 1 DBINFO
<146 1 DBINFO
8146 stack space used • 1704
Pl46 Data Base ID: 130 Mode: 102
Pl46 Qualifier: 4 Buffer Length Returned: 13
>146 l DBLOCK
<146 l DBLOCK
8146 stack space used • 1692
Pl46 Data Base ID: 130 Mode: 6
Pl46 Lock Wait Flag: FALSE Lock Acquire Time: 0
>146 l DBPUT
>146 410 2 GetBlock
>146 410 3 ActivateBlock
Rl46 Referenced block o
<146 410 3 ActivateBlock
<146 410 2 GetBlock
>146 410 2 ReleaseBlock

from set 1.
231
231

<146 410 2 ReleaseBlock \ \ \ 1 - -11.
>146 410 2 GetBlock ('\('(.!) 1)IOC.<. ' ~
>14 6 '"''11'""1'-'o'-"3'---A~c~t'i"i v""a:.;t:.:e"'"B=l~o-c~k------- H ~ S'l ~H~
>146 410 4 RequestRead
<146 410 4 RequestRead
Rl46 Referenced block l
<146 410 3

1
ActivateBlock

<146 410 2 GetBlock
>146 410 2 , ReleaseBlock
<146 410 2 ReleaseBlock
>146 410 2 GetBlock.
>146 410 3 ActivateBlock

from set 2.
2255
2255

Rl46 Referenced block l from set 3.
<146 410 3 ActivateBlo.ck 1243
<146 410 2 GetBlock 1243 \ ~ 'Z. \
>146 410 2 GetWriteAccess \,\oe~ 1 \\~tto'-'l·
<146 410 2 GetWriteAccess (\f<'ja ">~
>146~4~1~0'--'2'----=G~e~t~B~l=o=ck::-_~-----~ ~1 ~~~vJ
>146 410 3 Act vateBlock ~
Rl46 Referenced block· 1 from set 2.
<146 410 3 Act vateBlock 2255
<146 410 2 GetBlock 2255
>146 410 2 GetWriteAccess
<146 410 2 GetWr~teAccess
>146 410 2 GetBlock
>146 410 3 ActivateBlock
Rl46 Referenced block o
<146 410 3 ActivateBlock
<146 410 2 GetBlock

from set 3.
1749
1749

A-9 (Buffer procedures)

3 2

159343597
3 3

159344853
3 3

159346235
3 . 3

159347568
4 4

159347967
159348080
159348188

159348553

159348760
159348866
159348953

159349419

159349626
159349732

159350116

159350336
159350442

159350785

159350998
159351106

References

[l] TurboIMAGE Data Base Management System reference manual
printed 12/85, Chapter 8

[2] IMAGE/3000 Data Base Management system reference manual

[3] Griffin, Doug, Introducing TurboIMAGE, Communicator 3000,
Volume 2, Issue 7, page 2-1 (U-MIT)

[4] Griffin, Doug, IMAGE/3000 Changes for MPE V/E and Disc Cache,
Communicator 3000, Volume 2, Issue l, page 5-25

[5] CSL library, INTEREX
680 Almanor Ave.,
Sunnyvale, CA 94160, USA

[6] CSL library

[7] Chen, Doris, 11 TurboIMAGE Internal file Structure", Proceedings
INTEREX HP3000 Madrid Conference, 1986, page 123

[8] Chen, Doris, ibid.

[9] Russell, Marguerite, The IMAGE/3000 Handbook, WORDWARE, 1984,
Seattle Washington

[10] TurboIMAGE Data Base Management system reference manual
printed 12/85, page 10-5

[11] IMAGE/3000 Data Base Management system reference manual

[12] Griffin, Doug, Introducing TurboIMAGE, Communicator 3000,
Volume 2, Issue 7, page 2-1

[13]

[14]

[15]

[16]

[17]

TurboIMAGE Data Base Management System reference manual,
printed 12/85, page 7-8, "Logical Transactions and Locking"

CSL library

CSL library

HP Response Center, STACK OVERFLOWS: Causes and Cures For
COBOL II Programs, Document P/N 5958-5824/2649

Kane, Peter, TurboIMAGE Run-Time Options: Balancing
Performance with Data Base Integrity", Proceedings of
INTEREX HP3000 Madrid Conference, 1986

16

[18) CSL library

[19) TurboIMAGE Data Base Management System reference manual
print 12/85, Chapter 7, pp 7-23, 7-36

Author

Dennis Heidner received his BSEE degree from Montana state
University, Bozeman, Montana. Mr. Heidner has written "Transaction I:
Logging and Its Uses", presented at the 1982 HP IUG. He was co­
author of two papers, "Transaction Logging Tips" and "IMAGE/3000
Performance Planning and Testing", which were presented at the 1983
HP IUG in Montreal. In 1984 he presented the paper "Disaster
Planning and Recovery" at the HP IUG conference in Anaheim. Mr.
Heidner is a co-author of The IMAGE/3000 Handbook, published by
WordWare, Seattle, Washington. He has written technical articles
which have been published in several magazines.

Mr. Heidner is a member of
since 1982 and a member
Electronic Engineers (IEEE)
Computer Society.

the Association for Computing Machinery
of the Institute for Electrical and

since 1974. He is a member of the IEEE

l)i

Abstract

ASTAR is Born!

Terrell Haines and Dennis Heidner
Boeing Aerospace Company

What? Where? When? How? These are four commonly asked questions
when the programming staff is asked to make enhancements to exist­
ing in-house applications. The usual scenario is to pull out last
year's dataflow diagrams, structure charts, flowcharts and source
listings, flip a coin and hope that the analysis of the impact will
be correct. In order to make this process easier, most programming
shops have naming conventions and standard guidelines for coding
styles. While these are important, they are still a manual process
in an automated environment. What is needed is a programmer's
toolbox which will allow the use of a favorite editor but automate
the manual functions. This paper covers our search of available
third-party tools. After we could not find an acceptable package,
an in-house solution (ASTAR) was developed. We will discuss some
of the pitfalls, as well as free CSL programs which can be used to
implement similar programming environments at your site.

Introduction

Imagine, for a moment, that the company you work for has been
awarded a multi-million dollar contract to produce widgets. The
management information system, which currently resides on an
HP3000, cannot handle the increased demands without modifications
to the software. In order to accomplish the change, you request
that you have exclusive access to the keypunch, card reader, sorter
and card printer/interpreter for at least two months. You will, of
course, have a better estimate of the time to make the modifica­
tions after you use the sorter and card printer to find all the
lines that read from the "STOCK-ON-HAND" dataset.

l

I '

By now, you must think: 111 'i'his is insane! Why use old, obsolete
technology on an HP3000? After all, one of the most modern and
sophisticated programs manages our factory! (I designed it
myself!)". Unfort~nately, though, it's a simple fact of life that
the software deve~opment/maintenance groups are expected to use new
techniques and methods with tools that were developed ten or fif­
teen years ?so. Even though the president of the company may boast
about the w, super-duper, paperless system used in the factory,
software d signers are expected to use tools which leave them
paper-bound. In order to reduce the paper shuffling, special con­
ventio?lS are used to name program modules, source files, datasets,
etc. Several librarians are hired and instructed to rigidly en­
forqe the standards, lest chaos break out!

How to maintain control of software associated costs has been the
;£ocus of many studies. Various authors have proposed the 90/10
rule, which states that, for any system, 90% of the cost is soft­
ware and 10% is hardware.[l] In order to understand how software
costs are influenced, several "life-cycle" models have been
developed. The most popular of these has been attributed to Larry
Boehm. [2]

Elements of a Programmer's Toolbox

Let us first review the tools available to most programmers and how
they fit into the software design, development and maintenance

2

1·

cycle. Some of these tools are absolutely required in order to
develop software, while others provide productivity improvements
for the developers. One observation which should be made is that
there is a far smaller selection of software tools for the HP3000
computer than most other manufacturers' machines. Perhaps this has
been caused by the tight control HP has maintained on the architec­
tures of the hardware and the MPE operating system. Tools are
available from three areas: HP, third party vendors and the
INTEREX contributed library (CSL/3000).

Computer-aided environments (CAE)

At the 1986 Structured Development Forum VIII, held in Seattle,
Washington, more than thirty vendors showed CAE packages which as­
sist system analysts and programmers in the structured design of
applications. Many of these packages were written to execute on
personal computers, DEC computers and IBM mainframes. The software
packages are intended to provide an environment where software en­
gineers can define, document, check, edit and maintain the software
specifications for complex projects. The specifications included
Data Flow Diagrams (DFD), structure charts, Warner-Orr charts and
more. Unfortunately, there are no such tools native to the HP3000,
even though one of the vendors was HP! (Their product is called HP
Teamwork/SA.)

Editors

The most-frequently-used software development/maintenance tool on
the HP3000 is the editor. HP supplies one editor, called
EDIT/3000, as part of the FUndamental Operating System. This
editor provides the minimum features required for the software life
cycle. HP provides a means to enhance this editor's functions with
user-callable procedures but these advanced features are generally
not used by most installations because of the training necessary.

HP also offers what they refer to as the Text Document Processor,
(TDP). This editor has corrected many of the original shortcomings
of EDIT/3000 by including such features as document formatting, an
enhanced find command, greater macro capability, better online
help, block mode (page) editing and the ability to easily access
other programs without exiting the editor. TDP, however, does not
support many of the features that EDIT/3000 does. These include
user-written procedures and editing variable length files.

Robelle Consulting offers a programmer's editor called QEDIT. This
editor has been tuned for speed. By having a high speed editor,
you might think you would have to give up functions. QEDIT,
though, proves this to be false. QEDIT allows the user to invoke

3

UDC commands while editing, comes with a "scribe" function,
operates in screen mode and adds many features that I wish TDP had.
Text files saved by QEDIT have additional QEDIT information stored
within the file's user label. Robelle provides special QEDIT ac­
cess routines which allow user programs to take advantage of the
stored QEDIT information.

FSEDIT, from SYDES, is another editor designed with the programmer
in mind. FSEDIT offers many of the same features of TDP and QEDIT,
in addition to split screen editing (access to multiple files at a
time), and a built-in COBOL program generator.

HPTOOLSET, by Hewlett-Packard, is an integrated program development \ll
package, especially suited to aid the COBOL programmer. It con­
tains an editor, a direct link to HP3000 COBOL compiler and seg-
menter, a symbolic debug facility and a workspace/file manager. h
While the package claims integration, HPTOOLSET, according to the
manual, " is not intended to be compatible with COBOL 68,
EDITOR/3000, DEBUG or any other programming tools currently avail-
able on the HP 3000. 11 [3]

My favorite from the CSL library is QUAD. QUAD provides high speed
editing, version control, and an undo command. Document formatting
is accomplished by using GALLEY (also from the CSL library) or the
TDP formatter. One of the most unusual features of this powerful
editor is that the SPL source code is also in the library.

Compilers

The compilers available for the HP3000 include BASIC, COBOL,
FORTRAN, PASCAL, RPG SPL and C (available from third party ven­
dors). A version of FORTH is available from the CSL3000 release AO
tape. Not available are complete implementations of PROLOG, LISP,
SNOBOL, PLl or ADA. Fourth generation packages available include
products such as BRW, TRANSACT, RAPID (from HP), POWERHOUSE
products from COGNOS, PROTOS from Protos Software Company,
FLEXIBLE/3000 from SAGES-AMERICA, SPEEDWARE from InfoCenter,
PDQ/Quiz from Tymlabs and FASTRAN from Performance Software Group.

Linkers

The linker-of-choice on the HP3000 is MPE Seqmenter, which is also
"the only game in town". Seldom is the Seqmenter divorced from a
compiler and used as a stand-alone package. However, there are in­
stances when the situation calls for analysis of how Seqmenter is
affecting a job. In that case, the analyst must turn to a very
powerful tool, the Seqmenter manual. It not only explains the
Seqmenter, it also introduces the concepts of "virtual memory" and

4

"segmentation". These two ideas are keys to the operation and use
of this tool. It also explains such concepts as Relocatable Binary
Modules (RBMs) and User Subproqram Libraries (USLs), usinq easy-to­
qrasp analoqies.

Segmenter is a dynamic, run-time linker1 that is, final links to
segmented libraries (SLs) are established when the proqram is run.
This explains why, when a LIB= statement is not included in the RUN
statement, MPE sometimes proclaims "UNRESOLVED EXTERNAL REFERENCE!'
or "PROGRAM LOADED WITH LIB=G". Those final connections to the
outside world must be made.

If a proqram is PREPed to a qiven USL several times, and no
CLEANUSL is invoked to compact the USL, the Segmenter will create
several sequential versions of the RBMs. This allows an analyst to
actually return to a previous version of a qiven module. Of
course, it also requires the analyst to keep records of what is in
each of the various versions. This is perhaps a small cost for the
available power.

Debuqqinq Tools

MPE Debuq is the Hewlett-Packard tool which is used to locate and
correct errors interactively in proqrams. Invoked at run-time,
Debuq can set breakpoints which will temporarily stop proqram ex­
ecution and turn control over to the analyst. Various commands al­
low viewinq of memory in real-time, durinq proqram execution. In
addition, Debuq qives the ability to actually chanqe the value of
memory locations durinq execution. The STACKDUMP intrinsic enables
a selective memory dump to the screen, the printer or other output
device.

MPE provides a command, :SETDUMP, which allows the user to request
a copy of the stack markers, the user data portion of the stack or
both to be printed on $STDLIST whenever a proqram aborts.

SOOT.PUB.TECH, from the CSL3000 tape, may be used to capture an ac­
tive proqram stack for later analysis. The method of doinq this is
to use the SHOW command to find the PIN number for a given process.
Give the DUMP command with the PIN number following, and SOOT will
produce a formatted dump file with the name Ddddhhmm, where ddd is
the Julian day, hh is the military time hour and mm is the minute
at which the dump was created. If multiple dumps are created
within the same minute, the mm fiqure is incremented by one for
each new dump file.

ADPAN.PUB.TECH, from the CSL3000 tape, was
Heidner to address shortcomings in STACKDUMP.

5

created by Dennis
Equipped with an

on-line help facility, it provides visibility of the segment call
paths, file information, memory locations relative to the current
stack marker and miscellaneous program information for a given for­
matted dump file.

A companion to ADPAN is SNAPSHOT, an intrinsic which may be called
by a running process in order to take a picture of itself. It
creates a stack dump, with a name in the same format as
SOOT.PUB.TECH.

Crossreference Tools

Crossreference options are available in all of the compilers of­
fered by HP. The option is turned on by a $CONTROL card placed at
the start of the source code being compiled. In addition, there
are several user-written crossreference tools in the CSL. These
include SPLXREF (for SPL), BASXREF and XREFB (for BASIC), COBMAP,
COBXREFA and SYSXREF (for COBOL) and RENUMBER (for FORTRAN).

There are a few programs which help tidy up the source code, but
very few flowcharting programs are available. This is a sharp con­
trast from most other minis and microcomputer systems.

Dictionary

HP, COGNOS and several other vendors offer data dictionary
products. Dictionary/3000 from HP can be used as a standalone
product or used wtih their 4GL products, BRW, RAPID and TRANSACT.
COGNOS' dictionary is required by their POWERHOUSE products.
COGNOS also provides a utility which allows migration of their dic­
tionary information into HP's dictionary.

Program Generators

on the CSL3000 release BO tape can be found COBGEN, a COBOL 68
Program Generator. This program assists in the initial stages of
writing a COBOL 68 program by prompting the user for necessary
entries. Some extra features are support for the QUAD editor from
inside COBGEN and support for the COBOL COPY statement. Existing
source code can also be modified by use of a parameter in the RUN
statement.

FORTRAN preprocessors are available from the CSL3000 tapes, also:
TELETRAN, from release 09; RATFOR, from release AO; FTN from
releases BO or ANAHEIM.

Tymlabs
object

offers a product called
code from COGNOS' QUIZ

6

PDQUIZ which will generate HP3000
language. The Protos Software

Company offers a 4GL language, which, in essence, allows your
programming staff to write in a pseudocode which then translates
into COBOL. Q-GEN, from Proactive Systems Ltd, will generate COBOL
report programs from QUERY commands.

Comparision Tools

BLDTEXT, written by Karl Smith, is available in the CSL library.
BLDTEXT will take a current version and an old version of a source
file and produce a file which contains the $EDIT commands which
reflect any new lines, deleted lines or updates made on the new
file. The files must both be numbered ASCII files. The output of
BLDTEXT is compatible with the HP compiler standard for master and
edit files. [4) FILECOMP and COMPARE are two other file comparision
routines from the CSL library.

SCONS, by Corporate Computer Systems, compares two files and prints
a listing of differences, allowing one to quickly spot specific
changes between two revisions. It creates a file of difference
records called a "delta" file, which allows reconstruction of
previous revisions.

S/COMPARE, by Aldon computer Group, is a source file comparison
program for identifying differences between any two versions of a
program.

HARMONIZER, by Aldon Computer Group, is a source comparison program
for multiple versions of a file, which can produce a file of merged
records of the input files. HARMONIZER supports COBOL, FORTRAN,
PASCAL, SPL, COGNOS, TRANSACT, BASIC, COBOL Copy Libraries and any
character data files whose record lengths do not exceed so bytes.
Harmonizer is a spawned process which extends S/COMPARE's
capabilities, allowing it to compare up to 16 versions of a file.
According to company literature, "an output file can be produced
that is a composite of all compared versions of a program, option­
ally annotated with language-specific comments to describe the
source of insertions and deletions."

O/COMPARE, by Aldon Computer Group, compares object code files to
verify that program files that are expected to be the same are the
same and that a production module was created by the current source
file.

Job Control Language (JCL) Aids

PUDC, from the CSL3000 tape, allows the capability of programmable
uocs. These UDCs may include such commands as IF, GO and GOSUB.
streaming of jobs with insertion of parameters is also possible.

7

MPEX extends the capabilities of MPE so as to allow operations upon
entire filesets or even file subsets. A demo of MPEX is on the
CSL/3000 Release AO tape. A fully-supported version is available
from VESOFT. MPEX users often become addicted to it power and
reportedly have refused to accept jobs at sites without MPEXI

There are a number of packages which allow the queueing of jobs for
submittal later at night. The most common ones from the CSL are
SLEEPER and JOBQUEUE. There are a number of vendors which offer
data center management tools which help schedule and track when
jobs should run.

JOB CONTROL SYSTEM/3000, by Diamond Optimum
real-time audit trail for job and session
provid7s an expanded :SHOWOUT function. The
tion is stored in an IMAGE database and
DOCUMENTATION/3000.

Documentation Aids

systems, provides a
execution. It also

audit trail informa­
is integrated with

HPSLATE, from Hewlett-Packard, provides a casual word processor
designed to be used by business professionals. It features full
screen, page-oriented editing and uses the function keys of HP ter­
minals. Due to the question-and-answer dialogue designed for in­
frequent use, it is not appropriate for other than a casual user.
It is available in Italian, French and German.

HPWORD, from Hewlett-Packard, is a shared resource word processor,
designed to be used with a special HP Word Processing Station, con­
nected to the HP3000. Graphs and charts may be inserted into
documents.

LASTWORD, from Trident Data Systems, operates on HP block mode ter­
minals. It allows full screen editing and has an on-line help
facility. There are no embedded commands, although it does allow
text enhancements such as underlining and boldface.

SPEEDDOC, from Bradford Business systems, is a word processing and
office automation system. The word processor has on-line help and
full-screen editing. MPE commands may be executed from within
SPEEDDOC. Data from IMAGE, KSAM and MPE files may be joined
directly to word processing documents. Numerous printers are sup­
ported. In addition to the word processor, electronic mail,
tickler files, room/equipment scheduling, mass mailing facilities
and a spelling checker are included in SPEEDDOC.

GALLEY, from the CSL3000 tape, is a batch text file formatter which
uses Edit/3000 or TDP files as input. The output is on a printer.

8

GALLEY is directed by embeddeded commands. There are also versions
of the popular UNIX like NROFF document formatter in the CSL.

DOCUMENTATION/3000, by Diamond Optimum Systems, is a program
documentation package which includes a wide-ranging on-line cross­
reference facility.

Spelling Checkers

SPELL/3000, from Bradford Business Systems, is an interactive
spelling checker for standard ASCII files. New words can be added
to the dictionary, or separate user dictionaries can be created and
modified. A list of most-misspelled words is interrogated first.
If the word is found there, it is automatically corrected. Actions
are function-key-driven.

Tracking Tools

ROBOT/3000 AUTOMATIC DOCUMENTER, by Productive Software Systems, is
an on-line indicator of proposed changes to programs. It produces
a display of which programs are affected by a change and the
line(s) to be changed.

ROBOT/3000 AUDITOR, by Productive Software Systems, keeps track of
file modifications. The amount of history retained is user­
definable. It also alerts the user to file purgings, so that an
accidental file purge can be restored before the backup file is
erased. No manual input is required. ROBOT supports all MPE
files.

ARCHIVE/3000, by Fourhills Technology Group, monitors versions of
files. It removes older copies of a file from disk to tape and, if
desired, will delete the original file. ARCHIVE has a file com­
parison function. File security functions are available, also.

LITSCAN, from the CSL3000 tape, was originally designed as a
bibliographic retrieval system, based on keywords. However, it ap­
parently could be used to track program documentation.

Project Planning

Very few companies can igno~e the bottom line, COST. Meeting the
goals for a new software system, on time and within budget requires
careful project planning and monitoring. The CPM and PERT are the
two most popular methods for planning large complicated projects.
The CSL library has several contributions which can be used by a
development team. These are PERT, SCHED, and PRTCHRT.

9

The Hewlett-Packard Business Systems Software Solutions manual
identifies at least two project planning packages. NSSOO Project
Management System, from Nichols & Company, is"··· an interactive
project management system for planning, simulation, tracking &
documentation of projects". TASK TRACKER, from Medina Marketing
Group, " tracks and reports on the progress, status, schedules
and costs of defined projects and their subordinate tasks".

Desired Features

Thus far, we have covered the common tools used by the design and
development team. As you can see, there is a great deal of diver­
sity in the products that are available (we ran out of space). Now
imagine for a· moment, not the gloomy picture we started the paper
with, but a utopia. Every part of the specification and desigp
process has CAE tools to assist you. Even though the code is to
run on an HP3000, you can use your favorite PC. When you are for­
ced to make last minute changes in the code, the DFD's and struc­
ture charts are automatically updated. When it's time to write the
user's documentation, all you have to do is push a button. The
release bulletin is all automated. Test scripts are generated
which provide the degree of coverage that is specified in the
design document. Any errors which later arise (there are not
many!) in production will automatically flag the sections of code
and/or the specifications which are at fault. Although this might
sound like idle daydreaming, it's what has been called
"Imagineering" by the Disney design laboratories.

While "imagineered" designs are sometimes only a dream, the dream
software environment should become reality. During the past five
years, we have seen an explosion of CAE tools which allow the com­
puter hardware engineer to design complex circuits that were impos­
sible to imagine five years ago. These new tools are capable of
accepting specification/design statements and generating the inter­
nal signal routing, test patterns/vectors, and perform design rule
checks.

Let us imagine then that it is within our power to create some form
of our ideal. What would it be like? Any "new and improved"
programming environment would need to accommodate most, if not all,
of these tools. Before starting such an ambitious project, we set
down a few objectives which we wanted to meet. They were:

Womb-to-tomb Environment

The ideal programming environment provides a uniform set of tools
which can be used from "womb-to-tomb" by directing the output of

10

i ~11
'"

1 ·~

one tool into the next tool. It's important to remember in the
model presented by Boehm that you may sometimes need to backtrack
and adjust work done in the previous step. The ideal tool will ac­
comodate this to the extent that, if a problem in a program would
require the use of a different algorithm, the dataflow diagrams and
structure charts should be flagged as obsolete or invalid. Enough
information should be sent backward to simplify the updating of the
design and requirements documents.

Allow Use of Favorite Tools

One of the most significant costs of the software life-cycle is the
cost of training and the associated learning curve. The ideal en­
vironment must allow the use of the programmer's favorite editors,
compilers, etc.

Enhance/augment Programmer's Productivity

The programming environment must improve the productivity of the
team. Although this seems obvious, all too often software tools
are written which require you to adopt their standard coding con­
ventions and use a specific development methodology. Often these
new rules are difficult to use.

Flexibility

There has been increasing interest in a new software development
called prototyping. With this new development process, much of the
traditional life-cycle is eliminated. Instead, using a newer
fourth- generation language, a software specification is written,
compiled and tested by the end-user. If the application does not
perform as expected, the specification is modified and recompiled.
Prototyping allows the end-user to become involved in writing the
specifications, thus eliminating much of the traditional collection
of system analysts, programmers and coders.

Open Architecture

No one individual or company can anticapate every potential use for
the programming environment, nor can the languages of the future be
predicted. For this reason, it is critical that the programming
environment be an open architecture. As the need arises, we must
be able to write new tools which are easily dovetailed into the
current collection of tools. The success of such an open scheme
may be clearly seen in the diverse collection of MSDOS and UNIX
tools.

11

AS TAR

ASTAR (Automated Software Tracking And Reporting) was our answer to
the shortage of programmer tools for the HP3000. Developed in­
house, it provides an integrated source for producing programmer
information. Where a specific tool did not exist, it was written.
If a tool did exist, it was dovetailed into the system. ASTAR was
written to be expandable. New functions, if not directly attach­
able to the system, may be added to the main menu.

~
DESIGNER

MAINTAINER

ASTAR FLOW DIAGRAM

ASTAR provides an automated means to track software modification
requests, work progress, software changes and also estimate the im­
pact of changes that modifications to one module might have on
others. ASTAR, as such, provides the framework for a programmer's
workbench on the HP3000 computer.

ASTAR was designed so that it can be used with an application which
has already been designed and is in use. Special stream jobs were
created which crossreference and index all files withing the ap­
plication, once this is done, only the files which are modified are
reexamined.

ASTAR Programs

ADEDFILE is a program which scans the ASTAR database and removes
all references to files and datasets that no longer exist. The

12

algorithm used by ADEDFILE is quite simple. We just serially read
the master set which contains the file names, then we check to see
if the file still exists (use programatic :LISTF). If it is no
longer, then the references to the file are removed from the ASTAR
database.

AMERGE is a general purpose INCLUDE/COPYLIB program, which also
supports the $EDIT control options. AMERGE is intended to be the
"shell" through which current vendor-supplied programs must work.
AMERGE is table-driven, with the ability for the users to add "new"
packages by describing the interface. This description would in­
clude whether or not we are to direct the processed file to a
"pipe" or write to a file. AMERGE has process-handling capability
so it can create and activate the desired program.

APRINT is a command-driven program which will locate and print the
section of any text file containing a specified object. APRINT
opens up the ASTAR database, then parses the command passed to it.
The output of APRINT can be directed to any file. APRINT will au­
tomatically set up a file equation "AFILE" which points to the last
file it was printing. This allows the user to locate and view a
file with APRINT, then recall it into the editor without ever know­
ing the name of the source file!

ADPAN is a program which assists in the maintenance of programs
which have been released into production. ADPAN (and SNAPSHOT)
work together to capture program aborts. This post-mortem informa­
tion significantly reduces the time required to isolate program
aborts.

ASNAP is a program which prints a summary for snapshot files. The
summary includes the program name, date and time of abort.

ATREE is a program which will generate a procedure tree, starting
at a name specified by the user. ATREE takes the procedure name
specified by the user, then looks up all procedures called from the
one specified. For each procedure it finds, ATREE in turn recur­
sively calls itself in order to process the next lower level. The
output can be redirected to another file, where it can be processed
into a structure chart.

DSETXREF is a program which reads a specfied source file and lo­
cates all references to datasets in a specified database. DSETXREF
accepts a specific database name, then builds a table of datasets.
Then every text file that has been modified is scanned looking for
the dataset name. As a name is found, it is added to the index.

13

ERRXREF will scan all source files and update the index indicating
where a specific error number is used. There are no standards on
how an error number must be coded. This presented a special
problem when we were developing ASTAR. The final solution was to
allow "trigger" and "terminate" strings to be specified. Any
character between the trigger and termination will be considered an
"error number". This implementation allows "error numbers" to con­
sist of any ASCII character, for example: "CIERROR 976 11 •

JOBXREF will scan all stream jobs and build an index indicating
where and how files are accessed. JOBXREF looks at the first line
in the file and verifies that we are working with a MPE JOB com­
mand. Then the "stream" character, (typically:, ! or#), is
retained. Any line in the file which begins with this stream
character will be considered to be a command and not data. JOBXREF
looks at the logon name, then reads into a table the user defined
commands (UDC) for that specific user. As a command in the stream
file is encountered, the UDC table is scanned. Any file which is
referenced by the command is added to the index. JOBXREF has been
written to understand the syntax for the software tools supplied as
part of FOS. This includes QUERY and FCOPY.

PROCXREF will scan the program source code and build an index which
contains characteristics of the procedures and what procedures are
referenced. PROCXREF is syntax-driven, enabling it to determine
characteristics of the procedure it is analyzing. Every time a new
procedure is encountered while scanning source files, the summary
compiled to that point is added into the database.

PROGXREF scans the object files for revision numbers and picks up
the program characteristics.

UDCXREF reads all the udc commands in use for the account and
builds an index of who uses which commands and what they are.
Later JOBXREF uses this UDC index to assist in tracking where, when
and how files are referenced.

How ASTAR Detects File Changes.

The ASTAR stream jobs use DIRK from the TECH account to locate
which files have been modified in the last 24 hours. The fully­
qualified name of these files are written to a workfile. Later,
the ASTAR programs use this workfile, which concentrates the index­
ing on just the modified files. There are several other programs
in the CSL which could be used to perform the same task, or MPEX
could be used. Another method would be to require the system ad­
ministrator to turn on logging of FCLOSE records; then a special

14

program could be written to extract these records and build the
worklist.

ASTAR Screens

ASTAR is menu-driven, with screens written in QUICK from COGNOS.
An example of the opening ASTAR screen is shown in Appendix A-1.

ASTAR SR'S

The SR screen is used to enter an inquiry on software modification
requests. An example of this screen is shown in Appendix A-2.

The fields are defined as follows:
SR# - Modification request number (automatically assigned

when entering requests, although you may override)
NAME - Program, job or procedure name where problem most

likely occurs.
REVISION - The projected revision number that the software

will have at the time this SR is closed
TOPIC - Is the SR to correct a bug or make an enhancement?

Allowable values are:
* Perfective - enhancements of the package
* Adaptive - changing to keep up with new rules or

operating procedures
* Corrective - correcting a mistake

USER - The logon ID or group of users requesting the change
REQUESTOR - The name of the individual requesting the

change
ASSIGNED TO - The analyst to be responsible for planning,

evaluating, designing and implementing the
change

DATE SUBMITTED - The date the SR was logged into ASTAR.

ASTAR JOB INFO

The JOB INFO screen provides a summary report on the function of a
stream job, the jobname, its purpose, author, revision and when it
was last modified. An example of the screen is shown in Appendix
A-3.

The fields are defined as:
JOB SOURCE - The stream job's source file
JOBNAME - The job/session id, (!JOB jobname,<<user.acct>>)
ACCOUNT - The account in which the stream job resides
GROUP - The file group in which the job resides
FIRST REC. - The first record number of the stream job.

This feature is used by sites in which all

15

stream jobs are in one large file, and a
program extracts jobs to be launched

LAST RECORD - The last record in the stream job
REVISION - The version number for the stream job
TYPE - The type of stream job; for example, report, compile,

maintenance, system operation, etc.
ASTAR DATE - The date the job was last modified
PURPOSE - The purpose of the stream job.

JOB/FILE INFO

The JOB/FILE INFO screen provides a easy method for the programmer
or analyst to determine where and how files are used. This screen
provides only for the viewing of information, no changes may be
made. An example of this screen is shown in Appendix A-4.

The fields are defined as:
SOURCE - The file to be checked
UDC COMMAND - If there is anything here, the file was

referenced through a UDC command in a stream
job

MPE COMMAND - The MPE command invoked when the file is
referenced

STREAM JOB - The stream job which contains the reference
R# - Logical record number in the stream job where the

SOURCE file was referenced
DATE - The date the file was crossreferenced.

PROGRAM INFO

The PROGRAM INFO screen provides a quick summary of programs, pur~
pose, revision history, comments and size information. An example
of this screen will be found in Appendix A-5.

The fields are defined as follows:
NAME - The internal procedure name for the program to be

checked
SOURCE - The executable object file for the program
REVISION - Revision number (if any) for the program
ASTAR DATE - The date the program was crossreferenced
PURPOSE - The purpose of the program
COMMENTS - Comments about the program
MAXDATA - The maximum stack size with which the program

was PREPed
SEGMENTS - The number of segments in the program file
CODE SIZE - The size of the object file
COMP. JOB - The stream job which will recompile the program

16

PROCEDURE INFO

This procedure provides a general summary about the construction of
a piece of particular program procedure. An example of this screen
is shown in Appendix A-6.

The fields are defined as follows:
NAME - The procedure name
SOURCE - The editor source file for the procedure
PURPOSE - What this procedure is supposed to do.
INITIALS - The initials of the author for the procedure
TYPE - The type of procedure, SUBroutine or FUNction.
LANGUAGE - The high level language in which the procedure

is written
STATUS - The current condition of the procedure:

o DONE in production
o PLAN planned
o CODE = being coded
o DBUG = being debugged
o MAIN = on-going maintenance is being performed

REVISION - The revision number of the procedure
ASTAR DATE - The date the procedure was crossreferenced
FIRST REC. - The logical record number of the first line of

the procedure in the source file.
LAST RECORD - The last logical record number of the

procedure
LINES OF CODE - The number of lines of executable code

(comments and data declarations have been
excluded)

LOOP COUNT - The number of DO loops, or DO UNTIL-type
statements in the procedure

OF GOTO'S - The number of GOTO's in the procedure
OF IF'S - The number of conditional branches in the

procedure
EXPRESSIONS - The number of assignment expressions in the

procedure
OF I/O'S - The number of I/O-type statements which are

used in the procedure (i.e. WRITE, READ,
DISPLAY)

CALLS - The number of references to other procedures from
from within this procedure.

FORMATS - The number of FORTRAN FORMAT statements
OF EXITS - The number of unique exit points from this

procedure
MISC - The number of executable statements which do not fit

one of the above classifications.
COMMON BLOCKS - The number of named COMMON blocks that have

been declared for this procedure.

17

PROGRAM CALL CROSSREF

This screen provides a crossreference of locations that a specified
procedure has been called by other modules. An example of this
screen is shown in Appendix A-7.

The fields are defined as follows:
PROCEDURE - The name of the procedure which we are

crossreferencinq
CALLED BY - A procedure which references the subroutine
REFS - The number of times the subroutine is called by

that reference.

ASTAR CALL TREE

The CALL TREE screen is used to produce a structure chart for a
proqram or procedure. An example of this screen is shown in
Appendix A-8. When asked for a procedure name, enter any VALID
procedure name that has been coded. There are several options
which you may specify. They are:

;OUT=filename - specify output filename
;LEVEL=nn - specify the number of levels in the tree or

structure chart.
;EXT - include references to system intrinsics

ASTAR DATA SET XREF

The DATA SET XREF screen allows the user to determine where a par­
ticular dataset has been used within a proqram or set of programs.
An example of this screen may be seen in Appendix A-9.

The fields are defined as follows:
NAME - The dataset name for which we are lookinq
USED IN - The filename which contains a reference to the

dataset
R# - Loqicai record number of the reference to the dataset
DATE - The date that the file was crossreferenced.

ASTAR $INCLUDE, XEQ, USE FILES

This screen allows the user to locate everywhere a particular file
is used as either an USE, XEQ or $INCLUDE file. An example of this
screen may be seen in Appendix A-lo.

The fields are defined as follows:
INCLUDE - The name of the file beinq checked
USED BY - A file that uses the specified file
TYPE - Reference to the file was made by either a USE

18

1~

(EDIT/3000), XEQ or $INCLUDE
R# - Logical record number where the reference was made
DATE - The date that the crossreference was made.

ASTAR UDC COMMAND CROSSREF

This screen allows the user to identify which logon user accesses a
particular UDC file, and what commands are available to that user.
An example of this screen is shown in Appendix A-11.

The fields are defined as follows:
SOURCE - The name of the UDC file to be examined
COMMAND - A UDC command name
USER - Logon username and account name which can use the

command specified in the UDC file.
R# - Logical record number in the UDC file with which the

command starts.
DATE - The date that the UDC file was crossreferenced

LOCATING FILES AND PROCEDURES - APRINT

The APRINT subsystem allows
rence of a file, error
program, procedure call and
found in Appendix A-12.

The allowable commands are:

the user to locate and print the occur­
number, dataset reference, procedure,
more. An example of this screen may be

ERR= - Locate a specific error number (ERR=2.5 will find
all references to PROG-ERR 2.5)

DSET= - Locate a specific dataset (DSET=USER-DETL will find
all references to USER-DETL)

FILE= - Locate a file or set of files (FILE=@.SOURCE will
print all files in the SOURCE group)

PROG= - Locate everywhere this program is used
(PROG=STARTJOB.PROG will find all references to the
program STARTJOB.PROG)

PROC= - Locate the procedurename (PROC=GETDATE will locate
the subroutine, function or outer block whose name
is GETDATE)

JOB= - Find the filename which contains the jobname
specified (JOB=CALDUE will find the stream job which
will logon with a jobname of CALDUE)

XEQ= - Find all references to the XEQ, USE or $INCLUDE file
(XEQ=LOOK will find all references to the QUERY XEQ
file LOOK)

CALL= - Find everywhere the specified procedure is CALLed.
(CALL=GETDATE will find all references to GETDATE)

19

APRINT does not upshift the object for which you have requested it
to search. However, the information stored in the ASTAR database
may be upshifted if the language for the source file is not case­
sensitive. This allows for APRINT to be used by FORTRAN, PASCAL
and c-type languages.

Also, you must remember that some languages like FORTRAN do not
consider blank spaces within a name to be significant, whereas SPL,
COBOL and PASCAL do. If the language that the source file normally
uses removes extra spaces or characters, so will the ASTAR cross­
referencing programs.

You may optionally request the listing be directed to a file by
using the ;OUT=filename option.

Problems

Early success in crossreferencing stream jobs provided quite a bit
of encouragement, then the realities of life set in. Frequently we
would run into programs that appeared to discourage the dovetaill­
ing that we desired. For instance, with EDIT/3000, we can specify
the file to be editted externally by using the commands:

:FILE AFILE=source
:FILE EDTTEXT=*AFILE
:RUN EDITOR.PUB.SYS,BASICENTRY

When we exit EDIT/3000, the file is automatically kept back in the
original file. On the other hand, the TOP equivalent is:

:FILE AFILE=source
:RUN TDP.PUB.SYS;INFO="TEXT *AFILE"

With TOP, the file is read in okay, but when you try to exit or
keep the file, TOP generates the error message "blank file name".
Although this appears to be petty at first, it does become a real
problem. one of the tasks we wanted to implement was the creation
of master and edit files automatically. This is ONE step to a ful­
ly automated environment, held up by a balky program.

Some of the programs we used in the TECH account were modified over
time by Kevin Sheely to allow a more versatile use. One program,
DOCUMENT.PUB.TECH, had not expected to process more than 32,767
lines of source code. Others, such as REFEREE, were enhanced to
allow a longer string to identify the program revision.

20

PROGINFO, SCANNER and others from the CSL were modified to be more
flexible in specifying input and output options.

In SPL and FORTRAN/3000, the procedure relative addresses are dis­
played to the left of the actual source lines. In COBOL, and now
FORTRAN77, this information is displayed in a map at the end.
There is no standard which specifies how this information is to be
displayed. The presentation of this information is totally in the
control of the vendor. As a result, this hampers the development
of additional tools, such as symbolic debug packages (yes, HP has
TOOLSET, but it does not support all the languages) and data
flow/data dictionary rule checkers. Third party vendors who wish
to write compilers and support symbolic debug must cope with the
lack of information on the format in which variables & symbols are
stored within the program file.

Equally as distressing is the state of dictionaries. In general,
if you wish to use a vendor's dictionary, you must commit to th~
use of their 4GL tools. HP allows a Dictionary/3000 user to enter
and maintain a dictionary for existing applications, but they do
not provide any supported intrinsics to access the dictionary with
user-written programs. The lack of intrinsics from HP is cushioned
somewhat by the fact they have implemented DICTIONARY/3000 on an
IMAGE database. Users of COGNOS' POWERHOUSE dictionary, however,
are left out in the cold. The POWERHOUSE dictionary is a binary
file. Although it would be possible to decode it, the user would
be left with a real maintenance headache. We are almost forced to
re-invent the wheel, if we want to integrate a data dictionary with
ASTAR.

Closing Remarks.

ASTAR was a monumental task! To date, due to a lack of uniformity
in most of the outside vendor tools, the implementation has been
restricted primarily to the software tracking aids. For instance,
TOOLSET stores its software in a special TSAM format. If you wish
to read a TOOLSET-developed program, you must either first convert
it to a "flat" MPE file or DECODE the internal TSAM file source
storage system. The "INCLUDE/COPYLIB" is not the same between all
of the compilers. In order to extract the characteristics of the
procedures we are indexing, PROCXREF is in itself a "compiler". So
far, we have only implemented the extract code for FORTRAN. About
the time we conceived and started to implement ASTAR, ROBOT/3000
was introduced. This appears to the the most complete of the third
party packages, nearly meeting all of our original goals.

21

A good programmer's workbench is desperately needed for the HP3000.
As we mentioned earlier in the goals, it is impossible for one
person to predict all the different ways the environment would be
used. Perhaps we (the HP3000 community) need to form a "Software
Tools Interest Group". such a function could be useful in specify­
ing a standard Tool Interchange Format (TIF). Vendors could then
be encouraged to adapt their tools to work with the TIF. The
CSL/3000 library could assist by working with the library's authors
to adapt their tools to the new format. Whatever the means, let us
address this task. We invite your views on this subject.

22

Ii
I

I'

References

[l] Miller, Edward, Tutorial: Automated Tools For Software
Engineering, IEEE Computer Society, 1979, page 2

[2] ibid, page 3

[3) HPToolset Reference Manual, printed 7/82, Preface - page v

Authors

Terrell Haines has been employed as an Electronic Data Processing
Analyst for the Boeing Company since 1980. He has been editor, and
is currently a columnist, for the Boeing Employees' Computer
Society Newsletter. Mr. Haines is also a software reviewer for
Design News magazine.

Dennis Heidner received his BSEE degree from Montana state
University, Bozeman, Montana. He joined the ,Boeing Aerospace
Company in 1978. Mr. Heidner has written "Transadtion Logging and
Its Uses", presented at the 1982 HP IUG. He was co-author of two
papers, "Transaction Logging Tips" and "IMAGE/3000 Performance
Planning and Testing", which were presented at the 1983 HP IUG in
Montreal. In 1984, he presented the paper "Disaster Planning and
Recovery" at the HP IUG conference in Anaheim, California. Mr.
Heidner is co-author of "The IMAGE/3000 Handbook" published by
WordWare, Seattle, Washington. He has written technical articles
which have been published in several magazines. Mr. Heidner has
been a member of the Association for Computing Machinery (ACM)
since 1982 and a member of the Institute for Electrical and
Electronic Engineers (IEEE) since 1974. He is also a member of the
IEEE Computer Society.

23

APPENDIX

A-1. ASTAR MENU

Rev 1.0-85267 Copyright 1985 By the Boeing Company
ASTAR - Automated Software Tracking And Reporting

ASTAR MENU

01 SOFTWARE MOD. REQUEST 09 ERROR INFO
10 ERROR NUMBER XREF

02 JOB INFO
03 JOB/FILE INFO 11 QUERY REPORT INFO

12 QUERY REPORT-XREF
04 PROGRAMS

13 INCLUDE/XEQ/USE FILES
05 PROCEDURE INFO 14 UDC COMMAND XREF
06 PROCEDURE CALL XREF 15 MODIFY MPE(ASTAR) KEYWORDS
07 PROCEDURE CALL TREE

16 ADPAN (SNAPSHOT ANALYZER)
08 DATA SET XREF 17 APRINT

18 APRGINFO
19 TDP
20 DIRK

24

A-2. ASTAR SR Is

01 SR #
03 REVISION
05 USER
07 ASSIGNED
10 PRIORITY
13 PURPOSE

H/A'S
TO:TH
HIGH

1

ASTAR SR'S

02 NAME
04 TOPIC
06 REQUESTOR

08 DATE SUBMITTED 08/27/85
11 TEAM CHIEF DH 12 ASTAR

AUDIT LIST

D. TOLER
09 SCOPE MINOR

DATE 09/05/85

Get a list of equipment not found during an inventory, rather
than doing a scan by individual Prop#. (exception report)

14 ACTION
Use the TRS80 Model 100 to inventory then upload to the 3000
and run the exception from the 3000

15 COMMENTS
Program is partially complete on the TRS 80. A program will
have to be written for the 3000 to get the exception list.

16 COMP DATE 01/01/86 17 % COMP. 0 18 CLOSED DATE
19 MIN HRS 20.0 20 MAX HRS 60.0 21 PROB HRS 35.0 22 ACT. HRS .0
23 QC DATE 24 ALPHA DATE 25 BETA DATE
26 RELEASE DATE

A-3. ASTAR JOB INFO

01 JOB SOURCE ANYUSER.REPORTS
03 ACCOUNT TEIMS
05 FIRST REC. 1
07 REVISION 2.2 08 TYPE
11 PURPOSE

A-4. JOB/FILE INFO

MODE:F ACTION:

Q
Q

Q

Q
Q

01 SOURCE

UDC COMMAND

QUERY.PUB.SYS

MPE COMMAND
RUN
RUN
RUN
RUN
RUN
RUN
RUN

JOB INFO
02 JOBNAME ANYUSER

04 GROUP REPORTS
06 LAST RECORD 39

09 INITIALS 10 ASTAR DATE 1/1/85

JOB/FILE INFO

STREAM JOB
ANYUSER.REPORTS
AUDITRPT.REPORTS
CODELIST.REPORTS
CODELIST.REPORTS
COSTOTAL.REPORTS
FULLMFG.REPORTS
GPTEACQ.REPORTS

25

R# DATE
26 02/25/86
17 02/25/86
17 02/26/86
82 02/27/85
13 02/25/86
12 02/29/84.
15 02/15/87

A-5. PROGRAM INFO

01 NAME ADPAN
03 REVISION 1.1
05 PURPOSE

PROGRAM INFO

02 SOURCE ADPAN.LIB
04 ASTAR DATE 07/28/85

Analyze snaphsot and program abort files.

06 COMMENTS
The document file for this program is called ADPAN.DOCUMNT.

MAXDATA DEFAULT
09 COMP. JOB

07 SEGMENTS 13 08 CODE SIZE 142012

A-6. PROCEDURE INFO

MODE:F ACTION:
PROCEDURE INFO

01 NAME SUBTRACTDATES 02 SOURCE ADDATES.SOURCE
03 PURPOSE

This routine takes two dates in YYMMDD format and gives
you the difference in number of days

04 INITIALS 05 TYPE SUB
06 LANGUAGE FORT 07 STATUS
08 REVISION 09 ASTAR DATE 08/26/85
10 FIRST REC. 166 11 LAST RECORD 222
12 LINES OF CODE 23 13 LOOP COUNT 0
14 # OF GOTO'S 2 15 # OF IF'S 3
16 EXPRESSIONS 19 17 # OF I/O'S 0
18 CALLS 0 19 FORMATS 0
20 # OF EXITS 2 21 MISC 0
22 COMMON BLOCKS 0

26

,,

A-7. PROCEDURE CALL CROSSREF

MODE:F ACTION:
PROCEDURE CALL CROSSREF

01 PROCEDURE

CALLED BY
GETCALLAB
GETCONTROL
GETDAYOFWEEK
GET FEATURES
GETFIELDNAME
GETFOCAL
GETHEADING
GETJOBNAME
GETMAIL

GETUSERINPUT

REFS
1
1
1
1
1
1
1
1
1

A-8. ASTAR CALL TREE

ATREE REV 1.0 -85265
PROCEDURE NAME?ERRLOG

(C) 1985 The Boeing Co.

ATREE REV 1.0 -85265 (C) 1985 The Boeing Co.
LEVEL PROCEDURE NAME (Type:#refs) PURPOSE

1

2
2
2
2

ERRLOG

MAXIMUM TABLE USED:
PROCEDURE NAME?

(PROG: 0)

ARMERRORTRAPS
COMMITSUICIDE
RELEASE DATE
SETUPPROCINFO

(SUB
(SUB
(SUB
(SUB

I
1-

I
called I
procedure I

1--

30 OF 1000 ENTRIES

27

1)
5)
1)
1)
I
1-- # of reference

to procedure
type of procedure
(PROG, SUB, FUNCtion)

A-9. DATA SET XREF

MODE:F ACTION:

01 NAME USER-DETL

USED IN
PDBGENRL.SOURCE
CODELIST.REPORTS
COSTOTAL.REPORTS
USERLIST.REPORTS
DELUSER.JOBS
COMPARE.BACJOBS
BECOIDWA.BACRPTS
BECOLIST.BACRPTS
BECORPT.BACRPTS

DATA SET XREF

R# DATE
49 08/07/85
45 02/25/86
33 02/25/86
39 02/25/86
10 02/25/86
24 02/25/86
40 02/25/86
22 02/25/86
34 02/25/86

A-10. INCLUDE FILE CROSSREF INFO

MODE:F ACTION:
INCLUDE FILE CROSSREF INFO

01 INCLUDE LOOK

USED BY TYPE R# DATE
ANYUSER.REPORTS XEQ 27 02/25/86
AUDITRPT.REPORTS XEQ 18 02/25/86
CODELIST.REPORTS XEQ 83 02/25/86
COSTOTAL.REPORTS XEQ 14 02/25/86
FULLMFG.REPORTS XEQ 13 02/25/86
GPTEACQ.REPORTS XEQ 16 02/25/86
INCALLAB.REPORTS XEQ 13 02/25/86
MAILABLl.REPORTS XEQ 20 02/25/86
MAILABLS.REPORTS XEQ 19 02/25/86
OPTAGS.REPORTS XEQ 13 02/25/86

28

A-11. UDC COMMAND CROSS REF

MODE:F ACTION:
UDC COMMAND CROSSREF

01 SOURCE TEM2.UDC

COMMAND USER R# DATE
*LOGON TEM TE IMS 1 03/01/86
DBUTIL TEM TE IMS 9 03/01/86
E TEM TE IMS 12 03/01/86
Q TEM TE IMS 15 03/01/86
SORT TEM TE IMS 18 03/01/86
HOLDAREA TEM TE IMS 21 03/01/86
OFFICE TEM TE IMS 24 03/01/86
TECH TEM TE IMS 27 03/01/86
LOOK TEM TE IMS 30 03/01/86
QA TEM TE IMS 33 03/01/86

A-12. APR INT

COMMAND?ERR=2.5

APRINT REV 1.0 -86015 (C) 1985 The Boeing Co.
SOURCE-FILE: READUSER.SOURCE / ERR=2.5

481 c
482 c ALL'S WELL THAT ENDS WELL
483 c
484 GOTO 2000
485 c
486 c RECORD THE MISSING MESSAGE TAG IN THE ERRLOG
487 c
488 1000 CALL OPENERRLOG(IFILERR,IFOPT)
489 WRITE(l8,610) USERNO,USERBUF(47)
490 610 FORMAT(X,"(PROG-ERR 2.5) USER#:",S, 11 HAS A MESSAGE TAG#
491 *lOX,"THE MESSAGE IS DOES NOT EXIST!")
492 CALL FCLOSE(IFILERR,l,O)
493 c
494 c EXIT THIS PROCEDURE
495 c
496 2000 RETURN

29

I ~

I. INTRODUCTION

The Bug Stops Here!

Dennis Heidner
Boeing Aerospace Company

The cost of software is rising, which is not a profound state­
ment to make when you consider that we have become accustomed to
the idea that software (and maintenance) will be 90% or more of the
total cost of a computer system. Software is labor intensive, so
as the cost of labor rises so does your software cost. But are you
getting your money's worth? Software, just like hardware, has a
life cycle: first there is the product conception, the investiga­
tion of the product and its market, then design, development,
product test and finally delivery. But is that it? No! Most
studies indicate that the largest cost of the software is AFTER the
product is delivered, in what is known as the maintenance phase.
(Ever wonder why the monthly maintenance costs for H-P software
products are so high?)

Software maintenance generally falls into one of several dif­
ferent categories; they include such areas as adaptive maintenance,
perfective maintenance, and simply fixing the outright program
bugs. Adaptive maintenance is generally modifications made to the
software product so that it remains functional; for instance, the
IRS every year spends considerable time adapting their software to
match the new tax laws passed by Congress. Perfective maintenance
means that the software is being modified to enhance its usability
or its position in the marketplace. Both of these types of main­
tenance generally provide a return on your time investment; however
the third category, fixing bugs, simply brings the product up to
what it should be, with no additional features. (Have you ever
heard of a sales person bragging that they fixed 57 bugs in their
product last year?)

Fortunately
fixing program

for most of us, less then 20% of our time is spent
bugs, but would it not be nicer if we spent less

l

than 5% of our time fixing bugs? [l] In many data-processing shops
that translates into one additional head! The purpose of this
paper is to present some ideas, which if incorporated into your
software, will help reduce the amount of time spent tracking down
nasty problems such as program aborts. The paper will cover three
areas, spotting the bug, trapping the bug and finally, killing the
bug!

Before we continue on, let me emphasize that the techniques I
advocate in this paper are not substitutes for structured design,
programming, code walk-throughs or testing! For those readers who
would like to learn more about structured design, programming or
testing, there is a list of references at the end of this paper.
[2] [3] [4]

II. SPOTTING THE BUG

The best time to spot bugs in programs is before the product i~
out to the user (similiar to cleaning house before relatives
visit)! This can be accomplished by establishing a rigorous test
plan, which the software must pass before it's released. At the
HP3000 International Conference in Anaheim, Dan Coates and Michael
Mccaffrey from H-P talked about the software quality assurance
program that H-P has implemented. The quality assurance lab has
developed over 800 stream jobs which contain more than 10,000
separate tests! [5]

Test procedures

Locating bugs is, of course, the goal of product test for several
reasons1 first the cost of fixing a bug once the product has been
released is much higher, and second while in product test you are
in a more controlled environment where you can generally locate and
duplicate a bug more easily. Notice the general tone of this para­
graph: we are looking for bugs, not trying to prove the program
works. Let me digress another step and talk about the population
of bugs. If you have a program that is one thousand lines long,

2

i .

and you are very optimistic, you might hope that the program is 99%
free of bugs. What this means is that someplace in your program
there may still be ten lines containing bugs. If you were out to
prove the program was correct, the odds are that it will appear to
~ou that it is, even though there are still a few bugs there! It
is important to keep in mind Murphy's law of revelation, which is
"The hidden flaw never remains hidden."

The test procedure, really, is a program written in the language
of your application program. If your program is designed to con­
trol WIDGETS and use V/3000, then the native language of your test
procedures is WIDGETS with the V/3000 enhancement. Most univer­
sities and colleges offer classes in programming in COBOL, PASCAL,
FORTRAN, etc., but to my knowledge, there are no classes taught in
programming in WIDGETS! This means that when you write your test
procedure it will be a learning experience for your staff. Do not
expect to have test procedures which cover all the possible cases.
If you miss an important test case, this is really a bug in the
test plan! It is not uncommon for the first test procedures to
have as many or more bugs in them as the programs themselves!

V/3000 users have one additional problem on their hands: how to
test the programs and screens in an automated manner. The only
commercially available package of which I'm aware is called VTEST;
written by Wick Hill Associates, it is marketed by TYMLABS [6].

It doesn't work!

We must recognize that even if we have a good test plan, there
will be some bugs that are not caught. This brings up the next way
that bugs are discovered: the user calls up and says, "It does not
look right!". My initial response to such a general statment is
quite negative; however it is our job to turn around the general
reports and get the more detailed information we need. This is
done by asking more specific questions. For instance, when the
user reports that it does not work right, I will normally ask
several questions such as: Who are you? What were you doing when
it did not work right? What logon name had you used? Has this ever
happened before? Is this problem preventing you from working?

Since we do not want to always be grilling our users when they
believe they have spotted a bug, we must have a documented proce­
dure for capturing as much information as possible. My first at­
tempt at this was to beg the users to write down the information
off the screen, along with the sequence of steps they were going
through when the bug occurred. THIS FAILED HORRIBLY! What I found
out was that most users have the same aversion for writing that I
do, and when they do write, they are prone to transposing numbers.

3

On many occasions I spent hours trying to locate a bug in the wrong
procedure, because the stack marker which was written down was
incorrect. The programs at our site are menu-driven, with a fea­
ture which allows the experienced user to enter in one step the
commands to drop them several menus lower. In other words, if a
user wanted selection #1 from the current menu, followed by choice
#3 in the next level down, followed by #2 in the one below the
second level, the user could enter in: 1,3,2. This is very handy
for the users, but a problem for anybody trying to read the
scenario that the user wrote down, which looked something like:
l,3,2,4,l,0,3,M,00007635,AC,ME !!!

There must be a better way! The good news is that there are two
programs in the contributed library [7], PSCREEN and SCOPY which
will copy the information from a screen to a file or the lineprint­
er. The bad news is that these programs only work with H-P ter­
minals and will operate improperly if the terminal was in block
mode. Where possible I set up a logon UDC so when a program
aborts, the screen is automatically copied.

Although screen copy routines are a great improvement over rely­
ing on handwritten information, they provide only external informa­
tion to the debugger. When the a bug occurs, what appears on the
screen is almost always an imcomplete picture. It would be ex­
tremely useful if, in addition to the screen copy, information
about the files open, and the values of the program variables could
also be saved. After spending a number of hours reading the MPE
intrinsic and DEBUG manuals looking for a solution, I found it!
The solution is the intrinsic called STACKDUMP. This intrinsic
will copy and format the program stack markers and the data area of
the stack (anybody who has had a program abort has seen these pesty
markers). The person maintaining the program can then use the
screen copy, the stack dump, a copy of the program PMAP, a program­
mer's calculator and a complete listing of the program to locate
the bug accurately. Here is an example of a STACKDUMP output:

4

*** STACK DISPLAY ***

S=000070 DL=l77644 Z=002266
Q=000074 P=OOOOlO LCST= 000 STAT=U,1,1,L,O,l,CCG

Q=000062 P=000002 LCST= 001 STAT=U,1,1,L,O,O,CCG
Q=000056 P=000004 LCST= 002 STAT=U,1,1,L,O,O,CCG
Q=000050 P=000033 LCST= 003 STAT=U,1,1,L,O,O,CCG

X=OOOOOO

X=OOOOOO
X=OOOOOO

X=OOOOOO

•• DB •• OCTAL ASCII
00000 000000 000144 000000 177777 .d
00004 000000 000000 000000 000000
00010 000000 000000 000000 140032
00014 000004 000020 040000 000000 @.
00020 000066 000000 000020 000000 .6
00024 000007 172623 031540 000040 3 I .
00030 073473 010010 120004 051501 w; SA
00034 046520 046105 020123 052101 MP LE s TA
00040 041513 042125 046520 020040 CK DU MP
00044 020040 000000 000034 060304
00050 000034 040140 000000 000000 @'
00054 000005 060303 000006 000000
00060 000003 060302 000004 177776
00064 000000 000106 000000 000000 .F

** AREA OUT OF BOUNDS **

Once the individuals who will maintain the code have taught
themselves to how to read program variable maps and program PMAPs,
this method of locating bugs is very effective. However it is
generally very difficult to teach! This was illustrated to me when
I began to explain to another individual in the company how the
program collects all this nice information for debugging. The
reponse was "How does it work over the phone?" Yes, over the
phone! The team that would maintain the software was located some
distance from the actual computer hardware. Thus all of our neat
stack dumps and screen copies were generally useless!

After a little more careful thought, I realized that generally we
do not wish to see the whole stack dump, just selected portions, so
why not develope a little program which would read the stack dump
from the file, and display only what you asked for? This was the
birth of a program called ADPAN [8] (Application DumP ANalyzer).

Due to problems with the STACKDUMP intrinsic, I wrote my own
stack dump facility which I call SNAPSHOT. When SNAPSHOT is called
it creates a dump file, then copies an exact image of the data
stack to the file, along with information on the MPE files which

5

were open and in use at the time. This snapshot of the process is
then later analyzed by runninq ADPAN.

ADPAN has seven different screens of
displayed; they are: CODE, DUMP, FILES,
TRACE.

information which can be
FILE nn, FLUT, INFO, and

The TRACE screen is probably the most important of the screens.
This screen displays the procedure names, seqment names, p-relative
address, Q address and the status for each of the markers in the
SNAPSHOT. This allows the user of ADPAN to locate the cause of a
proqram error quickly without needinq to refer to a PMAP or have a
proqrammers calculator handy. The TRACE screen looks like: I'~

i

ADPAN 7/83 - Rev 1.1 (C) The Boeinq Co, Seattle WA 1~
DUMP: D1921810.PUB.GOODIDEA PROGRAM: ADEMO.PUB.GOODIDEA

Q L SEGMENT NAME PROCEDURE NAME P'REL STATUS

00174 ERRORHANDLER SNAPSHOT 00123 UM,XIN,TRAPS,L,CCG
00122 ERROR'HANDLER OVERFLOW 00004 UM,XIN,TRAPS,L,CCG
00114 ? SL %0173 P'REL = %011026 UM,XIN,TRAPS,L,CCL
00057 HELP 1 HELP OOPS 00005 UMiXINiTRAPSiLiCCL
00050 ADPAN'DEMO PROCEDUREB 00006 UM,XIN,TRAPS,L,CCL
00044 NEXT 1 BEST 1 THING PROCEDUREA 00002 UM,XIN,TRAPS,L,CCE
00040 ADPAN 1 DEMO SUPERPROGRAM 00035 UM,XIN,TRAPS,L,CCE
00033 s $MORGUE TERMINATE' PM,XIN,L,CCG

In this and other examples of screens from ADPAN, the entire line
of interest (normally hiqhliqhted on HP terminals) is shown
underlined.

The CODE screen displays the decompiled code around the PCAL in­
struction currently beinq examined by ADPAN. Since not all ter­
minals are capable of scrollinq, ADPAN breaks the code down into
three reqions, and simulates the scrollinq programically. Here is
a code screen:

6

000004 031003 2. PCAL 3
000005 004000 DEL ,NOP
000006 031004 2. PCAL 4
000007 031400 3. EXIT 0
000010 176031 LRA P+31 ,I,X (PB+000041)

000011 035002 .. ADDS 2 SUPERPROGRAM <==PROC
000012 004000 DEL ,NOP
000013 021004 II LOI 4
000014 033406 7. LLBL 6
000015 031007 2. PCAL F'ARITRAP
000016 000707 DZRO,DZRO
000017 021002 II LOI 2
000020 172003 LRA P+3 ,I (PB+000023)
000021 031011 2. PCAL FMTINIT'
000022 140005 BR P+5 (PB+000027)
000023 000014 NOP ,DIVL
000024 044105 HE LOAD P+l05 ,X (PB+000131)
000025 046114 LL LOAD P+l14 ,I,X (PB+000141)
000026 047400 o. LOAD Q+ 0 ,I,X
000027 040403 A. LOAD P+3 (PB+000024)
000030 034403 9. LDPN 3 (PB+000033)
000031 021005 II LOI 5

7

The DUMP screen displays either an area around the current stack
marker or a specific region in memory. The user has a choice of
OCTAL, HEX, DECIMAL, CHARacter and NOCHARacter formats. The DUMP
screen is the default screen. (Any other screen can be requested
from the DUMP screen.) For example:

ADPAN 7/83 - Rev 1.1 (C) The Boeing co, Seattle WA, JUL 14 1983
DUMP: Dl921810.PUB.GOODIDEA PROGRAM: ADEMO.PUB.GOODIDEA
Q%000057 P=%000006 X=%000000 STAT=%060703 S=%000071 DL=%177740

ADDR
000036
000045
000054
000063
000072
000101
000110
000117

>D Q-l;A
>D Q-1
>D Q-l;L
>D Q-l;H
>D Q-l;I
>D Q-l;D

DATA
000047 061305 000005 000000 000003 061304 000004
000000 000007 060705 000004 076400 000000 000004
000000 000006 060703 000007 000001 010550 111401
000065 000152 111401 000065 140001 000012 135635
000000 001000 000000 000000 000005 177766 000001
000002 141001 000002 000000 177747 000016 000173
000052 000004 011027 062573 000035 000001 000115
000004 000005 062302 000006 177777 000011 110223

'aC'
%060703

%060703 TRUE
61C3
25027
1640169479

• I b • • • • • •
•••• a ••• }
.... a •...
. 5.j ..• 5.

.• •••• e(•
• • • • d ••••

Several important items should be noted. The first is that ADPAN
will locate and highlight the current stack marker. In our example
above this was done by underscoring. Next is that the DUMP screen
actually has three separate windows: the header, the data area and
the command window. ADPAN uses cursor addressing (if possible) to
implement wraparound scrolling within the command window.

The FILES screen allows the user to identify the MPE files that
the program had open at the time of the SNAPSHOT. The information
displayed includes file number, file name, file options, access op­
tions, record size, current record pointer, the number of logical
records processed, and the file limit.

F#
3
4
5

FILENAME
FTN06
FTN05
01921809.PUB.GOODIDEA

FOPT%
000614
000244
000000

8

AOPT%
001401
001400
000001

RECSIZE
-81
-so
128

RECPT
167
167

3

The FILE nn screen allows a user to ZOOM in on a specific file
and look at virtually all attributes for the file. In this example
we will zoom in on file number five.

FILE NAME IS Dl921809.PUB.GOODIDEA
FOPTIONS: STD,FEQ,CCTL,F,*FORMAL*,BINARY,NEW
AOPTIONS: WAITIO,BUF,DEF,NOLOCK,SREC,WRITE
RECORD SIZE: 128 BLOCK SIZE: 128 (WORDS)
RECPTR: 3 RECLIMIT: 4 0 0
LOGCOUNT: 3 PHYSCOUNT: 1
EOF AT: 3
FILE CODE: 0 # OF USER LABELS: 0
FILE SYSTEM ERROR: 0

If the program being examined was written in FORTRAN, the user of
ADPAN can request that the FORTRAN LOGICAL UNIT TABLE be displayed;
this is the FLUT screen.

UNIT F# FILENAME
6 3 FTN06
5 4 FTN05

FOPT% AOPT%
000614 001401
000244 001400

RECSIZE RECPT
-81 167
-so 167

The INFO screen lets the user review the general PREP
capabilities of the program. In addition the INFO screen displays
information on the way the program was segmented, data stack
utilization information, and any run-time INFO strings or parms.

ADPAN 7/83 - Rev 1.1 (C) The Boeing Co, Seattle WA, JUL 14 1983
DUMP: Dl921810.PUB.GOODIDEA PROGRAM: ADEMO.PUB.GOODIDEA
Q=%000057 P=%000005 X=%000000 STAT=%060703 S=%000071
PROGRAM CAPABILITIES=BA,IA SNAPSHOT ID: 1

STACK INFORMATION

DL-DB: 92 7.0%
DB-QI: 21 1.6%

QI-Q: 26 2.0%
Q-S: 78 5.9%
s-z: 1096 83.5%

MAXDATA: ??
MAX Z-DL: 1313

RUN TIME PARM VALUE: 0
INFO STRING: ** NO INFO STRING **

9

CODE SEGMENT INFO

5 SEGMENT(S)
SMALLEST: 8

LARGEST: 488
AVERAGE: 118

TOTAL WORDS: 592

As you can see, ADPAN provides much more information about the
process than the STACKDUMP intrinsic. A common (and very good)
practice at a number of HP sites I have visited is to assign an
error number to each important step in their programs. Then if
there is a problem encountered in that step the program prints out
the step number and stops. This is a very simple (but effective)
form of defensive programming. Examples of more sophisicated error
handling include most of AGADER's functions and the MPE operating
system itself. (System failures are MPE's way of preventing fur­
ther damage by continuing with corrupted system tables.) This
process can be enhanced by calling SNAPSHOT, passing it the error
number from the program. In this way we can capture the complete
environment prior to aborting the program, thus guaranteeing that
we always have enough information to properly diagnose the problem.

Databases and bugs

If your application is dependent on a database, then you have a
different set of problems. The cause for the wrong information on
the screen may be wrong information in the database. One common
mistake made by application designers is to assume that once the
data has been correctly entered into the database, it will always
remain semantically correct. What I mean by semantically correct
is that if the weight of a pallet may be between o and 30,000
pounds, then a value of -200 is semantically wrong! Another
problem can occur when a value from one dataset is used to chain
(or point) into another set, but the second entry is missing.
Generally when a program runs into such cases (if not anticipated)
the results are very unpredictable.

There are three techniques which can be used to locate bugs in
our databases before they appear later as bugs in the programs.
The first is to write a custom program which checks for and reports
semantic errors in the database. For example, database checking
programs should verify that items which are defined as dates in the
programs contain VALID dates in the database. Fields which contain
monetary values or other numeric quantities should be checked to
make sure that their range is LEGAL and REASONABLE. Fields which
are names of products, companies or individuals should be checked
for garbage cnaracters in the fields. Fields which contain phone
numbers, addresses or postal mail codes should be verified.
Finally if the applications chain from one dataset into another,
the test program should do the same. As you might have already
guessed, the error check program is a major system in itself. At
our site, I run this highly tuned program once a month; its work
takes more then six hours!

10

The second method to locate errors in the database involves
active checking for semantic errors by all the application
programs. The way this works is that after the user enters in the
account number or part number, the program validates all the infor­
mation related to that number BEFORE the information is displayed.
This method assures that before the user is aware that a problem
exists, the program has a chance to detect and correct it. This is
the method that I use on our main application for the computer.

The final method uses a checksum or hash total for each entry in
the database. The application programs, as a next-to-last step
before updating the database, generate a checksum for the entity in
question. This checksum value becomes an integral part of the
item. When the reporting programs read the entry at a later date,
they only need to recalculate the checksum value and compare to
make sure that they are the same. This technique is most useful
for detecting changes made in the database by unauthorized programs
or QUERY. Unfortunately if the error was made before the checksum
was generated the first time then it will not be detected later.
An example of the use of a checksum to detect unauthorized changes
is in the file labels on the HP3000.

When I first started writing programs which accessed IMAGE
databases, I would generally check the status of the IMAGE intrin­
sics, then call DBEXPLAIN. After the first time a user wanted to
know what all the clutter about dataset so-and-so was, I made an
effort to remove the calls and replace them instead with a routine
which opens up an error log file, calls DBCALL (9] to get a
readable explanation of the problem, then calls DBERROR to obtain
the intrinsic name, database name and dataset name. A final call
is made to DBSTATUS [10], then all the available information is
written to the error log file. For example:

==>ZEP .ZESTY ,DATA LDEV:43 #S81 TUE, MAY 1, 1984 8:01P
Rev 2.00-84114 PROGRAM: TESTPROG P=%014.002514 Q=%015263
(PROG-ERR 2.29) Internal application or data base error
DBGET mode 5 on SPECIFICATION of PAZAZZ opened mode 1
END OF CHAIN
DBSTATUS: 15• %00452 l/ 405 %010076 %015032 5 %004601

SET: SPECIFICATION: ITEM-NAME: MODELCODE;
CHAR. EQUIV OF ITEM: 0003FIDDLE
DEC. EQUIV OF ITEM: 12336 12339 17993 17476 19525 8224

Remember I said that I generally checked the status of IMAGE
calls? Not long after our application was up and running a number
of strange errors occured; apparently somebody had used QUERY to
delete several entries that the programs always expected to be
there. Since the program did not check the status of the previous

ll

IMAGE call, it did not detect the problem. The end result was a
bug which migrated throughout the database and took several days to
track down! Always check the status to make sure it is acceptable!

Who did it?

If we have detected an error in the database, how do we locate
the cause of the problem? Hewlett-Packard has provided database
users with the ability to log transactions made to an IMAGE
database to either a disc file or a magnetic tape. This record can
then be replayed at a later date either to recover after a system
failure, or in the case of bugs, to audit the database. There are
currently two programs available which can be used to audit the
log, DBAUDIT and LOGLIST [11] [12] [13] [14].

III. TRAPPING THE BUG

Some times we do not have sufficient warning to set an error num­
ber and abort: for example a BOUNDS VIOLATION will generally abort
the program and print out the VERY UNFRIENDLY STACK MARKER in the
middle of your V/3000 form. In most cases using a screen copy
routine or having the users write the information down is ineffec­
tive since the stack marker is spread throughout the form. We
really want the computer to transfer to our error routines when an
abnormal condition occurs. There is a facility to do this: it is
called USER TRAPS.

Choosing the right trap

User traps are probably one of the least understood features of
the HP3000 computer and its operating system. This is unfortunate
when you consider the power they provide to detect and correct
program errors. Traps are provided for the following items: [15]

12

TyPe of error encountered
Enable hardware arithmetic traps

Floating point divide by zero
Integer divide by zero
Floating point underflow
Floating point overflow
Integer overflow
Extended precision overflow
Extended precision underflow
Decimal overflow
Invalid ASCII digit
Invalid decimal digit
Invalid source word count
Invalid decimal operand length
Decimal divide by zero

Bad stack marker
Bounds Violation
CST Violation
STT Violation
Illegal address
Non-responding module
Privileged Mode intruction
Unimplemented instruction

Compiler library errors (55 total)
Invalid substring designator
Formatter errors (FORTRAN)

MPE intrinsic errors

Setting the traps

Trap intrinsic
(ARITRAP)

(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)

(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)

(XLIBTRAP)
(XLIBTRAP)
(XLIBTRAP)

(XSYSTRAP)

Except in
calling the
plabel for
sure that it

FORTRAN programs the user traps must be enabled by
respective MPE intrinsic. When enabling the trap, the
the desired error-handling routine is checked to make
is valid, according to the following rules:

1. If the call to enable the trap was made from a non-privileged
program, group SL or public SL, the trap handling routine
must also be non-privileged.

2. If the call to enable the trap was made from a privileged
program, group SL or public SL, then the trap handling
routine may be privileged or non-privileged, in either the
program, group SL or public SL.

13

3. If the call to enable the trap was made
segment, then the error handling routine must
non-MPE SL segment.

from an MPE SL
reside in any

Arithmetic errors

For example, the user may enable a trap routine for arithmetic
errors by calling XARITRAP as shown below.

IV IV I I
XARITRAP(mask,plabel,oldmask,oldplabel)

mask Bit mask indicating which types of
arithmetic errors are to be trapped
(refer to the HP intrinsic manual [16]).
mask = o disables the traps.

plabel External type label of the application's trap
procedure. plabel = o disables the traps.

oldmask - The previous bit' mask for the arithmetic
traps.

oldplabel- The previous external type label of the
application's error procedure (O if not
previously enabled).

Example of an SPL routine to enable all arithmetic traps:

PROCEDURE ARMTRAPS;
BEGIN

INTRINSIC XARITRAP;
INTEGER OLDMASK,OLDPLABEL;
XARITRAP(%37777,@ARITH 1 ERROR,OLDMASK,OLDPLABEL);

END;

14

I~
I'

I
I ,,

EXAMPLE of an SPL routine to handle traps caused by arithmetic
errors:

PROCEDURE ARITH'ERROR;
BEGIN

ARRAY BUFF(0:40);
BYTE ARRAY STRING(*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT(O);

MOVE STRING:= ("Arithmetic error! SNAPSHOT was taken!");
PRINT (BUFF,-38,0);
QUIT(O);

<< WISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE END! >>
END;

Users of FORTRAN have the ability to enable traps selectively by
using the "ON error condition CALL subroutine" statement [17].
unique procedures. The trap mechanism in FORTRAN very flexible; it
does not come free, though. In order to separate integer overflows
from divide by zero, the FORTRAN run-time library plays a few
games. Using the ON statement results in a named COMMON called
TRAPCOM' being established on your behalf. When an integer over­
flow occurs, the computer transfers control not directly to your
routine, but to a library routine. This library routine then
determines the type of hardware trap that was invoked and accesses
TRAPCOM' to obtain the plabel for your routine. Once the library
has a valid plabel, it transfers control to your error handling
routine by placing the plabel on the top of the stack and perform­
ing a PCAL O.

A user may enable traps for integer overflows and integer divide
by zero by using the following FORTRAN stetements:

ON INTEGER OVERFLOW CALL OVERFLOW ROUTINE
ON INTEGER DIV 0 CALL DIVIDEO ROUTINE

HP sites that are heavy users of COBOL have a completely dif­
ferent story on their hands. COBOL deliberately calls a routine
called C'TRAP to enable SELECTED traps. This was done because when
a field is MOVEd in a COBOL program, the COBOL library handles any
type conversion, that is necessary. The traps that C'TRAP enables
are:

Integer divide by O
Integer overflow
Decimal overflow

15

Decimal divide by O
Invalid Decimal digit
Invalid ASCII digit

One annoying feature of COBOL programs is that when an invalid
ASCII character is detected while moving a character field to a
numeric field, the COBOL run-time library attempts to "fixup" the
mistake (this was done to be compatible with users who read data
generated on punched cards, using overpunching). You may change
the traps that are enabled so the program will not attempt a fixup
but will instead abort, by using the following SPL routines:[l8]

$control subprogram
begin
intrinsic quit,xaritrap,print;

procedure snapshot(trapnum);
integer trapnum;
option external;

procedure c•trap(trap•type);
value trap•type;
integer trap•type;
begin
integer xreg=x,

deltap=q-2,
status=q-1,
scount=q-5,
s;

logical save•op;
integer array bufw(0:39);
byte array buf(*)=bufw;

!This is a variation of the
!procedure found in the
!COMMUNICATOR 3000
!Version G.01.04 of MPE/V
!(T-Delta-4 MIT)
!by Dennis Handly and
!John Pavone
! page 3-11 thru 3-19

define cvdb'opcode = ((save'op land %177617) = %20604)#;

save'op:=xreg;
if trap•type = %20 then

begin
move bufw:="seqmentoox
return 1;
end;

integer overflow

...
I

if trap•type = %400 then ! decimal overflow
begin
status.(4:2):=1; set CARRY
tos:=if cvdb'opcode then

save'op.(11:2) + %31403
else save'op.(10:2)&LSL(l) + %31401;

16

get SDEC
get SDEC

assemble(xeq O); do stacked exit
end;

if trap•type = %2 then ! integer divide by zero
begin
status. (4:2) :=l; l set CARRY
return l;
end;

if trap'type = %20000 then ! decimal divide by zero
begin
status.(4:2):=1;
if scount=l then

end;

! set CARRY
return 4 else if < then return 2

else return 6;

snapshot(trap'type);
move bufw := "Internal program error, snapshot was taken!";
print (bufw,-43,0);

quit(trap'type);

end;

17

procedure coboltrap;
begin
integer dummy;

<<aborts on illegal decimal or ascii digit after snapshotting>>

xaritrap(%37777,@c•trap,dummy,dummy);
end;

end.
Bounds violations

Bounds violations, bad stack markers and invalid instructions may
be trapped by the UNDOCUMENTED user-callable procedure XCODETRAP.
This routine, which has been around for a number of years, is used
by DEBUG and, believe it or not, COBOL! The calling sequence for
this intrinsic is:

I IV
XCODETRAP(newplabel,oldplabel)

newplabel

oldplabel

External type plabel of the application's trap
procedure. plabel = o will disable
the trap.

Previous external type plabel of the
application's trap procedure. If the trap was
disabled, o is returned.

NOTE: XCODETRAP is not in the intrinsic SPLINTR file,
therefore do not try to declare it as an intrinsic
or your programs will not compile.

FORTRAN users may enable this routine by using the following code:

EXTERNAL BOUNDS ROUTINE
CALL XCODETRAP(BOUNDS ROUTINE,IOLDPLABEL)

18

1~
i
I

I"

Currently users of other languages such as COBOL must use an SPL
routine to enable the trap, such as the following:

<< Since we can not declare XCODETRAP as an intrinsic
we must declare it here so the SPL compiler knows
that it exists. >>

PROCEDURE XCODETRAP(NEWLABEL,OLDLABEL);
VALUE NEWLABEL;
INTEGER NEWLABEL,OLDLABEL;
OPTION EXTERNAL;

PROCEDURE ARMTRAP;
BEGIN

INTEGER OLDMASK,OLDPLABEL;
XCODETRAP(@BOUNDSVIOLATION,OLDPLABEL);

END;

Example of the bounds violation trap routine:

PROCEDURE BOUNDSVIOLATION;
BEGIN

ARRAY BUFF(0:40);
BYTE ARRAY STRING(*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT(O);

MOVE STRING:= ("BOUNDS VIOLATION! SNAPSHOT was taken!");
PRINT (BUFF,-40,0);
QUIT(O);

<< WISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE END! >>
END;

Run-time library errors

With the exception of SPL, all of the languages on the HP3000 use
run-time libraries. If an error is detected while in the library
the user has the option to request transfer to a trap handling
routine, rather than to abort the program. The calling sequence
for this routine is:

19

IV I
XLIBTRAP(newplabel,oldplabel)

newplabel External type plabel of the application's trap
procedure. plabel = o will disable
the trap.

oldplabel Previous external type plabel
that was in effect. If the trap was
disabled, 0 is returned.

FORTRAN users may enable this trap by using the statements:

ON INTERNAL ERROR CALL LIBRARY ROUTINE
ON FORMAT ERROR CALL LIBRARY ROUTINE

Currently users of other languages such as COBOL must use an SPL
routine, such as the following, to enable the trap.

PROCEDURE ARMLIBTRAP;
BEGIN

INTRINSIC XLIBTRAP;
INTEGER OLDMASK,OLDPLABEL;
XLIBTRAP(@LIBRARYROUTINE,OLDPLABEL);

END;

An example of a library trap routine:

PROCEDURE LIBRARYROUTINE;
BEGIN

ARRAY BUFF(0:40);
BYTE ARRAY STRING(*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT(O);
MOVE STRING:= ("LIBRARY error! SNAPSHOT was taken!");
PRINT (BUFF,-36,0);
QUIT(O);

<< WISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE END! >>
END;

MPE intrinsic errors

Almost any abnormal condition which occurs within the MPE intrin­
sics can be detected by using system traps (XSYSTRAP). The calling
sequence for this intrinsic is:

20

i
1 •

I

I'

IV I
XSYSTRAP(newplabel,oldplabel)

newplabel

oldplabel

External type plabel of the application's trap
procedure. plabel = o will disable
the trap.

Previous external type plabel
that was in effect. If the trap was
disabled, o is returned.

FORTRAN users may enable this trap by using the statement:

ON SYSTEM ERROR CALL SYSTEM ROUTINE

Currently users of other languages such as COBOL must use an SPL
routine to enable the trap. An example of an SPL enabling routine
is:

PROCEDURE ARMSYSTRAP;
BEGIN

INTRINSIC XS~STRAP;
INTEGER OLDMASK,OLDPLABEL;
XSYSTRAP(@SYSTEMROUTINE,OLDPLABEL);

END;

An example of system trap routine:

PROCEDURE SYSTEMROUTINE;
BEGIN

ARRAY BUFF(0:40);
BYTE ARRAY STRING(*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT(O);
MOVE STRING:= ("SYSTEM error! SNAPSHOT was taken!");
PRINT (BUFF,-36,0);
QUIT(O);

<< WISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE END! >>
END;

A bug! Catch it!

When an error occurs, the hardware transfers control to the cor­
rect trap, if it was enabled, otherwise the computer enters stan­
dard H-P abort routines. The user-written error handling routine
may be in the program, the group SL, or the public SL. User traps

21

are usable from all languages currently available for the HP3000;
however there are some special considerations for COBOL and RPG
programs [18].

The error handling routines can be written so that they either
attempt to correct the problem (COBOL does this with Invalid ASCII
digits) or abort the program. Regardless of which is done, be sure
that as much information as possible about the cause of the error
is written to a separate error log, so that the bug can be easily
corrected.

IV. KILLING THE BUG

Once the process information has been saved or printed, we can
abort the program (if desired) in a manner I call STRUCTURED
PROGRAM FAILURES. This means that we abort the program in a clear- I '

ly defined and orderly manner. For instance our abort routine
switches the terminal back to character mode, prints a standard
abort message on the user's terminal, displays the procedure name
in which the bug was detected, then prints an abort message on the
operator console (so special program recovery steps can be taken if
necessary). A message is sent to any user who is logged on to the
programming account, the JCW CIERROR is set to 976 (program abort),
JCW is set to FATAL, and finally the program calls QUIT to abort
the whole process tree (if any).

22

Here is an example of a FORTRAN abort procedure, which illustrates
the above:

$CONTROL MAP,LOCATION,LABEL,STAT
c
C F SUDDEN DEATH: The purpose of this routine is to provide

a means of a structured program failure
similiar to HP's SUDDEN DEATH intrinsic.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

This routine DOES NOT halt the machine or
cause SF's, it does abort the process
tree!

There are two passed variables for this
routine, IERR and PROCEDURE.
The IERR contains the programmer­
assigned step number, which is included
in the SNAPSHOT and printed out when the
program aborts.

The value of PROCEDURE is a character
string which is printed on the user's
screen, and the operator console.
A corresponding JCW name is checked and

decremented. If the resulting JCW is
greater then zero, this routine will
return to the calling process.

In addition, this procedure checks for a
JCW called DEBUG; if it exists, and > O,

the the procedure calls, the H-P
program debugger.

written by Dennis Heidner

SUBROUTINE F SUDDEN DEATH(IERR,PROCEDURE)
CHARACTER PROCEDURE*l6,COMIMAGE*80,JCWNAME*16
INTEGER IERR,JCWVALUE
LOGICAL LTEXT(40),MUST STOP,LJCWVALUE
EQUIVALENCE (LTEXT(l),COMIMAGE),(JCWVALUE,LJCWVALUE)
SYSTEM INTRINSIC COMMAND,PRINT,PUTJCW,FINDJCW,DEBUG
SYSTEM INTRINSIC STACKDUMP,QUITPROG

c Take a picture of the data stack
c

CALL SNAPSHOT(IERR)
c

DO 100 LENGTH OF STRING=l,16
IF(PROCEDURE[LENGTH OF STRING:l].EQ. 11 ; 11) GOTO 200

23

IF(PROCEDURE[LENGTH OF STRING:l).EQ. 11 11) GOTO 200
100 CONTINUE

LENGTH OF STRING = 16
c
C CHECK THE JCW, WHICH CORRESPONDS TO THE PROCEDURE NAME.
c
200 IF(LENGTH OF STRING .GT. 1) GOTO 300

PROCEDURE = "NULL"
LENGTH OF STRING = 5

c
300 JCWNAME = PROCEDURE[l:LENGTH OF STRING - l]
c
C DOES THE JCW EXIST?
c

c

MUST STOP = .TRUE.
CALL FINDJCW(JCWNAME, LJCWVALUE, !STATUS)
IF(ISTATUS.NE.O) GOTO 500

C DECREMENT THE JCW VALUE
c

c

JCW VALUE = JCW VALUE - 1
CALL PUTJCW (JCWNAME, LJCWVALUE, !STATUS)
IF(JCW VALUE .GT. 0) MUST STOP = .FALSE.

C DISPLAY THE ABORT MESSAGE
c
500 COMIMAGE="Program error in procedure: "

COMIMAGE[30:LENGTH OF STRING] =
& PROCEDURE[l:LENGTH OF STRING]

CALL PRINT(LTEXT,-50,%0)
c
C NOTIFY THE SYSTEM OPERATOR .•.•
c

c

COMIMAGE="TELLOP Program aborting in procedure: 11

COMIMAGE[40:LENGTH OF STRING] =
& PROCEDURE[l:LENGTH OF STRING)

COMIMAGE[40+LENGTH OF STRING+l:l]=%15C
CALL COMMAND(COMIMAGE, ICOMERR,IPARM)

C DO WE DROP INTO DEBUG FIRST?
c

c
c
c

JCWNAME="DEBUG"
CALL FINDJCW(JCWNAME, LJCWVALUE, !STATUS)
IF((ISTATUS.NE.O) .OR. (JCWVALUE .LE. 0)) GOTO 1000
CALL DEBUG

SET THE JCW'S CIERROR TO 976 AND JCW TO FATAL

24

I
I

1000 JCWNAME="CIERROR"
CALL PUTJCW(JCWNAME,%1720L,ISTATUS)

c
JCWNAME= 11JCW11

CALL PUTJCW(JCWNAME,%100001L,ISTATUS)
c
C SAY YOUR PRAYERS •••••
c

IF (MUST STOP) CALL QUITPROG(IERR)
RETURN
END

After the bug has been detected or reported, make sure that you
use sound software maintenance practices and keep a log of the
bugs, the work-arounds, and the fixes. This will enable you to
provide better estimates of your future software mainenance costs,
estimate number of bugs remaining, provide an indispensible diary
for others who might later maintain the software and perhaps most
important, provide an experience base so that future software
products can be clean and free of similiar bugs.

V. EPITAPH

Although it is impossible to eliminate all bugs from software, it
is possible to design the software so that it is easy to maintain
and self-diagnosing. This paper has covered several techniques,
which if incorporated will help reduce the cost of software
maintenance.

rR I P ""i
r.T. BAI>

' (,,.,

A BUG FOR
ALL SU\~>IS
1111110 LCAIEI)

TO
E.NTERTAIN

'

25

VI. REFERENCES

[l] Martin, James and McClure, Carma, "Software Maintenance: The
Problem and Its Solutions" (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983). p. 4.

[2] Martin, James and McClure, Carma, "Software Maintenance: The
Problem and Its Solutions" (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983).

[3] Glass, Robert L. and Noiseux, Ronald A. "Software Maintenace
Guidebook" (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1979).

[4] Myers, Glenford J., "Software Reliability: Principles and
Practices" (New York, NY: John Wiley & Sons, Inc., 197?)

[5] Coats, Dan and McCaffrey,Michael, "Customer Satisfaction
through Quality Software", Anaheim PROCEEDINGS, HPIUG 1984,
p. 7.

[6] VTEST available from: TYMLABS
211 East 7th Street
Austin, Texas 78701
(512) 478-0611

[7] Contributed Library Tape, Available from:
HP3000 International Users Group
(INTEREX)
2570 El Camino Real West
4th Floor
Mountain View, CA 94040

[8] ADPAN & SNAPHOT, Anaheim Swap Tape, Available from INTEREX.
Update on the CO CSL tape.

[9] Russell, Marguerite (ed.) "The IMAGE/3000 Handbook", (Se
(Seattle, WA: WORDWARE, 1984). p. 283.

[10] ibid, p. 283

[11] Green, Robert M., "Auditing with IMAGE Transaction Logging",
San Antonio PROCEEDINGS, HPIUG, 1982

[12] Heidner, Dennis L., "Transaction Logging and Its Uses"
San Antonio PROCEEDINGS, HPIUG, 1982

26

[13] Green, Robert M. and Heidner, Dennis L., "Transaction Logging
Tips", Montreal PROCEEDINGS, HPIUG 1983

[14] DBAUDIT, Available from: Robelle Consulting Ltd.
8648 Armstrong Road, RR#6
Langley, B.C. V3A 4P9
Canada (604)-856-3838

LOGLIST, Available from: INTEREX (HPIUG)

[15] Hewlett=Packard, "Intrinsics Reference Manual", Part number
30000-90010

[16] ibid. p. 2-199.

[17] Hewlett-Packard, "FORTRAN Reference Manual", Part
number: 30000-90040, p. 4-21 thru p. 4-26.

[18] Hewlett-Packard, "Communicator 3000 Version G.01.04
of MPE/V (T-Delta-4 MIT) pages 3-11 thru 3-19.

27

IJ

I(
I

I
I

i"

LESSONS ON USING BPSQL

Dr. John Hinrichsen
Kirke-Van Orsdel, Inc.

400 Locust
Des Moines, Iowa 50398

Relational database systems have been recognized as having
great potential benefits, and nearly every database vendor
is rushing a relational system to market. H.P.'s relational
database, HPSQL, has been available for a year, and the
first application systems using this new technology have
been completed.

This paper reports on the lessons learned while developing
an application using HPSQL. Knowing these lessons will
hopefully allow you to avoid some pitfalls in your first use
of HPSQL. The most difficult lesson is that HPSQL requires
a different mental orientation. Since the data manipulation
language SQL is nonprocedural, the programs have a decidedly
different and simpler structure. With SQL one specifies
what data is needed and not how to obtain it; HPSQL decides
the best procedure for accessing the data.

There has been considerable discussion about the performance
of relational database systems and whether they are truly
suitable for production environments. While there is
certainly a cost in resource usage for the many services
that HPSQL provides, many complaints of poor performance are
actually a result of improper use of the relational
technology. Several lessons concern techniques that must be
followed in order not to guarantee poor performance.

!nt;,,rQquct;,,tQn.

over the past several years a major shift of opinion has
taken place within data processing. The debate has shifted
from discussing the relative merits of the different data
base architectures (relational, network, and hierarchical)
to almost universal recognition that relational data base
systems offer irrefutable logical advantages. There is a
consensus that the relational characteristics are highly
desirable; in the computer magazines nearly all ads for
data base management systems (DBMS's) proclaim relational or
relational-like functions. There is even general agreement
that a relational DBMS should support the Structured Query
Language (SQL). The American National Standards Institute

Lessons on Using HPSQL 1

(ANSI) has recently published a standard for SQL which
largely confirms the de facto standard set by IBM's DB2. In
all, there has been a tremendous shift of opinion in favor
of relational DBMS's.

Although there is general agreement on what a relational
DBMS should be and on the desirability of such systems,
there has been a hesitancy to use relational DBMS's for
actual production applications. Questions about the perfor­
mance of existing implementations are by far the major
reason. A secondary consideration is the lack of referen­
tial integrity in most of the present relational implementa­
tions • ..,. Thus the popular attitude is: we want relational but
it is not yet technically feasible for high-volume produc-

1

,

tion applications. There is some dividing line which '
partitions applications into those which can benefit from
the advantages of the relational technology and those, which
for efficiency considerations, should be implemented in
another technology.

Where then does HP's new relational DBMS fit into the
scheme? Does HPSQL satisfy the current requirements to be
relational, and what are its performance limits? What are
the strengths and weaknesses of HPSQL?

Before we begin, I will set forth my personal biases. I
believe that relational, SQL-based DBMS's will become as
fundamental in data processing in the future as COBOL is
today. There is really no other choice. Performance and
resource usage is always a concern during a shift to a
higher level of programming, but these concerns will lose
relevance as more powerful and relatively cheaper computers
become available. I feel that eventual use of a relational
DBMS is inevitable.

Ad;v:anta,g~S!. ot __ R~!ati.ona,1=SYS!!ifill!§

The fundamental objective of relational data base systems
was to provide a distinct separation between the logical and
physical aspects of data management. In 1970 when
relational concepts were being formulated, large application
systems had been implemented using the first generation of
(non-relational) DBMS's and it was becoming clear that a
major weakness of such technologies was an overly rigid data
structure. Program maintenance was complex and costly since
changes were propagated via the data structure to multiple
application programs.

Recently
satisfy
October

E.F. Codd presented twelve rules that a DBMS must
in order to be "fully relational" (Computerworld
14-21, 1985). The article was timely since the

Lessons on Using HPSQL 2

definition and properties of relational DBMS's had become
obscured, and also vendors had begun to promote heavily the
report writers, application generators, etc., associated
with their products while deemphasizing data management
capabilities. Codd's twelve rules serve to reveal the
properties that any DBMS needs for good data management and
to indicate the inherent weaknesses of non-relational
DBMS's.

HPSQ:L '.s. AdperE!.nc.e .to. tile $t,a;nda.rd

HPSQL conforms quite closely to the standard for SQL. Its
major failing is lack of support for subselect statements.
Most clauses using subselect statements can be rephrased in
an alternate way, but it would be very convenient to be able
to extract data and load a table in a single SQL statement:

INSERT INTO MIS=EMPLOYEES
SELECT *

FROM EMPLOYEES
WHERE EMPLOYEE_DEPT ='MIS'~

I have been informed that a later release of HPSQL may
support subselects.

Pl:lone" Call .. AnAlYsj\,a .. S.xstem

Kirke-Van Orsdel, Inc. (KVI) is a third party insurance
administrator. Primarily, KVI administers and markets group
insurance to members of associations. The risk is carried
by one of the full-service insurance companies. Thus, KVI
has to satisfy multiple parties: the associations and their
members, the carrier insurance companies, and the state
regulatory commissions. Because of the many special cases
and rapid changes, KVI has a strong interest in the flexi­
bility of relational systems.

The insurance business is also data intensive, and KVI
currently has 5-gigabytes of disc storage. There is the on­
line activity of answering insureds' questions, issuing new
applications, and processing claims, as well as the heavy
batch processing of billings and remittances. Much of the
customer service is done by phone, and KVI handles approxi­
mately 6,000 calls per day. As a prototype application for
HPSQL, we decided to develop a Phone-Usage System.

A Telamon PBX Engine was purchased in order to feed call
detail data from the KVI ROLM phone system into the HP3000.
For each call this data includes the date, time, duration,
trunk, extension number, and number dialed. Optionally, an

Lessons on Using HPSQL 3

account number can be assigned to the call.
ments for the phone-usage system were:

The require-

A) Contain the configuration of the PBX system
1) Trunks
2) Extensions
3) Accounts
4) Equipment inventory and location
5) Employees and departments

B) Compute management information
1) Exceptionally long or expensive calls ;
2) Summaries by trunks
3) Summaries by accounts
4) Summaries by area codes and geographic distribu- I·~

ti on
5) Summaries by extension
6) Summaries by department

C) Satisfy ad hoc requests

Thus the phone-usage system consists of three parts with
distinctly different characteristics. Part A) is relatively
static with a moderate number of entries, part B) entails
statistical information which requires extensive processing
to generate, and part C) is satisfying requests normally
from detail entries. As previously mentioned, the volume of
call detail records is approximately 6,000 per day. The
intent of the system was to provide timely on-line informa­
tion, but there must also be the capability to furnish
printed copies of the reports.

We feel that the diverse processing requirements made the
phone-usage system a good test for HPSQL. It is an
excellent test of the reporting capabilities of HPSQL and of
the batch inserting abilities. It is not a demanding test
of the on-line updating power of HPSQL.

Lessons on Using HPSQL 4

l,1·

To start the development of the prototype application, I
normalized the data to obtain the following logical data
base design:

ACCOUNTS

TRUNKS AREA CODES

DEPTS EMP-EXTS EMPLOYEES

PHONES CUBICLES

Each rectangle represents a relational table in the data
base, and each arrow represents an external key referencing
another table. Phones is a table describing the physical
telephone devices, and Cubicles describes locations within
the company offices by floor, quadrant of the building, and
unique number. All arrows represent one-to-many type rela­
tionships. Notice that one employee may have several
extension numbers while other employees may share a single
extension number.

The maintenance of the tables describing the phone system
configuration is done using one form per table. One can
page through the table rows in either forward or backward
direction and can indicate which rows are to be added,
modified, or deleted. The paging is accomplished by means
of an SQL SELECT statement for the forward direction and
another SELECT statement for the backward direction. These
SELECT statements can derive the next or previous screen
based on the last or first row on the current screen. These
tables contain only a few hundred rows, and I had no
difficulty with this portion of the system.

Using SQL, each report is defined by a single SELECT state­
ment. The application program is responsible for deciding
which SELECT statement to use and setting the values of any
host variable, issuing the SELECT statement, fetching the
qualifying rows, and formating the output display. In the
present standard for SQL, the qualifying rows can be fetched
only once and in ascending order without reissuing the
SELECT command. This is adequate for paging forwards
through the report but not for paging backwards.

Lessons on Using HPSQL 5

In our application some reports require considerable
processing to generate so we do not want to do the
processing more than once. Thus, a relative record file was
used to store the report while the terminal operator was
paging through it. To generate the ten reports a COBOL
program was written containing these segments:

1) A list of SELECT statements defining the
different reports.

2) For each report, code to fetch the qualifying
rows, to format the report lines, and to write
them to the relative record file.

3) Generalized procedures for reading records from
the relative record file and displaying them as
lines in a screen format, and for paging and
scrolling forwards and backwards. I tested
storing the report lines in working storage
instead of a relative record file, but I could
detect no material difference in performance.
A major reduction of effort is realized by
using SQL, since all the file accesses,
matching of records, grouping, and sorting is
condensed into a single SQL SELECT.

,:r:q,ning ... fQ:t.:.P~.rf.ox;:ma,,nc~

COBOL programs were easily written to load the call records
into the data base and generate reports as detailed above.
However, response time was several minutes for some of the
summary reports. A little thought revealed why this was the
case. If you consider the procedure necessary to generate a
summary report by trunk for a given day, for example, all
6,000 call entries for that date have to be retrieved,
sorted by trunk, summarized by trunk, and finally displayed.
The simple SELECT statement masks a great deal of
processing. It was decided that 20 seconds would be ade­
quate response time for the reports we were generating.
Clearly, if this goal were to be reached it would be
necessary to eliminate the on-line sorting of an entire
day's call records. It would be necessary to store daily
summarizations by account, by trunk, by area code, and by

Lessons on Using HPSQL 6

''

extension. Additional tables were added to the logical data
base design:

ACCOUNTS

lRUNKS lRNKSUMS AREASUMS AREAOODES

DEPTS EMP-EXTS EMPLOYEES

PHONES CUBICLES

Because of the data independence offered by the relational
system, these changes were easy to make: I entered the
CREATE TABLE statements and altered the SELECT statements in
the program to derive the reports from the summary tables
instead of the detail calls table.

The load program, which is run nightly to load the day's
data into the data base, was enhanced to first insert the
detail records into the Calls table and then to execute
SELECT statements to summarize the call data and insert the
results into the summary tables. Four indexes were placed
on the CALLS table based on extension, trunk, area code, and
account. After these changes the objective for on-line
response time was met, but the load procedures took several
hours. In addition, the operations staff complained that
the load program used an excessive amount of CPU cycles and
impacted other jobs running on the computer. Since KVI was
already very short of processing resources, this was
unacceptable.

There was no question that the load program had to do a lot
of work: insert the 6,000 call rows, maintain 4 indexes, and
then extract the 6,000 call rows 4 different times and
perform sorts and summarizations. In order to satisfy the

Lessons on Using HPSQL 7

system requirements for the phone-usage system all this work
needed to be done, but it needed to be done in a more
efficient way. There were three ways in which the load
procedures could be shortened:

1) The HPSQL Load utility can load a table in 1/3 the
time a COBOL program requires.

2) Sorting and summarizing call information can be
done much more efficiently using sequential files
rather than extracting all the data from the HPSQL
data base.

3) Instead of maintaining indexes on the Calls table
to locate the most expensive and longest calls, the
top 40 in each category per day could be stored
separately.

Seven short COBOL programs were written to implement these
loading techniques: one program which extracts trunk and
area code information out of the data base into working
storage and then computes the cost and state-called for each
call record, and six programs which perform internal sorts
on the reformatted call records and summarize them by
extension, trunk, area code, account, cost, and duration.
The output from each of the seven programs is inserted into
the data base by the HPSQL Load utility. With these new
techniques the load procedure takes about 20 minutes to run.

The final data base design contained two additional tables
to contain the longest and most expensive calls for each
day:

ACCOUNTS

DURSUMS COSTSUMS

TRUNKS TRNKSUMS AREASUMS AREA CODES

DEPTS EMP-EXTS EMPLOYEES

PHONES CUBICLES

Lessons on Using HPSQL 8

j,

I

With SQL one specifies what data is sought, not how to
retrieve it. The HPSQL software is responsible for deter­
mining the optimal access route. Until I learned certain
tricks, I got unpredictable response times from queries. One
request would take seconds while a seemingly equivalent
request might take minutes. By examining the selected rows
it was evident that in one case an index was being used,
while in the other a sweep was being used to retrieve the
qualifying rows. A slightly different formulation of the
query was causing HPSQL to choose a different access route.

The HPSQL manuals give no guidance on rules one must follow
in order to have data accesses use indexes, since such rules
are subject to change. The most basic rule is that if you
wish to have an SQL command use an index on columns
(COL1,COL2,COL3), you should qualify the index columns in
their order in the index. For example:

SELECT *
FROM TABLE
WHERE COLl = 47

AND COL2 = 'ABC'
AND COL3 >= 0;

I can give examples in which the order in which the columns
appear changes the access route.

Most of my problems where when one of the index columns was
defined to be of type DECIMAL(p,s). I found:

a) p must be odd,
b) the COBOL picture must be exactly S9(p-s)V9(s)

COMP-3,
c) literal numbers must contain explicit decimal

points.
If any of these conditions is violated, the index will never
be used, and the request will be processed by doing a sweep.

Properly speaking, the rows of a table are unordered and one
cannot predict the order in which they will be retrieved by
a SELECT statement unless an ORDER BY clause is present. To
correctly use SQL one should use an ORDER BY clause whenever
rows are to be presented in a particular sequence. The
ORDER BY clause, however, can cause much overhead; all
qualifying rows are extracted and then sorted. For example,
if you wished to display the call detail records in time
sequence, the statement

SELECT *
FROM CALLS
WHERE CALL DATE = 870601.

AND CALL~TIME >= 1000
ORDER BY CALL=TIME;

Lessons on Using HPSQL 9

would cause thousands of rows to be sorted (all entries for
calls made after 10 A.M. on the given day). The response
would be inadequate for on-line displays. However, if there
were an index on the columns (CALL=DATE, CALL_TIME), then
the statement

SELECT *
FROM CALLS
WHERE CALL_DATE = 870601.

AND CALL~TIME >= 1000~
would retrieve the rows using the index, and eliminate the
sort. This would be much more efficient if you only wished
to see a few entries. (A service request has been submitted
to HP to have HPSQL use indexes to satisfy ORDER BY clauses
where possible). Although the second approa.ch is more
efficient, changing the indexes on the CALL table may alter
the order in which the lines are retrieved. In the Phone­
Usage System I elected to use the second approach and elimi­
nate sorts in the on-line programs.

HPSQL always reads indexes in ascending order, and has no
capability of defining descending indexes. Thus there is no
way to retrieve rows in a descending order without
performing a sort. For the displays of the most costly and
longest calls, which I wanted to appear in descending order,
I retrieved the rows from the data base in ascending order
and then reversed the order in formatting the terminal
screen.

HPSQL inserts new rows at the end of files so as you add and
delete rows files tend to fill up. Periodically it is
necessary to unload and reload the data base in order to
recover unused space. This is done by using the HPSQL
Unload and Load utilities to unload each table individually
and reload it. It takes approximately 90 minutes wall time
to reload 70,000 rows with 10 columns. I use this reorgani­
zation procedure to drop out-of-date data by selectively
unloading just the current data.

What have I learned from developing this prototype system
using HPSQL? There are several general principles which may
help you on your first application.

1) Program coding is definitely simpler and more concise
with SQL. You need to code only high-level statements~
the HPSQL precompiler converts them to technical COBOL
CALL statements.

Lessons on Using HPSQL 10

I'

2) You must check that HPSQL is making optimal use of the
available indexes. Slight differences in syntax can
cause the indexes not to be used. HPSQL will use the
indexes correctly if you observe a few rules.

3) Don't be misled by the conciseness of the
ments. Consider the amount of processing
statements require and be reasonable. Do
HPSQL to perform miracles.

SQL state­
that your

not expect

4) For large applications it is not sufficient to just
normalize the data to design the data base. This is the
starting point, but consideration also needs to be given
to how the data will be used. In particular, management
information systems will generally require summarized
data to be stored.

5) HPSQL requires more system resources than does the use
of flat files. There is a cost for the benefits of
transaction logging, data independence, nonprocedural
statements, etc. Perhaps the current release of HPSQL
uses 5 to 10 times the CPU cycles compared to a tuned
system using flat files. This ratio should decrease
with future software releases and with the Spectrum
Series hardware.

6) The HPSQL Load utility is several times more efficient
than issuing INSERT commands from a COBOL program and
should be preferred for data loading.

7) The learning curve for SQL will be longer than you
expect. Basically, there are just the four commands;
INSERT, DELETE, UPDATE, AND SELECT; but you will be
changing from procedural to nonprocedural statements.
You will need to rethink your whole approach to program
design.

8) For your first HPSQL development it is important to
choose an application with moderate amounts of data and
reasonable processing requirements. This will allow you
to learn to use HPSQL without having to be overly
concerned with efficiency and resource usage.

9) HPSQL's potential for improving productivity is so great
that I consider its use to be inevitable (or perhaps the
use of some other relational data base). But at this
time one needs to be selective in the use of HPSQL as it
is not yet suitable for all applications. This situa­
tion will hopefully change since several other vendors
are now endorsing their relational DBMS's for general
production use.

Lessons on Using HPSQL 11

10) HPSQL is still an incomplete data base management in
that the full complement of integrated application
generators, report writers, and utility programs is not
yet available. But HPSQL provides a solid base for data
management and will serve as the foundation on which to
build these future enhancements.

$wuma~Y

HPSQL conforms closely to the standard for relational data
base management systems. With proper use, HPSQL can provide
large gains in productivity on small-to-medium size applica­
tions. Caution should be used in attempting to implement
large applications using HPSQL, since its performance is not
yet as high as that of traditional technologies. You should
begin introducing HPSQL into your company as it is the data
base technology of the future.

Lessons on Using HPSQL 12

NETWORK MANAGEMENT

Betty Hoo
Hewlett Packard

19420 Homestead Road
Cupertino, CA 9 5 0 14

What is a Network Management system and why is it important?

To help you understand why Network Management is important, let's imagine the nation's
freeways and your city street system as a network. Instead of moving data between two
points in a network of computer systems, we are transporting ourselves between a start
point and a destination. You can probably picture what would happen if there were no
rules of the road, street lights, or signs. This particular network would be in a chaos.

Well, in the same manner that rules of the road and street lights are mechanisms to enforce
some degree of control into our freeway and street system, Network Management helps us
control a network of computer systems. I will discuss how the need for Network
Management evolved and what constitutes a Network Management system as proposed by
the International Standards Organization (ISO). With the above scenario in mind, let's look
at some of the factors influencing the need for Network Management.

• AT & T Breakup

Since the breakup of the Bell System several years ago, you no longer have one
vendor who can be held responsible for the connection from point A to point
B. You need a way to manage connections that could involve multiple
vendors.

• Centralized Control of Distributed Systems

A historical analysis shows information processing has evolved through three
phases. The first phase, centralized computing, is characterized by the
concentration of all processing in one machine located at the company
Datacenter. The second phase, distributed computing, spread the processing
power out to the end users. The proliferation of personal computers over the
last several years is an extreme example of distributed computing. The third
phase, centralized control of distributed systems, is now in its infancy.
Network Management is a tool to realize the benefits of the first two
phases--allow MIS to maintain centralized control and still give end users the
processing power of distributed systems.

• Network Growth

Networks are growing in size and complexity. As companies grow and the
price of computing continues to go down, more and more companies can afford
departmental computer systems. Networks are growing in complexity as end
users look beyond their own computer system and want to tap the resources
available across the network. More often than not, accessing this information
can cross multiple vendors' equipment and multiple network link technologies,
such as X. 25, Ethernet, and 802. 3 LANs.

Network Management

• Networks as a Company Asset

Networks are regarded as company assets because information access is crucial
to making timely business decisions. It's not enough now to know that the
information exists, but where to find it and how fast can the information be
accessed is also critical. There is a direct relationship between information
access, timely business decisions, and bottom line profits as information is used
as a competitive advantage.

• Network Management Saves Money

Lastly, Network Management saves money. Maximizing network uptime helps
protect a company's investment, not only in hardware and software, but also in
personnel and the link between sites. There are tangible costs, such as the
dollar loss, that can be associated with network down time. More costly can be
intangible losses, such as lost business opportunities, due to a lack of or
incorrect information to run a business.

These are just some of the reasons why there is a need for Network Management. Let's
look at how Network Management will address these needs.

Network Management's objective is to provide medium to large network customers with
the tools to create and manage private data networks through all phases of the network
life cycle. I will be describing each of the specific "tools" that have been proposed by the
International Standards Organization (ISO) as necessary components of a Network
Management system. I will also describe the network life cycle and how these tools are
used in its various stages.

What makes up a Network Management system? A Network Management system, as
proposed by the International Standards Organization, consists of tool sets that can be
broken into five categories:

Fault Management: This tool set provides the capabilities to monitor, diagnose,
and correct network problems in real-time.

Performance Management:
performance statistics to
performance levels.

This tool set provides the capability to gather
be used for maintaining consistent network

Accounting Management: This tool set provides the capability for tracking
network usage. These tools are also used for offline problem tracking and
maintaining a network inventory.

Configuration Management: This tool set provides the capabilities for
centralized management and configuration of remote systems on the network.

Security Management: This tool set provides the capabilities to protect network
resources.

Let's look at the tools available in each of these categories.

Network Management 2

Fault Management tools help ensure network availability through real-time isolation and
resolution of network problems. This tool set can be used to monitor the network and
detect, diagnose, and log network problems.

For example, a network error log can be used for troubleshooting. Problem detection tools
can include visual or audible operator alarm messages to indicate that an abnormal
network condition exists. These messages do not necessarily mean a network component
failed but the component is not in its regular operating state. The "failed" component may
be a system taken down for preventive maintenance. Path tracing is another diagnostic
tool used to isolate network problems. Path tracing can be used to follow the flow of data
from its source, through the network, and to its final destination. Through a combination
of these tools, network downtime and the disruption to a business' normal operation can be
minimized.

Performance Management tools are used to gather statistics on factors that can influence
the performance level of a network. These statistics can be gathered over a user-defined
time period. Performance Management tools also allow real-time monitoring of
performance data. Performance data that can be monitored include response time and
resource utilization. Response time is an indication of the time for a command to travel
through the network, be processed, and a result returned to the user. Resource utilization
statistics can help identify throughput problems or bottlenecks in the network.

Real-time monitoring of network performance data allows operations personnel to take
immediate corrective action, such as rerouting data to balance the network load.
Performance data collected over time can be used for trend analysis and capacity planning.
Performance Management tools help avoid fluctuating network loads to maintain a
consistent level of network performance.

Accounting Management tools are used to track usage of network resources. Accounting
Management tools can also be used for offline problem tracking and for maintaining an
inventory of the network configuration. After defining a cost for the various components
of a network, network usage can then be tracked for departmental chargeback.

Departmental chargeback based on connect time is an example of an Accounting
Management tool that has been in existence for many years. Service bureaus typically
charge customers based on this method. In this case, the charge is assessed for the actual
time the customer is connected to a system on the network, whether or not the customer is
actively using the system.

Configuration Management tools help provide continuous network operation through
centralized control, configuration, and management of remote network resources. These
tools are also used to produce tables containing network configuration data, such as device
numbers, device types, and physical addresses. The ability to troubleshoot a remote system
on the network is one of the Configuration Management tools that can help provide for
continuous network operation.

A situation where Configuration Management tools would be useful is a large company
with branch locations distributed across the country and a Datacenter located at
headquarters. The Datacenter is typically a 24-hour shop with a full technical staff. The
technical staff may be able to resolve some remote problems on the network that might
otherwise have to wait. The branch office may not be staffed after business hours or may
not have the technical expertise. Configuration Management tools minimize the effect a
disruption has on the rest of the network.

Network Management 3

With the vast amount of data that is stored in a network of computer systems, network
level security is needed in addition to system level security to protect all the network's
resources. Security Management tools are used to address this need.

One such Security Management tool controls network access. A password security system
can be used to restrict unauthorized users from the network. Password security systems
usually have several levels. Read, read/write, and execute capabilities are usually
associated with the user signon identifier.

Another Security Management tool defines who can control the network from a Network
Management standpoint. Staffing to manage a large network of computer systems
typically encompasses three job functions. Routine monitoring of the network and basic
troubleshooting are performed by a Network Operator. More complex troubleshooting and
configuration are performed by a Technical Specialist. Management and planning are I,.
responsibilities of a Network Manager or Administrator. Network Management
capabilities are associated with these three job functions even though the actual titles will
vary by company. For example, it may be appropriate for an operator to be able to run
basic network diagnostics but not modify the security structure. Having Network
Management capability levels protects the network from the people running it!

Now that you have a basic understanding of the various tool sets that make up a Network
Management system, let's take a look at when you would use these tools. The following
diagram depicts the various stages of a network life cycle.

Network Management

NETWORK LIFE CYCLE

REQUIREMENTS
DEFINITION

l'UNINGAND
GROWTH

4

CONFIGURllTION MANllGEMENT

FAULT MANAGEMENT
ACCOUNTING MANAGEMENT
SECURITY MANAGEMENT

PERFORMANCE MANAGEMENT

Requirements Definition: In this first stage, the customer defines in
high-level terms what is to be accomplished with the network.

Planning: This stage involves detailing the requirements and mapping them
to the feature set of the networking software. Security and routing
structures are also decided.

Implementation: In this stage, the network is installed and tested.
Configuration Management tools are used here to configure remote systems
and to set up device, address, and routing tables.

Ongoing Operation: Most of the Network Management tool sets are used in
this stage. Fault Management tools are used to monitor the network and
diagnose problems. Accounting Management tools are used to track
network usage for departmental chargeback. Security Management tools
are used to protect network resources. Configuration Management tools,
though used primarily in the Implementation stage, are also used to a lesser
degree in daily operation.

Tuning and Growth: After the network is established, then data collected
with Performance Management tools can be used to tune the network.
Changes are incorporated by returning to the Implementation stage. Data
collected can also be analyzed for trends to predict future growth needs.
Continuing this process helps to optimize network performance to reflect
changing needs and network loads.

With an understanding of the categories of tool sets that make up a Network Management
system, let's revisit the freeway "network" I used at the beginning of my presentation to
introduce you to the concept of Network Management. Thinking in terms of the Network
Management tools for Fault Management, Performance Management, Accounting
Management, Configuration Management, and Security Management, what kind of tools
fit into these categories to keep a freeway or city street network running smoothly?

Network Management s

NETWORK MANAGEMENT

EXAMPLE: FREEWAY, CITY STREET SYSTEM

FAULT PERFORMANCE ACCOUNTING CONFIGURATION SECURITY
MANAGEMENT MANAGEMENT MANAGEMENT MANAGEMENT MANAGEMENT

- Traffic Reporters - Traffic - Highway Toll - Traffic Ughls - Driver's Ucense
Bottlenecks Fees

- Highway Plltral - Freeway Signs - license Clales
- Speed Umit -Bridge Toll

- Trouble - Cly Planning
Telephones

NMDR139e • 1966 Hewtott-Poc:kard Co11pony

Fault Management: Traffic reporters and trouble telephones are used for
problem detection and reporting. Law enforcement officers monitor the
freeways and help restore the flow of traffic after accidents or other
disruptions.

Performance Management: A traffic bottleneck can be regarded as a
statistic to indicate an unbalanced network load. Analysis showing
consistent bottlenecks at one location indicates some corrective measure
needs to be taken. Speed limits are also a tool to maintain a consistent level
of performance in this network. Though not always obeyed, (as Fault
Management tools can detect!) speed limits aid in maintaining a consistent
flow across the network.

Accounting Management: Usage of certain resources in this freeway
network can b~ tracked in several ways. Bridges and certain stretches of
the freeway network, for example, have toll fees to measure usage.

Configuration Management: Traffic flowing smoothly with the aid of
synchronized traffic lights is usually taken for granted until one
malfunctions. Traffic lights are an example of remote resources that are
managed centrally. The statistics (bottlenecks) collected with the
Performance Management tools can be used in conjunction with
Configuration Management tools to balance the network load. A City
Planning Department, for example, can reconfigure this network by adding
an extra lane to alleviate a bottleneck.

Network Management 6

i
I

I

1.,
I

Security Management: Lastly, a driver's license is a Security Management
tool to protect network resources, such as property and other drivers. A
driver's license is similar to a password security system in restricting access
to this network to only those users that have passed a test. Classes of
driver's licenses further restricts access to the network. From a Network
Management standpoint, law enforcement officers responsible for
monitoring this network have capability levels or jurisdictions. A highway
patrol officer has a different and wider jurisdiction than a city police
officer.

Other examples of networks that you're already familiar with are the telephone system and
your bank's automated teller machines. What Network Management tools can you think
of that manage these networks?

As you may have realized by now, the concept of Network Management and its various
categories of tool sets is not new when you look at examples from everyday life. The
International Standards Organization is in the process of formalizing the categories of tool
sets into a Network Management structu.re. Having a formal model will aid in defining
the future functionality of Network Management tools. Today, the field of Network
Management is in its infancy in the computer industry and Network Management still
means different things to different people. Many vendors offer Network Management
solutions that may, in light of the proposed ISO standards, only address pieces of the
Network Management model.

Development of Network Management standards will not only help define future
functionality but aid in categorizing existing tools into a formal structure recognized by
the computer industry. As the industry moves towards acceptance of Network
Management standards, vendors will have the opportunity to integrate their proprietary
offerings. Network technology will no longer be a hindrance to information access as
Network Management standards will encourage a true multivendor environment. Vendors
will have a new benefit to sell, connectivity, but the ultimate winner? You, the user.

Network Management 7

ABSTRACT

Building Expert System Shells

Ross Hopmans, Brant Computer Services Ltd.

Now that the MProlog language and development environment has been delivered to the HP 3000,
the power of Artificial Intelligence (Al) applications development is availableto Hewlett-Packard's
commercial users. This opens the doors to standalone Al applications, knowledge systems interfaced
to commercial applications and database, and for the development of task-specific expert system
shells.

The focus of this paper is on the development of expert system shells. We examine how artificial
intelligence fits into the needs of the business community, look at what expert systems are, and
explore the requirements for developing a successful, task-specific expert system shell.

Shells must provide the end-user with more than just the ability to populate the knowledge base
with facts and rules. They must provide a strong user interface, a comprehensive explanation facility
and versatility within a very specific framework. We examine the meaning of each of these points and
look at ways in which they can be implemented.

ABSTRACT

Hybrid Systems - Combining Third, Fourth,
Fifth Generation Languages: What Next?

Ross Hopmans, Brant Computer Services Ltd.

Most systems developed today are undertaken using the technology with which the programming
team is most familiar. In the short term, this may mean that there is no learning curve to slow down the
coding effort; but the reality is that major advances in software technology are being virtually ignored.
Every programming language has its strengths and weaknesses. No language is ideal in every
situation. Yet a great deal of programming effort goes into forcing languages to be used in
applications for which they were never designed. The language for programmers today is to pick the
best tool for each individual task - to build hybrid systems to take best advantage of the strengths of
third, fourth and fifth generation software technology.

This paper explores the issues involved in building hybrid systems. We examine the types of
problems to be solved by business computers such as the HP 3000 and look at how hybrid systems
can produce more effective and efficient solutions with less programming effort.

I
I

Summary

The Power of Graphics in Your Business

Lee Horton
Hewlett-Packard

Personal Software Divison
3410 Central Expressway

Santa Clara, California, 95051

This paper discusses how graphics help communicate messages by
appealing to both verbal and nonverbal thinking. Based on this
characterization of thinking, you can use graphics in your
presentations and reports to achieve six goals. Each of the goals
will be discussed, with graphic examples of how to achieve them.

The paper then discusses the Hewlett-Packard Graphics Gallery, a
PC based business graphics package designed to help you acheive
the six goals. Charting Gallery, Drawing Gallery, and Executive
MemoMaker are described.

Finally,
Personal
Graphics
graphics

the paper discusses how Graphics Gallery fits into the
Productivity Center, including integration between

Gallery and HP 3000 Graphics products. The benefits of
on the PC vs the HP 3000 are discussed.

Reaching Verbal and Nonverbal Thinking

The way people think can be characterized in two ways: verbal and
nonverbal. The verbal side of thinking uses words to name and
define. It counts, keeps track of time, uses reasons and facts to
draw conclusions, and has a very step by step approach. Nonverbal
thinking manipulates objects, ideas, and concepts, without using
words. It puts parts tog~ther to make "wholes", perceives
patterns, trends and visual images, has no sense of time, and
makes decisions based on insight, feelings, and intuition.

When you communicate with others, you will be most effective using
the appropriate technique for your message. Messages that require
more nonverbal thinking lend themselves to charts, graphs, and
pictures. These are effective for showing trends, patterns, and
interrelationships. They help the listener to draw conclusions
from the whole of your data. If you want your audience to
remember specific numbers or draw conclusions by stepping through
details, you are appealing to verbal thinking. In this case, use
a computer printout; develop a precise table for a report; or for
a presentation, create a simple table or text slide that can be
used as a visual aid while you explain details.

Interex - Las Vegas 1987
The Power of Graphics in Your Business

1

Six Appropriate Uses for Presentation Graphics

In most cases graphics can help you reach both verbal and
nonverbal thinking. Combine spoken or written words with graphics
for emphasis, and more detail oriented media for supporting data.

In light of the way people receive your messages, use graphics in
your presentations to accomplish these six goals:

Emphasize and clarify your main point
Create interest
Improve recall
Emphasize relationships and trends
Save time in analyzing data I"
Make translation easier since most pictures are universally
understood

Consider these illustrations of how graphics achieve each of the
six goals.

1. Emphasize and clarify your main point

Suppose your main point is, "A bird in the hand is worth two in
the bush".

You might emphasize it as shown below:

Interex - Las Vegas 1987
The Power of Graphics in Your Business

2

Or simply display your main point in writing as you say it.

0

0

A bird in the hand
is worth

two in the bush.

0

0

This also illustrates two additional uses for graphics:

0

and

To create interest.

0

Q
To improve recall.

0

Interex - Las Vegas 1987
The Power of Graphics in Your Business

3

0

4. and 5. Graphics are useful for emphasizing relationships and
trends, and for saving time in analyzing data. For example,
suppose your spreadsheet contains the data shown below:

Beans Counted

1986 1987

January 20,164 19,750
February 18,937 20,375
March 19,251 21,023
April 25,387 29,758

May 28,438 27,841
June 26,851 28,912

It takes several seconds to see what the chart below shows:

Beans Counted: 1986, 1987

1966 1967

25000

I

II
----------<!# 20000

January February March April May .lJne

As you can see, there is a two year trend where the bean count
increases in the spring.

Interex - Las Vegas 1987
The Power of Graphics in Your Business

4

: ;·

6. Graphics make translation of ideas easier since most pictures
are universally understood. Here is one example.

Meeting the Six Needs: The Graphics Gallery

In support of graphics as an important part of your presentations
and documents, Hewlett-Packard has developed "The Graphics
Gallery". Graphics Gallery features three products:

Charting Gallery
Drawing Gallery
Executive MemoMaker

This document, including all of the graphics, was created by The
Graphics Gallery.

Graphics Gallery provides an easy way to create and edit business
graphics that accomplish the six goals. The main philosophy is to
provide people in business with professional quality presentation
graphics on their PCs.

Charting Gallery

The "Beans Counted" data became a chart using Charting Gallery.
Charting Gallery is "data driven" - it creates charts from tables
of numbers. You can type the numbers into Charting Gallery, or
import them in DIF or ASCII format. This allows you to create
charts based on data from almost any applications without retyping
it. You can also pull graphs directly from 1-2-3 worksheets, then
enhance them in Charting Gallery. Charting Gallery features
scattergrams, pie, bar, and line charts. Its charts have been
structured by graphic artists using rules for good design, giving
good looking results. It has a powerful editor for modifying text
fonts, size, and weight, line styles, colors, textures,
annotations, etc.

Interex - Las Vegas 1987
The Power of Graphics in Your Business

5

Charting Gallery works as shown below.

1. Type data into the data screen:

Charting Gallery Data u- Chart.
Enter X Axi~ labr-ls, rl<"\ta r-a.ngt•s anrl IP~Pnrl labels

Legend 1 Legend Z Legend 3 Legend 4 Legend S

Textual
X-1\xi a Label a -----Range 1 Range Z Range 3 Range 4 Range S

You can also load the data in DIF or ASCII formats, or pull a
chart from a 1-2-3 or Symphony worksheet.

(Note that the above picture
Gallery, and was included in
pasting.)

was
this

not created by the Graphics
document by cutting and

2. Switch to the "Edit and Draw" screen to view your chart,
generated automatically from you data. Use the menu to edit and
enhance your chart.

At this point you can plot your chart, or save it in .GAL format
to enhance in Drawing Gallery graphics or integrage into an
Executive MemoMaker document.

You can also try the same chart data as another chart type,
or oriented a new way.

Interex - Las Vegas 1987
The Power of Graphics in Your Business

6

Data driven charts and graphs such as those created by Charting
Gallery can help accomplish all of the six goals, but they are
particularly useful for communicating what numbers mean, e.g., to
emphasize relationships and trends, and to save time in analyzing
data.

Remember that the other four goals are emphasis and clarifying,
creating interest, improving recall, and facilitating easier
translation to other languages. These are where object oriented
graphics become useful. Hewlett-Packard has created "Drawing
Gallery" to answer the need for such a graphics application on the
PC.

Drawing Gallery

Drawing Gallery can load Charting Gallery charts for more
free-form editing, or you can create new graphics from scratch.
It was designed to create organization charts, text charts, flow
diagrams, and illustrations. It comes with a "portfolio" of
pictures you can include in your drawings. Here are some examples
of the portfolio pictures:

Drawing Gallery Portfolios

Additional portfolios can be purchased, totalling over 1,800
symbols and illustrations. These include HP Draw Figures, Office
Activities, business Management, and Chemical / Petrochemical -
thousands of pictures in all.

Interex - Las Vegas 1987
The Power of Graphics in Your Business

7

Drawing Gallery allows more extensive editing than Charting
GAllery. It helps you create professional quality pictures by
providing a grid as a guide and electronic templates (such as
circles, squares, etc.) as building blocks. A wide variety of
character and line styles, colors, and sizes are also included.
Pull-down menus and your mouse let you produce your drawing
quickly and easily.

When you run Drawing Gallery, you first see a menu of options
surrounding a screen. The screen contains nothing but a grid.
You can choose to load a Charting Gallery chart or an old Drawing
Gallery picture, or simply begin drawing. To either edit a chart
or old picture, or to create a new picture, add and manipulate
graphics by selecting operations from the menus using the mouse or
keyboard, then read the screen for further directions. Add
pictures from the "electronics templates" by "selecting" them,
then "dragging" them into place.

Here is an example of a Charting Gallery chart, on the next page
the same chart has been enhanced in Drawing Gallery.

Cycle Sales
June 15 - 22, 1987

Jim'• Cycle Shop

Unlcycln &8%

•

Interex - Las Vegas 1987
The Power of Graphics in Your Business

8

1·

I

Cycle Sales
June 15 - 22, 1987

Jim'• Cycle Shop

Executive MemoMaker

Finally, you can include your Charting Gallery charts and Drawing
Gallery pictures in an Executive MemoMaker document. This paper
was created using Executive MemoMaker, Charting, and Drawing
Gallery. Executive MemoMaker is a word processor designed to be
intuitive and provide the most common word processing functions.
These include merged text and Gallery graphics, find and replace,
a spell checker, an 85,000 word dictionary, type styles such as
bold and underline, and more. To use Executive MemoMaker, just
follow the softkey based menu. Most people are productive with
Executive MemoMaker within minutes.

So, to review, HP has addressed the six uses for graphics in
business by providing Charting Gallery to emphasize relationships
and trends and enable faster ways to analyze data. Drawing
Gallery helps emphasize and clarify points, create interest,
improve audience recall, and help communicate to an audience who
speaks varied languages. Finally, Executive MemoMaker allows you
to produce reports including graphics.

The pages appended to this paper show copies of Graphics Gallery
output, plotted to a Hewlett-Packard plotter.

Graphics Gallery and the Personal Productivity Center

Graphics Gallery gives you even more power when you use it with
the many other computing tools that comprise your Personal
Productivity Center.

Interex - Las Vegas 1987
The Power of Graphics in Your Business

9

On the personal computer level, you can pull data and graphics
from the other applications. These include databases, such as
Executive Card Manager or R:base 5000, spreadsheets such as 1-2-3
and Symphony, and word processors via ASCII, DIF, and Lotus
worksheet file formats. Therefore, you can use your local database
to store large amounts of data, manipulate that data using Lotus
1-2-3 or Symphony, then use Gallery to display the results.
Finally, put your Gallery pictures in your Executive MemoMaker
report. This diagram shows how it all works together.

Vectra Office I11tegrat1011

Dnw/111 Cllarll111

~
0111/err"" .iw. 0111

/ -~ ASa/
Ezec•llre
M6110M11ller

ASCUCIF

.Adr11J11ceWrlle Loi•• 1-2-3

All of Hewlett-Packard's strategic PC applications, including
Graphics Gallery, are networkable, so you can run them over the HP
OfficeShare networks. This way you can share files, printers,
plotters, and disc space with other members of you workgroup.

On the HP3000 level, you can use AdvanceLink or AdvanceMail to
move your graphics from your PC to the HP3000, then mail them to
other people using HP DeskManager.

Hewlett-Packard has also offered a set of business graphics
packages on the HP3000, called HP3000 Graphics. These include
HPChart, HPDraw, HPMap, and others. Figures created by these
applications can be included in documents created by such HP3000
applications as TDP and HP Word, both document processors.

Interex - Las Vegas 1987
The Power of Graphics in Your Business

10

HP Graphics Curator/3000

Graphics Gallery pictures and HP 3000 Graphics pictures can be
translated using HP Graphics Curator/3000. HP Graphics
Curator/3000 is a graphics converter that runs on the HP 3000. It
converts Charting Gallery or Drawing Gallery .GAL files to HP 3000
Graphics FIG file form.at, and HP 3000 Graphics FIG or DRAW files
to GAL format. You can download "curated" HP 3000 Graphics files
to your PC, then put them anywhere you would put a Gallery file.
You can also upload Gallery files to the HP 3000, "curate" them,
and put them anywhere HP3000 graphics files can go.

HP Graphics Curator/3000 also works with HPDeskManager, so that
people who receive your GAL pictures can read them while in
HPDeskManager. As a result, they will not need to download GAL
files to their PCs to view them with Drawing Gallery.

You can run HP Graphics Curator/3000 several ways:

o Interactively, using it's menu driven interface

o From one command line at the MPE prompt

o Programmatically, from MPE UDC's, in job streams, with Advance
Mail, and with AdvanceLink command files.

The easiest way is by following the menu-driven interface
instructions. Use more automated methods if you have a large
number of pictures to convert. Using an AdvanceLink command file,
you can also move pictures to and from your PC.

By now you are probably
graphics applications,
Graphics Gallery.

Why PC Based Graphics?

wondering
and why

why
this

there
paper

are two sets of
deals mostly with

The HP3000 Graphics applications were first released in 1980. At
that time, people did not have easy access to PCs.

Since then PCs have become easier to get and more commonly used.
As a result, Hewlett-Packard examined the differences between
running business graphics applications on minicomputers and on
PCs. They found that PCs provided a significant increase in
performance. PC graphics are faster because they can be generated
more quickly with the help of the dedicated microprocessor.
Because of the large amount of math calculations required for
graphics computing, a dedicated CPU significantly improves
performance over one which must frequently switch between several

Interex - Las Vegas 1987
The Power of Graphics in Your Business

11

tasks. Since graphics editing requires frequent interaction
between the person and the computer,. the computer must be able to
respond quickly to input. This is also easier with a dedicated
PC, because terminals generally work in "block mode", periodically
sending blocks of user input to the host computer and receiving
blocks of response information. In contrast, PCs accept and
respond to one increment of user input at a time.

Graphics performance is also more consistant on the PC than on the
minicomputer. The difference is caused by varying number of users
sharing a minicomputer at any given time.

Because of performance benefits, plus the fact that PCs became
available to people in business, Hewlett-Packard decided to create
the Graphics Gallery for the PC. It's PC base allows it to
include features that would have been impossible to implement on a
multi-user system, especially it's highly interactive user
interface. Benchmarks have shown that on-screen performance of
Drawing Gallery is at least eight times faster than HP Draw on an
empty HP 3000 Series 68. Of course, some of these improvements
should be attributed to the fact that Gallery uses new graphics
software technology.

Conclusion

Many PC and minicomputer business graphics applications allow you
to accomplish the six goals of presentation graphics: emphasis,
creating interest, improving recall, showing releationships and
trends, data analysis, and enabling translation. However, The
Graphics Gallery offers a rich feature set that makes creating
professional and effective graphics very easy. It works well with
applications in the Hewlett-Packard Personal Productivity Center,
and most other popular PC applications. Using the capabilities of
the PC, it offers superior performance to minicomputer graphics.

Interex - Las Vegas 1987
The Power of Graphics in Your Business

12

References and Acknowledgements

Dieli, Paula, "HP Combines the Power of The Graphics Gallery and
HP 3000 Based Graphics.", Hewlett-Packard Computer News (now
Information Systems and Manufacturing News), March 1, 1986

Matkowski, Betty S., Steps to Effective
Hewlett-Packard Company, San Diego, CA, 1983

Business Graphics,

Thanks to Brenda Buchwitz, Claudia Carpenter, Paula Dieli, Joe­
Malin, and Martha Seaver for their assistance.

Trademarks

1-2-3 (TM), Symphony (TM), and Lotus (TM) are trademarks of Lotus
Development Corporation.

R:base 5000 (TM) is a trademark of MicroRim, Inc.

Lee Horton

Lee Horton has worked in the personal computer industry for four
years, first in software development, then in technical marketing.
She specializes in spreadsheets, graphics, and Hewlett-Packard
System Engineer training.

Interex - Las Vegas 1987
The Power or Graphics in Your Business

13

00 Graphics Gallery Advantages

r:J Professional quality output
r:J Complete range of output

Full color plots and slides
Excellent printed graphics
35 mm output

r:J Integration
Charting and drawing
Merged text and graphics
Lotus 1-2-3 spreadsheets

r:J Easy to use

This is an untouched reproduction of a plot created with HP's Drewing
Gallery software and an HP 7550A plotter.

Instrument Family Used with MIDI

Other 7.0%

Keyboard 60.0%

\

/

Percussion 13.0%
I 1111111'

Trumpet 20.0%

This is an untouched reproduction of a plot created with HP's Charting
Gallery and Drawing Gallery software, and an HP 7550A plotter.

Trumpets Are Beginning
To Represent a Larger
Percentage of MI DI

Created Using HP's Graphics Gallery

I ~ ~ Kimball Industries
'- Aerospace Division Robert Kimball

President

l
David Jenkins Susan Grant
Vice President Vice President

l l l l
Jim Mead Ann Davis Sam Barnes Resa Mann
Associate Associate Associate Associate

This is an untouched reproduction of a plot created with HP's Drawing
Gallery software and an HP 7550A plotter.

l
Jane Sanders
Vice President

l 1
John Rollins Sandy Frost
Associate Associate

Gl =r
~g;·

< u;·
Q."
-c:
:E" .. -;g .. " " =r c. ~
~Ci
:i:"'
"a g
"'" g:"' >g

z 2S -<D 3 ~

~ tJ" • %8.
;:m
~12.

2

"

-
""tJ -
~ :::J

ii!
~
<D c.

~ > > I • • ~ • • 0 CD CD
~ 3 3 :;·

<C CT CT
-< -<

0 Q.

c. c
(I)

c
0 -· CD ... (I) -· 0
::::s

""tJ
~

0
0
<D

"' "'

Gray Scale by
Graphics Gallery

1111-~
!~

Created Using HP's Drawing Gallery Software
and LaserJet Plus Printer at 150 DPI

And Why It's
Important:

'
'
' '

Provides Look of Color
on B&W Devices

Objects Can be Overlapped
For "Shadow• effect

Maximizes Graphics
Capabilities of LaserJet

Ensures Graphic Elements
Match Legends

From: Ames Cornish

To: Neil Friedman
Dave Obershaw

MEMO

Date: April 9, 1986

Subject: Presentation Graphics

As we discussed yesterday, Hewlett-Packard can provide us with everything we
need for professional presentation and reporting graphics. To best demonstrate
this capability, I have included below the graphic I used last week in our
program review.

- - -Kimball Industries - - - ; - - - - - - - -
Customer Sales

-----~MSSles--:
m Helicopters'
B Fighter Placies

· · · · · m Jetliners · ~ · · · · ·

Jan Feb Mar Apr May ..Un ...UI

As you can see, this is the kind of outstanding presentation graphics that we
need here at Kimball. There is no doubt that these types of graphics will help
us all be much more effective in communicating our thoughts and ideas.

This document was created using Hewlett-Packard's Graphics Gallery and
Executive MemoMaker software, and printed on a LaserJet printer.

Sincerely,

Ames Cornish

~ 5'1 D THE O L1 ~

GRAPHICSGALLERY
R E V I E W

Hewlett-Packard's Graphics Gallery Now Compatible

With Industry Leading Desktop Publishing Program

The Graphics Gallery from
Hewlett-Packard is a versatile
graphics software package that
produces truly professional­
quality business charts and pic­
tures. It provides excellent re­
sults on paper, overhead trans­
parencies and 3Smm slides. The
Graphics Gallery can also be
used for Desktop Publishing.

Professional Results

Desktop Publishing lets you
quickly create professional­
looking proposals, newsletters,
brochures and other documents.
And for truly powerful and
exciting publishing, you need
professional-quality pictures
like those created by Graphics
Gallery. Best of all, you don't
need to be an artist to make great
looking pictures with Gallery.

Works With PageMaker

Now the Graphics Gallery works
with PageMaker from Aldus.
Using PageMaker, Graphics Gal­
lery and a word processor, you
can produce professional looking
documents. The picture below
(created with Graphics Gallery)
illustrates how the final document
is assembled.

Create text with Executive
MemoMaker or AdvanceWrite
from HP, or use any of several
popular word processors. Create
a graph or chart with Graphics
Gallery and save it on disc as a
TIFF file. Then use PageMaker to
place the text and Gallery graph­
ics into your flyer, newsletter or
proposal.

Scanning Gallery-­
New From HP!!

Now scanned images can be in­
corporated into your desktop­
published documents! With the
new HP Scanning Gallery soft­
ware and ScanJet desktop scanner
you can scan images from a broad

--------------------------! range of original documents, save

Here's How
it Works:

----liil _,.,.._.._.._ ~

~ I -
-~--- ---- -·-- - --I i~I •CteateteKtwilh --· ~te.ot

O(hllf'WOJdD«IClfnor

the images in industry-standard
file formats such as TIFF, and
then use the images with Page­
Maker and other desktop pub­
lishing applications.

HP is now offering a comprehen­
sive solution for graphics in
desktop publishing: Scanning
Gallery and the HP ScanJet desk­
top scanner for images, Charting
Gallery for business charts, and
Drawing Gallery for illustrations.
For the name of a dealer near
you, call 1-800-367-4772.

This flyer was created using Executive MemoMaker, The Graphics Gallery, and PageMaker. The image was scanned
using the HP ScanJet desktop scanner. The original was printed on an HP LaserJet using an "F" font cartridge.

ABSTRACT

New Advances In Documentation Retrieval

Doug lies, Hewlett Packard Company
Where does one get the right information at just the right time? The data processing industry has

improved the speed in which end users can access data (e.g. fast report writer, and slick/quick query
languages). New demands are emerging. MIS departments are being asked to provide the same
access to information that traditionally resides only in large volumes of print, a slip of paper
somewhere, or even in someone's head. Computation is not the problem, but searching and retrieval
capabilities to find the proverbial "needle in a haystack".

New disciplines are appearing: knowledge engineering, expert systems, on line database services,
electronic bulletin boards, electronic mail, etc.

By applying new technilogies, it is possible to make significant improvements in the ability to solve
problems and make smarter business decisions. This paper presents solutions available today,
together with barriers to implementation.

,,
I

I

I
I

i·

BEYOND LOGON SECURITY

Joe Junker
Western Savings and Loan

3200 E. Camelback Rd. Ste. 359
Phoenix, AZ 85018

Computer Crime .. Computer Securi ty--Buzzwords that have
become rampant both in the international press and within
our industry. What's the big deal?

How does $500, 000. 00 sound? That's how much the average
computer criminal walks off with, according to William H.
Webster, former director of the Federal Bureau of
Investigation. The problem may be worse than your board of
directors would like to think!

As data processing professionals, we have been charged with
the responsibilities for protecting our business from
accidental loss and white collar crime. The supportive
functions to protect our systems from intentional loss
however, are lagging behind. With the increasingly more
complex systems, our human ability to manage all of the
systems' resources is being taxed to its limit.

Establishing the scope, criteria and initial security plan
are the most important building blocks in securing your
system from intentional and unintentional loss. Considering
the high visibility of system security within the
organization, and the potential for loss, beginning a plan
for security maintenance and control is an important matter
on the data processing manager's agenda.

This paper will present an overview of the HP3000 and
security. Summarizing the characteristic operating
environment of the HP3000, and providing a view of current
access control methods, this paper will discuss application
level security in detail, to aid in beginning to develop a
security plan suitable for the HP3000.

1

Beyond Logon Security

The principle of the completely secure system is made up of
a triad of factors. Physical security is the security
derived from computer room access controls, environmental
maintenance controls, and communications equipment controls.
Operational security is the set of rules and procedures
established for operators, tape backups, programming
standards, accounting structures, file security matrices,
and device restrictions. Application security consists of
end-user interfaces and data access capabilities.
Theoretically all three of these security types combined and
enforced will result in a totally secure system.

For all practical purposes however, no system is impregnable
to unauthorized access. Once the first cable is strung
outside the computer room, or the first dial-up modem is
installed, the data-laden computer becomes a security risk.

Physical, operational, and application security combined can
improve the security profile of a system. All three of
these components of complete security are made up of five
functions: Risk Avoidance, Deterrence, Prevention,
Detection, and Recovery.

Risk--
R. .'=." ~.~ :f:>.

The risk equation, R = L * P, is commonly used by risk
management consultants in helping clients evaluate the
potential for risk (R) based on the expected loss (L) and
the probability or frequency of exposure to loss (P).
According to the risk equation, the more you have to lose,
and/or the higher the probability (or frequency) your system
is exposed to potential loss, the higher your total level of
risk. Only by reducing the expected loss (L), or the
frequency of exposure to loss (P), can risk be minimized.

The HP3000 poses some special challenges to the system
manager trying to minimize risk. With its multiprogrammed
interactive operating system, and high number of connected
or dial-up ports, the frequency for loss (P), can be
considered very high.

2

Beyond Logon Security

Operational security set up through MPE file matrices and
accounting structures (Engberg,Volokh) can help minimize the
expected loss (L) by restricting read or write access from
unauthorized persons. IMAGE and MPE security can help
"hide" certain elements of data from users based on logon
capabilities or location within the accounting structure.
Without an additional barrier besides logon capabilities
security between the criminal and the data, all the criminal
needs is the correct logon to begin destroying or stealing
data.

A recent phenomenon has been the introduction of more
distributed systems. The divisional or departmental HP3000
lowers the potential loss (L), yet increases the probability
for risk (P) by exposing more ports over a wider geographic
area.

With distributed systems also come distributed system
managers. Some companies (including HP), have turned over
the entire accounting structure maintenance within an
account to "subsystem managers." With all of this growth in
responsibility comes an explosion of system management
knowledge which was once locked in the corner of the
computer room.

It becomes evident that those of us who use the HP3000 to
its best potential, as a distributed processor with 30 to
200 users able to access the system (sometimes 17-20 hours
per day) must consider the high potential for risk. We must
compensate for this high risk factor through emphasizing the
other security functions, deterrence, prevention, detection
and recovery.

When these three functions are discussed, the order in which
they actually work together to improve security usually
becomes muddled.

Deterrence can start from the moment the user sits at the
terminal. Whether logging on, or just hitting return the
first thing in the morning, the system should welcome the
user with a statement of ownership and intended use. Blake
suggests the following :WELCOME message:

3

Beyond Logon Security

**
* Welcome to MY SYSTEM *
**
* This is a private system operated for XYZ Company *
* Business ONLY! Authorization from XYZ management is *
* required to use this system. Use by unauthorized *
* persons is prohibited and may result in prosecution. *
**

Deterrence is meant to combat intent before it has developed
sufficiently to become action. Even the smallest deterrence
will sometimes keep an honest person honest. The HP3000's
:WELCOME facility can be an aid in adding some deterrence to
the front end of the system.

Prevention in the HP3000 environment can be found most
commonly as the password(s) required to access the system.
Lockwords on files, passwords to databases, and user-id's
within application programs are other forms of prevention.
Where file security is concerned, Volokh contends that IMAGE
security and lockword security are not particularly useful.
Instead, he suggests that security matrices for files, or
application controls in programs control access to
databases/files based on the application user's id.

Most preventative measures will be ineffective unless
detection is incorporated in the security system. The
detection method adopted should not inundate the system
manager with information (such as reading all job/session
initiation/termination entries in a log file), but should
provide enough information to discriminate and deduce intent
from the report output.

The auditing function, usually an effective means of
corporate fiscal security detection, plays a critical role
in the detection of computer crimes. Just as we, the system
managers, are having trouble keeping up with the challenges
of security, auditing is also lagging behind in the
onslaught of technology. In a report prepared by the
Stanford Research Institute for the Institute of Internal
Audi tors, the auditing function was documented as having
learned to audit batch operated computer systems, but are
not yet able to contend with online, distributed systems
with telecommunications access. This can present a real
problem in making the detection of computer crime adequate
for the HP3000 environment.

4

Beyond Logon Security

As noted above, detection relies on some sort of logging.
Effective logging and detection can act as a very strong
deterrent. This is where the grand circle of security
measures begins.

Deterrence, prevention, and detection interplay with the
other functions to begin providing a more cohesive security
environment for the system. The best method of securing
HP3000 applications and files will combine deterrence,
prevention, and detection, and ease their administration.

Accurate and timely detection can ease recovery. Disaster
recovery, another of our industry's most recent buzzwords,
i,!; part of this plan, but not discussed here, since it is
usually considered more operational- than application­
related. After the accidental or intentional destruction of
data, a minor disaster has occurred. Being able to trace
either by user, or some other unique identifier the
transactions which took place is critical in recovering from
such a disaster. It seems again that detection of data
modification becomes of paramount importance.

5

Beyond Logon Security

Based on the needs defined thus far for securing the HP3000,
it appears desirable to limit the number of people who have
direct access to MPE (the colon). By limiting the number of
people logging directly into MPE, the following security
functions will be affected:

1) Risk is decreased.
Less people logging on to MPE enables a
greater degree of security by posing another
barrier for both application and file access
to unauthorized persons (there are LESS wide
opened doors).

2) Deterrence is enhanced.
The knowledge that a "big brother" program
is managing the users' selection, running,
and exits from applications adds an un­
certainty to the potential criminal's minds.
They will feel that an unanticipated
detection is more likely, within such a
structure.

3) Prevention is increased.
Critical applications can be separately
passworded and controlled. Even critical
transactions, if managed through the security
system can be passworded.

4) Detection becomes less cumbersome.
Logging by application start and stop, or by
transaction can be performed. Creating the
direct user-to-application cross-reference
can aid in the tracking and auditing of users
accessing applications.

5) Recovery is made easier.
With lists created in #4, transactions and
file access can be more dependably backed
out, or databases restored.

6

Beyond Logon Security

6) It is generally more "friendly" than a
colon. Users will have less trouble and
make fewer mistakes if the drudgery of
typing "RUN PAYROLL" or "PURGE PAYMAST" are
taken out of their hands. A mistyped
filename in this case constitutes a
serious security violation. Would MPE
logging tell you this? NO!

Understanding the operating environment of the HP3000 has
enabled us to narrow our examination of options to only
those applications which control user access with MPE behind
the scenes. Volokh labels this approach the inclusive
approach, where one is permitted only certain specific
things.

HP3000 Application
:?.~<::lJ.:r:j,:t:Y.1':4;iii:i.11:i.i:;:t::r:-<:l:t::i.c>11

Currently, user capabilities without MPE are
controlled by one or more of the following methods:

1) MPE logon UDC's
2) Process-handling (PH) menus
3) Startsess and monitor security systems.

being

We have seen how deterrence, prevention, and detection play
important roles in securing a system from loss. Our
examination of the three control methods for HP3000 security
will be based on each solution's ability to provide those
security functions. In addition to the primary security
functions, the implementation, integration with existing
applications, and administration features of each security
method will be reviewed.

7

Beyond Logon Security

The integration, or means of linking the logon security
system to the capabilities assigned by applications will be
given special emphasis. Beyond logon security, the next
most important control points are those included in
applications. These security control points can aid in the
prevention, detection and recovery from the following
security exposures:

1) Accidental Modification

- Hardware Malfunction
- Application Software Malfunction
- Duplication

2) Accidental Destruction

- Writing over a "good" file
- Losing an error or success message

3) Intentional Disclosure

- Reports run under unauthorized circumstances

4) Intentional Modification

- Adding "unapproved" transactions
- Modifying vital records (control records)

5) Intentional Destruction

- Deleting vital records (control records)

The MPE logon user defined Command (UDC) in one form or
another was the basis for most and is still the basis for
most logon security schemes installed on HP3000 hardware.

The logon UDC is implemented to initiate an application when
the user is logged on, and immediately end the session when
the application is· ended. Figure 1 shows the "JCL" for a
typical logon UDC.

8

I•
I

Beyond Logon Security

Figure 1

MPELOGON
OPTION LOGON,NOBREAK
CONTINUE
RUN CHECKS.PUB.APSYS
BYE

The LOGON,NOBREAK in the second line of this UDC disables
the break key and immediately at logon instructs MPE to use
this UDC for "batch command" input from the rest of the UDC
file. By disabling the break key, the user is unable to
BREAK and :ABORT the program, which would allow access to
MPE. The CONTINUE statement in the third line of this UDC
will allow the UDC to complete (logoff the user) should the
program abort. In this instance, the CHECKS.PUB.APSYS
program is the only program run by the user whose catalog
had been set to this UDC file.

The logon UDC is created in an EDITOR file and named by the
creator following file naming conventions for the HP3000.
The : SETCATALOG filename command is used, and MPE cross­
references this UDC in CATALOG. PUB. SYS. The : SETCATALOG
command has an ;ACCOUNT and ;SYSTEM parameter to allow
designation for whole accounts or the entire system for
enabling UDC's at logon.

The logon UDC offers little, if any deterrence to criminals.
Unless prefaced with the :WELCOME message discussed earlier
in this paper the logon UDC is a welcome sight to criminals,
putting them ~i~~~~1Y into one of your organization's
applications.

The passwords (user,group,account) if implemented are the
only barriers to the criminal accessing one of the system's
applications. In some cases, implementing UDC's may be iess
secure than leaving MPE available to users because of the
ease of starting an application with logon UDC's. To
protect from insider theft or destruction, however, the
logon UDC is a good means of preventing either unintentional
destruction of files via : PURGE commands, or intentional
breaches of security within the operational limits of the
MPE accounting structure.

9

Beyond Logon Security

Little means of detection is available when using
application-only logon UDC' s. The only available log of
system use are session initiations and terminations buried
in the voluminous system log files. With such inadequate
detection capabilities, deterrence becomes even weaker.
Users, and eventually the criminal learns that little
control is enforced on their sessions.

'.!'..!l.t~g,:r;~t~.<?.!l

With the single application UDC, there is no inte.gration of
multiple systems within the umbrella of a menu or
supervisor. It amounts to one logon/one application. For a
user to run 3 applications controlled under single
application UDC's 3 logons would be needed.

Since uniform naming of UDC files and keeping track of the
relationships of user to UDC would be a manual task,
maintenance of the cross-references are not maintained as
they should be. Audi tors would not be impressed by the
effort needed to cross-reference user to UDC 's to
applications, a task basic to the proper administration of
security systems.

The single application UDC is the weakest form of
implementing the inclusive approach to applications­
securi ty. Its use would be suitable for HP3000's with only
one application allowed per user, but becomes impractical
when more than one application is available to a single
user.

10

I 'r
I,

Beyond Logon Security

The glaring weakness of inflexibility in single application
logon UDC's were addressed with the development of Process
Handling (PH) menu systems. The PH supervisor program,
driven by pre-established parameters based on the user's
logon or ID, presents a menu of applications available to
the user. This approach began to bring HP3000 application
security of age. By requiring parameters to run the PH menu
program, the implementation of this menu system improved
the auditability of user/application relationships on a
system-wide basis.

The PH supervisor program is inserted into the MPE logon UDC
as its single application. This program, capable of
process-handling to any number of applications was no longer
a limitation for applications security administrators, but a
gateway to any of the applications pre-configured for the
user. A database is constructed by the security
administrator and simple menu screens are created either by
the user, or dynamically within the menu program. Cross­
references are established in the security database between
users and screens. Additional passwords, encrypted, can be
added for users to reply to at logon.

There is more visible control over the application
environment using PH menus. Deterrence is improved by
virtue of this appearance. Another greeting message perhaps
customized by application group can be build into the
screens displayed to the user.

l?J:' .. l:O!.Yl:O!I1.'t.:i.9I1

Most PH menu systems commercially available have added
passwords to enhance the prevention aspects of security.
Most also enforce port security if so desired a well­
recognized weakness in MPE security. Enhancements to
identify users more specifically, by session name, date, or
time of day are part of most PH menu systems. Aging
passwords, and notifying users of required password changes
are available with some systems.

11

Beyond Logon Security

With the supervisor program monitoring access into the
HP3000, PH systems are capable of a greater degree of
detection. Notifications such as printed reports of
violations routed to the system manager enhance the system
manager's ability to find out about security violations
immediately. Detection and follow-up on even the most minor
password errors can show users the system manager's
commitment to a secure environment.

Certainly, the PH system is an improvement over UDC's where
integration is concerned. Complete integration with the
protection of applications on an application level has not
been addressed by the PH menu system. Controlling access by
"application group" is the strength of PH menu systems.
When additional application-level restrictions need to be
applied, the individual application subsystem must track and
control those.

The necessity for creating the application environment for
each user before implementing PH menu security has improved
the accessibility of user profiles for HP3000 logon. System
managers must do more planning before implementing PH menu
systems, and this has been beneficial to the documentation
process. Administering users in MPE, the PH subsystem, and
then applications however, complicates security
administration. Sometimes 3 or 4 lists of users, user-id's,
and application security schemes must be combined to produce
one document for auditing the current user access situation.

12

Beyond Logon Security

PH menus, combined with the reporting of the PH menu
parameters, have enhanced application level security
tremendously. Al though complete integration between MPE,
the menu system, and application restrictions has not yet
come to the forefront, enough integration to aid security
administrators in the documentation of "who can do what
when" has been built into PH menu systems. Complete
integration of MPE user assignment, PH user assignment, and
application user capabilities would be the next logical step
in improving the control and auditability of the HP3000
applications environment. Only by bringing the security
administrator's job (:i,p~_+,µ4:i,pg MPE user creation and
maintenance) under the umbrella of the PH menu system
maintenance, can the administration of PH menu systems be
improved. Some PH systems have already integrated the
:NEWUSER and :ALTUSER commands into the PH User Maintenance.
In some instances, the prevention afforded by PH menu
systems is more effective than MPE security due to the
encryption and random selection of passwords.

STARTSESS and Monitor
~:~:~iji·i:~:r.:·::~Y~.~~~i·························

STARTSESS and monitor security systems rely on an
"initiator" program to initiate the user's interaction with
applications. With either of these systems, a user's
interface with MPE can be limited very effectively. Even
the :HELLO command can be eliminated.

Either through a batch monitor, or an online monitor program
c;\~Y.!.~.~~ are allocated by these security systems. The
programs either initiate sessions (STARTSESS) or direct I/0
(monitors) to devices configured into the monitor control
parameters. The emphasis of security administration using
these methods is based on 4..~.Y.! .. ~ .. '?. .. ~. rather than µ.~.'?..!: .. ~. or user­
id' s.

13

Beyond Logon Security

From the user's perspective, the STARTSESS and monitor
systems may appear very similar to PH menus or logon UDC's.
The need to log on to the system is eliminated, and in some
cases, hitting RETURN on an unopened monitor system device
will not even display a colon {:). By educating users of
the responsibility of the monitor programs {all transactions
actually passing through the monitor program) they can
become aware that their transactions may be put under
scrutiny.

Because users don't have to log on to the system, the
capability to password session or monitor dialogue
initiation is required to provide any prevention. Port
security is at its ultimate level with either of these
systems because of the system's reliance on device addresses
for configuration. As with PH menus, identification of
users by user-id, date, or time of day can be specified for
additional logging.

As in PH menu systems, a supervisor program is responsible
for either the session initiation, or the entire
transaction-processing activity from a user's input.
Reports of violations, or even strict procedural controls on
transactions processed built within these systems can
improve detection capabilities.

Some of the STARTSESS software has reached the same level of
integration already available from PH menu systems. In the
STARTSESS systems, applications are built into a device
capability list, and passwords can be required by
application. Monitor type systems are usually integrated
into a single application, and are typically more limited in
areas of application mixes.

14

I
I
I

I

I'

Beyond Logon Security

Devices become the key considerations in configuring a
STARTSESS or Monitor security system. The physical
placement of users becomes the critical element in
determining "who did what when." Dial-up lines are ruled
out with either of these security systems because device
allocation depends on an available terminal device.
Although allocating these devices directly to communications
equipment may be possible, the difficulty of implementation,
and lack of definite user identity (location) probably rules
out voice or rotary-line connections.

STARTSESS security methods offer all of the advantages
available from PH menu systems, but are extremely limited
where voice or rotary line connections are required.
Monitor programs offer a very great deal of application and
logon security, but tend to be tied to one application, and
their user in a mixed application environment has never
become prevalent. MPE user assignment could theoretically
be eliminated with STARTSESS applications (allocate only one
user per application if desired), and are necessarily
eliminated in monitor security applications. By eliminating
the large numbers of users allocated through MPE, one level
of cross-referencing users (MPE users) for auditing purposes
can be simplified.

A less obvious problem with both the STARTSESS and monitor
security method is its reliance on physical factors
sometimes beyond the control of data processing, and even
user management ... physical placement of users. EXAMPLE: If
device 39 malfunctions (broken keyboard, no power, etc.) ,
and the normal user for device 39 needs to use the system,
how do we manage this situation? When do we return the
"substitute device" back to its normal service? What if
this happens on third shift, the last day of the month, and
orders are being held from shipment waiting for device 39's
user to make shipments? This dilemma could lead to the
delegation of security-administration to the $4.50/Hr third
shift operator. This could be a dangerous situation!!
(awakening, perhaps).

15

Beyond Logon Security

In the pursuit of more secure computer systems, advances are
made more rapidly where physical and operational security
are concerned. Advances to aid the operational security for
HP3000' s are just around the corner. Encrypted passwords,
encrypted store tapes, and accounting structure maintenance
enhancements will probably be introduced by Hewlett-Packard
or third-party vendors very soon. Application security and
its relationship to logon security, however, have not been
integrated, and may be the major challenge of securing and
controlling systems into the 1990's.

The weaknesses from lack of integration between logon and
applications cannot ultimately be "blamed" on the method of
application-selection used. Instead, the standards for
implementing functional security within applications is
probably the leading culprit in causing an interface
problem.

Total application security control, illustrated in figure 2,
consists of six characteristics. Current security systems
emphasize elements one through four. The area of data
responsibility, or files maintainable by the user, are not
considered in the general applications-security systems.
The applications (AR, AP, Payroll, etc.) usually ask for
another user-id or password to identify the user's
capabilities in performing file-maintenance functions.

16

I

i .•

Beyond Logon Security

FIGURE 2

4
I icot ions

5
Area of Doto Responsibility

F U N C T I 0 N S Logg i "!>
Inquire Add Modify Delete

6 Elements of Total Application Security Control

Where double lines are shown, applicable restrictions can be
applied. Rules establish the type and limitations of
restrictions. Logging on all levels of the triangle, and
selection from the logfiles provide reporting of all levels
of access within this security environment.

The rules (to the left of the triangle), and the selection
of logging records (to the right of the triangle) , become
the key i terns in the security sys tern. Rules and logging
ease administration, deterrence, prevention, detection, and
recovery. The all-inclusive applications and logon security
system must meet the following requirements:

1) Applications must be directly defined within the
security system's rules.

2) Functions within applications must be defined
within the security system's rules.

3) Access to these rules must be available to
application programs via callable subroutines.

I '7

Beyond Logon Security

4) Access to logging routines must be available to
applications via callable subroutines.

5) All parameters must be general enough to allow
loose or tight restrictions as required by
applications.

6) The security system should provide the guidelines
that can be easily adopted in applications­
development, building a security-integration
methodology.

7) Access to this wealth of information on logons,
applications, and capabilities must be secured
from unauthorized access through encryption and
procedural controls.

By solving more of the problems of the security
administrator BEYOND LOGON SECURITY, a more comprehensive
and secure applications environment can be nurtured for the
HP3000 systems environment.

Beyond Logon Security

Bibliography

Fisher, Royal P. , +n:f'<:>l.'.!!1Ci1:J,9p. J>Y..!Sl .. 1:1::!!!1!? $E:!C::1,1:1'.:i,,1:Y., New Jersey:
Prentice-Hall, Inc., 1984.

Hsiao, Kerr, Madnick, C:<:lll)Pl,11:1::!:1'. .$E:!C::.1,l.l.'. .. t1:Y, New York: The
Acad·emic Press, 1979.

Parker, Donn B. , C:<:>!!IP1,11:E:!l.'. $ElC::1,ll.'.:i,,1:Y. 118.:J:l.8.:91::!!!\E:!J:l.1:, Res ton, VA:
Reston Publishing Company, Inc., 1981.

U.S. Congress Senate, Committee on Government Operations,
C:9!!1P1,11:E:!l.'. $1::!<:::1,1:1'.HY Jn f(:;!g(:;!J.'.Ci+. l?l.'.99:1'.Ci!!l!SI, Washington, DC: U. s.
Government Printing Office, 1977.

Volokh, Green, '.l'hoµgh1:!SI a.,p.g Pt!SIC::91,ll.'.!SIE:!!SI c::>J:l rll?~()QQ $c>:f"tWCil.'.E:!,
Los Angeles: VESOFT, Inc., Second Edition, 1986.

Berney, Karen, "The Cutting Edge", Na.:Uc>J:l'!SIJ:ll,l!Sl:i,,J:l(:;!!Sl!Slr April,
1 9 8 6 , pg • 5 7 •

Blake, Isaac, "Computer Security and Legal Issues", INTEREX
I)etrc>J1: C:9J:l:f°E:!l.'.E:!J:l.C::E:l l?J.'.()C::E:ll::!g:i,,I19!SI· October, 1986, Volume ii;
Paper 3315.

Engberg, Tony, "Reinforcing HP3000 Security", 1982.~econd

J\I1mrnl ... J:ICiY. .. Al.'.E:!Ci RElg:i,,gp.aJ, Y!SleJ.'.!Sl C7:1'.01,1P.C:c>P.:f"Ell.'.E:!P.C::i~i9c::~~4:i,i:i9!SI,
Also, IP.1:E:!l.'.CiC::1: 1'1Ci9Ci:Z:AI11::!· January/February, 1983, PP. 38/43.

Firpo, Janine, "Security Concerns and Solutions", INTEREX
PE:!tl.'.9H C:c>n:f"Ell.'.E:!P.C:E:! l?l.'.9C::Ell::!4:i,,I19!?, October, 1986, Volume ii;
Paper 3316, Also "Security: Solving MPE Pitfalls", Interact
l1Ci9Ci:Z:JI1E:!r August, 1986, pp. 56-60. ·········· ··························

Hill, Peter R., " 'HELLO' - An unfriendly greeting, or an
offer of seduction?", INTEREX Detroit Conference
1?~9C::E:!e<:l:i,,I19!Slr October, 1986; volume ii; Paper 33T4.

Kunk, Joseph, "Utility offers G'day to system managers,
users", '.l'hElC:h~9I1:i,,c:J,E:!, March, 1987, pp. 38-40.

LaDuca, Samuel W., "Security: What I Really Want", +.n.1:1::! .. l.'. .. Ci .. C::1:
l1Ci9Ci:Z::i,,I11::! , June 19 8 5 , pg . 5 5 •

Beyond Logon Security

Lewis, Mike, "Computer Crime: Theft in Bits and Bytes",
NCi:tt.gJ:l'~J::l.1,g;t.J:lE:!~~. February, 1985, pp. 57-58.

Peterson, I., "Federal Computer Security Concerns", 1:JC::JE:!J:lC::E:!
N~w~. October 12, 1985, pg. 230.

INTRODUCTION

PROBLEM SOLVING IN AN HP3000 SHOP

Michel E. Kabay

JINBU CORPORATION
P. O. BOX 509 WESTMOUNT

MONTREAL, QUEBEC, CANADA
H3Z 2T6

All of us have solved, are solving, and will solve problems
in our work. To solve problems faster and train others to do
so effectively, this paper presents a systematic approach to
problem solving based on well-established scientific
methodology. Examples are drawn trom the HP3000 environment.

The paper treats the following topics:

o SET YOUR GOALS

o GET THE GLOBAL PICTURE

o DISTINGUISH OBSERVATION 1''ROM ASSUMJ:>1'10N

o DISTINGUISH OBSERVATION FROM HEARSAY

o DISTINGUISH OBSERVA1'10N 1''ROM HYPO'l'HESIS

o CHALLENGE YOUR HYPOTHESIS

o TRACK THE DETAILS

o RTFM

o R'I'FSSB

o GE'I'TING 'l'HE MOST OU'l' 01'' P.l.C.S.

o HELP FROM YOUR LOCAL HP 'rEAM

o TIME AND MA'i'ERIALS lt'HOM '!'HE Sl:!:O

Copyright M.E.Kabay 1987 PAGE 1 OF 14

Sli:'l' YOUR GOALS

Short-term objective of problem solving

FIX IT

Long-term objectives of problem solving

FIGURE OUT WHY IT HAPPENED

HAKE SURE IT DOESN'T HAPPEN AGAIN (IF POSSIBLE)

Copyright M.E.Kabay 1987 PAGE 2 01'' 14

GET THE GLOBAL PICTURE

Find out what the person is trying to do:

PROG:

TECH:

How do I write octal data directly in the
directory'?

Why would you want to do that?

Because I have to alter the first 8 bytes of the
file block, some parts of the file index block,
and data in the group and account index blocks.

No, I mean, what are you trying to do? How
you describe the problem to someone who
know about the directory?

I have to change the name of the file.

How about :RENAME?

Oh yeah

would
didn't

This principle applies equally well to non-technical issues:

Can I have system ALPHA for a production that
lasts 3 hours and takes 2,000,000 sectors of
space this weekend'?

Bad answer: Sorry, ALPHA'S booked solid this weekend.

Better answer: Sorry, ALPHA'S booked solid this
what's the problem--what do you
we can solve it some other way.

weekend. But
need? Maybe

--and in this actual case, the programmer had
erroneously assumed that only ALPHA would handle the
job; in fact, system BETA was free and the special job
ran perfectly on it.

Copyright M.E.Kabay 1987 PAGE 3 UJ.i' 14

DISTINGUISH OBSERVATION FROM ASSUMPTION

case study:

The FORTRAN compiler doesn't work any more.

Oh? That's interestinq; it hasn't had major modifica­
tions in years. What's the problem?

I have this program that was working fine, and now it doesn't
work any more.

So when did you last run it?

Well, actually, I didn't exactly run it--it was another
person.

Who?

Umm, you wouldn't know them:they•re on another computer.

Same HPJOOO model as ours?

No, actually, it's a CDC.

Say, how did you qet this proqram, then? Tape?
Diskette?

No, I typed it in from the listing.

ASSUMPTIONS:

(a) perfect transcription;

(b) identical versions of FORTRAN;

(c) identical implementation on different computers.

Copyright M.E.Kabay 1987 PAGE 4 O.lt' 14

i'

DISTINGUISH OBSERVATION FROM HEARSAY

Case study:

One of our terminals has double softkeys showing up.

What were you doing when it happened?

We were running program ABC.DEJ:t' in menu G when we hit the f3
key; and then the softkey labels appeared above the regular
set.

What do the keys show? The same as the original set or
different?

I don't remember.

Well, can you go see it again?

Actually, I didn't see it myself; c told me.

Gets c. c ••• c arrives ... J c, tell me again what
happened.

Well, I was running program ~BG~ __ w_n~u~-A..•

Wait a minute, not program ABC.DEF?

No. that oqe runs fine. WJlY.£

Copyright M.E.Kabay 1987 PAGE 5 Oli' 1

DISTINGUISH OBSERVATION FROM HYPOTHESIS

Case study:

There's some sort of problem with port 26 on system !--all we
can get is an endless series of the letter 'k' in lower case
all over the screen. It's hardwired, so it can't be a
datacomm problem.

No, actually, the PROBLEM is the 'k' all over the screen;
we DON'T KNOW YET whether it's the

SCREEN or the

KEYBOARD or the

CABLE between the screen and the keyboard or the

CABLE between the screen and the port or the

PORT or the

AIB micro-board or the

AIB itself or the

SIB or the

IMB or the

ATP driver or the main

MEMORY boards or the

CPU boards or the

BACKPLANE connectors.

Copyright M.E.Kabay 1987 PAGE 6 01'' 14

CHALLENGE YOUR HYPOTHESIS

or "test your ideas".

So let's see this terminal.

IDEA:

TEST:

IDEA:

TEST:

IDEA:

TEST:

If it's the port,

then detaching the RS-232 connector will stop
the 'k '--AHA, it doesn't. '!'he garbage has
nothing to do with the link to the computer.
So we look at something else.

Suppose 1 t 's the keyboard 1 ·rhen

removing the keyboard connection
Yes indeed, it does. I see the
littl bent .•• oh, I see:there•s
place because perhaps someone
connector into place.

lf the pin is responsible, then

will stop it.
connector's a

a pin out of
torced the

perhaps putting it back will tix the problem.

Yes •••• it works now."

Copyright M.E.Kabay 1987 l'AGE 7 01!' .l4

TRACK THE DETAILS

When a major problem occurs,

SIT DOWN AND RECONSTRUCT THE EVENTS

before trying out various solutions and workarounds.

CUST:

PICS:

CUST:

PICS:

Note exactly

WHAT you did

in WHAT SEQUENCE and

whether there were UNUSUAL EVENTS

betore the problem

occurred.

DON'T PREJUDGE WHAT'S IMPORTANT

"We had a system failure XX a few minutes ago."

"Exactly what did you do?"

"The operator was working with spool files. He
changed the outfence on ldev 6, then tried to alter
the priority of a spoolfile on a remote spooled
printer. Oh--he made a typing mistake on the
classname: used MAX even though we had removed
that classname a week ago. 'l'hen he--"

"WAIT/ That's it! 'fhe bad classname. There's a
known bug that causes this system tailure when you
refer to a nonexistent classname. We'll send you a
patch."

Copyright M.E.Kabay 1987 PAGE 8 01'' 14

RTFM

R e a d t h e F i n e M a n u a 1

Your HP Reference Manuals should be

o up to date

o accessible to programming and operations statt

o in numbered, labelled volumes

o cross indexed by key word in a separate list

o signed out to show where the volume is now

o returned within a tew hours at most

o purchased separately for frequent users

Copyright M.E.Kabay 1987 PAGJ!: 9 Ult' 14

R e a d

Software

Every quarter, the SSB
index should be scanned by
the system Manager and all
problems involving SYSTEM
FAILURES, HANGS, and DATA
CORRUPTION should be
highlighted in colour.

RTFSSB

t h e 1'' i n e

Status B u l l e t i n

< and you learn
<=== a lot about
< MP~ and subsystems

Every fortnight, the update
issue should be scanned and
added to the binder holding
the quarterly SSB and the
biweekly update issues.

But there has to be
more than one system
for this to be useful
since otherwise you
can't get at the info.

Copyright M.E.Kabay 1987

>
>
>

===>
>
>
>

In some large shops,
intormation about Slt's
and HANGS is added to
online HELP catalogs
which make precise
intormation available
by failure number.

PAGE 10 01'' 14

I

I

GETTING THE MOST OUT OF P.I.c.s.

Phone-In Consulting service

Atlanta, Georgia
Santa Clara, california

1) Clarify the problem yourselves before calling PICS.

For this initial phase, don't worry about neat notes-­
just write down everything you remember about the
events.

--What were we trying to do7
--How were we trying to do it7
--Exactly what did we observe?
--Then what did we do--in what order·?

And what happened?

2) Now write down the details in chronological order and
try to make sense out of them.

3) If it's a SYSTEM FAILURE,

a) check section IX of the System Operation and
Resource Management Reference Manual (binder #2 ot
the standard Reference Manual set) to see what the
SF means and what to do about starting the system
again;

b) you will probably have to take a memory dump and
possibly a shift-shring dump;

c) if necessary and possible, restart the system with
a WARMSTART to save spoolfiles;

d) As the system comes up, find or remember your PICS
SYSTEM IDENTIFIER and call PICS;

e) always =SHUTDOWN and start with a COOLSTART it
permitted; otherwise get your KNOWN-GOOD COLDLOAD
TAPE and COLDSTART or (gasp!) RELOAD.

copyright H.E.Kabay 1987 PAGE 11 OJ!• 14

GETTING THE MOST OUT OF P.I.c.s.--cont'd

4) Do your homework betore calling PICS on a subsystem or
application system problem

a) Look in the Reference Manuals for a reasonable
period (how about up to 30 minutes?) to be sure of
the principles (how it's supposed to work);

bl Ask colleagues for tips and explanations of the
application software problem.

c) Will avoid the ever-embarrassing, "Look on page 3-
13 of the Reference Manual" answer to your
question.

d) ·Will also keep your reputation high with PICS staft
and may help you get faster cooperation from them
when you really have a problem ("'l'his lady really
knows her stuff; it she's calling, it must be
serious--1 1 11 call her right away. 11)

5) Look in the Software status Bulletins when there are
system failures or hangs while waiting tor PlCS to call
back.

6) Get out your lists ot

a) PATCHES;

bl system sottware version numbers;

c) PRIV MODE NON-HP or UNSUPPORTED UTILITIES being
RUN;

d) system configuration;

el previous SF of this kind (in the same range).

7) Keep records of exactly WHOM you speak with WHEN about
WHAT in dealing with PICS. Record the PICS-ID of each
call prominently on all your records for each problem.

8) For large shops with several systems and many
peripherals, consider a small database tor appropriate
information about all PICS calls and other technical
problems. A microcomputer can be a good choice so you
can find information even when your HP3000s are down.

Copyright M.E.Kabay 1987 PAGI!: 12 01'' 14

HELP FROM YOUR LOCAL HP TEAM

WHAT PICS CANNOT DO

o PICS cannot debug application sottware trom
NON-HP sources.

o PICS cannot repair your software even it they
find the problem.

o PICS can install only certain patches.

o PICS cannot physically repair your hardware.

BUT YOUR LOCAL SE AND CE CAN.

THEREFORE YOU SHOULD

o be on good terms with your local SE and CE;

o keep them up-to-date on your technical
problems;

o be as precise in your dealings with local
staff as with PICS staff;

o keep the managers at HP informed ot problems
and progress.

Copyright M.E.Kabay 1987 PAGE 13 01'' l4

TIME AND MATERIALS FROM THE SEO

THE LOCAL SEO

o can help you debug your own applications on a

TIME & MA1'EEtlALS basis (that means they will

help you, but it's not part of your software

support contract)

o will negociate special training courses for

your staff at HP or in your offices

o can help set up benchmarks at reasonable cost

o have a great deal of experience on hand in a

wide variety of situations

o have access to a worldwide network ot human

and technical resources to help you solve your

problems

Copyright M.E.Kabay 1987 PAGE 1.4 01'' 14

Supporting Remote Locations
by

Patrick J. Kelly
PACO Pumps Inc.

Oakland, CA

OUTLINE

I. Introduction
II. Application System Planning

Data Flows
Database Strategy

III. Processor and Data Communications
Processor Options
Data Communications Options

IV. Day-to-Day Support
Equipment
Computer Operations Scheduling
People-to-People Communications and Troubleshooting

V. Training Remote Site Users
VI. Conclusion

I. INTRODUCTION

Today I am going to talk about supporting remote MANMAN/Mfg and MANMAN/OMAR
users.

First, let me describe our company, PACO Pumps. Like most "smokestack"
industries our company had not kept pace with computer technology. In 1983
we were batch processing our manufacturing and order entry software on an
IBM mainframe which was located at the parent company (Baltimore Aircoil)
headquarters in Baltimore, Maryland. The PACO headquarters in Oakland was a
remote site to the Corporate Data Center. PACO's remote sites were served
by mail.

Today, we have 90 terminals connected to an HP3000/70 which is located at
the PACO headquarters in Oakland, CA. We have our own data communications
network linking sites in 4 states to the HP3000. We run ASK's MANMAN/Mfg,
OMAR, PLANMAN and will be installing MANMAN/Accounts Payable. PACO is very
"remote-site-oriented" because much our our company's activity occurs
outside the headquarters location.

We will try to answer three questions today:

1. What remote support techniques do we find successful?

- 1 -

2. How did we make tradeoff decisions?

3. What are some of the limitations of the ASK software and how did
we overcome them?

II. Application System Planning

Data Flows

In planning systems design or implementation we have found it useful to
develop a data flow diagram of the company's operations.

Figure 1A and 1B describes the material flows and order flows at PACO Pumps
at a macro level. The headquarters and main plant is in Oakland, CA. Like
an automobile dealership, a Branch sells new pumps, services pumps and
sells repair parts, all for a local market. Some of the branches even rent
pumps.

Database Strategy -- MANMAN/Mfg

We started our support of remotes by including them in our plans from the
beginning. Before we bought the software we knew that MANMAN/Mfg and OMAR
have a single-plant architecture. The architecture assumes a standalone
cost/profit center, with its own warehouse, shop(s), bills of material,
materials management group, etc.

We toyed with the idea of changing the software to handle all the locations
in one database. We found what ASK has found: that there is no single
multi-plant problem, so there is no single multi-plant solution. We did not
expect much help from ASK for years. Our data and control flow pattern,
figure 1, is certainly one of thousands of possible configurations that ASK
might support.

What we wanted to do was avoid all the source code changes, yet still serve
multiple sites using a l~ANMAN/Mfg package that is single-site oriented. We
analyzed every file in the MANMAN database, and every report and concluded
that for a manufacturing site, there was little data actually shared
between the sites. It seemed that a separate database per site was the way
for us to go. Separate databases were also less risky. If we were wrong, it
would be easier to put the separate databases together than it would be to
split up a consolidated database.

We encourage
informally as
meetings. It
and keeps user

our key users to participate in such decisions. We do this
well as at our regular, formal MIS Steering Committee

helps to keep MIS in synch with the direction of the business
management aware of where MIS is headed.

The major
integrity.
structure
integrity.

issue of concern to Accounting
The separate database, password

was more than enough to ensure

and Manufacturing was data
controls and account/group
an acceptable level of data

Inter-database Data Transfers

During
software

these
to

discussions we defined a few areas where we needed to develop
automatically handle data transfers from one database to

- 2 -

tJl+/C. Ll+HO

t:JAKLAlllJ

PLANT

fOftrLANO L.A.

PlllTE/<IAL PL OW

8
Fi'41 vn t li'

"

.IIVT€(­
PL/ltN T
I /1111,
coNTt.oL

another:

1 • Item masters are added by Engineering only to the Oakland Plant
database. The new item masters need to be entered in all 6 databases. This
is done with a series of QUIZ programs that build batch jobs that do the
updating.

2. Material cost at a branch is the Oakland Plant manufacturing
standard cost marked up by a freight factor if the part is "bought" by the
branch from the Oakland plant. Costs need to be kept in synch monthly.

3, Inter-plant transfers between the main plant in Oakland and the
remote branches are handled in the following manner: a) the branch enters a
purchase order into the branch database (to purchase material from the
Oakland Plant); b) the branch user prints a copy of the purchase order in
the Oakland inventory planning department, c) Inventory Planning enters the
order to OMAR as a spares order. This process could be automated.

4, Bill of Material Our branches need access to the BOM's
which are only stored in the Oakland Plant database. They use the LIST,2xx
series on the Oakland Plant database with a password that allows them to do
only list commands. Parts are miscellaneous-issued to the work order
(actually a service order) in their local branch's database.

5. Consolidated Reports --- A few QUIZ programs have been found to
be sufficient.

The approach we used suggests that a fast way to get multi-plant
capabilities in MANMAN/Mfg is to set up multiple databases and then develop
a few utilities.

Obviously, there is a penalty in terms of redundant storage of data. We are
spending about four hundred dollars per month for lease payments on extra
disc storage plus the cost of backing up and managing the disc space.

Data redundancy does have a performance advantage. By having multiple
databases we have spread the company's total transaction load across
several IMAGE databases, and avoided having one database be a bottleneck.
This appears to be one of the reasons why we were able to run a large
number (65) of terminals on an HP3000/58. At the time, we joked that had
one of the biggest, (and slowest) HP3000 series 58's.

Of more long range value, we now have our company in a more flexible
position for the future. Should ASK and HP offer a low priced MANMAN/Mfg +
HP3000 package, then we could easily move our MANMAN/Mfg databases onto
processors located at each branch.

Database Strategy -- MANMAN/Omar

Now that I have made the case for splitting databases, let me explain to
you why we decided to implement one single OMAR database for all sites. We
did not want to modify any source code, yet we had to satisfy these
requirements:

1. Accounts Receivable 4 Credit --- centralized credit
management function.

- 3 -

::TOil COST.ING Pt.()

2. Consolidated Reporting --------- job costing & reports by
shipping location

3. Orders Cross Location ---------- half of all the customer
orders are shipped from the Oakland plant MANMAN/Mfg database.

As you can see, the relatively neat separateness of manufacturing is just
not present in Order Entry. The data flow diagram we talked about earlier
confirms this.

We decided to put all the sites into one database. See figure 2. Our main
motivation was to avoid modifying the ASK source code or database structure
to accomodate the remote locations.

We established the single OMAR database.The OMAR Finished Goods Interface
is tied only to the Oakland Plant database so that a T,210 shipment
transaction relieves inventory in the Oakland plant MANMAN/Hfg database.
This works fine for orders that ship from the Oakland plant. Branch
shipments are processed with a T,210 against a non-nettable location called
BRANCH (we use muliple location inventory). This creates some maintenance
work to establish and zero-out these locations.

The shipping location
the shipping location
of the Oakland Plant
location.

is identified by the group code. If negative, then
is a branch. The negative code keeps the demand out
demand file and allows QUIZ reports by shipping

Inter-plant transfers from Oakland to the Branches are entered into OMAR
against dummy customer, sales agent and product numbers. This keeps the
statistics accurate. Again there are some maintenance jobs to maintain the
files.

We addressed the need for data integrity by redundant coding. The order
number, group code, note codes and rep number all uniquely identify which
branch office originated an order. This makes it possible to trace "who did
what" if data is inaccurately transacted. However, we are not completely
satisfied with this level of data integrity. If all these fields were
entered inaccurately, perhaps intentionally, then it would be difficult to
trace who entered the data. Since there is no audit trail file, the system
vulnerable to this kind of activity. At this time it seems that the only
sure solutions involve modifying the source code.

III. Processor and Data Communications Systems Architecture

Processor Options

It would be very useful to our company to be able to provide a
microcomputer to our small sales offices (PACO has 60), and small HP3000's
to our major branch offices, all seamlessly connected via data
communications to the central MANMAN/OMAR database in Oakland.
Unfortunately not all of these options are affordable or supported by the
ASK software. See the figure below:

- 4 -

I
I
I

I
I
I
I

Processor & Database Options

Multiple
Micros Store
& Forward

Distributed Centralized
HP3000's with HP3000
Local Databases

Data Cornnd
Options I
---------'
Dial Up NOT AVAILABLE

(ASK Software
restriction)

OK for
Mfg,
not for
OMAR.
Requires highly
Skilled MIS
and Users.

Simple Equipment
Low Equipment Cost
High Datacomm Svcs Cost
ASK Software--no problems

---------1---
Packet I NOT AVAILABLE Same as Costs Difficult

I (ASK Software) above. to predict
I

I
I ---------,---

Leased I NOT AVAILABLE Same as Costs predictable
I but why do it above. Familiar technology
I if you have a Extra capacity for
I leased line? future applications

---------1---
Satellitel NOT AVAILABLE Same as For very high capacity

I above. only. Too expensive
I for less than about 20

I

I
I
I

terminals.
Concern about
round-trip delay.

Processor & Data Communications System Architecture Options

We would like to see the order input portions of OMAR support an
"interactive batch" style of data input. See figure 3. This would allow us
to use microcomputers more widely and simplify the data communications
links.

Though these comments . may sound like complaints against ASK and HP, they
are the "complaints" of a happy customer who wants more. The
single-processor architecture has been successful for us. We have smoothly
upgraded from an HP3000 series 40 to 48 to 58 to 70 in a three year period.
Now we are ready for something more complex.

Data Communications Options

In 1985, we decided to bring the remote sites onto the MANMAN/Mfg system.
We tried some "cheap and dirty" modems first, but quickly replaced them
with Paradyne FDX2400 error-correcting modems, which worked well. These
supported one terminal and a slaved Thinkjet printer at each remote branch.

To implement OMAR we needed additional terminals per branch and a faster

- 5 -

(Jser
£Afe,-_s

Tr4'J1.S&..(,f/dnr

/J'l t'c.ro (.o#>f_vf er
----- --

printer. We investigated WATS, leased lines, packet networks, and
satellites. We decided on a leased line network. See figure 4.

We chose DCA (D3ta Communications Associates) and CODEX for switching
multiplexers and modems respectively. Mixing vendors' equipment has not
been a problem.

Reliability was a major consideration because we did not want to expend
resources troubleshooting. We bought every reliability-enhancing option
available. Every CODEX modem has dial-backup capability. The DCA switching
mux's have redundant power supplies and we stock spare mux boards in
Oakland, just in case.

Our headquarters MIS department in Baltimore, MD plays a key role. They
have a line monitoring system, called Data Network Control System (DNCS) by
CODEX, that continuously scans each line and alerts the operator in
Baltimore if a line begins to deteriorate. Dial backup can be initiated
from either Oakland or Baltimore. The switchover to dial backup happens so
quickly and smoothly that the branch users usually never notice that it
happened. A similar system provided by DCA monitors mux's.

IV. DAY-TO-DAY SUPPORT

Level of Effort

It is generally understood that implementing a system at a remote site is
more costly than implementing at the central site. It is not so apparent
that the day-to-day support costs are also much higher. Due to data
communications costs, the total equipment cost of a remote terminal is much
higher than the cost of a locally wired terminal. The added complexity of
the equipment requires a higher level of technical support. Different
working hours make standard schedules impossible to adhere to. There is
substantial economies of scale in a centralized computer center but it is
less than it might appear.

Remote Site Equipment

We chose a Laserjet for the branches because we want to use the Quotation
features of Rel. 6.0 of OMAR. See figure 5. All terminals are HP2392's, as
are most of the terminals at the headquarters. This standardization has
made it possible to easily train people, write standardized procedures, and
it simplifies support over the phone.

Datacomm equipment is the same at each branch. The only difference is in
the number of terminal ports.

All remote computer equipment is from HP and is covered by HP service
contract administered from Oakland. We want avoid burdening the branches
with arranging for maintenance of computer equipment. Their job is to sell
pumps, ours is to maintain the equipment. See figure 5.

Operations Scheduling

When we first brought
system and the users

the MANMAN system in-house, we did not expect the
to require so many batch jobs. By mid-1986 we were

- 6 -

manually scheduling over 2000 batch jobs/month and making many errors. We
installed OCS (Operations Control System) and this greatly improved our
error rate and batch processing capacity.

We also found that the operations group had to review thousands of $STDLIST
output every day. It was impossible for human beings to read this output
and catch all the errors. SMP automated this task for us. With OCS and SMP
we can now run over 3000 jobs/month and with an error rate that is a
fraction what it was with only 2000 jobs/month.

Our backup schedule also became a bottleneck. Besides the normal growth of
the 6 MANMAN/Mfg databases and one OMAR database, the Oakland Plant
expanded operations on the second shift which effectively doubled prime
time. We tried pre-mounting a tape and initiating the STORE job by the
operator from home at 5 a.m. This helped, for awhile.

A third shift operator was the best solution. Backups are now done between
12:30 a.m. and 2:30 a.m. We are now limited by the speed of the 7978 tape
drive, as are all large HP3000 users.

Our normal schedule
contract with HP. We

is shown
schedule

off-hours whenever possible.

in Figure 6. We have a 24 hour maintenance
repairs and preventive maintenance on

People-to-People Communications with Remote Sites

We have a direct telephone numbers (DID) for everyone in the computer room.
This makes it easy for MIS operations to call a branch and for the branch
to call the Operations group.

Psychologists tell us that the telephone conveys 50% of the information of
a face-to-face conversation. To maximize the quality of that 50%, we have
cultivated at least one person at each site to be the "coordinator" with
MIS. This person communicates computer availability changes and helps with
troubleshooting and scheduling repairs. The coordinator also tends to be
the funnel through which all enhancement requests pass through, though that
was not intended.

The remote users are encouraged to call the HP3000 operator first. From our
console log we find that 80% of users' problems can be resolved at the
HP3000 console. Everyone in the department has some degree of day-to-day
maintenance responsibility. This is defined on the troubleshooting tree
diagram. See figure 7.

The branch managers and coordinators at the remote sites have a copy of
this diagram so that they understand the process of problem resolution. We
wanted the remote site users to never feel that their problem was a "hot
potato" that was being passed from one individual to another. They now
understand that the technology is complex and all problems cannot be
resolved by one person. Referral of a difficult problem is something they
expect to happen.

For example, there are two people in the "systems and programming group".
One is responsible for MANMA!I and one for OMAR. Each is a backup for the
other. They take turns installing the new releases, both have been trained
in both OMAR and MANMAN. They also have other responsibilities such as
technical support, and applications development.

- 7 -

Just to keep everyone honest. The user is never required to follow the
procedures outlined in the diagram. We only advise that we can usually take
care of their problems faster if they follow the procedure. If a user
habitually follows another path, then we examine why.

Disaster Protection

Disaster protection takes on a new importance with the addition of remote
sites. For example, when only Oakland was on the computer we were not
concerned about power failures, because the power to the users' terminals
also failed. Now we have users in remote cities who could continue working.
For short-duration outages, the remote sites experience double the downtime

theirs and the central site's.

At present we exploring the alternative ways to cope with this and related
disaster protection problems.

V. Training Remote Site Users

At one time or another, we have tried about every training method on our
central and remote users outside courses, inside courses, one-on-one
consulting, APICS courses, self-paced courses, video tape, and
train-the-trainer.

For remote users, here are a few of the things that we found worked well:

1. Train remote users at the central site.
2. Have a central site user train the remote users in small groups.
3, Teach the remote user only what they need to know, so that when

they go home they can immediately begin to use the system.
4, Break up your implementation into pilots. Do a pilot at the central

site first and get the pilot participants involved in the training of the
remote users.

5, Develop a condensed procedures manual based on the ASK manuals. It
is their surrogate on-site expert when they return home.

V. Conclusion

Almost every aspect of an MIS Department must change to accomodate
remote sites. Today, I have tried to cover the areas that are most
important. I hope that this presentation helps you with your remote sites.

- 8 -

·P ~ '>) ~11 "" ~
,

)..
() ~.~j ~/ ~ <;) ~
<;)

~ t'I ~ "') ~J ~ ~~ ~1r ~

~
Ill
()

0

"' r' ~
- 0::.
~

l:j

\..
<'I

~
t

~1~ I
\j

l.i ~,
~I~ i ' ...J' \J I

~

* ~ ! \
'R
~ _v

"' ,) I(~
~

<j

'fl
~

Ve<{ica..fd L;., -e...

ro &a..-J:.j~ lf/?.Jt'JOO

., vl°d'h<
7 17

coo ex
.:26 io
lhODlim

111 vx

{fiufi) • · ·

s er-vice..

E,..a-n ~ ~ti IA4r"e. - m vl/J-;p4 C,(; j. - ~ Ne;;tf thy
-v

- ?riy, fer-cSef'Oofd)- If /7 l./t;1t'f j)~ !

Va.fa.- c,.,,...,,.,·et;..-fio,..,s - mo ,,,1e.,.,,.... - C./t;< s~e !Ay

- P7 vx - l>CA J'c:s,., e Oettf"_

- L/',, e- - 'D 1 ~r - J, a.J:.'-('

<!Je..M~ Oc...fa.. C-1-A. - jft?3aoo/7o - Hf' '-I h•vr !f-e.rr11.t(.

- C/(.T f I fr,-,, fe-r-.r - s a.,_ e. <U 6tvr.de.r

FILE:REMOIE.SUPPORT.FIG!i,12/31/86

f!ME OF
DAV HP3000 ACTIVITY

========= =================
30 BAOCUP

130 •
230 II

330 BATCH PROCESSING
430 "
:i30 II

630 SYSTEM AVAILABLE
730 FOR TERMINAL USERS
830 H

930 II

1030 •
1130 "
1230 I

1330 H

1430 •
1530 •
1630 •

OPERATOR
ON-DUTY

3RD SHIFT

!ST SHIFT

1730 II

1830 "
AND BATCH PROCESSING NO OPERATOR

1930 II

2030 •
2130 •
2230 "
2330 •

ff

USER
AtTI'JITY
==================
END 2ND SHIFT IN
THE OAKLAND PLANT.
NO USER ACTIVITY.

DALLAS STARTS.
OAKLAND OFFICE.
BRANCH OFFICES.

DALLAS ENDS.
OAKLAND OFFICE END
BRANCH OFFICE END.
START 2ND SHIFT IN

THE OAKLAND PLANT

MONDAY THROUGH THL~SDAY
COMPUTER OPERATIONS SCHEDULE
============================

FIGURE 6

, , , ,

I

•. I
l
I
i

. - ... --l-

-· \J -
\.
~

.VJ

'.i...

(
_Q
"i::
~

0

~
-t

'\)

-·~·-
- .
~

•.e· \ -- -. t
\'.l

AdvanceMail for the Portable PLUS:
Its Desiqn, Installation, and usaqe

William L Kemper
Hewlett-Packard Company

Portable computer Division
1000 NE Circle Blvd.
Corvallis, OR 97330

AdvanceMail Design Factors:

AdvanceMail for the Portable PLUS is an electronic mail
application that ties the Portable PLUS to HPDeskManager
(HPDesk), HP's electronic mail package for the HP 3000.
AdvanceMail has been designed with the concept that a
portable computer is not just a small computer, but is a
computing device that can extend office functions far from
the office. Rather than porting a desktop application to
the Portable PLUS, the designers of AdvanceMail considered
the intended environment and the users of the application.
One of the first considerations was to create an application
insulating the naive user from the complexities and
difficulties of current-day PC data communications. The
goal was to enable the user to switch between various data
communications connections with ease and without needing to
re-configure data communications parameters. Since data
communications is not easily understood, the goal of the
application was to provide the user with an easily changed
set of configurations that could be set up for a specific HP
3000. Where a general office product is installed for a
single connection, AdvanceMail had to have the ability to
handle connections that included direct connections, modems,
X.25 public data networks, and complex combinations of
intermediary systems, e.g. data switches and security
software, between the host computer and the Portable PLUS.
The user had to have the ability to select a preset logon as
easily as selecting a phone number.

Error detection and correction during data transmission
becomes significantly more important in remote connections
via modems than a terminal connection in the office. The
application must be able to handle errors without requiring
significant support. The user of the application will not
have the ability to take corrective action. The application
had to be able to recover following an error and not lose
data.

AdvanceMail for the Portable PLUS
1

In addition to dealing with connection management issues,
the designers of AdvanceMail focussed on the dual nature of
electronic mail, the creation and reading of mail versus the
transfer operation. One of the advantages of a portable
computer is the ability to take it away from the office.
The creation and reading of mail could be done without
establishing a connection to the HP 3000. The only time
that a connection was needed was during an actual transfer
operation. In this manner, the more time consuming tasks
could be done without tying up a line. The transfers could
then be done during off hours when phone costs were less
and, by being batched, complete transfers in less time.

Bow AdvanceMail works:

AdvanceMail provides the user with the ability to send and
receive electronic mail messages with the Portable PLUS.
AdvanceMail sends messages from the user to HPDesk over
telephone lines or a direct computer connection, and
receives messages to the user from HPDesk. HPDesk acts like
a central post office, routing messages and files between
different users.

The main features of AdvanceMail are:
• The Zn Tray contains messages received from other HPDesk

users. They ~ere received from HPDesk during previous
transfers. Messages will stay in the In Tray until they
are deleted by the user.

• The out Tray contains messages which the user has written
on the Portable PLUS and wants to send to others. They
will be sent to HPDesk at the next transfer.

• The Mail Room lists all of the user's HPDesk messages,
both those that AdvanceMail received during the last
transfer and those that were not transferred. Messages
may not be transferred due to user requests or errors
during the transfer.

• Message transfers between AdvanceMail and HPDesk take
place when the user specifies. It can be done while the
user is away or sleeping. A transfer moves any messages
waiting in the Out Tray to HPDesk for distribution to the
people to whom the user addressed the messages. In
addition, any messages waiting for the user in HPDesk are
moved to the AdvanceMail In Tray to read later.

• The reading and creation of messages can be done
when the user chooses. The actual transfers are
which results in reduced charges. Prior to a
transfer, the user selects a preset configuration.

AdvanceMail for the Portable PLUS
2

offline
batched
message

I'

The followinq illustrations show how messaqes are moved from
AdvanceMail to HPDesk and back.

CREA'l'B llBSSAGBS AWAI'l'IBG 'l'RABSFBR 'l'IllB

'l'RABSFBR OPERA'l'IOH: SERI> llBSSAGBS I 'l'BEH RECEIVE llBSSAGES

DX'l' MORNING READ KAIL

AdvanceMail for the Portable PLUS
3

Advanc8Hail system Requirements:

AdvanceMail has been designed for the Portable PLUS which is
HP's totally battery powered portable computer. The
Portable PLUS must have a minimum of 384K RAM, a software
drawer, AdvanceMail ROMs, REFLECTION l[TM] application ROM
and a datacom connection. The datacom connection can be
either a modem to connect to the HP 3000 by telephone or a
direct connection to the HP 3000 via a serial cable.

AdyanceMail Installation:

The installation of AdvanceMail requires site-specific
customization. The same work is required whether there are
1000 users or just one. In order for AdvanceMail to
automatically transfer messages back and forth with HPDesk,
it must be customized to fit the particular HP 3000
configuration (dial-in procedures, intermediary data
switches, security programs, and so on). The customization
is done in command and configuration files, which are then
distributed to the users of AdvanceMail. After these files
are created AdvanceMail can then be installed on the user's
machine. The general steps that need to be taken are:

• Determine the data communications environment.

• Modify command and configuration files to match the data
communications environment, i.e. determine what responses
are needed by the hardware and software to logon to the
host computer.

• Test the command and configuration files by trying an
automatic logon to the HP 3000.

• Test file transfer procedures.

• Distribute pairs of command and configuration files to the
users.

• Install AdvanceMail on the Portable PLUS with the
customized command and configuration files.

• User configures Portable PLUS for individual HPDesk user
passwords and phone numbers.

While the installation of AdvanceMail is not a trivial
process, it is an easy product for end users to use, once it
has been installed. The installation procedures are
documented in "Setting Up AdvanceMail for the System
Administrator." This manual assumes that the person setting
up AdvanceMail, the system administrator, is used to working

AdvanceMail for the Portable PLUS
4

I'

with computers and is familiar with often-used c~mputer
terms. While familiarity with the Portable PLUS is not
required, the system administrator should be familar with
personal computers, especially MS[R]-DOS file structure and
a word processor. Ideally the system administrator should
have knowledge about the HP 3000, data communications, the
Portable PLUS, and REFLECTION command lanquage. Access to
expertise in any missing areas should suffice.

The first step is to determine the data communication
enviroment that AdvanceMail will use. This information will
enable the system administrator to create command files that
meet the needs of the environment. Some items to consider
are:

• What type of connection is between the Portable PLUS and
the HP 3000? (direct or modem)

• Are there intermediary systems involved
Portable PLUS and the HP 3000, such as data
call back units?

between the
switches or

• Is a logon security program in place with which the
Portable PLUS must know how to interact?

• What phone number must be dialed to access the HP 3000?

• What responses must be sent to the host?

• What are the lengths of time delays between prompts?

• What account structure will users have? Must they enter
name and account only, are there passwords with them, do
they have to enter a group name and password, do they have
to identify themselves to the system in other ways?

• Will the users be using a public data network, such as
Telenet[TM] or Tymnet[TM]?

Much of this information can be determined by taking notes
of an actual logon dialog with the HP 3000. This is done by
using the Portable PLUS with REFLECTION 1 using the
connection that will be used by the users.

After determining the logon procedures for a particular
connection, the system administrator can select sections of
sample command files supplied with AdvanceMail on a
supplemental disc. Using a word processor or EDLIN, the
system administrator can edit these command files to create
a custom command file for each datacom connection. A
separate command file will be used for each connection to be

AdvanceMail for the Portable PLUS
5

installed on the user's Portable PLUS, e.g. direct at the
office, modem at home, and modem using X.25. For each
command file, there will be a specific configuration file
that sets the data communications parameters, such as type
of connection, Baud rate, stop bits, etc., that is called by
REFLECTION 1 when a session is initiated.

The created command and configuration files are then stored
on the Portable PLUS for testing. The testing is done in
two phases, a logon test and then a file transfer test. The
first test verifies the unattended logon process. By doing
the test in two phases, any installation problems can be i'
identified more easily. The logon test will simulate
AdvanceMail calling REFLECTION 1 with a command file and
other user parameters, such as accounts and phone numbers. I'"
These parameters will be passed to REFLECTION 1 by
AdvanceMail in actual use. A successful logon will need to
be terminated manually. The testing may require editing the
command files several times to get timing factors
incorporated. This process is repeated for each command and
configuration file pair. The next phase can then be tested.

In the second phase of testing, logon descriptions are
entered into AdvanceMail and activated. The logon
descriptions are the user-specific pieces of information
that are required to make a connection, e.g. phone numbers,
user accounts, and user passwords. The Transfer Mail part
of AdvanceMail will be executed. If it is successful, a
summary screen will be displayed. Additional modification
of the command and configuration file pairs may be required.

Depending on the AdvanceMail installation, the user may be
instructed in installing the application or provided with a
Portable PLUS with the necessary installation completed. To
use AdvanceMail, the user will need to become familiar with
the Portable PLUS first. After becoming familiar with the
Portable PLUS, the user can quickly start using AdvanceMail
to send and receive messages.

Additional AdvanceMail Features:

The sending and
AdvanceMail. In
features include:

receiving of
addition to

messages is the basis for
these capabilities, other

• Filters to specify actions to be taken on messages with
matching patterns. Patterns can be matched in both the
Sender and Subject fields.

AdvanceMail for the Portable PLUS
6

• Automatic transfer of
MS-DOS files for use
1-2-3[R] from Lotus[R].

files from HPDesk to designated
by other applications, such as

• Automatic printing and deletion of messages on the host.

• creation and use of local distribution lists.

• Ability to reply to and forward messages in the In Tray.

• unattended transfer at user specified time.

• Error log and recovery instructions.

In addition to these application features, the AdvanceMail
transfer mechanism can be used to automatically transfer
information without user intervention. As part of the
installation procedures, the file transfer process can be
changed to:

• Automatically receive messages meeting a predetermined
filter criteria, such as subject or sender.

• Automatically send files
send them, e.g. a salesman's
MS-DOS file.

without
call

requiring the user to
report stored as an

• Add processing to be done before and after transfer or
call other programs to run on the HP 3000.

All of these capabilities require additional customization
prior to installing AdvanceMail on the user's machine, but
extend AdvanceMail far beyond remotely accessing HPDesk.

An example situation may better explain the preceding
capabilities. A sales force for a chemical distributor has
been outfitted with portable computers. During the day each
sales representative uses the Portable PLUS to record sales
call activities on a template. When the sales
representatives get home at night, they compose additional
messages using AdvanceMail. Prior to going to bed, they
connect the phone line to the Portable PLUS and set a
transfer time for the Portable PLUS to wake up and initiate
the transfer. At this transfer time prior to logging on to
the HP 3000, special preprocessing will occur unbeknownst to
the user. An MS-DOS program will be executed that appends a
time and date stamp to the sales call report. A permanent
send specification has been stored during the installation
of AdvanceMail that will always send the sales call report
file to the sales representative's manager. The sales
representative does not have to mail the sales call report

AdvanceMail for the Portable PLUS
7

each day. A permanent receive specification has also been
created that will automatically update the price list
spreadsheet on the Portable PLUS. If a message with "PRICE
UPDATE" in the subject field is found in the HPDesk
Mailroom, this message is automatically received and stored
in the MS-DOS file "PRICE.WKS" for reading by 1-2-3. These
advanced capabilities provide a mechanism for controlling
file transfers and automatically performing tasks that could
be forgotten.

Conclusion

AdvanceMail does require customization prior to the actual
usage of the application by the intended user. This
application is different from most personal computer
applications which can typically be installed and used
immediately. If data· communications were simpler and all
computer installations were the same, this customization
would be unnecessary. Rather than assuming that all
installations would be the same, AdvanceMail has been
designed to be tailored to specific environments. The
installation process is critical to the usability of
AdvanceMail by the intended users. Once AdvanceMail has
been successfully installed, it can be readily used.
AdvanceMail extends HPDesk from the off ice by providing
offline capabilities wherever the user wants, be it in the
home or at 30,000 feet in an airplane flying from San
Francisco to Houston.

MS[R]-DOS is a u.s. registered trademark of Microsoft, Inc.

REFLECTION l[TM] is a U.S. trademark of Walker Richer &
Quinn, Inc.

l-2-3(R] and Lotus(R] are U.S. registered trademarks of
Lotus Development Corporation.

Telenet(TM] is a trademark of GTE Telenet Communications
Corp.

Tymnet[TM] is trademark of Tymshare, Inc.

AdvanceMail for the Portable PLUS
8

I·
I

I'

DISASTER RECOVERY - IF THIS HAD BEEN A REAL EMERGENCY ... "

MITCHELL KLEIMAN
DIRECTOR OF COMPUTER TECHNOLOGIES
JOHNSTOWN CONSOLIDATED CAPITAL

2000 POWELL STREET
EMERYVILLE, CA 94608

Introduction

The title of this paper hopefully reminds you of a voice you
heard from a radio or television set during a test of the
emergency broadcast system, telling you that if this had been a
real emergency, you would have received instructions. These
words have been ingrained in my memory patterns as year in
and year out at some point, on one or more radio and tv
stations I heard that test. I have to admit that I listen
to those tests carefully, waiting to see how long they wait,
did it work correctly; and several times (mostly 10 or more
}'.ears ago) I could have sworn I caught a probrem or
Cliscrepancy or it took them too Ion~ after the long warning tone
to put the voice on. But lately they ve been doing very well.
Those several years of practice seem to have paid off - the
system appears to run smoothly.

I do not know many MIS departments that have adequate emergency
plans in ~lace, fewer that have tested them more than once, and
fewer still that have instituted a regular testing of their
emergency plans! insuring that their procedures, equipment, and
trained personne are up-to-date.

This paper addresses the basic needs and issues of building a
disaster recovery plan for a comP-any. A no-nonsense approach to
reviewing needs, arranging for a hot site, preparing for usmg a
cold site, and testing the plan.

This paper will also touch on related issues, such as pc backup
methods, coordinating with system users to insure tllat the
recovery plan recovers the users as well as the computers,
insurance concerns, what are the real costs and benefits of
preparedness, minimizing the administrative work of keeping the
plan accurate, and how far to take your plan.

1

Outline

I. Why we call it an Emergency Recovery Plan and not a Disaster
Recovery Plan.

II. Levels of Emergency

Ill. What do you Need, Really?

IV. HOT SITE - if you're going, who's going with you, what are
you really going to need, anCI for how long are you going to
be there ·

V. Cold Site - how cold should it be

VI. The ApP.roach - where do we start, in what direction do we
head, anCI how do we measure progress

VII. Testing the Plan - the first time, the second time, and the
third time, and the fourth time

VIII. PC Backup - Who's responsible, with what, where, how

IX. Once the computer is up, who (and how are they) going to use
it

X. Insurance - for what, how much

XI. Costs and Benefits

XII. Okay, now what do I do with it

2

j:

I. Why we call it an Emergency Recovery Plan and not a Disaster
Recovery Plan.

emergency - 1. an unforeseen combination of circumstances or the
resultmg state that calls for immediate action 2. an urgent
need for assistance or relief

disaster - 1. a sudden calamitous event bringing great damage,
loss, or destruction 2. an unforeseen, ruinous, anC:I often
sudden misfortune that happens either through lack of
foresight or through some hostile external agency

Probably you will need to deal with emergencies more
often than destructive disasters.

IF YOU DO NOT PREPARE FOR THE EMERGENCIES,i.. THEY OFTEN
TURN INTO DISASTERS. PREPARE FOR ALL TYPE;:, OF
EMERGENCIES.

3

II. Levels of Emergency

1. Applications Failure

2. Processing Interruption

3. System Failure or "System Hang"

4. Environment Failure

5. Hardware Failure (under 24 hours)

6. Hardware Failure (over 24 hours)

7. Computer Room Disaster

8. Building Disaster

9. Local Disaster

10. Regional/Statewide Disaster

4
I
1·

Ill. What do you need, really?

Are you running a "big shop", a "small shop", or a Micro 3000?

Are ~ou located below a restaurant, above the boiler, between a
munitions factory and a nuclear reactor.i. on land-fill, in an
earthquake prone region of the country-!'

Is your company dependent on the computers being up all the time,
some of the time, or can they catch up after a weel< or two of
down time?

What have been the (major) sources of down time in the past three
years?

ASSUME NOTHING1 ,ASK QUESTIONS, LOOK AROUND, KEEP
TRACK OF INTERRuPTIONS.

5

IV. HOT SITE

a site separate from your comP-uter room, with the appropriate
environment (power, a/c, humidity); with a comP-uter, associated
peripherals, and terminals; immediately available for your use.

1. What do you get for your money?
phone lines
office space
support staff
livmg quarters
Who else is going to be there

2. If you're going -­
when
how
who is going with you
what are you going to need
how long are you going for

6

V. COLD SITE

a site you could put a computer in

it may or may not already be prepared -
lower

{<;. f ' I w1rmg or termma s

Do you need one?
How long will it take to make it ready?
How long will you be there?
How much does it cost?
Where will the computer come from?
How will people use the computer there - where will they be?

7

VI. The Approach

1. Prepare for the worst case first, then work your way down to
the simpler stuff.

2. At the start, determine:

what is critical - which people, what information, what's
the priority

what is really needed - a combination of what Y.OU think you
know, what people tell you, and what you should be prepared
for, anyway

3. Document what you have first.

If you have an emergency during the preparation of the plan,
at-least you'll know what _you have, what you're working with,
and what you need to repface.

Then document what you would replace it with if you
could/had to.

4. Research the topic of disaster preparedness. Read everything
you can get your hands on, talk to the auditors (theY. lil(e to
hear that you are working on stuff like this and they have
pag_es of checklists, etc. tney would appreciate your filling
outJ, and talk to your insurance peopre.

5. Start preparing the other areas of the company to do their
bit for emergency preparedness. It will be of no use to the
company if there is an emergency and you get the computer up
and running but it cannot be used because there is no user
procedure manual or no one arranged for the mail to be
forwarded to the recovery site location.

8

VII. Testing the Plan

If you think it's going to work the first time, you are in
big trouble.

Most sites have trouble keeping things working at their
regular place of business, under normal circumstances.

After completing the plan, I suggest three tests.

g

Test 1 - test the procedures, walk through them, have
manuals and programmers and operations P.ersonnel and
technical support ready. Be prepared for failures, stupid
errors and misunderstandings, and simple problems (eg.
memory configuration problems, tape failures, nonexistent
printer definitions, etc.J. ExP.ect everything to take
longer than you thougllt. Take extra people along. Take
notes. Take as many peo_ple as you can and your most trained
personnel. Load your software, bring up all or part of your
system. Print off one or two reports. Log on to several
ports.

The purpose of test 1 is to identify all the things you
haven't planned for and to give you a sense of the problems
you will encounter in a real emergency.

After test 1, update your plan from the notes you've taken,
retrain the people involved and do test 2.

10

Test 2 - this time send fewer and less trained people - for
examP.le, have a trained operator follow the instructions
with the system manager observing and taking notes and
timing everything.

The idea is for test 2 to uncover what is needed beyond
basic operations training and the procedures of the
emergency plan to prov1C:le a successful recoverY.. This type
of test better insures that things are not taken for granted
and provides training for all involved. Include in this
test remote user dialing into the backup site. Note access
problems, response time, time it took to prepare the system.

After updating the plan with notes from test 2, you should
be ready for ...

11

Test 3 - do as real a run through as you can of a sudden
emergency, test how you would recover lost datahbring real
users with you, how and where will they work, w ere do they
get lunch from, what do they do while you are bringing up
the system.

At this sta_ge you should be working out the detailed
logistics of-coordinating with the otber parts of the
company, user documentation, data recovery procedures,
critical tools needed to run the company, who are the
critical people.

Repeat test 3 periodically (at least once a year}. Make it
interesting, try surprises, typical obstacles, and not so
typical obstacles.

Always have someone record what ha_ppens, timing, croblems,
resolutions; and incorporate these findings into the p an.

12

.1

VIII. PC Backup

What pc's?

Do you need to back up the pc's in your company - do any of
them have critical corporate information?

What would happen if you did not backup the pc's?
What would be the impact if none of the pc's in the company
worked?

Options:

1. They back them up.

2. You back them up.

3. They don't get backed up.

What is appropriate for your company?

Types of pc backups currently available:

1. diskette backu.P.
2. Bernoulli cartradges
3. tape backup
4. backup to a mini or mainframe
5. double hard discs
6. optical disk storage
7. paper copy

13

IX. Once the computer is up, who (and how are they) going to use
it?

are you organized so that lost information can be reproduced
how do you work around lost information

what are the basic transactions in your com~any, how will
those transactions be handled at a remote site, what can you
do to support that work

Also, what should you be doing once you get the hot site
working?

How do you _get to the cold site or home?
.... and how do you get home from the cold site

what are the types of problems you are likely to encounter?
for your company, your equipment, your personnel

VERY OFTEN, WORKING FROM A REMOTE SITE IS COMPLEX.

DON'T WING IT.

THIS MUST BE PLANNED OUT IN DETAIL.

WHILE YOU'RE RUNNING AT THE HOT SITELYOU PROBABLY WILL
ALSO BE COORDINATING MOVING TO A CO D SITE OR RE­
ESTABLISHING YOUR ORIGINAL SITE. THEREFORE THERE WILL
BE TWO MAJOR TASKS EACH ONE REQUIRING YOUR FULL
ATTENTION.

Split your staff into teams, once your system is recovered.

If you wait too long, you will pay big bucks($) for not
planning. Remember the lead times mvolveil.

14

X. Insurance

Find out what type of insurance coverage your company has.

Critical information:
- cost on insurance
- what is covered
- how much are you covered for
- what are the appropriate P-rocedures to follow when an

emergency does occur, anil what is the timing involved
- will your preparedness lower your insurance costs

15

XI. Costs and Benefits

Costs:

time - to draft a plan, research and prepare information

money - hot site and cold site contracts, off-site testing
expenses

Benefits:

increased knowledge of the company

increased technical training - recovery

working closer with more of the company, opportunity to see
how critical work is done and possible impact on that you
can have

with improved planning and grocedures, bringing on new
employees is made easier an they become productive faster

decreased stress level from worrying about, what if

C.Y.A.
possibly lower insurance rates

keeps auditors busy and off your back

16

XII. Okay, now what do I do with it

Update it regularly.

Test it regularly.

Train more and different types of people.

Check on other people's documentation.

Make the tests harder.

Change the way the company operates if benefits are
possil>le.

Talk about it, share ideas, incorporate new methods,
automate the procedures and processes.

17

I

Thinking about using C ... ? (and if not, why not?)

Monika Khushf
Tymlabs Corporation

211 E. 7th Street
Austin, Texas 78701

The C programming language has become the belle of the computer
languages ball. Its unusual and productive mixture of high-level structured
programming statements and lower-level "close to the machine" constructs
has been a key factor in its widespread acceptance by both universities and
businesses. C's popularity is remarkable indeed: each month, new books
describing the language appear; magazines such as Computer Language
and BYTE devote almost entire issues to C; and several newsletters extol the
language's virtues. Many universities now offer C courses, and increasing
numbers of students are choosing it for their software projects. Major
corporations and small companies alike are writing their new software (and
rewriting their old) in C.

There are very few things the different computer communities - IBM, DEC,
AT&T, Honeywell, Cray, Unisys, etc. - can agree on. One of them is C. They
all love it.

THE HP3000 COMMUNITY RESISTS
All, that is, except the HP3000 community. At the 1986 Detroit lnterex
conference, turnout was low for the C talks. Several of those who showed up
for the other language-related presentations were noticeably anti-C, and
could be heard grumbling among themselves: "C is hard to understand"; "C is
easy to abuse"; "C is just plain ugly."

To be fair, there is opposition to C on all machines, but the HP3000
community appears to be the toughest nut to crack.

WHY IS THIS SO?
Much of the naysaying can be traced to C's late arrival in the HP3000 world.
This tardiness was in turn caused by the challenges inherent in implementing
C on the HP 3000, from the compiler writer's point of view. Unsigned long
arithmetic, for example, is not easily accommodated on the system. The
Segmenter is openly hostile to many C features, including auto-initialization of
global function pointers and character pointers to strings, and global
definitions scattered among many files. Combine these difficulties with the
limited memory the HP3000 has to offer (excluding the use of extra data
segments), and the picture is, to say the least, discouraging.

While C was therefore unavailable on the HP 3000 for quite some time, there
were several other perfectly acceptable programming languages to choose
from. Each offered some of the advantages associated with C, as well as
attractive characteristics of its own. C on the 3000 is the new kid on the block,

Thinking About C? IM. Khushf

and programmers who have been coding in PASCAL or FORTRAN or SPL for
years are understandably reluctant to change now.

C'S UNIQUE PURPOSE
However, there are persuasive reasons to consider such a change. C was
designed to fulfill a particular need: the need for portability. C offers the
highest degree of portability of any language, coupled with the highest degree
of machine interaction possible in a portable language. And the ANSI
standard committee, which includes representatives from all the major
computer manufacturers, is committed to assuring that as the feature set and
flexibility of the C language expand, they do so with no loss in portability.

WHY PROGRAMMERS LOVE C
C has qualities programmers love - once they get over their initial fear. It has
a clever preprocessor, which not only handles compiler controls such as
#include and #if, but also expands macros with arguments, concatenates
string literals, and "stringizes" arguments. It has a powerful run-time library.
Its high-level features include structures, unions, string constants, pointers to
functions, and type names. Its bit-manipulation, cast, and address-of
operators can make low-level access to such things as absolute addresses
and pieces of words a snap. And the prefix and postfix operators not only
alleviate the programmer's increment and decrement burdens (while (array[i]
== ' ') i = i + 1; becomes while (array[i++] ==' ');), they enable the compiler­
writer to generate more efficient code.

WHY MANAGERS LOVE C
C has qualities managers love, too. The commitment of all major computer
manufacturers to portability among a wide variety of machines is
demonstrated by their involvement in the ANSI standardization efforts. This is
very comforting to managers who must deal with a wide variety of systems,
many which seem to be outgrown or outdated almost before they are plugged
in. If what is written for one machine will run on another, a large part of the
anguish of conversion is assuaged. Also important in this respect is C's
multiple file model, which allows for a simple division of the portable and
machine--dependent portions of a particular application.

Another key issue for management is personnel. Because of its widespread
use, C programmers are easy to find (ever try to place an ad for an
experienced SPL programmer?) And for re-training existing staff members,
there is a wealth of books, magazines, seminars, and courses.

OTHER LANGUAGES SIMPLY CAN'T COMPETE
The other popular compiler languages have well-known advantages, but
none offers as potent a combination of features as C. For example, COBOL is
a favorite for business applications, but is slow, cumbersome, and useless for
systems-level programming. PASCAL, the pride and joy of the academic elite,
didn't offer enough systems-level constructs at conception. As a result, mutant
offspring were spawned from the original language, each having its own
version of systems level extensions. The sum of them render PASCAL

2 Thinking About C? IM. Khushf

hopelessly non-portable. The fact that FORTRAN was the first high-level
language developed almost says enough - statements and data structure
techniques have been vastly improved since FORTRAN's inception.

Finally there is SPL, every HP3000 systems programmer's favorite language
(until he or she tries C!). Although powerful, SPL has no high-level data
structures (such as structures or unions), is extremely machine dependent,
has almost zero portability (HP won't even write a SPECTRUM-based
compiler for it) and, because some of its operators are operand-dependent,
can sometimes be very painful to modify.

SO IS C THE PERFECT LANGUAGE?
Like every language, C has its shortcomings. To concede one point to the
anti-C contingent, the language can indeed be abused. The classic example
of C abuse is perpetrated by the "hacker", who gets so excited about all of C's
features that he chooses a convoluted approach over of the more simple,
straightforward one (for example, storing addresses of a series of functions
which must be called sequentially inside of an array, and then calling them by
indexing into each element of the array, instead of just calling each function by
name.) Ultimately, however, this is more of a programmer problem than a
language problem. This type of person will generally abuse any language he
uses.

No matter how carefully a language is designed for portability, it can be still
used in a non-portable way. For example, a program which fills structures
with one read from a file may run fine on one machine, then mysteriously blow
up on another. "Holes" in structures, required on machines with different byte
and word addressing modes, are the culprit. Other hidden machine
dependencies are the way chars are packed into ints, signed integers are
shifted, and string constants are stored. And the way pointers and function
calls are defined and implemented in C, although not a portability concern if
used correctly, can cause more than one headache for the wet-behind-the­
ears beginner.

ANSI STANDARD TO THE RESCUE
The ANSI standard committee has achieved remarkable results in reducing
C's "dangers", without reducing its appeal. Function prototypes were
introduced to clear up the insidious "mismatched function call parameters"
explosions. All implementation-defined and undefined behavior is well­
documented. And, in addition to meticulously describing the syntax and
semantics of the language itself, the committee has also provided a clear
definition for each library function.

IF I LIKE WHAT I HAVE, WHY CHANGE NOW?
C compilers, readily available on almost all other computers, have finally
arrived on the HP 3000, and will be available on the SPECTRUM. The ANSI
standard committee on C is close to publishing a standard that has thus far
met with very favorable reviews. Even though some productivity loss is
inevitable when moving to a new machine, the results are well worth the wait.

3 Thinking About C? IM. Khushf

Each new program in another language is one more program to be rewritten
should a new machine be chose.

C is a powerful, beautiful language, and it is here to stay. So if you're not
thinking about using C, maybe you should be.

4 Thinking About C? IM. Khushf

AUTOMATIC POLLING SYSTEMS FOR
MINICOMPUTER/PC NETWORK

Authors: Colin Knight
KSD Systems
6291 Dorman Road, Unit 6
Mississauga, Ontario
Canada L4V 1H2

Alex Tschyrkow
DataSoft International
129 Mount Auburn Street
Cambridge, Massachusetts
USA 02138

Since the introduction of Personal Computers, we have been faced with the challenge of
how to utilise the power and performance they offer. This, in turn, has posed the problem
of the best way to integrate them into our particular computer environments, and the types
of communications required to achieve this integration.

Most managers would agree that significant improvements can still be made in the timely
collection and transfer of relevant business data. A manager needs timely information in
order to make better decisions concerning marketing, production, staffing, financial plan­
ning and other areas.

This paper discusses primarily why automatic polling of personal computers can, in certain
circumstances, be an attractive solution, in comparison to other computer solutions, what
some of the key features of an automatic PC poJling system should be, and several ex­
amples of successful polling of PCs.

Several Approaches to PC Data Communications

Alongside the rapid growth of the PC has sprung up a whole new industry of communica­
tions specialists offering a myriad of new and not so new products. Some already familiar
terms alongside many new ones have taken on an increasing importance in today's com­
puter environment. We are now faced with WA TS Lines, Leased Lines, X.25 PAD's, Thick
LAN's, Thin LAN's, etc, etc. This, of course, can lead to much confusion on just what is
the best method of communications to use.

The confusion is merely illusory as, with all computer solutions, once we break down our
objectives into manageable pieces, the communications solutions are usually quite obvious.
An important point to note here is that not only must the communications package meet the
communications requirements, but its ease of use must match the level of the user who is
going to be using it. For example, one of the most common of all the uses of the PC is
within Head Office, where users and DP personnel utilise the PC as both a terminal for the
HP3000 and a PC to run such programs as LOTUS 123 and DBASE. Obviously you require
a product that can handle terminal emulation and PC initiated file transfer, as data will
almost certainly be exchanged between the PC and HP3000. It is here we have a potential
problem. While DP staff have no difficulty in operating interactive file transfer, there is
often a lack of willingness on the part of users to do likewise. How many of you have
LOTUS 123 users who have thousands of dollars worth of spread sheets that never get
backed up? Could we utilise an automatic method of data collection by the HP3000 to al­
leviate the problems of PC backup and file exchange? It is a possibility.

We do not have enough time to cover all possible types of communications scenarios so, for
the purpose of our discussion on automatic polling systems, we will concentrate on

Automatic Polling Systems for Mini/PC Network

problems and solutions when using the PC as a remote stand alone work station which
requires regular exchange of data between itself and the central computer.

By its nature the PC lends itself to stand-alone usage, and one of the major areas of benefit
that can be gained from the PC is the low cost turn-key solution. It is now possible to put
PCs into retail outlets, remote warehouses, local or branch offices where they can offer
great performance for a low level of investment. The PC is able to carry out stock control,
accounting, inventory control, act as an intelligent cash register and so on. Of course this
leads us back to the central issue of how to maintain, collect and update the information
that is held on these remote machines, in a timely, accurate and cost effective manner.

One approach could be to use the medium of floppy discs. Discs could be sent through the I '

mail to and from head office by regular post. One benefit of this approach is that com­
munications costs are kept to a minimum. Unfortunately, it is likely that we have all suf-
fered the vagaries of the postal service! Despite what they may have us believe, mail does
occassionally go astray. This would inevitably lead to lost data and, possibly, unhappy cus-
tomers if, for example, some orders went missing. Recovery from this situation would al-
most certainly be difficult. Courier services can be used as a more reliable alternative, but
this would significantly increase costs. Perhaps the major drawbacks in this approach are
the lack of timely information due to the delays inherent in the mail service, and that such
heavy reliance on manual procedures must inevitably lead to a break down.

Another possible approach is to train staff at the remote site on the use of a PC controlled
communications product to transfer the required data. This approach has the benefit of
requiring nothing more than a modem at each site, and telephone connection only when
data transfer is taking place, thus minimizing cost. Unfortunately, even if this process is
automated there are a number of problems that the DP manager still has to face.

Firstly, a change in staff at the remote site will require the training of a new person to
take over the responsibility for the data communications and may result in delays or, in the
worst case, loss of data. Also, the cost of this training is likely to come out of the DP
budget.

Secondly, some retail outlets, for example, stay open for twelve or more hours which makes
it unlikely that the trained operator will be around at the end of each day. Communica­
tions may have to be undertaken during work hours leading to an interruption in the serv­
ices performed by the PC. In cases where the PC is used as a cash register, such interrupt­
ion is obviously impossible.

Thirdly, a problem will arise when the number of remote locations surpasses the number of
indial ports on the HP3000. To continue the retail example, it is unfortunate that most of
the outlets tend to shut at approximately the same time. If you have 40 sites all trying to
dial in simultaneously and there are only 5 indial ports on your HP3000, then the problems
are obvious. The system will break down because the staff at the remote sites will not wait
around all night. You could try to circumvent this problem by arranging specific times for
each remote site to call in. Unfortunately, if the PC is required while the outlet is in
operation, as with the cash register example, then this will not work.

Lastly, something we consider to be a major problem is one of controlling the exchange of
the data. How do we identify what has been successfully sent and received? With data
sent to the HP3000, the problem is not so great as we can see what new files have arrived,
but what if one of the files has only been partially transmitted? Will we get the same data

2 Automatic Polling Systems for Mini/PC Network

plus some more the next day? Will we double up on orders and unneccessarily increase our
inventory? Identifying what has been successfully sent to the remote site is very complex -
we really have no sure way of telling. This situation is, of course, unsatisfactory.

A third possible approach would be to have all the locations hooked through a Local Area
Network and sharing an MS-DOS partition on the HP3000. With the advent of X.25 and
some of the new features of HPAdvanceNet this is now possible. The benefits are that
communications by file transfer methods are now obsolete and keeping track of the data is
made much more simple. Unfortunately the drawbacks are quite severe. A retail chain
with 80 outlets would certainly tax any HP3000 system, and it would not be at all cost ef­
fective to dedicate an HP3000 system to serve an MS-DOS environment. The communica­
tions charges would be high, as an X.25 PAD at each location is quite costly. The HP3000
would also have to be equipped with a number of INP's which, as we all know, are
expensive. Finally, a failure of the central machine would lead to the operation of ALL
the remote sites coming to a halt. This, of the all the approaches mentioned so far, is cer­
tainly the most expensive, and probably the least satisfactory.

A better approach is to look at automatically polling the PCs under the control of the
central HP3000. This approach could better be termed the "Centralised approach to
Decentralisation".

The major benefit of this approach is that the remote site requires no user to operate the
communications system; it is handled by the central computer. This will eliminate the pos­
sible problems created by individual responsibility and staff turnover and, at the same
time, eliminate training costs. As the HP3000 will determine when to call each remote site,
dependent upon the number of ports available to it, and the open/close time of the site,
phone line congestion can be eliminated. The process may be automated in such a way that
phone lines are used when rates are less expensive since no human intervention is
necessary. The central computer utilization is improved by exchanging data during off
peak periods. Most importantly we can overcome the problem of tracking the exchanged
data as the HP3000 can keep a record of all the remote sites that it has contacted and the
data it has transferred.

It would appear then that in situations where a number of remote sites are going to use the
PC in a stand-alone system environment, an Automatic polling system is certainly best
suited to control the flow of data between the central site and the PC. Another great ad­
vantage is that the DP department is, once again, in control of this flow of data.

Let us now look in more detail at the major requirements for an Automatic Polling System.

Some Essential Features of an Automatic Polling Systems for PCs

Our experience has been mainly in the HP3000 environment and, for this reason, we will
discuss in this section the features we believe are necessary for an HP3000/PC automatic
polling system. However, our conclusions would also apply to other minicomputers and
mainframes.

For purpose of discussion, we will refer to the HP3000 as the minicomputer, and PC as an
MS-DOS personal computer. General considerations and the essential features of the
automatic polling system will be reviewed for the HP3000 and then the PC. With regard to
hardware considerations, we assume that the HP3000 does not have an INP (Intelligent
Network Processor) and that the HP3000 communication is done either via a modem/phone

3 Automatic Polling Systems for Mini/PC Network

line or hardwired. It is our belief that minimizing hardware requirements, such as
eliminating the need of INP, makes the polling systems more attractive.

General Considerations

The automatic polling system should be controlled by an HP3000, though software modules
must be installed on both the HP3000 and the PCs in order for the system to be in complete
harmony. The HP3000 must act as the operations centre, knowing when to get in touch
with the PCs, how to get in touch with PCs, what information to transmit, what to do in
case of a problem and to report to the DP Manager statistical information. The polling sys­
tem should be bi-directional as it should be possible to transfer data automatically in both
directions. Also, there should be a manual override if certain conditions change. The sys­
tem should be capable of transferring all types of files and the data should be compressed
for improved speed. The system should be able to handle different makes of modem and
multiple occurrences of each of these different types. The highest speeds of modem should
be used where possible. Finally, error detection is an indispensible part of the system.

Main Features of the HP3000

The HP3000 should be able to do the following:

- Transmit files from the HP3000 to the PC
- Receive files on the HP3000 transmitted by the PC
- Allow definition of transmission parameters in a control data base:

Information (phone number or device number) on each remote location
Specification of files to be received or transmitted
Number of lines available
Type of modem
Time of day/night to start transmission
Number of dialing retries

- To dial (when phone lines are used)
- Compress data
- Detect errors
- Provide statistical information on transmission
- Facilitate use of system.

As one of the major benefits of a polling system is the ability to control and report the
movement of data between the PCs and the HP3000 it would seem logical to store such in­
formation where it is easily accessible - an IMAGE database. The information held in the
database will be used to drive the system, and as the system is running data will be updated
and added to it, thus we will refer to it as the "Control" data base.

The polling system on the HP3000 has three specific functions. For purposes of clarity we
will assign each process a name. They will be called the "Grandfather", "Father" and "Son".
We will discuss below the different role each has to play, which is schematically repre­
sented by exhibit 1. We will then review in more detail the essential features for the
HP3000 mentioned above.

"Grand/ at her" process

4 Automatic Polling Systems for Mini/PC Network

The governing process of the HP3000 polling system is the "Grandfather" process whose
main resposibility is to create a "Father" process for each type of modem that we will be
using on the HP3000 (we include direct-connect PCs as a modem type), since communica­
tion procedures may be different for each type of modem. The "Grandfather" process will
review the "control" database for relevant information and will then allocate different
remote locations to each "Father" process.

"Father" process

The task of the "Father" is to process all the remote sites that belong to its particular
modem type. The "Father" consults the control database to determine how many lines are
available to it, and, as the actual task of contacting each site is carried out by the "Son"
process, the "Father" Process must create a "Son" process for each of the available lines.
Once the "Son" processes have been created the "Father" can begin to process the locations
under its control. A number of issues must be considered: is the location ready to accept
communication based on opening/closing hours? Has the location been put into a "wait for
communication" state? Is the location actually operational? And so on.

Once the "Father" has identified a location that is ready for communication, it collects the
relevant information about the location and passes it to an available "Son". The "Father"
must now monitor its "Son" in order to know when the "Son" has completed its appointed
tasks and to know when that line is again available. When the "Son" has finished the data
transfer, it passes back some information on the communication session with which the
"Father" has to update the statistical database.

Once the "Father" has reached the end of its processing, it reports back to the
"Grandfather".

It should be noted that the "Father" process can have multiple "Son" processes under its
control. The "Father" must continually monitor its "Son" processes for completion of cur­
rent tasks, and should allocate new locations to available "Son" processes until all locations
have been processed or all time limits have been exceeded, if so specified by the "control"
database.

"Son" process

The "Son" process is responsible for dialing and establishing contact with the remote PC
location and controlling the transfer of files between the computers.

The "Son" is activated by the "Father" and will control its operations according to the data
sent to it by the "Father". Its first task is to attempt to open the specified HP3000 port and
then to attempt to dial the location. One of four conditions can occur:

1. There is a succesful connection
2. The line is busy
3. A connection is made but no "acknowledgement to proceed" is received from the

remote PC
4. Dialing fails

In case 2, the "Son" will attempt to redial until condition 1 above occurs, or until the num­
ber of redial attempts exceeds the pre-defined maximum, as specified in the "control"
database. In cases 3 and 4, the "Son" will abort the dialing attempt and return to the

5 Automatic Polling Systems for Mini/PC Network

"Father" process for further instructions.

Once the "Son" has a successful connection and has received an "acknowledgement to
proceed, it sends some parameter information to the remote PC.

The "Son" will then begin to exchange files with the remote location. Information is passed
in blocks, with checksum verification. In the event of corrupted data being encountered,
the block will be retransmitted until it is successfully transmitted or the number of retry
attempts exceeds the maximum allowed (as specified in the "control" database). If this
happens, the "Son" will cut the line and redial the location assuming that the maximum
number of redials has not been exceeded. The reason for redialing is to attempt to estab­
lish a cleaner line with less "noise". When a line is re-established, the "Son" will attempt to
pick up file transfer (receiving or sending) from where it left off.
We will now briefly review the essential features for the HP3000 in order for the
"Grandfather/Father/Son" process to function.

Transmission of Files from the HP3000 to the PC and Vice Versa

The polling system must be able to co-ordinate and conduct actual file transmissions from
the HP3000 to the PC and vice versa.

"Control" Database for Definition of Transmission Parameters

A "control" database must be established on the HP3000 which specifies the transmission
parameters. The control data must contain, at minimum, the following types of
information:

- Details concerning the remote location; its device number if it is hardwired, and phone
number if it is a phone connection.

- Details regarding the files to be received or transmitted for each remote location.
- Details concerning the lines available for transmitting the data.
- Details concerning the modem.
- The time of day/night when the dialing should commence and finish. Also the number of

retries when dialing fails or when transmission is lost in midstream. Also the time delay
to start redialing.

Dialing System

When transmission is through phone lines and not hardwired, then the HP3000 must be in­
structed as to how to dial the remote locations, without additional hardware except for the
modems.

Data Compression

The software system should use data compression techniques in order to reduce the dura­
tion of transmission.

Error Checking

Integrity of data is vital if the polling system is to be useful. A variety of algorithms are
available to control accuracy of data transmitted.

6 Automatic Polling Systems for Mini/PC Network

Statistical Information on Transmission

If transmission problems occur, it is important for the DP Manager to know what they are
in order to take quick action. The polling system should produce a statistical report once
the po11ling is completed for the day.

Ease of Use

The polling system should be transparent to the PC user so that it is not necessary to know
the technical details. This way the HP3000 DP department involvement is reduced to a
minimum. Also, the set-up of the polling system should be made as simple as possible and
changes should also be easy to make.

Main Features for the PC

Each remote PC must have a communications module that waits to be activated by the
HP3000 ("Son" process). It could also be an option for the PC to have a maintenance and
configuration program for defining files to be transferred or received.

The method by which the PC module is activated would depend on the main system that is
being run on the PC. It could be embedded as the last program in an "End Of Day" routine
or called as a menu choice. Alternatively, it could be activated with reference to the PCs
clock or perhaps as a "POP UP" when the HP3000 calls.

If data is being transmitted to the PC, it is then also useful for the polling system on PC to
have the ability to call another program on the PC.

In addition, it is important for the PC to have the ability to override the automatic polling
system if, for example, the phone number is changed for the PC (i.e. when a sales person
takes the PC to another location).

Finally, the PC should be able to report how the transmission was conducted and if any
problems occurred.

Case Histories - HP3000/PC Automatic Polling

Below we review three recent case histories of HP3000/PC Automatic polling systems
which have been successfully implemented. Many other types of application, however, are
possible.

Mortgage Pre-qualification System

A subsidiary of one of America's largest financial companies entered into an agreement
with a retail chain that has 2000 outlets to provide a mortagage pre-qualification service in
a storefront style operation. It was decided that personal computers would be used at the
pre-qualification centres, rather than online terminal, with the whole network to be
managed by an HP3000. An automatic polling system was installed with the main features
being (see exhibit 2):

I. PC is used in stores to provide pre-qualification analysis through a proprietary com­
puter program.

7 Automatic Polling Systems for Mini/PC Network

2. Object code updates and parameter tables from the proprietory computer program are
automatically sent to the PCs by the HP3000, via the polling system.

3. The HP3000 automatically polls the PCs every night to obtain the daily customer pre­
qualification files.

Supermarket Price Update/Sales Report System

One of Europe's largest supermarket chains developed a system where PCs in the stores are
connected to a master cash register (that in turn is connected to upto 20 laser bar code cash
registers). An automatic polling system was installed on the HP3000 for data exchange
with the PCs. The major aspects of the system are (see exhibit 3):

1. PC collects sales data from the master cash register.

2. HP3000 automatically polls every PC for sales/inventory data.

3. HP3000 automatically sends price and product updates to every PC.

4. PC transmits updates to master cash register.

5. HP3000 consolidates storewide sales/inventory data.

Educational Software Cataloguing System for a School District

One of the larger school districts in the United States implemented an automatic polling
system for its 450 PCs using an HP3000 and Office Share Network from Hewlett Packard.
The HP3000 maintains a library of educational software available for instructor's com-
puter lab use. Each night the HP3000 polling system dials the computer labs and
downloads instructor requested programs to the PCs. Additionally, programs which have
been resident on the PC longer than 14 days are purged.

Conclusions

Although automatic polling of PCs with a mini computer is a novel concept, it has been
successfully implemented by a number of HP3000 sites, who have found it more cost effec­
tive than other methods of PC data communications. Automatic polling systems for PCs
plays a vital role for those DP departments that wish to retain control of data transfer,
thereby minimizing the involvement of PC users in data communication activities. Im­
proved HP3000 utilisation and more rigourous statistical reporting are extra benefits of
such a system. It is for this reason that we suggest when organisations are reviewing data
collection and transfer systems, that automatic polling of PCs be at least considered as an
alternative approach.

8 Automatic Polling Systems for Mini/PC Network

EXHIBIT 1 -- "Grandfather/Father/Son Process for Automatic Polling"

~ ~
00 00

n
00

~
00

~
00
~
00

E-1 Automatic Polling Systems for
Minicomputer/PC Network

EXHIBIT 2

Automatic Polling for Mortgage Pre-Qualification System

I
I HP3000 at I
I Headquarters I
I I
I I

Key features of Mortgage Pre-Qualification System:

I. PC is used in stores to provide pre-qualification analysis
through a proprietary computer program.

PC at store
site

PC at Store
site

PC at Store
site

PC at store
site

2. Object code updates and parameter tables from the proprietory computer program are
automatically sent to the PCs by the HP3000, via the polling system.

3. The HP3000 automatically polls the PCs every night to obtain
the daily customer pre-qualification files.

E-2 Automatic Polling Systems for Mini/PC Network

i ~·

I

II'
!

EXHIBIT 3

Price Update/Sales Report System for Supermarket Chain

I
IPC

I

I
at Storel !Master Cash! I Cash I
site ~- Register !~-!Register!

I I ___ _ ____ I I 1-1
I

I I
HP3000 I I I

I Head- I I IPC at Store!
lquartersl~I I Site I
I I 1-l ____ I

I
I
I I I
I IPC at storel
-I Site I

l _____ I

Main Features of Price Update/Sales Report System:

1. PC Collects sales data from the master cash register.

2. HP3000 automatically polls every PC for sales/inventory data.

I
I

I Cash I I
I Register I I

1-1 I-
I
I
I I Cash I
I I Register I
-I I

3. HP3000 automatically sends price and product updates to every PC.

4. PC transmits updates to master cash register.

5. HP3000 consolidates storewide sales/inventory data.

E-3 Automatic Polling Systems for Mini/PC Network

TAKING A SHORT BREAK ...

"Please. do not interrupt."

Michel Kohon
Tymlabs Corporation

Tacked to a door, this notice might refer to a Meeting of the Board, or a poetry
reading. But if it appeared on a computer, it would certainly be the HP3000
under MPE.

Although the architecture of the HP 3000 is very well suited for handling
interrupts, starting or stopping a process is a painful endeavor for MPE. The
:RUN command costs so much that new MPE versions have an auto-allocate
procedure. This may be fine for starting a program, but is no help when
switching from one program to another.

On the other hand, the BREAK key provides a neat interrupt feature and is
cheap in terms of system resources. However, BREAK doesn't provide any
way to actually run a second program. It merely gives access to MPE, which
most of the time is useless in a business application environment.

I spent a long time at a merchandising company where people live in an
interrupt-driven environment. Phones ring, display monitors update
commodity prices every 15 seconds, and decisions are made in very short
time. If the merchant is looking at his long/short position and a customer calls
to get some info on his current shipment, do you think the merchant will wait
one minute while his currently-running program shuts down and a new one
begins? The answer is NO. He will not use the computer. But, if it could take
a few seconds, he would!

We at Tymlabs have been working for some time on the concept of process
switching. The purpose of our efforts is to provide the quickest possible way to
access a program while running another one. We came early to the
conclusion that the BREAK function was the most appropriate means to
achieve that goal.

Once having reached that point, we looked for some documentation on
BREAK. Will you be surprised if I say that we didn't find any in the whole MPE
manual library?

The next step was to investigate the MPE source code itself. By a stroke of
pure luck, we managed to find the section which contained the information we
needed. Now I would like to share with you what we have learned about
BREAK - and what we plan to do with this knowledge.

1

BREAK: a gujded tour

Did you ever wonder what happens when you hit BREAK on your terminal?

I will now describe exactly what does happen, goinQ through the intricacies of
the MPE operating system, discovering on the way its sophistication and its
weaknesses. Remember that MPE is a multi-process oriented system; be
ready to follow BREAK into several sub-processes.

There are two ways to call BREAK - either by pressing the BREAK key on
your terminal, or programmatically by calling the intrinsic CAUSEBREAK.

Let's first examine what is happening when you hit the BREAK key on your
terminal, assuming that you don't have any OPTION NOBREAK in your UDCs,
and that none of the programs you have been using so far called the intrinsic
FCONTROL to disable BREAK. rNe will deal with these cases later on as the
standard situation is complex enough.)

1. The terminal driver detects the BREAK when a terminal generates an
extended spacing condition (not a character but rather a hardware
condition}, causing the ADCC, ATP, etc. to interrupt with a BREAK
status.

2. The driver process calls the procedure BREAKJOB. BREAKJOB is an
uncallable, privileged procedure which organizes the user process into
the BREAK state.

3. BREAKJOB hibernates all the user's sons and sets the user in a
BREAK state by turning on a bit in the 1st word of the MPE table called
LPDT (Logical Physical Device Table). Then BREAKJOB calls the
procedure CAUSESOFTINT, which runs on the Command Interpreter
stack. CAUSESOFTINT is a general procedure in charge of all types of
pseudo-interrupts.

In order to switch processes, BREAKJOB sets on the user's process
pseudo-interrupt bit in the PCB (Process Control Block) using the
procedure SErPSIF. It then awakens the C.I. whose PCB offset is
passed as a parameter to the AWAKE procedure. The C.I. starts
executing the procedure CAUSESOFTINT, as its PCB is now marked
as being in BREAK.

4. After some more validity checks on the status of the calling process,
CAUSESOFTINT calls the entry point SYSBREAK located in the actual
C.I. code.

5. If OPTION NOBREAK was specified in one of the active UDCs,
SYSBREAK calls FCONTROL to disable BREAK and returns to
CAUSESOFTINT which re-activates the user's process. This explains

2

I:
, ,
I
1·

why you don't see anything happening when you hit BREAK when
under the influence of an OPTION NOBREAK. It also means that you
cannot enable BREAK with FCONTROL when OPTION NOBREAK is in
effect.

6. If there is no OPTION NOBREAK, word 32 of the C.I. PXFIXED (a
MPE table built in every stack) is set to -1.

7. If there is an ongoing read at the terminal, or if the program is waiting
for a read (FREAD,READ,ACCEPT, etc.) the user's program is engaged
in a procedure called IOMOVE which interfaces the high level intrinsic
with a low level procedure dealing with logical devices.

This low level procedure is ATTACHIO. ATTACHIO controls the logical
transfer of data between ANY physical 110 device and the stack. It is
one of the most complex procedures in all of MPE. Actually ATTACHIO
is the tip of a deep iceberg which reads from, writes to, and locks any
physical device (terminal, HPIB, ADCC, ATP, etc.).

A Word to the Wise: If you have to deal with ATTACHIO, make sure the
logical device number is valid - unless you want MPE to grant you a
System Failure 206!

ATTACHIO is called by IOMOVE to read the logical device attached to
the terminal (LDEV 20 for example). When you hit BREAK on your
terminal, ATTACHIO detects it as an error in 1/0.

On detection of BREAK, IOMOVE unlocks the terminal file control block
(ACB) to let the C.I. process run (unless it is the C.I. itself which is
running in which case the BREAK request is voided).

8. The uncallable FBREAK procedure is called (on the C.I. stack) in
order to set the terminal file control block (ACB) break bit. The ACB is
then locked for a short period of time to insure that no conficting access
to the file takes place. FBREAK is running on the C.I. stack.

9. Eventually, FBREAK releases the ACB. If there is a read pending on
the terminal, IOMOVE tries to lock the $STDIN ACB. But since we are
now running the C.I., this attempt impedes the user's process in a low
priority queue internal to the file control block vector r1ong wait" state).

10. Once FBREAK is completed, the C.I. checks that to make sure the
calling process was a session before displaying the expected colon. If it
was a job from which BREAK was called with CAUSEBREAK, the
output buffer is flushed.

3

11. At this point, the C.I. Is waiting for an acceptable MPE command.
Most commands are permissible except RUN and others which imply
RUN. This is understandable since RUN would create a brother
process rather than a son (doni forget that the C.I. is now active). But
wouldn1 it be nice to have some kind of mechanism to run a program
from within a break?

12. When the C.I detects RESUME, ABORT, BYE, or HELLO, word 32
of the C.I. PXFIXED is set to zero (no longer in BREAK) and the
procedure FUNBREAK is called.

13. FUNBREAK locks the terminal file control block (ACB) and sets its
ABORTREAD flag to FALSE. This bit will be used by any waiting
IOMOVE. An ATTACHIO is fired to tell the terminal driver to clear its
BREAK DIT (Device Information Table) so that the current read (if any)
begins with data that has already been input and stored in a pending
buffer. The ACB is unlocked.

14. If the C.I. detects a RESUME command, it returns to the procedure
CAUSESOFTINT. This brings all user's sons out of hibernation and
resets the user's PCB to a no break state.

15. The user's process is no longer impeded, and the program
resumes. If a read was in progress, IOMOVE can now lock the terminal
ACB to complete that read. But before re-initiating the read, IOMOVE
displays the familiar (and hard-coded!) "READ pending". (How about a
beep or even a double beep instead of this message printed smack in
the middle of a formatted screen.)

This is the end of your guided tour ... BREAK-time is over; your program has
resumed.

One more thing. When a program uses CAUSEBREAK to break, all the the
above steps occur as described, except that the entry point in the break circuit
is step 4 rather than step 1. CAUSEBREAK takes care of hibernating the
process's sons and awakens the C.I. via a pseudo-interrupt.

When the Option NOBREAK is specified in a user's UDC, the BREAK function
is disabled at the time the UDC is executed. The UDCINIT procedure calls the
SETSERVICE procedure which sets the LPDT break bit to 1. This indicates
that the terminal is already in BREAK (although it is not), effectively voiding
any other BREAK .

As you can see, a tour of the BREAK function is almost as complex as a visit to
the Hearst castle and I cannot even be sure that my description is perfect
since no documentation is available. In fact, I would be very interested in your
comments if you hapeen to know (and have documentation of) what is actually
going on during specific phases of BREAK.

4

i

i
I

, The Rjyjera jnterface to BREAK

As of this writing, the Tymlabs product which will take advantage of the results
of this research is not yet on the market and doesni have a name. By the time
the printed article actually hits your mailbox, the product and its name may be
public knowledge. For now, I will use the code name Riviera {that is where
many Frenchmen like to take their breaks).

In order to take control when you hit BREAK or you call CAUSEBREAK,
Riviera substitutes its own routine for one MPE procedure which is called
during the BREAK process. Our research indicated that the safest place to
substitute would be at the point where SYSBREAK comes into play. This was
by no means the only possibility, as was certainly not the easiest to
implement. A long series of experiments led us to this conclusion - and
every one of them causing some kind of system failure! SYSBREAK's
advantage is that it is an entry point in the system SL, and therefore can be
called as a procedure.

To substitute for SYSBREAK, we perform a procedure called "trapping". To do
this, the actual SYSBREAK is renamed and our substitute SYSBREAK
decides when and how to call it. We do not chan~e MPE code and we let
MPE call our uncallable new SYSBREAK, which 1s located in a special
segment of the system SL

In order to provide access to Riviera, even when OPTION NOBREAK has been
set by a UDC, we also trap the procedure FCONTROL with a substitute
FCONTROL. Our FCONTROL decides for itself whether to satisfy a break
disable request or not.

Riviera also needs to know who is logged on at a specific terminal. To get this
information, we trap INIJSMP which is called by the HELLO command.
{Actually, we also trap the procedure STARTDEVICE which controls the user,
account, group access in order to provide an automatic logon by logical
device. You can say "HELLO" or "HELLO password" and be automatically
logged on in your correct session. The password is an optional Riviera
password. MPE passwords are prompted for as usual if not specified in the
Riviera data base. When specified in the data base, they can be encrypted to
insure full confidentiality.)

Description of SYSBREAK

Several times during the description of Riviera which follows, I will use the
expressions "if Riviera is active; or "if Riviera is not active." You may wonder
how a procedure knows if Riviera is or is not active. Since we don't want a
procedure to have to make a disk access in order to determine whether
Riviera is running, our only choice is to set a flag somewhere in a core­
resident table.

s

For this purpose, we decided to use the Job-ID field of the JMAT (Job Master
Table) related to the session/job which is actually running Riviera. This field is
not critical for MPE.

When Riviera starts, it stores in this field the string •$DESK" followed by the
Riviera version number. Every time we use the phrase ·Riviera is active; it
means that a procedure has determined that the JMA T contains one entry with
the string •$DESK•. Since there is no way a session or job canf log on as
$DESK.GROUP.ACCOUNT, and since $DESK cannot be displayed during a
SHOWJOB, our trick is both safe and invisible.

When Riviera is stopped by the system manager or operator, the original Job­
ID is restored. This 1s not necessary for MPE's purposes, but is useful for any
resource accounting or security system which accesses the Job-ID at log on at
log off.

If Riviera is not active when BREAK is called, we call the original SYSBREAK.
If the user has access to BREAK, he gets the colon. Otherwise he gets the
usual nothing!

If Riviera is active when BREAK is called, we check that we aren't in Riviera
itself (we don't want anyone to interrupt Riviera). Riviera disables BREAK also
(with FCONTROL) but under no circumstances should we allow a break in
Riviera.

If someone hits BREAK, we have to locate the group and account where
Riviera is running. This is necessary to open the two message files used to
communicate between a user and Riviera. (These two files, BREAK and
RESUME, are built by Central Riviera when it starts operation.) To determine
the user's group and account, we use a procedure which scans the JMAT until
it finds the $DESK Job-ID. This procedure then returns the group and
account, and the message files are opened.

Once BREAK and RESUME are successfully opened and if the terminal is an
HP model, SYSBREAK stores the screen contents in the C.I. stack (at this
point MPE has given us 9K words of available stack). Then we send a
message to the BREAK file, which has Riviera as its unique reader. If it is ok,
we perform the following 7 steps :

1. Call FBREAK to set the terminal ACB in BREAK state.

2. Call SETSERVICE to disable BREAK.

3. Wait for a message from the RESUME file.

The RESUME file reads all messages in a non-destructive manner.
Then it checks to see whether the terminal specified in the read record
matches the user's terminal number. If it does, the message is re-read
in a destructive manner, and we skip to step 7. If it doesn't, we pause
for 1 second and keep reading messages (if any). The pause is

6

necessary since we are running in a linear queue and other processes
must have a chance to collect their messages which may be placed in
front of ours in the message file.

4. Restore the screen previously saved (if running on an HP terminal).

5. Call SETSERVICE to enable BREAK.

6. Flush the terminal 1/0 buffers.

7. Call FUNBREAK to reset the terminal ACB to normal (producing the
less-than-desirable RREAD pendingw message.)

Riviera is now in control of the terminal, or rather has allocated one of its sons
to the terminal. (We shall come back to Riviera itself later on.) At some point
in time, Riviera's son sends a RESUME message to the user's process. This
message specifies whether we want to go into the regular MPE break or to
resume.

First case: we want to call the regular break.

Our SYSBREAK calls the original SYSBREAK and we are in break. If we
were under an OPTION NOBREAK, the original SYSBREAK will kick us out
and disable break. This is why our substitute SYSBREAK re-enables OPTION
NOBREAK when we come back from the original SYSBREAK by calling
SETSERVICE.

Second case: we want to resume.

We return from our SYSBREAK and we are back in CAUSESOFTINT which
will resume our program.

If, during our SYSBREAK processing, we find a non-acceptable situation, we
will call the original BREAK.

PC convenience with HP3000 power

In the last year or so, a new type of software product has emerged in the
personal computer market. This new product is actually a collection of office
tools or 'electronic desk accessories,' such as an electronic notepad, a mini­
spreadsheet, a computerized appointment calendar, an automated personal
telephone directory, a comP.uter simulation of one or more specialized pocket
calculators, and so on. While none of these utilities is particularly impressive
by itself, these accessory collections offer one outstanding advantage: all of
the functions are instantly available at the touch of a single key, even if the
user is running another program.

7

In essence, a very small 'desk manager' program is loaded into the
computer's memory each time it is turned on. Then, the user runs any
application -- word processing, spreadsheet, database management, etc.-- as
usual. The desk manager program is activated only when the user presses a
reserved key. The desk manager then temporarily suspends operation of any
application software so that the user can look up a phone number, jot down a
note, or perform a calculation, using any number of the available accessories.
When finished, the user presses the reserved key a second time to instantly
resume operation of the application program, in the exact spot where the
program was interrupted.

The basic technical premise of the desk accessory package -- that its functions
are always available, no matter what other application is running -- has
important potential for the HP 3000 environment. By offering a set of simple,
useful office tools which can be accessed without the overhead of stopJ?.ing
one program and starting another, such a product would expand the utility of
the system to its end-users. The hundreds of thousands of individuals who
have HP 3000 terminals on their desks could use the computer to help record,
organize and report the kind of information which has so far remained on
paper or in their heads.

What we plan to do with the information we have gained from Project Riviera
is to use the BREAK key to provide access to a desk manager - and a full set
of desk accessories - for the HP 3000. Although the desk manager will run as
a single program, any number of users will be able to access its functions
simultaneously. And in addition to the features available in personal computer
desk accessory products, our product will provide additional functionality
based on the multi-user orientation of the HP 3000. For example, after jotting
down a note, an HP 3000 user should be able to "send" copies of the note
electronically to a list of other users connected to the same system. Also,
when recording a new phone number, the number should be able to be made
available to other users in the same department, or included only in the
private records of the indiviual who entered it. The appointment calendars for
several individuals should be able to be updated and maintained by one
secretary.

We will also support the addition of user-written desk accessories. Once
programmed by the user, these accessories will appear on the menus and be
accessed in exactly the same manner as the standard tools. For example, a
user will be able to program a function to provide direct inquiry capabilities
into an important corporate database, allowing online retrieval and display
without running a separate program. Or a module could be added to look up
zip codes based on street addresses, or to display a catalog of the corporate
library -- in short, to provide any simple processing function that would be
useful to access in desk accessory mode.

I think you will agree that Project Riviera will have some interesting
implications for the way we perceive and use the HP 3000.

8

Michel Kohon is the creator of Mirage, The Image lookalike data base for Pcs.. He is most well
known for his Step By step methodology, an approach for completing software projects on
schedule. he has lectured extensively to international and local users groups. He created the french
HP 3000 users group in 1977, and chaired it during 3 years. Mr. Kohon is currently Director of
business development at Tymlabs corporation.

Course Authoring Languages and Course Delivery systems
by

John P. Korb
Innovative Software Solutions Inc.

10705 Colton St.
Fairfax, VA 22032

As terminal-based instruction, training, and testing becomes
more popular, many users are becomming interested in the
packages which allow them to create their own courseware
and/or testing modules.

Many approaches are available, each with its own advantages
and disadvantages. Some courseware packages read editor
files and consist of only a delivery program, interpreting
"lesson" files at delivery time. Others compile a lesson
source file into an intermediate code which is executed by a
delivery program. Text formatting capabilites are included
in some packages, while other packages will only display
material exactly as entered by the module author. An HP
terminal or HP terminal look-alike is required for delivery
by some packages while others have the further restriction
of requiring a block mode terminal. Menu based authoring is
used in some packages, with other packages using editor
files containing authoring language statements and text.

What are the factors by which to judge the various
approaches? Which are easiest to learn? Which have the
greatest flexibility? Which are the most extensible? Which
have the greatest security? Which require the fewest system
resources and have the least detrimental affect on system
performance? These and other questions will be addressed in
this paper.

Section 1: The Lesson: Data File or Program Code?

How is lesson material stored? Generally, lessons are
either data files or program code. When data files are used
they may be in one of many different formats. Some are
straight ASCII files with commands in them, probably created
with EDITOR and read by a lesson delivery program - these
are the so-called "interpreted" data files. Others are
binary files created by an authoring program or compiler and
which contain pre-processed commands and text for use by a
lesson delivery program - these are the "semi-compiled" data
files. Then there are the lessons which are actually

Course Authoring Languages and Course Delivery Systems
1

program code created by a compiler. Each of these three
major approaches has its advantages and disadvantages.

Section lA: Interpreted Data Files

Anyone who knows a few simple commands can construct a
lesson using the interpreted data file approach. All one
must do is sit down in front of a terminal and using an
editor, create a file containing lesson menus, lesson text,
and a few commands. Since there is no compilation to
perform, no special software is necessary for creating or
maintaining lessons, and the lesson files are ready to use
immediately. Generally, the "interpreted" packages contain
a fairly simple delivery program. The program reads the
lesson file and prints the text as it appears no
formatting is performed by the delivery program. Simple
commands tell the delivery program what to do - start a new
screen, display a menu, ask a question, "goto" a section of
text, etc. In fact, some users have used packages such as
TDP/3000 to provide simplistic training by using TDP's "USE"
files in creative ways.

Just as interpreted files have their advantages (easy to
construct, can be created by almost anyone, no compilation,
instantly ready for use), they also have their
disadvantages. The simplicity of their construction is
usually evident in the cost of the interpreted package.
Interpreted packages are usually less expensive than
semi-compiled or compiled (program code) packages.

One of the reasons most "interpreted" packages have fairly
simple commands is the high cost of complicated commands at
execution time. By their very nature, the commands in an
interpreted lesson must by parsed each time the delivery
program reaches them repeatedly incurring the parsing
overhead. The more complicated the command syntax, the more
overhead there is. Generally, little if any formatting is
provided by the delivery program. Text is usually displayed
exactly as it appeared in the file. The reason for this is
simple. If any formatting must be done by the delivery
program, it must be done EVERY time the delivery program
reads the text and executes the commands. Since formatting
text is usually a fairly high overhead operation, repeatedly
formatting text in an "interpreted" package can use up a
significant amount of CPU time and have a negative impact on
system performance - especially if multiple users are using
the package at once.

Course Authoring Languages and Course Delivery Systems
2

Security is another problem. As standard "EDITOR" files are
used, security generally revolves around the use of
lockwords - assuming that th~ package allows for lockwords!
Should there be any question and answer sections in the
lesson, or any testing, users are bound to start trying to
read the lesson file and find the answer - and they probably
will succeed.

Section lB: Semi-Compiled Data Files

Semi-compiled lesson files take many forms. Some are
nothing more than V/PLUS forms files. Others are
proprietary file structures containing binary codes and
compressed binary data. Both have one thing in common: they
are the result of the processing of the lesson author's
input into a form which is coded in some form and generally
not directly human-readable.

In the case of the V/PLUS based packages, the lessons are
created with the V/PLUS utility program(s) and delivered
with either ENTRY.PUB.SYS, or a program similar to it. The
power of V/PLUS is available to the lesson author, but so
are all of the limitations of using V/PLUS. First, one must
learn to use V/PLUS before attempting to author a lesson.
For programmers this is not difficult, but for someone with
limited computer background this can be a trying experience
in itself. Second, a block mode terminal must be used.
This limits the types of terminals which may be used to
deliver the lessons, or in some cases, the data
communications devices/methodologies over which the lessons
may be delivered. Also, while V/PLUS compresses blanks out
of the screen images, it still transmits and receives a fair
amount of "overhead" data to support the block mode diplay
method.

As an advantage, V/PLUS is a supported Hewlett-Packard
product and should be around for quite some time. Thus,
lessons written using V/PLUS and ENTRY should be
maintainable in the long term.

Proprietary lesson file structures are often the result of
an interpreted package "growing up" into a semi-compiled
package. Proprietary lesson file structures often have many
advantages over the V/PLUS approach. First, the file
structures can be tailored to their intended use
instruction, training, and/or testing. Also, directories or
indexes can be incorporated into the files to simplify
directly accessing a topic.

Course Authoring Languages and Course Delivery systems
3

Unlike interpreted packages, semi-compiled files can be
coded in binary to save space and reduce execution time,
blank compression can be used to eliminate unnecessary
storage and data communication, and text can be formatted at
"compile" time. Typically the lesson data is pre-formatted
so that it can be passed directly (or with minor
translation) to the MPE intrinsics. In some ways, this is
much like the "emulation" mode to be available on the
Spectrum series systems.

Also, the file structures can be enhanced by the vendor
without impacting on unrelated applications and various I'
security techniques can be used to prevent unauthorized
listing or modification of the lesson file (encrypting data,
using privileged mode files, etc.). As a bonus, the vendor i ··

is usually free to add additional features or customize the
package to suit a specific customer. Often times the entire
customer base benefits from these enhancements.

As for disadvantages, semi-compiled files are produced by
some sort of authoring program or package. This means that
the author must wait while the lesson compiles before being
able to test the lesson or turn it over to the users.
Because proprietary file structures are used, the files may
have some characteristics which make maintaining them more
difficult. For example, if privileged mode files are used,
the files cannot be copied or renamed without using a
special program or utility package (note, however, that this
makes their security excellent).

Section lC: Program Code

Another method of storing and delivering lesson material is
by using program code. For example, an entire lesson could
be written in BASIC, COBOL, FORTRAN, PASCAL, or SPL. By
using program code it is possible to reduce the system
resources that delivering a lesson requires (no
interpretation, no translation from binary codes to
intrinsic calls). Because of the object code compatability
of the HP 3000 family, lesson (program) files should be
executable long into the future.

Unfortunately, many of the features which make an authoring
package or program useful would have to be incorporated in
each and every "lesson" program and would have to be
developed from scratch. Also, a programmer or trainer with
programming experience would be necessary to write the
lessons.

Course Authoring Languages and Course Delivery Systems
4

There is another method of using program code - generate the
code by using a special compiler that reads semi-compiled
lesson files and generates MPE program files as its output.
Common procedures kept in a USL and linked into the compiled
code generated from the semi-compiled lesson file then
produces a stand-alone program which runs faster than the
semi-compiled lesson file as executed by a delivery program
(the speed difference is not dramatic, or even noticable by
the average user, but does show up as a slight reduction in
CPU time used).

Unfortunately this approach has its drawbacks also. Linking
lessons together requires the use of process handling
capability, the use of which may require giving the lesson
authors PH capability. If frequent switching between
lessons is common, the approach may cause serious
performance problems. Should the lessons become rather
large (assuming the compiler is smart enough to
automatically segment the code it generates) the large
program size will adversely affect a variety of system
tables and system performance, especially if users use the
lesson(s) as "quick reference" and frequently get into and
out of the lesson(s). Thus, much of the performance gain by
compiling to more efficient program code may be offset by
other performance problems caused by compiling to program
code. Also, security can be a problem. Unless certain
information (such as the answers to questions) is encripted
in the program source code (and oh what fun that is to do!),
security can be no better than that of an editor file.

Both approaches become rather expensive. Either an
application programmer "writes" an application program that
delivers the training - a hard-coded "print" program with
perhaps questions and answers that is written in a standard
language (BASIC, COBOL, .••) or a package reads a
semi-compiled lesson file and creates a program file. If a
programmer is required to write a lesson, the lesson becomes
very expensive due to the cost of the programmer. If a
package "compiles" code, the package is usually very
expensive.

Section 10: Summary

While each approach has it advantages and disadvantages,
certain aspects of the different approaches stand out.

Interpreted
inexpensive.

packages are simple, easy to use, and generally
However, they lack the more advanced features,

Course Authoring Languages and Course Delivery Systems
5

formatting, functionality, efficiency, and. security of
semi-compiled packages or compiled (program code) packages.

Semi-compiled packages are more complicated to use, and
generally more expensive. Some offer the more advanced
features, formatting, functionality, efficiency, and
security lacking in the interpreted packages, but some also
are more restricted in the types of devices they can be used
on.

Program code based packages can be
packages with the most features, but
expensive, especially if multiple lessons
multiple lessons must be linked together.

the most efficient
are generally very
are involved or if

Section 2:

Different
formatting
formatting
points.

Text Formatting: High-level or Low-level?

packages have different approaches to the
of data. In general, the differences in

capabilities come down to only a few major

Section 2A: What was that escape sequence?

First, does the package have high-level commands for
starting a new screen, clearing to the end of the screen,
positioning the cursor to a specific location on the screen,
underlining text, and other terminal functions? If so,
creating attractive, functional screens is much easier,
takes much less time, and takes far less trial-and-error
than if the lesson author must memorize a dozen or more
escape sequences and flawlessly key them in in.

Second, does the package have the ability to format your
text for you? Can you key in your text and have the package
move text from line to line to fill between the margins?
Can you have the package center text for you? Can the
package leave blocks of text exactly as you keyed them in?
All of these are important functions when you consider the
time necessary to develop a lesson. Time spent on manually
moving text from line to line or centering headings can be
more productively used to enhance the material contained in
the lesson.

Third, is there a way of manually entering escape sequences
for handling those special cases not covered by high-level
commands? Ideally, a special user-definable character
should be used to indicate that an escape charater is to be

Course Authoring Languages and Course Delivery Systems
6

I
I .

inserted at that point. This allows the author to see the
escape sequences in the file without having to keep going
into and out of display functions. As an example, a package
might allow the "-" (tilde) character to be defined as a
replacement for the escape character. Thus, if it were
necessary to enter the escape sequence <esc>H<esc>J (which
homes the cursor and clears the screen), the author would
simply enter -H-J.

Section 2B: Summary

The level of formatting functions available to the author
can have a major effect on the productivity of the author.
The better the formatting capabilities, the more productive
the author and the better the likelihood of an attractive,
well-balanced screen display.

Section 3: The Terminal: The Minimum Common Denominator?

What kinds of terminals are required to utilize the
authoring and delivery packages? Do you need a graphics
terminal? Is a block mode terminal required, or will a
character mode terminal suffice? Will the software run over
your data communications equipment? Must you write lessons
to run on the terminals with the minimum capabilities, or
can the package accomodate several different functional
terminal groups within one lesson?

Section 3A: Data Communications

In the HP shop terminals generally fall into two catagories:
character mode devices and character/block mode devices. As
their names imply, character mode devices communicate on a
character-by-charater basis, block mode devices transfer
data in blocks. What is more significant is that while
virtually every HP terminal can run in character mode,
certain models cannot operate in block mode. Thus, packages
which must run in block mode or which use V/PLUS cannot be
run on some models of terminals. While the number of models
is small, the number comprises a significant percentage of
the available terminals at some sites, and may dictate the
type of authoring and delivery package used.

Also note that not all block mode operations are supported
when terminals are connected to a host system over an X.25
link. Often the users who are connected to a system over an
X.25 link are those who are located at a remote location and
who are least likely to have other training methods or

course Authoring Languages and Course Delivery Systems
7

instructional materials at hand. Thus, they are generally
the least able to survive on their own, and most likely to
be hurt if a block mode only solution is chosen.

Section 3B: Terminal Features

What about terminal features? Some users will have very
basic terminals with little memory and few advanced
features. Others will have terminals with much memory and
line drawing and math character sets, and still others will
have graphics terminals or personal computers. Authoring
lessons for only a specific terminal model can severely
limit the usefulness of the lessons as the lessons may be
difficult to read or understand on other terminal models.
However, attempting to write lessons for the most elementary
terminal model can negatively affect the usefulness of the
result. Often times it is more effective to write lessons
for each individual terminal model. Some packages allow an
even better approach.

With some authoring packages the author can specify
something like: "display this screen on model "x" terminals,
this screen on a model "y" graphics terminal, and this
screen on a model "z" terminal". The author can then write
common non-terminal-specific portions of the lesson and
where necessary use separate sections to handle each of the
different types of terminals. In such packages the delivery
part of the package identifies the model of the terminal and
then selects and displays the appropriate screens for the
terminal at hand.

Section 3C: Summary

Formatting options are an important part of any authoring
package. Through the use of high-level formatting options
the productivity of the lesson author and the effectiveness
of the resulting lessons can be greatly increased.

Section 4: Creating The Lesson: Menu Based or File Based?

Generally lesson authoring packages are of the menu-driven
type or the source file driven type. Menu-driven packages
use a series of menus from which the author defines the type
of screen, the options in effect for the screen, and the
content of the screen. Source file driven packages use an
editor file containing the text and commands necessary to
describe the lesson. If the delivery package is of the
semi-compiled data file type or the compiled program code

course Authoring Languages and course Delivery systems
8

type the editor file is passed through an authoring program
which "compiles" the text and commands into an output file,
be it a data file or a program file. Opinions vary as to
which package is better, or even appropriate for a specific
lesson, often leading to lively debates. Below are some of
the advantages and disadvantages of both approaches.

Section 4A: Menu-driven Authoring

In a menu-driven approach the author decides the type of
screen to be created: a menu screen, a text screen, a
question and answer screen, etc. The authoring package then
displays a basic screen of the requested type and asks a
series of questions. For example, if a menu screen is being
created, the authoring package might ask for the menu
heading and its justification (left, right, centered). Then
it might ask for the keywords to be accepted and the text to
accompany them. For each acceptable keyword the authoring
package would then ask for the action to be taken. The
menu-driven approach is favored by many authors, especially
those with little or no computer background, as there are
very few commands to learn and little need to be conscious
of any underlying logic.

There are three major criticisms of the menu-driven
approach. First, the author is forced to proceed through
screens again and again. Often the author makes only a few
keystrokes on a screen before moving on to another option.
screen and perhaps another option screen and then finally
reaching a screen for entering the text for a screen. The
first few times this is not much of a bother, but as the
author becomes more experienced the delays associated with
repainting screens and repeatedly answering the same
questions becomes rather tiring.

Second, the choices of menu packages tend to be more
restrictive as to what the author can and cannot do. The
author must select from one of the provided options. If the
options do not include the function the author wishes to
perform, the author has no recourse but to redesign the menu
or screen to use one of the options available.

Third, menu packages often restrict the author as to what
formatting may be performed. As an example, menu-driven
authoring packages often prevent the author from overlaying
new text on top of an existing display, or clearing a
portion of a screen and overlaying new text in the cleared
area (some menu-driven packages do allow the use of a
previous screen as a basis for a new screen, with the

Course Authoring Languages and Course Delivery Systems
9

delivery program repainting the entire screen, even if only
one or two characters have been changed).

Menu-driven packages do have their advantages though.
First, they are easy to learn to use - the first-time author
is led through the process of developing the screens.
Second, the lessons tend to have a standardized "look and
feel". Third, the screens are usually displayed to the
author in a "what you see is what you get" form. Finally,
errors in command syntax are usually caught by the authoring
package at entry time.

section 4B: source File Driven Authoring

In source file driven authoring, the author uses one of the
many editors available for the HP 3000 to enter the text and
commands comprising the lesson. Generally, the lesson text
is entered as plain text - no surrounding quotes or other
indicators and commands for the authoring package are
placed on a separate lines with some special character or
sequence of characters at the beginning of the line to
indicate to the authoring package that the line is a command
line and not text. Those familiar with TDP/3000 and other
text processors for the HP 3000 may recognize a certain
familiarity with this approach - in fact, certain authoring
packages recognize some of the TDP/3000 formatting commands.

Just like the programming language compilers, these packages
often have and "include file" feature which allows material
from other text files to be included into the lesson at
"compile" time. This is particularly handy if there are
lesson segments which are common to several lessons. The
common material can be placed in a separate file and
"included" into each of the lessons using the material.

If much of the text of a lesson already exists as portions
of various document files, using a source file driven
authoring package can be quite an advantage. An editor can
be used to extract the desired text and place it in separate
files. The separate files can then be merged and any left
over formatting commands removed or converted to the
authoring package's formatting commands. Then any menus and
authoring commands can be added. This approach can save
considerable time over re-keying text into a menu-driven
authoring package.

Also, there tend to be more formatting options and commands
available in a source file driven authoring package, and
there are fewer restrictions in how they may be used. In

course Authoring Languages and Course Delivery Systems
10

some packages it is possible to create very complex
structures which would be very difficult or impossible to
create with a menu-drive authoring package, or to utilize
special capabilities of certain terminal models.

With the added capabilities and features of source file
driven authoring come some drawbacks. First, since
formatting is usually performed during the "compilation" of
the lesson, the author usually can only guess what the final
screen can look like - the source file does not reflect what
the user will see on the screen. Second, error checking is
performed during the "compilation" of the lesson, and thus,
the author is not immediately aware of errors made in
constructing the lesson. Third, some authors are
overwhelmed at the number and complexity of commands
available - a menu-driven authoring package with its limited
options can be better in such cases.

Section 4C: Summary

Both menu-driven and source file driven authoring packages
have their advantages and disadvantages. Menu-driven
authoring packages can be easier to learn but generally
offer fewer options, features, and capabilities than source
file driven authoring packages. Menu-driven packages
generally respond to command errors at the time of entry,
while source file driven packages catch errors at
"compilation" time. Menu-driven packages often force the
author to sit through multiple screens of forms to define a
single lesson screen; source file driven packages often
allow a screen to be defined with a single line command.
Source file driven authoring systems are not as restricted
as to how options can be combined in new ways.

Section 5: Special Features

Special features can have a
of an authoring package.
factors to consider:

major impact on the usefulness
Here are some of the important

* Does the authoring package allow the author to set time
outs on screen input?

* Can the input echo be turned off and on (as in simulating
password prompts)?

* Can the user return to the previous menu at any time?
* Can the user backspace a screen?
* Can the user enter the lesson at any of multiple lesson

entry points (if permitted by the lesson author)?

Course Authoring Languages and Course Delivery Systems
11

* can the delivery system execute MPE commands (if
permitted by the lesson author)?

* can programs be run from the delivery package (if
permitted by the lesson author)?

* Can the author specify a special initialization routine
to be executed anytime anyone enters the lesson?

* Can the lesson be restricted to only those users having
certain capabilities (ie. only users with SM (System
Manager] capability can use the System Manager lesson)?

* Can the local site "extend" the capabilities of the
authoring and delivery package by writing their own code
(written in a language such as COBOL, FORTRAN, or SPL) to
be called from a lesson at run time?

* can the author perform mathematical calculations? can
numeric input be used in the calculations?

Each of these capabilities can be of use to the lesson
author. The better the capabilities, the more flexability
the author has in creating a first-class lesson.

Section 6: Conclusions

The selection of an authoring package depends on the
personnel who will be using the system, their level of
experience, the type of equipment in use, the data
communication methods used, the types of lessons to be
written, the use to which the lessons will be put, and the
performance considerations which the package must live up
to. In order to make an informed decision, the purchaser of
an authoring package must consider:

* The Ease of Learning the Authoring Language
* The Relative Speed of the Authoring Process
* The Cost of the Authoring System
* The Performance of Delivery Package (response time and

CPU time)
* The Commands, Functions, and Features Available
* The Devices the Delivery Package Must Support (character

mode terminals, or block mode terminals for example)
* The Level of Formatting Commands Available (underlining,

centering, filling between margins, etc.)
* The Security of the Lesson File (the security of any

questions, answers, or other sensitive material contained
in the lesson)

* The Ease of Linking Multiple Lessons Together
* The Ability to "Include" Text from Other Files
* The Productivity of the Lesson Author

Course Authoring Languages and Course Delivery Systems
12

* The Range of Applications of the Authoring/Delivery
Package

* The Ability to Write Your Own Extentions and Call Them
from a Lesson

* The Ability to Issue MPE Commands, Run Programs, and
Perform Calculations

Course Authoring Languages and Course Delivery Systems
13

Store-and-Forward Network Two Years Later - Lessons Learned
John P. Korb

Innovative Software Solutions Inc.
10705 Colton St.

Fairfax, VA 22032

Two years ago the paper "Store-And-Forward Data Transmission
in a Multi-System Network" was presented at the Washington
D.C. Interex Conference. The paper described a system
entering production which provided a standardized interface
to the application programmer and the ability to "ride out"
line outages by transmitting data across as many lines as
are "up", storing the data when the next line in the path is
"down", then forwarding the data when the line comes back
"up".

While the backbone of the network described has remained the
same, the network has evolved considerably in the last two
years. Timing considerations, DS/3000 bugs, IPC file
problems, queueing problems, overloaded DS lines, and
frequent X.25 line outages have provided a dynamic
development, test, and production environment (all
concurrently). As a result, many new features and
capabilities have been added to the network to increase its
capabilities, reliability, and throughput.

This paper presents the lessons learned and features added
as the network expanded beyond twenty systems, crossed a
continent and an ocean, and matured to include a mixture of
leased lines and X.25 links.

Recap:

Most of us think of a network of HP 3000s as two or three or
maybe even five to ten HP 3000s connected together with
DSN/DS3000. We think of a network where DSCOPY, the P-to-P
intrinsics, Remote File Access (RFA), or perhaps Remote
Database Access are used to pass data between systems, with
job streams, UDCs, and/or path-specific programs controlling
the operations.

In most of these networks, each data path is treated
differently, often because some paths have direct data
source to data destination links, while other paths may have
to cross one or two or more intermediate systems. This path
specific "coding" of job streams, UDCs, and/or programs is
acceptable for small networks with few paths, but presents a

Store-and-Forward Network Two Years Later - Lessons Learned
1

"design and maintenance nightmare" when large networks of
fifty or more systems with tens or hundreds of paths are
involved.

The network referenced in this paper is a store-and-forward
network with a set of user-callable procedures providing a
standardized interface to the application programmer to be
used for transfering data from any point in a network to any
other point in the same network.

Store-and-forward was chosen because of the realities of
communicating between approximately 55 HP 3000 systems in
many different time zones all over the world. With systems
in many different time zones, each operating on local time,
there is almost always a "nightly" backup going on on at
least one of the systems. Without a store-and-forward
philosophy, applications would have to be "smart" enough to
take into consideration the time zones of the processors
between the local processor and the data destination
processor, the dump times of the "bridge" processors, etc.
and might be confined to limited time windows for
transmission.

Store-and-forward eliminates these worries from the
application programmer/designer. No longer does a whole
day's transactions need to be batched until some 2 hour time
window. No longer are there the panic calls at 6 AM because
one of the DS lines along the way was down, so nothing was
transmitted, and no new attempt can be made until the next
transmission window some hours away.

By adopting a store-and-forward network design, applications
programmers can have their programs write transactions to
the Network as they occur, and the Network will transmit the
transactions as the necessary DS lines become available. If
the transactions need to go to a central system some four or
five DS lines away and one or more of the systems along the
way are unavailable, there is no problem. The Network
transfers the transactions as far as possible, stopping at
the break in connection. When the connection is
re-established, the transactions continue along on their way
- all without the the programmer having to worry.

What is the Network?

The Network is a collection of programs, procedures, files,
databases, and job streams which when properly configured
provide a data transportation system with the capability of

Store-and-Forward Network Two Years Later - Lessons Learned
2

transporting data from any point in the Network to any other
point in the Network.

What is its Purpose?

The purpose of the Network is to provide a consistent,
reliable, standardized method of transferring data between
applications programs on any HP 3000 CPU in the Network.

What are its Features?

o It can accomodate a configuration of up to 1024 HP 3000
CPUs.

o Each CPU can be configured to contain up to 15 "logical
nodes".

o Each "logical node" is referenced by the application
programmer via a 4 character PSD (Processing System
Designator) code.

o Each "logical node" can have up to 32768 application
"function" codes.

o Each "function" code can have up to 32768 application
"process" codes.

o Up to 32767 pre-defined ciphers can be used for encoding
transmitted data.

o The Network is based on store-and-forward operation,
buffering data to disc when physical communications lines
are not available, and when the application on the
receiving end is not running.

o Each time an application program receives a data packet
from the Network it also receives the "logical node",
"function", and "process" codes of the application which
transmitted the data packet.

o All application program access to the Network is via
eight standard network Procedures.

o Up to 800 words (1600 bytes) may be transferred with one
procedure call (ie. in one data packet).

o An application can provide a data record "type" parameter
to the receiving application along with but not included
within the data record.

o An application can provide a "heading" and "heading type"
to the receiving application along with but not included
within the data record.

o Depending on configuration, each Network user can be
required to provide a unique Network password.

o When reading from the Network, the receiving application
has the option of being placed on wait indefinitely if
there is no data available, or waiting for an application

Store-and-Forward Network Two Years Later - Lessons Learned
3

program determined interval (1 to 255 seconds) for data,
then timing out and returning a "no data available" error
to the application.

For more information, please
"Store-and-Forward Data Transmission
Network" in the 1985 Washington D.C.
proceedings.

The Basic Components of the Network

see the paper
in a Multi-System

INTEREX conference

The Network Software consists of three major modules:
1) The user interface (the Network Procedures).
2) The packet switching and transmission code.
3) The maintenance and utility code.

The user interface provides eight procedures which the
applications programmer uses to write data to or read data
from the network.

The packet switching and transmission consists of three
programs. The Traffic Control Supervisor Program (TCSP),
which is run from a batch job and acts as the creator and
controller of the packet switching program, and the packet
transmitting program.

The Traffic Control Progam (TCP) performs the packet
switching function, reading packets from its input queue and
writing them to areas for local NETREADs or to the input
queue of a packet transmitting program if the packet is
bound for a remote system.

The Network Message Transmitter Program (NMTP) performs the
data transmission function. One NMTP runs for each DS line
configured. The NMTP opens a DS line to the adjacent
system, sets up a file equation to the input queue of the
remote TCP. It then reads packets from its input queue and
writes them to the input queue of the remote TCP. By having
one NMTP per DS line and separate input queues for each
NMTP, a DS line "hanging" or an adjacent system being down
or otherwise unavailable does not affect transmissions to
other adjacent systems.

The Network maintenance and utility code consists of a set
of programs used to:

1) Build an initial configuration of the Network on a
processor.

store-and-Forward Network Two Years Later - Lessons Learned
4

2) Provide a means of modifying the configuration of the
Network on a processor.

3) Provide a means of adding to, deleting from, or modifying
the local configuration of the Network pertaining to
which users may access the Network, what passwords they
must supply when opening the Network, etc.

4) Provide reporting on the activity of the Network,
including usage statistics by user.

5) Recover from system failures or other interruptions which
prevent the TCSP and its child processes (TCP and NMT's)
from closing their files, emptying their extra data
segments, etc. and terminating normally.

Environmental Requirements

Because of the nature of the software, all of the Network
Software is written is SPL. The code requires PM
(Privileged Mode), MR (Multiple Resource Identification
Number), PH (Process Handling), and DS (Extra Data Segment)
capabilities, and to a limited sense is operating system
specific (MPE IV, MPE V/P, and MPE V/E are all supported by
one, common version of the software through specific
routines for specific levels of MPE). The Network
Procedures reside in three user-callable privileged system
code segments, allowing the procedures to utilize Privileged
Mode without the application programmer having to have PM or
prep the application programs with PM capability.

User programs wishing to call
have MR capability. While only
would be needed to remove this
to not "do the user the favor"
then giving it up, in order
programmer to have MR capability,
who can access the Network.

the Network Procedures must
a very small amount of code
requirement, it was decided
of obtaining MR, using it,
to force the application
and thus, further restrict

The Network is accessed through eight Network Procedures.
These procedures are standardized and are the same on all HP
3000 systems in the Network. Using these procedures, one
opens the Network, then reads data from or writes data to
the Network, and when done, closes the Network. The Network
Procedures set up and maintain the extra data segments(s),
buffers, data base, and files necessary for interaction with
the Network.

Store-and-Forward Network Two Years Later - Lessons Learned
5

Much like an iceberg, most of the Network is hidden from the
application programmer. The application programmer deals
only with the Network Procedures - the user interface to the
Network.

The application programmer opens the Network, reads and/or
writes from/to the Network, then closes the Network. To the
application programmer the Network is accessed via Network
Procedures, much as a database is accessed via IMAGE
procedures. The parameters passed to/from the Network
Procedures are always passed in the same order, although
some parameters may be omitted from some procedures. I ;

The Iceberg

The major part of the network is a set of three programs
which form the transportation services for the network and
the files accessed by the three programs. All files
accessed by these three programs are IPC files (with the
exception of a message catalog file). Below is a brief
description of the operation of the transport system and the
three key programs as they were initially.

The first program is called the Traffic Control supervisor
Program (TCSP). The TCSP is the brains of the network. It
reads a Network Configuration Data Base (NCDB) and
determines which processor it is running on, which DS lines
are available to communicate with the outside world, and the
pathing to be used to transmit data from its system to each
of the other possible destination systems. A batch job
(which logs on as THE,DATACOMM.NETWORK) is used to execute
the TCSP.

When the TCSP begins executing it makes sure that it was
properly shut down the last time it was run, that the
network's maintenance job is run if it is necessary to clean
up any "messy" situation, and then builds the extra data
segments used to keep pathing and statistical information
handy. As the pathing information is loaded into extra data
segments the TCSP checks for configuration conflicts.
Should a conflict or other configuration error be found the
TCSP calls an immediate network holiday and tells the
console operator to get help.

When the TCSP is satisfied that all is as it should be, it
creates son processes to handle the data switching and data
transmission functions. The TCSP sets up special command

Store-and-Forward Network Two Years Later - Lessons Learned
6

and information buffers in a shared extra data segment for
communicating with each of its son processes.

The first process created is the Traffic Control Program
(TCP). The TCP acts as a data switch. The TCP simply reads
data from its input queue (the Traffic Control Program Input
Queue [TCPIQ]), examines the data's destination address, and
passes the data off for transmission to a remote or for
local pickup by the user-callable NETREAD procedure.

After creating the TCP the TCSP creates a Network Message
Transmitter for each logically adjacent system with which
the network must communicate (note that two or more
"logically adjacent" systems may be accessed over a single
X.25 "connection"). Thus, if a particular node of the
network is configured to communicate directly with five
other systems, the TCSP will create five NMT's. The NMT's
each read from their own Network Message Transmitter Input
Queue (NMTIQ) and write to the TCPIQ on their remote system.
By having separate NMT's for each remote system being
directly communicated with, the problem of a single line
hang stopping all data transmission is avoided.

When all the son processes have been created, the TCSP one
by one activates each of NMT's, telling each one the DS line
name to use as well as other information pertaining to the
line. After all the NMT's have been activated and
"started", the TCP is activated and given a command to start
processing.

At this point the network transport system can be said to be
"up". The TCSP now begins checking for commands from its
own input queue, the Traffic Conntrol Supervisor Program
Input Queue (TCSPIQ) and executes or ignores the commands as
necessary.

When it is time for the network to shut down, the TCSP
receives a "shut down" command through the TCSPIQ and
immediately begins sending commands to the son processes
(TCP and the NMT's) asking them to shut down. When all sons
have responded and shut down (or the commands have timed
out) the TCSP terminates and the network is down.

In order to detect data losses and insure the integrity of
the network, packet numbers are assigned to each block of
data transmitted by the network. The TCP is in charge of
assigning packet numbers to data packets created by
applications running on the local system. The packet
numbers are obtained from an IPC file. When the IPC file

Store-and-Forward Network Two Years Later - Lessons Learned
7

becomes empty, the TCP detects the end-of-file and issues a
command to the TCSP to "add more packet numbers".

As an aid in debugging, the TCSP was given the ability to
recognize certain command packets as containing MPE
commands. This allowed us to set JCW's withing the TCSP's
batch job, or send ourselves messages to make sure things
were working.

With this basic setup on each of six systems, the SLEEPER
utility was used to start up the network and shut it down at
various times during the day with few if any problems.

i

I'
l

However, as additional systems were added to the network, \·
several problems came up.

The Problems

Problem 1
The first problem encountered was that of shutting down one
of the systems in the network while the other systems
remained up. As an example, when a new release of MPE was
installed it was necessary to have the network up on all
systems except the system undergoing the MPE installation.
With all the systems at only a couple of sites the procedure
was to shut down the network on all systems connected to the
system undergoing the software installation, then :DOWN the
DS lines, then start the network back up again. When the
network expanded to a dozen systems scattered across the
country, this involved long distance calls between the
computer operators and a lot of long-distance coordination.

The solution was to have the network software communicate
"line commands". When the network software on system "A"
shuts down, it now sends a "please shut down your line
connecting to me" command to each of the systems to which it
is directly connected. Likewise, when the network is
brought up it sends a "please establish a connection with
me" command to each of the systems to which it is directly
connected. This approach has eliminated virtually all of
the long-distance phone calls and has made the operation of
the network much more automatic.

Problem 2
The second problem we came across was that of preventing the
network from trying to communicate with new systems which
had been configured into the network but which were not
available for production use. As initially implimented, the

Store-and-Forward Network Two Years Later - Lessons Learned
8

network would immediately try to establish a connection to
every adjacent system configured into the Network
Configuration Data Base (NCDB). This meant that as soon as
the NCDB was updated to include a new site the network would
try to communicate with the new site - often before the new
site was ready. Delaying the configuration of the NCDB
caused problems in that pre-production testing could not be
accomplished.

The solution was to add a special DS line status - "Out Of
Service" - which the network software would recognize as a
special case. When checking the NCDB's configuration, the
TCSP would detect the "Out Of Service" line and create a NMT
for the line, but not tell the NMT to establish a
connection. Thus, the NMT for the "Out Of Service" line was
dormant, ready to be used, but not connected to the remote.
This had the additional advantage that the TCSP was
receptive to a "please establish a connection with me"
command for the "Out Of Service" line, and if such a command
were received, the TCSP would command the NMT to open its
line and communications would be established.

To facilitate all the commands which were now flying back
and forth between the network processes on the different
systems, the NMT's were recoded to bypass the standard data
queues for certain commands. This meant that the NMT now had
two IPC files open on its remote system - one for data and
one for commands.

Problem 3
Enter problem number three - IPC file corruption on busy
systems when multiple IPC files are accessed remotely.
During testing we had the new NMT running for weeks with no
problems. When we felt confident with the new NMT, we
installed it on a production system - and the problems
began. Three days after the installation of the new NMT the
application people came by wanting to know where their data
had gone. Then the network's own internal check of packet
numbers declared that there was a "packet sequence error".
The new NMT was removed and the old NMT re-installed.

Testing of the new NMT on a different account began. In
effect there were now two networks running at the same time
on the same systems - one for production, and one to test
out the new NMT. After a couple of days there was a data
loss on the test network but not on the production network,
implicating the new NMT. The HP Response Center was called
for help. As a result we coded up a very simple program
which opened two remote IPC files and alternately wrote data

Store-and-Forward Network Two Years Later - Lessons Learned
9

to them. This program ended up having more serious problems
than the NMT had had. It hung, it corrupted the files on
the remote system, and it lost data.

Unfortunately it ran just fine on the HP systems at the
response center. our systems were cold started. No
improvement. MPE was completely re-installed on our
systems. No improvement. Since HP could not duplicate the
problem, there was no action taken by HP. Our solution: we
recoded the new NMT to never have two remote files open at a
time. It currently FCLOSEs the data queue, FOPENS the
command queue, sends the command, FCLOSES the command queue,
then FOPENs the data queue. This requires the systems to
perform much overhead, but it avoids the problem.

Problem 4
Another problem related to the IPC files was caused by the
operators. IPC files can be very severely damaged by a
system failure if the file label and file structure on disc
are not current when the system fails. "BAD VARIABLE BLOCK
STRUCTURE" is one of the more common problems, and is often
irrecoverable. To keep the IPC files current on disc an
FCONTROL 6 is issued. In theory, if an FCONTROL 6 is issued
after every operation, the file should be kept current on
disc and the IPC files should survive system failures. Due
to sensitivity to the possibility of a system failure
between the time a network process reads a record from one
queue and writes it to another, the network is designed to
take advantage of an option of IPC files called
"non-destructive read". Non-destructive read allows some
overlap time between the time:

1) the Network Procedures read a packet, and the time they
delete the packet from Network storage

2) the Traffic Control Program (TCP) reads a packet and the
time it writes the packet to an Application Output Queue
(AOQ) or Network Message Transmitter Input Queue (NMTIQ)

3) the Network Message Transmitter (NMT) reads a packet and
the time it completes writing it across its DS line to
the TCPIQ on the remote system.

Ideally, using non-destructive reads provids a safeguard
against data loss due to program or system failure. How?
Here is an example of the basics of the operation of the NMT
(Network Message Transmitter).

store-and-Forward Network Two Years Later - Lessons Learned
10

The NMT performs a non-destructive read from its input
queue, the NMTIQ. Since a non-destructive read has been
performed, the NMT has simply received a copy of the first
record to be read from the NMTIQ. The NMT then writes the
data to the TCPIQ on the remote system and follows the write
with an FCONTROL 6 which forces the file buffers, control
blocks, file label information, etc. to all be updated on
disc. The data is now (we hope) safe on disc on the remote
system. Now the NMT performs a destructive (ordinary) read
against the NMTIQ to delete the data it just moved across
the DS line. The destructive read is followed by an
FCONTROL 6 to make sure the file buffers, control blocks,
file label information, etc. are updated for the NMTIQ. At
no time during this operation is the data only in memory -
there is always a copy of the data on disc on one system or
the other, and for a short time interval, on both at the
same time.

Enter disc caching.
11 BLOCKONWRITE 11 • As
being cached. This
protect the IPC files

The operators were forgetting to enable
a result even the FCONTROL 6's were
meant that all this wonderful code to
and the data was going for naught.

The solution was to have the network job
operator commands

was as it should
(THE,DATACOMM.NETWORK) issue a variety of
to ensure that the operating environment
be.

Problem 5
Then came controller caching and one of the current
mysteries. Every so often (months apart) large amounts of
data are lost when there is a DS related system failure. At
first we blamed DS, but then a strange coincidence was noted

the only systems loosing any data were those with
controller caching enabled! As yet we have no clues as to
what the cause of the problem is, but by analyzing the
contents of the network's extra data segments from the
memory dumps it appears that the data that the network
processes think have been confirmed to be on disc somehow
never made it.

Problem 6
Another problem started when the load on one of the central
systems increased - multiple network jobs would be running
at once but no data would be transmitted and any user
attempting to access the network would immediately hang.

This
TCSP

was very distressing because code was included in the
to avoid the execution of two copies of the network at

Store-and-Forward Network Two Years Later - Lessons Learned
11

the same time. The TCSP issues a :TELL command to
DATACOMM.NETWORK (the user.account the network job stream
logs on under) and checks the command interpreter error
message it receives in return. Depending on the value
received the TCSP either continues to execute (the sender is
the only "target") or sends a nasty message to the console
("only one TCSP can execute at a time!") and aborts.
Somehow this code was not working! But how!

Then another mystery appeared. If you entered a :SHOWJOB
command you would see multiple copies of the network job in
the :SHOWJOB listing. If, however, you tried to send :TELL
commands to each of the jobs you quickly found out that all
but one did not exist! Next OPT was used to check on the job
streams. Guess what! Only the last job streamed existed as
far as OPT was concerned. Conclusion: The network jobs were
shutting down, but never completely going away.

What was preventing them from terminating? System log file
dumps indicated that the jobs would progress to a certain
point in the shutdown of the network and then nothing
additonal would happen. It appeared that when it came time
for a network process to FCLOSE the TCPIQ something would
prevent the FCLOSE from completing. To get a better idea of
what was happening inside MPE, we asked the operators to
halt the system and take a memory dump whenever the multiple
network problem came up. A couple of memory dumps later we
had found the problem - a timing problem within MPE relating
to IPC files. A letter and a copy of a memory dump were
sent to HP, and about a month later a patch was installed
which cured the problem.

Problem 7
The next problem is a bug/feature of OS. As long as you
open and close OS lines from the colon prompt, OS works as
documented. If, however, you open OS lines from a son
process, beware! We have a situation where the TCSP creates
the multiple NMT's which each open DS lines to different
systems and then transmit data over those lines.

If you open a OS line from the colon prompt and there is a
line problem, you can simply close the line and re-open it
to reconnect. If you open a OS line from a son process and
there is a line problem, you CANNOT simply close the line
and re-open it! Instead, the son process must terminate and
a new son process must be created to re-open the line.

This caused a lot of additional code to be generated for the
network, and results in considerable additional system

Store-and-Forward Network Two Years Later - Lessons Learned
12

I

I•
I

overhead (inter-process communication "my line is dead and
I'm terminating", process termination, process creation,
process activation, inter-process communication "you
are ••• you transmit to ... please connect to the remote").

Problem 8
some of our data communication links are leased lines, and
others are over an X.25 network. The X.25 service we use is
a non-commercial (ie. U.S. Government) service. The X.25
network we use is slow, drops connections at least once a
day, keeps losing its packet size configuration information,
and is generally a great source of frustration.

When commands are sent from process to process within the
network job stream, the sender will wait up to two minutes
for a response before it declares the receiver a
"non-responding software module". As we gained experience
with leased lines we tuned the NMT to try to transmit as
much data as possible before checking for an inter-process
command. With X.25 lines we have had to modify the NMT to
transmit only one-fifth as much data between command checks
(for X.25 links). Even now we still have frequent command
time-outs.

Problem 9
As briefly mentioned in problem 9, the X.25 nodes keep
forgetting the packet sizes used by our HP systems. Our
X.25 packet sizes are 512 bytes. This size was chosen after
a couple of months of experimentation. Initially we used
the default X.25 packet size which yielded very poor
transmission rates. A user typically took minutes to log
on, and a DSCOPY from coast-to-coast of a moderate size file
was often impossible the connection would drop after
several hours and the user would have to restart the
DSCOPY .•• again and again. We tried using an X.25 packet
size of 1024 bytes, but DSCOPY did not work, so the size was
cut back to 512 (while the network does not use DSCOPY,
other users do) .

One day we started hearing that several of the systems were
having performance problems. We were about to investigate
when the operator at a site in the midwest called. She was
quite irate. It seems that the network was continuously
logging onto and off of her system from several remote sites
with such rapidity that she could not enter any commands on
the console. We logged onto her system (over a leased line)
and found that we had a five digit session number, even
though the system had been started up that morning! Then we
noticed that it was only the remote network sessions coming

Store-and-Forward Network Two Years Later - Lessons Learned
13

into her system over the X.25 net that were logging on and
off, so we logged off of the leased line and established a
connection to her system over the X.25 net. After the
WELCOME message printed and a colon prompt was received, a
DSCOPY was attempted. Almost immediately there was a DS
error message and the connection was broken.

The NMT writes a log record to a circular file whenever it
detects a line problem, giving the NMT module detecting the
error, the file system error number, and the date and time.
This file was examined on a couple of the systems and it was
found that there had been a major outage of the X.25 network
just before everyone arrived at work in the morning. Armed
with this information the X.25 liason contacted the provider
of the X.25 service and asked what was going on. Apparently
a couple of the X.25 nodes had power failed and had lost the
packet size information relating to our HP systems.

With multiple network remotes trying to connect and
reconnect, the signon and signoff messages were coming in
faster than the console's printer could handle them. On the
remote systems the inter-process communication, process
terminations and process creations were occuring so
frequently that they were saturating the systems (series
70 1 s). Setting the network's configuration information to
indicate the X.25 lines were "Out Of Service" brought things
under control until the X.25 provider corrected the X.25
node configurations the following night. Score one more for
X.25.

Problem 10
Years ago we defined the names of the procedures which the
users would call to access the network. We noted that MPE
modules for the various commands were prefixed by "CX'" as
in "CX'RUN", "CX'SPL", "CX'LISTF", etc. We were very
careful to avoid using names similar to those HP uses for
its modules. We named our procedures NETOPEN, NETCLOSE,
NETREAD, NETWRITE, NETEXPLAIN, NETCONTROL, NETINFO, and
NETSTATUS. Then one day NS software arrived. Guess what!
There was a :NETCONTROL command. Sure enough, there was a
CX'NETCONTROL procedure in the system SL.

Then one of the systems people tried entering the
:NETCONTROL command. He was greeted by one of our network's
error messages stating that the status array was corrupt.
Well, at least our Privileged Mode procedure had done its
checking and had avoided a system failure, but what was the
conflict?

store-and-Forward Network Two Years Later - Lessons Learned
14

i
I
I'
1,

A copy of the system SL was made and CX'NETCONTROL was
decompiled. Guess what! CX'NETCONTROL calls LOADPROC to
try to load a procedure named ••. you guessed it, NETCONTROL!
Oh boy! At present we are some months away from installing
NS on any of the systems, and so have a conversion period
during which all the applications programs referencing
NETCONTROL can be converted to use the new name NETALTOPEN.
The name NETALTOPEN was selected because most of what
NETCONTROL does could be accomplished by calling NETCLOSE
and then NETOPEN with differing parameters. Also, both
NETCONTROL and NETALTOPEN have names the same length. Thus,
should any production programs slip through the conversion
process, a program to change the program's external list to
replace NETCONTROL with NETALTOPEN can be used.

Enhancements to the Network

In addition to the enhancements made to respond to problems
the following enhancements have been made:

* Most console messages generated by the network have been
removed to eliminate operator confusion.

* The command and control functions of the network have
been expanded to allow any system in the network to issue
commands to any other system in the network. Some of the
commands implimented are:
* Shut down. The network on any system can be shut down

from any other system by command.
* Shut line. Any NMT anywhere in the network can be

directed to close its line to its remote.
* Open line. Any NMT anywhere in the network can be

directed to open its line to its remote.
* Who are you. Any TCSP anywhere in the network can be

directed to return to the sender the identifier of the
system responding, the software version of the network
running, and the current date and time.

* Start system. Any NMT anywhere in the network can be
directed to start up the network on an adjacent
remote.

* Issue MPE command. Any TCSP anywhere in the network
can be directed to issue an MPE command. This means
that jobs can be streamed in Hawaii by a command
issued in Washington o.c. without anyone having to OS
across to HAWAII to issue the commands. Common uses
of this enhancement are the purging of files, building
of new accounts, issuing of operator commands, and
streaming of jobs.

Store-and-Forward Network Two Years Later - Lessons Learned
15

* The network now reports packet sequence errors not only
to the system console, but sends a statistical packet
back to the primary development machine. This
enhancement was made because we are rarely notified of
system failures. As far as the network is concerned it
is often the case that the only indication that there has
been a system failure is that the packet statistics are
out of sync. Since the operators rarely reported the
network's packet sequence error messages, we often only
found out about potential problems weeks after they
occured.

* The TCP and NMT's now keep statistics as to how many
packets they have moved and how many words of data have
been moved. From this we can see which lines are most
heavily used.

* The NMT and TCSP now cooperate to automatically establish
a new NMT and connection to a remote after a line
problem.

Planned Enhancements to the Network

* Rather than rely on SLEEPER for scheduling, a network
scheduler will be developed to coordinate scheduling
across systems and across time zones.

* Transmission statistics will be sent back to the primary
development system for reduction, analysis, and
reporting.

* Transmission statistics will be sampled at specific
intervals along with measurement of the queue lengths.
The samples will be sent back to the primary development
system for reduction, analysis, and reporting. One of
the proposed reports is a report showing when the
throughput of the transmission lines becomes less than
the data volume flowing into the network and queueing
results. It is expected that the reports generated from
this information will assist the hardware staff in
ordering appropriately sized data communication lines.

* The inter-process communications between the TCSP, NMT,
and TCP are presently serial in nature. The
inter-process communication code will be changed to
support paralled command processing.

Lessons Learned

With approximately twenty-five systems installed and one or
two additional series 70 systems being installed each month,
the network is still slightly less than half its final size.

store-and-Forward Network Two Years Later - Lessons Learned
16

As the network has matured it has become more flexable in
terms of use and abuse. Generally, once the software is
brought up on a system it runs without maintenance or
problem reports for months. The automatic recovery code of
the TCSP handles most system failures and operator induced
errors (except RELOADS from the wrong set of tapes, an all
too common occurance). Most irrecoverable errors (data
loss) have been directly attributed to MPE problems, most of
which have been patched by HP.

If while researching a possible approach to a problem you
find that the documentation on the software package (say DS)
is vague about specific points, it is probably because there
isn't anyone who knows what the package will do under those
circumstances. In such cases all you can do is experiment
and try to develop your own theories. If you are lucky your
experiments are an interesting experience, otherwise ..•
welcome to the twilight zone.

When you run across a problem that you think may be caused
by a bug in MPE or DS (or whatever software), provide the
most documentation on the problem to get the speediest and
most complete solution (send memory dumps, dump of system
log files, documented listings of the code being executed,
etc.) .

Learn how to use IDAT, DECOMP, and your trusty (but
sometimes inaccurate) System Tables Reference Manual to
figure out what MPE was trying to do when: (1) the system
hung; (2) the system failed; (3) DS locked up; or (4) all
your processes are waiting for something that's never going
to happen.

Most importantly ..•
Have a sense of
yourself wrote MPE
deadline too!

humor - remember that mere mortals like
(and DS, and .•.), and they were under a

Store-and-Forward Network Two Years Later - Lessons Learned
17

Introduction

Diogenes -- Searcher For
an Honest Data Base

Jim Kramer
Hewlett-Packard Company

9606 Aero Drive
San Diego, CA 92123

Diogenes is a new Image and Turbolmage data base integrity checker. It
has the same purpose as the classic program DBCheck: to detect
structural defects in an Image or Turboimage data base, such as broken
chains, invalid keys, etc. Such defects can be caused by disc
failures, system interrupts, or software defects (Image or MPE).

Diogenes can do exactly the same checking as DBCheck. However it has a
new checksum check on chain pointers which eliminates, in most cases,
the need for chain following. This can reduce the time needed to check
a detail data set by a factor of ten or better.

Diogenes is also restartable; checking can be aborted and then
restarted at a later time to continue from where it left off. This
allows data bases to be checked even when there is no single period of
time long enough to allow a complete check.

My hope is that the speed and restartability of Diogenes will encourage
people to do regular checking of their data bases, rather than waiting
until programs quit working.

Diogenes is being distributed to Customer Es cal at ion Centers, and may
eventually be available in the TELESUP account. For now, if you want
it, please ask your SE or CE to get it for you from his Escalation
Center.

This paper is a description of Diogenes and the checking it does. Since
Diogenes is doing, for the most part, the same checking as DBCheck, this
is also a description of that program. So many of us have run DBCheck
without quite knowing what it does!

This paper contains: a feature comparison of Diogenes and DBCheck;
descriptions of the checking they do; a performance comparison; mention
of a new data base repair program named Seal pe l ; and some cone l ud i ng
remarks.

Comparing Features of Diogenes and DBCheck

Since DBCheck is a classic program in the HP3000 community, and since
Diogenes is intended as its successor, I will introduce Diogenes by
comparing it to DBCheck.

Diogenes is faster. Even when exactly the same checks are done,
Diogenes appears to be faster by 20% or so. When chain following is
eliminated, which is feasible because of the checksum check done on
chain pointers (described below), Diogenes can be faster by a factor
of ten or better.

Diogenes is more flexible. DBCheck allows checking of an entire data
base or a single set of a data base. Diogenes allows checking of
any selection of sets from multiple data bases. Moreover Diogenes
defines three checking phases for detail data sets, and allows
selection of any set of phases for any detail.

Diogenes is restartable. If a Diogenes run is aborted, it can be
restarted and checking will continue from where it left off without
loss of work. DBCheck does not have this capability.

Diogenes allows concurrent read access to the data base. When
Diogenes is checking, users can access the data base being checked
by specifying DBOPEN mode 6, a read-only mode. DBCheck allows no
concurrent access.

Diogenes and DBCheck both prompt the user to supply the required
checking specifications (data base and set names, etc.). DBCheck's
dialog is short and simple. Diogenes' dialog is longer and less
obvious, but Diogenes will supply help on request at any prompt.

Diogenes allows customization of text. Diogenes obtains its text,
including prompts, help text and error messages, from a separate
message catalog. This means that the text can be easily modified,
even translated to another language. The text used by DBCheck is
embedded in the program, and cannot be changed except by
reprogramming.

Diogenes wi 11, on request, generate a separate line printer listing.
DBCheck only writes to $STDLIST.

When checking an entire data base, Diogenes does the fast serial
checking of all sets first, postponing the slow detail set chain
checking to last. DBCheck does all checks of a set before going on
to the next set.

Diogenes will, at the user's option, generate a batch job that can be
streamed to do the data base checking. This frees the terminal for
other uses. DBCheck can be run in batch but wi 11 not generate its
own job stream.

2

Diogenes' error messages are intended to be more easily understood
than those of DBCheck. The messages are al so generally briefer,
because Diogenes only lists the part of the entry that actually
contains the error. DBCheck often lists an entire entry when only a
part of it is bad.

Checking Phases_

Both DBCheck and Diogenes have the following four checking phases:

For master sets:
a serial pass.

For detail sets:
a serial pass.
a delete chain check.
one or more path checks.

When DBCheck checks a set, it does all phases for that set (one for a
master, three for a detail). For detail sets the order of checking is
the order listed ·above. If checking of the entire data base has been
specified (by entering /A in response to the data set prompt), the sets
are checked in the order in which they appear in the schema.

When Diogenes checks a master set it does essentially the same serial
pass as DBCheck. However for a detail Diogenes allows any combination
of phases. Moreover, for the path checking, any set of paths can be
specified.

When Diogenes is asked to check an entire data base (by use of the /A
response), the user is given a choice of whether path checking is to be
done. If it is, the path checking is postponed until all the serial and
delete chain checking has been done on all sets. The advantage to this
is that the very slow path checking does not postpone the relatively
fast (and fairly thorough) serial checking.

The Checksum Check

The only major checking innovation in Diogenes is the checksum check,
which eliminates most of the need for chain following in detail sets.
This checksum check is done during the serial pass for both master and
detail sets. For a master the check is done on the synonym chains; for
a detail it is done on the path chains.

In order to understand the checksum check, consider a sample synonym
chain in a master data set:

3

Entry Number Synonym Chain Count Backward Pointer Forward Pointer

2 0 5 9
5 0 0 2
9 0 2 0

11 4 9 5

The primary entry is 11, as indicated by the non-zero chain count. The
chain of secondaries in forward order is: 5, 2, 9.

The important thing to notice is that every secondary is pointed to
twice, once by a backward pointer and once by a forward pointer, and the
primary is not pointed to at a 11 . Thus the entries in the backward
pointer and forward pointer columns are i dent i cal . This means that we
can check the integrity of the chains by doing separate checksums on the
forward pointer and backward pointer columns, and comparing the results
for equality. Chain integrity can be checked by a simple calculation
performed during the serial pass through the data set, which both
DBCheck and Diogenes do anyway.

This important and simple (once you've seen it) idea was given to me by
Dave Morel, an HP Systems Engineer from New Zealand.

The same idea, with slight modifications, can be applied to the chain
pointers in a detail set. The problem here is that there is no forward
pointer pointing to the first entry of a chain, and no backward pointer
pointing to the last entry of a chain. Here is an example detail set
chain:

Entry Number
6
8

13

Backward Pointer
8
0
6

Forward Pointer
13
6
0

Entry 8 is the beginning of chain; there is no forward pointer that
points to it (except in the chain head of the associated master set).
Entry 13 is the end of chain, and there is no backward pointer pointing
to it. The fix is fairly simple. When we encounter a beginning of
chain entry (identified by a zero backward pointer) we manufacture a
forward pointer to point to it to use in the checksum. So, in the
example, when we encounter entry number 8, we manufacture a forward
pointer of 8 to use in the checksum. A similar fix is used for end of
chain entries; and when we encounter entry 13 we manufacture a backward
pointer of 13. Thus for checksumming purposes, our chain looks like
this:

4

Entry Number Backward Pointer Forward Pointer
6 8
8 0

13
6
8 (manufactured)

13 6 0
13 (manufactured)

Now we have both a backward and forward pointer pointing to every entry,
and the checksum idea works.

Currently Diogenes computes the checksum by doing a bit-by-bit exclusive
or on the 32 bit pointers. This may change.

The checksum check is a very good check on chain integrity; there is
very little chance (about one in four billion) that arbitrary
modifications to chain pointers would leave the backward and forward
checksums equal.

However it should be mentioned that the checksum technique is not as
thorough as path checking (described below) for the following reasons:

The checksum technique does not check the key values on the chain.

The pointers from the chain heads to the chains are not checked.

It does not disclose the location of the bad pointers. Of course one
can elect to do a path check if there is a checksum error.

Still I think the checksum technique is good enough that path checking
can be omitted in most cases. There are tremendous speed advantages
(see the performance comparison below).

Master Set Serial Pass Check

Diogenes and DBCheck do the same checking on a master data set, except
that Diogenes also does the checksum check of synonym chains as
discussed above.

The data set is read serially from first entry to last. Both free
entries and data entries are read. Whether an entry is considered to be
a data entry or a free entry is determined by the bit map which resides
at the beginning of each block of entries.

A free entry is checked to be sure that it is null, i.e. that all its
words are binary zeroes.

A data entry has the following structure:

Synonym Chain Info -- Chain Head Info Data (Including Key)

5

The Synonym Chain Info comprises a synonym chain count, a backward
pointer, and a forward pointer. The fo 11 owing checks are done on the
Synonym Chain Info:

The synonym count must be less than or equal to the number of data
entries in the set.

Each backward and forward pointer must either be a valid pointer which
points to an entry within the data set, or be zero. A zero pointer
indicates that the current entry is either a primary (and there are no
secondaries) or that it is a secondary pointed to by a primary.

There must be consistency between the chain count and the pointers:

If the chain count is zero, the data entry is a secondary; either
the forward and backward pointers must be unequal, or both must be
zero.

If the chain count is one, the data entry is a primary and there are
no secondaries. Both pointers must be zero.

If the chain count is two, the data entry is a primary and there is
·one secondary. The pointers must be equal and non-zero.

If the chain count is greater than two, the data entry is a primary
and there are multiple secondaries. The pointers must be unequal
and non~zero.

The Chain Head Info comprises zero to sixteen chain heads. Each chain
head has a chain count, and two pointers which point into the detail set
for the path. One is the backward (or end of chain) pointer, the other
is the forward (or beginning of chain) pointer.

Chain heads are checked for consistency between the pointers and the
chain count. The pointers themselves are not checked to be sure that
they are valid pointers into the detail set (a desirable enhancement).
Consistency between the pointers and chain count means:

If the chain count is zero, the forward and backward pointers must be
zero.

If the chain count is one, the forward and backward pointers must be
equal and non-zero.

If the chain· count is greater than one, the forward and backward
pointers must be unequal and non-zero.

If the master set is an automatic, at least one chain head must have a
non-zero count (otherwise the master entry should have been deleted).

6

One of the most important checks Diogenes and DBCheck do is to use the
key from a data entry in an attempt to fetch the entry by a mode 7
(hashed or calculated) DBGET. The entry found must be the same entry as
the one from which the key was taken. This check does two things: it
checks the va·1 idity of the key and the integrity of the forward paths
through the synonym chains. Neither Diogenes nor DBCheck check the
integrity of the backward paths through the synonym chains. Nor does
Image, I believe, check their integrity while doing a mode 7 DBGET.

When the serial pass is completed, Diogenes and DBCheck have three
counts of the number of data entries in the set, and these must all
match. The counts are: the number of data entries encountered during the
serial pass (the number of block map bits that are set), the sum of the
synonym chain counts, and the value recorded in the user label (obtained
from DB INFO).

Detail Set Serial Pass Check

Diogenes and DBCheck do the same checking during the serial pass through
a detail data set, except that Diogenes also does the checksum check of
path chains as discussed above.

During the serial pass through the detail set, every entry is read from
first to last, up to the capacity of the data set. Both data entries
and free entries are read.

First consider the case of an entry that is free (available) according
to the bit map. If it is found in front of the high water mark it
should be linked into the delete chain. In this case the first two words
should be zero or be a val id pointer to another entry, and this is
checked. Moreover, the entry should be null (binary zeroes) following
the pointer.

If the entry follows the high water mark, it is checked to be sure it is
null.

If the entry is a data entry it must precede the high water mark. The
chain pointers are used in the checksum check as described earlier.
Moreover, validity checks are done on the chain pointers:

Each pointer must be zero or be a val id pointer which points to an
entry that precedes the high water mark.

The pointers must not be equal unless both are zero.

When the serial pass is comp 1 eted, the number of data entries found
(according to the block bit maps) must equal the count of data entries
in the user label (obtained from DBINFO).

7

Detail Set Delete Chain Check

The delete chain is a chain of entries which have been deleted by
DBDELETE and not yet re-used to provide an entry for DBPUT. The pointer
to the first entry of the chain is in the user label. The first entry
of the chain has a pointer (located in the first two words of the entry)
to the second entry, the second has a pointer to the third, and so on.
The last entry of the chain has a zero pointer.

Diogenes and DBCheck follow this chain, starting at the user label. To
guard against loops in the chain, delete chain checking stops if the
number of entries read exceeds the capacity of the set.

The entries are checked to be sure they are null following the pointer.
No special check is done on the pointer except to use it to find the
next entry.

When the end of chain has been found, the count of entries found is
compared to the number expected. This is calculated from information
from the root file and data set user label which is provided by DBINFO.
The calculatiqn is: (Capacity - High Water Mark - Data Entries).

Detail Set Path Checking

A detail data set has from zero to sixteen paths. For each path there
is a separate set of chains; a data entry in a detail data set will be
linked into as many chains as there are paths.

Path checking for Diogenes and DBCheck is the process of following all
all the chains of a path. When DBCheck is asked to check a detail set
it automatically checks all paths.

With Diogenes there is more flexibility. If Diogenes is asked to check
an entire data base (/A response to data set prompt), then the user has
the option of checking a 11 paths in a 11 sets, or checking no paths at
all. The path checking, if selected, is done last, after all serial and
delete chain checks are done on all sets.

If Diogenes is asked to check a set rather than the entire data base,
then the user may select any set of paths to be checked.

Checking a path means following every chain of the path. The chain
heads are found by means of a serial pass through the associated master
set. Starting at the chain head the chain is followed forward, entry by
entry, until the end of chain is found. The following checks are done:

The backward pointer of a chain entry must point to the previously
read entry.

8

The search item value in the entry must match the value found in the
chain head.

When the end of chain is found, the backward pointer in the chain head
is checked to be sure it points to the last entry of the chain. Also
the count of entries found is checked against the count found in the
chain head.

When all chains have been checked, the count of all entries found on all
chains is checked against the user label count of all data entries in
the set, provided by DBINFO.

Performance Comparison

I have not attempted to do a comprehensive performance characterization
of Diogenes. The following results are presented just to show how much
time may .be saved by using Diogenes instead of DBCheck.

The following table shows checking times for Diogenes and DBCheck for
two data sets of a data base:

Diogenes Diogenes Diogenes DBCheck
Serial Paths Total Total

Set Paths Capacity Entries CPU Wall CPU Wall CPU Wall CPU Wall
A 3 75000 58413 37 110 934 3283 971 3393 1372 3900
B 4 101004 101004 52 85 939 2587 991 2672 1703 3480

The times are in seconds. The delete chain check times were zeroes
apparently the chains were very short.

Diogenes total times are less than those of DBCheck. However, because
of the checksum check, Diogenes does a very good job of integrity
checking during the serial pass. The serial check times for Diogenes
are only about 2% to 3% of the total times for DBCheck.

Scalpel, a Data Base Repair Tool

Data Bases are getting larger, and they are doing it faster than discs
are getting faster. As a result, repairing data bases by rebuilding all
the linkages is becoming less feasible. I expect the ability to
manually repair data base damage to become more valuable.

Scalpel, a program written by Maya Kinariwala of the Fullerton Customer
Escalation Center, is a valuable aid to the process of data base repair.
It is a data base editor that makes it easy to fetch, display and modify
any entry in a data base. It is expected to be available in the TELESUP
account.

9

Sea 1pe1 and Diogenes work we 11 together. For instance, Diogenes does
not list entire entries when a defect is found, but Scalpel makes it
easy to view them if desired. And when repair work is done with
Scalpel, the speed and flexibility of Diogenes make it easy to check the
work.

Conclusion

Diogenes can do the same checking as DBCheck, but do it faster. The
checksum check makes Diogenes' serial check of a detail data set almost
as good as DBCheck's complete check, with a tremendous speed advantage.

Because of its speed, flexibility and restartability, Diogenes makes it
possible to do regularly scheduled data base checking in situations
where it may not have been possible before.

10

HP TO DEC NETWORKING

GERARD F. LAMEIRO
HEWLETT-PACKARD

3404 E. HARMONY ROAD
FORT COLLINS, CO 80525

DEC, VAX, VMS, DECnet, MicroVAX, MicroVMS, DEQNA, and DELUA
are trademarks of Digital Equipment Corporation.

1

ABSTRACT

HP and DEC share many common customers. Many of them desire
to interconnect computers from both vendors. This session
will discuss the HP strategy for connecting HP computers to
DEC computers. The discussion will focus on capabilities for
the HP 1000, HP 3000, HP 9000, and HP Vectra PCs
communicating with DEC VAX computers. It will include
information on communications based on industry and de facto
standards such as IEEE 802.3 and ARPA networking services and
information on the HP AdvanceNet product for the DEC VAX
computer. It will also include a review of recent relevant
product announcements.

INTRODUCTION

Hewlett-Packard is committed to networking based upon
industry standards, such as the International Standards
Organization Open Systems Interconnect (OSI) reference model.
This means that HP AdvanceNet products provide a high degree
of lasting value for both networking hardware and software;
it also means that standards-based multi-vendor
communications are facilitated.

This paper specifically looks at Hewlett-Packard networking
products that permit communications between HP 1000, HP 3000,
HP 9000, and HP Vectra PC computers and DEC VAX computers.
It addresses both asynchronous solutions over RS-232 lines
and local area networking solutions that include products
which provide ARPA and Berkeley networking services and which
rely upon IEEE 802.3 In addition, HP's Shared Resource
Manager product and connectivity to DECnet are discussed.
Figure 1 below outlines the connectivity alternatives we
discuss in this paper.

For each of the alternatives in Figure 1, we will look at the
computers and operating systems connected, as well as some of
the capabilities and advantages of the alternative.

2

ASYNCHRONOUS SOLUTIONS

Asynchronous connectivity provides the simplest and lowest
cost alternative to connecting both HP personal computers and
workstations (as well as HP terminals) to DEC hosts. In the
case of general asynchronous solutions (see Figure 2), speeds
of up to 9600 baud are supported between most HP workstations
and most DEC computers. For these needs, HP offers terminal
emulator products.

The products are best applied to situations where low
traffic, occasional use, and smaller file transfers
predominate. Also, only ASCII files are supported. The
simplicity and flexibility of these products along with the
fact that they can be used to provide both local and wide
area communications are the reason for widespread use.

Another of the asynchronous communications solutions are
based on UNIX. HP 9000s running under HP-UX can connect to
both DEC VAX/BSD UNIX and to DEC/VAXs operating under ULTRIX.
UNIX offers cu to call another UNIX system, uucp for UNIX to
UNIX copies, uux for UNIX to UNIX executions, as well as
send mail when electronic mail routing is needed. See Figure 3.

This is probably the most widely available UNIX only solution
available for communications. As with general asynchronous
communications, it supports both local and wide area
connectivity and is best applied to low traffic applications.

LOCAL AREA NETWORK SOLUTIONS

In addition to asynchronous solutions, there are four major
local area network solutions available today. These include
HP's Shared Resource Manager, Berkeley networking services,
ARPA networking services, and HP AdvanceNet networking
services. Let's look at each in turn.

HP SHARED RESOURCE MANAGER

The Shared Resource Manager (SRM) system is a file and
printer/plotter server for HP 9000 workstations and for the
HP Vectra PC. It provides the capabilities to share
resources among workstations in a local cluster. It supports
HP 9000 Series 200, Series 300, Series 500 in addition to HP
9845s and HP 9835s. Depending on the workstation, BASIC,
Pascal, and HP-UX are supported. Figure 4 illustrates an SRM
environment that permits DEC VAX connectivity.

3

In Figure 4, an HP 9000 Series 300 or 500 running HP-UX acts
as a gateway to permit communications from HP workstations on
SRM to DEC VAX computers running either BSD UNIX, ULTRIX, or
VMS. Note that the HP 9000 gateway and the DEC hosts are
connected to the same LAN.

This approach is probably the best high speed alternative for
HP BASIC and Pascal workstations. For applications requiring
frequent use of the gateway or for user convenience, it is
even possible to automate the SRM - LAN connection.

BERKELEY NETWORKING SERVICES

Another approach that can be taken to connect HP 9000 Series
300, Series 500, and Series 800 computers to DEC VAX/BSD UNIX
and DEC VAX/ULTRIX is to utilize Berkeley networking
services. On the HP 9000 Series 300 side, these services are
bundled into HP 50952B a product that includes ARPA
networking services, Berkeley networking services, as well as
HP AdvanceNet networking services. For the Series 500, an HP
referenced third party product is available from the
Wollongong Group, WIN/H9000. Berkeley services are also
available from HP for the Series 800. See Figure 5.

UNIX commands that are available include rlogin for remote
login, rep for remote copy, remsh for remote shell, rexec for
remote command execution, and sockets for interprocess
communications.

The lOM bit/sec Ethernet link provides a high speed
communications path that can handle high volume traffic
effectively and efficiently. In addition, the product
provides a high degree of transparency. For UNIX to UNIX,
this is probably the best alternative.

ARPA NETWORKING SERVICES

For HP to DEC networking, a user can also utilize ARPA
networking services. These services include file transfer
protocol (FTP), TELNET (a virtual terminal protocol), and
SMTP (an electronic mail protocol). Figure 6 illustrates
this type of connectivity.

To obtain ARPA services on the HP 9000, HP provides the HP
50952B product mentioned earlier that includes HP AdvanceNet
Network Services (NS) and Berkeley networking services all
bundled together for the Series 300. For the Series 800,
both ARPA and Berkeley services come bundled together. The

4

Wollongong WIN/H9000 product mentioned earlier also includes
ARPA services for the Series 500.

HP Vectra PCs also can run ARPA services using another third
party product FUSION sold by NRC.

To use ARPA services,
product; the HP Vectra
interface board.

the HP 9000s require an HP LAN link
PC requires the use of a 3Com

On the DEC side of the connection, DEC sells WIN/VX (also
from Wollongong). This product runs on DEC controller
hardware or hardware that is sold by Micom-Interlan. Other
third party packages are also available for DEC VAX
computers.

One of the major advantages of ARPA networking services is
its widespread use. It is a de facto standard that permits
connectivity to ARPANET and DDN networks. It even supports
VMS through third party software.

HP ADVANCENET NETWORKING SERVICES

The final approach to networking HP to DEC computers is using
HP AdvanceNet Networking Services (NS). HP AdvanceNet
products are available on HP 9000 Series 300, 500, 800
computers as well as on HP 1000s, and HP 3000s. HP has also
developed HP Network Services for the DEC VAX (HP NS/VAX).

HP NS/VAX integrates DEC VAX/VMS computers directly into HP
AdvanceNet networks. It provides network file transfer (NFT)
between HP computers and DEC computers. Specifically, HP
1000 computers running RTE, HP 3000s running under MPE, as
well as HP 9000 Series 300, 500, and 800 under HP-UX can
communicate with DEC VAXs running under VMS and DEC MicroVAXs
running under MicroVMS. See Figure 7.

Also, HP NS/VAX requires the appropriate LAN hardware on the
HP systems in question. For example, an HP 3000 would
require a LAN/3000 link product. Similarly, the DEC computer
would require appropriate hardware such as a DEQNA controller
on the MicroVAX or a DELUA controller on a VAX computer.
Third party hardware is also available for the DEC VAXs.

Some of the key features of the HP NS/VAX product include its
ability to integrate the DEC VAX computers into HP AdvanceNet
networks as mentioned above as well as to do transparent and
reliable file transfers. In addition, it can co-exist with
DECnet systems on the same Ethernet/IEEE 802.3 cable. HP

5

NS/VAX also adheres to VAX/VMS Digital Command Language (DCL)
grammar making it easier to learn and use for customers
already familiar with DCL.

The user interface also includes additions to DCL which
include dscopy for copies between HP AdvanceNet and DEC VAX
computers; npowerup for configuring a node on the network or
displaying its configuration; nusers to limit or monitor the
remote users of the node; nlinkloop for testing the
connectivity to one other node on the LAN, on nodes producing
IEEE 802.2 packets; nreadstat for reading controller
registers on Micom-Interlan controllers; and nclearstat for
clearing those same registers.

Another feature of the HP NS/VAX product is that it is
possible to transfer files to and from remote DECnet nodes.
See Figure 8.

Also, HP NS/VAX provides
eliminating the need for
provides programmer access
process execution.

record
file

to NS

level file manipulation
formatting utilities. It
allowing for unassisted

Finally, its user interface is tailored to each native system
making it a friendly product to use.

SUMMARY

As can be seen from the above discussion, there are a wide
variety of approaches that can be taken to permit
communications between HP and DEC computers. Currently,
there are general asynchronous connections using emulator
products as well as UNIX to UNIX asynchronous solutions. In
addition, HP 9000s on HP's Shared Resource Manager can be
used to act as a gateway to DEC VAX computers. Also, ARPA
and Berkeley networking services products are available.
Finally, HP AdvanceNet Networking Services can also be placed
directly on DEC VAX computers to provide network file
transfers between DEC VAX/VMS computers and HP 1000s, HP
3000s, and HP 9000 series 300, 500, and 800 computers.

6

Multivendor Networking HP to DEC

1. Asynchronous Solutions

General

Unix to Unix

2. Local Area Network Solutions

Shared Resource Manager

Berkeley Networking

ARPA Networking

HP Advancenet

Figure 1.

GENERAL ASYNCHRONOUS SOLUTIONS

HP

Terminals RS232

HP DEC

Personal Computers RS232 Hosts

HP

Workstations RS232

Terminals and terminal emulator products:

HP personality for HP hosts (supports block mode)

ANSI personality for DEC hosts (supports VT100 escape sequences)

Login, run applications

File transfer capabilities (upload and download)

X-modem and Kermit support error checking

Flexible configuration options

Direct connect or modem support

Speeds up to 9600 baud

Advantages:

Supports most HP workstations and terminals

Supports all DEC hosts

Both local area and wide area connectivity

Low traffic, occasional use, small files

Lowest cost

ASCII files only

Figure 2.

UNIX ASYNCHRONOUS SOLUTIONS

HP 9000

HPUX RS232

UNIX commands:

cu: call another unix system

uucp: unix to unix copy

uux: unix to unix execution

sendmail: electronic mail routing

Advantages:

Most available UNIX only solution

Both wide area and local area support

VAX/BSD UNIX

VAX/ULTRIX

U-modem and Kermit available for reliable file transfers

Low cost, low traffic

Figure 3.

WORKSTATION LAN SOLUTIONS

HP9000s200s300s500 HP9000s200s300
9845 9835

BASIC PASCAL WORKSTATION

I
J

HP9000s200s300
SHARED RESOURCE

MANAGER

HP9000 VAX/BSD UNIX
s300 s500 VAX/ULTRIX

HPUX VAX/VMS

l
Advantages:

Best high speed alternative for HP workstations.

Daemon programs can automate transfers through HPUX gateway.

ASCII files only

Figure 4.

I
1,,

BERKELEY NETWORKING SERVICES

HP9000
s300s500s800

HPUX

l

UNIX commands:
rlogin:
rep:
remsh:

rexec:
sockets:

Advantages:

remote login
remote copy
remote shell

remote command execution
interprocess communications

Best Unix only solution

Fast 10M bit/second Ethernet link

High traffic

Transparency

Figure 5.

VAX
BSD UNIX

ULTRIX

l

ARPA SERVICES

HP9000 HP9000 HP Vectra PC
s300 s800 s500

HPUX HPUX MS DOS

I I I

Configurations:
SYSTEM
==========
HP9000s300
HP9000s800
HP9000s500
Vectra PC
VAX

SOFTWARE

ARPA Services/300
ARPA Services/800
Wollongong: WIN/HP9000
NRC: Fusion
Wollongong: WIN/VX
NRC: Fusion
Excel an

ARPA commands:
FTP: File Transfer Protocol
Telnet: Virtual Terminal Protocol
SMTP: Electronic mail routing

Advantages:
De facto standard in engineering world
Connectivity to ARPAnet, DON networks
Supports VMS (through 3rd party software)

Figure 6.

VAX
ULTRIX

VMS

I

HARDWARE

LAN/300
LAN/9000
LAN/9000
3-Com
DEC, Micom
DEC
Excel an

HP ADVANCENET

HPlOOO HP3000 HP9000 VAX

RTE

I
SYSTEM

HPlOOO
HP3000
HP9000
VAX

MPE

I
s300s500s800

HPUX

1
SOFTWARE
===============
NS/1000
NS/3000
NS/9000
NS/VAX + DECnet
NS/VAX

VMS

I
HARDWARE
==================
LAN/1000
LAN/3000
LAN/9000
DEUNA/DELUA/DEQNA
Micom-Interlan

Network Services

NFT: Network File Transfer

Advantages

Supports HP1000 and HP3000 key systems

Supported now on VAX/VMS with HP's NS/VAX

Most flexibility for file and record translations

Transparent and Interchange modes

User interface taylored to each native system

HP quality and worldwide suppor1

Figure 7.

DECNET LEVERAGE

DECnet

l l
REMVAX LOCVAX HP9000

VMS VMS HPUX
DECnet DECnet + NS/VAX NS/9000

I I
ADVANCENET

Figure 8.

RELATIONAL DATABASE: HOW DO YOU KNOW YOU NEED ONE?

ABSTRACT

Orland Larson
Hewlett-Packard

Cupertino, California

The field of relational technology is clearly misunderstood by a large
number of people. One major obstacle to acceptance of the relational
model is the unfamiliar terminology in which relational concepts are
expressed. In addition, there are a number of misconceptions that have
grown up in the past few years concerning relational systems. The
purpose of this paper is to define those terms, correct some of those
misconceptions and to help you decide if your company can benefit from
adding relational database technology to your current capabilities.

This paper reports on the growing body of knowledge about relational
technology. It begins by reviewing the challenges facing the MIS
organization and the motivation for relational technology. It then
briefly describes the history of relational technology and defines the
basic terminology used in the relational approach. This will be
followed by an examination of the productivity features of the
relational approach and why it should be seen as a complement rather
than a replacement for existing network databases such as the IMAGE
data base management system. Typical application areas where the
relational approach can be very effective will also be surveyed.
Finally, a checklist will be reviewed that will help the audience
determine if, indeed, they really can benefit from using a relational
database.

INTRODUCTION

THE CHALLENGES FACING MIS

The MIS manager is facing many challenges in today's modern information
systems organization. The backlog of applications waiting to be
developed is one of key challenges concerning MIS. In most medium to
large installations the backlog of applications waiting to be developed
is anywhere from two to five years. This estimate doesn't include the
"invisible backlog," the needed applications which aren't even
requested because of the current known backlog. Software costs are
increasing because people costs are going up and because of the
shortage of skilled EDP specialists. The database administrator
typically uses nonrelational databases where a great deal of time is
spent predefining data relationships only to find that the users data
requirements are changing dynamically. These changes in user
requirements cause modifications to the database structure and, in many
cases, the associated application programs.

RDB
1

The application programmer is spending a significant amount of time
developing applications using these non-relational databases, which
require traversing or navigating the data base. This results in
excessive application development time. Because the users•
requirements change dynamically, a great deal of time is spent
maintaining applications. The programmer is also frequently restricted
by the data structures in the database, adding to the complexity of
accessing data.

End users or business professionals are frustrated by the limited
access to information that they know exists somewhere in the database.
Their business environment is changing dynamically, and they feel MIS
should keep up with these changes. They find that the applications are
inflexible, due to the pre-defined relationships designed into the data
base. They also lack powerful inquiry facilities to aid in the
decision-making process, which would allow them to ask anything about
any data residing in that database.

THE MOTIVATION FOR RELATIONAL

Dr. Edgar F. Codd, considered to be the originator of the relational
model for databases • noted when presented the 1981 ACM Turing Award
that the most important motivation for the research work resulting in
the relational model was the objective of providing a sharp and clear
boundary between the logical and physical aspects of data base
management (including data base design, data retrieval, and data
manipulation). This is called the data independence objective.

A second objective was to make the model structurally simple, so that
all kinds of users and programmers could have a common understanding of
the data, and could therefore communicate with one another about the
database. This is called the communicability objective.

A third objective was to introduce high-level language concepts to
enable users to express operations on large chunks of information at a
time. This entailed providing a foundation for set-oriented processing
(i.e., the ability to express in a single statement the processing of
multiple sets of records at a time). This is called the set-processing
objective.

Another primary motivation for development of the relational model has
been to make data access more flexible. Because there are no pointers
embedded with the data, the relational programmer does not have to be
concerned about following pre-defined access paths or navigating the
database, which force him to think and code at a needlessly low level
of structural detail.

THE RELATIONAL DATA MODEL: A BRIEF HISTORY

In 1970, Dr. Codd published an article in the Communications of the
ACM entitled "A Relational Model of Data for Large Shared Data Banks."
This classic paper marks the "birth" of the relational model. Dr.
Codd was the first to inject mathematical principles and rigor into the
study of database management.

RDB
2

By the mid 70's, there were two database prototypes being developed.
IBM was behind a project called "System R," and there was another
relational database being developed at the University of California,
Berkeley, called INGRES. It was late 1979 before the first
commercially available relational database, called ORACLE, arrived in
the marketplace from ORACLE Corporation. ORACLE is also an
implementation based on "System R". In 1981 Relational Technology Inc.
introduced INGRES which was a different implementation based on the
research done at Berkeley. Today there are several additional advanced
relational products available, such as HPSQL from Hewlett-Packard,
SQL/DS and DB2 from IBM, Rdb from Digital Equipment Corporation and
SUPRA from CINCOM. There are additional products sometimes referred to
as "born again" relational databases, such as IDMS/R from Cullinet,
DATACOM/DB from Applied Data Research and ADABAS from Software AG, to
name a few.

RELATIONAL DATABASE DEFINED

The relational database model is the easiest to understand - at least
at the most basic level. In this model, data are represented as a
table, with each horizontal row representing a record and each vertical
column representing one of the attributes, or fields, of the record.
Users find it natural to organize and manipulate data stored in tables,
having long familiarity with tables dating from elementary school.

The Table, or two dimensional array, in a "true" relational database is
subject to some special constraints. First, no row can exactly
duplicate any other row. (If it did, one of the rows would be
unnecessary). Second, there must be an entry in at least one column or
combination of columns that is unique for each row; the column heading
for this column, or group of columns, is the "key" that identifies the
table and serves as a marker for search operations. Third, there must
be one and only one entry in each rowcolumn cell.

A fourth requirement, that the rows be in no particular order, is both
a strength and a weakness of the relational model. Adding a new record
can be thought of as adding a row at the bottom of the table; hence
there is no need to squeeze a new row in between preexisting rows as in
other database structures. However, to find a particular row, the
entire table may have to be searched.

There are three kinds of tables in the relational model: base tables,
views, and result tables. A base table is named, defined in detail,
filled with data, and is more or less a permanent structure in the
database.

A view can be seen as a "window" into one or more tables. It consists
of a row and/or column subset of one or more base tables. Data is not
stored in a view, so a view is often referred to as a logical or
virtual table. Only the definition of a view is stored in the
database, and that view definition is then invoked whenever the view is
referenced in a command. Views are convenient for limiting the picture
a user or program has of the data, thereby simplifying both data
security and data access.

RDB
3

A result table contains the data that results from a retrieval request.
It has no name and generally has a brief existence. This kind of table
is not stored in the database, but can be directed to an output device.

THE RELATIONAL LANGUAGE

The defacto industry standard language for relational databases is SQL.
SQL is pronounced "SEQUEL" and stands for Structured Query Language.
This name is deceiving in that it only describes one facet of SQL's
capabilities. In addition to the inquiry or data retrieval operations,
SQL also includes all the commands needed for data manipulation. The
user only needs to learn four commands to handle all data retrieval and
manipulation of a relational database. These four commands are:
SELECT, UPDATE, DELETE and INSERT.

The relational model uses three primary operations to retrieve records
from one or more tables: select, project and join. These operations
are based on the mathematical theories that underlie relational
technology, and they all use the same command, SELECT. The select
operation retrieves a subset of rows, that meet certain criteria, from
a table. The project operation retrieves specific columns from a
table. The join operation combines data from two or more tables by
matching values in one table against values in the other tables. For
all rows that contain matching values, a result row is created by
combining the columns from the tables, eliminating redundant columns.

The basic form of the SELECT command is:

SELECT
FROM
WHERE

some data (column names)
some place (table names)
certain conditions (if any) are to be met.

In some instances WHERE may not be neccessary. Around this
SELECT •. FROM .. WHERE structure, the user can place other SQL commands in
order to express the many powerful operations of the language.

In all uses of SQL, the user does not have to be concerned with how the
system should get the data. Rather, the user tells the system what
data is needed. This means that the user only needs to know the
meaning of the data, not its physical representation, and this feature
can relieve the user from many of the complexities of data access.·

The data manipulation operations include UPDATE, DELETE and INSERT.
The UPDATE command changes data values in all rows that meet the WHERE
qualification. The DELETE command deletes all rows that meet the WHERE
qualification and the INSERT command adds new rows to a table.

When retrieving data in application programs, it is important to
remember that SQL retrieves sets of data rather than individual records
and consequently requires different programming techniques. There are
two options for presenting selected data to programs. If an array is
established in the program, a BULK SELECT can retrieve the entire set
of qualifying rows and store them in the array for programmatic
processing. Alternatively, it is possible to activate a cursor that
will present rows to programs one at a time.

RDB
4

SQL has a set of built-in, aggregate functions. Some of the functions
available are COUNT, SUM, AVERAGE, MINIMUM, and MAXIMUM. They operate
on a collection of values and produce a single value.

In addition to commands for data retrieval and modification, SQL also
includes commands for defining all database objects. The data
definition commands are CREATE, ALTER and DROP. The CREATE command is
used to create base tables and views. The ALTER command provides for
the expansion of existing tables and the DROP command deletes a view.
One of the most powerful features of SQL is its dynamic definition
capability. This function allows the user to add columns, tables and
views to the database without unloading and reloading existing data or
changing any current programs. More importantly, these changes can be
made while the databases are in use.

PRODUCTIVITY FEATURES OF USING RELATIONAL TECHNOLOGY

Relational technology is one very important tool that can contribute to
making data processing professionals more productive. The programmer
can benefit from a facility called interactive program development,
which allows the development and debugging ·of SQL commands and then
permits the moving of those same commands into the application
programs. It is convenient and easy to set up test databases
interactively and then to confirm the effect of a program on the
database. All of these characteristics make SQL a powerful prototyping
tool. The on-line facilities of SQL can be used to create prototype
tables loaded with sample or production data. On-line queries can
easily be written to demonstrate application usage. End users can see
the proposed scheme in operation prior to formal application
development. In this prototype approach, people-time and computer-time
are saved while design flaws are easily corrected early in development.

The database administrator profits from the productivity features
already described for programmers. The database administrator has a
great deal of freedom in structuring the database, since it is
unneccessary to predict all future access paths at design time.
Instead, the DBA can concentrate on specific data requirements of the
user. Nonrelational models, on the other hand, require all
relationships be pre-defined, which adds to the complexity of the
application and lengthens development time.

Additional productivity features for the database administrator include
the capability to modify tables without affecting existing programs and
the capability to dynamically allocate additional space while the
database is still in use. SQL goes far beyond many database management
systems in the degree of protection that it provides for data. Views
make it possible to narrow access privileges down to a single field.
Users can even be limited to summary data. Protection can be specified
for database, system catalog, tables, views, columns, rows and fields.
It is also possible to restrict access to a subset of commands. These
access privileges can be changed dynamically, as the need arises.

RDB
5

In many installations, the key to overall productivity is the ability
of data processing to offload the appropriate portions of the
development and maintenance to the end user. The flexible design
approach of relational databases allows an application to be designed
with the end user's requirements in mind. This could enable the DP
professional to implement an application up to the point where the end
user could create and execute his own queries, thereby expanding the
application on his own and reducing his dependence on the data
processing department. Through SQL, the end user is provided with
extremely flexible access and simple but powerful commands.

RELATIONAL AND NONRELATIONAL: COMPLEMENTARY TECHNOLOGIES

Within a data processing department already using a well-established
nonrelational DBMS, what role can relational technology be expected to
play? We know that DP will not automatically drop everything and go to
relational database technology. Rather, relational technology should
be seen as a complement rather than a replacement for nonrelational
database systems. Both approaches offer a host of benefits, and most
applications can be implemented with either of the two.

The relational approach is preferred when the application has a large
number of data relationships or when the data relationships are unknown
or changing dynamically. The relational approach provides the needed
flexibility to establish relationships at the time of inquiry, not when
the database is designed. If the application has unknown or incomplete
data specifications, which is usually the case in a prototyping
environment, then a relational system may be preferable. If the
application requires a quick turnaround, the quick design and
implementation capabilities of a relational database can be important.
The ability to handle ad hoc requests is a definite strength of the
relational model as is the ability to extract data for use in a
modeling, forecasting, or analytical framework.

The nonrelational approach is preferred
transaction processing applications where
critical requirement.

CHOOSING THE RIGHT TECHNOLOGY

for high-volume, on-line
performance is the most

The choice of the "correct" database management system must be based on
the environment in which the database will be used and on the needs of
the particular application. The key feature of relational technology
is that it allows for maximum flexibility, and will probably be the
choice for many new applications. On the other hand, nonrelational
systems may continue to be preferrable for very stable or structured
applications in which data manipulation requirements are highly
predictable, and high transaction throughput is important.

RDB
6

The optimum approach for many MIS departments will be to use the
relational system concurrently with the existing nonrelational system,
matching the appropriate technology to the application. The only
problem with such an approach is that the data for an application
developed in one technology may sometimes be needed by applications
developed in the other technology. Data may be "locked out" from an
application that needs it, or users might be tempted to duplicate the
data, maintaining both copies. The most desirable solution would
obviously be to provide both relational and nonrelational access to a
single database. This capability will be available with HP's ALLBASE.

RELATIONAL TECHNOLOGY CONSIDERATIONS

There are several things to consider when making the decision to go to
a relational database environment. The additional resources usually
required to support this technology could significantly impact your
system . For example, the intelligence built into the software and the
dynamic capabilities of the relational approach usually require
additional CPU cycles and memory.

Performance is usually a factor when considering the relational
approach and often depends on the maturity of the optimizer software
which is built into the relational DBMS. The Data Base Administrator
is very important when considering relational and plays a major role in
monitoring and improving performance by creating and dropping indexes
when neccessary. The DBA can also elect to use "clustering" or keeping
"like data" together which affects performance by reducing the number
of times a disc is accessed.

The command driven nature of SQL may be difficult for some users
because they usually have to know the names of the tables and data
fields in order to properly construct a SQL command and may prefer a
much more "friendly" menu-driven interface. The SQL user must also
know the beginning and end of transactions that modify the database and
when to "commit work" against tha-t: database.

Security of the data resources is usually very important, and the DBA
has the capability to implement some very comprehensive security
schemes. In addition, to ensure data integrity, logging transactions
is mandatory and the user has no way of turning logging off.

If your organization currently has SQL users in an IBM environment they
will find little difference in a Hewlett-Packard SQL environment. The
user and programmer interface is essentially the same; however, there
are some Data Base Administrator functions which are system dependent.

Future releases of HPSQL will work with 4th generation languages and
the System Dictionary. In addition, an easy-to-use menu-driven report
writer for HPSQL end users and programmers will soon be available.

RDB
7

RELATIONAL APPLICATIONS

There are many application areas -
analysis, reporting, and planning
application is constantly changing.

particularly those involving user
where the very nature of the
Some typical application areas

are:

* Financial
- Budget analysis
- Profit and Loss
- Risk assessment

* Inventory
- Vendor performance
- Buyer performance

* Marketing and sales
- Tracking and analysis
- Forecasting

* Personnel
- Compliance
- Skills and job tracking

* Project management
- Checkpoint/milestone progress
- Development and test status

* EDP auditing
- Data verification
- Installation configuration

* Government/education/health
- Crime and traffic analysis
- Admissions/recruiting/research
- Medical data analysis

These applications typify instances where it is of primary importance
to establish interrelationships within the database and to define new
tables.

CHECKLIST FOR DECIDING WHETHER OR NOT YOU NEED A RELATIONAL DATABASE

Note: If you answer yes to any of the following questions, you should
seriously consider taking advantage of relational technology.

1. Does your company have an excessive backlog of applications to be
developed, including an invisible backlog?

RDB
8

2. Is your company spending too much money developing applications due
to the complexities of using nonrelational systems?

3. Are your programmers spending too much time maintaining
applications caused by changing data requirements or relationships?

4. Are your programmers spending an excessive amount of time writing
code to navigate through nonrelational databases?

5. Is the nature of your applications constantly changing?

6. Do your users' requirements for information change dynamically?

7. Do your users feel restricted by a nonrelational database?

8. Would your users find it natural to organize and manipulate data in
tables?

9. Do your users currently use LOTUS 1-2-3 or spreadsheets?

10. Is your company moving towards a distributed database environment?

SUMMARY

Relational technology can have a profound effect on the way
organizations operate. In short, the use of relational databases,
within the correct DP environment, can help turn the computer into the
effective tool most managers need to run their organizations
successfully. The following conclusions deal with relational database
technology.

*
*

*

*

*
*
*
*
*

Relational concepts are easy to understand and use.
SQL is a multifunctional language.

Database definition and creation
Data retrieval
Data manipulation
Authorization and security
Transaction management and recovery
Database environment management and restructuring
Interactive and programmatic use

SQL allows you to specify which information you want - not how to
retrieve it.
SQL increases programmer productivity and lifts programming to the
level of problem solving.
Data independence is ensured and minimizes maintenance of programs
Data access is automatically optimized as DB structure changes.
The DBA has unprecedented power and control over the database.
New systems are implemented much faster.
Relational_databases provide a cost effective powerful solution.

It is to the advantage of most data processing management to learn to
use this technology creatively and to manage it effectively. The
bottom line is that RELATIONAL DATABASE TECHNOLOGY IS HERE TO STAY!

RDB
9

REFERENCES

Codd, E.F., "A Relational Model of Data for Large Shared Data Banks,"
CACM, 13 6,(June 1970),pp. 377-387.

Codd, E.F.,"Relational Database: A Practical Foundation for
Productivity," CACM, 25 2,(February 1982),pp. 109-117.

Date, C.J., An Introduction to Database Systems, Addison-Wesley, 1977.

Date, C.J., An Introduction to Database Systems Vol II, Addison-Wesley,
1983.

Schussel, George, "Relational Database-Management Concepts, "Proceedings \ ·
1986 Database and Fourth/Fifth Generation Language Symposium,NY,NY,
June 8-12,1986.

____ ,Relational Technology: ~

Packard Co., Computer Systems
6676, January 1986.

Productivity Solution, Hewlett­
Division, Cupertino, Ca., 5954-

____ ,SQL/Data System for VSE: ~ Relational Data System for Applica
tion Development, IBM Corp. Data Processing Division, White Plains,
N.Y.,G320-6590,Feb 1981.

RDB
10

HOW TO BUILD A DISTRIBUTED M.I.S. SYSTEM

Roger W. Lawson

Proactive Systems
Box 1425
Berkley
Michigan 48072

I

INTRODUCTION

Management information systems (M.I.S) have historically
been seen as centralised systems. The typical large
company organisation structure is a hierarchy with a
peak at head office. Therefore computer systems to
support this structure have been concerned with the
consolidation of locally collected data towards the
centre and the distribution of information from the
centre. In the past this often resulted in a naturally
centralised approach to the provision of data processing
resources. However this strategy is not only
inefficient and inflexible but is also needlessly
expensive. I will attempt to show how such systems can
be built using networks of minicomputers (eg. HP3000s)
and discuss the practical problems that have to be
overcome.

THE REQUIREMENTS

To support any complex data processing system or M.I.S.
system that comprises multiple applications you need the
following capabilities:

- The ability to share data between applications.

- The ability to pass transaction data from one
application (or process) to another.

- The ability for users to access data from multiple
data files easily and transparently.

Now if all the systems are running on the same computer,
this is easy. However the centralised approach has many
disadvantages. Some of these are:

- You are placing all your eggs in one basket. If the
central computer stops then all application systems
stop. Even a short interruption is very costly and the
company as a whole may be vulnerable if a real disaster
such as a fire occurs.

- The data communication costs are very high if the
users are geographically dispersed. If the computer is
located in Los Angeles but some of the users are in
New York it is a very expensive solution.

- It is inflexible as an upgrade of processing power may
only be possible in steps (also there tend to be upper
limits on such equipment as is so with the power of the
HP3000 computer range).

- Groschs Law may no longer apply. Multiple small
computers can give you cheaper power than one large one.

-1-

THE PROBLEMS OF DISTRIBUTED SYSTEMS

If you spread applications over multiple computers then
to meet the re~uirements mentioned above is much more
difficult. Let s take each in turn:

- You need to be able to share data between computers
that are geographically remote (although probably linked
by a communication system such as DS/3000 even though
this may be subject to frequent failure or
interruption). For example you may be running a sales
order processing system on one computer and a
production/inventory system on another computer - they
both need to share (and update) the same stock
availability data. Although DS/3000 allows access to
remote data bases it provides no facilities to logically
link two or more data bases on seperate computers.

- Moving transaction data from one system to another is
much more difficult in a distributed system. An example
is where a sales transaction needs to reduce a stock
balance which is held on a local computer plus create an
accounts ledger entry on another central computer.
DS/3000 provides the facility to easily copy a file in
"batch" mode but building a real time processing network
with automatic recovery in case of a failure is another
matter.

- User access to the data for both read and update
purposes introduces technical problems. For example on
an HP3000 if you have more than a few remote DS sessions
then performance tends to be very poor. Also if you have
a reasonably complex network (ie. more than 2 computers)
and you have lots of remote data base access then you
are very vulnerable to failure of any one node or any
communication link. Obviously the more computers you
have then the higher the risk you run of one being out
of action.

OTHER REQUIREMENTS

Other common requirements that are not covered easily
are:

- Semi-static data on one computer needs to be reflected
on other computers in the network. For example a price
list that is maintained centrally needs to be
distributed around the network. Note that in this case
because the data does not change very frequently and is
not large in volume it is more cost effective for each
computer to have a local copy. The trade off is the cost
of disc space against the communication and performance
cost of remote data base access.

-2-

The "local copy" approach also makes each local system
less vulnerable to network failure. Now you could do
this by passing transaction data around the network and
having some local processing code on each system, but
all you really need is some system software which can be
instructed with a command that says "keep the price data
sets on computers 2, 3, 4 etc. automatically the same
as the price data set on computer l".

- Data consolidation is often required. For example
sales transactions that are processed by each local
computer need to be collected and merged in real time
into a single data set on a central computer.

A SOLUTION

Now a couple of years ago my company came up with a
solution to the above problems which is a software
product called BACKCHAT. The original germination of
the product stemmed from both my and a colleagues
experience in running multiple HP3000s as users (for
example the company I worked for as DPM had over a dozen
linked machines). Originally BACKCHAT was aimeq solely
at providing a real time copy of an IMAGE data base on a
second computer by "mirroring" the data base. This
application is very similar in purpose and mode of
operation to HPs SILHOUETTE product (BACKCHAT is an
alternative to that but with many more facilities).
This mode of operation is represented in Figure A below.

Primary
Data
Base

HP3000

• ~ :>,

~~/

t l t f l i
READ/WRITE USERS

Figure A

DS/NS
~

y

One way mirror

-j-

HP3000

~~~ 
~ 

....... ~ 

J ' ' ' J 

Co 
Da 
Ba 

PY 
ta 
se 

READ ONLY USERS 



In this case the copy data base can be read by users on 
the secondary HP3000 but cannot be updated. This system 
provides: 

1. A disaster protection system (users on the primary 
system can be switched to the secondary if the primary 
fails). 

2. Load spreading as reporting/enquiry users can be off 
loaded to the second computer. 

3. Concurrent back-up and 24-hour availability as tape 
stores can be done on the secondary without stopping 
access to the data base on the primary. 

After releasing the product we were approached by a 
potential client who was not only interested in the 
disaster protection capability but who also had a number 
of other requirements to enable him to build a 
distributed system spanning England, France, Germany and 
Australia. One of his needs was to be able to logically 
share a data base (or data set) with updating on both 
systems. This is represented in Figure B. 

Data 
Base 

HP3000 

ic:::_~ 

....... _ ...... 
lt,tit 

READ/WRITE USERS 

Figure B 

OS/NS .AL 

Back-to-back 
mirror 

-4-

HP3000 

ic::: :::>i 

....... ...... 

D 
B 
ata 
ase 

fttttft 
READ/WRITE USERS 

! 



So we enhanced the product to provide this functionality 
(like many advances in the state of the art of computing 
the development grew out of close interaction between a 
software company and a user). With the new capabilities 
we can supply all the distributed data base requirements 
mentioned above. 

TECHNICAL DESCRIPTION 

BACKCHAT works by using the IMAGE logging system to pick 
up data base changes, passes the transactions to a 
remote processor and applies them to the remote data 
base. With concurrent updating as shown in Figure B 
there are effectively two of these processes in 
operation (one in each direction) so that the data bases 
can be viewed as being mirrored "back-to-back". There is 
special logic incorporated to stop transactions echoing 
backwards and forwards for ever. There is also special 
logic to cope with record relocations (record numbers of 
IMAGE records in detail data sets changing from one data 
base to another). 

There is a lot of control and configuration logic 
associated with controlling: 

- Multiple data bases concurrently. 

- Multiple remote connections. 

- Selective parts of data base (eg. data sets). 

- Restart and recovery from failure. 

- Simple operator control from one location. 

Note that BACKCHAT uses the IMAGE logging system for two 
reasons: 

1. It is the most efficient way of picking up data base 
changes, i.e. has least performance impact. 

2. It contains logical transaction definitions which may 
need to be used in recovery situations. 

Incidentally BACKCHAT does not use privileged mode. 

With this kind of software one can easily "share" 
information across a network without special 
programming. For example with a simple configuration 
dialogue it is possible to set up sharing of stock 
information as in Figure C below. 

-5-



Figure C 

DS/NS 
HP3000 HP3000 

J Stock Data Set f (shared) 

1 
Order Production 
Processing System 
Data Sets Data Sets 

As you can see the data bases do not need to be similar 
except for the data set that is to be shared. 

CONCURRENT UPDATING 

Now the obvious question with this design is "what 
limitations are there on concurrent updating•. Firstly 
if the data sets within a data base are only updated on 
one system then no potential conflicts arise. Also the 
software can handle updates to the same data set so long 
as the particular records being updated are different. 
However because it is not practical to impose a global 
lock (which would reduce the tolerance to network 
failure in any case) the concurrent updating of the same 
record has to be considered with care. For example if 
a record was deleted on one system at the same time as 
it was updated on the other then when the update arrived 
on the first system (which may be some time later 
depending on configuration etc) the record would have 
disappeared. However with suitable application design it 
is possible to avoid these problems (eg. flag the record 
for later deletion in this example). Although it may not 
be possible to take an existing application running on a 
single computer and chop it in two without application 
changes, there are effectively no significant limits on 
what you can achieve. 

-6-



MORE EXAMPLES 

Figures D and E below show how easy it is to provide the 
shared reference information and data consolidation 
facilities. 

Copy 
Price 
List 

Head 
Office 

Figure D 

Model 52 

Model 70 

Master 
Price 
List 

Micro 3000 

Micro 3000 

Micro 3000 

Copy 
Price 
List 

Copy 
Price 
List 

Copy 
Price 
List 

In this example head office maintain the master price 
list on their computer and BACKCHAT automatically 
maintains copies on the other computers (the 
intermediate copy on the Model 52 could be dispensed 
with if not required). 

-7-



Data 
Set 
4 

Figure E 

Model 52 

Model 70 

Data Set 1 
Data Set 2 
Data Set 3 
Data Set 4 

Micro 3000 

Micro 3000 

Micro 3000 

Data 
Set 
1 

Data 
Set 
2 

Data 
Set 
3 

In this example branch sales are automatically passed 
from each local system as they are collected to the 
central system. They are then automatically consolidated 
into a single data set on the central system. Note that 
BACKCHAT also contains utilities to help set up the 
merged data set initially. In this example transactions 
are effectively transmitted through the network for 
further processing at another location. 

-8-



TOLERANCE TO FAILURE 

Because BACKCHAT processes and manipulates log records 
in files on both local and remote systems these files 
effectively act as buffers in the network. This means 
that the seperate computer processors can operate 
asynchronously and, if a network failure occurs, 
transactions simply accummulate in the buffers until the 
relevant part of the network is restored (BACKCHAT can 
then automatically recover to the correct point). 
Whether it is communications line failure or computer 
failure, in neither case are other computers in the 
network significantly affected using this approach. 

The software also contains such facilities as a roll 
back recovery module that is invoked in certain failure 
circumstances (it includes linked roll back of logical 
transactions that span multiple data bases by looking at 
the user PIN number to identify common usage). 

CONCLUSION 

I hope I have shown how it is possible to build 
distributed data base solutions now on HP3000 equipment 
using IMAGE. With the approach described all the 
requirements of distributed data processing can be 
easily met. It is certainly practical to build real 
integrated networks and do the computer processing in 
the locations best suited to minimise costs and maximise 
user convienience. 

-9-





A PERFORMANCE COMPARISON OF HP3000 REPORT WRITERS 

Roger W. Lawson 

Proactive Systems 
Box 1425 
Berkley 
Michigan 48072 

Running reporting programs or procedures often consumes a high 
proportion of the cpu and IO resources of an HP3000 computer 
system. This paper supplies data on how the commonly used report 
writers compare on performance. Also it takes a specific look at 
HPs new Business Report Writer (BRW) and sees how it stands up 
against other report writers (Hewlett Packard have been promoting 
the new BRW product as the answer to all reporting requirements 
on HP3000 systems). Having recently had the opportunity to try it 
out (and compare it to other reporting products performance wise) 
I have collected some interesting data. 

Let me first declare that as I work for a company that produces 
an HP3000 writing product (namely Q-GEN), I will not attempt to 
present a full review of BRW or the other products - it would 
take more time than I have available to perform a full evaluation 
of each. However BRW particularly interested me because a couple 
of years ago I did an evaluation of QUERY, INFORM/REPORT (from 
HPS RAPID package), QUIZ (from COGNOS), ASK from COGELOG and a 
COBOL report writer (Q-GEN from PROACTIVE SYSTEMS). The 
evaluation was purely a comparison of their run time performance 
ie. how much load they placed on an HP3000 system when producing 
a typical sample of reports. To produce the data each sample 
report was written in each reporting language (not a simple task 
incidentally as it means you have to learn all the report writers 
and have a copy of the software on your system). The report 
procedures were then run against a medium size data base on a 
Model 44. The resulting figures were published in the HP IUG 
journal and presented in a couple of talks - a summary of the 
data is shown in Table 1 overleaf. 

-1-



Table 1 ----
Relative Performance in CPU seconds (COBOL=l) 

COBOL/ QUERY REPORT INFORM ASK QUIZ 
Q-GEN 

Test 1 1 2.1 1. 8 2.1 1. 9 2.3 

Test 2 1 2.1 2.0 2.1 1. 9 2.4 

Test 3 1 4.7 8.7 7.9 1. 9 2.2 

Test 4 1 5.0 N/A N/A 2.0 N/A 

Test 5 1 4.4 N/A N/A 2.0 2.0 

Notes. N/A= Not Available. Relative performance in elapsed times 
were very similar and are therefore not shown. The tests range in 
complexity from very simple (test 1) to relatively complex (test 
5) - see end of article for test details. 

The figures highlighted what many people already knew. Namely 
that QUERY is a real machine killer, INFORM/REPORT are not much 
better, and that while QUIZ is better than QUERY it is still 
typically twice as slow as a reasonably well written COBOL 
program. Note that although claims have been made that 
INFORM/REPORT and QUIZ have been improved over the last couple of 
years since the original tests were done I doubt whether the 
figures would be significantly different today. Note also that 
the relative speed of the products does not vary much from one 
HP3000 model to another or between one configuration and another. 

Now Hewlett Packard have been saying to some users that "BRW is 
not only very flexible but it can also be faster than COBOL" ie 
its the answer to the system managers prayers. To test this out 
I simply did some more comparative tests. I took two reports (one 
simple, one complex) and wrote them in QUERY plus rewrote them 
using BRW - I also converted the QUERY procedure to a COBOL 
program using Q-GEN. The three versions were then run on one of 
our mailing list data bases on our Model 37. The results are 
shown in Table 2 overleaf. 

-2-



Table l 

Relative Performance in CPU seconds (COBOL=l) 

COBOL/ QUERY BRW 
Q-GEN 

Test 6 1 2.2 2.4 

Test 7 1 2.9 1.9 

See end of article for test details. Relative performance 
on elapsed times were again very similar. 

Well the first surprise is that on a very simple report, BRW is 
slower than QUERY! I didn't believe this when I first saw the 
figures so I reran the test with a similar result. Now BRW has 
one useful feature in that it gives you a breakdown on $STDLIST 
of where it is spending the time when running a report - it 
appears that BRW is wasting a lot of needless time writing to and 
reading from a work file. 

At least on a more complex report BRW seems to be a lot better 
than QUERY - it is probably more comparable in performance to 
QUIZ but it is still nowhere near a COBOL program (even one 
generated rather than hand coded). 

Other comments - BRW has a very sophisticated, menu-driven report 
definition system with a compiler. I would have done more testing 
but the other users on our Model 37 complained that when I was 
running the report definition system, nobody else got a decent 
terminal response - as it takes a long time to step through the 
menus to produce a report this is not going to be a helpful 
feature on smaller machines (BRW seems to eat up a lot of 
memory). However if your other users can put up with it then BRW 
looks very powerful - but without doing the 4 day H/P training 
course I found it difficult to understand fully how to use the 
system from reading the reference manual. Even getting a copy of 
the manual from H/P proved difficult even though I was happy to 
pay for it - I had to borrow one from another user. BRW was 
written in Germany - it probably shows that in the number and 
comprehensive of the products facilities. One oddity was that I 
found I had to set up a dictionary for the test data base using 
DICTIONARY/3000. There is then a utility provided that is used to 
create an MPE file containing an extract of the dictionary - you 
can then throw away the dictionary (maybe H/P should provide 
short term rentals of DICTIONARY/3000 so that you don't need to 
buy it!). 

-3-



If you are looking for a product as comprehensive as BRW then 
maybe the old RPG product is worth a look - it is certainly as 
flexible as BRW, is easier to learn, is industry standard and 
is well proven. 

Note that BRW has many good points but end-user report writer it 
is definitely not. Non d.p. staff will even have difficulty 
understanding the HELP screens within BRW. 

CONCLUSION 

As an alternative to INFORM/REPORT for sophisticated users who 
wish to use a data dictionary (and don't mind the associated 
cost) then BRW warrants further evaluation. As an alternative to 
the free QUERY product (or other third party products) then BRW 
does not look so exciting. The effort to learn the new product 
(apart from the time to rewrite old QUERY procedures) is too 
high. 

However QUERY is certainly slow - partly because of the 
interpreted nature of the product and partly because of the 
design of the record handling. Also it has certain limitations 
(such as lack of conditional printing and limits on the numbers 
of statements). To overcome these problems we developed a couple 
of years ago a compiler for the QUERY language which is called 
Q-GEN - it actually generates COBOL source code which it then 
links and compiles for you (or you can get the COBOL source and 
play about with it yourself). We also support extensions to the 
QUERY language such as an "IF" statement to do conditional 
processing, much higher statement limits, European date format 
etc. 

This approach gives you much improved performance as you can see 
from the figures above - for example one of the original 
applications was to reduce an overnight reporting run from 15 
hours (which meant the old version often did not finish until the 
next morning) to about 5 hours. 

It also gives you total flexibility because if the QUERY 
extensions provided in Q-GEN are not enough you can always modify 
the COBOL code. 

Even Hewlett Packard like the product - so far they are purchased 
about 30 copies for use in their own off ices in different parts 
of the world. 

-4-



TEST DETAILS 

Tests l to 5 were run primarily on a Model 44 (with some 
repetition on a Series III). Tests 6 and 7 were run on a one 
megabyte Model 37 with two 7914 disc drives (running U-MIT and 
TurboIMAGE). All tests were run in job mode with no other jobs or 
users on the system. 

Test l was a serial search of a detail dataset to retrieve 7000 
records out of 59000. Report was an unsorted list of the records 
with no totalling and limited editing. 

Test 2 was the same as Test l except that the records were sorted 
and only totals were printed (one level of sort). 

Test 3 was the same as Test 2 except that a single data item from 
another data set was printed in the report total lines (item 
obtained from another detail data set via a common master). 

Test 4 was a serial search of a detail data set to retrieve 13600 
records out of 92000 records. Report records were sorted and 
totalled at one level with an item retrieved from another data 
set as in Test 3. 

Test 5 was a serial search from a detail data set to retrive 6600 
records out of 59000. Report records sorted and totalled and data 
from a linked master data set included in the report totals. 

Test 6 was a serial read of 2731 records from a detail data set 
(out of 2732 records). The report was a simple list of two items 
from the data set with no sorting or totalling. 

Test 7 was a serial retrieval from two detail data sets linked by 
a common automatic master (2700 records in each data set). 1870 
records were selected for printing with sorting at 3 levels plus 
group totalling. Final report total, page numbering, heading 
lines etc also incorporated. 

-5-



I , 

! ' 



User-Sympathetic: The New Standard for User Interfaces 

by 

Clifford w. Lazar 
President, 

Systems Express 
15015 Ventura Blvd. Sherman Oaks, CA 91403 

818/907-4800 

Originally Published in SuperGroup 



User-Sympathetic: The New Standard for User Interfaces 2 

Most of us feel we are writing user-friendly systems, or would, 
if we had the time. As a result, what I am going to outline here 
may likely re-inforce your view of your work. How great you are. 

What was Man's Earliest Important Invention? _____ _ 

As an exercise don't read the next paragraph until you write down 
what you think was Man's most important early invention. First 
of all, an invention is something that doesn't already exist in 
nature or wasn't previously created by someone else. Fire occurs 
naturally in nature in the form of lightning-started prairie 
fires and Biblical burning bushes. O.K., write your answer in 
the blank. 

Did you write down "the wheel"? Well, you are wrong. The wheel 
occurs naturally in nature as round stones, logs, and waterme­
lons. If you step on any one of these on a mountain path you 
will go over the edge. 

Still you visualize a Basbylonian with a solid wooden cart wheel. 

The invention, however, was the axle. You remember that the 
slaves of the Egyptians moved big blocks of granite with round 
logs (rollers or elongated wheels) by having the slaves drag the 
last roller wheel into the front while the pushers and pullers 
kept the block moving forward. This high inertia system with a 
high level of human involvement resulted in a lot of fatal 
accidents. 

The value of the axle is that it brings the wheel along with the 
cart or chariot. A wheel without an axle has very little value 
except to act as a large paper weight, a saloon chandelier or a 
base for a teather ball pole. 

Let me beat the analogy to death a little bit more. The ruling 
class of Egypt, the military, used axles on their chariots. The 
captive audience just used the wheels. People who use axles, use 
them because time is important and it would be inefficient to 
have to drag the rollers up to the front every time. 

The people to whom we give the rollers are captives whose time we 
don't value and who have no other choice. 

Much of the software offered on the HP 3000 is like rollers. The 
function is fulfil led but it is a drag for the user. 

Now if anyone accuses you of re-inventing the wheel, you have two 
good reasons for spilling coffee on his shoes. 

2 



User-Sympathetic: The New Standard for User Interfaces 3 

User Friendly vs Programmer Friendly 

There is a confusion about the meaning of User Fiendly. Program­
mer Friendly is NOT User Friendly. 

Programmers like puzzles and like to hack. Users get frustrated 
at the least buckishness of the computer and tend to give up. 

Three Levels of User Friendly 

User Friendly, as it is currently being misused, actually has 
three levels: 

o User Hostile 

o Programmer Competent 

o User Sympathetic 

User Hostile 

User Hostile systems can be best understood by citing examples. 
The catagories of user hostile are: 

o Sudden Death 
o Mirages 
o Quicksand 
o Tar Babies 

Sudden Death 

Sudden death means that a small mistake can cost you hours of 
invested time when your file disappears or your database gets 
corrupted. In the CP/M version of WordStar on the HP 120/125 
series, if you attempted to save a file to a protected disk, 
WordStar aborted and you lost your file. In its earliest ver­
sion, Math/3000, the first spread sheet program for the 3000, 
would die if you tried to take the square root of a negative 
number. Hours worth of work would disappear. When the failure 
was reported to I.Uke Atlas, the creator of Math/3000, he fixed it 
right away. Math/3000 is now a great time and money-saving 
product. 

Mirages 

Mirages define apparant visions that are not actually there. The 
program doesn't do what the manual says it would do because 
important paramenters were left out of the explanation or the 
software was revised but the manual wasn't. Or worse it was 
assumed that the user knew something he didn't know. 

Mirages require that the user struggle through a shimmering 
desert of blunders, guesses, tries and indications until he finds 
out how the software really works. 

3 



User-Sympathetic: The New Standard for User Interfaces 4 

Quicksand 

Quicksand refers to the case where you make an error and are 
caught and can't extricate yourself so you sink below the surface 
and die. 

In one case of quicksand, the programmer, acting cute, accepts 
your input character-by-character so you can't back space to 
correct your mistakes even if you see the error before the ma­
chine acts. You can't work around the error and so eventually 
the only choice is to abort and start over again, if you're not 
in an OPTION NOBREAK. 

Tar Babies 

A tar baby occurs when you make a decision in good faith, discov­
er it's a bad choice and can't back away. Like Br'er Rabbit, who 
just wanted to shake hands with the tar baby, your only choice 
becomes to leap into the briar patch. You may have made a reas­
onable choice at the time, but you can't extricate yourself 
without being covered in embarassement. 

For example you discover that the design of your database struc­
ture is inefficient but you can't conveniently change it without 
purging and retyping your data and looking real dumb to your 
client. Especially if she has to retype it. 

Programmer-Competent 

Many programmers are Programmer-Competent. They're geniuses. 
They're bored at Mensa meetings. They have no sympathy for 
lesser mortals who can't memorize SOO page alphabetically organ­
ized manuals, type at SO words per minute, without errors, or 
compose SO character commands with mixed and inconsistent delim­
iters such as 

:NEWACCT PAYROLL,MANAGER;CAP=IA,BA,PH;ACCESS=(R,X,L:ANY;W,A:AC) 

Note: The delimiters are spaces, commas, semicolons, equal 
signs, colons and left and right parentheses. Seven different 
delimiters. 

Programmer Competents also seek to maximize system functionality 
and options, thereby expanding the user manual so that 80% of the 
pages are irrelevant 99% of the time. Unfortunately, Competents 
want you to read all their options in alphabetical and then sub­
option order. They love all their children equally and therefore 
won't tell you which commands can be ignored. 

User Friendly used to mean anything that wasn't IBM JCL. JCL was 
terrible. The manual was 1SOO pages long. People who has 
suffered through JCL used to think that MPE was user friendly. 
It was -- seven years ago when most of the users were program­
mers. Now it is programmer competent. 

4 



User-Sympathetic: The New Standard for User Interfaces 5 

Drowning in Online Help 

The new trend is toward online help with megabytes of explana­
tions and deeply embedded examples available at the press of 
"HELP STORE,EXAMPLE". The documenters feel there is safety in 
multiple screenfuls of characters so the explanations roll off 
the top of the screen at 9600 baud without even a "Press any key 
to continue" that you normally would get on any micro computer 
program. Even Query has "Press any key." 

Systems written by competent programmers generally require week­
long, $900 per person, training courses before you can start to 
use the product. 

If a sex manual were written by HP it would be 780 pages long, in 
alphabetical order and you would be expected to read the whole 
book before you could get any hands-on experience. 

Irreduceable Minimums 

It's interesting to consider what might be the irreduceable 
minimum commands for any system. 

You "1>uld need commands for the following: 

File Handling 

o Creating Files 
o Loading Files 
o Saving Files 

Data Handling 

o Adding Characters to the File 
o Deleting Characters 
o Moving the cursor (at least back and forth and possibly 

up and down) 

Decision Automation 

o Some kind of IF/THEN operator 

These seven command types are included in 4GL's, editors, payroll 
programs, games and practically every other kind of software 
immaginable. In some cases the commands are defaulted, such as 
loading a game disk loads the file. 

Programs that deal with numbers also may have calculation capa­
bility which ranges from two operands and an operator to full 
algebraic parsing. 

The first computer that I worked on, the SWAC, had only 16 ma­
chine language commands, one of which was a no-op. At that time 
we felt that all that was really needed was a subtract with a 
conditional jump on negative result. The ultimate RISC machine. 

5 



User-Sympathetic: The New Standard for User Interfaces 6 

The Fundamental Dilemma 

The fewer commands that you have, the more commands you have to 
string together to accomplish a given task. The more commands 
that you have, the more commands you have to memorize. 

Since Programmer-Competents have excellent memories they are 
prone to expect the same of users. Competent programmers expect 
a lot from users. 

There is an alternative. 

User Sympathetic 

I feel there is a useful distinction between the meaninglessness 
of "user-friendly" and the implied style commitment of "user­
sympathetic." By style commitment I mean that the programmer has 
a commitment to consider the user at every step and to sacrifice 
his own programmer convenience in the interest of the user. 

It has been my experience that users aren't even appreciative of 
a user-sympathetic program unless they experienced a user-hostile 
version of it. Like exercising your civil rights without consid­
ering Tom Paine, Patric Henry or Martin Luther King. 

Assumptions 

User Sympathetic programs have certain assumptions in common: 

o The user's time costs money 
o The user can't remember anything 
o The user only cares about his problem and not the solution 

process 
o The user needs rapid feedback 
o The user doesn't know and doesn't want to know MPE 
o The user WILL make mistakes 
o EFFECTIVELY, the user can't read! 

The Fundamental Dictum 

The fundamental dictum for user sympathetic programmers is that 
if they can write procedures that can do a function for a user in 
less time than the user can do it -- write the procedure! This 
is "AXLE MAKING". 

The Game-theoretic Correlary is that if the procedure can probab­
ly sav·e the user time--write the code! This means that if you 
can guess what file the user wi 11 want to use, then display the 
guessed file name and let him accept it with an ENTER or a RETURN 
or let him overwrite it. 

Eighty percent of the time, users re-use their files. If they 
load them, they'll probably save them. If they edit them they'll 
probably compile, prep and save them. WordStar remembers the 

6 



User-Sympathetic: The New Standard for User Interfaces 7 

last file used and you can invoke it with three keystrokes: 

CTRL-R RETURN. 

User sympathetic programs have little or no syntax and tiny or no 
manuals. :DBTranspose, my database extract and copy program, has 
a one word user manual: DBTRANS. 

Tools of the User-Sympathetic Programmer 

The user-sympathetic programmer seeks to minimize syntax, memor­
ization and keystrokes. The alternatives to syntax are 

o Menus and Softkeys 
o Problem receptors 

Menus and Sof tkeys 

Menus are obvious and softkeys are dynamic horizontal menus. 
Memus shouldn't be just aids to memory. They should reduce 
keystrokes by knowing the structure of the options. Don't re­
quire that the user type the full name of the file or option. 
Let her select it by number or letter or let her tab to it and 
hit ENTER or RETURN. 

Problem Receptors 

Pascal, Fortran, Cobol, ADA, Basic, BAL and practically any 
language will solve nearly every immaginable problem. In order 
to write a simple program to open a file, read in the height, 
diameter, wall thickness and stress modulus of a tank and compute 
the strain at its base it is necessary that you read the entire 
manual of any of the languages mentioned. 

In contast, if a program had already been written that prompted 
for the values, checked their ranges and warned the user if they 
were anomolous and eased making corrections, then this program 
would be a problem receptor. 

A problem receptor knows what problem the user wishes to solve, 
and what terms he wants to use. It doesn't load him down with 
the optional capability of computing the red shift of receding 
galaxies if all he wants is to compute wall stress. 

A problem receptor deals with finite possibilities within 
specified ranges. It asks "WHICH?" not "WHAT?" 

If you buy a car you don't want to know how to turn brake drums. 
If you want to build a database system you don't need the option 
to compute tensile stress. 

7 



User-Sympathetic: The New Standard for User Interfaces 8 

Tools for Problem Receptors 

If you want to build problem receptors, your tools will include 

o Prompts 
o Error Management 

Prompts 

Prompts are more than just "Type File Name:". Prompts, in the 
larger sense, should tell the user 

o where he is 
o what input is required 
o what are the options/range 
o what are the possible negative results 
o what to do next 

A prompt is not just a single line. It is a component of an 
integrated whole screen. 

Error Management 

Users make errors. NASA administrators make errors, Presidents 
make errors. Good systems design assumes errors and manages 
them. 

Coaching Little League Baseball is error management. The little 
tykes will make errors. The team that makes the least errors 
wins. At my old oil company we knew that we would drill dry 
holes. We felt that the company that drilled the shortest dry 
holes, while still finding oil, would make the most profit. 

The clipper ship, Spirit of Baltimore, sank suddenly in an 
Atlantic storm. Unfortunately, the lifeboats were not readily 
accessible, not puncture proof, were not supplied with radar 
reflectors, were not supplied with enough food or shelter or 
water pumps for a reasonable expectation of survival in the 
ocean. That was not good error management. 

Building systems without error 
is not good error management. 
error management violates your 
company's stockholders. 

correction and disaster recovery 
Building systems without good 

fiduciary responsibility to your 

Avoiding Sudden Death 

In user Sympathetic programs, sudden death should be impossible. 
Purging or overwriting of files should require comfirmation by 
the user. The warning should be distinct--possibly flashing and 
accompanied with a bel 1 or two. "Overwritten" is too benign a 
phrase. The message should say: 

"The data in your file XXXXX will be destroyed if you type 'Y'." 

8 



User-Sympathetic: The Nev Standard for User Interfaces 9 

"Y" is a good choice because it is in the top center of the 
keyboard. Avoid using DEATH STAR keys that are on the bottom and 
the sides the keyboard where users might rest their hands. ENTER 
are keys placed in these dangerous positions so don't allow 
sudden deaths to be confirmed by simply pressing ENTER. 

You might consider copying to-be-purged or overwritten files to 
father and grandfather files, if space permits. 

Gang changes should allow for item-by-item confirmations. Cobol 
Accepts or Pascal Reads that are of fixed field length are dan­
gerous because the user can't retract the last character. You 
make a mistake and the machine runs amok! 

Fixups 

If the user made some error that needs to be corrected, he should 
be told clearly 

o what was wrong 
o what to do to fix it 
o the next key strokes required 

The program should display error meaning and correction guidance 
and not expect you to look in the back of the manual. 

It would be benefical if all the user's good choices could be 
saved so he could jump right back to the last good step without 
re-keing all his previous choices since the error. 

MPE does this on a line-at-a-time basis for fixups with the REDO 
command. It fails to help you if there is a sequence of commands 
and only the last one reveals that the first command was bad 
syntax. 

MPE often fails to give informative diagnostics and fixup in­
structions. 

BAD SYNTAX; CIERROR=1234 

is inadequate help when MPE potentially commands megabytes of 
meaningful messages it could send. My product :DBEXPRESS will 
tell the user what is wrong, how to fix it and what key strokes 
are necessary. 

Key Issues in User Sympathetic Systems Design 

When a system is designed to be user sympathetic the progr~mmer 
should consider the following issues: 

o Focusing 
o Functional Subsets 
o Heuristics 
o Speed 
o Standards 

9 



User-Sympathetic: The New Standard for User Interfaces 10 

Focusing 

Often, systems designers seek to solve all conceivable problems 
at the same time, with the same software. The result, like 
Lotus' Symphony, is a lot of compromises that don't include the 
best word processor, the best database manager or the best tele­
communications package. The integration may be outstanding, but 
users may opt for specific packages and file transferrability. 

Attempting to solve all the problems means that the system has to 
have a rich instruction set that the user must memorize. 
Focussing allows the program to better anticipate the wants of 
the user and speak in the user's vocabulary. 

Elevator vs. Tree 

Consider the difference between an elevator and a tree. You 
could climb the tree and get to any balcony on the front of a 
building on any of five floors. The different branches give you 
all the possible options. Because of the leaves, you have to 
memorize all the branch options before you start climbing to 
avoid getting lost. 

Instead you opt for the elevator. Its simple. There are only 
five buttons. An elevator has a very limited vocabulary. 
Everyone understands it. After you ride the elevator with its 
five sysmbol vocabulary then you can walk down the hall and scan 
for the room number. That's simple too and everyone understands 
it. 

If you are building a system with lots of options, group them and 
al low your user to go through successive simple menus, or if he 
has a good memory, jump to the option he wants. 

Functional Subset 

Consider WordStar. A trip to a good bookstore will reveal at 
least ten books costing between $14.95 and $21.95 on how to use 
WordStar. WordStar has over 500 commands and thousands of varia­
tions. It turns out that if you know 23 of the commands--that 
would fit on one piece of paper--you've got 95• of the power at 
your fingertips. 

The concept is that you can give your user a functional subset of 
the system commands and he can get along fine--possibly being a 
little inefficient until he is comfortable with it. 

If, when you were born, your parents gave you the Unabridged 
Oxford English Dictionary and told you to learn it before you 
could speak ••• 

The average user, if you allow him to use MPE, needs only these 
commands: 

10 



User-Sympathetic: The New Standard for User Interfaces 11 

:HELLO 
:ABORT 
:LISTF 
:SHOWME 
:FCOPY 
:some UDC's for applications 
:HELP 
:BYE 

All these commands could be summarized on a small reference card. 
Then, if the user wants to become a power MPE user let him go to 
a larger book that's organized in process, and not alphabetic 
order. 

Heuristics 

Since we are working with computers with very fast and very large 
memories, we should be willing to use those memories to be sympa­
thetic to our user. Have the system memorize every choice the 
user makes and then, when the user cycles through the system 
again offer him the choices he made before. Let him accept them 
with ENTER or RETURN or overwrite them. Some companies call this 
AI, artifical intelligence, we don't. We call it AC, artifically 
clever. 

Print Master, the slide generating program I use, remembers all 
the choices that I made. I can cycle to the next slide by just 
hitting RETURN six times without looking at the screen. If I 
want to change type fonts or layout options I can press the UP or 
DOWN arrows to highlight a different option and then press RETURN. 

We are still haunted by the memories of small and slow computers. 
Like our grandmothers, who still save Christmas paper, we save 
memory space and machine cycles at the expense of our users. 

Speed 

Speed is of critical importance. Any delay of greater than two 
seconds will raise anxiety in the user. A programmer is likely 
to get up and go for a cup of coffee. There are some tricks to 
reduce the anxiety and the heart break of necessarily slow 
processes. 

Avoid serial searches if possible. Train people to uses chains 
and hashes. Train your software to do the same. Don't default 
to serial search, even if it's simpler to code •• 

INFORM/3000 will allow a user to design a sorted report that will 
lock up his terminal for an hour or more. Warn the user of the 
implications of a 10,000 record sort. It's trivial to estimate 
the number of seeks and the sort time in terms of orders of 
magnitude. Display messages such as 

11 



User-Sympathetic: The New Standard for User Interfaces 12 

This report will take over 30 minutes 
Do you wish to stream the job offline so 
you can still use your terminal? Y or N: 

VESOFT's MPEX is very good about offering stream options. 

Before you start serial selecting all the records that are in Zip 
code 94010 out of a nationwide database, consider setting up 
automatic masters to states or area codes. The user might then 
select against the subset of area code 415. If you warn the user 
about the implication of giant serial searches she may think of 
alternatives. 

If you are doomed to run a process that takes longer than five 
seconds, then display status information such as creeping periods 
or percentage completion or records processed. This will keep 
the user entertained and relieve her anxiety. Turbo Pascal 
counts lines as it compiles so you know when it will be done and 
how many lines your have. 

Standards 

To get out of Query you must type EXIT. The get out of EDITOR 
you must type E. To get out of Segmenter you must type QUIT. To 
get out of SPOOK you type E or Q, with differing results. To get 
out of MPE you must type BYE. 

To get out of any part of :DBEXPRESS or FORMSPEC you must press 
f8. 

Why can't all exits be standardized? 

Good forms designers always had f5 and f6 mean PREV and NEXT. 
Some groups practice standardization and some don't That's bad. 

Look at Phillipe Kahn, the father of Turbo Pascal. He built it 
with an editor that had the same commands as WordStar, the stan­
dard of editors. The result was that 10,000,000 people knew how 
his editor worked before they saw it. So far he has sold over 
300,000 copies of Turbo Pascal, which is making it the standard 
of Pascals. 

Currently, about 50,000 people know MPE and 20,000,000 peole know 
MS-DOS. To display a file to the screen, MPE requires 

MS-DOS requires 
FCOPY FROM=filename;TO 

TYPE filename 

Worse, to send a file to the printer, MPE requires 

FILE T;DEV=LP 
FCOPY FROM=filename;TO=*T 

12 



User-Sympathetic: The New Standard for User Interfaces 13 

MS-DOS requires 
PRINT filename 

And to copy a file to a new file, MPE requires 

FCOPY FROM=oldfile;TO=newfile;NEW 

MS-DOS requires 
COPY oldfile newfile 

On the :DBEXPRESS distribution tape we have created UDC's that 
look like the MS-DOS commands on the theory that people will 
appreciate having to type fewer key strokes to get the same 
result. We also expect that many of the users will have had 
access to Vectras or other MS-DOS PC's in their college or work 
experience. Type, Print and Copy have been in the public domain 
for years. And there is no copyright law that says you can't 
simplify work. 

It appears as though we were anticipating a move by HP. MPE-XL 
will also have some of these simplified commands. 

Conclusion 

The world of microcomputers is already user-sympathetic. The 
reason is that it is a very competitive environment, populated 
not by captive slaves, but users who have limited time and lim­
ited budgets. 

For the last few years, in the HP 3000 world, we have been able 
to ignore that competition for users' hearts and minds because 
our minicomputers were their only option. That is no longer true 
and user hostile and programmer competent are no longer accept­
able. We must offer axles for the users and not wheels from the 
programmers. 

-30-

13 





Miiiion Record 
Database Strategies 

by 

Cllff Lazar 

15015 Ventura Blvd. 
Sherman Oaks, CA 91403 

818/784-6966 





.=ii5ysf'ems£xprsss 

Million Record Database 
Strategies 

Table of Contents 

Introduction 
Evolutionarg Parfmmance Degradation 
Database mental Retardation 

IIlicl are Diffanmt fram Elephants 
Dr. Ruth's Gaad ad Bad Databases 
Bee•• Strategies 

BP manual Wag 
Programmer IDlaD.lin 
Partitiaad Data•t• 
Thi Entitg Detail 

Blocking Factors 
Backup Strategies 
Brchive Strategies -- the WDRm Drive 

Baad-onlg D1tu1t1 
Dmmant DD-lite Camprassad Data 
Dmmant Dff-lina, On-site Camprassed Data 

Conclusions 



Introduction 

Million record databases are the justification for many of the HP 
sites in our community. Million record databases are also the 
source of many of the problems for those HP sites. 

For our purposes, a million record database can be comprised of a 
few datasets with over 100,000 records each or a massive dataset 
with over a million records. Such a single massive set is un­
likely because it would tend to fall of its own weight without 
support from side index files. 

If there are any who will volunteer that they have such a massive 
stand-alone file, we should all have sympathy for them. 

Some large databases start off strutting with good performanace 
and then evolve into stumbling poor performers. Others, because 
of poor design, start off poorly and just get worse. In this 
article I will look at some of the causes of poor database per­
formance on the megabase level and suggest some strategies for 
improving performance. 

In general, the strategies that work for million record, seven 
figure databases should also ap~ly to six figure and to a degree, 
even to high four figure databases. Three figure databases, with 
capacities under 1000, live within the power of the computer, and 
poor design is compensated by expensive hardware. 

Evolutionary Performance Degradation 

In some cases the bases grow from modest beginnings and as a 
result grow to become inefficient and counter-productive in an 
evolutionary manner. An observation of psychologists is that if 
a stimulus changes less than 2% of the base amount, most humans 
will not be able to tell the difference. Another observation is 
that if system performances are jumping up and down around a 
trend, most humans will not be able to discern the trend without 
keeping records and computing running averages. 

Chronic gamblers suffer from fixating on episodic reinforcement; 
chronic optimists never forget the times the system gives them 
three second response time and overlook average five minute waits 
as aberrations. Serial searches in hashed masters will, by the 
nature of the hash, episodically give very quick responses. 

Thus, when a database, with a poor design, begins its life with 
little data and few users, its performance is very good. Most 
retrievals occur at finger speed and batch jobs consume very 
little CPU and even wall clock time. As the base grows and the 
capacities are reset to higher figures things begin to slow down 
a little bit at a time. 

If the transaction rates are relatively constant, such as sales 
orders or work hours, the actual percentage increases in database 

2 



Million Record Database Strategies by Cliff Lazar 

size will decrease each period. Thus, when things begin to 
suffer the percentage increases in response time ma~{ be below the 
threshold of perception. 

Parallel with creeping degradation, typically, the staffing of 
the data entry and reporting functions are increasing and being 
trained, so there is little room for comparison based on extended 
observation. 

Database Mental Retardation 

When a baby is born the general expectation is that it will 
develop into a normally intelligent human with reasonable 
response time. During the infancy we don't expect the baby to 
act like a normal adult. 

During childhood we watch for signs of improvement. During 
adolecence we tolerate accidents and lapses because we love our 
offspring but at some point, usually during childhood, if we 
don't see improvement and a trend toward normal intelligence we 
may be forced to admit that our child has chronic problem that 
won't be solved with age. 

Some databases are that way. Their physical structure is such 
that they will never have normally intelligent response times. 
Databases with capacities under 1000 entries, while having 
chronic physical problems, don't exhibit them because their size 
can be overwhelmed by the computer's speed. 

Million record databases with chronic physical problems will be 
irretrievably inefficient. Adding a disk drive won't help. 
Going from one MIP to four MIPS won't help. Cacheing will 
contribute little or no relief. The design is not only 
inefficient, it is big and inefficient. 

Mice are Different than Elephants 

Mice and Elephants are both mammals, with common characteristics 
like vertibrae, hair, breasts and well-developed brains. At the 
same time they are very different because of their size. In some 
ways the elephants suffer from diseconomies of scale. Feeding 
them becomes a major logistical problem. Elephants can 
practically deforest an area as they feed. They endanger other 
nearby animals. Cleaning up after them is a signifcant issue if 
you own some. They require a lot of real estate, exponentially 
more, not arithmetically more than mice. 

As with mega databases, Elephants require greater strength in 
their structure. Their muscles are a higher percentage of slow 
twitch--they can't react rapidly. Their nervous systems require 
greater decentralization because the signals have a greater 
distance to travel. They require specially trained handlers. 

You can have hundreds of mice in your barn yard and not notice 
them, but one elephant will make a big impression. 

3 



Million Record Database Strategies by Cliff Lazar 

Million record databases have similar diseconomies of scale. The 
obvious issues are 

o Floor space for the disk drives 
o Response time for retrievals 
o Backup time 
o Integrity of the data 
o Dedicated skill levels needed for maintenance 

HP and other manufacturer's are offering a solution to the floor 
space problem with the 4 gigabytes that will squeeze into the 
same six square feet as an HP7933 disk drive. This sti 11 
ignores, or even contributes to back-up and archive problems. 

Responsiveness or Dr. Ruth's Good and Bad Databases 

A good database is one that will allow the users to retrieve 
their data when they want it. 

Conversely a bad database will not yield data as fast as the user 
wants and often not as fast as a manual alternative. 

The goodness and badness of a database is a function of its size 
more than its structure. In the case of million record databases 
this becomes very apparent. 

Consider a box of 10 driver's licenses. You can spread them out 
on a table and get whatever information you want instantly. You 
don't need Image. You don't even need a computer! But what if 
you have 10,000 driver's licenses in the same box. Now you can't 
find anything you want. 

How will you sort your driver's licenses? By the meaningless 
driver's license number (which is the equivalent of the Manual 
Master Unique key), by last name, by city, by sex? Any sort will 
obviate any other sort, if only one sort is possible as in the 
case of an Image manual master. What is the solution? 

For decades, libraries have maintained multiple copies of their 
cards: by author, subject and title. You can go into a library 
with a million books and find the reference card you want in less 
than two minutes because you do a a random access search on a 
sorted key and not a serial search. 

A million record master on an HP 3000/68 will take 5.8 hours for 
the average stand-alone serial search. In a multi-user envi~~n­
ment every other process wi 11 suffer, and the search wi 11 take 
longer. 

If the dataset only has fifty to a hundred customer records then 
retrieval takes place at finger speed and its O.K. to have a 
manual master with serial search. 

So let's draw an inference. Smal 1 masters are O.K. Large mas-

4 



Million Record Database Strategies by Cliff Lazar 

ters, with over 1000 entries, make bad databases. A million 
record manual master makes an abomination. 

Next time someone wants to sell you a package, don't accept a 
demonstration based on less than 100,000 records, if that is 
going to be your environment. 

Anyone who buys a database system which will become 400 byte wide 
masters with 100,000 to 1,000,000+ capacity should have his head 
examined. You ignore diseconomies of scale at your peril. You 
should always get a performance guarantee for the likely range of 
set capacities your shop will use. 

Physical Realities 

A million record database has certain physical realities that are 
inherant in its size. At 400 bytes wide, a million records will 
contain 400 million bytes. If the data is stored in a master 
then 1.25 million records will be needed to avoid the migrating 
secondaries. That means that the disk drives will need 500 
million bytes. Until now that required two 7933 drives and at 
least one GIC. 

Access Strategies 

Four Possible Approaches 

The are four possible approaches to the design of a customer 
information file: 

o The HP Manual Way - put the customer data in a master 
file 

o The programmer intensive Way --Keep the information in 
the master. but build a set of key index files to compen­
sate for the unsearchability of the master. Many pro­
grammers have homegrown approaches to this and Omnidex 
offers a canned IMSA1•1 approach for about $10,000. 

o Partitioned Datasets -- The data are partitioned into 
groupings that vary from high probability of hits to 
very low probability. The high probability set is 
searched first. If it is small enough it may reside in 
cache memory most of the time and the responses may be 
at CPU speed. 

o The Entity Detail -- store the customer information in a 
detail but assure that the entries are unique. Systems­
Express, our company, offer~ a retrofit system to copy 
the data from masters to details and provide rapid 
search with a combination of automatic masters and a 
KSAM pointer file, if generic search is desired. The 
cost varies from $3,200 to $6,000, if Cobol source is 
desired. 'l'he approach can be used to redesign an exist­
ing database or make easy-access extract databases for 

5 



Million Record Database Strategies by Cliff Lazar 

inquiries and adhoc reports. 

The BP Manual Way - put the customer data in a master file 

I feel I have to appologize to the HP community. Early on, I 
wrote a beginner's guide to building Image databases. It was 
based on the HP Image manual an9 my readings in the various 
proceedings. The basic approach was that entities should be 
stored in Image masters and transactions should be stored in 
details. 

The problem arises when the user wants to extract data not based 
on the meaningless unique key of the master but on some remern­
berable item such as a company name, or a contact name, or a 
city, or even a phone number. 

I have spoken to numerous users who have bought or built 
megabases with 300,000 record masters with no pointers except the 
meaningless key. The key must be meaningless or it couldn't be 
unique, if there are over 100,000 of them. Exception: part 
numbers with some rational naming convention. These users tell 
me that if they want non-key retrievals they must set up stream 
jobs to run over night or over the week-end. 

Other users tell me that they make their living just building 
duplicative extract files so that the users can get the data they 
need when they need it. 

Let me recant: 
manual masters. 
spell-checking. 

Don't build databases with the entities in the 
The only thing that Masters are good for is 

Put entity data in details and point to them with automatic 
masters or KSAM files or MPE side files or IMSAM files. l·iore on 
details below. 

Programmer Intensive--Keep the information in the master, 
but build pointer files 

The operational word is "keep." The assumption is that you 
inherited the database from someone who was fired or was promoted 
before management understood the problem. 

For technical or political reasons you can't change the structure 
of the database and convert the masters to details. The solution 
to getting improved performance is to create side index files 
which point to the key in the master. KSAM, MPE and IMSAM are 
good approaches. The appeal of KSAM is that it comes free with 
HP 3000's and you don't have to build search software. 

The approach we follow is fill the KSAM file with the correct 
spelling of the key values, and not record numbers that are 
subject to rapid change. This will help to avoid maintaining the 
KSAM file every time a record is deleted. 

6 



Million ~ecord Database Strategies by Cliff Lazar 

Partitioned>atasets-- The data are partitioned intogroupings 
thatvary from high probability ofhits 
tovery low probability 

Consider a transaction detail with one million records, which 
describe events that take place over time. While it may be 
advantageous to keep all the records online, it may be possible 
partition the detail into a few datasets, one or two of which 
have high probabilities of search hits: 

o current Day's input 
o Latest Week 
o Latest Month 
o Residual of the data 

The Current Day's and Latest Week may have the highest 
probability of search hits and also will be the smaller of the 
files. With large blocking factors and a big cache much of the 
high probability files could be RAM resident most of the time. 

At the end of each of the data collection periods the data is 
posted to the next more comprehensive dataset and deleted from 
its original source. 

The smaller files also have the advantage that if there is a 
system failure, less is involved in reconstructing the smaller 
files. 

The Entity Detail Store the customer information in a detail 
but assure that the entries are unique 

A entity detail is a detail with one or more keys that are 
pointed to with automatic masters where at least one key is 
limited to a chain length of one. The result is that the key is 
unique, just like a master. The advantage is that there can be 
as many as 16 keys and that the detail itself does not require 
excess space for migrating secondaries. The automatic masters 
do. 

Typically a detail may have three to seven keys and typically 
only one will be unique. 

We add a KSAM pointer file for all the keys that we would like 
generic search. Generally only one to three of the keys will be 
designated as generic search keys. The KSAM file will contain as 
many records as the combined capacities of the automatic masters 
and the manual masters that are to be pointed to, and the record 
size is equal to the largest field to be pointed to. Thus, this 
side index file makes trading space for time a very significant 
tradeoff. At the same time many of our users appreciate the ease 
of retrieval that generic search offers to the online user. 

The typical response time for a large database with a KSAM front­
end generic search is less than one second. There is no 
noticeable difference for a direct key search, with the full 

7 



Million Record Database Strategies by Cliff Lazar 

value spelling, bypassing the KSAM look-up. 

In Table 1 are displayed the theoretical space requirements and 
search times for a standard manua 1 master and an entity detai 1. 
The Image implicit pointer bytes have been ignored. The search 
time estimates include the time to serial search through empty 
records in the master. The searches for data in the details 
assumes that keys are available in automatic masters. 

Table 1 - Theoretical Space Requirements for 1,000,000 
Customer Records and Search Times . 

(MM=000,000) 
(400 byte wide record with 100 bytes of keys) 

Bytes in Bytes Bytes in Total 
Structure Keys Masters Detail KSAM File Bytes 

( 1 I 2) ( 3) ( 4) 

Search 

( 5 ) 

Time 

------ -------- ----------
Standard All Manual 500M1'i 0 0 500MM 5.a hours 

Detail with 5 5 125MM 400MM 0 525MM second 
5 automatics 

Detail with 5 5 125MM 400MM 125Ml-i 650MM <1 second 
5 automatics 
1 KSAM with 5 pointers 

Footnotes: 
(1) 400 bytes* 1MM * 1.25 = 500MM for migrating secondaries avoidance 
(2) automatic masters= 100 bytes* 1MM * 1.25 = 125MM 

Some of the automatics may be much less than Hll-1 
(3) 20 bytes* 5 * 1MM * 1.25 = 125MM 
(4) Sum of Bytes in Masters, details and KSAM files 
(5) 500MM/30 accesses per second/3600 seconds per hour/2 

This can be substantially inproved through better blocking factors 
< 1 second adjusts for the savings in user keystrokes with 
generic search 

Entity details are used by some shops as extract databases for 
quick user access to the data that is otherwise locked in ugly 
masters. :DBTRANS or Supertool is used to copy the data and 
:DBEXPRESS or grunt Cobol is used to build the retrieval system. 

Blocking Factors 

Well selected blocking factors can substantially improve the 
efficiency of database retrievals. The ~ore records that are 
retrieved with each seek, the less time and resouce consuming 
seeks are necessary. 

The conunon wisdom has been that 25% ofa ~aster's space should be 
empty space to avoid migrating secondaries outside of the block. 
It has been suggested (Van Valkenburgh, Interex 86, Detroit Paper 
3105, p.23) that the free space can be limited to the reciprocal 

8 



Killion Record Database Strategies by Cliff Lazar 

of the blocking factor. I have run a simple simulation of this 
approach and it appears that for high blocking factors, the 
likelyhood of not finding free space in any given block is hi9h 
enough to expect a lot of migrating secondaries to cross over the 
block boundaries if the free space is limited to the reciprocal. 

This is another good reason to avoid using masters except for 
spell checkers. 

Backup Strategies 

Million record databases require lots of backup. While backing 
up only changed datasets is attractive there may be a problem 
with partial database backups that can jepordize database 
integrity. It may be that keeping the high probability smaller 
datasets in a separate database can allow nightly backup of only 
the smaller sets. This can save substantial operator time. 

Archive Strategies -- the WORM Drive 

Currently archiving million byte databases poses a dual problem 
of database security and timely archive access. 

Security considerations require that backups be kept off site to 
prevent catastrophic loss and unintentional operator destruction 
of what look like convenient scratch tapes. Million record 
databases require large tape storage. Now is the time to consider 
adopting the write once read many (WORM) optical storage. 

WORM drives, shown at COMDEX have capacities in the multiple 
trillions of bytes. They can deliver any record within 30 
seconds and occupy eight square feet of floor space. 

Two copies of archival data can be made, with one stored off-site 
and the other stored conveniently on-site and possibly even on-
1 ine in an archival database. The archival database need be 
opened only when the older data was required. 

Implementation of WORM technology wi 11 change current database 
practices in many HP shops. Much of the data currently kept on 
disks has little current access, but is stored in the database 
because archiving is so inconvenient if the data is unexpectedly 
needed. It is another example of eposodic reinforcement. The 
one time in two years when old data was needed, it took hours or 
days to get it back on the machine so the Database Administrator 
decided to keep as much data on-line as there was floor space 
available. 

Duplicate WORM optical storage provides the dual advantages of 
security from loss and accidental scratch over-writes and rapid 
access to historic data. Experience suggests that the access 
programs, along with documentation, be stored with the data. 
It is likely that the programs will change over time and current 
programs will be unable to read the old data. 

9 



Million Record Database Strategies by Cliff Lazar 

Hewlett-Packard is currently examining the WORH technology and 
may have a product on the market in the near future. Other 
vendors have WORM systems available now that can be interfaced to 
the HP 3000. 

Read-only Datasets 

An intermediate solution to the current non-existance of the WORM 
and the desire to keep megabytes of data online but with smaller 
disk impact is the concept of a "Read-only Dataset." 

A read-only dataset is compressed into 25% or less space that an 
uncompressed dataset but can only be read from and not written 
to. Much of the data that we keep online in read/write datasets 
is, in fact, read-only data. It is historical--employee work 
hours or customer payments that we want to read but also don't 
want to overt overwrite. 

One college in California keeps all its student records online 
since 1929. They are never written to, only read from, after the 
close of the school year. Those records occupy eight 7933H disk 
drives, about four gigabytes. It's all read-only data. 

There are other examples of read-only data: 

o Technical Abstacts 
o Property Records 
o Library Book References 
o Stock Transactions 
o Chemical Formulas and Mathematical Equations 
o Census Data 
o Voting Patterns 
o Telemetry/Sensor Readings 

This class of data can be called compressed but read-only. 

Dormant On-line Compressed Data 

It is also possible to compress data and store it on-line in a 
dormant state and then decompress it when it is needed. This has 
the advantage that it is available within minutes but it is not 
readable or writeable. such data can be kept online while the 
image of it is archived at a remote location. The cost is 
relatively low to have this option. My company offers such a 
compression/decompression tool. It's-called :COMPFILE. You can 
have your data both ways--archived and available but out of the 
way. 

Dormant .. Off-line, On-site Compressed Data 

The offline conterpart of WORM is highly compressed data on tape. 
The advantage. is that you can save tape, save backup time and you 
can keep potentially need copies of the data onsite. We of 
course offer :COMPTAPE for this function. 

10 



Million Record Database Strategies by Cliff Lazar 

Conclusions 

Up to the current time many mi 11 ion record databases have 
suffered from diseconomies of scale. They are so large and so 
poorly designed that they perform poorly. Maintaining their 
security and integrity has resulted in a bureaucratic environment 
where response time has suffered and improvements were avoided. 

Technology available now can allow the users of million record 
databases to gain more rapid access to the data through use of 
entity details or pointer files or extract files. The response 
time improvements for unkeyed versus keyed access is thousands 
of seconds versus sub-second response. 

Switching from a master to a detail with automatic masters 
achieves the sub-second response time at the cost of increasing 
the database size by about 5% to 25%. Adding a generic search 
KSAM can double the data space requirements, but makes access 
more user-sympathetic. 

Shifting from tape archiving to WORM optical can increase data 
security while improving data accessability. 

Exploiting data compression techniques promises to give the user 
site more rapid access to data, with increased security while 
achieving substantial savings in disk s~ace. 

While the majority of the databases are small and reasonably 
efficient, my observations indicate that the majority of the disk 
space in the HP community is occupied by large, inefficient 
databases that can be improved with reasonable effort. 

11 



I 



----4ysf'ems£xpress ---­
Old and New Symbols 

v 
\ I 
\J 
u 

manual 
master 

Automatic 
master 

Detail 

Compressed 
master 

Compressed 
Detail 



-----=Sysl'ems£xpress ----

Extraction Symbols 

0 Extractor 

0 
Selective 
Extractor 

Extractee 
master 

\ } Extractee 
11 Detail 
\ I 



-----=£ysf'ems£xpress ----

Extractions 

\.__ __ ~/-......... ~ -->illl!lll.\I 
\ I V \_J 

Chains 

Normal Detail 
Normal Chain 

\;
/.___ Entity Detail 

I Chain length = 1 
1 

\ I I 



Programmer Intensive 

-pointer files 

MANUAL 
MASTER 

ITEM 
KEY REFERENCE 



-----=fSysf'emsExpress ----

Partitioned Datasets 

'I \ . 

\ I 

P<0.2 

\ __ __. 

Must be: 

Mutually exclusive and 
Collectively exhaustive 

~ P=l.0 



----=iSysf'emsExpress ----

Entity Detail 
I 

I 
I 

1 limit=l 



----.:4ysf'ems£xpress ----

Read-

Reduced 

Read.Only 

No-write 
Read-only 

Compressed 





KSAM ISSUES AND UTILIZATION 

Timothy G. Leadbetter 

FA:. HEWLETT 
II:~ PACKARD 



I 



1. OVERVIEW 

The HP 3000 Computer System's Fundamental Operating System includes various data management tools. 

For purposes of this discussion, data management tools will be defined as features of the system software 

which facilitate coJlection and storage of data. 

The primary tool covered will be KSAM, including storage formats and method~ As a comparison, 

IMAGE Database Management software will be discussed in overview. These and the sequential, or "flat", 

file comprise the data storage methods available within the Fundamental Operating System of the HP 

3000 Computer System. 

The discussion will cover basic data structures used by KSAM and IMAGE, then provide an overview of 

these tools. KSAM strengths and weaknesses will be outlined, and KSAM-specific file system errors 

explained. Potential uses for KSAM will be presented, as weJI as situations where it is best avoided. An 

explanation of the basis for these recommendations will also be given. Design considerations and tradeoffs 

will be presented, along with tools to predict disc space use and forecast the number of levels in your key 

trees. Recovery from file corruption and system interrupts will be presented, as weJI as corrective actions 

for KSAM related file system errors. 



2. DATA STRUCTURES 

The primary data structures used in KSAM are the calculated random sequential file and the balanced 

tree. IMAGE uses hashed random access files and linked lists for storage and access of data. To provide a 

background for comparisons, these storage methods will be defined. These definitions will be fairly brief, 

with additional readings listed for those who would like a more detailed description. 

2.1 LINKED LISTS 

A linked list is a physically linear structure with it's nodes linked along logical lines. These links are 

accomplished through pointers, which define chains. A linked list may be singly or doubly linked. The 

singly linked list will contain data and a pointer to the next element in the chain. A doubly linked list 

also contains a backward pointer, allowing the chain to be read first to last, last to first, and which permits 

reversing directions if needed. Each linked list will contain a head entry, which contains pointers to the 

first and, optionally, last data entry. A chain count may be included as a check for integrity. IMAGE 

uses linked lists, with chain counts, to manage paths, synonym chains (hashing collisions), and free lists. 

The fundamental drawback to linked lists is the potential for broken chains. These may occur due to 

software aborts, hardware failures, or procedural errors. Repair of a broken chain is not a trivial matter, 

and assistance should be sought if any uncertainty exists. 

A general rule as to the number of looks it will take to locate an entry is difficult to put forward here. 

This is a function of the method used to place the chain head for linked list. On average over time, half 

of the chain leng,h will be traversed to find an entry within the chain. The number of looks to find the 

chain head will be added to this to determine the total number of records examined to reach a desired 

entry. 

2.2 HASHED RANDOM ACCESS FILES 

In a random access file, the data is arranged in linear records, but any record can be instantly accessed 

(without serially reading it's predecessors) by providing a relative record number or word offset into the 

file. The hashing feature provides a random element to insertion, and provides rapid access to an entry 

2 



with a specific value. The degree of randomization is a function of the hashing algorithm used and the 

capacity of the file. In general, the sparser the population, the less likely collisions arP to occur. 

The principal problems seen with hashed direct access files are collisions, where more than one entry hash 

to the same location, and space requirements. In order to reduce population density, the file will need to 

have some minimum amount of free space, usually expressed as a percentage of the total space in the file. 

With large capacities, this can become quite large. A common way of handling collisions is to create a 

synonym chain, using the linked list from the preceding paragraph to contain the secondaries. The 

physical placement of the secondaries varies, but IMAGE searches fo1 ward to find the next open record, 

then links this record into the synonym chain. 

In general, the number of looks required to locate an entry in a hashed direct access file will be I plus half 

the length of the average synonym chain. The length of the synonym chain is effected by the capacity of 

the file, the density of the population, and the hashing algorithm used. With many algorithms the 

capacity of the file is a factor in the calculation, and use of prime numbers for the capacity will reduce 

collisions, speeding access. 

2.3 TREES 

Trees are a specialized form of graph, where each level contains entries and pointers to further entries in 

the next level. The entries in a node are in order (ascending or descending) by value within the node, and 

values not found in this node but existent in the tree will be located in another level. Nodes are defined 

as "root", "branch", and "leaf", where the root is the first level encountered in accessing the tree, a branch is 

a level between the root and leaves, and a leaf is the final level encountered. A tree will contain exactly 

one root, but may contain many branches and leaves. The arrangement and number of records and 

pointers in a node is a function of design. 

In a balanced tree, an equilibrium is sought between nodes. Insertion and deletion algorithms vary, but 

generally follow these rules: 

INSERTION: 

A. The record is inserted into the correct node based on the sequence specified, and in the 

correct location. If the node is at capacity, it is extended temporarily to permit balancing. 

3 



B. If the node was full prior to addition of the new record, it is split. and the value at the 

value at the center of the node is inserted into the next higher level. This is applied to 

higher levels as needed. 

C. If the root node is full, and the split proceeds to that level, the root node is split, with the 

center entry becoming the sole entry in the new new root node, and a new level formed 

immediately beneath it. 

DELETION: 

A. The specified record is removed from it's node. 

B. If the node is now at less than half of it's capacity, it is contracted into the adjacent 

nodes. 

2.4 SEQUENTIAL FILES 

Jn a sequential file, records are added by appending to the current end of file, without regard for content. 

This works well for fairly static data, but introduces inefficiency in the process of locating a desired 

record. On average, it is necessary to look at half of the records to locate the one being sought. Jn a large 

file, this adds considerable overhead. 

KSAM addresses this inefficiency by using a calculated read into the sequential file. This means that the 

relative record number is provided, and the file system directly reads that record, resulting in a single 

look. The factor which adds overhead is the structure used to provide the relative record number. This 

type of access is referred to as calculated, directed, or random. 

2.5 SUMMARY OF DATA STRUCTURES 

In this section, we have discussed the strengths and weaknesses of four data storage schemes in common 

use. This information will be used as background for the material on KSAM, and will, hopefully, make 

the workings of KSAM's files and operation more understandable. 

4 



3 KSAM COMPONENTS 

KSAM files consist of two MPE files, which the file system treats as a single entity for KSAM access. This 

means that if either of them is corrupted or destroyed, recovery will be required before access can be 

restored. In this section, we will talk about KSAM key and data files and their interaction, and will look 

at the overhead involved in adding and deleting a record. 

3.1 KEY FILE 

The KSAM key file contains overhead information, followed by a key tree for each tree defined. The 

overhead information is a 128 word record, which contains information on the file and access. The name 

of the data file is stored here, as well as a time stamp. The number of records in the data file is recorded 

here, as well as a counter for the number of times each intrinsic has been called against the file. A 

complete breakdown of this area has been excerpted from the KSAM/3000 Reference Manual and ts 

included in the Appendix. 

The next structure in the key file is the key descriptor block, which is 128 words long and contains the 

definitions of your keys. The layout of this block has also been included in the Appendix. 

The final information in the key file are the key entry blocks for each key. These are kept in B-tree 

representation. 

The key file does not contain a KSAM user label. It's filecode is I 080, and is reported as KSAMK in 

LISTF output. 

3.2 DAT A FILE 

The data file is essentially a sequential file, with the addition of a user label to relate it to the key file. 

This label contains the name of the key file, and nothing more. It is not accessible by the user. The data 

file has a filecode of 0, but LISTF reports the code to be KSAM. Records are appended to the end of the 

file, and an entry is made in each key tree in the key file, allowing calculated access to the data file in 

KSAM reads by k~y value. 



3.3 ADDING AND DELETING RECORDS 

It is the addition and deletion of records that are costly with a KSAM file. In the best case, the data 

record must be written, then it's corresponding key entry placed. This will involve locating the adjacent 

values in each key tree and inserting or deleting the entry. In the case of a deletion, the data record must 

first be located and read prior to being rewritten, as it is flagged as deleted, rather than being made 

available for reuse. 

In the .worst case, the key insertion or deletion may cause the number of levels in one or more B-tree to 

change, which is not a trivial matter. We will go over a brief example, to illustrate the effect of dynamic 

data on a KSAM file. 

In KSAM, key values are stored in ascending order. Each entry is bounded by pointers. The pointer to 

the left of the value points to a block in the next lower level where all values are lower than the this one. 

The pointer to the right points to a block in the next lower level where all values are higher than the 

current entry. In KSAM, both pointers lead to the same number of levels. Thus, the tree is said to be 

balanced. 

When a key value is requested, a binary search is performed on the root block. If the key value is found, 

the search ends. If the value is not in the root, the appropriate pointer is used to progress to the next 

block, which also has a binary search performed. These steps repeat until the value is found or the 

indicated leaf node is searched without finding the value. Using this method, the approximate average 

number of records examined to find an existing entry will be LOG2(n), where n is the capacity of the file. 

Before discussing addition of key values, an examination of the basic B-tree is in order. Figure 1 

illustrates a simple tree. Note that the root node contains only one entry, but the branches are all at least 

half full. In this example, the key blocking factor is four. In practice, there are usually considerably 

more entries per block. 

6 



-------------------------------------------------------------------

.--····• l•tt poizt.er to:r 11 
I 

I .----• 11•1 .all&e 
I I 

I I .--·• :richt. poizt.er tor 11 
I I I 

Fl 11 F1=i:1=i:1=E1 (root) 

L. Fl " Fl " Fl]:l]:I ,_ .. , 

I L. El .. El ,, 1:1 " El ., El 
---· El 17 El 18 El 19 El 20 El 

---· 1=1~1=1-;1:1-;1=1~1:1 \ 
_ -------- •••• (leavH) 

---· Fl 05 Fl OB Fl=E1=i:1 (branch) I I ---------
---· l:l~l:l~l:l_l:l_l:I ------,------· 1:1~1:1_:_1:1_ :l_l:I 

--·-· 1=1-;-1=1~1:1-;1:1-::-1:1 \ 
-------------(leaves) 

--------------------------------------------------------------------
Figure 1 

Si mple Key Tree 

7 



3.3.1 KEY ADDITION 

When a key value is added to a B-tree, it is inserted into a leaf node. If the appropriate leaf is full, a 

block split will occur. Jn KSAM, a block split is done by insertin& the new value into it's proper position, 

then 'migrating the middle value of tM block to the next higher level and dividin& the remaining entries 

into two blocks, based on the side of the previous middle entry on which they resided. Each of the 

resulting blocks will be half full. 

This insertion method is complicated by the possibility of duplicate keys. When you build your KSAM 

file, you can specify whether or not duplicates are allowed in each key. If allowed, you can force them to 

be added in chronological order or allow the duplicates to be randomly inserted. If they are randomly 

inserted, KSAM will insert the new key entry into an appropriate block which avoids block splits, if 

possible. 

Figures la, lb, and le illustrate the development of the tree as entries are inserted. In the initial block, 

we see that there is room for one more entry in the root node. A value is added, which fills the root node 

but requires no further action. 

The next addition forces the root block to split. This results in a root node with one entry and pointen to 

two leaves, each of which is half full. 

The next sequence of additions fills one leaf, forcin& it to split. Note that the split adds an entry to the 

root node and results in a total of three leaves, but that no intermediate branch level is formed. The next 

two addition sequences also add an entry to the root, add leaves, but do not add branches. 

The final set of additions again causes a leaf node to split, but the root node is full. This requires that the 

root block split, and a branch level is formed. 

8 



Jc!.tial lloo\ llock: 

1•J D1 1•J 119 J•J U 1•J II (•J 
AH 111: 

t•J D1 (•J 09 (•J 111 t•J 15 (•J 

~ 

1•1 01 1•1 02 t•J 09 1•J :a.Ii 1•J 15 1•J ·--­
(Th• root llloclt llUSt split.) 

1•1 09 1•J II 1•J II 1•J II 1•1 I L .. 1·1 111 1·1 15 1•1 II 1·1 II 1·1 

---• 1•1 01 1•1 02 ,1•1 II 1•1 II 1•1 
A!! 3,lt,5: 

1•1 09 1•1 II 1•1 II 1•1 II 1•1 I l. ..• r·1 111 r•1 15 1·1 II r·1 II 1·1 

---• 1•1 01 1•1 02 1•1 03 1•1 oi. 1•1 05 1•1 
(A lear llloclt 1n1a\ llJllit.) 

1•1 03 1•1 09 1•1 II 1•1 II 1•1 I l. ..• 1·1 lit r·1 15 1•1 II 1·1 II 1•1 

···• 1•1 oi. 1•1 05 1•1 II 1•1 II 1•J 

--·• 1•1 D:L 1•1 112 t•I II 1•1 II 1•1 

----------------~---------------------------------------------------

Figure 2a 
Insertion of Key Entries (1 of 3) 

9 



-------------------------------------------------------------------

Add 16, 1T, 18: 

1•1 03 1•1 09 1•J II 1•1 II ieJ 

· 1 I I__ .. r•J 11i 1•J 15 1•J "' 1•J 11 r•J u r•J 
__ ., r•J o1i 1•J °' 1•J /1 r•J /1 r•J 

..... 1•J 01 1•1 02 1•J /1 1•J /1 r•J 

(.A leaf bloct INSt .,Ut.) 

1•1 03 1•1 09 1•1 16 t•J II t•l I · I. .... 1•1 11 1•1 18 r•J /1 1•J /1 1•1 

..... 1•1 11i 1•1 15 1•1 II 1•1 II 1•1 

..... 1•1 oli 1•1 05 1•1 II 1•1 II 1•1 

···• 1•1 01 1•1 02 1•1 II 1•1 II 1•1 
Add 10.11,12: 

1•1 03 1•1 09 1•1 16 1•1 II 1•1 

·---

I , ___ ., 1·1 1T 1·1 18 1·1 II 1·1 II 1·1 

---· 1·1 10 1•J 11 1•J 12 1•J 11i 1•J 15 1•1 c---
---• 1•J Oli 1•1 05 1•1 II (•J II 1•1 

·---• 1•1 01 1•1 02 1•1 II 1•1 II 1•1 
(A leat 111Dck INSt split.) 

l•I 03 1•1 09 1•1 12 1•1 16 1•1 I '---· 1·1 1T 1•1 18 1•1 II 1·1 111·1 
---• 1•1 11i 1•1 15 1•1 II 1•1 II 1•1 

---• 1•1 10 1•1 11 1•1 II 1•1 II 1•1 

---• 1•1 oi. 1•1 05 1•1 II 1•1 II 1•1 

---• 1•1. 01 1•1 02 1•1 II 1•1 II 1•1 

--------------------------------------------------------------------
Figure 2b 

Insertion of Key Entries (2 of 3) 

10 



AH 6, J, 8: 

(•] D3 [•l D9 [•] 12 I•] 16 l•l c-l l L ... 1•1 11 1•111 1•1 /1 1•1 m•1 

---• 1•1 1li 1•1 15 1•1 II t•l II 1•1 

---· 1•1 1D t•J 11 1•1 II 1•1 II 1•1 

---· 1·1 Dli 1·1 D5 1•1 °' 1•1 OT 1·1 08 1•1 C••• 

---· 1•1 D1 1•1 DZ 1•1 II 1•1 II 1•1 
(A leaf block .... , q>li\.) 

1·1 03 1·1 °' 1•1 09 1·1 12 1·11 ~jl c---
1 •• 1•1 11 1•1 18 1•1 II 1•1 111•1 

···• 1•1 11i 1•1 15 1•1 II 1•1 111•1 

·--• 1•1 10 1•1 n 1•1 II 1•1 II 1•1 

···• 1•1 OT 1•1 DB 1•1 II 1•1 II 1•1 

---· 1•1 04 1•1 D5 1·1 II 1·1 II 1•1 

···• 1•1 01 1•1 02 1•1 II 1•1 II 1•1 
(The roo\ block .... , q>li \. ) 

1•1 09 1•1 II 1•1 II 1•1 II 1•1 

'-·-• 1•1 12 1•1 16 1•1 II 1•1 II 1•1 I I ___ • 1·1 17 1•1 18 1·1 II 1·1 /1191 

---• 1•1 111 1•1 15 1•1 II 1•1 II 1•1 

·--• 1•1 10 1•1 11 1•1 II 1•1 II 1•1 

---• 1•1 03 1•1 D6 1•1 II 1•1 II 1•1 l '---• 1•1 DT 1•1 08 1•1 II t•I II 1•1 

---• 1•1 Oli 1•1 05 1•1 II 1•1 II 1•1 

---· 1·1 01 1·1 D2 1·1 II 1·1 II 1•1 

Figure 2c 
Insertion of Key Entries (3 of 3) 

11 



3.3.2 KEY DELETION 

Deletion of an entry is subject to the restriction that a leaf must be at least half full. If deletion of a key 

value causes it's block to become less than half ful~ the block must be balanced or merged. 

Balancing is accomplished by taking values from adjacent leaf blocks that are more than half full. If no 

adjacent leaf block is less than half full, the block deleted from is merged with an adjacent block. When 

this is done, the value which separates the blocks at the next higher level is moved into the new block, and 

the adjacent blocks are joined with it to form a block. 

Merging may cause the block at the next higher level to become less than half full, so merging may ripple 

up the tree. This continues until all blocks but the root block are at least half full. 

Figures 3a through 3d contain an example of deletion of key values. The initial tree contains a single 

value in the root block. The first deletion removes this value, so the next value in the tree moves up to 

take it's place. This results in one leaf being less than half full, so it is merged with the adjacent leaf. 

This results in the branch being less than half full, so the branches are balanced. 

The next deletion is fairly straightforward. The value being deleted resides in a branch, and results in the 

branch being less than half full. The branch is balanced with it's adjacent branch, which is over half full. 

The third deletion causes a leaf to become less than half full. Again, the leaf is balanced with an adjacent 

leaf. 

The final deletion is again of the sole value in the root node. Moving the next value up to replace it 

causes a leaf to become less than half full. As no adjacent leaf is more than half full, two leaves must be 

merged. Doing so causes a branch to become less than half full, and it's adjacent branch is not more than 

half full, so the branches are merged. The result is a full root block, pointing to leaves without 

intermediate branches. 

12 



lllitial 11-'l'n•: 

r•1 12 r•1 /1 r·1 /1 r•1 /1 1•1 

1 •..• 1•1 15 1•1 18 1•1 II 1•J II 1•1 I l_ __ • 1•1 19 1·1 to r·1 II 1•1 111•1 

---• [•I 16 [•l 17 1•1 II 1•1 II 1•1 

---• 1•1 13 1•1 11i 1•1 II 1•1 II 1•1 

---• 1•1 03 1•1 116 1•1 D9 [•I II 1•1 

Delete 12: 

I '--·• 1•1 10 1•1 11 1•1 II 1•1 111•1 

---• 1•1 OT 1•1 DB 1•1 II 1•1 II 1•1 

---• 1•1 oli 1•1 05 1•1 II 1•1 II 1•1 

---• l•l 01 l•l 02 1•1 II 1•1 II 1•1 

(Deleted k•J' ii s11b1tit11tec! vi th the next .ke7 ill k•J' Hq11e11ce.) 

l•l 13 l•l II l•l II l•I II 1•1 

1 ...• l•l 15 l•I 1B 1•1 II l•l II l•I I !___. 1·1 19 l•I 20 1•1 II l•I m·1 

---• l•I 16 l•l lT l•: II l•l II 1•1 •---

---• l•I 11i 1•1 II l•l II l•I II l•l •---

---• !"I 03 l"l 06 l•I 09 l"I II 1•1 I '---· 1•1 10 l"I 11 l"I II l"I //["I 
---• l•l 07 l"I OB l•I II l•I II l"I 

---• 1•1 olt l"I 05 l"I II l•l II l•l 

---• l•l 01 l•I 02 1•1 II l•I II 1•1 

(Tvo lear blocks llUlt ... aerr•d.) 

Figure 3a 
Deletion of Key Entries (1 of 4) 

13 



1•1 13 t•J II 1•1 II 1•1 II 1•1 
I_ ••• t•I 18 1•1 II 1•1 II [•I II 1•1 •-·-I '---· [•] 1P 1•1 20 [•] II [•I II [•I 

-• 1•1 11i 1•1 15 1•1 16 (•I 1T (•I 

---• t•1 03 1•1 116 (•J ~ (•J II (•I •-I l l__ •• 1•1 10 t•1 11 1· .. 1 II 1•111t•1 
···• l•I DT 1•1 08 [•I /1 J•I II [•J 

---· [•I Dli 1·1 05 [•] II 1·1 II 1•1 

---• t•1 01 t•I 02 t•I II t•I II 1•1 

(Tllo 'bnz>cb 'block• wst be 'balulce.S.) 

[•J 09 t•J II t•J II 1•1 II 1•1 
I_ __ • 1•1 13 t•I 18 t•I II 1•1 II 1•1 I L .. 1·1 1P 1·1 20 1•1 II [•I /WI 

---· 1•1 11i 1•1 15 1·1 16 1•1 1T r•1 

---• t•I 10 [•I 11 t•1 II 1•1 II t•I 

---• t•I 03 1•1 06 t•I II 1•1 II t•1 I '---· 1·1 OT r·1 DB 1·1 II r•1 II 1•1 

---• 1•1 oli t•I 05 1•1 II 1•1 II 1•1 

---• 1•1 01 1•1 02 t•I II 1•1 II [•I 

Figure 3b 
Deletion of Key Entries (2 of 4) 

14 

I 



Delete 13: 

(llelnd 1197 b nhU'hWd wi~ ~.en lie)' a kq .. cpean.) 

t•J 09 (•J II (•J II t•J II t•J 

L ... 1•J 11i (•J 11 t•J II (•J II (•J 

f I_,. 1•1 111 1•J 10 t•J /1 1•1 m•J 

···• (•J 15 (•J 16 (•J 1T '(•J II t•J 

···• t•J 1D (•J 11 t•J II (•J II (•J 

---• t•J 03 (•J 116 t•J II t•J II t•J 

Delete 11: 

I '---· t•J DT (•J D8 t•J II (•J II (•J 

---· 1·1 Dli 1•J D5 1•J II (•J II (•J 

---· 1•J Dl 1·1 D2 1•J II (•J II 1·1 

(Tllo leaf 'bloclr.s nst lie 'baluced.. ) 

1•1 D9 1•1 II 1•1 II 1•1 II 1•1 

I ...• 1•1 15 1•1 18 1•J II 1•1 II 1•1 I '---· 1~1 19 1•J 20 1•1 /1 1•1 m·1 

---• 1•1 16 1•1 17 1•1 II 1•1 II 1•1 

---• 1•J 10 1•1 111 1•1 II 1•J II 1•1 

---• 1•1 03 1•1 116 1•1 II 1•1 II 1•1 I '---· 1•1 07 [•J D8 1•J II 1•J II 1·1 

---• 1•1 oi. 1•J 05 1•1 II 1•1 II (•J 

---• [•I 01 t•J 02 t•l II 1•J II 1•J 

Figure 3c 
Deletion of Key Entries (3 of 4) 

IS 



~l•t• !!9: 

(~eletecl lte7 b subs ti tut.II with th• MXt lter in lt•J Htuence. ) 

1•1 10 l•J II 1•1 II 1•1 II 1•1 

I_ __ ., 1•1 15 1•1 18 1•1 II 1•1 II 1•1 I L ... 1•1 19 1·1 10 1·1 II 1•1 111•1 

-• 1•1 16 1•1 1T 1•1 II 1•1 II 1•1 •--­
..... 1•1 11i 1•1 II 1•1 II 1•1 II 1•1 •---

---• 1•1 03 1•1 06 1•1 II 1•1 II 1•1 I L .. 1•1 07 1·1 o8 1•1 II 1·1 II 1·1 

---• 1•1 oi. 1•1 05 1•1 II 1•J II 1•1 

---• 1•1 01 1•1 02 [•J II 1•1 II 1•1 
('l'uo 2 .. r l>loc:kl wst be .. r,.11.) 

1•1 10 [•J II 1•1 II f•J II 1•1 

I_ __ ., 1•1 18 1•1 II 1•1 II 1•1 II 1•1 c---l I_ __ ., 1•1 19 1•1 20 1•1 II 1•1 II 1•1 

---• l•l 1li 1•1 15 1•1 16 1•1 1T 1•1 

---• 1•1 03 1•1 o6 1•1 II 1•1 II 1•1 c---
1 L .. 1•1 07 1·1 o8 1•1 II 1·1 II 1•1 

---• 1•1 oi. 1•1 05 1•1 II 1•1 II [•J 

---• 1•1 01 1•1 02 1•1 II 1•1 II 1•1 
('l'uo 'bnnc:l> 'blocks must be -rs•ll.) 

1·1 03 1·1 o6 1•1 10 1•1 18 1•1 I I. ..• 1•1 19 1·1 20 1•1 II 1•1 m•1 

---· 1•1 1i. 1•1 15 1·1 16 1·1 17 1•1 

---• 1•1 07 1•1 08 1•1 II 1•1 II 1•1 

---• 1•1 oi. 1•J 05 1•1 II 1•1 II 1•1 

·---· 1•1 Dl 1·1 02 1•1 II 1•1 II 1•1 

Figure 3d 
Deletion of Key Entries (4 of 4) 

16 



3.4 KSAM STRENGTHS AND WEAKNESSES 

The preceding paragraph pretty well covers the down side of KSAM. In a dynamic environment, tree 

splits and contractions will cause slow updatoe.s. For this reason, updates are best done as batch processes, 

to minimize the inconvenience for your user community. 

On the positive side, KSAM will allow partial key lookup, is relatively fast in accessing a desired record, 

and can be structured to be reasonable in disc space consumption. KSAM files are easily defined, easily 

loaded, and easily maintained. 

In contrast, IMAGE excels in an interactive update environment, provides good integrity for physical data, 

and can be structured with greater flexibility. On the negative side, it is more difficult to define a 

database than a KSAM file, requires programming effort to load, and can be difficult to repair in the 

event of damage to one of the datasets. 

3.5 APPLICATIONS FOR KSAM ••. AND PLACES TO AVOID IT 

KSAM provides a unique function in the form of partial key lockups. An example can be seen in part 

numbers, where the next higher assembly provides a prefix to the component's part number. If the next 

higher assembly is A123B, and we want all components with "6" as the first digit, we can supply the key 

value "Al2386" and retrieve all part numbers beginning with that combination. Other examples are 

telephone area codes or prefixes, zip codes, employee numbers, and so on. 

KSAM also provides rapid conversion from sequential access files, particularly where the data will remain 

fairly static. The conversion is done by using KSAMUTIL to build the new file, then usin& FCOPY to 

copy the data and build the key trees. In this regard, it is also useful where an application must be 

developed rapidly, uses data of limited complexity, and will predominantly perform lockups. An example 

of this is an index, such as a part number file, vendor file, employee file, and so forth. 

If your application will require access to data with complex interactions, or where the data will be 

dynamic, IMAGE excels. KSAM has the drawbacks of many pairs of files to represent complex data, 

where redundancy could be reduced by use of a database. There are also the added drawbacks of tree 

splits and contractions on addition and deletion. 

17 



Access to IMAGE master datasets will generally take less time than accesses to a KSAM file. In the case 

of a well designed IMAGE database, this advantage is very pronounced. But KSAM carries advantages in 

development and maintenance time, and is used successfully by many HP 3000 users. It provides easy 

migration for the new HP 3000 user, with aood compatibility with ISAM files. The tools to develop and 

maintain KSAM files are quick to learn and use, and recovery from most problems is straightforward. 

Specific places to use KSAM will be where partial key lookup are needed, where data is fairly static, 

where development time is constrained, or where converting from another keyed or indexed system. 

KSAM will also be useful where data is normally stored in a sequential file, but a rapid access inquiry 

program is needed. 

KSAM should be avoided where the data is very dynamic. The overhead of key file management should 

be avoided. If you must use KSAM to provide partial key inquiries, try to structure updates to be 

performed in batch mode as much as possible. KSAM is also inefficient for storage of a large set of 

related data. Use of IMAGE will reduce data redundancy and reduce concurrent access headaches. 

18 



4. RECOVERY OF KSAM FILES 

Most problems with KSAM files are correctable using KSAMUTIL or FCOPY. The common problems can 

be broadly grouped as user error induced or system failure induced. 

User errors are typically due to purging or renaming either the data or key file with the MPE commands. 

The PURGE and RENAME commands don't check for KSAM, so they only operate on the specified 

member and leave the other. This produces some unexpected errors. Your program may report File 

System Error 52 (non-existent permanent file) for a file that shows up in a LISTF. You may also receive 

a File System Error 100 (duplicate permanent file name) if you attempt to build a KSAM file in your 

program or with KSAMUTIL. In either case, you need to determine whether the key or data file is 

missing. If the key file is missing, recovery is fairly simple, and the risk of data Joss is low. 

You may also encounter a File System Error which is specific to KSAM. Common examples are FSERR 

171 (duplicate key value, duplicates not allowed), FSERR 173 (target count larger than record size), 

FSERR 17 5 (key value for a record to be deleted is not in the key file), and various others. Th' 

generally result from a system failure, where KSAM was interrupted in the the process of updatin;, .. c1e 

files. A file in this condition generally starts by reporting FSERR 19 2 (file system error occurred while 

the KSAM file was open). The following sections will cover repairing the most common errors and aborts. 

As a first step, do a LISTF on your data and key files. If one is missing, refer to the appropriate 

paragraph. Most other errors will be corrected by using FCOPY to rebuild the key structure. 

19 



4.1 MISSING KEY FILE 

If your USTF shows that the data file exists but the key file is missing, or it's name is not the same as it 

was built with, the following actions will build a new keyfile in the absence of the original. 

:RUN KSAMUTIL.PUB.SYS 

>BUILD newdata; • • • 

>EXIT 

match the build for the old file, using 

a different keyfile name 

:FCOPY FROM=olddata;TO=newdata;NOKSAM;NOUSERLABELS 

:RENAME olddata,archivename 

:RUN KSAMUTIL.PUB.SYS 

>RENAME newdata,olddata 

>RENAME newkey,oldkey 

>EXIT 

These steps built the new key and data file, then loaded them from the orphaned data file. NOKSAM is 

specified to make the file system ignore the absence of the old key file. If omitted, you'll receive FSERR 

52. The next step is to "archive" the old data as a safeguard. If you have some problem in the 

KSAMUTIL RENAMEs, you can use the old data file to redo this sequence. The last step is to rename the 

new data and key files to match the old ones. This must be done in KSAMUTIL, and the files must be 

specified separately. 

4.2 MISSING DATA FILE 

If you find that the data file is missing, the steps to recover are more likely to result in data loss. Your 

insurance here is in a backup schedule which minimizes the opportunity for lost data. Recovery is 

accomplished by restorina the old data and key files, followed by reapplying transactions done between 

the backup and loss of the file. Since the key file contains only the key fields from the data file, the data 

file cannot be rebuilt with only the keyfile as a source. 

A scheme to minimize the loss would be to maintain a parallel MPE sequential file, containing all records 

being adr'.ed. This simple approach will not cover loss of updates or deletions, but will at least track 

20 



additions. You can implement a more complex derivative using user logging or more complete records in 

the sequential file. Check with your local HP office for help with developing a recovery plan for your 

important files. 

4.3 SYSTEM FAILURE WHILE KSAM FILES WERE OPEN 

This problem is reported via FSERR 192, and is recovered from by running KSAMUTIL and issuing 

">KEYINFO filename;RECOVER" against all KSAM files. 

4.4 INCONSISTENCIES BETWEEN KEY AND DATA FILES 

In several situations it is possible to have the data file updated but not the keyfile. This may show up as 

FSERR I 71 or FSERR l 7 S, as well as others. This FCOPY will correct most errors not fixed in the 

previous procedures, with minimum data Joss. First, we'll look at the command sequence, then we'll 

discuss the steps. 

:fCOPY fROM=olddata;TO=(newdata,newkey);NEW;KEY=O 

:RUN KSAMUTIL 

>PURGE olddata 

>RENAME newdata,olddata 

>RENAME newkey,oldkey 

>EXIT 

The FCOPY creates a new KSAM file (key and data), using the names you provided within parentheses. 

The parentheses must be included in the FCOPY command. The '';KEY•O" clause tells FCOPY that the 

10urce file is a KSAM file, but that it's key structure is not to be copied. This will insure that the key file 

matches the data in the new data file. The next step is to use KSAMUTIL to purge (or rename) the old 

file. If you purge, you need only give the data file name. Rename requires that both key and data be 

renamed. The final step is to rename the new key and data files to the old names, so your programs can 

access them. 

The ";KEY•n" clause can also be used to force the file to be loaded based on a secondary key. This is 

21 



useful where an application mix has changed, and a secondary key is used more frequently than the 

primary key. 

22 



5. FILE DESIGN CONSIDERATIONS 

The parameten used to build a KSAM file will impact it's efficiency in terms of disc utilization and access 

time. As all key blocks are initially allocated when the file is built, the key file will typically be quite 

larae. Alona with the full initial allocation, this siz.e is due to the control block and key descripton, and 

the need to maintain pointen for tree levels, u well u relative record numben in the data file for each 

key value. The siz.e factor increases with the n'DDlber of keys. Larae key blocking facton also result in 

increased disc usage. This is due to the fact that key blocks tend to be between half full and full. As the 

capacity of the block increases, the potential for empty entries increases. 

On the other hand, decreasin& key blocking factors will increase insertion and deletion time due to more 

frequent need for block siz.e adjustment, and will increase the number of levels to be searched, which will 

require additional disc 1/0 operations. 

Design of a KSAM file is a tradeoff between these facton. The tools presented here are intended to assist 

you in evaluating the space requirements, and in determining the appropriate parameters to be supplied to 

build a file. 

We will first consider the data file, as it is the most straightforward. The key file will then be considered. 

The keyfile, as mentioned above, has the greatest potential for wasted space, and the most influence on 

access to the KSAM file, so it's parameters must be given reasonable consideration. 

5.1 DATA FILE 

The most frequently encountered problem with the data file is usina the default blockina factor. For 

sequential files, MPE's file system calculates a blocking factor which is reasonably efficient in use of disc 

space. KSAMUTlL will generally provide the least efficient apace utiliz.ation if the default is taken, as 

the default blocking factor is always one. To illuminate this, if you build a KSAM file with six byte data 

records, the default blocking factor will place one record in a block. The minimum block siz.e is 256 

bytes, so 250 bytes are lost in each block. For a file with I 024 records, you are losing 256,000 bytes of 

disc space. 

To minimiz.e this waste, a blocking factor should be chosen where the record size in bytes multiplied by 

23 



the blocking factor yields a number as close to an even multiple of 2 56 as possible, without exceeding the 

multiple of 256. You may want to write a program to do this for you. Consider having the program 

request a minimum acceptable utilization and maximum acceptable blocking factor, and listing those 

factors which fit the specified criteria. If the resultant blocksize is at or over 32767 bytes, the build will 

fail.· If it is between 16383 and 32767, any later access must specify only.one buffer when the file is 

opened. If this is not done, an error will result on access, due to inability to fit the buffers into a single 

extra data segment. 

The data file work sheet in Appendix B is part of an overall set of worksheets to evaluate space 

requirements. The instruction sheet explains the use of each section, and the steps to complete it. Notice 

the two columns, headed FIXED and VARIABLE. These refer to the record type in your file. If you use 

variable length records, additional overhead is incurred. 

24 



5.2 KEY FILE 

The last two pages in Appendix B apply to the ltey file. Again, each section is explained in the 

instructions which precede the worksheets. You will only use the second page if your file contains more 

than four keys, and will need to make further pases if you have more than ei1ht lteys. 

Key blocking factors can be significant in access performance and in disc space utilization. Remember 

that an inverse relationship exists - lar1er key blocks speed access but require more disc space. KSAM 

defaults to a key blocking factor which yields blocks as close as possible to I 024 words in length. This 

may not provide the best mix in your application. The tables in Appendix A are used to determine an 

initial key blocking factor. This will be refined by the calculations in the worksheet, and may change 

slightly. 

Table A-1 will give you the key block size based on key blocking factor and record size. The column in 

the center shows the default for various key sizes. Once you have determined the key blocking factor to 

be used, this table will approximate the size of disc transfers to read the key trees. 

Table A-2 is used to determine the approximate number of tree levels you will encounter for each key 

blocking factor. It can be used to determine the key blocking factor based on performance needs. Keep 

the number of levels at or below three for applications with high performance requirements. This will 

use more disc space than smaller blocks and more levels would, but will reduce disc reads and block splits. 

Determine the maximum number of levels your application can tolerate, then look down that column to 

find a key blocking factor which fits. As an example, lets assume that you can tolerate three levels in 

your tree, and will have up to I 000 records in your file. Let's also assume that this file has one key of 40 

bytes. We look down column three and find a critical value just greater than I 000 - in this case it is 

with a key blocking factor of 14. Referring again to table A-I, we find that a KBF of 14 and key length 

of 40 bytes, the block will require three sectors. 

25 



6. FILE SYSTEM ERRORS 

There are a few file system errors which are commonly seen with KSAM files, and a few more that are 

only seen with KSAM files. This section provides a short description of each, and corrective actions to be 

taken. 

FSERR 52 (nonexistent permanent file). This is commonly seen when either the key or data file has been 

renamed or purged outside of KSAMUTIL. If a rename is done, the relationship between the key and data 

file is lost, since the key file control block and data file user label are not updated. The action to remedy 

this was discussed earlier, and will depend on whether the key or data file is missing. 

FSERR 74 (not enough room in stack for another file). This occurs when there is not enough room in the 

file area of your stack to open another file. This may also appear with IMAGE datasets or MPE files, but 

KSAM opens two files and has more opportunity to cause this. Actions are to close all unused files prior 

to opening this one or reduce the MAXDATA with which the program was PREPPED or run. 

FSERR 100 (duplicate permanent file name). This may arise through using MPE to purge a KSAM file, 

rather than using KSAMUTIL. This leaves the file not specified (generally the key file) on the system, 

and the error is reported if the file is rebuilt. The corrective action is to use MPE to purge the remaining 

file. 

FSERR I 07 (insufficient space for user labels). This arises when FCOPYing an existing KSAM file into 

another KSAM file. The corrective action is to specify ;NOUSERLABELS in the FCOPY, to avoid 

bringing the old file's user label to the new file. 

FSERR 1 71 (duplicate key value). This occurs when a system interrupt occurs during posting of a 

deletion. The data record is flagged for deletion, but the key entry remains. This will carry into new 

files unless ;KEY•O is specified in the FCOPY. 

26 



7. INCREASING THE SIZE OF A KSAM FILE 

One of the common administrative actions taken is to increase file size. With KSAM, this is relatively 

simple. You will issue a file equation for a new data file, specifying only the name and number of 

records, then use FCOPY to build the new key and data file, as follows. 

:FILE newdata;REC=numreca 

:fCOPY fROM=olddata;TO=(newdata,newkey);NEW;NOUSERLABELS 

:RUN KSAMUTIL.PUB.SYS 

>PURGE olddata 

>RENAME newdata,olddata 

>RENAME newkey,oldkey 

>EXIT 

This will build and load the new file with two MPE commands, then use KSAMUTIL to rename the files 

so the applic~_ tions can access them. 

27 



8. SUMMARY 

In this paper, we have discussed common KSAM issues. The underlying data 

structures have been touched upon, and their application within KSAM explored. The common operations 

of adding and deleting records have been reviewed with attention to the overhead involved. 

KSAM strengths and weaknesses have been related to potential applications. We have also looked at 

resolution of common problems with KSAM files. 

File design considerations were discussed, and specific tools provided to determine parameters to be used in 

building KSAM files. The tradeoffs of disc utilization and access time were related to these parameters. 

Common file system errors were covered, and a quick method to increase KSAM file capacity was 

presented 

The information and tools presented here should help you determine where to use KSAM, and to use it 

effectively where it is appropriate. 

28 



BIBLIOGRAPHY 

"KSAM/3000 Reference Manual", Hewlett Packard Company part number 30000-90079 

Knuth, Donald E.: '7he Art of Computer Programming, vol. l, Fundamental Algorithms", second edition, 

Addison-Wesley Publishing Company, Reading, Mass., 1973 

Sorenson, P. G and J. P. Tremblay: "An Introduction to Data Structures with Applications", McGraw-Hill 

Book Company, New York, N. Y., 1976 

29 



Appendix A - Key Blocking Factor Tables 

E S A M Table A-1 

ESAM DY BLOCKING FACTOR FOR DY LElfG'l'H VS BLOCK SIZE 

XEY BLOCK SIZE Ilf SECTORS 
liBrl ll 2K 
_ \ 1 2 3 4 5 6 T : 8: 9 10 11 12 13 14 15 16 

2 24 50 T4 100 126 152 1T8 :202: 228 254 280 306 330 356 382 408 
K 4 20 40 62 84 104 126 148 :168: 190 212 232 254 2T6 296 318 340 
E 6 16 34 54 T2 90 108 126 :144: 162 182 200 218 236 254 272 290 
y 8 14 30 46 62 78 94 110 :126: 142 158 174 190 2o6 222 238 254 

10 12 26 42 56 70 84 98 :112: 126 140 154 170 184 198 212 226 
L-12 12 24 36 50 62 76 88 :100: 114 126 140 152 164 178 190 204 
E 14 10 22 34 46 56 68 80 : 92: 104 114 126 138 150 162 1T4 184 
N 16 10 20 30 42 52 62 74 : 84: 94 106 116 126 138 148 158 170 
G 18 8 18 28 38 48 58 68 : TB: 88 98 106 116 126 136 146 156 
T 20 8 16 26 36 44 54 62 : T2: 80 90 100 108 118 126 136 144 
H-22 -8-16-24-32-42-50-58 :-66:-T6-84- 92-102-110-118-126-136 

24 6 14 22 30 38 46 54 : 62: TD T8 86 94 102 110 118 126 
I 26 6 14 22 28 36 44 52 : 58: 66 74 82 90 96 104 112 120 
N 28 6 12 20 28 34 42 48 : 56: 62 TD 76 84 92 98 106 112 

30 6 12 18 26 32 40 46 : 52: 60 66 T2 80 86 94 100 106 
B-32 -6-12-1e-24-30-3e-44 :-50: -56-62-To-T6-82-ee- 94-102 
y 34 4 10 18 24 30 36 42 : 48: 54 60 66 72 78 84 90 96 
T 36 4 10 16 22 28 34 4o : 46: 52 56 62 68 T4 Bo 86 92 
E 38 4 10 16 22 26 32 38 : 44: 48 54 60 66 T2 T6 82 88 
s 40 4 10 14 20 26 30 36 : 42: 46 52 58 62 68 T4 TB 84 
-42 -4-10-14-20-24-30-34 :-40: -44-50-56-60-66-TO-T6-80 

44 4 a 14 1s 24 2a 34 : 38: 44 48 52 58 62 68 12 1a 
46 4 8 14 18 22 28 32 : 36: 42 46 50 56 60 66 TO T4 
48 4 8 12 18 22 26 30 : 36: 40 44 50 54 58 62 68 T2 

_so 4 e 12 16 20 26 30 : 34: 38 42 48 52 56 60 66 10 

default value 

NOTE: 
The key length is only shown in even nwnber of bytes s inc• the key 
entries are allocated on word boundaries. 

A-1 



Appendix A - Key Blocking Factor Tables 

TABLE A-2 MINIMUM/CRITICAL/MAXIMUM NUMBER OF BEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

!Min I ~~: B-tree ievel 

\ 1 2 3_ - -1--5 17 
K 4 4 16 52 

4 24 124 
E--1--7 31 

6 6 30 126 
y 6 48 342 
--1--9 49 

8 8 48 248 
8 80 728 

B--1--11 71 
10 10 70 430 

L 10 120 1,330 
--1--13-- 97 

0 12 12 96 684 
12 168 2,196 

c - - 1 -- 15 -- 127 
14 14 126 1,022 

K 14 224 3,374 
--1--17-- 161 

16 16 160 1,456 
16 288 4,912 

F - - 1 -- 19 -- 199 
18 18 198 1,998 

A 18 360 6,858 
--1--21-- 241 

c 20 20 240 2,660 
20 440 9,260 

T - - 1 -- 23 -- 287 
22 22 286 3.454 

0 22 528 12,166 
- - 1 -- 25 -- 337 

R 24 24 336 4,392 
24 624 15,624 

--1--27- 391 
26 26 390 5,486 

26 728 19,682 
- - 1 -- 29 -- 449 

28 28 448 6,748 
28 840 24,388 

- - 1 -- 31 -- 511 
30 30 510 8,190 

30 960 29,790 
- - 1 -- 33 -- 577 

32 32 576 9,824 
32 1,088 35,936 

- - 1 - 35 -- 647 
34 34 646 11,662 

-- _34 _1,224 __ 42,874 

4 5_ 
53 161 

1 60 484 
6 24 3,124 
1 27 511 
5 10 2,046 

2,4 00 16,806 
2 49 1,249 

1,2 48 6,248 
6,5 60 59,048 

4 31 2,591 
2,5 90 15,550 

14,6 40 161,050 
6 85 4,801 

4,8 00 33,612 
28,5 60 371,292 
1,0 23 8,191 
8,1 90 65,534 

50,6 24 759,374 
1,4 57 13,121 

13,1 20 118,096 
83,5 
1,9 

20 1,419,856 
99 -- 19,999 

19,9 98 199,998 
130,3 

2,6 
20 2,476,098 
61 -- 29,281 

29,2 80 322,100 
194,4 

3,4 
80 4,084,100 
55 -- 41,471 

41,4 70 497,662 
279,8 

4,3 
40 6,436,342 
93 -- 57,121 

57,1 20 742,584 
390,6 

5,4 
24 9,765,624 
87 -- 76,831 

76,8 30 1,075,646 
531,4 

6,7 
40 14,348,906 
49 -- 101,249 

101,2 48 1,518,748 
707,2 

8,1 
80 20,511,148 
91 -- 131, 071 

131,0 70 2,097,150 
923,5 

9,8 
20 28,629,150 
25 -- 167 ,041 

167,0 40 2,839,712 
1,185,9 20 39,135,392 

-- 11,6 
209,9 

__ 1,500,6 

A-2 

63 - 209,951 
50 3.779,134 
24 __ 52,521,874 



Appendix A - Key Blocking Factor Tables 

TABLE A-2 

IE~I 
-' 
It 36 

E 
38 

y 

40 

B 
li2 

L 

0 44 

c 
46 

K 

48 

F 
50 

A 

c 52 

1 
-1 

36 

- 36 
1 

38 

- 38 
l 

40 
40 - l 
42 
42 - l 
44 
44 - 1 
46 
46 - l 
48 
48 - l 
50 
50 - l 
52 

MINIMUM/CRITICAL/MAXIMUM NUMEER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

B-tree level 

2 3_ 4 5_ 
--37 721 13, 717 260,641 

720 13,716 260,640 4,952,196 

- 1,368 - 50,652 - 1,874,160 - 69,343,956 
39 799 15.999 319.999 

798 15,998 319,998 6,399,998 

- 1,520 - 59,318 - 2,313,440 90,224,198 
41 881 18,521 - 388,961 

880 18,520 388,960 8,168,200 

- 1,680 - 68,920 - 2,825,760 - 115,856,200 
43 967 21,295 468,511 

966 21,294 468,510 10,307,262 
1,848 - 79,506 3,418,800 147,008,442 - 45 1,057 - 24,333 - 559,681 
l,056 24,332 559,680 12,872,684 
2,024 91,124 4,100,624 184,528,124 - 47 - 1,151 - 27,647 - 663,551 
1,150 27,646 663,550 15,925,246 

- 2,208 - 103,822 - 4,879,680 229,345,006 
49 1,249 31,249 - 781,249 

1,248 31,248 781,248 19,531,248 

- 2,400 - 117,648 - 5.764,800 - 282,475,248 
51 1,351 35,151 913,951 

l,350 35,150 913,950 23,762,750 

- 2,600 - 132.650 6,765,200 345,025,250 
53 1,457 - 39,365 - l,062,881 

1,456 39,364 1,062,880 28,697,812 
- 52 - 2,808 - 148,876 - 7,890,480 418,195,492 

1,567 43,903 -T l 55 1,229.311 
54 1,566 43,902 1,229,310 34,420,734 

- 54 - 3,024 - 166,374 - 9,150,624 503,284,374 
l 57 1,681 48,777 - 1,414,561 

0 

R 56 56 1,680 48,776 1,414,560 41,022,296 

- 56 - 3,248 - 185,192 - 10,556,000 - 601,692,056 
l 59 1,799 53.999 1,619,999 

58 58 1,798 53,998 1,619,998 48,599,998 
- 58 - 3,480 - 205,378 - 12,117,360 - 714,924,298 

l 61 1,921 59.581 1,847,041 
60 60 1,920 59,580 1,847,040 57,258,300 

60 3,720 226,980 13,845,840 844,596,300 - l - 63 - 2,047 - 65,535 - 2,097,151 
62 2,046 65,534 2,097,150 _67,108,862 

- 62 3,968 - 250,046 - 15,752,960 - 992,436,542 
l - 67 2,311 78,607 2,672,671 

62 

66 66 2,310 78,606 2,672,670 90,870,846 
- 66 4,488 - 300,762 - 20,151,120 1,350,125,106 

1 - 69 2,449 85,749 - 3,001,249 
68 68 2,448 85,748 3,001,248 105,043,'748 

68 _4. 760. __ 328. 508 - 22,667,120 _1,564,031,348 

A- 3 

i 

I 



Appendix A - Key Blocking factor Tables 

TABLE A-2 HINIM'JM/CRITICAL/MAXIMUM NUMBER OF REYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

l~tl 
__:, 
Jt 70 

E 
72 

y 

74 

B 
76 

L 

0 78 

c 
BO 

x 

82 

F 
84 

A 

c 86 

T 
88 

0 

R 90 

92 

100 

!·tree level 

1 2 3 4 5_ 
-1 --71 2,591 93,3u 3,359,231 

70 2,590 93,310 3,359,230 120,932,350 
- 70 - 5,040 - 357,910 - 25,411,680 1,804,229,350 

1 73 2,737 101,305 - 3,748,321 
72 2,736 101,304 3,748,320 138,687,912 

- 72 - 5,328 - 389,016 28,398,240 2,073,071,592 
l 75 2,887 - 109,743 - ·li,l 70,271 

74 2,886 109,742 4,170,270 158,470,334 
- 74 - 5,624 - 421,874 31,640,624 11111111#11#11 

1 77 3,041 - 118,637 - li,626,8811 
76 3,040 118,636 4,626,8SO lS0,448,396 

- 76 - 5,928 - 456,532 - 35,153,040 ,,,,,,,,,,,,,, 
l 79 3,199 127.999 - 5,119,9991 

7S 3,19S 127,99S 5,119,99S 204,799,998 

- 78 - 6,240 - 1'93,038 3S,950,oso ,,,,,,,,,,,,,, 
1 81 3,361 - 137,841 - 5,651,5211 

So 3,360 137,840 5,651,520 231,712,400 

- So - 6,560 531,440 - 43,046,720 II II I fllfll 11#11 
1 S3 - 3,527 148,175 - 6,223,3911 

S2 3,526 14S,174 6,223,390 261,3S2,462 

- 82 - 6,SSS - 571,7S6 47,45S,320 #llllllfllll### 
l 85 3,697 - 159,013 - 6,637,6011 

64 3,696 159,012 6,637,600 294,016,884 

- S4 - 7,224 614,124 52,200,624 ,,,,,,,,,,,,,, 
1 S7 - 3,S71 - 110,367 - 7,496,1911 

S6 3.STO 170,366 7,496,190 329,832,446 

- 86 - 7,568 - 658,502 57,289,760 #llf/1111111111 
1 S9 4,049 - 182,249 - S,201,2491 

88 4,048 1s2,24S s,201,248 369,056,248 

- S8 7,920 - 704,968 62,742,240 ,,,,,,,,,,,,,, 
l - 91 4,231 - 194,671 - s,954,9111 

90 4,230 194,670 8,954,910 411,925,950 
- 90 - 8,280 - 753,570 - 68,574,960 1111111111#111# 

1 93 4,417 207,645 - 9,759,3611 
92 4,416 207,644 9,759,360 45S,690,012 

- 92 - 8,64S - 804,356 74,So5,200 1#11#111111111 
1 95 4,607 - 221,183 - 10,616,8311 

94 li,606 221,182 10,616,830 509,607,934 
- 94 - 9,024 - 857,374 81,450,624 '"'""""" l 97 4,SOl - 235.297 - 11,529,6011 

96 4,800 235,296 11,529,600 564,950,496 
- 96 - 9,408 - 912,672 88,529,280 ##lltllltltlllll# 

1 99 4,999 - 249,999 - 12,499.9991 
98 4,998 249,998 12,499,998 624,999,998 

- 9S - 9,800 - 970,298 - 96,059,600 ##II II II #I II II 
1 101 5,201 265,301 - 13.530,4011 

100 5.200 265,300 13,530,400 690,050,500 
_100 _10,200 - 1,030,300 _104,060,400 _lilil#tltl##tltl#tl## 

A- 4 



Appendix A - Key Blocking Factor Tables 

TABLE A-2 MINIMUM/CRITICAL/MAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

l~:I B-tree level 

-' _1 ___ 2_ 3 Ji 5_ 
1 103 5,407 281,215 14,623,231 

K 102 102 5,1&06 281,2111 14,623,230 760,408,062 
102 10,608 1,092,726 112,550,880 ,,,,,,,,,,,,,, 

E -- - 1.- 105 - 5,617 - 297,753 - 15,780,9611 
104 104 5,616 297.752 15,780,960 836,390,984 

y 104 11,024 1,157,624 121,550,624 '''''''''''''' 
-- - 1 - 107 - 5,831 - 314,927 - 17,006,1111 
106 106 5.830 314,926 17,006,110 918,330,046 

106 11,448 1.225,042 131,079,600 ,,,,,,,,,,,,,, 
B -- - 1 - 109 - 6,049 - 332,749 - 18,301,2491 

108 108 6,048 332,748 18,301,248 1,006,568,748 
L 108 11,880 1,295,028 141,158,160 11111111111111 

- - 1 - 111 - 6,271 - 351,231 - 19,668,9911 
0 110 110 6,270 351.230 19,668,990 1,101,463,550 

110 12,320 1,367,630 151,807,040 ,,,,,,,,,,,,,, 
c - - 1 113 6,497 - 370,385 - 21,112.0011 

112 112 6,496 370,384 21,112,000 1,203,384,112 
K 112 12,768 1,442,896 163,047,360 11111111111111 

- - 1 - 115 - 6,727 - 390,223 - 22,632,9911 
114 114 6,726 390.222 22,632,990 1,312,713.534 

114 13,224 1.520,874 174,900,624 ,,,,,,,,,l,lll 
F -- - 1 - 117 - 6,961 - 410,757 - 24,234,7211 

116 116 6,960 410,756 24,234,720 1,429,848,596 
A 116 13,688 1,601,612 187,388,720 1111111#111111 

- - l 119 7,199 431,999 - 25,919,9991 
c 118 118 7,198 431,998 25,919,998 1,555,199,998 

118 14,160 1,685,158 200,533,920 lllll#lllll#ll 
T - - 1 - 121 - 7,441 - 453,961 - 27,691,6811 

120 120 7,440 453,960 27,691,680 1,689,192,600 
O 120 14,640 1,771,560 214,358,880 11111111111111 

- - l 127 8,191 - 524,287 - 33,554,4311 
R 126 126 8,190 524,286 33,554,430 2,147,483,646 

126 16,128 2,048,382 260,144,640 11111111111111 
- - l 137 9,521 657,017 - 45,334,2411 
136 136 9,520 657,016 45,334,240 11111111111111 

136 18,768 2,571,352 352,275,360 11111111111111 
- - 1 139 9,799 685,999 - 48,019.9991 
138 138 9,798 685,998 48,019,998 ,,,,,,,,,,,,,, 

138 19,320 2,685,618 373.301,040 11111111111111 
- - . 1 - 141 - 10,081 - 715,821 - 50,823,3611 
140 140 10,080 715,820 50,823,360 11111#1##11111 

140 19,880 2,eo3,220 395,254,160 11111111111111 
- - l 143 - 10,367 746,495 - 53.747,7111 
142 142 10,366 746,494 53,747,710 lll##llll##lll 

142 20,448 2,924,206 418,161,600 ,,,,,,,,,,,,II 
- - l 145 - 10,657 - 778,033 - 56,196,4811 
144 144 10,656 - 778,032 56,796,480 ,,,,,,,,,,,,,, 

--~!_144 _21,024 _3,048,624 _442,050,624l_#######t###wi# 

A- S 



Appendix A - Key Blocking Factor Tables 

TABLE A-2 MINIMUM/CRITICAL/MAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

l~:I B·tree level 

\ 1 2 3_ 4 5_ 
-- - 1 --147 10.951 810.1147 59.973.151 
K 146 146 10,950 810,446 59,973,150 l##l#ll#ll###I 

146 21,608 3.116.522 466,948,880 ,,,,,,,,,,,,,, 
E - - 1 - 149 - 11,249 - 843,749 - 63,281,2491 

148 148 11.248 843,748 63,281,248 illl#l####l#ll 
y 148 22,200 3,307,948 492.884.400 ,,,,,,,,,,,,,, 

- - 1 - 151 - 11.551 - 877,951 - 66,724,3511 
150 150 11.550 877.950 66,724,350 '''''''''''''' 

150 22,800 3,442.950 519,885,600 ,,,,,,,,,,,,,, 
B - - 1 - 153 - 11,857 - 913,065 - 70,306,0811 

152 152 11.856 913,064 70,306,080 '''''''''''''' 
L 152 23,408 3,581,576 547,981,280 ll#l##llll##I# 

- - 1 - 155 - 12,167 - 949,103 - 74,030,1111 
0 154 154 12,166 949,102 74,030,110 '''''''''''''' 

154 24,024 3.723,874 577.200,624 '''''''''''''' c - - l 157 12,481 - 986,077 - 77,900,1611 
156 156 12,480 986,076 77,900,160 '''''''''''''' 

K 156 24,648 3,869,892 607,573,200 l#lll#l#ll##I# 
- - 1 - 159 - 12,799 - 1,023,999 - 81,919,9991 
158 158 12,798 1,023,998 81,919,998 ,,,,,,,,,,,,,, 

158 25,280 4,019,678 639,128,960 ,,,,,,,,,,,,,, 
F - - 1 163 - 13,447 - 1,102,735 - 90,424,3511 

162 162 13,446 1.102,734 90,424,350 ,,,,,,,,,,,,,, 
A 162 26,568 4,330,746 705,911,760 ############## 

- - 1 - 165 - 13,777 - 1,143,573 - 94,916,6411 
c 164 164 13,776 1.143,572 94,916,640 ,,,,,,,,,,,,,, 

164 27,224 4,492,124 741,200,624 ,,,,,,,,,,,,,, 
T - - 1 169 - 14,449 - 1,228,249 - 104,401,2491 

168 168 14,448 1,228,248 104,401,248 ,,,,,,,,,,,,,, 
0 168 28,560 4,826,808 815,730,720 ,,,,,,,,,,,,,, 

- - 1 - 171 - 14,791 - 1,272,111 - 109,401,6311 
R 170 170 14,790 1,272,110 109,401,630 l#ll##ll##ll## 

170 29,240 5,000,210 855,036,080 ,,,,,,,,,,,,,, 
- - 1 - 175 - 15,487 - 1,362,943 - 119,939,0111 
174 174 15,486 1,362,942 119,939,070 '''''''''''''' 

174 30,624 5,359,374 937,890,624 ,,,,,,,,,,,,,, 
- - l 179 16,199 - 1,457,999 - 131,219,9991 
178 178 16,198 1,457,998 131,219,998 ,,,,,,,,,,,,,, 

178 32,040 5,735,338 1,026,625,680 ,,,,,,,,,,,,,, 
- - 1 183 16,927 - 1,557.375 - 143,278,5911 
182 182 16,926 1,557,374 143,278,590 ,,,,,,,,,,,,,, 

182 33,488 6,128,486 1,121,513,120 ,,,,,,,,,,,,,, 
- - 1 - 185 - 17,297 - 1,608,713 - 149,610,4011 
184 184 17,296 1,608,712 149,610,400 '''''''''''''' 

184 34,224 6,331,624 ~.111,350,624 ,,,,,,,,,,,,,, 
- - 1 191 18,431 - 1,769,471 - 169,869,3111 
190 190 18,430 1,769,470 169,869,310 ,,,,,,,,,,,,,, 

___ 190 _36,480 _6,967 ,870 ,330,863,360 _l####llU##illl## 

A- 6 



Appendix A - Key Blocking Factor Tables 

TABLE A-2 MINIMUM/CRITICAL/MAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

IMin I ~~: B·tree level 

_\ _1 ___ 2_ 3_ 4 5_ 
l 199 19,999 1,999.999 199.999.999 

K 198 198 19,998 1,999,998 199,999,998 11111111111111 
198 39,600 . 7,880,598 1,568,239,200 ,,,,,,,,,,,,,, 

E - - 1 - 201 - 20,401 - 2,060,601 - 208,120,8011 
200 200 20,400 2,060,600 208,120,800 ,,,,,,,,t,,,,, 

y 200 40,400 8,120,600 1,632,240,800 ,,,,,,,,,,,,,, 
-- - 1 - 203 - 20,807 - 2,122,415 - 216,486,4311 
202 202 20,806 2,122,414 216,486,430 ,,,,,,,,,,,,,, 

202 41,208 8,365,426 1,698,181,680 ,,,,,,,,,,,,,, 
B - - 1 - 205 - 21,217 - 2,185,453 - 225,101,7611 

204 204 21,216 2,185,452 225,101,760 ,,,,,,,,,,,,,, 
L 204 42,024 8,615,124 1,766,100,624 11111111111111 

--- - 1 - 207 - 21,631 - 2,249,727 - ~33.971,7111 
0 206 206 21,630 2,249,726 233.971,710 ,,,,,,,,,,,,,, 

206 42,848 8,869,742 1,836,036,800 ,,,,,,,,,,,,,, 
c - - 1 - 213 - 22,897 - 2,450,085 - 262,159,2011 

212 212 22,896 2,450,084 262,159,200 ,,,,,,,,,,,,,, 
K . 212 45,368 9,663,596 2,058,346,160 11111111111111 

- - l - 219 - 24,199 - 2,661,999 - 292,819,9991 
218 218 24,198 2,661,998 292,819,998 ,,,,,,,,,,,,,, 

218 47,960 10,503,458 ,,,,,,,,,,1,,, ,,,,,,,,,,,,,, 
F --- - l - 223 - 25,087 - 2,809,855,- 314,703,8711 

222 222 25,086 2,809,854 314,703,870 ,,,,,,,,,,,,,, 
A 222 49,728 11,089,566 l##llll#lllll# lllll#llllllll 

--- - 1 - 227 - 25,991 - 2,963,087,- 337.792,0311 
c 226 226 25,990 2,963,086 337,792,030 ,,,,,,,,,,,,,, 

226 51,528 11,697,082 ,,,,,,,,,,,Ill ,,,,,,,,,,,,,, 
T - - l 229 - 26,449 - 3,041,7491- 349,801,2491 

228 228 26,448 3,041,748 349,801,248 11111111111111 
0 228 52,440 12,008,988 ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, 

- - l - 233 - 27,377 - 3,203,2251- 374,777,4411 
R 232 232 27,376 3,203,224 374,777,440 11111111111111 

232 54,288 12,649,336 ,,,,,,,,,,l,,I ,,,,,,,,,,,,,, 
--- - l - 237 - 28,321 - 3,370,317,- 401,067,8411 
236 236 28,320 3,370,316 401,067,840 ,,,,,,,,llllll 

236 56,168 13,312,052 ,,,,,,,,,,,,,, ,,,,,,,,,,,,,, 
--- - 1 - 239 - 28,799 - 3,455,999,- 414,719,9991 
238 238 28,798 3,455,998 414,719,998 ,,,,,,,,,,,,,, 

238 57,120 13,651,918 ,,,,,,,,,,,,,, 1111##11111111 
--- - l - 255 - 32,767 - 4,194,303,- 536,870,9111 
254 254 32,766 4,194,302 536,870,910 ,,,,,,,,,,,,,, 

254 65,024 16,581,374 ,,,,,,,,,,,,,, 1#11#1#1111111 
--- - l 273 - 37,537 - 5,142,7051- 704,550,7211 
272 272 37,536 5,142,704 704,550,720 ,,,,,,,,,,,1,, 

272 74,528 20,346,416 1111#1111111#1 ll#llll,#11111 
--- - 1 277 - 38,641 - 5,371,2371- 746,602,0811 
276 276 38,640 5.371,236 746,602,080 ,,,,,,,,,,,,,, 

___ 276 _76, 728 _21,253.932 _#lltl#tl##l/1###!111_#111!#1/Utl#llltltl# 

A- 7 



Appendix A - Key Blocking Factor Tabl.es 

TABLE A-2 HINIMUM/CRI'l'ICAL/MAXIMUM NUMBER OF KEYS 
FOR KEY BLOCKING FACTOR VS LEVEL 

1~~~1 B-tr•• level 

\ 1 2 3_ 141 5 
-- - I --28I 39, 761 5,606,441 790,508,32! 
x 280 280 39,760 5,606,440 790,508,320 ,,,,,,,,,,,,,, 

280 ·78,960 22,188,040 '''''''''''''' ,,,,,,,,,,,,,, 
E - - 1 - 291 - 42,631 - 6,224,2711- 908,743,7111 

290 290 42,630 6,224,270 908,743,710 '''''''''''''' 
y 290 84,680 24,642,170 ,,,,,,,,,,,,,, '''''''''''''' 

- - 1 - 297 - 44,401 - 6,615,8971- 985,768,8011 
296 296 44,400 6,615,896 985,768,800 '''''''''''''' 

B 296 88,208 26,198,072 11111111111111 11111111111111 
- - 1 - 307 - 47,431 - 7,304,5271-1,124,897,3111 

L 306 306 47,430 7,304,526 1,124,897,310 11111111111111 
306 94,248 28,934,442 '''''''''''''' ,,,,,,,,,,,,,, 

0 - - 1 - 319 - 51,199 - 8,191~9991-1,310,719,9991 
318 318 51,198 8,191,998 1,310,719,998 '''''''''''''' 

c 318 101,760 32,461,758 '''''''''''''' ,,,,,,,,,,,,,, 
- - 1 - 331 - 55,111 - 9,148,5911-1,518,666,2111 

x 330 330 55,110 9,148,590 1,518,666,270 '''''''''''''' 
330 109,560 36,264,690 '''''''''''''' '''''''''''''' - - 1 - 341 - 58,481 - 10,000,4211-1,710,072,1611 

F 340 340 58,480 10,000,420 1,710,072,160 11111111111111 
340 116,280 39,651,820 '''''''''''''' ,,,,,,,,,,,,,, 

A --- - 1 - 357 - 64,081 - 11,470,6771-2,053,251,3611 
356 356 64,080 11,470,676 2,053,251,360 '''''''''''''' 

c 356 127,448 45,499,292 '''''''''''''' '''''''''''''' --- - l - 383 - 73.727 - 14,155,7751-
T 382 382 73,726 14,155,774 11111111111111 

382 146,688 56,181,886 '''''''''''''' 
0 --- - 1 - 409 - 84,049 - 17,230,2491 

408 408 84,048 17,230,248 ''''''''''''' 
R ___ 408 _167,280 _68,417,928 _1111111111111 

'l'he minimum value is the absolute mini.mum number ot keys that a B-tree 
can hold tor a given level, if a key is deleted then the B-tree vill 
contract one level. An example is shown in the following figure ot a 2 
level (L) B-tree vith a key blockin& factor (F) ot 4 and vith minimum 
number ot keys. 

[*]300[*]\\\[*]\\\[*]\\\[*] 

I [1]400[·]500[•]\\\[·]\\\[·J 

[*]100[*]200[*]\\\[*]\\\[*) 

'l'he minimum number ot keys (HinK) is given by the tonnula: 

Hink = 2 * (F/2 + l)•(L-1) - 1 

A- 8 



Appendix A - Key Blocking Factor Tables 

The 'critical' value is the minimU111 nU111ber or keys that the B-tree can 
hold on a given level before splitting and creating another.level. This 
value is given by subtractinc 1 from the minimWll value or the next 
hicher level. 

[•] 30[•] 60[•] 90[•1120[•] I [1]130[·]140[·]150[·]160[·] 

[•]100[•]110[•]\\\[•J\~\[•] 

[•] 70(•] 80[•]\\\[•]\\\[•] 

[•] 4o[•] 50(•]\\\[•]\\\[•] 

[•] 10[•] 20[•]\\\[•]\\\[•] 

The crit.ical nU111ber or keys (CritX) is given by the formula: 

CritK s 2 • (F/2 + l)A(L) - 2 

The maximUlll value is the maximum nU111ber or keys that the B-tree could 
hold if it would be possible to load it with no 'holes' whatsoever. 
An illustration or this concept is shown below on a 2 level B·tree 
with a key blocking factor or 4 and maximWll number or keys. 

[*] 5[*] 10[•] 15[•] 20[*] 

I [!] 21[*] 22[•] 23[*] 24[*] 

[•] 16[•] 17[•] 18[*] 19[*] 

[*] 11[*] 12[*] 13[*] 14[*] 

[•] 6[*] 7[•] 8[•] 9[*] 

(*] 1[•] 2[*] 3[•] 4[*] 

The maximUlll nU111ber or keys (MaxK) is given by the formula: 

A- 9 



Appendix B - KSAM Worksheets 

1t S A M 

DATAFILE SIZE WORKSHEET INSTRUCTIONS 

A. Do part A.1 thru A.6 for the file. If the blockinc factor is not 
specified then use 1 (one) which ia the default for !SAM files. 

B. This section includes the file system label and the ltSAM created 
user label. The number of user labels in B.1 are in addition of 
the one created by ltSAM. If no user labels are specified then 
enter o. 

C. To do part C requires knowing the the data file limit. If this 
value is not supplied then enter 1023 in C.1, since this is the 
default file limit for the data file. 

KEYFILE SIZE WORKSHEET INSTRUCTIONS 

Note that there are 2 fo:nnats for this worksheet. The first format 
is labeled 'PAGE 2 OF and the second fonnat 'PAGE OF ' 
The first format includes space at the end of the page for 
introducing the totals of other pages in case the key file has 
more than 4 keys. Don't forget to label all the paces. 

A. Do part A.1 thru A.3 for all the keys and A.4 thru A.12 only for 
those keys that have a Key Blocking Factor (KBF) specified. 

B. Choose the largest value in A.12 and enter in all the columns in 
B.l. If none of the keys has a Key Blocking Factor (KBF) specified 
then enter 1024 in all the columns in B.1. Now perform all the 
steps in part B for all the keys to obtain the actual Key Blocking 
Factor. 

c. To do part C requires knowing the number of key entries for the 
key file or the data file limit. If this value is not supplied 
then enter 1023 in all the columns in C.l, since this is the 
default file limit for the data file. The tricky part is C.7 
where it represents the number of sectors per block (SB). This 
value can be obtained from the largest value found in A.10, but 
if none of the keys had a key blocking factor specified then this 
part was not filled in, and we had to use 1024 in B.l for block 
size 'Which is equal to 8 sectors. So in C.7 enter the largest 
value found in any A.10 column, or if there are no values in A.10 
then enter 8 in c.7 

D. Part D requires totaling all of the key chains and adding 3 for 
the nonnal key file overhead (l for Control Block, 1 for the Key 
Descriptor Block and 1 for the File Label). At this point you 
are done!. 

B- 1 



Appendix B - KSAM Worksheets 

KSAM 
PAGE l OF 

DATA FILE SIZE WOIUtSHEET 

:NAME ---------------- DATE _/ _/ _ TIME _:_ 

DATA FILE :NAME ---- ---- , ____ KEY FILE :NAME ----

FIXED VARIABLE 
A) SECTORS PER BLOCK 
l. RECORD SIZE (words) 
l.l ADD l (for variable onl1) •••• :::::: ••••••••••••••• -.--Y-
1.2 RESULT (for variable onl1) •••••••••••••••••••••••• 
2. MULTIPLY BY BLOCKING FACTOR X X--
2.l RESULT (for variable only) •••• :::-:7 ............... --
2 .2 ADD l (for variable only) .••••••••••••••••••••••• -.--Y-
3. RESULT (words per block) • 
4. DIVIDE BY 128 7128 
5. RE SULT • 
6. ROUND UP (sectors per block)• ::::._: 

B) LABELS OVERHEAD 
l. NUMBER OF USER LABELS 
2. ADD 2 -.--r 
3. RE SULT • 
4. DIVIDE BY A.6 / __ 
5. R E S U L T • 
6. ROUND UP (labels overhead) 

C) FILE SIZE 
1. FILE LIMIT (FL) 
2. DIVIDE BY BLOCKING FACTOR 

.. ( ) 
I_ 

( __ ) 
3. RE S ULT • 
4. ROUND UP (I of blocks) • 
5. ADD B.6 + 
6. R E SULT = 
7. MULTIPLY BY A.6 
8. ANSWER (SECTORS PER FILE) • 

B- 2 



Appendix B - KSAM Worksheets 

KSAM 
PACE 2 OF 

KEY FILE SIZE WORKSHEET 

Jf.AME ----------------DAD_/_/_ 'l'IHE _:_ 

DAl'A FILE JfAHE ------------ KEY FILE NAME ----

A) BLOCK SIZE 
1. KEY SlZE (vds) 
2 . POINTER OVERHEAD 
3. KEY E?.'TRY SIZE • 
4. KEY BLOCK FACTOR (DF) 
5. 'l' 0 'l' AL • 
6. BLOCK OVERHEAD 
7. KEY BLOCK SIZE • 
8. DIVIDE BY 128 
9. RESULT 

10. ROUND 'UP (SB) 
11. MULTIPLY BY 128 
12. ANSWER • WORDS/BLOCK • 

B) 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

KEY BLOCKING FACTOR 
LARGEST WORDS/BLOCK 
BLOCK OVEP.HEAD 
ANSWER 

.. ( ) 
":5"" 

( __ ) 
- 5 

KEY E?.'TRY SIZE (A.3) 
ANSWER 
ROUND DOWN 
MINUS 1 
ANSWER 
DIVIDE BY 2 
ANSWER 
ROUND 'UP 
MUtTIPLY BY 2 

• 

• 
• 

• 
.. 10. 

11. 
12. 
13. KEY BLOCK FACTOR (KBF) • 

C) SECTORS/KEY-CHAIN 

/_ 

1. DATA FILE LIMIT (FL) .. ( ) 
2. DIVIDE BY KBF '-3. AN S WE R • 
4. ROU?.'D 'UP • 
5. M'J"~TIPLY BY 2 
6. ANSWER • 
7. MULT BY LARGEST SB (A.10) 
8. SECTORS/KEY_CHAIN = 

D) KEY FILE SIZE PAGE2 PAGE3 
1. ADD ALL C.8 .. 
2. ADD ALL D.1 • 
3. ADD 3 
4. l\l:Y FILE SIZE sect.ors 

B- 3 

( __ ) 
- 5 

I_ 

( __ ) 
'-

PAGE4 

(_) 
- 5 

I 

PAGE5 



Appendix B - KSAM Worksheets 

KSAM 
PAGE_ OF 

KEY FILE SIZE WORKSHEET 

NAME ----------------DATE _l_I_ TIME_:_ 

DATA FILE BAME ---- ---- ----- KEY FILE IAME ----

A) BLOCK SIZE 
1. KEY SlZE (wds) 
2. POINTER OVERHEAD 
3. KEY ENTRY SIZE 
Ii. KEY BLOCK FACTOR (DF) 
5. TOTAL 
6. BLOCK OVERHEAD 
7. KEY BLOCK SIZE 
8. DIVIDE BY 128 
9. RESULT 

10. ROUND tJP (SB) 
ll. MULTIPLY BY 128 
12. ANSWER • WORDS/BLOCK 

B) KEY BLOCKING FACTOR 
l. LARGEST WORDS/BLOCK 
2. BLOCK OVERHEAD 
3. ANSWER 
Ii. KEY ENTRY SIZE (A.3) 
5. AN SW ER 
6. ROUND DOWN 
7. MINUS l 
8. A I S WE R 
9. DIVIDE BY 2 

10. A I SW ER 
11. ROUND tJP 
12. MULTIPLY BY 2 

KEY 

:;:-Ji'"" 
• 

x 
• 

+-5 
• -m 
--
x 126 

• 

. ( ) 
::-s 

• 

• 
• 
.. 
• 

13. KEY BLOCK FACTOR (KBF) • 

C) SECTORS/KEY-CHAIN 
l. DATA FILE LIMIT (FL) 
2. DIVIDE BY KBF 
3. AN SW ER 
Ii. ROUND UP 
5. MULTIPLY BY 2 
6. A N S W E R 

. ( ) 
I 

• 
• 

• 
7. MULT BY LARGEST SB (A.10) (X _) 
8. SECTORS/KEY_CHAIN 

D) KEY FILE SIZE 
l. ADD ALL C.8 

• 

.. 

B- 4 

KEY 

+Ii"" 

x 

+-5 
-m 
--
x l2B 

(_) 
- 5 

I 

(X _) 

KEY ..,... 
x 

+-5 
-m 
--
x l2B 

( __ ) 
- 5 

I 

KEY 

:;:-Ji'"" 

x 

+-5 
-m . -
x 126 

( __ ) 
- 5 

I 

( ) 
I 



ABSTRACT 

Developing a DS To NS Network 
Migration Strategy 

Diane Leeds, Hewlett Packard Company 

NS 3000/V Network Services and links are an inices along with a discussion of enhancements to 
NS Services and LAN links and new link products that customers can use for wide area networking 
solutions. 

In addition, a framework will be provided that can be used in planning this migration to take 
advantage of these new capabilities. This framework will present several alternative strategies, and 
the relative merits of each, that users can employ when planning their migration, taking into 
consideration the size and configuration of the network. Along with strategies, tools that are being 
developed to facilitate this migration will be discussed. 



ABSTRACT 

Artificial Intelligence? - Can We Use It 
To Solve Real Life Situations? 

Mark Leiner, DOD Ft Meade 

One of the agencies within the Department of Defense has undertaken the ambitious task of 
developing an Equipment Failure Reporting System for its many hi-tech maintenance and 
operational areas. This paper will try to answer the questions of what is artificial intelligence, and can 
we use this concept realistically is todays world? Specifically in this application, apply expert system 
technology to quickly diagnose equipment problems (much like an HP CE would do), thereby 
increasing productivity and reducing costs. Do our users want these benefits, if we can provide them, 
and if not, how do we convince them of its potential value? 



Remote Data Collection With A Central Medical Data Base 
Mary L. Lerchen and Ron Darling 

New Mexico Tumor Registry 
University of New Mexico 

900 Camino de Salud NE 
Albuquerque, NM 87131 

Introduction 
The purpose of this presentation is to: 1) describe our 
organization's successful computer conversion; 2) describe 
the software developed for cancer registries that we use on 
a Hewlett-Packard Series 42; and 3)discuss the development 
of the link between PCs and the mini computer and the 
flexibility it provides us. 

First I will describe the New Mexico Tumor Registry (NMTR) 
role in data collection. The NMTR is a population based 
cancer registry which covers the entire population of New 
Mexico and All American Indians in Arizona. The NMTR par­
ticipates in the Surveillance, Epidemiology and End Results 
(SEER) program of the National Cancer Institute, estab­
lished to monitor cancer incidence and survival in selected 
areas of the United States. Abstractors visit over 90 
facilities in New Mexico and Arizona to identify cases and 
to abstract demographic and medical information from hospi­
tal records. There have been approximately 70,000 persons 
diagnosed with cancer registered by the NMTR since the 
beginning of its operation in 1969. About 5,000 new diag­
noses of cancer are registered each year among residents and 
added to the cancer data base. We follow about 30,000 per­
sons annually to determine vital status for calculation of 
survival statistics. An example of summary statistics for 
cancer incidence and survival from New Mexico can be seen in 
Table 1. 

Computer Conversion 
When I joined the Registry in 1983 we had two major tasks 
ahead of us. One was to cut operating costs while improving 
quality and timeliness of data collection. The other was to 
decide whether to improve the existing computer system or to 
select another. After review of existing procedures and 
policies were were able to eliminate those that were dupli­
cate or unnecessary efforts. After we redefined goals and 
streamlined procedures, the deficiencies of the computer 
system became more apparent. The limitations of the com­
puter system that had been in place for three years are 
listed in Table 2. For example, we could not retrieve in­
formation from the data base; retrievals were run in batch 
mode by an off site computer. In addition, we were not able 
to match names by computer to determine if the cases were 

Remote Data Collection Page 1 



already known to the Registry. Because of the high cost of 
hardware upgrade, the lack of software for data base 
management, and inaccurate information provided by the sales 
representatives, I decided to look at other systems. The 
selection of the Hewlett-Packard Series 42 minicomputer was 
determined by the availability of software designed for can­
cer registry applications. The staff at the Michigan Cancer 
Foundation (MCF) in Detroit, Michigan developed an on-line 
computerized system for inputting, editing and processing of 
data collected by registry staff. The MCF makes use of HP's 
data base and screen management software. Cobol programs 
serve as the interface between these packages. The data 
base software utilizes a network design and allows for 
access of data to be sequential, direct, or indexed and by 
batch or interactive mode. Because the computer software 
for the Cancer Information Management System ( CIMS) was 
developed with funds from the National Cancer Institute, the 
system is available free of charge under the Freedom of In­
formation Act. Should you be interested in the system, the 
contact person is: Michael Baracy, Manager Computer 
Systems, Michigan Cancer Foundation, 110 E. Warren, Detroit, 
Michigan 48201. 

Conversion Timetable and Cost 
The conversion from the existing computer system to the HP 
Series 42 involved several steps, often occurring 
concurrently, that can be seen in Table 3. The easiest step 
was to install the HP computer and software in November. In 
November and December we sent programmers for training to HP 
and to Detroit. Beginning in October and continuing through 
January we compared data elements collected by the Detroit 
Registry with those we collected. We also reviewed forms 
and procedures used by Detroit. Whenever possible we 
modified New Mexico to match Detroit so that changes to 
software programs could be kept to a minimum. The third 
step, conversion of existing data base, took place over a 
weekend in February without any problems. At the same time 
program modifications were completed that allowed data 
entry, edit, link and inquiry on the HP. The existing com­
puter was used only to generate follow-up inquiries to 
physicians and patients; maintenance on the machine was 
discontinued. Once the "heart" of the CIMS was running, 
i.e. , essential data collection and processing functions 
were in place, we could proceed at a more relaxed pace with 
the other processes such as casefinding and follow-up. In 
addition to a data and program conversion that progressed on 
time and without major problems, we can report that costs 
association with the conversion were reasonable (see Table 
4). The only cost associated with acquiring the Detroit 
software was for computer tapes and for travel to Detroit to 
evaluate their program. Programmer training for the HP com-

Remote Data Collection Page 2 



puter was about $5000. Consultant costs included salary for 
the analyst with HP experience who worked less than 50% time 
for us throughout the conversion. Non equipment costs for 
conversion were only about 16, 000. We are very satisfied 
with the CIMS, with the HP computer, and with the cost of 
the conversion. 

The Cancer Information Management System 
In describing the CIMS used at the NMTR, I will first list 
the hardware and HP software, then show flow diagrams for 
the CIMS, and finally discuss the timetable and costs for 
conversion. The hardware and software now in use at the 
Registry is shown in Table 3. We separated wordprocessing 
from the minicomputer before the conversion. We initially 
linked only one personal computer with the data base on the 
mini; the flexibility the PC provide for data collection, 
downloading and data analysis will be discussed later. 

The flow diagrams for the data bases are seen in Figures 1-
7. The main data base within the CIMS system is the Active 
data base. There are six keys within the Active data base 
to allow for quick access in locating records and are used 
extensively in the record linkage process and requests for 
data retrieval and reporting. These six keys are repre­
sented by the triangles in figure 1. 

The six keys are date of birth, social security number, 
primary cancer site, year of diagnosis, NYSIIS name 
encription, and case number. The case number is a sequen­
tial number with a check digit and is the unique identifier 
assigned to each patient in the system and serves as the 
logical link between all the detail data sets. 

The main structure of the Active data base includes four 
detail data sets containing Patient, Tumor, Admission, and 
Treatment specific information. These data sets are repre­
sented by the trapezoids in figure 1. 

There is one record maintained in the Patient data set for 
each patient containing demographic information. The Tumor 
data set contains specific information for each primary 
malignant tumor that a patient has along with consolidated 
treatment information. The Admission data set contains in­
formation about the first admission to a specific hospital 
for each primary malignant tumor. Finally, the Treatment 
data set contains information describing all first course 
treatment that a patient received for each primary malignant 
tumor. First course is defined as all treatment received 
within the first four months after treatment was started. 

There are five other data sets that are part of the Active 

Remote Data Collection Page 3 



data base. These data sets are used for reporting, editing, 
verification of incoming data. The AKA data set is the 
"also known as" name data set which contains all assumed 
first and last names. The Address data set contains the 
address of a patient when they were diagnosed, but only if 
the address is within Bernalillo county. The Table Master 
data set contains ICD-0 topography and morphology codes, 
site group codes, birth place code, abstractors identifica­
tion numbers, and county codes. The Doctor Master data set 
contains specific information about every currently practic­
ing doctor within New Mexico. Lastly, the Hospital Master 
data set contains information about all of the hospitals, 
clinics, and therapy facilities where information is 
abstracted. 

A second data base is the suspense data base. This data base 
contains newly keyed records not edited or ready for addi­
tion to the Active data base. The Suspense data base has 
two primary data sets, the Initial Admission data set and 
the Follow-Up Admission data set, they are represented by 
the trapezoids in figure 2. 

Five keys are used to access these two data sets. The keys 
are document identification number, social security number, 
NYSIIS name encription, date of birth, and case number and 
are represented by triangles in figure 2. 

The Initial Admission data set contains information 
abstracted from the hospital records. The Follow-Up Admis­
sion data sets contains follow-up information received con­
cerning patient status (alive or dead), additional treatment 
given, and other information concerning subsequent admis­
sions for the patient. 

CIMS has several major processes. 
these processes are Abstract Data 
File and Table Maintenance, Death 
Follow-up, and Case Finding. 

The most important of 
Entry, Linkage, Doctor 
Tape Match, SEER Tape, 

Initial and follow-up documents are keyed on-line into the 
Suspense data base and a comprehensive set of edits are per­
formed in the Abstract Data Entry process. These documents 
are then added to the Active data base in the Linkage 
process with matching performed between new documents and 
old cases. In the Doctor File and Table Maintenance process 
information on doctors, hospitals, morphology codes, ICD-0 
topography codes, county codes, and more are maintained. 
Death tapes from the State of New Mexico are used to update 
the Active data base through the Death Tape Match process 
and are a major source of information. All cases in the Ac­
tive data base that meet the SEER Program requirements are 

Remote Data Collection Page 4 



written to a tape and sent to the National Cancer Institute 
in the SEER Tape process. Lastly, in the Case Finding 
process printouts are generated of cases that need to re­
searched and abstracted to then be keyed in the Abstract 
Data Entry process. 

All of the batch entry and much of the file maintenance is 
done on-line with various levels of edits performed to in­
sure data integrity. However, batch processing is used to 
perform major updates to the various data bases. Table 6 
lists interactive programs available on CIMS for data in­
quiry and maintenance. Table 7 show the batch processes 
used for updating and reporting and the type of report as­
sociated with each program. 

Personal Computers Linked to CIMS 
In December of 1986 we committed ourselves to the idea of 
data collection and analysis with personal computers. 
Various software packages are available that allow the 
abstractor to key abstracted information at the PC. In 
addition, this software allows data retrieval and analysis 
on the PC in the hospital setting. Advantages over 
abstracting onto forms include autocoding, simple edits and 
screen prompts that replace instructions in manuals. Al­
though PC software was available, no one had yet linked the 
PC to a data base to that data could be transferred in both 
directions (both to the central registry and ··to the 
hospital) as is shown in Figure 8. We wanted to transmit 
cases to CIMS to take advantage of sophisticated edits and 
the matching processes and to transmit edited cases Lack to 
the hospital tumor registry so that data could be analyzed 
on site. The software we are using to collect and analyze 
data on a PC is based on the Hospital PC System written in 
dBase III by Charlie Smart, MD, while at the Utah cancer 
Registry. We have made extensive changes to the Utah 
software to make it compatible with the CIMS software on the 
HP 3000 and we have named our version PC DaSH. PC DaSH 
stands for Patient Cancer Data System for Hospitals. These 
changes relatively easy to make thanks to dBase III. The 
software can be obtained for a nominal charge and the con­
tact person is: Rosemary Dibble, Manager of Operations, 
Utah Cancer Registry, Research Park, 420 Chipeta Way, Suite 
190, Salt Lake City, Utah 84108. 

In setting up a hospital on PC DaSH the first step is to 
give the software and a hospital's old cases to the 
hospital, refer to figure 9. Then on a weekly or bi-weekly 
basis the person at the hospital downloads the new cases to 
a floppy diskette that they have abstracted during the past 
week or two. Someone at the central registry then loads 
these cases into the CIMS Suspense data base where they go 

Remote Data Collection Page 5 



through the regular Edit and Link process. These cases and 
any old cases that have been updated are then sent back to 
the hospital to re load into their PC. Refer to figure 10 
to see the flow of this process. 

Summary 
The intent of this presentation was to tell a success story 
about our computer conversion. We were successful for a 
number of reasons. First, we selected software carefully 
and the software did what it was supposed to do and was well 
written. And the NMTR had great support from the analyst 
who had written the programs at our sister registry in 
Detroit. second, we had good support from HP in the 
selection, installation, and maintenance of the computer and 
software. And third, we had a dedicated staff that worked 
hard to bring about a success. 

Remote Data Collection Page 6 

i 
I 



Table 1 
PAC£; 441 SAT, APR 4, 1987, I ;42 An 

AUERllCE ftllUll CIMIE,ACE-SPEClflC, AND CUllUl.AUUE CACE 0·741 
INCIDENCE RATES PER 100.000 llQl1UT10lt ftAUCIMNT CllSES IY PRlftftRY sm. 

HEU nucco RESID[HTS, AHGlO, FEftAlES, 198M'l&:I 

CRUDI cun. 
PRlftftRY sm RATE <5 5-9 10-14 15-19 20-24 25-29 JO·J4 J5·J9 41-44 45-49 50-54 55-59 60-64 65-69 70-74 75• 0-74 
------------ ----- ----- .,. ____ ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----

All SITES ........... .... 354.5 li.9 6.4 12.9 16.6 30.5 61.4 130.3 i72.6 300.2 346.8 490.0 61'-4 8'10.91105.01365.61812.0 27 .8 

BIJCtftl CftUITY l PHARYltll. B.5 1.3 2.0 1.1 1.4 9.4 8.1 8.0 2'.9 16.0 43.' 21.1 38.1 0.7 
UP .................. 1.4 1.6 J.1 10.0 2.6 12.7 0.1 
TOHWE. ............... 1.3 2.0 3.1 1.6 1.6 3.1 1.8 2.0 7.9 3.6 0.1 
ftftJOR SAUUARY Cl AH OS. 1.0 1.1 1.4 1 .6 3.2 3.2 1.5 2.0 5.4 0.1 
FL oorc or nouT H .... 1.3 1.6 4.6 1.8 16.0 2.6 1.8 0.1 
GUii ANO OTHER ftOUTH ... 1. 7 1.J 1.6 1.6 1.6 4.6 5.3 2.0 5.3 10.9 0.1 
HASOPffARYHX ..... 0. 1 1.8 
TOHSIL .............. 0.6 1.6 4.6 1.8 4.0 0.1 
OROP~ARYHX ......... 0.J 1.6 1.5 2.0 2.6 0.0 
HYPOPHARYHX ... 0.7 J.1 J.6 6.0 1.8 0.1 
PHAR~ltll l OTHER HEC .. 0.1 1.8 o.o' 

DmSTIUE SYSTEn .. 66.9 1.0 1.0 4.5 13.6 12.5 35.5 49.5 111.4 162.I 195.5 292.6 57H 4.4 
ESOPHAGUS .. 1.6 6.1 7.1 8.0 5.l 7.2 0.1 
STOftftCH .. 5.5 4.1 1.6 11.2 6.1 7 .1 14.0 21.1 52.5 0.3 
Sftftll IHTESIIHES .. 1.0 1.4 1.6 1.5 1.8 7 .9 7.2 0.1, 
COLOH EXCLUDIHG RECTllft lJ.1 1.0 J.4 2.7 6.3 16.1 2&.7 47 .J 78.4 75.Q 166.1 J00.8 2.1 
RlCTOSIGftOID JUllCTIOH. 3.1 1.6 6.5 1.6 7.6 10.7 6.0 5.J 2l.6 0.2 
RICTUft. ............... 9.1 2.7 1.6 3.2 i .6 21.4 19.6 33. 9 JI .6 79.7 0.6 
AHUS, CAHAL l AHORECT. 1.0 1.6 4.6 1.8 2.0 10.5 3.6 0.1 
LIUER .. 1.0 1.0 3.1 1.8 4.0 5.J 7.2 0.1 
GftlLBLADDIR .. 1.6 1.5 5.3 6.0 5.3 16.J 0.1 
OTHER BILIARY. 1.4 1.1 5.3 8.0 5.J 10.9 0.1 
PAHCRIAS .. 7 .7 1.4 1.6 6.5 6.4 9.2 2l.2 35.9 26.4 56.2 0 6! 
RITROPIRITOHEUft .. 0.J 1.4 2.0 2.6 0.0 
PERITOHEUft .. 
OTHER DIGISTIUI ORGAHS 0.6 3.1 9.1 0.0 

RESPIRATORY svmn .... 39.1 1.0 1.1 6.8 H.1 17.7 55. 9 79.J 149.7 201.5 184.5 14l.1 3.6 
HftSAl CAU, SIHUS, UR. 0.4 1.4 1.5 5.4 0.0 
lftRYHX .. 1.5 1.6 3.2 10.7 3.6 6.0 2.6 1.8 0.1 
LllltG ft HD BRONCHUS ... 16.8 1.0 I.I 5.4 14.1 16.1 52.7 67.1 146.1 193.5 179.J 132.J J.4 
TRftMft .. 0.3 2.i) 2.6 l.6 0.0 

BOHES ftHD JOINTS ... 0. 9 1.3 I .l 1.2 1.0 1.0 I.I 1.6 1.6 2.6 1.8 0.1 · 

SOFT TISSUESUHC HURTJ . 2. 7 1.3 1.6 1.0 2.0 I. I 2.7 4.7 1.6 3.1 5.l 8.0 2.6 14.5 0.2 

SKIHIEXC BftSftl I SQUAftJ. 17.1 1.0 13.3 34.0 23. I 26.6 2'.8 19.2 29.0 26. 7 1U 23. 7 63.4 1.2: 
nELftHOllAS or SKIH ... 16.6 1.0 13.3 32.8 21. 7 26.6 25.8 19.2 29.0 26.7 21. 9 Zl.7 58.0 1.2 
OTHER Sl<IH CAHCIRS .. 0.5 1.1 1.4 2.0 5.4 0.0 

BREAST .. 108.2 1.0 3.0 9.2 26.1 63.9 139.2 166.I 201.1 198.l 265.5 JJl.1 419.2 425.8 9.1 

HftftLE GEHITAL SVSTEft .. 51.8 11 2 17.4 26.1 28.5 42.2 51.6 8l.O 80.9 160.4 155.6 218.8 19l.9 4.4 
CIRUJX UHRI. . 10.6 5.1 10.2 19.l 20.4 20.J 11.l 16.0 12 2 21.4 12.0 2l. 7 18.1 0. 9 
CORPUS UHRI. 22.6 1.0 2.J u 9.4 19.4 20.7 41.2 99.8 85.S 116.0 88.8 2.0 

" 1 1 • n o 

Remote Data Collection Page 7 



Table 2 

Deficiencies of the Old Computer and Software 

- Did not have data base management or data base manager for 
the creation of reports or online retrieval. 

- Flow of the system was extremely complicated, and was under­
stood only by the programmer who wrote the system. 

- No matching capabilities. 

- Alot of computer down time, with slow and unpredictable 
service. 

- Expensive to maintain. 

- Software worked in batch mode only. 

- Data entry screens where very hard to design and code. 

- Upper limits of the CPU had been reached without a 
major upgrade. 

Remote Data Collection Page 8 



Table 3 

Timetable for Conversion to the 
HP 3000 Computer System and CIMS 

Decision to convert to CIMS 

HP System Installed 

Programmer Training (HP and CIMS) 
December 

System Review and Design 
Data element review 
IMAGE schema changes and 

related data base changes 
Accounting structure and security 

Conversion of existing data 

Program Modifications 
Data entry 
Edit module 
Link and update module 
Suspense data base maintenance 
Active data base maintenance 
Data base inquiry process 

(the above processes are the "heart" 
Table maintenance process 
Conversion of reporting packages 
Case finding 
Patient Follow-up programs 
SEER tape processing 
Death linkage and update 

PC DaSH Link to CIMS 
Develope network 

Test link in 2 hospitals 
Key data using PC DaSH 

March 1985 

November 1986 

November & 

October - January 

February 

February 
February 
February 
February 
February 
February 

of CIMS) 
March 
March 
March 
April 
July 
August 

October -
January 1987 
January - March 
June 

Data retrieval & analysis in hospital July 

Remote Data Collection Page 9 



Table 4 

costs Associated with Conversion to CIMS 

Hewlett Packard 3000/42 
(includes all hardware & software) 

CIMS Programs 

HP Training 

Travel between Detroit and Albuquerque 
(Program evaluation and training) 

Consultants 

Personnel -

$125,000 

cost of tapes 

5,000 

2,300 

9,000 

Two programmers (on staff) and 25-50% time analyst 
(consultant) November through February. 

One programmer and 50% analyst (consultant) March and 
April 

Total 

Cost minus equipment 

Remote Data Collection Page 10 

$141,300 

$16,300 



Table 5 

Eauipment List 

Hewlett Packard 3000 Series 42 
2 Megabytes of Main Memory 
1 404 Megabyte Disc Drive 
1 571 Megabyte Disc Prive (Recent Addition) 
1 1600 BPI Tape Drive 
1 300 Line Per Minute Printer 
14 Block Mode Display Terminals 

Personal Computers 
6 HP Vectras with 20 Mb Hard Drives 

(also tied to the HP 3000/42 above) 
4 IBM XTs with 10 Mb Hard Drives (word processing) 
8 HP LaserJet, ThinkJet, QuietJet, and Epson Printers 
One H.P. Eight Pen Plotter 

Software 

Hewlett Packard 3000 Series 42 
MPE Operating System 
IMAGE Data Base Management System 
V/3000 Screen Communications 
COBOL II 
Fortran 
Editor 
Query/3000 
Inform/3000, Report/3000, and Dictionary/3000 
Tools et 
Cancer Information Management System (CIMS) 

Personal Computers 
Wordstar 3000 
Lotus 1-2-3 
dBase III Plus 
Graphics Gallery 
AdvanceLink 2392 
Easy flow 

Remote Data Collection Page 11 



Table 6 

Interactive Programs 
For 

Data Inquiry and Maintenance 

Program 

Abstract Data Entry 

Case Finding Entry 

Suspense Data Base Maintenance 

Inquiry and Matching 

Type of Edit 

Intra-Record 

Intra-Record 

Intra-Record 

Active Data Base Maintenance Comprehensive and 
Inter-Record 

Table Maintenance Intra-Record 

Remote Data Collection Page 12 



Table 7 

Batch Processing 
For 

Updating and Reporting 

Process Reports 

Edits Cases with errors 

Linkage Inconsistencies, 
possible and perfect 
matches 

Death Match Audit report, 
possible matches 

SEER Tape Cases with errors 

Case Finding Case finding lists, 
alpha lists 

Follow-Up Physician and patient 
letters, Hospital 
lists 

Management & Administrative cases by facility, 
by year, etc. 

Remote Date Collection Page 13 



"d 
Ill 

(JQ 

ID 

...... 

""' 

-- ~- - - ---- -- ---- ------------

Figure 1 
Cl MS1 - Active Data Base 

Key Access Paths 

Tables 

\ \_ A~ L \CASE 7--_____, NUM 

\ _) --
L .. _ 

vvv 
Remote Oeta CoDectlon With a Central Medical Oeta Bue 



'tj 
Ill 

(IQ 
ID 

..... 
U1 

Figure 2 
CIMS3 - Suspense Data Base 

Key Access Paths 

INITAL 
ADMISSION 

LEVEL 

FOLLOW-UP 
ADMISSION . 

LJ 
Remote Data Collection With a Central Medical Data Base 



Abotract Data Entr)' 

Figure 3 

Cancer Information Manageaent S)'otea (CIMS) 

Follow-up• I< 
Initial 

Abstract• 

Abstract t 
Follow-up 

Data Entr)' 

Suopenae 
Data Baae 

Batch Edit 

Edit Reports 

Suspense 
Maintenance 

Suspense 
Data Baae 

Reaote Data Collection With a Central Medical Data Base 

Page 16 



Linkage Proceu 

Suapenae 
Data 
Base 

Active 
Data 
Base 

Active Data 
Base 

Maintenance 

Active 
Data 
Baae 

Figure 4 

Cancer lnforaation Manageaent Sy1tea (CIMS) 

Active 
Data 
Base 

Linkage 
Process 

Linkage 
Report. 

Suspense 
Data 
Base 

Su1penae 
Maintenance 

Suapenae 
Data Base 

Remote Data Collection With a Central Medical Data base 

Page 17 



Figure 6 

Cancer lnforaation Manageaent S)'atea (CIMS) 

Doctor File and fable Maintenance 

Active 
Data 
Bue 

Death rape Match 

Active 
Data 
Baae 

fable 
Maintenance 

leporta 

Death fape 
ProceH 

Active 
Data 
Bue 

Audit Report 

leaote Data Collection With a Central Medical Data Baae 

!'age 18 



Seer Tape Proce11 

Active 
Data 
Ba1e 

Follow-up Proceaa 

Active 
Data 
Baae 

Figure 8 

Cancer lnforaation Manageaent Sy1tea (CIMS) 

Seer Tape 
Proce11 

Follow-up 
Procea1 

Audit Report 

Phy1ici111 
Mailers 

a 
Patient 
Mailera 

Hospital Liat 

Reaote Data Collection With a Central Medical Data Base 

Page 19 



Case Finding Procen 

Initial 
Abstracts 

Abstract Data 
Entry 

Deletione 

Case 
Finding 
Master 

Figure 7 

Cancer Information Management Sy1tea (CIMS) 

Pathology 
Reporta 

Case Finding 
Data Entry 

Additione 

Case Finding 
Process 

Case Finding 
Lia ta 

Linkage 
Process 

Additions 

l 
Case 

Finding 
Muter 

Remote Data Collection With a Central Medical Data Base 

Page 20 



'"Cl 

"' (JQ 

ro 
N 
I-' 

Figure 8 
Relationship BelwBBn Hospitals and Central RB1J/stry 

Edits 

I. Linkage 
Inconsistencies 
Death Match 
SEER Tape 

ADVL ~ ADVL 

~----~~ 

BJ 
ct 

Vectra PC 

Key 
Edit 

Auto-code 
Match 

Data Retrieval 
Data Analysis 

Remote Data Collectlon With a 
Central Medical Data Bue 

BJ 
ct 

Vectra PC 



Figure II 

CIMS to PC DaSH 

Down Loading Hi1torical Data 

CIMS 
Active 

Data 
Bue 

Extract 
historical 

r·································~-c-:_~-=-~~~_!_!_~_d_a_~ 

+ 

Transfer 
file 

L ............................. . 

Transfer 
proce11 fro• 

HP 3000 to 
Vectra PC 

PC DaSH 
•aater 
file 

Reaote Data Collection With a Central Medical Data Base 

Page 22 



Figure 10 

CIMS to PC DaSH 

Cyclical Flow of Data on a Bi-Weekly Baaio 

PC DaSH 
aaater 
file 

Vectra Personal Coaputer Transfer 
·······························•······························ process back 

Hewlett Packard 3000/ 42 to PC DaSH 

CIMS 
Active 
data 
baae 

Abatract new 
caae1 u1ing 

PC DaSH 

Tran Hit 
file of 

new ca1e1 

Transfer 
proce1a to 

CIMS 

Kolding 
file 

Edit t Link 
proceaa 

1--------,·························· 

CIMS 
Suspense 
data base 

Reaote Data Collection With a Central Medical Data Base 

Page 23 





A Skeleton in the Closet 
by 

Kenneth W. Lessey 
Marjorie K. Lessey 

DataCon of St. Helens, Inc. 
50 West Street 
St. Helens, ORegon 97051 





INTRODUCTION 

Users assume that computer programmers have and use 
software development technology that allows us to 
produce perfect, or nearly perfect, programs. They 
assume that when we author a program we know what the 
program will do under various conditions, and that we 
have verified that the program actually performs the 
intended functions. However, most programs will execute 
differently at different times, based on the data that 
they encounter. Amazingly, software developers seldom 
make a comprehensive list of these different functions, 
so we cannot possibly have proven that all of them work 
correctly. This is the skeleton in our closet. No proof 
can ever exist using current development technologies. 

It has always been possible to prove that a program does 
not work by executing it, but recognizing that a program 
can be proven to work correctly is a new concept to 
programmers - even though our users have been assuming 
that we were doing it all along. If the methodology you 
currently use does not allow you to prove that your 
software works perfectly, then the methodology is 
inadequate, because the users expect it to work 
perfectly. 

In our office, we have been using one methodology that 
recognizes the problem that software must be proven. We 
have taken several steps to address the need to "prove" 
software before it reaches the user, and we find that 
our users are very happy with the end results. 

PATHS 

It is possible to visualize a program as a sequence of 
operations occurring one after the other. The word 
"path" is defined as the "sequence of events" in a 
program, and a path may be very complex with multiple 
branches (offering multiple routes from the beginning to 
the end) . The street map for any town offers a good 
example of a complex path. If we wish to get from one 
side of the town to the other, we have many options from 
which to choose. The particular path we take will be 
affected by the time of day, the day of the week, local 
traffic and local business activity. These varibles, 
taken together, will determine the success of our 
endeavor. We may arrive safely, but too late for our 
appointment. The overall result in the above example is 
failure, even though we crossed town successfully. 

Skeleton 



Currently used programming techniques progress from 
designing a program to testing in order to find bugs and 
correct them. We then deliver the "finished product" to 
the user. Continued use of the program normally defines 
more bugs which are then corrected, so that over time, 
the program will mature into a reliable condition. 
Unfortunately, many programs have become obsolete by the 
time they have matured and are considered "reliable". 

To actually prove that a program works reliably, it is 
necessary to define every path that can be taken, and 
then demonstrate that the total result of taking that 
path produces the desired result. Traditional 
programming technologies do not allow us to identify all 
the possible paths, so our testing procedures, at best, 
allow us to prove that bugs exist. The identification 
and exercise of all paths is a giant part (now missing) 
of developing reliable software. 

It could be argued that the use of non-procedural 
languages for software development provides a set of 
predefined and tested paths. In truth, the companies 
that have developed and currently market, procedural 
languages do not know, and have therefore not tested, 
every path. An additional problem occurs when a path we 
need does not exist or an existing path does not produce 
the desired result. All of these problems make the non­
procedural languages even riskier to use. A widely 
known horror story about the problems we can encounter 
with non-procedural languages is the story about a 
contractor who submitted a bid on a large project based 
on dollar amounts totalled by his spreadsheet program. 
Only after having been awarded the contract was the 
(giant) error discovered. The error, it turns out, was 
actually caused by a bug in the spreadsheet program, but 
the contractor ended up taking the loss because he was 
forced to honor his bid. 

A methodology for ~evelopi~g reliable software does 
exist, but there is a price to pay. In order to 
implement a development technology that addresses the 
entire process, from program design, through path 
identification and testing, requires us to relinquish 
some of our current practices. Given the fact that old 
software systems die daily, either because they are not 
reliable, or because they are not maintainable, I submit 
that we have no choice but to switch to newer 
methodologies. Given the fact that many programmers 

Skeleton 2 



"would rather fight than switch", this topic will not 
delight everyone. 

TRANSITION NETWORKS 

History shows us that many great inventions were not 
based on totally new ideas. Rather, existing facts came 
to be understood in a new way. In our search for ways 
to make our software more reliable, we happened on to a 
new perspective in our use of transition networks which 
has provided a successful methodology for us to use in 
software development. 

It has often been said "A picture's worth a thousand 
words". We have, for many years, attempted to include a 
picture of a program's flow of logic in the program 
file. These help us to quickly understand what is 
happening (and where) when we come back to a program to 
enhance or correct it. These diagrams are even more 
essential in our office because we frequently have 
someone other than the original author assigned to add 
an enhancement. We have used transition networks to 
create these pictures. 

In a traditional state diagram, the sequence of events 
is graphically represented by circles or nodes connected 
by lines. These diagrams show functions as being 
performed on the lines, and decisions are made at the 
nodes (where to branch to next). 

SEE Figure 1 

As our staff worked with these diagrams, we discovered 
that they often confused, rather than clarified, our 
understanding of the sequence of events. In retrospect, 
we have decided that these diagrams are similar to 
attempting to draw road maps using lines to represent 
cities and nodes to represent all the branching roads 
between them. At best, they are confusing to use to 
graphically represent the flow of logic through a 
program. 

We have developed a modified type of transition network 
which works well for us. We represent states, or 
functions that we perform, as squares. Lines are drawn 
to point the way to the next function to be performed. 

SEE Figure 2 

Skeleton 3 



To the casual observer, this technique may appear to be 
similar to a flow chart. But do not condemn the use of 
transition networks because of preconceived ideas you 
may have about flow charts. The only similarity between 
the two techniques is that both use symbols connected by 
lines. The use of transition networks provides a way to 
define every possible path through a program, so if you 
are sincerely interested in "proving" your software, you 
will be forced to find a way to define your paths. 
Transition networks have provided an easy way for our 
staff to do that. (There have been several good 
computer science textbooks published on the techniques 
used to produce transition networks.) 

TESTING 

The third step in the process of designing reliable, 
provable software (after code design and path 
identification) is to design test data which will direct 
the program down every path, and execute the program 
using that test data. I can well imagine that those of 
you who have been open-minded enough to consider 
everything we have presented so far just stomped on the 
brakes, and cried, "Enough!". It seems to most 
programmers that a test designed to exercise a complex 
program on every conceivable path just adds insult to 
injury. It is bad enough to have to test some of these 
"monsters" at all, and the kind of testing we are 
proposing looks like a giant task, surrounded by 
frustration, and based in futility. After all, some 
paths may never be used, even by live data! Be assured 
that the depth of testing we propose is the only way to 
deliver reliable mature software (that is maintainable). 

our staff discovered that we frequently spent more time 
testing programs than we spent in the design and coding 
phase. We have also discovered that very few of us 
actually enjoy the testing cycle (test-fix-test again) 
which is sometimes repeated countless times. Our answer 
has been to automate the testing as much as possible. 

In order to automate the testing cycle, we use a color 
coded copy of paths on the transition network. We then 
design a set of data which will force the program down 
each path. We call this data a scenario, or script, and 
each script is made up of many individual steps. We 
store the test data in a separate data base. This 
allows us to execute a script to prove the paths after a 

Skeleton 4 



program has been modified or enhanced in any way. We 
then examine the results for correctness. In truth, we 
have not yet been able to ship truly "bug free" software 
to our users, but we have been able to eliminate most of 
the bugs by using an automated testing system. We have 
discovered that there are a few laws which govern this 
type of testing. 

1. Test data must be stored in a data base in 
order to be re-used and modified). 

2. The actual execution of a scenario needs to be 
automated - this is to save the sanity of 
programmers. 

3. The larger and the more complex the system, the 
more important this testing is. 

CONCLUSION 

In the past, commonly used software development 
methodologies could best be described as "hit and miss", 
because they did not contain ALL of the key elements 
needed to design reliable software. Today's users 
demand reliability, so we must use methodologies which 
are capable of producing the programs (in all their 
complexities), and have, as an inherent attribute, a 
"way to prove" that you did it. The second thing we 
must do is to implement the proof. 

At least one methodology does exist which contains the 
necessary elements to produce reliable, maintainable 
software which can be proven. Appendix A contains the 
detailed description of how we use transition networks, 
and Appendix B contains information on our automated 
test system, ENSIGN. (In our office, we also believe 
that good software must be capable of changing as 
company needs change.) 

Transition networks, in combination with entity 
relationship analysis for data base design (see papers 
by Ray Thomas(!) and Alfredo Rego(2)) and automated 
testing allow us to produce software that meets user's 
expectations. If you are an MIS manager and your shop 
chooses to use a methodology which does not include a 
way to "prove" your software, the skeleton in the closet 
may be be yours. (This paper will self-destruct if it 
finds its way into the hands of any user.) 

Skeleton 5 



EXAMPLE 

Figure 1 

Skeleton 6 



BEGIN 
MAIN ....... ... 

BEGIN • ·PROCESS- P' 

CABLE-PAIR 

Skeleton 

EXAMPLE 

*network 
FOR-ALL-
CABLE-PAIR 

PROCESS-CABLE 
PAIR 

MOVE-WRITE-
FILE 

_) 

Figure 2 

7 

FOR-ALL­
FI LE 

DELETE­
CABLE­

PAIR 



FOOTNOTES 

l. "Entity Relationship Analysis, A Methodical Method 
for Implementing Relational Data Base on the HP 3000 
with IMAGE," Ray Thomas of Texas Municipal Power Agency, 
Published in the Montreal Proceedings, HPIUG, April 
1983. 

2. "Are Procrustean Databases Necessary?", F. Alfredo 
Rego, Published by Supergroup Association, Volume 5, 
Issue 1, January/February 1985. 

Skeleton 8 



APPENDIX A 

Skeleton 9 



DEVELOPMENT METHODOLOGY OVERVIEW 

ALGORITHMS 
and 

LOGIC 

1 
TRANSITION SCRIPT 

NETWORKS REPORTS 

I _f_ 

AUTOMATED 
PROGRAMS ~ TEST i..._ _... SCRIPTS 

SYSTEM r .., 

I 
DATA TEST 
BASE RESULTS 

1 
ENTITY 

RELATIONSHIP 
ANALYSIS 

Skeleton 10 



One definition of a program is "a sequence of operations 
occurring one after the other". In order to produce a 
picture of the sequence in which operations occur, we 
have developed a way to graphically represent a program. 
We use these pictures for testing as well as for writing 
the code. 

While transition networks have been around for years, 
they have not been widely used. We think that there are 
several reasons for this lack of use. One reason is 
that a traditional use of transition networks presents 
operations as lines, and decisions as nodes (where to 
branch to next) • Our experience has taught us to use 
the opposite combination. In other words, we represent 
an event (or operation) by a box, and we show where to 
go next by directed lines between the boxes. The 
traditional networks are difficult to follow, therefore, 
few people are willing to make the effort. Another 
reason that traditional transition networks may be of 
questionable value for our purposes (path definition) is 
that decisions, as represented by nodes, can direct the 
program to any of several paths, depending on the data. 
our experience has taught us to refine decisions, and 
break complex questions down until each question can be 
answered "true" or "false". 

In using transition networks to diagram the flow of 
logic through our programs, we have come up with some 
fundamental rules we follow. 

1. We all use the same approach, so that any one of 
us can understand (and therefore work on) a 
program written by any other staff member. 
Standardization is important in order to optimize 
time spent on enhancement and testing. 

2. We developed pre-printed forms to draw logic 
networks, and we use pencils (and large erasers) 
to make it easy to modify the diagrams. 

3. A box can represent either a single state, or it 
can represent complex logic (which must be 
diagramed elsewhere state by state). The use of 
this technique allows us to diagram any degree of 
complexity because a network can execute another 
network which can execute another network, etc. 

Skeleton 11 



allowing multiple depth levels for your logic. 

4. We require that questions be answered by "true" 
or "false" only. Any question too complex for a 
true/false answer must be divided into a series 
of questions, each of which is answerable by true 
or false only. 

5. When we start a logic diagram, we map logic from 
the highest level (overview) possible. We then 
diagram the logic at lower and lower levels until 
all logic has been mapped. See Figure 1-A for an 
example overview diagram and one of the lower 
level diagrams. Note that we mark those boxes 
which represent another network which is 
diagramed in detail elsewhere. 

6. As we begin to write the actual code for each 
state, we sometimes encounter the need for logic 
which exceeds the level of complexity we allow in 
a single state. When that happens, we simply 
design a logic network to replace that single 
state, mark the square on the diagram as a 
network, and add a complete diagram of the new 
logic to the network pages for that program. 

When we have completed the design phase and the actual 
code writing functions, we return to the diagram to 
identify possible paths through the program. 

We identify the paths through each network individually, 
and then design our test data to force the program to 
execute every path. See Figure 2-A for the possible 
paths through the example network (shown in Figure 1-A). 
We actually mark each path with colored pens because the 
different colors allow us to easily follow a trace to 
see that each path has been executed correctly. (For 
ease in printing, we have identified the paths using 
different symbols.) We normally mark the longest 
possible path as the first path to take with test data, 
and then take the next shorter path, etc. 

It may occur to you that the use of transition networks 
and the testing phase we are proposing will add to the 
effort required to produce a "finished" program. We 
agree, and these are the alternatives as we see them: 

<:lt<>l<>tnn 

you can by-pass this diagram/path 
step and (in effect) let your 

identification 
user test the 



software. You then fix it, and present it to the 
user to test again, and so on ad infinitum. 

2. you can take the time and make the effort to 
"prove" a program and then deliver it to the 
user. This is the end of this process in most 
cases, unless the user wants to modify specs. 

We have found that by choosing alternative 2, we by-pass 
a large portion of user frustration. In the long run, 
we save a great deal of programmer frustration as well, 
and "they all lived happily ever after". 

C:lo•lPtnn 12 



~ rhi. ~=·~· oome~from ·:~~·::~~the '"' "']m the dataDbase to print a repoort. 
-----'~ .:$PAC.E.5 :J 1 ~ 

' ~~~c;-i-1 
'-----~,---' 

D 
D 

~ 

Gc:t-s.1~-1 T 

f..\IJ..v.--l 
~­
~~­

t>UJ.,,,i°1-' 

4 IOVERVIFW SECTJON D 
ODD 

Kldi;t •'fr}<_, --------.. 

~-1 &.t-
li~,J: -

Lood._, ~- .&i-.i- l/ tUl- . F C»i..-: /.{......_ - 1 I ~ -~- i 

1 -.J lid<..d: -::i =rte~ ~ ~-~.t.e.../ 
?.c~-a~- ~"'<Jt.U4·1·~ 

0~ '---'-,....,,,, 11c.k=d-L-../- ' 

1DDDDD~ 
D D D ~ BEGIN1liG OF f TAIL DIAGR~J D 

.:( 
I -

'-'-' a:: 
::::> 
<:.!l -LL. 

M ...... 

i:::: 
0 
.µ 
C1J .-
C!J 

.;,,:. 
V'l 



~A~ 
~­
~t.n&­

l::xJ:h_ 

D 
D 

This~=~-· from t:~~:~~th• "" troo 'T"ooase to prmt a repoort. 
.. ~· ~~c.C.5~1--'---"'I. 
~~~~~Ill:, ~-~e.,:.-:.-<l 

•

~~~- ~·~J··t@ J. eERV!W5',~ D 
• ( 

1 DDD 
·~ • 

~~ >l 
. ,1-_ ·-~ \'-<0~ 

Sol 6 ~-- ~- So'iJ..IJ.,, ~-~-1 
~~~ ~~~~~~~~~~~- ~ ..S,.J-l= 1Le... 

~~
~~ ...

ODD DD
D ~~ ~~!= PATDH • e ~ •;; • - PATH 2 = PAT ~ D

c:(
I

N

UJ er::
:::>
<.? -.....

'<:t

c:
0
+l
Q)
Q)
~
V>

APPENDIX B

Skeleton 15

ENSIGN, an automated testinq system, allows us to
exercise proqrams thorouqhly before they are delivered
to users. In order to automate testinq, it is necessary
to have a system by which you can build and maintain
scripts, and it is vital that you build the capability
to execute scripts into all proqrams. We will use our
own testinq system as an example.

We store the data used to exercise a proqram in a
separate data base. See Fiqure 1-B for a picture of the
ENSIGN data base. The data sets have been named to make
it obvious what kinds of records each contains. (The
pref ix "EN" merely conforms to our internal naminq
conventions, and stands for ENSIGN.)

DATA SET: EN-SCRIPT
KEYS EN-SCRIPT-A

DATA ITEMS:
EN-SCRIPT-U
EN-SCRIPT-A

D DATABASE ENSIGN
EN-SCRIPT-U

X(30)
S9(9) COMP

We use this data set to contain the names of our
scripts. The actual name is stored in the element EN­
SCRIPT-U, and a numeric value is assiqned to each name
which is stored in the element EN-SCRIPT-A. We have
defined a script as a qroup of steps to be executed
consecutively.

DATA SET: EN-SCRIPT-COM D DATABASE ENSIGN
KEYS EN-SCRIPT-A

DATA ITEMS:
EN-SCRIPT-A
EN-COMMENT

S9(9) COMP
X(78)

qive
These

We use this data set to store comments which
information required to execute a script.
comments qive specific directions for testinq a
correctly. The element EN-SCRIPT-A is the
identification which ties the text stored in the

proqram
numeric
element

EN-COMMENT to the correct script.

Skeleton 16

DATA SET:' EN-SCRIPT-STEP
KEYS EN-SCRIPT-A

DATA ITEMS:
EN-SCRIPT-A
EN-STEP-A
EN-SEQ-NBR

D DATABASE ENSIGN
EN-S.TEP-A

S9(9) COMP
S9(9) COMP
9 (6)

This data .set is used to establish the link between a
script and the individual steps which it contains. The

.element EN-SEQ-Nbr is used to store the sequence of this
step in the script.

DATA SET: EN-STEP
KEYS EN-STEP-U

DATA ITEMS:
EN-STEP-U
EN-STEP-A

D DATABASE ENSIGN
EN-STEP-A

X(16)
S9(9) COMP

We have defined a step as an individual action, and each
script is made up on many steps. The element EN-STEP-U
is used to store the identification for the step, and
EN-STEP-A is used to store the numeric identification
which has been assigned to that step.

DATA SET: EN-STEP-COMMENT
KEYS EN-STEP-A

DATA ITEMS:
EN-STEP-A
EN-COMMENT

D DATABASE ENSIGN

S9(9) COMP
X(7889)

This data set is used to store comments which give
information about a step. The element EN-STEP-A
contains the numeric identification of the step to which
it applies, and the element EN-COMMENT contains the
actual comment. We often use this element to store a
message we expect to see on the terminal when this step
has been executed in a script.

DATA SET: EN-MAN-ACTION
KEYS EN-STEP-A

DATA ITEMS:
EN-STEP-A
EN-SEQ-NBR
EN-FUNCTION-KEY
EN-COMMENT

Skeleton

D DATABASE ENSIGN

S9(9) COMP
9 (6)
S9(4) COMP
X(78)

17

This data set is also used to store "comment"
information about a step, but the information stored
here gives the tester instructions to perform some
manual action, such as pressing a function key, at this
time, before proceeding to the next step.

The element EN-STEP-A contains the numeric
identification of the step affected by this information.
The element EN-SEQ-NBR us used to store the sequence in
the script where this action is to take place. The
element EN-FUNCTION-KEY is used to store the number of
the function key which is to be pushed, and the element
EN-COMMENT is used to store any explanation necessary to
successfully complete this manual action.

DATA SET: EN-SCREEN-BUFFER
KEYS EN-FORM-A

DATA ITEMS:
EN-STEP-A
EN-FORM-A
EN-DATA-BUFFER

D DATABASE ENSIGN
EN-STEP-A

S9(9) COMP
S9(0) COMP
X(255) OCCURS 6 TIMES

This data set is used to store a copy of the fields off
the screen (form from formspec). EN-STEP-A contains the
numeric identification of the step which uses this
screen (form) and the element EN-FORM-A contains the
numeric identification of form itself. The element EN­
DATA-BUFFER contains a mirror image of the form (the
occurs statement as part of the picture statement allows
us to use a field large enough to contain the image of
the screen) .

DATA SET: EN-FORM
KEYS EN-FORM-U

DATA ITEMS
EN-FORM-U
EN-FORM-A
EN-FORM-FILE

D DATABASE ENSIGN
EN-FORM-A

X(16)
59(9) COMP
X(36)

This data set is used to store the name of the form (in
EN-FORM-U), the numeric identification of the form (in
EN-FORM-A), and the name of the formfile (in EN-FORM­
FILE).

In order to maintain the data in the scripts, we have
written a screen program to Add, Show, Change and Delete
data for each of the data sets. We have also written a

Skeleton 18

report program which prints out a script. The report
program incorporates the comments associated with each
step, as well as the script comments. We keep a hard
copy of each script in the file for a program. The
comments give us extra help in executing a script. See
Figure 2-B for a sample portion of a printed script.
{We have also written a "fix" program which is an
automated way to fix the screen buffer in the event that
a client decides to change a screen. We have used it
plenty.)

With the above data base, screen programs and reports in
place, we have a system which allows us to build and
maintain scripts. In order to execute the scripts, we
needed to insert logic to activate {or not activate) the
data stored in the ENSIGN data base. A system like
ENSIGN can be added to the logic of virtually any
program. Figure 3-B shows the network diagram for the
logic we insert at the beginning of each program.
Figure 4-B shows examples of the code in each state
included in the network diagram.

When the time comes to test a program using a script, we
first set a JCW called ENSIGNON to the value 1. The
code we add to each program first checks to see if
ENSIGN is active, and if it is, the program reads script
data from the ENSIGN data base and displays the data for
the first step on the terminal. The program then waits
for a human to push the enter key. Once the enter key
has been pushed, the program executes normally {in
relation to the data that was on the screen), and then
reads the data for the next step from the ENSIGN data
base, displays it on the terminal, and waits for someone
to push the enter key, etc. Because we use a JCW to
activate the testing cycle and a separate data base for
test data must be on the system, it is unlikely that a
user would inadvertently activate the test mode. ENSIGN
is basically transparent to the user.

There are undoubtedly many different ways to implement a
system to automate the testing cycle. The important
point is that the testing cycle must be automated before
systematic and comprehensive software testing becomes an
accomplished fact.

Skeleton 19

Skeleton

MANUAL­
ACTION

ENSIGN DATA BASE

EN-SCRIPT
1

EN-STEP
2

Figure 1-B

20

EN-FORM
3

TUE, MAY 12, 1987, 10:49 AM Script Report Page l

Script SERORDCSD

The SERORDCSD script cannot be run alone. You must run the SERORD02
script first. The instructions for the two scripts are in comments for
SERORD02. This script cannot edit a change on Service Orders already
posted.

************************* Step 10 Form SERVICE-ORD-F

s JMG00012C 30
Message: entry is shown

************************* Step 20 Form

sequence l Push Next Step

************************* Step 30 Form SERVICE-ORD-F

C3979999IN022886 JG JMGOOOl2A35
Message: can not change phone number

0228863977775

************************* Step 40 Form SERVICE-ORD-F

C3977775IN022886 JMG00012C 40022886
Message: must have entry in this field

************************* step 50 Form SERVICE-ORD-F

C3977775IN022886 JG JMGOOOl2C 50022886
Message: bad house number

************************* Step 60 Form SERVICE-ORD-F

C3977775IN022886 JG JMGOOOl2C 60022886
Message: bad street name

************************* Step 70 Form SERVICE-ORD-F

C3977775IN022886 JG JMGOOOl2C 70022886
Message: bad even digit

************************* Step

C3977775IN022886
Message: bad odd

JG JMGOOOl2C
digit

************************* Step

C3977775IN022886 JG JMGOOOl2C
Message: data was changed

80 Form SERVICE-ORD-F

80022886

90 Form SERVICE-ORD-F

90022886

************************* Step 100 Form SERVICE-ORD-F

FIGURE 2-B

Skeleton 21

2Y966822449

2Y966822449

2Y966822449

2Y966822449

2Y966822449

2Y966822449

2Y966822449

DODDDD
G.;I.
L_J

D
ENSIGN
ACTIVE?

"fO
F

T GET-NEXT- F
EN-STEP

error?

GET-EN-STEP LJ LJ
GET-EN- F MOVE-DATA- DISPLAY-TRAN SCREEN-BUF SCREEN-BUF STEP

D
OODDDO

D D 8 TALK-TO- PROGRAM SCREEN LOGIC

CQ
I

M

LLI
C>:
~
<.!:! ,_,
LL.

N
N

c:
0
+>
<U ..-
<U

..:.:
Vl

Skeleton

BEGINSTATE ENSIGN-ACTIVE
IF ENSIGN-ON-FLAG = "Y" AND

V-LASTKEY = 0
SET-TRUE

ENDIF
ENDS TATE

BEGINSTATE GET-NEXT-EN-STEP
WITH EN-SCRIPT-STEP
BEGIN
GET NEXT EN-SCRIPT-STEP
ON ERROR

SET-TRUE
END

ENDS TATE

BEGINSTATE GET-EN-STEP
BEGIN
GET EN-STEP WITH EN-STEP-A
END

ENDS TATE

BEGINSTATE GET-EN-SCREEN-BUF
WITH EN-SCREEN-BUFFER
BEGIN

EN-SCRIPT-STEP.EN-STEP-A

GET EN-SCREEN-BUFFER WITH EN-STEP-A =
EN-SCRIPT-STEP.EN-STEP-A

ON ERROR
SET-TRUE

END
ENDS TATE

BEGINSTATE MOVE-DATA-SCREEN-BUF
WITH EN-SCREEN-BUFFER
BEGIN
FOR EN-I = 1 TO 6

MOVE EN-DATA-BUFFER(EN-I) TO EN-BUF-l(EN-I)
END FOR
END

ENDS TATE

BEGINSTATE DISPLAY-TRAN-STEP
WITH EN-SCRIPT-STEP
BEGIN
MOVE SPACES TO TRAN-Z
MOVE EN-SEQ-NBR TO EN-STEP-Z
DISPLAY TRAN-Z EN-STEP-Z
END

ENDS TATE

BEGINSTATE TALK-TO-SCREEN
MOVE TRAN TO SAVE-TRAN
READ

ENDS TATE

FIGURE 4-B

23

Application Data Exchange - Beyond File Transfer.

Richard Linnett.
Cognos Inc.

Ottawa. Canada

Introduction.

File transfer between the HP3000 and a microcomputer is an increasingly popular tool
allowing users to integrate host data into spreadsheets and documents.
There are problems with simple file transfer however, from the question of how to
define the required extract, or even of how to let a user know what data is avail­
able.
Products are available, not only for HP3000, but for the entire gamut of mini and
mainframe computers, that provide controlled access and transformation to industry
standard formats.
A new need is emerging however, for access to data independent of location. To
provide an adequate solution requires programatic access from an application on the
micro to data at the host, and that poses challenges beyond those addressed by exist­
ing file transfer solutions.
This paper examines the problems we have encountered implementing generalised
access to HP3000 data from a micro, and outlines the solutions we have adopted
in building closely integrated solutions.

Where are we now?

Since the introduction of microcomputers into the office environment, there have been
requests for a means of transferring data from the central HP3000 to the microcom­
puter. Although only two or three years ago these requests were infrequent, they are
now extremely common.
As an example, we find that many companies have developed a series of extracts
based on the following model:
• Use QUIZ to extract, format and summarise required data from the corporate data­

base, saving the report output to a disk file.
• Use a terminal emulation program to transfer the data down to the PC.
• Use a BASIC program to convert what is now a text file into the target format -

for example a PRN file, a comma delimited file, or a DIF file.
• Load the data into the PC application.

This approach works quite well in production situations where the same format file is
transferred often, but because of the effort required to build the transformation pro­
grams, is unsuitable for adhoc requests.

Application Data Exchange - 1 -

What is needed.

The limitations of file transfer and transformation have forced us to look closely at the
problem. The advent of the Cognos product line on PCs, has increased the need for an
effective solution.
We see that in the next few years, that the following will occur:
• The PC will cease to be a standalone machine, but will become a fully integrated

workstation in an overall DP environment. Data exchange between the PC and the
HP3000 will become the norm.

• Rather than upgrading a central HP3000 system, users will opt for an
HP3000N ectra solution that utilises the power of the both the HP3000 and the PC.
Suppliers will be expected to provide connectivity between the two.

• Simple file transfer will not be enough. That effectively batch process will need to
be replaced by interactive data exchange between programs on the PC and the
HP3000.

• The connection will become a pipeline not only for data, but also for distribution
of new or updated programs and applications.

• With the increasing transfer of information between machines, the bottleneck of
asynchronous communications will be overcome by a major increase in the use of
LANs.

• 4GL and other software products will evolve to provide a seamless distribution of
applications between the PC and the HP3000.

• The corporate mainframe will not be allowed to remain isolated, but will be incor­
porated into the network, giving the much discussed 'three tier' solution. Access to
mainframe data will in many cases be through the minicomputer, direct access
from micro to mainframe being disallowed.

A Practical Experiment

The prospect of designing and building a complete solution is daunting, many prob­
lems remain to be solved and much work is required before even prototype systems
can be in place.
We feel that the best approach is to adopt an incremental implementation plan with
clear intermediate levels that lead eventually to full "three tier" integration.
In order to demonstrate the possibilities of a distributed solution, The first implementa­
tion that came to mind was to provide something close to file 1/0 redirection - a call
level library on the PC to transfer 1/0 requests to the HP3000 where a slave process
would call the actual intrinsics. This approach has its attractions, after all this is surely
the concept of virtual disk drives and the like.
We built a prototype distributed system to this 1/0 redirection model, and found much
to no ones surprise, a number of problems:

Aoolication Data Exchange - 2 -

Data communications was a major problem:
• Although the future is definitely with LANs, asynchronous is still the present, and

an asynchronous link between a PC and an HP3000 is a very slow process.
• No message transfer software was available off the shelf, so we had to develop a

series of routines to pass data between the PC and the HP3000. We had to get
involved in all the detail of data communications, the HP3000 proving a most
unforgiving host!

• As everyone discovers, text data transfers reasonably, but binary data transfer
causes problems. A control Y or an ENQ/ACK code for example, would be inter­
preted by the HP3000 as control codes, not only being lost to the program, but
directly effecting the link as well. The problem is easily solved - replace the prob­
lem codes with escape sequences before sending the data and translate back at the
receiving end, the cost being in throughput.

Beyond data communications, many more problems surfaced:
• We needed to develop routines to transform integer values between the two sys­

tems by switching the byte order. Floating point conversion was far more complex,
and what to do with data types that were unique to one machine was not immedi­
ately obvious.

• The problems of application version control are significant. Just what does happen
if the HP3000 database is changed but not all copies of the PC program that update
it?

• Data integrity is also a major headache. The update of an Image database at the
same time as a KSAM file, and maintaining integrity is difficult enough, but the
problem becomes far more significant when the files are on two isolated machines.

• Very few standards appeared to exist for interprocess communications. Although
the prototype worked in our environment, the question always remained, what
would happen if our link had to coexist with some other product?

• For our experiment 1/0 redirection at the intrinsic level was adequate, but would it
be acceptable to the user community as a whole? Would a programmer at the
micro accept coding Image intrinsic calls?

• The model also proved totally inadequate when it came to satisfying the security
requirements of a general purpose link. Security at a file level is totally inadequate
when controlling data that is to be downloaded to a PC. A much finer level of con­
trol is required.

• A further problem is in finding out what data is available on the HP3000. At the
PC, a user will often just scan through files until the right file is found - a similar
approach on the HP3000 would be totally unacceptable. Some directory of avail­
able data is required.

• Performance was a major issue. Time to transfer data across a 9600bps link was
significant, and simple file I/0 redirection requires a lot of data to be moved. In
addition the duration of Locks was much greater when the locks were invoked
from a remote program - and although we did achieve some reduction in process­
ing at the HP3000, the maximum number of concurrent users dropped consider­
ably.

In summary, it was reasonably easy to implement the file 1/0 model and although it
was slow, it worked. The solution was not without problems however, and we feel that
it would be unwise to use this model in any major production effort.

Application Data Exchange - .3 -

What Comes Next?

We have been able to use the prototype to verify our thinking and establish a frame­
work for what will be required of application environments in a distributed world.

we have to address the problems of performance. Unless performance can approach
that obtained when running a standalone PC application, the user will not easily accept
a distributed application. A cursory glance at the prototype system shows that the
major factor in throughput is data transfer across the communications link. We have to
reduce communications traffic to a minimum.

Simplifying HP3000 file structures can be achieved by allowing the user to view all
data on the remote HP3000 as if it were part of a relational dbms.
The use of a relational model has a number of advantages:
• A full relational interface allows complex data manipulations to be defined across

the link. By having the HP3000 perform all selections, joins, sorts accumulations
and the like, only a small result set is transferred across the link. This in itself pro­
viding considerable reductions in the volume of data transferred.

• The relational paradigm removes from the PC, and more importantly the PC user,
the need to understand a number of complex foreign file systems. If mainframe or
'foreign minicomputer' file systems are added to the picture, this independence
becomes even more important.

• The relational model actions data at an item level, not at a record level. It is this
level that is required for adequate security controls on data access.

• By providing the user with a location independent view of the data, we must
expect that data requests will span several systems. Intelligent analysis of a global
request to provide the most efficient sub requests becomes essential.

A strong dictionary on the HP3000 does become essential. It must allow MIS to con­
trol access to the data as well as providing the mapping between the relational model
and the real world of Image and KSAM.

Aoolication Data Exchange - 4 -

Even a simple foray into data communications, like was necessary for our prototype
system, gives an appreciation of the need for adopting a data communications standard.
Unfortunately there are a number of standards to choose from. As an example we
have:
• A NETBIOS/MSNET level interface, very appropriate for connecting a PC into a

LAN. However, look beyond the simple PC interconnect problem - would these be
a suitable standard between HP3000s?

• TCP/IP already with a considerable following. The upcoming link from TCP/IP to
NETBIOS, this would provide a solid interface across many different machine
environments.

• IBM have their own set of rules, (or in this case sets of rules). The most current
being APPC/SRPI.

• The OSI 7 layer standard protocol, increasingly popular in Europe.
Any of the above standards could become the norm, but what is more likely to happen
is that these standards will continue to coexist - each within its own particular sphere
of influence.
Rather than waiting for a dominant standard to appear, we have found it necessary to
adopt the following approach:
• No application will interact directly with the communications environment, but will

use the equivalent of an IBM APPC call level interface.
• A number of fairly intelligent interface routines, providing at the low level, calls to

a particular communications standard are needed. This will allow the required
interface to be selected at run time.

Transformation of data types is simple if we have simple record structures, well
behaved programs and only Vectras and HP150s to contend with.
However:
• Other machines, particularly the Apple Macintosh and 680x0 based Unix systems

are becoming more popular.
• Data files do not have simple record structures, complex redefined records have

always been around.
• Many programs assume alignment and bit or byte ordering in a data record - struc-

ture that does not hold true across machine architectures.
It becomes necessary to adopt a complete data transformation strategy if future prob­
lems are to be avoided. One defacto standard exists, the External Data Representation
(XDR) developed and released to the public domain by Sun Microsystems, provides a
means of t:ncoding data independently across a link between any number of hetero­
geneous systems. This standard does solve the problem of data transformation between
any number of systems but it is not a total panacea - the program that makes assump­
tions about structure may still give invalid results.

Aoolication Data Exchange - 5 -

Application currency is another topic of extreme importance. As we move away from
central operations, the basically manual methods now used to control implementation
of new versions of an application are no longer adequate.
The problem extends to all aspects of a distributed application. We must anticipate not
only duplication of programs, but also data files and dictionary information as well.
Admittedly the use of virtual disks to hold central copies of an application makes it
easier to control, but in reality we no longer have control over the version of an appli­
cation the end user will try and use.
The application itself will have to provide the required controls over product versions
used. This could be left entirely to the programmer, requiring the exchange of some
control messages that identify the application level. More likely however, is an
environment where the underlying software provides a complete set of controls that not
only verify currency but will also replace out of date versions where required.
The process is extremely simple in concept, yet there are problems if a global resource
such as Dictionary 3000 is used, that would preclude the use of simple 'date last
updated' algorithms to recognise an incorrect version. This type of problem needs to
be solved if complete version control is to be made available. However, at a minimum,
the software MUST recognise correct version(s) of a program, preventing use of any
incorrect version.

Data integrity is a major concern. Problems exist when updating across KSAM files
and an Image database on the same HP3000. The problems are magnified in a distri­
buted environment:
• If the application data exists across a number of PCs as well as on the HP3000,

how can the data be guaranteed to be correct?
• If data is replicated on a number of systems across the network in an attempt to

improve performance, how is the data guaranteed to be current at all times?
• What happens if the data on the HP3000 is updated, but an error occurs on the PC

before data there is fully updated, will data be out of sync between the two
machines?

Some database systems do use a technique known as two phase commit to control
updates between databases (which may be distributed across machines), but they work
strictly within the bounds of the database files - KSAM and MPE file updates are not
included.
A practical approach must be adopted if integrity is to be maintained, as follows:
• Data updates have to be performed within strong transaction boundaries, with all

changes within a transaction applied correctly, or none applied. Applications can­
not be allowed to make unconstrained updates across file systems.

• Partial transaction completion must be avoided at all costs.
• Where possible, The techniques of two stage commit must be applied across the

network to ensure compatibility between data on the different machines.
This approach is not foolproof, and it may cause some performance degradation. How­
ever that must be weighed against the problems caused by the corporate data becoming
corrupt. What is likely is that many applications will be built that place restrictions on
where updates can be performed, disallowing cross machine updates within a single
transaction.

Aoolication Data Exchange - 6 -

Summary

We, like most software suppliers, have been working on integration of the PC into the
corporate HP3000 world.
We believe that although the hardware vendors may well provide the essential connec­
tivity, it will still require considerable effort to integrate systems into a seamless user
environment.
This seamless integration will require many of the features that are now found in a
4GL:
• A Strong data dictionary will be needed to identify available data, to define the

location of data, to transform the data between machine specific syntax, and to pro­
vide necessary controls over access.

• Extensive recovery mechanisms will be required to ensure integrity of data not
only between file types, but across heterogeneous computer systems.

• Equally complete mechanisms will be needed to support the integrity of the appli­
cation itself. New versions of application programs, table files etc must be pro­
pagated automatically across the network.

• The application language for building distributed applications will, of necessity be
easy to use - many users will be non technical micro users performing ad hoc
requests. However, the language will also need to be extremely powerful to support
programmers wishing to build true distributed applications.

PC integration is arriving - it may be painful over the next few years with incompati­
bility between products causing problems. However, once the marketplace settles down
the potential is great:
• The usefulness of the PC will increase substantially as data from corporate systems

becomes available to the PC application.
• By giving the user access to corporate data, through simple PC type products,

demands on MIS resources for simple adhoc extracts could be reduced.
• The HP3000 will be offloaded considerably, much of the processing required for

presentation of user data being done where it belongs - on the PC.
In the long run, both user and MIS manager will benefit.

Application Data Exchange - 7 -

SIMULATING RELATIONAL DAT ABASES USING IMAGE AND
OTHER CURRENTLY AVAILABLE SOFTWARE

INTRODUCTION

Kerry Lloyd
System Manager, HP3000

System Automation Corporation
8555 16th Street

Silver Spring, MD 20910

Much attention has been drawn lately to the subject of relational
databases. Essentially, a relational database allows the rapid
extraction of desired data from a number of related and unrelated
datasets into tables from which desired reports can then be drawn.
Speed and ease of programming the queries from both the original
dataset grouping and the extracted tables are deemed to be
hallmarks of a relational database.

The IMAGE database available on HP3000 computers is a networking
database, and as such has the capability to simulate relational
databases given proper design and the use of some currently
available software items such as 4GLs and database manipulators.
While IMAGE may not be the fastest DBMS in existence, its
capabilities are extensive and, properly utilized, can provide an
acceptable substitute for a newer software technology.

This paper endeavors to describe some working principles which will
provide such a capability using IMAGE. Principles are discussed in
general, but a example database and programs for handling a football
pool have been provided to be made available on the CSL tape. Since
the 4GL in use at the author's company is POWERHOUSE, concrete
examples within the paper, and including the pool database, are
provided in that language; two database manipulators or handlers
(DBH), ADAGER and DBGENERAL, are also in use, and references to
DBHs relate to either of these products.

1 Relational Simulation

DEFINITION OF TERMS

Several relatively new terms and others commonly heard will be
used frequently in the course of this paper, so it is only fair to
provide the reader with definitions.

Volatile Data

Extract Table

DB Handler

data which is changed frequently; records are
added or deleted on a regular basis, or the data in a
given record or set of records is updated on a
repeating but relatively short schedule. Detail files
such as invoice headers and line-items or payroll
information collected on a weekly basis fall into the
volatile data category.

data which changes infrequently if ever; files are
used for lookup or contain master data records
which do not require update. Files containing
information such as company addresses, meanings
of codes used for lookup, etc., are the prime
members of the static data category.

a set of records containing the desired data to be
used to produce one or several reports. Such data
has been culled or combed from the database
records and put into a separate file. The speed of
reporting is considerably improved when reports
are produced from extract tables.

(DBH) a software package which allows the
appropriate users to "fiddle" with the database, in
terms of adjusting capacities, adding or deleting
paths, items, and datasets, etc. Examples of DBHs
include ADAGER and DBGENERAL; several others are
available but the author has only had a small
amount of exposure to these other packages, and
does not feel qualified to comment on them. All
handlers should share certain capabilities in
common, including path manipulation and item and
dataset creation and modification.

(4th Generation Language) a procedural language
which allows users to develop applications for
database usage in appreciably shorter time than the

Relational Simulation 2

3rd generation languages such as FORTRAN and
COBOL. A 4GL should include a dictionary, a data
entry facility, a reporting facility, and transaction
processing capability. Example 4GLs include
PROTOS, SPEEDW ARE, and POWERHOUSE, all of
which should have the intrinsic ability to perform
the actions indicated for relational simulation
(multidataset linking and extraction of desired data
into subfiles, pref-erably keyed or internally
described in some fashion).

DATABASE DESIGN (OR REDESIGN)

Several principles of general database design will be presented in the
following paragraphs. Some of these will undoubtedly stick in the
craws of designers and analysts since they are fairly radical and
generally unheard of, but the author has found them to be valid, and
of considerable use in the performance of his design, programming,
and maintenance duties.

One thing to remember in the course of reading this paper, time
spent in retrieving records, especially in the case of monster datasets
(100,000 to 500,000 records and greater), is more important than
additional time spent during data entry. A six hour delay in making
a decision which must be based on information provided by data
retrieved from such large sets by serial read could be very costly; a 2
to 3 second delay in entering an individual record because of the
IMAGE-generated DB calls necessary to set the pointers in the key
fields, while seemingly unacceptably time-consuming in the
aggregate, is of little consequence when considered on a daily basis
for a given operator. Rapid access to information has become
considerably more important than speed of data entry.

Major principle the first: all databases should be as thoroughly
normalized as possible. Datasets should be of the shortest length
compatible with efficient operation, and all the data in the given
dataset should be closely related. Although the theoretical ideal is
one field per dataset, this is not practical in real world applications.
However, the number of fields/items in a dataset should be kept as
low as possible. Normalization also allows the spreading of datasets
individually onto separate disc-drives, which speeds operations
considerably. Years ago, storage space was a prime consideration in
database design; this is no longer true - with the advent of new
drive technologies, data storage has become incredibly inexpensive

3 Relational Simulation

(relative to past costs, of course), and no longer need have influence
on the shape of our databases.

The use of array fields/items in datasets is usually frowned upon by
IMAGE database designers, since QUERY/3000, the original querying
facility for the IMAGE database system, was not capable of handling
arrays other than indicating the first occurrence of a given array,
even though IMAGE has had array capability since its inception. All
4GLs should be capable of handling arrays in a dataset record, so this
prohibition no longer has validity; in fact, in most cases, it will make
coding of reports and transaction processes much easier if arrays are
used in database records. When putting a total for a month into an
annual array, it is much faster to be able to reference one occurrence
of the array with a variable index than to create a complex
IF-THEN-ELSE statement to access the individual items separately by
unique name; many other situations would benefit from this precept
as well.

Each dataset requires at least one key field to be accessible at all.
Additional keys to facilitate record retrieval may be used, but no
more than four should be used in an individual dataset. If more than
four keys would be required, the dataset is too long in terms of
unrelated data items and should be normalized again (broken into
two or more new datasets). Sorted chains can be utilized to enforce
some sort of order on the records in a dataset for reporting and
retrieval purposes, and designers should capitalize upon IMAGE's
ability to extend sortfields with proper arrangement of fields within
the dataset record. The principle of limiting extension of sort by
placing the sort field at the end of the record is still valid, but, in
some cases, extension of the sort across five or six additional
fields/items may be desirable.

Some ideas for useful key types include zoned fields six bytes in
length for date fields, the K2 and K4 numeric items (unsigned
integer) for arithmetic keys, SOUNDEX keys to provide an additional
retrieval capability on fields containing names, and initials-keys for
use in records relating to people.

If 6-byte zoned fields are used for dates, for instance, the structure
presented below could provide most of the retrieval possibilities
necessary for date-keyed records (the example is in POWERHOUSE,
but should be easily translatable to other 4GLs). The date should be
stored in YYMMDD order for maximum utility and least programming
manipulation.

Relational Simulation 4

RECORD KEYED-BY-DA1E
ITEM DATA-FIELD-1
ITEM DATA-FIELD-2
ITEM DA TE-FIELD
REDEFINED BY

TIEM DA1E-KEY

TIEM DAY-FIELD
END

TIEM SORT-EXTENDER

CHARACTER SIZE ??
INTEGER SIZE ??
ZONED UNSIGNED SIZE 6

ZONED UNSIGNED SIZE 4 &
KEYLINKSTOKEY-SET&
SORIBD ON DAY-FIELD
; YYMM portion of date field
ZONED UNSIGNED SIZE 2

(DESIRED TYPE) SIZE ??

K2 and K4 unsigned fields are not recognized or reported by QUERY,
but they can be used as indices for sorted chains or as key fields
without the problems generated by signed integers. Since most
fields of this type deal with positive integers only, the sort comes out
in the desired order, not effectively inverted; negative numbers are
sorted in reverse order after the positive numbers, since numerical
sorts are performed in binary and bit 15 is the sign bit with 1
indicating negative. The problem with QUERY can be effectively
ignored, since most reporting will be performed only through the
4GL.

SOUNDEX (SOUNd inDEX) is based on the idea that many letters of the
alphabet produce the same general class of sound. Using this idea,
names can be grouped by similarity of. sound, for instance, Smith,
Schmidt, and Smythe. Providing a key field based on SOUNDEX can
speed retrieval of records when a particular key is not known
exactly; if the last name of a customer could be Johnsson, Johnson,
Johnssen, or Johnsen, all possibilities can be more rapidly checked
using a SOUNDEX key. POWERHOUSE 5.01 has a SOUNDEX routine
built in, and if other 4GLs do not have a similar routine, it should be
relatively easy to construct one (appendix A contains the principles
used for SOUNDEX creation). Initials can be used for keying
personnel records in a similar fashion, although to get proper sorting,
they should be constructed as L(astname)F(irstname)M(iddlename).
In a personnel management information system recently constructed
at the author's company, personnel records are keyed both by
employee number and by initials, since the employee number is not
as likely to be immediately called to mind when one needs to do
casual and relatively rapid information retrieval.

5 Relational Simulation

In many cases, juncture files can be used to relate other data-sets. A
juncture file is basically two or more key fields linking the same
number of datasets. For instance, in a skills resume operation, the
juncture file between the personnel file and the skills file contained
items for a repeating key on personnel (employee number and
initials), a repeating key on skill (by skill code), date of last update,
and the number of months experience in the skill, a total of five
fields. This design allows an unusual retrieval setup: keyed
retrieval by skill, returning into the same dataset keyed by
employee number (from the original record retrieved) to get all of
each employee's skills. If the skill code retrieved indicates database
design, for instance, all other skills for those employees who are
database designers are retrieved at the same time, and appropriate
resumes can be prepared easily. An example of the ACCESS, SORT,
and REPORT statements is shown below. Note that all sorting and
reporting references the second file; this file contains the original
record retrieved as well as all the others for the employee. This is, of
course, just a skeleton of the real report, with only basic information.

ACCESS SKILLS-LIST &
LINK EMP-NO OF SKILLS-LIST &

TO EMP-NO OF SKILLS-LIST ALIAS OTHER-SKILLS

SORT ON EMP-NO OF OTHER-SKILLS

REPORT&
EMP-NO OF OTHER-SKILLS &
SKILL-CODE OF OTHER-SKILLS

Major principle the second: databases do not require (and should not
have) manual masters. Databases should contain only detail datasets
and the automatic masters to which they are keyed. In fact, manual
masters tend to slow overall retrievals down. Most manual masters
are used for storage of static data: customer data, lookup definitions
keyed by codes, etc. Volatile data is generally stored in detail
datasets, or should be; this also enables additional keys to be defined
for more rapid retrieval, and storage of multiple records for the same
key value. Since IMAGE essentially employs a FIFO queue to
determine the order in which DB calls are handled, calls to manual
masters for lookup clog the system. Lookup or reference data should
be accessible, but should not be part of the database proper.

Static data for lookup should be kept in KSAM files outside the
database proper. This technique has several advantages. KSAM

Relational Simulation 6

handles retrievals for multiple users/sessions at appreciably the
same time; calls to KSAM are not shunted into a queue - therefor,
retrieval is to all appearances faster. Effectively, although IMAGE DB
intrinsics are actually faster on a individual basis than KSAM in­
trinsics, KSAM is faster in the aggregate. KSAM also allows
secondary repeating (non-unique) keys, which IMAGE manual
masters do not, and partial-key retrieval, which IMAGE does not. A
customer address and information file in KSAM, which will see little
change generally, can be keyed additionally to enable retrieval of all
clients in a given state, all with a given zip-code (and a real bonus, all
with the same first three digits of a zip-code), etc. It should be noted
that KSAM is not capable of performing its partial-key retrievals on
most numeric data; to enable partial key calls on number sequences,
the field must be zoned, and leading zeros included in the partial-key
value being used.

There are several standard complaints about KSAM. Answers
hopefully satisfactory are provided for the three most common.

No logging in KSAM: Who needs it? This is static data we're talking
about - it doesn't change frequently, and the last fulldump should
enable reloading of the file with a minimum of fuss, and virtually no
loss of integrity.

Files can be corrupted or destroyed by a crash: This is partly
answered in the previous complaint - reloads are very easy. KSAM
files are destroyed if being written to during a crash, not just open
for reading - the static data answer applies again. Additionally,
HP3000 machines and MPE are very reliable, and crashes are
becoming less and less frequent.

KSAM is too hard to work with. the intrinsics are all different:
Programmers and database design~rs will not be working with KSAM
per se. 4GLs handle all of the dog work connected with access to
both KSAM and IMAGE (and if yours doesn't, it might be time to
investigate others). When was the last time you used a DB intrinsic
call if you're generally working with 4GLs?

A set diagram of a database constructed using the principles de­
scribed so far may be found on as Appendix B. This is the football
pool database mentioned previously. The actual database and
attendant programs and documentation (in POWERHOUSE source
code) may be found on the swap tape for this conference; a general
set of operating rules for the pool is given in Appendix C ..

7 Relational Simulation

Major principle the third: don't overload automatic masters with too
many paths. It is a temptation to cram as many paths as possible
into an automatic master, and the limit is quite high - 15 paths are
allowed by IMAGE. But just as many paths into a detail dataset de­
grades performance in accessing and updating the detail, too many
paths into an automatic master also causes problems. It should make
no difference at all, but more than nine paths from an automatic
master to various detail datasets seems to cause an almost
asymptotic drop in performance. While there is a fairly high limit
(63) on the number of datasets that an IMAGE database may contain,
it is better to keep that number fairly low as well. Database
normalization should include the principle that only related datasets
should be in a given database. 4GLs have no problems handling
multiple databases, and a larger number of smaller databases could
contribute to a small speed up in access times, since a retrieval could
be spread across several databases rather than one and would avoid
the problem with stacking in the IMAGE "queue".

A suggested method for avoiding this possible problem is to trace no
more than one path to an automatic master from an individual detail
dataset, and to group paths by class of data rather than strictly by
type of item. All the year-month key paths for completion, for
instance, could be traced to one automatic master, while the
year-month key paths for starting date could be traced to another.
There is seldom more than one such key per detail dataset (at least
there shouldn't if the database is well designed). So this method
should resolve the problem before it appears.

Another general principle: transaction processors tend to work
faster than reporters. Use a transaction process to extract the data
into a subfile, linking as many datasets as necessary to provide all
the data needed, then run the report from the subfile. The
transaction process will run fairly swiftly since it accesses those
additional records which it is using by key, even on a serial read on
the base dataset; if the base file for the process can be read by key, it
will be even faster, since a good portion of the records in the base
dataset will be effectively skipped or ignored (how about never even
accessed!). Select only those data fields needed for the report when
you specify the subfile, but do include lookup data that might come
from very large records, particularly if it is likely to be used as a sort
value. This process will form an extract table; in many cases, this ex­
tract table may be used for several different reports if it is
thoughtfully built - but don't put too much information into it. The

Relational Simulation 8

smaller the record size, the more records that will be in a block, and
the faster the various programs accessing the table can run, espe­
cially if sorting is involved. Sorting will be considerably easier for
the system to accomplish if the record size in the extract table is
relatively small, since the size of any sortfile (which requires space
on the disc) will be determined by the size of the subfile being used,
plus the size of any records being added for lookup. As an example
of the time saving available using this method, a report run directly
from the database, with a number of arithmetic and accumulation
operations, required over sixteen hours to run to completion; the
same report ran in three minutes when prepared from an extract file
selected by a transaction process which required an hour and a
quarter to run. This shows considerable time saving - a 12 to 1
differential on the runtime for this particular report. Even with the
time figured in for writing the extraction process (about five hours),
there was still a 2 to 1 difference in time spent.

When creating extract tables, remember that a field being used as a
key in a dataset which is the object of a link does not necessarily
have to be a key in the calling dataset (the subject of the link). Any
field can provide a value, of any type, to be used for the link; various
conversion utilities are available in the 4GLs to facilitate data con­
version from one form to another. The only requirement in this
respect is that the linking field or value must be of the same general
type (character, integer, zoned, etc.) as the key to which it is being
linked, and that it must be neither longer nor larger that the key
being called (40 characters linking to 20 "jest don't work", although
20 linking to 40 will; a value greater than 65535 or less than 0 can't
be used to link to a K2 key; etc.).

SIMULATION OF RELATIONAL STYLE

To be able to simulate a relational style with an IMAGE database,
several items are needed: a well designed database, a 4GL, and a
database handler.

The well designed database may be constructed (or reconstructed, as
the case may be) using the principles outlined above. Database
designers should strive to have their products well designed whether
they are using this methodology or not - it cuts down on
maintenance. Many 4GLs are available on the market for quite
reasonable prices, and no site should be without one (not if the site
expects to keep up with the Joneses, so to speak). The main purpose

9 Relational Simulation

of the DBH is to allow path changing as necessary, which happens to
be a major component of the simulation.

Since data can be retrieved from detail datasets quickly only if the
search item is a key (or if the dataset has comparably few records in
it), being able to add and/or delete paths into datasets is a virtual
sine qua non of the simulation process. Granted, such a change to a
database requires a good deal of time, since both the automatic
master and the detail set must be rebuilt by the DBH to provide room
for the new pointers for the additional path. However, assuming the
database was fairly well designed and constructed in the first place,
this restructuring should not be a daily occt,urence. In~ many cases,
the process can be completed overnight by using a stream job, or
over a weekend, or by someone calling into the system by modem
from home (most of the people involved in database changes of this
caliber seem to have terminals and modems at home, and beepers
with which the operations people on site can scream for help if
necessary). DBGENERAL has a batch facility already, and it is well
documented, and the line of answers for ADAGER can be traced
rather easily; if the process is done frequently, permanent job
streams can be set up which require only changes of the names to
function properly. Whatever method is used, it is highly
recommended that a backup of the old version of the database be
performed prior to the change process, and a similar backup of the
newly redesigned database be made as soon as the change process is
completed; Murphy operates in any situation in which he can!

To recap: simulation of relational database style can be accomplished
using IMAGE by arranging (and/or rearranging, using a DBH) the
database to allow the swiftest retrieval of pertinent data, which is
put into extract tables using a 4GL, and then reported from the ex­
tract table by a 4GL report writer. This may seem rather simplistic,
but that's about all there actually is to it.

Relational Simulation 10

Appendix A

SOUNDEX Principles

SOUNDEX routines should be constructed to use the following
principles, paraphrased from the POWERHOUSE manuals.

1. Always keep the first character in the word as a character,
whether vowel or consonent.

2. Remove all but the first instance of adjacent identical letters.

3. Drop all vowels (A, E, I, 0, U) including W, Y, and H, unless the
vowel is the first letter of the word.

4. Replace all
values:

1
2
3
4
5
6

letters but the first with the following

for letter B, F, P, or V
for letter C, G, J, K, Q, S, X, or Z
for letter D or T
for letter L
for letter M or N
for letter R

numeric

5. If adjacent assigned numeric values are equivalent, remove all
but the first instance.

6. Pad the remainder of the result with zeros.

The rules just provided will handle most words or names in English.
Other languages can not be guaranteed for proper results.

11 Relational Simulation

I

I
I

Appendix B

SET DIAGRAM FOR THE FOOTBALL POOL DATABASE

MPE flat file KSAM

'
BANK PEOPLE

MPE flat file KSAM

SETUP TEAMS .

r--
Detail L!.uto Master~ L!.uto Master'

SCHEDULE
GAMES TEAM-ID .. ··: ..

...

Detail ,Auto Maste~ Detail

PICKS ··.····· PLAYERS .. T-STATS :

Detail 6uto Master~ Detail
.... :

TIEBREAK WEEKS ... P-STATS •....

--

Relational Simulation 12

Appendix C

Operating the Football Pool

The football pool database provided on the CSL as an example of the
principles expounded in the foregoing paper is fairly easy to operate.
All the data entry screens, transaction processes, and reports
required are included on the tape. These are provided in source
form only, and must be compiled to function. The account structure
for the pool overall is designed for three groups: • DAT A, • SR C, and . X.
All of the source files have file type codes to describe their function,
with a given source having a code 100 lower than the corresponding
compiled POWERHOUSE file code: 540 is dictionary source, 541 is
QUICK screen source, 542 for QUIZ reports, and 543 for QTP runs. If
subfiles are built, the name begins SF; most subfiles are temporary,
but there are some permanent ones - there are, however, SIZEd to a
limit of 500; if there are more players than expected, raise the limits.

Make whatever changes might be necessary in terms of group and
account to fit the pool onto your system. The source uses
POWERHOUSE 5.01. Compile the dictionary after making appropriate
changes, then CREA TE the database and auxiliary KSAM and MPE
files. Three MPEX 'user' template files are provided in • SR C to allow
easier compilation of the files in the system. Several documentation
files are provided in • SR C (code 549) to provide more in-depth
explanations.

The first and one of the most important aspects of operating the pool
is to enter the team names and the season's schedule on the
appropriate screen. Then decide what the amount of each entry will
be ($2 to $3 is suggested), and whether a portion will be reserved for
end of season payout (best and worst averages, season high and low
scores, most wins, highest and lowest total points scored, etc.) - if so,
how much (as a percentage). The pool's programs will calculate how
much is to be paid to the winner of the pool each week, depending on
the entry fee, less any reserved amount, and the number of entries
for a given week; it also keeps track of the reserved amount due at
season's end. The minimum number of weeks played in may also be
set at this time to determine winners' eligibility for end of season
bonuses.

Playing the pool is based on the line established for each week's
games; this should be picked up on Tuesday morning. The spread

13 Relational Simulation

(the points given to a team to ensure an even bet in each game) is
included for all scoring. If the Giants beat the Bears by 10 (a
touchdown and a field goal), but the line gave the Bears a 13-point
spread (they had to be beaten by two touchdowns), then for
purposes of the pool, the Giants have lost and the Bears have won.
There are fourteen games played each week; players select the team
they expect to win in each match-up (spreads included), and assign a
"confidence factor" of from 1 to 14 to that game (each number is
used only once) - a player's final score each week is the total of the
confidence factors for the games in which s/he has selected the
winning teams. The pick sheet should be returned to the pool
co-ordinator by 6:00pm Thursday evening (there are occasionally
Thursday games). Winners can be announced the following Monday
morning, unless a tie-breaker is necessary, in which case the Monday
night game should suffice (although a total points guess on Monday
night's score serves as a further tie-break).

Players are entered into the system only the first time they play.
After that, the code assigned to each player is used to keep track of
various situations, including entries and statistics; a player may also
enter more than once in a week - extra codes are generated for
additional entries by the same player. If the base code for a player
is LKDOlA (Kerry David Lloyd, first entry for the week, first set of
initials LKD), then the second entry in a week is LKD02A, and the
third LKD03A. The programs also check for like initials, and will
assign B to the second player with the same initials (LKDOlB for
Kevin Donald Lucas), C to the third, etc. Statistics are kept for both
teams and players, with printouts available for team records (actual
won/lost, times spread beaten, total points scored, total points scored
by opponents), and each 4 weeks (or bi-weekly or weekly if desired)
for player standings, divided into sections according to number of
times played.

Printouts available include: the following week-end's games with
spreads, scores for the previous week with winning players and
amounts awarded, weekly team statistics (as described above), and
player statistics. Screens are designed to allow the easiest and
fastest data entry; overall time to run the pool can be as little as 2
hours a week for 50 to 60 players.

Relational Simulation 14

INTRODUCTION

ELIMINATE THE 4 AM BLAHS !

By Pat Lockwood & Joe Junker

Orion Systems Technology, Inc.
6534 Place D'Valencia

Phoenix, AZ 85014
(602) 840-9157

How many times have you received a phone call like one of the following,
particularly in the middle of the night?

Joe, you know that job that adds FRIVITS transactions to the ARPGNU
data base? Well, it just blew up with an IMAGE error number 16. Will
you come in and do something .. this job has to finish by morning.

or Hey, Pat, we were running the LVRWURST job and it collapsed! When
Herman was the programmer on this job, he used to come in and change
some file equations, but I don't know exactly how. Help me, will
you. The boss says this job is hot.

Most of these can be avoided; MPE's file system, the IMAGE intrinsics, and
a little planning can help you eliminate those 4 AM BLAHs.

This paper will explore the use of some standardized techniques that can
easily be used by COBOL programmers (and others) to predict potential
problems, and then take corrective action before they occur.

The specific problem addressed here is the lack of space in a file or data
base for holding transactions to be posted. That sounds pretty basic, but
historically has been a serious problem for data processing operations
departments. This seems to be particularly true for purchased
applications, and shops that have converted to the HP3000 from other
systems. It's also true in new development in shops that create long job
streams with many builds of new files.

To determine how to prevent the problem, let's first examine some
situations that cause it.

Eliminate the 4 AM BLAHS! 1

Unless totally on-line, most systems have some combinations of the
following posting type programs:

DB to DB

DB to File

File to DB

File to File

Typically used for conversions and inter system data
feeds.

Used for extracts, sorts, etc.

Commonly used for transaction posting, conversions, and
inter system interfaces.

Used for rebuilds of KSAM files, transaction to master
updates in older batch oriented systems, and other
similar work.

All of these share a common characteristic; if you know your input volume,
you can predict the amount of space required for your output. This means
that you can either create enough space for the target, or ensure that
enough exists before starting the update process.

And, if you can do that, you will save many headaches and minutes (or
hours) required to restore the files or data base before restarting the
application with, what you hope is, the appropriate space available.

Let's look at some samples of the simple rule, "Know your input volume and
build or verify the required output space~.

DATA BASE to DATA BASE

The first example is fairly simple; read a data set from one data base,
and write it into another. For the sake of the example, we'll assume we're
reading the INPUT data set of OLDDB, and writing to the OUTPUT data set of
NEWDB. Further we'll assume that all of INPUT must be written, and that
OUTPUT is empty. (This is a conversion job).

The following page contains the IMAGE calling parameters we'll be using.

Eliminate the 4 AM BLAHS! 2

01 DB-BASE-NAME.

05 DB-OPEN-NUM
05 DB-OPEN-FILE

01 DB-STATUS.

05 DB-CONDTN-WORD

PIC X(2).
PIC X(24).

COMP PIC S9(4).

88 DB-OK
88 DB-NOT-FOUND

VALUE ZERO.
VALUE 17.

05 DB-STAT-REC-LGTH COMP PIC S9(4).
05 DB-STAT-REC-NUM COMP PIC S9(9).
05 DB-STAT-NUM-ENTRIES COMP PIC S9(9).
05 DB-STAT-PRIOR-REC-NUM COMP PIC S9(9).
05 DB-STAT-BEGIN-CHAIN COMP PIC S9(9).

01 DB-SET-NAME PIC X(l6) VALUE SPACE.

01 DB-MODEl
01 DB-MODE202

01 DB-INFO-DATA.

COMP PIC S9(4)
COMP PIC S9(4)

02 DB-202-NO-ENTRIES-AVAIL COMP PIC S9(9).

02 DB-INFO-BUFFER-202.

05 DB-202-NAME
05 DB-202-TYPE
05 FILLER
05 DB-202-WORD-LENGTH
05 DB-202-BLOCKFACTOR
05 FILLER
05 FILLER
05 DB-202-NO-ENTRIES
05 DB-202-CAPACITY

PIC X(l6).
PIC X(l).
PIC X(l).

COMP PIC S9(4).
COMP PIC S9(4).
COMP PIC S9(4).
COMP PIC S9(4).
COMP PIC S9(9).
COMP PIC S9(9).

VALUE 1.
VALUE 202.

In. addition to the standard IMAGE parameters, we have DB-INFO-DATA; a most
handy little buffer. It's used for the return of information from a call
to DBINFO, mode 202.

This is shown on the following page.

Eliminate the 4 AM BLAHS! 3

Remember, we need to know how many entries there are in the INPUT data
set, and if there's enough room to write them to the OUTPUT data set. The
IMAGE intrinsic DBINFO can determine both. This example assumes an empty
data set in OUTPUT for a conversion program.

MOVE OLDDB base name
MOVE "INPUT"

CALL "DBINFO"

IF (NOT DB-OK),

TO DB-BASE-NAME.
TO DB-SET-NAME.

USING DB-BASE-NAME,
DB-SET-NAME,
DB-MODE-202,
DB-STATUS,
DB-INFO-BUFFER-202.

PERFORM db-error-routine

GOBACK.

MOVE DB-202-NO-ENTRIES TO input-count.

Assuming we had no error conditions, we now have a count of the number of
entries in the INPUT data set of OLDDB stored in input-count.

Eliminate the 4 AM BI.AHS! 4

All we need to know now is the amount of space available in the OUTPUT set
of NEWDB. We can use the same intrinsic.

MOVE NEWDB base name
MOVE "OUTPUT"

CALL "DBINFO"

IF (NOT DB-OK),

TO DB-BASE-NAME.
TO DB-SET-NAME.

USING DB-BASE-NAME,
DB-SET-NAME,
DB-MODE-202,
DB-STATUS,
DB-INFO-BUFFER-202.

PERFORM db-error-routine

GOBACK.

IF DB-202-CAPACITY < input-count,

PERFORM data-set-full-error-routine

GOBACK.

If there isn't enough room (DB-202-CAPACITY) to hold the input records
(input-count), then there isn't any reason to continue processing. We
can expand the OUTPUT data set of NEWDB without having to first restore or
erase it due to having it partially updated.

Eliminate the 4 AM BLAHS! 5

DATA BASE to FILE

The previous example was a fairly simple case; loading a data set into an
empty data set that already exists. It's fairly common to need to know how
big a file must be to hold entries to be extracted from a data set. Of
course, if you use a BUILD command in a permanent job stream, you're stuck
with it.

A more reliable way is to build the file from within your program to the
size desired, based upon the number of records to be extracted.

The next example will be a little more complex. In this case, we're
extracting only a subset of the INPUT data set. It was built with a search
item, YR-MO. The rules for the extract are:

Select only those records that are between START-YR-MO
and END-YR-MO, inclusive. The extracted records are to
be written to a file for later processing.

We want to ensure that the file is large enough to hold all of the
extracted records, but certainly don't want to build it to some excessive
size that will waste disc space.

We'll need a little more working storage for this one. The next page
illustrates the additional work areas used.

Eliminate the 4 AM BIAIISI 6

01 BUILD-COMMAND.

05 FILLER PIC X(38) VALUE
"BUILD outfile;REC--170,24,F,ASCII;DISC-".

05 NUM-RECS PIC 9(9) VALUE ZERO.

01 COMMAND-LINE.

05 MPE-COMMAND
05 FILLER

01 COMMAND-ERROR
01 COMMAND-PARAH

01 START-YR-MO.

05 START-YR
05 START-MO

01 END-YR-MO.

05 END-YR
05 END-MO

01 FIND-YR-MO.

05 FIND-YR
05 FIND-MO

PIC X(79).
PIC X(l) VALUE %15

COMP PIC S9(4).
COMP PIC S9(4)

PIC 9(2).
PIC 9(2).

PIC 9(2).
PIC 9(2).

PIC 9(2).
PIC 9(2).

Let's take a look at another way of determining how many records we may
have to process. Since we only need a subset of the INPUT data set, using
DBINFO might save us from disaster, but would also tell us the total
universe from which we only want a portion.

DBFIND does more than locate the first entry in a chain; it also tells us
how many entries there are. And that can be a valuable piece of
information.

On the next two pages, we'll look at a short section of code that uses
this facility.

Eliminate the 4 AM BLAHS! 7

FIND-AND-COUNT-INPUT.

MOVE "INPUT"
MOVE "YR-MO"
MOVE START-YR-MO

PERFORM ADD-TO-NUM-RECS.

IF NIJM-RECS - ZERO,

TO DB-SET-NAME.
TO DB-ITEM-NAME.
TO FIND-YR-MO.

PERFORM nothing-found-routine

GOBACK.

MOVE "PURGE outfile" TO MPE-COMMAND.

CALL INTRINSIC "COMMAND" USING COMMAND-LINE,
COMMAND-ERROR,
COMMAND-PARAM.

MOVE BUILD-COMMAND TO MPE-COMMAND.

CALL INTRINSIC "COMMAND" USING COMMAND-LINE,
COMMAND-ERROR,
COMMAND-PARAM.

IF COMMAND-ERROR NOT = ZERO,

PERFORM command-error-routine

GOBACK.

Eliminate the 4 AM BLAHS! 8

Continued

ADD-TO-NUM-RECS.

CALL "DBFIND"

IF NOT DB-OK) AND
NOT DB-NOT-FOUND

USING DB-BASE-NAME,
DB-SET-NAME,
DB-MODEl,
DB-STATUS,
DB-ITEM-NAME,
FIND-YR-MO.

PERFORM db-error-routine

GOBACK.

ADD DB-STAT-NUM-ENTRIES

IF FIND-YR-MO < STOP-YR-MO,

IF FIND-MO= 12,

MOVE 1
ADD 1

GO TO ADD-TO-NUM-RECS

ELSE,

ADD 1

GO TO ADD-TO-NUM-RECS.

TO NUM-RECS.

TO FIND-MO
TO FIND-YR

TO FIND-MO

A series of DBFINDs allows us to add the number of entries found before we
issue the build command. The paragraph FIND-AND-COUNT-INPUT sets up, and
when all input is counted, it issues a BUILD command to create the outfile
to the desired size.

The paragraph ADD-TO-NUM-RECS is repeated for each YR-MO desired, adding
the number of entries found directly into the NUM-RECS field in the BUILD
command.

Eliminate the 4 AM BLAHS! 9

FILE to DATA BASE

Now things get a little more complex. This example requires reading a
file, and posting the records to a data base. The data set to which we're
posting isn't empty, so we need to know how many records are in the file,
and how much room is left in the data set before we start the posting
program.

Lucky for us, MPE's file system has an intrinsic we can use to determine
the number of records there are in a file; it's FFILEINFO. To use it,
we'll again need some work areas.

01 FILE-NAME PIC X(36).
01 FILE-NUM COMP PIC S9(04).
01 F-OPTIONS COMP PIC S9(04).
01 A-OPTIONS COMP PIC S9(04).
01 ITEM-NUM COMP PIC S9(04).
01 FSERR-NUM COMP PIC S9(04).
01 REC-COUNT COMP PIC S9(09).
01 FSERR-MSG PIC X(72).
01 FSERR-MSG-LENGTH COMP PIC S9(04).

So, for this example, we'll use FFILEINFO to determine our input volume,
and then use DBINFO to see if we have enough space in the data set to post
the file. This sequence is fairly common in conversions, inter system
communications, and other applications that use files of transactions that
are later posted to a data base.

Eliminate the 4 AM BLAHS! 10

MOVE infile TO FILE-NAME.
MOVE ZERO TO FILE-NUM,

FSERR-NUM,
REC-COUNT.

MOVE %7 TO F-OPTIONS.
MOVE %2300 TO A-OPTIONS.
MOVE 10 TO ITEM-NUM.

F-OPTIONS are set to %7 (bit pattern 0 000 000 000 000 111); this will be
used by a call to FOPEN looking for an ASCII file, first permanent, and if
not found, then look for a TEMP file.

A-OPTIONS are set to %2300 (bit pattern 0 000 010 011 000 000); to be
opened for SHARE, GMULTI access.

The 10 used in ITEM-NUM will be used to tell the FFILEINFO intrinsic that
we want the tenth item, which is the location of the file's EOF which
really means its record count.

The sequence of instructions to get the input volume will be:

Open the file with FOPEN

If unable to open it, use FCHECK to get the FSERR-NUM and
then use that to get the FSERR error message and exit

Get the record count using FFILEINFO

Close the file using FCLOSE.

The next page shows the COBOL code that will accomplish these.

Eliminate the 4 AM BLAHS! 11

CALL INTRINSIC "FOPEN"

IF FILE-NUM - ZERO,

USING FILE-NAME,
F-OPTIONS,
A-OPTIONS,
\\, \\, \\, \\,
\\, \\, \\, \\

GIVING FILE-NUM.

CALL INTRINSIC "FCHECK" USING FILE-NUM,
FSERR-NUM,
\\, \\, \\

MOVE 72 TO FSERR-MSG-LENGTH

CALL INTRINSIC "FERRMSG" USING FSERR-NUM,
FSERR-MSG,
FSERR-MSG-LENGTH

PERFORM file-error-routine

GOBACK.

CALL INTRINSIC "FFILEINFO" USING FILE-NUM,
ITEM-NUM,
REC-COUNT.

CALL INTRINSIC "FCLOSE" USING FILE-NUM,
0, 0.

The backslashes are used in COBOL to indicate optional parameters that are
not being passed.

If unable to open the file, FOPEN leaves a ZERO in FILE-NUM. Therefore we
can easily check that to see if there was some type of error attempting to
open it. FCHECK returns the FSERR-NUM (file system error number) for the
last attempted open if the FILE-NUM is ZERO.

On the next page we'll use DBINFO to determine how much space is left in
the OUTPUT data set.

Eliminate the 4 AM BLAHS! 12

MOVE "OUTPUT"

CALL "DBINFO"

IF (NOT DB-OK),

TO DB-SET-NAME.

USING DB-BASE-NAME,
DB-SET-NAME,
DB-MODE-202,
DB-STATUS,
DB-INFO-BUFFER-202.

PERFORM db-error-routine

GOBACK.

COMPUTE DB-202-NO-ENTRIES-AVAIL

- DB-202-CAPACITY
- DB-202-NO-ENTRIES.

IF DB-202-NO-ENTRIES-AVAIL <REC-COUNT,

PERFORM data-set-full-error-routine

GOBACK.

This time we added a little to our DBINFO routine. Since DBINFO returns
both capacity and nwnber of entries, it's very easy to determine the
amount of space still available.

So we're still following the basic rule of knowing input volwne to build
or verify required output space.

Eliminate the 4 AM BLAHS! 13

FILE to FILE

We've seen how to determine the number of input records in a file or data
base, and how to determine space available in a data set. Sometimes
you're reading one file and creating another one, as in building a KSAM
file. The same principles apply to this situation.

We used FFILEINFO to get an input record count in the previous example.
FFILEINFO is a fairly new intrinsic, and is very flexible. There's an
older intrinsic, FGETINFO, that is very similar. It's not quite as
flexible, but it does allow you to obtain more information about a file in
one call than FFILEINFO, which is limited to only five items of
information per call.

For work areas, we'll use the following.

01 GETINFO-FILENUM COMP PIC S9(04).
01 GETINFO-FILENAME PIC X(28).
01 GETINFO-FOPTIONS COMP PIC S9(04).
01 GETINFO-AOPTIONS COMP PIC S9(04).
01 GETINFO-RECSIZE COMP PIC S9(04).
01 GETINFO-DEVTYPE COMP PIC S9(04).
01 GETINFO-LDNUM COMP PIC S9(04).
01 GETINFO-FILECODE COMP PIC S9(04).
01 GETINFO-RECPT COMP PIC S9(09).
01 GETINFO-EOF COMP PIC S9(09).
01 GETINFO-FLIMIT COMP PIC S9(09).
01 GETINFO-LOGCOUNT COMP PIC S9(09).
01 GETINFO-PHYSCOUNT COMP PIC S9(09).
01 GETINFO-BLKSIZE COMP PIC S9(04).
01 GETINFO-EXTSIZE COMP PIC S9(04).
01 GETINFO-NUMEXTENT COMP PIC S9(04).
01 GETINFO-USERLABELS COMP PIC S9(04).
01 GETINFO-CREATORID PIC X(08).
01 GETINFO-LABADDR COMP PIC S9(09).

As you can see, FGETINFO returns a tremendous amount of information about
a file, and you can get it all with only one call.

Eliminate the 4 AM BLAHS! 14

We'll also use a little different technique to create our new KSAM file
for this example. When an output file is opened in COBOL, a new TEMP file
is created if none exists, and its characteristics can be established by a
file equation issued before it is opened.

So, we'll create a special file equation for this.

01 KSAM-FILE-EQUATE.

05 FILLER PIC X(46) VALUE
"FILE outfile;REC--512, 8, F ,ASCII ;DEV-,, 20 ;DISC-".

05 KSAM-NUM-RECS PIC 9(09) VALUE ZERO.

This is almost like the BUILD command we used earlier in the DATA BASE to
FILE example, except we've added a little performance trick. The
"DEV-,,20" parameter is used when loading a new KSAM file. This tells the
file system to allocate twenty key block buffers in the KSAM extra data
segment, which can significantly decrease disc access, and therefore
throughput time, when loading a new KSAM file.

This, combined with file blocking to 4096 bytes, makes writing the new
file a pretty fast operation. The 4096 limit on blocking allows us to
write fairly large blocks without exceeding the maximum size that can be
handled efficiently by the newer "XP" disc drives with "controller cache".

Since it can return so much information in one call, it's pretty easy to
set up standard work areas and a commonly used routine to call FGETINFO.
In COBOL, this might be in your COPYLIB, or you can use EDITOR "JOIN"
files for other languages.

Calling FGETINFO
for errors, then
we'll skip those
page.

is like calling FFILEINFO; first you call FOPEN, check
call FGETINFO and FCLOSE the file. So for our example,
steps, and get right to the call to FGETINFO on the next

Eliminate the 4 AM BLAHS! 15

CALL INTRINSIC "FGETINFO" USING GETINFO-FILENUM,
GETINFO-FILENAME,
GETINFO-FOPTIONS,
GETINFO-AOPTIONS,
GETINFO-RECSIZE,
GETINFO-DEVTYPE,
GETINFO-LDNUM,
\\,
GETINFO-FILECODE,
GETINFO-RECPT,
GETINFO-EOF,
GETINFO-FLIMIT,
GETINFO-LOGCOUNT,
GETINFO-PHYSCOUNT,
GETINFO-:SLKSIZE,
GETINFO-EXTSIZE,
GETINFO-NUMEXTENTS,
GETINFO-USERLABELS,
GETINFO-CREATORID,
GETINFO-LABADDR.

CALL INTRINSIC "FCLOSE" USING GETINFO-FILENUM,
0, 0.

The parameter that wasn't requested is one that returns the hardware
address of the device. We normally don't request that because it can cause
strange results on the newer big HP3000s (Series 64, 68, and 70).

Just as in the previous examples, we now know our input volume; this time
it's in GETINFO-EOF. All that remains is to get it into our file equation
and open the file.

The code for this is on the next page.

Eliminate the 4 AM BLAHS! 16

MOVE GETINFO-EOF

MOVE "PURGE outf ile"

CALL INTRINSIC "COMMAND"

MOVE "PURGE outfileK"

CALL INTRINSIC "COMMAND"

MOVE KSAM-FILE-EQUATE

CALL INTRINSIC "COMMAND"

TO KSAM-NUM-RECS.

TO MPE-COMMAND.

USING COMMAND-LINE,
COMMAND-ERROR,
COMMAND-PARAM.

TO MPE-COMMAND.

USING COMMAND-LINE,
COMMAND-ERROR,
COMMAND-PARAM.

TO MPE-COMMAND.

USING COMMAND-LINE,
COMMAND-ERROR,
COMMAND-PARAM.

IF COMMAND-ERROR NOT - ZERO,

PERFORM command-error-routine

GOBACK.

OPEN OUTPUT outfile.

OPEN INPUT infile.

We're now ready to go. Of course, we'll remember to SAVE the KSAM file and
its key file after we close the output.

If we were adding to an existing KSAM file, we could have calculated the
amount of space remaining in the file using:

COMPUTE room-left

= GETINFO-FLIMIT
- GETINFO-EOF.

Eliminate the 4 AM BLAHS! 17

So, in all of our examples we've determined our input volume to build or
verify required output space. Of course, sometimes a little more logic is
required in your program. Your output will not necessarily have a "one
for one" match with your input; but a little imagination and some
investigation will normally give you a formula that will work.

These tips work very well for files, and can save restore time for data
bases. However, there's still one ingredient missing; that is to not get
into the situation where a data base is too small for expected additions
during the normal processing cycle.

The answer to this is fairly easy. We've seen how DBINFO can tell you the
number of entries and capacity for each data set within a data base. With
this knowledge, it's not very difficult to design a program to verify and
report on all data sets in a data base on a periodic basis. A simple
report to the system manager or data base administrator can point out
potential trouble well before it occurs.

The sample report on the next page is one used in our shop. The program
is designed to report on any data base, and is run daily for every
production data base. It prints the report for a data base only if the
percent full exceeds a predetermined rate, which is set low enough to
allow data base expansion before the need for space becomes critical.

Now, unplug your telephone, and sleep soundly.

Pat Lockwood & Joe Junker

Eliminate the 4 AM BLAHS! 18

l'l ,.....
.....
51
:::!

"' r1"
(!)

g.
(!)

"'"
Fi
t<I

~
en

,.....

'°

Report: DBCKLIST - 1
DBCHKERX A.01

SET NAME TYPE

LOCATION-CTL MASTER

EOIT-PARMS MASTER

SALESMEN MASTER

TAX-DATA MASTER

YR-MO-INDEX AUTO MSTR

INVOICE-INDEX AUTO MSTR

INVOICE-DETAIL DETAIL

S 0 U T H W E S T F 0 R E S T I N D U S T R I E S
Clerkaville Sheet Plant

DATA BASE ANALYSIS ,or CONSAL

CAPACITY RECORDS AVAILABLE " FULL STATUS

1 1 0 100.00 OK

'' :n 21 60.:J8 OK

,,. 5 :n 1' .51 OK

,,. 2 '5 5.41 OK

41 25 16 60.98 OK

12 '007 9,817 2,190 81.76 PURGE

18,000 15 ,:J51 2,649 85.28 CRITICAL

CHANGES

Page 1
DEC 19, 1986
FRI 7:28 AM

YOU MEAN YOU DON'T USE HP'S EDITOR?

by

Patricia Lowers and Gene Harmon
AH Computer Services, Inc.

8210 Terrace Drive
El Cerrito, CA USA 94530-3059

INTRODUCTION

THIS MATERIAL IS DIRECTED PARTICULARLY TOWARD THOSE HP-3000
USERS WHO DO NOT HAVE THE ADVANTAGE OF HAVING AN ADV AN CED
EDITING MULTI-FUNCTION SOFTWARE PACKAGE SUCH AS QEDIT OR
MPEX.

THE SUBJECT MATERIAL SHOULD ALSO BE OF INTEREST TO THOSE
WHOSE JOB DESCRIPTIONS DICTATE THAT THEY WANDER FROM
INSTALLATION TO INSTALLATION, NEVER KNOWING WHAT THEY MIGHT
FIND .••• IS TRUSTY QEDIT OR MPEX THERE TO DO THEIR BIDDING AT
2 IN THE MORNING SO THAT THEY MAY QUICKLY EDIT AND UPDATE
THOSE 200 SOURCE PROGRAMS WHICH MUST BE IN PRODUCTION IN
JUST 6 HOURS?

SEVERAL TECHNIQUES AND SOME INSIGHTS WHICH MAY HAVE ESCAPED
THE CASUAL PERUSER OF THE HP EDIT-3000 MANUAL WILL BE HEREIN
PRESENTED. THE MAIN TOPICS WILL BE:

1) WHILE LOOPS
2) USE FILES
3) HOLD FILES
4) QUOTIDIAN CONSIDERATIONS

I. WHY DID I EVER BOTHER WITH THIS AND THE PARTICULAR
LEVERAGES THE TECHNIQUES AFFORDED ME?

MOST OF MY TIME IS SPENT IN THE CREATION AND MANIPULATION OF
MEDIUM TO LARGE-SIZE (OR, FOR THE MORE TECHNICALLY MINDED:
LILLIPUTIAN TO BROBDINGAGIAN) DATABASES ALONG WITH THEIR
PROGRAMS. ALTHOUGH THE INSTANCES ARE SO SELDOM AS TO ESCAPE
MEMORY, IT SOMETIMES HAPPENS THAT THE WRONG THING HAS BEEN
DONE, THAT THE RIGHT THING WAS' NOT DONE, OR THE THING NEEDS
TO BE DONE IN ANOTHER PLACE ••• AND RIGHT NOW.

WHAT IS NEEDED IN THESE CIRCUMSTANCES ARE WAYS TO CUT DOWN
KEY-STROKES, SPEED SEARCHES, ACCOMPLISH GENERIC FILE MANIPU­
LATIONS WITHOUT TOTAL DISASTER (IT MAY BE THE WRONG SIDE OF
12AM, AND THE FINGER-BRAIN-EYES FBE CONSTANT (FBE = BLOOD­
SUGAR-LEVEL/ GREENWICH MERIDIAN TIME ADJUSTED LOCALLY) IS
SIGNALLING MEDIC ALERT); AND GENERALLY GET ONE TO THE CHURCH
ON TIME.

MY DEVELOPMENT SOURCE FOR MANY OF THE TECHNIQUES WERE THE
BACK PAGES OF THE HP EDIT-3000 MANUAL. THOUGH THE EXAMPLES

-1- MOST/HPEDIT

GIVEN IN THOSE PAGES WERE A CLEAR ENCOURAGEMENT TO DEVELOP
ONE'S OWN WORD-PROCESSOR USING HP EDITOR, THE TECHNIQUES
PRESENTED IN THIS PAPER WILL FALL SHORT OF THAT GOAL •••
THAT WILL BE LEFT TO OTHERS.

II. WHAT COMES NEXT?

EMPLOYING THE CASEBOOK METHOD, EACH TOPIC WILL BE APPROACHED
AS FOLLOWS:

1. WHAT I'VE GOT. (NOW SADLY FAMILIAR WORDS TO THOSE FEW
REMAINING HABITUES OF SINGLES BARS)

- A DESCRIPTION OR EXAMPLE OF THE SITUATION.

2. WHAT I HAVE TO DO.

- WHAT CHANGES ARE REQUIRED?

3. HOW TO DO IT.

- STEPS TAKEN.

4. WHAT DOES IT BUY ME.

- THE THINGS I DIDN'T HAVE TO DO AND THE TIME SAVED.

III. CASE STUDIES

CASE 1. (WHILE LOOPS)

1. WHAT I'VE GOT.

FOLLOWING ARE 4 ELEMENTS OF A DATABASE. UNLESS STATED
DIFFERENTLY THESE ELEMENTS WILL BE THE "WHAT I'VE GOT" IN
ALL THE FOLLOWING CASES. TRY IMAGINING THAT THESE ARE
REALLY 400 ELEMENTS INSTEAD OF 4 ... THIS IS KNOWN AS A
WILLING SUSPENSION OF DISBELIEF - WHICH SHOULD BE DUCK SOUP
TO THOSE OF YOU HAVING ANY CONTACT WITH THIRD PARTY SALES­
PEOPLE.

-2- MOST/HPEDIT

/L ALL
1 ·************** ' 2 ELEMENT PROPER-TIE 9(008)V9(002(
3 LABEL "PROPERTY VALUE"
4 DESCRIPTION "VALUE OF PROPERTY"
5
6 **************
7 ·************** ' 8 ELEMENT PROPER-TIE 9(008)V9(002(
9 LABEL "PROPERTY VALUE"

10 DESCRIPTION "VALUE OF PROPERTY"
11
12 **************
13 ·************** ' 14 ELEMENT PROPER-TIE 9(008)V9(002(
15 LABEL "PROPERTY VALUE"
16 DESCRIPTION "VALUE OF PROPERTY"
17
18 **************
19 ;**************
20 ELEMENT PROPER-TIE 9(008)V9(002(
21 LABEL "PROPERTY VALUE"
22 DESCRIPTION "VALUE OF PROPERTY"
23
24 **************

2. WHAT I HA VE TO DO.

THERE ARE SEVERAL ERRORS HERE WHICH NEED CORRECTING, AND
ELEMENTS 2 THRU 4 SEEM TO BE IDENTICAL TO ELEMENT 1
REDUNDANCY IS FINE, BUT THIS SEEMS TO BE TAKING UNDUE RISC.

3. HOW TO DO IT.

WE ARE GOING TO TAKE ADVANTAGE OF THE ITERATIVE ABILITY OF
THE WHILE LOOP TO PERFORM THE SAME TASK OR TASKS EVERY TIME
THAT IT FINDS A STRING THAT WE WILL SPECIFY TO IT.

IT IS ALWAYS NICE TO "SET SHORT" SO THAT UNDUE COMMENTS
ISSUED BY EDITOR ON YOUR PROGRESS ARE ABORTED, ALSO, IT
SAVES TIME.

IF YOU THINK THAT MORE THAN 50 INSTANCES OF YOUR "FINDQ"
EXIST INTHE EDITOR FILE FROM THE START OF THE WHILE LOOP,
THEN USE THE "SET TIMES=N" COMMAND.

-3- MOST/HPEDIT

WHEREVER YOU HAPPEN TO BE SITTING IN THE EDITOR FILE IS
WHERE THE WHILE LOOP WILL TAKE OFF (JUST LIKE A STAND-ALONE
FIND COMMAND), SO YOU WILL USUALLY WANT TO "LIST l" OR "LIST
FIRST" TO TAKE CARE OF THE .1 LINE NUMBERS.

/SET SHORT
/SET TIMES=300
/11

1
/WHILE

·************** '
/ FINDQ "ELEMENT'
I M*/*+2
MODIFY
ELEMENT

2
PROPER-TIE

RTY
ELEMENT PROPERTY

ELEMENT PROPERTY

9(008)V9(002(

9(008)V9(002(
R)

9(008)V9(002)

MODIFY 3
LABEL "PROPERTY VALUE"

MODIFY 4
DESCRIPTION "VALUE OF PROPERTY

DD
DESCRIPTION "VALUE OF PROPERTY"

MODIFY 8

II

ELEMENT PROPER-TIE
RPHONE

ELEMENT PROPER-PHONE

ELEMENT PROPER-PHONE

9(008)V9(002(

9(008)V9(002(
RX(OlO)
X(OlO)

MODIFY 9
LABEL "PROPERTY VALUE"

DDDDDIPHONE
LABEL "PROPERTY PHONE"

MODIFY 10
DESCRIPTION "VALUE OF PROPERTY

DDDDDDDDIPHONE:
DESCRIPTION "PHONE: PROPERTY

-4-

II

II

MOST/HPEDIT

MODIFY 14
ELEMENT PROPER-TIE 9(008)V9(002(

RDATE
ELEMENT PROPER-DATE 9(008)V9(002(

RDATE
ELEMENT PROPER-DATE DATE

MODIFY 15
LABEL "PROPERTY VALUE"

DDDDDDI: DATE ON MARKET
LABEL "PROPERTY: DATE ON MARKET"

MODIFY 16
DESCRIPTION "VALUE OF PROPERTY "

DDDDDDIMARKET DATE
DESCRIPTION "MARKET DATE OF PROPERTY

MODIFY 20
ELEMENT PROPER-TIE 9(008)V9(002(

RC I TY
ELEMENT PROPER-CITY 9(008)V9(002(

RX(050)
ELEMENT PROPER-CITY X(050)

MODIFY 21
LABEL "PROPERTY VALUE"

DDDDDDI:CITY
LABEL "PROPERTY;CITY"

MODIFY 22
DESCRIPTION "VALUE OF PROPERTY

DDDDDDDDICITY:
DESCRIPTION "CITY: PROPERTY

"

"
*2l*STRING NOT FOUND BEFORE LIMIT
AT DEPTH 2
/K
BAYEX
PURGE OLD?Y

/L ALL
1 . *************'~ '

"

2
3
4
5

ELEMENT PROPERTY 9(008)V9(002)
LABEL"PROPERTY VALUE"
DESCRIPTION "VALUE OF PROPERTY"

-5- MOST/HPEDIT

6 **************
7 •************** ,
8 ELEMENT PROPER-PHONE X(OlO)
9 LABEL "PROPERTY PHONE"

10 DESCRIPTION "PHONE: PROPERTY "
11
12 **************
13 •************** ,
14 ELEMENT PROPER-DATE DATE
15 LABEL "PROPERTY:DATE ON MARKET"
16 DESCRIPTION "MARKET DATE OF PROPERTY II

17
18 **************
19 ;**************
20 ELEMENT PROPER-CITY X(OSO)
21 LABEL "PROPERTY:CITY"
22 DESCRIPTION "CITY: PROPERTY "
23
24 **************

4. WHAT IT BOUGHT ME.

IN THIS PARTICULAR CASE, THE METHOD BOUGHT ME NOT VERY MUCH,
UNLESS, OF COURSE, I HAPPENED TO WANT TO MODIFY ALL THE
ELEMENTS CONTAINING THE WORD "PHONE" PLUS THE NEXT TWO
FOLLOWING LINES IN THIS 400 ELEMENT, 2000 LINES DATABASE.
IN THAT CASE THE METHOD DOES ALL THE FINDS AND SETS UP ALL
THE MODIFIES, THEREBY SAVING MANY KEYSTROKES AND RE-RE­
KEYSTROKES.

CASE 2. (WHILE LOOPS)

1. WHAT I'VE GOT.

THE DABABASE I JUST MODIFIED.

2. WHATIHAVETODO.

A DEFAULT HEADING MUST BE PUT INTO EACH ELEMENT STRUCTURE.

3. HOW TO DO IT.

HERE, WE SEE THE USE OF THE HOLD FILE, A VERY HANDY FEATURE
OF EDITOR. IF YOU USE IT, REMEMBER TO FIRST CLEAR IT OUT BY
JUST SA YING "HOLD".

-6- MOST/HPEDIT

/A.l
.1 HEADING "BAYRUG MAT EXAMPLE"
.2 //

/HOLD .1
HEADING "BAYRUG MAT EXAMPLE"
/Ll

1 ;**************
/WHILE
/ FINDQ "ELEMENT"
I BEGIN
/ ADD *,HOLD,NOW

2.1 HEADING "BAYRUG

8. 1 HEADING "BAYRUG

14.1 HEADING "BAYRUG

20.1 HEADING "BAYRUG

MAT

MAT

MAT

MAT

EXAMPLE"

EXAMPLE"

EXAMPLE"

EXAMPLE"

*2l*STRING NOT FOUND BEFORE LIMIT
AT DEPTH 2
/K
BAYEX
PURGE

/L ALL
• 1

1

OLD?Y

HEADING "BAYRUG MAT EXAMPLE"
·************** ' ELEMENT PROPERTY 2

2.1
3
4

HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY VALUE"
DESCRIPTION "VALUE OF PROPERTY"

5
6
7
8
8.1
9

10
11

•************** ' ELEMENT PROPER-PHONE X(OlO)
HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY PHONE"
DESCRIPTION "PHONE: PROPERTY

-7-

"

MOST/HPEDIT

12
13
14
15
16
17
18
19
20
20.1
21
22
23
24

ID .1

/K
BAYEX

• 1

PURGE OLD?Y

·************** ' ELEMENT PROPER-DATE X(OSO)
LABEL "PROPERTY: DATE ON MARKET"
DESCRIPTION "MARKET DATE OF PROPERTY

·************** ' ELEMENT PROPER-CITY X(OSO)
HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY:CITY"
DESCRIPTION "CITY: PROPERTY

HEADING "BAYRUG MAT EXAMPLE"

II

4. WHAT DOES IT BUY ME.

"

I SAVED HAVING TO FIND THE LINE POSITION OF "ELEMENT" EACH
TIME, AND DID NOT HA VE TO "ADD" THE NEW LINE.

CASE 3. (WHILE LOOPS)

1. WHAT I'VE GOT.

SAME AS ABOVE.

2. WHAT I HAVE TO DO.

EVERYWHERE THAT A "DATE" ELEMENT IS DEFINED, I NEED TO PUT
IN A "FORMAT MMDDYY" STATEMENT IMMEDIATELY BEFORE THE
DESCRIPTION STATEMENT.

NOTE THE USE OF MULTIPLE LOOPS, AND THE POSSIBILITIES THEY
OFFER. ALSO, YOU MIGHT WISH TO DELETE THE LINE THAT YOU ARE
SITTING ON AND REPLACE IT WITH WHAT IS IN THE HOLD
FILE ... AND THEN MAYBE PRINT OUT WHAT YOU HAVE JUST CHANGED
WITH A "LIST*/*+4" COMMAND.

-8- MOST/HPEDIT

3. HOW TO DO IT.

/L ALL
1 ;**************
2
2.1
3

ELEMENT PROPERTY 9(008)V9(002)
HEADING "BAYRUG MAT EXAMPLE
LABEL "PROPERTY VALUE"

4 DESCRIPTION "VALUE OF PROPERTY"
5
6 **************
7 ·************** ' 8 ELEMENT PROPER-PHONE

/A.l
• 1
• 2

FORMAT MMDDYY
II

/HOLD .1
CLEAR HOLD? Y
FORMAT MMDDYY
/Ll

1 ;**************
/WHILE
/ FINDQ "-DATE"
/ BEGIN
/ FINDQ "DESCRIPTION"
I LISTQ*-2
/ ADD *,HOLD,NOW
/ LISTQ *+2
I END

HEADING "BAYRUG MAT EXAMPLE"
15.1 FORMAT MMDDYY

*2l*STRING NOT FOUND BEFORE LIMIT
AT DEPTH 2

/L ALL
. 1

1
2
2. 1
3
4
5

FORMAT MMDDYY
·************** ' ELEMENT PROPERTY 9(008)V9(002)
HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY VALUE"
DESCRIPTION "VALUE OF PROPERTY"

-9- MOST/HPEDIT

6
7
8
8.1
9

10
11
12
13
14
15
15.l
16
17
18
19
20
20.1
21
22
23
24

/D.1

·************** ' ELEMENT PROPER-PHONE X(OlO)
HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY PHONE"
DESCRIPTION "PHONE: PROPERTY

;**************
ELEMENT PROPER-DATE DATE

"

LABEL "PROPERTY: DATE ON MARKET"
FORMAT MMDDYY
DESCRIPTION "MARKET DATE OF PROPERTY

·************** ' ELEMENT PROPER-CITY X(050)
HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY;CITY"
DESCRIPTION "CITY: PROPERTY

II

.1 FORMAT MMDDYY
/K

BAYEX
PURGE OLD?Y

4. WHAT IT BOUGHT ME.

"

SAVED TWO POSITIONINGS OF THE FILE FOR EACH "DATE".
SAVE AN "ADD" OF THE NEW LINE FOR EACH "DATE"

CASE 4. (WHILE LOOPS)

1. WHAT I'VE GOT.

SAME AS ABOVE.

-10- MOST/HPEDIT

2. WHAT I HAVE TO DO.

NOW THAT WE HAVE SET UP THE ELEMENTS NEEDED FOR THE DATA­
BASE, WE ARE GOING TO WANT TO GROUP THEM TOGETHER IN RECORD
FORMATS SO THAT THEY CAN BE PART OF AN APPLICATION SYSTEM.
WE NEED TO BUILD SOME RECORD FORMATS WHICH WILL UTILIZE THE
ELEMENT NAMES AS ITEM NAMES FOR THE RECORDS. I AM ONLY
INTERESTED IN THE LINES WITH THE WORD/STRING "ELEMENT" IN
THEM, AND WISH TO CREATE A FILE WITH THEM ALL TOGETHER, ONE
AFTER THE OTHER, ADJACENT, CONTIGUOUS, ETC.

3. HOW I DID IT.

1 ;**************
/WHILE
/ FINDQ "ELEMENT"
/ BEGIN
/ HOLDQ *,APPEND
I LISTQ *+l
I END
HOLD FILE LENGTH IS 1 RECORD
HEDING "BAYRUG MAT EXAMPLE"
HOLD FILE LENGTH IS 2 RECORDS
HEADING "BAYRUG MAT EXAMPLE"
HOLD FILE LENGTH IS 3 RECORDS
HEADING "BAYRUG MAT EXAMPLE"
HOLD FILE LENGTH IS 4 RECORDS
HEADING "BAYRUG MAT EXAMPLE"
*2l*STRING NOT FOUND BEFORE LIMIT
AT DEPTH 2
/L LAST

24 **************
/ADDQ 24,HOLDQ,NOW

LAST LINE = 28

-11- MOST/HPEDIT

/L ALL
1
2
2.1
3
4
5
6
7
8
9

10
11
12
13
14
14.1
15
15.1
16
17
18
19
20
20.l
21
22
23

;**************
ELEMENT PROPERTY 9(008)V9(002)
HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY VALUE"
DESCRIPTION "VALUE OF PROPERTY"

;**************
ELEMENT PROPER-PHONE X(OlO)
LABEL "PROPERTY PHONE"
DESCRIPTION "PHONE: PROPERTY

•************** ,
ELEMENT PROPER-DATE DATE

"

HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY: DATE ON MARKET"
FORMAT MMDDYY
DESCRIPTION "MARKET DATE OF PROPERTY

;**************
ELEMENT PROPER-CITY X(050)
HEADING "BAYRUG MAT EXAMPLE"
LABEL "PROPERTY:CITY"
DESCRIPTION "CITY: PROPERTY II

24 **************
25 ELEMENT PROPERTY
26 ELEMENT PROPER-PHONE
27 ELEMENT PROPER-DATE
28 ELEMENT PROPER-CITY

/KEEP RECORDS
/T RECORDS
/DQ 1/24
NUMBER OF LINES DELETED = 29
/L ALL

/K

25
26
27
28

ELEMENT PROPERTY
ELEMENT PROPER-PHONE
ELEMENT PROPER-D~TE
ELEMENT PROPER-CITY

RECORDS
PURGE OLD?Y

9(008)V9(002)
X(OlO)
DATE
X(050)

9(008)V9(002)
X(OlO)
DATE
X(050)

"

PURGE OF OLD FILE NOT CONFIRMED - TEXT NOT KEPT

-12- MOST/HPEDIT

4. WHAT DOES IT BUY ME.

I DID NOT HAVE TO INDIVIDUALLY HOLD EACH LINE OF INTEREST IN
A HOLD FILE OR DID NOT HAVE TO MANUALLY DELETE ALL UNWANTED
LINES. I DID NOT HAVE TO KNOW OR CARE ABOUT OR LOCATE ANY
OF THE LINES OF INTEREST.

CASE 5. (USE FILES)

1. WHAT I'VE GOT.

THERE IS A GROUP (POSSIBLY SURLY AND PRONE TO RIOT) CALLED
BAYRUG WHICH HAS TWO FILES : BAYRUG87 AND BAYEX.

2. WHAT I HAD TO DO.

SOMEWHERE IN ONE OF THE FILES IS THE WORD BROGDIGNAGIAN
... FOR OBVIOUS REASONS THIS WORD MUST BE CHANGED TO "VERY
LARGE". SINCE WE ARE IMAGINING THAT WE MIGHT BE DEALING
WITH 400 FILES, THIS COULD TAKE SOME TIME IF WE HAD TO TEXT
IN EACH FILE AND THEN FIND OUR WORD, THEN MODIFY THE LINE,
THEN KEEP THE FILE.

3. HOW TO DO IT.

WITHOUT QEDIT OR MPEX OR SUPERMAN OR ROTO-ROOTER, THE ONLY
SOLUTION IS IN THE CREATION OF USE FILES. IN THE FOLLOWING
EXAMPLE, NOTETHAT THE USE FILES SHOULD ALWAYS BE KEPT
UNNUMBERED. NOTE ALSO THAT THIS PROCEDURE COULD BE PUT INTO
A JOB STREAM ..• MORE SPECIFICALLY:
JOB CARD
!EDITOR
USE USEFILEA
E
!EOJ

:LISTF

FILENAME

BAYEX BAYRUG87

:FILE USEFILEA;REC=-80,1,F,ASCII;NOCCTL
:LISTF;*USEFILEA
:E

-13- MOST/HPEDIT

(C) .HEM.EIT-PACKARD CD. 1985
/f IBEFILFA
FilE l.JNNlM3001D
/LAIL

1
2 FII.HW1E
3
4 &YEX
5 R4.YRln37
6
7

M 1/3
NlMBER OF LINES DElEI'ED = 3
Im 6/7
NlMBER OF LINES DEIEI'ED = 2
/C 1 'IO "I' II IN AIL

4 T &YEX
5 T R4.YRln37

IC 20 'IO ";USE USEFIIBB ;K'' IN AIL
4 T &YEX ;USE USEFIIBB ;K
5 T R4.YRln37 ;USE USEFIIBB ;K

/~AIL
/K
IBEFILFA, UNN
IBEFILFA AIBEADY EXISIB - RESRlID YES 'IO RJRGE CID ANDKEEP NEW
RJRGE ClD?Y
:E

HP32201A.07.17 EDIT/TIX> SUN, APR 26,1987, 4:31 IM
(C) HEWLEIT-PACKARD CD. 1985
/A

1 SEI' SIIRI'
2 SEI' TIMES=:m
3 WilI.E
4 ~ ''BROBDIGNAGIAN''
5 BEGIN
6 Ml:
7 L*--3/*+6
8 END
9 II

/KEEP USEFIIBB, UNN

-14- MOST/HPEDIT

*21 *SlRlJ'{; t{JI' RlJND BEKR LlMIT
AT DEPIH 4
BA.TIX
RJia a.n?
RJia OF aJ) FilE t{JI' crnFIRMED - 'IEXI' t{JI' KEPT
MXlIFY 33
Lill.JRJI'IAN 'IO BROBDIGNAGIAN) DATABASES A11lC WITIH 'IlIEIR

OODDDDDDDOODDIVERY LARGE
Lill.JRJI'IAN 'IO VERY LARGE) DATABASES A11lC WTilI 'IlIEIR

31 tflil' CF MY TIME IS SPENT IN THE CREATIOO AND MANJRlI.ATIOO
32 CF MFDillM 'IO LARGE-SIZE (ffi, KR THE MCIIB TBJINICAILY MINDED:
33 LlILilUITAN 'IO VERY LARGE) DATABASES Al.DNG WITH THEIR
34 FRCGRAMS. AL'IHlIB THE INSTAfllS ARE ffi SELIXM AS 'IO &APE
35 MEMCRY, IT fil1EI'IMES HAPPER) 1HAT THE WRCN; THIN:; HAS BEEN
36 J:WE, 1HAT THE RIGHT ~ WAS t{JI' J:WE, ffi THE ~ NEEIB
37 'IO BE :rmE IN AmIHER PIACE • • • AND RIGHT !Gl.
38
'51 WfAT IS NEEDED IN 'IHESE CIRCllMSI'AfllS ARE WAYS 'IO aJT IDJN
ltO KEY-SIRa<ES, SPEED SFARCBES, AaDMPLISH GENERIC FilE MANIFU-

*21 *SlRlJ'{; t{JI' RlJND BERlIB 1.JMIT
AT DEP1H 4
BAYRill'37
RJia CW?
RJia OF <I.D FilE t{JI' crnFIRMED - 'IEXI' t{JI' KEPT
/E
a.EAR? y

END OF PRCrnAM
:E

HP32201A.07.17 EDIT/:nxl SUN, APR 26, 1987 4:33 FM

4. WHAT DOES IT BUY ME.

I GOT TO USE EDITOR IN A GENERIC FASHION TO DO WHATEVER
FUNCTIONS ARE RESIDING IN USEFILEB. UNLESS I HAVE NOT YET
READ THE EDIT-3000 MANUAL IN THE DIMENSION IT TRULY
DESERVES, THIS GENERIC CAPABILITY IS NOT OTHERWISE
AVAILABLE.

-15- MOST/HPEDIT

CASE 6. (HOLD FILES)

1. WHAT I'VE GOT.

THERE ARE FORTY FILES WHICH NEED TO BE COPIED TO ANOTHER
ACCOUNT USING FCOPY.

2. WHAT I HAD TO DO.

COPY THE FILES.

3. HOW I DID IT.

USE THE HOLD COMMAND TO STORE AWAY THE PERTINANT PORTION OF
USEFILEA CREATED IN CASE 5, THEN RESET THE MARGINS IN EDITOR
TO DUMP THE HOLD FILE BACK INTO THE RIGHT-HAND PORTIION OF
THE LINE. WILL WIND UP WITH THE "FROM" AND "TO" SECTIONS OF
THE FCOPY COMMAND - SUITABLE FOR STREAMING. IT IS USEFUL TO
REMEMBER THAT YOU CAN "HOLD" AND "HOLD,APPEND" WHATEVER
LINES OR PORTIONS OF LINES (WITH THE SETS OF THE LEFT AND
RIGHT MARGINS) DESIRED, AND THAT THE HOLD FILE WILL SURVIVE
THE TEXTING IN OF ANOTHER FILE.

tr IBEITI.EA
FilE UNNU1BERED
/LAIL

1 T BAYEX ;USE l.JSEFILffi ;K
2 T BAYRill37 ;USE IBEF1llB ;K

/CTJ. 'lD/ffJ 'IO "'' IN AIL
/SET RIG!Il'=3
laJ. 'T II 'IO "FID1=" IN AIL
/SET RIG!Il'=72
/LAIL

1 FID1=BAYEX
2 FID1=BAYRill37

/lilD 1/2
CLEAR HID? Y
FID1=BAYEX
FID1=BAYRill37

-16- MOST/HPEDIT

/Ll
1 Flm=BAYEX

/SEI' lEIT=Xl
/REHAffi 1/2,IUD,l'Gl

1
1
2
2 FID1=BAYRIIB7

/Cf)_ ''FIDf' 'ID II ;FID1'' IN AIL
/IT). 50 'ID ";NEW' IN AIL
/SEI' lEIT=l
IL AIL

1 Flm=BAYEX
2 FID1=BAYRIIB7

/SEl' lEIT=Xl
/Cf)_ ''FIDf' 'ID I tin'' IN AIL
/SEI' lEIT=l

;FID1=BAYEX
;FID1=BAYRl.IB7

IL AIL
1
2

/Cf)_ II

m:M=BAYEX ;'ID=BAYEX

1
2

FID1=BAYRIIB7 ;.'ID=BAYRl.IB7
;NEW' 'ID II .NlmIJP;NEW' IN AIL

Flm=BAYEX ;'ID=BAYEX
m:M=BAYRIIB7 ;'ID=BAYRl.IB7

/Cf)_ II ."'ID"." IN AIL
/IT). II ."'ID"." IN AIL

;NH\1
;NH\1

;NH\1
;NH\1

.NlmIJP;NH\1

.NlmIJP;NH\1

IL AIL
1
2

;'ID=BAYEX.NlmIJP;NH\1
;'ID=BAYRl.IB7 .NlmIJP;NH\1

/K
IBFFIIEA,UNN
IBFFIIEA Al.READY EXISIS - RESFUID TIS 'ID run: a.D AND KEEP NH\1
run: CID?Y
4. WHAT IT BOUGHT ME.

- DID NOT HAVE TO TYPE IN 40 TO 400 MODS TO DESIGNATE THE
"TO=" file-name WITH ALL THE WONDERFUL CHANCES TO MIS-READ
AN ALPHA "O" FOR A NUMERIC 0 WHILE TYPING THE FILENAME.

-17- MOST/HPEDIT

CASE 7. (WORK-A-DAY CONSIDERATIONS)
or

(DAYS OF OUR LIVES)

THIS SECTION DEALS WITH SOME DAY-TO-DAY HINTS WHICH, IF YOU
HADN'T ALREADY READ THIS FAR, YOU WOULDN'T GIVE A PFENNING
FOR, BUT HERE THEY ARE.

1. IF ALL OF THE ABOVE GOOD WORKS FAILS, CONSIDER PUTTING
THE LINES YOU WISH TO THROW INTO VARIOUS FILES INTO A
FILE WITH A SHORT EASY-TO-TYPE NAME SUCH AS RR, WHICH
YOU CAN JOIN (JOIN RR TO 100.1) QUICKLY TO ANY TEXTED
IN FILE.

2. THE QUICK WAY TO RESEQUENCE YOUR FILES IS TO SAY "GQ
ALL"

3. THE QUICK WAY TO LIST OR MODIFY LINES IS TO SAY
L*/LAST OR M*/LAST.

4. EDITOR COMMANDS CAN BE STRUNG TOGETHER WITH SEMI-COLONS.
EX: C "AB" TO "BD" IN ALL;K

5. IF YOU ARE NOT INTO USING EXOTIC COMBINATIONS OF
USEFILES AND WHILE LOOPS, YOU CAN AT LEAST TRY THE
FOLLOWING:

WHILE
FIND "BROBDINGAGIAN"
M*

IF YOU DID A "LIST FIRST" BEFOREHAND, YOU WOULD BE LED
THROUGH EACH OCCURRANCE OF THIS WORD IN THE FILE, AND
HAVE A CHANCE TO CHANGE IT TO "VERY LARGE" OR NOT.

6. TO ADD NEW LINES IN THE MIDDLE OF A FILE WITHOUT THE
BOTHERSOME GENERATION OF • l's OR POSSIBLLY .045' s,
CONSIDER A "GATHERQ" OF THE PORTION OF THE FILE
FOLLOWING YOUR NEW ADDITIONS TO A HUNDRED OR SO LINES
BEYOND ... THIS WILL ALLOW ADDING LINES BY WHOLE NUMBERS
AND HOLD OFF RESEQUENCING UNTIL YOU ARE THROUGH ADDING
THE NEW LINES.

EXAMPLE:
1 LINE 1
2 LINE 2
3 LINE 3
/GATHERQ 2/3 TO 20
/ADD 2

-18- MOST/HPEDIT

IMPLEMENTING INF OR MA TION ACCESS

INTRODUCTION

Sandy Lynch
Hewlett-Packard Company

Office Systems Division
8 0 I 0 Foothills Blvd.
Roseville, CA 95678

This paper will be a discussion on how Information Access has been implemented at Hewlett-Packard's
Office Systems Division. More specifically, the focus will be on how productivity gains were made in
Finance, Manufacturing, and Product Support by changing a process with Information Access. Finance
has been able to use Information Access to gather information to be downloaded to a spreadsheet for
further analysis in the process of inventory reconciliation. In Manufacturing, controllers use Information
Access to track excess inventory, as well as to do ad hoc queries regarding particular part-numbers and
vendors. Lastly, Product Support has been able to use Information Access and its Report Writer to
automatically generate the required paperwork which triggers a distribution to customers on Software
Subscription Services.

This paper will be a "how to" approach to optimally implementing Information Access. First, a product
overview will be given followed by a discussion on how to plan an implementation. The steps to actually
complete the implementation will be included as well. Lastly, each example will be discussed, including
the actual steps that each department went through, samples of the actual tables and reports that were set
up within Information Access, and any tradeoffs that were involved.

PRODUCT OVERVIEW

Information Access is an information retrieval system, consisting of HP Access on the PC and HP Access
Central on the HP 3000, which gives PC users transparent access to IMAGE databases, as well as certain
PC databases. PC users can combine and reformat the data they access and either download the results to
their PCs or save them on the host HP 3000 for later use. Figure I provides a pictorial view of the
product.

Information Access supports two types of data communication between the PC and the host - Basic Serial
Networking and OfficeShare Networking.

Basic Serial Networking provides for the following PC to HP 3000 connections:

• Hardwired to an ATP on the HP 3000.
• Modem connection to the HP 3000.
• Statistical Multiplexer HP2334A or HP2334A Plus configuration to an ATP on the HP 3000

including certified (as listed on the HP2334A+ data sheet) X. 25 public network connections.
• Cluster Controller HP2334A or HP2334A Plus configuration to an INP on the HP 3000 (does

not include X. 25 public network connections).

Implementing Information Access- I

OfficeShare Networking provides for the following PC to HP 3000 connections:

• ThinLAN
• StarLAN
• SERIAL Network

PRODUCT FUNCTIONALITY OVERVIEW

PCF Host HP 3000

Turbo
IMAGE/3000

ECM [i]
E:' ~

cg\ ~

DJ]] HP Ao~"C.otraJ
AiceShare~

or Basic Serial DJ]]
~ HP Access

Figure I. Information Access Overview

Remote HP 3000

ft3HEWLETT
llel:.ll PACKARD ~-...,...,

Figure 2 shows how the HP Access software interfaces with the HP Access Central software. The
Database Administrator (DBA) controls which IMAGE data is available through the Administrator Utility
of HP Access Central. The DBA provides further security by specifying which portion of that data the
user can see. This information is stored in the HP Access Data Dictionary HDPDIC. HP Access users are
not allowed to alter IMAGE databases in any way.

Data can be derived from host IMAGE databases and, if you've purchased the Remote IMAGE/3000 Link
capability, from IMAGE databases located on remote HP 3000s one node removed from the host HP
3000. Note that host HP 3000 IMAGE databases will always be TurboJMAGE, assumming that the HP
3000 is running U-MIT or later. However, the Remote IMAGE/3000 Link can access IMAGE databases
on systems one node away in either Turbo or non-Turbo format (any remote HP 3000 running pre-U
MIT MPE would have non-TurboIMAGE databases.

Implementing Information Access-2

HP Acce.118

PERSONAL
COMPUTER

'""°" _
PllJ!

DATACOMM
SOFTWARE

LOCAL
METHOD

Fii.SS

H08T
DICTICIWIYIOOOO

DIAGNOITIC8

'fRANllLATOR
UTIUTY

DATACOMM HDSP -
H08T DATA HP ACCE98 CENTRAL

IERVER DATA DICTIOHMY
PROCE88 OtDPDIC ud HDPENVI

ADMINllTMTOR
BATCH UTIUTY

FACILITY

HOST HP 3000

Figure 2. HP Access/HP Access Central Software Interface

Implementing Information Access-3

PC users make use of HP Access Central when they run HP Access and select the Remote Tables function
on the Main Menu screen. Together, HP Access and HP Access Central let the PC user:

• Access local PC databases (Condor, dBASEII, PCF, ECM, and R:base 4000/5000), host IMAGE
databases, and remote IMAGE databases without needing to know how the databases are
structured.

• Combine information from various IMAGE databases, independent of where the databases are
located in the network. The HP 3000s can be connected using DS/3000, DS/X. 25, or LAN.

• Access IMAGE data as relational tables (tables with rows and columns of data), a format
familiar to most PC users.

• Use a menu-driven format to perform all operations.

• Select just the information needed for viewing and further manipulation.

• Sort and summarize table information.

• Save the results of local PC or HP 3000 table manipulations. Either type of manipulation
may be saved locally on the PC or on the HP 3000.

• Reformat result tables for use in poplar PC applications. Tables can be converted to:

• Condor, dBASEII, R:base, PCF, or ECM database formats.
• DIF format for use in VisiCalc.
• WKS format for use in Lotus 1-2- 3.
• A formatted ASCII file for use in WordStar, Executive MemoMaker, or some other

PC editor.
• QB (Quoted Basic) format for use in many custom applications.

• Reformat result tables for use in HP 3000 applications. Tables can be converted to:

• DIF format for use in Deluxe VisiCalc/3000.
• SD (self-describing) format for use in HP ListKeeper, DSG/3000, or HP EasyChart.
• A formatted ASCII file for use in HP Word, TDP/3000, or some other HP editor.

• Use command files (PC or HP 3000 resident) to automate complex command sequences or to
allow lengthy queries to be performed during off hours. HP 3000 resident command files
provide a PC initiated batch capability, as the PC is free for other functions after the remote
command file processing has been initiated.

• Generate sophisticated reports using Report Writer.

Implementing Information Access-4

On the host HP 3000, HP Access Central provides:

• The HP 3000 software interface needed by HP Access to retrieve IMAGE data from the host
HP 3000 and from remote HP 3000s.

• A Host Batch Facility, which allows execution of HP Access commands without the
intervention of PC resident software. The Host Batch Facility can be run interactively, as a
job stream on the HP 3000, or (as mentioned above) can be initiated from the PC.

• A data dictionary (distinct from Dictionary/3000 and System Dictionary/3000) in which the
DBA defines (I) the IMAGE data available to PC users, (2) the users who can access the data
using HP Access Central, and (3) what subset of the data each group of users is allowed to
access.

• Two utilities, the Administrator Utility and the Translator Utility, which give the OBA a
quick, friendly screen interface for performing all operations involving the data dictionary.
These two utilities are the tools by which the OBA defines IMAGE data access for HP Access
Central.

• A synchronization reporting function, which makes it easy for the OBA to detect
discrepancies that may arise over time between the dictionary and IMAGE database
structures.

• Diagnostics software to test the integrity of communications between HP Access on the PC
and HP Access Central on the host HP 3000.

PLANNING YOUR CONFIGURATION

The planning process for implementing Information Access involves several steps, which are made easier
by the use of designated worksheets to complete at each step. These planning stages are:

• Identifying your PC users and their data needs by using Worksheet 1 (PC Data Requirements).

• Using Worksheet 2 (Access Group Definition) to gather your PC users into access groups,
arrive at user definitions, and list the configured tables that the group needs to access.

• Using Worksheet 3 (View Table Definition) to help you determine how your view tables
should be configured.

The worksheets discussed above are included in the HP Access Central: Planning and Configuring manual,
which is a part of the manual set for Information Access.

Implementing Information Access-5

Worksheet 1: PC Data Requirements

TYP: TYPE OF ION fll""' NUMBERIC, AN= ALPHANUMERIC. A = I-NY ASCII. etcJ
D OF INPUT TO THE PC APPLICATION ()IF,OB,ete.}

FRO: FREQUENCY OF NEED FOR THIS DATA[)= DAILY, W =WEEKLY, 91cJ
LDC: LOCATION OF DATA IPC, H = HOST, R =REMOTE HP 3000, M =MAINFRAME)
FMT: FORMAT OF DATA (Z = ZONED, P ::: PACKED, e1c.)

Worksheet 1: PC Data Requirements

Worksheet 1 is used to gather detailed information from PC users about their current data needs. Have
each PC user (or potential PC user) who accesses data of any kind, from any source, complete the
worksheet. If the PC user is accessing HP 3000 data, the DBA may have to complete the last six columns.

WORKSHEET DESCRIPTION

At the top of the worksheet are spaces for the PC User Name (A) and the Date (B) the information was
gathered.

The first six columns are labeled Data Required for PC. They indicate what data the PC user uses, some
of the characteristics of the data, and how frequently the PC user needs it:

• Application (C) indicates what PC application (if any) the data is used in.

• Name of Data (D) is the name of the data item. (Take note of any limitations on item names
in applications your PC users routinely use.)

Implementing Information Access-6

• TYP (E) indicates the type of information. The worksheet suggests N for numeric, AN for
alphanumeric, and A for a more general ASCII format. Don't feel confined to this suggested
code.

• MTD (F) means the method by which the data is introduced into the PC application. Is it a
DIF file for use in Visicalc? Is it a QB (Quoted Basic) file used in Lotus 1-2-3 or in R:base
5000? Or is it an ASCII file used in a PC editor?

• Description of Data (G) gives you some room to expand on the previous columns or to note
anything special about the data item.

• FRQ (H) is the frequency of need for this data. On the average, how often does the PC user
need this data? Every day, each week, once a month? The frequency of the data need will
help you determine which PC users stand to benefit most from HP Access Central.

The last seven columns are labeled Data Source. They indicate where the PC user currently gets the
required data and (for IMAGE data) what system, database, and dataset the data item resides in:

• Current Source of Data (I) indicates where the user is currently getting the data from. The
data source may be a utility the user runs, a custom program, or the user may be handed this
information as a report generated by a programmer.

• LOC (J) is the location of the data. The worksheet suggests L for local data on the PC itself,
H for data from the host HP 3000, and R for data from remote HP 3000s. Feel free to
modify this suggested code to something more directly applicable to your computing
environment.

• System Name (K) means the name of the computer the data item resides on. For remote HP
3000s, be sure to include the device class name (for a DS/3000 connection between the host
and remote machines) or the node name, qualified, if necessary, by the domain and
organization (for an NS/3000 connection), under which the system is configured for MPE.
You'll be using this information to define the remote system in the HP Access Central data
dictionary.

• Database Name (L) means the name of the IMAGE database containing the data item. You
may also want to include the MPE group and account for the database, and perhaps the user
class through which this PC user is allowed to view the database.

• Dataset Name (M) means the IMAGE dataset which contains the data item.

• Data Item Name (N) is the name of the data item in the dataset.

• FMT (0) represents the format of the data item. You use this column to catch items of type
zoned decimal or packed decimal, which will need to be converted for use in HP Access
Central.

Implementing Information Access-7

RESULTS

Once Worksheet 1 has been collected from your PC users, you'll have a good idea which PC users should be
configured as Information Access users. It will probably also be clear, because of their common data
needs, which users belong together in one access group. Because you've determined the source of the data
your PC users need, you'll also have a good idea what IMAGE data needs to be defined in HP Access
Central. You will know which remote systems, which databases, and which datasets need to be configured
as IMAGE tables for use in HP Access Central.

If your users plan to use Information Access output in their PC applications, you will need to be aware of
any special formats or naming conventions the data must conform to. Here are some things to be on the
lookout for:

• Is the maximum length of item names and table names less than the 16 characters allowed by
HP Access Central? Are the naming conventions more restrictive? If so, you need to
configure your tables accordingly.

• What data types does the PC application support? You don't want to include in your table an
item whose data type is unsupported.

• If the PC application accepts real numbers, does it require the decimal point always to be in
the same place? If so, this requirement will affect how you configure your tables.

Your PC users will probably be able to alert you to this sort of thing for the PC applications they use. If
not, consult the reference manuals for the products in question.

Implementing Information Access- 8

Worksheet 2: Access Group Definition

. TABLES ALLOWED FOR THIS USER
MS: MAX SECTORS ALLOWED FOR THIS USER
PO: MPE PRIORITY QUEUE (CS, OS, ES)
TT: TABLE TYPE 4M =IMAGE. C = C/ICMS, V = \llEWl

Worksheet 2: Access Group Definition

Worksheet 2 is used to arrive at the definitions of access groups, the definitions of the users who will
belong to them, and the definitions of the IMAGE and view tables each access group will be able to access.
On each worksheet, fill in an appropriate name and capability for the access group. For any users you
want in the access group, create a user name and password.

Implementing Information Access-9

WORKSHEET DESCRIPTION

At the top of the worksheet are spaces for the Access Group Name (A), the Capability (B) of the access
group, and the Date (C) you defined the access group.

Five columns are provided for the definitions of Information Access Users belonging to the access group:

• User Name (D) is the name you want to give the HP Access Central user. The name can be
up to 16 characters long and must begin with an alpha character followed by any
combination of alphanumeric characters and/or hyphens.

• Password (E) is the password (optional) you want to give the user. If you provide a password,
it too can be up to 16 characters long and must begin with an alpha character followed by
any combination of alphanumeric characters and/or hyphens.

• MT (F) is the maximum number of result tables this user can save on the host HP 3000. You
might put UNLMT in this column if you don't want to set a limit.

• MS (G) is the maximum number of disc sectors this user's saved tables can occupy on the disc
drives connected to the host HP 3000. You might put UNLMT in this column if you don't
want to set a limit.

• PQ (H) is the MPE priority of the user's server process. The default is CS, the normal priority
for interactive processes. DS is a lower priority and ES is lower still.

• Remarks is a column for any additional information about this user. (Unlike the other
columns, these remarks are not part of the user definition and are not recorded in the data
dictionary.) The PC user's full name might go here, for example. Or, since there need not be
a one-to-one correspondence between user names and real people, you might indicate which
people are using which user name.

Eight columns are provided for the definitions of configured tables accessible to users in this access group:

• Table Name (J) lets you assign a name to the IMAGE or view table being described. Table
names can be up to 16 characters long and must begin with an alpha character followed by
any combination of alphanumeric characters and any of these characters: + - * I ? ' # % & @.
(In naming tables, keep in mind any limitations on table names in the applications your PC
users plan to use with data saved from HP Access Central.)

• TT (K) indicates the table type, where IM stands for an IMAGE table (a table derived directly
from one dataset) and V stands for a view table (A view table (a table derived from one or
more previously configured tables).

• PT (L) indicates whether the table is a public table. Because no access groups are assigned to
it, a public table can be accessed by any Information Access user. A "No" in this column
means you will need to configure table security for this table. (NOTE: A table can be a
public table and still have item security on selected items. Keep track of item security in the
Description column.)

• Item List (M) is where you list the names of the items contained in the table. A configured
table can have up to 64 items (columns). For IMAGE tables, the ADDIMAGETABLE screens

Implementing Information Access- I 0

provide an easy way to include all items from a dataset, so you may not need to list all the
items here in that case.

• OP (N) indicates, for view tables, the kind of operation required to configure the table. J3,
for example, might mean three tables are JOINed to create the view table. For a view table
derived from one IMAGE table, you might use an N to mean no special operation is required.

• Database Name (O) is the name of the IMAGE database the item on the same line comes
from.

• Dataset Name (P) is the name of the dataset the item comes from.

• Description (Q) lets you describe anything noteworthy about the item, or refer to a more
detailed definition of the view table in Worksheet 3.

RESULTS

Once you have completed Worksheet 2 for each access group along with Worksheet 3 (described below) for
each view table, you'll have all the information required to configure access groups, users, IMAGE and
view tables, and table and item security.

Worksheet 3: View Table Definition

Worksheet 3 is used to work out complete definitions of all view tables you want to configure in the
Administrator Utility of HP Access Central. Complete this worksheet for each view table.

Implementing Information Access-11

WORKSHEET DESCRIPTION

Worksheet 3: View Table Definition

At the top of the worksheet are spaces for the Table Name (A), the Description (B), and the Date (C) you
created the view table definition.

Six columns are provided for the definition of items, though in most cases you will only need one column,
the Item Name:

a Table Name (D) is the name of the table from which the item comes. The table name is
ordinarily not required. If two tables being JOINed both have the item ITEM! in them, then
TABLE!. ITEM! designates which table to draw ITEM! from and retains that item name as
the column heading in the view table.

• The period (E) is needed only when the Table Name column is used.

• Item Name (F) is the name the item will have in the view table. There are three ways to
represent an item:

• If the item name occurs only once in the table being combined and you don't want

Implementing Information Access-12

to rename the item in the view table, fill in the Item Name column only.

• If the item name occurs more than once in the tables being combined and you don't
want to rename the item in the view table, fill in the first three columns (Table
Name through Item Name) only.

• If you want to rename the item and/or arithmetically manipulate it, fill in the last
three columns (Item Name through Expression) only.

• The equal sign (G) is needed only when the Expression column is used.

• Expression (H) can be used to fully qualify an item if its Item Name is not unique (and the
Table Name column as not been used to qualify it). It can also be used to perform some
arithmetic operations on the data item. You can, for example, convert an annual amount (in
the source table) to a monthly amount (in the view table) by indicating division by 12.

• The comma (I) is used to separate items in the Items clause.

The Using Clause (J) is used to identify the configured table(s) from which the view table is derived. View
tables can be derived from a single table or view tables can be derived from two, three, or four tables
using the PRODUCTION and/or JOIN functions. JOINs can be done on one to four items from each
table.

The Where Clause (K) is used to specify the type or range of records you want included in the view table.
The operators you can use in this clause are =,<,>,<=,>=, and <>. You can also combine these operators
using the AND and OR functions. The MATCH operator can be used in conjunction with wildcard
characters to narrow the range of records still further.

The Sort Clause (L) is used to specify up to eight items you want the records sorted on, once the Item,
Using, and Where clauses have determined which records are in the view table. The default sort is
Ascending, but you can specify the type of sort with an A (Ascending) or a D (Descending)

CONFIGURING INFORMATION ACCESS

Configuring Information Access is done in several phases which involve two sorts of activity. The first is
using your Configuration Worksheets and the Administrator Utility to add appropriate entries to the data
dictionary. Following are the steps you would go through in the Administrator Utility to complete this:

1. Configure Remote Systems. Remote Systems are configured by providing a name for the
remote system, a node name (the name of the system according to DS or NS convention), and
logon information for each remote system you want to configure.

2. Configure Host and Remote Databases. To configure any required databases, provide a
database name, the MPE group and account it resides in, the remote system name (if it is not
on the host), the database password, and the open mode (if different from the default).

3. Configure IMAGE Tables. When you have successfully configured all required IMAGE
databases, you are now ready to configure IMAGE tables from them. An IMAGE table is
derived from one IMAGE dataset and can contain as may as 64 items (columns). After
specifying which database you want to derive IMAGE tables from, you will be prompted with
all datasets in that particular database, one by one. You may either select the items you want

Implementing Information Access-13

from a dataset, or you may simply proceed to the next dataset, if you do not want a particular
one.

4. Configure View Tables. View tables are configured after all IMAGE tables have been
configured. View tables are derived from one to four previously configured tables, and can
contain as many as 64 items. View tables are defined on a screen much like Worksheet 3.
You provide a table name, the items to be included in this view table, which tables this view
table is derived from and how the tables are to be joined together (JOIN or PRODUCTION), if
any sub-setting of particular values is to be be done, and if any sorts are to be applied.

5. Configure Access Groups. At this point, you are ready to configure the access groups
through which you control data security and into which you will be adding users.

6. Configure Users. Once access groups are configured, you are ready to configure users to put
in them. The information you provide for each user is a user name, user password, the access
group you want to associate with this user, the limits (if any) on the number of tables the user
can save, the number of disc sectors those saved tables can occupy, and the server process's
MPE priority (if different from the default of CS).

7. Configure Table Security. Table security is configured by assigning access groups to IMAGE
and view tables. There is virtually no limit to the number of access groups you can assign to
a table. Any tables which have no access groups assigned to them, will remain as public
tables.

8. Configure Item Security. Security can be assigned to particular items by assigning access
groups to items in the configured tables. You can assign as many as eight access groups to an
item. Any items which have no access groups assigned to them remain as public items, and
are accessible by any user who is allowed into the table which contains the item.

The second step involved in configuring Information Access is verifying that the configuration is correct.
This can be done in two ways:

• Generate a report. The Report feature of the Administrator Utility can be used to print a
complete report on how Information Access has been configured, including all remote systems
configured, all databases configured, all IMAGE and view tables configured, and all users
associated with an access group.

• Run HP Access. Run HP Access and for one user in each access group you have configured,
type in that user name and password and select Remote Tables. Check to see that the correct
configured tables appear for that user. If you have added item security which does not allow
this user to see a certain item, you might select the table in which the item occurs to verify
that the item is indeed hidden from this user.

At this point you have completely configured Information Access and PC users will be able to access any
configured IMAGE data.

Implementing Information Access-14

EXAMPLE - INFORMATION ACCESS AND FINANCE

Introduction

Several workgroups at OSD worked on projects which investigated how they could use OSD Office
Products (Information Access, Resource Sharing, and Print Central) to improve productivity. One of these
workgroups, Finance, began their project by investigating their current work environment and identifying
processes that were good candidates for automation. They focused on tasks that were manual, repetitive,
and often involved gathering data from several different HP 3000 applications for further analysis.

In the investigation phase of their project, Finance characterized their work environment by having
project team members keep records of all tasks involving data retrieval and information output for one
month. The particular period selected included a month-end, which is a major activity for this group.

In characterizing their work environment, the project team discovered that Finance does a considerable
amount of manual processing and re-keying of data between people and applications. Several processes
were identified that offered good productivity paybacks for automation. The process to be discussed here
is inventory reconciliation, which previously involved producing several reports and using the information
from these reports to update Lotus 1-2-3 spreadsheets.

Original Process Flow

The figure shown below illustrates the process that was used for inventory reconciliation (for a particular
account) prior to implementing Information Access.

Implementing Information Access-15

PROCESS FLOW FOR INVENTORY RECONCILIATION

CREATE REPORT
USING QUERY

EDCSTDS REPOR

(PRIOR TO USING INFORMATION ACCESS)

PROGRAMMATICALLY
STRIP INVENTORY

RECORDS

~
PROGRAMATICALLY
GENERATE REPORT

GENERAL LEDGE
REPORT

OBTAIN BEGINNING ANO
ENDING BALANCES FROM

GENERAL LEDGER.
LOAD DATA INTO LOTUS.

MANUALLY PULL ALL
JOURNALS TO 1315.

LOAD DATA INTO LOTUS.

MANUALLY COMPUTE BEGINNING
AND ENDING DOLLAR VAUJES

USING THE EDCSTDS AND STORES
EXTENSION REPORTS. MANUALLY

LOAD DATA INTO LOTUS.

CREATE ::=--------
LOTUS

REPORT

ACCOUNT 1315 RECONCILIATION

As can be seen from the above illustration, information was retrieved from three databases (EDCDB,
IOSDB, and FACTDB) to generate three separate reports. All of this information was entered manually
into a Lotus 1-2-3 spreadsheet. All journals (invoices) for account 1315 were also manually loaded into
the spreadsheet, and this provided the information to complete the account reconciliation for account
1315.

Planning the Configuration

The first step in planning the configuration was actually completed during the investigation phase of the
project when each project member kept records of the tasks they did involving data retrieval and output.
This data they kept is essentially the same information as would be filled in on Worksheet I, so the next
step was to determine what IMAGE tables and view tables were required to completely reconcile account
1315. As can be seen from the illustration shown above of the data flow, and mentioned above, there are
three steps to the process, each of which requires specific tables. The three steps are described below,
along with the IMAGE and view tables which are required at each step.

Implementing Information Access-16

Step 1

Step I of the process is to join data from IOSDB and EDCDB, which is then output to a Lotus Transfer
File. This file is then imported into Lotus 1-2-3 and used in formulas which compute the beginning and
ending dollar values of the actual inventory in the 1315 account. The IMAGE datasets and data items
required are:

• ITEM-DATA - from the EDCDB database. The data items required are PART-NUMBER
and STD-OEM-COST-IC.

• STOCK-ACTIVITY - from the IOSDB database. The data items required are
PART-NUMBER, SCR-NAME, LOCATION, ORDER-NUMBER, DATE-INV-ACT,
QTY-ENTERED, s-c-s-2, AND INV-S-C-S-2.

The view table which actually joins the required data from the above IMAGE tables is defined on
Worksheet 3 below. This view table takes advantage of a JOIN between two tables from different
databases to define a new data item, EXT-STD. This table also uses the Where clause to subset the data so
only a particular set of part-numbers are retrieved (those in account 1315).

CONFIGURATION WORKSHEET 3 VIEW TABLE DEFINITION

TABLE NAME: MM1315 DATE: 05/87
DESCRIPTION (aptlornlll: COMPUTES BEGINNING ANO ENDING DOU.AR VALUES FOR 1315

--ITEMS -

TABlENAME ITEM NAME - EXPRESSKJN I

PART# = STOCK-ACTIVITY.PART-NUMBER
SCR-NAME
LOCATION
ORDER# = ORDER-NUMBER
DATE = DATE-INV-ACT
QTY = QTY-ENTERED
EXT-STD = STD-OEM-COST-IC *QTY-ENTERED
FROMLOCN = S-C-S-2
TOLOCN = INV-S-C-S-2

-- USING CLAUSE -

STOCK-ACTIVITY<PART-NUMBER> JOIN ITEM-DATA-HOST <PART-NUMBER>

- WHERE CLAUSE - - SORT CUUSE --

PART-NUMBER='30161-60001' OR PART-NUMBER A
PART -NUMBER='30456-60001' OR
PART -NUMBER='30466-60001'

NOTES:

Implementing Information Access- I 7

Step 2

The second step is to obtain information which is also output to a Lotus Transfer File, imported into Lotus
1-2-3, and used in formulas to calculate the beginning and ending balances from the General Ledger.
An IMAGE table must be configured from the ALLFACT-DETAIL dataset of the FACTDB database.
The data items to be included from the ALLFACT-DETAIL dataset are shown below in the worksheet.
Note that in the actual view table DEBIT-FMl-US and CREDIT-FMl-US are for the first month,
DEBIT-FM2-US and CREDIT-FM2-US are for the second month, and so on for all twelve months. The
view table definition below takes advantage of the MATCH operator, which checks a character string for
a particular value. In this case, the view table checks ACCOUNT for the value "1315@", where @ is a
wildcard value, and keeps only these records.

CONFIGURATION WORKSHEET 3 VIEW TABLE DEFINITIONj

TABLE NAME: GL1315 DATE: 05/87
DESCRIPTlON (Opttonlll: OBTAINS BEGINNING AND ENDING BALANCES FROM GEN LED

--ITEMS -

TABLE NAME . ITEM NAME • EXPRESSION •
ACCOUNT
CHG-DEPT
DEBIT -FM1-US
CREDIT-FM1-US
DEBIT -FM2-US
CREDIT-FM2-US
CONT.

-- USING CLAUSE -

ALLFACT-DETAIL

- WHERE CLAUSE -- - SORT a.AUSE --

ACCOUNT MATCH "1315@" ACCOUNT A, CHG-DEPT A

NOTES:

Implementing Information Access-18

Step 3

The third step of the process pulls all journals for the 1315 account out of a dataset JV-DETAIL, from
the database JVBAS. In the original process flow, this database was not utilized as the journals were
manually pulled to retrieve the information. The worksheet shown below indicates which data items are
to be included from the dataset. This view table uses the Where clause to subset the data so that only
information pertinent to account 1315 is retrieved. This table also uses the SUB function to extract
several pieces of information from a single field, DETAIL-DESC.

CONFIGURATION WORKSHEET 3 VIEW TABLE DEFINITION

TABLE NAME: JV1315 DATE: 05/87
DESCRIPTION (opllcnaO: GETS All ~NALS fNVOICESI FOR ACCOUNT 131~

--ITEMS --

TABLE NAME . ITEM NAME • EXPRESSION '
PART# =I SUB(OETAIL-DESC.6,11)
MO =1 SUB(OETAIL-DESC,4,2)
JV-QTY =1 SUB<DETAIL-DESC,1,3)
JV#/TR# =I VOUCHER
DEPT 9 CHG-DEPT
AMOUNT
SRCR-FLAG

-- USING CLAUSE --

JV-DETAIL

- WHERE CLAUSE - - SORT CLAUSE --

CHG-ACCT="1315" PART# A, JV#/TR#

NOTES:

Configuration Of Information Access

From the Administrator Utility, within Information Access, the following steps were completed:

• The databases EDCDB, IOSDB, FACTDB, and JVBAS were configured.

• The IMAGE datasets configured were ITEM-DATA from EDCDB, STOCK-ACTIVITY from
IOSDB, ALLFACT-DETAIL from FACTDB, and JV-DETAIL from JVBAS.

• Using the three worksheets shown above for the view tables, three view tables were
configured.

Implementing Information Access- I 9

• An access group, FINANCE, was created, along with a user and password.

• The access group, FINANCE, was assigned to the IMAGE and view tables to provide table
security.

Productivity Gains

Shown below is what the process flow for account 1 315 reconciliation looks like after implementing
Information Access.

PROCESS FLOW FOR INVENTORY RECONCILIATION

(AFTER USING INFORMATION ACCESS)

IOSDB FACTDB

HP ACCESS HP ACCESS

OTUS TRANSFER

ALE

LOTUS

ACCOUNT 1315 RECONCILIATION

JVBAS

HP ACCESS

OTUS TRANSFER
FILE

Prior to using Information Access, the entire reconciliation process took approximately twelve hours to
complete. With Information Access in place, this process takes about two hours, for a significant time
savings.

Implementing Information Access-20

EXAMPLE - INFORMATION ACCESS AND MANUFACTURING

Introduction

With the advent of Just In Time Manufacturing, an area which had a lot of attention focused on it was
the inventory dollar level of component parts. Of special concern were those components whose inventory
level exceeded 52 weeks. The controllers for components would calculate excess inventory dollars (defined
as greater than one year's supply) by generating a QUERY report of total inventory, grouped by controller,
from the MM database, EDCDB. Each part-number that had greater than 52 weeks supply of inventory
was highlighted, and the excess dollars were then calculated manually. This information was then entered
into a spreadsheet and totaled for each controller. Because the information was being retrieved from an
IMAGE database; and then manipulated manually because QUERY could not extract the desired
information, the controllers investigated using Information Access as a way to improve the process of
calculating excess inventory dollars. A diagram of the process flow for calculating the excess inventory
dollar report, prior to using Information Access, is shown below.

PROCESS FLOW FOR EXCESS INVENTORY $ REPORT

{PRIOR TO USING INFORMATION ACCESS)

CREATE REPORT

USING !<>ERV

MANUALLY COMPUTE
EXCESS $FOR

PARTS WITH EXCESS
INVENTORY

CREATE
LOTUS

REPORT

EXCESS INVENTORY $ REPORT

Implementing Information Access-21

Planning The Configuration

The IMAGE datasets required were ITEM-DATA, from EDCDB, and INV-MASTER, from IOSDB. The
data items required from ITEM DATA were PART-NUMBER, DESCRIPTION, CTLR, SIX-MO-RQMT,
PART-CLASS, STD-MATL-COST, STD-TL-LBR-COST, STD-LL-LBR-COST, STD-TL-OVH-COST,
STD-LL-OVH-COST, ACCT, AND A-B-C. The data items required from INV-MASTER were
QTY-ON-HAND and QTY-IN-INSP.

Calculating the excess inventory dollars required two levels of view tables, both of which are shown below:

CONFIGURATION WORKSHEET 3 VIEW TABLE DEFINITION

TABLE NAME: EXCESS1 DATE: 05/87
DESCRIPTION (aptlQnaD: PRELIMINARY TABLE FOR EXCESS-FINAL

--ITEMS -

TABLE NAME . ITEM NAME - EXPRESSION '
ITEM-DATA PART-NUMBER

CTLR
SIX-MO-RQMT
ON-HAND-Q = (QTY-ON-HAND+OTY-IN-INSP)

WEEKS-OF-SUP = (QTY-ON-HAND+QTY-IN-INSP) I
(SIX-MO-RQMT/26)

STD-COST :::j CASE PART-CLASS='P':STD-MATL -COST,
ELSE(STD-MATL-COST+STD-TL-LBR-COST~
STD-LL-LBR-COST+STD-TL-OVH-cosn

-- USING ClAUSE -

ITEM-DATA<PART-NUMBER> JOIN INV-MASTER<PART-NUMBER>

- WHERE Cl.AIJSE - - SORT CLAUSE --

NOTES:

Implementing Information Access-22

CONFIGURATION WORKSHEET 3 VIEW TABLE DEFINITIO~

TABLE NAME: EXCESS-FINAL DATE: 05187
DESCRIPTION ll>PtlollaD: EXCESS S BY CONTROli.ER DATA

--ITEMS --

TABLE NAME ITEM NAME • EXPRESSION .
PART-NUMBER

CTLR
SIX-MO-RQMT
ON-HANO-QTY
ON-HAND-$ =I (ON-HAND-O*STD-COSD
EXCESS-$ =I (WEEKS-OF-SUPPLY-52l*(ON-HAND-0*

STO-COSDl/WEEKS-OF-SUPPLY
WEEKS-OF-SUP

-- USING ClAUSE -

EXCESS1

-- WHERE CLAUSE - - SORT ClAUSE --

WEEKS-OF-SUP > 52

NOTES:

The first view table, EXCESS!, takes advantage of the CASE statement which allows new fields to be
defined based on the information contained in another field. In this table, the CASE statement allows for
differentiation of standard-cost for purchased and fabricated parts. The second view table,
EXCESS-FINAL, uses the Where clause to aUow selection of those records which meet the over one year's
supply specification, thereby reducing considerably the number of records that must be retrieved.

Configuration Of Information Access

From the Administrator Utility, the foUowing steps were completed:

• The IMAGE dataset, INV-MASTER, was configured as an IMAGE table. Note that the
database, EDCDB, and the dataset, ITEM-DATA, were configured in the first example so they
did not need to be configured again.

• Using the two worksheets shown above, two view tables were configured.

• The access group, CONTROL, was configured, along with a user name and password that each
controller could use.

• The access group, CONTROL was assigned to the newly defined IMAGE and view tables to
provide table security.

Implementing Information Access-23

Using The Report Writer

A report format was designed to provide the controllers with appropriate information relating to the
part-numbers which had greater than a 52 week supply. In the report format shown below, the
highlighted fields indicate which fields will actually draw data from the HP Access table. The remaining
text is simply a permanent part of the report format.

EXCESS DOLLARS REPORT

PART-NUMBER SIX-MO-RQMT STD-COST ON-HAND-Q ON-HAND-$ WEEKS-OF-SUPPLY EXCESS-$

A couple points of interest in the above report format are the DA TE and TIME fields, as well as the
SUM-OF-EXCESS-$ field. The DATE and TIME fields are special fields which are defined within
Report Writer and print the current date and time as the report is printed. The SUM-OF-EXCESS-$ is a
statistical field which is actually a summation of the EXCESS-$ field for all PART-NUMBERs.

Productivity Gains

To fully automate the process of generating the excess inventory dollars report, a new feature of
Information Access, the Host Batch Facility, was used. The Host Batch Facility provides a way to perform
a series of database manipulations and save the resulting data for subsequent access. These batch jobs can
be run on the PC, or if the PC user does not want to tie up their PC during execution of the batch job, the
job can be run on the HP 3000. The controllers wanted to check on excess inventory dollars once a
month so a batch job was created to run on the HP 3000, at a scheduled time. This batch job is shown on
the following page:

Implementing Information Access-24

!JOB HDPJOB,MGR.HPOFFICE
!COMMENT ***
!COMMENT * PRODUCES EXCESS INVENTORY DOLLARS BY *
! COMMENT * CONTROLLER TABLE *
!COMMENT ***
!COMMENT
!RUN HDPBATCH.PPC.SYS
REMOTE PURCH BUY
* **** DELETE LAST MONTH'S SAVED TABLES ****
SELECT "EXCESS-TEMP"
DEL TAL
RESUME
SELECT "EXCESS-REPT"
DEL TAB
RESUME
* **** LOAD VIEW TABLE WITH WEEKS-OF-SUPPLY > 52 ****
SELECT EXCESS-FINAL
OUTPUT TAB
SELECT-HPACCESS
PERFORM OUTPUT "EXCESS-TEMP"
* **** PARE DOWN FOR SPECIFIED CONTROLLERS ****
Q RESULT
SEARCH" (((CTLR >=' 1') AND (CTLR <= '19')) OR (CTLR
(CTLR = '30') OR (CTLR = '32')) "
PERFORM Q
* **** SAVE TABLE FOR REPORT ****
OUTPUT TAB
SELECT-HPACCESS
PERFORM OUTPUT "EXCESS-REPT"
EXIT
!EOJ

'27') OR &

With the use of the above batch job, Information Access has decreased the time required to generate the
excess inventory dollars report from several hours to five minutes per month. Shown below is the process
flow after implementing Information Access.

Implementing Information Access-25

PROCESS FLOW FOR EXCESS INVENTORY$ REPORT

{AFTER USING INFORMATION ACCESS)

RUN INFORMATION ACCESS
HOST BATCH JOB

HP ACCESS

SAVE TABLE

USE REPORT WRITER

EXCESS
INV$

REPORT

An added benefit to this project was that once the controllers became familiar with Information Access
and how powerful it is, they began using the product interactively to aid in decision-making and for
generating small ad hoc reports .. Some of the additional functions which are performed with Information
Access by the controllers are listed below:

u Retrieve detail information for a particular vendor or assembly. Datasets
ITEM-STRUCTURE and ITEM-DATA are joined on PART-NUMBER. The items retrieved
include STD-COST, PARENT, and COMPONENT PARTS.

• Determine all open orders for parts for various assemblies. Datasets ITEM-STRUCTURE and·
PURCH-ORDER-DETAIL are joined on PART-NUMBER. The items retrieved include
ORDER-STATUS, DATE-DUE, and PARENT-PART.

• Cost analysis to determine whether a board should be scrapped. PARENT-PART,
QUANTITY-PER, and STD-COST are retrieved and output to a spreadsheet for 'what-if'
analysis.

Implementing Information Access- 26

• Provide detail for PROMIS-generated graphs that report delivery performance of a supplier.
The graphs report only on-time, early, and late delivery. Information Access was used to
supply further detail such as order number, date due, and date received.

As can be seen from this example, Manufacturing benefited not only from the time reduction in
generating their excess inventory dollar report, but also from the fact that the controllers felt comfortable
enough with Information Access to use the product across all aspects of their jobs which required data
retrieval.

EXAMPLE - INFORMATION ACCESS AND SON GENERATION

Introduction

When a product goes through a new release or update, generally there are materials which must be sent to
customers on particular subscription services. Product Support is the group responsible for determining
what materials go to which services, and communicating this information to the Software Distribution
Center via a Software Distribution Notification (SDN).

In this particular case, an update to Information Access was released on the UB-Delta-3 MIT, which
required a distribution of new manuals for both HP Access Central and HP Access, as well as new PC
software. Because the product structure had been modified with the UB-Delta-1 release (from HP Access
Central and HP Access being purchased independently, to being purchased as one product called
Information Access), the support services were going through a transition. We had customers on support
services for the original product structure, and we had customers on the support services for the revised
product structure. At final count, there were 25 customer subscription services which required SDNs in
order to trigger SDC to make a distribution to the customers. In addition, two other items were required
for each subscription service. First, a cover letter, which would be sent with the actual distribution
describing the contents of the package, and second, an HP internal document which would track the
actual material cost associated with the distribution to a particular service.

On the average, a product update may require five SDNs, requiring a half day to complete, which includes
determining what materials need to be included in the distribution, getting appropriate part number
information from manufacturing, writing the SDN, and writing the covers. To complete the work for the
25 SDNs, plus determine how to track material costs for each subscription service was estimated to take
one week. Although, this doesn't seem like much, when you consider that Product Support does this for
every update or new release all of our products requiring a distribution, there certainly needed to be a
more efficient way of handling this process and associated paperwork. Information Access, and especially
Report Writer, provided the solution.

Database Design

A simple IMAGE database was designed to serve as a central repository for all of the data required. The
database has the following schema:

BEGIN DATA BASE SON;

PASSWORDS:
1 PASS;

ITEMS:
DESCRIPTION,
MATL-ID,
PART-NUMBER,

« SANDY »

X30 (1I1) ;
X6 (1 /1);
X12 (1/1);

<< PART-NUMBER DESCRIPTION >>
<< PART-NUMBER MATERIAL ID >>
<< PART-NUMBER >>

Implementing Information Access-27

PRODUCT#,
QTY,
SMS#,
SMS#-DESCR,
SMS#-QTY,
UNIT-COST,

SETS:
NAME:
ENTRY:

CAPACITY:

NAME:
ENTRY:

CAPACITY:

NAME:
ENTRY:

CAPACITY:

END.

X10 (1/1); « PRODUCT-NUMBER >>
I (1/1); « PART QUANTITY >>
X14 (1/1); « SMS PRODUCT NUMBER >>
X36 (1/1); « SMS PRODUCT NUMBER DESCRIPTION
I (1 /1); « QUANTITY ON PARTICULAR SMS
R2 (1 /1); « UNIT-COST OF A PART >>

SUBSC-SVCS,MANUAL (1/1);
SMS#(1),
SMS#-DESCR,
PRODUCT#,
SMS#-QTY;
50;

PART-MASTER,MANUAL (1/1);
PART-NUMBER(1),
MATL-ID,
DESCRIPTION,
UNIT-COST;
100;

SUBSC-PARTS,DETAIL (1/1);
SMS#(!SUBSC-SVCS),
PART-NUMBER(PART-MASTER),
QTY;
500;

»
»

The factor taken into account with this database was to allow for rapid retrieval of the SMS# and the
PART-NUMBER, since most queries would be done on these data items. This was accomplished by both
of these items being search items.

Planning The Configuration

In planning the configuration, Worksheet 3 was the only worksheet completed. Worksheets 1 and 2 were
not completed because it was already known that one user would be using the configured tables and that
all three IMAGE datasets were required, which is the information the Worksheets 1 and 2 would have
provided. Worksheet 3 was helpful because it provided the opportunity to plan the view table definitions
prior to running the Administrator Utility. Completed Worksheets for the two required view tables are
shown on the following pages.

Implementing Information Access-28 1.
·,

CONFIGURATION WORKSHEET 3 VIEW TABLE DEFINITION

TABLE NAME: SDN-INFO DATE: 05/87
DESCRIPTION (OptJonaD: lHIS TABLE WILL PROVIDE .OU INFO FOR GENERATING SONS

--ITEMS -

TABLE NAME . ITEM NAME - EXPRESSION •
SUBSC-SVCS SMS#

SMS#-DESCR
PRODUCT#

PART-MASTER PART -NUMBER
MATL-10
DESCRIPTION
QTY

-- USING Ct.AIJSE -

((SUBSC-SVCS<SMS#> JOIN SUBSC-PARTS<SMS#>J<PART-NUMBER> JOIN
PART-MASTER<PART -NUMBER>)

-- WHERE Cl.AIJSE - -- SORT CLAUSE --

SUBSC-SVCS A,
PART-NUMBER A

NOTES:

Implementing Information Access-29

CONFIGURATION WORKSHEET 3 VIEW TABLE DEFINITION

TABLE NAME: COST-INFO DATE: 05/87
DESCRIPTION (gptJonaD: CONTAINS INFO ON DISTRIBUTION COSTS PER SMS#

--ITEMS -

TABlE NAME ITEM NAME • EXPRESSION '
SUBSC-SVCS SMS#

SMS#-DESCR
PART-MASTER PART-NUMBER

DESCRIPTION
UNIT-COST
QTY
SMS#-QTY

-- USING CIAUSE --

((SUBSC-SVCS<SMS#> JOIN SUBSC-PARTS<SMS#>l<PART-NUMBER> JOIN
PART-MASTER<PART -NUMBER>)

-- WHERE CLAUSE - - SORT CLAUSE --

SUBSC-SVCS A,
PART-NUMBER A

NOTES:

Configuration Of Information Access

Configuration of Information was a very straightforward process. From the Administrator Utility, the
following steps were completed:

• The database, SDN, was configured.

• The three IMAGE datasets, SUBSC-SVCS, PART-MASTER, and SUBSC-PARTS, were
configured as IMAGE tables, with all data items from each dataset included.

• Using the two worksheets shown above, two view tables were configured.

• An existing access group, SUPPORT, was assigned to the five tables to provide table security.

Using The Report Writer

Once the data was available to be accessed, the one task remaining was to design the reports to be used.
The first of these report formats, the actual SDN form, is shown below. The highlighted fields indicate
which fields are actually drawn from the HP Access table. The remaining text is simply a permanent part
of the form itself.

Implementing Information Access-30

SOFTWARE DISTRIBUTION NOTIFICATION

DISTRIBUTION DESCRIPTION: §~S~'~Qi;:~~R
IS THIS PART OF A LARGER DISTRIBUTION ? PART OF DATE: ~~!~

PART INFORMATION:
ER
DIV PART NUMBER
osoo i~A~'l'~~9~:~,~

FOR DISTRIBUTION:

MAT'L
ID PART DESCRIPTION (30 CHAR)

Mth'~'~Q ~§~~i~,~1"~~

SUPPLY
QTY METHOD
~1!;~ MAST

[X] US [X] CANADA [X] OTHER ICON [X] HPSA [X] SPECIAL

PRODUCT INFORMATION:

PRODUCT NO OPTIONS
i~~~j'f,

PRODUCT NO OPTIONS PRODUCT NO OPTIONS

IS SDC SUPPLYING DIVISION FOR THE PRODUCT OR PART? YES [X] NO (X]
IS THIS A NEW PRODUCT? YES [] NO [X]

SERVICE INFORMATION:
(LIST INTERNAL AND OTHER SERVICES MAINTAINED BY SDC)
§~§~

COMMENTS/PRINT INSTRUCTIONS/SPECIAL ACTIONS ETC.
THIS DISTRIBUTION TO BE COORDINATED WITH THE UB-DELTA-3 DISTRIBUTION.

WHAT TYPE OF ORDER? HEART (] 1.0. (]

JOINT PURCHASE VENDOR:

DIVISION INITIATOR : SANDY LYNCH

SEND THIS FORM TO THE SOFTWARE DISTRIBUTION CENTER.

Implementing Information Access- 31

The second report, which tracks the distribution cost for a particular subscription service, takes advantage
of some additional Report Writer features. Note the following calculated fields in the report layout
shown below, MATERIAL COST OF THIS DISTRIBUTION and TOTAL BILLING TO OSD.

SMS# ~~ii

PART INFORMATION:

PART NUMBER DESCRIPTION
UNIT
COST

TOTAL
QTY COST

MATERIAL COST OF THIS DISTRIBUTION

TOTAL BILLING TO OSD

Summary

Information Access is a product which can be used to provide productivity imporvements across all
functional areas of an entity. Certainly, planning is required to fully implement the product, although
some simple worksheets make the actual configuration of Information Access very straightforward. By
taking advantage of the functions available with view table definitions, such as the SUB function, CASE
statements, JOIN, and Where clause, you are able to retrieve information which may not have been
available before automatically. By also making use of Report Writer, you are able to create reports for
presenting the data retrieved in an easy to read format, displaying just the information required. One last
important point is that once you provide people with Information Access to perform a process, they will
most certainly find additional ways to use the product in additional day to day tasks.

Implementing Information Access-32

Abstract

Using C on the HP3000

Paul Hays and John MacNaughton
COGNOSINCORPORATED

3755 Riverside Drive
Ottawa, Ontario

Canada
KlG 3N3

On most mini-computers, the C programming language is becoming very popular with both program­
mers and system administrators. While this increased popularity is due in part to the micro market, the
power of C is very hard to argue with. Since C is available on the new 840 series and, we hope, on the
930, it could become more prevalent on the HP3000.

The architecture of the HP3000 creates some interesting and rather unique problems for someone trying
to develop a large system in C. Even a mid-sized system from other hardware may run into numerous
brick walls trying to run on the 3000. Despite these difficulties, you may want to consider using C to
develop new applications. This paper will discuss some of the pitfalls of using a fully ANSI standard C
compiler on an HP3000 for system development.

Using C on the HP3000

I.

2.

3.

4.

4.1.

4.2.

4.3.

5.

5.1.

5.2.

5.3.
5.4.

6.

6.1.

6.2.

7.

8.

9.

Introduction

The C bible

Table of Contents

The ANSI committee

Why use C? .. .

The Manager

The Programmer

Why not use C ? .. .

Possible problems using C

File System

Environment

Memory .. .

Procedure Calls .. .

Hard-to-use features of the HP3000

PB space

USLs

Recommendations .. .

Acknowledgement .. .

Bibliography

Using C on the HP3000 2

3

4

4

5

5

6

7

8

8

9

9

10

10

10

11

11

12

13

1. Introduction

This paper examines some of the benefits and problems associated with using 'ANSI compatible' C on
the traditional HP3000. It is not a critique of any of the C compilers now available for the HP3000,
nor does it recommend any particular compiler. It should, we hope, provide you with enough informa­
tion to allow you to determine if C is the development language for your applications and, if so, which
compiler is best suited to you.

A point worth remembering is that although C implementations on the HP3000 are still in their infancy,
a wealth of expertise gained from other environments will be applied to their development. There are
also many portable C programs in the outside world that have been just waiting for a good C imple­
mentation to appear on your computer. Expect C to mature rapidly on the HP3000.

There are at least three sources of programs that you may consider for C:
• a translation of an existing HP3000 application
• a new application
• an existing C application designed for a machine other than the HP3000

Each of these possible sources of new code demands very different criteria when trying to decide if a
given C implementation is suitable, or if C is even the language to use.

It is a perverse fact that any significant program will almost always produce different results than the
original when rewritten, regardless of the target language. No programmer can resist the temptation to
'improve' a program while rewriting it, and any program has undocumented behavior that will change.
This argues that you should have the best possible statement of the requirements for your program
before the rewrite begins.

C provides a good range of features that you can substitute for source language features. The flexibility
can be hazardous, but this may be preferable to the awkward restrictions that are imposed by some
other languages. Pascal, for example, is very restrictive, since it was designed for teaching rather than
system programming. C cannot, of course, emulate every feature of your source language. Like Pascal
and Sp!, C descended from Algol; these "block-structured" languages share common concepts that
should simplify translation. (Don't translate your Apl application to C.) When deciding what language
to convert to, consider similarities between the source and target, and ensure that the target language
offers suitable constructs.

If your application (a relational database, for example) uses memory extravagantly, then major surgery
may be needed to make it fit into the HP3000's space limitations. Ensure that the application is small
enough to fit the 60 Kilobyte data space available on the HP3000, or that it can be suitably restructured
to fit By the way, major surgery is occasionally fatal!

Building a new application in C is easier than translation in at least one respect, since the features of
only one language need be considered. Writing a new application is the best way to learn if C on the
HP3000 can do what you need, because there should be few preconceived notions about the details of
implementation.

For either of the above cases, it is necessary to decide whether to use the i/o library functions supplied
with your C compiler, or to perform i/o using the underlying MPE intrinsics directly. The decision is
influenced by at least two factors; portability and performance. If your program relies on MPE intrin­
sics, then it can only run under MPE, or, possibly with some modification, under MPE/XL on a series
900. The same is also true if you require any filesystem features that are not described in the ANSI
standard, such as job/session temporary files, even if your program uses extended operations available in

3 Using C on the HP3000

the C i/o library. Port.ability is a matter of degrees, and is seldom absolute.

The easiest task for a developer, and the best test of your 'ANSI compatible' C environment, is to port
a C application from another system. We have found that this can be trivial. It is gratifying to see pro­
grams that run on DEC and Sun3 machines compile and run on the HP3000 with little or no
modification.

2. The C bible

If you look in the bookshelves of most C programmers, you will find a relatively small book entitled
"The C Programming Language" by Kernighan and Ritchie from Bell Labs. For those used to manual
racks full of reference material, this thin soft cover book may be a surprise. This book contains the
first published definition of the language C, and most C compilers follow the book faithfully.

There are at least three areas where the definition proves inadequate, however. Firstly, the writers made
no attempt to define i/o statements, nor did they thoroughly describe the i/o functions in the runtime
library. Secondly, due to the number implementations of the language in varied environments, many
extensions have evolved. A given desired result may require different syntax under different implemen­
tations. Thirdly, some of the definitions in the book leave too much room for interpretation. This over­
sight has allowed compiler writers to create slightly differing semantics for the same syntax. Luckily,
this is seldom a large problem, as long as the programmer is aware of the dangers of using subtle cod­
ing practices. This last point is true for most languages; for example, you really shouldn't count on the
order of evaluation of procedure arguments.

This book, known as K&R for convenience, attempts to define the philosophy behind the C language
definition. This, more than anything, has fostered reasonably similar implementations on different com­
puters. The authors were also very frank about some of the missing capabilities in their definition of C,
such as parallel operation, and the possibility that some of the operators have the wrong precedence.
The writers also describe how some of the syntax has changed to make C less ambiguous. All of this
shows the aura around the C language to be friendly, open, and very dynamic.

3. The ANSI committee

In the summer of 1983, the American National Standards Institute convened committee X3Jl 1 to pro­
duce a standard for the programming language C. The project has had support from a broad cross sec­
tion of the computer industry, including both Hewlett Packard and Cognos.

The major thrust of this project has been to "provide an unambiguous and machine-independent
definition of the language C", according to the SPARC document 83-079. This standard is intended to
clarify the syntax and semantics of C, as well as determine what restrictions and limits could be
imposed upon it by a conforming implementation of the language. To define the i/o facilities and other
features of a practical language that K&R left incomplete, the committee adapted a widely-used set of
library functions from the /usr/group committee of Santa Clara, California

The C standard does not specify implementation methods. It simply states what language constructs
have to be accepted, and the meaning of what is accepted. The document defines three classes of
behavior for a conforming system at any point: unspecified, undefined, and implementation-defined
behaviors. If the behavior is unspecified, the standard imposes no requirements on a correct program
construct. In compiling a procedure call, for example, the standard permits the implementation to push
arguments onto a stack in whatever order works best in the target environment, leaving this behavior

Usin2 C on the HP3000 4

unspecified. (Expect a compiler for the HP3000 to build procedure calls in such a manner that C func­
tions can call or be called by Spl routines or system intrinsics.) If the behavior is undefined, the stan­
dard imposes no requirements on an erroneous program construct. One example of undefined behavior
is the result of an attempt to divide a number by zero. (Programmers generally attempt to avoid opera­
tions that have undefined behavior, with varying success.) Behavior is implementation-defined if the
standard imposes no requirements on the compiler beyond documenting the behavior. A conforming
compiler must come with documentation describing, for example, the allocation of any padding used to
align members in a data structure.

The ANSI standard is defined so that extensions to C may be accepted by the compiler as long as two
conditions are met. The first condition is that any strictly conforming program must behave correctly.
(A strictly conforming program is one that uses no code construct that is not explicitly defined by the
standard.) The second condition is that all implementation-defined characteristics and extensions to the
standard are documented.

The ANSI committee expects the proposed C standard to be accepted sometime in 1987. This causes
some problems in timing, since some of the more advanced features proposed in the standard may take
some time to be implemented in the compilers. There are no secrets in the standard, however, so most
compiler writers have already started implementing those features.

4. Why use C?

4.1. The Manager

We feel that the DP manager's main concern with programming languages is their affect upon the pro­
ductivity of the programming staff. The manager wants to equip the staff with adequate tools and
ensure that programmers are happy with the tools. One of the things that can make programmers happy
is letting them work in a language that they like. C may well be the most popular programming
language in the world, aside from questions about whether it is the world's best one.

While Cobol is probably the most extensively used langnage on the HP3000, there are types of applica­
tions that Cobol just isn't suited to. Until recently, Spl has been the only other choice if your program
has to manipulate bit fields or use the full memory capabilities of the HP3000. (Perhaps you will agree
with us that large applications are difficult to build in Fortran; straightforward numerical applications
are its forte.)

Spl is seldom taught at the university or college level, making it difficult to find experienced Spl pro­
grammers. Unless you can raid other HP shops, you will have to invest the time to train them yourself.
On the other hand, C is widely available for the home computer market on micros, and is taught at
many colleges and universities. The available pool of programmers also includes the large world of
IBM and DEC computers, to name a couple.

One major advantage of C over Spl is the availability of generalized data structures that can be used to
make the intentions of a programmer more clear. The end result of using a more expressive language
is code that can be less expensive to build and, more important, to maintain throughout its life cycle.

Another advantage of C is that the language is familiar to a large community of compiler writers who
understand the techniques of optimization. If your C compiler offers code optimization, look for
improvements in processor time in programs rewritten from Sp! to C; the Spl compiler seems to per­
form little optimization.

5 Using C on the HP3000

Also available to the DP manager is a whole world of productivity software that could be adapted to fit
local requirements. These include editors and code control software, as well as an awesome array of
user-written tools in C. There are many C products existing on other computers for which translation to
Sp! for the HP market would not be cost effective. With a competent C environment available, the
effort needed to transplant these packages onto the HP3000 becomes minor; software vendors may now
migrate their programs to the HP3000. To be honest, probably the first machines to get these products
will be the new series 800 and 900 Spectrum machines, since they don't suffer from the older HP3000's
restricted data space. HP3000 owners should see some packages on their machines too, though.

4.2. The Programmer

Like Sp!, C is a low level/high level language. This means that, when required, the programmer can
get right into the bits of the machine. Most of the time this really isn't necessary because the compiler
will handle the details for you. Most, if not, all modem high-level data structuring techniques are avail­
able in C, as are the usual elements of structured flow-control. The biggest advantage C has over Sp! is
the addition of real data structuring capabilities.

Another improvement that can help clarify larger applications is C's support for definition of global
data in any separately compiled source module. This feature permits you to structure the application
cleanly, since any sub-application can define its own global data independently of the main application.
By a sub-application, we mean a set of related functions that may be implemented in one or several
modules. Global data may be required solely for the internal operation of the sub-application. The file
table maintained by the i/o functions of a C runtime library is a good example of this practice.

The macro facility of C permits the flexible use of parameters to produce clear and efficient in-line
code for small repetitive operations. Judicious use of macros can greatly improve readability of the
code, and save typing too.

The A.NSI st.andard !ibra.ry provides a powerful and well-documented set of fundamentai procedures for
• a full complement of math operations
• string handling
• flexible and portable i/o
• powerful text formatting functions
• dynamic space allocation
• random numbers
• date and time conversions

Using the standard functions not only simplifies the programmer's task, but improves maintainability
because the common library is well known to all C programmers everywhere.

Symbolic debuggers can save hours of tedious work by automating what has until now been largely
manual labor for HP3000 programmers. At least one of the C implementations available for the
HP3000 includes a nifty symbolic debugger with the compiler. Similar tools have long been standard
on other machines, and one is included with the operating system on the Spectrum series 800. We sin­
cerely hope that HP will give us such productivity tools on the series 900, too.

Let's suppose you use a fourth generation package and wish to dynamically load functions that are
coded in C. No problem! If the call frame generated by the 4GL list is acceptable to an Sp! procedure,
your C function should work just fine, assuming the compiler generates a standard call frame. Of
course, your C compiler must be able to write to a USL or provide some other means to move the
binary into an RL or SL, so that the 4GL package can load the resulting function.

Using C on the HP3000 6

If you find it necessary to apply patches to program files as part of your business, check into the kinds
of listing files that the compiler can produce. Note that the better the compiler's optimizer functions
are, the less familiar the assembly code looks. Patching is far easier if the listing shows which assem­
bler instructions are associated with each statement of the high-level language.

The K&R "bible" states that the definition of C is small, which should mean that the basics of the
language are easy to learn. Any language can be used to perpetrate guess-what-this-does programs, and
C is no exception. The same powerful structures that make it possible to write clear, concise, and
maintainable code to perform complex operations can also be used to make incredibly obscure and
costly code. Any truly professional programmer realizes that programming languages are intended to
communicate not just with a compiler, but also with an audience of maintainers over the life cycle of a
product.

4.3. Why not use C ?

There are thorns in the bed of roses, however.

In this language, what you see is what you get. If you try to pass an integer pointer to a routine that
expects an integer, then that is exactly what the compiler will do to you. Spl offers some built-in pro­
tection against this kind of accident by forcing you to use type conversion functions. While it can lead
to some rather subtle and hard-to-find bugs, this kind of flexibility is also a source of C's power. (The
LINT test compiler available on UNIX systems was written to try to solve this problem by monitoring
such points of syntactic weakness. A similar tool would be a welcome addition to other C environ­
ments.) Some compilers are better than others at finding coding errors, but the level of checking falls
into the area ANSI has declared to be implementation-dependent.

The ANSI committee has proposed a solution to this whole problem with arguments and parameters by
specifying 'function prototypes'. Function prototypes are statements that serve a purpose very similar
to the intrinsic definitions that HP3000 programmers are used to. Among other things, a prototype can
indicate to the compiler that the type of an argument passed to a function is to be implicitly converted
to the type expected by the callee. Few compiler writers have implemented function prototypes yet, but
most are in the process. When they are available, function prototypes will eliminate some obscure prob­
lems caused by type mismatches when calling external procedures.

Arithmetic expressions in C, unlike those in Spl, are permitted to contain mismatched data types. C
provides cast operations, (similar to Spl's type transfer functions), that can make the programmer's
intention clear. Since casting is optional, the language provides a set of rules to determine the default
cast operations if none are specified. In its proposed C standard the ANSI committee has set a trap for
the unwary by changing the rules slightly from those used by many existing compilers. Although the
new rules are more intuitive than the old ones, they may well break code that relies upon the default
casting rules.

The structure of argument lists on the HP3000 might cause trouble for code imported from other
machines. C compilers on many machines allow trailing arguments to be dropped when calling any
function. Such code works if the callee doesn't access the corresponding formal parameters. In the
conventional call frame on the H;P3000, the right-most argument is supposed to live at address Q-4, the
next at Q-5 etc. Now, if you call a function passing three arguments (I, 2, 3) when the function defines
five parameters (a, b, c, d, e), then references in the called function to a orb access general junk. As
the ANSI standard puts it, the result is undefined. In Sp!, the "option variable" construct handles the
problem in a straightforward (but somewhat expensive) manner. The ANSI standard specifies a solution
for C which requires that a special function prototype must be declared when the caller is compiled,
and that the callee must access its parameters indirectly via a macro named "va_arg". The mechanism

7 Using C on the HP3000

should be easy enough to use, but is a bit of a nuisance if you are used to the Spl convention. Assum­
ing that your compiler doesn't yet implement the new function prototype regime proposed by the ANSI
committee, you should ensure that it provides a workaround for this situation.

If you use many "option variable" procedures in Spl code to be translated, then you may encounter
another difference in C argument lists. Unlike Sp], C does not permit arguments to be dropped from
the middle of an argument list Often the solution is to insert a default value into the argument list
wherever the offending function is called. This solution doesn't work if the callee behaves differently
when the argument is missing than it does when the argument has any of its possible values. ("Miss­
ingness" can be treated in Spl as one of the possible values of a parameter.)

If you intend to use C for general programming that requires calls to .MPE intrinsics, you should inves­
tigate the facilities available with the compiler to deal with Spl-style variable argument lists and miss­
ing arguments. In particular, it is useful to extend the language so that arguments can be omitted to
obtain default values for certain intrinsic parameters.

5. Possible problems using C

Doing development in any language new to you or your computer is always an interesting experience.
If you decide to switch some of your development to the language C, it will be no different However,
in this case you acquire two sets of problems: a language possibly new to your programmers, and com­
pilers new to the HP3000. There is the some possibility that the senior technical programmers have
more experience on the HP3000 than the developers of the C compilers. This means that your staff may
be more aware of the intimate details of the HP3000 than the compilers are. This may lead to some
confusion, where some "strange" action does not seem natural to your experienced staff and they don't
know if it's a problem with their understanding of C, or a problem with C not doing the natural thing
for the HP3000.

5.1. File System

The first problem you will encounter when you import a program from a different machine may be a
small matter caused by differences in the filesystem. By convention, the names of files referenced by
the "#include" statement often contain a portion called an 'extension', usually ".h". On the HP3000, the
part following the '.' specifies a file group. The ANSI standard necessarily leaves the method used to
determine the location of the file up to the implementors of the compiler. Likely places to look for a
header file like "mydefs.h" might be in the current group (strip off the extension), in a group named "h"
in the current account, or in the group containing the source file (which might not be your current
group). Of course, you should be able to use :file equations, but you must know whether you need an
equation for "mydefs" or for "mydefs.h". To further complicate matters, the "#include" statement has
many possible options which could alter the search path used by the compiler to find the file. The com­
piler writers could help us out by providing a means to supply the compiler with a list of groups to
search in sequence for the include files. In our formal development environment, all source files reside
in groups whose names contain a revision number. It's no good for the compiler to look for our header
files in group "h" if they must be in group "h506".

The next problem you may stumble across is the i/o library provided with the C compiler. C i/o is gen­
erally character-oriented rather than line- or record-oriented. Normally, text files to a C program are
streams of characters delineated by the <new-line> character. Text files to the HP3000 are generally
fixed length files with or without carriage control, so the i/o routines must perform some conversions.
(One type of text file that we haven't been able to access using C i/o is a compact and efficient format

Usin2 C on the HP3000 8

!
i

used by the software tools from the Robelle company.)

Standard C also has no notion the HP3000 implementation of the job/session temporary file. There are
standard library functions to determine unique file names so that C programs can build files that won't
conflict with existing files. Note that a file opened with such a 'temporary' file name will still appear in
the permanent file domain when it is closed.

The whole HP3000 file system is essentially opened up by the myriad of options available on the
FOPEN intrinsic. A vendor of C for the HP3000 should be expected to extend the C i/o library to han­
dle most or all of the features of l\.1PE's FOPEN intrinsic. This is necessary so that the rest of the
powerful i/o operations in the library are available with all types of l\.1PE files.

5.2. Environment

Interactive C programs, particularly text editors, often include some means by which the user can
'escape' to the operating system's command interpreter to issue a command. To support this, the ANSI
C standard specifies that the runtime library must contain a function named 'system' which is intended
to communicate with a command interpreter in the host environment. The committee has also stated
that this function "allows a program to suspend its execution temporarily in order to run another pro­
gram to completion". Unfortunately, HP does not provide a means to 'programatically' call l\.1PE's
command interpreter to run programs or execute user-defined commands. Several third party products
on the HP3000, however, include command interpreters to handle these requests. Ideally, C implemen­
tations for the HP3000 would include such a command interpreter to support interactive programs. In
any case, the users of such programs should be aware of any limitations imposed by the implementation
of 'system'.

Early versions of l\.1PE had limited capacity to pass run time parameters to a program. That capacity
was extended with the "info" string, although there are still some size limitations. The ANSI standard
specifies a mechanism by which C programs receive parameters from the operating system in a parame­
ter of the main function. It is the responsibility of startup code from the C library to format the info
string into this form. We note that l\.1PE still provides the value of the PARM option of the command
RUN to user programs. C on the HP3000 should provide some mechanism to allow access to this
parameter, because by the time your main procedure starts it becomes very difficult to get at the
memory location where l\.1PE has stored this value. We recommend that the standard function 'getenv'
be adapted to this requirement.

5.3. Memory

The ANSI proposal requires that internal identifiers can be up to 31 bytes each, with external identifiers
6 long. It seems obvious that, unless the C compiler does something fancy, the compiler itself will run
out of symbol space. (The Spl compiler only pays attention to the first 15 bytes of a name, and it occa­
sionally runs out of space.) If the C compiler is to be used for large applications, we recommend that
the compiler provide a means by which the user can control the number of significant characters used
for symbols.

When running a program that has very dynamic memory demands (for example, a generalized report
writer), memory space can present a major problem on the HP3000. This means it is up to the running
program to do its own memory management and "garbage collection". With the restricted memory
space available on the HP3000, memory fragmentation can be disastrous. After many cycles of allocat­
ing and freeing blocks of various sizes, fragmentation can cause the heap. manager to report an

9 Usinsz C on the HP3000

allocation failure even though there may be plenty of memory available. We feel that the developers of
any heap manager for the HP3000 should thoroughly document how their memory allocation routines
work and take steps to avoid causing fragmentation in all of their code.

Once again proving the adage that you can't get something for nothing, using the C i/o routines will
probably cost you memory as well as speed. This is because to allow all the nice functionality that C
i/o has, the routines must have their own buffers. This means there will normally be two buffers active,
yours and the library's (plus MPE's of course, but that is there most of the time, anyway). We would
like to see standard i/o routines that use nobuf access wherever possible.

5.4. Procedure Calls

The HP3000 implements in microcode many operations that are usually performed via calls in C
environments. On our series 48, a procedure call to a memory-resident segment takes on the order of
25 microseconds, but to a non-resident segment it can take milliseconds. Let's examine some initializa­
tion code, for example. In Spl, you can write

MOVE byte'array := (10)" ";

which moves ten spaces into some byte array. You could also code

MOVE byte'array := " "· .
which will have the same affect. Neither of these statements causes a call; they invoke efficient micro­
code. In C, you have a choice of run time library functions to handle the same requirement:

strcpy (byte_array, " ") or
memset (byte_array, ' ', 10)

(Actually, the strcpy doesn't do quite the same thing. It appends a nul character to the target array
because, in C, strings should be nut-terminated).

This performance hit could be painful for data-processing applications that initialize and copy blocks of
text frequently. There is nothing in the ANSI standard to prevent C compilers from providing built-in
procedures that implement the simple array handling routines as inline code. To take advantage of
some rather basic architecture in the HP3000, C vendors should examine this issue closely and ensure
that the implementation makes effective use of the instruction set.

On the subject of efficiency, note that a typical implementation of a C runtime library uses a macro
(named putc) to make character-by-character output more efficient than if a PCAL were used for each
character moved. You might try a metered run of a test program that writes some large number of
characters to ensure that the implementation is efficient.

6. Hard-to-use features of the HP3000

This is by no means a complete list but should mention the most difficult features of the HP3000 for an
ANSI-conforming C compiler to use.

6.1. PB space

The ANSI proposal includes a storage attribute of 'const', which is an indication to the compiler that

Usimt C on the HP3000 10

the value of a variable may not be changed either directly or indirectly. Since the HP3000 offers no
access protection for your data stack (if you can read it, you can write it), the restrictions needed for
const storage can be enforced at compile time only. The const attribute could at first glance be inter­
preted to be the same as Spl's PB attribute. Unfortunately, the HP3000 architecture imposes restrictions
on PB storage that are not imposed on ANSI's const storage. Const variables can be used in the same
manner as any other data except that they can't be the target of any sort of assignment. Spl data that
have the PB attribute can only be used as the source of an assignment or move instruction, or the con­
stant in a string comparison. (As noted elsewhere, C doesn't normally do string comparisons inline so
the compilers don't use PB space for this. They could, though.) Also, data to be accessed via the
machine's P register must reside in the same code segment as the current executing instruction. This is
why Spl restricts its use to local arrays. There is no equivalent to this special storage mechanism in C.

There are critical uses of PB space on the HP3000, however. We use it to store large amounts of
seldom-needed text (for example, error messages) for infrequent retrieval. It is impractical to keep the
error text in the limited storage area of the data stack; this little-used data should remain out of main
memory until needed. If the C compiler doesn't allow access to PB storage, then this sort of design
cannot work in C. In order to make this important resource of the HP3000 available to users of C, the
language should be extended slightly to add a const_PB storage type, and to restrict its use in the same
manner that Spl restricts it. An alternative possibility is to permit a C program to call an Spl procedure
which can copy information from a local PB area back to the caller. Such a mixed-language scheme
might be acceptable if its use did not impose any further restrictions on the non-Spl modules of the pro­
gram.

6.2. USLs

A compiler design which, like HP's compilers for the HP3000, creates relocatable modules in a stan­
dard USL file would seem straightforward. This approach allows the inclusion of other languages in
the program, and the use of PREP, insulating the compiler from changes to either USL formats or pro­
gram files. (HP is not likely to make such changes.) It naturally assumes that the USL structure and the
PREP program are capable of handling all requirements of ANSI C, if the implementation is to conform
to the ANSI standard. One case where we believe that the USL structure is not adequate for C is the
requirement that only the module which contains the program's entry point, i.e. the 'outer block', may
define global data. A design that offers no relief from this restriction does not conform to the ANSI
standard since ANSI C permits any module in a program to define global data. Whether such a restric­
tion is important to your application is for you to decide; you should be aware that applications that you
wish to import from other machines may require modification to meet the restriction.

It would seem that a new linker program may be required in order to support full ANSI C on the
HP3000. We believe that any linker program supplied for the HP3000 should be capable of resolving
references from a standard USL file as well as any new type of relocatable object created by the C
compiler. If this criterion is not met, some programs which otherwise conform to the standard could not
be linked with modules written in the other HP3000 languages.

7. Recommendations

In the same way that Spl is not for everyone, C is not a global solution for all problems that plague the
development shop. If you want to tap a resource bank of C applications or move your C application
into the HP3000, C is worthy. If your applications are in Spl and maintenance costs are high, or if
maintaining two sources will be too costly when the Spectrum arrives, then we feel that there may be
benefits in moving them to C. One point is that HP is not going to provide a native-mode compiler for

11 Usine: Con the HP3000

the Spectrum machines (there is a compiler available from a third party), but C is available on the
series 800 and it is expected to be on the series 900. Of course, if you are currently using a series 48
with no plans to upgrade in the next five years, then that really doesn't matter. In any event, Spl seems
unlikely to become the language of the future.

Any or all of the possible problems mentioned in using C may be solved quite properly by the C com­
pilers available for the HP3000. As noted, some of the problems only occur in large applications or
those which must mimic specific actions in other languages.

We suggest trying a couple of small, straightforward applications in C so that your technical staff can
determine for themselves the capabilities of the language and of its implementations on the HP3000.

If you intend to port a C application to the HP3000, you will need to analyze the application and the
compiler to ensure that the C implementation is sufficiently compatible and that the memory usage is
within the HP3000's limits. If you intend to migrate a product to Spectrum native mode in C, you need
an i/o library with a highly compatible set of extensions to support the MPE filesystem and/or a clean
compiler interface to the MPE system intrinsics. For large applications, you may need a workaround to
enable use of PB data.

We hope that this paper has clarified some of the issues that you need to consider before deciding to
use C and when selecting a C implementation for your organization.

8. Acknowledgement

The authors would like to thank Tim Chase and Bruce Frank of Corporate Computer Systems, as well
as Dr. Jay Anderson and Chuck Stern of Tymlabs Corporation for their kind cooperation.

DEC is a trademark of Digital Equipment Corporation.

HP, HP3000, and Spl are trademarks of Hewlett-Packard Company.

Sun3 is a trademark of Sun Microsystems.

UNIX is a trademark of AT&T in the United States of America and other countries.

Using C on the HP3000 12

9. Bibliography

The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, (Prentice•Hall, 1978)

Draft Proposed American National Standard for Information Systems - Programming Language C, X3
Secretariat, Computer and Business Equipment Manufacturers Association, 311 First Street N.W., Suite
500, Washington, D.C. 20001-2178

Rationale for Draft Proposed American National Standard for Information Systems - Programming
Language C, X3 Secretariat, Computer and Business Equipment Manufacturers Association

Using C for Migrating to HP's Precision Architecture, Tim Chase and Chris Maitz, Interact Magazine,
March, 1987, p 35.

HP3000 Computer System Systems Programming Language Reference Manual, Hewlett Packard.

13 Using C on the HP3000

COPING WITH CHANGE

or

Help! A New Release is Coming

Albert L. Magid, President
ALDON Computer Group
405 14th Street, suite 715
Oakland, CA 94612

COPING WITH CHANGE

or

Help! A New Release is Coming

In the world of data processing, change is Inevitable.
Anyone with any experience working in the field of information
handling knows that change is the rule. The only unknowns are
the rate of change and the magnitude of the changes that will
occur.

From my own experience, the changes have been mind­
boggling. As I look back, I cannot perceive how I could have
anticipated or even dreamed of the changes that have occurred.
As I look forward, there's still no way to anticipate what will
occur.

Definitions

In order to establish a common ground to discuss the subject
matter of Coping with Change, I've called upon an old friend, The
Dictionary, to make sure we're all working from the same hymn
book. My source is "The Random House Dictionary of the English
Language"--Copyright 1966. I hope the definitions haven't
changed in the last 21 years. Actually, I had a good time
playing with the words, one leading to another, as I developed
this paper.

COPE: To struggle with or contend, especially on fairly even
terms or with some degree of success

CHANGE: To make the form, nature, content, etc. of
(something) different from what it is or from what it would be if
left alone.

So if I were to use these definitions I could paraphrase the
subject of the paper to say:

Coping with Change: To struggle or contend on fairly even
terms or with some degree of success with something different
from what it was or would be if it had been left alone.

That definition opened up a few questions about definitions.
Why" struggle" or "contend" and what's meant by success? I
looked up those words and that led to more questions, not
answers,

STRUGGLE: to contend with an adversary or opposing force

1

CONTEND: to struggle in opposition

SUCCESS: 1. The favorable or prosperous termination of
attempts or endeavors 2. The attainment of wealth, position,
honors, or the like

So I'll redefine the title Coping with Change: To struggle
with an opposing force that is different from what it was or what
it would be like if it had been left alone, and, upon favorable or
prosperous termination of my struggle I will attain wealth,
position, honors, or the like.

In summary, if our endeavors can take advantage of the forces
of change, we can become Rich and Famous. Simple, isn't it?
Well, there are some caveats having to do with the rate and
magnitude of change and being able to recognize what's really
happening.

Examples of Change

Before going much further, let me give some examples of
changes that I've seen. I won't get into "should have" and
"could have" if I had only recognized what was happening because
that would make me cry alot. Well, one example will give you an
idea of why one could become emotionally upset. When I first
moved to Los Angeles, I could have purchased land in the far
out suburb of Anaheim for $500.00 an acre. Some fellow by the name
of Disney, or something like that, bought it to put up some amuse­
ment facility. I could have--should have!--oh well. Hindsight
vision is 20-20.

As you read the rest of this paper you might keep in the
back of your mind the following questions and relate them to the
changes that you are going through.

* Are you willing to contend with change?

* What are the risks associated with change?

* What barriers are in the way of your acceptance of change?

* What advantages do you get from accepting change?

* What advantages do you get from not accepting change?

So that you have some perception of where my ideas come from,
let me give you some background.

I grew up with such things as an ice truck and an iceman that
delivered ice so we could put it in the icebox to keep food
cold. Milk was delivered by the milkman with a horse-drawn
wagon. The horse knew the milk route and would walk to the next
house while the milkman put our milk in the milk chute. There
was no such thing as homogenized milk. "The cream always rose to
the top" of our milk; we had to shake it in order to get the
right consistency. There was no stereo. In fact, we had to

2

wind the Victrola to play records.

Then came the push-button radio. What a qreat advance! It
was no lonqer necessary to move the dial. We listened to radio
proqrams with such characters as Jack Armstronq, the All­
American Boy sponsored by Wheaties, the Breakfast of Champions.
(I ate them everyday, and I was a champion.) There was Little
Orphan Annie, the Shadow, Jack Benny, Burns and Allen,--all
playinq to your imaqination of what was qoinq on.

Then came TV and away went the imaqination. It was no lonqer
necessary to conjure visions of what heroes, heroines, and
villains looked like. You don't have to exercise your mind to
describe the jungle or Grand Central Station or stormy weather.
It's all there on the screen.

Movies were ten (10) cents, ice cream three (3) cents for one
dip and a nickel for two (2). Ice cream sodas were ten (10) cents.

Well, things have changed from those days. Progress has been
made. We have to struqqle to adapt to and keep up with the ac­
celeratinq rate of change. This struqgle creates stresses for
all of us.

More Examples of Change

There is also the chanqe in t' ·qork environment. In
December of last year I celebrat • my 30th anniversary of being in
data processinq. I started with IBM as an operations trainee.
In my wildest dreams I could not have imaqined the chanqes that
have taken place since then. If I were to try to imaqine what
will happen in the next 30 years, or 20 or 10 or even next
week, I would be hard pressed to come up with anythinq
approachinq reality. Most of you will participate in that
chanqe. The maqnitude of which will be much qreater than what
I've witnessed.

I would never have believed that the soul of data processing,
the punched card, would go the way of the dinosaur. Vacuum
tubes, the life blood of data processinq equipment, would also
disappear. Chips would no longer be defined as the pieces of
paper that result when a hole is punched in the card. Security
would change from beinq a screen surroundinq the material being
processed with a siqn sayinq "Don't look--This is Confidential"
to the elaborate password and encryption procedures we have
today. The technoloqical changes in size and power of hardware
defy comparison.

Nor could I have anticipated the Age of Specialization we
now have. In the early days of data processinq, there was total
responsibility for a job. I recall that I desiqned the job with
the user, wrote the specs, wrote the program, wired the panels,
tested the proqram, ~an the job, and delivered the reports. The
only thinqs I didn't do were keypunch the cards and decollate and
burst the reports. If somethinq went wrong, there was only one
person to blame.

3

I must confess that I did make some mistakes, I won't
elaborate on those, although they did provide an excellent
learning experience. I would describe them in more detail,
however, the shredding machine removed all of the evidence.

I will relate one experience in working with our data
retrieval system. I was responsible for a pole inventory program
for a large Telephone Utility and during the course of processing
for them, I lost 2000 telephone poles, (consisting of one box of
punched cards) out of their 500,000 pole inventory (250 boxes of
cards) . The retrieval system consisted of going to the storeroom
and getting the cards--a little different from today's data
retrieval. It's not too hard to see why the turn-around time for
jobs was measured in days, not in minutes or seconds.

Most Significant Change

The most significant change that has occurred is the change
in the relationship of the cost of people to the cost of
machines. Again, relating to my own experience, my gross pay in
1957, working for IBM, was $6,000.00 per year. (I supported a
wife, two kids, and a house on $425 per month take home pay.)
I felt guilty because I was being charged out as a contract pro­
grammer at $10.00 per hour. The printer, which could print
at 150 lines per minute, was being charged at $20.00 per hour.
That low personnel cost versus high machine cost made it incumbent
upon us to use people to solve problems rather than using
valuable computer power. "Throw people at the problem" was the
philospophy of the time. Use your own people and develop everything
in-house became the rule. We had the disease called NIH or
Not Invented Here. How could anyone else have the talent, the
knowledge, the understanding and the resources to develop and
maintain our application programs? "If you need more resources,
hire them!" became the battle cry of the data processing
department. Do not buy anything outsidei

Just a few facts as stated by recent government statistics
establish why that philosophy has changed. In 1965, 80% of the data
processing dollar was spent on hardware and 20% for people. By
1985, that ratio changed: 80% of the data processing dollar was
spent for people and 20% for hardware. The total data processing
dollars spent in 1985 was significantly higher than the expen­
ditures of 1965.

New Business Generated

It is no longer sound economic policy to throw people at the
problem. This change also proved to be a vaccine to the NIH
problem and helped create a whole new business--Packaged
Applications Software. It is not only acceptable to buy outside
software~ in many cases it is the preferred way to get applications
installed at a reasonable price and within a reasonable time frame.
Packaged software is not the solution to all data processing
needs. There are still a significant number of custom
requirements.

4

Packaged software with all of its advantages of cost and time
savings presents the potential buyer with some significant
decisions to consider. In most cases, a business or
organization has some unique requirements which are not handled by
the packages available. This brings up a major decision point.
Should the business be changed to meet the requirements of the
package, or should the package be changed to meet the unique needs
of the organization? There are many advantages for either choice.

From the perspective of the supplier, it would be most
advantageous if programs are not changed. Then the program
can be maintained exactly as supplied--release by release.
The problem occurs when there are dynamic and changing needs and
it is desirable for the software to meet those needs quickly.
The vendor provides a generalized system that attempts to meet
the needs of most of the potential users in the marketplace.
The package may or may not be able to meet all of the needs of
the users. The vendor is faced with the classic inventory
control problem posed in any basic business class. What
investment is necessary to meet all of the needs of all
of customers 100% of the time? What resources will be
required and how big will a system have to be to attempt to
meet everybody's requirements all of the time? Even if
everyone's requirements could be defined and agreed to, the
systems would have to be too large and too complex to be
practical.

Vendors send out periodic new releases with new features
requested by users as well as by their in-house staff.
These releases are infrequent because of the logistics involved
in getting new releases to customers, the testing requirements
to avoid errors in the new product and the disruption
caused at customer sites where new procedures may be required
to handle new features.

From the users' perspective, there is the concern that
the competitive edge or the unique personality of the business
has to be changed to meet the requirements of the software.
Users need the option to modify to meet the business needs and
they need to do so in a timely manner while awaiting subsequent
upgrades from the vendor. The big problem comes when
a next release arrives. That's when the cry goes out: "Help,
because a new release is coming".

A New Release! What to do? What to do?

There are a number of solutions to the new release problem.
They range all the way from "don't change anything" to "let the
computer handle it". The decision as to which solution to take
depends upon the cost to the business; the cost of modifying
your business procedures versus the cost of resources necessary
to maintain the modified programs.

5

If programs are modified, then it is necessary to establish
a procedure to control the changes that are made. This procedure
can range from manual controls with manual checking to automated
integration of local modifications into new releases.

People who change programs should document the changes and
maintain an archive of changes for every program. This archive
serves as the source of changes that may or may not be necessary
in the new release.

In theory, this should work well if programmers always
document everything they do and if they do not overlook changes
when visually comparing program listings. Unfortunately, with
the significant demands on data processing people one of the
first casualties is documentation. An often heard quote is
"Today I'll solve the problem and tomorrow I'll document what I
did." I've been hearing it and saying it since I've been in data
processing - I have a room full of tomorrows still waiting to get
done. I'm convinced that documenting of changes is number one on
the "Procrastination Hit List." From a pragmatic point of view,
programmers do not document. A more reliable source of
documentation is required.

Software Tools

There are software tools to assist programmers in the
documentation process. These tools provide an automatic audit
trail of all changes made to a program when used as part of the
job stream for moving a program into production. Not only do
they satisfy the requirement for documentation of local changes
when a new release arrives, but they also satisfy the auditors'
concerns about control over changes made to programs. Whenever
a program moves to a production group, the current production
version is compared to the new version from the test group
using a source comparison utility, and a report is produced
identifying the lines of code that have been changed. This
report must be reviewed and approved by the person responsible
for the system - someone other than the programmer who made the
changes. Thus control is established in the handling of changes.
These hard copy listings of changes supports the effort to integrate
local changes into a new release from the vendor.

Another method to support the integration of local
modifications into the purchased software is to use a source
comparison utility to compare the original vendor release with
the latest production version. The output report would list all
changes made since the prior release. The same original
release would be compared with the latest vendor release to
identify all changes-made by the vendor in the current release.
The two sets of output reports would then be reviewed. The
machine finds all of the changes. The local staff has the
responsibility to select the appropriate ones to be applied
to the new release.

In choosing the source comparison utility to handle this

6

audit trail function, there are some features that will make the
tool significantly more effective. The two most obvious features
are ease of use and reliability. Check for those capabilities by
trying demonstration programs usually available from vendors.
In addition, the source comparison tool should have an algorithm
that does not depend upon sequence numbers so that the programs
do not get "out of sync". It would also be useful if the utility
can identify moved code as well as code added, deleted or changed.
Another time-saving feature is the ability to handle 'wildcard'
comparisons. That is, file sets can be compared as well as
individual programs. One entire release can be compared with
another and look at all programs changed. It is also possible to
get a summary of which programs have been changed and which have
not been changed. This makes it possible to scope out the effort
and resources required to implement the new release.

An even more comprehensive method to handle local
modifications allows the machine to perform the comparison and
integration functions. The tool compares the original release
with the current production version and with the vendor's new
release. An output report identifies changes made locally and
changes the vendor has made. A compilable source module is
produced which contains both sets of changes. Then an editor
provides a means to edit out those lines of code that reflect
duplications of functions. The final results is a source
program that contains all desirable features and is
ready to compile.

The capabilities offered by these types of utilities simplify
the task of integrating local modifications into new releases
of purchased or distributed software. These tools allow the machine
to perform the tedious manual effort of identifying and applying
changes, thus saving valuable programmer time. By letting the
machine take on these functions, programmers can spend their time
doing what makes them more productive--programming.

The functions provided by these tools allows for the
maintenance and control of local modifications. Thus, the
purchaser of application software can take advantage of the
resources and enhancements supplied by the vendor and still have
the flexibility to make desirable custom modifications.

These software tools provide the necessary "help" when "the new
release is coming."

I believe that we all recognize and accept that change is
inevitable. If we can develop the procedures to control change,
then we can focus on the benefits derived from change rather than
focusing on the discomfort that might be encountered along the way.
We should look at change as an exciting challenge to be taken
in stride on the road to success. And, as defined earlier, when
we achieve success, we will become Rich and Famous. Simple,
isn't it?

7

Visual Literacy The Lanquaqe of Visual Data

Joe Malin
Hewlett-Packard Company, Personal Software Division

3410 Central Expressway
Santa Clara, CA 95051

Computer software makes very sophisticated presentation
graphics available to any computer user. However, the
replacement of graphics artists by software means that
knowledge of the visual language is no longer readily
available. One does not need to be an artist to have enough
knowledge to make effective presentation graphics. The
important aspects of graphics for presentations can be
summarized as principles of visual literacy, the most
important of which are emphasis and integrity.

This paper describes how the principles of emphasis and
integrity cover various graphics rules, and how these
principles can be applied in presentation graphics design.

The Problem

Computerization has provided graphics to more people, but
inevitably lessened the overall quality of the result. This
is due to a change in the process of producing graphics,
which used to be

art
ability

rough
graphics

Artist

Slide

Visual Literacy

1

but which now is more on the order of

art
ability

Slide

This situation is not unique to graphics. The same problem
has occurred in document processing. In that area, however,
many fairly standard rules, coded into computer software,
have begun to alleviate the problem. Visual communication
has some standard rules, and these have for the most part
been included in modern charting software. However, it is
difficult or impossible to include the same rules in a
general purpose graphics package. There are also some
important principles that cannot easily be included in
software. Some significant end user "smarts" are still
necessary.

The Goal of Presentation Graphics

Fortunately this problem is easiest to solve for
presentation graphics. By "presentation graphics" I mean
graphic arts in any media used to support a presentation. I
will focus on graphics printed on 35mm slides or overhead
transparencies although the same principles apply to more
informal printed graphics and even video displays.

These graphics have in common the focus of informing an
audience, often with the avowed goal of persuading the
audience to choose a idea or course of action from a
presented set of options. A single presentation is usually
made, consisting of a speech accompanied by displayed
"slides" or pictures. The graphics definitely support the
verbal presentation.

Every presenter wants to be effective. Therefore doing
graphics "correctly" is more simply making graphics that
effectively communicate simple ideas to an audience, and
persuade them to choose an idea or action.

Visual Literacy

2

Visual Literacy

Visual literacy is the graphics equivalent of computer
literacy. Someone who is visually literate is not
necessarily an artist. He does have an appreciation of
graphic arts principles which lead to effective graphics.

Regardless of the way it is taught, I believe that visual
literacy should be concerned with both presentation and
viewing skills. In this paper I emphasize presenting
skills. However, both within and without graphics, the
process of learning how to present may involve both being a
speaker and a listener.

The core principles of visual literacy have been described
in several places. McGregor and Nelson use a simple theory
of shapes and colors to explain how to achieve visual
impact. Other authors focus on the more standard graphics
arts principles of simplicity, unity, balance, and emphasis.
Edward Tufte in his provocative book on chart design uses a
list of aphoristic rules to define a chart "aesthetic".

Emphasis and Integrity

Fortunately, all of these approaches reach similar
conclusions. Even more fortunately, most presentation
graphics software packages seem to include the "right"
rules. In particular the rules of unity and balance are
well-automated; most charting packages can automatically
scale and group the data to achieve a satisfactory chart.

User training lacks an understanding of emphasis and
integrity. The principle of emphasis realizes that
presentation graphics have a particular message which must
stand out in order to be effective. Integrity "balances"
emphasis in realizing that the graphics message should not
be misleading. The problem with integrity in presentation
graphics is not necessarily that the presenter is trying to
lie, but that because of ignorance he misleads or confuses
his audience.

The Problem Areas

The need for user visual literacy is also not uniform
throughout the production of presentation graphics. The
following areas seem to need the most literacy to be used
effectively: Color and color combinations, layout,
selectable aspects of typography, chart type selection, and
chart design.

Visual Literacy

3

Color and Color Combinations

Color is the most misused aspect of presentation graphics,
and yet has a very powerful effect on the viewer's ability
to perceive a slide. Color is pervasive in graphics;
everything in a slide will have a color, even if it's black
and white. It's an appealing thing to the graphics creator,
and has the most emotional appeal and effect of any graphics
element.

The common mistakes made with color and color combinations
are the use of too many different colors, and the
combination of extreme colors. Many different colors become
confusing and actually decrease the viewer's ability to
receive information. The human eye cannot focus
simultaneously on both blue and red (a condition which is
deliberately exploited in 3-D simulation). High-contrast
colors (from the extremes of the visible spectrum) emphasize
an object while low-contrast colors (adjacent on the
spectrum) actually reduce emphasis. High-contrast colors
are called "complementary" while low-contrast colors are
called "adjacent".

Effective emphasis requires that a small number of colors be
chosen and used throughout the presentation. This provides
a regular pattern of background and emphasis. Many
different colors generate "noise" over which only extreme
emphasis can be seen. The use of too many different colors
can also lead to accidental emphasis and therefore loss of
integrity.

A simple and useful technique is to choose color pairs and
color triplets. A color pair should be two complementary
colors, and a color triplet two adjacent colors and one that
is complementary to the other two. This method can be
easily organized with the use of a color wheel of 6 colors
(plus black and white). The wheel can be hand-drawn (or
plotted as a pie chart) using 2 colors from each part of the
visible spectrum (red-yellow, green-aqua, blue-purple)
These colors are ordered so that low-contrast colors are
next to each other and high-contrast colors are across from
each other (see Figure 1).

Individual colors have commonly accepted connotations as
well. If chosen properly, individual colors provide
emphasis on a particular point. Random color selection can
harm the integrity of a presentation. A familiar example of

Visual Literacy

4

this is the unplanned use of red in presentations, since red
has historically been used in business to indicate negative
monetary values. Some standard color meanings are

RED
YELLOW
GREEN
BLUE

Typography

danger/excitement (also "negative")
cheerful/sunlight
quiet/nature (also "positive")
thoughtful/water

Typography is the "graphics" of printing words. The vast
majority of typographic rules focus on achieving simplicity,
unity, and balance. The overall goal of typography is
familiarity, often stated as the idea that "a new font to be
successful must not be recognized for its novelty". The
typographic rules of letter and word placement are
well-codified and should be found in a quality graphics
software package. The variables in typography that will
affect emphasis and integrity are choice of font, type face,
font size, and text placement.

The meaning of font varies, but as used in this paper it
refers to a family of stylistically similar alphabet
letters. Within in a particular font there may be various
type faces (such as italic). For each type face there may
be several available sizes.

Although graphics software packages contain many different
fonts, only one should be used in a presentation. Font
changes produce a contrast which provides emphasis, but it
is better to use a contrasting style in the same font.
There is no agreement on a preference for serif (i.e. Roman)
over sans serif fonts (i.e. Helvetica), although a familiar
font may be easier to read . One advantage of sans serif is
that thin serif lines can be lost in the scaling or
reproduction of the graphics.

Modern
(sans serif}

Classic
(serif)

- Example fonts -

Visual Literacy

5

A "square" type face should be used with italics reserved to
provide emphasis. Different fonts can be mixed into the
presentation to provide visual interest. These should not
be relied on to convey printed information. Overall,
excessive variation in type face reduces the ability to
establish emphasis.

No more than 3 font sizes should be used. The smallest size
should be at least 1/8 ''· These limitations both promote
simplicity and provide for full visibility in overhead
slides. A consistent pattern of font size use is also
needed. Titles should be consistently one size and text
consistently a smaller size. This method makes it easy to
provide emphasis by changing to the largest font size.

Lines of text on a slide should always be aligned parallel
to the title, even in a data chart. In a text slide the
lines of text are usually aligned along their left edges
although the entire text box can be centered. No more that
5 words per line and 6 words per slide should be used. This
reduces the amount of information on each slide, making it
easy for the viewer to quickly scan the information. Too
much text scattered about the slide forces the viewer to
start reading, thus diverting his attention away from the
presenter. Constant attention changes decrease the viewer's
ability and desire to listen to the message.

Layout

The slide orientation should be horizontal with the base of
the picture parallel to the long axis of the slide. The
vertical orientation, while normal for close up reading, is
more difficult to see over a distance. This may be because
the eye has evolved to see variations from the horizon. A
vertical slide makes the viewer "read" the slide rather than
"view" it.

The horizontal orientation is also best for time-series
charts which are the most common data charts used in
graphics. The left-to- right progression of time is
consistent with the "reading" movement and makes the data
easier to understand. This also fits with the scientific
standard for data charts which puts the independent variable
(i.e. time) on the horizontal axis and the dependent
variable (i.e. sales or profits) on the vertical axis.

Visual Literacy

6

Charts or graphics which have the most variability in the
vertical direction (regardless of whether they are plotted
horizontally or vertically) tend to exaggerate the
variability of the data. Again, this is because of the
mind's horizontal viewing orientation. Changes in position
from bottom to top are more "interesting" and thus possess
an inherent variability. A vertical orientation compresses
this into a smaller left- to-right scanning space and thus
exaggerates it:

- Data exaggeration -

The result is an unintentional emphasis which casts into
doubt the integrity of the presentation.

The vertical orientation can be used in presentation
graphics to make deliberate exaggerations. One should use
this carefully to avoid an accidental "misstatement". One
should also be aware of this fact when viewing
presentations.

Chart Type Selection

The most familiar element of presentation graphics is the
data chart. It is the oldest "presentation graphic" having
made its appearance as a method of visual communication in
the late 1700's. It is clearly beyond the scope of this
discussion to examine data charts in detail; for this I
would recommend a landmark book on the subject by Edward
Tufte.

The visual literacy principles can be applied to chart type
selection. For a particular chart, the factors of color,
typography, and layout can be re-applied as they apply to
data representation. In this respect a data chart can be
viewed as a "slide within a slide".

Visual Literacy

7

Data charts should visually summarize a large body of data.
This summarization has to be objective but also clear, and
so it is particularly important that emphasis and integrity
are balanced. To achieve any measure of either it is also
important to choose a chart type that is common and
familiar.

There are 6 major forms of data representation which in turn
demand particular chart types. These are listed below, with
examples in Figure 2:

Representation Use

Tables Small sets of data
or specific data

Maps Relate data values
to geographic areas

Time-series charts Relate data values
to the passage of time

Comparative charts Show the relative
values of two or more
different data points

Relational charts Show the relationship
between data points and
often imply causality

Proportional charts Show the relationship
of different parts to
the whole

Chart types

Data table

zone map

Column (bar)
or line chart

Column (bar)
chart

XY Chart
(scattergram)

Pie chart

Data tables although not really graphics can often replace
more commonly used chart types. Comparative charts are
often used to "prettify" a small set of numbers, when a data
table might be easier to read. A comparative chart also
loses the precise data values of a table. When these are
put onto a graphic chart it becomes less clear and less
readable, and the overall impact is lessened.

Data maps are a special form of chart that responds to a
specific need. There is little need to differentiate their
use from the other types of chart. Instead, one should note
that restraint should be used in data maps. The
representation of too many sets of data points in a data map
can produce a visually pleasing but meaningless chart.

Visual Literacy

8

Time-series charts are a special but most highly used form
of comparative chart. Tufte estimates that 75% of all chart
graphics are time-series charts. There is a natural and
understandable tendency to use the time-series chart since
business data especially is collected in cyclical periods
(fiscal years, months, quarters). The basic problem with
time-series charts is that the passage of time is rarely a
full explanation for data variability. The principle of
integrity requires that more detailed investigations into
the data be made along with a time-series chart.

Comparative charts display data points that are not
differentiated by time. As comparative charts are usually
represented by column/bar charts, they tend to emphasize
stability or absolute value rather than change or relative
value.

Relational graphs are the "purest" and most powerful chart
type. The relationship between two sets of data expressed
as written numbers

x
0

0.5
1.0
1.5
2.00

y
1.00
1.41
2.00
2.83
4.00

is much more difficult to grasp than the equivalent graph on
the x-y plane

However, this chart is the least familiar to a business
audience. For the sake of integrity it should be used
sparingly in a business presentation.

visual Literacy

9

The pie chart is the prime example of a proportional chart.
It is extremely popular and also extremely abused.
In fact, some authors argue rather forcefully against its
use, proposing other methods of representation. Pie charts
can easily violate both emphasis and integrity. The common
mistake of included too many slices lessens emphasis; the
eye is unable to resolve them or receive the true nature of
the data.

The violation of integrity occurs because of the eye's
relative inability to perceive areas. The human vision
system is twice as sensitive to changes in position as to
changes in area. Furthermore, perception of change in
position is significantly more linear than perception of
change in area. As a result, the difference in two data
values expressed as relative areas of objects appears to be
smaller than the same difference expressed in relative
position.

Data values are represented in a pie chart by the relative
size of the central angle of the slices. There is no data
on the visual perception of angle variation but the size of
the angle affects the area of the slice, which means that
the eye is also picking up area variation, which may be
misleading. For similar reasons, two comparative pie charts
should not be used unless they have exactly the same radius.

A B c
Chart B is 1.5 times larger than chart A by relative area.
This rather large difference is not readily apparent. Also
note that Chart c is 1.5 times larger in diameter (and thus
appears significantly larger) but is nearly 3 times larger
in area.

Chart design

The overall goal of a particular presentation chart is to
present data in support of a particular idea or desired

Visual Literacy

10

course of action. The visual literacy principles are
applied to the individual elements, which are usually under
user control. The overall layout of the chart is usually
under automatic control.

The overriding principle should be integrity. The basis of
Tufte's entire aesthetics of chart design is chart "truth".
I am in total agreement with this. A "true" chart
emphasizes by its very integrity; a misleading chart by
nature detracts from its message.

The individual chart elements that I will examine are data
representations, axes and scales, and titles, labels, and
annotations.

Data Representation

Many of the rules of data representation are built into
charting software packages. Color, line, pattern use, and
the number of variables per chart are not. Color should be
used for focus, as described earlier. In a line,
bar/column, or scattergram chart no more than three
different sets of data should be used. In a two dataset
chart complementary colors should be used, and in a three
dataset chart two adjacent and one complementary should be
used.

Area fill patterns in bar and column charts can also be used
for emphasis. Extreme area fill patterns should be avoided
since they cause "op art" patterns that are difficult to
look at. Some patterns can also cause optical illusions
which distort the data representation. Heavier or darker
fill patterns tend to attract more focus. As in color, two
similar patterns can be used with one contrasting pattern
for focus.

Lines rather than columns or bars are used to provide
emphasis, especially to accentuate change. The
McGregor/Nelson paradigm proposes that diagonal lines imply
drama and change, while straight lines and rectangles imply
stability. This can be used for effect in chart design.
For example, a line chart will focus on the variability of
the data, while a bar chart will focus on stability.

Bars or columns should be rectangular and "flat"
(two-dimensional) . Design variations, such as 3D pictures
that represent changes in a single data value, distort the
data. This distortion is confusing and can detract from the

Visual Literacy

11

power of the presentation. Unfortunately these distortions
can also be used to deliberately mislead the viewer by
exaggerating variability in the data.

Consider the following chart which represents oil production
volume for three different years:

1980 1983 1985

As is common in such charts, all three dimensions are
proportional to the volume amount, although this amount is
actually a single dimension number. As a result the change
between years is extremely overstated. The 1985 drum's
volume in the chart is 5 1/2 times the volume of the 1980
drum although the diameter is only 1 2/3 larger and the
height is only 2 times larger. The viewer has no clue as to
which is the true relationship.

The data lines in a multiple line chart should be
distinguished by colors in the same way as bars. If color
is not available, line width is also a useful way of
differentiating bars, with line patterns being the least
preferable method. One problem with using line patterns is
clarity; they do not scale well and are hard to
differentiate.

According to the principle of focus, no more that 3 sets of
data (i.e. 3 lines in a line chart) should appear in one
chart. This allows the aforementioned triplet color scheme.
If more than this number are needed, separate charts should
be made. It is a common sense rule (often violated) that
even slightly too much data in a chart can destroy the
viewer's ability to understand any of it.

Axes

As in general slide layout, chart orientation should be
horizontal. The axes provide lines of sight which serve as
reference points for the eye to detect data variations, and
should be horizontally aligned to improve viewing speed.

Visual Literacy

12

The vertical orientation is also less preferable because it
tends to exaggerate the variability of the data. Again,
according to the McGregor and Nelson paradigm diagonals
connote change and instability. In a vertically oriented
line chart the angle of each line is larger because of the
compression of the horizontal axis. A similar effect occurs
with the top line of column charts. This effect can be used
for emphasis but may detract from integrity. The axis lines
should be drawn with a thin line width which does not draw
emphasis away from the data.

scales

Scales give a context to the relative positions within a
chart. It is crucially important that the scale of a chart
be true. scales should start at zero, except if there are
negative data values, but then a zero line should be used.
Using a non-zero starting point for a scale is misleading,
even if the scale is clearly labeled.

As an example of a scale "lie", consider the following two
charts which differ only in the starting point of the
vertical scale:

Sales Performance by Year
Sales Performance by Year

1000

1000-

500

o.___~~~~~~~~~
1980 1981 1982 1983 1984 1985

Tick marks (small thin lines perpendicular to the scale)
should be used to uniformly divide the scale. The endpoints
of the scale and the tick marks should be labeled (although
Tufte favors reducing this so that only enough tick marks
are labeled to make clear the magnitude of each division).
Only one scale should be used for each axis. Multiple scale
charts are marginally acceptable and tend to provide
confusion rather than useful data.

There are rules for horizontal and vertical grid lines in
charts but these are really "chartjunk" (Tufte•s term) which
detract from the clarity of the chart. As they are an
option in most charting software packages, one has a choice.
It is less easy to make mistakes in simple charts and easier
to spot them. This is one example where the simplicity
principle aids in achieving integrity as well.

Visual Literacy

13

Compare the emphasis on improved sales performance in the
following two charts:

Prolit Perform•nce
1080-1985 Profit Performance

600 Thouaand• of Dollars

400

200

1980 1981 1982 1983 1984 1985

Titles, Labels, and Annotations

Titles, labels, and text annotations should follow the
general rules of typography and layout that have already
been described. A chart must have a title, and the axes and
scales must be clearly labeled. The title should be at the
top of the chart, and should simply and clearly identify the
data being presented. Labels and annotations should be
parallel to the title, in the same font but a smaller size.
A neutral color (usually black) should be used.

Legends that identify the color or pattern of a particular
dataset should be used with bar or column charts. Line
charts and pie charts should be labeled directly with
annotations.

General annotations should be avoided. If annotation of the
precise data values seems absolutely necessary a data table
should be used. This particularly applies to the
practice of annotating the ends of bars or columns with the
actual data value.

A Chart Design Paradigm

The chart design features I have described stress integrity.
Both integrity and emphasis are best served by a simple
chart. A complex and poorly designed chart at best diffuses
its message and at worst can mislead. Tufte proposes a
"data-ink ratio" which is the ratio of the amount of ink
used to represent the data, to the total amount of ink in
the chart.

Visual Literacy

14

Most charts have low data-ink ratio, some as low as 20%
implying that 80% of the graphics does not convey useful
information. The data-ink goal is to remove as much detail
as possible while still retaining integrity. This is
particularly easy to do in presentation graphics systems
that either combine the charting and drawing functions
or allow chart meta-files to be edited in a drawing package.

A summary, and some Implications

In summary, visual literacy applied to presentation graphics
requires that the graphics be focused and truthful. Many of
the techniques I have described can be summarized as
instances of contrast. We are most easily able to see a
message as a contrast against a steady background. It is
therefore very important to know how to make contrasts and
how to avoid them.

Visual literacy also has some implications for software
designers and users. I hope that visually literate users
will realize that the ever-increasing number of options in
graphics software packages must be approached with
intelligent caution. Designers should realize that options
alone are not nearly sufficient to provide effective
graphics.

In particular there needs to be more of an effort to provide
a feature which would allow users to create a "palette" of
options that apply to a set of slides. With this, users
could set up a certain set of colors, fonts, font sizes,
chart types, etc. from all the options available in the
package.

Although graphics software packages may never replace
graphics artists, a visually literate presenter using
well-designed software can produce effective presentation
graphics.

visual Literacy

15

Figure 1. A typical color wheel

Green

Visual Literacy

16

Figure 2 - Examples of Chart types

Data Table Map

Year

1980
1981
1982
1983
1984
1985

(Zone data map)

Sales Profits

100 50
130 75
150 80
160 70
200 110
250 140

Time-Serles Line Chart

1980 1981 1982 1983 1984 1985

Visual Literacy

17

Figure 2 (continued)

-.
1980

A

Time-Series Column Chart

I I I I
1981 1982 1983 1984

Comparative Column Chart

8 c

XY Re!ational Chart
(Scattergram)

Visual Literacy

18

D

Figure 2 (continued)

Comparative Bar Chart

Proportional Chart
(Pie Chart)

Visual Literacy

19

References and Acknowledgements

The material in this paper is based on the following
references:

Matkowski, Betty s., Steps to Effective Business Graphics,
Hewlett-Packard Company, San Diego, CA, 1983

McGregor, S.L., and Nelson, M., "Use of Principles of
Composition in Selecting Type Fonts and Graph Types in
Business Graphics Applications", SAS User•s Group
International (SUGI) Proceedings, 1983

Meilach, Dona z., Dynamics of Presentation Graphics, Dow
Jones-Irwin Press, Homewood, Illinois, 1986

Reid, Brian K., Scribe: A Document Specification Language
and its Compiler, Ph.D. Thesis, Carnegie-Mellon university,
Dept. of Computer Science, October 1980

Simcox, W.A., and Ackerman, T.S., "Designing Effective
Graphics: Human Information Processing and its Consequences
for the SAS/ Graph(tm) Product", SAS user•s Group
International (SUGI) Proceedings, 1984

Smith, Wanda, "The Human Factors of Computer Color", to be
published.

Tufte, Edward R., The Visual Display of Quantitative
Information, Graphics Press, Cheshire, Connecticut, 1983

I would also like to thank Scott McGregor and Wanda Smith of
Hewlett-Packard Company for their ideas and assistance.

This document was prepared with HP Graphics Gallery(tm).

Visual Literacy

20

INTRODUCTION

Business Graphics : Micro vs HP3000

Jean Pierre Martin
Infocentre Corporation

3100 Cote V ertu
Suite 390

Saint-Laurent, Quebec
Canada H4R 2J8

Nowadays everyone recognizes the value of graphics as an effective business
communication tool. It is well known that graphic presentations communicate
ideas and facts better than rows and tables of numbers. Corporate data
represented by lines or bar charts can convey trends and exceptions more
effectively and a lot faster. If everyone agrees with these facts, why then is it
not more widely used in everyday communication?

THE HP ENVIRONMENT

If we look at the short history of business graphics in the HP world we find two
categories of products : HP3000 products and micro computer graphic products.

At the HP3000 level, products evolved from DSG/3000 to HPEASYCHAR T,
HPDRA W, and third party products like ARENS PRESENTATION GRAPHICS
and more recently SPEEDWARE GRAPHICS.

In the micro world the HP community evolved from GRAPHIC/100 (Text chart,
Bar chart, Line chart) to DIAGRAPH, PICTURE PERFECT to GRAPHIC
GALLERY and SHOW PARTNER. There are now hundreds of business graphic
products in the MS-DOS environment alone.

PRESENTATION GRAPHICS

This category of graphic is used to give management presentations, training
sessions, product demonstrations and tutorials (see fig.I). A picture is worth a
thousand words and this type of visual representation conveys and emphasizes the
important facts better and faster than any text.

There is no question as to which class of computer is better suited for this type
of graphics. Because graphic production is CPU intensive and multi-user
facilities are not required, the micro computer is the better alternative.

Business Graphics : Micro vs HP3000
1

DATA GRAPHICS

This is the class of graphic that conveys important facts about an organisation
through the use of pies. bars, lines, scattered diagrams and even maps to represent
the numerical values stored in the company data base(s). (fig.2)

The data gathering functions required to produce these charts often implies
searching through large amounts of data stored in files or data base(s). This
heavy 1/0 processing often requires the use and the power of a mini computer.

Let us address some of the problems encountered with "Data Graphics" like :

When done on a PC, data must be downloaded from IMAGE/KSAM/MPE files
to the PC in a format compatible with graphic software. This task is often
difficult, time consuming and non-SYSTEMATIC.

When done on an HP3000 a user needs to know how to navigate through
various file structures to extract the desired information. This implies
expensive serial reads of large data volumes. Time dependant trend analysis is
not possible since yesterday's data is gone.

Business Graphics : Micro vs HP3000
2

PRODUCTION GRAPHICS

This classification may sound curious to many. To my belief, this may well be
due to the very recent introduction of the concept itself. My own definition of
production graphics is one that can be produced as easily as a month end report.

What is needed to produce Production Graphics is a Complete Graphic System.
The components of such a system are :

An automatic facility to gather and save summarized data.

Graphics usually represent summary data that are extracted from existing,
printed reports. An automatic facility should exist to transfer these
summary figures to the graphic package.

Another important aspect of having that "generic" graphic data base is
maintaining the historical value of that data. By keeping January data
(in summary format) in the Graphic Data Base it will be very easy, in
twelve months to produce comparative result graphs (for January) again
without scanning a huge amount of detail data (which is probably
archived by then, anyway!)

One more important question is : why not extract that generic data as we
produce the detail report(s)7 Again this would prevent scanning the detail
data file twice, once for the detail printed report and the second time for
the summary data needed to produce the Graphics. Imagine having a
command in your Production Report Writer, similar to a Print command,
that says: 'Save the value of these Data Items (item list) in my Graphic
System because my end users at some point will want to graph their
values'. Inserting this command in regularly scheduled Production reports
(Nightly, Weekly, Month-end Reports) eliminates the need to re-read detail
data in order to generate graphic output.

End user Graphic Design capability.

Another important fact to be recognized is that even if a user does not
know the format, type and coulor of the graphic needed, the generic
nature of the data to be reported on is not in question. For example, "I
want a graphic of Sales dollars and quantity, by product, by region, by
salesmen."

A Complete Graphic Systen would have a facility to store that generic
type of information in a Graphic DataBase, thus allowing the user to try
many formats, types, colours, etc... without having to scan the detail data
every time the graph is plotted. This, of course has the benefit of saving a
a lot of valuable computer resources. All of this without losing any
flexibility or imposing constraints on the design of the finished product.

Business Graphics : Micro vs HP3000
3

Ability to catalogue Designed Graphs.

A facility to keep the various graphs permanently would be desirable.
This would allow execution (on-line or scheduled) of any graphic design
that is considered a valuable permanent ouput by the user.

Scheduling capability and Spoolable devices.

What is needed to produce these Production Graphics? First, you need a
spoolable output device and must be able to schedule it in advance. The
HP7550 (with its 150 pages tray and automatic feeder) and the Laserjets
(no colors yet!) are spoolable graphic output devices that can be used for
regular production.

With all of these components, a Complete Graphic System becomes a natural
extension to the information reporting capabilities of your Fourth Generation
environment.

THE MIS/DP DEPARTMENT VS THE END USER

Who is more knowledgeable to insure efficient extraction of data ? The end user
can certainly define the data necessary to produce the graph, but a thorough
knowledge of the Data Base structure is needed to define the best way to access
the data. The Data Processing specialist (programmer, analyst or Data Base
administrator) is the most qualified individual to extract the data from the Data
Base(s).

The design of the graph, however, should be left to the end-user through a
user-friendly interface. If access to the summary (generic) data is granted, we
can afford to let the end-user try many alternative presentations of the data
without using excessive computer resources. In this manner a presentation
format can be chosen and the graph can be scheduled on a regular basis (daily,
weekly, monthly).

For this type of graph, the data extraction function is, without any doubt an
HP3000 task. Today, the design part of the graphs is still more easily handled at
the HP3000 level. After all, transparent and efficient communications between
the micro and the HP3000 are still in their infancy.

Business Graphics : Micro vs HP3000
4

AND THE FUTURE

We are, without a doubt, seeing more and more graphic tasks handled by micro
computers. With their CPU power they can usually perform feats that would not
even be thinkable at the HP3000 level (The response time would be significantly
degraded).

Today, the large data manipulations necessary to produce meaningful business
graphics is still a task better handled by the 1/0 capability of the HP3000.

What will be seen in the future is a better hybrid solution that will more fully
integrate the power of the micro and the HP3000 computer into one very friendly
tool to produce Graphics as easily as we can produce reports with end user
Report-Writers today.

Business Graphics : Micro vs HP3000
5

---------- ---

ELECTRONICSIMPORTS
JapanFacesCompetition

fig. 2

B
I
I
I
I

Business Graphics
The Future

Managing a Data Center Singlehandedly
(or rather, managing an HP3000 with a DP staff of one)

Karen Davis-Mackie
Cray Research, Inc.

5350 Manhattan Circle, Boulder CO 80303

When Hewlett Packard introduced the HP3000/Series 37 a new
world of computers was available for smaller businesses.
Finally, a fairly powerful multi-user computer with various
business applications was available for around $20,000. And
with the introduction of the HP Micro3000, more businesses
can now have a computer servicing 10-20 users for about the
same cost of a single-user Personal Computer 5 years ago!
But to counter-balance the current declining cost of
computing power, something must in turn begin to go up.
This increase happens to be the cost of the employees
working on the computer. Programmers, operators and other
DP personnel don't come very cheaply to today's businesses.
Therefore, small businesses and new system managers need to
be educated as to the handling requirements of these small
multi-user computers. What is required to properly run
these small business computers? What does the person
responsible for this computer need to know? And what should
the company (and management) expect from this person in
return?

As a person responsible for various data centers in the last
7 years (from a Series 30 to a 58, with a staff of 0-3) I
have learned to effectively manage a data center
singlehandedly by:

o Knowing my computer
o Knowing my users and
o Knowing my resources.

If the system manager is educated and informed in these
three areas, they can remain effective (for the users),
efficient (for the management) and in turn run a data center
alone, or with very little help.

Know your computer

A system manager must understand both the hardware and
software of the system they are supporting. A person
strictly educated in only hardware or software will not be
self-sufficient enough to properly service a small company.
One of the best ways to tell if someone truly understands
both aspects of running a computer (hardware & software) is
if they have assisted with a new computer room installation.
The process of selecting power and air conditioners, running

1 Managing a Data Center

cables, configuring the computer and peripherals, getting
the software installed and running, is all evidence of a
person understanding the many angles of a computer's overall
requirements.

In understanding the hardware a system manager must know the
current system they are supporting (37,42,58) and what its
benefits and limitations are. In other words, how much
memory can I add or how many users can I add before this
system becomes non-functional? Being educated about all
models in the HP3000 line helps a system manager know
whether to invest in the current model or upgrade to the
next level when the current resources have run out. The
system manager must also understand the environmental
requirements of the computer. Keeping a constant
environment with regard to power, humidity and room
temperature, for any computerized equipment will extend the
life of the machine and well as lower the frequency of
repair. Also, when that new upgrade is finally approved and
ordered, the system manager will know if the existing
computer room will support the larger system. HP offers
site preparation help in configuring an adequate computer
room.

Specifically related to the current computer being used, the
system manager needs to know:

o how to configure the computer (add that new disc
drive!),

o how to properly back up the system,
o re-start or recover the system, and
o understand error messages and recovery methods.

A system manager coming from another vendor's shop will
learn all of this very easily at the HP System Operator's
class, or by going through the HP3000 Guide for the New
System Operator manual.

As I mentioned earlier, the system manager must be
knowledgeable about hardware. They must be able to talk
intelligently with various vendors when purchasing computer
room equipment, computers, PCs, terminals, modems and
cables. To do this they must be knowledgeable about:

Electrical terms (Volts, 3-Phase, BTUs, etc.)

Computer room equipment (air conditioners, humidifiers,
power conditioners, UPS systems).

Cabling specifications (RS-232 primarily for the HP3000,
Coax, twisted pair)

2 Managing a Data Center

Networks (from computer to computer if the company is large
enough, or apread out enough, to warrant this).

Device Configurations of peripherals is mandatory if the
users are not responsible for their own devices (terminals,
printers, plotters). Helping users obtain the proper
configuration for their terminal will be one of the first
jobs a system manager has to accomplish with a new system
installation!

One of the newest additions to the system manager
responsibility list, and probably one of the most difficult
to keep current on, is the area of networking and
Data Communications. Understanding modems and the various
aspects of data communications (Async, BiSync, 19.2, 9.6,
Muxes, Line drivers) is very important to the data center of
today.

Equally important with knowing about the hardware, is
understanding software concepts in general, as well as the
current software running on the computer. Understanding
programming logic, database structures, flowcharting and
file structures are all good concepts to know as a system
manager. A person familiar with the type of software
packages running on the computer (ie: General Ledger,
Payables, Inventory, etc.) will also be far more beneficial
to the company over someone who does not understand the
existing software. If the company has chosen a system
manager that basically understands the uses and concepts of
the existing software (ie:understands financial statements,
inventory systems, payables) the system manager then only
needs to become educated about the specific software
packages.

The system manager needs to find out where the existing
software came from (was it written in house, purchased from
a 3rd party) and who installed it. Also, who is responsible
for supporting this software and what language is the source
code written in? If source code is installed on the
computer, can the system manager modify the code (time to
order that compiler!)? How will upgrades or changes to this
software be handled?

Specifically related to HP3000 software, the system manager
must know MPE commands, know how to use the system utilities
(where would we be without SPOOK?) , and understand the HP
accounting structure (accounts, groups, users). To be
really advantageous to the company they must also understand
system security, how to monitor system usage, and be able to
document the system statistics (to prove the need to order
that upgrade or new disc drive!). All of this comes with
TIME and experience as a system manager (and attending the
HP System Manager class helps too). Understanding the HP

3 Managing a Data Center

specific products, such as IMAGE, QUERY, FCOPY, DS/3000,
Inform, etc., are all added pluses if the new system manager
is already familiar with them.

In my experience as a system manager, I have found the need
for the use of flexible programming structures, and for
occasionally having programming done by someone else. With
only one person running the data center, programming is
quite often contracted to people outside the company because
I simply don't have the time to write and de-bug lines and
lines of code. Therefore, I must be knowlegeable as to the
programming specifics (I am essentially the analyst), but I
don't spend the time writing the code. Make sure UDC' s,
LDev numbers, or Account security will not effect the way a
program runs if any of them are modified. Sometimes moving
a printer from Ldev #28 to Ldev #6 will make programs blow
up all around you! And the users will be right behind
looking for the system manager to fix the problem
immediately!

Know your users

One of the most time consuming duties of a good system
manager is the process of getting to know the users
perspective of the computer. As a system manager, take the
time to get to know your users. Get to know their
limitations as to computer expertise, and become familiar
with the products they are using on the computer you as a
system manager are supporting. Make it a point to actually
sit down and use the software you are supporting as a user.
I have spent several days keying invoices, inventory
activity, general ledger entries, and personnel letters
among other things. I don't feel this has been wasted time,
because suddenly I am able to understand the world as seen
through my users ' eyes. I am able to understand their
language and am then able to talk to them using terms we
both understand. If a system manager wants respect from the
users, they must in turn show the users respect by taking
the time to know more about them.

After learning the products your users are actively using,
keep up to date on the products and always learn about any
new software that is installed. Don't try to become the
expert in every product, just be familiar with how the
software works and where to find help if you need it.

As a system manager I have found that the more knowledgeable
my users are, the better my job becomes. To help educate my
users I try to keep them informed as to what is happening on
the system.

Some ways of informing my users are:

4 Managing a Data Center

monthly written reports (status reports) primarily for
management information. These reports include system usage
statistics, the current system hardware configuration,
system issues, and my monthly activities.

Bi-monthly "user group" meetings (very helpful). This is
usually a nice round table type of meeting where I can share
information with all HP users at one time, and they can talk
about any future plans or current problems.

Memos about computer room procedures. I use these to inform
them about future scheduled down time, system back-up
schedules, new procedures for using software or accessing
the computer. This category also includes the ever
necessary "cheat sheet" for those users that aren 1 t quite
independent yet.

Talking with the users and LISTENING to them as well. This
has probably been the most beneficial method of giving
information to (as well as receiving information from) the
users. I have found out about more problems and actually
solved them before they grew out of control by talking with
my users than I can even mention. Keep in contact with your
users and consequently they will feel more inclined to come
to you with suggestions or problems.

Another way to inform or educate your users is by training
them about the HP3000 or perhaps about basic PC information.
I don't try to train my users on software specifics (I use
classes, tutorials, or manuals for that) however giving them
an overview about how the HP3000 works, or how their PC
works will help them to not bother you when the only problem
is that they have forgotten to put the correct diskette in,
or their keyboard becomes disconnected. Cheat sheets are
another way of training the less confident user to become
more independent. Independence is the always the key
quality for every user on a computer that I am responsible
for!

When I have gotten to know my users and the systems they are
using, and I feel they are comfortable with the equipment
they are using I set myself up as a "help desk" for the
users. In other words, I become the company PICS number for
any questions they might have. I might in turn call the
Off ice Automation SE if they have a question about HPDESK,
or I might refer them to corporate if they have a question
about the Accounting System. What I am doing, is giving
them a one-stop question answering service so they don't
feel unsupported or alone. I am not trying to "know
everything". I am only trying to know if my users are being
serviced properly or if they need help.

5 Managing a Data Center

Finally, keep up to date with your users' "wish lists".
Occasionally I can help my users with something they thought
wasn't available, or I might already have a product on the
computer that will help them. This always makes them aware
that I'm on their side trying to help, and when the computer
goes down or in some other way inconveniences them, they
don't seem to mind so much.

Also, don't try to overpower the users with your knowledge
or expertise as a system manager. The old "keys to the
kingdom" theory has never worked in any data center I've
seen. Sharing your information with the users helps them
understand and only makes your job easier, and at the same
time you will look better in the users' eyes! The average
users of today are becoming much smarter about computers and
need to be treated with a greater level of respect.

Know your resources

As a DP department of ONE (yes, that's still one), the
system manager must know where to find help in all areas.
Knowing all possible resources is probably the one factor
that has enabled me to maintain a data center singlehandedly
with very few user complaints. Don't ever try to KNOW
everything, simply KNOW who or where to call!

Some of the best resources I have found are:

Periodicals and Manuals Such as The Chronicle, INTERACT,
the superGroup Assoc. magazine and various PC magazines.
Manuals for all new hardware is kept in a specific bookcare
for ready access. All software and system manuals are kept
right by my desk.

Catalogs I like looking through the new HPDirect catalogs,
INMAC catalogs, vendor mailings and re-marketed hardware
advertisements for competitive pricing, new ideas, etc .•

HP Products such as the Telesup account, training classes
(remember the System Manager class?), HP documentation (the
Application notes and Response center ? 's and answers I
receive are real informative)

HP People My best resources are usually my SE, CE and
Sales Rep for help on a specific problem, or recommendation
for an upcoming project. And don't forget to call PICS for
system help!

Users Such as the Regional Users Groups, or the Int' 1
Users Group (love that Contributed Library!) are good
resources. I have received help from system managers and
users of all types of computers, not just the HP3000 folks.
All users are potential resources.

6 Managing a Data Center

Read Read everything you can. One of the best lunch time
endeavors of mine is to keep current about products
available for my computers by reading anything I might
receive in the mail or from other users while I eat lunch.
I read about other vendors products, programmers
productivity products, new HP products and ways to help
manage the data center. Keeping up to date about what is
available out there is always a good recommendation to
follow. That way you will always be able to tell your users
about new products or methods to help out their department
and make yours look good!

If at all possible, maintain the highest level of hardware
and software support offered by HP. The account SE and 4
hour hardware support are necessary levels of support in a
data center managed by one person. The users will be
supported much quicker and your job will be much easier to
accomplish if there are HP people that know you and your
company, and can answer your questions quickly. Especially
if you are expected to support quite a few HP products (like
I am!).

Investing in system productivity tools is always good advice
for a one-man (woman) shop. I recommend products such as
Adager or DBGeneral for database maintenance, MPEX for an
extended MPE operating system,and Report/3000, Inform,
PowerHouse or other advanced tools for programming and
reporting. Anything that will help make the system managers
job more efficient and service the users in a timely fashion
with a properly managed computer are worth looking in to.

Some helpful tools to keep on hand in the computer center,
that will help save time and tears are:

screwdrivers - all sizes, especially the
little ones for connecting
cables

a break-out box - to know which signals are
being sent by certain
devices

spare cables - for those times when someone
is testing new equipment, or
has changed off ices

gender changers - once again, for when people
change equipment, or just
want to try out a printer
for a few days

RJ-11 wire/with clips - for those people that
have modems

7 Managing a Data Center

And finally, one of the best resources (finally one
controlled by yourself) is using time management skills.
Keeping track of projects, scheduling and attending
meetings, and making sure the data center is running
properly are all very time consuming duties for one person.
Keeping the date centerwell organized will pay off ten times
over.

I always keep the current copy of my hardware and software
maintenance agreement handy which lists all of the device
serial numbers. Beside each terminal or printer I write who
is currently using that device. When a user calls me with a
faulty terminal, I am able to call HP directly and know the
model and serial number of their device. I also keep system
logs beside the consoles, so I can write downthe down time
and list the reason right on the log. That way I can know
how much time the system was unavailable last month and why.
Keep a current system configuration close by (use SY'SINFO
and SY'SDUMP to produce this) and have a current list of
resource phone numbers right by your phone. When I am out
of town or home sick, my users can still get help by
referring to this list. An even better suggestion is to
publish this phone list and distribute it to a few "key"
users. By keeping all of this information at your finger
tips, you as the system manager will be able to complete
more important projects and have time to learn about all of
your users and the software on the computer.

Another reason to know other local HP users is to have a
possible disaster recovery plan. Keep up to date about
disaster recovery methods and try to incorporate some of
them into your daily routine. I have taken backup tapes
home daily, so as to have "off-site" storage in case of a
fire (or whatever). I also try to educate my PC users to
keep frequent backups of their hard discs in case of
equipment failure or theft. Also, talk to other system
managers about having their HP site be willing to serve as a
backup machine for a few days in case of a disaster. And in
return, offer your site to them. In a few days, when HP
delivers your new equipment you can then restore your
software and be up and running.

and finally Know your limitations

After learning about the computer, the users and your
available resources, a system manager must begin to know
their limitations. One person is exactly that, one person.
They can not be expected to duplicate a DP shop with dozens
of operators and programmers. Some limitations that are
worth considering:

Keep training about software products the responsibility of
the buying department. In other words, if accounting buys a

8 Managing a Data Center

purchasing system, they are responsible to train the
accounting users how to use the system. The system manager
can sit it on this class (or demonstration) to learn about
the product, but should not be required to actually train
all of the users.

All Personal Computers connected to the HP3000 are exactly
that, a Personal work station. The person using that work
station is responsible for their own equipment. The syst7m
manager is responsible for the system, the person is
responsible for the personal computer. As the DP department
grows, this responsibility can be transferred over to a PC
Specialist if the demand is large enough.

Finally, the management should not expect the system manager
to KNOW everything right off the top of their head. It is
an unfair expectation to demand one person to know all there
is to know about computers (besides, management is not
usually willing to pay the price for this sort of person!).
An efficient system manager will not spend the time trying
to know everything immediately. They will just spend time
trying to know who to call or where to find the information
for questions about things they don't know. As time goes on
(experience, once again!) a system manager will be able to
answer most questions right on the spot or be able to direct
the user to the proper solution quickly.

An effective and efficient system manager will never try to
"do it all". Trying to do everything will be like setting
themselves up to fail. Running a data center singlehandedly
means being the only person at that location that is
responsible for the computer. That doesn 1 t mean working
alone or without other resources.

You, as a system manager, need to know your computer, know
your users, know your resources and know when to say "I need
help!". Maybe then, management will allow your DP
department to become a prospering department of two!

9 Managing a Data Center

The Development of the
Red Roof Inns Communication Network

By: Ron Matheke and Pat Esposito

Red Roof Inns, Inc.
4355 Davidson Road
Hilliard, OH 43026

I. Introduction

The Red Roof Inns communication network has been a major project
in the M. I.S. Department for the past three years. The demands
and requirements for communications have been constantly increas­
ing and more difficult to achieve on a cost effective basis. The
network presently utilizes an application simulated on-line en­
vironment with an X.25 connection via Compuserve's terminal
network.

This method of communication has been dictated by equipment and
cost constraints. To develop our own true on-line network was
too cost prohibited (excess of million-dollar capital investment
and monthly charges > $100,000.)

The current method (attached Appendix A) has provided a simulated
on-line network with a minimal capital investment at a substan­
tially lower monthly cost. This has provided a true low cost
communication network which is needed at Red Roof Inns.

II. Environment

Red Roof Inns
Red Roof Inns, Inc. is the largest privately owned and operated
budget motel chain in the United states. There are presently 175
Red Roof Inns open or under construction throughout a thirty
state area. The first Red Roof Inn opened in 1973 at Columbus,
Ohio. All motels are company owned and operated and all are com­
mitted to provide a clean, comfortable, tastefully decorated room
at a reasonable price. Red Roof Inns has one of the highest
company-wide average occupancy rates in the lodging industry.
The largest market segment is the business traveler, however,
more family travelers and senior citizens have come to recognize
the outstanding value Red Roof Inns offers.

Other Companies
Other major companies located within our Corporate Center are:

J.R. Trueman and Associates, Inc.
Construction Firm
(Builders of Red Roof Inns)

Red Roof Interstate Company
Billboard Advertising

Red Roof Development Company
Site Selection Company

Truesports Company
Indy Car Race Team
(Winner of 1986 Indianapolis 500 and Cart
Championship)

Red Roof Inns Communication Network

1

Truesports Inc.
(Mid-Ohio Race Track)

Computer Environment
The computer environment at Red Roof Inns can be broken up into
two groups. The equipment at the Corporate Center includes the
following:

HP 3000 Series 70 10 Meg Memory
(Reservations, 80 users) and x.25 Communication (172
Users)

HP 3000 Series 70 8 Meg Memory
(Financial System) and other applications

HP 3000 Series 48 3 Meg Memory
(Programmer Development, Backup)

The equipment at each of our properties includes the following:

HP 1000 Micro 26 1 Meg Memory
(Front Desk System)

Communication Requirements
The basic communication needs revolves around our reservation
system. In the hospitality industry this is a very critical ap­
plication with requirements of speed and accuracy. At Red Roof
Inns these things are extremely important and essential to main­
taining our occupancy. This is because of our high occupancy
(national average > 84%) and the need to make remaining rooms
available to the property and at our Corporate Reservation Center
at the same time. The other communication traffic involves our
daily inn reporting, payroll and some electronic mail.

Communications History
We have gone through various communication techniques in the his­
tory of our reservation system. At various points in time a
reevaluation was done to bring us to the next level. The follow­
ing are some of the methods we have utilized:

1. Corporate Center called inn via telephone every
time they made a reservation.

2. Inn called via teletype to pick up Corporate
Center reservations.

3. Developed automated communication exchange via
watts to match teletype usage frequency.
(Minimal frequency.)

4. Developed first x.25 communication with CompuServe
establishing virtual connection after inn and
corporate computer's logged into their system.
(Establishing virtual connection sometimes was
lengthy and hard to manage.)

Red Roof Inns Communication Network

2

5. Developed current x.25 communication with
CompuServe. The virtual connection established
by Host logging into CompuServe, requesting

Application

a local modem for inn, dial and establish
connection.

The following concepts were key in the design of our communica­
tion programs due to hardware, software and reliability of the
network utilized.

1. Mod 10 CRC incorporation to insure accuracy
of data.

2. Packeting sequencing to insure accuracy of packet
sequence.

3. Data compression to reduce number of characters
transmitted.

4. Event monitor to reduce and schedule applications
for load balancing.

5. Database engine to reduce number of image users.
(Note: We did not feel Image could handle 250
users on one data base.)

6. Utilizations of son processes to reduce number
of MPE users. (Note: We did not feel MPE
could handle an additional 170 sessions.)

7. Utilization of message files to handle communications
between processes.

8. Utilization of various networks (X.25 network,
x.25 multiplexor padbox, modem port).

The following objectives were accomplished utilizing four batch
jobs and one event monitor batch job. In the four batch jobs a
database engine and inn level programs were activated to estab-
1 ish communications with all 170 inns. Then the inn level
programs established its virtual connection to the inn and ac­
tivates appropriate applications based on event flags in the ap­
plication record of the communication database. (Appendix B.)
These events are triggered by the event monitor programs on an
established frequency.

The following are brief descriptions of all major programs util­
ized to accomplish communications. (Appendix C.)

PCOM0100 - Father process started by the communication
job. Used to activate and monitor inn
control programs (PCOM0200).

PCOM0200 - Inn control program activated by father
process (PCOM0100). Used to logon, communicate
to virtual connection (HP-1000), activate and
control various application programs.

Red Roof Inns Communication Network

3

PCOM1000 - Data base engine program activated by father
process (PCOM0100) to handle all application
data activity to data bases for its specified
job.

PCOM0500 - Event monitor program which scans reservation
activity and updates the appropriate
application record on the communication data
base.

The following programs are activated by the inn control program
(PCOM0200).

Problems

PCOM0300 - Reservations and availability application
program.

PCOM0320 - Daily inn reporting application program.

PCOM0330 - Spooler process application program which
currently receives payroll and transmits
electronic mail applications.

PCOM0340 - Time card (payroll) send application
program.

This is not to say that we did not have our share of problems.
The following are a few of the problems that we have encountered.

According to HP documentation, the only way that we could FOPEN
INP ports was to have a 2334 multiplexer at each remote site. We
decided this would be too expensive, so instead of placing a 2334
at each inn we just configured NETCONF like it had a 2334 at each
inn. By doing this we ran into several other problems. The
worst one involved the FOPEN. When doing an FOPEN, a call is
placed into the network. After the network accepts the call, the
HP3000 sends a packet that contains terminal and printer resets
and form feeds. The HP3000 does this to clear the device on the
2334 in the network. Fortunately CompuServe was able to modify
their network software to ignore this packet.

Once we got by that problem we started to encounter many problems
during our logon procedure. Since CompuServe is a terminal net­
work we had to code the entire logon sequence. While doing this
we found that Compuserve only passes 7-bit, even parity data
during the logon. We were not able to read any of this data.
Consequently we had to logon blind! In our logon program we code
like we are reading data, but all reads fail. After we get
logged in, (sometimes after several attempts), Compuserve goes

Red Roof Inns Communication Network

4

into what they call "image mode". In this state the network
passes 8 bit no parity data. The only problem with this is that
the HP3000 INP strips the eighth bit off of every byte of data.
They are in image mode, and we are only able to read 7-bit data
passed through the network.

For some reason, still unknown to us, the HP3000 will arbritarily
send out an ASCII 'Read Pending' message. This usually is not a
problem unless one of Compuserve's logon retries has been
exceeded. If this happens Compuserve will clear the call, which
means that we will have to attempt the logon again.

After we finally got past all of the logon problems, things
really started to get interesting! While we were running small
loads on the system we had hardly any problems at all, but when
we increased the load we started having all kinds of trouble.
For a period of about three weeks we were having five or six sys­
tem hangs and failures a day! This episode began on September
28, 1986 and continued through October 16, 1986. The first few
days we thought that the hangs were because of our software. We
spent our time looking for possible causes. We could not find
anything that would cause a major problem. After one week we be­
came an HP hotsite. HP was on site every day for two weeks.
Once HP got here several problems with their operating system and
INP driver were discovered. The hang was found to be caused by a
problem in the way the HP3000 was handling SIRS. We had a sec­
tion of code which would attempt an FOPEN on a terminal multiple
times. When the program would get into this tight loop the sys­
tem would hang. This happened because the priority of the
program would be raised into the A queue. Thus the program's
priority was higher than MPE's priority. Obviously the system
would hang. We had a relatively easy workaround until a patch
was available. We just changed the code so that the program
would no longer perform the tight loop.

The system failure problems were not so easy to solve. HP
started out by swapping INP board, cables, etc. None of this
helped. HP then installed a bug catcher on the INP's. This
program finally discovered a bug in the DSMONX program. DSMONX
appeared to have an invalid addressing routine. When the program
would do heavy processing it would in essence, fill up its stack
and address data outside its boundry. This would cause various
system failures. HP sent us a patch for this problem and most of
our failures were finally resolved.

Things ran rather smooth for the next couple of months. We con­
tinued to add inns to the network with relative ease. Then one
day in February problems started again. Thankfully we were not
getting many system failures. Instead of system failures we
started to get CS I/O error messages. The jobs also started to
log off with 'out of virtual memory' error messages. Everytime we

Red Roof Inns Communication Network

5

would get a CSIO error it would create an INP ram dump file. We
were storing this file and shipping it to HP in California. This
paid off because HP found another bug in the DSMONX program.
They sent us a patch, it was installed and both the CSIO errors
and virtual memory problems went away.

Things ran very smoothly again unt i 1 the middle of Apr i 1. We
were starting to reach the limit on our virtual circuits con­
figured in NETCONF. Our virtual circuits were configured at 50
and we had between 48 and 49 users on the INPS. Problems started
again and this time things were even more interesting. We were
not receiving any error messages on the console but the HP3000
was sending out a level 2 reset every couple of hours. We also
started getting 'out of virtual memory' error messages again.
Luckily our S.E. was able to solve this problem in a couple of
days. As it turns out, there was another bug in the INP. When­
ever we came to within one or two of our configured virutal cir­
cuit limit the INP would send out a level two reset. This would
cause all the inns to disconnect. HP sent us a patch, we in­
stalled it and both the reset problem and virtual memory problem
went away.

At the time of this writing we do not have any major outstanding
problems. We still have system failures once or twice a week,
but nothing like before. We are also communicating with every
inn in the network for up to 16 hours a day. Things have been
fairly quiet for the past month and one can only wonder what is
going to happen next.

Future
The future demands for communication is increasing due to the
cost evaluation of other alternatives and the fact that the con­
nection is available. These are some of the applications we are
working on and hope to provide in the future.

Electronic Funds Transfer of Credit Card Data. This will
eliminate the current float when credit card slips are processed.

Full Two Way Electronic Mail Processing. This will provide mes­
saging and sending of reports to and from the properties.
(Provide timely and reduction of mail and phone costs.)

Front End Purchasing System for Ordering of Supplies. Provide
up-to-date information of current parts, prices, and status of
all orders.

In terms of actual networks, several new ideas are being
reviewed. The utilization of satellite network is currently
being reviewed. This potentially provides a substantial savings
if we can provide satellite T.V. reception within the same
receiver.

Red Roof Inns Communication Network

6

These changes and future potentials will provide actual cost
savings to recover our investment and provide a higher level of
service to our guests.

Conclusion
The development process has been long, rough, and many times
frustrating. Even now, changes are being identified and make the
system more efficient and to handle load balancing. However, we
are beyond the stage where consultants and associates are second
guessing each other if the concept will work. Bottom line, the
network is now in a production basis and watching it work has
made it all worthwhile.

Red Roof Inns Communication Network

7

CORPORATE

HP
31/Jl/Jl/J

Appendix .II.

X.25

RED ROOF INNS COMMUNICATION NE'l'WORK

COMPUSERVE
NETWORK

*If
is

"'
.I(
....
0
~
.µ
QJ
z
c
0
.µ

"' ()
c

" e e
0
()

rn
c
c
H

.....
0
0
i>:

'O
QJ
i>:

APPENDIX B

COMMUNICATION DATA BASE

MASTER: INN-SESSION-CNTL

INN NUMBER
TIME OUT
RETRY
SELECT

POLL STATUS
CRC DATA SWITCH
PHONE NUMBER
DIAL SEQ
INN FREEZE
START TIME
START DATE
MPE-SESSION
TIME ZONE
COMPRESSION
INN NAME
FINISH DATE
FINISH TIME
WAIT TIME

DIAL TYPE
DIAL PATH
CRC HEADER
SHORT TERM
CITY
MONITOR TIME
MONITOR DATE
ENGINE SWITCH

(KEY)
DEFAULT TIME OUT PARAMETER FOR FILE READS
NUMBER OF READ RETRIES AND DIAL RETRIES
FLAG USED FOR INN SELECTION (01-SELECT,00-DO
NOT ,SELECT)
SET IF INN IS CURRENTLY COMMUNICATING
PERFORMS DATA CRC IF SWITCH IS ON
PHONE NUMBERS USED TO DIAL INN
COMPUSERVE LOGON SEQUENCE
FLAG USED IF INN AVAILABILITY IS FROZEN
TIME THAT INN STARTED COMMUNICATING
DATE THAT INN STARTED COMMUNICATING
NOT USED
LOCAL TIME ZONE OF INN
PERFORM DATA COMPRESSION IF FLAG IS ON
NAME OF INN
DATE THAT INN FINISHED COMMUNICATING
TIME THAT INN FINISHED COMMUNICATING
TIME THAT INN IS TO WAIT BEFORE STARTING
COMMUNICATING
PULSE OR TONE
TYPE OF DIALING SEQUENCE TO USE
PERFORMS CRC CHECK ON HEADER PACKET
NOT USED
CITY MODEM IS LOCATED IN
TIME THAT THE EVENT MONITOR FINISHED
DATE THAT THE EVENT MONITOR FINISHED
USED TO TELL PROGRAMS WHAT DATA BASE ENGINE
TO USE

Red Roof Inns Communication Network

9

APPENDIX B

APPLICATION-SESSION-CONTROL (DETAIL)

INN-NUMBER
APPLICATION ID
PROGRAM NAME
DAY OF WEEK
SESSION FREQUENCY
GOOD APPLICATION DATE
GOOD APPLICATION TIME
CONTROL DATA
SELECT SWITCH
ATTEMPTED DATE
ATTEMPTED TIME
RESEND LIMIT
MONITOR DATA
MONITOR TIME
EVENT FLAG
VERSION NUMBER
SEQUENCE NUMBER

(KEY)
APPLICATION NAME
APPLICATION PROGRAM NAME
DAY OF WEEK THAT APPLICATION IS TO RUN
HOURS OF DAY THAT APPLICATION IS TO RUN
DATE APPLICATION FINISHES CORRECTLY
TIME THAT APPLICATION FINISHED CORRECTLY
DATA PASSED TO APPLICATION PROGRAM
SELECT IF TURNED ON
DATE APPLICATION IS STARTED
TIME APPLICATION IS STARTED
NUMBER OF TIMES TO RESEND DATA
NOT USED (FUTURE)
NOT USED (FUTURE)
SET BY EVENT MONITOR
HP1000 SOFTWARE VERSION
(SORT ITEM)

Red Roof Inns Communication Network
10

'· I

APPENDIX C

APPLICATION PROGRAM

JOB
LEVEL

SYSTEM
LEVEL

INN
LEVEL

APPLI­
CATION
LEVEL

COMMUNICATI~N
JOB

PCOM0100
FATHER PROCESS

This program
selects which
inn to communi­
cate with.

PCOM0200
INN CONTROL
PROGRAM

PCOM0300
RESERVATIO~
AND
AVAILABILITY

PCOM0320
DAILY INN
REPORTING

PCOM0330
SPOOLER

PCOM0340
TIME CARD
SEND
PROGRAM

HIERARCHAL LEVEL

PCOMHJIHJ
CATA BASE ENC !NE

~ L_J

PCOM05000

~VENT MONITO~

This program This programs scans
controls all data base and set
data activity event flag if needed.
for all applications.

This program controls all activity between
the HP3000 and HP1000.

This program controls all reservation data
activity between the HP3000 and HPlfiJfiJfiJ.

This program receives daily inn reporting
activity from the HP1000.

This program is used to process electronic
mail and payroll activity.

Thi~ program is used to send time card records
to inn.

Red Roof Inns Communication Network
11

INTRODUCTION

AUTOMATED PROJECT MANAGEMENT
THE PLAN FOR SUCCESS IN SYSTEM PROJECTS

by

Robert R. Mattson
9545 Delphi Rd. S.W.
Olympia, Wa. 98502

Project Management is like the weather and documentation everyone talks
about it but no one does anything about it! Maybe this is of an over
statement but from my observations not much of one. This paper/talk is
meant to shed some light on the whats, whys and hows of project management
for "system projects". Additionally, I hope to provide reasons as to why
managing such projects is very difficult without a good automated project
management system.

SUCCESS IN PROJECT MANAGEMENT

I'd like to take a brief moment to describe what I believe is the general
meaning of the word "success" when applied to system projects. My analysis
indicates that over 80% of the measurement of success as judged by "top"
management in a system project is based on whether it is "on-time" and
"under budget". The remaining judgement factors are divided between having a
minimally acceptable system, functional quality, lack of visible defects, etc.

It is not my current purpose to argue the validity of such a measurement
methodology. In fact, I believe very strongly that such an approach is
questionable from an organization/business standpoint. My purpose in
addressing the definition of success is to emphasize why managing a system
project for time and budget is so important. For a full discussion of
the concept of "success" in system projects see a paper in the proceedings
for the Interex Conference in Washington D.C. titled "Why Systems Projects
Don't Quite Succeed".

THE PROJECT MANAGEMENT PROCESS

Well, if we know how success is measured, then what does project management
have to do with achieving it? To answer that we have to define project
management itself. Project management is the totality of "steps"
undertaken by a project's leadership to assure that a project meets primary
time, cost and quality goals. This is not a definition of GOOD project
management. In fact, a simple definition of good project management may be
impossible. I do believe that doing a good job of managing any project will
however involve doing the following steps in an iterative manner.

Automated Project Management - Plan for Success
1

Scope & Deliverable definition
Task planning
Task Dependency planning
Resource planning
Time planning
Cost planning
Resource "procurement"
Scheduling
Directing
Doing
Recording/Collecting
Reviewing/Re-estimating
Status Reporting
Redefining, re-planning, redoing, etc.

It is beyond the scope of this paper to discuss in depth everyone of the
above facets of project management ... these subjects cover entire books.
I will however touch upon some of those aspects that make many of these
project management tasks especially challenging in system projects. The
value, to system project success, of understanding and applying good project
management techniques must not be under-estimated.

AUTOMATED PROJECT MANAGEMENT SYSTEM

It is my belief that a good automated project management (APM) system is
essential. A good APM system is essential due in part to the size and
complexity of most system projects. I will when addressing each area of
project management try to point out how a good APM system will help.

SCOPE and DELIVERABLES DEFINITION

Scope is the summary description of who, what, why, when, how and how much
of a project. Deliverables are the more detailed definitions of what a
project is to produce. The scope and deliverable definitions of system projects
are characterized by one word "change". More than most other types, system
projects change their scope and deliverables. In other words, the summary and
the detailed descriptions of what we are going to create at the beginning
differs significantly from what is finally produced. This is one of the
reasons that system projects overrun their budgets of time and cost. In other
words, if we end up doing more or re-doing too many tasks due to changes then
it can't help but take more time and resources than we planned.

How can a good APM system help us to deal with this state of change. A good
APM system will help us to clearly communicate the significant features
of the project scope BEFORE a change. When a change is made it should be
possible to more clearly show its relationship to the project as a whole.
A good APM system can allow us to adjust our plans to what is "now" being
asked. Further, by providing a consistent reporting mechanism we can
communicate the impact in cost and time for proposed changes to our client

Automated Project Management - Plan for Success
2

and/or management in a professional manner. The method of communicating the
impacts of proposed changes will greatly influence how you as project manager
or doer are perceived and judged by your client and/or management.

TASK PLANNING

Task planning is conceptually where "all" the tasks that will be done to
produce the deliverables are specified. It is a critical step before doing
task dependency planning, time planning, resource planning and cost planning.
If we don't do a good job of specifying the tasks then all the other
critical types of planning outlined above cannot help but be WRONG! Yet,
I will lay odds that this is seldom done adequately for even the most simple
systems project (such as one program). If we don't do it well for a simple
project how can we expect to do it well when the nature of the project is
much more complex.

So, what stops us from doing a better job of this most critical step? Part
of the reason is the number of tasks to be specified is very large. Trying
to deal with this volume without automation is next to impossible. A good
APM system will allow us to handle the volume of tasks required for most
system projects. Another reason is that we do not appreciate the value of
doing detailed task list planning. A third reason, is that we have no history
that adequately gives us information about the steps required to accomplish
a similar project/task in the past. As a consequence of this deficiency
we are not able to "remember" what we or someone else encountered. Ye will
discuss this in more depth in the section recording/collecting.

Another issue is -- how detailed should a task plan be? There is not an
absolute optimum level. I can give some quidelines from my experience.
First, when in doubt more detail is better than less. The only drawback
to specifying tasks in "great detail" is when it takes "too much" time.
In my experience "too much" is usually self evident. On the otherside, I've
seen far more cases in which tasks were not specified in enough detail. As a
consequence of this lack of detail task specification serious problems have
arisen usually with underestimation of time and costs.

A good APM system greatly reduces the amount of time and cost spent doing
detailed project/task definition. Without a good system the logistics make
dealing with the detail almost impossible. A good APM system will allow us
to define tasks in fine detail. This detailed definition of tasks will
provide us with a much truer picture of what will be involved in doing the
project. Good APM systems allow for the reuse of sub-plans and/or templates.
This will encourage finer detail and more accuracy in task requirements.
The ability to do top down type task planning is unbelievably powerful.

TASK DEPENDENCY PLANNING

Assuming we have done a good job specifying all significant tasks in "task
planning" then we are ready to address "dependencies". Dependency planning
is the step in which the relationships between tasks are specified and

Automated Project Management - Plan for Success
3

reviewed. This is important because understanding the inter-relationships
between tasks gives us the means to know what must come before what and what
can't start before what is finished. Many times it is the lack of knowledge
in this key area that leads to poor overall time and cost plans.

As in task planning, trying to do dependency planning without a good APM
system is very difficult to impossible on any reasonably sized project.
With a good APM system we will be able to specify inter task dependencies.
We will be able to explore the significance of these to the project plan.
We can better communicate to others through standard outputs the nature of
the existing dependencies. The number of features which a good APM systems has
to deal with task dependency planning is amazing.

RESOURCE PLANNING

Resources are the people and tools we use to get tasks done. We need to
take each defined task and figure out how much of what resources for how long
will be required to complete it. There are a number of concerns here.
First, in systems work (such as programming), a person is not a person.
By that I mean there can be a ten to one or greater factor between what
two people with the same years of experience and same title can do in the same
period of time. In fact, many times, the one person appears to be able to do
something that the second "equally qualified and titled" person can't no matter
how much time you give them. Secondly, without having a detailed definition
of what the actual task to be done is, it is very difficult to estimate
the amount of a required resource. Thirdly, if the first two concepts weren't
challenge enough, we can throw in the fact that we usually have no accurate
history of how long it took us to do a similar task in the past. Since this
accurate history doesn't exist we can't apply anything but our "judgement" to
our estimates.

So in what ways can a good APM system help? It can provide a history of the
resource time and cost for similar tasks. It can give us quantifiable data
on individual human differences in performing the same task. It can allow us
the capability to compare what we planned for resources for a task against
actuals used. With this knowledge we can use current variance data to modify
the remainder of our plan. This can give early warning of problems to us
and others. Further, a good APM system will allow intelligent allocation of
resources. The conflicts such as over allocating a resource will be made
visible. The nature of resources required will readily be seen. Further,
the cost of each resource applied to a project will be evident.

TIME PLANNING

Time planning is when we figure out how long a task should take overall.
It is the summation of resource times plus slack, waiting and contingency time.
Time planning is in many ways an extention of resource planning. As we
have seen, our ability to estimate how much of a resource for how long is
hampered by many factors. We can add to this a few special twists provided
by the fact that time is not a solidly defined attribute. To understand

Automated Project Management - Plan for Success
4

this limitation we must think about what terms like a "week", "work-week",
five days, seven days, 40 hours, 7 hours per day, "man-week", etc mean.
My experience convinces me that they can have wildly different meanings
depending on how, when and by whom they are being used. Yet, I see people
using these all the time as if there was some absolute definition. The
consequences of this confusion and fuzziness related to time is that we are
never sure what it means when we see someones estimate of "how long" it will
take to do some task.

Here is an area where a good APM system will shine. It knows about
calendars, time and task/sub-task concepts. This makes determining the
duration of a task or a task and all it's sub-tasks possible. Further, a
good APM system will provide a standard for defining time. It will also
provide a consistent means of recording and reporting time. These two
features can by themselves greatly increase the accuracy and quality of
time management in projects.

COST PLANNING

This area is one of the easier areas to deal with in project management.
At least it is usually relatively easy to assign a cost per standard unit
of measurement for a particular resource. Once this has been done then it
is "merely" a matter of mulitplying our estimated resource units to be used
by the rate to arrive at costs for a resource in a particular project plan.
I will ask you to consider the problems with any project cost estimate based
on incomplete lists of tasks and other inaccuracies we have reviewed.

A good APM system will make this task easy. A good system will have enough
customizing capabilty to allow for producing fully loaded costs. It will
make the calculating of planned project costs and actual costs to date a dream.
It's ability to add remaining cost estimates will provide another essential
feature to project management.

RESOURCE PROCUREMENT

A project must have the resources to implement the plan. To the extent these
are "people" we are into a challenging area. If you are going to do it with
experienced people you've worked with and trust ... you are blessed. If fate
says you must hire then I've got two suggestions. First, understand that
hiring the right person is a very uncertain process. As a very experienced
systems project manager said ... if you bat fifty percent consider yourself
lucky. I would add to this my feelings that the surest way to know whether
a person will fill your need is to work with them. No question you can ask
in an interview or of previous associates can take the place of a week of
working with someone. Hence, my experiences tell me that even if you must pay
them consulting wages work with the person before you ever hire them.
Then, if you have the luxury of not being under the gun to start, you can
continue the search for the right person elsewhere. In the long run you'll
be a million miles ahead to find the right person ... not just a person! This
is an area that is not helped much by any kind of APM system.

Automated Project Management - Plan for Success
5

SCHEDULING

Scheduling is planning when tasks are going to happen in the short and long
term. The product of scheduling is a schedule. A schedule gives an organized
timetable. The goal in good project management is to make this schedule such
that if it is followed then at least the project time goals will be met.
Here is where things get fun. Without good scheduling I'm not sure
how any project can get done in a highly productive manner. Yet, to do a
good schedule requires that we understand and have done a good job of all the
steps which came before. Additionally, scheduling is the shifting sands
of project management! I have never seen a schedule for a significant system
which did not develop major inaccuracies within a few days after it was
made. And, if a schedule is not our best estimate of future realities then
how much attention will anyone pay to it. In otherwords, how many of us keep
old airline, train or bus schedules! So what does this mean? It means that
we must be constantly revising our short term working schedules and as
appropriate our long term schedules. Yet, if this is true, we would expect
to see project managers and workers modifying their schedules on a daily
basis how many are doing this? Very few! Why isn't this being done?
Again, a major reason is that to do so with out a good APM system is almost
impossible. Further, it is a chicken or egg situation. Without having the
benefit of using a good schedule one does not appreciate its value. At the
same time without a good APM system to help build and update schedules it
is unlikely that one will get a chance to see their worth.

DIRECTING

In order to get people and resources to do a job there must be some
direction given. The challenge is communicating directions in a clear
manner. Good project management must let someone know what, when, why, and
many times how something is be to done. As discussed above there are numerous
challenges in specifying these attributes related to a task. I believe
that many times it is this directing step that gets short changed. People
rteed to better understand the limitations of human communication and ways
to improve it. In project management the most significant factor is that
far too many directions are verbal. Verbal communication is subject to large
losses of information. Therefore, if all we ever do in a project is verbally
tell someone about the who, what, why, when, how much and how then we are
bound to have problems. I believe it is amazingly too common that persons
assigned to a task have no clear idea of what subtasks, milestones, time,
costs and other parameters are expected. Yet, many times we get much greater
performance by just making a goal clearer for a person. People will tend
to work much harder toward a well specified goal than a fuzzy one. Further,
the more well defined a task/project is the less time it will tend to take to
complete. This is because people more clearly know what they have to do and
when they are done.

A good APM system will provide many standard "written" means to communicate
about the project/task at hand. Without a good APM system the tendency is
to revert to verbal with its severe problems.

Automated Project Management - Plan for Success
6

DOING

The doing of a project is what we finally get around to after we've done
all the other things discussed so far. If you're like most of us, you
have a real tendency to start doing. I've already stated my bias for the fact
that no matter how it may seem sometimes there is a better way .. it's called
planning and project management.

A good APM system should help one to do the planning and maintain it with
the least amount of effort possible. There will be less tendency to start
doing without planning when plans are relatively easy to do.

COLLECTING/RECORDING

What is collecting? This is what we should be doing in projects so that
we know what tasks we really do and how long they take us. Most of the
time what we do is try to fit our activities into whatever gross accounting
categories or such have been established. We also are trying to play
whatever game is currently on the board. These games include "I'll charge
the next task for this tasks time so I won't be over budget". They also
include "What I'm doing isn't on my task list so I'll put it in some task
that is on my list". The games are endless. The result is that the data
collected about projects is seldom of much value as a learning tool or
reference database. We can't learn about what tasks we should have
specified when planning because we gave no mechanism for recording new
tasks that became evident. We have no means for knowing really how long a
task took because we made the penalty greater for missing some plan than
the reward for truthful time keeping. The net result is that this activity
which is absolutely essential· for improving our abilities to plan and
manage projects is lost irrecovably. To increase the quality of project
management means we have to come to grips with this tough issue.

A good APM system can help by providing the means to record what has occurred.
It is outside the scope of a project management sytem to provide the policies
and people management necessary to get good data on what is actually happening
on a project. I believe a good strategy in this area has its basis in pushing
the planning, recording, monitoring and reporting as far down in the project
as possible. This means that in a sense everyone becomes a "project manager".
When this becomes the case then there is a real tendency for better data to be
put into the system. This is so because these lower level "project managers"
see the benefits when they have to use it to do better planning.

REVIEWING/RE-ESTIMATION

Reviewing is the step which should be happening on no less than a daily
basis by every participant in a project. Reviewing is tied to re-estimating.
The step is to compare what we have recorded to date against what we planned
to do. We also re-estimate what remains to be done and when it will be
completed. In this simple concept lies one of the most effective techniques
for getting projects done on time. This is a natural extention of the

Automated Project Management - Plan for Success
7

concept discussed in the last section about making everyone on a project
into "project managers". Thus, the key to this review/re-estimation
process is to make it operate at the lowest level possible in a project.

In order to do this then we need to have good systems for planning,
recording, comparing, reviewing and replanning on an ongoing basis. It
should be fairly obvious that a good APM system will help in this task.
Then, if the APM tool allows for a consolidation of these lower level
estimates, we have the higher level view we need to see the big picture.

STATUS REPORTING

Status reporting is what we should be able to do on a daily basis. We
should, if all the steps above were followed, be able to immediately
inform our "clients" of the status of a project whenever they ask. The
current norm is to give vague but comforting answers about "everything is
ok" or such like. This may be followed up by periodic "glossy" presentations
about how things are going. In most environments the latter is not worth
the paper its written on luckily most clients don't know the difference.
What we really want to be doing is creating a project management environment
where the tools, policies and methodologies for ongoing status reporting are
in place. Then persons at all levels can be reporting in a consistent and
efficient manner. Additionally, we must have a policy which places the
responsibility for exception reporting on each person. By an exception, I
mean any time there is "significant" differences between a current working
plan and actual or new estimate. Then if an exception is found it is the
responsibility of the person to alert the person he reports to in a specific
manner.

REDEFING, RE-PLANNING, RE-DOING, ETC.

If anything is missing from most system project management it is the fact
that the steps we have just described are not CONSTANTLY being redone.
Project management is a iterative process. The state of the art is that we are
lucky if we do it once. Yet, as should be clear from all I have discussed,
doing a plan once for a system project is of extremely limited value and
rather like a glimpse of a speeding train going out of sight into a tunnel.
The key concept is that a good APM system will allow us to keep this
iterative process. Without one we soon become overwhelmed by the process
and tend to abandon it.

MICRO VS. MAINFRAME

There are automated tools available on both mainframes and micro computers.
They both tend to have their strength and weaknesses. I believe the first
step in making the choice of best tool is to understand the task to be done.
Then we can evaluate the tools and choose the best one. That is a whole
subject in itself.

Automated Project Management - Plan for Success
8

SO WHERE DO WE STAND?

We have covered a lot of ground related to project management. The goal
was to give an overview of what steps we should be doing in project manage­
ment for our system projects. There are clearly many challenges. Yet,
there are automated project management tools emerging which make it possible
for us to conquer many of the challenges. Most of us will be asked to take
on responsibility for system projects. Also, we are being expected to be able
to predict how long a project will take and how much it will cost. To add
further challenges, many of the projects today are of much greater complexity
than in years past. The solution? I believe we must develop the knowledge and
start using the tools that allow us to meet these new challenges. I ~elieve
strongly that the use of a good automated project management system Lll make
the possibility of success in project management a reality. May your
projects be managed!

Automated Project Management - Plan for Success
9

SYNOPSIS

THE TOUCH INTERFACE - THROW AWAY THE KEYBOARDS ?

by

Richard Corn and Robert Mattson
Washington Irrigation and Development Co.

1015 Big Hanaford Road
Centralia, WA. 98531

This article explores the design and technical considerations in using the
touchscreen interface in computer system applications using V-Plus and COBOL
COBOL on the HP3000. The success of this interface and the relatively clean
programmatic implementation makes a strong argument for its expanded use.

THE PROJECT AND ENVIRONMENT

The project we tackled was to develop a "Maintenance Management System"
for our maintenance organization which would be useable by all potential
users.

The system was to be implemented in a company that was definitely not high
tech. WIDCO is a open pit coal mine employing 800 people. The maintenance
departments for heavy equipment and coal processing account for 250 people.
The maintenance function operates 24 hours a day seven days a week and is
spread over 10 square miles. The average user is a mechanic who has never
touched (no pun intended) a computer in his life.

THE CRUX OF THE PROBLEM

The desire on the part of management was to have a system which would be
useable by ALL maintenance personnel without the need for intervening
"computer sophisticated" maintenance planners. This posed several problems:

* No "standard" interface approaches we had used before would allow
for implementing such a system in this type of user environment.

* Standard interface approaches would require extensive efforts to
train and retrain users.

* System support staffing in non 8-5 hours would be unacceptable and
too costly if standard interfaces were used.

* Low computer sophistication of the "average" user would make over­
coming "computer phobia" a difficult task. Our experience lead us
to believe standard interfaces would result in little or no use by
the majority of our "users". This was not acceptable if the system's
benefits were to be realized.

The Touch Interface - Throw away the Keyboards ?
1

SOLUTION DESIGN CONCEPTS

Faced with such a project, user environment and interface problems we deci­
ded to explore "new" alternatives. The most promising of these appeared to
be the utilization of HP's "touchscreen" interface. The more we explored
this interface method the better it appeared.

We did face two problems in using of the touchscreen interface. First, what
new design concepts and issues are raised by applying this interface. Also,
How do "standard" design concepts interact with this interface? Secondly,
what is required from a programming standpoint to implement this interface.
Our research was unable to find anyone using this interface on an HP3000
using VPLUS and COBOL.

We were able to answer both the design and programming issues in a success­
ful manner. We will address the design and programming issues in order. We
hope that the insights gained from these areas will be of help to others.

DESIGN ISSUES

Our design approach to utilizing the touchscreen interface was to start
with techniques that we had used before. We found that for the most part
these techniques adapt easily to the touchscreen. The touchscreen does
however add some positive and interesting aspects to these techniques.

SOFTKEYS - We are all familiar with softkeys. Our system utilizes these
extensively by taking advantage of the ability of the softkey labels that
appear on the screen to respond to touch also. What is more interesting to
consider is that under our approach the "read it, touch it, select it" of
softkeys now extends to the whole screen! This gives the system designer
the possibility of "softkeys" or more appropriately "touchkeys" appearing
all over the screen. Thus "touchkey" boxes of all types can be put on the
screen with words and/or numbers in them for the "selection" by the user.

MENUS - One of the first uses we put the touch interface to was menus. We
normally employ menus in all our systems to insulate the user from the det­
ails of the programs, jobs and operating system. By utilizing "touchkeys"
on the screen with menu selections we built upon the common touch interface
approach of softkeys and our system wide use of menus. This proved to be an
extremely successful combination.

HELP - We employ online "manuals" and "help" screens for our touch based
system. We felt this approach was necessary due to the fact that the users
and work stations were so remote and temporally dispersed around the clock.
Utilizing the help subsystem, as with menus, builds on the single interface
approach of touching what you want to do on the screen. Because the inter­
face is so simple, we have found that the size of user manuals can be re­
duced. A good portion of user manuals tend to deal directly or indirectly
with the interface itself rather than the application functionality.

The Touch Interface - Throw away the Keyboards ?
2

INQUIRY vs INPUT - We strove to develop a system which could utilize the
touch screen interface as much as possible as long as it made sense. There
is a challenging area in utilizing this interface related to information
inquiry. If the user must do very much switching between the keyboard and
the screen then this makes the use of the system more difficult. Further we
felt the majority of our 250 users would be in an "inquiry and a produce
standard outputs" mode. For these users we have built a system in which ALL
functions can be accomplished without resorting to the keyboard. This is
done through a number of "types" of touch screens. One of these types of
screens include "touchlists". Touchlists display a list of all possible
choiches in boxes on the screen rather than requiring the user to enter a
selction value or key through the keyboard. Where selection was necessary
but the number of possible choices too large to be displayed on one screen
we developed numeric touch keypads. Once again because these screens all
use the same "read it, touch it, select it" concept the user finds them
easy to learn and utilize. One place our goal of keyboardless users was
difficult was in dealing with user logons. The operating system does not
know about touchscreens. We solved this problem by employing a terminal
monitor program technique for many terminals rather than the traditional
logon. If the user must do much alphanumeric or text input then the touch­
screen is not practical. There does not appear to be a good alternative to
the keyboard. What we wonder however, as we consider most computer appli­
cation systems we are familiar with, is how often they make the user deal
with ~o much more complexity (keyboards, input of codes and keys, etc)
than is really necessary to accomplish the function.

TRAINING - We had identified this area as being one of the systems major
obstacles to success. What we found was that the touchscreen interface
when combined with other techniques, some of which are outlined above,
makes training a factor of 10 times easier than more traditional systems
might require. We have found that for the great majority of our users the
touchscreen interface is so "intuitive" that all one has to do is show
them how to read a "touchkey" and touch it to get what they want. From
there on the user can apply this technique with literally no further
training. For neophyte computer users and for occasional users this inter­
face makes approaching and using the computer MUCH less fearful than more
standard keyboard based interfaces.

EASE OF USE - The central design issue for to the touchscreen interface
is ease of use. The bottom line is that it is easy for the user to learn
and use. For many functions it is far superior to the standard keyboard
interface. If the user base are doing inquiries and especially if they
are only doing them occassionally then the touchscreen interface is the
design of choice.

TOUCH SCREEN IMPLEMENTATION

The design requirements for our application called for COBOL programs
driving VPLUS block mode screens with the touch screen interface. We were
relieved of developing our own methods to accomplish this when HP added a
touch screen interface to VPLUS in the G.01.01 release of MPE.

The Touch Interface - Throw away the Keyboards ?
3

The method used by VPLUS to interface with the touch screen is really very
simple. When the touch interface is enabled, VPLUS sends an escape sequence
to the terminal to place it into ROW/COLUMN touch reporting mode. Then,
when the terminal is touched, it returns the row and column of the touch
to VPLUS. VPLUS translates this row/column location into the field number
of the VPLUS form field that occupies the same area on the screen that was
touched. This field number is returned to the user program in the LASTKEY
variable of the COMAREA. The field number is returned as a negative number
to distinguish it from other codes returned by VPLUS. The field number is
the field's number as assigned"by FORMSPEC at design time, not the field's
screen order number. If the row/column sent by the terminal does not corr­
espond to a VPLUS field, the code -999 is returned. While there are numer­
ous ways to access the touch screen, this scheme has the least set-up and
sensing overhead.

ENABLING THE TOUCH INTERFACE

To activate the VPLUS touch interface, bit 0 of the SHOWCONTROL word of the
COMAREA is set on. At the next VSHOWFORM call the terminal is put into row/
column touch reporting mode. The user's touch is processed and returned by
VREADFIELDS. VPLUS checks the terminal type to verify that the terminal
being used is a touch terminal. If the terminal is not touch sensitive, bit
0 is ignored. If bit 0 of SHOWCONTROL is set off, the VPLUS touch interface
is 'deactivated'. Deactivated means that the terminal remains in the touch
sense mode but VPLUS returns the -999 code for every touch. This can be
very confusing for programmers and users alike. The workaround for this
problem is to send the terminal an escape sequence to turn off touch sense
mode.

VISUAL TOUCH FEEDBACK

When the VPLUS touch interface is active (bit 0 of SHOWCONTROL is on), the
VSETERROR intrinsic will toggle the error enhancement of a field on and off
as repeated calls to VSETERROR are made for that field. This allows the
programmer to give the user visual feedback when a touch is sensed. It is
important to give the user immediate feedback to a touch. Since the user
has touched a field on the screen, enhancing that field is the natural
response.

BITMAPCNV INTRINSIC

Included with the touch enhancements to VPLUS is a new intrinsic, BITMAPCNV.
We used that intrinsic in our routines to control the touch interface. This
intrinsic will convert a 16 bit word to a 16 byte array that contains ascii
ls and Os to indicate the value of the bits in the source word. You can
change the ls and Os to a new pattern and convert the array back to the
word. This is useful to control the bits in the SHOWCONTROL word of the
COMAREA. When converting the array to a destination word, the destination
word must be set to zero before the call to BITMAPCNV (un-documented).

The Touch Interface - Throw away the Keyboards ?
4

TOUCH CONTROL SUBROUTINES

To facilitate the use of the VPLUS touch interface we created subroutines
to handle the turning on and off of the interface. One routine called
TOUCHON simply uses BITMAPCNV to set the SHOWCONTROL word bit 0 to l and
activate the touch interface. The other routine, TOUCHOFF, uses BITMAPCNV
to set bit 0 of the SHOWCONTROL word to 0. It also sends the escape seq­
uence (esc -zON) that will reset the touch sense mode of the 150.

TOUCH SCREEN LAYOUT

Our design of touch screen layouts has evolved into two variations. One,
the 'option select' type of screen, presents a series of boxes on the
screen that the user touches to select options and control the operation of
the program. Boxes are created by stacking VPLUS fields on subsequent lines
and treating them as a unit when processing the touch. This type of screen
is typically employed with inquiry or report initiation programs. This type
of screen looks and operates like the screens used in the 150 PC's PAM and
File Manager software. The other type of screen, the 'menu select', arrays
rows of summary data on the screen where each row represents more detailed
data that can be viewed on a lower level screen. The user can touch the data
of interest to cause the program to display more detailed information for
the summary touched. This type of screen is used for touch menus as well.

Option Select Screen Example:
This screen has two touch boxes, BOXl and BOX2. The labels in the fields
are supplied by the program. The fields have an initial enhancement of 'IH'
and an error enhancement of 'I'. The user sees two light green boxes with
labels and if touched, the boxes become bright green when enhanced by the
program.

******** ******** ******** ******** ******** ******** ******** ********
Touch the Option of your choice:

BOXll BOX21.
BOX12 BOX22
BOX13 BOX23
BOX14 BOX24

******** ******** ******** ******** ******** ******** ******** ********

field: BOXll
field: BOX21
field: BOX12

and etc.

number: 1
number: 2
number: 3

The Touch Interface - Throw away the Keyboards ?
5

Menu Select Screen Example:
This screen has data fields arranged in rows. This allows several groups
of logical information to be displayed. The user can touch any field in the
group of fields to select more detailed data or some other function. In the
example each row of fields DATE, ORD and DESC display different 'orders' on
the screen. To view more detailed information about any one of the orders,
the user touches any one of the fields on that order's row.

******** ******** ******** ******** ******** ******** ******** ********
Order Inquriy - Touch the Order for more information

Date Order Num Order Description

DATEl. . . ORDl. . . . DESCl

DATE2 . . . ORD2 DESC2

DATE3. . . ORD3. . . . DESC3

******** ******** ******** ******** ******** ******** ******** ********

field: DAT El number: 1
field: ORDl number: 2
field: DES Cl number: 3
field: DATE2 number: 4
field: ORD2 number: 5

and etc.

TOUCH RESOLUTION

The touch hardware can resolve the touch of single line fields with fair
reliability depending on where the fields are placed and how well the term
terminal is adjusted. Some fields may be difficult to touch sense and ad­
justment of the screen can minimize this touch sensitivity problem. Fields
on adjoining lines that are taken together to represent a single logical
touch (boxes or multi-line field groups) where the resolution is to two
lines or more work very well. In cases where we have only one line of data
fields, we have created dummy fields on the second row for greater sensiti­
vity.

TOUCH SENSITIVITY ADJUSTMENT

Adjustment of the terminal is critical to good touch operation. The proce­
dure is to display a screen with many touch fields both across and down the
screen and to adjust the vertical/horizontal position of the screen image on
the terminal until you get reliable touch sense on all fields. We have seen
some variation in how well different terminals respond to the same screen.
It is also important to keep the screens clean and in the case of small
screen lSOs, to keep the holes in the screen frame for the touch hardware
clean and free of obstruction.

The Touch Interface - Throw away the Keyboards ?
6

APPLICATION CODING OF THE TOUCH SCREEN INTERFACE

The program code to handle the touch interface is straight forward. After
the call to VREADFIELDS, if the VLASTKEY variable in the COMAREA is less
than zero touch processing is performed. The code checks for the -999
return code and if found displays a message asking the user to touch more
carefully. If other than -999, the code falls though a series of IF state­
ments to determine which field (or field group) was touched and proceeds
accordingly. When a touched field is detected, that field (or field group)
is enhanced and a call to VSHOWFORM is made to make the field light up
immediately so the user knows the computer has registered the touch.

Example code for the Option Select Screen Example:

CALL "VREADFIELDS" USING COMAREA.

IF COM-VLASTKEY < 0
PERFORM PROCESS-TOUCH.

PROCESS-TOUCH.
IF COM-VLASTKEY = -999

(set up and call VERRMSG with a 'touch more carefully message')

IF COM-VLASTKEY = -1 OR -3 OR -5 OR -7
(set up and call VSETERROR to enhance fields BOX12, BOX12,

BOX13 AND BOX14)
CALL "VSHOWFORM" USING COMAREA

PERFORM BOX-1-PROCEDURE.

IF COM-VLASTKEY = -2 OR -4 OR -6 OR -8
(set up and call VSETERROR to enhance fields BOX22, BOX22,

BOX23 AND BOX24)
CALL "VSHOWFORM" USING COMAREA
PERFORM BOX-2-PROCEDURE.

TOUCH SCREEN COPYLIB MEMBERS

To get away from hard coding field numbers in our programs, we wrote a
utility that will create a copylib member for a screen that consists of a
single word with subsequent 88 level variables that are the field names and
their numbers. We move VLASTKEY to the word and then test for touched
fields by name. If the form changes, we can simply re-run the utility to
create an updated copylib member and re-compile the program. With the copy­
lib utility, we can group fields together to create logical 'rows' or
'boxes' with a single name. This simplifies programming of box selection
and 'menu' data selection screens.

The Touch Interface - Throw away the Keyboards ?
7

Copylib Member Example for the Option Select Screen Example:

01 TOUCH-SCREENNAME
88 SCREENNAME-TOUCH-MISSED
88 BOXll
88 BOX21
88 BOX12

88 BOX-1
88 BOX-2

This simplifies the example program code:

CALL "VREADFIELDS" USING COMAREA.
IF COM-LASTKEY < 0

PERFORM PROCESS-TOUCH.

PROCESS-TOUCH.

PIC S9(04) COMP.
VALUE -999.
VALUE -1.
VALUE -2.
VALUE -3.

VALUE -1 -3 -5 -6.
VALUE -2 -4 -6 -8.

MOVE COM-LASTKEY TO TOUCH-SCREENNAME.

IF SCREENNAME-TOUCH-MISSED
(set up and call VERRMSG with a 'touch more carefully message')

IF BOX-1
(set up and call VSETERROR to enhance fields BOX12, BOX12,

BOX13 AND BOX14)
CALL "VSHOWFORM" USING COMAREA
PERFORM BOX-1-PROCEDURE

USE OF THE 'PROTOS' 4GL

It should be noted that our application was written using the PROTOS 4GL.
Use of PROTOS did not significantly affect the way the touch interface is
coded but did greatly simplify some tasks such as enhancing all of the
fields on a logical row or box.

TOUCH SCREEN 'BACKUP'

On most of our touch screens we have included a function key back-up to the
touch interface. This consists of using a function key to step from field
to field (or field group) enhancing them as you go. This allows the user
to step through the logical groups of field(s) until the desired item is
highlighted. A second key is used to signify selection and the program pro-

The Touch Interface - Throw away the Keyboards ?
8

ceeds as if the field(s) were touched. The touch interface must be enabled
to make the enhancements work correctly. Visually, this appears to work
as many micro software packages that use arrow keys to highlight items on a
menu. In keeping with our desire to provide immediate feedback to the user,
we may enhance the function key label boxes in inverse blinking video in
response to touching the label or pressing the function key. This inverse
blink continues until new data is displayed or the function requested by the
key is completed. Again, the the coding of this function is made very easy
by PROTOS.

SYSTEM OVERHEAD

We have found no significant overhead problems with the touch interface in
terms of the application or our cpu. The touch interface is minimally aff­
ected by the load on the machine. This can appear as a momentary insensi­
tivity to touch or by a jerky appearance in the enhancement of fields in
response to a touch.

REAL LIFE EXAMPLE

The example given here is the inquiry for our Work Backlog Tracking Module.
Repair work requests or 'backlogs' are entered into the system and can be
reported in a number of ways. The first thing a user must do to report the
work requests is to select a subset of requests to view. The user does this
by touching the appropriate box on the Backlog subset selection screen (see
screen 1). The box touched by the user goes into inverse video full bright
to indicate that the touch was registered (screen 2). Next, the highest
level of our Equipment Index is displayed (screen 3). The user touches the
item of interest (in this example, Rolling Stock Production, screen 4) and
the next lowest level is displayed. The user proceeds through lower and
lower levels until the final selection of equipment Sub-Class CAT 785 has
been made (screens 5 & 6). With the the work requests subsetted by equip­
ment type, the user can now futher subset by work priority, type and several
other criteria (screen 7). The user touches the options desired and then
touches SEARCH BACKLOG to start the extraction process (screen 8). When the
work request backlog entries that meet all of the selection criteria have
been extracted, they are presented in a summary list form (screen 9). The
user can page through the list as well as print it in several formats. If
the user wishes to see more detail about a work request, he touches the
request on the screen (screen 10) and the work request detail is displayed
(screen 11). In this example, a complex inquiry has been made without a
keyboard, without having to remember codes or commands and the interface is
natural and easy to understand and operate.

REFERENCES

The HP documentation of the VPLUS touch screen interface can be found in
the Communicator, volume 2 issue 4. Our project was done with HPlSO A, B
and TOUCH SCREEN II models. In theory the HP2923 and 2927 terminal could be
used with the touch interface but we have not tried these models.

The Touch Interface - Throw away the Keyboards ?
9

CONCLUSIONS

This large system is approximately half implemented. We have implemented
four of the eight touchscreen based modules. The success of the system
design concepts and the programming of the touchscreen interface has ex­
ceeded our expectations. We have been able to introduce this system into
a difficult user environment with a minimal amount of training and "comp­
uter based" phobia type of resistance. The user response to the touch­
screen interface has been highly favorable. A common response from these
non high tech users is "it is so simple any one can use it". This rapid
acceptance has greatly speeded up our implementation plans as the usual
"break in" period almost disappears.

We believe that the touch interface has shown itself to be feasible from
a technical point of view. More significantly is that it is desirable
from a design strategy standpoint. Our experience with this methodology
would indicate that its use could add significant benefits to many compu­
ter applications now in use or contemplated. As we expand the "users" of
computer systems we will find significant benefits for these people in
allowing them to touch their solutions. Do you have an application just
waiting for the right touch?

The Touch Interface - Throw away the Keyboards ?
10

Screen 1 - Equipment Subset Selection

Screen 2 - Subset Selection after touch by the user, proceeds to screen 3
The Touch Interface - Throw Away the Keyboards ?

11

Screen 3 - Equipment Index Selection before touch by the user

Screen 4 - Index selection after touch by the user, proceeds to next level
The Touch Interface - Throw Away the Keyboards

12

Screen 5 - User selects class TRUCKS by touch, proceeds to next lower level

Screen 6 - User selects sub class CAT 785, proceeds to Option Select screen
The Touch Interface - Throw Away the Keyboards?

13

Screen 7 - Backlog Search Options Selection (before touch)

Screen 8 - User has touched desired options and started the search
The Touch Interface - Throw Away the Keyboards?

14

Screen 9 - Summary list of work backlog for CAT 785 trucks returned by search

Screen 10 - User has touched a work request to see more detailed information
The Touch Interface - Throw Away the Keyboards?

15

. ' ' ' . ' ' ' . .
tiMs:•J!a:c1ci~2 :tria111't'v "'• I>~taiied EOr!!!at• /:··· · .. ··> suoostBLfoos .. oz· .• ••

...... '" "

\Bl#: ••• .111+~6. / S.tiatiJs: ()l' ? \f.c>fK ~~Ji~: •.PM \ : P#~it#:Y< ~)/ <<·~a.reiSfl!ti.lsf •~c)•<···.
::.:::-:::::./.\:.:/:\: .. /:<-:.\:::\:::.:: ··········· ,'
··•:shoff{be·~·c;•; ••:•FR.oNT••'.WllEEL:·:··BEARING•icHE'•••:.····}))\?:•:•••i•·>••::···:.··:·:··.·.·.····· .
. +()rig ~e~ej [RONT>WHEEL··BEAR.ING·.:·cltECi.f. /•···
·· ······ ······ ·· · /:/·\:::\<tntervii1 :.Type-Eli. ::::·ELAPSEt>::.: .. liOtiRS/:>:::>1000·: ::(ilOURS> ··.: .
.............. :/ ·····•/••'Last•'·.D6ne:::•·.·01/23/86"i>·•·······.·····•1cHOURSf:'·•·. i ::C•/::: ···<· .. ·.· .. ·.···

< < \:/:/'fM · automaticallf .ilchedllled·.•.by<PMUP03:.:•.•·::. : /.\•.·.·.·:·.···•·••:· >·•:.:•.· : '· ./
........................ • ... :•: ·,: · · ··:• .•• :, ·: ·· . .. ••·.·•:·iii ·::·:·:•:·::::: ·::·:·••·• •·•:·::::;.:::· • ii•i• .. ::::::·. /:Reqby:•. ••:.~.52 .. :::P'.AllL~'l\ .. •••: •
'Gti~6hei Hti& .AXLEs\•:.·.·.·.•· .. ·.···<··· •. \ . ;;··wti:t.S\~i'rl:ii~~< ::.c:iDJ;bfL ... ··

/)\:\:-.>\:?:.:::·:::::::·/:/:/:/:/::..... :·:· ::::::-::·-::.::::::·: :::<::<:·:::-:}::::. :· ... :: .. ::-::::::::::. :':):·.-:·::·:\::.:· :::::::-:-:::::/::::.:-;::-::·::-:-:·;::.:./·/:\:. ··:·::: ::.::::>.·::··;::.:./::.·.::·.:.:.:.\:-:::.::::_:-:.-:: .. :::-::.: ::·::::·.·::::·:::-·-::

E~tb~~e!!I: ..:::: 'iit$e tat>t-: .. / ····.·•·•·• / 1':$t J.t>'csff) .·.···•·•···</!~;: l'rt est:·
.:/:::::::::::.\.:::::::.:·:.::.:::_::::.: .. :\:/)/:\"_:>:<::::·::·:::: ···. ·::::·:::-::::-:\:/:/:\:\:/.::·::::::::::.::::::::::,:: .. :.:.\·::-:/: .. :/.\:\-:.:: .. \./:·:::::::-:-:··\·:/::.: .. ::::- .:::·:: :· ··:·:·:::<::::-:::::::':'<.'.:>::::::_:.: ... :·

Ji,1:, M:a.~f~i'! · · ···· · • • • i>lif~ tiltei'edi Q9/2a/86'-i)

<I>fHec@(i X/ <Se~#;(·····.·

Screen 11 - Work request detail

The Touch Interface - Throw Away the Keyboards?
16

PRODUCTION GRAPHICS ON THE HP3000 - IT CAN AND SHOULD BE DONE.

by

Steven Carnegie, Richard Corn, and Robert Mattson
Washington Irrigation and Development Co.

1015 Big Hanaford Road
Centralia, WA. 98531

Hewlett Packard has publicly stated that "graphics should be done
on micros and not on the HP3000". There are, however, many good
reasons for not giving up on the HP3000 as a graphics machine. This
talk explores the nature and reasons for business "production" graphics.
It then details the success of one group in using the HP3000 as a
production business graphics processor. Finally, the methodology,
including the use of the contributed graphic library, custom graphics
programs and standard hardware is described. The success of the system
developed shows that production graphics can be made available in hard
copy and online on the HP3000 without "killing" the computer.

OUR MOTIVATION

We were faced with a challenge we expect is similar to that faced by
many people and organizations today. We were developing and would be
implementing a complex new computer application system which required
extensive "online-adhoc" and "production" graphics capabilities.
"Online-Adhoc" graphics is graphs produced in "while you wait" mode.
This capability calls for as fast of graph production and screen painting
as possible. Further, it requires the capability to present the user
with as "user friendly" of interface as possible. "Production" graphics,
as we are using it, consists of two concepts. One is that graphics are
a part of our business operations everyday work. Thus a production graph
is similar to a daily or adhoc report or online screen someone might look
at in doing their everyday work. Additionally, production graphics implies
the capability to produce a lot of graphs with little or no human
intervention. We were told by HP that we should be planning on using micro
computer technology to do our graphics. HP's strategy did not seem to
point the way to a practical or cost effective solution given our
requirements and environment. Our solution, now in place and operating
quite successfully, involves delivering the required graphics capabilities
using the HP3000. This article/talk outlines the who, why, what and how of
our graphics solution. Our hope is that it provides inspiration and
direction for those of you faced with similar challenges.

OUR ENVIRONMENT, SITUATION AND GOAL

Our company is a large open pit coal mining company located in the state
of Washingtion. We are in many ways in the "low-tech" business. The

Production Graphics on the HP3000 - It Can and Should be Done.
1

Information Systems Department supports a full gambit of business related
systems from General Ledger to Payroll. More recently our department (7-8
persons) has been involved in a major project to implement a automated
Maintenance Management System. Part of the plan for maximizing the
benefits from this involved producing online and production graphs.
These graphs would be used by the maintenance department supervisors and
managers to analyze trends and monitor key variables.

OUR REQUIREMENT LIST

We came up with a list of key requirements for the desired graphics
capabilities. Here are the primary ones:

1) Graphs were to utilize extensive multi-year database on the HP3000.

2) Users to have "on-screen" graphics as well has hard copy.

3) Some graphs had to allow for user selection parameter input.

4) Output to HP Laserjets (our main remote printer device).

5) User interface methodology must be simple.

6) User interface to be modifiable to match application.

7) User must be able to produce graphs with minimal training.

8) Online prime time adhoc graphs must be possible.

9) Load/impact on the HP3000 system must be minimized.

10) Rasterizing (hard copy) must be possible during "prime" computer time.

11) Must provide system developers with simple programmatic interface.

12) Must provide graphic system capabilities at low cost.

13) Must be integratible within our programming environment.

14) Provide graphics to all existing online terminal at the same time.

15) Provide graphics availability to users without micro expertise.

OUR SOLUTION STRATEGY

We rejected HP's micro strategy because it didn't meet many of the
requirements listed above. Rather what we chose to do is use the HP3000
as the basis for our online and production graphics. We were not able to
find any commercial product which would meet all our requirements. We were
faced with developing a custom graphics system which would meet our needs.

Production Graphics on the HP3000 - It Can and Should be Done.
2

This posed a number of challenges. But we were able to achieve all our
goals by a "little" custom programming. The result of our effort is a
system based on the following key pieces:

1) A custom "Graphics Engine" that produces different types of
needed graphs based on our "standard" parameters.

2) The capability to produce and store both escape sequence and
figure files.

3) A "Rasterizing" program that can output graphs to our HP LaserJets

4) A "touch screen" compatible interface for our graphics
capabilities to integrate it in our new system.

5) The "Graphics Initiator" application software for building the
parameter file.

6) A "Graph Library" subsystem to handle the storing, cataloging
and retrieving of previously created graphs.

What follows is a discussion of the above key pieces in more detail.
It may be helpful to follow along on Exhibit 1 which is a block
diagram of the key process and interfaces involved in this graphics
system.

THE GRAPHICS SUBSYSTEM

Our design criteria called for a graphics subsystem. This subsystem
would be used by many programmers to fulfill all their graphic needs with
a minimal learning curve about how to write a graphics program. This
subsystem consisted of two parts:

Graphics Engine
LaserJet Rasterizer

Both parts are programmed in pascal.

THE GRAPHICS ENGINE

At the heart of our graphics subsystem lies the graphics engine. The
engine is a small, compact, processor which recieves data and produces a
meaningful graph. The beauty of such an engine is that it hides much of
the detail and dirty work of creating a graph. The user of a graphics
engine doesn't need to how to draw a line, or plot a point. All he needs
to know is what he wants the graph to look like and how to tell that to the
engine. From this graph "description" and accompanying data, the graphics
engine produces a complete graph.

Production Graphics on the HP3000 - It Can and Should be Done.
3

One of our goals in creating a graphics engine was to produce a tool
which any member of the programming staff could use. We studied several
types of graphs, found what they shared in common and what was special
about each one. From this we decided what type of graphs we wanted our
engine to be able to produce. For example, ours creates bar, clustered
bar, stacked bar, and line graphs. Knowing what we wanted our engine to
do, we designed a programmer-to-engine interface which was "rich" enough in
capabilities to allow for all the required actions of the engine, but
simple enough so that our programmers could use it easily.

The interface we use is called the graph parameter file. It contains
all the commands needed to contol the graphics engine. The command
range from "FORMAT LINES" which tells the engine to make a line graph with
five lines to "TITLEl Sample Title " which tells the engine the main title
is "Sample Title." Using this interface allowed us great flexibility in
terms of adding new commands to our engine. The engine also receives a
data file. This file contains the actual data which is to be graphed. From
these two files the engine can produce a graph in two forms, a CGL figure
file or terminal escape codes.

FIGURE FILES AND ESCAPE FILES

We initially had our graphics engine using CGL (Contribute Graphics
Library) routines to create the graph but it proved too slow. We decided
to have the engine send escape codes to our terminals. For our HPlSO
terminals there are escape sequence codes such as Draw and Move that mimic most
of the CGL routines. These escape codes are saved in a file. The file can
then be sent to the terminal or saved for later retrieval. We still have
the engine use CGL to produce figure files. These figure files can be
rasterized immediately or, like the escape files, saved in a library.

THE RASTERIZER

One problem we had in producing a hard-copy of a graph was speed.
Using the standard HP rasterizing IFS routines took 10 minutes and slowed
the system considerably. The solution was to write our own raster program.
"Rasterizing" is a process of taking the "drawing" commands and creating a
bit map representation. The LaserJet only understands "characters" and
"bit maps." The rastering program reads a figure file and produces a file
to send to a LaserJet. Remember, the figure file came from the graphics
engine. The file the rastering program produces also contains special
codes to command a LaserJet to produce a graph. This file's layout is
first a few special codes, followed by a bit map of the graph, and finally
some finishing special codes.

Production Graphics on the HP3000 - It Can and Should be Done.
4

CREATING A BIT MAP

The creation of a bit map deserves some description. The first step in
creating a bit map is to read, dissect, and understand a "figure file."
"Figure files" are the device independant description files created and
used by all the Hewlett Packerd HP3000 graphic products. At the time we
began, there was no documentation for what a figure file contained. We
started from scratch and eventually came to understand what makes up a
figure file. Since then, we have seen at least two articles on the
contents of a figure file. For the most part there is a one-to-one
relationship between CGL calls and commands stored in the file. Each
command has a certain number representing it in the file. When you spot
the number, then you know the other numbers which follow it are arguments
for that specific command. At this point we can read a figure file and
pick out the commands: Draw, Move, Text, Arc, LineStyle. The next step in
creating a bit map is to process each command and one by one turn on the
required pixels. For example, a DRAW command must find all the bits
between point A and point B and set them on. This task did not prove too
difficult as there are books about such rastering techniques.

The one problem we did have was with characters. The figure file may
contain a command such as TEXT "main title" which means write the text "main
title" at the current location. But we did not want to take the time to
map the characters into bit map representation. That task may be large
and we found a different solution. We used the provided character set in
landscape mode. The disadvantage to this approach was that we did not have
different styles or sizes. But the good part was the speed. Using this
rastering process we can produce a complex graph in under 60 seconds. The
new raster program is 10 times as fast as the Hewlett Packard process
and much less CPU intensive. We are now exploring the possibility of
downloading fonts to the LaserJet to allow for different fonts and sizes.

APPLICATION INTERFACE

To utilize the graphics engine in a business specific application system
we developed an interface set of calls and subsystem programs. The set
that we developed consists of four main components:

Graphics Initiator Programs
Graphics Data Extract Programs
Generic Graph Creation Control Subroutine
Graphs Library Sub-system

The hardware environment consists of HP Touch Screen terminals and LaserJet
printers. The entire application interface is programmed in COBOL using
VPlus Block Mode screens.

Production Graphics on the HP3000 - It Can and Should be Done.
5

GRAPHICS INITIATOR PROGRAMS

To request the creation of a graph, the programmer creates an application
that executes a 'Graphics Initiator' program. This program uses an
interactive screen to prompt the user for the parameters needed to produce
the desired graph. These parameters are basically application dependent
affecting the labeling of the graph and what data will be graphed. When the
user has completed entry of these parameters and they pass validation,
the program proceeds to graph creation. The initiator program first creates
the graphics engine parameter list file. All of the parameters necessary to
define the format of the graph are written into this file. The initiator
next creates the data extract program's control file. This file contains the
user parameters that affect the data extracted. When these two control files
have been built, the initiator then passes control to the Generic Graphics
Creation Process by calling the Graph Creation Control subroutine. The
initiator passes the names of the parameter files and the name of the data
extract program to the subroutine. See the example of a Graph Initiator
Screen. (Exhibit 2)

GRAPHICS DATA EXTRACT PROGRAMS

These programs read the user data base to extract the data to be graphed
and write this data to a data file in a format consistent with the graph to
be produced and graphics engine standards. The program reads parameters
needed for data selection from $STDIN. When the extract is run in batch or
process handled, the parameters are read from the data extract control file.

GENERIC GRAPH CREATION CONTROL SUBROUTINE

The Graph Creation Control subroutine is used to isolate the application
system from the actual production of a graph from graph parameters and
extracted data. The subroutine begins by displaying a touch sensitive
screen that allows the user to select the display medium for the graph
being produced. Once the user has selected a display option, graph
production begins. The display options are:

Display graph on the terminal screen
Print Graph on a LaserJet printer via a job stream
Save the Graph in the Graphics Libary Sub-system for later review

See the example of the Generic Graphics Control Screen. (Exhibit 3)

DISPLAYING GRAPHS ON THE TERMINAL SCREEN

To produce a graph for on-line display, the GRAFCNTL subroutine process
handles the graphics data extract program. This program processes the user
data per parameters found in the extract control file and produces the
extracted data file. When the data has been extracted, the subroutine
displays a message to the user to update the progress of the process and
generates a 'beep'. The subroutine then process handles the graphics engine
to create the graph based on the graphics engine parameter list file and the
newly created data file. The graph is written to the terminal with graphics

Production Graphics on the HP3000 - It Can and Should be Done.
6

display off so that the graph display options select screen remains on the
terminal until the graph is ready. When the engine is finished, the Graph
Creation Control subroutine toggles alpha display off and graphics display
on making the graph appear to the user in a 'flash'.

At this point, the subroutine waits on a Vplus read for the user to press
any function key or touch the screen to indicate that the user is finished
looking at the graph. If the user presses function key 6, the subroutine
will dump the graph to an attached printer (if present). When the user is
done, the subroutine toggles the displays so that the display option select
screen reappears. If the user touches the 'display on screen box' again,
the routine re-displays the graph by toggling the displays. The user can
re-display the graph, request it be printed on a LaserJet, save the graph
to the Graphics Library, produce another graph with different data or to
exit to the menu. See the example of a graph dumped to an attached printer
(Exhibit 4). This is also how it looks on the terminal screen.

PRINTING GRAPHS ON A LASER PRINTER

If the user selects the "PRINT ON LASERJET" option, the subroutine saves
all of the parameter files and then streams a standard job to produce the
graph in batch. If the user had already extracted the data on-line, the
data file is saved and the job does not have to re-extract. When the
graphics engine is executed in the job stream, it's output goes to a figure
file named in the graphics engine parameter list file. When the engine is
done, the job stream executes the LaserJet Raster process and creates a
spoolfile that is directed to the requesting user's assigned LaserJet.
Finally, the job purges all work files. It should be noted that the
Graph Creation Control subroutine uses a job streaming routine that
performs parameter substitution allowing a single 'pattern' job stream to
be used for all graph runs by substituting the file names and other
parameters into the pattern. (See the example of a graph printed on a
LaserJet. Exhibit 5)

GRAPHICS LIBRARY SUB-SYSTEM

The Graphics Library allows a user or batch process to create a graph
and then save that graph for later review. When a graph is created, the
user may elect to save the produced graph in the library. If the graph is
being printed on a laserJet, the save process is performed in the generic
graph print job stream. If the graph is only being saved, a special graph
save job stream is run. In either case, the Graph Creation Control
subroutine creates another work file that contains save parameters for use
by the save process. When a save to the library is requested, the graphics
engine outputs the graph to a figure file and to an MPE file that contains
the escape sequences and data needed to recreate the graph on a terminal.
These two files are saved permanently and the save process updates a
directory in the application data base that identifies the graph, the
general extract parameters, the date and time of creation, the creator of
the graph and the names of the figure and escape sequence files. Finally,

Production Graphics on the HP3000 - It Can and Should be Done.
7

an on-line program is provided that will display a menu of saved graph
titles that the user may select from. The selection is made by touching
the desired title and the user may then select "display on terminal" or
"print on LaserJet." To display the graph on the terminal, the escape
sequence file is copied to the terminal. To print the graph, the figure
file is rastered to a LaserJet in a job stream.

CONCLUSION

While this system may seem complex and to have many parts, the view that
the user has is simple and clean. The entire process runs very quickly
although total time will vary with the amount of data extracted. It is not
uncommon to examine large amounts of data, graph the results and show it to
the user in a minute or less. It is practical enough that users may sit at
a terminal creating graphs in an interative fashion to explore and
interpret the detail data stored in the data base.

Our online and production graphics system has been in place for almost
six months. It is working beyond our most optimistic expectations. The
HP3000 has shown itself to be a good machine for producing our needed
graphs. We believe there are many reasons why it would not make good
business sense to go the micro route for this type of graphics. We hope
our experiences help show others faced with the same challenges that there
is a way to do production graphics on the HP3000.

Production Graphics on the HP3000 - It Can and Should be Done.
8

WIDCO'S PRODUCTION GRAPHICS

Application

Specific

Graphics

Initiator
- - - ,..... ::>

Interface

Files

Graph Parms -

Extract Parms
- -· - - - - - -

I

I
I
I ,-

Graph
Data

Extract

<-}: -· :
~- -

Graph
Selection &

Storage ..:(- _ ' _l_ -

User D.B.

Data File

Escape Files

Figure Files ------

Library Files

Universal

Modules

----)'>
Graph

Creation
Control

,-
1

I
I
I

- - --1
I
I

I - -..,
j
I

- - - I

I
I
I
I

Graphics

Engine

Graphs
Library

. > Subsystem

,-- ~ -1~ Rasterizer

Screen Graph LaserJet

Production Graphics on the HP3000 - It Can and Should be Done.
9

Example Graph Initiator screen. User enters selections and presses ENTER

Generic Graphics Control Screen - user touches box to select output medium
Production Graphics on the HP3000 - It Can and Should be Done.

10

Widco Maintenance Management System FRI, MRY 1, 1987, 10:45 RM
EMGI23.01 REPRIR COST PER OPERRTED HOUR COMPRRISON

for Total Repairs
:3011 3013 -

•••••.•••••••••.•••••.•••..• =!'

For the year 1986

"/EF'. 1. :;:

Exhibit #4

Example of screen dump to attached printer of the screen itself.

Production Graphics on the HP3000 - It Can and Should be Done.

11

""C ..,
0
Q.
c:
(')
rt

0
:::l

"' ..,
"' "CJ
::r
(')

"'
0
:::l

rt
::r
C1>

:c
""C
w
0

...... a
NO

......
rt

n

"' :::l

"' :::l
Q.

VI
::r
0
c:
~

Q.

o­
n>
Q.
0
:::l
C1>

Widco Maintenance Management System FRI, MAY 1, 1987, 10:54 AM

EMGI31.00 OPERATING HOUR INTERVAL ANALYSIS COMPARISON

Repair Cost Per Operating Hour

3011 (1) 3012 (2) - -
50.--~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~--.

45

40

35

"'l"T1
:::l x

"' :c 3
-0::'.,
r- C1>

"' "'0
C1>...., ..,
c.....o
C1> :::l
rt C1>

~
"CJ
C1>

0,

"' ..,
"' "CJ
::r

30 r- <1 ~

25

20

15

10

5

1 2 3 4 5 6 7 8 9 10 11 12 13

< The average of all intervals shown on the graph

periods 1-15, hours 0-37500, intervals are 2500 hrs

< 2

14 15

0
Q.
c:
(')

C1>
Q.

~-
rt
::r
0
c: ..,
"' '<
"' rt

gi

"' :::l
Q.

"CJ

::t
:::l
rt
C1>
Q.

0
:::l

l"T1
x
::r
c;r

rt

"" (Jl

Created by: RICHARD CORN VER 1. 3

HUMAN COMMUNICATION - WHY IS IT SUCH A CHALLENGE FOR SYSTEMS PEOPLE ?

ABSTRACT

by

Robert R.
9545 Delphi
Olympia, WA.

Mattson
Road S.W.

98502

This thing called "communications" is at the heart of all systems work.
Communication is what goes on between systems people and "users", etc.
Communication is what we try to do with documentation work, reports ,etc.
We sense so often that many problems we face have their root in poor
communication. Why? Much of the problem arises from a lack of under­
standing of key principles of communication, information theory and human
limitations. Further, the very nature of "programming" is counter to
dealing with communication problems. This talk explores these issues and
provides some of the knowledge required to evaluate statements like "But,
I told him!".

THE MOTIVATION

The desire to give this talk was based on a series of events happening
over a few days time. The capping event was when one of my associates said
"But, I told him!" in response to a question about something that had not
been done by someone else. It brought to mind a number of recurring
thoughts about how little most people seem to understand the fundamentals
of "communications". I wanted to respond to my associate but realized that
it was more then a five minute conversation. I hope that the concepts
presented here help him and perhaps provide you with new knowledge you can
apply to your dealings with people on and off the job.

ARE SYSTEMS PEOPLE POOR COMMUNICATORS

First, I'd like to deal with the issue of whether systems people are
so bad at communicating. I believe our reputations are justified in many
cases. This is unfortunate since I believe we have not understood that the
heart of systems work is based firmly on good communication. It is the
reason so many systems are not nearly the successes that they could be. In
far too many cases, communication is lacking in the analysis, design,
development, implementation, enhancement and support of computer systems.
The lack of good communication causes numerous problems. These problems
ultimately cost organizations money and systems people respect. But,

Human Communication - Why is it such a challenge for systems people ?
1

communication is a two way street. And, since I've thrown stones at my own
profession, I'll throw stones at almost everyone else by saying that most
other groups are not much better at communicating than systems people. I
think we get more press many times because the nature of our deliverables
are so "concrete" and visible. Thus when we miss our deliverables due in
part to poor communication, it is absolutely obvious to many people. So,
if it is true that we are poor communicators and that this is a serious
problem, then how do we improve? The first step, after accepting where we
are, is to learn more about this concept of" communication". Then, we may
be able to view the behavior of ourselves and others in a new light. With
this new understanding we may even be ready to make changes in the way we
communicate to the benefit of all.

THE DEFINITIONS OF THE WORD COMMUNICATIONS

First, what do I mean by "communication"? The dictionary has a number
of definitions. Unfortunately, the primary ones mirror our limited view of
what communication should be (l)"an act or instance of transmitting",
(2)"information communicated", and (3)"a verbal or written message". These
definitions have limitations that I'll discuss in just a minute. However,
by digging a little more in the dictionary I did find a definition that
comes much closer to what I mean to discuss (4)"to transmit information,
thought or feeling so that it is satisfactorily received or understood".
One other definition is worth our review: (5) "a process by which
information is exchanged between individuals through a common system of
symbols, signs, or behavior".

What is wrong with the first three definitions? The first and third imply
that it is the action of sending something that is communication. As we
will discuss the act of sending is not what is important, rather it is the
results. Further, these definitions focus on the sender. What's wrong
here? Who should we focus on? The receiver is the most important player in
communication ... to communicate effectively our focus must be there. The
second definition above - "information communicated" - suffers from a
circular definition ... using the word it is defining to define itself.
This is hardly a definition with much chance of increasing ones
understanding.

Now let's look at the last two definitions. The key point in definition
number four above relates to the "RESULT" of communication. The goal of
communicating is to achieve some result ... such as an action by someone else
or at least that they "satisfactorily ... understand" what is being
communicated. I am amazed at how much communications goes on which doesn't
seem to focus on what is its desired result/goal. The fifth definition is
valuable because it focuses on the fact that communications takes place
based on "COMMON ... symbols (words), signs, or behavior". As we will soon
see, getting "common" words isn't all that easy.

Human Communication - Why is it such a challenge for systems people ?
2

THE TROUBLE WITH WORDS

It is the fact that humans can communicate with complex written and
verbal languages that has allowed us to achieve our civilization. It is
also the same words in these languages that have played a major role in
some of mankinds' greatest evils and tragedies. Words are neither good nor
bad! But, the fact that most people have a misunderstanding of the nature
of words is at the heart of so many problems. What is it that most people
don't understand about words and why does this cause so many problems.
What most people don't understand is that there is no such thing as a
SINGLE definition of any word. Rather, that there are as many definitions
to a "word" as there are people who "use" it. Further, even for any single
person, a word may change its meaning depending on the context in which the
person uses it. If words are so imprecise why do so many people use them
as if they were concrete fundamental atoms of communication? Also, we
have many words that are used so often that are by their very nature
imprecise. How often do we use the words "soon", "important", "cheap", "
costly", "immaterial", "later", etc, as if they had some concrete "meaning".
It should be obvious that words like these in particular, but actually
all words are valuable communication tools only when they are more
carefully defined. A word is defined when two people can look at a
situation, event, or object and agree that the word, when applied has the
same results. An example, I see so often, is when someone says that they
will get something done by "tomorrow." Does this mean tomorrow at 12:01 AM
tomorrow at 11:59 PM or someplace in between? Apply the same to next week,
next month, next year and the differences in meaning become even more
significant. The majority of the words you see, hear, write, read and
speak each day can be found to contain this kind of imprecision. No wonder
we have poor communication. Where does this lead us? I believe that one
way to increase the quality of our communication is to start questioning
the meaning of words we "transmit" and those we "receive". Such
questioning will cause us to change the words we transmit. It will also
cause us to ask clarifying questions of the communications we receive.

THE DOUBLE TROUBLE WITH "SYSTEM WORDS"

Where does this leave us with "system words?" "System words" are all those
buzz words which system people are accused of using which the "user" and
other people don't understand! You and I know that such words do not have
clear definitions even for system people. Therefore, we now need to add
another concept important to understanding communications. This concept,
which we touched on briefly under definitions, is that communication must
involve "common" symbols. As we've discussed, everyday words are not very
"common" in their meaning. Technical computer terms are even more
misunderstood. Is it any wonder we have problems? The world is rapidly
changing related to the use and understanding of computer related
technology. However, a large gap still remains between the "systems" world
and the "users" world. If we are to communicate effectively ... we must
either make the meaning of the words we use known to the person(s) to whom

Human Communication - Why is it such a challenge for systems people ?
3

we are communicating or we must find words that are already common between
us to use in place of technical words.

THE 5 TO 7 RULE

A concept that is broken everyday in communications is the "5 to 7 rule"
from experimental psychology. The psychological research showed that the
average person can only hold from five to seven numbers, words, or concepts
in their head at one time. When we are asked to deal with more than this
range we start to lose some of the numbers, concepts, and/or words. One of
the common places this concept is ignored, to the detriment of
communications, is in presentations where a list of 10,20,30 or more items
are presented for discussion. The average listener will not be able to
hold all these in their brain at once. It can cause a type of "swapping"
that leads to blank times when communication coming from the speaker is
lost. If you look around I'm sure you will see many examples of this rule
being broken and the obvious results. When more than seven of something
need to be presented, use the concept of "grouping" to reduce the major
list to seven or less and have seven or less in each minor group.Use the
opportunities that you have to apply this important psychological concept
"the 5 to 7 rule."

LEFT BRAIN AND RIGHT BRAIN DOMINANT PEOPLE

Recent studies have indicated that there are major differences in how
individuals process information. The studies show that individuals differ
in whether they deal best with information communicated by verbal OR visual
means. Individuals also differ in whether they interpret lists of facts
better than diagrams or pictures. The studies are complete enough for us
to garner a key strategy related to our communications be a multi-media
communicator! While we may not know whether a person is a listener, a
reader, a list learner, or picture processor; we can maximize the chance
of our message being received by using all types of communication methods!

MULTIPLE OCCUR.ENCE LEARNING

I don't know where we got the commonly held belief that people learn by
being "exposed" to some concept or fact ONCE. Yet think of the number of
times that people do just that - communicate something only once. This
situation is epitomized by my associates "I told him" statement. If you
really want to communicate something then communicate it more than once.
As an aside, if you really want to learn something study it more than once.
All the concepts we are discussing apply equally well to a systems person
as listener. In otherwords, if we want to increase our understanding of
what someone is telling us - then have them tell us multiple times.

Human Communication - Why is it such a challenge for systems people ?
4

COMMUNICATION TRANSMISSION LOSS

Let's discuss the concept of what goes on in communication transmission
to explore the loss factor that might be involved. When communicating, the
sender puts together a message to be transmitted. I'll suggest that a
average communicator only produces a 75% perfect message. In otherwords,
the average person doesn't say what they mean exactly most of the time.
Now we all realize that we aren't perfect listeners. Let's say we only hear
75% of what is sent. Now we add in the fact that of what we hear, we only
interpret correctly to the tune of 75%. If we multiply these factors,
we realize about 42% of any communication gets from sender to receiver. I
expect that is optimistically high ... but it should make the point that
human communication is not a 100% transaction. Now I would leave you to
wonder which 58% of the last communicating that you did ... was lost in
transmission was this lost information important?

COMMUNICATION LOSS AND "BEING THERE"

If we lose so much in any communication, then we in systems ought to change
some common practices. One that comes to mind is the concept that we don't
involve key people in system analysis and design. So many times the actual
programmer and actual user are not the ones that discuss the problem and
the solutions. Rather, the prevalent concept/practice is of a system analyst
and a user manager/supervisor supposedly solving problems and making
decisions. How much information is lost in transmission. Another, is that
we should write more things down. How many times do we have an important
conversation with a user and yet fail to write down a summary and
give them the feedback of what we heard. I believe the extra time spent
doing this would save frustration, false starts, and redo costs.

SHORT TERM MEMORY VS. LONG TERM MEMORY

Okay, now we know how to communicate at better than 42% accuracy. Now we're
facing another human limitation factor. Studies show that the retention of
facts appears to involve short term and long term memory mechanisms in the
brain. The average person forgets nearly 90% of what was communicated to
them with the passage of only 24 hours. The remaining 10% is lost more
slowly but only around 2% makes it to our long term memory storage. These
studies do deal with many factors which may or may not always be the case
in our day to day communications. Nevertheless, even if we optimistically
assume 50% retention, it sure doesn't leave much of what we communicated
(remember only 42% got through) there in someones head when we discuss it
with them a week later. What do we do? Besides writing down what we tell
people verbally, we can remember that when we meet with someone to discuss
something we talked about two or more days ago that maybe some review is
in order ... to bring everyone back up to speed and refresh memories as to
what was discussed.

Human Communication - Why is it such a challenge for systems people ?
5

MOTIVATION FACTOR IN COMMUNICATIONS

As a friend pointed out when we were discussing some of the issues related
to communications "the receiver has to care!" What this means is that all
the best communication techniques in the world may not make a difference in
a situation where the receiver doesn't care about the subj~ct being
communnicated. I believe this is true and getting them to care is beyond
the scope of this article. However, maybe keeping this cqmment in mind
will help us to understand even better that it's not a perfect sender­
receiver world. Maybe, in those situations, just keeping this concept in
mind will allow you to adjust your techniques and effort to the appropriate
level.

SYSTEMS WORK AS IT RELATES TO COMMUNICATIONS

I believe that how well we do in systems work is integrally tied to how
well we communicate (send AND receive). It is a paradox however that the
work most of us start out doing, teaches and reinforces concepts that cause
us problems later on with human communication. Communications in
programming involves a very exactly defined vocabulary. The computer
interprets the communications to it in exactly the same way each time.
There is no loss of information in transmission. The computer will listen
with 100% accuracy. The computer will react to a particular transmission
in exactly the same way each time. The computer is neutral. It doesn't
have bad days or have things on its mind. The computer doesn't care that
you caused it to crash yesterday! Everyone of these concepts is almost
exactly opposite from what it is to deal with human communication. Thus
the early years in this profession, day after day tend to train us in a
mind set which if applied later in our careers will cause us many problems.
Add to this the fact that almost no systems academic training curriculum
includes any practical human communications or psychology classes. The
result is not suprising. Most systems people could improve their
communication-abilities greatly.

UNDERSTANDING IS THE FIRST STEP TO IMPROVEMENT

I believe that understanding is the first step to changing for the better.
Systems people are good learners. The facts are there for one to learn.
Good quality human communication is not so difficut if we remember the game
is played with very different rules than programming. To recap briefly:

1) The receiver is the most important player in communication.

2) Choose and define your words very carefully. Use words "common" to both
sender and receiver.

3) Remember the "5 to 7 " rule - ie. that most people can only handle this
many items at once.

Human Communication - Why is it such a challenge for systems people ?
6

4) Remember to present your material in a variety of ways - verbal, written,
and illustrated.

5) Present your material more than once to update and refresh memories
regularly.

6) Understand the motivation of those with which you communicate.

7) Remember the difference between computers and humans.

CONCLUSION

Well, now "you've been told." I hope this little excursion into the area
of communications helps us all achieve those many goals which depend on it.
Good luck! May you always understand and be understood.

Human Communication - Why is it such a challenge for systems people ?
7

REGIONAL SALES and SERVICE

NETWORKING SOLUTION

DOUG MCLEAN

A COMPANY MODEL

HEADQUARTERS

REGIONAL OFFICES

••• ••• ••• BRANCH OFFICES

'----------IP]::____.
DRS1

DESCRIPTION OF ENVIRONMENT

It is often a "business" need to have faciht1r·' ·'>'ffad over a wide geographical area. This can happen
because ,,1 economic reasons (lower rent< I .,·e1 'r"nsportation costs, availability of labor or materials, etc),
historicai 1 e.1,ons (acquisitions. etc) 01 J ,_., n,.,, ket reasons (need to locate your sales offices in the market
they serve). Companies which are distributed ge,,graphically need a network solution that ties these sites
together. For large corporations, this 1< tvpically done with a company-wide network solutions. For
small to medium sized companies (or for regional "subnetworks" within a large corporation) the Regional
network provides this capabilit'

A major untapped opportumty for automation today is the sales an.-1 ·• 1 vice function within companie<
Sales and service forces are finally being recognized as a ke) competitive advantage and the benefits of
providing computer based tools to increase the effectiveness and productivity of these areas is beginning to
capture the attention (and pocketbook) of many major companies. The reason for this is simple.
Companies want to get ahead of their competition.

·1 Jus means getting to your customers first with timely, accurate informat10n. It means liberating field
personnel's time from administrative tasks so the~ can ;pend tim•. plannrng. '"rvicing and selling. The
typical VP of Sales is under tremendous pressure to make this havpen, d nd th1' 1s "here HP can help you
make the difference.

Companies that are geographically dispersed (or have a sales/service force that is dispersed) have a
diff1wlt communications problem to overcome. Information must be dispersed quickly, financial
information consolidated and organizational communication such as electronic mail is required to keep on
top of the activities needed to make the company grow and prosper. This is the role of the Regional Sales
and Service Network. Whether you call these sales offices, parts depots, claims office, or retail stores;
whether these are located in one state, one region, one country or an entire continent, the Regional Sales
and Service Network can meet your needs.

REGIONAi. SAi.ES AND SERVICE NETWORK SOl.UTTON

BUSINESS ENVIRONMENT~ QOMPETlTION

MUST KEEP PEOPl.E
WITH CUSTOMERS..
NOT IN THE OfflCE

MUST PROVIDE QUIQ(
ACCESS TO KEY
INFORMATION NEEDED
TO IMPROVE 8ALE8
AND SUPPORT LEVELS

MUST CONTROL COSTS
AND INCREASE
PRODUCTIVITY

Regional Sales & Service Networking Solution

NETWORK REQUIREMENTS

A Regional Sales and Service force is by its nature distributed. This means networking must be used to
connect field personnel and branch offices to their regional headquarters. Most companies have a variety
of sizes of branch offices, from an individual person working from their home, to a very large offtGt v.1th
hundreds of people. The branch off Ke env1ronment is not static, each branch office will grow and change
over time, many will move .geograph .. oil•, and new ones will be added and old ones closed Th11• the
network must accommodate !ht> J~nam1c environment with solutions that fit a variet~ ! s1Lxs and
growth rates.

In addition, there are a wide variety of communication options available today, each providing their own
price performance trade-offs. The network must accommodate a variety of these communication choices
to enable the customer to minimize phone bills yet provide the level of service needed by each branch
office.

With the growth and change in this environment, no one can afford to spend lots of time training users on
how to use complex, cryptic commands to access the network. This is why HP has made access to other
systems and information as transparent to users as possible.

REGIONAL SALES AND SERVICE NETWORK SOI.UT/ON

NElWORK REQUIREMENTS

MUST PROVIDE A VARIETY
OF PRICE/PERFORMANCE
NETWORK ALTERNATIVES

MUST ACCOMODATE A WIDE
VARIETY OF BRANCH
OFFICES. •. SIZE,
LOCATION, GRownt

MUST BE EASY TO USE
BY SALES, SERVICE AND
ADMINISTRATION PERSONNEL

Regional Sales & Ser~ioe Networking Solution

APPLICATION EXAMPLES

A sales rep for a volatile commodity (such as I/Cs or petro chr. m1cals) visits the purchasing agent of a large
company. The customer wishes to lock in a pricl' and get .tn assured delivery date. The sales rep can
connect the HP Portable Plus into the regional ,-rJer processing system. enter the order and get an
immediate acknowledgement. This can assure 1 ! 0 -< • i he customer gets the supply when needed and avoids
•he embarrassing and time consuming probJ .. 1, • • lerical delays anci · · .. ,,that cause shipment delays or
pnce changes. It also assures the selling compatov that they will get : I· , u"e they need to make a profit.

A customer calls into the office to find out when an order will be shipped. The order processing
department can network to the warehouse to find out the exact status and, . I ~hipped, get the date and
waybill number.

A service repair person is on site without the part needed for the repair. Using the Portable Plus
computer the repair person can access the service parts inventory system and find out if the part is
available at the branch office, another branch office or at the regional headquarters. If available, the
part can be processed for immediate shipment to the branch office and the custumer notified when the
operation will be back up and running.

fhi• sarue person could then access the latest field notes for the equipment and ma~' ,., re that any other
updates or maintenance that this equipment requires is scheduled and the parts a'" dable for the return
trip to the customer site to complete the final repair, thereby preventing future downtime and
economizing travel time.

REGIONAL SALES AND SERVICE NETWORK SOLllT/ON

SALES #
ORDER PROCESSING "'jq ol111!."'~ ref" $ /~~ I I ~~fl"

IL ![J
L'i =~~ER BRANCH

OFFICE

SUPPORT INFORMATION

I

Regional Sales & Ser~ice Networking Solution

REGIONAL NETWORK

The Regional Sales and Service Network is made up ,,f three maior components or modules·

The Regional Network Module
The Rranch Office Network Module
The Company-Wide Module

At the heart is the Regional Network Module. This provides the Network111g between the various sites
and typically represents the highest area for potential savings. Through the proper choice of
communication alternatives, monthly operating costs can be minimized while providing the desired service
level and performance.

The second major networking module provides for the networking at the branch office. This must
accommodate various sizes and types of branch offices from an individual terminal, PC or HP Portable
Plus, to a large branch office with hundreds of PCs, terminals and mult1ole HP3000 systems.

Tying the regional office into the company-win !·>tckbont network is the Company-Wide Access module
It must accommvdate you; tlh•icc A ,..,"'i·"•ny-w1<Je backbone, whether this is X.25, SNA or
point-to-point.

REGIONAL SALES AND SERVICE NETWORK SOLUTION

INDIVIDUAL ,,.,.­
BRANCH OFFICE

REGIONAL NETWORK

MEDIUM
BRANCH OFFICE

LARGE
BRANCH OFFICE

Regional Sales & Service Networking Solution

REGIONAL NETWORK

The Regional Network Module provides the communications alternative needed to connect branch offices
together and to the regional office. It provides for the consolidation 0f inputs and allows for management
of the network from the regional site.

The major communicatwns alternatives offered by the Reg·.,11al 1-.etwork Module are: Dial-up phone
lines, public X. 25, leased phone lines, and private X. 25.

Dial offers the lowest up-front investment and, for applications requiring only low volume batch
communications, will offer the most economical solution. However, as the communication volume
increases or as the need for interactive access to data becomes important (for on-line queries to parts or
order databases for example), dial-up may not provide the best solution.

Public X. 25 provides an excellent alternative for both batch and interactive application with low to
medium data volumes.

Leased lines are best for higher data volumes and provide both batch and interactive application access.

Private X. 25 is best suited for comyd•ties that want the maximum security and flex1b11ity in their regional
communications.

8118

REGIONAL NETWORK MODULE

MEDIUM
BRANCH OFFICE

Regional Sales & Service Networking Solution

REGIONAL NETWORK MODULE

A Regional Network will typically use several of the communication alternatives in combination to
:>r'". I<' thE h··5t price performance for each branch office Your HP Netw<>rk Consultant can assist you
111 cll"•·>lllr tll ... '.~ht'"" 1nunication alternatives to fit ar r~rticular slluahon.

REGIONAL NETWORK MODULE

MIXED
NETWORK

BRANCH
OFFICE

SR11

PORTABLE
OFFICES

BRANCH
OFFICE

REGIONAL
NETWORK

BRANCH
OFFICE

Regional Sales & Service NetWorking Solution

BRANCH OFFICE ALTERNATIVES

Branch offices come in many sizes and have differing computing needs. The smallest has a single
terminal, PC or Portable Plus. The largest has an HP3000 (or multiple HP3000s) based solut10n. For
small single user offices, dial up access usmg terminal emulation and file transfer capabilities of HP
AdvanceLink over RS232 provides a .. .;ess to other branch offices or regional offices. Alternatively, The
Serial Link on the Vectra or HI' 150 allows remote PCs to access the Personal Productivity Center Service
on an HP3000 in the regional office. This PPC solution makes the network transparent to the branch
office user and is easy to use for "novice users".

Medium sized branch offices (2-10 users typically) are best served through a multiplexer or "PAD" such as
the 2334 Plus. This allows the branch office to share one communication line (dial, leased or X. 25).
Local resource sharing for PCs can be provided to the medium branch office through the OfficeShare
family of PC Local Area Networks. In addition, serial printers can be connected to the 2334 Plus for
local printing capability (Note: Today PPC access is not possible in this configuration).

Large branch offices are typically centered around the 3000 providing local office and data processing
functions. This 3000 can be connected through dial up access using the ATP to the regional office using
the new Serial Network Link Alternatively, X. 25 or leased lines can be used to .. onnect to the regional
office.

BRANCH OFFICE MODULE

Regional Sales & Service Networking Solution

COMPANY WIDE ACCESS

The selection of the company wide access method depends largely upon the company-wide backbone
network that is in place. If. for example, your company has selected X. 25 for the backbone, then an X. 25
access method would be required.

The selection of the company-wide acces' 111et i1vd depends largelv upon the company-wide backbone
network that is in place. If, for example your company has selected X. 25 for the backbone, then an X. 25
access method would be required.

If your company is small and has not selected a company backbone, then either pomt-to-point or X. 25
can be used. If you are connecting 2 or 3 sites together, point-to-point 18 typically the best alternative.
For more than 3 sites, X. 25 will typically be the best solution.

If your company has IBM systems and has selected SNA as the company-wide backbone, then the SNA
link may be the lowest cost alternative. However, if multiple 3000 sites need to connect to one company
head4narters site, it is often better to place an HP3000 at I he headquarters site, connecting this to the
IBM system using the SNA link and use this as a "gate""' · ·ting to the multiple 3000 sites via
X. 25. Creating this "sub1v" ·within the larger SNA Netwu1k v.111 .11 n provide the l"'""t "ust solution.

COMPANY WIDE ACCESS

PT-PT

I
SNA

SHA

~ ~

Regional Sales & Service Networking Solution

THE REGIONAL SALES and SERVICE NETWORK SOLUTION

HP has a complete set of products to create any or all of a Regional and Service Network today. Putting
together these modules and combining them with the Business Office Network Solution, you can quicklv
see that today, HP has powerful network solutions for small to medium sized companies which an
geographically dispersed, and for the Sales and Service forces within large companies. These products are
here today and are meeting customer's needs.

REGIONAL SALES & SERVICE NETWORK SOLUTION

I ~
L---------------------------MEJJt/Ull BllAllCll

SR17Afl

----- ----- ----- -- - .. - --- --- --- -r
I
I
I
I
I
I
I
I
I
I
I
I
I

llNlllE
iBRANCN
: OFFlt:E
I
I
I
I .
I

' I L

Regional Sales & Service Networking Solution

TWENTY RULES TO BUSINESS GRAPHICS

James E. McLean
JMA, Inc.

P. O. Box 270507
Houston, TX 77277-0507

Business graphics are an extremely useful and flexible me­
dium for explaining, interpreting, and analyzing numerical
facts, largely by means of points, lines, areas, and other
geometric forms and symbols. Business graphics make possi­
ble the presentation of data in a simple, clear, and effec­
tive manner. It also facilitates comparison of values,
trends, and relationships. Graphs possess certain qualities
not found in textual presentation. These values may be sum­
marized as follows:

1. Charts which are designed well are able to create a
higher interest and are able to attract the attention of the
reader better.

2. Statistical charts provide a clear, effective, and
precise method of conveying a message. In many situations,
charts are better than the written word. Also, charts and
graphs with the visual relationships are more easily under­
stood and remembered.

3. Graphs and charts save time since large amounts of data
can be reviewed and retained quickly by the audience.

4. By providing a comprehensive picture, charts and graphs
can illustrate problems that will give the reader or audi­
ence a more complete and balanced understanding.

5. Graphs can also bring to light hidden facts and
relationships which then can aid in developing an analytical
solution.

Unfortunately most people quickly understand the usefulness
of graphs and charts but lack the basic knowledge of graphic
design as stated in the January, 1987 edition of Mini-Micro
Systems (p. 67). "All the software in the world won't make
you a graphic designer." This quote summarizes the limita­
tions of 99% of business graphics users. To help develop
and design graphics, we devised Twenty Rules to Business
Graphics. The user's goal with business graphics should be
to make certain the graphics he uses (1) addresses his tar­
get audience, and (2) is easy to understand and pleasing to
the eye.

20 Rules 1

There are more types of graphs and charts than the ones dis­
cussed here, but the ones not covered are seldom used. We
will limit the scope of this article to presentation graph­
ics using either 35mm slides or overheads.

The first two rules address the image size of the graph.

RULE 1 - IMAGE SIZE OF 35MM SLIDES

The image size needs to be in a ratio of
by 2 units vertical, or when dealing
original piece of paper, the image size
horizontal by 5.75" vertical.

3 units horizontal
with an 8.5" by 11"
needs to be 8.5"

RULE 2 - !MAGE SIZE OF OVERHEADS

The image size of an overhead transparency should fit in a
7.5" horizontal by 9.5" vertical area if you use an 8.5" X
11" original .layout. For a clear projection you should be
able to read the transparency from about ten feet away with­
out a projection light.

A major area of difficulty is deciding which type of chart
should be used in a given situation. Rules 3 thru 12 should
be able to answer any difficulties you may encounter.

RULE 3 - HORIZONTAL BAR CHARTS

Bar charts are used when you are comparing size or empha­
sizing the difference between two things. Time is not a
factor with bar charts. Limit the number of items in simple
bars to six or less. Example: comparing the number of
people by division or sales by territory. (See Figure I.)

RULE 4 - COLUMN CHARTS OR VERTICAL BAR CHARTS

Column charts or vertical bar charts are used when comparing
the same elements over a period of time1 i.e., sales by
quarter. Limit the number of items in simple columns to six
or less. (See Figure II.)

RULE 5 - STACK OR GROUP BAR AND COLUMN CHARTS

Stack charts are used to compare parts to the
(See Figure III.) Grouped charts are used to
relationship within an item. (See Figure IV.)
would be quarterly sales by divisions.

RULE 6 - CONSISTENT SPACING

total item.
compare the
An example

When using verticle bars or columns, the space between them
should be one half the width of the bar or column. When
using stack or group bars or columns, the spacing should be
one or one and a half times the width of the bar or column.

20 Rules 2

RULE 7 - PIE CHARTS

Pie charts should be used to show the relationships of parts
to the whole. Never use more than six slices. They should be
arranged from the largest slice starting at 12 o'clock and
moving clockwise to the next biggest slice and finally end­
ing with the smallest slice back at the 12 o'clock position.
(See Figure V.)

RULE 8 - LINE CHARTS

Line charts are used when plotting a long series of data
with many points. They are used to emphasize movement or
change such as monthly sales figures for the entire year.

RULE 9 - LINES IN LINE CHARTS

Lines of the line charts need to be thicker than the axis
lines. Try not to have more than five lines in a chart and
use contrasting colors. Use distinctively different line
patterns when using black and white. (See Figure VI.)

RULE 10 - TEXT CHARTS

Text charts are used only in presentations to highlight or
to emphasize major points. Key words should be used, not
sentences. The number of lines should not exceed seven nor
have more than six or seven words on each line. Idealisti­
cally, you should use five lines with four words or less on
each line. When using color, make the text all the same
color except when you want to emphasize a particular point;
then use one line of text in a different color. (See Fig­
ure VII.)

RULE 11 - TABLES

Tables should be used when wanting to convey specific infor­
mation. An example would be units produced by shifts per
week for the last four weeks.

RULE 12 - TABLE DESIGN

When presenting tabular information as a graphic, use a min­
imum number of lines to lay it out. Instead, use spacing to
separate facts and keep the number of physical lines to as
few as possible. Align all headings and columns containing
words to the left. Make certain all numeric data is prop­
erly aligned in columns; i.e., all commas and decimal points
fall directly one beneath the other. Make certain that any
captions used are specific, and the units of measurement are
clearly stated. Also, be sure the figures are correct and
the totals are accurate.

20 Rules 3

COLORS

Another area to consider when designing graphics is color
selection and coordination. Remember, graphics must be ap­
pealing to the eye of the audience and color itself can be
used to convey ideas or impressions. Rules 13 thru 20 will
assist you in your color selections.

RULE 13 - WHEN IN DOUBT, CHOOSE BLUE.

Blue should be used for basic data, facts,
ganization, logic, reality, stability
reference.

RULE 14 - RED STANDS FOR POWER OR DANGER.

statistics, or­
or to establish

Red should be used to alert, show problems or conflicts,
debits or over-budget, behind schedule or indicate that
which needs immediate attention.

RULE 15 - GREEN IS COOL AND RESTFUL. IT REPRESENTS NATURE.

Green should be used to show action, work production, con­
struction, manufacturing, price performance data, sales,
marketing, or financial matters.

RULE 16 - YELLOW IS NEUTRAL AND STANDS FOR THE SUN.

Yellow should be used for assets, investments, profits,
projects, research, theory, design, invention, energy, or
the future.

RULE 17 - BACKGROUND COLORS

Background colors other than clear are used mainly with text
slides. The background should always be light and comple­
ment the text color7 i.e., blue letters with a light
yellow/orange background or red letters with a light blue/
green background.

RULE 18 - COLOR COMBINATIONS

Color combinations are best shown with a color wheel. Try
to avoid the bright colors7 if used, limit them to a small
area. It is best to use colors that are subdued. You may
want to use two complementary and one adjacent, two alter­
nates and one adjacent, three alternates or three adjacents
for color combinations. If you need additional color, you
may wish to choose a neutral or another adjacent color.

20 Rules 4

RULE 19 - BLACK AND WHITE

When you can't use color and line patterns are important,
use the smallest or most dense pattern on the area of the
chart closest to the axis and build up to the least dense
pattern. (See Figures I & II.) When building pie charts be­
gin by using the least dense line pattern for the biggest
slice and end with the most dense pattern in the smallest
slice. (See Figure V.) Be sure the pattern can reduce well.
Also be sure all line patterns are at a 45 degree angle or
this will produce an optical illusion. As always: Keep the
pattern simple.

RULE 20 - ALWAYS REVIEW YOUR GRAPHICS!

Ask yourself these three questions!
1) Has it been thoroughly proofed for errors and mistakes?

(Always let two other people look at it.)
2) Does it convey my message without needing a verbal

explanation?
3) Does it fit my audience?

If you can answer yes to all three, than you have a well
prepared slide or overhead.

There! I have finished going over the Twenty Rules to
Business Graphics. If you follow these rules, you should be
able to reduce the time it takes to prepare your charts and
graphics and increase their effectiveness and style.

20 Rules 5

ID
-<

0
-0
-I

(")

:c
)>

::0
-I

,,
G)

c
::0
fTl

0

0

en
> r
f'T1
en

3 OJ
r- -<
r-
0

0
z
en <

en
0
z

ID
-<

(°)

:r:
:r> 0
::0 -I
-I ::0

.,,
~
c 0

::0
-I
::0 fT1 I\)

0
-I
::0
(JJ

0

0
0

I\)

0
(JJ

0
U1
0

en
0

<D
0

:z
,-,-
0 z
en

CJ)

> r
IT1
CJ)

CD
-<
0
c:
>
:::0
-t
IT1
:::0
CJ)

A

B

c

0.0

BY OPTICHART

OVERHEAD EXPENSE BY DIVISION
"ILL IONS

5. 10. 1 5.

FIGURE I I I

RENT

~PHONE

1?Z77Z.a P 0 WE R

&SSS\SI SUPPL I ES

k~'//,7)1 INSURANCE

20.

w
~

0
~
~

n
~
~
~
~

D
~
~

0

0
0

~ ~~~~~-f--+-~~~:-+-t-~~~~~

G & A EXPENSES

INCOME & EXPENSES
AS A PERCENT OF SALES

PROFIT

MARKETING COST

BY OPTICHART FIGURE V

MFG. COST

0
-0
-I

(")

:I: ,,,.
:::0
-I -I

c:
!Tl

"T')

C') :c
c !Tl
:::0 c
fT1

<

-I
:c
c:

...,
:::0

I\)

(JI
(JI
0

-.I
(JI 0

0

~
:c
0 c:
Cl)

> z
c
Cl)

c
>
r
-< ,,
::0
0
c
c
(")

--t

0
z
m
-< ,,
::0
0
c
c
(")

--t
(/)

MONTHLY SALES
MILLIONS

DIV. A

JAN. 100

FEB. 112

MARCH 98

TOTAL 310

B

55

63

72

190

FIGURE VII

c

72

73

62

207

C THE FUTURE OF HP3000?

Mark w. Miller
JMA, Inc.

P. O. Box 270507
Houston, Texas 77277-0507

It all started back in the 1940's when ENIAC, the first
modern computer, was built. A means of manipulating data
(mostly numbers then) on the computer was needed. A crude
instruction set was devised for the express purpose of pro­
cessing numeric calculations. The process of programming
was tedious, involving rows upon rows of binary data and
instructions in the form of zeros and ones.

This was soon replaced with a higher level of instructions
known as assembler. Assembler was a system of symbols rep­
resenting the instructions which in turn were translated
into binary machine instructions. This was the second gen­
eration of computer languages.

After some time came the third generation of computer lan­
guages which took progra·mming a step further by using yet a
more complex set of symbols to represent the instructions.
Some of these symbols could be translated into hundreds or
thousands of machine level instructions at compile time.

One of the first of these was a particularly good language
for numeric calculations. It would take complex formulas
and translate them into machine instructions. Scientists
and engineers were elated. It became known as its acronym
FORTRAN.

FORTRAN was widely used with computers to perform complex
tasks that, until then, had been accomplished only with
tedious manual calculations and involved countless manhours.
A need was seen for more than just number manipulation and
new third generation languages were sought. Thus, the pro­
liferation of languages came forth for the scrutiny and ac­
ceptance of the computer programmers.

Some of these remained obscure; some became widely used;
some flashed like a comet and died. Only a few have sur­
vived through the years with accepted standards: FORTRAN,
COBOL and Basic are just a few. Newer and even more sophis­
ticated languages were experimented with in the late 60's
and early 70's. Out of this era came such languages as
Pascal, APL, Algol and C. Here, we will focus on just one
of these languages: c. We will discuss some of its fea­
tures, advantages and disadvantages and include some tips on
keeping your C code portable.

C The Future 1

Why C?

Why would you use C when Modcal and SPL are the main systems
languages on the HP3000? Why bother to learn a new
language? There are several reasons.

"···· C was created as a tool for working programmers.
Thus, its chief goal is to be a useful language." (Note 1)
And, indeed, it is friendly to the working programmer. It
will do exactly what it is told to, even if it is improper
or potentially self-destructive. C may not be the only lan­
guage whose aim is to be useful, but most other languages
have additional goals in mind. These separate goals have a
tendency to get in the way.

C is modern in that it has control features that are desir­
able for modular design and structured programming. It in­
corporates many advanced features available in other lan­
guages and some that are not. Since it lends itself nicely
to these other languages, it is easy to learn for those who
have used such structured languages as Pascal or SPL.

C is efficient. I would venture to estimate that a C pro­
gram can operate at about 90% of the efficiency of systems
languages: possibly more if it takes full advantage of sys­
tem features.

C is flexible. It lends itself as well to word processing
as it does to systems programming or number-crunching appli­
cations. It is most unusual for a single language to be
usable in such a wide variety of applications. The main
advantage to this is that the development staff can get by
with a single language for all occasions. Imagine all pro­
grams on your machine written in a single language. The
ease of maintenance alone is justification for considering
such a concept.

C can get down to bits and bytes. As a natural extension to
the language, C allows use of assembly instructions to spe­
cifically manipulate the machine. These statements, al­
though not portable, can gain speed and efficiency for the
programs.

Probably the most outstanding reason to use C is that it can
easily be made portable. Why re-invent the wheel? As time
goes on, it is becoming more and more expensive to develop
software. In order to cost justify large systems, portabil­
ity can quickly become a savings factor. You can build ap­
plications on one machine and run them with little or no
changes on another machine. More about that later.

1. Waite, Prata, and Martin, 1984, 13.

C The Future 2

If these reasons aren't enough, consider the future. UNIX
is quickly becoming one of the most popular operating sys­
tems on computers today. Most of UNIX was written in C and
C is the preferred language under UNIX. It is estimated
that 70% of all new personal computer software is being de­
veloped in C because of its powerful features.

C is one of the major languages supported by Hewlett-Packard
on their Spectrum line of computers. Since SPL will not be
supported by HP and Modcal is machine specific, C appears to
be the language of choice for migration from the old HP3000
line to the new. Besides, most of the new HP Precision Ar­
chitecture machines will also support a UNIX operating sys­
tem (the series 840 already does), thus encouraging use of
C. Further, the portability of the language makes it ideal
for a multi-vendor shop.

Adding all these reasons together, they point to the dis­
tinct advantage of using C for development, system program­
ming, or simple ad-hoc programs.

BRIEF HISTORY OF C

C began its life back in 1971 when Ken Thompson and Dennis
Ritchie of AT&T's Bell Labs decided that some 'B' language
features were a poor match for the PDP-11 minicomputers.
Thompson and Ritchie had already developed the first working
models of UNIX the previous year and had developed a word­
processing system for Bell's Patent organization. Since the
'B' language had proven to be impractical, design of a new
language began.

The design included features that could be efficiently mo­
delled on most conventional computers. While intended for
use primarily under UNIX, C has found its way to a wide
range of hardware and operating systems. In 1973, UNIX was
re-written in C and most subsequent versions retained this
commonality with version 4 UNIX.

A tutorial and description of C was released in 1978 by
Brian Kernighan and Ritchie named the "C Programming Lan­
guage". This book became the definitive reference for the C
language and is so popular, it is still in print and avail­
able today. This book coincided with the first informal
release of UNIX by Bell Labs.

Through the years, UNIX and C have undergone changes and
improvements too numerous to explain here. If you are in­
terested in further details, see the references listed here­
in. The ANSI X3Jll committee released a formal issue of a
Draft Proposed Standard for public comment which expired in
March, 1987. This means that within a year or so, it will
be released as the standard.

C The Future 3

FEATURES, CONSTRUCTS AND PHILOSOPHIES

C comes to the HP3000 with a rich array of functions and
programs already available. The lexical analyzer "lex" will
parse token input quickly and efficiently. There is also a
good syntax processing program known as yacc Cyet another
compiler compiler) that will analyze syntax. Many basic and
rudimentary functions are built into C which allow taking
advantage of the language as opposed to system specific
functions. This indirect usage of resources makes the code
more transportable from machine to machine. These functions
and programs are available through many sources. Some of
the compiler vendors offer them in library packages, avail­
able for an additional fee. Some of them are available
through bulletin boards and some are available in print.
Some of them can be ported from other computers.

While many of these functions are slower than system func­
tions, the maintained portability can mean tremendous sav­
ings in terms of coding. Many of these functions are in­
stalled as macros (discussed later) which are translated to
actual system calls. Decisions must be made to determine
exactly how much should remain portable as opposed to system
specific.

CONTROL FLOW

C has several constructs that would be of interest to Pascal
and SPL programmers. One of these, the conditional opera­
tor, is a short-hand way of expressing a condition. It is a
two-part operator with three operands. The general form of
the conditional operator is:

expression A ? expression B expression C

It may be used anywhere that an expression is appropriate.
If expression A is evaluated as true, the whole conditional
expression takes on the value of expression B. However, if
expression A is evaluated as false, the whole conditional
expression takes on the value of expression c. This is han­
dy when coding an unimportant if-then-else for simple
assignments.

Example:

a = Cb>O) ? b : -b;

The expression Cb>O) is evaluated and, if true, assigns the
value of b to a. If false, it assigns the value of -b to a.

In addition to these conditional methodologies, C has an
else-if, multiple choice extension to the if-else structure.
This allows a case-like structure without actually using the
case structure. It operates like an exclusive if-then-else

C The Future 4

except that there are multiple alternates instead of just
one, only one or more of which will actually execute based
on the conditions expressed.

Example:

if(a == 1)
{

b = a;
}

else if(a
{

c = a;
}

2)

else if Ca -- 3)
{

d = a;
}

else
{

I* most likely condition */

I* assignment */

I* less likely condition */

I* least likely condition */

e = a; I* default assignment */
} /* end of else-if statement */

C also has a switch statement which is its' version of a
case structure. Unlike the else-if construct, switch can
allow one or more of the cases to be executed by nfalling
throughn cases. The break statement is used to prevent this
by transferring control to the first executable statement
after the switch structure.

Example:

switch Ca)
{

case 1:

case 2:

C The Future

b = a;
break;

c = a;
break;

I* switch on the value of 'a' *I

I* value of 'a' is 1 */
I* break out of the switch */

I* less likely case *I

5

case 3:
d = a;
break;

I* least likely case *I

default:
e = a;
break;

I* default assignment */

} /* end of switch statement */

Another control flow construct in C is the infinitely
abusable goto. By using labels {just like SPL and Pascal),
flow may be re-routed to different sections of a function.
This can make the program run faster, but it also makes the
program source more difficult to understand. Sometimes,
though, it is desirable when you need to bypass large sec­
tions of code or your code size is restricted by the compu­
ter you are using. This can be especially true of large
applications on a PC. In any case, goto should be used
sparingly to avoid radical code problems.

LOOPS

Looping constructs in C come in three basic flavors: for
loop, while loop and the do while loop. The for loop con­
sists of 3 components in its control expression as follows:

for{expression A; expression B; expression C)

Expression A is used for
none or more expressions
is performed only once at
for loop.

initialization. It may contain
separated by commas. This section
the beginning of execution of the

Expression B is the control of the loop. If present, it
must be a boolean expression that evaluates as true or
false. This expression will be tested before beginning exe­
cution of the loop on each iteration. If true, the loop
executes; if false, control is passed to the first execut­
able statement after the loop. This expression can be an
empty expression {no boolean test), but if you use this me­
thod, be sure you have a way to break out or suffer an end­
less loop condition.

Expression C is a performing expression. It will be exe­
cuted once at the beginning of the loop before the boolean
test of expression B and before execution of the loop. An
exception to this is the first iteration. It may also be
forced to perform at the end of each iteration. It may be
none or more expressions separated by commas.

C The Future 6

The while loop has a condition which must be met for each
iteration before the iteration. The do while loop tests the
condition after each iteration before re-iterating. These
expressions are rarely an empty expression.

Examples:

while loop

while(a > b)
{

b (b + 1) i

do while loop

I* loop condition */

I* loop action statement */

I* end of while loop */

do /* begin loop */
{

b = (b + l); /*loop action statement*/

} while(a > b); /*end of loop & conditional test*/

STRUCTURES AND UNIONS

C provides a means for defining contiguous memory for mul­
tiple variable types. Similar to Pascal's record, C's
structure allows assembling of "records" of data. This data
may then be manipulated as a whole or in parts. It can be
written to files, read into or even passed (as a pointer for
most compilers) to other functions. A structure can even
have multiple dimensions and be used to accumulate data like
a COBOL table. It can also be self-referential by using a
pointer of its own type. This is useful when constructing a
B tree or a linked list.

Example:

struct date I* structure tag declaration *I
{

int day; I* month day integer */
int month; I* month integer *I
int year; I* year integer */
int yearday; I* day of year integer *I
char mon_name[4J; I* month name */
} i I* end of structure definition *I

C The Future 7

Memory can be re-used as in FORTRAN EQUIVALENCE or COBOL
REDEFINES to facilitate efficient processing or translation
of data. The union construct allows virtually limitless use
of the same memory locations.

Example:

union utag
{

CASTING

int ival;
float fval;
char *pval;
} ;

I* union tag declaration */

I* integer value */
I* float Creal) value */
I* character pointer value */
I* end of union definition */

One of the most powerful options of C is known as casting.
By using casting, you can change the type of a variable or
constant to use in expressions. Examples of this would be
to cast a short or small integer to a long or double integer
or to cast a short or small integer as a character or byte
integer.

Example:

int i;
long j;
char k;

j = (long) i;
k = (char) i;

I* integer declaration */
I* long integer declaration */
I* character declaration */

I* integer cast to long */
I* integer cast to character */

This is handy when storing data or passing data around from
routine to routine. While it is a powerful feature, it can
also cause many problems if a variable is cast improperly.
This is especially true for pointers. It is easy to
mis-cast pointers and cause corruption and/or bounds viola­
tions. Byte placement within a word can also be corrupted
if care is not taken.

MACROS AND PRE-PROCESSOR COMMANDS

A major difference incorporated in C's philosophy that dif­
fers from most other language compilers is known as a
pre-processor pass. During this pass, all macros and pre­
processor commands are resolved.

Macros are a direct replacement for code fragments in a pro­
gram.

C The Future 8

Example:

#define MAXINT 32767
#define MININT -32768

Wherever you place MAXINT in your source code, the
pre-processor will replace it with the value 32767. Wher­
ever you place MININT, it will be replaced with the value
-32768. This facility is especially useful for replacing
constants with a macro name. Since these values happen to
be the maximum and minimum values for a short integer on the
HP3000, I will use them to cemonstrate the pre-processor
commands feature. But first, let's look at another way of
using the #define. It can be used to create a condition
unique to its name.

Example:

#define HP3000

This allows the use of directives based on the fact that
HP3000 is now a known {although not necessarily required)
existing define condition.

Macros may also contain action statements to be performed
with parameters. Many of the C functions are really just
macros that replace your code at compile time.

Example:

NOTE:

#define SQUARE{a) Ca*a>

int i = 2;
int j, k;

j = SQUARE{i);
i SQUARE{2);
k SQUARE { i) ;

this fragment

j {i*i);
i = {2*2);
k = {i*i);

of code is

The second expression

I* the macro*/

I* j gets the square of i */
I* i gets the square of 2 */
I* k gets the square of i */

compiled as:

I* j gets the square of i *I
I* i gets the square of 2 *I
I* k gets the square of i *I

is further refined by the com-
piler to resolve the constant calculations for the
program to yield:

i = 4; I* the result of 2*2 *I

Pre-processor commands direct the compiler pre-processor to
compile according to their directives.

C The Future 9

Example:

#ifdef HP3000
#define MAXINT 32727
#define MININT -32768
#endif
#ifdef SPECTRUM
#define MAXINT 2147483647
#define MININT -2147483648
#endif

I* if this is an HP3000 *I
I* use these values */

I* if SPECTRUM */
I* use these values */

By using these directives, you can control which set of
values will be used by the compiler.

Another pre-processor command is the #include directive.
The include directive takes two basic forms.

Examples:

#include <stdlib.h>
#include "stdio.h"

When the file name is enclosed in angle brackets (less than
and greater than), the compiler will search the system di­
rectories for the file specified and process it just as
though it were part of the source file. When the file name
is enclosed in quotes, the compiler will search your working
directory for the file first and if not found, will continue
searching through the system directories. This command can
be anywhere in your source, so it can be used to insert any­
thing from variable declarations, to constants, and even
sections of source code.

TYPEDEFS

Another unusual feature of C is typedefs.
lows the programmers to create their own
variables. This can be especially useful
are used to another language.

Example:

typedef int INTEGER_27
typedef long int INTEGER_47
typedef float REAL_41
typedef double REAL_87
typedef char CHARACTER7

This feature al­
or rename types of

for novices who

For a FORTRAN programmer, this would make recognizing vari­
able types simple and straight forward.

Another method of using typedefs involves creating names for
commonly used types.

C The Future 10

Example:

typedef int boolean~ /* 16 bits used as a boolean */
typedef char flag~ /* 8 bits used as a boolean */

The typedef can be used to create commonality in programs by
recognizing the regularly used types from a different stand­
point.

LONG JUMPS AND SIGNALS

A very special set of constructs for control flow are avail­
able in C. C programs are usually a collection of many
small (easily maintainable) functions. To accomplish vari­
ous tasks, usually one function calls several functions,
which in turn calls several functions, etc.

Error and exception handling in this situation becomes a
problem unless you wish to pass error and/or exception flags
between all functions. To circumvent this problem, C has
two special functions (setjmp and longjmp) and a special
typedef (jmp_buf). In order to understand these, first we
must explain the concept.

When a function is called from another function, the current
status and information about the calling function must be
preserved for when the called function returns. This is
stored in what is known as a stack frame. The volatile
variables, stack pointers and some registers are stored in
this stack frame for later recall. As each new subordinate
level is reached, another stack frame has been added. These
pile up as deep as the nesting and recursiveness of func­
tions in your program. As the functions return and "un­
nest", these stack frames are removed and the stored stack
frame in jmp_buf is used to restore the environment of the
calling function for continued processing.

EXAMPLE: Suppose you have a program with three functions:
first, second, and third. Further suppose that first calls
second and second calls third as in:

first > second > third

NOW THE QUESTION ARISES: What if an error or exception oc­
curs in the third function and control needs to return to
the first function?

ANSWER: By using the setjmp function in the first function,
we can, in effect, store a special copy of the stack frame
in a type jmp_buf declared variable.

C The Future 11

Then, in the third function, we can call the longjmp func­
tion with the copy of the stack frame when an error or ex­
ception occurs. The longjmp function will then "unwind" the
stack by discarding the stack frames "after" the first func­
tion and returning control to the place in the first func­
tion where setjmp was originally called.

Note that control cannot go the other way (downward nesting
order), but the same stored environment may be shared by
many different subordinate longjmp function calls. Also,
note that an additional integer parameter is part of the
longjmp function call, allowing you to return different val­
ues and thus handle many different possibilities.

On many UNIX and MS-DOS systems, the hardware and
systems software provide a means of communicating
to programs. Exceptions are events external to
program which will affect the program's process.
may be anything from floating point overflow to a
to a control-y interrupt.

operating
exceptions
the user

This event
power fail

In order to deal with these exceptions, C has a special
function known as signal. By calling the signal function,
you can identify a function which will automatically be exe­
cuted if the specified signal is received by the program
from the system software or hardware.

By specifying this function, the program can optionally at­
tempt to recover (if recovery is feasible), or gracefully
shut down (closing files, etc.> depending on the signal re­
ceived. The signal function, although very powerful, is
very machine specific in that different machines have dif­
ferent signal meanings.

ADVANTAGES AND DISADVANTAGES: TIPS AND TRICKS

POINTERS

One of C's features is the use of pointers and, of course,
all of the "gotchas" that are inherent with their usage.

Because C allows usage of pointers and because the compiler
has no knowledge of where these point to during run time,
all written code is unforgiving. Of course, on the HP3000,
MPE will keep you "in-bounds", but nothing will keep you out
of your own data area or prevent you from "walking on" your
other data. Sometimes a ghastly error in logic can cause
great grief in locating program bugs.

If you are fortunate enough to have a symbolic debugger,
this type of error can be traced down to its' perpetrator
and eliminated. One technique I found in accomplishing this
is what I call "locate by timing". Once the data that is
being corrupted is located, start the program over again and

C The Future 12

periodically check the "to be corrupted" data variables,
noting when the corruption takes place. Repeat this process
and narrow this down through a bisecting technique until
your culprit is found. It can be any action statement, but
I found most of mine to be simple errors of omission or a
typo.

The indirection operator (*) is used to indicate "contents
of" for a pointer. It is easily abused when performing
pointer arithmetic.

Example:

string+ i = 'A'; I wrong */

is not the same as

(string+ i) = 'A'; I correct */

The first
dictable
will load
(string +

represents
results or
the letter
i).

an error and will either give unpre­
will yield a compile error. The second
'A' into the contents of the address of

The means of loading a pointer are different between arrays
and non-array variables. Since arrays are actually an ad­
dress pointer, loading is expressed as:

pointer = array;

whereas an integer would be expressed as:

pointer = &integer;

The address operator (&) is used to load a non-array varia­
ble address or the specific address of an element within an
array into a pointer.

PASSING POINTERS

When passing addresses through to lower routines, be sure
you are passing an address and not an address of an address.
The simplest method of passing an address through to a lower
routine is to merely reference it without any changes what­
soever. This will ensure that the address is passed without
corruption. Another method of avoiding problems is to copy
a value into a local variable and pass its' address instead.
If you do this, be sure to pass the value back to the cal­
ling routine (assuming it changed) before leaving the
routine.

C The Future 13

Note that this is expensive in terms of speed of program
operation. Sufficient usage of this method could cause a
significant degradation of the program. Copying the value
to a local variable costs in time and the extra memory re­
quired to hold this data costs in time indirectly. How?
Beside the obvious memory space, consider that each time the
routine is invoked, its memory must be allocated, sliced
into areas for the variables and addresses assigned and
noted. Each time the routine invokes another routine, it
must eventually build a stack frame to hold these local
variables and their values in for continued use upon return.

Extra diligence must be given especially with pointers to
pointers. A pointer to a pointer is useful for passing
through to functions or for abstracting data to give the
"Black Box" effect with a flexible function. These are pow­
erful constructs: but easily abused. The key to successful
usage is to be sure it is initialized properly with the ad­
dress to the desired pointer each time prior to use. This
prevents loading a previous pointer with the intended cur­
rent pointer value.

STRINGS

One of the aspects of C that stands out from other languages
is the way strings are handled. As with SPL and Pascal, a
string is stored in a byte array, but that is where the sim­
ilarity stops. C distinguishes between a byte array and a
string by ending a string with a null character (Ascii
zero). This is the main means of determining whether a byte
array contains a string or not and determines the actual end
of string. such basic functions as determining a string's
length, upshifting alpha characters or simple movement in
memory require a null terminated string.

In order to deal with this anomaly, I suggest putting a null
terminator on every string that is brought into your program
immediately. This may require that your byte array buffers
be declared with one extra byte each. If so, you always
have the option of initializing that last byte to null. As
a result, some memory is wasted, but process time would be
reduced. Furthermore, a simple routine to strip trailing
blanks can remove any excess blanks by padding the end of
the byte array with nulls. This preserves the trailing
null, but don't forget to leave it there when re-initializ­
ing the byte array.

STRING COMPARISONS

In most other languages, string comparisons are somewhat a
straight forward affair. In c, there are some peculiarities
inherent with the built-in string comparison functions. As

C The Future 14

mentioned above, many string related functions require a
null terminated string. This is also true of the strcmp
(string compare) function. It can, however, tell you that
two strings are equal even when they aren't.

Example:

NOTE: \0 is a null character.

#define STRLEN 20

char stringa[STRLEN1:
char stringb[STRLEN1:
int ch:

I* contains "ABCDEF\0" */
I* contains "ABCDEFGH\0" */
I* integer declaration */

ch=strcmpCstringa,stringb>:
ifCch == 0) /* if strings are equal */

{ ...
In this example, ch would be zero because every byte in
stringb that corresponds to each byte in stringa are equal
up to (but not including) the null terminator in stringa.
The alternate function strncmp Cf inite byte array compari­
son> could be used if one of the strings are not null ter­
minated.

Example:

#define STRLEN 20

char stringa[STRLEN1:
char stringb[STRLEN1:
int ch:

I* contains "ABCDEF\0" */
I* contains "ABCDEF " *I
I* integer declaration */

if((ch=strncmp(stringa,stringb,STRLEN)) == 0):
{ ...

NOTE: The if has been consolidated with the strncmp func­
tion expression here to demonstrate the compactibil­
ity of C code.

In this example, ch would not be zero because the null char­
acter in position 7 of stringa is not equal to the blank in
position 7 of stringb.

All of this confusion may be overcome by following some sim­
ple rules:

1. Null terminate all strings.

2. Compare lengths of strings as well as comparing values to
ensure true equality.

C The Future 15

This second rule becomes truly important when your program
manipulates numerous similar strings. You may opt to write
your own string comparison function or macro and not even
use the supplied functions. Remember, though, that the
macro is the preferred method because it will always execute
faster than calling a function. In either case, follow
these rules for successful comparisons.

I/O

"Input and output facilities are not part of the C lan­
guage ••• " (Note 2). Since input and output were not de­
signed into c, and in the real world, all programs use IIO,
a "standard I/O library" was developed for c. Most C com­
pilers come with this rich library of routines to perform
I/O on a standardized basis.

Samples:

putchar()
getchar()
printf()
scanf()
fwrite()
fread()

I* output a single character */
I* input a single character */
I* formatted output */
I* formatted input */
I* binary, fixed-length record file write */
I* binary, fixed-length record file read */

C is not oriented towards fixed length records, but instead
towards a "byte stream." A "byte stream" is like a stream
of data coming into or flowing out of a program. It is de­
limited by such things as newlines, nulls, tabs and, of
course, end of file indicators (which, along with the blank
character are collectively known as white space characters>.
There are no end-of-record indicators other than newline
characters. Since these newline characters may appear any­
where in the stream, the records are essentially variable in
size. Note that the end of file and newline characters are
also machine dependent.

This is common on UNIX machines; however, it is adverse in
relation to the fixed record blocking efficiency of most
non-UNIX minis and mainframes. Regardless of this factor,
the C library does have I/O access methods Cfread and
fwrite) for dealing with fixed-length binary records which
lend themselves nicely to the fixed-length format predomi­
nant on the HP3000.

2:-Kernighan and Ritchie, 1978, 143.

C The Future 16

FUNCTION ARGUMENTS

In c, a program usually consists of many functions. There
are essentially three types of functions in C. The first of
these, the main function, occurs exactly once in each pro­
gram. It is the programmer's outer block for the program,
and it is the first user-written function to begin execution
when the program is run (C does not currently support aux­
iliary entry points).

The second kind of function is the typed function. This
kind may occur as many times as needed in a program. It is
assigned a specific type when declared, and will return a
value of that type every time it is called in the program.
This value may or may not be used by the program to make
decisions or complete computations or an expression.

The third kind of function is the void function.
function is declared type void, it does not return
when called (except through arguments, if any).
function is analogous to FORTRAN subroutines
procedures.

When a
any value
The void

or Pascal

A potential problem area in C programming is in passing par­
ameters to functions. C does not automatically type match
parameters in function calls. This means that if you pass
the address of a short integer in an argument that is look­
ing for the address of a long integer, the called function
may use the addressed area as though it is a long integer;
thereby corrupting memory that happens to follow the short
integer. Another error would occur if the function was ex­
pecting an array of integers.

References in the called function may indicate array sub­
scripts or use pointer arithmetic which again would corrupt
memory if passed a simple integer address. To avoid this,
either use the compiler argument type checking (if your com­
piler supports it); use the syntax checking utility lint (if
you have access to it); or keep hard copies of your func­
tions handy and check the arguments carefully when coding.

ASSIGNMENTS

Another fundamental difference between c, Pascal and SPL are
the assignment and comparison operators. The assignment
operator in C creates the most disturbing problems I have
personally encountered. The C assignment operator <=> is
easier to type than the comparison operator <==>, thus in
condition expressions errors may easily occur.

C The Future 17

Example:

if(today = 320)
{ ...

In this condition expression, the condition will always be
true because the value 320 will be assigned to today and
since the value is non-zero, it is true. (In c, 0 is false
and non-zero is true.> The philosophy for this was that more
assignments are used in most code than comparisons, thus
less typing is required. The extra colon required in Pascal
and SPL to assign values makes you think about your expres­
sion. The extra <=> in a C comparison is easy to forget and
forgetting it can cause many problems in debugging a
program.

INITIALIZATION

Another weakness of C is in compiler initialization of ar­
rays, unions and structures. Unlike Pascal and SPL, all
initialization values must be explicitly provided in order
for the compiler to initialize them. This is most inconve­
nient when initializing a large, multi-dimensional array.
Typos can easily occur and cause problems. I suggest
double-checking the values for accuracy, presence (as op­
posed to unintentional absence), punctuation and order
(since all arrays are really linear>.

STANDARDIZED ENVIRONMENTS AND MAINTAINING PORTABILITY

I've mentioned several times about the portability of c.
Actually, portability is a relative term. Some would con­
sider portable to mean that a program runs properly as soon
as it is re-compiled on the new system. Others may consider
it portable if it runs after some modifications. In real­
ity, a program that performs any significant tasks will most
likely need adjustments when ported to a different computer.

No computer language is automatically portable. However, by
taking proper precautions the code can be developed with
portability in mind and make the task simpler. There is one
major key to building portable code: Isolate machine
idiosyncracies.

This is no easy task, but given the fact that if all machine
dependencies are isolated, the rest of the code is automat­
ically portable! Then it becomes a matter of implementing
workable alternatives for the isolated code sections.

Our purpose here is not to point out the specifics (books
can be filled with them>, but instead to provide some gener­
al guidelines that will help to diminish the task.

C The Future 18

1. KNOW THE MACHINE YOU ARE PORTING TO.

Know what computer or computers you will be porting the pro­
gram to. Obtain manuals, books, notes and any materials
that will help you to fully understand the features of the
target machine. Select features that are necessary for your
program to operate efficiently and productively. Note any
special requirements these features have. Remember, the
more specific features you use on any one machine makes the
code that much less portable.

2. SELECT COMMON FEATURES

Determine what features are common to all targeted machines
and use these features to your advantage. Refrain from us­
ing machine specific features as much as possible. Separate
any specific features by using include files and keeping
dependent features in specific routines. Avoid using system
calls and keep interfaces as abstract as possible.

3. ISOLATE MACHINE DEPENDENCIES

Utilize C features that aid in keeping code transportable.

Examples:

#define - use defines to isolate machine specific
constants which are used in data manip­
ulation. Also good for setting a condi­
tion for each different type of machine.

#ifdef - useful for compiling
of code based on
machine (see above>.

separate sections
the defined type of

#include - used to include machine specific code
or machine specific declarations.

These pre-processor commands can aid in isolating machine
dependencies and treat code according to the type of machine
it is being compiled on.

Other areas to look for differences include: system and
file access1 file search patterns, naming conventions, char­
acteristics and access paths1 integer and float sizes, rep­
resentations, alignment and formats, word boundaries, char­
acter alignment, bit order and most and least significant
bytes1 order of expression evaluation, and preservation of
meaningfulness in expression evaluation; character sets,
comparison and sort order; variable names (length limita­
tions> and initialization.

C The Future 19

4. AVOID FANCY MANIPULATIONS

Avoid bit manipulation, byte alignment, data transformations
and other fancy footwork unless it has been abstracted to
deal with the different machines.

5. STANDARDIZE LIBRARIES

Standardize your libraries to isolate machine specific prop­
erties and stick with ANSI standards. Avoid special fea­
tures of different compilers.

6. TEST YOUR ASSUMPTIONS

When in doubt, write test programs to test your assumptions.
Do this during the design stage to avoid ill design from the
beginning.

7. USE MACROS FOR CONSTANTS

Avoid "hard-coding" constants. These should be taken care
of with the macro facility of C to give them names. It is
always easier to change a macro definition than to search
source code for every usage. Additionally, the code becomes
more readable with the macro text in it than constant
values.

8. DEVELOP STYLE AND STANDARD RULES

Develop a coding style and standard. Stick with this style
and make changes to it only when demonstrated to be bene­
ficial to all affected systems.

9. DOCUMENT YOUR DISCOVERIES

Document differences, coding workarounds, idiosynracies and
quirks as they are encountered. A properly maintained set
of notes is extremely useful in a development environment.
By sharing this knowledge, fewer errors will be propagated.
This will aid in any future development or ongoing
development.

Obviously, this is not a complete set of rules to follow for
portability, but merely a guiding line to start with.
Different shops use different methods and these rules and
guidelines are suggestions from which a sensible standard
may be developed and set. Further study of machine differ­
ences and commonalities will aid in this endeavor.

The ultimate goal is· to glean a standard by which all newly
developed programs could be ported to other computers quick­
ly and efficiently. Further, programmers will begin to un­
derstand the common base by which all programs may be writ­
ten for portability.

C The Future 20

CONCLUSION

We've covered many of the features, constructs, advantages
and disadvantages of the C programming language. There are
numerous aspects that have not been mentioned. After all,
this is not intended to be a tutorial, but merely an intro­
duction. Perhaps your interest is piqued.

While C is certainly not the only language available, I con­
sider it to be one of the better ones because of its power,
speed, flexibility and portability. The future of software
is gradually departing from single vendor machine depen­
dence: a trend we dare not ignore. we may get by with
"that old COBOL system" for a few more years, but not much
longer.

Integration of personal computers and the advent of LANs,
switching networks and other sophisticated communications
resources are rapidly expanding the old definition of "data
processing" and turning it into "information processing".
The concepts are exploding into multi-machine inter­
connection, communications and cooperative processing.
These new concepts will need new techniques to deal with the
machine differences. One of these is to write portable
software.

You may say that your shop only has an HP3000, but that does
not eliminate the possibility of other brands or an upgrade
to a Spectrum. After all, not all companies can get by with
just one type of computer forever.

C The Future 21

REFERENCES

Al Stevens, "C Development Tools for the IBM PC" (New York:
Prentice Hall Press, 1986).

Brian W. Kernighan and Dennis M. Ritchie, "The C Programming
Language" (Englewood Cliffs: Prentice-Hall, Inc., 1978)

J. E. Lapin, "Portable C and UNIX System Programming"
(Englewood Cliffs: Prentice-Hall, Inc., 1987).

Kenneth Pugh, "C Language for Programmers" (Glenview: Scott,
Foresman and Company, 1985).

Mitchell Waite, Stephen Prata, and Donald Martin, "C Primer
Plus", (Indianapolis: Howard w. Sams and Company, 1984)

Narain Gehani, "ADVANCED C: Food for the Educated Palate",
(Rockville: Computer Science Press, 1985).

C The Future 22

INTRODUCTION

HP AdvanceNet for Engineering
Dave Morse

Hewlett-Packard Company
3404 East Harmony Road
Fort Collins, co 80525

As one of the five solutions in the HP AdvanceNet offering,
HP AdvanceNet for Engineering addresses the networking needs
of technical professionals engaged in engineering and other
technical pursuits. This solution features the same emphasis
on standards common to the other solutions. The solution is
best understood by considering a model computing environment
for engineering.

n-­.v111aa-
- Terminal

acce99
- Fite xfr
-ARPAGW

-­.Vllla"-1
- Termtnal acce99
-Alexfr

MODEL ENVIRONMENT

~ ..
Com­
puter

- Ra~e of WS per!. ($15K-$BOXl
- standard Bu• l>pen 9119te!W
- Ra~e of graphlo9 lstandard9)
- S)'9tem V: Berkeley 4.x ext.
- Wlndmva
- Term~al acce8a to network
- Fiie xfr to network
- Clscleas node
- Al capsbDlty
- Tecmlcat office l!Utome.Uon
- ~eeaurernert automation
-PC-OOSS"N
- Appllcstlon •peclfle SN

D--AH/klllU-
IBM Latp Dlllai.u1
t.1oln- Latp 0..,•11111-1 JHI
frame - Termlnal acce!ls

- Fiie xfr

- Computation
- Distributed C6
- Shared refatlonal database
-Fiie 9hart~
- Pe,.,heral •haring

To:
-Other alteo
-MonUf
- Office

Hewlett-Paekord I Technical S)'9tem9 ----------- JCO ...,...,,.

The diagram of the environment shows
characteristics of both the computers and
major trend in the engineering area in the

1

many of the key
the network. A

past few years has

been a move to engineering workstations and acceptance of the
UNIX operating system as a defacto standard. These
workstations offer many advantages in terms of powerful
graphics and consistent performance: but in order to be
effective, they must easily integrate with the installed base
of timeshare computers and other larger computers which may
be added in the future. The resulting environment represents
a range of computing power from personal computers to
mainframes and super computers. In almost all cases, these
computers will be supplied by several different vendors. In
order for users to realize the maximum benefit of this
environment, they should retain the desirable characteristics
of the timeshare environment - easy information sharing and
centralized system management - and also gain the benefits of
the workstations in terms of distributed computing power.
The network plays the key role in providing this.

The basic purpose of the network is to provide information
and resource sharing. Users should be able to transfer files
from one computer to another, log on to other computers, run
applications on other computers, run applications on a local
computer using data on remote computers, access peripherals
connected to any computer and, in general, make the best use
of the available resources to perform a wide variety of
different tasks. In fact, it is not possible to do an
effective job of providing computing for engineers without
providing the supporting network.

The Engineering Solution, like the other HP AdvanceNet
solutions, is comprised of modules. There are five modules
in the Engineering Solution: Engineering Workgroup,
Engineering Computer Center, Site Computer Center Access,
Site Wire, and Company-wide Access. Each module consists of
a collection of products which together meet the user
requirements.

The first three modules represent a three-tiered hierarchy
commonly found in engineering environments - workstations,
super minicomputers, and mainframes. The workstations and
super-minicomputers are often administered by the engineering
department. The mainframes are often facility resources
administered by the EDP or MIS departments.

2

ENGINEERING WORKGROUP MODULE

Engineering Workgroup - HP-UX

- Unking an Engineering Project Team

~ ws

PO-DOii II ooP11'iallleil. bJ UN.
UNIX II 01119rfahleil. Q Ji.TAT.

Thin LAN

00 ws

Berkeley I ARPA and HP Network Serllices
Thin LAN
NFS
- File transfer
- Terminal access to network
- Mail
- Interprocess Comrruricatlons

COLORADO NETWORKS DIVISION -------------- ..,,,..,,_.,

The most effective and productive way to connect a group of
workstations is with a local area network (LAN). The LAN
that has emerged as a standard for engineering networks is
the IEEE 802.3 LAN. Early engineering networks utilized the
Ethernet protocol, which served as basis for the IEEE 802.3
standard. HP offers IEEE 802.3 LAN as the basis for the
engineering workgroup of UNIX workstations. For
compatibility with existing networks, the Ethernet protocol
is also supported. The IEEE 802.3 standard only defines part
of the protocols necessary to provide communication among the
computers. The other protocols employed are the Transmission
Control Protocol (TCP) and Internet Protocol (IP) and the
Berkeley and ARPA network services. The IEEE 802.3 standard
defines the link used to connect the computers, TCP/IP
provides a reliable connection from one computer to another,
and the Berkeley and ARPA network services provide the
specific functions required, such as file transfer, virtual
terminal, etc.

The IEEE 802.3 standard allows for two types of cable - thin
and thick. Because of ease of installation and

3

configuration, HP recommends use of the thin cable for the
engineering workgroup.

One necessary capability not provided by either Berkeley or
ARPA services is the ability to share files without copying
the entire file from one computer to another. HP has
augmented the Berkeley and ARPA services with an HP developed
service called Remote File Access. Recently, a service known
as the Network File System* (NFS) has been endorsed by a
number of vendors and has emerged as a defacto standard for
file sharing. One of the major advantages of NFS is that it
is independent of the operating system and thus allows
sharing of files among computers with UNIX and other
operating systems. HP has announced NFS for the HP 9000
computers with initial shipments planned for late 1987.

* NFS is a a trademark of SUN Microsystems

Engineering Workgroup - Basic/Pascal

Shared Resource Management LAN

- File & Peripheral Sharing
- Discless Nodes

Ca..oRADO NE1WORK6 DIVl610N ------------- """'"'.,"''

Many engineering applications require use of computers to
control various types of test and measurement equipment. HP
offers several computers optimized for this task. One widely
used computer is an HP 9000 Series 200 or 300 running the
BASIC operating system (Rocky Mountain BASIC) . The HP
network for these systems is the Shared Resource Manager
(SRM). The SRM features peripheral and file sharing and
allows operation of the workstations without local discs.

4

PASCAL workstation and HP-UX. SRM
to IEEE 802.3 LANs through a
or a Vectra PC with the BASIC

SRM also supports the
networks can be connected
workstation running HP-UX
co-processor.

ENGINEERING COMPUTER CENTER MODULE

Engineering Computer Center

- Consolidating Departmental Resources

To:
--~---~---~----Sile Wire

Thin LAN

Berkeley I ARPA and HP Networking Services
NFS
Terminal Connections

COLORADO NETWORKS DIVISION ------------- """'"'"""

The engineering computer center represents the second tier in
the engineering computing hierarchy. Computers in the
engineering computer center are typically departmental
resources, shared by several project teams. A timeshare
super-minicomputer, such as the Digital Equipment Corporation
VAX is very commonly used in this environment. Recently
introduced HP Precision Architecture computers such and the
HP 9000 Models 825, 840, and 850 will be installed here.

The engineering computer center could also house various
types of servers for the engineering workgroups. These
servers could manage large ensembles of discs or other
peripherals such as laser printers. An advantage of putting
servers in the engineering computer center is that they are
centralized with the timeshare computers for convenient disc
backups. Placing the majority of the discs and other
peripherals here also isolates the workgroups from the noise
generated by these devices.

5

HP's recommended wiring for the engineering computer center
is again the ThinLan cabling. This allows for easy
configuration of the computer center and permits convenient
reconfiguration as necessary. The ThinLan network for the
computer center can then be connected to the site backbone
for communication with other workgroups or computer centers.

The ARPA and Berkeley network services can be used with any
computers running UNIX. For example, the HP 9000 Series 800
computers can all be configured with ARPA and Berkeley
network services to augment the HP-UX operating system. DEC
VAX computers running the VMS operating system can be
equipped with ARPA services via software packages available
from DEC and several third parties. An alternative means to
connect DEC VAX computers with VMS is to install HP Network
Services on the VAX computer. This product provides HP
AdvanceNet Network File Transfer (NFT), allowing file
transfers between the VAX and any HP computer supporting NFT.
The HP Network Services for the VAX run in user space and
utilize standard DEC LAN hardware, permitting coexistence
with DECNet. The engineering computer center would also
provide terminal connections for the various timeshare
computers.

SITE COMPUTER ACCESS MODULE

Site Computer Center Access

- Networking to the mainframes

IBM SNA 3270
I BM Bisync RJE
NSC Netex
Cray Station
ARPA Services

COLORADO NETWORKS DIVISION ----------- oMiNKIAAll>f

The site computer center is the province of the mainframe and
supercomputer. IBM and IBM compatible mainframes are
commonly found here. Engineers utilize these resources to

execute jobs requiring extensive computational power or to
access large databases. Because of the dominance of IBM in
this environment, required networking capabilities fall into
two categories - IBM communications and "other".

Today the most commonly used protocol to communicate with IBM
mainframes is IBM Systems Network Architecture (SNA). An
older protocol, Binary Synchronous Communications (Bisync),
is still in use in some installations. Either of these
alternatives offers convenient communications to IBM because
the engineering computers emulate standard IBM devices, such
as interactive terminals or remote job entry stations. From
the IBM mainframe's perspective, it is communicating with
another IBM device. This greatly simplifies the task of the
mainframe system managers, since they deal with standard IBM
software. HP offers both SNA and Bisync communications
products for communication with IBM mainframes.

A disadvantage of utilizing standard IBM SNA communications
is that the performance is generally limited to that
attainable over 56 Kbit/second links, far short of what can
be obtained with a LAN. Because of the performance
limitations, many site computer centers support alternative,
non-IBM, connections to the mainframes.

Probably the most commonly encountered product is
Hyperchannel, provided by Network Systems Corporation (NSC).
Hyperchannel features a 50 Mbit/second link and supports a
wide variety of computers in addition to IBM. Hyperchannel
connections are available from NSC for HP 9000 computers.

It is also possible to support the ARPA services on an IBM
mainframe. Products are available from a variety of vendors.
IBM also sells a TCP/IP/Ethernet product. Many of these
products are new on the market and are not commonly
installed. Where they are supported by the site computer
center, they offer an additional high speed connection from
the HP computers to IBM.

Many site computer centers also contain supercomputers such
-as Crays. Cray computers running the Cray Operating System

(COS) support access via a protocol called Cray station,
which runs over 50 MBit/second Hyperchannel hardware. Cray
Station software is available from Cray Research for the HP
9000 computers. Cray computers running the Cray version of
UNIX (UNICOS) support ARPA services over an Ethernet LAN and
can communicate with HP 9000 computers using this protocol.

In general, communication with the site computer center will

7

be via gateways between the engineering or facility LAN and
the computer center. The gateways provide access to the
computer center for other computers on the network and
eliminate the need to install individual mainframe
communication links for each computer. HP 9000 Series 300
computers can serve as these gateways.

HP SITEWIRE MODULE

HP Site Wire

- Wiring the Facility

Engineering
Computer

Center

Thin LAN clusters
LAN 8023 Backbone

- Base band
- Broad band

Site
Computer

Center
Thin LAN

Thin LAN

Ca..oRADO NETWORKS DIVISION ------------- ""'"'°"'""'

The network of choice for most engineering applications today
is IEEE 802.3. IEEE 802.3 supports two cabling options
ThinLAN and ThickLAN. HP's recommended wiring scheme
utilizes ThinLAN clusters for the engineering workgroups and
engineering computer center. These ThinLAN clusters are
connected to a ThickLAN backbone which runs throughout the
facility. A device known as a ThinLAN Hub provides the
connection between up to 4 ThinLAN subnets and the ThickLAN
backbone. The ThinLAN and ThickLAN segments run at the same
10 Mbit/second link speed.

Small engineering networks can be created by using only a
single ThinLAN network or by connecting up to four ThinLAN
clusters with a single ThinLAN Hub.

ThickLANs
kilometers

can
in

serve
length.

as backbones
ThickLANs

8

for networks of 1-2
are baseband networks.

Broadband backbones are utilized to connect larger facilities
or campuses. Broadband backbones use cable television
technology to cover distances spanning many kilometers.
Broadband backbones have the additional advantage of
supporting many channels of communication. A single LAN can
thus be used for computer to computer communications,
terminal to computer communications, closed circuit
television, and a variety of other uses. For this reasons,
broadband backbones are sometimes installed instead of
baseband backbones even for small networks.

HP supplies baseband networks. HP also supports broadband
backbones through the use of recommended products from
Ungermann Bass, such as the Buffered Repeater, which connects
ThinLAN clusters to broadband backbones.

COMPANY-WIDE ACCESS MODULE

Company-wide Access
- Networking to Remote sites

Engineering Engineering
Site Site

Asynchronous Links

X.25 Linkf'

DON Access

Ca.oRADO NETWORKS DIVISION ------------- """"''""""

Although many engineering networks involve only a single
site, there is often a requirement to connect engineering
communities at several locations into a common network.

If the traffic between sites is not extensive, the simplest
alternative is to use dial-up telephone lines and
asynchronous modems. HP 9000 computers support standard UNIX
communications services such as uucp and mail which utilize

9

these asynchronous modems.

In addition, the UNIX communications services can utilize
X.25 networks through the use of an HP supplied X.25
multiplexer. The X.25 networks have the additional benefit
of more reliable data transmission. In many cases they are
also more cost effective than dial-up communications lines.

X.25 commurtications can be provided by public X.25 networks
such and Telenet in the United States or Transpac in France.
HP also provides switches which can be used to create a
private X.25 network which would carry traffic for only a
single company. Such a network may be of interest, for
example, if there are special security or performance
requirements. A private X.25 network also allows very tight
control of network operations.

SUMMARY

HP AdvanceNet for Engineering provides comprehensive,
standards based networking which meets the diverse needs of
today's engineering community. Since HP AdvanceNet is based
on standards, it provides a network which will evolve and
endure for many years. Since it supports a multivendor
computing environment, it offers flexibility in the selection
of engineering computers.

HP is an active participant in the
future networking standards, such as
X/OPEN, the MAP Users Group, and the
Systems (COS). HP chairs several key
organizations.

organizations defining
the IEEE 802 committee,

Corporation for Open
working groups in these

As the requirements for engineering networks grow, HP
AdvanceNet for Engineering will grow with them.

10

1~!BODllC!10~

"Listen to me!"

PRESENTING OUR IDEAS

DEREK NAGELS

Jack Austin Drugs Limited
Box 6013, Station 'A'
Downsview, ON, Canada
M3M 3E2

"I didn't mean that!"
"Why don't you understand me?"

How many times have we felt like screaming these expressions
and more when we fail to get our point across. We've all had
experiences that seem totally unfair. How many times have we
lost an issue because we failed to present our viewpoint
precisely? How may times have we observed some eloquent
blowhard win his debate while we lose ours? If we're not
satisfied, this presentation will help.

What we would like to focus on here is the ability that we
have to triumph when we present our issues - correctly. This
does not mean that we will never lose. It does mean that our
ideas, our expressions, our opinions are at least listened
to and considered.

In this business we must constantly examine countless
innovative products, fresh ideas, novel concepts that invade
our profession. We make an diligent struggle to remain
enlightened, to keep abreast, otherwise we would not be
here. So we acknowledge that our chosen occupation has
changed dramatically. All you have to do is to compare this
conference with Detroit to appreciate just how much change
effects us. Change and the ability to adapt to it is the
nature if this industry. We welcome this challenge. We may
even criticize some of our compatriots who do not keep up
with the times. You now, people who have not seen the need
to change and keep doing things in the same old way. Now we
ask ourselves -

"How are our presentations?"
"Are they the same style that we used years ago?"
"Do they reflect the advances that have occurred?"
"Or are there the tried old presentations?".

This paper, hopefully,
enthusiasm back into our

Presenting Our Ideas

will help
presentations.

11

to bring
Unless

life and
we make a

conscious effort to incorporate new ideas into our
presentations the results will suffer. Tired, worn-out and
stale may describe our proposals.

Before going further let's explain, this technique will aid
us present our ideas for consideration. This will not
provide us with a winning result if our proposal is flawed.
Having the discipline to follow the procedures outlined in
this paper will improve our chance to succeed. The obviously
question is - "How can we create a winning presentation?" A
successful presentation means diligent preparation.

If we want our presentations to succeed, the key ingredient
is work. Don't expect to stroll into the 'board-room'
unprepared and have people give your proposal serious
consideration. It doesn't work. If we appear unprepared, how
can we expect others to take us seriously? We should not
expect others to give more consideration than our
preparation indicates. It doesn't matter how good the
original idea may be if the presentation is poor, the entire
proposal is jeopardized. The greatest idea poorly presented
will lose.

Don't just look at these ingredients as 'motherhood' and
'apple pie' issues. It is the application of these basic
points that will make the difference. The difference between
a winning proposal and one that is merely tolerated. This
paper discusses, in depth, the following components of the
formula:

Clear Vi•ion
Gath•r Inforaation
Re-evaluate Proposal
Proposal Concept
Proposal Layout
Re-evaluate Draft Proposal
Create Fini•hed Proposal
Proposal Delivery

This clear vision suggests that we have a precise, clear
image of what we intend to submit. Don't start the
presentation until you have an 'over-all' plan in mind. I
don't mean a detailed picture of all of the idiosyncracies
of the concept. However, we must have a unobstructed view of
the purpose of this idea.

We may discover that it's helpful to record the gbj•~tix••
of the idea. Write the b@n•t!~§ down, review them, change,
add and delete. Keep this list update it until it satisfies

Presenting Our Ideas

the objectives that we aspire to accomplish. Don't be
unsettled if these goal• change. We should expect them to
change to include other advantages that are now very
authentic but were not readily seen before. These additional
benefits were not the motivation that started the idea. We
may have a inclination to minimize and not give adequate
consideration to these increased advantages. In fact it may
be one of these expanded benefits that sells the concept and
not the one that we started.

One of the problems is that to almost any predicament there
many ways of achieving the desired result. There more than
one way to skin a cat. We, obviously, must consider the
resources at our disposal. We must justify any increase
resource requirements resulting from carrying out this
suggestion. We must be realistic in our selection of
solutions - giving vigorous attention to the depletion of
resources that we are proposing. Do we require more
bA~~~A~@£_§Qft~@~@£ __ Q§Q2l@L or any other resource. This
ingredient is a essential component of the ultimate formula.
Be realistic in these estimates. Remember upon acceptance of
the proposal we must meet our commitments. You know what
they say about most "IS" projects - they are late and over­
budget. This pitfall is by using practical estimates.

We can not make a presentation that incorporates all of the
conceivably solutions for the problem. Let's face facts we
can't be all things to all people. Some may like our
proposal. Some will wish we had chosen tbg __ Qtb•r-•olYtiOD•
We must make a choice and ~yn __ ~itb __ it• We have the
responsibility, the integrity, the wisdom and the conviction
to present the best technique to resolve the concern.

At this period we should identify the direction of the o~•r=
all concept. This gathering of information is the realm that
is too frequently neglected. This demands persistance and
perseverance to accomplish all of the tedious manipulates.
The collecting of this data means work.

It usually appears that as soon as you have completed one
viewpoint of this formula. Something else turns up making
additional research a necessity. We will be tempted, at
times, not to include some of these late comers into the
formula. Nevertheless, if we aspire to champion the proper
solution then we will explore and evaluate all conceivable
methods. There is no 'quick and dirty' strategy that will
generate a result of the high degree that we demand. Short­
circuiting this fact-finding process we may invalidate the
entire proposal. Make such to weigh all of the obtainable

Presenting Our Ideas

possibilities. There
work. Times when we
alter our concept.
preconceived opinion.

will be times when our gyt=f••l doesn't
examine the evidence accumulated and

Be ready to change from some initial

The objective is to relate all expenses into tangible
dollars. If dollars are difficult to determine, create a
formula to show how the dollars were created. Some that
require estimates must be conservative to have this document
viewed a the work of a professional without any personal
emotion. The gathering of information comes from the
following areas:

Additional R••ourc••
Maintenance Charges
Communication Charges
People Coats
Paper and Supplies
Training
Travel
Space Reguireaenta
Saving

This is not an all encompassing list for rather a guideline
that can we used.

Use some 'Spread Sheet' to record the information, updating
and changing as required. This will form part of the support
data in the final proposal. Create all costs on the same
basis. I usually use monthly charges. Given a small degree
of latitude we can create monthly charges for all costs.
This includes all costs including 'one-time' charges.

Thoroughly investigate the accumulated material. You will
probably discover some surprising developments. The
evaluation operation demands that we analyze all alternative
solutions. We can now acknowledge the urgency for
establishing all of the findings in dollars.

Establish a Cg•~-l--l!D!ti~ ratio for all the reasonable
alternatives along with the cash requirements. Run the ~••b
~•IYi~amanta though an amortization schedule based on the
anticipated life of the product. The accountants are not
exactly enthusiastic with this technique but it achieves
results. Employing the gze•~tgd __ iot•r•&t __ rat• we can
establish a monthly cost for the purchase of these SA§b
r•9Yir•m•nt•·
The purpose is generate a document showing the various

Presenting Our Ideas

solutions and exposing the cost and saving. The idea is to
start a routine that will permit the decision making process
with as little emotion as feasible. In other words we desire
to deal with the facts. You will discover that we must
desire to deal with facts and have as little emotion as
possible. We must continually adjust the critical figures
that will result in the Ca•t-l-B•D•fit ratio being modified.
This is far from an exact science as the ingredients to the
formula are in a rapid state of alteration.

Select the best possibility, perfect the components of the
formula and we are ready for the skeleton presentation.

fBQfQSAL_CQNCEfI

The objective is to develop a draft presentation in a manner
that is appropriate for the final output without significant
alterations. The more time we invest in the preparation of
this blueprint, the less time spent during the construct of
the final product. We incorporate minor adjustments in this
document. This is not to infer that critical revisions will
not occur, but rather, this should be well conceived.

This description should clearly demonstrate tbg __ KA!_tg_gg.
Showing the best selection. With documented facts depicting
why we have adopted that selection. There may be a
temptation to list all options with no endorsement. This is
an abdication of our responsibility, true, our mandate may
have been to investigate the feasible answers to a specific
condition. Obviously, we were appointed to head up this
function, because people value our ideas. If we neglect to
make recommendations, the presentation becomes merely a
account of facts. Thus leaving the decision up to people who
have less skill, knowledge and experience in that area.

The outline should display 2 or 3 of the choices. Typical
the next best Ca•tiBaoafit ratio along with any of the
favorites that are open for consideration. These favorites
should rate extraordinary attention explaining carefully and
completely why they were not recommended. Complete this
after a reasonable comprehensive investigation into the
option. We can select the best solution this may not
necessarily be the least expensive. There may be less costly
alternatives than the one we selected. Offer explanations.

To aid the understanding of this analysis, record costing
details to reflect the purchase for the next 5 years. This
is helpful as we know factors such as hardware will decline
while human resources will continue to escalate. Work these
into your presentation. As we are not crystal ball readers,
record all assumptions based on some other authority. "We

Presenting Our Ideas

use a 5% wage increase according to our V/P Finance, Mr.
Smith." Not only does this help to substantiate your
figures it also eliminates some opposition.

The display of the material included in the ~r~t~

~~gggn~A~!2n adheres very vigorously to the KISS principle­
Keep It Simple Stupid. This is one of the key
characteristics of a successful proposal~ It's easy to
comprehend. There is no room for the old Baffl•-tb••-Kitb
Bulk routine. The objective is to get to the bottom line
implications before someone pleads "How much?"

EROEOSAL_LA~OllT

There are many methods to layout the proposal. I will
clarify the mode that I have determined is successful, for
me. The first page summarizes the Qbje~ti~••i-BenefitBi
CQ8t£_Het __ and_Cgn~lumign_and shows the recommendation. This
document is easy to read and understand without compromising
the details. The first page contains all the decision making
points. With all the supporting information in the following
pages. This method allows us focus the presentation on the
benefits rather than the details. Document all
substantiating details on subsequent pages of the proposal.
Appreciate that the goal is to develop a document that is
unclouded, easy to comprehend and dispenses complete facts.

Objectives

Option 1 Option 2 Option 3
Benefits

Costs

Net

Conclusion

The Net shows in dollars the benefits less the costs. Here
also show the 'Cash Requirements' for the option.

Show the benefits and cost analysis for the various options.
However, the conclusion must clearly illustrate the desired
choice. Leave no doubt as to which is the best alternative.
The conclusion is direct and to the point.

Presenting Our Ideas

Attempt to read and criticize that Draft Proposal. Image
someone that you are not enamoured with giving you the
presentation. Find fault. Make changes until you are
completely content with the result. Read the report as you
were the decision maker. Is it clear? Can it understandable?
Does the recommendation sound reasonable? Does the report
drag? Be very critical of your work.

Try it out on your wife or husband, someone who has no
little or no in depth knowledge. Discover whether they can
grasp the substance that we are trying to communicate. We
don't want to be untangling details that are unclear when we
deliver the proposal. Complete all of the preparation. Try
reading it through the eyes of the people who will be
receiving the final presentation.

Following the development and enhancement of the D~aft
~~•••ntatign to incorporate any new thoughts or clarifying
the information. The final document should at a finished
condition with only minors adjustments required. We need to
acquire any covers, graphs or other presentation aids.

fBQfQSAL_DiLIYEBI

"Practice, practice, practice." You only get one shot so
make it count. Polish the delivery in the sense that we have
in __ da~tb perception, having appreciation all of the
idiosyncracies of the proposal. However, Take care not to
appear as a 'pitch' man so be cautious not to shine the
material too much. We must retain ability to capture our and
others enthusiasm.

CONCLUSION

The success or failure many times does not depend on WHAT we
do as much as HON we do. This framework can assist us to
present our ideas. Showing techniques that will offer a
challenge Hg~_!n~_!n_ib!_lYiYr!~

Presenting Our Ideas

Performance Problem Solving

Teresa Norman
Tymlabs Corporation
211 East 7th Street

Austin, Texas 78701

WHY SOLVE PROBLEMS?
Your ability to solve problems determines just about everything in your life:
where you work, where you live, the car you drive, your hobbies, and, most
importantly, how satisfied you are with your life.

Each day each one of us is called upon to fix something that's gone wrong,
solve a puzzle, or invent something that does not exist. The dictionary defines a
problem as "that which causes annoyance or difficulty". But let's examine a
broader interpretation. For most situations in life, if the place you are right now is
not the place you want to be, then you have a problem. Today there are many
approaches to problem-solving which not only "fix what's wrong", but help you
get where you want to be. They systematize the problem solving process.

This process is known by many different names: decision analysis, framing (as
in "framing" the problem and "framing" the outcome), lateral thinking, and goal
setting. Each of these problem solving and decision-making methods follows
the same path. And that path is to define precisely where you are, to define
precisely where you want to be, and to define precisely the process for getting
there.

I started out by saying that your skill at defining where you are, where you want
to be, and how you will get there determines just about everything in your life.
In a Harvard Business Review survey, a correlation was found between annual
income and goal-setting practices. The respondents with the highest incomes
had specific, written, and measurable goals. The respondents that needed
financial assistance had no goals at all.

Edward de Bono, father of "Lateral Thinking" (the technique used to make the
Los Angeles Olympics the first profitable Olympics), goes one step futher when
talking about how your thinking ability affects your life. In his book, Six Thinking
Hats, he states, "I once asked a group of very well educated Americans
(graduate school) to give themselves a mark, out of ten, for their thinking ability.
To my astonishment the average mark was eight out of ten. In other words, their
horizons of what thinking could do were so limited that each person reckoned
his or her thinking was almost as good as it could possibly be ... people are
remarkably complacent about their thinking - because they cannot conceive
how it might be improved." In Venezuela, school children spend two hours
each week developing their thinking skills in a program designed by de Bono
and implemented under the Venezuelan Minister for the Development of
Intelligence. As de Bono further asserts, "Being a thinker is a totally different
self-image. It is an operating skill. You can do something about it. You can get

1 Performance Problem Solving I Norman

better at thinking just as you can get better at playing football or cooking."

This paper will explore several different problem solving methods and how they
can be applied to what we all do: working with the HP 3000.

The path of least resistance.

People, like rivers, take the path of least resistance. Fortunately, problem-solving methods
function like our own personal Corps of Army Engineers, helping us change the underlying
structures so the new path becomes the path of least resistance.

THE PATH OF LEAST RESISTANCE
People, like rivers, take the path of least resistance. We tend to follow the
underlying structure in our lives the way a river follows its riverbed. To go
against this requires tremendous will power or strain. And most often doesn't
work. Fortunately, problem solving methods act like our own personal Corps of
Army Engineers -- they help us change the underlying structures so that moving
in a new direction becomes the new path of least resistance. In this we move
from willpower to creative power to answer the question "What results do I want
to achieve?"

Robert Fritz, founder of OMA and the Institute for Human Evolution, states in his
book, The Path of Least Resistance, "As you develop any ability you need to
expend less and less energy, and as you increase your facility in using any
ability, you begin to master the use of your own energy in creating what you
want. As you develop willpower, however, you need to expend more and more
energy when you use it." This of course applies to any ability - skiing, cooking,
building a computer, managing a company, or solving problems. As we
mentioned, our goal is to ease the process and cause the river to flow in the
direction of solving our problems.

2 Performance Problem Solving I Norman

GOOD AS GOLD: ATTITUDE
It is true that we are either the victims or the beneficiaries of our attitudes. But,
why would problem solving start with this particular topic? It has been said that
the difference between a professional musician and an amatuer is that the
amateur plays well when he or she feels well and the professional musician
plays well irregardless of how he or she feels. The same can be said of the
problem solver. And I think each of our experiences bears witness to this. The
truly superb problem solvers I know in data processing create their own reality
each day. They are the outstanding programmers and managers who
consistently turn out predictable results.

Robert Fritz, as cited above, states, "If your emotions become the dominant
factor in your life, the power in your life becomes "how I happen to feel," not
"what I truly want." In contrast, if the power in your life lies in what you choose,
you are reunited with your real human power, and the way you happen to feel
becomes subordinate to what is actually more important to you."

Another aspect of this shift in thinking is time consciousness. If you don't have to
wait to feel good, you are free to solve your problem now, not at some
undefined point in future time. Time consciousness is also deciding in advance
how much time you will allocate to solving a problem. Not setting a deadline is
like handing out blank checks. It allows a problem to determine how much of
your time it will take. If you have erred in your initial calculation, the time frame
can be adjusted, but you cannot retrieve lost days, weeks, months, or years.

Tomorrow and tomorrow,
and tomorrow ...

When will you solve your problem?

Not setting a deadline is like handing out blank checks. It allows the problem to determine how
much of your time it will take.

GETTING STARTED: WHERE AM I?
When I was a small child my father used to repeat to me the title of his favorite
sermon, "The right way to begin is to begin the right way, right away." In all the
problem solving methods available each one has techniques for defining your
starting point: getting started in the right way. The framing approach, as
described by McMaster and Grinder in their book, Precision, uses a series of
questions to pinpoint the starting point with more accuracy than we usually
receive in business communications. For example, let's say you are faced with

3 Performance Problem Solving I Norman

the following directive: The computer is slow - do something about it. The
framing technique would not recognize such a vague and messy
communication as an acceptable starting point to begin a solution frame. The
framing technique suggests a series a "blockbusting" questions to go from low­
quality information to precise, high-quality information. Using the McMaster and
Grinder Precision Model we might challenge this with the following questions:

The computer is slow.

What is slow?

The on-line programs are slow.

How slow are the on-line programs?

The users sometimes wait a long time between transactions.

What is the computer doing while the users are waiting?

Updating the data base.

Updating only?

Wells, no, actually, any kind of file accesses: reading, updating, etc.

Let me get this straight, any time an on-line user process is
accessing a file of any type, they wait a long time?

Right. Any file. Wait a long time.

Would you agree that we must begin looking at the disc activity on
our systems?

At this point you might pause to do some investigation. Using any tools you
have available you could research what is happening on the system to
determine if you had a data base structure problem, or a problem within a
particular application, or were just disc 1/0 bound. (An excellent example using
just this same starting point, the computer is slow, is "Ten Questions To Ask A
Slow CPU" a paper by Bob Green of Robelle.)

When you have achieved a precise starting frame, the next step is to develop
just as precise and veritable a desired state or outcome frame. According to
McMaster and Grinder, "One of the most frequent uses of the Outcome Frame is
to remind participants of a group to orient specifically to the Desired State they
are attempting to achieve." In other words, to put yourself into the solution, to
establish some momentum towards solving your now carefully-defined problem.

4 Performance Problem Solving I Norman

Most folks oim for nothing in porticulor, ond seem
to hit it with omozing occurocy.

Henry Ford

The same blockbuster questions can be applied to the outcome as were
applied to defining the present state. In other words, quantifying and qualifying
where we want to be.

Using the above example, let's assume that our investigation of the slow
computer revealed that it was disc 1/0 bound, in other words, there were so
many pending requests for disc activity that each on-line process disc request
was lining up to wait. Further, we had determined that neither the application
program itself nor the data base structure was at fault. With the two obvious
causes eliminated, we are challenged to look in other directions.

At this point, most problem solving methods advocate generating as many
solutions as possible. This creative process frequently goes by the name of
brainstorming. Brainstorming is the generation of new ideas and new
approaches regardless of any practicality, merit, or feasibility. The winnowing
out of the "good" ideas from the "bad" comes later in the process when the
actual path to the outcome state is being constructed.

Edward de Bono, who has written many books on the generation of new ideas,
states that both creative thinking (which he calls lateral thinking) and our
traditional thinking (which he calls vertical thinking) are necessary and have
their place. In his book, Lateral Thinking, he states, "The deliberate generation
of new ideas is always difficult. Vertical thinking is not much help, otherwise
new ideas would be far easier to come by. Indeed, one would be able to
programme a computer to churn them out. One can wait for chance or
inspiration or one can pray for creativity. Lateral thnking is a rather more
deliberate way of setting about it."

For our slow computer, we might employ some of these techniques to focus on
non-program areas for disc 1/0 improvement. Our brainstorming session might
produce ideas like routing all disc requests through one "1/0" program,
eliminating all batch jobs that compete with the on-line programs, staggering
work hours, reducing unnecessary log-ons (which require many disc I/Os to log
to system tables), allocating commonly used programs to reduce the table
logging that programs do when they are first run, properly segmenting programs
to reduce memory manager disc activity, etc.

As we stated at the outset, the purpose of this step is to increase the pool of
possible solutions. How workable any particular idea is can be determined at

5 Performance Problem Solving I Norman

the next step when we decide where we are going. Will we opt for speeding up
the slow computer to the point that the on-line users no longer complain, will we
try for a certain percentage improvement, or do we need more information? The
blockbuster questions - how much improvement, where to go for improvement,
when will we know we've sufficiently improved.etc. - all need to be considered.

WHERE AM I GOING: THE PATH AND THE MAP
Many carefully defined solutions with clear goals and stated outcomes never
see the light of day because the map to get from present state to desired state is
never constructed or is never implemented, or is never monitored.

STATE 1: The problem is carefully defined, probable causes and solutions are
generated, but nothing is ever decided. This is analogous to sending away for
the travel brochures and checking the flight schedule, but not making any
reservations. Many problems just get a lot of air time and then fall into oblivion
for many "lack" reasons: lack of enthusiasm, lack of money, lack of time, lack of
resource. One possible solution is to see the "lack" itself as a problem in and of
itself to be solved prior to continuing.

STATE 2: What if you made the travel reservations but kept deviating from your
itinerary? I know many people who vacation quite nicely this way, but deviating
from the established problem-solving path is a trip to oblivion for your problem's
solution. Monitoring is necessary to permit deviations where they are necessary
to keep on track, but to prevent deviations which occur for reasons not at all
related to the solution of the problem.

In our slow computer example, the monitoring step might involve establishing
test criteria and anticipated performance gains, then performing the tests and
comparing the results to what you expected. Remember, this is your problem
and the responsibility rests with you.

IN CONCLUSION
When you solve a problem, you are participating in a process as old as our
species: using your mind to affect your environment. Albert Einstein said, "Each
person has at least one idea in his or her life that could change the world." And
the difference between genius and non-genius has to do with whether those
ideas are ever implemented.

Our daily work and personal life are the source from which these inspirations
come. And that makes the problem solving process a quest. Edward de Bono
states, "Thinking is the ultimate human resource. Yet we can never be satisfied
with our most important skill. No matter how good we become, we should
always want to be better."

6 Performance Problem Solving I Norman

YOU
ARE
HERE

Perspective is knowing how your problem fits into the grand scheme of things.

BIBLIOGRAPHY

Conceptual Blockbusting, James L. Adams (Addison-Wesley, 1974)

Six Thinking Hats, Edward de Bono (Little, Brown, and Company, 1985)

Lateral Thinking, Edward de Bono (Harper & Row, 1970)

The Path of Least Resistance, Robert Fritz (Stillpoint Publishing, 1984)

Precision: A New Aoproach To Communication, Michael McMaster and John
Grinder (Precision Model, 1980)

7 Performance Problem Solving I Norman

IMAGE

THE FUTURE AS SEEN THROUGH GROUCHO'S GLASSES

By Terrence D. O'Brien
Dynamic Information Systems Corporation

January 1st, 1992. Think about this date for just one moment and try to visualize
what your computer system and the software running on it will look like five years
from now. Will accounting, manufacturing, distribution, and other applications look
and work the same or will new technology in equipment and software change the way
we store, process and retrieve information?

Future planning for the Information Services Center (a preferred name for the Data
Processing Department) is an absolute requirement of the data processing professional
who must keep abreast of both changing technology and evolving information
requirements so that future applications will be a harmonized blend of cost effective
solutions. Five years is a reasonable period of time for planning because systems and
applications designed today and implemented over the next few months to two years
will still be in use in 1992. On the other hand, planning beyond five years is
probably futile since new advances in technology will certainly have a major impact
on any systems that are developed after 1992.

Technology that will be part of any future application needs to exist today or at least
be proven before being seriously considered. This is the only viable choice since so
many new ideas in hardware and software never make it into commercial use, and
until new technology becomes tested and used, the true performance and functionality
is unknown. Therefore, this five year projection will be based solely on existing or
proven equipment and application tools.

THE NEED

The applications being planned or built today will require a new level of
sophistication to meet an expanding and better educated user base. The personal
computer (PC) has had tremendous impact on the Information Center, less so for the
technical ramifications, but more so because it has opened up computer processing
power to more users and allowed those same users to become computer literate. In
five years, a new breed of middle executive will use the computer training received
in school as a platform for demanding more from data base systems. He will have
been spoiled with fast access on small data bases, on-line context sensitive help,
concurrent processing of multiple tasks and standardized interfaces. He will be
unhappy with software that costs thousands of dollars to develop and with running
on a half-million dollar "mainframe" that does not meet some of the emerging
standards developing in the PC marketplace.

Not only will there be a need for better existing systems, but more information
retrieval will be expected from them. The old promises of the "Management
Information System" will be due and payable in five years and the Information
Center will need to provide instant on-line access to large volumes of information.
This demand must be met with today's environment, tools and techniques since
waiting for HP or any other vendor to provide a future solution is far too risky.

Groucho.papers -1- 5/87

THE OVERALL ENVIRONMENT

In five years, the environment for data base applications will be slightly different
from today. Few HP3000s will be running general applications such as word
processing and spreadsheets. The HP3000 is one of the best (if not the best)
transaction oriented data base systems available, but it is not well suited for
computation intense applications such as spreadsheets. Hewlett Packard has
recognized this and made a decision not to provide spreadsheets, graphics, and word
processing packages for the new Spectrum line of computers. These applications are
much better suited for a micro or personal computer system where better software
and faster processing is available. The HP3000 will become dedicated to data base
applications, communications processing (electronic mail and remote service bureaus),
and PC file sharing. Note that HP did not make an initial error in originally
providing spreadsheets, graphics and word processing on the HP3000. At the time HP
provided these tools, they were cost effective to process on the 3000, but with the
continued slide in PC prices coupled with a continued increase in horsepower, the PC
has emerged as the preferred and cost effective choice.

Although HP's new Spectrum line promises to provide faster processing speed, it will
have little other impact on how the data base applications look and feel to the end
user. A faster CPU can make certain operations quicker, such as printing a general
ledger in 30 minutes instead of one hour. Although more platable, it will not change
the overall functionality of the application. Additionally, Spectrum must fall into the
class of unproven technology even though HP points to the success of the Unix based
840 as an endorsement of HP's Precision Architecture. HP has only currently proven
that" scientific based systems with a simple operating system (Unix) will work very
well with the new architecture. However, this does not necessarily mean that it will
work as well with commercial applications using a complex operating system such as
MPE/XL.

The announcement of the new, powerful and inexpensive Micro/3000 will also have
an impact on our data base environment because data base systems will not be
competing against CPU and disc 1/0 intensive application development. It is now
more cost effective to purchase a separate development system for the Information
Services Center.

HP's new inexpensive and large capacity Eagle drives will have a more profound
impact on the data base environment. Every time the cost per byte for disc storage
drops, it becomes more cost effective to store additional information or more
historical data. What was cost prohibitive five years ago, becomes possible today.
Data bases in five years will be bigger in both the type of information kept and the
volume of historical information maintained.

The terminals in use today will essentially be the same as those in use in five years.
They will likely be cheaper and thus allow more casual users to have access to the
corporate data bases. However, most information users (as opposed to information
providers, e. g. data entry operators) will tend to use PCs as the primary work station
and communicate to the HP via terminal emmulation software. There will be more of
a demand to access the expanding information base with direct access from the PC's
spreadsheet rather than the tedious batch processing indicative of systems such as
HPACCESS. Oracle, a supplier of data base and fourth generation tools on other
hardware, has already developed and proven that a direct spreadsheet to data base
interface is possible and provides an easy-to-use data base interface for the end user.

Groucho.papers -2- 5/87

A tool to allow Lotus 1-2-3 direct access to IMAGE data bases will certainly become
available within the next five years. This will have a dramatic effect on future
applications because it will easily become the preferred interface for information
retrieval systems.

HOW APPLICATIONS WILL LOOK

Traditional applications such as accounts payable and order entry will look very
much the same in five years with one notable exception. Additional on-line and
flexible retrieval of data will have to be added to allow a new level of user
friendliness. The retrieval of customer records via name and descriptive information
such as address or contact person will be required. Retrieval of a part record or stock
records via a portion of a description will continually be requested by users. These
types of retrieval options will be commonplace in five years because the technology to
perform such tasks is available today and being implemented by several companies
including software development houses to add increased user friendliness and
functionality to their applications.

These same applications will also be improved by the availability of windowing
software, should HP or a third party be able to deliver the capability to remain in
one application while running any number of other programs. Although this is
currently unproven in the HP world, windowing software is having a tremendous
impact on the PC environment and has been shown to provide increased user
satisfaction. A windowing environment allows the user to work in one application
such as a data base inquiry and immediately jump into the electronic mail system to
send a quick message and then instantly return to the original application.
Windowing's greatest impact however will be the ability to allow more flexible and
faster retrieval on existing applications. Through windows, applications written
today can be updated to handle future retrieval requirements without rewriting the
original software.

Unfortunately the functionality of windowing software will be impacted by the
display rate of existing terminals. The current top speed of 19,200 baud will need to
be increased to at least 56 kilobaud before windowing software on the HP approaches
the same functionality as the personal computer.

Applications oriented primarily to information retrieval such as sales history analysis
and accounting systems will see the most dramatic changes over the next five years.

There will be an increased need for better and faster retrieval on the growing volume
of information maintained. Users will require access to their data quickly using
multiple selection criteria which may span several fields or even several data sets.
These information based systems will be the primary focus for new system
development since traditional operational systems will be in place.

THE DATA BASE MANAGEMENT SYSTEM

In five years the primary data base management system (DBMS) in use on the HP3000
will still be IMAGE. And applications designed today and still operating in 1992 will
be using a 20 year old data base. This is because there is a wealth of software tools,
applications, and knowledge that has been developed around IMAGE which far
exceed any other DBMS offering. This is also because HP's future ALLBASE
software must still be classified as unproven new technology which could be delayed

Groucho.papers -3- 5/87

and suffer unforeseen performance and integrity problems. No one will know for
sure until the product is released and used in several high volume and multi-user
applications. Until that time, IMAGE is the only viable DBMS choice today for
future applications on the 3000.

IMAGE and its add-ons (restructuring tools, high speed serial reads, report writers,
high level languages, and additional index structures) are also far beyond HP's
current relational data base offering - HPSQL. SQL simply Jacks both the high level
language and more importantly the indexing and retrieval options to meet current and
future application needs. SQL (and HP's future ALLBASE DBMS) and most other
relational data bases rely on a KSAM like B-tree structure to handle indexing. This
structure alone is not powerful enough to handle fast retrievals across multiple fields
or retrieval by individual words or combinations of words within a record (e. g.
selecting parts based on portions of the description field). IMAGE, with its fourth
generation languages and retrieval enhancement tools, will be the choice for most
future applications, not because of SQL's reported performance problems, but more so
because SQL lacks the functionality required. Without multiple field retrieval, SQL is
poorly suited for operational systems such as accounts payable and even worse for
informational systems such as sales and prospecting or accounting.

WHAT THE FUTURE WILL BRING

The future will bring friendlier software with more accessible information and better
retrieval options. Not because of any revolutionary change in the hardware
environment or the data base system, but because of a gradual evolutionary change to
the existing applications. January l, 1992 is just around the corner and IMAGE, at
age 20, will be grown up and ready to handle the future.

Groucho.papers -4- 5/87

EXCERPTS FROM

A PRACTICAL GUIDE TO DISASTER RECOVERY PLANNING

Copy~ight 1936

Ilusi...,ess RN·ove~y Systems, Ir.c.

All Rights Rese~ved

EXCERPTS FROM
A PRACTICAL GUIDE TO DISASTER RECOVERY PLANNING

by

:-'iiohael J. O'Malley, CPA ard Ray:nord J. Posoh, CDP
Busi,..,ess Reoov e-y Systems, Tr<'.

A000-di"g to i"dust-y sou-oes, a busiress burrs ONCE EVERY FIVE
MINUTES i" the Urited States. Nirety pe-oert of these fires result
i" the ir-et-ievable loss of <'-iti<'al busi,..,ess -e<'o-ds. OVER FORTY
PERCENT NEVER REOPEN their doo-s as a -esult. Fou-tee" pe-eert suffe­
~ ~eduction i~ c~edit ~ilti~g. Tnese a~e f~ighte~i~g statisti~s.

COULD YOUR ORGANIZATION RECOVER FROM A DISASTER?

What would vou- oompary do if its <'Ompute-s were Jest-eyed by fire?
Would you still be i" busi,..,ess fo- ve-y lo,..,g? How muoh busiress,
oustome- goodwill, o- CASH FLOW would be lost ... assumi"g t~at you
C'OUld -eC'OVe-?

ll01; ·.wuld a seve-e e<,rthqucike, a bombi"g, or the aot of some
disg-urtled programme- affeot you- oompute- se-vioe? How lO"B
would it take to -eplaoe the oompute- -oom, ai- oorditiori"g, powe­
,,quipmert, <'ablinc;, C'ommu"i<'citiors equiprne'1t a"d oo;npute-s'?
Whe-e would you lo<'ate key pe-sorrel? What would the delciy oost i"
lost p-odu<'tio", -egulato-y pe"2lties ard the irability to bill
for tw-k p-eviously :.:00umplish2d? fJhe" •wuld your ope-3tiu"' be
ror:nHl c:gdir!?

ONLY THE PREPARED SURVIVE MAJOR BUSINESS DISASTERS

Reoent studies h3vc showr th3t oompa"ies lose most esse"tial
busi"'eSs fu~<'tiors within 3 days uf a oompute- disaster. Withir
1J Jays they would be te<'h"i<'cilly deod without b2ekup. Statisti<'ally
speaki"g, you will '10t -coove- as a busiress f-om a majo- dis3ste­
u'1less you have a -ealisti<', tested, disaste~ -e<'ove-y pla"", The
odd.s 3gc1i~st t!1c u~p"'ep-::.?~ed G~e vve whelming. LJYlfv~turately,

less t~1a~ 20~ of th~ businesses whi~h deperd or ~omputf~"'S t1uvc a
disaste- plan. Car you- busi"ess affo-d the gamble?

DISASTERS HAPPEN TO ALL OF US

Tile easiest thirg to do is "Othi"'g. Play the "odds".
;i disaster <'Ould "eve- happen to "us". Ir reality it
to il'1Y of us tomo--ow. We have oompiled f-om sever<Jl
publi<'atiors a sho-t list of o-ga"izatio"s whioh have
majo- disasters:

Gamble thdt
<'OU ld h<; PPC"
t-ade
expe-ie'1C'ed

SANTA DARBARA EARTHQUAKE - 12 oompa"'ies expe-ierC'ed major C'omputer
outoges.

TERRORIST ATTACK ON ITALIAN MOTOR VEHICLE MINISTRY - The entire
vehicle registratior data base was destroyed. It took 18
morths to restore.

DISMISSED EMPLOYEE AT PAYCHECK, INC. - A" employee b-oke irto the
compute- certer over a holiday weekerd a"d destroyed all the
compary's disk packs ircludirg backup copies. It took two weeks
ard courtless ma" hou-s to marually reerter 95,000 employee
pav-oll records.

BURST WATER VALVE AT TEMPLE UNIVERSITY - Water flooded the compute­
room at Temple Uriversity. It took days to restore the certer
back to operatior.

FIRE AT GENERAL COMPUTER SERVICES INC.- Fire gutted the data
certe-, completely destroyi"g the compary's computers.
Discister Recove-y Plar was iritiated ard the compnry was
to restore its operatiors ir ar orde-ly ma"rc-.

processirg
GCS's

able

FIRE AT NORTH~ESTERN NATIONAL BANK - Fire destroved the 16 floor
buildirg which housed cert-al ope-atiors fo~ its 86 affiliates
a"d 500 correspordert barks. No-thwestern became operatio"al aeai•
chiefly because of a well-prepared Disaste- Recove-y Plar.

10,000 GALLONS OF WATER AT MAZDA - The roof of the buildirg housirg
MAZDA's data p-ocessirg certer collapsed du-i"g a heavy Pacific
-air sto-m ard demolished the compa"y's computers. The disaste­
brought to ar ab-upt stardstill data p-ocessi"g fo- MAZDA's 31-
stcite busircss.

FIRE AT A MAJOR INSURANCE COMPANY - As the Compa"y ertered
the firal stages of its corversior to a "eW computer, a weekerd
fire dest-oyed the firm's headqua-ters buildirg which housed its
compute- facility. The firm's computers we-e completely urusable.

EXPLOSION AT WELLS FARGO - A propa"e tark exploded ir the basemert
of Wells Fargo offices ir Derver O" New Yea-s Dav 1984. The fire
quickly spread th-ough the office buildirg destr~yirg eve~ythirg
ir its path.

A DISASTER RECOVERY PLAN IS INSURANCE!

The reaso" we buy irsu-arce is so we will be cove-ed ir the -elatively
un.likely evert of a major loss. Charces are, our homes will rot
bur" dOW" toright. But the co"sequerces can. be so sigrificart that
we must carry i"su-a"ce or ou~ homes. Likewise, we carn.ot afford to
igro-e the corsequerces of a majo- disaster ir our busiress. Disaster
Recove-y Plarrin.g is the prircipal comporert of BUSINESS DISASTER
ItJSURANCE!

YOUR DISASTER RECOVERY PLAN

Most DP Mar.agers, Ir.terr.al Auditors ar.d users agree that disaster
rerovery planr.ir.g is somethir.g that should be dor.e. Howeve·, few
orgar.izatior.s artually have ar.y kir.d of formal plan.. Why is this?

The reason. is really quite simple a Disaster Rerovery Plan. takes
a ronside•able amount of time ard effort to develop. It is a
diffirult proress. It is hard to know just where to sta·t and our
day-to-day •espor.sibilities ofter. leave us with little time to
devote to surh a major undertakir.g.

What is Disaster Rerovery Plar.nir.g? It is plar.r.ing for potential
fi•es, floods, arridents or other ralamities that may befall your
organization.. The objertive of the planr.ir.g p•ojert is to prepare
a plan whirh provides for the rontir.ued operation of your data
proressing farility or other funrtior.al areas of your business in the
ever.t of ar. emergenry. At minimum, the plan should address rentral
rompute• ope·ations. Optimally, it should address all asperts of the
business inrluding manual and automated funrtions.

The pu•pose of a Disaster Rerovery Plan is to ir.rrease the rharres
of survival and to derrease the amour.t of loss. It identifies how
the rritiral romputer-dependent servires of the busir.ess will be
resto·ed to operation with the least dis·uption. The best plar. will
be simple, sperifir ar.d well thought th·ough. Remember, the better
the plan, the better your insuranre.

START WITII COMPUTER CONTINGENCY

To do a full-fledged Disaste• Rerove•y Plan whirh addresses all
asperts of the business(see figure 1), from telephone servire to paper
flow withir. all departments, would be an extremely large undertaking.
It would ·equire the artive involvement of you• entire o•ganization.

We advise sta·ting with a more manageable piere •.. the rritiral
areas of the rentral romputer operation. Initially limit the Disaster
Rerovery Plan to COMPUTER CONTINGENCY. Develop the smalle• plan
first and if you late• have the opportunity, e_xpand it to add•ess
other busir.ess ronside•ations.

To help mar.agers get sta•ted, Business Rerove•y Systems has p•epa•ed
"A PRACTICAL GUIDE TO DISASTER RECOVERY PLANNING". It inrludes a
suggested outline for the Disaster Rerovery Plan dorument, a workplan
fo• developing the Plan and a dis0ussion of the steps that must be
ar0omplished. This exrerpted ve·sion of the GUIDE does rot irrlude
the projert workplan. The wo•kpl2n may be obtaired f•om the autho•s
upon request.

When you have finished with this Guide, p•oreed to organize you·
disaster •erovery planning projert. You will probably want to
ir.rlude mar.y of the fr,llowing steps.

FIGURE

LEVELS OF DISASTER RECOVERY PLANNING

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

All Busir.ess Fur.0tior.s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Telephor.e & Mail Commur.i0atior.s

* Vital Re0o~ds *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* Pe~sor.al Compute~s *
* *** *
* * Data P~o0essir.g Use-s * *
* * *********************************** * *
* * * Data P~o0cssir.g Appli0atior.s * * *
* * ***************************** * * *
* * * * Dist~ibuted Compute~s * * * *
* * * * *********************** * * * *
* * * * * Cer.t-al Compute-s * * * * *
* * * * *********************** * * * *
* * * * * * * *
* * * ***************************** * * *
*
*
*
*
*

*
*
*

* *

*
*
* ***

*
*
*
*
* ***

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* ***

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
l!

*
*
*
*
*
*
*
*
* ***

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

STEP 1 - GET STARTED!

Because having a Disaster Recovery Plan is so important to your
organization's ability to stay in operation following a disaste~,
put it on your agenda now and start work as soor. as possible.
The soor.er you begin the better! Should a disaster strike "ext
month, you might not be totally prepared, but you will be better
off than if you do nothir.g today.

If the man-hours needed to do the plan a~e limited, then limit the
scope of the Disaste~ Recovery Plan ar.d simplify the project. The
important thing is to have some plan rather than none at all. Of
course, if you take this approach you will certainly want to beef-up
the Plan in the future, as time allows.

Getting started means identifying the scope of the project you are
willi"g to undertake and the resources you are willing to commit to
the disaster recovery planning process.

STEP 2 - OUTLINE THE DISASTER RECOVERY PLAN

Ir orde~ to begin developing your Disaste~ Recovery Plan, you
must prepare an outline of the Plan. You~ outli"e should be
consistent with the scope of your project ard available resources
you identified in Step 1. Included with this Guide is a suggested
outline (see table 1) that you should fi"d helpful ir this effort.

At this point , you should conside· how the completed Plan will be
p•inted and distributed. You should also r.ote that disaste· recovery
plans, in orde· to •emain viable, must evolve as the business itself
changes ove· time. Most managers will want to develop and maintain
the Plan on a computerized word-processing system. Since the ou~lire
is the beginning of this document p•eparation, this is a good place
to resolve these issues.

DISCUSSION OF THE SUGGESTED OUTLINE

SECTION 1 - OVERVIEW

The first section should provide a general overview of the
Disaste~ Recovery Plan. Be careful to communicate ir. clear
precise language. This section should include statements of
pu•pose and policy, a brief description of the contents of the
Plan and a discussion of you· Readiness Team.

The Readiness Team will consist of a group of people from within
your organization. The Team will be responsible for "fi•st
response" actions in the earliest stages following a disaster.
In outlining this group's makeup and responsibilities, you should
include a statement of purpose, define the position of Emergency
Coordinator, describe the general process of what should happer.
in an emergercy and who the responsible players are.

SECTION 2 - MAJOR SERVICES, USERS AND KEY CONSIDERATIONS

The major servi0es provided by your 0ompute- systems should be
do0umerted ir this se0tior of your plar. Summarize the rature
of your 0riti0al appli0atiors. Do0umert the users of these
appli0atiors, 0riti0al work sohedules ard deperder0ies that
may be inherert ir pro0essirg these appli0atiors. Prioritize
these major se-vi0es. Not eve-ythirg may be re0ove-ed
immediately ir an emerger0y if the 0ompary experier0es a
loss of pro0essirg 0apability. The irfo-matior ir this seotion
will be used to help establish p-iorities ard 0onsider optiors
for assigring resou-0es.

This se0tion should be orgarized by system. Ea0h spe0ifi0
servi0e or system should be available fo- qui0k ard di-e0t
referer0e. Examples of major servi0es a-e: Payroll, Billing,
Produ0tior S0hedulirg ard O-de- Ert-y.

SECTION 3 - POTENTIAL INTERRUPTIONS AND GENERAL PROCEDURES

There are two levels of -e0overy pro0edures whi0h you probably
1-1i.lrt to oddress ir your Disaster Re0ove-y Plar: (1) <-1 "majo-"
disaste- - with detailed p-00edu-es for swit0hirg operations to
a 0ortirger0y 0omputer site ara (2) lesser emerger0ies, or
simply irte--uptiors of se-vi0e, that may or may rot require
swit0hirg to a 0ortirger0y site. This latter set of pro0edu-cs
will be more gcreralized, sir0e you 0arrot prepare for ar unlimited
rumber of possible irter-uptiors of servi0e whi0h might 000ur.

This se0tior of you- plar should address lesse- erne-ger0ies ard
irterruptiors. It should be o-garized by the most serious ard/or
p-obable emerger0ies whi0h might 000u-, su0h as: min.or fires,
powe- outages, tele0ommuri0atior failu-es ard ha-dwa-e failu-es.
Ir0luded fo- ea0h type of irterruption should be the GENERAL
pro0edures for hardlirg the emerger0y, alorg with the detailed
a0tiors whi0h va-y from situatior to situatior. You- stcitcd
obje0tive may be to operate ir a less-automated fashion. while
rcsto-ir~ rormal service as soor as possible.

SECTION 4 - POLICIES FOR REDUCfNG RISKS

Wner you have idertified potertial irter-uptiors of servi0e, as
you did i" Se0tior 3, you are ready to defire poli0ies fo­
-cdu0irg risks relative to those eme-ger0ies. You may have
most of these poli0ies already ir pla0e. The purpose of this
sertior is to do0umert those poli0ies for easy refe-er0c.

This se0tior should be orgarized as a series of policies, su0h
as p-ote0tior of data, prote0tior of fa0ilities, offsite forms
sto-age, irsu-ar0e, et0. Addition.ally, for eo0h poli0y, two
kirds of risk redu0tior should be addressed: (1) redu0irg the
risk of the irte-ruptior 000ur-irg ard (2) if it does 00ru-,
-edu0irg the risk of an inadequate re0ovc-y p-00ess.

SECTION 5 - CONTINGENCY SITE DESCRIPTION

This se<'tior. should in0lude a des0riptior. of you- 0or.tir.ger.0y
0omputer site for major disaste•s affe0tir.g your 0omputer
operatior.. It should state the 100atior., rames of 0orta0ts
ar.d telephor.e rumbers. It should des0ribe the 0or.tir.ger.0y
hardware, software ar.d fa0ilities. It should des0ribe the
accommodatior.s for your orgar.izatior.'s staff, schedulir.g
0or.side•atior.s, limitatior.s ar.d procedures.

Busir.ess Recovery Systems provides this ir.formatior. to its
disaster recovery hot-site clier.ts. You should be able to
obtair. the r.e0essa•y informatior. from ar.y othe• cor.tir.ger.cy
site that you select.

We should poir.t out that selectir.g a cor.tir.ger.cy computer
site is a VERY IMPORTANT part of the disaster recove•y plar.r.ir.g
p•ocess. Some orgarizatior.s go the •oute of developir.g a
mutual backup a··angemer.t with other o·gar.izatior.s in the same
city or ger.e•al vicir.ity. We believe that very few if ar.y of
these ·eciprocal agreements arc really wo-kable, so be ca•eful
with such ar. app-oach. How mar.y busir.esses would really be willing
to severely limit their computer fur.ctior.s for ar.other orgar.iza­
tior. which has experier.ced a disaster'? Alterr.atir.g schedules
a•e ger.erally rot feasible because of cor.flictir.g configuratior.
requiremer.ts ar.d the substantial amour.t of time required to
reload a"d recor.figure. What site could possibly have so mu0h
excess disk spa0e to rur. two systems side-by-side'?

Two alterr.ative approaches are available: hot-sites a"d <'Old-sites.
A hot-site provides ar. ur.used 0ompute· whi<'h is ready and
waitirg ir a workirg facility. A cold-site provides orly the
facility ard rot the computer, ir. which case you have to obtair.
the computer from the manufa0tu·er o· some other source. We
recommend that you choose a hot-site if at all possible. It may
t~ke weeks to o-de~ ard irstall the ~e~essary hardwa-e t0
~c~over you~ busiress usirg the <'old-site approa0h.

SECTION 6 - RECOVERY PROCEDURES FOR A MAJOR DISASTER

Now comes the mair part of the Disaster Re0overy Plar.. You
should by r.ow have defir.ed a gere~al Readir.ess Team, defired
gere•al p•ocedu•es for spe<'ifi<' kirds of service ir.ter~uptiors,
ar.d idertified a 0ortir.ger.0y 0omputer site. Krowir.g these
thirgs, you can develop specifi<' pro<'edures for a m~jor disaste•
that -equires swit0hirg compute- operatiors to a cortir.ger0y
site due to destructior of the data 0erter or othe- fa0tors.

This sertion should inrlude definitions of Emergenry Artion
Teams and their responsibilities, proredu·es for artivating
rontingenry site operations, sperifir proredures for data
proressing operations and interfare requirements for user
departments. It should also inrlude proredures fo• replarement
of the data renter and return to normal operations. This will
be a lengthy po•tion of the Disaster Rerovery Plan and should be
organized as a series of p•oredures listed by name in the table
of rontents.

SECTION 7 - TESTING AND MAINTENANCE OF THE PLAN

This sertio~ should rontain poliries and proredures for testing
and maintaining the Disaster Rerovery Plan. There is no
assuranre that the Plan will work unless it has been tested.
You must be ronfident that the romputer rontingenry site
is wo•kable, that the proredures do not have terhniral or
other unforeseen problems and that key people understand the
Plan both in the gene•al and sperifir rases.

Just as important, the Plan must be reviewed and updated on
a regular basis. The Plan mu~t evolve i" pa•allel with your
organization, sir.re very little about a business remains statir
fo• any length of time. It must be reviewed and updated for
organizational, terhnologiral and business envi•onment rhanges
that may have orrurred.

APPENDICES

Finally, the Disaster Rerovery Plan should have attarhed as
appendires all additional sourres of vital information whirh
may be needed to rar•y out the rerovery proredures. Examples
are dirertories of employee names, addresses and phone numbe·s,
ha•dwa•e and data renter ronfigu•ations, and so on.

STEP 3 - PREPARE A WORKPLAN

Having a projert plan is always important to a projert's surress.
Spend the upfront time to prepare a projert plan, inrluding making
estimates of the resou•res that the projert will take. An example
workplan is not inrluded with this artirle, but may be obtained
from the autho•s upon request. It will be a good starting plare;
but you must refine it for your organization.

A workplan breaks the projert down into tasks and steps. For earh
task and step, levels of effort should be estimated in man-hours
o• man-days. Having determined your planning projert srope, the
p•obable projert team and the outline of the plan to be developed,
you should be able to estimate work effort and prepare a srhedule
to arromplish earh task.

The workplar gererally follows the outlire of the Plar. The
wo~kplar defires actual steps which must be performed, while the
outlire lists specific services, irterruptiors, policies, procedures
ard apper.dices r.ot r.ecessarily itemized ir you- workplar. You
may wish to expard you- workplar to ir.clude more detailed sub-steps ir
order to accurately estimate the resource requiremcrts. Note that
a typical workplar cor.sists of two parts: (1) a detailed work-
plar which shows the steps withir each task ard (2) a summary workplar.
which lists the tasks orly (detailed steps are rot showr). The
detailed workplar. is r.ecessary to plar specific wo-k which must be
accomplished; the summary is useful for a high-level project view.

STEP 4 - CONDUCT THE PROJECT ACCORDING TO YOUR WORKPLAN

Now you are ready to begir the real work of the Disaster RecovEry
Plar. As you should row realize, the project corsists of aralysis,
plarr.ir.g ard documer.tatior. Your project team r.eeds to corsist of
good, gere-al aralysts. Your team may well all be mar.agers.

As you r.o doubt k"ow, project plars usually are rot perfect. Thirgs
come up that char.ge your expectatiors, the sequer.ce of tasks ard
your time estimates. Proceed as ar.y good project ma"ager would by
beirg adaptable ard -ememberirg the real goal -- to develop a Plar
that will help you- orgarizatior survive a compute- disaster ard
keep its busiress successful.

Michael J. O'Malley is Presidert of Busiress Recove-y Systems, Ire.
M-. O'Malley has ove- 12 years of expcrierce workirg with data
processirg maragemert ard use~s. Mike is ar. MBA ar.d a Ce-tified
Public Accourtart i" the State of Colorado.

Raymord J. Posch is a Ser.ior Mar.ager fo- Busiress Recovery Systems,
Ire. His -esporsibilities irclude Recovery Plarr.irg ar.d Custome­
Support. M-. Posch has ove- 17 yea-s of data p-ocessirg, operatiors

a"d plarrirg experierce. Ray is a Certified Data Processo-.

Busiress Recovery Systems, Ire. provides cortirgercy Hot-Site &rd
other Disaster Recove-y se-vices. A complimertary GUIDE may be
-equested by callirg 1-(800)654-2493.

1. 0

1 • 1
1. 2
1. 2. 1
1. 2. 2
1. 3
1. 3. 1
1. 3. 2
1. 3. 3
1. 3. 4
1. 3. 5
1. 3. 6
1 • 3. '7
1. 3. 8

2.0

2. 1
2.2

2.r

3.0

3. 1
3.2
3.3
].4
.: • 5
].6
3.7

11. ()

TABLE 1

SUGGESTED OUTLINE

DISASTER RECOVERY PLAN

OVERVIEW

Obje<'tives
Ove~view of the Plar
Poli<'V Stateme"t
Corte~ts of the Plar
The Rcadiress Team
Pu· pose
o~garizatior a"d Plarri"g
Emc~ger<'y Coo~dirato~

Alte~rate Eme~ger<'y Coo~dirato~
Offsite Eme~ger<'y Coo•di"ato• & Alte•rate
The Use of Eme~ger<'y A<'tior Teams
Eme•ge"<'Y Co"t·ol Certe·
Maragemert Su<'<'essior

MAJOR SERVICES, USERS AND KEY CONSIDERATIONS

System 111
System f.12

System llr.

POTENTIAL INTERRUPTIONS AND GENERAL PROCEDURES

Fi~es

Ele<'t~i<'al Powe· Outages
Tele<'ommu"i<'atio"s Failu~es
Ha~dwa•e Failu~cs

Softwa•e Failu~es
Appli<'atiors Failu~es
Majo~ Disaste~s

POLICIES FOR REDUCING RISKS

4. 1 P·ote<'tior of Compute• Dat<J
4.2 P~ote<'tior of Data Certe~ Ope·atior
4.3 P~ote<'tior of Vital Use• Re<'o•ds
4.4 Ba<'kup of Ha·dwa·e, Softwa·e, Supplies ~ Fo~ms
11. 5 Insu~8N'e

5.0 CONTINGENCY SITE DESCRIPTION

5. 1
5.2
5.3
5.4
5.5

Corti"ge"<'
Ma<'hirc Co
A<'<'ommodat
AC'C'ommodat
S<'hedulirg

Site LoC'atio" ard CortaC'ts
figu·atior ard Fa<'ilities
ors fo~ Data P•o<'essirg Staff
ors fo~ Use~ Depa•tme"tS Staff
Corside~atiors

SUGGESTED OUTLINE (0or.tir.ued)

6.0 RECOVERY PROCEDURES FOR A MAJOR DISASTER

6.1 Emerger.0y A0tior. Teams ar.d Respor.sibilities
6.2 Notifi0atior. of Emerger.0y Teams
6.3 Notifi0atior. of Cor.tir.gen.0y Site Provider
6.4 A0tivatior. of Cor.tir.ger.0y Operatior.s
6.5 Spe0ifi0 P-00edures for Data Pro0essir.g Operatior.s
6.6 Spe0ifi0 Pro0edures for User Departmer.t Operatior.s
6.7 Pro0edures for Repla0emen.t of Data Cer.te-
6.8 Pro0edu-es fo- Return. to Normal Operatior.s

7.0 TESTING AND MAINTENANCE OF THE PLAN

7.1 Poli0ies ar.d Pro0edures fo- Testir.g
7.2 Poli0ies ar.d Pro0edures for Review ar.d Update

APPENDICES

A. Emerger.0y Team Lists: Names, Phor.e Numbers & Addresses

B. Data Pro0essir.g Orgar.ization Cha-t

C. Data Pro0essir.g Di-e0tory: Names, Titl~s & Phon.e Numbe-s

D. User Depa-trnents Di-e0tory: Names, Titles & Phor.e Numbers

E. Ven.do- Lists: Names, Numbers, Addresses & Des0-iptions

F. Servi0e Agreemen.ts

G. Hardware Con.figuration.

H. Software Cor.figu-ation.

I. Appli0ations Con.figuration.

J. Data Cen.ter Cor.figu-ation. & Spe0ifi0atior.s

K. Ope-atior.s S0hedules

L. Dist-ibution. List for the Man.ua 1

DISASTER RECOVERY BACKUP HARDWARE

- Keeping Your Company in Business -

VIPOOL M. PATEL

HEWLETT-PACKARD COMPANY

Abstract

As computers become more critical to the operations of a business, downtime

becomes increasingly more costly. In some cases, it may even result in the

shutdown of an entire business. Executives and MIS staff alike are seeking ways

to protect themselves from the consequences of a system disaster due to fires,

earthquakes, floods, sabotage or other reasons.

This paper deals with the need for having backup hardware. It discusses different

alternatives for backup hardware, and addresses a common objection for not

subscribing to a backup hardware service (Appendix A). Finally, the paper

touches on practical issues of implementation such as developing a plan, working

with a backup vendor, and rehearsing a recovery.

The Need for Backuo Hardware

Backup hardware is a general term for the availability of computer hardware and

peripherals for use in an emergency situation.

Backup hardware gives the MIS director more peace of mind, and it gives the

executive more freedom from audit concerns. Although these are extremely

important, the primary benefit of backup hardware is keeping a company in

business.

There is a growing dependency on computer processing thoughout all areas of

business. With this trend towards automation, a return to manual processing may

not be achieveable in an emergency situation.

Disaster Recovery Backup Hardware - 1

The following are examples of critical operations where the high cost of system

downtime necessitates backup hardware.

Financial Services

Financial services manage the flow of money, a process that does not tolerate

disruption. One HP customer interested in backup hardware is responsible for

stock transfers and dividend payments. If a seventy-two hour turn around time is

not achieved, a large fine is imposed by the Security and Exchange Commission.

Most of the seventy-two hours are needed for data entry, printing, and

distribution, leaving a very small window for the computer processing. In the

event of a disaster, processing could not be delayed more than twenty-four hours.

Payroll

Payroll is a business basic that needs to be completed even if a disaster strikes.

Timely payroll becomes even more important when there is tension existing

between management and employees. One HP customer reported that union

employees were ready to riot because paychecks were one hour late. Each day

payroll is delayed could mean a day of lost employee productivity.

Orders

Sales order management is often sited as a critical application. Orders are a

company's life blood and need to be quickly processed for continued operations.

This is why HP gives the name "HEART" to its central ordering system. Orders

from HP sales offices throughout the country are routed to HEART which

redirects the information to appropriate divisions for product shipment. If

HEART goes down, HP comes to a hault. This is one reason why HP has a fully

rehearsed disaster recovery plan with backup hardware.

Distribution

Distribution operations are becoming very highly dependent on computing

capability. One customer uses HP systems to make distribution decisions that send

trucking assignments directly to the warehouses. Another company differentiates

itself by offering twenty-four hour delivery through the use of computers. Delays

in distribution results in customer dissatisfaction, higher inventories, and delayed

invoicing.

Disaster Recovery Backup Hardware - 2

Billing

Accounts Receiveable is an application which is common to most businesses.

Businesses can not afford to provide goods or services to customers without billing

in a timely manner. There are opportunity costs associated with the inability to

track and effectively allocate revenues. Consider a phone company that records

billing information and charges customers on a monthly basis. Each day those bills

are delayed could result in lost interest on millions of dollars of revenue. The cost

of backup hardware is insignificant in comparison.

Manufacturing

According to Infocorp, manufacturers comprise 45.8% of the HP 3000 installed

base. Manufacturers use critical applications such as MM3000, HP Production

Management and Work Order Control. These environments favor a local backup

hardware solution because of the dependence on direct terminal connectivity.

Others

Almost any system, whether large or small, that is used to meet a deadline is a

candidate for backup hardware. Newspapers can not make up missed issues caused

by a system failure. Companies can lose large contracts because of a late response

to a Request for Proposal.

Alternatives for Shared Backup Hardware

Although redundant systems, reciprocal agreements or service bureaus can backup

computing capability, shared backup hardware may be more cost effective or

reliable. Shared backup hardware means that one system is used to backup a fixed

number of systems, usually operated on a first come, first served basis. The four

most common forms of shared backup hardware are warmsite, hardware delivery,

mobile and virtual machine.

Warmsite

With the industry standard called a warmsite, the customer travels to a location

which is fully equipped with a computer, peripherals, computer room,

telecommunications, and office space. Because of all of these facilities and

capabilities, a warmsite is more expensive than most of the other alternatives.

Disaster Recovery Backup Hardware - 3

INDUSTRY STANDARD SHARED BACKUP HARDWARE

i::,

1) WARM SITE:
Customer travels to a fully conf lgured system
and computer room

~· 2) HARDWARE DELIVERY:
....

~ System Is flown to a predetermined customer
c

.§ location within 24 hours
~
::::. ,...
;.:..

.;
~
" <>..

" ::::.
~

.....

3) MOBILE:
System Is delivered to the customer In an
air-conditioned, trailer with generator power

4) VIRTUAL MACHINE:
Customer uses terminals and data
communications to connect to a remote
computer

__&_

CJCJCI m mm ODO i::m
ODO 1 m a
ODD "----~I D

LL c: JP:u;::~
0 00

~ [ITJ

A warmsite is a good solution for systems in batch processing environments and for

systems susceptible to disasters (such as flooding) when both backup hardware and

computer room are required. The warmsite is ready to use as soon as the customer

arrives, and rehearsals are conducted at the warmsite so the data processing staff

knows what to do in the event of a disaster.

A well equipped warmsite will have leased lines and dial-up modems for businesses

needing terminal support. Telecommunications requirements can make a warmsite

an inappropriate solution, especially for customers who use communications lines

that can not be redirected to the warmsite.

Hardware Delivery

Hardware Delivery means a computer and peripherals are flown or delivered to a

pre-determined customer location within twenty-four hours. A computer room is

not included, making this is one of the least expensive solutions. The customer

needs to make separate arrangements for leasing a backup computer room if one is

not available at the customer's location.

Hardware Delivery is a good fit for customers with systems from different vendors

which all need to be backed-up at the same location. Since the computer is

brought to a pre-determined location, existing or backup telecommunication lines

can be used.

A rehearsal is not performed at the customer's location so the data processing staff

does not get to practice in the same situation faced during an actual disaster and

recovery.

Mobile

For customers who need a backup computer and facility but can not reroute

telecommunications to a warmsite, mobile may be a good alternative. Mobile means

a computer and peripherals are delivered in an air-conditioned trailer with

generator power.

The mobile solution may require long travel time and is not effective in large

cities where parking space is not available. Although an air-conditioned computer

facility is provided, the customer still needs to supply office space and other

facilities. Providing security in a trailer is also more difficult than providing

security in a building.

Disaster Recovery Backup Hardware - 5

Again, if a rehearsal is not conducted at the customer's location, it will not

accurately represent the situation faced during an actual recovery.

Virtual Machine

The customer can use terminals and telecommunications to connect to a remote

system. Users would continue to work at the same terminals or change locations if

necessary. Processing can resume as soon as tapes are sent to the remote location.

This alternative reduces costs because the data processing staff does not need to

travel for rehearsals or in the event of a disaster and because equipment is not

moved.

Virtual machine is limited by the speed and availability of telecommunications.

Creative solutions using satellite or other advanced technology continue to be

investigated to provide more rapid and transparent recovery.

Imnlementation Issues

There are many practical issues to address when implementing backup hardware.

Some of the larger considerations are developing a contingency plan, working with

a backup hardware vendor and rehearsing a recovery.

Contingency Planning

In practice, backup hardware is often purchased before planning. However, it is

extremely important to prepare in advance for the many operating and staffing

procedures required for a successful recovery.

A contingency plan documents the procedures taken in the event of a disaster. In

addition to documenting the steps needed to use backup hardware, this plan can

include areas such as personnel safety, site relocation, responsibilities, insurance

activities and notifications.

Disaster Recovery Backup Hardware - 6

Choosing a Reliable Source for Backup Hardware

If a customer decides that backup hardware is necessary, it must come from a

reliable source. Even though costs may be lower, protection decreases with backup

systems that are used for other businesses or for timesharing.

Customers should be cautious of vendors offering backup hardware that can not be

regularly handled. There have been instances of customers subscribing to backup

hardware which did not exist.

Customers should also check the financial stability and history of a backup

hardware vendor. The vendor should have the ability to obtain all needed support

resources to contribute to a successful recovery. The vendor should also have the

resources to upgrade so the customer's growth path is not limited.

Rehearsals

Rehearsals of recovery on a backup system have only proven the need for such a

practice. Besides allowing the dataprocessing staff to practice the logistics,

stepping through an emergency scenario can help avoid potential technical delays

in recovering a system during an actual disaster.

During this type of dry run, one HP division encountered a problem with

hardcoded passwords which could only be solved by recompiling the program.

Customers are more likely to have a successful recovery by preparing for a reload

made during a rehearsal because it will be prepared for the configuration of the

backup system.

The backup tapes must also contain an operating system which is suitable for the

firmware in the backup system. Customers can encounter computing errors when

the backup firmware is not compatible with their operating system.

Disaster Recovery Backup Hardware - 7

Conclusion

Customers should understand the criticality of different functions of their business

in determining their need for backup hardware. The recommended procedure is

first to develop a plan, second to obtain backup hardware, and finally to

frequently rehearse to ensure successful recovery.

Because of the time required to investigate their needs and alternatives, customers

should begin the process as soon as they recognize their strong dependence on

computer processing capabilities.

Vipool Patel is presently Systems Support Product Manager for the Product

Support Division at Hewlett-Packard in Mountain View, California. In this

capacity he is responsible for the development and marketing of backup hardware

products. Vipool joined HP in 1984 and holds degrees in Industrial Engineering

and Engineering Management and in Economics from Stanford University.

Disaster Recovery Backup Hardware - 8

Appendix A - The Objection of Possible Multiole Disasters

A common objection to subscribing to a shared backup hardware service is the

possibility of two customers needing backup at the same time. This is a strong

objection for a customer concerned about wide scale disasters such as earthquakes,

or power failures in an entire city. However, the objection becomes statistically

weak if the concern is about two different customers having concurrent isolated

disasters such as a fire.

Approximating the Probability of a Disaster

According to a 1985 study by International Data Corporation, in the U.S. there

were 56,100 computer sites with a system valued over $100,000.

A conservative estimate of the number of disasters at those sites over that last five

years is one hundred, averaging twenty per year.

Customers using a backup system because of a disaster are likely to have their

computer replaced in one quarter (three months). Assume disasters in different

quarters would not cause a problem of multiple demand. The quarterly average

number of disasters is five.

The probability of a given site having a computer disaster during any one quarter

is the average number of disasters per quarter divided by the number of sites.

5 Disasters

X= = .0001 or 1/10,000

56,100 Sites

The disaster rate for this sample can represent the disaster rate for the rest of the

U.S.

Assumptions for Arguments I and 2:

- One hundred and one customers share the same backup hardware

- As shown above, the probability of customer Z having a disaster is X or 1/10,000

- The probability that at least one of 100 customers has a disaster is 100 times X

- For the purposes of isolated disasters, assume that the events are independent

- P(A and B) = P(A) x P(B) if A and B are independent events

Disaster Recovery Backup Hardware - 9

Argument 1:

The first statistical argument says that since the probability of any customer

having a disaster is so small, the probability of two disasters out of a select group

of one hundred is insignificant:

The probability of Customer Z having a disaster and at least one of the other 100

remaining having a disaster is equal to the product of the independent

probabilities which is 100 x2 or 1/1,000,000.

It is argueable that the probability of one in one million is too insignificant to

support an objection.

Argument 2:

The second statistical argument says that the probability that no one else is using

the shared backup system at any time is close to 1 for I.

The probability is 1 for 1 that no one else is using a backup system when it is a

redundant system (not shared).

The probability that no one else out of one hundred others is using the shared

backup system is 1 minus the probability that at least one customer has a disaster.

This is equal to (1 - iOO X) or (1 - .01) = .99

By moving from a redundant system to a backup shared by 100 customers, the

probability that no one else is using the backup system only decreases one percent.

To some customers, this small sacrifice may be worth the costs saved with a shared

backup.

Disaster Recovery Backup Hardware - 10

An Approach to Networked Community Filing.

by: Andrew Pearce - Hewlett Packard
Office Productivity Division
Nine Mile Ride,
Wokingham, Berkshire
England.

Summary: The needs and working practices of groups of office workers are
increasingly being taken into account in the development of office computer
support products. Community filing systems must recognize and support the
size and distribution of workgroups by providing for the organization and
security of arbitrary groups of users. They must also have the underlying
filing structures to assist in information retrieval by different workgroups.

HP File/Library, a recent product supplied as an option to
HP DeskManager, uses the group membership feature of HP Desk to allow
workgroups to be configured. It also has a simple "flat" structure of catalogs
within a Library, rather than a more conventional hierarchical filing
structure of folders within folders within drawers, etc.

This paper discusses these features with regard to how the workgroup
management and catalog structure could be extended in the future to a
networked community filing capability. In particular, how workgroup
configuration and security control over networks can be provided.

The Rise and Fall of the PC workstation.

Today's office software products continue to strive for greater integration between
different functions. In the HP Personal Productivity Center, electronic mail,
word-processing, filing, time management, resource scheduling, graphics, spreadsheets,
and database access, can all be accessed from one product interface. And the real
action, we are told, is away from a terminal int~rface to a PC/workstation user interface.

Terms like "secretarial workstation", "desktop computer", "PC/workstation" have been
around for some time now. All conveyed the vision that each office worker would have
the power - and potential for productive work - of a full computer on their desk. Ask
yourself in which areas the stand-alone PC/workstation has been most successful?
Word-processing, spreadsheets, database management, and games are four certain little
winners that spring to mind.

Not surprisingly, the most popular applications were those that supported stand-alone
activities. Yet many real office tasks require users to switch from one application to
another, and to share workloads. A tighter integration between functions was seen as
one direction for improvement. Relatively overlooked up to now has been the need to
support groups of people working independently on similar tasks, or parts of the same
task.

An Approach to Networked Community Filing. Page I

Stand-alone wordprocessors were successful where an individual secretary or typist
generated letters, memos, etc., or made changes to existing documents. Parts of much
larger documents could be generated by several workers independently, and then brought
together for publishing - but this required a great deal of (manual) organization. The
stand-alone wordprocessor couldn't offer much help in this area.

The same is true of the spreadsheet. Several accountants given the task of composing a
large spreadsheet could develop their own parts independently, but then had to organize
sharing a master file into which they could build and link in their own sections.

Person-to-person communication has been supported by office mailing systems, and this
has been one of the most familiar ways of sharing documents. (Another familiar way is
swapping diskettes around). But mailing systems have primarily provided individual
workers with the means of distributing their own documents to other individual workers.
Until recently, mailing systems have not supported the activities of groups of users
working together.

And what about filing all those documents that are produced and distributed? Most PC
filing systems today provide individual workers with the means of managing their own
set of documents.

The PC/workstation v1s1on originated from the idea of providing support for personal
organization, rather than providing support for a person in an organization.

Next bandwagon - Workgroup support.

Take the previous section as a light-hearted view of maybe why minicomputer-based
software has withstood the PC office software onslaught - up to now. If there is to be a
contest in the office between distributed PC LANs, and minicomputer hubs with central
processes serving users on PC LANs, it will be won on the merits of software that can
support groups of users working on joint activities.

A few people in the office and business systems industry have been trying to promote
better computer support for groups of users for some time. Only now are we beginning
to see support for workgroups appearing in office software.

HP's general office strategy is to move as much processing out to the PC/workstation as
possible. The minicomputer will then be the central workhorse for application services,
and will be particularly important for community document storage.

Given this approach, how can we best support groups of people working together?
Three basic characteristics of workgroups to consider are:

A. Size.

B. Spread.

We need to be able to support workgroups of any size - from one person
to everybody.

The distribution of workgroups is an important consideration. Some
groups work together in the same room, others may consist of one or
two workers from several departments spread around a building, others
again consisting of individuals located on different bits of the planet.

An Approach to Networked Community Filing. Page 2

C. Scope. "Scope" in the sense of the diversity of information and organizational
support required for workgroup functions.

The third concept is not so straightforward, but is worth considering further. Doubtless,
the tasks tackled by different groups of workers have quite different requirements for
scope (or breadth) of information. Similarly, the workgroup activities that use the
information are diverse.

Typically, a workgroup tackling a task with broad objectives will cast a wide net for
information, and will need support for filtering and interrogating this information, as
well as organizing the collective effort. An example is the group of consultants required
to brainstorm a creative future business strategy for a company. It's a one-off task.
They don't know where the information is, so they have to cast a wide net for
information across public and internal networks. They need sophisticated information
retrieval and filtering, and support for possible delegation of some tasks to
sub-workgroups.

At the other end of the scale is the group of workers who use a known set of
information in a well-defined and typically repetitive process. For example, a group of
accountants compile a quarterly financial report. The information is obtained from well
known sources, and the aim of the group is to speed up and automate the process as
much as possible.

The flower in the storm - HP File/Library.

HP File/Library is a recent product introduced as an option within the HP DeskManager
product. It provides community filing and archiving for users who are registered and
can log onto HP Desk.

Users can file any documents they have in HP Desk in the Library. This allows them to
share the documents with any other individual or group. When a document is placed in
the Library, the user is prompted to supply fields for an electronic "index card". These
fields are attributes that can be used later in specifying a search for the document. The
user can supply four attributes:

Subject
Author
Keywords
Comment

: up to 60 characters
: up to 60 characters
: up to 240 characters
: up to 480 characters

The Subject and Author attributes are extracted automatically where possible.

The Keywords can be defined as a multi-value attribute; ie, delimiters are used to
distinguish a number of separate keywords specified from one prompt. The other
attributes are single-value, although individual words or substrings from their contents
can be used when searching.

An Approach to Networked Community Filing. Page 3

Four system-supplied attributes are set in addition to the user-supplied ones when a
document is added to the Library. These are:

Document Type
Creator
Date created
Status

HP WORD, MESSAGE, ADV ANCEWRITE, etc.
The HP Desk registered name and location of the creator.
When the document was created.
A document in the Library can be offline, checked-in,
checked-out, pending archive, archived, or pending retrieve.

The user also specifies the catalog in which the document is to be placed. The Library
is organized in three levels - with the Library at the top level containing catalogs at the
next level, which in turn contain indexed pointers to documents at the third level. The
documents could be HP Desk composite items, such as messages, but the parts within a
composite item would not be independently indexed in the Library.

Why CATALOGS? Why not have cabinets, with drawers and folders?

Many people expect a filing system to have a deeper hierarchical structure. A filing
cabinet containing drawers, which in turn contain folders, which may contain more
folders and finally, documents. This expectation is not unreasonable given the existing
HP Desk filing cabinet, and the paper office filing systems many of us are familiar with.

However, a simpler, flatter structure of Library, Catalogs, and Documents has certain
advantages. First, there is no requirement for the user to know where to file a
document - other than the appropriate catalog. For this reason catalogs can contain very
large sets of documents - typically all the documents filed by a small department or
workgroup - on any subject. They can also contain references to books and other
documents stored offline.

In the hierarchically organized filing system, deciding where to put an item so that it
can be easily found can be difficult and time-consuming unless it is well organized and
all users agree on one set of filing rules. This may be appropriate for a specific
application where a group of users simply want to replace an existing hierarchical filing
system.

An Approach to Networked Community Filing. Page 4

AN HIERARCHICALLY ORGANISED FILING SYSTEM

Top Level
File Access

/ ~
Sa,les Srvice

_I T~ms and Conditions I Cu~tomer Support Servi::es

Purchase Agreements Custom Development Agreements

Development Agreements

Software Supplier Agreements

Reseller Agreements

Consutatlve Terms

Contract Development Terms

etc.

Distribution/Dealer Agreements

etc.

For example, this contracts department needs to keep two types of contract - Sales and
Service. Within the sales section, items are are filed under sub-areas such as: Terms and
Conditions, Purchase Agreements common forms and several product lines,
Demonstration/Development Agreements, Products Supplier Agreements, etc. A similar
range of sub-areas could exist under the Service section.

A limited and known set of document types will be kept, and we can say that the
"scope" of information to be retrieved is narrow and well defined. When a new type of
document is added, a new place has to be found for it. Also, when the nature of the
document is ambiguous, ie. its content spans several areas, then separate copies have to
be filed in different places.

In HP File/Library we advocate replacing the area and sub-area names with keywords.
So, when filing a Purchase Agreement, for example, the first keyword would be "Sales",
the next "Purchase Agreement", the next "Widget Line #34", and so on.

This effectively increases the scope of information available for future retrieval.
Suppose a group of users started using the same catalog for storing patent actions and
proposals, some of which involve Widget product lines. Later, another group of users
may need to search for all historical (archived) information on development and sales of
Widget products.

The contracts group can only see the documents that they have added to the catalog.
Likewise, the patents team only see their documents. But there is a set of documents
about Widgets - some concerning contracts, others patents - that is now easily accessible
to the third group.

An Approach to Networked Community Filing. Page 5

This is basically the advantage gained by using a relational model over an hierarchical
one. Originally unrelated, intersecting sets of information can be identified and
retrieved. The bottom line for the user is that documents stored with one specific
process in mind can be useful for future unanticipated requests by other users.

Another reason why we think the flat structure is good for community filing is simply
the fact that all Libraries look the same. Anyone logging onto any Library on any
machine knows and understands that structure.

Furthermore, when a user searches a catalog, the set of documents matched become his
own personal view of the catalog which is persistent between his HP Desk sessions. The
overlying structure of Library that he sees is unaltered, ie; the documents are still "in the
same place".

An Approach to Networked Community Filing.

The key word of this section is "approach", because that's where we're at today. The
first release of HP File/Library has been integrated into the HP Desk product as a new
area. But the product is designed to be accessed by other programs.

The HP Desk user interface has been extended to provide commands within the Library
and Catalog areas. This extension uses a programmatic interface to access the rest of the
product. The HP Desk database is used for storing the content of documents that are
indexed in the Library. Currently, any other program wanting to use Library would
have to supply its own document store.

An Approach to Networked Community Filing. Page 6

Fl LJ

PROCESS COMMUNICATION IN HP FILE/LIBRARY

USER INTERFACE

FIL PAOGRN.IMATIC
INTEA!ilCE

HP DESK
DATABASE

FIL DOCWENT STORE

An Approach to Networked Community Filing. Page 7

When the Library is started, a Resource Controller (RC) process spawns a configured
number of catalog server processes which are responsible for accessing the catalog files.
One catalog server is normally dedicated to the Library catalog, and the other catalog
servers are assigned catalogs as and when users request to open them.

Each user interface process logs onto the Library by passing a log-on request to the RC.
From then on, the RC handles the passing of catalog access requests and replies between
user interface and catalog server processes.

One major advantage of this design is that it obviates the need for catalog contention
locking mechanisms. A catalog can only be assigned to one catalog server, and requests
from different users to access the same entry in a catalog are simply handled in sequence
in the order the requests are read from an interprocess communication (IPC) file.

A limitation of the current design is that it can only support community filing for users
on one machine since every user accesses the Library by first logging onto HP Desk.
Hence the workgroup size and spread considerations need attention in further
developments of the product. Access to remote libraries may be achieved using LAN
protocols and the HP Desk mail transport mechanisms. One important factor will be the
recognition of classes of workgroups across networks of machines.

The Link between Security and Workgroup configuration.

Security has been provided at the three levels of the product:

Library

Catalog

Document

Manager access

Add access
Delete access

See access

Manager access

Add access
Delete access

See access

Manager access

Edit access
Copy access
See access

to configure access various groups have to the
Library.

- to allow catalogs to be added to the Library.
- to allow catalogs to be deleted from the

Library.
- to see the Library.

to configure access for groups and users to a
catalog.

- to allow documents to be added to a catalog.
- to allow documents to be deleted from a

catalog.
- to see a catalog.

to configure access for groups and users to a
document.

- to edit a document.
- to copy a document.
- to see a document.

The philosophy of Library security is that any user, or group of users, only see those
items for which they have been granted 'See' access. Thus, every user has potentially a
different view of the catalogs available, and the documents listed within the catalogs.

An Approach to Networked Community Filing. Page 8

Furthermore, there is no "super-manager" who can see all entries in the Library. All
users can hide, or share, the documents for which they are responsible.

Groups of users are currently defined using the HP Desk group membership feature.
This can be done by an HP Desk administrator using the configuration program. Once a
group has been configured, specific types of access can be given to the group at any of
the three levels of Library.

So, for example, a contracts manager asks his administrator to set up a group for his
department. This is the group who regularly file away specific types of document into a
catalog created by the Manager and called "Sales and Service Contracts". We can say that
the scope of this information is "narrow", or well-known and defined. They are all
granted 'See' access to the Library, and 'Add', 'Delete' and 'See' access to the catalog.
The manager ensures that his group are granted 'Edit', 'Copy' and 'See' access to all
documents as they are added by any members of the group and, in addition, gives
another group called "WideAccess" 'Copy' and 'See' access to the documents.

Later, he agrees to rename the catalog to "Contracts and Patents" and gives a new patents
group 'Add', 'Delete' and 'See' access to his catalog. The patents group can all edit,
copy, and read their own documents, but cannot see any of the Contract documents.
The "WideAccess" group is also given 'Copy' and 'See' access to all patents documents.

Much later, the contracts manager is asked to allow the Wide Access group to issue a
search for information in the catalog, so he grants 'See' access to the WideAccess group.
Members of the WideAccess group can then see (and copy) ALL the documents held in
the catalog.

Clearly, the access needed by different groups is related to the scope of information they
require to do their task.

The investigations for future possible releases of HP File/Library will consider how the
current approach can be extended to enable Library access across networks of machines.
The following improvements to our approach are under investigation:

o The method of configuring workgroups would be greatly improved by taking the
responsibility away from the HP Desk administrator. There is also a case for
specifying the scope of information required by a workgroup. This would enable a
workgroup to inherit certain known and accepted rights for access to remote
libraries.

o To maintain proper security, it is important that a broad scope group still asks to
access catalogs that are normally hidden. This could be supported in software
rather than as a personal request.

o The basic security mechanism is suitable for controlling access by any user or group
from other locations. However, the maintenance of security could be improved by
enabling access to be given to new groups retrospectively. Currently, this can only
be done by changing the security for each item individually.

An Approach to Networked Community Filing. Page 9

Concluding Remarks.

The central theme of this paper has been how well the current design of HP
File/Library fits in with the growing need to provide workgroup support in a
community filing application. We believe the three-tiered structure of a Library
containing catalogs which contain lists of documents, has many advantages for
community filing.

Three high-level characteristics of workgroups were discussed - Size, Spread, and Scope.
We concluded that the current limitation of users access to one Library on one machine
does not adequately provide for the expected spread of workgroups across a network.
The scope characteristic was discussed at some length. Given additional facilities for
workgroup configuration across networks, and some additions to the basic security
mechanisms, the potential is there for storage and retrieval of broad and
narrowly-defined sets of information by different groups across networks.

This gives us every reason to believe HP File/Library can be successfully extended to
provide the network community filing capability for office applications in the future.

ANDREW PEARCE

Andrew Pearce is a software development engineer at HP's Office Productivity Division
in Wokingham, England. During his three years with Hewlett-Packard he has been
involved in developing and prototyping user interface software for HP 3000 and PC
office applications.

References.

Leading Applications of Personal Computers.
"Office Views" Future Computing Inc. Third quarter 1984 survey.

"The Office Systems Cycle" by James H. Bair and Laura Mancuso.
1985; Hewlett-Packard Company

An Approach to Networked Community Filing. Page 10

ABSTRACT

Solutions for Peripheral Sharing

John Peters, Hewlett Packard Company

Today's PC user needs access to sophisticated output capabilities in order to fully exploit the
advanced capabilities of their PC workstation. Yet, peripheral costs make it impractical to provide
each user with a full complement of high-capability output devices. In order to provide the advanced
capabilities needed by office professionals and at the same time control costs, management must
consider peripheral sharing solutions.

Management is faced with deciding between providing a low cost, low quality output solution or
spending a fortune on a variety of sophisticated, high quality output capabilities for each user. Shared
printing solutions can provide PC users with the printing capabilities they need and at the same time
ensure that management is getting the best possible return on their peripheral investment.

This presentation will explore various shared printing solutions available and how management
should decide which of these solutions best fits their situation. Specifically, the following areas will be
addressed:

1. How should management evaluate its current and future printing needs?
2. What options are there for implementing shared printing? (switch boxes, printer buffers,

dedicated printer servers, PC LANs, mini-based server LANs, other solutions)
3. How do the various options compare in terms of:

H P Vectra /Xenix

A Departmental Multi - User Machine

H P Vectra /Xenix

Gene Peterson

MicroAge of Scottsdale

1361 o No. Scottsdale Road

Scottsdale, Az. 85254

(602) 483-9550

XENIX
SYSTEM. V
A MULTIUSER
ANSWER
FOR THE

Overview
With the joint announcement of SCO
Xenix on the H P Vectra by Hewlett
Packard Company and Santa Cruz Opera­
tion, a whole new avenue of cost effec­
tive computing power now becomes avail­
able to the companies which have chosen
to run their companies on the H P 3000
family. This joint venture brings
together a very powerful operating sys­
tem (Unix) on a very powerful computer
(Vectra) and gives companies the oppor­
tunity to automate at a department level
many operations which may have been to
expensive or inappropriate because of
the lack of software for the 3000.

This Operating System, as you will see as
we continue is the cornerstone of a
whole new approach to shared informa­
tion and resource computing for Vectras.

H P Vectra /Xenix 2

F//P9 HEWLET"i
a.!e. PACKARD

This Unified environment where
Xenix and DOS, Multiuser and LAN,
and PC and H P 3000 systems serve
each other and share resources -- each
doing what it does best, without
sacrificing any of their individual
strengths.

Networking of Xenix and DOS sys­
tems through Xenix-Net. Micro-to­
Mainframe communications through
UniPath SNA-3270. Powerful applica­
tions such as Professional, Foxbase,
and Foxbase + and Lyrix word
processing are all powerful solutions
that offers you the opportunity to
create complete multiuser systems that
span the range from Vectras to HP
3000 with more power, better price
performance, and greater shared infor­
mation and resource capabilities than
ever before.

Applications for Xenix are readily avail­
able for almost every possible business
entity. Word Processing with a shared
processor (Vectra) is much more cost ef­
fective than a network due the cost of
the stations which must be bootable com­
puters of their own right, not to mention
the LAN adaptors for the P C s, cabling
and a fairly well trained and knowledge­
able LAN supervisor. Other types of
known personal productivity tools such
as spreadsheets, data bases, compilers
and communications to mainframes are
readily available to the Xenix user.

.... -:-:·:·-:-:-:-::-::::-:·::-:-::·:·:::·:-:-:-:·:-:-:-<<:-:->-_.:·.·:::-::::::::·:::::::::-:>:::·::·:-:::::::·.:-:::::·:::·:::::::::--·::::::::::·:·::<:::--:-:.:·.::-::-:-.. _. .

. ········DEPARTMENTAL c61'v1eUflNG WITH
XENIX AND XENIX-NET/•

Unix and Xenix is here to stay. An enor­
mous amount of people have made the
Unix environment easy to work in and
appropriate for the commercial applica­
tions it needed. Xenix by Microsoft and
SCO is a viable attribute for the H P
3000 computer department. It can only
enhance the Distributed Data Processing
Theme.

Xenix History
The early 80s found AT&T finally stand­
ardizing its venerabel Unix operating sys­
tem. This was the finalization of at least
10 years of chaos and competing stand­
ards. Xenix is the most widely adapted
version of UNIX, and presently installed
on more than 85 percent of all microcom-

H P Vectra /Xenix 3

puters running UNIX, and on more
than 50 percent of all UNIX machines.
MicroSoft Corporation originated the
Xenix operating system, but today, the
Santa Cruz Operation sells it too. The
two companies have a ''Technology ex­
change agreement", where SCO is the
vendor for Xenix on the 8086 and
80286 machines, and MicroSoft hand­
les the large corporate deals, such as
one that exists with IBM.

The primary reason for chosing System
V over other versions of Unix is large­
ly a matter of standardization. AT&T
developed the System V Interface
Definition (SVID), which specifies the
hardware-independent interface be­
tween application and operating sys­
tem. Xenix System V application
developers who adhere to SVID func­
tionally requirements can ensure that
their application will run on any Sys­
tem V architecture, not just Xenix.
This standardization makes programs
and application portable to a wide
class of machines, from P Cs to Mini­
computers and to Mainframes.

The Xenix Operating
System

The Basic System
Vectra/Xenix is a multitasking, multiuser
operating system. On the Vectra this
enables it to operate as a "Central
Processor" with multiple terminals. The
optimum number of terminals supported
is eight. The terminals connected to the

Vectra can be distributed among multi­
ple users. Vectra/Xenix also provides
for multitasking capabilities with allow
the user to execute several tasks simul­
taneously. This substantially increases
the user's productivity. Many other fea­
tures are standard on the Xenix basic
set and the following is a composite of

these features and some

---exp la nation.

A XENIX GLOSSARY
adb: A general debugging command.
awk: A simple programming language

that scans files for specified pattem•.
Berkeley enhancements: A set of

UNIX utilities developed at the Uni­
versity of California at Berkeley.

Bourne shell: A shell, or user interface,
that is a UNIX standard.

csh (C shell): A shell whose style is rem­
iniscent of the C programming lan­
guage part of the Bedcclcy enhance­
ments.

custom: A Xenix utility that allows you
to selectively install or uninstaU the
major Xenix subsystems.

dbx: A high-level debugger found on
Berkeley systems.

/dev: A din:ctory !hat lists special device
tiles.

eqn: A mathematics typcscning pro­
gram.

kernel: The heart of a UNIX system.
The shells and utilities request services
from the kernel, which can talk to l/O
devices, run programs, and manage
memory.

Id: The lineage editor, similar to DOS's
LINK command.

lex: A lexical analysis generator. Often
used with yacc to develop program­
ming languages.

lint: A C-pmgram analyzer.
make: A program that automates the

compilation of program source files.

man: A command that displays manual
pages on the screen.

mkdev: A command that iniriali:res a
hard disk.

mkuser: A command that adds a user ac­
count to the system.

mm & ms: Macros used to control text
formatting.

nrolf: A text-fonnatting utility for stan­
dard printers.

pie: A utility that typesets line drawings.
refer: A utility that manages references

for text processing.
SCCS: UNIX Source Code Control Sys­

tem, utilities for large-scale software
development.

sdb: A high-level debugger used on Sys­
tem¥.

shell: A program that causes other pro­
grams to be executed on command.
For example, UNIX shells perform
the very same task as DOS's COM­
MAND.COM.

tbl: A utility !hat formats tables.
lroll': A text-formatting utility for type­

setters or laser printers.
uucp: A utility that copies files to and

from a remote system.
vi: A visual text editor, part of the Berke­

ley enhancements.
yacc: "Yet another compiler-compil­

er." A utility that converts context­
frec grammar into tables for parsing
algorithms.

FILE AND
LOCKING:

RECORD
File and

record locking are critical
to the multiuser environ­
ment. The need to
monitor simultaneous ac­
cesses and updating of
files such as databases.
To maintain the integrity
of data files, Xenix/V ectra
provides record and file
locking extensions that
allow an application to
lock either the file or the
record.

MULTISCREEN FEA-
TORE: A single keystroke
switches the console
screen and keyboard from
one log-in session to
another. With just one
physical screen and
keyboard, the user can
chose up to 10 virtual ter­
minals. Xenix's multitask­
ing feature allows a user
to concurrently execute 10
different programs.

----------------------------------..rROGRAMMABLE
Vectra can share software applications,
data files, and peripherals in a common
environment. Thus, the investment
made in the purchase of a multiuser

H P Vectra /Xenix 4

FUNCTION KEYS: A "setkey"
program allows support of over 50
programmable function keys on each
virtual terminal. The keys can be

programed through simple escape se­
quences or the program.

CUSTOMIZED INSTALLATIONS:
Xenix allows customized installations
which can be single user and have the
option of installing "Run Time Systems"
using only 1.5 Mbytes on the hard disk as
opposed to the 5 Mbytes normally re­
quired by a full flagged Unix operating
system. Parts of Xenix can then be selec­
tively installed or removed as desired.

LINK F ACILillES: These allow the
user to add system supported devices to
the system to support third-party
hardware such as tape backup units. As
these link facilities are incorporated into
the base system, it eliminates the need
to rebuild the entire Xenix operating sys­
tem.

ADV AN CED AUTO BOOT: SCO's
Vectra/Xenix has an auto boot
mechanism which automatically restarts
the system after a power failure.

SUPPORT FOR ADDillONAL
SERIAL DEVICES: Add-on serial
ports are supported for adding on ports
beyond the standard coml and com2
setup by DOS. These can be both cabled
terminals and remote terminals over
modem.

USER ACCOUNTS: User accounts help
the Xenix system manager keep track of
the people using the system, and control
their access to the system's resources.
Idealy, each user should have a user ac­
count. Each account has a unique "login
name" and "password" with which the
user enters the system, and a "home
directory" where the user does his work.

H P Vectra /Xenix 5

SYSTEM SPOOLER: The system
printer can be attached to a very effec­
tive spooler, which will handle all print
requests from the users and que them
up for printing. Remote printers are
also supported, attached to other
ports. Slave printers attached to ter­
minal are also possible.

The Xenix Utilities

Many standard programs offer the
user of Xenix the opportunity to
manage the system, create new users,
perform backups, add or delete
peripherals devices and so on. Some
of the more used and popular ones are
defined and discussed in the following
paragraphs.

GETTY: This is the main background
program that supports the ports on the
system and manages the communica­
tions. This includes the use of
modems, what type of terminals and
the intelligence of the terminal, baud
rates and so on.

LPINIT: This is the main line printer
management program. Initialization of
the line printer is done through this
utility, as well as the spooler.

CU and UUCP: These are the main
utilities that are used to call remote sys­
tems and transfer data under Xenix.
This programs dials a Hayes (or com­
patible) type modem internal or external.

LPADMIN: Many commands are avail­
able to the manage the line printers and
the print jobs. LPSCHED manages the
spooler control for ON and OFF.
LPMOVE will reschedule all print jobs
to another printer.

PS: This command tells what process
status is on the system. Who the users
are, what programs are running, what
background tasks are operating and so
on.

MAIL: A full mail system is always at ac­
cess on the Xenix system. Messages can
be sent to any user, stored, checked,
deleted, printed, and read with options
available in the mail utility program.

Xenix Languages
In the beginning, the Unix system was
conceived by a few gifted programmers
to meet their own needs. This latest ver­
sion of Xenix doesn't abandon it roots:
rather, it returns to them. Programmers
benefit from Xenix rich array of tools
and the fine tuning of many of the older
tools.

H P Vectra /Xenix

The single most important Xenix Sys­
tem V enhancement is the C Com­
piler. Most Unix operating systems
are equipped a version of the Portable
C Compiler. While it is portable, the
Portable C Compiler has never been
strong on performance. Xenix is
equipped the. Microsoft's acclaimed C­
Merge Compiler. Most reviews of the
C-Merge have noted its range of fea­
tures and im ressive erformance.

Xenix Systems V C-Merge C compiler
can produce programs running under
DOS or under Xenix. Xenix execute­
able routines can be produced for Sys­
tem V or for Xenix III. Several styles
of floating-point calculation and four
memory models are supported, and
the compiler can generate code for the
8086 as well as enhanced code that
utilizes the instructions of the 80186
and the 80286. That is a host of fea­
tures not found elsewhere.

Fortran is part of most Unix systems
but is extra cost on SCO Xenix. Pas­
cal and Microsoft Cobol is also avail­
able for a slight charge.

6

Off The Shelf Software
As compared to the Dos environment,
Xenix is a little short on productivity
software canned and ready to go.
However, work-a-likes of the best are
available so why look farther. They are
well documented, run fast and handle

the job extremely well in the multi user
environment.

Lyrix word processing is a comprehen­
sive and fully configurable work proces­
sor. If you come from a Unix back­
ground, you'll find Lyrix an ideal system,
combining a handsome and intuitive user
interface with powerful features. If you
come from a Dos background, however,
you may find the lack of context-sensitive
help and dynamic menus an incredible
hindrance.

. •PRODUCTIVITY•TOOLS
····.:-.. :-:·:·: ··:::.::-:-:·::-:-:·:-..:-·:::·::.:-:-::·:::::::.:::. ···:·::::::::::::·::::::·: ..

•••sco Mu1tlV1~YI •.Yl111doYl~d··ll~~rlr1t~rl~~~<····· ----·

·•· ··{sc61.Yi-t~ " Yl'cird• p~oe~s~111~<
.·.··.···· ~sc6F1~6i~ss1c>ria1)1~2-3 worl<ai11<~

......................................

>Multipliifr• ilr>l'~adsh~~f \

Lyrix does have interactive spelling and
hyphenation, support for all terminals,
and an easy to use interface to
Unix/Xenix utilities such as electronic
mail. In the multitasking, multiuser tradi­
tion, it offers file-locking and in the tradi­
tion of the UNIX, everything about Lyrix
can be customized, including all com­
mands and messages, special characters
and foreign language, function keys, and
printers.

Professional works like the best known
program of the DOS world, Lotus 123.

Other programs available are Informix
Relational Database System, a good
database which contains its own interac­
tive query language and integrated data
entry and maintenance program. Multi­
plan Electronic Spreadsheet, Microsoft
Basic, Microsoft Fortran, and Unipath
SNA-3270 are also available from SCO.

HP Vectra /Xenix 7

A comparison to H P
3000 MP E

MPE and Xenix do share a lot in com­
mon in design and layout. Both sys­
tems share concepts that make them
great systems for multi user activity.
While it would be unfair to say that
Unix/Xenix is even close to the com­
prehensive nature of MPE, it could be
fairly compared to MPE of the late
70s. Xenix 386 will address the in­
tegrated data base question with fu­
ture revisions of FoxBase and SQL. C
Language is emerging as the most com­
patible language for machine com­
patibility and is available. Implementa­
tions in MPE and Unix/Xenix give
great use across machines .

Generally, account, group and user ac­
cess on Xenix is the same, the Public
account set up of MPE is called Usr,
the integrated spooler exists, file lock­
in , record lockin and such all exits.

sco•
THE SANTA CRUZ OPERATION

I'm quite sure a knowledgeable MPE
System Manager could install a
Unix/Xenix system on a Vectra in a
day with one or two applications (pack­
aged) up and running for users the
next day.

Networkina
Vectra/Xenix t<J H P

3000 MPE
The Xenix file server produces full
transparent access to MS-DOS and
Xenix and can do the same to MPE.
The server software consists of a number
of kernel processes. A process is created
for each remote access to the server.
These processes are transitory and are
terminated when the remote process is
over. There is also a permanent listener
process that manages the virtual circuits
used by the network file system.

The Vectra Xenix system may perform
concurrently as both a network file con­
sumer and a network file server. The
Xenix implementation is facilitated by
the Xenix I/O structure. The Xenix file
system presents a uniform interface for
handling I/O objects. Every I/O object is
represented as an inode in the file sys­
tem where the type of the inode signifies
how the IJO object is to be treated by the
network. Accordingly, a network file is
simply treated as an inode with type
'remote'. A remote inode is created
when a remote file is referenced. A file
is recognized as being remote when the
path name of the file specifies that it ex­
ists on a remote device.

H P Vectra /Xenix 8

.
·:·::··:::::::::::::::::::··::::::::::::::::::::::::::::::···

User applications access files through
the system call interface. Since this in­
terface is not modified by the network,
application transparency for remote
file access is assured. As all Xenix IJO
objects reside in the file name space,
and as most Xenix services are based
on I!O objects that are now accessible
over the network, many Xenix services
will work across the network with little
or no change. For example, Xenix
mail can be used to exchange mail be­
tween Xenix users anywhere on the
network as well as MPE sessions, and
the at command can be user to initiate
batch jobs on the other Xenix network
systems.

Network file access is invoked when a
system call references a remote file -­
either with a remote path name or
through an existing remote inode. The
file consumer establishes the virtual
circuit to the server system (if it does
not already exist), initiates the remote
file access transaction, and reports the
file result back to the routine that
originally invoked the system call.

On the server system, the "listener"
process is responsible for establishing
VCs to consuming machines. Once a
VC is established, a request from a
consumer process is serviced. This, in
turn, activates a server process that ac-

cesses the local file system to complete
the transaction. Thus every consumer
process that accesses a network file has
a "partner" server process to perform the
work on its behalf in the server system.
In effect, this is a natural extension of
the manner in which commands are ex­
ecuted by the shell on a local Xenix sys­
tem.

Xenix-Net is a separate function unit.
There have been minimal modifications
to the Xenix kernel. This facilitates the
addition of Xenix-Net to an existing sys­
tem .. That are numerous configurable op­
tions giving users the flexibility of tailor­
ing Xenix-Net to meet their specific
needs.

Xenix-Net provides the user with a
device-level interface to the session
layer. Thee user may create virtual cir­
cuits between applications anywhere in
the network. These VCs can be used for
any application-specific purpose. Typical­
ly, only layers 5 thru 7 reside in the
Xenix Host system.

With all this flexibility, MPE designers
can have all the file, peripheral and ses­
sion access and integration they can use
on a Vectra Xenix System.

Third Party Application
Software Sorutions

Application software is certainly not one
of the drawbacks of Xenix today. Ap­
plication software is available in literally
every need from productivity types as in
word processing and spreadsheets to the
most demanding of vertical applications.
Many catalogues exist covering the bulk
of the software available. SCO's alone
covers 353 pages of software available.

H P Vectra /Xenix 9

~~QR MICROSOFT.

XENIX" System V
Third-Party Products

MicroSoft currently has a catalogue
that covers 256 pages of applications
available. Many more are available as
more and more vendors convert their
cobol, c and other language software
to Unix/Xenix. Because of the
flexibility of the operating system, it's
easy to bring code from other
machines to Xenix/Unix.

The Future of Xenix
If the word UNIX makes you think of
a university computer center full of
hackers, its time to change your think­
ing. With their System V releases,
both UNIX and Xenix are moving into
the business world in a big way. With
the advent of more and more applica­
tion software ready off the shelf from
third party vendors, UNIX/Xenix has
to be considered in your plans for ex­
pansion or improvement in your cur­
rent operating environment.

Because of the excellent quality of the
operating system, and the utilities that
exist, even new applications come to
operation quicker, and are more used
and accepted. Programmers and ap­
plication specialists find that more
flexibility exists than they can possibly

hope for, hence a favorable climate ex­
ists to get these new applications up and
run..TJ.ing.

UNIX/Xenix will be grow!ng and expand­
ing more and more in the near future.
As this paper is being prepared, plans for
foe introduction of the 386 version of
Xenix exist and should be announced by
Interex in September. The power of a
full 32 bit system ·with virtual memory
and paging should give the system based
on 386 technology power exceeding that
of 16 bit mimcomputers as we know
them today. 386 Xenix will offer full 286
and 8086 binary compatibility and sup­
port DOS emulation.

80386 Processors
..

····•·•·· XEN1x386 FEATURES•/ • . . uiii.I

.. · •.• .•. •.•.············.•.·······.·.·······.········ ...•.••.•• •.•.·••.·•.·•.·····.············ .••.•. • •. •.11

1.. ·••·•••· ~ NeYi :386 ~ c~~i11~t ? •

11.• .. •.··•·•·•·•·••····. ::;::~~iiii;':R •··.·•.·••··•··.·.·••·· .. •·•··•·•·•···•·•·••··•·•·•·•·•·•·•··.•·•···••····•·•.···••····•·•···•···•·•·•·•·•·•·•·•·•·••··•··.••·•··.·•·••····••···•··.1j'1
··• >~ !mproved2!!7suppo!i <
· .•••..•..• •(f:i:ili 2s5illoaiiilfrlaTf · . . / •·•.··············· ••·••.·•·······1
.•.... • compat1b1::ty • /i/ / . . t I i).\ .. ······.(~g~~;;forp\)se~u!at!ori: uu .I

With the introduction of the new ar­
chitecture by IBM, the need for an
operating system faat would meet the
needs of the users was certainly a neces­
sity. OS/2 will meet these challenges b:rt
only for single user support. 1:se of
megabytes of memory, m::lti-tasking,
spooling just to name a few and more

speed enhancements will all be the
wave of the DOS future.

Multi-User does not fit in this environ­
ment however, except as a network of
DOS machines. Connectivity is the
word of IBM and will lead the product
introductions into 1988.

Networks are a good file transferring
device and central peripheral file
management supervisor. Application
programs which are really made to be
central machine ordinate with multi­
user access to the central files really
work better, are more secure and fail
less on a true multi- user operating sys­
tem such as MPE or UNIX/Xenix.

The costs of a Network of several
users with adaptors, cables, systems,
and such usually is 25-35% higher than
a comparable. Xenix system for the
same amount of users, and offers a
higher degree of maintainability than
does a Xenix system.

DOS is great for single user applica­
tions, and OS/2 will be even better,
particularly for the "Power User" that
needs the additional benefits which it
offers.

Xenix in the future of
Hewlett Packard

HP/TJX is of course HP's implementa­
tio!l of Unix from AT&T and is an en­
hanced version that supports HP's
proprietary chip sets on various
machines including the new RISC tech­
nology currently shipping; Hewlett
Packard has announced that it sup­
ports and the Xenix/Unix systems on
the Intel Processors and will cooperate

10

with all concerned on future revisions. It
appears that all the system manufac­
turers are jointly getting together on im­
plementation of future revisions of the
'Cnix Operating System. This will be
gre2t news for application developers
and third party software companies.
Th:s will rr:ean that migration of software
bet;veen machines can evolve at even a
greater pace than it has. One of the
greatest longterm concerns of the system
E XENIX SYSTEM v
I
I

I ~---r--.

11

developer is the preservation of invest­
ment. This means that today's
software and hardware efforts will con­
tinue to pay off for a long time to
come without fear of incompatibility
with future standards.

Manufacturers' technical concerns not
only involve custom drivers for their
products, but many other individual­
ized aspects of that are being ad­

dressed by many of
the Xenix developers
such as SCO and
Microsoft. Features
supported, bug fixes,
documentation are
just a few of the chal­
lenges.

I) Uptofiw
Hdilional
!*ts for

I pcriphertls
I Gladdilkm(

~mb llnnlNlll

In conclusion, what
this means generally is
that an investment by
a cor:!pany in
Departmental Expan­
sion with
V ectra/Xenix will not
be faced with out­
dated applications and
hardware next year.
The V ectra/Xenix sys­
tem will fit with the
Distributed Data
Processing Theme and

; Connectivity Theme
of the years ahead and
will be a low invest­
ment productivity en­
hancement to those
small departments in
need of these improve­
ments and WILL give
an honest return on
your investment.

IMPLEMENTING AN APPLICATION TEST & MEASUREMENT FACILITY

Abstract:

Tim Brown and Patti Pribish
Hewlett Packard

2 Choke Cherry Road
Rockville, Maryland 20850

The authors describe how programmers and application designers can use
available intrinsics to build an Application Test & Measurement
Interface that will be extremely helpful in tuning an application's
performance.

I. Introduction:

MPE provides the capabilities for programmers to gather elementary
performance information. Calls to the intrinsics PROCTIME and CLOCK
will return data about CPU utilization and elapsed wall time. By using
these intrinsics, the capabilities provided by JCH's, and the PARM and
INFO options to the RUN command, an application designer can implement a
rudimentary measurement and test interface that will permit vital
information to be gathered about an application's performance.
Appropriate use of this facility will allow the designer to make
controlled changes to the application and the system environment, and
get more precise data about the effect of the change. This will allow
scientific, measurable application tuning, rather than guesswork. This
paper describes what information is available, how it can be accurately
interpreted, and it demonstrates the usefulness of measuring changes.
Sample PASCAL programs are included in the Appendix to document how to
call and use the information.

II. The need for precise application performance measurement:

Over the years, a tremendous number of performance guidelines and tips
have been published for use by the HPJOOO user community. The authors
have noted that students in the Designing and Optimizing Applications
class and System Performance class are sometimes overwhelmed at the
large number and wide variety of performance tuning options presented in
these classes. Possible areas of investigation and tuning include:

- File placement on Disc
- CacheControl options
- Blocking Factors
- IMAGE buffspec settings
- Primary path maintenance (DBUNLOAD/LOAD or ADAGER DETPACK)
- Detecting & avoiding synonyms
- Use of 11 * 11 list construct
- Data Base redesign (eliminating unneeded paths, sorted chains)

APPLICATION TEST & MEASUREMENT 1

- "Weak" locking strategies
(lock/read/unlock/process/lock/reread/write/unlock)

- Large program with many segments (should we resegment)
- BUF vs NOBUF for file I/O
- Stack usage (MAXDATA, STACK, and ZSIZE)

Considering the vast number of performance variables that an application
designer/implementer can investigate, the authors have consistently
recommended that available tools be used to identify the potential of
most likely causes of performance problems. The most commonly used
tools include those for making system wide observations, and gathering
data base and application information. Some of the tools are the
following:

System:
- OPT
- SURVEYOR
- TUNER

Consulting Services:
- HPTREND
- HPSNAPSHOT
- HPCAPLAN

Data Base:
- DBLOADNG or HOWMESSY
- DBSTAT2
- DICTDBA
- IDEA

Application:
- APS/3000 (Sampler)
- Proginf o

However, even with the available tools, the Data Base or application
designer can still find himself in the position of guessing what is the
most appropriate choice for his application, and having no application
tools similar in function or power to the system measurement tools such
as OPT. OPT, SAMPLER, IDEA, and Turbolmage PROFILER all contribute data
that will help the designer/DEA to make some performance decisions, and
given enough time, the designer could perform a series of controlled
tests and perhaps answer all his/her questions. But there is a need for
an EASILY implemented test & measurement facility, so that the designer
can make controlled changes and determine if performance has improved,
worsened, or remained constant. Given the number of published
recommendations on how to improve performance (some of which are
contradictory), the time constraints under which the designer has to
work, and the fact that applications and their environment tend to
change over time, the need for a way to quickly measure and evaluate the
effectiveness of any change becomes critical.

APPLICATION TEST & MEASUREMENT 2

To quote from a now classic HP3000 paper, Jim May's "Programming for
Performance":

Intelligent attempts to improve performance require
a disciplined plan of action. That plan must include
at least four discrete items:

Evaluation of existing performance
Identification of candidates for alteration
Selection and implementation of changes
Evaluation of resultant performance

[May 1-17]

May's paper, which we strongly recommend to any HP3000 programmer or
designer, offers some excellent ideas and insights into how to improve
program performance. He recommends the use of subroutines for several
reasons, but one of the most compelling reasons he offers is that
subprograms can be measured and tuned separately, thus allowing the
programmer to accurately measure the results of the changes. Most
importantly, the programmer can concentrate on the highest overhead
items, and focus on those portions of the program that will provide the
biggest performance return.

Unfortunately, many designers only execute the first three parts of
May's action plan for improving performance. For instance, evaluation
of the resulting performance gain after a Data Base UNLOAD/LOAD is
rarely made. If a measurement was taken the question becomes, "was it
taken properly?" One of the advantages to planning ahead for
performance evaluation is that the measurement can be taken around a
logical tr>ansaction which is specific to the application program. The
users might have thought the response times were faster, but were they
actually faster? Can an interactive user perceive a 10% improvement?
Perhaps routine, repetitive batch job run times were compared, since
that data is readily available, and some improvement, say 10%, was
noted. However, the impact on the 65 online users was never objectively
measured.

A possible solution to this problem would be the use of HPSNAPSHOT
consul ting. HPSNAPSHOT can provide very detailed information about
average response times and average CPU seconds per transaction where
response time is based on the completion of one transaction. The online
transaction is the activity which occurs between the satisfaction of a
terminal read and the point at which the next read is issued. Some
terminal reads are not actually realized to the user as a completed
transaction (for example a terminal status read for control purposes.
However, there are a great many independent variables that an
application designer/programmer may want to manipulate, as noted above,
and these variations may be over an extended period of time. The
HPSNAPSHOT consulting product is not designed or intended to be re-run
after every change to the Data Base design, or blocking structure, etc.,
although multiple data collections for HPSNAPSHOT are an option to the
product. The authors recommend users discuss the appropriate use of
HPSNAPSHOT with their HP representative.

APPLICATION TEST & MEASUREMENT 3

The intent of a user implemented Application Test & Measurement
Interface that the authors are recommending is to capture readily
available performance data with a relatively small investment of user
time and effort. The authors also recommend a data management strategy
for this performance data that will assist the designer in easily
evaluating the consequences of his tuning efforts, and to establish a
performance "base line" for an application. This base line will help a
designer/OBA person to quickly identify performance degradation within
an application, and take appropriate action.

III. Information about Implementation

In it's most basic form, a user test interface could be implemented by
capturing start and stop times for user transactions. This information
is easily supplied by MPE by calling the CLOCK intrinsic. Also, CPU
utilization is readily available by calling PROCTIME. In a simple
application where the user enters some screen data, presses enter and
waits for a some data base retrieval or update, the programmer would
bracket the logical transaction with code to collect the performance
data. The procedure would look something like this:

- VREADFIELDS completes
- call CLOCK and save current time in START-TIME
- call PROCTIME and save current in START-CPU
- do some work: get a few records
- update some records
- call CLOCK and save current time in END-TIME
- call PROCTIME and save current CPU utilization in END-CPU.
- write an application event record to a file with

event-id, user-id, start and end values.

Essentially, to gather timing data from MPE would formalize what many
end users are already doing, and of itself is not much more helpful than
using a stopwatch to time the system response. However, by gathering
many timing samples from many terminals over a reasonable period of
time, it is possible to get more statistically meaningful data. Also,
trends over time, (or better yet, after changes to blocking factors and
the number of paths in a detail) , could be more accurately measured.
And if CPU usage is collected with PROCTIME, then the serious evaluation
of tuning attempts could be done.

Besides just collecting this raw timing data, the implementor should
plan to do post-processing of the data. Writing to an MPE flat file
makes sense to keep the interface simple and limit interference with
measurement of the application. However, it would make sense to load
the data into an IMAGE Data Base, and use existing Data Management tools
to calculate average transaction event wall time and cpu time. Also,
data that is out of reasonable bounds should be identified and
eliminated from the sample. (If a data base update ordinarily takes 3
to 6 seconds, and one collection shows 83 seconds elapsed, but the CPU
seconds was within range, we have to consider whether we want to use
that record in the evaluation of the blocking factor change. The user

APPLICATION TEST & MEASUREMENT 4

hitting the break key, a PURGEACCT, or many other system perturbations
could have been responsible for the peculiar result. A data point such
as this in a small sample could completely warp the results.

Also, it makes sense to set up the program so that the data collection
code is activated conditionally on an INFO or PARM statement, or JCH
value. This way it can be switched on or off at run time. This allows
greater flexibility in deciding when to use, or implement this
elementary performance measurement interface.

IV. Hords of Caution

There are two major types of measurement on a computer system: hardware
and software measurements. The form of measurement discussed in this
paper is a software measurement. The nature of software measurement
makes certain words of caution very important. A software measurement
uses additional system resources to those being used by the application
program so the resulting time includes the time to execute the
application code as well as the measurement. One of the key resources
to be considered is the Operating System. MPE is responsible for
deciding which process obtains the CPU through the DISPATCHER/SCHEDULER,
this decision is based on a priority scheme. One of the most difficult
parts of a good measurement is testing in a controlled environment. An
application program running on a system with high level of data
communications activity, in general, take slightly longer than it would
on the same system with the data communications disabled, since data
communications runs at a higher priority than a default user process.
There are a great number of other examples were the DISPATCHER will make
a decision that will change the resulting test data. To help offset the
effects of the environment here are some of the things to consider:

*

*

*

*

*

*

The measurement code should be placed within the same code
segment when possible to avoid excess segment transfers.

To make a valid comparison before and after an application
modification, the testing environment should be consistent.

A base line for an application timing should be done for each
version of the operating system and not carried over from a
previous version if the measurement goal is to look at the
effect of changes that have been made within the application
program.

Several measurements should be done and averaged to help
minimize the effect of the changes in the environment.

Any manipulation of the timing records should be done AFTER the
test has been completed.

A very short program will have a higher degree of deviation
between measurements, and it will be difficult to see a

APPLICATION TEST & MEASUREMENT 5

*

significant change in the application timings to the point of
being invalid.

As noted above, data values that seem unreasonable should be
discarded from the sample.

V. Definition of a user test & measurement interface:

The user should document the environment in which the test was taken,
the changes that were made, and the expected results. The environment
can be documented by including the version of the operating system as
well as information about the current utilization on the system. The
changes should be clearly documented so that the test can be duplicated
if later testing is needed. The expected results should be documented
in terms of what time from the measurements are expected to decrease.
Over time a rough guess as to the percent of change expected may be
possible.

Interface: This is the user procedure called at program startup, exit,
and any number of times in between (possibly around a logical
transaction) that returns CPU seconds consumed and elapsed wall time
between any two events. We recommend that the intrinsics be called from
inline code to avoid additional overhead of segment transfers. The best
way to collect this data is to write the timing information to an MPE
flat file, and do the calculations or posting to a data base later.
Many may feel that after writing the data to a Data Base, more
statistical analysis should be performed, over and above than just
calculating averages. However, the information that can be gathered
from even simple collections and analysis can be invaluable in
identifying the important performance variables.

VI. Example of appropriate use:

An example of appropriate user test and measurement in the Pascal
programs can be found in the Appendix, part A, examples 1 and 2, and
will be referred to in this section. The program being tested is a
prime number generator and has the default Pascal compiler option $RANGE
ON. The change made in the second program is that the $RANGE OFF
compiler option was used. The $RANGE ON (the default) causes the Pascal
compiler to generate range checking code for assignments, array
indexing, etc. as discussed in the Pascal Reference Manual (part-no
32106-90001) . It was rumored that turning $RANGE . OFF could
significantly improve Pascal run-time performance.

The test was done on the same version of the operating system within a 5
minute time span. During this interval the :SHOWJOB and :SHOWQ
indicated no other significant changes in the operating environment.
The values given in the Appendix A indicate one example run of the test.
An example of a possible way to document the environment for this simple
test can be found in Appendix B.

APPLICATION TEST & MEASUREMENT 6

Notice that the results indicated that for this mathematical Pascal
Application turning $RANGE OFF caused a 553 decrease in the CPU seconds
and a ?43 decrease in the HALL TIME. This data will change in a
different environments, and in this case a CPU bound system should show
an even greater improvement with the $RANGE OFF. So as this implies
knowing the environment in which the application is running is very
important when determining the actual change that is realized.

VII. Conclusions:

The need to measure application performance while experimenting with
system and application variables is essential. The authors have
delineated how users can exploit existing intrinsics on the 3000 to
capture basic performance information. Limitations of this method have
been explained, and users should be aware that, as with most tools, the
data can be easily misinterpreted. He have suggested how the raw data
may best be formatted and gathered into a appropriate data structure
(IMAGE Data Base) to make it manageable so that reports and graphs might
be produced. Finally, the authors have included an example of calling
the PROCTIME and CLOCK INTRINSIC.

APPLICATION TEST & MEASUREMENT ?

VIII. Appendix

A. Pascal prime number example
<< simple pascal program to calculate prime numbers included

as an example ... >>

1. The first program shows the Pascal prime number program
with the compiler option $RANGE ON.

:PASCAL
primels.pascal

program primel (input, output); {Mar '85 Interact p. 80}
{Stan Sieler }

{ADDITIONAL CODE IN UPPER CASE - jtb}
{ PRIMEl - USES DEFAULT COMPILER OPTIONS }
{$RANGE OFF$} {RANGE CHECK ON BY DEFAULT}

TYPE
TIME TYPE PACKED RECORD

CASE BOOLEAN OF
FALSE (ALL : INTEGER);
TRUE (HOUR, MINUTE, SECOND, TENTHS

const
loops
size

procedure
integer);

var

10;
8190;

END;

primes

0 .. 255);

(loops

flags : array [O .. size] of boolean;
i, prime, k, count, inter : inte1er;
CPUSECS : INTEGER;
WALLTIME, WALLTIME_START : TIME_TYPE;

FUNCTION PROCTIME INTEGER;INTRINSIC;
FUNCTION CLOCK : INTEGER;INTRINSIC;

begin

WALLTIME START.ALL :=CLOCK;
writeln ('Begin PRIMEl ($range on$) ',loops:l,' iterations',

chr(7));
for inter := 1 to loops do

begin
for i := 0 to size do

flags[i] :=true;
count := O;

APPLICATION TEST & MEASUREMENT 8

for i . - 0 to size do
if flags [i] then

begin
prime . - i + i + 3;
k : = i + prime;
while k <= size do

begin
flags[k] : = false;
k := k + prime;
end;

count . - count
end;

end;
writeln (chr(7), 'done,

CPUSECS := PROCTIME;
HALLTIME.ALL :=CLOCK;

+ l;

#primes count:l);

HALLTIME.ALL := HALLTIME.ALL - HALLTIME START.ALL;
HRITELN('PROCTIME' ,CPUSECS); -
HRITELN('Halltime:' ,HALLTIME.HOUR :1,

end;

begin
primes (loops);

end.

:RUN prime!

': ',HALLTIME.MINUTE :1,

':',HALLTIME.SECOND :1,
' ' ,HALLTIME.TENTHS :l);

Begin PRIMEl ($range on$) 10 iterations*
*done, #primes = 1899
PROCTIME 4439
Halltime:0:0:8.8

END OF PROGRAM

APPLICATION TEST & MEASUREMENT 9

2. The second example shows the Pascal prime number program
with the compiler option $RANGE OFF.

:PASCAL prime2s.pascal

program prime2 (input, output); {Mar '85 Interact p. 80}
{Stan Sieler }

{ADDITIONAL CODE IN UPPER CASE - jtb}
{ PRIME2 - OVERRIDES DEFAULT COMPILER OPTIONS }

$RANGE OFF$ {RANGE CHECK ON BY DEFAULT}

TYPE
TIME TYPE PACKED RECORD

CASE BOOLEAN OF
FALSE (ALL : INTEGER);
TRUE (HOUR, MINUTE, SECOND, TENTHS

const
loops
size

procedure
integer);

var

10;
8190;

END;

primes

0 .. 255);

(loops

flags : array [O .. size] of boolean;
i, prime, k, count, inter : integer;
CPUSECS : INTEGER;
WALLTIME, WALLTIME_START : TIME_TYPE;

FUNCTION PROCTIME INTEGER;INTRINSIC;
FUNCTION CLOCK : INTEGER;INTRINSIC;

begin

WALLTIME START.ALL:= CLOCK;
writeln ('Begin PRIME2 ($range OFF$) ',loops:l,

' iterations', chr(7));
for inter := 1 to loops do

begin
for i := 0 to size do

flags[i] :=true;
count : = O;
for i := 0 to size do

if flags[i] then
begin
prime := i + i + 3;
k : = i + prime;
while k <= size do

begin

APPLICATION TEST & MEASUREMENT 10

end;

flags[k] := false;
k : = k + prime;
end;

count .- count+ 1;
end;

writeln (chr(?), 'done, #primes

CPUSECS := PROCTIME;
WALLTIME.ALL := CLOCK;

count:l);

WALLTIME.ALL := WALLTIME.ALL - WALLTIME START.ALL;
WRITELN('PROCTIME' ,CPUSECS); {I:J?} -
WRITELN('Walltime:' ,WALLTIME.HOUR :1,

end;

begin
primes (loops);

end.

:RUN prime2

':' ,WALLTIME.MINUTE :1,

':' ,WALLTIME.SECOND :1,
' ' ,WALLTIME.TENTHS :l);

Begin PRIME2 ($range OFF$) 10 iterations*
*done, #primes = 1899
PROCTIME 2046
Walltime:0:0:2.255

END OF PROGRAM

APPLICATION TEST & MEASUREMENT 11

B. Here is an example job stream that allows you
to document the environment.

!Job perftest,user.acct
!comment A SHOWME is done to document the current
!comment operating system
!showme
!comment The showjob command will give the job/user logon
!comment information
!showjob
!comment
!comment
!comment
!showcache

- a showcache will document whether caching
is enabled

!comment The showq information will give information
!comment regardingthe DISPATCHER queue and the number of
!comment processes in the various queues. For an
!comment of :SHOHQ information see the :TUNE command
!showq
!comment Now run the job with the measurement enabled
!run PRIMEl
!EOJ

APPLICATION TEST & MEASUREMENT 12

THE END USER MODULE OF HP'S BUSINESS OFFICE SOLUTION
ORMOND RANKIN

HEWLETT-PACKARD
FT. COLLINS, COLORADO

INTRODUCTION

Managers, professionals and office workers within a business office environment have a

variety of networking needs; by meeting these needs, businesses can improve

communications, cut costs and boost productivity.

Common end-user needs include convenient access to: productivity tools, host and PC

server resources, host applications from a PC or terminal, communications and sharing of

information among workgroup, department and site-wide workers.

This paper reviews the options available for meeting these needs with Hewlett-Packard's end

user capabilities within the company's Business Office networking solution. It covers

end-user connectivity alternatives for individuals, workgroups, departments and entire sites,

while focusing on both PC and terminal connectivity using LAN, remote asynchronous, data

switch and PBX technologies.

Over the last several years the demand for integrated office automation solutions has grown

dramatically among business users. Hewlett-Packard's HP AdvanceNet Business Office

Network solution offers a variety of flexible, integrated approaches to meeting

communications needs within the business environment.

A key issue facing end users in the business office is PC versus terminal networking. The

issue is really one of cost versus functionality and power. Terminals offer a display screen

as a window into the multiprocessing system they are connected to. On the other hand, PCs

add inexpensive and constant local computing power with the capability of offloading

multiuser systems.

The End User Module

The difference in cost between a terminal and a PC can range from less than $500 at the

low end to upwards of several thousand dollars at the high end. Networking to support the

PCs provides greater functionality and is correspondingly higher priced. But the investment

provides low-cost yet powerful productivity tools for the office worker, and an extension of

the multiuser capabilities to a dedicated low-cost third tier of computing power; in other

words, the extension of distributed data processing to the workstation level.

Whether they choose PC or terminal networking, end users within a business office need to

meet their cost and application needs. HP offers choices for such users that lend themselves

to the needs of different users. These product alternatives are organized by the different

ways end users commonly develop networking solutions.

The major alternatives are:

--Individual Connectivity-- This includes connecting workstations to HP 3000s where

individuals are in either remote locations or in areas where they have the sole workstation

(terminal or PC).

--Workgroup Connectivity-- This covers networking clusters of terminals to an HP

3000, and networking groups of PCs in a local area network with a PC server.

--Departmental Connectivity-- This is for networking larger groups of PCs and

terminals to an HP 3000 within a department, and for networking to other HP 3000s on a

backbone network or in a computer center.

INDIVIDUAL CONNECTIVITY

Individuals require productivity tools such as word processing, graphics and spreadsheets as

well as access to mail and database facilities. In addition, the ability to access computer

center information and resources (e.g., discs and printers) may be of value.

The End User Module 2

Terminals with departmental and computer center processors can provide these capabilities

with RS-232 connections and applications such as HPWord, HPDraw, Deskmanager and

Query with the Image database. Using Network Services/3000, a terminal user can obtain

information from other networked HP 3000s. PCs provide the same capabilities, but can

perform many local needs with applications such as Graphics Gallery, Executive

MemoMaker and/or Advancewrite, Lotus 1-2-3 and AdvanceMail.

These terminals, PCs and printers are connected to the HP 3000 through the Distributed

Terminal Controller (DTC) for the new 900 Series of HP 3000s, and through the Advanced

Terminal Processor (ATP) for all other HP 3000s. These interfaces support both RS-232 and

RS-422 with data rates up to 19.2 Kbps.

Users can individually access host-based applications such as electronic mail, accounting and

financial packages. In addition, some users might direct output to a local printer.

Local or remote PCs are attached by a built-in RS-232 interface, and they require HP

AdvanceLink terminal emulator software to give terminals the capabilities mentioned above,

plus file transfer capability.

For remote PCs, end users may want to add HP Serial Network software for the PC, and HP

Asynchronous Serial Network Link software on the HP 3000 to provide access to HP's

Personal Productivity Center (PPC) software.

Adding such capabilities as Resource Sharing gives the ability to use HP 3000 discs and

printers as if they wree directly attached to the PC, as well as the ability to backup PC discs

directly to the 3000. Choosing this option means greater integration for the PC and

improves ease of use and transparency for the user.

These features of the individual connectivity alternative provide numerous concrete benefits.

Shared applications and information can be centrally located to facilitate sharing and lower

The End User Module 3

costs. By transferring files between the HP 3000 and a PC, data is available where it's

needed without re-entry.

In addition, transparent access to a host from a remote PC means that people don't have to

be at the office to access whatever system resources they n~ed.

WORKGROUP CONNECTIVITY

Workgroups of terminal users can be linked in the same way individual end users are

connected, or through multiplexers. This gives groups of terminal users local access to

host'.'based applications, as well as the ability to print files on an HP 3000 printer or local

serial printers.

A Local Area Network (LAN) connection is more efficient for groups of PC users. Such

users can share discs, files, printers and spooling capabilities, as well as plotter sharing and

spooling on a PC server on a high-speed LAN. These users can also have direct access to

HP 3000s in a data center for applications such as HP DeskManager (electronic mail) and

Information Access for access to corporate databases.

A workgroup LAN is built by connecting PCs in the workgroup to a StarLAN Hub. HP

StarLAN is the company's twisted-pair LAN that fully integrates PCs and HP 3000s.

Twisted-pair wiring offers flexibility, efficiency and low-cost wiring both during

installation and over the long term.

In addition, HP 3000s in a data center can be accessed directly from the workgroup PCC

LAN if a StarLAN Bridge is used. This bridge connects the StarLAN Hub to an IEEE

802.3 thick or thin coaxial cable.

The workgroup connectivity alternative offers all the features described in the individual

connectivity alternative, plus the capabilities for PC users to:

--share discs and files from a PC server;

The End User Module 4

--share a PC printer or plotter attached to a PC server;

--utilize high-speed links;

--run popular standalone PC applications as well as most software that supports

Microsoft-Networks (R) MS-NET (R) applications over the PC LAN; and the ability to run

the entire HP Personal Productivity Series of major applications such as Lotus 1-2-3,

Executive MemoMaker, Information Access, Resource Sharing and AdvanceMail over a

high-speed link;

--access corporate databases and HP 3000 applications;

--use twisted-pair wiring.

DEPARTMENTAL CONNECTIVITY

This alternative provides all the computing resources and OA capability needed by a large

department of end users. It allows connection of an HP 3000 located either within the

department or in the data center to terminals, printers and PCs. It also enables the entire

department to connect its site backbone to access additional information and resources

located in the data center, or in other departments and workgroups along the whole network.

The HP 3000 is the heart of departmental connectivity alternative. Terminals are linked to

it in the same way as in the earlier alternatives, and workgroups of PCs are connected to the

HP 3000 via a LAN.

PCs users access the resources of the HP 3000 transparently by running Resource Sharing

software on the HP 3000 and StarLAN user link software on the PC. Users can also choose

and format menu commands transparently without knowing the database structure, and

download them into popular PC applications such as Lotus 1-2-3, dBase II, and R:Base 5000.

This requires Information Access software on the HP 3000 and StarLAN software on the PC.

The End User Module 5

And finally, all the applications of the HP 3000 normally accessible from a terminal are still

available through terminal emulation over the network.

These capabilities add up to a high degree of PC-terminal-host integration. User access to

systems across departmental boundaries and subnets is easy. Finally, where low-speed,

lower functionality connections are acceptable, users are able to switch terminals and PCs by

means of data switches and PBXs.

While each of the three basic alternatives within the End User Module is addressed to

different environments, it's also possible to combine elements of the different options to

create connectivity solutions within offices.

CORPORATE-WIDE CONNECTIVITY

End users have several alternatives for communications on a corporate-wide basis. One

alternative provides gateway services for end users at a local site. An HP 3000 can be used

as either a dedicated or shared communications gateway. An HP 3000 can also be used as a

LAN to X.25 gateway for other HP 3000 systems. as required. If datacomm traffic is high,

users may want to dedicate the system to the gateway function.

This gateway offers users several important features: interactive and batch data exchange,

single X.25 network access for all LAN-based systems, and use of the same access link for

remote workstations and systems. These features minimize network access costs

significantly.

If users require access to an SNA company-wide network, a second alternative is an SNA

gateway. This is the best solution for PCs on the LAN and terminals connected to 3000s.

For higher datacomm traffic, multiple gateways may be needed.

The End User Module 6

This gateway provides SNA batch job submission, SNA interactive access to 3270

applications, and access to DISOSS (via SNA LU 6.2) or PROFS for electronic mail exchange

with HPDesk users.

The End User Module 7

ABSTRACT

Terminal Servers Update

Alic Rakhmanoff, Hewlett Packard Company

Terminal servers provide a cost-effective and flexible way to logically connect terminals and
printers to hosts in a local area network. These terminal controllers are used in both the business
office environment and the manufacturing environment, however, specific use and configuations
vary in the two different environments.

This presentation will cover HP's terminal controller strategy in the business office environment
and the manufacturing environment with the emphasis on the business office for this commerical
lnterex conference. The following topics will be addressed: funtionality of HP's Distributed Terminal
Controller (OTC); connectivity via baseband and broadband LANs; connectivity to HP Precision
Architecture HP systems and to non-HP systems; recommended configurations; future enhance­
ments to today's solution as well as a migration strategy.

System Performance Measurement
by Ron Reimert, Unison Software, Inc.

This presentation is a management level review which will analyze common techniques of
measuring system performance. It is intended to stimulate better systems decisions based
on more accurate analysis of relevant, objective data. Our goal is to relate performance to
measurable MIS goals and not to vague, elusive technical terms. Issues will be focused
around the world of the customer, the user in our company, and their ability to contribute
effectively to company profits.

When a company makes its first acquisition of a system, they usually select it based on
objective measurements. The hardware and software are selected to solve a specific
management problem. Whether it's HP or another manufacturer, we systematically analyze
our situation. We determine first what our problem is and what we must do to correct it.

We try to select a wide range of objectives and needs to help solve our problems. We
analyze various hardware and software alternatives against the needs and hopefully
optimize our solution. What is a good solution? It is usually defined as user friendly,
efficient (easy to use or install), cost effective (price performance ratios or person hours
saved or errors reduced) and of course we make better decisions. As a result we are happy
and life goes on.

Reports are nice! People are nice! So we decide to automate the Tribble line. (Trekkies,
please forgive me!) We analyze our 5 options intelligently again and decide to purchase
the Klingon Package.

Then it happens. People begin to complain. The CPU is too busy! The disc 1/0 is
imbalanced! There are too many 1/0 requests against the database manager! The 1/0
bandwidth is not wide enough! Now be truthful. How many of your users call and make
these statements? They probably call and say, "The system seems to be running slow." If
they are EDP knowledgeable, they may politely ask, "Is the system down?"

In this day and age we purchase tools to solve our problems. It may be new applications
for our users or new tools for EDP. We purchase database managers, performance
monitors, editor tools for programmers, system manager tools, and electronic messaging
systems. We are tool happy, and I think it's great. I have used many of them. I added
several CPU's to my data center just like you. I implemented new applications just like
you. I added more tools just like you. I solved MIS management problems just like you.
And just like you, I seldom sat back and asked myself an important question or two. Are
these decisions making my company more profitable, or just increasing costs? Are we
becoming winners in our competitive marketplace?

Before we begin to analyze ano.ther vital approach to measuring our MIS EDP decisions,
both short and long term, I would like to use an analogy that is easy to relate to and
comprehend.

I will propose my new tool to you, my possible solution, that is simple but accurate. It's
easy. It's logical. It's measurable. It's a "stopwatch." Now that I have you hanging,
let's look at my analogy.

Let's look at A.J. Foyt and the Indianapolis 500. I think we can all agree that A.J. is a
winner. But when you are a real winner, you count, you measure, you plan, you work
hard and in the end you win. He has won 4 times in the many starts he has had.

So let's look at how A.J. Foyt might measure his performance. First he has feel for his
equipment just like we do. He knows if it will run well or if it will run slow - but
feelings don't count in the world of winners. So he times his laps very carefully and
discovers he went 203 miles per hour. That sounds pretty good, but for the last few years
the winning lap times have been around 216 miles per hour, so he takes the car to his
mechanic (system manager). He hooks it up to his engine analyzer and tunes up the engine
with a little tweaking (cache control on or off). Or perhaps he decides a major carburetor
overhaul is needed (or adding four more megs or a 68-70 upgrade with more memory
cache). Our analyzer, whether it is OPT3000 or Sysview or even good old SOO, says this
machine is HOT. This hummer is going to fly!!

So A.J. takes his hot system out to the track. A.J. is a winner. He knows it's not one
thing like a tuneup, but the total system (man, machine, track, everything), so he checks
out his hot winner. How? With that "electronic stopwatch." Now that hot car goes
201.956 miles per hour. Slower!

Have you ever tuned your system? Have you ever turned on or off one of the disc's
caching? Have you ever moved a file? Have you ever reloaded a database, or hopefully
used a time-saving tool like MPEX or DBGeneral or Adager, and then from the user you
hear the dreaded statement,"God, what did you do? Its even slower!" As a winner we also
need to go back to the simple, basic measurements and goals that we based our system
decisions on. We wanted to save our users time. We don't save CPU seconds, or disc
I/O's! I do agree they may lead to the end result, just like a carburetor adjustment helped

, A.J. run faster. The reason we bought the system or application was to let our user do
more things faster!

As you add AP applications you can't cause manufacturing to go from 3.2 second to 4.2
second response time on a basic lot move transaction. I know you say it's just one second!
But we can't forget that we do 36,000 lot move transactions every month. That's 600
minutes. That is 10 man hours each and every month. That might allow us to produce two
more wafers each month. With the 40% yield we get on our wafers that equates to 5000
chips each month. Since they are $5 each, that one little second just cost us $25,000 in lost
revenue each month! Remember, just one second per transaction and you can lose $25,000
in revenue each month.

2

So now let's get to work with our "electronic stopwatch." As I visit sites and talk to
people, I ask "What do you do on your system?" The usual response is, "Everything!"
But after some other questions, it gets down to the following:

"On system one, our Series 70, is our manufacturing system."

"On system two, our second 70, is order processing."

"And on system three, a 48, is our accounting, general ledger, and payroll."

Frequently they are packages like ASK Manman, MM3000, IC-10, or SFD, but the key is
each system has a primary function. When we bought the hardware and software, we
determined what kinds of information we wanted to collect and how we were going to
collect it. We figured out we would do X,000 lot move transactions each month. We also
decided who would the input in the wafer fab area. We have decided the 2-3 seconds to do
it was worth it for the management information we were going to get. Why do we then
stop monitoring our management decision objectives?

Of course we all want to become more efficient, so we add more applications like HPDesk
to help our engineers become more productive. That kind of productivity is certainly a
tough item to measure! But can we measure its impact on production to determine what is
the cost to that environment? Not just software cost or cost for added hardware, but what
are the human costs in the fab production areas? Remember our 1 second delay from our
earlier example? What we need to monitor and track, both on-line and historically, is the
major goals and objectives we set when we bought the system. What is our production
throughput?

Our application package tells us how much product throughput we achieve like wafers per
month/week/or hour. Our lot tracking system tells us which wafer lot was produced on
what day with what materials. But we don't track these critical items in EDP for some
reason. How many lot move transactions do we do each hour? Are morning workloads
heavier than the afternoon workloads? Who is on the system now and how many
transactions are they doing per hour? How fast is the system responding to them? Are
90% of the transactions still under the target response time we as managers set when we
bought the system? If we purchase application packages to answer management questions
about those critical areas, doesn't it seem to make sense to do the same in EDP?

Now I know as an MIS manager we all say, "But how can I fix my problems ifI can't
determine what is wrong?" I wholeheartedly agree. I used OPT3000 as an MIS manager
and I used it a lot. I can't imagine A.J. being a winner without using his engine analyzer.
But he doesn't stop there, so why should you!

I remember once as a young MIS manager I needed another system. I had been to many
staff meetings and watched the manufacturing management team convince the Division
Manager to buy another $100,000 piece of fab equipment.

They had all their facts together regarding throughput, operational impact, people impact,
labor vs. equipment tradeoffs, and all those ratios. So when I felt it was time to get my
next CPU on order, I got my staff together. I put all the facts together to show my 48 was
I/0 bound because each GIC was doing 20-25 I/O's per second. I had graphs showing the

3

CPU was 80% to 85% busy between 9 and 12 in the morning and 1 and 4 in the afternoon.
I had proof that I couldn't add any more terminals to my system. I was ready.

After an effective presentation, the marketing and manufacturing managers even reinforced
the fact that the system was running slower. I felt for sure the Division Manager would
sign the order for a new Series 68. Instead he asked questions like: "How much slower is
the system? Can we move some work to the noon-time window when the CPU is only
40% busy? We get new fab equipment when it is fully loaded; what can we do to get the
CPU 100% busy?"

Does all that sound familiar to you? Remember, we didn't get the system with objectives
oriented around these goals. I realized right then I needed ACCURATE APPLICATION
DATA TO SHOW WE WERE OVERLOADING OUR SYSTEM. I do want to emphasize
measurement. We use the system for production purposes, even if it's an office
automation machine. HPDesk is our production application when that is the situation. Our
managers don't want to wait five seconds after each return key any more than our
production people do. But in order to manage those systems, we have to know the basic
response times of the transactions, the transaction throughput, and the amount of CPU
resources needed to process each transaction. These items measure the true system
performance, the man/machine interfaced system that truly drives our production
environment.

Incidentally, we have had our electronic stopwatch running for the last hour. And now
suddenly Shirley the user calls. She says performance has become slow. We decide to
check the status of the terminals and we see she is on port 45 right now. We then request
terminal timing, on-line, for the production users. We see Shirley has been on the system
since 4:08 and has done 28 transactions. Nothing looks abnormal, so we will decide to
watch her for a while.

We can see the form she is using in VPLUS, the program she is running, and the detailed
response times she is getting from the system. We certainly can observe if any transactions
are starting to take longer. The nice thing is we are only monitoring the critical production
work. We are classifying by time, production program, VPLUS form (if used), and I/O
port. These transactions and their pertinent status are logged and stored to a data base.
Besides looking at a specific port, we should be able to request information based on the
production program and its forms file, if its usage is collected.

Before we take our theory any further, let's look a little closer at our clock interface. It tells
us what kind of time our system is using. For example, here we have a response time of
only 1.7 seconds on each transaction, while our user has spent 3.48 seconds on the
average to fill in the data. We should also notice our program takes 1.11 seconds, what
our VPLUS overhead is and our stopwatch elapsed time. We also can determine that 3 of
the 77 inputs were over 5 seconds, and by continued monitoring we can see if the count of
long responses starts climbing. We have good "what's happening now" information.

The real key to our data is not the current information. That's important, but more
important is the relationships between the present and our historical information. What is
the trend of our usage? Now I do agree there are trend servers available. I also question
whether they show us the vital data we need to make our management decisions.

4

The fact that I averaged 10 I/O's per disc and was 60% CPU busy two months ago is
important. And the fact that I am 80% CPU busy with 15 I/O's per second per disc is also
valid data. But nowhere in the analysis is the fact I added TurboIMAGE, and disc caching,
and that I now do 5000 more transactions per month. Also not related is the information
that response time has improved because of those additions. What I want to know, after
adding disc caching, is how many more transactions can I accomplish per hour and what is
the response time impact to my user. My user only measures me by my ability to provide
adequate services for him to get his job done.

What can our electronic stopwatch tell us? Let's look at some theoretical examples. We are
happily charging along on our 68 with no disc caching and 4 megabytes of memory. Users
are slightly disgruntled because response time is getting sluggish. As MIS managers, we
decide we need to do something because the analysis of our response times has shown us
that 5% of our transactions are now over the 3 second response threshold we had set.

Six months ago when we upgraded from a 48 to a 68, we had a lot of problems. About
40% of our transactions were over 3 seconds and 10% were over 5 seconds. We were
doing 60,000 transactions per month and everyone was complaining. After the upgrade
everyone was happy.

So we set our response time threshold to 3 seconds. In those intervening 6 months our
volume has grown at about 5000 transactions per month to the current 90,000 per month.
And as we said earlier it has slowly degraded.

So what do we do? Well, the CPU has become busier according to our analyzer, but based
on our experience with the 48, that 65% CPU busy is still okay. No discs or I/O channels
show any signs of reaching bandwidth capacity, our memory manager has been doing only
a little bit more memory swapping and disc caching hasn't increased at all. Now
remember, we have had both our engine analyzer and our electronic timer at work!

A bit down the road (we all know about delivery schedules) we have our hardware,
software, firmware, SE, and CE all staged for our exciting installation! We install and run
some small tests and decide that everything looks good. The next day our friendly users
show up and instead of our 2 session test, it's back to the real world of 70 sessions.

Within one hour, the phone is ringing off the hook. "Yee gads, what did you do? Install a
turtle for our squirrel power?" Since I know the answer to this problem, I am now going
to take my author's privilege! I am not going to analyze the problem as I did, stopwatch
first, but the way you probably would! You break out your friendly engine analyzer. It
runs as promised and shows us the CPU isn't too busy, the I/O channels aren't at a limit,
the busiest disc is only at 15 I/O's per second and the GIC is at 20 per second. The
memory has so much space, it's barely doing any swapping (once in 10 minutes), and we
are befuddled. I log onto HPDesk and I am flying like crazy. What's wrong? After a
while we go down to the manufacturing user to see if he is telling the truth. Sure enough
his response time is a mess! So we turn caching off on all the drives. Now the user is
seeing a response time about where we were before the upgrade.

Well, the problem was not memory and disc caching. It was an IMAGE problem. After
we turned on TurboIMAGE things really took off and disc caching helped. The key to this
story is the fact that memory and disc caching, and the money we put into them, was not
the problem.

5

The point is, the reason to buy the hardware solution was to improve production
throughput. After we installed our engine analyzer, we said "wow, we sure are running
smoother." But like A.J., we didn't go faster on the track. Our stopwatch told us we were
running slower like him. After careful analysis, we discovered IMAGE to be our problem,
and happily TurboIMAGE solved it. At least, the other divisions using the same software
would not make the same mistake. This example has shown we can use our management
tools to troubleshoot our problems and really measure true system performance impact.

What if the upgrade had only added .4 second response time for our users in the fab?
Would they have complained? Would we have known without our stopwatch? Remember
our earlier 1 second on 36,000 transactions? We are now talking .4 second on 90,000
transactions, or 36,000 seconds again. Right back to that $25,000 potential revenue loss.

Again, important to my job as an MIS manager was my planning role. The electronic
stopwatch had helped enormously in tuning and preparing of my systems. Since I know
how many transactions I am doing and the total CPU needs of the applications, I could
better balance my system loads by analyzing which user uses how much in resources. I
know who to move from one system to another. I had at that point gone from a 48 shop to
a shop with two 68's but I found a new challenge in capacity planning.

By this time, things had changed; the 70's had been announced and my division manager
had asked me a simple question: Should we get another CPU or system or would two 70
upgrades be better?

Since we had been collecting transaction information for some time, we had good
information on how many transactions were done by each individual, or process. Based
on production profiles, if the fab wanted to increase production by 15%, we knew how
many transactions, what type, and the typical response times. We also knew the average
CPU seconds needed per transaction.

This information was the key to capacity planning. If the fab had to get 15% more IC die
in a given area, it meant certain wafers had to be produced in a higher quantity.
Manufacturing was good at accurately predicting what additional equipment would be
needed since they have unit capacity for lappers, furnaces, and photo-masking equipment.
What was nice was EDP had the same tools at last. We knew by wafer type what type of
transactions were needed to produce the products. We also knew the average resources
EDP needed to process those added transactions.

If we ha~ 10,000 new transactions that in the past had used five CPU seconds per
transaction, we knew we had to come up with 50,000 CPU seconds in additional capacity.
In addition our job controller history statistics helped us track job demands and forecast
job-related needs. Armed with CPU second needs we could do some ratios to determine
whether two 70's could manage our future load. Data center accounting had shown us
ratios between MIPS and CPU seconds available on our 48's and 68's. By extrapolation
we could determine the number of potential CPU seconds on a new 70.

For example, a 50 second job on a .75 MIP machine might only need 30 seconds on a 1.4
MIP machine. These ratios helped us determine what resource would be needed by
product line, department, and CPU. Knowledge of application interdependencies from our
job controllers and application specialists helped us determine which jobs, screens, and

6

applications could best be split up. The net result was an enjoyable justification trip to the
Division Manager.

The growth in Manufacturing and Order Processing for the next 12 months would approach
the capacity limits of the two new 70's, if we got them. Since we could explain MIPS and
how it determined available seconds, along with the additional needed capacity and planned
response time, the Division Manager had no problem buying our third 68. In addition,
HPDesk was in the midst of implementation, and based on its projected resource growth he
signed off on one Series 70 upgrade. The second and third upgrade was planned for the next
year.

The key to giving us this power for capacity planning was our electronic stopwatch.
Transaction level resources were available as a result. User-acceptable goals could be set
and maintained since they were monitorable. It was important that our division team had
management-related goals to measure our equipment in EDP against. They could relate to
our needs without needing to understand our technical jargon. We in EDP could continue
to be concerned with "tuning our engine" just like the process engineers in wafer fab tune
theirs.

In summary, I hope I have stimulated you to look at the world of EDP management/system
performance measurement in a new light. Like our high-tech manufacturing counterparts,
we must learn to measure and manage our unique technology in a way that managers who
make the Profit/Loss decisions can understand.

We at Unison have dedicated ourselves to those Data Center Management tools you need to
accomplish that. If you have problem areas feel free to give us a call. It isn't often the
professional at the other end of the line has MIS Management experience comparable to
yours, but at Unison that's the rule, not the exception.

7

