
HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

HP3000

INTERNATIONAL CONFERENCE

VIENNA 1987, 23.-27. MARCH

PROCEEDINGS

HP3000
IN ERNATIONAL CONFERENCE ii
VIENNA 1987

The papers are grouped according to the eight subject categories. Within these
categories the order of arrival at the editor's office has been followed. Papers
coming in after the copy dead-line are arranged in an own group at the end of
the proceedings.

Papers are reproduced exactly as they were submitted. Scientific, grammatical
or typographical inaccuracies have not been corrected.

Copyright 1987 by HP3000 ENUG European National User Groups
c/o AUG Austrian Users Group, Vienna

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Committees

Organizing Committee

P. Vollsinger (Chairman)
K. Bauer
H. Kassmayer
H. Lenglachner
W. Vitovec
O. Wiegele

PCO

G. Winter

Raiffeisen Reiseburo Ges.m.b.H. Wien
AlserbachstraBe 30
A-1091 Vienna
Austria

iii

HP3000
INTERNATIONAL CONFERENCE iv
VIENNA 1987

Topics of the Conference

The papers are divided into the following subject categories:

Al - Artifical Intelligence and Expert Systems

AL - Advanced Languages

DB - Database Management Systems
This category includes also the papers concerning future
DB-systems and the migration to them.

DC - Data Communications and Networks

OA - Office Automation, Networks and PCs

RI - RISC and HP-PA
This chapter contains all papers with the subject
"precision architecture" and the migration path from the
current systems to the "PA-systems".

SM - System Management

VS -Various

*

All other papers wich cannot be put in the previous
groups are gathered under this mnemonic.

All papers which arrived after the copy dead-line are
additionally marked with an "*".You will find these
papers at the end of the proceedings grouped according
to the eigth subject categories.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Table of Contents

AI01 An Expert System Manager for the HP3000
Ross G. Hopmans I Brant Computer Services Limited

AI02 A development methodology for expert system programming
Shawn Brayman, Ross Hopmans I Brant Computer Services Limited

AI03 Logic Programming and Expert Systems
Shawn Brayman I Brant Computer Services Limited

AI04 An Expert Financial Planning System
Don MacKenzie, Ross Hopmans, Shawn Brayman I Brant Computer Services
Limited

AI05 Artificial Intelligence Applied to the HELP Function
Robert Stanley I Cognos Incorporated

AI06 Machine Learning
David Price I VAS Software Ltd.

AL01 The analyst workbench revolution
Jim Farrow, Stephen Price I DCE Information Consultancy

v

AL02 System Development and Prototyping Using 4GL's - The Changing Role of
the Programmer
Jurgen Fritz I JF Management- und DV-Beratung

AL03 Report Generation using a Visual Programming Interface
Tim Dudley I Cognos Incorporated

AL04 The Human Interface to 4GL
Hans van der Leeuw I Assyst-Raet

AL05 4GL - The Controversy Rages On
Karen Heater I lnfocenter Ltd.

AL06 Migrating PowerHouse Applications to New Machine Environments
Paul Elder, Jim Sinclair I Cognos Incorporated

AL07 Information systems prototyping
Orland Larson I Hewlett-Packard

ALOS How to write structured Transact programs
Ewald M. Mund

AL09 The 4th generation environment
Rudi Huysmans, Wim Bockstaele I Sydes

D801 Data integrity and recovery
Robert Bray I Carolian Systems International Inc.

D802 Using DBchange to improve your database administrator's productivity
Robert Ross I Hewlett-Packard

D803 Relational Access to IMAGE Data Bases
Dr. Wolfgang Matt I lndustrieanlagen-Betriebsgesellschaft mbH

D804 "§", "*" and Other IMAGE Lists
Fred White I Adager

DB05 How to build a distributed M.l.S. system?
Roger W. Lawson I Proactive Systems Ltd.

DB06 Normalization - the perfect database?
Glen Kalina I Hewlett-Packard

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

0807 A comparison of TurbolMAGE and HPSQL
Larry Kemp I Hewlett-Packard

OBOS Relational database: how do you know you need one?
Orland Larson I Hewlett-Packard

0809 Linking to HP System Dictionary
Ron Harnar I Hewlett-Packard

0810 Is thei'e life besides IMAGE?
May Kovalick I Hewlett-Packard

0811 HPSQL in practice
Andre Van Aken I Hewlett-Packard

0812 Maximizing your database through normalization
Michele Dingerson I Hewlett-Packard

0813 Dynamic Aspects of Information Modelling
Ewald M. Mund

0814 Million Records Database Strategies
Clifford W. Lazar I Systems Express

DC01 Experience with an IEEE 802.3 Local Area Network In a multi-vendor
environment
Dr. W. Schmatz I MAN Technologie GmbH, MOnchen

DC02 Networking: Will Today's Choices Be Needed Tomorrow?
Scott Brear I MICOM Systems

DC03 A uniform interface to distributed services
Stuart R. Patterson I VICORP Marketing GmbH

DC04 Network maintenance management
Brian Button I Hewlett-Packard

OA01 Making external data available on a micro
Ronald W. Collison I DARPA

OA02 Software Super Market I The Gateway project
Roni Klimscheffskij I Posts and telecommunications of Finland

Vi

OA03 The Mini and the Micro - Distributed Application Development and Processing
Karen Heater I lnfocentre Ltd.

OA04 PC to HP3000 communications: a perspective
Sam Patsy I Hewlett-Packard

OA05 Document filing and retrieval
Rudi Huysmans, Peter Arfeuille I Sydes

OA06 Sophisticated Computer-Aided-Publishing in a Commercial Environment
Dr. Wolfgang Vitovec I Herold

OA07 Desk Top Publishing - our first three years
Tim Cullis I HP Computer Users Association UK

RI01 A Spectrum strategy for the current HP3000 user
Nick M. Demos I Perfomrance Software Group

RI02 MPE XL contributions to HP3000 system availability
Dave Trout I Hewlett-Packard

RI03 Design features of the MPE XL user Interface
John Korondy, Denis Rachal, Jeff Vance I Hewlett-Packard

RI04 MPE V to MPE XL migration overview
R. Gregory Stephens; Speaker:Lee Courtney I Hewlett-Packard

RIOS Design of the HP3000 Series 950
Peter Rosenbladt I Hewlett-Packard

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

RI06 MPE V to MPE XL migration: migration tools
R. Gregory Stephens; Speaker: Lee Courtney I Hewlett-Packard

SM01 Converting to IBM - Are You Sure?
Donal Barksdale I Spectra-Physics

SM02 Predicting system perfonnance
Larry Kemp I Hewlett-Packard

SM03 Disc performance - what is It?
Rick Aldinger I Hewlett-Packard

SM04 Performance measurement for capacity planning
Tim Twietmeyer I Hewlett-Packard

SM05 HP Proactive Support Systems, Predictive Support and HPTrend
Bruce Richards I Hewlett-Packard

SMO& Is online backup possible outside spectrum
Joerg Groessler I Joerg Groessler GmbH

SM07 Application Recovery
Eduard Stiefel I SWS SoftWare Systems AG

VS01 ,,CC - STIPRO" (Inventory: Stocktaking by Random Samples)
Josef Angerer I Chemserv Consulting GesmbH

VS02 The integration of hardware. and software maintenance
Judy Hayner I Hewlett-Packard

VS03 RINs, RINs, RINs
Benedict G. Bruno I S.T.R. Software Company

VS04 The Legal Protection of Software In European and lntematlonal Law
Peter R. Ackermann I Orbit Software

VS05 Comparative Performance of HP3000 Report Writers
Roger Lawson I Proactive Systems

VS06 Squeezing the last bit out of your HP3000
Robert M. Green I Robella Consulting

VS07 Migrating Large Software Systems from an HP3000 to a DEC-VAX
Alexander Kotys I SIS Datenverarbeitung Ges.m.b.H.

vii

The following papers arrived after the copy dead-line. You will find these papers
at the end of the proceedings grouped according to the eight subject categories
additionally marked with an "* ".

AL 10* Applications design and optimization for the Series /930
Terri Csete I Hewlett-Packard

0815* A friendly system for design and management of IMAGE-databases
R.Raschetti, B.Caffari

0816* SQL and Tools
Hewlett-Packard Presentation

0817* Image migration update
Hewlett-Packard Presentation

0818* Recommendations for defining transactions In Turbo- and HPIMAGE
Peter Kane I Hewlett-Packard

0819* Inter-system database Interaction In a network environment
Dave Mackay I Hewlett-Packard

0820* can Profiler improve your database performance?
Robert Ross I Hewlett-Packard

HP3000
INTERNATIONAL CONFERENCE viii
VIENNA 1987

DCOS* OS-protocol and the X25. implications
Richard Oxford, Michael McShane I MCI Disc

DC06* Network support technology
Deborah Nelson I Hewlett-Packard

DC07* Standards on document exchange and future trends at HP
Hewlett-Packard

DC08* HP networking strategy and OSI
Wim Roelandts I Hewlett-Packard

DC09* Successful Network Implementation
Brenda Vathauer, Deborah Nelson I Hewlett-Packard

OA08* HP's Office Automation Strategy
Hewlett-Packard Presentation

OA09* Desktop Publishing Strategy
Hewlett-Packard Presentation

OA10* HP PC/Workstation Strategy
Bob Puette I Hewlett-Packard Presentation

OA11* Sales and Service Productivity Network
Matthew Wallis I Hewlett-Packard

RI07* HP precision architecture status report
Doug Chance, Doug Spreng I Hewlett-Packard

Rios· Series 900 migration update
Jeff Hornung I Hewlett-Packard Presentation

SM08* HP3000 - Backup
John Bosse I Hewlett-Packard

SM09* The operatorless HP3000 - fact or fiction?
Henk Alblas I Hewlett-Packard

VS08* Microvax vs. Micro 3000/XE
Lee Courtney; Speaker: Terry Hays I Hewlett-Packard

VS09* Business Systems Strategy
Klaus Dieter Laidig I Hewlett-Packard

Complete your proceedings with the actual papers and slides of the conference:

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Author's Index

Ackermann, Peter R. VS04
Aken, Andre Van DB11
Alblas, Henk SM09
Aldinger, Rick SM03
Angerer, Josef VS01
Arfeuille, Peter *OA05
Barksdale, Donal SM01
Bockstaele, Wim * AL09
Bosse, John SMOS
Bray, Robert 0801
Brayman, Shawn AI02, * AI03, * AI04
Brear, Scott DC02
Bruno, Benedict G VS03
Button, Brian DC04
Caffari, B *DB15
Chance, Doug RI07
Collison, Ronald R. OA01
Courtney, Lee VS08
Cullis, Tim OA07
Demos, Nick M RI01
Dingerson, Michele DB12
Dudley, Jim AL03
Elder, Paul AL06
Farrow, Jim AL01
Fritz, Jurgen . AL02
Green, Robert M VS06
Groessler, Joerg SM06
Harnar, Ron 0809
Hayner, Judy VS02
Heater, Karen AL05, OA03
Hopmans, Ross G AI01, * AI02, * AI04
Hornung, Jeff . RIOS
Huysmans, Rudi AL09, OA05
Kalina, Glen DB06
Kane, Peter DB1S
Kemp, Larry DB07, SM02
Klimscheffskij, Roni OA02
Korondy, John RI03

ix

Kotys, Alexander VS07
Kovalik, May DB10
Laidig, Klaus Dieter VS09
Larson, Orland AL07, OBOS
Lawson, Roger W 0805, VS05
Lazar, Clifford W DB14
Leeuw, Hans van der AL04
MacKenzie, Don AI04
Mackay, Dave DB19
Matt, Dr. Wolfgang DB03
Mcshane, Michael *DC05
Mund, Ewald M ALOS, DB13
Nelson, Deborah DC06, *DC09
Oxford, Richard DC05
Patsy, Sam OA04
Patterson, Stuart R. DC03
Price, Stephen * AL01
Price, David . AI06
Puette, Bob OA10
Rachal, Denis *RI03
Raschetti, R. DB15
Richards, Bruce SM05
Roelandts, Wim DCOS
Rosenbladt, Peter RI05
Ross, Robert DB02
Schmatz, Dr. W DC01
Sinclair, Jim *AL06
Spreng, Doug RI07
Stanley, Robert AI05
Stephens, R. Gregory RI04, RI06
Stiefel, Eduard SM07
Trout, Dave . RI02
Twietmeyer, Tim SM04
Vance, Jeff *RI03
Vathauer, Brenda DC09
Vitovec, Dr. Wolfgang OA06
Wallis, Matthew OA 11
White, Fred DB04

In case of the co-author the paper is marked with a "*"!

HP3000
INTERNAnONAL CONFERENCE
VIENNA 1987

I

I
I
I

HP3000
INTERNA TJONAL CONFERENCE
VIENNA 1987

An EXPERT SYSTEM MANAGER for the HP3000

Ross G. Hopmans

Brant Computer Services Limited
6303 Airport Road, Suite 201

Toronto, Canada

(416) 673-9417

A/0111

HP3000
INTERNATIONAL CONFERENCE A/0112
VIENNA 1987

ARTIFICIAL INTELLIGENCE IN BUSINESS

The goal of AI scientists has always been to develop
computer programs that could in a sense think~ that is, solve
problems in a way that would be considered intelligent if
done by a human.

To act intelligently - to think - means more than to
calculate or match numbers or letters. To think means, among
other things, to combine new information, previously known
facts, rules of thumb, guesses and even intuition to come up
with an appropriate response to a problem.

Artificial Intelligence is a field of study that
involves computer program and mechanisms that emulate some
aspect of intelligent human behaviour. AI includes such
areas as:

Expert Systems
Robotics
Vision Recognition
Voice Recognition

The AI marketplace is projected to be the fastest
growing sector of the computer industry with general purpose
computers the medium of choice.

Brant Computer Services has brought MPROLOG to the
HP3000. MPROLOG is an ideal tool for developing prototype
and production AI applications. With its external language
interface, users of the HP3000 may find that the real power
of MPROLOG is its ability to provide "knowledge processing"
to commercial applications and data bases.

Knowledge processing systems may be used to solve small,
specific problems, supplant training, and enable employees to
perform tasks that previously required access to senior
specialists.

Most observers agree that software is steadily becoming
increasingly complicated, powerful and intelligent. The
development of AI applications often requires capabilities
not available or feasible using conventional computer
languages. The MProlog language provides the technology for
developing and executing intelligent and sophisticated
applications.

HP3000
INTERNA T/ONAL CONFERENCE A/0113
VIENNA 1987

MProlog•s use need not be restricted to problems
requiring the direct employment of AI technology, however. It
has been designed to foster improvements in the conventional
software development market. Applications which may not
require AI techniques can be implemented and maintained more
productively by employing AI tools that can intelligently
help locate and diagnose errors in the program code.

"Expert systems" use artificial intelligence techniques
to draw on a base of knowledge supplied by a company's
experts, including subjective judgments to simulate human
reasoning. The systems can make reasoned assumptions to fill
in missing information. In contrast, most conventional data
processing programs do little more than crunch numbers.

This paper discusses the development of a new product
for the HPJOOO and PC compatible micro-computers - An Expert
system Manager for the HPJOOO. This product is a knowledge
system which uses AI techniques to perform some of the
advisory functions of a system manger for the Hewlett-Packard
HPJOOO line of business computers.

EXPERT SYSTEMS

Among the most significant of the developments in the
field of Artificial Intelligence are "expert" or "knowledge­
based" systems. These programs are designed to represent and
apply factual knowledge of specific areas of expertise to
solve problems.

Like human experts, these systems use symbolic logic and
heuristics rules of thumb - to find solutions. Expert
systems may make errors from a lack of knowledge but should
be able to learn from their mistakes and, unlike their human
counterparts, provide a permanent, consistent record of the
knowledge they contain.

Initially, AI scientists tried to simulate the
complicated process of thinking by finding general methods
for solving broad classes of problems. However, the more
classes of problems a single program could handle, the more
poorly it seemed to do on any individual problem. They next
decided to concentrate on developing general methods or
techniques to use in more specialized programs. It wasn't
until the late seventies that AI scientists began to realize

HP3000
JNTERNA TJONAL CONFERENCE A/0114
VIENNA 1987

that the problem-solving power of a program comes from the
knowledge it possesses, not just the formalisms and inference
schemes it employs. In other words, to make a program
intelligent, provide it with lots of high-quality, specific
knowledge about some problem area.

This realization led to the development of special­
purpose computer programs that were expert in some narrow
problem area. These programs were called expert systems.

The process of building an expert system is often called
Knowledge Engineering. It typically involves a special form
of interaction between the expert-system builder, called the
knowledge engineer, and one or more experts in some problem
area. The knowledge engineer "extracts" from the human
experts their procedures, strategies, and rules of thumb for
problem solving, and builds this knowledge into the expert
system.

The result is a computer program that solves problems in
much the same manner as the human experts. An expert
described by Paul E. Johnson is a person who, because of
training and experience, is able to do things the rest of us
cannot; experts are not only proficient but also smooth and
efficient in the actions they take. Experts know a great
many things and have tricks and caveats for applying what
they know to problems and tasks; they are also good at
plowing through irrelevant information in order to get at
basic issues, and they are good at recognizing problems they
face as instances of types with which they are familiar.
Underlying the behaviour of experts is the body of operative
knowledge we have termed expertise. It is reasonable to
suppose, therefore, that experts are the ones to ask when we
wish to represent the expertise that makes their behaviour
possible.

Knowledge engineering relies heavily on the study of
human experts in order to develop intelligent, skilled
programs. As Hayes-Roth and others point out in the book
Buildina Expert Systems, the central notion of intelligent
problem-solving is that a system must construct its solution
selectively and efficiently from a space of alternatives.
When resource-limited, the expert needs to search this space
selectively, with as little unfruitful activity as possible.
An expert's knowledge helps spot useful data early, suggests
promising ways to exploit them, and helps avoid low-payoff
efforts by pruning blind alleys as early as possible. An
expert system achieves high performance by using knowledge to

I,

HP3000
INTERNA T/ONAL CONFERENCE A/0115
VIENNA 1987

make the best use of its time.

The transfer of knowledge from an expert to a computer
program (knowledge engineering) can be pictured as follows:

-----queries, problems----­
! I
v

DOMAIN
EXPERT

I
I

I
KNOWLEDGE ----------------->EXPERT
ENGINEER SYSTEM

I
----answers, solutions-----

strategies
rules-of-thumb

domain rules

The main players in the expert system game are the
expert system, the domain expert, the knowledge engineer, the
expert-system-building tool and the user.

The expert system is the collection of programs or
computer software that solves problems in the domain of
interest. It is called a system rather that just a program
because it contains both a problem solving component and a
support component. This support environment helps the user
interact with the main program and may include sophisticated
debugging aids to help the expert-system builder test and
evaluate the program's code, editing facilities and advanced
graphics.

The domain expert or area expert is an articulate,
knowledgeable person with a reputation for producing good
solutions to problems in a particular field. The expert uses
tricks and shortcuts to make the search for a solution more
efficient, and the expert systems models these problem­
solving strategies. Although an expert system usually models
one or more experts, it may contain expertise from other
sources such as books or journal articles.

The knowledge engineer is a human, usually with a
background in computer science and AI, who knows how to build
expert systems. The knowledge engineer interviews the
experts, organizes the knowledge, decides how it should be
represented in the expert system, and may help programmers to
write the code.

The
language

expert-system-building tool is the programming
used by the knowledge engineer or programmer to

HP3000
INTERNATIONAL CONFERENCE A/0116
VIENNA 1987

build the expert system. These tools differ from
conventional programming languages in that they provide
convenient ways to represent complex, high-level concepts.
The term tool usually refers to both the programming language
and to the support environment used to build the expert
system.

The user is the human who uses the expert system once it
is developed.

Why develop expert systems? One advantage is
permanence. Human expertise can fade quickly whereas
artificial expertise is around forever. Another advantage is
the ease with which it can be transferred or reproduced - not
true for humans. Artificial expertise is easy to document
and produces more consistent, reproducible results than does
human expertise. Computer programs are not susceptible to
time pressures, stress or distractions. Finally, human
experts are very scarce. Expert systems allow the expertise
to be readily attainable and relatively inexpensive.

THE STRUCTURE OF AN EXPERT SYSTEM

We use the term knowledge to mean the information a
computer program needs before it can behave intelligently.
This information can take the form of facts or rules.

Facts and rules in an expert system
either true or false; sometimes there
uncertainty about the validity of a fact or
rule. When this doubt is made explicit,
certainty factor.

&re
is
the
it

not always
a degree of
accuracy of a
is called a

Many of the rules in expert systems are heuristics
rules of thumb or simplifications that effectively limit the
search for solutions. Expert systems use heuristics because
the tasks these systems undertake are typically difficult and
often poorly understood. They tend to resist rigorous
mathematical analysis or algorithmic solutions.

that
the
how
the

The knowledge in an expert system is organized in a way
separates the knowledge about the problem domain from

system's other knowledge, such as general knowledge about
to solve problems or knowledge about how to interact with
user. This collection of domain knowledge is called the

HP3000
INTERNATIONAL CONFERENCE A/Otn
VIENNA 1987

knowledge base, while the general problem-solving knowledge
is called the inference engine. A program with knowledge
organized this way is called a knowledge-based system.

The knowledge base in an expert system contains facts
(data) and rules that use those facts as the basis for
decision making. The inference engine contains an
interpreter that decides how to apply the rules to infer new
knowledge and a scheduler that decides the order in which the
rules should be applied.

How the system uses its knowledge is important. An
expert system must have both the appropriate knowledge and
the means to use the knowledge effectively to be considered
skilled at some task. Thus to be skilled, an expert system
must have a knowledge base containing lots of high-powered
knowledge about the problem domain and an inference engine
containing knowledge about how to make effective use of the
domain knowledge.

Finally, we need to consider how the knowledge is
represented. Rule-based representations centre on the use of
IF condition THEN action statements. Frame-based knowledge
representation uses a network of nodes connected by relations
and organized into a hierarchy.

Expert systems
programs manipulate
differences between
follows:

manipulate knowledge while conventional
data. Teknowledge characterizes the

expert systems and ordinary programs as

Data Processing

Representations and use of
data

Algorithmic
• Repetitive process
• Effective manipulation of

large data bases

Knowledge Engineering

Representations and use of
knowledge

Heuristic
• Inferential process
. Effective manipulation of

large knowledge bases

When human experts solve problems, particularly the type
we consider appropriate for expert system work, they chose
symbols to represent the problem concepts and apply various
strategies and heuristics to manipulate these concepts. An
expert system also represents knowledge symbolically. The
symbols can be combined to express relationships between

HP3000
INTERNA nONAL CONFERENCE A/0118
VIENNA 1987

them. To solve a problem, an expert system manipulates these
symbols and the consequence is that the knowledge
representation becomes very important.

An expert system has depth; that is, it operates
effectively in a narrow domain containing difficult,
challenging problems. Thus the rules in an expert system are
necessarily complicated through their individual complexity
or sheer number.

An expert system has knowledge that lets it reason about
its own operation plus a structure that simplifies this
reasoning process. For example, if an expert system is
organized as sets of rules, then it can easily look at the
inference chains it produces to reach a conclusion. If given
rules that tell it what to do with these inference chains, it
can use them to check the accuracy, consistency, and
plausibility of its conclusions and justify its reasoning.
Most current systems have an explanation facility to explain
how the system arrived at its answers and these usually
involve displaying the inference chains and explaining the
rationale behind each rule used in the chain. This provides
a self-knowledge which is becoming more important in helping
expert systems to resolve inconsistencies.

MPROLOG - THE DEVELOPMENT TOOL

MPROLOG is an advanced, modular implementation of the
Prolog language. Selected as the basis for the Japanese
Fifth Generation computer System Project, Prolog enables
designers to describe their application in logical terms for
interpretation by the computer. It will help solve problems
involving all types of logical reasoning quickly and easily.

MPROLOG gives you a powerful inference engine surpassing
the capabilities of most expert shells. MPROLOG provides
automatic, system-driven reasoning with the rules and facts
in the program knowledge base. You describe the problem by
describing the rerevant properties of the objects you are
interested in, and the relationships between different
objects. The MPROLOG uses its build-in logical inference
engine to find a solution to your problem. By way of
contrast, to solve a problem with a traditional programming
language, you must give precise, step-by-step instructions
for how that problem is to be solved.

HP3000
INTERNATIONAL CONFERENCE A/0119
VIENNA 1987

In addition, MPROLOG gives you interfaces to procedural
languages, hardware and operating system independence, high
performance and a program development environment with
on-line help, interactive editing, error correction and
program trace facilities.

MPROLOG operates in a number of computer environments in
addition to the HP3000 including IBM VM/CMS, IBM MVS/TSO, IBM
PC-DOS, DEC VAX/VMS, DEC VAX/UNIX, CDC Cyber, and AI
workstations including Tecktronix 4404, Sun, Apollo, Charles
River, Mostek and other M68000/UNIX.

Such features as floating point arithmetic, exception
handling, dynamic programming, type checking, host and
external language interfaces make MPROLOG a robust tool for
the development of application programs. Operating system
independence means that only a single source must be
maintained for applications running in different production
environments.

The programming and production environment consists of
the following five components:

The Program Development Support System (POSS)
for writing, editing and testing MProlog programs

The Pretranslator
translates MProlog source modules into binary form

The Compiler
compiles these binary modules into machine-code

The Consolidator
links pretranslated and compiled modules together,
forming a standalone MProlog program

The Interpreter
executes a standalone MProlog program

Brant Computer Services has brought MPROLOG to the
HP3000. MPROLOG has a high profile in a relatively sound
industry and Brant has exclusive , world-wide rights to
market the language to all Hewlett-Packard computer systems.

HP3000
INTERNATIONAL CONFERENCE A/01110
VIENNA 1987

THE APPLICATION - AN EXPERT SYSTEM MANAGER

Brant is a supplier of computer software, services and
support. The Expert System Manager was conceived for two
reasons - to supplement our Facilities Support offering and
as a documentation and educational tool to help us capture
the knowledge of our in-house experts and to help train
others.

The Expert System Manager was de~igned with an
unsophisticated end-user in mind. The product must run on
the micro-computer in case the HP3000 goes down and must
converse with the user in a question and answer fashion. The
system should lead to specific recommendations to remedy the
problem with a minimum number of questions and should help
the user restore the computer to an operational state as
quickly as possible. The system should, in addition, explain
its reasoning, address preventative maintenance and allow
users to add to the base of knowledge in the system.

Rather than a strictly academic exercise, this product
was conceived not only as saleable, but was seen as required
in many situations. The Expert system Manager will be quite
useful to new uses of smaller systems who do not wish to hire
specific data processing staff.

Large shops can also benefit from the Expert system
Manager to overcome problems which occur when the system
manager is unavailable. Multiple site shops can use the
Expert System Manager to maintain consistency across machines
and sites. Since the base of knowledge is expandable, it can
be tailored to the specific requirements and methodology
where it is installed.

It is important in the development of any expert system
to restrict its scope to a manageable size. System managers
are responsible for solving numerous and varied problems
which are often site and application specific.

We decided to limit the scope of the project to the set
of problems concerned with the operating system and
communications from the end-user to the host computer. Our
problem profile is quite broad, covering numerous problems
that end-users and computer operators encounter in trying to
establish communications with the operating system and
low-level problems that they may experience once they have
the attention of the operating system.

HP3000
INTERNATIONAL CONFERENCE A/01111
VIENNA 1987

The purpose of the system is, through communication with
the end-user, to establish the nature of the problem and
recommend a means of overcoming it. If a solution suggested
in not successful or not available, the system will suggest
that the user seek outside help and prompt for the solution
to be added to its knowledge base.

A SYSTEM MANAGER'S ROLE

System managers are responsible for solving numerous and
varied problems, as we learned in the observation of our
expert. The system manager has prime responsibility for the
HP3000 and peripherals. This role extends beyond the machine
itself and includes communications to direct and remote
users, the operating system, system software and application
programs.

The system manager is generally the most knowledgeable
person in all aspects of the real world which interact
physically in some way with the computer system.

The types of problems which system managers are
responsible for solving include:

• Operating System Problems

The system manager must keep current with known
problems in the operating system, the use of the
operating system including utilities from HP,
the contributed library or those internally
developed, keeping the system running,
interpreting error messages and how to recover
if the system goes down.

Operations Problems

Some system managers fill the dual
computer operator as well, responsible
console commands including fences and
console replies, tape and form mounts,
cold load and reload procedures, system
and performance monitoring

role of
for the
limits,
backup,
loading

HP3000
INTERNATIONAL CONFERENCE A/01112
VIENNA 1987

• System Configuration Problems

Configuration of the system is an on-going
concern to system managers. System table sizes
must be optimized for the user base and the
configuration must be kept current with the
changing needs of the user base.

Performance Enhancement Problems

The system manager may be the first to know if a
new application is experiencing performance
problems through the other users on the system.
His or her knowledge must cover data base
design, file access techniques, program
segmentation and much more.

• Communications Problems

Communications problems can include problems
with the terminal, power supply, cabling or
configuration of the users, the configuration of
the system, modem, multiplexer or line problems
with remote users and with application software.
The perceived problem may simply be the result
of a slow system, incorrect use of application
software or may involve local printers or PCs.

These are only some of the problems which system
managers may encounter in a typical day on the job. Pressures
from end-users, management and the machine itself make the
system manager's a very responsible role.

The job of system management, however, is often very
site specific. Experienced system managers are in short
supply. After hiring one, he must still be trained in the
inner workings of the new site and will certainly not be
available for the twenty-four hours a day, seven days a week
that the machine is working.

An obvious need exists, then, for an advisory tool to
help less highly trained staff solve some of the problems
they may encounter, to help these people further qualify
difficult problems before calling in the system manager, to
document the expertise of the system manager and to help
train others in this expertise.

HP3000
INTERNATIONAL CONFERENCE A/01/13
VIENNA 1987

The Expert System Manager project was undertaken to
fulfill this need.

THE KNOWLEDGE ENGINEERING

To obtain the knowledge base necessary for our
System Manager, we used two of our system managers
experts along with the HP manuals and trade journals.

Expert
as the

A paradox of expertise is that the more competent domain
experts become, the less they are able to describe the
knowledge they use to solve problems. Domain experts need
outside help to clarify their thinking and that is the role
of the knowledge engineer.

Our goal in the knowledge acquisition was to transfer
the problem solving expertise from our human system managers
to a computer program.

The knowledge engineer was not himself an expert in
system management or operations. He obtained most of his
information through direct interaction with each of the
system managers independently.

Our knowledge engineering sessions took three basic
forms. One form was through question and answer sessions
during which the expert would explain what types of problems
he encountered, how he solved the problem and why he took the
direction or made the decisions he did. The knowledge
engineer would ask for clarification where required and
challenge the expert when his reasoning seemed contradictory.

The second form of the knowledge engineering was through
case studies. The knowledge engineer presented the expert
with realistic or actually documented problems to solve
providing the expert with the actual end-user view of the
problem and symptoms as reported. The expert would then
proceed to solve the problem as best he could. He would
query the knowledge engineer as he would the end-user and
conclude what actions he would probably take. The knowledge
engineer took an active role, requesting explanations from
the expert at intervals in the process.

HP3000
INTERNA T/ONAL CONFERENCE A/01114
VIENNA 1987

The third form of the knowledge engineering took the
form of strict observation during the expert's actual problem
solving process. The knowledge engineer spent time with the
expert on the job and recorded the actions taken and
questions posed by the expert in solving problems as they
arose.

No matter what the form of the knowledge engineering,
our knowledge engineer was keen to note the organizational
mechanisms used by the expert to classify the type of problem
he encountered. The organizational constructs formed the
basis for certain types of inferences the expert makes during
problem-solving and constitutes the structural expertise
about the domain.

The knowledge engineer also listened for the basic
strategies the human experts used when performing the task of
problem-solving. What facts did the they try to establish
first? What kinds of questions did the experts ask first?
Did the experts make initial guesses about anything based on
tentative information? How did the human experts try to
refine their guesses? In what order did they pursue each of
the subtasks and how did this order vary in case studies? How
did the expert justify his problem-solving techniques?

Given any particular situation, it was important to
identify the actual problem, its characteristics and
sub-problems. The objective was to characterize the
supporting knowledge structure for each problem to begin
building the knowledge base. several iterations were
required for each problem. Some problems were split into
multiple problems if considered too large. The following
points were considered important:

• what classes of problems does the expert solve?
how are the problems defined?
how are the problems partitioned?
what are the important data?
what situations are likely to impede solutions?

• what does a solution look like?

It was important to us not to ask our experts directly
about their rules or methods for solving a problem. In
general, domain experts have great difficulty in expressing
such rules. They have a tendency to state their conclusions
and reasoning in general terms, too broadly for effective
machine analysis. The human expert makes complex judgments
rapidly. The pieces of basic knowledge are assumed and
combined so quickly that is is difficult for the expert to

HP3000
INTERNATIONAL CONFERENCE A/01115
VIENNA 1987

describe the process. He may be even be unaware of the
individual steps taken to reach a solution. He may call it
intuition or a hunch - but he uses a complex reasoning
process based upon a large amount of remembered data and
experience. Interestingly enough, studies have shown that
when experts attempt to explain how they reached a
conclusion, they often construct plausible lines of reasoning
that bear little resemblance to their actual problem-solving
activity. ·

Hence, we did not believe anything our experts said
outright. Working hypotheses were developed based on
information from the expert which was tested for validity and
consistency before being accepted. The tests involved having
the expert solve new problems using the hypothesis the
experts had to demonstrate the use of their rules during
actual problem solving.

Within their area of expertise, our experts quickly
recognized new situations as instances of things with which
they were already familiar. However, when faced with new
situations, they applied general principles and deductive
steps. It was more insightful to us to present the experts
with novel problems to decompile their knowledge and view the
actual problem solving activity.

DEVELOPMENT OF THE PROTOTYPE

Building an expert system - like any major systems
development exercise - can be a monumental task. However,
like any application development project, prototyping
techniques can be employed to quickly build a working model
of the final expert system. The prototype can incrementally
evolve into a complete system, effectively solving the
problem of system definition.

For any knowledge system, the issues are the knowledge
engineering, the knowledge representation and the user
interface. As our knowledge engineering progressed, the
knowledge representation evolved as a prototype was
developed. Both the knowledge representation and user
interface could be changed as required to suite the evolving
needs.

HP3000
INTERNATIONAL CONFERENCE A/01116
VIENNA 1987

We decided to implement an explanation facility into the
model. The program poses questions to the user who answers
with "YES", "NO" or "WHY". The program decides what question
to ask next based on answers to previous questions. If the
user asks "WHY", the program will explain why the question is
being asked, in the context of the user's answers to previous
questions.

The program must first ascertain that there is a problem
with the computer system. Hence, the first question the user
encounters is:

Is there a problem with the computer system? ==> YES
NO
WHY

We have partitioned the domain into three areas: the
operating system, communications and applications. The user
is asked if there appears to be a problem in any of these
areas, each subsequent question driven by a "NO" to the
previous area as follows:

Is there a problem with the operating system? ==> YES
NO
WHY

Is there a communications problem? ==> YES
NO
WHY

Is there a problem with an application? ==> YES
NO
WHY

example, we If we take communications, for
ascertain the nature of the problem
questions such as:

through the

Does a cursor appear on the screen? ==> YES
NO
WHY

Is yours the only terminal with a problem? ==> YES
NO
WHY

Can you type any characters onto the screen? ==> YES
NO
WHY

try to
use of

HP3000
INTERNATIONAL CONFERENCE A/01117
VIENNA 1987

We go on to give specific instructions about how to go
into local or remote mode or check the configuration of the
terminal as required. If the user asks "WHY", the program
will explain the purpose of the test or the rule which caused
the question to be asked.

If none of the questions seems to be leading to a
specific problem area in, say, communications, then the user
will be led into the operating system section. Otherwise,
specific tests will be suggested and the results queried. If
all the tests are applied and the problem persists, the user
is advised to call in the actual system manager and document
the problem, symptoms and solution.

THE PRODUCT

As the prototype evolves into a product, there are a
number of areas which we must build in to be truly usable.

The first of these is the concept of payback versus ease
of performing the test. If for example, we appear to have a
"hung" terminal, we know that we can clear it by taking the
system down and performing a warm start. In an isolated
environment this may be perfectly adequate. In most
environments, however, it is a poor solution. We must pursue
a line of questioning which may get quite involved and the
likelihood of success on each individual test may be quite
remote. Hence, we need to incorporate information about the
environment in which the Expert System Manager is used, the
sophistication of the end-user and the relative importance of
the situation at hand before we can build a universal
product.

We have not, as yet built the ability for the end-user
to add to the knowledge base into the product. Although this
is relatively easy to implement, the implications of adding
potentially conflicting facts and rules into the knowledge
base are immense. We do recognize that the ability to add
site specific knowledge is critical and plan to implement
that facility with sufficient security.

The Expert System Manager contains reasonable generic
problem-solving expertise at this point. However, as the
product gains sophistication, we will have to add operating

HP3000
INTERNATIONAL CONFERENCE A/01/18
VIENNA 1987

system and device specific knowledge to answer the increased
user demand. Once the precision architecture machines are
released, for example, users may be faced with a completely
new set of problems which the Expert System Manager should be
able cope with.

CONCLUSION

Like any new product, the Expert System Manager fills a
need and creates a new need. We will be resolving the issues
addressed by this project to bring the product to market.

What we have done is use Artificial Intelligence to
solve a practical problem. The problem is the scarcity of
applied expertise in a particular domain and the solution
uses MProlog to capture the knowledge of an expert in that
domain to make it commercially available.

Knowledge systems can be developed as prototypes in a
matter of months to prove the viability of AI solutions.
Knowledge or expertise can be continually added to the system
to increase its "intelligence" with no change to the program
itself. Knowledge systems can be developed as standalone
programs like the Expert System Manager, or they can be
developed as an adjunct to existing commercial applications -
sharing files and data bases to incorporate expertise into
data processing

February 1, 1987.

HP3000
INTERNATIONAL CONFERENCE A/0211
VIENNA 1987

A DEVELQPMENT METHODOLOGY FOR EXPERT SYSTEM PROGRAMMING

Shawn Brayman and Ross Hopmans

Brant Computer Services Limited
6303 Airport Road, Suite 201

Mississauga, Ontario
Canada

(416) 673-9417

HP3000
INTERNATIONAL CONFERENCE A/0212
VIENNA 1987

1.0 Introduction

It is necessary in any software development project to have a
pre-defined methodology established that allows the developer
and management to measure the progress and success of a
development effort.

over the past 18 months Brant Computer Services has
undertaken three expert system development projects - one for
a client and two internal projects - to develop products. All
of our development work has been in the MPROLOG language, a
modular implementation of PROLOG that is widely installed on
a number of different computer architectures. The development
work has been done on the HP Vectra (an IBM compatible) and
the source code is compatible with the implementation of
MPROLOG for the HP3000 which Brant is currently completing.

The first system Brant began working on was in late 1985 for
a life insurance company in Canada. The system was a personal
financial planning system and involved a standard 4GL
component and the MPROLOG based advisor. Brant worked with
one of the top financial planners in Canada on the knowledge
engineering phase, and since that time has entered into an
agreement to continue the development of the system and
market it as a product on the HP3000 and IBM-PCs.

The second system was an internal project from the start and
involved the development of a diagnostic expert system for
the "system management" of an HP3000 facility. Our first
iteration involved the development of a simple expert system
shell which we subsequently found incapable of handling the
representation of the problem. We are currently developing a
more specific diagnostic shell which we will then populate
with the "knowledge" of the HP3000.

The third project was the development of a prototype system
for a California based agricultural management company. The
system is designed to schedule irrigation events for farmers
growing specific crops. The system takes into account
climatic information, knowledge about the type of crop,
specific information on the fields (soil type, salinity etc.)
and management constraints to schedule a season's irrigation
requirements.

HP3000
INTERNATIONAL CONFERENCE A/0213
VIENNA 1987

Through our experience in the development of these three
systems, coupled with our studies of literature on AI
development methodologies, we are developing a set of
guidelines to be followed by our staff to help introduce them
to this new area of endeavour.

In the body of this paper we will first review some general
observations about the knowledge engineering process and the
things to look for in selecting a project that you intend to
address with a tool like MPROLOG. After this we will outline
in more general terms some of the major aspects in the
development of an expert system or knowledge-based system.

For people who are not yet familiar with many of the concepts
of AI or Logic Programming we would suggest that you read the
paper on "Logic Programming and Expert Systems" which is an
introductory paper, also in these proceedings.

2.0 Knowledge Engineering

A critical aspect of developing an expert system is the
process of knowledge engineering. A knowledge engineer plays
the same role as a traditional systems analyst, with a few
important differences.

A knowledge engineer is an individual who attempts to
discover the rules or heuristics that a human expert uses to
reach conclusions in problem solving. A traditional systems
analyst may ask a user specific questions about an
application and hope to get a reasonable answer. Knowledge
engineers are warned on the other hand not to expect a
reasonable answer and in fact not to take what the expert
says at face value.

Research has uncovered a phenomenon known as the "Paradox of
Expertise" the more competent domain experts become, the
less able they1 are to describe the knowledge they use to
solve problems!

It appears that experts use what can
expertise", where they may take dozens
conditions and compile them all down to
is the knowledge engineer's task

be called "compiled
of specific rules or
one specific rule. It
to "decompile" this

HP3000
INTERNATIONAL CONFERENCE A/0214
VIENNA 1987

expertise to a form that is usable in our automated systems.
The problem is that when asked, your expert will not
recognize that some of his "rules" are actually compilations
and so will provide the knowledge engineers with inaccurate
or misleading information. In other words the expert may make
up false rules to try and explain why he or she made a
decision, because they do not know themselves.

A spin-off recommendation that quickly becomes evident from
this "Paradox of Expertise" is that you should never be your
own expert in a knowledge engineering exercise. The process
of "decompiling" the knowledge is not a process that can be
effectively undertake.n by one individual on his own.

There are two main approaches to knowledge engineering; the
observational and the intuitive method:

Investigators applying the observational method don't
interrupt the expert with questions or comments during
problem solving. Instead, they analyze a transcript of
the session after the fact, possibly with the expert's
help. AI researchers have used this approach to study
problem solving by nonexperts, calling it protocol
analysis. Here the subject talks while solving a simple
problem or puzzle, the verbalizations are transcribed,
and the underlying problem- so~ving processes are
inferred from the resulting trace.

In the case of the intuitive method the knowledge engineer
gains a much deeper understanding of the problem domain
through readings in the field and interaction with experts.
The knowledge engineer then develops a set of rules that he
feels adequately represents the "knowledge" and verifies
these against the opinions or judgments of the experts. A
reversal of this process is when the expert tries to develop
the rules himself and provides them to the knowledge
engineer. The knowledge engineer then enters them into the
system and validates their effectiveness through other
experts and the success of the system.

In most real world cases the knowledge engineering process is
a combination of both the observational and the intuitive
approach.

I

HP3000
INTERNATIONAL CONFERENCE A/0215
VIENNA 1987

3.0 Selecting the Appropriate Problem

Not all problems lend themselves to expert system technology,
and a number of pitfalls and observations have been
accumulated in almost every book on the subject. In this
section we will outline a number of the most often quoted
reasons for selecting a problem, along with some observations
on potential pitfalls.

Tradiuional Technology doesn't work

If you can solve the problem in a reasonably cost effective
manner using traditional languages like "C" or "Fortran" - do
it! Do not waste your time and money making an AI tool do
what can already be done most effectively with a traditional
language. The converse of this is a problem that many people
get into where they decide to develop in a traditional
language because of portability or performance. Develop your
system in a high-level expert system tool so that the
solution can be demonstrated in a reasonable length of time.
One complete, you can consider re-implementing in a
traditional language if required.

Narrow domain of application

For a successful expert system, it is important that the
domain of application be as narrow as possible. For this
reason most systems work in domains where there is a finite
number of ·rules and relationships to ensure that the solution
does not rely on facts that lie outside of its knowledge
base. A knowledge base on fault diagnosis for a disk drive on
a computer system is limited but detailed enough to warrant
the use of an expert system. On the other extreme, an
automated psychotherapist would be an extremely bad choice
for an expert system as it would need to know a little about
the whole world to be effective. The more constrained the
knowledge domain; the more successful the project.

There are recognized experts

The
well
they
not

experts in a field must be able to perform reasonably
in solving the type of problems being considered. If
do not, replicating poor performance on a computer may

prove fruitful. The experts should use heuristics or

HP3000
INTERNATIONAL CONFERENCE A/0216
VIENNA 1987

"rules of thumb" in solving the problems and will probably
have a vocabulary of abstract terms and concepts. The experts
must be better than amateurs.

The task is primarily cognitive

Problems that are undertaken should be cognitive in nature as
opposed to numeric, leading to non-numeric solutions.

The task is combinatoric

The task should have lots of choices to make it interesting
and to take advantage of the descriptive as opposed to
procedural nature of the program. The process of arriving at
a solution should involve a chain of reasoning where one rule
or fact leads to the firing of a second rule or fact and so
on. If the process is actually a shallow line of reasoning on
a large number of related but unconnected factors then AI
technology does not add a lot to the process.

The problem is at the right stage of knowledge formalization

If an algorithm exists for the solving of a problem, then it
is not necessary to apply an AI methodology. If on the other
extreme no rules at all apply, then there will be no basis on
which the problem can be solved. AI can be considered if the
use of algorithms are too slow (ie: some scheduling or
planning systems) or if they do not provide sufficient
information.

Specialists agree on the knowledge

If there is no agreement on the underlying knowledge base and
rules that the system uses, then the results of the process
will be of little value as no one will accept the
recommendations except that group of specialists who input
the rules in the first place.

Other criteria that should be considered in the selection of
a problem are:

-The skill is routinely taught to neophytes
-Data and case studies are available
-Incremental progress is possible

HP3000
INTERNATIONAL CONFERENCE A/0217
VIENNA 1987

-Not a time critical application
-Freedom to fail
-Resulting system would have a high payoff
-Payoff is easily measurable
-Potential users are enthusiastic.

It should be recognized that many problems may meet these
criteria without being a full-fledged expert system
development project. These smaller systems (better referred
to as knowledge-based systems) reflect many of the strengths
of the technology without having the same level of investment
by the company. They can prove to be very adequate learning
exercises with a valuable system as the result, and set the
stage for larger projects down the line.

4.0 A General Design Methodology

Up until recently, the knowledge engineer was himself an
expert and an expert in short supply. The actual term was
coined at a point in time when the process of refining the
knowledge of a domain expert was of such a magnitude that the
term "engineer" seemed appropriate. Many of the observations
that have led to the outline of design methodologies for
expert systems are themselves the results of refining the
years of experience, the heuristics, of knowledge engineers.

acquiring knowledge from experts resists linear,
one-pass techniques. Instead, knowledge acquisition and
system-building interact inseparably. Choices regarding
the desired initial capabilities determine what
knowledge to acquire first and how to engineer it for
use. over time the knowledge base expands to support
additional capabilities, and this expansion often
strains the capacity of the initial knowledge
formulation. Thus the knowledge engineer frequently
reaches a point where future progress depends on
improved concep~ualization and related reformulation of
that knowledge.

One of the
is that it
prototyping
consulting

basic facts of the knowledge engineering process
is iterative in nature; in 4GL terms, we apply a
methodology. Since Brant has been involved in 4GL
for several years with Powerhouse, Speedware and

HP3000
INTERNAnONAL CONFERENCE A/0218
VIENNA 1987

Rapid we felt we could "wing it". We did rely on experts from
Logicware Inc., the developers of MPROLOG, for consulting.
assistance during our startup something we strongly
recommend to others. Although we can all "go it on our own",
the insight of an experienced knowledge engineer can be worth
its weight in gold.

4.1 Task suitability

As outlined in section 3, the selection of the appropriate
task is essential to a successful project. Without limiting
what we discussed earlier, the main points to consider are:

Focus on a problem area that does not require "common
sense" to solve;

The task should be very clearly defined, and one that
is solved reasonably effectively by experts;

Get a solid commitment from your expert, whether
inhouse or not.

4.2 Building the First Prototype

From our experience it is first necessary to familiarize
yourself with the problem domain by reading books,, literature
or articles on the area, or else through extensive dialogue
with your expert.

Once you are feeling comfortable with the domain, clearly
identify and characterize the important aspects of the
problem. When the problem has been clearly circumscribed, use
the observational method to record the expert solving one or
two cases that he feels are typical of the problem area. We
addressed the area of knowledge engineering in Section 2.

Now comes a crucial stage in the project: the selection of
the appropriate tool. Many projects falter or fail because
the tool selected is not appropriate for repres~nting the
domain concepts and control structure. In such I an event
change tools! Do not try to make the tool do something it is
not designed to do. A second aspect of this problem can be
that since the field itself is young, many tools are new to
the market or immature. Try and pick a tool that has a good

HP3000
/NTERNA TIONAL CONFERENCE
VIENNA 1981

track record so
debugging someone
project.

that you don't end up spending
else's product than working on

A/0219

more
your

time
own

When the tool has been selected and the first example is well
understood, start building the first prototype. Try to have
this working within a couple of months.

Focus on a limited number of representative problems. Make
sure your system accurately handles these before branching
out. Avoid getting bogged down in problems that the whole AI
world is still struggling with (time and space relationships,
natural language, etc).

Try to keep the domain specific knowledge seperate from
general problem solving rules. Keep your inference engine
simple and don't worry about efficiency in the first effort.

Try to develop or purchase tools that will help to assist in
the rule-writing process. Many shells have such modules
included and language vendors may provide you with examples
of similar implementations.

Document the
testing the
input/output
strategies.

system as you would any other system. When
system consider the impact of errors in
and how they will impact rules or control

4.3 Extending the First Prototype

Once you have your system working and effectively solving
your cross-section of representative problems, you are going
to want to let a number of people start to work with it. A
few design considerations can go a long way.

Be sure you have an explanation facility so that users can
review the reasoning that leads to a conclusion and the
facts that are in the knowledge base.

Some very simple "front-end" interface features
your users make better use of the system. Don't
train everyone on the "vocabulary" of your system.

will help
expect to

Provide a mechanism for the users to record their comments or

HP3000
INTERNATIONAL CONFERENCE A/02110
VIENNA 1987

complaints if the system dosn•t work. Quite often
observations about the accuracy of the rules of the
effectiveness of the system will not be recorded unless you
are standing over their shoulder or such a facility exists.

Keep a test library of cases so that you can test against
them as you continue to refine the system.

It is important to keep the expert "onside" during the
process. Keep him sheltered from the technical problems but
involved in such aspects as designing the interface.

Be careful that in all you have learned you don't start
acting like the expert yourself and become challenging. Quite
often, having built in a line of reasoning the knowledge
engineer may become "protective".

4.4 Building the Second Generation of the System

Throw away the prototype. The purpose of the prototype was to
refine the rules into machine utilizable form and gain a
better understanding of the domain. This has been
accomplished so don't saddle yourself with the mistakes from
the first design.

Begin to consider questions of generality of problems and the
ability of the system to respond effectively. Performance
should become more of an issue with larger production
systems.

Decide who the re~l users of the final system will be and
make sure that the system I/O will feel natural to them. What
may have been sufficient for yourself and the expert may
scare others away.

4.5 Evaluating the System

Early in the process you should confirm with the expert how
he would evaluate the system to determine whether it was
useful. Does it match with ~hat you are try to have the
system accomplish? Are you solving a problem that will be of
value to your users, or will it become self-evident after the I I.

HP3000
INTERNATIONAL CONFERENCE A/02/11
VIENNA 1987

first few times they use the system?

As an aside, in one documented knowledge engineering
exercise, it was discovered that the expertise of one
company's expert could be refined down to about twenty rules.
Although an exception, in that case the expert was devastated
and quit.

The user interface is crucial to the acceptance of the
system.

5.0 Summary

Rather than attempt to design a flowchart that shows arrows
going from knowledge engineers to experts to prototypes and
so on, we have tried to outline many of the general concerns
that are part of the "methodology" of developing an expert
system. If your firm already has standards for documentation
and reporting, they will probably be applicable with little
modification.

The most important fact to remember is that although expert
system development is not "research lab material", it is
inherently experimental at this ppint. Take the time to
familiarize yourself with several other systems and projects
before you get underway. This is one of those occasions where
front-end study and reading will pay dividends overall.

January 1987

HP3000
INTERNATIONAL CONFERENCE A/02/12
VIENNA 1987

Footnotes

1. A Guide to Expert Systems, Donald A. Waterman,
Addison-Wesley Publishing Company, 1985. Page 154

2. A Guide to Expert Systems, Donald A. Waterman,
Addison-Wesley Publishing Company, 1985. Page 157

3. Building Expert Systems, Hayes-Roth, Waterman & Lenat,
Addison- Wesley Publishing Company, 1983. Page 127

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

LOGIC PROGRAMMING AND EXPERT SYSTEMS

Shawn Brayman

Brant Computer Services Limited
6303 Airport Road, Suite 201

Mississauga, Ontario
Canada

(416) 673-9417

A/0311

HP3000
INTERNATIONAL CONFERENCE A/0312
VIENNA 1987

1.0 Introduction

This paper is intended to provide an executive summary or
overview of Artificial Intelligence (AI) in general and Logic
Programming in particular. I have attempted to provide
enough detail and examples to make the paper meaningful while
at the same time keeping it geared to an introductory level.

Sections 1 and 2 are a short overview of AI and a capsule
history of the field. In section 3 we will take a quick look
at AI programming, some myths and some observations about
this new technology. Included in this discussion will be a
mention of the pros and cons of LISP versus PROLOG as the two
primary development languages in the AI world.

In section 4 we will take a look at the knowledge acquisition
process and try and differentiate between the role of a
systems analyst and a knowledge engineer. Section 5 reviews
a few of the specific expert system projects Brant is
involved with and the final few sections discuss the AI
marketplace, and HP's positioning in that market.

2.0 overview of Artificial Intelligence

Artificial Intelligence is not a new field - it has been
around since the 1950 1 s when people like Dr. Marvin Minsky
helped found the first Artificial Intelligence Laboratory at
MIT. Since that time thousands of researchers in dozens of
universities have added to the research effort. Although the
field is not new, what is new is the perception of commercial
readiness of certain aspects of the technology, namely expert
systems.

For the first decade, AI research appears to have been down
what proved to be a blind alley. This effort attempted to
create a hardware/software "thinking machine". It was felt
that once we discovered how a person thinks, we could put
this "thinking algorithm" into a computer. We could then
provide it with information and it could "think" out the
answer. The search was on for a general problem solver, a
thinking machine. The search was unsuccessful.

By the mid 1960 1s, recognizing that the attempt to create a

HP3000
INTERNATIONAL CONFERENCE A/0313
VIENNA 1987

general problem solver was not going to be successful in the
short term, researchers tried a new tack - to try and create
a program that could emulate a human expert in a limited
domain of knowledge. The first major expert systems were
born in the late 1960 1 s.

DENDRAL was an expert system designed to help determine the
structure of chemical compounds based upon analysis of the
components of the molecule. MACSYMA was a second expert
system started shortly afterwards t~at was designed to solve
symbolic mathematical problems, much as we did in algebra
back in high school. In both cases, however, the difficulty
of the problems is substantially greater than a high school
level. Both of these expert systems are in routine use today.

When people discuss AI, confusion tends to arise as a result
of the various aspects of the field - in the same way that
the question "What is computer programming?" could be met
with answers ranging from machine-level programs to
applications programs, with a world of possibilities in
between. In the field of AI answers are further complicated
by the fact that the linguists, the psychologists, the
philosophers and the computer scientists working in AI all
have different perspectives. Some of the application areas
under study are:

- expert systems
- natural language understanding
- automatic programming
- learning systems
- perception and vision recognition
- robotics

When we discuss whether or not any of the existing AI systems
are truly "intelligent", all of the experts, the AI gurus,
disagree. Some feel that we can already emulate intuition
and human intelligence in some areas. Others, like Minsky,
feel we are probably fifty years from machine intelligence
and must first teach machines things like common sense and a
sense of humour.

I will not take sides in the argument, nor do I feel it is
that important. Most of us have enough trouble determining
if there is intelligence in many people, let alone machines.

HP3000
INTERNATIONAL CONFERENCE A/0314
VIENNA 1987

What is important is that whether intelligent or not, we are
developing a new style of software that in some ways emulates
human "thinking". There appears to be little doubt that the
impact of this new type of software will be substantial.

Now let's take a look at some specifics about AI programming.

3.0 AI Programming

Although it is obvious that there must be differences in AI
programming (else why the hype?), there are obviously as many
myths about AI. In this section of the paper, we will
initially discuss several basic issues concerning AI. From
there we will go on to discuss some specifics of AI
programming and how it is advantageous.

First let me emphasize that AI programming is, most
importantly, programming. You have a language, usually
either LISP or PROLOG, and you develop programs. The
programs we will be discussing are intended to solve certain
types of problems - problems that are usually solved by
someone in your organization with specific types of
expertise; an expert in his field.

Second, although AI is often called fifth generation and
PROLOG and LISP specifically called fifth-generation
languages, this is a bit of a misnomer. LISP was invented in
the 1950's, around the same time as FORTRAN. It processes
symbols rather than data, but other than this qualitative
difference, they are both of the same basic "generation" of
programming tools. PROLOG was developed in the 1970's and
may be more equivalent to a 4GL like PowerHouse or SPEEDWARE.
Although fourth-generation languages were or are supposed to
replace third-generation languages, symbolic processing is
not designed to replace 4GL 1s.

In fact, one of Brant's current projects is the development
of a Personal Financial Planning System in conjunction with a
leading financial planner in Toronto. This system is
actually composed of two parts: a conventional 4GL financial
model developed using SPEEDWARE and an Expert System
Financial Advisor that incorporates the financial planning
expert's knowledge of how best to manipulate the model. We

HP3000
INTERNATIONAL CONFERENCE A/0315
VIENNA 1987

are in effect applying the strong suits of a 4GL language to
those aspects of the problem which are algorithmic in nature,
and using Brant's MPROLOG product for the expertise-based
aspects of the system.

Third, let me point out that any program that can be written
in MPROLOG or a SGL can be written in a traditional language
like COBOL. In fact, MPROLOG is written in the "C" language
on the HP3000. With this in mind it stands to reason that
anything written in MPROLOG on the HP3000 could be written in
"C".

Most AI programs are a series of rules and facts expressing
the relationship between any number of things in a problem
domain. The rules express these relationships in simple
forms:

Rule 1: The computer won't work if
there is no power.

Rule 2: The computer won't work if
the power supply is cut off.

Rule 3: There is no power if
the on/off switch is turned off.

Rule 4: There is no power if
the cord is not plugged in.

Rule 5: There is no power if
the building's power is out.

In creating a diagnostic program to determine why our
computer won't work, we put in a series of rules that outline
relationships. MPROLOG will then sort and order these
relationships, much as you might structure them in an
ordinary program.

Let's take a look at some specific examples.

HP3000
INTERNATIONAL CONFERENCE A/0316
VIENNA 1987

3.1 Dea1inq with Complex Relationships

In an effort to outline a few of the areas where AI
techniques and tools are advantageous, we will look at a few
examples. First let us consider a situation where a
relationship exists between several conditions. The example
we will use is that of a program to determine if an
individual is eligible to receive a personal loan. Let us
assume that the factors that are considered in a loan
application are the amount of the loan, monthly payments,
income of the individual, security of the loan and stability
of the individual.

In MPROLOG we may have:

eligib1e (name, amount, payment, income, security,
stability) if

capable_payments (amount, payment, income) and
loan size_OK (amount, security) and
stabi1ity_OK (stability).

Each of the
capability to
other factors
of the sort:

relationships to determine stability and the
make payments may in turn be a function of

or rules. We may have a query on our program

?eligible(Shawn, 5000, 300, 2000, o, none).

This query is
$5000.00 with
$2000.00 per
unstable sort.

asking if Shawn is eligible for a loan of
payments of $300.00 per month if he makes

month, has no security for the loan and is an

At this stage, we have seen very little that
easily accomplished with any other languages.
a few other inquiries.

cou1dn't be
Now let's try

?eligible(WHO, 20000, -' -' -' _).

This inquiry
eHgible for
be:

would give us a response of anyone who is
a $20000.00 loan. Another example query might

?eligible(Shawn, HOWMUCH, 300, 2000, o, none).

I

I

HP3000
INTERNATIONAL CONFERENCE Aloan
VIENNA 1987

This inquiry would tell us how much of a loan Shawn would be
eligible for, given that he only wanted to pay $300.00 per
month and the other personal information is the same.

The important thing to recognize is that once the
relationship has been defined, each of the different types of
inquiries all use the same code - instead of having to write
a routine to calculate the size of loans people are eligible
for and a routine to list groups of people eligible for
certain types of loans, or just to confirm if someone is
eligible or not.

In effect, every argument in a relationship may or may not be
defined. This means that achieving the same degree o'
flexibility in a traditional program would require 2
routines. Obviously not every real world situation requires
this degree of flexibility, but given a complex situation,
the advantages become clear. In our example above, 64
separate routines or procedures would be required to
accomplish the same effect as our one relationship in
MPROLOG. In other words, you must think out all 64 routines.

3.2 Dealing with Complex Inter-Relationships

A second aspect of the strength of AI languages is the way in
which we can handle a series of complex inter-relationships.
Let's take a look at another example.

Consider the following relationships:

c is true if A is true and B is true or
c is true if D is true and E is true
A is true if E is true and G is true
B is true if c is true and D is true
J is true if B is true and K is true
H is true if J is true and E is true
I is true if H is true and B is true

Given that D, E and K are true, is I true?

HP3000
INTERNATIONAL CONFERENCE A/0318
VIENNA 1987

In a traditional problem-solving style, we would work out the
relationships and develop some form of "tree-like" structure
such as:

H B

~ ~
J E c D

~ ~
B K

~~ ~ A B D E
c D

~
E G

we would then encode this "solution structure" into our
program in a series of structured IF/THEN's, LOOPS or
whatever appeared necessary to best address our problem.

Now consider the problems we may encounter if we increase the
number of relationships (we only have seven listed), if a
relationship needs to be removed (say the relationship of H

HP3000
INTERNATIONAL CONFERENCE A/0319
VIENNA 1987

to J and E) or we need to be able to solve to find any of the
ten conditions at any time. As we can perceive, with any of
these scenarios, the complexity of our program would increase
dramatically as would problems of maintenance.

To write the same program in MPROLOG, we would have:

true (c) if true (a) and true (b)
true (c) if true (d) and true (e)
true (a) if true (e) and true (g)
true (b) if true (c) and true (d)
true (j) if true (b) and true (k)
true (h) if true (j) and true (e)
true (i) if true (h) and true (b)

true (d)
true (e)
true (k)

Our inquiry would take the form:

?true (i)
YES
?true (g)
NO

To add new relationships or remove them, we simply add or
delete that line of code. The order of the relationships
does not matter, nor which condition we are searching for. In
effect, we define the problem as opposed to the solution. We
let MPROLOG automatically create our "tree-structure" and
work out the inter-relationships. We do not need to worry as
we add and delete new relationships.

3.3 Knowledge Trees and Heuristic Search

We seem to have described a system that will automatically
generate a tree structure according to the relationships and
allow us to traverse it, but what does this mean? There are
other forms of decision support tools that use binary trees
and there is no "magic" to them.
The qualitative difference with our Prolog system is not in
the underlying tree but in how we traverse it. Picture a

----------~----------~~--------

HP3000
INTERNATIONAL CONFERENCE A/03110
VIENNA 1987

tree that becomes so large, with so many possibilities and
permutations that passing through takes substantial time and
resources. It is at this point that we introduce the concept
of search techniques with backward chaining, forward
chaining, breadth first search, depth first search, applying
weights or probabilities to events and any number of other
methods of searching a set of facts.

We also apply "rules" or heuristics - much as a human would -
to cut down the search space, rather than try every
possibility. If we are trying to leave a room, we do not try
the floor, the ceiling and the walls; we locate a door or
window, locate a latch or knob, etc. Humans have rules that
permit shortcuts rather than undergoing an exhaustive search
for possibilities.

3.4 How do I know what is happening?

One of the obvious things about an AI program is that it is
designed to automate an area of expertise that is not
"obvious" in content, else we wouldn't call the person who
does that job an expert. With this in mind and given the
examples we outlined above where a small piece of code can be
used 64 different ways, how does a programmer know what his
or her program will do? The answer is, he doesn't.

AI programs are-designed to address real-world problems with
non-obvious answers, so we must expect that once an AI
program reaches a certain level of complexity, your
programmers will not know what the system will do. Experience
with some of our own projects has demonstrated that with as
few as half a dozen relationships and a few variations of
each, you will be surprised at some of the ways that your
system will react.

This raises two key issues concerning AI programming. First,
if you don't know, you ask your program "WHY?" Unlike
traditional programs where you know it is doing a process or
procedure because you told it exactly what to do, in AI
systems we don't know. The solution is that your expert
system can be coded in a manner so as to allow you to ask WHY
at any stage, and the system will outline the rules that it
used to reach its conclusion.

HP3000
INTERNA T/ONAL CONFERENCE A/03/11
VIENNA 1987

In our previous example using the computer for instance, you
may tell the system that your HP3000 won't work. It may
respond with: "Check to see if the on/off switch is turned
off". If you ask it "WHY?" it would respond:

Because - Rule 1: The computer won't work if
there is no power, and

Rule 3: There is no power if
the on/off switch is turned off.

A second benefit of this ability is that it exemplifies the
value of AI as a training and educational tool. The fact is
that when your company encodes the expertise of someone in an
AI system, this expert system can be used both in production
and in training less experienced people, if you wish to
design your system to do so.

3.5 LISP versus MPROLOG

In Brant we still have "discussions" among many of our people
as to the advantages and disadvantages of COBOL versus
fourth-generation languages. A similar argument exists in
the AI world between LISP and PROLOG users.

People wishing to develop applications in AI have three
choices: one of the two base languages, (LISP or PROLOG), or
what are called expert system shells. Expert system shells
are partial expert systems already in place, where you drop
in the specific rules you want and have a working expert
system in less time and at less cost for man hours than with
the base language.

According to the March issue of a newsletter entitled
Artificial Intelligence Markets (AIM) published in the United
states, "several high end language vendors reported the
return of customers who went off to buy expert system
development tools to AI language products because they found
the tools inadequate for their needs. Since sixty to seventy
percent of high end AI language customers are Fortune 1000
firms or the federal government (as opposed to universities
and AI companies), this is not a trend to sneeze at. 11

HP3000
INTERNATIONAL CONFERENCE A/03112
VIENNA 1987

Accordingly, we will leave this discussion focussed on the
two AI languages and leave discussions of the tools to
others. In a tutorial on PROLOG presented at the
International Joint Conference on Artificial Intelligence in
August 1985, Dr. William Kornfeld pointed out several
"cultural" and practical differences between LISP and PROLOG,
namely that LISP is all-inclusive, has complex semantics and
hence a large manual that can be confusing. PROLOG strives
for simplicity, doing a number of things very well, such as
symbolic structure manipulation and processing facts, and
consists of a few well-chosen constructs. In a practical
sense, LISP has a few features PROLOG does not, like
destructive assignment and structure manipulation, iteration
with DO's or LOOP's and global variables. PROLOG has logical
variables and efficient procedure calls that make the
programs clearer and easier to understand, at the expense of
some generality.

Again, according to the AIM newsletter, "We think LISP will
evolve into a systems manager language - system management
functions will be in LISP, and they will be layered between
the operating system and the applications. PROLOG and other
languages (including conventional languages) will serve as
secondary, application languages which will be called from
LISP. II

By no means is this intended to resolve any debate, but
rather it is intended to outline some of the issues and where
things appear to be heading. Brant at this time is only
involved in application work with MPROLOG.

4.0 The Knowledge Acquisition Process

An important aspect, actually a critical aspect, of
developing an expert system is the process of knowledge
engineering. This is, in effect, the new name that we give to
systems analysts to confuse things. A knowledge engineer
plays the same role as a systems analyst, with a few
important differences.

A knowledge
discover the
conclusions

engineer is an individual who attempts to
"rules" that a human expert makes to reach

in problem solving. A traditional systems

HP3000
INTERNATIONAL CONFERENCE A/03113
VIENNA 1987

analyst may ask a user specific questions about an
application and hope to get a reasonable answer. Knowledge
engineers are warned on the other hand not to expect a
reasonable answer and in fact not to take what the expert
says at face value.

Research has uncovered a phenomenon known as the "Expert
Paradox": the better your experts, the worse they will be at
describing how they make decisions. It sounds like a joke,
but unfortunately it is true.

It appears that our "experts" use what can be called
"compiled expertise", where they may take dozens of specific
rules or conditions and relationships which they look for in
a specific instance, and compile them all down to one
specific rule. It is the knowledge engineer's task to
"decompile" this expertise to a form that is usable in our
automated systems. The problem is that when asked, your
expert will not recognize that some of his "rules" are
actually compilations and so will provide the knowledge
engineers with inaccurate or misleading information.

The selection of a capable knowledge engineer is a crucial
part of the expert system building process. There are many
good books describing knowledge engineering and expert
systems, a few of which are listed in the bibliography of
this paper.

5.0 Expert Systems

Having belaboured what AI is all about, some aspects of
it operates and some discussion of the tools we can use,
about time we got down to why and where you use it.
develop an expert system and how is it different?

how
it's

Why

Rather than trying to provide infallible rules of thumb, I
will review briefly some of the projects currently underway
at Brant and a few we have been discussing with clients and
other prospects. I will attempt to outline why an expert
system was the best solution and to what point each project
has evolved.

HP3000
INTERNATIONAL CONFERENCE A/03/14
VIENNA 1987

5.1 Personal Financial Planning System

In December of 1985, Brant was approached by one of the top
financial planners in the Toronto area in conjunction with a
Canadian insurance company to create a personal financial
planning system. The system was intended to allow the
insurance company to provide a standard high level of
personal financial planning to the customers a& part of their
service. The software would ensure certain levels of depth
and professionalism in the analysis.

After, meetings with the financial planner, it was discovered
that there were two aspects to the system. First, the
planner had developed a financial model that generated cash
flow projections for the individual up to and after
retirement. The model was comprehensive and "algorithmic" in
nature, so could easily be developed using a conventional
language. We selected SPEEDWARE, a 4GL that would allow us
to deliver the solution on either HPJOOO's or Vectras with no
problem.

The second aspect of the system involved the manner in which
the financial planner manipulated the variables in the model.
This would include factors like retirement age, return on
investment, risk tolerance, portfolio arrangement and much
more. We discovered that the planner used such
considerations as "Who appeared to be the decision maker on
investments?", "Who is the primary breadwinner?", "Who
appears more knowledgeable?" and a myriad of other factors in
determining a family's overall risk tolerance on investments.
Decisions as to whether the client would react more
favourably to retiring later at a desired income level
instead of retiring when he wanted to with less money, were
all decisions made from a large number of what we called
"soft facts".

This part of the system has been written in the MPROLOG
language, a product developed by Logicware Inc. in Toronto
and distributed on the HPJOOO by Brant. Like SPEEDWARE, this
language is available on the HPJOOO and the Vectra, allowing
us to deliver a total system on both micros and JOOO's. This
Planning Advisor is the "expert system" that has been
developed by Brant to complete our Financial Planning System.

HP3000
INTERNATIONAL CONFERENCE A/03115
VIENNA 1987

5.2 Expert System Manager

Brant currently has thirteen HP3000 computers in our various
offi~es with operators and system managers in the necessary
offices. In a number of instances we have had to bring a
senior systems manager to a specific project, leaving more
junior support people in charge of a facility.

When certain problems arose (as they inevitably do), the
operators in an office would call their systems manager who
was somewhere across the country, and resolve the problem
through a long-distance dialogue. After witnessing the
process of question and answer strategies to resolve problems
remotely, we concluded that this was an ideal example of an
"expert system" with a live expert. As an internal project,
we undertook the development of a limited expert system
manager for the HP3000.

5.3 Irrigation Event Scheduler

In conjunction with a firm in Fresno, California that is
acting as a beta site for MPROLOG, Brant has developed a
prototype "Irrigation Event Scheduler". Professional
Agricultural Management (ProAg) provides specialized
management consulting to farmers in the San Joaquin Valley on
such things as irrigation scheduling, fertilizer application,
pesticide application, crop rotation and more.

In some instances, decisions are reached through an
algorithmic application of soil measurements, climatic data
and historical tabled information, but at the same time,
judgement calls on crop vigour, irrigation method, management
constraints require that schedules be "revised".

Our prototype system combines the algorithmic considerations
and "soft factors" to arrive at a preferred irrigation
schedule for a specific field.

5.4 Other Expert System Projects

At this time (January, 1987), Brant is involved in a number
of major conversion projects. One aspect of the application

- ·-----~~-- - ------ ---- ------

HP3000
/NTERNA TIONAL CONFERENCE A/03/16
VIENNA 1987

of AI that we are currently studying is its use in writing
software program conversion systems.

When we convert one version of COBOL on a foreign
architecture to the HP3000, we are in effect going from one
language to another, or more accurately between two versions
of the same language. In so doing, we are "processing
symbols" or in this case, our program syntax.

Although we have not yet implemented any conversion tools,
discussions with Logicware, Inc. of Toronto, Canada have
indicated the achievability of some distinct advantages using
this approach, based on their own development of converters
between different versions of PROLOG.

Another area where a number of feasibility expert system
prototypes have been developed is in the Risk Assessment
area. Specifically, some of the major banks in Canada have
been looking at commercial loan risk assessment systems that
would allow some degree of consistency in the processing of
loan applications. The prototype captures many of the
factors that the banks' top loans evaluators use in assessing
an applicant, including management competence, business
environment and marketing ability, as well as standard items
like the balance sheet. For large commercial loans in excess
of $5 million, this process also ensures that the branch will
address all issues prior to referring the application to head
office.

There are hundreds of existing applications already in use
and, as we are all aware, substantial amounts of effort going
on behind the scenes. With all of the information that has
been published, I will not prolong the discussion on this
point.

6.0 The AI Marketplace

Of interest to all of us must be the rate at which this
technology is impacting the marketplace and the "real world".
The two major indicators that are available from various
market research studies on AI are the dollar volumes of
products on an annual basis, and the number of "units" that
are delivered, given that the unit price of AI products will

HP3000
INTERNATIONAL CONFERENCE A/03117
VIENNA 1987

be dramatically declining, much as is true for
micro-electronics in general.

In many areas, we can expect that "intelligence" will be
built into other products and will not be covered by the
studies outlined herein. As an example, if intelligence is
built into an electrocardiogram, it would not be included in
the AI marketplace, but rather is a byproduct. The magnitude
of this secondary market is difficult to discern at this
time.

According to a report by Frost & Sullivan entitled
"Artificial Intelligence Products", printed in the January,
1985 issue of Computing Canada, the hardware, software and
services marketplace for Artificial Intelligence nearly
doubled from $181 million in 1984 to $342 million in 1985. It
is expected that it will double again by 1987 to $665 million
and will reach a total of $1.6 billion by the end of the
decade.

Of this $1.6 billion, 50% will be software products, 30%
hardware and the balance services. The software component
will be comprised of 20% natural language software that will
be popular on mainframes and personal computers, due to the
higher proportion of novice users. Expert systems are
expected to comprise 35% of the total software sales, 31%
will be AI languages and the balance will be AI applications.

More important than the growth in dollars of the marketplace
is the fact that as hardware prices continue to drop, more
units can be expected to be delivered, leading to a
projection that "the AI market will multiply by a factor of
40 between 1984 and 1989".

According to a projection on AI languages specifically by
Artificial Intelligence Markets, between 1985 and 1990 we can
anticipate a growth in sales from $32 million currently to
$226 million in 1989. This agrees relatively closely with
the Frost & Sullivan study (see Table 1). During the same
period, the number of shipments of AI language packages is
expected to grow from 5,000 in 1985 to 50,000 per year by
1990.

HP3(J(X)
INTERNA T/ONAL CONFERENCE A/03118
VIENNA 1987

-------------------------~-----------------------------------
Frost & Sullivan

Expert Systems
Natural Languages
AI Languages
Applications

1985

Total Software 137

Hardware 85

services 120

Total AI 342

1990
280
160
248
112

800 484'

480 464%

320 167%

1600 368%

Table 1: Growth in mil's of the AI Marketplace, 1985 to 1990

7.0 HP and the AI wav

In this paper for the Hewlett-Packard users group, we would
be remiss if we did not do a quick review of what is
happening in the HP world in particular.

To begin with, let me say that HP probably made the most
impressive showing in the 1985 International Joint conference
on Artifical Intellegence held in Los Angeles, and had one of
the larger vendor presentations at AAAI in Philadelphia in
August of 1986. From a totally non-participatory role in
previous years, HP has become one of the top two or three
vendors with their new HP9000 Series 300 AI development
environment.

This hardware and software environment, running under HP-uX,
amazed many attendees at the conference with its quality,
thoroughness and presentation. HP released the new 9000
system with a full LISP development environment complete with
expert system shells, tools and more. By any standards the
offering was impressive and HP's commitment to the AI field
notable. A PROLOG language was implemented in conjunction
with a Third Party from Switzerland in 1986, which "sits on
top" of HP's LISP environment.

HP3000
INTERNATIONAL CONFERENCE A/03119
VIENNA 1987

On the HPJOOO there has been a noticeable lack of attention
to the AI field, primarily because most people saw the
potential for' AI in the engineering and technical environment
as opposed to the commercial world. For the past few years,
the only AI tool available was a version of LISP from Robella
in British Columbia that provided a learning tool, but which
was not robust enough for a proper production environment. I
strongly recommend that anyone interested contact the people
at Robella.

Because of the lack of tools and rumblings of interest from
commercial users, Brant entered into an agreement with
Logicware Inc. to port their MPROLOG development environment
to the HPJOOO. At the time of this paper, the port is
complete and should be in beta by February of this year.
Because MPROLOG runs on the Vectra, application code will be
transportable between IBM-PCs and the HPJOOO. Brant has been
able to commence work on our expert systems prior to having
the interpreter on the HPJOOO. MPROLOG will be written in
"C" on the HPJOOO using the c.c.s. "C" Compiler.

Of specific interest to Brant has been the role of AI on the
Spectrum, and although definitive statements have not been
forthcoming from HP, the rumour mill is churning up good
things. In the July issue of High Technology magazine, Ira
Goldstein, director of the Distributed Computing Center at
HP's labs in Palo Alto, was quoted as saying: "You want
machines that can do symbolic computing, but not at the
expense of conventional computing ••• and that's where HP's
forthcoming Spectrum line is a step in the right direction.
The new computers will have a large address space, a key
requirement for knowledge-intensive AI programs as well as a
large number of storage registers, which can hold functions
commonly used by the LISP language. Perhaps most
importantly, the Spectrum computers are designed to support
coprocessors of different types. Many observers believe that
the hybrid machine of the future will have general purpose
and LISP microprocessors working together to run the numeric
and symbolic portions of mixed applications!"

Hardly a lot to go on, but based on the smiles of many of the
people in the HP labs we feel optimistic that HP's new
precision architecture will lead the way for those interested
in this new technology.

HP3000
INTERNATIONAL CONFERENCE A/03120
VIENNA 1987

8.0 Conclusion

It's hard to apply a moral to the story, but I do hope this
paper has been successful in providing those interested in AI
with a little more insight into some of the issues in this
area.

This paper has been geared to people new to the
thus does not address some major areas. For others
specific interests or inquires, we at Brant would
than happy to talk with you.

January, 1987

field and
with more

be more

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

An Expert Financial Planning System

Don MacKenzie, Ross Hopmans, Shawn Brayman

Brant Computer Services Limited
6303 Airport Road suite 201

Mississauga, Ontario

(416) 673-9417

A/04/1

HP3000
INTERNATIONAL CONFERENCE A/04/2
VIENNA 1987

1.0 Problem Description and overview

This paper discusses a financial planning package developed
by Brant Computer Services that conlbines 4th and 5th
Generation Languages in a financial service oriented expert
system.

The mandate from our client, an experienced financial
planner, was to design a micro-computer based system that
provides two distinct yet integrated functions:

1) A package that stores
financial data. Once the
must be formatted into
statements, schedules and
intrinsic to the financial

the client's personal and
data is in the system, it
the necessary financial
accompanying calculations
planning model.

2) The capability to provide recommendations based
on quantitative and qualitative information about
the client being evaluated. The knowledge required
to make these recommendations originates from the
financial planner and this knowledge is represented
to the expert system.

The interesting implications of this project stem from the
practicality and feasibility of expert systems in the
financial services sector and the degree to which important
business and financial decisions can be formalized into a
computer based system. Related to this issue is the question
as to whether the system can be economical, user friendly,
and portable.

Secondly, the attempt to deliver a system for p~oduction use
which is a hybrid of an artificial intelligence program and a
conventional fourth-generation language program has proven to
be a challenging and exciting process.

2.0 Design Approach and Analysis

Initially we defined the two distinct functions of the
system. As mentioned in the introduction, one component of
the package involves data capture, reporting functions, and a
modelling capability. These tasks are typically

HP3000
INTERNATIONAL CONFERENCE A/04/3
VIENNA 1981

straightforward and formalized and they must be carried out
by the financial planner in order to make strategic decisions
based on the financial and attitudinal attributes of the
client. To put it more simply, this is the 'front end' of the
financial planning process: the accumulation and integration
of the client's financial information.

The second (and more elaborate) function of the system is the
•expert• capability that involves the integration of both the
quantitative and the qualitative factors in the financial
planning process (more about this later). This functionality
implies a less tangible process than the one that occurs in
the front end section. However, a similarily formalized
procedure is required on the expert side although the
decision criteria and considerations for the expert process
are broader and involve factors that are very subjective.

Our aim here is to let the financial planner provide the
rules and reference points to the expert system so that the
expert system can supply valid strategies for the client to
follow. Herein lies the obvious challenge in this type of
project: the formalization of the complex and seemingly
non-procedural processes and the duplication of these
processes on a computer based system.

The identification of the 'front end' and the 'expert end' of
the system gave us a starting point in the design of the
system. By determining the data requirements for the
reporting functions and the higher level processes, we were
able to design the 'front end' section of the system.

2.1 System Specifications

The system front end was designed to handle data entry,
reporting and modelling functions. The primary functional
requirements of this system were defined from a number of
sources. Primarily, our client provided us with samples of
the input documents for his clients as well as sample plan
presentations. The client was generating the bulk of his
reports and schedules through a LOTUS 123 spreadsheet.

on top of this, we received a number of plan presentations
from other financial planning services. The exposure to the

HP3000
INTERNATIONAL CONFERENCE A/04/4
VIENNA 1987

various planning approaches and presentations enabled us to
extract the common requirements of the different planning
philosophies.

We attended a financial planning conference and paid
particular attention to the different planning software
packages that were being promoted at the conference. Our
emphasis here was on the capabilities and user friendliness
of these packages.

critical to our analysis was the extensive amount of time
spent with our client on th.e financial planning process in
general. We did have access to a broad range of financial
planning material so that we were able to get an idea of the
amount as well as the nature of the information involved in
the financial planning process itself.

The formalization of the planning process was achieved by
sitting down with our client, extracting his knowledge, and
formulating a set of rules to guide the expert system. This
'knowledge engineering' involves refining the expert's
knowledge into a series of relationships and conditions that
can be utilized by the expert system. It is this information
that guides the decision process.

3.0 The Financial Planning Process

Before describing our particular model, I will briefly
discuss the financial planning proces~ in general.
Essentially, this process involves the assimilation of all
the aspects of an individual or family's financial and
personal status. With this information, the planner devises a
methodical strategy whereby the client can achieve his/her
specified level of financial independence. This sounds
relatively straightforward, although it will become apparent
later in this paper that the process is complex and involves
many variables.

currently, the financial planning industry is unregulated and
fragmented. Financial planning, unlike other financial
services such as accounting, does not enjoy a uniform,
standard methodology. Depending upon the financial planner
involved, the quality, method, and philosophy behind the

HP3000
INTERNA T/ONAL CONFERENCE A/0415
VIENNA 1987

planning does vary. On top of this, financial planning
services may be industry driven (the service may be an arm of
a financial institution such as an insurance company or
investment dealer) or product driven (the planner favours a
particular investment vehicle).

The purpose of this paper is not to perform a critical
analysis of the industry but rather to highlight the fact
that there is a need to standardize and define some of the
universal requirements of financial planning. One objective
in designing a package such as this is to provide a front end
to the expert side of the system that is relatively devoid of
one particular approach. In other words, the facts and
information that are supplied to the expert system should be
unencumbered by a particular planning philosophy and the
expert system should not be constrained by a limited amount
of information about the client.

3.1 The ROGI Model

The philosophy behind the Rate Of Growth on Investments
(ROGI) model is simple and easy to understand. The aims of
this model are as follows:

1) determine client's current financial status.

2) determine
objectives.

future capital requirements and

3) using a strategy of savings and return on
investment, enable the client to achieve the
targeted financial goals within a time frame that is
both suitable and realistic for the client.

The key philosophy behind the ROGI model is that the
achievement of the client's financial objectives take into
consideration several of the aspects of the client's
financial and personal status. This means that the optimal
strategy involves accounting for asset management, cash flow,
investment planning, estate conservation and distribution,
and the client's attitudes toward financial independence and
lifestyle.

HP3000
INTERNATIONAL CONFERENCE A/0416
VIENNA 1981

3.2 ROGI strategies

In the ROGI model, the client's future capital requirements
are laid out in such a way as to enable the planner and the
client to relate the client's specified financial target to
the client's current financial status. If the client is
already on a path that will allow him or her to achieve the
desired financial goals, it is unlikely that the individual
is in need of a financial planning service. If, on the other
hand, the client must alter current savings, portfolio
performance or retirement expectations, then a strategy must
be devised to enable the client to achieve the target capital
pool at retirement.

PRESENT ------------------------------> FUTURE STATE

Current -->
Status

v

Net Worth
- Asset Positioning

cash Flow

STRATEGY

- Debt Structure
Portfolio Performance
Value of Pensions
Insurance Coverage

STRATEGY

Future
--> Capital

Requirements

v

- outstanding
Capital Outlays

- Target Retirement
Income

- Retirement Age
- Retirement Length
- Long Term

Inflation
- Long Term Return

on Investments
- Tax Rate

\ Level of Savings &
Return on Investment

~\-------.
Client Attitudes &
Attributes

HP3000
INTERNATIONAL CONFERENCE AI04n
VIENNA 1987

Looking at the diagram on the previous page, we can get an
idea of the types of considerations that come into play in
the planning process. The front end of the system will
provide the planner with the storage of the data, reports
required from the hard data and the impact of the predictive
data on future capital requirements.

The ability to assess the impact of the predictive data is
what I have referred to as the modelling function of the
front end of the system. By modelling, I mean that by
manipulating certain variables (they are quantitative) the
planner can see the resulting sensitivities on the capital
requirements of the client's financial goals. This is
important since there is not necessarily one optimal savings
and investment rate, and the planner must be able to
determine the impact of alternative scenarios on the client's
future capital requirements.

With the client's current status and projected requirements
in hand, the planner and the client can get an initial
impression as to the viability of the client's goals. The
planner can begin to see how the client's current cash flow
and portfolio fit in with the level of savings and investment
that will lead to the desired retirement income.

OPTIMIZE
SAVINGS

1. Earn more
2. Spend Less

-budget
-restructure debt
-alter living standards

3. Taxes
-shelters
-deferral strategies

OPTIMIZE RETURN
ON INVESTMENTS

1. Increase Risk
2. Investment Education
3. Professional Management

Given that a client has specified a retirement income and
this is translated into a target capital pool, an optimal
savings and investment return are required. How are these
levels determined? Obviously, the client's projected cash
flows and portfolio performance are determinants. On top of
this, the client has certain attitudes, opinions and biases

HP3000
INTERNA T/ONAL CONFERENCE A/0418
VIENNA 1987

that prevent particular combinations of savings and returns
on investments from being viable planning strategies for the
planner's client.

What are these constraints? These are considerations in the
planning strategy that are not purely economic or
quantitative. For example, the planner may recommend a target
savings level for the client to follow that is within the
realm of the clients cash flow. The client, however, may find
this savings level unacceptable in that it reduces his or her
immediate standard of living to a level that does not justify
the purpose of the savings plan. In the same manner, a
suggested portfolio performance may be rejected by the client
on the grounds that it implies a risk tolerance above that of
the client. or the planner may recommend a restructuring of
assets to increase liquidity that the client cannot accept
because the asset in question has a •sentimental value' to
the client.

4.0 The 4GL Component

The previous discussion has given an indication of the
considerations involved in the financial planning process.
Despite the repeated warnings about the intangibility of much
of the data, there is obviously a need for a variety of
financial statements and reports based on quantitative
information. An objective of the 4GL component of this
package is to integrate information and give a profile of the
client's financial status.

On the asset management side, the key reports to be produced
are statements of net worth, asset positioning, and the
portfolio performance of the the client. Specifically, the
net worth information relates the debt/equity aspect of the
client's holdings. Asset positioning gives a breakdown of the
types of assets held by the client (personal, invested
capital, tax shelter etc.), as well as the liquidity of the
assets. The portfolio profile is useful in determining if the
individual is adequately diversified and has a portfolio that
is in line with his or her comfort level with regards to
safety of capital. The portfolio profile can also indicate
how each component of the portfolio is performing relative to
the portfolio as a whole.

HP3000
INTERNATIONAL CONFERENCE A/04/9
VIENNA 1987

Cash flow reports indicate to the planner the ability of the
client to reduce current debt and to increase the client's
net investable capital. When determining an optimal savings
level for the client, the planner must have a good feel for
the client's discretionary cash flow from the present time to
retirement or financial independence.

Referring to the diagram on page 4, the asset and cash flow
reports profile the current status of the client. The future
capital requirements of the client are calculations that are
based on a combination of the client's needs in the future as
well as certain predictions about long range economic
conditions such as the rate of inflation, the client's
nominal return on investments, tax rate on retirement income
etc. Other factors to be determined include years to
retirement and the length of retirement.

These financial and future requirement reports are the basis
of the planning process. The client's attitudes and
characteristics may have a large impact on the particular
strategy devised for the client, yet these qualitative
characteristics are meaningless if the economic circumstances
of the client preclude a realistic chance at attaining the
client's objectives. In other words, before the planner can
be concerned with all of the considerations of the planning
process, he or she must have the basic financial profile of
the client in order to determine a realistic financial
objective for the client. This relates back to the statement
that while the 4GL is providing the 'less glamorous'
component of this package, the overall efficacy of the expert
system will be proportional to the quality of the information
it is accessing, as well as the rules that make it up.

4.1 Modelling

The planner and the expert system require the capability to
determine the impact of various strategies and manipulations
on the client's future cash flows, capital requirements, and
portfolio performance. Given that a particular savings level
and return on investment are not feasible for the client, the
planner will investigate the viability of various savings
levels, returns on investment, retirement parameters,
investment vehicles etc ••• The impact of a proposed scenario

--~--····~--· ------

HP3000
INTERNATIONAL CONFERENCE A/04110
VIENNA 1987

or strategy must be immediately reflected in the system. Of
particular importance in the ROGI model is the ability to see
how various assumptions and scenarios impact on the target
capital pool required by the client at retirement.

For example, if a particular financial objective is not
realistic given the client's current desires and financial
profile, the planner may want to determine whether a 5 year
deferment of retirement will enable the client to amass the
desired capital pool at retirement. Alternatively, the
planner may test the impact of an increased investment return
on the client's ability to achieve the required level of
invested capital. Below are some examples of the modelling
capabilities that the 4GL should provide:

1) The effect of a different tax rate on retirement
cash flow

2) The impact of the purchase of a real estate
investment on capital requirements at retirement

3) The impact of a deferral of retirment on the
required level of savings and return on investment
to achieve the targeted financial goal

4) The impact of a restructuring of the client's
portfolio on the overall portfolio performance

4.2 Pros and Cons of the 4GL

The choice of a 4GL for the front end functions is rooted in
the requirments of the front end:

1) strong screen handling/menu capabilities
2) data base access
3) user friendly
4) good reporting capability
5) linkup to 5GL
6) prototyping function
7) portability between HP3000 and IBM compatible
8) modular design capability

The prototyping capability of the particular 4GL that we used

HP3000
INTERNATIONAL CONFERENCE A/04111
VIENNA 1987

(Speedware) is an important feature in designing a package
such as this one. Our client had a manual process of
collecting the client's financial data and we had to
streamline the data entry process to be easy to understand
yet at the same time be able to. capture all of the
information required by a comprehensive set of financial
documents. We were able to streamline the data capture
process by entering the test data on the system and producing
the various financial statements. In this manner we were able
to play with the data entry screens and let the design stage
evolve to the point where the system was capturing the
necessary data while keeping the data entry process
relatively clear and simple to use.

A very strong feature of the 4GL we used was a module called
DESIGNER, which allows the programmer to create an
application using an online menu, screen, and report writer.
Changes in the input/inquiry screens of the system are
reflected by a corresponding data base modification generated
by the DESIGNER. Restructuring the data base as the
development phase is ongoing is simply a matter of defining a
new data definition at the screen or user level. The data
base and code for the menu, screen and report handling is
generated by DESIGNER. The approach in this type of system
design is to define the system requirements from the end user
viewpoint without having to be too concerned with various
file structures or coding strategies.

The modularity of the system is another important
consideration because if the system is designed to handle a
complex scenario, it is convenient to be able to take out the
more detailed functions if they are not required for that
particular planning situation.

If the client only requires an asset and cash flow profile,
the data entry process will entail entering asset and cash
information without any prompting for future expectations or
requiring specific investment information regarding tax
planning, risk attitudes, desired retirement cash flows etc.

The ROGI model has one input screen for the client's personal
information, one screen to handle family data, one screen for
all asset types and liabilities (personal, investment, tax
shelter), one screen for cash flow, one screen for future

HP3000
INTERNATIONAL CONFERENCE A/04112
VIENNA 1987

capital requirements, one screen for supplementary income at
retirement (pensions, annuities etc.), one screen for capital
requirements at death, and one screen for insurance profiles.

The portability of the 4GL application between the mini and
the micro computer enables development to occur on the HP3000
with a port down to an IBM compatible. All that is required
from the 3000 environment is the download of the data base
schema file and the 4GL code - and, of course, MicroSpeedware
on the PC. once on the micro, the data base is generated via
a data base generating utility and the 4GL code is
interpreted by the SPEEDWARE intepreter. The requirments of
the micro are a minimum 512 meg storage and a hard disk to
handle the 4GL interpreters and utilities.

There is a certain amount of functionality that cannot be
duplicated on the IBM compatible micro. Unlike the 3000
environment, external language subroutines cannot be called.
There are also certain data types that do not perform well on
the micro such as data items defined as floating point
integers (ie: Jl, J2 fields).

The most significant shortcoming of the 4GL is the fact that
it does not handle exponentiation in it's caiQulation
routines. This posed an inconvenience in the development
phase as many of the calculations performed were either
present value or annuity functions. To handle this, it was
necessary to write looping routines. To complicate matters
further there is a calculation involving determining the Nth
root of a number. While the calculations could be performed
in the report language of the 4GL, the lack of the
exponentiation function added overhead and processing time to
the reports that require present value or compounding rate
calculations.

Regardless of the difficulties, the ability to design and
deveiop a system on the HP3000 and run it without
modification on the micro with everything including an Image
compatible database, is a tremendous time saver.

HP3000
INTERNATIONAL CONFERENCE A/04113
VIENNA 1987

5.0 The Expert Component

With the client's information in hand, the task of the expert
system is to use the same considerations in defining an
optimum savings and investment strategy that the human expert
uses. The mandate in the system design phase is to convert
the expert's decision process into a set of rules and
relationships that can be incorporated into the expert
system.

All expert systems are goal oriented in that they are trying
to solve a problem. In this case the problem faced by both
our human expert and our expert system is "How do I structure
a plan for this individual that best allows him to meet his
financial goals with a minimum of pain?" It is not good
enough to propose just a solution that works, we must select
a strategy that takes into account a client's fears, goals,
loves, hates, desires and more.

5.1 Knowledge Engineering

Knowledge engineering is the process of determining how it is
our financial planner makes his decisions when he is
preparing a strategy or plan. At this stage two Brant
knowledge engineers have met with the financial planners
about a dozen times in trying to distill only the rules of
thumb that the expert is using.

Before getting into specific examples of the process and the
rules it is worth reviewing a few basic "rules" about
knowledge engineering.
The first thing that Brant's knowledge engineers discovered
was that, unlike a conventional systems analyst role where
the end user has too many suggestions and you must weed out
the deliverables, our expert had the opposite problem. He
appeared to have nothing to say.

Our financial planner explained up front that he didn't
really have rules, but rather made his decisions intuitively
based on years of experience in "reading" clients
personalities. We were informed that there was not a list of
rules or procedures that he followed to make his decisions.

HP3000
INTERNATIONAL CONFERENCE A/04114
VIENNA 1987

This response is actually a well documented "pseudo-truth"
that has been addressed in many Expert Systems text books.
The problem has been termed the "Expert Paradox", where
psychologists have discovered that the better your expert,
the less capable he or she will be in describing how they
make a decision. It has been determined the experts use what
has been termed "compiled knowledge", where over the years
the individual rules or conditions in a circumstance become
compiled so that the expert actually does not use basic rules
but can jump straight to the intuitively correct answer. The
knowledge engineer's job is to decompile the knowledge into
its composite rules.

Because the expert does not even recognize that he is using
compiled knowledge, it is useless to ask him or her "What
route did you use in this instance?" The expert honestly may
not know what he had to do. What has become fairly standard
procedure in this type of process was to provide the
financial planning expert with example after example,
scenario after scenario, and ask what he would do and why.
From these actions or responses our knowledge engineers
distilled the necessary rules for the expert system.

5.2 Rules from the Expert

An example of the process and rules from the knowledge
engineering stage can be provided based upon one aspect of
the decisions that our expert would make; specifically,
determining the risk tolerance of .the individual or family in
respect to their investment portfolio.

In our discussions with the expert on how risk tolerance
played into his decisions about portfolio structuring, we
asked how he picked a factor. In the "Fact Finder" on the
client, the client had been asked to rate his own risk
tolerance from 1 to 9, where 1 was extremely conservative
(ie: he would only invest in guaranteed investment
certificates in major banks that were insured) and 9 was
extremely daring (ie: all of his money was in penny stocks
of the Vancouver Stock Exchange or with bookies across the
coutry).

HP3000
INTERNATIONAL CONFERENCE A/04115
VIENNA 1987

The first response from the expert was that he used the
number provided by the client to determine risk tolerance.
When asked what he did with a similar number provided by the
spouse of the client, he informed us that he took that into
account as well. We discovered that he looked at such factors
as who made the investment decisions, who appeared more
knowledgeable about investments, who was the primary
breadwinner and several other factors before he selected a
risk tolerance that may not relate to either the spouse's or
the client's selection.

A similar process occured when we discussed how the selection
was made for the family's after-tax income after retirement.
It turned out that the client was asked this question
directly, but in almost all cases this number was ignored.
The expert asked a wide variety of lifestyle questions that
were each broken down into composite numbers. The planner
always selected the income requirement figure that was
largest, regardless of how it was arrived at. In almost every
aspect of the knowledge engineering process we discovered
that a myriad of "invisible rules" became apparent once the
questioning got underway.

There may be dozens and dozens of rules and relationships
that affect the selection of a risk tolerance. From these
relationships that were derived from examples or case
studies, generalized rules were determined.

risk tolerance (RT)if
client tolerance (RT)and
spouse's tolerance (RT).

In other words, if the client and spouse express similar
tolerances, go with it. If the client is also the primary
breadwinner, we go with his or her specified tolerance.

6.0 Conclusion

At this stage we have completed the 4GL system and are in the
process of refining the expert system. we are pleased with
the implementation and excited by the success of our first
hybrid system of 4GL and 5GL systems.

--- _ _, __ -------- --- ---

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

HP3000
INTERNATIONAL CONFERENCE A/0511
VIENNA 1987

Artificial Intelligence Applied to the HELP Function

Robert Stanley
Cognos Incorporated

3755 Riverside Drive
Ottawa, Ontario

KlG 3N3
CANADA

(613) 738-1440

Traditionally, on-line help for computer software has been based on one of two
broad approaches, the on-line manual, and context-sensitive help text. Both
mechanisms have spawned numerous sub-genres, many of which demonstrate
considerable ingenuity and sophistication. The key factor in the development of
these help facilities has been the increasing availability and decreasing cost of high
capacity storage, both memory and disk, which has made it feasible to have large
volumes of text on-line to computer users.

Most recently, further improvements in the price-performance ratios of computer
hardware, coupled with steady progress in artificial intelligence research, have made
it possible to consider harnessing so called knowledge-based technologies to the
provision of help facilities. Smart help, as it is usually known, can simply be a
more sophisticated version of one of the two existing approaches, but this
technology also introduces the possibility of new mechanisms.

This paper describes a research project designed to develop a prototype advisor for
Cognos' QUIZ report writer. An advisor is a knowledge-based program capable of
conducting a dialogue with a user and answering questions within its domain of
knowledge, in this case knowledge of a 4th generation computer application
programming language. As well as describing the results of the research to date,
this paper briefly introduces other potential applications of the technology,
discusses their viability, and proposes likely time-scales for their practical
availability.

Historical Background
I vividly remember the first time I saw a video display terminal which had a dedicated help key;
finally, it appeared, a manufacturer was addressing the real needs of computer users. My initial
excitement rapidly turned to frustration as I realized that the key didn't actually do anything other than
generate a code that could be uniquely identified within a program, should the programmer choose to
check for it. The experience was a salutary one, in as much as it made me examine some of the
fundamental underpinnings of computer systems, which in tum sparked an interest in human­
computer interaction that has never waned. But on that day in the early 'seventies, it was the
frustration and anger at the thoughtlessness of system designers that predominated. How, I
wondered, could an industry continually introduce potentially wonderful mechanisms that for all
practical purposes have no useful application?

The answer, as always, turns out to be simply the perpetuation of a tradition that has its origins in the
exigencies forced by engineering limitations in pioneering days. The commercial data-processing
industry has been, and generally still is, hidebound and conservative in the extreme; only a trickle
from the flood of research ever finds general acceptance, and then usually only under the regis of a
determined champion or visionary. The classic example of this in recent years has been the
introduction of the Apple Macintosh, which has finally won acceptance for ideas that have been
discussed for more than a decade. Of course, the ideas also required the introduction of affordable
delivery technologies for their realization, and this is the heart of the problem.

HP3000
INTERNATIONAL CONFERENCE A/0512
VIENNA 1987

In the. earliest days of computing, all users were programmers, and errors manifested themselves as
system failures of varying degrees of subtlety. Tracking down the source of a problem was a time­
consuming and demanding exercise, and the only help available was discussion with colleagues.
Non-programming users first appeared on the scene with the introduction of batch-processed
applications, which were accompanied (after the need for them rapidly became apparent) by detailed
user instructions for running the application, and a book full of possible error situations, each
identified by a cryptic code. Hardware limitations, particularly in memory capacity, necessitated the
use of codes rather than text messages. The form of the documentation, which was written by the
program authors, reflected the tastes and habits of the programmers, which in turn were shaped by
the development environment in which the programmers worked, which ultimately were rooted in the
engineering design decisions taken by the hardware manufacturers. The only variation on this theme
was provided by the introduction of separate quality assurance or 'testing' sections, who at least
verified the correctness of the documentation as well as the applications.

It was really the appearance of interactive computer terminals in the late 'sixties which first started a
trend towards addressing more fundamental user needs than simply the raw mechanism for running
an application. The problems faced by an unsophisticated computer user (usually described as one
with no real understanding of the operating system and programming language characteristics) in
attempting to successfully execute a job necessitated impractical levels of training or a radically
different approach. In the short term, operators developed startling skills, and major computer
centres placed all programmers on operational trouble-shooting detail, frequently on a three-shift
basis. The answer was the development of interactive or on-line help facilities, but these were slow
in arriving because they required vast (by contemporary standards) amounts of on-line direct-access
storage.

The most widely adopted approach was that of context-sensitive help, whereby an interactive user
could enter a predetermined key sequence (usually a question mark) at any point where the application
was waiting on input. Of course, this only worked where the application design and the programmer
had together conspired to provide some meaningful information to be displayed on request. Poor
programming all too frequently resulted in a help message of the form:

EMPLOYEE NAME: 1 "Enter the name of the employee"

when what the user really wanted to know was whether the initials were supposed to precede or
follow the name, or if the name was supposed to match some other field, and so on. HoweveF, this
system has merits, and is widely in use today, usually with multiple levels of information being made
available. I.e., one request returns possible syntax of an entry, a second the value restrictions, a third
a textual description of the purpose of the field. The major limitation with this approach is that the
user is utterly dependent on what the program developer has decided is relevant, and has no
alternative recourse except to consult any available written documentation, or to contact the program
developer.

The other approach that has been widely adopted is the concept of the on-line manual, whereby the
user is free to browse through a structured set of documentation made available on-line. This
mechanism was slow to be adopted because of its massive requirement for on-line direct-access
storage. Now that disk storage is cheap, comparatively speaking, this approach is being more widely
adopted, particularly because it places little or no demand on the programmer. The on-line manual is
typically accessed via one simple mechanism, and then behaves as a self-contained application.
However, from the user's point of view, the on-line manual suffers from all the deficiencies of paper
documentation: obscurity, poor layout, useless or non-existent indexes and/or tables of contents,
inconsistency, and omissions. An interesting recent studyl also revealed that many users fail to

1 "Helping_ Users Find He!,p: Models of Online Help Organization"; Marjorie S. Horton, IBM Human Factors Center, in
the ACM/SIGCHI bulletm for October 1986.

HP3000
INTERNA TJONAL CONFERENCE A/0513
VIENNA 1987

exploit the capabilities of even the best designed on-line information systems, because they fail to
perceive the structure of the on-line information, even when it is designed to be intuitively obvious.
Cognos' products to date have all followed the approach of providing multi-layered, context-sensitive
help facilities. However, the technical writing group have recently produced a working prototype of
an on-line documentation system, which includes 'smart' indexing and searching, as well as editable
examples that can be executed against a demonstration database from within the help context. Also,
the research division has now produced the first working prototype of a completely different kind of
on-line help, an advisory system based on artificial intelligence techniques. It is this 'advisor' that is
the subject of the remainder of this paper.

Overview

The aim of the 'Advisor' project is to create a software advisor or assistant capable of answering
questions, phrased in a minimally constrained English-like language, about the use of a typical Fourth
Generation Language (4GL). For the prototypes we have chosen QUIZ, Cognos' 4GL report writer,
as the experimental subject, both because it is a mature and reasonably well understood product, and
because there is a large body of users with a well documented history of problems encountered using
the product.

The 'Advisor' is a joint industrial-academic project between Cognos Incorporated and the University
of Ottawa, with grants from the National Research Council of Canada, The Natural Sciences and
Engineering Research Council of Canada, and the Ontario Ministry of Colleges and Universities.
The work is being carried out at the University of Ottawa's Artificial Intelligence laboratory, by a
mixed team of Cognos research group members, and University of Ottawa professors, graduate
students and paid assistants.

The project was started in the Autumn of 1985, and is scheduled to be completed in the late Summer
of 1987 with delivery of a full demonstration prototype system. The first year of the project was
spent on theoretical research, with practical experiment starting early in the Summer of 1986. A
proof of concept prototype was completed at the end of October 1986, and successfully demonstrated
to the various sponsoring organizations in the following month.

The current development uses two different software environments running on two different
computer systems, linked by a 10 megabit/sec Ethernet: Quintus Prolog running on a Sun/3
workstation, and IntelliCorp's KEE™ (Knowledge Engineering Environment) running on a Xerox
1186 (Dove) InterLisp machine. This separation was deliberately chosen to ensure that the research
project investigated the relative merits of a number of different technical approaches, although
experience to date indicates that we might have encountered severe difficulties in attempting to build
the complete system to run on a single machine of the classes available to us.

It is worth noting that at our current stage of experiment enormous computing resources are required
to implement our various mechanisms. Only when we have the full prototype completed will we start
to address the issue of efficient implementation in a less specialized environment. Our ultimate goal is
to produce a system capable of running on an IBM PC/AT, or equivalent. Preliminary experiments in
this direction indicate that this should be an achievable goal within a very few years, partly because of
the appearance in this market of sophisticated AI tools, and partly because of the continuing trend in
increasing hardware performance for a given price. It was only the comparatively recent availability
of affordable, very powerful work-stations, epitomized by the Xerox Lisp machine, that made this
project possible.

Approach
We adopted a somewhat unusual approach as we embarked on the research project by consulting the
records of Cognos' telesupport group for documentary evidence of problems encountered by QUIZ

HP3000
INTERNATIONAL CONFERENCE A/0514
VIENNA 1987

users. The important point was that these were end users of QUIZ, who were attempting to use it as
the tool of choice to solve real-life data-processing problems. Their calls to the telesupport group
could thus be construed to be typical of questions that any 'advisor' should be capable of answering.
We screened the questions for obvious irrelevancies, and then classified them according to a system
which we developed. The majority of the questions were split between only two categories, the 'how
do I .. .' (HDI) and the 'why did .. .' (WHY) or causal; other categories, including syntactic (SYN),
explanation of obscure error messages (ERR), definitional (DEF), and hypothetical (HYP)
accounting for the rest. The HDI's alone accounted for more than half the questions, and it was
decided to make answering this type of question one major focus of the project. A second sub­
project was initiated to tackle the next two most frequent categories, the WHY's and the SYN's. The
SYN's (questions such as "can there be more than one ACCESS statement in a report?" or "what is
the syntax of a FOOTING statement?") are the traditional meat of context sensitive help systems, but
accounted for less than 15% of the total number of questions, indicating that what was needed did
indeed lie outside the capabilities of contemporary help systems.

Once we had classified the questions, we made a detailed study of those falling into the categories of
interest, further analysing them by topic. Perhaps the greatest beneficiaries of this exercise were our
technical writers, who received a weighted list of six topics that clearly gave many users difficulties,
and which therefore required new treatment in the reference manuals. Once we had classified the
questions by topic, decided what problems appeared to characterize each, and what general
characteristics could be inferred, we performed a final screening of the questions to eliminate those
which could be classed as relating to very obscure issues or to technical tricks outside the mainstream
use of QUIZ. This left us with a representative set of some 200 questions, and we defined our goal
for the working prototype as the capability to answer any question which can clearly be shown to be
directly related to one of these 200 questions.

Of course, in order to prove the correctness of an answer, one needs at least a model answer for each
of the questions to act as a yardstick. We therefore circulated our 200-question set to members of
various groups within the Cognos head office, including tele-support (where the questions
originated), product development, and a variety of technical specialists. Interestingly enough, in
many cases there proved to be no one correct answer, indicating the depth of the problem when using
one of the sophisticated software tools that characterize a 4GL. Where more than one answer was
produced for any given question, we had the experts weight each answer and recorded the set of
answers, ordered by weight, with the question.

At this point we had the necessary information to start designing possible question answering
mechanisms, and were able to embark on the real work of the project. We eventually broke the
project down into four sub projects, and treated each as a relatively independent development up to
the first (proof of concept) prototype stage (Pl). These four sub-projects were:

• a parser capable of syntactically analysing any question asked by the user of the system,
couched in a formalized English-like language, and integrated into a user interface;

• an HDI question-answering system;

• a causal (WHY and SYN) question-answering system; and

• an 'apprentice' system with the capability oflearning from the user.

Each of these is briefly described in the following sections of the paper.

The Parser and User Interface
The parser was developed as a Master's thesis under the guidance of a natural language specialist (Dr.
Stan Szpakowicz) at the University of Ottawa. The parser is designed to accept four types of input,
as follows:

HP3000
INTERNA TJONAL CONFERENCE A/0515
VIENNA 1987

• an assumption or descriptive text fragment providing background information which may help
to clarify the context of a question. These are entered in a restricted form of English (see
below), delimited by a full stop, and can be annotated with various special symbols to help
the parser. Examples of such assumptions are:

'employees' is a keyed file .
'emp num' is a key of 'employees'
'surname' is a key of 'employees'

• a question, which is also entered in restricted English, but delimited by a question mark.
Questions can also be annotated with various special symbols to help the parser. An example
of a typical question (in the context of the previous assumptions) is:

how do i access 'employees' using 'emp_num' and 'surname' ?

another example (showing some annotation to help the parser correctly identify dependent
clauses) is:

how do i print an item at [the beginning of a detail line] ?

• a fragment of QUIZ code, presumed relevant to the questions being asked. Only minimal
syntax checking is performed on the code fragment.

• the literal text of an actual QUIZ error message about which questions are being asked.

The subset of English that the parser is designed to accept is in fact a formalism specifically designed
for knowledge representation called LESK: Language for ~xactly .S.tating Knowledge. The LESK
language has been developed over a number of years by Dr. Skuce of the University of Ottawa, and
the work that had already gone into the specification of this language was one of the starting points
for the Advisor project. In practice, LESK had to be considerably extended to make it fit our
particular application, but its straightforward simplicity is easy to pick up, and once mastered, LESK
can be used to express a wide variety of concepts. Any limitation in vocabulary is a relatively trivial
problem to solve, requiring only additional entries in the lexicon; the grammar is sufficiently
extensive to cope with the variety of constructions needed to state assumptions and frame questions
about programming with QUIZ.

A question on its own, or a question accompanied by one or more assumptions, and/or a fragment of
QUIZ code, and/or a QUIZ error message constitute a logical query, which is the unit of input to one
of the question-answering systems. The parser outputs a successfully parsed fragment in the form of
a parse tree, represented either as a Prolog list or as a Lisp S-expression according to a user
specification. In the case of the parser failing to parse an input fragment, an interactive dialogue is
initiated with the user to attempt to resolve the problem. The user is given the choice of respecifying
the fragment (abort parse for this fragment), either ignoring or altering the specific word over which
the parser has stumbled, or of undertaking a more technical dialogue via which a new word can be
defined in the parser's lexicon.

The parser itself is written in Quintus Pro log, and runs under UNIX on a Sun/3 workstation. The
design of the current implementation is based on some fairly standard natural language processing
theories for syntactic analysis, driven by a sophisticated lexicon, and is capable of parsing any input
fragment in between 0.1 and 0.5 seconds.

Building the lexicon proved to be one of the most interesting exercises, in as much as we wrote a
special concordance program through which we fed a large body of machine-readable documentation,
including the complete text of the QUIZ reference manual. The output from this gave us some 1,500
words for inclusion in the lexicon, together with all the necessary references and annotations required
to complete each lexical entry2. This linguistic analysis of existing documentation raised a number of

2 A lexical entry is similar to the entry for a word in an English language dictionary, but with a variety of annotations
describing the part of speech, and possible roles that the word can play.

HP3000
INTERNATIONAL CONFERENCE A/0516
VIENNA 1987

interesting side issues, chief among which was that, while natural language theory suggested that we
might expect some 400-450 different verbs to have been used, in fact the total was only about 150.
When we investigated this with the technical writing group, we discovered that the technicians in the
development group who had vetted the documentation for technical accuracy had insisted on
particular usage of a variety of technical terms, and it was this insistence that had led to the relative
paucity of the vocabulary.
Much more interestingly, because each of these words was serving multiple duty, they tended to gain
a variety of context-dependent meanings, which turned out to be the root cause of a number of the
misunderstandings demonstrated in our sample questions. Since the QUIZ documentation has won
awards as the best documentation of its kind, this is clearly not an isolated problem, and indicates not
only the need for early involvement of technical writers in the product development cycle, but also
that formal technical glossaries must be developed which assign unique and unambiguous meanings
to each technical term. Interestingly enough, one possible application of the Advisor prototype is to
the development and formalization of such technical glossaries for future products.

The parser development thus proved to be an interesting exercise, and the working prototype has
proven to be fast and effective in use. It does constrain the user somewhat with respect to freedom of
expression on input, but experiment and constant usage over several months have shown that it is
easy to adapt to the parser's constraints, and that these do not interfere in any important way with the
user's freedom of expression.

The HDI Question-Answering System
The How-Do-I question-answering system (HDI) is the area into which the most effort has been
directed, mainly because we wished to explore the capabilities of available large-scale AI tools. For a
variety of reasons, we eventually settled on the Knowledge Engineering Environment (KEE™, from
IntelliCorp™) running under Interlisp~D on the Xerox-1186 (Dove) Lisp machine. This has proved
to be a nearly ideal prototyping environment, but its tremendous richness resulted in a long and
relatively steep learning curve which we believe will take some 12 months to travel to the level of
neo-expert.

Using these tools, we have developed a question-answering system that utilizes three fundamental
mechanisms: frame-based representation of knowledge; a forward-chaining, rule-driven inferential
system; and object-oriented methods written in InterLisp. These three mechanisms are combined in
various proportions to answer a submitted query in three stages, as follows:

• Using an approach known as semantic interpretation, the parsed S-expression for a user
query is received over the Ethernet, and translated into a formal representation using KEE
frames, based on the system's understanding of the query. Understanding, in the context of
semantic interpretation, means being able to classify all phrases of the input query in terms of
concepts defined in the knowledge base, and correctly assigning all objects into roles which
fit the activities mentioned.

The semantic interpretation phase can fail completely (I don't understand the question) or may
start an interactive dialogue with the user to clarify and disambiguate phrases of the input
query which are causing confusion.

• Once the semantic interpreter has completely transformed the query into a conceptual
representation as a KEE knowledge base, it invokes a mechanism that attempts to match the
query against known knowledge. This matching mechanism may yield a perfect match (the
query is completely answerable), a partial match (in which case the user will be solicited to
supply additional information), or a mis-match (unable to answer the query). All queries
must eventually reduce either to an acceptable match, or a rejection of the query as
unanswerable in its submitted form.

HP3000
INTERNATIONAL CONFERENCE A/05n
VIENNA 1987

An acceptable match is comprised of a set of potentially useful KEE units, each of which is
deemed to hold information relevant to answering the query.

• In the case of an acceptable match, a syntax generating mechanism is invoked, which
assembles and displays an answer from information held in the set of potentially useful units.
This mechanism has sufficient knowledge of QUIZ syntax to enable it to formulate an answer
in the form of QUIZ statements, although the resultant code may have instantiation points
representing generalities (e.g. <report item>) and unknown specifics (e.g. <file
name>); these are represented in angle brackets.

In addition, or as an alternative, to the QUIZ code generated (the definition of an HDI
question is one for which an adequate answer is a piece of QUIZ [pseudo-]code), the
answerer may generate a plain text message. Typically, this occurs in the cases where the
query has an explicit negative answer, e.g. "It is not possible to report a heading to a subfile".

In fact there is no clear boundary between these three stages, and the decision as to which mechanism
should be responsible for what has tended to be taken on the basis of implementational ease.
However, it helps to think of the process broken down in this fashion, because the major
consideration is the construction of generalized mechanisms driven from separate knowledge bases.
The more domain-specific (QUIZ in our case) knowledge there is hard coded within the actual
mechanisms, the less useful (read: extensible, portable, maintainable, etc.) the system becomes. A
brief example may serve to highlight some of these ideas.

The previously discussed query:

'employees' is a keyed file .
'emp num' is a key of 'employees'
'surname' is a key of 'employees'
how do i access 'employees' using 'emp_num' and 'surname ?

Is translated by the parser into the following set of Lisp S-expressions, which are combined into a
single list before submission to the question-answering mechanisms:

Assertion 1: (is a yes (variable employees) (count nounphrase 1 ()
keyed_file (variable employees) ())) -

Assertion2: (is a yes (variable emp num) (count nounphrase 1 () key
(variable emp num) ((of (count nounphrase 1 () keyed file
(variable employees) ()))))) - -

Assertion3: (is a yes (variable surname) (count nounphrase 1 () key
(variable surname) ((of (count nounphrase 1 () keyed file
(variable employees) ()))))) - -

Question: (hdi yes () access ((nil sub (personal_pronoun i)) (nil d_o
(count nounphrase 1 () keyed file (variable employees) ()))
(nil using (and (count nounphrase 1 () key (variable
emp num) ((of (count nounphrase 1 () keyed file (variable
employees) ())))) (count nounphrase 1 () key (variable
surname) ((of (count nounphrase 1 () keyed file (variable
employees) ())))))))- -

Careful examination of the above S-expressions reveals that all the information represented in the
assertions is duplicated in the question. In fact it would be possible to generate an identical question
$-expression by posing the following question without any assertions:

how do i access a keyed file 'employees' using a key 'emp num'
of 'employees' and a key 'surname' of 'employees' ? -

LESK allows the user considerable flexibility and freedom of expression when formulating queries.
The Semantic Interpreter takes the S-expression list output by the parser, and creates a knowledge
base containing the following units:

---.. -----·--~-

HP3000
INTERNATIONAL CONFERENCE A/0518
VIENNA 1987

01 an ACCESSING~. with a target of 02, and an agent of 03;

02 a FILE object, named 'employees', with an access-mechanism of'keyed', a key-list of04
and 05, and membership in the class of DATA-FILES;

03 a~ KEYS, pointing to 04 and 05;

04 a KEY object, named 'surname', with membership in the class of DATA-ACCESS­
KEYS;

OS a KEY~. named 'emp_num', with membership in the class of DATA-ACCESS-
KEYS.

A number of inferences have been made, including the fact that the keys are data access keys rather
than sort keys, and that the file is a keyed data file. In this latter case, while the 'keyed' attribute can
be readily inferred even when it is not explicitly stated, the 'data file' attribute is not obvious (there
are a number of possible alternatives). Where disambiguation proves difficult, the Semantic
Interpreter either asks for confirmation, e.g.

Please confirm that the referent: FILE (employees) is a member
of the class of DATA-FILES (Y)/N?

or leaves the problem to be tackled by a subsequent processing phase.. At present the Semantic
Interpreter draws the inference and requests user confirmation, but this has caused problems in more
complex situations, and we may choose to let this type of problem stay unresolved until a subsequent
phase.

The second (matching) phase extends this first representation, by altering existing units and
generating new units, to generate the following set of potentially useful units:

01 an ACCESSING activity, with a target of 02, and a sub-activity of 06;

06 a LINKING activity, with a target of 07 and 08, and an agent of 03;

02 a FILE~. named 'employees', with membership in the class of PRIMARY-DATA­
FILES;

07 a FILE object, named 'employees', with an access-mechanism of 'keyed', a key-list of
04, an alias of '<alias-for-surname>', and membership in the class of SECONDARY­
DATA-FILES;

08 a FILE object, named 'employees', with an access-mechanism of'keyed', a key-list of
05, an alias of '<alias-for-emp_num>', and membership in the class of SECONDARY­
DATA-FILES;

03 a set-of KEYS, pointing to 04 and 05;

04 a KEY object, named 'surname', with membership in the class of DATA-ACCESS­
KEYS;

OS a KEY~. named 'emp_num', with membership in the class of DATA-ACCESS-
KEYS.

Notice that the name of an object is merely another attribute of a unit and not its identifier, thus
allowing three FILE units to exist for the same file. At this point the query can be classed as fully
matched, because all the concepts mentioned have been successfully matched with known concepts,
with sufficient precision to generate an answer. The answer generating phase is invoked, and in fact
increases the set of potentially useful units with a number of units to represent syntactic fragments.
The new units are:

09 an ACCESS-CLAUSE, with a target of 02, and a link-list of 10 and 11;

10 a LINK_CLAUSE, with a target of07, and a linkage-spec of 12;

11 a LINK_CLAUSE, with a target of08, and a linkage-spec of 13;

12 a LINK-BY-KEY-SPEC, with a file-refof07, and a key-ref of04;

13 a LINK-BY-KEY-SPEC, with a file-ref of 08, and a key-ref of 05.

HP3000
INTERNATIONAL CONFERENCE A/0519
VIENNA 1987

These are much simplified representations, but show the type of cross-references that are constructed,
together with a degree of redundancy that eases navigation between units in the knowledge base.
From these syntactic fragments, the following QUIZ pseudo-code is generated and displayed in the
answer window:

ACCESS EMPLOYEES &
LINK TO SURNAME OF EMPLOYEES ALIAS <alias-for-surname> &
LINK TO EMP NUM OF EMPLOYEES ALIAS <alias-for-emp_num>

This is the correct answer to the query, but will require the user to code the actual alias names to be
used before the statement becomes executable.

The Pl prototype is capable of answering a handful of queries on the topics of accessing (the
previous example is a typical such query), reponing and soning. Achieving this required knowledge
representation for a total of some 85 concepts (both objects and activities) plus about a dozen
syntactic fragment specifications, supponed by some 70 rules and several dozen Lisp methods.
However, the fundamental mechanisms appear readily extensible, and adding knowledge about new
concepts should prove merely time-consuming.

The Causal Question-Answering System
The causal question answering system, known as QAUZ, is the subject of a Ph.D. thesis by Branka
Tauzovich, a member of Cognos' Research Division on scholarship at the University of Ottawa. The
requirements for originality in a doctoral dissertation necessitated keeping this portion of the project
independent, and it has thus been treated as a parallel development. The QAUZ system has been
implemented entirely in Quintus Prolog on a Sun/3 workstation; its only direct interaction with the
rest of the Advisor is that it invokes the same parser to process its raw input.

The QAUZ system typically accepts a fragment of QUIZ code as pan of a query, because the usual
WHY question requires the code in order to be able to establish the context in which the query is
being asked. For ERR type questions (explaining error messages), should it prove impossible to
answer the question without reference to the context, the user will be prompted to enter the code. In
the prototypical implementation no provision was made to allow direct access to machine readable
QUIZ code, but this would cenainly be the approach adopted for any more serious implementation.
The text of QUIZ error messages are also acceptable as input, because one major category of user
question is the "why did such and such an error occur?".

The QAUZ system comprises a knowledge base (implemented mainly in declarative rules, but
augmented with a custom frame-based mechanism), which describes a mini-QUIZ model (a subset of
QUIZ similar to that used in other parts of the Advisor project), a user interface with links to the
parser, a forward-chaining inference mechanisms, a backward-chaining inference mechanisms, a rule
base, and a variety of tools such as frame compilers. The system uses a combined forward- and
backward-chaining strategy to reason forward from a question, and backward from actual QUIZ
code, to generate an explanation which satisfactorily accounts for the reponed facts.

While processing a problem, the QAUZ system constructs an internal representation of the problem
state which shows all the various dependencies and causal mechanisms that may be contributary
factors. Even if a focused answer cannot be reached by the system, a browsable display of the
internal representation of the problem frequently yields sufficient information to enable the user to
answer the query. The following example shows the QAUZ system reasoning about the
circumstances under which a default heading should appear on a repon; note that the system is
capable of handling inconsistencies:

Enter your QUIZ code:
>> REPORT x HEADING "Name"
>>

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

> Why is the column heading set to the dictionary heading?

Your query is INCONSISTENT!

Contradiction found regarding:
the column heading of a report item is set to the
dictionary=heading of an item -

Either your QUIZ statements are incorrect
or you did not formulate your question properly!

Assuming the latter ...

The NEGATION of your question is TRUE
because the following DOES NOT HOLD:

all record items are requested for reportinq (f),
CONSEQUENCE OF:

using 'REPORT with the ALL_option' statement (f)
AND
a record item is an accessible record item (?),

CONSEQUENCE OF : \ -
the record_item is a declared record_item (?),

A/05/10

the record item is a record_item of a file (?)
AND

OR

the file is a declared file (?),
CONSEQUENCE OF:

OR

using first file declaration
in 'ACCESS'-statement (?)

using subsequent file declaration
in LINK TO part - -

in 'ACCESS with a LINK_TO_option'
statement (?)

a default for the column_heading of a report_item
is used (f),

CONSEQUENCE OF:
using format__part without HEADING_part
in report item

in report_items
in report group

in 'REPORT with a report_group' statement (f)

> Why is not the column heading set to the dictjonary heading?

Because the following DOES NOT HOLD:
all record items are requested for reporting (f),

CONSEQUENCE OF:
using 'REPORT with the ALL_option' statement (f)

AND
a record item is an accessible record item (?),

CONSEQUENCE OF: -
the record item is a declared record_item (?),

CONSEQUENCE OF:
the record item is a record_item of a file (?)
AND -
the file is a declared file (?),

OR

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

CONSEQUENCE OF:

OR

us±ng first file declaration
in 'ACCESS'-statement (?)

using subsequent file declaration
in LINK_TO_part - -

a default for the column_heading of a report_item
is used (f),

CONSEQUENCE OF:
using format_part without HEADING_part
in report_item

in report_items

A/05111

in report group
in 'REPORT with a r~port_group' statement (f)

The fundamental mechanisms of the QAUZ system are capable of dealing with all the various
categories of question discussed in the Approach section of this paper. However, only the WHY,
ERR, HYP, and SYN categories have actually been addressed in detail, and these only for the
defined mini-QUIZ subset of QUIZ.

Obviously, the QAUZ and HDI systems overlap in capability, but the need to keep the QAUZ system
independent of the rest of the project has allowed us the luxury of developing two totally separate
approaches. The second prototype (P2) will benefit from the work done in both systems.

The QUIZ ,:-\PPrentice
The QUIZ Apprentice is a parallel project being undertaken at the University of Ottawa by a team led
by Dr. Stan Matwin, and is not formally a part of the Advisor Project. However, it sprang from
work started by Dr. Matwin in the early stages of the Advisor Project, and there are close ties
between the two teams.

One of the chief reasons for the separation is that the Apprentice has been implemented entirely in
Prolog, and as yet we have found no way to tightly couple Prolog with a Lisp-based knowledge
representation mechanism. The Apprentice thus has its own internal model of QUIZ, complete with
its own knowledge base constructed entirely in Prolog. In its earliest incarnation it used
approximately the same subset of QUIZ as was chosen for the HDI question-answerer.

The prime characteristic of the apprentice approach is that it is capable of learning. For a rule-based
system, thi~ means that the operational system can create new rules as a standard part of its normal
processing, as well as extending its knowledge with each new solution generated. In practice, the
system designer seeds the knowledge base with a basic set of rules, using an interactive teaching
mechanism to do this. This infant system can then be introduced into a user environment. Whenever
it encounters a new problem for which it is unable to find a solution, or when it offers an incorrect
solution, the user can enter the interactive teaching mode and help the system define a set of rules
which, in conjunction with its existing knowledge, will enable it to generate the correct solution.

The system's knowledge is based on problem-solution pairs, and all that is needed to teach the
system is to supply the correct solution to a new problem. The apprentice not only stores the
problem-solution pairs but is capable of reasoning, so that by decomposing problems into partial
problems, and matching these against its knowledge base, it is capable of solving problems for which
no explicit solution is stored. Although the underlying mechanisms are conceptually simple, even the
initial prototype QUIZ Apprentice was capable of demonstrating remarkable performance.

HP3000
INTERNATIONAL CONFERENCE A/05112
VIENNA 1987

Clearly the first user of an infant system needs to be fairly knowledgeable, in order to detect the
situation where incorrect solutions are being offered by the apprentice. However, experiment has
shown that the number of rules needed to adequately cover a given topic, while not fixed, can be
quickly identified. In operation, the Apprentice rapidly builds up a few dozen rules (typically 2- or
3-) for a given topic; thereafter, new rules only need to be generated to cover exceptional cases. As
soon as this point (where the rate of rule creation drops off sharply) is reached, the system can be
turned over to a naive user. Typically, from this point on there will be no incorrect solutions
generated, and the s:xstem will only require teaching when new problems are encountered. When this
occurs, the user can ask an expert to supply the correct solution.

The advantage of this approach is that it eliminates the problem of requiring a technical specialist to
make changes in the system's stored knowledge, which is the major problem with most of today's
operational expert systems. However, the more complex the fundamental knowledge representation
and reasoning mechanisms, the harder it is to ensure that the rule construction mechanisms are
correct: and the need to detect potentially incorrect solutions, at least in the early stages, introduces the
much wider issue of the verification of knowledge bases. Not for nothing is this approach named
'apprentice', and it is important to remember that the step from apprentice to journeyman has always
been a big one, requiring years of effort carefully directed by an experienced and capable master.

The First Prototype (Pl)

The first prototype (Pl) was completed in October of 1986, and was successfully demonstrated to
Cognos' Research management and to a committee from the National Research Council in mid
November. The Pl system requires a Sun/3 workstation with at least 4 megabytes of real memory
running under UNIX (System 4.2) with Quintus Prolog, linked via a 10 megabit Ethernet to a Xerox
1186 (Dove) Lisp machine with the maximum memory configuration (3.7 megabytes) running under
Interlisp-D with IntelliCorp's KEE™ version 2.1. Both systems require access to at least 50
megabytes of individual disk space.

For Pl, the various components of the system were linked together within a very basic user interface,
written in a mixture of C and Quintus Prolog, and running on the Sun workstation. This user
interface initializes all the communications mechanisms, controls the Lisp machine as a slave AI
problem solver, and allows the user to enter, edit, debug, and submit (to the appropriate question­
answering system) all the various components of a query. Although primitive in appearance and
behaviour, this interface has proven to be a robust and indispensible tool for working with all the
various components of the system, as well as acting as a prototype for the more ambitious interface
planned for the second prototype (P2).

This system could be run entirely from the Xerox Lisp machine (the slave!) by opening an Interlisp
window and running a terminal emulation via which the user interface on the Sun could be accessed.
Queries could thus be entered in this window, and the rest of the screen used to display the question
answering process in action.

For Pl we limited ourselves to a handful of questions on a few major QUIZ topics, namely: data
access, reporting, sorting, and selecting (QAUZ only). A set of mechanisms that could be adapted to
all these topics were developed, and based on the experience with Pl we expect little difficulty in
extending the knowledge base to include new topics, as well as to cover these first topics more
extensively. QUIZ has some 31 main verbs, and there is a rough equivalence between these and
Advisor topics. The main purpose of the Pl prototype was to demonstrate the feasibility of
answering questions, and to test a variety of implementation mechanisms. Both of these objectives
were satisfied.

Although performance was not an issue for this prototype, it may be of interest to note that it took the
KEE/Interlisp-based mechanisms between 4 and 20 seconds to answer each Pl question. This in a

HP3000
INTERNATIONAL CONFERENCE A/05113
VIENNA 1987

development environment with multiple levels of debugging active, and with extensive graphic traces
being displayed. One of the P2 issues that we intend to address is the question of what sort of
response might be considered reasonable for an advisory system.

The QAUZ system Pl prototype runs totally independently, and is self contained on a Sun/3.

The Second Prototype (P2)

The second prototype (P2) is scheduled for July 1987, and will be based on the work done to date,
once this has been extensively reviewed. At present it is too early to state with any certainty what will
and will not be attempted, but a number of possibilities are open. These include:

• Integrating the entire system into a single machine environment. This will require the
availability of new tools, notably KEE on the Sun/3.

• Coping with procedural or time-dependent problems.

• Extending the Pl prototype with lots of knowledge to give coverage of the majority of QUIZ
rather than the limited subset used for Pl.

• Developing a sophisticated user interface, taking full advantage of windows, interactive
graphics, and other available techniques.

• Closely coupling Prolog with Lisp-based knowledge representation mechanisms.

• Transferring the existing system into a smaller self-contained environment running on a
computer such as the IBM-PC/AT.

• Replacing the current independent syntactic parser with extensions to the semantic interpreter.

• Development of deeper models of QUIZ, to enable greater understanding of queries by the
system, and thus generation of more sophisticated answers.

• Focusing on a single topic, such as file access, and attempt to create an advisor with
effectively complete understanding of this one topic.

• Development of more sophisticated reasoning strategies, capable of dealing with incomplete
queries.

• Development of alternate answering mechanisms, to enable the user to get more out of the
system than one blunt answer.

This last problem is really the heart of the design problem. It is very easy to develop a system that
answers a question of the form 'Can you tell me the time?' with a blunt 'yes'; this is of little use, and
serves only to irritate the user. It is essential that an advisory system be capable of interpreting the
reason behind a question that is asked, and thus generating a meaningful answer, rather than blindly
answering the literal interpretation of the question that was asked.

It used to be that the way to test whether a computer system was working was to pose the same
problem repeatedly, and check that the answers were consistent, which usually meant identical.
Perhaps the distinguishing feature of a knowledge-based system is its ability to learn. This means
that the second time a question is posed the response should at the very least be faster, and that
multiple repetitions should trigger some alternate action. In an ideal system this would include
proposing alternate approaches in an attempt to help the user reach a solution to the real as opposed to
the expressed problem.

Given the limited lifespan of the current project, it is unrealistic to expect that we will solve more than
a fraction of these problems. However, it is to be hoped that we will make some forward progress,
and perhaps come closer to the currently perceived ideals.

HP3000
INTERNATIONAL CONFERENCE A/05114
VIENNA 1987

Practical Implementations
Thus far this paper has been concerned mainly with reportage of what has been achieved, and a
description of possible short-term research goals. Quite clearly, the Pl and P2 prototypes have little
direct application in the resource-conscious practical data-processing world, relying as they do on
costly and largely non-standard dedicated hardware and software environments. However, although
the goal of research is knowledge, there are some clear pointers to what the future holds in store.

Firstly, these technologies are practical. That is to say, it is possible to build a knowledge-based
system capable of doing real work in real environments. The problem is that at present it costs
hundreds of thousands of dollars to implement such systems, which makes them cost-effective only
in the most specialized of applications. Most of this cost is sucked up by the need for highly skilled
development personnel, expensive tools, and the fact that very large machine resources are typically
consumed by the operation of such systems.

Today, machine costs are falling, and the latest generation of chips (DEC Micro Vax, Intel 80386,
Motorola 68020, National Semiconductor 32032, TI Explorer, etc.) offer n1ore than adequate raw
power. Once this power has been packaged in suitable architectures, it will become an easy matter to
boost a conventional system with an AI co-processor, much as floating-point co-processors have
been integrated into conventional architectures. In addition, the cost of stand-alone micro-systems
will continue to fall, at least in terms of their price/performance ratios. The machine resource problem
will disappear as certainly as has the memory problem over the last few years.

Todays costly tools are rapidly being migrated from the esoteric Lisp machine environments of their
engendering to the relatively conventional UNIX world, and will soon be available implemented in
conventional programming languages such as C. At the same time, the primitive first generation PC­
based AI tools are giving way to sophisticated second and third generation offerings that are
beginning to rival the big tools. History tells us that competition will trigger falling prices until levels
deemed acceptable by the user community are reached.

The problem of skilled personnel for development will also diminish as more and more sophisticated
tools are developed. A logical extention of the QUIZ Apprentice is a system that can be taught by a
domain expert who can be relatively ignorant of the internal mechanisms. This problem is analagous
to the problem of data-base specialists, who are still required in sophisticated environments, but who
can be ignored when simple applications are implemented using sophisticated DBMS systems.

Knowledge-based systems are a reality. Within three to five years they will become the norm.
Should a QUIZ advisor be considered a reasonable product, a commercially attractive implementation
capable of running on a dedicated IBM-PC/ AT or equivalent could be brought to market within three
years, i.e. first quarter 1989. It is by no means clear that such a product has a market, but the
underlying technology has many applications, and a few of these are introduced in the following
paragraphs.

Although true advisors are a possibility, they are unlikely to appear integrated into applications (in the
same fashion as current help facilities) for several years yet. However, they are feasible paekaged as
stand-alone applications on dedicated hardware, which certainly introduces the possibility of a PC­
based system. An alternative solution is to build a multi-user, server-type front end for a large-scale,
central system dedicated to running one or more advisors, and allow users to query an advisor
remotely via local network or telecommunications links.

A much more likely scenario is that, instead of an advisor, a teacher will be created. Computer-based
training is a growing field, as the widespread adoption of computers, particularly at the desk-top
level, exacerbates the problem of the relative scarcity of teachers. The AI community is currently
focusing considerable attention on the problems of teaching, and AI is seen as the most likely
technology to provide a quantum improvement over the rather pedestrian on-line tutorials available
today. The key to a good teaching system is not its ability to detect correct answers, but its capacity

HP3000
INTERNATIONAL CONFERENCE A/05/15
VIENNA 1987

for understanding why a wrong answer has been entered, and for developing a strategy to correct the
user's misaprehension. The same knowledge required to implement an advisor serves to implement a
teacher, although in the case of the latter this must be augmented with knowledge about the types of
mistakes that can be made. Typically the ratio of information is about 8: 1; for every correct fact there
are roughly eight possible misunderstandings.

One direct application is to a tool to help software product designers keep their facts straight, and
ensure that all the various components are functionally complete and correctly interconnected. This
includes the development of technical glossaries in which each term is uniquely and unambiguously
defined. Although such a system is a design tool, aimed at ensuring the correctness and
completeness of a software product, it could also be extended to create outline technical
documentation that conforms to a standard structure. By the same token, such a system could also
ultimately be used to proof final documentation for completeness, accuracy, and consistency. The
key to making any such system work will be ensuring that it is sufficiently easy to use, and directly
beneficial, that development teams will be careful to keep its knowledge current and accurate. The
major flaw in most paper-based design tools has been that the effort required to keep the paper up to
date has tended to detract from the true development tasks.

Beyond such design aids, which ought to be equally useful to all builders of software applications, lie
some very exciting possibilities. It is only a short step from an advisor which answers a 'how do I'
question with a piece of pseudo-code to a system capable of generating executable code. This would
allow users to program a system at a very high level, by expressing their needs in a fairly informal
fashion. With an adequate control structure, the AI-based programming tool could help the users
refine their ideas by posing questions until the application was completely defined. The major step
forward needed to make this sort of tool a reality is the development of knowledge bases describing
typical applications, but it transpires that a significant portion of the knowledge needed to implement
an advisor is just this.

The key to all these systems lies in the user interface, which must allow the user to communicate with
the system in a natural fashion that is as easy to use as the natural language and scribbled diagrams
we use to communicate our ideas to other humans. The human tendency to make life as easy as
possible means that we seldom use a long form when a shorter is available; typing true English at a
keyboard is a non-starter, if quicker mechanisms are available. Even if affordable voice input
technology makes spoken natural language a possibility, we will still need the ability to diagram,
annotate, doodle, and so on. It is the availability of these latter mechanisms that will determine the
time-scales for the widescale introduction of true Al-based tools.

Within two years, high resolution (1276 x 1024 minimum) colour graphic displays will be achieving
affordable levels. We already have excellent interactive pointing devices. Three years will see the
am val of reliable voice input technology; it is already affordable, but has too low an accuracy rate to
be really useful. In the same timescale very large data storage (optical disks), high quality hard copy
devices (laser printers), and very fast desk-top architectures will all have achieved widescale
commercial viability. All that is missing is the software, first its development and then its acceptance
into the market place. Today, it exists only in fragmented prototypical form in research
establishments around the globe.

A useful model that we can examine for what to expect is the introduction of the graphic desk-top
metaphor pioneered by Xerox on its Star systems. Although demonstrably viable, it was far too
expensive for all but a handful of users, and even the far more affordable Apple Lisa failed to achieve
widespread acceptance. The introduction of the Apple Macintosh, however, offered the necessary
price break-through that triggered both widespread acceptance of the technology, and a trend towards
making an interactive, iconographic interface standard on all systems. The Macintosh is not yet four
years old, at least in terms of its market availability. By analogy, we can expect today's high priced
experimental interfaces to reach the mass market level in the same timescale as the necessary hardware

HP3000
/NTERNA TIONAL CONFERENCE A/05116
VIENNA 1987

becomes affordable. Another two to three years should serve for such products to gain credence
similar to that now afforded the Macintosh. Thus, by 1992 it is very probable that systems based on
current experimental advisor technology will be commonplace.

Acknowledgements
To the National Research Council of Canada, the Natural Sciences and Engineering Research Council
of Canada, and the Ontario Ministry of Colleges and Universities for various grants which have
helped make this project possible.

To the University of Ottawa for its joint sponsorship of this project.

To Ors. Skuce, Matwin, and Szpak:owicz of the University of Ottawa, and Dr. Oppacher of Carleton
University for their participation in this project, and for advice freely given.

To Branka Tauzovich, Charles Truscott, Sylvain Delisle, Deborah Lazar, Patrick Constant, Yannick
Toussaint, and Claude Queant for their theoretical and practical technical contributions.

To Bob Barr, Ian Craib, Al Slachta, and Phil Archdeacon, creators of the QUIZ on-line manual.

References
[Cline et al.)

[Fargues and Adam)

[Fargues ct al.]

[Fikt'.S)

[Fikes and Kehler]

[Gomez)

[Hiz)

[KEE]

[Kiefer)

[Lehnert]

[Matwin et al.)

Cline, T.; Fong, W.; Rosenberg, S.: "An Expert Advisor for Photolithography". Procs., IJCAI-
85, pp. 411-413, 1985.

Fargucs, J.; Adam, J.P.: "KALIPSOS: A Text Processor for Knowledge Acquisition". Presented
at the IBM Europe Linguistic Seminar, Davos, Switzerland, 1984.

Fargucs, Jean; Landau, Marie-Claude; Dugourd, Anne; Catach, Laurent: "C;inceptual Graphs for
Semantics and Knowledge Processing". IBM Journal of Research and Development, Vol. 30, No.
I, January 1986.

Fikes, R.E.: "ODYSSEY: A Knowledge-Based Assistant". Artificial Intelligence, Vol. 16, No. 3,
1981.

Fikes, R.; Kehler, T.: "The Role of Frame-Based Representation in Reasoning".
Communications of the ACM, Vol. 28, No. 9, pp. 904-920, 1985.

Gomez, F.: "A Model of Comprehension of Elementary Scientific Texts". Procs. Theoretical
Approaches to Natural Language Understanding, Halifax, NS, 1985.

Hiz, H. (Editor): "Questions". Dordrecht, 1978.

The KEE™ (Version 2.1) Technical Documentation Set for Xerox (Interlisp-D) machines,
IntelliCorp™, Palo Alto, 1985:

0 Software Development System Reference Manual, Document Number 2.1-R-7
0 Software Development System Users Manual, Document Number 2.1-Ul- I
0 RuleSystem2 Reference Manual, Document Number 2.1-RR-l

Kiefer, F. (Editor): "Questions and Answers". Dordrecht, 1983.

Lehnert, W.: "The Process of Question Answering". Hillsdale, NJ, 1978.

Matwin, S.; Skuce, D.; Szpakowicz, S.: "Question-driven Approach to the Design of a Software
Advisor System". Department of Computer Science, University of Ottawa, working paper, 1985.

[Matwin & Queant] Matwin, S.; Queant, C.: "Knowledge Acquisition by Simple Learning in a QUIZ Programmer's

[Queant)

Apprentice". To appear in the Procs. of the 2nd International Conference on Computers and
Applications, IEEE Computer Society, Beijing, June 1987.

Queant, C.: "A QUIZ Apprentice". Department of Computer Science, University of Ottawa,
Thesis TR-86-13, 1986.

[QUINTUS]

[Schank]

[Skuce-83]

[Skuce-86]

[Skuce et al]

[Sowa]

[Sowa and Way]

HP3000
INTERNATIONAL CONFERENCE Af05/17
VIENNA 1987

The Quintus Prolog Technical Documentation Set (Version 6), Copyright© 1986, Quintus
Computer Systems Inc.:

0 Quintus Prolog Reference Manual
0 Quintus Prolog User's Guide
0 Quintus Prolog System Dependent Features Manual

Schank, R.: "Intelligent Advisory Systems". In: AI Business, P.H. Winston, K.A. Prendergast
(editors), Cambridge, 1984.

Skuce, D.: "The LESK Tutorial". TR-83-03, Department of Computer Science, University of
Ottawa, 1983.

Skuce, D.: "Natural Language Synthesis of a Database Reporting Language Using Commercial
Expert System Technology". Working paper, University of Ottawa, December, 1986.

Skuce, D.; Matwin, S.; Tauzovich, B.; Oppacher, F.; Szpakowicz, S.: "A Logic-Based
Knowledge Source System for Natural Language Documents". Data and Knowledge Engineering
1, North Holland Publishing, 1985, pp. 201-231.

Sowa, J .F.: "Conceptual Structures: Information Processing in Mind and Machine". Addison­
Wesley Publishing Co., Reading, MA, 1984.

Sowa, John F.; Way, Eileen C.: "Implementing a Semantic Interpreter Using Conceptual
Graphs". IBM Journal of Research and Development, Vol. 30, No. 1, January 1986.

[Szpakowicz et al] Szpakowicz, S.; Matwin, S.; Skuce, D.: "QUIZ Advisor: A Consultant for a Fourth Generation
Software Package". TR-86-02, Department of Computer Science, University of Ottawa, 1986.

[Tauzovich)

[Tauzovich-86]

[Touetal]

[Wilensky et all

[XEROX)

[Zarri]

Tauzovich, B.: "Representing Causal Relationships in an Expert Advisor for a Fourth Generation
Language". Ph.D. thesis (in progress). Department of Electrical Engineering, University of
Ottawa, 1986.

Tauzovich, B.: "Representation of Causalitys in an Expert Advisor". Working paper, University
of Ottawa, December, 1986.

Tou, F.N., Williams, M.D.; Fikes, R.E.; Henderson, D.A.; Malone, T.W.: "RABBIT: an
Intelligent Database Assistant". Procs. AAAI-84, Pittsburgh, 1984.

Wilensky, R., Arens, Y.; Chin, D.: "Talking to UNIX in English: an Overview of UC".
Communications of the ACM, Vol. 27, No. 6, pp.574-593, 1984.

The Interlisp-D Reference Manual, Xerox Corporation, Palo Alto, 1985.

Zarri, G .P.: "RES EDA: an Information Retrieval System Using Artificial Intelligence and
Knowledge-Representation Techniques". Research and Development in Information Retrieval,
Sixth Annual International SIGIR Conference, 1983.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

ABSTRACT.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

MACHINE LEARNING

By

David Price BSc

(VRS Software Ltd.)

A/0611

One of the most salient and most significant aspects of human Intelligence

is the ability to learn. However until recently learning has not been

noticeable in "Artificial" Intelligent sytems. This paper reviews the

progress that has been made in this field some of the problems

encountered and possible areas of use, dealing primarily with inductive

learning and its application in data analysis.

MANAGEMENT SUMMARY.

Machine Learning is a specific area in the field of Artificial

Intelligence. The techniques developed in this field can be applied

to all applications. The main goals of Machine Learning are to develop

ways of increasing the efficiency of machine through Learning and to

acquire knowledge in a usable way. This paper seeks to outline some

of those techniques.

HP3000
INTERNATIONAL CONFERENCE A/0612
VIENNA 1987

1.0 INTRODUCTIDN.

Machine Learning is just one of the fields of study within Artificial

Intelligence (AI). The study of AI is an attempt to discover ways of

making machines appear to perform like human beings, to make science

fiction, or at least some aspects of it science fact. Computers have

historically done those tasks which are repetitive and time consuming

but require no particular type of human skill. During this process large

amounts of data have been collected and stored in databases or files.

Machine Learning seeks to use this data to learn from.By automating

the process it becomes faster and depending on the accuracy of the'data

and the constraints imposed upon the system something new may be discovered

or at the very least rules are formalised in machine readable form,

rather than the vague human concepts that we may have.

2.0 AN INTRODUCTION TO MACHINE LEARNING

Artificial Intelligence seeks to give machines a level of intelligence

or processing capability, similar to that of humans. The subject has

been divided into areas of research which relate to physical and cognitive

behaviour.

a) Knowledge representation.

b) Problem solving.

c) Natural and Spoken Language.

d) Vision and Perception.

e) Le<!-rning.

f) Robotics.

Many of the above tasks are interdependant and have similar underJaying

techniques eg. a great deal of the research in the area of machine

learning is

or facts.

concerned with the representation of the initial knowledge

The goal of researchers in machine learning is to construct computers

or systems that learn. The first problem therefore ·is to establish what

is meant by learn and then to look at the problems inherent in machine

HP3000
INTERNAnONAL CONFERENCE A/06/3
VIENNA 1987

learning, some of the ways of dealing with these problems and finally

the areas in need of continued research.

There are two interpretations of 'learn' that have been used by

reseachers:

a) Performance Improvement,

b) Acquisition of Knowledge.

Associated with these interpretations are five main learning strategies:

a) Induct!ion.

b) Instruction.

c) Analogy.

d) Deduction.

e) Rote learning.

One of the most advanced area of study is in the field of Expert Systems

or Knowledge Representation where successful products have been produced

and are currently in use. Conversly, the field of Machine learning

is perhaps the area of least research, while being the most fundamental,

after all humans are born being able to do very little, but they learn

very quickly to walk, talk, solve problems etc., until after thirty

years or so of learning, when some of them are considered to be

experts.

Expert Systems rely on rules provided by a human expert which are

transformed by a Knowledge Engineer (an Expert System Programmer) into

a machine readable form. To gain knowledge (rulP.sJ from.more than one

expert has been

discrepancies are

shown to make expert

introduced which have

Engineer. Introducing the third person

systems less 'expert', because

been resolved by the Knowledge

through which all information

must be channeled creates inconsistencies. Machine learning seeks to

allow the machine to learn from these external sources rather than

be told by a Knowledge Engineer. Thus it can use the knowledge that

it knows to be accurate and discard or query that which is not, saving

time and money.

3.0 LEARNING AS PERFORMANCE IMPROVEMENT.

The key idea in performance improvement is efficiency. That is to say,

if a · problem solving program was put through an automated learning

process its performance would be more efficient.

HP3000
INTERNATIONAL CONFERENCE A/0614
VIENNA 1987

Efficiency itself is not new to DP professionals, but the means of

performance improvement will be. The first approach dealt with here

is improvement by moving along the store-v-compute

second will be improvement by search algorithms.

3.1 STORE-V-COMPUTE TRADE OFF.

trade off. The

Thi:s trade off is often domain specific. In some problem $Olvers the

computation of a solution is different for each input. While in others,

exactly the same procedure will be performed frequently. In these cases

it is worthwhile introducing memory into the problem. Each time a problem

is solved an ordered pair of values, representing the problem description

and a solution, is stored. This strategy is often called "caching"

or sometimes "memo-izing". The benefit of this approach is determined

by the frequency of encountering the same problem and the machine cost

of executing the problem solving algorithm. Some of the test cases are

fairly trivial but the applications in complicated domains should be

apparent.

One of the earliest learning systems was Samuel's (1959) checkers learning

program. It employed what has now become a standard alphabeta min max

search algorithm with a static evaluation function. To accelerate the

problem solving Samuel employed the Ro.te learning technique. This method

includes a mechanism for storing board positions as value pairs. Before

making a play the program compared the existing and previous situations.

Three main learning stratergies were used:

1. Playing against itself.

2. Playing against people.

3. Playing book games.

What is most interesting about Samuels work is the way in which he used

cache values to compute further cache values. This obviously increased

the efficiency of the problem solver. Almost all heuristic search programs

now use this last technique.

3.2 SEARCH ALGORITHMS.

Mostows BAR program (1983) is an heuristic learning program that seeks

to improve the search for solutions. It uses for its domain the game

HP3000
INTERNATIONAL CONFERENCE A/0615
VIENNA 1987

of HEARTS. The key point of learning is that portions of the solution

test can be "pushed" into the generator of all possible solutions, in

order to improve the efficiency of the problem solver. Partial so.lution

tests are stored to be used later. It operates by applying a series

of transformation rules to convert the initial problem solver into a

more efficient one. It uses means-end analysis to guide the

transformation process. The BAR program generates all possible solutions,

process it maintains a list of all paths under the at each point in

consideration and selects one of these paths to extend and then generates

all possible extensions. There are five main steps to the algorithm

where information from the solution test can be incorporated into the

path-extending heuristic search.

1. The initial sequence can be set to something other than

the null sequence.

2. As soon as each

3. The active paths

active path is created it can be tested.

can be ordered to selection criteria

before selecting the next path for extension.

4. Eliminate paths that cannot lead to solutions using an

extension test.

5. The extensions can be ordered to some selection criteria

before selection.

The final problem solver is more efficient than the initial exhaustive

search because only those parts which are likely to lead to a solution

are generated.

4.0 ACQUIRING KNOWLEDGE AS MEANS OF LEARNING.

The most common ways of giving computers knowledge are through programming,

data bases, knowledge bases etc. Another way is to generalize from examples

that is to infer rules from facts (training instances). This is ussually

called inductive learning.

A training instance is a description of an event with an indication

whether it is a desired concept. For example, in poker we have

" (5, hearts) , (7, hearts) , (9, hearts) , (jack, hearts) , (queen, hearts) ,

flush."

is a positive training instance.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

"(5,hearts), (7 ,clubs), (9 ,spades), (jack,hearts, (queen,hearts),

not flush."

is a negative instance.

A/06/6

It is not always necess.ary to specify a particular desired result as

in this example

(rainfall,sunshine,temperature,pressure,date)

day is (rainfall 0.5) and (Sunshine 6)

where nice

where the values of the fields indicate a positive or negative training

example. It is necessary to set up plausability criteria for deciding

which are better rules.

Using these three specifications, the training instances, possible

concepts, and plausibility criteria, the inductive learning system

can employ a generate-and-test algorithm. It is better to use the data

(training instances) to guide the search rather than use a resource

consuming, exhaustive search.

4.1 INFERENCE BASED THEORY OF LEARNING.

Human Knowledge is not static. New Knowledge is added and stored away

and old Knowledge is modified or discarded. We deal with contradictions

by either repairing established knowledge to account for the apparent

contradiction or replacing the knowledge considering i.t is to be false.

These two approaches can be seen as either revolutionary or evolutionary

and be used when deciding on a strateg&r for Machine Learning.

4.2 REVOLUTIONARY LEARNING.

Revolutionary learning is fundamentally the disgaurding of a piece of

knowledge when it is shown to be inconsistent and the generation of a

new piece of knowledge. This approach can bring about new and significantly

different knowledge or that which is closely related. That is to say,

two different formulations

Einstein discovered what

fact a reformulation of

different premise.

resulting in similar knowledge. For example

he considered to be a new theory but was in

Newton's second law of thermodynamics using

HP3000
INTERNATIONAL CONFERENCE A/0617
VIENNA 1987

This theory of learning is also relatively easy to implement on a computer

system because no real familiarity with the current body of knowledge

is necessary nor is there any requirement for sophisticated knowledge

refinement mechanisms. It is important to start from first principles

using original

is one of the

elementary set

facts

most

theory

and observations. EURISKO which learns by discovery

significant Learning programs which discovered

independently from previous mathematical work.

However, this approach has proved to be of general academic interest

but often time consuming and inefficient. It is often best suited to

limited domains such as mathematical formulae.

4.3 EVOLUTIONARY LEARNING.

Evolutionary learning systems take advantage of knowledge structures

which are correct. It would appear to be far more efficient and

advantageous to increase existing knowledge by filling in the gaps and

modifying that knowledge. This approach can be roughly divided into

two main methods, premise-oriented and context-oriented.

4.3.1 PREMISE-ORIENTED METHOD.

This can best be described as "incrementally refining the main body

of knowledge". This is the way in which most humans maintain their

knowledge base, They make use of what they already know in assessing

a new piece of information and revise their opinion accordingly, rather

than reformulate all their ideas each time something changes. There

seem some obvious reasons for this

a) The world about us is continually changing and we act

accordingly.

b) Information is given sequentially and we relate it

to past knowledge.

c) Humans do not have a automatic delete function - we

may forget but there is no gaurantee. We ussually use

incorrect as well as correct knowledge.

HP3000
INTERNATIONAL CONFERENCE A/0618
VIENNA 1987

d} Memory size determines that we tend to remember· the

facts that we use most - we rarely forget how to speak

or read.

When applying these factors to machines we are not as restricted. It

is easy to remove something from a machines memory but perhaps we should

not do so. It would be better instead to allow the machine to discard

information that is not used in favour of new knowledge. It can also

be argued that the availability. of vast memories and fast retrieval

from strange devices means that there is not such a memory restriction,

however it would not be practical to devote large expensive machines

to a single application. Theref9re good memory management should be

applied. This, of course, can bring into question the completeness of

the knowledge.

Perhaps the most succesful example of Premise-oriented learning is

Michalski's AQ algorithm (the quasi-minimal algorithm}. The algorithm

generates a set of rules that describes all positive learning events

a 'star' each of whose elements can be conjunctive concepts (simple

concepts}. The problem can be formulated as

'Given are a set of rules, a set of newly acquired facts

(new learning events}, and a set of previous facts from

which the rules were induced (old learning events}. Then,

suppose that some of the learning events contradict the rules.

The goal is to transform the original set of rules to a new

set, such that the new set is complete and consistant with

all the new and old events and should be the most preferred

of all such sets•.

As simple a way of looking at this is to break it down into four

basic steps

l} select an initial set of hypotheses

2} generate new hypotheses by generalizing existing ones

3} select the best hypotheses generated in step 2

4} review step 3 to see if the iteration should continue

(if yes go to 1)

HP3000
INTERNATIONAL CONFERENCE A/0619
VIENNA 1987

The key point is that the machine decides by some given selection criteria

what is the best rules to keep.

Tests completed on this algorithm showed this method to be between

5 and 100 times faster than the non-incremental method. The complexity

and the performance of rules learned were on average only slightly worse

than those learned in one step. These tests involved the problem domains

of chess end games, plant disease diagnosis and insect classification.

4.3.2 CONTEXT-ORIENTED METHOD.

This method is perhaps most relevant for the domains in which we tend

to build Expert Systems, in solving complex practical problems for which

there are imperfect rules. In this method the cases for when a given

rule does not work are gathered together and treated as exceptions,

so the production rules

if

then

can be altered to

if

then

unless

condition

decision

premise

decision

censor

These censored production rules state conditions which, when satisfied,

state the reverse of the decision.

Logically equivalent to this is

if condition

then decision

provided not censor

These rules can easily be altered each time a new piece of information

(knowledge)is acquired

If the ignition key is turned

the the car starts

Thia is discovered, say 20 times, as the driver discovers every work

<hay for a month and is altered to

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

If the ignition key is turned

then the car starts

A/06110

unless the petrol tank is empty or the battery is dead

which the system learns one day when the driver is late for work. The

evidence supports ti.is way of declaring the rule because the car

normally starts.

5.0 CONCLUSION.

This paper has looked at some of the theories of Machine Learning

but we have omitted discussion in other important areas, including learning

of grammers, functions, and procedures from examples and learning from

unclassified data(i.e. Clustering). The field of Machine Learning

cannot be dealt with in one paper. What has been attempted is an over

view of some of the approaches to learning.

In conclusion I will try to outline uses for Machine Learning. These

techniques seek to improve on rule-based systems. They can be used to

generate rules for Expert Systems or any other rule-based.application. The

techniques can be used to improve existing applications. The main idea

is to solve problems and therefore the domains are not restricted. The

most frequent use for Machine Learning has been in the medical field,

assisting in diagnosis and research. Machines tend to learn more rapidly

than humans (they do not get tired) and can process more information

nor do they forget. In most industries there are problems to be solved

and automating this process can save time and money.

Machine Learning Systems can be used to generate rules for a rule based

system, such as an Expert System. Human Users· are often reluctant to

state precisely how they make their decisions. The decision making

process will often be explained away as experience, a 'gut feeling'

or intuition. If the data available to the expert is cullected then

the computer can learn what the rules for a target expression is. Some

experts have exceeded the learning process aud therefore do not know

how to start explaining their reasoning process, presented with machine

generated rules they can assess them and use them as a starting point.

HP3000
INTERNATIONAL CONFERENCE A/06111
VIENNA 1987

BIBLIOGRAPHY.

Diettrich, T.G.,

Forsyth, R.S.,

Michalski, R.S.,

Michalski, R.S.,

Mitchell, T.M.,

Mostow, D.J.,

Machine Learning: Problems and Methods.

Department of Computer Science, Oregon State

University. 1985.

Machine Learning Strategies. (in Expert

Systems. ed. R. Forsyth, Chapman Hall 1984.)

On the Quasi-minimal solution of the General

Covering Problem, Fifth International

Symposium on Informat.ion Processing (fcip 69),

Vol A3, Switching Circuits, Bled, Yugoslavia 1969.

Carbonell, J., Mitchell, T.M., Machine Learning:

An Artificial Intelligence Approach Volumes I & II.

(1983 & 1986).

Learning and Problem Solving, Proceedings of

IJCAI 1983.

Some studies im machine learning.using the game of

checkers, IBM. Journal of Research and Development,

No. 3 1959.

Barr, A., Feigenbaum, E.A. The Handbook of Artificial Intelligence Vol 1.

Cohen, P.R., Feigenbaum, E.A., The Handbook of Artificial Inteligence

Vol 3.

BIOGRAPHICAL NOTES.

David Price is currently a consultant with VRS Consulting LTD.,

involved with system development and support for clients, with a

particulair emphasis on AI. He has a degree in Computer Science.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

HP3000
INTERNATIONAL CONFERENCE AL0111
VIENNA 1987

THE ANALYST WORKBENCH REVOLUTION

ABSTRACT

The introduction of 4GLs has increased programmer

productivity by a factor of 300% to 400%. This has resulted

in increased pressure on analysts to produce accurate

functional specifications more quickly.

Structured analysis techniques are slowly improving the

quality of specification, however the lack of automated tools

has prevented their full implementation. Such techniques

require an analyst to draw complex diagrams such as data flow

diagrams and data models (entity models). Without a

workbench the drudgery involved in manually maintaining these

diagrams is a headache. In addition a key aspect of

structured methods is to prevent inconsistencies and

omissions occurring at the various levels of analysis. A

good analyst workbench will automatically highlight these

inconsistencies, which has previously been the responsibility

of the fallible analyst.

The majority of the 20 available analyst workbenches run on

IBM AT compatibles, including the HP VECTRA. EXCELERATOR and

IEW which at the moment can be considered as two of the big

three both run on the VECTRA.

The true potential with the HP environment is to link the

analyst workbench to HP's System Dictionary. This will allow

information to be controlled on a company wide basis and very

importantly provide the input to program development and

database generation. Their cost is high, but their arrival

heralds a great opportunity for the analyst to throw away his

paper and quill.

JIM FARROW and STEPHEN PRICE

DCE INFORMATION CONSULTANCY

Chester House,

Chertsey Road,

Woking, GU21 5BJ.

Prinsengracht 747-751,

1017 JX Amsterdam,

The Netherlands

HP3000
INTERNATIONAL CONFERENCE AL01/2
VIENNA 1987

CONTENTS

1) Why the need for Methods?
1.1 To highlight problems quickly
1.2 Provide a means of communication
1.3 Proof of progress

2) What are Structured Methods?
2.1 The system development cycle
2.2 Diagrammatic deliverables

3) What is an Analyst workbench and how does it help?

3.1 What should an Analyst Workbench contain?
3.2 What are the benefits?

3.3 What do I need and how much is going

3.4 The Future for Analyst Workbenches

4) Analyst Workbenches and the HP environment
4.1 System Dictionary

to cost?

4.2 Interfacing the Analyst Workbench to System Dictionary

5) Conclusion

HP3000
INTERNA IONAL CONFi RENCE AL01/3
VIENNA 1987

1) Why the Need for Methods

1.1 To Highlight Problems Quickly

As the development cycle precedes from analysis through design to

implementation, two phenomena occur. Firstly, the percentage of

error in estimation of total project cost decreases. Secondly, the

cost of fixing errors increases.

It is therefore vital that the development process is structured to

allow critical management, user and technical decisions to be taken

at the right time (i.e. early!)

1.2 To Provide a Means of Communication

As the number of people on a project increases, the amount of

productive time per day per person decreases dramatically.

Members of the team are spending more time trying to communicate.

Checkpoint facilities within a methodology provide a common means

of communication.

1.3 Proof of Progress

DP management is under constant pressure to show results, without

a methodology all we can do is push for early system completion,

thus instead of the project being time shared: 30% Analysis, 20%

Design, 40% Implementation and 10% Maintenance.

We save time on the analysis, resulting in: 25% Analysis, Design

and Implementation and 75% Maintenance.

But with a methodology we can prove our progress at each step by

producing checkpoint documents.

HP3000
INTERNATIONAL CONFERENCE AL01/4
VIENNA 1987

2. What are Structured Methods
A methodology is an integrated set of procedures which provide a
complete framework within which a given task can be performed.
A methodology should enable:

highlight problems quickly
means of communication
proof of progress

A methodology should provide:
guidelines, not rules
top-down approach
diagrammatic representation
standards for use and documentation
step-by-step procedures

2.1 The System Development Cycle
Figure l shows how the different parts of a methodology are linked
together.

There are three major types of procedure. Firstly Data, which
needs to be analysed and modelled. Secondly Activities, again
needing to be analysed and modelled.
bringing Data and Activities together.

Finally, a method for

FIGURE 1

LOGICJl.L

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

THE SYSTE.¥.S DEVELOPMENT CYCLE (SOC)

CONCEPTUAL

ACCESS PATH

ANALYSIS

DETAILED

ACCESS PATH

ANALYSIS

ALOt/5

HP3000
INTERNATIONAL CONFERENCE AL0116
VIENNA 1987

Objectives of the Systems Development eycle Parts

Business Analysis

Data Analysis

Activity Analysis

Data Usage Analysis

Conceptual Access Path
Analysis

Logical Data Structure
Design

Application System
Design

Physical DQ Design

Detailed Access Path
Analysis

To define the system aims and scope of
analysis.

To analyse the data resources.

To define the user's information handling
processes.

To cross-ref"erence and check out the
consistency of DA and AA and summarise
the access requirements.

To determine how the activities/processes
use the data.

To map the data model to the logical data
structure taking into account any
database structuring rules.

To translate the user requirements into a
technical application system design.

To translate the logical database into an
optimised, workable physical database.

To determine how the processes use the

logical database.

HP3000
INTERNATIONAL CONFERENCE AL01n
VIENNA 1987

2.2 Diagrammatic Deliverables

There are four key diagrammatic deliverables that result from

performing analysis.

i) the data model (or entity model) which records the way in

which the business wishes to group i terns of data such that

any person or machine, responsible for performing a. business

transaction, will have ready access to all necessary

information;

ii) the activity decomposition diagram, a structure diagram

showing activities performed within the business, decomposed

(broken down) into a number of levels showing greater detail;

iii) the data flow diagram, which shows the dependency of one

activity on another for data. It identifies the sources and

recipients of the business data and the cause or triggering

event that results in the activity being performed;

iv) the access path diagram, which shows how the activity

navigates the data model and quantifies the retrieval process

in terms of number executions per time period.

3) What is an Analyst Workbench and how does it help?

An Analyst Workbench (AWB) is a tool that aims to increase the

analysts productivity and accuracy.

3.1 What should an Analyst Workbench contain?

In order to fulfil the above aims an AWB must provide the

following facilities: high resolution graphics for modelling; a

data dictionary for definition storage and cross-referencing;

text processing, including keyword retrieval for documentation

generation.

All AWB vary in their levels of functionality and richness. The

question is to what degree does it support each function.

DATA MODELLING (Fig 2)

With regard to data modelling a "rich" or powerful data model

should allow for:

* entities including subtypes

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

* relationships, displaying the following features:
many-to-many, one-to-many and one-to-one
optional, mandatory

Fig. 2

involution
exclusivity
identified by

DATA MODEL

Customer j----- buys from ~~---t Salesman

request
for

Order 11----- for item ~---~

______ _,

...
'

ALOt/B

supplied
by

I made up
, _,, of

stored
at

Supplier Depot

ACTIVITY DECOMPOSITION
The activity decomposition diagram, besides allowing for
activities, should support the recognition of common activities,
activity repetition, optionality and the event trigger. (Fig 3)
The data flow diagram (DFD) needs to support activities both
internal and external to the study scope, plus data flows, data
stores, event triggers, sources and sinks. (Fig 4)
At present no AWB supports access path diagrams. (Fig 5)
Fig 3 ACTIVITY DECOMPOSITION)

Process
Customer
Retail

Process
order

Order
Processing

Vakudate
order

Check
Schedules

Ship
order

Inform
Accounts

Make up
Delivery

HP3000
INTERNATIONAL CONFERENCE AL01/9
VIENNA 1987

Fig 4 DATA FLOW

Fig 5

I>

Customer
details

Customer

v
v

Order

Supplier

MANIPULATION

\--------+-,. Delivery
note

ACCESS PATHSA

<I
Product

How easy is it to manipulate the diagrams and add detail? For

example, can you move from your data model into the data

dictionary to describe entities and their attributes? Can the AWB

support the explosion or implosion from one level of detail to the

next? This applies to all the diagramming techniques, for

example, taking a global data model and developing it in detail or

exploding a first level DFD into the appropriate number of level
two DFDs.

HP3000
INTERNATIONAL CONFERENCE AL01/10
VIENNA 1987

CONSISTENCY CHECKING

How well integrated are the functions. The techniques, if used in

conjunction, should cross validate each other, as indicated in

Figure 6. In the case of activity decomposition diagrams the

activity should be described in the appropriate level of DFD. If

an activity is added to a DFD is it automatically added to the

decomposition diagram? The DFD uses data stores and data flows

which should correlate to entities and attributes recognised by

data analysis. If the package does attempt to maintain

consistency, what technique is adopted? On-line verification

leads to a tighter design, but requires much more processing power

and time, whilst after-the-event reporting is less likely to be

actioned and water-tight. For consistency checking several

products have used PROLOG to set the rules. For flexibility the

customer should be able to switch the rule checking facility on or

off to suit his particular requirements.

SHARING DATA

Import/Export facilities are desirable, definitions and models

from other projects to be downloaded/uploaded as required from a

central encyclopedia, but with strict access and update rules.

3.2 What are the Benefits?

The traditional pencil and paper approach is marred firstly by the

drudgery involved in manually updating the models. Secondly a

manually kept dictionary of definitions relies on the all too

fallible skills of the analyst to spot inconsistencies, duplicate

names and omissions. Thirdly it is difficult to make the latest

version of definitions and models instantly available to other

analysts, particularly those based in other offices.

The DCE Information Management Consultancy Group has now used AWBs

for about 50 projects, and they clearly do reduce the drudgery of

redrawing models and updating definitions.

The AWB can be used to introduce a uniformity of standards within

a company through use of a common product and training people.

The results of individual projects can then be consolidated to

obtain knowledge at the company level. This will take time but

wi 11 result in better "integrated" sytstems. Many AWBs can

generate standard reports which could be included within a

functional specification. Some products, notably Excelerator, are

HP3000
INTERNATIONA CONFERENCE
VIENNA 1987

LJ---
, ~---'

~J ,_

'

' \
'

r-'

~

I

r---·--

..__

F----
1
I

~ _,_

-
.--

AL01h1

D

HP3000
INTERNA TJONAL CONFERENCE AL01/12
VIENNA 1987

close to being able to generate the complete specification to a

professional standard. Such a capability is again a step forward

as it will aid conformity of standards between projects.

3.3 What do AWB's need and how much will it cost?

Most of the 20 or so AWB run on IBM-PC/AT compatibles (including

the HP VECTRA) • Excelerator and IEW, which at the moment can be

considered two of the big three, both run on the HP VECTRA.

The hardware to support most workbenches is surprisingly powerful

and expensive. Typically a PC/AT with 640K to 2M bytes of memory,

20M bytes or more of disc storage, high resolution screen,

possibly enhanced colour display, a mouse, plus graphics memory

expansion card, and high resolution printer. Representing 5,000

or more for hardware alone.

The cost of the AWB for the micro based products is in a range of

between 2,000 and 7,000.

3.4 The Future for Analyst Workbenches

Firstly there will be tighter integration between workbenches and

Application Development tools. Initially this will take the form

of interfaces, such as currently exist between Excelerator and

ICL's ODS dictionary.

Later, the AWB vendors will try to take over the design and

construction phases from present Application Development tools by

offering prototyping of screens and reports, transaction networks,

dialogue/exchange design, and database design.

Conversely, the Application Development Tool designers as

represented by, say, Cullinets Ads-Online, will build in front-end

workbenches to their own products to squeeze out standalone

models.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

4. Analyst Workbenches in the HP Environment

WHERE DOES THE AWB FIT IN?

MPE) IMAGE
KSAM) FILES

VPLVS
FORMS
FILES

DOCUMENTATION UTILITIES

UTILITIES

DOCUMENTATION UTILITIES

OTHER COBOL
STRUCTURES COPYLIBS

HP3000

PC

FIGURE 7

AL01/13

DICTIONARY/V

UTILITIES

OTHER
PRODUCTS
(PROGRAMMATIC
ACCESS)

RUN
TIME

LINK

- - - - -1
jAWB/
1DICTIONARY I
1INTERFACE I
,SOFTWARE I

PC

In order to reap all the benefits from Analyst Workbenches it is
necessary to integrate them into your system. (See Figture 7)

The key to successful integration is the HP System Dictionary.

HP3000
INTERNATIONAL CONFERENCE AL01/14
VIENNA 1987

4.1 System Dictionary

The Hewlett Packard System Dictionary is seen as a key product

over the forthcoming years for application development. It is

described as being 'extensible'. This means that not only can it

be used to record information required for program development but

it can also be structured to capture the results of analysis. The

first stage involves structuring the dictionary in such a way as

to accept the results of data analysis. In essence this requires

the recording of entities, relationships between entities and

attributes, that define the entity.

Data Dictionary Structure

A standard dictionary structure requires to be built at the

outset. The structure, shown in Figure 8, is as follows.

Domains allow for the different business views to be recorded.

The COMMON domain will hold the CONCEPTUAL and LOGICAL views.

These views are the 'perfect' conceptual world and how that

conceptual model will be mapped to a logical DBMS (database

management system). This provides the view of where the company

wishes to get to. Additional domains are used to describe the

current or live situation. This allows a picture to be built

showing where the company is, where it wants to be and thus allow

for the development of a migration plan.

Structure within each Domain

Within each Domain a top down approach will be taken. At the

highest level is the Subject Data Area (SDA) which is a high level

grouping of entities e.g. FINANCE, CUSTOMER AGREEMENT and THIRD

PARTY. The grouping of entities is open to individual

interpretation, is Finance and Accounts one or two SDAs, which SDA

should the entity VAT appear in?

Initially within the common domain each SDA will contain a number

of 'conceptual' entities, as time progresses these ' conceptual '

entities will map to 'logical' entities.

Both conceptual and logical entities are described by 'data

analysis attributes'. The description of logical and conceptual

data analysis attributes are primarily the same. Therefore to

prevent having to replicate these descriptions both types of

entity are allowed to share the same occurrence of data analysis

attributes.

HP3000
INTERNATIONAL CONFERENCE AL01/15
VIENNA 1987

Figure 8 System Dictionary Structure

IS Account (OBA Manager)

/ ""'--------------~ utilities pub .2!£_

DOMAIN

Dept A.
(real world)

SD Al

entities

(not
agreed

Attributes

SDAl

contains SYSDIC

Common
(Conceptual)

SDA2

contains
domains

Dept B
(real world}

contain subject
data areas

SDA3

/~ain~ \\
conceptual entities logical entities

is defined
by

Data Analysis Attributes

2

HP3000
INTERNAnONAL CONFERENCE AL01h6
VIENNA 1987

4.2 Interfacing the Analyst Workbench to System Dictionary
In the last section we examined a way for allowing HP System
Dictionary to capture analysis data. The next step is to have the
dictionary populated from the validated dictionary of the Analyst
Workbench.
As the structure of the dictionary in the Analyst Workbench will
almost certainly be different to that of System Dictionary, it is
necessary to have additional software. (See Figure 3).
The interface software would probably be a simple conversion of a
subset of the workbench dictionary into System Dictionary format.
Although there is no reason why the whole Analyst Workbench could
not be catered for, using System Dictionaries extensibility~
Once the System Dictionary has become mature it will feed the new
individual projects, who will have the Analyst Workbench and
populated dictionary to work with.

5) Conclusion

Structured methods allow the analyst to highlight problems
quickly, provide a means of communication, and provide for proof
of progress.

The Analyst Workbench imposes a standard methodology and gives the
analyst productivity gains by removing the drudgery.
The Analyst Workbench also enables the analyst to provide better
quality deliverables, by automatic cross validation techniques.
The HP System Dictionary provides an ideal point to link the
Analyst Workbench into the HP environment.
Analyst ~orkbenches are not cheap, but the benefits to be gained
now, and in the future, are well worth the outlay. Their effect
on the system development life cycle will be more dramatic than
that of 4GLs.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

System Development and Prototyping Using 4GL's
- The Changing Role of the Programmer -

Jurgen Fritz
JF Management-
und DV-Beratung

Lanzelhohl 34

D-6500 Mainz l

AL0211

INTRODUCTION

The Challenge

We may assume that there is no controversy. It is easily to
define what the challenge is:

We

We have to provide the application software that the
users need, when they need it.

will also agree in the review of our real DP world:

Users don't have the systems they need (or want) and what
they got came months and years later than wanted.

There feeling is always to be behind the nice ideas they
heard about.Ads of all the computer vendors explain them the
great chances of computing.

We EDP-Professionals will also agree in the permanently growth of
the computer technology. The performance / price relationship is
improving from week to week.

When the situation of users in our organizations is not as nice
as we want to have it and we can't get it over years, then we
might assume that there is something else which must change.

HP3000
INTERNATIONAL CONFERENCE AL0212
VIENNA 1987

System Development Productivity

Most EDP-managers understood during the last years that they have
to increase the productivity of their development staff. Many of
them found that a 4GL is a realistic way to overcome the backlog
problem.

But not all of those intelligent managers found after reviewing
the year the results which they expected. Some of them thought
having chosen the wrong 4GL. May be!?!

Why do we need to improve productivity?

- There is a significant visible and an enormous invisible
backlog.

- We can't longer live with the reality of the growth in instal­
lation of computer systems and the shortage of experienced,
trained professionals.

- Todays development methodologies that of hand in hand with
traditional or 3rd generation software tools will just not
give us the productivity we need to meet our challenge.

HP3000
INTERNATIONAL CONFERENCE AL02/3
VIENNA 1987

Traditional Methodology

What we followed for a long period of time is a well known
concept of development phases which are characterized by:

- Each phase has a certain goal to reach

- One phase is clearly separated from the former an the next
one by well defined criteria.

- Different individuals may be responsible for the different
phases.

What are those phases?

1. Feasibility Study

- The benefits of the endeavor are evaluated and a
project is given the go ahead.

2. Requirements Definition

- Here the functionality of the system
structures are clearly and specifically
users review this specification documents.

3. System Design

and the data
defined. The

- The users and the DP professionals meet regularly to
redefine the specs and finally, at long last the specs
are signed off so programming can begin.

4. Programming and Testing

- Here those programmers are off writing and testing
programs to meet the specs and before you can say 'Jack
Robinson', voila, the system is done.

5. Implementation

- Now the system is sent out with flags and a brass band
blowing to a burst of user applause and an office full
of excited and appreciative users.

6. Production

••• everyone lives happily every after.

llf
REAL TRADITIONAL DEVELOPMENT

Now seriously friends!

How many of you find this conversation well known:

11But I'm sure that is what you asked for".

AL02/4

"I kno'W' 'W'hat I asked for but it's not what I wanted".

That is really the key to the inherent limitation of traditio­
nal development methodologies.

It sums up why we cannot continue to develop using todays
methodologies and tools to meet our challenge.

It is a known fact that depending on the source, 80 to 95 % of
the maintenance work in applications is due to errors in requi­
rements definition. Harry Sneed says it with other words: 1180 %
of the requirement definition is done during the debugging
phase". Remember that is the phase of development where users
say what they want, the DP professional interprets that and
writes down what he thought the user wanted and then the users
signed off on what they thought the DP professional meant about
what he said about the user wanted.

For every dollar (or shilling) spent to correct an error during
requirements definition by meeting again, clarifying, signing off
etc.it costs 75 dollars (or shillings) to correct it if it re­
mains undetected until implementation and acceptance testing.

The bottom line is that 60 - 80 t of the maintenance that is
done once a system has been installed is done to correct
errors that occurred in requirements definition.

What are we doing when we are maintaining the system for these
problems?

We are not developing new systems, we are giving the backlog
unnecessary opportunity to build up.

HP3000
INTERNATIONAL CONFERENCE AL0215
VIENNA 1987

Why Errors?

Why do errors occur in defining requirements?

1. First of all it is difficult for users to really visualize
exactly what they want.

2. It is often difficult for us to identify all users who will
either directly or indirectly be affected by a new system.
Those users to often disagree on how things should look.

You see in order to be successful with traditional development
we assume that the user knows what he/she wa~ts and is able to
describe this in a clear manner.

So the most fundamental aspect of successful system development
is Effective Communication.

Assumes

Traditional development methode assumes that users

1. Know what they want
2. Communication is working effectively
3. Requirements are static

Traditional development methode is plagued by

1. Long development times
2. High costs and time for maintenance
3. The build up for backlog

As more computers are installed and the number of
fessionals per installation degreases we need to
drastically different.

trained pro­
do something

HP3000
INTERNATIONAL CONFERENCE AL02/6
VIENNA 1987

4GL's

They are known as languages which ensure to give results in one­
tenth the time of COBOL.

I hope we agree that

"Productivity not a case of simply running fast, but more
importantly, ensure that you are heading in the right direction".

Because using a new tool does not automatically mean that
the answers will be more correct, it just means you'll make the
same mistakes faster (and see them sooner!).

Prototyping

Prototyping is not a new concept. It is an accepted methodology
in engineering, manufacturing and construction.

In the text "In Search of Excellence" the authors identify that
the first ingredient in a receipt for success is

"rather than have 150 engineers working on a single project
which has a planned completion time of 15 months - engineers
are split into groups of 5 to 25 people who work closely with
clients to develop prototypes in a matter of weeks. The
unsuccessful ideas are discarded, the successful ones are
implemented".

So then the task at hand is to apply these proven ideas
and concepts to the development of application software.

In the "Search of Excellence" example for company success we
had the engineer and the customer.

For a software development projects success we have the develo­
per and the user.

So, we begin to build the idea of prototyping by identifying that
key players in this new methodology are the user and the deve­
loper.

Now, so far it doesn't appear all that different from tradition­
al methodology. If we examine the example a little further we
see that it's not just who the key players are that important but
how they play with each other.

"working closely to develop ••. unsuccessful ideas an
discarded, successful ones are implemented".

HP3000
INTERNATIONAL CONFERENCE AL0217
VIENNA 1987

so, successful prototyping depends in close cooperation between
the user and the developer.

The user and developer work closely to go from a first functioning
version of the application that exhibitG all essential features to
a final product that meets the needs of the user.

Simple

It all sounds so simple. Why aren't all DP shops that are using
4GL's embracing this methodology called prototyping?

I think it may have something to do with limited liability.

In traditional development the application is defined (the feasi­
bility study), the formal specs are signed off and the programmer
codes and tests until the programs meet the specs. At this point
if all went well we have success. The specs are the yardstick for
measurement and they are static and unchanging.

Hence limited liability if you've met the specs you have done job
regardless of the appropriatress of the finished product.

It is often very difficult to adjust to a new mentality. With
prototyping an application is continually re-developed and really
the job is never finished.

It is a dynamic process of growth and change.
a fixed unchanging definition of the system
progress against.

How Do We Get

What is it the prototyping really gives us?

There is no longer
to measure your

The opportunity to reduce the probability of errors in the requi­
rements definition. The prototype itself represents the specifi­
cations.

The user sees the system and is now much more capable of deciding
whether it is really what was wanted.

HP3000
INTERNATIONAL CONFERENCE AL02/8
VIENNA 1987

How Exactly Prototyping Occurs

Now how does all this happen anyway.

The easiest way to describe the prototyping process is to review
the tasks that must be performed.

Users and developers meet to discuss fundamental tasks of the
application.

Questions like

- What information do we need to collect?
- What info appears on reports?
- What transactions need to be performed?

"The very basics"

Developer builds from this information the first prototype. It
will exhibit all essential features: menus, screens, reports etc.
Developer produces documentation (online help!) so that user can
systematically evaluate prototype.

User then systematically with document, reviews and evaluates the
prototype.

Developer revises the prototype, adds missing essential features
and begins firming up database design and logic.

The last three steps are repeated with the key being timeliners.
Each repetition will further solidify the database design and the
required logic.

With this methodology we are talking about an iterative process
that starts as a tool to create a visual representation of users
requirements, continues to confirm the feasibility of the appli­
cation and finally evolves to a state where in fact it is a bona
fide production system.

So there we go, the answer to all our problems!

Not so fast!

HP3000
INTERNATIONAL CONFERENCE AL02/9
VIENNA 1987

When Not To Use

There are without a doubt situations where it is wrong to utilize
4th generation tools and the prototyping methodology:

1. When there is lack of commitment

That is, when there is not commitment from management to
educate the users in their new, integral role 'in software
development.

2. Also lack of commitment from DP professionals. When they are
unwilling or their environment makes them unable to spend
the time developing their skills in the 4GL itself and the
prototyping concept.

3. When a solution already exists.

Prototyping should not be viewed as a license to re-invent the
wheel. It is just a counter productive exercise.

To Consider

If we want to experience the benefits of prototyping an 4GL
development tools there are a few things we should consider.

1. Be prepares to deal with the issue of deciding when a system
is finished enough to go live.

2. Be prepared to deal with more integral role of users and the
greater communication required between users and DP.

3. Be prepared with the changing role of the analyst and the
programmer.

Nice,
to say.

isn't it? Three times I asked you to "be prepared". Easy
Also easy to do?

I think to be really successful we have to take into considera­
tion another point.

All these "be prepared" must two sources:

1. Change your mind about your and the users role.

2. Sit down and learn (now together with your friend the user).

HP3000
INTERNATIONAL CONFERENCE AL02110
VIENNA 1987

Programmers typically are technically oriented people. They are
working 8 hours per day (and often longer) with the computer. Now
the demand comes up to work primarily with people instead of
technique. We have to accept that this is a change which might be
very hard to understand and to realize for some of us.

There has a process of training to be set up which is more than
just learning new keywords and syntax. It is a process of jumping
in personally and to give up the one or other prejudfce about a
methodology I haven't heard about before and more and mainly
about the people outside my well known DP world.

The programmer has to understand that his chance to meet the
challenge and to increase his personal influence is only realis­
tic if he changes from the programmer (working with the computer
on programs) to a consultant (working with users (often with
managers) on solutions).

The individual who doesn't see this changing role can't have the
success which is normally concerned with the new software (4GL)
and the new methodology (prototyping).

But those who take the chance and keep this triangle
will see a quite new career path opened and another
satisfaction during their 8 or more hours job.

balanced
level of

HP3000
INTERNATIONAL CONFERENCE AL0311
VIENNA 1987

Report Generation using a Visual Programming Interface

Tim Dudley
Cognos Incorporated

3755 Riverside Drive
Ottawa, Ontario

KlG 3N3
CANADA

(613) 738-1440

Command language interfaces are not always the most appropriate tool at the initial

stages of report design. A loosely constrained graphical notation can be much more
useful. Visual programming techniques introduced on the Xerox Star™, and
popularized by the Apple Lisa TM and the Macintosh TM, have now made the use
of such a graphical notation much more feasible. Also, the direct manipulation
ICChniques described by Schneiderman are now viable because of the wide-spread
availability of bit-mapped graphics screens and pointing devices such as the mouse.

This paper briefly discusses visual programming concepts, and then describes the
implementation of a visual programming interface (VPI) for a 4GL report writer.
The basis for the design is an object-action syntax. A set of icons was designed
which represent atomic report entities, and a graphic editor built to manipulate
these entities into a report structure. Attribute sheets associated with each of the
report entities allow definition of the report entities to the data dictionary. A menu
bar controls menus of all possible actions to be performed on the objects. A

facility to switch easily between the graphical and textual representation of the
report is provided, with direct manipulation editing available in both
representations. Modifications made in one representation are automatically
reflected in the other.

The combination of the VPI with a 4GL makes the design and modification of
reports remarkably straightforward, and suitable both for end users and application
programmers.

Introduction:

In late 1984 and early 1985, Cognos Inc. was involved in a consulting contract with the Ice Branch of
Environment Canada, to produce a conceptual design, functional specification, hardware-software
specification, and detailed implementation plan for a system which was to archive all available
information on sea and lake ice, and iceberg conditions, in Canadian and adjacent waters [Dudley 86].
Two constraints had a considerable impact on the approach that was taken in the design of the system:
only two people were available to produce the work, and the work was to be done over an elapsed
time of four months, including the Christmas and New Years holidays. The limited resources and
timeframe forced us to rely primarily on computer-generated diagrams, made up from a minimum
closed set of icons (which we designed), as the basis for the work. We simply didn't have time to
produce a textual specification. We found that our design approach was completely altered as a
result. In the process of cleaning up system diagrams, we discovered connections in the diagram that
were incorrect. Some areas of the diagram had become extremely cluttered; attention was being
drawn to those areas, strictly because of their visual appearance. By rearranging the diagrams to

----···-------- - ---- ··~-----

HP3000
INTERNATIONAL CONFERENCE AL0312
VIENNA 1987

eliminate the clutter, we were able to remove unwanted redundancies, minimize the number of
interconnections between entities, and in effect produce a "canonical form" drawing of the system.
One system diagram was shown to a colleague who had been involved earlier in the project. He
looked at the diagram for about fifteen seconds, and asked where the connection was between two of
the system modules, knowing that that connection had been part of the original User Requirements.
He had found a mistake in the design, which had appeared ~ as a blank area in the system
diagram. At that point, we realized that we could literally design graphically at the high level. We
also realized that we could concisely communicate a tremendous amount of conceptual information,
by primarily using diagrams illustrated by text, rather than by using text illustrated by diagrams. The
diagramming also forced us to modularize our design, and do it fairly rigidly, while at the same time
without overspecifying or overconstraining the individual modules or their interfaces, which could
have imposed hidden restrictions on the design.

The Hardware/Software Alternatives portion of the project posed another problem for us which we
were able to resolve graphically. We had determined that the system hardware block structure
consisted of five modules. We needed to ensure that these five modules supported the complete
functionality of the system we had designed. We were able to graphically superimpose a system
block structure diagram over the functional specification diagram. This was done visually, by
working with the shapes in the functional diagram, and mapping the five structural blocks onto those
shapes. When we were able to successfully come up with a clean mapping of the block structure
diagram over the functional diagram, and were able to draw it, we became increasingly confident that
our design was sound.

Our experience with using icons to design this system has prompted us to investigate the potential of
applying a similar approach to business applications. Graphics hardware, particularly bit-mapped
screens and pointing devices such as the mouse, have now become widespread and relatively
inexpensive. Windowing systems are becoming common, and object-oriented programming is fairly
well understood. This combination of events has resulted in some interesting software development
techniques, particularly in the areas of direct manipulation and visual programming. The remainder of
this paper describes our current research, utilizing these techniques, toward the development of a
visual programming interface (VPI) to a report writer.

Background:

The terms "visual programming" and "program visualization" are sometimes used to refer to the same
thing, when in fact they represent entirely different concepts [Meyers 86]. According to Meyers,
visual programming refers to a system that allows a user to~ a program graphically, while
program visualization, on the other hand, allows a conventional, textually-specified program to be
viewed graphically. This distinction is blurred in the literature, but can be easily remembered by
thinking of visual programming as the specification stage of programming, and of program
visualization as the documentation or analysis stage.

Another important concept in this context is that of "direct manipulation" [Schneiderman 83]. Direct
manipulation is the set of principles which include visual representation of the objects of interest,
selection and physical actions instead of keyword commands, and rapid incremental reversible
operations [Schneiderman 86]. It is the principle used by such systems as the Xerox Star™, and the
Apple Mac:;intosh™ and Lisa™, as well as most video games. It lends itself well to object-oriented
programming, and is sometimes referred to as the "point-and-shoot" approach. This is the approach
in which the designer selects an object (points), then causes some action to be performed on the object
(shoots). An example of this point-and-shoot technique in a word processing application is to
highlight a block of text, and then to choose a CUT or COPY or DELETE action from a menu. This

HP3000
INTERNATIONAL CONFERENCE AL0313
VIENNA 1987

approach can be very straightforward and easy to learn. File manipulation becomes almost automatic:
To delete a file, one drags a picture of it onto a picture of a trash can. No more trying to figure out
whether the command to delete a file is DELETE , DEL, REM, x, KILL, RMFILE, and so forth The
principle at work here is that our reading vocabularies are considerably larger than our speaking or
writing vocabularies, and that we can do more error-free work by pointing at things and moving them
around, than we can by writing about them.

The visual programming and direct manipulation te.chniques also make it easier for a designer to
present a system to the user in the user's own framework, rather than in computer-es~. Users
" ... develop conceptual models - mental representations of the workings of the system." [Rubinstein
84]. The user's conceptual model must correctly predict the behavior of the system. The system
designer must therefore anticipate the conceptual model, and present a consistent external myth which
will reinforce it. (The reason the word "myth" is used is because it is a representation of the internal
workings of the system, and may not correspond to the actual internals of the system. [Rubinstein
84]). If the user's conceptual model corresponds well to the designer's external myth, the user will
be able to deal with his problem at a higher level of abstraction, and not get mired in the workings of
the application or the user interface. The use of icons and their direct manipulation lends itself well to
the presentation of an external myth. The most common example of an external myth is the familiar
desktop metaphor.

Design of the VPI:

The visual programming interface which we are designing is based on a noun-verb-adjective/adverb
syntax, in which nouns are represented by icons, verbs by menu items, and adjectives and adverbs by
property sheets and dialog boxes. This syntax is presented to the user, using the desktop metaphor,
as shown in Figure 1:

Fennal i AcHen , ! Lartd llalut I

Dtpenlllenq1 0 N.,..
0-
0-

Aca•SecurtlJI 0 l..MWrll
0,
0 11e ...

Figure 1

The user creates a report specification by selecting the appropriate icons from the icon menu,
arranging them on the desktop workspace according to how the final report is to look, and defining
each of the report elements (represented by the icon and its attributes or properties) to the dictionary,
through the use of menu selections and property sheets.

Each icon has an associated property sheet, which can be considered as the window into the
dictionary for the particular report element represented by that icon. The report writer itself is
completely defined by the determination of what report elements are made available to the user
through the icon menu, which actions are available through the menu bar, and what attributes are
available on the property sheets asociated with each report element. Dialog boxes are available for

HP3000
INTERNATIONAL CONFERENCE AL03/4
VIENNA 1987

actions which require clarification. The combination of icon, menu items and propeny sheets must
present a consistent graphics vocabulary to the user in order to be effective.
The icons used in our VPI, and their definitions, are listed in Figure 2:

------111----V"11ca111otGf..i-aranl1<1n

...,. __ 1._w11otar .. 1umaran...., .. ···-···-.. ~,-., .. -
• Candllloml "-11111-

CCl

CJ ---f !
'--r·' Canlnll-klpOdller
~

D ._.bnpartlpOdll<r

Figure2

(The design of the icons, and in fact the design of the whole desktop, is a critical part of the success
of a visual programming interface. This issue is addressed in some detail in [Verplank 86). The
icons must visually resemble the report elements which they represent, and give the illusion of
directly manipulable objects. The whole desktop needs to present visual order, and provide user
focus. In addition, the entire system needs to reveal a structure which is consistent with the user's
conceptual model, so that the user always knows where s/he is, and what will happen ifs/he hits the
DELETE key [Goldberg 86), [Verplank 86).)

The best way of describing the VPI is with an example. (For this example, it is assumed that the
hardware includes a bitmapped graphics screen and a single-button mouse.) Suppose a report is to be
created which consists of a sorted list of an organization's employees and their telephone extension
numbers. The telephone numbers are four digits long, the first digit of which indicates the floor on
which the employee works. The list is to be sorted alphabetically, by floor, with appropriate titles.

Using the VPI to produce the structure for this report, the user creates the diagram shown in Figure 3:

' ' - __ , i

Figure3

HP3000
INTERNATIONAL CONFERENCE AL0315
VIENNA 1987

Icons are placed on the desktop by clicking on them in the icon menu with the mouse, then dragging
them into place on the workspace. In this example, vertical list icons are placed next to each other,
representing lists of the employee names and the employee extensions. Label icons are then placed
above each list. A label and item icon are placed above that group, adjacent to each other. This
picture represents the portion of the report for one floor. Because this group is to be repeated for each
floor, the control-break-specifier icon is placed around it. (In the cases of the control-break-specifier
icon and the report/subreport-specifier icon, once they are placed on the desktop workspace, they can
each be selected and stretched to any rectangular shape, in order to enclose other icons.) The
direction indicator on the control-break-specifier icon is set to point to the right, indicating that the
group is to be repeated horizontally, instead of vertically. The report/subreport-specifier icon is then
placed such that it encloses the entire group. The resulting diagram defines the structure of the report,
and all that remains is to identify each of the report elements to the dictionary.

Figure 4 shows how items are identified:

.... !Edi !Aclloft,.. f11C11U1 !

! cr::B
! u:HO
I .. ,

i !l!J Cl
--- ---- u

(a)

M !Fond Aclloa (•agelLar..., llalul

Figure4 (b)

The property sheet for the le~t list is brought up by double-clicking the icon (Figure 4a). When the
property sheet is displayed, the user keys in the item name for the list. If that item is defined in the
dictionary, its attributes are placed on the property sheet. The user then clicks the close box in the
upper left corner of the property sheet. The resulting picture (Figure 4b) indicates that the item is
defined by displaying the item name at the top of the list. The icon is also expanded by the system to
the size necessary to correspond to its size attribute in the dictionary.

HP3000
INTERNATIONAL CONFERENCE AL03/6
VIENNA 1987

Figure 5 shows how items are defined which aren't already in the dictionary:

.................. a;:.;:;.:-·1
a::m i •at· ..

'

D
(a) Figures (b)

The item icon in the title for the repeating group is double-clicked, bringing up its property sheet.
When the item name is keyed in, and the name is not found in the dictionary, the system prompts for
a definition. In this case, the item is the floor number, which is calculated as indicated on the
property sheet in the diagram. Default attributes are assigned, depending on what is keyed in. The
resulting picture is shown in Figure 5b.

Figure 6 shows how control breaks are specified:

ldl ! Fonnot Acllon ~ Pog• i lay.U Slatul

~
[D [D . .,
iii Ii

l{Il ... _
DOOl'J\IUD i]

D D
(a) Figure6

9.'i!!!.J!wn .•••••.•••••.....••.•.
! u:lf'-
1 [D [D

I ii
i

(b)

The control-break-specifier icon is double-clicked, bringing up its property sheet, and the control
break variable is keyed in (Figure 6a). Note that the control break variable does not have to appear on
the report itself. The resulting picture is shown in Figure 6b.

HP3000
INTERNATIONAL CONFERENCE AL03n
VIENNA 1987

The employee list is to be sorted. This is an action, which is invoked as shown in Figure 7:

Cl

u
0

hloct. §u"""'! ~
:······~· lull... 4 ""

i . alph• ·~ ! [!J 0 alph• ·-·~

liiiiir·

(a) Figure7

eporl• tdt j Fonnat Action j Page f LayW lfotue

.~.J.1.9 :

(b)

u::iii(- !
ID ID l smii aQ';···>
~~i

The employee name list icon is highlighted by clicking on the top item, then dragging the cursor down
the list. This selects the entire list, as opposed to just the first item in the list. While the list icon is
highlighted, the Action menu is pulled down, and the Sort item is selected (Figure 7a). This causes a
dialog box to be displayed, asking what type of sort is to be performed. Because the list associated
with the selected icon is alphabetic, the numeric sort options are disabled. (This is an example of how
the system can be constructed to prevent the user from making errors.) When the OK? box is clicked,
the menu is hidden, and the resulting picture is displayed (Figure 7b). Note that the fill pattern of
l2ruh lists has been changed. This shows two things: that some action has taken place on the indicated
report element, and that the indicated report element has some dependencies on other report elements.
The actual dependencies are not shown on the report structure diagram, but are available on the
relevant property sheets.

Figure 8 shows how label strings can be defined. Note that the string value appears i~ the icon,
becoming part of that icon. The icon is also expanded to accomodate the string. The font and size of
the string can either be set or modified on the icon itself, by highlighting the icon, then selecting the
size and font, or on the property sheet.

-
tD

Cl

epo1h (cit i Fonnat AcMon ! Poge l Lorowt llatUI

(a) Figures

'°""°' i Acllon Page layCMI ! lfatUI :

"/['!'Ir..!'.'!!!' ••••••••••••••••••••••

I r:sditwn
i ID CD
i eqt_mnm omp~ons ···>

1111~

(b)

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Figure 9 shows how the report/subrepon is named:

' .
,.,. Loyed i llOtul !

D
(a)

el
GI

Figure9

Edi ! F9nnal Actton f Page !~ lfotut

;-.
l t:lliiiLilll -
! ll!!iiJ ~

lll'lfi ;

(b)

AL03/8

Once completed, the report/subreport can be saved by use of the Save item in the File menu.

All physical layout on the page in the above example is done by defaults in the system, depending on
the relative spacing of the icons in the report structure diagram. However, in the case of pre-printed
forms, certain layouts are predetermined, and the report must fit the layout. The Layout menu
provides the facility for accurately placing report elements on a page, through the facilities of grids,
rulers, and calipers (Figure. IO).

eport1 ! 1:c1t Fonnat ! Adlon Pot•

D
(a)

llalut i

Cdlpera.~ .. _, __
·y;;;;G.idc;,;,····················· ..__
Mgl"ltoQld

Algnot4CICtf, .•

lclt i Fonnal Adloft i Page

Figure 10 (b)

.......
CmlolnRulen...

..... 0 -+II+-

·:;;;;;;· ® .!
T Show

Alip 0 '"'"" Alip ® °"' 0 -0 -· @!!)

Rulers can be displayed across the top and down the left side of the screen, and can be set to a variety
of units (centimeters, inches, points, etc.). As the cursor is moved across the work area, the current
cursor position is tracked on both of the rulers. Used in conjunction with an enabled grid, this makes
it quite straightforward to accurately position report elements on a physical page.

HP3000
INTERNATIONAL CONFERENCE AL03/9
VIENNA 1987

The calipers provide a mechanism for directly specifying distances between report elements, and sizes
of report element fields. (The caliper icon does not appear in the icon menu, because its use is one of
action, and it is not part of the report structure.) The calipers are used by selecting the horizontal or
vertical caliper icon from the Layout/Calipers menu and dragging it onto the work area. One end of
the caliper can be locked by clicking on it, and the other end positioned by dragging to the desired
(horizontal or vertical) position, then clicking on that end to lock it. If the Show size or Show gap
menu items have been selected, the distance spanned by the caliper will be continuously displayed
between the caliper ends while the caliper is being set. If not, it will not be displayed until both ends
are locked into position. In order to force a dimension onto the caliper, the user locks it into position,
then clicks on the displayed dimension, and keys in the desired dimension. The caliper will be
adjusted to the new dimension by the system, and can then be repositioned as desired.

The actual positions of report elements can be seen on the property sheet associated with the
report/subreport icon, or by highlighting an icon or pair of icons and selecting the Show size or Show
gap menu items from the Layout menu.

Some Problems:

One of the major principles in the design of user interfaces is "Know thy user". This presents some
severe difficulties in designing an interface to something like a report writer (which is in fact a
graphical language), because of the diversity of potential users. These users range from the
hacker/guru, to the application programmer, to the Vice President of Finance, to the CEO's
administrative assistant. Each of these users approaches the system with a different conceptual
model, and with different expectations of how to use it. In spite of the popularity of systems that
utilize direct manipulation and icons, many of these users simply don't take them seriously ... they
don't believe that such systems provide enough flexibility to allow them to do what they want to do.
This, in turn, poses the question of whether or not to design a closed system that does only the tasks
which have been specified for it in the Task Analysis (which is another of the major principles of
system design ...).

We are addressing this problem of appealing to a diversity of users by providing several interfaces,
and making it easy to switch among them. The Visual Programming Interface produces an internal
report definition, which can then be edited using a syntax editor, or which can be run to create a
report. The report itself can then bemanipulated using the What-You-See-Is-What-You-Get
(WYSIWYG) principle, in combination with direct manipulation techniques. If the report structure is
not satisfactory (in the example above, maybe the control break group should be printed vertically
rather than horizontally), the system provides the capability for the user to switch to the interface
which is best suited for making the required changes. (Incidentally, this change is extremely easy to
make using the VPI...one just changes the direction of the control-break-specifier icon. The system
does the remainder of the formatting.) The problem that this approach (the provision of several
interfaces) leads to is how to make a smooth transition between interfaces, and how to maintain an
internal representation of the report which can be efficiently operated on by all three interfaces.

Another problem with which we have been dealing is that of conditional reporting. One of the
underlying principles of the VPI is that people recognize documents initially by their visual
appearance ... that is, how they are laid out. The VPI takes the approach that the user lays out the
report how s/he wants it to look, then goes about defining each report element to the dictionary.
However, the case arises in which the report format may change, depending on some condition. In
other words, there may be instances when a report has three columns in a group, but other instances
where it may only have two. Our first attempts to solve this were seriously frustrating, and we
eventually decided that it couldn't be done in the VPI context. We have subsequently decided to

HP3000
INTERNA T/ONAL CONFERENCE AL03/10
VIENNA 1987

include the concept of a Black Box, (and developed an icon for it), to represent a conditional reporting
situation. Our current thinking is that the Black Box will appear in the report structure wherever there
is a conditional reporting situation. When the Black Box icon is opened (by double-clicking, for
example), the alternative report structures will be displayed, as will the determining condition
associated with each of them. At the time of this writing, this problem had not been fully addressed.

The conditional reporting problem causes some philosophical consternation with the VPI. The
diagrams generated using the VPI were intended to be analagous to the schematics for an electrical
diagram or printed circuit board. The idea was that the diagram was essentially a software
schematic ... a diagrammatic representation of the actual report, which was recognizable immediately,
and fairly clearly understood, because of its visual shape (the idea of "revealed structure" again).
However, the analogy suffers with conditional reporting, particularly when the conditional reporting
variable doesn't physically appear on the report. The analogy suffers further, because a printed
circuit board schematic doesn't necessarily look like the finished board, but we are saying that the
report structure "schematic" strongly resembles the finished report. We are still struggling with this
one.

Future Work:

At the time of this writing, the implementation of the actual VPI was just beginning, and
consequently, we have not yet been able to test our ideas in a prototypical environment. We believe
that we will benefit considerable from building the prototype, and will be able to refine the design to
provide an excellent interface. The main area where we expect to learn is in the definitions of the
actions which appear in the menu bar. Because we are building a closed system with this interface,
we must ensure that this set of actions is at least necessary and sufficient, and we.can't expect to
determine a priori whether this is the case.

We have not yet decided how to handle file access and linkages. We are considering having the
system infer which files are required, and how they should be linked,from the report structure. Other
alternatives are to have the user select file names from a scrolling dialog box, or to provide another
desktop at the file level, and have the user specify the required files and linkages graphically.

We also haven't finalized the characteristics of the property sheets ... what goes on them, how they are
organized, and how they interface to the dictionary. There is also the question of whether the
propertry sheets should look the same to all users, or if they should be different, depending on the
user's security access to the dictionary.

When the interface is stabilized, we expect to have learned enough about how to deal with visual
programming and direct manipulation to provide a VPI for the entire STORM environment, and
potentially to operating systems in general.

Summary:

We have designed, and are in the process of building, a visual programming interface to a report
writer. This interface will allow users to graphically design report structures, which can then be
executed to produce finished reports. We believe that this approach makes the design and
modification of reports remarkably straightforward, and can significantly improve the productivity
both of application programmers and of end users.

HP3000
INTERNATIONAL CONFERENCE AL03/11
VIENNA 1987

References:

[Dudley 86)

[Meyers 86]

[Goldberg 86]

[Rubinstein 84)

[Schneiderman 83)

[Schneiderman 86)

[Verplank 86)

Tim Dudley. "Graphics in Software Design." Computer Graphics World,
9(2), February 1986.

Brad Meyers. "Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy." Human Factors in Computing
Systems: Proceedings SIGCHI '86. Boston, MA, USA. April 13-17, 1986

Adele Goldberg. Keynote address, SIGCHI '86 . Boston, MA, USA. April
13-17, 1986

Richard Rubinstein and Harry Hersh. The Human Factor: Designing
Computer Systems for People, Digital Press, 1984

Ben Schneiderman. "Direct Manipulation: A Step Beyond Programming
Languages," IEEE Computer. 16(8) August 1983'\

Ben Schneiderman. "Direct Manipulation: An Object-Oriented Visual
Programming Language," Human Factors in Computing Systems: Tutorial
17. SIGCH/ '86. Boston, MA, USA. April 13-17, 1986

Bill Verplank. "Designing Graphical User Interfaces", Human Factors in
Computing Systems: Tutorial I. SIGCHI '86. Boston, MA, USA. April 13-
17, 1986

HP3000
/NTERNA TIONAL CONFERENCE
VIENNA 1981

HP3000
INTERNA T/ONAL CONFERENCE AL04/1
VIENNA 1987

The Hu•an Interface to 4GL.

Abstract
This paper describes the change in application development due to
the availability of 4GL. It describes the position of the end-user
as well as that of the DP professional and explores the critical
success factors and hazards. It includes experience with
ARTESSA/3000.

1. Definitions

"Human" in the context of my address, means individuals who are
able to communicate in such a way that they understand each other
i.e. they speak the same language, and have a strong desire to
understand each other. The word "human" presented at a computer
show also means that we as DP professionals are becoming more and
more interested in human beings, and the way they communicate with
their systems. We are coming down from the "Ivory Tower" of
data-processing.

Finally we are coming to a situation where users decide whether
they want to use a computer, how and when, and for what purpose.

Today, the computer is de-mystified due to
computers, PC's on workers' desks, and better
field.

widespread
education in

home
this

Market research in 1975 showed that every family in the US used 20
to 30 electric motors in their household, varying from hairdryers
to lawnmowers. Nowadays, the average population of silicon chips
per household is already 3 to 5 and expected to grow dramatically.
This growing consumption is due to the improved user-friendliness
of these devices. We soon shall hardly recognise that a chip is
incorporated in a device, as they behave in a more "human" manner.

How this should happen can be described under the definition of the
INTERFACE. This needs a description of how to communicate, by what
•eans, and what the subjects are. An understanding of the process
is required, in order to obtain benefits from the interface.

What is an example that more or less describes the function of an
interface ? When a long distance call is in progress, the interface
shall be a co••on language. In a situation where there is
face-to-face contact, ~or example, you need a slice of bread,
gesture or "body-language" will often suffice to explain. Again, a
co••on language.
We •ake the assu•ption that all participants are willing to listen
to each other, and to understand.

This leaves the question: what is a 4GL ? Whatever we may think
today, the judge•ent rests with the historians of the future.
After the machine-language and assembler era, and pending the era
of procedural languages, we were able to identify the first and
second generation. By procedural languages I mean COBOL, FORTRAN,
Basic, Algol, etc. Commonly we have decided that these languages
are of the third generation.

HP3000
INTERNATIONAL CONFERENCE AL04/2
VIENNA 1987

The need for classification became urgent when the so-called fourth
generation appeared on the horizon. In what way is a 4GL different
from a procedural language ? Perhaps the following sta.tements
clarify the definition:

* Integrated and Compatible.
4th Generation Languages must be able to integrate easily with
other tools, so that the whole appears as a coherent set of
tools, for the (end~)users. Technically speaking, there must be
common components, and compatibility o·f functions and language.

* Powerful Man-Machine Dialogue.
The state-of-the-art allows us to instruct the computer using
non-procedural languages, but we should not have to cope with a
glossary of unfamiliar and incomprehensible terms. The better
system helps you to check your input.

* Transparent and Portable.
The physical storage of data in a computer is of no concern to a
user, so the user should not be burdened with knowledge about
the underlying data structure. The 4GL must even protect the
user from the operating system and its incomprehensibilities.
The 4GL should be completely problem-oriented and environment
independent. So the installation of a new operating system, or
even new hardware, should not hamper the functionality of a
system.

* User Friendly and designed to cope with Human Factors.
The software must forgive user errors. It must organize
information in the same way as a user sees it. "Key paths" are
of no concern to a user, he just simply wants to retrieve
information from the system.

* Central and Generalized Data Dictionary.
There must be a Data Dictionary which is flexible, and able to
store all information, with respect to status and relationship
of processes, screens, reports and users. It must be
generalized enough to integrate with other data dictionary
systems and, for example, screen creation programs and report
writers.

* Making the work of the DBA more Efficient, Reliable and Easier.
The 4GL should include a comprehensive set of utilities to
control and monitor database administration. In every DP shop of
a certain magnitude, a tool like this is necessary for proper
operation.

* Screen Creation.
A 4GL should provide facilities for easy screen mappings,
independant of the programs that use them. It should provide
possibilities for the easy layout of screens, and setting
attributes to the screen such as high-lighting, security,
validation and editing. The data dictionary should indicate the
programs using those screens.

HP3000
INTERNATIONAL CONFERENCE AL04/3
VIENNA 1981

* Display Screen Manageaent.
The software should treat a terminal as a set of one or more
logical screens. This capability is important when several
programs are to display data independently to a user.

* Easy-to-use Editor.
This is an essential facility to ensure that only syntactically
correct statements are entered. It must provide insert, delete
and update modes. A "fill-in-the-blanks" interface generally is
the most effective.

This brings me to the next chapter describing the various types of
users.

Types o:f Users.

The most common division is End-Users and DP-professionals. But is
it precise enough ?

Not in my opinion; within the group called end-users there is
considerable variety. It is obvious that the information needs of a
clerical worker differ from those of top-level management. And in
between those two extremes there is middle-management with their
need for computer power to tailor information on business issues.
They also prepare strategic information for top level management.

So we have a more or less passive end-user who uses the computer
for operational tasks and the active end-user who is involved in
the processing of tactical inforaation and preparation of
strategic data.

Top-level management is different because they have two major
concerns about data processing: first, the reliability and accuracy
of the data they get presented from lower levels in the
organisation; second, the cost of data processing.

An important issue for top-level management is to proaote and
sponsor DP activities, one of these items should be the use of 4GL.

Within the group of
users. Most of them
will describe them
them of 4GL.

DP professionals one can identify a variety
are common functions in your environaent so
only briefly and comment on the relevance

of
I

to

Operators will gain in their work, through fewer interruptions due
to failure of badly written programs. Programmers will have more
job satisfaction because they can emphasize the creative part of
their job. They get rid of the necessity of writing repetitive
coding. Analysts get rid of extensive documentation work and can
concentrate on their mission, in the design stage. They will no
longer be frustrated by end-users, complaining that they got
something different to what they expected.

The main benefit for DP managers in the use of 4GL, will be their
ability to make better estimates on software development cost, as
well as reducing the cost of maintenance.

All these advantages I have more or less randomly chosen, without
going into much depth.

HP3000
INTERNATIONAL CONFERENCE AL04/4
VIENNA 1987

Kinds of Tools.

Glancing at 4GL does not exclude the necessity to have a look at
available tools. The questions we have to ask ourselves are: can we
not fulfil the needs of our (end-)users with tools that are already
in operation ? Do we really need something new, and does the
implementation improve the quality of our services ?

This brings us back to the question of
interface to (existing) tools. Related
we have to concentrate on the tools
border zone of the end-user and the DP

the improvement of the human
to the heading of my paper,
that already exist in the

centre.

We can point at tools for end-users with limited DP experience,
like report generators intended for that particular purpose.

More experienced users will wish to extract data from the central
processing unit, and process that information on their PC. This
requires skills in the use of packages like Lotus, Framework, etc.

Some very progressive users are involved in design and
implementation of low-level complexity, where they contribute to
screen and report design. This means that more analyst skill must
be present. In these cases it is just the magnitude of the project
that determines whether this is a DP project, or an end-user-built
application. It is where the job of the DP professional starts.

Programmers also can use report writers to solve the needs of
end-users. But, for the fulfilment of their job, many other
utilities are available e.g. source code generators, editors,
re-usable coding, copy-libs, etc.

Tools specifically intended to be used by the analyst are not
common. Most are suited for text processing; only a few of
really support the design task. In Holland we have a
available, called PRISMA, and it is used within my company. It
not take away the creative part of the task, but it ensures
completeness of the design. An interface to the work of
programmer is not included.

very
them
tool
does
the
the

Last, but not least, we should have a look in the office of the DP
manager. Is he aided by any tools ? If he has convinced the members
of his team to use a structured method for system design, his work
will benefit from unambiguous reporting on project development. To
schedule projects, perhaps he will use a package like Pertpac, etc.

Drawing a conclusion from the forgoing, we see that available tools
are not integrated into the development cycle and that they are
also inconsistent to the (end-)user.

The pro•ises of 4GL.

The four major goals covered by 4GL are: faster program
development, reduction of the number of errors in programs,
reduction of maintenance cost, and portability. In preparation for
this paper I read extensively on this subject, and in virtually all
cases the same objectives are expressed, or even promised, but
aren't they all related to the work of DP professionals? Is there
no end-user involved in systems development ? I will investigate
his interests first.

HP3000
INTERNATIONAL CONFERENCE AL04/5
VIENNA 1987

Through the eyes of an end-user, aost applications have a very long
life cycle, 10 to 15 years not being exceptional. This must ring a
bell with DP professionals because it outlasts the lifecycle of
hardware and operating systems. Most commercial applications
reflect the business policies of an organisation. And, because most
corporations have invested substantially in securing their
marketing niche, it is unlikely that they would diversify or
segment so far that completely new applications are necessary.

A second item related to end-users is, that although business
policies do not change, applications are very volatile. They are
continually enhanced, modified and converted. These revisions are
caused by changes in the organisation resulting from growth,
corporate revisions, user requiraents, technological advances, and
changes in government regulations .

Due to the fact that today end-users are more mature (and
assertive), and benefit from better education, more change requests
can be expected from them. A DP centre is not a business goal in
itself, it is a means to an end. The promise to an end-user must be
the ease of change.

How many times is an end-user confronted with a statement like;
"Your request is feasible and we will implement it, but it will
cost you X thousand dollars and it will take N months" ? After
several times the user will not come anymore and he will be very
disappointed in the effectiveness of his DP centre. I think it's no
longer feasible to confront the end-user with rigid systems.

We, as DP professionals, have realized,
agree, that existing applications are
corporation, and the effort to maintain
enormous.

and the
the

these

end-users will
backbone of a
applications is

Another promise to fulfil by 4GL: faster delivery of systems - a
great benefit for end-users. Faster implementation gives a
corporation advantages in its struggle with the competition, it
will be ready for the fray. The problem with the foregoing issue is
that it cannot be expressed in bold figures, but the spin-off in
quality is there.

Another major benefit of 4GL to an end-user will be that
what he saw on the screen. Integration of screen report and
facilities will astonish him.

And what are the promises for the DP professional ?

* More creative work and less maintenance. * Better planning and less stress in project development. * Better documentation and less tedious work. * Shorter development cycle and more variety in projects.

he gets
design

* Projects divided into smaller sections and smaller project
groups. * More days off and less overtime. * Phased implementation of projects and end-users who are more
satisfied. * More end-user involvement and shared responsibilities. * Better documentation guidelines and more structured work.

I think all these argumerits are true and I will come back to these
issues in the next chapter of this paper.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

AL04/6

Differences in Application Develop•ent.

To describe this clearly I will divide the development process into
distinct stages, according to a standard model used throughout my
company.

1. On the first stage is the Information Plan which is derived from
the Business Plan and Corporate Strategies. The Information Plan
gives a description of all the information streams necessary for
the achievement of the business goals. Part of the Information Plan
is the Computerisation Plan that contains all those information
streams suitable for computerisation.

On this stage there is hardly any difference whether a 4GL is in
use or not. Tools and aids more geared toward these stages are
project control, budgeting and word processing.

2. The second stage is encountered when an information stream is
computerised, and a project starts.

We can distinguish here:

2.1. The Feasibility Study researching profitability and
cost-effectivness of a project. In this stage the present
situation must be analysed. As a result, requirements and needs
are selected for the future systea. The next step is to design
the improved organisation and to describe the functional
specifications of the systea. A proposal for hardware and
software completes this stage.
This is where creative thinking about business
place. The major functions to be co•puterized are
report. Limited information can be stored
dictionairy.

issues takes
described in a
in a design

2.2. The Requirement Definition de•ands a detailed analysis of
existing organisation and inforaation streams. During
analysis it is possible to identify all data elements,
functionally group them in collections related to screens
reports e.g. order entry. As a result of this, a Data Model
be built. From this the physical lay-out of the database can
constructed. In this stage the input and output also need to
defined. Selection of hardware and conversion requirements
established.

Differences
4GL 3rd generation and before

the
this
and,

and
can

be
be

are

* Graphic capabilities * Machine generated reports * Involvement of end-users

* Hand drawn structured schemas * Man-dependant reporting

* Tool limits violation of
design rules * Result aimed at end-users

* Specialist skills needed for
writing down the concept * Manual consistency checking

* Too much DP jargon

3. The technical realization consists
aimed at the translation of the system
and software environment.

of two consecutive steps
into a computer hardware,

HP3000
INTERNATIONAL CONFERENCE AL04n
VIENNA 1987

3.1. Technical Design means transforming the logical design to· the
technical lay-out at an application, transaction and program
level. All necessary online guidance is identified and a
detailed description of calculation rules and screening of data
elements is produced. For all screens and reports, proposals are
produced.

Differences
4GL * Automatic generation of

screen and report proposals
* Automatic reporting * Prototyping with the

end-user * Involvment of end-user in
design of help-screens and
calculation functions

* Ease-of-change in design

* Ability for more proposals * Prevention of errors by
emphasizing on design stage * End-user documentation

3rd generation and before * Tedious handwritten
documentation * All paperwork

* End-user confronted with
computer-jargon

* Troublesome changes in
design

* One-and-only design * Errors remain in design
are costly to redress * Documentation aimed for
technical design

and

3.2. Programming and testing. In this phase all technical
specifications are converted into machine-readable code.
Adoption of a method for program design is essential to prevent
spaghetti-coded programs. All specifications must be unambiguous
and leave no room for misinterpretation. A major task, also in
this stage, is testing. Volumes could be written about how to
test thoroughly, few do it well.

Differences
4GL * Only writing processes

* Structure is prescribed by
tool * User manuals always reflect
current state of development
automatically * Efficient testing

3rd generation and before * All I/O and processing must
be written from scratch

* Structure to be invented by
programmer (or tool) * End-user documentation must
be written after approval of
the system by the end-user

* Tedious testing

4. Maintenance of software can be split into either minor
changes, or the reconstruction of an application. Minor changes
must be made directly in the source code, and, of course the
documentation updated. Reconstruction of an application will
happen when major changes are required, or if the effort to
implement minor changes becomes too great. In general this is
considered as a complete new project and handled as such.

Differences
4GL * Changes in the functional

description * Up-to-date documentation * Quick (not dirty) * Instant changes * Early decision on rebuild

3rd generation and before * Search for where, how, why

* Weak documentation * Time consuming * (Hidden) Backlog * Continuous maintenance

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

AL04/8

I have tried to show in brief the differences between 4GL and
earlier generations at the various stages of software development.
Of course, these arguments are arbitrary, but it gives you an idea
of what will change when a 4GL is implemented. One final remark I
have to make at this point is with respect to project control and
documentation. A good 4GL should be able to help you a lot in this
field, because we expect that project size and elapsed time will be
reduced. This makes projects more manageble. The other item is
documentation; so far all computerisation projects have suffered in
this important area. A good 4GL must support the documentation work
extensively.

The Changing Role of End-users.

If we look at the history of sytems development, we
end-user involvement in the past was very limited.
committees, project groups, etc were staffed by
management and DP professionals. For the end-user it
permissible to have a say in the logical design stage.

Why did this happen ?

see that
Steering

top-level
was only

In my opinion, it was because in the 1970's and early 80's, you
needed extensive know-how about operating system facilities; system
software packages and peculiarities of disks and tapes. You had to
think mathematically and be able to express solutions in a
structured way.

The result; computer freaks were asked to write down end-user
wishes, and the end-user was completely surprised by the results.

Nowadays, using a 4GL, we are able to protect the end-user from all
the strange habits of computers; the approach becomes more
"end-user friendly". At the beginning of this paper I spoke of the
"Ivory Tower" and I know it exists, because, until now, system
development has been a task for DP professionals. The only problem
is that they know everything of computers but rarely have any
commercial background.

Let's face the fact, most of the people present here are
technicians. To build systems for end-users means an understanding
of what drives the business. Should this mean that every end-user
must be allowed to build his own system ? And is he able to do so ?
Is it of benefit for the corporation he is working for ?

These and a lot of other questions have to be answered. In my
opinion it is the responsibility of top level management to
support, control, and be involved in DP operations in the widest
sense. The success of DP operations starts with the support and
involve•ent of end-users.

The first pay-off of solid management support, is involvement of
end-users in systems that will be developed. The details of a
system proposal will better represent the business environment.

The second pay-off is that the business will have a fresh
of itself. There will be less political arguing about how
"ought" to be.

picture
things

HP3000
AL04/9 INTERNA TJONAL CONFERENCE

VIENNA 1987

If top-level •anage•ent does not agree that it •ust contribute, I
urge that we change its attitude. This can be done by arranging
courses or seminars where all computer jargon should be forbidden.

So far I have spoken about top
position of clerical workers
their concerns, and how is
environment ?

level management, but what about the
and middle-management ? What are
their role changing in the DP

End-users will take a greater part in the system development cycle,
due to the availability of end-user-friendly development tools,
prototyping techniques and the growing presence of PC's. Having a
say in the development cycle also means sharing responsibilities in
establishing new and rebuilt applications. This can only be done
by expanding knowledge about the development of systems.

So, not only the DP professional should be trained in the usage of
a 4GL, but also the end-user must be aware of the possibilities and
limitations. This means that the selection of a 4GL is a task not
only for the DP department, but end-users should also be involved
in the evaluation of potential new tools of strategic importance.

I think end-users are nowadays better educated, and have suffered
enough in the past from bad experiences, that they are now in a
position where they deserve to have an influence on the decisions
that change their role. Together with these end-users, we have to
realise ourselves that a 4GL is not a panacea. If we don't play by
organisational and procedural rules we will create chaos. If we
disobey these rules we will only be busy with creating chaos in a
higher gear.

Critical Succes Factors.

There is no recipe for success with the implementation of a 4GL;
the only contribution I can make, is to present a list of pitfalls,
gathered from experiences and literature. First I shall try to
describe those factors which are related to end-users, and later I
will explore the factors in the DP environment.

* It is impossible, without sufficient training to introduce a 4GL
to end-users. If you expect them to share responsibilities it is
obvious that they need skills to bear this. The aim of the
training must be td describe functions of an organisation.

* Avoid a tool where the end-user gets involved in the usage of
programming-like statements. All language statements that exceed
the level of, for example, PC-DOS commands, must be discarded.

* Stimulate the usage of the tool and credit the end-user for his
productivity increase. A reward is earlier implementation or
preferential treatment with maintenance.

* User-oriented documentation must accompany the product. It must
protect the end-user from computer jargon. The documentation
must be written in a way that stimulates the end-user to use it.
Look for clear, well-explained examples, regular updates, and
the promise of news, tricks and tips.

HP3000
INTERNATIONAL CONFERENCE AL04/10
VIENNA 1987

* Protect the end-user fro• the fear of blocking or even stopping
the computer, destruction of vital data or excessive charges for
computer cycles. If the end-users' system crashes, it must not
harm the other applications. If things like this happen,
end-users will be frightend to use the product.

And what are the success factors for DP professionals ?

* After education, their skills will be on the 4GL level. This
means that they have to emphasize more the functionality of a
system, rather then the technical aspects. Probably they need
education on that subject as well.

* More emphasis on new application development instead of boring
maintenance. Most DP professionals agree that their laboriously
acquired skills deserve better use. It is more challenging to
offer alternatives to end-users, than to practice the habits
from the past.

* 4GL's are in use in numerous corporations, and they all benefit
from it in their day to day work. This means that you are not so
much of a pioneer, with all the attendant risks. It will work in
your environment as well if you adopt these tools companx-wide.

* Not only adopt the tool, but incorporate it in your development
cycle. Include new procedures, and planning and project control
techniques. The creation of a new development "bible" may be
necessary.

* With the proliferation of 4GL we can share responsibilities with
end-users. Computer development work becomes more common to your
fellow workers in the organisation.

What of the cost-benefits of 4GL with application development ?

Just be pessimistic and assume that it will increase the overall
productivity with a factor of 2. Tangible benefits can be ascribed
to reduced development time and direct labor savings. This also
applies to benefits from earlier implementation of systems and the
reduced maintenance cost. Then consider the cost to acquire a 4GL.
Based on business "yardsticks", I have no doubt you will decide to
buy.

If we are aware of the critical success factors, we also have to be
aware of the objections which are commonly made against the
employment of 4GL. I will give them briefly and am sure you will
find the right answer in your situation:

- conservatives don't believe new methods really work
- they are not useful for every application
- DP managers are afraid of erosion of their authority
- application building by end-users creates chaos
- tool is hardware (in)dependent
- it erodes my job
- discounts years of experience.

HP3000
INTERNA TJONAL CONFERENCE AL04111
VIENNA 1987

lxperiences with ARTISSA/3000.

I could not have presented this paper if I had only theoretical
knowledge. I'm pleased to say, I was able to build experience by
using ARTESSA/3000, a 4GL de~eloped by my employer RAET BV in
Holland. We have sold ARTESSA/3000 several times and use the tool
extensively, for both turnkey and System House projects for users,
and for the development of our commercially oriented packages. All
conventional COBOL writing is replaced by the complete and
extensive use of ARTESSA/3000. Returning to the title of my paper,
I shall describe the experiences in the development and maintenance
cycle of software and the influence on the communication with
end-users.

* The Feasibility Study is in general not much influenced by the
use of ARTESSA/3000. The separate parts of a system are
described in a report. A cost/benefit analysis and an estimate
for the cost of consecutive steps is added.

* The Requirements Definition is done using the PRISMA technique.
Creation of schemas is an iterative process in close cooperation
with the end-user. It clarifies the information streams and
makes the division in subsystems easier. The analyst uses
ARTESSA/3000 to describe the data elements and the end-user
describes the "help" information. The most important screens and
reports are proposed by ARTESSA/3000. To clarify the
requirements of an end-user, it is frequently useful to jointly
develop prototypes in this stage. We have done this in various
projects with great success.

* The Technical Design stage is performed by building-up the
Application System consisting of menus and programs. The analyst
selects the building-blocks necessary for the construction of
the system. The end-user describes help information and
algorithms for all appropriate fields. The calculations are
organised into a library of reusable computations.

* Programming is done by coding the calculation rules. This coding
is added to the selected building blocks. Then the system is
tested by the analyst and programmer. All coding written in the
ARTESSA/3000 language is syntactically correct and accepted by
the COBOL compiler. Routines written in COBOL or any other
HP-supported language are, of course, subject to the scrutiny of
the appropriate language compiler.

* Acceptance testing is performed by the end-user. Errors (which
can only occur in processes) are corrected, quickly and easily.

* Maintenance is a matter of selecting the right building block in
the construct and amending it. If a record lay-out is changed,
all influenced programms can be determined from the extensive
cross-references held in the inventory of ARTESSA/3000. It is
our experience that changes of this type are not a burden with
systems generated by ARTESSA/3000.

Finally, I want to comment that all
supported with clear, system-generated,

stages of development
documentation.

are

HP3000
INTERNAnONALCONFERENCE ·AL04/12
VIENNA 1987

This is not a commercial presentation of ARTESSA/3000, so if you
would like to have aore detailed inforaation, I invite you to visit
booth 319 and I will be pleased to answer all your questions.

Biographical notes:

Hans van der Leeuw is Product Manager ARTESSA/3000, with RAET
Software Products in Holland. His experience with computers started
in 1960, and since then he has worked in various DP Management
positions. He has also worked as a Consultant in multi-national
feasibility studies.

Aproaches on the content of this paper are welcomed at P.O. Box
4077, 6803 EB Arnhem, Holland.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Introduction

4GL - The Controversy Rages On

Karen Heater
Infocentre Ltd.
6303 Airport Road
Suite 300
Mississauga, Ontario
L4V 1R8

AL0511

I truly believe that the question which we are asking ourselves
regarding 4th Generation languages is quickly changing from
"Should I?" to "Which one and how do I make it successful?".

After speaking at a number of Interex Conferences and local area
user groups on various topics surrounding 4GLs, the feedback from
you, the Data Processing Professional of today and the future,
seems to bear out this belief.

The goal of this paper is to assist you in selecting and success­
fully implementing 4th Generation Development Software. The paper
will touch on the strengths of 4GLs, their potential dangers, a
few suggestions on how best to approach your product evaluations
and lastly some things that must change of you are to be
successful.

I hope that at its conclusion you will feel more equipped to make
the best decision possible for both you and your organization.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

A Rising Need

The emergence of 4th Generation Languages and their
alternative development methodologies grew out of a
definite need arising in the data processing industry.

Let me take a moment to explain -

AL05/2

associated
clear and

A recent computer industry forecast predicted that the number
of installed computers would increase by a factor of ten in
the next ten years.

A Computerworld survey indicated that the number of compute­
rized applications in existing data processing departments is
growing at a rate of 45% per year.

In Computerworld it was also estimated that $10.00 was the
average cost of one debugged computer instruction.

Last year, North America produced more computers than pro­
grammers and science graduates combined.

And finally, it is also generally accepted that the average
backlog of applications in North American DP departments is
between three and four years. Visible backlog, that is.

It becomes blatantly apparent that some drastic changes are neces­
sary in our approach to the development of application software of
we are to be able to deal successfully with existing and future
growth.

The problem we are faced with then is how are we to be successful,
not only to survive the next decade, but to conquer it, without
the necessity of creating programmers out of every person in our
organization.

Enter 4GLs

For a start it seems logical to address the productivity of the DP
Professional. Helping the DP Professional to develop systems more
quickly would definitely have significant impact on current
growth, the backlog and the influx of future needs.

What is needed then are tools to assist the DP Professional in
doing his or her job. Tools that would take care of most of the
mundane and repetitive aspects of developing production applica­
tion systems. Tools that "understand" what is involved in the
fundamental functional areas of an application; i.e. data storage
structures, menu driven end-user interface, online data collection
screens, online and batch reporting, transaction processing, ap­
plication security, etc. and is able to assist the DP Professional
in pulling it all together.

HP3000
INTERNATIONAL CONFERENCE AL0513
VIENNA 1987

Traditional 3rd Generation Lanquages are unquestionably logic
driven. The constructs of the language are put together to form
logic to perform screen handling, reporting, etc. These languages
do not easily lend themselves to a transformation whereby they
become development assistants. Virtually all of the "smarts" of
application development must reside with the individual because
the lanquage itself does not truly provide for this.

4th Generation Languages have been loosely defined by various
individuals on various occasions as being "products which produce
results in one-tenth the time of Cobol". In order to ensure this
productivity increase, these lanquages are designed to be more
action than logic driven. In other words, when developing an
application, one uses the constructs of the lanquage to state what
is needed i.e. screen layouts, report layouts etc., not how logi­
cally to perform the task. The lanquage itself handles the funda­
mentals of interaction with the data storage structures and dic­
tates a certain standard interface for the user.

These lanquages by nature, assist the DP Professional by providing
intelligent defaults throughout the development cycle and imposing
certain application design standards. (We will discuss the bene­
fits of these standards a little later.)

What have emerged then are a new breed of development language
which when used properly (this cannot be emphasized too much) will
significantly affect the individual DP Professional· s productivi­
ty.

But Wait, There is more

The crux of the problem which appears to be facing us for the
decade to come seems to lie in the "development bottleneck", our
inability to implement solutions to satisfy all the user needs in
a timely manner. The failure to provide these solutions begins the
steady build up of that infamous ·backlog·.

Backlog

I'd like to digress for a moment a discuss this ·backlog that is
so often found in discussions of the need to improve productivity.

Backlog results from a development bottleneck. Backlog is catas­
trophic both from a morale standpoint and its effect on the pro­
gress of computerization within an organization.

HP3000
INTERNATIONAL CONFERENCE AL05/4
VIENNA 1987

we have often heard of backlog described as being comprised of two
parts - the visible and the invisible. Visible backlog is readily
identifiable, we can describe and count the requests for enhance­
ments or new development that we are just not capable of getting
to right now. Visible ~acklog is difficult enough. We all know
that an intray that continues to grow despite our dedicated ef­
forts to empty it, is not the most uplifting of experiences. It
would seem enough to resign ourselves to a certain quantity of
visible of backlog, as we do a certain level of paper in our in­
tray. Unfortunately there is still the problem of Invisible back­
log.

Invisible backlog is the wealth of applications that users stop
asking for. And further down the road, it is the applications that
users stop thinking about.

The fact that users stop asking may appear a blessing. We may even
attempt to rationalize that if they stop thinking about it, it
relieves them of their own frustrations. But users are the people
who run the daily operations of our organizations. They build
products, sell them, collect payment for them and as a result the
business makes profit or some variation on this theme. It is they
who can tell us how to help them to perform their function more
efficiently so that business can grow. The loss of their input,
their ideas, over the long term is devastating.

Without a doubt the 4th Generation Languages that exist today are
capable of dramatically improving productivity. You do not need to
take my word for this. Above and beyond an intellectual discussion
of their merits and potential, we as vendors are always more than
happy to provide you with an extensive customer reference list of
HPJOOO and 4GL users who will discuss their experiences with you.

Certainly, improving each DP Professional·s productivity by pro­
viding products such as 4GLs is a valid start and possibly even
the most far reaching solution. There are two other areas though
that should be reviewed in order to completely address the issue
of maximizing productivity in an attempt to successfully meet our
needs now and in the future: Packaged Software and End-user Com­
puting.

Packaged Software - Ah, the plight of packaged software. At
one time Turnkey Systems abounded. A basic package, a little
customization, a friendly unassuming minicomputer and voila, a
smooth entry into the world of automation. As educational
institutions added "Computer Science" to their curriculum, a
wealth of programmer/analysts converged on the markedplace and
there appeared a growing "computer literacy" across the
nation.

HP3000
INTERNATIONAL CONFERENCE AL0515
VIENNA 1987

What resulted was a feeling that it would be more cost effective
to employ one's own programmers to develop software that truly
would meet the unique needs of the organization. The movement to
bring development and maintenance in-house was on.

The growing popularity of productivity software, namely the 4GL
has in the past caused many people to ponder the question, "if
inhouse DP Professionals can produce applications at least 10
times faster now then why bother to purchase packaged software at
all?".

Well the answer to that is quite simple, but it is still surpri­
sing the number of organizations that purchase a 4GL and unneces­
sarily and most importantly, unwisely, begin to 're-invent the
wheel' over and over again.

More realistically, 4GLs and Packaged Software make a beautiful
team. Your packages often become the building blocks of your
system while the 4GL allows for the customization, enhancement and
integration.

End-user computing - I can imagine that the same shiver of appre­
hension that just went up my spine may very well have gone up your
spine too.

The enormous growth in popularity and sophistication of the micro­
computer workstation has made this an area worth discussion.

Many requests from users that traditionally required one-off
customized reports can now be adequately handled by the user,
through a combination of electronic spread sheet and graphics
software available for the PC. The major area of concern seems to
be the accessibility of corporate data to the users of this PC
based software. This is a whole area of discussion unto itself and
it is more sensible here to direct you to the many good papers
available that discuss this topic in-depth. In fact, I have one
myself should you be interested.

To recap then, an approach to providing solutions that combines

- Productivity Software (4GLs)
- Packaged Software
- End-user Computing

will put you well on your way into the next decade successfully.

Watching out

I hope at this point you feel comfortable with the role of the
4GL. It certainly appears that their use will be the most effec­
tive solution in our approach to data processing in the next
decade.

HP3000
INTERNATIONAL CONFERENCE AL05/6
VIENNA 1987

The 4GL is new and as such there is still much to learn about how
best to take advantage of its power. From the experiences of those
who have already made the plunge, come the following potential
dangers that it would be wise to be aware of so that your imple­
mentation can be as smooth and successful as possible.

The real danger of a 4GL is in trying to turn it into your entire
solution, i.e. using the 4GL to re-invent the wheel rather than
investigating the availability of packaged software.

A 4GL is not necessarily, and most often not an end-user tool.
Suddenly providing an end-user with.access to your 300,000 custo­
mer records so that he or she can produce for themselves that
"very simple" report can become a disaster. Do they know what an
'Image Key· is and how one can just provide a value for it rather
than serially reading through each customer record looking for the
one they want? One request from the backlog may be removed but
someone has to handle the potenially serious problem of system
performance degradation.

Another danger of the 4GL lies in the DP Professionals approach to
its use. A 4GL is dramatically different by nature than a 3GL. The
basic approach or methodology is different. 'Translating· an ap­
plication from a 3GL to a 4GL will not yield the most efficient
implementation of the application. It is important to re-think the
application, as if you were developing it for the first time,
using the 4GL.

4GLs inherently and by design will cause an increase in the speed
of development of production systems. Two things to watch out for
here are; impact on data and the implementation bottleneck. A
little later under ·managing the 4GL. we will discuss how to
minimize both of these.

Before we move on to a brighter subject, that of the benefits
associated with the use of a 4 GL, there is one last area that
should be reviewed, that of system performance.

It is not necessary to accept significant performance degradation
in return for your productivity gains. There are a number of
extremely good 4GLs on the market today and one in particular,
that is known for its "Speed" on the system. I'd like to take a
moment to discuss a common misconception that seems to be preva­
lent with respect to performance before we move on.

HP3000
INTERNATIONAL CONFERENCE AL05n
VIENNA 1987

Performance

I have often heard it asked "If I buy this 4GL will I need to buy
more memory and disc in order to use it?". There are really two
answers to this question, 'not necessarily· and 'possibly·. Con~
fused? - let me explain.

A good 4GL does not create the need immediately for more power or
resources. But, a good 4GL will probably create the need for more
resources within 12 months of its purchase.

4th Generation applications can and do perform well in
environments. It is not typically the addition of a 4th
production application that chews up system resources,
constant use by a staff of DP Professionals over a
period, let's say one year, that does.

production
Generation
it is the
reasonable

When you consider the quantity of maintenance and new development
that will have occurred it is obvious that the HP3000 is within
one year, handling what would previously have been 3-5 years of
work. It is this volume of new systems and improvements to exis­
ting ones that has caused the need for more power and resources.

The awareness of the impact of the dramatic increase in the volume
of applications on your current system is the most crucial issue
here.

The Benefits

A 4GL is a powerful tool that must be managed properly in order
that it be an effective one for your organization. When managed
properly there are significant benefits to be accrued by the DP
Professional, the user and the organization as a whole. It is
because of these benefits that each and every HP3000 DP department
should be taking a serious look at the acquisition of a 4GL.

* savings, Savings, Savings. Increasing the productivity of exis­
ting DP Professionals could potentially alleviate the need for
additional personnel. Applications both backlogged and new re­
quests, can be put into production at least 10 times more quickly
giving users access to systems to better assist them in their
daily activities. The more productive the users, the more pro­
ductive the business.

* Controlling Maintenance. The nature of a 4GL being predominantly
action rather than logic driven, means that the code itself is
much less and more concise. It is easier and less costly to main­
tain 1000 lines od code than 10000. As applications are put into
production faster, there is a better likelihood that they will
meet the immediate needs of the user. As a result, less time is
needed to perform maintenance tasks that are just bringing a
production system up-to-date with the current needs of the user.
The cause of these dramatic reductions in maintenance is the use

HP3000
INTERNATIONAL CONFERENCE AL05/B
VIENNA 1987

of the prototyping or protocycling approach to systems development
when using a 4GL.

* Morale. It is without a doubt most satisfying to wor~ in an
environment where you are perceived to be doing your job well. By
putting solutions into place quickly for users, the DP Professio­
nal feels accomplishment and users are much more confident about
the DP Department's ability to respond and satisfy their needs.

* Standards. As we discussed earlier, the 4GL assists the DP
Professional by imposing a variety of design standards. Two appli­
cations developed by different people, with a good 4GL, will look
very similar if not almost identical to the user. The system will
function in the same manner i.e. menus, screens, prompting, mes­
sage display. The time needed for a user to become productive on a
new system is minimized. The DP Professional can then be spending
the time previously spent on training the user, on new develop­
ment. These standards manifest themselves also in the code itself.
Not only do the two applications function the same but the code
will be very similar. Readability and standardization of code
account for enormous savings in development and maintanance time.

It is abvious that despite the potential disaster areas in
4GL there are tremendous benefits in using the right one,
ly. I'd like to devote the rest of this paper to the two
Choosing the right one and Managing its use effectively.

Choosing the right one

using a
proper­
issues,

There are really three different levels on which your short list
of 4GLs should be evaluated -

1. Functionality / Performance
2. Comfort
3. User acceptance.

Functionality / Performance - It is at this first level that the
different 4GLs need to be evaluated to determine of they are
capable of being used to put together the type of production
applications you need, that will execute with what you consider
acceptable performance.

Acquiring and using a demonstration tape and visiting or speaking
with reference sites are probably the two most fundamental tasks
which should be undertaken at this stage. Both are time consuming
but there is really no alternative.

Comfort - Each 4GL has its own personality. When designed the
individuals responsible hat their own ideas about what the 4GL
should do will and how the average DP Professional would use it.

HP3000
INTERNATIONAL CONFERENCE AL05/9
VIENNA 1987

There will probably be one style or personality that you and your
personnel will feel the most comfortable with. This is very impor­
tant because ones comfort and confidence in using the 4GL will
determine the degree of productivity improvement that will be
attained.

It is through the use of the trial tape that you can assess the
effectiveness of the vendor's support services, another very im­
portant aspect of the 'comfort' in the use of the 4GL as there is
a large learning curve which everyone will have to go through.

User Acceptance - If the 4GL does everything you wanr it to, the
DP Professionals love it but the users can't stand how the appli­
cations look, we have not necessarily accomplished anything.

Remembering that often the bulk of defaults or standards that the
4GL imposes will be in the end-user interface area, this could
indeed become a problem. During the trial tape period is a good
time to put together something which a number of key users can get
their hands on and evaluate. A trip to a reference site along with
the DP Personnel would probably also be beneficial.

Some Tips

Just a few things to look for that can often be overlooked when
evaluating, a trial tape but are quite fundamental to a successful
implementation -

How well does the 4GL integrate with your exising environment,
i.e. programs, files, security, etc.

How easily does the 4GL allow you to access subroutines in
3GLs. (Don't forget that Fortran pricing routine developed by
someone in 1968 that you must use).

What 'tools/ aids does the 4GL provide to assist with imple­
mentation. i.e. end-user documentation (Don't forget the deve­
lopment bottleneck will quickly be replaced with the implemen­
tation bottleneck)

Effectively Managing the 4GL

Choosing what appears to be the best 4GL for your organization is
an important and crucial first step. Now all you have to do is get
it implemented and then the new systems that will be developed,
implemented.

Having made the purchasing decision I'll assume your selling job
to management, users and DP Personnel has been successful. You now
have a product and alot of people have alot of expectations and
probably some unspoken reservations.

AL05/10

Management

Let's start with management. Technological advances that allow
machines to perform significantly better are commonplace and easi­
ly accepted. Management tends to be far more sceptical about
claims of dramatic improvements in people productivity. Their stop
watches will be out and running soon after the purchase order
leaves the building.

An important aspect of effective management of a 4GL is the set­
ting of expectations. Management should be clear on the fact it
will take a number of development cycles before the true producti­
vity gains can be realised. Have them put away the stop watches
for at least the first 6 months, giving the DP organization time
to settle in.

Be conservative. It is much more fun to exceed expectations and be
here later.

The Users

Earlier in the paper 'Prototyping· was mentioned. Briefly. the
nature of the 4GL lends itself well to a development methodology
where the users and DP Professionals interact on a regular and on­
going basis to work an application from an initial prototype to a
fully functional production system. This methodology requires the
commitment by knowledgeable users to the development process.

Again we are speaking of expestations. Constant dialogue between
DP and users was one of the first things to go as a result of the
lengthy development cycle typical with 3 GLs. This breakdown in
communication is the real culprit behind the devastating problem
of invisible backlog.

It will take time and practice to put this dialogue back into
place, to re-open the lines of communication. The commitment must
be there. If it is not, applications will be devloped more quick­
ly, but they will still not meet the real needs of the user.

The DP Department and Professionals

Finally, the DP Department and the DP Professional. Being asked to
play with a couple of 4GLs as a short term project is one thing
but being given a 4GL and being told to "chuck" Cobol is quite
another.

"Keeping an open mind" as an accepted philosophy will be your only
chance of survival.

HP3000
INTERNATIONAL CONFERENCE ALOS/11
VIENNA 1987

During the evaluation cycle the following areas that pertain to
the DP department and/or each DP Professional should be addressed:

1. Data security and conrol
2. Development Methodology
3. Fear.

Data Security and Control - As the development cycle speeds up and
your system becomes populated with new applications and all of
their associated files, it es extremely important to have data­
bases and files organized and documented. If they are not, you
could find yourself in a reactionary state dealing with one disas­
ter after another. The 4GL will have effectively take control of
you.

Development Methodology - 4GLs are not best used with the deve­
lopment methodologies that we have spent years mastering using
3GLs. Frozen specifications, long development cycles, masses of
program documentation and maintenance of analysis and design bugs
are a thing of the past. Prototyping / Protocycling is the deve­
lopment methodology that is required with a 4GL. I would recommend
that you take the time to review all current literature on the
subject of prototyping.

The point to be made here is that your current methodologies will
not work with your new 4GL. A full understanding of and adherence
to a new methodology must occur early on with the 4GL.

Fear - In reality the average DP Professional has spent his or her
formal education and years of practical experience refining the
skills of application design and development using a 3rd Genera­
tion Language. They are competent and confident in their abili­
ties. The implementation of a 4GL means that there is a new lear­
ning curve to be addressed and many of the skills, so finely
refined are not applicable in this new approach.

There is potentially fear for ones job and alleviating that, fear
of success in ones jobs with the new tool.

Effective use of a 4GL does require an emphasis on some skills
that were not as important before - namely communication skills,
as the bottleneck shifts from development to implementation.

It is important for DP management to take a good look at the
people in their department and individually evaluate the level of
re-training each person will require and prepare the appropriate
education.

starting
way in
building
bringing

HP3000
INTERNA T/ONAL CONFERENCE AL05112
VIENNA 1987

off with the straight forward applications will go a long
assisting everyone in managing the new learning· curve,
confidence, nailing doing development guidelines and

users back into the development cycle.

In Summary

4GLs are serious and valuable new tools to assist in managing the
requirements of the Data Processing Department in the decade to
come.

Much thought and care must be taken in their selection and imple­
mentation - to ensure their success with your organization.

Most important is the setting of realistic expectations and the
understanding that a 4GL will inherently change the nature of how
DP professionals do their job.

If managed effectively the acquisition of a 4GL can mean tremen­
dous savings and a much needed breath of fresh air.

Abstract

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Migrating PowerHouse Appllcatlons to New Machine Environments

Paul Elder
Jim Sinclair

COGNOS INCORPORATED
3755 Riverside Drive

Ottawa, Ontario
Canada

K1G3N3

AL06/1

One normally changes computer environments in order to reduce cost, increase performance, increase
reliability, increase capacity or some combination of these. The new architecture machines from HP promise
to deliver all of these.

Unfortunately, when one changes computer environments the old software does not necessarily work in
the new environment This paper describes how to migrate your PowerHouse applications from the
HP3000 to HP's new architecture machines (MPE/XL machines) with as little pain as possible.

Some constructs in PowerHouse relate to specific features of MPE, IMAGE or KSAM on the HP3000.
Although similar features may be available on the new machine the means of accessing them may be slightly
different. This paper describes what constructs in PowerHouse are non-portable and what to do about
them.

Migrating the software to a new environment is only half the question when moving PowerHouse
applications. Migrating the data to the new machine also presents a problem. Migrating the data can be as
simple as doing a STORE on your HP3000 and a RESTORE on your new machine, or as difficult as taking
data apart bit by bit and putting it back together again in a new formal This paper discusses how to
recognize when you have a data conversion problem, and how to go about getting the data converted
properly.

HP3000
INTERNATIONAL CONFERENCE AL06/2
VIENNA 1987

1. Migrating Your Powetflouse Appllcatlons

1. 1 What Do I Do First?

When you receive your new MPEIXL machine contact your local Cognos representative. Provide your rep
with:

1. The model and serial number of the machine you are upgrading from (if you are upgrading),
and

2. The model number and serial number of the new machine you have received.

Your Cognos representative will arrange for you to receive a copy of Compatibility Mode PowerHouse
licensed to run on your machine, a copy of Native Mode PowerHouse licensed to run on your machine, and
the upgrade documentation sel These copies of PowerHouse can then be installed on your MPEIXL
machine. It is not recommended that you alt!!mpt to install earlier versions of PowerHouse under MPE/XL,
you are not licensed to use them on MPEIXL, and they are not guaranteed to work.

1.2 The Recommended Mlgratton Strategy

When migrating your PowerHouse applications you do not have to do them all at once provided you follow a
few simple rules.

1. DO NOT recompile a dictionary with Native Mode ODD until all of the PowerHouse
modules (screens, requests, and reports) that use that dictionary have been recompiled with
Native Mode PowerHouse. This is because Native Mode PowerHouse products will run off of a
5.01 created ODD dictionary, a Compatibility Mode created ODD dictionary, or a Native Mode
created ODD dictionary, but Compatibility Mode PowerHouse products will only run off a 5.01
created ODD dictionary or a Compatibility Mode created ODD dictionary.

2. DO NOT convert your data files until all of the PowerHouse applications that use the data files
have been converted to Native Mode.

3. DO NOT try to run Compatibility Mode compiled modules with Native Mode products.

4. DO NOT try to run Native Mode compiled modules with Compatibility Mode products.

Whether you convert all of your applications at once, or one at a time, your conversion must flow through
the following five steps:

1. Prepare your application for migration under MPEN.

2. Convert to running Compatibility Mode PowerHouse. (The brave can skip this step).

3. Convert to running Native Mode PowerHouse.

4. Convert your MPE, KSAM and PowerHouse subfiles to use IEEE floating point formats. (If you
don'.I store floating point data you can skip this step).

5. Convert your TurbolMAGE databases to HPIMAGE databases. (Floating point conversions in
databases must be done concurrently with changing databases).

HP3000
INTERNATIONAL CONFERENCE AL0613
VIENNA 1987

2. Program Conversion

2.1 Preparation on MPEIV

Before bringing your application up on your MPE/XL machine, there are a number of things that must be
done first on your MPEN machine.

1. Upgrade your PowerHouse application to use 5.01 PowerHouse. There is no direct upgrade
path to MPE/XL from earlier versions of PowerHouse.

2. If you have not done so already, upgrade your IMAGE databases to TurbolMAGE. There is no
support for pre· TurbolMAGE databases under MPE/XL.

3. STORE all of your UDCs necessary for running PowerHouse.

4. STORE all data files, MPE, KSAM, permanent PowerHouse Subfiles and TurbolMAGE databases.

5. STORE all source and object PowerHouse code for your dictionaries, screens, reports, and
requests.

2.2 Conversion to Compatibility Mode PowerHouse

Once your MPE/XL machine is up and running satisfactorily you can migrate your applications to
Compatibility Mode by carrying out the following steps:

1. Install Compatibility Mode PowerHouse.

2. RESTORE all the files previously STORED on your MPEN machine.

3. Modify your UDCs to point to the Compatibility Mode versions of PowerHouse installed in step
1 above.

4. Set all the necessary UDCs, at the system, account, and US4lr level.

5. If you have hard coded the program names of the PowerHouse products (such as
QUIZ.DD501 E.COGNOS) in any of your application modules, you will have to go through and
edit them to point to the new Compatibility Mode products and then recompile. The
recommended way to do this is to point to the products in the group CURRENT.COGNOS. This
way you will not have to change your source code again when you upgrade to a new version
(such as Native Mode PowerHouse) in the future.

6. You are ready to run Compatibility Mode PowerHouse on your new MPE/XL machine. Note
that there is no need to recompile your dictionary or any of your screens, reports, or
requests, other than the changes you made in step 5 above. Test the new application. If all goes
well, continue on to convert to Native Mode PowerHouse. If you discover problems, contact
Cognos Technical Support.

2.3 Conversion to Native Mode Powertlouse

1. Install Native Mode PowerHouse.

2. If you skipped conversion to Compatibility Mode PowerHouse, RESTORE all the files
previously STORED on your MPEN machine.

HP3000
INTERNATIONAL CONFERENCE AL06/4
VIENNA 1987

3. Change your UDCs to point to the Native Mode versions of the PowerHouse products.

4. Set all the necessary UDCs, at the system, account. and user level;

5. Recompile your PowerHouse modules using the Native Mode versions of the products. DO NOT
recompile your dictionary with Native Mode ODD unless you have converted all applications
that use the dictionary.

6. Test the new application. If all goes well, continue on to convert your data. If you discover
problems, contact Cognos Technical Support.

HP3000
INTERNATIONAL CONFERENCE AL0615
VIENNA 1987

3. Data Conversion

3. 1 conversion of MPE Flies

All forms of MPE files supported in PowerHouse 5.01 under MPEN are also supported on MPE/XL.
Permanent MPE files can be moved by doing a STORE on your MPEN system and a RESTORE on your
MPEIXL system. The only data types that will need attention are floating point numbers.

3.2 conversion of KSAM Flies

For first release of MPE/XL, KSAM files will be supported on MPEIXL through KSAM INTRINSICS running in
Compatibility Mode. This means that all accesses to KSAM files will result in a switch to Compatibility Mode to
execute the INTRINSIC. This leaves KSAM applications with less room for performance improvements since
the file system (KSAM) is not in Native Mode. KSAM files can be moved by doing a STORE on your MPEN
system and a RESTORE on your MPE/XL system. The only data types that will need attention are the
floating point numbers.

3.3 conversion of PowerHouse Subflles

All Subfile formats supported by PowerHouse 5.01 under MPEN are also suppored on MPEIXL. Subfiles
can be moved by doing a STORE on your MPEN system and a RESTORE on your MPE/XL system. The
only data types that will need attention are floating point numbers.

3.4 Conversion of IMAGE Flies

The central issue of almost every migration to the MPE/XL machines will be the choice of the IMAGE
database system to use. Native Mode PowerHouse supports all the various forms of IMAGE available. Let's
review the key features of each.

3.4.1 Types of IMAGE

The MPEIXL machines support both TurbolMAGE, and HP's new network database HP Image.
Accompanying HP Image is TurboWindow, which provides access to HP Image as If ii were TurbolMAGE.

TurbolMAGE. TurbolMAGE is a Compatibility Mode product. Everything should be Identical to the way it
was on MPEN systems. PowerHouse applications require no changes to work with TurboiMAGE.

TurboWindow TurboWindow allows access to HP Image databases as if they were Turbolmage databases.
Although there are a few TurbolMAGE features not supported by TurboWindow, PowerHouse does not
use any of these. PowerHouse applications require no modifications to run with TurboWindow.

Note that TurboWindow will not permit utilization of most of the new HP Image features, such as relation
sets. The objective of TurboWindow is to provide support for TurbolMAGE while taking advantage of the
improved performance of the Native Mode database system.

HP Image. HP Image is a Native Mode network database system. HP Image features which affect
PowerHouse are:

• HP Image is an IMAGE look-alike built on a relational core. The nature of a relational core
means that:

All HP Image Intrinsic calls (HPI calls), such as HPIGET, HPIPUT, etc .• must be within a
transaction defined by HPIBEGIN and HPIEND calls. Changes made in a transaction are only
committed and made visible to other database users when the transaction is ended.

HP3000
INTERNATIONAL CONFERENCE AL06/6
VIENNA 1987

Once a transaction is committed (via HPIEND), all context is lost. This includes chain and
current record, as well as all locks.

HP Image provides automatic page level locking. Accessing a page via HPIGET or
HPIFIND causes a shared read lock on the page. Changing a page causes an exdusive page lock.
Locks are only released when a transaction is ended.

• Changes can be made to pages already having shared read locks, but the transaction changing
the page cannot commit until all read locks are released.

• Explicit locks are allowed at the database and dataset levels. HPILOCK is only allowed within a
transaction. Locks may only be released when the transaction is ended.

• All HPI calls except HPILOCK wait unconditionally until all required locks are
granted. HPILOCK allows both conditional and unconditional locking.

Transactions may be rolled back with HPIUNDO at any time prior to the HPIEND
call. All changes made In the transaction are undone. HPIUNDO ends the
transaction and releases all locks.

• If HP Image detects that a deadlock would be created by an HPI call, then the transaction
containing that call will be rolled back and ended.

• HP Image supports a new dataset type, the RELATION set. A RELATION set incorporates the
features of MANUAL MASTER and DETAIL sets. In addition, generic access is allowed on
RELATION set key Items.

• Each HP Image database belongs to a Database Environment (DBE). The DBE is the unit of
transaction logging and recovery. Transactions may include several databases from the same
DBE.

• HP Image has no mechanism for simultaneously committing transactions. Thus, changes to
data in several DBEs caMot be guaranteed to jointly commit or jointly fail.

• HP Image allows up to eight sort items on each DETAIL and RELATION set search
item. Extended sort items are not supported, and sort items may be positioned anywhere in
the dataset.

3.4.2 Supporting HP Image

The preceding list of HP Image differences has meant that PowerHouse must handle HP Image differently
from TurbolMAGE. The next sections will detail how HP Image is supported.

Djctjonary Suooort The FILE statement in ODD has been expanded to support HP Image datasets. In
addition, the KEY syntax on the ITEM statement has been expanded to cope with multiple sort items. The
FILE syntax for HP Image datasets is:

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

FILE name ORGANIZATION (AUTOMATIC (MASTER)
(DETAIL
(MASTER
(RELATION

OF databasename IN dbenvironment
[PASSWORD string)
(TYPE HPIMAGE)
[OPEN datasetname)
[CAPACITY n I
(COPYLIB copylibkey I
[CREATEINOCREATE)
[DESCRIPTION string [[,) string .••)
(read/write lists I

Note that a database environment must be specified in addition to the database name.

The ITEM statement for HP Image search items is:

ITEM element [storagetype]
[CREATE)
[(UNIQUEIREPEATING) [PRIMARY) KEY

[LINKS TO file
(SORTED ON item (ON item] ••.) J

AL0611

Rea<!jna and Concurreocv The automatic locking performed by HP Image can lead to severe losses of
concurrency In on-line systems if care is not taken to limit transaction size. Of particular concern are what
might be called read transactions. That is, a transaction that only Involves database reads. QUIZ reports and
the QUICK FIND procedure are the primary users of read transactions in PowerHouse. QTP wlll also use
read transactions when there are no outputs to HP Image.

The obvious method of placing the entire read transaction within an HPIBEGINJHPIEND pair can drastically
affect database concurrency. A modest QUIZ report could end up holding read locks on large parts of a
database, effectively preventing any updating activity. Even worse, QUICK FIND and SELECT modes could
have much the same affect.

To circumvent these problems, PowerHouse implements read transactions as a series of much shorter HP
Image transactions. Before moving to a new transaction, the database context must be saved, and then
re-established in the new transaction. Figures 1 and 2 show how this is done.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Starting a chained read:
HPIBEGIN

HPIFIND

repeat
HPIGET mode 5

save current record number
HPIEND

Continuing a chained read:
HPIBEGIN

HPIFIND
HPIGET mode 4 with saved record number

repeat
HPIGET mode 5

save current record number
HPIEND

Figure 1. Multlple transaction chained read In HP Image

Starting a sequential read:
HPIBEGIN

repeat
HPIGET mode 2

save current record number
HPIEND

Continuing a sequential read:
HPIBEGIN

HPIGET mode 4 with saved record number

repeat
HPIGET mode 2

save current record number
HP IE ND

Figure 2. Multlple transaction sequentlal reads In HP Image

AL06/8

The optimal number of HIPGETs done within a single transaction is a balance between concurrency and
optimal access time. One HPIGET per transaction would provide maximum concurrency. On the other hand,
there is little value in locking a page only to immediately relock it. Also, the cost of the three or four extra HPI
calls could easily become prohibitive. At this point, no good data is available to indicate what the best
solution is.

OTP Locking and Transactions The recommended OTP locking strategies involve opening all files and
applying database or dataset locks that are held for the duration of the RUN or REQUEST. The nature of HP
Image locks means that the lock duration must also be the transaction duration. Thus, REQUEST level
locking means that each request will be contained in a single HPIBEGIN/HPIEND pair. Similarly, RUN level
locking implies a single, RUN level transaction.

HP3000
INTERNATIONAL CONFERENCE AL0619
VIENNA 1987

RUN and REQUEST level transactions have both advantages and disadvantages. On the positive side,
they can be used to guarantee that no changes are committed unless the RUN or REQUEST succeeds. On
the other hand, an automatic rollback of 500,000 updates could take a tong time.

Finally, a word about UPDATE level locking. When using this locking method, OTP does the following:

During INPUT PHASE, a read transaction similar to QUIZ's is used to improve database
concurrency.

During the OUTPUT PHASE, OTP defines transactions about each individual output action. For
example, changing an existing record would involve calls to HPIBEGIN, HPILOCK, HPIGET
(reread, and checksum), HPIUPDATE, and then HPIEND. This is the same sequence of calls
that would be used with TurbolMAGE.

While UPDATE level locking allows concurrent database access, it does not provide complete consistency,
nor can it take full advantage of Iha HP Image transaction rollback facility. Performance is also adversely
affected by UPDATE level locking.

QUICK Transactjons, QUICK makes use of both read and update transactions. Read transactions are used
in FIND and SELECT modes to retrieve each screen load of data. Read transactions are also used when
performing edit lookups. Update transactions are used in the UPDATE procedure.

In FIND or SELECT mode, QUICK begins a new read transaction every time a new screen load of data is
requested. The transaction is terminated before any terminal reads are done. QUICK does not maintain
locks or transactions across terminal reads! QUICK saves the current context and then restores it again
when the next screen load of data is requested. As with other file types, changed records are reread and
checksummed as part of the PUT verb processing. Automatic read locks are not used to hold a lock on data
being viewed.

UPQATE Procedure. The function of QUICK's UPDATE procedure is to commit all data changes to file. If
Iha update fails, QUICK will rollback any changes made by the failed UPDATE procedure. Thus, the QUICK
UPDATE procedure is the natural scope for an update transaction. QUICK begins Iha UPDATE procedure
with an HPIBEGIN call. It is terminated with either an HPIEND or an HPIUNDO call. It is terminated with either
an HPIEND or an HPIUNDO call. The following table relates Iha HP Image calls used to the verbs in the
UPDATE procedure.

TABLE1.

HP3000
INTERNATIONAL CONFERENCE AL06/10
VIENNA 1987

QUICK Verb HPI Action

SfJIRll.CG Marks database for indusion
in update transaction.

LCO< HPIBEGIN to start transaction if
not already started.
HPILOCK.

PUT HPIBEGIN to start transaction if
not already started.
Re-read wilh HPIGET and
recompute checksum.
If checksums are 1he same
HPIPUT, HPIDELETE, or HPIUPDAlE

SitRCG HPIEND

l.N.00< ignored

Any error HPIUNOO

HP Image calls corresponding to verbs In QUICK UPDATE procedure.

QUICK Rollback When dealing with HP Image databases within the same Database Environment, QUICK
does not. maintain rollback information. Instead, QUICK relies upon HPIUNDO to do the rollback. Rollback
information continues to be kept for other file organizations. QUICK will only commit an HP Image
transaction after all updates involving other file organizations have succeeded.

When QUICK must update files from several Database Environments, rollback information must be kept for
all DBE's except one. This is because HP Image cannot simultaneously commit several transactions. QUICK
will commit all the DBE transactions for which it has kept rollback information after updates to other file
organizations have succeeded, but before the last DBE transaction is committed. In this way, QUICK can
attempt manual rollbacks on the committed transactions if the last commit should fail.

Coojng wjth Automatic Rollback When using HP Image either directly or through TurboWindow,
PowerHouse must deal with a transaction being rolled back by HP Image itself:

• If a read transaction is rolled back, PowerHouse will retry from the last successful read.
After repeated failure, it will give up.

• If HP Image rolls back a QUICK update transaction, the QUICK UPDATE procedure will fail,
and result in a full rollback of any changes. The changes will still be on the screen, so that the
user can retry the update.

• If an update transaction fails in OTP, further action is controlled by the error actions defined
for the request. These allow either for processing to continue at the next transaction or for
run/request termination. Under no circumstances will the transaction be retried.

HP3000
INTERNATIONAL CONFERENCE AL06111
VIENNA 1987

Effects on QUICK Procedure Coda The FIND procedure has an implied HPIBEGIN and HPIEND pair
defining a read transaction enveloping it.

The UPDATE procedure has an implied HPIBEGIN and HPIEND pair defining a read transaction with intent
to write enveloping il STARTLOG verbs encountered within an UPDATE procedure do not start a new
transaction unless an explicit STOPLOG verb has been used to close the implied transact. It is VERY
STRONGLY recommended that you do not create more than one transaction in your UPDATE
PROCEDURE. If you do, roll back recovery may be impossible.

Outside of Iha FIND and UPDATE procedures GET and PUT verbs will be eveloped with a HPIBEGIN
HPIEND pair to fonn a stand alone transaction, unless explicit ST ARTLOG and STOPLOG verbs are used to
define a transaction.

The net result of these implied HPIBEGIN and HPIEND calls is that most QUICK procedure code should
function without change. The one construct that must be reviewed is the use of STARTLOG and
STOPLOG verbs because they now define HPI transactions.

3.5 Conversion to IEEE Floatng Point Format

ff you use floating point numbers you will have to convert to the new IEEE floating point fonnats.

3.5.1 HP3000llEEE Floating point types

The table below summarizes the floating point types available on the MPE/XL machines.

Number of Bils Range Precision
Fonnat

Exponent Mantissa Smallest Largest (Digils)

Float4 IEEE 8 23 1.4e-45 3.4e38 7.2
HP3000 9 22 8.6e-78 1.2e77 6.9

Floats IEEE 11 52 2.oe-323 7.0e307 15.9
HP3000 9 54 8.6e-78 1.2e77 16.5

TABLE 2. MPE/XL Floating Point iypes

There are restrictions on the usage of the IEEE and HP3000 fonnats:

• Compatibility Mode programs use HP3000 format floats. There is no supported mechanism
for using the IEEE formats.

• Native Mode programs use IEEE format floats. A Native Mode intrinsic is available to convert
between the various fonnats.

• Turbo!MAGE only supports HP3000 format floats as item types.

• .HP image only supports IEEE format floats as item types.

The float format used in data files will affect the mix of programs that can access these files, and potentially
affect program performance.

HP3000
INTERNATIONAL CONFERENCE AL06/12
VIENNA 1987

3.5.2 PowerHouse Support

Native Mode PowerHouse will support all four floating point formats as item types. Item type syntax has
been changed to indicate this. See Figure 1. If IEEE/NONIEEE is not specified, a default format is taken
from the dictionary options. A default format may be declared on the OPTIONS statement in the dictionary. If
no default format is specified, then IEEE is assumed. Note, however, that when PowerHouse is run with a
5.01 compiled dictionary or a Compatibility Mode compiled dictionary, that the default float format will be
NON IEEE.

float-item-type is:
[IEEE] FLOAT [SIZE (4]]
[NON IEEE] (8]

float-format-option is:
[FLOAT FORMAT {IEEE }]

{NONIEEE}]

Figure 3. PowerHousa ftoat-ltam-typa and QDD OPTIONS lloat-fonnat-optlon definitions.

3.5.3 Changes In Precision and Range

Converting between floating point types can result in loss of precision or range overflow. There are
techniques to detect each of these using PowerHouse.

LoSS of prec!sjon. Precision loss can be detected by converting the source type to the target type, and
then back to the source type. If the original and final values differ, then precision has been losl This simple
scheme gets slighdy complicated because the most precise float format available to Native Mode
PowerHouse for internal computadons is IEEE float 8. The trick is to use the CHARACTERS function to do
the final comparison so that no calculation conversions must be made:

; ; Precision loss If Original <> Converted

DEFINE Original CHAR* 8 • CHARACTERS (original·ftoat)
DEFINE New-type new-type • original·float
DEFINE Old·type old-type = New-type
DEFINE Converted CHAR * 8 = CHARACTERS (Old-type)

Floating point precisions are shown in Table 1.

Range overflow. Range overflow may be caught by taking advantage of zero being the result of
expressions with conversion errors.

; ; Range overflow if Original <> 0 and Converted =0

DEFINE Original old-type • original-float
DEFINE Converted new-type • original-float

When using OTP, remember to include ON CALCULATION ERRORS REPORT on the REQUEST
statement.

HP3000
INTERNATIONAL CONFERENCE AL06/13
VIENNA 1987

Approximate floating point ranges are shown in Table 1. Note that if you experience range problems, then
you will have difficulty getting QUIZ to report these values, as PowerHouse does not support scientific
notation.

3.5.4 Internal Calculation Precision

PowerHouse converts aU numeric item values into Float 8 format when perforriling calculations. Native Mode
PowerHouse uses the IEEE Float 8 format. As a result, calculation precision will be slightly less than was
provided by HP3000 PowerHouse. This is likely a problem only when calculations require an accuracy close
to 16 digits.

3.5.5 Preparing for Conversion

When preparing to convert data files to the new floating point formats several issues must be considered:

Redefinmons. If the floating point item to be converted is part of a redefinition, it is possible that it does not
contain valid floating point data

Figure 2 below shows the record layout for a file that tracks variable names, types and values. Whether
FLOAT-VALUE or CHAR-VALUE is used as the value depends on whether VAR-TYPE indicates a numeric
or character variable. Clearly FLOAT-VALUE cannot be converted without knowing the value of VAR-TYPE.

Note that files for which several record layouts are defined are another form of item redefinition, and should
also be considered when planning conversion.

Conversjon Viabiljty. Prior to converting, it is strongly recommended that each file be edited to confirm that
existing float values can be stored in the new formats. This is of particular importance when converting from
HP3000 FLOAT SIZE 4 to IEEE FLOAT SIZE 4, as the target type has a smaller value range.

RECCflD A
ITEM VAR-NAME
ITEM VAR-lYPE
ITEM VAWE-AREA
REDEFINED BY

ITEM R.OAT-VALUE
END

REDEFINED BY
ITEM CHAR-VALUE
END

CHAR
CHAR
CHAR

FLOAT

CHAR

Figure 4. A Record defining a variable name, Its type and value.

SIZE20
SIZE 1
SIZE20

SIZE 8

SIZE20

Sample OTP runs have been included in Appendix A that will edit HP3000 floats and produce a subfile
containing all problem records.

3.5.6 Converting

Once convinced of your success, you can start your conversion. Keep the following in mind as you go
about your business.

HP3000
INTERNAnONAL C NFERENCE AL06/14
VIENNA 1987

• Only convert one file at a time, if at al possible.

• Remember to edit your data carefully before starting a conversion.

• Do not even think of converting without first making a complete backup!

TurbolMAGE to HP IMAGE If converting from TurbolMAGE to HP Image, and If all float Items are explic:itly
declared to IMAGE, and If float item values are not context sensitive, then DBMIGRA T may be used.
DBMIGRAT is HP's TurbolMAGE to HP IMAGE conversion tool. In the above circumstances, It Is likely to be
the most effective tool available. Remember that DBMIGRAT converts the whole database In one fell
swoop.

OTP and subfiles This scheme wiU work for any file. It involves the following steps:

1. Unload the file to be converted into a permanent subfile.

2. Change the dictionary to reflect the new floating point type.

3. Use QUTIL to recreate the file.

4. Reload the file from the saved subfile.

Note that Step 4 will require conditional Item final code if float values are context sensitive. Sample QTP
runs have been provided In Appendix A to aid in this case. Extreme care must still be taken to guarantee
that assignments only occur in the proper context.

Ona Off programs A last option is to write a special conversion program in your favourite (next most
favourite) programming language. This should not be necessary, but have fun!

3.5.7 Float Conversion Checkllst

Here Is a list of the things you should do (in the order you should do them) to convert floating point formats.

1. Backup the files you want to convert

2. Use QTP to run edit checks on the items to be converted. The sample QTP runs provided in
Appendix A illustrate each type of edit necessary.

3. If items to be converted are part of redefinitions, analyze these carefully to determine
necessary contexts. Do not neglect the other items In the same redefinition!

4. If you are happy with your progress so far, choose the conversion tool:

L Use DBMIGRAT If moving from TurbolMAGE to HP IMAGE, AND if you have no
redefinitions, AND if all float items are declared to IMAGE, AND if you want to do all the
files in the database at once.

b. Use QTP and subfiles to convert one file at a time and to cope with redefinitions. The
sample QTP runs should help you with redefinitions.

c. Write your own conversion program if you just can't wait to try out a Native Mode
compiler.

5. Convert.

HP3000
INTERNATIONAL CONFERENCE AL06115
VIENNA 1987

4. Addltlonal Conversion Notes

4.1 Process Handllng

Process Handling under MPEIXL will be very similar to process handling under MPEN. Compatibility Mode
PowerHouse will be able to call UDCs, other Compatibility Mode programs, and Native Mode programs.
Native Mode PowerHouse will be able to call UDCs, MPEIXL script files, Compatibility Mode programs, and
other Native Mode programs. All of the differences will be handled within PowerHouse with the COMMAND
and PROGRAM statements and the RUN verb. There will be no syntax changes required.

Compatibility
M:lde

Programs

Figures. Process Calls AlloWed

4.2 Obsolete Oatatypes

Compatibility
M:lde

PowerHouse

Native Mode
Programs

Native
Moil

PoNerHouse

UDC's
MPE/XL
Script
Files

A number of item data types were declared obsolete in 5.01. Table 3 gives a list of .these obsolete
datatypes. Compatibility Mode PowerHouse and Native Mode PowerHouse continue to support these
obsolete data types, but it is strongly recommended that you move to the new forms.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Item Datatype Equivalents

BINARV3
BINARY4
DECIMAL
IXlB..E
lOGCAL
l!N3
FEAL

~lE
CD'\lE

Table 3. Obsolete Datatypes

New

QiARPCTffi

INTEGER SIZE 6
INTEGER SIZES
FftH'O't\A

INTEGER SIZE4
INTEGER LNSIGNEDSIZE2
FLOAT SIZES
FLOATSIZE4

JDAlE
A-DAlE

AL06/16

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Appendix A· QTP Floating Point Edit and Reload Runs

This first run produces a subfile showing all problem records:

' REQUEST Edit-Roats ON CALCULATION ERRORS REPORT

ACCESS float-file

: : For each Float 4 conversion add copies of these: ..
DEFINE Origlnal4-n NONIEEE FLOAT SIZE 4 &

• float4-n OF float-file

DEFINE Converted4-n IEEE FLOAT SIZE 4 &
• float 4-n OF float-file

: ; For each Float 8 conversion add copies of these:

DEFINE Original8-n CHAR • 8 &
•CHARACTERS(float8-n OF float-file)

DEFINE Naw8-n IEEE FLOAT SIZE 8 &
• float8-n OF float-file

DEFINE Old8-n NONIEEE FLOAT SIZE 8 &
·Naw8-n

DEFINE Converted8-n CHAR • 8 &
.. CHARACTERS(Old8-n)

: ; Create Problems subfile ..
SUBFILE c:problems> KEEP INCLUDE float-file &

IF Original4-1 <> 0 and Convartad4-1 = O. &
or&

Original4-n <> O and Converted4-n .. o &
or&

Orlginal8-1 <> ConvertadS-1 &
or&

Origina18-n <> Converted8-n

AL06/17

HP3000
INTERNATIONAL CONFERENCE AL06/18
VIENNA 1987

The second run loads and converts a floating point data file from a subfile. Conditional ITEM FINALs are
added to handle context sensitive cases:

REQUEST Reload-Floats

ACCESS •reload-subfile

OUTPUT Roat-file ADD

; ; For each context sensitive Roat item include ITEM FINALs
; ; Remember to Include ITEM FINALS for other items that
; ; overlap with this float, too.

ITEM Roat-n FINAL Roat-n OF reload-subfile &
IF Roat-context

ITEM overlap-n FINAL overlap-n OF reload-subfile &
IF NOT Roat-context

ABSTRACT

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

INFORMATION SYSTEMS PROTOTYPING

Orland Larson
Hewlett-Packard

Cupertino, California

ALOl/1

One of the most imaginative and successful
user interfaces and generally improving
effectiveness of application development
INFORMATION SYSTEMS PROTOTYPING.

techniques for clarifying
the productivity and

is a methodology called

With waiting time for new applications running into several years and
those applications failing to meet the users needs, managers as well as
users have been searching for more efficient and effective approaches
to systems development.

Prototyping, as an application
methodology, has evolved into a
professional and the user.

system design and development
real option for both the MIS

This paper reports on the growing body of knowledge about prototyping.
It begins by reviewing the changing role of data processing, the
challenges facing the MIS organization, and the traditional approach to
application development. It then defines prototyping followed by the
step-by-step prototype development process. The advantages and
disadvantages, as well as the cost and efficiency of prototyping, will
be discussed followed by the essential resources neccessary to
effectively prototype applications. In conclusion, to illustrate the
benefits of prototyping, the speaker will present success stories of
systems developed using the prototyping approach.

INTRODUCTION

THE CHANGING ROLE OF DATA PROCESSING

The data processing department has changed dramatically since the
1960s, when application development as well as production jobs were
usually run in a batch environment with long turnaround times and out­
of-date results.

The 1970s were a period of tremendous improvement for the data
processing environment. One of the key developments of that period was
the development and use of Data Base Management Systems (DBMS). This
provided the basis for on-line, interactive applications. In addition,
computers and operating systems provided programmers the capability of
developing application programs on-line, while sitting at a terminal
and interactively developing, compiling, and testing these
applications. The end user was also provided with easy-to-use, on-line
inquiry facilities to allow them to access and report on data residing
in their data bases. This took some of the load off the programmers
and allowed them to concentrate on more complex problems.

HP3000
INTERNATIONAL CONFERENCE AL0712
VIENNA 1987

During the 1980s, the data base administrator and MIS manager will see
increased importance and use of centralized data dictionaries or
"centralized repositories of information about the corporate data
resources. Simpler and more powerful report writers will be used by
the end user and business professional. The programmer will see the
trend towards the use of high-level, transaction processing languages,
also known as fourth generation languages, to reduce the amount of code
required to develop applications. Finally, the tools have been
developed to effectively do application prototyping, which will provide
benefits to the end user as well as the application programmer and
analyst.

Throughout the 70s and 80s, information has become more accurate,
reliable, and available, and the end user or business professional is
becoming more actively involved in the application development process.

CHALLENGES FACING MIS

One of the MIS manager's major problems is the shortage of EDP
specialists. A recent Computerworld article predicted that by 1990
there will be 1/3 of a programmer available for each computer delivered
in this country. Software costs are also increasing because people
costs are going up and because of the shortage of skilled EDP
specialists. The typical MIS manager is experiencing an average of two
to five years of application backlog. This doesn't include the
"invisible backlog," the needed applications which aren't even
requested because of the current known backlog. In addition, another
problem facing MIS management is the limited centralized control of
information resources.

The programmer/analyst is frustrated by the changeability of users'
application requirements (typically, the only thing constant in a user
environment is change). A significant amount of programmers' time is
spent changing and maintaining users' applications (as much as 60 to 80
percent of their time). Much of the code the programmer generates
includes the same type of routines such as error checking, formatting
reports, reading files, checking error conditions, data validation,
etc. This can become very monotonous or counterproductive for the
programmer.

The end user or business professional is frustrated by the limited
access to information needed to effectively do his/her day-to-day job.
This is especially true for those users who know their company has
spent a great deal of money on computer resources and haven't
experienced the benefits. The users' business environment is changing
dynamically and they feel MIS should keep up with these changes. MIS,
on the other hand, is having a difficult time keeping up with these
requests for application maintenance because of the backlog of
applications and the shortage of EDP specialists. Once the user has
"signed off" on an application, he is expected to live with it for a
while. He is frustrated when he requests what he thinks is a "simple
change" and MIS takes weeks or months to make that change.

HP3000
INTERNATIONAL CONFERENCE AL01/3
VIENNA 1987

TRADITIONAL APPROACH TO APPLICATION DEVELOPMENT

There are some myths concerning traditional application development:

- Users know exactly what they want
- Users can effectively communicate their needs to MIS
- Users needs never change.

The traditional approach to application development has serious
limitations when applied to on-line. interactive information systems
that are in a state of constant change and growth. Communications
among the user, analyst, programmer, and manager tend to be imprecise,
a detailed analysis prolongs the process to the annoyance of the user,
and specifications are either ambiguous or too voluminous to read. To
compound this problem, the user is often requested to "freeze" his
requirements, and subsequent attempts at change are resisted.

Let's review the traditional approach to application development.

TRADITIONAL APPROACH
TO APPLICATION DEVELOPMENT

USER ANALYST PROGRAMMER

I REQUEST f'OR I)II

• APPLICATION ·~...._--'--'---'

I SP~::,,°6Ns IE :-----...,
TRY

APPLICATION

USE THE
APPLICATION

IDENTll'Y
ADDlllONAL

ENHANCEMENTS

DOCUMENT

DEVELOP
MAINTENANCE

SPECIFICATIONS

MONniS

MONTHS

MONTHS/
YEARS

WEEKS/
MONTHS

- The user first requests an application and then an analyst or
programmer is assigned to the application.

- The analyst or programmer takes the oftentimes sketchy user's
specifications and designs more complete specifications.

- The user then reviews the analyst's interpretations of his
specifications and probably makes additional changes.

HP3000
INTERNATIONAL CONFERENCE AL07/4
VIENNA 1987

- The analyst redesigns his specifications to adapt to these
changes. (By this time, several days, weeks or months have gone
by.)

- The user finally approves
analysts and programmers
document the application.

the specifications, and a team of
are assigned to develop, test and

- The user finally tries the application. Months or years may
have gone by before the user gets his first look at the actual
working application.

- The user, of course, will most likely want additional changes or
enhancements made to the application. This is called adjusting
the application to the "real world".

- Depending on the extent of these changes, additional maintenance
specifications may have to be written and these program changes
coded, tested and documented.

- The total application development process may take months or
years, and the maintenance of these applications may go on
forever.

In summary, the traditional approach to application development results
in long development times, excessive time spent on maintenance, a
multi-year backlog of applications, limited control and access to
information, and applications that lack functionality and flexibility
and are very difficult to change. The question is: "Can we afford to
continue using this approach to application development?"

PROTOTYPE DEFINED

According to Webster's Dictionary, the term prototype has three
possible meanings:

1) It is an original or model on which something is patterned:
an archetype.

2) A thing that exhibits the essential features of a later type.
3) A standard or typical example.

J. David Naumann and A. Milton Jenkins in a paper on software
prototyping (see reference 7) believe that all three descriptions apply
to systems development. Systems are developed as patterns· or
archetypes and are modified or enhanced for later distribution to
multiple users. "A thing that exhibits the essential features of a
later type" is the most appropriate definition because such prototypes
are a first attempt at a design which generally is then extended and
enhanced.

HP3000
INTERNATIONAL CONFERENCE AL07/5
VIENNA 1987

ROLES IN THE PROTOTYPING PROCESS

There are two roles to be filled in prototyping the user/designer
and the systems/builder. These roles are very different from the
traditional user and analyst/programmer roles under the traditional
approach. The terms "user/designer" and "systems/builder" emphasize
these differences and denote the functions of each participant under
the prototyping methodology. Remember it is the user who is the
designer of the application system and the systems professional who is
the builder.

The user/designer initiates the process when he/she conceives of a
problem or opportunity that may be solved or exploited by the use of an
information system. The user/designer typically must be competent in
his/her functional area (many times he/she is a manager) and usually
has an overall perspective of the problem and can choose among
alternative solutions. However, he/she requires assistance from the
MIS organization.

The systems/builder
the user/designer
prototyping tools
resources.

is assigned by the
and is competent
and knowledgeable

MIS organization to work with
in the use of the available
about the organizations data

PROTOTYPING PROCESS

The process of application prototyping is a quick and relatively
inexpensive process of developing and testing an application system.
It involves the user/designer and the systems/builder working closely
to develop the application. It is a live, working system; it is not
just an idea on paper. It performs actual work; it does not just
simulate that work. It can be used to test assumptions about users'
requirements, system design, or perhaps even the logic of a program.

Prototyping is an iterative process. It begins with a simple prototype
that performs only a few of the basic functions of a system. It is a
trial and error process build a version of the prototype, use it,
evaluate it, then revise it or start over on a new version, and so on.
Each version performs more of the desired functions and in an
increasingly efficient manner. It may, in fact, become the actual
production system. It is a technique that minimizes the dangers of a
long formal analysis and increases the likelihood of a successful
implementation.

PROTOTYPING METHODOLOGY/MODEL

The prototyping methodology in general, is based on
proposition: "People can tell you what they don't
existing application easier than they can tell you what
would like in a future application."

the following
like about an

they think they

Prototyping an information system can be viewed as a four -step
procedure.

HP3000
INTERNATIONAL CONFERENCE AL07/6
VIENNA 1987

PROTOTYPING APPROACH
TO APPLICATION DEVELOPMENT

USBR/DISIGND

11PC11 HEWL£TT '-------------------- ra PACKARD

Step 1. User/designer identifies the basic information requirements:

- Write a brief, skeleton-like statement that captures the essential
features of the information requirements.

- User/designer and systems/builder work closely together.
- Concentrate on users' most basic and essential requirements.
- Define data requirements, report formats, screens, and menus.
- Need not involve lengthy written specifications.
- For larger systems, a design team may need to spend a few weeks

preparing a first-effort requirements document.

Step 2. Systems/builder develops the initial prototype:

- Systems/builder takes the notes developed in the user discussions
and quickly builds the menus and dialogs.

- A data dictionary would be useful at this time.
- Design and/or define data base and load subset of data.
- Make use of defaults and standard report formats.
- Write required application modules using a 4GL.
- Prototype performs only the most important, identified functions.

Step 3. Users implement and use the prototype to refine requirements:

- Systems/builder demonstrates prototype to small group of users.
- Users gain hands-on experience with application.
- Users are encouraged to make notes of changes they would like made
- Users discuss and prioritize desired changes.

HP3000
INTERNATIONAL CONFERENCE AL07n
VIENNA 1987

Step 4. Systems/builder revises and enhances the prototype:

- Systems/builder modifies the prototype to correct undesirable or
missing features.

- May require modification or redesign of data base, changes to
existing programs and/or additional program modules.

- Deliver back to users quickly.

NOTE: Steps 3 and 4 are repeated until the system achieves the
requirements of this small group of users. Then either
introduce it to a larger group of users for additional
requirements or if enough users are satisfied, demo it to
management to gain approval for the production system.

WHEN TO USE PROTOTYPING

Richard Canning, the author of the EDP Analyzer (see reference 2),
suggests when prototyping should be used.

1. To clarify user requirements:
- Written specs are often incomplete, confusing, and take a static

view of requirements.
It is difficult for an end user to visualize the eventual system,
or to describe his/her current requirements.
It is easier to evaluate a prototype than written specifications.
Prototyping allows, even encourages, users to change their minds.
It shortens the development cycle and eliminates most design errors
It results in less enhancement maintenance and can be used to test
the effects of future changes and enhancements.

2. To verify the feasibility of design:
- The performance of the application can be determined more easily.

The prototype can be used to verify results of a production system.
The prototype can be created on a minicomputer and then that soft­
ware prototype may become the specifications for that application
which may be developed on a larger mainframe computer.

3, To create a final system:
Part (or all) of the final version of the prototype may become
the production version.

- It is easier to make enhancements, and some parts may be recoded
in another language to improve efficiency or functionality.

WHEN NOT TO USE PROTOTYPING

Canning also suggests when prototyping should not be used.

1. When an application requires a standard solution that is already
available at a reasonable cost from a software supplier.

2. When you don't have a good understanding of the tools available
to prototype.

HP3000
INTERNATIONAL CONFERENCE AL07/8
VIENNA 1987

3. When the organization's data and software resources are not well
organized and managed.

4. When MIS management is unwilling to develop a staff of systems
builders.

5. When the user/designer is unwilling to invest his/her time in
the development of the application system.

POTENTIAL PROBLEMS

One of the initial problems typically encountered is the acceptance of
the prototyping methodology by the systems people. This is due to the
fact that people naturally tend to resist change. It may also
encourage the glossing over of the systems analysis portion of a
project. It is not always clear how a large complex system can be
divided and then integrated. Initially, it could be difficult to plan
the resources required to prototype (people, hardware and software).
It may be difficult to keep the systems staff and users abreast of each
version of the system. Programmers may tend to become bored after the
nth iteration of the prototype. Testing may not be as thorough as
desired. It might be difficult to keep documentation on the
application up to date because it is so easy to change.

Even with these concerns, prototyping provides a very productive
working relationship for the users and the builders. So it behooves
all data processing management to learn to use this powerful tool
creatively and to manage it effectively.

THE ADVANTAGES OF PROTOTYPING GREATLY OUTWEIGH THE PROBLEMS!

ADVANTAGES OF PROTOTYPING

One of the main advantages of application prototyping is that this
methodology prov~des a capability to quickly respond to a wide variety
of user requests. It provides a live, functioning system for user
experimentation and accommodates changes in a dynamic user environment.
One interesting aspect of this approach is that users are allowed and
even encouraged to change their minds about an application's interfaces
and reports, which is a very rare occurrence during the traditional
approach. Maintenance is viewed right from the beginning as a
continuation of the design process. Finally, prototyping provides an
effective use of scarce systems/builders. One or a limited number of
systems/builders will be required for each prototyping project; and
while users are testing one prototype, the systems/builder can be
working on another.

COST AND EFFICIENCY

It has been found that there is an order of magnitude decrease in both
development cost and time with the prototyping methodology.

HP3000
INTERNA noNAL CONFERENCE AL0719
VIENNA 1987

It is often difficult to estimate the cost of prototyping an
application system because the total costs of development, including
maintenance, are usually lumped together. The cost of implementing the
initial system is much lower than the traditional approach (typically
less than 25").

However, software prototyping could be expensive in the following ways:

It requires the use of advanced hardware and software.
It requires the time of high-level users and experienced systems
staff.
It requires training of the systems staff in the use of prototyping
and the associated tools.
Application run-time efficiency may be compromised.

The main thing to remember is that the main focus of prototyping is not
so much efficiency but effectiveness.

PROTOTYPING VS TRADITIONAL
APPROACH

$
Cumulative
Investment

......
--- Anolytii•/De•lgn ••• -~ Traditional
-·- Development / Approach

···-· Teat/lmplementotion 17\
- Productlon/Mai,..t•11: .. ,.c.a l_,.. ~aer firat Mn aymtem

//
I

I
I

......-·-r

/ , •• --· Prototype
/ . ..f''' Approach

l ,...·<~: be91n• worlclng with prototype
,"' ,,.,

~----~_,_, ________ r._.m_• _____ M ~=
ESSENTIAL RESOURCES

The following are the essential resources to effectively do application
prototyping:

l. Interactive Systems

Hardware and Operating System When doing application
prototyping, both the builder and the system must respond
rapidly to the user's needs. Batch systems do not permit
interaction and revision at a human pace. Hardware and
associated operating systems tailored to on-line interactive
development are ideal for software prototyping.

HP30fXJ
INTERNATIONAL CONFERENCE AL07/10
VIENNA 1987

2. Data Management Systems

A Data Base Management System provides the tools for defining,
creating, retrieving, manipulating, and controlling the
information resources. Prototyping without ! DBMS is
inconceivable!

3. Data Dictionary

A Data Dictionary provides standardization of data and file
locations and definitions, a cross reference of application
programs, and a built-in documentation capability. These are
essential to managing the corporate resources and extremely
useful when prototyping.

4. Generalized Input and Output Software

- .Easy to use data entry, data editing, and screen formatting
software are extremely helpful in the application prototyping
process to allow the programmer to sit down at a terminal with
a user and interactively create the user's screens or menus.

Powerful, easy-to-use report writer and query languages provide
a quick and effective way of retrieving and reporting on data
in the system. A report writer that uses default formats from
very brief specifications is most useful in the initial
prototype.

A powerful graphics capability can be extremely useful for the
display of data in a more meaningful graphical format.

5. Very High Level (Fourth Generation) Languages

Traditional application development languages such as COBOL may
not be well suited for software prototyping because of the
amount of code that has to be written before the user sees any
results.

Very powerful fourth generation languages
directly to a data dictionary for their data
ideal. One statement in this high level
realistically replace 20-50 COBOL statements.
amount of code a programmer has to write
speeds up the development process.

6. Documentation Aids

that interface
definitions are

language could
This reduces the

and maintain and

Tools to aid in the maintenance of programs written in a 4GL.

Tools to aid in maintaining user documentation on-line.

HP3f)()()
INTERNATIONAL CONFERENCE AL01/11
VIENNA 1987

7, Libraries of Reuseable Code

- A library of reusable code to reduce the amount of redundant
code a programmer has to write is an important prototyping
resource.

- This code could represent commonly used routines made available
to programmers.

HEWLETT-PACKARD'S TOOLS FOR PRO'l'O'l'YPING

Hewlett-Packard is one of the few vendors that supplies the majority
of the tools needed to effectively do software prototyping .

• Interactive Systems

- HP 3000 Family of Computers
- MPE Operating System

* Data Management Systems and Associated Utilities

- TurboIMAGE/V
TurboIMAGE Profiler/V
TurboIMAGE DBchange/V
HPSQL/V
KSAM/V
MPE files
HP Silhouette/V
HP Access Central, HP Access

* Data Dictionary

- Dictionary/V

•

•

- HP System Dictionary/V

Generalized Input/Output Software

- VPLUS/V
- Business Report Writer/V (BRW/V}
- QUERY/V
- REPORT/V
- INFORM/V
- HPEASYCHART
- HP DSG/V

Very High Level Languages

- TRANSACT/3000

* Documentation Aids

- EDITOR/V
- HPSLATE
- HPWORD
- TDP/V

-~~--~----

HP3000
INTERNATIONAL CONFERENCE AL07/12
VIENNA 1987

ADDITIONAL PROTOTYPING TOOLS AVAILABLE FROM HP THIRD PARTY VENDORS

* Data Management Systems and Associated Utilities
- ADAGER Adager
- CARESS, INTACT, SILHOUETTE/3000 Carolian Systems International
- DBACE Snodgrass Consulting
- DBAUDIT, SUPRTOOL Robelle Consulting Ltd.
- DB GENERAL, DB-KEY-CHANGE Bradmark Computer Systems
- DBMGR, IMSAM, OMNIDEX, CAPCHG Dynamic Information Systems, Corp.
- DBTUNE (Europe Only) HI-COMP
- FLEXIBASE, BACKCHAT Proactive Systems Ltd.
- HSC-COPYDB Hawaiian Software Company
- IMAGINE Technalysis Corporation
- MINISIS Systemhouse Ltd.
- MIRAGE (HP 150) Datasoft International
- PC/IMAGE (HP 150) Advanced Data Services
- RELATE/3000 CRI, INC.
- SPEEDEX, SPEEDBASE (HP 150) Infocentre

* Generalized Input/Output Software
- DATADEX/3000 · Dynamic Information Systems, Corp
- EASYREPORTER Inf ocentre
- ENVY, HELPER System Works , Inc.
- INDEX PLUS Spectrum Solutions
- MONITOR, MISTRAL (HP 150) Datasoft International
- PAL DATA REPORTER Gentry
- PRESENTATION GRAPHICS ARENS
- PRW/3000 Infotek Systems
- QUIZ, THE EXPERT, GRAPHICS COGNOS
- RELATIONAL QUERY/3000 Upland Software
- SCREEN/3000 RMS Business Systems
- WHAT-IF CIBAR, Inc.
- THE WRITE STUFF PROTOS Software Company

* Fourth Generation Languages and Utilities
- ARTESSA/3000 (Europe only) RAET Software Products
- CBAS/3000 Comprehensive Systems, Inc.
- :DBEXPRESS, :DBTRANS SystemsExpress
- FASTRAN (TRANSACT Compiler) Performance Software Group
- FLEXIBLE Sages American Group
- INSIGHT II Computing Capabilities Corp.
- LL'SPIRIT Singapore Computer Systems
- PAL FAMILY GENTRY
- POWERHOUSE (QUICK) COGNOS
- PROGSPEC/3000 (COBOL Gen.) Productive Systems
- PROTOS (COBOL Generator) PROTOS Software Company
- Q-PLUS Los Altos Software
- RELATE/3000 APPLICATION BUILDER CRI
- SPEEDWARE, MICROSPEEDWARE Infocentre
- SYDAID (Europe only) SYDES
- THE SYNERGIST Gateway Systems Corp.
- TODAY BBJ Computers International, Inc.

HP3000
INTERNATIONAL CONFERENCE AL07/13
VIENNA 1987

* Documentation Aids
- DOCUMENTOR (Part of SPEEDWARE)

LARC
Info centre
LARC Computing

QED IT Robelle Consulting Ltd.
Productive Software Systems, Inc.
Aldon Computer Group

ROBOT/3000
Sf COMPARE
SPEEDDOC, SPEEDEDIT
TESS/AIDE

Bradford Business Systems, Inc.
Computer Consultants and Serv. Ce

The preceding lists of HP third-party software are not 10°" complete.
The majority of the listed software was derived from ads placed in
SuperGroup Association Magazine, Interact Magazine and The Chronicle.
Please consult the Hewlett-Packard Business Systems Software Solutions
catalog (Part I 30000-90251) for additional information.

SUMMARY

Prototyping is
applications.

truly a "state-of-the-art" way of developing•

Software prototyping promotes an interactive dialogue between
the users and the programmer, which results in a system being
developed ~ quickly, and results in an interactive•
development approach which is friendlier for the end user.

The prototype provides a live working system for the users to
experiment with instead of looking at lengthy specifications.

The users are provided with an ear1y visualization of the·
system which allows them to immediately use it.

The users are allowed and ~ encouraged !2. change their minds
about user interfaces and reports.

Maintenance is viewed right from the beginning as a continuous
process and because the prototype is usually written in a very
high-level language, changes are faster to locate and easier to
make.

Software prototyping results in:

* Users who are much more satisfied and involved in the
development process.

* Systems that meet the user's requirements and are much more
effective and useful.

* Improved productivity for all those involved in software
prototyping: the user/designers and the systems/builders.

HP3000
INTERNATIONAL CONFERENCE AL07/14
VIENNA 1987

REFERENCES

Boar, Bernard H., Application Prototyping: ~Requirements Definition
For The 80's, John Wiley & Sons, New York, New York, 1984.

Canning, Richard G., "Developing Systems By Prototyping," EDP Analyzer
(19:9) Canning Publications, Inc., September 1981.

Jenkins, A. Milton, "Prototyping: A Methodology For The Design and
Development of Application Systems," Division of Research, School
of Business, Indiana University Discussion Paper #227, April 1983,
(41 pages).

Jenkins, A. Milton and Lauer, W. Thomas, "An Annot.at.ed Bibliography
on Prototyping," Division of Research, School ot Business, Indiana
University Discussion Paper #228, April 1983, (25 pages).

Larson, Orland J., "Software Prototyping Today's Approach to
Application Systems Design and Development," Proceedings 1984
International Meeting HP 3000 IUG, Anaheim, California, February 26
- March 2.

Martin, James, Application Development Without Programmers, Prentice­
Hall, Inc., Englewood Cliffs, New Jersey, 1982.

Naumann, Justus D. and Jenkins, A. Milton, "Prototyping: The New
Paradigm for Systems Development," MIS Quarterly, Vol. 6, No. 3,
September 1982.

Naumann, Justus D., and Galletta, Dennis F., "Annotated Bibliography of
Prototyping for Information Systems Development," Management
Information Systems Research Center Working Paper (MISRC-WP-82-12),
September 1982.

Podolsky, Joseph L., "Horace Builds a Cycle," Datamation, November
1977, pp.162-186.

Wetherbe, James C., "Systems Development: Heuristic or Prototyping,"
Computerworld, Vol. 16, No. 7, April 26, 1982.

HP3000
INTERNATIONAL CONFERENCE ALOB/1
VIENNA 1987

How to write Structured TRANSACT/3000 Programs

I. Summary

TRANSACT/3000 is a procedural fourth Generation Programming Language!
Because it is a procedural programming language, all the rules of struc­
tured programming can and should be applied when writing TRANSACT/3000
programs. That paper shows how easy it is to write structured software in
TRANSACT/3000 and the resulting benefits.

II. Program Structure

Modern programming languages like PASCAL or MODULA allow to make a dif­
ference between local- an global variables (in TRANSACT/3000: items).
That feature supports the construction of structured programs, because
not only code is part- of a procedure, but also data-space and its values.
That is in opposite to RPG and COBOL, where you have only one domain for
global variables, called WORKING STORAGE. With other words, every pro­
cedure can have its own WORKING-STORAGE. The concept of local- and
global variables is ideal to write easy understandable and maintainable
software, without any side-effects of global items. Before we discuss in
details how to construct structured TRANSACT/3000 software, let us define
what is a procedure within TRANSACT/3000: A procedure in TRANSACT/3000 is
a piece of code, which is executed by a PERFORM statement and has one or
more RETURN statements. (According to that definition, a TRANSACT/3000
CALL statement and PROC statement don't call procedures)

II.I Local- and Global Variables in TRANSACT/3000.

Remark: For the rest of the paper I use the words variable and item as
synonyms. TRANSACT/3000 has a LIST-Register, which is basically a stack,
where the LIST statement represents the PUSH-statement and the SET(STACK)
LIST(*) statements represents the basic version of the POP-statement. In
addition it is possible to put the same item several times onto the
stack. That remarkable feature is the basic for the concept of local- and
global items. In our (structured) software every procedure has following
structure:

(1)
PROCEDUREXYZ:

LIST BEGIN;

«loca 1 Items»
LIST LI:

l2:
l3;

<<Procedure Name>>

<<Code of the procedure PROCEDUREXYZ>>

(2)

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

IF (X) < (Y) THEN <<Statement>> ELSE
PERFORM END;

<< ••.•••.•••. return statement within the procedure>>

(3) PERFORM PROCEDURELMN;

(4)

<<Call of the procedure PROCEDURELMN within the
procedure PROCEDURE XYZ>>

<<End of code of the procedure PROCEDUREXYZ>>

PERFORM END; <<End of Procedure>>

The statement LIST BEGIN at (1) puts an item (stackmarker) onto

ALOB/2

the stack when the procedure is activated. The item name BEGIN is
a "Reserved" item word and should not be used any more. If you
don't like the word BEGIN, take another one. Within PASCAL and
other modern programming languages however the word BEGIN is used
to indicate the beginning of the local part of a procedure.

During the execution of a TRANSACT/3000 program a lot of BEGIN
items will be on the dynamic stack. Even the local items like LI,
L2 and L3 can be several times onto the LIST register. The last
item pushed onto the LIST register is the item used. The statement
at (2) represents an early exit out of the procedure. It will be
explained togather with the statement at (4). The PERFORM state­
ment at (3) calls a the procedure PROCEDURELMN. That procedure may
have its own local variables. All the items of the procedure PRO­
CEDUREXYZ are global items for it. The procedure PROCEDUREXYZ can
even call itself with its own local variables. (Direct and indirect
recursion is no problem). When the execution of the procedure PRO­
CEDURELMN is finished, the local items of the procedure PRO­
CEDUREXYZ are at the top of the LIST-Register. The statement PER­
FORM END (4) is used to indicate the end of the procedure. It has
two functions: first to delete (pop) all local items from the
stack, which have been pushed onto the stack during the execution
of the procedure PROCEDUREXYZ; second to go back to the next state­
ment after the PERFORM PROCEDUREXYZ; The return-procedure END looks
like this:

(1)

(2)
(3)
(4)
(5)

END:
DEFINE(ITEM) BEGIN X(2),0PT:

DUMMY X(2),0PT;
LIST DUMMY;
SET(STACK) LIST(BEGIN);
SET{STACK) LIST{*);
RETURN{!);

The statement at {5) executes a doubl~ return to go to the next statement
after the {not shown) PERFORM PROCEDUREXYZ; The statement at {3) deletes
all local items from the stack. At {4) the local item BEGIN itself is

HP3000
INTERNA noNAL CONFERENCE ALOB/3
VIENNA 1987

deleted from the LIST-Register. The LIST DUMMY statement is needed be­
cause the SET(STACK) statement works is a very complex way. (For more
details see TRANSACT/3000 refence manual)

11.2 Rules for Structured Programming in TRANSACT/3000

1. Think and work with the concept of global- and local items. Global
items are items, which are used togather with their values in nearly
every procedure. In an online oriented software global items can be
variables like USERNAME, TERMINALNUMBER, PASSWORD, TIME etc.

2. Keep the number of global items short. Put the items for a
data-set only onto the the stack for the procedure or pro­
cedure tree where these items are really used. Don't think
in COBOL'S WORKING-STORAGE-SECTION!

3. Even if a procedure has no local item, use the LIST BEGIN -­
PERFORM END construction. Software is a matter of change and
it may have local items after a the next maintenance.

4. Never use local-items within a loop construct like REPEAT •. UNTIL or
WHILE ••• 00. These items are global for that loop.

5. Procedures with parameters within the language definition of TRANSACT/
3000 are not (yet) possible. Therefore parameters can only be logical
parameters and have (normally) to be 9lobal items.

6. If you use the GO TO statement, use it only within the local
procedure. Everthing else is dangerous in a lot of respects.

11.3 Advantages and Benefits of Global-and Local Items.

I. You construct easy to understandable software, friendly for
maintencance, software with less or even no side-effects, an
important criteria for structured programms.

2. Procedures have there own variables, a concept of modern
programming languages.

3. The stack register will be much more smaller. The problem of "Stack
Size" will nearly disapper! (My problem on big TRANSACT/3000 programs
is normally not the stacksize, but an overflow of the TRANSACT/3000
compiler tables!)

4. Because the stack tends to be very short, the performance of
TRANSACT/3000 programs are similar to COBOL programs.

5. The concept of local- and global items allows easy TRANSACT/3000
(re) segmentation.

III. VPLUS/3000, TRANSACT/3000 and Structured Programming

VPLUS/3000 is very well integrated into TRANSACT/3000. However
the TRANSACT/3000 reference manual and HP customer training do

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

not explain how to use VPLS/3000 in structured environment. The
following text will explain how to do it easy and simple.

III.I Menu -and Presentation structure

Assumptions:
I. Good online software is menu-driven, not command-driven.
II. Good online software has a hierarchical menu structure.
III. Good online software has a standard softkey-layout and

standard softkey functions at every screen.

Funktioms of softkeys used for the following examples:
Fl = Back to Main-Menu. The Main-Menu is the highest menu

in the hierarchical menu structure. If the software
shows the hierarchical menu, pressing that softkey has
no effect •

ALOB/4

F2 = HELP. Whenever that softkey is pressed, a screen depended help
information will be displayed. What and how will be dis­
cussed later in that section.

F3 = PRINT. Pressing that softkey will send a hardcopy of the
screen to a printer.

F4 = REFRESH

FS = Free (Perhaps always used for confirmation of deletions or
next-page funtion)

F6 = Free (Perhaps used for previous page function)

F7 = Free (Perhaps used to start QUERY/3000 for program-testing or
"jump" to an application monitor or window)

F8 = Previous Menu or Done. It basically means you are finished
with your transaction and you want to go back to
the previous menu.

III.2 Structured VPLUS/3000 Procedures

In that chapter we show and explain the procedures to handle VPLUS/
3000. The programmer has only to know and use One! procedure. His
structured VPLS/3000 procedures will be easy and powerfull to use
according to a fourth Generation Programming Language. The demon­
rations and explanations following will be in a top-down methode.

Programmers Routine:

SHOWXYZSCREEN:
(1) LIST BEGIN;

(2) LIST SOFTKEY:
SCREENNAME;

HP3000
INTERNATIONAL CONFERENCE AL0815
VIENNA 1987

(3) LIST <<ITEMS OF SCREEN IF NOT ALREADY ON LIST REGISTER>>

(4) MOVE (SCREENNAME) = "XYZSCREEN";
<<NAME OF SCREEN IN ELEMENT>>

(5) SET(FORM) (SCREENNAME),INIT,CLEAR,LIST=();

(6) REPEAT
00

(7) PERFORM GETFORM;
(8) IF (SOFTKEY) = 0 THEN PERFORM XYZACTION;

OOENO
(9) UNTIL (SOFTKEY) = 8;<<also 0 if screen is not

repeating»

(10) PERFORM ENO; <<EXIT; if Main-Menu>>
If the presentation of the screen is a own procedure, you start with a
procedure·name and a LIST BEGIN (I). Every screen has always its own lo­
cal item SOFTKEY (2) to store the value (0 .• 8) of the softkey pressed and
the local item SCREENNAME to store the name of the screen (3). One of the
biggest advantages of TRANSACT/3000 is that the VPLS/3000 screenname can
be a variable in every VPLS/3000 statement like GET(FORM), PUT(FORM),
SET(FORM) and UPOATE(FORM). We will see the benefits of that feature
later in that section. (5) shows the standard initialisation of a VPLS/
3000 screen. From (6) up to (9) we have a REPEAT-LOOP, because the
SOFTKEY function F2, F3, F4 can only be handelt by a REPEAT-LOOP con­
struction. If the user presses F8 (RETURN or DONE), the loop is stopped
at (9) and with the PRFORM END statement at {IO) all the local items like
SOFTKEY and SCREENNAME will disapper. If that screen is the Main-Menu,
you would write an EXIT statement instead of a PERFORM END statement! If
the user has pressed the Enter Key (FO), the software would execute the
procedure ACTIONXYZ; That label name and the screen name in the move
statement at (4) and sometimes the SET(FORM) statement at (5) represents
the parameter part of that,standard. Every other line of code is the same
for every screen. Coming back from the procedure ACTIONXYZ, the program­
mer can control just by setting or not seeting of "O" at (9), if a screen
is a repeating screen!

Now the discussion of the procedure GETFORM:

(I)

(2)

(3)

GETFORM:
LIST BEGIN;

PERFORM SETTIME-DATE;

IF (ERROR-FIELD) <> " H

THEN
GET(FORM) (SCREENNAME),FKEY·SOFTKEY,

WINDOW=((ERROR-FIELD),(MESSAGE))
-ELSE

IF (MESSAGE) <> H II

THEN

(4)

(5)

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

ELSE

GET(FORM) (SCREENNAME),FKEY=SOFTKEY,
WINDOW=((MESSAGE))

GET(FORM) (SCREENNAME,FKEY=SOFTKEY;

IF (SOFTKEY) <> 0 THEN PERFORM HANDLESOFTKEYS;

(6) IF (SOFTKEY) = 1,8,0 <<NO REPEATING SOFTKEYS>>
THEN

DO
MOVE (ERROR-FIELD) = II ";

MOVE (MESSAGE) II ";

PERFORM END;
DOEND;

(7) PERFORM END;

ALOB/6

The procedure SETTIME-DATE (1) is optional. It handles all items which
are common in every screen e.g. TIME, DATE, USERNAME etc. Before we go
into further details, lets have a look at the WINDOW-option of the VPLS/
3000 statements of TRANSACT/3000. Whenever you want to use that option,
you have to reset the window afterwards. Otherwise TRANSACT/3000 rep­
resents you always the same message in the window. The procedure GETFROM
has changed that rule. It only shows ONCE! a message in the window and
optional enhance a field in error. The programmer don't have to reset
the window. If the programmer wants to show a message in the window, he
has to put the error-text into the global item MESSAGE, and if he also
wants to enhance a field, he has to put the field-name in error into the
global item ERROR-FIELD. At (3), (4), and (5) the procedure GETFORM exe­
cutes the according GET(FORM) statement. AT (6) the procedure GETFORM
resets the window and error-field. However, the resetting is only done,
if the softkey pressed was not a repeating one (F2, F3, F4, F7). That
"reversed" standard makes the live of a programmer much easier. The
functions of the softkeys other than 0 are handled within the procedure
HANDLESOFTKEYS:

HANDLESOFTKEYS:
LIST BEGIN;

(1) IF (SOFTKEY) = I THEN <<GO TO MAIN-MENU>>
DO
SET(STACK) LIST(ENDOFGLOBAL);
RETURN(@);
DOEND;

(2) IF (SOFTKEY) = 2 THEN PERFORM HELP;

(3) IF (SOFTKEY) = 3 THEN PERFORM PRINT;

(4) IF (SOFTKEY) = 4 THEN DISPLAY "REFRESHING ... ";

(5) IF (SOFTKEY) = 7 THEN PERFORM QUERY;

PERFORM END;

HP3000
INTERNATIONAL CONFERENCE ALOBn
VIENNA 1987

At (1) we see how simmple it is to contruct a "Go Back to Main-Menu".
For implementation the programmer has to follow two rules: 1. After all
global items have been put onto the stack, he has to indicate that by
loading the item ENDOFGLOBAL onto the stack. When softkey Fl is pressed
by the user, the procedure HANDLESOFTKEY deletes all local items from the
stack up to the item ENDOFGLOBAL.

2. The "PERFORM ACTION" statement within the REPEAT .. UNTIL Loop
of the Main-Menu must be the deepest (not neccessarily the
first) PERFORM statement. The RETURN(@) statement always con­
tinues the execution of the programm after the next statement
of the deepest perform statement.

A HELP facillity (2) can be implemented in a lot of ways. Important
is that in the last (youngest) item SCREENNAME the program can find
what is the name of the current screen. You can use that item as a
paramter for your HELP facility. One idea is to use that value and
look in the DECRIPTION part of that screen in DICTIONARY/3000 and
display that text as help-information. Another idea is to create
with FORMSPEC.PUB.SYS one or more HELP screens with the name
<<SREENNAME>>Hl up to <<SCREENNAME>>H9.

The PRINT function (3) can be implemented in a lot of ways. One
idea is to use the VPLS/3000 VPRINTFORM intrinsic or, if a inte­
grated terminal printer is available, just excute a DISPLAY "ESC
0" statement or activate the program PSCREEN.PUB.SYS.

The DISPLAY "REFRESHING ... " statement at (4) is not really needed.
However the DISPLAY statement closes and afterwards reopens the terminal
in VPLS/3000 mode and resets all terminal values correctly.

Softkey function F7 can be used very flexible. During the development of
an application, that function can activate QUERY via the create- and ac­
tivate intr4nsics to allow fast checks and changes in a data-base. In
production the software may call HPDESK or own written application moni­
tor, which allows to "jump" within the applications.

III. Standards

Every onl ine application has to offer transactions 1 ike CREATE, CHANGE,
DELETE, FIND and DISPLAY of master-files. One big advantage of a pro­
cedural language is that the user can decide how the layout and the logic
has to look like in opposite to nonprocedural software like POWERHOUSE,
SPEEDWARE, which force you to use a predefined logic. On the other side,
there is no need to always reinvent the wheel, that is to write line per
line every transaction for every master-file. Instead you should con­
struct once for one master-file Your Layout and Your Logic. For all the
other master-files, just replace the screennames and date-set names with
the EDITOR, add the special consistency-checks for the according master­
file and your software is finished.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

IV. Improvements of the Structure for TRANSACT/3000

1. Make TRANSACT/3000 more procedural in the sense of PASCAL or
MODULA. Following features should be implemented:
a. Real procedures with parameters, BEGIN and END blocks.
b. Itemnames, labels and procedures should also be used as

parameters beside all other items.
c. Definition of TYPES similar to PASCAL should be allowed

within TRANSACT/3000 and the DICTIONARY.

2. Better Integration of TRANSACT/3000 and DICTIONARY.
a. Why is TURBOIMAGE, KSAM and MPE-Files not in the same way

and not with the same comfort integrated as VPLS/3000?

AL08/8

b. Why can data-set-names and files-names not used in variables
similar to VPLS/3000?

c. Why does the programmer have to consider how he has to access
a file (SERIAL, CHAIN) and what is the key. All the necessary
information are already stored in the DICTIONARY! HOW to access
should be the job of TRANSACT/3000 with the help of DICTIONARY,
only WHAT is the job of the programmer.

About the author: Ewald Maria Mund is an independant consultant. His main
subjects are the construction of informationsystems with the help of
fourth generation tools. He also works in the field of datacommunications
with a strong emphasis of softwareintegration.

Address: Ewald Maria Mund
Buchholzstrasse 13

CH-3066 STETTLEN/BERN
Switzerland

Tel: 031/519839

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

The 4th generation environment

AL0911

Rudi HuysMans - Wim Bockstaele
Sydes NV
Mechelen - Belgium

The 4th Generation Environment has been characterized by the development
of powerful generators, query languages and end-user tools.

This lecture presents another aspect of the 4th generation world. It
will focus on some high level tools for programmers and software
analysts and not for end users.

An old proverb tells us :

"A good workman is known by his tools".

In this lecture we will pay more attention to the following tools for
programmers:

1. The high level language

2. The application manager

J, The preprocessor and source generator.

HP3000
INTERNA nONAL CONFERENCE AL0912
VIENNA 1987

1. The high level language

The chief reasons for using a high level language are productivity and
debugging speed.

In his book "The mythical man~month", F'rederik Brooks has written a
collection of thought provoking essays on the manage•ent of computer
programming projects. These essays drawn from his own experience as a
project manager for the IBM System /360 and for OS/J60, its operating
system. In chapter 8 he has made a comparison between programs written
in low level languages and programs writting in high level languages.

Here are the conclusions :

0 Productivity seems constant in terms of elementary statements, a
conclusion that is reasonable in terms of the thought a statement
requires and the errors it 111&y include.

0 Progra111111ing productivity may be increased as much as five times
when a suitable high level language is used.

I do not have the intention to sU111111arize all the possible features of a
high level language. Let us focus on some very useful ones.

HP3000
INTERNATIONAL CONFERENCE AL09/3
VIENNA 1987

1.1.1. Definition scrolling window

A scrolling window (in short : scroll) is a data-window through which we
can see or fill in a piece of a table at a time.
The data on a scroll-line can be of different types, but the lines
itself are of the same kind. The user can run over the entire table
(forward or backward), add lines, change and delete.
If the table is larger than BO positions, the user must be able to run
through the scroll horizontally.

1.1.2. Scroll - statements

A lot of standard statements can be offered to the programmer using
scroll

Here are some examples:

INSERT

DELETE
NEXT
PREV
NEXTP
PRE VP
BEGIN
ENO
SHOW

SORT :
COMPUTE:

SEARCH :

inserts an element in the scrolling window, above the current
line
deletes the current scroll line from the scrolling window
advances the cursor to the next line
sets the cursor back to the previous line
advances the cursor to the next page
moves the cursor to the next page
puts the curson on the first field of the first line
moves the cursor to the first field of the last line
defines the order in which the fields of the scrolling area
will be arranged.
sorts the scroll area in ascending sequence
performs the specified compute statement on all lines of the
scroll area
searches a field value in the given scrolling field

HP3000
INTERNATIONAL CONFERENCE AL09/4
VIENNA 1987

1.2. The uae of function keys

We define 2 different aorta of function keys physical function keys and
logical ones.

A. Physical function keys (FKEYS)

The physical function keys are the eight special, physically existing
keys (rl, r2, ••) at the head of the keyboard.
To each key a label on the screen is connected.

On most HP screens these function keys are programmable. It is possible
to attach a certain function to these function keys.

B. Pseudo keys

As the number of available function keys is always limited to eight, we
can define the so called pseudo keys (PkEYS).
A pseudo key is activated through a 1 or 2 character defined by the
programmer and acts like a function key.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

1.2.2. Action on function keys

Enabling physical function keys

** * rKEY keynumber,routine,string,label *
**

AL0915

sets up the programmable function key with number "keynumber". The
key is loaded with "string" and "label" is displayed in the key
label.
'routine' indicates the routine to be executed whenever the function
key is hit.

E.g. rKEY l,deleterout,""","DELETE"

Enabling pseudo keys

********************************** * PKEY keynumber,routine,string *

Disabling function keys

CLEAR rKEY n
CLEAR PKEY n
CLEAR rKEYS
CLEAR PKEYS

HP3000
INTERNATIONAL CONFERENCE AL09/6
VIENNA 1987

1.). The invoke mechanism

An other beautiful feature is usually refered to as: Invoke.

Suppose you are making an invoice on your system. Half way through your
screen you fill in the article number 707 and the system answers "This
article number doesn't exist".

What to do now.

It's now that the invoke function can be very useful.

How does it work:

You freeze your current screen with its contents. You jump to the
article-manipulation-screen. You add the missing article-number with
all its data and then you come back, there where you left the invoice
screen. The original screen contents are still there and now your
article number will be accepted.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

2. Application supervisory system

2.1 The apllication supervisory system

2.1.1. Definition

AL09fl

The application supervisory system guides the user through his applica­
tions without requiring the user to have any knowledge of MPE. It is
rather like a coat-stand where the progra111111mer puts his application on.

2 • 1. 2 • Concepts

From the point of view of the user, the application supervisory system
offers a hierarchical path through the user's application using a set of
menus and submenus. An experienced user can enter the taskname and
avoid the need to use the tree of options. An inexperienced user, on
the other hand, can walk through the menu tree and use a help facility
to guide his choice.

The user can run programs, stream jobs, and execute MPE commands without
directly using the MPE command Interpreter. The system allows the
management of the menus without the need to recompile the application
programs.

2.1.3. Standard ways to select a screen.

There are different ways to choose a screen from an application.

- You can walk through a set of menus to find the desired application.

- You can give the final option without having to go down the tree of
options. Each form (screen) has a name and the form name can be used
to give up a final selection.

- You can invoke a form: the named form is called and displayed on the
screen.
After the form is finished, the current form is re-displayed and
continued at the statement following the INVOKE.

HP3000
INTERNATIONAL CONFERENCE AL09/8
VIENNA 1987

2.1.4. Features of a good and ergonomic application supervisory system.

The application supervisory system:

- is a utility to handle processes. If you want to add, delete or
modify a selection for a given user, you do not have to recompile
programs.

- secures user accesses. It identifies the user with his password and
the user himself is responsable for handling his own password.

- guides the user's choice, prints or reprints a menu, immediately
accepts the user's final options end has a help facility.

- allows parameters such as LIB, INFO, ENTRYPOINT, PARM, $STDIN,
$STDLIST to be given at run time.

- tests- if a selection may be used.

- increaeses performance because it can verify if a process is still
alive and if it is, re-activate it.
The advantage is that the process is still allocated, and the files
are still open, •••
This is the best way to get a good response time.

- uses a logging system to ensure that a complete history is maintained
of all special events.

- gives the opportunity to have all messages in the language of the
user.

HP3000
INTERNATIONAL CONFERENCE AL09/9
VIENNA 1987

), An intelligent preprocessor and generator

l.l. Problem de1cription

).l.l A waste of time in administration.

User manuals, functional and technical drafts, contracts, reports •••
all these documents often contain an important number of standard (or
almost standard) paragraphs.
Manuals and functional drafts might have a section with definitions of
elementary concepts such as terminal, screen, function keys, menu, •••
Contracts and offers often contain warranty formulations, and a descrip­
tion of the sold products.
Documentation should have standard title and subtitle layouts (depending
on the printer they will be printed on) •••

A lot of time is wasted looking up the needed paragraphs in earlier
documents and copying them into the new one.
Besides, certain data can change in time. (Prices for instance often do
not tend to be constant over a long period. From the date of change on,
it is necessary to avoid copying the old paragraphs.

).1.2. Why progranners need to work so late.

Imagine a devoted programmer who has to implement, say ten, more or less
analogous interactive programs. The technical draft requires a persis­
tent standardisation in the use of function keys, screen layouts and the
handling of database inconsistencies. These requirements demand a great
deal of attention.

Our programmer might develop the first program and then start copying
and adapting this source, which will yield him all the others.
This of course seems a reasonable and efficient way of working. Though
when testing the seventh program, our programmer finds a bug in one of
the copied parts. Is this a newly introduced bug, due to some error in
copying 7 Or does this bug also exist in some or all of the previously
written programs ? In the worst case, all programs have to be retested.

Some time after delivery, our programmer gets a list of requests from
the end-users representative, with questions as : "Please replace the
function key label 'PRINT' by 'PRINT SCREEN'." "Could you extend the
error routine with console logging ?" Ten sources that have to be
adapted and retested.

Moreover, can you ever be sure that our devoted progra111111er has never
forgotten to test the Image condition code, after performing a call to
the database ?

HP3000
INTERNATIONAL CONFERENCE AL09/10
VIENNA 1987

).2. An outline of the solution.

For the reasons explained above, it might be useful to compile a library
made up from standard paragraphs and/or standard coding that can be
referenced. This library can be used for drawing up manuals, contracts,
reports and programs. Any standard paragraph, (we call it a macro), can
be included in the text, simply by referring to its name.

The final text is obtained through expansion of all referenced macrona­
mes by means of a 'substitution machine', an intelligent processor with
features such as conditional substitution, the use of parameters and
nesting of macros. Its userfriendliness can even be improved by an
automatic 'forward reference'. This implies that any macro call can
precede its definition.

The supplementary processing step may not significantly slow down
development time. So a high performance of the substitution machine
also is an important requirement.

HP3000
INTERNATIONAL CONFERENCE AL09/11
VIENNA 1987

),), A functional description of the required functions.

The processor matches a library of standard macros (standard library)
and a library of application-related macros (specific textfile) to
generate a final text or source, Both libraries are ordinary textfiles
and can be composed by the user with any editor, according to some very
simple grammatical rules for distinguishing macro definitions, macro
calls, parameter settings and conditional substitutions.

Schema :

']~~/ processor '~ final text
\ I or source

...-s-p_e_c-if~i-c--te_x_t_f-il-e--1~ ----------------

standard library

),).1, Basic notions.

We have to agree on some special symbols indicating the bGginning
and the end of a macroname :

starting symbol

ending symbol

macronames

<

>
any characterstring in between a
starting symbol and an ending symbol
e.g. <string>

<unlockdatabase>
<checkaccountnr>

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

J,J.2. Definition of macros.

<macro>11•
lllllllllll/llll/lllllllllllllllllll/1/lllllllll/I
lll//llll/llllll/l/ll/lll/llll//ll//l/l/ll//llllll
II/Ill///// 11acro body /llllllll/ll/lll///lllll/ll
////////////////ll/l/l/l///////l//l/l//l/////l//11
lll////lllll/ll/lll/ll//ll/l///llllll/ll/ll/lllll/

<next11acro>1:=

l
//lll//////////1/l/ll/l/////////l/l/l/lll/l/ll////I
Ill/II/I/// nextmacro body ll/l/l///lllll/llllllll
lll////llllllll/lll/l/lll///llllllllllllll//////ll

AL09/12

The end of a macro is given by the beginning of the next one or by the
end of the file.

An exa11ple :

<STROPHE>: : •
Old Mac Donald had a far11, Ia Ia OOh
And on his farm he had so11e cows
With a mooh, 11ooh here
and a mooh, mooh there
here a mooh, there a mooh
everywhere a mooh, mooh
Old Mac Donald had a farm.

J,J,J. Macro calls.

To call a macro, one simply inserts the macroname in the text.

An example :

Here is one strophe of a popular song

<STROPHE>

This song has been written during

After expansion the macro call <STROPHE> has been replaced by the text
frOtll. the definition of strophe in paragraph 3.2.

Here is one strophe of a popular song

Old Mac Donald had a farm, Ia Ia OOh
And on his farm he had some cows
With a mooh, 11ooh here
and a mooh, mooh there
here a 1110oh, there a mooh
everywhere a mooh, mooh
Old Mac Donald had a far11.

This song has been written during •••

HP3000
INTERNATIONAL CONFERENCE AL09/13
VIENNA 1987

J,J.4. The use of parameters.

The definition of a Macro can contain a number of parameters. A
para~eter consists of a starting symbol, followed by a nuMber of
alphabetical characters.
In this teKt the eKclamation point (I) is considered as the starting
symbol.

EKamples : !PARM
!DATASET
!NAME
!DAY!MONTHIYEAR

When calling a macro, values for all parameters can be supplied.
Parameter values stand in between special characters like " " or ' '

We can now rewrite our eKample, using parameters:

<STROPHE>: : =
Old Mac !NAME had a farm, Ia Ia OOh
And on his farm he had some !ANIMALS
With a !NOISE, !NOISE here
and a !NOISE, !NOISE there
here a !NOISE, there a !NOISE
everywhere a !NOISE, !NOISE
Old Mac !NAME had a farm.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1981

We can define a new macro <SONG>.

<SONG>::•
*** * VARIATIONS ON OLD MAC DONALD'S THEME *

<STROPHE,NAME='Donald',ANIMALS='cows',NOISE:'mooh'>
---<STROPHE,NAME:'Peter',ANIMALS='pigs',NOISE:'oink'>
---<STROPHE,NAME:'Johnny',ANIMALS:'ducks',NOISE='quaok'>

AL09/14

After expansion of <SONG>, we get a song with three strophes in which
every parameter has been replaced by the given value.

*** * VARIATIONS ON OLD MAC DONALD'S THEME *

Old Mac Donald had a farm, Ia Ia OOh
And on his farm he had some cows
With a mooh, mooh here
and a mooh, mooh there
here a mooh, there a mooh
everywhere a mooh, mooh
Old Mac Donald had a farm.

--Old Mac Peter had a farm, Ia Ia OOh
And on his farm he had some pigs
With a oink, oink here
and a oink, oink there
here a oink, there a oink
everywhere a oink, oink
Old Mac Peter had a farm.

--Old Mac Johnny had a farm, Ia Ia OOh
And on his farm he had some ducks
With a quaok, quack here
and a quack, quaok there
here a quaok, there a quaok
everywhere a quaok, quaok
Old Mac Johnny had a farm.

Notice that in the example above, two macros have been nested.

HP3000
INTERNATIONAL CONFERENCE AL09/15
VIENNA 1987

3.4. Experiences and results.

A processor as described in the previous section and extended with some
other features has been used internally since april 1983, mainly for the
development of application programs in Sydaid (a fourth generation
language) and for composing functional and technical drafts and user
manuals.

3.4.1. General remarks.

As far as programming is concerned, it proved its usefulness on several
different domains, such as :

- the standardisation of screen layouts
- the standardisation of function key handling
- the uniformisation of database calls and KSAMfile calls

with condition code checks
- special routines such as checks on bankaccount numbers

or VAT numbers or other project related control routines.

Although the starting-up period of a project is longer, (all standards
have to be implemented first), the use of the processor leads to an
important increase in the productivity during the other phases.

ror elementary programs, such as a maintenance program on one dataset
with read, write, update and delete capacities, the amount of coding can
be reduced to less than one third of its original length.

There is not only a gain of time, due to the reduction of the total
number of lines to be typed. But, as macros are in fact higher-level
commands, also the programmer's way of thinking is simplified and this
again implies a higher productivity.

Debugging time decreases significantly, as enormous blocks of coding
need to be tested only once, or have already been tested during previous
projects.

Maintenance also takes less time, as a lot of modifications can be made
on the standard library instead of on each individual pl'Ogram.

HP3000
INTERNATIONAL CONFERENCE AL09/16
VIENNA 1987

).4.2. A case-study.

ror a project con1isting of 44 interactive screens and 5 batch progrllllls,
1 Syd1id library with 2824 lines of standard· coding has been set up,
covering the domain• mentioned above.

The length of specific coding totals up to 31082 lines, The total length
of all final sources after processing came to 8105), which is a factor
2.6 greater.

In Table 1, some results for different kinds of programs and groups of
programs are given.

Table 1.

nu•ber of lines expansion
Programs or group1· of progra•s before (8) after (A) factor A/8

The whole project • • , • • • • ..)l 082 81 05) 2.6

An interactive maintenance program
on one dataset t • I t 51) l BU).5

A s11all batch program
without databa1e calls 142 220 1.5

A simple interactive program
without database calls)87 l 155).0

All interactive progra11s
with databa1e calls 22 575 6) 471 2.8

All batch programs
with database c1lla I I t I t I I I 5 849 14 054 2.4

HP3000
INTERNATIONAL CONFERENCE AL09117
VIENNA 1987

As mentioned before, perfoimance of the processor was one of the most
important requirements.

Table 2 contains some performance reaults for various types of programs.
The standard library contained 175 macro definitions, one third of it
with one or more nested macro calls,

All teats have been performed on a HP3000 aeries 42, with 2 Mb central
memory and a 400 Mb disk with disk caching.

Table 2.

length 11acro length CPU elapsed
programs before calls after time(eec) time (sec)

interactive progr
with DB calls .. 749) 778 21149 85 118

interactive
maintenance progr
on one dataset • • 51) 74 181) 1) 17

batch program
without DB calls • 666 9 1017 9 12

HP3000
INTERNATIONAL CONFERENCE AL09/18
VIENNA 1987

Biography

Rudi Huysmans was born in 19S) in Mortsel near Antwerp.
After High School he studied civil engineer in the computer science at
the Catholic University of Leuven. He joined SYOES in 1982 as a
commercial project leader. He is Vice Chairman of the Belgian National
Users Group. Off business hours he works aas eacher in the computer
science.

Wim Bockstaele was born in 1947 in Brussels. Studied graduate in
computer science at the NARAfI in Brussels. Joined Sydes in 1984 as
system engineer. Specialised in HP systems and specially HPJOOO.
Project leader for SYDAID team in Sydes. Sydaid is a 4th Generation
Language developped by Sydes.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Data Integrity and recovery

Robert Bray

Carolian Systems International Inc.

3397 American Drive, Suite 5

Mississauga, Ontario, Canada

(416) 673-0400

080111

HP3000
INTERNATIONAL CONFEi ENCE 080112
VIENNA 1987

DATA IN'l'BGRITY ARD RECOVERY

Database failures and resultant recovery efforts cost HP3000

users thousands of dollars every day in lost processing time

and inconvenience. While this paper provides a discussion of

IMAGE failure types and various methods of recovery, it also

intends to educate the reader as to how some basic database

design and implementation procedures can act as preverbial "ounces

of prevention" protecting you and your company from having

to needlessly exist and suffer with logically and physically
broken databases.

IMAGE FAILURE MODES

A quick review of IMAGE failure modes reveals that such common

occurrences as system failures or hangs, disc media failures,

datacomm line failures or application failures can all bring

database processing to a screeching halt. Failures can also
result in physical or logical damage to the database, with

physical failures resulting from having bad data on disc

(filesys), broken chain pointers or inconsistent root files.

Logical failures can result because of missed updates, puts

or deletes or missing delete flags. Whatever the cause, there

are several standard and some new ways to repair the damage.

CLASSIC IMAGE RECOVERY

A standard method of IMAGE recovery is to restore your most

recent copy of your database and forward recover using DBRECOV.
However, there are some major deficiencies with this method

of recovery. First and foremost, the process is extremely time

consuming as it keeps users away from productive processing.

HP3000
INTERNATIONAL CONFERENCE 080113
VIENNA 1987

Also, DBRECOV uses a technique of recovery known as staging,

whereby the restored DB is updated from the log file via staging

files. The problem with staging is that large numbers of

transactions can be ignored if an "end" is not found, resulting

in these transactions not being applied to the database. The

result can be a great deal of time and effort spent on forward

recovery, with no guarantee that the recovery will be complete.

INTRIHSIC LEVEL RBCOVBRY - ILR

If a failure- occurs during an actual DB intrinsic such as

updating, ILR can ensure physical integrity of your database

by undoing the intrinsic. The problem with "undoing" is that

with IMAGE databases, in some instances the log file and the

database may not agree! Improvements made to TurboIMAGE have

alleviated this problem.

TURBOIMAGB RECOVERY

With Turbo, ILR will complete the intrinsic call so that the

logfile and the database agree, as opposed to just "undoing"

it. Turbo allows you to forward recover with DBRECOV as does

IMAGE, but it also allows you to initiate a rollback recovery.

Rollback recovery is

eliminates the need
a more timely method
for a DBrestore and

of
to

recovery

reapply

transactions to the database. Rollback recovery allows

to bring their current database up, and back out the

incomplete transactions, while complete transactions are
in place.

as it

logged

users

last

left

HP3000
INTERNATIONAL CONFERENCE 080114
VIENNA 1987

The use of I.LR and Rollback recovery will generally ensure that

more data is recovered than is possible with roll forward

techniques. This is due to the fact that ILR with rollback

recovery requires physical logging.

Physical logging ensures that the changes to the database are

recorded and written to the log file as they occur. This prevents

the log record from remaining in memory where they can be lost

in the event of a failure.

Despite the time savings that can be realized with Turbo's newer

recovery features, neither these or IMAGE recovery procedures

are of assistance with another common occurrence that results

in logically broken databases - program aborts.

RECOVERING PROM PROGRAM ABORTS

Programming bugs, user errors and datacomm line failures are

just a few of the occurrences that can result in a database

becoming logically corrupt. To date, HP3000 sites have had

to live with the fact that once their databases have become

logically corrupt, that they have to endure this inconvenience

until a full recovery procedure can be initiated.

PROBLEMS ASSOCIATED WITH ABORT RECOVERY

Again user downtime is the penalty that must be paid as users

have to terminate, partial transactions are deleted or completed,

and then users are allowed to access the machine again. However,

if strong locking is not in place, the transaction interaction

that has been rolled out can inadvertently undo a completed

call. The real solution to this dilemma is to have a "net change"

rollback. This is currently unavailable, as a "net change"

rollback requires a detailed and intimate knowledge of the

application.

HP3000
INTERNATIONAL CONFERENCE 080115
VIENNA 1987

SOLUTIORS - BOW ro MIIJIMIZB RBCOVBRY BUDACBBS

The benefit of such facilities as DBRECOV and Rollback recovery

can be greatly enhanced if you implement the following safeguards.

1. ~ .Q!!_ logging - despite persistent misconceptions, logging

does not significantly degrade the performance of your

machine. If you are not logging you have precluded yourself

from virtually all methods of recovery.

2. Use Begins and Ends Without DBbegins and DBends, by

definition no logical transactions exist. Therefore, database

logical integrity is impossible to determine. The best

that can be done is to provide for an audit trail of physical

transactions.

3. Strong Locking - Some method of strong locking should be

implemented. Without strong locking, a transaction can

interact with another transaction before it has completed,

thereby making the result of a rollback recovery questionable.

4. ~ .Q!!_ .!.!!!. - Turning on ILR will ensure that your database

will always be physically intact.

Implementation of these four key points is crucial if you are

to ensure database integrity and ease of recovery for your

company. They can result in tremendous reductions in user

downtime and the time is spent on recovery procedures. There

is however, another alternative method of database recovery,

that when implemented with the aforementioned safeguards, will

render downtime due to the initiating of recovery, or the

existence of logically corrupt databases due to program aborts,

a thing of the past.

----------~--·------~----~~~---

HP3000
INTERNATIONAL CONFERENCE 080116
VIENNA 1987

AH ALTERNATIVE - DYNAMIC •aoLLBAcx•

A facility that provides a dynamic rollback, will actually undo

an aborted transaction as the abort occurs. This "real time

removal" of an aborted transaction will result in your database

always being logically intact. Without the existence of

incomplete transactions in your database, it would also

unnecessary to have to take the system down to initiate a cleanup.

Such a utility does exist, and is actually one product for the

HP3000 from the Carolian Systems Research and Development group.

Known as INTACT, this product provides these major capabilities

which have been previously unaddressed and unavailable to HP3000

users.

Additional information on INTACT and other Carolian Products

is available from:

Carolian Systems International Inc.

3397 American Drive, Suite #5

Mississauga, Ontario

Canada

L4V 1T8

or call (416) 673-0400

HP3000
INTERNATIONAL CONFERENCE 080211
VIENNA 1987

USING DBchange TO IMPROVE YOUR

DAT ABASE ADMINISTRATOR'S PRODUCTIVITY

Introduction

by
Robert Ross

Online Database Support Engineer
Information Technology Group

Cupertino, California

Database structure definitions are very rigid, although with good reason. Nothing is more important to
the user than the integrity of the data which took days or years to build and maintain. Unfortunately,
the same rigidity can be very confining when it comes to modifying the database structure, usually to
increase capacity, add new items, or increase performance. Image/3000 users have always had a way of
accomplishing this through the use of DBUNLOAD and DBLOAD, a relatively cumbersome, slow, and
inflexible method of changing the structure of a database, but one that does work for infrequent
changes. Since many users needed faster and more powerful restructuring tools, several third-party
software vendors produced utilities which made the process of modifying the structure of your database
far less painful. Hewlett-Packard now offers its own database restructuring tool called "DBchange".
This product, available for Turboimage databases and to be released on the UBdelta2 MIT, will give
database administrators and programmers the fast, disc-based database restructuring capability needed
for large data bases.

What can DBchange do?

DBchange can make additions, deletions, and changes to a database. It can copy a database, review its
structure, and print a schema from it. Passwords, data items, sets, paths, fields, and sort items may all be
added or deleted. Item names, set names, the database name, set capacity, the blocking factor of sets, the
device class on which sets reside, the set order within the schema, set names, user access to sets, field
order within sets, passwords, user classes, item types, item names, paths, and sort items may all be
changed. Sets, fields, paths, and items may be reviewed at any time. And any or all of the above may
take place in one pass of DBchange, with the exception of copying. The following table will show the
capabilities available in DBchange grouped by function.

HP3000
INTERNATIONAL CONFERENCE 080212
VIENNA 1987

Table 1 - DBchange Functions

ADD CHANGE DELETE

Passwords Passwords Passwords

Data items Data items Data items

Data sets Data sets Data sets

Paths Paths Paths

Data set fields Data set field order Data set fields

Sort items Sort items Sort items

Data set and data item access

Data item attributes

Primary paths

Data item schema order

Data set schema order

Data set capacity

Data set blocking factor

Data set device class

Data base name

Data set and item names

REVIEW COPY PRINT

Data sets Data bases Schemas

Data items

Paths

Data set fields

Multiple Changes in a Single Pass

DBchange's single-pass, multiple-change capability gives users the option of how many changes they
want to make and when they want to make them. It also frees up the database completely for normal
use while the changes are being entered and stored. This allows database administrators to accumulate
changes during normal working hours, then perform the actual structural modifications to the database
during off hours when no one is using the database. This would also allow a team of programmers, all
working on different sections of the database for their application, to submit changes during one day
and come back the next day with the database modified as requested, without interfering with other
programmers.

HP3000
INTERNATIONAL CONFERENCE 080213
VIENNA 1987

Modifying Item Attributes

Another aspect of DBchange that should be appealing to database/application programming and
development teams is the ability to modify the attributes of any item. How many times have you
wished that you had made a name or address field a little longer, or allowed for 99,999,999 orders
instead.of only 999,999? DBchange will make these and other changes to your items, without losing
any of the data that exists already in the fields, even if the item is being used as a search or sort item.

Type Conversions

DBchange supports type conversion for all data item types defined in the Tlll'bolMAGE Reference Manual
with the exception of 14 and J4. The following chart shows data item type conversions supported by
DBchange. An ><in the appropriate box indicates that you can convert the current item type to the new
item type.

Table 2 - Supported Item Type Conversions

TYPE 11,12 Jl,J2 K1 p R2,R4 u

11,12)()()()()()(

JI ,J2)()()()()()(

K1)()()()()()(

p)()()()()(

R2,R4)()()()(

u)(

x)(

z)()(x)(x

f
CURRENT ITEM TYPE

How does DBchange work?

x
)(

)(

)(

)(

)(

)(

)(

z
)(

)(

)(

)(

x

-'IEW
ITEM
TYPE

The product, "DBchange", consists of four files - two programs, a message catalog, and a forms file. A
few changes to the Turbolmage messaae catalog were also made, which is why DBchange should not
used on any MIT before UBdelta2. The user interface consists only of the two programs, called
"DBchanae" and "DBalter".

Running the DBchange Program

DBchange ill an interactive proaram desianed to accumulate information from the mer reaarding
modificatiom to the database. It ill a VPLUS application which uses forms, and therefore cannot be
run on any terminal that does not support block mode. It uses an inverted tree structure of 1ereens,
based on which function key the user presses, to display help information, review information, or
collect chanaes from the user to store in a "chanae" file. A map of these 1Creens (without the help
1Creens showina) miaht aive the user a better villual idea of hill or her location within the DBchange
proaram.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Add Fields
l)etal)

Add Paths
l)etal)

---- ----
ReWew I

I Fillds --------·

Set
Security

---- ----
Raview I

I Items --------·

Seculty

Change
Set

080214

Item
Security

---- ----
Review I

Sets I

--------·

Change Paths : Review Paths : : Allwlew Paths :
IDetaiD I IDetalD : : IMuterl :

--------· --------·

Figure 1 - DBchange screens

Main Menu Options

After entering :RUN DBCHANGE.PUB.SYS, the user is presented with a main menu screen.
Function keys 1-8 will change the name of the database, copy the database, modify its security,
restructure its definition, print a current schema, perform the actual physical modifications to the
database, display help information, or exit from the proaram. Since DBchanae opens the database in
Mode S, othen usen can continue work as usual. Until the changes stored in the "chanae" file are
physically applied to the database, nothina will chanae from the usen standpoint. However, when
reviewina items, sets, fields, paths, or printing a schema, DBchanae considen all of these changes stored
in the "chanae• file to be part of the existina structural definition of the database and will display or

HP3000
INTERNATIONAL CONFERENCE 080215 .
VIENNA 1987

print the information as if the restructure had already taken place. The user enterina the
modifications needs to be aware that what he or she is seeing on the review item, set, path, or field
screens within DBchange is a combination of what already phylically e:Usts in the database plus all
changes currently stored in the "chanae• file.

Checking for Root File Consistency

After entering the name of a database, the first thin& DBchange does is c:heck the root file for
DBSCHEMA consistency. The root file contains attributes and descriptions of all database objects and
relationships, so it is very important that these tables are accurate. These tables also need to be in the
same format as DBSCHEMA uses, because when the modifications entered by the user are phylically
applied to the database, DBSCHEMA is then used to create a new root file that reflects all of these
c:hanges. If the current root file is not in the proper format or its tables contain incorrect
information, whether from data corruption, modifications by priviledged-mode programs, or hardware
errors, then DBchange may pus a schema to DBSCHEMA that will produce a new root file that does
not correctly reflect the true state of the database. This lituation could produc:e disastrous results for
the user, so a consistency check is performed before DBchange allows the user to enter any chanaes.
The check will take the c:urrent root file, create a schema from it, pus this sc:hema to DBSCHEMA to
produce a new, temporary root file, then compare the two root files, word for word. If any
differences are found, DBchange will warn the user that 1UCh a problem exists, then with permislion
from the user, attempt to repair the problem by storina spec:ific instructions in the •c:hanae" file for
DBalter, which will accomplish the fix during the restructure. If the problem cannot be fixed,
DBchange will apin warn the user, saying that it cannot fix the inconsistency, write the differences
to a root diaanostic file, then exit. This file's name will be the database name with an "RD'' appended
to it. Normally, however, DBchanae should be able to repair these problems, although this c:heck
applies to the root file only. It does not check datasets for corruption.

Change File Capacity

If the root file c:hec:k puses, the user has the option of making any or all of the changes available.
The "chanae" file has the capacity of storing enough changes to build a database to the maximum
number of items, sets, or fields allowed by Turbolmage rules. If time doesn't allow for the completion
of all changes, the user can exit DBchange and return later to continue adding more entries. The
"change" file will accumulate changes, which can be viewed by printing a current schema, until the
physical restructuring is done by DBalter.

~hema Efficiency

All of the same c:oncepts used to create an efficient and workable schema apply to DBchange when
making chanaes to a database. For instance, whenever DBchange adds a new item, set, or field, the
new addition will automatically default to the last plac:e in the schema or set. Sinc:e masters should be
placed before any connected details in the sc:hema order, any user adding a new master needs to
remember not only to add it to the database, then add fields to it, but also to then move its polition in
the schema to locate it in front of any details connected to it.

Truncating Data

When alterations are made to existing items, care must be taken to ensure that important information
isn't lost. For instance, if the last 10 bytes of an X30 field called "City" don't seem to be used and the
administrator decides to trim it to an X20 field, what happens the next time someone wants to do a
"FIND'' on everyone who lives in "West Death Valley Junction"? (Does anyone really live there?) In
this case the user will have to do a find on the first 20 characters, "West Death Valley Ju", which
seems somewhat intuitive, but what if you're chanaina an 12 item to an 11 item and some of the values
stored in this field are larger than 64K? DBchange simply truncates the first of the two words,
leavina a value that won't be at all intuitive. Fortunately, any time a user tries to do this sort of
modification, DBchange will display a ''Warnina - proceed at your own risk" screen to call attention to
the fact that data miaht be lost if this c:hanae is implemented.

HP3000
/NTERNA TIONAL CONFERENCE 080216
VIENNA 1987

Cop>i!lg vs. Restructuring

Another anomaly of DBchange to take into consideration is that the COPY function is essentially a
stand-alone operation. This means that it cannot be combined with any of the other ''restructuring''
functions. Imagine a situation where a programming team is building a database for use with an
application they are developing, and over several days they have accumulated many changes in the
"change" file, but haven't physically applied the changes to the database. Now another team wants to
make a copy of the current database for their own research and testing, but are unable to do so. Since
DBchange considers all changes stored in the "change" file to be part of the existing database structure,
it no longer views the current database as it is, but only as it will be after the physical restructure. To
solve DBchange's impasse whether to copy the database as tt is physically or as DBchange views it,
copying and restructuring were separated into two mutually exclusive functions that share the same
"change" file. The result is that all changes in an existing "change" file must be applied to the
database before a copy can be made.

Recovering Mistakes

A nice feature of DBchange that can help if you've made a mistake in entering changes is RECOVER..
If you have deleted an item, path, set, or field and want to "undelete" it, RECOVER. allows you to do
just that, unless you've added a new item, path, set, or field with the same name as the deleted one.
Or, if you've made a new addition and want to get rid of it without purging all of the changes stored
in the change file, simply delete it. However, these "undo's" do not work level by level. For instance,
if you delete a current item, then add a new item with the same name, then decide to delete the new
item, you are not back at the previous state where you could recover the original item. Once a new
addition has been defined with the same name as a deletion, the deleted item, set, path or field is no
longer recoverable. As mentioned above, the "change" file contains enough capacity for changes to
add the maximum number of items, sets, and fields allowed by Turbolmage. However, if one of these
objects is deleted, DBchange will keep it in the "change" file in case the user wants to recover it later.
This means that a user could enter a series of additions and deletions that would eventually fill the
"change" file up, but make very few real additions to the database. In this case, either the "change"
file would have to be purged, or DBalter would have to be run to apply the changes to the database.

Running The DBalter Program

The second half of the user interface is a program called "DBalter". While DBchange gathers change
information from the user and writes it to the "change" file, DBalter then reads these changes and
physically applies them to the database. Although DBchange must be run interactively, DBalter may
be run directly from the DBchange menu, or as a session program, or as a batch program. This allows
the most flexibility for timing a database restructure, because DBalter requires exclusive a~ to the
database. If DBalter cannot figure out which database to restructure, either through a file equate or
by running it directly from DBchange, it will ask you for a name. It will wam you if the database
has not been DBSTOR.Ed, and if you give it the go-ahead, it will proceed with reading all of the
modifications stored by DBchange in the "change" file and applying them all to the database
simultaneously, set by set.

remporary File Space

Every set that will need restructuring is flagged by DBchange, and DBalter attempts to create
temporary files for each of them with enough room to accommodate any additional fields or i. change
in capacity. If there is not enough room on disc to hold all of these temporary files, DBalter will ask
if you want to use the more risky method of creating one temporary file at a time, making changes
only to that set, then purging the old set to make room for the next temporary file, or stop at this
point and use DBchange to delete some of the changes so fewer sets will be modified and less room will
be needed. If the first choice is opted for and a failure occurs during processing, the database will be
left in an inconsistent state with some of the sets missing, and will need to be restored from a backup.

HP3000
INTERNATIONAL CONFERENCE 080217
VIENNA 1987

Keeping Database Coples Secure

In order to maintain database 11eeurity, copyina a database is not something that any user can do, but a
privilege that the database administrator grants to a user. The administrator uses DBchange to enter
the users name, plus the group and account that the database will be copied into. This is stored in the
"change" file, and only that user loaaed on to that group and account will be able to make a copy of
the database. The user will run DBalter within his or her group and account, enter the database
name, and a new copy of the database will be created there. The conceptual difference here is that
the user is "pulling" the database into his or her group and account only if the database administrator
grants permission for the copy, rather than the administrator "pushing" a copy of the database into a
user's group and account.

The Change File

When a database name is given to DBchange to work on, DBchange looks for an existing "change" file
for that database. The change file will be the name of the database with the letters ''CF' appended to
it. It is a privileged MPE file, and considered to be part of the database itself. Entering Purge,
Release, or Secure in DBUTIL will affect the change file also. If DBchange does not find a change
file, one is created. If it already exists, the user is given the option of purging it, purging it and
creating another, or keeping it and adding more changes to it. The change file contains aeven
different types of records, four of which duplicate all of the information in the database root file, and
three of which are changes to items, sets, or fields. All of these records are allocated at creation time,
so any change records not used by the administrator when making modifications to the database are
left blank. After DBalter completes successfully, the change file is purged unless DBalter was run
with the correct parameter.

How can you use DBchange productively?

The number of changes that can be executed during one pass of DBchange is almost infinitely varied,
but with this freedom comes a responsibility to think about how each change will affect the
performance of the restructuring pass of DBalter. Some of the less time-consuming transformations
possible are any 11eeurity alterations, changing the capacity of detail sets, adding new detail or
standalone master sets, deleting sort items, changing the base name, etc. Some of the more time­
consuming operations include reblocking sets, adding new paths, changing the capacity of master sets,
deleting search items, etc. However, there are many modifications that might seem to be quick, but
will end up taking an unexpectedly long time.

Easy Changes That Take a Long Time

For instance, let's take a simple database that has a master set with paths to three detail sets, and
imagine moving detail set number one to the end of the schema for some reason. This appears to be a
fairly innocuous change, but it actually entails rewriting every record in the master dataset. The
reason is as follows - if the master set is #1 and the three details are sets #2, #3, and #4, then within
each master record there are pointers to all three detail sets ordered like this: 2-3-4. After moving
the first detail to the end, the pointers in the master are still in 2-3-4 order, but DBalter is about to
change the detail set order to 3-4-2. Since DBSCHEMA always orders paths numerically, this 3-4-2
order will be switched around, forcing all of the master records to be read and then rewritten so the
pointers can be changed from 2-3-4 to 3-4-2, a time-consuming process that is created by a
seemingly quick and innocent change to the database. The twin brother of this problem comes from
moving fields around in a dataset if they are search items.

Reformatting Modified Data Types

Another request that will increase the time it takes for DBalter to restructure a database is item
attribute changes. If any items are changed in a set, DBalter will have to read in a dataset record,
deblock it into individual media records, format the old data types for each record into a buffer
containing the new data types, change any pointers, if necessary, then write the block back out to disc.
Since this is all done in memory, it's fairly quick, but it still slows things down somewhat.

HP3000
INTERNAnONAL CONFERENCE 080218
VIENNA 1987

An All of These Chanps N.-ry?

Thue caveats apply any time multiple chanps are beina considered for a database. If you u a
database administrator are tryina to decide whether or not to run a pus of DBalter during lunch time,
and the main PUJ'JIOlll of the chanae is limply to inerease the capacity of a detail set, but someone
wants to llip in the addition of a path or a blocking factor chanae, think about how long theae
additional modifications will take. You might want to do the capacity chanae riaht away, but put off
the othen until a weekend or holiday when more time is available.

How can you use DBalter productively?

DBalter can only act upon the instructions stored for it by DBchange in the change file. DBalter runs
with exclusive acuss to the database, and can therefore use output deferred mode when writing
records, increuing throughput. It also uses large block reads and writes when it can. However, other
than reducing the amount of work DBalter hu to do by modifyina fewer thinas, there is very little a
user can do to speed thinas up once the restructure hu begun. However, if DBalter is beina run in
batch mode, there are some parameters than can be passed which will be helpful in certain
circumstances. The lut four (low order) bits of the parameter each have a specific function, and they
may used in any combination. ·Their descriptions are u follows:

Pana
Value Bit Deacription

1 15 Do not purge the change file after aucceaaful completion.
2 14 Root file haa inconaiatency. If correctable, continue?
4 13 DBSTORE has not been done on thia database, continue?
8 12 Not enough diac apace for all temporary filea, continue?

Bit 1 S is simply a directive to DBalter to leave the change file alone when finished. Bits 12, 13, and
14 represent answers to questions that DBalter would normally ask when running in session mode. A
value of "l" indicates a 'yeri answer to the question, a value of "O" indicates a 'no'. These parameter
values are used only if the question is asked. Otherwise they're ignored. Since these parameters may
be used in combination, any parm value from 0 (or none at all) to 1 S is valid.

What about database security?

DBchanae wu desianed with the security needed by a da(abase administrator in mind. It can only be
run when the 111er is loaaed on as creator of the database in the group and account where the database
resides. Simply knowing the database name or maintenance word will not allow other users to use
DBchanae to modify anythina. Usina standard MPE security, the administrator maintains complete
control over all database modifications or copies.

Applying Chana• to Multiple Databasn

Unfortunately, sometimes this security can be confinina, particularly in a development environment.
What if a user enters a larae number of chanaea for a database, and the next group over decides they
want to do the same thing to their identically structured database? They could type in all of the
changes aaain for their database. Or, if the fint user runs DBalter with PARM•l, the chanae file will
still be there when DBalter is finished. Can the second group just copy the chanae file to their aroup
and account, then apply it to their database? Well, that depends. Remember that the chanae file
contains all of the 1a111e information about the database that the root file contains. When DBalter is
creatina a new 1ehema, it uses the tables stored in the change file. So if the second database tW the
1a111e name u the first, it might work out fine, especially if all of the items, sets, and fields are defined
the 1a111e way. However, the tables in the chanae file also contain item, set, and field security
information, plus the capacities of all of the datasets. Alain, if the security and set capacity of the

HP3000
INTERNATIONAL CONFERENCE 080219
VIENNA 1987

second database matches the first, this method will work correctly. But if they're not, the change file
can still be used, but the second group will have to run DBchange, and enter change records for any
security or capacity on their database that im't the same as first database, where the change file was
created.

Advantages over previous methods

Prior to DBchange, there were three major methods of restructuring a database. First came
DBUNLOAD and DBLOAD, which use tape or a serial disc for their storage medium. The Dictionary
Utilities, DICTDBU and DICTDBL, which use disc storage, and the various third-party programs, all
of which, I think, use disc as their storage medium, were introduced later. DBchange joins the major
third-party programs in being a fast, disc-based, and comprehensive database restructuring tool.
Database integrity is of utmost importance when considering a restructuring utility. DBchange has
been an extremely reliable product during pre-release testing, and continues to be. DBchange is easy
to use because of a consistent, screen- oriented user interface that provides help screens at any point
while entering changes. There aren't many files to install, and no changes to the system library. The
installation process consists of copying the files from a tape into PUB. SYS, and the program is then
ready to run. Administrators, programmers, and others can enter as many changes as desired while
users continue their activities on the database. There are no limitations on the combination of
changes that can be performed in a single pass using DBchange, and then the physical changes can be
implemented in a job stream during the night or on weekends.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Introduction

Relational Access to IMAGE Data Bases

Dr. Wolfgang Matt

Industrleanlagen-Betrlebsgesellschaft mbH

ElnsteinstraBe 20, D-8012 Ottobrunn

West Germany

0803/1

Today everybody talks about Relational Data Bases. Even some HP 3000 users feel that IMAGE

might be old fashioned and speculate about switching to SOL. A relational data base however

is a theoretical concept. It says how one should look at data and what kind of operation should

be performed on data. It does not say, how a data base should be implemented. In this paper it

will be shown that IMAG~ is not such a bad implementation of this concept as some people

think.

Requirements for a Relational Data Base

a) The user's view of the data should be seperated from the hardware realization.

b) All data should be organised in flat tables.

c) Each column has a unique name. All data in a column are of the same type.

d) Each row has a unique key.

e) Row and columns can be viewed in arbitrary order. The applications should work independent

of the order.

f) Different classes of users see different amounts of data. It should be possible to extract a

subset of columns for some users, and join several tables for others.

g) A data base should easily be changed.

HP3000
INTERNATIONAL CONFERENCE 080312
VIENNA 1987

How IMAGE fulfils these requirements

a) An IMAGE data base is largely independend from the hardware realization. The user only

sees the data base name, not the physical realization in root file, ILR-file and date files.

He opens only the data base, stores only the data base etc. IMAGE talks about entries

which are not identical to logical or physical records of MPE-Files.

b) IMAGE data sets can be viewed as flat tables. An IMAGE data base is usually described as a

network. But it can as well be described as flat tables. You may have a Customer master and

an Order detail which can be viewed as two tables both having the Customer Number as a key.

The existence of physical pointers from master to detail and within a detail are details of the

implementations.

c) IMAGE data sets consist of items, each having a unique name, and the item values are all of

the same type. An item may consist of subitems, but their number is always fixed, so the .

subitem number can be considered as an appendix to the item's name.

d) Only master data sets have an unique key. In order to provide a unique key for all data sets,

it is necessary to form a key combining several. fields. This is not possible with IMAGE. But

we market a software which allows multiple field keys. This software avoids long chained

read.

e) When accessing an IMAGE data set an item list should be used. The items are returned in

the requested order independently of the physical structure. When the data base structure is

modified, e.g. new columns added, applications run unchanged. Applications are generally inde­

pendent of the physical order. IMAGE has the nice feature to store unsorted chains chronolo­

gically. You should not rely on this (this feature will go with TURBO WINDOW), but use a

time stamp instead. The software we marked allows sorted retrieval without sorted chaines.

f) Using different IMAGE passwords, different users can have different views of the data.

Generally users only see subsets of the columns and tables defined in the data base. From the

items available to a user a further subset can be formed using a selective item list.

Joining of several tables to a new table is not supported by the IMAGE intrinsics. We shall

market an extension to IMAGE which will allow logical relations to be defined without unload­

ing the data base, and will extend the DBFIND and DBGET procedures to allow arguments

and lists parameters to include items from several data sets.

HP3000
INTERNATIONAL CONFERENCE 080313
VIENNA 1987

g) Changing the IMAGE data base structure is not an easy task. Up to now there was no HP

supported software for structural changes, but there are several third party products available

which do this job. Adding a column still requires a large amount of data to be moved

physically, but there is no necessity to unload the whole data base. For adding and deleting

keys, we market a software which perfoi:ms this task very fast, since the data is not moved. The

keys are stored in a separate data set of the data base, and are covered by logging,

recovery,

and DBSTORE. The keys can be used in DBFIND and DBGET calls and are maintained auto­

matically by DBPUT, DBDELETE and DBUPDATE. They allow access by generic keys and

match code, features not provided by standard IMAGE.

Information Retrieval using Relational Access

In the following a software product will be described that allows relational access to IMAGE

data base. From the user's point of view, IMAGE data bases are a collection of several flat

tables. A subset of these tables the users can access forms the input. The program joins the tables

into a single table extracting a subset of the columns and a subset of the rows.

The program has been designed to be very user friendly. The user selects the input tables (data

sets) and the columns (items) by simply marking them in VPLUS forms. Then he marks the items

to be used for selection. These definitions are stored in a data base to be executed later.

When executing the enquiry the user enters the selection values. Either exact or approximate

selection values can be entered. Approximate values may contain "@" for any number of any

characters, or "?" for any single character in the given position, or ">" or "<" for bigger or less

relations. The software finds the fastest way for executing the enquiry. Whenever possible, multi

field access or generic access is used to avoid long chained or serial reads.

The resulting table can be viewed at the terminal, printed or stored on disc. After downloading,

the table generated may me accessed directly by Lotus or DBASE applications.

Conclusions

IMAGE can not only be viewed as an implementation of a network structure, it can also be

viewed as an implementation of the relational model. H~1AGE allows the implementation of

very efficient standard applications like order processing or financial accounting. Data collected

in these systems can be accessed very easily by the end user using a relational view of the

data base.

HP3000
INTERNATIONAL CONFERENCE 080314
VIENNA 1987

Biography

Wolfgang Matt holds a PhD in physics. Since 1977 he works with IABG, a company with 1700

employees near Munich. He is head of a group of scientists, consulting HP 3000 users and

developping individual software for them. He is the author of SI-IMAGE and ENQUIRE,

products for index sequential and relational access to IMAGE data bases.

HP3000
INTERNATIONAL CONFERENCE 0804/1
VIENNA 1987

Introduction

"@'', "*" and Other IMAGE lists

Fred White
Adager
Apartado 248
Antigua
Guatemala

Each call to DBGET is a request for IMAGE to read a specific physical record of a specific
dataset of a specific database and to extract those fields identified by the item names or numbers
of the LIST parameter, concatenating them in the same left-to-right order as they are referenced
in the LIST, and to return the result as a logical record in the user's BUFFER

This mapping of a physical record to a logical record is done under control of a table of field
numbers rather than a table of item names or numbers.

The term "LIST processing" is used in this paper to refer to the techniques employed by DBGET
in transforming a LIST into such a table of field numbers.

This paper discusses DBGET's methods of processing:

•Item Name LISTs
• Numeric LISTs
• "@" and "*" LISTs
• "0" and";" LISTs

It includes a brief description of the ways in which the LIST processing of DBPUT and
DBUPDATE differ from that of DBGET and a comment on TurboIMAGE differences.

Special Notes

The first word of a Numeric LIST is a count N (< 128) of the number of item numbers contained
in the remaining words of the LIST array. All other LISTs consist of ASCII character strings
terminated by blanks or semicolons and left-justified on a word boundary. Since the leading
character can not be a binary zero, the "value" of the first word of these LISTs always exceeds 255.

At DBOPEN time, the user is assigned an access class determined by the password supplied to
DBOPEN. This access class provides the user with an access mode to each dataset of the database:

UNCONDmONAL ... this means that the user's read (or write) access to all of the fields of
the dataset is unrestricted. This access is granted* only when the user's access class is included
in the dataset's ''write class list".

* Actually, DBOPEN denies the user UNCONDmONAL access to all datasets if the
database is DBOPENed in mode 2 or 6. This is a documented "feature" which users are
forced to live with. For some databases it is possible for a user to DBOPEN a database in
mode 2 or 6 and be unable to read (or write) fields of a dataset which would be readable
(or writeable) if the DBOPEN mode were 1, 3, 4, 5, 7 or 8. DBOPEN could have avoided
this inconsistency by treating all modes the same with respect to dataset access.

HP3000
INTERNATIONAL CONFERENCE 0804/2
VIENNA 1987

CONDmONAL ... this means that the user's read (or write) access to each field of the
dataset depends on the access class being included in the read (or write) class list of the data
item defining the field. This access is granted when the user's access class is included in the
dataset's "read class list" but is not included in its "write class list".

NONE ... this means that the user has no read (or write) access to any of the fields of the
dataset. This occurs whenever the user's access class is not included in the dataset's "read class
list".

Preliminaries

DBGET makes use of 3 tables residing in the Data Base Control Block (DBCB) to create a Field
Number Table which controls the subsequent mapping of a physical record to a logical record:

1. The Item Table (1 per database)

All item names reside in this table in the same order as their occurrence in the ITEMS part of
the defining schema. The first entry is referred to as item 1, the second as item 2, and so forth.

2. The Dataset Item Table (1 per dataset)

This is a byte array of length N + 1 bytes, where N is the number of fields in the records of the
dataset. Each byte except the last (which is zero) contains the item number (between 1 and
255) of the item in the schema which was used to define the corresponding field of the dataset.
These item numbers are in the same order as their occurence in the ENTRY part of the
schema for this dataset. The first corresponds to field 1, the second to field 2, and so forth.

3. The Item Security Table (1 per database)

Each word contains information controlling the user's read and write access to the
corresponding data item. The first corresponds to item 1, the second to item 2, and so forth.

Each dataset has its own Field Number Table which is N + 1 bytes long where N represents the
number of fields in the dataset. Each Field Number Table is initially binary zeroes. Each Field
Number Table also has a full record.flag (a bit) associated with it. This flag is initially zero {OFF).
It is turned ON (set to one) whenever a"@" LIST is processed and is turned OFF (set to zero)
whenever a LIST other than "@" or "*" is processed. When ON, IMAGE maps the entire record
to or from the user's buffer as if it were a single field. When OFF, the mapping is done field-by­
field under the control of the Field Number Table.

LIST Pre-processing

DBGET checks the first word of the LIST parameter. If its value N is less than 128, the LIST is
numeric of length N + 1 words. Otherwise, the LIST parameter is scanned for a terminating blank
or semicolon. The position of this terminator relative to the start of the string determines the word
length of the LIST.

DBGET copies the entire LIST (including the terminator, if a string) into the TRLR area of the
DBCB. The terminating blank, if present, is replaced with a semicolon. The remainder of the LIST
processing takes place on this copy.

HP3000
INTERNATIONAL CONFERENCE 080413
VIENNA 1987

DBGET identifies the specific type of LIST it is dealing with by inspecting the first word of this
copy. The possibilities are identified in the following order:

Processing an Item Name LIST

1st word

"*"
<128

"0"
"·,, .

other

USTType
a full record LIST
a "same as last time" LIST
a Numeric LIST
a Null LIST
a Null LIST
an Item Name LIST

An Item Name LIST is the most data-independent form of a LIST. Naturally, in keeping with the
"No Free Lunch" law, it requires the most time to process.

DBGET initializes the output Field Number Table to zeroes and sets the full record flag OFF.

It then processes each name in the left-to-right order of its occurrence in the LIST:

1. It extracts the name left-justifying it in an 8-word (16- character) array, (padded with trailing
blanks, if needed). It performs a table lookup of this name in the Item Table yielding an
integer I (an item number) determined by the position of the matching entry within the table.

2. It performs a table lookup of I in the Dataset Item Table yielding an integer F (a field number)
determined by the position of the matching item number within the table.

3. If the user has only CONDITTONAL access to the dataset, DBGET checks the Item Security
Table to verify that item I is read-accessible.

4. It verifies that the field number F is not yet a member of the Field Number Table and then
replaces the first zero in the table with F.

The first of these steps takes an order of magnitude more time to perform than the other three
combined and is the major reason why Item Name LIST processing is so much slower than the
others.

Processing a Numeric LIST

DBGET initializes the output Field Number Table to zeroes and sets the full record flag OFF.

It then processes each item number I in the left-to-right order of its occurrence in the LIST:

1. It performs a table lookup of I in the Dataset Item Table yielding an integer F (a field number)
determined by the position of the matching item number within the table.

2. If the user has only CONDITIONAL access to the dataset, DBGET checks the Item Security
Table to verify that item I is read-accessible.

3. It verifies that the field number F is not yet a member of the Field Number Table and then
replaces the first zero in the table with F.

This LIST processing is identical to the last 3 steps of Item Name LIST processing described
earlier. Omission of the the first step of Item Name LIST processing makes Numeric LIST
processing an order of magnitude faster than the processing of an equivalent Item Name LIST.

HP3000
INTERNA T/ONAL CONFERENCE 0804/4
VIENNA 1987

Processing an"*" LIST

No other UST requires less time to process. All processing is complete upon recognition (i.e., the
Field Number Table is left in its previous state).

Processing an"@" LIST

If the full record flag for this dataset is ON, all processing is complete. In this case, the "@" UST is
as fast to process as the "*" UST.

Otherwise, the UST processing depends on the user's access to the dataset:

With UNCONDffiONAL access, the Field Number Table is set to the integer values 1, 2, ••• ,
N (where N is the number of fields in the physical records of the dataset) and the full record
flag is set ON.

With CONDmONAL access, the UST in the DBCB is initialized as a Numeric UST with
item numbers identical to those in the Dataset Item Table. The UST is then processed and the
full record/fag is set ON.

Processing "O" and ";" LISTs

These are referred to as Null USTs. DBGET zeroes the Field Number Table and sets the full
record flag OFF.

Note: A Numeric UST whose first element (number of items) is zero is another form of a Null
UST which happens to be processed as a Numeric UST.

DBGET honors a Null UST by returning a zero-length record to the user's buffer. This also occurs
if an "*" UST is used in the initial access to a dataset. This is because each Field Number Table is
initially all zeroes.

Completing the DBGET

If the full record flag is not ON, DBGET must map the fields of the physical record, as determined
by the Field Number Table, to a logical record.

DBGET uses the Field Number Table along with the Dataset Field Offset Table (not mentioned
earlier) to construct this logical record in the TRLR area of the DBCB:

It initializes a logical length (LL) to zero.

It processes each field number F of the Field Number Table in the left-to-right order of its
occurrence as follows:

The field length FL is calculated:

FL = Offset(F + 1) • Offset(F}

FL words are moved from Offset(F) of the physical record to TRLR(LL) and LL is
incremented by FL.

The LL words of this logical record are then copied from the TRLR area to the user's BUFFER.

HP3000
INTERNATIONAL CONFERENCE 0804/5
VIENNA 1987

Although this mapping is accomplished in an efficient manner, it does constitute additional
overhead proportional to the number of fields referenced in the original LIST.

If the full record flag is ON, DBGET ignores the Field Number Table and simply copies the
physical record directly into the user's buffer, bypassing the field-by-field mapping into the TRLR
area and thus saving the CPU time consumed by this mapping.

Performance Comments

If independence from database structure is a major consideration, your application should use an
Item Name LIST. If this LIST is a constant, your application can avoid the CPU overhead
associated with the processing of Item Name LISTs by using an "*" LIST in all subsequent calls.

If you are accessing ALL of the fields of a dataset in the same order as they exist in the physical
records and if independence from database structure is not critical and if speed is, your application
should use a "@" US! for the first UST and an "*" UST for all subsequent calls.

The advantage of the "@" LIST is that the mapping based on the Field Number Table is bypassed
since DBGET simply copies the physical record directly into the user's buffer in one step.

LIST Processing Nuances of DBPUT

No UST processing occurs unless the database was opened in mode 1, 3 or 4 and the user has
UNCONDffiONAL access to the dataset.

DBPUT's UST processing differs from DBGET's in that no field security check is made since the
user has UNCONDffiONAL access to the dataset which, by definition, implies write access to all
of its fields.

DBPUT verifies that all critical fields (search and sort fields) of the dataset are included in the
LIST.

If the database was opened in mode 1, DBPUT must also verify that the calling process has a
covering lock. This can be a database lock, a dataset lock or a predicate lock.

DBPUTs mapping is from logical record to physical record. Prior to this mapping, the physical
record (in an IMAGE buffer) is set to binary zeroes. Consequently, any fields not included in the
LIST will always be entered as zeroes.

LIST Processing Nuances of DBUPDATE

No UST processing occurs unless the database was opened in mode 1, 2, 3 or 4 and the user has
access to the dataset.

The LIST processing of DBUPDA TE differs from DBPUT in that the field security test is made if
the dataset access is CONDffiONAL, which is always the case if the database was opened in
·mode 2. Also, DBUPDA TE does not verify the presence of critical fields in the UST.

If the database was opened in mode 1, and the user does not have a covering database or dataset
lock, DBUPDATE must also verify that the caller has a predicate lock covering the new and the
old values of the lock field.

HP3000
INTERNATIONAL CONFERENCE 0804/6
VIENNA 1987

Like DBPUT, DBUPDA TE performs a logical record to physical record mapping under control of
the Field Number Table. Unlike DBPUT, the physical record being updated is not zeroed prior to
this mapping.

DBUPDATE compares each new field value with the old one. If they differ, the field is verified
not to be a critical field before its value is replaced.

Some Comments on TurboIMAGE

IMAGE allows 255 data items per database. TurboIMAGE allows 1023 data items per database.
To SUPJ>:Ort this change, the TurbolMAGE Item Table was increased in size by about 8%. More
importantly, each Dataset Item Table had to be changed from a byte array to a word array. This
doubled the size of all of these tables which reside in the user's Data Base User Local Control
Block (DBU). It also required that each table lookup performed on the Dataset Item Table be
implemented in a program loop. The same lookup under IMAGE was performed with a single
SCAN UNTIL instruction. Consequently, this table lookup is slower under TurboIMAGE than it
was under IMAGE.

Since TurboIMAGE allows up to 255 fields per dataset, the first word of a Numeric List parameter
must be less than 256. This is a trivial difference from IMAGE (which allows up to 127 fields per
dataset) and is mentioned only for completeness.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

HOW TO BUILD A DISTRIBUTED M.I.S. SYSTEM

Roger W. Lawson

Proactive Systems Ltd
Central Court
Orpington
Kent BR6 OJA
England
Tel:0689-77933
Telex:9413362

080511

-------------•~c-~-

HP3000
INTERNA T/ONAL CONFERENCE 080512
VIENNA 1987

INTRODUCTION

Management information systems (M.I.S) have historically
been seen as centralised systems. The typical large
company organisation structure is a hierarchy with a
peak at head office. Therefore computer systems to.
support this structure have been concerned with the
consolidation of locally collected data towards the
centre and the distribution of information from the
centre. In the past this often resulted in a naturally
centralised approach to the provision of data processing
resources. However this strategy is not only
inefficient and inflexible but is also needlessly
expensive. I will attempt to show how such systems can
be built using networks of minicomputers (eg. HP3000s)
and discuss the practical problems that have to be
overcome.

THE REQUIREMENTS

To support any complex data processing system or M.I.S.
system that comprises multiple applications you need the
following capabilities:

- The ability to share data between applications.

- The ability to pass transaction data from one
application (or process) to another.

- The ability for users to access data from multiple
data files easily and transparently.

Now if all the systems are running on the same computer,
this is easy. However the centralised approach has many
disadvantages. Some of these are:

- You are placing all your eggs in one basket. If the
central computer stops then all application systems
stop. Even a short interruption is very costly and the
company as a whole may be vulnerable if a real disaster
such as a fire occurs.

- The data communication costs are very high if the
users are geographically dispersed. If the computer is
located in Los Angeles but some of the users are in
New York it is a very expensive solution.

HP3000
INTERNATIONAL CONFERENCE 080513
VIENNA 1987

- It is inflexible as an upgrade of processing power may
only be possible in steps (also there tend to be upper
limits on such equipment as is so with the power of the
HP3000 computer range).

- Groschs Law may no longer apply. Multiple small
computers can give you cheaper power than one large one.

THE PROBLEMS OF DISTRIBUTED SYSTEMS

If you spread applications over multiple computers then
to meet the re~uirements mentioned above is much more
difficult. Let s take each in turn:

- You need to be able to share data between computers
that are geographically remote (although probably linked
by a communication system such as DS/3000 even though
this may be subject to frequent failure or
interruption). For example you may be running a sales
order processing system on one computer and a
production/inventory system on another computer - they
both need to share (and update) the same stock
availability data. Although DS/3000 allows access to
remote data bases it provides no facilities to logically
link two or more data bases on seperate computers.

- Moving transaction data from one system to another is
much more difficult in a distributed system. An example
is where a sales transaction needs to reduce a stock
balance which is held on a local computer plus create an
accounts ledger entry on another central computer.
DS/3000 provides the facility to easily copy a file in
"batch" mode but building a real time processing network
with automatic recovery in case of a failure is another
matter.

- User access to the data for both read and update
purposes introduces technical problems. For example on
an HP3000 if you have more than a few remote DS sessions
then performance tends to be very poor. Also if you have
a reasonably complex network (ie. more than 2 computers)
and you have lots of remote data base access then you
are very vulnerable to failure of any one node or any
communication link. Obviously the more computers you
have then the higher the risk you run of one being out
of action.

HP3000
INTERNATIONAL CONFERENCE 080514
VIENNA 1987

OTHER REQUIREMENTS

Other common requirements that are not covered easily
are:

- Semi-static data on one computer needs to be reflected
on other computers in the network. For example a price
list that is maintained centrally needs to be
distributed around the network. Note that in this case
because the data does not change very frequently and is
not large in volume it is more cost effective for each
computer to have a local copy. The trade off is the cost
of disc space against the communication and performance
cost of remote data base access.

The "local copy" approach also makes each local system
less vulnerable to network failure. Now you could do
this by passing transaction data around the network and
having some local processing code on each system, but
all you really need is some system software which can be
instructed with a command that says "keep the price data
sets on computers 2, 3, 4 etc. automatically the same
as the price data set on computer l".

- Data consolidation is often required. For example
sales transactions that are processed by each local
computer need to be collected and merged in real time
into a single data set on a central computer.

A SOLUTION

Now a couple of years ago my company came up with a
solution to the above problems which is a software
product called BACKCHAT. The original germination of
the product stemmed from both my and a colleagues
experience in running multiple HP3000s as users (for
example the company I worked for as DPM had over a dozen
linked machines). Originally BACKCHAT was aimeq solely
at providing a real time copy of an IMAGE data base on a
second computer by "mirroring" the data base. This
application is very similar in purpose and mode of
operation to HPs SILHOUETTE product (BACKCHAT is an
alternative to that but with many more facilities).
This mode of operation is represented in Figure A below.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Primary
Data
Base

HP3000

I
r< ::>

._ _,,,,

1ltt!t
READ/WRITE USERS

Figure A

DS/NS - --P"

One way mirror

HP3000

i
r< :::>

"-- _,,,.

080515

c
D
B

opy
ata
ase

In this case the copy data base can be read by users on
the secondary HP3000 but cannot be updated. This system
provides:

1. A disaster protection system (users on the primary
system can be switched to the secondary if the primary
fails).

2. Load spreading as reporting/enquiry users can be off
loaded to the second computer.

3. Concurrent back-up and 24-hour availability as tape
stores can be done on the secondary without stopping
access to the data base on the primary.

After releasing the product we were approached by a
potential client who was not only interested in the
disaster protection capability but who also had a number
of other requirements to enable him to build a
distributed system spanning England, France, Germany and
Australia. One of his needs was to be able to logically
share a data base (or data set) with updating on both
systems. This is represented in Figure B.

HP3000
INTERNATIONAL CONFERENCE

Data
Base

VIENNA 1987

HP3000

I

re::: :::>

........ ...,,,,..

lf,ttt
READ/WRITE USERS

Figure B

OS/NS A

Back-to-back
mirror

HP3000

j

ic::::

........

~
D
B

...,,,,..

080516

ata
ase

fttttft
READ/WRITE USERS

So we enhanced the product to provide this functionality
(like man~ advances in the state of the art of computing
the development grew out of close interaction between·a
software company and a user). With the new capabilities
we can supply all the distributed data base requirements
mentioned above.

TECHNICAL DESCRIPTION

BACKCHAT works by using the IMAGE logging system to pick
up data base changes, passes the transactions to a
remote processor and applies them to the remote data
base. With concurrent updating as shown in Figure B
there are effectively two of these processes in
operation (one in each direction) so that the data bases
can be viewed as being mirrored "back-to-back". There is
special logic incorporated to stop transactions echoing
backwards and forwards for ever. There is also special
logic to cope with record relocations (record numbers of
IMAGE records in detail data sets changing from one data
base to another).

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

There is a lot of control and configuration logic
associated with controlling:

- Multiple data bases concurrently.

- Multiple remote connections.

- Selective parts of data base (eg. data sets).

- Restart and recovery from failure.

- Simple operator control from one location.

ososn

Note that BACKCHAT uses the IMAGE logging system for two
reasons:

1. It is the most efficient way of picking up data base
changes, i.e. has least performance impact.

2. It contains logical transaction definitions which may
need to be used in recovery situations.

Incidentally BACKCHAT does not use privileged mode.

With this kind of software one can easily •share"
information across a network without special
programming. For example with a simple configuration
dialogue it is possible to set up sharing of stock
information as in Figure c below.

HP3000

Figure C

OS/NS

] Stock Data Set
(shared)

---1 ~~~~~SS i ng

J Data Sets

HP3000

Production
System
Data Sets

HP3000
INTERNATIONAL CONFERENCE 080518
VIENNA 1987

As you can see the data bases do not need to be similar
except for the data set that is to be shared.

CONCURRENT UPDATING

Now the obvious question with this design is nwhat
limitations are there on concurrent updating". Firstly
if the data sets within a data base are only updated on
one system then no potential conflicts arise. Also the
software can handle updates to the same data set so long
as the particular records being updated are different.
However because it is not practical to impose a global
lock (which would reduce the tolerance to network
failure in any case) the concurrent updating of the same
record has to be considered with care. For example if
a record was deleted on one system at the same time as
it was updated on the other then when the update arrived
on the first system (which may be some time later
depending on configuration etc) the record would have
disappeared. However with suitable application design it
is possible to avoid these problems (eg. flag the record
for later deletion in this example). Although it may not
be possible to take an existing application running on a
single computer and chop it in two without application
changes, there are effectively no significant limits on
what you can achieve.

MORE EXAMPLES

Figures D and E below show how easy it is to provide the
shared reference information and data consolidation
facilities.

Copy
Price
List

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Figure D

Model 52

Head
Office Model 70

Master
Price
List

Micro 3000

080519

Copy
Price
List

Copy
Micro 3000 Price

Micro 3000

List

Copy
Price
List

In this example head office maintain the master price
list on their computer and BACKCHAT automatically
maintains copies on the other computers (the
intermediate copy on the Model 52 could be dispensed
with if not required).

Data
Set
4

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Figure E

Model 52

Model 70

Data Set 1
Data Set 2
Data Set 3
Data Set 4

Micro 3000

Micro 3000

Micro 3000

0805/10

Data
Set
1

Data
Set
2

Data
Set
3

In this example branch sales are automatically passed
from each local system as they are collected to the
central system. They are then automatically consolidated
into a single data set on the central system. Note that
BACKCHAT also contains utilities to help set up the
merged data set initially. In this example transactions
are effectively transmitted through the network for
further processing at another location.

HP3000
INTERNATIONAL CONFERENCE 0805111
VIENNA 1987

TOLERANCE TO FAILURE

Because BACKCHAT processes and manipulates log records
in files on both local and remote systems these files
effectively act as buffers in the network. This means
that the seperate computer processors can operate
asynchronously and, if a network failure occurs,
transactions simply accummulate in the buffers until the
relevant part of the network is restored (BACKCHAT can
then automatically recover to the correct point).
Whether it is communications line failure or computer
failure, in neither case are other computers in the
network significantly affected using this approach.

The software also contains such facilities as a roll
back recovery module that is invoked in certain failure
circumstances (it includes linked roll back of logical
transactions that span multiple data bases by looking at
the user PIN number to identify common usage).

CONCLUSION

I hope I have shown how it is possible to build
distributed data base solutions now on HP3000 equipment
using IMAGE. With the approach described all the
requirements of distributed data processing can be
easily met. It is certainly practical to build real
integrated networks and do the computer processing in
the locations best suited to minimise costs and maximise
user convienience.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

INTRODUCTION

NORMALIZATION - THE PERFECT DATABASE?

Glen Kalina
Information Technology Group

Hewlett-Packard, Cupertino, CA., U.S.A.

080611

As a relational database designer, you may be faced with a
non-trivial task when creating a schema for your database. Common sense may
suffice for very small databases, but what does one do when faced with
creating large databases? Fortunately there are rules that the designer may
choose to follow when creating the database schema. This paper will explore
the advantages and disadvantages of the rules which make up Normalization
Theory.

NORMALIZATION THEORY

Normalization theory is composed of several normal forms. Normal
forms are merely rules that may be used as guidelines in the creation of of a
relational database schema. Over the years many normal forms have been
defined. E. F. Codd, considered the founder of relational database theory,
was responsible for 1st, 2nd, and 3rd normal forms. First normal form is the
most basic and each successive normal form is more rigorous than the previous.
Since there are several normal forms, a relation is said to be in a certain
normal form if it satisfies all the rules related to that normal form and all
normal forms preceding it. Thus, for a relation to be in 3rd normal form, it
must already be in 1st and 2nd normal froms. When it was discovered that 3rd
normal form suffered from some deficiences a stronger normal form was derived
to replace it. This new normal form is called Boyce/Codd normal form. Later,
R. Fagin defined 4th and 5th normal forms which normalize a relation even
further. Later on, we will examine the advantages and disadvantages of first
through fourth normal forms. As these rules are based upon theory, it is
important to note that the database designer need not rely upon normal forms
as absolute laws of relational database design. Normalization theory should
be used only as a guideline in database design since there are often very good
reasons for not fully normalizing a database. As the designer, it is up to
you to determine which tradeoffs are attractive and how far your database
should be normalized. The extent to which the database needs to be normalized

HP3000
INTERNAnONAL CONFERENCE 0806/2
VIENNA 1987

is application dependent, so keep in mind that normalization should be "taken
with a grain of salt" when designing a schema.

WHY NORMALIZE A DATABASE?

There are many different reasons why the designer would want to
normalize a database. The major problems that normalization will rectify are
are those of redundancies and anomalies. As an example let us examine the
following relation

manufacturer(name,address,part,cost)

Redundancies arise when a when information is needlessly repeated in
a database. The potential for wasted space can be great in a large database
environment. If the storage savings will be significant then it makes sense
to normalize and remove redundancies. Besides wasted storage space, there is
another reason why redundancies should be removed. There is the possibility
that multiple copies of the same information will be altered in different ways
so that they no longer agree. In our example above, the address of the
manufacturer is repeated one time for each part that manufacturer supplies.
By normalizing this relation, we can eliminate this redundancy.

The other major problem that normalizing will take care of is that
of insert, delete, and update anomalies. Insert anomalies occur when we can't
add a manufacturer's address because that manufacturer does not suppply any
parts at that time. Null values could be used as a workaround, but would
present additional integrity problems for the application programmer. A
delete anomaly is the inverse of an insert anomaly. If all the parts supplied
by one manufacturer are deleted from a relation, then we'll lose track of the
address associated with the part. The update anomaly is related to the
redundancy problem we spoke of previously. Because of the redundancy of a
certain field, it is possible to update the value of a field in one tuple
while leaving the same value unchanged in another tuple. For example, we
could update the address for a manufacturer in one tuple while leaving the old
address unchanged in another tuple.

RELEVANT DEFINITIONS

Before we proceed to examine normal forms, we need to define a few
concepts relevant to normal forms and relations. By definition, every
relation will have a key. A key is merely a set of fields, one or more, that
will uniquely identify a tuple. To be more specific, a candidate key is a
minimal set of fields that uniquely determine a tuple. We can choose one of
these candidate keys to be our primary key. This primary key will consist of
one or more fields and has the property that no two tuples may contain the
same values in their respective key fields.

We now need to define functional dependencies. A field Y of a
relation is functionally dependant on a field X of the same relation if for
each value of X there is only one value of Y. In other words, a given value

HP3000
INTERNATIONAL CONFERENCE 0806/3
VIENNA 1987

of X must always occur with the same value of Y. To carry the definition
further, for a field of a relation to be "fully" dependant on X of the same
relation, Y cannot be functionally dependant on any proper subset of X.

FIRST NORMAL FORM

For First Normal Form to be satisfied the following condition must
be met. At every row and column position (a field) within the relation there
can exist only one value. So all field values are atomic and no field
contains repeating groups. Repeating groups are sets of data values that
could exist in each field instead of one value. Relational databases by
definition don't contain repeating groups, so all relations are in First
Normal Form.

Since all relations are in First Normal Form, we have no choice as
to whether we wish to normalize our database this far. But, as we've banished
repeating groups in fields, we gain the advantage of simplicity in design and
lose the headache of keeping track of multiple values programmatically.

SECOND NORMAL FORM

A relation is in Second Normal Form if it is in First Normal Form
and all the nonkey fields are fully dependant on the primary key. The goal is
to eliminate non-full dependencies by removing all nonkey fields that are also
dependant on a subset of the key. As an example, let us examine the following
relation.

inventory(factory,part,cost,address)

The primary key in this relation is the composite key consisting of
the factory and part fields. But this relation violates Second Normal Form
because the address field is not fully dependant on the key. It is in fact
dependant on·a subset of the key, factory.

To satisfy Second Normal Form the relation should be replaced by the
following two relations.

factory_address(factory,address)

inventory(factory,part,cost)

The field factory is now the primary key of the relation
factory address and the fields factory and part form the primary key of the
relation inventory. As we can see, all nonkey fields are now fully dependant
on the primary key.

What have we gained by normalizing the initial relation into Second
Normal Form? Since the address field was repeated once for every occurrence of
a factory, we've eliminated redundancy. This has two effects. First, if the
relation contains a large amount of tuples, we've saved alot of storage space.

HP3000
INTERNATIONAL CONFERENCE 0806/4
VIENNA 1987

Secondly, we've eliminated the problems ar1s1ng from the insert, delete, and
update anomalies we spoke of previously. We now have an address for each
factory even if that factory has no parts available. Furthermore, if we
delete all the parts a factory is responsible for, we still have an address
for that factory. Finally,- since the factory address is recorded in only one
place, we avoid the update anomaly associated with redundancy.

But, we do pay a performance price for this normalization. It is
important to remember that this price is wholly dependant on the size of the
relations and the ·application accessing the database. Because the address of
a factory is now in a separate relation, a join of the two relations must be
done if we wish to see the address related to each part manufactured. As a
rule, the greater the number of relations in a join, the greater the time
spent by the software in retrieving the data from multiple relations.

THIRD NORMAL FORM

A relation is in Third Normal Form if it is in Second Normal Form
and every nonkey field is not transitively dependant on the primary key. Put
more simply, a nonkey field must be fully dependant on the primary key but
cannot be functionally dependant on any other nonkey field. Let us use the
following relation as an example.

allocation(engineer,group,site)

The primary key in the relation is the engineer field. Assuming
that an engineer only works for one group. If we further assume that each
group is located at only one site, then it becomes apparent that the site
field is functionally dependant on on the group site while also being
functionally dependant on the key engineer field. This is what we mean by a
transitive dependancy. To satisfy Third Normal Form the allocation relation
should be replaced by the following two relations.

allocation(engineer,group)

location(group,site)

The decomposition into Third Normal Form has benefitted us in
several ways. The redundancy due to the site field being repeated for every
engineer has been removed, saving space and avoiding the anomalies due to
redundancy.

Again we pay a performance penalty. The performance loss is due to
the join we must now perform to retrieve all the information previously
located in one relation. As before, the performance penalty will be related to
the size of our relations and and the number of joins.

HP3000
INTERNATIONAL CONFERENCE 080615
VIENNA 1987

FOURTH NORMAL FORM

A relation is in Fourth Normal Form if it is in Third Normal Form
and it does not contain two or more multivalued dependencies. Multivalued
dependencies -can be many-to-many or many-to-one relationships. Following is
an example of a relation with a two man-to-many relationships.

programmers(engineer,language,host_machines)

An engineer can have the ability to write programs using several
languages on several machines. Thus we have two many-to-many relationships.

To satisfy Fourth Normal Form the relation should be replaced by the
following two relations.

programmers(engineer,language)

machines(engineer,host_machine)

As can be seen, we have split the two multivalued relationships into
two separate relations. The benefits aren't apparent until you try to design
an application that will guarantee the integrity and consistency of the data.
When there are several multivalued relationships in a relation the designer
has to create a sophisticated relation scheme that can cover all the tuple
combinations possible from many-to-many relationships. If insertions,
deletions, and updates aren't done very carefully, data will become
inconsistent. By normalizing a relation with multivalued dependencies it we
remove the possibility of potential inconsistencies while simplifying the
relation scheme and programming effort.

Once again we pay the same performance penalty as for the previous
three normal forms.

CONCLUSION

After looking at four normal forms we can make the following
observations. Using normalization we simplify a database by removing
redundancies and the insert, delete, and update anomalies. By doing this we
have made the database very efficient from a maintenance standpoint. The
programming effort required has become simpler and smaller. Since certain
consistencies and integreties are now inherent in the database design, an
application can concentrate on simpler transactions without the hassle of of
consistency checks.

The physical outcome of normalization is lots of small relations
since we have decomposed complicated relations into an increased number of
simpler relations. I have seen normalized databases that end up larger than
the unnormalized versions but the converse is often true. If the redundant
fields that have been removed are large, such as an address, then more often
than not the normalized database will occupy less physical space than the
unnormalized version.

HP3000
INTERNA T/ONAL CONFERENCE 080616
VIENNA 1987

It has been our experience that increased normalization will
increase data access costs. By splitting fields into many relations we create
a situation where joins must be carried out to retrieve data that was
previously located in one relation. There is no question that joins can be
expensive. I have at times seen a manyfold increase in retrieval time from a
join of two relations, one with ten thousand tuples in it, when compared with
the original ten thousand tuple relation. The retrieval cost will only rise
with the amount of table joins so bear in mind exactly what simplicity in
design is costing you.

In a nutshell, it is your choice as to how far you wish to normalize
you database. You must choose a point on the normalization scale that is a
best fit for your application. By experimentation with prototype databases
you should be able to create the optimium compromise where the tradeoffs
between simplicity, efficiency, and access costs are balanced out.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

A Comparison of TurboIMAGE and HPSQL
by Larry Kemp, HP Bellevue, WA

080711

This paper is intended as a primer on HPSQL for current users of the IMAGE
database management system on HP3000 computers. SQL, which is an acronym for
Structured Query Language, is the new relational database management system
for the HP3000 family. SQL was originally implemented on IBM mainframes, and
has since been implemented on several other computer systems. SQL is an im­
plementation of the original "System R" specification for relational data­
bases. The ANSI committee has accepted SQL as the relational database model.

Users of TurboIMAGE will find that HPSQL provides considerably more flexibili­
ty than does TurboIMAGE. IMAGE has probably gained most of its popularity due
to its ease-of-use and simplicity of design aspects. SQL should provide even
more ease-of-use and simplicity.

IMAGE has gained popularity due to its good performance, predominantly to do
with the ease with which the designer can take performance into account. For
example, the IMAGE designer can effectively, easily, and accurately utilize
blocking factors.

Another area where IMAGE excels is having a considerable knowledge and ex­
perience base. IMAGE is installed on all HP3000 computer systems, and IMAGE
is the database management system used for most HP3000 applications. There­
fore, there is considerable expertise available on good IMAGE design, both
from HP and from a large number of third party consultants. The IMAGE hand­
book exemplifies the publ-ic knowledge base. There are a number of well known
implementation (and optimization) techniques for IMAGE.

There is a knowledge base for SQL, and for the most part that knowledge fo­
cuses on high level design issues. There are well documented logical database
design techniques that utilize relational database constructs, one example
which is the normalization of databases to "third normal form".

The last, very positive trait of IMAGE has been its reliability. IMAGE data­
bases rarely, if ever have integrity problems. And when some damage does hap­
pen, there are accurate, if not time consuming, recovery techniques. Since
SQL is new, its reliability remains to be seen. SQL does have automated log­
ging and roll back recovery, so SQL databases should not have integrity
problems.

The remainder of this primer will focus on the usage and features of IMAGE and
SQL on a sample database and problem. I will focus on data structure and
design, query (data manipulation) language, program-and-data independence,
security, and transaction management. J feel that these are the reasonings
for databases.

Structure. -----

IMAGE and HPSQL use different terms to describe database structure. IMAGE
uses the term "sets" to describe logical groupings of like described data. A
non-database user would call that construct a file, with a restriction that
all of the records are of the same record-layout. An SQL user calls that con­
struct a "table". The IMAGE user refers to repetitive occurances in the set
as "entries", while the non-database 11ser refers to that construct as records.

HP3000
INTERNATIONAL CONFERENCE 080712
VIENNA 1987

The SQL user refers to those constructs as "rows". And lastly, the IMAGE user
refers to the individual components of an entry as "data items", where the
non-database user refers to them as fields. The SQL user refers to "columns"

Non-Database

File
Record
Field

IMAGE

Set
Entry
Item

Table
Row
Column

IMAGE datasets are defined as one of master datasets, or detail datasets.
Master datasets have unique keys and can be accessed by key or sequentially.
Entries in a detail dataset are chronologically organized by common key.
Entries can be accessed either sequentially, or along the chronological key
path. Master datasets can be related to details, and in a logical sense,
detail datasets can be related to masters. This results in the definition of
IMAGE has an extended two level hierarchy.

SQL makes no distinction of master versus detail datasets. Any two tables can
be related, allowing multi-level "Join" operations. And any table can be ac­
cessed either by key/path, or sequentially. Furthermore, a given table can
have multiple keys, including keys which are formulated from several columns.
Generic and approximate searches are allowed.

Here is an example implementation using the two database management systems:

Vendor PO-Header

v~
Vendor-PO-Xrer

IMAGE u
Vendor

L PO_Het1der

I I .._I _ __,
Product

SQL LI ~I PO_Llne_ltems

The most noticeable difference between the two implementations is the lack of
an artifical connecting dataset between Vendor and PO-header in the SQL data­
base. Just as worthy, is that the SQL database implements the same
functionality as the IMAGE version. SQL, as in IMAGE, has the ability to de­
clare unique keys for both the Vendor and PO-header tables. Also, the PO­
number index for the PO-line-items dataset can be declared "clustering", which

HP3000
INTERNATIONAL CONFERENCE 080713
VIENNA 1987

allows optimized physical placement along that index, in an analogous tech­
nique to the "primary path" for IMAGE detail datasets.

Query Language.

Most users of IMAGE were introduced to IMAGE through QUERY. QUERY has a sim­
ple, English-like syntax that allows command driven access to IMAGE databases.
Query is a good learning tool in that it is easy to learn, and allows exercis­
ing of most IMAGE functions. Once the novice has mastered QUERY, he/she next
learns how to programmatically access IMAGE. This involves formatting subrou­
tine calls to IMAGE. One record is accessed at a time, with one or two calls
necessary to access each record.

SQL, like IMAGE, has an ad-hoc program for accessing databases. (The SQL pro­
gram is called ISQL, where the I stands for Interactive.) Most SQL users
learn SQL through ISQL, in an analagous manner to the IMAGE user with QUERY.
But unlike the IMAGE, programmatic access to SQL is nearly identical to ISQL
access. In other words, the user codes the same commands programmatically as
he/she uses in ISQL. Consequently SQL is easy to learn.

like Query, SQL allows conditional specifications of rows to be selected. And
like Query, SQL uses that specification to determine the access method. The
access method is determined by SQL, and not by the application program.

SQL implements the query language in COBOL and PASCAL by using pre-processors.
These pre-processors translate the high-level query commands into the ap­
propriate subroutine calls. The only difference between the interactive com­
mands and the programmatic SQL commands are the specification for where the
resulting data resides. (Programmatically, the INTO clause is specified which
says where in the program to store the result of a command.)

Here are sample interactive and programmatic SQL commands:

SELECT NAME FROM VENDOR WHERE VENDOR NUMBER = '0023'

SELECT NAME FROM VENDOR INTO :WS-NAME WHERE VENDOR-NUMBER = :WS-VENDOR-NUM

In this example, NAME is a column in the table VENDOR. A row with the VENDOR­
NUMBER equal to the value of WS-VENDOR-NUM in the COBOL program is selected.
And from the selected row, NAME is delivered to the COBOL item WS-NAME.
Notice that the only significant difference is the specification of program
data names in the programmatic version. (You might a 1 so notice the subst itu­
t ion of '-' for ' '. SQL syntax wants an underscore, while COBOL wants
dashes, so the preprocessor converts dashes to underscores.)

Additionally, SQL commands have the ability to retrieve multiple records in a
single command. This eliminates the need to code loops in many transaction
processing programs. (It also speeds up performance, since it reduces the
number of entries and exits from SQL.)

Using the sample database, here are code comparisons for IMAGE versus SQL.
These statements display a purchase order. The SQL code is actual code, where
the IMAGE code is psuedo-code. Notice that the SQL version takes exactly one
SQL command to retrieve all qualifying rows.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

SQL: BULK SELECT * INTO :PO-RECORDS
FROM PO-HEADER,VENDOR,PO-LINE-ITEMS,PRODUCT
WHERE PO-HEADER.VENDOR-NUMBER:VENDOR.VENDOR-NUMBER AND

PO-HEADER.PO-NUMBER:PO-LINE-ITEMS.PO-NUMBER AND
PO-LINE-ITEMS.PROD-NO:PRODUCT.PROD-NO AND
PO-HEADER.PO-NUMBER : :WS-PO-NUMBER

IMAGE: DBGET(MODE7,PO-HEADER,PO-NUMBER,PO-RECORD)
DBGET(MODE7,VENDOR,VENDOR-NUMBER,VENDOR-RECORD)
DBFIND(PO-LINE-ITEMS,PO-NUMBER)
REPEAT

DBGET(MODE5,PO-LINE-ITEMS,LINE(I))
DBGET(MODE7,PRODUCT,PROD-NO,PROD(I))
ADD 1 TO I

UNTIL (END-OF-CHAIN(PO-LINE-ITEMS))

080714

This particular example is a complex one, requiring accesses to four different
data sets or tables, and locating multiple records from the PO-LINE-ITEMS
dataset or table. Note that the SQL user can test out his/her query interac­
tively, using ISQL, before coding the command.

Program and Data Independence.

One of the most significant advantages of a database system is the ability to
change the database without affecting the executing programs. All database
systems have this characteristic to some extent, really none completely imple­
ment it. (One example is where a program accesses a field that has been
eliminated from a database.)

IMAGE allows addition and deletion of fields of a database by a database ad­
ministrator. IMAGE allows changing of field definitions by the database ad­
ministrator such that programs that do not access the changed fields need no
modifications.

The mechanism that IMAGE uses to implement this feature is called access by
"item 1 ist". Specifically, when a program asks IMAGE for data, it presents a
buffer, and a symbolic list of data items that describe the items that should
fill the buffer. For example, a program might present.IMAGE with the item
list "VENDOR-NUMBER,VENDOR-NAME".

IMAGE databases are at least initially created by a text file called a "sche­
ma". A database administrator creates the schema which defines all sets,
items, relationships, and security. Subsequent structural changes can be made
to the database by modifying the schema, and recreating the database, or by
use of Adager, or a similar utility which recreates the affected datasets. In
all cases, the changes are made offline, and the database administrator will
probably want to maintain the schema file.

Like IMAGE, SQL provides item flexibility by having programs request data
using an item list. SQL also provides a significantly greater degree of pro­
gram and data independence through a construct call a "View". A VIEW is a
logical window that a program uses to access the database. A VIEW might be
construed as a logical 'table' in that a program accesses a view just as it
might access a table. A view can contain join operations across multiple
files.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Here is an example of a VIEW:

VIEW creation:

CREATE VIEW PURCHASE ORDER (PO NUMBER,VENDOR,AMOUNT) AS
SELECT PO HEADER.PO NUMBER, VENDOR NAME,AMOUNT

FROM PO-HEADER,VENDOR -
WHERE PO HEADER.VENDOR NUMBER=VENDOR.VENDOR NUMBER - - -

VIEW access (which could be programmatic):

SELECT* FROM PURCHASE_ORDER WHERE PO_NUMBER = '1020'

080715

The VIEW facility allows external specification of not only the data elements
accessed by a program, but also the access path to the data. It allows a pro­
gram to retrieve data with no knowledge of the access path. It also allows
the access path to be changed without requiring alterations to the program.

SQL databases are maintained by SQL commands. These can be given interactive­
ly or programmatically, just as any other command. Physical database struc­
ture changes can be made while the database is in use. For example, the fol­
lowing command could be given while the specified table is in use:

ALTER TABLE VENDOR ADD CLASSIFICATION CHAR(2)

This command would add a new column CLASSIFICATION to the table VENDOR. Cur­
rently executing programs would not be affected.

The following command could also be given while the database is in use:

CREATE INDEX PO_LINE_ITEM ON PO_LINE_ITEMS(PO_NUMBER,PART_NUMBER)

This command creates a combined index for the table PO LINE ITEMS using the
columns PO NUMBER and PART NUMBER. Applications using--the original database
and selectTng on PO NUMBER-and PART NUMBER would have used the PO NUMBER in­
dex, and then searched sequentially-for the PART NUMBER. Now those applica­
tions can use the new index PO LINE ITEM to go dTrectly to requested line
item. This change in access method-is transparent to application programs.

Security.

There is little doubt in the industry today that security is an important job
of a database management system. Ad-hoc programs, third-party applications,
and open computer systems have mandated externally managed security systems.

IMAGE implements security in the form of passwords. Data items and data sets
are passworded for a combination of read/update/none access to data items and
read/write/none access to data sets. Passwords are specfied by the applica­
tion program when it opens the database.

Security in SQL is implemented through the granting of access rights to logon
user ids. Rather than use a separate password, SQL uses the user logon id,
and allows MPE security to be used for passwording. Access is granted against
tables or views. Since access to elements can be restricted by using views,
data element security is achieved. Hopefully, this will prove to be a simpler
technique.

HP3000
INTERNATIONAL CONFERENCE 080716
VIENNA 1987

A view, however, is more than simply a subset of data. It can contain not
only access specification, but also selection criteria. Since access to data
can be granted on views, this allows security to be specified by value. For
example:

CREATE VIEW P023 AS
SELECT* FROM PO HEADER WHERE VENDOR NUMBER= '0023';

GRANT SELECT ON P023 TO VENDOR23@PURCH;-

This view allows the user VENDOR23 in the account PURCH to look at only his
own purchase orders in the PO_HEADER table.

Transaction Management.

One of the functions of a database management system is to coordinate data
between concurrent users. There are two issues: (1) protection against "race
conditions" where multiple users desire to access and update the same data,
and (2) guaranteeing logical integrity of data. A database management system
protects against race conditions by serializing access to the same data. And
a database management system guarantees logical integrity by ensuring that
either all of its database manipulations succeed, or none of it succeeds.

For example, a user is going to make a transaction which adds one part to in­
ventory, and subtracts one part from a purchase order. The increment to in­
ventory includes reading the data and then updating it. No other updating
transaction can be allowed to intervene between the read and update. If an
intervening transaction did update the inventory count, then this transaction
would make its changes to inventory using the old inventory count, effectively
undoing the other transactions inventory update. In the case of system or
program failure, the transaction must either have completed, or must be backed
out. Otherwise, the partially completed transaction might allow artificial
inventory growth.

IMAGE has two facilities to address transaction management: Locking and
Transaction Logging. Locking allows programs to logically reserve a specified
item before making a transaction against it. Locking is done explicitly by
the program. Transaction logging allows a program to declare the beginning
and ending of a logical transaction. In the case of system failure, the data­
base can be recovered to last consistent (logically complete) point before the
failure. Here is an example of inventory receivings using the sample
database:

DBLOCK(product.prod-no=2666,po-line-items.prod-no=2666)
DBGET(product,prod-no=2666)
REPEAT

DBGET(po-line-items,prod-no=2666)
UNTIL (po-number=A2345)
DBBEGIN

DBUPDATE(product,qty-on-hand)
DBUPDATE(po-line-items,qty-received)

DB END
DBUNLOCK

In this example, the program locks the item PROO-NO in both the PRODUCT and
PO-LINE-ITEMS datasets. Then it retrieves the requisite entries. Once the

HP3000
INTERNATIONAL CONFERENCE oso1n
VIENNA 1987

entries are found, then a logical transaction is started which updates quanti­
ty fields in both datasets.

SQL implements the same constructs, but using a more automated technique.
Locks in SQL are implicit; the programmer never needs to code LOCKs into a
program. SQL determines concurrency conflicts by examining the data "pages"
(which are similar to blocks) accessed within a transaction. If one transac­
tion conflicts with another transaction, then SQL will either wait for the
other transaction to complete, or return an error, allowing the transaction to
restart itself.

This technique is not only eaiser to use, but it can also be more efficient.
For example, a transaction which updates a bill-of-materials has no idea at
the start of the transaction which part-numbers to lock, since the parts­
explosion is determined by reading the records to be updated. An explicit
locking technique would require either data set locking, or double accesses to
the parts dataset. The SQL technique allows maximum concurrency since it does
not require pre-determined locking.

Here is the SQL version of the parts receiving problem:

BEGIN WORK;
UPDATE PRODUCT SET qty on hand = qty_on_hand + I

WHERE prod no= '2666';-
UPDATE PO LINE ITEMS SET qty received = qty received + I

WHERE prod no= '2666' AND-po number= 'A2345';
COMM IT WORK; - -

SQL assures logical consistency of data using a similar technique to IMAGE:
each transaction is bracketted by the commands BEGIN WORK and COMMIT WORK.
After a system failure, the uncompleted transactions are backed out in a man­
ner similar to IMAGE. SQL provides the additional feature that if a program
aborts, that any incomplete transactions will be rolled back.

A transaction roll-back can also be programmatically initiated by the ROLLBACK
WORK command. This feature can simplfy, and potentially opti'mize transaction
processing programs. For example: a program to fill sales orders might first
match requested line items against inventory to see if the order could be fil­
led. If the order can be satisfied, then it would re-read, and update the
records from inventory. The SQL version of this program would simply read and
update inventory. If a line item could not be satisfied from inventory, then
it would request a rollback.

In Summary.

SQL provides all of the features of IMAGE, and in most cases in a significant­
ly enhanced fashion. Additionally, SQL allows the user to administer data­
bases at a considerably higher level. With SQL, the database administrator
has a high degree of program independant control over data and access paths.
In essence, SQL has provided the database adminstrator with many of the tasks
that require programming (and debugging) in IMAGE.

The simplicity of IMAGE has resulted in very good performance for well desig­
ned IMAGE databases. IMAGE performance is well understood and reasonably
consistent.

HP3000
INTERNATIONAL CONFERENCE 080718
VIENNA 1987

On the positive side of performance for SQL is that when a database perfor­
mance issue arises after an application has already been implemented, that the
database administrator can take action without involving changes to program
logic. In other words, SQL allows the database designer to make mistakes in
the initial design, and correct them after the fact.

References.

Astraham, M. M., et al, "System R: A Relational Approach to Database
Management," ACM Transactions on Database Systems I, No. 2 (June 1976).

Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial", Proc. 1971
ACM SIGFIDET Workshop on Data Description, Access and Control. Available
from ACM.

Codd, E. F., "Further Normalization of the Data Base Relational Model", in
Data Base Systems, Courant Computer Science Symposia Series, Vol 6,
Prentice Hall (1972).

Russell, Marguerite (ed.), The IMAGE Handbook, Wordware(1984), Seattle, WA.

Also, TurboIMAGE and HPSQL Reference Manuals from Hewlett-Packard Co.

Com~rison of limits .•

Turbo Image HPSQL

Sets/Tables per Database 199 Unlimited

Items/Columns per Database 199 Unlimited

Items/Columns per Dataset/Table 255 64

Item Size 4094 3996

Items/Columns per Path/Index 15

HP3000
INTERNATIONAL CONFERENCE 080719
VIENNA 1987

Samp ~~QL/COBOL progr·am.

This program prompts the user for a product number, and displays all purchase
orders against that product, including which vendor that the purchase order
was issued to. Each SQL statement is bracketted by EXEC SQL/END-EXEC, to sig­
nal to the pre-processor that these are SQL commands. Notice that the pre­
processor also knows the data-division elements, allowing it to check on data
types and lengths.

IDENTIFICATION DIVISION.
PROGRAM-ID. POS.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 I PIC S9(4) COMP.
EXEC SQL INCLUDE SQLCA END-EXEC. «SQL communication area»
EXEC SQL BEGIN DECLARE SECTION END-EXEC. <<SQL data elements>>
01 PURCHASE-ORDERS.

05 PURCHASE-ORDER OCCURS 20 TIMES.
10 PO-NUMBER PIC X(6).
10 VENDOR-NAME PIC X(20).
10 QUANTITY PIC S9(4) COMP.

01 PROD-NO PIC X(4).
01 ERROR-MSG PIC X(72).
EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.
OPEN-DATABASE.

EXEC SQL WHENEVER SQLERROR GO TO SQL-ERROR END-EXEC.
EXEC SQL CONNECT TO 'PURCHDB' END-EXEC.

ASK-FOR-PART-NO.
DISPLAY 'ENTER PROD-NO FOR INQUIRY, OR CR TO STOP'.
MOVE SPACES TO PROD-NO.
ACCEPT PROD-NO.
IF PROD-NO EQUAL SPACES THEN GO TO CLOSE-DATABASE.
EXEC SQL BULK SELECT PO-LINE-ITEMS.PO-NUMBER,VENDOR-NAME,QUANTITY

INTO :PURCHASE-ORDER
FROM PO-LINE-ITEMS,VENDOR
WHERE PO-LINE-ITEMS.PO-NUMBER=PO-HEADER.PO-NUMBER AND

PO-HEADER.VENDOR-NUMBER=VENDOR.VENDOR-NUMBER AND
PO-LINE-ITEMS.PROD-NO = :PROD-NO END-EXEC.

IF SQLCODE GREATER THAN 0 THEN DISPLAY "NO POS FOR THAT PART-NO"
ELSE PERFORM DISPLAY-PO VARYING I FROM 1 BY 1 UNTIL I > SQLERRD (3).
GO TO ASK-FOR-PART-NO.

DISPLAY-PO.
DISPLAY "PO-NUMBER=" PO-NUMBER (I}

II VENDOR-NAME=" VENDOR-NAME (I)
QUANT ITV= II QUANT! TY (I) .

SQL-ERROR.
EXEC SQL SQLEXPLAIN :ERROR-MSG END-EXEC.
DISPLAY ERROR-MSG.

CLOSE-DATABASE.
EXEC SQL RELEASE END-EXEC.
STOP RUN.

HP3000
INTERNATIONAL CONFERENCE 0807/10
VIENNA 1987

Larry Kemp is a System~ Consultant for Hewlett-Packard in the Bellevue,
Washington (USA) office. Larry Specializes in system performance and data
management tools. He has a Master of Science (MS) degree from the University
of Oregon (1975). Larry has worked at Hewlett-Packard since March of 1980.

ABSTRACT

HP3000
INTERNA T/ONAL CONFERENCE
VIENNA 1987

RELATIONAL DATABASE: HOW DO YOU KNOW YOU NEED ONE?

Orland Larson
Hewlett-Packard

Cupertino, California

080811

The field of relational technology is clearly misunderstood by a large
number of people. One major obstacle to acceptance of the relational
model is the unfamiliar terminology in which relational concepts are
expressed. In addition, there are a number of misconceptions that have
grown up in the past few years concerning relational systems. The
purpose of this paper is to deiine those terms, correct some of those
misconceptions and to help you decide if your company can benefit from
adding relational database technology to your current capabilities.

This paper reports on the growing body of knowledge about relational
technology. It begins by reviewing the challenges facing the MIS
organization and the motivation for relational technology. It then
briefly describes the history of relational technology and defines the
basic terminology used in the relational approach. This will be
followed by an examination of the productivity features of the
relational approach and why it should be seen as a complement rather
than a replacement for existing network databases such as the IMAGE
data base management system. Typical application areas where the
relational app:r..,ach can be very effective will also be surveyed.
Finally, a checklist will be reviewed that will help the audience
determine if, indeed, they really can benefit from using a relational
database.

INTRODUCTION

THE CHALLENGES FACING MIS

The MIS manager is facing many challenges in today's modern information
systems organization. The backlog of applications waiting to be
developed is one of key challenges concerning MIS. In most medium to
large installations the backlog of applications waiting to be developed
is anywhere from two to five years. This estimate doesn't include the
"invisible backlog," the needed applications which aren't even
requested because of the current known backlog. Software costs are
increasing because people costs are going up and because of the
shortage of skilled EDP specialists. The database administrator
typically uses nonrelational databases where a great deal of time is
spent predefining data relationships only to find that the users data
requirements are changing dynamically. These changes in user
requirements cause modifications to the database structure and, in many
cases, the associated application programs.

HP3000
INTERNATIONAL CONFERENCE 080812
VIENNA 1987

The application programmer is spending a significant amount of time
developing applications using these non-relational databases, which
require traversing or navigating the data base. This results in
excessive application development time. Because the users'
requirements change dynamically, a great deal of time is spent
maintaining applications. The programmer is also frequently restricted
by the data structures in the database, adding to the complexity of
accessing data.

End users or business professionals are frustrated by the limited
access to information that they know exists somewhere in the database.
Their business environment is changing dynamically, and they feel MIS
should keep up with these changes. They find that the applications are
inflexible, due to the pre-defined relationships designed into the data
base. They also lack powerful inquiry facilities to aid in the
decision-making process, which would allow them to ask anything about
any data residing in that database.-

THE MOTIVATION FOR RELATIONAL

Dr. Edgar F. Codd, considered to be the originator of the relational
model for databases , noted when presented the 1981 ACM Turing Award
that the most important motivation for the research work resulting in
the relational model was the objective of providing a sharp and clear
boundary between the logical and physical aspects of data base
management (including data base design, data retrieval, and data
manipulation). This is called the data independence objective.

A second objective was to make the model structurally simple, so that
all kinds of users and programmers could have a common understanding of
the data, and could therefore communicate with one another about the
database. This is called the communicability objective.

A third objective was to introduce high-level language concepts to
enable users to express operations on large chunks of information at a
time. This entailed providing a foundation for set-oriented processing
(i.e., the ability to express in a single statement the processing of
multiple sets of records at a time). This is called the set-processing
objective.

Another primary motivation for development of the relational model has
been to make data access more flexible. Because there are no pointers
embedded with the data, the relational programmer does not have to be
concerned about following pre-defined access paths or navigating the
database, which force him to think and code at a needlessly low level
of structural detail.

THE RELATIONAL DATA MODEL: A BRIEF HISTORY

In 1970, Dr. Codd published an article in the Communications of the
ACM entitled "A Relational Model of Data for Large Shared Data Bank'S:""'
This classic paper marks the "birth" of the relational model. Dr.
Codd was the first to inject mathematical principles and rigor into the
study of database management.

HP3000
INTERNATIONAL CONFERENCE 080813
VIENNA 1987

By the mid 70's, there were two database prototypes being developed.
IBM was behind a project called "System R," and there was another
relational database being developed at the University of California,
Berkeley, called INGRES. It was late 1979 before the first
commercially available relational database, called ORACLE, arrived in
the marketplace from ORACLE Corporation. ORACLE is also an
implementation based on "System R". In 1981 Relational Technology Inc.
introduced INGRES which was a different implementation based on the
research done at Berkeley. Today there are several additional advanced
relational products available, such as HPSQL from Hewlett-Packard,
SQL/DS and DB2 from IBM, Rdb from Digital Equipment Corporation and
SUPRA from CINCOM. There are additional products sometimes referred to
as "born again" relational databases, such as IDMS/R from Cullinet,
DATACOM/DB from Applied Data Research and ADABAS from Software AG, to
name a few.

RELATIONAL DATABASE DEFINED

The relational database model is the easiest to understand - at least
at the most basic level. In this model, data are represented as a
table, with each horizontal row representing a record and each vertical
column representing one of the attributes, or fields, of the record.
Users find it natural to organize and manipulate data stored in tables,
having long familiarity with tables dating from elementary school.

The Table, or two dimensional array, in a "true" relational database is
subject to some special constraints. First, no row can exactly
duplicate any other row. (If it did, one of the rows would be
unnecessary). Second, there must be an entry in at least one column or
combination of columns that is unique for each row; the column heading
for this column, or group of columns, is the "key" that identifies the
table and serves as a marker for search operations. Third, there must
be one and only one entry in each rowcolumn cell.

A fourth requirement, that the rows be in no particular order, is both
a strength and a weakness of the relational model. Adding a new record
can be thought of as adding a row at the bottom of the table; hence
there is no need to squeeze a new row in between preexisting rows as in
other database structures. However, to find a particular row, the
entire table may have to be searched.

There are three kinds of tables in the relational model: base tables,
views, and result tables. A base table is named, defined in detail,
filled with data, and is more or less a permanent structure in the
database.

A view can be seen as a "window" into one or more tables. It consists
of a row and/or column subset of one or more base tables. Data is not
stored in a view, so a view is often referred to as a logical or
virtual table. Only the definition of a view is stored in the
database, and that view definition is then invoked whenever the view is
referenced in a command. Views are convenient for limiting the picture
a user or program has of the data, thereby simplifying both data
security arid data access.

HP3000
INTERNATIONAL CONFERENCE 080814
VIENNA 1987

A result table contains the data that results from a retrieval request.
It has no name and generally has a brief existence. This kind of table
is not stored in the database, but can be directed to an output device.

THE RELATIONAL LANGUAGE

The defacto industry standard language for relational databases is SQL.
SQL is pronounced "SEQUEL" and stands for Structured Query Language.
This name is deceiving in that it only describes one facet of SQL's
capabilities. In addition to the inquiry or data retrieval operations,
SQL also includes all the commands needed for data manipulation. The
user only needs to learn four commands to handle all data retrieval and
manipulation of a relational database. These four commands are:
SELECT, UPDATE, DELETE and INSERT.

The relational model uses three primary operations to retrieve records
from one or more tables: select, project and join.· These operations
are based on the mathematical theories that underlie relational
technology, and they all use the same command, SELECT. The select
operation retrieves a subset of rows, that meet certain criteria, from
a table. The project operation retrieves specific columns from a
table. The join operation combines data from two or more tables by
matching values in one table against values in the other tables. For
all rows that contain matching values, a result row is created by
combining the columns from the tables, eliminating redundant columns.

The basic form of the SELECT command is:

SELECT
FROM
WHERE

some data (column names)
some place (table names)
certain conditions (if any) are to be met.

In some instances WHERE may not be neccessary. Around this
SELECT .. FROM .. WHERE structure, the user can place other SQL commands in
order to express the many powerful operations of the language.

In all uses of SQL, the user does not have to be concerned with how the
system should get the data. Rather, the user tells the systeiilwhat
data is needed. This means that the user only needs to know the
meaning of the data, not its physical representation, and this feature
can relieve the user from many of the complexities of data access.

The data manipulation operations inc~ude UPDATE, DELETE and INSERT.
The UPDATE command changes data values in all rows that meet the WHERE
qualification. The DELETE command deletes all rows that meet the WHERE
qualification and the INSERT command adds new rows to a table.

When retrieving data in application programs, it is important to
remember that SQL retrieves sets of data rather than individual records
and consequently requires different programming techniques. There are
two options for presenting selected data to programs. If an array is
established in the program, a BULK SELECT can retrieve the entire set
of qualifying rows and store them in the array for programmatic
processing. Alternatively, it is possible to activate a cursor that
will present rows to programs one at a time.

HP3000
INTERNATIONAL CONFERENCE 080815
VIENNA 1987

SQL has a set of built-in, aggregate functions. Some of the functions
available are COUNT, SUM, AVERAGE, MINIMUM, and MAXIMUM. They operate
on a collection of values and produce a single value.

In addition to commands for data retrieval and modification, SQL also
includes commands for defining all database objects. The data
definition commands are CREATE, ALTER and DROP. The CREATE command is
used to create base tables and views. The ALTER command provides for
the expansion of existing tables and the DROP command deletes a view.
One of the most powerful features of SQL is its dynamic definition
capability. This function allows the user to add columns, tables and
views to the database without unloading and reloading existing data or
changing any current programs. More importantly, these changes can be
made while the databases are in use.

PRODUCTIVITY FEATURES OF USING RELATIONAL TECHNOLOGY

Relational technology is one very important tool that can contribute to
making data processing professionals more productiv The programmer
can benefit from a facility called interactive program development,
which allows the development and debugging of SQL commands and then
permits the moving of those same commands into the application
programs. It is convenient and easy to set up test databases
interactively and then to confirm the effect of a program on the
database. All of these characteristics make SQL a powerful prototyping
tool. The on-line facilities of SQL can be used to create prototype
tables loaded with sample or production data. On-line queries can
easily be written to demonstrate application usage. End users can see
the proposed scheme in operation prior to formal application
development. In this prototype approach, people-time and computer-time
are saved while design flaws are easily corrected early in development.

The database admini"strator profits from the productivity features
already described for programmers. The database administrator has a
great deal of freedom in structuring the database, since it is
unneccessary to predict all future access paths at design time.
Instead, the DBA can concentrate on specific data requirements of the
user. Nonrelational models, on the other hand, require all
relationships be pre-defined, which adds to the complexity of the
application and lengthens development time.

Additional productivity features for the database administrator include
the capability to modify tables without affecting existing programs and
the capability to dynamically allocate additional space while the
database is still in use. SQL goes far beyond many database management
systems in the degree of protection that it provides for data. Views
make it possible to narrow access privileges down to a single field.
Users can even be limited to summary data. Protection can be specified
for database, system catalog, tables, views, columns, rows and fields.
It is also possible to restrict access to a subset of commands. These
access privileges can be changed dynamically, as the need arises.

HP3000
INTERNATIONAL CONFERENCE 080816
VIENNA 1987

In many installations, the key to overall productivity is the ability
of data processing to offload the appropriate portions of the
development and maintenance to the end user. The flexible design
approach of relational databases allows an application to be designed
with the end user's requirements in mind. This could enable the DP
professional to implement an application up to the point where the end
user could create and execute his own queries, thereby expanding the
application on his own and reducing his dependence on the data
processing department. Through SQL, the end user is provided with
extremely flexible access and simple but powerful commands.

RELATIONAL AHD HONRELATIONAL: COMPLEMENTARY TECHNOLOGIES

Within a data processing department already using a well-established
nonrelational DBMS, what role can relational technology be expected to
play? We know that DP will not automatically drop everything and go to
relational database technology. Rather, relational technology should
be seen as a complement rather than a replacement for nonrelational
database systems. Both approaches offer a host of benefits, and most
applications can be implemented with either of the two.

The relational approach is preferred when the application has a large
number of data relationships or when the data relationships are unknown
or changing dynamically. The relational approach provides the needed
flexibility to establish relationships at the time of inquiry, not when
the database is designed. If the application has unknown or incomplete
data specifications, which is usually the case in a prototyping
environment, then a relational system may be preferable. If the
application requires a quick turnaround, the quick design and
implementation capabilities of a relational database can be important.
The ability to handle ad hoc requests is a definite strength of the
relational model as is the ability to extract data for use in a
modeling, forecasting, or analytical framework.

The nonrelational approach is preferred for high-volume, on-line
transaction processing applications where performance is the most
critical requirement.

CHOOSING THE RIGHT TECHNOLOGY

The choice of the "correct" database management system must be based on
the environment in which the database will be used and on the needs of
the particular application. The key feature of relational technology
is that it allows for maximum flexibility, and will probably be the
choice for many new applications. On the other hand, nonrelational
systems may continue to be preferrable for very stable or structured
applications in which data manipulation requirements are highly
predictable, and high transaction throughput is important.

HP3000
INTERNATIONAL CONFERENCE ososn
VIENNA 1987

The optimum appr·oach for many MIS departments will be to use the
relational system concurrently with the existing nonrelational system,
matching the appropriate technology to the application. The only
problem with such an approach is that the data for an application
developed in one technology may sometimes be needed by applications
developed in the other technology. Data may be "locked out" from an
application that needs it, or users might be tempted to duplicate the
data, maintaining both copies. The most desirable solution would
obviously be to provide both relational and nonrelational access to a
single database. This capability will be available with HP's ALLBASE.

RELATIONAL TECHNOLOGY CONSIDERATIONS

There are several things to consider when making the decision to go to
a relational database environment. The additional resources usually
required to support this technology could significantly impact your
system . For example, the intelligence built into the software and the
dynamic capabilities of the relational approach usually require
additional CPU cycles and memory.

Performance is usually a factor when considering the relational
approach and often depends on the maturity of the optimizer software
which is built into the relational DBMS. The Data Base Administrator
is very important when considering relational and plays a major role in
monitoring and improving performance by creating and dropping indexes
when neccessary. The OBA can also elect to use "clustering" or keeping
"like data" together which affects performance by reducing the number
of times a disc is accessed.

The command driven nature of SQL may be difficult for some users
because they usually have to know the names of the tables and data
fields in order to properly construct a SQL command and may prefer a
much more "friendly" menu-driven interface. The SQL user must also
know the beginning and end of transactions that modify the database and
when to "commit work" against that database.

Security of the data resources is usually very important, and the OBA
has the capability to implement some very comprehensive security
schemes. In addition, to ensure data integrity, logging transactions
is mandatory and the user has no way of turning logging off.

If your organization currently has SQL users in an IBM environment they
will find little difference in a Hewlett-Packard SQL environment. The
user and programmer interface is essentially the same; however, there
are some Data Base Administrator functions which are system dependent.

Future releases of HPSQL will work with 4th generation languages and
the System Dictionary. In addition, an easy-to-use menu-driven report
writer for HPSQL end users and programmers will soon be available.

HP3000
INTERNATIONAL CONFERENCE 080818
VIENNA 1987

RELATIONAL APPLICATIONS

There are many application areas - particularly those involving user
analysis, reporting, and planning where the very nature of the
application is constantly changing. Some typical application areas
are:

* Financial
- Budget analysis
- Profit and Loss
- Risk assessment

* Inventory
- Vendor performance
- Buyer performance

* Marketing and sales
- Tracking and analysis
- Forecasting

* Personnel
- Compliance
- Skills and job tracking

* Project management
- Checkpoint/milestone progress
- Development and test status

* EDP auditing
- Data verification
- Installation configuration

* Government/education/health
- Crime and traffic analysis
- Admissions/recruiting/research
- Medical data analysis

These applications typify instances where it is of primary importance
to establish interrelationships within the database and to define new
tables.

CHECKLIST FOR DECIDING WHETHER OR NOT YOU NEED A RELATIONAL DATABASE

Note: If you answer yes to any of the following questions, you should
seriously consider taking advantage of relational technology.

1. Does your company have an excessive backlog of applications to be
developed, including an invisible backlog?

2. Is your company spending too much money developing applications due
to the complexities of using nonrelational systems?

HP3000
INTERNATIONAL CONFERENCE 080819
VIENNA 1987

3. Are your programmers spending too much time maintaining
applications caused by changing data requirements or relationships?

4. Are your programmers spending an excessive amount of time writing
code to navigate through nonrelational databases?

5. Is the nature of your applications constantly changing?

6. Do your users' requirements for information change dynamically?

7. Do your users feel restricted by a nonrelational database?

8. Would your users find it natural to organize and manipulate data in
tables?

9. Do your users currently use LOTUS 1-2-3 or spreadsheets?

10. Is your company moving towards a distributed database environment?

SUMMARY

Relational technology can have a profound effect on the way
organizations operate. In short, the use of relational databases,
within the correct DP environment, can help turn the computer into the
effective tool most managers need to run their organizations
successfully. The following conclusions deal with relational database
technology.

*
*

*

*

*
*
*
*
*

Relational concepts are easy to understand and use.
SQL is a multifunctional language.

Database definition and creation
Data retrieval
Data manipulation
Authorization and security
Transaction management and recovery
Database environment management and restructuring
Interactive and programmatic use

SQL allows you to specify which information you want - not how to
retrieve it.
SQL increases programmer productivity and lifts programming to the
level of problem solving.
Data independence is ensured and minimizes maintenance of programs
Data access is automatically optimized as DB structure changes.
The DBA has unprecedented power and control over the database.
New systems are implemented much faster.
Relational databases provide a cost effective powerful solution.

It is to the advantage of most data procossing management to learn to
use this technology creatively and to manage it effectively. The
bottom line is that RELATIONAL DATABASE TECHNOLOGY IS HERE TO STAY!

HP3000
INTERNAnONALCONFERENCE 0808110
VIENNA 1987

REFERENCES

Codd, E.F., "A Relational Model of Data for Large Shared Data Banks,"
CACM, 13 6,(June 1970),pp. 377-387.

Codd, E.F.,"Relational Database: A Practical Foundation for
Productivity," CACM, 25 2,(February 1982),pp. 109-117.

Date, C.J., An Introduction~ Database Systems, Addison-Wesley, 1977.

Date, C.J., An Introduction to Database Systems Vol II, Addison-Wesley,
1983.

Schussel, George,"Relational Database-Management Concepts, "Proceedings
1986 Database and Fourth/Fifth Generation Language Symposium,NY,NY,
June 8-12,1986.

____ ,Relational Technology: A Productivity Solution, Hewlett­
Packard Co., Computer Systems Division, Cupertino, Ca., 5954-
6676, January 1986.

__ ...,__,SQL/Data System for VSE: ~Relational Data System for Applica
tion Development, IBM Corp. Data Processing Division, White Plains,
H.Y.,G320-6590,Feb 1981.

HP3000
INTERNATIONAL CONFERENCE
VIENNA 1987

Linking To HP System Dictionary
By Ron Harnar

Hewlett-Packard
Information Networks Division

Cupertino, CA 9SOI4

080911

System Dictionary is a new data dictionary product which, for the first time on the HP3000,
allows programmatic access to a fully extensible dictionary architecture. Prior to its release
on MPE V G. 01. 04 (T-delta-4), one of System Dictionary's largest "customers" was
Hewlett-Packard itself. HP used the System Dictionary intrinsics to develop the definition
loaders SDDBD, SDVPD, and SDCONV, a dictionary maintenance and reporting utility
SDMAIN, and the definition extractors SDDBC and SDCDE.

These utilities by no means exhaust the possible applications of the System Dictionary
intrinsics. But they do embody some dictionary access techniques that will almost certainly
be used in every System Dictionary application.

The purpose of this paper is to describe these techniques so that application developers can
spend less time reinventing them and more time developing System Dictionary-linked
solutions for their target users. This paper starts with a brief overview of the System
Dictionary architecture and intrinsics, but a general familiarity with System Dictionary and
its utilities is assumed. For details on syntax and usage, refer to the HP System Dictionary
Intrinsics Reference Manual (32254-90002).

Entity-Relationship Model

System Dictionary uses a simple but powerful entity-relationship model in which the central
components are entities, relationships between entities, and attributes that define and
characterize entities and relationships. You can use the entity-relationship model to
describe the real-world objects of an information network, and to define logical connections
between these objects.

ENTITIES AND RELATIONSHIPS

Entities and relationships are the definitions that you store and retrieve in the dictionary.
Entities are dictionary definitions that refer to objects in the real world of an information
network. An entity has attribute values that further define the real-world object or that
describe the entity itself (when it was created in the dictionary, who "owns" it, and so on). A
relationship is an ordered list of entities. Relationships express logical connections between
real-world objects. Most relationships involve two entities and are called binary
relationships. System Dictionary also supports N-ary relationships involving up to six
entities. Relationships have attribute values that in some cases describe the dictionary
definition itself and in other cases describe one of the entities in the relationship.
Relationship attribute values can thus be used to document an entity in a particular context
or usage.

HP3000
INTERNATIONAL CONFERENCE 080912
VIENNA 1987

STRUCTURES

The System Dictionary entity-relationship model provides a set of structures that support
the creation and retrieval of entities and relationships. Entity types are structures used to
define, categorize, and qualify entities. IMAGE-DATABASE, for example, is a System
Dictionary entity type used to define entities that describe IMAGE data bases. Relationship
types are structures for defining, categorizing, and qualifying relationships.
IMAGE-DATABASE contains IMAGE-DATASET is a System Dictionary relationship type used
to define relationships between IMAGE data bases and data sets.

Attributes are structures for defining the attribute values of entities and relationships.
IMAGE-DATASET-TYPE, for example, is a System Dictionary attribute associated with the
IMAGE-DATASET entity type. CAPACITY is an attribute associated with the
IMAGE-DATABASE contains IMAGE-DATASET relationship type. System Dictionary
supports six attribute types. Four of the types are fixed-length: boolean, a true-or-false
value stored in one byte; character, an alphanumeric value with a maximum length of 255
bytes; integer, a 16-bit or 32-bit binary value; and floating, a 32-bit or 64-bit
floating-point format. The remaining two attribute types--alias and variable--are
"free-floating" in that they are never assigned to entity types or relationship types, but
values for them can be assigned to any entity or relationship. An alias attribute is a 32-byte
character field that contains an alias value for an entity or relationship. An attribute of
type variable (sometimes called a variable-length attribute) has no maximum length, and is
typically used to store descriptions, edit masks, default values, long names and other
variable-length values. Since not every entity or relationship needs alias and
variable-length attributes, System Dictionary sets aside storage space for them only if they
are explicitly assigned. When an alias or variable-length attribute value is deleted, the
storage space is released.

A relationship class is a name, like contains or uses, that describes the action or
connection of a relationship. In System Dictionary, a relationship type belongs to a
relationship class. The relationship types RECORD contains ELEMENT and FORM contains
ELEMENT, for example, belong to the contains relationship class. In some cases, a
relationship class serves as a qualifier for a relationship type. For example, System
Dictionary has three relationship types that involve element pairs:

ELEMENT contains ELEMENT
ELEMENT redefines ELEMENT
ELEMENT references ELEMENT

The first type is used to create relationships between parent and child entities. The second
type indicates that two elements share common storage in a program. The third type
documents an element that references another element, as in a Pascal type reference. These
ELEMENT ELEMENT relationship types are qualified by relationship class.

In System Dictionary, each entity type and relationship type has an attribute list. Attributes
are associated with an entity type or relationship type by means of a structural component
called a type-attribute association. When an attribute is associated with an entity type or
relationship type, each entity or relationship of that type must have a value for the
attribute.

HP3000
INTERNATIONAL CONFERENCE 080913
VIENNA 1987

Extensibility

System Dictionary provides a built-in set of structures called the core set. The core set
includes entity types, relationship types, relationship classes, attributes, and type-attribute
associations. Users can extend their dictionaries by creating new structures or by making
limited changes to the core set such as changing the names of structures. The extensibility
feature allows the dictionary to be customized by the user. It also allows Hewlett-Packard
to localize System Dictionary to a user's native language, and to update the core set as new
subsystems are added to MPE.

Domains and Versions

In System Dictionary, a single physical dictionary can be divided into multiple, logically
separate domains. A domain is a "name space" that contains entities and relationships.
Domains are typically used to keep the entity and relationship definitions of one application
group separate from others. They can also be used to avoid naming conflicts. Every System
Dictionary has a built-in domain called the common domain that is always present and
always public. Users can create their own domains, called local domains, and assign them a
sensitivity level of public or private.

Domains can be further subdivided into named partitions called versions. Versions allow you
to designate one set of entities and relationships in a domain as the current production
version, and other sets as test or archival versions. Unlike domains, which are considered
separate name spaces, versions should be thought of as more-or-less complete copies of the
entities and relationships in a domain. In a version of test status, you can add or delete
entities and relationships, or change their attribute values. An archival version cannot be
modified, and is usually kept for historical purposes. A production version also cannot be
modified, and only one production version is allowed in a given domain. The version feature
thus allows you to maintain a stable production version while you experiment with other
versions. It also allows you to re-activate an archival version if it becomes necessary to
return to a previously used set of definitions.

An important function of a data dictionary is to ensure the standardization and integrity of
the definitions used in an information system. The domain and version features allow you to
experiment with new definitions and maintain separate sets of definitions. If used carelessly,
however, the System Dictionary domain and version features can defeat the standardization
value of the dictionary. System Dictionary has security features that prevent unauthorized
users from creating domains and versions, and that prevent one user from creating new
versions of an entity or relationship owned by another user.

To help overcome the potential integrity problem of having duplicate definitions in several
domains, System Dictionary allows an entity or relationship definition in the common
domain to be linked with one or more definitions in one or more local domains. When
definitions are linked they automatically share attribute values except for special attributes
such as SCOPE-OWNER and DATE-CREATED. The sharing of attribute values has two
advantages. It allows multiple entities or relationships to share the same attribute value
storage space, and it ensures that the shared values can only be modified in the common
domain, not in the local domains. This gives the owner of the common domain entity or
relationship some control over the integrity of the shared attribute values.

HP3000
INTERNATIONAL CONFERENCE 080914
VIENNA 1987

Dictionary Security

System Dictionary provides a comprehensive security scheme consisting of scopes, sensitivity
levels, and scope associations.

A scope is a dictionary user name with a password and a set of capabilities called scope
rights. The System Dictionary scope rights determine whether a user can create or merely
read entities and relationships (the create and read scope rights), extend the dictionary
structure (the extend scope right), create scopes and obtain information about dictionary
security (the secure scope right), and create domains and versions (the domain and version
scope rights).

Scopes "own" entities, relationships, structures, domains, versions, and even other scopes.
Some intrinsics require you to be the owner of the dictionary object on which the requested
operation (such as deletion) is to be performed. Every dictionary has a built-in scope named
CORESET that owns the entity types, relationship types, and other structures of the core set.
When you create a dictionary, you specify a name and password for the Dictionary
Administrator (DA) scope. The DA scope automatically has all scope rights plus other
capabilities not available to other scopes.

Each entity and relationship has a sensitivity level that determines whether other scopes can
read and/or modify it. Domains also have sensitivity levels that designate them as public or
private. If an entity or relationship has a sensitivity level of read or private, its scope-owner
can grant a higher level of access to a selected scope by creating a scope association. The
scope-owner of a private domain can similarly create a scope assocation that gives a
particular scope access to the domain.

Intrinsic Groups

System Dictionary has a large number of intrinsics (92). The number is large because the
features built into the dictionary architecture--domains, versions, scopes, and an extensible
structure--give it tremendous complexity, and because the intrinsics provide comprehensive
access to the dictionary. However, since not every System Dictionary application needs
every intrinsic, it may help to divide the intrinsics into the task-oriented groups mentioned
below.

The control intrinsics are used to perform operations such as opening and closing the
dictionary and checking for errors. The entity and relationship intrinsics are used to create,
delete, modify, or retrieve entities and relationships. For most applications that access
System Dictionary, these will be the most commonly used intrinsics.

The structure intrinsics have two general uses. One use is to retrieve information about
entity types, relationship types, attributes, and other components of the dictionary structure.
This information is typically used to support the creation or retrieval of entities and
relationships. A more specialized use (requiring a scope with the extend scope right) is to
change the dictionary structure by adding, deleting, or modifying entity types, relationship
types, relationship classes, attributes, or type-attribute associations.

The domain and version features of System Dictionary are supported by the domain and
version intrinsics. These intrinsics are used to create, delete, modify, and retrieve

HP3000
INTERNATIONAL CONFERENCE 0809/5
VIENNA 1987

information about domains and versions. They also provide the ability to switch from
version or domain to another.

The security intrinsics can be used to retrieve information about scopes and scope
associations, or to create and maintain a security scheme. The security intrinsics generally
require the user to have a special capability (the secure scope right) or owner access to the
desired information. This helps prevent unauthorized users from cracking the dictionary
security. The scope intrinsics also allow you to switch from one scope to another while the
dictionary is open.

System Dictionary Applications

Although there are many applications for the System Dictionary intrinsics, they generally
fall into three categories:

• Loading definitions into the dictionary.

• Extracting information from the dictionary for use in a subsystem or
application.

• Maintaining dictionary definitions, structures, domains, versions, and security.

These application types are discussed below.

Loader Applications

A definition loader is a program or routine that uses the dictionary intrinsics to ensure that
an entity or relationship is correctly defined in the dictionary. In some cases, this is done by
creating a new definition with SDCreateEnt or SDCreateRel. In other cases, the loader may
use an existing compatible definition, or it may modify an existing definition if its attribute
values are incompatible and the dictionary security allows the modification.

HANDLING LOADING CONFLICTS

The simplest case of loading a dictionary definition is to create a new entity or relationship
where none exists. Often, however, a utility or application program will encounter conflicts
because the desired definition already exists, but its attribute values are incompatible with
the definition to be loaded. For example, if a program wants to create an entity named
ZIP-CODE of entity type ELEMENT with a BYTE-LENGTH attribute value of 9, and the
ZIP-CODE entity already exists in the current version with a BYTE-LENGTH value of S, the
program must decide whether to keep the existing definition or replace it with the new one.
(Of course, the decision can be postponed by creating the new definition in another version,
but someone must eventually decide whether ZIP-CODE has 9 digits or 5.)

One loading problem occurs when an entity or relationship must be modified but the current
scope lacks modify access to the definition. The SDModifyEnt intrinsic requires a scope with
modify access to the target entity (or SDERR 412 is returned). A scope that lacks modify
access to a relationship cannot use SDModifyRel against that relationship (SDERR. 612~ If
the loader ''modifies" an entity or relationship by deleting and re-creating it, the security

HP3000
INTERNATIONAL CONFERENCE 080916
VIENNA 1987

restriction is even greater: to delete an entity or relationship, you must be its sCope-owner
(see SDERR 406 and 61 7). Also, when you delete an entity or relationship, you
automatically delete its attribute values and scope associations. When you delete an entity,
any relationships involving the entity are automatically deleted also. SDModifyEnt and
SDModifyRel leave this network of information intact. For these reasons, you should use
"modify" intrinsics instead of the delete-create approach whenever possible.

Another loading problem can arise when the current scope is not the scope-owner of an
entity or relationship to be created. You may wonder how you can be the owner of
something that does not exist yet. The answer is that it may exist in other versions of the
current domain. System Dictionary requires that all versions of an entity or relationship in
a given domain have the same SCOPE-OWNER attribute value. You therefore cannot create
an entity or relationship in one version if it already exists in another version of the same
domain and has a different scope-owner. A loader utility should check for this error
(SDERR 406 or 617) when creating an entity or relationship.

HANDLING LINKED DEFINITIONS

When you create or modify an entity in a local domain, you can optionally link it to an
entity in the common domain. This is done by passing the common domain entity's name in
the CommonEntity parameter of SDCreateEnt or SDModifyEnt. From then on, until the
local entity is deleted or the link is broken by passing a slash (/) in the CommonEntity
parameter, the linked entities share all attribute values (except for special attributes such as
SCOPE-OWNER and DATE-CREATED), and the values can only be changed by modifying the
entity in the common domain. Relationships can also be linked or unlinked by using the
CommonEntityList parameter in SDCreateRel or SDModifyRel. Because the attribute values
of linked definitions can only be modified in the common domain, a loader utility accessing a
local domain needs to be aware o~ this potential conflict (SDERR 421 and 638).

How can you tell if two entities are linked? The answer depends on whether you are in the
common domain or a local domain. In a local domain, you can determine the link status by
calling SDGetEnt and checking the CommonEntity parameter. After a call to SDGetEnt,
the CommonEntity parameter contains either the name of the linked entity or, if the entity
is not linked, blanks. In the common domain, checking for a link is more complicated
because a single entity may be linked to one or more local domain entities, and the linked
entities may be in any version of any local domain. A common domain entity may therefore
have a list of linked entities. To retrieve this list, you call the SDGetLocalEntList intrinsic.
Similar techniques can be used to determine the link status of a relationship by calling
SDGetRel or SDGetLocalRelList.

If you are loading definitions into a local domain, and you want to modify an existing
definition that is linked to the common domain, you can use either of two methods. The
first method is to remove the link by passing a slash in the CommonEntity parameter of
SDModifyEnt or the CommonEntityList parameter of SDModifyRel. The second method is
to keep the link intact, switch to the common domain, and modify the linked definition. To
use this approach, you would first call SDGetEnt or SDGetRel and save the CommonEntity
or CommonEntityList parameter so that you -know which definition to modify in the
common domain. You would then call SDGetVersion to find the name of the common
domain version that contains the linked definition. Next, you would switch to this version
in the common domain by calling SDSwitchDomain. After switching to the common
domain, you would use. SDModifyEnt or SDModifyRel to change the desired attributes of the

HP3000
INTERNATIONAL CONFERENCE 080917
VIENNA 1987

linked entity or relationship. These changes would automatically be reflected in the linked
definition in the local domain. Finally, you would switch back to the local domain and
continue the loading process.

Note that there is an important philosophical difference between the two methods of
updating linked definitions. When two or more definitions are linked across domains, they
are equivalent definitions that share a common set of attribute values. When the common
domain definition is modified, the local definitions are automatically changed as well. The
common domain definition should therefore be modified only if the change is intended to be
global for all the definitions linked to it. If the change is intended only for one local domain
definition, the common domain link should be broken.

To handle potential conflicts gracefully, then, a loading routine should:

• Check for conflicts after any SDCreateEnt or SDCreateRel call. It may also
help to call SDGetEnt or SDGetRel first, to see if the desired entity or
relationship already exists before trying to create it.

• Use SDModifyEnt or SDModifyRel to modify an existing definition rather
than deleting and re-creating it.

• Be prepared to handle scope conflicts that arise when the current scope lacks
modify access or is not the definition's scope-owner.

• Decide whether to handle common domain links by breaking the link or using
domain switches.

The loader routine should also have a general error procedure for handling unexpected erron
from IMAGE (System Dictionary is built on an IMAGE data base) or the file system.

Extractor Applications

Now that you have loaded your entity and relationship definitions into the dictionary, along
comes an application that looks up the definitions and uses them in a subsystem or
application. This type of program is sometimes called an extractor, because it extracts
information from entity and relationship definitions in the dictionary. Some typical
extractor operations include:

• Generating data bases, source code, or other subsystem objects according to
definitions in the dictionary.

• Resolving data definitions at compile or run time by looking them up in the
dictionary.

• Navigating through a computer system or network guided by dictionary
definitions.

• Defaulting according to dictionary values rather than hard-coded values.

HP3000
/NTERNA TIONAL CONFERENCE 0809/8
VIENNA 1987

Dictionary access for an extractor utility is simpler than for a loader. The extractor does not
need to be concerned about the scope, domain, and version conflicts that can arise when
creating new definitions or modifying existing ones. Read access to already existing
definitions is sufficient.

GENERATING SUBSYSTEM OBJECTS

The main concern of an extractor utility is to provide a correct and consistent translation of
System Dictionary definitions into subsystem definitions, objects, or procedures. A COBOL
copy library utility, for example, must understand the System Dictionary entities,
relationships, and attributes used to define data elements, records, and files. It must also
recognize the data definition syntax, reserved words, and restrictions of the COBOL
language.

The designer of a System Dictionary-linked extractor utility should examine the core set to
see if it supports the definition of objects in the target subsystem. If additional dictionary
structures are needed, the utility designer must consider how the structure changes will be
distributed to other dictionaries. If Hewlett-Packard agrees to implement a proposed
structure change as an enhancement to the core set, it will be distributed to all System
Dictionary users worldwide. Otherwise, it becomes the application developer's responsibility
to distribute the change.

The designer of an extractor utility is often interested in a specific set of entities that can be
identified by the relationships that link them together. An IMAGE data base creation
utility, for example, may wish to find all the IMAGE data sets defined in the dictionary that
belong to a data base named ORDERS. In System Dictionary terms, this task translates into
finding all the relationships of the type IMAGE-DATABASE contains IMAGE-DATASET in
which ORDERS is the IMAGE-DATABASE entity. This type of retrieval is done with the
SDFindRelList intrinsic. SDFindRelList has an EntitySearchList parameter in which you
specify a list of entity names to be matched during the search. Unlike SDGetRelList, which
returns all the relationships of a specified type, SDFindRelList returns only those
relationships that meet the entity list criteria.

RESOLVING DATA DEFINITIONS

The term fourth generation language (4GL) is used to describe a programming language that
looks up data definitions in the dictionary while the program is being compiled or run. A
4GL saves the programmer the effort of having to write a detailed working-storage section.
The programmer supplies the names of the variables to be used, and the 4GL looks up their
data types, lengths, and other information in the dictionary. Also, when a data definition
must be changed, the change can be made once in the dictionary and it will automatically be
reflected in all the programs that use the definition. In the case of a compiled 4GL, the
change is transmitted when the programs are re-compiled. In the case of a run-time 4GL,
the changes take effect immediately.

NETWORK NAVIGATION

A data dictionary can be a central repository of information about a network. Networking
applications can rely on the data dictionary to provide current information about network
devices, connections, and routing. System Dictionary is designed to provide the functionality
of a network dictionary. It can play a central role in the design of networking applications.

HP3000
INTERNATIONAL CONFERENCE 080919
VIENNA 1987

DEFAULT VALUES FROM THE DICTIONARY

A data dictionary can be thought of as a storage facility that allows default values to exist
independently of the applications that use them. For example, suppose a company is
developing a series of programs to manage inventory information in an IMAGE data base.
The data base has an item named AMT-ON-ORDER. that specifies the number of units to
be ordered for the current month. In each program, the default value for this item is set at
10.

After several weeks of using the new programs, the users decide that they want the default
value of AMT-ON-ORDER changed to 5. To implement this change, the programmers
must find the programs that assign default values to AMT-ON-ORDER, make the requested
change, and recompile the programs.

If, on the other hand, the programs had been designed to check the dictionary for the default
value of this item, the change could be made in all the programs by changing a single
dictionary definition. Furthermore, the change could be made on-line without having to
recompile the programs.

One way to store a default value in System Dictionary is to use the core set attribute
DEF' AULT. DEF' AULT is a variable-length attribute, which means that it can contain a
default value of any length or format, and it can be assigned to any entity or relationship in
the dictionary.

In the AMT-ON-ORDER example, you might create an entity named AMT-ON-ORDER of
type ELEMENT, and assign it a DEF' AULT attribute value of I 0 (and later change this value to
S). It is then up to the programmers to use SDGetEnt to retrieve the AMT-ON-ORDER entity
and check its DEF' AULT attribute value.

Maintenance Applications

Maintenance operations involve the ad hoc creation, deletion, modification, or retrieval of
definitions. In a broader sense, maintaining the dictionary also includes creatin; and
maintaining a security scheme, customizing the dictionary structure, and handling domains
and versions. It might also involve merging the definitions and structures of one dictionary
into another.

Unlike a loader utility, which can restrict its operations to a narrowly defined set of entity
types, relationship types, and attributes, a maintenance utility usually takes a generic,
extensible view of the dictionary. The designer of a dictionary maintenance utility should
therefore use the various "list" intrinsics rather than hard-coded lists of definitions or
structures. Attributes and their values should also be handled with an extensible routine.

USING STRUCTURE LISTS

The ''list" intrinsics SDGetEntTypeList, SDGetRelTypeList, SDGetRelClassList, and
SDGetAttrList allow the programmer to retrieve lists of dictionary structures. The lists can
be presented to the end user for selection of a structure. Also, since System Dictionary
allows the dictionary structure to be extended, programmers can use the list intrinsics to

HP3000
INTERNATIONAL CONFERENCE 0809/10
VIENNA 1987

keep up with these changes. The maintenance and reporting utility SDMAIN makes
extensive use of the list intrinsics.

One example of list intrinsic usage is the task of finding all the relationship types in the
dictionary. Since every relationship type belongs to a relationship class, the first step is to
call SDGetRelClassList to get the list of relationship classes available in the dictionary.
Then, for each relationship class, SDGetRelTypeList would be called to retrieve all the
relationship types of that class. SDMAIN uses this two-stage retrieval method when you
give the command:

>DISPLAY RELATIONSHIP-TYPE.

Because you omitted the RELATIONSHIP-CLASS parameter in this command, SDMAIN must
call SDGetRelClassList to get the list of classes before it can get any relationship types. If
you specify a relationship class, u shown here,

>DISPLAY RELATIONSHIP-TYPE; RELATIONSHIP-CLASS=CONTAINS.

SDMAIN would skip the SDGetRelClassList intrinsic and go directly to SDGetRelTypeList
for the list of relationship types belonging to the contains relationship class.

Another example of the list intrinsics is found in the attribute list prompting feature of
SDMAIN. When you create, modify, or retrieve an entity in SDMAIN, you are given a list
of attributes to choose from. The attribute list is assembled by calling
SDGetEntTypeAttrList to get the list of attributes usociated with the specified entity type,
and SDGetAttrList to get the list of aliu and variable-length attributes available in the
dictionary. The complete attribute list presented to the user thus iqcludes not only the
entity type attributes but also the "free-floating" aliu and variable-length attributes that
can be assigned to any entity.

EXTENSIBLE ATTRIBUTE ROUTINES

A loader or extractor utility is usually interested in a fixed list of attribµtes, so it is a simple
matter to devise a data structure for their attribute values. For maintenance utilities in
which the user is allowed to specify an attribute list, however, a more generic and extensible
method of handling attribute values is needed. The following discussion focuses on the
retrieval of entity attribute values, but the same techniques can be used for relationships.
Consider this example of entity retrieval in SDMAIN:

>REPORT ENTITY LAST-NAME; ENTITY-TYPE=ELEMENT;
>>LIST=SCOPE-OWNER, ELEMENT-TYPE, BYTE-LENGTH.

With this command, the user is requesting the SCOPE-OWNER, ELEMENT-TYPE, and
BYTE-LENGTH attribute values of the LAST-NAME entity. One way to handle this request
would be to retrieve each attribute value separately. First you would parse the list
parameter to get the attribute names. Then, for each attribute, you would call SDGetAttr to
determine its data type and length. Finally, you would call SDGetEnt supplying the
attribute name in the AttributeUst parameter and a variable of the appropriate type and
length in the AttributeValues parameter. From a performance perspective the use of
multiple SDGetEnt calls is expensive, but it makes for a simple looping algorithm that can

HP3000
INTERNATIONAL CONFERENCE 0809/11
VIENNA 1987

handle any number of attributes with a fairly small AttrlbuteValues parameter (the
maximum length of any single fixed-length attribute value is 255 bytes).

Another method is to retrieve all the requested attribute values in a single SDGetEnt call.
In this example, you would simply build an AttrlbuteLlst parameter like the user's list
parameter. The difficulty of this method is in building the AttrlbuteValues parameter.
Since the user can specify any number of attributes, and the attributes can have a variety of
data types and lengths, you would need to build a table of attribute information containing
each attribute's data type, length, and position in the AttributeValues array. Retrieving a list
of attribute values in a single SDGetEnt call requires more programming effort, but it is
more efficient than the looping method described earlier.

You can assign arbitrary maximum lengths to the AttributeValues array and to your
attribute information table, but a truly extensible entity retrieval routine should rely on
System Dictionary maximums. The AttributeValues array should have enough room for all
special attributes, all alias attributes (since these can be assigned to any entity), and all other
attributes that could be assigned to the entity type via a type-attribute association. The
special attributes require 102 bytes. The maximum number of alias attributes allowed in
the dictionary (128) times their length (32 bytes) would add 4096 bytes to the array. The
maximum length of other fixed-length, non-alias attribute values is 2048 bytes. The
maximum length of the AttributeValues array should therefore be:

102 + (128*32) + 2048 • 6246 bytes

The length of the AttributeList parameter should also reflect the dictionary maximums.
There are six special attributes assigned to each entity type. Each entity type can have up to
128 additional type-attribute associations. As already mentioned, there can be up to 128
alias attributes in the dictionary, and any number of these can appear in the attribute list.
The AttributeList array should therefore have room for:

6 + 128 + 128 • 262 attributes

The AttributeList parameter can be defined as an array of 32-byte attribute names. It can
also be defined as an array of 32-bit integers representing the internal numbers. of the
attributes. Internal numbers are retrieved from the attribute intrinsics (e.g., SGetAttr and
SDGetAttrList). When you pass an array of internal numbers in the AttributeList
parameter, the first 32-bit integer is used as a count item that indicates the number of
attributes in the list. This format would therefore require a maximum of 263 array
elements. Besides saving space in the AttributeList parameter, the use of internal numbers
also improves performance by saving System Dictionary the overhead of attribute name
lookups.

System Dictionary provides a flexible entity-relationship model and a set of environmental
features--domains, versions, and scopes--that allow the dictionary to be tailored to
application requirements. The System Dictionary intrinsics provide comprehensive access to
entities, relationships, domains, versions, scopes, and the dictionary structure. You can use
the intrinsics to design a. wide a variety of applications that load, extract, or maintain
dictionary definitions. This paper discussed some guidelines and techniques for
implementing a System Dictionary-linked application.

HP3000
INTERNATIONAL CONFERENCE 0809112
VIENNA 1987

Table of Contents

Entity-Relationship Model . • l
Entities and Relationships • . • • • l
Structures . 2

Extensibility. • . 3
Domains and Versions ..•....................•................... 3
Dictionary Security • . 4
Intrinsic Groups . • • 4
System Dictionary Applications. S
Loader Applications. S

Handling Loading Conflicts . S
Handling Linked Definitions. 6

Extractor Applications . 7
Generating Subsystem Objects. 8
Resolving Data Definitions. 8
Network Navigation•.................. 8
Default Values From The Dictionary . 9

Maintenance Applications . • 9
Using Structure Lists . • 9
Extensible Attribute Routines. l 0

HP3000
INTERNAnONAL CONFERENCE
VIENNA 1987

Is There Life Besides IMAGE?

Introduction

May Kovallck

Hewlett-Packard
Information Technology Group

Cupertino, Callfornla, USA

081011

"Knowledge is of two kinds: we know a subject ourselves, or we know where we can find
information upon it." - Samuel Johnson, 177 S.

Samuel Johnson is the originator of the fint English language database. We all have a
copy of a similar database on our desk today - the dictionary. In 177S, to have that
database at one's disposal was rare and privileged. Today, the possession of such is
commonplace. The body of knowledge that existed then was minuscule compared to that
of today. Nonetheless, the amount of knowledge or information that we know ourselves is
becoming smaller compared to that we have access to. Fortunately, technology is on our
side for managing the ever increasing amount of data.

For most of the HP3000 users, the IMAGE database management system has been the tool
for storage and retrieval of data for many years. With the advent of more sophistication
in the usage of databases, and the increased emphasis on productivity and flexibility, the
offering of the relational technology on Hewlett-Packard's family of computers is a must.

The new ALLBASE product is Hewlett-Packard's advanced database management system
for the Hewlett-Packard Precision Architecture systems for both the commercial and
technical markets. It combines both relational and network model data access in a single
product (See Figure I). HPIMAGE is the IMAGE like interface, and HPSQL is the
relational interface that uses the de facto industry standard SQL (Structured Query
Language) for both data definition and data manipulation. The co-existe.nce of both
interfaces in one database management system allows the user the flexibility to choose the
appropriate data model for each database application.

The rest of this paper will concentrate on the HPSQL interface. I will give an overview of
the basic data definition and data manipulation functions of HPSQL, describe the major
components of HPSQL, highlight some of the features that are unique to
Hewlett-Packard's SQL, and give a preview of future directions of Hewlett-Packard's
database product offerings.

HPSQL

HPSQL is a family of relational products available on the different Hewlett-Packard
computers:

• HPSQL/V is available on the Series 70 and all previous MPE-V based HP3000 systems.

• HPSQJ /XL (a component of ALLBASE/XL) will be available on the HP3000 900 series
systems.

HP3000
INTERNATIONAL CONFERENCE 081012
VIENNA 1987

• HPSQL/HP-UX (a component of ALLBASE/HP-UX) will be available on the HP9000
800 series systems.

HPSQL provides all the advantages of relational technology. It is easy to learn and use,
and provides a set of powerful commands for data definition, data manipulation, security
and authorization control, transaction management and database administration.

The implementations of all the HPSQL products are highly leveraged and are totally
compatible with one another. Customers may develop applications on one system and be
able to move those applications to another without source code modifications.

HPSQL HPIMAGE

COMMON DBCORE

..

Data Definition

An HPSQL database is a collection of database objects consisting of tables, views and
indexes. A table consists of columns and rows, and may be created with the CREATE
TABLE command. The relationships among tables are determined, not by explicit
pointers, but by the data values in the columns of the tables themselves.

A l)ielJ is a virtual table derived by a data manipulation statement from one or more
physical tables or views. Views provide some data independence from certain changes to
the database. If the user wishes to condense multiple tables into one, or split one table into
many, views can protect the user from modifying programs that read these tables.

HP3000
INTERNA T/ONAL CONFERENCE 081013
VIENNA 1987

Another use of views is for security. If the user wishes to restrict access to data based on
content, a view may be defined to perform value based security checking.

A user may create inde:ces on a table to reduce the time it takes to retrieve data from it.
Unlike HPIMAGE application programs where an access path has to be explicitly specified
for each database retrieval operation, HPSQL application programs do not specify indexes
to be used for the query commands. HPSQL automatically analyzes data access requests in
terms of the indexes available and chooses to use the one that will optimize performance.

Tables, views and indexes may be added or deleted dynamically to the database while it is
in use. An existing table may also be expanded by the addition of one or more new
columns. These dynamic data definition capabilities of HPSQL allow the users to
restructure the database easily to reflect changing needs.

Data Manipulation

HPSQL provides the SELECT, INSERT, UPDATE, and DELETE commands for data access
and modification.

The SELECT command in HPSQL allows users to perform the three basic relational
retrieval operations of selection, projection and join. Selections produce a horizontal subset
(of rows) in a table that satisfies certain criteria. Projection produces a vertical subset (of
columns) in a table. Join combines data from two or more tables by matching values in a
column of one table with values in a comparable column in the other tables. In addition,
the SELECT command supports arithmetic expressions, sorting, grouping operations and a
set of built-in aggregate function such as MIN, MAX, A VG, etc.

The INSERT command allows users to add one or more rows to a table. The UPDATE
command allows users to modify values in one or more rows of a table. The DELETE
command allows users to delete one or more rows from a table.

Using these four basic data manipulation commands, the users can easily specify what data
to access or modify without having to specify how to do it.

Components of HPSQL

Figure 2 shows the architecture of HPSQL. There are five major components:

• The interactive user interface (ISQL).

• The utility package for performing database administration tasks (SQLUtil).

• The preprocessors that provide programmatic access to the database (Preprocessors).

• The parser and query processor (SQLCore).

• The kernel database access module (DBCore).

I will describe these components from the bottom up.

HP3000
INTERNATIONAL CONFERENCE 081014
VIENNA 1987

DB Core

DBCore comprises the command executor and the low-level services. The command
executor is a single, cleanly defined interface point that accepts commands from the
interfaces above and calls the low-level services to perform the tasks. The low-level
services include all the routines to store, access and update data, and provides transaction,
management, multi-user concurrency control, logging and recovery.

DBCore does not presume the relational, nor any, model of data. It handles data in a
model independent manner. It is this feature that allows both the HPSQL and HPIMAGE
interfaces to be built on top of it.

This layer of the software is most dependent on the operating system, especially the
modules for accessing files. However, these OS-dependent routines are well encapsulated
and insulated, thus making the operating system transparent to the HPSQL and HPIMAGE
interfaces above. This modularity allows ALLBASE to be easily portable to the different
operating systems.

r--------------------
HPSQL HPIMAGE

SOl.Util

-------------- -.
I

---------- --·

...

SQLCore

SQLCore comprises the parser and the query processor. The parser parses SQL commands
and generates command trees which are "flattened", i.e. all the internal
machine-dependent pointers are replaced by a machine-independent linear representation.
The linearized command trees are then passed on to the query processor.

HP3000
INTERNATIONAL CONFERENCE 081015
VIENNA 1987

The query processor performs protection validation, query optimization and access path
selection. It also makes sure that the tables and columns referenced in the query are valid,
and generates the appropriate DBCore commands to execute the query.

The set of powerful data manipulation commands allows the user to specify what data is to
be accessed or modified, but not necessarily how to access them. A query optimizer is
contained in the query processor to look at the query and evaluate the current physical
structure of the database to determine the most optimal path to access the data. This,
however, does not mean that the user has no control over the performance of his queries.
Because of the powerful data definition capabilities provided by HPSQL, the user can tune
the performance of his/her applications by creating and dropping appropriate indexes for
the tables, or by changing the physical configuration of the database.

One such example is the use of a clustering index for a table. When a row is inserted or
updated into a table that is defined with a clustered index, HPSQL will attempt to place
that row on the same or consecutive data page with other rows with similar key values.
Because the rows are physically close, 1/0 overhead is reduced and performance may be
improved whenever the rows are retrieved in key order.

Preprocessors

HPSQL provides users programmatic access to HPSQL databases via preprocessors. The
preprocessors are programs that read the source code of user application programs which
have SQL commands embedded in them. The preprocessor looks for the predefined
directives (EXEC SQL) in the source programs that define access to HPSQL and replaces
them with language specific calls to HPSQL. It also performs optimization for the queries
and stores the predefined database commands in the database so that, when the program is
executed, the preprocessed commands are executed.

There are two ways that database management systems can allow application access to a
database: preprocessors and intrinsics (e.g. DBGET or DBPUT for IMAGE). There are a
number of advantages in using the preprocessor approach. Firstly, a preprocessor is usually
more friendly than intrinsics. It can take care of data type conversions,
language-dependent and OS-dependent calling conventions, and error handling in a
manner that is transparent to the user. Secondly, the preprocessor approach improves
performance by allowing query optimization to be performed when the application is
preprocessed instead of at run-time. At run-time, HPSQL will detect if a change in the
database structure has invalidated the access strategy for any of the queries and will
automatically re•process those queries for the new structure. Thirdly, there is the
advantage of being compatible with other industry implementations and thus provides
portability for SQL applications.

The Pascal and COBOL preprocessors are available with HPSQL/V and HPSQL/XL. The
Pascal, FORTRAN and C preprocessors are available with HPSQL/HP-UX.

SQLUtil

SQLUtil provides a set of commands for the database administrator to perform various
administrative tasks, such as altering the configuration of the database environment,
managing database files, and backing up and restoring the database environments, etc. It
can be invoked either from ISQL or from the operating system.

HP3000
INTERNATIONAL CONFERENCE 081016
VIENNA 1987

ISQL

ISQL is the interactive user interface that provides the user with functionally complete
interactive SQL access to the data. It accepts user SQL commands, sends them to the
parser, then passes the "flattened" command trees to the query processor for processing.

ISQL accepts commands from three sources: the terminal, the command buffer, or a
command file. The oorrrrand buffer is an area for holding one or more commands for
the duration of an ISQL session. The contents of the command buffer may be changed,
kept in a file or executed. A corrrrand file is a system file that contains one or more
SQL commands. It may be created outside the ISQL environment, using an editor or a
program written by the user.

ISQL also provides a corrrrand history buff er for holding the 10 most recently
submitted commands. Any of the commands from the command history buffer may be
listed, recalled for re-execution, or edited and re-executed,

ISQL is a useful facility for different types of users. Frequent users may use it for ad hoc
retrieval and modification of data with the usual data manipulation commands. It can be
a program development tool for application programmers to build test databases, and to try
out queries to be embedded in applications. It is also a tool for database administrators to
create and maintain databases, to load/unload data from/into external files, and to define
and control physical storage for the databases.

HPSQL Unique Features

Most of you may already be familiar with HPSQL/V or the industry standard
implementation of SQL and the basic functions provided by SQL. For more information,
you may refer to the SQL Reference Manual.

In this section, I would like to highlight a few of the SQL features that are unique to the
HPSQL product. These features include the following:

• Authorization Groups for security management

• Savepoints for transaction management

• Logging and Recovery

• Bulk Table Processing through the Programmatic Interface

Security Management and Authorization Groups

A major function of a database administrator is security management, i.e. controlling
access to a database and its objects such as tables, views, etc. Since every user must have
appropriate authorization in order to access the database and perform operations, the OBA
can use HPSQL authorization to maintain security for a multi-user database environment.

An authority is a privilege given to a user or a group of users to access the database
environment, create database objects, perform a specific operation, preprocess and run

HP3000
INTERNATIONAL CONFERENCE os1on
VIENNA 1987

application programs containing SQL commands, or maintain the database environment.
Authorization is provided for the tables, views, and resources of the database. The owner
(initially the creator) of an object can perform all operations on the object and can grant
authorization to another user to operate on the object. Authorities on an object may be
revoked, and ownership of an object may be transferred to another user or group of users.

For most business organizations, a database is shared by multiple departments having
different types of access and operations performed on the database. For example, a
personnel database may be accessed by different departments such as accounting, payroll,
personnel clerks, personnel managers, etc. Each of these departments may have one or
more users, and each of the departments may require different access rights to the
database. In order to make it easier for the OBA to establish authorization for the
database for groups of users according to their database requirements, HPSQL provides a
unique feature called authorization group.

An authorization group is a group of users that possesses the same set of authorities. A
user can be a member of any number of groups, and groups can also be members of other
groups. Authorization groups may be created or dropped dynamically. Once a group is
created, individual users or groups can be added to an authorization group or removed
from the group. When a user is added, he or she automatically acquires the authorities
belonging to the group.

The GRANT and REVOKE commands allow the user to specify a group as the receiver of
the authority. These authorities then belong to the group and not to the individual
members of the group. That is, as long as a user is a member of a group, the user possesses
the authorities belonging to the group. If the user is removed, he or she no longer possesses
the authorities of the group.

Authorization group is therefore a valuable security management feature for the database
administrator to easily control database access for groups of users.

Transaction Management and Savepoints

A transaction is a unit of work specified by a sequence of SQL commands. A transaction is
started by the command BEGIN WORK and ended with the command COMMIT WORK,
in which case all changes made by the transaction become permanent. The transaction
may be aborted with the command ROLLBACK WORK, in which case none of the changes
are made to the database. Most of the commercial SQL implementations provide the above
facilities for managing user transactions.

In addition to the above, HPSQL supports savepoints within transactions to allow users to
rollback some of the changes in a transaction. A sal)epoint defines a set of commands
within a transaction that can be aborted without aborting the entire transaction. A
savepoint is defined using the SAVEPOINT command. The user can then undo the changes
within a transaction since the savepoint was defined by using the ROLLBACK WORK
command. Multiple savepoints can be defined within a transaction and are referred to by
a number returned by the query processor in the SA VEPOINT command.

A savepoint may be used in a long transaction that does several operations, some of which
might have to be rolled back. Savepoints can greatly reduce the number of transactions
that have to be re.submitted because part of the transaction was unsuccessful.

HP3000
INTERNATIONAL CONFERENCE 0810/B
VIENNA 1987

Logging and Recovery

In order to support concurrency and still provide data integrity and reliability, HPSQL
provides extensive logging and recovery features.

The most common form of damage to a database occurs when a user or system process fails
during the execution of a transaction and is unable to complete it, thus rendering the data
inconsistent. This is called a soft failure since the database is not seriously corrupted and
can potentially be reparied without requiring complete restoration of the data.

HPSQL logs all changes to the data of a database in its log file. Should a soft failure occur,
HPSQL will automatically attempt to bring all data back to a consistent state with the
information recorded in the log file. All transactions which successfully committed prior
to the crash will be recovered. Transactions which failed to complete prior to the crash
will be rolled back, or undone. This is called rollba.ck. recovery. Rollback recovery is
automatic and is always available.

A second form of failure results from a hard failure which renders the database
unreadable or completely corrupted. Such failures may be due to hardware problems, such
as a disc head crash or an operating system error that allows random data to be written on
a table in the database.

Should a hard failure occur, it is necessary to restore a stored copy of the damaged
database(s) and then roll-forward, or redo, all transactions that were committed before the
hard crash and since the stored copy was created. This is called roll-forward recovery.

To support roll-forward recovery in HPSQL, an archil)e mode of logging is provided.
When HPSQL is run in archive mode, all changes to the database are logged and the log
space is never reused. To perform roll-forward recovery, an old copy of the database is
restored from a backup or archive copy. The current log contains all the changes since the
last backup. Using the START DBE ... RECOVER command, the database is recovered to
a consistent state by incorporating all work done by transactions committed before the
failure, and excluding any changes made by transactions that did not commit by the time
of the failure. A date and time may also be specified in this command for recovering the
database to the desired date and time.

A dual logging option is available in HPSQL to further enhance integrity. Two
separate logs on separate media are maintained. Both logs are written for all operations.
Normally only one log is read during recovery, but if an error is encountered, HPSQL
switches to the other log automatically. Data integrity is maintained, provided that there
is at least one good copy of each log record on either of the logs.

Programmatic Interface and Bulk Table Processing

HPSQL provides the full set of data definition, data manipulation and transaction
management commands through the programmatic interface. This includes the use of host
variables, indicator variables for handling null values, run-time error checking and
handling, the use of cursors, and dynamic query processing for executing SQL commands
that cannot be defined until run-time.

HP3000
INTERNATIONAL CONFERENCE 081019
VIENNA 1987

The data manipulation commands in HPSQL allow the user to insert, delete, update and
select rows from a database. A single row or multiple rows can be operated upon with one
data manipulation command. A cursor may be used to operate on a multiple-row query
result, one row at a time. Like the cursor on a terminal screen, an HPSQL cursor is a
position indicator. It allows the user to move through the multiple-row query result,
retrieving a row at a time into host variables and optionally updating or deleting the row.
Reporting applications may find this technique useful.

In addition to the above, HPSQL provides a unique feature in the programmatic interface
for bulk table processing. The user may specify an application program to retrieve
or insert multiple rows with the execution of a single SQL command. Three bulk
commands are available:

• The BULK SELECT command can be used when you know in advance the maximum
number of rows in a multiple-row query result, or when the query result is not too
large. For example, an application that retrieves a query result containing a row for
each month of the year might find this command useful.

• The BULK FETCH command can be used to handle large query results or multiple-row
query results whose maximum siz.e is unpredictable. If a single execution of the BULK
FETCH command does not retrieve the entire set of query result, it may be re-executed
to retrieve subsequent rows in the query result. This use of a cursor is most suitable for
display-only applications, such as programs that allow a user to browse through a query
result, so many rows at a time.

• The BULK INSERT command can be used to insert multiple rows into a table. Rows
are inserted from a host variable declared as an array.

In the bulk retrieval commands, the user may specify the maximum number of rows to be
retrieved and where to put the data. Rows are retrieved into a host variable declared as an
array. HPSQL fetches as many rows as will fit in the retrieval area (or the specified
maximum number of rows, or the number of rows remaining in the query result,
whichever is less). A value is returned telling the user the actual number of rows fetched.

The BULK SELECT command minimizes the time a table is locked for the retrieval
operation, because the program can execute the BULK SELECT command, then
immediately terminate the transaction, even before displaying any rows. Similarly, the
BULK INSERT command is efficient for concurrency, because any exclusive lock acquired
to insert rows need be held only until the BULK INSERT command is executed.

The set of bulk table processing commands provided by HPSQL is very valuable for
application builders. It provides a set of features complementary to the row-at-a-time
cursor operation commands. It allows application programmers easy access and handling of
multiple-row data and query results.· It also provides good performance for applications
that need to handle large amounts of data efficiently.

Future Directions

Many of Hewlett-Packard's customers have invested heavily in developing database
applications using IMAGE. With the introduction of Hewlett-Packard's Precision
Architecture systems, many of these customers may choose to migrate their existing

HP3000
INTERNATIONAL CONFERENCE 0810110
VIENNA 1987

database applications to ALLBASE. HPIMAGE certainly provides an easy and logical
migration path. However, users may want to take advantage of the relational technology
to increase their productivity and to ease their programming effort.

In view of this, Hewlett-Packard plans to provide users the capability of accessing
HPIMAGE data using HPSQL in future releases of ALLBASE (Figure 3).

HPSQL
INTERFACE

HPIMAGE
INTERFACE

DBCORE

..
Users may be able to develop new applications against existing HPIMAGE databases using
the HPSQL programmatic interfaces. The same data may also be accessed on an ad hoc
basis using the powerful and flexible interactive query capability provided by ISQL.

This integration will thus allow users to gain the optimal benefits of both technologies
without introducing data redundancy or inefficiencies into the MIS environment.

Another Hewlett-Packard long term goal is to provide its customers with the hardware
and software needed to support distributed database management systems. One important
step toward that goal is to provide the same powerful database management software on
all computers so that data can easily be shared. By offering its customers SQL, the de facto
industry standard for relational technology, Hewlett-Packard is moving toward
compatibility not only between its own computer systems, but also with those of other
suppliers.

Conclusions

Yes, with ALLBASE, there is life besides IMAGE. T}J.e HPSQL and HPIMAGE interfaces
serve as complements for each other in ALLBASE. The architecture of ALLBASE is
modular, allowing for changing architecture (at the bottom) and for additional user
interfaces (on the top). The system architecture of ALLBASE provides a solid foundation
to carry Hewlett-Packard's database management plans well into the next decade.

HP3000
INTERNATIONAL CONFERENCE 081111
VIENNA 1987

PREFACE
HPSQL IN PRACTICE

Andre Van Aken, Sr.Systems Engineer, HP Belgium

Relational Data Bases are in. Many theoretical discussions have already been devoted to this subject.
But although HP announced his contribution to the relational data base world, HPSQL, a year aao,
there Is still very little experience with this product In the HP 3000 world, compared to the vast
knowledge of IMAGE/3000. But many HP~ustomers are Interested in HPSQL, for a variety of
reasons:

1- for some applications,HPSQL offers the flexibility in structure
and access-types that is lacking in a network type DBMS like
Image.

2- customers want to be prepared for ALLBASE, the combined Image/SQL
DBMS for HP-Precision Architecture machines.

3- Many big companies are moving to DB2 on their IBM-mainframes,
and want the same functionality on their departemental systems.

4- SQL is an excellent 4th generation tool, i.e. it is a real non­
procedural language.

This paper attempts to give some practical advise for the design of applications founded on HPSQL.
We will cover 3 out of many possible topics. We will discuss consecutively the logical data base
design, the steps involved in converting from Image to HPSQL, and finally the most important
differences in program design between those two DBMS-systems.

I 081112 1-
·~-L-OG_•_c_AL_o_A_T_A_B_A_s_e_o_es_•G_N _____ ___,~

Much more than in Image, it will be important to fully normalize data structures before you start the
physical data base design. The correctness of query-results will depend on the logical correctness of
the table-layouts (for instance, are all columns functionally dependant on the key?).
The normalization process can be a very cumbersome task, especially for big data bases with many
elements. Therefore there is certainly a need for formal methods for the design of logic data base
structures. Maybe there are many alternatives available, but I will mention one method that I know
and used myself some years ago. The method calls Nyuen Information Analysis Method(NIAM),
which is a formal way of describing entities and relationships. NIAM has rules for creating fully
normalized data structures from those binary relations.
Two computer-assisted products exist that accept the NIAM binary sentences as graphic input (so it is
a CAD/CAM for data bases), perform automatically the whole normalization process, and are even
capable of generating SQL - syntax for immediate data base creation.
One product is QINT /TINA, from QINT Systems, which runs on IBM-PC/ AT and compatibles (ie.the
Vectra). The other product is under development at the university of Hasselt (Belgium) and runs on
the HP9000/300 series, and uses all of the graphic capabilities of the HP9000 workstation (ref. dept. of
professor Meersman).
Probably there are other packages that support the data base design process. The important message is
that the era of empiric methods comes to an end once you are going to implement relational data
bases.


~~~~~~~~~~~~-D-8-1W~1~2 •11 IMAGE TO HPSQL CONVERSION . 

Concerning the conversion from Image to HPSQL many things are already said The H PSQL Dara 
Base Administrator Guide devotes a whole section on the subject, and in Interact Magazine of august 
'86, Michele Dingerson described a very usefull step-by-«ep process for translating an Image achema 
to an HPSQL-structure. 
I plan to add some extra hints to that, and I will illustrate some rules of thumb for moving data from 
an Image Data Base to HPSQL with little or no programming effort. 
When we have to transform an lmage-echema to HPSQL. it is wise to keep in mind the rules and 
methods of normalization. Some reflection on the logical correctness of the existing Image structure 
will be indispensable: at least we need to ban our data base In flnt normal fonn, Le. we have to split 
of all repeating groups. For instance a "monthly- sale.-turnover" array-item in an orders-data-set, 
should go to a separate table with perhaps product-no , month, and turnover of the month as columns. 
This step is necessary since HPSQL does not support array- items by definition. 
To decide whether or not to perform further normalization we'll have to compare the benefits of a 
sound data base structure with the advantage of a close resemblance to the Image schema. 
Concerning this lmage-to-SQL schema mapping, other sources can be consulted (cfr.the Interact 
article); therefore I'll concentrate on methods for loading data from one data base to the other, 
preferably without special programming effort 

Well, with QUERY, or even better with the new Business Report Writer, together with the 
sophisticated load/unload functions of the ISQL- utility, we have some excellent tools for this job. 
ISQL, the utility for interactive acces to HPSQL, allows, via the LOAD-command, to upload an 
SQL-table directly with data from an external (MPE) file. There is one limitation, though: this file 
must only contain ASCII values, since ISQL will try to do the proper conversions for integer and 
decimal column-types. 
So, if we have an Image data set, without binary or packed fields, which can map directly to an 
SQL-table, the QUERY-functions "FIND" (to retrieve all records) and SA YE can provide us with such 
an external file. 
If SAYE would not help, for instance if the set contains integers, then a QUERY-report procedure 
without headings and edit masks, and with formal file designator QSLIST pointing to a discfile, will 
do the job. The lucky guys that have BRW on their system, can produce reports with all the desired 
information, and define BRW-output-files for all SQL- tables that have to be loaded 
Sometimes two Image sets have to be combined into one SQL-tablci, or one set has to be split in 
several tables, for the sake of normalization or performance. In this case we can build some 
temporary SQL-tables which match the Image-sets. After loading the data from the Image data base 
into those worktables, we can use the powerfull unload function of ISQL {cfr. figure I} to combine 
the temporary tables to a file that will contain the values for all columns of the final table. This can 
be achieved through the specification of a SELECT-command as a condition for the UNLOAD, to 
describe the needed JOIN-function. Finally this unloaded file will serve as the input for uploading the 
final table. At a first glance, this can look a long and cumbersome process, but first of all it is far 
quicker than writing a program, and it can be made even easier through the use of 
ISQL-command-files. 

Some practical hints for using LOAD/UNLOAD: 

1- Create indexes on tables after loading the tables with data, 
especially when many rows have to be loaded Creating the indexes 
afterwards will be faster most of the time. 
One exception of course are clustering indexes, which will 
indeed cluster data rows together based on the similarity of the 
key-values. 

2- Avoid the "s11bset"-feature of the ISQL-load-commandWhen you need 
only parts of the input-file, process the file with FCOPY's subset 
option instead. I had an example where FCOPY was S times faster 
than the LOAD-with-subset 

When we consider the conversion of an Image-application . to HPSQL, we may not disregard the 
differences in the program design itself. The following section will discuss this matter in detail. 



~-~~~~~~~~~~~~~-w_~~l~31ril - HPSQL IN A HOST LANGUAGE . 

SQL-access is currently supported for two languages: COBOL and PASCAL. Designing a program that 
will operate on an HPSQL data base, requires from the programmer a different approach. Eapeclally 
experienced Image-users will suffer from this in the beginning. 
The unit of work in HPSQL is not the logical data base, but a so called Data Base Environment(DBE): 
the collection of logical data bases sharing the same physical environment, i.e. configuration, disc 
space management, logfiles, security settings.etc_ 
An ISQL-session or program with embedded SQL, can only "connect" to one DBE. This has a 
significant impact on the structure of the application : the source of information has to be 
centralized in one DBE. If many users will operate simultaneously on the same DBE, special care has 
to be taken in the design of logical transactions: a transaction is every data base operation between a 
BEGIN WORK.and COMMIT WORK,to compare with the DBBEGIN-and DBEND-calls in Image. 
As long as a transaction is not committed, modifications are not made permanent (i.e.not accessible 
for other users), locks on pages are not released and bufferspace is not freeed. So, unnecessary long 
transactions can lockout other users from access to the data base. Every logical transaction, thus, must 
be designed carefully. 
Another peculiarity of the HPSQL-transaction management is the automatic rollback of transactions 
that will cause a deadlock. Consequently it will be indispensable for application programs to test the 
condition codes returned by HPSQL in the SQLCA-area, for a deadlock-condition.and to allow for 
resubmission of the transaction. 
Speaking about condition codes: there are two ways of handling error conditions. Like in Image, we 
can test condition codes, retrieve the corresponding error mesage with SQLEXPLAIN, and take an 
appropriate action. 
But we can also choose for the automatic exception processing. With the WHENEVER<LAUSE, a 
programmer can provide labels of procedures that will handle the error-(:Onditions. This can seem 
very handy, buL be aware that HPSQL branches to those error routines with a "GOTO", and thus 
there is no easy way of returning to the normal program logic. 

There are two types of access in HPSQL that have no direct counterpart in Image: the so called bulk 
operations, and the use of cursors. Bulk operations allow to retrieve with one SELECT-(:Ommand for 
instance, a specified number of rows. A bulk select can be usefull to find all rows that match a 
condition, at one stroke, provided you know approximately the number of rows that can satisfy the 
condition. 
The use of cursors permits also to retrieve all rows that match a condition . The mechanism is the 
following: when you declare a cursor, you specify a cursorname and relate it to a SELECT-(:Ommand. 
Opening the cursor will execute the select-command, without passing information to the application. 
The FETCH command passes the selected rows one by one to the program. Sofar we can find some 
analogy with Image in this description: a DBFIND J)Oints us to the desired information in a detail 
data-set, and subsequent DBGET's (mode S) will pass the satisfying records one by one, till the end of 
the chain. 
But the comparison ends here, for in HPSQL we can have multiple cursors open concurrently, even 
on the same tables. For instance, to scan through an hierarchical structure, this is the ideal approach 
[see figure 2/. In Image, one can only force two simultaneous access paths to a detail set by opening 
the data base twice. 
Another interesting SQL-feature is the dynamic command processing. The PREPARE-(:Ommand 
operates on an inputstring, containing the command -image, performs the command parsing and 
syntax checking and prepares it for execution. In case of a "non-select" statement, EXECUTE will 
perform the requested operation. Dynamic select statements must be translated, with the help of the 
DESCRIBE-(:Ommand, to the CURSOR-mode instruction sequence explained before. 

This approach allows, for instance, to use HPSQL in languages that do not support the relational 
DBMS directly. It is indeed well conceivable to design some general purpose SQL-procedures,i.e. 
written in Pascal, which are stored in a SL and can be called by mainprograms in Fortan, 
Transact,SPL,etc_ 
There are elements, though, to be aware of: HPSQL initializes a SQL communication area, called 
SQLCA, when you connect to a data base environment, and uses this SQLCA for all subsequent calls. 
This area must thus be declared globally in the main program, and passed as a parameter to the 
SL-procedures.{see figure 3/. 



HP3000 
INTERNATIONAL CONFERENCE 081115 
VIENNA 1987 

Although this method is not recommended for heavy usage, due to the performance impact, it can 
provide a excellent workaround if one needs occasional access to an HPSQL data base from within, 
for instance, a Transact application. 



'--~~~~~~~~~~~-0-8_1~-~~1~4-, _PERFORMANCE ASPECTS . 

It is not my goal to give a complete picture of performance topics of relational data bases. This 
subject is worth a few presentations on its own. 
I prefere to concentrate on a few design concepts which can have a significant performance impact. 
First of all, when creating tables, one can define variable length rows by allowing NULL values for 
one or more columns, or by defining columns as V ARCHAR. This method can save a substantial 
amount of disc space, but can have a negative influence on the performance : when frequent 
additions and deletions are performed on such a table, this will result in a more intensive free space 
management for the disc pages (located in DBEFILES) that contain this table. When rows or tuples 
can vary in length, deleting rows will result in "holes" of varying size. This will often cause 
tuple-migration within the physical page. 
A second topic is the use of the UPDATE ST A TISTICS command Each DBE contains as part of the 
system catalog information on data base usage and space occupation. Executing the UPDATE 
STATISTICS command for a table will update this information. The COBOL - and 
PASCAL-preprocessor will use this information to optimize the SQL-statements embedded in the 
programs. 
Executing a sequence of UPDATE STATISTICS-commands is necessary to allow the preprocessors to 
perform their optimization task. It is also indispensable for allowing the data base administrator to 
manage the disc space requirements of his data bases. 
Indeed, some of the so called System Views, ie. System.Table, System.Index _ contain informations on 
the number of disc-pages used, number of free pages left, etc..This information will only reflect the 
current status after issueing a Update Statistics command . 

.. _____ ___.l~s I 
~NCLUSION -~ 

This article has no pretension to be a complete guide for the novice HPSQL user. Don't forget that 
only the Data Base Administration training already takes five days! The main goal was to give 
practical guidelines, to compare the application design between Image and HPSQL, and last but not 
least to emphasize the broad range of possibilitiesof this data base managment system. The important 
message is : get started en learn. 

Andre YAN AKEN 

Hewlett Packard Belgium 



FIG 1: ISQL UNLOAD EXAMPLE os11n -
L--~~T_O~CO~M_B_IN_E_M_U_L_T_IP_L_E_T_A_B_L_E_S~~~~~ 

'l'EMPl'ABLEl T.EMPl'ABIE2 

lemplnrlemplname lemplnrldeptnrlphonernmiler 

UNI£>AD 'ro INTERNAL unldfile FRCM 
"SEl.ECI' temptablel.emplnr, emplname, deptnr, ~ 

FRCM temptablel, temptable2 
WHERE temptablel.emplnr = temptable2.emplnr"; 

IDAD FRCM INTERNAL unldfile 'ro finaltable; 

FINAI.ll'ABLE 

lemplnrlemplname I deptnr I phonenumber I 



FIG2: SAMPLE PROGRAM os111B -

'--~~u_s1_N_G_M_U_L_T_IP_L_E_c_u_R_s_o_R_S~~~~--'~ 
$Heap Dispose 0N$ 
$Heap-catpact 0N$ 
$Usliiiit$ 
$Standani Isvel 'HP3000'$ 
(*********************************************************) 
(* This pxogram produces a structured report of all the *) 
(* enployees in a departement, usin;J a technique with *) 
(* nultiple Sql cursors *) 
(*--------=----------------------*) 
(* written by Arx'lre VAN AI<EN *) 
(* HP Belgi'IDll *) 
(*********************************************************) 

Program REPORI'( input, output) ; 

const 
OK O; 
NotFound = 100; 
DeadI.ock z-14024; 

var 
(* => Begin Host variable Declaration *) 

EXEC SQL Begin Declare Section; 
Empl.Number : packed array[l •• 4) of char; 
Emplname packed array[l •• 30) of char; 
DeptN1.mt>er packed array[l •• 4) of char; 
FuncNumber packed array[! •• 4) of char; 
SQimessage packed array[! •• 132) of char; 
Mgrind Sqlind; 
InputDept packed array[! •• 4) of char; 
~ . packed array[l..4] of char; 
DistrictMgr : packed array[! •• 4) of char; 
EXEC SQL End Declare section; 

SQLCA 
Abort 
Response 
indent 

$Page$ 
procedure SQIStatUSCheck; 
begin 

abort:= FALSE; 

SQLCA type; (* SQL ccmn.area *) 
tioo1ean: 
packed array[! •• 4) of char; 
smallint; 

(* Display error messages *) 

if SQI.CA.SQUX)DE < Deadlock then Abort:= TRUE; 
repeat 
EXEC SQL SQIEXPIAIN :SQIMessage; 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Figure 2 

writeln(SQIMessage); 
until SQI.CA.SQI.CODE = O; 

if Abort then 
begin 
EXEC SQL CXMfiT WORK REIEASE; 
halt; 
end; 

end; ( * end procedure *) 

081119 

function ConnectDBE: boolean; (* connect to DEX>DBE.AVA.HPDB *) 
begin 

writeln('Please wait for Cormect to DEX>DBE DataBase Environment'); 
EXEC SQL CONNECT 'ro I DemoDBE.AVA.HPDB' ; 

ConnectDBE := TRUE; 
if SQI.CA.SQI.CODE <> OK then 

begin 

ConnectDBE:= FMSE; 
SQIStatusCheck; 

end; 
end; (* end of function *) 

procedure ReleaseDBE; 
begin 

(* Release from DemoDBE *) 

writeln( 'Releasing connection from DemoDBE'); 
EXEC SQL REIEASE; 
if SQI.CA.SQI.CODE <> OK then 

SQIStatusCheck; 
end; (* end of procedure *) 

$PAGE$ 
function BeginTransaction: boolean; 
begin 

EXEC SQL BEGIN WORK; 
if SQI.CA.SQI.CODE <> OK then 

begin 
BeginTransaction:= FMSE; 
SQI.StatusCheck; 
end 

else 
BeginTransaction:= TRUE; 

end; (* end of function *) 

procedure EndTransaction; 
begin 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

EXEC SQL CXMaT WORK; 
if SQICA. SQUX>IE <> OK. then SQIStatuscheck; 

end; (* end of procedure *) 

$~AGE$ 

procedure DisplayHeader; 
begin 
writeln( 'Enployee Li.st of Departement •, Dept:Number) ; 
writeln(' •) 1 
writeln; 
writeln ( 'EMPL I EMPL.NAME I PUNCl'Itfi • ) ; 
writeln; 
end; (* end of procedure *) 

procedure DisplayRaw; 
begin 

writeln( I I : indent, 
Enpl.Nuni:>er, I I ,EnplNaJ'lle, I I ,FUnc:tfUnt:ler) 1 

procedure Declarecursors; 
begin 

EXEC SQL DECIARE DEPI' ClJRSOR ClJRSOR FOR 
SEll!lCI' Enplnr, Enplname, P\mcnr 

FRCM Persdb. Enpl 
WHERE Deptnr = : IJ1JU1:Dept AND Mgrnr = : Deptlt;Jr; 

EXEC SQL DECIARE DISTRicr ClJRSOR ClJRSOR FOR 
SEll!lCI' Enplnr, :&iplilame, P\mcnr 

FRCM Persdb.Enpl 
WHERE Deptnr • :InputDept AND Mgrnr "' :DistrictM:)r; 

if SQICA.SQUX>IE <> OK then 
begin 
SQIStatusaieck; 
ReleaseDBE; 
end; 

end; (* end of procedure *) 

function OpenDept:Cursor : boolean; 
begin 

EXEC SQL OPEN DEP1' CXJRSOR; 
if. SQICA.SQUX)IE <>OK then 

begin 
OpenDept:Cursor:= FAISE7 
SQIStatuscheck; 
ReleaseDBE; 
end 

0811110 

Fiaure 2 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Figure 2 

else 
OpenDeptCUrsor:= TRUE; 

end; (* end of function *) 

function CloseDeptCUrsor: :boolean; 
begin 
EXEC SQL CIDSE DEP1' a.JRSOR; 
if SQICA.SQI.DODE <>-OK then 

begin 
CloseDeptCUrsor:= FAISE; 
SQIStatUSCheck; 
ReleaseDBE; 
end 

else 
ClOseoeptCUrsor:= TRUE; 

end; (* end of function*) 

function OpenDistrictCUrsor : :boolean; 
begin 

EXEC SQL OPEN DISTRICI' a.JRSOR; 
if SQICA.SQI.DODE <> OK-then 

begin 
OpenDistrictCUrsor:= FAIBE; 
SQIStatUSCheck; 
ReleaseDBE; 
end 

else 
OpenDistrictCUrsor:= TRUE; 

end; (* end of function *) 

function CloseDistrictCUrsor: :boolean; 
begin 
EXEC SQL CIDSE DISTRICI' a.JRSOR; 
if SQICA.SQI.DODE <> OK then 

begin 
CloseDistrictCUrsor:= FAISE; 
SQIBtatusCheck; 
ReleaseDBE; 
end 

else 
CloseDistrictCUrsor:= TRUE; 

end; ( * end of function*) 

procedure Fetc:hEnpl; (* get employees of 1 district *) 
begin 

if OpenDistrictCUrso:r; then 
begin 

while SQICA.SQI.DODE = OK do 

0811111 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

begin 
EXEC SQL FETCH District CUrsor 

INTO :EnplNmnt>er, :EnplName, :FuncNumber 
case SQI.CA.SQl.CODE of 

OK .begin 
indent:= 6; 
DisplayRow; 
end; 

NOl'FOUND begin 
end; 

othez:wise SQIBtatusOleck; 
end; 

end; 
if CloseDistrictCUrsor then 
end; 

end; (* end of procedure *) 

procedure FetchDistricts; 
begin 
if OpenDeptCUrsor then 
begin 

while SQI.CA.SQl.CODE = OK do 
begin 

EXEC SQL FETCH Dept CUrsor 
INTO :EnplNwnber, :EnplName, :FuncNumber; 

case SQI.CA.SQLCODE of 
OK begin 

indent:=4; 
DisplayRow; 
DistrictMgr:= EnplNwnber; 
FetchEmpl; 
end; 

NOl'FOUND begin 
end; 

otherwise SQIStatusOleck; 
end; 

end; 
if CloseDeptCUrsor then 
end; 

end; (* end of procedure *) 
(* INSERI' FETCH PROCEl.XIRE HERE *) 

$PAGE$ 
Begin 

(* Ba;INNING OF MAIN PROGRAM IDOP *) 

Declarecursors; 
if COnnectDBE then 
begin 

writeln(' Demonstration Program for Reporting from HPSQL'); 
writeln(' '); 
repeat 
writeln; 
prompt ('Enter DeptCOde or / to S'roP » ') ; 

0811112 

Figure 2 



Figure 2 

HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

readln(Response); 
if response[!) <> '/' then 
begin 

Inputoept:= Response; 
if BeginTransaction then 
begin 

EXEC SQL SELEcr Emplnr,Emplname,Funcnr,M:Jrnr 
INR> :Empl.Number, :Emplname, :Funcnurnber, 

:Deptngr :fttlrim 
~ Persdb.Empl 
WHERE Deptnr = : Inputdept AND M:Jrnr IS NULL; 
if SQICA.SQLCODE = OK then 
begin 

DisplayHeader; 
Iment:=2; 
DisplayRow; 
llept:»:1r: = Enpl.Number; 
FetchDistricts; 
end 

else 
if SQICA.SQLCODE == NotFoum then 

writeln ( 'Head of Departement not in DataBase •) 
else 

SQIStatusQieck; 
Erd'l'ransaction; 
end 

else 
ReleaseDBE; 

end; 
until Response[!) '/'; 
ReleaseDBE; 

end 
else 

writeln ( 'FAIIED to Connect to Demodbe ! ! ! •) ; 

end. 

0811113 



FIG3 : SAMPLE PROCEDURES 0811114 -

,___ __ c_A_L_L_ED_F_RO_M_F_O_R_E_IG_N_LA_N_u_·u_A_G_E_s_~[O 
$SET •traoe=FAIBE'$ 
$syndebug$ 
$Check Formal Pam 2$ 
$Subprogram$ -
$xref ON$ 
$Uslinit$ 
$Standard level 'HP3000'$ 
$Segment TSQISUB'$ 
program SqlSUb(input,output); 

canst 
NotFound 
OK 
DeadIIJck 

100; 
O; 

-14024; 

NbrFmtRecords 64; (* max.number of columns in Select*) 
MaxDataBuff 3000; 

type 
MsgType =packed array[l •• 132] of char; 
Ccmnand_Type =packed array[l •• 500] of char; 

:function COnnect.Doe(VAR Sqlca: Sqlca Type;VAR Error:Msg'l'ype) :boolean; 
(*******************) -

EXEC SQL BEGIN DECIARE SECI'ION; 
COnnectError : packed array[l •• 132] of char; 
EXEC SQL END DECIARE SECI'ION; 

begin 
EXEC SQL CX>NNECT 'l'O '*dbenvir' ; 
connect.Doe:= TRUE; 
if SQI.CA.SQUDDE <> OK then 

begin 

end; 

COnnect.Doe:= FAIBE; 
EXEC SQL SQLEXPIAIN : COnnectError; 
Error:= COnnectError; 
writeln( '=> ERROR IN CX>NNECT'); 
end; 

( * end of COnnectDoe :function *) 

procedure Releaseil:ie(VAR Sqlca:Sqlca Type); 
(******************) -
begin 

EXEC SQL REI.EASE; 
if SQI.CA.SQUDDE <> OK then 

writeln ( '=> ERROR IN RELEASE 1 ) ; 

end; (* end of Releasell:le procedure *) 

:function Insert:Row(VAR Sqlca:Sqlca Type; 
VAR Command: comiiiand Type; 
VAR Error:Msgtype) :boolean; 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Figure 3 

(******************) 
EXEC SQL BmIN DECIARE SECI'ION; 
insert cammand :packed array[ 1 •• 500) of char; 
insert-error :packed array[l. .132) of char; 
EXEC sQL END DECIARE SECI'ION; 

begin 
insert cammand: = CcaDmand; 
InsertRow:= TRUE; 
EXEC SQL BmIN l«>RK; 
EXEC SQL EXEaJTE IMMEDIATE : Insert canmand; 
if SQICA.SQUX>DE <> OK then -

begin 
EXEC SQL SQIEXPIAIN : insert error; 
Error:= Insert Error; -
EXEC SQL ROLIBACK l«>RK; 
Insert Row:= FAISE; 
end -

else 
begin 
EXEC SQL CCJo!MIT l«>RK; 
end; 

end; (* end of InsertRow procedure *) 

begin 
(********** dummy outer block ***********) 
end. 

############################################################# 
BmIN 

byte array cammand(0:499); 
byte array bsqlca(0:499); 
array sqlca(*)=bsqlca; 
byte ~y error(O:l31); 
array text(0:39); 
byte array btext(*) = text; 
logical flag; 

logical procedure connectdbe(sqlca, error); 
array sqlca; byte array error;option external; 

procedure releasedbe(sqlca);array sqlca;option external; 
logical procedure insertrow(sqlca, cammand, error); 

array sqlca; byte array cammand, error; option external; 
intrinsic read,print; 

move btext := "A'l'l'EMPl'ING cormect to 1 DEH>DBE' 11 ; 

print(text,-32,%40); 
flag:= connectdbe(sqlca,error); 
if flag = 1 then 

begin 
move btext:= "enter SQL cammand: 11 ; 

print(text,-19,%320); 
read(cammand,-500); 
flag:=O; 
flag: =insertrow ( sqlca, cammand, error) ; 
if flag = 1 then . 

0811115 



HP3000 
INTERNAnONAL CONFERENCE 
VIENNA 1987 

begin 
lllCJVe btext: ="INSERI' OCllllllmd executed succesful.ly 11 ; 

print(text,-36,%40); 
end 

else 
begin 
111CJVe btext:="INSERI' camnand failed 11 ; 

print(text,-22,%40); 
mcve btext:• error,(-80); 
print(text,-80,%40); 
end; 

releasedbe(sqlca) ; 
end 

else 
begin 
lllCJVe btext:=1100NNEC1' to IBIJIB failed II I 
print(text,-25,%40); . 
end; 

end. 

0811116 

Figure 3 



HP3000 
INTERNATIONAL CONFERENCE 081211 
VIENNA 1987 

Maximizing Your Database Design Through Normallzatlon 

Michele Dingerson 

Hewlett Packard Company, Santa Clara, California, USA 

Sumrnau 

Normalization is often presented as a complex, mathematically provable approach to designing 

databases for relational technology. The normalized approach can be used for nonrelational databases 

as well as relational databases. Moreover, it does not require an understanding of relational theory. 

This paper presents the guidelines for the normalization without delving into relational theory. 

Introduction 

Transforming Data to Normalization 

Standards 
0 

Unnormalized data Normalized data 



HP3000 
INTERNATIONAL CONFERENCE 081212 
VIENNA 1987 

Normalization is the process used to desian your database so that performance is maximized and data 

redundancy is minimized. The primary goal of normalization is to arranae the data so that it can be 

represented in two-dimensional tabular form. 

Normalization rules are designed to prevent data inconsistencies and redundancies. They are, however, 

biased toward the assumption that all nonkey fields will be updated frequently. The recommendation 

is to use normalization to put your data into two-dimensional tabular form and then alter the tables 

to fit the specific requirements of the application. 

In the process of normalization, you will usually begin with data that you need to put into tables, not 

with unnormalized tables. For the sake of illustration, the examples in this paper start with data that 

is already in an unnormalized table. 

The process of normalization involves examinina the data to determine if it meets criteria for five 

normal forms. This paper deals with the first, second, third, and fourth normal forms. It also covers 

cases where you choose to leave tables in first or second normal form for performance reasons. 

This illustration shows an example of unnormalized data. In this case, the record stores information 

about various projects that an employee has worked on. Note that for each employee there is only one 

employee name, job code and job title, however, there may be multiple project numbers, completion 

dates, and hours worked. 



HP3000 
INTERNATIONAL CONFERENCE 081213 
VIENNA 1987 

Example of Unnormalized Data 

Emp# Emp Job Job Proj# Completion Houn; 
Name Code Title Date Worked 

First Normal Form 

The first step in normalization is to place the data in first normal form. This involves removing all 

repeating groups of nonkey fields. In this example shown below, repeating groups are those items that 

appear more than once for a given employee. 

Note that this example UBUmes that each employee hu only one job code and title. For example, the 

same person cannot be a secretary and an engineer. 

In the previous example, the repeating group included Pro.iii', Completion Date, and Hours Worked. 

Each employee could be working on several projects. Each project would have its own completion date 

and number of hours worked. To put this data in first normal form, the repeating group is removed 

and put in a separate table. The two tables that are required to represent the data are shown on the in 

the illustration below. 

------ -··----



HP3000 
INTERNATIONAL CONFERENCE 081214 
VIENNA 1987 

Example of First Normal Form 

Employee TmeAccounting 

Emp# Emp Job Job Emp# Pro)# Completion Hours 
Name Code Title Date Worked 

Second Normal Form 

Second normal form involves the idea of functional dependence. A field is functionally dependent on 

another field if its value depends on the value of another field. To arrive at second normal form you 

need to remove any fields that are not fully functionally dependent on the key field. 

In this example, it is assumed that there can only be one employee name associated with each employee 

number. For each employee number there is only one job code and one job title. Emp Name, Job 

Code, and Job Title are functionally dependent on EmpN. 

If it is assumed that employee names are unique, Job Code, EmpN and Job Title are all functionally 

dependrnt on Emp Name. EmpN and Emp Name are not, however, dependent on Job Code because 

more than one employee can have the same job code, and more than one employee may have the same 

job title. For example, a company may have hundreds of secretaries. 



HP3000 
INTERNATIONAL CONFERENCE 081215 
VIENNA 1987 

Hours Worked is the total hours worked per employee per project. Hours Worked is dependent on the 

combination of Emp# and ProjN. If it is assumed that the Completion Date is the date when the 

entire project is to be completed, Completion Date is dependent only on Proj#. To put the tables in 

aecond normal form, ProjN and Completion Date were put in a separ .. te table. 

Example of Second Normal Form 

Employee TimeAccounting 
Emp# Emp Job Job Emp# Proj# Hours 

Name Code Title Worked 

Projects 
Proj# Completion 

Date 

Third Normal Form 

Third normal form involves transitive dependence. It requires that every nonkey field is not 

transitively dependent on the primary key. If transitive dependencies are found, they should be 

removed to put the tables in third normal form. 

If you have three fields, A, B, and C such that C is functionally dependent on B, and Bis functionally 

dependent on A, then C is functionally dependent on A. If A is not functionally dependent on B, or B 

is not functionally dependent on C, then C is transitively dependent on A. 



HP3000 
INTERNATIONAL CONFERENCE 081216 
VIENNA 1987 

In thlS example, a Job Table ·•a• 1rade to arrive at third normal form. Before this was done, Job Title 

was transitively dependent on EinJ;.#. Emp Name, Job Code and Job Title are functionally dependent 

on Emp#. If it is assumed that t1: 0 re is only one Job Title associated with each Job Code, Job Title is 

functionally dependent on Job Code. Many employees may have the same Job Code, therefore, Job 

Title is transitively dependent on Emp#. 

Example of Third Normal Form 

Employee 
Emp# Emp 

Name 

TimeAccounting 
Emp# Proj# 

Job 
Code 

Hours 
Worked 

Job 
Job Job 
Code Title 

Project 
Proj# Completion 

Date 

Third normal form relieves update problems. For example, in second or first normal form, when a Job 

Title changed, all records referring to that Job Title would have to chan1e. Because of the redundancy 

of keeping a Job Title field for each employee number, the data might become inconsistent. In third 

normal form, only the Job Table would need to be updated. 



HP3000 
INTERNATIONAL CONFERENCE 081217 
VIENNA 1987 

Fourth Norma) Form 

Fourth normal form deals with multivalued fields. A table sllou1'1 not ~ontam two or more 

independent multivalued fields for a key. 

For instance, suppose in the earlier examples that an employee couJa be assigned to several projects at 

the same time, and that the employee could have several skill& (see the top of the illustration). In this 

example, you have two many-to-many relationships. To aatis' y fourth normal form, these should be 

split into two tables as shown on the bottom of the illustration. 

r ' Example of Fourth Normal Form 

Emp# Proj# Skill 
Code 

. __, 

Fourth Normal Form 

EmployeeProject EmployeeSkill 

1E~1~l•1 
Emp# Skill 

Code 

\... 

When fourth normal form is violated, uncertainties in updatina arise. For example, one employee 

miaht he able to type, take shorthand, and use a dictaphone. That employee might also be working on 

three different projects. There would be numero111 wayt to represent these records if fourth normal 

form was violated. It would be difficult to know what combination was used to represent the data 

and how that data should be updated if any piece of it changed. 



HP3000 
INTERNATIONAL CONFERENCE 081218 
VIENNA 1987 

Copslusion 

Why Choose Not To Fully Normalize-Data 

Faster, more efficient retrieval of data 

Total Space Required 

After your data has been normalized, you should consider unnormalized alternatives based on your 

applications. This illustration shows two reasons why you might choose to leave your tables in first or 

second normal forms: 

• Retrieval of data may be faster. For example, if all applications were going to retrieve Job 

Title every time they retrieved Employee Number, Employee Name and Job Code, and 

never retrieve or update Job Title based on Job Code, it might be more efficient to leave 

the Employee table in second normal form. 

• Total space required may be greater for normalized tables. Therefore, if space is a 

primary concern, and the normalized tables require more space, the tables should be left in 

an unnormalized form. 



HP3000 
INTERNATIONAL CONFERENCE 081219 
VIENNA 1987 

Bibliography 

l. Bass, Paul. ''Six Steps to a Normalized Database,'' Supergroup Association, May /June, 19 8 5, pp. 
30-38. 

2. Codd, C.I. An Introduction to Database Systems. 3rd Ed. Addison Wesley, Reading, MA, 198 l. 

3. Kent, William. "A Simple Guide to Five Normal Forms in Relational Database Theory," 
Communications of the ACM, Vol. 26, Number 2, (February, 1983), pp.120-125. 

4. Turk, Thomas A. "Using Data Normalization Techniques for Effective Data Base Design," Journal 
of Information Systems Management, Vol. 2, Number l,(Winter 1985), pp. 36-49. 

Biography 

Michele Dingerson is currently a Systems Engineer Instructor for Hewlett-Packard. As a full time 
instructor she teaches various HP3000 Customer Training Courses at the Neely Santa Clara Sales 
Office. 

Prior to her current position, Michele worked as a Marketing Engineer for Hewlett-Packard in the 
Data Management Support Group of Information Technology Group's Technical Marketing 
Department. As a member of the documentation and training team for Hewlett-Packard's first 
relational database product, HPSQL, she developed the first database administration training course 
ever developed at Hewlett-Packard and participated in training Systems Engineers on database 
products. 

Michele has also worked as a Financial Systems Analyst for a large California-based 
telecommunications firm. Prior to that position, she worked as a Programmer/Analyst at the 
Corporate Headquarters of Hewlett-Packard in Palo Alto California. Ms. Dingerson initially joined 
Hewlett-Packard in 1980, and most recently has been with Hewlett-Packard since 1984. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 081311 
VIENNA 1987 

Dynamic Aspects of Information Modelling 

Summary: 

The Entity-Relationship Model of Mr.Chen is the most important model 
for information systems today. However that model can only help us to 
find out the static, non dynamic behaviour of an information system. 
That paper will show that every information system also has a dynamic 
behaviour and how to model that dynamic behaviour. 

I. What is an Information System? 

A simple answer is: An information system is a picture of the reali­
ty or part of the reality of a company or organistion with the help of 
a computer and_ its software. The problem is to find out how does a 
company or organisation or part of a organisation looks like and how 
does all parts of such a organisation work togather? 

I I. Mode 11 i ng 

Whenever you try to understand a very complex object you build a mod­
el for that subject. That is not only true in physics, civil- or 
mechanical engineering, but also for information systems. For informa­
tion systems, the above mentioned Enity-Relationship Model is the 
standard today. A lot of information-system-design-tools work with 
that model in mind. Even HP's new SYSTEM-DICTIONARY has integrated 
that model as a basic working tool. However the dynamic aspects are 
totally ignored. An important side-effect of the modelling approch 
for application design is that at least the basics of modelling can be 
understood by a non technical end-user! The Entity-Relation-Model is a 
good example for the above statement. 

III. Modelling the dynamic aspects of information systems 

III.I Single State Driven 

The basic idea is that every entity in an informations system has a 
socalled state-variable. That state-variable indicates the now active 
(application) state of that entity. Every entity walks through a lot 
of states during its life, e.g. for a human beein these state can be: 
Being a baby, child, pupil, student, single, married, (unfortunately) 
devorced, (happy) married (again), father or mother, retired, (happy) 
grandmother or grandfather, died. For the entity Order the states can 
be: in the state of being entered, to be checked for mistakes, ac­
cepted or rejected,in production schedule, produced, delivered, sent 
to accounting and done. It is the job of the designer of an informa­
tion system to find out all entities and all relationships of that 
system and as well as all the states of the entities and, because 
relationships can alse be seen as entities, the states of the 
relationships to. As a result we get per entity and per relationship 
a "course of live"! The existence of every entity and every relation-



HP3000 
INTERNATIONAL CONFERENCE 081312 
VIENNA 1987 

ship as well as every state of the course of life of every entity/ 
relationship should be accepted and understood by every. enduser, 
otherwise your information system may not be a picture of the reality 
of your enduser. A entity switches from one state to the next state 
by the activation and execution of a transaction! As a consequence a 
totally designed information system consists out of the according en­
tities, the relationships, the course of life with its states and the 
transactions that actually changes these states. All these subjects 
must be transparent and understood by the enduser. In practice 
however, transactions can be very complicated. The above examples are 
for transactions that are only depending of one single state. (Single 
state driven). As long as transactions are only depending of one state 
they are very simple and easy to understand. The problem is more com­
plex for the designer and for the end-user, if transactions are 
depending of more than one state or preconditions and these transac­
tions switch more than one state or are setting more postconditions. 
That dynmic behaviour can be defined and modelled by so called PETRI­
NETS. 

III.2 PETRI-NETS. 

Its is not the idea of that paper to discuss in details and mathe­
matically correct all aspects of Petri-Nets. My intentions are two: 
First to show at some examples how easy complex and dynamic aspects of 
informations systems can be modelled, and second that the reader be­
comes motivated to' make a deeper look inside of Petri-Nets./1/,/2/ But 
first a very rough definition of Petri-Nets which is "translated" into 
the language of an information system designer: 

A Petri-Net is a network with: 
- conditions (states), represented by ~ 

transactions, represented by CJ 
- arrows from preconditions (states) to transactions 
- arrows from transactions to postconditions (states) 

markers @ within some states, which indicate· 
start-conditions 

In a network out of conditiones and transactions 
is a condition a precondition of a transaction if an 

arrow shows from O·to 0 
is a condition a postcondition of a transaction if an arrow 

shows from [] to () 
in every situation a condition can be active or inactive 

- a active condition is indicated by a marker 
- a transaction can have more than one precondition and 

and more than one postconditions 
- a transaction can be executed if all its preconditions 

are active and all its postconditions are inactive 
- after the execution of a transaction all its preconditions 

are inactive and all its postconditions are active 
- a condition can be a precondition for one or more 

transactions and a postcondition of one or more 
transactions. 



HP3000 
INTERNATIONAL CONFERENCE 081313 
VIENNA 1987 

For information system design a certain state of an entity is a condi­
tion of a Petri-Net. Not every condition of a P~tri-Net has to be a 
state. Events can be another type of Petri-Net conditions. Figure I 
shows a not trivial example how Petri-Nets can be used. It represents 
a small (production) system that consists out of three machines Ml, M2 
and M3 and two operators 01 and 02. That system can handle orders • 
under following conditions: Every order has to be handeled first at 
Ml, afterwards.at M2 or M3. Operator 01 is trained for Ml and M2, 02 
is trained for Ml and M3. For some Petri-Nets and also for the infor­
mation system to be modelled its sometimes not easy to set the initial 
active preconditions correctly for the Petri-Net. In our case in fig­
ure I the initial active predconditions are : Order is given, Ml free, 
01 and 02 free. 

111.3 Error Handling 

The modelling of an application in form of states and networks with 
conditions can help us to implement a correct error handling mechanism 
and behaviour of the system. There are two kinds of errorhandling 
situations: 

a. Errorhandling by the enduser 

Every enduser transaction, which changes the state(s) of a enti­
ty(s), should be reversable whenever it makes sense. That pos­
sibility allows the enduser to 
do mistakes, recognize that error and reset at least logical­
l~that transaction. With the help of "state driven thinking" and 
Petri-Nets, it should be an easy task for the designer toimple­
ment per transaction a "reverse transaction". 

b. Errorhandling by the application software 

According to our initial definitio~. a transaction changes the 
state(s) of a an entity(s) from one consistent state(s) into 
another consistent state(s). When a programm or even the com­
puter systems aborts, a transaction may be not completed and one 
or more entities may be in incomplete states. It is the job of 
the programmer to guarantee with the help of own or standard 
errorhandling- and recovery software, that logical inconsisten­
cies never can happen. Pertri-Nets is a mental tool to reach 
that goal. 

IV. Conclusion 
By the marriage of the Entity-Relationship-Model with Petri-Nets 
the designer has now a strong mental tool at his disposal that 
allows him to model and design complex information systems 
very easy and very fast and flexible for future changes. The 
modelling with Petri-Nets should be integrated in every modern 
design tool, why not also in HP's new SYSTEM DICTIONARY! 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Literature: 

/I/ Wolfgang Reisig Systementwurf mit Net­
zen Springer Verlag Heidelberg, Berlin 
I985 

/2/ J. L. Peterson Petri Net Theory and the Mode 11 i ng of 
Systems Prentice Ha·ll Inc., Engel wood Cliffs, N. J. 
07632, I98I 

081314 

/3/ P. P. Chen The Entity-Relationship Model - Toward a Unified View 
of Data. 
ACM ToDS, Vol.I, No.I (March 76), pp.9-36 

About the Author 
Ewald Maria Mund works as an independant consultant. His main inter­
ests are design and implementation of information systems as well as 
fourth generation languages. 
Address: 
Ewald M. Mund 
Buchholzstr. I3 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

CH-3066 Stettlen/Bern 
Switzerland 

States (S) and Transactions (T) of figure I 

SI = Order is existing (initial state) 
S2 = M2 free (initial state) 
S3 = 01 free (initial state) 
S4 = 02 free (initial state) 
SS = 01 working at Ml 
S6 = 02 working at M2 
S7 = Order finished at Ml 
SB = 01 working at M2 
S9 = 02 working at M3 
SlO = Order finished 

Tl = 02 accepts order 
T2 = 01 accepts order 

Address: Ewald Maria Mund 
Buchholzstrasse 13 

CH-3066 STETTLEN/BERN 
Switzerland 

Tel: 031/519839 

S3 

081315 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Million Record Database Strategies 

By 

Cliff Lazar 

President 
SystemsExpress 

15015 Ventura Blvd. 
Sherman Oaks, CA 91403 

818/784-6966 

Table of Contents 

Introduction 
Evolutionary Performance Degradation 
Database Mental Retardation 

Mice are Differentthan Elephants 

081411 

Responsiveness or Dr. Ruth's Good and Bad Databases 
Access Strategies 

HP Manual Way 
Programmer Intensive 
Partitioned Datasets 
The Entity Detail 

Blocking Factors 
Backup Strategies 
Archive Strategies -- the WORM Ori ve 
Read-only Datasets 
Dormant On-site Compressed Data 
Dormant Off-line, On-site Compressed Data 
Conclusions 

Warning: This article is more theoretical than empirical and so 
the ideas set forth herein need to be tested in each environment 
before any implementation. 



HP3000 
INTERNATIONAL CONFERENCE 081412 
VIENNA 1987 

Introduction 

Million record databases are the justification for many of the HP 
sites in our community. Million record databases are also the 
source of many of the problems for those HP sites. 

For our purposes, a million record database can be comprised of a 
few datasets with over 100,000 records each or a massive dataset 
with over a mi 11 ion records. Such a sing le massive set is un-
1 ikel y because it would tend to fall of its own weight without 
support from side index files. 

If there are any who will volunteer that they have such a massive 
stand-alone file, we should all have sympathy for them. 

Some large databases start off strutting with good performanace 
and then evolve into stumbling poor performers. Others, because 
of poor design, start off poorly and just get worse. In this 
article I will look at some of the causes of poor database per­
formance on the megabase level and suggest some strategies for 
improving performance. 

In genera 1, the strategies that work for mi 11 ion record, seven 
figure databases should also apply to six figure and to a degree, 
even to high four figure databases. Three figure databases, with 
capacities under 1000, live within the power of the computer, and 
poor design is compensated by expensive hardware. 

Evolutionary Performance Degradation 

In some cases the bases grow from modest beginnings and as a 
result grow to become inefficient and counter-productive in an 
evolutionary manner. An observation of psychologists is that if 
a stimulus changes less than 2% of the base amount, most humans 
will not be able to tell the difference. Another observation is 
that if system performances are jumping up and down around a 
trend, most humans will not be able to discern .the trend without 
keeping records and computing running averages. 

Chronic gamblers suffer from fixating on episodic reinforcement; 
chronic optimists never forget the times the system gives them 
three second response time and overlook average five minute waits 
as aberrations. Serial searches in hashed masters will, by the 
nature of the hash, episodically give very.quick responses. 

Thus, when a database, with a poor design, begins its life with 
little data and few users, its performance is very good. Most 
retrievals occur at finger speed and batch jobs consume very 
little CPU and even wall clock time. As the base grows and the 
capacities are reset to higher figures things begin to slow down 
a little bit at a time. 

If the transaction rates are relatively constant, such as sales 
orders or work hours, the actual percentage increases in database 
size will decrease each period. Thus, when things begin to 



HP3000 
INTERNATIONAL CONFERENCE 081413 
VIENNA 1987 

suffer the percentage increases in response time may be below the 
threshold of perception. 

Parallel with creeping degradation, typically, the staffing of 
the data entry and reporting functions are increasing and being 
trained, so there is little room for comparison based on extended 
observation. 

Database Mental Retardation 

When a baby is born the general expectation is that it will 
develop into a normally intelligent human with reasonable 
response time. During the infancy we don't expect the baby to 
act like a normal adult. 

During childhood we watch for signs of improvement. During 
adolecence we tolerate accidents and lapses because we love our 
offspring but at some point, usually during childhood, if we 
don't see improvement and a trend toward normal intelligence we 
may be forced to admit that our child has chronic problem that 
won't be solved with age. 

Some databases are that way. Their physical structure is such 
that they will never have normally intelligent response times. 
Databases with capacities under 1000 entries, while having 
chronic physical problems, don't exhibit them because their size 
can be overwhelmed by the computer's speed. 

Million record databases with chronic physical problems will be 
irretrievably inefficient. Adding a disk drive won't help. 
Going from one MIP to four MIPS won't help. Cacheing will 
contribute little or no relief. The design is not only 
inefficient, it is big and inefficient. 

Mice are Different than Elephants 

Mice and Elephants are both mammals, with common characteristics 
like vertibrae, hair, breasts and well-developed brains. At the 
same time they are very different because of their size. In some 
ways the elephants suffer from diseconomies of scale. Feeding 
them becomes a major logistical problem. Elephants can 
practically deforest an area as they feed. They endanger other 
nearby animals. Cleaning up after them is a signifcant issue if 
you own some. They require alot of real estate, exponentially 
more, not arithmetically more than mice. 

As with mega databases, Elephants require greater strength in 
their structure. Their muscles are a higher percentage of slow 
twitch--they can't react rapidly. Their nervous systems require 
greater decentralization because the signals have a greater 
distance to travel. They require specially trained handlers. 

You can have hundreds of mice in your barn yard and not notice 
them, but one elephant will make a big impression. 



HP3000 
INTERNATIONAL CONFERENCE 081414 
VIENNA 1987 

Million record databases have similar diseconomies of scale. The 
obvious issues are 

o Floor space for the disk drives 
o Response time for retrievals 
o Backup time 
o Integrity of the data 
o Dedicated skill levels needed for maintenance 

HP and other manufacturer's are offering a solution to the floor 
space problem with the 4 gigabytes that will squeeze into the 
same six square feet as an HP7933 disk drive. This still 
ignores, or even contributes to back-up and archive problems. 

Responsiveness or Dr. Ruth's Good and Bad Databases 

A good database is one that will allow the users to retrieve 
their data when they want it. 

Conversely a bad database will not yield data as fast as the user 
wants and often not as fast as a manual alternative. 

The goodness and badness of a database is a function of its size 
more than its structure. In the case of million record databases 
this becomes very apparent. 

Consider a box of 10 driver's licenses. You can spread them out 
on a table and get whatever information you want instantly. You 
don't need Image. You don't even need a computer! But what if 
you have 10,000 driver's licenses in the same box. Now you can't 
find anything you want. 

How will you sort your driver's licenses? By the meaningless 
driver's license number (which is the equivalent of the Manual 
Master Unique key), by last name, by city, by sex? Any sort will 
obviate any other sort, if only one sort is possible as in the 
case of an Image manual master. What is the solution? 

For decades, libraries have maintained multiple copies of their 
cards: by author, subject and title. You can go into a library 
with a mil lion books and find the reference card you want in less 
than two minutes because you do a a random access search on a 
sorted key and not a serial search. 

A million record master on an HP 3000/68 will take 5.8 hours for 
the average stand-alone serial search. In a multi-user environ­
ment every other process will suffer, and the search will take 
longer. 

If the dataset only has fifty to a hundred customer records then 
retrieval takes place at finger speed and its O.K. to have a 
manual master with serial search. 

So let's draw an inference. Small masters are O.K. Large mas­
ters, with over 1000 entries, make bad databases. A million 
record manual master makes an abomination. 



HP3000 
INTERNATIONAL CONFERENCE 081415 
VIENNA 1987 

Next time someone wants to sell you a package, don't accept a 
demonstration based on less than 100,000 records, if that is 
going to be your environment. 

Anyone who buys a database system which will become 400 byte wide 
masters with 100,000 to 1,000,000+ capacity should have his head 
examined. You ignore diseconomies of scale at your peril. You 
should always get a performance guarantee for the likely range of 
set capacities your shop will use. 

Physical Realities 

A million record database has certain physical realities that are 
inherant in its size. At 400 bytes wide, a million records will 
contain 400 million bytes. If the data is stored in a master 
then 1.25 million records will be needed to avoid the migrating 
secondaries. That means that the disk drives will need 500 
million bytes. Until now that required two 7933 drives and at 
least one GIC. 

Access Strategies 

Four Possible Approaches 

The are four possible approaches to the design of a customer 
information file: 

o The HP Manual Way - put the customer data in a master 
file 

o The programmer intensive Way --Keep the information in 
the master but build a set of key index files to compen­
sate for the unsearchability of the master. Many pro­
grammers have homegrown approaches to this and Omnidex 
offers a canned IMSAM approach for about $10,000. 

o Partitioned Datasets -- The data are partitioned into 
groupings that vary from high probability of hits to 
very low probability. The high probability set is 
searched first. If it is small enough it may reside in 
cache memory most of the time and the responses may be 
at CPU speed. 

o The Entity Detail -- store the customer information in a 
detail but assure that the entries are unique. Systems­
Express, our company, offers a retrofit system to copy 
the data from masters to details and provide rapid 
search with a combination of automatic masters and a 
KSAM pointer file, if generic search is desired. The 
cost varies from $3,200 to $6,000, if Cobol source is 
desired. The approach can be used to redesign an exist­
ing database or make easy-access extract databases for 
inquiries and adhoc reports. 



HP3000 
INTERNAnONAL CONFERENCE 081416 
VIENNA 1987 

'l'he BP Manual Way - put the customer data in a master file 

I feel I have to appologize to the HP community. Early on, I 
wrote a beginner's guide to building Image databases. It was 
based on the HP Image manual and my readings in the various 
proceedings. The basic approach was that entities should be 
stored in Image masters and transactions should be stored in 
details. 

The problem arises when the user wants to extract data not based 
on the meaningless unique key of the master but on some remem­
berable item such as a company name, or a contact name, or a 
city, or even a phone number. 

I have spoken to numerous users who have bought or built 
megabases with 300,000 record masters with no pointers except the 
meaningless key. The key must be meaningless or it couldn't be 
unique, if there are over 100,000 of them. Exception: part 
numbers with some rational naming convention. These users tell 
me that if they want non-key retrievals they must set up stream 
jobs to run over night or over the week-end. 

Other users tell me that they make their living just building 
duplicative extract files so that the users can get the data they 
need when they need it. 

Let me recant: 
manual masters. 
spell-checking. 

Don't build databases with the entities in the 
The only thing that Masters are good for is 

Put entity data in details and point to them with automatic 
masters or KSAM files or MPE side files or IMSAM files. More on 
details below. 

Program11er Intensive--lteep the information in the master, 
but build pointer files 

The operational word is "keep." The assumption is that you 
inherited the database from someone who was fired or was promoted 
before management understood the problem. 

For technical or political reasons you can't change the structure 
of the database and convert the masters to details. The solution 
to getting improved performance is to create side index files 
which point to the key in the master. KSAM, MPE and IMSAM are 
good approaches. The appeal of KSAM is that it comes free with 
HP 3000's and you don't have to build search software. 

The approach we follow is fill the KSAM file with the correct 
spelling of the key values, and not record numbers that are 
subject to rapid change. This will help to avoid maintaining the 
KSAM file every time a record is deleted. 



HP3000 
081417 INTERNATIONAL CONFERENCE 

VIENNA 1987 

Partitionecl>atasata-- The data are partitioned intogroupings 
thatvary froa high probability ofhits 
tovery low probability 

Consider a transaction detail with one million records, which 
describe events that take place over time. While it may be 
advantageous to keep all the records online, it may be possible 
partition the detail into a few datasets, one or two of which 
have high probabilities of search hits: 

o Current Day's input 
o Latest Week 
o Latest Month 
o Residual of the data 

The Current Day's and Latest Week may have the highest 
probability of search hits and also will be the smaller of the 
files. With large blocking factors and a big cache much of the 
high probability files could be RAM resident most of the time. 

At the end of each of the data collection periods the data is 
posted to the next more comprehensive dataset and deleted from 
its original source. 

The smaller files also have the advantage that if there is a 
system failure, less is involved in reconstructing the smaller 
files. 

'l'be Entity Detail Stora the custo.ar information in a detail 
but assure that the entries are unique 

A entity detail is a detail with one or more keys that are 
pointed to with automatic masters where at least one key is 
limited ~o a chain length of one. The result is that the key is 
unique, just like a master. The advantage is that there can be 
as many as 16 keys and that the detail itself does not require 
excess space for migrating secondaries. The automatic masters 
do. 

Typically a detail may have three to seven keys and typically 
only one will be unique. 

We add a KSAM pointer file for all the keys that we would like 
generic search. Generally only one to three of the keys will be 
designated as generic search keys. The KSAM file will contain as 
many records as the combined capacities of the automatic masters 
and the manual masters that are to be pointed to, and the record 
size is equal to the largest field to be pointed to. Thus, this 
side index file niakes trading space for time a very significant 
tradeoff.' At the same time many of our users appreciate the ease 
of retrieval that generic search offers to the online user. 

The typical response time for a large database with a KSAM front­
end generic search is less than one second. There is no 
noticeable difference for a direct key search, with the full 
value spelling, bypassing the KSAM look-up. 



HP3000 
INTERNATIONAL CONFERENCE 081418 
VIENNA 1987 

In Table 1 are displayed the theoretical space requirements and 
search times for a standard manua 1 master and an entity detai 1. 
The Image implicit pointer bytes have been ignored. The search 
time estimates include the time to serial search through empty 
records in the master. The searches for data in the details 
assumes that keys are available in automatic masters. 

Table 1 - Theoretica 1 Space Requirements for 1,000,000 
Customer Records and Search Times 

(MM=000,000) 
(400 byte wide record with 100 bytes of keys) 

Bytes in Bytes Bytes in Total 
Structure Keys Masters Detail KSAM File Bytes 

( 1I2) (3) (4) 
--------

Standard Al 1 Manual 500MM 0 0 500MM 

Detail with 5 5 125MM 400MM 0 525MM 
5 automatics 

Detail with 5 5 125MM 400MM 125MM 650-MM 
5 automatics 
1 KSAM with 5 pointers 

Footnotes: 

Search Time 

(5) 
----------
5.8 hours 

second 

<1 second 

(1) 400 bytes* 1MM * 1.25 = 500MM for migrating secondaries avoidance 
(2) automatic masters• 100 bytes* 1MM * 1.25 = 125MM 

Some of the automatics may be much less than 1MM 
(3) 20 bytes• 5 • 1MM • 1.25 • 125MM 
(4) Sum of Bytes in Masters, details and KSAM files 
(5) 500MM/30 accesses per second/3600 seconds per hour/2 

This can be substantially inproved through better blocking factors 
< 1 second adjusts for the savings in user keystrokes with 
generic search 

Entity details are used by some shops as extract databases for 
quick user access to the data that is otherwise locked in ugly 
masters. :DBTRANS or Supertool is used to copy the data and 
:DBEXPRESS or grunt Cobol is used to build the retrieval system. 

Blocking Factors 

Well selected blocking factors can substantially improve the 
efficiency of database retrievals. The more records that are 
retrieved with each seek, the less time and resouce consuming 
seeks are necessary. 

The common wisdom has been that 25% ofa master's space should be 
empty space to avoid migrating secondaries outside of the block. 
It has been suggested (Van Valkenburgh, Interex 86, Detroit Paper 
3105, p.23) that the free space can be limited to the reciprocal 



HP3000 
INTERNATIONAL CONFERENCE 081419 
VIENNA 1987 

of the blocking factor. I have run a simple simulation of this 
approach and it appears that for high blocking factors, the 
likelyhood of not finding free space in any given block is high 
enough to expect a lot of migrating secondaries to cross over the 
block boundaries if the free space is limited to the reciprocal. 

This is another good reason to avoid using masters except for 
spell checkers. 

Backup Strategies 

Million record databases require lots of backup. While backing 
up only changed datasets is attractive there may be a problem 
with partial database backups that can jepardize database 
integrity. It may be that keeping the high probability smaller 
datasets in a separate database can allow nightly backup of only 
the smaller sets. This can save substantial operator time. 

Archive Strategies -- the WORM Drive 

Currently archiving million byte databases poses a dual problem 
of database security and timely archive access. 

Security considerations require that backups be kept off site to 
prevent catastrophic loss and unintentional operator destructior 
of what look like convenient scratch tapes. Million record 
databases require large tape storage. Now is the time to considez 
adopting the write once read many (WORM) optical storage. 

WORM drives, shown at COMDEX have capacities in the multiple 
trillions of bytes. They can deliver any record within 30 
seconds and occupy eight square feet of floor space. 

Two copies of archival data can be made, with one stored off-site 
and the other stored conveniently on-site and possibly even on-
1 ine in an archival database. The archival database need be 
opened only when the older data was required. 

Implementation of WORM technology wi 11 change current database 
practices in many HP shops. Much of the data currently kept on 
disks has little current access, but is stored in the database 
because archiving is so inconvenient if the data is unexpectedly 
needed. It is another example of eposodic reinforcement. The 
one time in two years when old data was needed, it took hours or 
days to get it back on the machine so the Database Administrator 
decided to keep as much data on-line as there was floor space 
available. 

Duplicate WORM optical storage provides the dual advantages of 
security from loss and accidental scratch over-writes and rapid 
access to historic data. Experience suggests that the access 
programs, along with documentation, be stored with the data. 
It is likely that the programs will change over time and current 
programs wi 11 be unable to read the old data. 



HP3000 
INTERNA T/ONAL CONFERENCE 0814110 
VIENNA 1987 

Hewlett-Packard is currently examining the WORM technology and 
may have a product on the market in the near future. Other 
vendors have WORM systems available now that can be interfaced to 
the HP 3000. 

Read-only Datasets 

An intermediate solution to the current non-existance of the WORM 
and the desire to keep megabytes of data online but with smaller 
disk impact is the concept of a "Read-only Dataset." 

A read-only dataset is compressed into 25% or less space that an 
uncompressed dataset but can only be read from and not written 
to. Much of the data that we keep online in read/write datasets 
is, in fact, read-only data. It is historical--employee work 
hours or customer payments that we want to read but also don't 
want to overt overwrite. 

One college in California keeps .all its student records online 
since 1929. They are never written to, only read from, after the 
close of the school year. Those records occupy eight 79338 disk 
drives, about four gigabytes. It's all read-only data. 

There are other examples of read-only data: 

0 Technical Abstacts 
0 Property Records 
0 Library Book References 
0 Stock Transactions 
0 Chemical Formulas and Mathematical Equations 
0 Census Data 
0 Voting Patterns 
0 Telemetry/Sensor Readings 

This class of data can be called compressed but read-only. 

Dormant On-line Compressed Data 

It is also possible to compress data and store it on-line in a 
dormant state and then decompress it when it is needed. This has 
the advantage that it is available within minutes but it is not 
readable or writeable. Such data can be kept online while the 
image of it is archived at a remote location. The cost is 
relatively low to have this option. My company offers such a 
compression/decompression tool. It's called :COMPFILE. You can 
have your data both ways--archived and available but out of the 
way. 

Dormant Off-line, On-site Compressed Data 

The offline conterpart of WORM is highly compressed data on tape. 
The advantage is that you can save tape, save backup time and you 
can keep potentially need copies of the data onsite. We of 
cource offer :COMPTAPE for this function. 



HP3000 
INTERNATIONAL CONFERENCE 0814111 
VIENNA 1987 

Conclusions 

Up to the current time many mil lion record databases have 
suffered from diseconomies of scale. They are so large and so 
poorly designed that they perform poorly. Maintaining their 
security and integrity has resulted in a bureaucratic environment 
where response time has suffered and improvements were avoided. 

Technology available now can allow the users of million record 
databases to gain more rapid access to the data through use of 
entity details or pointer files or extract files. The response 
time improvements for unkeyed versus keyed access is thousands 
of seconds versus sub-s~cond response. 

Switching from a master to a detail with automatic masters 
achieves the sub-second response time at the cost of increasing 
the database size by about 5% to 25%. Adding a generic search 
KSAM can double the data space requirements, but makes access 
more user-sympathetic. 

Shifting from tape archiving to WORM optical can increase data 
security while improving data accessability. 

Exploiting data compression techniques promises to give the user 
site more rapid access to data, with increased security while 
achieving substantial savings in disk space. 

While the majority of the databases are small and reasonably 
efficient, my observations indicate that the majority of the disk 
space in the HP community is occupied by large, inefficient 
databases that can be improved with reasonable effort. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987, 



HP3000 
INTERNATIONAL CONFERENCE DC01/1 
VIENNA 1987 

EXPERIENCE WITH AN IEEE 802.3 LOCAL AREA NETWORK IN A 
MULTI-VENDOR ENVIRONMENT 

W. Schmatz, MAN Technologie GmbH, Munchen 

ABSTRACT 

The local area network (LAN) techniques may be a strategic 
approach to some fundamental information processing needs. 
The MAN Technologie GmbH started the implementation of a 
local area network for 

integration of applications = access to central processing 

The company's specific situation with data processing 
equipment of different vendors led to a standard IEEE 802.3 
solution with multistar topology on the basis of fibre 
optic cabling. 

From a manager's viewpoint the following topics are 
discussed: 

availability of LAN-products 
functionality 
throughput 
maintainability 
system price 

The result may encourage potential new users. 

COPYRIGHT 

Parts of this paper were presented on the COMPAUTO 87 
International Conference, Geneva, 10-12 March 1987, 
organized by the Computational Mechanics Institute, 
Southampton, UK. 



HP3000 
INTERNATIONAL CONFERENCE DC01/2 
VIENNA 1987 

STARTING POSITION 

Company's profile 
MAN Technologie is the research and development centre of 
the MAN group. Here some 1000 engineers and scientists are 
working on new products, future-oriented projects and 
state-of-the art technologies. 

The company is a leading partner in the European 
aerospace program ARIANE, with additional developments in 
satellite engineering. Other products concern wind energy 
plants with a power output from 20 kW to 1.5 MW. Thanks to 
the expertise in engine technology a prime contribution to 
the development of cogeneration plants was achieved. 
Special knowhow is available to produce gas centrifuges for 
uranium enrichment. 

Information processing applications 
A variety of computer assisted tasks run on machines of 
different vendors • Starting from design, CADAM and CATIA 
on IBM are used. On a VAX8500 modelling for finite element 
analysis is undertaken with PATRAN, producing input for 
NASTRAN and MARC and processing the output for coloured 
printouts. On the same computer the integrated 20/CAD-CAM 
system EQINOX is introduced to generate intermediate drafts 
of complex mechanical parts and to create interactive the 
numerical code for NC-machining. 

The MAN Technologie operates different minicomputers 
for JD-measuring devices and automized testing facilities. 

In the commercial field two HP3000 are used, linked to 
IBM mainframes. 

Most applications have longterm histories and were 
selected to fit the specific needs best. This situation is 
often reported. The information processing manager's 
strategic task for integration is well known. 

Geographic implication 
With respect to the theme, the widespread geographic 
situation is of importance. The laboratories, production 
floors and offices are spread over 30 buildings. The data 
processing is in effect distributed by topological reasons. 
The economic access to central services has to be 
organized. 



HP3000 
INTERNATIONAL CONFERENCE OC01/3 
VIENNA 1987 

THE LOCAL AREA NETWORK APPROACH 

General LAN-functions 
There is no general definition for local area networks. The 
common understanding is: base for open and universal 
communication even between different systems/equipments. 
The LAN may serve different objectives: 

linking mainframes 
linking minis and/or personal computers 
supporting terminal access 
supporting the base for distributed processing 
supporting manufacturing tasks 
supporting backbone-functions for linking subnetworks 

The special suitability of an individual local area 
network supporting one of the above mentioned 
characteristic or any combination had to be evaluated. 

Company's objectives in LAN application 
The primary intention was to utilize the LAN-technique as a 
technical approach to some fundamental information 
processing needs. In a first stage, two goals should be 
reached. 

Integration of applications In a distributed environment 
you need many services to integrate your application. 
Leading vendors offer today standard software for the 
following topics: 

Full network service within one vendor's product line 
(e.g. within DECNET you get file transfer, remote 
file/peripheral access, program to program 
communication) 
Fast file transfer between applications on different 
computers (e.g. transfer of images from a host to a 
workstation, specialized for animation or fast transfer 
of IGES-files for CAD-CAD data exchange) 

Access to central proc3ssing Traditional terminal­
connections resemble a tree; the radix is a single 
computer. Connecting a device via a server to a local area 
network may change this structure: 

The logical connection to a series of computers within 
one homogenous system becomes standard (e.g. a printer 
server may be attatched to a network, to do all printing 
work for a couple of processors) 
The access of terminals to all computing servers within 
one homogenous system is standard. Hopefully some 
terminal server protocols will be enriched by intelligent 
procedures for access to foreign computers.fl/ 



HP3000 
INTERNATIONAL CONFERENCE DC01/4 
VIENNA 1987 

Using standards 
The commitment for using standards is a good practice. When 
the MAN Technolgie started in 1985 the market leader had 
not announced his product. Therefore IEEE-standards were 
investigated. 

THREE STANDARD LOCAL AREA NETWORK TYPES 

The following table represents the basic characteristics of 
three standard local area networks. IEEE 802.3 and its 
predecessor Ethernet are widely used in thousands of ways 
around the world. IEEE 802.4, the so called Manufacturing 
Automation Protocol (MAP), will be operative-within the 
next year. IEEE 802.5 is adopted by IBM as token ring 
solution. IBM-Products have been available since 1986. 

Access methods 
Two very different access methods have been established. 
CSMA/CD uses a stochastic model: 

a station - ready to send - senses the carrier until the 
medium is free 

_ the station starts sending; there is a risk that another 
station starts within the signal run-time 
collisions must be handled. 

Token acces methods show a deterministic behaviour by 
enabling and disabling sending permission. 

There is a broad discussion about the advantages/ 
disadvantages of these methods. A comparison is given in 
/2/. 

ADVANTAGES OF A FIBREOPTIC BASED IEEE 802.3 LAN 

CSMA/CD-Advantages 
Besides the availability, the propagation and magnitude of 
component-market, one keypoint was decisive. The CSMA/CD­
access method permits the coexistence of Ethernet and IEEE 
802.3 on the same network. In mid 1986 Hewlett-Packard's 
software products followed IEEE 802.3, Digital Equipment's 
products followed Ethernet version 2. 

Fibreoptic advantages 
It was impressing to see, how innovative designers found a 
way to enlarge the concept of IEEE 802.3. They kept the 
interface of the medium-attachment-unit exactly as it was. 
They changed the physical medium completely, enriched the 
topology and widened the regional application. The 
following figure 1 shows the conceptual differences. 



Standard Characteristics Availabilty 

IEEE 802.3 baseband 10 Mbit/sec Ethernet ver .2 1982 

CS MA/CD bus/mu ltistar IEEE 802.3 1985 

IEEE 802.4 broadband 6 MHz Version 3.0 1988 

(MAP) token bus 

IEEE 802.5 baseband 4 Mbits/sec 1986 

( IBM ) token ring 

LMAN\ Standard local area networks 
Technolog ie 

:s ~1::i:: ~;:tj~ 
s;;:~~ 
_:i=-
~:::j 
...... ~ 

):;; ,_ 
8 
~ 
gj 
~ 
~ 

~ 

~ 
~ 
~ 



t 
500m 

cab I e 

2.5 m d i s t a n c e 

,..... ,..... ....c:::.. 
"""C7 '-/ '-., 

coax la I 

segment 

repeater D 
,..... ....6. 

""P' 0 ••mole ••P••I•• Q" ' e o p II c c o b I e 

remote repeater 

"-../ 

Q medium attachment unit 

D··········i r ...... c[J 
: : 

! ........ q-p ...... .J 
r ....... Q_J 
i--fibre optic cable 

i (one up to 3000m) 

ED~ 
~~ :coaxial type segments 

l .. ~:::::::::o 
D 

D 

D 
ml 

8 

active star coupler , 19 slots 

(a maximum of 5 In series) 

fibre optic cable adapter card 

coax transceiver 

coax Interface card 

twin transceiver card 

0 optic transceiver 

~I Coax vs. fibre optic LAN-type 
Technolog1e 

fig.1 

~~1't ~~~ 
::»:~g 

~::::! 
..... ~ 

:ti: 
r-

8 
~ 
~ 
~ 
~ 

~ 

~ 
~ 



HP3000 
INTERNATIONAL CONFERENCE oco1n 
VIENNA 1987 

The MAN Technologie decided for the first german 
supplier, Richard Hirschmann, Radiotechnisches Werk, 
Esslingen/Neckar, for the following reasons: 

No grounding problems The initial network is spanned over 
two buildings.·The coaxial type version demands either for 
careful grounding or for a fibre optic based remote 
repeater. Both solutions are expensive. The latter one 
limits the application, if multiply applicated. 

The fibre optic solution is by its nature free of this 
problem. 

Topological flexibility The conventional way, to link all 
equipment, is suitable for small installations. A better 
approach is the topology, which IBM has elected for its 
cabling system. The multistar concept of Hirschmann 
supports this idea. In every building one star can serve 
all necessary connections. Additionally transitions to the 
coaxial type are possible at any star coupler. 

Wide range Each segment of the coaxial based type is 
limited to 500m. The maximum of 2 repeaters limits the 
range. On the optical medium the deformation of the digital 
signal is smaller. The range extends to 4500m including one 
single line of 3000 m and a maximum of five stars in 
series. 

Repeater free base network The absence of repeaters cuts 
the signal run time. Insofar it reduces collisions by a 
small amount. 

EXPERIENCE AND PERFORMANCE 

Functionality 
We investigated three types of LAN-services: 

Type 1: terminal access to central computing. 
Terminals are hardwired to a terminal server (RS232 up to 
19.2 kbaud). The terminal server communicates with the 
computer via the LAN. Involved products are: 

Digital's BECSA-CA, LAT-software, version 2.0. 
Digital's VAX8500, operating system VMS, version 4.5, 
DECnet software (end node license). 

To establish the communication, the operator has to 
download the LAT-software from the host to the terminal 
server (DECnet-function), which is done by the startup 
procedure normally. The software spans a fixed relation 
between all ports of the server and the loading computer. 



HP3000 
INTERNATIONAL CONFERENCE OC01/8 
VIENNA 1987 

_ Type 2: virtual terminal service. 
Terminals are hardwired to system A. Computer A and 
computer B are linked to the LAN. In addition, system B 
emulates the SNA Physical Unit Type 2, Logical Unit Type 1, 
2, 3 devices. The involved products are: 

.Hewlett Packard's Series HP3000 computers, 
model /48 and /70, operating system MPES, UB-Mit, 
HP AdvanceNet products NS3000/V, LAN/V Link, SNA Link. 
IBM's mainfraime model 3081 running MVS. 

To establish the communication, the network software has to 
be activated on every node. A user starts a session on 
system A first; issuing the command REMOTE, he will be 
prompted to start a second session on system B. If the 
SNA-link is active he may start the SNA-services on the 
IBM-system. Recently Hewlett Packard offers an enhanced 
product ACCESS. The computer running SNA Link will be known 
within the network as SNA-gateway. On demand the connection 
to that node will be done by ACCESS. 

Type 3: file transfer service. 
The hardware and software configuration of type 2 is used. 
For convenience of operating and peripheral sharing the 
backup of system A is done via the LAN, using a magnetic 
tape drive, connected to system B. 

All types of services were installed without major 
complication. They run concurrently on the same LAN, which 
proves our assumption of coexistence of Ethernet version 
2.0 and IEEE 802.3. 

Performance 
Most modern communication software provides some tracing 
facilities. A multivendor network is monitored best with 
special analysers. We use a EXCELAN/LANalyser, distributed 
by Synelec Datensysteme GmbH, Munich. It's a PC-based 
software, working with a special LAN-interface, which fits 
into a PC-XT, PC-AT or compatible pc·s. 

Our starting configuration with three CPU's and one 
terminal server did not produce sufficient load, to beat 
the throughput limit. Tight analysis of single functions 
estimates some risks (fig. 2). 

With respect to type 1 we found a strange behaviour. 
If only one character (in character mode) is input, that 
byte will be enveloped in a 64 byte packet and transferred 
to the VAX. The acknowledgement (including the echo) 
produces a further three packets, one of size 64 byte, two 
of size 68 byte. Terminal server and computer play ping­
pong; the overhead is 26 300 t. From another viewpoint: the 
nominal rate of 10 Mbit/sec will be degraded to 37,9 
kbit/sec effective rate. 



packet size 

64-127~----..-----~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiliii!liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil 
128-255 

256-511 l terminal access to~ central computing 
512-1023 : : . . 

1024-1518 ! i 
64-127~----.... ----~----~----

128-255 
256-511 i · t I t = • I : · 

512_1023 i -VI r Ua ermma ser1"1Ce 
1024-1518 i i i 

1/~i~~t Ii' file tranJer servic~ I 
512-1023 : : : 

1024-1518 . i i i 
0 20 40 60 80 100 

percent 

rMAN\1 Packet distributions , 3 types 
Technolog ie 

fig.2 

~~1~ ~mi~ 
~~8 
~::::t 
..... ~ 

):>; 
r-

8 
~ 
~ 
~ 
~ 

~ 
~ 



HP3000 
INTERNATIONAL CONFERENCE DC01/10 
VIENNA 1987 

Information sent by the computer fills the packets to 
a limit of 280 bytes. Nevertheless, it is obvious, that 
character-oriented software, like the VAX-editor EDT does 
not fit well into the packet-oriented transmission concept. 

Type 2 service with screen oriented applications shows 
a distribution of packet sizes, moving to large packets. 

In type 3 service the maximal packet size dominates 
(it is defined to 1518 bytes). From the operator's view the 
remote backup has an overhead of 35 % compared with a 
local backup. 

From this very simple analysis it be seen, that 
software has a tremendous impact on LAN-performance. The 
software has to bundle as many request as possible on one 
node to produce large packets. 

A theoretical discussion of LAN performance is found 
in /3/. Large installations are discussed in /4/. 

INSTALLATION AND MAINTAINABILITY 

Fibre optic installation 
All installation work was carried out with the company's 
own staff. A skilled person will learn the mounting of 
connectors within a day. There is only one limiting factor: 
for repair of connectors about two hours are needed, mostly 
for hardening of adhesive. 

The transmission should be measured. For small 
installations a visual inspection is sufficient. 

System installation 
In all cases the system services were first proven with the 
vendors coaxial type. The switching to the fibre optic type 
was a task of a few minutes. In one case the light emission 
had to be adjusted; this is possible in three stages by 
jumpers. 

Maintainability 
All cards have LEDs for the following indications: "power", 
"data accepted" and "collision detection". They are helpful 
for installation and operator control. For performance 
measurements and problem solving special LAN-analysers are 
necessary. Personal computer based analysers are the 
cheapest solutions. 



HP3000 
INTERNATIONAL CONFERENCE DC01/11 
VIENNA 1987 

SYSTEM PRICE 

On the pricelist of the manufacturer mentioned above the 
following simple configurations are calculated (rounded 
prices in DM, base 1986): 

Point to point configuration, 300 m distance 
2 transceiver 5. 500 DM 
300 m fibreoptic cable 3.000 DM 

total 

Start to star, 4 direct, 4 remote 
2 active star coupler 
2 twin transceiver cards 
fitting into the star coupler 
6 fibreoptic cable adapter cards 
4 fibreoptic transceiver 
500 m f iberoptic cable 

total 

8.500 DM 

interfaces, 500 m cable 
10.000 DM 

3.000 DM 
10.000 DM 
11.000 DM 
5.000 DM 

39.000 DM 

The prices compare well to a network with expensive 
remote repeaters. 

CONCLUSIONS 

From a manager's viewpoint the MAN Technologie has 
introduced a proven local area network with an advanced 
technique. The solution is economic. The first goals could 
be reached. 

The next steps towards integration will be the 
implementation of the TCP/IP protocol on all computers to 
enable file transfer between machines of different vendors. 

The choice for this individual solution IEEE 802.3 is 
not a final one. It is obvious, that new developments 
respect existing standards. The greater the installed 
basis, the greater the pressure, to build gateways to other 
solutions from the beginning. 

Hopefully this paper may encourage potential users. 



HP3000 
INTERNATIONAL CONFERENCE DC01h2 
VIENNA 1987 

REFERENCES 

/1/ Raabe, Georg-Peter, (1986) Planet in der Universitat 
Passau. State of the Art, 2/86 63-74 

/2/ suppan-Borowka, Simon, (1986) MAP Datenkommunikation in 
der automatisierten Fertigung. Datacom Buchverlag, Pulheim 

/3/ Bux, w. (1984) Performance issues in local-area 
networks. IBM Systems Journal, vol.23, no.4, 351-374 

/4/ Holler, E. (1986) Ein LAN fur ein GroBforschungs­
zentrum: von der Planung bis zur Realisierung. Datacom, 
Pulheim, 2/86, 4-21 

GLOS SAR 

CA DAM 

CAT IA 

CSMA/CD 

Ethernet 

EQINOX 

IEEE 

MAP 

MARC 

NASTRAN 

PATRAN 

TCP/IP 

System for computer aided design, Release 
19.1, developed_by Lockheed 
System for computer aided design, Release 
20.2. developed by Dassault 
carrier Sense Multiple Access with Collision 
Detection; access method for IEEE 802.3 and 
Ethernet 
Local area network, developed by Digital 
Equipment Corp., Intel and Xerox Corp. 
EQINOX 7000: System for computer aided 
drafting (DRAFT) and interactive generation 
of NC-code (NCG), Applicon Schlumberger GmbH, 
Frankfurt 
Institute of Electrical and Electronic 
Engineers, New York 
Manufacturing Automation Protocol: Local area 
network, introduced by General Motors Corp. 
MARC: General purpose finite element program, 
Revision K2-2; Marc Analysis Research Corp., 
Pala Alto, California 
MSC-NASTRAN: Finite element program, Version 
65; MacNeal-Schwendler-corp., Los Angeles, 
California 
PATRAN II: Finite element pre- and 
postprocessor, Version 2.0A; PDA Engineering, 
Santa Ana, California 
Higher level transport-protocol, used in many 
networks. 



HP3000 
INTERNATIONAL CONFERENCE DC02/1 
VIENNA 1987 

Networking: Will Today's Choices Be Needed Tomorrow? 

I. Introduction 

Presented at the European Conference 
of Interex HP 3000 

Vienna, Austria 
23 March 87 
Scott Brear 

MICOM Systems, Inc. 

Over the past few years tbere has been a great deal of concern 
amongst data communication professionals regarding the long term 
viability of their networks. That is, will the investment being 
made today to answer today's needs be a true long term investment 
or will the equipment reach technological obsolescence far short of 
its operational life? To be more specific, most modems and 
multiplexors installed 10 years ago still FUNCTION as they were 
intended, but smaller size, greater diagnostic capabilities and 
more clever multiplexor features have oft times lured us into 
replacing the "old work horses" before their time. To complicate 
matters more, these product improvements are arriving on the market 
at an ACCELERATED RATE! 

Perhaps your data communication needs are small. If so, do not 
think that you will escape the impact of these issues. After all, 
the usage of the word "network" transcends size, as NETWORK is 
usually defined. For example: 

From DATAKONTEXT's Pocket Dictionary of Data Communications, 
they reference the DIN definition as "the assembly of 
equipment through which connections are established between 
terminal installati-ons. " 

From MICOM Systems' Pocket Glossary, network is defined as 
"an interconnection of computer systems, terminals, or 
data communications facilities." 

Large or small, networking is required because we are seeking 
CONNECTIVITY between various devices so they can EXCHANGE 
INFORMATION or, more commonly, SHARE RESOURCES. Both changes in 
telephone administration SERVICES and TARIFFS and IMPROVEMENTS IN 
TECHNOLOGY have inspired the data communications industry toward 
continuous product innovations which, in turn, have promised <and 
generally delivered) improvements in the cost, speed and 
flexibility of our resource sharing facilities. 

With the emergence of personal computers and more powerful "super" 
mini computers, the term "resource sharing" no longer is solely 
associated with gaining access to and sharing a single central 
processor. Rather, we are now faced with a MULTITUDE OF NETWORKING 
CHALLENGES based on the exponential growth in the number of 
resources. Resources have been distributed to the smallest offices 
and to desktops worldwide creating all sorts of connectivity issues 
relating to intermachine COMPATIBILITY both on a LOCAL and WIDE 
AREA basis. Indeed, we would probably all agree that user 
requirements have been evolving from being "COMPUTER CENTRIC" to 
being "'NETWORK CENTRIC. " 



HP3()()() 
INTERNATIONAL CONFERENCE DC02/2 
VIENNA 1987 

How will we address these issues? Will we install several diverse 
networks only to find that, while they do the intended function, 
they do not provide for future inter-networking capability? Will 
we install products that have the LOOK OF LAST YEAR'S MODELS too 
soon? This paper reviews these issues by way of a case study, and 
then suggests the application of methods and product concepts which 
will provide for FLEXIBLE NETWORK EVOLUTION. 

II. Alternatives Evolve 

A dozen years ago, when I was faced with "networking" my first H-P 
2100 computer, networking meant arranging access to the computer 
from several terminals within the building. The choices for our 
first <LOCAL AREA> network were easy: direct COPPER tfIRE for nearby 
terminals, LIMITED DISTANCE LINE DRIVERS for medium distances 
within the building, and acoustic couplers or "real" MODEMS for 
those occasional users located away from the premises. At the same 
time, similar "networks" already existed separately servicing both 
IBM and DEC users. In those days thre~ networks were not a problem, 
considering the realities; that is, a few "dumb" 300 BAUD terminals 
<1200 was fast then!) required NONSELECTIVE dedicated connections 
to a few CENTRALLY LOCATED computer resources. 

LOW COST MULTIPLEXING 

Then, the obvious occurred. Additional users wanted to Join their 
colleagues in the new world of remote CPU access. This raised a 
couple of new issues. First, a FAST GROWING NUMBER of individual 
LEASED or dial lines to distant divisions were now required to 
serve the growing user base. Well, this one was relatively easy to 
solve by installing low cost MULTIPLEXORS between the computer 
center and our remote divisions, creating our first WIDE AREA 
NETWORK (WAN). Not only did we REDUCE our leased line count to one 
per division, but we also gained the operational advantages of 
having ERROR CONTROL, DIAGNOSTICS and DATA MONITORING on the 
multiplexed link! 

Furthermore, in those situations where EVEN ONE dedicated line was 
too expensive, but data traffic volume permitted, we installed 
several MULTI-POINT multiplexors. We thus retained the efficiency 
and error control benefits of the POINT-to-POINT units on LOWER 
TARIFFED multi-point lines. Of course, there were many others who 
also were discovering how easy it was to apply the newly available 
product technology to basic data communication problems. We all 
felt clever, indeed! · 

PORT CONTENTION SOLUTIONS 

The second issue revolved around· the problem of have having TOO 
MANY USERS desiring connections to TOO FEW COMPUTER PORTS. The 
immediate solution was a crude "patch panel" whereby users would 
request computer center personnel to MANUALLY connect their direct 
or multiplexor-derived terminal connections when a computer port 
became available. Sound familiar? Some of us may fondly remember 
this as an early example of what we THEN THOUGHT was "complex" 
networking in the ASYNCHRONOUS terminal domain. At least we were 
able to interconnect the multiplexors with the patch panels in our 
growing network; it made sense as it was a simple solution to the 
problem at hand. 



HP3000 
INTERNA T/ONAL CONFERENCE OC0213 
VIENNA 1987 

We-·soon ti.red l3f" patch ·-pmrets ll'S b~ to1' stow -abd cos~1·y. A~ 
least for the vast maJority of users within the building complex, 
the solution was clear - uPl(rade to a PBX. No, not a PBX designed 
specifically for data, they came later. Rather, we were then 
converting the office facilities to a digital voice PBX Cdata 
capabilities were not then available) and the old "STEP by STEP'" 
Strowger PBX was made-available to us as surplus. Surplus indeed! 
Ne Jumped at the chance to automate the patch panel function and it 
worked well. Users simply retained their older rotary dial 
telephone instruments and contended for "'trunk lines"' which were, 
in fact, ports on the minicomputers' front ends. Users were 
informed of unavailable ports via a "'busy tone'" rather than the 
embarrassed explanation of a computer center operator. 

Not long after we put the Strowger DATA PBX into service, '"real'" 
purpose-built DATA PBX units came on to the market .... and we 
embraced them with glee! An important benefit to our operation, for 
example, was the INTEGRATION of our multiplexor units INTO the PBX 
equipment. We eventually had several bays of DATA PBX equipment 
serving the growing (but still computer-segregated) population of 
asynchronous terminal users. Connectivity to our various computing 
resources VASTLY IMPROVED as we further expanded our networks. 

NEW SWITCHING SERVICES FILL A NEED 

Again, we faced the future with heads high, having smoothly evolved 
our network to '"state of the art.'" However, at this same time, we 
were also faced with an ever increasing number of geographically 
RANDOM users requesting access from customer sites and small sales 
offices around the world. They COULD, in most cases, use the PUBLIC 
SWITCHED NETWORK CPSN), but they needed more reliable AVAILABILITY 
and costs were excessive. Individual leased lines were also either 
too expensive, operationally impractical, or unavailable. 
Fortunately for our users, a new type of network service came into 
the public domain - X.25 PACKET SNITCHING NETWORKS. We tried it and 
we liked it! 

This second WIDE AREA NETWORK, supplementing our existing, 
dedicated WAN multiplexor network, interfaced well with our LOCAL 
AREA NETWORK as they all used common interfaces. Indeed, our DATA 
PBX LAN systems even provided INTEGRAL ASYNCHRONOUS PADs for 
interconnection with the X.25 network! Of course, one of the best 
features of X.25 was that we needed no large capital outlay for 
backbone equipment PADs were the only devices we needed to 
supply, and service costs were directly related to the usage of our 
random user base. Management was beginning to take favourable 
notice of our cost-effective efforts! 

Incidentally, X.21 CIRCUIT SWITCHING services became available in 
certain European countries at this time. X.21 gave us a pay-as-you­
go tariff similar to the X. 25 concept, while providing a '"real'" 
circuit availability expected with full-time leased lines. Circuit 
switching has been strongly supported in some countries (notably 
Scandinavian) and, accordingly, the pricing in such countries is 
less than X.25. The reverse will be found in other cases. Pricing 
aside, for certain applications, X.21 was the ideal solution; and 
our STATISTICAL MULTIPLEXORS were configured accordingly. 



HP3000 
INTERNATIONAL CONFERENCE OC02/4 
VIENNA 1981 

THE FIRST WORK GROUP REQUIREMENT 

One day a new issue arose. A division which had required only 
communication with Head Office via our MUX WAN, now had INTERNAL 
data communication needs unique to that division. Its own offices 

and plants needed a communications system allowing for inter-office 
message and order processing with VERY FEW communication needs with 
Head Office. Whilst their existing links to the main network 
remained in place, we installed a separately-dedicated WAN system 
of SWITCHING MULTIPLEXORS which provided a cost efficient 
asynchronous network of terminal users. Again, we felt clever. 
After all, who would have then foreseen the NEED FOR THE SUB­
NETWORK AND THE MAIN-NETWORK TO INTERCONNECT! The first rush of 
data communications was over ..... and we rested. 

VOICE/DATA INTEGRATION ATTEMPTS 

Meanwhile back at the Head Office, our telephone administrators 
were beginning to consider the installation of special phones which 
would allow for SIMULTANEOUS TRANSMISSION OF VOICE AND DATA on the 
same wire pairs. This concept was of interest because wire pairs 
were getting more scarce, were inflexible and, frankly, voice/data 
phones seemed to be "the way to go. " Implementors of these early 
attempts to merge voice and data soon learned that THERE WERE 
LIMITATIONS. For example, voice/data phones were generally based on 
the type of full-featured instrument offered only to the executives 
within a company and these same executives were usually not the 
ones who used asynchronous terminals. In such cases, companies were 
acquiring voice systems with a promise of long term future 
eXPandibility, but which really DID NOT FIT WITH THE COMPANY'S 
PERQUISITE CULTURE. None of us can afford this kind of mistake more 
than once! 

Our company finally selected a different approach. We installed 
DATA OVER VOICE units throughout our buildings as they were far 
less costly, per terminal connected, than voice/data phones; we did 
not need to acquire a new or improved main voice pbx; and we still 
gained the two functional benefits of sharing wire pairs with voice 
and having user relocation flexibility - DOV could be installed 
WHEREVER WE HAD AN INEXPENSIVE TELEPHONE. Most importantly, we had 
implemented a system which was flexible enough to take us well into 
the future. In fact, the DOV equipment, integrated with our DATA 
PBX systems, significantly complemented and extended the 
operational life of our existing voice system. So far, we had 
stayed on the road to harmonious network growth whilst providing 
flexible, cost-effective connectivity between users and their 
resources. Remember .... that was our objective! 

During this same time, new voice technology was making other 
inroads into the end user domain. Several suppliers were offering 
VOICE MULTIPLEXOR products that promised to reduce the cost of 
leased lines by carrying more than one conversation on one physical 
telephone line. One promised integration within the data network 
and the other stood alone, but they are both worthy of review here 
as they help to further demonstrate network growing pains. 

As to the first product, users were 
VOICE devices Cknown as VOCODER$) 
high speed data systems, thus 

encouraged to 
integrated into 
significantly 

install DIGITAL 
their standard 

reducing voice 



HP3000 
INTERNATIONAL CONFERENCE DC02/5 
VIENNA 1987 

telephone expenses. The idea sounded great and many tried with the 
hope that THIS was the beginning of the voice/data integration they 
had long been promised. Well, the voice quality was just not rigbt; 
that is, users could usually understand WHAT was being said, but 
the vocoder technology would not allow for CONSISTENT and FAITHFUL 

REPBODUCTION of th• inf l•otitlft, tone and emotional 
speech qualities generally · found with a good 

content of 
telephone 
were not 

AND DESIGNS 
QUALITY and 

connection. As a result, these earlier products 
commercially successful. Fortunately, NEW TECHNOLOGY 
are now offering SIGNIFICANT IMPROVEMENTS in the VOICE 
COST of such products, as we shall see. 

The second voice scheme referenced above (called TASI - Timed 
Assignment Speecb Interpolation - on the transoceanic cable routes) 
used STATISTICAL MULTIPLEXING to interleave analog portions (or 
packets) of speech from various different conversations onto fewer 
physical lines. Ratios of 2:1 were achieved and the voice quality 
was good, but companies needed a number of physical lines between 
two distant locations to justify the equipment cost. Again, 
investment in this technology offered no evolutionary merger with 
the data network; it was a DEAD-END IMPLEMENTATION. 

CROSS DOMAIN ACCESS EMERGES 

It was not long before our various computer users wanted to ACCESS 
EACH OTHER'S COMPUTER BRANDS as well as their own. This time WE 
WERE READY. Our earlier decision to acquire a DATA PBX PORT 
CONTENTION device now could be used to SWITCH TERMINALS amongst 
diverse CPU resources. By using appropriate tables, we could even 
establish the specific CPUCs) which the terminal users could 
access. 

Access to IBM synchronous applications was also possible via the 
DATA PBX. we allowed our asynohronous terminal users to connect to 
an INTEGRAL PROTOCOL CONVERTER feature which, in turn, was viewed 
as a synchronous control unit to the IBM processor. Indeed, even 
our mini's, when emulating asynchronous terminals, could access the 
IBM via the protocol converter function. 

Finally, we reached the point wbere many of our divisions had their 
own DATA PBX systems and they wanted to have regular access with 
each other AND Head Office. An INTERCONNECT feature was available 
which provided for configuring the various DATA PBX systems such 
that their attached terminals could, under MANAGEMENT CONTROL 
SOFTWARE, access terminals and po.rts at other locations using a 
SINGLE address. 

We were continuing to EXPAND our networks and, up until now, they 
still seemed to be well integrated, providing a sound foundation 
for the future. But, we were beginning to miss something. Some of 
our network components had good MANAGEMENT CONTROL, while others 
had little or none; and we concluded that, before too much more 
growth occurred, we would need comprehensive vendor-supplied 
"tools" to ORGANIZE AND MANAGE the network. 



HP3000 
INTERNATIONAL CONFERENCE DC0216 
VIENNA 1987 

THE PERSONAL COMPUTER ARRIVES 

You are all familiar with the story. Personal computing 
SIGNIFICANTLY IMPACTED the provision of data processing and data 
communication services with respect to both the large "mainframe" 
people and the "mini" people within our company. At first, of 
course, it was not a problem as PC users acquired their machines 
and quietly applied them to a SPECIFIC DESKTOP APPLICATION. But 
soon these "quiet users" began to want access to the mini and 
mainframe databases (and each other) and the connectivity issues 
grew from there! 

At first, solving this problem was not too difficult as we only.had 
to cause the SMART PC to emulate a DUMB TERMINAL (a world with 
which we were very familiar) and then insert the PC into the DUMB 
TERMINAL NETWORK which we had so painstakingly built over the 
years. Right? Not quite! lfhilst the earlier PC users were happy 
with this scheme, THEIR growing sophistication .nd th• incr•a11in' 
complexity of their SOFTWARE applications soon outgrew our 
network's abilities. Our trusty DATA PBX could not transfer data at 
speeds greater tban 19.2K Bits - a loafing speed when compared to 
rates in excess of lOOK Bits possible witb PC's! 

To compound the "problem," PCs were becoming more powerful -
seemingly so every month! Now we had PCs with MORE RAM MEMORY and 
FAR MORE POWER Cin terms of MIPS, or millions of instructions per 
second) then many super-minis or large mainframes we installed less 
than 10 years ago. Clearly, a unique network solution was needed. 

LOCAL AREA NETWORKS - PC STYLE 

One solution used by many PC users was Cand still isl what some may 
call "SNEAKERNET'" or the running about an office complex swapping 
disk files between PC's. There were obvious short falls to this 
"solution" such as ..... how does one use SNEAKERNET to swap hard 
disk files? Worst of all, SNEAKERNET provided no integration path 
into our existing data network. To be sure, we quickly discouraged 
THIS network scheme. 

Computer and Local Area Network companies soon supplied a better 
answer in tbe form of ETHERNET and other cable-based high speed 
local area networks DESIGNED SPECIFICALLY for the attributes and 
needs of the PC world. These LANs were purpose-built for a new 
breed of CPU user and they generally delivered as promised - PCs 
were able to communicate with one another at "PC speeds" allowing 
for resource sharing to the same extent that we have been 
accustomed to resource sharing as minicomputer users. In fact, we 
were concerned. Did these new LANs portend the DEMISE OF OUR DATA 
PBX network? Was our large installed base about to be rendered 
obsolete? 

But what about our grand corporate network plan whereby ALL users 
can INTERCONNECT with each other and each other's applications? 
Local area networks began to show a flaw; that is, there were very 
few ways to efficiently provide cross-domain access between one 
work group and others - especially if the groups were separated by 
large distances. This has, in turn, spawned another innovative 
network technique that users in Europe may call "DHL-NET," or the 



HP3000 
INTERNATIONAL CONFERENCE OC02/7 
VIENNA 1987 

sending of disk files via the overnight eXPress postal service. No, 
cable-based LANs were not going to be able to fulfill ALL of our 
networking requirements. 

SYNCHRONOUS REQUIREMENTS KNOCK 

Whilst we were busy building a superb asynchronous network to serve 
our mini users, the IBM mainframe group began to request similar 
assistance. The logical move, one would think, would be to blend 
the two worlds - async and sync - into one single homogeneous 
network. This was practical from a network ""backbone'" perspective 
as the leased telephone line facilities were, by far, our GREATEST 
SINGLE NETWORK EXPENSE. However, the nature of the respective data 
AND user needs PRECLUDED SYNCHRONOUS use of our DATA PBX SWITCHING 
network which had been serving our asynchronous users so well. 
Certainly, portions of our various WAN networks WERE USED by the 
IBM group to gain economies of scale in using the leased 
facilities. For example, statistical multiplexors and X.25 PADs 
could accommodate synchronous data, but we could usually go no 
farther toward integration of the sync and async worlds. 

III. LESSONS LEARNED .... TO BE LEARNED 

We have just learned how a typical company evolved its data 
communications system over a dozen years based on the various 
requirements of its Head Office, remote divisions and customers. 
Did it sound familiar? It should have, as our eXPeriences were 
similar to many in our industry. We were rather fortunate to have 
made decisions that retained a measure of harmony and yet provided 
a large degree of connectivity amongst the various components 
ALMOST! 

Now, let's take a moment to review a few KEY ISSUES which may 
impact YOUR NETWORK'S FUTURE: 

COMPLETE CONNECTIVITY SLIPPING AWAY 

As long as all the terminals and computing resources had 
asynchronous V.24 <RS- 232 Cl interfaces, we were quite able to 
connect virtually any device with any other device. CONNECTIVITY 
WAS HIGH! However, when transmission speed requirements began to 
creep over 19.2 kb and direct CPU bus interfaces became more 
prevalent, the ""rules,·· as we knew them, changed dramatically and 
we were seeing the notion of ""GLOBAL CONNECTIVITY"" slipping away. 
We began to search for products which would allow us to maintain 
our "'golden fleece·· network. 

MANAGING THE NETWORK 

Global connectivity is an attainable goal, but how do we propose to 
manage the resulting network? Such an effort will go well beyond 
the abilities of a small staff to real-time manage the modems, 
switches, multiplexors, PADs ..... not to mention MANAGING THE MEDIA 
provided by the various telecommunication authorities 
worldwide ..... without the assistance of a dedicated COMPUTER-BASED 
RESOURCE MANAGER. The software effort to perform this function will 
need to be elegant, indeed! 



HP3000 
INTERNATIONAL CONFERENCE DC02/8 
VIENNA 1987 

FEAR, UNCERTAINTY AND DOUBT <FUD) 

Many say that a complete "DO EVERYTHING" network solution will 
never arrive. To be sure, vendors have been and will continue to 
tout the "ultimate solution," but you should consider the impact 
false starts have on your network plans and programs. Do not lose 
sight of OTHER TECHNOLOGICAL DEVELOPMENTS which may adversely 
influence the performance of any such "ultimate solution" you 
select. For example, consider how the new ISDN networks may impact 
your choice? Will ISDN render your choice obsolete, even in part? 
Or, What impact will FIBER media have on either your WAN or LAN 
network plans? 

Consider the new 32-bit PCs such as those based on the powerful 
Intel 80386 processor chip. Will the processing speeds of these 
units demand FAR HIGHER TRANSFER RATES than you are able to handle 
through your new "solution?" Finally, what will be the impaot of 
newer voice technology? The trend is clear - VOICE will become more 
and more a part of our data networks when high- quality low bit 
rate technology arrives. Will your system have room for corporate 
voice traffic? 

IV. BACK TO BASICS 

Perhaps we should pause to remind ourselves of some BASIC CRITERIA 
which should influence any networking decision. They should be 
weighted as to how important they are to YOUR organization. Step 
softly, DO NOT FOLLOW the TRENDS unless such trends DIRECTLY APPLY 
to your needs! 

o Consider the ECONOMIC and POLITICAL situation within 
your environment and how this may impact TARIFF rates 
from telephone authorities. We have seen rates double -
thus quickly "unjustifying" a major network component. 

o Consider PERFORMANCE. Is response-time a valuable feature 
of your network which you "sell" to users? How much are 
you willing to pay for good response in terms of hard 
currency and, perhaps, less reliability? 

o Remember CONNECTIVITY? Inter-operability of your network 
components and users may be essential. For example, the 
widespread use of a corporate ELECTRONIC MAIL system 
requires, obviously, very high inter-connectivity .... what 
different LAN and WAN protocols are in use and how do you 
provide connectivity between them? 

o Who needs to access all of the RESOURCES? A comprehensive 
security plan may be needed along with a network manager 
which can insure that only the "right" people can access 
the appropriate data base. 

o What is happening to TECHNOLOGY? Are you considering 
advances learned from your peers, the press and trade 
shows? Should your equipment be flexible enough to change 
and grow as STANDARDS and network technologies advance? 



HP3000 
INTERNATIONAL CONFERENCE DC02/9 
VIENNA 1987 

o RELIABILITY and AVAILABILITY should be cornerstones of 
any network, but how much weight should they have with 
you? For example, AVAILABILITY may be key to a public 
data base service whereby users may randomly chose to 
search for reference data during the day. On the other 
hand, RELIABILITY may impact how much redundancy your 
network requires in order to provide the requisite 
avai labi 1 i ty. 

o Finally, do not lose sight of the need for COMPATIBILITY. 
As you make equipment selections, decide whether such 
equipment must be compatible with your existing network 
components. In several cases, manufacturers have provided 
updated products which have RETAINED their ability to 
be BACKWARD COMPATIBLE with earlier generation products. 

V. WELL THEN, WHAT SHOULD WE DO NEXT? 

Armed with a renewed awareness of KEY ISSUES which may impact your 
network planning and with full consideration for the BACK-TO-BASICS 
CRITERIA, you should begin planning the "NEW NETWORK. " Bare in 
mind that "new" does not necessarily mean replacing all your 
existing equipment. Rather, it means organizing and managing future 
evolution and growth with a NEW FRESH PERSPECTIVE as to notions of 
comprehensive inter-network CONNECTIVITY. 

But first, you must conduct a BASELINE EVALUATION of your network. 
In simple terms, this means a review of all components of the 
network and sub-networks FROM THE GROUND UP. What were the 
original requirements; were they satisfied and with what equipment 
and services; what fell short and why? Do not bypass a component 
or method because "that is the way it has always been done." 
Assume nothing. Only when this exercise is finished will you fully 
appreciate the state of your network{s) and the inevitable 
PATCHWORK that has, no doubt, developed over time. 

Furthermore, it is essential to conduct 
PROCESSING RESOURCES ACCESSED along with 
equipment and services which PROVIDE ACCESS 
Again, you need the WHOLE "picture. " 

an INVENTORY of the 
an inventory of the 
for the user groups. 

TYPES OF NETWORKS 

When conducting your inventory, GROUP YOUR NETWORKS by type. For 
example, how many and what types of cable-based systems are 
installed? Where are they installed? What inter-connectivity exists 
between them - do not assume it is NOT necessary. If you have DATA 
PBX networks, on the other hand, can THEY interconnect with one 
another? How many different PBX systems are installed? POINT: when 
you have concluded this review you may be surprised to learn how 
many UNNECESSARILY DIFFERENT TOPOLOGIES are deployed within your 
organization supporting only a few FUNCTIONAL TYPES of networks. 

TEST NETWORK APPLICABILITY 

Consider whether you have applied 
your networks. Perhaps a DATA PBX 
for PC-to-PC file transfer 
However, when the PCs require a 

the appropriate topology within 
system is being used, in part, 

a task well served by the PBX. 
centralized FILE SERVER function, 



HP3000 
INTERNATIONAL CONFERENCE DC02/10 
VIENNA 1987 

it would be unwise to continue with the PBX as the SOLE NETWORKING 
VEHICLE. Rather, the file server requirement would be better served 
by a much faster (and more expensive per port) cable-based LAN. 
Moreover, the PBX should be retained AS PART OF THE TOTAL SOLUTION 
should the PC's require access to others NOT WITHIN LAN CABLING 
DISTANCE of each other. Note: this latter point brings up a 
CONNECTIVITY ISSUE. Search for ways to apply your NEW network 
perspective; e.g., use LAN's for the locally-situated PC's WHERE 
SPEED IS CRITICAL and consider BRIDGING regional LAN's via a DATA 
PBX GATEWAY. Who knows, maybe you too can eliminate "SNEAKERNET." 

Do not forget the VOICE NETWORK. Dedicated, expensive "hot" lines 
may be needed for critical voice traffic between plants, but 
frequency of the critical communications may be only twice per day. 
If DATA TRAFFIC exists between the two plants, why not consider 
using products which can allow voice conversations to be carried on 
the data network? Conversely, where excess WIDEBAND VOICE capacity 
is available, why not install data MULTIPLEXORS? 

Let's look again 
MULTIPLEXORS. Are 
considerations only 
the equipment which 
another? 

at our first network example, the one using 
point-to,-point systems in place- when traffig 
require less expensive MULTI-POINT? Do you have 
will allow for conversion from one topology to 

HARMONIZE SIMILARITIES AND EXPLOIT DIFFERENCES 

Make a concerted effort to BLEND SIMILAR REQUIREMENTS and networks 
together. Such a move may seem obvious, but one would be surprised 
to learn how many applications are wastefully running on separate 
networks, because of erroneous initial ASSUMPTIONS concluding that 
- but for a simple change - they are not able to run together. If 
the INFLEXIBILITY of NETWORK EQUIPMENT is blocking your way, find 
equipment which CAN run various applications. Frequently, providers 
of such flexible equipment for TODAY'S NEEDS are also clever enough 
to have foreseen the requirements you will have TOMORROW! 

Differences will exist. As was mention"1 earlier, there will always 
be that "unique application" requiring special network hardware or 
software which currently is not used in your operation. FIGHT THE 
URGE to FORCE a fit. After all, you may find that such a unique 
application will INSPIRE THE DEVELOPMENT of an entirely new 
networking concept; for example, remember how the need to share a 
limited quantity of CPU ports inspired the development of the DATA 
PBX! 

VI. THE FUTURE LOOKS BRIGHT! 

We have discussed a number of growth issues, relating to network 
CONNECTIVITY, in the context of a typical company's experiences; 
and we have reviewed general recommendations as to how to work 
through these issues. Now, let's have a look at some SPECIFIC 
SOLUTIONS which are available ...... perhaps we should also have a 
peep into the future. 

GATEWAYS OFFER CONNECTIVITY AND GROWTH PATHS 

The need for true INTER-OPERABLE GATEWAYS has been shown throughout 
this presentation. Gateways must not only provide the minimal 



HP3000 
INTERNATIONAL CONFERENCE DC02/11 
VIENNA 1987 

PHYSICAL ability to cross network boundaries, but a true gateway 
must allow the attached devices to operate in their NATIVE MODE 
constrained only by the data transmission speeds permitted on the 
associated media. For example, although VOCODERS allowed voioe 
traffic to operate over data lines, they failed as true gateways as 
the speech quality could never have been considered NATIVE MODE. 

Speaking of voice products, a gateway of particular interest is the 
DMI/3000 product from Hewlett-Packard. DMI, or DIGITAL MULTIPLEXED 
INTERFACE, was conceived by the American Telephone and Telegraph 
Company CAT&T> as a non-proprietary interface standard for 
transporting data communications over private digital telephone 
networks. The DMI/3000, consisting of a two-card set and associated 
software for installation into the backplane of an HP 3000 
computer, provides for the H-P system connection of up to 23 
terminal devices (using the American T-1 standard, at first 
introduction) DIRECTLY from an ISDN link. The DMI/3000 promises to 
solve many of the connectivity problems related to the multitude of 
proprietary interfaces which abound with DIGITAL VOICE PBX systems 
and their "data modules." 

Gateway features can reside in software as well. Until the LAN 
transport standard, TCP/IP, was accepted by equipment vendors such 

- as- Hewlett-Paoard- and MI-OOM Sy~ f-ef" ~e. ~ 'WS1t ~ 
LITTLE practical COMMONALITY amongst cable-based LAN systems. As a 
result users were severely limited in connectivity capabilities; 
i.e., they left the high speed IEEE 802.3 environment, transversed 
a slower V.24 "gateway" or converter and went back into another 
802.3 LAN. A newer and faster standard than TCP/IP, ISO TP4, 
promises to improve such connectivity even further. 

In another development, MICOM has recently announced a product 
which provides a BRIDGE between its IEEE802.3 cable-based LAN and 
its DATA PBX products. The NTS470, coupled via twisted-pair wiring 
Cup to 1.5KM) to a companion module in the DATA PBX, allows up to 8 
terminal users accessing the DATA PBX to directly select "ports" on 
the associated LAN and, of course, LAN Terminal Server users can 
access processor and WAN ports on connected to the Data PBX. Since 
the NTS470 supports the TCP/IP standard, it offers high "inter­
operability" (remember that word?), to users of BOTH the cable­
based LAN and the DATA PBX! Finally, as connectivity requirements 
grow, additional NTS470 gateways can be added between these two 
"sub" LANs of your network. 

MODULAR PRODUCTS 

One of the few consistent characteristics of our networking future 
is that THERE WILL ALWAYS BE CHANGE! With this in mind, acquire 
networking products that, where practical, are flexible enough to 
change when STANDARDS, your NETWORK REQUIREMENTS or TARIFFS CHANGE. 
Installing network "BOX's" around the globe is difficult enough -
why not find a way to MINIMIZE THE EFFORT? 

For example, you may wish to install a pair of multiplexors on a 
LIGHTLY USED data link only to decide several months later that 
these same multiplexor locations should be JOINED WITH OTHERS in a 
larger network. Or, perhaps you want to connect these locations to 
an X.25 PDN. For these reasons it would be wise to select the 
equipment supplier who could offer you a BASIC COMMUNICATION 



HP3000 
INTERNATIONAL CONFERENCE OC02/12 
VIENNA 1987 

PRODUCT which could "change personalities" simply by the exchange 
of FIRMWARE CARTRIDGES. This product concept would then allow you 
to install the above-mentioned units WITH MULTIPLEXOR FIRMWARE, 
knowing that, should requirements change, you would merely need to 
send out new cartridges - NOT replace the entire unit! 

Correspondingly, HARDWARE. MODULARITY is equally important. 
Equipment has been available which provides for EASY CHANNEL 
EXPANSION by simply plugging cards into a basic chassis. This has 
applied to products as diverse as DATA PBX's and MULTIPLEXORS. 
However, new products are becoming available which are stretching 
the hardware modularity concept EVEN FURTHER. 

MICOM, for example, has recently announced a multiplexor which 
combines an ASYNCHRONOUS MULTIPLEXOR function with a SYNCHRONOUS 
WIDEBAND TIME DIVISION MULTIPLEXOR. Consider the benefits of being 
able to add one of these functions to the other whilst in the 
field. Or, in the case of another modular product, consider the 
benefits of mixing asynchronous and synchronous PAD's in the SAME 
CHASSIS unit or mixing either one with a packet switch function! 

Remember when we discussed attempts to INTEGRATE VOICE requirements 
with data networks? Latest developments· in LOW BIT RATE (sub 32kb) 
voice technology allow speech patterns to be FAITHFULLY REPRODUCED 
over digital channel speeds as low as 9.6kb. While voice products 
have been available which provide reliable speech channels at 32kb 
or greater, they were usable on only the highest speed channels -
sometimes with LITTLE ROOM left over for data. The NEW TECHNOLOGY, 
on the other hand, offers plug-in MODULAR digital voice 
capabilities to the SMALLER networks. Now, VIABLE voice/data 
integration is possible on network facilities of LESS THAN 
1. 5Mbi ts /sec! 

Let's peep into the FUTURE a bit. Suppose we develop this concept 
of MODULARITY into a networking environment. What would the ideal 
product look like? Imagine, if you will, a product which could 
START as a medium speed point-to-point multiplexor and GROW into a 
WIDEBAND, MULTI-NODE networking vehicle. Notice that I am 
suggesting the product should "GROW into" - not be replaced by - a 
"networking vehicle." Such a product should offer MORE THAN 
STATISTICAL MULTIPLEXING. Indeed, it should have the MODULAR 
capability to offer a wide assortment of NETWORK GATEWAYS and 
interfaces such as: 

o X.25 PAD's and Switching, not only for end-users, 
but for the backbone BETWEEN the vehicles. 

o Digital Voice, at compression rates tailored 
for specific voice network requirements. 

o IBM Protocol Conversion, for BSC and SNA applications. 

o IEEE 802.3 LAN, with TCP/IP and other standards as 
required. 

o Multiple High Speed Interfaces, with both the CEPT 
2 MBits and American 1.5 MBits speeds. 



HP3000 
INTERNATIONAL CONFERENCE DC02/13 
VIENNA 1987 

To tie all of this together, one would require EXTENSIVE NETWORK 
MANAGEMENT. Network management does not mean having one clever PC 
program to run the X.25 network and another to run the statistical 
multiplexor network. Rather, this product concept, as it grows to 
its full capabilities, should have a comprehensive SINGLE interface 
available to the network manager allowing access to and control of 
ALL of the DIFFERENT ENVIRONMENTS. 

Such a product, if available, would give you a GROWTH and 
FLEXIBILITY capability unheard of in today's datacom environment! 
More importantly, it should be backwards COMPATIBLE with most 
products available today so EQUIPMENT ACQUIRED TODAY would be just 
as usable TOMORROW. Indeed, with products such as this, not only 
will " ..... today's choices be needed tomorrow ... " but, TODAY'S 
choices will be the CORE OF TOMORROW'S PRODUCTS! 



HP3000 
INTERNA nONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

THE UICORP UIEIJ Of UIDEOTEX: 

R UHlfORn IHTERfRCE TO DISTRIBUTED SERUICES 

Introduction 

Stuart R. Patterson 
Marketing Manager 

UICORP Marketing GMbH 

DC03/1 

Thanks to the Media. Many people now think of videotex as a 

french phenoMeMon. If we analyze. however. the true role of 

"videotex" within the data processing CDP> environMent. it is 

clear that over tiMe videotex-type solutions will appear around 

the world (albeit perhaps under another naMe). 

This paper presents videotex as a UniforM Interf.ace to 

Distributed Services CUIOS). This view is based on approxiMately 

100 installations in 15 countries of a videotex-oriented 

COMMUnication systeM known as "BETEX". following a brief review 

of the french success. and the Misleading conclusions being drawn 

froM it. the author analyses the four interfaces which a coMplete 

videotex systeM Must Manage: 

* the application to network connection; 

* the host coMputer to network coMputer interface; 

* the network coMputer (or node) to terMinal interface; 

* the terMinal to user interface. 

!.... Learning froM france 

few people reMeMber that the french concept of "teleMatique" was 

introduced in 1978 well before francois Mitterand and the 

Socialist Ministers assuMed office. It is useful to review. in 

fact. the scMinal work by Hora and Mine. The CoMouterization of 



HP3000 
INTERNA TJONAL CONFERENCE DC03/2 
VIENNA 1987 

Societv. (1) which was the foundation for the Teletel prograM and 

the faMe of the Minitel. Their proposal for subsidised access to 

a panoply of online services grew out of one. relatively siMple 

arguMent: that the average frenchMan (and perhaps french 

industry) would be passed over by the wonders of inforMation 

technology if the state did not intervene to Make online services 

available in a standardardized yet attractive forM. 

Thus. the goal of the Teletel progran uas to accelerate the 

penetration of DP services in societv. Many analysts. however. 

confuse the Means with the ends by focusing on the tools --

Transpac. the Annuaire Electronique and the Minitel -- chosen to 

reach this end rather than the end itself. The Marketing Mix 

which the french PTT has so skillfully sold to the public should 

not blind us to what they have accoMplished in DP terMs: i.e •• 

to nake one terninal (uith one svntax. language. and presentation 

standard) the interface to a netuork of geographicallv 

distributed conputers uhich offer a uarietv of applications 

<using the sane dialogue) to the user. Would that all corporate 

DP departMents could boast such an achieveMent! 

.Z... Uideotex as Distributed Data Processing 

If the Hora/Mine view is valid. then videotex has a distinct 

place in the world of distributed data processing <DDP>. 

Uideotex services are. in fact. a distinct subset of DP services, 

not an alternative. The DP services currently Made available 

via public videotex networks May be broken down into three 

categories (Most private systeMs also include all three): 



HP3000 
/NTERNA TIONAL CONFERENCE DC03/3 
VIENNA 1987 

inforMation delivery 

Z - interactive coMMunication 

3 online transaction processing. 

Each of these groups of services is external in orientation and 

depends on distribution to be effective. Services which fit under 

these headings. therefore. Must be distinguished froM the 

original driving force behind DP -- the autoMation of internal. 

adMinistrative tasks such as accounting, correspondence. and 

personnel policies. When we coMpare these two groups, in fact. 

we find iMportant differences (see Table 1). 

As Table 1 suggests. the "adMinistrative" services Merit --

indeed often require -- unique terMinals. languages, networks. 

applications, and even CPUs in order to function efficiently. 

"Uideotex-type" services. on the other hand. generally use 

low-cost terMinals. the language of everyMan. public networks. 

consistent applications. and standard CPUs. 

Uideotex can not serve. and should not be seen. as an alternative 

to the intensive and often user-specific systeAs used for 

internal. adMinistrative tasks. That being recognized. ue Must 

ask ourselves uhether historical DP solutions are approriate for 

the provision of services to a large nuMber of distributed users. 

3. The Interface ProhleA •.. and Opportunity 

Carrying the coMparison presented above one step further, we 

Might wonder how to develop a package or systeM which is 

optiMized according to the characteristics of videotex or 



HP3000 
INTERNATIONAL CONFERENCE DC0314 
VIENNA 1987 

distributed applications. This approach reveals four interfaces. 

each requiring different adaptations (often country or hard1.1are 

specific> and together deManding exceptional flexibility. 

ft... The IJser-TerMinal Interface 

The first and Most easily understood interface is bet1.1een the 

user and his terMinal (see figure 1). This is often referred to 

as the •huMan-Machine interface." While Many systeM eleMents 

contribute to 1.1hat appears on a terMinal screen. let us start 

siMply 1.1ith the neophyte's point of viet.1. The concerns of the 

first-tiMe user are clear and have been well analysed. Table 2 

lists the questions the ne1.1 user Might ask alongside of the 

translations 1.1e in the industry Might Make for our product design 

teaM. 

The table illustrates that this interface alone can be extreMely 

coMplex froM the service provider's standpoint. Uhen 1.1e consider 

the current set of answers to such questions. the task becoMes 

More not less difficult. Many of the concerns. for exaMple. are 

addressed <or not. as the case May be) by the choice of 

presentation level standard. "Standard." however. is a MisnoMer 

as five are already 1.1idely used for videotex: ASCII. Prestel. 

Teletel. CEPT. and HAPLPS. In Many videotex-type applications. 

the IBM 3270 Might also be considered a "standard." 

Rs a result of these options. the seruice prouider is generally 

forced to decide. by the PTT or the systeft supplier. in uhich 

fornat his application uill appear. But 1.1hat if he 1.1ants the 



HP3000 
INTERNATIONAL CONFERENCE DC03/5 
VIENNA 1987 

saMe application to appear in several forMats ... one for users 

with siMple MonochroMe terMinals and another for users with color 

graphics workstations? And what about toMorrow•s "standard?" 

These valid concerns of the user and the service provider 

highlight the need for a very flexible or Modular solution for 

the delivery of services . 

.!h The TerMinal to Hetwork Interface 

The terMinal for distributed services access usually has a ModeM 

in it or behind it but the siMplicity stops there. If the 

service in question is truly "distributed," then it will be based 

on a network of nodes or access points. Thus. the connection of 

the terMinal (where sits our neophyte user) is established with 

or via a network node (see figure 2). 

In the European videotex environMent. these nodes are known as 

Uideotex Access Points of UAPs (in france. "Points d'acces 

videotex" or PAUs). for a distributed service of any naMe, these 

May be the nodes of a corporate datacoMMunications network. [2] 

If the coMMunication between the user's terMinal and the network 

node is to be successful. then the two Machines Must speak the 

saMe language. Thus. one of the nost inportant questions in the 

uideotex 1.1orld is: Llhich terninal protocol 1.1ill be used? The 

Minitel user. for exaMple. May connect to any PAU in france. On 

the other hand, he May not connect to any of the UAPs used in 

BelgiuM or DenMark. the Prest.el systeM in the UK. or the BTX 

nodes in GerMany. 



HP3000 
INTERNATIONAL CONFERENCE OC03/6 
VIENNA 1987 

This Machine-to-Machine interface. then. is as iMportant as the 

huMan-Machine interface exaMined earlier. and the two are always 

related. Table 3 presents a list of the Most coMMon variables 

which can Make or break a terMinal-node connection. 

Table 3 reveals the potential for difficulties in connecting a 

terMinal to a network node. Fron an Rnerican point of vieu. the 

ability of the European PTT•s to effectively inpose a solution to 

these difficulties is enviable. For a given corporation. 

however. the consistency of the public networks does not 

guarantee the neans to provide this interface. Consider. for 

exaMple. the case of a coMpany having an installed base of IBM 

3Z7x terMinals. If a service is designed for distribution via 

the videotex network. then a separate access path Must be 

established for the successful connection of the 327x users. 

With an installed base of Millions of terMinals of varying shapes 

and sizes. corporations Must provide for the old as well as the 

new. As videotex (or distributed) services becoMe More 

sophisticated. the delivery systeMs or servers (as they are known 

in france> Must offer a siMple version to the siMpler terMinals. 

without slowing the evolution of the service itself. 

Once again. we see that the best solution to the interface 

probleM is flexibility. The service provider who atteMpts to 

resolve the interface questions at the start is apt to encounter 

probleMs in the future. Instead, the goal should be to secure 



HP3000 
INTERNATIONAL CONFERENCE DC03n 
VIENNA 1987 

t_he neans to develop nei.1 solutions effecientlv. if and i.1hen 

needed. 

~ The Hetwork Hode to Hetwgrk Server Interface 

OatacoMMunication5 network5 are growing in nuMber and in 

5ophi5tication at an a5tounding rate. Oe5pite thi5 revolution. 

the Hore and Mine analy5i5 of 1978 May 5till be valid: 

It is based on the "law of the jungle.• the 

stronge5t in this case being IBM. which has the 

best chance of providing these connections for 

Most of the networks. [3] 

Indeed. SHA is by any Measure the predoMinant network protocol. 

And yet. the videotex netuorks are -- in a technological sense 

and particularly in France --- providing an enhancenent or 

extension to the services available via SHH. 

To help our neophyte. though, we need not control the overall 

network. We Must instead Make sure that a particular serui. ce is 

accessible uia a particular node (see figure 3>. This ability is 

ensured as long as we restrict the user to one of two 

environMents: 

1 - that of one hardware Manufacturer <e.g .• SHA-coMpatible 

services are accessible via SHA network connections); or 

2 - that of one videotex systeM (e.g .• services iMpleMenting 

Prestel Gateway 2.3 May all be accessed via the 

Australian videotex network). 

Unfortunately. li~iting a seruice to a national or a proprietary 

netuork is contrary to the idea of a uniuersally accessible 



HP3000 
INTERNATIONAL CONFERENCE DC03/8 
VIENNA 1987 

service. French Marketing Managers. for exaMple. who want to 

reach the 2.1 Million Minitel users now ask: "Can I Make our 

SHA-based service for inforMation retrieval (or other 

application) available via the Teletel network without recreating 

the application?" 

The Machine-to-Machine interface which assures such connections 

is often referred to as a "Gateway." The gateway concept May 

also be described as an iMpleMentation of the layered Open SysteM 

Interconnection Model <OSI>. In the videotex world. the GerMan 

BildschirMtext systeM is notable as an iMpleMentation of layers 1 

<Transport> and 6 <Presentation) of the OSI Model. Layers 1 to 

3, of course. are iMpleMented on the X.25 networks that forM the 

backbone for the vast Majority of existing videotex networks. 

SHA is also a layered network protocol. SHA nodes. however, use 

a different protocol than the videotex network nodes in GerMany 

<there. the protocol is called "EHKP"). SiMilarly, the Prestel 

Gateway protocols, of which there are several national versions, 

provide for the upper layers of the OSI Model -- but they are not 

layered! 

Here again, the interface is variable and becoMing More so. 

Uideotex-type systeMs are solving these dileMMas every day; 

soMe, however. are extreMely liMited in their ability to 

incorporate new or More extensive functionality as networks 

evolve. 



HP3000 
INTERNATIONAL CONFERENCE OC03/9 
VIENNA 1987 

.!!,_ The Network to Apoli.cation Interface 

Up to this point. we have exaMined only those interfaces which 

are confronted as a signal of bits and bytes is sent froM a host. 

over a network. to a terMinal. One last connection. perhaps the 

Most iMportant. reMains to be Made before our user can access the 

data or application he seeks: the connection between the 

application prograM and the network (see figure 1). 

Many of the questions posed by our eager neophyte <Table 1> Must 

be addressed. in fact. at the application level. The network 

architectures. such as OSI and SHA. also iMpose requireMents on 

the application in their upper layers (i.e .• layers 5 to 7). 

Consequently. the application developer uho hopes to provide 

distributed access to his progran nust. in the absence of a 

service delivery package or shield. plan for various networks and 

terP1inal types . 

SoMe of the questions the developer Must consider May be 

addressed elsewhere on the path to the terMinal. In the past. 

however. the opposite has been true and applications developed 

for one network or terMinal protocol or presentation standard are 

-- for all practical purposes -- restricted to that network. 

terMinal and standard. Table 1 presents soMe of the objectives 

of the prograMMer which a systeM optiMized for distributed 

services delivery Might address. 

Table 1 deMonstrates the variety of choices a developer Must Make 

without soMe sor·t of COMMunications front-end. nany progranners 

------ ----· ··-----------



HP3000 
INTERNATIONAL CONFERENCE DC03110 
VIENNA 1987 

have been forced -- i.n accordance uith the harduare. operating 

s~sten. or distribution netuork chosen b~ the seruice providers 

-- to fix these variables at the outset. In france. the Most 

Mature videotex Market. this phenoMenon has led to the appearance 

of RfPs for "2nd Generation" videotex systeMs. As one would 

expect. the typical requireMents outlined in these RfPs are that 

the terMinal type be variable or the utilities for fraMe creation 

and updating be provided with the systeM or other deMands for 

increased flexibility. 

The interface at the developer's level is where Many of the 

decisions are Made as to how to address the three other 

interfaces exaMined in this paper. SysteM integrators often 

answer the Multitude of interface questions for each systeM they 

"integrate." Perhaps they should instead turn their attention to 

developing high level tools enabling their clients to address 

such fundaMental questions if and when they arise. 

~ The Conplete Picture 

When we coMbine the four interfaces described in this paper, we 

see the challenge of providing a uniforM interface to distributed 

services (see figure 5). Despite the seeMing coMplexity, the 

figure is actually a siMplified representation of the DDP 

landscape. 

It is no surprise. therefore. that the 100-odd installations of 

BETEX often iMpleMent siMi.lar functions but are very rarely 

identical configurations of the systeM Modules. All of theM 



HP3000 
INTERNATIONAL CONFERENCE OC03/11 
VIENNA 1987 

siMplify application developMent for the provision of a uniforM 

interface by providing powerful. high-level tools enabling 

prograMMers to address the issues discussed in this paper. 

L Conclusion 

In the Middle of Nora and Minc's prescient analysis of the DOP 

revolution, we find the following: 

The objective is to ensure open exchanges by allowing 

users to converse aMong theMselves independently of their 

equipMent. Otherwise. they could not use the hardware or 

services of another Manufacturer. [1] 

Uideotex is contributing to the realization of this goal. 

Minitel users in france are spending significant SUMS of Money 

"chatting" on the Teletel network -- none of theM know or need to 

know which Manufacturers or protocols are Making the connection 

possible. At the saMe tiMe, More and More corporate OP 

departMents are using videotex-based solutions to provide a 

uniforM interface to their distributed services. 



HP3000 
INTERNATIONAL CONFERENCE DC03/12 
VIENNA 1987 

HOT ES 

[1] The CoMputerization of Society. A Report to the President of 
France, SiMon Hora and Alain Hine, 1980. The HIT Press 
(originally published as L"InforMatigue de la societe. 1978). 

[2] Where a series of nodes does not exist and all distribution 
is being handled by one systeM, then the functions described 
here for a network node are applicable to the host systeM. 

[3] Ibid .• page 27. 

[1] Ibid .• page 71. 



HP3000 
INTERNATIONAL CONFERENCE DC03/13 
VIENNA 1987 

TRBLE 1 
Conpari.son Betueen ''Ext.ernal" · and "Internal" OP Services 

Characteristic External/Distributed Internal/Rdninistratiue 
Applications Applications 

HuMber of users Large SMall 

TiMe of use Around-the-clock Uork hours 

Duration per logon Short <<1 hr) Long <several hours> 

User profile Untrained 7rained 

Geographical Highly distributed CoMpany/site specific 

Data base use 20% of info. serves Highly variable 
BOX of deMand 

Graphics Often SeldoM 

Transaction rate Low High 

THOLE 2 
Heu User Questions and Industry Interpretations 

Heu User's Question 

Does it look nice? 

Does it speak MY language? 

Is it easy to learn to use? 

Uill it react the saMe way 
toMMorow? 

AM I restricted to text only? 

Can I do More next tiMe? 

Can I use it to type letters? 

How Much do I have to pay? 

Industry Interpretation 

Presentation standard? 

Language for screens and proMpts? 

Menus. keywords. interactive 
Messages, help screens? 

Application syntax? 

Graphics (iMages/icons>? 

Intelligent terMinals. 
telesoftware etc.? 

Integrate with other OA services? 

How Much do we have to pay? 



HP3000 
INTERNATIONAL CONFERENCE OC03/14 
VIENNA 1981 

TRBLE 3 
Significant Uariable5 in the Terninal - Hetuork Interface 

Terninal-Hetuork Uariable5 

MediuM or network type 

TransMission Method 

TransMission channels 

TransMission speed 

TerMinal standard 

Current Solution5 

Hardwire (direct) 
Telephone lines (dial-up) 
Cable 
X.25 (packet-switched) 
Uideotex (access points> 
Ualue-added networks <URNs> 
ISON 

Asynchronous 
Synchronous 

SiMplex 
Half-duplex 
full-duplex 

1200/75 bps 
300/300 bps 
1200/1200 bps 
2'100/2'100 bps 
9600/9600 bps etc. 

ASCII <ANSI standard) 
Prestel 
Teletel 
CEPT 
NRPLPS 



HP3000 
INTERNATIONAL CONFERENCE DC03/15 
VIENNA 1987 

TABLE 'f 
Options Facing Developers of External. Distributed Applications 

Developer's Objective 

CPU or operating systeM 
flexibility 

Access path flexibility 

faMiliar deuelopMent tools 

Security 

Presentation standards; 
graphics 

Navigation syntaxes 

User language 

User adMinistration 

TerMinal type 

fraMe/page creation 
(esp. for uideotex> 

T~pical Options or Concerns 

front-end configuration; porting; 
etc. 

front-end coMMunications processo 
rs 

CoMMand interpreters 

User ID codes; closed user groups 
<CUGs>; passwords per page; 
independent databases; terMinal 
or ModeM IDs; sMart cards; etc. 

ASCII; Prestel; Teletel; HAPLPS 

Prestel <•I. etc.); function keys 
<e.g •• Mini tel); 1-2 digit Menu 
choices; keywords; interactive 
user proMpts; etc. 

English. french •••• 

Logon/logoff; usage records; 
real-tiMe coMMunication to the 
user; user-specific fraMes or 
data; etc. 

ASCII <IBM. DEC. HP. DG. etc.); 
uideotex <Prestel. Minitel etc.); 
block-Mode (327x etc.); ATM; etc. 

field definition; fraMe database; 
graphics coMposition; fraMe 
linkage; inforMation updating; 
etc. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

DC03/16 

D. a: 
8 
> 

I 



HP3000 
INTERNATIONAL CONFERENCE DC03/17 
VIENNA 1987 

( ~ 
0. 
a: 
0 
0 
> 

r-

CD 0 '8 0 
0 z - - 2l. en e .Sol-~= ... 

8 .lll: a. 
:~~~~~ ... iii 

at 0 c: 

't: ~ e I I I I I I - ~ CD CD - z ..5 
~ 

,___ ... T 0 

"' :I:: -CD CD ._ 
~z ~ 

G> .s::: 
Oo -0 
ii: - 0. ._ 

'ii 0 

c 
E ... 
~ \lt 
CD 

DO t= 'ii c e ... 
~ 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

x 
CD .... () GO 
al 0 - :I: ... 
CD ... 
.E ... 
GO 
0 
J: 

<? 0 
CD ... ... 
:::> CD 
g "'8 
IL z 

.:ii: ... 
0 
~ ... • Cl "8 z z 
CD ~ ~ I z 

~ 0 Q; 
og<i::-3..c: 
;;i::.,_.ZCI)(!)..., 
~ EU)Oa.O 
z a. I I I I 

>. 
a:I ;: 
CD -a:I 

CJ 

OC03/18 

0. a: 
8 
> 



HP3000 
INTERNA T/ONAL CONFERENCE 
VIENNA 1987 

c 
0 

i c c 
0 
0 
c 
0 
;:: 

""" ., () •= ... a. 
::I a. 

..29 c( 
IL 0 -~ x ... 

0 ..... 
!I: Cl) - 0 • :c z 
• F. 

P04l9~ 

ssaoov sa 

G UOJlBOUddy 

~ UOJlBOUddy 

JOOOlOJd 
)jJOMl0N 

OC03/19 

Q. 
a: 
0 
0 
> 

I 



Figure 5 Hoat X 

I Networ~ Node I ~"§: ~1--0 
~ .... Cl 

End-Uaer Terminal Network 

~<I~ 
Protocol 
- Prestel 
- Antlope 
- CEPT 
- NAPLPS 

Protocol 
-SNA 
-OSI 
-PGW 

~--8 
Hoat Y 

~-1 E--t~J 
0 § cu 

0 ~ 
Human-Mach/Term 

Interface 

or Other 
-ASCII 

~ ;:::> 
Mach/Term-Mach/Comp 

Interface 

i~J~ ''! c.. --

Gateway : 
~ ....,> l ¢ v 

Mach/Comp-Mach/Comp 
Interface 

l 
: Network-Appln 
: Connection 

CD!®!®!© 
Svc 1; Interface Z < <' • -/ Svc 1; Interface X 
Svc 2; Interface Z ', ~ Svc 2; Interface Y 

UNIFORM INTERFACE to DISTRIBUTED SERVICES {UIDS) 

VlXB'rVCl.Clll8 VI CORP 

~~1~ ~SH~ 
~s;;<:s 
~:::! 
...... ~ 

:.:;; ,_ 
8 
§\ 
93 
~ 
~ 

t:J 
B 
~ 
~ 



HP3000 
INTERNA T/ONAL CONFERENCE DC0411 
VIENNA 1987 

NETWORK MAINTENANCE MANAGEMENT 

by 

Brian Button 

Hewlett Packard Company 

CONTENTS 

ABSTRACT 

SITUATION ANALYSIS 

PRODUCT SUPPORT VERSUS NETWORK SUPPORT 

NEW ACTIVITIES AND RESPONSIBILITIES FOR MAINTENANCE MANAGEMENT 

SUPPORTING OTHER VENDORS' PRODUCTS 
SUBCONTRACTING CONTRACTUAL MAINTENANCE 
DIRECT SERVICE DELIVERY 
TECHNICAL EXPERTISE 
MANAGING A SUPPORTABLE NETWORK 
NETWORK TOPOLOGY MANAGEMENT 

ATTRIBUTES OF NETWORK MAINTENANCE MANAGEMENT 

NETWORK SUPPORT OWNERSHIP BY SERVICE VENDOR 
FAULT ISOLATION 
DETAILED MAINTENANCE PLANNING 
NEW PRODUCT ELIGIBILITY 
NETWORK TOPOLOGY MANAGEMENT 
UPDATE MANAGEMENT SERVICE 
FLEXIBLE COST STRUCTURE 
PROBLEM REPORTING 

TERMINOLOGY 



HP3000 
INTERNATIONAL CONFERENCE DC04/2 
VIENNA 1987 

ABSTRACT 

To take advantage of the network capabilities available today, network customers frequently purchase 
products from several different vendors. This makes it difficult to arrange maintenance of the network. 
The original product vendors may not have appropriate support offerings. Also, eliciting cooperation be­
tween vendors for network problem solving can be difficult. The customer needs an entity which will take 
responsibility for the resolution of problems on the customer's network, when they occur. This is the ob­
jective of Network Maintenance Management, a service by which a single service vendor will manage a 
customer's entire network maintenance needs. 

This paper explores the arena of network maintenance, specifically addressing Maintenance 
Management. It clarifies the difference between network support and product support. It then examines 
the responsibilities and activities required to deliver Network Maintenance Management and the implica­
tions the service holds for the relationship between the customer and the service vendor. Finally, based 
on the previous analysis, it reviews the probable attributes of a Network Maintenance Management service. 

SITUATION ANALYSIS 

To take advantage of the network capabilities available today, network customers frequently purchase 
products from several different vendors. Very few vendors have quality product offerings which include all 
necessary types of data communications products (e.g. coaxial and standard cables, mul_tiplexors, 
modems, X.25 switches, interface cards for processors, bridges, leased lines and public data networks). 
As a result, network customers typically purchase from more than one vendor. 

This makes it difficult for customers to arrange maintenance. Relying on the vendors from whom they 
purchased the products is frequently not a good alternative. Many vendors don't have an appropriate 
support offering. Moreover, having many vendors supporting part of the network can create problems. 
Each vendor has responsibility for their products rather than the operability of the overall network and will 
tend to disown problems which aren't clearly theirs. This tendency is known as "fingerpointing''. A recent 
survey• showed that 85% of network customers felt that fingerpointlng was a problem. 

Customers need an entity they can turn to which will dependably isolate and diagnose network 
problems. Moreover they need that entity to stay involved, coordinating resources, working with the cus­
tomer and other vendors until the problem is resolved. Ideally, the entity should be a single point of con­
tact and responsible for the resolution of problems on the customer's network, when they occur. This 
service, called Network Maintenance Management, is the subject of this paper. 

*International Data Corp., 1985 "Service in the Telecommunications Industry• 



HP3000 
INTERNATIONAL CONFERENCE OC04/3 
VIENNA 1987 

PRODUCT SUPPORT VERSUS NETWORK SUPPORT 

To clarify further discussion, it is worthwhile to examine the difference between network support and 
product support. 

Vendor A 
System Vendor B 

Local 
Vendor C 

Product Time and 
Support Support Ports 

Materials 
Stocking 

Support l Product 
support 

Product Support on a Multlvendor Network 

The diagram above illustrates the situation where a customer has a network with many individual 
products being supported by different vendors. While each product on the network is supported, many 
problems still may be difficult to associate with a single product or vendor. Some examples: 

• Products which don't work together or don't function in certain configurations 
• Incorrect configurations or installation 
• Improper cabling 
• Intermittent software or hardware problems 

These types of problems are common in networks. However, in the situation above, where the cus­
tomer has product support from many vendors, these problems may cause added network downtime and 
customer frustration until the nature of the problem is determined and the appropriate vendor rectifies it. 

* Network Fault Isolation Network ] 

Umbrella 

* Multlvendor Problem Management Support 

Service 
Vendor 
System 
Support 

!subcon­
tracted 
Product 
Support 

Unit 
Swapping 

Subcon­
tracted 
Product 
Support l Product 

Support 

Network Under Maintenance Manaaement 

The diagram illustrates a network where the customer has Network Maintenance Management. Under 
Maintenance Management, the service vendor will isolate faults on the customer's network. Moreover, as 
the diagram indicates, support of the products is owned, directly or indirectly, by the service vendor. 

When this customer has a communication problem, one entity, the network service vendor, is respon­
sible for determining the origin and nature of the problem. The same vendor is responsible for resolving 
these problems. 



HP3000 
INTERNATIONAL CONFERENCE OC04/4 
VIENNA 1987 

NEW ACTIVITIES AND RESPONSIBILITIES FOR MAINTENANCE MANAGEMENT 

While the employment of a single service vendor will reduce customers maintenance worries con­
siderably, it creates some new responsibilities for the service vendor. The purpose of this section Is to ex­
amine these responsibilities and alternative ways of meeting them. Subsequent sections use the founda­
tion created by this discussion to analyze the specific attributes of a Network Maintenance Management 
service product. 

SUPPORTING OTHER VENDORS' PRODUCTS 

To manage support of the network, the service vendor must take ownership of the service of the in­
dividual products on the network, many of which the service vendor normally doesn't support. This may 
be done in one of several ways: 

.. directly delivering support on the other vendor's product 

.. subcontracting support to an existing support organization which specializes in supporting that 
product 

.. keeping a local supply of the product and swapping whole units in and out of the customer's net­
work when they malfunction 

.. developing cooperative relationships with vendors where support ownership by the Maintenance 
Management service vendor is not feasible (e.g. PTT's, U.S. phone companies, X.25 service ven­
dors, etc.) 

Each one of these alternatives has its strengths and weaknesses and is likely to be applicable under dif­
ferent circumstances. Directly delivering support on other vendors' products has advantages because of 
the control and, for high volume products, the cost savings it allows. However, putting direct support In 
place is an expensive endeavor, requiring investment in special tools, training and stocking a parts 
pipeline. Hence, it is only an attractive alternative where volume levels are very high. 

Subcontracting is likely to be an attractive alternative in many cases where support on the product al­
ready exists, especially with the wide variety and potential low volume of many network products. 
Subcontracting will frequently allow the service vendor to own support of other vendors' products much 
more quickly and less expensively than direct service delivery. 

Sometimes, especially with low cost or unusual network components, support services will not already 
exist for the product and volumes won't allow the service vendor to gear up for supporting it. In this case, 
keeping local inventories of the product, either on the customer's site or at the service vendor's local office 
is the most reasonable alternative. Entire products can be swapped out when problems occur. This is 
only feasible for low cost product which are mostly hardware since software problems can't be resolved by 
swapping units. 

Finally, in the case of major media vendors (phone companies or X.25 vendors) a joint maintenance 
relationship is the best alternative. Major media vendors provide a product and service on that product in 
one package, so subcontracting service from them doesn't apply the same way as with other types of 
products. Moreover, legal restrictions and the nature of most media vendors tends to eliminate subcon­
tracting as an alternative. However, a Joint Maintenance relationship between the service vendor and the 
media vendor will significantly aid problem solving. The Maintenance Management service vendor will 
remain the first point of contact for communications problems. If, after some preliminary troubleshooting, 
evidence indicates the media vendor needs to become involved, the service vendor may directly contact 
the media vendor and act as the problem manager and technical interface for resolving the problem. 

Two of these alternatives, subcontracting and direct service delivery are discussed in more detail below 
since they have strong impacts on the attributes of the Network Maintenance Management service. 



HP3000 
INTERNATIONAL CONFERENCE DC04/5 
VIENNA 1987 

SUBCONTRACTING CONTRACTUAL MAINTENANCE 

While the use of subcontracting considerably reduces delivery costs for support on third party products, 
It creates some new challenges. These are discussed briefly below. 

• Obtaining consistent avallablllty. One can't subcontract a service if the service is not available. If a 
customer's network is worldwide and support for one of the products on their network is not, the 
service vendor must develop some alternative methods for servicing the product in some areas. This 
will probably mean support delivery by the service vendor. 

• Providing consistent tenns and conditions to the customer. If several different vendors are subcon­
tracted from, there is likely to be a variety of terms and conditions for the different products on the 
network. The service vendor must mesh many different coverage times, response times, geographic 
availability and costs into a single consistent service. This may be done by creating classes of ser­
vice which encompass most of the types of support services. New vendors' services must be fit into 
one of the defined services. 

• Problem Tracking and Job Reporting. Most service organizations have internal job tracking systems 
which allow them to track the status of customer problems. However, when multiple vendors are in­
volved in managing a single problem, other coordination is necessary. The service vendor must 
make arrangements with its subcontractees so that the service vendor can monitor the status of 
problems being worked on by its subcontractees. 

Similarly, subcontractees must be disciplined to use consistent reporting methods. This will allow 
the service vendor to monitor work done on specific problems, reconcile billing and determine sub­
contractee performance. 

DIRECT SERVICE DELIVERY 

In cases where support on the product doesn't exist, is unsatisfactory or where product volume is high, 
the service vendor may decide to directly deliver support for a network product. This is typically not a 
quick process. Adopting support requires significant preparation, including: 

,. Establishing a relationship with the initial vendor as a dependable source of parts, training and any 
special purpose tools. 

,. Targetting individuals in the service vendor's organization for product training and training them. 
,. Setting up local and regional parts inventories. 



HP3000 
INTERNATIONAL CONFERENCE DC04/6 
VIENNA 1987 

TECHNICAL EXPERTISE 

This is probably the most important capablllty the service vendor must have. While delivering product 
support on other vendors' products requires good operational and administrative adjustments by the ser­
vice vendor, delivering the umbrella fault isolation and properly managing other vendors requires an extra 
dimension of technical excellence. These responsibilities lie directly with the service vendor, and require 
high technical expertise for the following reasons. 

• The service vendor must Isolate network problems In a generic network envtronmenL The members 
of the service vendor organization will be responsible for Isolating faults in networks which have 
many products with which they are not familiar. They will not be able to rely on product specific 
knowledge but must have the generic datacommunications skills to determine the nature of the 
problem. 

• The service vendor must be able to guide other vendors through problem resoluUon. In order to 
work with Joint Maintenance vendors and subcontracted service vendors the Maintenance 
Management service vendor must develop a reputation for making accurate problem diagnoses. It 
must also be able to muster sufficient technical data to convince skeptical Joint Maintenance or sub­
contracted vendors that its diagnosis is correct. 

MANAGING A SUPPORTABLE NETWORK 

In the previous sections, we have discussed two important capabilities necessary for delivering 
Maintenance Management on a customer's network. Specifically: 

• Being able to deliver product support on the products in the network 
• Having the technical expertise to isolate network problems to their source on a network 

These two responsibilities create a third new responsibility, namely: 

The service vendor must work with the customer on an on­
going basis to make sure the customer's network continues 
to be supportable and Is technically sound. 

While it is the objective of Network Maintenance Management to provide support on a wide variety of 
customer"s networks, supportable networks require planning. This must occur on an ongoing basis since 
networks tend to change almost continuously with the maintenance requirements of the network changing 
along with it. This consists of two parts, 

• Helping the customer to select products which are sound and can be supported. The service vendor 
must be able to troubleshoot the network with the product on it and be able to arrange one of the 
service alternatives described above. As the network changes, the customer will tend to want to add 
new datacommunications products to the network. New products will require an evaluation by the 
service vendor. This is the subject of the section titled "NEW PRODUCT ELIGIBILITY". 

• The network must stay supportable as it Is changed. The service vendor, having committed to sup­
porting the customer's network, must understand what it looks like and what products are on it. 
This is the subject of the next section, titled "NETWORK TOPOLOGY MANAGEMENT". 



HP3000 
INTERNATIONAL CONFERENCE DC04n 
VIENNA 1987 

NETWORK TOPOLOGY MANAGEMENT• 

When a service vendor takes responsibility for the maintenance of the customer's network, a partnership is 
forged to manage changes and updates to the network. This Is important to the service vendor because: 

• Not all network configurations are supportable. The service vendor must understand the network In 
order to commit to supporting It. 

• The service vendor is supporting the products on the network, some directly and some through other 
methods. This support requires planning by the customer and the service vendor. This planning is 
not possible unless the service vendor is involved in changes to the network. 

• Troubleshooting is much easier on a well charted network. 

This partnership is important to the customer because: 

• Improper changes to networks cause a large percentage of the overall problems with a network. The 
service vendor can help the customer avoid network downtime by being Involved In netw9rk change 
activity. 

• The customer will receive regular copies of up-to-date, detailed information on the network. This in­
formation is invaluable for managing a network. 

• The customer's network problems will be resolved more quickly because the service vendor's 
representatives will be able to start troubleshooting Immediately without first documenting the net­
work topology. 

TECHNOLOGY FOR NETWORK TOPOLOGY MANAGEMENT 

The service vendor must have a software/hardware tool to assist with the management of the 
network topology. This application should have the following capabilities: 

• A graphics interface for display of the network. It should be object oriented to allow moving 
up and down levels of detail in the network and retrieving information on specific devices. 

• Capability of generating a graphic/textual hardcopy output for the customer and members of 
the service vendor's organization. 

• Ergonomic, integrated graphic/textual interface for updating information on the network. 

METHODOLOGY FOR NETWORK TOPOLOGY MANAGEMENT 

While a tool is important for managing the customer's network topology, a methodology for 
managing network changes is necessary to put the tool to best use. This is the central part of the 
customer /service vendor partnership. While many arrangements are possible, the basic requirement 
Is that the service vendor must be involved in network changes. 

*TOPOLOGY in this document refers to the layout or hardware configuration of the network. 



HP3000 
IN ERNATIONAL CONFERENCE DC04/8 
VIENNA 1987 

ATIRIBUTES OF NETWORK MAINTENANCE MANAGEMENT 

NETWORK SUPPORT OWNERSHIP BY SERVICE VENDOR 

This is the primary objective of Network Maintenance Management. The service vendor, directly or in­
directly, delivers support on the customer's entire network. In doing so, the service vendor takes respon­
sibility for the proper operation of the network. The customer no longer has to track the levels of support 
on their network products, understand many different support organizations and, most Importantly, 
manage these organizations when problems occur. 

FAULT ISOLATION 

Fault isolation is a critical part of Network Maintenance Management, both from the point of view that It 
requires significant expertise in the service vendor's organization and that, once completed, problem 
resolution is usually a much easier step. 

After this has been done, the service vendor can marshall resources to resolve the problem according 
to the pertinent product support arrangements on the network. 

DETAILED MAINTENANCE PLANNING 

When a customer is considering Network Maintenance Management, he/she must work with the service 
vendor to plan for support. Some of the steps which must happen are: 

• The service vendor needs to understand what the customer's network looks like and what the cus­
tomer's needs are. Some of the questions which must be asked are: 
.. Is this a planned network or Is it in place? 
.. What is the geographic range of the network? 
.. What are the protocol types being used? 
.. Are the products currently qualified by the vendor sufficient or are additional products needed? 
.. Are there support solutions for all the network products in all of the geographic reaches of the 

network? 

• If the customer needs new products added to the list of qualified products, the vendor must take 
time to qualify them. Qualification may take some time. If the service vendor is to do direct service 
delivery on the product, some additional time may be required to put this in place. 

• There may be cases where the geographic distribution of the network or other factors require the 
service vendor to adopt some other support arrangement besides subcontracting or direct service. 
For example, it may be necessary to stock replacement units on the customer's site. These ar­
rangements will have to be made jointly by the customer and service vendor, based on the 
circumstances. 

• The service vendor will have to set the customer's expectations regarding the service being delivered. 
For example, a customer desiring 7 day, 24 hour response time will have to understand that perhaps 
not all of the subcontracted vendors on the network will respond to this need. 



HP3000 
INTERNATIONAL CONFERENCE DC04/9 
VIENNA 1981 

NEW PRODUCT ELIGIBILITY 

lhe service vendor must be able to troubleshoot networks containing other vendor's products and must 
also be able to arrange for support of the products. This implies that the service vendor must maintain a 
list of third party products on which Network Maintenance Management can be delivered. This has the 
advantage for the customer that: 

• The service vendor's field organization is trained and prepared to support networks containing that 
product. 

• The products on the list have been tested and are technically sound. 

• Workable configurations for that product have been predefined and the customer need not worry 
about compatibility problems. 

• Support can be arranged for those products. 

Customers will, naturally, want to add products to the service vendor's list. This will have to be a ser­
vice available to customers as part of Network Maintenance Management. 

NETWORK TOPOLOGY MANAGEMENT 

As mentioned in the previous section, Network Maintenance Management will create a partnership be­
tween the service vendor and the customer for managing the topology of the customer's network. Hence, 
topology management is closely tied to Network Maintenance Management. 

Since the network and changes to it will be closely tracked by the service vendor, a likely alternative is 
for the vendor to provide a periodic report to the customer describing: 

... The network topology (layout) 

... The types, brands and configurations of devices on the network. 

... Changes made to the network during the last period 

UPDATE MANAGEMENT SERVICE 

To keep dependably accurate network information, it is important that the service vendor be apprised of 
or involved in network changes. If the customer uses an in-house staff or other organization to make up­
dates to the network, there is a very good chance that the network documentation will become out of 
date. If the network documentation tends to become incorrect, it will become undependable for 
troubleshooting, and support planning. This will undermine the purpose of Network Topology 
Management. 

One method of assuring that the network documentation is kept up to date is to have the service ven­
dor make the changes to the network. This could be done as part of the Network Maintenance 
Management service for small to medium sized changes. For bigger changes or, perhaps, in all cases, a 
separate update service could be made available to customers. 



HP3000 
INTERNATIONAL CONFERENCE DC04/10 
VIENNA 1987 

FLEXIBLE COST STRUCTURE 

With Network Maintenance Management, unlike many other support services, It will be difficult to ab­
solutely specify the product costs and deliverables until the customers needs and network characteristics 
are determined. Until the customer's network Is documented and support mechanisms for the customer's 
network products have been selected and priced, many cost variables exist. 

While this makes It difficult to quote an absolute price for Network Maintenance Management, It Is the 
responsibility of the service vendor to make Its pricing and delivery as simple as possible. Subcontracted 
support terms should be arranged In predefined categories and multiple alternatives, if they exist, must be 
positioned clearly against each other. 

Pricing for other alternatives must be clearly defined In formulas which account for geographic zones, 
product volume, product price and other pertinent variables. When these variables are determined, then 
the customer should be presented with an easily understood schedule. If changes occur to the network 
(see NETWORK TOPOLOGY MANAGEMENT above) then the pricing shedule should be redone, with 
changes highlighted. 

PROBLEM REPORTING 

This would be a periodic summary of where the customer had trouble, what was fixed, how long it took 
and other, similar data. 

This information will be Important to the customer and the service vendor because: 
• It will be necessary to justify per-Incident charges, If any. 
• It will help identify problem areas in the network. 
• It will help monitor performance of subcontracted support vendors. 



HP3000 
INTERNATIONAL CONFERENCE DC04/11 
VIENNA 1987 

TERMINOLOGY 

Hardware Configuration - The description of the hardware devices in a network and how they are connec­
ted together. Also referred to as topology or network topology. 

Joint Maintenance - The process whereby two vendors, having an previously established agreement, may 
contact each other and work directly together to resolve network problems which involve both of their 
products. 

Media Vendor - Vendor of a media service such as a public data network (usually X.25) or a phone 
company. 

Network Maintenance Management - A service by which a single service vendor will manage a customer's 
entire network maintenance needs. 

Service Vendor - In this paper, service vendor, or Maintenance Management service vendor, consistently 
refers to the service vendor which is delivering Maintenance Management. 

Subcontracting - In this paper, subcontracting refers to the purchase of product support by one service 
vendor from another. 

Topology - The description of the hardware devices in a network and how they are connected together. 
Also referred to as hardware configuration. 

Unit Swapping - A product support mechanism consisting of keeping spares close by (on the customer's 
site or at a local office) and swapping them into the network when the originals malfunction. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE OA01/1 
VIENNA 1987 

Ronald W. Collison 

DARPA 

Arlington, Virginia 

USA 

Users are starting to demand that data residing in centralized data 

bases and on other computers be made available to them on their 

micro computers without the user having to rekey the data. 

Additionally users want to make changes to data locally on their 

micros, then have the data transferred back and posted to the 

centralized data base or other computer. This paper looks a several 

ways to move data between two or more micros and micros and 

mainframes. 

TRANSFERRING DATA BETWEEN MICROS AND MAINFRAMES 

Moving data between mainframe/host computers and micro computers can 

be accomplished in several ways, including: 

1) connecting the micros to the mainframe and using the mainframe as 

a file server; 

2) soliciting the aid of a file transfer protocol and corresponding 

software to do a file transfer; 

3) connecting to the mainframe as a terminal and using the data 

transfer capability that most terminal emulators offer; 

4) extracting the information to be transferred and attach or embed 



HP3000 
INTERNATIONAL CONFERENCE OA01/2 
VIENNA 1987 

it in an electronic mail message; 

5) contracting with one of the many commercial service organizations 

who specialize in converting information to micros; 

6) choosing a more manual approach like printing it out then using 

an OCR to redigitize it. 

TRANSFERRING DATA BETWEEN TWO OR MORE MICROS 

Moving data between two micro computers can be accomplished in 

several ways, including: 

1) connecting the micros to another micro being used as a file 

server or connecting the micros to a specialized file server 

made especially to serve micros; 

2) using a micro to micro file transfer protocol and corresponding 

software to do a file transfer; 

3) direct connecting of two micros; 

4) extracting the information to be .transferred and attach or embed 

it in an electronic mail message; 

5) contracting with one of the many commercial service organizations 

who specialize in converting information to micros; 

6) choosing a more manual approach like printing it out then using 

an OCR to redigitize it. 

FILE SERVER 

Several vendors now offer local area network approaches that allow 

the mainframe to function as a file server to a network of micros, 

including HP. Other vendors offer software that, 1) allows a micro 

computer to function as a file server to other micros or 2) works on 

a specialized server computer built especially as a micro file 

server. The file server approach to data transfer will likely be 



HP3000 
INTERNATIONAL CONFERENCE OA01/3 
VIENNA 1987 

the easiest method of moving data between computers, when the file 

server supports automatic conversion of its file/data structure to 

that of the receiving computer. Under this approach, the user can 

run a query to extract the data he/she wants from the sending 

computer and store it on the server's disk. Then to make the data 

available to the receiving computer, the user need only reference 

the requested file as if it was generated on the micro. 

HP's product, HP RESOURCE SHARING turns the HP3000 into a file 

server for connected HP and IBM/PC compatible micros. Extracted 

HP3000 data can then be stored on one of the HP3000 disks and later 

read and used by a connected micro computer. 

FILE TRANSFER 

When not using a common file server a good method for transferring 

data between computers is to perform a file transfer. File 

transfers use a common protocol for exchanging the data over 

telecommunications links. There are several protocols available 

for file transfer. One of the best known file transfer protocols 

for transferring data asynchronously between computers is KERMIT. 

KERMIT was developed at Columbia University and named after the 

Muppets cartoon character, Kermit the Frog. KERMIT is fast becoming 

a defacto standard for transferring files between computers. KERMIT 

allows the user to transfer files between micros and mainframes, 

micros and other micros, and mainframes and other mainframes over 

public and private telecommunications lines and direct asynchronous 

connections. KERMIT is widely available for most popular micros and 

mainframes (See partial list of hardware availability at the end of 

this paper). KERMIT'S protocol guarantees a reliable file transfer. 



HP3000 
INTERNATIONAL CONFERENCE OA01/4 
VIENNA 1987 

KERMIT also comes with a terminal emulator that supports TTY and 

VTlOO terminal emulation and has multiple scrolling screen memory. 

Our initial requirement was to move budget data from an HP3000 IMAGE 

data base to various micro computers. Since we primarily use 

IBM/PCs or compatibles, we were covered with KERMIT for the PC, but 

lacked a sister version for the HP. Since KERMIT source code and 

programmer instructions were available we were able to develop a 

version of KERMIT for the HP3000. KERMIT now allows us to make 

reliable file transfers of data between our HP3000s and our various 

micro computers, including HP's Vectra line of micro computers, 

IBM/PCs, Compaq micros, Gridcase micros, Macintosh micros, and SUN 

Microsystems workstations. We also use KERMIT to transfer data 

between the micros and our DEC/VAXs and DEC SYSTEM/20s. 

KERMIT works by having two copies of the program running, one on the 

sending computer and one on the receiving computer. KERMIT is a 

character oriented protocol. Though KERMIT will send binary files, 

you have to identify them as such by invoking the SET command on 

both computers. KERMIT expects ASCII files to be transfered as the 

default. Data is transmitted between the two computers in packets. 

A check field is computed prior to data transmission, then 

recomputed by the receiving computer to verify that all data in the 

packet was received correctly. If the check field does not compute, 

an error is assumed and the receiving host requests that the sending 

host resend the data in the bad packet. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

KERMIT PACKET LAYOUT (BASIC) 

MARK LEN SEQ TYPE DATA 

MARK - REAL CONTROL CHARACTER, USUALLY CTRL-A 

LEN - LENGTH OF REMAINING PACKET 

SEQ - PACKET NUMBER SEQUENCE 

TYPE - PACKET TYPE 

DATA - DATA BEING TRANSMITTED 

CHECK - CHECK SUM USED TO VERIFY ACCURACY OF DATA RECEIPT 

OAOt/5 

CHECK 

Columbia University has chosen to make all versions of KERMIT 

available to any requester for a nominal copy charge for copies 

distributed on floppy disk/tape or free if picked up via one of the 

internetworks, like ARPANET or by making a copy of KERMIT from 

someone else. Object and source code is available. The only 

restrictions on its use are: 1) you can not sell it, 2) any 

enhancement or vendor implementations you make are to be made 

available to the user community either directly by you or by 

forwarding copies to Columbia University, and 3) Columbia 

University or the author of the KERMIT variation be credited with 

the creation of the underlying code. 

Though KERMIT is essentially free, many KERMIT versions carry a 

copyright notice intended to protect the authors and sponsoring 

organizations from having their work turned into commercial 



HP3000 
INTERNATIONAL CONFERENCE OA01/6 
VIENNA 1987 

products. Copyright notices generally give the user permission to 

change the source code and distribute freely both the object and 

source code as long as there is no charge other than a nominal 

administrative charge to cover copying and mailing costs and the 

copyright and author credits are retained in the copies given away. 

Also, vendors can use the KERMIT protocol in products that they sell 

as long as they do not charge extra for the inclusion of the 

protocol. 

KERMIT is truely international. KERMIT is in use in countries 

around the world, including: both Chinas, East and West Germany, 

USSR, Israel, Iraq, New Zealand, New Caledonia, Chile, Mexico, 

Czechoslovakia, Malaysia, Sweden, Switzerland, Norway, and the 

Netherlands. 

SEE SAMPLE HP3000 TO IBM/PC TRANSFER AND IBM/PC TO HP3000 TRANSFER 

AT THE END OF THIS PAPER. 

TERMINAL EMULATOR TRANSFER 

If you do not have access to KERMIT or another reliable file 

transfer protocol and supporting software and you have reliable 

communications lines, you could move the data between the computers 

via one of the popular terminal emulators that support data 

transfer. Most do not perform error checking and resending of bad 

data, though, so the user has to be more cognizance of what in being 

transferred and received. If your communications lines are 

reasonably reliable, you can probably safely transfer small 

quantities of non critical data. The problem is that if infrequent 

errors do get transferred, they are normally very difficult to 



HP3000 
INTERNAnONALCONFERENCE OAOt/7 
VIENNA1987 

detect. Most of the popular HP26xx emulators provide this 

functionality. 

ELECTRONIC MAIL 

Electronic mail offers still another alternative to move data. Many 

popular electronic mail systems allow you to attach a file for 

transfer with the message. When the user receives the file, all 

he/she need do is strip off the message heading and optional comment 

information and save the file. Note: moving files this way may 

limit the file record size and format. 

In the future, wide adaptability of X.400 (the ISO mail protocol) 

will make the electronic mail transfer options even more attractive. 

Until then, users will be restricted to moving data within 

connected, compatible networks. Therefore, this option is only 

viable if the two computers are on the same network or a connected 

internetwork. 

CQNTRACTING 

Several vendors have started supporting converting data from one 

manufactures hardware to another's. This type of service is 

intended primarily for one time conversions or for infrequent use by 

those customers who neither have the time, expertise or volume to 

justify acquiring the tools and learning how do make the transfers 

themselves. The service is frequently costly and limiting. 

MCI Communications Corporation and LOTUS Development Corporation 

have recently signed a pact to offer a combination product/service 

for moving data between mainframes and micros and between two or 



H 3000 
INTERNA noNAL CONFi RENC OA01/8 
VIENNA 1987 

more micros for those customers desiring to move data to remote 

sites. The data transfer product/service will transfer any piece of 

data from one program to an identical program on the receiving end. 

Other vendors have also announced their intent to offer similiar 

services, including Western Union. 

OPTICAL CBAIAC'l'ER RECOGNITION COCBl 

Use of an OCR is probably only one step better than rekeying the 

data, but if you have access to the OCR hardware it could be more 

efficient than retyping it. 

Many popular micro software packages provide for importing of 

foreign data from other applications via the DIF standard for data 

transfer. 

With the introduction of the IBM/PC and our completion of an HP26xx 

terminal emulator for it, we had to make available an ea.sy procedure 

that let the users of micro applications retrieve data from the 

HP3000 stored in an IMAGE data base and optionally return the 

updated data for data base update when finished changing it. Since 

we were trying to do the data transfer before commercial vendors 

started bringing products to the market to assist with data transfer 

between two or more micros or mainframes and micros, we had to 

invent a procedure for making the transfer of data. 



HP3000 
INTERNATIONAL CONFERENCE OA01/9 
VIENNA 1987 

The first application was one of extracting budget planning 

information from an IMAGE data base and building an electronic 

spreadsheet using the product LOTUS 123. To fulfill this 

requirement, we were able to successfully obtain information from 

LOTUS Development Corporation on their LOTUS 123 internal storage 

format from which we developed a C program to read data from a flat 

file and write a 123 spreadsheet or read a 123 spreadsheet and 

generate a flat file. With this tool, we could then have data 

extracted from the IMAGE data base and stored in a flat file in the 

format of the desired spreadsheet, which in turn would be read by 

the C routines and output a 123 spreadsheet in the correct format 

that looked like it was originally written by LOTUS 123. The upload 

of the spreadsheet resulted in a flat file that could be fed into 

the IMAGE query language we developed when IMAGE was first 

introduced called AQ. AQ's update capability would then process the 

flat file like individually keyed records and proceed to update the 

data base. 

Problems encountered in the upload function were primarily centered 

around how to control the data quality of the uploaded spreadsheet. 

Instead of a few trained data entry persons keying the data or a 

transaction processor, processing the users input and flagging 

errors as they are entered, we now had the possibility of many users 

being able to play games with their budget data, then attempt to 

have the data automatically applied to the central data base 

residing on an HP3000 using the IMAGE DBMS without adequate data 

quality and access permission controls. 



HP3000 
INTERNATIONAL CONFERENCE OAOt/10 
VIENNA 1987 

Recently there have been many new products introduced to make moving 

data from mainframes to micros and between two or more micros 

easier, including HP's new products; HP RESOURCE SHARING AND 

INFORMATION ACCESS. HP RESOURCE SHARING allows users to use the 

HP3000 disks as file servers for PCs connected to the HP3000 LAN. 

HP INFORMATION ACCESS is an enhanced version of HP ACCESS, which 

allows the user to transfer data from an HP data base or file into a 

PC application. 

l"O!lil 'DB BP3000 

KERMIT for the HP is available by contacting: 

Ronald Collison 

DARPA 

1400 Wilison Blvd. 

Arlington, Virginia 22209-2308 

USA 

l"O!ll IJ-J, <DIPQ'-.tCMS 

General KERMIT information and various versions of KERMIT for micros 

are available by contacting: 

Kermit Distribution 

Columbia University Center for Computing Activities 

612 West 115th Street 

New York, New York 10025 

USA 



HP3000 
INTERNATIONAL CONFERENCE OA01/11 
VIENNA 1981 

Kermit is available on over 200 computers including (partial list) : 

MAINFRAMES 

Hewlett-Packard 3000s and 1000s 

DEC PDP-11, VAX, DEC10, DEC20 

IBM/370 VM/CMS, MVS/TSO, MVS/GUTS, MTS, MUSIC 

PRIME 

Tandem 

Data General 

Cray 

Burroughs 

Univac-1100 

MICROS 

IBM/PC and compatibles, including Vectras 

Apple Macintosh 

Apple II 

Apollo 

Atari 

Commodore 64 & Amiga 

DEC Pro-300 

Radio Shack TRSBO 

Sun 



HP3000 
INTERNATIONAL CONFERENCE OA01/12 
VIENNA 1981 

*** SAMPLE *** 
l'XLE EXCllA1IGK Bii'W BP3000 DlUUT AID> PC DIUUT 

UP LOJU>DIG .A PC l'J:LE '!O 'l'BB BP 

+----------------------------------------------------------------+ 
1) First Logon to the HP3000 

+----------------------------------------------------------------+ 
:hello mgr.user 

ENTER ACCOUNT PASSWORD: 

ENTER USER PASSWORD: 

HP3000 / MPE V G.01.06 (BASE G.01.06). MON, JAN 20, 1987, 3:20 PM 

Welcome to the DARPA HP3000 

+----------------------------------------------------------------+ 
2) Then run the KERMIT3000 program 

+----------------------------------------------------------------+ 
:kermit 

HP 3000 KERMIT version 1.lA 

+----------------------------------------------------------------+ 
3) Next Put the HP3000 in server mode 

+----------------------------------------------------------------+ 
KERMIT3000>server 

+----------------------------------------------------------------+ 
After entering SERVER mode - escape back to your PC KERMIT 

+----------------------------------------------------------------+ 



HP3000 
INTERNATIONAL CONFERENCE OA01/13 
VIENNA 1987 

+--------------------- NOTE ---------------------------+ 
After putting the HP3000 in SERVER mode, depress the escape 

key to retu,rn control back to the PC and the PC version of 

KERMIT. The user is now using the PC and the PC version of 

KERMIT to issue the file transfer commands. Since 

Kermit3000 is running as a server, the PC will initiate all 

file transfer and directory management commands. 

In this example, the user sends a file named "VDTE.CMD" 

from an IBM PC running Kermit-MS ver. 2.29, (the example 

actually sends the file to the HP3000 twice to demonstrate 

the file collision avoidance features. 

+-----------------------------------------------------------------+ 
+-----------------------------------------------------------------+ 

4) After sending the two files, the user issues the EXIT 

command to stop the KERIT3000 server mode on the HP3000 

+-----------------------------------------------------------------+ 
KERMIT3000>exit 

END OF PROGRAM 



HP3000 
INTERNATIONAL CONFERENCE OA01/14 
VIENNA 1987 

+--------------------- NOTE ---------------------------+ 
LISTF example of the files that were sent to the HP3000 

+-----------------------------------------------------------------+ 
:listf ,2 

ACCOUNT= USER GROUP= PUB 

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX 

TESTFILE SOB FA 22 

VDTECMD SOB FA 46 

VDTECMOl BOB FA 46 

22 

46 

46 

3 

3 

3 

9 1 1 

17 1 1 

17 1 1 

+--------------------- NOTE ---------------------------+ 
In the above example, the two files named VDTECMD and 

VDTECMOl demonstrate collision avoidance, the second file was 

renamed to prevent the first file from being overwritten. 

+-----------------------------------------------------------------+ 

DOllJI LmIDDIG All BP l"J:LE '!'() A PC 

+-----------------------------------------------------------------+ 
1) Logon to the HP3000 if not already logged on 

+-----------------------------------------------------------------+ 

+-----------------------------------------------------------------+ 

2) Run the KERMIT3000 program 

+-----------------------------------------------------------------+ 

:kermit 

HP 3000 KERMIT version 1.lA 



HP3000 
INTERNATIONAL CONFERENCE OA01/15 
VIENNA 1981 

+------------------------------------·-----------------------------+ 

3) Initiate the transfer from the HP: 

+-----------------------------------------------------------------+ 

KERMIT3000>send testfile 

+-----------------------------------------------------------------+ 

4) Escape back to your local PC KERMIT and put the PC into 

receive mode by entering the RECEIVE command 

+-----------------------------------------------------------------+ 

+--------------------- NOTE ----------------------------+ 

After the file is transferred, the operator returns to terminal 

(CONNECT) mode and EXITS the program 

+------------------------------------------------------------------+ 
KERMIT3000>EXIT 

·----------



ONFERENCE 

KERMIT3000>help 

:KERMIT CQMMAND StJMMARX: 

TAKE f ilespec 

SERVER 

SEND filespecl [filespec2 (renames filespecl)] 

FINISH 

RECEIVE [filespec] 

SHOW parameter (anything that can be set) 

SHOW ALL 

REMOTE TYPE f ilespec 

REMOTE DIRECTORY [filespec) 

REMOTE SPACE [filespec) 

REMOTE DELETE filespec 

REMOTE DIRECTORY FOO@ 

EXIT 

SET PARITY option (NONE MARK EVEN ODD) 

SET DEBUG number 

SET LOG filespec 

SET HANDSHAKE option (XON ,NONE ,XON2) 

SET LINE ldev 

SET SEND PAUSE number 

SET SPEED speed 

SET SEND BINARY option (ON,OFF,AUTO) 

SET DELAY number 

OA01/16 



HP3000 
INTERNATIONAL CONFERENCE OA01/17 
VIENNA 1987 

SET RECEIVE BINARY option (ON, OFF) 

SET RECEIVE DEVICE [dev] 

SET RECEIVE FCODE n 

SET RECEIVE RE CL EN [-Jn 

SET RECEIVE BLOCKF n 

SET RECEIVE FIXREC option (ON, OFF) 

SET RECEIVE MAXREC n 

SET RECEIVE MAXEXT n 

SET RECEIVE SAVE SP option (ON, OFF) 

SET RECEIVE PROG 

SET RECEIVE BIN128 

SET RECEIVE TEXT 

SET RECEIVE TXTBO 

Trademarks: 

IMAGE, HP RESOURCE SHARING, AND INFORMATION ACCESS are trademarks of 

the Hewlett Packard Corporation 

LOTUS 123 is a trademark of the LOTUS Development Corporation 

IBM/PC and PC are trademarks of the International Business Machines 

Corporation 

References: 

da Cruz, Frank, "KERMIT, A FILE TRANSFER PROTOCOL, .. Digital Press -

Digital Equipment Corporation, 1987 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 0A02/1 
VIENNA 1987 

Roni Klimscheffskij 
Posts and telecommunications of Finland 
Data Processing Centre 
29A Elimaki st. 
00511 Heskinki 51 
Finland 

Software Super Market 

• Software Super Market briefly 

• Users to support 

• Data Processing Centre 

• Software Super Market - system 

The Gateway project 

• The objective 
• The starting point 
• Presenting the three parts 
• Basic results of the experiment 
• How to proceed 



HP3000 
INTERNATIONAL CONFERENCE OA0212 
VIENNA 1987 

Software Super Market 

Software Super Market briefly 
Software Super Market is a self-service shop, where customers 
(end-users) "buy" software to meet their needs. He or she may 
study a brochure of the product or test it in practise. Software 
Super Market is also the one place to start all 
general-information packages in the PTT internal data-network. 

Users to support 
ADP- users in the PTT 

With almost 46.000 workers to serve, out of which say 2000 
are in some way HP- users, the Data Processing Centre's two 
HP- customer support people have a tough job. The every day 
support has been delegated to 15 system managers and local 
operators but they have to be supported too. In the General 
Directorate the HP's are used mostly to gather and analyze 
data entered in the regional and local administration. Data 
bases are huge and jobs are heavy. In the regional 
administration the HP's are used to run data-entry 
applications and to maintain local data-bases. With more and 
more office-automation type software available to be run in 
the same workstation as the old and new systems, the poor 
users would be totally lost without a radically new support 
system. 



HP3000 
INTERNATIONAL CONFERENCE OA02/3 
VIENNA 1987 

Software Super Market 

Organizational chart 

General directorate of posts and telecommunications 

PTT OF FINLAND 

POSTS FINANCE 

Postal Finance 
dept. dept. 

Postal Materials 
traffic dept 
dept. 

Regional Administration 

Postal 
service: 

Nine 
postal 

districts 

Telecom­
munications 

service: 

Eleven 
telecom­

munications 
districts 

Local Administration 

Postal Telearea 
areas offices, 

Radio 
stations 

ADMINIST- ~ELECOMMUNI· 
RATION CATIONS 

Administ-
Telecom-

munications 
rative dept. 
dept. 

Telecom-
munications 

technique 
de_Q_t. 

Radio 
dept. 

Special Units 
Philatelistic 

centre. 
Telecommunications 

laboratories 
Data Processing 

Centre 

....... 



HP3000 
INTERNATIONAL CONFERENCE OA0214 
VIENNA 1987 

Software Super Market 

Data Processing Centre 
Supporting ADP- users in the PTT 

The Customer Support department in the Data Processing 
Centre concentrates on what we call personal workstation 
services, everything that provides the user with necessary 
and adequate tools for doing anything else than running 
systems. It consists of an info-centre to support the IBM­
users, a micro- group, a HP- group and a group for 
organizing courses. ADP- systems have their own user 
support in the Systems development department. 



HP3000 
INTERNATIONAL CONFERENCE OA0215 
VIENNA 1987 

Software Super Market 

Organizational chart 

... z 
:E 

w 
:E 

w Cl. ... 0 en _, 
> w en > w c 

POSTS- AND TELECOMMUNICATIONS 
OF FINLAND 

PATA PROCESSING CENTRE 

MANAGER 

EXPERTS 

HELSINKI 
COMPUTER 1-----......L.----1 

CENTRE 

CUSTOMER 
SUPPORT 

ti) 
z 
0 
j:: HP support(2) 
<C micro supp. (4) 
cc 
w IBM support (7) 
ll. 

marketing 0 (4) 
HW-support (7) 

ADP 
ADMINIS­
TRATION 

AND BUDJET 

KUO PIO 
COMPUTER 

CENTRE 

... ti) 
z z 

:E w 0 w :E j:: ... Cl. 
en o <C > _, cc en w > w 

w ll. 
c 0 



HP 3fJOO 

INTERNATIONAL CONFERENCE 
VIENNA 1987 

Software Super Market 

Software Super Market • system 

OA0216 

Main objectives 
The main objective is to provide all users in PTT:s HP­
network with a service to get information and test all HP­
software which is supported by the Customer Support section 
of the Data Processing Centre. 

Software Super Market also provides a gateway to all 
information services in the internal PTT data-network. 

It also is a model of how user-interface should be 
implemented in all HP- workstations 

Who is it ment for 
Software Super market is ment for users, who are not bound 
to one or few adp- systemapplications only. It is ment to 
users who use their terminal as a personal workstation. 

New users 
New users in the PTT HP3000- network, who need a clear 
overview of personal workstation services 

Users with specific needs 
Users, who need to know what services are provided for a 
specific need. 

Users of the PTT's general information services. 
Now the users of PTT's HP- network can select general 
information to meet their needs from one menu in the 
Software Super Market. As present theese services are 
electronic library systems for 12 libraries, a reference 
system for ADP- systems in the HP- network, a reference 
system for program documents, a reference system for 
bublic personal files etc. The system managers in the 
regions have added some local information services to 
their Super Markests. 

The benefits to HP· support 
The HP-support group can now concentrate on consulting how 
to implement a new service to the customers. Before they had 
to spend their time explaining how the products work. Due to 
this new information channel users are better informed about 
new products, when they have learned to use the Software 
Super Market information service. 



HP3000 
INTERNATIONAL CONFERENCE OA02/7 
VIENNA 1987 

Software Super Market 

How to get there 
All the HP3000- computers know what the UDC: SUPERM -
means. It initiates the local Super Market with local 
information and news. One choice of the menu is a gateway to 
Data Processing Centre's Super Market. System application 
menus can also be linked to the local Super Market, which 
provides useful additional services like terminal messageing 
and personal card-files for example and always in the same 
standardized way. 

· The departments in Super Market 
Software Super Market has three departments: 

Information services department 
All users of the Software Super Market are provided with a 
gateway to all PTT:s internal information services e.g. 
distributed electronic library service, application 
reference- service. 

News department 
This is the main information channel used by HP- support 
group when adding new products to the list of Supported 
Products. That always indicates that an information 
bulletin and a testig environment has been added to the 
Software Super Market. News on new versions and found 
errors are also provided via this channel. 

Software bulletin department 
This department provides the customer with four to eight 
pages of information about each software product in the 
Super Market. The information is available locally in TDP­
text processing format. 

Testing department 
In this department the customer can test all the software 
products in a demo environment with demonstration 
databases. If the product it self does not use function 
keyes, the keyes are provided by the Super Market to make 
sure that the user interface is as alike as possible in all 
different products. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Software Super Market 
Software Super Market layout 

:SU PERM 

NEWS 
DEPT. 

f1 f1 
te~. jcs 
L!t/ dfjm sjijheet 1 fcO 

. 1 per~. R lie interface 

~ I fcO L!t/ messaging 
raports 

PAPER 
OUTPUT 

SERVICE 

How is it built 

/' h" textproc. grap ics 

~l(fRO~~ 
spread- datacomm. 

sheet ~ 
~-=====:! 

messaging 
pers.- calenders 

applic ~ 

~ 
raports 

interface~ 

~ 
\.. ,) 

OAl2/B 

Software Super Market -system is built using the 
MENUPROCESSOR (from TYMLABS) for processing menus and 
initiating tasks and TERMKEYS (from PTT) for handling 



HP3000 
INTERNA T/ONAL CONFERENCE OA02/9 
VIENNA 1987 

Software Super Market 

functionkeys and recognizing terminaltypes. The system is 
menudriven so that the user can select from the mainmenu 
submenus, tasks, streams or run programs. Tasks consist of 
MENUPROCESSOR- or MPE- commands. Remote Hello­
commands in tasks and logon udc:s are used to get services 
from other computers in the DS- network. MENUPROCESSOR 
provides an on-line help facility for each service that is 
selected from the menu. 

How is it distributed 
Each HP3000 in telecommunications districts has a local 
Super Market, which contains local information and services. 
One service in the distributed Super Markets is to enter the 
Data Processing Centre's Super Market. Users in the General 
Directorate use DPC's Super Market. 

Benefits to users 
Building personal menus 

It is very simple to build personal menus to individual 
users or usergroups. The menus can be linked together 
hierarchicaly in a tree format. New programs and services 
can be hooked easily to theese menus. 

Jo ease initiating applications 
An application or ADP- service can be initiated by one 
selection only, no matter where it is in the PTT- internal 
network. It may be in any of the 19 HP3000-computers or 
in our IBM- mainframe. Software Super Market takes care 
also of strange filedefinitions and peripherals. 
Terminaltypes are also identified and thus the terminal 
capabilities can be used efficiently. Now at last the 
services can be called using their functional names. 

To reach ADP departments' HP- support 
Support people can seldomly be reached with telephone and 
only some of the customers who need help are 
HPDESKMANAGER- users. Now the support people can use 
the NEWS department to tell about new products and users 
have the basic support right at their terminals 

To standardize information retrieval 
Information services are gathered to one place and most of 
them use our general retrieval system, so that the 
interface is the same in all theese applications. 



HP3000 
INTERNATIONAL CONFERENCE OA02/10 
VIENNA 1987 

Software Super Market 

To standardize on-line help 
Every application and service has a bulletin, which tells at 
least the name, function, general operating instructions 
and where to get more documents. 

To standardize text processing 
The Super Market uses ready TOP- templates with standard 
margins and headers. 

To standardize user interface 
All products are initiated in the same way and have 
standard function keyes, e.g. F1 stands for help and F8 for 
exit. 



HP3000 
INTERNATIONAL CONFERENCE OA02/11 
VIENNA 1987 

The Gateway project 
The Gateway project 

The objective 
The objective of the project was to introduce a message- and 
textswitching facility between the three worlds in PTT's data processing 
environment, namely between the IBM, HP and telex/teletex worlds, so 
that any user of the three different message switching services can send 
a message to any other user. 

The starting point 
Three isolated message switching environments 

HPDESKMANAGER enables messages to be sent across the 
HP3000-computer network in a very userfriendly way. Linking the 
users in 15 different HP3000-systems, so that they can send 
messages to one another is not a major problem. The problems 
arose when both HPDESK in HP and EMAIL in lBM were used long 
enough that they were "a way of living". It could not be accepted that 
a part of the Data Processing Centres' workers could not be 
reached. Another intolerable fact was the sortage of high quality 
printers. There were many teletex workstations all around the PTT. 
The teletex workstation would have been a very neat solution to the 
qualityprinter problem, if only it would have been possible to send 
texts from HP- terminals to teletex workstations. 

A graphical Illustration 

I 
Presenting the three parts 

Integrating HP3000 to teletex 
The integration has been achieved by TTX/3000- program from 
KAAKONTIETO-company in Finland. The program has an user 
interface for sending telex- and teletex-messages from HP­
asynchronous terminals. Receiving personal messages from 
teletexttelex network demands the int~gration to 
HPDESKMANAGER, which would take care of the routing. The 



HP3000 
INTERNATIONAL CONFERENCE OA02/12 
VIENNA 1987 

The Gateway project 

HP3000 is connected to the teletex-network via a Nokia teletex 
workstation. The Nokia workstation can be used as a normal teletex 
device in spite of the fact that it is the link between HP3000 and 
teletex. If used also as a normal teletex workstation, all in-coming 
messages must be manually transfered from the teletex network to 
HP3000. The TTX/3000 -program uses EDITOR/3000 or HPSLATE 
as its textprocessor. HPSLATE guarantees that text processing has 
an interface friendly enough. 

Integrating HPDESK In HP to EMAIL in IBM 
The software to solve this problem is home maid, namely in the Data 
Processing Centre. The solution is based on two packages, 
JOBGEN/3000, which is represented in Finland by PORASTO, for 
constructing and timing jobs and IMAS/3000, by FJERNDATA in 
Norway, for IBM- terminal emulation and for transfering files both 
ways. The solution provides HPDESK- users in HP and EMAIL­
users in ROSCOE the following advantages: 1) Whenever entering 
ROSCOE, a user gets to know how many messages he or she has 
received in EMAIL and in HPDESK. 2) Whenever entering the 
HP/3000, a user gets the same information as above. Both theese 
notices can also be received at request. 3) Every HP- user can be 
provided with a short cut for entering IBM/ROSCOE/EMAIL with only 
one keystroke. All logons and passwords are naturally private. 

Integrating EMAIL to telex 
We used Philips DSX-40 telex equipment for this purpose. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

The Gateway project 

Illustrating the test configuration 

... .... ... ... "" .... .. 
A A ... A A A A A A A A ... A A A A A A 

A A A A A A ... A A A A A A A ...... A A A 
A A A AA A AA AA AAAAAA AA A ... 

A A A ... A A A A A A A A A ... A A A A A 
A ...... A A A A ... A .... A ... A A A A A ... A A 

A ... A A ... A A ... A A ... A ... A ... A ... A A 
A A A A A A A A A A A A A A A A A A A A 

A A A A A A A A A A A A A A A A A A A 
... A A A ... A A A ... A A A A A A A A ... A A 

A A A A A A A A A A ... A ... A ... A "" ... A 
AAAAAAAAAAAAAAAAAA ... A 

A A A A A A A A A A A A A A ... A A A A 
AAAAAAAAAAAAAA4AAAAA ... .... ... ... .... "" 
A A A A A A A 

A A A A A A ... ... ... "" .... "" ... 
... A A A A A 

:·:·:· IBM :·:·:·: 

EMAIL 

A A "" A 

... 
... ... ... .... 

. . . 

... 
"" "" ..... 

"" A ... A A A A ... A A ... ... ... ... ... .. 
A A ... "" ,.. .................. -'lo.,... ·. 

TELEX/ 
TELETEX 

OA02/13 

TTX/3000 



HP3000 
/NTERNA nONAL CONFERENCE OA02/14 
VIENNA 1987 

The Gateway project 

Basic results of the experiment 
HP3000 - teletex 

The program was used for sending telexes and teletexes by many 
people, many more than originally planed. The only major complaint 
for sending messages was that it takes such a long time before the 
user is able to check if the message was sent succesfuly. We had 
some experiments for receiving messages too, but we found that 
receiving teletex- and telex messages is well organized everywhere. 
So that if a teletex message cannot be received in 
HPDESKMANAGER, there is no use in changing the present 
procedure where messages are printed in paper. The usage as a 
quality printer was a success, but this feature is useful only to those, 
who work close to the teletex workstation. Now, when the era of 
cheap laserprinters has begun, the importance of teletex 
workstations as high quality printers is rapidly decreasing. The user 
interface of TTX/3000 was clear and easy to learn. 

HPDESK • EMAIL 
It was hard to find test persons for this test, because people are so 
used to their own messaging environment that messages across the 
IBM-HP border were quite few. The secretarial workers fuond this 
service most useful, they have to contact many people regardless of 
the borders. This service serves mostly HP-terminal users and users 
with micros because the user should be able to enter any of the 
three message switching systems with his own workstation. We do 
not have software to enable HP-sessions to synchronous terminals. 
The secretaries claimed that this service of providing notices of 
received messages is enough, they found no need for converting all 
the messages automatically from EMAIL to HPDESK and vice-versa. 
This is strongly based on the fact that they have an automatic and 
fast entering procedure in their micros to both EMAIL and HPDESK. 

How to proceed 
The two major tasks that remain in linking the HP/3000 to teletex are 
replacing the present teletex workstation with an automatic adapter, 
which is dedicated to HP/3000 traffic and integrating the TTX/3000 
package with HPDESKMANAGER. 
In message switching we are moving towards OSI X.400- standard as an 
overall document- and message switching- standard. This means that all 
self maid connections between two messageing systems have hopefully 
a short life. 



HP3000 
/NTERNA T/ONAL CONFERENCE 
VIENNA 1987 

The Mini and the Micro 
Distributed Application Developement and Processing 

Introduction 

Karen Heater 
Infocentre Ltd. 
6303 Airport Road 
suite 300 
Mississauga, Ontario 
Canada L4V lRS 

OA03/1 

The role of the Personal Computer in the HP3000 data processing 
installation es due for some changes. In many cases the PC is 
underutilized, serving as a standalone workstation for word pro­
cessing, graphics, and spreadsheet analysis. These are excellent 
uses for the PC, and remove the need for the aforementioned ser­
vices to be offered on the HP3000, however we are now in the 
position to fully exploit the capabilities of our Pc·s and further 
reduce the load on the HP3000 associated with application system 
development and execution. 

With new 4TH Generation development software and data communica­
tion technology, our Personal Computers can play an integral role 
in system development and distributed system processing. An asso­
ciated challenge concerns maintaining the security of our distri­
buted corporate data. 

We will be describing in this paper, opportunities available for 
integrating the use of your pc·s into your everyday application 
system processing, and we will be considering the impact these 
opportunities may have on the continued security of your corporate 
data. 



HP3000 
!NTERNA T!ONAL CONFERENCE OA03/2 
VIENNA 1987 

Before launching into this discussion let's look at some justifi­
cations for expanding the use of our micros. 

1) Cost. The cost of PC hardware continues to fall. It is nor 
difficult to acquire an MS-DOS based machine, with a gene­
rous configuration for a purchase price less than or equal 
to that of a HP video display terminal. The cost of software 
is another consideration. There can be no question that PC 
software is available for a fraction of the price of mini­
computer software having similar functionality. 

2) Redundancy. What happens when your HP3000 is unavailable 
for use? Few HP3000 installations have a spare machine that 
can be pressed into service when catastrophe strikes. On the 
other hand, it is far more likely that an installation would 
have a spare PC on hand, to.keep the micro based applica­
tions running when a particular machine is down. 

3) Performance. There is a lot of computing power in our 
Personal Computers waiting to be harnessed effectively. This 
computing power can be put to work doing some of the tasks 
currently undertaken by our HP3000s. If the workload is 
distributed wisely, then optimal use can be made of both 
resources. Our overworked HP3000 can shed some of its 
burden, possibly stalling an impending upgrade. As a result, 
we can improve the performance of our mini, which in turn 
can make our user community more productive, and make better 
use of our available resources. 

OK, so we know we should be making better use of our PCs, removing 
some processing burden from our HP3000's, but we need to equip our 
Data Processing Department with the appropriate tools in order to 
accomplish this integration. 

Firstly we require an application development environment that is 
common between the two machines. Specifically, we require the same 
programming language on the micro as we have on the HP3000, and 
the same DBMS. It is advantageous for this common programming 
language to be a Fourth Generation Language (4GL). A 4GL offers 
several benefits critical to the successful integration of minis 
with micros: 

Portability. If the micro version of the 4GL is a true 
implementation of its HP3000 based counterpart, then appli­
cations developed using that language will bi easily ported 
from one environment to the other. Furthermore, there is no 
need for the conversion of source to executable code (comile 
and link process) required by third generation languages, 
which again simplifies the porting process. 



HP3000 
INTERNATIONAL CONFERENCE OA03/3 
VIENNA 1987 

Standardization. 4GL's standardize the appearance and beha­
viour of menus and screens, enabling users to work with 
different applications within the organization, with minimal 
application specific training. You can take this standardi­
zation one step further, making the micro screens look and 
operate like their HP3000 counterparts. Additionally, if the 
4GL includes a module which generates user documentation 
from the source code, then this standardization benefit will 
extend to your system documentation. 

Speed of development. The same benefits being realized in 
HP3000 system development efforts using 4GL, directly apply 
to the micro environment. 

A common application development environment provides two very 
important benefits: 

our system development staff can develop applications for 
the PC's with no new learning. All existing knowledge of the 
programming language and experience with creating, manipula­
ting, and accessing Database files is transferable. 

application development activities can be undertaken either 
on the PC or the HP3000, regardless of where the finished 
product will ultimately run. 

Secondly we require a mini to micro communication facility. This 
facility must enable communication between the machines in both 
directions. It will be used to transfer text files during the 
system development phase, and to transfer data when our users are 
running the application. 

Consider as an example of these tools, InfoCentre's successful 4GL 
Speedware and associated micro based product microSpeedware. The 
combination of Speedware and microSpeedware provides a common 
programming language - REACTOR, while microSpeedware·s Speedbase 
is · an IMAGE alone for the MS-DOS environment. We will discuss 
later in this paper the communication facility that is available 
to the Speedware installation. 

With these tools in place, let's turn our attention to integrating 
our micros with our minis. Like anything else, a good systems 
integration tool will provide you with choices, rather than 
locking you into one fixed "solution". 



HP3000 
INTERNATIONAL CONFERENCE OA03/4 
VIENNA 1981 

For discussion purposes let's identify three approaches available 
to the Speedware installation for implementing micro-mini inte­
grated solutions: 

1) Standalone applications. 

2) Batch Integrated. 

3) OLRT Integrated. 

The first approach entails identifying the machine for which a 
particular application is best suited, then developing the appli­
cation to run only on that machine. This is what most of us are 
doing now. Our serious applications are developed to run on our 
HP30oo·s, frequently with little thought given to the role that 
our Personal Computers can play in the corporate systems strategy. 

Consider however that some applications are ideally suited to run 
in a standalone fashion on a Personal Computer. Many shops have 
several candidate applications hiding in their applications back­
log. These may be those system requests for a small standalone 
system, benefitting one department within the organization, that 
may not justify the allocation of HP3000 computing and development 
resources. Complicating matters further, the application may have 
several twists to it, making it unsuitable for the popular PC 
Database packages. 

Given the toolset described earlier, the following scenario be­
comes possible: 

Using an IMAGE application generator, such as the DESIGNER module 
of Speedware, develop the application on your HP3000. 

Your system development staff are already familiar with the tools 
- Speedware and IMAGE, and the tools get the job done very 
quickly. An experienced Speedware user will produce results in a 
fraction of the time required by his COBOL oriented counterpart. 

DESIGNER will generate the application, which consists basically 
of two components: 

an IMAGE Database 

a REACTOR specifications file containing the Speedware code 
for the Menus, Screens, Online HELP, Reports, and Transac­
tion Processing programs required by the application. 



HP3000 
INTERNATIONAL CONFERENCE OA0315 
VIENNA 1987 

The developed application can be implemented on the Personal 
Computer by downloading the IMAGE schema, and the Speedware code 
(Specifications file). This text file transfer can be accomp­
lished with the use of the file transfer utility of your choice. 
The IMAGE schema becomes a Speedbase Database by compiling the 
schema text with the Speedbase Schema Processor. With the Database 
created on the PC, the user accesses the application by running 
microREACTOR against the downloaded specifications file. 

Developing standalone PC applications as outlined above yields 
several benefits: 

the user gets the application he needs. 

you didn't add another application on to the load of your 
HP3000. 

your staff developed the application without embarking on 
yet another learning curve. 

Ongoing maintenance to the application can be undertaken in the 
same fashion. Use DESIGNER to make programming or Database 
structure changes to the application, then download the new ver­
sion (as described above). Alternatively, the application can be 
maintained locally (on the PC) using text editing software to 
implement programming changes to the Specification file, or 
structural changes to the schema text file. 

To summarize on this standalone approach, the tools described 
above enable one to develop an application on either the Personal 
Computer or the HP3000, and then implement that application on 
either machine. This is made possible by the system development 
environment which provides a common DBMS and programming language 
on both machines. 

In the example outlined above, an application was developed on the 
HP3000 for use on a Personal Computer. Once implemented,. this 
application will run standalone on the PC, and that is where the 
data resides. Prudent computer system operation procedures dictate 
that the data should be protected and secured. The data can be 
protected by the implementation of rigorous backup procedures. 
This will be the responsibility of the PC user who should be 
encouraged to develop and practise these procedures. Data security 
poses a much bigger problem. In the absence of the familiar 
MPE/IMAGE umbrella, how do we prevent unauthorized access to the 
data resident on the Personal Computer? This problem introduces a 
major stumbling block which possibly limits the usefulness of this 
mini - micro integration approach to casual applications proces­
sing insensitive, non-critical data. 

The second choice was labelled Batch Integrated. This approach 
enables an application system to be designed where the processing, 
and the data, is shared between the HP3000 and any number of 



HP3000 
INTERNATIONAL CONFERENCE OA03/6 
VIENNA 1987 

Personal Computers. With this approach, the communication between 
the HP3000 and the micros is batched. For example, at the end of 
the day, or the end of the week, all of the transactions processed 
by the PC workstations are uploaded to the HP3000 and posted to 
the central IMAGE Database. At the same time, new versions of the 
"master" or reference type Datasets are downloaded to the PC 
workstations, enabling them to carry on with the next batch of 
transaction entry. 

Capitalizing on the common development tools in the two machine 
environments, this type of application can be developed and imple­
mented quite easily. The micro to mini communication (the batch 
transfer of files) could be undertaken with a file transfer utili­
ty such as HP·s AdvanceLink. 

The advantages to this approach can be: 

the processing involved in data editing and general transac­
tion entry is offloaded from the HP3000. The PC earns its 
keep. 

for remote workstations data communications costs can be 
reduced. The workstation is not connected all day, and the 
data transferred has been pre-edited by the application 
programs. 



HP3000 
INTERNATIONAL CONFERENCE OA03n 
VIENNA 1987 

There are several drawbacks to this approach: 

information is not shared in a timely fashion. Depending on 
the application, this drawback will vary in severity. 

the duplication of data is costly, time consuming, and 
depending on file sizes possibly impractical. 

data security is compromised since corporate data resides 
outside of the realm of protection offered by MPE and IMAGE. 
This problem is compounded by the duplication factor men­
tioned above. 

With the Batch Integrated approach to mini - micro integration we 
are still faced with the problem of protecting and securing the 
data which resides on the Personal Computer. The problem is aggra­
vated with this second approach since we would be using this 
approach to tackle larger, more complex applications (and hence 
more critical data) than with the Standalone approach, and because 
there are potentially many copies of this unsecured data. We can 
partially offset these concerns with the consolation that the data 
left unsecured on a Personal computer at any point in time is but 
a snapshot of the entire Database, and that the central IMAGE 
Database which contains the whole picture can be secured and 
protected. 

The third approach we calles OLRT (On-Line Real Time) Inte­
grated. This solution is similar to the Batch Integrated solution 
with one very important difference. By introducing a transparent 
networking mechanism called Remote Dataset Capability, we can 
eliminate the need for data duplication, and do the mini to micro 
communications in real time. 

Remote Dataset Capability is defined as: The ability within a 
Database to define a Dataset which is physically resident on a 
different CPU, and to access this Dataset in a fashion that is 
transparent to the application porgram. 

This approach involves designing an application that will be 
distributed across any number of Personal Computers connected to 
an HP3000. As the application designer you choose where the pro­
cessing will be done (all on the pc·s, or shared between the pc·s 
and the HP3000), and where the data will reside (all on the HP3000 
or shared between the pc·s and the HP3000). 

Those Datasets that are to reside on the HP3000 in the central 
IMAGE Database are identified to the Personal Computer as a "Re­
mote" Dataset. When the Personal Computer user is running the 
application, the micro and the mini communicate in a fashion that 
is transparent to the user. Any Database transactions involving 
the remote Dataset (reads, writes, deletes or updates) are passed 
to the HP3000 where the appropriate IMAGE intrinsics are executed 
and the results returned to the micro. 



HP3000 
INTERNATIONAL CONFERENCE OA03/8 
VIENNA 1987 

Using this arrangement, the Personal Computers are connected to 
the HP3000 via a terminal port. The HP3000 treats the port as an 
I/O device as opposed to a Job/Session device. A number of PC 
workstations can share the same port. 

To illustrate with an example, consider an Order Processing appli­
cation where the actual entry of customers· orders is to be dis­
tributed across a number of PC workstations. An IMAGE Database 
could be developed to support this application consisting mainly 
of the reference or master Datasets such as Customer and Product. 
The PC workstations would each have their own local Database, 
perhaps matching the structure of the IMAGE Database. The local 
Databases would define the Customer and Product Datasets as Remote 
Datasets. As orders are entered .at the PC workstations, lookups 
and validations for customers and Products are processed against 
the centralized copy of those files maintained in the IMAGE Data­
base. The resultant order transaction records would be stored 
locally at each workstation. If desired, at any time the transac­
tions could be uploaded from the PC workstations and consolidated 
within the IMAGE Database, where they would be available for 
centralized reporting. 

This on-Line Integration approach offers these benefits: 

distributed processing, shifting some of the processing load 
from the HP3000 to the pc·s. 

information that is physically resident on the HP3000 can be 
read and updated immediately. 

there is no data duplication. 

the critical corporate data can be left on the HP3000 where 
it is protected by the security provisions of MPE and IMAGE. 
Access to the data is controlled by the application soft­
ware. 

What is the appropriate mini - micro integration approach? All of 
the approaches offered in this paper support application develop­
ment activities on either machine. Depending on the approach, the 
system processing will take place exclusively on the PC, exclu­
sively on the HP3000, or will be shared between the two resources. 
Depending on the approach, the data will be physically resident on 
the PC, or the HP3000, or both and sometimes with duplication. 
Where the data resides can have serious impact on the security of 
the data. Obviously the choice of approach must be determined by 
your resource availability and your application needs. To add to 
the decision making complexity, consider also that the choices are 
not mutually exclusive. A mixture of approaches may be appropriate 
for the various components of a specific application. 



HP3000 
INTERNA T/ONAL CONFERENCE OA03/9 
VIENNA 1987 

summary: 

As this paper has pointed out, it is the case that we have at our 
disposal the technology to effectively integrate the use of our 
Personal Computers into our HP3000 based application system deve­
lopment and processing. In order to achieve this end of mini 
micro integration we need to embrace the tools required: a 4GL 
programming language common to both the MPE and MS-DOS environ­
ments , a common DBMS, and transparent micro to mini communica­
tions. With these tools in place, we can design applications, 
distributing the processing and the data across a network of MPE 
and MS-DOS machines, with a tremendous amount of application 
design flexibility. The tools make it easy. The challenge is to 
maintain the high degree of data security that we have become 
accustomed to with the security provisions offered by MPE and 
IMAGE. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNA T/ONAL CONFERENCE 
VIENNA 1987 

PC to HP3000 Communications: A Perspective 

Sam Patsy 
Hewlett - Packard 

OA04/1 

Having majored in the biological sciences, I had an in depth exposure to 
the subject of evolution. As a matter of fact, the book I am currently 
reading is Darwin's Origin of the Species, this time, for pleasure. This 
subject of evolution was brought home to me recently as I attended the SE 
training for the newest HP family member, the Spectrum series. For a 
prehistoric SE who remembers wiring your own board, paper tapes, and an 
increase from 4K to SK of main memory as a heralded event, the 
capabilities of the Spectrum series are mind boggling. 

We are all aware of the milestones in the evolution of our society. The 
change from an agricultural economy brought on by the Industrial 
Revolution was an unquestioned landmark. Since then we have witnessed 
several other changes in our society--political, economic, and social. In 
computer technology we have a slowly emerging species that is, perhaps, 
ready to become the Homo Sapiens of that industry--the PC. 

In our technology of today, we speak of MIPS of CPU speed and gigabytes of 
peripheral storage. These and other advances in technology are making the 
dichotomy between the PC and the mainframe clearer. With these 
technological advances, cost effectiveness dictates that we let the big 
boys do what they do best and offload some functions to the PCs. If we 
looked at a list of applications running on the 3000, I am sure we could 
unanimously agree that some of these applications could be done more 
efficiently and effectively on a PC, thus allowing the 3000 to do what it 
does best and far better than a single or group of PCs could do--large 
data bases and communications to the outside world. 

This is, however, a two-way street and the PC does offer some advantages 
that are indeed unique. 

THE HP3000 

In the past we logged on to the HP3000 from a terminal, did our thing and, 
if fortunate enough, had a slaved printer for our output; otherwise we 
treked to the computer room to pick up our output. If we were at home and 
logged on, we waited until morning at work to see our output. In this 
HP3000 world of one of many users, we are at the mercy of a concept called 
system performance, which is a sophisticated way of saying, how many 



HP3000 
INTERNATIONAL CONFERENCE OA04/2 
VIENNA 1987 

people are on the system and what are these people doing. When you type 
"RUN" on the HP3000, you no longer have control of your destiny. You are 
at the mercy of available memory, scheduling queues, I/O bandwidth and a 
host of other factors that range from unpleasant to unbearable. At this 
point you bootleg a copy of OPT or soo and try to determine how to get 
more miles per gallon from your system. 

THE PC 

I had mentioned earlier the uniqueness of the PC. The attributes defining 
this uniqueness bear some discussion. 

The most significant attribute of the PC is the fact that it operates in 
the "NOW". You do your work NOW, no performance issues, you are in 
control. The PC lets you be as good as you want to be. You can rerun 
your program as often as you like. Want to play "What-If" strategy on a 
problem? Go for it. I am convinced the name "Personal" was chosen for 
the PCs only because the "NOW" computer just doesn't have a good marketing 
ring to it. The philosopher would say that "NOWNESS" is the quintessence 
of the PC. The NOW concept reaches its peak in the portables. Last 
evening I watched as my son logged on to a mainframe at a local 
university; used Kermit to download his assignment to our HP150, and then 
began to write his Pascal program for his homework. The NOW concept is 
very, very real. 

Another attribute of PCs is "user friendliness". Each software package 
released is easier to use than the previous one. Much of the 
competitiveness we see is based on "user friendliness". For many 
packages, the user friendliness makes the directions on a cake mix seem 
complex. The only prerequisite for using a PC is being able to read; with 
some of the graphics today, being able to read might not even be 
neccessary. 

Cost effectiveness must be considered as an attribute of the PC. It is 
dif.ficult to be objective about cost. What I would pay for a bottle of 
wine may be significantly different from what you would pay for that same 
bottle. However, when we pay several hundred thousand dollars for a 
computer system, we would like to get the maximum utility from that 
system, i.e., let it do what it does best. Mainframe tasks that are done 
more efficiently elsewhere should be just that, done elsewhere. To the 
rescue comes the PC. Heavy resource users on the mainframe such as word 
processing, graphics, can be more efficiently and effectively done on the 
PC. 



HP3000 
INTERNATIONAL CONFERENCE OA04/3 
VIENNA 1987 

BEST OF BOTH WORLDS 

Here we have two diverse environments, the PC and the HP3000, each 
outstanding in its own way. How can we merge the resources of these two 
environments to help our customer. Let's build a conceptual model of how 
a PC might talk to an HP3000. At first glance we have: 

PC HP3000 

MS-DOS MPE 

FIGURE 1 

Rather quickly we recognize a problem of two different operating systems. 
We know from past experience we can use a PC as a terminal and log onto 
the HPJOOO. However, we want more than terminal capability; we want to 
have file transfer capability. We want to communicate with the various 
subsystems on the HP3000. 



HP3000 
JNTERNA TIONAL CONFERENCE 
VIENNA 1987 

Our next logical step is: 

PC 

MS-DOS 

DATA COMM 
INTRINSICS 

FIGURE 2 

HP3000 

MPE 

PC COMM 
FRONT END 

OA04/4 

We have overcome our first hurdle; we can now allow the PC, as a PC, to 
talk to the HP3000. Now that we are on the HP3000, we want to access and 
share resources on the HP3000. 



HP3000 
INTERNATIONAL CONFERENCE OA04/5 
VIENNA 1987 

We then do the following: 

We have 
Perhaps 
The son 
End. 

PC 

MS-DOS 

DATA COMM 
INTRINSICS 

FIGURE 2 

HP3000 

MPE 

PC COMM 
FRONT END 

IPC 

DEDICATED SON 
PROCESS 

created a dedicated son process to talk to a specific subsystem. 
we want to talk to the spooler, an Image data base, or a disc. 

process will use IPC files to talk to the PC communication Front 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Our next step is: 

PC 

MS-DOS 

DATA COMM 
INTRINSICS 

FIGURE 4 

HP3000 

MPE 

PC COMM 
FRONT END 

IPC 

DEDICATED SON 
PROCESS 

SUBSYSTEM 

INTERFACE 

OA04/6 

Our dedicated son process will then communicate with a specific subsystem 
interface. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

our final step is: 

PC 

MS-DOS 

DATA COMM 
INTRINSICS 

FIGURE 6 

OA04n 

HP3000 

MPE 

PC COMM 
FRONT END 

IPC 

DEDICATED SON 
PROCESS 

SUBSYSTEM 

INTERFACE 

SUBSYSTEM 

Viola!!! We now have a PC talking to a specific resource on the HPJOOO 
and moving information between the PC and this system. 

We now have the capabilities to share peripherals on the HPJOOO, as well 
as share the information on the HPJOOO. Again, this is a two-way street 
and we should not become stereotyped into thinking of the PC as some type 
of parasite leaching resources from the HPJOOO. Rather, this is a true 
symbiotic relationship; and becomes more so as we increase the 
capabilities of the PC. 



HP3000 
INTERNATIONAL CONFERENCE OA04/8 
VIENNA 1987 

EXAMPLES OF PC-HP3000 CONNECTIVITY 

The purpose of the PC-HP3000 connectivity is to take a resource, 
information, in this instance, and be able to move, distribute, query, and 
integrate it with other information. As mentioned, this is a two-way 
resource transfer. The information on the PC has as much intrinsic value 
as the information on the HP3000. Remember, this is a symbiotic 
relationship. 

Some specific examples of this connectivity link may be helpful. Consider 
working at your PC and routing your output to a 2680 laser printer on an 
HP3000. Print Central allows the PC user to access any of the printer 
resources on the HP3000. From a menu driven screen, the PC user can 
toggle between a local printer and a printer on the HP3000. The same 
printer sharing capability is offered in Resource Sharing. 

The next logical progression in peripheral sharing is to have the PC 
utilize the disc on the HP3000 as a resource. This capability is offered 
by Resource Sharing. A portion of the HP3000 disc space is reserved for 
the PC MS-DOS files. When a user logs on to the HP3000, his is either in 
the PC MS-DOS domain or in the MPE file domain. A utility is provided to 
convert between the different file formats. 

Also, under Resource Sharing the PC can access the tape drives on the 
HP3000. This provides a convenient method for backing up the PC. 

Another example of this connectivity is Information Access, which 
appropriately named, allows a PC user to extract information from an Image 
Data Base and bring that information over to the PC. The phrase, "bring 
that information over to the PC," is a conservative understatement. That 
phrase should be highlighted, underlined and set in flashing neon lights. 
In bringing "that information over to the PC", Information Access allows 
the PC user to choose one of several formats to have the data come to the 
PC. Think of that for a minute; extract selected data from an Image Data 
Base; bring that data over to your PC in, let's say, a Lotus format and 
immediately begin working on that data in a Lotus spreadsheet. If you 
will please, the flashing neon lights. 

One of the more recent additions to this connectivity is starlan. The 
Starlan products allow us to have several PCs networked to a PC server. 
This network can then be connected to an HP3000 Thicklan or HP3000 
Thinlan. once we have established a physical link to the HP3000, we can 
then, while on the PC network, establish a virtual terminal session on the 
HP3000. The virtual terminal session is an HP3000 user. We can now 
toggle amongst a standalone PC, a PC on a PC lan, and a PC as a virtual 
terminal on an HP3000 and not lose any of our connections. Excuse me, but 
could we borrow those flashing neon lights and better turn up the 
intensity--we have a big one here. 



HP3000 
INTERNATIONAL CONFERENCE OA04/9 
VIENNA 1987 

Everything we can do on a Starlan can be done on a Thinlan. Only the 
physical connection is different. Starlan uses twisted pair wiring, and 
Thinlan uses coax wiring. 

So as not to forget the remote user, HP offers a product that allows a 
remote standalone PC user the capability to share resources on the HPJOOO. 
This is a virtual terminal session, by modem, offering all the horsepower 
of the HPJOOO to an isolated user. This connectivity product is HP Serial 
Network. 

Graphics connectivity is provided with the Curator product. Curator 
allows you to transfer graphics between a PC and the HPJOOO. Curator 
makes the neccessary format changes such that when the conversion is 
completed and uploaded or downloaded, you have a graphic in a usable 
format on your respective system. 

Similiar to Curator is a utility that allows conversion of files between 
the PC domain on the HPJOOO and the MPE domain of the HPJOOO and vice 
versa. 

So far we have concentrated on the PC-HPJOOO world and the benefits of 
this link. Depending on your perspective, this could be the tip of the 
iceberg. Consider the communication capabilites of the HPJOOO and the 
implication of these capabilities. Consider that the HPJOOO can speak 
NRJE, IMF, MRJE, BISYNCH IMF, PROFS, DISOSS, and X.25. This essentially 
ties the HPJOOO to the outside world. Similarily, this capability is 
passed on to the PCs connected to the HPJOOO. 

Let's do an instant replay ... 

We can be sitting at our PC connected to a server over a local area 
network; we can text a file from the server; we can merge this file with a 
file that is local to my PC; we can then convert graphics from the HPJOOO 
and upload it to the PC; we can then merge the text and graphics; and, 
finally, send the output to a laser printer on the HPJOOO. Not too 
shabby!!! 



HP3000 
INTERNATIONAL CONFERENCE OA04/10 
VIENNA 1981 

SUMMARY 

The story of the PC can be best illustrated by an old cigarette 
advertisement--a two page ad. on the left-hand page was a black and white 
photo of some women in the 1920s, very dull and drab clothing of that era. 
On the right-hand page was a color photo of a voluptuous young lady, with 
a cigarette in her hand. The caption to the ad said, "you've come a long 
way baby". Well, for the PCs we can say, "you ain't seen nothin yet". 
Let me explain. 

Hewlett-Packard does not issue crystal balls as standard equipment for its 
field SEs; however, let's look into the future. Immediately on the 
horizon is a 32-bit processor with a 16/32-bit data bus driving the PC. 
This processor will talk to a co-processor of similar architecture as well 
as a graphics co-processor. All of these processors will run at a modest 
12-18 megahertz clock speed. Might as well throw in 8-16 megabytes of 
main memory. The fact that the dinosaurs could not adapt to change should 
be a forewarning to the MIS directors, managers, vice-presidents, etc. to 
recognize the capabilites of the PCs. 

My eyes are gett-ing b-1-urr-ed, it is be-com-ing ver-y dif-fic-ult to 
wr-ite. I believe it is those flashing neon lights, they keep getting 
brighter and brighter and brigh-ter. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

DOCUMENT fILING AND RETRIEVAL 

Abstract 

Rudi Huysmans 
Peter Arfeuille 
SYDES NV Mechelen 
Belgium 

OA05/1 

In the past, office automation has been caracterized by the 
development of powerful word-processors, which often cause an 
exponential growth in the number of text files to be stored. 
During the last few years, more attention was paid to the filing 
and retrieval of these documents. 

This lecture presents a system through which the user can not 
only store documents in a secured format, but can also define a 
meta-information structure by which the documents can be retrie­
ved. 



HP3000 
INTERNA T/ONAL CONFERENCE OA05/2 
VIENNA 1987 

When looking at the classical OP applications, we can recognize 
the same major functions : 

- data entry : allows the user to capture information 

- data management : allows the user to keep and to menage 
the information 

- query processes allow information retrieval 

These DP - systems can handle information very well if it is 
completely structured. But as most information handled by office 
workers consists of both text and data, the classical solutions 
don't live up to the requirements. 

The use of word-processors facilitated the production of text, 
resulting in an unmanageable collection of files with a growing 
redundancy and inconsistency, even leading to a parallel manual 
filing system. 

The main goals of a document processor is to manage unstructured 
information in an efficient way, not only for users in an office 
environment, but for the DP department too. 



HP3000 
INTERNATIONAL CONFERENCE OAOS/3 
VIENNA 1987 

2. Definition of the problem 

To recapitulate the problems in office automation : 

- an exponential growth in the number of files to be stored. 

- inconsistency in the management of files, even leading 
to parallel manual filing systems 

- difficult retrieval of the documents 

- the impossibility to store additional information on the 
documents in an easy and user-friendly way 

- a lot of lost disc space because of the presence of many 
blancs 

- long back-up time because of the cutting up of files. 

As you can see there is a great deal of work to be done in 
storing documents in a more compressed way and defining 
meta-information structures to retrieve the texts. 

3. Nomenclature 

J.l document 

A document is an unstructured file of all kinds (ASCII/binary, 
numbered/unnumbered, program object code, LOTUS 1-2-3, ... ) that 
has to be stored and retrieved by a user. 

3.2 library 

A library is a set of documents. With each document, some 
additional information can be stored. This information follows a 
uniform pattern. 
The pattern can be defined when creating the library. The user 
has the capability to change this pattern in an existing library. 

3.3 attribute 

An attribute is an element of the fixed information pattern of a 
library. A document can have one or several values for an 
attribute. 



HP3000 
INTERNATIONAL CONFERENCE OA05/4 
VIENNA 1987 

4. The document management system. 

4.1. Definition of a document management system 

In informatics, a database is a compilation of data, and the 
relationship between the latter. 
Analogically to this definition, we now define a docubase. 
This is a compilation of documents and data on these documents. 

Comparing a docubase and IMAGE, we can make the following 
associations : 

DOCUBASE 

documents 
attribute 
value of the attribute 

IMAGE 

record no 
data item 
value of the data item 

rirst we summarise the necessary characteristics of the docubase. 

1. The docubase must be able to keep documents. The identity of 
this documents should be any kind of MPE-file. 

The possibility should exist to save documents in a compressed 
form. This means that a lot valuable disc space can be saved. 

2. Appert from these ~ocuments, there should be a possibility to 
insert additional information under "attribute"-form with 
corresponding values. 

Attributes should be allowed to consist of more than l value. 
Attributes can also have no value. 

3. A querylanguage should be able to look up documents. This 
language should be substantially elaborated. Because of the 
great variety of criteria for looking up documents, the 
language should be as uniform as possible. 

4. The structure has to be dynamic. It may not be frosen at 
creation time. (this is an important difference between the 
scheme of an image database and the scheme of a docubase). 

5, The performance of a docubase should be acceptable. 

6. There should be utilities like : recovery of the library, copy 
of libraries, print funtions, performance optimisation. 



HP3000 
INTERNATIONAL CONFERENCE OAOS/5 
VIENNA 1987 

4.2. Technical solutions 

The simplest and the most used solution is to store every text in 
a seperate file. The only way to retrieve a document is to know 
the name of that file. Document handling with this method is 
easy. 
All you need is a very good memory and big directories for the 
endless list of files. 
An improvement of this method is to maintain extra information on 
every file in a special file or in some detebese. You still heve 
a sea of files on your computer. 
The best solution is to have the text of all documents and all 
information about the documents in a single system. This 
eliminates the proliferation of files and the consistency problem 
of meta-information (i.e. information about documents). 

One solution is to use an all-purpose database and to use the 
search mechanism of the database to retrieve your documents. 
Although technically possible, this approach is likely to produce 
a big space overhead and poor performance because most classical 
databases were not designed for this kind of use. 

The best solution is to design a system espcially to store 
documents and to maintain information about documents. 



HP3000 
INTERNATIONAL CONFERENCE OA05/6 
VIENNA 1987 

4.3. The structur of a DOCUBASE 

A DOCUBASE stores all documents and information about them in 
files called libraries. 

Each library has the following conceptual structure: 

DOCUMENTNO 
DOCUMENTDATA 

ATTRIBUTE 

ATTRIBUTEVALUE 

Is a number identifying the document 
This is the 'text' of the document. This can be 
any type of MPE file with or without userla­
bels. 
(Not only textfiles, e.G. you can put a runna­
ble program in a library, get it out again and 
run it). 
Is a name describing a usefull information. 
Suppose you want a library to store memos. 
You could define the attributes FROM, TO, DATE, 
SUBJECT. 
For a certain document and attribute you can 
add a value. 
example: we add the following values 

document attribute value 
0 FROM JIM 
l FROM JIM 
l TO MARY 
2 FROM JOHN 
2 TO MARY 



HP3000 
INTERNA T/ONAL CONFERENCE oAosn 
VIENNA 1987 

An attribute together with its values is in fact a table of the 
following form: 

FROM: 

attribute 
value 0 

JIM 
JOHN 

l 
0 

l 

1 
0 

2 

0 
l 

3 

0 
0 

4 

0 
0 

max 
documentno. 

0 
0 

A l means: the corresponding document has this value for the 
attribute. 

A row in the table tells you what documents have the value at the 
left, a column tells you which values a document has. 

In the library itself this table is stored in a compressed form. 
The method used to compress these tables makes it very efficient 
to read a row but somewhat less to read a column. 
This choice was made deliberately because the main purpose of the 
attribute structure is to retreive documents with certain associ­
ated values. 

The number of values per attribute is only limited by the maximum 
size of the library file. 

As you can see the main idea is conceptually very elegant and 
simple, yet very general in its possible applications and 
open-ended because the user is free to define any attribute 
meaningful for his application. He is not restricted to 
predefined attributes associated with his documents. Notice also 
the fact that every attribute has the same query capability. 
These are no privileged attributes. 



HP3000 
INTERNA T/ONAL CONFERENCE OAOS/8 
VIENNA 1987 

5. An example 

To clarify the concepts mentioned before, here is an example 

Suppose we want to maintain our correspondence. 
A document is a text file created and manipulated by use of an 
editor or a word processor. 

5.1 First the docubase is designed. 

We can define e.g. four attributes 

AUTHOR : single-value attribute 
length of value : 16 characters 

= the name of the author of the text 

CUSTOMER single-value attribute 
length of value : 16 characters 

= name of the edressee of the text 

DATE single-value attribute 

SUBJECT 

length of value : 6 characters 

= creation date of the text 

multi-value attribute 
length of value : 16 characters 

= some keywords to give en idea of the contents of the 
text 

The difference between a single-value attribute end a multi-value 
attribute is that e document can have several values for a multi-value 
attribute but only one value for a single-value attribute. 
However, that doesn't mean that a single-value attribute is a key in the 
sense of IMAGE end KSAM, because several documents can have the same 
value for the attribute AUTHOR. 



HP3000 
INTERNATIONAL CONFERENCE OA05/9 
VIENNA 1987 

.S.2 After having created the library we can start adding documents and 
give them values for the attributes. 

DOC 0 AUTHOR HOLMES 

CUSTOMER HP 

DATE 860224 

SUBJECT SPECTRUM 
COMPUTER 
HARDWARE 

DOC l AUTHOR CAMPBELL 

CUSTOMER PENTECH 

DATE 860316 

SUBJECT VECTRA 
discount 
installation date 

DOC 2 AUTHOR ROGERS 

CUSTOMER GOVERNMENT 

DATE 860321 

SUBJECT SALES 
BALANCE 

DOC 3 AUTHOR ROGERS 

DATE 860401 

SUBJECT LOANS 

Note that document 3 has no value for CUSTOMER. This means we can have 
documents without a value for attributes that are meaningless to the 
documents. It is up to an application to allow or disallow this. 



HP3000 
INTERNATIONAL CONFERENCE OAOS/10 
VIENNA 1987 

5.J Retrieval of documents 

The power of the Query language and the performance of the Query 
execution were two of the main objectives in the design of a docubase 
retrieval mechanism. 

It should be possible to ask questions like 

- Which documents have 'Rogers' as the AUTHOR ? 

- Which documents have 'balance' as a SUBJECT ? 

- Which documents have 'Rogers' as the AUTHOR and have been 
written between 860101 and 860601 ? 

- Which documents have 'loans' or 'balance' as a SUBJECT and are 
not written by 'Holmes' ? 

5.4 Possible actions 

We can delete a document. Watch out I Your beautiful text will have 
disappeared completely. 

We can text our document with our favorite editor or word-processor, to 
make it even more beautiful. 

We can delete, add or change the values of the attributes. 

5.5 Management of the docubase 

Suppose that at a certain moment we are not completely satisfied with 
the docubase anymore. 
Then we can add attributes to widen the range of queries. The existing 
documents will have no value for the new attributes. The docubase has 
s number of possibilities to copy the value!il of one allribute to another, 
or to initialise the values. 

If we delete an attribute all the values for this attribute will 
disappear to. 



HP3000 
INTERNA T/ONAL CONFERENCE OAOS/11 
VIENNA 1987 

6. The docubase programmer interface 

To use the docubase, the programmer needs a comprehensive set of 
commands : the docubase intrinsics. 

Possible commands are 

Library commands 

openlib/createlib 
delete lib 
close lib 
infolib 

Attribute commands 

addattribute 
deleteattribute 
copyattribute 
renameattribute 
initattribute 
inf oat tribute 

Document commands 
ributes 

create/open 
deletedoc 
get doc 
put doc 
close doc 
getdoc-to-file 
putdoc-from-file 
lock doc 
unlockdoc 
check lock 

Value commands 

add value 
deletevalue 
get value 
update value 

Query commands 

docuery 

setbits 

bitmaps 

ributes 

--- --- ~----------·· 



HP3000 
INTERNATIONAL CONFERENCE OAOS/12 
VIENNA 1987 

7. A comparison between a docubase and IMAGE 

A very important question to ask is why and when to use a docubase 
and when not. 

All computer use has to do with the manipulation of information. 
We can define an information system as a system to store information, 
to retrieve it and to change the information in the course of time. 
This is a rather general description which fits a lot of systems. 

A good old MPE file is an information system. 
It stores records and with the proper intrinsics we can retrieve the 
record and update it. An Image database is a more eleborate 
information system. Basically it stores records (consisting of 
several items) but lets you retrieve them in a much more sophistica­
ted way (dbfind, dbget, etc.) and update them (dbput, dbupdate, etc.) 

A docubase stores documents, it can create, delete, store, update and 
retrieve them. With the help of attributes and values it can find 
them using a wide variety of the docubase queries. 

All information systems have their typical merits and weaknesses. 
An important consideration is what type of query we can do and how fast 
the document will be found. Most information systems have a number of 
built-in search mechanisms that are fast but only work for certain types 
of queries. More complicated queries are done by combining several 
elementary operations and sometimes this can be very costly in perfor­
mance. 
For instance, searching a record with a particular record number in an 
MPE file is a fast operation but finding a record with a certain content 
can be very costly because we have to scan the file sequentially. 

To compare a docubase and IMAGE we make the following associations 

Docubase IMAGE 

documentno. recordno. 

attribute dataitem 

value of the attribute value of the dataitem 

For a multi-value attribute we can have an unknown number of values in 
a docubase whereas in IMAGE we don't have an equivalent possibility. 
For the sake of simplicity let us ignore this for the moment. With the 
comparison in mind, we consider the following query : 'Which documents 
have 'ROGERS' as the AUTHOR ?' 



HP3000 
INTERNATIONAL CONFERENCE OAOS/13 
VIENNA 1987 

- with IMAGE 

with AUTHOR as a key we can find a chain for 'ROGERS' and by 
chained read pick up all the document numbers. 
In IMAGE a data item must be a search item to have a fast access. 
A 'normal' data item can only be found with a sequential search. 

- with a docubase 

The docubase searches for the value end immediately has an answer 
for all the documents in the form of a (compressed) bitmap. 
This is done on a uniform basis for all values and for more 
complicated queries that are much more difficult in IMAGE, where 
certain combinations and iterations of the IMAGE intrinsics will 
be necessary. 

Another key factor in the design of docubase is the capability to add and 
delete attributes in an existing library whereas in IMAGE applications 
the structure has been frozen at creation time. Souplesse in the 
structure can only be achieved by application dependant code. 



HP3000 
INTERNATIONAL CONFERENCE OAOS/14 
VIENNA 1987 

Where lies the strength of a docubase ? 

- in the ability to manipulate the documents without creating un 
unmanageble collection of seperate MPE files. 

- in the richness of its query language and the performance of 
the queries 

- in the possibility to change the structure of the attribute 
mixture during the lifetime of the library. 

- a backup of a library in nothing more that a STORE and RESTORE 
of a single MPE file 

- in the ability to keep files in a compressed way. 



HP3000 
INTERNA T/ONAL CONFERENCE OAOS/15 
VIENNA 1981 

Biography 

Rudi Huysmans was born in 195) in Mortsel near Antwerp. After 
High School he studied civil engineer in Computer Sciences at the 
Catholic University of Leuven. He joined SYDES in 1982 as a 
commercial project leader. He is Vice Chairman of the Belgian 
National Users Group. Off business hours he works as a teacher 
in the Computer Sciences. 

Peter Arfeuille was born in 1955 in Tielt. After High School he 
studied mathematics at our own "Antwerp University". He joined 
SYDES in 1984 and is working there as system analysist. His 
principal interests are application of theoretical know-how in 
real-life problems. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



Preface 

HP3000 
INTERNATIONAL CONFERENCE OA0611 
VIENNA 1987 

Sophisticated CAP (Computer Aided Publishing) in a Commercial Environment 

Dipl.-lng. Dr. Wolfgang Vitovec 

Telefon- und AdreBbuchverlag .HEROLD" 

WipplingerstraBe 14 

A-1010 Vienna 

Austria 

I am always surprised how various publications make such flippant use of the terms "Electronic Publishing" 

(EP) •. "Desktop Publishing" (DTP) and "Computer Aided Publishing" (CAP). Indeed, every time I come a­

cross an article on the subject of "Electronic Publishing" I begin reading avidly, eager to learn what the au­

thor has achieved, only - but invariably - to find that his "Electronic Publishing System" boils down to nothing 

more than the production of a printed page. Ho-ver, since to me the term "publishing" means more than 

simply the preparation of a document, I also expect "electronic publishing" to mean something more • name­

ly an electronic distribution function to whatever medium concerned (be it via databases, BTX (videotex) or 

on an other medium in a machine-readable form). Whilst nowadays the term "publishing" is usually associ­

ated with paper as the medium, one of the most successful publishers of all times used a quite different me­

dium - namely Moses. 

Rather than the terms EP, DTP and CAP I prefer to use the term "Document Preparation" which also in­

cludes the (computer) typesetting - and this particulary so since DTP and typesetting very often differ only in 

the output medium and the output quality. However, it seems scarcely likely that my preference here has 

much chance of gaining wide acceptance, particulary since the abbreviation "DP" ( = Data Processing) is al­

ready very firmly established. 

This present work is concerned with the preparation of documents in typesetting quality for subsequent re­

production by printing - in other words, with the production of copies whereby the integration of graphics 

plays an important r61e. 



HP3000 
INTERNATIONAL CONFERENCE OA06/2 
VIENNA 1987 

Terminology 

In the context of this present work the term "graphic" should be understood to mean only "graphics of real 

objects" whereby these include, for example, signets, logos, fancy type and drawings. Where "graphics of 

synthetic objects" are meant, I have used the term "computer graphics" (Note: the distinction between 

graphics of real objects and those of synthetic objects • as well as the terms themselves - was adopted by 

Foley [FOLE84) - whereby Foley takes computer graphics to mean abstract quantities of lines, curves and 

planes). Figure 1 features a selection of "real object graphics". 

Fig. 1 A selection of "real object graphics" 

The description "image" will only be used here in connexion with continuous-tone presentations • photo­

graphs, for example (Note: within the scope of this present work the processing of images differ only in the 

necessarily extended resolution for that of graphics, so the description "graphic" is frequently used also to 

mean image!). Where the term "text" is used here it should be understood in the narrower sense, in other 

words, rather in the sense of "typesetting" and not in the broader telematic sense which includes also graph­

ic, image and tone. This corresponds to the terminology used in typography and reproduction technology. 

Important also is the difference between book work i.e. the typesetting of novels, scientific works, ect., - and 

job printing • generally understood to be the printing of forms, tables, posters, ads etc. 

Introduction 

In my own case the problem is the need to deliver copies comprising praphic, image, and text for telephone 

directories within the shortest possible time. This problem can only be solved given fully automatic prepara­

tion of entire, ready for the press pages i.e. through automatic make up and montage of the text including the 

graphics and images featured therein. 

These past few years I have worked on the automation of typesetting and developed a book-oriented type­

setting system for a commercial computer system (Hewlett-Packard HP3000). The typesetting program I de­

veloped • and which is subsequently referred to as either make up program or formatter - automatically cre­

ates lines and columns, automatically makes these up into multi-column pages, and automatically generates 

the page numbers, as well as two-level running titles and column headings dependent on text content - the 

positioning of these also being fully automatic. 



HP3000 
INTERNATIONAL CONFERENCE OA0613 
VIENNA 1987 

A novelty in this system is the philosophy of can-split-positions, incorporated in an "endless" column where­

by the "can-split-positions" are either explicitly defined or are automatically generated by the system. This 

approach enables a high degree of automation to be achieved with the make up - also in the case of mixed 

matter and job printing. At present the percentage of pages which require subsequent correction because 

they are not in keeping with aesthetic requirements is in the region of 0.5 % I Thus all these automatic func­

tions are performed whilst observing the highest possible aesthetic standards. 

Since the implementation of the first version of this system roughly two and a half years ago, this system has 

created approximately 25.000 A4 pages for the telephone directory production. This present work was also 

produced using the same system. 

When recording or processing the text, the compositor will leave vertical and/or horizontal blank spaces 

where graphics or images occur in the text. The compositor will determine the dimensions of the required 

blank space either directly from the manuscript or will obtain the nesessary information (manually) from the 

graphic design department. At the make up stage the program will automatically leave a correctly sized 

space at the correct place for the graphics (signets, logos, fancy types, etc.,) and images (autotypies) which 

will subsequently be pasted into position in the exposed page by the montage department. In order to avoid 

this last manually performed montage job, it is necessary to have graphics and images digitized and integrat­

ed into the make up and exposure process. 

There is a number of electronic page montage systems on today's market. The underlying principle of these 

systems is the digitizing of all informations to be processed for the production of a page [SPRl82). This 

means that the texts also have to be scanned (and stored as bitmaps). The storage capacity taken up by 

these "text bitmaps" is approximately 100 KB for a text page, and for a magazine page with black/white illus­

trations approximately 500 KB. The storage requirement is so big because a character requires between 

20- 50 bytes after scanning. An A4-sized character-coded page of text (i.e. with 1 byte per character) re­

quires on average 2 - 5 KB. 

By comparison, for the typesetting of a telephone directory page comprising only text in character-coded 

form, only 10-20 KB are necessary, whereby the text commands are included. However, since the storage 

requirement influences not only the disc capacity but also the processing time, I consider it more expedient 

to leave the text as a character file - i.e. not to scan the text but rather to leave it character-coded ·and to in­

corporate the graphics and continuous tones (as halftones) therein. 

This present work describes a method whereby graphics and images are stored in a database, automatically 

incorporated into the text and subsequently taken into consideration at the make up stage with the result that 

complete graphic-image-text pages are obtained. Consequently there is no need for the compositor to create 



HP3000 
INTERNATIONAL CONFERENCE OA06/4 
VIENNA 1987 

blank spaces manually for the graphics and images, and the time-consuming pasting in of graphics and im­

ages in the exposed page is also avoided. 

The Model 

In the case of data involved in the production of telephone directories we can distinguish between editorial 

data and order-related data. Examples of editorial data (non-composition) include town data with name, post­

al code, county, dialling code, etc., - classified headings (column headings), but also the "normal" (i.e. un­

paid) subscriber entries. Since these same data will be required for several different directories and sections 

of directories - e.g. on the one hand for regional and supra-regional directories, an the other hand for various 

directory sections such as the local and classified pages, the data in question are managed on a 

composition-independent basis i.e. they are stored in the database without considering the final layout of the 

directories (Note; the various directories and directory sections differ from one another not only in the col­

umn width but also in the type and in the editing of the data!). 

By contrast, the order-related data (i.e. the ads - "typesetting") which are individually designed in accordan­

ce with the customer's wishes for printing in a specific directory, and thus must be managed with text (for­

matter) commands for a specific layout whereby after delivery of the galley proof alterations will normally 

only be made at the customer's request. Such an ad would logically appear on one or several different pages 

in one or several different directories. In other words, it will be determined in advance in which directory, in 

which directory section, in which branch (column), in which town, under which dialling code, and under 

which name the advertisement should appear and whether it should replace the corresponding editorial 

subscriber entry. 

Graphics and images can be included in the editorial data - for example in the form of city insignia or pano­

ramas (as a part of town-related texts) - or they may occur in ads as logos, signets, or fancy types, or even as 

continuous tones (e.g. photographs). The more voluminous graphic or image data are thus (in keeping with 

the frequency of the ad concerend) likely to be needed once or several times. With the object of economizing 

on storage, it is necessary to store these graphics and images in an own database (where they are stored in 

digitized form after having been digitized by a scanner or digital camera system and provided with an identifi­

cation key) independent of the editorial data. With the help of a text command it is then possible to recall a 

given graphic and incorporate it in a given text, whereby the ultimate positioning of the graphic will depend 

on the (graphic incorporating) text command. 

Subsequently when producing copies for a particular directory the editorial data (prepared for the specific di­

rectory in question) and order-related data are brought together with the graphic data. However, with the ob­

ject of keeping the data volume at the make up stage as small as possible, only those graphic data neces­

sary for the make up - essentially the height and width of the smallest rectangle able to encompass the 

graphic - are incorporated into the other data. The effective (physical) integration of the graphics and images 

does not actually occur until the production on the typesetter or printer of the made up (and converted) 

pages. 



HP3000 
INTERNATIONAL CONFERENCE OA06/5 
VIENNA 1987 

The following figure shows how the various components are kept separate during processing and then 

"merged" for the output. The functions "DC" and "Telecopy" are features of future system extensions. 

Dela­
., Manage 
(Editing)" 

DC 

NON-GRAPHIC 

Typeeettlng-Deta 
,,Editing" 

SYSTEM 

,,Integration" 

,,Formatting" 

(Page Makeup) 

.Code· 
Conversion" 

.. Expase" 
or 

.,Print" 

GRAPHIC/IMAGE 

OCS - Digital 
Camera 
System: 

Scanner: 

Digitizer: 

,,Digitizing" 
,,Graphic-/lmage-Editor" 

Conversion" 

Fig. 2 The components of an integrated Graphic-Image-Typesetting-System 



HP3000 
INTERNA T/ONAL CONFERENCE OA0616 
VIENNA 1987 

This model entails a major problem in that a system of this nature can only function efficiently when it is pos­

sible to find suitable presentation forms for text, image and graphic at the individual processing stages. If, for 

example, the run-length codings for the storage and transmission of graphic and image are optimal - be­

cause they minimize storage requirements - then the byte/pixel coding will be found more suitable for the 

editing (marginal corrections, etc.) of graphics [FOLE84). For formatting pursposes, on the other hand, it is 

sufficient to know the horizontal and vertical dimensions of the image and graphic - whereby it is usually suf­

ficient to describe the image and graphic by means of the smallest rectangle which would encompass them. 

The compositor, who has to set the type for a given graphic, will not normally need to know the content of the 

given graphic, but he should at least be given the enclosing rectangle dimensions. Generally speaking it is 

not necessary - and also not expedient - to provide the compositor with the actual graphic or image (sized 

1 :1) since for him the nature of the image is only of secondary importance. Relevant here is only the logical 

text object "image" which takes up a specific space - i.e. will be projected (mapped) on a specific topological 

structure. 

Much the same applies for the presentation of the set text: for the compositor operating with computer-aided 

book typesetting o.e. the setting of straight text) at the most the setting of discrete hyphenation marks and 

thus exerting an influence on the hyphenation is of importance - meaning in effect that he need not concern 

himself with the 1 :x presentation of the ultimate appearance of the text - which can only be achieved with 

very considerable effort. Instead he is only concerned with the information as to how the words should be 

hyphenated. In the case of job printing, on the other hand, it is important for the compositor to see whether 

one or more given words e.g. a title in special wide or big letters, can in fact be accommodated in a single 

line as intended. At least he must see on the terminal whether or not it will fit in one line. On the other hand, 

he will manage the compisiton of formulas more easily when he has an 1 :x presentation of the set text in 

front of him (Appelt describes in (APPE85) a text system which permits the simultaneous editing and presen­

tation of a made up text). However, for the graphic designer, whose job it is to develop a signet for a given 

text, the content matter of the text itself is of secondary importance only. 

The following pages feature a more detailed description of how graphic data are stored and the nature of the 

make up model serving as the basis for the formatter which allows the automatic making up of data having 

different structures. 

The scanning and coding of graphics 

At this point the author would like to take the opportunity to express his gratitude to Messrs. Agfa-Gevaert 

who kindly made the "Agfa S200pc Image Scanner" available for the purpose of the described tests. This 

handy and good-value-for-money (priced at approx. 100.000 Austrian Schillings) black/white flat-bed scan­

ner permits the digitizing of copies to a size of 210 x 350 mm (approx. 8.4 x 13.7 inches) at three different 

resolutions (half-standard, standard and double-standard) whereby the standard resolution can be adjusted 

by the manufacturer to 150, 200, 203, or 240 dots/inch. The scanner was connected to an HP150 via the two 

RS-232-C serial ports - whereby one connection serves for the transmission of the scanned data to the 



HP3000 
INTERNATIONAL CONFERENCE 0A06n 
VIENNA 1987 

HP150 with 9600 baud (here a parallel port with a transfer speed of 500 KByte/sec is also possible); the sec­

ond connection is for the purpose of scanner control. Once the original has been Inserted the scanner can be 

controlled entirely via the HP150 keyboard (and/or Touchscreen) with the help of a suitable software. 

In addition to a rough resolving preview function there are further facilities for window selection, as well as for 

the selection of intensity, contrast and coding. The scanner delivers the digitized graphics either in the form 

of a bit map or as run-lengths (Note: "run" is understood to be a sequence of equally light (same shade) 

image elements (pixels) of an image line; Run-length (AL) is the term used to describe the number of pixels 

in a run). There are different one and two-dimensional run-length codings which - particularly for purposes of 

datacommunication - are used to reduce the redundancy. With the help of a demo-program from Agfa­

Gevaert the scanned graphics are stored on disc and later transferred to the HP3000 - as binary files - with 

HP-Advancelink. Once on the HP3000, the AL-coded graphics are loaded into an IMAGE database (see the 

following chapter). The scanner gives good results across the black/white range (perfectly satisfactory for 

office automation purposes). For continous tones - because of the too-low resolution - it is certainly only good 

enough for the office automation sector. 

Yet another possibility for the digitizing of graphics is provided by the "Digital Camera System" of HP with a 

resolution of approximately 300 dots/inch. An application is described by Abelow in [ABLE86). The data com­

pression used in this case is a variation of the Quadtree coding [PURG85). Here a graphic is divided into rec­

tangles whereby each rectangle containing (black) dots of the image is again divided into further smaller rec­

tangles. 

Whereas the data volume with bitmap coding increases quadratically with the resolution (respectively with 

the size of the graphic), the increase in the case of AL- and Quadtree-coding is rather linear. There are also 

outline-codes where the data volume is not related to the resolution or size. A format very often used for 

storing digitized types is the lkarus format [GARM86). This format facilitates particularly a whole range of 

transformations such as rotation and scaling. As a general rule it can be said that the greater the data com­

pression is, the greater will be the effort necessary to convert the coding supplied by the scanner. The AL 

codes have shown themselves to be practical for the storing of graphics in an IMAGE database. 

Management of graphic data 

If the scanner (or Digital Camera System) used to digitize the graphics does not supply data in run-length­

coded form or in the required run-length coding, the data must first be suitably prepared. The nature and 

method of this preparation depend to a very large extent upon the used hardware. The digitized and suitably 

prepared graphics are then stored in a database. 

In the case of the system described here, an 8-bit run-length code is used. Every digitized graphic is supple­

mented with an identification key and filed in the database under this whereby each graphic is stored within 

one master entry and one or more run-length entries. 

--------··----------~~-



HP3000 
INTERNA T/ONAL CONFERENCE 
VIENNA 1987 

The master entry of a graphic comprises the following data: 

.) the graphic indentification number (as unique key) 

.) an alphabetical key (e.g. customer's name for a signet) 

.) the resoluton (in form of a key) 

.) the number of (run-length) lines 

.) the number of columns ( = number of pixies per run-length line) 

.) a wordmark which defines whether it is a positive or negative presentation 

.) a wordmark for a background pattern (?) 

OA0618 

From the number of lines and columns, and from the resolution it is possible to determine the height and 

width, which are important for the make up. 

The run-length data records contain the actual image information, or as the name suggests, .the run-lengths. 

A number of run-lengths are stored per data record. Theoretically the required storage space will be at its 

lowest when the number of run-lengths per data record is equal to the average number of run-lengths per 

graphic. 

When determining the run-lengths it is assumed that every line starts with a white run (provided that it is a 

positive presentation). However, this arrangement is quite an arbitrary one. We could just as well assume 

that every line begins with a black run. The black and white runs in a given line take over from eachother per 

definition. 

Now, should a line start with a black run, a white run of zero length must be inserted in front of the black run. 

The individual lines are always terminated by a return code - which explains why the horizontal width is also 

required in the case of negative presentations. The run-lengths are stored sequentially in the database re­

cords, and so one database record may contain a part of a •graphic line" or several lines. If the positive/neg­

ative wordmark in the master entry is set at •negative", for the purpose of further data processing it will be 

assumed that every line starts with a black run. 

Management of Image deta 

The management of image data is largely analogous to that already described for graphic data. The only real 

difference is that the colour of the runs is not predefined - since white and black do not alternate here but 

instead the runs may be of any tone value. This means that the relevant tone value for a given run must be 

stored in addition to the length of that run. 

Generally speaking an 8 bit codeword will be found sufficient for the tone value. This offers a fineness of 

256 tone steps whereby o = white through to 258 = black. 

Page makeup 

The structure and functioning of the makeup system (Note: in a word processing context, systems which 

make up text (or format them) are described as "formatters" or "formatting systems") constitute a key aspect 



HP3000 
INTERNATIONAL CONFERENCE 0A06/9 
VIENNA 1987 

of this present integrated system. The basic idea of the formatter in the system under discussion here is that 

the text to be made up comprises a number of blocks whereby these blocks are made up of text parts which 

may not be positioned in different columns or on different pages. Blocks comprising text elements which 

may be positioned in different columns - i.e. the text part starts in one column but may end in another - are an 

exception and will be discussed separately. 

Essential objectives of the make-up are: 

.) to ensure that the length of made up columns corresponds with the defined column length; 

.) to keep the number of pages as low as possible - meaning here that the makeup be as space-saving as 

possible; 

Also, in the case of alphabetical reference works there is a necessary (but somewhat restricting) secondary 

condition: 

.) that the alphabetical sequence be strictly observed! 

The makeup forms described in detail on the following pages, namely, "block makeup", "skirting board 

makeup", and "widow-free makeup" are seldom encountered in their pure forms but more often in mixed 

form. 

Block makeup 

Whereas in newspaper or job printing one starts out with a finite data volume, in the case of bookwork the da­

ta volume by comparision is quasi "endless" - the directory may extend to three, 80, 1000, or even more 

pages. 

For the multi-column bookwork page makeup the initial assumption made was that there is an "endless" col­

umn in which text objects are contained which must not become altered in layout during the page makeup 

process - examples of such text objects would be job printing parts, graphics and images. This means that in 

the endless column there are text objects which must not be split into parts i.e. it would not be permissible to 

have parts of the object appearing in different columns or on different pages. (Pure "text" blocks which must 

not or should not be split up could be, for example, text parts which together form a logical unit - such as lists, 

multi-line forms, or an entire mulit-line telephone directory entry comprising name, address, and telephone 

number). 

This problem can be formulated otherwise in that one might say that in the "endless" column there are 

"can-split-positions" embedded at which a new column or page can be started. 

The text objects between the "can-split-positions" will be called "blocks" here. In order to achieve the 

desired column height, the formatter inserts "wedges" of suitable size at the "can-split-positions". These 

wedges can be compared with the "glue" and the blocks with the "boxes" of Knuth [KNUT79 and KNUT84]. 

Calculating the block-length 

The block length is determined from the "width calculation" and explicit text (formatter) commands which re­

sult in a vertical movement (in positive or negative direction). The "width calculation" is understood to mean 

--------------



HP3000 
INTERNATIONAL CONFERENCE OA06/10 
VIENNA 1987 

the exact determination of the word or line length and the resulting line formatting. Thus the line arrange­

ment is derived from the width calculation. 

When calculating the block length, graphics and images are treated as text commands which cause a verti­

cal movement in the positive direction corresponding to the height of the graphic or image. 

Column "white out" 

In block page makeup the blocks (from the "endless" column) are arranged one under the other as long as 

the length of the new column is not greater than the defined column length. This usually results in there 

being some unused space at the foot of the column which will mean that the newly made up column does not 

satisfy the required column height. The procedure adopted in order to achieve the required column height is 

known as "white out". Per definitionem, white out may only be resorted to at "can-split-positions", or in other 

words, between blocks. 

To start with, each block is allocated an immediately preceding "wedge" (i.e. space of variable size in this 

case in the vertical direction). The size of this wedge will amount to zero if the block is the first block in a col­

umn, and will be of only minimum value in normal cases. As and where required the formatter will increase 

the size of the wedges so that the column height is finally achieved (whereby the prescribed maxima for the 

wedges must not be exceeded). By definition of different wedge types - and thus also different block types - a 

hierarchical disposition of the blocks - with different minimum and maximum wedge values is achieved (rela­

tive to the layout). If, for example, for the different levels of a logical hierarchy - such as chapter I paragraph I 

break - different wedges and block types are used, and for the different wedge types are allocated different 

minima and maxima values, this will automatically lead to a hierarchy in the layout: the distances before a 

chapter beginning will always be greater than those preceding a new paragraph which in turn will be greater 

than the breaks. 

Knuth [KNUT79) argued from the assumption that there is an optimal value Kopt as well as a minimum value 

Kmin and a maximum value Kmax· Taking into account the economic factor to the effect that "the fewer the 

pages, the lower the production costs", it follows that Kopt must be equal to Kmin· Appropriate values for the 

minimum and maximum wedges of the various types for different types of work can only be determined on 

an empirical basis. 



HP3000 
INTERNA T/ONAL CONFERENCE 
VIENNA 1987 

Block 1 

/ 
Block2 

~ 

Minimum Wedges_.t---------1 

~ ~i--~B-lo-ck-3~--i 
~ Block4 

Block 5 

Column-White-Out 

Fig. 3 Column white out 

OA06/11 

Wedges 

For the allocation of the column rest to the individual wedges there are various algorithms to which we may 

resort. In the currently used version the system is to white out the wedges highest in the hierarchy to a maxi­

mum - although it would be equally feasible to carry out a proportional white out (which would result in a com­

pletely different final appearance). 

The output of the columns 

Once whiting out has been effected the column is released in the output file. This is also the last opportunity 

to check out the vertical values - which only become known subsequent to the white-out (since the blocks are 

moved out of position during white out). The output of the columns is initially provisional until the page is 

closed. In some cases the data are erased again (e.g. in the case of skirting board page makeup). 

If the EOF mark is reached in the output file, then the old file will automatically be closed and a new output 

file opened - whereby up to 999 different auxiliary files can be created. The size of the output file is generally 

so selected that it can accommodate ten A4 telephone directory pages (Always after ten pages the output file 

is automatically closed and thus immediately accessible for further processing while the makeup is still in 

progress!). Thus it is possible to make up 10.000 pages of telephone directory without intervention. Should it 

happen that the auxiliary data file are renamed in the meantime, they can be used by the system again and 

the makeup can then be continued for any given number of pages. Should the system find that no further 

auxiliary files are free, or that there is not enough disc space available, the makeup will be interrupted and an 

appropriate report passed on automatically to the operator. The operator gives the system the OK to restart 

processing once the conflict situation has been resolved. (Note: should for some reason the makeup be trun­

cated, there is always the possibility to carry on with the makeup by simulating already made up pages (this 

is particularly time-saving where there are a great number of pages.) 



HP3000 
INTERNATIONAL CONFERENCE OA06112 
VIENNA 1987 

Conflict situations during the block-makeup 

Initially two conflict situations arise with the above described algorithm: 

1) the length of a block may be greater than the defined column length; 

2) the sum of all maximum wedges (of a column for whiteout) amounts to less than the column residual 

space; 

Conflict situations of the type first described are not readily solved in the case of pure block page makeup. 

However, in certain cases there is a solution possible (see widow-free page makeup). 

In various makeup systems attempts are made to resolve conflict situations similar to the 2nd type above by 

making up anew, with revised values (e.g. for the space between words) in order to gain space for the col­

umn currently being processed. Since with the system under discussion the objective (see above) is to make 

up "saving as much space as possible" no additional space could be clawed back for the column currently 

beeing processed by a re-makeup of already made up pages. This means in effect that if a conflict situation 

of the 2nd type should arise, and there is free space at the foot of the column this would then be filled out with 

an own advertisement (or other filling material) manually in the montage department (this procedure will also 

be automated). 

Generally speaking, in the case of block page makeup a possible problem situation could arise when the 

sum of the block lengths of two consecutive blocks turns out to be greater than the defined column length. 

Again generally speaking, block page makeup leads to an optically optimal result when the block lengths are 

relatively short in porportion to the defined column length. 

Skirting board page makeup 

The skirting boards are a special case whereby we find blocks whose width is equal to the page width and 

which are positioned at the end of a page (as for example footnotes). Where skirting boards appear, the de­

fined column length is reduced by the height of the skirting board. Should it happen that one or more col­

umns on a page have been already made up and (provisionally) output, these must now be erased and made 

up anew. Should it tum out that a skirting board cannot be placed on the current page (e.g. the blocks on this 

page are too long) then the skirting board is moved to the next page. 

At the moment a maximum of ten skirting boards per page can be processed. A special case is seen in that 

of skirting boards of a height equal to the defined page height. As a general rule it can be said that the con­

flict situations of the block page makeup occur to an even greater extent with skirting board page makeup 

(because of the reduced column length). 

Widow-free page makeup 

In an effort to reduce the conflict situations arising during the page makeup of long text blocks comprising 

"straight text" (i.e. pure book work - as in the case of novels, etc.) a possibility to interrupt the block page 

makeup was created. If the block page makeup mode is switched off, the makeup system will automatically 

generate a can-split-position at the end of each line. This can lead to the unaesthetic situation whereby the 



HP3000 
INTERNATIONAL CONFERENCE OA06/13 
VIENNA 1987 

last line of a paragraph becomes the first line of the next column or page. Such an individual line is known in 

the trade as a "widow-line" - in the case of hot metal type composition it was the practice to reset entire para­

graphs, and to insert or delete words in order to avoid widows I Analogous to this, an equally unaesthetic situ­

ation can occur in that the first line (or title) of a paragraph stands alone at the end of a column or page. It was 

with the object of avoiding all such cases that widow-free page make up was developed. 

The algorithm of the widow-free makeup 

The widow-free page makeup described here is not intended to replace the block page makeup method al­

ready described but instead targets only on that blocks which does not fit into the column as a whole. For the 

purpose of widow-free page makeup it is assumed that the blocks which are to be made up in accordance 

with the widow-free page make up algorithm will contain only straight texts i.e. that within this block the line 

spacing, for example, cannot be changed, and that no text commands may be used which would cause a 

positive or negative vertical movement. Nevertheless, these limitations make it possible - with the help of a 

simple algorithm - to make up blocks using the widow-free page making where the length of these blocks 

may be greater - even several times so - than the defined column length. 

With the present integrated system the block-modus-end command is given to indicate how many lines must 

be at the end or beginning of a column. Initially the number of lines and the natural break position is deter­

mined. The natural break position is at the end of that line, which - with respect to the minimum wedges - still 

just fits into the column, and is described by the number of lines before the column end. 

If the number of lines before and after the natural break position is not smaller than required, the split is done 

at the natural break position. If the number of lines prior to the natural break position is smaler than the re­

quired minimum, the block beginning will be transferred to the next column.Should the number of lines after 

the natural break position be smaller than permitted, an attempt is made to relocate the break position so 

that lines can be taken over into the next column from the block beginning (i.e. from the lines prior to the na­

tural break position). Should this not be possible without going below the requested minima, then the block 

beginning is carried over to the next column. Should there be one or more columns between the beginning 

and the end of the block, the same would apply for the lines up to the first natural break position and from the 

last break position onwards. The middle part - i.e. that part between the first and the last natural break posi­

tion need not be considerd - "it keeps in step". 

The widow-free page makeup algorithm has already been implemented. The development of a more general 

version - i.e. having less limitations than mentioned above - is featured in the long-range planning. 

Conflict situations in widow-free page makeup 

If one or more columns figure between the beginning and end of a block, the intermediate columns will not 

contain any can-split position at which the column could be whited out. The defined column length can then 

only be achieved by increasing the line spacing accordingly. 



HP3000 
INTERNATIONAL CONFERENCE OA06/14 
VIENNA 1987 

In multi-column directories there is always the danger that adjacent columns may have different line spacing. 

Since this would given rise to an incongrous impression, in the present system no attempt has been made to 

provide for the modification of line spacing. Thus it is possible that there will be some free space left at the 

foot of a column but this will always be less than the spacing between lines. 

The incorporation of image and graphic in the makeup 

At the moment in the model under consideration images and graphics are incorporated in the data to be 

made up only by means of an indentification key - in the form of a text command. When creating the blocks of 

the endless column by means of the formatter, the graphics and images are incorporated into the appropri­

ate text block whereby the size of the block - i.e. the size of the graphic or image • is read from the graphic 

master entry. Accordingly, the size of the encompassing text block may well be identical to that of the graph­

ic or image block. The position of the graphic or the image within a page will be determined by the position of 

the corresponding text command integrating the graphic or the image. 

This means: once the formatter recognizes a "graphic command" during syntax analysis, it will directly ac­

cess - with the graphic identification key contained in the argument of the graphic command • the graphic 

master entry in the graphic database and in doing so retrieve the information necessary for the makeup. This 

assures the actuality of the graphic data. 

Pictures and graphics are subsequently interpreted by the formatter as blocks or block parts and are proc­

essed accordingly. The data transmitted by the formatter contain - apart from the image or graphic identifica­

tion key - also informations regarding the absolute (horizontal) position within the page. The proper data of 

the image or graphic - namely the run-lengths and tone values· do not need to be prepared and incorporated 

until the transfer (respectively the code conversion) of the made up text to the output device. 

At this point I want to remind you again of the enormous storage requirement im· 

posed by real object graphics. The adjacent graphic comprises approximately 

86.000 pixels • which in the case of a byte/pixel coding means a storage require­

ment of approx. 10.700 byte. In the run-length-coded form this same graphic re­

quires only approx. 2.500 byte • or in other words, 76 % less storage space. 

The problem of the galley-proofs 

Now that the graphics have been successfully digitized, stored, integrated in the makeup, and finally typeset 

(in theory and test) the requirements become more stringent: with the object of economizing on material and 

personnel costs, the set ad - including the featured graphics and proper correspondence text (address, order 

number, customer number, etc.) should be output on normal paper instead of on film or RC paper. This 

brings us to the complete integration of the commercial (administrative) and technical (production of the 

composition) applications. For this purpose the laser printer is an obvious choice. 



HP3000 
INTERNATIONAL CONFERENCE OA06/15 
VIENNA 1981 

The problem here is that on one hand the types should be identical to those on the typesetter but on the oth­

er the laser printer (or electronic printer) resolution is in the region of 300 dots/inch whilst that of the typeset­

ter is in the region of 1000 - 2500 dots/inch. Fortunately there is a solution to this problem. Hitherto it was so 

that every typesetter or printer incorporated a module which generated the corresponding image-dot matrix 

from the input type commands and characters - In other words it carried out a scan conversion. With the 

more modern typesetters (since the laser typesetters became available) this module has been separated 

from the typesetter. As a discrete unit it is known as the "Raster Image Processor" (RIP). 

Some manufacurers have designed their RIPs so that it is possible to control a typesetter or a laser printer as 

desired whereby the RIP can output the typesetter fonts - loaded into it - in original size on the laser printer. 

Once it becomes possible to make the RIPs capable of processing graphics and they are fitted with the same 

scale function for graphics as for types, my galley proof problem will be solved. I can well imagine that it will 

become possible to use a RIP even for a number of printers of different resolution or that it will become possi­

ble to control a high-resolution terminal by means of a RIP. 

Epilogue 

The system described in this present work was implemented by me as a development version in October 

1985 and serves presently almost exclusively for the testing of different hardware items (scanners, printers, 

typesetter, etc.). On the basis of experience gained so far it is possible to formulate specific requirements ex­

pected of a future system whereby only some of the desired hardware components are currently available in 

the required quality or in an economic quality/price relationship. I trust that these components will be availa­

ble within the near future and that they will provide a new "key to information". 

Postscript 

During the preparation of this paper I was informed about the new Hewlett-Packard Desktop Scanner 

HP 9190A ScanJet. Unfortunately I had not yet the possibilty to test the ScanJet, but the technical data as 

well as the price seem to make it an interesting piece of hardware. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 

Bibliography 

ABEL86: Abelow, Gerald R: "Digitized Logos" in: Interact Vol. 6, Issue 12, INTEREX, 

Sunnyvale 1986 

APPE85: Appelt, Wolfgang: "Konzeption eines Arbeitsplatzes zur Erstellung 

wissenschaftlicher Texte in hoher typographischer Qualitiit" in: lnformatik 

Fachberichte Bel. 108, Springer-Verlag, Wien 1985 

FOLE84: Foley, J.D. I Van Dam, A.: Fundamentals of Interactive Computer Graphics, 

Addison-Wesley Publishing Company, Reading - Massachusetts 1984 

GARM86: Garms, Hans-Joachim: "Reproduktion von Schriften in Computern" in: 

lnformatik Fachberichte Bd. 119, Springer-Verlag, Bremen 1986 

KNUT79: Knuth, Donald E.: TEX and Metafont - New Directions in Typesetting, 

Digital press (USA) 1979 

KNUT84: Knuth, Donald E.: The TeXbook, "American Mathematical Society" und 

"Addison-Wesley Publishing Company", Reading - Massachusetts 1984 

PURG85: Purgathofer, Werner: Graphische Datenverarbeitung, Springer-Verlag, 

Wien 1985 

SPRl82: Springstciin, K.-A.: Die elektronische Bildverarbeitung von A - Z, Verlag Beruf 

und Schule, ltzehoe 1982 

OA06!16 



' I 

i 

Abstract 

HP3000 
INTERNA TJONAL CONFERENCE 
VIENNA 1987 

Desk Top Publishing 
- our first three years 

by Tim Cullis 
HP Computer Users Association 

Desk Top Publishing - The creation, by electronic means, on a 
desktop computer, of printerj, matter for publication and for sale. 

OA07/1 

In the last nine months, the computer press has been close to hysteria reporting 
developments in the field of Desk Top Publishing - one wonders if the fascination is due to 
the subject being so close to the hearts of journalists. · 

Briefly - DTP can be defined as the ability to produce in-house artwork using desk top 
computers, normally in conjunction with Laser Printers and probably in conjunction with 
sophisticated software. According to internal H-P projections, the industry-wide wide 
market for desktop publishing applications is expected to reach four billion dollars of PC 
equipment by 1990. New products are being announced by manufacturers every week. So 
many of these are being marketed before being ready for release (or even half-way through 
the development) that a new term "vapourware" has been coined. 

You may not, however, need the facilities of some of the more esoteric software and 
hardware packages which are being developed. In the UK Users Group we have been 
using DTP techniques for the last three years using alternative, less expensive techniques. 
This paper shows how we have used these methods and covers: 

• A case history of some of the techniques which we have been using in-house. 

• An introduction to the subject of printing, typesetting and lasersetting with a 
definition of the terminology you will meet. 

• An overview of some of the newer software packages and DTP hardware which is 
becoming available. 

• Conclusions as to the combination of products which are likely to be cost-effective 
for differing requirements. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Our first experience of publishing 
When t started working full time for the HP 

Computer Users Association (UK Users Group) in 
January 1984, one of the priorities was to produce a 
regular news sheet for members. 

The first attempt was two pages long and was 
produced on our newly acquired HP150 using 
MemoMaker and an extremely slow HP2602A (a 20cps 
daisy wheel printer). The fmished product was 
photocopied by the owner of the local Indian grocery 
shop, with whom I had negotiated bulk copying rates. 
The total production cycle was probably about 12 hours -
which has never been bettered since! 

The first real issue 
By the time the first issue had to be prepared, I had 

met a company exhibiting at a trade show who were 
advertising that they could take floppy discs off any 
micro-computer and transform the text via a Linotron 
202 digital phototypesetter into beautifully set ontput 
which could then be pasted up and printed. 

I decided to give it a try and the input was again done 
on the HP150, but then we hit a snag - any micro­
computer meant any reasonably standard micro­
computer, and our equipment used 3Y," discs and theirs 
used SW'. 

Not to worry - I found out that if we connected the 
serial port of the HP150 to the serial port of their ACT 
Sirius micro, we could transfer the data using a 
communications program. The only drawbaclc was that I 
had to physically carry the HP150 to their printing 
works, which were located on the fourth floor of a 
building without a lift. 

The production of the newsletter was not straight 
forward. Typesetting commands such as 

{m42f84hl0111) 
had to be inserted in the text to change the typeface 

or the weight or size of the character and if you made a 
mistake and forgot to change back to body copy 
definitions after printing a beading, the remainder of 
the article would be in bold typeface (as with this 
paragraph). 

Nevertheless I found my first real experience of 
printing and page layout very exciting and an example of 
the issue is shown in figure I. 

For comparison purposes, figure 2 shows some of the 
Qriginal text, together with the embedded typesetting 
commands, which was used in the production. 

OA07/2 

The Newsletter of the HP3000 Users GnJUp 

Vol. t,Numbert 

_..__ -­..,so......._._ .... _ 
~­
__ ..._ 

-·----·­_ ........ _ 

fig I: HP USER issue #I 

{m45.61828h72115}-XH-AM-AR< 
HP{h15}3000{h72} USER" 
< 
{f88h15115}The Newsletter of the HP3000 Users Group< 
< 
Vol.1, Number 1\\\\\\\\\\\\\Feb/March 1984A 
< 
{f88h14114}1n this issue:< 
{186h9110} Users Group Logo< 
Executive Changes< 
< 
{f88h14114}HP3000 USER {f86h9110} is published< 
by the HP3000 User Group Limited< 
< 
Contact: Tim Cullis\-.096\01-863\2428< 
International\- .096\ + 44\ 1-863\2428 
< 
{m16188h14114} 

fig 2: text and typesetter commands 

I 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Page layout 
At the stage it is interesting to look at the design of 

the first typeset issue - especially the page layout. Most 
phototypesetter machines produce galleys with a 
maximum width of about 8". In a traditional 
environment the paste-up person then takes over and 
lays out the text together with any photographs, 
diagrams and illustrations using a basic page layout as a 
guide. Not knowing anything about the process, I 
wanted to try to lay the first issue out to fmd what was 
involved. 

The first step is to design the thumbnail. This is a 
sketch of the page showing where normal text columns 
lie, where page and running headings are to print etc. 
The example in figure 3 shows the thumbnail we 
currently use for our HP3000 USER magazine. The 
main decision you have to make at this stage is the 
numbers of columns per page. 

Title of article 

left column right column 

D 

fig 3: two column thumbnail 

To a degree the choice depends on the typeface 
chosen, the point size and the leading, so let's switch 
subjects to take a look at typefaces. 

Typefaces 
Times New Roman is one of the best known and 

widely used typestyles. It was designed by Stanley 
Morison in 1931, initially for the Times of London and 
was scientifically designed to save space in newspaper 
printing. Although a compact typeface it is nevertheless 
very readable. 

Interestingly copyright laws provide no protection 
against the copying of typeface designs, however the 
typeface's name may be protected by trademark - hence 
Times Roman is also known as Tempora, English, 
London, Press Roman and finally, on the LaserJet, as 
Tms Rmn. Times, Palatino and Souvenir are three 

OA07/3 

examples of serif fonts. Examples of san serif fonts are 
Univers and Helvetica. Again, Helvetica is known by 
other names such as Swiss, and on the LaserJet as Helv. 

Within a particular typestyle family are many 
variations. The thickness or weight of the letter can be 
varied to produce ultra-light, light, medium, semi-bold, 
bold etc. The angle of the letters can be altered to 
produce italics, and the text can be expanded or 
compressed. Finally, the size of the letters can be 
varied. The example infigure 4 is of 17 typefaces in the 
Univers family, which is a sans serif style. 

Univers Light 
Univers Lighr lralic 
Univers Light Condensed 

l1nivetS Light Condensed hBlic 
Univers Medium Expanded 

Univers Medium 
Univers Medium Italic 
Univers Madiwn Condensed 

UnivtJrs Msdium CondenstJd ltBlic 
Univers Bold Expanded 

Univers Bold 
Univers Bold ltJl/ic 
Univers Bold Condensed 

IJllinn Bold CtmtMWt/ ltMk 
Univen Extra Bold 

Unlflfll'S &ttw Bold Italic 
Unlvers Ultra Bold Exp. 

fig 4: Univers typeface family 

Leading 
One of the important printing terms is leading. In 

the days of cold lead typesetting, a leading was a strip of 
lead inserted between lines of text to give a degree of 
space. Thus it is normal to talk in terms of 10 on 11 
point, which means 10 point type on a 11 point line size 
(ie 1 point leading). This paragraph is set in 10 point 
Times on a 10 point line, that is no leading between 
lines. You will notice that the bottom of the descenders 
g, y, and q just about touches the top of ascenders t, h, 
and/. 

Most of this paper is set using 10 point on 12 point 
line size, but for the purpose of comparison, this 
paragraph is set using 10 on 14. The additional 4 points 
of leading produces lines which are too far apart for 
normal text and results in too much white space. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Basic layout tips 
Use a serif font such as Souvenir, Palatin or Times 

for the body copy. Serif fonts are easier to read and give 
fullness and ornament. It is interesting to note that the 
American Interact magazine uses a san serif font. Use a 
type si7.e of between 9 point and 12 point for the main 
copy. 

Justify the text with a smooth right margin - do not 
run ragged. Use plenty of visual rests such as the 
crossheads in this article. The crossheads are normally 
tbe same size (or very slightly larger) but in a medium 
weight. In this paper the crossheads are Times Medium 
12 point, but it would be acceptable to use a san serif 
font such as Helvetica for this. 

As a matter of principle, try to use only one serif font 
and one san serif font per document. This isn't difficult 
if you are using tbe LaserJet as there isn't a great variety 
to choose from! Provide variation by differing mes and 
weights. 

Pullquotes are also useful for providing a 
visual rest. Pullquotes are also known as 
teasers or decks and are provocative phrases 
or sentences pulled from the body copy and 
reproduced in a larger typesize. 

The column width used in this paper provides space 
for around 45-55 characters per line, varying according 
to tbe mixture of lower and upper case letters. 
Depending on type si7.e, it is normal to put between 40 
and 60 characters per line. Any more than that and the 
eye has difficulty tracing its way back to tbe start of the 
next line. Leading can help on wide columns by 
introducing some white space to effectively guide the eye 
back to the left margin. 

Ha¥ing 
columns which an: 
too narrow is just 
as problematic. H 
the - is beiq 
rwt-in .. jUllified 
(ie llllOOlb right 
margin), un&igbtly 
rivers of white can 
appear in the text. 

This is 
particularly 
apparent 
where 
exceptionally 
drawn-out 
vernacular is 
used - as in this 
column. 

This can be 
overcome to a 
degree by 
using hyph-
enation but 
beware of 
excessive use 
of this. For 
example, major 
should not 
become ma-
jor. 

Some packages have automatic leading - if you 
choose 8.5 point text it will lay it in a 9 point leading, 10 

OA07/4 

point text in 11 point leading etc. Switch off auto leading 
to ensure text blocks align - otherwise you will get 
uneven lines across columns. You can see this in the 
triple column example above where the left hand column 
is on a different leading. 

Another printing term you may come across is 
widows and ophans. A widow refers to the case where 
the first line of a paragraph is one one page, the 
remainder on the next. An orphan is where all the 
paragraph except the last line fits on the page and the 
last line has to flow over. Widows and orphans should 
be removed by judicious editing, forcing page breaks 
early (widows) or by using hyphenation to place text 
closer (orphans). 

The print industry is a closed shop and it is difficult 
for an outsider to discover techniques. I wondered for 
ages how magazines always managed to end their 
articles at exactly the bottom of the last column of the 
page. At the beginning of 1985 I took tbe opportunity to 
visit the Interex publications group to pick their brains. 
I found out however that at the time, although they had 
nine staff in the group, the entire job of typesetting, 
graphics design, paste-up and production was 
subcontracted to an outside agency. 

Eventually I found the answer to my question about 
ending articles at tbe bottom of the page seemed to be 
via trial and error. 

Our next printer 
Getting rather tired of carrying the HP150 up and 

down four flights of stairs, I was pleased when I met 
another printing company, Parchments of Oxford. 

As well as being a great bunch of people and eager 
to initiate an outsider in the intricacies of printing, 
Parchments owned a Magic Machine which could read 
8", 5~· and JY.i" discs with about 400 common disc 
formats, so it was then possible to send the text files on 
disc rather than lugging the complete HP150 round to 
the printers. We have used Parchments even since for 
printing and typesetting. 

Photo typesetters 
A phototypesetting machine works by reading text off 

a floppy disc, looking up the font characteristics which 
are stored on a hard disc, and using fibre optics, LED or 
laser technology to paint a beam onto photographic 
paper. A typical machine operates at 2 million 
characters per hour. 

In addition, to the standard alpha-numeriC fonts, 
special characters are normally available. For example a 
right facing pair of scissors together with a row of dots 
and a left facing pair of scissors could be used to denote 
a snip off form. Other special characters may include a 
telephone symbo~ copyright or trade-mark symbols. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Providing typeset input 
Parchment's typesetting machine was a different 

make to the one we had used before and operated with a 
different command language. Rather than learn a new 
set of codes we decided to let Parchments insert all the 
typesetting commands and we would prepare the 
magazine input using MemoMaker. Once the input was 
ready, a disc would be sent to Parchments together with 
a hardcopy. The hardcopy would be marked up using 
different colour highlighter pens to denote differing 
typefaces, font sizes etc. 

A variation on this was to use MemoMaker bold and 
underline characters imbedded in the text to denote bold 
and italic. Parchments could quite easily do a global 
search and replace with proper typesetting commands. 

We installed a fascimile machine in the office to 
improve the turnaround time and once the galleys had 
been produced, a copy would be sent to us over the 
telephone lines. We would then take the various 
advertisments and the galleys and do a paste-up of the 
complete magazine. The paste-up would then be 
returned to Parchments together with the advertisments 
and they would proceed with the production side. 

Other printing terminology 
A term you may come across, especially when a 

salesman is lying to you, is half-tone. A photograph in a 
magazine or newspaper is a half tone and if you look 
carefully you will observe the differing shades of grey are 
obtained by means of varying the size of the dots in 
being printed (ie keeping the spacing the same). 

Despite what salesmen say, laser printer and 
scanners are not able to produce half-tones. What they 
do to try to emulate a half-tone is to keep the size of the 
dots the same (no choice) but to print them at varying 
intervals. 

You will probably come across the term kerning. 
This refers to the need for some combinations of letters 
to be brought toiiether so that one overhangs the other. 
A common example would be the letters 'To". Many 
DTP packages provide automatic kerning pairs, some 
provide .additional manual kerning but this is largely 
bells and whistles 

If you come across the terms EN space and EM 
space, these are standard width measurements which 
originally were based on the width of Ns and Ms. Still 
on measurements, an inch is equivalent to 6 picas or 72 
points. Finally, a rule is the printing term for a 
horizontal or vertical line, which can be of varying width. 

The move to laser setting 
We bought our first HP LaserJet in autumn 1984. 

This was initially used with MemoMaker for simple 
letter writing and invoices. In January 1985 I obtained a 

0A07/5 

review copy from HP Santa Clara of MicroSoft Word on 
the HP150. MS-Word so perfectly matched the 
capabilities of the laser we decided to purchase a copy. 

One of the early laser-set jobs attempted with MS­
Word was our Warwick '85 Conference Programme. One 
of the problems with scheduling conferences is last 
minute speaker changes, and we were able to hold open 
the programme until ten days before the conference. 

______ CONF!RENCE WELCOME _____ _ 

Weico. to -..ck'U. Tllil It dll -.I -biaed co .. ren- of 1he Hewl•n·l'Ktard..., 
1f0111111 ia dl9 1Jlt ... dill _,._ .... of "C..,.IU 5,..._ fN .\I ........... 
,..,.......,.. a ...... a ii ...,, ..c11 ia .... •icb tM 1.-., ror ..an or Mt r.111 .. oi HP -All dll rim ..._ _..,. for ,._-. will 

off• It i..c "' -- ,....._ • ·10DD" ......... ._ ... _... .......... 
93000"--. .......... 0ttPC'l.W 
lleo.T-*1•W......-r.dll 
~Slnaa--.Wbl......., 
udT-.Y. 

Ofcowte. ta.co.(- ii _ _., ..... 
r....i-.MlldlottMbnlf".11-
r,....iafonu1~••io-.....s 
t.r rldlilill a Warwick Ushienity ........ 
flCili-tlUl.SIMMdd•Ylf'IND...aaroo.a 
rora ............ .shoc--..-.. _. ...... ~ .... 
T1lil COil(-- oout "°' ........ ,... 
widlouldiebanlwwtloftM'IOI ...... 

--- (lillld llllWMN) ud of n.. c.w.. ~ e«ona •w .-. ru .,_. 
dlecalloldlltJ' •• _...,.,.....,. ..... 
o1-. ..... , ........ ...uuiltt ... -o. behaU' of tlllf co-ci..,.Uq U• OIOlllll. 11111 or thl orsuiisin1 co-it'", I would like to 
wbtl )'IN a very wonlt.whill, ucl ,,_, ujo,_... co.l•rt-. 

-------TABLE OF CONTENTS------

c-r ..... wo:o .. ---0.-UlllfomaticNI 
HP Mlup ... 1Rou4Table 
LillollEallittilan 
EDibiliM llJIMI 

' ' • 10 
12·22 

21 

co .. r1nac..i•&11--=­
WarwickQa11M11map 
Soday Piii. ud absil'KU 
Monday plll1.1D.d1bs1ruu 
Tlllldly plll111nd:1bsirua 
Wtdnesclayplanalldablu:io:is 

fig 5: WlllWick '85 Programme 

One day, faced with the need at short notice for a 
one page article for the magazine, I produced it on the 
LaserJet and then started to wonder just how many 
people would notice (or care) if we switched over to an 
in-house production using lasers. The advantage to us 
was knowing in advance approximately how many pages 
would be generated by a particular article, and the 
ability to do changes at short notice. 

I wasn't terribly interested in the potential 
typesetting cost savings as the amounts concerned were 
not significant and were probably outweighed by the 
costs of the lasers. We finally decided to switch over 
completely to laser output towards the end of 1986. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 

Using the LaserJet with MS-Word 
MicroSoft Word is a very powerful Word Processing 

system with the added advantage of good support for 
laser printers. The basic principle behind the laser 
printer support is the use of style sheets which set 
standard layouts for paragraphs of text. 

For example, you may want a basic page layout of 
two columns separated by .3", with running-heads printed 
1" from the top alternately left and right justified 
according to whether the page number is odd or even; 
running-head text in Times Roman 14 point; section 
headings in left justified Times 12 point Bold; and the 
normal text in fully justified 10 point T'unes Roman with 
a .2" left indent at the start of the paragraph (this is the 
actual layout used in this paper). 

Using MS-Word, the style descriptions are input 
once together with a two digit style code, and the style 
code then attached to paragraphs as required. If the 
central style description is altered, all the associated 
paragraphs are instantly altered as well. 

I am very eager to start using some of the newer 
DTP packages as MS-Word definately lacks some 
facilities. The most immediate is the inability to judge 
from the screen what the priuted page will look like, and 
the consequential need to do many trial output runs. 
Nor does it support special characters, shading or tints, 
or the drawing or brnres and lines (actually there is a way 
to fool it into priuting a horirontal line). 

On the other hand it is fine for relatively simple jobs 
and even some more complex ones. The whole of our 
Brighton '87 Call For Delegates brochure was produced 
using the package with some help from Lexisoft's 
Spellbinder Desktop Publisher - to draw the Conference at 
a Glance diagram. 

Using the LaserJet with Spellbinder DTP 
Many people will remember using Spellbinder when 

it was sold by Hewlett-Packard as Word/115. 
Spellbinder DTP is the same product, with extensions to 
handle boxes, lines and shading. 

It was one of the first DTP programs available on the 
PC. I saw it at the 1986 SCRUG conference and 
purchased a copy. We have been using it since, mainly 
as a single page make-up programme and for this it is 
quite suitable. 

There are some bad points, not least the fact that 
Spellbinder never was a particularly good word 
processor. I have an early version of the package and 
this doesn't support extended characters such as the £, 
umlauts, accents etc. The biggest drawback to 
Spellbinder however is the method of defining brnres and 
lines with .dot commands. This cannot be confused with 
user friendliness and a sample of the input text is shown 
in figure 6. 

.Y 124024020112120 1357 

.Box 50 0 725 987 001 O; 

.Une 060 032 700 001; 

.Box 060 084 210 020 1 040; 

.VP426 + 10; 
Actual text to be printed ..... 

OA07/6 

page outline 
horizontal line 

shaded box 
position cursor 

fig 6: Spellbinder input text 

For the good points - although Spellbinder doesn't 
work in WYSIWYG mode, it does have a VISUlll facility 
which enables you to preview the output on the screen 
rather than having to print a copy. Also the output 
quality is very good and figure 7 shows a sample, in this 
case a job advertisment to be placed in the local 
newspaper. 

Hi&h technology OIJ'llli8adon . to light, airy 
ojJiasc~etoHanaw-on'::'J~~alion. 

.Van........, o/lfa 
The HPCUA is an independent professional association 

repiaenling ,,.... of Hewlett-Packard computen. The 
~is moving to MW olliccs adj¥at to Harrow -.i 
centre and has the foll~ vacancies: 

Accouamt/Olllce Seni- Muaaer 
Supervision or computerised book<eplng aclivilies, 

-Ilion or monthly accounts, financial projections, statutoty 
m-.S. Also l'OlpOllllble for ollice establishment IOJ¥ices. 

Ellecutlve Secretary 
Interested and varied project work as well as normal 

llOCl'Clarial duties. Shorthand not necessmy. 

Tedmlcal Editor 
To join a team producing two monthly magazines. Creame 

writintl ability is vital, IS is a broad understandln& of computer 
tec:hnoloSY/treML 

Satlnar/Meellnp Co-ordinator 
Orpniaing all _... or Nationol Meetinp and Trlining 

Counes. Also responsible for membenhip promotion. 

Bttu!/111 - 21 days ,.., -- holiday, ftlJfl<Olllri/Jatory 

~----

fig 7: Spellbinder output 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Using a laser for other tasks 
We now have three laser printers in the HPCUA 

offices, a standard LaserJet, a LaserJet Plus and a 
LaserJet 500 Plus. A combination of snuut switches and 
protocol converters are employed in order that the lasers 
can be shared. In the example in figure 8, Vectras are 
connected to a parallel smart switch and thence to a 
LaserJet 500 Plus. The HP150's are serially connected 
to another smart switch, which in turn is connected via a 
protocol converter to the first smart switch. In this way 
many people using differing machinery can share the 
same printer. 

fig 8: Smart Switch Connections 

One of the problems sharing a printer is controlling 
which tray to use, what fonts are in the machine etc. To 
a degree this can be handled by escape sequences in 
MemoMaker and MS-Word printer setup strings. 

Of course, you can use the printers for many other 
jobs than DTP and letters. One of our largest print runs 
was preparing delegate invoices and badges for last 
year's Brighton '86 conference. Each delegate was set 
up on our HP3000 based accounting system as a sales 
ledger account - in this manner we could control receipts 
and make sure the books were easily audited A 
program was written to run down the conference sales 
ledger, read the variable information and produce two 
output files, one for invoices and one for badges. The 
invoice file was a ASCII image of the required invoice 

OA07P 

layout, each invoice terminated by a .PA line, which 
some people will remember is a WordStar end page 
marker. The file was transferred from the HP3000 to an 
HP150 using Reflections software, read into 
MemoMaker and printed as invoices on the LaserJet on 
standard headed paper. 

The badges were produced by downloading the file 
to the HP150, reading it into MS-Word, globally altering 
all the text to be 14 point Helvetica and then printing on 
specially prepared perforated ticket/badge sheets which 
were hand fed into the manual feed of the laser. Our 
badge preparation run in total took around two hours 
for 600 pre-registered attendees. 

How does a Laser printer work? 
At this stage we should take a look at how laser 

printers work. A laser printer consist of two parts: the 
print engine and the controller. Cheaper laser printers 
such as the HP LaserJet series use a simple controller, 
lasers such as the Applewriter use a more powerful form 
of controller known as a Rasterising Image Processor 
(RIP). The print engine is borrowed from the world of 
photocopying and takes care of the paper handling, 
toner application and fusing; the RIP does the intelligent 
work in terms of communicating with the host micro and 
controlling what is printed, and where. 

The HP LaserJet is built to HP specifications by 
Cannon of Japan and uses a print engine with a positive 
image engine. It is the print engine that determines the 
maximum print speed (pages per minute) and the print 
quality (dots per inch). · 

The laser scanners the paper and causes an 
electrostatic charge where toner is to be deposited. 
Some other manufacturers use a negative image charge 
where the whole page is charged and the laser then 
effectively neutralises the white area. The second 
method (negative image) produces more consistent and 
darker print with less tendency to graininess. 

The RIP consists of the software and electronics that 
converts the data sent by the micro-computer into a 
stream of instructions to control the laser beam. As the 
printing process is handled by the print engine, the RIP 
has to buffer the information coming down the line, 
work out the format and convert it into dots before 
sending the entire page to the print engine. The print 
engine may be capable of, say, 8 pages per minute but 
with complex tasks it may take the RIP several minutes 
to generate a single page of output. 

The HP LaserJet doesn't have a full RIP and the 
method used to convert the characters into dot patterns 
is to look up the letter in a font table and pick up the bit 
pattern - the actual pattern of dots which represent the 
individual letter. The font table can be stored in the 
ROM of the printer as an in-bUilt font, in a ROM plug-



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

in cartridge, or in printer RAM as a downloaded font. 
Each size in a particular font has to be held as a 
different bit-map. For example, on the TmsRmn/Helv 
cartridge, Times 8 point, Times 10 point, 10 point italic 
and 10 point bold are all stored as separate bit-maps. 
The advantage of this is the fast speed of access, the 
disadvantage is that you quickly run out of space. 

To illustrate the point, the figure 9 shows the memory 
requirements in bytes for downloadable Times Roman 
fonts (p/n 33412AD). 

Point 
6 
8 
10 
12 
14 
18 
24 
30 

TmsRmn downloadable fonts 
Roman Bold 
15240 14920 
18310 18690 
24710 24710 
30720 30600 
38660 38920 

56900 
91140 
134020 

Italic 
15240 
18880 
25160 
32640 
41280 

fig 9: font memory sizes 

If you tried to download !!!! the Times Roman fonts 
shown above you would need .65mb memory and the 
maximum user memory is .39mb. It should be pointed 
out, however, the table above only shows the portrait­
orientated Times Roman base set fonts. A similar 
amount of space would have to be set aside for 
landscaped-orientated fonts (increasing the total to 
13mb). 

The base set downloadable fonts also include 
Helvetica in portrait and landscape styles (total now 
2.66mb) and additionally the supplementary set of 
downloadable fonts fill in the gaps in point sizes, giving a 
total download of 5.8mb. Not having quite that amount 
of memory, my typical download is Times 8 point 
roman, 10 point all (roman + bold + italic), 12 point all, 
18 point bold and 24 point bold. This takes .33mb of 
memory out of the 39mb available. 

Assuming you did have the space for a 5.8mb 
download, all that one has to show it is the ability to 
print Times Roman and Helvetica in sizes ranging from 
6pt to 30pt, either horizontally or vertically - just two 
fonts out of the thousands available using proper 
typesetting machines. 

Current downloadable fonts are limited to 30 point -
although the LaserJet Series Il will take up to 48 point. 
Soft fonts are downloaded to the LaserJet by copying via 
the serial or parallel printer interface (if possible, use 
parallel - it's much faster. If you have to use the serial 

OA07/8 

interface it's worthwhile altering the dip switches to bump 
up the speed from the factory-set 9600bps to 19200bps ). 

It should also be pointed out that a 24 point typeface 
takes 3 times the space as 12 point, and also 3 x the time 
to download. ASCII fonts take up much less space than 
Roman-8 as they only consist of 128 characters instead 
of 256. One possibility which I havn't followed up is 
modifying the ASCII fonts to switch the £ sign for the # 
and only downloading the modified ASCII set. 

One point I didn't realise until too late is that the 
more fonts you download, the less room left for 
graphics. The reason H-P put so little memory in the 
original LaserJet ranks high as one of the mysteries of 
the computer world (closely followed by why they still 
didn't get it right on the LaserJet Plus which really needs 
three times the memory it has). 

The Laser can also print graphics and the normal 
graphics resolution of an HP LaserJet is 300 dots per 
inch. Each dot is represented by a bit which is either on 
or off, so one square inch requires 300 x 300 bits, or llk 
of memory. An A4 page of 8" x 11" requires about lmb 
of memory. Neither the standard LaserJet nor the 
LaserJet Plus have enough memory for a full page 300 
dpi dump. The LaserJet Plus can just about manage a 
page at 150 dpi - provided there aren't any downloadable 
fonts in memory; the standard LaserJet can only manage 
a page a 75 dpi - which in turn only requires about 64kb 
memory. 

LaserJet Series II 
This will be introduced at the beginning of March 

and is a second generation LaserJet. Still based on the 
300 dpi Canon engine, it is substantially smaller (8.5" 
high versus 11.4"), lighter (501bs v 71) and with a 
different toner cartridge design which is stated to give 
blacker blacks and 4000 copies per cartridge (v 3000). It 
only takes 30 seconds to warm up (compared to 2 
minutes) and takes paper weight up to 351bs. 

The standard machine comes with 512kb memory 
and is LaserJet Plus compatible. Six internal fonts are 
provided (no great deal - merely portrait and landscape 
versions of Courier 12pt, Courier 12pt Bold and Line 
Printer 8.5pt). Maximum character height is increased 
from the 30 point LaserJet Plus to over 500 point. Two 
standard LaserJet cartridge slots are provided at the 
front of the printer and one expansion memory slot is 
provided which can takes either lmb, 2mb or 4mb 
memory (giving 1.5, 2.5 or 4.5mb in total). The basic 
printer will· be around £2600 with additional memory 
priced around £400/mb. 

As well as serial and parallel, interfaces are available 
for ESI ShareSpool, DDL video and Apple Talk. To say 
the LaserJet II will be sucessful is an understatement -
get your orders in now. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

LaserJet 2000 
Another new machine appearing at the beginning of 

March, the Laserjet 2000 is aimed at networked systems 
and minicomputers. It prints at 20 ppm, and is 
compatible with the LaserJet Plus software, formatting 
and font cartridges. Double sided printing is optional 
and the maximum resolution is 300 dpi. Supported 
papers sizes include A4 and A3 and a 1500 sheet 
correct-order face-down output hopper is standard. 

There are 34 resident fonts (I hope this doesn't mean 
34 variations of Courier and Line Printer!) and the 
standard memory is l.5mb expandable using $750 lmb 
boards to 5.5mb. Two cartridge slots are at the back of 
the printer. 

Looking suspiciously like a Canon photocopier and 
standing 4ft high, the LaserJet 2000 comes in three 
models: 2684A at $20500 is the base machine with twin 
250 sheet input trays, 2684P at $22000 adds a 2000 sheet 
input paper deck, 26840 at $25500 also adds a duplex 
area underneath. 

One facility with an A3 device such as the LaserJet 
2000 is to print original pages at A3 size using, say, 14 
point text and then have the print shop photographically 
reduce it to A4 for printing. This technique effectively 
more than doubles the resolution. 

Apple Laserwriter 
Many of the early packages were based on the Apple 

Macintosh. The Mac has a bit-mapped graphics display 
which is ideal for the display of mixed text and graphics. 
Until the advent of Windows and high resolution 
monitors, the IBM PC and clones such as the Vectra 
were not suitable for some of the more sophisticated 
packages. 

The Apple LaserWriter printer is actually the most 
powerful computer built by Apple. Based on the Canon 
engine, the internal RIP (Raster Image Processor) uses 
a 12 MHz Motorola 68000 CPU with .5mb ROM and 
1.5mb RAM memory. The RIP uses a language called 
Postscript - more about this later - which takes a master 
outline of a character and scales it up and down to 
obtain the varying point sizes. 

The LaserWriter is often criticised for is slow speed, 
especially producing the first page. Postscript stores 
fonts in outline form and before a character can be 
printed, its outline must be converted into a bit map. 
The conversion takes about 0.01 seconds for a standard 
character in ordinary text and substantially longer for 
large or complex characters. 

Postscript saves each character's bit map in a cache 
to avoid repeating the conversion every time it prints a 
character. The time consuming conversion process is 
why the first page or two take longer to print. The 
author's of Postscript, Adobe Systems, use a document 

OA07/9 

of 3500 characters in 12-point Times in its speed test, 
but the test is performed after the characters are cached 
in the printer's memory. 

Although fine in theory, scaleable fonts will not 
provide the same finish as non-scaled fonts. Figure 10 
shows a 6 point and a 18 point sample of metal typeset 
output, both scaled to the same size. You can see that 
the 6 point type has darker stems and bowels, wider 
letter shapes and looser space between letters. This is in 
order to improve readability of the smaller font. Scaling 
all point sizes from one master outline will not provide 
such features. 

-,RQEN 6-;eg_qQv 
RQEN-baegno~ 

fig 10: scaled metal type 

Page Description Languages 
We now get onto the subject of Page Description 

Languages. HP's standard in this area is called PCL and 
has 4 levels defined, allowing programs which have been 
written for, say, a level 2 printer to be run on a level 3 
printer. The LaserJet sits on one of the top levels, using 
a superset of escape sequences. 

Canon-badged lasers use Diablo escape sequences -
which for the purpose of this article can also be classed 
as a PDL. Adobe's Postscript is used on the Apple 
LaserWriter and is a very powerful language capable of 
drawing circles, rotating text in a spiral, shading etc. 
Postscript is a non-compatible subset developed by ex­
Xerox employees from Xerox's Interpress. Other PDLs 
include C-script which is a clone of Postscript, 
Chelgraph's ACE, Prescribe which is used on the 
Kyocera laser, and Xerox Interpress. 

DDL versus Postscript 
Hewlett-Packard recently announced they would be 

introducing a new PDL called DDL on the LaserJet 
family. This is to be licensed by HP from IMAGEN 
Corporation. According to HP, DDL is better for 
longer documents than Postscript and is a second 
generation product. Adobe System's licencing scheme 
for Postscript may have had something to do with HP's 
decision - they insist on 10% of the printer wholesale 
price of each machine sold. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

The DDL system from HP will be largely external to 
the printer. Based on a 68000 processor with 2mb 
memory, the interface card fits into an expansion slot on 
the Vectra and is then connected to the LaserJet by a 
high speed video interface. The card provides in-built 
scaleable fonts to match those available in the 
LaserWriter. Both DDL and PCL standards can exist 
side by side in the LaserJet. The Vuieo Interface is 
similar to that on the LP300 laser launched by Cordata 
at Comdex '85 (1.89 MHz transfer rate). 

In the meantime, rumours abound that HP's DDL 
project has hit delays and won't be available now until 
mid 1987. In the meantime, one of the options open is 
to retrofit a Postscript RIP to a standard LaserJet. I am 
aware of two such systems, but one aspect which isn't 
publised is that you then lose PCL support and all fonts, 
whether downloadable or cartridge. PS Jet replaces the 
top cover assembly - and provides 13 typefaces in any 
point size for $2995. JLASER PLUS from Tall Tree 
Systems adds a 600 x 300 dpi resolution. 

Another alternative is the LaserMaster 
TurboCharger. This is an add-in board for a Vectra or 
IBM-PC compatible which works in conjunction with an 
HP LaserJet or Canon-based printer to speed up 
graphics output. It can be used with Ventura Publisher, 
MicroSoft Word, WordStar 2000, Spellbinder Desktop 
Publisher etc. The board has 1.5mb memory and a 
vector to raster converter with a video Uiterface. 60 
fonts (variations) are standard. The board costs £1395. 

Other Laser Printers 
The Kyocera is a 10 ppm engine, also found wearing 

Mannsman Tally or Sperry 37 badges. Advertising 
material suggests it is U + plug-compab"ble, but the 
emulation is incomplete - it can't do graphics in 
landscape and portrait graphics are rather ragged. It has 
three dynamic fonts - Times, Helv and Gothic, and is 
driven by Prescribe PCL. 

The Dataprodncts LZR 2665 is Postscript A3 sized 
laser capable of 26 ppm output. Uses negative image 
techniques. Price around £15,000 

Norbaln Data Systems market what is currently the 
fastest (?) desktop laser printer. Costing around £26,500 
it is based on the Hitachi engine, is capable of 40 ppm 
and uses two Inmos 32-bit Transputers as controllers. 

Agfa P400PS is a 400 dpi Postscript compatible LED 
page printer capable of 18 pages per minute. Uses the 
Adobe RIP with a 20mb hard disc to hold downloaded 
fonts. Up to 6mb RAM to pipeline page processing. 
Optional 2000 sheet paper bin and 20 bin collator. 

Lower cost typesetting machines 
The Unotroolc 100 is a laser typesetter from 

Linotype Limited of Wembley (who are actually' an 

OA07/10 

HP3000 user). As well as producing standard galley type 
output in proof or high resolution mode, it can also 
produce full page A4 in positive or negative, right or 
wrong reading. Font sizes from 4 point to l27 point. 

The Monotype Blaser is another low cost typesetter 
with text sizes ranging from 6 to 96 point. Interfaces to 
the Mac. From Monotype of Redhill. 

Desk Top Publishing Packages 
Now we get on to all the vapourwarel For a start, 

let's set the scene about what a DTP package is 
supposed to do. DTP packages automate the paste-up 
process. If you have never had the need to do a manual 
paste-up you are unlikely to require something like 
PageMaker. They are NOT word processing packages. 
You can't design a great page layout programme and 
expect it to be a great word processor as well. The 
design goals are completely different - word processing 
should handle very long documents, scroll very fast and 
include features such as outlining, merging, search & 
replace. Page layout has to concentrate on production 
of the printed page. And in the same way that word 
processing programs do not write, page makeup 
programs do not design pages for you. 

Windows and GEM are the key to DTP flexibility. 
There are now many different packages, different 
monitors, different printers, not to mention the variety 
of page description languages. Wmdows allows you to 
custom configure these and also to cut and paste 
bewteen application packages. The normal method of 
working which a DTP section might well adopt is for 
several stations to be used for text input, using 
something like MS-Word with simple style sheets and 
variable sized text, and for a central station to be used 
for the actual task of on-screen paste-up. 

Try to match the DTP package and the WP package 
so that simple textual highlighting can be carried across 
during the cut-and-paste, rather than having to re-apply 
the highlighting from within the DTP package. Another 
consideration may be to choose a package which can 
output to a phototypesetting machine as well as a laser 
printer. 

The cost of the software packages is not a significant 
amount of the total expenditure. If you have diverse 
needs, you may choose to purchase more than one 
package - but be aware of the training overhead. 

Pagemaker 
The leading DTP system on the Apple Macintosh, by 

Aldus Corporation. Currently being totally rewritten in 
C and to be implemented simultaneously on the Mac 
and IBM PC/AT. Earlier version suffered from being 
too page orientated - not really suitable for a document 
larger than 8 pages. New version can theoretically 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

support U8 pages per file, with page sizes from A5 
through to A3 and Tabloid. 

Pagemaker's early lead on the Mac does not 
necessarily mean it will be the winner on the IBM PC 
and compatibles. Has the advantage of being well 
supported and good manuals. Suitable for small 
newsletters and short documents. Each page has to be 
initially copyflowed separately - which is rather 
annoying, but changes thereafter · will automatically 
ripple through the document. A variety of pre­
determined templates, including 21 newsletter designs, 
are being developed, to be sold as the PageMaker 
Portfolio Series. 

Xerox Documentor 
Purpose built, non-IBM compatible hardware 

comprising Xerox 6085 workstation plus Xerox 4045 10 
ppm laser and Viewpoint software. Good on-screen 
resolution of 1184 x 925 pixels, however totally spoilt by 
only supporting text up to 36 point! 

Users are advised not to turn off the system as it 
takes 25 minutes to re-boot. The Xerox 4045 laser uses 
Interpress PDL (with poor definition fonts) and output 
can be re-directed to a Compugraphic phototypesetter 
provided it has an lnterpress interface. Prices from 
£7500 to £14000 depending on size of screen and 
capacity of hard disc. 

Ventura Publisher 
Marketed by Xerox. Runs on IBM-compatible 

machines under the GEM environment. Allows you to 
determine where pages and columns start and comes 
with its own style sheets. Never actually places the text 
on the page, but merely tags the appropriate files, rather 
What You See Is What You Will Get. Good for 
manuals and supports up to 64 chapters, each of around 
50 pages. 

Requires a lot of disc accesses and would benefit 
from using extended memory as a RAM disc. Drives 
Postscript lasers and typesetters, and HP Lasers with 
Interpress support in the pipeline. Probably the best 
overall, although Xerox havn't got the distribution act 
together to push it as much as it deserves (spending all 
their time training the sales force to sell the Xerox 

. Documentor). Costs around £795. 

Other DTP packages 
Frontpage: From Studio Software, sold in UK by 

Paintpot Computers. Costs around £750, or £1300-
£1800 with typesetter interfaces. Drives a variety of 
Lasers and supposed to have both PCL and DDL 
drivers. 

LetraPage (MacPublisher on Mac): Developed by 
Boston Software on the Mac, the rights to MacPublisher 

OA07/11 

were taken over by Letraset and the package renamed 
LetraPage. Due to development problems, the package 
was dropped in mid-February - an example of 
vapourware! 

Ready-Set-Go: The second most popular DTP 
package on the Mac, Ready-Set-Go was developed on 
the Mac by Manhatten Graphics and marketed in the 
UK by Heyden. In mid-February in an amicable 
agreement, the marketing rights were transferred to 
Letraset (see above). Similar to Pagemaker in concept -
does some things better, some things worse. 

SuperPage II: Bestlnfo's SuperPage runs on IBM 
PCs and outputs to 25 typesetters and laser printers. 
Can be run standalone or networked via Novell's 
Netware LAN. Used predominantly in a multi-user high 
production environment. 

Harvard Professional Publisher: Again from 
Bestlnfo. Has its own front-end - doesn't run under 
Windows or GEM. Is a compromise between Ventura 
and Pagemaker. Also quite complicated. 

Wordcraft Elite and Image-master: Developed by 
Wordcraft of Colchester, sold also by Canon as part of 
their Personal Publishing System. Powerful WP system 
with page makeup bolted on. 

Autopage: An add-on to AutoCAD, AutoPage 
allows text pages from Wordstar and AutoCAD 
drawings to be superimposed on a page. Useful for 
technical manuals - and there are 50,000 AutoCAD 
users world-wide. 

High-end systems 
There are quite a few high-end systems. which 

shouldn't concern most users. DialText from Talbot 
Computers based on Macs with Newswrite software. 
One installation is in Eddy Shah's Messenger Group of 
newspapers where 98 Macs are set-up in networks of up 
to 14 machines. Other such systems include ATEX -
used for the new Independent newspaper, Interleaf, 
Texet, Omnipage and Xyvision. 

Design aspects 
Page composition is as much an art as a task, 

requiring a new set of skills and a different working 
vocabulary. While virtually anyone can use a word 
processing package, designing an attractive page is not 
necessarily an easy task. Users who do not understand 
the aesthetic restraints imposed by the rules of 
typography are easily tempted by the multitude of fonts 
and typesetting tricks offered by the programs. The 
result can be a mess - documents that communicate less 
instead of more. 

Consider the difficulties involved in publishing your 
own documentation. You need someone who can plan a 
layout, make information accessible, write coherently, 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

spell, proof read, have design skills, an eye for a 
diagram, and the patience to put a product together. 
They must be happy working with leading-edge 
technology and have more than a passing knowledge of 
magazine production through old channels if they are to 
appreciate the new. In addition they need the time to 
put together company memos, reports and promotional 
material - and to stand by a laser printer whilst the pages 
trundle off at somewhat less than high speed. 

There are probably only 100,000 to 200,000 people in 
the whole world who have the ability to produce good 
looking type. If the DTP market is to be as large as 
predicted, the only way is either to train everyone to be a 
typesetter, or to isolate the user from design decisions by 
using pre-set styles and formats. Some programs 
attempt to overcome this by setting up strict style-sheets 
which force the use into a sort of straightjacket. While 
this attitude helps, more documents will end up looking 
the same which rather defeats the purpose. 

What is really needed, even in a smallish company is 
dedicated personnel. With such requirements it's 
probably better to stick to your local typesetter. Sellers 
of DTP packages argue that buyers will save money by 
dispensing with expensive outside designers. But 
graphic design requires aptitude and professional skills 
which have to be learnt - and the learning process is 
expensive. 

The price for a complete DTP system is about £8000 
to £10000 ($11000 to $14000) and this is too much to pay 
for machinery which is only used occasionally. Beware 
of costings which show the equipment cost being 
defrayed over live years - we all should know that three 
years is more sensible, and over three years some of the 
sums look tem'ble. Publishing programs that run on 
existing PCs have not helped because most of the 
computers need extra hardware such as high-resolution 
screens or a mouse, and an expensive laser printer. 

Technical Summary 
Talking about equipment, what is needed to set-up a 

DTP centre? Hewlett-Packard's answer is the new 
Vectra Publisher bundled, no doubt, with a LaserJet II. 
The Vectra Publisher is a Vectra Series SO (640kb 
memory, serial/parallel port, 1.2mb floppy, 20mb hard 
disc), coupled with a Mouse, PageMaker and MS­
Wmdows software and either an EGA colour monitor or 
a Hercules-spec monochrome. 

I think HP should be more realistic about the type of 
hardware needed for DTP - anyone buying the HP 
bundle will quickly run out of steam. For a start, 20mb 
disc space won't go far with Graphics Gallery raster files 
taking up lmb per A4 page! An HP 40mb disc would be 
more sensible - as well as being a good deal faster. It 
may be worthwhile investigating larger discs - 80mb+. 

OA07/12 

To further speed up disc accessing times, buy lots of 
extended memory and run it as a RAM disc. 

If you value your eyesight, don't buy an EGA 
monitor (640 x 350 resolution) or the HP monochrome 
(730 x 348). Instead choose a Wyse 700 (1280 x 800) 
which is about the same price as HP's EGA and three 
times the resolution. Other more expensive alternatives 
are the Moniterm Viking II (1280 x %0) sold by Riva 
and Sigma Design's Laser View monitor (1664 x 1220). 
If you like upright screens, look at the Genius Full Page 
Display System, or the Etap A4 display (710 x 1456) sold 
by CCA Micro Rentals. F"mally, if you've just won the 
pools look at the Conographic 2800 which has a 
resolution of 2880 x 1024 pixels. An optional 
ConoVision 2800 RIP can drive the HP LaserJet al 600 x 
300 dpi resolution, with a format time of 8 seconds per 
page! F"mally, on the laser side, by all means buy the 
LaserJet II, but make sure you add al least 2mb and 
preferably 4mb of extra memory (don't forget - there is 
only one slot so if 2nib isn't enough you can't just add 
another). 

Do you need a scanner? 
Another announcement at the beginning of March is 

the HP ScanJet. This is a 300 dpi scanner with a price 
that should wipe the other systems off the market. 

But do you really need a scanner? Why take a 
perfectly good diagram or photograph into a scanner 
and then reproduce it at only 300 dpi. Bearing in mind 
the problems of half tones, the best way to paste in 
photographs and diagrams is manually before the page is 
filmed for printing. Do not do something just because it 
is possible. The only viable uses I can see for a scanner 
is when the document being prepared is going to be 
printed as originals on .the laser, when the scanned 
picture is to be transmitted as part of an E-Mail 
document, or J>OSS1'bly, in a high volume shop, for 
placement purposes only. 

Summary 
Once some of the mist clears from all the 

vapourware, we will probably see some very good DTP 
packages. For someone in the print trade it is a very 
exciting time, and a race between laser phototypesetter 
technology getting cheaper on the one hand, and laser 
printer technology getting higher quality on the other. 
The main problem on laser printers at the moment is 
the extremely' poor choice of fonts available. 

Research and development of 300 dpi technology is 
finished, most people are looking towards 480 dpi (new 
AppleWriter), and beyond to 800 dpi+. Colour lasers 
are on the horimn using the four primary colours -
yellow, cyan, magenta and black. The main problem is 
one of registration (getting printed dots from each 

I 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

engine to line up). OMS arc actively developing a four 
colour laser with a product announcement expected 
soon. 

Look to see new industries springing up to support 
DTP - high street laser copier centres, designer layout 
packages, font families etc. 

A brief history of printing 
The necessary components of printing (the art of 

paper-making, the invention of ink made from lamp­
black, and crude wooden and stone seals) came together 
in China around the fifth century AD. It took another 
thousand years for paper-making and relief printing to 
reach Europe via Morocco and the Arab world. 

Nine hundred years later, in the middle of the 
fifteenth century, Gutenberg invented the letter-press 
using moveable type. The typewriter was developed just 
114 years ago in 1873, followed three years later by the 
idea of casting type one line at a time (Linotype), 
followed shortly after by Monotype - where each 
character is cast separately for higher quality books etc. 

The next really major development as far as our 
interest in DTP is concerned was Xerox's invention of 
photocopying in 1948, followed shortly after by 
phototypesetters. These used character masters in the 
form of photographic strips in conjunction with a flash 
lamp and some sort of lens. The final invention was the 
desktop laser printer which was produced by Canon's 
marrying of photocopier technology with a digital laser 
setter. 

nm Cul/is 

Biography 

Originally an Accountant before becoming a convert to the high 
salaries of computing, Tim. Cullis' first experience of HP3000 
equipment was in 1978 when, as Technical Director of Air Call 
Computer Systems (a UK software house) he initiated an OEM 
contract with Hewlett-Packard. 

A long time supporter of user groups, Tim was the Programme 
Chairman for the Edinburgh '83 HPIUG International Conference. 
Since January 1984 he has worked full time for the HPCUA (UK HP 
user group) as its Executive Director, starting with a staff of one -
himself - working from his study, currently with a staff of eight 
people, with offices in North West London. 

The HPCUA publish two HP USER magazines which are widely 
circulated in the UK and elsewhere in Europe. Extensive use has 
been made of desktop publishing techniques since March 1984. 

Suggested Reading List 

De5ktop Publi5her (monthly newsletter) 
£125 for twelve issues 
Published by The Desktop Publishing Company 

Desktop Publishing Today 
f.96 for twelve issues 
Published by Compass Press 

The Complete Guide to Pasteup (2nd edition) 
£12.50 by Walter B. Graham 
Published by Popular Communications 

Graphic Ideas Notebook 
£13.50 by Jan Y. White 
Published by Popular Communications 

Editing for Print 
by McDonald 
Publitihed by Porto Publishing ISBN 0355 10787 6 

Post.scripl Language Reference Manual 
£21.95 by Adobe Systems 
Publiihed by Addison Wesley ISBN 020110174 2 

Postscript Tutorial and Cookbook 
£16.30 by Adobe Systems 
Published by Addison Wesley ISBN 0201 101"79 3 

The Alternative Printing Handbook 
£4.95 by Chris Treweek and Jonathan Zeitlyn 
Published by Penguin Books ISBN 0 14 046 509 X 

The Print Book 
£9.95 by Information Transfer 

OAOl/13 

Published by National Extension College ISBN 0 86082 666 X 

The Complete Guide to Illustration and Design 
Terence Dalley 
Published by Phaidon Press ISBN 0 7148 2347 3 

The Illustrated Handbook of Desktop Publishing and Typesetting 
£23.60 by Micheal Klepcr 
Published by Tab Books (available April 1987) 

Desktop Publishing using PageMaker on the Macintosh 
£14.50 by Andrew Lucas 
Published by Ellis Horwood 

The Desktop Publishing Companion 
£14.95 by Graham Jones 
Published by Sigma Press (available April 1987) 

Personal Publishing with the Macintosh 
$24.95 by Terry Ulick 
Published by Hayden 

Desktop Publishing From A to Z 
£17.95 by Grout, Athanasoplulos and Kutlin 
Published by McGraw Hill 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

A Spectrum strategy for the current HP3000 user 

Nick M. Demos 

Performance Software Group 

12 Hillview Drive 

Baltimore, MD 21228 

301-242-6777 

R/0111 



HP3000 
INTERNATIONAL CONFERENCE R/0112 
VIENNA 1987 

A SPECTRUM STRATEGY FOR THE CURRENT HP 3000 USER 

The writer was a Systems Engineer with IBM during the introduction 

of the S/360. The S/360 was a single architecture, implemented in 

different CPU's, that replaced the existing widely different 

models of IBM computers. While it established a new standard for 

all IBM computers, it was radically different in architecture 

(instruction set) then any of the existing IBM computers (1400 

series, 1620, 7040, 7070, 7090, etc.). The parallel to HP's 

Spectrum project are striking. 

The Wall Street Journal labelled Spectrum •the most adventurous 

gamble the company has ever undertaken.• We have all been hearing 

about Spectrum for a long time. Remember when it replaced 

•vision• as the HP 32 bit entrant? 

Now that the first of the Spectrum series are about to be 

delivered, we can take a look at what the initial results of this 

five year development have been. The first of the 900 series 

(which is what HP is calling the Spectrum offerings in the 

commercial marketplace) is the 930. The Series 930 uses Schottky 

TTL logic to deliver CPU performance of 4.5 million instructions 

per seconds. It will support 24 megabytes of main memory and has 

dual I/O busses as a standard feature. It will be the first 

machine of this series to reach the customer. First shipments of 

the 930 are expected during the fourth quarter of 1986. 

The 930 is a stop gap machine. I would almost say that it is a 

pilot system, which will soon be replaced as HP perfects its 



HP3000 
INTERNATIONAL CONFERENCE R/0113 
VIENNA 1987 

NMOSIII VLSI chips and other more advanced circuitery. It will 

incorporate the logical architecture of Spectrum. Its main 

benefit will be to those customers who have saturated their 

current model 68's or 70's and cannot divide the application 

conveniently between two or more CPU's. In order to take 

advantage of the improved performance, they will have to recompile 

into native mode and convert to Turbo-Image if they have not 

already done so. This means that their source programs must be 

either in COBOL!!, Pascal or Fortran 77. Those are the only 

native mode compilers that are available at first release of the 

930. 930 system prices start at $225,000. 

The series 950 is the first of the Spectrum series to take 

advantage of HP's NMOSIII VLSI processor. It will execute 6.7 

million instructions per second. It will have up to 64 magabytes 

of main memory. It is the first HP product to marry the new 

architecture with new chip technology. However, it will not be on 

the price list until later this year. Its' price is expected to 

be in the $300,000 to $350,000 range. This will offer a much 

better price performance package up grade for current 70 model 

users. 

HP has taken the concept of Reduced Instruction set Computing, 

adopted it and added other new developments in hardware and 

software design. They call the result HP Precision Architecture. 

The basic features of Precision Architecture are: 

1. Reduced Instruction Set 

2. Fixed-length and fixed format instructions 



HP3000 
INTERNATIONAL CONFERENCE R/0114 
VIENNA 1987 

3. Load/Store design 

4. Hardwired instructions 

5. Single Cycle operation 

6. Optimizing Compilers. 

Reduced Instruction Set Computers (RISC) are the current darlings 

of the computer industry. In a nutshell, this engineering 

philosophy states that a well chosen simple set of instructions 

that can be hard wired is better than a much richer more complex 

set, usually implemented in microcode to keep the cost reasonable. 

First of all the CPU is much easier to engineer and therefore can 

be designed economically to run at much higher speeds. Secondly, 

well designed •optimizing• compilers can be more effectively 

implemented for a RISC machine then the previous CISC (Complex 

Instructions Set Computers) because the compiler writers have 

fewer instructions from which to choose. The rationale for RISC 

is that changes in circuit technology, the speed and cost of 

accessing memory and better high level language compilers have 

made the CISC machine technologically obsolete. Memory access 

speeds have increased faster than CPU speeds. RISC, with fixed 

length, fixed format instructions and single cycle operation is 

inherently very fast for most operations that have to be performed 

on today's computers. However, what is "Reduced" is not defined. 

There are about 127 instructions in the 900. I can remember 

computers that had only 1/5 that many instructions. The HP 

implementation of RISC is not that •reduced." 

Other elements of the 900 Series are also a radical departure from 

current 3000's. A virtual memory addressing scheme is used 



HP3000 
INTERNATIONAL CONFERENCE R/0115 
VIENNA 1987 

whereby disc memory is regarded as an extension of main memory and 

is •mapped• into main memory as required. This scheme fits very 

well into the caching scheme used by the 900 Series and is a very 

effective method to access both data and instructions. However, 

it is a radical departure from the current methods, although it 

eliminates the dual buffering inherent in a cached 3000 system 

today. Obviously, the entire I/O system must be re-written to 

support this I/O method. 

The software is the critical element in the 900 Series. Not only 

is a huge amount of software required for the operating system, 

which goes under the name MPE/XL, but the new optimizing compilers 

require an even higher level of technological competence then 

previous compilers. At the same time HP is attempting to 

integrate their IMAGE database system with their new SQL 

relational data base. On top of that they are committed to run 

almost all existing code in compatability mode. All this is a 

huge undertaking. Just doing the new XL version of MPE is a 

larger undertaking then HP has accomplished recently. It is the 

software area that caused many people to have doubts about HP's 

ability to deliver the 900 Series on schedule, with reliable 

software that gives the promised performance. There is no 

question that HP will be able at some point to deliver a quality 

900 series product with a reliable, complete set of program 

products, operating at the promised performance levels. However, 

today they are a long way from this goal. Getting there is no 

easy matter. 



HP3000 
INTERNATIONAL CONFERENCE R/01/6 
VIENNA 1987 

As an interim step to gaining improved throughput on the 900 

series without having to recompile, HP has something called the 

Object Code Translator. This will gain an estimated 15% speed 

improvement, and is meant to assist users in cases where they 

cannot recompile. If it is reliable, it will be of use to users 

with SPL code. 

What does the market think of this radical new product line from 

HP? There have been several comments that indicate that while the 

900 Series is impressive, it has been a long time coming. "HP is 

currently comparing Spectrum to (DEC's) 8600. By the time the 

systems come out, they will be competing with an entirely new 

machine,• said Michael Murphy, co-editor of the "California 

Technology Stock Letter.• In many comparisons of price that HP is 

using to show the advantage of the 930 and 950 over other vendors 

offerings, HP is including databases as part of the comparison. 

This makes HP look more favorable because the HP price includes 

HPIMAGE, while on the other machines the data base is a separate, 

relatively high priced product. While one might argue that today 

a data base system is a necessary part of any viable computer 

system, including it in the comparison can be misleading, because 

the users of the competing equipment may have less expensive data 

bases available to them. 

HP's success with this new series seems to depend on two factors. 

1. How long will it take HP to stabilize the new product at a 

high level of performance and with a complete software 

offering? If this can be done relatively quickly and as 

promised, then HP has laid the groundwork for an architecture 



HP3000 
INTERNATIONAL CONFERENCE R/Otn 
VIENNA 1981 

that will benefit them for years to come. If they are slow to 

implement their excellent strategy, their credibility will be 

damaged. 

2. What will the competition do in the next year or two to 

counter and perhaps improve on these new offerings? HP has no 

lock on any of this new technology. It is known that every 

other major vendor is looking seriously at RISC and other new 

technologies to improve price performance. 

Where does this leave the HP 3000 user who is looking at Spectrum 

as an upgrade for his system? The series 70 will be a better 

choice for many at least in the short term. There are two classes 

of 3000 users who have an immediate interest in the 900 series. 

1. Those users who need CPU power beyond that available on the 

model 70 and require that it be on one computer (because of 

the size of a database, perhaps). 

2. Those in large corporation with many 3000's who can afford to 

bring a 900 series in house as prototype for future systems. 

Those who are not in one or both of the above catagories should 

probably upgrade to or acquire additional mod•l 70's. 

Havipg made the decision to go to a 930, the user must develop a 

detailed migration strategy. He must balance the conversion 

effort of going to native mode with the benefits. Only native 

mode processing will give him cost/performance benefits that 

-------------- ----------



HP3000 
INTERNAnONALCONFERENCE 
VIENNA 1987 

justify the acquisition of a 930. Even programs to be run in 

compatibility mode need to be tested at least until there is some 

confidence that compatibility mode is bug free. 

By adopting a radically new architecture, HP has taken a giant 

step toward rationalizing their computer line for future growth. 

It is a excellent, bold, decisive strategy on HP's part to 

increase their market share in the long run. The immediate 

problem for the current HP user who needs more processing power is 

how to get from here to there. It will be a while before the 900 

series stablizes into the kind of super reliable system we have 

come to expect from HP. 

The next few months will be very interesting for all of us 
involved with HP. 



HP3000 
INTERNATIONAL CONFERENCE R/0211 
VIENNA 1987 

MPE XL Contributions to HP3000 System A vallablllty 

Introduction 

Dave Trout 
Hewlett-Packard Company 

2 Choke Cherry Road 
Rockville, MD 20850 USA 

This paper will examine new features and enhancements in MPE XL which contribute to 
increased reliability and availability of the HP3000 900 Series systems. Particular emphasis 
will be placed on new file system features, the system directory design, Volume Management, 
and MPE XL Backup/Recovery. 

The ability to withstand soft disc failures in MPE XL is a major improvement over earlier 
versions of MPE and is a result of the enhanced file system and distributed system directory. 
The new directory design will also allow more 1/0 concurrency and therefore better 
performance. Directory expansion is now simple and automatic; a start from scratch 
(RELOAD) is no longer necessary. Better file space utilization will result from the improved 
extent allocation in the file system. These are just a few examples of improvements in MPE 
XL which contribute to a more reliable and available HP3000 system. 

Each enhancement will be presented by examining the implementation used and the resulting 
benefits. Although some details of file label and directory data structures will be given, this 
will not be a discourse on MPE XL internals. Some features discussed here will not be 
available in the first release of MPE XL, but are planned for the product. This will be noted 
where appropriate. 

Background 

HP's commercial customer base has increased in diversity over the years. With the 
introduction of the Series 37 and now the MICR0/3000, we have expanded the number of 
low-end customers substantially. At the same time, our high-end customers (many of whom 
are now running large Series 70 configurations) have encountered continuing growth in 
applications and the resulting need for more computing power. In addition, HP is finding new 
customers whose computing workload will require more capacity and performance than we 
have traditionally made available in the past. 

In the beginning stages of development on MPE XL, it was very obvious that HP must address 
these growth trends on both ends. Three very important objectives for MPE XL were defined: 
1) greater performance and capacity, 2) enhanced ease of use and functionality, and 3) higher 
availability and reliability. To our high-end customers especially, the greater performance 
and capacity is an obvious requirement. But equally important is the higher availability and 
reliability. In some customer situations, the workload pressure is more a result of reduced 
access to the system than a problem with performance. 



HP3000 
INTERNATIONAL CONFERENCE R/0212 
VIENNA 1987 

In a broad sense, the term "availability" can be said to encapsulate the term "reliability." That 
is, if a system is more reliable, it follows that it should also be more available. But increased 
availability must also come from a concerted effort to reduce system management time, time 
spent on tasks which in the past have required that users not be allowed on the system or time 
during which reduced functionality is in effect. The MPE XL features to be discussed here are 
the result of a cognizant effort to address our customers' current and future needs for reliable 
and available systems. 

File System 

The file system in MPE XL is in many ways evolutionary and is designed with the following 
objectives: 

• Exploit performance advantages of Precision Architecture. 

• Compatibility for all non-privileged MPE applications and data. 

• Provide a common interface that efficiently supports MPE XL and HP-UX. 

• Significantly increase data availability over current MPE. Features will include: 

I) Automatic space and file recovery after a soft crash. 
2) Optional hard crash recovery in case of disc head crashes. 
3) Common services to database and users through transaction intrinsics. 
4) Dynamic file backup with users concurrently accessing files. 

• Extend file name resolution, accounting, and security features. 

• Support future language localization requirements. 

• Provide extended features which are desirable to the commercial customer base. 

• Provide for data sharing across multiple SPUs. 

These objectives will be met in phases as MPE XL matures. Even though essentially 100% 
compatibility has been provided, the MPE XL file system structure is new. Each important 
file system function has been partitioned to achieve modularity, extensibility, and leverage of 
common components. Routines can be straight-forward and designed for single purpose 
functions. This is in contrast to the MPE file system which is essentially a single path with 
many special-case branches. The benefits of this modularity should be obvious: better 
reliability and maintainability. 

The MPE XL file system is structured in three layers: I) the intrinsic layer, 2) the Type 
Managers layer, and 3) the Storage Management layer. The user application will interface 
through the intrinsic layer which provides isolation from the details of file access and device 
management. The actual data is accessed through the Storage Management layer. There will 
be separate Storage Management modules for discs, tapes, printers, and terminals. Between 
these two layers reside the Type Managers. There is one Type Manager for each type of file 
(circular, fixed, variable, etc.); a Type Manager can be added or deleted without affecting any 
other part of the overall file system. 



HP3000 
INTERNATIONAL CONFERENCE R/0213 
VIENNA 1987 

Other MPE XL components, such as Virtual Space Management (VSM), Secondary Space 
Management (SSM), Label Management, and Memory Management, play a supporting role to 
the file system. Figure 1 shows the various layers and modules of the file system. 

User 

MPE XL File System 

I Intrinsic Layer I 
t 

Type Managers 

l CircularI Fixed IvariableJ ... etc .. 
Directory 
Services 

t t 

Storage Management Layer I Label Management I 

Kernel ! ! ! 

MPE XL File System (Figure 1) 

In the first release, the intrinsic layer will contain both compatibility mode (CM) and native 
mode (NM) code. Buffered, unbuffered, and multirecord unbuffered access on fixed and 
variable records will be supported in native mode. Some new intrinsics, such as HPFOPEN, 
will introduce a more friendly approach to parameter passing. The FOPEN intrinsic, with its 
multitude of positional parameters, has always been prone to coding errors. In the HPFOPEN 
implementation, keyword/keyvalue pairs are used, much like the fairly recently introduced 
FFILEINFO intrinsic. This provides extensibility, flexibility, and a great deal more reliability 
in coding. 

In addition, HPFOPEN is used to gain mapped 1/0 access to files, a method which provides for 
greatly improved 1/0 performance. Mapped 1/0 eliminates explicit buffering by the file 
system and provides access to data at the level of LOAD and STORE machine instructions. 
Logical to physical memory address translation is done in hardware (Translation Lookaside 
Buffer, or TLB) instead of software. For mapped 1/0, HPFOPEN returns a virtual address 
pointer which is then used by the programmer to access the file. The syntax for HPFOPEN is 
shown in Figure 2. 



HP3000 
INTERNA TJONAL CONFERENCE 
VIENNA 1987 

HPFOPEN(filenum,status[,itemnum,item 
[, itemnum, item 
[,itemnum,item 

[, itemnum, item] ... ]]]); 

HPFOPEN Intrinsic Syntax (Figure 2) 

Transaction Management 

R/0214 

Transaction Management (XM) is an integral part of the MPE XL file system design. In the 
current MPE file system, the notion of a transaction does not exist. Management of locking, 
logging, and recovery mechanisms is left to the application, external to the file system. By 
utilizing operating system services for these mechanisms inside the file system, Transaction 
Management can produce greater efficiency and data integrity. Some externals of XM may 
not be available to users on the first release of MPE XL. 

A transaction can be said to have certain basic properties: I) Consistency, 2) Atomicity, and 3) 
Durability. Consistency insures that data is transformed from one state to another in a 
prescribed manner, i.e. the actions being performed on the data must follow a certain 
"protocol." Proper serialization of transaction components (reads and writes) in a 
multi-process, multi-transaction environment is a result of consistency. Atomicity describes 
the "wholeness" of a transaction; that is, either everything is done or nothing is done. When 
nothing is done, the transaction is said to be "aborted." When everything is done, it is said to 
"commit." Durability means that once a transaction is committed, it cannot be annulled; it can 
survive its creator through disc head crashes and system failures. Transaction Management in 
MPE XL provides for all of these desirable properties. 

The concept of log sets is implemented in XM to provide the necessary physical consistency (in 
case of system crash) and logical consistency (in case of transaction aborts, user process aborts, 
and system crash). Both before and after images are written to the log so that roll-backward 
and roll-forward recovery methods are available as appropriate. Before images allow a 
transaction to be reversed, if necessary, as in a deadlock situation (see below). The recovery 
mechanism in XM is made to be as automatic as possible. Following a soft crash, it will read 
the log in order to restore the work of all transactions that did not make it to disc, but which 
were seen as committed by the user. Any transactions in progress which were not yet 
committed at the time of the crash will be undone with the AbortTran XM primitive. Hard 
crash recovery will be roll-forward; starting with a clean, consistent backup of the data, the 
log file(s) will be used to re-apply all committed transactions. 

A log set is defined as a log file and all the files attached to the log. The log file itself can be 
mirrored (that is, a duplicate log file will be maintained) on disc or tape. This is to provide an 
additional level of protection should the prime log file be destroyed by whatever crash occurs. 



HP3000 
INTERNATIONAL CONFERENCE R/0215 
VIENNA 1987 

Locking within XM can be automatic or it can be controlled by the user. Automatic locking is 
handled "on-the-fly" as the user accesses virtual pages of data. A set of intrinsics is provided 
which are used to bound transactions (XMBeginTran, XMEndTran) and determine when locks 
can be released. Explicit control is given to the user through the XMLockVARange and 
XMUnlockVARange intrinsics which allow specifying locks on certain virtual address ranges. 
With any scheme of locking, deadlocks can occur in situations involving multiple processes 
trying to access the same data. XM will detect deadlocks and resolve them by backing out one 
of the transactions and thereby releasing its locks. This allows the other transaction to 
proceed. Notification is given to the application requesting the transaction which was undone 
so that it can re-try or take some other action. 

It's not enough to provide just these data integrity enhancements. In a heavy disc transaction 
environment, concurrency must also be maintained to effectively utilize the processing power 
available. Multiple users on potentially multiple SPUs must be able to gain access to the data 
at the same time. The concurrency vs. overhead tradeoff problem is addressed in XM by using 
a unit of lock (virtual address range) and locking strategy which is efficiently supported by 
Precision Architecture. Lock conflicts are minimized by examining how the data is being 
accessed; a read access for read-only transactions produces a "read shared" lock, allowing 
concurrent access for other similar transactions. 

File Labels and Extents 

In the current MPE file system, the file label is stored on disc immediately in front of the first 
extent of the file. In MPE XL, file labels and extent descriptors are kept in a special data 
structure, the Label Table, which is separate from the extents themselves. There is one Label 
Table per disc volume and its location on disc is predefined. The label entries in a particular 
disc volume's Label Table are for files whose first extents reside on that volume. As in MPE, 
file extents need not all reside on the same volume (but must be contained within a Volume 
Set). However, all extent descriptors for a given file must reside in the same Label Table. 

The Label Table has three types of entries: I) label entry, 2) extent descriptor entry, and 3) 
free entry. Each file has one label entry and many (practically unlimited) extent descriptor 
entries. Related label and extent descriptor entries for a particular file are linked together by 
standard pointer techniques. Figure 3 shows a simplified view of a Label Table. 

There are many benefits to be had by maintaining file labels and extent descriptors in this 
way. The Label Table can be very large, limited essentially by available disc space. It follows 
then that a single file can have practically an unlimited number of extent descriptors and 
therefore extents. In addition, file system extents in MPE XL are variable in size. The net 
result is that available disc space is more efficiently utilized, the need for disc condensing is 
eliminated (increased data availability), and there is no artificial limit on file size. 



HP3000 
INTERNATIONAL CONFERENCE R/0216 
VIENNA 1981 

File Label 

File Label 

File Label 

Extent Descriptor J 
Extent Descriptor 

Free 

[ 

Extent Descriptor 

Free 

Extent Descriptor 

Extent Descriptor ~l 
MPE XL File Label Table (Figure 3) 

System Directory 

MPE XL Directory Services resides in the the file system above the Storage Management layer 
and accesses it through Directory Object Type Managers. Figure 4 expands on Figure 1 and 
shows the flow of a file open: 

HPFOPEN Intrinsic 

Directory 
Services 

Access Control 
(security) 

Directory Object Type Managers 

Storage Management 

MPE XL Directory Services - First Phase (Figure 4) 



HP3000 
INTERNATIONAL CONFERENCE R/0217 
VIENNA 1987 

The Access Control Function (ACF) shown in the preceding diagram is a user definable 
security mechanism which allows the user to build his own security matrix for a file. In the 
first phase, ACF will only implement the standard hierarchical security which is available in 
MPE today (Jockword, file level, group level, account level). 

While maintaining complete compatibility with current MPE, the new services and data 
structures provide for many extensions and eliminate a number of past artificial limitations 
and hindrances on system availability: 

• There is no limitation on the number of files per group, groups per account, users per 
account, accounts per system, or total directory entries per system. 

• Directory "tilting" (which causes difficulties in creating new entries) is eliminated. This 
problem typically appears in MPE when a large number of files have been incrementally 
named. 

• Directory expansion is automatic; there is no need to re-boot the system from scratch (i.e. 
RELOAD) in order to reserve more directory disc space. 

• The directory SIR (System Internal Resource) is eliminated, greatly improving concurrency. 

• The limitation of fixed directory buffering (the directory data segment in MPE) is removed, 
further improving concurrency. Resolving a file name to a disc address will now be done on 
the user's stack instead. 

• Directory objects (nodes) are spread across discs, resulting in better 1/0 parallelism and 
system robustness (potential for continued system operation after a disc failure). 

• Provision is made for greater name resolution to support future access methods and 
additional operating system environments. 

The directory is essentially nothing more than a set of files with the ability to grow 
indefinitely (the practical limit would of course be the available disc space). A diagram of the 
MPE XL directory structure is shown in Figure 5. 

Each file represents a table in the directory and the various tables are connected in tree 
fashion. As in MPE, the tree is made up of a system root and subtrees. Th.e SYSTEM ROOT 
file contains account entries. Each account entry points to the GROUP file and the USER 
file. Each entry in the GROUP file contains a pointer to the FILE file and the VOLUME SET 
DEFINITION (VSD) file (hang on, it doesn't get much worse!). Each entry in the FILE file 
maps the file name to a Unique File ID (UFID). The UFID can be viewed as an index into a 
particular Label Table (see above) where the file label and extent descriptors will be found 
(whew!). Within each directory file, entries are maintained in alphabetical order. 



HP3000 
INTERNATIONAL CONFERENCE R/02/8 
VIENNA 1987 

Since directory objects (tables) are files and may grow to MPE XL limits, the number of users, 
groups, and accounts which can be supported is practically unlimited. Directory "tilting" is 
eliminated because there is no logically contiguous space within which expansion is limited. 
The size of the directory is not artificially limited and can grow automatically; adding entries 
means simply adding records to files. If a disc goes down, only the file and directory data (if 
any) on that volume become unavailable. Access to data on other volumes continues as long as 
there is no need to access the down volume (this is dependent on the level of data partitioning, 
see Volume Management below). With these improvements in design and implementation, the 
MPE XL directory will provide increased data availability and system reliability. 

SYSTEM ROOT FI LE 

ACCOUNT ENTRY 

--1 
ACCT /GROUP FILE ACCT/USER FILE 

GROUP ENTRY 

--1 
GROUP/FILE FILE GROUP/VSD FILE 

FILE ENTRY (UFID) 1~ VOL SET DEF ENTRY 

Points to file label 
(in Label Table) 

MPE XL Directory Structure (Figure 5) 

USER ENTRY 



HP3000 
INTERNATIONAL CONFERENCE R/0219 
VIENNA 1987 

Volume Management 

In MPE XL, Volume Management provides functionality very similar to Private Volumes in 
MPE. It also introduces a number of new capabilities which will provide increased data 
availability. MPE volume sets, volume classes, and volumes are supported. A set of operations 
is provided for the user to manipulate and control these entities as in MPE. These operations 
should be familiar to the user of Private Volumes and in fact are implemented with similar 
commands and syntax. A VOLUTIL utility program will replace VINIT and will provide 
similar but enhanced functionality. 

In MPE, there are two distinct disc domains: system and non-system. Private volumes and 
serial volumes are examples of discs which reside in the non-system domain. In a broad sense, 
MPE XL makes "system" volumes more like "private" volumes and "private" volumes a little 
like "system" volumes. Thus in MPE XL we have only one disc domain. Within this domain 
are volume sets. One of the volume sets is defined as the "system" volume set. (Currently the 
system volume set has the formal name HPE_SYSTEM_ VOLUME_SET). A volume is 
defined to be a disc pack and is self contained on the media. This means that the volume set 
definition moves with the volume set, unlike MPE where the system volumes are defined by 
device configuration. 

In the past, there has been some reluctance on the part of users to implement Private Volumes. 
It is hoped that MPE XL users will make substantial use of Volume Management capabilities, 
since the essential benefit is that the system will be more robust in the event of disc failures 
and related crashes. When data storage is partitioned, control and protection of the data is 
improved. Volume Management will initially support three levels of data partitioning: I) 
Volume Set, 2) Volume Class, and 3) Volume. The volume level is the most granular and offers 
the greatest protection and control. Although the user must be involved in determining 
granularity, Volume Management simplifies the task as much as possible and provides benefits 
which are well worth the effort. 

For an excellent expanded discussion of MPE XL Volume Management, see "HPE Volume 
Management", by Rick Ehrhart, as published in the proceedings of the Detroit INTEREX 
conference (September, 1986). 

MPE XL Backup/Recovery 

Perhaps one of the most frustrating day-to-day experiences for HP3000 users is to be asked to 
"get off the system" during the backup. Beyond the frustration is the very real fact that 
backup time can have a tremendous impact on system availability. For all practical purposes, 
backup time is system down time in MPE. In fact, research has shown that out of whatever 
"down" time our average Series 68 customer experiences, 69% of it is for backups. 



HP3000 
INTERNATIONAL CONFERENCE R/02/10 
VIENNA 1987 

A related problem is storage capacity and the saturation of system resources which can result 
when backing up large amounts of online data. With the new Precision Architecture systems, 
disc storage capacities will be increasing to meet the needs of our customers' applications. New 
peripheral backup devices will become available, with large bandwidth capabilities for 
transferring data. All of these factors together made it clear that MPE STORE/RESTORE 
needed improvements. In MPE XL, native STORE/RESTORE has these objectives: 

• 100% availability of data during the backup (STORE). 

• Improved performance, efficiently utilizing Precision Architecture and future peripherals. 

• Not greater than 50% CPU and 1/0 bandwidth utilization during the backup. 

• Easy to use with minimum operator· intervention, especially for "office environment" 
configurations. 

• Support for backup of data distributed within a network. 

• Provide backward and forward file transport capability between MPE and MPE XL systems. 

• Provide support and proper security for inclusion of the system directory on STORE tapes. 

• Provide a supported method for tape verification (VSTORE utility). 

• Extensibility for new features and technologies. 

As in other parts of MPE XL, a phased approach will be taken in meeting these objectives. 
Native STORE/RESTORE will utilize a number of techniques to meet the above objectives 
and provide the necessary backup/recovery services, including: 

• Static backup. This is the current implementation in MPE; files are inaccessible during 
backup. 

• Dynamic backup. Files are fully accessible for all types of access (read, write, etc.) during 
the backup. Modifications made to files being STOREd are logged; the log files are saved on 
the backup medium along with the fileset being STOREd. On RESTORE, both the data and 
the log file are used to recover the data to a consistent state. For complete consistency of 
all file types, the system should be quiescent for a short period of time when the backup is 
started. Dynamic backup is implemented with the file system's Transaction Management 
(XM) services. 

• Transport backup. STORE tapes are created in MPE format; only those files which do not 
exceed standard MPE limitations can be written to the tape (i.e. a file with more than 32 
extents cannot be STOREd with the transport method). 

• Interleaving. Multiple files on different disc drives are read concurrently and interleaved 
in the data. stream to the backup device, typically on extent boundaries. The intent is to 
maintain "streaming mode" or maximum throughput on the backup peripheral. 



HP3000 
INTERNATIONAL CONFERENCE R/02/11 
VIENNA 1987 

• Consecutive backup devices. A tapeflet is defined with multiple tape drives. When one 
device begins rewind, the next device in the tapeset will immediately begin writing. Thus 
rewind and reel switch time can overlap with tape writing, increasing throughput. See 
Figure 6 for a sample scenario. 

• Concurrent backup devices. Multiple, concurrently writing devices. This increases the 
number of parallel paths to the backup media (depending on 1/0 system configuration 
limitations). 

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6 

TAPE DRIVE WRITE REWIND WAIT WRITE REWIND - - (change - -1 tape) 

TAPE DRIVE WAIT WRITE REWIND WAIT WRITE 
(tape - - (change -2 ready) tape) 

Consecutive Backup Devices (Figure 6) 

When all of the new features are implemented, the new syntax for STORE will appear as 
shown in Figure 7. The new options should be readily apparent. 

:STORE [filesetlist] [;storefile] [;option[; ... ]] 

where option is 
[;SHOW[=showpsrmlist]] 
[;ONERROR=recoverytype] 
[;FILES=maxfiles][;DATE<=accdate] 

[;DATE>=moddate] 
(;PURGE] 
[;PROGRESS (#minutes]] 
[;STORESET=(device[, ... ])[,(device[, •.• ])[, ••• ]] 
[;INTER] 
[;DYNAMIC) 
( ; DI RECTORY] 
(;LOGONLY) 
(;TRANSPORT] 

STORE Command Syntax (Figure 7) 



HP3000 
INTERNATIONAL CONFERENCE R/02/12 
VIENNA 1987 

In the first release of MPE XL, the DYNAMIC, LOGO NL Y, and STORESET options will not 
be available. Default backup will be static unless the DYNAMIC option is specified. The 
LOGO NL Y option specifies that only the transaction log files from any log sets are to be 
stored. The TRANSPORT option is mutually exclusive with the DYNAMIC, LOGONL Y, 
STORESET, INTER, or DIRECTORY options. INTER specifies that file interleaving is to be 
used. The STORESET option, which is used instead of <storefile>, is the most interesting. 
STORESET is used to specify consecutive backup, concurrent backup, or both. Consecutive l 
tapes are specified in the following way: 1 

;STORESET = (*tape1,*tape2,*tape3) 

STORE will select the first drive it finds in a ready state. Concurrent devices are specified by: 

;STORESET = (•tape1),(*tape2),(*tape3) 

In this example, all three tapes will be used in parallel. Concurrently accessed consecutive tape 
sets would be specified by: 

;STORESET = (*tape1,*tape2),(•tape3,*tape4) 

In this example, two tapes would be storing at any given time while the other two rewind and 
change reels. 

It should be clear that with these new features, native STORE/RESTORE will provide 
substantial improvements in system availability and backup scheduling flexibility (reduced 
need for extra shifts just to do backups). In conjunction with intelligent partitioning of data 
using the capabilities of Volume Management, and with the appropriate number of backup 
devices, native STORE/RESTORE will also provide enhanced performance. 

Summary 

The list of enhancements and features in MPE XL which has been examined here is by no 
means exhaustive. Other contributions to system availability, such as online device 
configuration (for printers, tapes, and terminals) and system tables which self-configure and 
automatically adjust in size if necessary, are continually being evaluated and implemented in 
MPE XL. New methods of system analysis and design are being incorporated to insure quality 
in the code produced. The net result of all of this is simple: a computer system which has the 
necessary features, performance, and reliability to support our customers' growing application 
and workload requirements. 



ABSTRACT 

HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

DESIGN FEATURES OF THE MPE XL USER INTERFACE 

by Jeff Vance, John Korondy, & Denis Rachal 
Hewlett-Packard 

R/0311 

The MPE XL User Interface, consisting of commands, expressions. 

variables and intrinsics, encapsulates the majority of communica­

tion between the end user and the machine. This new User Interface 

was designed to satisfy several important goals. First, and fore­

most, it had to be compatible with MPE V/E. Second, it had to fur­

nish the foundation technology for localizing the User Interface. 

Third, it had to provide a powerful, flexible, and productive en­

vironment for the general user as well as the very experienced 

user. Fourth, it was desirable to expose some of the architectural 

advantages of the HP Precision Architecture. 

This paper describes the new MPE XL User Interface, focusing on the 

extensions beyond MPE V/E. The command language aspect of the User 

Inter'face is emphasized, and examples are provided to illustrate 

how we •ve achieved the four primary objectives mentioned above. 

Knowledge of the MPE V/E User Interface and the basic use of the 

new MPE XL commands is assumed. 

I. MPE V /E COMPATIBILITY - CM vs. NM commands, parsing, error 
management. 

Most of the MPE V/E commands (e.g. run, listeq, fcopy, showjob) 

have been "ported" to MPE XL without modification. These commands 

are typically executed in compatibility mode (CM), retain their 

original syntax (parsing) and their original error/warning condi­

tions. Some MPE V/E commands do their parsing in CM and then switch 

to native mode (NM) to complete their execution. The listf, lis­

tacct, and report commands have been implemented this way, so that 

the external interface is unchanged despite the fact that internal 



HP3000 
INTERNATIONAL CONFERENCE R/0312 
VIENNA 1987 

interfaces are considerably different. And, finally, some MPE V /E 

commands, and all new MPE XL commands, execute in NM. Examples in­

clude: redo, setcatalog, copy, chgroup and print. All MPE V/E com­

mands which have been enhanced (e.g. redo) will continue to func­

tion as in MPE V/E. The new features can only be invoked by supply­

ing additional parameters. 

II. CONSISTENCY AND LOCALIZATION - central parser, prompt strings. 

All native mode (NM) commands are parsed by a centralized parser, 

which enforces a consistent syntax and provides the ability to 

localize command input. Localization of command output can be done 

via the message catalogs. 

Each NM command has a parse template, called a "prompt string", 

which is used by the parser to recognize the entire syntax for the 

command. This includes the spelling and position of every required 

and optional command parameter. Prompt strings can be generated in 

many languages, thus the command could be parsed and executed 

regardless of the input language. 

Localization is not available on first release because many MPE XL 

commands are still parsed and executed in compatibility mode; and 

also many commands still produce hard-coded output. However, the 

foundation is in place for the entire User Interface to be 

localized. 

III. EVOLUTION OF THE COMMAND INTERPRETER (CI) - command files, 
search path, variables, expressions. 

The majority of MPE XL User Interface enhancements are aimed to 

make the Command Interpreter (CI) more powerful, more flexible, and 

easier to use than its predecessor. This can be viewed as the 

evolution of the CI from a command interpreter to an interpretive 

command language. This evolution is necessary to support the 

diverse and complex requirements of the non-programmer end-user, as 

well as addressing the needs of the experienced user and program­

mer. Like most programming languages, the CI supports variables, 

expression evaluation, and logic flow control via recursion, 

iteration (while) and conditional constructs (if, else, endif). 



HP3000 
INTERNATIONAL CONFERENCE R/0313 
VIENNA 1987 

This section contains five parts. First, command files are 

discussed and compared to UDCs. Next, the CI's search path for com­

mand files and program files is described. Part C explains CI vari­

ables as a powerful extension of JCWs. Next, expression evaluation 

is described, and lastly, several command file examples are 

provided which tie together variables and expressions. 

A. Command Files. 

Command files are simply files which contain one or more commands. 

The command lines are referred to as the "body" of the command 

file. A command within a command file may be an MPE XL command, a 

UDC command, or another file name. A command file may contain a 

header, which defines parameters and options (same as UDC options). 

As with UDCs, command files cannot contain data following the com­

mand line. If a command file accepts parameters the first record 

must begin with "PARM" followed by the parameter list. For example: 

PARM pl,p2=10,p3=""· This parameter line indicates that there are 

at most three parameters, the first parameter is required, the 

second parameter is optional with a default value of 10, and the 

last parameter is also optional with a default value of nn (nil). 

Command Files vs. UDCs -

Command files are very similar to UDCs in that they create cus­

tomizable commands. There are three major differences between com­

mand files and UDCs: 

First, since UDCs are searched before MPE XL commands, they can ef­

fectively override or redefine an existing MPE XL command. Command 

files are looked for after MPE XL commands, and thus cannot be used 

for this purpose. 

Second, UDCs are cataloged and command files don't have this 

requirement. This has 3 implications: a) new UDCs cannot be created 

and old UDCs cannot be modified without first un-cataloging the UDC 

file and then re-cataloging it; whereas, command files don• t have 

this constraint. b) a UDC file is only opened once, at logon time, 

but a command file must be opened and closed for each invocation. 



HP3000 
INTERNATIONAL CONFERENCE R/0314 
VIENNA 1981 

c) UDCs provide more efficient organization for command scripts, 

and use less disc space than if each UDC command were kept as a 

separate command file. 

Third, UDCs can control whether or not recursion is permitted via 

OPTION RECURSION. Command files do not support the control of 

recursion (although recursion is legal). 

In summary, UDCs should be chosen for frequently used, stable com­

mands, and for command name aliasing. For performance reasons, 

recursion should be confined to UDCs. Command files are best suited 

for scripts that may be enhanced often, for testing of potential 

UDCs, and for environments where dynamic search paths are ex­

ploited. HELP is available for UDCs, command files, and program 

files. 

B. Search Path and Implied Run. 

The CI follows a user-definable search path when looking for com­

mand files programs. This path is only examined if the user's com­

mand is not a UDC and is not a built-in (known) MPE XL command. The 

HPPATH predefined variable contains the current search path. If 

HPPATH is null (:setvar hppath 1111 ) then no command files will ever 

be found. The default value for HPPATH is 11 !HPGROUP,pub,pub.sys 11 • 

If the command entered is X (assume X is not a UDC) then the file 

X.logon group (!HPGROUP) will be searched for. If it is not found 

then X.pub is looked for. If, again, it is not located then 

X.pub.sys is examined. If, after this final attempt, the file can­

not be found then the command X is assumed to be an unknown command 

name and CIERR 975 is reported. 

On the other hand, if a file named X is located in one of the 

groups specified by HPPATH then its file code is read to determine 

if the file is a program file (file code of 1029 or 1030), a com­

mand file (file code within zero through 1023), or neither. The 

search path can be altered via the setvar command. To illustrate, 

if most of your command files reside in a group named "scripts", in 

your logon account, then changing HPPATH can speed up command file 

searching. For example, :SETVAR HPPATH •scripts,•+ HPPATH would add 



HP3000 
INTERNATIONAL CONFERENCE R/0315 
VIENNA 1987 

the group "scripts" to the current search path. The SETVAR command, 
variables, and "I" dereferencing are discussed in part C. 

Implied Run -

Program files use the same search path as command files. Using the 
default path, SPOOK.PUB.SYS can be invoked simply be issuing 
"spook". This is referred to as "implied run". Implied run commands 
have two optional parameters. The first parameter is assumed to be 
an info string, and the second parameter is interpreted as the 

parm= RUN command parameter. Other options and keywords on the RUN 
command (debug,lmap,unsat=,stdlist=, etc.) are not supported by the 
implied run facility. 

C. Variables. 

Commands: setvar, showvar, deletevar, setjcw, showjcw. 
Intrinsics: hpciputvar, hpcigetvar, hpcideletevar, setjcw, getjcw, 

putjcw, findjcw. 

An MPE XL variable is similar to an MPE V/E jcw. However variables 
can contain 32 bit integers, string values, boolean TRUE or FALSE, 
or the name of other variables (also a string value). Like jcws, 

variables are job/session global meaning that any process within a 

given job or session can read (and possibly modify) a variable. 
There are two major classes oc variables: user-defined via the new 
SETVAR command or the HPCIPUTVAR intrinsic, and HP predefined vari~ 
ables such as HPACCOUNT, HPDATEF, etc. The new MPE XL Commands 
Manual contaigs a list of all predefined variables. All user­
defined variables can be read, modified and deleted. Most HP 
predefined variables are read-only, however several important vari­

ables can also be modified (for example: HPPROMPT, HPPATH, 
HPCMDTRACE, HPAUTOCONT, HPMSGFENCE, HPREDOSIZE, HPRESULT, 
HPTIMEOUT). None of the predefined variables may be deleted. Four 
variable types are supported: integer, string, boolean and jcw. If 
a variable is created via the setjcw command then it becomes a jcw 
type variable and a warning is issued if it is changed to a value 
not supported by MPE V/E jcws. 



HP3000 
INTERNATIONAL CONFERENCE R/0316 
VIENNA 1987 

The value of a variable is retrieved by placing an exclamation 

point (I) before the variable name, e.g. IMY_VAR. This is called 

dereferencing the variable: the name "MY_VAR" is replaced by its 

value. For example, if MY_VAR contains the string 'hi there• (e.g. 

setvar my_var 'hi there') then every occurrence of IMY_VAR is sub­

stituted by the string "hi there". This is the same substitution 

that is done for UDC parameters. A variable's value may also be 

retrieved when its name is used within an expression (this is im­

plicit dereferencing, whereas lvarname is explicit dereferencing). 

Two examples of implicit dereferencing follow: 

:while (i < len(Var_x)) 

:setvar my_calc hpresult+lO 

As mention above, a variable may contain the name of another vari 

able. This is essential for read/write variables whose values are 

dynamic. For example, if you want to personalize the CI 1 s prompt to 

contain your username followed by "(current command number):", e.g~ 

JEFF(lO):, then, since the command number is always changing, a 

dynamic variable is required. This prompt can be obtained by the 

following command: 

:setvar hpprompt '!hpuser(I !hpcmdnum):' 

The quotes cause the variable's type to be string. The first "I" 

dereferences the value of the HPUSER predefined variable (i.e. 

"JEFF"). The next two exclamation points ("I I") fold· to a single 

exclamation point followed by the string "hpcmdnum" (also a 

predefined variable). Thus, a showvar of HPPROMPT would reveal 

"JEFF(!HPCMDNUM):" as its value. To see how this translates to 

"JEFF(lO):" recursive dereferencing needs to be explained. Whenever 

a variable is explicitly dereferenced (I varname) subs ti tut ion is 

done until all dereferences within varname' s value have been at­

tempted. The following simple example will illustrate this: 

: setvar a 11 ! ! b" 

:setvar b 10 

:echo Here is A: !a 

{lb is stored as the value of a} 

{10 is stored as the value of b} 

{"Here is A: 10" will be echoed} 

la is dereferenced as lb, which in turn is dereferenced as 10. 

SHOWVAR always retrieves the immediate value of a variable. This is 

also true for implicit dereferencing. However, explicit dereferenc-



HP3000 
INTERNATIONAL CONFERENCE R/0317 
VIENNA 1987 

ing always fully substitutes the variable. So, in the HPPROMPT ex­
ample above, since the prompt contains an exclamation point, in­
dicating another variable needs to be retrieved, HPPROMPT will be 
fully dereferenced before it is displayed. Thus the final prompt 
would be "JEFF(lO):" when the current command number is ten, and 
will always track the command number. 

QUESTION - what would th~ prompt be if a single explanation point 
was used rather than the two, e.g. setvar hpprompt 
1 lhpuser( lhpcmdnum): •? 

(Answer: the prompt would contain the current command number as a 
static variable. For example if the command number was 12, 
the prompt would always show 12, regardless of the in­
creasing command number.) 

D. Expressions. 

Commands: calc, setvar, if, while. 
Intrinsics: hpcicommand, command. 

Expressions are permitted in five commands: calc, setvar, if, while 
and setj cw. The following discussion does not pertain to setj cw, 
which retains MPE V /E expressions. The express.ion evaluator sup­
ports a rich set of functions. The entire list is available in the 
MPE XL Commands Manual. All arithmetic operations are allowed, in­
cluding: absolute value (ABS), modulo (MOD) and exponentiation (A). 

Many string functions (argument is a string) are defined, such as: 
concatenation (+), length (LEN), ordinal (ORD), extraction (LFT, 
RHT, POS, STR), and case shifting (DWNS, UPS). Special variable 
functions include: existence (BOUND) and type (TYPEOF). Bit opera­
tions supported include: bitwise and (BAND), bitwise or (BOR), bit­

wise not (BNOT), bitwise exclusive or (BXOR), shift left (LSL), and 

shift right (LSR). Numeric conversion functions are: convert to oc­
tal (OCTAL) and convert to hexadecimal (HEX). Finally, some special 

file functions provided via FINFO include: file existence 
(FINFO(O)), file creation date (FINF0(6)), file modification date 

(FINF0(8)), file code (FINF0(9)), foptions (FINFO(l3)) and others. 



HP3000 
INTERNATIONAL CONFERENCE R/0318 
VIENNA 1987 

Mixed expressions are not allowed, for example, calc "a"+l would 

result in an error. Standard precedence rules apply, with variable 

dereferencing superseding all other operations. 

Below are some examples using variables and expression evaluation: 

:setvar a •aa' 

:setvar b 'BB'+a 

:setvar c (len(b)+pos( 11 a 11 ,b)) lsl 1 

:if bound(a) and ord(ups(a))=65 then 

{a aa} 

{b BBaa} 

{c (4+3) lsl 1=14} 

{T AND T = TRUE} 

:calc finfo(b,O) or ups(str(b,2,l))="X" {T(file "BBAA" exists)} 

{OF F=TRUE } 

E. Command File Examples. 

The first command file is more fully commented than the others and 

should be read thoroughly. 

1. 11 CIERR 11 - prints the error message text associated with either 

the current value of the CIERROR jcw, or a passed cierror value. 

PARM cierr=O 

OPTION nolist 

COMMENT Parameter cierr is not required. Its default value is 

COMMENT 

COMMENT 

COMMENT 

COMMENT 

COMMENT 

COMMENT 

COMMENT 

COMMENT 

o. The "parm" and "option" lines comprise the header. 

If cierr is not zero then save the current cierror jcw 

and set the cierror jcw to cierr. 

Note that parameters must always be explicitly 

dereferenced. Implicit dereferencing is only available 

to global variables. 

if !cierr <> o then 

COMMENT Since we're dealing with global variables, 

COMMENT use an unlikely name. 

COMMENT 

setvar cierr cierror 

setjcw cierror !cierr 

endif 

COMMENT Retrieve the error text associated to the value of 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

COMMENT CIERROR. 

COMMENT 

setvar _text hpcierrmsg 

if len(_text) = O then 

comment No error message corresponding to CIERROR. 

setvar _text 'INVALID CI ERROR NUMBER (lcierror). I 

endif 

COMMENT Display the final message to $stdlist. 

echo I text 

R/0319 

COMMENT Cleanup by deleting global variables used here and 

COMMENT resetting CIERROR if necessary. 

COMMENT 

deletevar text 

if !cierr <> o then 

setjcw cierror !_cierr 

deletevar _cierr 

endif 

COMMENT End of command file. 

Usage: 

:setjcw cierror 9072 

:cierr 9103 

THIS COMMAND IS NO LONGER SUPPORTED IN MPE XL. (CIERR 9103) 

:cierr 2 

INVALID CI ERROR NUMBER (2). 

:cierr 

THERE ARE NO COMMANDS AVAILABLE TO REDO. (CIERR 9072) 

This command file can be improved by adding parameter verification 

code, i.e., test if the parameter is fully numeric. For example: 

if typeof(lcierr) <> 1 then 

comment O=bad expression, !=numeric, 2=string, 3=boolean. 

echo Expected optional parameter to be numeric. 

else ... 

2. "TAIL" - this simple command file prints the last n records from 

a given file. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

PARM file, last=lO 
COMMENT Print the last "last" records from "file". 

print lfile;start=-!last 

COMMENT End of include file. 

Usage: 

:tail catalog.pub.sys 

:tail myletter 40 

R/03110 

3. "ME" - this command file provides a convenient :showme format. 

PARM flag='' 
COMMENT Shows user environment info similar to :showme. If 

COMMENT 

COMMENT 

COMMENT 

"flag" is non-null then the user's capabilities are 

also displayed. 

setvar _me "lhpuser. lhpaccount,lhpgroup (Ldev=lhpldevin)& 

#lhpjobtypelhpjobnum" 

if len(hpjobname) > O then 

setvar _me "lhpjobname, 11 +_me 

endif 

if hpinbreak then 

setvar _me _me+" <break>" 

endif 

echo I me 

if "!flag" <> "" then 

echo lhpusercapf 

endif 

deletevar _me 

COMMENT End of command file. 

Usage: 

:me 

JEFF.UI,CI (Ldev=21) #Sl2 

:me x 

MYID,MANAGER.SYS,SCRIPTS (Ldev=20) #Sll <break> 

AM,AL,GL,DI,CV,UV,LG,CS,ND,SF,IA,BA,PH,DS,MR,PM 



HP3000 
INTERNATIONAL CONFERENCE R/03111 
VIENNA 1981 

4. "ADDCAP" - this command file adds one to nine more capabilities 

to a given user. The default user is the current user name. 

PARM user=' •,cap,c2=' •,c3='',c4='',c5='',c6='',c7='',c8='',c9='' 

COMMENT Adds cap (required) thru c9 to the "user"s current 
COMMENT caps. Prompts for re-logon. 
COMMENT 

setvar _captemp ups("lhpusercapf,tcap,lc2,tc3,lc4,lc5,lc6,lc7,& 
lc8,lc9") 

COMMENT Strip trailing commas. 

trim captemp "•" 

if '!user• = ' 1 then 
setvar user hpuser 

else 

setvar _user ups(' !user•) 

endif 

setjcw cierror 0 

continue 

altuser !_user;cap=l_captemp 

if (cierror) <> O and (cierror <> 750) then 

echo (ADDCAP): ! user's capabilities remain unchanged: & 
lhpusercapf. 

else 

echo (ADDCAP): !_user's capabilities are: l_captemp. 

comment If "user" is current user then prompt for re-logon. 
if hpjobtype = •s• then 

if 1 !_user' = hpuser then 

setvar _captemp 'n' 

input _captemp, "(ADDCAP): Logoff now to obtain new & 
capabilities?";wait=lO 

logon 

if (cierror <> 0) or (dwns(lft(_captemp,l))<>'Y') then 

echo (ADDCAP): New capabilities take effect at next& 

else 

hello lhpjobname,lhpuser. !hpaccount,lhpgroup;& 

info='echo (ADDCAP): Done.• 

endif 

else 

echo (ADDCAP): New capabilities take effect next time & 
I user on. 



HP3000 
INTERNA T!ONAL CONFERENCE R/03112 
VIENNA 1987 

end if 
end if 

endif 
deletevar _captemp, _user 
COMMENT End of command file. 

Usage: (assume logon user's (MGR) capabilities are SM,AM,BA,IA) 

:addcap ,ph,al 

(ADDCAP): MGR 1 s capabilities are: SM,AM,AL,BA,IA,PH. 
(ADDCAP): Logoff now to obtain new capabilities? 
no 
(ADDCAP): New capabilities take effect at next logon. 

:addcap cap=op 
(ADDCAP): MGR's capabilities are how: SM,AM,AL,OP,BA,IA,PH. 
(ADDCAP): Logoff now to obtain new capabilities? 
yes 
<new session banner> 
( ADDCAP) : Done . 

:addcap accting,cv uv al 
(ADDCAP): ACCTING's capabilities are 
SM,AM,AL,OP,CV,UV,BA,IA,PH. 

now: 

(ADDCAP): New capabilities take effect next time ACCTING logs on. 

5. "TRIM" - this command file trims leading or trailing characters 
from a supplied variable. 

PARM varname, trimchar=" "• from=RIGHT 
COMMENT Trims all "trimchar" from "varname" starting at the 
COMMENT "from" side. 
COMMENT 
if not(bound(!varname)) then 

echo (TRIM): The variable !varname is not defined. 

else 

if ups(lft(' !from',l)) <> "L" then 
comment Trimming from the right of varname. 
setvar _trimside 'RHT' 
setvar _trimsave 'LFT' 

else 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

setvar _trimside 'LFT' 
setvar trimsave 1 RHT 1 

endif 

R/03113 

while (len(lvarname)>O) and (l_trimside(lvarname.l)="ltrimchar") 
setvar lvarname l_trimsave(lvarname,len(lvarname)-1) 
endwhile 

deletevar _trimsave, _trimside 
endif 
COMMENT End of command file. 

Usage: 

:setvar foo "abed 
:trim foo 
:echo lfoo 
abed 

:setvar foo n 

:trim foo 
abc 

:trim foo;from=left 
:echo lfoo 
abc 

ft 

ft 

:setvar foo • ..• abed' 
:trim foo '·' LEFT 
:echo lfoo 
abed 

:setvar roo 1 abcddddd' 
:trim roo 'd' 
:echo lfoo 
abc 

6. "RSIZE" - this command file does one of three things depending 
on the optional parameter. If the parameter is omitted then the 
current size or the redo/history stack is displayed. If the pa­
rameter is signed, e.g. +10, then the redo stack size is ad­
justed relative to its current size. If the parameter is un­
signed then the redo stack size is set to the parameter value. 

PARM size="" 
COMMENT 1) echoes current size of redo stack. or 2) adjusts 
COMMENT hpredosize to hpredosize+"size", or 3) sets hpredosize 
COMMENT to "size". 
COMMENT 
if "lsize" = "" then 

echo (RSIZE): The redo stack size is lhpredosize. 
else 

if typeof(lsize) <> 1 then 
comment Not numeric. 
echo (RSIZE): If parameter is supplied it must be a & 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

signed or unsigned number. 
else 

if (lft("lsize",l) = "+") or (lft("lsize",l) 
setvar _size lhpredosize+lsize 
setvar _signed true 

else 
setvar _size !size 
setvar _signed false 

endif 
setjcw cierror o 
continue 
setvar hpredosize size 
if cierror <> O then 

R/03114 

"-") then 

echo (RSIZE): The redo stack size remains lhpredosize. 

else 
if _signed then 

echo (RSIZE): The redo stack size is now lhpredosize. 

endif 

endif 
deletevar _signed, _size 

endif 

endif 

COMMENT End of command file. 

Usage: (assume the current redo 

:rsize 
(RSIZE): The redo stack size is 

:rsize +15 

(RSIZE): The redo stack size is 

:rsize 50 

:rsize -10 

stack size 

20. 

now 35. 

(RSIZE): The redo stack size is now 40. 

is 20) 

7. "LOGPUR" - this command file purges all log#### log files in 
pub.sys. To better performance the user may specify the start­

ing log file number. The purged log file name will be echoed if 

the second parameter is not "QUIET". 



HP3000 
INTERNATIONAL CONFERENCE R/03115 
VIENNA 1987 

PARM lognum=O,mode= 1 QUIET 1 

COMMENT Purge all log####.pub.sys starting at "lognum". Echo 
COMMENT purged file if not "quiet". 

COMMENT 

setvar _logcnt 0 

setvar _logx llognum 

setvar _quiet ups(lft(lmode,l)) 'Q' 
setvar cont hpautocont 

setvar _msg hpmsgfence 

setvar hpautocont true 
setvar hpmsgfence 2 

setjcw cierror 0 

COMMENT Find first log file to purge. 

setvar _logname "LOG"+str( 1 0000' ,1,4-len(' l_logx• )}+"l_logx" 
purge l_logname 

while cierror 383 or cierror = O 

if cierror = 0 then 

setvar _logcnt _logcnt+l 

if not (_quiet) then 

echo (LOGPUR): l_logname.PUB.SYS has been purged. 

endif 

endif 

setvar _logx _logx+l 

setvar _logname "LOG"+str( 1 0000 1 ,1,4-len(' l_logx'))+"l_logx" 
setjcw cierror O 

purge l_logname 

endwhile 

setvar hpautocont _cont 

setvar hpmsgfence _msg 

echo (LOGPUR): l_logcnt log files were purged. 

deletevar _logcnt, _logname, _logx, _quiet, _cont, _msg 
COMMENT End of command file. 

Usage: (assume LOG0030, LOG0031, LOG0032, LOG0033, LOG0034*) 

:logpur 

(LOGPUR): 4 log files were purged. 

:logpur 30 

(LOGPUR): 4 log files were purged. 

:logpur 32,loud 

(LOGPUR): LOG0032.PUB.SYS has been purged. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

(LOGPUR): LOG0033.PUB.SYS has been purged. 
(LOGPUR): 2 log files were purged. 

R/03/16 

8. "FINFO" - displays file label information for a given filename. 

PARM file 

COMMENT Use finfo to show file label info. 
COMMENT 

if not(finfo(' lfile',O)) then 

comment File does not exist. 

setvar _file ups(' !file') 

if lft(' !file' ,1) <> '*' and lft(' !file' ,1) <> •$• then 
comment Qualify file before reporting non-existence. 
setvar _pos pos( 1 • 1 ,_file) 

if _pos = o then 

setvar _file _file+•. !hpgroup. lhpaccount• 
else 

if pos( 1 • 1 ,rht(_file,len(_file)-_pos)) = 0 then 

setvar file file+•. lhpaccount• 
endif 

endif 

deletevar _pos 

endif 

echo (FINFO): !_file does not exist. 

deletevar file 

else 

comment ** formal file designator ** 
setvar finfo finfo(' lfile 1 ,l) 

echo (FINFO): Full file description for ! finfo follows: 
echo 

comment ** creator and create/modify dates ** 
setvar _finfo finfo(' !file',4) 

setvar finfol finfo(' !file 1 ,6) 

setvar _finfo2 finfo(' !file' ,8) 

setvar _finfo3 finfo(' lfile',24) 
echo 

echo 
Created by l_finfo on !_finfol. 

Modified on !_finfo2 at I finfo3. 

comment ** file code, rec size, eof, flimit ** 
setvar _finfo finfo(' !file',9) 

setvar finfol finfo( 1 !file 1 ,-9) 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

if len(_finfo) = O then 
setvar finfo 'l_finfol' 

else 
setvar finfo _finfo+• (l_finfol)' 

endif 
setvar _finfol finfo(' lfile',14) 
setvar _finfo2 finfo('lfile',19) 
setvar _finfo3 finfo('lfile',12) 

R/03117 

echo Fcode: l_finfo, Recsize: l_finfol, Eof: l_finfo2, & 
Flimit: l_finfo3. 

comment ** foption •• 
setvar _finfo finfo('lfile',13) 
setvar _finfol finfo('lfile',-13) 
setvar _finfo2 octal(_finfol) 
setvar _finfo3 hex(_finfol) 

echo Foption: l_finfo (#l_finfol, l_finfo2, l_finfo3). 
deletevar _finfo, _finfol, _finfo2, _finfo3 

endif 
COMMENT End of command file. 

Usage: 

: finfo sl 
(FINFO): Full file description for SL.PUB.SYS follows: 

Created by MANAGER on TUE, DEC 9, 1986. 
Modified on TUE, DEC 9, 1986 at 7:00 PM. 
Fcode: SL (1031), Recsize: -256, Eof=3919, Flimit=lOOOO. 
Foption: BINARY,FIXED, NOCCTL, STD (#1025, %2001, $401). 

:build a;msg;rec=-80,,f,ascii;cctl 
: finfo a 

(FINFO): Full file description for A.PUB.SYS follows: 

Created by JEFF on WED, OCT 22, 1986. 
Modified on FRI, OCT 24, 1986 at 6:45 AM. 
Fcode: o, Recsize: -81, Eof=O, Flimit=l029. 

Foption: ASCII, VARIABLE, CCTL, MSG (#12613, %30505, $3145) 

:build temp;temp;rec=40,,f,ascii;disc=l00 
:file t=temp 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1.987 

:finfo •t 
(FINFO): Full file description for TEMP.PUB.SYS follows: 

Created by MOR on FRI, OCT 24, 1986. 

Modified on WED, DEC 10, 1986 at 2:26 PM. 
Fcode: o, Recsize: -so, Eof: o, Flimit: 100. 
Foption: ASCII, FIXED, NOCCTL, STD (#1020, %2006, $406). 

: build $newpass 
:finfo $oldpass 

R/03118 

(FINFO): Full file description for $OLDPASS.PUB.SYS follows: 

Created by JEFF on SAT, OCT 25, 1986. 
Modified on SAT, OCT 25, 1986 at 11:30 AM. 
Fcode: o, Recsize: -256, Eof: o, Flimit: 1023. 
Foption: .BINARY, FIXED, NOCCTL, STD (#1050, %2032, $41A). 



HP3000 
INTERNATIONAL CONFERENCE R/03119 
VIENNA 1987 

BIOGRAPHICAL SKETCH 

Name: Jerr Vance 
Title: Member or the Techn1cal Starr 

Employer: Hewlett-Packard Inrormat1on Sortware Operat1on 
Job Description: Des1gn/Implementat1on or the new MPE XL Command 
Interpreter. 

Background: Jo1ned Hewlett-Packard 1n 1979 and worked Four years 
1n MIS appl1cat1ons ror Inventory Control and MRP systems. He has 
held h1s current pos1t1on ror three years. 
Education: BS, Un1vers1ty or Cal1rorn1a at Dav1s, 1979 

Name: John Korondy 
Title: Project Manager, User Interraces, Operat1ng Systems 
Laboratory 
Employer: Hewlett-Packard Inrormation Sortware Operat1on 

Job Description: Respons1ble ror the des1gn, development, and 1n­
tegrat1on or User Interrace Sortware or the MPE XL Operat1ng sys­
tem. 

Background: Jo1ned Hewlett-Packard 1n 1979 and spent over three 

years 1n Inrormat1on Systems development and management. In the 
past rour years, John has contr1buted to the des1gn and develop­
ment or the MPE XL Operat1ng System, 1n the 1mplementat1on or the 

Low-Level I/O sortware subsystem, and more recently, the User 
Interrace sortware. He has been a project manager ror three years. 

Education: BSCS Magna cum Laude, Un1vers1ty or Cal1rorn1a at Los 

Angeles, 1979 

Name: Den1s Rachal 
Title: Member or Techn1cal Starr 
Employer: Hewlett-Packard Inrormat1on Technology Group 

Job Description: Prov1de support ror the MPE XL operat1ng system 

through 1nternals course development, and problem analys1s. 

Background: Jo1ned Hewlett-Packard 1n 1979 and worked as a 

Customer Eng1neer f'or one and a halr years 1n the Neely Santa 
Clara orr1ce. He was then promoted and worked as an HP3000 

Techn1cal Support Eng1neer ror the next r1ve years. Den1s has held 
his current position at ITG ror one and a hair years. 
Education: BSEE, Un1versity or Southern Cal1rorn1a, 1979 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

MPE V to MPE XL Migratioo Overview 

by 
R. Gregory Stephens 

Hewlett-Packard Company. 
19447 Pruneridge Ave. 
Cupertino, CA 95014 

R/0411 



HP3000 
INTERNATIONAL CONFERENCE R/0412 
VIENNA 1987 

AbQract 

This paper provides an overview of the Migration Process from MPE V based HP 3000 systems to 

MPE XL based HP 3000 systems. Topics addressed include Education, Predelivery Planning, 

Preparation, System Installation, as well as 900 Series Compatibility Mode and Native Mode 

Execution. The role of Migration Tools and Services in this process is also discussed. 

Migration to 900 Series HP 3000 systems is based on full compatibility with the rest of the HP 

3000 family. This compatible migration path protects your investment in HP 3000 hardware and 

software and provides a painless growth path to the high performance and capabilities of the 900 

Series systems. 

Hewlett-Packard has made a significant investment in providing a high degree of compatibility and 

ease of migration. This investment is exemplified in the areas of Object Code Compatibility, 

Source Code Compatibility, Database Compatibility, Network Compatibility, Operational 

Compatibility, as well as the Migration Tools and Services that are being offered. 

This paper presents an overview of the Migration Process. In presenting this process the Migration 

Tools and Services that are available will be highlighted and placed within the perspective of the 

entire process. For more information on the tools refer to the paper MPE V to MPE XL Mimtion: 

Mi&ration Tools in these proceedings. 

Migration Procm Overview 

The Migration Process consists of six stages that delineate the steps that are normally taken when 

migrating from an existing MPE V based HP 3000 system to a 900 Series HP 3000 system. These 

stages are defined at a high level since the specific steps in the migration of a given application is 

highly dependent upon the applications characteristics. Below is a brief description of the stages 

followed by more details in the next section. 

These high level stages begin with Education on the Migration Stages, the Migration Tools and 



HP3000 
R/0413 INTERNATIONAL CONFERENCE 

VIENNA 1987 

Services that Hewlett-Packard is providing, as well as the high degree of compatibility that is 

provided by the 900 Series HP 3000 systems. This paper and past papers and presentations on 

various migration topics and the Migration Data Sheet are Hewlett-Packards first steps in providing 

information on migration. 

The second Migration Stage is Predelivery Analysis and Planning. In this stage the information 

learned in the Education stage is applied to a specific application. This is the first stage in which 

detailed analysis of Language, Database, and Network Migration and their relationship to an 

application is integrated. The end product of this stage is a migration plan. 

The third stage is Preparation. In this stage preparation for the installation of the 900 Series system 

begins. This is also the first stage in which implementation of the migration pla:- d"Tfs. It 

primarily includes the steps that may be taken on an existing HP 3000 system in preparation for 

installation and migration to the 900 Series system. 

The next stage is System Installation. This includes a series of steps that will be taken upon 

delivery and installation of the 900 Series system. In addition to the normal steps that are taken 

when a new HP 3000 system is installed, this step includes use of a new Migration Tool which 

duplicates the existing HP 3000 operational environment on a 900 Series system. 

The fifth and sixth stages, Compatibility Mode and Native Mode execution, are both highly 

dependent upon the application and migration strategy. In Compatibility Mode execution, Object 

Code Compatibility plays an important part. Compatibility Mode primarily consists of running 

programs and using data from existing HP 3000 systems without modification of either. Source 

Code Compatibility is the key to Native Mode execution. It is in this stage that programs are 

recompiled using the new optimized Native Mode compilers. This stage may also include dual 

mode execution of programs. 

The goal of the Education stage of the Migration Process is to learn about the Migration Process, 

Tools and Services as well as the new products being offered on the 900 Series systems so that this 

information can be .applied when developing a migration plan for a specific application. 

Hewlett-Packard is doing a number of things that will provide the migration information that is 

needed. Information is available from papers and presentations which have been given at past 



HP3000 
INTERNATIONAL CONFERENCE R/04/4 
VIENNA 1987 

INTEREX conferences in Detroit and Madrid. A Migration Data Sheet is also available and 

provides more infonnation on migration to the 900 Series systems. (See the references section at 

the end of this paper for more information.) Field Sales Representatives have been povided with a 

Migration Sales Guide and we are now training our field support organi7.ation. 

With the release of the Series 930 s)'stem a Migration Manual Set will be available. This set of 
self-paced training will include manuals for System Managers, Programmers, and Genenl Users 
which will update them on (a) the differences between MPE V and MPE XL systems; and (b) 

information on significant new featmes. This manual set will also include a Migration Process 
Manual explaining the process and migration stages in detail 

A number of new MPE XL documents have aiready been released. The 900 Series HP 3000 
Genenl Information Manual has been released and includes an overview of new MPE XL based 

products as well as infonnation on the Series 930 and the MPE XL operating system. An update to 

the HP 3000 System Configuration Guide has been released with supported configuration details 
for the Series 930. 

The above information and other documents which will be released in the future should be 
reviewed as part of the Education stage of migration. These documents fonn a knowledge base by 

providing more information about MPE XL based products. 

Predelivery Analysis and Planning 

The goal of the Predelivery Analysis and Planning stage is to produce a detailed plan for the 

migration of a specific application. This plan may include short term and long term goals for 
migration of the application. An example of a short term goal might include restoring a Segmented 
Library of SPL procedures in Compatibility Mode while the long term goal for these procedures 

might be to rewrite them in a language supported in Native Mode. 

HP can provide consulting services which are tailored to a specific application or system migration. 
An HP consulting service that helps plan the migration of applications will be available. It will be 
delivered at the customer site by a trained HP Migration Specialist whose goal is to provide the 

methodology for optimal migration planning and to provide a migration plan for a specific 

application. This service will be delivered in two parts, Migration Orientation followed by 
Migration Analysis and Planning. 



HP3000 
INTERNATIONAL CONFERENCE R/0415 
VIENNA 1987 

Other consulting services available on a time and materials basis can include assistance with the 

implementation of the Migration Plan. HP can also assist customers with Series II/Ill/30/33 

systems in moving directly to a 900 Series system. 

A Migration Toolset will be available. The Migration Toolset executes on existing MPE V based 

HP 3000s and helps analyze applications by identifying incompatibilities that may exist in your 

applications. The Toolset provides an automated way of determining the incompatibilities within an 

application, avoiding the need to manually search through source code. The PTAPE intrinsic, 

which reads a paper tape reader, is an example of an incompatibility that would be identified by the 

Toolset since it is not supported on MPE XL based systems. 

The Toolset includes an Object Code Analyzer and a Run Time Monitor. The Object Code 

Analyzer will identify incompatibilities which may exist in programs and SL's. This tool will 

comprehensively scan individual or groups of programs and SL's and identify potential 

incompatibilities. The Run Time Monitor identifies incompatibilities which exist in applications as 

they execute. This tool will interrogate parameters passed to intrinsics for potential 

incompatibilities and log any detected incompatibilities for later reporting. 

Based upon the information provided in the Education and Predelivery Analysis and Planning 
stages, a detailed migration plan can be created. 

As with the installation of any new machine, preparation of the facilities must be taken into 

consideration as well as planning for which system each group of users will be using after the new 

machine is installed. Hewlett-Packard will be offering an extended return program that will allow 

customers to inexpensively operate an existing HP 3000 Series 6x/70 in parallel with the 900 Series 

system. The extended return program allows customers to keep the Series 6x/70 to be returned, 

beyond the normal 30 day return policy. The updated HP 3000 System Configuration Guide 

should also be consulted when planning for peripheral support on the Series 930. 

Preparatim 

The first implementation step in a migration plan is preparing for migration. During this stage 

everything that can be done on an existing MPE VIE based HP 3000 in preparation for delivery of 



HP3000 
R/04/6 INTERNATIONAL CONFERENCE 

VIENNA 1987 

the 900 Series system should be performed. If any incompatibilities were found in the planning 
stage they should be isola1ed and if possible re-coded. 

Language conversion activities that can be performed during this stage include migration of 

Fortran/V programs to Fortran 77 N as well as migration of BasicN to HP Business BasicN and 
COBOL 68N to COBOL IJ/V. When possible SPL code should be rewritten in PascalN or C. If 
the SPL code cannot be rewritten on the MPB V system for performance or functionality reasons, it 

should be noted for future reference after the 900 Series system is installed. In most cases 
language migration could begin today on existing HP 3000 systems. 

Other aetivities should include migration from ImageN to TurbolmageN, DS to NS Migration, 

and updating to the MPB VIE release that is recommended for migration. 

System Installation 

Once the 900 Series system arrives, the Sy618m lnstallatiors stage begins. The primary goal of this 

stage is duplication of the existing HP 3000 operational environment on the 900 Series system. HP 

is providing new tools that provide increased functionality and ease of use in maintaining the 

operational environment as well as a migration tool which help migrate the existing HP 3000 

environment to the 900 Series system. 

A Directory Migration Tool will be available to assist in migration of the operating environment. 

This tool will migrate an MPB V accounting structure to an MPB XL based system. It will also 

migrate RIN Table Information and User Logging IDs as well as the UDC environment and Private 
Volume information. 

A new System Generation utility, SYSGEN, replaces the MPB V SYSDUMP. The user interface 
for SYSGEN provides significant improvements over SYSDUMP. Specification of many devices 

with the same basic configuration and device address only changes, can be done with a single 
command for all of the devices instead of requiring a command for each device. Because most 

MPB XL tables are self expanding the system manager no longer needs to configure these table 

sizes. 

The MPE XL Store/Restore command supports a TRANSPORT' option which allows MPE V 



HP3000 
INTERNATIONAL CONFERENCE RI04n 
VIENNA 1987 

compatible store tapes to be created and read. This option facilitates the transfer of data between 
existing HP 3000 systems and 900 Series systems. 

Since MPE VIE is not supported on the Series Il/IIl/30/33 systems, these customers may also 

purchase consulting services to aid in migration of these systems to 900 Series systems during the 
System Installation stage. 

Compatibility Mode 

Object code compatibility is provided via Compatibility Mode. 900 Series HP 3000 systems have a 

run time environment known as 'Compatibility Mode' which allows customer developed object 

code from the MPE V based HP 3000 family to run on 900 Series systems. Consequently, few 

changes, if any, are required to move these applications or data from existing HP 3000s to new 900 

Series systems. While Compatibility Mode provides the ability to migrate applications to 900 

Series systems quickly with little changes it also provides the ability to phase migration to Native 

Mode. This phased migration allows programs to execute in Compatibility Mode until they can be 

recompiled into Native Mode. By migrating to Native Mode, an application can take advantage of 

the best performance and new features of the HP Precision Architecture. 

When a user runs a program on an MPE XL system the MPE XL Loader determines whether the 

program was generated using one of the new MPE XL compilers or with one of the MPE V 

compilers. If the program was generated with an MPE XL compiler it is called a Native Mode 
program since it uses the 900 Series instructions and addressing. If the program was generated 

using one of the MPE V compilers or was restored from an MPE V system it is considered a 

Compatibility Mode program. 

If the MPE XL Loader determines that the program is a Native Mode program the program will be 

loaded and executed. If the program is a Compatibility Mode program, the MPE V HP 3000 

Instruction Set Emulator will be invoked to emulate the program. The user does not need to know 

what kind of program is being run since this is determined by the MPE XL operating system. 

Hewlett-Packard is also supplying an Object Code Translator to improve performance within 



HP3000 
INTERNATIONAL CONFERENCE R/0418 
VIENNA 1987 

Compatibility Mode. The Object Code Translator will translate the MPE V HP 3000 instructions in 

a Compatibility Mode program or SL into 900 Series instructions and append the 900 Series 

instructions to the end of the program or SL file. A new command much like the existing compiler 

commands is used to perform the translation. The translator provides better performance when the 

program is run since the HP 3000 instructions do not need to be translated into 900 Series 

instructions at run time. 

While providing increased performance for programs that are not recompiled into Native Mode, the 

Object Code Translator significantly increases the programs or SL's physical size. Besides 

providing increased performance by avoiding the decoding of instructions at run time, the Object 

Code Translator also optimizes the code. One of the side effects of optimizing and translating the 

code is that debugging becomes more difficult 

Native Mode 

The 900 Series HP 3000 systems have a primary environment known as 'Native Mode' which 

allows efficient accessing of the full power of the 900 Series new HP Precision Architecture. An 

existing application can be easily recompiled to Native Mode because new 900 Series compilers 

have been designed to provide source code compatibility with the rest of the HP 3000 family. 

These compilers will be released in phases and include HP FORTRAN 77/XL, COBOL II/XL, HP 

Pascal/XL, HP CIXL. HP Business BASIC/XL. HP Transact/XL, and HP RPG/XL. 

Since a phased migration approach is possible, HP is supporting mixed mode applications. A 

mixed mode application is one which executes in both Compatibility Mode and Native Mode. This 

feature is provided via the MPE XL Switch Subsystem and allows Native Mode programs to call 

procedures which reside in Compatibility Mode SL's. It also allows Compatibility Mode programs 

to call procedures which reside in Native Mode executable libraries (the Native Mode equivalent of 

SL's). The Switch Subsystem consists of three new intrinsics which are used to perform these 

mode switches. 

A common example of using the Switch Subsystem is a COBOL IIN application that calls SPIJV 

procedures located in an SL. The COBOL IIN application can be easily recompiled using the 

COBOL II/XL Native Mode compiler. The SPIJV procedures could be left in the Compatibility 

Mode SL and the recompiled COBOL application could continue to call these procedures via the 

MPE XL Switch Subsystem. (Note: There is a performance penalty incurred when switching 

modes over normal procedure calls.) In this manner the MPE XL Switch Subsystem plays a key 

part in providing a phased migration of applications. 



HP3000 
INTERNATIONAL CONFERENCE R/0419 
VIENNA 1981 

Hewlett-Packard will also be providing a Switch Assist Tool which makes use of the Switch 

Subsystem significantly easier. The Switch Assist Tool allows entry of information about the 

procedure that needs to be called and generates source code that makes the call to the proper Switch 

Subsystem intrinsic. This means that, in the above example, the COBOL IT application will not 

need to be modified to make the calls to the Switch Subsystem. 

Based upon user requests that HP support more international standards and as a goal in providing a 

single standard across HP computer systems, the HP Precision Architecture machines support the 

IEEE floating point standard. While converting HP 3000 floating point data to the IEEE format is 

optional, Native Mode programs will have better performance if floating point data is converted to 

the IEEE format since the Floating Point Coprocessor supports the IEEE standard. To convert 

from the MPE V HP 3000 floating point format to the IEEE floating point standard format ,which 

is supported in Native Mode on 900 Series systems, a new Floating Point Conversion Intrinsic will 

be provided. This intrinsic allows 32, 64 and 128 bit floating point numbers to be converted 

between the HP 3000 floating point format and the IEEE floating point format 

Conclusion 

Migration from MPE V based HP 3000 systems to 900 Series HP 3000 systems may be performed 

in a phased manner with a high degree of object code and source code compatibility. Complete 

Migration Tools and Extensive Documentation are being provided in each of the stages to make 

migration to the 900 Series HP Precision Architecture machines as easy as possible. 



HP3000 
INTERNATIONAL CONFERENCE R/04110 
VIENNA 1987 

References 

900 Series HP 3000 Computer Systems General Information Manna], Hewlett-Packard Inc. 

HP Precision Architecture -- A New Perspective. Hewlett-Packard Inc. 

Infonnation Manaiement HP 3QQQ Specification Guide. Hewlett-Packard Inc. 

Miiratin&' COBOL fromms to Spectrum: A Battle or a Breeze. by Steven J. Spence, INTEREX 

1986 Detroit Conference Proceedings 

Mi&'Jjltion Data Sheet. Hewlett-Packard Inc. 

Mi&'ration Solutions for MPE XL by Lawrence J. Cargnoni and I. Janet Garcia, INTEREX 1986 

Detroit Conference 

MPE V to MPE XL Mimtion: Mimtion Tools by R. Gregory Stephens, INTEREX 1987 Vienna 

Conference 

Object Code Compatibility on Future HP 3QQQ Systems. by R. Gregory Stephens, INTEREX 

1986 Madrid Conference 

Relational Technolo&Y -- A Proc!uctivity Solution, Hewlett-Packard Inc. 

Usini the MPE XL Link Editor, by Cary A. Coutant, INIEREX 1986 Detroit Conference 

Proceedings 
Biography 

R. Gregory Stephens works for the HP Computer Systems Division as the MPE XL Migration 

Product Manager. He also worked in the MPE XL Operating System Support group within the 

Information Technology Group. He received his B.S. in Management Information Science from 

California State University at Sacramento and worked for Lawrence Livermore National Laboratory 

as a Computer Scientist on HP 3000 systems. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Design of the HP 3000 Series 950 
Peter Rosenbledt, Hewlett-Packard 

Specs 

R/0511 

The HP3000 Series 950 is e VLSl-besed superminicomputer operating 
et 6-8 MIPS. It uses e 128kB cache end includes e >lMFLOP Floating 
Point Coprocessor. Memory capacity is from 16 to 256 MB. Two 
20MB/sec I/O channels ere included which support four 6MB/sec 
Channel I/O Busse&. 

Historical Background 

The HP3000 Series 950 carries on the tradition of the HP3000 
established in 1972 by providing e fully compatible software 
environment. On the inside, however, it represents e radical 
departure. The 16-bit microcoded stack architecture with code end 
date segmentation of the original HP 3000 gives way toe 32-bit 
RISC architecture with 48-bit address space, central register 
set, end paging. The Series 950 is e member of HP's new 
family of computers designed around the Precision Architecture 
introduced in early 1986. The technical realization of the 950 
grew out of experiences gained during the development of the 
advanced NMOS process for the HP 9000/SOO computer end 
the symmetric shared-memory multiprocessor structure employed by 
this machine. In the l/O area achievements from HP's Vision 
program have been incorporated into the system design. 

SPU Organization 

The System Processing Unit CSPU) of the HP3000 Series 950 is 
organized around e high speed 64 bit pipelined System Memory Bus 
<SMB>. Up to 2 Memory Control Units - each supporting 128MB of 
Memory in 16MB increments - end up to 4 symmetric processors can 
attach to SMB. In addition, up to 2 erchitecturelly-trensperent 
Bus Converters CBC) connect the SMB to two 32-bit synchronous I/O 
busses. Each I/O bus can support up to 6 l/O Channels, 2 of which are 
internal to the SPU bey, and 4 are usable with an I/O Extender 
Bay. Each I/O Channel can support S devices if on the SPU end 8 
devices in the Extender. An Access Port into the machine allows 
remote console access for maintenance and diagnostic purposes. 

Processor organization 

Each of the up to four identical processors in the SPU is organized 
around a Cache Bus that handles. instruction and data fetches from 
cache as well es cache line loads and stores to memory. The 
replacement algorithm is random. The Translation Lookaside Buffer 
<TLB) is single-set split instruction/data. The Central Processing 
Unit (CPU) is implemented on a single VLSI circuit and features a 
3-stage pipeline with instruction prefetch and overlapped loads, 
stores and branches. The Floating Point Coprocessor handles IEEE 
Standard Single and Double precision Adds, Multiplies and Divides 
as well as selected convert operation&. The System Interface 
Unit contains the SMB interface logic as well es the cache 
coherency logic to allow multiprocessor operation. 



HP3000 
INTERNATIONAL CONFERENCE R/0512 
VIENNA 1987 

Product Design 

The HP3000 Series 9?0 has been designed to operate quietly, 
reliably, and efficiently in EDP room environments with or 
without raised floors. The SPU packaging consists of two 1 meter 
high bays, the Power System, and the Processor Bay. 
The Power Bay converts the AC input voltage to the required DC 
voltages. These are delivered to the Processor Bay via a copper 
laminated busbar. The Processor Bay contains the processor, 
memory, and IO systems. The key features of this design are the 
ULSI cooling system and the dense packaging of system components. 
The ULSI cooling consists of an innovative chip package design 
in which the chip is bonded directly to a copper-tungsten heat 
spreader which in turn is bonded to an aluminum heatsink. This 
arrangement allows for efficient cooling and very high overall 
packaging density. This, coupled with a very efficient machine 
organization, has resulted in a powerful product in a very small 
footprint. These features and many others incorporated into the 
product design should substantially bring ease of use benefits 
to the customer. 

Support Features 

Coupled with its technology advances, HP provides diagnostic 
support to further lower costs of ownership to the customer. The 
HP3000 Series 9?0 has both local and remote support. This is 
accomplished by a three level strategy that uses a self test, 
standalone diagnostics and on-line diagnostics. Selftest 
verifies the boot path hardware required to load ISL 
(Initial System Load). The self test code is located in ROM. 
The System loads ISL, then the Operating System is booted. Once the 

·Operating System is loaded, on-line diagnostics will report system 
failures. This can be run in either single or multiple user mode. If 
ISL is loaded and the Operating System does not boot, standalone 
dianostics provide an additional SPU verification level on the 
processor, memory and l/O systems. Once these have been passed, the 
Operating System can be rebooted. All these diagnostics can be run 
locally or remotely. The remote user gains systems access, subject 
to locally controlled security restrictions, via the Access Port 
board. Through this approach HP provides secured remote 
diagnostics and a most effective means of support. 

Comparison with 1982 computer 

The HP 3000 Series 9?0 is a reflection of the progress being 
made in computer design and engineering if one compares parts 
count, manufacturing cost, failure rate, and performance 
with a machine of the same class introduced ? years ago. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 

MPE V to MPE XL Migration: Migration T~ 

by 
R. Gregory Stephens 

Hewlett-Packard Company. 
19447 Pruneridge Ave. 
Cupertino, CA 95014 

R/0611 



HP3000 
/NTERNA TIONAL CONFERENCE R/0612 
VIENNA 1987 

Abstract 

This paper will provide an introduction to the various Migration Tools that support migration from 

MPE V based HP 3000 systems to 900 Series HP 3000. The tools addressed in the paper are all 

tools provided by Hewlett Packard. Each of the tools will be placed within the perspective of the 

migration stages. 

Introdudim 

Migration to HP 3000 Series 930 and Series 950 systems is based on full compatibility with the 

rest of the HP 3000 family. This compatible migration path protects your investment in HP 3000 

hardware and software and provides you with a painless growth path to the high performance and 

capabilities of the 900 Series systems. 

Hewlett-Packard has made a significant investment in providing a high degree of compatibility and 

ease of migration. This investment is exemplified in the areas of Object Code Compatibility, 

Source Code Compatibility, Database Compatibility, Network Compatibility, Operational 

Compatibility, as well as the Migration Tools and Services that are being offered. 

This paper presents an introduction to the Migration Tools. In presenting the Migration Tools the 

role of each tool will be highlighted and placed within the perspective of the entire migration 

process. 

Migration~ Overview 

If you have read the :MPE V to MPE XL Mimti<>n Overview paper then the following description 

of the migration stages may be skipped. 

The Migration Process consists of six stages that delineate the steps that are normally taken when 

migrating from an existing MPE V based HP 3000 system to a 900 Series HP 3000 system. These 

stages are defined at a high level since the specific steps in the migration of a given application is 

highly dependent upon the applications characteristics. Below is a brief description of the stages 

followed by more details in the next section. 



HP3000 
/NTERNA TIONAL CONFERENCE R/0613 
VIENNA 1981 

These high level stages begin with Education on the Migration Stages themselves, the Migration 

Tools and Services that Hewlett-Packard is providing, as well as the high degree of compatibility 

that is provided by the 900 Series HP 3000 systems. This paper and past papers and presentations 

on various migration topics and the Migration Data Sheet are Hewlett-Packards first steps in 

providing information on migration. 

The second Migration Stage is Predelivery Analysis and Planning. In this stage the information 

learned in the Education stage is applied to a specific application. This is the first stage in which 

detailed analysis of Language, Database, and Network Migration and their relationship to an 

application is integrated. The end product of this stage is a migration plan. 

The third stage is Preparation. In this stage preparation for the installation of the 900 Series system 

begins. This is also the first stage in which implementation of the migration plan starts. It 

primarily includes the steps that may be taken on an existing HP 3000 system in preparation for 

installation and migration to the 900 Series system. 

The next stage is System Installation. This includes a series of steps that will be taken upon 

delivery and installation of the 900 Series system. In addition to the normal steps that are taken 

when a new HP 3000 system is installed this step includes use of a new Migration Tool which may 

be used to duplicate the existing HP 3000 operational environment on a 900 Series system. 

The fifth and sixth stages, Compatibility Mode and Native Mode execution, are both highly 

dependent upon the application and migration strategy. In Compatibility Mode execution, Object 

Code Compatibility plays an important part. Compatibility Mode primarily consists of running 

programs and using data from existing HP 3000 systems without modification of either. Source 

Code Compatibility is the key to Native Mode execution. It is in this stage that programs are 

recompiled using the new optimized Native Mode compilers. This stage may also include 

cross-mode execution of programs. 



HP3000 
INTERNATIONAL CONFERENCE R/0614 
VIENNA 1987 

Predelivery Analysis and Planning 

The goal of the Predelivery Planning stage is to produce a detailed plan for a phased migration of a 

specific application. This plan may include short term and long term goals for migration of an 

application. One of the key tasks in planning for migration is determining whether any 

incompatibilities exist in the migrating application. To help identify these incompatibilities a 

Migration Toolset will be available. 

The Migration Toolset executes on existing MPE V based HP 3000s and helps identify 

incompatibilities that may exist in your applications. The Toolset includes an Object Code Analp.er 

and a Run Time Monitor. The Object Code Analyzer will identify incompatibilities which may exist 

in programs and SL's. This tool will comprehensively scan individual or groups of programs and 

SL's and identify incompatibilities which may exist. The Run Time Monitor identifies 

incompatibilities which exist in applications as they execute. This tool will interrogate parameters 

passed to intrinsics for potential incompatibilities and log any incompatibilities for later reporting. 

Both tools identify two types of incompatibilities, those that apply only when an application is 

recompiled in Native Mode, and those that apply in both Native Mode and Compatibility Mode. 

Since the output of the tools is dependent upon an understanding of Compatibility Mode and Native 

Mode a description of these two modes of execution and their differences is in order. 

Introduction to Compatibility Mode 

HP 3000 900 Series systems have a run time environment known as 'Compatibility Mode' which 

allows customer-developed object code from the MPE V based HP 3000 family to run on 900 

Series systems. Consequently, no changes are required to move these applications or data from 

existing HP 3000s to new 900 Series systems. 

When a user runs a program on an MPE XL system, the MPE XL Loader determines whether the 

program was generated using one of the new MPE XL compilers or with one of the MPE V 

compilers. If the program was generated with an MPE XL compiler, it is called a Native Mode 

program since it uses the 900 Series instructions and addressing. If the program was generated 

using one of the MPE V compilers or was restored from an MPE V system, it is considered a 

Compatibility Mode program. 



HP3000 
INTERNATIONAL CONFERENCE R/0615 
VIENNA 1987 

If the MPE XL Loader determines that the program is a Native Mode program the program will be 

loaded and executed. If the program is a Compatibility Mode program the HP 3000 Instruction Set 

Emulator will be invoked to emulate the program. The user does not need to know what kind of 

program is being run since all of this is performed by MPE XL. 

Introduction to Native Mode 

The HP 3000 900 Series systems have a second environment known as 'Native Mode' which 

allows efficient accessing of the full power of the 900 Series new HP Precision Architecture. An 

existing application can be easily recompiled to Native Mode because new 900 Series compilers 

have been designed to provide source code compatibility with the rest of the HP 3000 family. 

These compilers will be released in phases and include HP FORTRAN 77/XL, COBOL II/XL, HP 

Pascal/XL, HP CIXL, HP Business BASIC/XL, HP Transact/XL, and HP RPG/XL. 

Object Code Analy.r.er 

The Object Code Analyzer (OCA) is a dialog-driven tool that allows the user to enter a list of 

programs and SL's to be analyzed for potential incompatibilities. Wild card specification of file 

names is supported, allowing a specification such as @.@.myacct. In which case the entire 

account 'myacct' will be searched for all programs and SL's which will then be analyzed by OCA. 

The types of potential incompatibilities that can be identified by OCA include: 

References to MPE V Intrinsics which have changed 

References to uncallable MPE V procedures 

The fact that OCA performs its analysis without running the program to be analyzed (versus RTM 

which performs its analysis on an executing program) provides several distinct advantages. The 

entire program file or SL is processed and the user can specify that the analysis take place when the 

load on the system is light and in batch mode if desired. The analysis is also not dependent upon 

MPE Files or Image Databases. 

One of the disadvantages to this approach is that incompatibilities in parameters cannot be identified 

since the parameters passed to a given intrinsic cannot be identified until run time. It is for this 

reason that incompatibilities listed in the OCA report are referred to as 'potential incompatibilities'. 

References in the documentation will provide the information needed to determine the specific 

incompatibility related to a message in the OCA report. 



HP3000 
INTERNATIONAL CONFERENCE R/0616 
VIENNA 1987 

OCA will also generate a list of all of the files scanned in a given execution of OCA. Since OCA 
allows specification of a indirect file which contains a list of file names, a list generated by OCA or 

any other list of files can be processed by OCA by specifying the name of a file that contains a list 

OCA also allows entry of additional external procedure names. This capability provides the ability 
to scan for calls to user written procedures that reside in an SL. 1'Us can assist in tracking down 

calls to user written procedures which may need to be modified. 

After OCA has completed scanning, output in the form of a brief or detailed report will be 
generated. Both reports will list procedures that are called which have a potential incompatibility. 

It will also specify whether the incompatibility applies to Native Mode only or to both modes. A 

reference number will also be listed for each incompatibility. This number may be used to look up 

more information about the incompatibility in the documentation. This number is useful because it 

provides a standard incompatibility identification that is used in the documentation and between the 

tools that make up the Migration Toolset 

Both report formats also provide general information about the program. A list of capabilities that 

the program requires including whether the program or SL contains privileged segments is 
provided. This is valuable since privileged code will need to be reviewed carefully in light of the 

extensive differences between MPE V and MPE XL internals. 

In addition to the information provided in the brief report the detailed report provides segment 

information (i.e. sizes, privileged segments, average segment size, entry points, patch area 
information), as well as the PB-relative locations of calls to resolved external procedures. 

Run 'Ilme Mritor 

The Run Time Monitor (RTM) is a tool that detects incompatibilities in a program as it executes. 
When a program executes, any calls to intrinsics with potential incompatibilities are intercepted by 

RTM. RTM reviews the parameters being passed to the intrinsic and if a changed or unsupported 

parameter is being passed, the event will be logged to the system log file by RTM. A separate 

reporting program may be later run which will list the incompatibilities logged by RTM. 

Besides the reporting program, RTM includes an SL that resides in the PUB.SYS group. When 
RTM is activated, the MPE V loader searches the RTM SL before searching the system SL for any 
external procedures. The RTM SL contains entries for intrinsics which have incompatibilities. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

The types of incompatibilities that can be identified by R1M include: 

• References to MPE V Intrinsics that are obsolete 
Intrinsic parameters that have changed or obsolete 

• Programmatically executable commands that are obsolete 
Programmatically executable commands whose oulput has changed 

R/06/1 

The fact that R1M detects incompatibilities at run time has distinct advantages. Since the 

parameters are known, an intrinsic which has an incompatibility related to a specific parameter is 

not logged unless that specific parameter is passed to the intrinsic. 

The disadvantage to this approach is that only portions of a program or SL that execute is analyzed. 

A few more words of stack space are also used in this approach since the parameters are effectively 

passed twice. Once to the R1M stub intrinsic and again to the actual intrinsic in the system SL. 

R1M logs events to the system log file using system logging event 16, Program File Event. To log 

this event it must be enabled via SYSDUMP. R1M also includes a controlling utility which allows 
the control of the types of incompatibilities that should be logged. This capability allows you to 

individually view specific types of incompatibilities. 

The Object Code Analyzer and Run Time Monitor together provide complete and detailed analysis 

of programs and SL's for potential incompatibilities that should be considered during the 
Predelivery Planning stage of migration to the 900 Series HP 3000 systems. 

System Instauation 

Once the 900 Series system mives the System Installation stage begins. The primary goal of this 

stage is duplication of the existing HP 3000 operational environment on the 900 Series system. To 
make duplication of this environment as easy as possible Hewlett Packard has developed the 

Directoiy Migration Tool (DIRMIG). 



HP3000 
INTERNAnONAL CONFERENCE R/0618 
VIENNA 1987 

DIRMIG will migrate an MPE V accounting structure to an MPE XL based system. It will also 

migrale RIN (Resource Identification Number) Table Information and User Logging IDs as well as 

the UDC environment and Private Volume information. 

Before running DIRMIG, the MPE XL system should be up and running and configured using 

SYSGEN. An MPE V SYSDUMP tape must be c:teated which will act as input to DIRMIG. To 

insure that migration using DIRMIG is a easy as possible the RIN and User Logging Identifier 

information should be up to date and all UDC files should be stored at the beginning of the store 

set. 

MPE V private volumes will not be directly supported on MPE XL systems. DIRMIG will 

however generate the MPE XL VOLUTIL commands necessary to c:teate the equivalent MPE XL 

Private Volumes. DIRMIG allows all er part of the MPE V directory structure to be duplicated on 

the MPE XL system. DIRMIG will only generate VOLUTIL commands for private volume 
directories which have been selected for migration. 

Compab"bllity Mode 

As described earlier, object code compatibility with MPE V based HP 3000 systems is provided on 

900 Series systems via Compatibility Mode. To provide increased perf onnance without requiring 

recompilation HP is supplying an Object Code Translator. 

While the MPE V HP 3000 Instruction Set Emulator that is used by default in compatibility mode is 

analogous to an interpreter (i.e. It decodes the MPE V HP 3000 instructions at run time), the Object 

Code Translator is analogous to a compiler. A new command, much like the existing compiler 
commands, is used to perform the translation. The Object Code Translator will translate the MPE 

V HP 3000 instructions in a Compatibility Mode program or SL into 900 Series instructions and 

append the 900 Series instructions to the end of the program or SL file. The translator provides 

better performance when the program is run since the MPE V HP 3000 instructions do not need to 

be translated into 900 Series instructions at run time. 

Besides the increased perf onnanc:e that is achieved by avoiding the decoding of the MPE V HP 

3000 Instructions at run time, the Object Code Translator (OCT) performs several other 

optimizations. The OCT provides significant performance oi>timization by eliminating unnecessary 

condition code, carry, and overflow tests. Since the OCT performs path code analysis during 



HP3000 
INTERNATIONAL CONFERENCE R/0619 
VIENNA 1987 

translation it can determine whether or not tests are needed. The OCT can also store the top 8 

words (16 bit) on the top of stack in 900 Series general registers. It can also calculate constants 

into the generation of 900 Series Ins1rUCtions. 

Native Mode 

Migration of applications to Native Mode will provide the full performance and features of the HP 

Precision Architecture. To take advantage of Native Mode programs must be recompiled using 
one of the new MPE XL Native Mode compilers. MPE XL compilers for high level HP 3000 

languages will have a phased availability. 

MPE XL Switch Subsystem 

In support of the phased migration strategy and because a Native Mode SPL compiler is not 

available, MPE XL will support mixed mode execution. This mixed mode capability is provided 
by the MPE XL Switch Subsystem and is exposed via three new MPE XL intrinsics. These new 

intrinsics provide two basic capabilities. 

• Native Mode to Compatibility Mode Switching. 
This capability allows Native Mode programs to call procedures which reside in 

Compatibility Mode SL's. 

Compatibility Mode to Native Mode Switching. 

This capability allows Compatibility Mode programs to call procedures which reside in 

Native Mode XL's (Executable Libraries, the NM equivalent of SL's) 

A common example of using the Switch Subsystem is a COBOL IlN application that calls SPUV 
procedures located in an SL. The COBOL IlN application can be easily recompiled using the 

COBOL II/XL Native Mode compiler. The SPlJV procedures could be left in the Compatibility 
Mode SL and the recompiled COBOL application could continue to call these procedures via the 

MPE XL Switch Subsystem. In this manner the MPE XL Switch Subsystem plays a key role in 

providing a phased migration of applications. 



HP3000 
INTERNATIONAL CONFERENCE R/06110 
VIENNA 1987 

In the example above the COBOL application that was recompiled can no longer call the target 

procedure directly. It must now call the appropriate MPE XL Switch Subsystem intrinsic which 

will invoke the target CM procedure on the COBOL program's behalf. It would be convenient if 
modification of the COBOL program, replacing calls to the target procedure with calls to the switch 

intrinsic, could be avoided. 

To avoid modification of the COBOL program a Native Mode procedure could be written with a 

declaration that is identical to the target procedure. This NM procedure, called a Switch Stub, 

would then call the switch intrinsic to invoke the target CM SL procedure. Later, if the CM SL 

procedure is rewritten as part of the next stage in migration, the Native Mode Switch Stub can be 

replaced by a version of the CM SPL target procedure that has been recoded in Native Mode. In 

writing the Switch Stub we have avoided any modification of the COBOL program throughout all 

of the stages of the migration. 

Switch Assist Tool 

Hewlett-Packard will be providing a Switch Assist Tool which makes use of the Switch Subsystem 

significantly easier. The Switch Assist Tool allows entry of information about the target 

Compatibility Mode procedure that is to be called and generates source code which makes the call to 

the proper Switch Subsystem intrinsic so that the Switch Stub does not need to be written from 

scratch. 

The Switch Assist Tool incorporates a VPLUS interface that prompts for information about the 

target procedure such as the name of the procedure, the number of parameters, the type and length 

of each parameter, etc. After all of the information has been entered a status screen is displayed 

which reports on the status of the source code generation. The Switch Assist Tool generates Pascal 

source code. 

Conclusion 

Migration from MPE V based HP 3000 systems to 900 Series HP 3000 systems may be perfonned 

in a phased manner with a high degree of object code and source code compatibility. The Migration 

Tools addressed in this paper are used from the Planning stage of migration to Native Mode 

execution and greatly simplify migration to MPE XL based HP 3000 systems. 



HP3000 
INTERNATIONAL CONFERENCE R/06111 
VIENNA 1987 

References 

900 Series HP 3()()() Computer Systems General lnfoIDlation Manual, Hewlett-Packard Inc. 

HP Precision Architecture -- A New Pel'ljpective, Hewlett-Packard Inc. 

Infonnation Manaeement HP 3000 Specification Guide. Hewlett-Packard Inc. 

Miwtine COBOL Prow.ms to Spectrum: A Battle or a Breeze, by Steven J. Spence, INTEREX 

1986 Detroit Conference Proceedings 

Mieration Data Sheet. Hewlett-Packard Inc. 

Mieration Plannine Assistance Data Sheet, PIN 5954-8629 (1187) Hewlett-Packard Inc. 

Mieration Solutions for MPE XL by Lawrence J. Cargnoni and I. Janet Garcia, INTEREX 1986 

Detroit Conference 

MPE V to MPE XL Mi&ration: Micration Tools by R. Gregory Stephens, INTEREX 1987 Vienna 

Conference 

Object Code Compatibility on Future HP 3000 Systems. by R. Gregory Stephens, INTEREX 

1986 Madrid Conference 

Relational Tecbnoloey -- A Pro<iuctjyjty Solution, Hewlett-Packard Inc. 

Usine the MPE XL Link Editor. by Cary A. Coutant, INTEREX 1986 Detroit Conference 

Proceedings 

Biography 

R. Gregory Stephens works for the HP Computer Systems Division as the MPE XL Migration 

Product Manager. He also worked in the MPE XL Operating System Support group within the 

Information Technology Group. He received his B.S. in Management Information Science from 

California State University at Sacramento and worked for Lawrence Livermore National Laboratory 

as a Computer Scientist on HP 3000 systems. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Converting to IBM - Are You Sure? 

Donal Barksdale 

Spectra-Physics 

3333 North First Street 

San Jose, CA 95134-1995 

(408) 946-6080 

SM01/1 



HP3000 
INTERNATIONAL CONFERENCE SM01/2 
VIENNA 1987 

INTRODUCTION 

OVERVIEW 

This paper is intended to focus on how to evaluate when or if you 
should change hardware. The assumption of the paper is that the 
decision to change computer hardware vendors is a business 
decision, and not a technical one. The process of reviewing the 
hardware decision is discussed using the business requirements as 
the catalyst. From here, the current hardware is reviewed AFTER 
analyzing the requirements. After reviewing the current vendor 
against 1,2, and 5 year requirements, other vendors are measured 
using the same criteria. In addition,hidden costs associated with 
changes in hardware are identified. 

Although this paper is directed toward HP users 
contemplating changes to IBM hardware, the evaluation process can 
be universally applied for any hardware evaluation. 

The case study examines an actual company's decision to 
change hardware, and the effects of that change. 

SYMPTOMS 

There are many symptoms that signal the mood and climate for 
a hardware change. Some of them are rational, others are not. 
Among a few of the more common ones: 

- The new company president used IBM hardware at his last 
company and has decided to use the same system here. 

- The manufacturing VP prefers this special software that 
only runs on IBM computers. 

- Our current hardware vendor does not off er any larger 
machines, so we will need to change to IBM computers. 

- We need to change hardware so that our systems can be 
compatible with headquarters. 

These statements, of course may or may not be present in 
your situation. They may be good or bad reasons for change. If 
they are present, however, they will affect the entire process 
and it may not be possible to change management's perception 
overnight. The process of examining the business environment 
will yield satisfactory results to all and also provide valuable 
insight to what you SHOULD be working on! 

The process of deciding on a vendor consists of the· 
following steps: 

CURRENT MIS ASSESSMENT 
DETERMINE CURRENT HEALTH OF THE COMPANY 
REVIEW THE COMPANY FIVE-YEAR PLAN 
CURRENT HARDWARE 

VENDOR PRODUCT LINE REVIEW 
FIRST YEAR REVIEW 
SECOND YEAR REVIEW 
THIRD THROUGH FIFTH YEAR REVIEW 

PROPOSED HARDWARE #1 ASSESSMENT 
VENDOR PRODUCT LINE REVIEW 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

THIRD THROUGH FIFTH YEAR REVIEW 
PROPOSED HARDWARE #2 ASSESSMENT 

VENDOR PRODUCT LINE REVIEW 
FIRST YEAR REVIEW 
SECOND YEAR REVIEW 
THIRD THROUGH FIFTH YEAR REVIEW 

COMPARISONS 
RECOMMENDATION 

Each of these areas are discussed in the detail that 
follows. 

PROCESS 

BUSINESS CLIMATE 

CURRENT MIS ASSESSMENT 

SM01/3 

This should only be an assessment and not a recommendation. 
You are probably very aware of the your total environment. 
Generally, it is possible to determine a lot about the company 
from the climate in the MIS department. Review manpower loading 
schedules, short term projections, and staffing issues. Of 
course, a very important part of the review is an assessment of 
performance and capacity issues. Be aware of the true state of 
the environment. Are you running old software? How are the 
problems affecting the business? Have you had a formal capacity 
and performance review? Are you aware of problems that can be 
fixed? For example, did you know that it is possible to expand 
your system's memory on a Series 70 to 32Mb? If you are running 
multiple CPUs, can you shift the workload? Are you impacting the 
business because of the hardware, or do you have a staffing 
problem? 

DETERMINE CURRENT HEALTH OF THE COMPANY 

This part includes an evaluation of financial factors. Since most 
MIS departments are part of the financial community, they tend to 
be well informed about the health of the company. Is the industry 
showing a downturn? Is the company a target for a takeover bid? 
Are there major staff reductions planned? Is there stability in 
the upper management team? The answer to most of these questions 
will have a significant impact upon the approach that you will 
need to take when reviewing the hardware situation. 

REVIEW THE COMPANY'S FIVE YEAR PLAN 

You must know the short and long term goals for the company. 
Review the data for the entire corporation and all divisions. 
What are the growth rates for each division? How will these 
business needs impact the needs for MIS services? Is there a 
focus on centralization,distributed processing, departmental 
processing,etc.? How are you providing MIS services to each 
group? What does the five year plan suggest about future 
allocation of services compared with today's allocation? Are 
business needs defined that clearly indicate capabilities not 



HP3000 
INTERNATIONAL CONFERENCE SMOt/4 
VIENNA 1987 

currently supported(artificial intelligence,decision support 
systems,etc.)? Has the five-year plan been adopted? How is the 
company currently progressing when measured against the previous 
five year plan? Try to prioritize needs with upper management 
into 1,2 and 5 year categories. 

You may wonder how to proceed if there is no five-year plan. 
If this is the case, then you would be best advised to proceed 
very carefully before considering changing hardware. Of course, 
there may still be companies whose growth rates would suggest 
that the risks of changing hardware are small. It would be a good 
idea for you to review these cases with upper management. 

CURRENT HARDWARE ASSESSMENT 

PRODUCT LINE REVIEW 

Of course, it only makes good business sense for you to 
spend time looking at your current vendor's product offering 
carefully. After all, you have a tremendous investment of 
time,hardware,training,and software. 

By now, you should be familiar with your company's total 
environment, since you know capacity and performance data,the 
financial situation, and have been made aware of those items that 
make up the five-year plan. It is necessary to now review the 
total offerings from your current vendor. The review should 
consist of: 

- What are the high-end capabilities? 
- What are the low-end capabilities? 
- Where does your company currently stand with installed 

hardware? 
- If you are at the high-end, does the vendor offer you the 

option to cluster machines, and share devices such as discs and 
printers? 

- Can the software be migrated across the entire product 
line? 

- Connectivity to other mainframes? 
- What future technology can you expect? 
- What kind of service and support will you receive in the 

future? 
- If there are new offerings, can you upgrade to the new 

products and preserve your current software? 
- What is the financial health of your current vendor? 
- What other technology advances outside of the mainframe 

are possible? 

If we examine the answer to these questions in relation to 
HP, the answers will seem to be as follows: 

What are the high end capabilities? The current available 
high end Series 70 is the only offering today. By June, it 
appears that a Series 950 will be offered. The capabilities are 
yet to be determined. The processing power compared to the 
existing offerings is expected to be 2 times greater. 



HP3000 
INTERNATIONAL CONFERENCE SM01/5 
VIENNA 1987 

What are the low-end capabilities? The current offerings 
include a micro 3000 that permits you to use existing software 
without modification. 

Where does your company currently stand with installed 
hardware? You should inventory the total installed base within 
your company. 

Does the vendor offer you the option to cluster machines, 
and share devices such as discs and printers? The current HP 
offerings do allow clusters. There is currently no direct sharing 
of peripherals between CPUs. 

can the software be migrated across the entire product line? 
The answer appears to be yes for the current and future announced 
products. 

Connectivity to other mainframes? Yes, there ways to connect 
to IBM through communication controllers and DEC equipment 
through X.25 interfaces. 

What future technology can you expect? Rise based 
architectures will become more widespread among the product 
lines. 

What kind of service and support will you receive in the 
future? Probably no less than the current levels, but probably 
less than the volume that IBM has offered in the past and will 
probably continue. 

What is the financial health of Hewlett Packard? Most users 
and industry observers do not currently have any concerns about 
HP's long term financial health. 

What other technology advances outside of the mainframe are 
possible? The advancement of the PC is certainly an area that 
should not be overlooked. It may be possible to totally eliminate 
the need to change hardware, based upon redesigning systems and 
taking advantage of the increasing number of applications that 
allow you to co-exist with mainframes. HP,as well as other 
vendors such as Gateway System's product called Synergist are now 
looking at ways to reduce the load on mainframes. 

These are just a few of the basic questions. The most 
important ones will relate to the actual business needs that have 
been identified previously. It is still possible that your needs 
cannot be met even though the obvious questions seem to be 
answered. 

FIRST YEAR REVIEW 

The one year needs should be very obvious by now. It should 
not be difficult to determine where you stand for the short term. 



HP3000 
INTERNATIONAL CONFERENCE SM01/6 
VIENNA 1987 

You will need to review the needs over the next year if you are 
planninq a major upqrade with the existinq vendor. 

A typical list should include at least the followinq key 
areas: 

-Business Systems 
-Hardware 
-software 
-staff 

Business Systems 
Identify all requirements that would be needed durinq the 

next year. Remember, if you are planninq a major upqrade, use two 
year requirements to size the initial upqrade configuration. This 
will give you a qood idea of how your investment will be after 
you meet the one year needs. It will also let you know if you 
will be makinq the same decision next year. . 

Establish hardware and software requirements dictated by the 
applications selected. It is very useful to separate this data 
from the normal business systems. 

Set priorities for implementation. 
Determine BUSINESS SYSTEMS Costs, includinq: 

- All purchased software or depreciation expense. 
- Staff labor expenses 
- Outside Contractor Costs 
- Traininq 
- overlappinq software cost 
- Staff turnover 

Hardware: 
Identify initial hardware configuration based upon business 

systems selected. 
Identify site considerations/changes required to accommodate 

the new hardware. 
Review operational procedures required to use new hardware 

including: 
hardware maintenance schedules 
operator training 

Determine HARDWARE costs, including: 
- Hardware or depreciation expense of CPUs,controllers, 

modems,printers,terminals,etc. 
- Annual Hardware maintenance costs 
- Site rearrangement costs such as expansion,special line 

condition equipment,etc. 
- overlappinq hardware costs during conversion. 

Software: 
Identify all operating system components. 
Determine SOFTWARE costs, including: 

- Annual operating system,utility, and development support 
costs. 

- One-time software installation costs for operating 
system,utility,and development software. 



HP3000 
/NTERNA TIONAL CONFERENCE 
VIENNA 1987 

Staff: 
Identify chanqes needed in staffinq levels. 
Identify traininq needs for current staff. 
Determine STAFF costs, includinq: 

sMotn 

Annual costs durinq and after conversion of planned 
staffinq levels 
Recruitinq costs 
Traininq,includinq travel 

Risk Assessment 
This should include your evaluation of the ability to meet 

the established qoals in the Business Systems area. It would also 
include any areas that you have identified, whether they would be 
performance,service, or capacity issues. Talk to other companies 
who have made similar conversions. 

Summary of costs 
The total estimate of costs should be evaluated for the 

year. 

SECOND YEAR REVIEW 

The second year look must be a little more critical. By looking 
at your requirements alone, you will surely miss some thinqs. You 
must be able to try to reduce any hiqh risk factors that may 
cause you to make an inappropriate decision. Here are a few other 
thinqs that you may want to consider: 

- You should attempt to assess how the business will do if 
it meets its 2 year qoals. Just as important, you should weigh 
the options if the qoals are not met. If your current vendor (HP) 
will probably support you for one year and the second year now 
seems uncertain, you may want to consider some other factors. 
What is the level of confidence from upper management? Is the 
industry uncertain? If the second year of the company is 
uncertain, you may want to wait. On the other hand, if the growth 
has been 20 to 30 percent each year, you will certainly want to 
make sure that HP can support you bas~d upon whatever philosophy 
your company will be following(centralized, departmental,etc). 
Consider the fact that you will PROBABLY NEED 2 YEARS TO CONVERT 
HARDWARE AND SOFTWARE SYSTEMS, with the first year being the most 
difficult. It will be very difficult to cut back a conversion 
midstream if the business turns sour. You will need to figure in 
overlappinq costs in the first year for hardware, as well as 
traininq,recruiting,etc. Establish costs the same as in the first 
year. 

THIRD THROUGH FIFTH YEARS 

The third throuqh fifth year projection should be used as 
just a way to project a growth curve, assuming the optimal 
conditions. It may be one way to project the ability of a vendor 



HP3000 
INTERNATIONAL CONFERENCE SM01/B 
VIENNA 1987 

to grow with your company. You should expect that there is a 
reasonable chance that you will still be with the same vendor at 
that point. Unless the vendor can support your company with a 
growth rate of at least 25% each year,it would not be wise to 
change vendors. For the years 3,4,5 you should compute two 
different costs: 

First,compute the costs of all of the 4 categories 
associated with maintaining a no growth environment from the 
second through fifth years. This will give you some indication of 
what things would look like if the business did not grow. Compare 
it with the other vendor estimates. 

Next, compute the costs for all of the 4 categories, using 
the growth from the five year plan. 

VENDOR #1 HARDWARE ASSESSMENT 

PRODUCT LINE REVIEW 

This is an important part of the process of reviewing other 
vendors. You should review the breath of hardware and product 
offerings. This is merely an introduction to the alternative 
vendor. The actual mapping of the vendor to business requirements 
comes later, so try not to provide solutions before the needs 
have been taken into account. A minimum review should include: 

- What are the high-end capabilities? 
- What are the low-end capabilities? 
- Can the software be migrated across the entire product 

line? 
- Connectivity to other mainframes? 
- What future technology can you expect? 
- What kind of service and support will you receive? 
- Are there upgrade paths when expanding? 
- What is the financial health of the vendor? 

It is very misleading to spend a lot of time looking at 
MIPS. Your main interest will be in throughput using the software 
you have selected and the ability to expand when you need it. 
It is probably more useful to understand relative performance 
among machines within a single vendor's offering. Get some feel 
for the costs,although you will not be able to determine real 
numbers until you review the needs for the first year. In those 
instances where the alternate vendor offers products by the same 
vendor, you will have the advantage of a better comparison. This 
is becoming more common as third party vendors expand across 
multiple hardware environment. Some examples of this are Cognos, 
and Ask Computers running similar software on HP and DEC. 

Let's take a look at IBM and DEC. 

Product line offerings 



HP3000 
INTERNATIONAL CONFERENCE SM01/9 
VIENNA 1981 

IBM 
Few would argue that IBM has a long line of processors capable 

of handling large data processing needs. They include: 

30xx Series High-end 
43xx Series Mid-range 
9370 Series Low-end 
system 36,38 Low-end 

DEC 
With some of the recent announcements, DEC has expanded the 

depth of it product line. It offers: 

IBM 

897x,8800 
8550,8600,8650,8700 
8200,8300,8500 
Vaxmate,MicroVaxII 

Series High-end 
Mid-Range 
series Low-end 
Series Low-end 

Connectivity to other mainframes? 

SNA is the method that IBM has chosen to define the 
connectivity to it systems and others have created products to 
permit access to their mainframes. IBM has recently began 
interfacing X.25 capabilities with SNA to broaden its appeal. 

DEC 
Dec has long offered connectivity to IBM and other machines 

via products like Decnet and its X.25 product offerings. 

What future technology can you expect from IBM? 
With the introduction of the 9370, IBM has increased its 

product offerings for those customers not needing large processor 
power. This trend will likely to continue as they attempt to move 
to the minicomputer market. 

DEC 
The introduction of its line of 8974 and 8978 machines 

indicates a trend to providing unlimited growth for it's customer 
base. The increased focus on commercial applications will 
continue. 

What kind of service and support will you receive in the 
future from IBM? 

The level of service and support is expected to continue, as 
they continue to discourage third party hardware maintenance. 

DEC 
The service level is generally rated as acceptable. 

What is the financial health of the company? 



HP3000 
INTERNATIONAL CONFERENCE SM01/10 
VIENNA 1987 

IBM 
Profits have certainly been higher, but IBM is a healthy 

company. 

DEC Profits were up substantially in 1986 and are expected to 
continue in 1987. 

It is also a good idea to contrast the actual working 
environments of the new vendor(IBM,DEC,etc) against your existing 
vendor(HP). It is worth reviewing the environments in further 
detail. Review the staff skills needed, operating system 
interface, compatibility in software across the product 
line,number of people needed for support,availability of 
software,etc. 

There are many other distinctions between these two vendors, 
and you should spend some time focusing on those areas that will 
affect your business. Certainly, each system can perform the 
same functions as the other with differences, depending on 
processing requirements. 

FIRST YEAR REVIEW 

This is the biggest phase in determining the benefits of changing 
vendors. It is crucial, because it is here that the company will 
experience the largest variance in costs,and changes to the 
entire company. The business requirements would be the same as if 
there were no hardware changes, so try to be objective. You will 
need to review the needs over the l year period, as well as 
figure in the needs that are already met. 

The same steps would apply as in looking at the first year 
for your existing hardware vendor. You should gather all data 
for: 

-Business Systems 
-Hardware 
-Software 
-staff 
-Risk Assessment 
-summary of costs 

SECOND YEAR REVIEW 

In some instances, it may be useful to combine business 
requirements for two years since the software must be changed. 
This will vary depending on the complexity of the needs that were 



HP3000 
INTERNATIONAL CONFERENCE SMOt/11 
VIENNA 1987 

initially defined. It should be expected, however, that there 
will continue to be needs for the 2 second year as a result of 
implementation issues related to changing software. 

In either case, the same cost data should be identified for 
the key areas of Business Systems,Hardware,Software, and staff. 
If you have made a good choice, then the hardware selected should 
be capable of supporting your expected requirements with a 
minimum of additions. 

THIRD THROUGH FIFTH YEARS 

The fifth year plan with a new vendor is similar to the situation 
of changing vendors. It should be assumed that this would also 
just be a model for the optimum situation. By using different 
growth rates, it is possible to estimate your new environment 
if things change. For the years 3,4,5 you should compute two 
different costs: 

First,compute the costs of all of the 4 categories 
associated with maintaining a no growth environment from the 
second through fifth years. This will give you some indication of 
what things would look like if the business did not grow. Compare 
it with the original vendor estimate and others that you may be 
evaluating. 

Next, compute the costs for all of the 4 categories, using 
the growth from the five year plan. 

MULTIPLE HARDWARE ASSESSMENTS 

Multiple hardware assessments should each proceed the same 
as the previous comparison with IBM and DEC. 

COMPARISONS 

This will typically take the form of a cost chart with brief 
summaries of the business systems with each vendor reviewed 
according to their ability to meet the requirements. Each year 
should be contrasted and the total expected costs compared over a 
five year period. 

If a 
that 
want 

Be aware that cost will 
company is growing at a 
the growth will sustain 
to establish acceptable 

RECOMMENDATION 

not always be the deciding factor. 
steady rate, then it is expected 
the added costs. Each company will 
costs based upon sales volumes. 

The actual recommendation should occur after a thorough 
review of the facts, along with some process of reducing high 
risk factors. There will be a need to gain a substantial 
commitment from the entire company if it is decided to change 
vendors. 



HP3000 
INTERNATIONAL CONFERENCE SM01/12 
VIENNA 1987 

SUMMARY 

In reviewinq the process of chanqinq hardware, the basic 
checklist must at least be: 

- Assess the current MIS environment first. Do not recommend 
solutions at this time. 

- Understand the existinq financial situation of the 
company. 

- Understand the priorities established by the five year 
plan. 

- Review the current vendors full product offerings. 
- compare 1 year business requirements with existing 

hardware or next 2 year business requirements with any upqrade 
with the existing vendor. 

- Compare second year business requirements with existing 
vendor. 

- Estimate needs for years 3,4,5 assuming planned growth 
accordinq to the five year plan. 

- E~timate needs for years 2,3,4,5 with no qrowth. 

-For each Vendor under consideration: 
- Review the proposed vendor's full product offerinqs. 
- Compare 2 year business requirements when sizing initial 

confiquration. 
- Compare second year qrowth requirements with the new 

vendor. 
- Estimate needs for years 3,4,5 assuming growth 

accordinq to the five year plan. 
- Estimate needs for years 2,3,4,5 with no growth. 

- Make recommendation 

It should be noted that to change vendors or not should be 
based upon the ability of the vendor to support the growth of the 
business and not vendor loyalty,or purely cost. 

CASE STUDY 

OVERVIEW 

This is the profile of a large successful electronics 
company that is part of a multinational corporation. Sales for 
this subsidiary were in excess of $130 million at the beginning 
of the project. The company had multiple plant locations, 
including foreign countries. This study will look at 2 years of 
actual implementation data. 



HP3000 
INTERNATIONAL CONFERENCE SM01/13 
VIENNA 1987 

SYMPTOMS 

These were the symptoms that existed. 

-There were many complaints that the existing software was 
inadequate for the business in virtually all areas. 

-An almost total change in the upper management of the 
corporation, resulted in increased requirements being placed upon 
the existing hardware, software and staff. 

-Expectations were high that there would be growth in all 
market areas. 

PROCESS 

BUSINESS CLIMATE 

MIS ASSESSMENT 

The then assessment of the MIS organization was favorable 
from the user community in the area of support. Since the systems 
were very old, user requests consisted of major modifications and 
enhancements. The work load, as you would expect was very heavy, 
and many contractors were used to help meet deadlines. The 
hardware environment consisted of: 

2 HP Series III 
2 HP Series 68 

This total hardware mix provided all of the commercial data 
processing support for the corporation. There was a staff of 
about 40 at that time. 

The performance and capacity of the systems seemed to 
indicate that there were few alternatives left except to replace 
or upgrade the hardware. 

HEALTH OF THE COMPANY 

The general health of this division was not profitable at 
the time, but since this was a small division with great promise, 
these early years were not perceived to be of particular concern. 
As stated before, many of the financial problems were attributed 
to the systems and the parent company appeared to believe that 
things would change soon. With the new management team, there was 
a focus toward centralization of functions. 

THE COMPANY'S FIVE YEAR PLAN 

As expected, there was indeed a very ambitious plan in place 
to make the company an $800 plus million company in 5 years. The 
major systems requirements were identified and consequently the 
decision was made to change hardware vendors. The major reasons 
for the changes were to be compatible with the parent company(IBM 
compatible), and because at the time, there was no high-end 
machine from HP, and the software needed replacing. 



HP3000 
INTERNA Ti ONAL CONFERENCE 
VIENNA 1987 

CURRENT HARDWARE ASSESSMENT 

PRODUCT LINE REVIEW 

SM01114 

The Hardware offerings from HP were reviewed, including a 
visit with the new development group. The answers to the 
questions at that time(early 1984) are shown. 

- What were the high-end capabilities? The series 68 was the 
only foreseeable offering. HP was recommending adding an 
additional processor. 

- What were the low-end capabilities? The Series 30 was then 
one of the low end offerings. 

- Where did the company stand with installed hardware? At 
that time, the company was using a multiple CPU approach, with 
additional hardware being the only possible expansion path. 

- Did the vendor offer you the option to cluster machines, 
and share devices such as discs and printers? The company was 
using OS for host connectivity, but it did not prove satisfactory 
over long distances. 

- Could the software be migrated across the entire product 
line? Yes. 

- connectivity to other mainframes? Yes, to HP and IBM 
machines. 

- What future technology could we expect at that time?There 
were no new product offerings expected within the next year. 

- What kind of service and support did we expect to receive 
in the future? There were no concerns in this area. 

- could we upgrade to the new products and preserve our 
current software? Yes. 

- What was the financial health of HP? stable. 

l YEAR REVIEW 

Business Systems 
All requirements were identified. The initial business 

systems requirements for two years were used to size the initial 
new hardware configuration. 

Hardware and software requirements dictated by the 
applications were estimated. There were no final vendor 
selections made before selecting the hardware. Priorities were 
established for implementation. 

The applications selected were: 
General Ledger 
Accounts Payable 
Accounts Receivable 
Human Resources 
Payroll 

Costs were estimated including: 

One time cost 
$130,000 
$110,000 
$120,000 
$110,000 
$120,000 

Depreciatipn costs of software(5 years) $119,000/year 
First year prepaid maintenance $64,000 

Business systems First year estimate $183,000 



HP3000 
INTERNATIONAL CONFERENCE SM01/15 
VIENNA 1987 

- No overlapping costs for HP software were determined due 
to the fact that all software has been developed in house. 

Hardware: 
Initial hardware configuration based upon expected business 

systems was determined. 
Site considerations/changes required to accommodate the new 

hardware were considered. 
Operational procedures were developed to use new hardware 

including: 
hardware maintenance schedules 
operator training 

The HARDWARE costs were: 
- Hardware expenses of new IBM equipment $300,000/year 

$38,000/year 
$100,000 
$120,000/year 
$43,000/year 

- Hardware maintenance of IBM equipment 
- Computer room expansion 
- HP hardware expense 
- HP maintenance 

HARDWARE First year $601,000 

Software: 
Identify all operating system components. 
The SOFTWARE costs, including: 

- Annual operating system,utility, and development support 
costs 

- IDMS software purchase(3 years) 
- Roscoe/Librarian purchase(3 years) 
- Syncsort purchase 
- Tape Mngmt/Job Restart (3 years) 
- IBM other maintenance 
- IBM one-time charges 
- HP other maintenance 

SOFTWARE FIRST YEAR 

Miscellaneous 

$54,000/year 
$40,000/year 
$2,500/year 

$18,720/year 
$123,000/year 

$20,000 
$17,000/year 

$275,220 

Not included are supplies,paper, storage space for 
manuals,compensation,data communications,contract labor,and 
training. 

summary of costs 
The total estimate of costs should be evaluated for the year 

BUSINESS 
HARDWARE 
SOFTWARE 
Total 

SYSTEMS First year 
First year 
First year 

$183,000 
$601,000 
$275,220 

$1,059,220 

These numbers do not represent the entire expense budget,but 
do outline the major items involved in a conversion. 



HP3000 
INTERNATIONAL CONFERENCE SM01/16 
VIENNA 1987 

2 YEAR REVIEW 

Business Systems 
The applications selected the first year were: 

General Ledger 
Accounts Payable 
Accounts Receivable 
Human Resources 
Payroll 

In addition, the second year included: 
Manufacturing Systems 

Costs were estimated including: 

$300,000 

Depreciation costs of software(5 years) $119,000/year 
Depreciation cost of Manufacturing S/W $60,000/year 
Second year maintenance $87,000 

Business Systems second year $266,000 

- No overlapping costs for HP software were determined due 
to the fact that all software had been developed in house. 

Hardware: 

Costs, were determined including: 
- Hardware expenses of new IBM equipment $300,000/year 

$38,000/year 
$120,000/year 
$43,000/year 

- Hardware maintenance of IBM equipment 
- HP hardware expense 
- HP maintenance 

HARDWARE second year 

Software: 
- IDMS software purchase(3 years) 
- Roscoe/Librarian purchase(3 years) 
- Syncsort purchase 
- Tape Mngmt/Job Restart (3 years) 
- IBM other maintenance 
- HP other maintenance 

SOFTWARE second year 

Miscellaneous 

$501,000 

$54,000/year 
$40,000/year 
$2,500/year 

$18,720/year 
$123,000/year 

17,000/year 
$255,220 

Not included are supplies,paper, storage space for 
manuals,salaries,data communications costs,etc. 

summary of costs 

BUSINESS 
HARDWARE 
SOFTWARE 
Total 

SYSTEMS First year 
First year 
First year 

$266,000 
$501,000 
$255,220 

$1,022,220 



HP3000 
INTERNATIONAL CONFERENCE SMOt/17 
VIENNA 1987 

These numbers do not represent the entire expense budget,but 
do outline the major items involved in a conversion. 

SUMMARY 

At this point,the company has experienced continued 
reductions in its market share. After carefully considering 
whether to reverse the conversion, the company has continued to 
proceed with the conversion effort. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNA T/ONAL CONFERENCE SM02/1 
VIENNA 1987 

Predicting System Performance 
by Larry Kemp, HP Bellevue, WA, USA 

System performance analysis has traditionally been a highly 
technical subject. Performance analysts given elaborate analyses 
of I/O counts, CPU states, and other operating system execution 
statistics to explain performance. While these internal 
measurements give indications of where to tune an application, 
they do not directly address the resulting performance criteria 
of response times and system throughput. 

This paper presents techniques of answering some fundamental 
performanc~ questions: What is a reasonable response time for an 
application? What will happen to response time and throughput 
when additional terminals and/or applications are added? What 
percentage of the usable system capacity is currently being 
consumed? For distributed systems, how will the application 
perforn1a.nce be affected by different hardware cont;,igurations? 
These are system management questions that focus on results. 

I will present two techniques of predicting application 
performance: benchmarking, where an application is physically 
simulated; and model.ling, where an application is mathematically 
simulated. These are techniques for analyzing existing 
applications. The "gut feel" approach will still be around for 
predicting applications that have not been written yet. 

Measurement Definitions. 

~here are three fundamental measurements required for 
benchmarking and modelling: response time, transaction volume, 
and batch throughput. These variables can be considered the 
"dependent11 .variables; that is, when some portion of the 
environment is changed (such as workload or system 
configuration), then the effects can be measured using these 
criteria. 

Users generally have good ideas of measurement criteria, but 
unfortunately those definitions do not always translate into 
easily quantifiable measurements. Both benchmarking and 
modelling require measurements: in benchmarking the results must 
be measured, while in modelling the current system must be 
measured. 

Business systems analysts tend not to think in computer terms. 
They tend to think in business units. For instance, sales orders 
per day, or numbers of customer inquiry terminals. And 
transactions follow the same type of definitions. one 
performance analyst task is to· translate business transactions 
into computer transactions. Normally there are one or more 
computer transactions for each business transaction. And 
furthermore, some business transactions are more or less complex 
than others. 



HP3000 
INTERNATIONAL CONFERENCE SM0212 
VIENNA 1987 

For instance, if sales orders are increased by twenty percent, or 
fifteen customer inquiry terminals are added, how much will the 
total number of terminal transactions rise? 

The raw data that a performance analyst works with is in computer 
transactions. An HP3000 transaction occurs any time the enter 
key or function key is pressed while in block mode, or any time 
the return key is pressed while in character mode. Hence the 
following technical definition: 

A Transaction occurs any time that a terminal read is 
satisfied. 

In other words, a transaction occurs any time that a user is 
required to wait for a response from the system. 

The amount of work required per transaction can vary tremendously 
with application design. The amount of work required to process 
a character mode entry of a single field is likely to be 
significantly different than the work required to process a full 
screen entry in block mode, since a block mode screen consists of 
multiple fields. Consequently, comparisons of character mode and 
block mode applications will need to take this into account. 

Response time is another area that is subject to interpretation. 
Ultimately, response time is the time from when a transaction is 
initiated to when the system is ready to accept the next 
transaction. This has the sometimes undesirable effect of 
including data communications time along with computer system 
response time. 

In the interest of taking data communications out of the 
measurement, one solution is to measure the time from initiation 
to until the first cha~acter is output from the system. 
Unfortunately, this technique is defeated by applications that 
write out a message before processing the transaction. So here 
is the compromise definition: 

Response time is the time between terminal read co1npletion 
and the last terminal write initiation before the next 
terminal read. 

This technique is in fact a compromise, in that it does take in 
to account data communications overhead for applications that 
write out multiple lines of data for each transaction. It is 
also prone to bias from user DC1/DC3 activity (from control-S and 
control-Q). 

Response time is averaged against all actual terminal activity. 
Simple colon-prompt activity is only included to the extent that 
it happens on an actual system. If desired, response time could 
be measured against specific applications or transaction types. 

Batch throu?hput is normally measured in terms of elapsed time to 
process a given workload. Since batch is a continual process (as 
are interactive terminals) and batch programs have widely varying 



HP3000 
INTERNATIONAL CONFERENCE SM02/3 
VIENNA 1987 

completion times, I prefer to specify batch throughput in 
normalized units. For example, if batch under one configuration 
may execute in 1 unit of time, while batch under another 
configuration may execute in .7 units of time. 

Now, for the independent variables. A good experiment involves 
changing one parameter at a time, and recording the results. The 
same type of analysis should apply to predicting system 
performance. The variables to be changed include: number of 
terminals, think time between transactions, CPU type and speed, 
quantity and speed of disc drives, and software bottlenecks. 

Benchmarking. 

Benchmarking involves live simulation of an application. This is 
a simplistic task for batch. For interactive applications, this 
involves either live operators, or computer simulation. In 
either case, a "script"; which is a set of input data for each 
terminal. 

Benchmarking is a brute force operation. It is expensive in that 
it requires creating the application and scripts. And it 
requires access to hardware configurations and people. But 
benchmarking does give results that can be compared between 
different hardware systems. And it does not rely upon 
mathematical or procedural assumptions. 

On the negative side, benchmarks are crude measures of the actual 
environment. The necessity of manually creating terminal scripts 
makes the environment artificial. There are tools available for 
capturing actual terminal input (for script creation), but even 
the output of these tools requires manipulation. Scripts rarely 
replicate all activity occurring on a system. 

There are some standard benchmarks. In the HP3000 environment 
there is the "EDP" benchmark, which is described in the "HP3000 
Performance Guide". And there are some industry standard 
benchmarks, such as the Whetstone benchmarks for measuring 
floating point performance. The extent to which these benchmarks 
are reflective of the performance of your applications depends 
upon the similarity of those applications to your environment. 

The heart of a good benchmark is representative script creation. 
A terminal script simulates exact keystroke input; both in 
character representation, and in time between keystrokes and 
transmission to the host. At Hewlett-Packard we use an internal 
set of software programs called the Terminal Emulator and 
Performance Evaluator (TEPE) system. This software allows us to 
create scripts either manually (using a text editor or like 
process) or automatically. The automated technique uses a set of 
library routines that intercept terminal reads and logs them to 
disc. 

The reason for complex script creation is to avoid bias due to 
memory buffering. For instance, if a the same transaction input 
executes repetitively, then the first execution will cause all 



HP3000 
INTERNATIONAL CONFERENCE SM02/4 
VIENNA 1987 

database validations to be brought into memory, and all 
subsequent executions will access the database validation entries 
from memory. Also, the memory and system requirements to run a 
single transaction can be significantly less than the 
requirements to run a large system of transactions. 

---
The TEPE software, along with a TEPE configuration, also allows 
us to run benchmarks using those scripts, and analyze the 
benchmark results in terms of transaction rates and response 
times. A simulator system, called the TEPE system, simulates 
terminal input into the system under Test (SUT) via cross 
connected RS-232 cables. The TEPE system records all SUT dialog, 
for later analysis. 

Normally, a benchmark consists of multiple runs. Each run 
requires either adjustment of the TEPE script, or reconfiguration 
of the SUT. For proper comparison, the SUT database should be 
reloaded between runs. Obviously, the benchmark technique is 
costly and time consuming. 

Modelling. 

Modelling represents a significantly lower cost alternative to 
benchmarking for predicting system performance. Modelling is 
technique of mathematically projecting performance based upon 
measured transaction volumes and system loading. Modelling 
offers the benefit over benchmarking in that a model can be based 
upon actual activity in a system as opposed to artificially 
created scripts. 

Generally speaking, a model can only be applied to systems within 
the same computer system family. Within one family the code and 
I/O pathlengths for a given workload are constant. For example, 
a batch program on an HP3000 series 58 executes exactly the same 
instructions as does that same batch program on an HP3000 series 
42. But the number or even types of instructions that would be 
executed on some other computer system would not be the same, 
since there would be different instruction sets, database 
management routines, and so forth. 



HP3000 
INTERNATIONAL CONFERENCE SM02/5 
VIENNA 1987 

It is possible to model applications on different computer 
families, but this requires a detailed analysis of each system. 
This type of model requires low level pathlength translations to 
create new workload definitions on the system to be modeled. 
This type of model is rarely created. 

As with benchmarking, modelling standalone batch behavior is a 
simple task. Projections of standalone batch can be made by 
multiplying the portion of affected processing time (e.g. CPU 
busy percentage) by a value reflecting the speed of the new 
device (e.g •. 5 for an HP3000 series 58 to HP3000 series 70 
upgrade). But the essence of modelling is in predicting response 
times, transaction rates, and elapsed time for batch programs 
running in a multi terminal environment, possibly with mixed 
batch. 

The modelling input data that we at Hewlett-Packard use is 
collected by the Measurement Interface and Data Collection 
Facility of the MPE operating system. This mechanism allows 
precise measurements of the work performed by all programs that 
were active during a measurement. Less sophisticated analyses 
can be made, however, using data from logfiles, customized 
measurements from intrinsics, and data extracted from tools such 
as the Online Performance Tools (OPT) or HPSnapshot reports. 

Modelling is based upon the following simple assumption: 

Response Time Service Time + Queueing Time 

Where Service Time is the time required in both CPU time, I/O 
time, and any software constraints (such as Image DBCB 
contention), and Queueing Time is time spent waiting for those 
resources. 

Service Time is measurable. In an HP3000 system, the system 
logfiles (and also the MPE data collection facility) tell us the 
amount of CPU and disc I/O time required per program, which we 
divide by the number of terminal reads. This gives us the per 
transaction CPU and Disc I/O requirements for a given program or 
collection of programs (also called a workload). 

Queueing ~ime is a function of device utilization. For example, 
if a disc drive is idle (other than by use of this singular 
workload), then the queueing time will be zero. If, however, the 
disc drive is in use eighty percent of the time, then the 
queueing time will be high, since the disc requests ahead of the 
current request must be honored before the current request can be 
issued. 

Utilization of a device (which can be either the CPU or a disc 
drive) can be computed by the following formula: 

Utilization Transaction Rate * Service Time 

Utilization is important in that it can be used to determine the 
queueing time element of response time. Queue Length is the 



HP3000 
INTERNA T/ONAL CONFERENCE SM02!6 
VIENNA 1987 

number of requests to be processed before the current transaction 
can be processed. The calculation of Queue Length can·be found 
in most queueing theory textbooks. 

Utilization 
Queue Length 

1 Utilization 

Queueing Time is the time for other requests, not including the 
current request, to complete.. For systems with large transaction 
volumes, which would include most interactive terminal based 
systems, queueing time can be approximated by the following 
formula: 

Queueing Time Queue Length * Service Time 

And, for systems with large transaction volumes, we can make a 
good approximation of response time as: 

Response Time Service Time * ( 1 + Queue Length) 

Now, for a simple example. Using the PROCTIME intrinsic of an 
HP3000 we can determine the CPU seconds for a transaction. For 
example sake, suppose that we determine that a transaction takes 
.5 seconds (or .0001 hours) of CPU time. And we anticipate 6000 
transactions per hour. Then: 

Utilization 

Queue Length 

Response Time 

Simple! 

.0001 * 6000 = .60 and 

• 6 I 1 .6) = 1.5 so 

.5 * ( 1 + 1.5 ) 1.25 seconds 

With a few calculations it is possible to see the correlation 
between utilization and response time. The following diagram 
shows normalized values of response time versus utilization. 

·' ·' 



HP3000 
INTERNATIONAL CONFERENCE SM02/7 
VIENNA 1987 

This graph does not show a linear relationship. For example, 
between utilization values of .a and .4, the normalized response 
time changes from 5 to 1.67. In other words, by halving the 
utilization, response time is reduced by almost two thirds. 

It should evident in the graph that somewhere past seventy-five 
to eighty percent utilization, that response time grows quite 
rapidly compared to utilization level. This range can be 
considered to be the maximum usable utilization for interactive 
processes. Some systems with large variations in transaction 
rates (and resulting peak levels) may consider smaller maximum 
utilization targets. 

The queue length formula can also be applied in reverse. That 
is, we can determine the utili~ation for a given workload if we 
know the queue length. This technique allows us to isolate the 
needs of a critical workload from the entire system. This 
eliminates the effects of, for example, backround batch. If we 
target a given processor utilization (for a critical workload) as 
a maximum, then we can derive how much additional capacity is 
available. 

For instance, if the critical workload of a system spends as much 
time in the preempted state as it does in the CPU busy state, 
then we know that the queue length is one. Applying the queue 
length formula in reverse, we can derive that the CPU is fifty 
percent utilized for this workload. Using this measurement, we 
can assume that this system can tolerate fifty percent more 
activity by the critical workload. That is, a fifty percent 
increment in activity would raise the current fifty percent 
critical workload utilization to seventy-five percent 
utilization. 

If this sounds too simple, well in many cases it is. Most 
systems run multiple workloads, and in many cases the workloads 
execute at different priorities. And in interactive database 
oriented applications there are considerations of multiple 
"server" devices; a system consists not only of a central 
processing unit, but also a set of disc drives. And oftentimes 
the desired calculations are based upon numbers of terminals, 
whose transaction rates can vary depending upon response times. 

At Hewlett-Packard we use a computer program to perform the 
modelling of a complex system. And we deliver modelling results 
in the HPCaplan consulting package. 

So, given these techniques, what can modelling 
initial intention was to measure response time 
rates under different hardware configurations. 
us those capabilities. It ·also gives capacity 
specific workloads. And since modelling gives 
times, it also gives estimates of "reasonable" 

produce? Our 
and transaction 
Modelling gives 

projections for 
ranges of response 
response times. 

While modelling is normally used for projection of existing 
applications, it can also be used to model new applications. 
This can be done in an analogous technique to benchmarking: a 



HP3000 
INTERNATIONAL CONFERENCE SM02/8 
VIENNA 1987 

script can be made, and the results measured. For modelling 
purposes, human operators can be used to input data, and the 
script can be short duration. The purpose of the script, in this 
case, is simply to create a measurable system load. Therefore, 
the complete human operator load does not need to be put on the 
system; only enough load for the measurement to take place: Like 
benchmarking, this technique suffers in accuracy in that it is 
artificially created. 

Modelling can also be used to predict performance with different 
workload mixes. That is, the work attributed to program A can be 
removed from workload calculations in a system containing 
programs A, B and c. Or program A from system X can be added to 
a system containing only programs B and c. 

In Conclusion. 

Benchmarking and Modelling offer techniques for predicting 
computer system performance. These techniques allow us to 
predict external.performance: response time, and transaction 
throughput. 

The primary advantage of the benchmark technique is that it can 
be performed on any computer system. It can be used to measure 
delivered results as opposed to raw hardware speeds. Benchmark 
results are good for comparisons between system types. 

Benchmark scripts, however, are artificial. Therefore, they may 
not be accurate projections of how an application will perform in 
use. Benchmarks are also quite costly. 

Modelling offers a lower cost alternative for predicting system 
performance. Modelling offers the strong advantage that the 
activity that is used for the projections is collected from a 
live system. Modelling offers considerable flexibility. In 
addition to projecting response time, it can also predict system 
capacity, and performance with different workloads. 

Larry Kemp is a Systems Consultant for Hewlett-Packard in the 
Bellevue, Washington (USA) office. Larry specializes in system 
performance and data management tools. He has a Master of 
Science (MS) degree in Computer Science from the University of 
Oregon (1975). Larry has worked at Hewlett-Packard since March 
of 1980. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

DISC PERFORMANCE - WHAT IS IT? 

RICK ALDINGER 
HEWLETT-PACKARD COMPANY 

11413 CHINDEN BLVD. 
BOISE, IDAHO 83709 

SM03/1 

A typical HP 3000 environment measures disc performance and 
system throughput in transactions per hour or disc I/O's per 
second. Many MIS directors are interested in ways to get more 
out of their disc drives and CPU's. The purpose of this paper 
is to provide the audience with an overview of the factors 
involved in disc performance and some features available to 
you for maximizing performance. 

The paper is divided into two separate segments. The first is 
a general discussion of the basics of disc performance as they 
relate solely to the disc drive. It explains the components 
of a disc transaction and the performance implications of 
each. 

Segment Two discusses ways in which performance can be 
improved. This includes a discussion of cache and an 
explanation of RPS. It addresses ways your hardware 
configuration can affect performance as well as the role file 
management plays. 

Any discussion of disc drives should begin with an 
understanding of the disc and its operation. In discussing 
disc performance it is necessary to first understand how a 
disc drive operates. Specifically, how transactions occur. 

Disc Transaction 

A disc transaction is comprised of four components: disc 
controller overhead, physical seek, physical latency, and 
lastly, the actual transfer of information. Transfer time is 
the smallest component of· the transaction, with controller 
overhead being next. The mechanical seek and latency comprise 
the largest part of the transaction time. 



HP3000 
INTERNATIONAL CONFERENCE SM0312 
VIENNA 1987 

The following chart compares the transaction components of 
Hewlett Packard disc drives: 

controller seek latency transfer 

7912 4.0 27.1 8.3 1.2 ms 
7914 4.0 28.1 8.3 1.2 ms 
7933 4.5 24.0 11.1 1.0 ms 
7937 <1. 0 20.5 8.3 1.0 ms 
7945 10.1 30.0 8.3 2.0 ms 
7958 3.0 29.0 8.3 1.2 ms 

Disc controller 

The disc controller provides the intelligence of a transaction 
electronically. It begins processing the transaction by: 

o Decoding the disc command sent by the host computer, 

o executing that command, 

o and finally, reporting the execution status back 
to the host. 

The intelligence of the controller comes at the price of 
overhead in the disc transaction. However, experience has 
allowed us to make our controllers efficient in doing the 
greatest amount of work in the smallest amount of time. 

must 
its 

disc 
The 

Once the controller has decoded the command, the disc 
perform some mechancial functions to prepare for 
execution. The drive must first find the desired 
location by moving its heads to the correct media track. 
mechancial movement of the head to the desired track 
defined as the seek. 

is 

The time to find the desired track varies depending upon its 
location on the media and the current position of the head. A 
more accurate estimate of seek time is the AVERAGE SEEK, or 
the time to do all possible seeks divided by the total number 
of seeks possible. 

Latency or Rotational Delay 

Now that the drive has found the correct track it must now 
find the desired sector on that track. The media continues to 
rotate beneath the head as the track is searched. The time 



HP3000 
INTERNATIONAL CONFERENCE SM03!3 
VIENNA 1981 

required for one 
LATENCY time. 
searched for the 
is mechanical. 

rotation of the disc is defined as the 
While the media is rotating, the track is 
target sector. The rotation, like the seek, 

This definition of latency is certainly a "worst case" time 
since the head may be considerably closer to the desired 
sector than one full rotation. A more accurate measure of 
rotational delay is the AVERAGE LATENCY. It is defined as the 
time to complete one half of a rotation. 

Transfer 

Once the head is positioned over the correct sector, it is 
time to transfer the data. TRANSFER is defined as the actual 
movement of data from the CPU to the disc (or vice versa). 

HP defines AVERAGE TRANSFER as the average rate that data 
comes off the disc when reading an entire sector. Multiples 
of full sectors are always transfered in order to optimize 
performance. Partial sector transfers would require more 
bookkeeping and overhead. 

Transaction Time 

Each of the components of a disc transaction contribute to the 
total time involved in completing that transaction. The 
summation of the average time it takes to complete each 
component is a good measure of the total average time to 
perform a disc transaction. 

The total AVERAGE TRANSACTION TIME for a particular disc 
product is defined as the sum of the average controller 
overhead for the product, plus the product's average seek time 
and rotational delay, plus the average time to transfer one 
kbyte of data to the product. The total average transaction 
time is specific to the product in question and, as we have 
defined it, does not take into account individual host system 
attributes. 

The following figures are the various transaction times for 
Hewlett Packard disc drives: 

HP 7912 40.6ms 
HP 7914 41. 6ms 
HP 7933 39.6ms 
HP 7937 30.Sms 
HP 7945 50.4ms 
HP 7958 41.5ms 



HP3000 
INTERNATIONAL CONFERENCE SM03/4 
VIENNA 1987 

Performance Metric 

Hewlett-Packard uses the metric of I/O PER SECOND to measure 
disc performance. I/O per second is defined as the maximum 
number of disc transactions per second that a specific drive 
can perform at a transfer size of 1 kbyte. This measure is 
calculated by taking the inverse of the total average 
transaction time just described. It measures raw disc 
performance and does not take into account any system 
specifics. Actual performance will vary with system and 
application. I/O per second is a Hewlett Packard measurement 
and not an industry standard. 

Let's go ahead and convert the transaction time of an HP 7958 
into the measure of I/Os per second. We already learned that 
it takes the 7958 41.5 ms to transfer 1 kbyte of data. If we 
inverse our measure we can learn how many 1 kbyte data chunks 
can be transfered per unit of time. By converting 
milliseconds to seconds we have a measure of the number of 
kilobytes, or I/Os we can transfer in one second. 

EXAMPLE: lkbyte/41.5ms*l000 = lkbyte/.0415 = 24.1 I/O per sec 

The following figures are the I/O per second measurement for 
some other Hewlett Packard disc products. Again, this measure 
is for relative disc performance only and does not take into 
account system overhead. Actual performance will vary with 
system and application. 

7912 24.5 I/O per second 
7914 24.0 I/O per second 
7933 25.3 I/O per second 
7937 32.5 I/O per second 
7945 20.0 I/O per second 
7958 24.1 I/O per second 

Well that wasn't so bad, was it? Now that we are aware of the 
drive•s performance, let's focus on the options you have to 
improve disc drive efficiency. Please keep in mind the items 
in the following paragraphs are very system and application 
dependent. These are guidelines for you to use to help in 
performance tuning your system. 

Disc controller cache 

Disc controller cache is a method for improving performance. 
It is a RAM based storage area resident in the disc controller 
that provides high speed access to data. Frequently used data 
(directories, for example) are stored in the cache area, 
rather than on the disc media. For every cache access, a seek 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

and latency 
the cache, 

are eliminated. 
the greater the 

SM0315 

The greater the "hit ratio" to 
performance improvement! 

Cache is currently implemented only on the HP 7933, HP 7935, 
HP 7936 and HP 7937. We do plan to implement it on future 
high end disc products. It is supported on both the HP 3000 
and HP 1000. Support for the HP 9000 is under investigation. 

If we refer to our original transaction, we see that actual 
disc performance can be improved by decreasing the time it 
takes to perform even one component of the transaction. 
Little benefit is seen from improving transfer rates since 
they are only a very small component of the overall 
transaction. Controller efficiency has been fine tuned to a 
degree that shaves away most excess overhead. What about 
seek and latency, the largest components of the transaction? 
Better than reducing seek and latency times, controller cache 
can often times eliminate the need to perform either 
operation! MPE CACHE, resident in the CPU, eliminates disc 
controller overhead when the desired information can be 
accessed from the cache. The only component is the transfer 
of data out of CPU memory. 

When is Disc controller cache better than MPE disc cache? A 
lightly loaded, non-cached system (less than 75% CPU 
utilization) will benefit from either MPE disc cache or 
controller cache. This type of environment is likely to be 
more I/O bound than CPU bound. Both caching schemes greatly 
reduce the I/O bottleneck. MPE disc cache will have a slight 
advantage over controller cache because there is no controller 
overhead involved when reading directly from main memory. 

As the CPU load increases to a moderate level (75% to 90% 
utilization), the throughput of a system with MPE disc cache 
is impacted. The management of MPE disc cache must now 
compete for fewer available CPU cycles. MPE disc cache will 
continue to be faster than a non-cached system at this stage, 
but the potential for controller cache to become more 
effective greatly increases. controller cache begins to 
provide the capability of leveling out CPU peaks. 

When a system reaches the stage where CPU load is heavy (90% 
and above), the impact of MPE disc cache on system throughput 
can become negative. In extreme situations, the system may 
actually perform more efficiently with MPE disc cache turned 
off. In this environment controller cache provides a 
noticeable benefit, especially when MPE disc cache logical 
read/write ratios and read hit percentages are high. This 
indicates that a good deal of I/O is being eliminated and that 
CPU cycles and memory used for managing cache can be freed for 
other activities. 



HP3000 
INTERNA T/ONAL CONFERENCE SM03/6 
VIENNA 1987 

Controller 
non-cached 
where the 
factor. 

cache will continue to significantly outperform a 
system until the CPU load is increased to the point 
system is so CPU bound that I/O is no longer a 

Rotation Position sensing 

Use of Rotation Postition Sensing(RPS) is another means by 
which performance may be improved. RPS is a disc feature 
designed to minimize non-productive use of the channel while 
waiting for the disc to locate the area at which a transfer 
will begin. There is a window of time after the drive 
receives a command and before it finds its target sector that 
is generally wasted. RPS allows the channel to accept another 
command during that window, thus utilizing the channel better. 

As might be expected, RPS provides little benefit to single 
drive configurations, since the channel is not the bottleneck 
here. But, in multiple drive, multiple process 
configurations, RPS can help to relieve channel contention. 
RPS is supported on HP 791X and HP 793X disc drives and only 
on the HP 3000 systems. 

For instance, when a request is generated(like a read or 
write) that requires a disc I/O, the CPU sends a command 
across the channel to the disc drive. There is a window of 
time, after the drive receives the command and before it finds 
the target address on the media, that the channel is not 
released and cannot be used for another request. No other 
drives on the channel can be accessed during this window. 

RPS allows the channel to be used during this window for 
access to the other drives on the same channel. As soon as a 
drive receives the command, it disconnects from the channel. 
During this time, other channel activity can occur. When the 
target address in our original transaction is found, the drive 
reconnects to the channel. If the channel is busy at the time, 
the data is buffered until the channel is free. 

system configuration 

The physical location and configuration of the disc drives has 
a big impact on performance. Questions like, "Where do I put 
my system disc?", "Do each of the discs need separate 
interfaces?", and "When should I use multiple drives over a 
single, larger one?" can all be answered to optimize 
performance. 



HP3000 
INTERNA T/ONAL CONFERENCE 
VIENNA 1987 

Please keep in mind, the optimal 
in use, the number of users on the 
etc. The following guidelines 
apply to all systems. 

sMoan 

solution depends on the CPU 
system, the application, 

are conceptual and may not 

The location of your system disc has a big impact on 
performance. The optimum configuration places your system 
disc on a dedicated interface. With your system disc here it 
won't have to compete with other drives for channel activity. 
Since the system accesses this disc most often, a performance 
improvement can be realized. 

As implied, channel contention can have a very negative impact 
on performance. Systems with many users and multiple 
processes accessing multiple drives can generally get relief 
by putting their drives on separate, dedicated interfaces. 
For systems with many drives this may not be economically 
feasible or it may excede the maximum number of interfaces the 
system will permit. In these cases RPS or cache may be viable 
alternatives. 

With the multitude of disc drive capacities to select from, it 
often becomes unclear which combination of drives optimizes 
performance. Of specific interest is the question of two 
smaller drives versus one larger one. The answer is very 
application dependent. For a system that can keep both drives 
busy, two drives on separate interfaces is generally the best 
answer. The system can then access both concurrently, 
increasing overall performance. On the other hand, a single 
faster drive is the better solution for a very localized 
system with little multiple processing occuring. 

For instance, let's say you have a Series 68 currently 
configured with one IMB (inter modual bus) and two high speed 
GICs (general interface channels). On one GIC you have four 
HP 7937s, and on the other you have an HP 7978B. You would 
like to add an HP 7937 and an HP 2680 printer. What can you 
do to help increase performance? 

A heavily used HP 7978 tape drive and a HP 2680 printer should 
have dedicated GICs. In order to do this another IMB must be 
added. The new IMB can then accomodate two new GICS, one each 
for the tape drive and printer. The HP 7937 disc drives can 
then be spread over the two remaining GICs on the first IMB. 
You could put two HP 7937 disc drives on one GIC and three 
HP 7937 disc drives on the remaining one. 

If the tape drive is not heavily used it could share a GIC 
with the printer. This would free up a GIC and allow you to 
spread the discs out even more. This configuration would 



HP3000 
INTERNATIONAL CONFERENCE SM0318 
VIENNA 1987 

allow your system disc to reside on a dedicated interface, and 
two drives on each of the remaining two GICS. 

File Management 

Where you physically locate your files on the discs also 
impacts performance. A good general rule is to spread your 
system files, virtual memory and other user files (including 
databases and spooling operations) evenly among your discs. 
Keeping your system files and your virtual memory on separate 
discs is most beneficial. By spreading your files around, the 
system will experience less contention in accessing the 
desired areas. 

The biggest gain will be seen by spreading data sets and other 
MPE files among the various disc drives. It is also helpful 
in performing a reload every quarter. This helps eliminate 
much fragmentation that usually occurs on a heavily loaded 
system. When you perform the reload it is best to do an 
accounts reload and then restore the most heavily used files 
at the front of the disc. The least used files should be 
loaded last. This provides some benefit because the heavily 
used files are closer to the system directory. This helps 
reduce some of the disc's mechanical functions. 

Overall, there are several options the performance conscious 
user has beyond raw disc performance. They include: 

o DISC CONTROLLER CACHE as a means of reducing mechanical 
seeks and latencies, 

o ROTATION POSITION SENSING to relieve channel contention, 

0 SYSTEM CONFIGURATION for the most efficient use of 
resources, and 

o FILE MANAGEMENT to optimize throughput. 

Keep in mind it may take one or all of the many items 
discussed to improve your performance. Each option can affect 
a system differently because of the applications being run and 
the amount of users on the system. 

Do not become disenchanted if one of the options does not 
work. Take time to experiment with your system and the items 
we discussed and ask your SE and CE for help. They are an 
excellent resource. HP OPT/3000, HP SNAPSHOT and HP TREND are 
good tools in helping determine file placement, usage etc. 
When you take a look at your system the results may be 



HP3000 
INTERNATIONAL CONFERENCE SM03/9 
VIENNA 1987 

different each time. What might have worked one time may not 
produce the same high benefit the next time. However, 
remember that you are trying to level out the "peaks" and 
"valleys" on your system, providing your user with a much more 
balanced system. 

Last but not least, use good COMMON SENSE. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Performance Measurement for Capacity Planning 

The Key to Information 
Interex 3000 European Conference 

Vienna, Austria 

Tim Twletmeyer 
Hewlett-Packard Company 

Perfonnance Technology Center 
Roseville, CaRlomla, USA 

SM04/1 

This paper is a logiml extension of papers published by Paul Primm••r in the proceedings for the Interex 
Conft!n·nce in Amsterdam, 1985, and Interact magazine in November, 1985. In Pa11rs papers, he details 
the development and res11lts of the System Performance and Eval11ation Project (SPEP) beg11n at HP 
Labs in 1983. This paper will review the SPEP and will di.5Cl/ss the new developments which have evolved 
from the SPEP project. 

Introduction 

What. began as a small project to collect customer data to aid in the development of future systems and 
products has since become a major contributor to performance measurement technology for 
Hewlett-Packard and its customers. The System Performance Evaluation Project at HP Labs was char­
tered with the task of collecting performance data from customer's machines for making trade-off 
decisions on the design of future systems, characterizing customer workloads, and refining HP product 
usage. From this project, a more complete package for evaluating system performance has been 
developed. 

SPEP, the System Performance Evaluation Package, has developed into a comprehensive performance 
measurement, evaluation, and capacity planning tool. There are five main parts to the SPEP: 

• Collection - The collection tools probe the system under evaluation and captures the data needed 
to complete the performance evaluation. 

• Reduction - The reduction tools take the raw data collected from the measured system and 
produce reports and additional files for review by the performance specialist. 

• Summary - These tools summarize the measured data from the reduction section and stores them 
with other collected sites for later multiple machine studies. 

• Capacity Planning Workbench - This allows the performance specialist to review and manipulate 
system workloads for use by the analytic modeling tool. 

• Analytic Modeling - This st.ep takes the workloads defined by the workbench. validates the 
values produced by the analytic modeling tool, then predicts throughput. utilization, and 
response time. 

It's the SPEP that the HP field performance specialist uses to deliver the HPSNAPSHOT and HPCAPLAN 
consulting products. With the tools of the package and the knowledge and experience of the performance 



HP3000 
INTERNATIONAL CONFERENCE SM04/2 
VIENNA 1987 

Performance Measurement for Capacity Planning 
Interex 1987, Vienna, Austria 

specialist, system bottlenecks are identified and capacity planning questions are answered. Now, let's take a 
more detailed look at the purpose and mechanics of each SPEP section. 

Collection Phase 

The collection process is responsible for acquiring all the pertinent data a performance specialist needs to 
perform their analysis. To be successful the collection process must meet several objectives. Let's look at 
these objectives and see how the SPEP satisfies them. 

The process must be simple to install and complete for the operators of the system under analysis. 

To facilitate a simple procedure for installation, SPEP uses a specially formatted tape to place the collec­
tion software on the system under analysis. A variation of the STORE tape format is used: 

STORE I : I : I STORE PORTM>N 

8PEP 

Figure I. SPEP Tape Format 

A special PRBEBOOT file is written to the front of the tape and the collection software is then appended 
after two EOF markers. This allows the operator to mount the tape, enter a tape file equation: 

:FILE T;DEV=TAPE 

and stream the file from the front of the tape. 

:STREAM *T 

This will cause the PRBEBOOT jobstream to execute. It will create the accounting structure for the collec­
tion tools and then execute the RESTORE program to install the tools. The collection begins after an 
operator reply to acknowledge the company name. 

When the collection tools have completed, STORE is used to write back to the original tape the log files 
that were produced by the tools. This tape is returned to the originating HP site for reduction and analysis. 

Using this method, the only required intervention by the system operator is responding to three tape 
requests. This makes the collection appear very simple when actually it is fairly complex. A discussion of 
the collection tools themselves can be found later in this section. 



HP3000 
INTERNATIONAL CONFERENCE SM04/3 
VIENNA 1987 

Performance Measurement for Capacity Planning 
Interex 1987, Vienna, Austria 

The collection tools sho11/d not significantly impact the normal processing of the system. 

The second, and perhaps the most important objective is to collect the data without perturbing the system. 
The collection process was originally designed to run all collection tools simultaneously. This consumed 17 
percent of the CPU and was considered too much. The collection was then changed to use two I-hour 
phases, running SAMPLER (APS/3000) in the first hour and the other collection tools in the second. This 
reduced the overhead induced by the collection tools but it introduced the problem of SAMPLER record­
ing a different window of measurements than those captured in the other log files. The current process 
runs all the collection tools in one collection interval, usually a single hour. By tuning the sampling interval 
in the tools to balance the amount of overhead and the amount of data needed to accurately represent the 
system, the overhead was reduced to 5%-7%. This is considered acceptable for the accuracy and volume of 
data being collected. 

The process should not monopoliz<' system reso11rces during the mllection. 

Along with keeping the overhead of the collection low, SPEP also attempts to keep the amount of physical 
resources consumed low. To avoid monopolizing a tape drive for the entire collection interval, the package 
logs its data to disc. With this decision comes the problem of finding adequate disc space. 

To avoid having to abort the collection from a lack of free space, the collection runs a program to verify 
that free space is available before any collecting begins. This program, BEGIN, checks for free space 
depending on the system type and the length of collection requested. An average of 50,000 sectors is an­
ticipated. If the free space is inadequate, the collection can be terminated by the operator. 

The process m11st he flexible so the performance specialist can modify the collection d11ration. 

Depending on the size of the system and the application mix that's to be measured, the collection interval 
may need to last anywhere from fifteen minutes to four hours. Most SPEP collections are built to run for a 
one hour interval. One hour is used because a shorter period may not capture a large enough sample and a 
longer period may cause problems by consuming too much disc space. 

When the probe tape is being created the collection duration is determined. The duration for the collection 
is prompted for and a corresponding script file is then chosen so that all collection programs run for this 
fixed period of time. 

All data needed lo complete the analysis mm/ ht• collected in one pass. 

SPEP is designed to be an automated package which can collect a large amount of performance data but 
require little human intervention to execute. The situation we are trying to eliminate by using SPEP is that 
of a performance specialist spending days manually executing different coilection tools trying to ensure 
that they have isolated the area they need to examine. With SPEP, the specialists can send the user a col­
lection tape with instructions, have the collection executed, and the tape returned with the collected data. 
They can then complete their analysis without spending several hours working on the system under study. 



HP3000 
INTERNATIONAL CONFERENCE SM04/4 
VIENNA 1987 

Performance Measurement for Capacity Planning 
· Interex 1987, Vienna, Austria 

Collection Tools 

There are several different tools used by SPEP to complete its collection process. Some of these tools are 
supported HP products and others were written by HP engineers to support SPEP or to provide a tool that 
wasn't offered by MPE. The collection tools and their corresponding output files are illustrated below: 

SYSTEM PERFORMANCE EVALUATION PACKAGE 

-- - - ...... -
Figure 2. SPEP Collection Tools 

The following illustration shows the collection sequence from start to finish: 

Collection -~ 
Process 

SRJllE 
~ 

EMI 
~ 

LOGFl!'IQI 
~ -~ SltCMO 

~ -..- °"' COMOCP.-.Or ~ 
IOOCP.AAIJCI' 

SIN!! .:..a.---
~ 

_.,_ -~ -~ -
Setup Measure Clean-up l~=I <Standard I Hour) Verify 

Figure 3. SPEP Collection Sequence 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

SM04/5 

Performance Measurement for Capacity Planning 
lnterex 1987, Vienna, Austria 

After the system operator restores the files from the probe tape, the setup portion of the collection begins. 
FREE2/FREE5 produces the OFREE file which contains a listing of the free disc space and disc fragmen­
tation. The BEGIN program then checks for sufficient free space, software update levels, and table sizes 
which may cause the collection to abort if it continued. SYSINFO then creates the OSYSINFO file which is 
a listing of the system configuration. The START program then prompts the operator for the company 
name and the measurement section of the collection begins. 

ZEUS controls the execution of the measurement section which is usually specified to run for one hour. 
ZEUS uses process handling to spawn the programs so they can run concurrently. SAMPLER logs records 
to the LOGSAMP file every 50 milliseconds. SAMPLER monitors time spent in software modules. 
COMMAND executes a SHOWCACHE command and writes it to tht OCOMMAND file once every 60 
seconds. COMDCP executes a SHOWCOM command once every minute for all configured data com­
munication devices (INP, SSLC, LANIC. and HSI). SNAPSHOT awakes every IO milliseconds and copies the 
entire PCB table and SIR table to a disc file. IODCP turns on the 1/0 trace facility in the measurement in­
terface and Jogs a 20 word block of 1/0 information for every 1/0. Lastly, MPEDCP is started to collect 
global and process level information at one minute intervals. 

The clean-up section begins with OPT capturing the table sizes. SHOWQ is then used to record the MPE 
queue configuration. DISCMAP scans the directory and captures the 128-word file label for every disc file 
on the system. Logfetch creates an indirect STORE file so MPE and Network log files can be written to 
tape. END verifies that all log files were created during the collection tools and that each of these log files 
contains records for the duration specified by ZEUS. Finally, STORE writes all the log and listing files to 
tape. 

The optional section shown in Figure 3 stores program and root files that were flagged during the 
collection. 

The entire collection process. from the building of the accounting structure to the store of the files to tape, 
will complete in two hours. The collection tape is then returned to the originating HP office and reduction 
of the data can begin. 

Reduction Phase 

It's the function of the reduction software to process the raw data collected from the system under study. 
This process produces the standard performance report and creates the files needed for the summary and 
capacity planning phases. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

SM04/6 

Performance Measurement for Capacity Planning 
lnterex 1987, Vienna, Austria 

As with the collection process, the reduction phase uses both HP supported products and special programs 
written to support the SPEP package. The illustration below shows the flow of data from the collected log 
files to the creation of the performance report: 

I 
Figure 4. SPEP Collection and Reporting 

Each of the tools creates a different section of the final standard performance report which is used by the 
performance specialist to diagnose system problems. The execution of the tools and the creation of the 
report is controlled by a single jobstream. The report sections are created by the following tools: 

TERMDRP - The system configuration captured by SYSINFO is used to identify terminal devices. The 1/0 
trace from IODCP is then searched to reconstruct the transactions for each terminal. These transactions are 
used to determine think times, response times, and average data transfer per transaction. These are present­
ed as histograms in the report. A numerical summary is also created that reports terminal reads. writes, and 
control functions per terminal and per transaction. 

DISCDRP - This step also uses the system configuration captured by SYSINFO. It identifies disc drives and 
then uses the 1/0 trace file to calculate disc addresses accessed. seek distances, and data transfer sizes. This 
data is presented as histograms in the report. 

DISCMAP - The file labels captured in LOGDISC are used to build a KSAM file with the file's extent ad­
dresses as the keys. This file is used as a directory of file names ordered by extent addresses. IODRP then 
replays the I/O's and matches the disc addresses of the 1/0 file with the KSAM directory. The resulting 
report shows logical and physical 1/0 by file name and file type. 

LOGXTRCf/LOGXGRAF - These tools produce the graphical section of the report LOGXTRCT creates 
an IMAGE data base of the data found in LOGMPED. From the data base, LOGXGRAF creates line, pie, 
and bar charts showing global system states. disc queue lengths and throughput, and workload specific 
information. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 

SM0417 

Performance Measurement for Capacity Planning 
Interex 1987, Vienna, Austria 

MPEARG - This tool produces n numerical report of the global system stlltes and process level statistie& 

SAMPLER - The report is a histogram showing the time spent in user code versus system code, and the 
modules in which the system was spending its time. 

COMDRP - This tool reduces the LOGCOMD file then creates a graph and numerical data showing line 
utilization, error rate, retransmissions, and timeouts for each active !NP, SSLC, LANIC, or HSI. 

The SYSINFO listing and a listing of the table sizes from OPT are appended to the report. Other files not 
mentioned are either used later in the summary phase. or collected for reference if needed. 

Each section of the report is output to a disc file. The report is assembled using the document preprocess­
ing software named QUILL One large TOP file is built and output to a laser printer. The HP2688 and 
HP2680 printers are supported. Production of the report takes approximately one hour. A portion of this 
time is spent creating files that are used in the summarization phase. 

The performance specialist can use the report to identify disc bottlenecks, CPU saturation, memory pres­
sure, and other system problems. If more detailed information is required to isolate a problem, several tools 
offer user interfaces to interrogate the log file online. In most cases, the online use of the tools is used to 
isolate a certain program or view a certain window of the collection period. 

Summary Phase 

The summary phase of SPEP was designed to meet the most important objective - accumulating a large 
amount of customer performance data to analyze customer workloads and create patterns of customer 
usage. To meet this objective the summary data base (SUMDB) was developed. It is an IMAGE data base 
that stores summary records of each collection. The loading of the site into the SUMDB follows the com­
pletion of the reduction phase. A schematic of the SUMDB appears below: 

SUM DB 

Figure 5. Summary Data Base 

GLOBAL - Global retains the system configuration and summary information about the system and collec­
tion. Each site includes system type, number of terminals configured, date of collection, operating system 
level, site identifier, caching totals, and memory manager activity summaries. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

SM0418 

Performance Measurement for Capacity Planning 
lnterex 1987, Vienna, Austria 

This data is used to find the average number of terminals per system type, average memory size by system, 
and to compare memory and caching access patterns. 

TERM - This set contains a record for each active terminal. Active is defined as one read/write pair 
during the collection period. Each record contains information pertaining to number of reads, writes, trans­
actions, and the amount of data transferred per 1/0. 

This information is useful in comparing read-to-write ratios of systems and the average amount of data 
transferred per transaction per terminal. 

DISC - Each disc drive is represented by one record. This set tracks disc queue lengths, seek distances, ser­
vice times, and reads and writes by type. Model and LDEV number are also tracked. 

This data is used to find average drives per system, average service times by drive type, and average queue 
lengths. Several curious questions can be answered by examining this data set, such as - Do systems tend to 
queue more on certain LDEVs?, How many drives are cached per system?, What percentage of I/O's direc­
ted to a drive are code reads, data reads, data writes, etc.? 

TAPE, PRINTER -These sets track read, write and transfer per 1/0 information per device. 

DAT ACOMM - Each data communications device is represented in this set. This incliides the software 
product which uses the device, reads and write counts, transfer sizes, line speed, and time busy. 

SAMPLER - Contains information regarding the activity in the various operating system modules for each 
site. 

FILELABELS - By far the largest data set in the data base, this set stores an entry for every permanent file 
found on the collected system. Each entry includes access dates, record and block sizes, file type, number of 
reads and writes to the file, extent sizes and the number in use, and the number of records in the file. 

Studies on this file can take hours of CPU time. Some questions that can be answered are - What are the 
average number of files per system, What is the average file size, What percentage of files are program file, 
etc. 

COMPANY - Tracks the company name and market cell. Market cells defines the primary use of the com­
puter at that company, i.e. Office Automation.Manufacturing, Financial. 

SITES - This set retains customer information so the data can be traced back to the customer and machine 
it was collected from. 

WORKLOAD - Without a doubt, the most important data set. This set represents a major effort in the 
summary and capacity planning phases of SPEP. It is from this set that the primary objective of the SPEP 
package is met 



HP3000 
INTERNATIONAL CONFERENCE SM0419 
VIENNA 1987 

Performance Measurement for Capacity Planning 
lnterex 1987, Vienna, Austria 

The program WKWAD is used to load the WORKLOAD data set and uses several different log files from 
the collection. The flow of data through the WKLOAD program is shown below: 

Figure 6. WKLOAD Data Flow 

WKLOAD reads DB to find process level statistics which were collected by the measurement interface of 
MPE. FLABEL and SUMM are used to calculate I/O's by type (KSAM, IMAGE, MPE, Memory Manager, 
and Directory). think times, response time, and transaction counts. PCBLOG is read to calculate the MPL 
(Multiprogramming level) which is a metric that defines software constraints for a workload. OSYSINFO 
contains the system configuration listing and WORKLOAD is the workload definition file. 

The WORKLOAD definition file defines the program names which make up workloads. Each workload 
defined in WORKLOAD is identified by a unique name, is assigned a category, language, and a set of 
filenames that will be bundled to create the workload. An example of a workload definition is: 

WORKLOAD=TDP/3000 
CATEGORY=OFFICE TEXT PROC. 
LANGUAGE=SPL 
TOP.PUB.SYS 
TDPSP 1. PUB. SYS 
TDPSP2.pUB.SYS 
SCRIBE.PUB.SYS 

Each workload is also differentiated by whet.her is was run as a job. session, or as part of the operating sys­
tem, and also by the queue in which it was executed. If a program file is not defined in any workload 
definitions, the file name is used as the workload name. Of these self-defining workloads, only those which 
consume over ten percent of the CPU or disc is isolated in its own workload. The remaining self-defining 
workloads (<10%) are bundled into a single workload defined as '"OTHER. 



HP3000 
INTERNATIONAL CONFERENCE SM04/10 
VIENNA 1987 

Performance Measurement for Capacity Planning 
Interex 1987, Vienna, Austria 

At the completion of WKLOAD the WORKLOAD data set in SUMDB might contain the following 
workloads for a site: 

Workload Type Queue 

FCOPY/3000 J c 
FCOPY/3000 s c 
HP DESK J D 
HP DESK s c 
HPWORD s c 
*OTHER s c 
SYSTEM 0 L 
SYSTEM s c 
SPOOLER 0 L 
TOP s c 
AP.PROG.FIN s c 
PAY.PROG.FIN s c 

The remaining information that would be found in an entry in WORKLOAD includes: reads and writes per 
1/0 type, number of transactions, CPU time and instructions, active terminals, think time, response time, 
code faults, number of active terminals, think time, response time, number of code and data segment faults, 
and percentage of disc 1/0 to each disc LDEV. 

It is obvious from the above listed data that a wealth of information can be gleaned from the SUMDB. A 
master version of the SUMDB is maintained by the Performance Technology Center in Roseville, 
California. This version of the data base is used to characterize HP products, create benchmarks, and track 
new product performance. Currently. the master SUMDB has over 350 collections and is updated daily 
with new data. The data base is distributed to HP divisions for use on the following projects: 

• Computer Systems Division to characterize large Series 68 and 70 systems. 

• Office Systems Division to characterize office systems software. 

• Information Technology Group to create HP utilities benchmarks and to isolate certain customer 
workloads. The type of workloads being examined are intense IMAGE applications, heavy batch 
processing, manufacturing, office automation, and program development 

• HP performance specialists to use as input for the analytic modeling tool. Standard Workloads for 
several HP products have been developed and are used by performance specialists when delivering 
the HPCAPLAN product. 

• The HP Software Migration Center for application migration analysis. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Capacity Planning Workbench Phase 

SM04111 

Performance Measurement for Capacity Planning 
lnterex 1987, Vienna, Austria 

With the data that was stored in SUMDB, it became clear that by using certain mathematical equatiOlll, 
performance predictions could be calculated. This spawned the development of KASANDRAl , the 
analytic modeling tool. With this tool, a performance specialist could answer different "what if" questions 
concerning system utilization, response time, and throughput. The tool was completed but manual extrac­
tion of workload data from the SUMDB was tedious and time consuming. A workbench tool was 
developed to eliminate this problem. 

The Capacity Planning Workbench (CAPWORK) provides an environment which allows the user to 
analyze the measurements from the customer collection, regroup or isolate workload groupings, and 
generate modeling information for input to KASANDRA. A data base (CAPLAN) is built by the 
CAPLOAD process and it's with this data base that CAPWORK interacts when modifying workloads. 

Below is a schematic of the CAPLOAD process, including KASANDRA and standard workloads: 

.,.... --
Figure 7. Capacity Planning Environment 

When the build of the CAPLAN data base is complete, the Capacity Planning Report (CAPREPT) is out­
put. This report shows the groupings of workloads produced by CAPLOAD and their associated statistics. 
It's the CAPREPT which the performance specialist uses for reference when modifying the workload 
groupings. This report can be generated after each regrouping of the workload structure. Each report in­
cludes: site configuration. modeling parameters for KASANDRA, interactive and wait state detail, service 
utilization, device utilization, workload composition by program name, file access by workload, file access 
by filename, and a listing of the workload definition file (WORKLOAD definitions from Figure 6~ 

lNamed from the Greek mythological character Kassandra (often spelled CASSANDRA), the daughter 
of Priam and Hecuba. Apollo gave her the gift of prophecy to win her love. When she wouldn't yield to his 
desires, Apollo cursed her to never be believed. It's no wonder her warnings against the dangers threatening 
Troy fell on deaf ears. The spelling. KASANDRA, was used to satisfy the MPE file system. 



HP3000 
INTERNATIONAL CONFERENCE SM04/12 
VIENNA 1987 

Performance Measurement for Capacity Planning 
Interex 1987, Vienna, Austria 

The CAPLAN data base organizes the workloads into a tree structure. The highest level of the tree is con­
sidered the system level and this is subdivided by run environment, session, batch job, or operating system. 
The level under the run environment represents categories as described by the WORKLOAD definition file. 
The program level links to the category level and the process level reports to the program level. The entire 
tree consists of six levels of detail, the system level, run environment level, category level, workload level, 
program level, and process level. 

The following illustration is an example of the workload tree: 

CAPWORK 
WORKLOAD ORGANIZATION 

Figure 8. Workload Tree 

--· ..... 

From this structure the CAPWORK user is free to reorganize the tree to isolate certain applications such 
that, when KASANDRA is invoked, the workload is modeled as a single application and not bundled within 
its category. For example, in the above figure the following workloads would be passed by CAPWORK to 
KASANDRA; JOBS, OS, HP UTILITIES, USER APPLICATIONS, and OFFICE. It is rare to find JOBS or 
OS broken to lower levels since its seldom that JOBS or OS are of concern to the specialist. Most often it is 
online applications that require attention and this is why SESSIONS has been subdivided to the 
CATEGORY level. 

Let's assume the objective of this capacity planning process is to determine the impact of ten new 
HPWORD users, twenty new HPDESK users. and evaluate the effect of moving the MEDCHK application 
to another system. The specialist would need to modify the CAPWORK tree structure to isolate HPWORD, 
HPDESK, and MEDCHK. This is done by summarizing the levels below these enti.ties and separating them 
as a category. When this is complete, the workloads passed to KASANDRA would be; JOBS, OS, HP 
UTILITIES, USER APPLICATIONS (without MEDCHK), OFFICE (without HPDESK and HPWORD), 
MEDCHK, HPWORD, and HPDESK. With this organization the user can answer "what ir' questions with 
each workload. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

SM04113 

Performance Measurement for Capacity Planning 
lnterex 1987, Vienna, Austria 

When the user is satisfied with the workload structure which is defined, the KASANDRA analytic 
modeling tool is invoked. The process is then iterative. moving between CAPWORK and KASANDRA 
evaluating different system configurations, processors, and applications. 

Analytic Modeling Phase 

A model is an abstraction of a system and represents an at.tempt to distill, from a mass of details that 
represent a system, those aspects that are essential to a system's behavior. In the case of KASANDRA, a 
queuing network model is used to represent the system. This particular method is an approach to computer 
modeling in which a system is represented by a network of queues which are evaluated analytically. The 
network of queues is a collection of service centers, which represent system resources. and customers, 
which represent users or transactions. KASANDRA solves a set of equations induced by the network of 
queues and its parameters. 

The reasoning behind this choice of modeling technique is it achieves a favorable balance between ac­
curacy and efficiency. Accuracy is expected to be within S'lb-10% for utilizations and throughput, and 
within 10%-30% for response times. Efficiency is realized since defining, parameterizing, and evaluation of 
these models comes at a relatively low cost. The relative increase in cost of improving accuracy obtained 
by using other methods significantly outweigh the benefits for a wide variety of applications. 

The specific equations used by KASANDRA to model systems are explained in Quantitative System 
Performance, Computer Sys/t'ln Analysis Using Qm•11eing Network Models. Edward D. Lazowska, John 
Zahorhan, G. Scott Graham, Kenneth C. St•vdk. Prt•ntice-Hall, 1984. This book was used as a reference while 
developing KASANDRA. The particular algorithms are defined as Mean Value Analysis (MVA). No at­
tempt will be made by this paper to explain MV A. only the results that it produces. 

An MPE file of workload model inputs is passed from CAPWORK to KASANDRA. A sample of workload 
attributes appears below: 

Title MODEL FOR KASANDRA 

SYSTEM 70 

Server 1; 
Server 2; 
Server 3; 

Create OS 
CPU= 
Disc= 
Drive= 1, 
Drive= 2, 
Drive= 3, 
MPL= 
PRI=1 

Time=0.0316; Title=DEV1 
Time=0.0362; Title=DEV2 
Time=0.0345; Title=DEV3 

582.25,70 
28769.609 

41.90 
33.35 
24.75 
0.407 

Type=Transaction 
Thruput= 0.000278 

Create JOBS 
CPU= 
Disc= 
Drive= 1, 
Drive= 2, 
Drive= 3, 
MPL= 
PRI=3 

818.788,70 
40515.886 

33.33 
33.33 
33.34 

5.496 

Type=Transaction 
Thruput= 0.000278 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Create OFFICE 
CPU= 
Disc= 
Drive=1, 
Drive=2, 
Drive=3, 
MPL= 
Pri=2 
Type=Terminal 
Term= 
Think= 

TEXT. PROC 
0.403,70 

14.400 
24.00 
36.00 
40.00 

1.124 

5.62 
9.677 

SM04/14 

Performance Measurement for Capacity Planning 
lnterex 1987, Vienna, Austria 

Create USER 
CPU= 0.170, 70 
Disc= 3.684 
Drive= 1 • 33.00 
Drive= 2, 33.00 
Drive= 3, 34.00 
Pri=2 
Type=Terminal 
Term= 13.45 
Think= 12.2 

This particular example defines four workloads. Each workload is defined by the CREATE command fol­
lowed by the workload attributes. CPU is defined as the number of CPU seconds per transaction and the 
'70' represents the processor. DISC defines the number of disc I/O's per transaction. The DRIVE command 
defines the percentage of I/O's that were directed to a particular drive. PRI assigns a priority level cor­
responding to the queue in which the workload executed. MPL2 defines the degree of software constraints 
for the workload. TYPE defines the type of transaction. For batch jobs and operating system the 
TRANSACTION type is used with the THRUPUT command. This is used to saturate a fixed amount of 
resources by the workload. For interactive workloads we use the type defined as TERMINAL, the THINK 
command which is a measured think time for a transaction, and the TERM command which defines the 
number of terminals that should be modeled for this workload. SERVER defines the disc devices and the 
average service times measured during the collection. 

KASANDRA will take the workloads defined and predict the response time, utilization of devices, and 
throughput. These values are compared to those output by CAPWORK in the CAPREPT. If the values 
compare satisfactorily, the user is ready to predict new values for throughput, utilization, and response by 
changing the system type, number of disc drives. number of terminals that run a particular workload, or 
perhaps disc service times. If the values calculated by the model are not in the acceptable range the user 
must return to CAPWORK and identify the reason the values are so diverse. 

As described in the CAPWORK section, the process is now iterative. The performance specialist could 
make several changes with the model defined as above. He/She might then return to CAPWORK to isolate 
the OFFICE TEXT. PROC workload into three separate workloads defined as HPDESK, HPWORD, and 
HPDRA W. KASANDRA could then be invoked a second time to alter the number of active terminals for 
each application to determine the impact of these changes on the system. 

KASANDRA provides several forms of output. A report is output showing utilization, response time, and 
throughput for each workload. These values can then be graphed in several different formats, the most 
common being THROUGHPUT versus TERMINALS. RESPONSE TIME versus Terminals, and SERVER 
UTILIZATION versus TERMINALS. The graphs can be saved as figures to be used in reports explaining 
the different results produced by the tool. 

2simply defined, MPL is the number of active threads of control provided by a workload. For example, 
a value of 1.2 is used to model an IMAGE data base bottleneck for a single data base application. The value 
is derived by examining the wake mask of the PCB table. The wake mask reflects the reason a process is 
waiting. The calculation of MPL assumes that a software constraint can be observed by isolating the cases 
in which one or more processes are impeded from entering the system due to another processes control of 
a software resource. The algorithm scans each of the samples from the PCB table looking for points in 
which one or more processes are in a software wait state. By looking at the number of active processes in 
the system at these points, and averaging across the number of samples. a maximum limit is established. An 
MPL of zero indicates no software constraints were found. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 

SM04/15 

Performance Measurement for Capacity Planning 
lnterex 1987, Vienna, Austria 

One question that is often asked by customers is "What if I add ten users of this HP product I haven't pur­
chased yet?''. This question is answered by using standard workloads. Standard workloads have been derived 
by analyzing data from the SUMDB for each HP product. By analyzing all the HPWORD entries in the 
WORKLOAD data set of the SUMDB, a standard workload can be derived that represents the average 
HPWORD user. This can then be used by KASANDRA to model the effect of a new application that is 
added to the system under study. 

One resource of the system that KASANDRA cannot model is memory. Memory constraints have two 
major effects on system performance. First, an upper limit is placed on the number of users on the system. 
Second, there is overhead induced in the other resources, CPU and disc, to alleviate memory pressure. 
Memory requirements are difficult to measure because they vary during the life of the workload. A tool is 
being developed to capture memory requirements of a workload. 

Summary 

The SPEP package continues to evolve. New tools are being developed to improve the accuracy of the col­
lection, new reporting tools are easing the burden of data reduction, and new modeling ideas are making 
the capacity planning efforts more precise. With this package the performance specialist is provided with 
the tools required to accurately evaluate system performance. 

The functions provided by SPEP are being developed for the HP Precision Architecture family of systems. 
Current collection and modeling tools are being investigated and new tools are being developed to meet the 
needs of the performance specialists. 

Biography 

Tim Twietmeyer is a member of the technical staff for the Performance Technology Center of the 
Hewlett-Packard Company in Roseville, California. He holds a D.S. degree in· Computer Science from 
Chico State University and worked for three years as an HP software engineer and performance specialist 
in Sacramento. Currently, his efforts are concentrated in working with the SUMDB to define standard 
workloads for HP products, defining benchmarks for system evaluation, and developing performance tools 
to support SPEP. 

A THANK YOU to the people that are instrumental in the development and support of SPEP, namely 
Tony Engberg - developer of the original SPEP process and continues to oversee the project team, Paul 
Primmer - current SPEP project manager and developer of several of the tools used by SPEP, Jim Morris -
project manager responsible for field strategy for SPEP, Rick Bowers - currently a project manager, but 
was the design engineer responsible for the development of KASANDRA, Doug McBride - an engineer 
responsible for developing SPEP tools and a major contributor to refining the SPEP process, and Gary 
Hynes - an engineer responsible for the design and development of the CAPLAN data base and 
CAPWORK. The above mentioned managers and engineers work for the Performance Technology Center 
which is a part of the Information Technology Group. 

A special thanks to the Application Support Division (ASD), especially Marc Hoff and Phil Palmintere. 
They took SPEP and made:it a product so HP customer's can benefit from the package. ASD also con­
tinues to support and fund the project team. 



HP3000 
INTERNA T/ONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNAnONAL CONFERENCE 
VIENNA 1987 

HP Proactive Support Systems 
Predictive Support and HPTrend 

SM0511 

To maintain it's industry leading position in support, Hewlett Packard has developed two major 
products to help customers to maximize the utilization of their systems. Predictive Support and 
HPTrend, the subjects of this paper, both proactively monitor system performance and automatically 
report their findings to HP for analysis and action. With these products automatically notifying HP 
of potential system utilization problems, HP will identify and correct many problems with little or no 
effort on the part of the system manager. It is with products like these that Hewlett Packard can 
continue to provide a highly involved and proactive level of support, unequaled in the industry. 

This discussion will cover the technical implementation aspects of Predictive Support and HPTrend. 
The topics covered include the design goals, onsite implementations, data communications, Response 
Center operations, and next release features of both products. 

Presented by Bruce Richards of the HP Knowledge Systems Lab. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/2 
VIENNA 1987 

NOTICE 

The information contained in this document is subject to change without notice. 

HEWLETI-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO 
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden­
tal or consequential damages in connection with the furnishing, performance or use of this 
material. 

Hewlett-Packard assumes no responsibility for the use or reliability of its software on 
equipment that is not furnished by Hewlett-Packard. 

This document contains proprietary information which is protected by copyright. All 
rights are reserved. No part of this document may be photocopied, reproduced or trans­
lated to another language without the prior written consent of Hewlett-Packard 
Company. 

Copyright (c) 1985, 1987 by HEWLETT-PACKARD Co. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/3 
VIENNA 1987 

Design Goals 

DESIGN GOALS: 

Predictive and HPTrend reflect the common idea that HP wants to take action corrective action on 
potential problems before the customer is ever aware of any difficulty. However, not every problem 
or bottleneck can be anticipated, therefore, goals were established to measure the effectiveness of the 
products. Since the volume of data flowing between the customer and HP was going to be significant, 
the process of handling the data had to be automated on both ends of the transfers. System security 
for the customer and HP must be maintained. Disc space consumption on the customer system was a 
very major concern. The products also needed to smoothly integrate with the existing remote support 
programs. 

Predictive Support was given the goal of anticipating 300/. of HP 3000 hardware problems. This goal 
roughly coincides with the occurrence of intermittent failures on electromechanical products, inter­
mittents being the target failure type for Predictive. A subgoal for predictive was to notify HP when 
it reached a 50-70% certainty that something was going to fail. We did not want I 00% certainty 
since the uncertainty is needed to calibrate our error threshold rulebase. Disc consumption was to be 
under a megabyte. we wanted to share any error information with the customer, so all messages are 
displayed for customer review, albeit the messages are somewhat cryptic. Operation of the product, 
beyond the above, was to be as invisible as possible to the customer. Predictive does not attempt to 
diagnose the cause of the failures, it only predicts them. Discs, memory, and magnetic tapes were the 
original products to be supported by Predictive. From early calculations, the cost of developing and 
implementing Predictive would easily be recovered from field productivity gains alone. 

HPTrend's goal was to alert the HP account representative of any potential resource utilization 
problems on one of his/her sites before the customer had difficulties. A secondary goal was to report 
the data in an understandable form. Since an HP Systems Engineer was ultimately going to explain 
the data to most customers, we had to be certain that the data was displayed in a consistent and high­
ly graphic manner. To this end, HPTrend needed to collect onsite data in real-time, periodically send 
this data to HP, format a consistent and highly graphic report, and distribute it to the HP account 
team and the customer. Native language support for European users was a must. 

Both Predictive and HPTrend were to leverage code as much as possible, especially in the datacomm 
area. Both needed to minimize human intervention at the HP Response Centers, where the data is 
received and handled. The products needed to operate similarly (configuration, etc.) to fit smoothly 
into the customer's daily operations. 



HP3000 
INTERNATIONAL CONFERENCE SM05/4 
VIENNA 1987 

Onsite Predictive 

ORGANIZATION OF THE ONSITE SOFTWARE: 

Predictive Support 

Products considered for predictive analysis must have a high degree of internal error detection and 
reporting capability in order for Predictive Support to be effective. Once a candidate has been selec­
ted, product experts from HP's Response Centers and manufacturing divisions model the degradation 
and failure modes of the product. The results are reduced to a set of prn<luct independent rules to be 
incorporated into the Predictive product. The definition of the rules is a dynamic process, so the 
Response Center experts must pay constant attention to the effectiveness of the rules established for 
each product. 

Predictive Support Software Operation 

After Predictive is installed on the customer system, the analysis begins. Predictive executes in four 
basic phases. First, error data is collected. Second, the error data is reduced into a generic format. 
Third, trend detection is performed, and finally, if necessary, the appropriate actions are taken to 
solve any problems. Overall processing is controlled by the Predictive monitor process. Fig. I shows a 
graphic representation of the onsite Predictive architecture. 

Emir data ii ...,...i.t In a 
generic: format '"' nnd 
delllction by Ille monitor. 

Emir data la 
calllc:t.d by 

the utilities. 

System 
Logs 

Predlctile takes action by notifying either: 

CS80 
Devices 

t the Aelpanw Center. OI 21 Ille oPntar. 

Memlog 
File 

Figure I 

A history of the last hundred 01 '° 
1ctions la'*' by Predictiwl is 
p~nt.d alter ..,.ry run. 

Predictive Support uses special utility programs to collect error data. Each utility is launched as a 
child process and retrieves the error data for a specific class of products. Predictive Support currently 



HP3000 
INTERNATIONAL CONFERENCE SMOS/5 
VIENNA 1987 

Onsite Predictive 

uses three utility programs to collect data from system-maintained log files, internal disc drive logs, 
and processor memory logs. 

In the second phase of processing, the utilities translate the myriad of error data formats into a com­
mon message format, so the Predictive monitor can use the same trend detection algorithm to process 
the error data to determine whether a failure is imminent on the specific system component. The 
messages contain information identifying the product and the class of error involved. In addition, er­
ror class specific information that is not needed for trend detection, but is necessary for further 
definition of the particular error, is appended to the message and passed on to the eventual 
troubleshooter. 

When the messages are received by the predictive monitor process for third-phase processing, the er­
ror data is passed through a trend detection algorithm. If the results indicate that an undesirable 
trend has been established, the appropriate action is triggered. For most products, the vast majority 
of soft errors are normal and transparent to the system users. The trend detection algorithm is 
described in more detail later. 

Predictive Support Output 

Taking the specified action is the fourth and final phase. Predictive notifies the appropriate person so 
that corrective action can be carried out by the customer or by HP support personnel. In cases where 
the customer is notified (e.g., a specific medium is marginal, or a drive needs cleaning), the predic­
tive monitor sends a message to the console, informing the operator about the problem. In cases 
where HP needs to further investigate a potential problem, Predictive Support uses a communication 
link to transfer the information directly to the Response Center for investigation. At the end of 
every run of Predictive, regardless of the actions taken, a report is generated listing all of the mes­
sages output during this and previous runs of Predictive Support. This provides a hard-copy record of 
Predictive Support activity. 

The data communication link between the customer system and the Response Center uses the remote 
support modem installed on most of the HP 3000 systems. At the end of the run, if messages have 
been generated for HP support, Predictive Support requests the system operator's permission to use the 
modem. Once permission is granted, Predictive autodials the modem, if possible and allowable, call­
ing into a secured port on the Response Center job management system. A single file is then transfer­
red (with error checking) from the customer system to the Response Center. At each step of the 
transfer the customer has complete control over the connection. More about this data communica­
tions software is described later. 

At this point Predictive Support will have completed its execution. In the cases where it has transfer­
red action data to the HP Response Center, the HP engineers may investigate the problem further and 
recommend the appropriate course of action.' If this recommendation requires on-site action by the 
field customer engineer the downtime will be scheduled at a convenient time. This advance warning 
saves the customer the inconvenience of unscheduled downtime and allows HP to schedule Customer 
Engineering resources more productively. 

Trend Detection with Predictive 

The objective of the Predictive Support software is to monitor trends in computer system operation as 
they occur, notifying the appropriate person when a trend indicates that there may be a problem. It 
was obvious that some statistics must be gathered and analyzed, but the questions of how to keep 
these statistics and what to count had to be resolved. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/6 
VIENNA 1987 

Onsite Predictive 

Trend Detection Concepts 

To analyze system trends, we need to identify entities that can be monitored in hope of detecting signs 
of impending failures. The most familiar source of failures on a computer system is the hardware, 
e.g., peripheral devices. The entities that are monitored by Predictive Support are referred to generi­
cally as devices. Non-peripheral "devices" such as memory are referred to as pseudodevices. For 
each type of device that is to be monitored, some set of significant observable events must be iden­
tified, so their occurrence can be tabulated and analyzed. The best example of an event to be 
monitored is an 1/0 error condition, such as a recovered read error on a disc drive. As implied by the 
designation, these errors are detected and corrected by the drive and do not have a noticeable effect 
on performance or integrity. A single occurrence of this event would not indicate a problem, but 
when the frequency of recovered error occurrence reaches a certain level, a pending failure may be 
indicated. 

For trend detection, the frequency of occurrence of these significant events must be calculated for 
each device being monitored. Merely tabulating the occurrences of an event will not, however, yield 
the frequency of occurrence. We therefore need to track some other factor to weight the occurrence 
of the significant event. Since simple continuous tracking of event occurrence and weighting factor 
will lead to a dilution of the statistics, the accumulation of the weighting factor must be limited to 
create a sample across which the frequency of occurrence can be analyzed. The sample can count 
something related to the event, such as the number of disc accesses, or a time interval. To identify an 
undesirable trend, a threshold must be defined where the occurrence value, relative to the defined 
sample size, is considered undesirable. 

In summary, to detect abnormal system trends, we need: 1) entities to monitor, that is, devices and 
pseudodevices, 2) definition of significant events that occur on the devices, and 3) rules defining both 
the samples across which event frequencies are monitored and the relative thresholds of event occur­
rence where problems may be indicated. 

Trend Detection Data Needs 

The Predictive Support software uses two major data structures to manage the collection and analysis 
of the statistics kept for detecting system trends. One is the trend log, a repository for collected event 
occurrence data. ,The other is the normalization matrix which contains a set of rules governing the 
logging of event data in the trend log and the interpretation of the resulting trend data. The matrix 
makes the trend detection process table-driven. There is a unique set of events defined for each type 
of device monitored and one or more rules in the matrix for each event. A single element of the 
trend log is referred to as a bucket and contains the current event occurrence and sample values, 
along with a time stamp associated with the last time the bucket was updated. There is logically one 
bucket in the trend log for each normalization rule associated with each actual device or pseudodevice 
configured on the system. The buckets are grouped into sets by device type. The set size is deter­
mined by the number of devices configured as the given type, leading to a one-to-one correspondence 
between rules and bucket sets. 

The rule has two parts that control the collection and analysis of statistics in the buckets of its set: a 
bucket definition and an action specification. There are fields in the bucket definition that define 
the bucket's sample value in terms of the normalization method and maximum size. The method 
specifies whether the sample is a time interval or an accumulation of some other event (e.g., disc ac­
cesses). The sample value in the bucket cannot exceed the maximum size defined in the rule. If the 
logging of event data causes this condition to occur, the occurrences relative to the obsolete portion of 
the sample must be discarded before the new event occurrences can be added in. The formula used to 
reduce the occurrence value when this overflow condition arises is described in detail on page 8. The 
bucket definition also includes the event occurrence threshold. If after event data is logged the 



HP3000 
INTERNATIONAL CONFERENCE SMOSn 
VIENNA 1987 

Onsite Predictive 

bucket's event occurrence value is at or above the threshold, the action defined by the action 
specification part of the rule will be taken. 

The actions of the Predictive Support system will frequently involve communication with human 
users, namely the customers and/or HP's support engineers. After the message is sent to the ap­
propriate person, there are three options: the bucket values (time stamp omitted) can be left alone, 
reset to zero, or reset with event processing suppressed (only if the bucket has a time normalization 
method). For example, some disc devices have their own microprocessor controller for which the 
software is held in ROM. The utility for examining their logs only supports the current (and future) 
ROM revision, and it checks the revision level before reading the drive logs, reporting an event if the 
customer's drive is using an unsupported version. This condition is then reported to the Response 
Center, and a service call is initiated to upgrade the ROM. Service calls of this nature are usually 
scheduled weeks in advance, so there is no need to continue reporting it each time Predictive Support 
is run. For this reason, event processing is suppressed for that bucket for the length of the sample size 
(usually 3 weeks). 

Predictive Event Processing 

During event processing, the predictive monitor launches each utility, one at a time, and waits for it 
to send a message. It wakes up when a message is received, and if it is an event record, the following 
algorithm is performed to log the trend data: 

Use the device identification information to find the first rule in the normalization 
matrix. 

Read the trend log values associated with the rule, and use the time stamp, along with 
the event record's time stamp, to compute the interval to be used as the event record's 
sample value for rules with a time normalitation method. 

FOR EACH rule associated with the event number and device type specified in the 
event record, log the event record's trend data into the trend log as follows: 

IF the rule has a suppress action, 
AND the bucket is suppressed, 
AND the time since last update is less than the rule's maximum 

sample, 
THEN skip the following steps, continuing with the next rule. 

Use the algorithm described in the next section to log the event data 
into the trend log. 

IF the bucket's new event occurrence value is greater than or equal to 
the threshold defined in the rule, 

THEN take the specified action by outputting the message to 
the appropriate destination and optionally resetting the buc­
ket values and suppressing further event processing. 

Continue with the next rule and, when all rules have been applied, wait for 
the next message. 



HP3000 
INTERNATIONAL CONFERENCE SM0518 
VIENNA 1987 

Onsite Predictive 

Logging Event Data In the Trend Log 

Logging event data involves adding the event record values to the current trend log values. The 
resulting event occurrence value is then compared with the threshold to determine whether to take 
action, 

Three pairs of values are used for trend detection. X values are associated with event occurrences and 
Y values are associated with the sample values. In this description, each of the pairs will have a sub­
script designation. The count and weight values from the event record use the subscript e. For ex­
ample, if the normalization method is time, Ye • time since last update. The trend log values for 
current event occurrence and sample values stored in a bucket use the subscript b. The threshold and 
maximum sample values defined in the normalization rule use the subscript r. 

When an event record's values are logged, one of three mutually exclusive conditions exist. The equa­
tions used to set the new bucket values in each case are as follows: 

CASEl: Ye >• Yb 

Xb <- (Yr)Xe/Ye 
Yb <- Yr 

CASE2: (Ye+ Yb) <a Yr 

Xb <- Xb +Xe 
Yb <- Yb+ Ye 

CASE3: (Ye+ Yb) > Yr 

(event sample larger than maximum) 

(bucket sample will not overflow) 

(bucket sample will overflow) 

Xb <- Xb - (Yb + Ye - Yr)(Xb/Yb) + Xe 
Yb <- Yr 

Under Case l the event record values cover the entire sample, so the old statistic is discarded and the 
ratio of the event record values is multiplied by the maximum sample, resulting in the new Xb value, 
an approximation of the number of occurrences over the required sample .. 

Under Case 3 an attempt is made to discard obsolete occurrences. so the statistic will only be 
evaluated for the sample specified in the rule. The Xb value must be normalized before Xe is added 
in. The amount of overflow is multiplied by the current ratio of the bucket (i.e., frequency of oc­
currence), and the result, an approximation of the number of obsolete occurrences, is subtracted from 
Xb before Xe is added in. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/9 
VIENNA 1987 

Onsite HPTrend 

ORGANIZATION OF THE ONSITE SOFTWARE: 
HPTrend 

Function of HPTREND 

UPTREND software performs data collection on the customers HP 3000 computer system. The data 
saved by UPTREND is then transported to a Response Center for processing. There it is transformed 
into a series of charts and graphs which describe how the customer is using the HP 3000. The reports 
generated provide the customer with information that will enable him/her to perform resource plan­
ning or application sizing, thereby making both the HP 3000 and the customer's users more produc­
tive. Figure 2 describes at a high level, how UPTREND works overall. 

Alpartil-l<ltlle 

Qiaa-Wll..,..,.tSE rar_..,. .... 

HPTREND 

Figure 2 

As shown in figure 2, UPTREND runs on the customer system performing dafa collection (from the 
system logfiles and the Measurement Interface), data reduction and data transfer to an HP Response 
Center. The Response Center receives the UPTREND data and produces reports. Finally, the 
UPTREND performance report is sent to the customer (or delivered by the Account Representative). 



HP3000 
/NTERNA T/ONAL CONFERENCE SM05/10 
VIENNA 1981 

Onsite HPTrend 

HPTREND's Product Environment 

HPTREND can be installed on any HP 3000 computer system which is running an MPE release other 
than V /P or V /P-Delta-1. HPTrend lives in the TELESUP account in it's own group (HP3SI 36A). 

To be effective in it's task, HPTREND requires that system logging be enabled and that certain MPE 
log file records be logged (in particular, 1,2,3,S,6 and 8). Note that if the logging is not turned on, 
HPTREND will give incomplete reports and as a result be quite ineffective in it's task. 

HPTREND also requires a 1200 BAUD modem to use in the transfer of HPTREND data to the 
Response Center for processing. This modem can be autodial or non-autodial and is shared with 
Predictive Support and Remote Support uses. 

Overview 

HPTREND is a product which may be used to produce a performance trend report on the HP 3000. It 
consists of two phases : 

o Data collection and data reduction phase. 
o Report generation phase. 

The data collection and data reduction is performed at the customer site. HPTREND software runs 
at all times, gathering data from the MPE Measurement Interface and MPE Log files. The 
Measurement Interface data collection is performed by the program HPTREND. This program 
launches the MPE Log file program TRLOGDCP at a specific time (the default being midnight) to 
collect Log file data. This program also launches the Disc Free Space capture program 'TRFREE' each 
time the log file data ·capture program 'TRLOGDCP' is run. Once a day the HPTREND program 
looks at the schedule file to see if it's time for Data reduction. The schedule file (HPTSCHDF) is a list 
of dates when data is to be reduced and sent to the Response Center. When the first date in the 
schedule file is equal to the current date, the HPTREND program launches the Data reduction Job 
stream JREDUCE. This job stream runs the reduction program REDUCE. The JREDUCE job stream 
then runs HPTXFDMP to transfer the reduced file to the Response Center. Once the file is transfer­
red to the Response Center. The second phase of HPTREND (report generation) produces the perfor­
mance trend report and then this report is sent to the customer and HP account rep for examination. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

HPTRENOA 
HPTRENDB 
HPTRENDC 

MEASUREMENT DISC 
F 

HPTRENDL HPTRENOO 

NOTE 

The HPTREND program can create and run the 
TRLOGDCP and TRFREE programs as son processes 
automatically at 24 hour intervals. This allows all data 
collection to be done via a single batch job. The 
programs are inherently interruptable and restartable to 
simplify data collection operations. 

DATA REDUCTION: 

SM05/11 

Onsite HPTrend 

Data reduction need only be done once for each report generated. It takes less than two minutes on 
the typical customer system. 

~ HANOLE 

HPTRENDL HPTRENDO 
HPTRENDA ~EDUCE 
HPTRENDC 
HPTRENDD _H_P_TR_E_N_D9_ 

TALE 



HP3000 
INTERNATIONAL CONFERENCE SMOS/12 
VIENNA 1987 

Onsite HPTrend 

DATA TRANSFER: 

Data transfer program PMNXFRDP takes the TFILE and transfers this file to the Response Center. 

TFILE 

Program Descriptions 

Hewlett-Packard 
RESPONSE CENTER 

The following programs are used on the customer site. Functional descriptions of the program files 
are provided along with a description of any data files used. All program files reside in the 
HP35136A group of the TELESUP account on the customer's system. 

UPTREND. 

This program runs on the customer's system and is part of the data collection phase. It enables the 
measurement interface (global statistics only) and logs data to the HPTRENDL file as follows:. 

Every five minutes HPTREND awakes after calling the PAUSE intrinsic. At this time the global 
statistics are captured and differences are calculated from their values before pausing. TIMER is cal­
led to get elapsed time and eliminate problems with inaccurate redispatching. The individual counts 
from the measurement interface are turned into rates per unit time and converted to normalized 
units. Certain items are combined into general categories. Next, running averages of these categories 
and maximum rates are accumulated each ten minutes until the hour of the day changes. At this 
time a summary record is appended to the HPTRENDL disc file and the internal accumulators are 
reset. Each record in the disc file is date and time stamped for later analysis. The records are also 
encrypted before being written so as to make pirate report generation more difficult. Special 
procedures are used to handle counter roll over and the effects of multiple users of the measurement 
interface. Duplicate HPTREND programs are allowed but only one can write to a particular 
HPTRENDL file at a time. 

At a specified time (the default being midnight) HPTREND will schedule the TRLOGDCP program to 
run as a son process. It runs TRLOGDCP without wait and will not abort if it is not present or runn­
able. The user may specify when TRLOGDCP is run through the use of the ;PARM• parameter on 
running HPTREND. Simply specify the desired hour to run in 24 hour time (0-23). Any parameter 
outside the range (0-23) will cause HPTREND to NOT RUN TRLOGDCP. In this case TRLOGDCP 
should be run manually. HPTREND will run the Disc Free Space Capture program 'TRFREE' each 
time the 'TRLOGDCP' log file data capture program is run. 



HP3000 
INTERNA TJONAL CONFERENCE SMOS/13 
VIENNA 1981 

Onsite UPTrend 

Once a day relative to when the UPTREND job stream was launched, UPTREND will look at the 
schedule file. The schedule file (HPTSCUDF) is list of dates and times when data is to be reduced and 
sent to the Response Center. If the first date in the Schedule file is equal to the current date, and the 
time is equal to current time, the data reduction job stream (JREDUCE) is streamed programmatical­
ly. Several error conditions can occur. 

TRLOGDCP. 

This is the data collection program for the MPE LOG file data. It can be run as a son process by 
HPTREND or run manually on demand. It asks no questions and so can run entirely without operator 
intervention. The only time an operator will need to interact with TRLOGDCP is if he or she asks it 
to read log files from Magnetic Tape. 

TRLOGDCP gathers information from the MPE Log Files using the following log record types: 

2 Job Initiation. 
3 Job Termination. 
5 File Closes. 
6 System Shut Down. 
8 Spool File Done. 

In order to obtain useful information the user must enable logging for at least these events on the cus­
tomer's system. The individual log records are summarized in two ways: day by day activity (CPU, 
DISC, PRINT, TAPE, JOBS) is written to file UPTRENDC and the name of the ACCOUNT that used 
the resource (same activities as above plus CONNECT time) is written to file UPTRENDA. File 
HJ>TRENDB is a scratch file used by TRLOGDCP to pick up analysis when it is restarted. 

The normal operation for TRLOGDCP is as follows: 

Whenever it is run, TRLOGDCP will determine if there are any MPE Log Files in PUB.SYS that it 
has not yet analyzed. If so it will summarize them and update its data files to indicate the first and 
last log file analyzed. In this mode TRLOGDCP requires no operator intervention and analyzes only 
disc log files. The program uses Privileged Mode in order to allow it to read log files in spite of MPE 
Security. It does not alter the files nor the security on them. Data kept in the HPTRENDC files is 
encrypted. 

A "system ID" can be supplied using the ;INFC>z string in the RUN command. This system ID is 
passed to the reporting system where it can be included in the report. (If TRLOGDCP is run by 
HPTREND then HPTREND passes it's ;INFO• string along to TRLOGDCP). 

This program analyzes approximately 140,000 log file records per minute on an unloaded system. As 
such it should normally not run for more than a few minute~ unless it has several months of log files 
to analyze. 

REDUCE. 

This program takes the data files created by UPTREND (HPTRENDL), by TRLOGDCP (HPTRENDA 
and UPTRENDC), by TRFREE (HPTRENDD) and further summarizes them into only that data 
necessary to produce the HPTREND report. REDUCE should be run just prior to transmitting the 
data files for report generation. A Job stream (JREDUCE) bas been provided to simplify data reduc­
tion and compaction. 



HP3000 
INTERNA T/ONAL CONFERENCE SMOS/14 
VIENNA 1987 

Onsite HPTrend 

The REDUCE program creates ten small data files (HPTRENDO through HPTR.END9) which, once 
decrypted, are used directly by the HPTRPLOT program to produce the report plots. Default 
operation is simple, just RUN REDUCE. If the output files already exist, they will be purged and 
rebuilt. Data reduction time is normally less than two minutes. 

The REDUCE program has special entry points which are used to determine how much data should be 
included in the final report. Normally the hourly HPTREND data and daily TRLOGDCP data are not 
purged by REDUCE but rather left to accumulate. This is to allow longer interval reporting at a later 
date if desired. If the REDUCE program is run with the "RESET" entry point 

:RUN REDUCE,RESET 

it records a 'reset date' in the data files. Subsequent runs of REDUCE will only summarize data on or 
after this date. By default the reset date is the date at the time REDUCE is run. You may specify 
another date through the use of the ;PARM• parameter. ·The PARM• value is the number of days 
OFFSET from today which you want to use as a reset date. For example: 

:RUN REDUCE,RESET;PARM•-30 

would set the reset date to thirty days before today's date. Note that when run with the RESET entry 
point, no actual data reduction is done. 

You may select dates to be analyzed that differ from the RESET date by running 
REDUCE;PARM•-nnn. This feature may be used to produce year end plots covering more than the 
standard dates. Note that this option does not change the RESET date, it merely overrides it 
temporarily. 

IllPORrJlllr llOrB : The MPE Log file data pertaining to ACCOUNT usage is a cumulative file with 
no internal date coding. (This was done in order to drastically reduce the amount of disc space 
required). Whenever REDUCE is run with the RESET option, this file is PURGED and REBUILT. 
The next time TR.LOGDCP is run it will begin adding account information with the first log file it 
analyzes. The actual dates covered in this file (HPTRENDA) are recorded in it and reported on the 
final report. Be aware that this part of the report data may not always exactly match the other data 
files but the report will indicate the dates covered in each cateaory. 

You may list the reset dates as well as other data collection information by running REDUCE with 
the LIST option. This option does NOT reduce data. 

:RUN REDUCE,LIST 

UHAUL. 

The Uhaul program combines the various datafiles, combines them into one file, and compresses the 
file for transmission. A similar program on the Response Center side will decompress and expand the 
files into their original structure. The TFILE is this combined and compressed file. 

HPTrend Fiie Contents: 

Note: The description of the data files are included to give the reader an idea of what data is collec­
ted and to aid in his/her understanding of HPTrends measurements. The actual onsite files are 
encrypted to maintain data integrity. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/15 
VIENNA 1987 

Onsite HPTrend 

HPTRENDL 

HPTRENDL contains the detailed Measurement Interface Data. One record per hour when 
HPTREND was running 20 word records containing binary data. 

Type 

L 
D 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Contents 

DATE (CALENDAR format) 
TIME (CLOCK format) 
Average CPU busy TOTAL 
Maximum CPU busy TOTAL 
Average Paused for Disc 
Maximum PAUSED for Disc 
Average BUSY on USER 
Maximum BUSY on USER 
Average MAM CPU 
Maximum MAM CPU 
Average CACHE CPU 
Maximum CACHE CPU 
Average LOGICAL DISC IO 
Maximum LOGICAL DISC IO 
Average PHYSICAL DISC IO 
Maximum PHYSICAL DISC IO 
Average MAM DISC IO 
Maximum MAM DISC IO 

(percent times 10) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
(rate/second times 10) 
( " ) 
( " ) 
( " ) 
( " ) 
( " ) 

Number of data samples for this hour 
Average Terminal read rate per minute (times 10) 
Maximum Terminal read rate over the hour 

Data is taken at five minute intervals. The AVERAGE and MAXIMUM's are calculated for each hour 
based on these five minute samples. 

CPU busy TOTAL 
PAUSED for DISC 

BUSY USER 
MAM CPU 
CACHE CPU 
LOGICAL DISC IO 

10°" - IDLE time - Background Garbage Collection 
Paused for SWAP + Paused for DISC + Paused for BOTH 

+ Paused for CACHE 
BUSY on USER processes 

= MAM + Local garbage Collection 
CACHE on user stack + CACHE on ICS 
GLOBAL READS + GLOBAL WRITES 

+ (for each disc) READS (blocked/unblocked/iowait) 
+ WRITES (blocked/unblocked/iowait) 

PHYSICAL DISC IO = (for each disc) READS (blocked/unblocked/iowait) 

MAM DISC IO 

+ WRITES (blocked/unblocked/iowait) 
+ CACHE READS 
+ CACHE background writes + CACHE forced writes 

(for each disc) code reads + data seg reads 
+ data seg writes + forced data seg writes 

Counts are converted to percentages or rates by dividing by the elapsed time for each sample. Note 
that all numbers are inflated by a factor of ten to increase precision while still using only a 16 bit in­
teger to store the number. You must divide the raw numbers by ten to get the actual rate or 
percentages. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/16 
VIENNA 1987 

Onsite HPTrend 

HPTRENDO 

(Disc Free Space data, created from HPTRENDD by running REDUCE) This file contains 32 word 
records of binary data. 

Contents 

L DATE (CALEllDAR fonnat) 
D TIME (CLOCK format) 
I Number of Discs on the system 
R Largest Free Disc Space (Ksectors) 
R Total Disc Free Space (Ksectors) 
D Count of holes 1-9 sectors 
R Disc space in holes 1-9 sectors (Ksectors) 
D Count of holes 10-99 sectors 
R Disc space of holes 10-99 sectors (Ksectors) 
D Count of holes 100-999 sectors 
R Disc space of holes 100-999 sectors (Ksectors) 
D Count of holes 1000-9999 sectors 
R Disc space of holes 1000-9999 sectors (Ksectors) 
D Count of holes 10,000-99,999 sectors 
R Disc space of holes 10,000-99,999 sectors (Ksectors) 
D Count of holes >= 100,000 sectors 
R Disc space of holes >= 1on,ooo sectors (Ksectors) 



HP3000 
INTERNATIONAL CONFERENCE SMOS/17 
VIENNA 1987 

Onsite HPTrend 

HPTRENDl 

(Reduced Measurement Interface data, created from HPTRENDL by running REDUCE) This file 
contains 26 word records of binary data, one record per day. 

Type Contents 
--------------------------------------------------

L DATE (CALENDAR format) 
I TOTAL CPU ALL SHIFTS 
I 1st Shift 
I 2nd Shift 
I 3rd Shift 
I 4th Shift 
I USER CPU ALL SHIFTS 
I " 1st Shift 
I 2nd Shift 
I 3rd Shift 
I 4th Shift 
I LOGICAL DISC ALL SHIFTS 
I " 1st Shift 
I 2nd Shift 
I 3rd Shift 
I 4th Shift 
I PHYSICAL DISC ALL SHIFTS 
I " 1st Shift 
I 2nd Shift 
I 3rd Shift 
I 4th Shift 
I MAM DISC ALL SHIFTS 
I .. 1st Shift 
I 2nd Shift 
I 3rd Shift 
I 4th Shift 
I PAUSED FOR DISC ALL SHIFTS 
I 1st Shift 
I 2nd Shift 
I 3rd Shift 
I 4th Shift 
I TERMINAL READ RATE ALL SHIFTS 
I .. 1st Shift 
I 2nd Shift 
I 3rd Shift 
I 4th Shift 

Where "ALL SHIFTS" means all day 
"1st Shift" is Midnight - 6:00 AM 
"2nd Shift" is 6:00 AM - Noon 
"3rd Shift" is Noon - 6:00 PM 
"4th Shift" is 6:00 PM - Midnight 

(percent times 10) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
(rate/sec times 10) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( . ) 
( " ) 
( .. ) 
( " ) 
( " ) 
(rate/min times 10) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 

Each category is an average of the AVERAGE values from HPTRENDL 



HP3000 
INTERNATIONAL CONFERENCE SMOS/18 
VIENNA 1987 

Onsite HPTrend 

HPTREND2 

(Reduced Measurement Interface data, created from HPTRENDL by running REDUCE.) 

This file contains exactly 2S records of 11 words each and is BINARY data. One record is for each 
HOUR of the day.(0-24) with the first record duplicated into the 2Sth (so the plots form a circular 
plot). 

Type Contents 
---------------------------------------------------------------

I HOUR of the d~ (0-24) 
cc the following numbers are for weekd~s only MON-FRI >> 

I TOTAL CPU used (Percent times 10) 
I USER CPU ( .. ) 
I LOGICAL disc IOs (Rate/sec timell!I 10) 
I PHYSICAL disc IOs ( .. ) 
I MAM disc IOs ( .. ) 

cc the following numbers are for weekends only SAT,SUll >> 

I TOTAL CPU used (Percent times 10) 
I USER CPU ( .. ) 
I LOGICAL disc IOs (Rate/sec times 10) 
I PHYSICAL disc IOs ( .. ) 
I MAM disc IOs ( .. ) 
I Paused for Disc ( rate/min times 10) cc Week~• >> 

I Paused for Disc ( .. ) cc Weekends >> 

I Tel'llinal Read Rate ( .. ) << Weekd~s >> 

I Tel'llinal Read Rate ( .. ) « Weekends >> 

Again, these numben are averages of the HPTRENDL averages only this time they are accumulated 
by the hour of the day rather than by the day of the year (Each record contains the average usage for 
that time interval over all days in the HPTRENDL file). 

HPTREND3 

This file is produced by the REDUCE program from HPTRENDC. It contains one record per day and 
is in BINARY format. 

Contents 

L DATE (CALEHDAR format) 
I I of JOBS & SESSIONS 
D I of DISC IOs 
D I of pages printed 
D I of tape IOs 
D I of CPU Seconds at BS priority 
D I of CPU Seconds at CS priority 
D I of CPU Seconds at DS priority 
D I of CPU Seconds at ES priority 
D I of CPU Seconds by Interactive Sessions 
D I of CPU Seconds by Batch Jobs 



HP3000 
INTERNATIONAL CONFERENCE SMOS/19 
VIENNA 1987 

Onsite HPTrend 

HYI'REND4 

This file is produced from HPTRENDA by the REDUCE program. It contains 11 records, one for 
each of the top ten accounts plus one for all other accounts (account name • (OTHERS).) It is sorted 
by CPU usage. 

Type Contents 

char ACCOUNT 
R Total CPU hours 
R CPU hours by Interactive Sessions 
R CPU hours by batch jobs 

HYI'RENDS 

This file is produced from HPTRENDA by the REDUCE program. It contains 11 records, one for 
each of the top ten accounts plus one for all other accounts (account name • (OTHERS).) It is sorted 
by CONNECT time. 

Type Contents 

char ACCOUNT 
R Connect Hours (Batch + Interactive) 

HYI'REND6 

This file is produced from HPTRENDA by the REDUCE program. It contains 11 records, one for 
each of the top ten accounts plus one for all other accounts (account name• (OTHERS).) It is sorted 
by DISC IOs. 

Type Contents 

char ACCOUNT 
R I of DISC IOs 

HYI'REND7 

This file is produced from HPTRENDA by the REDUCE program. 
It contains 11 records, one for each of the top ten accounts 
plus one for all other accounts (account name• (OTHERS).) 
It is sorted by Mag Tape IOs. 

Type Contents 

char ACCOUNT 
R I of mag tape IOs 



HP3000 
INTERNATIONAL CONFERENCE SMOS/20 
VIENNA 1987 

Onsite HPTrend 

HPTREND8 

This file is produced from HPTRENDA by the REDUCE program. It contains 11 records, one for 
each of the top ten accounts plus one for all other accounts (account name• (OTHERS).) It is sorted 
by Pages Printed. 

Type Contents 

char ACCOUNT 
R I of pages printed 

HPTREND9 

This file is produced from HPTRENDA by the REDUCE program. It contains 11 records, one for 
each of the top ten accounts plus one for all other accounts (account name• (OTHERS).) It is sorted 
by total number of Jobs & Sessions. 

Type Contents 

char ACCOUNT 
D I of sessions 
D I of jobs 

HPTRENDA 

This file is produced by the TRLOGDCP program. It contains one record for each ACCOUNT found 
on the system. Each record is the accumulation of activity on the account since the last time 
REDUCE was run (unless the NORESET entry point was used). REDUCE uses this file to produce 
files HPTREND4-HPTREND9. 

Type Contents 

char ACCOUNT 
D I of sessions 
D I of jobs 
R I of disc IOs 
R I of pages printed 
R I of tape IOs 
R connect hours (batch & interactive) 
R CPU Hours for Interactive sessions 
R CPU Hours for Batch jobs 



HP3000 
INTERNATIONAL CONFERENCE SM05/21 
VIENNA 1987 

Onsite HPTrend 

HPTRENDB 

This file is temporary storage for the TRLOGDCP program. It contains a record for each active job 
or session at the termination of the last running of this program. It's main purpose is to correlate the 
job/session numbers to the accounts under which they logged on. 

Contents 

L JOB/SESSION number (MPE LOG FILE format) 
L Index into local storage (not used in the file) 

char Execution priority ("B","c","D","E" in the.left byte) 
L Job State flag 

12:1 Job Initiated 
13:1 Job Terminated 
14:1 STDLIST closed 
15:1 STDIN closed 

char ACCOUNT 

HPTRENDC 

This file is produced by the TRLOGDCP program and contains day by day data. It's format is exactly 
the same as the HPTREND3 file. 



HP3000 
/NTERNA T/ONAL CONFERENCE SMOS/22 
VIENNA 1987 

Onsite HPTrend 

HPTRENDD 

This file is produced by the TRFREE program and contains Disc free space data. REDUCE uses this 
file to produce file HPTRENDO. This file is built circularly with room for approximately 2 years of 
data. 

Type Contents 
-----------------------------------------------------

L DATE (CALENDAR format) 
D TIME (CLOCK format) 
I Number of Discs on the system 
D Largest free disc space (sectors) 
D Total disc free space (sectors) 
D Count of holes 1-9 sectors 
D Disc space in holes 1-9 sectors 
D Count of holes 10-99 sectors 
D Disc space in holes 10-99 sectors 
D Count of holes 100-999 sectors 
D Disc space in holes 100-999 sectors 
D Count of holes 1000-9999 sectors 
D Disc space in holes 1000-9999 sectors 
D Count of holes 10,000-99,999 sectors 
D Disc space in holes 10,000-99,999 sectors 
D Count of holes >= 100,000 sectors 
D Disc space in holes >= 100,000 sectors 



HP3000 
INTERNATIONAL CONFERENCE SMOS/23 
VIENNA 1987 

Proactive Data Communications 

PROACTIVE DAT A COMM SOFTWARE: 

To make these proactive products a success, the ability to automatically send data from the customer 
site to the HP Response Center was a must. The HP 3000 had no low cost (free) datacomm software 
that operated in an HP 3000 to HP 3000 mode, necessary for both products. There was also the need 
for a generic file transfer vehicle to be built to download patches and updates to the customer system. 
As a result, an error corrected, autodialing, file transfer program was written using DSNLINK I 00 as 
a base. It is a generic utility capable of copying any type of file between any two HP 3000's where 
the software is installed. 

PMNXFRDP. 

PMNXFRDP is a program developed to make use of the autodial capabilities of certain modems in use 
by Hewlett-Packard, and to allow a cost effective method of transferring a file from one HP 3000 to 
another HP 3000. In the case of HPTREND, this capability allows HPTREND report generation data 
to be transferred in a timely fashion to a Response Center for report production. Predictive Support 
transfers event data to the Response Center Predictive Support history database and job management 
systems. 

There are a number of requirements associated with the use of this program. The foremost require­
ment is that the program must exist on both the controller and host systems. This is not unusual; 
most inter-system file transfer programs have supporting code on both systems (ex. DSN/LINK I 00 
for HP PC's). The other requirements relate to thl' use of the outward auto-dialer and the modem 
used for the interconnection. 

The PMNXFRDP program is designed to be initiated in a number of ways. It has the capability to be 
run in either job or session mode, and can be initiated using the "CREATEPROCESS" MPE Intrinsic. 
For use with HPTREND, PMNXFRDP is initiated by using the "CREATEPROCESS" MPE Intrinsic 
through the retry monitor (HPTXFDMP) in job mode. 

The PMNXFRDP program has been designed to handle problems in either the transfer or dialing por­
tion of the problem. If for some reason problems are encountered in either portion, an error code will 
be returned and an abnormal (but expected) termination will result. The error information is return­
ed to the SSTDLIST of the job stream from which PMNXFRDP is run. 

The PMNXFRDP program interfaces to many aspects of the system and maintains a good deal of 
communication with the user. The program code is actually broken up into 3 major components. 
These are: 

I . Contl'Ol, which is responsible for most of the user and system operator dialogue as well as er­
ror reporting; 

2. Dial, which will perform the auto-modem sensing, dialing the remote computer, logging on 
to the remote system, and initiating the transfer program; and 

3. Xfer, into which all the actual file transfer protocols and capabilities are built. 

The way in which the PMNXFRDP program works can best be explained by illustration. Figure 3 
shows how a typical file transfer between two HP 3000's takes place. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/24 
VIENNA 1987 

Proactive Data Communications 

Remote HP3000 

© 

8 <i----- - - -- - - -- ·0----- ---------- -:· 8 
~ ~ 

(loc9FieJ ~f~ 

Figure 3 



HP3000 
INTERNATIONAL CONFERENCE SMOS/25 
VIENNA 1987 

Proactive Data Communications 

The following information applies to figure 3 and explains the steps in making a data transfer: 

(I) 

(IA) 

(2) 

(3) 

(3A) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The PMNXFRDP program is initiated through the MPE RUN command or its 
equivalent. (HPTREND uses the CREA TEPROCESS via the Retry Monitor, 
HPTXFDMP.) 

Using a local-language message file (PUTXFRDM), we will obtain the values we 
need to run this program from the job stream. The dialogue begun here will con­
tinue throughout the program. 

A file containing default values for running the program may optionally be ac­
cessed. A provision to save the values currently being used is also available (NOT 
USED UNDER HPTREND). 

Using the DIAL procedure, auto-sense the modem and initiate a phone call to the 
remote system. 

If the modem is non-auto-dialing, it may be necessary to involve the system 
operator. In this case, we will communicate to him/her through the message file. 

Once the system-to-Response Center link is established, the customer is validated 
through the use normal logons (psudo logons for HPTrend and Predictive Support). 

On the customer's system, pass control to the XFER portion of the program. 

At the Response Center, prepare to receive the data file. 

The link is established and both systems are ready to transfer the data file. 
Commence with the file transfer. 

On the customer system, the data will be read from the FROMFILE and transfer­
red to the Response Center. 

The file transfer is now complete. The customer system informs the Response 
Center Software and the telecommunications link is brought down. 

Inform the user of the success or failure of the transfer operation through a local­
language message and also through a JCW (Job Control Word) which is used to in­
form the user. 

The local-language message file is used to communicate with both the user and the console operator. 
It is created and accessed via the MPE message system as specified in the MPE Intrinsics Manual. 

As stated earlier, this program is best understood if broken into three component parts. These are ex­
panded on below. 



HP3000 
INTERNATIONAL CONFERENCE SM05/26 
VIENNA 1987 

Proactive Data Communications 

Control Procedure 

Upon initial entry into the program, the message catalog is opened and the information concerning 
what is to be transferred and where is determined (where the customer's system is always the 
Controller); transfer control information must be received from the job stream. This is done in the 
control procedure of PMNXFRDP. 

When PMNXFRDP is first launched, it displays its startup banner to SSTDLIST (the JREDUCE job 
listing) as follows : 

PMNXFRDP (A.02.02) MPE V - SUPPORTED CONTRIBUTED UTILITY 
Copyright (c) Hewlett-Packard Co.1985,1986 All Rights Reserved. 
TUE, NOV 25, 1986, 3:06 PM 

This program transfers files between systems using 
asynchronous modems/hardwired communications. 

If the message catalog cannot be opened, the following message will be displayed in the job listing 
(and possibly to the customer's console)· 

Missing Msg: Set = II Num = #Ill 

If this occurs, the message file (PUTXFRDM) is either not valid as a message catalog, or it has been 
purged. PUTXFRDM must be in place for UPTREND to work correctly. 

PMNXFRDP will now attempt to get the required transfer information from the JREDUCE job 
stream. The output will appear as follows if the information is correct: 

Do you wish to use the "Defaults" File (N/Y)? 
You are running this program from the Controller. 
Will the Host or Controller receive the data transfer 
"FROM" filename? 
"TO" filename (TFILE.HP35136A)? 
Host system phone number? 
Logon code for host system? 
Port number of out-dialing modem? 

If all the information is correct, the dial procedure will be called. 

Dlal Procedure 

The Dial procedure is responsible for the following: 

o Modem port preparation and verification. 
o Modem interrogation. 
o Logging on to the Response Center system. 

(Host)? 

Dial will first open the Logical Device to which a 1200 BAUD Bell 212 type modem is supposedly at­
tached. The following modems are supported for autodial by PMNXFRDP: 

o Support link 1 



HP3000 
INTERNATIONAL CONFERENCE SMOS/27 
VIENNA 1987 

Proactive Data Communications 

o Support link 2 
o South Queensferry 3 7212A 

Modem attention characters are pumped to the Modem port (with respect to the above order of 
modems) until a proper response is sent back from a modem, If a supported modem cannot be found, 
the modem is assumed to be non-autodial. Special requirements are placed upon PMNXFRDP in the 
way terminal devices (like modems) can be configured on the HP 3000 Computer system. These 
requirements are described in the HPTrend or Predictive User's Guides. 

PMNXFRDP is equipped with a separate autodial modem driver for each different modem type. 
Once a modem has been identified, the corresponding modem driver is used to perform the actual dial 
operation. One of the following messages will print on the job listing if the dial is successful: 

•••• 
•••• 
•••• 
•••• 

Dialing on Support Link •••• 
Dialing.on Support Link II **** 
Dialing on 37212A •••• 
Please respond to the console request •••• 

In the case of a non-autodial modem being used, the following request will be sent to the customer's 
system console requesting someone to dial the modem: 

•••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 

In order to use the assigned modem. the 
operator is needed to dial the telephone • 

• Please check that the modem on Ldev II is 
* is in HIGH SPEED 110de. dial 11111111111. 
• place the modem Oii LIRE and Reply Y to 
• the console request. 
• 
* Following the transfer, don't forget to return 
• the modem to the idle state if necessary. 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

•••••••••••••••••••••••••••••••••••••••••••••••••••• 
• Modem checked, number dialed (Y/lf)? 

NOTE 

Phone numbers entered must conform to both the 
requirements of the modem in use (outlined in the cor­
responding modem user's guide), and the local phone sys­
tem, whether PBX or local PIT. The number should be 
called by a person to verify first that it can be done, and 
second that the access method can be entered according 
to specific modem requirements (For example, in a PBX 
system where a nine (9) is required to dial on an outside 
line, the Support Link I modem would require the 
following format : 9kSSSl234). 



HP3000 
INTERNATIONAL CONFERENCE SMOS/28 
VIENNA 1987 

Proactive Data Communications 

After the dialing is complete the following messages should appear in the job listing: 

•••• 
•••• 
•••• 
•••• 

Answer Tone **** 
On Line **** 
Start Remote Logon **** 
Remote Logon Complete **** 

Once "ON LINE'', Dial speed-senses on the remote system. When a colon is received from the 
Response Center system, the logon string is transferred to the remote. Dial then waits for the remote 
: to return indicating that logon has succeeded. Once logon is completed, Dial terminates and the 
Xfer procedure takes over to transfer the file. 

Xfer Procedure 

The Xfer portion of PMNXFRDP performs the following functions: 

o Sets up the port for binary transfers at 1200 baud. 
o Sends direction and file creation information. 
o Transfers the file. 

The port is set up to allow binary transfers at 1200 BAUD on both the customer's system and the 
Response Center's system as follows: 

Input speed 
Output speed 
Terminal type 
Echo 
Term character 
Parity 
Parity check 
Turn off CR/LF 

- 1200 Baud. 
- 1200 Baud. 
- 18. 
- Off. 
- DCl. 
- Even. 
- On. 
after reads. 

Next, the Response Center is informed that it will be receiving the file, and all information necessary 
to create that file is sent in an initial packet. Once this packet is acknowledged by the Response 
Center software, the operator is informed of the transfer by the following message to the console: 

**** PMNXFRDP program initiated **** 
**** PMNXFRDP transferring out file TF1LE.HP35 I 36A **** 
(HPTrend case) 

At this point the data is transferred record by record. Alternating blocks of data are sent and 
acknowledged by alternating ACKO's and ACK l's to keep track of block transferred. If an error oc­
curs, a NACK is sent and the packet is resent. At the end of the transfer, a 'BYE' is executed after 
the program finishes on the remote system to ensure session logoff. 

Many error conditions can occur on an unconditioned phone line. Fortunately, PMNXFRDP can in­
form the customer by printing the abort reason on SSTDLIST. Trivial errors such as failed speed sens­
ing, will be retried two times per contact attempt in case of bad timing. 

Xfer uses one "trick" to avoid data overruns from the remote system. The HP 3000 is an echoplex 
system, ie. it is either reading or writing to the terminal but never both at the same time. 
Applications such as PMNXFRDP must be careful that the read is started before the remote starts to 
send data, not easy on a heavily CPU bound system. Fortunately, the HP 3000 emits a DCl 



HP3000 
INTERNATIONAL CONFERENCE SM05/29 
VIENNA 1981 

Proactive Data Communications 

character at the beginning of every read (certain sub-types only). As long as each system in the Xfer 
process terminate reads on this DC 1 character, no overruns can occur. 

As the file is transferred, a "heartbeat" of the transfer is printed to the JREDUCE job listing. An 
example of a successful transfer follows: 

•••• Starting file transfer ---> 25 total records • ••• 
•••• 15 Records transferred 6~ complete **** 
•••• File transfer completed • ••• 
•••• Disconnecting from remote system **** 
•••• PMNXFRDP program terminating **** 



HP3000 
INTERNATIONAL CONFERENCE SMOS/30 
VIENNA 1987 

Response Center Predictive 

HP RESPONSE CENTER OPERATIONS: 

Although of no direct concern to customers, there are some interesting aspects of the HP Response 
Center sides of HPTrend and Predictive Support. Both are highly integrated and automated. For ex­
ample, Predictive Support uses an expert system as part of it's event analysis system. Highlights of the 
systems are described in the remainder of this section. 

Please note that due to datacomm limitations, certain countries do not take advantage of the 
capabilities outlined in this section. 

Predictive Support at the RC: 

Figure 4 shows the flow of data as it is received and processed at the Response Center (RC). Data is 
received by the datacomm process (described previously) and stored in a message file. The main RC 
Predictive process reads and processes the events in the following sequence. 

* Customer information from the HP support contract tracking system (also know as the Installed 
Base System, IBS) is retrieved and added to the information received from the message file. 

*This data is stored in the Predictive Maintenance System Database (PMSDB) allowing access by sys­
tem or by individual unit on the system 

* An inference engine in the main program uses rules contained in the rule base (PMSRDB) to 
determine if an RCE needs to analyze this call. If so, the HP Field Resource Management system 
(FIREMAN) is notified that a Response Center Engineer (RCE) must look at this system. 

*Processing statistics are added to PMSDB including instructions generated by the inference engine. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/31 
VIENNA 1987 

Response Center Predictive 

The RCE's main role is to receive requests for Predictive analysis from the FIREMAN system, look at 
the information in PMSDB, determine the appropriate action to take, and make notations in PMSDB. 
Many of these notations will be used later by the inference engine in making subsequent decisions 
regarding the particular site. To alert the Customer Engineer of the problem, the RCE presses a soft­
key and FIREMAN automatically routes the call to the appropriate field engineer. 



HP3000 
INTERNATIONAL CONFERENCE SMOS/32 
VIENNA 1987 

Response Center HPTrend 

HPTrend at the RC 

@Data 
CUSTOMER _, ... _L~a~a c:J 

Ootofle 

Figure S 

RESPONSE 
CENTER 

Figure S shows a similar data flow for the RC side of HPTrend. The routine operation of RC 
HPTrend requires no human intervention (except for the stuffing of reports and letters into en­
velopes). HPTrend is notified of valid HPTrend subscribers via IBS. When a system calls in to the 
RC, it is checked against the IBS data to verify that it is authorized to print a report. Additionally, 
the system is checked to make sure that it is the correct time for the transmission. If not, the system 
is rejected and informed as to why. If a system does not call in at the expected time, a late notice is 
generated. Once the system is approved, the data is accepted, the HP account team data is added to 
the report file, a report processor creates the report, and the report is printed via laser. The output is 
usually mailed out to the customer and HP account rep the day following reception of the customer 
data. 



HP3000 
INTERNA nONAL CONFERENCE SMOS/33 
VIENNA 1987 

Next Release Features 

NEXT RELEASE FEATURES: 

Predictive Support A. 02 

The current venion of Predictive, A.01, will be replaced by the enhanced A:o2 release this year. 
A.02 will contain most of the following features: 

* New disc products will be supported 

*Existing rulebase will be updated/adjusted 

*System wide vv.uu.ffs and checksums will be monitored and changes reported to the Response 
Center 

* New File System Verifier utility will be incorporated 

*Most rule updates will be automatically downloaded to customer sites via the A.02 datacomm and 
new Response Center software 

HPTrend UB Delta 2 MIT 

The venion of HPTrend released on the MPE UB Delta 2 MIT will provide three new graphs as listed 
below: 

· * Daily terminal read transaction rate 

* Hourly terminal read transaction rate 

*Daily disc free space quantity (example graph below) 

Disc Free Space 

-a --~ -rZZZ1 -rei ..... -.... 
•aa. -



HP3000 
INTERNATIONAL CONFERENCE SMOS/34 
VIENNA 1987 

Acknowledgments: 

The section regarding Onsite Predictive was largely extracted from the article "Predictive Support: 
Anticipating Customer Hardware Failures", from the November, 19 86 Ulue of the HBtllfltt 
Ptzc1t.aztd .TOUZ'f'IQ.l written by Dave Wasmuth and Bruce Richards. 

The Onsite HPTrend section was produced from HP internal documentation for HPTrend written by 
Zahid Khan and Gerry Wade. 

The Proactive Data Communication section was written by Russell Lown. 

This paper was written specifically for the Vienna lnterex meeting held in March, 1987. It was 
prepared and presented by Bruce Richards, a section manager of Hewlett Packard's Knowledge 
Systems Lab in Cupertino, California. 



HP3000 
INTERNATIONAL CONFERENCE SM0611 
VIENNA 1987 

IS ONLINE BACKUP POSSIBLE OUTSIDE SPECTRUM ? 

Joerg Groessler 
Joerg Groessler GmbH 

Rheinstrasse 24 

1000 Berlin 41 West Germany 

Overview 

Until today users of the HP3000 are requested to stop their daily work 
whenever a partial or full backup is performed. With the Spectrum program HP 
has announced an online backup facility which probably will reduce the 
downtime caused by backup to almost zero. This facility, however, will not be 
available to the current HP3000 customers. This presentation will explain two 
basic approaches to an online backup system in MPE. 

What is ONLINE BACKUP ? 

Using the existing STORE facilities (HP's STORE or IJG's BACKUP/3000) the 
users are required to close files which have been previously opened for write 
access. 

Reason: 

- Files cannot be stored in 'zero time'. 
- Data which will be written to files will be stored if the file or this part of the file 

has not yet been stored. 
- Some parts of the STORE tape contain more actual data than other parts. 

Result: 

- Files which are marked as being 'opened for writing' will not be stored. 
- A 'STORE bit' is set in the file label to prevent files which are candidates for 

STORE from being opened for writing. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

application program 

SM0612 

STORE program 

.IJC lllT 111111ED: FILE lit 11£ F1ll lalTI 

.IJC lllT 111111ED: FILE lft 11£ FOii ll!ITI 

·- ~-llEl.IECIOlllaa: 
.IJC 
.IJll 
,IJll 

IEllllSIT I 
I 100'!106 I 
I 1012515 I 

In an ONLINE BACKUP users have to close their files only once at the 
beginning of the STORE process to put the file system into a defined status. 
During backup these files can be opened again, even for write access. 

To ensure the integrity of the file system the write requests performed during the 
backup have to be handled differently than usual. This is done with a special 
logging routine which is called before the actual file write is performed. 



HP3000 
INTERNATIONAL CONFERENCE SM06/3 
VIENNA 1987 

Ejrst Approach: Actual File 1/0 Logging 

The next picture illustrates the principle of online backup using actual file 110 
logging: 

FILE 1 

FILE2 STORE 

- all write requests are performed only into the log file rather than the actual 
user file. 

- read requests by the user program have to check the log file whether this 
part of the file has already been logged (in that case the data has to be read 
from the log file rather than the actual user file). 

- The STORE program simply stores the original files since they are not 
changed during backup. 

- After the end of the backup the files have to be actualized by the contents of 
the log file. 

Advantages: 

- Minimum overhead for all write requests (one write request to the actual file 
results in one write request to the log file). 

- No changes to the STORE program. 

Disadvantages: 

- Overhead for read requests by application programs increases with the 
number of records already logged and can be very high. 

- Hard to recover after a system halt (the files have an old status and the log 
file might have been destroyed). 

- Hard to debug. 



HP3000 
INTERNATIONAL CONFERENCE SM06/4 
VIENNA 1987 

Second Approach: Reverse Logging 

The next picture shows the principle of 'reverse logging': 

STORE 

- Before a write request is performed the 'old record' is read from the file and 
written to the log file. 

- Each write request has to check if copying the old record is really necessary 
or if it has been done before. 

- The STORE program has to collect its file data out of the actual data file (if 
this part has not been affected) or out of the log file. 

STORE 



HP3000 
INTERNATIONAL CONFERENCE SM06/5 
VIENNA 1987 

Advantages: 

- Much more secure than first approach. 
- No overhead for file read requests (they can always be done using the 

actual file data). 
- No additional updating after the end of the backup. 

Disadvantages: 

- Overhead for write requests increase with the number of records in the log 
file and can be still high (but not as high as in the first approach). 

- STORE program has to check the log file for 'old records'. 

Third Approach: Store LOG Files 

Another approach does not change the way files are been written during the 
backup procedure. However write requests are written to the log file and the log 
file is appended to the end of the tape after all files have been written to tape: 

appl. program 14--..t~logging routine..._ _ _.. FILE 1 
'-------' 

log file FILE2 STORE 

FILE3 

log file STORE 



HP3000 
INTERNATIONAL CONFERENCE SM0616 
VIENNA 1987 

RESTORE creates files which have been open for writing during STORE in an 
inconsistent status. Using the LOG file all write requests are redone to ensure 
file integrity: 

*FILE 1 

*FILE 2 

FILE3 

*FILE 1 

RESTORE IC---_.~ * FILE2 .__ __ ____. 

log file FILE3 

Advantages: 

- Minimum overhead for STORE operation. One additional disc 1/0 per 50 to 
100 'real' disc I/Os. 

- High security since file 1/0 is not affected by logging 
- Better to debug since LOG files are stored on tape for further analysis 
- Synchronization point at the end of backup rather than at the beginning 

(better for users who normally do their backup in the afternoon). 
- Possibility to 'spread' LOG files on STORE tape in case 'out of disc space'. 

Disadvantages: 

- RESTORE operation more complex than on other approaches (RESTORE 
however happens much less often than STORE) 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

1. The Problem 

Appllcatlon Recovery 

Automatic Restart of an Application after System-Failures 

(Eduard Stiefel, SWS SoftWare System AG, CH-3007 Bern) 

SM07/1 

Whenever your DP-system or your program aborts during a transaction, an organized restart· a recovery - is 

necessary to reconstruct the consistency. A simple new-start would mean that you are working on with 

inconsistent data. 

By the term transaction we understand in the following context a series of logically connected actions on 

data, for example in an IMAGE database. With action we mean the adding, changing and deleting of data. 

For example: 

In a financial accounting the transaction "book-keeping" (for example) consists of the holding of the 

book-keeping record, an update of the concerned accounts and the subsequent update of the balance. After 

the beginning of the transaction the data will not be consistent, before the transaction is closed. An abnormal 

program termination inbetween would leave the database in an inconsistent condition; for example 

debit-booking finished, but the credit one still open. 

How could this probelm be solved? 

2. Restart with general tools (System Recovery) 

A first method to correct the database uses the help-facilities and tools, which are available on the system. 

Since these tools, which belong to the system and which could be from HP or a third party, must be 

applicable in any case, we call this method system recovery. 

In case of an IMAGE-database the process runs as follows: 

a) You make a DBRESTOR or a RESTORE of the last copy of the concerned database, then you perform 

with DBRECOV the intermediate transactions and stop just before the critical transaction. 

or 

b) You use the Roll-Back-Method of TurbolMAGE to exclude the last transaction(s) of the database. 

If your application uses KSAM· or MPE-files too, you probably dont have system-tools to reconstruct the 

consistency. Since most applications use IMAGE, this method seems to be an easy, but perhaps 

time-consuming way. 

In this special case the problem is that the system-tools are general tools, which of cours do not know the 

specifics of the application. That means that such a restart could only be done by a person, who knows the 

database and their structure as well as the application or the concerned program; 



HP3000 
INTERNATIONAL CONFERENCE SM07/2 
VIENNA 1987 

Is such a person always available? How long does such a recovery take? Can you always be sure that the 

program has normally been ended and that a restart is not necessary? 

In how many of these cases it is being worked on without a recovery, and just later some one is noticing an 

error. If you work with distributed systems or third-party application software, such a situation could be much 

more critical. 

3. Restart by the application itself (application recovery) 

If you are conscious of all these problems, the question arises, if it is possible to design an 

application-package with an integrated recovery-approach. 

Requirements: 

The design of an application should guarantee besides all other aspects - the automatic restart after program 

aborts or system failures in such a way that there is no inconsitency of data. 

In the following we will try to find a way to fulfill these requirements in a multi-user-environment. 

1. A system-failure (not a program-abort) could also cause IMAGE-internal inconsistencies, (e.g. broken 

chaines), which cannot be removed by an application-recovery. The use fo ILR (intrinsic level recovery) leads 

automatically to a reconstruction of the internal consistency at the first DBOPEN after the restart. 

2. If your database gets lost (e.g. by damage of your disc), a system-recovery is the only applicable method. 

3. A transaction consisting of only one DB-action is not critical. A logical inconsistency cannot occur. This 

concerns most of the masterfile - update - programs. 

4. So the critical ones are the interactive and batch-programs, with transactions consisting of more than one 

database-action. 

Since such a Batch-program usually runs during the night and in case of a program-abort the restart with the 

system recovery method is relatively simple, we will restrict ourselves to the interactive programs. 

If in case of a restart an unfinished transaction should be realized, the initial situation must be kept in mind, 

and all actions must somehow be marked as belonging to this transaction. The end of the transaction must 

somehow be recognizable. 

In order to reach this in a multi-user-environment, the following proposal seems to be a reasonable way. 

During the interactive retrieval and updating of data only one process executes the necessary transaction in 

the database. The corresponding program, let us call it the main program, runs permanetly or at certain 

times as a batch-program. All other programs do only database inquiries however all updates are not 

executed by themselves, but transferred to the main program for execution. 

If only a single process executes the database-actions, this process could keep the initial situation of a 

transaction in mind (e.g. in a help-file), it could also execute the transaction deleting the help-file afterwards 

and continuing with the next transaction. If this main program meets a clean situation aftt1r the program-start, 



HP3000 
JNTERNA T/ONAL CONFERENCE SMOl/3 
VIENNA 1987 

it is able to realize and manage an aborted transaction. The same principle is used by IMAGE concerning 

ILR. 

How does the main program get to its informations? 

The other programs send their informations either in a message-file, from which they can be reread or they 

write them temporarily in a database and transmit via message-file just the processing-command. Important 

is that the single write-operation comprises the whole transaction; otherwise we have a logical inconsistency 

again. 

In the following example a concept of an automatic restart will be outlined. 

Example: 

In the initially mentioned financial accounting a booking will be keyed in with an entry program on the screen 

and written in a file at whole. Either subsequent or for some bookings together the booking-process is 

started. 

The main program gets a transaction number, keeps the initional situation in mind and processes step by 

step the DB-operations, which it marked with the transaction number. At the end the stored in ital situation is 

deleted, the database is consistent again. 

If a system- or a program-abort occurs, the main program can guarantee the clean restart, an additional, 

human intervention is not necessary for the recovery. 

Adress of the author: 

Eduard Stiefel 

c/o SWS SoftWare Systems AG 

Schonauweg 8 

CH-3007 Bern 

or 

c/o SWS SoftWare Systems GmbH 

Postfach 171 O 

D-7858 Weil am Rhein 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
IN ERNATIONAL CONFERENCE 
VIENNA 1987 

Chemserv Consulting 
Gesellschaft mbH 
St • Peter Stra.Be 2 5 
A-4020 Linz / AUSTRIA 

II C C s T I p R 0 II 

========================= 

INVENTORY: Stocktakin~ by Random Samples 

- PAYS FOR ITSELF -

by Josef Angerer 

1. PRELIMINARY REMARKS 

VS01/1 

11CC-STIPR011 is a software package wich enables stocktaking 

operations to be conducted on a random sample basis. The 

system has been designed to facilitate the time-consuming 

and expensive business of labour-intensive stocktaking as 

part of the annnual inventory procedure. 

The value of stock held can be calculated using a number of 

well-known methods that satisfy legal requirements. Recent 

legislation however, has opened up a further possibility of 

using recognised mathematical and statistical operations in 

random sampling to ascertain the levels of capital goods 

according to type, quantity and value. 



HP3000 
INTERNATIONAL CONFERENCE VS01/2 
VIENNA 1987 

In order to perform stocktaking operations on a random sam­

ple basis, two conditions must be fulfilled. 

- The number of items in stock must be sufficiently large. 

- The stocktaking must be accurate in terms of type, quan­

tity and value, must be computerized and must comply with 

the basic standards of regular accountancy. 

2. REQUIREMENTS 

- COMPREHENSIVENESS 

All stock items must be included without exception in 

order to satisfy the prerequisites of random sampling. In 

other words, the existing bookkeeping system must reliab-

ly reflect the stock situation in its entirety. 

- ACCURACY 

Accuracy in stocktaking is a somwhat relative term, since 

even an overall survey of stock during a conventional in-

ventory (whether continuous or just on the stocktaking 

day) must assume an error margin of up to 2 % against the 

true value of stock. At times, this discrepancy may be 

even greater. In the case of stocktaking by random samp-



HP3000 
INTERNATIONAL CONFERENCE VS01/3 
VIENNA 1987 

les, the ralative margin for random sample error lies 

within 1 % of the true value of total stock, meaning 

that overall accuracy can be defined within these two 

limits. 

- VERIFIABILITY 

It must always be possible to verify which capital goods 

according to type, quantity and value are comprised in 

the random sample. 

Stocktaking by random samples is a mathematical-st~tistical 

operation which produces an estimate for the true value of 

stock held. The estimate itself is calculated by using the 

generative mean procedure. 

For the sake of definition, the "true value of stock held" 

is the total value of all items in stock which have been 

counted accurately and extensively; the "estimate" is the 

projected value of the stock held and is based on a random 

sample of a small selection of items in stock. 

Usually, these two values do not coincide with each other. 

But the estimate can be determined so that it does not di-

verge more than "X" percent from the true value of stock 

held with a predefined probability. The accuracy of the 



HP3000 
INTERNATIONAL CONFERENCE VSD1/4 
VIENNA 1987 

estimate (expressed as a percentage) is known as indicative 

probability. 

To use an example: 

A warehouse has a total book value of 8 000 000. The task 

is to find an estimate for the true value of the stock held 

by using STIPRO. This estimate must have an indicative pro­

bability of 95. 5 % that it diverges no more than 1 % 

(80,000) from the true value of the stock held (= permis-

sible error, random error). 

CC-STIPRO provides an estimate, ie projected estimate value 

of 7 800 000. In other words, 95.5 times out of 100, the 

true value of stock held is between 7 720 000 and 

7 880 000. Since the true value of stock held will not di-

verge much from the book value, the maximum permissible di­

vergence is often regarded as relative to the total book 

value. 80 ooo is 1 % of 8 ooo ooo, and the level of diver­

gence is known as the range of reliability (in this case 

1 %) . The degree of certainty is defined by the factor: 

degree 2 of certainty corresponds to an indicative proba-

bility of 95.5 %. 

A 95.5 % degree of certainty means that for 95.5 % of 100 

inventory operations, the CC-STIPRO value of stock held di-



HP3000 
INTERNATIONAL CONFERENCE VS01/5 
VIENNA 1987 

verges no more than 1 % of the true value of stock. This 

corresponds to the relative margin for error when taking 

random samples. 

3. In conclusion 

During the operation stocktaking by random samples an 

estimate is made of the true value of stock held. 

The accuracy and reliability of this estimate is expressed 

in the degree of certainty and range of reliability. 

The number of random samples taken depends not only on the 

number of items held in stock and the warehouse structure 

but also on the degree of certainty and range of reliabili­

ty which is required. 

Fundamentally, each and every item in stock must be able to 

be included in a random sample. 

Special features: COBOL 

VIEW/3000 

Serial Files 

Forget the time-consuming and expensive business of stock-

taking in the future. CC-STIPRO is the ultimate and modern 

method to settle an imposed liability. 



HP3000 
INTERNA T/ONAL CONFERENCE 
VIENNA 1987 



ABSTRACT 

HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

THE INTEGRATION OF 
HARDWARE AND SOFTWARE MAINTENANCE 

Judy Hayner 
HEWLETT-PACKARD 

VS02/1 

The system maintenance process is evolving from the traditional 
hardware and software focus to a stronger total system support 
orientation. This paper will examine and highlight these trends 
in the support arena. Key issues considered will include the 
extent to which hardware and software maintenance services, 
techniques, and delivery methods will potentially merge and 
change, and more importantly, the implications of these changes 
for system users and vendors. 

Many factors are influencing this move toward hardware and 
software maintenance integration. The most important of these 
include: 

• the growing emphasis on remote support tools and capabilities 
in both hardware and software support to reduce the time and 
costs associated with problem diagnosis and resolution; 

• the proliferation of networking and multiple system 
environments where a blend of hardware and software expertise 
is essential; 

• the changing methods and processes for hardware and software 
installation, system and application software updating, and 
problem escalation management; 

• the growing customer demand for more support resources 
devoted to the implementation of software applications. 

The effect of these trends will be considered from the 
perspectives of both system users and system vendors. 

INTRODUCTION 

The importance of high quality support, throughout the life cycle 
of hardware and software products, is growing dramatically due to 
its significant influence on the system users' overall success and 
satisfaction. Contributing to this growth are emerging factors 
such as a greater variation in the expertise level of users, more 
complex operating environments, and the use of systems for more 
demanding and time-critical applications. 

As users' needs change over time, the methods of delivering 
support will evolve to more closely match those needs. System 



HP3000 
INTERNATIONAL CONFERENCE VS02/2 
VIENNA 1987 

vendors must strive to increase and maximize their productivity, 
efficiency, and effectiveness in delivering support services. 
They must endeavor to provide services which embody the qualities 
that customers value most: consistency, continuity, 
responsiveness, timeliness, flexibility, and cooperation. 

The quality of the support provided by the vendor has a major 
impact on a customer's ability to meet business objectives.· High 
quality is necessary for a fruitful working partnership to exist 
between the vendor and the System Manager or Operator. Providing 
this level of support, and establishing and maintaining a 
productive relationship with the customer, must be the vendor's 
goal. 

This paper outlines some of the ways in which support delivery 
methods and techniques are changing to achieve the improvements 
and benefits described above. The primary focus is on hardware 
and software maintenance activities, however, it will become 
apparent that the changes in this area greatly affect a vendor's 
performance in all other stages of support. The potential change 
in service offerings is also examined. And finally, consideration 
is given to the implications for the system user and system 
vendors. 

THE DELIVERY OF HARDWARE AND SOFTWARE MAINTENANCE 

Traditionally, many vendors, including HP, have provided hardware 
and software support through different field organizations. This 
split between hardware and software expertise is beginning to 
disappear. The responsibilities of the field organizations are 
evolving toward more system oriented specializations according to 
their established skills and strengths. The development of new 
support technologies and tools is also influencing this movement, 
through the increasing ability to centralize and streamline many 
of the maintenance activities. The benefits of these changes will 
become clear as the emerging roles of each of the support entities 
are examined individually. 

Central Support 

One major trend has been the centralization of telephone 
assistance to aid customers in system usage and problem 
resolution. At Hewlett-Packard, this has been done in the 
Response Center Organization. This centralization enables the use 
of shared databases including the most up-to-date information, 
remote support tools and diagnostic capabilities, and specialized 
teams of engineers with breadth and depth of knowledge. A very 
large percentage of all software related problems can now be 
solved remotely. The need for on-site assistance is rapidly 
diminishing. The benefit to the user is more timely, effective, 
and economical problem resolution, as well as a consistent and 
efficient interface. 



HP3000 
INTERNATIONAL CONFERENCE VS0213 
VIENNA 1987 

These support centers provide the first point of contact for 
customers, regardless of the question, and can help to distinguish 
between hardware and software problems. If more assistance is 
needed outside the center to resolve a problem, the initial 
information which has already been gathered will greatly speed the 
process. In addition to reacting to customer requests, proactive 
services, such as predictive maintenance, can be effectively 
provided from a central support organization. System users will 
continue to see expanded service offerings from support centers. 

Field Maintenance Support 

In the few cases that on-site assistance is required to resolve a 
problem, an engineer in the field will provide this assistance. 
The organization historically focused on hardware maintenance and 
product availability, the customer Engineering Organization (CEO) 
at HP, is beginning to also take on the responsibility for on-site 
software problem diagnosis. The strengths of this organization, 
in rapidly responding to customers' on-site needs, make this a 
logical alignment of activities. 

An additional activity that leverages the skills of this evolving 
system maintenance field organization is on-site software 
installation. The same engineer that provides hardware 
installation will install the fundamental operating software on 
new systems requiring this assistance. However, the need for 
on-site installation assistance for software add-ons and updates 
will be minimal in the future. (The reasons for this are outlined 
below.) 

As one support organization begins to provide on-site assistance 
in the installation and maintenance of both hardware and software 
products, its knowledge of software will broaden, enabling a more 
system oriented focus to maintenance. This blend of expertise 
prepares this organization for the responsibility of network 
installation and troubleshooting. The growing number of customers 
implementing sophisticated networks demands a greater attention to 
developing extensive network support capabilities. A key step in 
this process is the alignment of network support responsibilities 
within the organizations best suited to provide them. 

Self-Support 

The System Manager is also beginning to take on a greater role in 
software maintenance. With the help of technology advances and 
improved software quality, this capability will continue to grow. 
The installation process will be straight-forward and simple, 
allowing the System Manager to complete it with little or no 
assistance. The vendor's ability to create and distribute 
customized software updates, and the availability of telephone 
assistance, will both greatly reduce the need for on-site update 
installation assistance. Even for new systems, the trend is 
toward pre-installed operating systems, thus minimizing the need 
for any installation assistance. 



HP3000 
INTERNATIONAL CONFERENCE VS02/4 
VIENNA 1987 

System Managers and users will also begin to have on-line access 
to vendors' support databases. This will enable them to play a 
more active part in problem identification, thus reducing the 
total resolution time. 

Escalation Support 

A streamlined escalation process, in the case of an unresolved 
problem, is essential. To address this need, Escalation Managers 
are placed in a position enabling them to draw upon any resources 
needed to resolve a problem. These managers take responsibility 
for all escalated problems, hardware and software, and in many 
cases, will elicit the on-site assistance of the field maintenance 
organization. 

Planning and Implementation 

The realignment of roles and activities described above is not 
only a major stride toward improving the software maintenance 
process, but it also significantly impacts the delivery of 
planning and implementation services. The field organization 
which has historically provided all on-site software support, the 
Applications Engineering Organization (AEO) at HP, is able to 
focus its efforts on helping customers identify, plan, and 
implement total product, system, and support solutions. This 
assistance includes activities such as pre-sales planning, 
education, implementation assistance, account management, 
consulting, network design, performance analysis, and the 
management of custom projects. The demand for these services is 
one of the fastest growing in the support industry, and this field 
organization has the proven strength to successfully provide them. 
By separating the proactive services from the more reactive ones, 
both field organizations are able to more effectively meet 
customer needs. 

SERVICE PACKAGING 

Support service offerings differ substantially from vendor to 
vendor depending on the overall service marketing strategy. Some 
vendors bundle support services with the products and others offer 
varying degrees of flexibility in purchasing support. One point 
is clear, there does not seem to be, or need to be, a direct 
correlation between service delivery (who delivers support) and 
the service packaging (how customers obtain support). 

The packaging and marketing of support must take into 
consideration both similar and unique needs across the customer 
base. The trends point toward simplicity, yet flexibility in 
service offerings. The integration of hardware and software 
maintenance into one set of services is not necessary, but the 
presentation of the total support solution is. The opportunities 
for improvement are in helping customers define their support 
needs, in understanding how they can be met, and in making the 
administrative processes of delivering .support smooth and easy. 



HP3000 
INTERNATIONAL CONFERENCE VS02/5 
VIENNA 1987 

SUMMARY /IMPLICATIONS 

The delivery of maintenance services is evolving for increased 
productivity and customer satisfaction. Factors influencing this 
evolution include advances in support technologies and tools, as 
well as changing customer needs and environments. For efficient 
and cost-effective delivery, the following elements will emerge: 

• a centralized support organization where a high percentage of 
problems are resolved remot~ly; 

• a field organization focused on system maintenance, including 
hardware maintenance, on-site installation assistance, and 
on-site software and network problem identification as 
needed; 

• a second field organization focused on the planning and 
implementation of complete system and support solutions; 

• a growing participation in software installation and 
maintenance by System Managers/Operators and users; 

• a well defined and powerful escalation process for addressing 
unresolved problems. 

For system vendors, the operational changes described indicate the 
need for some reallocation of resources and shifting of 
responsibilities. This requires expanded training efforts and a 
well planned, cooperative implementation. The fact that each 
organization will focus more clearly on their previously developed 
strengths and areas of proven success will ease the transition. 
The key to a successful evolution is for each organization or 
individual to begin taking on new responsibilities without totally 
releasing the old. For a period of time, responsibilities will be 
jointly owned to ensure a transparent transition. In this way, 
only the improvements in the process will be detected by 
customers. 
For System Managers/Operators and users, the benefits will be 
significant: a more effective initial point of contact, faster 
response when on-site assistance is required, and more 
individualized and expert attention for planning and 
implementation purposes. Of key importance in taking advantage of 
the improvements will be the early planning of all support needs 
for the life of the system. This initial partnership with the 
vendor will then continue to contribute to the customers• success 
and satisfaction with their system and support services over time. 

Judy Hayner is the Product Marketing Manager at the Product Support 
Division in Cupertino. She has been with Hewlett-Packard in the marketing of 
support services since 1980. She holds a BA degree from Stanford University 
in Environmental Design and an MBA degree from the University of California 
at Los Angeles. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

In'troduction 

RINs, RINs, RINs 
Benedict G. Bruno 

S.T.R. Software Company 
P. 0. Box 12506 

Arlington, VA 22209 

VS03/1 

Several arti'cles have been written discussing the merits of the HP 
3000 Comput•r System as a transaction processing oriented machine. 
Topics have included process handling, interactive on-line systems, 
etc. An excellent resource available to the standard MPE 
user/programmer for process handling control is the Resource 
Identification Number, better known as a RIN. 

RINs come in two flavors. Local RINs are available only to the 
creating session or job. Global RINs are permanently· saved on the 
system disc and are available to anyone on the system. 

The concept of RINs has not been adequately described. This paper 
will discuss the benefits of local versus global RINs in a 
multi-processing environment, i.e., how may RINs be utilized for the 
control and monitoring of user applications executing on the HP 3000. 
RINs are extremely effective in the process handling environment. 
Several programming examples will be provided. 

Although MPE provides several system intrinsics and commands for 
creation and access of local and global RINs, no software tool is 
provided for display of this information. Thus it is difficult, 
almost impossible, to display the RIN number, password, creating 
user/account, information of locking process, and information of 
waiting process. This information is maintained by MPE in the System 
RIN table. 

The contents of the System RIN table have been formatted for the user 
in the supplied SHOWRIN program. The author has developed this 
program for both MPE IV and MPE V based systems. Depending upon 
capability, portions of the RIN table are formatted in displays 
similar to the HP On-line Performance Tool (OPT) program. Using this 
SHOWRIN program and the discussion of RIN usage, you can start 
integrating local a~d global RINs into your HP 3000 applications right 
away! 

Local RINs 

MPE provides local and global RINs for process control. In order to 
begin our discussion, let us define local and global RINs. 



HP3000 
INTERNATIONAL CONFERENCE VS03/2 
VIENNA 1987 

Local RINs can be described having the following attributes: 

* 

* 

* 

Created, accessed, and released on a session or job basis only. 
(intra-job) 

Programmatic MPE intrinsic access only. 

User maintains control of RINs by specifying which task each 
local RIN number is associated. 

* The MPE LOCRINOWNER intrinsic returns the process 
identification number (PIN) of the process currently locking 
the local rin. 

A local RIN is a resource allocated on a job or session basis for use 
by any process executed during this job or session. Local RINs are 
created and released only using the GETLOCRIN and FREELOCRIN 
intrinsics programmatically. The GETLOCRIN intrinsic allocates the 
requested number of local RINs for the current job or session. The 
FREELOCRIN intrinsic releases all local RINs previously obtained with 
the GETLOCRIN intrinsic. 

Local RINs are accessed using the LOCKLOCRIN and UNLOCKLOCRIN 
intrinsics. Local RINs are referenced with the integer value assigned 
within range of the number allocated with the GETLOCRIN intrinsic. 
Thus, if the user requests 24 local RINs with the GETLOCRIN intrinsic, 
then the LOCKLOCRIN intrinsic may lock RIN numbers one through 24. 
The UNLOCKLOCRIN intrinsic performs the same way. 

The MPE LOCRINOWNER intrinsic provides the PIN of the locking process 
for the supplied local RIN. This capability prevents deadlocks and 
informs any process in a process tree of the currently locking 
process. Thus, there is no need for a display of the local RIN 
entries from the system RIN table. 

Global RINs 

Global RINs can be described having the following attributes: 

* 

* 

* 

Created and released on a system wide (global) basis for any 
session or job on the system. (inter-job) 

User assigned RIN password is associated with a unique entry in 
the system RIN table using the GETRIN MPE command. eleased 
only by creating owner with the FREERIN MPE command. 

System RIN table is system disc resident on logical device 
number 1. Modified only during reload. 



* 

* 

HP3000 
INTERNATIONAL CONFERENCE VS03/3 
VIENNA 1987 

Any _job or session may access the global RIM using the 
LOCKGLORIN and UNLOCKGLORIN in tr ins ics by supplying the RIN 
password and RIM number. 

The HP supplied SYSDUMP program displays 
with the creating user and account. 
password is NOT displayed. Hence, the 
utility program. 

the global RIM number 
The user specified 

need for the SHOWRIN 

Global RINs are available to any session or job on the system provided 
the number and password are known. Global RINs are assigned to a 
creating user and account with the GETRIN command. The RIN associated 
with this password is permanently maintained in the System RIN table 
which is system disc resident. An entry may be removed using the 
FREERIN command. Note that the RIN entry may only be removed if the 
creating user and account match the logged on user and account names! 

The size of the global RIN table residing on the system disc is 
configured with the SYSDUMP dialogue. Changing this size can only 
occur during a RELOAD. The standard MPE configuration is delivered 
with a table size of 48 entries. In order to utilize the global RIN 
feature, you should increase the size of the table appropriately. 

The following commands can be executed to create and free the global 
RIN assigned using the password of GRIN. 

:HELLO user.account 
:GETRIN GRIN 
RIN: nnn 

:FREERIN nnn 

MPE responds with the integer value assigned to the RIN password with 
the GETRIN command. It is important that you always remember this 
association. Currently, no HP supplied utility displays the RIN entry 
number, password, and creating user and account names. 

You should note that the FREELOCRIN intrinsic removes all created 
local RINs for the current session or job. The FREERIN MPE command 
releases ONE global RIN from the system RIN table if currently signed 
on as the creating user and account. 

In order to continue, the reader should now note that the local RINs 
may be very effective during process control within an individual 
process tree, i.e., intra-job level processes. Global RINs are very 
effective during process control within several processes executing 
from different jobs, sessions, and accounts, i.e., inter-job level. 



HP3000 
INTERNATIONAL CONFERENCE VS03/4 
VIENNA 1987 

Global RIN Example 

Global RINs are valuable in the monitor and control of several 
programs comprising an application. By assigning a global RIN to each 
program in the application and requiring each program in the 
application to lock its associated RIN, we are guaranteed that only 
one copy of the program is executing. Some programmers implement this 
feature by opening a file for exclusive access. Since the global RIN 
is locked during the entire execution of this program and additional 
data structures may need to be locked. i.e. • IMAGE/3000 data bases. 
KSAM and MPE files, etc. , the program file must be : PREPed with MR 
(multiple resol,lrce or better known as multiple RIN) capability in 
order to hold multiple locks. The user, group, and account 
capabilities must also be modified for MR capability. 

Once each of the programs in the application is initiated and the lock 
is maintained on their RINs, another monitor program may control the 
execution of these processes even further. Suppose that this monitor 
program is responsible for the initiation, control, and termination of 
all programs within this application. Once each process is started, 
the RIN is held for the duration of this process. The monitor need 
only attempt a conditional lock in order to determine if the process 
is still executing. If the conditional lock succeeds, then the 
process is not executing since the monitor process was able to lock 
the RIN; otherwise, the lock fails and the process is executing since 
the RIN is unavailable. 

This technique is further enhanced by utilizing the writers id feature 
with the open, close, and data record types of the MPE message file 
system. The requirement is to have each program in the application 
open the monitor message file for write access. If the monitor 
program opens this message file and enables the writers id feature, 
then as each process opens, writes, or closes this file, the monitor 
program receives a record containing the writers id, the file access, 
and data if it is a write. The writers id is an integer assigned by 
the file system in ascending order to each program opening the file. 
If a close record is detected unexpectedly, then the monitor program 
need only identify which program has failed and respond in a 
controlled manner. The monitor may restart the failing program or may 
request all other programs in the application to terminate 
immediately. 

In addition to the initiation and termination of programs within the 
application, the monitor program may also control the execution of 
each of these programs. Specifically, the monitor program may suspend 
or resume execution of these programs. Utilizing the message file 
techniques above, the monitor program issues a conditional lock on a 
secondary RIN for each process requested to suspend. Once locked, the 
monitor requests that the process suspend itself by issuing an 
unconditional lock on this secondary RIN. The process is resumed 



HP3000 
INTERNATIONAL CONFERENCE VS03/5 
VIENNA 1981 

execution when the monitor releases the secondary RIN. Hence, an 
excellent method ot global process control! 

The SHOWRIN program was developed in order to determine which RINs 
were currently locked and by which process. Another useful feature is 
that the password could be associated with the RIN entry itself. This 
feature saved documenting the RIN entries and their passwords into a 
journal for later reference. 

Now let's begin with an example to better explain these features. An 
application of one monitor and two programs will be used to 
demonstrate the global RIN concepts discussed earlier. Sample code 
will be provided in both SPL and COBOLII. 

In Figure l below, the monitor program is diagrammed to use the parm 
value of the :RUN command as the number of the global RIN named 
'MONITOR'. The monitor program issues a conditional lock on this 
global RIN. If successful, the program continues; otherwise, an error 
message is displayed since some other process currently has this RIN 
locked (this prevents two copies of the monitor program from executing 
because another copy is already executing). The monitor program opens 
three message files: the primary message file named 'M' is opened for 
read access enabling the writers id feature; the additional message 
files named •A' and 'B' are opened for write access in order to 
communicate with process A and process B. 

: RUii MONITOR; PAIUl•rlmluabar 

.----------,conditional 

HONITOR 

llSQI llSCA HSGB 

Pri•ar, •••••1• tile "N" 
(read acce11) 

Proceu uuap tUu "A" and "B" 
(vr1t• ace•••) 

Fil"" 1: Monitor Procna "K" Execvtton Flow Dlacna 



HP3000 
INTERNATIONAL CONFERENCE VS0316 
VIENNA 1987 

The exampl!t has been coded in SPL below 
variable declarations are first displayed. 
blank lines provide for easy reading. 

in Figure 2. The program 
Using the indentation and 

l 
2 
3 
4 
5 
6 
T 
8 
9 

10 
11 
12 
13 
14 
15 
16 
lT 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
31 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

Figure 2: Monitor program in SPL 

$CONTROL USLINIT ,MAP 

cc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
cc•• MOllITOR Pro1ru Ver•ion Intorwation. 
cc•• 
cc•• Ver•ion Date cc•• ............. .. .............. .. 
cc•• 8.01.00 5/31/86 BGB Initial prorraa r•l••••· 
cc•• 

.•.. . .. ,. .. ,.. ..,.. .. ,.,. .. ,.,. 
cc•• 'DI.ii procru vill lock the 1lobal RIM nue ot "MOllITOR" ••.,. 
cc•• vi tb the Rlll nu.Mr passed in th• ; PARM• par ... tar. ••,... 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••,.,. 
$PAGI "••••• MONITOR PROGRM 
BEGIN 

COllllllT EQUATES AllD DEFINES ..•.•.............................................•....••.......... 
DIFilll IR'COll'l'ROL 'CODI • LillPU'l"RECOR!lf, 

IR 'PROORAll' ID • IllPU'l"RECORll(2)f; 

EQUATE RS • lOJ6, 
BEL • lOOT, 
ESC • l033; 

$PAGE 
COMMEllT LOCAL VARIABLES ..........................................•............••........ 
LOGICAL ARRAY 
B'ITE ARRAY 

LOGICAL ARRAY 
B'ITE ARRAY 

LOGICAL ARRAY 
B'ITE ARRAY 

LOGICAL ARRAY 
B'ITE ARRAY 

DOUBLE 

LOGICAL 

IllT!GER 

LTEllllLINE(O: 79); 
TERllLINE ( •) •LTERllLillE; 

LBA1(0:79); 
BA1 (") •LBAl; 

LINFO'STRING(O: 127); 
INFO 'STRING( 0 ) •LINFO 'STRING; 

LINPU'l"RECORll(O: 119): 
INPU'l"RECORD( •) •LINPU'I'RECORll: 

RUii' PAR!!: 

DOii!, 
LOCK'COND, 
OK, 
TIHE'2'QUIT, 
TRUE' COllD: 

CERROR, 
CPARI!, 
FERROR, 
I. 
!N'LENGTH, 
INFO' LENGTH, 
LENGTH, 
HSCA'FILE, 
HSGB"FILE. 
HSCll'FILE, 
llUH'CllAR, 
PAUSE'AIN'A, 



HP3000 
INTERNA T!ONAL CONFERENCE vsoan 
VIENNA 1987 

Continuing the program below, the intrinsic declarations are listed in 
alphabetical order. The GET'INFO procedure will locate the ;PARM= and 
;INFO• parameters of the :RUH statement by locating the terminate 
stack marker. 

61 
62 
6) 
64 
65 
66 
67 
68 
69 
70 
71 
72 
7J 
74 
75 
76 
77 
78 
79 
80 
81 
82 
8) 
84 
85 
86 
87 
88 
89 
90 
91 
92 
9J 
94 
95 
96 
97 
98 
99 

100 
101 
102 
10) 
104 
105 
106 
107 
108 
109 
110 
111 
112 
11) 
114 
115 
116 
117 
118 
119 
120 

Figure 2: Monitor program in SPL (Cont.) 

PAUSl'RIJ'I, 
MOllITOR'Rill; 

IMTRIJISIC ASCII, 

$PAGE 

BillARY, 
CaMAllD, 
DAT!Lilll, 
FCHICI, 
FCLOSI, 
FCOMTROL, 
FERRllSG, 
FOPEll, 
FREAD, 
FWRIT!, 
LOCKGLORill, 
PRillT, 
PRillTFILEillFO, 
QUIT, 
TEllllINAT!, 
UNLOCKGLORill; 

PROCEDURE GET'IllFO (PARM, IllFOL, IllFOSTR); 
DOUBLE PARM; 

INTEGER IllFOL; 
LOGICAL ARRAY INFOSTR; 

BEGill 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••>> 
cc•• Th• GET'INFO procedure vill locate th• ;PARM• and **>> 
cc•• ;IlfFO• paruseter1 troa the :RUN 1tat•ent. 'nlia ••,.,. 
cc•• procedure will correctly execute on any version ot•• » 

cc•• MP! IV and MPI V. Mote th• Delta·P value cha.nae ••.,. 
cc•• rro11 IO of HPE IV to 140000 ot MP! V. By readinc •••• 
cc•• 1tack mark•r• till th••• valu.e1. we eventually ••,.,. 
cc•• locate th• tenninate marker and the parameter• are••.,. 
cc•• then at SM·4, SM·5. and SM·6. ••,.. 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••,.,. 

IllTEGIR QllEG • Q; 

INTECEll POINTER SM; 

BY'l'I POINTER INFO, 
INFOT; 

cc••••••••••••••••••••••••,.,. 
cc•• Start: ot main cod• ••,... 
cc••••••••••••••••••••••••,.,. 

fSM: •fQREG; 

I: •O; 
DONE:•FALSE; 

DO 
BEGII 
IF SM(-2) • 0 THEN 

DONE: •TRUE 
ELSE 

cc•• Point. to curr•nt mark•r ••,.,. 

cc•• MP! IV tennin&t• mark•r ••,.,. 



HP3000 
INTERNATIONAL CONFERENCE VS03/8 
VIENNA 1987 

The FS'ERROR procedure formats a standard error message for any file 
system error detected while accessing any of the MPE files. This 
includes the text from FERRMSG and the tombstone from PRINTFILEINFO. 

121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
l7l 
l 72 
113 
l 74 
l 75 
176 
177 
178 
l 79 
180 

Figure 2: Monitor program in SPL (Cont.) 

BEOill 
IF SM( ·2) • ~40000 'l1IEI cc•• MP! V terminate aarker ••u 

DOlll: s'!'RUI 
ELSI 

B!:Oill 
@sM: •fSM·SMi cc•• \lalk down a tack marker ••,.,. 
I: •I•li 
IF I • 100 THEii 

QUIT (·l); 
EllD; 

EllD: 
EllD 

UllTIL (0011!); 

PARM: •DOUBLE (SM( -4)); 
IllFOL: •SM ( ·6); 
@IllFO: •SM( ·5); 
@IllFor' •@IllFOSTllUSL ( l) : 
HOVI IllFC1r:•IllFO,(IllFOL); 
EllD; 

cc•• Cannot tind terminate ••,.,. 
cc•• marker 10 abortl ••,.,. 

cc•• SM-4 • value ot ;PARM• ••,.,. 
cc•• SM-6 • l•ncth ot ;IlfFO• ••,.,. 
cc•• Byte ptr to into 1trin1 ••,.,. 
cc•• Byte ptr ot tars•t •• ,.,. 
cc•• Move to tar1et ••,.,. 

$PACI 
PROCEDIJIU! FS'EllROR (FILE' IllDEX. FILE'llUMBER, rs. IllTRillSIC): 

VALUE 
IllTEOIR 

BEOill 

FILE' IllDEX, FS' IllTRillSIC: 
FILE'IllDEX, FILE'llUMB!:R, FS'IllTRI!IS!C; 

FCHECX (FILE'IMIB!R, FERROR): 
HOVE TERMLINI:•"•• Unexpected FS error·· ,2; 
11UM 'CHAR: •ASCII (FERROR, 10, BAl): 
HOVI 0 :•8Al,(llUM'CllAR),2; 
HOVI •: •" has occurred on ". 2; 
CASE FILE' IllDEX or 

BEOI!I 
ccQ>> ; 

eel» MOVE •: •"MSGM" ,2; 
<<2u MOVE •:•"HSOA",2; 
ccJu HOV! •:•"'MS08" .2i 

END; cc•• END or CASE ••,.,. 
MOVE•:•" durin1, ",2i 
CASE FS' INTRINSIC or 

BEOI!I 
ccOJ>> t 
eel,.,. MOVE •:•"FOPDI" ,2; 
cc2» MOVE •: •"FCLOSE" .2t 
cc)» MOVE •:•"FREAD",2; 
cc4» MOVE •:•"FWRIT!",2; 
cc5u MOVI •: •"FCOHTROL" ,2; 

EHDi cc•• END OF CASE ••u 

HOVI •: •". ••" ,2t 
LENOTll: oTOS·LOOICAl.(@TERMLillE): 
PRI!IT (LTERMLI!IE,·LENOTll,O): 
FERRMSO (FEllROR,LTERMLillE,LEllOTll); 
PRillT {LTERMLI!IE,0,0): 
PRI!IT (LTERMLI!IE, ·LENOTll,O): 
PRillTFILEillFO (FILE 'llUMBER); 
TERMINATE: 
EllD; 

$PAOE 
BECI!I 



HP3000 
INTERNA T/ONAL CONFERENCE VS03/9 
VIENNA 1987 

Execution of the program begins on this page. The program banner and 
system time are displayed. The global Rilfs for the MONITOR program, 
program A, and program B are retrieved from the ;INFO• parameter with 
the GET'IHFO procedure. The MONITOR global RIM is locked to restrict 
only one execution of this program. 

Figure 2: Monitor program in SPL (Cont.) 

181 cc•••••••••••••••••••••••••••••••••,.,. 
182 cc•• Start ot main pro1ru code. ••n 
18] cc•••••••••••••••••••••••••••••••••,.,. 
181o 
185 TRUZ'COllD: "'l'llUI; 
186 
187 llOVI 'l'llllLIR:•(" 0 .. -ITOll ••• 1.01.00 Coppr. 1986, ", 
188 .. ._ ll'UllO. All riptl reffrftd."),2; 
189 LEllG'l'll:"'l"OS-LOCICAL(trDllLIR); 
190 PRillT (L'l'!RllLilll, ·LEllG'l'l,O); 
191 DATELIR (TEIUILilll); 
192 PRINT (LTIRllLilll,·27,0); 
193 PRINT (LTUllLIR,O,O); 
191t 
195 GET'lllFO (RUll'PAIUI, lllFO'LEllG'l'I, LillFO'STIIllG); 
196 
197 -I'l'Oll'IUll: •BillART (IllFO'STllllG,3); 
198 IF c • THEii 
199 IEGlll 
200 MOYE TIRllLIR: ..... ln•alid .,.itor Riii pu1e4. ••" ,2; 
201 LEllG'l'I: "'l"OS-LOGICAL(ft!lllLIR); 
202 PRINT (L'l'IRllLlllE, -LEllG'l'l,0) ; 
203 TERMillATE; 
20lo EllD; 
205 
206 PAUSl'Rlll'A: •BlllART (IllFO'STIIllG(3) ,3); 
207 IF c • THEii 
208 BEGlll 
209 MOVI TllUILIR:•"•• Invalid pau•• RI• tor A paa1ed. ••" ,2; 
210 LENG'rll: -TOS-LOGICAL(f1'EIUILllll); 
211 PRINT (LTERllLilll,-LEllCTB,O); 
212 TERMllATE; 
213 EllD; 
211t 
215 PAUSE'Rlll'B:•BillARY (IllFO'STIIllG(6),3); 
216 IF c • THEii 
217 BEGII 
218 MOYE TERMLilll:•" .. Invalid pauH RIM for B paned. ••" ,2; 
219 LENGTll:-TOS-LOGICAL(f1'EIUILilll); 
220 PRINT (L'l'!RllLilll, -LllG'rll,O); 
221 TERMINATE; 
222 EllD; 
223 SPAGE 
22t& cc•••••••••••••••••••••••••••••••••••••••••••••••••,.,. 
225 cc•• Lock RII 'MOIITOR' to enaure that only one ••u 
226 cc•• C:OPJ at thil pro1ru ii active. Locate t!\e ••>,. 
227 cc•• RII nwaber rroa the ;PARM• parueter. ••u 
228 cc••••• .. ••••••••••••••••••••••••••••••••••••••••••>> 
229 
230 LOCX'COllD. (15:1) ,a0; 
231 MOYE 8A1: •"MONITOR "; 
232 
233 LOCXCLORill (MONITOR 'RIM ,LOCX'COllD,W); 
231t IF "THEii 
235 BEGlll 
236 IF • TllEI 
237 BEGIN 
238 HOVI TERMLINE:•( .. •• Monitor pro1ru ii currently ", 
239 "executin1. ••··) ,2 ~ 
240 LENGTll: •TOS·LOGICAL(ftERllLINEJ; 



HP3000 
INTERNATIONAL CONFERENCE VS03/10 
VIENNA 1987 

Now that the global RIN is locked, continue by opening the message 
files and enable the messace file wait facility. Note the file and 
access options of the FOPEN intrinsic. This allows for 
multi-processing and inter-job access. 

Figure 2: MonitJr program in SPL (Cont.) 

241 PRINT (LTERllLINl,-LE11a1'11,0); 
242 EllD 
243 ELSE 
244 BIGIB 
245 llOYI 'l'llUILINI:•(" .. LOCXGLORIB intrin1ie error: Rilll • "),2; 
246 lllJM'CIWl:•ASCII (MOllI'rOR'Rill,10,IW.): 
247 MOVI •: •IW., (llUM'CIWI) ,2: 
248 MOVI •: •··. Rll paa•wrd • MOllITCR. ••" .2; 
249 LlllGTll: a'l."OS-LOGICAL(fl'DllLIR); 
250 PRINT (LTERMLillZ,-LlllGTll,O); 
251 EllD; 
252 MOVI TERllLIR: •"•• "nl.ia proceaa cumot contlnue. ••" .2t 
253 LEllGTll: a'l'OS-LOGICAL(ft'DllLIR); 
254 PRillT (LTERMLINl,0,0): 
255 PRillT (LTERllLilll, -LEllGTll,O); 
256 TDMillATI: 
257 EllD: 
258 $PACll 
259 cc••••••••••••••••••••••••••••••••••••••••••••••••••••••,.,. 
260 cc•• lfov open the MOll'ITOR, PROGRAMA, and PROGllAlll ••,.,. 
261 cc•• •••••I• tilea tor read. an4 write acce11. ••,.,. 
262 cc••••••••••••••••••••••••••••••••••••••••••••••••••••••,.., 
263 
2611 MOVE TERllLilll:•"HSGll "; 
265 HSGll'FILE: •FOPEll (TDMLilll, l'30105, l'2300); 
266 IF <> THEii 
267 FS'ERROR (1,HSGll'FILE,1): 
268 
269 MOVE 'l'ERMLilll: •"HSGA ": 
270 MSGA'FILE: •FOPEll (TEIUILilll, l'30105, "2303); 
271 IF <> THEii 
212 FS'ERROR (2,MSGA'FILE,1); 
273 
274 MOVE 'l'ERMLilll: ··'MSGI "; 
275 HSGB'FIL!: •FOPEN (TERllLilll, l'30105, l'2303); 
276 IF <> THEii 
277 FS'ERROR (3,MSGl'FILE,1); 
278 
279 cc••••••••••••••••••••••••••••••••••••••••••••••••••••,.,. 
280 cc•• Mow enable extended vait1 on e•pt7 til•• tor ••..,. 
281 cc•• read a.cc••• and tull tile• tor vrite ace•••· ••,.. 
282 cc••••••••••••••••••••••••••••••••••••••••••••••••••••,.,. 
283 
284 FCOllTROL (MSGll'FILE, 45, TRUE'COMD); 
285 IF <> TREii 
286 FS'ERROR (1,MSGll'FILE,5); 
287 
288 FCOllTROL (llSGA'FILE, 45, TRtJE'COMD); 
289 Ir • • THEii 
290 FS'ERROR (2.MSGA'FILE.5); 
291 
292 FCOllTROL (MSGl'FILE, 45, TRtlE'COMD); 
293 IF " THEii 
2911 FS'ERROR (J,MSGl'FILE,5); 
295 SPA<ll 
296 cc•••••••••••••••••••••••••••••••••••••••••••••••••••,.,. 
297 cc•• Mow execute the Hill body ot the loop vait1n1 ••u 
298 Cot•• tor the control codes to proc:e11. ••,.. 
299 ........ ,. ••••••••••••••••••••••••••••••••••••••••••••••• ,. .. 

JOO 



HP3000 
INTERNATIONAL CONFERENCE VS03/11 
VIENNA 1987 

The primary MSGM message file is read for incoming process requests. 
The external job streams for programs A and B may be started, stopped, 
suspended, or resumed. 

Figure 2: Monitor program in SPL (Cont.) 

301 OK: =Tr.IJE; 
302 TIH!"2'QUIT:•FALSI; 
303 
304 DO 
305 BEGill 
306 IN'LEllGTll:•FIU:AD (MSGll"FILI. LINPU'l"RECORD, -240); 
307 IP' <> TllP 
308 FS"ERROR (1,MSGll"P'IL!,3); 
309 
310 IF IR"COllTROL 'CODI c -4 LOR IR'COllTROL 'CODI • -1 THEii 
311 BEGill 
312 HOVI TERHLIH'I:•"•• Invalid control code ot ",2; 
313 llUll"CllAR:•ASCII (IR'COllTROL'COD1 0 l0 0 1Al); 
314 HOVE ":•8Al,(NUM'CIWl) 0 2; 
315 HOVI •:•" received. Icnored. ••" ,2; 
316 LENGTll:-TOS-LOGICAL(@TERMLilll); 
317 PRINT (LTEIUILilll,-LEllGTH.O); 
318 END 
319 ELSI 
320 BEGIN 
321 I:•IR'COllTROL'CODZ • -1; 
322 CASE I or 
323 BEGIN 
324 ccO» ; 

325 
)26 cclu BECIW cc•• Startup. ••u 
327 HOVE TEIUILilll: • ("STREAM PROGIWIA.STREAHS" .J15); 
328 COllWID (TEIUILilll,CERROR 0 CPAIUI); 
329 IF <> OR CERllOR • 0 OR CPAIUI • 0 THEii 
330 BEGIN 
331 MOVE TERM!~'!'£: ·c·· Unable to 1tream PROORAMA. 
332 "Cerror•") .20 
333 lllJll'CHAR: ·~cu (CERROR,10,BAl); 
334 HOVE ":•BAl,(NUM'CHAR).2; 
335 HOVE •: •". Cpana•", 2; 
336 lllJll'CHAR: •ASCII (CPAIUl.10,BAl); 
337 HOVE ":•BAl.(NUM'CHAR),2; 
338 HOVE ": •··. ••·· ,2; 
339 LENG'l11: •TOS·LOGICAL(@TERHLINE); 
340 PRINT (LTERMLINl,·LENGT!l,O); 
341 OK:•FALSE; 
342 END 
343 ELSE 
344 BEGIK 
345 HOVE TERHLIKE:•(°·STREAll PROGRAHB.Sl'REAHS··.~15); 
346 CO!tWID (TEIUILlNE,CERROR,CPAIUI); 
347 IF <> OR CERROR • 0 OR CPAIUI • 0 THEN 
348 BEGill 
349 HOVE TERHLilll: ·c··· Unable •o at roam PROGRAl!A. 
350 "C•rror•") ,2; 
351 lllJll'CHAR: •ASCII (CERROR.10,BAl); 
352 HOVE ": •BAl. (lllJll'C!WI) ,2; 
353 HOVE·.,.··. Cpara .. · ,2; 
354 lllJll'CHAR: •ASCII (CPAIUl,10,BAl); 
355 HOVE ":•BAl,(lllJll'CHAR),2; 
356 HOVI •:a" ••",2; 
357 L£NG'l11: •TOS·LOG!CAL(@TERHL!NE); 
358 PRlllT (LTEIUILINE.·LEllG'l11,0); 
359 GK:•FALSE: 
360 END 



HP3000 
INTERNATIONAL CONFERENCE VS03/12 
VIENNA 1987 

In order t_o suspend each process, the secondary global RIN is locked 
by the monitor program. Once locked, program A or B is informed to 
unconditionally lock this RIN. This will be demonstrated later in 
program A. 

Figure 2: Monitor program in SPL (Cont.) 

361 ELSE 
362 BEGI• 
363 MOVE TERllLillt::•("Procr .. 1 A and B have been", 
364 "started."),2; 
365 LEllar&: a'l'OS·LOGICAL(@TUMLillt:); 
366 PRiii'? (LT!RMLillt:,·LEllGTB,O); 
367 !llD; 
368 EllD; 
369 EllD; 
370 
311 cc2>> BECII cc•• ShutdOvn. ••,.,. 
372 t.TERllLIMl:•-1; 
373 FllRIT! (llSGA'FILl,LTERllLIMl,·2,0); 
374 IF <> TllD 
375 FS'ERllOR (2,llSGA'FILE,4); 
376 
377 FWRIT! (llSGB'FILl,LTERllLIMl,·2,0); 
378 IF <> TllD 
379 FS'ERROR (3,MSGB'FIU:,4); 
380 
381 HOVE T!RMLillt::•"Procr .. 1 A and B bave been •topped. ",2; 
382 t.EllGTH: a'l'OS·t.OGICAL(mR!ILillt:); 
383 PRINT (t.T!RMLilll,·LEllGTB,0); 
384 
385 TIME'2'QUIT: •TRUE; 
386 Elll>; 
387 
388 cc)>> BEGIN cc•• Suspend A or 8. ••,.,. 
389 IF IR'PROGRAM'ID • "A" OR IR'PROGRAM'ID • "a" TH!ll 
390 I:•l 
391 ELSE 
392 IF IR'PROGRAM'ID • "B" OR IR'PROGRAM'ID • ''b" TH!ll 
393 I:•2 
394 ELSE 
395 I:•O; 
396 
397 CAS! I OF 
398 BEGIN 
399 
400 ccQ» B!Cllf 
401 HOVE TEJU4Lllfl:•("•• Unknovn procet• to suspend; must · 
402 "be 'A' or ·a·. ••"),2; 
40) LEllGTll: a'l'OS·LOGICAL(@TERl1L!tn:); 
404 PRINT ( LTERl1LillE, • LEllGTll, 0) ; 
405 END; 
406 
40T cctu BECIW 
408 LOCX'COHD. (15:1): •l; 
409 MOVE llAl: • 'PROGRAHA .. ; 
410 
411 LOCKGLORill (PAUSE'R!ll'A,t.OCK'COHO,BAl); 
412 IF • THEii 
413 BEGill 
414 HOVE TER11LINE:•("•• LOCKCLORIN intr1ns1c error: 
415 "RI!lf • "), 2; 
416 ?n,'H'CllAR: •ASCII (PAUS!'R!N'A,10,BAl); 
417 MOVE 0 :•BAl,(llUM'CllAR).2; 
418 HOVE •: s". RIN pa11·.rord • PROCRAKA. , 2; 
419 LEllGTll: •TOS·LOGICAL(@TERl1L!tn:); 
420 PRINT (LTERllL!tn:, ·LEllGTll,O); 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Program B is suspended by executing the code below. 
the suspend code. 

Figure 2: Monitor program in SPL (Cont.) 

421 OK: •FALSE; 
422 END; 
423 
424 LTERllLilll!:•·2; 
425 nnlI'l'I (MSGA'ritl,L'l'IRllLilll!,·2,0); 
426 IF <> THEii 
427 FS'ERllOR (2,MSGA'FILl.4); 
428 
429 HOVI T!IUILilll!: •" Pro1ru A 11 1111pended. " , 2; 
430 LEllGTH: *'l'OS·LOGICAL(fl'llUILilll!); 
431 PRINT (LT!MLilll!,·LEJICTB,O); 
432 END; 
433 
434 «2» BEGill 
435 LOCK'COND.(15:1):•1; 
436 HOVI BA1: •" PROGRAlll "; 
437 
438 LOCKGLORII (PAUSl:'Rill'l,LOCK'COND,BAl); 
439 IF c THEii 
440 BEGill 
441 HOVI T!IUILilll!: •( .... LOCKGLORill in•rinlic error: 
442 "RIKI • ") ,2; 
443 NUM'CIWl:•ASC!I (PAUSl:'RIK'B,10,BAl); 
444 HOVI •: •BAl. (lllll'CHARl.2: 
445 MOVE•:•". Riii pa•1word • PROORAllB. ••".2; 
446 LEllGTH:•TOS·LOGICAL(llT!RMLilll!): 
447 PRINT (LT!RllLIR, ·LlllGTll,O); 
448 OK: •FALSE; 
449 END; 
450 
451 LTEMLilll!: •·2: 
452 FWRITE (HSGB'FILl,LTEMLilll!.·2,0); 
453 IF • • THEii 
454 FS'ERROR (2,MSGB'FILE,4); 
455 
456 MOVE TEML!lll!:•''Prograa B ii 1111pended." ,2; 
457 LENGTH: •TOS·LOG!CAL(@TEIUILilll!); 
458 PRINT (LTEMLilll!,·LENGTll,O); 
459 END; 
460 
461 END; cc•• DfD OF CASI ••,.,. 
462 END; 
463 
464 cc4:u BEGIN ""'•• R••U11• A or 8. ••,.,. 
465 IF IR'PROOIWl'ID • "A" pR IR'PROGRAM'ID • a TllEll 
466 I: •1 
467 ELSE 
468 IF IR'PROGRAM'ID • "B" OR IR'PROGRAM'ID • b' THEN 
469 I: •2 
470 ELSI 
471 L=O; 
472 
473 CASE I CF 
474 BEGIN 
475 
476 «O» BEGIN 

VS03/13 

This completes 

477 HCVE TERMLINE: z( ·•• l..Tnknovn process to reswne; must • 
478 be 'A' or 'B'. ••··),2; 
479 LENGTIL •TCS·LOGICAL(l!TERMLilll!); 
480 PRINT (LTEMLilll!, -LENGTH,O); 



HP3000 
INTERNATIONAL CONFERENCE VS03/14 
VIENNA 1987 

Programs A and B are resumed by simply unlockin1 the secondary global 
RIN. Thi• will allow programs A and B to successfully lock the RIN. 
The RIM is then immediately unlocked and the process continues as 
before. Once the monitor program completes, the MONITOR global RIN is 
unlocked and the message files are closed. 

Figure 2: Monitor program in SPL (Cont.) 

li81 EJID; 
482 
483 eel,.,. BIGII 
484 UllLOCXGLORill (PAllSB'Rlll'A); 
485 
lo86 MOVI TIRlll.Illl:•"Pro1ru A ha• -n re......S.",2; 
li87 LEllCITll: "'l'OS·LOGICAL(ft'DllLilll); 
488 PRillT (LTIRllLill;-LEllG'l'll,O); 
489 EllD; 
490 
lt91 cc2u 81GII 
492 UllLOCKGLORill (PAUSl'Rill'B); 
493 
494 MOYI TIRllLilll:•"Pro- B ha• - re•llMd.",2; 
495 LEllGTll: "'l'OS·LOGICAL(ft'DllLill); 
496 PRillT (LTEllllLill,•LlllG'l'll,O); 
497 EllD; 
498 
499 Ell'Dt cc•• DD or CASI ••>• 
500 EllD; 
501 
502 DDt cc•• EllD at CASS •••• 
503 EllD; 
504 EllD 
505 UllTIL (Tilll'2'QUIT OR NOT Oii): 
5o6 $PAGE 
507 cc•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
508 cc•• Nov elo1e the til•• and unlock the 1lobal RIJ. ••u 
509 cc•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
510 
511 u'llLOCKGLORII (IllTEGIR(RUll'PARll)): 
512 
513 FCLOSE (!ISCK'FILE,O,O); 
514 IF <> THiii 
515 FS'ERROR (1,MSCll'FILl,2); 
516 
517 FCLOS! (!ISGA'FILl,0,0); 
518 · IF • • THiii 
519 FS'ERROR (2,!ISGA'FILl,2): 
520 
521 FCLOS! (MSGB'FILl,0,0); 
522 IF • • THiii 
523 FS'ERROR (3,MSGB'FILl,2); 
524 EllD; 
525 $PAGE 
526 EllD. 



HP3000 
INTERNATIONAL CONFERENCE VS03/15 
VIENNA 1987 

In Figure 3 below, Process A is diagrammed to use the ;INFO= parameter 
of the :RUN command to locate the program suffix of A or B. It also 
contains the primary and secondary global RINs for the password of 
PROGRAMx, where x is the program suffix. 

The program issues a conditional lock on the primary global RIN. If 
successful, the program continues; otherwise, an error message is 
displayed since some other process currently has this RIN locked (this 
prevents two copies of the program from executing because another copy 
is already executing). 

Program A opens two message files: the primary message file named 'A' 
is opened for read access; the monitor message file named 'M' is 
opened for write access in order to communicate with the monitor 
process M. 

:RUii PROGllAM;PAIUl•rinn1111ber;IllFO•"A. 

HSCA 

Pr1-ry MH&I• tile "A" 
(read acce11) 

Monitor 111e11a .. tile .. M .. 
(write &CCIII) 

Fisure !' Pro1ru "A" Execution Flow Dia1ru 



HP3000 
INTERNATIONAL CONFERENCE VS03116 
VIENNA 1987 

The second.program example has been coded in COBOLII tor comparison to 
that in SPL mentioned earlier. The variable names correspond closely 
to those used in the SPL version of the monitor program. 

l 
l-1 
1-2 
1.3 
1.4 
1-5 
1.6 
1-T 
1-8 
1-9 
2 
2-1 
2-2 
2.3 
2-4 
2-5 
2.6 
2.7 
2.8 
2.9 
3 
3.1 
3.2 
3,3 
3,4 
3-5 
3.6 
3-T 
3.8 
3-9 
4 
4.1 
4.2 
4.3 
... 4 
4.5 
4.6 
i..1 
4.8 
4.9 
5 
5.1 
5-2 
5.3 
5,4 
5,5 
5.6 
5, T 
5.8 
5.9 
6 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6. T 
6.8 
6.9 

Figure 4: Program 'x' in COBOLII 

SCCll'l'llOL SOUllCI , ICAP, CllOISllll', 1111111 
IlllllTIFICA1'IOll DIYISIOI. 
PllOCIWl-ID- PllOGIWI. 
AU'l'llOR. -in C. llnmo. 
DA1'1-WllI'l'!lll. 1 ...... 1986-
DAft•COMPILID. 
lllllAlllS. 'l'l&e PllOCIWI prop-u vill lock tba rlollal llII MH or 

'PllOCIWlll' vi "1 the RII n.,.'ller pe11ed IA tbe ; IIFO­
tcrl.Ar U4 tile '•' replaced rroa "1• ; IllFO• _ 

!llYIROIDllll'r DIVISIOll. 
COIFICURA1'IOll SICTIOI. 

SOUllCl·COMPU'l'IR. HP3000-. 
OBJICT·COMPU'l'IR. RP3000. 

SPICIAL·INllS. COllDITIOl·COlll IS COllD•COlll. 

DA1'A DIVISIOll. 
SPAGI " " 
llOlllIIC·STOIWZ SICTIOI. 

01 Tilll·2-QUIT 
01 OK 

01 IllPUT·RIC. 
03 COITROL ·COlll 

01 DOUILl·VARIAILIS. 

PIC 1(1). VALUI "I". 
PIC 1(1) VALUI "Y". 

PIC S9(4) COllP. 

03 Rlll·PAllMD PIC S9(9) COMP. 
03 Rlll·PARllI RIDIFIRS Rlll·PAIUID. 

05 Rlll·PARlll PIC S9(4) COllP. 
05 Rt.'ll·PARll2 PIC S9(4) COMP. 

01 LOCICAL·VAllIABLES. 
03 DOR 
03 l.OCK·COID 
03 .TRUl·COID 

01 Ill'l'EClll • VAllIAILIS. 
03 CEIUIOll 
03 CPAIUI 
03 FERllOR 
03 I 
03 Il·Lllar& 
03 Illl'O·Lllar& 
03 Lii 
03 llSCll·FILI 
03 llSCl·FILI 
03 llllll·CIWI 
03 PAUSE·RII 
03 PROCISS·RII 

01 CllARACTIR·VARIAILIS. 
03 TIRllLIR 
OJ 8A1 
03 CERROR·A 
OJ CPAIUl·A 

01 INFO·STRINC. 

PIC S9(4) COMP. 
PIC S9(4) COllP. 
PIC S9( 4) COllP VALUI -1. 

PIC S9(4) COMP. 
PIC S9(4) COllP. 
PIC S9(4) COllP. 
PIC S9(4) COMP. 
PIC S9(4) COllP. 
PIC S9(4) COllP. 
PIC S9(4) COllP. 
PIC S9(4) COMP., 
PIC S9(4) COllP. 
PIC S9(4) COllP. 
PIC S9(4) COllP. 
PIC S9(4) COllP. 

PIC 1(79). 
PIC 1(160). 
PIC 1(5). 
PIC X(5). 



HP3000 
INTERNATIONAL CONFERENCE VS03/17 
VIENNA 1987 

The procedure division follows below with the main driver section. 
The START-UP paragraph performs tha initialization tasks, namely the 
retrieval of the primary and secondary global RINs as below. 

7 
7,1 
7.2 
7.) 
7.4 
7,5 
7.6 
7. 7 
7.8 
1.9 
8 
8.1 
8.2 
8.J 
8.4 
8.5 
8.6 
8.7 
8.8 
8.9 
9 
9.1 
9.2 
9.3 
9.4 
9.5 
9.6 
9. 7 
9.8 
9.9 

lO 
lO.l 
l0.2 
lO.J 
10.4 
lO. 5 
l0.6 
lO. 7 
l0.8 
l0.9 
l1 
ll.l 
ll.2 
ll.J 
ll.4 
ll. 5 
ll.6 
ll. 7 
ll.8 
ll.9 
l2 
l2. l 
l2. 2 
12. 3 
12.4 
l2.5 
l2.6 
l2. 7 
l2.8 
l2 .9 

Figure 4: Program 'x' in COBOLII (Cont.) 

OJ PROGIWl-llAlll 
0) PROCESS·Ril·A 
0) PAUSE·Ril·A 

PIC X(l). 
PIC 1(3). 
PIC X(3). 

$PAGE .... 
PROCEDUU DIVISIOll. ................................................................. 

•••• Start ot -in drher ••ction. ...............•.......................•......................... 
HAIN SECTIOI. 

$PAGE 

PERFORM START·UP. 
PERFORM PROCESS· INPUT UITIL Tilll·2·QUIT • '"Y"" OR OX • '"N"'. 
PERFORM FIIISB·UP. 
STOP RUii. ................................................................. 

•••• 'nl• initialization 1ectio11 dilplayti the procru banner, •••• 
•••• locate the ; IllFO• parueter1. ud open tile•. •••• .......................................•......................... 

START·UP. 

HOVE SPACES TO T!llMLillE. 
STRIMC "••• PROGRAM ••• B. 01. 00 Copyr. 1986. 

DELIMITED BY SIZE 
"Bene• Bruno. All ri1ht1 re1ened." 
DELIMITED BY SIZE INTO T!llMLIMI. 

DISPLAY TERllLillE. 
HOVE SPACES TO TERllLillE. 
CALL INTRINSIC ""DATELINE"" USING TERllLillE. 
DISPLAY TERMLillE. 
HOV! SPACES TO TERllLillE. 
DISPLAY TERMLillE. 

CALL ""GJ:r'IllFO"" USillG RUll·PARHD IllFO·LEll<l'l'll IllFO·STRING. 

IF PROGIWl·NAlll NO? • .. A"" AllD PROGRAM· NAME NO? • "a"" AllD 
PROGIWl·llAlll Nor ... 8"" AllD PROGIWl·NAta: Nor • ·y THEii 

HOV! SPACES TO TERllLillE ' 
HOVE "•• Invalid pro1ru 1urtix paned. ••" TO TERMLIM'E 
DISPLAY TERllLINE 

SPAGE 

STOP RUI 

IF PROC!SS-Rill·A NO? llUHERIC THEii 
HOV! SPACES TO TERHLillE 
HOVI "•• Invalid proc•u RIN value. ••" TO TERHLINI 
DISPLAY TERllLillE 
STOP RUI 

IF PAUSE·RIN·A NO? NUMERIC THEii 
HOV! SPACES TO TERllLillE 
MO~ "•• Invalid pause RIN value. ••·· TO TERMLINE 
DISPLAY TERMLINE 
STOP RUii 

................................................................. 



HP3000 
INTERNA T/ONAL CONFERENCE VS03/18 
VIENNA 1987 

A conditional lock is executed for the primary global RIK as below. 
Once completed, the process and monitor message files are opened. 

Figure 4: Program 'x' in COBOLII (Cont.) 

13 
13.1 
13.2 
13.3 
13.i. 
13.5 
13.6 
13.7 
13.8 
13.9 
lli 
11i.1 
11i.2 
111.] 
1i..i. 
11&.5 
11&.6 
1ti.7 
1'1.8 
1li.9 
15 
15.1 
15.2 
15.3 
15.4 
15.5 
15.6 
15. 7 
15.8 
15.9 
16 
16.1 
16.2 
16.3 
16.4 
16.5 
16.6 
16. 7 
16.8 
16.9 
17 
11.1 
17.2 
17.3 
17.4 
17.5 
17.6 
11.1 
17.8 
17.9 
18 
18.1 
18.2 
18.3 
18.4 
18.5 
18.6 
18. 7 
18.8 
18.9 

•••• Lock Riii •PROGRAM' to •n•ure that onlp one eon of thia •••• 
•••• pro1ru ii active. Locate tbe III nuaber from tbe •••• 
•••• , IJIFO• par ... ter. •••• ................................................................. 

MOVE SPACIS TO BAl. 
ft!IIIG "PROGRAll .. DELIMITED BT SIZI 

PROGIWl-1.Alll DELIMITED IT SIZI IllTO BAl. 
MOVE PROCESS-Riii-A TO PROCESS-RIK. 
llOVE 0 TO LOCK-COllD. 

CALL INTRINSIC "LOCKGLORII .. USIIO PROCESS-RII LOCK-COllD BAl. 

IF COllD·CODI > 0 THiii 

ELSI 

$PAGE 

MOVE SPACIS TO TDllLill 
MOVE "•• Pro1roa 11 c:urrent4' eae.,.tiq. .... TO 'l'ERllLID 
DISPLAY T!RllLID 
MOVE ··•• Thi1 proce•• cumot coatlmae. ••" TO 1.'IMILID 
DISPLAY TlllMLill 
STOP RUI 

IF COllD•CODI: c 0 Tlllll 
llOVE SPACES TO 'l'llUILill 
ft!IIIG "•• LOCIGLOllII U.trlnllc error: Riii • .. 

DELIMITED BY SIZI 
PROCISS-llil-A DELIMITED IT SIZI 
". RIM p&91vard • PROCRM. ••" 
DELIMITED IT SIZI INTO "l'IRllLill 

DISPLAY 'l'IRllLill 
MOVE ··•• Thia proce11 cannot continue. •••• TO 

T!RllLill 
STOP RUI 

.................................................................. 
•••• lfow open the MONITOR ancl PROGRAMx ua1ap file1 for 
•••• read and writ• acceaa. ................................................................. 

MOVE "MSGll ·• TO TIRllLill. 
CALL IllTRIISIC ··rol'!ll" USillG T!RllLilll ,30105 ,2303 

GIVIllG MSGll·FILI. 
IF COllD·CODI: 10'1' • 0 Tlllll 

CALL 'FS'!RROR'" USIIG 1 MSGll·FILI 1 

MOVE SPACES TO T!RllLill. 
STRIIG 0'11SG" DELIMITED BY SIZI 

PROGRNl-1.Alll DELIMITED BT SIZE INTO TEi.MLilll. 
CALL INTRIISIC ··rol'!ll .. USillG T!RllLilll '30105 ,2300 

GIVIllG llSGX·FILI. 
IF COllD-CODE NO'l' • 0 Tlllll 

CALL ··rs 0 1RROR0
' USillG 2 MSGZ-FILI 1 

...........................•.•.........••..•.....•..•............ 
•••• ?fov enable extended waitl on ,.,ty fil•• for reacl 
•••• ace••• uid fu.11 tile• tor write ace•••· ···········································•···········•········· 



HP3000 
INTERNATIONAL CONFERENCE VS03/19 
VIENNA 1987 

The extend'd wait facility is enabled as below. Thia completes the 
START-UP paragraph and the initialization function. The PROCESS-INPUT 
paragraph is called from the main driver to process input requests 
until a shutdown is received. The SUSPEND-PROCESS paragraph is 
executed when the monitor program requests us to suspend. This is 
accomplished by unconditionally locking the secondary global RIN as 
below. 

Figure 4: Program 'x' in COBOLII (Cont.) 

19 
19.1 
19.2 
19. 3 
19.4 
19.5 
19.6 
19. 7 
19.8 
19.9 
20 
20.1 
20.2 
20.3 
20.4 
20.5 
20.6 
20. 7 
20.8 
20.9 
21 
21.1 
21. 2 
21. 3 
21.4 
21.5 
21.6 
21. 7 
21.8 
21.9 
22 
22.1 
22. 2 
22.3 
22.4 
22.5 
22 .6 
22. 7 
22.8 
22.9 
2) 
2).1 
2). 2 
2). 3 
2).4 
2). 5 
2).6 
23. 7 
2).8 
2).9 
24 
24.1 
24. 2 
24. 3 
24. 4 
24. 5 
24.6 
24. 7 
24.8 
24.9 

CALL INTRINSIC "FCONTROL" USING MSCll·FILE 45 'l'RUl·COND. 
IF COND·COD! NOT • 0 THEii 

CALL "FS'EIUIOR" USING 1 MSCll·rIU: 5 

CALL INTRillSIC "FCONTROL" USING MSCX·FIU: 45 'l'RUl·COND. 
IF COllD·COOI NO'!' • 0 THEii 

CALL "FS'EIUIOR" USING 2 MSCX·rILI 5 

SPACE 
PROCESS· INP11r. ...............•................................................. 

•••• N'ov execute the aaiD bodJ' ot tb.e loop vaitinc tor the 
•••• control cod•• to proce1a. ................................................................. 

CALL INTRINSIC "f'READ" USillC MSCX·FIU: INPllr·REC ·240 
GIVING IN·LENCTR. 

IF COND·COOI NO'!' • 0 THEii 
CALL "FS'ERllOR" USillG 1 MSCll·FIU: J 

IF CONTROL·CODI < ·2 OR CONTROL·COD! • ·l THEN 
HOVI "•• Invalid control code received. Ipored. ••" TO 

TERMLIN! 
DISPLAY T!RMLIN! 

ELSE 

SPACE 

IF CONTROL·CODI • ·l THEii 
HOV! "y" TO TIHE·2·QUIT 

ELSI 
IF CONTROL·CODE • ·2 THEii 

PERFORM SUSPIND·PROCESS 

SUSPEND· PROCESS. ................................................................. 
•••• lfov 1u11J4tnd the procru by unconditionally lockinc the •••• 
•••• pau•• RIK. When th• AUi lock eomplete1, we release •••• 
•••• it immediately, thu1 re1W11in1 execution. ................................................................. 

HOV! l TO LOCK ·COlfD. 
HOVE PAUS!·Ril·A TO PAUSE·RIN. 
HOV! SPACES TO B.U. 
STRING "PROGIWI'' DELIMITED BY SIZE 

PROCIWl·NAHE DELIMITED BY SIZE IMTO BAl. 

CALL INTRINSIC "LOCKCLOR!N" USING PAUSl·RIN LOCK·COND BAl. 
If COND·CODE < 0 THEN 

ELSE 

HOVE SPACES TO TERHL !NE 
HOVE "•• LOCKCLORIN intrinsic error: RINI•" TO TERMLIN! 
DISPLAY TERHLINE 
HOVE "N" TO OK 

CALL INTRINSIC UNLOCKCLOR!N" USING PAUSE·RIN 

$PAGE 
FIN!SH·UP. 



HP3000 
INTERNATIONAL CONFERENCE V503/20 
VIENNA 1981 

The FINISH-UP paragraph below completes program execution by unlocking 
the primary clobal RIN and closing the message files. 

Figure 4: Program •x• in COBOLII (Cont.) 

25 
25.1 
25.2 
25.3 
25.4 
25.5 
25.6 
25. 7 
25.8 
25.9 
26 
26.1 
26.2 
26.3 

.......................•.............•..........................• 
•••• Nov close the til•• and unlock the 1lobal RIM. ................................................................• 

CALL IllTllIJSIC '"UllLOCXCLORII"" USIMC PROCESS-RIM. 

CALL IllTllI"8IC ··rcLOSI"" USING llSCll-FIL! 0 0. 
IF COllD-COD! MOT • 0 THEii 

CALL "FS'ERROR"" USIIC 1 llSCll-FIL! 2. 

CALL INTRINSIC "FCLOSI"" USIIQ HSCX·FIL! a 0. 
IF COND-CODI IOT • 0 THEii 

CALL '"FS'!IUIOR"" USIIC 2 llSGl-FIL! 2. 

In order to execute the monitor, A, and B programs, the global RINs 
must be located. The GETRIN MPE command is executed for each of the 
program passwords. Figure 5 below displays the logon and GETRIN 
commands. The bold face type denotes input user input. 

Figure 5: Executing the GETRIN command 

:HELLO BENGE.BRUNO ~ 
HP3000 / MPE V G. 01. 01 (BASE G.01.01). SUN, MAY 25, 1986, 10: 10 AM 
:GETRIN ltONJTOR ~ 
RJN: 122 
:GETRIN PROGRAM ~ 
RIN: 87 
:GETRIN PROGRAM ~ 
RIN: 139 
:GETRJN PROGRAHI ~ 
RIN: 126 
:GETRJN PROGRAltl ~ 
RIN: 129 
:BYE~ 

CPU•I. CONNECT•3. SUN, MAY 25, 1988, 10:13 AM 



HP3000 
INTERNATIONAL CONFERENCE VS03/21 
VIENNA 1981 

The SHOWRIN program 

The SHOWRIN program provides a formatted display of the system global 
RIN table. The program is written using privileged mode for execution 
on any MPE IV and MPE V based systems. The pro1ram may only execute 
in session mode and will immediately terminate in batch mode. 

The group that SHOWRIN executes must have PM capability. For this 
reason, you may wish to place it in PUB.SYS or UTIL.SYS where PM is 
already in the group. The capability list of the user is checked when 
the SHOWRIN program is executed. If the user has system manager (SM) 
or privileged mode (PM) capability, then the SHOWRIN program may 
display the RIN table for all accounts; otherwise, only the user logon 
account may be used. 

The SHOWRIN program may simply be executed using the :RUN statement. 
The alternate entry point of 'NOHELP' may be used to disable the 
initial help information as in Figure 6 below. 

:HELLO IENGE,KANAGER.SYS ~ 
:RUN SHOMRIN llJ!BI 

••• SHOWRIN ••• 1.01.00 Copyr. 1986, S.nge 8runo. All right• re1erved. 
SUN, MAY 25, 1988, 7:30 PM 

The SHOWRIN program provide• a diepley of global RINe on your HP 3000. 
Each or the co.,,.and1 are enter•d ae elngle cheractere ae in OPT/3000; 
The following conmande are available. 

A -> Prompt for a epeclflc account name; search on thie account only. 
B -> Dieplay both locked and unlocked RIN entriea found. 
E -> Exit the program. 
H -> Display thle help lnfol"ftlatlon. 
L -> Dl1play locked RIN entrl•• only. 
P -> Enable/dl1able printing to RINLIST on device LP. 
R -> Prompt for RIN number• for additional infol"ftlation. 
S -> Diaplay RIN1 for all accounte; Require• PM or SM capability. 
U -> Di1play unlocked RIN entriee only. 
W -> Di1play waiting proc••••• and the holding proc••••• (deedlock?). 

To dleable thi• initial help dialogue, u•• th• entry point of •NOHELP'. 

Pl•••• pr••• any key to continue. 

Figure 6: Running the SHOWRIN program 



HP3000 
INTERNATIONAL CONFERENCE VS03/22 
VIENNA 1987 

After pres.sing the return key, the system RIN table will be displayed 
with format in Figure 7 below. 

RIN 

' 

LP Syatem-wide, LOCK ONLY 

RIN Creating 
paaaword U1ername.Acctname PIN Jobnum 

Figure 7: SHOWRIN header display 

6:05 PM 

Job name 

Note that the top line contains the current system time, LP, and RIN 
selection. Since the logged on user has PM or SM capability, the RIN 
table will be checked for all accounts. This is noted with the 
'System-wide' literal. If PM or SM is not detected, then only the 
logged on account will be searched. This is noted with the 'Account: 
xxxxxxxx' literal. 

Several dispositions of the global RINs may be selected. The 'LOCK 
ONLY' option displays only those RINs that are currently locked by a 
process. The 'UNLOCK ONLY' option displays only those RINs that are 
currently free. The 'LOCK w/WAIT' option displays only those RINs 
that are currently locked by a process and the processes that are 
waiting on these RINs. The 'LOCK, UNLOCK, WAIT' option displays all 
entries in the table. 

When the print option is enabled, an asterisk (*) is placed to the 
left of the LP designator in the header. The asterisk is removed when 
the LP option is disabled. 

Entries found in the RIN table are displayed in ascending sorted 
order. For each entry found, the four digit RIN value, password, and 
creating user and account are displayed. If the RIN is currently 
locked, then the PIN, job or session number, and the job/session, 
user, and account of the locking process is displayed. An additional 
line is displayed with the PIN, job or session number, and the 
job/session, user, and account of any waiting processes. 

The SHOWRIN program has single character terminal reads enabled every 
20 seconds. Should no data be received, then a timeout occurs and the 
table is displayed using the same selection criteria. 

To continue with our simple example of the monitor program and two 
external programs, we must first acquire the global RINs. This 
requires that the GETRIN MPE command be executed for the values of 



HP3000 
INTERNATIONAL CONFERENCE VS03/23 
VIENNA 1981 

'MONITOR',_ 'PROGRAMA', and 'PROGRAMB' with the program values executed 
twice; once for the primary process RIN and second for the secondary 
pause RIN. 

Since the RIN values assigned by MPE are system dependent, I do not 
want to even suggest what they may be. However, using the SHOWRIN 
program, we may locate their values by using the •u• for unlock or 'B' 
for all entries within the account which you have created these RINs. 
Having performed this in my own account, I may use the SHOWRIN program 
as in Figure 8 below to locate the (currently) unlocked RIN values and 
the associated passwords. 

LP Account: BRUNO, LOCK,UNLOCK,WAIT 6:56 PM 

RIN RIN Creal ing 

' pauword Uaername.Aectname PIN Jobnum Job name 

----------------- --------------------------
87 PROCRAMA BENGE. BRUNO 

122 MONITOR BENGE.BRUNO 
126 PROCRAMB BENGE.BRUNO 
129 PROCRAMB BENGE.BRUNO 
139 PROCRAMA BENGE.BRUNO 

Figure 8: Locating all RIN entries for a specific account 

If the monitor, program A, and program B processes are initiated, then 
each program will lock its corresponding global RIN. Each process 
will await input by reading its associated message file. Figure 9 
below shows this initial state, whereby each RIN value is displayed 
with the locking process. 

S~at .. RJN Table LP Account: BRUNO, LOCK ONLY 7: 11 PM 

RIN RIN Creating 

' pauword Uaername.Acctname PIN Jobnum Job name 

----------------- --------------------------
87 PROCRAMA BENGE.BRUNO 153 IJ391 A, BENGE.BRUNO 

122 MONITOR BENGE.BRUNO 251 15445 BENGE.BRUNO 
126 PROCRAMB BENGE. BRUNO 121 IJ398 B,BENGE.BRUNO 

Figure 9: Monitor, program A, program B normal execution 



HP3000 
INTERNATIONAL CONFERENCE VS03/24 
VIENNA 1987 

A useful feature of the giobal RIMs discussed earlier is to use them 
for process control. If the monitor process were to lock the 
secondary pause RIN conditionally, programs A or B may be suspended if 
they attempt to lock the secondary pause RIM unconditionally. Figure 
10 below displays·this situation. You will note the previous entries 
as in Figure 9 f'or each of' the processes primary RIM. The additional 
entries are showing that the secondary pause RINs are owned by the 
monitor process executed by session number 445. Programs A and B 
executing from job streams are then executing an unconditional lock 
for the pause RIM. 

Sr•t .. RIN T•ble LP Account: BRUNO, LOCK ONLY 7: 22 PM 

RIN RIN Creating , pauword U1ername.Acctname PIN Jobnu111 Job na111e 

----------------- --------------------------
87 PROGRAM A BENGE. BRUNO 157 IJ402 A, BENGE.BRUNO 

122 MONITOR BENGE.BRUNO 159 15445 BENGE.BRUNO 
126 PROGRAMS BENGE.BRUNO 122 IJ403 B,BENGE.BRUNO 
129 PROGRAM& BENGE. BRUNO 159 15445 BENGE.BRUNO 

122 IJ403 B,BENGE.BRUNO 
139 PROGRAM A BENGE. BRUNO 159 15445 BENGE.BRUNO 

157 IJ402 A, BENGE.BRUNO 

Figure 10: Suspending programs A and B 

Figure 11 below displays only the pertinent information from Figure 10 
above in that only those RINs with processes waiting are displayed. 
This is effective in reducing the entries in the display to detect 
potential deadlocks. Looking closely at the entries in Figure 11 
below, we see that the primary RIM values are not included. 

LP Account: BRUNO, LOCK w/WAIT 7: 22 PM 

RIN RIN Creating , pauword Uaarname.Acctna111e PIN Jobnum Job name 
--~-------------- --------------------------129 PROGRAM& BENGE.BRUNO 159 15445 BENGE.BRUNO 

122 IJ403 B,BENGE.BRUNO 
139 PROGRAM A BENGE.BRUNO 159 15445 BENGE.BRUNO 

157 IJ402 A, BENGE.BRUNO 

Figure 11: Avoid deadlocks, display locked RINs w/waiting processes 



HP3000 
INTERNATIONAL CONFERENCE VS03/25 
VIENNA 1987 

Summary 

Local and global RINs may be used effectively for the monitor and 
control of processes within an HP application. If RINs are used in 
conjunction with the MPE message file facility, complete process 
control of initiation, termination, and automated recovery techniques 
can be developed. 

Global RINs can now be displayed quite easily with the SHOWRIN 
program. It is my hope that this program and/or a similar capability 
be incorporated into the HP Online Performance Tool (OPT/3000). 

Biography 

Benedict G. Bruno has been working with the HP 3000 family of computer 
systems for seven years. His experience includes working for 
Hewlett-Packard Company as a Systems Engineer in the Los Angeles 
Airport Sales Office, a Network Consultant for Information Networks 
Division in Cupertino, and a Senior Applfoations Systems Engineer in 
the Rockville Sales Office. The integration of local and global RINs, 
message files, SPL, and HP data communications products for several 
application systems in retail, electronic mail, and others have 
required his need to develop the SHOWRIN program. He is currently 
president and cofounder of S.T.R. Software Company where he has 
developed POS/3000 to provide unattended data communications 
application software. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE VS04/1 
VIENNA 1987 

PETER R. ACKERMANN, Attorney-at-Law, 

ORBIT SOFTWARE International, London 

THE LEGAL PROTECTION OF SOFTWARE IN EUROPEAN 

AND INTERNATIONAL LAW 

1 . Introduction 

Ever since software had become a marketable commodity in its own 

right and consequently was copied by others for profit, the protec-

tion of software has been an important issue. The last decennium has 

seen new specific copyright protection laws in at least ten coun-

tries, including Japan, Germany and the US. With the growing deve-

lopment of more and more sophisticated software into virtually every 

country and its mounting importance vis-a-vis hardware, no national 

legal system can allow itself to abstain from studying the question 

whether and how computer software should be protected. 

The UNESCO and the World Intellectual Property Organization (WIPO) 

have jointly considered all aspects of the protection of computer 

software at national and international levels in order to issue 

guidelines to national legislators who have yet to implement rules 

for this new field. WIPO has in fact in 1984 established the first 

technical classification of computer programs. 



HP3000 
/NTERNA TIONAL CONFERENCE VS04/2 
VIENNA 1987 

Most users of computer software have signed comprehensive licence 

contracts, containing non-disclosure clauses and regulating every 

aspect of their relation to the licensor. The drafting of software 

contracts is a lecture for itself. We are however not touching upon 

contractual relationships but are solely concerned with the situ-

ation between parties who have not signed one piece of paper. 

2. Definition of "Computer Software" 

What exactly is the object of legislation and jurisprudence, enacted 

and handed down for the purpose of our very protection ? Internati-

onal consensus on a definition has not been reached but perhaps the 

most concise definition is given in the US Computer Software Copy-

right Act, which describes a computer program as 

"a set of statements or instructions to be used 

directly or indirectly in a computer in order 

to bring about a certain result". 

3. Mode of protection 

There are no less than eight different forms of protection that one 

can distinguish in the various countries that have already dealt 

with the subject matter: 



HP3000 
INTERNATIONAL CONFERENCE VS0413 
VIENNA 1987 

- patents 

- copyright 

- trade secrets/confidentiality rules 

- criminal law 

- catalogue protection 

- civil law 

- protection against "slavish imitation" 

- protection against "enrichment without cause" 

3.1 At first sight, patents are often considered to be the natural 

way of protection for computer software, since patents and computers 

both are of a very technical nature. However, in most countries 

(e.g. West Germany, France, Italy and in the European Patent Act) 

the patentability of software is totally excluded. Several factors 

are responsible for this situation. Most countries limit patent 

protection to processes which are both novel and inventive. On one 

hand however, computer programs are not intended to solve problems 

in a novel way but computerize processes which more or less existed 

before. On the other hand, patent law is traditionally limited to 

processes of a physical nature and to physical products. Many com-

puter programs concern methods of organization and administration 

which do not bring about any physical changes. 

Under relatively severe restrictions, software can be patented in 

the USA. The restrictions, defined in a host of court cases, revolve 

around the underlying concept that a process may be patentable, 

natural laws are not. The discovery of a natural law or an algorithm 

does not convey a right to exclusive use thereof divorced of parti-



HP3000 
INTERNATIONAL CONFERENCE VS04/4 
VIENNA 1987 

cular useful applications. It has repeatedly been held that "patent 

claims that seek to preempt the natural laws on which science and 

technology are built are not patentable since they inhibit rather 

than promote development of science and technology". 

Japan, Holland and the UK also accept the patentability of software 

on the condition that it must serve a material process, or that an 

appartus to which the program has been applied has become novel by 

it. Apparently, the possibility of industrial application is the key 

to a patent as may be the case with software-driven robots. 

3.2 Copyright is the main form of protection for computer software. 

It is admitted in most countries. The US, the UK, West Germany and 

several others have already enacted specific computer copyright acts 

and legislation to that effect is pending in various others. 

All countries require that works, in order to be protected by copy-

right, must meet a certain standard with is usually called "origi-

nality". Software must be an "individual creation of the mind", it 

must have a certain uniqueness, i.e.it must be expected that another 

programmer performing the same programming task would inevitably 

come to a different result. That of course is bland theory, because 

in any court proceeding, this "inevitability" will be hard to esta-

blish. Protection under Copyright is not only given for the program 

itself but also for the steps leading up to it. Flow charts are part 

of the copyright, underlying algorithms again are not. (Exception: 

in the UK, where algorithms seem to be protectable under copyright 

provided that they have been laid down in material form.) 



HP3000 
INTERNATIONAL CONFERENCE VS0415 
VIENNA 1987 

Protectable is source-code and object-code, applications and opera-

tions software. Chips qualify for copyright protection in the UK, 

because the masks which are used are considered drawings, engravings 

or photographs. The US have enacted special legislation for the 

protection of chips which has a main feature of interest: If the 

chips are produced in a country that does not meet the reciprocity 

demands of the american legislation and are then imported, they do 

not enjoy protection under this particular act. 

3.3 Most countries do not prescribe any formalities for copyright 

protection; exceptions are the US and Spain. In fact, the Berne 

Convention on Copyright does not permit the requiring of formalities 

with respect to foreign works. If we mark our products with the 

famous c in a circle, that consequently means that we think to enjoy 

a copyright, not that we have one. It will always be the courts to 

decide upon the originality of the program. 

3. 4 The rules with respect to ownership vary from country to 

country. In principle, copyright is vested in the author and can 

either not at all (Germany) or only in a limited way be transferred 

to another person. Consequently, only exploitation rights of soft-

ware are exclusively or non-exclusively assigned to a third party. 

Almost all countries know a system by which copyright is vested in 

the employer if the program has been written by an employee or under 

contract. 



HP3000 
INTERNATIONAL CONFERENCE VS04/6 
VIENNA 1987 

3.5. The owner of copyright has the monopoly on producing, offering 

for sale and copying the software. Exceptions are found in the 

permissible copying for back-up purposes, laid down in law by the US 

and Australia and seen as "fair use" by other countries. Making 

single copies for private purposes my also be allowed if done for 

non-commercial reasons. 

3.6 The adaptation of a computer program into another language or 

for use on another make of machine will be considered an infringe-

ment of copyright if made for commercial reasons. US law allows to 

adapt a purchased copy to one's own computer. If however, the modi-

fication goes further and the program is rebuilt with a modified 

structure, it may not be an infringement but a new copyrightable 

product. The reverse-engineered product will under these circum-

stances probably also not be considered infringing. 

4. Trade Secrets and Confidentiality 

In principle, the law of trade secrets and confidentiality seems to 

be mainly available with respect to contractual parties, it cannot 

really be considered to be a form of third-party-protection. Trade 

secret law is not well suited to a mass market where confidentiality 

restraints are counterproductive to the author's endeavour to sell 

as many copies of his software as possible. Also, in an environment 

where employee mobility and entrepreneurship are common, trade 

secrets can hardly be protected. 



HP3000 
INTERNATIONAL CONFERENCE VS04/7 
VIENNA 1987 

5. "Computer Crime" 

is the keyword which is much quoted but there are next to no speci-

fie measures in the general penal codes and more often than not we 

read, that as software "thief" was acquitted of theft, embezzlement 

or other "general crimes" which were defined long before the 

computer age. 

Criminal sanctions of various forms have been introduced in most 

national Copyright acts. One can get up to three years in Germany 

for infringing copyright but I have never come across such senten-

ces. Once caught red~handed, the civil law provides plenty of 

punishment because in general, the software owner will get damages 

amounting to the profits he would have made, had he sold all the 

copies that were made by the infringing party. That looks sometimes 

as if everyone wculd be better off if he waited for a strong marke-

teer to nick his software and then reap the profits with the help of 

the courts later. 

Computer software may or may not be protected for the original 

author. The fact that it says so as soon as it is installed may 

justbe wishful thinking. As a ground rule, users should live on the 

proposition that the software they are finding on the market is 

protected; vendors should live on the proposition that it is not and 

that some technical means of protection is called for. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 

A PERFORMANCE COMPARISON OF HP3000 REPORT WRITERS 

By Roger Lawson 
Proactive Systems Ltd 
Central Court 
Knoll Rise 
Orpington 
Kent BR6 OJA 
England 
(Tel:0689-77933) 
(Telex:9413362) 

VS05/1 

Running reporting programs or procedures often consumes a high 
proportion of the cpu and IO resources of an HP3000 computer 
system. This paper supplies data on how the commonly used report 
writers compare on performance. Also it takes a specific look at 
HPs new Business Report Writer (BRW) and sees how it stands up 
against other report writers (Hewlett Packard have been promoting 
the new BRW product as the answer to all reporting requirements 
on HP3000 systems). Having recently had the opportunity to try it 
out (and compare it to other reporting products performance wise) 
I have collected some interesting data. 

Let me first declare that as I work for a company that produces 
an HP3000 writing product (namely Q-GEN), I will not attempt to 
present a full review of BRW or the other products - it would 
take more time than I have available to perform a full evaluation 
of each. However BRW particularly interested me because a couple 
of years ago I did an evaluation of QUERY, INFORM/REPORT (from 
HPS RAPID package), QUIZ (from COGNOS), ASK from COGELOG and a 
COBOL report writer (Q-GEN from PROACTIVE SYSTEMS). The 
evaluation was purely a comparison of their run time performance 
ie. how much load they placed on an HP3000 system when producing 
a typical sample of reports. To produce the data each sample 
report was written in each reporting language (not a simple task 
incidentally as it means you have to 1earn all the report writers 
and have a copy of the software on your system). The report 
procedures were then run against a medium size data base on a 
Model 44. The resulting figures were published in the HP JUG 
journal and presented in a couple of talks - a summary of the 
data is shown in Table 1 overleaf. 



HP3000 
INTERNATIONAL CONFERENCE VSOS/2 
VIENNA 1987 

Table ! 
Relative Performance in CPU seconds (COBOL=l) 

COBOL/ QUERY REPORT INFORM ASK QUIZ 
Q-GEN 

Test 1 1 2.1 1. 8 2.1 1.9 2.3 

Test 2 1 2.1 2.0 2.1 1.9 2.4 

Test 3 1 4.7 8.7 7.9 1. 9 2.2 

Test 4 1 5.0 N/A N/A 2.0 N/A 

Test 5 1 4.4 N/A N/A 2.0 2.0 

Notes. N/A= Not Available. Relative performance in elapsed times 
were very similar and are therefore not shown •. The tests range in 
complexity from very simple (test 1) to relatively complex (test 
5) - see end of article for test details. 

The figures highlighted what many people already knew. Namely 
that QUERY is a real machine killer, INFORM/REPORT are not much 
better, and that while QUIZ is better than QUERY it is still 
typically twice as slow as a reasonably well written COBOL 
program. Note that although claims have been made that 
INFORM/REPORT and QUIZ have been improved over the last couple of 
years since the original tests were done I doubt whether the 
figures would be significantly different today. Note also that 
the relative speed of the products does not vary much from one 
HP3000 model to another or between one configuration and another. 

Now Hewlett Packard have been saying to some users that •BRW is 
not only very flexible but it can also be faster than COBOL• ie 
its the answer to the system managers prayers. To test this out 
I simply did some more comparative tests. I took two reports (one 
simple, one complex) and wrote them in QUERY plus rewrote them 
using BRW - I also converted the QUERY procedure to a COBOL 
program using Q-GEN. The three versions were then run on one of 
our mailing list data bases on our Model 37. The results are 
shown in Table 2 overleaf. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

Relative Performance in CPU seconds (COBOL=l) 

Test 6 

Test 7 

COBOL/ QUERY BRW 
Q-GEN 

1 

1 

2.2 

2.9 

2.4 

1.9 

VSOS/3 

See end of article for test details. Relative performance 
on elapsed times were again very similar. 

Well the first surprise is that on a very simple report, BRW is 
slower than QUERY! I didn't believe this when I first saw the 
figures so I reran the test with a similar result. Now BRW has 
one useful feature in that it gives you a breakdown on $STDLIST 
of where it is spending the time when running a report - it 
appears that BRW is wasting a lot of needless time writing to and 
reading from a work file. 

At least on a more complex report BRW seems to be a lot better 
than QUERY - it is probably more comparable in performance to 
QUIZ but it is still nowhere near a COBOL program (even one 
generated rather than hand coded). 

Other comments - BRW has a very sophisticated, menu-driven report 
definition system with a compiler. I would have done more testing 
but the other users on our Model 37 complained that when I was 
running the report definition system, nobody else got a decent 
terminal response - as it takes a long time to step through the 
menus to produce a report this is not going to be a helpful 
feature on smaller machines (BRW seems to eat up a lot of 
memory). However if your other users can put up with it then BRW 
looks very powerful - but without doing the 4 day H/P training 
course I found it difficult to understand fully how to use the 
system from reading the reference manual. Even getting a copy of 
the manual from H/P proved difficult even though I was happy to 
pay for it - I had to borrow one from another user. BRW was 
written in Germany - it probably shows that in the number and 
comprehensive of the products facilities. One oddity was that I 
found I had to set up a dictionary for the test data base using 
DICTIONARY/3000. There is then a utility provided that is used to 
create an MPE file containing an extract of the dictionary - you 
can then throw away the dictionary (maybe H/P should provide 
short term rentals of DICTIONARY/3000 so that you don't need to 
buy it!). 



HP3000 
INTERNATIONAL CONFERENCE VS05/4 
VIENNA 1987 

If you are looking for a product as comprehensive as BRW then 
maybe the old RPG product is worth a look - it is certainly as 
flexible as BRW, is easier to learn, is industry standard and 
is well proven. 

Note that BRW has many good points but end-user report writer it 
is definitely not. Non d.p. staff will even have difficulty 
understanding the HELP screens within BRW. 

CONCLUSION 

As an alternative to INFORM/REPORT for sophisticated users who 
wish to use a data dictionary (and don't mind the associated 
cost) then BRW warrants further evaluation. As an alternative to 
the free QUERY product (or other third party products) then BRW 
does not look so exciting. The effort to learn the new product 
(apart from the time to rewrite old QUERY procedures) is too 
high. 

However QUERY is certainly slow - partly because of the 
interpreted nature of the product and partly because of the 
design of the record handling. Also it has certain limitations 
(such as lack of conditional printing and limits on the numbers 
of statements). To overcome these problems we developed a couple 
of years ago a compiler for the QUERY language which is called 
Q-GEN - it actually generates COBOL source code which it then 
links and compiles for you (or you can get the COBOL source and 
play about with it yourself). We also support extensions to the 
QUERY language such as an "IF" statement to do conditional 
processing, much higher statement limits etc. 

This approach gives you much improved performance as you can see 
from the figures above - for example one of the original 
applications was to reduce an overnight reporting run from 15 
hours (which meant the old version often did not finish until the 
next morning) to about 5 hours. 

It also gives you total flexibility because if the QUERY 
extensions provided in Q-GEN are not enough you can always modify 
the COBOL code. 

Even Hewlett Packard like the product - so far they are purchased 
about 30 copies for use in their own off ices in different parts 
of the world. 



HP3000 
INTERNATIONAL CONFERENCE VS05/5 
VIENNA 1987 

TEST DETAILS 

Tests l to 5 were run primarily on a Model 44 (with some 
repetition on a Series III). Tests 6 and 7 were run on a one 
megabyte Model 37 with.two 7914 disc drives (running U-MIT and 
TurboIMAGE). All tests were run in job mode with no other jobs or 
users on the system. 

Test l was a serial search of a detail dataset to retrieve 7000 
records out of 59000. Report was an unsorted list of the records 
with no totalling and limited editing. 

Test 2 was the same as Test l except that the records were sorted 
and only totals were printed (one level of sort). 

Test 3 was the same as Test 2 except that a single data item fr-0m 
another data set was printed in the report total lines (item 
obtained from another detail data set via a common master). 

Test 4 was a serial search of a detail data set to retrieve 13600 
records out of 92000 records. Report records were sorted and 
totalled at one level with an item retrieved from another data 
set as in Test 3. 

Test 5 was a serial search from a detail data set to retrive 6600 
records out of 59000. Report records sorted and totalled and data 
from a linked master data set included in the report totals. 

Test 6 was a serial read of 2731 records from a detail data set 
(out of 2732 records). The report was a simple list of two items 
from the data set with no sorting or totalling. 

Test 7 was a serial retrieval from two detail data sets linked by 
a common automatic master (2700 records in each data set). 1870 
records were selected for printing with sorting at 3 levels plus 
group totalling. Final report total, page numbering, heading 
lines etc also incorporated. 

About the author: Roger Lawson is the managing director of 
Proactive Systems - an HP3000 software company based near London, 
England. He has a first degree in engineering and a masters 
degree in Business Adminstration. Be has over 10 years 
experience of ·using BP3000s as analyst/programmer, dp manager, 
software supplier etc. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1981 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

What If ... You Didn't Wait For Spectrum? 

-or-

Squeezing the Last Bit Out Of Your HP 3000 

By Michael Shumko and Robert Green 

Robelle Consulting Ltd. 
8648 Armstrong Rd. R.R. No. 6 
Langley, B.C. Canada V3A 4P9 

Telephone: (604) 888-3666 

VS06/1 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

What If ... You Didn't Wait For Spectrum? 

-or-

Squeezing the Last Bit Out Of Your HP 3000 

By Michael Shumko and Robert Green 

Robelle Consulting Ltd. 
8648 Armstrong Rd. R.R. No. 6 
Langley, B.C. Canada V3A 4P9 

Telephone: (604) 888-3666 

VS06/2 

The problem. Nightly batch jobs are still running the next morning. Users are 
complaining that on-line response is terrible. In short, your HP 3000 is over-worked, 
underpaid, and about to collapse from exhaustion. 

The solution. Order a Spectrum: a Series 930 or 950. 

The problem with this solution. Neither machine exists yet. (Okay. In the lab. But if 
it's not on the showroom floor, it can't be bought.) What to do? 

The solution to the solution. We have done an informal survey of large HP shops to find 
out how the successful ones avoid topping out the HP 3000 line. What we found was not 
some "secret" formula, but rather a mundane, continuous, attention to the details of system 
performance. The successful sites still apply the long-touted answers for boosting 
performance, such as balancing use of disc drives. Just look in your magazines, 
newspapers and conference proceedings for all sorts of ways to improve performance. 

Here are some of the ideas these users mentioned for how to 'squeeze the last bit from 
your HP 3000'. 

I. use one cpu per problem (distributed processing). 
2. distribute an integrated solution over several CPUs. 
3. put heavy cpu work on PCs (word processing, graphics). 
4. upgrade to faster hardware (Series 70, LAN, forms cache). 
5. review overnight processing. 
6. use NOBUF tools and optimum block sizes. 
7. compile your fourth-generation applications. 
8. get OMNIDEX for fast on-line database searching. 

Not all of these solutions will apply to everyone. Many of these ideas are "old hat", but 
they work. A few of these ideas are novel - you may not have heard of them before. 
Some are not cheap (then again, neither is a Spectrum). If you're strapped for horsepower 
now, then these timely suggestions may give you the breathing room you need. Until 
Spectrum, of course. 



HP3000 
INTERNATIONAL CONFERENCE VS0613 
VIENNA 1987 

Tip #1 
Use One CPU Per Problem 

Problem. 

How do you add CPU power to a 3000 when you already have a Series 70? 

Solution. 

Use one CPU per problem, or application, or department. Don't try to crowd everything 
onto one computer. Instead, use a separate CPU for each major application, or give each 
department its own machine. That way, you make each application independent of the 
problems in other applications. If the Payroll application is a hog, there's no ;·,;;;;3~·n for 
the Accounting users to suffer. Using separate machines also allows you to tune each 
machine for its own application. 'Distributed processing' was the strategy most frequently 
mentioned in our survey of successful sites. Most give programmers their own machine. 

Examples: 

At Boeing, one of the large manufacturing systems has an 'update' machine and an 
'inquiry' machine. The 'update' machine has ISO users who are updating the database. 
No uncontrolled inquiries or reports are allowed on this CPU. The 'inquiry' CPU has a 
copy of last night's databa'Se from the 'update' CPU; on this machine they allow people to 
make inquiries and to run QUIZ. 

Longs Drugs, a large west-coast chain of drug stores, has 200 HP 3000s. An extreme 
example? Not really. True to the distributed processing ideal, each store has its own 
Series 37. These handle the main. pharmacy application, keeping track of prescription 
stock, filling orders, and checking for dangerous drug interactions. When required, the 
Series 37s use dial-up DS to exchange information with the head office Series 70s. 
Otherwise, they're stand-alone machines. Every machine has a Console Engine to let the 
head office know when problems occur. (In fact, the Console Engine was initially 
developed for Longs Drugs.) At the head office, Longs puts separate applications on 
separate machines. For instance, all the Personnel applications are on one Series 70, the 
Accounting applications on another. Development is done on a separate machine again. 

Consider another example, a company that sells supplies. They have 18 HP 3000s spread 
all over the world. Before the MIS manager went to work there, his philosophy was 
always 'get a bigger machine'. Then he went there, and they have a philosophy of 'getting 
the data down to the users'. So they have 3000s everywhere; every warehouse has its own 
small HP 3000. They were having a problem with FA/3000: they gave it its own Series 
S8. They don't even have a Series 70, and aren't budgeting for one until fiscal '88. 

Tools. 

If you go this route you'll want to make sure that you have the proper twill. to manage the 
network of machines properly. One type of tool is used to route spool files from one 
machine to another conveniently. 

Unispool from. Holland House is one example of this. This allgws you to have an 
expensive peripheral like a laser printer coonected to one mach.ine, and have more than 
one computer send output to it. 



HP3000 
INTERNA T/ONAL CONFERENCE VS06/4 
VIENNA 1987 

SStdlist Management software from NSD can also help; it checks spool files for error 
messages. This lets the computer look for problems itself, allowing the users to get on 
with their own work instead of baby-sitting the computer. 

If you setup a machine in a user department for unattended operation, you'll still have 
console messages to contend with. The Console Engine from Telamon attaches to the 
console and looks for specific conditions such as system failure messages, error conditions, 
and that sort of thing. If it sees that the system has run into some trouble it can either 
take action on its own (a 'pseudo operator') or it can dial the head office and notify the 
system manager. 

Resist &ettlng a bl&ger machine. 

You can always have that in reserve if you get in trouble. Get~ machine. The key 
advantage that users see, in addition to never 'topping out', is that you can push the 
machines into the user environment. You don't have to have a giant MIS. And when the 
machine is slow, it's because the users are running QUIZ reports. There are only a dozen 
users, so they can observe and figure it out, whereas on a Series 70 with 180 users, even 
the system manager doesn't know what's causing the problem. So you break it into 
smaller problems. Each machine is much less complicated, and I would guess, has much 
less problems. You will pay a little more for maintenance and raw horsepower, but you 
should be easily repaid in better user service. 



HP3000 
INTERNATIONAL CONFERENCE VS06/5 
VIENNA 1987 

Tip #2 

Distribute An Integrated Solution Over Several CPUs 

Okay, I accept the idea that I should have one application per CPU, but my application is 
an integrated solution. All of the modules access common databases and I don't have time 
to rewrite it (or I bought the package and I don't have the source code). 

Problem 

You can't split a single integrated application over two machines. 

Solution. 

Yes you can, if you are clever. 

AutoNet. 

Karl Smith of Softsmith has developed an ingenious, simple method of distributing an 
integrated application over several HP 3000s. Compaq Computers started in business a 
few years ago. To manage their manufacturing work, they used ASK's MANMAN system 
over dialup lines to a time-shared Series 42. Within weeks they had their own machine, 
then two, and so on. Their growth has been so dramatic that they have never had the 
time to customize ASK's programs -- they use them "as is". Compaq now runs its entire 
company on a network of 900 PCs and seven HP 3000s (no IBM mainframe). When their 
processing needs for MANMAN exceeded the power of a single Series 70, Tom Callaghan 
hired Karl to program a solution. 

Tom wanted to be able to spread the databases and files of the integrated MANMAN 
application over more than one HP 3000. Karl wrote an SL routine to intercept all calls 
to the FOPEN intrinsic. His routine, called Global FOPEN, checks the user's desired 
filename against a table of remote file-set names. If it doesn't find a match, Global 
FOPEN calls the real FOPEN. If it does find a table entry for the filename, Global 
FOPEN automatically gets the user a remote session with the same logon as his local 
session Junless he already has one), and calls FOPEN for the remote file. With this 
method, Compaq can easily distribute the ASK MANMAN package across several 
machines, with no changes to the application. Karl advises that there be a logical split in 
the application, where files may be moved. In the case of MANMAN, the three major 
components are purchasing, manufacturing and physical inventory. Users logon to the 
machine which contains the component they are interested in. This ensures that most of 
the database access is local, with only occasional access to files on the other systems. For 
more details, contact Karl at ("13) 332-3846 and ask about "AutoNet". 

The Inside Details. 

The software is not terribly tricky after all. The normal FOPEN is renamed to be 
HP'FOPEN, and their FOPEN routine is added to the system SL. When FOPEN is called, 
this routine determines which system the requested file resides on. If it's on another 
system, it just inserts the DS machine name into the device parameter, then calls 
HP'FOPEN. Nothing to it. If necessary, it opens a DSLINE and does a remote hello onto 
the other machine. In UB-Delta-1 the remote logon can be done automatically by NS as 
part of the DSLINE command, making Karl's routine even more vanilla. There will still 
be a remote CI process. All that is saved is the trouble of having to do the remote hello 
and remote bye. Another advantage is that this new feature takes one less NS socket. 



HP3000 
INTERNATIONAL CONFERENCE VS06/6 
VIENNA 1987 

Tip #3 

Put Heavy CPU Work On PCs 

Applications such as spreadsheets, graphics and word processing are notorious consumers 
of CPU time. These benefit from being on their own dedicated computers. PCs are a 
good choice, as a dedicated PC often performs better than a busy Series 70 on 
CPU-intensive applications. 

Word processing is another application which definitely should be on a PC. If you're 
running HPWORD or some other word processing package on your HP 3000, you're paying 
dearly for it. You should not allow any word processing on your HP 3000 unless it's 
dedicated to word processing. HP has been advocating this approach for a few years, and 
the development thrust of their software has been in this direction, with more PC-based 
software, and access software to upload and download the data. You don't necessarily 
need the latest and greatest integrated software for uploading and downloading. 
Reflection from Walker Richer &. Quinn will do the job fine. 

Example: 

Compaq Computers has some 900 PCs in their company. Instead of downloading raw data 
files from the HP 3000, they have summary files lying around which they download using 
Reflection, feeding them into Lotus or graphics or whatever. They do all their graphics 
on the PCs except for one giant run of 85 graphs in DSG, which comes at month-end on 
the laser printer. It ties up an entire Series 70 until it's over. They don't attempt to do 
anything else on that machine until the graphs are printed. But all of their other 
graphics, what-if graphics, presentation graphics, is done on the PCs. This keeps the 
graphics hogs off the HP 3000s. 



HP3000 
INTERNATIONAL CONFERENCE VS06n 
VIENNA 1987 

Tip #4 

Upgrade to Faster Hardware 

The Serles 70 Is a winner. 

People we talk to say that their Series 70s are terrific, especially when they're loaded up 
with eight or nine megabytes of memory. They have a lot more horsepower than a Series 
68. If you're on a Series 68 or smaller, you might consider going to a 70 instead of a 930 
or 950. The Series 70 is so much more powerful than a 68 that we have heard that it is 
impacting the market for the Series 930. 

When Longs Drugs upgraded one of their Series 68s to a Series 70, they went to U-MIT, 
Turbo IMAGE, and converted from Desk III to Desk IV all at the same time. At first 
they dWn.'.1 see any difference in performance. But then they discovered that Desk IV ran 
40% slower than Desk III! When they fell back to Desk III the system really took off! 
The extra power of the Series 70 masked the poor performance of Desk IV. Now that's 
horsepower, to be able to swallow up application problems as easily as that. When Boeing 
upgraded their TMS manufacturing machine from a 68 to a 70, they noticed a tremendous 
improvement in performance. Their 2-day backlog of batch jobs disappeared! 

Use LAN/3000 Instead of DS? A LAN will llQ1 reduce your system load, but users report 
that it offers much higher throughput than DS with just about the same overhead. You 
have to replace an INP with a LANIC, and string coaxial cable instead of regular wires. 
Bill Gates at Longs Drugs says that for the small price of 3% more cpu, a job which was 
taking 50 minutes over a 56 kb line using DS now takes eight minutes over the LAN. 
When Northern Telecom in Lachine went from DS to LAN, they got more communication 
throughput without noticeable increase of cpu overhead. They have three Series 70s, a 
Series 52, and two Series 9000s connected together in the same room. Besides being faster 
than DS it costs less, because they require only one LANIC per machine instead of many 
INPs. Using a 'vampire tap' they can add another machine to an active communications 
wire without affecting any other machines. 

7933XP drives with hardware cache seldom help and can actually hurt performance. 
Perhaps the Eagle XP drives will work better. They have 2 megabytes of cache space, are 
20% faster, and have reduced the "pep" overhead to one millisecond per access (from 6 or 
10 ms.). 

More memory can help, unless you already have 3 megs for caching. 

New CRTs with Forms Cache (2394) can Improve response time. 

New 9600-Baud Modems from Mlcrocom can make remote users smile. The Micocom 
AX/9624c modems understand HP's Enq/ Ack protocal and have worked well on our Series 
37 at Robelle. Remember, response time is perceived by the user, and a large part of that 
perception is not the processing efficiency of the programs, but the speed of the 
datacomm gear. 



HP3000 
INTERNATIONAL CONFERENCE VS0618 
VIENNA 1987 

Review Overnight Processing 

Successful Sites Discourage On-line Reports. 

If you allow users unlimited access to run reports on the production machine, then why 
should we feel sorry for you? You are getting the slow response that you asked for. 
Reports should run in batch, because that is where you can control the total number at 
any one time. 

The Nl1ht Time ls the Rl1ht Time. 

To ensure good response for on-line users, most of the successful sites we contacted had a 
policy of strongly curtailing the number of concurrent batch jobs allowed during the day. 
The 3000 will run just fine all night long, without anyone watching it. Everyone we 
talked to was shifting work from prime shift to graveyard. 

What To Do When Overnight Jobs Don't Finish? 

'Unfinished nightly jobs' is now a common complaint at HP shops, especially at month 
end (perhaps because people listened to advice to shift work to the evening hours). In our 
survey, we heard several methods for improving batch throughput: upgrade to a Series 70, 
get a separate CPU for reports, require department-head approval on job requests, reduce 
backup time, increase block sizes and, the most successful strategy, apply MR NOBUF 
tools wherever possible (as an HP SE said, "I have seen incredible speed improvement 
from front-ending QUIZ with SUPRTOOL. Software solutions to performance problems 
often show gains of 10 or 20 times. Hardware solutions, with no improvment in the 
efficiency of the underlying software, usually show gains of less than 1 or 2 times.") 

Backup Takln1 Too Long. 

Many people are spending 2 to 4 hours per night on backup. If you run out of night, 
there are ways to reduce backup time. Get high-speed tape drives. Look at BackPack 
from Tymlabs. HP's Copycat program and the FCOPY-FAST option of MPEX will do a 
high-speed disc-to-disc backup, after which you can let the users and jobs on again and do 
disc-to-tape backup at your leisure. Elbert Silbaugh at Boeing uses this method and keeps 
his system available 23.S hours a day. Another Boeing site in our survey wrote a 
privileged program to copy the database disc-to-disc while the users are still accessing it in 
read-only mode. Their system is available 24 hours a day. (Adager can also copy a 
database while it is open for read-only.) 



HP3000 
INTERNATIONAL CONFERENCE VS06/9 
VIENNA 1987 

Tip #6 

Use MR NOBUF Tools and Optimum Block Sizes 

Problem. One of the most common destroyers of system performance is the notorious 
serial scan. When you copy an enormous file, or reorganize a KSAM file, or select 100 
records to report with QUIZ by reading every entry in a million-record dataset, you are 
bogging down the computer. The default methods of doing a serial scan are extremely 
inefficient on the HP 3000. 

Solution. One of the most impressive ways to speed up serial I/0 is to use MR NOBUF 
(multi-record non-buffered, not Mister Nobuff). You can write your own code to take 
advantage of MR NOBUF access if you're careful, but you don't need to - you can 
purchase tools that do it for you. Popular tools which use MR NOBUF access are HP's 
DSCOPY (you Q!1.. use DSCOPY for copying files to the same system), HP's COPYCAT for 
file copying and backup, MPEX's FCOPY /FAST and Tymlabs' COPYRITE for file 
copying and duplication (powerful for KSAM users). Robelle's SUPRTOOL does MR 
NOBUF serial file access for IMAGE datasets (and any other file type) and Running-Mate 
replaces serial dataset reads in applications. 

The Power of MR NOBUF. 

We got a call a while ago from a fellow who didn't even know he had SUPRTOOL on his 
system, because it came bundled with another package he had bought. He found it, and 
the documentation, on his system so he started using it. He had a QUIZ job which 
normally took two hours to run, cruising through a huge database. A total novice, using 
the instructions in the manual he used SUPRTOOL to front-end his QUIZ report. The 
total time for this daily job went from two hours down to 15 minutes. 

In actual tests, SUPRTOOL reduces the elapsed and cpu times to copy disc and tape files 
by 6 to 34 times, depending upon the blocking factor and record size of the file being 
copied. On a Series 37, FCOPY will copy 100 records per second (50 seconds for 5,000 
records). A Series 68 boosts FCOPY to 400/second, but SUPRTOOL does 2,500/second, 
even on the Series 37 (25 times faster). 

One of the shops we interviewed still uses a service bureau for some big accounting 
merges in IBM batch. They're considering that if the Spectrum is big enough, they might 
use it for that. They used to have four service bureaus. Now they're down to one. They 
brought things in-house by giving them their own machines, finding packages like 
mailing-list software front-ended by SUPRTOOL. 

Block Sizes 

The default blocking factors (number of records per physical disc block) is usually wrong. 
For big batch disc files, the maximum block size is now about 14K words (REC•l4336), 
while the default is still the smallest block that will fit. The bigger the block, the faster 
the programs will run. For IMAGE databases the default block size is 512 words, as it has 
been since 1974. Many people we contacted in our survey were using 1024 words or more. 



HP3000 
INTERNA T/ONAL CONFERENCE VS06/10 
VIENNA 1987 

Tip #7 

Compile Your Fourth-Generation Applications 

Problem. Interpreted Transact, and other 4GLs, consume too much CPU time. 

Solution. Compile Transact source using the Fastran compiler. 

When Cathy Vanderburgh was at Macmillan Blodel, she wrote up her experiences with 
Fastran as Riding Herd on a CPU Hog; "We recently developed a Transact system which 
included a large (15,000 lines) and complex (10 screens) data-entry program. After 
installation, the response times for the program varied from slow when the machine (an 
HP3000/64 with MPE IV) was lightly loaded to abysmal when the machine was heavily in 
use. Yet none of the other users on the system were experiencing similar problems at any 
time. We ran OPT /3000 to observe the execution of the program. The CPU time needed 
to interpret the IP code plus the complexity of the program was causing the MPE 
scheduler to class the process as a 'CPU hog' and to penalize it by dropping its execution 
priority. The only way to improve the response time would be to reduce the excessive 
CPU usage. Fortunately, this story has a happy ending. We discovered a piece of 
software called Fastran, a product of Performance Software Group, that compiles 
Transact source code into an executable program. On evaluation, we found that a Fastran 
version of the program used 1/4 to 1/3 of the CPU of the original Transact program, 
enough of a drop to bring the response back to an acceptable level. The user now 
enjoys(?) the same response patterns as everyone else on the machine. And the moral of 
the story? Without Fastran, of course, the author of the original program would now be 
busily re-writing it in COBOL. Plenty of programmers have discovered the hard way the 
functional limits of tools like Transact." 

At CNR, where a large on-line application is written in Transact, compiling the 
application with Fastran led to a CPU reduction of over 60%, and a stack size reduction 
of 25%. Single-user elapsed run times did not improve much, but as more users were 
added, the reduced CPU requirements produced shorter elapsed run times. These numbers 
are for an 1/0 bound application where most of the time is spent in the database 
intrinsics and the file system; on CPU-intensive tasks the reduction can be considerably 
greater. 

At Kitsap County they use Fastran over Transact wherever possible because the programs 
run much faster. However, they have found a few cases that Fastran cannot handle. 
Also, if a program needs extensive table handling, they choose COBOL over Transact. 

Larry Kemp of HP Bellevue has found Fastran about 25% slower than COBOL and 50 to 
98% faster than Transact (an 8 hour job reduced to 8 minutes was the best he ever saw!). 
An alternative 4GL that he found to give excellent performance is Protos; it generates a 
COBOL program for execution. And, finally, no one says you can't rewrite your most 
frequently used program in COBOL (use system logging to find out which program it is). 



HP3000 
/NTERNA TIONAL CONFERENCE VS06/11 
VIENNA 1987 

Tip #8 

Get OMNIDEX For Fast On-line Database Searching 

IMAGE provides calculated read, chained read, and serial read. OMNIDEX adds record 
selection across multiple fields, generic retrieval and sorted sequential access, multiple 
keys in masters, and keyword retrieval on text data. It does this by adding another 
structure to IMAGE's: the binary tree. Traversing this tree is fast, fast, fast. 

As you may have heard, HP uses OMNIDEX in the Response Center to index bug reports. 
That is how they can find out instantly who else has had a system failure 916 on Series 
37 under T-MIT with a full moon. OMNIDEX indexes every word, not just the 
manually-assigned "keywords" as in the old SSB system. Doug Iles of HP says, "We could 
enter partial values and/or full values from several different fields and find 5 qualifying 
records out of 50,000 in seconds." 

The people at D.l.S.C. (the suppliers of OMNIDEX) distinguish between "informational" 
data - data that you want on the system for doing inquiries, and "operational" data - data 
generated by the transactions of the organization. For example, in an order processing 
system, active orders are operational; customer and vendor master records are 
informational. Operational data is volatile and lightly indexed. Informational data is 
static and can afford to be highly indexed for fast, low-cost retrieval. In a general ledger 
system, the transaction dataset is operational. You do data entry and editing with it. 
When the transaction is completed, you post it to the ledger dataset, where it becomes 
informational data. You no longer modify it (much), but you need to ask numerous 
complex questions about it. OMNIDEX gives you the ability to index everything in your 
information data. You can use batch time to updat.e the indeces, instead of on-line time. 

Users also apply OMNIDEX to replace KSAM The index-sequential part of OMNIDEX 
(called IMSAM) will reindex about I million keys per hour on a Series 70 (versus 20 to 30 
hours with KSAM). 

Example: 

Kitsap County Government is an HP site that gets a lot of work done without hitting the 
limits of the HP 3000 line. Jim Kellam, the manager, started with a Series 48, overloaded 
it, then added a Series 68 and left the 48 for development. He reports that OMNIDEX 
inquiries are unbelievably fast ('find all the voters named Smith' instantly replies '1200 
entries found'), but can be abused, just like any tool. For example, one of their programs 
opens all eight databases at the start, in case you might need them. Installing OMNIDEX 
implies an extra open and another extra data segment, the equivalent of 16 DBOPENs per 
user. The users sometimes get in and out of the application to access other software, so 
they pay this startup overhead more than once per day. The IMSAM part of OMNIDEX 
allows you to define concatenated keys with pieces from 3 different datasets. Jim feels 
that they may have overused these features, because he observes slow response with some 
of these bizarre keys. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



Abstract 

HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

MIGRATING LARGE SOFTWARE SYSTEMS 

FROM AN HP-3000 TO A DEC-VAX 

Alexander Kotys 
SIS Datenverarbeitung Ges.m.b.H. 

Reithlegasse 4 
A-1190 Vienna, Austria 

VS07/1 

Software portability is a major key in today's software 

development. Nevertheless almost every application is initially 

written to fit into a certain computer's architecture and 

environment. 

Later on, if you think of transferring your acquired know-how in 

form of source code to another computer system you will find that 

it takes lots of efforts to adapt or implement all the nice and 

tricky features that made life easy and comfortable on your 

initial computer system. 

This paper is intended to help you adapt software to be easily 

transferable to another adequate computer system and to reveal 

problems that might arise when moving existing well-running 

software to other computer systems. 

I'll try to share my experience from moving a large business 

application, consisting of about 250.000 lines of Cobol source 

code and numerous utility procedures written in different 

languages, from an HP-3000 to a Digital Equipment - VAX computer 

system. 

Finally I'll give you hints on developing standards and guidelines 

for writing software for 'generalized computers' keeping in mind 

that you actually have to implement this software on specific 

hardware and to integrate it with specific operating system 

utilities. 



HP3000 
INTERNATIONAL CONFERENCE VS07/2 
VIENNA 1987 

Introduction 

This paper is intended to be a case study of a migration projekt 

at SIS where I was heavily engaged in migrating a large online 

payroll system (called LGS) from an HP3000 to a DEC-VAX computer 

system. 

SIS is a Vienna based software house offering a broad range of 

standard software packages for the commercial market place. SIS 

has been working with HP computers for more than 10 years. 

LGS stands for "Lohn- und Gehaltssystem" which is the german term 

for "payroll system". The whole application consists of an online 

menu program enabling the user to select from about 150 functions 

and a batch program that can execute most of those functions 

during off hours. More precisely, all functions not requiring 

human interaction after accepting input at the beginning can be 

processed in batch. Batch job launching is one of the interactive 

functions. 

All our standard software packages, including LGS, make extensive 

use of HP standard software development tools, i.e. we exclusively 

use VPLUS for screen management, IMAGE for data management and 

COBOL'74 as programming language. Application programs do not 

directly call VPLUS or IMAGE procedures, but access them via 

standard interface routines written in SPL. 

Auxiliary routines to perform tasks like date manipulation, 

interaction with the operating system, numeric conversions, text 

formatting etc. available to any program are written in SPL and 

PASCAL. 

The big decision 

In the fall of 1985 management made the decision to broaden our 

customer base by offering LGS, that so far has been installed many 

times on HP3000 systems, on VAX computer systems. This decision 

was based on a feasability study which aimed at identifying 

suitable "candidates" for a successful migration effort. 

At that point it all began. 



HP3000 
INTERNATIONAL CONFERENCE VS07/3 
VIENNA 1987 

The HP3000 is the one and only 

After intensive discussions we declared our HP3000 as the one and 
only source development machine. That means, we would maintain the 
_sources of LGS only on the HP3000 and transfer them to the VAX for 

compilation purposes only. 

This was one of the most important decisions and mainly based on 
the following considerations: 

Being able to do source changes only once we could easily avoid 
developing different programs with certainly different behaviour 
and bugs. 

Furthermore we would not need a separate development team, 
therefore reducing personal needs, keeping all know-how together 
and guaranteeing the same high level of technical support for our 
customers regardless of the computer system they are using. 

Another consideration was to shorten the startup time by doing 
required source changes on the HP3000 using our well known 
development environment. 

Later we found out that this was not quite realistic, because it 
did not save us from thoroughly learning the development tools and 
operating system features on VAX that we needed to write the 
necessary transfer and source conversion programs. 

Bxplanation of terms 

At this point I feel it's worth while to explain some terms and 
abbreviations for those of you who might not be familiar with 
Digital Equipment computer systems, in particular with the VAX 
family. Since probably all of you are quite familiar with the 
HP3000, I'll try to explain terms used on VAX by giving you the 
corresponding terms used on the HP3000 wherever possible. 



HP3000 
INTERNATIONAL CONFERENCE VSOl/4 
VIENNA 1987 

The VAX family of minicomputers is essentially very similar to the 

HP3000 family, consisting of different models offering a very 

broad range of processor speed and computing power. The great 

difference is that all VAX processors implement a 32-bit 

architecture, i.e. a 32-bit bus structure as well as a 32-bit wide 

data and control path and registers. Similar is the extensive 

microcoded instruction set with numerous data types. 

The standard operating system is called VAX/VMS that corresponds 

to HP's MPE in being an online-oriented multiprogramming operating 

system able to handle multiuser, realtime and multistream batch 

applications. 

VMS, together with the VAX hardware, implements a virtual memory 

that is divided into pages of equal size. No segmentation exists, 

paging is done transparently to the user. Each page has assigned 

several attributes, such as a page type (code, data, etc.), access 

modes allowed for specific user classes and can be a process 

private, shared or system global page. 

VMS offers extensive commands to perform the different tasks. 

These commands can further be tailored by so-called qualifiers 

that apply to the whole command or to selected parameters only 

depending on their position within the command. Every token can be 

abbreviated to any shortness as long as no ambiguity arises. 

Other terms and abbreviations that will be referenced throughout 

this paper are RMS (Record Management System), the file system of 

VMS that handles sequential, index-sequential, relative and direct 

access files, terminal devices, mailboxes (corresponding to 

message files under MPE) as well as disk and tape devices just 

like the MPE file system does. 

FMS (Forms Management System) is one of the several screen 

handlers available under VMS. It is somewhat similar to VPLUS 

although less features are offered. This tool will be presented in 

a separate chapter later on. 

DBMS (Database Management System) is a CODASYL-compliant database 



HP3000 
/NTERNA TIONAL CONFERENCE VSOl/5 
VIENNA 1987 

system similar to IMAGE on the HP3000 in being a multilevel 

network database system. 

ROB (Relational Database System) is, as its name states, a 

database system that provides the user with a relational view of 

his data. 

DATATRIEVE is a query and maintenance language for data of all 

kinds. It is comparable to QUERY/3000 but has the advantage of 

being able to handle data stored in simple files, index-sequential 

files and different kinds of databases offered by DEC. 

COD (Common Data Dictionary) is a central repository for data 

about data.· It describes the relations between data components. It 

is used by DBMS, ROB and DATATRIEVE. 

Evaluating the COBOL compiler on YAX 

Immediately after installation of the VAX system and learning the 

principles of VMS and its subsystems we started evaluating the 

COBOL compiler to detect any differences to the one avaiable on 

the HP3000. 

So we transferred some small-sized and some rather large sources 

to the VAX using an asynchronous terminal line with a kermit 

program on each end. 

Since COBOL on VAX complies with ANSI'Sl standards we did not 

expect too many problems. And in fact, most of them arose out of 

the use of HP extensions to the COBOL 1 74 standard or the use of 

machine-dependent constructs like calling intrinsics. 

The differences found can easily be classified into several 

categories of which the most important are: differences in COBOL 

standard, HP extensions, DEC extensions and dependencies upon 

features of the HP3000. 

Differe:ices in COBOL standard are that the INITIAL clause of the 

PROGRAM-ID paragraph is required for the initialization of the 



HP3000 
INTERNATIONAL CONFERENCE VSOl/6 
VIENNA 1987 

local variables each time the program is called (that is analogous 

to using the $CONTROL DYNAMIC compiler option), and that the 

EXAMINE and the GOBACK statements are obsolete and have to be 

replaced by the INSPECT and the 

respectively. 

EXIT PROGRAM statements 

HP extensions are such as the INTRINSIC phrase of the CALL 

statement, support of secondary entry points, DISPLAYing upon the 

operator's CONSOLE as a built-in function, the way to enter 

character constants in octal format and the possibility to specify 

compiler options within the source program. 

All those extensions are not defined by the ANSI-COBOL standard 

and therefore are not available on the VAX compiler. At least they 

are not available the way they are on the HP3000. In general we 

found that the VAX compiler is much more strict in enforcing 

proper syntax. Let's look at an example: suppose you have some 

copies to do some simple but tedious tasks, like a series of move 

statements or some standard calling sequence for a subroutine, and 

you code them free of periods, so you can include them right in 

the middle of an IF statement, then a sample use could be: 

IF condition 

COPY modul-1. 

ELSE 

COPY modul-2 .. 

par ex. IF EVERYTHING-OK 

MOVE 

MOVE 

MOVE 

CALL "REPORT-SUCCESS" USING ... 

ELSE 

MOVE 

MOVE 

MOVE 

MOVE 

MOVE 

CALL "REPORT-ERROR" USING 

Please pay attention to the periods, the one behind "modul-1 11 just 

terminates the COPY statement, not the IF. The first period behind 

"modul-2" also terminates only the COPY statement, whereas the 

second period behind "modul-2 11 terminates the IF statement. 



HP3000 
INTERNATIONAL CONFERENCE vsom 
VIENNA 1987 

The same construct is possible on VAX too, but the standard says 

that after a period there must be a space, so the VAX compiler 

issues an error message indicating that there is no space between 

the two periods. 

So on VAX the second COPY statement must look like 

COPY modul-2. • 

Strictness of the VAX compiler can be seen as laxity of the HP3000 

compiler as well. In several instances the HP3000 compiler does 

not care too much about ANSI, it accepts paragraph and section 

names that begin in area B (after column 12), occurring data items 

defined as level 01 items and even accepts sections without 

paragraphs. This 

certainly is a 

last problem 

left-over from 

arises in many programs and 

the early times when we started 

programming in COBOL. We did not use sections in those days, our 

programs were made up of paragraphs only. Later we changed the 

paragraphs to sections to avoid the unreadable and error-prone 

PERFORM THRU construct, but forgot to insert paragraph names after 

the section headers. Since this does not bother the HP3000 COBOL 

compiler this has not been a problem until now. 

Of the machine dependent features used within our COBOL programs 

only one is important enough to mention: the use of the condition 

code. It is returned by many operating system routines to indicate 

success or failure of the called routine. This would not bother us 

too much since we use interface procedures to most 

routines, but unfortunately we ourselves wrote routines 

return a completion status through the condition code. 

system 

tha'.t 

Since there is no direct equivalent of the condition code on VAX 

we had to rewrite those procedures giving them one more parameter 

where they could return their completion status according to 

standard rules. 

As DEC extensions to ANSI-COBOL I only want to mention support of 

statements to drive the DBMS database system, pointer and floating 

type data elements and an extensive ACCEPT/DISPLAY facility with 

full terminal enhancement and data conversion support. It does not 



HP3000 
INTERNATIONAL CONFERENCE VSOl/8 
VIENNA 1987 

make sense to discuss this aspect any further, since those 

features are certainly not used by our programs and we will do our 

best to avoid the need of using them in the future. 

The automatic source code converter 

Due to having several source constructs that cannot be equally fed 

into the COBOL compilers on the HP3000 ~nd VAX respectively, we 

decided to provide some means of automatically converting sources 

coming from the HP3000 to meet the requirements of the COBOL 

compiler on VAX. 

Contained within the procedure that transfers the source code is a 

program that changes the SO-bytes card images to variable text 

records, deletes line numbers, inserts paragraphs after section 

header where needed, commentizes the definition of the CONDITION 

CODE, replaces apostrophs ("'") by underscores (" ") within 

external entrypoint names, adapts COPY statements to reference 

single files instead of members of a library, deletes $CONTROL 

compiler options, inserts the INITIAL clause into the PROGRAM-ID 

paragraph and flags several other constructs that are known to 

cause problems but cannot be changed automatically. 

Analogous to the source code conversion program we needed a tool 

to adapt our copylibs to our VAX-specific needs. This was easily 

accomplished by another program that puts each modul into a 

separate file within a special directory. We prefered this method 

rather than using a text library because we found that it was 

easier to handle within the source program. 

The screen handler 

Things look great so far ! But with a bunch of compilable sources 

you still are far away from having a running software package ! 

Therefore we next looked for a replacement of VPLUS to handle all 

input from and output to the terminal screen. 



HP3000 
INTERNATIONAL CONFERENCE VS0719 
VIENNA 1987 

We started evaluating some of the terminal screen handlers 

available under VMS and tried to rate each one at internal 

structures, fulfillment of our needs, ease of customization to 

provide special features and last but not least, costs per 

installation. The final decision was in favour of FMS. 

FMS was selected for several economical and technical reasons. 

FMS is in its structure very similar to VPLUS. It offers an 

interactive forms editor and stores forms in a form library 

(equivalent to our forms file). Its runtime system consists of a 

very complete set of subroutines to perform the different tasks 

you would expect a good screen handler to do. 

On the other hand some features of VPLUS are not covered by FMS, 

par ex. processing specific;i.tions and append forms. But both of 

these "missing capabilities" are no restrictions for us. Since 

introduction of family forms we changed all our head and append 

forms to families, and as to processing specifications, for a long 

time we wanted to move them into the COBOL code to speed up 

processing and to be able to react to input errors in a program 

dependent way. Now we took the chance and did it. Not only is the 

message "field can only contain digits" bad enough for a 

german-speaking country but even the german translation in general 

provides the operator with too little information. In several 

cases the ability to enter non-numeric data into a field depends 

on other parameters set by the application manager, therefore you 

have to inform the operator that right now he cannot enter 

non-numeric data while on other occasions he can do so. 

Developing interface routines to FMS 

After having made the decision to use FMS we had to write routines 

for our programs to access the FMS subsystem. Since we do not use 

the VPLUS intrinsics directly (there are only a few programs that 

make an exception to this rule) we had to implement only our 

interface routines instead of all VPLUS intrinsics along with the 

same set of interface routines calling them. 



HP3000 
INTERNA TJONAL CONFERENCE VSOl/10 
VIENNA 1987 

We checked all features of VPLUS we used and could classify them 

into the following groups: features directly mappable to FMS 

calls, features supportable through "own internal management" and 

a sequence of FMS calls, and features not supportable at all. 

Obviously the easiest group to deal with was the one that contains 

the directly mappable functions like opening forms libraries, 

loading forms and displaying them on the screen along with the 

appropriate data. 

Other tasks like getting input from the operator were not so easy 

to accomplish because VPLUS is strictly block mode oriented while 

FMS is not. Yet we needed a block mode-like behaviour since we did 

not want to change our programs to accept and process every single 

field. Therefore our interface routine that sollicits operator 

input does quite a lot of work in simulating block mode. It has to 

prompt for each input field in screen order, has to check for 

primary field attributes (par ex. numeric-only fields, required 

fields), has to provide a means of moving the cursor around the 

screen and finally, has to perform data alignment operations 

depending on the field type. As to cursor movement, up to now we 

only support the left and right cursor keys, the forward and 

backward tab keys, a clear field key and the function keys, of 

course. 

For the future we plan to support every cursor movement and 

special function key that exists on the keyboard. 

Another interface routine that must perform what I call "internal 

management" is the one that emulates the VSETERROR intrinsic to 

indicate that data entered into a field is invalid in any sense 

and provide the operator with an appropriate error message, 

regardless whether the error has been detected by the input 

routine itself or later by the application program doing further 

input validation after form input has been completed. 

Since it showed a negative impact on performance to reflect every 

change of data or enhancements on the terminal screen immediately 

we followed VPLUS implementing one bit per field to indicate 

whether this particular field is in error or not. Immediately 



HP3000 
INTERNATIONAL CONFERENCE VS07/11 
VIENNA 1987 

before new operator input is requested the screen is updated to 

reflect new enhancements as well as new data. Every field in 

error is then displayed using the global error enhancement, the 

other fields being displayed with their normal enhancement as 

specified in the form definition. 

We chose tha same strategy for optimizing the use of form 

families, a concept not known to FMS. Since all members of such a 

form family share the same layout it is not necessary to repaint 

the whole form on the screen when changing from one member of a 

family to another. All form specific information like field 

enhancements, field types and processing types (i.e. display-only 

or input field) is kept in an internal table provided by FMS but 

used by our routines only. 

So the algorithm outlined above could easily be applied to forms 

belonging to the same family. From the point of FMS there is only 

one form on the screen whose fields change their enhancements 

every now and then. The decision whether to prompt for a certain 

field is not made by FMS but exclusively by our input routine 

which knows at each moment whether a field can accept input 

currently or is a display-only field. 

Automatic conversion of VPLUS forms to FMS readal>le files 

One of the nicest features of.FMS, one I would like so much with 

VPLUS, is the ability to produce a simple readable text file out 

of a standard FMS form and vice versa, i.e. to translate such a 

text file describing a form in its details to the appropriate 

internal representation. 

That was the way to transfer our VPLUS screens to the VAX 

We wrote a program on the HP3000 that displays each form on the 

screen, reads it from there, analyses field and text positions, 

gets various information from several VPLUS info calls and mixes 

all that stuff together to produce a file that FMS can translate 

into a form. 



HP3000 
INTERNATIONAL CONFERENCE VSOl/12 
VIENNA 1987 

Another very nice feature of FMS that made it possible to provide 

our routines with all necessary information to emulate VPLUS is 

this internal table I mentioned above. It is called NAMED DATA. 

For FMS NAMED DATA is just a bunch of strings of up to 80 

characters that provide a form with application dependent 

information. This information is not bound to any object within 

that form. It can be accessed through two different keys, one 

being just an ordinal number while the other is an arbitrary name 

of up to 31 characters selected by the user. 

What more do we need to access fields the way VPLUS does ? 

The forms conversion program provides such a NAMED DATA for each 

field in the form. It stores field enhancement, field type, 

processing type and the VPLUS field name for documentation 

purposes. 

When prompting for input the screen order of the fields must be 

known to jump right back and forth. This can easily be 

implemented using the ordinal number called field index that 

starts with 1 and consecutively increases by 1. Thus, jumping to 

next input field simply means reading the next field's NAMED DATA 

and checking if the field processing type stored within says that 

this actually is an input field. If this is not true the input 

routine has to continue with the next field until one is found 

that meets this criterion or no more fields exist in the form. In 

the latter case this means that input is finished and control 

should be returned to the calling program. 

When a program wants to put data into a certain field or to 

retrieve data that already is in this field or to indicate that a 

field is in error it must provide the correct field number 

assigned by VPLUS. We implemented this access method by 

constructing a special name for each NAMED DATA consisting of a 

fixed string (like "F$") followed by the VPLUS field number. 

Every FMS call that references a field can identify it either by 

supplying the FMS field name or the field index that is equivalent 

to the screen order index. Taking as an example the emulation of a 



HP3000 
INTERNATIONAL CONFERENCE VS07113 
VIENNA 1981 

VSETERROR call that supplies the VPLUS field number our 

corresponding routine would first construct the appropriate NAMED 

DATA's name out of the VPLUS field number, retrieve it and call 

the FMS procedure FDV$AFVA (that stands for Alter Field Video 

Attributes) referencing the field through the field index being 

equal to the NAMED DATA's index. 

Restricted use of VPLUS features 

As mentioned before, FMS does not cover all features of VPLUS we 

use in our forms files. Equally not every feature not supported 

directly by FMS can be emulated by our own interface routines. 

Therefore we defined a list of VPLUS functions that we intended to 

support on VAX. This list has been held rather short and imposes 

restrictions on the use of VPLUS within our applications. On the 

other hand it will facilitate migration to other forms handlers 

since we expect to find almost all defined functions. 

The data management system 

Selecting a data base system we proceeded very similar to the way 

we decided about the screen handler. But the result of this 

subproject was very different. 

Again we first looked at databases offered for the VAX family. 

Almost everything exists to please your mind, from simple files 

over a hierarchically organized database up to the heights of a 

true relational view of data. 

But all these systems have their drawbacks: they offer many more 

features than can be used by our applications and, most important, 

they are quite expensive. 

Another reason for not using an existing database system was to 

stay as independent as possible from the concepts and strategies 

of hardware manufacturers and software suppliers. 



HP3000 
INTERNATIONAL CONFERENCE VSOl/14 
VIENNA 1987 

A»alysis of IMAGI features use4 by our application proqrmps 

Migration of IMAGE applications does not require database systems 
with extensive features. IMAGE is one of the most stable database 
systems I have ever seen1 but it is a rather simple database 
system, as well. 

Analogous to VPLUS we access 
routines with integrated error 
routines are enough to cover all 

IMAGE databases through interface 
checking. Eight such interface 
operations possible within IMAGE. 

Let me give you a very brief description of each interface 
routine. 

The most important one is called RETRIEVE, it interfaces to DBGET 
~nd is used to read data entries from the database to the 
program's buffers. Seven different access methods are supported 
through DBGET (i.e. serial, chained, keyed, direct). 

Chained RETRIEVEs require a call to LOCATE (the equivalent of 
DBFIND) to set up chain pointers while serial RETRIEVEs require a 
REWIND call to reposition the current record pointer back to the 
beginning of the dataset. 

Data maintenance procedures are ADD, DELETE and MODIFY1 their 
names are self-explanatory. 

Concurrency is handled by the procedures LOCKSET and UNLOCK. As 
their names imply we restricted ourselves to dataset locks only, 
not making record or chain locks. 

DBOPEN, DBCLOSE and DBINFO are the only IMAGE intrinsics directly 
called, but only the main program is allowed to call the first two 
of them and only two other programs need to call DBINFO. 

Development of llDM, a BMS base4 DBMS 
with the same interface as to IJIAGB 

In developing a DBMS we decided to take the simple, straight 
forward approach. Our main goal was to provide all features of 



HP3000 
INTERNATIONAL CONFERENCE VSOl/15 
VIENNA 1987 

IMAGE we use rather than implementing all features IMAGE has. When 

support of a certain feature turned out to be very difficult to 

implement we rather decided to restrict its use within the 

application programs. 

Chain length returned by LOCATE (i.e. DBFIND) was such a feature. 

Certainly we could have done it like IMAGE recording the number of 

corresponding detail entries along with the master entry, but we 

decided to dismiss it to avoid performance degradations. 

To provide an IMAGE-like behaviour for our data files we decided 

to use index-sequential files as supported by RMS, the standard 

file system on VAX. It offered the best base with regard to 

functionality. Every dataset is put into a separate file and all 

the interface routines mentioned above are supported. 

Since IMAGE is a two-level network database and our implementation 

is along the same lines we called it Network Data Management, NDM. 

Clinging to our main decision to provide all interfaces as closely 

to the HP3000 as possible we wrote a program which interpreted 

exactly the same database schema file as used on the HP3000 to 

build all necessary file and data descriptions, data files and 

common data dictionary entries. 

Keys for master datasets simply comprise the key item. No 

duplicates are allowed since they are forbidden in IMAGE, too. 

Keys for detail datasets are constructed combining the respective 

search item with the sort item if one exists. We did not implement 

the extended sort feature of IMAGE because we observed very large 

keys. This was due to improper positioning of sort items within 

the dataset definitions resulting in a large number of items 

qualifying for extended sort. Rather we enhanced the schema syntax 

by adding an extended sort option to specify the last sort item in 

addition to specifying the first one as used by IMAGE. 

This enhancement was done by adding special comment entries to 

allow these changes to be done on the HP3000. IMAGE just ignores 



HP3000 
INTERNATIONAL CONFERENCE VS07/16 
VIENNA 1987 

these comment entries, but our schema processor interprets them 
and takes the appropriate action. 

Serial RETRIEVES are implemented as serially reading along the 
primary key with the end of file condition being as usual. Chained 
RETRIEVES use the key specified by the last call to LOCATE and 
read serially along this particular key. The· end of chain 
condition is raised whenever the end of file is reached or the 
search item part of the RMS key changes. 

considerable effort was necessary to compensate for the inability 
of RMS to serially read backward along a key. Therefore the 
schema processor has to define two keys for each chain, the first 
one as you would expect it, the other one to collect exactly in 
reverse order. To guarantee proper sorting sequence within 
duplicate keys we added a date-time field to each key in order to 
achieve unique keys. 

Later on this double key technique was made selectable per chain 
due to performance impacts especially when adding many records to 
a dataset. Once again this selection was done through a special 
comment entry in the schema. 

One of the next releases of RMS will support backward reading, 
thus, we will be able to completely eliminate these additional 
keys. 

Restricted use of IMAGB features 

I have just mentioned that we implemented only a subset of IMAGE, 
leaving out advanced features which are not needed by our 
applications. This led to a strict definition of the IMAGE subset 
allowed for the bulk of our application programs. Programs which 
perform very special tasks may rely on features not supported by 
our definition, but going beyond the defined limits requires these 
programs to be flagged as not being directly transferrable. 

Some restrictions we imposed had no impact on our programs. They 
restricted only the use of features we did never use in our 
programs. 



HP3000 
INTERNA T/ONAL CONFERENCE VS07/17 
VIENNA 1987 

Since all our standard applications are self-contained and provide 

every necessary function from data entry to reporting there has 

never been the need to use data security at item level or multiple 

user categories with different passwords. User authorization is 

controlled by a master user of the application instead of a 

database administrator and security checking is done by the 

application programs themselves. 

Also locking periods are held as short as possible, so we could 

restrict ourselves to loc~whole datasets only. 

Some restrictions caused source changes to our programs and, as 

stated at the beginning, we performed them on the HP3000 in order 

to maintain only one source version. This will certainly be the 

method of choice for all future changes as well as for migration 

to other computer systems. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

THE OPERATORLESS HP3000 

(Fact or Fiction?) 

HP3000 International Conference 

Vienna 1987 

9'CIHIWUTT 
~PACKARD 

Henk Alblas 
Hewlett-Packard (Canada) Ltd 

6877 Goreway Drive 
Mississauga, Ontario, L4V 1 MB 

SB09*/1 



HP3000 
INTERNATIONAL CONFERENCE SB09"/2 
VIENNA 1987 

INTRODUCTION 

THE OPERATORLESS HP3000 - "FACT OR FICTION"?. The answer to this question is probably 

yes meaning that in certain scenarios, it is a fact and in other scenarios it is not possible to run the 

HP 3000 operatorless. Also, it depends on the definition of an Operatorless System, as certain 

tasks that can not be automated can be qualified as operator or end user tasks. These tasks are 

typically peripheral operations such as loading paper in printers or mounting cartridge tapes or 

reel-to-reel tapes on tape drives. However, the objective in operations automation is not 

necessarily to eliminate operator tasks completely. It can also be aimed at eliminating the need for 

a human operator at night, minimizing the amount of time required for operations tasks or 

minimizing the operator expertise level such that no special personnel is required. 

The HP 3000 family members have always been recognized as systems that are easy to 

operate. This means that the amount of operator attention required for an HP 3000 is typical!~ far 

less than of some competitive systems. But HP 3000's have grown in the number of tasks that 

they perform and in many sites, multiple systems are installed. These facts combined with the fact 

that labor costs for computer professionals are very high has led to the need for more 

organizations to look at operations automation. 

Costs are indeed the main reason why we look into the process of making computer systems 

operatorless. Reduced operations staff, of course translates directly into cost savings. However, 

there are other benefits to operations automation. If done right, increased up time, higher system 

utilization and a more consistent environment will also result from this process. These factors are 

also cost savings, but are more difficult to quantify in monetary terms. 

There are of course other scenarios where an operatorless environment is a must. If the HP 

3000 is installed in an end user department or as part of a network in branch offices or retail stores 

of a large organization, local operator expertise will normally not be available. Here, unattended 

operations or at least operations whereby the expertise level of the operator is reduced, are 

required. Typically, in such cases there is a support group implemented at a central site to monitor 

and support the systems. 



HP3000 
INTERNATIONAL CONFERENCE 5809*/3 
VIENNA 1981 

What are the components of operations automation? To achieve operations automation there 

are four areas we have to address. Firstly, batch processing has to be looked at to ensure that 

batch activities, both in the daytime as well as night, are performed and that if error conditions 

occur, proper recovery procedures are taking place. The second component is system backup. 

To ensure that the system is protected against fatal errors, system backups will have to be 

performed on a regular basis. This ties in with the third component which is system integrity. 

Maintaining the system's integrity for a system where there is no operator or reduced operator 

attention requires some additional measures. The final component of operation automation is 

remote operations and maintenance. Realizing that no environment is completely static and 

knowing that not all error conditions can be anticipated, it is required that corrective action can be 

taken. Normally this will take place in a "remote" fashion. 

In the rest of this presentation we will be looking at these four components and I'll be trying 

to identify the issues, provide you with generic solutions to these issues both utilizing standard 

facilities and commands, as well as identifying functionality provided by third party software and 

hardware vendors. The intent of this paper is that it will provide you with a starting point to build 

upon in the process of automating your operations. 

NETWORKED AND STANDALONE SYSTEMS 

Before we look at the individual components of operations automation, we have to realize that 

there are differences between stand alone environments and networked environments. In a 

network environment, typically a central node, or head office system does provide for coordination 

of the network and ensures that the remote systems are monitored. This also means that the 

central node location is typically staffed with human operators. The remote locations in these 

networks are very similar and the configurations identical. The central node may be permanently 

linked to the remote locations or communications may be in place through dial-up links. In a 

smaller network the central node may still be in place but in this case, this node may not be 

staffed. Here the central node can still monitor the remote locations, however if the central node is 

interrupted, the operations of the remote systems may also be jeopardized. In this case an alert 

should go out to technical support. In a stand alone system environment it is also necessary that if 

an irrecoverable error occurs an alert should go out to the appropriate technical support person, 

this being the system manager or an on duty person. I'll come back to this remote alert scenario 

when I talk about remote operations and maintenance. 



HP3000 
INTERNATIONAL CONFERENCE SB09*/4 
VIENNA 1987 

BATCH PROCESSING 

Let's look now at the automation of the batch processing activities. In most installations, 

batch jobs are run throughout the daytime in limited quantities and the major batch processes take 

place overnight. The decisions that have to be made in a batch processing environment are when 

to run the batch job, under what conditions, and if an error occurs what corrective measures to 

take. MPE facilities to aid in this process are the STREAM command, special JCW's, and 

conditional statements available to job control. The STREAM command allows for streaming of a 

job based on date and time or it can be scheduled in a certain amount of time from the moment 

streaming takes place. Even day of the week or days from the end of the month are options that 

can be used to determine the proper run date and time for the batch job period. This In 

combination with special JCW's that provide current date, time and day of the week allow for a 

very flexible scheduling mechanism. The conditional IF statement allows for decision making 

within the job stream. The IF can test JCW's, including JCW's set by user programs or HP 

subsystems; based on the results of this test different paths through the job stream are taken. Job 

streams can schedule other job streams to continue processing or to take corrective action. The 

job stream can even re-stream itself for a time that allows for the corrective procedure to complete. 

Examples of some of these job stream facilities can be found in the communicator for T-Mit and 

later versions of MPE. 

Not many job streams utilize what I would call typical online commands. These commands, 

such as LISTF, can be used to determine the flow of the job. The way the LISTF command would 

be used in this case would be to issue a LISTF for a specific file and subsequently to test the JCW 

CIERROR for its value. This JCW will indicate if the file was found (CIERROR 0) or that the file 

was not found, CIERROR 907. Of course this is only a simple test and would not indicate to the 

job stream if the file is currently opened by another process. However it shows how some of these 

commands can be utilized. 

In using standard MPE commands and utilities, HP 3000 users have found limitations. One of 

these is the inability to intercept jobs streamed directly by the user or an application package or 

program. Potentially this job could collide with other scheduled job activities. Other limitations are 

the lack of flexibility in a dynamic environment to check all the parameters and also the fact that it 

is difficult to allow job streams to issue console commands such as ABORT JOB and LIMIT. 



HP3000 
INTERNATIONAL CONFERENCE 5809*/5 
VIENNA 1987 

Because of the above mentioned limitations, third party job management or job scheduling 

packages that address these are quite attractive . Also these products provide features not 

mentioned here in most cases as well as an easy to use interface to set up the operating 

environment. Make sure to include in your evaluation of vendors, attention to their ability to provide 

ongoing support. This is especially important where privileged mode facilities are used, which is 

often the case with the products referred to here. 

When something goes wrong the normal course of action should be an automated recovery 

procedure. This assumes that the point of failure and the reason for it is predetermined or at least 

that a catch all test was satisfied. If the failure and corrective action cannot be anticipated or 

recovery requires manual operations such as mounting backup tapes, an automated recovery may 

not be possible. At that point it is important that, depending on the urgency of this job stream, that 

the process be aborted or an alert sent out. Again, I'll come back to the alert in the remote 

operations and maintenance section. 

As mentioned before, the job scheduling environment should cover both day and night time. 

In the day time, typically, some jobs will be executed. Also it could be made part of the batch 

processing activity to initiate on line user access. The MPE STARTSESS command can be used 

for this purpose. This would eliminate the user having to log on to the system. Of course security 

measures have to be taken, for example the first screen of the application should ask for the 

password. An example of an application that could be used to provide this as well as allowing for 

applications to run from that environment is HPDeskmanager. Note that version IV of 

HPDeskmanager is required to run applications from within this product. 

At the end of the day again a batch process could take responsibility for shutting down the 

applications. Of course, procedures should be in place to allow users sufficient time and warning 

before the actual shutdown occurs. This automatic startup and shutdown of activities will also 

increase the consistency towards the end user of the availability of these applications. 

Unattended printing may be a problem. Printers are mechanical devices and printer jams are 

not a thing of the past yet. In addition to this printer requirements as far as non-standard 

stationery goes also have to be met. This means that even if overnight printing takes place it is 

important to ensure that sufficient disk space is available for all spooled outputs that could be 

generated overnight. This in case that the printer would jam or be unavailable throughput the 

night. Printing of documents that require special forms should be done in the day time. All this 

assumes that the paperless office is not a reality yet. If your office is typical, you know that today 

more paper is generated than just five years ago. 



HP3000 
INTERNATIONAL CONFERENCE 5809*/6 
VIENNA 1987 

SYSTEM BACKUP 

The next component of operations automation I want to talk about is the system backup. We 

all realize that the value of the information stored on our computer system in the form of data is 

very large. To protect this data against loss in the case of an emergency, frequent system backups 

are required. A system backup strategy has to be chosen that allows for recovery of data up to a 

point where transactions can be re-entered or where the loss of those transactions is allowable. A 

typical backup strategy is a weekly full backup plus partial or incremental backups daily. I won't 

go into a discussion of the tradeoffs between the frequency and size of system backups versus the 

impact on operations. However from an operations automation standpoint, it is beneficial to try to 

minimize the size of the system backups. The backup volume is important because of the fact 

that the different backup media have only a limited capacity per volume. If this limit is passed a 

more expensive solution is required or even manual operator intervention is needed. The different 

backup media are magnetic tape, cartridge tape, cartridge autochanger, and disk using 

HPCopycat. The amount of information stored on the different media varies: magnetic tape -

approximately 30-40 megabytes per reel at 1600 BPI and approximately 130-140 megabytes per 

reel at 6250 BPI; cartridge tape drive with up to 67 megabytes, cartridge autochanger which will 

store up to 536 megabytes and the HPCopycat scenario where the backup can take place to any 

number of disk drives, allowing for even the largest volume; however this will also be the most 

expensive solution. As long as the tape based backups do not take more than one volume, the 

backups can be automated through the autoreply feature of the system configuration. 

Note that third party packages are available that provide data compression on the backup 

process. This will quite often save significant amounts of space on your system backup medium 

and potentially allow you to limit this to one volume. 

An alternative scenario is to utilize HPSilhouette to mirror data base information on the same 

system or on an additional system such that the mirror data base can be backed up while the 

primary data base is in use by the end users. This allows for system back ups in the daytime 

when the operations staff is available. Again this would apply in the case that a multi-reel backup 

is required. Note that third party software is available to allow this function to take place for files 

other than image and Turbolmage databases. 



HP3000 
INTERNATIONAL CONFERENCE SB09*n 
VIENNA 1987 

SYSTEM INTEGRITY 

To maintain system integrity in a system that is running operatorless requires additional 

activities and safeguards. If the environment is static a database can be set up to indicate what 

files should exist on the system on a permanent basis. This database can be referenced to 

eliminate any files that are not in the database. To do this a custom program is required. This 

program can make use of a new intrinsic, FLABELINFO. This intrinsic provides information from 

the file label. This can be used to ensure that not only the file exists, but also that the file 

characteristics are matching the information in the database. After this check has been completed 

the system free space has to match a predetermined value, assuming that no disc free space has 

been lost. Care should be taken to maintain the database in sync with changes to the application 

software as well as the system software. Note that this also includes a new version of MPE, 

because this will typically mean different file sizes, additional files or changes to file names. 

Changes to system parameters such as the size of virtual memory will also impact this information. 

In some environments, especially large networks, it may be beneficial to validate that the set of 

programs installed on the remote systems match a predefined pattern. This can be done by 

keeping a small database, either locally or on the main node in the system. In addition to the 

checks mentioned before, filenames and file characteristics, it is possible to run a hashing program 

on the program file. This will show if any patches have been applied to the program, as this would 

not be reflected in the file label. 

Security requirements of operatorless system are higher than other environments. We can 

divide these security issues in two groups, being security measures against access from outside 

versus measures to insure local security. Access by remote users, including remote console users, 

can be protected in different ways. This to prevent intruders from easy access to your system and 

your valuable data. If access for remote users has to be made available there are different solutions 

in the form of additional security software packages or additional hardware solutions, for example 

dial back modems. Furthermore the ports used for remote access can be '"downed'", through the 

MPE DOWN command outside of normal hours. Protection of the console or remote console port 

may be more difficult if these ports are to be used for Technical support personnel to check on the 

status of the system or perform remote operator tasks. Again addition levels of security software or 

hardware solution can be used to protect these ports. 

A third party hardware solution is available to achieve the protection of your console. This 

product requires a hardware unit both at the system location as well as the remote operator's 

location. In addition to providing a more secure environment this solution also automates remote 

alerts, both intercepting console messages and acting upon a down system situation. 



HP3000 
INTERNATIONAL CONFERENCE SB09*/8 
VIENNA 1987 

Local security is very similar to security needed for a system operated by human operators. 

This means that physical security should be in place to disallow unauthorized access to the system 

hardware components. For activities that have to be performed by end users, such as loading 

paper in a printer or mounting backup tapes, the particular peripheral devices can be placed 

outside of the secured area. Of course backup tapes mean a security risk. A system backup tape 

can be used to extract all system passwords. Naturally this jeopardizes security. Therefore these 

tapes should be kept in a vault or other suitable area. Off site copies should be taken on a regular 

basis and these should be treated in the same way. 

In addition to these issues, which may be specific to an operatorless environment, standard 

security rules should be adhered to; assigning passwords to all accounts, changing these regularly, 

set up access rights tightly (only access to what is needed) fall in this category. 

REMOTE MAINTENANCE AND OPERATIONS 

An Issue that comes up in automating the operations of a HP3000 is the need for a real 

console. Also the fact that taking the console across a OS link is not supported limits the options in 

certain scenarios. A new HP product HPEasytime that will initially be only available for the Micro 

3000 provides a easy to use operator interface. It also eliminates the need for a real console. This 

product will be available for all HP3000's in the future. 

To address the need for a remote console over OS (or NS) links, HP has a product by the 

name of INCS/3000. As this product is not generally released; contact your HP representative or 

HP Networking Consultant for local availibility and details. 

Referred to earlier in my presentation was third party hardware that works closely with the 

console to provide security for this essential access to your system and secondly this product 

monitors console activity. This means that it is able to intercept TELLOP messages sent by job 

streams and programs and act upon these with an autodial to a central monitoring site and deposit 

an alert message. This product will also detect syster.i interrupts, system failures, system halts and 

hangs. 

Remote operations can be performed from a central location in the case of a large network or 

from the technical support personnel home or work place in the case of a stand alone system or 

small network. The recommended setup for the technical support person is based on a PC rather 

than a terminal, because of its ability of uploading files. A portable computer adds to this the 

convenience of easy transportation to almost any location. 



HP3000 
INTERNATIONAL CONFERENCE SB09*/9 
VIENNA 1987 

In a large networks discipline has to be used in remote maintenance and operations. Changes 

to an individual site will have to be reviewed and implemented across the network if appropriate. 

Also documenting all these activities is essential, this can automated in the case a PC or system 

based remote maintenance and operations setup. 

SUMMARY 

I hope I have provided you with some new ideas in the area of operations automation. There 

are many third party products available that can help in your efforts to develop the right solution 

for your environment. Local availability of these products may vary and this will affect what the 

most viable solution is. Companies that have implemented tools to move towards an operatorless 

environment have experienced the expected savings, but typically have also found that system 

uptime increases. Another result expressed specifically by the end users was a more predictable 

"behavior" of the system, which was felt to be a productivity gain. 

Coming back to the question, is an operatorless HP3000 a fact or is it fiction, I believe that 

the answer is determined by reality. Yes, it is possible to fully automate the operations of an 

HP3000, but the cost aspect dictates that automating only up to a certain point is justified. 



HP3000 
INTERNATIONAL CONFERENCE 5809*/10 
VIENNA 1987 

BIOGRAPHY 

Henk Alblas is currently a member of the Application Engineering Organization of Hewlett-Packard 

Canada in the Toronto Office. He has been involved in many presales projects and he has provided 

account management support to a variety of existing HP3000 customers. Henk has been with HP 

in Canada for over four years and before that he has worked for HP in the Netherlands. Before 

joining HP he was employed by ICL and Wang both in Europe and in Canada. His hobbies are 

horseback riding, winter sports and photography. 



HP3000 
INTERNATIONAL CONFERENCE DB19*/1 
VIENNA 1987 

Inter-system Database Interaction in a Networked Environment 

Abstract 

David W. MacKay 
Hewlett-Packard (Canada) Ltd. 

Toronto, Ontario, Canada 

The scenario of an executive reaching out to a variety of 
sources to pull together whatever information is desired with just 
a few keystrokes on a terminal or personal computer is often quite 
removed from what is possible in reality. What prevents this 
scenario from being commonplace is not an inability to network 
different computer systems, but rather an inability to access what 
information is available on one's own and other systems in a 
network. Access to information, not interconnectivity, is the 
problem. 

Disparate computer systems, even those manufactured by the 
same vendor, may employ different, nonhomogeneous, database 
architectures that make the task of providing for meaningful and 
efficient inter-system database interaction difficult. This paper 
explores issues and techniques involved in providing for inter­
system database interaction. Topics examined include: 

providing for meaningful communications between systems 
employing disparate database architectures, 
database administration in a nonhomogeneous distributed 
database environment, and 
uses of the HP3000 in such an environment with examples 
of how these difficulties are being overcome. 

The usefulness of a network of computer systems is directly 
related to the user's ability to access the information resident 
on each system in the network. By providing for meaningful inter­
system database interaction, the productivity of all users of a 
computer network may be increased. 

Introduction 

Imagine a computing environment in which several computer 
systems are linked into a network. For example, our network might 
consist of an HP3000 running Image, an HPlOOO also running Image, 
an HP9000 running ORACLE, and an HP Vectra with d:BASE II. For the 
sake of argument, we might also include a VAX running Rdb or 
INGRES, and an IBM system running IMS or CICS (see Fig. 1). This 
is a network of nonhomogeneous (i.e. heterogeneous) database 
management systems. A homogeneous system would be a network in 
which all nodes were running a copy of the same database 
management system. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/2 
VIENNA 1987 

HP3000 DEC VAX IBM HP VECTRA 

IMAGE/3000 IN GRES IMS Lotus 1-2-3 

IMAGE/1000 d:BASE II ORACLE 

HP1000 HP VECTRA HP 9000 

FIGURE 1 : HETEROGENEOUS NETWORK 



HP3000 
INTERNATIONAL CONFERENCE 0819*/3 
VIENNA 1981 

Now picture the poor user who needs to gather information 
from some, or all, of these systems in order to do his job. We can 
make the picture even bleaker by requiring the user to process the 
data he has retrieved in an application on his personal computer, 
say Lotus 1-2-3. Although a network is in place between the 
different systems, it is of little help to the user in this 
situation. 

The network is of little help to our user since it is merely 
a means to link the computers together; it does not provide the 
services necessary to allow him to access the data resident in 
each computer's database management system (DBMS). At present, 
about the best we can hope for a network to provide, when dealing 
with heterogeneous (i.e. nonhomogeneous) systems, is network file 
transfer (NFT), and perhaps virtual terminal (VT) capability. 

From our perspective, the type of network that is used to 
link the different computer systems is of little concern. For 
instance, it should not matter whether the systems are connected 
via an IEEE 802.3, Ethernet, MAP, or TOP local area network, via 
an X.25 network, some proprietary network, or whatever. Basically, 
we can view the network, be it long-haul, local, or a hybrid of 
the two, as a means by which meaningful inter-system 
communication might be established. All networks share some 
characteristics, to greater or lesser degrees, that are of 
interest to us. Chief among these are that they are slow, have 
high access delay times, and that they are expensive in terms of 
CPU instructions per message. 

The network services that were mentioned earlier, NFT and VT, 
are part of the presentation layer (i.e. layer 6) of the ISO's 7-
layer Open systems Interconnection (OSI) Reference Model. The OSI 
model is useful because it allows us to consider networks as a 
layer of protocols and a set of services. However, there are not 
yet any internationally accepted standards for the topmost layers. 
Of particular interest to us are the session, presentation, and 
application layers (layers 5, 6, and 7). Hewlett-Packard's own 
AdvanceNet, for instance, has no specific session layer; layers 5, 
6, and 7 are lumped together. This is consistent with the current 
state of the art in the field of networking. As protocols are 
developed for the uppermost layers in the OSI Reference Model, we 
can expect most major computer vendors to add them to their 
networking products. 

It is true that, with network file transfer (NFT) and virtual 
terminal (VT) capabilities, our user could logon to each of the 
systems that he needs to access, use each system's DBMS user 
interface to produce a simple ASCII file of what data is needed, 
and then transfer each of theses files to his local system. He 
could then manipulate the files, perhaps combining them into a 
single large file, and then convert that file into one that is 
acceptable to the application program that he is interested in 
using, Lotus 1-2-3 in this case. 

This sounds like an arduous process, and, without doubt, it 
would be even more difficult to accomplish than it sounds. Quite 
apart from the inherent difficulty in the procedure, our user must 
have a detailed knowledge of each database schema, each DBMS's 
user interface, the different file formats that he will need to 
convert files into, and perhaps the topology of the network. Bear 
in mind that, despite these difficulties, our user can only access 
one database at a time; he has no facility for concurrently 
accessing the information that resides in more than a single DBMS. 
This could present an insurmountable obstacle. 



HP3000 
INTERNA T/ONAL CONFERENCE 0819*/4 
VIENNA 1981 

our user needs a better way. He needs to be able to deal with 
the collection of DBMSs in his network as if he was dealing with a 
single centralized DBMS. He also needs to be able to have his 
results formatted so that they are usable by his application 
programs, such as Lotus 1-2-3. This paper is concerned with 
what is involved in providing a solution that meets these needs. 

Distributed Database Management System Reference Architecture 

Inter-system database interaction in a networked environment 
is intended to allow for the user of any computer in a network to 
access whatever data is in the network as easily as if the data 
were on the user's own system. In other words, we would like to 
provide a "global", or network-wide, database management system 
that incorporates all of the local DBMSs on the network's nodes 
and looks like a centralized DBMS to the user. Such a system is 
known as a distributed database management system (DDBMS). 

A centralized DBMS may be viewed as being comprised of a 
client processor and a data processor, according to a reference 
architecture synthesized by Larson and Rahimi, upon which this 
paper is based. The client processor is responsible for 
interfacing with a user. It translates user commands into a 
canonical language that the data processor understands. It also 
translates data that it receives from the data processor into a 
format understandable by the user. The data processor is 
responsible for storing and accessing data in the database. Both 
client processors and data processors can be subdivided into other 
processes (see Figures 2 and 3). Figure 4 is a representation of a 
centralized DBMS. 

Larson and Rahimi extend their DBMS architecture to encompass 
DDBMSs through the addition of a global database control and 
communications system. Figure 5 is a representation of a DDBMS; 
Figure 6 shows the processes that comprise a global database 
control and communications system. 

We now proceed to describe each of the five components of the 
reference architecture synthesized by Larson and Rahimi. These 
components are canonical structures, a data dictionary, a client 
processor, a data processor, and a global database control and 
communication system. 

Canonical Structures 

Canonical structures for commands and data are an important 
element of this, and almost all other proposed reference 
architectures for DDBMSs. A canonical structure, be it a language 
or a data format, is simply a standard that is understood by all 
network nodes that participate in the DDBMS. Homogeneous DDBMSs 
need not be concerned with implementing canonical structures since 
there is no conversion required from one local DBMS to any other 
local DBMS. Performance should be higher when no conversions are 
necessary, but the difference may not be significant in light of 
datacomm and other overhead that can be orders of magnitude 
greater than the cost of converting to and from canonical forms. 



HP3000 
INTERNATIONAL CONFERENCE 

USER RESULTS 

USER RESULT 
FORMATTER 

VIENNA 1987 

FIGURE 2 , CLIENT PROCESSOR 

USER COMHANOS 

USER COHHANO 

l'l1MI! 4 ' CENTRALIZED D9IS 

CANONICAL 

OATA 

FIGURE 3 , DATA PROCESSOR 

0819*/S 

CANONICAL 
COMHANOS 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

-5.~llllltS 

GLOBAL DATABASE CONTROL Afll) COIMHCATION SYSTEM 

IMTMASE 
t 

0819*/6 



HP3000 
INTERNA T!ONAL CONFERENCE 0819*/7 
VIENNA 1987 

It is often assumed that the canonical language of choice 
will be SQL. A nonprocedural language, such as SQL, is a good 
choice as a canonical language. A nonprocedural language uses 
high-level commands (i.e. set-at-a-time) so that several records 
might be selected by a command, as opposed to the single record 
that a procedural language command might select. This has the 
effect of reducing communication overhead. Nonprocedural languages 
view the data in a system via the relational data model. This 
allows relational operators, such as JOIN, to be used to deal with 
data partitioning. An example of data partitioning might involve 
an organization that maintains its personnel records at local 
offices, and not centrally. The global personnel database would 
then be the combination of all of the local personnel databases. 
Furthermore, SQL has recently been adopted as ANSI standard X3H2. 
Although it is likely that SQL will assume the role of canonical 
language, it should not be regarded as an ideal choice. It suffers 
from, among other weaknesses, a lack of orthogonality, and 
incomplete support for some aspects of the relational model. 

Just as ,SQL is often expected to become the canonical 
language of choice, "flat" ASCII files are often expected to 
become the canonical data form most widely used in heterogeneous 
DDBMSs. ASCII files may be regarded as the lowest common 
denominator among file types, and that may help to establish 
"flat" ASCII files as a canonical data form. That same 
characteristic is also the Achille's heel of ASCII files; they are 
not able to adequately represent many structures, particularly 
those involving pointers, variant records, and unusual word 
sizes. 

Data Dictionary 

A key element of this reference architecture is the data 
dictionary. The data dictionary is used to store the global schema 
of the DDBMS, information on what data is where, information 
useful to control and administer the DDBMS, and other information. 
It may contain a copy of the schemas for each local DBMS in the 
DDBMS. The DDBMS uses the information in the data dictionary when 
accessing the database. The data dictionary is stored as a 
database so that it can be interrogated with normal DBMS 
interfaces, and also so that it can take advantage of the 
concurrency control provided by the global database control and 
communication system. Issues involving the data dictionary 
concern how it is stored in the DDBMS, which affects both DDBMS 
performance and the autonomy of the local DBMSs that comprise the 
DDBMS. A DDBMS with a centralized data dictionary offers no local 
autonomy since all requests, even those for data in the local 
DBMS, must be routed through the central site. If all sites in the 
network have their own copies (replicas) of the data dictionary, 
the system is considered to be fully replicated. In this case, the 
task of ensuring replication consistency may consume an inordinate 
amount of the network's bandwidth and thereby offset the 
performance improvement gained by having a copy of the data 
dictionary at each local DBMS. Replication consistency is the 
responsibility of the distributed execution monitor. 



HP3000 
INTERNAnONAL CONFERENCE 0819*/B 
VIENNA 1987 

Client Processor 

The client processor is composed of a user command 
translator, a user result formatter and a constraint enforcer. 

User commands might be entered in the form of QUERY/3000 or 
QUEL commands, or commands from any of a variety of other query 
languages, be they interactive or programmatic. Different query 
languages are written for DBMSs that use a particular database 
model. As an example, QUERY/3000 was written for the HP Image 
network DBMS. Similarly, QUEL was developed for use with the 
INGRES relational DBMS. Although no general solution is known 
(partly because most DBMSs do not adhere to strictly defined 
database models), it is usually possible to provide a mapping 
between hierarchical, network, and relational database models. The 
use of a canonical command language facilitates mapping between 
different database models. 

Converting all user commands into a canonical language allows 
new query languages, and therefore new local DBMSs, to be easily 
incorporated into a DDBMS by reducing the amount of effort 
required to provide command conversion routines. For n different 
user command languages in a DDBMS that employs a canonical command 
language there are 2n conversion routines (i.e. a user command 
translator, and a canonical translator for each different command 
language), whereas without a canonical language, n(n-1) 
conversion routines need to be written (eg. A to B, A to c, B to 
A, B to c, etc.). 

The constraint enforcer guarantees that only data that meets 
the semantic integrity constraints specified by the data 
dictionary is allowed into the database. This serves as an 
alternative to having update programs determine whether or not the 
values of data are valid. 

The user result formatter converts the data that is returned 
as a result of the user's commands into a useful format, such as a 
report, or a .WKS file for Lotus 1-2-3, for example. The use of a 
canonical data format facilitates conversion to many different 
file formats. 

Data Processor 

The data processor is composed of a canonical command 
translator, a cannonical result formatter, and a run-time support 
processor. 

The canonical command translator converts the canonical 
commands that were generated by the user command translator into 
physical commands that the run-time support processor will 
execute. If the target DBMS was IMAGE/3000, and the user submitted 
a query using SQL commands, the client processor would translate 
the SQL commands into a canonical language, call it ANYLANG. The 
Canonical command translator would then translate the ANYLANG 
commands into QUERY/3000 for use by the run-time processor. 



CANKAl. DA TA ) CNol:AL CllltANlS ) (~UTA) ~r 

000000 

rd-, 8-f4 l 1 IECIJfOSER I 'lfl&R L l IXTllWI"-"' 

I 
DISTRIBUTED EXECUTION MONITOR 

COMMUNICATION SUBSYSTEM 

---
LOCAL EXECUTION MONITOR 

I I 
::a) c:) 000000 ~_) c-: 

FIGURE 6 : GLOBAL DAT ABASE CONTROL ANO COMHUNICA TION SYSTEM 

~~,~ 5l;1 rrl «> ;::::o§ :i>:s; 
~:::! 
""o ...... s; 

II 

,_ 

8 
~ 
g:j 
~ 
~ 

~ -co 
~ (Ci 



HP3000 
INTERNATIONAL CONFERENCE 0819*/10 
VIENNA 1987 

The run-time support processor is responsible for interacting 
with the local DBMS. In fact, the run-time support processor will 
normally be the standard user or programmatic interface that comes 
with the local DBMS. The fact that it does not require any 
modification in order to be incorporated into the DDBMS is a 
significant feature of this reference architecture. 

The canonical result formatter accepts data from the run-time 
support processor and converts it into a canonical form. 

Global Database Control and Communication Subsystem 

The global database control and communication system is 
composed of six components: the decomposer, the distributed 
execution strategy, the merger, the distributed execution monitor, 
the communication subsystem, and the local execution monitor. It 
is the element of the reference architecture that allows for a 
group of individual DBMSs to be joined to form a DDBMS. 
Accordingly, we shall examine its components in some detail. 

1. Decomposer 

The decomposer is responsible for translating a global 
request for information into a distribution execution strategy. It 
is possible that the data requested by a transaction might reside 
at several different sites in the DDBMS. The decomposer consults 
the schema information in the data dictionary to find which local 
DBMSs in the DDBMS have what data. It then decomposes the 
transaction into subtransactions to be executed by local DBMSs 
within the DDBMS. Deciding which local DBMSs should do what, and 
when, is an important responsibility of the decomposer, and is 
known as query optimization. 

The importance of query optimization to the performance of a 
DDBMS cannot be overstated. Date provides an example where, just 
by varying the optimization strategy used by the decomposer, the 
time taken by the DDBMS to complete a transaction can vary from 1 
second to 2.3 days. 

2. Distributed Execution Strategy 

The distributed execution strategy is the output of the 
decomposer. It is essentially an ordered list of which local DBMS 
will execute what subtransaction. 

3. Merger 

The merger works in a fashion complementary to that of the 
decomposer. The decomposer disassembles a transaction into a list 
of subtransactions; the merger takes the results of the execution 
of the subtransactions and combines them appropriately before 
passing the data to the client processor. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/11 
VIENNA 1987 

4. Distributed Execution Monitor 

The distribution execution monitor is concerned primarily 
with the enforcement of three requirements of a DDBMS: 
transaction atomicity, concurrency control, and replication 
independence. Ensuring that these three requirements are enforced 
is perhaps the most difficult task of a DDBMS. Accordingly, we 
deal with them at length. 

a) Transaction Atomicity 

The concept of a transaction was developed, according to 
Lindsay, to "delimit the sequences of actions which together 
transform the database from one consistent state to 
another". Transaction atomicity is a property common to all 
database systems in that transactions always leave the database in 
such a state that transactions appear to either execute to 
completion, or not at all. The distributed execution monitor 
supports transaction atomicity at a global level. The decomposer 
splits a global transaction into a number of subtransactions which 
are executed by local DBMSs in the DDBMS, under the supervision of 
local execution monitors. Each local execution monitor reports to 
the distributed execution monitor of the success or failure of the 
subtransaction that it supervises. Unless all local execution 
monitors report success, the global transaction has failed. The 
distributed execution monitor keeps track of the success/failure 
reports of the local execution monitors. If all local execution 
monitors report successful completion, the transaction is 
committed (i.e. made permanent), otherwise the transaction and all 
subtransactions are aborted, and do not change any databases. 

b) Concurrency Control 

Concurrency control attempts to keep a database internally 
consistent by preventing the concurrent execution of conflicting 
transactions. Several ways to ensure internal consistency have 
been suggested, but the two most well known methods are locking 
and timestamping. Either of these methods may be used to prevent 
two or more transactions from interfering with each other by 
accessing the same data object, or resource, concurrently. 

When locking is used to provide concurrency control, as is 
the case with DBMSs such as HP Image and HP ALLBASE, a transaction 
attempting to reference a data object must first attempt to lock 
it. If no other transaction has secured a lock on the object, the 
transaction is granted a lock, and now has exclusive access to the 
object; no other transaction may reference the object until the 
lock is released by the transaction holding it. If a transaction 
requests a lock on an object that is already locked, the 
requesting transaction may be suspended until the lock is 
released. Actually, locking allows for more sophisticated 
abilities than those described above. Many DBMS, such as HP 
ALLBASE, allow several types of shared locks and locking 
granularities. (Granularity is a term used to describe the size of 
an object being locked. Record locking is of finer granularity 
than file locking, for example). Nevertheless, the motivation for 
locking is to limit access to a data object to the first 
transaction that requests it. 



Locking has one major drawback, that being that conditions 
known as deadlocks are possible. A deadlock arises when two or 
more transactions are suspended waiting for locks held by the 
other suspended transactions. As an example, imagine two 
transactions, Tl and T2, and two data objects, A and B. Tl has an 
exclusive lock on A and T2 has an exclusive lock on B. Tl requests 
a lock on B and is suspended. T2 requests a lock on A and is also 
suspended. Both Tl and T2 will stay suspended forever if the DBMS 
does not take action to resolve the deadlock (usually by aborting 
either Tl or T2). Deadlock detection and prevention algorithms 
are well-established for DBMSs. Unfortunately, deadlock detection 
and prevention is significantly more difficult for a DDBMS than it 
is for a DBMS. 

Timestamping is another method by which database consistency 
may be assured. It is an alternative to locking, but they are not 
exclusive of each other; they could be used together to provide 
a hierarchy of concurrency control mechanisms. A system employing 
timestamping to ensure internal consistency assigns to each 
transaction an identifier comprised of a timestamp and the DBMS's 
network node address. The node address is necessary to prevent any 
transactions from having the same timestamp. This unique 
identifier gives an indication of serial execution order; the 
transaction with the oldest timestamp is awarded access. Locking 
is susceptible to deadlock, timestamping is not. Problems 
associated with timestamps involve clock synchronization. 

Both locking and timestamping are effective in keeping a 
database internally consistent by preventing the concurrent 
execution of conflicting transactions. We have seen how the 
distributed execution monitor ensures transaction atomicity, and 
provides for concurrency control. The distributed execution 
monitor is also responsible for keeping a database mutually 
consistent through replication independence. 

c) Replication Independence. 

Replication involves having one or more copies (replicas) of 
the same data object in the DDBMS. Replication may improve the 
availability and reliability of a DDBMS since data that might 
otherwise be unavailable to the DDBMS (if a DBMS were to crash, 
for instance) could still be available if the data object had been 
replicated. We can reduce communications costs by replicating 
frequently accessed data objects nearer to the DBMS that requests 
the data. Of course, if we were to replicate the data object at 
the local DBMS, communications cost would be effectively 
eliminated. Replication involves the ability to distribute, and 
manage, copies of data objects throughout the DDBMS. 

A monthly price list would be a good candidate for 
replication so that more than one, if not all, of the DBMSs in a 
DDBMS could have their own copy. The data dictionary would 
instruct the decomposer to direct all requests for price list 
information to the copy nearest the requester. This could improve 
performance markedly, particularly if the user had a copy resident 
at his local DBMS. The fact that he is accessing a copy would be 
transparent to the user. Indeed, as long as the data in every 
price list was mutually consistent with the data in every other 
price list (i.e. all are identical), there is no difference 
between the original price list and the replicated versions. 
If replicated data objects are to be useful, we must ensure mutual 
consistency. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/13 
VIENNA 1987 

Note that we have provided for access to replicated copies of 
a data object to be transparent. We recall that our goal is to 
provide the user of a DDBMS with the illusion that he is using a 
single centralized DBMS. We want to enable the user to ask for 
data and not need to be concerned with where the data is located 
in the DDBMS. We can meet our goal, as it relates to replicated 
data objects, by ensuring that two conditions are met: mutual 
consistency and transparent data access. 

Unfortunately, replication is best suited for read-only data. 
Imagine a user wanting to update the information in the price 
list. Keep in mind that it is only necessary to access any one of 
the replicated data objects to perform a read, but that a write 
must update them all. If all copies are not updated, the copies 
are no longer mutually consistent. The limited speed of the 
network prevents all replicas from being updated simultaneously, 
so that, despite our best efforts, there will always be times when 
all copies are not yet mutually consistent. Our goal, then, must 
be to ensure that all of the replicated data objects converge to 
consistency as soon as possible after a transaction has been 
committed. This is known as update propagation. 

Update propagation is concerned with the task of ensuring 
mutual consistency among replicated data objects. Individual DBMSs 
within a DDBMS may be unavailable for a variety of reasons, such 
as system failures. This, as well as the problem caused by 
communication delays, makes the problem of update propagation 
difficult to solve. The techniques that are used to ensure 
internal consistency, such as having the complete transaction fail 
if any single subtransaction fails, are not applicable here. It 
would be unreasonable to roll back transactions because replicated 
data objects were unavailable. 

If there are 10 copies of a data object in a DDBMS where 
individual DBMSs are available 99% of the time, we find that the 
probability of an update succeeding is only 90%. We do not want to 
have to roll back 10% of our transactions, so we must find a more 
attractive means of ensuring mutual consistency. 

Three approaches have been suggested as solutions to the 
problem of update propagation: transaction spooling, 
primary/secondary copy relationships, and snapshots. 

Transaction spooling techniques involve keeping lists of what 
updates need to be applied to each replicated data object that is 
unavailable. Variations on this technique have the lists 
themselves being replicated in case the list-keeping DBMS should 
become unavailable. When the DBMS is once again able to resume 
normal operation it must first go through a recovery phase where 
it applies the updates to its local data objects. Once this 
recovery phase has been completed, the DBMS may resume normal 
operation. · 

An approach involving the establishment of primary/secondary 
data object relationships requires all updates to be directed to 
the primary data object first. The primary data object is then 
responsible for applying the update to its secondary data objects. 
This procedure is to be followed even when all of the DBMSs 
containing the secondary data obj.ects are available. An 
improvement to this approach involves circulating the primary-copy 
responsibility among the mutually consistent data objects. 
Provisions need to be made to ensure that accesses are only 
directed to updated (i.e. mutually consistent) secondary data 
objects. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/14 
VIENNA 1987 

A completely different approach to update propagation 
involves the use of "snapshots". Snapshots are copies of a data 
object, as it existed at a certain point in time. Snapshots are 
never updated, although periodically they may be replaced with a 
more recent snapshot. Since updates are not allowed, the problem 
of update propagation does not need to be addressed. All snapshots 
are of a single master data object, to which all updates are 
directed. The price list example mentioned earlier might lend 
itself well to a solution involving the use of snapshots. 
Snapshots do not allow for replication transparency, since all 
users must be aware that they are working with data that was 
accurate only "as-of" a certain point in time. 

Replication independence is intended to allow the DDBMS to 
place copies of data in a number of local DBMSs throughout the 
DDBMS. We can only attain our goal of providing a user with the 
illusion that he is working with a single centralized DBMS if 
replications are mutually consistent and their use is completely 
transparent to the user. The problem of update propagation makes 
this difficult to accomplish. ' 

Distributed Execution Monitor --- Summary 

Our examination of the function of the distributed execution 
monitor subsystem within the global database control and 
communication system has been lengthy enough that a summary is in 
order. The distributed execution monitor is responsible for 
addressing three areas of crucial importance and considerable 
difficulty. It ensures global transaction atomicity by working 
closely with the local execution monitors that supervise each of 
the subtransactions that comprise a transaction in a DDBMS. It is 
responsible for ensuring internal consistency by preventing the 
concurrent execution of conflicting transactions. Two methods for 
accomplishing this are locking and timestamping. It is also 
responsible for ensuring mutual consistency among the copies of a 
data object that might exist in a DDBMS, so that the existence of 
these copies is transparent to users. Update propagation is the 
greatest problem in providing for mutual consistency. 

5. Communication Subsystem 

The communication subsystem is used to transfer requests and 
data between sites. The 7-layer OSI model makes provision for a 
number of features that could be useful in a DDBMS. For instance, 
part of the functionality of the session layer (layer 5) is 
dialogue control. Tanenbaum describes dialogue control as 

... bracketing groups of messages into 
atomic units. In many database applications 
it is highly undesirable that a transaction 
be broken off part way, as a result of a 
network failure, for example. If the 
transaction consists of a group of messages, 
the session layer could make sure that the 
entire group had been successfully received 
at the destination before even attempting 
to start the transaction. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/15 
VIENNA 1987 

Tanenbaum goes on, however, to bemoan the fact that few 
networks have implemented this, presumably due to the lack of 
well-accepted standards for levels 5, 6, and 7 in the OSI 
Reference Model. Other network services, such as file transfer 
(NFT) are desirable, but can be provided by user programs if such 
services are not provided by the network. 

6. Local Execution Monitor 

The local execution monitor is responsible for the execution 
of the subtransaction at its node. It notifies the distributed 
execution monitor as to whether the subtransaction succeeded or 
failed. It may be seen as being an extension to the run-time 
support processor. 

Global Database Control and Communication --- Summary 

The global database control and communication system is the 
subsystem that differentiates a DDBMS from a DBMS in the reference 
architecture synthesized by Larson and Rahimi. It provides the 
means to link multiple heterogeneous DBMSs into a network so that 
a user is presented with the illusion that he is working with a 
single, centralized DBMS. 

DDBMS Reference Architecture --- Summary 

We view a distributed database management system (DDBMS) as 
being a suitable means for achieving the inter-system database 
interaction that is our goal. A DDBMS may be considered to be a 
database spanning the nodes in a network and comprised of the 
DBMSs that are resident at the different nodes in a network. 

A reference architecture has been described that views a 
centralized DBMS as being comprised of a client processor, and a 
data processor. We are able to connect such centralized DBMSs 
together so as to form a DDBMS through the addition of a global 
database control and communication system. Canonical structures 
are used to facilitate communication between heterogeneous local 
DBMS in the DDBMS. That is, all inter-system communication, 
facilitated by the global database control and communication 
system, takes place in the form of canonical structures for both 
commands and data. A data dictionary is essential to the operation 
of each of the subsystems that comprise a DDBMS (i.e. client 
processor, data processor, and global database control and 
communication system). The data dictionary acts as a roadmap to 
all of the data within the DDBMS. These five elements can work 
together to provide for meaningful and efficient inter-system 
database interaction among multiple nonhomogeneous DBMSs in a 
network. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/16 
VIENNA 1987 

Database Administration in a Nonhomogeneous DDBMS Environment 

In order to manage a DDBMS it is necessary to share data 
administration authority among several individuals. This is 
necessary because management of a DDBMS involves more than merely 
managing the operations of each DBMS in the DDBMS. That will, of 
course, still need to be done, but other tasks will be required of 
the managers of each individual DBMS as well. Additionally, a 
global administrator will be needed. This individual must assume 
responsibility for any tasks that do not clearly belong to any 
single DBMS's database administrator (DBA). The responsibility 
for managing a DDBMS belongs to both the global DBA and the local 
DBAs. 

We briefly outline some of the tasks involved in 
administering a DDBMS, as listed by Walker. This list is not 
intended to be comprehensive. 

Activities involved in the administration of a DDBMS: 

1. Communication: The lines of communication between users, 
management, operations, support, and 
maintenance groups must be kept open. 

2. Monitoring: Hardware and software must be monitored. This 
involves more than just failure tracking. It 
also involves planning and coordinating upgrades 
and replacements. 

3. Testing: It is necessary to test for user acceptance, data 
accuracy, and database integrity, for example. 

4. Training: It is necessary to provide training for users and 
DDBMS staff. 

5. Scheduling: It is necessary to schedule tasks, personnel, 
repairs, etc. to provide for maximal DDBMS 
utilization. 

6. Documentation: It is necessary to provide users with adequate 
documentation as well as to maintain up-to­
date documentation sets for any applications. 

7. Accounting: Some means must be devised to charge users for 
the resources that they consume. 

8. Performance: It is necessary to assign priorities to tuning 
activities, in an attempt to maximize system 
performance. 

9. Design: Existing applications and database schemas will 
require periodic review. New applications may need to 
be designed. 

10. Operations: It is, of course, necessary to ensure that the 
operations of each DBMS proceed smoothly. 

11. Backup and Recovery: It is necessary to design and test a 
backup and recovery procedure • 

12. Security: Data must be protected against unauthorized access 
and modification. 

The local DBA is responsible for the data that resides on the 
system he administers. It is natural, then, for him to insist that 
the DDBMS not reduce the autonomy of his local DBMS. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/17 
VIENNA 1981 

The global OBA will be concerned with coordinating the 
operation of the local DBMSs in the DDBMS. He will be responsible 
for ensuring that standards are developed and strictly adhered to. 
He may also be responsible for ensuring that the communication 
subsystem (i.e. the network) functions correctly, although this 
task would be better handled by a network administrator. The 
design of the data dictionary and.canonical structures might also 
be his responsibility. 

Although the administration of a DDBMS can be quite complex, 
we may simplify our view of it by dividing the administration of a 
DDBMS into two areas of responsibility. Each local DBMS OBA may be 
regarded as being responsible for all tasks that are totally 
within the realm of each respective local DBMS. Global tasks 
include the coordination of all local OBA tasks and are the 
responsibility of the global OBA. 

The administration of a DDBMS is the responsibility of a 
number of individuals, namely the DBAs responsible for local DBMSs 
and the OBA responsible for the global DDBMS. The effort involved 
in managing a DDBMS is greater than the sum of the efforts 
involved in the management of each of the local DBMSs that 
comprise the DDBMS. Local DBAs will be primarily concerned with 
the autonomy and successful operation of the DBMSs for which they 
are responsible. The global OBA is responsible for, among other 
things, coordinating the operation of the individual DBMSs that 
comprise the DDBMS. 

Uses of the HP3000 in a DDBMS Environment 

Heiler and Maness are correct when they say that, with 
regard to the difficulties associated with heterogeneous DDBMSs 
"we are far from a solution to these problems". Indeed, before 
heterogeneous DDBMSs, of the type we described earlier, become 
widely available, a number of problems, such as those involving 
update propagation, need to be solved. The success of 
heterogeneous DDBMSs will depend, to a large degree, on the 
availability of standards. Of particular importance are a standard 
reference architecture, and standards for canonical structures. It 
is our hope that a standard reference model will do for DDBMSs 
what the ISO OSI model has done for computer networks. Until such 
standards are developed, heterogeneous DDBMSs must, of necessity, 
employ proprietary architectures. It is doubtful that such 
proprietary DDBMSs would be sufficiently flexible to accomodate a 
great variety of different computer systems and DBMSs. It will 
probably be five to ten years before nonhomogeneous DDBMSs, as 
described in this paper, are available. 

Of course, efforts are underway to provide some of the 
functionality that we have described. Two approaches have 
attracted considerable attention. The first involves adding 
network support to homogeneous DBMSs. The other approach involves 
a very limited form of nonhomogeneous DDBMS functionality, which 
we will term "heterogeneous integration" to clearly distinguish it 
from the DDBMSs that we have described elsewhere in this paper. 
We discuss each of these approaches separately. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/18 
VIENNA 1987 

1. Networked homogeneous DBMSs 

The two most vocal proponents of networked homogeneous DBMSs 
are Oracle, for their ORACLE DBMS, and Relational Technology 
Inc., for their INGRES DBMS. The two companies have extended their 
core DBMSs by offering both a network subsystem and a distributed 
database subsystem. ORACLE terms their subsystems SQL*Net and 
Distributed ORACLE; the corresponding INGRES products are 
INGRES/Net and INGRES/Star. Both ORACLE and INGRES are available 
on a wide range of host computer systems, so that the databases 
are heterogeneous in that different manufacturer's computers may 
be included in the networked homogeneous DBMS, as long as all 
systems are running the same DBMS. Both companies offer "gateways" 
to allow for non-ORACLE or non-INGRES DBMSs to be included in the 
networked homogeneous DBMS. Systems connected via gateways have 
limited functionality. Both ORACLE and INGRES are able to include 
personal computers in their respective networked homogeneous 
DBMSs. Versions of each DBMS are available for PC AT compatible 
computers, such as the HP Vectra. The two DBMSs differ in their 
approach as to how they support data formatting for popular PC 
(and other) applications. Recall that, in the reference 
architecture presented earlier, the user result formatter allowed 
us to format data for use by different popular applications, such 
as Lotus 1-2-3. 

ORACLE can import data from many popular PC applications into 
their SQL*Calc subsystem and from there into the database 
directly. They can export data only in the form of ASCII files. 
They feel that there is significant benefit to be had by working 
with applications that are more closely linked to the DBMS than 
is, say, Lotus 1-2-3. For this reason they offer a number of 
alternatives to popular PC applications. 

INGRES, on the other hand, provides functionality similar to 
that provided by the user result formatter, via their 
INGRES/PCLINK subsystem. They are able to input and output data in 
a wide variety of formats, suitable for use by most popular PC 
application packages 

ORACLE and INGRES are the industry leaders in providing 
networked homogeneous DBMSs. Hewlett-Packard customers are able to 
choose which of these two networked homogeneous DBMSs is most 
suitable for their needs; both ORACLE and INGRES are available on 
the HP9000 family of computers. 

2. Heterogeneous Integration 

Hewlett-Packard is the industry leader in providing 
integrated heterogeneous systems. The vehicle that best 
illustrates our abilities in this area is Hewlett-Packard's 
Personal Productivity Centre (PPC). Heterogeneous integration is 
provided by a set of four subsystems known collectively as HP's 
Office Productivity Services. The four components in the Office 
Productivity Services are HP AdvanceNet networking, Resource 
Sharing, Information Access, and HP DeskManager. Of these, 
AdvanceNet networking, Resource sharing, and, most of all, 
Information Access, are of interest to us. The functionality 
provided by HP's Office Productivity Services is unmatched in the 
industry. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/19 
VIENNA 1987 

The networking components of HP's Office Productivity 
Services adhere to HP's AdvanceNet networking architecture. 
AdvanceNet is based on the OSI Reference Model. HP is firmly 
committed to standards in networking. The following networks are 
supported via AdvanceNet: ThinLAN, StarLAN, Serial Network, and 
RS-232C. All are based on industry standards and may be used by 
either Resource Sharing and Information Access. Among the computer 
systems tightly integrated with these networks are the HP3000, HP 
Vectra, HP Touchscreen, and IBM PC family of computers. Gateways 
to other computers are available off-the-shelf so that users can 
expand their network to include computers from other 
manufacturers. No other vendor offers this level of office 
functionality across such a broad range of networking choices. 

Resource Sharing provides truly transparent shared access to 
files, printers, applications, and other devices. Disk sharing 
improves communications, and data security. It also allows PC data 
to be consolidated where it can be shared, controlled, and 
secured. Disk sharing allows PC users the benefits of enormous 
amounts of HP3000 disk storage with throughput that is greater 
than that of floppy disks. Since the MS-NET defacto standard is 
fully supported, the system can provide complete MS-DOS 3.X file 
sharing and locking capabilities for full support of multi-user 
applications. Resource Sharing allows for PC users to back up 
their disks to large disks or tape drives elsewhere in the 
network. 

Information Access is the component of HP's Office 
Productivity Services that provides for inter-system database 
interaction. It provides end users with the ability to query 
multiple heterogeneous DBMSs through a simple, menu-driven user 
interface without requiring the user to know where the desired 
information is located. Data can be automatically and 
transparently formatted into (and from) a variety of formats 
suitable for use with most popular PC applications, such as Lotus 
1-2-3. Data in heterogeneous databases, such as d:BASE II and 
R:BASE 5000, can be reformatted into other database formats, and 
back again. All of this is possible while high security controls 
are maintained. For example, in addition to standard Image/3000 
and MPE security, the HP3000 DBA determines specific Image/3000 
databases, datasets, and even specific data items that can be 
accessed. This degree of granularity is built on top of standard 
Image and MPE security by Information Access. This rich complement 
of features, and others, make it the industry leader. According to 
criteria established by InformationWEEK, Information Access could 
be classified as an "ideal product". 

+t is not surprising that Information Access has a number of 
features in common with aspects of the DDBMS reference 
architecture with which we are familiar. After all, both 
Information Access and some subsystems of the reference 
architecture were designed to address some common needs. It would 
be misleading to map Information Access onto the DDBMS reference 
architecture; the two were developed entirely independently and 
all that we would actually achieve would be to demonstrate a 
commonality of features. It seems presumptuous to position 
Information Access, as it exists at this point in time, as a 
suitable base upon which to build a DDBMS that would satisfy the 
requirements of our reference architecture. It is, however, a 
suitable, if not even a key component, of networks that exhibit 
heterogeneous integration. 



d BASE I 

EXEC 
CARD HGR. 

USER INTERFACE 

ACCESS LIBRARY 

IMAGE I LOTUS 
CONDOR 3000 DIF 1 2 3 

IBM IMAGE IMAGE 
IMS 3000 3000 

IMAGE 
300 SID 

R BASE 
5000 

PER. 
CARD FILE 

FIGURE it7 CONCEPTUAL VIEW OF INFORMATION ACCESS 

!5ii~1~ ~§]~ 
~~8 
ig ::::! 
...... ~ 
~ 
8 
~ 
~ 
~ 
~ 

2 
~ 
t;i 
~ 



HP3000 
INTERNATIONAL CONFERENCE 0819*/21 
VIENNA 1987 

Information Access may be considered to be comprised of three 
tiers: the user interface, an access library, and a tier 
consisting of a variety of method files (see Fig. 7). 

The Information Access user interface provides an alternative 
user interface to the one provided by a data source. (We define a 
data source to be any DBMS or file structure supported by 
Information Access). This menu-driven interface provides a 
relational view of the data selected from one or more data 
sources. The relational data model was chosen because it is less 
difficult to convert data from different data models to a 
relational model than it is to convert to any other data model. 
Also, the relational model lends itself well to partitioned data 
via the JOIN operator which enables a user to join two or more 
databases so that they appear, to the user, to be a single 
relation. Several data sources may be JOINed into a single table 
and accessed simultaneously. When a query or other transaction has 
been defined, the user interface invokes the access library. 

The access library consists of about two dozen calls that 
are supported, via method files, by every data source. These calls 
are directed to the appropriate method file where they are 
translated into commands that are specific to the target data 
source. This technique avoids the overhead of translations to and 
from a canonical structure, which was considered important for 
reasons of performance. The access library treats HP3000 systems 
as a special case. Instead of having the method file generate 
Image/3000 intrinsics, it instead generates commands in a 
proprietary nonprocedural language. These commands are then sent 
to the target HP3000 where a companion program to Information 
Access is running. This companion program is responsible for 
providing the relational view of the Image/3000 database that 
Information Access requires. 

Treating the HP3000 in this fashion facilitates the security 
features that Information Access provides on top of MPE and 
Image. In other words, this allows for Information Access to 
implement security at both the personal computer and the HP3000, 
in addition to the security features provided by MPE and Image. 
The use of a nonprocedural language allows for high-level (i.e. 
set-at-a-time) commands, which, in turn results in less datacomm 
overhead. 

The method files may be regarded as being conversion 
routines. Adding support for a new data source involves only the 
addition of a method file for the new data source. 

Information Access can accept data from Image/3000 databases, 
R:BASE 5000, d:BASE II, Personal Card File (PCF), Executive Card 
Manager (ECM), and CONDOR. It can produce output in files 
compatible with any of the above, except for HP3000 Image. It can 
also output HP 3000 SD files, .WKS (for Lotus 1-2-3), DIF, and 
ASCII files. 

As is evident from our discussion of Information Access, it 
is a very powerful tool; it provides for significant inter-system 
database interaction. 



HP3000 
INTERNATIONAL CONFERENCE 0819*/22 
VIENNA 1987 

Uses of the HP3000 in a DDBMS Environment --- Summary 

Hewlett-Packard is at the leading edge of technology in 
providing integrated heterogeneous systems which attempt to 
provide some of the functionality that the DDBMSs of the future 
will offer. HP's Personal Productivity Centre is a showcase that 
positions HP as the industry leader in providing integrated 
heterogeneous systems that meet real customer needs. The use of 
personal computers with HP3000 computer systems is the cornerstone 
of HP's office products strategy. This ensures that the HP3000 
will be the vehicle of choice when it comes to providing for 
heterogeneous integrated systems now and in the years to come. 

Conclusions 

A distributed database management system (DDBMS) provides a 
means whereby we may achieve our goal of providing for inter­
system database interaction. We contend that the objective of 
inter-system database interaction is to allow a user to access 
whatever data is in the network as easily as if it were on the 
user's own system; the DDBMS should present a user with the 
illusion that he is using a single centralized DBMS. The reference 
architecture that we present distinguishes between a centralized 
DBMS and a DDBMS on the basis of a global database control and 
communication system, the use of canonical structures, and an 
expanded data dictionary. 

Unfortunately DDBMSs are fraught with problems, such as 
update propagation and a lack of standards, for which no solutions 
are clear. Accordingly, we do not expect DDBMSs to be readily 
available for five to ten years. 

The need for functionality akin to what might be provided by 
a DDBMS is real. Two approaches are being used to provide 
solutions to meet these needs: networked homogeneous DBMSs, and 
systems providing for heterogeneous integration. HP's Personal 
Productivity Centre is an example of an integrated heterogeneous 
system. 

Hewlett-Packard's strategy with respect to integrated 
heterogeneous systems in office environments relies on the 
integration of personal computers and HP3000 computers. 
Communication between systems will be facilitated by HP 
AdvanceNet which is a networking strategy based upon industry 
standards. The HP3000 will be the vehicle of choice for providing 
integrated heterogeneous systems. 

Systems such as HP's PPC and its constituent components, such 
as HP AdvanceNet and Information Access provide powerful 
capabilities that allow for rudimentary inter-system database 
interaction in a networked environment. The powerful capabilities 
that they provide can allow for "the scenario of an executive 
reaching out to a variety of sources to pull together whatever 
information is desired with just a few keystrokes on a terminal or 
personal computer". 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 

References 

Brown, A.S. et al, "Data Base Management for HP Precision 
Architecture Computers", in Hewlett-Packard Journal, 
Vol. 37, No. 12, December 1986. --

0819*/23 

Carlson, R.J. et al, "HP AdvanceNet: A Growth-Oriented Computer 
Networking Architectural Strategy", in Hewlett-Packard 
Journal, Vol. 37, No. 10, October 1986. 

Date, C.J., An Introduction to Database_Systems. Vols. I & II. 
Addison-Wesley, 1986 

Date, C.J., "A Critique of the SQL Database Language", in SIGMOD 
Record. Vol. 14, No.3, November 1984. 

Deen, S.M., "Distributed Data Bases: Some Problems", in Proc. of 
the International Conference on Data Bases: University of 
Aberdeen, July 1980, ed. S.M. Deen and P. Hammersley. 
Heydon and Son Ltd., 1980. 

Gligor, V.D. and R. Popescu-Zeletin, "Concurrency Control Issues 
in Distributed Heterogeneous Database Management Systems", in 
Tutorial: Distributed Database Management, ed. J.A. Larson 
and S. Rahimi. IEEE Computer Society Press, 1985. 

Gligor, V.D. and G.L. Luckenbaugh, "Interconnecting Heterogeneous 
Database Management Systems" in Computer, January 1984. 

Heiler, S. and A.T. Maness, "Connecting Heterogeneous Systems and 
Data Sources", in Database Engineering Bulletin, Vol. 7, 
No. 1, March 1984. 

Larson, J.A. and Saeed Rahimi (eds.), Tutorial: Distributed 
Database Management. IEEE Computer Society Press, 1985. 

Lindsay, B., "Distributed Transaction Management" in Distributed 
Database. Online Publications Ltd., 1981. 

Rusinkiewicz, M. and Bogdan Czejdo, "Query Transformation in 
Heterogeneous Distributed Database systems", in Proc. 5th 
International Conference on Distributed Computing systems, 
1985. IEEE Computer Society Press, 1985. 

Saykally, D., "PC-Mainframe Links Continue To Confuse", in 
InformationWEEK, September 22 1986. 

Tanenbaum, A.S., "Network Protocols", in Computing Surveys, 
Vol. 13, No. 4, December 1981. 

Walker, H.M., "Administering a Distributed Data Base Management 
System", in SIGMOD Record, Vol. 12, No. 3, April 1982. 



HP3000 
INTERNATIONAL CONFERENCE 
VIENNA 1987 




